ndiff_9.miz
    
    begin
    
    reserve S,T,W,Y for
    RealNormSpace;
    
    reserve f,f1,f2 for
    PartFunc of S, T; 
    
    reserve Z for
    Subset of S; 
    
    reserve i,n for
    Nat;
    
    theorem :: 
    
    NDIFF_9:1
    
    
    
    
    
    LMDIFF: for E,F be 
    RealNormSpace, f be 
    PartFunc of E, F, Z be 
    Subset of E, z be 
    Point of E st Z is 
    open & z 
    in Z & Z 
    c= ( 
    dom f) & f 
    is_differentiable_in z holds (f 
    | Z) 
    is_differentiable_in z & ( 
    diff (f,z)) 
    = ( 
    diff ((f 
    | Z),z)) 
    
    proof
    
      let E,F be
    RealNormSpace, f be 
    PartFunc of E, F, Z be 
    Subset of E, z be 
    Point of E; 
    
      assume
    
      
    
    A1: Z is 
    open & z 
    in Z & Z 
    c= ( 
    dom f) & f 
    is_differentiable_in z; 
    
      then
    
      consider N be
    Neighbourhood of z such that 
    
      
    
    A2: N 
    c= ( 
    dom f) & ex R be 
    RestFunc of E, F st for x be 
    Point of E st x 
    in N holds ((f 
    /. x) 
    - (f 
    /. z)) 
    = ((( 
    diff (f,z)) 
    . (x 
    - z)) 
    + (R 
    /. (x 
    - z))) by 
    NDIFF_1:def 7;
    
      consider r be
    Real such that 
    
      
    
    A3: r 
    >  
    0 & ( 
    Ball (z,r)) 
    c= Z by 
    A1,
    NDIFF_8: 20;
    
      (
    Ball (z,r)) 
    = { y where y be 
    Point of E : 
    ||.(y
    - z).|| 
    < r } by 
    NDIFF_8: 17;
    
      then Z is
    Neighbourhood of z by 
    A3,
    NFCONT_1:def 1;
    
      then
    
      reconsider NZ = (N
    /\ Z) as 
    Neighbourhood of z by 
    NDIFF_5: 8;
    
      
    
      
    
    A4: ( 
    dom (f 
    | Z)) 
    = (( 
    dom f) 
    /\ Z) by 
    RELAT_1: 61;
    
      
    
      
    
    A5: (N 
    /\ Z) 
    c= (( 
    dom f) 
    /\ Z) by 
    A2,
    XBOOLE_1: 26;
    
      consider R be
    RestFunc of E, F such that 
    
      
    
    A6: for x be 
    Point of E st x 
    in N holds ((f 
    /. x) 
    - (f 
    /. z)) 
    = ((( 
    diff (f,z)) 
    . (x 
    - z)) 
    + (R 
    /. (x 
    - z))) by 
    A2;
    
      
    
      
    
    A7: for x be 
    Point of E st x 
    in NZ holds (((f 
    | Z) 
    /. x) 
    - ((f 
    | Z) 
    /. z)) 
    = ((( 
    diff (f,z)) 
    . (x 
    - z)) 
    + (R 
    /. (x 
    - z))) 
    
      proof
    
        let x be
    Point of E; 
    
        assume
    
        
    
    A8: x 
    in NZ; 
    
        then
    
        
    
    A9: x 
    in N & x 
    in Z by 
    XBOOLE_0:def 4;
    
        
    
        then
    
        
    
    A15: (f 
    /. x) 
    = (f 
    . x) by 
    A2,
    PARTFUN1:def 6
    
        .= ((f
    | Z) 
    . x) by 
    A9,
    FUNCT_1: 49
    
        .= ((f
    | Z) 
    /. x) by 
    A4,
    A5,
    A8,
    PARTFUN1:def 6;
    
        
    
        
    
    A14: z 
    in NZ by 
    NFCONT_1: 4;
    
        (f
    /. z) 
    = (f 
    . z) by 
    A1,
    PARTFUN1:def 6
    
        .= ((f
    | Z) 
    . z) by 
    A1,
    FUNCT_1: 49
    
        .= ((f
    | Z) 
    /. z) by 
    A4,
    A5,
    A14,
    PARTFUN1:def 6;
    
        hence thesis by
    A6,
    A9,
    A15;
    
      end;
    
      hence (f
    | Z) 
    is_differentiable_in z by 
    A2,
    A4,
    NDIFF_1:def 6,
    XBOOLE_1: 26;
    
      hence (
    diff (f,z)) 
    = ( 
    diff ((f 
    | Z),z)) by 
    A4,
    A5,
    A7,
    NDIFF_1:def 7;
    
    end;
    
    theorem :: 
    
    NDIFF_9:2
    
    
    
    
    
    LMPDIFF: for E,F,G be 
    RealNormSpace, f be 
    PartFunc of 
    [:E, F:], G, Z be
    Subset of 
    [:E, F:], z be
    Point of 
    [:E, F:] st Z is
    open & z 
    in Z & Z 
    c= ( 
    dom f) holds (f 
    is_partial_differentiable_in`1 z implies ((f 
    | Z) 
    is_partial_differentiable_in`1 z & ( 
    partdiff`1 (f,z)) 
    = ( 
    partdiff`1 ((f 
    | Z),z)))) & (f 
    is_partial_differentiable_in`2 z implies ((f 
    | Z) 
    is_partial_differentiable_in`2 z & ( 
    partdiff`2 (f,z)) 
    = ( 
    partdiff`2 ((f 
    | Z),z)))) 
    
    proof
    
      let E,F,G be
    RealNormSpace, f be 
    PartFunc of 
    [:E, F:], G, Z be
    Subset of 
    [:E, F:], z be
    Point of 
    [:E, F:];
    
      assume
    
      
    
    A1: Z is 
    open & z 
    in Z & Z 
    c= ( 
    dom f); 
    
      
    
      
    
    A2: ex x1 be 
    Point of E, x2 be 
    Point of F st z 
    =  
    [x1, x2] by
    PRVECT_3: 18;
    
      thus f
    is_partial_differentiable_in`1 z implies ((f 
    | Z) 
    is_partial_differentiable_in`1 z & ( 
    partdiff`1 (f,z)) 
    = ( 
    partdiff`1 ((f 
    | Z),z))) 
    
      proof
    
        assume
    
        
    
    A4: f 
    is_partial_differentiable_in`1 z; 
    
        set g = (f
    * ( 
    reproj1 z)); 
    
        consider N be
    Neighbourhood of (z 
    `1 ) such that 
    
        
    
    A6: N 
    c= ( 
    dom g) & ex R be 
    RestFunc of E, G st for x be 
    Point of E st x 
    in N holds ((g 
    /. x) 
    - (g 
    /. (z 
    `1 ))) 
    = ((( 
    partdiff`1 (f,z)) 
    . (x 
    - (z 
    `1 ))) 
    + (R 
    /. (x 
    - (z 
    `1 )))) by 
    A4,
    NDIFF_1:def 7;
    
        consider R be
    RestFunc of E, G such that 
    
        
    
    A7: for x be 
    Point of E st x 
    in N holds ((g 
    /. x) 
    - (g 
    /. (z 
    `1 ))) 
    = ((( 
    partdiff`1 (f,z)) 
    . (x 
    - (z 
    `1 ))) 
    + (R 
    /. (x 
    - (z 
    `1 )))) by 
    A6;
    
        set h = ((f
    | Z) 
    * ( 
    reproj1 z)); 
    
        
    
        
    
    A9: (( 
    reproj1 z) 
    . (z 
    `1 )) 
    =  
    [(z
    `1 ), (z 
    `2 )] by 
    NDIFF_7:def 1
    
        .= z by
    A2;
    
        consider r1 be
    Real such that 
    
        
    
    A10: r1 
    >  
    0 & ( 
    Ball (z,r1)) 
    c= Z by 
    A1,
    NDIFF_8: 20;
    
        
    
        
    
    A11: ( 
    Ball (z,r1)) 
    = { y where y be 
    Point of 
    [:E, F:] :
    ||.(y
    - z).|| 
    < r1 } by 
    NDIFF_8: 17;
    
        consider r2 be
    Real such that 
    
        
    
    A13: r2 
    >  
    0 & { y where y be 
    Point of E : 
    ||.(y
    - (z 
    `1 )).|| 
    < r2 } 
    c= N by 
    NFCONT_1:def 1;
    
        set r = (
    min (r1,r2)); 
    
        
    
        
    
    A14: 
    0  
    < r & r 
    <= r1 & r 
    <= r2 by 
    A10,
    A13,
    XXREAL_0: 15,
    XXREAL_0: 17;
    
        set M = (
    Ball ((z 
    `1 ),r)); 
    
        
    
        
    
    A15: M 
    = { y where y be 
    Point of E : 
    ||.(y
    - (z 
    `1 )).|| 
    < r } by 
    NDIFF_8: 17;
    
        then
    
        reconsider M as
    Neighbourhood of (z 
    `1 ) by 
    A14,
    NFCONT_1:def 1;
    
        
    
        
    
    A17: { y where y be 
    Point of E : 
    ||.(y
    - (z 
    `1 )).|| 
    < r2 } 
    = ( 
    Ball ((z 
    `1 ),r2)) by 
    NDIFF_8: 17;
    
        
    
        
    
    A18: M 
    c= ( 
    Ball ((z 
    `1 ),r2)) by 
    A14,
    NDIFF_8: 15;
    
        
    
        
    
    A19: M 
    c= N & for x be 
    Point of E st x 
    in M holds (( 
    reproj1 z) 
    . x) 
    in Z 
    
        proof
    
          thus M
    c= N by 
    A13,
    A17,
    A18,
    XBOOLE_1: 1;
    
          let x be
    Point of E; 
    
          assume x
    in M; 
    
          then
    
          
    
    A20: ex y be 
    Point of E st x 
    = y & 
    ||.(y
    - (z 
    `1 )).|| 
    < r by 
    A15;
    
          
    
          
    
    A21: (( 
    reproj1 z) 
    . x) 
    =  
    [x, (z
    `2 )] by 
    NDIFF_7:def 1;
    
          (
    - z) 
    =  
    [(
    - (z 
    `1 )), ( 
    - (z 
    `2 ))] by 
    A2,
    PRVECT_3: 18;
    
          
    
          then (((
    reproj1 z) 
    . x) 
    - z) 
    =  
    [(x
    - (z 
    `1 )), ((z 
    `2 ) 
    - (z 
    `2 ))] by 
    A21,
    PRVECT_3: 18
    
          .=
    [(x
    - (z 
    `1 )), ( 
    0. F)] by 
    RLVECT_1: 15;
    
          then
    ||.(((
    reproj1 z) 
    . x) 
    - z).|| 
    =  
    ||.(x
    - (z 
    `1 )).|| by 
    NDIFF_8: 2;
    
          then
    ||.(((
    reproj1 z) 
    . x) 
    - z).|| 
    < r1 by 
    A14,
    A20,
    XXREAL_0: 2;
    
          then ((
    reproj1 z) 
    . x) 
    in { y where y be 
    Point of 
    [:E, F:] :
    ||.(y
    - z).|| 
    < r1 }; 
    
          hence ((
    reproj1 z) 
    . x) 
    in Z by 
    A10,
    A11;
    
        end;
    
        
    
        
    
    A22: ( 
    dom ( 
    reproj1 z)) 
    = the 
    carrier of E by 
    FUNCT_2:def 1;
    
        
    
        
    
    A23: ( 
    dom (f 
    | Z)) 
    = Z by 
    A1,
    RELAT_1: 62;
    
        
    
        
    
    A24: M 
    c= ( 
    dom h) 
    
        proof
    
          let x be
    object;
    
          assume
    
          
    
    A25: x 
    in M; 
    
          then ((
    reproj1 z) 
    . x) 
    in Z by 
    A19;
    
          hence x
    in ( 
    dom h) by 
    A22,
    A23,
    A25,
    FUNCT_1: 11;
    
        end;
    
        
    
        
    
    A27: for x be 
    Point of E st x 
    in M holds ((h 
    /. x) 
    - (h 
    /. (z 
    `1 ))) 
    = ((( 
    partdiff`1 (f,z)) 
    . (x 
    - (z 
    `1 ))) 
    + (R 
    /. (x 
    - (z 
    `1 )))) 
    
        proof
    
          let x be
    Point of E; 
    
          assume
    
          
    
    A28: x 
    in M; 
    
          then
    
          
    
    A29: x 
    in N by 
    A19;
    
          
    
          
    
    A30: (z 
    `1 ) 
    in N by 
    NFCONT_1: 4;
    
          
    
          
    
    A31: (z 
    `1 ) 
    in M by 
    NFCONT_1: 4;
    
          
    
          
    
    A33: (h 
    /. x) 
    = (h 
    . x) by 
    A24,
    A28,
    PARTFUN1:def 6
    
          .= ((f
    | Z) 
    . (( 
    reproj1 z) 
    . x)) by 
    A22,
    FUNCT_1: 13
    
          .= (f
    . (( 
    reproj1 z) 
    . x)) by 
    A19,
    A28,
    FUNCT_1: 49
    
          .= ((f
    * ( 
    reproj1 z)) 
    . x) by 
    A22,
    FUNCT_1: 13
    
          .= (g
    /. x) by 
    A6,
    A29,
    PARTFUN1:def 6;
    
          (h
    /. (z 
    `1 )) 
    = (h 
    . (z 
    `1 )) by 
    A24,
    A31,
    PARTFUN1:def 6
    
          .= ((f
    | Z) 
    . (( 
    reproj1 z) 
    . (z 
    `1 ))) by 
    A22,
    FUNCT_1: 13
    
          .= (f
    . (( 
    reproj1 z) 
    . (z 
    `1 ))) by 
    A1,
    A9,
    FUNCT_1: 49
    
          .= ((f
    * ( 
    reproj1 z)) 
    . (z 
    `1 )) by 
    A22,
    FUNCT_1: 13
    
          .= (g
    /. (z 
    `1 )) by 
    A6,
    A30,
    PARTFUN1:def 6;
    
          hence thesis by
    A7,
    A19,
    A28,
    A33;
    
        end;
    
        then
    
        
    
    A35: h 
    is_differentiable_in (z 
    `1 ) by 
    A24,
    NDIFF_1:def 6;
    
        thus (f
    | Z) 
    is_partial_differentiable_in`1 z by 
    A24,
    A27,
    NDIFF_1:def 6;
    
        thus (
    partdiff`1 ((f 
    | Z),z)) 
    = ( 
    partdiff`1 (f,z)) by 
    A35,
    A24,
    A27,
    NDIFF_1:def 7;
    
      end;
    
      assume
    
      
    
    A38: f 
    is_partial_differentiable_in`2 z; 
    
      set g = (f
    * ( 
    reproj2 z)); 
    
      consider N be
    Neighbourhood of (z 
    `2 ) such that 
    
      
    
    A40: N 
    c= ( 
    dom g) & ex R be 
    RestFunc of F, G st for x be 
    Point of F st x 
    in N holds ((g 
    /. x) 
    - (g 
    /. (z 
    `2 ))) 
    = ((( 
    partdiff`2 (f,z)) 
    . (x 
    - (z 
    `2 ))) 
    + (R 
    /. (x 
    - (z 
    `2 )))) by 
    A38,
    NDIFF_1:def 7;
    
      consider R be
    RestFunc of F, G such that 
    
      
    
    A41: for x be 
    Point of F st x 
    in N holds ((g 
    /. x) 
    - (g 
    /. (z 
    `2 ))) 
    = ((( 
    partdiff`2 (f,z)) 
    . (x 
    - (z 
    `2 ))) 
    + (R 
    /. (x 
    - (z 
    `2 )))) by 
    A40;
    
      set h = ((f
    | Z) 
    * ( 
    reproj2 z)); 
    
      
    
      
    
    A43: (( 
    reproj2 z) 
    . (z 
    `2 )) 
    =  
    [(z
    `1 ), (z 
    `2 )] by 
    NDIFF_7:def 2
    
      .= z by
    A2;
    
      consider r1 be
    Real such that 
    
      
    
    A44: r1 
    >  
    0 & ( 
    Ball (z,r1)) 
    c= Z by 
    A1,
    NDIFF_8: 20;
    
      
    
      
    
    A45: ( 
    Ball (z,r1)) 
    = { y where y be 
    Point of 
    [:E, F:] :
    ||.(y
    - z).|| 
    < r1 } by 
    NDIFF_8: 17;
    
      consider r2 be
    Real such that 
    
      
    
    A47: r2 
    >  
    0 & { y where y be 
    Point of F : 
    ||.(y
    - (z 
    `2 )).|| 
    < r2 } 
    c= N by 
    NFCONT_1:def 1;
    
      set r = (
    min (r1,r2)); 
    
      
    
      
    
    A48: 
    0  
    < r & r 
    <= r1 & r 
    <= r2 by 
    A44,
    A47,
    XXREAL_0: 15,
    XXREAL_0: 17;
    
      set M = (
    Ball ((z 
    `2 ),r)); 
    
      
    
      
    
    A49: M 
    = { y where y be 
    Point of F : 
    ||.(y
    - (z 
    `2 )).|| 
    < r } by 
    NDIFF_8: 17;
    
      then
    
      reconsider M as
    Neighbourhood of (z 
    `2 ) by 
    A48,
    NFCONT_1:def 1;
    
      
    
      
    
    A51: { y where y be 
    Point of F : 
    ||.(y
    - (z 
    `2 )).|| 
    < r2 } 
    = ( 
    Ball ((z 
    `2 ),r2)) by 
    NDIFF_8: 17;
    
      
    
      
    
    A52: M 
    c= ( 
    Ball ((z 
    `2 ),r2)) by 
    A48,
    NDIFF_8: 15;
    
      
    
      
    
    A53: M 
    c= N & for x be 
    Point of F st x 
    in M holds (( 
    reproj2 z) 
    . x) 
    in Z 
    
      proof
    
        thus M
    c= N by 
    A47,
    A51,
    A52,
    XBOOLE_1: 1;
    
        let x be
    Point of F; 
    
        assume x
    in M; 
    
        then
    
        
    
    A54: ex y be 
    Point of F st x 
    = y & 
    ||.(y
    - (z 
    `2 )).|| 
    < r by 
    A49;
    
        
    
        
    
    A55: (( 
    reproj2 z) 
    . x) 
    =  
    [(z
    `1 ), x] by 
    NDIFF_7:def 2;
    
        (
    - z) 
    =  
    [(
    - (z 
    `1 )), ( 
    - (z 
    `2 ))] by 
    A2,
    PRVECT_3: 18;
    
        
    
        then (((
    reproj2 z) 
    . x) 
    - z) 
    =  
    [((z
    `1 ) 
    - (z 
    `1 )), (x 
    - (z 
    `2 ))] by 
    A55,
    PRVECT_3: 18
    
        .=
    [(
    0. E), (x 
    - (z 
    `2 ))] by 
    RLVECT_1: 15;
    
        then
    ||.(((
    reproj2 z) 
    . x) 
    - z).|| 
    =  
    ||.(x
    - (z 
    `2 )).|| by 
    NDIFF_8: 3;
    
        then
    ||.(((
    reproj2 z) 
    . x) 
    - z).|| 
    < r1 by 
    A48,
    A54,
    XXREAL_0: 2;
    
        then ((
    reproj2 z) 
    . x) 
    in { y where y be 
    Point of 
    [:E, F:] :
    ||.(y
    - z).|| 
    < r1 }; 
    
        hence ((
    reproj2 z) 
    . x) 
    in Z by 
    A44,
    A45;
    
      end;
    
      
    
      
    
    A56: ( 
    dom ( 
    reproj2 z)) 
    = the 
    carrier of F by 
    FUNCT_2:def 1;
    
      
    
      
    
    A57: ( 
    dom (f 
    | Z)) 
    = Z by 
    A1,
    RELAT_1: 62;
    
      
    
      
    
    A58: M 
    c= ( 
    dom h) 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A59: x 
    in M; 
    
        then ((
    reproj2 z) 
    . x) 
    in Z by 
    A53;
    
        hence x
    in ( 
    dom h) by 
    A56,
    A57,
    A59,
    FUNCT_1: 11;
    
      end;
    
      
    
      
    
    A61: for x be 
    Point of F st x 
    in M holds ((h 
    /. x) 
    - (h 
    /. (z 
    `2 ))) 
    = ((( 
    partdiff`2 (f,z)) 
    . (x 
    - (z 
    `2 ))) 
    + (R 
    /. (x 
    - (z 
    `2 )))) 
    
      proof
    
        let x be
    Point of F; 
    
        assume
    
        
    
    A62: x 
    in M; 
    
        then
    
        
    
    A63: x 
    in N by 
    A53;
    
        
    
        
    
    A64: (z 
    `2 ) 
    in N by 
    NFCONT_1: 4;
    
        
    
        
    
    A65: (z 
    `2 ) 
    in M by 
    NFCONT_1: 4;
    
        
    
        
    
    A67: (h 
    /. x) 
    = (h 
    . x) by 
    A58,
    A62,
    PARTFUN1:def 6
    
        .= ((f
    | Z) 
    . (( 
    reproj2 z) 
    . x)) by 
    A56,
    FUNCT_1: 13
    
        .= (f
    . (( 
    reproj2 z) 
    . x)) by 
    A53,
    A62,
    FUNCT_1: 49
    
        .= ((f
    * ( 
    reproj2 z)) 
    . x) by 
    A56,
    FUNCT_1: 13
    
        .= (g
    /. x) by 
    A40,
    A63,
    PARTFUN1:def 6;
    
        (h
    /. (z 
    `2 )) 
    = (h 
    . (z 
    `2 )) by 
    A58,
    A65,
    PARTFUN1:def 6
    
        .= ((f
    | Z) 
    . (( 
    reproj2 z) 
    . (z 
    `2 ))) by 
    A56,
    FUNCT_1: 13
    
        .= (f
    . (( 
    reproj2 z) 
    . (z 
    `2 ))) by 
    A1,
    A43,
    FUNCT_1: 49
    
        .= ((f
    * ( 
    reproj2 z)) 
    . (z 
    `2 )) by 
    A56,
    FUNCT_1: 13
    
        .= (g
    /. (z 
    `2 )) by 
    A40,
    A64,
    PARTFUN1:def 6;
    
        hence thesis by
    A41,
    A53,
    A62,
    A67;
    
      end;
    
      hence (f
    | Z) 
    is_partial_differentiable_in`2 z by 
    A58,
    NDIFF_1:def 6;
    
      h
    is_differentiable_in (z 
    `2 ) by 
    A58,
    A61,
    NDIFF_1:def 6;
    
      hence (
    partdiff`2 ((f 
    | Z),z)) 
    = ( 
    partdiff`2 (f,z)) by 
    A58,
    A61,
    NDIFF_1:def 7;
    
    end;
    
    theorem :: 
    
    NDIFF_9:3
    
    
    
    
    
    LmTh47: for X,E,G,F be 
    RealNormSpace, BL be 
    BilinearOperator of E, F, G, f be 
    PartFunc of X, E, g be 
    PartFunc of X, F, S be 
    Subset of X st BL 
    is_continuous_on the 
    carrier of 
    [:E, F:] & S
    c= ( 
    dom f) & S 
    c= ( 
    dom g) & (for s be 
    Point of X st s 
    in S holds f 
    is_continuous_in s) & (for s be 
    Point of X st s 
    in S holds g 
    is_continuous_in s) holds ex H be 
    PartFunc of X, G st ( 
    dom H) 
    = S & (for s be 
    Point of X st s 
    in S holds (H 
    . s) 
    = (BL 
    . ((f 
    . s),(g 
    . s)))) & H 
    is_continuous_on S 
    
    proof
    
      let X,E,G,F be
    RealNormSpace, BL be 
    BilinearOperator of E, F, G, f be 
    PartFunc of X, E, g be 
    PartFunc of X, F, S be 
    Subset of X; 
    
      assume that
    
      
    
    A1: BL 
    is_continuous_on the 
    carrier of 
    [:E, F:] and
    
      
    
    A2: S 
    c= ( 
    dom f) & S 
    c= ( 
    dom g) and 
    
      
    
    A3: (for s be 
    Point of X st s 
    in S holds f 
    is_continuous_in s) and 
    
      
    
    A4: (for s be 
    Point of X st s 
    in S holds g 
    is_continuous_in s); 
    
      defpred
    
    P1[
    object, 
    object] means ex t be
    Point of X st t 
    = $1 & $2 
    = (BL 
    . ((f 
    . t),(g 
    . t))); 
    
      
    
      
    
    A5: for x be 
    object st x 
    in S holds ex y be 
    object st y 
    in the 
    carrier of G & 
    P1[x, y]
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A6: x 
    in S; 
    
        then
    
        reconsider t = x as
    Point of X; 
    
        take y = (BL
    . ((f 
    . t),(g 
    . t))); 
    
        
    
        
    
    A7: (f 
    . t) 
    in ( 
    rng f) & (g 
    . t) 
    in ( 
    rng g) by 
    A2,
    A6,
    FUNCT_1: 3;
    
        then
    
        reconsider p = (f
    . t) as 
    Point of E; 
    
        reconsider q = (g
    . t) as 
    Point of F by 
    A7;
    
        
    [p, q] is
    set by 
    TARSKI: 1;
    
        then
    [p, q] is
    Point of 
    [:E, F:] by
    PRVECT_3: 18;
    
        hence y
    in the 
    carrier of G & 
    P1[x, y] by
    FUNCT_2: 5;
    
      end;
    
      consider H be
    Function of S, G such that 
    
      
    
    A8: for z be 
    object st z 
    in S holds 
    P1[z, (H
    . z)] from 
    FUNCT_2:sch 1(
    A5);
    
      
    
      
    
    A9: ( 
    dom H) 
    = S by 
    FUNCT_2:def 1;
    
      (
    rng H) 
    c= the 
    carrier of G; 
    
      then H
    in ( 
    PFuncs (the 
    carrier of X,the 
    carrier of G)) by 
    A9,
    PARTFUN1:def 3;
    
      then
    
      reconsider H as
    PartFunc of X, G by 
    PARTFUN1: 46;
    
      take H;
    
      thus
    
      
    
    A12: ( 
    dom H) 
    = S by 
    FUNCT_2:def 1;
    
      thus
    
      
    
    A13: for s be 
    Point of X st s 
    in S holds (H 
    . s) 
    = (BL 
    . ((f 
    . s),(g 
    . s))) 
    
      proof
    
        let s be
    Point of X; 
    
        assume s
    in S; 
    
        then ex t be
    Point of X st t 
    = s & (H 
    . s) 
    = (BL 
    . ((f 
    . t),(g 
    . t))) by 
    A8;
    
        hence thesis;
    
      end;
    
      for x0 be
    Point of X holds for r be 
    Real st x0 
    in S & 
    0  
    < r holds ex pq be 
    Real st 
    0  
    < pq & for x1 be 
    Point of X st x1 
    in S & 
    ||.(x1
    - x0).|| 
    < pq holds 
    ||.((H
    /. x1) 
    - (H 
    /. x0)).|| 
    < r 
    
      proof
    
        let x0 be
    Point of X; 
    
        let r be
    Real;
    
        assume
    
        
    
    A16: x0 
    in S & 
    0  
    < r; 
    
        then
    
        
    
    A17: f 
    is_continuous_in x0 by 
    A3;
    
        
    
        
    
    A18: g 
    is_continuous_in x0 by 
    A4,
    A16;
    
        
    
        
    
    A20: (f 
    . x0) 
    in ( 
    rng f) & (g 
    . x0) 
    in ( 
    rng g) by 
    A2,
    A16,
    FUNCT_1: 3;
    
        
    [(f
    . x0), (g 
    . x0)] is 
    set by 
    TARSKI: 1;
    
        then
    
        reconsider z0 =
    [(f
    . x0), (g 
    . x0)] as 
    Point of 
    [:E, F:] by
    A20,
    PRVECT_3: 18;
    
        consider s be
    Real such that 
    
        
    
    A21: 
    0  
    < s & for z1 be 
    Point of 
    [:E, F:] st z1
    in the 
    carrier of 
    [:E, F:] &
    ||.(z1
    - z0).|| 
    < s holds 
    ||.((BL
    /. z1) 
    - (BL 
    /. z0)).|| 
    < r by 
    A1,
    A16,
    NFCONT_1: 19;
    
        set s1 = (s
    / 2); 
    
        consider p be
    Real such that 
    
        
    
    A23: 
    0  
    < p & for x1 be 
    Point of X st x1 
    in ( 
    dom f) & 
    ||.(x1
    - x0).|| 
    < p holds 
    ||.((f
    /. x1) 
    - (f 
    /. x0)).|| 
    < s1 by 
    A17,
    A21,
    NFCONT_1: 7,
    XREAL_1: 215;
    
        consider q be
    Real such that 
    
        
    
    A24: 
    0  
    < q & for x1 be 
    Point of X st x1 
    in ( 
    dom g) & 
    ||.(x1
    - x0).|| 
    < q holds 
    ||.((g
    /. x1) 
    - (g 
    /. x0)).|| 
    < s1 by 
    A18,
    A21,
    NFCONT_1: 7,
    XREAL_1: 215;
    
        set pq = (
    min (p,q)); 
    
        
    
        
    
    A25: 
    0  
    < pq & pq 
    <= p & pq 
    <= q by 
    A23,
    A24,
    XXREAL_0: 15,
    XXREAL_0: 17;
    
        take pq;
    
        thus
    0  
    < pq by 
    A23,
    A24,
    XXREAL_0: 15;
    
        thus for x1 be
    Point of X st x1 
    in S & 
    ||.(x1
    - x0).|| 
    < pq holds 
    ||.((H
    /. x1) 
    - (H 
    /. x0)).|| 
    < r 
    
        proof
    
          let x1 be
    Point of X; 
    
          assume
    
          
    
    A26: x1 
    in S & 
    ||.(x1
    - x0).|| 
    < pq; 
    
          then
    
          
    
    A27: 
    ||.(x1
    - x0).|| 
    < p & 
    ||.(x1
    - x0).|| 
    < q by 
    A25,
    XXREAL_0: 2;
    
          then
    
          
    
    A29: 
    ||.((f
    /. x1) 
    - (f 
    /. x0)).|| 
    < s1 by 
    A2,
    A23,
    A26;
    
          
    
          
    
    A30: 
    ||.((g
    /. x1) 
    - (g 
    /. x0)).|| 
    < s1 by 
    A2,
    A24,
    A26,
    A27;
    
          
    
          
    
    A32: (f 
    . x1) 
    in ( 
    rng f) & (g 
    . x1) 
    in ( 
    rng g) by 
    A2,
    A26,
    FUNCT_1: 3;
    
          
    [(f
    . x1), (g 
    . x1)] is 
    set by 
    TARSKI: 1;
    
          then
    
          reconsider z1 =
    [(f
    . x1), (g 
    . x1)] as 
    Point of 
    [:E, F:] by
    A32,
    PRVECT_3: 18;
    
          
    
          
    
    A33: z1 
    =  
    [(f
    /. x1), (g 
    . x1)] by 
    A2,
    A26,
    PARTFUN1:def 6
    
          .=
    [(f
    /. x1), (g 
    /. x1)] by 
    A2,
    A26,
    PARTFUN1:def 6;
    
          z0
    =  
    [(f
    /. x0), (g 
    . x0)] by 
    A2,
    A16,
    PARTFUN1:def 6
    
          .=
    [(f
    /. x0), (g 
    /. x0)] by 
    A2,
    A16,
    PARTFUN1:def 6;
    
          then (
    - z0) 
    =  
    [(
    - (f 
    /. x0)), ( 
    - (g 
    /. x0))] by 
    PRVECT_3: 18;
    
          then (z1
    - z0) 
    =  
    [((f
    /. x1) 
    - (f 
    /. x0)), ((g 
    /. x1) 
    - (g 
    /. x0))] by 
    A33,
    PRVECT_3: 18;
    
          then
    
          
    
    A35: 
    ||.(z1
    - z0).|| 
    = ( 
    sqrt (( 
    ||.((f
    /. x1) 
    - (f 
    /. x0)).|| 
    ^2 ) 
    + ( 
    ||.((g
    /. x1) 
    - (g 
    /. x0)).|| 
    ^2 ))) by 
    NDIFF_8: 1;
    
          
    
          
    
    A36: ( 
    ||.((f
    /. x1) 
    - (f 
    /. x0)).|| 
    ^2 ) 
    <= (s1 
    ^2 ) by 
    A29,
    SQUARE_1: 15;
    
          (
    ||.((g
    /. x1) 
    - (g 
    /. x0)).|| 
    ^2 ) 
    <= (s1 
    ^2 ) by 
    A30,
    SQUARE_1: 15;
    
          then
    
          
    
    A38: (( 
    ||.((f
    /. x1) 
    - (f 
    /. x0)).|| 
    ^2 ) 
    + ( 
    ||.((g
    /. x1) 
    - (g 
    /. x0)).|| 
    ^2 )) 
    <= (((s 
    ^2 ) 
    / 4) 
    + ((s 
    ^2 ) 
    / 4)) by 
    A36,
    XREAL_1: 7;
    
          ((s
    ^2 ) 
    / 2) 
    < (s 
    ^2 ) by 
    A21,
    XREAL_1: 129,
    XREAL_1: 216;
    
          then ((
    ||.((f
    /. x1) 
    - (f 
    /. x0)).|| 
    ^2 ) 
    + ( 
    ||.((g
    /. x1) 
    - (g 
    /. x0)).|| 
    ^2 )) 
    < (s 
    ^2 ) by 
    A38,
    XXREAL_0: 2;
    
          then (
    sqrt (( 
    ||.((f
    /. x1) 
    - (f 
    /. x0)).|| 
    ^2 ) 
    + ( 
    ||.((g
    /. x1) 
    - (g 
    /. x0)).|| 
    ^2 ))) 
    < ( 
    sqrt (s 
    ^2 )) by 
    SQUARE_1: 27;
    
          then
    
          
    
    A40: 
    ||.(z1
    - z0).|| 
    < s by 
    A21,
    A35,
    SQUARE_1: 22;
    
          
    
          
    
    A41: (H 
    /. x1) 
    = (H 
    . x1) by 
    A12,
    A26,
    PARTFUN1:def 6
    
          .= (BL
    . ((f 
    . x1),(g 
    . x1))) by 
    A13,
    A26
    
          .= (BL
    /. z1); 
    
          (H
    /. x0) 
    = (H 
    . x0) by 
    A12,
    A16,
    PARTFUN1:def 6
    
          .= (BL
    . ((f 
    . x0),(g 
    . x0))) by 
    A13,
    A16
    
          .= (BL
    /. z0); 
    
          hence
    ||.((H
    /. x1) 
    - (H 
    /. x0)).|| 
    < r by 
    A21,
    A40,
    A41;
    
        end;
    
      end;
    
      hence H
    is_continuous_on S by 
    A12,
    NFCONT_1: 19;
    
    end;
    
    theorem :: 
    
    NDIFF_9:4
    
    
    
    
    
    LmTh471: for E,F be 
    RealNormSpace, g be 
    PartFunc of E, F, A be 
    Subset of E st g 
    is_continuous_on A & ( 
    dom g) 
    = A holds ex xg be 
    PartFunc of E, 
    [:E, F:] st (
    dom xg) 
    = A & (for x be 
    Point of E st x 
    in A holds (xg 
    . x) 
    =  
    [x, (g
    . x)]) & xg 
    is_continuous_on A 
    
    proof
    
      let E,F be
    RealNormSpace, g be 
    PartFunc of E, F, S be 
    Subset of E; 
    
      assume that
    
      
    
    A1: g 
    is_continuous_on S and 
    
      
    
    A2: ( 
    dom g) 
    = S; 
    
      defpred
    
    P1[
    object, 
    object] means ex t be
    Point of E st t 
    = $1 & $2 
    =  
    [t, (g
    . t)]; 
    
      
    
      
    
    A3: for x be 
    object st x 
    in S holds ex y be 
    object st y 
    in the 
    carrier of 
    [:E, F:] &
    P1[x, y]
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A4: x 
    in S; 
    
        then
    
        reconsider t = x as
    Point of E; 
    
        take y =
    [t, (g
    . t)]; 
    
        (g
    . t) 
    in ( 
    rng g) by 
    A2,
    A4,
    FUNCT_1: 3;
    
        then
    
        reconsider q = (g
    . t) as 
    Point of F; 
    
        
    [t, q] is
    set by 
    TARSKI: 1;
    
        then
    [t, q] is
    Point of 
    [:E, F:] by
    PRVECT_3: 18;
    
        hence y
    in the 
    carrier of 
    [:E, F:] &
    P1[x, y];
    
      end;
    
      consider H be
    Function of S, 
    [:E, F:] such that
    
      
    
    A6: for z be 
    object st z 
    in S holds 
    P1[z, (H
    . z)] from 
    FUNCT_2:sch 1(
    A3);
    
      
    
      
    
    A7: ( 
    dom H) 
    = S by 
    FUNCT_2:def 1;
    
      (
    rng H) 
    c= the 
    carrier of 
    [:E, F:];
    
      then H
    in ( 
    PFuncs (the 
    carrier of E,the 
    carrier of 
    [:E, F:])) by
    A7,
    PARTFUN1:def 3;
    
      then
    
      reconsider H as
    PartFunc of E, 
    [:E, F:] by
    PARTFUN1: 46;
    
      take H;
    
      thus (
    dom H) 
    = S by 
    FUNCT_2:def 1;
    
      thus
    
      
    
    A11: for s be 
    Point of E st s 
    in S holds (H 
    . s) 
    =  
    [s, (g
    . s)] 
    
      proof
    
        let s be
    Point of E; 
    
        assume s
    in S; 
    
        then ex t be
    Point of E st t 
    = s & (H 
    . s) 
    =  
    [t, (g
    . t)] by 
    A6;
    
        hence thesis;
    
      end;
    
      for x0 be
    Point of E holds for r be 
    Real st x0 
    in S & 
    0  
    < r holds ex pq be 
    Real st 
    0  
    < pq & for x1 be 
    Point of E st x1 
    in S & 
    ||.(x1
    - x0).|| 
    < pq holds 
    ||.((H
    /. x1) 
    - (H 
    /. x0)).|| 
    < r 
    
      proof
    
        let x0 be
    Point of E; 
    
        let r be
    Real;
    
        assume
    
        
    
    A12: x0 
    in S & 
    0  
    < r; 
    
        then
    
        
    
    A14: (g 
    . x0) 
    in ( 
    rng g) by 
    A2,
    FUNCT_1: 3;
    
        
    [x0, (g
    . x0)] is 
    set by 
    TARSKI: 1;
    
        then
    
        reconsider z0 =
    [x0, (g
    . x0)] as 
    Point of 
    [:E, F:] by
    A14,
    PRVECT_3: 18;
    
        
    
        
    
    A15: 
    0  
    < (r 
    / 2) & (r 
    / 2) 
    < r by 
    A12,
    XREAL_1: 215,
    XREAL_1: 216;
    
        consider q be
    Real such that 
    
        
    
    A16: 
    0  
    < q & for x1 be 
    Point of E st x1 
    in S & 
    ||.(x1
    - x0).|| 
    < q holds 
    ||.((g
    /. x1) 
    - (g 
    /. x0)).|| 
    < (r 
    / 2) by 
    A1,
    A12,
    NFCONT_1: 19,
    XREAL_1: 215;
    
        set pq = (
    min (q,(r 
    / 2))); 
    
        
    
        
    
    A17: 
    0  
    < pq & pq 
    <= q & pq 
    <= (r 
    / 2) by 
    A15,
    A16,
    XXREAL_0: 15,
    XXREAL_0: 17;
    
        take pq;
    
        thus
    0  
    < pq by 
    A15,
    A16,
    XXREAL_0: 15;
    
        thus for x1 be
    Point of E st x1 
    in S & 
    ||.(x1
    - x0).|| 
    < pq holds 
    ||.((H
    /. x1) 
    - (H 
    /. x0)).|| 
    < r 
    
        proof
    
          let x1 be
    Point of E; 
    
          assume
    
          
    
    A18: x1 
    in S & 
    ||.(x1
    - x0).|| 
    < pq; 
    
          then
    ||.(x1
    - x0).|| 
    < q by 
    A17,
    XXREAL_0: 2;
    
          then
    
          
    
    A21: 
    ||.((g
    /. x1) 
    - (g 
    /. x0)).|| 
    < (r 
    / 2) by 
    A16,
    A18;
    
          
    
          
    
    A23: (g 
    . x1) 
    in ( 
    rng g) by 
    A2,
    A18,
    FUNCT_1: 3;
    
          
    [x1, (g
    . x1)] is 
    set by 
    TARSKI: 1;
    
          then
    
          reconsider z1 =
    [x1, (g
    . x1)] as 
    Point of 
    [:E, F:] by
    A23,
    PRVECT_3: 18;
    
          
    
          
    
    A24: z1 
    =  
    [x1, (g
    /. x1)] by 
    A2,
    A18,
    PARTFUN1:def 6;
    
          z0
    =  
    [x0, (g
    /. x0)] by 
    A2,
    A12,
    PARTFUN1:def 6;
    
          then (
    - z0) 
    =  
    [(
    - x0), ( 
    - (g 
    /. x0))] by 
    PRVECT_3: 18;
    
          then (z1
    - z0) 
    =  
    [(x1
    - x0), ((g 
    /. x1) 
    - (g 
    /. x0))] by 
    A24,
    PRVECT_3: 18;
    
          then
    
          
    
    A26: 
    ||.(z1
    - z0).|| 
    = ( 
    sqrt (( 
    ||.(x1
    - x0).|| 
    ^2 ) 
    + ( 
    ||.((g
    /. x1) 
    - (g 
    /. x0)).|| 
    ^2 ))) by 
    NDIFF_8: 1;
    
          
    ||.(x1
    - x0).|| 
    < (r 
    / 2) by 
    A17,
    A18,
    XXREAL_0: 2;
    
          then
    
          
    
    A27: ( 
    ||.(x1
    - x0).|| 
    ^2 ) 
    < ((r 
    / 2) 
    ^2 ) by 
    SQUARE_1: 16;
    
          (
    ||.((g
    /. x1) 
    - (g 
    /. x0)).|| 
    ^2 ) 
    <= ((r 
    / 2) 
    ^2 ) by 
    A21,
    SQUARE_1: 15;
    
          then
    
          
    
    A29: (( 
    ||.(x1
    - x0).|| 
    ^2 ) 
    + ( 
    ||.((g
    /. x1) 
    - (g 
    /. x0)).|| 
    ^2 )) 
    <= (((r 
    ^2 ) 
    / 4) 
    + ((r 
    ^2 ) 
    / 4)) by 
    A27,
    XREAL_1: 7;
    
          ((r
    ^2 ) 
    / 2) 
    < (r 
    ^2 ) by 
    A12,
    XREAL_1: 129,
    XREAL_1: 216;
    
          then ((
    ||.(x1
    - x0).|| 
    ^2 ) 
    + ( 
    ||.((g
    /. x1) 
    - (g 
    /. x0)).|| 
    ^2 )) 
    < (r 
    ^2 ) by 
    A29,
    XXREAL_0: 2;
    
          then
    
          
    
    A31: ( 
    sqrt (( 
    ||.(x1
    - x0).|| 
    ^2 ) 
    + ( 
    ||.((g
    /. x1) 
    - (g 
    /. x0)).|| 
    ^2 ))) 
    < ( 
    sqrt (r 
    ^2 )) by 
    SQUARE_1: 27;
    
          
    
          
    
    A32: (H 
    /. x1) 
    = (H 
    . x1) by 
    A7,
    A18,
    PARTFUN1:def 6
    
          .= z1 by
    A11,
    A18;
    
          (H
    /. x0) 
    = (H 
    . x0) by 
    A7,
    A12,
    PARTFUN1:def 6
    
          .= z0 by
    A11,
    A12;
    
          hence
    ||.((H
    /. x1) 
    - (H 
    /. x0)).|| 
    < r by 
    A12,
    A26,
    A31,
    A32,
    SQUARE_1: 22;
    
        end;
    
      end;
    
      hence H
    is_continuous_on S by 
    A7,
    NFCONT_1: 19;
    
    end;
    
    theorem :: 
    
    NDIFF_9:5
    
    
    
    
    
    NFCONT112: for S,T,V be 
    RealNormSpace holds for x0 be 
    Point of V holds for f1 be 
    PartFunc of the 
    carrier of V, the 
    carrier of S holds for f2 be 
    PartFunc of the 
    carrier of S, the 
    carrier of T st x0 
    in ( 
    dom (f2 
    * f1)) & f1 
    is_continuous_in x0 & f2 
    is_continuous_in (f1 
    /. x0) holds (f2 
    * f1) 
    is_continuous_in x0 
    
    proof
    
      let S,T,V be
    RealNormSpace;
    
      let x0 be
    Point of V; 
    
      let f1 be
    PartFunc of the 
    carrier of V, the 
    carrier of S; 
    
      let f2 be
    PartFunc of the 
    carrier of S, the 
    carrier of T; 
    
      assume
    
      
    
    A1: x0 
    in ( 
    dom (f2 
    * f1)); 
    
      assume that
    
      
    
    A2: f1 
    is_continuous_in x0 and 
    
      
    
    A3: f2 
    is_continuous_in (f1 
    /. x0); 
    
      thus x0
    in ( 
    dom (f2 
    * f1)) by 
    A1;
    
      let s1 be
    sequence of V; 
    
      assume that
    
      
    
    A4: ( 
    rng s1) 
    c= ( 
    dom (f2 
    * f1)) and 
    
      
    
    A5: s1 is 
    convergent & ( 
    lim s1) 
    = x0; 
    
      
    
      
    
    A6: ( 
    dom (f2 
    * f1)) 
    c= ( 
    dom f1) by 
    RELAT_1: 25;
    
      
    
      
    
    B6: ( 
    rng (f1 
    /* s1)) 
    c= ( 
    dom f2) 
    
      proof
    
        let x be
    object;
    
        assume x
    in ( 
    rng (f1 
    /* s1)); 
    
        then
    
        consider n be
    Element of 
    NAT such that 
    
        
    
    A7: x 
    = ((f1 
    /* s1) 
    . n) by 
    FUNCT_2: 113;
    
        (s1
    . n) 
    in ( 
    rng s1) by 
    VALUED_0: 28;
    
        then (f1
    . (s1 
    . n)) 
    in ( 
    dom f2) by 
    A4,
    FUNCT_1: 11;
    
        hence x
    in ( 
    dom f2) by 
    A4,
    A6,
    A7,
    FUNCT_2: 108,
    XBOOLE_1: 1;
    
      end;
    
      
    
    A9: 
    
      now
    
        let n be
    Element of 
    NAT ; 
    
        (s1
    . n) 
    in ( 
    rng s1) by 
    VALUED_0: 28;
    
        then
    
        
    
    A10: (s1 
    . n) 
    in ( 
    dom f1) by 
    A4,
    FUNCT_1: 11;
    
        
    
        thus (((f2
    * f1) 
    /* s1) 
    . n) 
    = ((f2 
    * f1) 
    . (s1 
    . n)) by 
    A4,
    FUNCT_2: 108
    
        .= (f2
    . (f1 
    . (s1 
    . n))) by 
    A10,
    FUNCT_1: 13
    
        .= (f2
    . ((f1 
    /* s1) 
    . n)) by 
    A4,
    A6,
    FUNCT_2: 108,
    XBOOLE_1: 1
    
        .= ((f2
    /* (f1 
    /* s1)) 
    . n) by 
    B6,
    FUNCT_2: 108;
    
      end;
    
      then
    
      
    
    A10: (f2 
    /* (f1 
    /* s1)) 
    = ((f2 
    * f1) 
    /* s1) by 
    FUNCT_2: 63;
    
      (
    rng s1) 
    c= ( 
    dom f1) by 
    A4,
    A6,
    XBOOLE_1: 1;
    
      then
    
      
    
    A11: ((f1 
    /* s1) is 
    convergent & (f1 
    /. x0) 
    = ( 
    lim (f1 
    /* s1))) by 
    A2,
    A5,
    NFCONT_1:def 5;
    
      ((f2
    * f1) 
    /. x0) 
    = (f2 
    /. (f1 
    /. x0)) by 
    A1,
    PARTFUN2: 3
    
      .= (
    lim (f2 
    /* (f1 
    /* s1))) by 
    A3,
    B6,
    A11,
    NFCONT_1:def 5
    
      .= (
    lim ((f2 
    * f1) 
    /* s1)) by 
    A9,
    FUNCT_2: 63;
    
      hence (((f2
    * f1) 
    /* s1) is 
    convergent & ((f2 
    * f1) 
    /. x0) 
    = ( 
    lim ((f2 
    * f1) 
    /* s1))) by 
    A3,
    B6,
    A10,
    A11,
    NFCONT_1:def 5;
    
    end;
    
    theorem :: 
    
    NDIFF_9:6
    
    
    
    
    
    LM0: for E,F be 
    RealNormSpace, z be 
    Point of 
    [:E, F:], x be
    Point of E, y be 
    Point of F st z 
    =  
    [x, y] holds
    ||.z.||
    <= ( 
    ||.x.||
    +  
    ||.y.||)
    
    proof
    
      let E,F be
    RealNormSpace, z be 
    Point of 
    [:E, F:], x be
    Point of E, y be 
    Point of F; 
    
      assume z
    =  
    [x, y];
    
      then
    
      
    
    A2: 
    ||.z.||
    = ( 
    sqrt (( 
    ||.x.||
    ^2 ) 
    + ( 
    ||.y.||
    ^2 ))) by 
    NDIFF_8: 1;
    
      (((
    ||.x.||
    ^2 ) 
    + ( 
    ||.y.||
    ^2 )) 
    +  
    0 ) 
    <= ((( 
    ||.x.||
    ^2 ) 
    + ( 
    ||.y.||
    ^2 )) 
    + ((2 
    *  
    ||.x.||)
    *  
    ||.y.||)) by
    XREAL_1: 7;
    
      then (
    sqrt (( 
    ||.x.||
    ^2 ) 
    + ( 
    ||.y.||
    ^2 ))) 
    <= ( 
    sqrt (( 
    ||.x.||
    +  
    ||.y.||)
    ^2 )) by 
    SQUARE_1: 26;
    
      hence thesis by
    A2,
    SQUARE_1: 22;
    
    end;
    
    theorem :: 
    
    NDIFF_9:7
    
    
    
    
    
    Th0: for E,F,G be 
    RealNormSpace, L be 
    LinearOperator of 
    [:E, F:], G holds ex L1 be
    LinearOperator of E, G, L2 be 
    LinearOperator of F, G st (for x be 
    Point of E, y be 
    Point of F holds (L 
    .  
    [x, y])
    = ((L1 
    . x) 
    + (L2 
    . y))) & (for x be 
    Point of E holds (L1 
    . x) 
    = (L 
    /.  
    [x, (
    0. F)])) & (for y be 
    Point of F holds (L2 
    . y) 
    = (L 
    /.  
    [(
    0. E), y])) 
    
    proof
    
      let E,F,G be
    RealNormSpace, L be 
    LinearOperator of 
    [:E, F:], G;
    
      deffunc
    
    FH1(
    Point of E) = (L 
    /.  
    [$1, (
    0. F)]); 
    
      consider L1 be
    Function of the 
    carrier of E, the 
    carrier of G such that 
    
      
    
    A1: for x be 
    Point of E holds (L1 
    . x) 
    =  
    FH1(x) from
    FUNCT_2:sch 4;
    
      
    
      
    
    A4: for s,t be 
    Element of E holds (L1 
    . (s 
    + t)) 
    = ((L1 
    . s) 
    + (L1 
    . t)) 
    
      proof
    
        let s,t be
    Element of E; 
    
        
    [s, (
    0. F)] is 
    set & 
    [t, (
    0. F)] is 
    set by 
    TARSKI: 1;
    
        then
    
        reconsider z =
    [s, (
    0. F)], w = 
    [t, (
    0. F)] as 
    Point of 
    [:E, F:] by
    PRVECT_3: 18;
    
        (z
    + w) 
    =  
    [(s
    + t), (( 
    0. F) 
    + ( 
    0. F))] by 
    PRVECT_3: 18
    
        .=
    [(s
    + t), ( 
    0. F)] by 
    RLVECT_1: 4;
    
        
    
        hence (L1
    . (s 
    + t)) 
    = (L 
    /. (z 
    + w)) by 
    A1
    
        .= ((L
    /. z) 
    + (L 
    /. w)) by 
    VECTSP_1:def 20
    
        .= ((L1
    . s) 
    + (L 
    /.  
    [t, (
    0. F)])) by 
    A1
    
        .= ((L1
    . s) 
    + (L1 
    . t)) by 
    A1;
    
      end;
    
      for s be
    Element of E holds for r be 
    Real holds (L1 
    . (r 
    * s)) 
    = (r 
    * (L1 
    . s)) 
    
      proof
    
        let s be
    Element of E, r be 
    Real;
    
        
    [s, (
    0. F)] is 
    set by 
    TARSKI: 1;
    
        then
    
        reconsider z =
    [s, (
    0. F)] as 
    Point of 
    [:E, F:] by
    PRVECT_3: 18;
    
        (r
    * z) 
    =  
    [(r
    * s), (r 
    * ( 
    0. F))] by 
    PRVECT_3: 18
    
        .=
    [(r
    * s), ( 
    0. F)] by 
    RLVECT_1: 10;
    
        
    
        hence (L1
    . (r 
    * s)) 
    = (L 
    /. (r 
    * z)) by 
    A1
    
        .= (r
    * (L 
    /. z)) by 
    LOPBAN_1:def 5
    
        .= (r
    * (L1 
    . s)) by 
    A1;
    
      end;
    
      then
    
      reconsider L1 as
    LinearOperator of E, G by 
    A4,
    LOPBAN_1:def 5,
    VECTSP_1:def 20;
    
      deffunc
    
    FH2(
    Point of F) = (L 
    /.  
    [(
    0. E), $1]); 
    
      consider L2 be
    Function of the 
    carrier of F, the 
    carrier of G such that 
    
      
    
    A7: for x be 
    Point of F holds (L2 
    . x) 
    =  
    FH2(x) from
    FUNCT_2:sch 4;
    
      
    
      
    
    A10: for s,t be 
    Element of F holds (L2 
    . (s 
    + t)) 
    = ((L2 
    . s) 
    + (L2 
    . t)) 
    
      proof
    
        let s,t be
    Element of F; 
    
        
    [(
    0. E), s] is 
    set & 
    [(
    0. E), t] is 
    set by 
    TARSKI: 1;
    
        then
    
        reconsider z =
    [(
    0. E), s], w = 
    [(
    0. E), t] as 
    Point of 
    [:E, F:] by
    PRVECT_3: 18;
    
        (z
    + w) 
    =  
    [((
    0. E) 
    + ( 
    0. E)), (s 
    + t)] by 
    PRVECT_3: 18
    
        .=
    [(
    0. E), (s 
    + t)] by 
    RLVECT_1: 4;
    
        
    
        hence (L2
    . (s 
    + t)) 
    = (L 
    /. (z 
    + w)) by 
    A7
    
        .= ((L
    /. z) 
    + (L 
    /. w)) by 
    VECTSP_1:def 20
    
        .= ((L2
    . s) 
    + (L 
    /.  
    [(
    0. E), t])) by 
    A7
    
        .= ((L2
    . s) 
    + (L2 
    . t)) by 
    A7;
    
      end;
    
      for s be
    Element of F holds for r be 
    Real holds (L2 
    . (r 
    * s)) 
    = (r 
    * (L2 
    . s)) 
    
      proof
    
        let s be
    Element of F, r be 
    Real;
    
        
    [(
    0. E), s] is 
    set by 
    TARSKI: 1;
    
        then
    
        reconsider z =
    [(
    0. E), s] as 
    Point of 
    [:E, F:] by
    PRVECT_3: 18;
    
        (r
    * z) 
    =  
    [(r
    * ( 
    0. E)), (r 
    * s)] by 
    PRVECT_3: 18
    
        .=
    [(
    0. E), (r 
    * s)] by 
    RLVECT_1: 10;
    
        
    
        hence (L2
    . (r 
    * s)) 
    = (L 
    /. (r 
    * z)) by 
    A7
    
        .= (r
    * (L 
    /. z)) by 
    LOPBAN_1:def 5
    
        .= (r
    * (L2 
    . s)) by 
    A7;
    
      end;
    
      then
    
      reconsider L2 as
    LinearOperator of F, G by 
    A10,
    LOPBAN_1:def 5,
    VECTSP_1:def 20;
    
      for x be
    Point of E, y be 
    Point of F holds (L 
    .  
    [x, y])
    = ((L1 
    . x) 
    + (L2 
    . y)) 
    
      proof
    
        let x be
    Point of E, y be 
    Point of F; 
    
        
    [x, y] is
    set & 
    [x, (
    0. F)] is 
    set & 
    [(
    0. E), y] is 
    set by 
    TARSKI: 1;
    
        then
    
        reconsider z =
    [x, y], z1 =
    [x, (
    0. F)], z2 = 
    [(
    0. E), y] as 
    Point of 
    [:E, F:] by
    PRVECT_3: 18;
    
        (z1
    + z2) 
    =  
    [(x
    + ( 
    0. E)), (( 
    0. F) 
    + y)] by 
    PRVECT_3: 18
    
        .=
    [x, ((
    0. F) 
    + y)] by 
    RLVECT_1: 4
    
        .= z by
    RLVECT_1: 4;
    
        
    
        hence (L
    .  
    [x, y])
    = ((L 
    /. z1) 
    + (L 
    /. z2)) by 
    VECTSP_1:def 20
    
        .= ((L1
    . x) 
    + (L 
    /. z2)) by 
    A1
    
        .= ((L1
    . x) 
    + (L2 
    . y)) by 
    A7;
    
      end;
    
      hence ex L1 be
    LinearOperator of E, G, L2 be 
    LinearOperator of F, G st (for x be 
    Point of E, y be 
    Point of F holds (L 
    .  
    [x, y])
    = ((L1 
    . x) 
    + (L2 
    . y))) & (for x be 
    Point of E holds (L1 
    . x) 
    = (L 
    /.  
    [x, (
    0. F)])) & (for y be 
    Point of F holds (L2 
    . y) 
    = (L 
    /.  
    [(
    0. E), y])) by 
    A1,
    A7;
    
    end;
    
    theorem :: 
    
    NDIFF_9:8
    
    
    
    
    
    Th0X: for E,F,G be 
    RealNormSpace, L be 
    LinearOperator of 
    [:E, F:], G, L11 be
    LinearOperator of E, G, L12 be 
    LinearOperator of F, G, L21 be 
    LinearOperator of E, G, L22 be 
    LinearOperator of F, G st (for x be 
    Point of E, y be 
    Point of F holds (L 
    .  
    [x, y])
    = ((L11 
    . x) 
    + (L12 
    . y))) & (for x be 
    Point of E, y be 
    Point of F holds (L 
    .  
    [x, y])
    = ((L21 
    . x) 
    + (L22 
    . y))) holds L11 
    = L21 & L12 
    = L22 
    
    proof
    
      let E,F,G be
    RealNormSpace, L be 
    LinearOperator of 
    [:E, F:], G;
    
      let L11 be
    LinearOperator of E, G, L12 be 
    LinearOperator of F, G, L21 be 
    LinearOperator of E, G, L22 be 
    LinearOperator of F, G; 
    
      assume that
    
      
    
    A1: (for x be 
    Point of E, y be 
    Point of F holds (L 
    .  
    [x, y])
    = ((L11 
    . x) 
    + (L12 
    . y))) and 
    
      
    
    A2: (for x be 
    Point of E, y be 
    Point of F holds (L 
    .  
    [x, y])
    = ((L21 
    . x) 
    + (L22 
    . y))); 
    
      now
    
        let x be
    Point of E; 
    
        
    
        
    
    A4: (L22 
    . ( 
    0. F)) 
    = ( 
    0. G) by 
    LOPBAN_7: 3;
    
        (L12
    . ( 
    0. F)) 
    = ( 
    0. G) by 
    LOPBAN_7: 3;
    
        
    
        hence (L11
    . x) 
    = ((L11 
    . x) 
    + (L12 
    . ( 
    0. F))) by 
    RLVECT_1: 4
    
        .= (L
    .  
    [x, (
    0. F)]) by 
    A1
    
        .= ((L21
    . x) 
    + (L22 
    . ( 
    0. F))) by 
    A2
    
        .= (L21
    . x) by 
    A4,
    RLVECT_1: 4;
    
      end;
    
      hence L11
    = L21 by 
    FUNCT_2:def 8;
    
      now
    
        let y be
    Point of F; 
    
        
    
        
    
    A6: (L21 
    . ( 
    0. E)) 
    = ( 
    0. G) by 
    LOPBAN_7: 3;
    
        (L11
    . ( 
    0. E)) 
    = ( 
    0. G) by 
    LOPBAN_7: 3;
    
        
    
        hence (L12
    . y) 
    = ((L11 
    . ( 
    0. E)) 
    + (L12 
    . y)) by 
    RLVECT_1: 4
    
        .= (L
    .  
    [(
    0. E), y]) by 
    A1
    
        .= ((L21
    . ( 
    0. E)) 
    + (L22 
    . y)) by 
    A2
    
        .= (L22
    . y) by 
    A6,
    RLVECT_1: 4;
    
      end;
    
      hence L12
    = L22 by 
    FUNCT_2:def 8;
    
    end;
    
    theorem :: 
    
    NDIFF_9:9
    
    
    
    
    
    Th1: for E,F,G be 
    RealNormSpace, L1 be 
    LinearOperator of E, G, L2 be 
    LinearOperator of F, G holds ex L be 
    LinearOperator of 
    [:E, F:], G st (for x be
    Point of E, y be 
    Point of F holds (L 
    .  
    [x, y])
    = ((L1 
    . x) 
    + (L2 
    . y))) & (for x be 
    Point of E holds (L1 
    . x) 
    = (L 
    /.  
    [x, (
    0. F)])) & (for y be 
    Point of F holds (L2 
    . y) 
    = (L 
    /.  
    [(
    0. E), y])) 
    
    proof
    
      let E,F,G be
    RealNormSpace, L1 be 
    LinearOperator of E, G, L2 be 
    LinearOperator of F, G; 
    
      defpred
    
    P1[
    object, 
    object] means ex x be
    Point of E, y be 
    Point of F st $1 
    =  
    [x, y] & $2
    = ((L1 
    . x) 
    + (L2 
    . y)); 
    
      
    
      
    
    A1: for z be 
    Element of 
    [:E, F:] holds ex y be
    Element of G st 
    P1[z, y]
    
      proof
    
        let z be
    Element of 
    [:E, F:];
    
        consider x be
    Point of E, y be 
    Point of F such that 
    
        
    
    A2: z 
    =  
    [x, y] by
    PRVECT_3: 18;
    
        take w = ((L1
    . x) 
    + (L2 
    . y)); 
    
        thus
    P1[z, w] by
    A2;
    
      end;
    
      consider L be
    Function of 
    [:E, F:], G such that
    
      
    
    A3: for z be 
    Element of 
    [:E, F:] holds
    P1[z, (L
    . z)] from 
    FUNCT_2:sch 3(
    A1);
    
      
    
      
    
    A4: for z,w be 
    Point of 
    [:E, F:] holds (L
    . (z 
    + w)) 
    = ((L 
    . z) 
    + (L 
    . w)) 
    
      proof
    
        let z,w be
    Point of 
    [:E, F:];
    
        consider x1 be
    Point of E, y1 be 
    Point of F such that 
    
        
    
    A5: z 
    =  
    [x1, y1] & (L
    . z) 
    = ((L1 
    . x1) 
    + (L2 
    . y1)) by 
    A3;
    
        consider x2 be
    Point of E, y2 be 
    Point of F such that 
    
        
    
    A6: w 
    =  
    [x2, y2] & (L
    . w) 
    = ((L1 
    . x2) 
    + (L2 
    . y2)) by 
    A3;
    
        
    
        
    
    A7: (z 
    + w) 
    =  
    [(x1
    + x2), (y1 
    + y2)] by 
    A5,
    A6,
    PRVECT_3: 18;
    
        consider x3 be
    Point of E, y3 be 
    Point of F such that 
    
        
    
    A8: (z 
    + w) 
    =  
    [x3, y3] & (L
    . (z 
    + w)) 
    = ((L1 
    . x3) 
    + (L2 
    . y3)) by 
    A3;
    
        
    
        
    
    A9: x3 
    = (x1 
    + x2) & y3 
    = (y1 
    + y2) by 
    A7,
    A8,
    XTUPLE_0: 1;
    
        ((L
    . z) 
    + (L 
    . w)) 
    = ((((L1 
    . x1) 
    + (L2 
    . y1)) 
    + (L1 
    . x2)) 
    + (L2 
    . y2)) by 
    A5,
    A6,
    RLVECT_1:def 3
    
        .= ((((L1
    . x1) 
    + (L1 
    . x2)) 
    + (L2 
    . y1)) 
    + (L2 
    . y2)) by 
    RLVECT_1:def 3
    
        .= (((L1
    . x1) 
    + (L1 
    . x2)) 
    + ((L2 
    . y1) 
    + (L2 
    . y2))) by 
    RLVECT_1:def 3
    
        .= ((L1
    . (x1 
    + x2)) 
    + ((L2 
    . y1) 
    + (L2 
    . y2))) by 
    VECTSP_1:def 20
    
        .= (L
    . (z 
    + w)) by 
    A8,
    A9,
    VECTSP_1:def 20;
    
        hence thesis;
    
      end;
    
      for z be
    Element of 
    [:E, F:] holds for r be
    Real holds (L 
    . (r 
    * z)) 
    = (r 
    * (L 
    . z)) 
    
      proof
    
        let z be
    Element of 
    [:E, F:], r be
    Real;
    
        consider x1 be
    Point of E, y1 be 
    Point of F such that 
    
        
    
    A10: z 
    =  
    [x1, y1] & (L
    . z) 
    = ((L1 
    . x1) 
    + (L2 
    . y1)) by 
    A3;
    
        
    
        
    
    A11: (r 
    * z) 
    =  
    [(r
    * x1), (r 
    * y1)] by 
    A10,
    PRVECT_3: 18;
    
        consider x2 be
    Point of E, y2 be 
    Point of F such that 
    
        
    
    A12: (r 
    * z) 
    =  
    [x2, y2] & (L
    . (r 
    * z)) 
    = ((L1 
    . x2) 
    + (L2 
    . y2)) by 
    A3;
    
        x2
    = (r 
    * x1) & y2 
    = (r 
    * y1) by 
    A11,
    A12,
    XTUPLE_0: 1;
    
        
    
        hence (L
    . (r 
    * z)) 
    = ((r 
    * (L1 
    . x1)) 
    + (L2 
    . (r 
    * y1))) by 
    A12,
    LOPBAN_1:def 5
    
        .= ((r
    * (L1 
    . x1)) 
    + (r 
    * (L2 
    . y1))) by 
    LOPBAN_1:def 5
    
        .= (r
    * (L 
    . z)) by 
    A10,
    RLVECT_1:def 5;
    
      end;
    
      then
    
      reconsider L as
    LinearOperator of 
    [:E, F:], G by
    A4,
    LOPBAN_1:def 5,
    VECTSP_1:def 20;
    
      take L;
    
      thus
    
      
    
    A14: for x be 
    Point of E, y be 
    Point of F holds (L 
    .  
    [x, y])
    = ((L1 
    . x) 
    + (L2 
    . y)) 
    
      proof
    
        let x be
    Point of E, y be 
    Point of F; 
    
        
    [x, y] is
    set by 
    TARSKI: 1;
    
        then
    
        reconsider z =
    [x, y] as
    Point of 
    [:E, F:] by
    PRVECT_3: 18;
    
        consider x1 be
    Point of E, y1 be 
    Point of F such that 
    
        
    
    A15: z 
    =  
    [x1, y1] & (L
    . z) 
    = ((L1 
    . x1) 
    + (L2 
    . y1)) by 
    A3;
    
        x
    = x1 & y1 
    = y by 
    A15,
    XTUPLE_0: 1;
    
        hence (L
    .  
    [x, y])
    = ((L1 
    . x) 
    + (L2 
    . y)) by 
    A15;
    
      end;
    
      thus for x be
    Point of E holds (L1 
    . x) 
    = (L 
    /.  
    [x, (
    0. F)]) 
    
      proof
    
        let x be
    Point of E; 
    
        
    [x, (
    0. F)] is 
    set by 
    TARSKI: 1;
    
        then
    [x, (
    0. F)] is 
    Point of 
    [:E, F:] by
    PRVECT_3: 18;
    
        then
    [x, (
    0. F)] 
    in the 
    carrier of 
    [:E, F:];
    
        then
    
        
    
    A16: 
    [x, (
    0. F)] 
    in ( 
    dom L) by 
    FUNCT_2:def 1;
    
        
    
        thus (L1
    . x) 
    = ((L1 
    . x) 
    + ( 
    0. G)) by 
    RLVECT_1: 4
    
        .= ((L1
    . x) 
    + (L2 
    . ( 
    0. F))) by 
    LOPBAN_7: 3
    
        .= (L
    .  
    [x, (
    0. F)]) by 
    A14
    
        .= (L
    /.  
    [x, (
    0. F)]) by 
    A16,
    PARTFUN1:def 6;
    
      end;
    
      thus for y be
    Point of F holds (L2 
    . y) 
    = (L 
    /.  
    [(
    0. E), y]) 
    
      proof
    
        let y be
    Point of F; 
    
        
    [(
    0. E), y] is 
    set by 
    TARSKI: 1;
    
        then
    [(
    0. E), y] is 
    Point of 
    [:E, F:] by
    PRVECT_3: 18;
    
        then
    [(
    0. E), y] 
    in the 
    carrier of 
    [:E, F:];
    
        then
    
        
    
    A17: 
    [(
    0. E), y] 
    in ( 
    dom L) by 
    FUNCT_2:def 1;
    
        
    
        thus (L2
    . y) 
    = (( 
    0. G) 
    + (L2 
    . y)) by 
    RLVECT_1: 4
    
        .= ((L1
    . ( 
    0. E)) 
    + (L2 
    . y)) by 
    LOPBAN_7: 3
    
        .= (L
    .  
    [(
    0. E), y]) by 
    A14
    
        .= (L
    /.  
    [(
    0. E), y]) by 
    A17,
    PARTFUN1:def 6;
    
      end;
    
    end;
    
    theorem :: 
    
    NDIFF_9:10
    
    
    
    
    
    Th2: for E,F,G be 
    RealNormSpace, L be 
    Lipschitzian  
    LinearOperator of 
    [:E, F:], G holds ex L1 be
    Lipschitzian  
    LinearOperator of E, G, L2 be 
    Lipschitzian  
    LinearOperator of F, G st (for x be 
    Point of E, y be 
    Point of F holds (L 
    .  
    [x, y])
    = ((L1 
    . x) 
    + (L2 
    . y))) & (for x be 
    Point of E holds (L1 
    . x) 
    = (L 
    /.  
    [x, (
    0. F)])) & (for y be 
    Point of F holds (L2 
    . y) 
    = (L 
    /.  
    [(
    0. E), y])) 
    
    proof
    
      let E,F,G be
    RealNormSpace, L be 
    Lipschitzian  
    LinearOperator of 
    [:E, F:], G;
    
      consider L1 be
    LinearOperator of E, G, L2 be 
    LinearOperator of F, G such that 
    
      
    
    A1: (for x be 
    Point of E, y be 
    Point of F holds (L 
    .  
    [x, y])
    = ((L1 
    . x) 
    + (L2 
    . y))) & (for x be 
    Point of E holds (L1 
    . x) 
    = (L 
    /.  
    [x, (
    0. F)])) & (for y be 
    Point of F holds (L2 
    . y) 
    = (L 
    /.  
    [(
    0. E), y])) by 
    Th0;
    
      consider K be
    Real such that 
    
      
    
    A2: 
    0  
    <= K & for z be 
    VECTOR of 
    [:E, F:] holds
    ||.(L
    . z).|| 
    <= (K 
    *  
    ||.z.||) by
    LOPBAN_1:def 8;
    
      now
    
        let x be
    Point of E; 
    
        
    [x, (
    0. F)] is 
    set by 
    TARSKI: 1;
    
        then
    
        reconsider z =
    [x, (
    0. F)] as 
    Point of 
    [:E, F:] by
    PRVECT_3: 18;
    
        z
    in the 
    carrier of 
    [:E, F:];
    
        then
    
        
    
    A3: z 
    in ( 
    dom L) by 
    FUNCT_2:def 1;
    
        
    
        
    
    A4: (L1 
    . x) 
    = (L 
    /.  
    [x, (
    0. F)]) by 
    A1
    
        .= (L
    . z) by 
    A3,
    PARTFUN1:def 6;
    
        
    ||.z.||
    =  
    ||.x.|| by
    NDIFF_8: 2;
    
        hence
    ||.(L1
    . x).|| 
    <= (K 
    *  
    ||.x.||) by
    A2,
    A4;
    
      end;
    
      then
    
      
    
    A5: L1 is 
    Lipschitzian by 
    A2,
    LOPBAN_1:def 8;
    
      now
    
        let y be
    Point of F; 
    
        
    [(
    0. E), y] is 
    set by 
    TARSKI: 1;
    
        then
    
        reconsider z =
    [(
    0. E), y] as 
    Point of 
    [:E, F:] by
    PRVECT_3: 18;
    
        z
    in the 
    carrier of 
    [:E, F:];
    
        then
    
        
    
    A6: z 
    in ( 
    dom L) by 
    FUNCT_2:def 1;
    
        
    
        
    
    A7: (L2 
    . y) 
    = (L 
    /.  
    [(
    0. E), y]) by 
    A1
    
        .= (L
    . z) by 
    A6,
    PARTFUN1:def 6;
    
        
    ||.z.||
    =  
    ||.y.|| by
    NDIFF_8: 3;
    
        hence
    ||.(L2
    . y).|| 
    <= (K 
    *  
    ||.y.||) by
    A2,
    A7;
    
      end;
    
      then L2 is
    Lipschitzian by 
    A2,
    LOPBAN_1:def 8;
    
      hence thesis by
    A1,
    A5;
    
    end;
    
    theorem :: 
    
    NDIFF_9:11
    
    for E,F,G be
    RealNormSpace, L1 be 
    Lipschitzian  
    LinearOperator of E, G, L2 be 
    Lipschitzian  
    LinearOperator of F, G holds ex L be 
    Lipschitzian  
    LinearOperator of 
    [:E, F:], G st (for x be
    Point of E, y be 
    Point of F holds (L 
    .  
    [x, y])
    = ((L1 
    . x) 
    + (L2 
    . y))) & (for x be 
    Point of E holds (L1 
    . x) 
    = (L 
    /.  
    [x, (
    0. F)])) & (for y be 
    Point of F holds (L2 
    . y) 
    = (L 
    /.  
    [(
    0. E), y])) 
    
    proof
    
      let E,F,G be
    RealNormSpace, L1 be 
    Lipschitzian  
    LinearOperator of E, G, L2 be 
    Lipschitzian  
    LinearOperator of F, G; 
    
      consider L be
    LinearOperator of 
    [:E, F:], G such that
    
      
    
    A1: (for x be 
    Point of E, y be 
    Point of F holds (L 
    .  
    [x, y])
    = ((L1 
    . x) 
    + (L2 
    . y))) & (for x be 
    Point of E holds (L1 
    . x) 
    = (L 
    /.  
    [x, (
    0. F)])) & (for y be 
    Point of F holds (L2 
    . y) 
    = (L 
    /.  
    [(
    0. E), y])) by 
    Th1;
    
      consider K1 be
    Real such that 
    
      
    
    A2: 
    0  
    <= K1 & for x be 
    VECTOR of E holds 
    ||.(L1
    . x).|| 
    <= (K1 
    *  
    ||.x.||) by
    LOPBAN_1:def 8;
    
      consider K2 be
    Real such that 
    
      
    
    A3: 
    0  
    <= K2 & for y be 
    VECTOR of F holds 
    ||.(L2
    . y).|| 
    <= (K2 
    *  
    ||.y.||) by
    LOPBAN_1:def 8;
    
      now
    
        let z be
    Point of 
    [:E, F:];
    
        consider x be
    Point of E, y be 
    Point of F such that 
    
        
    
    A5: z 
    =  
    [x, y] by
    PRVECT_3: 18;
    
        (L
    . z) 
    = ((L1 
    . x) 
    + (L2 
    . y)) by 
    A1,
    A5;
    
        then
    
        
    
    A7: 
    ||.(L
    . z).|| 
    <= ( 
    ||.(L1
    . x).|| 
    +  
    ||.(L2
    . y).||) by 
    NORMSP_1:def 1;
    
        
    
        
    
    A8: 
    ||.(L1
    . x).|| 
    <= (K1 
    *  
    ||.x.||) &
    ||.(L2
    . y).|| 
    <= (K2 
    *  
    ||.y.||) by
    A2,
    A3;
    
        
    
        
    
    A9: (K1 
    *  
    ||.x.||)
    <= (K1 
    *  
    ||.z.||) by
    A2,
    A5,
    NDIFF_8: 21,
    XREAL_1: 64;
    
        (K2
    *  
    ||.y.||)
    <= (K2 
    *  
    ||.z.||) by
    A3,
    A5,
    NDIFF_8: 21,
    XREAL_1: 64;
    
        then
    ||.(L1
    . x).|| 
    <= (K1 
    *  
    ||.z.||) &
    ||.(L2
    . y).|| 
    <= (K2 
    *  
    ||.z.||) by
    A8,
    A9,
    XXREAL_0: 2;
    
        then (
    ||.(L1
    . x).|| 
    +  
    ||.(L2
    . y).||) 
    <= ((K1 
    *  
    ||.z.||)
    + (K2 
    *  
    ||.z.||)) by
    XREAL_1: 7;
    
        hence
    ||.(L
    . z).|| 
    <= ((K1 
    + K2) 
    *  
    ||.z.||) by
    A7,
    XXREAL_0: 2;
    
      end;
    
      then L is
    Lipschitzian by 
    A2,
    A3,
    LOPBAN_1:def 8;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    NDIFF_9:12
    
    for E,F,G be
    RealNormSpace, L be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators ( 
    [:E, F:],G)) holds ex L1 be
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (E,G)), L2 be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (F,G)) st (for x be 
    Point of E, y be 
    Point of F holds (L 
    .  
    [x, y])
    = ((L1 
    . x) 
    + (L2 
    . y))) & (for x be 
    Point of E holds (L1 
    . x) 
    = (L 
    .  
    [x, (
    0. F)])) & (for y be 
    Point of F holds (L2 
    . y) 
    = (L 
    .  
    [(
    0. E), y])) & 
    ||.L.||
    <= ( 
    ||.L1.||
    +  
    ||.L2.||) &
    ||.L1.||
    <=  
    ||.L.|| &
    ||.L2.||
    <=  
    ||.L.||
    
    proof
    
      let E,F,G be
    RealNormSpace, LP be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators ( 
    [:E, F:],G));
    
      reconsider L = LP as
    Lipschitzian  
    LinearOperator of 
    [:E, F:], G by
    LOPBAN_1:def 9;
    
      consider L1 be
    Lipschitzian  
    LinearOperator of E, G, L2 be 
    Lipschitzian  
    LinearOperator of F, G such that 
    
      
    
    A1: (for x be 
    Point of E, y be 
    Point of F holds (L 
    .  
    [x, y])
    = ((L1 
    . x) 
    + (L2 
    . y))) and 
    
      
    
    A2: (for x be 
    Point of E holds (L1 
    . x) 
    = (L 
    /.  
    [x, (
    0. F)])) and 
    
      
    
    A3: (for y be 
    Point of F holds (L2 
    . y) 
    = (L 
    /.  
    [(
    0. E), y])) by 
    Th2;
    
      reconsider LP1 = L1 as
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (E,G)) by 
    LOPBAN_1:def 9;
    
      reconsider LP2 = L2 as
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (F,G)) by 
    LOPBAN_1:def 9;
    
      take LP1, LP2;
    
      thus for x be
    Point of E, y be 
    Point of F holds (LP 
    .  
    [x, y])
    = ((LP1 
    . x) 
    + (LP2 
    . y)) by 
    A1;
    
      thus for x be
    Point of E holds (LP1 
    . x) 
    = (LP 
    .  
    [x, (
    0. F)]) 
    
      proof
    
        let x be
    Point of E; 
    
        
    [x, (
    0. F)] is 
    set by 
    TARSKI: 1;
    
        then
    [x, (
    0. F)] is 
    Point of 
    [:E, F:] by
    PRVECT_3: 18;
    
        then
    [x, (
    0. F)] 
    in the 
    carrier of 
    [:E, F:];
    
        then
    
        
    
    A4: 
    [x, (
    0. F)] 
    in ( 
    dom L) by 
    FUNCT_2:def 1;
    
        
    
        thus (LP1
    . x) 
    = (L 
    /.  
    [x, (
    0. F)]) by 
    A2
    
        .= (LP
    .  
    [x, (
    0. F)]) by 
    A4,
    PARTFUN1:def 6;
    
      end;
    
      thus for y be
    Point of F holds (LP2 
    . y) 
    = (LP 
    .  
    [(
    0. E), y]) 
    
      proof
    
        let y be
    Point of F; 
    
        
    [(
    0. E), y] is 
    set by 
    TARSKI: 1;
    
        then
    [(
    0. E), y] is 
    Point of 
    [:E, F:] by
    PRVECT_3: 18;
    
        then
    [(
    0. E), y] 
    in the 
    carrier of 
    [:E, F:];
    
        then
    
        
    
    A5: 
    [(
    0. E), y] 
    in ( 
    dom L) by 
    FUNCT_2:def 1;
    
        
    
        thus (LP2
    . y) 
    = (L 
    /.  
    [(
    0. E), y]) by 
    A3
    
        .= (LP
    .  
    [(
    0. E), y]) by 
    A5,
    PARTFUN1:def 6;
    
      end;
    
      
    
      
    
    A7: 
    ||.LP.||
    = ( 
    upper_bound ( 
    PreNorms ( 
    modetrans (LP, 
    [:E, F:],G)))) by
    LOPBAN_1:def 13
    
      .= (
    upper_bound ( 
    PreNorms L)) by 
    LOPBAN_1: 29;
    
      for t be
    Real st t 
    in ( 
    PreNorms L) holds t 
    <= ( 
    ||.LP1.||
    +  
    ||.LP2.||)
    
      proof
    
        let t be
    Real;
    
        assume t
    in ( 
    PreNorms L); 
    
        then
    
        consider w be
    Point of 
    [:E, F:] such that
    
        
    
    A8: t 
    =  
    ||.(L
    . w).|| & 
    ||.w.||
    <= 1; 
    
        consider x be
    Point of E, y be 
    Point of F such that 
    
        
    
    A9: w 
    =  
    [x, y] by
    PRVECT_3: 18;
    
        
    ||.x.||
    <=  
    ||.w.|| by
    A9,
    NDIFF_8: 21;
    
        then
    
        
    
    A10: 
    ||.x.||
    <= 1 by 
    A8,
    XXREAL_0: 2;
    
        
    ||.y.||
    <=  
    ||.w.|| by
    A9,
    NDIFF_8: 21;
    
        then
    
        
    
    A11: 
    ||.y.||
    <= 1 by 
    A8,
    XXREAL_0: 2;
    
        (L
    . w) 
    = ((L1 
    . x) 
    + (L2 
    . y)) by 
    A1,
    A9;
    
        then
    
        
    
    A12: 
    ||.(L
    . w).|| 
    <= ( 
    ||.(L1
    . x).|| 
    +  
    ||.(L2
    . y).||) by 
    NORMSP_1:def 1;
    
        
    
        
    
    A13: 
    ||.(L1
    . x).|| 
    <= ( 
    ||.LP1.||
    *  
    ||.x.||) by
    LOPBAN_1: 32;
    
        (
    ||.LP1.||
    *  
    ||.x.||)
    <= ( 
    ||.LP1.||
    * 1) by 
    A10,
    XREAL_1: 64;
    
        then
    
        
    
    A14: 
    ||.(L1
    . x).|| 
    <=  
    ||.LP1.|| by
    A13,
    XXREAL_0: 2;
    
        
    
        
    
    A15: 
    ||.(L2
    . y).|| 
    <= ( 
    ||.LP2.||
    *  
    ||.y.||) by
    LOPBAN_1: 32;
    
        (
    ||.LP2.||
    *  
    ||.y.||)
    <= ( 
    ||.LP2.||
    * 1) by 
    A11,
    XREAL_1: 64;
    
        then
    ||.(L2
    . y).|| 
    <=  
    ||.LP2.|| by
    A15,
    XXREAL_0: 2;
    
        then (
    ||.(L1
    . x).|| 
    +  
    ||.(L2
    . y).||) 
    <= ( 
    ||.LP1.||
    +  
    ||.LP2.||) by
    A14,
    XREAL_1: 7;
    
        hence thesis by
    A8,
    A12,
    XXREAL_0: 2;
    
      end;
    
      hence
    ||.LP.||
    <= ( 
    ||.LP1.||
    +  
    ||.LP2.||) by
    A7,
    SEQ_4: 45;
    
      
    
      
    
    A17: 
    ||.LP1.||
    = ( 
    upper_bound ( 
    PreNorms ( 
    modetrans (LP1,E,G)))) by 
    LOPBAN_1:def 13
    
      .= (
    upper_bound ( 
    PreNorms L1)) by 
    LOPBAN_1: 29;
    
      for t be
    Real st t 
    in ( 
    PreNorms L1) holds t 
    <=  
    ||.LP.||
    
      proof
    
        let t be
    Real;
    
        assume t
    in ( 
    PreNorms L1); 
    
        then
    
        consider x be
    Point of E such that 
    
        
    
    A18: t 
    =  
    ||.(L1
    . x).|| & 
    ||.x.||
    <= 1; 
    
        
    [x, (
    0. F)] is 
    set by 
    TARSKI: 1;
    
        then
    
        reconsider w =
    [x, (
    0. F)] as 
    Point of 
    [:E, F:] by
    PRVECT_3: 18;
    
        
    
        
    
    A19: 
    ||.w.||
    <= 1 by 
    A18,
    NDIFF_8: 2;
    
        
    
        
    
    A20: (L 
    . w) 
    = ((L1 
    . x) 
    + (L2 
    . ( 
    0. F))) by 
    A1
    
        .= ((L1
    . x) 
    + ( 
    0. G)) by 
    LOPBAN_7: 3
    
        .= (L1
    . x) by 
    RLVECT_1:def 4;
    
        
    
        
    
    A21: 
    ||.(L
    . w).|| 
    <= ( 
    ||.LP.||
    *  
    ||.w.||) by
    LOPBAN_1: 32;
    
        (
    ||.LP.||
    *  
    ||.w.||)
    <= ( 
    ||.LP.||
    * 1) by 
    A19,
    XREAL_1: 64;
    
        hence t
    <=  
    ||.LP.|| by
    A18,
    A20,
    A21,
    XXREAL_0: 2;
    
      end;
    
      hence
    ||.LP1.||
    <=  
    ||.LP.|| by
    A17,
    SEQ_4: 45;
    
      
    
      
    
    A23: 
    ||.LP2.||
    = ( 
    upper_bound ( 
    PreNorms ( 
    modetrans (LP2,F,G)))) by 
    LOPBAN_1:def 13
    
      .= (
    upper_bound ( 
    PreNorms L2)) by 
    LOPBAN_1: 29;
    
      for t be
    Real st t 
    in ( 
    PreNorms L2) holds t 
    <=  
    ||.LP.||
    
      proof
    
        let t be
    Real;
    
        assume t
    in ( 
    PreNorms L2); 
    
        then
    
        consider x be
    Point of F such that 
    
        
    
    A24: t 
    =  
    ||.(L2
    . x).|| & 
    ||.x.||
    <= 1; 
    
        
    [(
    0. E), x] is 
    set by 
    TARSKI: 1;
    
        then
    
        reconsider w =
    [(
    0. E), x] as 
    Point of 
    [:E, F:] by
    PRVECT_3: 18;
    
        
    
        
    
    A25: 
    ||.x.||
    =  
    ||.w.|| by
    NDIFF_8: 3;
    
        
    
        
    
    A26: (L 
    . w) 
    = ((L1 
    . ( 
    0. E)) 
    + (L2 
    . x)) by 
    A1
    
        .= ((
    0. G) 
    + (L2 
    . x)) by 
    LOPBAN_7: 3
    
        .= (L2
    . x) by 
    RLVECT_1:def 4;
    
        
    
        
    
    A27: 
    ||.(L
    . w).|| 
    <= ( 
    ||.LP.||
    *  
    ||.w.||) by
    LOPBAN_1: 32;
    
        (
    ||.LP.||
    *  
    ||.w.||)
    <= ( 
    ||.LP.||
    * 1) by 
    A24,
    A25,
    XREAL_1: 64;
    
        hence t
    <=  
    ||.LP.|| by
    A24,
    A26,
    A27,
    XXREAL_0: 2;
    
      end;
    
      hence
    ||.LP2.||
    <=  
    ||.LP.|| by
    A23,
    SEQ_4: 45;
    
    end;
    
    theorem :: 
    
    NDIFF_9:13
    
    for E,F,G be
    RealNormSpace, L be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators ( 
    [:E, F:],G)), L11,L12 be
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (E,G)), L21,L22 be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (F,G)) st (for x be 
    Point of E, y be 
    Point of F holds (L 
    .  
    [x, y])
    = ((L11 
    . x) 
    + (L21 
    . y))) & (for x be 
    Point of E, y be 
    Point of F holds (L 
    .  
    [x, y])
    = ((L12 
    . x) 
    + (L22 
    . y))) holds L11 
    = L12 & L21 
    = L22 
    
    proof
    
      let E,F,G be
    RealNormSpace, L be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators ( 
    [:E, F:],G)), L11,L12 be
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (E,G)), L21,L22 be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (F,G)); 
    
      assume
    
      
    
    A1: for x be 
    Point of E, y be 
    Point of F holds (L 
    .  
    [x, y])
    = ((L11 
    . x) 
    + (L21 
    . y)); 
    
      assume
    
      
    
    A2: for x be 
    Point of E, y be 
    Point of F holds (L 
    .  
    [x, y])
    = ((L12 
    . x) 
    + (L22 
    . y)); 
    
      reconsider LP = L as
    Lipschitzian  
    LinearOperator of 
    [:E, F:], G by
    LOPBAN_1:def 9;
    
      reconsider LP11 = L11, LP12 = L12 as
    Lipschitzian  
    LinearOperator of E, G by 
    LOPBAN_1:def 9;
    
      reconsider LP21 = L21, LP22 = L22 as
    Lipschitzian  
    LinearOperator of F, G by 
    LOPBAN_1:def 9;
    
      
    
      
    
    A3: for x be 
    Point of E, y be 
    Point of F holds (LP 
    .  
    [x, y])
    = ((LP11 
    . x) 
    + (LP21 
    . y)) by 
    A1;
    
      for x be
    Point of E, y be 
    Point of F holds (LP 
    .  
    [x, y])
    = ((LP12 
    . x) 
    + (LP22 
    . y)) by 
    A2;
    
      hence L11
    = L12 & L21 
    = L22 by 
    A3,
    Th0X;
    
    end;
    
    begin
    
    theorem :: 
    
    NDIFF_9:14
    
    
    
    
    
    Th4: for E,G,F be 
    RealNormSpace, Z be 
    Subset of 
    [:E, F:], f be
    PartFunc of 
    [:E, F:], G, z be
    Point of 
    [:E, F:] st f
    is_differentiable_in z holds f 
    is_partial_differentiable_in`1 z & f 
    is_partial_differentiable_in`2 z & for dx be 
    Point of E, dy be 
    Point of F holds (( 
    diff (f,z)) 
    .  
    [dx, dy])
    = ((( 
    partdiff`1 (f,z)) 
    . dx) 
    + (( 
    partdiff`2 (f,z)) 
    . dy)) 
    
    proof
    
      let E,G,F be
    RealNormSpace, Z be 
    Subset of 
    [:E, F:], f be
    PartFunc of 
    [:E, F:], G, z be
    Point of 
    [:E, F:];
    
      assume
    
      
    
    A1: f 
    is_differentiable_in z; 
    
      reconsider y = ((
    IsoCPNrSP (E,F)) 
    . z) as 
    Point of ( 
    product  
    <*E, F*>);
    
      (((
    IsoCPNrSP (E,F)) 
    " ) 
    . (( 
    IsoCPNrSP (E,F)) 
    . z)) 
    = z by 
    FUNCT_2: 26;
    
      then
    
      
    
    A3: (f 
    * (( 
    IsoCPNrSP (E,F)) 
    " )) 
    is_differentiable_in y by 
    A1,
    NDIFF_7: 28;
    
      then
    
      
    
    A4: f 
    is_partial_differentiable_in`1 z & f 
    is_partial_differentiable_in`2 z by 
    NDIFF_5: 41,
    NDIFF_7: 34;
    
      consider N be
    Neighbourhood of z such that 
    
      
    
    A5: N 
    c= ( 
    dom f) & ex R be 
    RestFunc of 
    [:E, F:], G st for w be
    Point of 
    [:E, F:] st w
    in N holds ((f 
    /. w) 
    - (f 
    /. z)) 
    = ((( 
    diff (f,z)) 
    . (w 
    - z)) 
    + (R 
    /. (w 
    - z))) by 
    A1,
    NDIFF_1:def 7;
    
      consider R be
    RestFunc of 
    [:E, F:], G such that
    
      
    
    A6: for w be 
    Point of 
    [:E, F:] st w
    in N holds ((f 
    /. w) 
    - (f 
    /. z)) 
    = ((( 
    diff (f,z)) 
    . (w 
    - z)) 
    + (R 
    /. (w 
    - z))) by 
    A5;
    
      reconsider L = (
    diff (f,z)) as 
    Lipschitzian  
    LinearOperator of 
    [:E, F:], G by
    LOPBAN_1:def 9;
    
      consider L1 be
    Lipschitzian  
    LinearOperator of E, G, L2 be 
    Lipschitzian  
    LinearOperator of F, G such that 
    
      
    
    A7: (for dx be 
    Point of E, dy be 
    Point of F holds (L 
    .  
    [dx, dy])
    = ((L1 
    . dx) 
    + (L2 
    . dy))) and (for dx be 
    Point of E holds (L1 
    . dx) 
    = (L 
    /.  
    [dx, (
    0. F)])) and (for dy be 
    Point of F holds (L2 
    . dy) 
    = (L 
    /.  
    [(
    0. E), dy])) by 
    Th2;
    
      reconsider LL1 = L1 as
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (E,G)) by 
    LOPBAN_1:def 9;
    
      reconsider LL2 = L2 as
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (F,G)) by 
    LOPBAN_1:def 9;
    
      set g1 = (f
    * ( 
    reproj1 z)); 
    
      set g2 = (f
    * ( 
    reproj2 z)); 
    
      reconsider x = (z
    `1 ) as 
    Point of E; 
    
      reconsider y = (z
    `2 ) as 
    Point of F; 
    
      
    
      
    
    A9: ex x1 be 
    Point of E, x2 be 
    Point of F st z 
    =  
    [x1, x2] by
    PRVECT_3: 18;
    
      then
    
      
    
    A10: z 
    =  
    [x, y];
    
      consider r0 be
    Real such that 
    
      
    
    A14: 
    0  
    < r0 & { y where y be 
    Point of 
    [:E, F:] :
    ||.(y
    - z).|| 
    < r0 } 
    c= N by 
    NFCONT_1:def 1;
    
      
    
      
    
    A15: { y where y be 
    Point of 
    [:E, F:] :
    ||.(y
    - z).|| 
    < r0 } 
    = ( 
    Ball (z,r0)) by 
    NDIFF_8: 17;
    
      consider r be
    Real such that 
    
      
    
    A16: 
    0  
    < r & r 
    < r0 & 
    [:(
    Ball (x,r)), ( 
    Ball (y,r)):] 
    c= ( 
    Ball (z,r0)) by 
    A9,
    A14,
    NDIFF_8: 22;
    
      
    
      
    
    A17: 
    [:(
    Ball (x,r)), ( 
    Ball (y,r)):] 
    c= N by 
    A14,
    A15,
    A16,
    XBOOLE_1: 1;
    
      deffunc
    
    FP1(
    Point of E) = (R 
    /.  
    [$1, (
    0. F)]); 
    
      consider R1 be
    Function of the 
    carrier of E, the 
    carrier of G such that 
    
      
    
    A18: for p be 
    Point of E holds (R1 
    . p) 
    =  
    FP1(p) from
    FUNCT_2:sch 4;
    
      
    
      
    
    A20: for dx be 
    Point of E holds (R1 
    /. dx) 
    = (R 
    /.  
    [dx, (
    0. F)]) by 
    A18;
    
      deffunc
    
    FP2(
    Point of F) = (R 
    /.  
    [(
    0. E), $1]); 
    
      consider R2 be
    Function of the 
    carrier of F, the 
    carrier of G such that 
    
      
    
    A21: for p be 
    Point of F holds (R2 
    . p) 
    =  
    FP2(p) from
    FUNCT_2:sch 4;
    
      
    
      
    
    A23: for dy be 
    Point of F holds (R2 
    /. dy) 
    = (R 
    /.  
    [(
    0. E), dy]) by 
    A21;
    
      for r be
    Real st r 
    >  
    0 holds ex d be 
    Real st d 
    >  
    0 & for z be 
    Point of E st z 
    <> ( 
    0. E) & 
    ||.z.||
    < d holds (( 
    ||.z.||
    " ) 
    *  
    ||.(R1
    /. z).||) 
    < r 
    
      proof
    
        let r be
    Real;
    
        assume
    
        
    
    A25: r 
    >  
    0 ; 
    
        R is
    total by 
    NDIFF_1:def 5;
    
        then
    
        consider d be
    Real such that 
    
        
    
    A26: d 
    >  
    0 & for z be 
    Point of 
    [:E, F:] st z
    <> ( 
    0.  
    [:E, F:]) &
    ||.z.||
    < d holds (( 
    ||.z.||
    " ) 
    *  
    ||.(R
    /. z).||) 
    < r by 
    A25,
    NDIFF_1: 23;
    
        take d;
    
        thus d
    >  
    0 by 
    A26;
    
        let x1 be
    Point of E; 
    
        assume
    
        
    
    A27: x1 
    <> ( 
    0. E) & 
    ||.x1.||
    < d; 
    
        
    [x1, (
    0. F)] is 
    set by 
    TARSKI: 1;
    
        then
    
        reconsider z =
    [x1, (
    0. F)] as 
    Point of 
    [:E, F:] by
    PRVECT_3: 18;
    
        
    
        
    
    A28: z 
    <> ( 
    0.  
    [:E, F:]) by
    A27,
    XTUPLE_0: 1;
    
        
    
        
    
    A29: (R 
    /. z) 
    = (R1 
    /. x1) by 
    A18;
    
        
    ||.z.||
    =  
    ||.x1.|| by
    NDIFF_8: 2;
    
        hence ((
    ||.x1.||
    " ) 
    *  
    ||.(R1
    /. x1).||) 
    < r by 
    A26,
    A27,
    A28,
    A29;
    
      end;
    
      then
    
      reconsider R1 as
    RestFunc of E, G by 
    NDIFF_1: 23;
    
      for r be
    Real st r 
    >  
    0 holds ex d be 
    Real st d 
    >  
    0 & for z be 
    Point of F st z 
    <> ( 
    0. F) & 
    ||.z.||
    < d holds (( 
    ||.z.||
    " ) 
    *  
    ||.(R2
    /. z).||) 
    < r 
    
      proof
    
        let r be
    Real;
    
        assume
    
        
    
    A32: r 
    >  
    0 ; 
    
        R is
    total by 
    NDIFF_1:def 5;
    
        then
    
        consider d be
    Real such that 
    
        
    
    A33: d 
    >  
    0 & for z be 
    Point of 
    [:E, F:] st z
    <> ( 
    0.  
    [:E, F:]) &
    ||.z.||
    < d holds (( 
    ||.z.||
    " ) 
    *  
    ||.(R
    /. z).||) 
    < r by 
    A32,
    NDIFF_1: 23;
    
        take d;
    
        thus d
    >  
    0 by 
    A33;
    
        let y1 be
    Point of F; 
    
        assume
    
        
    
    A34: y1 
    <> ( 
    0. F) & 
    ||.y1.||
    < d; 
    
        
    [(
    0. E), y1] is 
    set by 
    TARSKI: 1;
    
        then
    
        reconsider z =
    [(
    0. E), y1] as 
    Point of 
    [:E, F:] by
    PRVECT_3: 18;
    
        
    
        
    
    A35: z 
    <> ( 
    0.  
    [:E, F:]) by
    A34,
    XTUPLE_0: 1;
    
        
    
        
    
    A36: (R 
    /. z) 
    = (R2 
    /. y1) by 
    A21;
    
        
    ||.z.||
    =  
    ||.y1.|| by
    NDIFF_8: 3;
    
        hence ((
    ||.y1.||
    " ) 
    *  
    ||.(R2
    /. y1).||) 
    < r by 
    A33,
    A34,
    A35,
    A36;
    
      end;
    
      then
    
      reconsider R2 as
    RestFunc of F, G by 
    NDIFF_1: 23;
    
      reconsider N1 = (
    Ball (x,r)) as 
    Neighbourhood of x by 
    A16,
    NDIFF_8: 19;
    
      reconsider N2 = (
    Ball (y,r)) as 
    Neighbourhood of y by 
    A16,
    NDIFF_8: 19;
    
      
    
      
    
    A37: N1 
    c= ( 
    dom g1) 
    
      proof
    
        let s be
    object;
    
        assume
    
        
    
    A39: s 
    in N1; 
    
        then
    
        reconsider t = s as
    Point of E; 
    
        
    
        
    
    A40: ( 
    dom ( 
    reproj1 z)) 
    = the 
    carrier of E by 
    FUNCT_2:def 1;
    
        
    
        
    
    A41: (( 
    reproj1 z) 
    . t) 
    =  
    [t, y] by
    NDIFF_7:def 1;
    
        t
    in ( 
    Ball (x,r)) & y 
    in ( 
    Ball (y,r)) by 
    A16,
    A39,
    NDIFF_8: 13;
    
        then
    [t, y]
    in  
    [:(
    Ball (x,r)), ( 
    Ball (y,r)):] by 
    ZFMISC_1: 87;
    
        then ((
    reproj1 z) 
    . t) 
    in N by 
    A17,
    A41;
    
        hence s
    in ( 
    dom g1) by 
    A5,
    A40,
    FUNCT_1: 11;
    
      end;
    
      
    
      
    
    B42: N2 
    c= ( 
    dom g2) 
    
      proof
    
        let s be
    object;
    
        assume
    
        
    
    A43: s 
    in N2; 
    
        then
    
        reconsider t = s as
    Point of F; 
    
        
    
        
    
    A44: ( 
    dom ( 
    reproj2 z)) 
    = the 
    carrier of F by 
    FUNCT_2:def 1;
    
        
    
        
    
    A45: (( 
    reproj2 z) 
    . t) 
    =  
    [x, t] by
    NDIFF_7:def 2;
    
        t
    in ( 
    Ball (y,r)) & x 
    in ( 
    Ball (x,r)) by 
    A16,
    A43,
    NDIFF_8: 13;
    
        then
    [x, t]
    in  
    [:(
    Ball (x,r)), ( 
    Ball (y,r)):] by 
    ZFMISC_1: 87;
    
        then ((
    reproj2 z) 
    . t) 
    in N by 
    A17,
    A45;
    
        hence s
    in ( 
    dom g2) by 
    A5,
    A44,
    FUNCT_1: 11;
    
      end;
    
      for x1 be
    Point of E st x1 
    in N1 holds ((g1 
    /. x1) 
    - (g1 
    /. x)) 
    = ((LL1 
    . (x1 
    - x)) 
    + (R1 
    /. (x1 
    - x))) 
    
      proof
    
        let x1 be
    Point of E; 
    
        assume
    
        
    
    A48: x1 
    in N1; 
    
        then
    
        
    
    A50: (( 
    reproj1 z) 
    . x1) 
    in ( 
    dom f) by 
    A37,
    FUNCT_1: 11;
    
        
    
        
    
    A51: (( 
    reproj1 z) 
    . x1) 
    =  
    [x1, y] by
    NDIFF_7:def 1;
    
        x1
    in ( 
    Ball (x,r)) & y 
    in ( 
    Ball (y,r)) by 
    A16,
    A48,
    NDIFF_8: 13;
    
        then
    
        
    
    A52: 
    [x1, y]
    in  
    [:(
    Ball (x,r)), ( 
    Ball (y,r)):] by 
    ZFMISC_1: 87;
    
        
    
        
    
    A53: x 
    in N1 by 
    A16,
    NDIFF_8: 13;
    
        then
    
        
    
    A54: (( 
    reproj1 z) 
    . x) 
    in ( 
    dom f) by 
    A37,
    FUNCT_1: 11;
    
        (
    - z) 
    =  
    [(
    - x), ( 
    - y)] by 
    A9,
    PRVECT_3: 18;
    
        
    
        then
    
        
    
    A56: ((( 
    reproj1 z) 
    . x1) 
    - z) 
    =  
    [(x1
    - x), (y 
    - y)] by 
    A51,
    PRVECT_3: 18
    
        .=
    [(x1
    - x), ( 
    0. F)] by 
    RLVECT_1: 15;
    
        
    
        
    
    A57: (g1 
    /. x1) 
    = (g1 
    . x1) by 
    A37,
    A48,
    PARTFUN1:def 6
    
        .= (f
    . (( 
    reproj1 z) 
    . x1)) by 
    A37,
    A48,
    FUNCT_1: 12
    
        .= (f
    /. (( 
    reproj1 z) 
    . x1)) by 
    A50,
    PARTFUN1:def 6;
    
        (g1
    /. x) 
    = (g1 
    . x) by 
    A37,
    A53,
    PARTFUN1:def 6
    
        .= (f
    . (( 
    reproj1 z) 
    . x)) by 
    A37,
    A53,
    FUNCT_1: 12
    
        .= (f
    /. (( 
    reproj1 z) 
    . x)) by 
    A54,
    PARTFUN1:def 6
    
        .= (f
    /. z) by 
    A10,
    NDIFF_7:def 1;
    
        
    
        hence ((g1
    /. x1) 
    - (g1 
    /. x)) 
    = ((( 
    diff (f,z)) 
    . ((( 
    reproj1 z) 
    . x1) 
    - z)) 
    + (R 
    /. ((( 
    reproj1 z) 
    . x1) 
    - z))) by 
    A6,
    A17,
    A51,
    A52,
    A57
    
        .= (((L1
    . (x1 
    - x)) 
    + (L2 
    . ( 
    0. F))) 
    + (R 
    /.  
    [(x1
    - x), ( 
    0. F)])) by 
    A7,
    A56
    
        .= (((L1
    . (x1 
    - x)) 
    + ( 
    0. G)) 
    + (R 
    /.  
    [(x1
    - x), ( 
    0. F)])) by 
    LOPBAN_7: 3
    
        .= ((L1
    . (x1 
    - x)) 
    + (R 
    /.  
    [(x1
    - x), ( 
    0. F)])) by 
    RLVECT_1: 4
    
        .= ((LL1
    . (x1 
    - x)) 
    + (R1 
    /. (x1 
    - x))) by 
    A20;
    
      end;
    
      then
    
      
    
    A59: LL1 
    = ( 
    partdiff`1 (f,z)) by 
    A4,
    A37,
    NDIFF_1:def 7;
    
      for y1 be
    Point of F st y1 
    in N2 holds ((g2 
    /. y1) 
    - (g2 
    /. y)) 
    = ((LL2 
    . (y1 
    - y)) 
    + (R2 
    /. (y1 
    - y))) 
    
      proof
    
        let y1 be
    Point of F; 
    
        assume
    
        
    
    A61: y1 
    in N2; 
    
        then
    
        
    
    A63: (( 
    reproj2 z) 
    . y1) 
    in ( 
    dom f) by 
    B42,
    FUNCT_1: 11;
    
        
    
        
    
    A64: (( 
    reproj2 z) 
    . y1) 
    =  
    [x, y1] by
    NDIFF_7:def 2;
    
        x
    in ( 
    Ball (x,r)) & y1 
    in ( 
    Ball (y,r)) by 
    A16,
    A61,
    NDIFF_8: 13;
    
        then
    
        
    
    A65: 
    [x, y1]
    in  
    [:(
    Ball (x,r)), ( 
    Ball (y,r)):] by 
    ZFMISC_1: 87;
    
        
    
        
    
    A66: y 
    in N2 by 
    A16,
    NDIFF_8: 13;
    
        then
    
        
    
    A67: (( 
    reproj2 z) 
    . y) 
    in ( 
    dom f) by 
    B42,
    FUNCT_1: 11;
    
        (
    - z) 
    =  
    [(
    - x), ( 
    - y)] by 
    A9,
    PRVECT_3: 18;
    
        
    
        then
    
        
    
    A69: ((( 
    reproj2 z) 
    . y1) 
    - z) 
    =  
    [(x
    - x), (y1 
    - y)] by 
    A64,
    PRVECT_3: 18
    
        .=
    [(
    0. E), (y1 
    - y)] by 
    RLVECT_1: 15;
    
        
    
        
    
    A70: (g2 
    /. y1) 
    = (g2 
    . y1) by 
    B42,
    A61,
    PARTFUN1:def 6
    
        .= (f
    . (( 
    reproj2 z) 
    . y1)) by 
    B42,
    A61,
    FUNCT_1: 12
    
        .= (f
    /. (( 
    reproj2 z) 
    . y1)) by 
    A63,
    PARTFUN1:def 6;
    
        (g2
    /. y) 
    = (g2 
    . y) by 
    B42,
    A66,
    PARTFUN1:def 6
    
        .= (f
    . (( 
    reproj2 z) 
    . y)) by 
    B42,
    A66,
    FUNCT_1: 12
    
        .= (f
    /. (( 
    reproj2 z) 
    . y)) by 
    A67,
    PARTFUN1:def 6
    
        .= (f
    /. z) by 
    A10,
    NDIFF_7:def 2;
    
        
    
        hence ((g2
    /. y1) 
    - (g2 
    /. y)) 
    = ((( 
    diff (f,z)) 
    . ((( 
    reproj2 z) 
    . y1) 
    - z)) 
    + (R 
    /. ((( 
    reproj2 z) 
    . y1) 
    - z))) by 
    A6,
    A17,
    A64,
    A65,
    A70
    
        .= (((L1
    . ( 
    0. E)) 
    + (L2 
    . (y1 
    - y))) 
    + (R 
    /.  
    [(
    0. E), (y1 
    - y)])) by 
    A7,
    A69
    
        .= (((
    0. G) 
    + (L2 
    . (y1 
    - y))) 
    + (R 
    /.  
    [(
    0. E), (y1 
    - y)])) by 
    LOPBAN_7: 3
    
        .= ((L2
    . (y1 
    - y)) 
    + (R 
    /.  
    [(
    0. E), (y1 
    - y)])) by 
    RLVECT_1: 4
    
        .= ((LL2
    . (y1 
    - y)) 
    + (R2 
    /. (y1 
    - y))) by 
    A23;
    
      end;
    
      then LL2
    = ( 
    partdiff`2 (f,z)) by 
    A4,
    B42,
    NDIFF_1:def 7;
    
      hence thesis by
    A3,
    A7,
    A59,
    NDIFF_5: 41,
    NDIFF_7: 34;
    
    end;
    
    theorem :: 
    
    NDIFF_9:15
    
    
    
    
    
    Th5: for E,G,F be 
    RealNormSpace, Z be 
    Subset of 
    [:E, F:], f be
    PartFunc of 
    [:E, F:], G, a be
    Point of E, b be 
    Point of F, c be 
    Point of G, z be 
    Point of 
    [:E, F:], r1,r2 be
    Real, g be 
    PartFunc of E, F, P be 
    Lipschitzian  
    LinearOperator of E, G, Q be 
    Lipschitzian  
    LinearOperator of G, F st Z is 
    open & ( 
    dom f) 
    = Z & z 
    =  
    [a, b] & z
    in Z & (f 
    . (a,b)) 
    = c & f 
    is_differentiable_in z & 
    0  
    < r1 & 
    0  
    < r2 & ( 
    dom g) 
    = ( 
    Ball (a,r1)) & ( 
    rng g) 
    c= ( 
    Ball (b,r2)) & (g 
    . a) 
    = b & g 
    is_continuous_in a & (for x be 
    Point of E st x 
    in ( 
    Ball (a,r1)) holds (f 
    . (x,(g 
    . x))) 
    = c) & ( 
    partdiff`2 (f,z)) is 
    one-to-one & Q 
    = (( 
    partdiff`2 (f,z)) 
    " ) & P 
    = ( 
    partdiff`1 (f,z)) holds g 
    is_differentiable_in a & ( 
    diff (g,a)) 
    = ( 
    - (Q 
    * P)) 
    
    proof
    
      let E,G,F be
    RealNormSpace, Z be 
    Subset of 
    [:E, F:], f be
    PartFunc of 
    [:E, F:], G, a be
    Point of E, b be 
    Point of F, c be 
    Point of G, z be 
    Point of 
    [:E, F:], r1,r2 be
    Real, g be 
    PartFunc of E, F, P be 
    Lipschitzian  
    LinearOperator of E, G, Q be 
    Lipschitzian  
    LinearOperator of G, F; 
    
      assume
    
      
    
    A1: Z is 
    open & ( 
    dom f) 
    = Z & z 
    =  
    [a, b] & z
    in Z & (f 
    . (a,b)) 
    = c & f 
    is_differentiable_in z & 
    0  
    < r1 & 
    0  
    < r2 & ( 
    dom g) 
    = ( 
    Ball (a,r1)) & ( 
    rng g) 
    c= ( 
    Ball (b,r2)) & (g 
    . a) 
    = b & g 
    is_continuous_in a & (for x be 
    Point of E st x 
    in ( 
    Ball (a,r1)) holds (f 
    . (x,(g 
    . x))) 
    = c) & ( 
    partdiff`2 (f,z)) is 
    one-to-one & Q 
    = (( 
    partdiff`2 (f,z)) 
    " ) & P 
    = ( 
    partdiff`1 (f,z)); 
    
      then
    
      
    
    A5: (g 
    /. a) 
    = b by 
    NDIFF_8: 13,
    PARTFUN1:def 6;
    
      reconsider S = (
    partdiff`2 (f,z)) as 
    Lipschitzian  
    LinearOperator of F, G by 
    LOPBAN_1:def 9;
    
      
    
      
    
    A8: (Q 
    * P) is 
    Lipschitzian  
    LinearOperator of E, F by 
    LOPBAN_2: 2;
    
      then
    
      reconsider L = (Q
    * P) as 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (E,F)) by 
    LOPBAN_1:def 9;
    
      
    
      
    
    A9: (( 
    - 1) 
    * L) is 
    Lipschitzian  
    LinearOperator of E, F by 
    LOPBAN_1:def 9;
    
      reconsider NL = ((
    - 1) 
    * L) as 
    PartFunc of E, F by 
    LOPBAN_1:def 9;
    
      
    
      
    
    A10: ( 
    dom NL) 
    = the 
    carrier of E by 
    A9,
    FUNCT_2:def 1
    
      .= (
    dom (Q 
    * P)) by 
    FUNCT_2:def 1;
    
      
    
    A11: 
    
      now
    
        let x be
    VECTOR of E; 
    
        assume x
    in ( 
    dom NL); 
    
        
    
        hence (NL
    /. x) 
    = ((( 
    - 1) 
    * L) 
    . x) by 
    PARTFUN1:def 6
    
        .= ((
    - 1) 
    * ((Q 
    * P) 
    /. x)) by 
    LOPBAN_1: 36;
    
      end;
    
      
    
      
    
    A15: ( 
    - L) 
    = (( 
    - 1) 
    * L) by 
    RLVECT_1: 16
    
      .= ((
    - 1) 
    (#) (Q 
    * P)) by 
    A10,
    A11,
    VFUNCT_1:def 4
    
      .= (
    - (Q 
    * P)) by 
    VFUNCT_1: 23;
    
      consider N0 be
    Neighbourhood of z such that 
    
      
    
    A16: N0 
    c= ( 
    dom f) & ex R be 
    RestFunc of 
    [:E, F:], G st for w be
    Point of 
    [:E, F:] st w
    in N0 holds ((f 
    /. w) 
    - (f 
    /. z)) 
    = ((( 
    diff (f,z)) 
    . (w 
    - z)) 
    + (R 
    /. (w 
    - z))) by 
    A1,
    NDIFF_1:def 7;
    
      consider R be
    RestFunc of 
    [:E, F:], G such that
    
      
    
    A17: for w be 
    Point of 
    [:E, F:] st w
    in N0 holds ((f 
    /. w) 
    - (f 
    /. z)) 
    = ((( 
    diff (f,z)) 
    . (w 
    - z)) 
    + (R 
    /. (w 
    - z))) by 
    A16;
    
      consider r0 be
    Real such that 
    
      
    
    A20: 
    0  
    < r0 & { y where y be 
    Point of 
    [:E, F:] :
    ||.(y
    - z).|| 
    < r0 } 
    c= N0 by 
    NFCONT_1:def 1;
    
      
    
      
    
    A21: { y where y be 
    Point of 
    [:E, F:] :
    ||.(y
    - z).|| 
    < r0 } 
    = ( 
    Ball (z,r0)) by 
    NDIFF_8: 17;
    
      consider r3 be
    Real such that 
    
      
    
    A22: 
    0  
    < r3 & r3 
    < r0 & 
    [:(
    Ball (a,r3)), ( 
    Ball (b,r3)):] 
    c= ( 
    Ball (z,r0)) by 
    A1,
    A20,
    NDIFF_8: 22;
    
      
    
      
    
    A23: 
    [:(
    Ball (a,r3)), ( 
    Ball (b,r3)):] 
    c= N0 by 
    A20,
    A21,
    A22,
    XBOOLE_1: 1;
    
      reconsider r4 = (
    min (r1,r3)) as 
    Real;
    
      
    
      
    
    A24: 
    0  
    < r4 by 
    A1,
    A22,
    XXREAL_0: 15;
    
      r4
    <= r1 & r4 
    <= r3 by 
    XXREAL_0: 17;
    
      then
    
      
    
    A26: ( 
    Ball (a,r4)) 
    c= ( 
    Ball (a,r1)) & ( 
    Ball (a,r4)) 
    c= ( 
    Ball (a,r3)) by 
    NDIFF_8: 15;
    
      consider r5 be
    Real such that 
    
      
    
    A27: 
    0  
    < r5 & for x1 be 
    Point of E st x1 
    in ( 
    dom g) & 
    ||.(x1
    - a).|| 
    < r5 holds 
    ||.((g
    /. x1) 
    - (g 
    /. a)).|| 
    < r3 by 
    A1,
    A22,
    NFCONT_1: 7;
    
      reconsider r6 = (
    min (r4,r5)) as 
    Real;
    
      
    
      
    
    A28: 
    0  
    < r6 by 
    A24,
    A27,
    XXREAL_0: 15;
    
      r6
    <= r4 & r6 
    <= r5 by 
    XXREAL_0: 17;
    
      then
    
      
    
    A30: ( 
    Ball (a,r6)) 
    c= ( 
    Ball (a,r4)) & ( 
    Ball (a,r6)) 
    c= ( 
    Ball (a,r5)) by 
    NDIFF_8: 15;
    
      reconsider N = (
    Ball (a,r6)) as 
    Neighbourhood of a by 
    A28,
    NDIFF_8: 19;
    
      deffunc
    
    FR1(
    Point of E) = ( 
    - (Q 
    . (R 
    /.  
    [$1, ((g
    /. (a 
    + $1)) 
    - (g 
    /. a))]))); 
    
      consider R1 be
    Function of the 
    carrier of E, the 
    carrier of F such that 
    
      
    
    A31: for p be 
    Point of E holds (R1 
    . p) 
    =  
    FR1(p) from
    FUNCT_2:sch 4;
    
      
    
      
    
    A33: N 
    c= ( 
    dom g) by 
    A1,
    A26,
    A30,
    XBOOLE_1: 1;
    
      
    
      
    
    A34: for x be 
    Point of E st x 
    in N holds ((g 
    /. x) 
    - (g 
    /. a)) 
    = ((( 
    - L) 
    . (x 
    - a)) 
    + (R1 
    /. (x 
    - a))) 
    
      proof
    
        let x be
    Point of E; 
    
        assume x
    in N; 
    
        then
    
        
    
    A36: x 
    in ( 
    Ball (a,r4)) & x 
    in ( 
    Ball (a,r5)) by 
    A30;
    
        then x
    in { y where y be 
    Point of E : 
    ||.(y
    - a).|| 
    < r5 } by 
    NDIFF_8: 17;
    
        then ex q be
    Element of E st x 
    = q & 
    ||.(q
    - a).|| 
    < r5; 
    
        then
    ||.((g
    /. x) 
    - (g 
    /. a)).|| 
    < r3 by 
    A1,
    A26,
    A27,
    A36;
    
        then (g
    /. x) 
    in { y where y be 
    Point of F : 
    ||.(y
    - b).|| 
    < r3 } by 
    A5;
    
        then
    
        
    
    A39: (g 
    /. x) 
    in ( 
    Ball (b,r3)) by 
    NDIFF_8: 17;
    
        
    
        
    
    A41: (f 
    . (x,(g 
    . x))) 
    = c by 
    A1,
    A26,
    A36;
    
        
    
        
    
    A42: 
    [x, (g
    /. x)] 
    in  
    [:(
    Ball (a,r3)), ( 
    Ball (b,r3)):] by 
    A26,
    A36,
    A39,
    ZFMISC_1: 87;
    
        then
    
        
    
    A45: 
    [x, (g
    /. x)] 
    in N0 by 
    A23;
    
        then
    
        reconsider w =
    [x, (g
    /. x)] as 
    Point of 
    [:E, F:];
    
        
    
        
    
    A47: ((f 
    /. w) 
    - (f 
    /. z)) 
    = ((( 
    diff (f,z)) 
    . (w 
    - z)) 
    + (R 
    /. (w 
    - z))) by 
    A17,
    A23,
    A42;
    
        
    
        
    
    A48: (f 
    /. z) 
    = c by 
    A1,
    PARTFUN1:def 6;
    
        
    
        
    
    A50: (f 
    /. w) 
    = (f 
    .  
    [x, (g
    /. x)]) by 
    A16,
    A45,
    PARTFUN1:def 6
    
        .= c by
    A1,
    A26,
    A36,
    A41,
    PARTFUN1:def 6;
    
        (
    - z) 
    =  
    [(
    - a), ( 
    - b)] by 
    A1,
    PRVECT_3: 18;
    
        
    
        then
    
        
    
    A52: (w 
    - z) 
    =  
    [(x
    - a), ((g 
    /. x) 
    - b)] by 
    PRVECT_3: 18
    
        .=
    [(x
    - a), ((g 
    /. x) 
    - (g 
    /. a))] by 
    A1,
    NDIFF_8: 13,
    PARTFUN1:def 6;
    
        then ((
    diff (f,z)) 
    . (w 
    - z)) 
    = ((( 
    partdiff`1 (f,z)) 
    . (x 
    - a)) 
    + (( 
    partdiff`2 (f,z)) 
    . ((g 
    /. x) 
    - (g 
    /. a)))) by 
    A1,
    Th4;
    
        then (
    0. G) 
    = (((P 
    . (x 
    - a)) 
    + (S 
    . ((g 
    /. x) 
    - (g 
    /. a)))) 
    + (R 
    /. (w 
    - z))) by 
    A1,
    A47,
    A48,
    A50,
    RLVECT_1: 15;
    
        then (
    0. F) 
    = (Q 
    . (((P 
    . (x 
    - a)) 
    + (S 
    . ((g 
    /. x) 
    - (g 
    /. a)))) 
    + (R 
    /. (w 
    - z)))) by 
    LOPBAN_7: 3;
    
        
    
        then (
    0. F) 
    = ((Q 
    . ((P 
    . (x 
    - a)) 
    + (S 
    . ((g 
    /. x) 
    - (g 
    /. a))))) 
    + (Q 
    . (R 
    /. (w 
    - z)))) by 
    VECTSP_1:def 20
    
        .= (((Q
    . (P 
    . (x 
    - a))) 
    + (Q 
    . (S 
    . ((g 
    /. x) 
    - (g 
    /. a))))) 
    + (Q 
    . (R 
    /. (w 
    - z)))) by 
    VECTSP_1:def 20
    
        .= ((((Q
    * P) 
    . (x 
    - a)) 
    + (Q 
    . (S 
    . ((g 
    /. x) 
    - (g 
    /. a))))) 
    + (Q 
    . (R 
    /. (w 
    - z)))) by 
    FUNCT_2: 15
    
        .= ((((Q
    * P) 
    . (x 
    - a)) 
    + ((g 
    /. x) 
    - (g 
    /. a))) 
    + (Q 
    . (R 
    /. (w 
    - z)))) by 
    A1,
    FUNCT_2: 26;
    
        then ((
    0. F) 
    - (Q 
    . (R 
    /. (w 
    - z)))) 
    = (((Q 
    * P) 
    . (x 
    - a)) 
    + ((g 
    /. x) 
    - (g 
    /. a))) by 
    RLVECT_4: 1;
    
        
    
        then
    
        
    
    A53: (( 
    - (Q 
    . (R 
    /. (w 
    - z)))) 
    - ((Q 
    * P) 
    . (x 
    - a))) 
    = ((((g 
    /. x) 
    - (g 
    /. a)) 
    + ((Q 
    * P) 
    . (x 
    - a))) 
    - ((Q 
    * P) 
    . (x 
    - a))) by 
    RLVECT_1: 14
    
        .= ((g
    /. x) 
    - (g 
    /. a)) by 
    RLVECT_4: 1;
    
        
    
        
    
    A54: ( 
    dom ( 
    - (Q 
    * P))) 
    = ( 
    dom (Q 
    * P)) by 
    VFUNCT_1:def 5
    
        .= the
    carrier of E by 
    FUNCT_2:def 1;
    
        
    
        
    
    A55: ( 
    - ((Q 
    * P) 
    . (x 
    - a))) 
    = ( 
    - ((Q 
    * P) 
    /. (x 
    - a))) 
    
        .= ((
    - (Q 
    * P)) 
    /. (x 
    - a)) by 
    A54,
    VFUNCT_1:def 5
    
        .= ((
    - L) 
    . (x 
    - a)) by 
    A15,
    A54,
    PARTFUN1:def 6;
    
        (R1
    /. (x 
    - a)) 
    = ( 
    - (Q 
    . (R 
    /.  
    [(x
    - a), ((g 
    /. ((x 
    - a) 
    + a)) 
    - (g 
    /. a))]))) by 
    A31
    
        .= (
    - (Q 
    . (R 
    /. (w 
    - z)))) by 
    A52,
    RLVECT_4: 1;
    
        hence ((g
    /. x) 
    - (g 
    /. a)) 
    = ((( 
    - L) 
    . (x 
    - a)) 
    + (R1 
    /. (x 
    - a))) by 
    A53,
    A55;
    
      end;
    
      defpred
    
    FP[
    Point of E, 
    object] means $2
    =  
    [$1, ((g
    /. (a 
    + $1)) 
    - (g 
    /. a))]; 
    
      
    
      
    
    A59: for dx be 
    Element of the 
    carrier of E holds ex dy be 
    Element of the 
    carrier of 
    [:E, F:] st
    FP[dx, dy]
    
      proof
    
        let x be
    Element of the 
    carrier of E; 
    
        
    [x, ((g
    /. (a 
    + x)) 
    - (g 
    /. a))] is 
    set by 
    TARSKI: 1;
    
        then
    
        reconsider y =
    [x, ((g
    /. (a 
    + x)) 
    - (g 
    /. a))] as 
    Point of 
    [:E, F:] by
    PRVECT_3: 18;
    
        take y;
    
        thus y
    =  
    [x, ((g
    /. (a 
    + x)) 
    - (g 
    /. a))]; 
    
      end;
    
      consider V be
    Function of the 
    carrier of E, the 
    carrier of 
    [:E, F:] such that
    
      
    
    A60: for dx be 
    Element of the 
    carrier of E holds 
    FP[dx, (V
    . dx)] from 
    FUNCT_2:sch 3(
    A59);
    
      
    
      
    
    A62: R is 
    total by 
    NDIFF_1:def 5;
    
      reconsider Q1 = Q as
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (G,F)) by 
    LOPBAN_1:def 9;
    
      set BLQ =
    ||.Q1.||;
    
      (
    0  
    * (BLQ 
    + 1)) 
    < (2 
    * (BLQ 
    + 1)) by 
    XREAL_1: 68;
    
      then
    
      consider dr be
    Real such that 
    
      
    
    A65: dr 
    >  
    0 & for dz be 
    Point of 
    [:E, F:] st dz
    <> ( 
    0.  
    [:E, F:]) &
    ||.dz.||
    < dr holds (( 
    ||.dz.||
    " ) 
    *  
    ||.(R
    /. dz).||) 
    < (1 
    / (2 
    * (BLQ 
    + 1))) by 
    A62,
    NDIFF_1: 23;
    
      consider dr1 be
    Real such that 
    
      
    
    A66: 
    0  
    < dr1 & dr1 
    < dr & 
    [:(
    Ball (a,dr1)), ( 
    Ball ((g 
    /. a),dr1)):] 
    c= ( 
    Ball (z,dr)) by 
    A1,
    A5,
    A65,
    NDIFF_8: 22;
    
      consider dr2 be
    Real such that 
    
      
    
    A67: 
    0  
    < dr2 & for x1 be 
    Point of E st x1 
    in ( 
    dom g) & 
    ||.(x1
    - a).|| 
    < dr2 holds 
    ||.((g
    /. x1) 
    - (g 
    /. a)).|| 
    < dr1 by 
    A1,
    A66,
    NFCONT_1: 7;
    
      reconsider dr3 = (
    min (dr1,dr2)) as 
    Real;
    
      
    
      
    
    A69: dr3 
    <= dr1 & dr3 
    <= dr2 by 
    XXREAL_0: 17;
    
      reconsider dr4 = (
    min (dr3,r1)) as 
    Real;
    
      
    0  
    < dr3 by 
    A66,
    A67,
    XXREAL_0: 15;
    
      then
    
      
    
    A71: 
    0  
    < dr4 by 
    A1,
    XXREAL_0: 15;
    
      
    
      
    
    A72: dr4 
    <= dr3 & dr4 
    <= r1 by 
    XXREAL_0: 17;
    
      
    
      
    
    A74: for dx be 
    Point of E st dx 
    <> ( 
    0. E) & 
    ||.dx.||
    < dr4 holds 
    ||.(R
    /. (V 
    . dx)).|| 
    <= ((1 
    / (2 
    * (BLQ 
    + 1))) 
    * ( 
    ||.dx.||
    +  
    ||.((g
    /. (a 
    + dx)) 
    - (g 
    /. a)).||)) 
    
      proof
    
        let dx be
    Point of E; 
    
        set x1 = (a
    + dx); 
    
        assume
    
        
    
    A75: dx 
    <> ( 
    0. E) & 
    ||.dx.||
    < dr4; 
    
        then
    
        
    
    A76: 
    ||.(x1
    - a).|| 
    < dr4 by 
    RLVECT_4: 1;
    
        then
    ||.(x1
    - a).|| 
    < dr3 by 
    A72,
    XXREAL_0: 2;
    
        then
    
        
    
    A78: 
    ||.(x1
    - a).|| 
    < dr1 & 
    ||.(x1
    - a).|| 
    < dr2 by 
    A69,
    XXREAL_0: 2;
    
        then
    ||.(a
    - x1).|| 
    < dr1 by 
    NORMSP_1: 7;
    
        then
    
        
    
    A79: x1 
    in ( 
    Ball (a,dr1)); 
    
        
    ||.(a
    - x1).|| 
    < dr4 by 
    A76,
    NORMSP_1: 7;
    
        then
    ||.(a
    - x1).|| 
    < r1 & 
    ||.(a
    - x1).|| 
    < dr3 by 
    A72,
    XXREAL_0: 2;
    
        then x1
    in ( 
    Ball (a,r1)); 
    
        then
    ||.((g
    /. x1) 
    - (g 
    /. a)).|| 
    < dr1 by 
    A1,
    A67,
    A78;
    
        then
    ||.((g
    /. a) 
    - (g 
    /. x1)).|| 
    < dr1 by 
    NORMSP_1: 7;
    
        then (g
    /. x1) 
    in ( 
    Ball ((g 
    /. a),dr1)); 
    
        then
    [x1, (g
    /. x1)] 
    in  
    [:(
    Ball (a,dr1)), ( 
    Ball ((g 
    /. a),dr1)):] by 
    A79,
    ZFMISC_1: 87;
    
        then
    [x1, (g
    /. x1)] 
    in ( 
    Ball (z,dr)) by 
    A66;
    
        then
    
        consider w be
    Point of 
    [:E, F:] such that
    
        
    
    A84: w 
    =  
    [x1, (g
    /. x1)] & 
    ||.(z
    - w).|| 
    < dr; 
    
        (
    - z) 
    =  
    [(
    - a), ( 
    - (g 
    /. a))] by 
    A1,
    A5,
    PRVECT_3: 18;
    
        then
    
        
    
    A86: (w 
    - z) 
    =  
    [(x1
    - a), ((g 
    /. x1) 
    - (g 
    /. a))] by 
    A84,
    PRVECT_3: 18;
    
        
    
        
    
    A87: 
    ||.(w
    - z).|| 
    < dr by 
    A84,
    NORMSP_1: 7;
    
        (x1
    - a) 
    = dx by 
    RLVECT_4: 1;
    
        then
    
        
    
    A88: (w 
    - z) 
    <> ( 
    0.  
    [:E, F:]) by
    A75,
    A86,
    XTUPLE_0: 1;
    
        then
    ||.(w
    - z).|| 
    <>  
    0 by 
    NORMSP_0:def 5;
    
        then (((
    ||.(w
    - z).|| 
    " ) 
    *  
    ||.(R
    /. (w 
    - z)).||) 
    *  
    ||.(w
    - z).||) 
    < ((1 
    / (2 
    * (BLQ 
    + 1))) 
    *  
    ||.(w
    - z).||) by 
    A65,
    A87,
    A88,
    XREAL_1: 68;
    
        then ((
    ||.(w
    - z).|| 
    " ) 
    * ( 
    ||.(R
    /. (w 
    - z)).|| 
    *  
    ||.(w
    - z).||)) 
    < ((1 
    / (2 
    * (BLQ 
    + 1))) 
    *  
    ||.(w
    - z).||); 
    
        then
    
        
    
    A91: 
    ||.(R
    /. (w 
    - z)).|| 
    < ((1 
    / (2 
    * (BLQ 
    + 1))) 
    *  
    ||.(w
    - z).||) by 
    A88,
    NORMSP_0:def 5,
    XCMPLX_1: 203;
    
        
    
        
    
    A92: (V 
    . dx) 
    =  
    [dx, ((g
    /. (a 
    + dx)) 
    - (g 
    /. a))] by 
    A60
    
        .=
    [(x1
    - a), ((g 
    /. x1) 
    - (g 
    /. a))] by 
    RLVECT_4: 1;
    
        then
    
        
    
    A94: ((1 
    / (2 
    * (BLQ 
    + 1))) 
    *  
    ||.(V
    . dx).||) 
    <= ((1 
    / (2 
    * (BLQ 
    + 1))) 
    * ( 
    ||.(x1
    - a).|| 
    +  
    ||.((g
    /. x1) 
    - (g 
    /. a)).||)) by 
    LM0,
    XREAL_1: 64;
    
        (g
    /. x1) 
    = (g 
    /. (a 
    + dx)) & (x1 
    - a) 
    = dx by 
    RLVECT_4: 1;
    
        hence
    ||.(R
    /. (V 
    . dx)).|| 
    <= ((1 
    / (2 
    * (BLQ 
    + 1))) 
    * ( 
    ||.dx.||
    +  
    ||.((g
    /. (a 
    + dx)) 
    - (g 
    /. a)).||)) by 
    A86,
    A91,
    A92,
    A94,
    XXREAL_0: 2;
    
      end;
    
      
    
      
    
    A95: for dx be 
    Point of E st dx 
    <> ( 
    0. E) & 
    ||.dx.||
    < dr4 holds 
    ||.(R1
    /. dx).|| 
    <= ((1 
    / 2) 
    * ( 
    ||.dx.||
    +  
    ||.((g
    /. (a 
    + dx)) 
    - (g 
    /. a)).||)) 
    
      proof
    
        let dx be
    Point of E; 
    
        assume dx
    <> ( 
    0. E) & 
    ||.dx.||
    < dr4; 
    
        then
    
        
    
    A97: 
    ||.(R
    /. (V 
    . dx)).|| 
    <= ((1 
    / (2 
    * (BLQ 
    + 1))) 
    * ( 
    ||.dx.||
    +  
    ||.((g
    /. (a 
    + dx)) 
    - (g 
    /. a)).||)) by 
    A74;
    
        
    
        
    
    A98: 
    ||.(Q
    . (R 
    /. (V 
    . dx))).|| 
    <= (BLQ 
    *  
    ||.(R
    /. (V 
    . dx)).||) by 
    LOPBAN_1: 32;
    
        
    
        
    
    A99: (BLQ 
    *  
    ||.(R
    /. (V 
    . dx)).||) 
    <= (BLQ 
    * ((1 
    / (2 
    * (BLQ 
    + 1))) 
    * ( 
    ||.dx.||
    +  
    ||.((g
    /. (a 
    + dx)) 
    - (g 
    /. a)).||))) by 
    A97,
    XREAL_1: 64;
    
        
    
        
    
    A101: (BLQ 
    * (1 
    / (2 
    * (BLQ 
    + 1)))) 
    = ((1 
    * BLQ) 
    / (2 
    * (BLQ 
    + 1))) 
    
        .= ((1
    / 2) 
    * (BLQ 
    / (BLQ 
    + 1))) by 
    XCMPLX_1: 103;
    
        (BLQ
    +  
    0 ) 
    <= (BLQ 
    + 1) by 
    XREAL_1: 7;
    
        then (BLQ
    / (BLQ 
    + 1)) 
    <= 1 by 
    XREAL_1: 183;
    
        then ((1
    / 2) 
    * (BLQ 
    / (BLQ 
    + 1))) 
    <= ((1 
    / 2) 
    * 1) by 
    XREAL_1: 64;
    
        then ((BLQ
    * (1 
    / (2 
    * (BLQ 
    + 1)))) 
    * ( 
    ||.dx.||
    +  
    ||.((g
    /. (a 
    + dx)) 
    - (g 
    /. a)).||)) 
    <= ((1 
    / 2) 
    * ( 
    ||.dx.||
    +  
    ||.((g
    /. (a 
    + dx)) 
    - (g 
    /. a)).||)) by 
    A101,
    XREAL_1: 64;
    
        then (BLQ
    *  
    ||.(R
    /. (V 
    . dx)).||) 
    <= ((1 
    / 2) 
    * ( 
    ||.dx.||
    +  
    ||.((g
    /. (a 
    + dx)) 
    - (g 
    /. a)).||)) by 
    A99,
    XXREAL_0: 2;
    
        then
    
        
    
    A102: 
    ||.(Q
    . (R 
    /. (V 
    . dx))).|| 
    <= ((1 
    / 2) 
    * ( 
    ||.dx.||
    +  
    ||.((g
    /. (a 
    + dx)) 
    - (g 
    /. a)).||)) by 
    A98,
    XXREAL_0: 2;
    
        (
    - (Q 
    . (R 
    /. (V 
    . dx)))) 
    = ( 
    - (Q 
    . (R 
    /.  
    [dx, ((g
    /. (a 
    + dx)) 
    - (g 
    /. a))]))) by 
    A60
    
        .= (R1
    /. dx) by 
    A31;
    
        hence thesis by
    A102,
    NORMSP_1: 2;
    
      end;
    
      set LQ =
    ||.L.||;
    
      reconsider dr5 = (
    min (r6,dr4)) as 
    Real;
    
      
    
      
    
    A104: 
    0  
    < dr5 by 
    A28,
    A71,
    XXREAL_0: 15;
    
      
    
      
    
    A105: dr5 
    <= r6 & dr5 
    <= dr4 by 
    XXREAL_0: 17;
    
      
    
      
    
    A107: for dx be 
    Point of E st dx 
    <> ( 
    0. E) & 
    ||.dx.||
    < dr5 holds 
    ||.((g
    /. (a 
    + dx)) 
    - (g 
    /. a)).|| 
    <= (((2 
    * LQ) 
    + 1) 
    *  
    ||.dx.||)
    
      proof
    
        let dx be
    Point of E; 
    
        assume
    
        
    
    A108: dx 
    <> ( 
    0. E) & 
    ||.dx.||
    < dr5; 
    
        then
    
        
    
    A109: 
    ||.dx.||
    < dr4 by 
    A105,
    XXREAL_0: 2;
    
        
    
        
    
    A111: 
    ||.dx.||
    < r6 by 
    A105,
    A108,
    XXREAL_0: 2;
    
        set x1 = (a
    + dx); 
    
        
    
        
    
    A112: (x1 
    - a) 
    = dx by 
    RLVECT_4: 1;
    
        then
    ||.(a
    - x1).|| 
    < r6 by 
    A111,
    NORMSP_1: 7;
    
        then x1
    in N; 
    
        then ((g
    /. x1) 
    - (g 
    /. a)) 
    = ((( 
    - L) 
    . (x1 
    - a)) 
    + (R1 
    /. (x1 
    - a))) by 
    A34;
    
        then
    
        
    
    A114: 
    ||.((g
    /. x1) 
    - (g 
    /. a)).|| 
    <= ( 
    ||.((
    - L) 
    . (x1 
    - a)).|| 
    +  
    ||.(R1
    /. (x1 
    - a)).||) by 
    NORMSP_1:def 1;
    
        ((
    - L) 
    . (x1 
    - a)) 
    = ((( 
    - 1) 
    * L) 
    . (x1 
    - a)) by 
    RLVECT_1: 16
    
        .= ((
    - 1) 
    * ((Q 
    * P) 
    . (x1 
    - a))) by 
    LOPBAN_1: 36
    
        .= (
    - ((Q 
    * P) 
    . (x1 
    - a))) by 
    RLVECT_1: 16;
    
        then
    ||.((
    - L) 
    . (x1 
    - a)).|| 
    =  
    ||.((Q
    * P) 
    . (x1 
    - a)).|| by 
    NORMSP_1: 2;
    
        then
    
        
    
    A115: 
    ||.((
    - L) 
    . (x1 
    - a)).|| 
    <= (LQ 
    *  
    ||.(x1
    - a).||) by 
    A8,
    LOPBAN_1: 32;
    
        
    ||.(R1
    /. (x1 
    - a)).|| 
    <= ((1 
    / 2) 
    * ( 
    ||.(x1
    - a).|| 
    +  
    ||.((g
    /. x1) 
    - (g 
    /. a)).||)) by 
    A95,
    A108,
    A109,
    A112;
    
        then (
    ||.((
    - L) 
    . (x1 
    - a)).|| 
    +  
    ||.(R1
    /. (x1 
    - a)).||) 
    <= ((LQ 
    *  
    ||.(x1
    - a).||) 
    + (((1 
    / 2) 
    *  
    ||.(x1
    - a).||) 
    + ((1 
    / 2) 
    *  
    ||.((g
    /. x1) 
    - (g 
    /. a)).||))) by 
    A115,
    XREAL_1: 7;
    
        then
    ||.((g
    /. x1) 
    - (g 
    /. a)).|| 
    <= (((LQ 
    *  
    ||.(x1
    - a).||) 
    + ((1 
    / 2) 
    *  
    ||.(x1
    - a).||)) 
    + ((1 
    / 2) 
    *  
    ||.((g
    /. x1) 
    - (g 
    /. a)).||)) by 
    A114,
    XXREAL_0: 2;
    
        then (
    ||.((g
    /. x1) 
    - (g 
    /. a)).|| 
    - ((1 
    / 2) 
    *  
    ||.((g
    /. x1) 
    - (g 
    /. a)).||)) 
    <= ((((LQ 
    *  
    ||.(x1
    - a).||) 
    + ((1 
    / 2) 
    *  
    ||.(x1
    - a).||)) 
    + ((1 
    / 2) 
    *  
    ||.((g
    /. x1) 
    - (g 
    /. a)).||)) 
    - ((1 
    / 2) 
    *  
    ||.((g
    /. x1) 
    - (g 
    /. a)).||)) by 
    XREAL_1: 9;
    
        then (2
    * ((1 
    / 2) 
    *  
    ||.((g
    /. x1) 
    - (g 
    /. a)).||)) 
    <= (2 
    * ((LQ 
    *  
    ||.(x1
    - a).||) 
    + ((1 
    / 2) 
    *  
    ||.(x1
    - a).||))) by 
    XREAL_1: 64;
    
        hence
    ||.((g
    /. (a 
    + dx)) 
    - (g 
    /. a)).|| 
    <= (((2 
    * LQ) 
    + 1) 
    *  
    ||.dx.||) by
    A112;
    
      end;
    
      for r be
    Real st r 
    >  
    0 holds ex d be 
    Real st d 
    >  
    0 & for dx be 
    Point of E st dx 
    <> ( 
    0. E) & 
    ||.dx.||
    < d holds (( 
    ||.dx.||
    " ) 
    *  
    ||.(R1
    /. dx).||) 
    < r 
    
      proof
    
        let r be
    Real;
    
        assume
    
        
    
    A117: r 
    >  
    0 ; 
    
        
    
        
    
    A120: 
    0  
    < ((BLQ 
    + 1) 
    * ((2 
    * LQ) 
    + 2)) by 
    XREAL_1: 129;
    
        then
    0  
    < (r 
    / ((BLQ 
    + 1) 
    * ((2 
    * LQ) 
    + 2))) by 
    A117,
    XREAL_1: 139;
    
        then
    
        consider d1 be
    Real such that 
    
        
    
    A122: d1 
    >  
    0 & for dz be 
    Point of 
    [:E, F:] st dz
    <> ( 
    0.  
    [:E, F:]) &
    ||.dz.||
    < d1 holds (( 
    ||.dz.||
    " ) 
    *  
    ||.(R
    /. dz).||) 
    < (r 
    / ((BLQ 
    + 1) 
    * ((2 
    * LQ) 
    + 2))) by 
    A62,
    NDIFF_1: 23;
    
        consider r3 be
    Real such that 
    
        
    
    A123: 
    0  
    < r3 & r3 
    < d1 & 
    [:(
    Ball (a,r3)), ( 
    Ball (b,r3)):] 
    c= ( 
    Ball (z,d1)) by 
    A1,
    A122,
    NDIFF_8: 22;
    
        reconsider r4 = (
    min (r1,r3)) as 
    Real;
    
        
    
        
    
    A124: 
    0  
    < r4 by 
    A1,
    A123,
    XXREAL_0: 15;
    
        
    
        
    
    A125: r4 
    <= r1 & r4 
    <= r3 by 
    XXREAL_0: 17;
    
        consider r5 be
    Real such that 
    
        
    
    A127: 
    0  
    < r5 & for x1 be 
    Point of E st x1 
    in ( 
    dom g) & 
    ||.(x1
    - a).|| 
    < r5 holds 
    ||.((g
    /. x1) 
    - (g 
    /. a)).|| 
    < r3 by 
    A1,
    A123,
    NFCONT_1: 7;
    
        reconsider r6 = (
    min (r4,r5)) as 
    Real;
    
        
    
        
    
    A128: 
    0  
    < r6 by 
    A124,
    A127,
    XXREAL_0: 15;
    
        
    
        
    
    A129: r6 
    <= r4 & r6 
    <= r5 by 
    XXREAL_0: 17;
    
        reconsider d = (
    min (r6,dr5)) as 
    Real;
    
        
    
        
    
    A132: d 
    <= r6 & d 
    <= dr5 by 
    XXREAL_0: 17;
    
        take d;
    
        thus
    0  
    < d by 
    A104,
    A128,
    XXREAL_0: 15;
    
        let dx be
    Point of E; 
    
        assume
    
        
    
    A133: dx 
    <> ( 
    0. E) & 
    ||.dx.||
    < d; 
    
        set x1 = (a
    + dx); 
    
        
    [dx, ((g
    /. (a 
    + dx)) 
    - (g 
    /. a))] is 
    set by 
    TARSKI: 1;
    
        then
    
        reconsider dz =
    [dx, ((g
    /. (a 
    + dx)) 
    - (g 
    /. a))] as 
    Point of 
    [:E, F:] by
    PRVECT_3: 18;
    
        
    
        
    
    A134: dz 
    <> ( 
    0.  
    [:E, F:]) by
    A133,
    XTUPLE_0: 1;
    
        
    
        
    
    A137: 
    ||.dx.||
    < dr5 by 
    A132,
    A133,
    XXREAL_0: 2;
    
        
    
        
    
    A138: 
    ||.dx.||
    < r6 by 
    A132,
    A133,
    XXREAL_0: 2;
    
        then
    
        
    
    A139: 
    ||.dx.||
    < r5 by 
    A129,
    XXREAL_0: 2;
    
        
    ||.dx.||
    < r4 by 
    A129,
    A138,
    XXREAL_0: 2;
    
        then
    
        
    
    A140: 
    ||.dx.||
    < r1 & 
    ||.dx.||
    < r3 by 
    A125,
    XXREAL_0: 2;
    
        then
    ||.(x1
    - a).|| 
    < r1 by 
    RLVECT_4: 1;
    
        then
    ||.(a
    - x1).|| 
    < r1 by 
    NORMSP_1: 7;
    
        then
    
        
    
    A141: x1 
    in ( 
    dom g) by 
    A1;
    
        
    ||.(x1
    - a).|| 
    < r5 by 
    A139,
    RLVECT_4: 1;
    
        then
    ||.((g
    /. x1) 
    - (g 
    /. a)).|| 
    < r3 by 
    A127,
    A141;
    
        then
    ||.((g
    /. a) 
    - (g 
    /. x1)).|| 
    < r3 by 
    NORMSP_1: 7;
    
        then
    
        
    
    A142: (g 
    /. x1) 
    in ( 
    Ball (b,r3)) by 
    A5;
    
        
    ||.(x1
    - a).|| 
    < r3 by 
    A140,
    RLVECT_4: 1;
    
        then
    ||.(a
    - x1).|| 
    < r3 by 
    NORMSP_1: 7;
    
        then x1
    in ( 
    Ball (a,r3)); 
    
        then
    [x1, (g
    /. x1)] 
    in  
    [:(
    Ball (a,r3)), ( 
    Ball (b,r3)):] by 
    A142,
    ZFMISC_1: 87;
    
        then
    [x1, (g
    /. x1)] 
    in ( 
    Ball (z,d1)) by 
    A123;
    
        then
    
        consider w be
    Point of 
    [:E, F:] such that
    
        
    
    A145: w 
    =  
    [x1, (g
    /. x1)] & 
    ||.(z
    - w).|| 
    < d1; 
    
        (
    - z) 
    =  
    [(
    - a), ( 
    - (g 
    /. a))] by 
    A1,
    A5,
    PRVECT_3: 18;
    
        
    
        then (w
    - z) 
    =  
    [(x1
    - a), ((g 
    /. x1) 
    - (g 
    /. a))] by 
    A145,
    PRVECT_3: 18
    
        .= dz by
    RLVECT_4: 1;
    
        then
    
        
    
    A148: 
    ||.dz.||
    < d1 by 
    A145,
    NORMSP_1: 7;
    
        (R1
    /. dx) 
    = ( 
    - (Q 
    . (R 
    /.  
    [dx, ((g
    /. (a 
    + dx)) 
    - (g 
    /. a))]))) by 
    A31;
    
        then
    ||.(R1
    /. dx).|| 
    =  
    ||.(Q
    . (R 
    /.  
    [dx, ((g
    /. (a 
    + dx)) 
    - (g 
    /. a))])).|| by 
    NORMSP_1: 2;
    
        then
    
        
    
    A150: 
    ||.(R1
    /. dx).|| 
    <= (BLQ 
    *  
    ||.(R
    /.  
    [dx, ((g
    /. (a 
    + dx)) 
    - (g 
    /. a))]).||) by 
    LOPBAN_1: 32;
    
        (
    0  
    + BLQ) 
    < (BLQ 
    + 1) by 
    XREAL_1: 8;
    
        then (BLQ
    *  
    ||.(R
    /.  
    [dx, ((g
    /. (a 
    + dx)) 
    - (g 
    /. a))]).||) 
    <= ((BLQ 
    + 1) 
    *  
    ||.(R
    /.  
    [dx, ((g
    /. (a 
    + dx)) 
    - (g 
    /. a))]).||) by 
    XREAL_1: 64;
    
        then
    ||.(R1
    /. dx).|| 
    <= ((BLQ 
    + 1) 
    *  
    ||.(R
    /.  
    [dx, ((g
    /. (a 
    + dx)) 
    - (g 
    /. a))]).||) by 
    A150,
    XXREAL_0: 2;
    
        then ((
    ||.dx.||
    " ) 
    *  
    ||.(R1
    /. dx).||) 
    <= (( 
    ||.dx.||
    " ) 
    * ((BLQ 
    + 1) 
    *  
    ||.(R
    /.  
    [dx, ((g
    /. (a 
    + dx)) 
    - (g 
    /. a))]).||)) by 
    XREAL_1: 64;
    
        then ((
    ||.dx.||
    " ) 
    *  
    ||.(R1
    /. dx).||) 
    <= ((( 
    ||.dx.||
    " ) 
    * (BLQ 
    + 1)) 
    *  
    ||.(R
    /. dz).||); 
    
        then
    
        
    
    A152: (( 
    ||.dx.||
    " ) 
    *  
    ||.(R1
    /. dx).||) 
    <= ((( 
    ||.dx.||
    " ) 
    * (BLQ 
    + 1)) 
    * (( 
    ||.dz.||
    " ) 
    * ( 
    ||.(R
    /. dz).|| 
    *  
    ||.dz.||))) by
    A134,
    NORMSP_0:def 5,
    XCMPLX_1: 203;
    
        
    
        
    
    A153: 
    ||.dz.||
    <= ( 
    ||.dx.||
    +  
    ||.((g
    /. (a 
    + dx)) 
    - (g 
    /. a)).||) by 
    LM0;
    
        
    ||.((g
    /. (a 
    + dx)) 
    - (g 
    /. a)).|| 
    <= (((2 
    * LQ) 
    + 1) 
    *  
    ||.dx.||) by
    A107,
    A133,
    A137;
    
        then (
    ||.dx.||
    +  
    ||.((g
    /. (a 
    + dx)) 
    - (g 
    /. a)).||) 
    <= ( 
    ||.dx.||
    + (((2 
    * LQ) 
    + 1) 
    *  
    ||.dx.||)) by
    XREAL_1: 7;
    
        then
    ||.dz.||
    <= ( 
    ||.dx.||
    + (((2 
    * LQ) 
    + 1) 
    *  
    ||.dx.||)) by
    A153,
    XXREAL_0: 2;
    
        then ((
    ||.dx.||
    " ) 
    *  
    ||.dz.||)
    <= (( 
    ||.dx.||
    " ) 
    * ( 
    ||.dx.||
    + (((2 
    * LQ) 
    + 1) 
    *  
    ||.dx.||))) by
    XREAL_1: 64;
    
        then ((
    ||.dx.||
    " ) 
    *  
    ||.dz.||)
    <= ((( 
    ||.dx.||
    " ) 
    * ( 
    ||.dx.||
    * 1)) 
    + (( 
    ||.dx.||
    " ) 
    * (((2 
    * LQ) 
    + 1) 
    *  
    ||.dx.||)));
    
        then ((
    ||.dx.||
    " ) 
    *  
    ||.dz.||)
    <= (1 
    + (( 
    ||.dx.||
    " ) 
    * (((2 
    * LQ) 
    + 1) 
    *  
    ||.dx.||))) by
    A133,
    NORMSP_0:def 5,
    XCMPLX_1: 203;
    
        then ((
    ||.dx.||
    " ) 
    *  
    ||.dz.||)
    <= (1 
    + ((2 
    * LQ) 
    + 1)) by 
    A133,
    NORMSP_0:def 5,
    XCMPLX_1: 203;
    
        then (((BLQ
    + 1) 
    * (( 
    ||.dz.||
    " ) 
    *  
    ||.(R
    /. dz).||)) 
    * (( 
    ||.dx.||
    " ) 
    *  
    ||.dz.||))
    <= (((BLQ 
    + 1) 
    * (( 
    ||.dz.||
    " ) 
    *  
    ||.(R
    /. dz).||)) 
    * ((2 
    * LQ) 
    + 2)) by 
    XREAL_1: 64;
    
        then
    
        
    
    A159: (( 
    ||.dx.||
    " ) 
    *  
    ||.(R1
    /. dx).||) 
    <= (((BLQ 
    + 1) 
    * ((2 
    * LQ) 
    + 2)) 
    * (( 
    ||.dz.||
    " ) 
    *  
    ||.(R
    /. dz).||)) by 
    A152,
    XXREAL_0: 2;
    
        (((BLQ
    + 1) 
    * ((2 
    * LQ) 
    + 2)) 
    * (( 
    ||.dz.||
    " ) 
    *  
    ||.(R
    /. dz).||)) 
    < (((BLQ 
    + 1) 
    * ((2 
    * LQ) 
    + 2)) 
    * (r 
    / ((BLQ 
    + 1) 
    * ((2 
    * LQ) 
    + 2)))) by 
    A120,
    A122,
    A134,
    A148,
    XREAL_1: 68;
    
        then (((BLQ
    + 1) 
    * ((2 
    * LQ) 
    + 2)) 
    * (( 
    ||.dz.||
    " ) 
    *  
    ||.(R
    /. dz).||)) 
    < r by 
    A120,
    XCMPLX_1: 87;
    
        hence ((
    ||.dx.||
    " ) 
    *  
    ||.(R1
    /. dx).||) 
    < r by 
    A159,
    XXREAL_0: 2;
    
      end;
    
      then
    
      
    
    A162: R1 is 
    RestFunc of E, F by 
    NDIFF_1: 23;
    
      hence g
    is_differentiable_in a by 
    A1,
    A26,
    A30,
    A34,
    NDIFF_1:def 6,
    XBOOLE_1: 1;
    
      hence (
    diff (g,a)) 
    = ( 
    - (Q 
    * P)) by 
    A15,
    A33,
    A34,
    A162,
    NDIFF_1:def 7;
    
    end;
    
    reserve X,Y,Z for non
    trivial  
    RealBanachSpace;
    
    theorem :: 
    
    NDIFF_9:16
    
    
    
    
    
    LMTh3: for u be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) st u is 
    invertible holds ex K,s be 
    Real st 
    0  
    <= K & 
    0  
    < s & for du be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) st 
    ||.du.||
    < s holds (u 
    + du) is 
    invertible & 
    ||.(((
    Inv (u 
    + du)) 
    - ( 
    Inv u)) 
    - ( 
    - ((( 
    Inv u) 
    * du) 
    * ( 
    Inv u)))).|| 
    <= (K 
    * ( 
    ||.du.||
    *  
    ||.du.||))
    
    proof
    
      let u be
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)); 
    
      assume
    
      
    
    A1: u is 
    invertible;
    
      set s1 = (1
    /  
    ||.(
    Inv u).||); 
    
      set AG = (
    R_Normed_Algebra_of_BoundedLinearOperators X); 
    
      
    
      
    
    A3: 
    0  
    <  
    ||.(
    Inv u).|| by 
    A1,
    LOPBAN13: 12;
    
      set s2 = ((1
    / 2) 
    /  
    ||.(
    Inv u).||); 
    
      
    
      
    
    A5: 
    0  
    < s2 by 
    A3,
    XREAL_1: 139;
    
      set s12 = (
    min (s1,s2)); 
    
      
    
      
    
    A7: 
    0  
    < s12 & s12 
    <= s1 & s12 
    <= s2 by 
    A3,
    A5,
    XXREAL_0: 15,
    XXREAL_0: 17;
    
      set K = (((2
    *  
    ||.(
    Inv u).||) 
    *  
    ||.(
    Inv u).||) 
    *  
    ||.(
    Inv u).||); 
    
      take K, s12;
    
      thus
    0  
    <= K & 
    0  
    < s12 by 
    A3,
    A5,
    XXREAL_0: 15;
    
      let du be
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)); 
    
      assume
    
      
    
    A8: 
    ||.du.||
    < s12; 
    
      then
    
      
    
    A9: 
    ||.du.||
    < s1 by 
    A7,
    XXREAL_0: 2;
    
      hence (u
    + du) is 
    invertible by 
    A1,
    LOPBAN13: 13;
    
      consider w be
    Point of ( 
    R_Normed_Algebra_of_BoundedLinearOperators X), s,I be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,X)) such that 
    
      
    
    A11: w 
    = (( 
    Inv u) 
    * du) & s 
    = w & I 
    = ( 
    id X) & 
    ||.s.||
    < 1 & (( 
    - w) 
    GeoSeq ) is 
    norm_summable & (I 
    + s) is 
    invertible & 
    ||.(
    Inv (I 
    + s)).|| 
    <= (1 
    / (1 
    -  
    ||.s.||)) & (
    Inv (I 
    + s)) 
    = ( 
    Sum (( 
    - w) 
    GeoSeq )) & ( 
    Inv (u 
    + du)) 
    = (( 
    Inv (I 
    + s)) 
    * ( 
    Inv u)) by 
    A1,
    A9,
    LOPBAN13: 13;
    
      reconsider sA = s as
    Point of AG; 
    
      
    
      
    
    A13: (I 
    * ( 
    Inv u)) 
    = (( 
    id the 
    carrier of X) 
    * ( 
    modetrans (( 
    Inv u),Y,X))) by 
    A11,
    LOPBAN_1:def 11
    
      .= (
    modetrans (( 
    Inv u),Y,X)) by 
    FUNCT_2: 17
    
      .= (
    Inv u) by 
    LOPBAN_1:def 11;
    
      reconsider IIu = (I
    * ( 
    Inv u)) as 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (Y,X)); 
    
      set L = (((
    Inv u) 
    * du) 
    * ( 
    Inv u)); 
    
      
    
      
    
    A14: ((( 
    Inv (u 
    + du)) 
    - ( 
    Inv u)) 
    - ( 
    - ((( 
    Inv u) 
    * du) 
    * ( 
    Inv u)))) 
    = (((( 
    Inv (I 
    + s)) 
    * ( 
    Inv u)) 
    - IIu) 
    + L) by 
    A11,
    A13,
    RLVECT_1: 17
    
      .= ((((
    Inv (I 
    + s)) 
    - I) 
    * ( 
    Inv u)) 
    + L) by 
    LOPBAN13: 20;
    
      
    
      
    
    A15: (( 
    Inv (I 
    + s)) 
    * (I 
    + s)) 
    = I by 
    A11,
    LOPBAN13: 22;
    
      ((
    Inv (I 
    + s)) 
    * I) 
    = (( 
    modetrans (( 
    Inv (I 
    + s)),X,X)) 
    * ( 
    id the 
    carrier of X)) by 
    A11,
    LOPBAN_1:def 11
    
      .= (
    modetrans (( 
    Inv (I 
    + s)),X,X)) by 
    FUNCT_2: 17
    
      .= (
    Inv (I 
    + s)) by 
    LOPBAN_1:def 11;
    
      
    
      then
    
      
    
    A17: (( 
    Inv (I 
    + s)) 
    - I) 
    = (( 
    Inv (I 
    + s)) 
    * (I 
    - (I 
    + s))) by 
    A15,
    LOPBAN13: 19
    
      .= ((
    Inv (I 
    + s)) 
    * ( 
    - (( 
    Inv u) 
    * du))) by 
    A11,
    LOPBAN13: 21;
    
      
    
      then
    
      
    
    A19: ((( 
    Inv (I 
    + s)) 
    - I) 
    * ( 
    Inv u)) 
    = (( 
    - (( 
    Inv (I 
    + s)) 
    * (( 
    Inv u) 
    * du))) 
    * ( 
    Inv u)) by 
    LOPBAN13: 26
    
      .= (
    - ((( 
    Inv (I 
    + s)) 
    * (( 
    Inv u) 
    * du)) 
    * ( 
    Inv u))) by 
    LOPBAN13: 26
    
      .= (
    - (( 
    Inv (I 
    + s)) 
    * L)) by 
    LOPBAN13: 10;
    
      (I
    * L) 
    = (( 
    id the 
    carrier of X) 
    * ( 
    modetrans (L,Y,X))) by 
    A11,
    LOPBAN_1:def 11
    
      .= (
    modetrans (L,Y,X)) by 
    FUNCT_2: 17
    
      .= L by
    LOPBAN_1:def 11;
    
      
    
      then ((
    - (( 
    Inv (I 
    + s)) 
    * L)) 
    + L) 
    = ((I 
    * L) 
    - (( 
    Inv (I 
    + s)) 
    * L)) 
    
      .= ((I
    - ( 
    Inv (I 
    + s))) 
    * L) by 
    LOPBAN13: 20
    
      .= ((
    - (( 
    Inv (I 
    + s)) 
    - I)) 
    * L) by 
    RLVECT_1: 33
    
      .= (
    - ((( 
    Inv (I 
    + s)) 
    * ( 
    - (( 
    Inv u) 
    * du))) 
    * ((( 
    Inv u) 
    * du) 
    * ( 
    Inv u)))) by 
    A17,
    LOPBAN13: 26;
    
      
    
      then (((
    Inv (u 
    + du)) 
    - ( 
    Inv u)) 
    - ( 
    - ((( 
    Inv u) 
    * du) 
    * ( 
    Inv u)))) 
    = ( 
    - (( 
    - (( 
    Inv (I 
    + s)) 
    * (( 
    Inv u) 
    * du))) 
    * ((( 
    Inv u) 
    * du) 
    * ( 
    Inv u)))) by 
    A14,
    A19,
    LOPBAN13: 26
    
      .= (
    - ( 
    - ((( 
    Inv (I 
    + s)) 
    * (( 
    Inv u) 
    * du)) 
    * ((( 
    Inv u) 
    * du) 
    * ( 
    Inv u))))) by 
    LOPBAN13: 26
    
      .= (((
    Inv (I 
    + s)) 
    * (( 
    Inv u) 
    * du)) 
    * ((( 
    Inv u) 
    * du) 
    * ( 
    Inv u))) by 
    RLVECT_1: 17;
    
      then
    
      
    
    A22: 
    ||.(((
    Inv (u 
    + du)) 
    - ( 
    Inv u)) 
    - ( 
    - ((( 
    Inv u) 
    * du) 
    * ( 
    Inv u)))).|| 
    <= ( 
    ||.((
    Inv (I 
    + s)) 
    * (( 
    Inv u) 
    * du)).|| 
    *  
    ||.(((
    Inv u) 
    * du) 
    * ( 
    Inv u)).||) by 
    LOPBAN13: 18;
    
      
    
      
    
    A23: 
    ||.((
    Inv (I 
    + s)) 
    * (( 
    Inv u) 
    * du)).|| 
    <= ( 
    ||.(
    Inv (I 
    + s)).|| 
    *  
    ||.((
    Inv u) 
    * du).||) by 
    LOPBAN13: 18;
    
      (
    ||.(
    Inv (I 
    + s)).|| 
    *  
    ||.((
    Inv u) 
    * du).||) 
    <= ( 
    ||.(
    Inv (I 
    + s)).|| 
    * ( 
    ||.(
    Inv u).|| 
    *  
    ||.du.||)) by
    LOPBAN13: 18,
    XREAL_1: 64;
    
      then
    
      
    
    A25: 
    ||.((
    Inv (I 
    + s)) 
    * (( 
    Inv u) 
    * du)).|| 
    <= ( 
    ||.(
    Inv (I 
    + s)).|| 
    * ( 
    ||.(
    Inv u).|| 
    *  
    ||.du.||)) by
    A23,
    XXREAL_0: 2;
    
      
    
      
    
    A26: ( 
    ||.((
    Inv u) 
    * du).|| 
    *  
    ||.(
    Inv u).||) 
    <= (( 
    ||.(
    Inv u).|| 
    *  
    ||.du.||)
    *  
    ||.(
    Inv u).||) by 
    LOPBAN13: 18,
    XREAL_1: 64;
    
      
    ||.(((
    Inv u) 
    * du) 
    * ( 
    Inv u)).|| 
    <= ( 
    ||.((
    Inv u) 
    * du).|| 
    *  
    ||.(
    Inv u).||) by 
    LOPBAN13: 18;
    
      then
    ||.(((
    Inv u) 
    * du) 
    * ( 
    Inv u)).|| 
    <= (( 
    ||.(
    Inv u).|| 
    *  
    ||.du.||)
    *  
    ||.(
    Inv u).||) by 
    A26,
    XXREAL_0: 2;
    
      then (
    ||.((
    Inv (I 
    + s)) 
    * (( 
    Inv u) 
    * du)).|| 
    *  
    ||.(((
    Inv u) 
    * du) 
    * ( 
    Inv u)).||) 
    <= (( 
    ||.(
    Inv (I 
    + s)).|| 
    * ( 
    ||.(
    Inv u).|| 
    *  
    ||.du.||))
    * (( 
    ||.(
    Inv u).|| 
    *  
    ||.du.||)
    *  
    ||.(
    Inv u).||)) by 
    A25,
    XREAL_1: 66;
    
      then
    
      
    
    A28: 
    ||.(((
    Inv (u 
    + du)) 
    - ( 
    Inv u)) 
    - ( 
    - ((( 
    Inv u) 
    * du) 
    * ( 
    Inv u)))).|| 
    <= (( 
    ||.(
    Inv (I 
    + s)).|| 
    * ( 
    ||.(
    Inv u).|| 
    *  
    ||.du.||))
    * (( 
    ||.(
    Inv u).|| 
    *  
    ||.du.||)
    *  
    ||.(
    Inv u).||)) by 
    A22,
    XXREAL_0: 2;
    
      
    
      
    
    A29: 
    ||.s.||
    <= ( 
    ||.(
    Inv u).|| 
    *  
    ||.du.||) by
    A11,
    LOPBAN13: 18;
    
      
    ||.du.||
    < s2 by 
    A7,
    A8,
    XXREAL_0: 2;
    
      then (
    ||.(
    Inv u).|| 
    *  
    ||.du.||)
    <= ( 
    ||.(
    Inv u).|| 
    * ((1 
    / 2) 
    /  
    ||.(
    Inv u).||)) by 
    XREAL_1: 64;
    
      then (
    ||.(
    Inv u).|| 
    *  
    ||.du.||)
    <= (1 
    / 2) by 
    A3,
    XCMPLX_1: 87;
    
      then
    ||.s.||
    <= (1 
    / 2) by 
    A29,
    XXREAL_0: 2;
    
      then (1
    - (1 
    / 2)) 
    <= (1 
    -  
    ||.s.||) by
    XREAL_1: 10;
    
      then (1
    / (1 
    -  
    ||.s.||))
    <= (1 
    / (1 
    / 2)) by 
    XREAL_1: 118;
    
      then
    ||.(
    Inv (I 
    + s)).|| 
    <= 2 by 
    A11,
    XXREAL_0: 2;
    
      then (
    ||.(
    Inv (I 
    + s)).|| 
    * (( 
    ||.(
    Inv u).|| 
    *  
    ||.du.||)
    * (( 
    ||.(
    Inv u).|| 
    *  
    ||.du.||)
    *  
    ||.(
    Inv u).||))) 
    <= (2 
    * (( 
    ||.(
    Inv u).|| 
    *  
    ||.du.||)
    * (( 
    ||.(
    Inv u).|| 
    *  
    ||.du.||)
    *  
    ||.(
    Inv u).||))) by 
    XREAL_1: 64;
    
      hence
    ||.(((
    Inv (u 
    + du)) 
    - ( 
    Inv u)) 
    - ( 
    - ((( 
    Inv u) 
    * du) 
    * ( 
    Inv u)))).|| 
    <= (K 
    * ( 
    ||.du.||
    *  
    ||.du.||)) by
    A28,
    XXREAL_0: 2;
    
    end;
    
    theorem :: 
    
    NDIFF_9:17
    
    
    
    
    
    LM80: for I be 
    PartFunc of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)), ( 
    R_NormSpace_of_BoundedLinearOperators (Y,X)) st ( 
    dom I) 
    = ( 
    InvertibleOperators (X,Y)) & for u be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) st u 
    in ( 
    InvertibleOperators (X,Y)) holds (I 
    . u) 
    = ( 
    Inv u) holds for u be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) st u 
    in ( 
    InvertibleOperators (X,Y)) holds I 
    is_differentiable_in u & for du be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) holds (( 
    diff (I,u)) 
    . du) 
    = ( 
    - ((( 
    Inv u) 
    * du) 
    * ( 
    Inv u))) 
    
    proof
    
      let I be
    PartFunc of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)), ( 
    R_NormSpace_of_BoundedLinearOperators (Y,X)); 
    
      assume
    
      
    
    A1: ( 
    dom I) 
    = ( 
    InvertibleOperators (X,Y)) & for u be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) st u 
    in ( 
    InvertibleOperators (X,Y)) holds (I 
    . u) 
    = ( 
    Inv u); 
    
      set S = (
    R_NormSpace_of_BoundedLinearOperators (X,Y)); 
    
      set W = (
    R_NormSpace_of_BoundedLinearOperators (Y,X)); 
    
      set N = (
    InvertibleOperators (X,Y)); 
    
      set P = (
    InvertibleOperators (Y,X)); 
    
      let u be
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)); 
    
      assume
    
      
    
    A2: u 
    in N; 
    
      deffunc
    
    FL(
    Point of S) = ( 
    - ((( 
    Inv u) 
    * $1) 
    * ( 
    Inv u))); 
    
      consider L be
    Function of the 
    carrier of S, the 
    carrier of W such that 
    
      
    
    A3: for x be 
    Point of S holds (L 
    . x) 
    =  
    FL(x) from
    FUNCT_2:sch 4;
    
      
    
      
    
    A6: for s,t be 
    Element of S holds (L 
    . (s 
    + t)) 
    = ((L 
    . s) 
    + (L 
    . t)) 
    
      proof
    
        let s,t be
    Element of S; 
    
        
    
        thus (L
    . (s 
    + t)) 
    = ( 
    - ((( 
    Inv u) 
    * (s 
    + t)) 
    * ( 
    Inv u))) by 
    A3
    
        .= (
    - (((( 
    Inv u) 
    * s) 
    + (( 
    Inv u) 
    * t)) 
    * ( 
    Inv u))) by 
    LOPBAN13: 19
    
        .= (
    - (((( 
    Inv u) 
    * s) 
    * ( 
    Inv u)) 
    + ((( 
    Inv u) 
    * t) 
    * ( 
    Inv u)))) by 
    LOPBAN13: 20
    
        .= ((
    - ((( 
    Inv u) 
    * s) 
    * ( 
    Inv u))) 
    - ((( 
    Inv u) 
    * t) 
    * ( 
    Inv u))) by 
    RLVECT_1: 31
    
        .= ((L
    . s) 
    + ( 
    - ((( 
    Inv u) 
    * t) 
    * ( 
    Inv u)))) by 
    A3
    
        .= ((L
    . s) 
    + (L 
    . t)) by 
    A3;
    
      end;
    
      for s be
    Element of S holds for r be 
    Real holds (L 
    . (r 
    * s)) 
    = (r 
    * (L 
    . s)) 
    
      proof
    
        let s be
    Element of S, r be 
    Real;
    
        
    
        thus (L
    . (r 
    * s)) 
    = ( 
    - ((( 
    Inv u) 
    * (r 
    * s)) 
    * ( 
    Inv u))) by 
    A3
    
        .= (
    - (((r 
    * ( 
    Inv u)) 
    * s) 
    * ( 
    Inv u))) by 
    LOPBAN13: 28
    
        .= (
    - ((r 
    * (( 
    Inv u) 
    * s)) 
    * ( 
    Inv u))) by 
    LOPBAN13: 28
    
        .= (
    - (r 
    * ((( 
    Inv u) 
    * s) 
    * ( 
    Inv u)))) by 
    LOPBAN13: 28
    
        .= (r
    * ( 
    - ((( 
    Inv u) 
    * s) 
    * ( 
    Inv u)))) by 
    RLVECT_1: 25
    
        .= (r
    * (L 
    . s)) by 
    A3;
    
      end;
    
      then
    
      reconsider L as
    LinearOperator of S, W by 
    A6,
    LOPBAN_1:def 5,
    VECTSP_1:def 20;
    
      now
    
        let x be
    VECTOR of S; 
    
        (L
    . x) 
    = ( 
    - ((( 
    Inv u) 
    * x) 
    * ( 
    Inv u))) by 
    A3;
    
        then
    
        
    
    A8: 
    ||.(L
    . x).|| 
    =  
    ||.(((
    Inv u) 
    * x) 
    * ( 
    Inv u)).|| by 
    NORMSP_1: 2;
    
        
    
        
    
    A9: 
    ||.(((
    Inv u) 
    * x) 
    * ( 
    Inv u)).|| 
    <= ( 
    ||.((
    Inv u) 
    * x).|| 
    *  
    ||.(
    Inv u).||) by 
    LOPBAN13: 18;
    
        (
    ||.((
    Inv u) 
    * x).|| 
    *  
    ||.(
    Inv u).||) 
    <= (( 
    ||.(
    Inv u).|| 
    *  
    ||.x.||)
    *  
    ||.(
    Inv u).||) by 
    LOPBAN13: 18,
    XREAL_1: 64;
    
        hence
    ||.(L
    . x).|| 
    <= (( 
    ||.(
    Inv u).|| 
    *  
    ||.(
    Inv u).||) 
    *  
    ||.x.||) by
    A8,
    A9,
    XXREAL_0: 2;
    
      end;
    
      then
    
      reconsider L as
    Lipschitzian  
    LinearOperator of S, W by 
    LOPBAN_1:def 8;
    
      deffunc
    
    FR(
    Point of S) = ((( 
    Inv (u 
    + $1)) 
    - ( 
    Inv u)) 
    - (L 
    . $1)); 
    
      consider R be
    Function of the 
    carrier of S, the 
    carrier of W such that 
    
      
    
    A11: for x be 
    Point of S holds (R 
    . x) 
    =  
    FR(x) from
    FUNCT_2:sch 4;
    
      
    
      
    
    A12: ( 
    dom R) 
    = the 
    carrier of S by 
    FUNCT_2:def 1;
    
      
    
      
    
    A13: for x be 
    Point of S holds (R 
    . x) 
    = ((( 
    Inv (u 
    + x)) 
    - ( 
    Inv u)) 
    - ( 
    - ((( 
    Inv u) 
    * x) 
    * ( 
    Inv u)))) 
    
      proof
    
        let x be
    Point of S; 
    
        
    
        thus (R
    . x) 
    = ((( 
    Inv (u 
    + x)) 
    - ( 
    Inv u)) 
    - (L 
    . x)) by 
    A11
    
        .= (((
    Inv (u 
    + x)) 
    - ( 
    Inv u)) 
    - ( 
    - ((( 
    Inv u) 
    * x) 
    * ( 
    Inv u)))) by 
    A3;
    
      end;
    
      reconsider L0 = L as
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (S,W)) by 
    LOPBAN_1:def 9;
    
      for r be
    Real st r 
    >  
    0 holds ex d be 
    Real st d 
    >  
    0 & for z be 
    Point of S st z 
    <> ( 
    0. S) & 
    ||.z.||
    < d holds (( 
    ||.z.||
    " ) 
    *  
    ||.(R
    /. z).||) 
    < r 
    
      proof
    
        let r0 be
    Real;
    
        assume
    
        
    
    A15: r0 
    >  
    0 ; 
    
        set r = (r0
    / 2); 
    
        
    
        
    
    A16: 
    0  
    < r & r 
    < r0 by 
    A15,
    XREAL_1: 215,
    XREAL_1: 216;
    
        ex v be
    Point of S st u 
    = v & v is 
    invertible by 
    A2;
    
        then
    
        consider K,s be
    Real such that 
    
        
    
    A17: 
    0  
    <= K & 
    0  
    < s & for du be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) st 
    ||.du.||
    < s holds (u 
    + du) is 
    invertible & 
    ||.(((
    Inv (u 
    + du)) 
    - ( 
    Inv u)) 
    - ( 
    - ((( 
    Inv u) 
    * du) 
    * ( 
    Inv u)))).|| 
    <= (K 
    * ( 
    ||.du.||
    *  
    ||.du.||)) by
    LMTh3;
    
        set s1 = (r
    / (K 
    + 1)); 
    
        
    
        
    
    A18: (K 
    +  
    0 ) 
    < (K 
    + 1) by 
    XREAL_1: 8;
    
        
    
        
    
    A20: 
    0  
    < s1 by 
    A16,
    A17,
    XREAL_1: 139;
    
        set s2 = (
    min (s1,1)); 
    
        
    
        
    
    A21: 
    0  
    < s2 & s2 
    <= s1 & s2 
    <= 1 by 
    A20,
    XXREAL_0: 15,
    XXREAL_0: 17;
    
        set d = (
    min (s,s2)); 
    
        
    
        
    
    A22: 
    0  
    < d & d 
    <= s & d 
    <= s2 by 
    A17,
    A21,
    XXREAL_0: 15,
    XXREAL_0: 17;
    
        then
    
        
    
    A23: d 
    <= s & d 
    <= s1 & d 
    <= 1 by 
    A21,
    XXREAL_0: 2;
    
        take d;
    
        thus d
    >  
    0 by 
    A17,
    A21,
    XXREAL_0: 15;
    
        let z be
    Point of S; 
    
        assume
    
        
    
    A24: z 
    <> ( 
    0. S) & 
    ||.z.||
    < d; 
    
        then
    
        
    
    A25: 
    ||.z.||
    < s by 
    A22,
    XXREAL_0: 2;
    
        
    ||.(R
    /. z).|| 
    =  
    ||.(((
    Inv (u 
    + z)) 
    - ( 
    Inv u)) 
    - ( 
    - ((( 
    Inv u) 
    * z) 
    * ( 
    Inv u)))).|| by 
    A13;
    
        then
    ||.(R
    /. z).|| 
    <= (K 
    * ( 
    ||.z.||
    *  
    ||.z.||)) by
    A17,
    A25;
    
        then (
    ||.(R
    /. z).|| 
    /  
    ||.z.||)
    <= (((K 
    *  
    ||.z.||)
    *  
    ||.z.||)
    /  
    ||.z.||) by
    XREAL_1: 72;
    
        then
    
        
    
    A27: ( 
    ||.(R
    /. z).|| 
    /  
    ||.z.||)
    <= (K 
    *  
    ||.z.||) by
    A24,
    NORMSP_0:def 5,
    XCMPLX_1: 89;
    
        
    ||.z.||
    <= s1 by 
    A23,
    A24,
    XXREAL_0: 2;
    
        then
    
        
    
    A28: (K 
    *  
    ||.z.||)
    <= (K 
    * (r 
    / (K 
    + 1))) by 
    A17,
    XREAL_1: 64;
    
        (K
    / (K 
    + 1)) 
    <= 1 by 
    A17,
    A18,
    XREAL_1: 183;
    
        then (r
    * (K 
    / (K 
    + 1))) 
    <= (1 
    * r) by 
    A15,
    XREAL_1: 64;
    
        then (K
    *  
    ||.z.||)
    <= r by 
    A28,
    XXREAL_0: 2;
    
        then (
    ||.(R
    /. z).|| 
    /  
    ||.z.||)
    <= r by 
    A27,
    XXREAL_0: 2;
    
        hence ((
    ||.z.||
    " ) 
    *  
    ||.(R
    /. z).||) 
    < r0 by 
    A16,
    XXREAL_0: 2;
    
      end;
    
      then
    
      reconsider R0 = R as
    RestFunc of S, W by 
    NDIFF_1: 23;
    
      ex g be
    Real st 
    0  
    < g & { y where y be 
    Point of S : 
    ||.(y
    - u).|| 
    < g } 
    c= N by 
    A2,
    NDIFF_1: 3;
    
      then
    
      
    
    A29: N is 
    Neighbourhood of u by 
    NFCONT_1:def 1;
    
      
    
      
    
    A30: for v be 
    Point of S st v 
    in N holds ((I 
    /. v) 
    - (I 
    /. u)) 
    = ((L0 
    . (v 
    - u)) 
    + (R0 
    /. (v 
    - u))) 
    
      proof
    
        let v be
    Point of S; 
    
        assume
    
        
    
    A31: v 
    in N; 
    
        
    
        then
    
        
    
    A32: (I 
    /. v) 
    = (I 
    . v) by 
    A1,
    PARTFUN1:def 6
    
        .= (
    Inv v) by 
    A1,
    A31;
    
        (I
    /. u) 
    = (I 
    . u) by 
    A1,
    A2,
    PARTFUN1:def 6
    
        .= (
    Inv u) by 
    A1,
    A2;
    
        
    
        hence ((I
    /. v) 
    - (I 
    /. u)) 
    = (( 
    Inv (u 
    + (v 
    - u))) 
    - ( 
    Inv u)) by 
    A32,
    RLVECT_4: 1
    
        .= ((L0
    . (v 
    - u)) 
    + ((( 
    Inv (u 
    + (v 
    - u))) 
    - ( 
    Inv u)) 
    - (L 
    . (v 
    - u)))) by 
    RLVECT_4: 1
    
        .= ((L0
    . (v 
    - u)) 
    + ((( 
    Inv (u 
    + (v 
    - u))) 
    - ( 
    Inv u)) 
    - ( 
    - ((( 
    Inv u) 
    * (v 
    - u)) 
    * ( 
    Inv u))))) by 
    A3
    
        .= ((L0
    . (v 
    - u)) 
    + (R 
    . (v 
    - u))) by 
    A13
    
        .= ((L0
    . (v 
    - u)) 
    + (R0 
    /. (v 
    - u))) by 
    A12,
    PARTFUN1:def 6;
    
      end;
    
      hence
    
      
    
    A34: I 
    is_differentiable_in u by 
    A1,
    A29,
    NDIFF_1:def 6;
    
      let du be
    Point of S; 
    
      
    
      thus ((
    diff (I,u)) 
    . du) 
    = (L0 
    . du) by 
    A1,
    A29,
    A30,
    A34,
    NDIFF_1:def 7
    
      .= (
    - ((( 
    Inv u) 
    * du) 
    * ( 
    Inv u))) by 
    A3;
    
    end;
    
    theorem :: 
    
    NDIFF_9:18
    
    ex I be
    PartFunc of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)), ( 
    R_NormSpace_of_BoundedLinearOperators (Y,X)) st ( 
    dom I) 
    = ( 
    InvertibleOperators (X,Y)) & ( 
    rng I) 
    = ( 
    InvertibleOperators (Y,X)) & I is 
    one-to-one & I 
    is_differentiable_on ( 
    InvertibleOperators (X,Y)) & (ex J be 
    PartFunc of ( 
    R_NormSpace_of_BoundedLinearOperators (Y,X)), ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) st J 
    = (I 
    " ) & J is 
    one-to-one & ( 
    dom J) 
    = ( 
    InvertibleOperators (Y,X)) & ( 
    rng J) 
    = ( 
    InvertibleOperators (X,Y)) & J 
    is_differentiable_on ( 
    InvertibleOperators (Y,X))) & (for u be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) st u 
    in ( 
    InvertibleOperators (X,Y)) holds (I 
    . u) 
    = ( 
    Inv u)) & for u,du be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) st u 
    in ( 
    InvertibleOperators (X,Y)) holds (( 
    diff (I,u)) 
    . du) 
    = ( 
    - ((( 
    Inv u) 
    * du) 
    * ( 
    Inv u))) 
    
    proof
    
      set S = (
    R_NormSpace_of_BoundedLinearOperators (X,Y)); 
    
      set K = (
    R_NormSpace_of_BoundedLinearOperators (Y,X)); 
    
      consider I be
    PartFunc of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)), ( 
    R_NormSpace_of_BoundedLinearOperators (Y,X)) such that 
    
      
    
    A1: ( 
    dom I) 
    = ( 
    InvertibleOperators (X,Y)) & ( 
    rng I) 
    = ( 
    InvertibleOperators (Y,X)) & I is 
    one-to-one & I 
    is_continuous_on ( 
    InvertibleOperators (X,Y)) & (ex J be 
    PartFunc of ( 
    R_NormSpace_of_BoundedLinearOperators (Y,X)), ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) st J 
    = (I 
    " ) & J is 
    one-to-one & ( 
    dom J) 
    = ( 
    InvertibleOperators (Y,X)) & ( 
    rng J) 
    = ( 
    InvertibleOperators (X,Y)) & J 
    is_continuous_on ( 
    InvertibleOperators (Y,X))) & for u be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) st u 
    in ( 
    InvertibleOperators (X,Y)) holds (I 
    . u) 
    = ( 
    Inv u) by 
    LOPBAN13: 25;
    
      consider J be
    PartFunc of ( 
    R_NormSpace_of_BoundedLinearOperators (Y,X)), ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) such that 
    
      
    
    A2: J 
    = (I 
    " ) & J is 
    one-to-one & ( 
    dom J) 
    = ( 
    InvertibleOperators (Y,X)) & ( 
    rng J) 
    = ( 
    InvertibleOperators (X,Y)) & J 
    is_continuous_on ( 
    InvertibleOperators (Y,X)) by 
    A1;
    
      take I;
    
      
    
      
    
    A4: for u be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) st u 
    in ( 
    InvertibleOperators (X,Y)) holds I 
    is_differentiable_in u by 
    A1,
    LM80;
    
      for v be
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (Y,X)) st v 
    in ( 
    InvertibleOperators (Y,X)) holds (J 
    . v) 
    = ( 
    Inv v) 
    
      proof
    
        let v be
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (Y,X)); 
    
        assume v
    in ( 
    InvertibleOperators (Y,X)); 
    
        then
    
        consider u be
    object such that 
    
        
    
    A5: u 
    in ( 
    dom I) & v 
    = (I 
    . u) by 
    A1,
    FUNCT_1:def 3;
    
        reconsider u as
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) by 
    A5;
    
        
    
        
    
    A7: ex u0 be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (X,Y)) st u 
    = u0 & u0 is 
    invertible by 
    A1,
    A5;
    
        
    
        thus (J
    . v) 
    = u by 
    A1,
    A2,
    A5,
    FUNCT_1: 34
    
        .= (
    Inv ( 
    Inv u)) by 
    A7,
    LOPBAN13: 15
    
        .= (
    Inv v) by 
    A1,
    A5;
    
      end;
    
      then for v be
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (Y,X)) st v 
    in ( 
    InvertibleOperators (Y,X)) holds J 
    is_differentiable_in v by 
    A2,
    LM80;
    
      then J
    is_differentiable_on ( 
    InvertibleOperators (Y,X)) by 
    A2,
    NDIFF_1: 31;
    
      hence thesis by
    A1,
    A2,
    A4,
    LM80,
    NDIFF_1: 31;
    
    end;
    
    theorem :: 
    
    NDIFF_9:19
    
    
    
    
    
    Th45: for E,G,F be 
    RealNormSpace, Z be 
    Subset of 
    [:E, F:], f be
    PartFunc of 
    [:E, F:], G, a be
    Point of E, b be 
    Point of F, c be 
    Point of G, z be 
    Point of 
    [:E, F:], A be
    Subset of E, B be 
    Subset of F, g be 
    PartFunc of E, F st Z is 
    open & ( 
    dom f) 
    = Z & A is 
    open & B is 
    open & 
    [:A, B:]
    c= Z & z 
    =  
    [a, b] & (f
    . (a,b)) 
    = c & f 
    is_differentiable_in z & ( 
    dom g) 
    = A & ( 
    rng g) 
    c= B & a 
    in A & (g 
    . a) 
    = b & g 
    is_continuous_in a & (for x be 
    Point of E st x 
    in A holds (f 
    . (x,(g 
    . x))) 
    = c) & ( 
    partdiff`2 (f,z)) is 
    invertible holds g 
    is_differentiable_in a & ( 
    diff (g,a)) 
    = ( 
    - (( 
    Inv ( 
    partdiff`2 (f,z))) 
    * ( 
    partdiff`1 (f,z)))) 
    
    proof
    
      let E,G,F be
    RealNormSpace, Z be 
    Subset of 
    [:E, F:], f be
    PartFunc of 
    [:E, F:], G, a be
    Point of E, b be 
    Point of F, c be 
    Point of G, z be 
    Point of 
    [:E, F:], A be
    Subset of E, B be 
    Subset of F, g be 
    PartFunc of E, F; 
    
      assume
    
      
    
    A1: Z is 
    open & ( 
    dom f) 
    = Z & A is 
    open & B is 
    open & 
    [:A, B:]
    c= Z & z 
    =  
    [a, b] & (f
    . (a,b)) 
    = c & f 
    is_differentiable_in z & ( 
    dom g) 
    = A & ( 
    rng g) 
    c= B & a 
    in A & (g 
    . a) 
    = b & g 
    is_continuous_in a & (for x be 
    Point of E st x 
    in A holds (f 
    . (x,(g 
    . x))) 
    = c) & ( 
    partdiff`2 (f,z)) is 
    invertible;
    
      then b
    in ( 
    rng g) by 
    FUNCT_1:def 3;
    
      then
    
      consider r2 be
    Real such that 
    
      
    
    A3: 
    0  
    < r2 & ( 
    Ball (b,r2)) 
    c= B by 
    A1,
    NDIFF_8: 20;
    
      consider r3 be
    Real such that 
    
      
    
    A4: 
    0  
    < r3 & for x1 be 
    Point of E st x1 
    in ( 
    dom g) & 
    ||.(x1
    - a).|| 
    < r3 holds 
    ||.((g
    /. x1) 
    - (g 
    /. a)).|| 
    < r2 by 
    A1,
    A3,
    NFCONT_1: 7;
    
      consider r4 be
    Real such that 
    
      
    
    A5: 
    0  
    < r4 & ( 
    Ball (a,r4)) 
    c= A by 
    A1,
    NDIFF_8: 20;
    
      set r1 = (
    min (r3,r4)); 
    
      
    
      
    
    A6: 
    0  
    < r1 & r1 
    <= r3 & r1 
    <= r4 by 
    A4,
    A5,
    XXREAL_0: 17,
    XXREAL_0: 21;
    
      set g1 = (g
    | ( 
    Ball (a,r1))); 
    
      
    
      
    
    B6: ( 
    Ball (a,r1)) 
    c= ( 
    Ball (a,r4)) by 
    A6,
    NDIFF_8: 15;
    
      then
    
      
    
    A7: ( 
    Ball (a,r1)) 
    c= A by 
    A5,
    XBOOLE_1: 1;
    
      
    
      
    
    A8: ( 
    dom g1) 
    = ( 
    Ball (a,r1)) by 
    A1,
    A5,
    B6,
    RELAT_1: 62,
    XBOOLE_1: 1;
    
      
    
    B8: 
    
      now
    
        let y be
    object;
    
        assume
    
        
    
    A9: y 
    in ( 
    rng g1); 
    
        then
    
        consider x be
    object such that 
    
        
    
    A10: x 
    in ( 
    dom g1) & y 
    = (g1 
    . x) by 
    FUNCT_1:def 3;
    
        reconsider xp = x as
    Point of E by 
    A10;
    
        
    
        
    
    A12: x 
    in ( 
    Ball (a,r4)) by 
    A6,
    A8,
    A10,
    NDIFF_8: 15,
    TARSKI:def 3;
    
        reconsider yp = y as
    Point of F by 
    A9;
    
        xp
    in { xx where xx be 
    Point of E : 
    ||.(xx
    - a).|| 
    < r1 } by 
    A8,
    A10,
    NDIFF_8: 17;
    
        then ex z be
    Point of E st z 
    = xp & 
    ||.(z
    - a).|| 
    < r1; 
    
        then
    ||.(xp
    - a).|| 
    < r3 by 
    A6,
    XXREAL_0: 2;
    
        then
    
        
    
    A13: 
    ||.((g
    /. xp) 
    - (g 
    /. a)).|| 
    < r2 by 
    A1,
    A4,
    A5,
    A12;
    
        
    
        
    
    A14: y 
    = (g 
    . xp) by 
    A8,
    A10,
    FUNCT_1: 49
    
        .= (g
    /. xp) by 
    A1,
    A5,
    A12,
    PARTFUN1:def 6;
    
        b
    = (g 
    /. a) by 
    A1,
    PARTFUN1:def 6;
    
        then yp
    in { z where z be 
    Point of F : 
    ||.(z
    - b).|| 
    < r2 } by 
    A13,
    A14;
    
        hence y
    in ( 
    Ball (b,r2)) by 
    NDIFF_8: 17;
    
      end;
    
      
    
      
    
    A17: a 
    in ( 
    Ball (a,r1)) by 
    A6,
    NDIFF_8: 13;
    
      
    
      
    
    A26: for r be 
    Real st 
    0  
    < r holds ex s be 
    Real st 
    0  
    < s & for x1 be 
    Point of E st x1 
    in ( 
    dom g1) & 
    ||.(x1
    - a).|| 
    < s holds 
    ||.((g1
    /. x1) 
    - (g1 
    /. a)).|| 
    < r 
    
      proof
    
        let r be
    Real;
    
        assume
    0  
    < r; 
    
        then
    
        consider s be
    Real such that 
    
        
    
    A20: 
    0  
    < s & for x1 be 
    Point of E st x1 
    in ( 
    dom g) & 
    ||.(x1
    - a).|| 
    < s holds 
    ||.((g
    /. x1) 
    - (g 
    /. a)).|| 
    < r by 
    A1,
    NFCONT_1: 7;
    
        take s;
    
        thus
    0  
    < s by 
    A20;
    
        let x1 be
    Point of E; 
    
        assume
    
        
    
    A21: x1 
    in ( 
    dom g1) & 
    ||.(x1
    - a).|| 
    < s; 
    
        
    
        then
    
        
    
    A25: (g 
    /. x1) 
    = (g 
    . x1) by 
    A1,
    A7,
    A8,
    PARTFUN1:def 6
    
        .= (g1
    . x1) by 
    A8,
    A21,
    FUNCT_1: 49
    
        .= (g1
    /. x1) by 
    A21,
    PARTFUN1:def 6;
    
        (g
    /. a) 
    = (g 
    . a) by 
    A1,
    PARTFUN1:def 6
    
        .= (g1
    . a) by 
    A6,
    FUNCT_1: 49,
    NDIFF_8: 13
    
        .= (g1
    /. a) by 
    A6,
    A8,
    NDIFF_8: 13,
    PARTFUN1:def 6;
    
        hence
    ||.((g1
    /. x1) 
    - (g1 
    /. a)).|| 
    < r by 
    A1,
    A7,
    A8,
    A20,
    A21,
    A25;
    
      end;
    
      
    
      
    
    A28: for x be 
    Point of E st x 
    in ( 
    Ball (a,r1)) holds (f 
    . (x,(g1 
    . x))) 
    = c 
    
      proof
    
        let x be
    Point of E; 
    
        assume
    
        
    
    A29: x 
    in ( 
    Ball (a,r1)); 
    
        then (f
    . (x,(g 
    . x))) 
    = c by 
    A1,
    A7;
    
        hence thesis by
    A29,
    FUNCT_1: 49;
    
      end;
    
      b
    in ( 
    Ball (b,r2)) by 
    A3,
    NDIFF_8: 13;
    
      then
    
      
    
    A31: 
    [a, b]
    in  
    [:(
    Ball (a,r1)), ( 
    Ball (b,r2)):] by 
    A17,
    ZFMISC_1: 87;
    
      
    
      
    
    A32: 
    [:(
    Ball (a,r1)), ( 
    Ball (b,r2)):] 
    c=  
    [:A, B:] by
    A3,
    A7,
    ZFMISC_1: 96;
    
      reconsider Q = ((
    partdiff`2 (f,z)) 
    " ) as 
    Lipschitzian  
    LinearOperator of G, F by 
    A1,
    LOPBAN_1:def 9;
    
      reconsider P = (
    partdiff`1 (f,z)) as 
    Lipschitzian  
    LinearOperator of E, G by 
    LOPBAN_1:def 9;
    
      Z is
    open & ( 
    dom f) 
    = Z & z 
    =  
    [a, b] & z
    in Z & (f 
    . (a,b)) 
    = c & f 
    is_differentiable_in z & 
    0  
    < r1 & 
    0  
    < r2 & ( 
    dom g1) 
    = ( 
    Ball (a,r1)) & ( 
    rng g1) 
    c= ( 
    Ball (b,r2)) & (g1 
    . a) 
    = b & g1 
    is_continuous_in a & (for x be 
    Point of E st x 
    in ( 
    Ball (a,r1)) holds (f 
    . (x,(g1 
    . x))) 
    = c) & ( 
    partdiff`2 (f,z)) is 
    one-to-one & Q 
    = (( 
    partdiff`2 (f,z)) 
    " ) & P 
    = ( 
    partdiff`1 (f,z)) by 
    A1,
    A3,
    A6,
    A8,
    B8,
    A26,
    A28,
    A31,
    A32,
    FUNCT_1: 49,
    NDIFF_8: 13,
    NFCONT_1: 7,
    TARSKI:def 3;
    
      then
    
      
    
    A33: g1 
    is_differentiable_in a & ( 
    diff (g1,a)) 
    = ( 
    - (Q 
    * P)) by 
    Th5;
    
      then
    
      consider N be
    Neighbourhood of a such that 
    
      
    
    A34: N 
    c= ( 
    dom g1) & ex R be 
    RestFunc of E, F st for x be 
    Point of E st x 
    in N holds ((g1 
    /. x) 
    - (g1 
    /. a)) 
    = ((( 
    diff (g1,a)) 
    . (x 
    - a)) 
    + (R 
    /. (x 
    - a))) by 
    NDIFF_1:def 7;
    
      consider R be
    RestFunc of E, F such that 
    
      
    
    A35: for x be 
    Point of E st x 
    in N holds ((g1 
    /. x) 
    - (g1 
    /. a)) 
    = ((( 
    diff (g1,a)) 
    . (x 
    - a)) 
    + (R 
    /. (x 
    - a))) by 
    A34;
    
      
    
      
    
    A37: N 
    c= A by 
    A7,
    A8,
    A34,
    XBOOLE_1: 1;
    
      
    
      
    
    A38: N 
    c= ( 
    dom g) by 
    A1,
    A7,
    A8,
    A34,
    XBOOLE_1: 1;
    
      
    
      
    
    A39: for x be 
    Point of E st x 
    in N holds ((g 
    /. x) 
    - (g 
    /. a)) 
    = ((( 
    diff (g1,a)) 
    . (x 
    - a)) 
    + (R 
    /. (x 
    - a))) 
    
      proof
    
        let x be
    Point of E; 
    
        assume
    
        
    
    A40: x 
    in N; 
    
        
    
        then
    
        
    
    A46: (g 
    /. x) 
    = (g 
    . x) by 
    A1,
    A37,
    PARTFUN1:def 6
    
        .= (g1
    . x) by 
    A8,
    A34,
    A40,
    FUNCT_1: 49
    
        .= (g1
    /. x) by 
    A34,
    A40,
    PARTFUN1:def 6;
    
        (g
    /. a) 
    = (g 
    . a) by 
    A1,
    PARTFUN1:def 6
    
        .= (g1
    . a) by 
    A6,
    FUNCT_1: 49,
    NDIFF_8: 13
    
        .= (g1
    /. a) by 
    A6,
    A8,
    NDIFF_8: 13,
    PARTFUN1:def 6;
    
        hence ((g
    /. x) 
    - (g 
    /. a)) 
    = ((( 
    diff (g1,a)) 
    . (x 
    - a)) 
    + (R 
    /. (x 
    - a))) by 
    A35,
    A40,
    A46;
    
      end;
    
      hence g
    is_differentiable_in a by 
    A1,
    A7,
    A8,
    A34,
    NDIFF_1:def 6,
    XBOOLE_1: 1;
    
      then
    
      
    
    A48: ( 
    diff (g,a)) 
    = ( 
    diff (g1,a)) by 
    A38,
    A39,
    NDIFF_1:def 7;
    
      Q
    = ( 
    Inv ( 
    partdiff`2 (f,z))) by 
    A1,
    LOPBAN13:def 2;
    
      then (
    modetrans (( 
    Inv ( 
    partdiff`2 (f,z))),G,F)) 
    = Q by 
    LOPBAN_1:def 11;
    
      then
    
      
    
    A51: (( 
    Inv ( 
    partdiff`2 (f,z))) 
    * ( 
    partdiff`1 (f,z))) 
    = (Q 
    * P) by 
    LOPBAN_1:def 11;
    
      then (Q
    * P) is 
    Lipschitzian  
    LinearOperator of E, F by 
    LOPBAN_1:def 9;
    
      hence thesis by
    A33,
    A48,
    A51,
    LOPBAN13: 31;
    
    end;
    
    theorem :: 
    
    NDIFF_9:20
    
    
    
    
    
    Th47: for E be 
    RealNormSpace, G,F be non 
    trivial  
    RealBanachSpace, Z be 
    Subset of 
    [:E, F:], f be
    PartFunc of 
    [:E, F:], G, c be
    Point of G, A be 
    Subset of E, B be 
    Subset of F, g be 
    PartFunc of E, F st Z is 
    open & ( 
    dom f) 
    = Z & A is 
    open & B is 
    open & 
    [:A, B:]
    c= Z & f 
    is_differentiable_on Z & (f 
    `| Z) 
    is_continuous_on Z & ( 
    dom g) 
    = A & ( 
    rng g) 
    c= B & g 
    is_continuous_on A & (for x be 
    Point of E st x 
    in A holds (f 
    . (x,(g 
    . x))) 
    = c) & (for x be 
    Point of E, z be 
    Point of 
    [:E, F:] st x
    in A & z 
    =  
    [x, (g
    . x)] holds ( 
    partdiff`2 (f,z)) is 
    invertible) holds g
    is_differentiable_on A & (g 
    `| A) 
    is_continuous_on A & for x be 
    Point of E, z be 
    Point of 
    [:E, F:] st x
    in A & z 
    =  
    [x, (g
    . x)] holds ( 
    diff (g,x)) 
    = ( 
    - (( 
    Inv ( 
    partdiff`2 (f,z))) 
    * ( 
    partdiff`1 (f,z)))) 
    
    proof
    
      let E be
    RealNormSpace, G,F be non 
    trivial  
    RealBanachSpace, Z be 
    Subset of 
    [:E, F:], f be
    PartFunc of 
    [:E, F:], G, c be
    Point of G, A be 
    Subset of E, B be 
    Subset of F, g be 
    PartFunc of E, F; 
    
      assume
    
      
    
    A1: Z is 
    open & ( 
    dom f) 
    = Z & A is 
    open & B is 
    open & 
    [:A, B:]
    c= Z & f 
    is_differentiable_on Z & (f 
    `| Z) 
    is_continuous_on Z & ( 
    dom g) 
    = A & ( 
    rng g) 
    c= B & g 
    is_continuous_on A & (for x be 
    Point of E st x 
    in A holds (f 
    . (x,(g 
    . x))) 
    = c) & (for x be 
    Point of E, z be 
    Point of 
    [:E, F:] st x
    in A & z 
    =  
    [x, (g
    . x)] holds ( 
    partdiff`2 (f,z)) is 
    invertible);
    
      then
    
      
    
    A2: f 
    is_partial_differentiable_on`1 Z & f 
    is_partial_differentiable_on`2 Z & (f 
    `partial`1| Z) 
    is_continuous_on Z & (f 
    `partial`2| Z) 
    is_continuous_on Z by 
    NDIFF_7: 52;
    
      
    
      
    
    A3: for x be 
    Point of E, z be 
    Point of 
    [:E, F:] st x
    in A & z 
    =  
    [x, (g
    . x)] holds g 
    is_differentiable_in x & ( 
    diff (g,x)) 
    = ( 
    - (( 
    Inv ( 
    partdiff`2 (f,z))) 
    * ( 
    partdiff`1 (f,z)))) 
    
      proof
    
        let a be
    Point of E, z be 
    Point of 
    [:E, F:];
    
        assume
    
        
    
    A4: a 
    in A & z 
    =  
    [a, (g
    . a)]; 
    
        then
    
        
    
    A5: (g 
    . a) 
    in ( 
    rng g) by 
    A1,
    FUNCT_1:def 3;
    
        then
    
        reconsider b = (g
    . a) as 
    Point of F; 
    
        
    
        
    
    A6: (f 
    . (a,b)) 
    = c by 
    A1,
    A4;
    
        z
    in  
    [:A, B:] by
    A1,
    A4,
    A5,
    ZFMISC_1: 87;
    
        then
    
        
    
    A9: f 
    is_differentiable_in z by 
    A1,
    NDIFF_1: 31;
    
        
    
        
    
    A10: (g 
    | A) 
    is_continuous_in a by 
    A1,
    A4,
    NFCONT_1:def 7;
    
        
    
        
    
    A11: (g 
    | A) 
    = g by 
    A1,
    RELAT_1: 68;
    
        (
    partdiff`2 (f,z)) is 
    invertible by 
    A1,
    A4;
    
        hence g
    is_differentiable_in a & ( 
    diff (g,a)) 
    = ( 
    - (( 
    Inv ( 
    partdiff`2 (f,z))) 
    * ( 
    partdiff`1 (f,z)))) by 
    A1,
    A4,
    A6,
    A9,
    A10,
    A11,
    Th45;
    
      end;
    
      for x be
    Point of E st x 
    in A holds g 
    is_differentiable_in x 
    
      proof
    
        let x be
    Point of E; 
    
        assume
    
        
    
    A13: x 
    in A; 
    
        then (g
    . x) 
    in ( 
    rng g) by 
    A1,
    FUNCT_1:def 3;
    
        then
    
        reconsider y = (g
    . x) as 
    Point of F; 
    
        
    [x, y] is
    set by 
    TARSKI: 1;
    
        then
    
        reconsider z =
    [x, y] as
    Point of 
    [:E, F:] by
    PRVECT_3: 18;
    
        z
    =  
    [x, (g
    . x)]; 
    
        hence thesis by
    A3,
    A13;
    
      end;
    
      hence
    
      
    
    A15: g 
    is_differentiable_on A by 
    A1,
    NDIFF_1: 31;
    
      then
    
      
    
    A16: ( 
    dom (g 
    `| A)) 
    = A by 
    NDIFF_1:def 9;
    
      consider xg be
    PartFunc of E, 
    [:E, F:] such that
    
      
    
    A17: ( 
    dom xg) 
    = A & for x be 
    Point of E st x 
    in A holds (xg 
    . x) 
    =  
    [x, (g
    . x)] and 
    
      
    
    A18: xg 
    is_continuous_on A by 
    A1,
    LmTh471;
    
      consider BL be
    BilinearOperator of ( 
    R_NormSpace_of_BoundedLinearOperators (E,G)), ( 
    R_NormSpace_of_BoundedLinearOperators (G,F)), ( 
    R_NormSpace_of_BoundedLinearOperators (E,F)) such that 
    
      
    
    A19: BL 
    is_continuous_on the 
    carrier of 
    [:(
    R_NormSpace_of_BoundedLinearOperators (E,G)), ( 
    R_NormSpace_of_BoundedLinearOperators (G,F)):] & for u be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (E,G)), v be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (G,F)) holds (BL 
    . (u,v)) 
    = (v 
    * u) by 
    LOPBAN13: 29;
    
      consider I be
    PartFunc of ( 
    R_NormSpace_of_BoundedLinearOperators (F,G)), ( 
    R_NormSpace_of_BoundedLinearOperators (G,F)) such that 
    
      
    
    A20: ( 
    dom I) 
    = ( 
    InvertibleOperators (F,G)) & ( 
    rng I) 
    = ( 
    InvertibleOperators (G,F)) & I is 
    one-to-one & I 
    is_continuous_on ( 
    InvertibleOperators (F,G)) & (ex J be 
    PartFunc of ( 
    R_NormSpace_of_BoundedLinearOperators (G,F)), ( 
    R_NormSpace_of_BoundedLinearOperators (F,G)) st J 
    = (I 
    " ) & J is 
    one-to-one & ( 
    dom J) 
    = ( 
    InvertibleOperators (G,F)) & ( 
    rng J) 
    = ( 
    InvertibleOperators (F,G)) & J 
    is_continuous_on ( 
    InvertibleOperators (G,F))) & for u be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (F,G)) st u 
    in ( 
    InvertibleOperators (F,G)) holds (I 
    . u) 
    = ( 
    Inv u) by 
    LOPBAN13: 25;
    
      
    
      
    
    A21: ( 
    dom (f 
    `partial`1| Z)) 
    = Z by 
    A2,
    NDIFF_7:def 10;
    
      
    
      
    
    A22: ( 
    dom (f 
    `partial`2| Z)) 
    = Z by 
    A2,
    NDIFF_7:def 11;
    
      
    
      
    
    A23: for x be 
    Point of E st x 
    in A holds ((g 
    `| A) 
    /. x) 
    = ( 
    - (BL 
    /.  
    [(((f
    `partial`1| Z) 
    * xg) 
    . x), (((I 
    * (f 
    `partial`2| Z)) 
    * xg) 
    . x)])) 
    
      proof
    
        let x be
    Point of E; 
    
        assume
    
        
    
    A24: x 
    in A; 
    
        then
    
        
    
    A25: ((g 
    `| A) 
    /. x) 
    = ( 
    diff (g,x)) by 
    A15,
    NDIFF_1:def 9;
    
        (xg
    /. x) 
    = (xg 
    . x) by 
    A17,
    A24,
    PARTFUN1:def 6
    
        .=
    [x, (g
    . x)] by 
    A17,
    A24;
    
        then (
    partdiff`2 (f,(xg 
    /. x))) is 
    invertible by 
    A1,
    A24;
    
        then (
    partdiff`2 (f,(xg 
    /. x))) 
    in ( 
    InvertibleOperators (F,G)); 
    
        then
    
        
    
    A27: (I 
    . ( 
    partdiff`2 (f,(xg 
    /. x)))) 
    = ( 
    Inv ( 
    partdiff`2 (f,(xg 
    /. x)))) by 
    A20;
    
        
    [(
    partdiff`1 (f,(xg 
    /. x))), (I 
    . ( 
    partdiff`2 (f,(xg 
    /. x))))] is 
    set by 
    TARSKI: 1;
    
        then
    [(
    partdiff`1 (f,(xg 
    /. x))), (I 
    . ( 
    partdiff`2 (f,(xg 
    /. x))))] is 
    Point of 
    [:(
    R_NormSpace_of_BoundedLinearOperators (E,G)), ( 
    R_NormSpace_of_BoundedLinearOperators (G,F)):] by 
    A27,
    PRVECT_3: 18;
    
        then
    [(
    partdiff`1 (f,(xg 
    /. x))), (I 
    . ( 
    partdiff`2 (f,(xg 
    /. x))))] 
    in the 
    carrier of 
    [:(
    R_NormSpace_of_BoundedLinearOperators (E,G)), ( 
    R_NormSpace_of_BoundedLinearOperators (G,F)):]; 
    
        then
    
        
    
    A28: 
    [(
    partdiff`1 (f,(xg 
    /. x))), (I 
    . ( 
    partdiff`2 (f,(xg 
    /. x))))] 
    in ( 
    dom BL) by 
    FUNCT_2:def 1;
    
        
    
        
    
    A29: (( 
    Inv ( 
    partdiff`2 (f,(xg 
    /. x)))) 
    * ( 
    partdiff`1 (f,(xg 
    /. x)))) 
    = (BL 
    . (( 
    partdiff`1 (f,(xg 
    /. x))),(I 
    . ( 
    partdiff`2 (f,(xg 
    /. x)))))) by 
    A19,
    A27
    
        .= (BL
    /.  
    [(
    partdiff`1 (f,(xg 
    /. x))), (I 
    . ( 
    partdiff`2 (f,(xg 
    /. x))))]) by 
    A28,
    PARTFUN1:def 6;
    
        
    
        
    
    A30: (g 
    . x) 
    in ( 
    rng g) by 
    A1,
    A24,
    FUNCT_1:def 3;
    
        then
    
        reconsider y = (g
    . x) as 
    Point of F; 
    
        
    [x, y] is
    set by 
    TARSKI: 1;
    
        then
    
        reconsider z =
    [x, y] as
    Point of 
    [:E, F:] by
    PRVECT_3: 18;
    
        
    
        
    
    A33: z 
    = (xg 
    . x) & (xg 
    . x) 
    = (xg 
    /. x) by 
    A17,
    A24,
    PARTFUN1:def 6;
    
        
    
        
    
    A34: z 
    in  
    [:A, B:] by
    A1,
    A24,
    A30,
    ZFMISC_1: 87;
    
        
    
        
    
    A35: (((f 
    `partial`1| Z) 
    * xg) 
    . x) 
    = ((f 
    `partial`1| Z) 
    . (xg 
    . x)) by 
    A17,
    A24,
    FUNCT_1: 13
    
        .= ((f
    `partial`1| Z) 
    /. (xg 
    . x)) by 
    A1,
    A21,
    A33,
    A34,
    PARTFUN1:def 6
    
        .= (
    partdiff`1 (f,(xg 
    /. x))) by 
    A1,
    A2,
    A33,
    A34,
    NDIFF_7:def 10;
    
        (((I
    * (f 
    `partial`2| Z)) 
    * xg) 
    . x) 
    = ((I 
    * (f 
    `partial`2| Z)) 
    . (xg 
    . x)) by 
    A17,
    A24,
    FUNCT_1: 13
    
        .= (I
    . ((f 
    `partial`2| Z) 
    . (xg 
    . x))) by 
    A1,
    A22,
    A33,
    A34,
    FUNCT_1: 13
    
        .= (I
    . ((f 
    `partial`2| Z) 
    /. (xg 
    . x))) by 
    A1,
    A22,
    A33,
    A34,
    PARTFUN1:def 6
    
        .= (I
    . ( 
    partdiff`2 (f,(xg 
    /. x)))) by 
    A1,
    A2,
    A33,
    A34,
    NDIFF_7:def 11;
    
        hence thesis by
    A3,
    A24,
    A25,
    A29,
    A33,
    A35;
    
      end;
    
      
    
      
    
    A39: for x be 
    Point of E st x 
    in A holds x 
    in ( 
    dom ((f 
    `partial`1| Z) 
    * xg)) & ((f 
    `partial`1| Z) 
    * xg) 
    is_continuous_in x 
    
      proof
    
        let x be
    Point of E; 
    
        assume
    
        
    
    A40: x 
    in A; 
    
        then
    
        
    
    A41: (g 
    . x) 
    in ( 
    rng g) by 
    A1,
    FUNCT_1:def 3;
    
        
    [x, (g
    . x)] is 
    set by 
    TARSKI: 1;
    
        then
    
        reconsider z =
    [x, (g
    . x)] as 
    Point of 
    [:E, F:] by
    A41,
    PRVECT_3: 18;
    
        
    
        
    
    A44: z 
    in  
    [:A, B:] by
    A1,
    A40,
    A41,
    ZFMISC_1: 87;
    
        
    
        
    
    A46: (xg 
    . x) 
    =  
    [x, (g
    . x)] & (xg 
    . x) 
    = (xg 
    /. x) by 
    A17,
    A40,
    PARTFUN1:def 6;
    
        hence
    
        
    
    A47: x 
    in ( 
    dom ((f 
    `partial`1| Z) 
    * xg)) by 
    A1,
    A17,
    A40,
    A21,
    A44,
    FUNCT_1: 11;
    
        (xg
    | A) 
    is_continuous_in x by 
    A18,
    A40,
    NFCONT_1:def 7;
    
        then
    
        
    
    A48: xg 
    is_continuous_in x by 
    A17,
    RELAT_1: 69;
    
        ((f
    `partial`1| Z) 
    | Z) 
    is_continuous_in (xg 
    /. x) by 
    A1,
    A2,
    A44,
    A46,
    NFCONT_1:def 7;
    
        then (f
    `partial`1| Z) 
    is_continuous_in (xg 
    /. x) by 
    A21,
    RELAT_1: 69;
    
        hence thesis by
    A47,
    A48,
    NFCONT112;
    
      end;
    
      
    
      
    
    A49: for x be 
    Point of E st x 
    in A holds x 
    in ( 
    dom ((I 
    * (f 
    `partial`2| Z)) 
    * xg)) & ((I 
    * (f 
    `partial`2| Z)) 
    * xg) 
    is_continuous_in x 
    
      proof
    
        let x be
    Point of E; 
    
        assume
    
        
    
    A50: x 
    in A; 
    
        then
    
        
    
    A51: (g 
    . x) 
    in ( 
    rng g) by 
    A1,
    FUNCT_1:def 3;
    
        
    [x, (g
    . x)] is 
    set by 
    TARSKI: 1;
    
        then
    
        reconsider z =
    [x, (g
    . x)] as 
    Point of 
    [:E, F:] by
    A51,
    PRVECT_3: 18;
    
        
    
        
    
    A54: z 
    in  
    [:A, B:] by
    A1,
    A50,
    A51,
    ZFMISC_1: 87;
    
        
    
        
    
    A56: (xg 
    . x) 
    =  
    [x, (g
    . x)] & (xg 
    . x) 
    = (xg 
    /. x) by 
    A17,
    A50,
    PARTFUN1:def 6;
    
        (xg
    | A) 
    is_continuous_in x by 
    A18,
    A50,
    NFCONT_1:def 7;
    
        then
    
        
    
    A58: xg 
    is_continuous_in x by 
    A17,
    RELAT_1: 69;
    
        ((f
    `partial`2| Z) 
    | Z) 
    is_continuous_in (xg 
    /. x) by 
    A1,
    A2,
    A54,
    A56,
    NFCONT_1:def 7;
    
        then
    
        
    
    A61: (f 
    `partial`2| Z) 
    is_continuous_in (xg 
    /. x) by 
    A22,
    RELAT_1: 69;
    
        
    
        
    
    A62: ( 
    partdiff`2 (f,(xg 
    /. x))) is 
    invertible by 
    A1,
    A50,
    A56;
    
        then
    
        
    
    A63: ( 
    partdiff`2 (f,(xg 
    /. x))) 
    in ( 
    InvertibleOperators (F,G)); 
    
        
    
        
    
    A64: ( 
    partdiff`2 (f,(xg 
    /. x))) 
    in ( 
    dom I) by 
    A20,
    A62;
    
        
    
        
    
    A65: ((f 
    `partial`2| Z) 
    /. (xg 
    /. x)) 
    = ( 
    partdiff`2 (f,(xg 
    /. x))) by 
    A1,
    A2,
    A54,
    A56,
    NDIFF_7:def 11;
    
        then ((f
    `partial`2| Z) 
    . (xg 
    /. x)) 
    in ( 
    dom I) by 
    A1,
    A22,
    A54,
    A56,
    A64,
    PARTFUN1:def 6;
    
        then
    
        
    
    A68: (xg 
    /. x) 
    in ( 
    dom (I 
    * (f 
    `partial`2| Z))) by 
    A1,
    A22,
    A54,
    A56,
    FUNCT_1: 11;
    
        hence
    
        
    
    A70: x 
    in ( 
    dom ((I 
    * (f 
    `partial`2| Z)) 
    * xg)) by 
    A17,
    A50,
    A56,
    FUNCT_1: 11;
    
        (I
    | ( 
    InvertibleOperators (F,G))) 
    is_continuous_in ((f 
    `partial`2| Z) 
    /. (xg 
    /. x)) by 
    A20,
    A63,
    A65,
    NFCONT_1:def 7;
    
        then I
    is_continuous_in ((f 
    `partial`2| Z) 
    /. (xg 
    /. x)) by 
    A20,
    RELAT_1: 69;
    
        then (I
    * (f 
    `partial`2| Z)) 
    is_continuous_in (xg 
    /. x) by 
    A61,
    A68,
    NFCONT112;
    
        hence thesis by
    A58,
    A70,
    NFCONT112;
    
      end;
    
      for x be
    object st x 
    in A holds x 
    in ( 
    dom ((f 
    `partial`1| Z) 
    * xg)) by 
    A39;
    
      then
    
      
    
    A72: A 
    c= ( 
    dom ((f 
    `partial`1| Z) 
    * xg)) by 
    TARSKI:def 3;
    
      for x be
    object st x 
    in A holds x 
    in ( 
    dom ((I 
    * (f 
    `partial`2| Z)) 
    * xg)) by 
    A49;
    
      then
    
      
    
    A74: A 
    c= ( 
    dom ((I 
    * (f 
    `partial`2| Z)) 
    * xg)) by 
    TARSKI:def 3;
    
      
    
      
    
    A75: for x be 
    Point of E st x 
    in A holds ((f 
    `partial`1| Z) 
    * xg) 
    is_continuous_in x by 
    A39;
    
      for x be
    Point of E st x 
    in A holds ((I 
    * (f 
    `partial`2| Z)) 
    * xg) 
    is_continuous_in x by 
    A49;
    
      then
    
      consider H be
    PartFunc of E, ( 
    R_NormSpace_of_BoundedLinearOperators (E,F)) such that 
    
      
    
    A77: ( 
    dom H) 
    = A & (for x be 
    Point of E st x 
    in A holds (H 
    . x) 
    = (BL 
    . ((((f 
    `partial`1| Z) 
    * xg) 
    . x),(((I 
    * (f 
    `partial`2| Z)) 
    * xg) 
    . x)))) & H 
    is_continuous_on A by 
    A19,
    A72,
    A74,
    A75,
    LmTh47;
    
      
    
      
    
    A78: for x0 be 
    Point of E st x0 
    in A holds (BL 
    .  
    [(((f
    `partial`1| Z) 
    * xg) 
    . x0), (((I 
    * (f 
    `partial`2| Z)) 
    * xg) 
    . x0)]) 
    = (BL 
    /.  
    [(((f
    `partial`1| Z) 
    * xg) 
    . x0), (((I 
    * (f 
    `partial`2| Z)) 
    * xg) 
    . x0)]) 
    
      proof
    
        let x0 be
    Point of E; 
    
        assume x0
    in A; 
    
        then
    
        
    
    A82: (((f 
    `partial`1| Z) 
    * xg) 
    . x0) 
    in ( 
    rng ((f 
    `partial`1| Z) 
    * xg)) & (((I 
    * (f 
    `partial`2| Z)) 
    * xg) 
    . x0) 
    in ( 
    rng ((I 
    * (f 
    `partial`2| Z)) 
    * xg)) by 
    A39,
    A49,
    FUNCT_1: 3;
    
        
    [(((f
    `partial`1| Z) 
    * xg) 
    . x0), (((I 
    * (f 
    `partial`2| Z)) 
    * xg) 
    . x0)] is 
    set by 
    TARSKI: 1;
    
        then
    [(((f
    `partial`1| Z) 
    * xg) 
    . x0), (((I 
    * (f 
    `partial`2| Z)) 
    * xg) 
    . x0)] is 
    Point of 
    [:(
    R_NormSpace_of_BoundedLinearOperators (E,G)), ( 
    R_NormSpace_of_BoundedLinearOperators (G,F)):] by 
    A82,
    PRVECT_3: 18;
    
        then
    [(((f
    `partial`1| Z) 
    * xg) 
    . x0), (((I 
    * (f 
    `partial`2| Z)) 
    * xg) 
    . x0)] 
    in the 
    carrier of 
    [:(
    R_NormSpace_of_BoundedLinearOperators (E,G)), ( 
    R_NormSpace_of_BoundedLinearOperators (G,F)):]; 
    
        then
    [(((f
    `partial`1| Z) 
    * xg) 
    . x0), (((I 
    * (f 
    `partial`2| Z)) 
    * xg) 
    . x0)] 
    in ( 
    dom BL) by 
    FUNCT_2:def 1;
    
        hence (BL
    .  
    [(((f
    `partial`1| Z) 
    * xg) 
    . x0), (((I 
    * (f 
    `partial`2| Z)) 
    * xg) 
    . x0)]) 
    = (BL 
    /.  
    [(((f
    `partial`1| Z) 
    * xg) 
    . x0), (((I 
    * (f 
    `partial`2| Z)) 
    * xg) 
    . x0)]) by 
    PARTFUN1:def 6;
    
      end;
    
      for x0 be
    Point of E st x0 
    in A holds ((g 
    `| A) 
    | A) 
    is_continuous_in x0 
    
      proof
    
        let x0 be
    Point of E; 
    
        assume
    
        
    
    A83: x0 
    in A; 
    
        then
    
        
    
    A85: x0 
    in ( 
    dom ((g 
    `| A) 
    | A)) by 
    A16,
    RELAT_1: 69;
    
        set F = ((g
    `| A) 
    | A); 
    
        for r be
    Real st 
    0  
    < r holds ex s be 
    Real st 
    0  
    < s & for x1 be 
    Point of E st x1 
    in ( 
    dom F) & 
    ||.(x1
    - x0).|| 
    < s holds 
    ||.((F
    /. x1) 
    - (F 
    /. x0)).|| 
    < r 
    
        proof
    
          let r be
    Real;
    
          assume
    0  
    < r; 
    
          then
    
          consider s be
    Real such that 
    
          
    
    A88: 
    0  
    < s & for x1 be 
    Point of E st x1 
    in A & 
    ||.(x1
    - x0).|| 
    < s holds 
    ||.((H
    /. x1) 
    - (H 
    /. x0)).|| 
    < r by 
    A77,
    A83,
    NFCONT_1: 19;
    
          take s;
    
          thus
    0  
    < s by 
    A88;
    
          let x1 be
    Point of E; 
    
          assume
    
          
    
    A89: x1 
    in ( 
    dom F) & 
    ||.(x1
    - x0).|| 
    < s; 
    
          then
    
          
    
    A90: x1 
    in A by 
    A16,
    RELAT_1: 69;
    
          then
    
          
    
    A91: 
    ||.((H
    /. x1) 
    - (H 
    /. x0)).|| 
    < r by 
    A88,
    A89;
    
          
    
          
    
    A92: (H 
    /. x1) 
    = (H 
    . x1) by 
    A77,
    A90,
    PARTFUN1:def 6
    
          .= (BL
    . ((((f 
    `partial`1| Z) 
    * xg) 
    . x1),(((I 
    * (f 
    `partial`2| Z)) 
    * xg) 
    . x1))) by 
    A77,
    A90
    
          .= (BL
    /.  
    [(((f
    `partial`1| Z) 
    * xg) 
    . x1), (((I 
    * (f 
    `partial`2| Z)) 
    * xg) 
    . x1)]) by 
    A78,
    A90;
    
          
    
          
    
    A93: (F 
    /. x1) 
    = ((g 
    `| A) 
    /. x1) by 
    A16,
    RELAT_1: 69
    
          .= (
    - (H 
    /. x1)) by 
    A23,
    A90,
    A92;
    
          
    
          
    
    A94: (H 
    /. x0) 
    = (H 
    . x0) by 
    A77,
    A83,
    PARTFUN1:def 6
    
          .= (BL
    . ((((f 
    `partial`1| Z) 
    * xg) 
    . x0),(((I 
    * (f 
    `partial`2| Z)) 
    * xg) 
    . x0))) by 
    A77,
    A83
    
          .= (BL
    /.  
    [(((f
    `partial`1| Z) 
    * xg) 
    . x0), (((I 
    * (f 
    `partial`2| Z)) 
    * xg) 
    . x0)]) by 
    A78,
    A83;
    
          (F
    /. x0) 
    = ((g 
    `| A) 
    /. x0) by 
    A16,
    RELAT_1: 69
    
          .= (
    - (H 
    /. x0)) by 
    A23,
    A83,
    A94;
    
          
    
          then ((F
    /. x1) 
    - (F 
    /. x0)) 
    = (( 
    - (H 
    /. x1)) 
    + (H 
    /. x0)) by 
    A93,
    RLVECT_1: 17
    
          .= (
    - ((H 
    /. x1) 
    - (H 
    /. x0))) by 
    RLVECT_1: 33;
    
          hence
    ||.((F
    /. x1) 
    - (F 
    /. x0)).|| 
    < r by 
    A91,
    NORMSP_1: 2;
    
        end;
    
        hence thesis by
    A85,
    NFCONT_1: 7;
    
      end;
    
      hence (g
    `| A) 
    is_continuous_on A by 
    A16,
    NFCONT_1:def 7;
    
      thus for x be
    Point of E, z be 
    Point of 
    [:E, F:] st x
    in A & z 
    =  
    [x, (g
    . x)] holds ( 
    diff (g,x)) 
    = ( 
    - (( 
    Inv ( 
    partdiff`2 (f,z))) 
    * ( 
    partdiff`1 (f,z)))) by 
    A3;
    
    end;
    
    theorem :: 
    
    NDIFF_9:21
    
    for E be
    RealNormSpace, G,F be non 
    trivial  
    RealBanachSpace, Z be 
    Subset of 
    [:E, F:], f be
    PartFunc of 
    [:E, F:], G, a be
    Point of E, b be 
    Point of F, c be 
    Point of G, z be 
    Point of 
    [:E, F:] st Z is
    open & ( 
    dom f) 
    = Z & f 
    is_differentiable_on Z & (f 
    `| Z) 
    is_continuous_on Z & 
    [a, b]
    in Z & (f 
    . (a,b)) 
    = c & z 
    =  
    [a, b] & (
    partdiff`2 (f,z)) is 
    invertible holds ex r1,r2 be 
    Real st 
    0  
    < r1 & 
    0  
    < r2 & 
    [:(
    Ball (a,r1)), ( 
    cl_Ball (b,r2)):] 
    c= Z & (for x be 
    Point of E st x 
    in ( 
    Ball (a,r1)) holds ex y be 
    Point of F st y 
    in ( 
    Ball (b,r2)) & (f 
    . (x,y)) 
    = c) & (for x be 
    Point of E st x 
    in ( 
    Ball (a,r1)) holds for y1,y2 be 
    Point of F st y1 
    in ( 
    Ball (b,r2)) & y2 
    in ( 
    Ball (b,r2)) & (f 
    . (x,y1)) 
    = c & (f 
    . (x,y2)) 
    = c holds y1 
    = y2) & (ex g be 
    PartFunc of E, F st ( 
    dom g) 
    = ( 
    Ball (a,r1)) & ( 
    rng g) 
    c= ( 
    Ball (b,r2)) & g 
    is_continuous_on ( 
    Ball (a,r1)) & (g 
    . a) 
    = b & (for x be 
    Point of E st x 
    in ( 
    Ball (a,r1)) holds (f 
    . (x,(g 
    . x))) 
    = c) & g 
    is_differentiable_on ( 
    Ball (a,r1)) & (g 
    `| ( 
    Ball (a,r1))) 
    is_continuous_on ( 
    Ball (a,r1)) & (for x be 
    Point of E, z be 
    Point of 
    [:E, F:] st x
    in ( 
    Ball (a,r1)) & z 
    =  
    [x, (g
    . x)] holds ( 
    diff (g,x)) 
    = ( 
    - (( 
    Inv ( 
    partdiff`2 (f,z))) 
    * ( 
    partdiff`1 (f,z))))) & (for x be 
    Point of E, z be 
    Point of 
    [:E, F:] st x
    in ( 
    Ball (a,r1)) & z 
    =  
    [x, (g
    . x)] holds ( 
    partdiff`2 (f,z)) is 
    invertible)) & (for g1,g2 be
    PartFunc of E, F st ( 
    dom g1) 
    = ( 
    Ball (a,r1)) & ( 
    rng g1) 
    c= ( 
    Ball (b,r2)) & (for x be 
    Point of E st x 
    in ( 
    Ball (a,r1)) holds (f 
    . (x,(g1 
    . x))) 
    = c) & ( 
    dom g2) 
    = ( 
    Ball (a,r1)) & ( 
    rng g2) 
    c= ( 
    Ball (b,r2)) & (for x be 
    Point of E st x 
    in ( 
    Ball (a,r1)) holds (f 
    . (x,(g2 
    . x))) 
    = c) holds g1 
    = g2) 
    
    proof
    
      let E be
    RealNormSpace, G,F be non 
    trivial  
    RealBanachSpace, Z0 be 
    Subset of 
    [:E, F:], f0 be
    PartFunc of 
    [:E, F:], G, a be
    Point of E, b be 
    Point of F, c be 
    Point of G, z be 
    Point of 
    [:E, F:];
    
      assume
    
      
    
    A1: Z0 is 
    open & ( 
    dom f0) 
    = Z0 & f0 
    is_differentiable_on Z0 & (f0 
    `| Z0) 
    is_continuous_on Z0 & 
    [a, b]
    in Z0 & (f0 
    . (a,b)) 
    = c & z 
    =  
    [a, b] & (
    partdiff`2 (f0,z)) is 
    invertible;
    
      then
    
      
    
    A2: f0 
    is_partial_differentiable_on`1 Z0 & f0 
    is_partial_differentiable_on`2 Z0 & (f0 
    `partial`1| Z0) 
    is_continuous_on Z0 & (f0 
    `partial`2| Z0) 
    is_continuous_on Z0 by 
    NDIFF_7: 52;
    
      set DF0 = (f0
    `| Z0); 
    
      set PDF2 = (f0
    `partial`2| Z0); 
    
      
    
      
    
    A3: ( 
    dom PDF2) 
    = Z0 by 
    A2,
    NDIFF_7:def 11;
    
      
    
      
    
    A4: ( 
    partdiff`2 (f0,z)) 
    in ( 
    InvertibleOperators (F,G)) by 
    A1;
    
      
    
      
    
    A5: (PDF2 
    . z) 
    = (PDF2 
    /. z) by 
    A1,
    A3,
    PARTFUN1:def 6;
    
      then (PDF2
    . z) 
    = ( 
    partdiff`2 (f0,z)) by 
    A1,
    A2,
    NDIFF_7:def 11;
    
      then
    
      consider p1 be
    Real such that 
    
      
    
    A8: 
    0  
    < p1 & ( 
    Ball ((PDF2 
    /. z),p1)) 
    c= ( 
    InvertibleOperators (F,G)) by 
    A4,
    A5,
    NDIFF_8: 20;
    
      consider s1 be
    Real such that 
    
      
    
    A9: 
    0  
    < s1 & for z1 be 
    Point of 
    [:E, F:] st z1
    in Z0 & 
    ||.(z1
    - z).|| 
    < s1 holds 
    ||.((PDF2
    /. z1) 
    - (PDF2 
    /. z)).|| 
    < p1 by 
    A1,
    A2,
    A8,
    NFCONT_1: 19;
    
      consider s2 be
    Real such that 
    
      
    
    A10: 
    0  
    < s2 & ( 
    Ball (z,s2)) 
    c= Z0 by 
    A1,
    NDIFF_8: 20;
    
      set s = (
    min (s1,s2)); 
    
      
    
      
    
    A11: 
    0  
    < s & s 
    <= s1 & s 
    <= s2 by 
    A9,
    A10,
    XXREAL_0: 17,
    XXREAL_0: 21;
    
      set Z = (
    Ball (z,s)); 
    
      set f = (f0
    | Z); 
    
      
    
      
    
    A12: z 
    in Z by 
    A11,
    NDIFF_8: 13;
    
      
    
      
    
    A15: (f 
    . (a,b)) 
    = c by 
    A1,
    A11,
    FUNCT_1: 49,
    NDIFF_8: 13;
    
      
    
      
    
    A16: Z 
    c= ( 
    Ball (z,s2)) by 
    A11,
    NDIFF_8: 15;
    
      then
    
      
    
    A18: Z 
    c= Z0 by 
    A10,
    XBOOLE_1: 1;
    
      
    
      
    
    A19: ( 
    dom f) 
    = Z by 
    A1,
    A10,
    A16,
    RELAT_1: 62,
    XBOOLE_1: 1;
    
      f0
    is_differentiable_on Z by 
    A1,
    A10,
    A16,
    XBOOLE_1: 1,
    NDIFF_1: 46;
    
      then
    
      
    
    A20: for x be 
    Point of 
    [:E, F:] st x
    in Z holds (f0 
    | Z) 
    is_differentiable_in x by 
    NDIFF_1:def 8;
    
      
    
      
    
    A21: (f 
    | Z) 
    = (f0 
    | Z) by 
    RELAT_1: 72;
    
      then
    
      
    
    A22: f 
    is_differentiable_on Z by 
    A19,
    A20,
    NDIFF_1:def 8;
    
      set DF = (f
    `| Z); 
    
      
    
      
    
    A23: ( 
    dom DF) 
    = Z by 
    A22,
    NDIFF_1:def 9;
    
      
    
      
    
    A24: for z be 
    Point of 
    [:E, F:] st z
    in Z holds ( 
    diff (f0,z)) 
    = ( 
    diff (f,z)) 
    
      proof
    
        let z be
    Point of 
    [:E, F:];
    
        assume
    
        
    
    A25: z 
    in Z; 
    
        then f0
    is_differentiable_in z by 
    A1,
    A18,
    NDIFF_1: 31;
    
        hence (
    diff (f0,z)) 
    = ( 
    diff (f,z)) by 
    A1,
    A18,
    A25,
    LMDIFF;
    
      end;
    
      for x0 be
    Point of 
    [:E, F:] holds for r be
    Real st x0 
    in Z & 
    0  
    < r holds ex s be 
    Real st 
    0  
    < s & for x1 be 
    Point of 
    [:E, F:] st x1
    in Z & 
    ||.(x1
    - x0).|| 
    < s holds 
    ||.((DF
    /. x1) 
    - (DF 
    /. x0)).|| 
    < r 
    
      proof
    
        let x0 be
    Point of 
    [:E, F:];
    
        let r be
    Real;
    
        assume
    
        
    
    A26: x0 
    in Z & 
    0  
    < r; 
    
        then
    
        consider s be
    Real such that 
    
        
    
    A28: 
    0  
    < s & for x1 be 
    Point of 
    [:E, F:] st x1
    in Z0 & 
    ||.(x1
    - x0).|| 
    < s holds 
    ||.((DF0
    /. x1) 
    - (DF0 
    /. x0)).|| 
    < r by 
    A1,
    A18,
    NFCONT_1: 19;
    
        take s;
    
        thus
    0  
    < s by 
    A28;
    
        let x1 be
    Point of 
    [:E, F:];
    
        assume
    
        
    
    A29: x1 
    in Z & 
    ||.(x1
    - x0).|| 
    < s; 
    
        
    
        then
    
        
    
    A32: (DF 
    /. x1) 
    = ( 
    diff (f,x1)) by 
    A22,
    NDIFF_1:def 9
    
        .= (
    diff (f0,x1)) by 
    A24,
    A29
    
        .= (DF0
    /. x1) by 
    A1,
    A18,
    A29,
    NDIFF_1:def 9;
    
        (DF
    /. x0) 
    = ( 
    diff (f,x0)) by 
    A22,
    A26,
    NDIFF_1:def 9
    
        .= (
    diff (f0,x0)) by 
    A24,
    A26
    
        .= (DF0
    /. x0) by 
    A1,
    A18,
    A26,
    NDIFF_1:def 9;
    
        hence
    ||.((DF
    /. x1) 
    - (DF 
    /. x0)).|| 
    < r by 
    A18,
    A28,
    A29,
    A32;
    
      end;
    
      then
    
      
    
    A34: (f 
    `| Z) 
    is_continuous_on Z by 
    A23,
    NFCONT_1: 19;
    
      
    
      
    
    A35: f 
    is_continuous_on Z by 
    A19,
    A20,
    A21,
    NDIFF_1: 45,
    NDIFF_1:def 8;
    
      
    
      
    
    A36: f 
    is_partial_differentiable_on`1 Z & f 
    is_partial_differentiable_on`2 Z & (f 
    `partial`1| Z) 
    is_continuous_on Z & (f 
    `partial`2| Z) 
    is_continuous_on Z by 
    A22,
    A34,
    NDIFF_7: 52;
    
      
    
      
    
    A37: for z be 
    Point of 
    [:E, F:] st z
    in Z holds ( 
    partdiff`1 (f0,z)) 
    = ( 
    partdiff`1 (f,z)) & ( 
    partdiff`2 (f0,z)) 
    = ( 
    partdiff`2 (f,z)) 
    
      proof
    
        let z be
    Point of 
    [:E, F:];
    
        assume
    
        
    
    A38: z 
    in Z; 
    
        then (f0
    | Z0) 
    is_partial_differentiable_in`1 z by 
    A2,
    A18;
    
        then f0
    is_partial_differentiable_in`1 z by 
    A1,
    RELAT_1: 69;
    
        hence (
    partdiff`1 (f0,z)) 
    = ( 
    partdiff`1 (f,z)) by 
    A1,
    A18,
    A38,
    LMPDIFF;
    
        (f0
    | Z0) 
    is_partial_differentiable_in`2 z by 
    A2,
    A18,
    A38;
    
        then f0
    is_partial_differentiable_in`2 z by 
    A1,
    RELAT_1: 69;
    
        hence (
    partdiff`2 (f0,z)) 
    = ( 
    partdiff`2 (f,z)) by 
    A1,
    A18,
    A38,
    LMPDIFF;
    
      end;
    
      then (
    partdiff`2 (f,z)) 
    in { v where v be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (F,G)) : v is 
    invertible } by
    A4,
    A12;
    
      then
    
      
    
    A44: ex v be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (F,G)) st ( 
    partdiff`2 (f,z)) 
    = v & v is 
    invertible;
    
      then ((
    partdiff`2 (f,z)) 
    " ) is 
    Lipschitzian  
    LinearOperator of G, F by 
    LOPBAN_1:def 9;
    
      then
    
      consider r1,r2 be
    Real such that 
    
      
    
    A47: 
    0  
    < r1 & 
    0  
    < r2 & 
    [:(
    Ball (a,r1)), ( 
    cl_Ball (b,r2)):] 
    c= Z & (for x be 
    Point of E st x 
    in ( 
    Ball (a,r1)) holds ex y be 
    Point of F st y 
    in ( 
    Ball (b,r2)) & (f 
    . (x,y)) 
    = c) & (for x be 
    Point of E st x 
    in ( 
    Ball (a,r1)) holds (for y1,y2 be 
    Point of F st y1 
    in ( 
    Ball (b,r2)) & y2 
    in ( 
    Ball (b,r2)) & (f 
    . (x,y1)) 
    = c & (f 
    . (x,y2)) 
    = c holds y1 
    = y2)) & (ex g be 
    PartFunc of E, F st g 
    is_continuous_on ( 
    Ball (a,r1)) & ( 
    dom g) 
    = ( 
    Ball (a,r1)) & ( 
    rng g) 
    c= ( 
    Ball (b,r2)) & (g 
    . a) 
    = b & for x be 
    Point of E st x 
    in ( 
    Ball (a,r1)) holds (f 
    . (x,(g 
    . x))) 
    = c) & (for g1,g2 be 
    PartFunc of E, F st ( 
    dom g1) 
    = ( 
    Ball (a,r1)) & ( 
    rng g1) 
    c= ( 
    Ball (b,r2)) & (for x be 
    Point of E st x 
    in ( 
    Ball (a,r1)) holds (f 
    . (x,(g1 
    . x))) 
    = c) & ( 
    dom g2) 
    = ( 
    Ball (a,r1)) & ( 
    rng g2) 
    c= ( 
    Ball (b,r2)) & (for x be 
    Point of E st x 
    in ( 
    Ball (a,r1)) holds (f 
    . (x,(g2 
    . x))) 
    = c) holds g1 
    = g2) by 
    A1,
    A11,
    A15,
    A19,
    A35,
    A36,
    A44,
    NDIFF_8: 13,
    NDIFF_8: 36;
    
      (
    Ball (b,r2)) 
    c= ( 
    cl_Ball (b,r2)) by 
    NDIFF_8: 15;
    
      then
    [:(
    Ball (a,r1)), ( 
    Ball (b,r2)):] 
    c=  
    [:(
    Ball (a,r1)), ( 
    cl_Ball (b,r2)):] by 
    ZFMISC_1: 95;
    
      then
    
      
    
    A48: 
    [:(
    Ball (a,r1)), ( 
    Ball (b,r2)):] 
    c= Z by 
    A47,
    XBOOLE_1: 1;
    
      
    
      
    
    A49: for x be 
    Point of E, y be 
    Point of F st x 
    in ( 
    Ball (a,r1)) & y 
    in ( 
    Ball (b,r2)) holds (f0 
    . (x,y)) 
    = (f 
    . (x,y)) 
    
      proof
    
        let x be
    Point of E, y be 
    Point of F; 
    
        assume x
    in ( 
    Ball (a,r1)) & y 
    in ( 
    Ball (b,r2)); 
    
        then
    [x, y]
    in  
    [:(
    Ball (a,r1)), ( 
    Ball (b,r2)):] by 
    ZFMISC_1: 87;
    
        hence thesis by
    A48,
    FUNCT_1: 49;
    
      end;
    
      take r1, r2;
    
      thus
    0  
    < r1 & 
    0  
    < r2 by 
    A47;
    
      thus
    [:(
    Ball (a,r1)), ( 
    cl_Ball (b,r2)):] 
    c= Z0 by 
    A18,
    A47,
    XBOOLE_1: 1;
    
      thus for x be
    Point of E st x 
    in ( 
    Ball (a,r1)) holds ex y be 
    Point of F st y 
    in ( 
    Ball (b,r2)) & (f0 
    . (x,y)) 
    = c 
    
      proof
    
        let x be
    Point of E; 
    
        assume
    
        
    
    A52: x 
    in ( 
    Ball (a,r1)); 
    
        then
    
        consider y be
    Point of F such that 
    
        
    
    A53: y 
    in ( 
    Ball (b,r2)) & (f 
    . (x,y)) 
    = c by 
    A47;
    
        take y;
    
        thus y
    in ( 
    Ball (b,r2)) by 
    A53;
    
        thus (f0
    . (x,y)) 
    = c by 
    A49,
    A52,
    A53;
    
      end;
    
      thus for x be
    Point of E st x 
    in ( 
    Ball (a,r1)) holds for y1,y2 be 
    Point of F st y1 
    in ( 
    Ball (b,r2)) & y2 
    in ( 
    Ball (b,r2)) & (f0 
    . (x,y1)) 
    = c & (f0 
    . (x,y2)) 
    = c holds y1 
    = y2 
    
      proof
    
        let x be
    Point of E; 
    
        assume
    
        
    
    A54: x 
    in ( 
    Ball (a,r1)); 
    
        let y1,y2 be
    Point of F such that 
    
        
    
    A55: y1 
    in ( 
    Ball (b,r2)) & y2 
    in ( 
    Ball (b,r2)) & (f0 
    . (x,y1)) 
    = c & (f0 
    . (x,y2)) 
    = c; 
    
        
    
        
    
    A56: (f 
    . (x,y1)) 
    = c by 
    A49,
    A54,
    A55;
    
        (f
    . (x,y2)) 
    = c by 
    A49,
    A54,
    A55;
    
        hence y1
    = y2 by 
    A47,
    A54,
    A55,
    A56;
    
      end;
    
      consider g be
    PartFunc of E, F such that 
    
      
    
    A57: g 
    is_continuous_on ( 
    Ball (a,r1)) & ( 
    dom g) 
    = ( 
    Ball (a,r1)) & ( 
    rng g) 
    c= ( 
    Ball (b,r2)) & (g 
    . a) 
    = b & for x be 
    Point of E st x 
    in ( 
    Ball (a,r1)) holds (f 
    . (x,(g 
    . x))) 
    = c by 
    A47;
    
      
    
      
    
    A58: for x be 
    Point of E, w be 
    Point of 
    [:E, F:] st x
    in ( 
    Ball (a,r1)) & w 
    =  
    [x, (g
    . x)] holds ( 
    partdiff`2 (f0,w)) is 
    invertible
    
      proof
    
        let x be
    Point of E, w be 
    Point of 
    [:E, F:];
    
        assume
    
        
    
    A59: x 
    in ( 
    Ball (a,r1)) & w 
    =  
    [x, (g
    . x)]; 
    
        then (g
    . x) 
    in ( 
    rng g) by 
    A57,
    FUNCT_1: 3;
    
        then w
    in  
    [:(
    Ball (a,r1)), ( 
    Ball (b,r2)):] by 
    A57,
    A59,
    ZFMISC_1: 87;
    
        then
    
        
    
    A60: w 
    in Z by 
    A48;
    
        then w
    in { y where y be 
    Point of 
    [:E, F:] :
    ||.(y
    - z).|| 
    < s } by 
    NDIFF_8: 17;
    
        then ex y be
    Point of 
    [:E, F:] st w
    = y & 
    ||.(y
    - z).|| 
    < s; 
    
        then
    ||.(w
    - z).|| 
    < s1 by 
    A11,
    XXREAL_0: 2;
    
        then
    ||.((PDF2
    /. w) 
    - (PDF2 
    /. z)).|| 
    < p1 by 
    A9,
    A18,
    A60;
    
        then (PDF2
    /. w) 
    in { y where y be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (F,G)) : 
    ||.(y
    - (PDF2 
    /. z)).|| 
    < p1 }; 
    
        then (PDF2
    /. w) 
    in ( 
    Ball ((PDF2 
    /. z),p1)) by 
    NDIFF_8: 17;
    
        then (PDF2
    /. w) 
    in ( 
    InvertibleOperators (F,G)) by 
    A8;
    
        then (
    partdiff`2 (f0,w)) 
    in ( 
    InvertibleOperators (F,G)) by 
    A2,
    A18,
    A60,
    NDIFF_7:def 11;
    
        then ex v be
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (F,G)) st ( 
    partdiff`2 (f0,w)) 
    = v & v is 
    invertible;
    
        hence (
    partdiff`2 (f0,w)) is 
    invertible;
    
      end;
    
      
    
      
    
    A63: for x be 
    Point of E, w be 
    Point of 
    [:E, F:] st x
    in ( 
    Ball (a,r1)) & w 
    =  
    [x, (g
    . x)] holds ( 
    partdiff`2 (f,w)) is 
    invertible
    
      proof
    
        let x be
    Point of E, w be 
    Point of 
    [:E, F:];
    
        assume
    
        
    
    A64: x 
    in ( 
    Ball (a,r1)) & w 
    =  
    [x, (g
    . x)]; 
    
        then (g
    . x) 
    in ( 
    rng g) by 
    A57,
    FUNCT_1: 3;
    
        then w
    in  
    [:(
    Ball (a,r1)), ( 
    Ball (b,r2)):] by 
    A57,
    A64,
    ZFMISC_1: 87;
    
        then (
    partdiff`2 (f,w)) 
    = ( 
    partdiff`2 (f0,w)) & ( 
    partdiff`1 (f,w)) 
    = ( 
    partdiff`1 (f0,w)) by 
    A37,
    A48;
    
        hence thesis by
    A58,
    A64;
    
      end;
    
      
    
      
    
    A68: for x be 
    Point of E st x 
    in ( 
    Ball (a,r1)) holds (f0 
    . (x,(g 
    . x))) 
    = c 
    
      proof
    
        let x be
    Point of E; 
    
        assume
    
        
    
    A69: x 
    in ( 
    Ball (a,r1)); 
    
        then (g
    . x) 
    in ( 
    rng g) by 
    A57,
    FUNCT_1: 3;
    
        then (f0
    . (x,(g 
    . x))) 
    = (f 
    . (x,(g 
    . x))) by 
    A49,
    A57,
    A69;
    
        hence (f0
    . (x,(g 
    . x))) 
    = c by 
    A57,
    A69;
    
      end;
    
      
    
      
    
    A70: g 
    is_differentiable_on ( 
    Ball (a,r1)) & (g 
    `| ( 
    Ball (a,r1))) 
    is_continuous_on ( 
    Ball (a,r1)) & for x be 
    Point of E, z be 
    Point of 
    [:E, F:] st x
    in ( 
    Ball (a,r1)) & z 
    =  
    [x, (g
    . x)] holds ( 
    diff (g,x)) 
    = ( 
    - (( 
    Inv ( 
    partdiff`2 (f0,z))) 
    * ( 
    partdiff`1 (f0,z)))) 
    
      proof
    
        for x be
    Point of E, z be 
    Point of 
    [:E, F:] st x
    in ( 
    Ball (a,r1)) & z 
    =  
    [x, (g
    . x)] holds ( 
    diff (g,x)) 
    = ( 
    - (( 
    Inv ( 
    partdiff`2 (f0,z))) 
    * ( 
    partdiff`1 (f0,z)))) 
    
        proof
    
          let x be
    Point of E, z be 
    Point of 
    [:E, F:];
    
          assume
    
          
    
    A73: x 
    in ( 
    Ball (a,r1)) & z 
    =  
    [x, (g
    . x)]; 
    
          then (g
    . x) 
    in ( 
    rng g) by 
    A57,
    FUNCT_1: 3;
    
          then z
    in  
    [:(
    Ball (a,r1)), ( 
    Ball (b,r2)):] by 
    A57,
    A73,
    ZFMISC_1: 87;
    
          then (
    partdiff`2 (f,z)) 
    = ( 
    partdiff`2 (f0,z)) & ( 
    partdiff`1 (f,z)) 
    = ( 
    partdiff`1 (f0,z)) by 
    A37,
    A48;
    
          hence thesis by
    A19,
    A22,
    A34,
    A48,
    A57,
    A63,
    A73,
    Th47;
    
        end;
    
        hence thesis by
    A19,
    A22,
    A34,
    A48,
    A57,
    A63,
    Th47;
    
      end;
    
      for g1,g2 be
    PartFunc of E, F st ( 
    dom g1) 
    = ( 
    Ball (a,r1)) & ( 
    rng g1) 
    c= ( 
    Ball (b,r2)) & (for x be 
    Point of E st x 
    in ( 
    Ball (a,r1)) holds (f0 
    . (x,(g1 
    . x))) 
    = c) & ( 
    dom g2) 
    = ( 
    Ball (a,r1)) & ( 
    rng g2) 
    c= ( 
    Ball (b,r2)) & (for x be 
    Point of E st x 
    in ( 
    Ball (a,r1)) holds (f0 
    . (x,(g2 
    . x))) 
    = c) holds g1 
    = g2 
    
      proof
    
        let g1,g2 be
    PartFunc of E, F; 
    
        assume
    
        
    
    A75: ( 
    dom g1) 
    = ( 
    Ball (a,r1)) & ( 
    rng g1) 
    c= ( 
    Ball (b,r2)) & (for x be 
    Point of E st x 
    in ( 
    Ball (a,r1)) holds (f0 
    . (x,(g1 
    . x))) 
    = c) & ( 
    dom g2) 
    = ( 
    Ball (a,r1)) & ( 
    rng g2) 
    c= ( 
    Ball (b,r2)) & (for x be 
    Point of E st x 
    in ( 
    Ball (a,r1)) holds (f0 
    . (x,(g2 
    . x))) 
    = c); 
    
        
    
    A76: 
    
        now
    
          let x be
    Point of E; 
    
          assume
    
          
    
    A77: x 
    in ( 
    Ball (a,r1)); 
    
          then (g1
    . x) 
    in ( 
    rng g1) by 
    A75,
    FUNCT_1: 3;
    
          then (f0
    . (x,(g1 
    . x))) 
    = (f 
    . (x,(g1 
    . x))) by 
    A49,
    A75,
    A77;
    
          hence (f
    . (x,(g1 
    . x))) 
    = c by 
    A75,
    A77;
    
        end;
    
        now
    
          let x be
    Point of E; 
    
          assume
    
          
    
    A78: x 
    in ( 
    Ball (a,r1)); 
    
          then (g2
    . x) 
    in ( 
    rng g2) by 
    A75,
    FUNCT_1: 3;
    
          then (f0
    . (x,(g2 
    . x))) 
    = (f 
    . (x,(g2 
    . x))) by 
    A49,
    A75,
    A78;
    
          hence (f
    . (x,(g2 
    . x))) 
    = c by 
    A75,
    A78;
    
        end;
    
        hence g1
    = g2 by 
    A47,
    A75,
    A76;
    
      end;
    
      hence thesis by
    A57,
    A58,
    A68,
    A70;
    
    end;