ndiff_5.miz
    
    begin
    
    reserve j for
    set;
    
    reserve p,r for
    Real;
    
    reserve S,T,F for
    RealNormSpace;
    
    reserve x0 for
    Point of S; 
    
    reserve g for
    PartFunc of S, T; 
    
    reserve c for
    constant  
    sequence of S; 
    
    reserve R for
    RestFunc of S, T; 
    
    reserve G for
    RealNormSpace-Sequence;
    
    reserve i for
    Element of ( 
    dom G); 
    
    reserve f for
    PartFunc of ( 
    product G), F; 
    
    reserve x for
    Element of ( 
    product G); 
    
    theorem :: 
    
    NDIFF_5:1
    
    
    
    
    
    Th1: for R be 
    Function of 
    REAL , S holds R is 
    RestFunc-like iff for r be 
    Real st r 
    >  
    0 holds ex d be 
    Real st d 
    >  
    0 & for z be 
    Real st z 
    <>  
    0 & 
    |.z.|
    < d holds (( 
    |.z.|
    " ) 
    *  
    ||.(R
    /. z).||) 
    < r 
    
    proof
    
      let R be
    Function of 
    REAL , S; 
    
      
    
      
    
    A1: ( 
    dom R) 
    =  
    REAL by 
    PARTFUN1:def 2;
    
      
    
    A2: 
    
      now
    
        assume
    
        
    
    A3: R is 
    RestFunc-like;
    
        assume not (for r be
    Real st r 
    >  
    0 holds ex d be 
    Real st d 
    >  
    0 & for z be 
    Real st z 
    <>  
    0 & 
    |.z.|
    < d holds (( 
    |.z.|
    " ) 
    *  
    ||.(R
    /. z).||) 
    < r); 
    
        then
    
        consider r be
    Real such that 
    
        
    
    A4: r 
    >  
    0 and 
    
        
    
    A5: for d be 
    Real st d 
    >  
    0 holds ex z be 
    Real st z 
    <>  
    0 & 
    |.z.|
    < d & not (( 
    |.z.|
    " ) 
    *  
    ||.(R
    /. z).||) 
    < r; 
    
        defpred
    
    P[
    Nat, 
    Real] means $2
    <>  
    0 & 
    |.$2.|
    < (1 
    / ($1 
    + 1)) & not (( 
    |.$2.|
    " ) 
    *  
    ||.(R
    /. $2).||) 
    < r; 
    
        
    
        
    
    A6: for n be 
    Element of 
    NAT holds ex z be 
    Element of 
    REAL st 
    P[n, z]
    
        proof
    
          let n be
    Element of 
    NAT ; 
    
          set d = (1
    / (n 
    + 1)); 
    
          consider z be
    Real such that 
    
          
    
    A7: z 
    <>  
    0 & 
    |.z.|
    < d & not (( 
    |.z.|
    " ) 
    *  
    ||.(R
    /. z).||) 
    < r by 
    A5;
    
          reconsider z as
    Element of 
    REAL by 
    XREAL_0:def 1;
    
          take z;
    
          thus thesis by
    A7;
    
        end;
    
        consider s be
    Real_Sequence such that 
    
        
    
    A8: for n be 
    Element of 
    NAT holds 
    P[n, (s
    . n)] from 
    FUNCT_2:sch 3(
    A6);
    
        
    
        
    
    A9: for n be 
    Nat holds 
    P[n, (s
    . n)] 
    
        proof
    
          let n be
    Nat;
    
          n
    in  
    NAT by 
    ORDINAL1:def 12;
    
          hence thesis by
    A8;
    
        end;
    
        
    
    A10: 
    
        now
    
          let p be
    Real;
    
          assume
    
          
    
    A11: 
    0  
    < p; 
    
          consider n be
    Nat such that 
    
          
    
    A12: (p 
    " ) 
    < n by 
    SEQ_4: 3;
    
          reconsider q0 =
    0 , q1 = 1 as 
    Real;
    
          ((p
    " ) 
    + q0) 
    < (n 
    + q1) by 
    A12,
    XREAL_1: 8;
    
          then
    
          
    
    A13: (1 
    / (n 
    + 1)) 
    < (1 
    / (p 
    " )) by 
    A11,
    XREAL_1: 76;
    
          take n;
    
          let m be
    Nat;
    
          assume n
    <= m; 
    
          then (n
    + 1) 
    <= (m 
    + 1) by 
    XREAL_1: 6;
    
          then (1
    / (m 
    + 1)) 
    <= (1 
    / (n 
    + 1)) by 
    XREAL_1: 118;
    
          then
    |.((s
    . m) 
    -  
    0 ).| 
    < (1 
    / (n 
    + 1)) by 
    A9,
    XXREAL_0: 2;
    
          hence
    |.((s
    . m) 
    -  
    0 ).| 
    < p by 
    A13,
    XXREAL_0: 2;
    
        end;
    
        then s is
    convergent by 
    SEQ_2:def 6;
    
        then (
    lim s) 
    =  
    0 by 
    A10,
    SEQ_2:def 7;
    
        then
    
        reconsider s as
    0  
    -convergent
    non-zero  
    Real_Sequence by 
    A10,
    A9,
    SEQ_1: 5,
    SEQ_2:def 6,
    FDIFF_1:def 1;
    
        ((s
    " ) 
    (#) (R 
    /* s)) is 
    convergent & ( 
    lim ((s 
    " ) 
    (#) (R 
    /* s))) 
    = ( 
    0. S) by 
    A3,
    NDIFF_3:def 1;
    
        then
    
        consider n0 be
    Nat such that 
    
        
    
    A16: for m be 
    Nat st n0 
    <= m holds 
    ||.((((s
    " ) 
    (#) (R 
    /* s)) 
    . m) 
    - ( 
    0. S)).|| 
    < r by 
    A4,
    NORMSP_1:def 7;
    
        
    
        
    
    A17: n0 
    in  
    NAT by 
    ORDINAL1:def 12;
    
        
    
        
    
    A19: 
    ||.(((s
    . n0) 
    " ) 
    * (R 
    /. (s 
    . n0))).|| 
    = ( 
    |.((s
    . n0) 
    " ).| 
    *  
    ||.(R
    /. (s 
    . n0)).||) by 
    NORMSP_1:def 1
    
        .= ((
    |.(s
    . n0).| 
    " ) 
    *  
    ||.(R
    /. (s 
    . n0)).||) by 
    COMPLEX1: 66;
    
        
    
        
    
    A20: ( 
    rng s) 
    c= ( 
    dom R) by 
    A1;
    
        
    ||.((((s
    " ) 
    (#) (R 
    /* s)) 
    . n0) 
    - ( 
    0. S)).|| 
    =  
    ||.(((s
    " ) 
    (#) (R 
    /* s)) 
    . n0).|| by 
    RLVECT_1: 13
    
        .=
    ||.(((s
    " ) 
    . n0) 
    * ((R 
    /* s) 
    . n0)).|| by 
    NDIFF_1:def 2
    
        .=
    ||.(((s
    . n0) 
    " ) 
    * ((R 
    /* s) 
    . n0)).|| by 
    VALUED_1: 10
    
        .=
    ||.(((s
    . n0) 
    " ) 
    * (R 
    /. (s 
    . n0))).|| by 
    A20,
    FUNCT_2: 109,
    A17;
    
        hence for r be
    Real st r 
    >  
    0 holds ex d be 
    Real st d 
    >  
    0 & for z be 
    Real st z 
    <>  
    0 & 
    |.z.|
    < d holds (( 
    |.z.|
    " ) 
    *  
    ||.(R
    /. z).||) 
    < r by 
    A9,
    A16,
    A19;
    
      end;
    
      now
    
        assume
    
        
    
    A21: for r be 
    Real st r 
    >  
    0 holds ex d be 
    Real st d 
    >  
    0 & for z be 
    Real st z 
    <>  
    0 & 
    |.z.|
    < d holds (( 
    |.z.|
    " ) 
    *  
    ||.(R
    /. z).||) 
    < r; 
    
        now
    
          let s be
    0  
    -convergent
    non-zero  
    Real_Sequence;
    
          
    
          
    
    A22: s is 
    convergent & ( 
    lim s) 
    =  
    0 ; 
    
          
    
    A23: 
    
          now
    
            let r be
    Real;
    
            assume r
    >  
    0 ; 
    
            then
    
            consider d be
    Real such that 
    
            
    
    A24: d 
    >  
    0 and 
    
            
    
    A25: for z be 
    Real st z 
    <>  
    0 & 
    |.z.|
    < d holds (( 
    |.z.|
    " ) 
    *  
    ||.(R
    /. z).||) 
    < r by 
    A21;
    
            consider n0 be
    Nat such that 
    
            
    
    A26: for m be 
    Nat st n0 
    <= m holds 
    |.((s
    . m) 
    -  
    0 ).| 
    < d by 
    A22,
    A24,
    SEQ_2:def 7;
    
            take n0;
    
            thus for m be
    Nat st n0 
    <= m holds 
    ||.((((s
    " ) 
    (#) (R 
    /* s)) 
    . m) 
    - ( 
    0. S)).|| 
    < r 
    
            proof
    
              
    
              
    
    A27: ( 
    rng s) 
    c= ( 
    dom R) by 
    A1;
    
              let m be
    Nat;
    
              assume n0
    <= m; 
    
              then
    
              
    
    A28: 
    |.((s
    . m) 
    -  
    0 ).| 
    < d by 
    A26;
    
              
    
              
    
    A30: m 
    in  
    NAT by 
    ORDINAL1:def 12;
    
              ((
    |.(s
    . m).| 
    " ) 
    *  
    ||.(R
    /. (s 
    . m)).||) 
    = ( 
    |.((s
    . m) 
    " ).| 
    *  
    ||.(R
    /. (s 
    . m)).||) by 
    COMPLEX1: 66
    
              .=
    ||.(((s
    . m) 
    " ) 
    * (R 
    /. (s 
    . m))).|| by 
    NORMSP_1:def 1
    
              .=
    ||.(((s
    . m) 
    " ) 
    * ((R 
    /* s) 
    . m)).|| by 
    A27,
    FUNCT_2: 109,
    A30
    
              .=
    ||.(((s
    " ) 
    . m) 
    * ((R 
    /* s) 
    . m)).|| by 
    VALUED_1: 10
    
              .=
    ||.(((s
    " ) 
    (#) (R 
    /* s)) 
    . m).|| by 
    NDIFF_1:def 2
    
              .=
    ||.((((s
    " ) 
    (#) (R 
    /* s)) 
    . m) 
    - ( 
    0. S)).|| by 
    RLVECT_1: 13;
    
              hence thesis by
    A25,
    A28,
    SEQ_1: 5;
    
            end;
    
          end;
    
          hence ((s
    " ) 
    (#) (R 
    /* s)) is 
    convergent by 
    NORMSP_1:def 6;
    
          hence (
    lim ((s 
    " ) 
    (#) (R 
    /* s))) 
    = ( 
    0. S) by 
    A23,
    NORMSP_1:def 7;
    
        end;
    
        hence R is
    RestFunc-like by 
    NDIFF_3:def 1;
    
      end;
    
      hence thesis by
    A2;
    
    end;
    
    theorem :: 
    
    NDIFF_5:2
    
    
    
    
    
    Th2: for R be 
    RestFunc of S st (R 
    /.  
    0 ) 
    = ( 
    0. S) holds for e be 
    Real st e 
    >  
    0 holds ex d be 
    Real st d 
    >  
    0 & for h be 
    Real st 
    |.h.|
    < d holds 
    ||.(R
    /. h).|| 
    <= (e 
    *  
    |.h.|)
    
    proof
    
      let R be
    RestFunc of S such that 
    
      
    
    A1: (R 
    /.  
    0 ) 
    = ( 
    0. S); 
    
      let e be
    Real such that 
    
      
    
    A2: e 
    >  
    0 ; 
    
      R is
    total by 
    NDIFF_3:def 1;
    
      then
    
      consider d be
    Real such that 
    
      
    
    A3: d 
    >  
    0 and 
    
      
    
    A4: for z be 
    Real st z 
    <>  
    0 & 
    |.z.|
    < d holds (( 
    |.z.|
    " ) 
    *  
    ||.(R
    /. z).||) 
    < e by 
    A2,
    Th1;
    
      take d;
    
      now
    
        let h be
    Real such that 
    
        
    
    A5: 
    |.h.|
    < d; 
    
        
    
        
    
    A6: 
    0  
    <=  
    |.h.| by
    COMPLEX1: 46;
    
        per cases ;
    
          suppose
    
          
    
    A7: h 
    <>  
    0 ; 
    
          then ((
    |.h.|
    " ) 
    *  
    ||.(R
    /. h).||) 
    <= e by 
    A4,
    A5;
    
          then (
    |.h.|
    * (( 
    |.h.|
    " ) 
    *  
    ||.(R
    /. h).||)) 
    <= ( 
    |.h.|
    * e) by 
    A6,
    XREAL_1: 64;
    
          then
    
          
    
    A8: (( 
    |.h.|
    * ( 
    |.h.|
    " )) 
    *  
    ||.(R
    /. h).||) 
    <= (e 
    *  
    |.h.|);
    
          
    |.h.|
    <>  
    0 by 
    A7,
    COMPLEX1: 45;
    
          then (1
    *  
    ||.(R
    /. h).||) 
    <= (e 
    *  
    |.h.|) by
    A8,
    XCMPLX_0:def 7;
    
          hence
    ||.(R
    /. h).|| 
    <= (e 
    *  
    |.h.|);
    
        end;
    
          suppose
    
          
    
    A9: h 
    =  
    0 ; 
    
          reconsider p0 =
    0 as 
    Real;
    
          (p0
    *  
    |.h.|)
    <= (e 
    *  
    |.h.|) by
    A2,
    A6;
    
          hence
    ||.(R
    /. h).|| 
    <= (e 
    *  
    |.h.|) by
    A1,
    A9;
    
        end;
    
      end;
    
      hence thesis by
    A3;
    
    end;
    
    theorem :: 
    
    NDIFF_5:3
    
    
    
    
    
    Th3: for R be 
    RestFunc of S holds for L be 
    Lipschitzian  
    LinearOperator of S, T holds (L 
    * R) is 
    RestFunc of T 
    
    proof
    
      let R be
    RestFunc of S; 
    
      let L be
    Lipschitzian  
    LinearOperator of S, T; 
    
      consider K be
    Real such that 
    
      
    
    A1: 
    0  
    <= K and 
    
      
    
    A2: for z be 
    Point of S holds 
    ||.(L
    . z).|| 
    <= (K 
    *  
    ||.z.||) by
    LOPBAN_1:def 8;
    
      (
    dom L) 
    = the 
    carrier of S by 
    FUNCT_2:def 1;
    
      then
    
      
    
    A3: ( 
    rng R) 
    c= ( 
    dom L); 
    
      
    
      
    
    A4: R is 
    total by 
    NDIFF_3:def 1;
    
      then
    
      
    
    A5: ( 
    dom R) 
    =  
    REAL by 
    PARTFUN1:def 2;
    
      now
    
        let e be
    Real such that 
    
        
    
    A6: e 
    >  
    0 ; 
    
        set e1 = ((e
    / 2) 
    / (1 
    + K)); 
    
        consider d be
    Real such that 
    
        
    
    A7: 
    0  
    < d and 
    
        
    
    A8: for h be 
    Real st h 
    <>  
    0 & 
    |.h.|
    < d holds (( 
    |.h.|
    " ) 
    *  
    ||.(R
    /. h).||) 
    < e1 by 
    A1,
    A4,
    A6,
    Th1;
    
        
    
        
    
    A9: (e 
    / 2) 
    < e by 
    A6,
    XREAL_1: 216;
    
        now
    
          let h be
    Real;
    
          reconsider hh = h as
    Element of 
    REAL by 
    XREAL_0:def 1;
    
          assume
    
          
    
    A10: h 
    <>  
    0 & 
    |.h.|
    < d; 
    
          then ((
    |.h.|
    " ) 
    *  
    ||.(R
    /. h).||) 
    < e1 by 
    A8;
    
          then ((K
    + 1) 
    * (( 
    |.h.|
    " ) 
    *  
    ||.(R
    /. h).||)) 
    <= ((K 
    + 1) 
    * e1) by 
    A1,
    XREAL_1: 64;
    
          then
    
          
    
    A11: ((K 
    + 1) 
    * (( 
    |.h.|
    " ) 
    *  
    ||.(R
    /. h).||)) 
    <= (e 
    / 2) by 
    A1,
    XCMPLX_1: 87;
    
          
    |.h.|
    <>  
    0 by 
    A10,
    COMPLEX1: 45;
    
          then
    
          
    
    A12: 
    |.h.|
    >  
    0 by 
    COMPLEX1: 46;
    
          reconsider p0 =
    0 , p1 = 1 as 
    Element of 
    REAL by 
    XREAL_0:def 1;
    
          (p0
    + K) 
    < (p1 
    + K) by 
    XREAL_1: 8;
    
          then
    
          
    
    A13: (K 
    *  
    ||.(R
    /. h).||) 
    <= ((K 
    + 1) 
    *  
    ||.(R
    /. h).||) by 
    XREAL_1: 64;
    
          
    ||.(L
    . (R 
    /. h)).|| 
    <= (K 
    *  
    ||.(R
    /. h).||) by 
    A2;
    
          then
    ||.(L
    . (R 
    /. h)).|| 
    <= ((K 
    + 1) 
    *  
    ||.(R
    /. h).||) by 
    A13,
    XXREAL_0: 2;
    
          then ((
    |.h.|
    " ) 
    *  
    ||.(L
    . (R 
    /. h)).||) 
    <= (( 
    |.h.|
    " ) 
    * ((K 
    + 1) 
    *  
    ||.(R
    /. h).||)) by 
    A12,
    XREAL_1: 64;
    
          then
    
          
    
    A14: (( 
    |.h.|
    " ) 
    *  
    ||.(L
    . (R 
    /. h)).||) 
    <= (e 
    / 2) by 
    A11,
    XXREAL_0: 2;
    
          (L
    . (R 
    /. h)) 
    = (L 
    /. (R 
    /. h)); 
    
          then (L
    . (R 
    /. hh)) 
    = ((L 
    * R) 
    /. hh) by 
    A5,
    A3,
    PARTFUN2: 5;
    
          hence ((
    |.h.|
    " ) 
    *  
    ||.((L
    * R) 
    /. h).||) 
    < e by 
    A9,
    A14,
    XXREAL_0: 2;
    
        end;
    
        hence ex d be
    Real st d 
    >  
    0 & for h be 
    Real st h 
    <>  
    0 & 
    |.h.|
    < d holds (( 
    |.h.|
    " ) 
    *  
    ||.((L
    * R) 
    /. h).||) 
    < e by 
    A7;
    
      end;
    
      hence thesis by
    A4,
    Th1;
    
    end;
    
    theorem :: 
    
    NDIFF_5:4
    
    
    
    
    
    Th4: for R1 be 
    RestFunc of S st (R1 
    /.  
    0 ) 
    = ( 
    0. S) holds for R2 be 
    RestFunc of S, T st (R2 
    /. ( 
    0. S)) 
    = ( 
    0. T) holds for L be 
    LinearFunc of S holds (R2 
    * (L 
    + R1)) is 
    RestFunc of T 
    
    proof
    
      let R1 be
    RestFunc of S; 
    
      assume (R1
    /.  
    0 ) 
    = ( 
    0. S); 
    
      then
    
      consider d0 be
    Real such that 
    
      
    
    A1: 
    0  
    < d0 and 
    
      
    
    A2: for h be 
    Real st 
    |.h.|
    < d0 holds 
    ||.(R1
    /. h).|| 
    <= (1 
    *  
    |.h.|) by
    Th2;
    
      let R2 be
    RestFunc of S, T such that 
    
      
    
    A3: (R2 
    /. ( 
    0. S)) 
    = ( 
    0. T); 
    
      let L be
    LinearFunc of S; 
    
      consider r be
    Point of S such that 
    
      
    
    A4: for h be 
    Real holds (L 
    /. h) 
    = (h 
    * r) by 
    NDIFF_3:def 2;
    
      reconsider K =
    ||.r.|| as
    Real;
    
      R2 is
    total by 
    NDIFF_1:def 5;
    
      then (
    dom R2) 
    = the 
    carrier of S by 
    PARTFUN1:def 2;
    
      then
    
      
    
    A5: ( 
    rng (L 
    + R1)) 
    c= ( 
    dom R2); 
    
      R1 is
    total by 
    NDIFF_3:def 1;
    
      then (L
    + R1) is 
    total by 
    VFUNCT_1: 32;
    
      then
    
      
    
    A6: ( 
    dom (L 
    + R1)) 
    =  
    REAL by 
    PARTFUN1:def 2;
    
      then (
    dom (R2 
    * (L 
    + R1))) 
    =  
    REAL by 
    A5,
    RELAT_1: 27;
    
      then
    
      
    
    A7: (R2 
    * (L 
    + R1)) is 
    total by 
    PARTFUN1:def 2;
    
      now
    
        let e be
    Real such that 
    
        
    
    A8: e 
    >  
    0 ; 
    
        
    
        
    
    A9: (e 
    / 2) 
    < e by 
    A8,
    XREAL_1: 216;
    
        set e1 = ((e
    / 2) 
    / (1 
    + K)); 
    
        consider d be
    Real such that 
    
        
    
    A10: 
    0  
    < d and 
    
        
    
    A11: for z be 
    Point of S st 
    ||.z.||
    < d holds 
    ||.(R2
    /. z).|| 
    <= (e1 
    *  
    ||.z.||) by
    A3,
    A8,
    NDIFF_2: 7;
    
        set d1 = (d
    / (1 
    + K)); 
    
        set dd1 = (
    min (d0,d1)); 
    
        
    
        
    
    A12: dd1 
    <= d1 & dd1 
    <= d0 by 
    XXREAL_0: 17;
    
        
    
    A13: 
    
        now
    
          let hh be
    Real such that 
    
          
    
    A14: hh 
    <>  
    0 and 
    
          
    
    A15: 
    |.hh.|
    < dd1; 
    
          reconsider h = hh as
    Element of 
    REAL by 
    XREAL_0:def 1;
    
          
    |.h.|
    < d0 by 
    A12,
    A15,
    XXREAL_0: 2;
    
          then
    
          
    
    A16: 
    ||.(R1
    /. h).|| 
    <= (1 
    *  
    |.h.|) by
    A2;
    
          reconsider p0 =
    0 as 
    Element of 
    REAL by 
    XREAL_0:def 1;
    
          (L
    . h) 
    = (L 
    /. h) 
    
          .= (h
    * r) by 
    A4;
    
          then ((
    ||.(L
    . h).|| 
    - (K 
    *  
    |.h.|))
    + (K 
    *  
    |.h.|))
    <= (p0 
    + (K 
    *  
    |.h.|)) by
    NORMSP_1:def 1;
    
          then
    ||.((L
    . h) 
    + (R1 
    /. h)).|| 
    <= ( 
    ||.(L
    . h).|| 
    +  
    ||.(R1
    /. h).||) & ( 
    ||.(L
    . h).|| 
    +  
    ||.(R1
    /. h).||) 
    <= ((K 
    *  
    |.h.|)
    + (1 
    *  
    |.h.|)) by
    A16,
    NORMSP_1:def 1,
    XREAL_1: 7;
    
          then
    
          
    
    A17: 
    ||.((L
    . h) 
    + (R1 
    /. h)).|| 
    <= ((K 
    + 1) 
    *  
    |.h.|) by
    XXREAL_0: 2;
    
          then
    
          
    
    A18: (e1 
    *  
    ||.((L
    . h) 
    + (R1 
    /. h)).||) 
    <= (e1 
    * ((K 
    + 1) 
    *  
    |.h.|)) by
    A8,
    XREAL_1: 64;
    
          
    |.h.|
    < d1 by 
    A12,
    A15,
    XXREAL_0: 2;
    
          then ((K
    + 1) 
    *  
    |.h.|)
    < ((K 
    + 1) 
    * d1) by 
    XREAL_1: 68;
    
          then
    ||.((L
    . h) 
    + (R1 
    /. h)).|| 
    < ((K 
    + 1) 
    * d1) by 
    A17,
    XXREAL_0: 2;
    
          then
    ||.((L
    . h) 
    + (R1 
    /. h)).|| 
    < d by 
    XCMPLX_1: 87;
    
          then
    ||.(R2
    /. ((L 
    . h) 
    + (R1 
    /. h))).|| 
    <= (e1 
    *  
    ||.((L
    . h) 
    + (R1 
    /. h)).||) by 
    A11;
    
          then
    
          
    
    A19: 
    ||.(R2
    /. ((L 
    . h) 
    + (R1 
    /. h))).|| 
    <= (e1 
    * ((K 
    + 1) 
    *  
    |.h.|)) by
    A18,
    XXREAL_0: 2;
    
          
    
          
    
    A20: (R2 
    /. ((L 
    . h) 
    + (R1 
    /. h))) 
    = (R2 
    /. ((L 
    /. h) 
    + (R1 
    /. h))) 
    
          .= (R2
    /. ((L 
    + R1) 
    /. h)) by 
    A6,
    VFUNCT_1:def 1
    
          .= ((R2
    * (L 
    + R1)) 
    /. h) by 
    A6,
    A5,
    PARTFUN2: 5;
    
          
    
          
    
    A21: 
    |.h.|
    <>  
    0 by 
    A14,
    COMPLEX1: 45;
    
          then
    |.h.|
    >  
    0 by 
    COMPLEX1: 46;
    
          then ((
    |.h.|
    " ) 
    *  
    ||.((R2
    * (L 
    + R1)) 
    /. h).||) 
    <= (( 
    |.h.|
    " ) 
    * ((e1 
    * (K 
    + 1)) 
    *  
    |.h.|)) by
    A20,
    A19,
    XREAL_1: 64;
    
          then ((
    |.h.|
    " ) 
    *  
    ||.((R2
    * (L 
    + R1)) 
    /. h).||) 
    <= ((( 
    |.h.|
    * ( 
    |.h.|
    " )) 
    * e1) 
    * (K 
    + 1)); 
    
          then ((
    |.h.|
    " ) 
    *  
    ||.((R2
    * (L 
    + R1)) 
    /. h).||) 
    <= ((1 
    * e1) 
    * (K 
    + 1)) by 
    A21,
    XCMPLX_0:def 7;
    
          then ((
    |.h.|
    " ) 
    *  
    ||.((R2
    * (L 
    + R1)) 
    /. h).||) 
    <= (e 
    / 2) by 
    XCMPLX_1: 87;
    
          hence ((
    |.hh.|
    " ) 
    *  
    ||.((R2
    * (L 
    + R1)) 
    /. hh).||) 
    < e by 
    A9,
    XXREAL_0: 2;
    
        end;
    
        
    0  
    < dd1 by 
    A1,
    A10,
    XXREAL_0: 15;
    
        hence ex dd1 be
    Real st dd1 
    >  
    0 & for h be 
    Real st h 
    <>  
    0 & 
    |.h.|
    < dd1 holds (( 
    |.h.|
    " ) 
    *  
    ||.((R2
    * (L 
    + R1)) 
    /. h).||) 
    < e by 
    A13;
    
      end;
    
      hence thesis by
    A7,
    Th1;
    
    end;
    
    theorem :: 
    
    NDIFF_5:5
    
    
    
    
    
    Th5: for R1 be 
    RestFunc of S st (R1 
    /.  
    0 ) 
    = ( 
    0. S) holds for R2 be 
    RestFunc of S, T st (R2 
    /. ( 
    0. S)) 
    = ( 
    0. T) holds for L1 be 
    LinearFunc of S holds for L2 be 
    Lipschitzian  
    LinearOperator of S, T holds ((L2 
    * R1) 
    + (R2 
    * (L1 
    + R1))) is 
    RestFunc of T 
    
    proof
    
      let R1 be
    RestFunc of S such that 
    
      
    
    A1: (R1 
    /.  
    0 ) 
    = ( 
    0. S); 
    
      let R2 be
    RestFunc of S, T such that 
    
      
    
    A2: (R2 
    /. ( 
    0. S)) 
    = ( 
    0. T); 
    
      let L1 be
    LinearFunc of S; 
    
      let L2 be
    Lipschitzian  
    LinearOperator of S, T; 
    
      (L2
    * R1) is 
    RestFunc of T & (R2 
    * (L1 
    + R1)) is 
    RestFunc of T by 
    A1,
    A2,
    Th4,
    Th3;
    
      hence thesis by
    NDIFF_3: 7;
    
    end;
    
    reconsider jj = 1 as
    Element of 
    REAL by 
    XREAL_0:def 1;
    
    theorem :: 
    
    NDIFF_5:6
    
    
    
    
    
    Th6: for x0 be 
    Real holds for g be 
    PartFunc of 
    REAL , the 
    carrier of S st g 
    is_differentiable_in x0 holds for f be 
    PartFunc of the 
    carrier of S, the 
    carrier of T st f 
    is_differentiable_in (g 
    /. x0) holds (f 
    * g) 
    is_differentiable_in x0 & ( 
    diff ((f 
    * g),x0)) 
    = (( 
    diff (f,(g 
    /. x0))) 
    . ( 
    diff (g,x0))) 
    
    proof
    
      let x0 be
    Real;
    
      let g be
    PartFunc of 
    REAL , the 
    carrier of S such that 
    
      
    
    A1: g 
    is_differentiable_in x0; 
    
      consider N1 be
    Neighbourhood of x0 such that 
    
      
    
    A2: N1 
    c= ( 
    dom g) and 
    
      
    
    A3: ex L1 be 
    LinearFunc of S, R1 be 
    RestFunc of S st ( 
    diff (g,x0)) 
    = (L1 
    /. 1) & for x be 
    Real st x 
    in N1 holds ((g 
    /. x) 
    - (g 
    /. x0)) 
    = ((L1 
    /. (x 
    - x0)) 
    + (R1 
    /. (x 
    - x0))) by 
    A1,
    NDIFF_3:def 4;
    
      let f be
    PartFunc of the 
    carrier of S, the 
    carrier of T; 
    
      assume f
    is_differentiable_in (g 
    /. x0); 
    
      then
    
      consider N2 be
    Neighbourhood of (g 
    /. x0) such that 
    
      
    
    A4: N2 
    c= ( 
    dom f) and 
    
      
    
    A5: ex R2 be 
    RestFunc of S, T st (R2 
    /. ( 
    0. S)) 
    = ( 
    0. T) & R2 
    is_continuous_in ( 
    0. S) & for y be 
    Point of S st y 
    in N2 holds ((f 
    /. y) 
    - (f 
    /. (g 
    /. x0))) 
    = ((( 
    diff (f,(g 
    /. x0))) 
    . (y 
    - (g 
    /. x0))) 
    + (R2 
    /. (y 
    - (g 
    /. x0)))) by 
    NDIFF_1: 47;
    
      consider R2 be
    RestFunc of S, T such that 
    
      
    
    A6: (R2 
    /. ( 
    0. S)) 
    = ( 
    0. T) and 
    
      
    
    A7: for y be 
    Point of S st y 
    in N2 holds ((f 
    /. y) 
    - (f 
    /. (g 
    /. x0))) 
    = ((( 
    diff (f,(g 
    /. x0))) 
    . (y 
    - (g 
    /. x0))) 
    + (R2 
    /. (y 
    - (g 
    /. x0)))) by 
    A5;
    
      reconsider L2 = (
    diff (f,(g 
    /. x0))) as 
    Lipschitzian  
    LinearOperator of S, T by 
    LOPBAN_1:def 9;
    
      consider L1 be
    LinearFunc of S, R1 be 
    RestFunc of S such that 
    
      
    
    A8: ( 
    diff (g,x0)) 
    = (L1 
    /. 1) & for x be 
    Real st x 
    in N1 holds ((g 
    /. x) 
    - (g 
    /. x0)) 
    = ((L1 
    /. (x 
    - x0)) 
    + (R1 
    /. (x 
    - x0))) by 
    A3;
    
      consider r be
    Point of S such that 
    
      
    
    A9: for p be 
    Real holds (L1 
    /. p) 
    = (p 
    * r) by 
    NDIFF_3:def 2;
    
      reconsider p0 =
    0 as 
    Element of 
    REAL by 
    XREAL_0:def 1;
    
      ((g
    /. x0) 
    - (g 
    /. x0)) 
    = ((L1 
    /. (x0 
    - x0)) 
    + (R1 
    /. (x0 
    - x0))) by 
    A8,
    RCOMP_1: 16;
    
      then (
    0. S) 
    = ((L1 
    /.  
    0 ) 
    + (R1 
    /.  
    0 )) by 
    RLVECT_1: 15;
    
      then (
    0. S) 
    = ((p0 
    * r) 
    + (R1 
    /.  
    0 )) by 
    A9;
    
      then (
    0. S) 
    = (( 
    0. S) 
    + (R1 
    /.  
    0 )) by 
    RLVECT_1: 10;
    
      then (R1
    /.  
    0 ) 
    = ( 
    0. S) by 
    RLVECT_1: 4;
    
      then
    
      reconsider R0 = ((L2
    * R1) 
    + (R2 
    * (L1 
    + R1))) as 
    RestFunc of T by 
    A6,
    Th5;
    
      
    
      
    
    A10: ( 
    dom (L2 
    * L1)) 
    =  
    REAL by 
    FUNCT_2:def 1;
    
      reconsider q = (L2
    . r) as 
    Point of T; 
    
      now
    
        let pp be
    Real;
    
        reconsider p = pp as
    Element of 
    REAL by 
    XREAL_0:def 1;
    
        (L2
    . (L1 
    /. p)) 
    = (L2 
    . (p 
    * r)) by 
    A9;
    
        then (L2
    . (L1 
    /. p)) 
    = (p 
    * q) by 
    LOPBAN_1:def 5;
    
        then ((L2
    * L1) 
    . p) 
    = (p 
    * q) by 
    A10,
    FUNCT_1: 12;
    
        hence ((L2
    * L1) 
    /. pp) 
    = (pp 
    * q) by 
    A10,
    PARTFUN1:def 6;
    
      end;
    
      then
    
      reconsider L0 = (L2
    * L1) as 
    LinearFunc of T by 
    NDIFF_3:def 2;
    
      g
    is_continuous_in x0 by 
    A1,
    NDIFF_3: 22;
    
      then
    
      consider N3 be
    Neighbourhood of x0 such that 
    
      
    
    A11: (g 
    .: N3) 
    c= N2 by 
    NFCONT_3: 10;
    
      consider N be
    Neighbourhood of x0 such that 
    
      
    
    A12: N 
    c= N1 and 
    
      
    
    A13: N 
    c= N3 by 
    RCOMP_1: 17;
    
      
    
      
    
    A14: ( 
    dom L2) 
    = the 
    carrier of S by 
    FUNCT_2:def 1;
    
      then
    
      
    
    A15: ( 
    rng R1) 
    c= ( 
    dom L2); 
    
      
    
      
    
    A16: ( 
    rng L1) 
    c= ( 
    dom L2) by 
    A14;
    
      now
    
        let x be
    object;
    
        assume
    
        
    
    A17: x 
    in N; 
    
        then
    
        reconsider x9 = x as
    Real;
    
        
    
        
    
    A18: x 
    in N1 by 
    A12,
    A17;
    
        then (g
    . x9) 
    in (g 
    .: N3) by 
    A2,
    A13,
    A17,
    FUNCT_1:def 6;
    
        then (g
    . x9) 
    in N2 by 
    A11;
    
        hence x
    in ( 
    dom (f 
    * g)) by 
    A2,
    A4,
    A18,
    FUNCT_1: 11;
    
      end;
    
      then
    
      
    
    A19: N 
    c= ( 
    dom (f 
    * g)); 
    
      
    
    A20: 
    
      now
    
        let x be
    Real such that 
    
        
    
    A21: x 
    in N; 
    
        
    
        
    
    A22: ((g 
    /. x) 
    - (g 
    /. x0)) 
    = ((L1 
    /. (x 
    - x0)) 
    + (R1 
    /. (x 
    - x0))) by 
    A8,
    A12,
    A21;
    
        x
    in N1 by 
    A12,
    A21;
    
        then (g
    . x) 
    in (g 
    .: N3) by 
    A2,
    A13,
    A21,
    FUNCT_1:def 6;
    
        then (g
    . x) 
    in N2 by 
    A11;
    
        then
    
        
    
    A24: (g 
    /. x) 
    in N2 by 
    A2,
    A12,
    A21,
    PARTFUN1:def 6;
    
        
    
        
    
    A25: x0 
    in N by 
    RCOMP_1: 16;
    
        
    
        
    
    A26: R1 is 
    total by 
    NDIFF_3:def 1;
    
        then
    
        
    
    A27: ( 
    dom R1) 
    =  
    REAL by 
    PARTFUN1:def 2;
    
        
    
        
    
    A28: ( 
    dom (L2 
    * R1)) 
    =  
    REAL by 
    A26,
    PARTFUN1:def 2;
    
        (L1
    + R1) is 
    total by 
    A26,
    VFUNCT_1: 32;
    
        then
    
        
    
    A29: ( 
    dom (L1 
    + R1)) 
    =  
    REAL by 
    PARTFUN1:def 2;
    
        R2 is
    total by 
    NDIFF_1:def 5;
    
        then (
    dom R2) 
    = the 
    carrier of S by 
    PARTFUN1:def 2;
    
        then
    
        
    
    A30: ( 
    rng (L1 
    + R1)) 
    c= ( 
    dom R2); 
    
        then (
    dom (R2 
    * (L1 
    + R1))) 
    = ( 
    dom (L1 
    + R1)) by 
    RELAT_1: 27;
    
        then
    
        
    
    A31: ( 
    dom ((L2 
    * R1) 
    + (R2 
    * (L1 
    + R1)))) 
    = ( 
    REAL  
    /\  
    REAL ) by 
    A28,
    A29,
    VFUNCT_1:def 1;
    
        reconsider dxx0 = (x
    - x0) as 
    Element of 
    REAL by 
    XREAL_0:def 1;
    
        (L2
    . (R1 
    /. (x 
    - x0))) 
    = (L2 
    /. (R1 
    /. (x 
    - x0))); 
    
        then
    
        
    
    A32: (L2 
    . (R1 
    /. (x 
    - x0))) 
    = ((L2 
    * R1) 
    /. dxx0) by 
    A27,
    A15,
    PARTFUN2: 5;
    
        
    
        
    
    A33: (R2 
    /. ((L1 
    /. (x 
    - x0)) 
    + (R1 
    /. (x 
    - x0)))) 
    = (R2 
    /. ((L1 
    + R1) 
    /. dxx0)) by 
    A29,
    VFUNCT_1:def 1
    
        .= ((R2
    * (L1 
    + R1)) 
    /. dxx0) by 
    A29,
    A30,
    PARTFUN2: 5;
    
        
    
        
    
    A34: ( 
    dom L1) 
    =  
    REAL by 
    FUNCT_2:def 1;
    
        
    
        
    
    A35: ((L2 
    * L1) 
    /. (x 
    - x0)) 
    = (L2 
    /. (L1 
    /. dxx0)) by 
    PARTFUN2: 5,
    A34,
    A16;
    
        
    
        thus (((f
    * g) 
    /. x) 
    - ((f 
    * g) 
    /. x0)) 
    = ((f 
    /. (g 
    /. x)) 
    - ((f 
    * g) 
    /. x0)) by 
    A19,
    A21,
    PARTFUN2: 3
    
        .= ((f
    /. (g 
    /. x)) 
    - (f 
    /. (g 
    /. x0))) by 
    A19,
    A25,
    PARTFUN2: 3
    
        .= (((
    diff (f,(g 
    /. x0))) 
    . ((g 
    /. x) 
    - (g 
    /. x0))) 
    + (R2 
    /. ((g 
    /. x) 
    - (g 
    /. x0)))) by 
    A7,
    A24
    
        .= (((L2
    . (L1 
    /. (x 
    - x0))) 
    + (L2 
    . (R1 
    /. (x 
    - x0)))) 
    + ((R2 
    * (L1 
    + R1)) 
    /. (x 
    - x0))) by 
    A22,
    A33,
    VECTSP_1:def 20
    
        .= ((L2
    . (L1 
    /. (x 
    - x0))) 
    + (((L2 
    * R1) 
    /. (x 
    - x0)) 
    + ((R2 
    * (L1 
    + R1)) 
    /. (x 
    - x0)))) by 
    A32,
    RLVECT_1:def 3
    
        .= ((L0
    /. (x 
    - x0)) 
    + (R0 
    /. (x 
    - x0))) by 
    A35,
    A31,
    VFUNCT_1:def 1;
    
      end;
    
      hence
    
      
    
    A36: (f 
    * g) 
    is_differentiable_in x0 by 
    A19,
    NDIFF_3:def 3;
    
      (
    dom L1) 
    =  
    REAL by 
    FUNCT_2:def 1;
    
      
    
      then ((L2
    * L1) 
    /. 1) 
    = (L2 
    /. (L1 
    /. jj)) by 
    PARTFUN2: 5,
    A16
    
      .= ((
    diff (f,(g 
    /. x0))) 
    . ( 
    diff (g,x0))) by 
    A8;
    
      hence thesis by
    A36,
    A19,
    A20,
    NDIFF_3:def 4;
    
    end;
    
    theorem :: 
    
    NDIFF_5:7
    
    
    
    
    
    Th7: for S be 
    RealNormSpace, xseq be 
    FinSequence of S, yseq be 
    FinSequence of 
    REAL st ( 
    len xseq) 
    = ( 
    len yseq) & (for i be 
    Element of 
    NAT st i 
    in ( 
    dom xseq) holds (yseq 
    . i) 
    =  
    ||.(xseq
    /. i).||) holds 
    ||.(
    Sum xseq).|| 
    <= ( 
    Sum yseq) 
    
    proof
    
      let S be
    RealNormSpace, xseq be 
    FinSequence of S, yseq be 
    FinSequence of 
    REAL ; 
    
      assume that
    
      
    
    A1: ( 
    len xseq) 
    = ( 
    len yseq) and 
    
      
    
    A2: for i be 
    Element of 
    NAT st i 
    in ( 
    dom xseq) holds (yseq 
    . i) 
    =  
    ||.(xseq
    /. i).||; 
    
      defpred
    
    P[
    Nat] means for xseq be
    FinSequence of S, yseq be 
    FinSequence of 
    REAL st $1 
    = ( 
    len xseq) & ( 
    len xseq) 
    = ( 
    len yseq) & (for i be 
    Element of 
    NAT st i 
    in ( 
    dom xseq) holds (yseq 
    . i) 
    =  
    ||.(xseq
    /. i).||) holds 
    ||.(
    Sum xseq).|| 
    <= ( 
    Sum yseq); 
    
      
    
      
    
    A3: 
    P[
    0 ] 
    
      proof
    
        let xseq be
    FinSequence of S, yseq be 
    FinSequence of 
    REAL ; 
    
        assume
    
        
    
    A4: 
    0  
    = ( 
    len xseq) & ( 
    len xseq) 
    = ( 
    len yseq) & (for i be 
    Element of 
    NAT st i 
    in ( 
    dom xseq) holds (yseq 
    . i) 
    =  
    ||.(xseq
    /. i).||); 
    
        consider Sx be
    sequence of the 
    carrier of S such that 
    
        
    
    A5: ( 
    Sum xseq) 
    = (Sx 
    . ( 
    len xseq)) & (Sx 
    .  
    0 ) 
    = ( 
    0. S) & for j be 
    Nat, v be 
    Element of S st j 
    < ( 
    len xseq) & v 
    = (xseq 
    . (j 
    + 1)) holds (Sx 
    . (j 
    + 1)) 
    = ((Sx 
    . j) 
    + v) by 
    RLVECT_1:def 12;
    
        yseq
    =  
    {} by 
    A4;
    
        hence thesis by
    A4,
    A5,
    RVSUM_1: 72;
    
      end;
    
      
    
    A6: 
    
      now
    
        let i be
    Nat;
    
        assume
    
        
    
    A7: 
    P[i];
    
        now
    
          let xseq be
    FinSequence of S, yseq be 
    FinSequence of 
    REAL ; 
    
          set xseq0 = (xseq
    | i), yseq0 = (yseq 
    | i); 
    
          assume
    
          
    
    A8: (i 
    + 1) 
    = ( 
    len xseq) & ( 
    len xseq) 
    = ( 
    len yseq) & (for i be 
    Element of 
    NAT st i 
    in ( 
    dom xseq) holds (yseq 
    . i) 
    =  
    ||.(xseq
    /. i).||); 
    
          
    
          
    
    A9: for k be 
    Element of 
    NAT st k 
    in ( 
    dom xseq0) holds (yseq0 
    . k) 
    =  
    ||.(xseq0
    /. k).|| 
    
          proof
    
            let k be
    Element of 
    NAT ; 
    
            assume
    
            
    
    A10: k 
    in ( 
    dom xseq0); 
    
            then
    
            
    
    A11: k 
    in ( 
    Seg i) & k 
    in ( 
    dom xseq) by 
    RELAT_1: 57;
    
            then
    
            
    
    A12: (yseq 
    . k) 
    =  
    ||.(xseq
    /. k).|| by 
    A8;
    
            (xseq
    /. k) 
    = (xseq 
    . k) by 
    A11,
    PARTFUN1:def 6;
    
            then (xseq
    /. k) 
    = (xseq0 
    . k) by 
    A11,
    FUNCT_1: 49;
    
            then (xseq
    /. k) 
    = (xseq0 
    /. k) by 
    A10,
    PARTFUN1:def 6;
    
            hence thesis by
    A11,
    A12,
    FUNCT_1: 49;
    
          end;
    
          
    
          
    
    A13: ( 
    dom xseq) 
    = ( 
    Seg (i 
    + 1)) by 
    A8,
    FINSEQ_1:def 3;
    
          then
    
          
    
    A14: (yseq 
    . (i 
    + 1)) 
    =  
    ||.(xseq
    /. (i 
    + 1)).|| by 
    A8,
    FINSEQ_1: 4;
    
          
    
          
    
    A15: 1 
    <= (i 
    + 1) by 
    NAT_1: 11;
    
          yseq
    = ((yseq 
    | i) 
    ^  
    <*(yseq
    /. (i 
    + 1))*>) by 
    A8,
    FINSEQ_5: 21;
    
          then yseq
    = (yseq0 
    ^  
    <*(yseq
    . (i 
    + 1))*>) by 
    A8,
    A15,
    FINSEQ_4: 15;
    
          then
    
          
    
    A16: ( 
    Sum yseq) 
    = (( 
    Sum yseq0) 
    + (yseq 
    . (i 
    + 1))) by 
    RVSUM_1: 74;
    
          reconsider v = (xseq
    . ( 
    len xseq)) as 
    Element of S by 
    A13,
    A8,
    FINSEQ_1: 4,
    PARTFUN1: 4;
    
          
    
          
    
    A18: v 
    = (xseq 
    /. (i 
    + 1)) by 
    A8,
    A13,
    FINSEQ_1: 4,
    PARTFUN1:def 6;
    
          
    
          
    
    A19: i 
    = ( 
    len xseq0) by 
    A8,
    FINSEQ_1: 59,
    NAT_1: 11;
    
          then xseq0
    = (xseq 
    | ( 
    dom xseq0)) by 
    FINSEQ_1:def 3;
    
          then
    
          
    
    A20: ( 
    Sum xseq) 
    = (( 
    Sum xseq0) 
    + v) by 
    A8,
    A19,
    RLVECT_1: 38;
    
          
    
          
    
    A21: 
    ||.((
    Sum xseq0) 
    + v).|| 
    <= ( 
    ||.(
    Sum xseq0).|| 
    +  
    ||.v.||) by
    NORMSP_1:def 1;
    
          (
    len xseq0) 
    = ( 
    len yseq0) by 
    A8,
    A19,
    FINSEQ_1: 59,
    NAT_1: 11;
    
          then (
    ||.(
    Sum xseq0).|| 
    +  
    ||.v.||)
    <= (( 
    Sum yseq0) 
    + (yseq 
    . (i 
    + 1))) by 
    A7,
    A9,
    A19,
    A14,
    A18,
    XREAL_1: 6;
    
          hence
    ||.(
    Sum xseq).|| 
    <= ( 
    Sum yseq) by 
    A16,
    A20,
    A21,
    XXREAL_0: 2;
    
        end;
    
        hence
    P[(i
    + 1)]; 
    
      end;
    
      for i be
    Nat holds 
    P[i] from
    NAT_1:sch 2(
    A3,
    A6);
    
      hence thesis by
    A1,
    A2;
    
    end;
    
    theorem :: 
    
    NDIFF_5:8
    
    
    
    
    
    Th8: for S be 
    RealNormSpace, x be 
    Point of S, N1,N2 be 
    Neighbourhood of x holds (N1 
    /\ N2) is 
    Neighbourhood of x 
    
    proof
    
      let S be
    RealNormSpace, x be 
    Point of S, N1,N2 be 
    Neighbourhood of x; 
    
      consider N be
    Neighbourhood of x such that 
    
      
    
    A1: N 
    c= N1 & N 
    c= N2 by 
    NDIFF_1: 1;
    
      
    
      
    
    A2: N 
    c= (N1 
    /\ N2) by 
    A1,
    XBOOLE_1: 19;
    
      consider g be
    Real such that 
    
      
    
    A3: 
    0  
    < g and 
    
      
    
    A4: { y where y be 
    Point of S : 
    ||.(y
    - x).|| 
    < g } 
    c= N by 
    NFCONT_1:def 1;
    
      { y where y be
    Point of S : 
    ||.(y
    - x).|| 
    < g } 
    c= (N1 
    /\ N2) by 
    A2,
    A4;
    
      hence thesis by
    A3,
    NFCONT_1:def 1;
    
    end;
    
    theorem :: 
    
    NDIFF_5:9
    
    
    
    
    
    Th9: for X be 
    non-empty  
    FinSequence, x be 
    set st x 
    in ( 
    product X) holds x is 
    FinSequence
    
    proof
    
      let X be
    non-empty  
    FinSequence, x be 
    set;
    
      assume x
    in ( 
    product X); 
    
      then
    
      consider g be
    Function such that 
    
      
    
    A1: x 
    = g & ( 
    dom g) 
    = ( 
    dom X) & for i be 
    object st i 
    in ( 
    dom X) holds (g 
    . i) 
    in (X 
    . i) by 
    CARD_3:def 5;
    
      (
    dom g) 
    = ( 
    Seg ( 
    len X)) by 
    A1,
    FINSEQ_1:def 3;
    
      hence x is
    FinSequence by 
    A1,
    FINSEQ_1:def 2;
    
    end;
    
    registration
    
      let G be
    RealNormSpace-Sequence;
    
      cluster ( 
    product G) -> 
    constituted-FinSeqs;
    
      coherence
    
      proof
    
        let a be
    Element of ( 
    product G); 
    
        (
    product G) 
    =  
    NORMSTR (# ( 
    product ( 
    carr G)), ( 
    zeros G), 
    [:(
    addop G):], 
    [:(
    multop G):], ( 
    productnorm G) #) by 
    PRVECT_2: 6;
    
        hence thesis by
    Th9;
    
      end;
    
    end
    
    
    
    Lm1: 
    
    now
    
      let G be
    RealLinearSpace-Sequence;
    
      (
    len ( 
    carr G)) 
    = ( 
    len G) by 
    PRVECT_1:def 11;
    
      
    
      hence (
    dom ( 
    carr G)) 
    = ( 
    Seg ( 
    len G)) by 
    FINSEQ_1:def 3
    
      .= (
    dom G) by 
    FINSEQ_1:def 3;
    
    end;
    
    definition
    
      let G be
    RealLinearSpace-Sequence;
    
      let z be
    Element of ( 
    product ( 
    carr G)); 
    
      let j be
    Element of ( 
    dom G); 
    
      :: original:
    .
    
      redefine
    
      func z
    
    . j -> 
    Element of (G 
    . j) ; 
    
      correctness
    
      proof
    
        reconsider zz = z as
    FinSequence by 
    Th9;
    
        (
    dom ( 
    carr G)) 
    = ( 
    dom G) by 
    Lm1;
    
        then (zz
    . j) 
    in (( 
    carr G) 
    . j) by 
    CARD_3: 9;
    
        hence thesis by
    PRVECT_1:def 11;
    
      end;
    
    end
    
    theorem :: 
    
    NDIFF_5:10
    
    
    
    
    
    Th10: the 
    carrier of ( 
    product G) 
    = ( 
    product ( 
    carr G)) 
    
    proof
    
      (
    product G) 
    =  
    NORMSTR (# ( 
    product ( 
    carr G)), ( 
    zeros G), 
    [:(
    addop G):], 
    [:(
    multop G):], ( 
    productnorm G) #) by 
    PRVECT_2: 6;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    NDIFF_5:11
    
    
    
    
    
    Th11: for i be 
    Element of ( 
    dom G), r be 
    set, x be 
    Function st r 
    in the 
    carrier of (G 
    . i) & x 
    in ( 
    product ( 
    carr G)) holds (x 
    +* (i,r)) 
    in the 
    carrier of ( 
    product G) 
    
    proof
    
      let i be
    Element of ( 
    dom G), r be 
    set, x be 
    Function;
    
      assume
    
      
    
    A1: r 
    in the 
    carrier of (G 
    . i) & x 
    in ( 
    product ( 
    carr G)); 
    
      then
    
      consider g be
    Function such that 
    
      
    
    A2: x 
    = g & ( 
    dom g) 
    = ( 
    dom ( 
    carr G)) & for i be 
    object st i 
    in ( 
    dom ( 
    carr G)) holds (g 
    . i) 
    in (( 
    carr G) 
    . i) by 
    CARD_3:def 5;
    
      set h = (x
    +* (i,r)); 
    
      set s = (i
    .--> r); 
    
      s
    = ( 
    {i}
    --> r) by 
    FUNCOP_1:def 9;
    
      then
    
      
    
    A3: ( 
    dom s) 
    =  
    {i};
    
      
    
      
    
    A4: ( 
    dom h) 
    = ( 
    dom ( 
    carr G)) by 
    A2,
    FUNCT_7: 30;
    
      for j be
    object st j 
    in ( 
    dom ( 
    carr G)) holds (h 
    . j) 
    in (( 
    carr G) 
    . j) 
    
      proof
    
        let j be
    object;
    
        assume
    
        
    
    A5: j 
    in ( 
    dom ( 
    carr G)); 
    
        per cases ;
    
          suppose not j
    in ( 
    dom s); 
    
          then j
    <> i by 
    A3,
    TARSKI:def 1;
    
          then (h
    . j) 
    = (x 
    . j) by 
    FUNCT_7: 32;
    
          hence (h
    . j) 
    in (( 
    carr G) 
    . j) by 
    A2,
    A5;
    
        end;
    
          suppose j
    in ( 
    dom s); 
    
          then
    
          
    
    A6: j 
    = i by 
    TARSKI:def 1;
    
          then (h
    . j) 
    = r by 
    A5,
    A2,
    FUNCT_7: 31;
    
          hence (h
    . j) 
    in (( 
    carr G) 
    . j) by 
    A1,
    A6,
    PRVECT_1:def 11;
    
        end;
    
      end;
    
      then (x
    +* (i,r)) 
    in ( 
    product ( 
    carr G)) by 
    A4,
    CARD_3:def 5;
    
      hence thesis by
    Th10;
    
    end;
    
    definition
    
      let G be
    RealNormSpace-Sequence;
    
      :: 
    
    NDIFF_5:def1
    
      attr G is
    
    non-trivial means 
    
      :
    
    Def1: for j be 
    Element of ( 
    dom G) holds (G 
    . j) is non 
    trivial;
    
    end
    
    registration
    
      cluster 
    non-trivial for 
    RealNormSpace-Sequence;
    
      correctness
    
      proof
    
        take G =
    <* the non 
    trivial  
    RealNormSpace*>;
    
        let j be
    Element of ( 
    dom G); 
    
        (
    dom G) 
    = ( 
    Seg 1) by 
    FINSEQ_1: 38;
    
        then j
    = 1 by 
    FINSEQ_1: 2,
    TARSKI:def 1;
    
        hence thesis by
    FINSEQ_1: 40;
    
      end;
    
    end
    
    registration
    
      let G be
    non-trivial  
    RealNormSpace-Sequence;
    
      let i be
    Element of ( 
    dom G); 
    
      cluster (G 
    . i) -> non 
    trivial;
    
      correctness by
    Def1;
    
    end
    
    registration
    
      let G be
    non-trivial  
    RealNormSpace-Sequence;
    
      cluster ( 
    product G) -> non 
    trivial;
    
      correctness
    
      proof
    
        
    
        
    
    A1: the 
    carrier of ( 
    product G) 
    = ( 
    product ( 
    carr G)) by 
    Th10;
    
         not for x,y be
    set st x 
    in ( 
    product ( 
    carr G)) & y 
    in ( 
    product ( 
    carr G)) holds x 
    = y 
    
        proof
    
          assume
    
          
    
    A2: for x,y be 
    set st x 
    in ( 
    product ( 
    carr G)) & y 
    in ( 
    product ( 
    carr G)) holds x 
    = y; 
    
          consider z be
    object such that 
    
          
    
    A3: z 
    in ( 
    product ( 
    carr G)) by 
    XBOOLE_0:def 1;
    
          consider g be
    Function such that 
    
          
    
    A4: z 
    = g & ( 
    dom g) 
    = ( 
    dom ( 
    carr G)) & for i be 
    object st i 
    in ( 
    dom ( 
    carr G)) holds (g 
    . i) 
    in (( 
    carr G) 
    . i) by 
    A3,
    CARD_3:def 5;
    
          set i = the
    Element of ( 
    dom G); 
    
          now
    
            let r,s be
    object;
    
            assume
    
            
    
    A5: r 
    in the 
    carrier of (G 
    . i) & s 
    in the 
    carrier of (G 
    . i); 
    
            (g
    +* (i,r)) 
    in the 
    carrier of ( 
    product G) & (g 
    +* (i,s)) 
    in the 
    carrier of ( 
    product G) by 
    Th11,
    A3,
    A4,
    A5;
    
            then (g
    +* (i,r)) 
    in ( 
    product ( 
    carr G)) & (g 
    +* (i,s)) 
    in ( 
    product ( 
    carr G)) by 
    Th10;
    
            then
    
            
    
    A6: (g 
    +* (i,r)) 
    = (g 
    +* (i,s)) by 
    A2;
    
            i
    in ( 
    dom G); 
    
            then
    
            
    
    A7: i 
    in ( 
    dom g) by 
    A4,
    Lm1;
    
            then ((g
    +* (i,r)) 
    . i) 
    = r by 
    FUNCT_7: 31;
    
            hence r
    = s by 
    A6,
    A7,
    FUNCT_7: 31;
    
          end;
    
          hence contradiction by
    ZFMISC_1:def 10;
    
        end;
    
        hence thesis by
    A1;
    
      end;
    
    end
    
    theorem :: 
    
    NDIFF_5:12
    
    
    
    
    
    Th12: for G be 
    RealNormSpace-Sequence, p,q be 
    Point of ( 
    product G), r0,p0,q0 be 
    Element of ( 
    product ( 
    carr G)) st p 
    = p0 & q 
    = q0 holds (p 
    + q) 
    = r0 iff for i be 
    Element of ( 
    dom G) holds (r0 
    . i) 
    = ((p0 
    . i) 
    + (q0 
    . i)) 
    
    proof
    
      let G be
    RealNormSpace-Sequence, p,q be 
    Point of ( 
    product G), r0,p0,q0 be 
    Element of ( 
    product ( 
    carr G)); 
    
      assume
    
      
    
    A1: p 
    = p0 & q 
    = q0; 
    
      (
    len ( 
    carr G)) 
    = ( 
    len G) by 
    PRVECT_1:def 11;
    
      
    
      then
    
      
    
    A2: ( 
    dom ( 
    carr G)) 
    = ( 
    Seg ( 
    len G)) by 
    FINSEQ_1:def 3
    
      .= (
    dom G) by 
    FINSEQ_1:def 3;
    
      
    
      
    
    A3: ( 
    product G) 
    =  
    NORMSTR (# ( 
    product ( 
    carr G)), ( 
    zeros G), 
    [:(
    addop G):], 
    [:(
    multop G):], ( 
    productnorm G) #) by 
    PRVECT_2: 6;
    
      hereby
    
        assume
    
        
    
    A4: (p 
    + q) 
    = r0; 
    
        hereby
    
          let i be
    Element of ( 
    dom G); 
    
          reconsider i0 = i as
    Element of ( 
    dom ( 
    carr G)) by 
    A2;
    
          ((
    addop G) 
    . i0) 
    = the 
    addF of (G 
    . i0) by 
    PRVECT_1:def 12;
    
          hence (r0
    . i) 
    = ((p0 
    . i) 
    + (q0 
    . i)) by 
    A1,
    A4,
    A3,
    PRVECT_1:def 8;
    
        end;
    
      end;
    
      assume
    
      
    
    A5: for i be 
    Element of ( 
    dom G) holds (r0 
    . i) 
    = ((p0 
    . i) 
    + (q0 
    . i)); 
    
      reconsider pq = (p
    + q) as 
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      
    
      
    
    A6: ex g be 
    Function st pq 
    = g & ( 
    dom g) 
    = ( 
    dom ( 
    carr G)) & for i be 
    object st i 
    in ( 
    dom ( 
    carr G)) holds (g 
    . i) 
    in (( 
    carr G) 
    . i) by 
    CARD_3:def 5;
    
      
    
      
    
    A7: ex g be 
    Function st r0 
    = g & ( 
    dom g) 
    = ( 
    dom ( 
    carr G)) & for i be 
    object st i 
    in ( 
    dom ( 
    carr G)) holds (g 
    . i) 
    in (( 
    carr G) 
    . i) by 
    CARD_3:def 5;
    
      now
    
        let i0 be
    object;
    
        assume
    
        
    
    A8: i0 
    in ( 
    dom pq); 
    
        then
    
        reconsider i1 = i0 as
    Element of ( 
    dom G) by 
    A2,
    A6;
    
        reconsider i = i0 as
    Element of ( 
    dom ( 
    carr G)) by 
    A8,
    A6;
    
        ((
    addop G) 
    . i) 
    = the 
    addF of (G 
    . i) by 
    PRVECT_1:def 12;
    
        then (pq
    . i0) 
    = ((p0 
    . i1) 
    + (q0 
    . i1)) by 
    A1,
    A3,
    PRVECT_1:def 8;
    
        hence (pq
    . i0) 
    = (r0 
    . i0) by 
    A5;
    
      end;
    
      hence (p
    + q) 
    = r0 by 
    A6,
    A7,
    FUNCT_1: 2;
    
    end;
    
    theorem :: 
    
    NDIFF_5:13
    
    
    
    
    
    Th13: for G be 
    RealNormSpace-Sequence, p be 
    Point of ( 
    product G), r be 
    Real, r0,p0 be 
    Element of ( 
    product ( 
    carr G)) st p 
    = p0 holds (r 
    * p) 
    = r0 iff for i be 
    Element of ( 
    dom G) holds (r0 
    . i) 
    = (r 
    * (p0 
    . i)) 
    
    proof
    
      let G be
    RealNormSpace-Sequence, p be 
    Point of ( 
    product G), r be 
    Real, r0,p0 be 
    Element of ( 
    product ( 
    carr G)); 
    
      assume
    
      
    
    A1: p 
    = p0; 
    
      hereby
    
        assume
    
        
    
    A2: (r 
    * p) 
    = r0; 
    
        hereby
    
          let i be
    Element of ( 
    dom G); 
    
          reconsider i0 = i as
    Element of ( 
    dom ( 
    carr G)) by 
    Lm1;
    
          
    
          
    
    A3: (( 
    multop G) 
    . i0) 
    = the 
    Mult of (G 
    . i0) by 
    PRVECT_2:def 8;
    
          reconsider rr = r as
    Element of 
    REAL by 
    XREAL_0:def 1;
    
          (
    product G) 
    =  
    NORMSTR (# ( 
    product ( 
    carr G)), ( 
    zeros G), 
    [:(
    addop G):], 
    [:(
    multop G):], ( 
    productnorm G) #) by 
    PRVECT_2: 6;
    
          
    
          hence (r0
    . i) 
    = (rr 
    * (p0 
    . i)) by 
    A1,
    A2,
    A3,
    PRVECT_2:def 2
    
          .= (r
    * (p0 
    . i)); 
    
        end;
    
      end;
    
      assume
    
      
    
    A4: for i be 
    Element of ( 
    dom G) holds (r0 
    . i) 
    = (r 
    * (p0 
    . i)); 
    
      reconsider rp = (r
    * p) as 
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      
    
      
    
    A5: ex g be 
    Function st rp 
    = g & ( 
    dom g) 
    = ( 
    dom ( 
    carr G)) & for i be 
    object st i 
    in ( 
    dom ( 
    carr G)) holds (g 
    . i) 
    in (( 
    carr G) 
    . i) by 
    CARD_3:def 5;
    
      
    
      
    
    A6: ex g be 
    Function st r0 
    = g & ( 
    dom g) 
    = ( 
    dom ( 
    carr G)) & for i be 
    object st i 
    in ( 
    dom ( 
    carr G)) holds (g 
    . i) 
    in (( 
    carr G) 
    . i) by 
    CARD_3:def 5;
    
      now
    
        let i0 be
    object;
    
        assume
    
        
    
    A7: i0 
    in ( 
    dom rp); 
    
        then
    
        reconsider i1 = i0 as
    Element of ( 
    dom G) by 
    Lm1,
    A5;
    
        reconsider i = i0 as
    Element of ( 
    dom ( 
    carr G)) by 
    A7,
    A5;
    
        
    
        
    
    A8: ( 
    product G) 
    =  
    NORMSTR (# ( 
    product ( 
    carr G)), ( 
    zeros G), 
    [:(
    addop G):], 
    [:(
    multop G):], ( 
    productnorm G) #) by 
    PRVECT_2: 6;
    
        reconsider r as
    Element of 
    REAL by 
    XREAL_0:def 1;
    
        ((
    multop G) 
    . i) 
    = the 
    Mult of (G 
    . i) by 
    PRVECT_2:def 8;
    
        then (rp
    . i0) 
    = (r 
    * (p0 
    . i1)) by 
    A1,
    A8,
    PRVECT_2:def 2;
    
        hence (rp
    . i0) 
    = (r0 
    . i0) by 
    A4;
    
      end;
    
      hence (r
    * p) 
    = r0 by 
    A5,
    A6,
    FUNCT_1: 2;
    
    end;
    
    theorem :: 
    
    NDIFF_5:14
    
    
    
    
    
    Th14: for G be 
    RealNormSpace-Sequence, p0 be 
    Element of ( 
    product ( 
    carr G)) holds ( 
    0. ( 
    product G)) 
    = p0 iff for i be 
    Element of ( 
    dom G) holds (p0 
    . i) 
    = ( 
    0. (G 
    . i)) 
    
    proof
    
      let G be
    RealNormSpace-Sequence, p0 be 
    Element of ( 
    product ( 
    carr G)); 
    
      
    
      
    
    A1: ( 
    dom ( 
    carr G)) 
    = ( 
    dom G) by 
    Lm1;
    
      
    
      
    
    A2: ( 
    product G) 
    =  
    NORMSTR (# ( 
    product ( 
    carr G)), ( 
    zeros G), 
    [:(
    addop G):], 
    [:(
    multop G):], ( 
    productnorm G) #) by 
    PRVECT_2: 6;
    
      hence (
    0. ( 
    product G)) 
    = p0 implies for i be 
    Element of ( 
    dom G) holds (p0 
    . i) 
    = ( 
    0. (G 
    . i)) by 
    A1,
    PRVECT_1:def 14;
    
      assume
    
      
    
    A3: for i be 
    Element of ( 
    dom G) holds (p0 
    . i) 
    = ( 
    0. (G 
    . i)); 
    
      now
    
        let i0 be
    Element of ( 
    dom ( 
    carr G)); 
    
        reconsider i = i0 as
    Element of ( 
    dom G) by 
    Lm1;
    
        (p0
    . i) 
    = ( 
    0. (G 
    . i)) by 
    A3;
    
        hence (p0
    . i0) 
    = ( 
    0. (G 
    . i0)); 
    
      end;
    
      hence (
    0. ( 
    product G)) 
    = p0 by 
    A2,
    PRVECT_1:def 14;
    
    end;
    
    theorem :: 
    
    NDIFF_5:15
    
    
    
    
    
    Th15: for G be 
    RealNormSpace-Sequence, p,q be 
    Point of ( 
    product G), r0,p0,q0 be 
    Element of ( 
    product ( 
    carr G)) st p 
    = p0 & q 
    = q0 holds (p 
    - q) 
    = r0 iff for i be 
    Element of ( 
    dom G) holds (r0 
    . i) 
    = ((p0 
    . i) 
    - (q0 
    . i)) 
    
    proof
    
      let G be
    RealNormSpace-Sequence, p,q be 
    Point of ( 
    product G), r0,p0,q0 be 
    Element of ( 
    product ( 
    carr G)); 
    
      assume
    
      
    
    A1: p 
    = p0 & q 
    = q0; 
    
      reconsider qq0 = ((
    - 1) 
    * q) as 
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      
    
      
    
    A2: (p 
    - q) 
    = (p 
    + (( 
    - 1) 
    * q)) by 
    RLVECT_1: 16;
    
      hereby
    
        assume
    
        
    
    A3: (p 
    - q) 
    = r0; 
    
        thus for i be
    Element of ( 
    dom G) holds (r0 
    . i) 
    = ((p0 
    . i) 
    - (q0 
    . i)) 
    
        proof
    
          let i be
    Element of ( 
    dom G); 
    
          
    
          
    
    A4: (r0 
    . i) 
    = ((p0 
    . i) 
    + (qq0 
    . i)) by 
    Th12,
    A3,
    A1,
    A2;
    
          (qq0
    . i) 
    = (( 
    - 1) 
    * (q0 
    . i)) by 
    A1,
    Th13;
    
          hence thesis by
    A4,
    RLVECT_1: 16;
    
        end;
    
      end;
    
      assume
    
      
    
    A5: for i be 
    Element of ( 
    dom G) holds (r0 
    . i) 
    = ((p0 
    . i) 
    - (q0 
    . i)); 
    
      now
    
        let i be
    Element of ( 
    dom G); 
    
        
    
        
    
    A6: (qq0 
    . i) 
    = (( 
    - 1) 
    * (q0 
    . i)) by 
    A1,
    Th13;
    
        (r0
    . i) 
    = ((p0 
    . i) 
    - (q0 
    . i)) by 
    A5;
    
        hence (r0
    . i) 
    = ((p0 
    . i) 
    + (qq0 
    . i)) by 
    A6,
    RLVECT_1: 16;
    
      end;
    
      hence (p
    - q) 
    = r0 by 
    A2,
    Th12,
    A1;
    
    end;
    
    begin
    
    
    
    Lm2: 
    
    now
    
      let S be
    RealLinearSpace;
    
      let p,q be
    Point of S; 
    
      let z1 be
    Real;
    
      
    
      thus (p
    + (z1 
    * (q 
    - p))) 
    = (p 
    + ((z1 
    * q) 
    + (z1 
    * ( 
    - p)))) by 
    RLVECT_1:def 5
    
      .= (p
    + ((z1 
    * q) 
    + ( 
    - (z1 
    * p)))) by 
    RLVECT_1: 25
    
      .= ((p
    + ( 
    - (z1 
    * p))) 
    + (z1 
    * q)) by 
    RLVECT_1:def 3
    
      .= (((1
    * p) 
    - (z1 
    * p)) 
    + (z1 
    * q)) by 
    RLVECT_1:def 8
    
      .= (((1
    - z1) 
    * p) 
    + (z1 
    * q)) by 
    RLVECT_1: 35;
    
    end;
    
    notation
    
      let S be
    RealLinearSpace;
    
      let p,q be
    Point of S; 
    
      synonym 
    
    [.p,q.] for
    LSeg (p,q); 
    
    end
    
    definition
    
      let S be
    RealLinearSpace;
    
      let p,q be
    Point of S; 
    
      :: 
    
    NDIFF_5:def2
    
      func
    
    ].p,q.[ ->
    Subset of S equals ( 
    [.p, q.]
    \  
    {p, q});
    
      correctness ;
    
    end
    
    theorem :: 
    
    NDIFF_5:16
    
    
    
    
    
    LMOPN: for S be 
    RealLinearSpace, p,q be 
    Point of S st p 
    <> q holds 
    ].p, q.[
    = { (p 
    + (t 
    * (q 
    - p))) where t be 
    Real : 
    0  
    < t & t 
    < 1 } 
    
    proof
    
      let S be
    RealLinearSpace, p,q be 
    Point of S; 
    
      assume
    
      
    
    AS1: p 
    <> q; 
    
      set A = { (p
    + (t 
    * (q 
    - p))) where t be 
    Real : 
    0  
    < t & t 
    < 1 }; 
    
      for x be
    object holds (x 
    in  
    ].p, q.[ iff x
    in A) 
    
      proof
    
        let x be
    object;
    
        hereby
    
          assume x
    in  
    ].p, q.[;
    
          then
    
          
    
    P1: x 
    in  
    [.p, q.] & not x
    in  
    {p, q} by
    XBOOLE_0:def 5;
    
          then x
    in { (((1 
    - r) 
    * p) 
    + (r 
    * q)) where r be 
    Real : 
    0  
    <= r & r 
    <= 1 } by 
    RLTOPSP1:def 2;
    
          then
    
          consider t be
    Real such that 
    
          
    
    P2: x 
    = (((1 
    - t) 
    * p) 
    + (t 
    * q)) & 
    0  
    <= t & t 
    <= 1; 
    
          
    
          
    
    P3: x 
    = (p 
    + (t 
    * (q 
    - p))) by 
    P2,
    Lm2;
    
          
    
          
    
    P4: 
    0  
    <> t 
    
          proof
    
            assume t
    =  
    0 ; 
    
            
    
            then x
    = (p 
    + ( 
    0. S)) by 
    P3,
    RLVECT_1: 10
    
            .= p by
    RLVECT_1: 4;
    
            hence contradiction by
    P1,
    TARSKI:def 2;
    
          end;
    
          1
    <> t 
    
          proof
    
            assume t
    = 1; 
    
            
    
            then x
    = (p 
    + (q 
    - p)) by 
    P3,
    RLVECT_1:def 8
    
            .= (q
    - (p 
    - p)) by 
    RLVECT_1: 29
    
            .= (q
    - ( 
    0. S)) by 
    RLVECT_1: 15
    
            .= q by
    RLVECT_1: 13;
    
            hence contradiction by
    P1,
    TARSKI:def 2;
    
          end;
    
          then
    0  
    < t & t 
    < 1 by 
    P2,
    P4,
    XXREAL_0: 1;
    
          hence x
    in A by 
    P3;
    
        end;
    
        assume x
    in A; 
    
        then
    
        consider t be
    Real such that 
    
        
    
    P4: x 
    = (p 
    + (t 
    * (q 
    - p))) & 
    0  
    < t & t 
    < 1; 
    
        x
    = (((1 
    - t) 
    * p) 
    + (t 
    * q)) by 
    Lm2,
    P4;
    
        then x
    in { (((1 
    - r) 
    * p) 
    + (r 
    * q)) where r be 
    Real : 
    0  
    <= r & r 
    <= 1 } by 
    P4;
    
        then
    
        
    
    P5: x 
    in  
    [.p, q.] by
    RLTOPSP1:def 2;
    
        
    
        
    
    P6: x 
    <> p 
    
        proof
    
          assume x
    = p; 
    
          
    
          then
    
          
    
    P7: ( 
    0. S) 
    = (((t 
    * (q 
    - p)) 
    + p) 
    - p) by 
    P4,
    RLVECT_1: 15
    
          .= ((t
    * (q 
    - p)) 
    + (p 
    - p)) by 
    RLVECT_1: 28
    
          .= ((t
    * (q 
    - p)) 
    + ( 
    0. S)) by 
    RLVECT_1: 15
    
          .= (t
    * (q 
    - p)) by 
    RLVECT_1: 4;
    
          (q
    - p) 
    <> ( 
    0. S) by 
    AS1,
    RLVECT_1: 21;
    
          hence contradiction by
    P4,
    P7,
    RLVECT_1: 11;
    
        end;
    
        x
    <> q 
    
        proof
    
          assume x
    = q; 
    
          
    
          then (q
    - p) 
    = ((t 
    * (q 
    - p)) 
    + (p 
    - p)) by 
    P4,
    RLVECT_1: 28
    
          .= ((t
    * (q 
    - p)) 
    + ( 
    0. S)) by 
    RLVECT_1: 15
    
          .= (t
    * (q 
    - p)) by 
    RLVECT_1: 4;
    
          then (1
    * (q 
    - p)) 
    = (t 
    * (q 
    - p)) by 
    RLVECT_1:def 8;
    
          then ((1
    * (q 
    - p)) 
    - (t 
    * (q 
    - p))) 
    = ( 
    0. S) by 
    RLVECT_1: 15;
    
          then
    
          
    
    P7: ((1 
    - t) 
    * (q 
    - p)) 
    = ( 
    0. S) by 
    RLVECT_1: 35;
    
          (q
    - p) 
    <> ( 
    0. S) by 
    AS1,
    RLVECT_1: 21;
    
          then (1
    - t) 
    =  
    0 by 
    RLVECT_1: 11,
    P7;
    
          hence contradiction by
    P4;
    
        end;
    
        then not x
    in  
    {p, q} by
    P6,
    TARSKI:def 2;
    
        hence x
    in  
    ].p, q.[ by
    P5,
    XBOOLE_0:def 5;
    
      end;
    
      hence thesis by
    TARSKI: 2;
    
    end;
    
    
    
    
    
    Lm3: for x be 
    Real st for e be 
    Real st 
    0  
    < e holds x 
    <= e holds x 
    <=  
    0  
    
    proof
    
      let x be
    Real;
    
      assume
    
      
    
    A1: for e be 
    Real st 
    0  
    < e holds x 
    <= e; 
    
      assume
    
      
    
    A2: not x 
    <=  
    0 ; 
    
      then x
    <= (x 
    / 2) by 
    A1;
    
      then (x
    - (x 
    / 2)) 
    <= ((x 
    / 2) 
    - (x 
    / 2)) by 
    XREAL_1: 9;
    
      hence contradiction by
    A2;
    
    end;
    
    theorem :: 
    
    NDIFF_5:17
    
    
    
    
    
    Th17: for T be 
    RealNormSpace, R be 
    PartFunc of 
    REAL , T st R is 
    total holds R is 
    RestFunc-like iff for r be 
    Real st r 
    >  
    0 holds ex d be 
    Real st d 
    >  
    0 & for z be 
    Real st z 
    <>  
    0 & 
    |.z.|
    < d holds ( 
    ||.(R
    /. z).|| 
    /  
    |.z.|)
    < r 
    
    proof
    
      let T be
    RealNormSpace, R be 
    PartFunc of 
    REAL , T; 
    
      assume
    
      
    
    A1: R is 
    total;
    
      
    
    A2: 
    
      now
    
        assume
    
        
    
    A3: R is 
    RestFunc-like;
    
        assume not (for r be
    Real st r 
    >  
    0 holds ex d be 
    Real st d 
    >  
    0 & for z be 
    Real st z 
    <>  
    0 & 
    |.z.|
    < d holds ( 
    ||.(R
    /. z).|| 
    /  
    |.z.|)
    < r); 
    
        then
    
        consider r be
    Real such that 
    
        
    
    A4: r 
    >  
    0 and 
    
        
    
    A5: for d be 
    Real st d 
    >  
    0 holds ex z be 
    Real st z 
    <>  
    0 & 
    |.z.|
    < d & not ( 
    ||.(R
    /. z).|| 
    /  
    |.z.|)
    < r; 
    
        defpred
    
    P[
    Nat, 
    Element of 
    REAL ] means $2 
    <>  
    0 & 
    |.$2.|
    < (1 
    / ($1 
    + 1)) & not (( 
    ||.(R
    /. $2).|| 
    /  
    |.$2.|)
    < r); 
    
        
    
    A6: 
    
        now
    
          let n be
    Element of 
    NAT ; 
    
          consider z be
    Real such that 
    
          
    
    A7: z 
    <>  
    0 & 
    |.z.|
    < (1 
    / (n 
    + 1)) & not ( 
    ||.(R
    /. z).|| 
    /  
    |.z.|)
    < r by 
    A5;
    
          reconsider z as
    Element of 
    REAL by 
    XREAL_0:def 1;
    
          take z;
    
          thus
    P[n, z] by
    A7;
    
        end;
    
        consider s be
    Real_Sequence such that 
    
        
    
    A8: for n be 
    Element of 
    NAT holds 
    P[n, (s
    . n)] from 
    FUNCT_2:sch 3(
    A6);
    
        
    
        
    
    A9: for n be 
    Nat holds 
    P[n, (s
    . n)] 
    
        proof
    
          let n be
    Nat;
    
          n
    in  
    NAT by 
    ORDINAL1:def 12;
    
          hence thesis by
    A8;
    
        end;
    
        
    
    A10: 
    
        now
    
          let p be
    Real;
    
          assume
    
          
    
    A11: 
    0  
    < p; 
    
          consider n be
    Nat such that 
    
          
    
    A12: (p 
    " ) 
    < n by 
    SEQ_4: 3;
    
          ((p
    " ) 
    +  
    0 qua 
    Real)
    < (n 
    + 1) by 
    A12,
    XREAL_1: 8;
    
          then
    
          
    
    A13: (1 
    / (n 
    + 1)) 
    < (1 
    / (p 
    " )) by 
    A11,
    XREAL_1: 76;
    
          take n;
    
          let m be
    Nat;
    
          assume n
    <= m; 
    
          then (n
    + 1) 
    <= (m 
    + 1) by 
    XREAL_1: 6;
    
          then (1
    / (m 
    + 1)) 
    <= (1 
    / (n 
    + 1)) by 
    XREAL_1: 118;
    
          then
    |.((s
    . m) 
    -  
    0 ).| 
    < (1 
    / (n 
    + 1)) by 
    A9,
    XXREAL_0: 2;
    
          hence
    |.((s
    . m) 
    -  
    0 ).| 
    < p by 
    A13,
    XXREAL_0: 2;
    
        end;
    
        then s is
    convergent by 
    SEQ_2:def 6;
    
        then (
    lim s) 
    =  
    0 by 
    A10,
    SEQ_2:def 7;
    
        then
    
        reconsider s as
    0  
    -convergent
    non-zero  
    Real_Sequence by 
    A9,
    A10,
    SEQ_1: 5,
    SEQ_2:def 6,
    FDIFF_1:def 1;
    
        ((s
    " ) 
    (#) (R 
    /* s)) is 
    convergent & ( 
    lim ((s 
    " ) 
    (#) (R 
    /* s))) 
    = ( 
    0. T) by 
    A3,
    NDIFF_3:def 1;
    
        then
    
        consider n be
    Nat such that 
    
        
    
    A16: for m be 
    Nat st n 
    <= m holds 
    ||.((((s
    " ) 
    (#) (R 
    /* s)) 
    . m) 
    - ( 
    0. T)).|| 
    < r by 
    A4,
    NORMSP_1:def 7;
    
        
    
        
    
    A17: n 
    in  
    NAT by 
    ORDINAL1:def 12;
    
        
    
        
    
    A19: 
    ||.(((s
    . n) 
    " ) 
    * (R 
    /. (s 
    . n))).|| 
    = ( 
    |.((s
    . n) 
    " ).| 
    *  
    ||.(R
    /. (s 
    . n)).||) by 
    NORMSP_1:def 1
    
        .= (
    ||.(R
    /. (s 
    . n)).|| 
    /  
    |.(s
    . n).|) by 
    COMPLEX1: 66;
    
        (
    dom R) 
    =  
    REAL by 
    A1,
    PARTFUN1:def 2;
    
        then
    
        
    
    A20: ( 
    rng s) 
    c= ( 
    dom R); 
    
        
    ||.((((s
    " ) 
    (#) (R 
    /* s)) 
    . n) 
    - ( 
    0. T)).|| 
    =  
    ||.(((s
    " ) 
    (#) (R 
    /* s)) 
    . n).|| by 
    RLVECT_1: 13
    
        .=
    ||.(((s
    " ) 
    . n) 
    * ((R 
    /* s) 
    . n)).|| by 
    NDIFF_1:def 2
    
        .=
    ||.(((s
    . n) 
    " ) 
    * ((R 
    /* s) 
    . n)).|| by 
    VALUED_1: 10
    
        .=
    ||.(((s
    . n) 
    " ) 
    * (R 
    /. (s 
    . n))).|| by 
    A20,
    FUNCT_2: 109,
    A17;
    
        hence for r be
    Real st r 
    >  
    0 holds ex d be 
    Real st d 
    >  
    0 & for z be 
    Real st z 
    <>  
    0 & 
    |.z.|
    < d holds ( 
    ||.(R
    /. z).|| 
    /  
    |.z.|)
    < r by 
    A9,
    A16,
    A19;
    
      end;
    
      now
    
        assume
    
        
    
    A21: for r be 
    Real st r 
    >  
    0 holds ex d be 
    Real st d 
    >  
    0 & for z be 
    Real st z 
    <>  
    0 & 
    |.z.|
    < d holds ( 
    ||.(R
    /. z).|| 
    /  
    |.z.|)
    < r; 
    
        now
    
          let s be
    0  
    -convergent
    non-zero  
    Real_Sequence;
    
          
    
          
    
    A22: s is 
    convergent & ( 
    lim s) 
    =  
    0 ; 
    
          
    
    A23: 
    
          now
    
            let r be
    Real;
    
            assume r
    >  
    0 ; 
    
            then
    
            consider d be
    Real such that 
    
            
    
    A24: d 
    >  
    0 and 
    
            
    
    A25: for z be 
    Real st z 
    <>  
    0 & 
    |.z.|
    < d holds ( 
    ||.(R
    /. z).|| 
    /  
    |.z.|)
    < r by 
    A21;
    
            consider n be
    Nat such that 
    
            
    
    A26: for m be 
    Nat st n 
    <= m holds 
    |.((s
    . m) 
    -  
    0 ).| 
    < d by 
    A22,
    A24,
    SEQ_2:def 7;
    
            take n;
    
            thus for m be
    Nat st n 
    <= m holds 
    ||.((((s
    " ) 
    (#) (R 
    /* s)) 
    . m) 
    - ( 
    0. T)).|| 
    < r 
    
            proof
    
              (
    dom R) 
    =  
    REAL by 
    A1,
    PARTFUN1:def 2;
    
              then
    
              
    
    A27: ( 
    rng s) 
    c= ( 
    dom R); 
    
              let m be
    Nat;
    
              
    
              
    
    A28: m 
    in  
    NAT by 
    ORDINAL1:def 12;
    
              assume n
    <= m; 
    
              then
    
              
    
    A29: 
    |.((s
    . m) 
    -  
    0 ).| 
    < d by 
    A26;
    
              (
    ||.(R
    /. (s 
    . m)).|| 
    /  
    |.(s
    . m).|) 
    = ( 
    |.((s
    . m) 
    " ).| 
    *  
    ||.(R
    /. (s 
    . m)).||) by 
    COMPLEX1: 66
    
              .=
    ||.(((s
    . m) 
    " ) 
    * (R 
    /. (s 
    . m))).|| by 
    NORMSP_1:def 1
    
              .=
    ||.(((s
    . m) 
    " ) 
    * ((R 
    /* s) 
    . m)).|| by 
    A27,
    FUNCT_2: 109,
    A28
    
              .=
    ||.(((s
    " ) 
    . m) 
    * ((R 
    /* s) 
    . m)).|| by 
    VALUED_1: 10
    
              .=
    ||.(((s
    " ) 
    (#) (R 
    /* s)) 
    . m).|| by 
    NDIFF_1:def 2
    
              .=
    ||.((((s
    " ) 
    (#) (R 
    /* s)) 
    . m) 
    - ( 
    0. T)).|| by 
    RLVECT_1: 13;
    
              hence thesis by
    A25,
    A29,
    SEQ_1: 5;
    
            end;
    
          end;
    
          hence ((s
    " ) 
    (#) (R 
    /* s)) is 
    convergent by 
    NORMSP_1:def 6;
    
          hence (
    lim ((s 
    " ) 
    (#) (R 
    /* s))) 
    = ( 
    0. T) by 
    A23,
    NORMSP_1:def 7;
    
        end;
    
        hence R is
    RestFunc-like by 
    A1,
    NDIFF_3:def 1;
    
      end;
    
      hence thesis by
    A2;
    
    end;
    
    theorem :: 
    
    NDIFF_5:18
    
    
    
    
    
    Th18: for R be 
    Function of 
    REAL , 
    REAL holds R is 
    RestFunc-like iff for r be 
    Real st r 
    >  
    0 holds ex d be 
    Real st d 
    >  
    0 & for z be 
    Real st z 
    <>  
    0 & 
    |.z.|
    < d holds ( 
    |.(R
    . z).| 
    /  
    |.z.|)
    < r 
    
    proof
    
      let R be
    Function of 
    REAL , 
    REAL ; 
    
      
    
    A1: 
    
      now
    
        assume
    
        
    
    A2: R is 
    RestFunc-like;
    
        assume not (for r be
    Real st r 
    >  
    0 holds ex d be 
    Real st d 
    >  
    0 & for z be 
    Real st z 
    <>  
    0 & 
    |.z.|
    < d holds ( 
    |.(R
    . z).| 
    /  
    |.z.|)
    < r); 
    
        then
    
        consider r be
    Real such that 
    
        
    
    A3: r 
    >  
    0 and 
    
        
    
    A4: for d be 
    Real st d 
    >  
    0 holds ex z be 
    Real st z 
    <>  
    0 & 
    |.z.|
    < d & not ( 
    |.(R
    . z).| 
    /  
    |.z.|)
    < r; 
    
        defpred
    
    P[
    Nat, 
    Element of 
    REAL ] means $2 
    <>  
    0 & 
    |.$2.|
    < (1 
    / ($1 
    + 1)) & not ( 
    |.(R
    . $2).| 
    /  
    |.$2.|)
    < r; 
    
        
    
    A5: 
    
        now
    
          let n be
    Element of 
    NAT ; 
    
          consider z be
    Real such that 
    
          
    
    A6: z 
    <>  
    0 & 
    |.z.|
    < (1 
    / (n 
    + 1)) & not ( 
    |.(R
    . z).| 
    /  
    |.z.|)
    < r by 
    A4;
    
          reconsider z as
    Element of 
    REAL by 
    XREAL_0:def 1;
    
          take z;
    
          thus
    P[n, z] by
    A6;
    
        end;
    
        consider s be
    Real_Sequence such that 
    
        
    
    A7: for n be 
    Element of 
    NAT holds 
    P[n, (s
    . n)] from 
    FUNCT_2:sch 3(
    A5);
    
        
    
        
    
    A8: for n be 
    Nat holds 
    P[n, (s
    . n)] 
    
        proof
    
          let n be
    Nat;
    
          n
    in  
    NAT by 
    ORDINAL1:def 12;
    
          hence thesis by
    A7;
    
        end;
    
        
    
    A9: 
    
        now
    
          let p be
    Real;
    
          assume
    
          
    
    A10: 
    0  
    < p; 
    
          consider n be
    Nat such that 
    
          
    
    A11: (p 
    " ) 
    < n by 
    SEQ_4: 3;
    
          ((p
    " ) 
    +  
    0 qua 
    Real)
    < (n 
    + 1) by 
    A11,
    XREAL_1: 8;
    
          then
    
          
    
    A12: (1 
    / (n 
    + 1)) 
    < (1 
    / (p 
    " )) by 
    A10,
    XREAL_1: 76;
    
          take n;
    
          let m be
    Nat;
    
          assume n
    <= m; 
    
          then (n
    + 1) 
    <= (m 
    + 1) by 
    XREAL_1: 6;
    
          then (1
    / (m 
    + 1)) 
    <= (1 
    / (n 
    + 1)) by 
    XREAL_1: 118;
    
          then
    |.((s
    . m) 
    -  
    0 ).| 
    < (1 
    / (n 
    + 1)) by 
    A8,
    XXREAL_0: 2;
    
          hence
    |.((s
    . m) 
    -  
    0 ).| 
    < p by 
    A12,
    XXREAL_0: 2;
    
        end;
    
        then s is
    convergent by 
    SEQ_2:def 6;
    
        then (
    lim s) 
    =  
    0 by 
    A9,
    SEQ_2:def 7;
    
        then
    
        reconsider s as
    0  
    -convergent
    non-zero  
    Real_Sequence by 
    A9,
    A8,
    SEQ_1: 5,
    SEQ_2:def 6,
    FDIFF_1:def 1;
    
        ((s
    " ) 
    (#) (R 
    /* s)) is 
    convergent & ( 
    lim ((s 
    " ) 
    (#) (R 
    /* s))) 
    =  
    0 by 
    A2,
    FDIFF_1:def 2;
    
        then
    
        consider n be
    Nat such that 
    
        
    
    A15: for m be 
    Nat st n 
    <= m holds 
    |.((((s
    " ) 
    (#) (R 
    /* s)) 
    . m) 
    -  
    0 ).| 
    < r by 
    A3,
    SEQ_2:def 7;
    
        
    
        
    
    A16: n 
    in  
    NAT by 
    ORDINAL1:def 12;
    
        
    
        
    
    A18: 
    |.(((s
    . n) 
    " ) 
    * (R 
    . (s 
    . n))).| 
    = ( 
    |.((s
    . n) 
    " ).| 
    *  
    |.(R
    . (s 
    . n)).|) by 
    COMPLEX1: 65
    
        .= (
    |.(R
    . (s 
    . n)).| 
    /  
    |.(s
    . n).|) by 
    COMPLEX1: 66;
    
        
    |.((((s
    " ) 
    (#) (R 
    /* s)) 
    . n) 
    -  
    0 ).| 
    =  
    |.(((s
    " ) 
    . n) 
    * ((R 
    /* s) 
    . n)).| by 
    SEQ_1: 8
    
        .=
    |.(((s
    . n) 
    " ) 
    * ((R 
    /* s) 
    . n)).| by 
    VALUED_1: 10
    
        .=
    |.(((s
    . n) 
    " ) 
    * (R 
    . (s 
    . n))).| by 
    FUNCT_2: 115,
    A16;
    
        hence for r be
    Real st r 
    >  
    0 holds ex d be 
    Real st d 
    >  
    0 & for z be 
    Real st z 
    <>  
    0 & 
    |.z.|
    < d holds ( 
    |.(R
    . z).| 
    /  
    |.z.|)
    < r by 
    A8,
    A15,
    A18;
    
      end;
    
      now
    
        assume
    
        
    
    A19: for r be 
    Real st r 
    >  
    0 holds ex d be 
    Real st d 
    >  
    0 & for z be 
    Real st z 
    <>  
    0 & 
    |.z.|
    < d holds ( 
    |.(R
    . z).| 
    /  
    |.z.|)
    < r; 
    
        now
    
          let s be
    0  
    -convergent
    non-zero  
    Real_Sequence;
    
          
    
          
    
    A20: s is 
    convergent & ( 
    lim s) 
    =  
    0 ; 
    
          
    
    A21: 
    
          now
    
            let r be
    Real;
    
            assume
    
            
    
    A22: r 
    >  
    0 ; 
    
            consider d be
    Real such that 
    
            
    
    A23: d 
    >  
    0 and 
    
            
    
    A24: for z be 
    Real st z 
    <>  
    0 & 
    |.z.|
    < d holds ( 
    |.(R
    . z).| 
    /  
    |.z.|)
    < r by 
    A22,
    A19;
    
            consider n be
    Nat such that 
    
            
    
    A25: for m be 
    Nat st n 
    <= m holds 
    |.((s
    . m) 
    -  
    0 ).| 
    < d by 
    A20,
    A23,
    SEQ_2:def 7;
    
            take n;
    
            hereby
    
              let m be
    Nat;
    
              
    
              
    
    A26: m 
    in  
    NAT by 
    ORDINAL1:def 12;
    
              assume n
    <= m; 
    
              then
    
              
    
    A27: 
    |.((s
    . m) 
    -  
    0 ).| 
    < d by 
    A25;
    
              (
    |.(R
    . (s 
    . m)).| 
    /  
    |.(s
    . m).|) 
    = ( 
    |.((s
    . m) 
    " ).| 
    *  
    |.(R
    . (s 
    . m)).|) by 
    COMPLEX1: 66
    
              .=
    |.(((s
    . m) 
    " ) 
    * (R 
    . (s 
    . m))).| by 
    COMPLEX1: 65
    
              .=
    |.(((s
    . m) 
    " ) 
    * ((R 
    /* s) 
    . m)).| by 
    FUNCT_2: 115,
    A26
    
              .=
    |.(((s
    " ) 
    . m) 
    * ((R 
    /* s) 
    . m)).| by 
    VALUED_1: 10
    
              .=
    |.((((s
    " ) 
    (#) (R 
    /* s)) 
    . m) 
    -  
    0 ).| by 
    SEQ_1: 8;
    
              hence
    |.((((s
    " ) 
    (#) (R 
    /* s)) 
    . m) 
    -  
    0 ).| 
    < r by 
    A24,
    A27,
    SEQ_1: 5;
    
            end;
    
          end;
    
          hence ((s
    " ) 
    (#) (R 
    /* s)) is 
    convergent by 
    SEQ_2:def 6;
    
          hence (
    lim ((s 
    " ) 
    (#) (R 
    /* s))) 
    =  
    0 by 
    A21,
    SEQ_2:def 7;
    
        end;
    
        hence R is
    RestFunc-like by 
    FDIFF_1:def 2;
    
      end;
    
      hence thesis by
    A1;
    
    end;
    
    reconsider jj = 1 as
    Real;
    
    
    
    
    
    Lm4: for T be 
    RealNormSpace, f be 
    PartFunc of 
    REAL , T, g be 
    PartFunc of 
    REAL , 
    REAL st ( 
    dom f) 
    =  
    [.
    0 , 1.] & ( 
    dom g) 
    =  
    [.
    0 , 1.] & (f 
    |  
    [.
    0 , 1.]) is 
    continuous & (g 
    |  
    [.
    0 , 1.]) is 
    continuous & f 
    is_differentiable_on  
    ].
    0 , 1.[ & g 
    is_differentiable_on  
    ].
    0 , 1.[ & (for x be 
    Real st x 
    in  
    ].
    0 , 1.[ holds 
    ||.(
    diff (f,x)).|| 
    <= ( 
    diff (g,x))) holds 
    ||.((f
    /. 1) 
    - (f 
    /.  
    0 )).|| 
    <= ((g 
    /. 1) 
    - (g 
    /.  
    0 )) 
    
    proof
    
      let T be
    RealNormSpace, f be 
    PartFunc of 
    REAL , T, g be 
    PartFunc of 
    REAL , 
    REAL ; 
    
      assume
    
      
    
    A1: ( 
    dom f) 
    =  
    [.
    0 , 1.] & ( 
    dom g) 
    =  
    [.
    0 , 1.] & (f 
    |  
    [.
    0 , 1.]) is 
    continuous & (g 
    |  
    [.
    0 , 1.]) is 
    continuous & f 
    is_differentiable_on  
    ].
    0 , 1.[ & g 
    is_differentiable_on  
    ].
    0 , 1.[ & (for x be 
    Real st x 
    in  
    ].
    0 , 1.[ holds 
    ||.(
    diff (f,x)).|| 
    <= ( 
    diff (g,x))); 
    
      now
    
        let e be
    Real;
    
        assume
    
        
    
    A2: 
    0  
    < e; 
    
        set e1 = (e
    / 2); 
    
        set B = { x where x be
    Real : x 
    in  
    [.
    0 , 1.] & ((( 
    ||.((f
    /. x) 
    - (f 
    /.  
    0 )).|| 
    - ((g 
    . x) 
    - (g 
    .  
    0 ))) 
    - (e1 
    * x)) 
    - e1) 
    <=  
    0 }; 
    
        now
    
          let z be
    object;
    
          assume z
    in B; 
    
          then ex x be
    Real st z 
    = x & x 
    in  
    [.
    0 , 1.] & ((( 
    ||.((f
    /. x) 
    - (f 
    /.  
    0 )).|| 
    - ((g 
    . x) 
    - (g 
    .  
    0 ))) 
    - (e1 
    * x)) 
    - e1) 
    <=  
    0 ; 
    
          hence z
    in  
    REAL ; 
    
        end;
    
        then
    
        reconsider B as
    Subset of 
    REAL by 
    TARSKI:def 3;
    
        now
    
          let r be
    Real;
    
          assume r
    in B; 
    
          then ex x be
    Real st r 
    = x & x 
    in  
    [.
    0 , 1.] & ((( 
    ||.((f
    /. x) 
    - (f 
    /.  
    0 )).|| 
    - ((g 
    . x) 
    - (g 
    .  
    0 ))) 
    - (e1 
    * x)) 
    - e1) 
    <=  
    0 ; 
    
          then
    
          
    
    A3: ex t be 
    Real st r 
    = t & 
    0  
    <= t & t 
    <= 1; 
    
          then
    |.r.|
    = r by 
    ABSVALUE:def 1;
    
          hence
    |.r.|
    < 2 by 
    A3,
    XXREAL_0: 2;
    
        end;
    
        then
    
        
    
    A4: B is 
    real-bounded by 
    SEQ_4: 4;
    
        set s = (
    upper_bound B); 
    
        
    
        
    
    A5: ex d be 
    Real st 
    0  
    < d & d 
    in B 
    
        proof
    
          
    0  
    in  
    [.
    0 , 1.]; 
    
          then
    
          consider d1 be
    Real such that 
    
          
    
    A6: 
    0  
    < d1 & for x1 be 
    Real st x1 
    in  
    [.
    0 , 1.] & 
    |.(x1
    -  
    0 ).| 
    < d1 holds 
    ||.((f
    /. x1) 
    - (f 
    /.  
    0 )).|| 
    < e1 by 
    A2,
    A1,
    NFCONT_3: 17;
    
          set d2 = (d1
    / 2); 
    
          
    
          
    
    A7: d2 
    < d1 by 
    A6,
    XREAL_1: 216;
    
          take d = (
    min (d2,1)); 
    
          thus
    
          
    
    A8: 
    0  
    < d by 
    A6,
    XXREAL_0: 21;
    
          
    
          
    
    A9: d 
    <= 1 by 
    XXREAL_0: 17;
    
          then
    
          
    
    A10: d 
    in  
    [.
    0 , 1.] by 
    A8;
    
          
    
          
    
    A11: d 
    <= d2 by 
    XXREAL_0: 17;
    
          
    |.(d
    -  
    0 ).| 
    = d by 
    A8,
    ABSVALUE:def 1;
    
          then
    |.(d
    -  
    0 ).| 
    < d1 by 
    A11,
    A7,
    XXREAL_0: 2;
    
          then
    
          
    
    A12: 
    ||.((f
    /. d) 
    - (f 
    /.  
    0 )).|| 
    < e1 by 
    A6,
    A10;
    
          
    
          
    
    A13: 
    [.
    0 , d.] 
    c= ( 
    dom g) by 
    A1,
    A9,
    XXREAL_1: 34;
    
          
    
          
    
    A14: (g 
    |  
    [.
    0 , d.]) is 
    continuous by 
    A1,
    A9,
    FCONT_1: 16,
    XXREAL_1: 34;
    
          
    
          
    
    A15: 
    ].
    0 , d.[ 
    c=  
    ].
    0 , 1.[ by 
    A9,
    XXREAL_1: 46;
    
          then
    
          consider x0 be
    Real such that 
    
          
    
    A16: x0 
    in  
    ].
    0 , d.[ & ( 
    diff (g,x0)) 
    = (((g 
    . d) 
    - (g 
    .  
    0 )) 
    / (d 
    -  
    0 )) by 
    A1,
    A8,
    A13,
    A14,
    FDIFF_1: 26,
    ROLLE: 3;
    
          
    ||.(
    diff (f,x0)).|| 
    <= ( 
    diff (g,x0)) by 
    A1,
    A16,
    A15;
    
          then
    0  
    <= ((g 
    . d) 
    - (g 
    .  
    0 )) by 
    A8,
    A16;
    
          then (
    0 qua 
    Real
    +  
    ||.((f
    /. d) 
    - (f 
    /.  
    0 )).||) 
    <= (((g 
    . d) 
    - (g 
    .  
    0 )) 
    + e1) by 
    A12,
    XREAL_1: 7;
    
          then (
    0 qua 
    Real
    +  
    ||.((f
    /. d) 
    - (f 
    /.  
    0 )).||) 
    <= ((((g 
    . d) 
    - (g 
    .  
    0 )) 
    + e1) 
    + (e1 
    * d)) by 
    A8,
    A2,
    XREAL_1: 7;
    
          then (
    ||.((f
    /. d) 
    - (f 
    /.  
    0 )).|| 
    - ((((g 
    . d) 
    - (g 
    .  
    0 )) 
    + e1) 
    + (e1 
    * d))) 
    <=  
    0 by 
    XREAL_1: 47;
    
          then (((
    ||.((f
    /. d) 
    - (f 
    /.  
    0 )).|| 
    - ((g 
    . d) 
    - (g 
    .  
    0 ))) 
    - (e1 
    * d)) 
    - e1) 
    <=  
    0 ; 
    
          hence d
    in B by 
    A10;
    
        end;
    
        then
    
        
    
    A17: 
    0  
    < s by 
    A4,
    SEQ_4:def 1;
    
        now
    
          let r be
    Real;
    
          assume r
    in B; 
    
          then ex x be
    Real st r 
    = x & x 
    in  
    [.
    0 , 1.] & ((( 
    ||.((f
    /. x) 
    - (f 
    /.  
    0 )).|| 
    - ((g 
    . x) 
    - (g 
    .  
    0 ))) 
    - (e1 
    * x)) 
    - e1) 
    <=  
    0 ; 
    
          then ex t be
    Real st r 
    = t & 
    0  
    <= t & t 
    <= 1; 
    
          hence r
    <= 1; 
    
        end;
    
        then
    
        
    
    A18: s 
    <= 1 by 
    A5,
    SEQ_4: 45;
    
        defpred
    
    P[
    Nat, 
    Element of 
    REAL ] means $2 
    in B & 
    |.(s
    - $2).| 
    <= (1 
    / ($1 
    + 1)); 
    
        
    
    A19: 
    
        now
    
          let x be
    Element of 
    NAT ; 
    
          reconsider t = (1
    / (1 
    + x)) as 
    Real;
    
          consider r be
    Real such that 
    
          
    
    A20: r 
    in B & (s 
    - t) 
    < r by 
    A4,
    A5,
    SEQ_4:def 1;
    
          reconsider r as
    Element of 
    REAL by 
    XREAL_0:def 1;
    
          take r;
    
          ((s
    - t) 
    + t) 
    < (r 
    + t) by 
    A20,
    XREAL_1: 8;
    
          then
    
          
    
    A21: (s 
    - r) 
    < ((t 
    + r) 
    - r) by 
    XREAL_1: 14;
    
          r
    <= s by 
    A4,
    A20,
    SEQ_4:def 1;
    
          then
    0  
    <= (s 
    - r) by 
    XREAL_1: 48;
    
          hence
    P[x, r] by
    A20,
    A21,
    SEQ_2: 1;
    
        end;
    
        consider sq be
    sequence of 
    REAL such that 
    
        
    
    A22: for x be 
    Element of 
    NAT holds 
    P[x, (sq
    . x)] from 
    FUNCT_2:sch 3(
    A19);
    
        
    
        
    
    A23: for x be 
    Nat holds 
    P[x, (sq
    . x)] 
    
        proof
    
          let x be
    Nat;
    
          x
    in  
    NAT by 
    ORDINAL1:def 12;
    
          hence thesis by
    A22;
    
        end;
    
        reconsider sq as
    Real_Sequence;
    
        
    
    A24: 
    
        now
    
          let p1 be
    Real;
    
          assume
    
          
    
    A25: 
    0  
    < p1; 
    
          set p = (p1
    / 2); 
    
          consider n be
    Nat such that 
    
          
    
    A26: (1 
    / p) 
    < n by 
    SEQ_4: 3;
    
          ((1
    / p) 
    +  
    0 qua 
    Real)
    < (n 
    + 1) by 
    A26,
    XREAL_1: 8;
    
          then
    
          
    
    A27: (1 
    / (n 
    + 1)) 
    <= (1 
    / (1 
    / p)) by 
    A25,
    XREAL_1: 118;
    
          take n;
    
          thus for m be
    Nat st n 
    <= m holds 
    |.((sq
    . m) 
    - s).| 
    < p1 
    
          proof
    
            let m be
    Nat;
    
            assume n
    <= m; 
    
            then
    0  
    < (n 
    + 1) & (n 
    + 1) 
    <= (m 
    + 1) by 
    XREAL_1: 6;
    
            then (1
    / (m 
    + 1)) 
    <= (1 
    / (n 
    + 1)) by 
    XREAL_1: 118;
    
            then
    
            
    
    A28: (1 
    / (m 
    + 1)) 
    <= p by 
    A27,
    XXREAL_0: 2;
    
            (sq
    . m) 
    in B & 
    |.(s
    - (sq 
    . m)).| 
    <= (1 
    / (m 
    + 1)) by 
    A23;
    
            then
    |.((sq
    . m) 
    - s).| 
    <= (1 
    / (1 
    + m)) by 
    COMPLEX1: 60;
    
            then
    
            
    
    A29: 
    |.((sq
    . m) 
    - s).| 
    <= p by 
    A28,
    XXREAL_0: 2;
    
            p
    < p1 by 
    A25,
    XREAL_1: 216;
    
            hence thesis by
    A29,
    XXREAL_0: 2;
    
          end;
    
        end;
    
        then
    
        
    
    A30: sq is 
    convergent by 
    SEQ_2:def 6;
    
        then
    
        
    
    A31: ( 
    lim sq) 
    = s by 
    A24,
    SEQ_2:def 7;
    
        deffunc
    
    F(
    Real) = (((
    ||.((f
    /. $1) 
    - (f 
    /.  
    0 )).|| 
    - ((g 
    . $1) 
    - (g 
    .  
    0 ))) 
    - (e1 
    * $1)) 
    - e1); 
    
        
    
        
    
    A32: for x be 
    Element of 
    REAL holds 
    F(x)
    in  
    REAL by 
    XREAL_0:def 1;
    
        consider Lg0 be
    Function of 
    REAL , 
    REAL such that 
    
        
    
    A33: for x be 
    Element of 
    REAL holds (Lg0 
    . x) 
    =  
    F(x) from
    FUNCT_2:sch 8(
    A32);
    
        
    
        
    
    A34: for x be 
    Real holds (Lg0 
    . x) 
    =  
    F(x)
    
        proof
    
          let x be
    Real;
    
          reconsider x as
    Element of 
    REAL by 
    XREAL_0:def 1;
    
          (Lg0
    . x) 
    =  
    F(x) by
    A33;
    
          hence thesis;
    
        end;
    
        set Lg = (Lg0
    |  
    [.
    0 , 1.]); 
    
        
    
        
    
    A35: ( 
    dom Lg0) 
    =  
    REAL by 
    FUNCT_2:def 1;
    
        then
    
        
    
    A36: ( 
    dom Lg) 
    =  
    [.
    0 , 1.] by 
    RELAT_1: 62;
    
        now
    
          let y be
    object;
    
          assume y
    in ( 
    rng sq); 
    
          then ex x be
    object st x 
    in  
    NAT & (sq 
    . x) 
    = y by 
    FUNCT_2: 11;
    
          then y
    in B by 
    A23;
    
          then ex x be
    Real st y 
    = x & x 
    in  
    [.
    0 , 1.] & ((( 
    ||.((f
    /. x) 
    - (f 
    /.  
    0 )).|| 
    - ((g 
    . x) 
    - (g 
    .  
    0 ))) 
    - (e1 
    * x)) 
    - e1) 
    <=  
    0 ; 
    
          hence y
    in  
    [.
    0 , 1.]; 
    
        end;
    
        then
    
        
    
    A37: ( 
    rng sq) 
    c= ( 
    dom Lg) by 
    A36;
    
        
    
        
    
    A38: s 
    in  
    [.
    0 , 1.] by 
    A18,
    A17;
    
        now
    
          let r be
    Real;
    
          set r3 = (r
    / 3); 
    
          assume
    
          
    
    A39: 
    0  
    < r; 
    
          then
    
          consider t1 be
    Real such that 
    
          
    
    A40: 
    0  
    < t1 & for x1 be 
    Real st x1 
    in  
    [.
    0 , 1.] & 
    |.(x1
    - s).| 
    < t1 holds 
    ||.((f
    /. x1) 
    - (f 
    /. s)).|| 
    < r3 by 
    A1,
    A38,
    NFCONT_3: 17;
    
          consider t2 be
    Real such that 
    
          
    
    A41: 
    0  
    < t2 & for x1 be 
    Real st x1 
    in  
    [.
    0 , 1.] & 
    |.(x1
    - s).| 
    < t2 holds 
    |.((g
    . x1) 
    - (g 
    . s)).| 
    < r3 by 
    A39,
    A38,
    A1,
    FCONT_1: 14;
    
          set t30 = (r3
    / e1); 
    
          set t3 = (t30
    / 2); 
    
          
    0  
    < t3 & t3 
    < t30 by 
    A2,
    A39,
    XREAL_1: 216;
    
          then (e1
    * t3) 
    < ((r3 
    / e1) 
    * e1) by 
    A2,
    XREAL_1: 97;
    
          then
    
          
    
    A42: (e1 
    * t3) 
    < r3 by 
    A2,
    XCMPLX_1: 87;
    
          take t = (
    min (( 
    min (t1,t2)),t3)); 
    
          
    
          
    
    A43: ( 
    min (t1,t2)) 
    <= t1 & ( 
    min (t1,t2)) 
    <= t2 & 
    0  
    < ( 
    min (t1,t2)) by 
    A40,
    A41,
    XXREAL_0: 17,
    XXREAL_0: 21;
    
          hence
    0  
    < t by 
    A2,
    A39,
    XXREAL_0: 21;
    
          
    
          
    
    A44: t 
    <= t3 by 
    XXREAL_0: 17;
    
          
    
          
    
    A45: t 
    <= ( 
    min (t1,t2)) by 
    XXREAL_0: 17;
    
          then
    
          
    
    A46: t 
    <= t1 by 
    A43,
    XXREAL_0: 2;
    
          
    
          
    
    A47: t 
    <= t2 by 
    A43,
    A45,
    XXREAL_0: 2;
    
          thus for x1 be
    Real st x1 
    in ( 
    dom Lg) & 
    |.(x1
    - s).| 
    < t holds 
    |.((Lg
    . x1) 
    - (Lg 
    . s)).| 
    < r 
    
          proof
    
            let x1 be
    Real;
    
            assume that
    
            
    
    A48: x1 
    in ( 
    dom Lg) and 
    
            
    
    A49: 
    |.(x1
    - s).| 
    < t; 
    
            x1
    in  
    [.
    0 , 1.] by 
    A35,
    A48,
    RELAT_1: 62;
    
            
    
            then
    
            
    
    A50: (Lg 
    . x1) 
    = (Lg0 
    . x1) by 
    FUNCT_1: 49
    
            .= (((
    ||.((f
    /. x1) 
    - (f 
    /.  
    0 )).|| 
    - ((g 
    . x1) 
    - (g 
    .  
    0 ))) 
    - (e1 
    * x1)) 
    - e1) by 
    A34;
    
            (Lg
    . s) 
    = (Lg0 
    . s) by 
    A38,
    FUNCT_1: 49;
    
            then (Lg
    . s) 
    = ((( 
    ||.((f
    /. s) 
    - (f 
    /.  
    0 )).|| 
    - ((g 
    . s) 
    - (g 
    .  
    0 ))) 
    - (e1 
    * s)) 
    - e1) by 
    A34;
    
            then ((Lg
    . x1) 
    - (Lg 
    . s)) 
    = ((( 
    ||.((f
    /. x1) 
    - (f 
    /.  
    0 )).|| 
    -  
    ||.((f
    /. s) 
    - (f 
    /.  
    0 )).||) 
    - ((g 
    . x1) 
    - (g 
    . s))) 
    - (e1 
    * (x1 
    - s))) by 
    A50;
    
            then
    
            
    
    A51: 
    |.((Lg
    . x1) 
    - (Lg 
    . s)).| 
    <= ( 
    |.((
    ||.((f
    /. x1) 
    - (f 
    /.  
    0 )).|| 
    -  
    ||.((f
    /. s) 
    - (f 
    /.  
    0 )).||) 
    - ((g 
    . x1) 
    - (g 
    . s))).| 
    +  
    |.(e1
    * (x1 
    - s)).|) by 
    COMPLEX1: 57;
    
            (
    |.((
    ||.((f
    /. x1) 
    - (f 
    /.  
    0 )).|| 
    -  
    ||.((f
    /. s) 
    - (f 
    /.  
    0 )).||) 
    - ((g 
    . x1) 
    - (g 
    . s))).| 
    +  
    |.(e1
    * (x1 
    - s)).|) 
    <= (( 
    |.(
    ||.((f
    /. x1) 
    - (f 
    /.  
    0 )).|| 
    -  
    ||.((f
    /. s) 
    - (f 
    /.  
    0 )).||).| 
    +  
    |.((g
    . x1) 
    - (g 
    . s)).|) 
    +  
    |.(e1
    * (x1 
    - s)).|) by 
    COMPLEX1: 57,
    XREAL_1: 6;
    
            then
    
            
    
    A52: 
    |.((Lg
    . x1) 
    - (Lg 
    . s)).| 
    <= (( 
    |.(
    ||.((f
    /. x1) 
    - (f 
    /.  
    0 )).|| 
    -  
    ||.((f
    /. s) 
    - (f 
    /.  
    0 )).||).| 
    +  
    |.((g
    . x1) 
    - (g 
    . s)).|) 
    +  
    |.(e1
    * (x1 
    - s)).|) by 
    A51,
    XXREAL_0: 2;
    
            (((f
    /. x1) 
    - (f 
    /.  
    0 )) 
    - ((f 
    /. s) 
    - (f 
    /.  
    0 ))) 
    = ((f 
    /. x1) 
    - ((f 
    /.  
    0 ) 
    - ( 
    - ((f 
    /. s) 
    - (f 
    /.  
    0 ))))) by 
    RLVECT_1: 29
    
            .= ((f
    /. x1) 
    - ((f 
    /.  
    0 ) 
    + ((f 
    /. s) 
    - (f 
    /.  
    0 )))) by 
    RLVECT_1: 17
    
            .= ((f
    /. x1) 
    - ((f 
    /. s) 
    - ((f 
    /.  
    0 ) 
    - (f 
    /.  
    0 )))) by 
    RLVECT_1: 29
    
            .= ((f
    /. x1) 
    - ((f 
    /. s) 
    - ( 
    0. T))) by 
    RLVECT_1: 5
    
            .= ((f
    /. x1) 
    - (f 
    /. s)) by 
    RLVECT_1: 13;
    
            then (
    |.(
    ||.((f
    /. x1) 
    - (f 
    /.  
    0 )).|| 
    -  
    ||.((f
    /. s) 
    - (f 
    /.  
    0 )).||).| 
    +  
    |.((g
    . x1) 
    - (g 
    . s)).|) 
    <= ( 
    ||.((f
    /. x1) 
    - (f 
    /. s)).|| 
    +  
    |.((g
    . x1) 
    - (g 
    . s)).|) by 
    NORMSP_1: 9,
    XREAL_1: 6;
    
            then ((
    |.(
    ||.((f
    /. x1) 
    - (f 
    /.  
    0 )).|| 
    -  
    ||.((f
    /. s) 
    - (f 
    /.  
    0 )).||).| 
    +  
    |.((g
    . x1) 
    - (g 
    . s)).|) 
    +  
    |.(e1
    * (x1 
    - s)).|) 
    <= (( 
    ||.((f
    /. x1) 
    - (f 
    /. s)).|| 
    +  
    |.((g
    . x1) 
    - (g 
    . s)).|) 
    +  
    |.(e1
    * (x1 
    - s)).|) by 
    XREAL_1: 6;
    
            then
    
            
    
    A54: 
    |.((Lg
    . x1) 
    - (Lg 
    . s)).| 
    <= (( 
    ||.((f
    /. x1) 
    - (f 
    /. s)).|| 
    +  
    |.((g
    . x1) 
    - (g 
    . s)).|) 
    +  
    |.(e1
    * (x1 
    - s)).|) by 
    A52,
    XXREAL_0: 2;
    
            
    |.(x1
    - s).| 
    < t2 by 
    A49,
    A47,
    XXREAL_0: 2;
    
            then
    |.((g
    . x1) 
    - (g 
    . s)).| 
    < r3 by 
    A48,
    A36,
    A41;
    
            then
    
            
    
    A55: ( 
    ||.((f
    /. x1) 
    - (f 
    /. s)).|| 
    +  
    |.((g
    . x1) 
    - (g 
    . s)).|) 
    < ( 
    ||.((f
    /. x1) 
    - (f 
    /. s)).|| 
    + r3) by 
    XREAL_1: 8;
    
            
    |.(x1
    - s).| 
    < t3 by 
    A49,
    A44,
    XXREAL_0: 2;
    
            then (
    |.(x1
    - s).| 
    * e1) 
    <= (t3 
    * e1) by 
    A2,
    XREAL_1: 64;
    
            then (
    |.(x1
    - s).| 
    *  
    |.e1.|)
    <= (t3 
    * e1) by 
    A2,
    ABSVALUE:def 1;
    
            then
    |.(e1
    * (x1 
    - s)).| 
    <= (t3 
    * e1) by 
    COMPLEX1: 65;
    
            then
    
            
    
    A56: 
    |.(e1
    * (x1 
    - s)).| 
    < r3 by 
    A42,
    XXREAL_0: 2;
    
            
    |.(x1
    - s).| 
    < t1 by 
    A49,
    A46,
    XXREAL_0: 2;
    
            then
    ||.((f
    /. x1) 
    - (f 
    /. s)).|| 
    < r3 by 
    A48,
    A36,
    A40;
    
            then (
    ||.((f
    /. x1) 
    - (f 
    /. s)).|| 
    + r3) 
    < (r3 
    + r3) by 
    XREAL_1: 8;
    
            then (
    ||.((f
    /. x1) 
    - (f 
    /. s)).|| 
    +  
    |.((g
    . x1) 
    - (g 
    . s)).|) 
    < (r3 
    + r3) by 
    A55,
    XXREAL_0: 2;
    
            then ((
    ||.((f
    /. x1) 
    - (f 
    /. s)).|| 
    +  
    |.((g
    . x1) 
    - (g 
    . s)).|) 
    +  
    |.(e1
    * (x1 
    - s)).|) 
    < ((r3 
    + r3) 
    + r3) by 
    A56,
    XREAL_1: 8;
    
            hence
    |.((Lg
    . x1) 
    - (Lg 
    . s)).| 
    < r by 
    A54,
    XXREAL_0: 2;
    
          end;
    
        end;
    
        then
    
        
    
    A57: Lg 
    is_continuous_in s by 
    FCONT_1: 3;
    
        then
    
        
    
    A57a: (Lg 
    /* sq) is 
    convergent & (Lg 
    . s) 
    = ( 
    lim (Lg 
    /* sq)) by 
    A30,
    A31,
    A37,
    FCONT_1:def 1;
    
        
    
        
    
    A58: for n be 
    Nat holds 
    0  
    <= (( 
    - (Lg 
    /* sq)) 
    . n) 
    
        proof
    
          let n be
    Nat;
    
          
    
          
    
    A59: n 
    in  
    NAT by 
    ORDINAL1:def 12;
    
          ((
    - (Lg 
    /* sq)) 
    . n) 
    = ( 
    - ((Lg 
    /* sq) 
    . n)) by 
    SEQ_1: 10;
    
          then
    
          
    
    A60: (( 
    - (Lg 
    /* sq)) 
    . n) 
    = ( 
    - (Lg 
    . (sq 
    . n))) by 
    A37,
    FUNCT_2: 108,
    A59;
    
          
    P[n, (sq
    . n)] by 
    A23;
    
          then
    
          
    
    A61: ex x be 
    Real st (sq 
    . n) 
    = x & x 
    in  
    [.
    0 , 1.] & ((( 
    ||.((f
    /. x) 
    - (f 
    /.  
    0 )).|| 
    - ((g 
    . x) 
    - (g 
    .  
    0 ))) 
    - (e1 
    * x)) 
    - e1) 
    <=  
    0 ; 
    
          then (Lg0
    . (sq 
    . n)) 
    <=  
    0 by 
    A34;
    
          then (Lg
    . (sq 
    . n)) 
    <=  
    0 by 
    A61,
    FUNCT_1: 49;
    
          hence
    0  
    <= (( 
    - (Lg 
    /* sq)) 
    . n) by 
    A60;
    
        end;
    
        (
    - (Lg 
    /* sq)) is 
    convergent by 
    A57,
    A30,
    A31,
    A37,
    FCONT_1:def 1,
    SEQ_2: 9;
    
        then
    0  
    <= ( 
    lim ( 
    - (Lg 
    /* sq))) by 
    A58,
    SEQ_2: 17;
    
        then
    0  
    <= ( 
    - ( 
    lim (Lg 
    /* sq))) by 
    A57a,
    SEQ_2: 10;
    
        then (Lg
    . s) 
    <=  
    0 by 
    A57a;
    
        then (Lg0
    . s) 
    <=  
    0 by 
    A38,
    FUNCT_1: 49;
    
        then
    
        
    
    A62: ((( 
    ||.((f
    /. s) 
    - (f 
    /.  
    0 )).|| 
    - ((g 
    . s) 
    - (g 
    .  
    0 ))) 
    - (e1 
    * s)) 
    - e1) 
    <=  
    0 by 
    A34;
    
        
    
        
    
    A63: s 
    = 1 
    
        proof
    
          assume s
    <> 1; 
    
          then s
    < 1 by 
    A18,
    XXREAL_0: 1;
    
          then
    
          
    
    A64: s 
    in  
    ].
    0 , 1.[ by 
    A17;
    
          then f
    is_differentiable_in s by 
    A1,
    NDIFF_3: 10;
    
          then
    
          consider N1 be
    Neighbourhood of s such that 
    
          
    
    A65: N1 
    c= ( 
    dom f) & ex L1 be 
    LinearFunc of T, R1 be 
    RestFunc of T st ( 
    diff (f,s)) 
    = (L1 
    /. 1) & for x be 
    Real st x 
    in N1 holds ((f 
    /. x) 
    - (f 
    /. s)) 
    = ((L1 
    /. (x 
    - s)) 
    + (R1 
    /. (x 
    - s))) by 
    NDIFF_3:def 4;
    
          consider L1 be
    LinearFunc of T, R1 be 
    RestFunc of T such that 
    
          
    
    A66: ( 
    diff (f,s)) 
    = (L1 
    /. 1) & for x be 
    Real st x 
    in N1 holds ((f 
    /. x) 
    - (f 
    /. s)) 
    = ((L1 
    /. (x 
    - s)) 
    + (R1 
    /. (x 
    - s))) by 
    A65;
    
          g
    is_differentiable_in s by 
    A1,
    A64,
    FDIFF_1: 9;
    
          then
    
          consider N2 be
    Neighbourhood of s such that 
    
          
    
    A67: N2 
    c= ( 
    dom g) & ex L2 be 
    LinearFunc, R2 be 
    RestFunc st ( 
    diff (g,s)) 
    = (L2 
    . 1) & for x be 
    Real st x 
    in N2 holds ((g 
    . x) 
    - (g 
    . s)) 
    = ((L2 
    . (x 
    - s)) 
    + (R2 
    . (x 
    - s))) by 
    FDIFF_1:def 5;
    
          consider L2 be
    LinearFunc, R2 be 
    RestFunc such that 
    
          
    
    A68: ( 
    diff (g,s)) 
    = (L2 
    . 1) & for x be 
    Real st x 
    in N2 holds ((g 
    . x) 
    - (g 
    . s)) 
    = ((L2 
    . (x 
    - s)) 
    + (R2 
    . (x 
    - s))) by 
    A67;
    
          consider NN3 be
    Neighbourhood of s such that 
    
          
    
    A69: NN3 
    c= N1 & NN3 
    c= N2 by 
    RCOMP_1: 17;
    
          consider g0 be
    Real such that 
    
          
    
    A70: 
    0  
    < g0 & 
    ].(s
    - g0), (s 
    + g0).[ 
    c=  
    ].
    0 , 1.[ by 
    A64,
    RCOMP_1: 19;
    
          reconsider NN4 =
    ].(s
    - g0), (s 
    + g0).[ as 
    Neighbourhood of s by 
    A70,
    RCOMP_1:def 6;
    
          consider N3 be
    Neighbourhood of s such that 
    
          
    
    A71: N3 
    c= NN3 & N3 
    c= NN4 by 
    RCOMP_1: 17;
    
          consider d1 be
    Real such that 
    
          
    
    A73: 
    0  
    < d1 & N3 
    =  
    ].(s
    - d1), (s 
    + d1).[ by 
    RCOMP_1:def 6;
    
          set e2 = (e1
    / 2); 
    
          R1 is
    total & R1 is 
    RestFunc-like by 
    NDIFF_3:def 1;
    
          then
    
          consider d2 be
    Real such that 
    
          
    
    A74: 
    0  
    < d2 & for t be 
    Real st t 
    <>  
    0 & 
    |.t.|
    < d2 holds ( 
    ||.(R1
    /. t).|| 
    /  
    |.t.|)
    < e2 by 
    A2,
    Th17;
    
          R2 is
    total & R2 is 
    RestFunc-like by 
    FDIFF_1:def 2;
    
          then
    
          consider d3 be
    Real such that 
    
          
    
    A75: 
    0  
    < d3 & for t be 
    Real st t 
    <>  
    0 & 
    |.t.|
    < d3 holds ( 
    |.(R2
    . t).| 
    /  
    |.t.|)
    < e2 by 
    A2,
    Th18;
    
          
    
          
    
    A76: ( 
    min (d1,d2)) 
    <= d1 & ( 
    min (d1,d2)) 
    <= d2 & 
    0  
    < ( 
    min (d1,d2)) by 
    A73,
    A74,
    XXREAL_0: 17,
    XXREAL_0: 21;
    
          set d40 = (
    min (( 
    min (d1,d2)),d3)); 
    
          
    
          
    
    A77: d40 
    <= ( 
    min (d1,d2)) & d40 
    <= d3 & 
    0  
    < d40 by 
    A75,
    A76,
    XXREAL_0: 17,
    XXREAL_0: 21;
    
          set d4 = (d40
    / 2); 
    
          
    
          
    
    A78: d40 
    <= d1 & d40 
    <= d2 by 
    A76,
    A77,
    XXREAL_0: 2;
    
          d4
    < d40 by 
    A77,
    XREAL_1: 216;
    
          then
    
          
    
    A79a: 
    0  
    < d4 & d4 
    < d1 & d4 
    < d2 & d4 
    < d3 by 
    A77,
    A78,
    XXREAL_0: 2;
    
          then (s
    - d1) 
    < (s 
    + d4) & (s 
    + d4) 
    < (s 
    + d1) by 
    XREAL_1: 8;
    
          then
    
          
    
    A80: (s 
    + d4) 
    in N3 by 
    A73;
    
          then
    
          
    
    A81: ((f 
    /. (s 
    + d4)) 
    - (f 
    /. s)) 
    = ((L1 
    /. ((s 
    + d4) 
    - s)) 
    + (R1 
    /. ((s 
    + d4) 
    - s))) by 
    A66,
    A71,
    A69;
    
          
    
          
    
    A82: ((g 
    . (s 
    + d4)) 
    - (g 
    . s)) 
    = ((L2 
    . ((s 
    + d4) 
    - s)) 
    + (R2 
    . ((s 
    + d4) 
    - s))) by 
    A71,
    A69,
    A80,
    A68;
    
          consider df1 be
    Point of T such that 
    
          
    
    A83: for p be 
    Real holds (L1 
    /. p) 
    = (p 
    * df1) by 
    NDIFF_3:def 2;
    
          (L1
    /. 1) 
    = (1 
    * df1) by 
    A83;
    
          then (L1
    /. 1) 
    = df1 by 
    RLVECT_1:def 8;
    
          then
    
          
    
    A84: (L1 
    /. d4) 
    = (d4 
    * ( 
    diff (f,s))) by 
    A66,
    A83;
    
          consider df2 be
    Real such that 
    
          
    
    A85: for p be 
    Real holds (L2 
    . p) 
    = (df2 
    * p) by 
    FDIFF_1:def 3;
    
          (L2
    . 1) 
    = (df2 
    * 1) by 
    A85;
    
          then
    
          
    
    A86: (L2 
    . d4) 
    = (d4 
    * ( 
    diff (g,s))) by 
    A68,
    A85;
    
          
    
          
    
    A87: 
    ||.((f
    /. (s 
    + d4)) 
    - (f 
    /. s)).|| 
    <= ( 
    ||.(L1
    /. d4).|| 
    +  
    ||.(R1
    /. d4).||) by 
    A81,
    NORMSP_1:def 1;
    
          
    
          
    
    A88: 
    ||.(L1
    /. d4).|| 
    = ( 
    |.d4.|
    *  
    ||.(
    diff (f,s)).||) by 
    A84,
    NORMSP_1:def 1
    
          .= (
    ||.(
    diff (f,s)).|| 
    * d4) by 
    A77,
    ABSVALUE:def 1;
    
          
    
          
    
    A89: 
    0  
    <  
    |.d4.| by
    A77,
    ABSVALUE:def 1;
    
          
    |.d4.|
    < d2 by 
    A79a,
    ABSVALUE:def 1;
    
          then (
    ||.(R1
    /. d4).|| 
    /  
    |.d4.|)
    < e2 by 
    A74,
    A77;
    
          then
    ||.(R1
    /. d4).|| 
    <= (e2 
    *  
    |.d4.|) by
    A89,
    XREAL_1: 81;
    
          then
    ||.(R1
    /. d4).|| 
    <= (e2 
    * d4) by 
    A77,
    ABSVALUE:def 1;
    
          then (
    ||.(L1
    /. d4).|| 
    +  
    ||.(R1
    /. d4).||) 
    <= (( 
    ||.(
    diff (f,s)).|| 
    * d4) 
    + (e2 
    * d4)) by 
    A88,
    XREAL_1: 6;
    
          then
    
          
    
    A90: 
    ||.((f
    /. (s 
    + d4)) 
    - (f 
    /. s)).|| 
    <= (( 
    ||.(
    diff (f,s)).|| 
    * d4) 
    + (e2 
    * d4)) by 
    A87,
    XXREAL_0: 2;
    
          (
    ||.(
    diff (f,s)).|| 
    * d4) 
    <= (( 
    diff (g,s)) 
    * d4) by 
    A64,
    A1,
    A77,
    XREAL_1: 64;
    
          then ((
    ||.(
    diff (f,s)).|| 
    * d4) 
    + (e2 
    * d4)) 
    <= ((( 
    diff (g,s)) 
    * d4) 
    + (e2 
    * d4)) by 
    XREAL_1: 6;
    
          then
    
          
    
    A91: 
    ||.((f
    /. (s 
    + d4)) 
    - (f 
    /. s)).|| 
    <= ((( 
    diff (g,s)) 
    * d4) 
    + (e2 
    * d4)) by 
    A90,
    XXREAL_0: 2;
    
          
    |.d4.|
    < d3 by 
    A79a,
    ABSVALUE:def 1;
    
          then (
    |.(R2
    . d4).| 
    /  
    |.d4.|)
    < e2 by 
    A75,
    A77;
    
          then
    |.(R2
    . d4).| 
    <= (e2 
    *  
    |.d4.|) by
    A89,
    XREAL_1: 81;
    
          then
    |.(R2
    . d4).| 
    <= (e2 
    * d4) by 
    A77,
    ABSVALUE:def 1;
    
          then (
    - (e2 
    * d4)) 
    <= (R2 
    . d4) by 
    ABSVALUE: 5;
    
          then ((d4
    * ( 
    diff (g,s))) 
    - (e2 
    * d4)) 
    <= ((g 
    . (s 
    + d4)) 
    - (g 
    . s)) by 
    A82,
    A86,
    XREAL_1: 6;
    
          then (d4
    * ( 
    diff (g,s))) 
    <= (((g 
    . (s 
    + d4)) 
    - (g 
    . s)) 
    + (e2 
    * d4)) by 
    XREAL_1: 20;
    
          then (((
    diff (g,s)) 
    * d4) 
    + (e2 
    * d4)) 
    <= ((((g 
    . (s 
    + d4)) 
    - (g 
    . s)) 
    + (e2 
    * d4)) 
    + (e2 
    * d4)) by 
    XREAL_1: 6;
    
          then
    ||.((f
    /. (s 
    + d4)) 
    - (f 
    /. s)).|| 
    <= (((g 
    . (s 
    + d4)) 
    - (g 
    . s)) 
    + (e1 
    * d4)) by 
    A91,
    XXREAL_0: 2;
    
          then (
    ||.((f
    /. (s 
    + d4)) 
    - (f 
    /. s)).|| 
    - (((g 
    . (s 
    + d4)) 
    - (g 
    . s)) 
    + (e1 
    * d4))) 
    <=  
    0 by 
    XREAL_1: 47;
    
          then
    
          
    
    A92: (((( 
    ||.((f
    /. (s 
    + d4)) 
    - (f 
    /. s)).|| 
    - (g 
    . (s 
    + d4))) 
    + (g 
    . s)) 
    - (e1 
    * d4)) 
    + ((( 
    ||.((f
    /. s) 
    - (f 
    /.  
    0 )).|| 
    - ((g 
    . s) 
    - (g 
    .  
    0 ))) 
    - (e1 
    * s)) 
    - e1)) 
    <= ( 
    0 qua 
    Real
    +  
    0 qua 
    Real) by
    A62;
    
          (
    ||.((f
    /. (s 
    + d4)) 
    - (f 
    /.  
    0 )).|| 
    - ((((g 
    . (s 
    + d4)) 
    - (g 
    .  
    0 )) 
    + (e1 
    * (d4 
    + s))) 
    + e1)) 
    <= (( 
    ||.((f
    /. (s 
    + d4)) 
    - (f 
    /. s)).|| 
    +  
    ||.((f
    /. s) 
    - (f 
    /.  
    0 )).||) 
    - ((((g 
    . (s 
    + d4)) 
    - (g 
    .  
    0 )) 
    + (e1 
    * (d4 
    + s))) 
    + e1)) by 
    NORMSP_1: 10,
    XREAL_1: 9;
    
          then
    
          
    
    A93: ((( 
    ||.((f
    /. (s 
    + d4)) 
    - (f 
    /.  
    0 )).|| 
    - ((g 
    . (s 
    + d4)) 
    - (g 
    .  
    0 ))) 
    - (e1 
    * (s 
    + d4))) 
    - e1) 
    <=  
    0 by 
    A92;
    
          
    |.((
    0 qua 
    Real
    + 1) 
    - (2 
    * (s 
    + d4))).| 
    < (1 
    -  
    0 qua 
    Real) by
    A80,
    A71,
    A70,
    RCOMP_1: 3;
    
          then (s
    + d4) 
    in  
    [.
    0 , 1.] by 
    RCOMP_1: 2;
    
          then
    
          
    
    A94: (s 
    + d4) 
    in B by 
    A93;
    
          (s
    +  
    0 qua 
    Real)
    < (s 
    + d4) by 
    A77,
    XREAL_1: 8;
    
          hence contradiction by
    A94,
    A4,
    SEQ_4:def 1;
    
        end;
    
        
    0  
    in ( 
    dom g) & 1 
    in ( 
    dom g) by 
    A1;
    
        then (g
    /. 1) 
    = (g 
    . 1) & (g 
    /.  
    0 ) 
    = (g 
    .  
    0 ) by 
    PARTFUN1:def 6;
    
        then (((
    ||.((f
    /. 1) 
    - (f 
    /.  
    0 )).|| 
    - ((g 
    /. 1) 
    - (g 
    /.  
    0 ))) 
    - e) 
    + e) 
    <= ( 
    0 qua 
    Real
    + e) by 
    A63,
    A62,
    XREAL_1: 6;
    
        hence (
    ||.((f
    /. 1) 
    - (f 
    /.  
    0 )).|| 
    - ((g 
    /. 1) 
    - (g 
    /.  
    0 ))) 
    <= e; 
    
      end;
    
      then ((
    ||.((f
    /. 1) 
    - (f 
    /.  
    0 )).|| 
    - ((g 
    /. 1) 
    - (g 
    /.  
    0 ))) 
    + ((g 
    /. 1) 
    - (g 
    /.  
    0 ))) 
    <= ( 
    0 qua 
    Real
    + ((g 
    /. 1) 
    - (g 
    /.  
    0 ))) by 
    Lm3,
    XREAL_1: 6;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    NDIFF_5:19
    
    
    
    
    
    Th19: for S,T be 
    RealNormSpace, f be 
    PartFunc of S, T, p,q be 
    Point of S, M be 
    Real st 
    [.p, q.]
    c= ( 
    dom f) & (for x be 
    Point of S st x 
    in  
    [.p, q.] holds f
    is_continuous_in x) & (for x be 
    Point of S st x 
    in  
    ].p, q.[ holds f
    is_differentiable_in x) & (for x be 
    Point of S st x 
    in  
    ].p, q.[ holds
    ||.(
    diff (f,x)).|| 
    <= M) holds 
    ||.((f
    /. q) 
    - (f 
    /. p)).|| 
    <= (M 
    *  
    ||.(q
    - p).||) 
    
    proof
    
      let S,T be
    RealNormSpace, f be 
    PartFunc of S, T, p,q be 
    Point of S, M be 
    Real;
    
      assume
    
      
    
    A1: 
    [.p, q.]
    c= ( 
    dom f) & (for x be 
    Point of S st x 
    in  
    [.p, q.] holds f
    is_continuous_in x) & (for x be 
    Point of S st x 
    in  
    ].p, q.[ holds f
    is_differentiable_in x) & (for x be 
    Point of S st x 
    in  
    ].p, q.[ holds
    ||.(
    diff (f,x)).|| 
    <= M); 
    
      per cases ;
    
        suppose
    
        
    
    B2: p 
    = q; 
    
        
    
        
    
    B3: 
    ||.((f
    /. q) 
    - (f 
    /. p)).|| 
    =  
    ||.(
    0. T).|| by 
    B2,
    RLVECT_1: 15
    
        .=
    0 ; 
    
        (M
    *  
    ||.(q
    - p).||) 
    = (M 
    *  
    ||.(
    0. S).||) by 
    B2,
    RLVECT_1: 15
    
        .=
    0 ; 
    
        hence thesis by
    B3;
    
      end;
    
        suppose p
    <> q; 
    
        then
    
        
    
    X1: 
    ].p, q.[
    = { (p 
    + (t 
    * (q 
    - p))) where t be 
    Real : 
    0  
    < t & t 
    < 1 } by 
    LMOPN;
    
        deffunc
    
    PP(
    Real) = (($1
    * (q 
    - p)) 
    + p); 
    
        consider pt0 be
    Function of 
    REAL , the 
    carrier of S such that 
    
        
    
    A2: for t be 
    Element of 
    REAL holds (pt0 
    . t) 
    =  
    PP(t) from
    FUNCT_2:sch 4;
    
        
    
        
    
    A3: for t be 
    Real holds (pt0 
    . t) 
    =  
    PP(t)
    
        proof
    
          let t be
    Real;
    
          reconsider t as
    Element of 
    REAL by 
    XREAL_0:def 1;
    
          (pt0
    . t) 
    =  
    PP(t) by
    A2;
    
          hence thesis;
    
        end;
    
        set pt = (pt0
    |  
    [.
    0 , 1.]); 
    
        
    
        
    
    A4: ( 
    dom pt0) 
    =  
    REAL by 
    FUNCT_2:def 1;
    
        then
    
        
    
    A5: ( 
    dom pt) 
    =  
    [.
    0 , 1.] by 
    RELAT_1: 62;
    
        
    
    A6: 
    
        now
    
          let t be
    Real;
    
          assume t
    in  
    [.
    0 , 1.]; 
    
          (pt0
    /. t) 
    = (pt0 
    . t) by 
    A4,
    PARTFUN1:def 6,
    XREAL_0:def 1;
    
          hence (pt0
    /. t) 
    = ((t 
    * (q 
    - p)) 
    + p) by 
    A3;
    
        end;
    
        
    
        
    
    A7: 
    ].
    0 , 1.[ 
    c=  
    [.
    0 , 1.] by 
    XXREAL_1: 25;
    
        
    
    A8: 
    
        now
    
          let t be
    Real;
    
          assume t
    in  
    ].
    0 , 1.[; 
    
          
    
          hence (pt
    /. t) 
    = (pt0 
    /. t) by 
    A5,
    A7,
    PARTFUN2: 15
    
          .= (pt0
    . t) by 
    A4,
    PARTFUN1:def 6,
    XREAL_0:def 1
    
          .= ((t
    * (q 
    - p)) 
    + p) by 
    A3;
    
        end;
    
        then
    
        
    
    A10: pt 
    is_differentiable_on  
    ].
    0 , 1.[ & for t be 
    Real st t 
    in  
    ].
    0 , 1.[ holds ((pt 
    `|  
    ].
    0 , 1.[) 
    . t) 
    = (q 
    - p) by 
    A5,
    A7,
    NDIFF_3: 21;
    
        reconsider phi = (f
    * pt) as 
    PartFunc of 
    REAL , T; 
    
        
    
        
    
    A11: ( 
    rng pt) 
    c=  
    [.p, q.]
    
        proof
    
          let y be
    object;
    
          assume y
    in ( 
    rng pt); 
    
          then
    
          consider x be
    object such that 
    
          
    
    A12: x 
    in ( 
    dom pt) & y 
    = (pt 
    . x) by 
    FUNCT_1:def 3;
    
          
    
          
    
    A13: y 
    = (pt0 
    . x) by 
    A12,
    FUNCT_1: 47;
    
          reconsider x as
    Element of 
    REAL by 
    A12;
    
          consider r be
    Real such that 
    
          
    
    A14: x 
    = r & 
    0  
    <= r & r 
    <= 1 by 
    A12,
    A5;
    
          y
    = (p 
    + (x 
    * (q 
    - p))) by 
    A3,
    A13
    
          .= (((1
    - x) 
    * p) 
    + (x 
    * q)) by 
    Lm2;
    
          then y
    in { (((1 
    - r1) 
    * p) 
    + (r1 
    * q)) where r1 be 
    Real : 
    0  
    <= r1 & r1 
    <= 1 } by 
    A14;
    
          hence y
    in  
    [.p, q.] by
    RLTOPSP1:def 2;
    
        end;
    
        then (
    rng pt) 
    c= ( 
    dom f) by 
    A1;
    
        then
    
        
    
    A15: ( 
    dom phi) 
    =  
    [.
    0 , 1.] by 
    A5,
    RELAT_1: 27;
    
        
    
        
    
    A16: for t be 
    Real st t 
    in  
    [.
    0 , 1.] holds (phi 
    /. t) 
    = (f 
    /. (p 
    + (t 
    * (q 
    - p)))) 
    
        proof
    
          let t be
    Real;
    
          assume
    
          
    
    A17: t 
    in  
    [.
    0 , 1.]; 
    
          
    
          then
    
          
    
    A18: (phi 
    /. t) 
    = (phi 
    . t) by 
    A15,
    PARTFUN1:def 6
    
          .= (f
    . (pt 
    . t)) by 
    A17,
    A15,
    FUNCT_1: 12;
    
          
    
          
    
    A19: (pt 
    . t) 
    in ( 
    rng pt) by 
    A17,
    A5,
    FUNCT_1:def 3;
    
          (pt
    . t) 
    = (pt0 
    . t) by 
    A17,
    A5,
    FUNCT_1: 47
    
          .= (p
    + (t 
    * (q 
    - p))) by 
    A3;
    
          hence thesis by
    A18,
    A11,
    A19,
    A1,
    PARTFUN1:def 6;
    
        end;
    
        now
    
          let x0 be
    Real;
    
          assume
    
          
    
    A20: x0 
    in ( 
    dom phi); 
    
          then
    
          
    
    A21: pt 
    is_continuous_in x0 by 
    A5,
    A6,
    A15,
    NFCONT_3: 33,
    NFCONT_3:def 2;
    
          (pt
    . x0) 
    in ( 
    rng pt) by 
    A5,
    A20,
    A15,
    FUNCT_1:def 3;
    
          then (pt
    . x0) 
    in  
    [.p, q.] by
    A11;
    
          then (pt
    /. x0) 
    in  
    [.p, q.] by
    A20,
    A15,
    A5,
    PARTFUN1:def 6;
    
          hence phi
    is_continuous_in x0 by 
    A1,
    A20,
    A21,
    NFCONT_3: 15;
    
        end;
    
        then phi is
    continuous by 
    NFCONT_3:def 2;
    
        then
    
        
    
    A22: (phi 
    |  
    [.
    0 , 1.]) is 
    continuous;
    
        
    
    A23: 
    
        now
    
          let x be
    Real;
    
          assume
    
          
    
    A24: x 
    in  
    ].
    0 , 1.[; 
    
          then
    
          
    
    A25: pt 
    is_differentiable_in x by 
    A10,
    NDIFF_3: 10;
    
          ((pt
    `|  
    ].
    0 , 1.[) 
    . x) 
    = (q 
    - p) by 
    A24,
    A8,
    A5,
    A7,
    NDIFF_3: 21;
    
          then
    
          
    
    A26: ( 
    diff (pt,x)) 
    = (q 
    - p) by 
    A10,
    A24,
    NDIFF_3:def 6;
    
          
    
          
    
    A27: (pt 
    . x) 
    = (pt 
    /. x) by 
    A24,
    A7,
    A5,
    PARTFUN1:def 6;
    
          
    
          
    
    A28: ex r be 
    Real st x 
    = r & 
    0  
    < r & r 
    < 1 by 
    A24;
    
          
    
          
    
    A29: (pt 
    . x) 
    = (pt0 
    . x) by 
    A24,
    A7,
    A5,
    FUNCT_1: 47;
    
          
    
          
    
    A30: (pt0 
    . x) 
    = (p 
    + (x 
    * (q 
    - p))) by 
    A3;
    
          (pt
    . x) 
    in  
    ].p, q.[ by
    X1,
    A28,
    A29,
    A30;
    
          then
    
          
    
    A31: f 
    is_differentiable_in (pt 
    /. x) by 
    A27,
    A1;
    
          hence phi
    is_differentiable_in x by 
    A25,
    Th6;
    
          thus (
    diff (phi,x)) 
    = (( 
    diff (f,(p 
    + (x 
    * (q 
    - p))))) 
    . (q 
    - p)) by 
    A26,
    A27,
    A29,
    A30,
    A31,
    A25,
    Th6;
    
        end;
    
        then
    ].
    0 , 1.[ 
    c= ( 
    dom phi) & for x be 
    Real st x 
    in  
    ].
    0 , 1.[ holds phi 
    is_differentiable_in x by 
    A15,
    XXREAL_1: 25;
    
        then
    
        
    
    A32: phi 
    is_differentiable_on  
    ].
    0 , 1.[ by 
    NDIFF_3: 10;
    
        deffunc
    
    GG(
    Real) = (
    In (((M 
    *  
    ||.(q
    - p).||) 
    * $1), 
    REAL )); 
    
        consider g0 be
    Function of 
    REAL , 
    REAL such that 
    
        
    
    A33: for t be 
    Element of 
    REAL holds (g0 
    . t) 
    =  
    GG(t) from
    FUNCT_2:sch 4;
    
        
    
        
    
    A34: for t be 
    Real holds (g0 
    . t) 
    =  
    GG(t)
    
        proof
    
          let t be
    Real;
    
          reconsider t as
    Element of 
    REAL by 
    XREAL_0:def 1;
    
          (g0
    . t) 
    =  
    GG(t) by
    A33;
    
          hence thesis;
    
        end;
    
        set g = (g0
    |  
    [.
    0 , 1.]); 
    
        
    
        
    
    A35: for t be 
    Real st t 
    in  
    [.
    0 , 1.] holds (g0 
    . t) 
    = (((M 
    *  
    ||.(q
    - p).||) 
    * t) 
    +  
    0 qua 
    Real)
    
        proof
    
          let t be
    Real;
    
          assume t
    in  
    [.
    0 , 1.]; 
    
          
    
          thus (g0
    . t) 
    =  
    GG(t) by
    A34
    
          .= (((M
    *  
    ||.(q
    - p).||) 
    * t) 
    +  
    0 qua 
    Real);
    
        end;
    
        (
    dom g0) 
    =  
    REAL by 
    FUNCT_2:def 1;
    
        then
    
        
    
    A36: ( 
    dom g) 
    =  
    [.
    0 , 1.] by 
    RELAT_1: 62;
    
        
    
        
    
    A37: (g 
    |  
    [.
    0 , 1.]) is 
    continuous by 
    A35,
    FCONT_1: 41;
    
        
    
    A38: 
    
        now
    
          let t be
    Real;
    
          assume t
    in  
    ].
    0 , 1.[; 
    
          
    
          hence (g
    . t) 
    = (g0 
    . t) by 
    A36,
    A7,
    FUNCT_1: 47
    
          .=
    GG(t) by
    A34
    
          .= (((M
    *  
    ||.(q
    - p).||) 
    * t) 
    +  
    0 qua 
    Real);
    
        end;
    
        then
    
        
    
    A39: g 
    is_differentiable_on  
    ].
    0 , 1.[ & for t be 
    Real st t 
    in  
    ].
    0 , 1.[ holds ((g 
    `|  
    ].
    0 , 1.[) 
    . t) 
    = (M 
    *  
    ||.(q
    - p).||) by 
    A36,
    A7,
    FDIFF_1: 23;
    
        for t be
    Real st t 
    in  
    ].
    0 , 1.[ holds 
    ||.(
    diff (phi,t)).|| 
    <= ( 
    diff (g,t)) 
    
        proof
    
          let t be
    Real;
    
          assume
    
          
    
    A40: t 
    in  
    ].
    0 , 1.[; 
    
          then
    
          
    
    A41: 
    ||.(
    diff (phi,t)).|| 
    =  
    ||.((
    diff (f,(p 
    + (t 
    * (q 
    - p))))) 
    . (q 
    - p)).|| by 
    A23;
    
          reconsider L = (
    diff (f,(p 
    + (t 
    * (q 
    - p))))) as 
    Lipschitzian  
    LinearOperator of S, T by 
    LOPBAN_1:def 9;
    
          
    
          
    
    A42: 
    ||.(L
    . (q 
    - p)).|| 
    <= ( 
    ||.(
    diff (f,(p 
    + (t 
    * (q 
    - p))))).|| 
    *  
    ||.(q
    - p).||) by 
    LOPBAN_1: 32;
    
          
    
          
    
    A43: ex r be 
    Real st t 
    = r & 
    0  
    < r & r 
    < 1 by 
    A40;
    
          (p
    + (t 
    * (q 
    - p))) 
    in  
    ].p, q.[ by
    A43,
    X1;
    
          then
    
          
    
    A44: ( 
    ||.(
    diff (f,(p 
    + (t 
    * (q 
    - p))))).|| 
    *  
    ||.(q
    - p).||) 
    <= (M 
    *  
    ||.(q
    - p).||) by 
    A1,
    XREAL_1: 64;
    
          (
    diff (g,t)) 
    = ((g 
    `|  
    ].
    0 , 1.[) 
    . t) by 
    A40,
    A39,
    FDIFF_1:def 7;
    
          then (
    diff (g,t)) 
    = (M 
    *  
    ||.(q
    - p).||) by 
    A40,
    A38,
    A36,
    A7,
    FDIFF_1: 23;
    
          hence thesis by
    A44,
    A42,
    A41,
    XXREAL_0: 2;
    
        end;
    
        then
    
        
    
    A45: 
    ||.((phi
    /. 1) 
    - (phi 
    /.  
    0 )).|| 
    <= ((g 
    /. 1) 
    - (g 
    /.  
    0 )) by 
    Lm4,
    A15,
    A22,
    A32,
    A36,
    A37,
    A38,
    A7,
    FDIFF_1: 23;
    
        
    
        
    
    A46: 1 
    in  
    [.
    0 , 1.] & 
    0  
    in  
    [.
    0 , 1.]; 
    
        
    
        then
    
        
    
    A47: (g 
    /. 1) 
    = (g 
    . 1) by 
    A36,
    PARTFUN1:def 6
    
        .= (g0
    . 1) by 
    A36,
    A46,
    FUNCT_1: 47
    
        .=
    GG() by
    A34
    
        .= ((M
    *  
    ||.(q
    - p).||) 
    * 1); 
    
        
    
        
    
    A48: (g 
    /.  
    0 ) 
    = (g 
    .  
    0 ) by 
    A36,
    A46,
    PARTFUN1:def 6
    
        .= (g0
    .  
    0 ) by 
    A36,
    A46,
    FUNCT_1: 47
    
        .=
    GG(0) by
    A34
    
        .= ((M
    *  
    ||.(q
    - p).||) 
    *  
    0 qua 
    Real);
    
        
    
        
    
    A49: (phi 
    /. 1) 
    = (f 
    /. (p 
    + (1 
    * (q 
    - p)))) by 
    A16,
    A46
    
        .= (f
    /. (p 
    + (q 
    - p))) by 
    RLVECT_1:def 8
    
        .= (f
    /. (q 
    - (p 
    - p))) by 
    RLVECT_1: 29
    
        .= (f
    /. (q 
    - ( 
    0. S))) by 
    RLVECT_1: 15
    
        .= (f
    /. q) by 
    RLVECT_1: 13;
    
        (phi
    /.  
    0 ) 
    = (f 
    /. (p 
    + ( 
    0 qua 
    Real
    * (q 
    - p)))) by 
    A16,
    A46
    
        .= (f
    /. (p 
    + ( 
    0. S))) by 
    RLVECT_1: 10
    
        .= (f
    /. p) by 
    RLVECT_1: 4;
    
        hence thesis by
    A45,
    A47,
    A48,
    A49;
    
      end;
    
    end;
    
    theorem :: 
    
    NDIFF_5:20
    
    
    
    
    
    Th20: for S,T be 
    RealNormSpace, f be 
    PartFunc of S, T, p,q be 
    Point of S, M be 
    Real, L be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (S,T)) st 
    [.p, q.]
    c= ( 
    dom f) & (for x be 
    Point of S st x 
    in  
    [.p, q.] holds f
    is_continuous_in x) & (for x be 
    Point of S st x 
    in  
    ].p, q.[ holds f
    is_differentiable_in x) & (for x be 
    Point of S st x 
    in  
    ].p, q.[ holds
    ||.((
    diff (f,x)) 
    - L).|| 
    <= M) holds 
    ||.(((f
    /. q) 
    - (f 
    /. p)) 
    - (L 
    . (q 
    - p))).|| 
    <= (M 
    *  
    ||.(q
    - p).||) 
    
    proof
    
      let S,T be
    RealNormSpace, f be 
    PartFunc of S, T, p,q be 
    Point of S, M be 
    Real, L be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (S,T)); 
    
      assume that
    
      
    
    A1: 
    [.p, q.]
    c= ( 
    dom f) and 
    
      
    
    A2: (for x be 
    Point of S st x 
    in  
    [.p, q.] holds f
    is_continuous_in x) & (for x be 
    Point of S st x 
    in  
    ].p, q.[ holds f
    is_differentiable_in x) & (for x be 
    Point of S st x 
    in  
    ].p, q.[ holds
    ||.((
    diff (f,x)) 
    - L).|| 
    <= M); 
    
      reconsider LP = L as
    Lipschitzian  
    LinearOperator of S, T by 
    LOPBAN_1:def 9;
    
      deffunc
    
    LL(
    Point of S) = (L 
    . ($1 
    - p)); 
    
      consider L0 be
    Function of the 
    carrier of S, the 
    carrier of T such that 
    
      
    
    A3: for t be 
    Element of the 
    carrier of S holds (L0 
    . t) 
    =  
    LL(t) from
    FUNCT_2:sch 4;
    
      
    
      
    
    A4: ( 
    dom L0) 
    = the 
    carrier of S by 
    FUNCT_2:def 1;
    
      now
    
        let x1,x2 be
    Point of S; 
    
        assume x1
    in ( 
    dom L0) & x2 
    in ( 
    dom L0); 
    
        (L0
    /. x1) 
    = (L 
    . (x1 
    - p)) & (L0 
    /. x2) 
    = (L 
    . (x2 
    - p)) by 
    A3;
    
        
    
        then
    ||.((L0
    /. x1) 
    - (L0 
    /. x2)).|| 
    =  
    ||.((LP
    . (x1 
    - p)) 
    + (( 
    - 1) 
    * (LP 
    . (x2 
    - p)))).|| by 
    RLVECT_1: 16
    
        .=
    ||.((LP
    . (x1 
    - p)) 
    + (LP 
    . (( 
    - 1) 
    * (x2 
    - p)))).|| by 
    LOPBAN_1:def 5
    
        .=
    ||.(LP
    . ((x1 
    - p) 
    + (( 
    - 1) 
    * (x2 
    - p)))).|| by 
    VECTSP_1:def 20
    
        .=
    ||.(LP
    . ((x1 
    - p) 
    - (x2 
    - p))).|| by 
    RLVECT_1: 16
    
        .=
    ||.(LP
    . (x1 
    - ((x2 
    - p) 
    + p))).|| by 
    RLVECT_1: 27
    
        .=
    ||.(LP
    . (x1 
    - (x2 
    - (p 
    - p)))).|| by 
    RLVECT_1: 29
    
        .=
    ||.(LP
    . (x1 
    - (x2 
    - ( 
    0. S)))).|| by 
    RLVECT_1: 15
    
        .=
    ||.(LP
    . (x1 
    - x2)).|| by 
    RLVECT_1: 13;
    
        then
    
        
    
    A5: 
    ||.((L0
    /. x1) 
    - (L0 
    /. x2)).|| 
    <= ( 
    ||.L.||
    *  
    ||.(x1
    - x2).||) by 
    LOPBAN_1: 32;
    
        (
    0 qua 
    Real
    +  
    ||.L.||)
    < (1 
    +  
    ||.L.||) by
    XREAL_1: 8;
    
        then (
    ||.L.||
    *  
    ||.(x1
    - x2).||) 
    <= (( 
    ||.L.||
    + 1) 
    *  
    ||.(x1
    - x2).||) by 
    XREAL_1: 64;
    
        hence
    ||.((L0
    /. x1) 
    - (L0 
    /. x2)).|| 
    <= (( 
    ||.L.||
    + 1) 
    *  
    ||.(x1
    - x2).||) by 
    A5,
    XXREAL_0: 2;
    
      end;
    
      then
    
      
    
    A6: L0 
    is_continuous_on ( 
    dom L0) by 
    NFCONT_1: 45,
    NFCONT_1:def 9;
    
      reconsider R = (the
    carrier of S 
    --> ( 
    0. T)) as 
    PartFunc of S, T; 
    
      
    
      
    
    A7: ( 
    dom R) 
    = the 
    carrier of S; 
    
      now
    
        let h be (
    0. S) 
    -convergent  
    sequence of S; 
    
        assume h is
    non-zero;
    
        
    
    A8: 
    
        now
    
          let n be
    Nat;
    
          
    
          
    
    A9: (R 
    /. (h 
    . n)) 
    = (R 
    . (h 
    . n)) by 
    A7,
    PARTFUN1:def 6
    
          .= (
    0. T); 
    
          
    
          
    
    A10: ( 
    rng h) 
    c= ( 
    dom R); 
    
          
    
          
    
    A11: n 
    in  
    NAT by 
    ORDINAL1:def 12;
    
          
    
          thus (((
    ||.h.||
    " ) 
    (#) (R 
    /* h)) 
    . n) 
    = ((( 
    ||.h.||
    " ) 
    . n) 
    * ((R 
    /* h) 
    . n)) by 
    NDIFF_1:def 2
    
          .= (((
    ||.h.||
    " ) 
    . n) 
    * (R 
    /. (h 
    . n))) by 
    A11,
    A10,
    FUNCT_2: 109
    
          .= (
    0. T) by 
    A9,
    RLVECT_1: 10;
    
        end;
    
        then
    
        
    
    A12: (( 
    ||.h.||
    " ) 
    (#) (R 
    /* h)) is 
    constant by 
    VALUED_0:def 18;
    
        hence ((
    ||.h.||
    " ) 
    (#) (R 
    /* h)) is 
    convergent by 
    NDIFF_1: 18;
    
        (((
    ||.h.||
    " ) 
    (#) (R 
    /* h)) 
    .  
    0 ) 
    = ( 
    0. T) by 
    A8;
    
        hence (
    lim (( 
    ||.h.||
    " ) 
    (#) (R 
    /* h))) 
    = ( 
    0. T) by 
    A12,
    NDIFF_1: 18;
    
      end;
    
      then
    
      reconsider R as
    RestFunc of S, T by 
    NDIFF_1:def 5;
    
      
    
    A13: 
    
      now
    
        let x0 be
    Point of S; 
    
        set N = the
    Neighbourhood of x0; 
    
        
    
        
    
    A14: for x be 
    Point of S st x 
    in N holds ((L0 
    /. x) 
    - (L0 
    /. x0)) 
    = ((L 
    . (x 
    - x0)) 
    + (R 
    /. (x 
    - x0))) 
    
        proof
    
          let x be
    Point of S; 
    
          
    
          
    
    A15: (R 
    /. (x 
    - x0)) 
    = (R 
    . (x 
    - x0)) by 
    A7,
    PARTFUN1:def 6
    
          .= (
    0. T); 
    
          assume x
    in N; 
    
          
    
          thus ((L0
    /. x) 
    - (L0 
    /. x0)) 
    = ((L 
    . (x 
    - p)) 
    - (L0 
    /. x0)) by 
    A3
    
          .= ((L
    . (x 
    - p)) 
    - (L 
    . (x0 
    - p))) by 
    A3
    
          .= ((LP
    . (x 
    - p)) 
    + (( 
    - 1) 
    * (LP 
    . (x0 
    - p)))) by 
    RLVECT_1: 16
    
          .= ((LP
    . (x 
    - p)) 
    + (LP 
    . (( 
    - 1) 
    * (x0 
    - p)))) by 
    LOPBAN_1:def 5
    
          .= (LP
    . ((x 
    - p) 
    + (( 
    - 1) 
    * (x0 
    - p)))) by 
    VECTSP_1:def 20
    
          .= (LP
    . ((x 
    - p) 
    - (x0 
    - p))) by 
    RLVECT_1: 16
    
          .= (LP
    . (x 
    - ((x0 
    - p) 
    + p))) by 
    RLVECT_1: 27
    
          .= (LP
    . (x 
    - (x0 
    - (p 
    - p)))) by 
    RLVECT_1: 29
    
          .= (LP
    . (x 
    - (x0 
    - ( 
    0. S)))) by 
    RLVECT_1: 15
    
          .= (LP
    . (x 
    - x0)) by 
    RLVECT_1: 13
    
          .= ((L
    . (x 
    - x0)) 
    + (R 
    /. (x 
    - x0))) by 
    A15,
    RLVECT_1: 4;
    
        end;
    
        hence L0
    is_differentiable_in x0 by 
    A4,
    NDIFF_1:def 6;
    
        hence (
    diff (L0,x0)) 
    = L by 
    A4,
    A14,
    NDIFF_1:def 7;
    
      end;
    
      set g = (f
    - L0); 
    
      
    
      
    
    A16: ( 
    dom g) 
    = (( 
    dom f) 
    /\ ( 
    dom L0)) by 
    VFUNCT_1:def 2
    
      .= (
    dom f) by 
    A4,
    XBOOLE_1: 28;
    
      
    
      
    
    A17: for x be 
    Point of S st x 
    in ( 
    dom g) holds (g 
    /. x) 
    = ((f 
    /. x) 
    - (L 
    . (x 
    - p))) 
    
      proof
    
        let x be
    Point of S; 
    
        assume x
    in ( 
    dom g); 
    
        
    
        hence (g
    /. x) 
    = ((f 
    /. x) 
    - (L0 
    /. x)) by 
    VFUNCT_1:def 2
    
        .= ((f
    /. x) 
    - (L 
    . (x 
    - p))) by 
    A3;
    
      end;
    
      
    
      
    
    A18: for x be 
    Point of S st x 
    in  
    [.p, q.] holds g
    is_continuous_in x 
    
      proof
    
        let x be
    Point of S; 
    
        assume x
    in  
    [.p, q.];
    
        then
    
        
    
    A19: f 
    is_continuous_in x by 
    A2;
    
        (L0
    | ( 
    dom L0)) 
    is_continuous_in x by 
    A4,
    A6,
    NFCONT_1:def 7;
    
        hence thesis by
    A19,
    NFCONT_1: 15;
    
      end;
    
      
    
      
    
    A20: for x be 
    Point of S st x 
    in  
    ].p, q.[ holds g
    is_differentiable_in x 
    
      proof
    
        let x be
    Point of S; 
    
        assume x
    in  
    ].p, q.[;
    
        then f
    is_differentiable_in x & L0 
    is_differentiable_in x by 
    A2,
    A13;
    
        hence g
    is_differentiable_in x by 
    NDIFF_1: 36;
    
      end;
    
      for x be
    Point of S st x 
    in  
    ].p, q.[ holds
    ||.(
    diff (g,x)).|| 
    <= M 
    
      proof
    
        let x be
    Point of S; 
    
        assume
    
        
    
    A21: x 
    in  
    ].p, q.[;
    
        then
    
        
    
    A22: f 
    is_differentiable_in x by 
    A2;
    
        L0
    is_differentiable_in x & ( 
    diff (L0,x)) 
    = L by 
    A13;
    
        then (
    diff (g,x)) 
    = (( 
    diff (f,x)) 
    - L) by 
    A22,
    NDIFF_1: 36;
    
        hence
    ||.(
    diff (g,x)).|| 
    <= M by 
    A2,
    A21;
    
      end;
    
      then
    
      
    
    A23: 
    ||.((g
    /. q) 
    - (g 
    /. p)).|| 
    <= (M 
    *  
    ||.(q
    - p).||) by 
    Th19,
    A1,
    A16,
    A18,
    A20;
    
      p
    in  
    [.p, q.] by
    RLTOPSP1: 68;
    
      then (g
    /. p) 
    = ((f 
    /. p) 
    - (L 
    . (p 
    - p))) by 
    A1,
    A16,
    A17;
    
      
    
      then
    
      
    
    A24: (g 
    /. p) 
    = ((f 
    /. p) 
    - (LP 
    . ( 
    0. S))) by 
    RLVECT_1: 15
    
      .= ((f
    /. p) 
    - (LP 
    . ( 
    0  
    * p))) by 
    RLVECT_1: 10
    
      .= ((f
    /. p) 
    - ( 
    0  
    * (LP 
    . p))) by 
    LOPBAN_1:def 5
    
      .= ((f
    /. p) 
    - ( 
    0. T)) by 
    RLVECT_1: 10
    
      .= (f
    /. p) by 
    RLVECT_1: 13;
    
      q
    in  
    [.p, q.] by
    RLTOPSP1: 68;
    
      then (g
    /. q) 
    = ((f 
    /. q) 
    - (L 
    . (q 
    - p))) by 
    A1,
    A16,
    A17;
    
      then ((f
    /. q) 
    - ((L 
    . (q 
    - p)) 
    + (f 
    /. p))) 
    = ((g 
    /. q) 
    - (g 
    /. p)) by 
    A24,
    RLVECT_1: 27;
    
      hence thesis by
    A23,
    RLVECT_1: 27;
    
    end;
    
    begin
    
    definition
    
      let G be
    RealNormSpace-Sequence;
    
      let i be
    Element of ( 
    dom G); 
    
      :: 
    
    NDIFF_5:def3
    
      func
    
    proj i -> 
    Function of ( 
    product G), (G 
    . i) means 
    
      :
    
    Def3: for x be 
    Element of ( 
    product ( 
    carr G)) holds (it 
    . x) 
    = (x 
    . i); 
    
      existence
    
      proof
    
        deffunc
    
    F(
    Element of ( 
    product ( 
    carr G))) = ($1 
    . i); 
    
        consider f be
    Function of ( 
    product ( 
    carr G)), (G 
    . i) such that 
    
        
    
    A1: for x be 
    Element of ( 
    product ( 
    carr G)) holds (f 
    . x) 
    =  
    F(x) from
    FUNCT_2:sch 4;
    
        (
    product G) 
    =  
    NORMSTR (# ( 
    product ( 
    carr G)), ( 
    zeros G), 
    [:(
    addop G):], 
    [:(
    multop G):], ( 
    productnorm G) #) by 
    PRVECT_2: 6;
    
        then
    
        reconsider f as
    Function of ( 
    product G), (G 
    . i); 
    
        take f;
    
        thus thesis by
    A1;
    
      end;
    
      uniqueness
    
      proof
    
        let f,g be
    Function of the 
    carrier of ( 
    product G), the 
    carrier of (G 
    . i); 
    
        assume that
    
        
    
    A2: for x be 
    Element of ( 
    product ( 
    carr G)) holds (f 
    . x) 
    = (x 
    . i) and 
    
        
    
    A3: for x be 
    Element of ( 
    product ( 
    carr G)) holds (g 
    . x) 
    = (x 
    . i); 
    
        
    
        
    
    A4: ( 
    product G) 
    =  
    NORMSTR (# ( 
    product ( 
    carr G)), ( 
    zeros G), 
    [:(
    addop G):], 
    [:(
    multop G):], ( 
    productnorm G) #) by 
    PRVECT_2: 6;
    
        now
    
          let x1 be
    Element of the 
    carrier of ( 
    product G); 
    
          reconsider x = x1 as
    Element of ( 
    product ( 
    carr G)) by 
    A4;
    
          (f
    . x1) 
    = (x 
    . i) by 
    A2;
    
          hence (f
    . x1) 
    = (g 
    . x1) by 
    A3;
    
        end;
    
        hence thesis;
    
      end;
    
    end
    
    definition
    
      let G be
    RealNormSpace-Sequence;
    
      let i be
    Element of ( 
    dom G); 
    
      let x be
    Element of ( 
    product G); 
    
      :: 
    
    NDIFF_5:def4
    
      func
    
    reproj (i,x) -> 
    Function of (G 
    . i), ( 
    product G) means 
    
      :
    
    Def4: for r be 
    Element of (G 
    . i) holds (it 
    . r) 
    = (x 
    +* (i,r)); 
    
      existence
    
      proof
    
        reconsider x1 = x as
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
        defpred
    
    P[
    Element of (G 
    . i), 
    Element of the 
    carrier of ( 
    product G)] means $2 
    = (x1 
    +* (i,$1)); 
    
        
    
        
    
    A1: for r be 
    Element of (G 
    . i) holds ex y be 
    Element of the 
    carrier of ( 
    product G) st 
    P[r, y]
    
        proof
    
          let r be
    Element of (G 
    . i); 
    
          (x1
    +* (i,r)) is 
    Element of the 
    carrier of ( 
    product G) by 
    Th11;
    
          hence thesis;
    
        end;
    
        ex f be
    Function of the 
    carrier of (G 
    . i), the 
    carrier of ( 
    product G) st for r be 
    Element of (G 
    . i) holds 
    P[r, (f
    . r)] from 
    FUNCT_2:sch 3(
    A1);
    
        hence thesis;
    
      end;
    
      uniqueness
    
      proof
    
        let f,g be
    Function of the 
    carrier of (G 
    . i), the 
    carrier of ( 
    product G); 
    
        assume that
    
        
    
    A2: for r be 
    Element of (G 
    . i) holds (f 
    . r) 
    = (x 
    +* (i,r)) and 
    
        
    
    A3: for r be 
    Element of (G 
    . i) holds (g 
    . r) 
    = (x 
    +* (i,r)); 
    
        let r be
    Element of (G 
    . i); 
    
        (f
    . r) 
    = (x 
    +* (i,r)) by 
    A2;
    
        hence (f
    . r) 
    = (g 
    . r) by 
    A3;
    
      end;
    
    end
    
    definition
    
      ::$Canceled
    
      let G be
    RealNormSpace-Sequence;
    
      let F be
    RealNormSpace;
    
      let i be
    set;
    
      let f be
    PartFunc of ( 
    product G), F; 
    
      let x be
    Element of ( 
    product G); 
    
      :: 
    
    NDIFF_5:def6
    
      pred f
    
    is_partial_differentiable_in x,i means (f 
    * ( 
    reproj (( 
    In (i,( 
    dom G))),x))) 
    is_differentiable_in (( 
    proj ( 
    In (i,( 
    dom G)))) 
    . x); 
    
    end
    
    definition
    
      let G be
    RealNormSpace-Sequence;
    
      let F be
    RealNormSpace;
    
      let i be
    set;
    
      let f be
    PartFunc of ( 
    product G), F; 
    
      let x be
    Point of ( 
    product G); 
    
      :: 
    
    NDIFF_5:def7
    
      func
    
    partdiff (f,x,i) -> 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators ((G 
    . ( 
    In (i,( 
    dom G)))),F)) equals ( 
    diff ((f 
    * ( 
    reproj (( 
    In (i,( 
    dom G))),x))),(( 
    proj ( 
    In (i,( 
    dom G)))) 
    . x))); 
    
      coherence ;
    
    end
    
    begin
    
    reserve G for
    RealNormSpace-Sequence;
    
    reserve F for
    RealNormSpace;
    
    reserve i for
    Element of ( 
    dom G); 
    
    reserve f,f1,f2 for
    PartFunc of ( 
    product G), F; 
    
    reserve x for
    Point of ( 
    product G); 
    
    reserve X for
    set;
    
    definition
    
      let G be
    RealNormSpace-Sequence;
    
      let F be
    RealNormSpace;
    
      let i be
    set;
    
      let f be
    PartFunc of ( 
    product G), F; 
    
      let X be
    set;
    
      :: 
    
    NDIFF_5:def8
    
      pred f
    
    is_partial_differentiable_on X,i means X 
    c= ( 
    dom f) & for x be 
    Point of ( 
    product G) st x 
    in X holds (f 
    | X) 
    is_partial_differentiable_in (x,i); 
    
    end
    
    theorem :: 
    
    NDIFF_5:21
    
    
    
    
    
    Th21: for xi be 
    Element of (G 
    . i) holds 
    ||.((
    reproj (i,( 
    0. ( 
    product G)))) 
    . xi).|| 
    =  
    ||.xi.||
    
    proof
    
      let xi be
    Element of (G 
    . i); 
    
      set j = (
    len G); 
    
      reconsider i0 = i as
    Element of 
    NAT ; 
    
      (
    Seg ( 
    len G)) 
    = ( 
    dom G) by 
    FINSEQ_1:def 3;
    
      then
    
      
    
    A1: 1 
    <= i0 & i0 
    <= j by 
    FINSEQ_1: 1;
    
      set z = (
    0. ( 
    product G)); 
    
      
    
      
    
    A3: the 
    carrier of ( 
    product G) 
    = ( 
    product ( 
    carr G)) by 
    Th10;
    
      then
    
      reconsider w = (z
    +* (i0,xi)) as 
    Element of ( 
    product ( 
    carr G)) by 
    Th11;
    
      
    
      
    
    A4: 
    ||.((
    reproj (i,z)) 
    . xi).|| 
    =  
    |.(
    normsequence (G,w)).| by 
    Def4,
    PRVECT_2: 7;
    
      reconsider q =
    ||.xi.|| as
    Element of 
    REAL ; 
    
      set q1 =
    <*q*>;
    
      set y = (
    0* j); 
    
      
    
      
    
    A5: ( 
    len ( 
    normsequence (G,w))) 
    = j by 
    PRVECT_2:def 11;
    
      
    
      
    
    A6: ( 
    len y) 
    = j by 
    CARD_1:def 7;
    
      then
    
      
    
    A7: (((y 
    | (i0 
    -' 1)) 
    ^  
    <*q*>)
    ^ (y 
    /^ i0)) 
    = ( 
    Replace (y,i0,q)) by 
    A1,
    FINSEQ_7:def 1;
    
      then
    
      
    
    A8: ( 
    len (((y 
    | (i0 
    -' 1)) 
    ^  
    <*q*>)
    ^ (y 
    /^ i0))) 
    = ( 
    len y) by 
    FINSEQ_7: 5;
    
      
    
      
    
    A9: ( 
    len y) 
    = ( 
    len ( 
    Replace (y,i0,q))) by 
    FINSEQ_7: 5;
    
      for k be
    Nat st 1 
    <= k & k 
    <= ( 
    len ( 
    normsequence (G,w))) holds (( 
    normsequence (G,w)) 
    . k) 
    = ((((y 
    | (i0 
    -' 1)) 
    ^  
    <*q*>)
    ^ (y 
    /^ i0)) 
    . k) 
    
      proof
    
        let k be
    Nat;
    
        assume
    
        
    
    A10: 1 
    <= k & k 
    <= ( 
    len ( 
    normsequence (G,w))); 
    
        then
    
        reconsider k1 = k as
    Element of ( 
    dom G) by 
    A5,
    FINSEQ_3: 25;
    
        
    
        
    
    A11: k1 
    in ( 
    dom G); 
    
        z
    in the 
    carrier of ( 
    product G); 
    
        then z
    in ( 
    product ( 
    carr G)) by 
    Th10;
    
        then
    
        consider g be
    Function such that 
    
        
    
    A12: z 
    = g & ( 
    dom g) 
    = ( 
    dom ( 
    carr G)) & for y be 
    object st y 
    in ( 
    dom ( 
    carr G)) holds (g 
    . y) 
    in (( 
    carr G) 
    . y) by 
    CARD_3:def 5;
    
        
    
        
    
    A13: k 
    in ( 
    dom z) by 
    A11,
    A12,
    Lm1;
    
        
    
        
    
    A14: (( 
    normsequence (G,w)) 
    . k) 
    = (the 
    normF of (G 
    . k1) 
    . (w 
    . k1)) by 
    PRVECT_2:def 11;
    
        per cases ;
    
          suppose
    
          
    
    A15: k 
    = i0; 
    
          then
    
          
    
    A16: (( 
    normsequence (G,w)) 
    . k) 
    =  
    ||.xi.|| by
    A14,
    A13,
    FUNCT_7: 31;
    
          ((
    Replace (y,i0,q)) 
    /. k) 
    = q by 
    A15,
    A10,
    A5,
    A6,
    FINSEQ_7: 8;
    
          hence ((
    normsequence (G,w)) 
    . k) 
    = ((((y 
    | (i0 
    -' 1)) 
    ^  
    <*q*>)
    ^ (y 
    /^ i0)) 
    . k) by 
    A16,
    A7,
    A10,
    A5,
    A6,
    A9,
    FINSEQ_4: 15;
    
        end;
    
          suppose
    
          
    
    A17: k 
    <> i0; 
    
          then (w
    . k1) 
    = (z 
    . k1) by 
    FUNCT_7: 32;
    
          then
    
          
    
    A18: (( 
    normsequence (G,w)) 
    . k) 
    =  
    ||.(
    0. (G 
    . k1)).|| by 
    A14,
    Th14,
    A3;
    
          ((
    Replace (y,i0,q)) 
    /. k) 
    = (y 
    /. k) by 
    A17,
    A10,
    A5,
    A6,
    FINSEQ_7: 10;
    
          then ((
    Replace (y,i0,q)) 
    . k) 
    = (y 
    /. k) by 
    A10,
    A5,
    A6,
    A9,
    FINSEQ_4: 15;
    
          then ((
    Replace (y,i0,q)) 
    . k) 
    = (y 
    . k) by 
    A10,
    A5,
    A6,
    FINSEQ_4: 15;
    
          hence ((
    normsequence (G,w)) 
    . k) 
    = ((((y 
    | (i0 
    -' 1)) 
    ^  
    <*q*>)
    ^ (y 
    /^ i0)) 
    . k) by 
    A18,
    A6,
    A1,
    FINSEQ_7:def 1;
    
        end;
    
      end;
    
      then
    
      
    
    A19: ( 
    normsequence (G,w)) 
    = (((y 
    | (i0 
    -' 1)) 
    ^  
    <*q*>)
    ^ (y 
    /^ i0)) by 
    A6,
    A8,
    PRVECT_2:def 11;
    
      (
    sqrt ( 
    Sum ( 
    sqr (y 
    | (i0 
    -' 1))))) 
    =  
    |.(
    0* (i0 
    -' 1)).| by 
    A1,
    PDIFF_7: 2;
    
      then (
    sqrt ( 
    Sum ( 
    sqr (y 
    | (i0 
    -' 1))))) 
    =  
    0 by 
    EUCLID: 7;
    
      then
    
      
    
    A20: ( 
    Sum ( 
    sqr (y 
    | (i0 
    -' 1)))) 
    =  
    0 by 
    RVSUM_1: 86,
    SQUARE_1: 24;
    
      (
    sqrt ( 
    Sum ( 
    sqr (y 
    /^ i0)))) 
    =  
    |.(
    0* (j 
    -' i0)).| by 
    PDIFF_7: 3;
    
      then
    
      
    
    A21: ( 
    sqrt ( 
    Sum ( 
    sqr (y 
    /^ i0)))) 
    =  
    0 by 
    EUCLID: 7;
    
      reconsider q2 = (q
    ^2 ) as 
    Element of 
    REAL by 
    XREAL_0:def 1;
    
      (
    sqr (((y 
    | (i0 
    -' 1)) 
    ^  
    <*q*>)
    ^ (y 
    /^ i0))) 
    = (( 
    sqr ((y 
    | (i0 
    -' 1)) 
    ^  
    <*q*>))
    ^ ( 
    sqr (y 
    /^ i0))) by 
    RVSUM_1: 144
    
      .= (((
    sqr (y 
    | (i0 
    -' 1))) 
    ^ ( 
    sqr  
    <*q*>))
    ^ ( 
    sqr (y 
    /^ i0))) by 
    RVSUM_1: 144
    
      .= (((
    sqr (y 
    | (i0 
    -' 1))) 
    ^  
    <*(q
    ^2 )*>) 
    ^ ( 
    sqr (y 
    /^ i0))) by 
    RVSUM_1: 55;
    
      
    
      then (
    Sum ( 
    sqr (((y 
    | (i0 
    -' 1)) 
    ^  
    <*q*>)
    ^ (y 
    /^ i0)))) 
    = (( 
    Sum (( 
    sqr (y 
    | (i0 
    -' 1))) 
    ^  
    <*q2*>))
    + ( 
    Sum ( 
    sqr (y 
    /^ i0)))) by 
    RVSUM_1: 75
    
      .= (((
    Sum ( 
    sqr (y 
    | (i0 
    -' 1)))) 
    + (q 
    ^2 )) 
    + ( 
    Sum ( 
    sqr (y 
    /^ i0)))) by 
    RVSUM_1: 74
    
      .= (q
    ^2 ) by 
    A20,
    A21,
    RVSUM_1: 86,
    SQUARE_1: 24;
    
      then
    ||.((
    reproj (i,z)) 
    . xi).|| 
    =  
    |.q.| by
    A19,
    A4,
    COMPLEX1: 72;
    
      hence thesis by
    COMPLEX1: 43;
    
    end;
    
    theorem :: 
    
    NDIFF_5:22
    
    
    
    
    
    Th22: for G be 
    RealNormSpace-Sequence, i be 
    Element of ( 
    dom G), x be 
    Point of ( 
    product G), r be 
    Point of (G 
    . i) holds ((( 
    reproj (i,x)) 
    . r) 
    - x) 
    = (( 
    reproj (i,( 
    0. ( 
    product G)))) 
    . (r 
    - (( 
    proj i) 
    . x))) & (x 
    - (( 
    reproj (i,x)) 
    . r)) 
    = (( 
    reproj (i,( 
    0. ( 
    product G)))) 
    . ((( 
    proj i) 
    . x) 
    - r)) 
    
    proof
    
      let G be
    RealNormSpace-Sequence, i be 
    Element of ( 
    dom G), x be 
    Point of ( 
    product G), r be 
    Point of (G 
    . i); 
    
      set m = (
    len G); 
    
      reconsider xf = x as
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      
    
      
    
    A1: ( 
    dom ( 
    carr G)) 
    = ( 
    dom G) by 
    Lm1;
    
      reconsider Zr = (
    0. ( 
    product G)) as 
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      reconsider ixr = ((
    reproj (i,x)) 
    . r) as 
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      reconsider p = (((
    reproj (i,x)) 
    . r) 
    - x) as 
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      reconsider q = ((
    reproj (i,( 
    0. ( 
    product G)))) 
    . (r 
    - (( 
    proj i) 
    . x))) as 
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      
    
      
    
    A3: ( 
    dom q) 
    = ( 
    dom ( 
    carr G)) by 
    CARD_3: 9;
    
      reconsider s = (x
    - (( 
    reproj (i,x)) 
    . r)) as 
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      reconsider t = ((
    reproj (i,( 
    0. ( 
    product G)))) 
    . ((( 
    proj i) 
    . x) 
    - r)) as 
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      
    
      
    
    A5: ( 
    dom t) 
    = ( 
    dom ( 
    carr G)) by 
    CARD_3: 9;
    
      
    
      
    
    A6: (( 
    reproj (i,x)) 
    . r) 
    = (x 
    +* (i,r)) by 
    Def4;
    
      reconsider xfi = (xf
    . i) as 
    Point of (G 
    . i); 
    
      
    
      
    
    A7: (( 
    reproj (i,( 
    0. ( 
    product G)))) 
    . (r 
    - (( 
    proj i) 
    . x))) 
    = (( 
    0. ( 
    product G)) 
    +* (i,(r 
    - (( 
    proj i) 
    . x)))) by 
    Def4;
    
      then
    
      
    
    A7a: q 
    = (Zr 
    +* (i,(r 
    - xfi))) by 
    Def3;
    
      
    
      
    
    A8: (( 
    reproj (i,( 
    0. ( 
    product G)))) 
    . ((( 
    proj i) 
    . x) 
    - r)) 
    = (( 
    0. ( 
    product G)) 
    +* (i,((( 
    proj i) 
    . x) 
    - r))) by 
    Def4;
    
      then
    
      
    
    A8a: t 
    = (Zr 
    +* (i,(xfi 
    - r))) by 
    Def3;
    
      set ir = (i
    .--> r); 
    
      set irx1 = (i
    .--> (r 
    - xfi)); 
    
      set irx2 = (i
    .--> (xfi 
    - r)); 
    
      x
    in the 
    carrier of ( 
    product G); 
    
      then
    
      
    
    A9: x 
    in ( 
    product ( 
    carr G)) by 
    Th10;
    
      consider g1 be
    Function such that 
    
      
    
    A10: x 
    = g1 & ( 
    dom g1) 
    = ( 
    dom ( 
    carr G)) & for i be 
    object st i 
    in ( 
    dom ( 
    carr G)) holds (g1 
    . i) 
    in (( 
    carr G) 
    . i) by 
    A9,
    CARD_3:def 5;
    
      for k be
    object st k 
    in ( 
    dom p) holds (p 
    . k) 
    = (q 
    . k) 
    
      proof
    
        let k be
    object;
    
        assume
    
        
    
    A11: k 
    in ( 
    dom p); 
    
        then
    
        reconsider k0 = k as
    Element of ( 
    dom G) by 
    A1,
    CARD_3: 9;
    
        consider g be
    Function such that 
    
        
    
    A12: Zr 
    = g & ( 
    dom g) 
    = ( 
    dom ( 
    carr G)) & for i be 
    object st i 
    in ( 
    dom ( 
    carr G)) holds (g 
    . i) 
    in (( 
    carr G) 
    . i) by 
    CARD_3:def 5;
    
        
    
        
    
    A13: k 
    in ( 
    dom Zr) by 
    A12,
    A11,
    CARD_3: 9;
    
        
    
        
    
    A14: k 
    in ( 
    dom x) by 
    A10,
    A11,
    CARD_3: 9;
    
        per cases ;
    
          suppose not k
    in  
    {i};
    
          then
    
          
    
    A15: k 
    <> i by 
    TARSKI:def 1;
    
          then
    
          
    
    A16: (q 
    . k0) 
    = (Zr 
    . k0) by 
    A7,
    FUNCT_7: 32;
    
          (p
    . k) 
    = ((ixr 
    . k0) 
    - (xf 
    . k0)) by 
    Th15
    
          .= ((xf
    . k0) 
    - (xf 
    . k0)) by 
    A15,
    A6,
    FUNCT_7: 32;
    
          then (p
    . k) 
    = ( 
    0. (G 
    . k0)) by 
    RLVECT_1: 15;
    
          hence (p
    . k) 
    = (q 
    . k) by 
    A16,
    Th14;
    
        end;
    
          suppose k
    in  
    {i};
    
          then
    
          
    
    A17: k 
    = i by 
    TARSKI:def 1;
    
          then
    
          
    
    A18: (q 
    . k0) 
    = (r 
    - xfi) by 
    A7a,
    A13,
    FUNCT_7: 31;
    
          (p
    . k) 
    = ((ixr 
    . k0) 
    - (xf 
    . k0)) by 
    Th15;
    
          hence (p
    . k) 
    = (q 
    . k) by 
    A18,
    A6,
    A17,
    A14,
    FUNCT_7: 31;
    
        end;
    
      end;
    
      hence (((
    reproj (i,x)) 
    . r) 
    - x) 
    = (( 
    reproj (i,( 
    0. ( 
    product G)))) 
    . (r 
    - (( 
    proj i) 
    . x))) by 
    A3,
    FUNCT_1: 2,
    CARD_3: 9;
    
      for k be
    object st k 
    in ( 
    dom s) holds (s 
    . k) 
    = (t 
    . k) 
    
      proof
    
        let k be
    object;
    
        assume
    
        
    
    A19: k 
    in ( 
    dom s); 
    
        then
    
        reconsider k0 = k as
    Element of ( 
    dom G) by 
    A1,
    CARD_3: 9;
    
        consider g be
    Function such that 
    
        
    
    A20: Zr 
    = g & ( 
    dom g) 
    = ( 
    dom ( 
    carr G)) & for i be 
    object st i 
    in ( 
    dom ( 
    carr G)) holds (g 
    . i) 
    in (( 
    carr G) 
    . i) by 
    CARD_3:def 5;
    
        
    
        
    
    A21: k 
    in ( 
    dom Zr) by 
    A20,
    A19,
    CARD_3: 9;
    
        
    
        
    
    A22: k 
    in ( 
    dom x) by 
    A10,
    A19,
    CARD_3: 9;
    
        per cases ;
    
          suppose not k
    in  
    {i};
    
          then
    
          
    
    A23: k 
    <> i by 
    TARSKI:def 1;
    
          then
    
          
    
    A24: (t 
    . k0) 
    = (Zr 
    . k0) by 
    A8,
    FUNCT_7: 32;
    
          (s
    . k) 
    = ((xf 
    . k0) 
    - (ixr 
    . k0)) by 
    Th15
    
          .= ((xf
    . k0) 
    - (xf 
    . k0)) by 
    A6,
    A23,
    FUNCT_7: 32;
    
          then (s
    . k) 
    = ( 
    0. (G 
    . k0)) by 
    RLVECT_1: 15;
    
          hence (s
    . k) 
    = (t 
    . k) by 
    A24,
    Th14;
    
        end;
    
          suppose k
    in  
    {i};
    
          then
    
          
    
    A25: k 
    = i by 
    TARSKI:def 1;
    
          then
    
          
    
    A26: (t 
    . k0) 
    = (xfi 
    - r) by 
    A8a,
    A21,
    FUNCT_7: 31;
    
          (s
    . k) 
    = ((xf 
    . k0) 
    - (ixr 
    . k0)) by 
    Th15;
    
          hence (s
    . k) 
    = (t 
    . k) by 
    A26,
    A6,
    A25,
    A22,
    FUNCT_7: 31;
    
        end;
    
      end;
    
      hence thesis by
    A5,
    FUNCT_1: 2,
    CARD_3: 9;
    
    end;
    
    theorem :: 
    
    NDIFF_5:23
    
    
    
    
    
    Th23: for G be 
    RealNormSpace-Sequence, i be 
    Element of ( 
    dom G), x be 
    Point of ( 
    product G), Z be 
    Subset of ( 
    product G) st Z is 
    open & x 
    in Z holds ex N be 
    Neighbourhood of (( 
    proj i) 
    . x) st for z be 
    Point of (G 
    . i) st z 
    in N holds (( 
    reproj (i,x)) 
    . z) 
    in Z 
    
    proof
    
      let G be
    RealNormSpace-Sequence, i be 
    Element of ( 
    dom G), x be 
    Point of ( 
    product G), Z be 
    Subset of ( 
    product G); 
    
      assume Z is
    open & x 
    in Z; 
    
      then
    
      consider r be
    Real such that 
    
      
    
    A1: 
    0  
    < r & { y where y be 
    Point of ( 
    product G) : 
    ||.(y
    - x).|| 
    < r } 
    c= Z by 
    NDIFF_1: 3;
    
      set N = { y where y be
    Point of (G 
    . i) : 
    ||.(y
    - (( 
    proj i) 
    . x)).|| 
    < r }; 
    
      reconsider N as
    Neighbourhood of (( 
    proj i) 
    . x) by 
    A1,
    NFCONT_1: 3;
    
      take N;
    
      thus for z be
    Point of (G 
    . i) st z 
    in N holds (( 
    reproj (i,x)) 
    . z) 
    in Z 
    
      proof
    
        let z be
    Point of (G 
    . i); 
    
        assume z
    in N; 
    
        then
    
        
    
    A2: ex y be 
    Point of (G 
    . i) st y 
    = z & 
    ||.(y
    - (( 
    proj i) 
    . x)).|| 
    < r; 
    
        
    ||.(((
    reproj (i,x)) 
    . z) 
    - x).|| 
    =  
    ||.((
    reproj (i,( 
    0. ( 
    product G)))) 
    . (z 
    - (( 
    proj i) 
    . x))).|| by 
    Th22
    
        .=
    ||.(z
    - (( 
    proj i) 
    . x)).|| by 
    Th21;
    
        then ((
    reproj (i,x)) 
    . z) 
    in { y where y be 
    Point of ( 
    product G) : 
    ||.(y
    - x).|| 
    < r } by 
    A2;
    
        hence thesis by
    A1;
    
      end;
    
    end;
    
    theorem :: 
    
    NDIFF_5:24
    
    
    
    
    
    Th24: for G be 
    RealNormSpace-Sequence, T be 
    RealNormSpace, i be 
    set, f be 
    PartFunc of ( 
    product G), T, Z be 
    Subset of ( 
    product G) st Z is 
    open holds f 
    is_partial_differentiable_on (Z,i) iff Z 
    c= ( 
    dom f) & for x be 
    Point of ( 
    product G) st x 
    in Z holds f 
    is_partial_differentiable_in (x,i) 
    
    proof
    
      let G be
    RealNormSpace-Sequence, T be 
    RealNormSpace, i be 
    set, f be 
    PartFunc of ( 
    product G), T, Z be 
    Subset of ( 
    product G); 
    
      assume
    
      
    
    A1: Z is 
    open;
    
      set i0 = (
    In (i,( 
    dom G))); 
    
      set S = (G
    . i0); 
    
      set RNS = (
    R_NormSpace_of_BoundedLinearOperators (S,T)); 
    
      thus f
    is_partial_differentiable_on (Z,i) implies Z 
    c= ( 
    dom f) & for x be 
    Point of ( 
    product G) st x 
    in Z holds f 
    is_partial_differentiable_in (x,i) 
    
      proof
    
        assume
    
        
    
    A2: f 
    is_partial_differentiable_on (Z,i); 
    
        hence Z
    c= ( 
    dom f); 
    
        let nx0 be
    Point of ( 
    product G); 
    
        reconsider x0 = ((
    proj i0) 
    . nx0) as 
    Point of S; 
    
        assume
    
        
    
    A4: nx0 
    in Z; 
    
        then (f
    | Z) 
    is_partial_differentiable_in (nx0,i) by 
    A2;
    
        then
    
        consider N0 be
    Neighbourhood of x0 such that 
    
        
    
    A5: N0 
    c= ( 
    dom ((f 
    | Z) 
    * ( 
    reproj (i0,nx0)))) and 
    
        
    
    A6: ex L be 
    Point of RNS, R be 
    RestFunc of S, T st for x be 
    Point of S st x 
    in N0 holds ((((f 
    | Z) 
    * ( 
    reproj (i0,nx0))) 
    /. x) 
    - (((f 
    | Z) 
    * ( 
    reproj (i0,nx0))) 
    /. x0)) 
    = ((L 
    . (x 
    - x0)) 
    + (R 
    /. (x 
    - x0))) by 
    NDIFF_1:def 6;
    
        consider L be
    Point of RNS, R be 
    RestFunc of S, T such that 
    
        
    
    A7: for x be 
    Point of S st x 
    in N0 holds ((((f 
    | Z) 
    * ( 
    reproj (i0,nx0))) 
    /. x) 
    - (((f 
    | Z) 
    * ( 
    reproj (i0,nx0))) 
    /. x0)) 
    = ((L 
    . (x 
    - x0)) 
    + (R 
    /. (x 
    - x0))) by 
    A6;
    
        consider N1 be
    Neighbourhood of x0 such that 
    
        
    
    A8: for x be 
    Point of S st x 
    in N1 holds (( 
    reproj (i0,nx0)) 
    . x) 
    in Z by 
    A1,
    A4,
    Th23;
    
        
    
    A9: 
    
        now
    
          let x be
    Point of S; 
    
          assume x
    in N1; 
    
          then ((
    reproj (i0,nx0)) 
    . x) 
    in Z by 
    A8;
    
          then ((
    reproj (i0,nx0)) 
    . x) 
    in (( 
    dom f) 
    /\ Z) by 
    A2,
    XBOOLE_0:def 4;
    
          hence ((
    reproj (i0,nx0)) 
    . x) 
    in ( 
    dom (f 
    | Z)) by 
    RELAT_1: 61;
    
        end;
    
        reconsider N = (N0
    /\ N1) as 
    Neighbourhood of x0 by 
    Th8;
    
        ((f
    | Z) 
    * ( 
    reproj (i0,nx0))) 
    c= (f 
    * ( 
    reproj (i0,nx0))) by 
    RELAT_1: 29,
    RELAT_1: 59;
    
        then
    
        
    
    A10: ( 
    dom ((f 
    | Z) 
    * ( 
    reproj (i0,nx0)))) 
    c= ( 
    dom (f 
    * ( 
    reproj (i0,nx0)))) by 
    RELAT_1: 11;
    
        N
    c= N0 by 
    XBOOLE_1: 17;
    
        then
    
        
    
    A11: N 
    c= ( 
    dom (f 
    * ( 
    reproj (i0,nx0)))) by 
    A5,
    A10;
    
        now
    
          let x be
    Point of S; 
    
          assume
    
          
    
    A12: x 
    in N; 
    
          then
    
          
    
    A13: x 
    in N0 by 
    XBOOLE_0:def 4;
    
          
    
          
    
    A14: ( 
    dom ( 
    reproj (i0,nx0))) 
    = the 
    carrier of (G 
    . i0) by 
    FUNCT_2:def 1;
    
          x
    in N1 by 
    A12,
    XBOOLE_0:def 4;
    
          then
    
          
    
    A15: (( 
    reproj (i0,nx0)) 
    . x) 
    in ( 
    dom (f 
    | Z)) by 
    A9;
    
          then
    
          
    
    A16: (( 
    reproj (i0,nx0)) 
    . x) 
    in ( 
    dom f) & (( 
    reproj (i0,nx0)) 
    . x) 
    in Z by 
    RELAT_1: 57;
    
          
    
          
    
    A17: (( 
    reproj (i0,nx0)) 
    . x0) 
    in ( 
    dom (f 
    | Z)) by 
    A9,
    NFCONT_1: 4;
    
          then
    
          
    
    A18: (( 
    reproj (i0,nx0)) 
    . x0) 
    in ( 
    dom f) & (( 
    reproj (i0,nx0)) 
    . x0) 
    in Z by 
    RELAT_1: 57;
    
          
    
          
    
    A19: (((f 
    | Z) 
    * ( 
    reproj (i0,nx0))) 
    /. x) 
    = ((f 
    | Z) 
    /. (( 
    reproj (i0,nx0)) 
    /. x)) by 
    A15,
    A14,
    PARTFUN2: 4
    
          .= (f
    /. (( 
    reproj (i0,nx0)) 
    /. x)) by 
    A16,
    PARTFUN2: 17
    
          .= ((f
    * ( 
    reproj (i0,nx0))) 
    /. x) by 
    A14,
    A16,
    PARTFUN2: 4;
    
          (((f
    | Z) 
    * ( 
    reproj (i0,nx0))) 
    /. x0) 
    = ((f 
    | Z) 
    /. (( 
    reproj (i0,nx0)) 
    /. x0)) by 
    A14,
    A17,
    PARTFUN2: 4
    
          .= (f
    /. (( 
    reproj (i0,nx0)) 
    /. x0)) by 
    A18,
    PARTFUN2: 17
    
          .= ((f
    * ( 
    reproj (i0,nx0))) 
    /. x0) by 
    A14,
    A18,
    PARTFUN2: 4;
    
          hence (((f
    * ( 
    reproj (i0,nx0))) 
    /. x) 
    - ((f 
    * ( 
    reproj (i0,nx0))) 
    /. x0)) 
    = ((L 
    . (x 
    - x0)) 
    + (R 
    /. (x 
    - x0))) by 
    A7,
    A13,
    A19;
    
        end;
    
        hence f
    is_partial_differentiable_in (nx0,i) by 
    A11,
    NDIFF_1:def 6;
    
      end;
    
      assume that
    
      
    
    A20: Z 
    c= ( 
    dom f) and 
    
      
    
    A21: for nx be 
    Point of ( 
    product G) st nx 
    in Z holds f 
    is_partial_differentiable_in (nx,i); 
    
      now
    
        let nx0 be
    Point of ( 
    product G); 
    
        assume
    
        
    
    A22: nx0 
    in Z; 
    
        then
    
        
    
    A23: f 
    is_partial_differentiable_in (nx0,i) by 
    A21;
    
        reconsider x0 = ((
    proj i0) 
    . nx0) as 
    Point of S; 
    
        consider N0 be
    Neighbourhood of x0 such that N0 
    c= ( 
    dom (f 
    * ( 
    reproj (i0,nx0)))) and 
    
        
    
    A24: ex L be 
    Point of RNS, R be 
    RestFunc of S, T st for x be 
    Point of S st x 
    in N0 holds (((f 
    * ( 
    reproj (i0,nx0))) 
    /. x) 
    - ((f 
    * ( 
    reproj (i0,nx0))) 
    /. x0)) 
    = ((L 
    . (x 
    - x0)) 
    + (R 
    /. (x 
    - x0))) by 
    A23,
    NDIFF_1:def 6;
    
        consider N1 be
    Neighbourhood of x0 such that 
    
        
    
    A25: for x be 
    Point of S st x 
    in N1 holds (( 
    reproj (i0,nx0)) 
    . x) 
    in Z by 
    A1,
    A22,
    Th23;
    
        
    
    A26: 
    
        now
    
          let x be
    Point of S; 
    
          assume x
    in N1; 
    
          then ((
    reproj (i0,nx0)) 
    . x) 
    in Z by 
    A25;
    
          then ((
    reproj (i0,nx0)) 
    . x) 
    in (( 
    dom f) 
    /\ Z) by 
    A20,
    XBOOLE_0:def 4;
    
          hence ((
    reproj (i0,nx0)) 
    . x) 
    in ( 
    dom (f 
    | Z)) by 
    RELAT_1: 61;
    
        end;
    
        
    
        
    
    A27: N1 
    c= ( 
    dom ((f 
    | Z) 
    * ( 
    reproj (i0,nx0)))) 
    
        proof
    
          let z be
    object;
    
          assume
    
          
    
    A28: z 
    in N1; 
    
          then
    
          
    
    A29: z 
    in the 
    carrier of S; 
    
          reconsider x = z as
    Point of S by 
    A28;
    
          
    
          
    
    A30: (( 
    reproj (i0,nx0)) 
    . x) 
    in ( 
    dom (f 
    | Z)) by 
    A28,
    A26;
    
          z
    in ( 
    dom ( 
    reproj (i0,nx0))) by 
    A29,
    FUNCT_2:def 1;
    
          hence z
    in ( 
    dom ((f 
    | Z) 
    * ( 
    reproj (i0,nx0)))) by 
    A30,
    FUNCT_1: 11;
    
        end;
    
        reconsider N = (N0
    /\ N1) as 
    Neighbourhood of x0 by 
    Th8;
    
        N
    c= N1 by 
    XBOOLE_1: 17;
    
        then
    
        
    
    A31: N 
    c= ( 
    dom ((f 
    | Z) 
    * ( 
    reproj (i0,nx0)))) by 
    A27;
    
        consider L be
    Point of RNS, R be 
    RestFunc of S, T such that 
    
        
    
    A32: for x be 
    Point of S st x 
    in N0 holds (((f 
    * ( 
    reproj (i0,nx0))) 
    /. x) 
    - ((f 
    * ( 
    reproj (i0,nx0))) 
    /. x0)) 
    = ((L 
    . (x 
    - x0)) 
    + (R 
    /. (x 
    - x0))) by 
    A24;
    
        now
    
          let x be
    Point of S; 
    
          assume
    
          
    
    A33: x 
    in N; 
    
          then
    
          
    
    A34: x 
    in N0 by 
    XBOOLE_0:def 4;
    
          
    
          
    
    A35: ( 
    dom ( 
    reproj (i0,nx0))) 
    = the 
    carrier of (G 
    . i0) by 
    FUNCT_2:def 1;
    
          x
    in N1 by 
    A33,
    XBOOLE_0:def 4;
    
          then
    
          
    
    A36: (( 
    reproj (i0,nx0)) 
    . x) 
    in ( 
    dom (f 
    | Z)) by 
    A26;
    
          then
    
          
    
    A37: (( 
    reproj (i0,nx0)) 
    . x) 
    in (( 
    dom f) 
    /\ Z) by 
    RELAT_1: 61;
    
          then
    
          
    
    A38: (( 
    reproj (i0,nx0)) 
    . x) 
    in ( 
    dom f) by 
    XBOOLE_0:def 4;
    
          
    
          
    
    A39: (( 
    reproj (i0,nx0)) 
    . x0) 
    in ( 
    dom (f 
    | Z)) by 
    A26,
    NFCONT_1: 4;
    
          then
    
          
    
    A40: (( 
    reproj (i0,nx0)) 
    . x0) 
    in (( 
    dom f) 
    /\ Z) by 
    RELAT_1: 61;
    
          then
    
          
    
    A41: (( 
    reproj (i0,nx0)) 
    . x0) 
    in ( 
    dom f) by 
    XBOOLE_0:def 4;
    
          
    
          
    
    A42: (((f 
    | Z) 
    * ( 
    reproj (i0,nx0))) 
    /. x) 
    = ((f 
    | Z) 
    /. (( 
    reproj (i0,nx0)) 
    /. x)) by 
    A36,
    A35,
    PARTFUN2: 4
    
          .= (f
    /. (( 
    reproj (i0,nx0)) 
    /. x)) by 
    A37,
    PARTFUN2: 16
    
          .= ((f
    * ( 
    reproj (i0,nx0))) 
    /. x) by 
    A35,
    A38,
    PARTFUN2: 4;
    
          (((f
    | Z) 
    * ( 
    reproj (i0,nx0))) 
    /. x0) 
    = ((f 
    | Z) 
    /. (( 
    reproj (i0,nx0)) 
    /. x0)) by 
    A35,
    A39,
    PARTFUN2: 4
    
          .= (f
    /. (( 
    reproj (i0,nx0)) 
    /. x0)) by 
    A40,
    PARTFUN2: 16
    
          .= ((f
    * ( 
    reproj (i0,nx0))) 
    /. x0) by 
    A35,
    A41,
    PARTFUN2: 4;
    
          hence ((((f
    | Z) 
    * ( 
    reproj (i0,nx0))) 
    /. x) 
    - (((f 
    | Z) 
    * ( 
    reproj (i0,nx0))) 
    /. x0)) 
    = ((L 
    . (x 
    - x0)) 
    + (R 
    /. (x 
    - x0))) by 
    A42,
    A34,
    A32;
    
        end;
    
        hence (f
    | Z) 
    is_partial_differentiable_in (nx0,i) by 
    A31,
    NDIFF_1:def 6;
    
      end;
    
      hence thesis by
    A20;
    
    end;
    
    theorem :: 
    
    NDIFF_5:25
    
    for i be
    set st i 
    in ( 
    dom G) & f 
    is_partial_differentiable_on (X,i) holds X is 
    Subset of ( 
    product G) by 
    XBOOLE_1: 1;
    
    definition
    
      let G be
    RealNormSpace-Sequence;
    
      let S be
    RealNormSpace;
    
      let i be
    set;
    
      let f be
    PartFunc of ( 
    product G), S; 
    
      let X be
    set;
    
      assume
    
      
    
    A2: f 
    is_partial_differentiable_on (X,i); 
    
      :: 
    
    NDIFF_5:def9
    
      func f
    
    `partial| (X,i) -> 
    PartFunc of ( 
    product G), ( 
    R_NormSpace_of_BoundedLinearOperators ((G 
    . ( 
    In (i,( 
    dom G)))),S)) means 
    
      :
    
    Def9: ( 
    dom it ) 
    = X & for x be 
    Point of ( 
    product G) st x 
    in X holds (it 
    /. x) 
    = ( 
    partdiff (f,x,i)); 
    
      existence
    
      proof
    
        deffunc
    
    F(
    Element of ( 
    product G)) = ( 
    partdiff (f,$1,i)); 
    
        defpred
    
    P[
    Element of ( 
    product G)] means $1 
    in X; 
    
        consider F be
    PartFunc of ( 
    product G), ( 
    R_NormSpace_of_BoundedLinearOperators ((G 
    . ( 
    In (i,( 
    dom G)))),S)) such that 
    
        
    
    A3: (for x be 
    Point of ( 
    product G) holds x 
    in ( 
    dom F) iff 
    P[x]) & for x be
    Point of ( 
    product G) st x 
    in ( 
    dom F) holds (F 
    . x) 
    =  
    F(x) from
    SEQ_1:sch 3;
    
        take F;
    
        now
    
          
    
          
    
    A4: X is 
    Subset of ( 
    product G) by 
    A2,
    XBOOLE_1: 1;
    
          let y be
    object;
    
          assume y
    in X; 
    
          hence y
    in ( 
    dom F) by 
    A3,
    A4;
    
        end;
    
        then
    
        
    
    A5: X 
    c= ( 
    dom F); 
    
        (
    dom F) 
    c= X by 
    A3;
    
        hence (
    dom F) 
    = X by 
    A5,
    XBOOLE_0:def 10;
    
        hereby
    
          let x be
    Point of ( 
    product G); 
    
          assume
    
          
    
    A6: x 
    in X; 
    
          then (F
    . x) 
    = ( 
    partdiff (f,x,i)) by 
    A3;
    
          hence (F
    /. x) 
    = ( 
    partdiff (f,x,i)) by 
    A3,
    A6,
    PARTFUN1:def 6;
    
        end;
    
      end;
    
      uniqueness
    
      proof
    
        let F,H be
    PartFunc of ( 
    product G), ( 
    R_NormSpace_of_BoundedLinearOperators ((G 
    . ( 
    In (i,( 
    dom G)))),S)); 
    
        assume that
    
        
    
    A7: ( 
    dom F) 
    = X and 
    
        
    
    A8: for x be 
    Point of ( 
    product G) st x 
    in X holds (F 
    /. x) 
    = ( 
    partdiff (f,x,i)) and 
    
        
    
    A9: ( 
    dom H) 
    = X and 
    
        
    
    A10: for x be 
    Point of ( 
    product G) st x 
    in X holds (H 
    /. x) 
    = ( 
    partdiff (f,x,i)); 
    
        now
    
          let x be
    Point of ( 
    product G); 
    
          assume
    
          
    
    A11: x 
    in ( 
    dom F); 
    
          then (F
    /. x) 
    = ( 
    partdiff (f,x,i)) by 
    A7,
    A8;
    
          hence (F
    /. x) 
    = (H 
    /. x) by 
    A7,
    A10,
    A11;
    
        end;
    
        hence thesis by
    A7,
    A9,
    PARTFUN2: 1;
    
      end;
    
    end
    
    theorem :: 
    
    NDIFF_5:26
    
    
    
    
    
    Th26: for i be 
    set st i 
    in ( 
    dom G) holds ((f1 
    + f2) 
    * ( 
    reproj (( 
    In (i,( 
    dom G))),x))) 
    = ((f1 
    * ( 
    reproj (( 
    In (i,( 
    dom G))),x))) 
    + (f2 
    * ( 
    reproj (( 
    In (i,( 
    dom G))),x)))) & ((f1 
    - f2) 
    * ( 
    reproj (( 
    In (i,( 
    dom G))),x))) 
    = ((f1 
    * ( 
    reproj (( 
    In (i,( 
    dom G))),x))) 
    - (f2 
    * ( 
    reproj (( 
    In (i,( 
    dom G))),x)))) 
    
    proof
    
      let i0 be
    set;
    
      assume i0
    in ( 
    dom G); 
    
      set i = (
    In (i0,( 
    dom G))); 
    
      
    
      
    
    A1: ( 
    dom ( 
    reproj (i,x))) 
    = the 
    carrier of (G 
    . i) by 
    FUNCT_2:def 1;
    
      
    
      
    
    A2: ( 
    dom (f1 
    + f2)) 
    = (( 
    dom f1) 
    /\ ( 
    dom f2)) by 
    VFUNCT_1:def 1;
    
      
    
      
    
    A3b: for s be 
    Element of (G 
    . i) holds s 
    in ( 
    dom ((f1 
    + f2) 
    * ( 
    reproj (i,x)))) iff s 
    in ( 
    dom ((f1 
    * ( 
    reproj (i,x))) 
    + (f2 
    * ( 
    reproj (i,x))))) 
    
      proof
    
        let s be
    Element of (G 
    . i); 
    
        s
    in ( 
    dom ((f1 
    + f2) 
    * ( 
    reproj (i,x)))) iff (( 
    reproj (i,x)) 
    . s) 
    in (( 
    dom f1) 
    /\ ( 
    dom f2)) by 
    A2,
    A1,
    FUNCT_1: 11;
    
        then s
    in ( 
    dom ((f1 
    + f2) 
    * ( 
    reproj (i,x)))) iff (( 
    reproj (i,x)) 
    . s) 
    in ( 
    dom f1) & (( 
    reproj (i,x)) 
    . s) 
    in ( 
    dom f2) by 
    XBOOLE_0:def 4;
    
        then s
    in ( 
    dom ((f1 
    + f2) 
    * ( 
    reproj (i,x)))) iff s 
    in ( 
    dom (f1 
    * ( 
    reproj (i,x)))) & s 
    in ( 
    dom (f2 
    * ( 
    reproj (i,x)))) by 
    A1,
    FUNCT_1: 11;
    
        then s
    in ( 
    dom ((f1 
    + f2) 
    * ( 
    reproj (i,x)))) iff s 
    in (( 
    dom (f1 
    * ( 
    reproj (i,x)))) 
    /\ ( 
    dom (f2 
    * ( 
    reproj (i,x))))) by 
    XBOOLE_0:def 4;
    
        hence thesis by
    VFUNCT_1:def 1;
    
      end;
    
      then
    
      
    
    A3: for s be 
    object holds s 
    in ( 
    dom ((f1 
    + f2) 
    * ( 
    reproj (i,x)))) iff s 
    in ( 
    dom ((f1 
    * ( 
    reproj (i,x))) 
    + (f2 
    * ( 
    reproj (i,x))))); 
    
      then
    
      
    
    A3a: ( 
    dom ((f1 
    + f2) 
    * ( 
    reproj (i,x)))) 
    = ( 
    dom ((f1 
    * ( 
    reproj (i,x))) 
    + (f2 
    * ( 
    reproj (i,x))))) by 
    TARSKI: 2;
    
      
    
      
    
    A4: for z be 
    Element of (G 
    . i) st z 
    in ( 
    dom ((f1 
    + f2) 
    * ( 
    reproj (i,x)))) holds (((f1 
    + f2) 
    * ( 
    reproj (i,x))) 
    . z) 
    = (((f1 
    * ( 
    reproj (i,x))) 
    + (f2 
    * ( 
    reproj (i,x)))) 
    . z) 
    
      proof
    
        let z be
    Element of (G 
    . i); 
    
        assume
    
        
    
    A5: z 
    in ( 
    dom ((f1 
    + f2) 
    * ( 
    reproj (i,x)))); 
    
        then
    
        
    
    A6: (( 
    reproj (i,x)) 
    . z) 
    in ( 
    dom (f1 
    + f2)) by 
    FUNCT_1: 11;
    
        z
    in (( 
    dom (f1 
    * ( 
    reproj (i,x)))) 
    /\ ( 
    dom (f2 
    * ( 
    reproj (i,x))))) by 
    A3a,
    A5,
    VFUNCT_1:def 1;
    
        then
    
        
    
    A7: z 
    in ( 
    dom (f1 
    * ( 
    reproj (i,x)))) & z 
    in ( 
    dom (f2 
    * ( 
    reproj (i,x)))) by 
    XBOOLE_0:def 4;
    
        
    
        
    
    A8: (( 
    reproj (i,x)) 
    . z) 
    in (( 
    dom f1) 
    /\ ( 
    dom f2)) by 
    A2,
    A5,
    FUNCT_1: 11;
    
        then ((
    reproj (i,x)) 
    . z) 
    in ( 
    dom f1) by 
    XBOOLE_0:def 4;
    
        
    
        then
    
        
    
    A9: (f1 
    /. (( 
    reproj (i,x)) 
    . z)) 
    = (f1 
    . (( 
    reproj (i,x)) 
    . z)) by 
    PARTFUN1:def 6
    
        .= ((f1
    * ( 
    reproj (i,x))) 
    . z) by 
    A7,
    FUNCT_1: 12
    
        .= ((f1
    * ( 
    reproj (i,x))) 
    /. z) by 
    A7,
    PARTFUN1:def 6;
    
        ((
    reproj (i,x)) 
    . z) 
    in ( 
    dom f2) by 
    A8,
    XBOOLE_0:def 4;
    
        
    
        then
    
        
    
    A10: (f2 
    /. (( 
    reproj (i,x)) 
    . z)) 
    = (f2 
    . (( 
    reproj (i,x)) 
    . z)) by 
    PARTFUN1:def 6
    
        .= ((f2
    * ( 
    reproj (i,x))) 
    . z) by 
    A7,
    FUNCT_1: 12
    
        .= ((f2
    * ( 
    reproj (i,x))) 
    /. z) by 
    A7,
    PARTFUN1:def 6;
    
        (((f1
    + f2) 
    * ( 
    reproj (i,x))) 
    . z) 
    = ((f1 
    + f2) 
    . (( 
    reproj (i,x)) 
    . z)) by 
    A5,
    FUNCT_1: 12
    
        .= ((f1
    + f2) 
    /. (( 
    reproj (i,x)) 
    . z)) by 
    A6,
    PARTFUN1:def 6
    
        .= ((f1
    /. (( 
    reproj (i,x)) 
    . z)) 
    + (f2 
    /. (( 
    reproj (i,x)) 
    . z))) by 
    A6,
    VFUNCT_1:def 1
    
        .= (((f1
    * ( 
    reproj (i,x))) 
    + (f2 
    * ( 
    reproj (i,x)))) 
    /. z) by 
    A3b,
    A5,
    A9,
    A10,
    VFUNCT_1:def 1;
    
        hence thesis by
    A3b,
    A5,
    PARTFUN1:def 6;
    
      end;
    
      
    
      
    
    A11: ( 
    dom (f1 
    - f2)) 
    = (( 
    dom f1) 
    /\ ( 
    dom f2)) by 
    VFUNCT_1:def 2;
    
      
    
      
    
    A12b: for s be 
    Element of (G 
    . i) holds s 
    in ( 
    dom ((f1 
    - f2) 
    * ( 
    reproj (i,x)))) iff s 
    in ( 
    dom ((f1 
    * ( 
    reproj (i,x))) 
    - (f2 
    * ( 
    reproj (i,x))))) 
    
      proof
    
        let s be
    Element of (G 
    . i); 
    
        s
    in ( 
    dom ((f1 
    - f2) 
    * ( 
    reproj (i,x)))) iff (( 
    reproj (i,x)) 
    . s) 
    in (( 
    dom f1) 
    /\ ( 
    dom f2)) by 
    A11,
    A1,
    FUNCT_1: 11;
    
        then s
    in ( 
    dom ((f1 
    - f2) 
    * ( 
    reproj (i,x)))) iff (( 
    reproj (i,x)) 
    . s) 
    in ( 
    dom f1) & (( 
    reproj (i,x)) 
    . s) 
    in ( 
    dom f2) by 
    XBOOLE_0:def 4;
    
        then s
    in ( 
    dom ((f1 
    - f2) 
    * ( 
    reproj (i,x)))) iff s 
    in ( 
    dom (f1 
    * ( 
    reproj (i,x)))) & s 
    in ( 
    dom (f2 
    * ( 
    reproj (i,x)))) by 
    A1,
    FUNCT_1: 11;
    
        then s
    in ( 
    dom ((f1 
    - f2) 
    * ( 
    reproj (i,x)))) iff s 
    in (( 
    dom (f1 
    * ( 
    reproj (i,x)))) 
    /\ ( 
    dom (f2 
    * ( 
    reproj (i,x))))) by 
    XBOOLE_0:def 4;
    
        hence thesis by
    VFUNCT_1:def 2;
    
      end;
    
      then
    
      
    
    A12: for s be 
    object holds s 
    in ( 
    dom ((f1 
    - f2) 
    * ( 
    reproj (i,x)))) iff s 
    in ( 
    dom ((f1 
    * ( 
    reproj (i,x))) 
    - (f2 
    * ( 
    reproj (i,x))))); 
    
      then
    
      
    
    A12a: ( 
    dom ((f1 
    - f2) 
    * ( 
    reproj (i,x)))) 
    = ( 
    dom ((f1 
    * ( 
    reproj (i,x))) 
    - (f2 
    * ( 
    reproj (i,x))))) by 
    TARSKI: 2;
    
      for z be
    Element of (G 
    . i) st z 
    in ( 
    dom ((f1 
    - f2) 
    * ( 
    reproj (i,x)))) holds (((f1 
    - f2) 
    * ( 
    reproj (i,x))) 
    . z) 
    = (((f1 
    * ( 
    reproj (i,x))) 
    - (f2 
    * ( 
    reproj (i,x)))) 
    . z) 
    
      proof
    
        let z be
    Element of (G 
    . i); 
    
        assume
    
        
    
    A13: z 
    in ( 
    dom ((f1 
    - f2) 
    * ( 
    reproj (i,x)))); 
    
        then
    
        
    
    A14: (( 
    reproj (i,x)) 
    . z) 
    in ( 
    dom (f1 
    - f2)) by 
    FUNCT_1: 11;
    
        z
    in (( 
    dom (f1 
    * ( 
    reproj (i,x)))) 
    /\ ( 
    dom (f2 
    * ( 
    reproj (i,x))))) by 
    A12a,
    A13,
    VFUNCT_1:def 2;
    
        then
    
        
    
    A15: z 
    in ( 
    dom (f1 
    * ( 
    reproj (i,x)))) & z 
    in ( 
    dom (f2 
    * ( 
    reproj (i,x)))) by 
    XBOOLE_0:def 4;
    
        
    
        
    
    A16: (( 
    reproj (i,x)) 
    . z) 
    in (( 
    dom f1) 
    /\ ( 
    dom f2)) by 
    A11,
    A13,
    FUNCT_1: 11;
    
        then ((
    reproj (i,x)) 
    . z) 
    in ( 
    dom f1) by 
    XBOOLE_0:def 4;
    
        
    
        then
    
        
    
    A17: (f1 
    /. (( 
    reproj (i,x)) 
    . z)) 
    = (f1 
    . (( 
    reproj (i,x)) 
    . z)) by 
    PARTFUN1:def 6
    
        .= ((f1
    * ( 
    reproj (i,x))) 
    . z) by 
    A15,
    FUNCT_1: 12
    
        .= ((f1
    * ( 
    reproj (i,x))) 
    /. z) by 
    A15,
    PARTFUN1:def 6;
    
        ((
    reproj (i,x)) 
    . z) 
    in ( 
    dom f2) by 
    A16,
    XBOOLE_0:def 4;
    
        
    
        then
    
        
    
    A18: (f2 
    /. (( 
    reproj (i,x)) 
    . z)) 
    = (f2 
    . (( 
    reproj (i,x)) 
    . z)) by 
    PARTFUN1:def 6
    
        .= ((f2
    * ( 
    reproj (i,x))) 
    . z) by 
    A15,
    FUNCT_1: 12
    
        .= ((f2
    * ( 
    reproj (i,x))) 
    /. z) by 
    A15,
    PARTFUN1:def 6;
    
        
    
        thus (((f1
    - f2) 
    * ( 
    reproj (i,x))) 
    . z) 
    = ((f1 
    - f2) 
    . (( 
    reproj (i,x)) 
    . z)) by 
    A13,
    FUNCT_1: 12
    
        .= ((f1
    - f2) 
    /. (( 
    reproj (i,x)) 
    . z)) by 
    A14,
    PARTFUN1:def 6
    
        .= ((f1
    /. (( 
    reproj (i,x)) 
    . z)) 
    - (f2 
    /. (( 
    reproj (i,x)) 
    . z))) by 
    A14,
    VFUNCT_1:def 2
    
        .= (((f1
    * ( 
    reproj (i,x))) 
    - (f2 
    * ( 
    reproj (i,x)))) 
    /. z) by 
    A12b,
    A13,
    A17,
    A18,
    VFUNCT_1:def 2
    
        .= (((f1
    * ( 
    reproj (i,x))) 
    - (f2 
    * ( 
    reproj (i,x)))) 
    . z) by 
    A12b,
    A13,
    PARTFUN1:def 6;
    
      end;
    
      hence thesis by
    A3,
    A12,
    A4,
    TARSKI: 2,
    PARTFUN1: 5;
    
    end;
    
    theorem :: 
    
    NDIFF_5:27
    
    
    
    
    
    Th27: for i be 
    set st i 
    in ( 
    dom G) holds (r 
    (#) (f 
    * ( 
    reproj (( 
    In (i,( 
    dom G))),x)))) 
    = ((r 
    (#) f) 
    * ( 
    reproj (( 
    In (i,( 
    dom G))),x))) 
    
    proof
    
      let i0 be
    set;
    
      assume i0
    in ( 
    dom G); 
    
      set i = (
    In (i0,( 
    dom G))); 
    
      
    
      
    
    A1: ( 
    dom (r 
    (#) f)) 
    = ( 
    dom f) by 
    VFUNCT_1:def 4;
    
      
    
      
    
    A2: ( 
    dom (r 
    (#) (f 
    * ( 
    reproj (i,x))))) 
    = ( 
    dom (f 
    * ( 
    reproj (i,x)))) by 
    VFUNCT_1:def 4;
    
      
    
      
    
    A3: ( 
    dom ( 
    reproj (i,x))) 
    = the 
    carrier of (G 
    . i) by 
    FUNCT_2:def 1;
    
      
    
      
    
    A4b: for s be 
    Element of (G 
    . i) holds s 
    in ( 
    dom ((r 
    (#) f) 
    * ( 
    reproj (i,x)))) iff s 
    in ( 
    dom (f 
    * ( 
    reproj (i,x)))) 
    
      proof
    
        let s be
    Element of (G 
    . i); 
    
        s
    in ( 
    dom ((r 
    (#) f) 
    * ( 
    reproj (i,x)))) iff (( 
    reproj (i,x)) 
    . s) 
    in ( 
    dom (r 
    (#) f)) by 
    A3,
    FUNCT_1: 11;
    
        hence thesis by
    A1,
    A3,
    FUNCT_1: 11;
    
      end;
    
      then
    
      
    
    A4: for s be 
    object holds s 
    in ( 
    dom (r 
    (#) (f 
    * ( 
    reproj (i,x))))) iff s 
    in ( 
    dom ((r 
    (#) f) 
    * ( 
    reproj (i,x)))) by 
    A2;
    
      then
    
      
    
    A4a: ( 
    dom (r 
    (#) (f 
    * ( 
    reproj (i,x))))) 
    = ( 
    dom ((r 
    (#) f) 
    * ( 
    reproj (i,x)))) by 
    TARSKI: 2;
    
      
    
      
    
    A5: for s be 
    Element of (G 
    . i) holds s 
    in ( 
    dom ((r 
    (#) f) 
    * ( 
    reproj (i,x)))) iff (( 
    reproj (i,x)) 
    . s) 
    in ( 
    dom (r 
    (#) f)) 
    
      proof
    
        let s be
    Element of (G 
    . i); 
    
        (
    dom ( 
    reproj (i,x))) 
    = the 
    carrier of (G 
    . i) by 
    FUNCT_2:def 1;
    
        hence thesis by
    FUNCT_1: 11;
    
      end;
    
      for z be
    Element of (G 
    . i) st z 
    in ( 
    dom (r 
    (#) (f 
    * ( 
    reproj (i,x))))) holds ((r 
    (#) (f 
    * ( 
    reproj (i,x)))) 
    . z) 
    = (((r 
    (#) f) 
    * ( 
    reproj (i,x))) 
    . z) 
    
      proof
    
        let z be
    Element of (G 
    . i); 
    
        assume
    
        
    
    A6: z 
    in ( 
    dom (r 
    (#) (f 
    * ( 
    reproj (i,x))))); 
    
        then
    
        
    
    A7: z 
    in ( 
    dom (f 
    * ( 
    reproj (i,x)))) by 
    VFUNCT_1:def 4;
    
        
    
        
    
    A9: (f 
    /. (( 
    reproj (i,x)) 
    . z)) 
    = (f 
    . (( 
    reproj (i,x)) 
    . z)) by 
    A1,
    A5,
    A4a,
    A6,
    PARTFUN1:def 6
    
        .= ((f
    * ( 
    reproj (i,x))) 
    . z) by 
    A7,
    FUNCT_1: 12
    
        .= ((f
    * ( 
    reproj (i,x))) 
    /. z) by 
    A7,
    PARTFUN1:def 6;
    
        
    
        
    
    A10: ((r 
    (#) (f 
    * ( 
    reproj (i,x)))) 
    . z) 
    = ((r 
    (#) (f 
    * ( 
    reproj (i,x)))) 
    /. z) by 
    A6,
    PARTFUN1:def 6
    
        .= (r
    * (f 
    /. (( 
    reproj (i,x)) 
    . z))) by 
    A6,
    A9,
    VFUNCT_1:def 4;
    
        (((r
    (#) f) 
    * ( 
    reproj (i,x))) 
    . z) 
    = ((r 
    (#) f) 
    . (( 
    reproj (i,x)) 
    . z)) by 
    A2,
    A4b,
    A6,
    FUNCT_1: 12
    
        .= ((r
    (#) f) 
    /. (( 
    reproj (i,x)) 
    . z)) by 
    A5,
    A4a,
    A6,
    PARTFUN1:def 6
    
        .= (r
    * (f 
    /. (( 
    reproj (i,x)) 
    . z))) by 
    A5,
    A4a,
    A6,
    VFUNCT_1:def 4;
    
        hence thesis by
    A10;
    
      end;
    
      hence thesis by
    A4,
    TARSKI: 2,
    PARTFUN1: 5;
    
    end;
    
    theorem :: 
    
    NDIFF_5:28
    
    for i be
    set st i 
    in ( 
    dom G) & f1 
    is_partial_differentiable_in (x,i) & f2 
    is_partial_differentiable_in (x,i) holds (f1 
    + f2) 
    is_partial_differentiable_in (x,i) & ( 
    partdiff ((f1 
    + f2),x,i)) 
    = (( 
    partdiff (f1,x,i)) 
    + ( 
    partdiff (f2,x,i))) 
    
    proof
    
      let i0 be
    set;
    
      set i = (
    In (i0,( 
    dom G))); 
    
      assume
    
      
    
    A1: i0 
    in ( 
    dom G); 
    
      then
    
      
    
    A2: ((f1 
    + f2) 
    * ( 
    reproj (i,x))) 
    = ((f1 
    * ( 
    reproj (i,x))) 
    + (f2 
    * ( 
    reproj (i,x)))) by 
    Th26;
    
      assume
    
      
    
    A3: f1 
    is_partial_differentiable_in (x,i0) & f2 
    is_partial_differentiable_in (x,i0); 
    
      hence (f1
    + f2) 
    is_partial_differentiable_in (x,i0) by 
    A2,
    NDIFF_1: 35;
    
      
    
      thus ((
    partdiff (f1,x,i0)) 
    + ( 
    partdiff (f2,x,i0))) 
    = ( 
    diff (((f1 
    * ( 
    reproj (i,x))) 
    + (f2 
    * ( 
    reproj (i,x)))),(( 
    proj i) 
    . x))) by 
    A3,
    NDIFF_1: 35
    
      .= (
    partdiff ((f1 
    + f2),x,i0)) by 
    A1,
    Th26;
    
    end;
    
    theorem :: 
    
    NDIFF_5:29
    
    for i be
    set st i 
    in ( 
    dom G) & f1 
    is_partial_differentiable_in (x,i) & f2 
    is_partial_differentiable_in (x,i) holds (f1 
    - f2) 
    is_partial_differentiable_in (x,i) & ( 
    partdiff ((f1 
    - f2),x,i)) 
    = (( 
    partdiff (f1,x,i)) 
    - ( 
    partdiff (f2,x,i))) 
    
    proof
    
      let i0 be
    set;
    
      assume
    
      
    
    A1: i0 
    in ( 
    dom G); 
    
      set i = (
    In (i0,( 
    dom G))); 
    
      assume
    
      
    
    A2: f1 
    is_partial_differentiable_in (x,i0) & f2 
    is_partial_differentiable_in (x,i0); 
    
      ((f1
    - f2) 
    * ( 
    reproj (i,x))) 
    = ((f1 
    * ( 
    reproj (i,x))) 
    - (f2 
    * ( 
    reproj (i,x)))) by 
    A1,
    Th26;
    
      hence (f1
    - f2) 
    is_partial_differentiable_in (x,i0) by 
    A2,
    NDIFF_1: 36;
    
      
    
      thus ((
    partdiff (f1,x,i0)) 
    - ( 
    partdiff (f2,x,i0))) 
    = ( 
    diff (((f1 
    * ( 
    reproj (i,x))) 
    - (f2 
    * ( 
    reproj (i,x)))),(( 
    proj i) 
    . x))) by 
    A2,
    NDIFF_1: 36
    
      .= (
    partdiff ((f1 
    - f2),x,i0)) by 
    A1,
    Th26;
    
    end;
    
    theorem :: 
    
    NDIFF_5:30
    
    for i be
    set st i 
    in ( 
    dom G) & f 
    is_partial_differentiable_in (x,i) holds (r 
    (#) f) 
    is_partial_differentiable_in (x,i) & ( 
    partdiff ((r 
    (#) f),x,i)) 
    = (r 
    * ( 
    partdiff (f,x,i))) 
    
    proof
    
      let i0 be
    set;
    
      assume
    
      
    
    A1: i0 
    in ( 
    dom G); 
    
      set i = (
    In (i0,( 
    dom G))); 
    
      assume
    
      
    
    A2: f 
    is_partial_differentiable_in (x,i0); 
    
      (r
    (#) (f 
    * ( 
    reproj (i,x)))) 
    = ((r 
    (#) f) 
    * ( 
    reproj (i,x))) by 
    A1,
    Th27;
    
      hence (r
    (#) f) 
    is_partial_differentiable_in (x,i0) by 
    A2,
    NDIFF_1: 37;
    
      
    
      thus (
    partdiff ((r 
    (#) f),x,i0)) 
    = ( 
    diff ((r 
    (#) (f 
    * ( 
    reproj (i,x)))),(( 
    proj i) 
    . x))) by 
    A1,
    Th27
    
      .= (r
    * ( 
    partdiff (f,x,i0))) by 
    A2,
    NDIFF_1: 37;
    
    end;
    
    begin
    
    theorem :: 
    
    NDIFF_5:31
    
    
    
    
    
    Th31: 
    ||.((
    proj i) 
    . x).|| 
    <=  
    ||.x.||
    
    proof
    
      reconsider y = x as
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      ((
    proj i) 
    . x) 
    = (y 
    . i) by 
    Def3;
    
      hence thesis by
    PRVECT_2: 10;
    
    end;
    
    registration
    
      let G be
    RealNormSpace-Sequence;
    
      cluster -> ( 
    len G) 
    -element for 
    Point of ( 
    product G); 
    
      coherence
    
      proof
    
        let x be
    Point of ( 
    product G); 
    
        
    
        
    
    A1: the 
    carrier of ( 
    product G) 
    = ( 
    product ( 
    carr G)) by 
    Th10;
    
        
    
        
    
    A2: ( 
    dom x) 
    = ( 
    dom ( 
    carr G)) & for i be 
    set st i 
    in ( 
    dom ( 
    carr G)) holds (x 
    . i) 
    in (( 
    carr G) 
    . i) by 
    A1,
    CARD_3: 9;
    
        (
    len ( 
    carr G)) 
    = ( 
    len G) by 
    PRVECT_1:def 11;
    
        then (
    dom x) 
    = ( 
    Seg ( 
    len G)) by 
    A2,
    FINSEQ_1:def 3;
    
        then (
    len x) 
    = ( 
    len G) by 
    FINSEQ_1:def 3;
    
        hence thesis by
    CARD_1:def 7;
    
      end;
    
    end
    
    theorem :: 
    
    NDIFF_5:32
    
    
    
    
    
    Th32: for G be 
    RealNormSpace-Sequence, T be 
    RealNormSpace, i be 
    set, Z be 
    Subset of ( 
    product G), f be 
    PartFunc of ( 
    product G), T st Z is 
    open holds f 
    is_partial_differentiable_on (Z,i) iff Z 
    c= ( 
    dom f) & for x be 
    Point of ( 
    product G) st x 
    in Z holds f 
    is_partial_differentiable_in (x,i) 
    
    proof
    
      let G be
    RealNormSpace-Sequence, T be 
    RealNormSpace, i0 be 
    set, Z be 
    Subset of ( 
    product G), f be 
    PartFunc of ( 
    product G), T; 
    
      assume
    
      
    
    A1: Z is 
    open;
    
      set i = (
    In (i0,( 
    dom G))); 
    
      set S = (G
    . i); 
    
      set RNS = (
    R_NormSpace_of_BoundedLinearOperators (S,T)); 
    
      hereby
    
        assume
    
        
    
    A2: f 
    is_partial_differentiable_on (Z,i0); 
    
        hence Z
    c= ( 
    dom f); 
    
        let nx0 be
    Point of ( 
    product G); 
    
        reconsider x0 = ((
    proj i) 
    . nx0) as 
    Point of S; 
    
        assume
    
        
    
    A4: nx0 
    in Z; 
    
        then (f
    | Z) 
    is_partial_differentiable_in (nx0,i0) by 
    A2;
    
        then
    
        consider N0 be
    Neighbourhood of x0 such that 
    
        
    
    A5: N0 
    c= ( 
    dom ((f 
    | Z) 
    * ( 
    reproj (i,nx0)))) and 
    
        
    
    A6: ex L be 
    Point of RNS, R be 
    RestFunc of S, T st for x be 
    Point of S st x 
    in N0 holds ((((f 
    | Z) 
    * ( 
    reproj (i,nx0))) 
    /. x) 
    - (((f 
    | Z) 
    * ( 
    reproj (i,nx0))) 
    /. x0)) 
    = ((L 
    . (x 
    - x0)) 
    + (R 
    /. (x 
    - x0))) by 
    NDIFF_1:def 6;
    
        consider L be
    Point of RNS, R be 
    RestFunc of S, T such that 
    
        
    
    A7: for x be 
    Point of S st x 
    in N0 holds ((((f 
    | Z) 
    * ( 
    reproj (i,nx0))) 
    /. x) 
    - (((f 
    | Z) 
    * ( 
    reproj (i,nx0))) 
    /. x0)) 
    = ((L 
    . (x 
    - x0)) 
    + (R 
    /. (x 
    - x0))) by 
    A6;
    
        consider N1 be
    Neighbourhood of x0 such that 
    
        
    
    A8: for x be 
    Point of S st x 
    in N1 holds (( 
    reproj (i,nx0)) 
    . x) 
    in Z by 
    A1,
    A4,
    Th23;
    
        
    
    A9: 
    
        now
    
          let x be
    Point of S; 
    
          assume x
    in N1; 
    
          then ((
    reproj (i,nx0)) 
    . x) 
    in Z by 
    A8;
    
          then ((
    reproj (i,nx0)) 
    . x) 
    in (( 
    dom f) 
    /\ Z) by 
    A2,
    XBOOLE_0:def 4;
    
          hence ((
    reproj (i,nx0)) 
    . x) 
    in ( 
    dom (f 
    | Z)) by 
    RELAT_1: 61;
    
        end;
    
        reconsider N = (N0
    /\ N1) as 
    Neighbourhood of x0 by 
    Th8;
    
        ((f
    | Z) 
    * ( 
    reproj (i,nx0))) 
    c= (f 
    * ( 
    reproj (i,nx0))) by 
    RELAT_1: 29,
    RELAT_1: 59;
    
        then
    
        
    
    A10: ( 
    dom ((f 
    | Z) 
    * ( 
    reproj (i,nx0)))) 
    c= ( 
    dom (f 
    * ( 
    reproj (i,nx0)))) by 
    RELAT_1: 11;
    
        N
    c= N0 by 
    XBOOLE_1: 17;
    
        then
    
        
    
    A11: N 
    c= ( 
    dom (f 
    * ( 
    reproj (i,nx0)))) by 
    A5,
    A10;
    
        
    
        
    
    A12: ( 
    dom ( 
    reproj (i,nx0))) 
    = the 
    carrier of (G 
    . i) by 
    FUNCT_2:def 1;
    
        now
    
          let x be
    Point of S; 
    
          assume x
    in N; 
    
          then
    
          
    
    A13: x 
    in N0 & x 
    in N1 by 
    XBOOLE_0:def 4;
    
          then
    
          
    
    A14: (( 
    reproj (i,nx0)) 
    . x) 
    in ( 
    dom (f 
    | Z)) by 
    A9;
    
          then
    
          
    
    A15: (( 
    reproj (i,nx0)) 
    . x) 
    in ( 
    dom f) & (( 
    reproj (i,nx0)) 
    . x) 
    in Z by 
    RELAT_1: 57;
    
          
    
          
    
    A16: (( 
    reproj (i,nx0)) 
    . x0) 
    in ( 
    dom (f 
    | Z)) by 
    A9,
    NFCONT_1: 4;
    
          then
    
          
    
    A17: (( 
    reproj (i,nx0)) 
    . x0) 
    in ( 
    dom f) & (( 
    reproj (i,nx0)) 
    . x0) 
    in Z by 
    RELAT_1: 57;
    
          
    
          
    
    A18: (((f 
    | Z) 
    * ( 
    reproj (i,nx0))) 
    /. x) 
    = ((f 
    | Z) 
    /. (( 
    reproj (i,nx0)) 
    /. x)) by 
    A14,
    A12,
    PARTFUN2: 4
    
          .= (f
    /. (( 
    reproj (i,nx0)) 
    /. x)) by 
    A15,
    PARTFUN2: 17
    
          .= ((f
    * ( 
    reproj (i,nx0))) 
    /. x) by 
    A12,
    A15,
    PARTFUN2: 4;
    
          (((f
    | Z) 
    * ( 
    reproj (i,nx0))) 
    /. x0) 
    = ((f 
    | Z) 
    /. (( 
    reproj (i,nx0)) 
    /. x0)) by 
    A12,
    A16,
    PARTFUN2: 4
    
          .= (f
    /. (( 
    reproj (i,nx0)) 
    /. x0)) by 
    A17,
    PARTFUN2: 17
    
          .= ((f
    * ( 
    reproj (i,nx0))) 
    /. x0) by 
    A12,
    A17,
    PARTFUN2: 4;
    
          hence (((f
    * ( 
    reproj (i,nx0))) 
    /. x) 
    - ((f 
    * ( 
    reproj (i,nx0))) 
    /. x0)) 
    = ((L 
    . (x 
    - x0)) 
    + (R 
    /. (x 
    - x0))) by 
    A7,
    A13,
    A18;
    
        end;
    
        hence f
    is_partial_differentiable_in (nx0,i0) by 
    A11,
    NDIFF_1:def 6;
    
      end;
    
      assume that
    
      
    
    A19: Z 
    c= ( 
    dom f) and 
    
      
    
    A20: for nx be 
    Point of ( 
    product G) st nx 
    in Z holds f 
    is_partial_differentiable_in (nx,i0); 
    
      now
    
        let nx0 be
    Point of ( 
    product G); 
    
        assume
    
        
    
    A21: nx0 
    in Z; 
    
        then
    
        
    
    A22: f 
    is_partial_differentiable_in (nx0,i0) by 
    A20;
    
        reconsider x0 = ((
    proj i) 
    . nx0) as 
    Point of S; 
    
        consider N0 be
    Neighbourhood of x0 such that N0 
    c= ( 
    dom (f 
    * ( 
    reproj (i,nx0)))) and 
    
        
    
    A23: ex L be 
    Point of RNS, R be 
    RestFunc of S, T st for x be 
    Point of S st x 
    in N0 holds (((f 
    * ( 
    reproj (i,nx0))) 
    /. x) 
    - ((f 
    * ( 
    reproj (i,nx0))) 
    /. x0)) 
    = ((L 
    . (x 
    - x0)) 
    + (R 
    /. (x 
    - x0))) by 
    A22,
    NDIFF_1:def 6;
    
        consider N1 be
    Neighbourhood of x0 such that 
    
        
    
    A24: for x be 
    Point of S st x 
    in N1 holds (( 
    reproj (i,nx0)) 
    . x) 
    in Z by 
    A1,
    A21,
    Th23;
    
        
    
    A25: 
    
        now
    
          let x be
    Point of S; 
    
          assume x
    in N1; 
    
          then ((
    reproj (i,nx0)) 
    . x) 
    in Z by 
    A24;
    
          then ((
    reproj (i,nx0)) 
    . x) 
    in (( 
    dom f) 
    /\ Z) by 
    A19,
    XBOOLE_0:def 4;
    
          hence ((
    reproj (i,nx0)) 
    . x) 
    in ( 
    dom (f 
    | Z)) by 
    RELAT_1: 61;
    
        end;
    
        
    
        
    
    A26: N1 
    c= ( 
    dom ((f 
    | Z) 
    * ( 
    reproj (i,nx0)))) 
    
        proof
    
          let z be
    object;
    
          assume
    
          
    
    A27: z 
    in N1; 
    
          then z
    in the 
    carrier of S; 
    
          then
    
          
    
    A28: z 
    in ( 
    dom ( 
    reproj (i,nx0))) by 
    FUNCT_2:def 1;
    
          reconsider x = z as
    Point of S by 
    A27;
    
          ((
    reproj (i,nx0)) 
    . x) 
    in ( 
    dom (f 
    | Z)) by 
    A27,
    A25;
    
          hence z
    in ( 
    dom ((f 
    | Z) 
    * ( 
    reproj (i,nx0)))) by 
    A28,
    FUNCT_1: 11;
    
        end;
    
        reconsider N = (N0
    /\ N1) as 
    Neighbourhood of x0 by 
    Th8;
    
        N
    c= N1 by 
    XBOOLE_1: 17;
    
        then
    
        
    
    A29: N 
    c= ( 
    dom ((f 
    | Z) 
    * ( 
    reproj (i,nx0)))) by 
    A26;
    
        consider L be
    Point of RNS, R be 
    RestFunc of S, T such that 
    
        
    
    A30: for x be 
    Point of S st x 
    in N0 holds (((f 
    * ( 
    reproj (i,nx0))) 
    /. x) 
    - ((f 
    * ( 
    reproj (i,nx0))) 
    /. x0)) 
    = ((L 
    . (x 
    - x0)) 
    + (R 
    /. (x 
    - x0))) by 
    A23;
    
        now
    
          let x be
    Point of S; 
    
          assume
    
          
    
    A31: x 
    in N; 
    
          then
    
          
    
    A32: x 
    in N0 by 
    XBOOLE_0:def 4;
    
          
    
          
    
    A33: ( 
    dom ( 
    reproj (i,nx0))) 
    = the 
    carrier of (G 
    . i) by 
    FUNCT_2:def 1;
    
          x
    in N1 by 
    A31,
    XBOOLE_0:def 4;
    
          then
    
          
    
    A34: (( 
    reproj (i,nx0)) 
    . x) 
    in ( 
    dom (f 
    | Z)) by 
    A25;
    
          then
    
          
    
    A35: (( 
    reproj (i,nx0)) 
    . x) 
    in (( 
    dom f) 
    /\ Z) by 
    RELAT_1: 61;
    
          then
    
          
    
    A36: (( 
    reproj (i,nx0)) 
    . x) 
    in ( 
    dom f) by 
    XBOOLE_0:def 4;
    
          
    
          
    
    A37: (( 
    reproj (i,nx0)) 
    . x0) 
    in ( 
    dom (f 
    | Z)) by 
    A25,
    NFCONT_1: 4;
    
          then
    
          
    
    A38: (( 
    reproj (i,nx0)) 
    . x0) 
    in (( 
    dom f) 
    /\ Z) by 
    RELAT_1: 61;
    
          then
    
          
    
    A39: (( 
    reproj (i,nx0)) 
    . x0) 
    in ( 
    dom f) by 
    XBOOLE_0:def 4;
    
          
    
          
    
    A40: (((f 
    | Z) 
    * ( 
    reproj (i,nx0))) 
    /. x) 
    = ((f 
    | Z) 
    /. (( 
    reproj (i,nx0)) 
    /. x)) by 
    A34,
    A33,
    PARTFUN2: 4
    
          .= (f
    /. (( 
    reproj (i,nx0)) 
    /. x)) by 
    A35,
    PARTFUN2: 16
    
          .= ((f
    * ( 
    reproj (i,nx0))) 
    /. x) by 
    A33,
    A36,
    PARTFUN2: 4;
    
          (((f
    | Z) 
    * ( 
    reproj (i,nx0))) 
    /. x0) 
    = ((f 
    | Z) 
    /. (( 
    reproj (i,nx0)) 
    /. x0)) by 
    A33,
    A37,
    PARTFUN2: 4
    
          .= (f
    /. (( 
    reproj (i,nx0)) 
    /. x0)) by 
    A38,
    PARTFUN2: 16
    
          .= ((f
    * ( 
    reproj (i,nx0))) 
    /. x0) by 
    A33,
    A39,
    PARTFUN2: 4;
    
          hence ((((f
    | Z) 
    * ( 
    reproj (i,nx0))) 
    /. x) 
    - (((f 
    | Z) 
    * ( 
    reproj (i,nx0))) 
    /. x0)) 
    = ((L 
    . (x 
    - x0)) 
    + (R 
    /. (x 
    - x0))) by 
    A40,
    A32,
    A30;
    
        end;
    
        hence (f
    | Z) 
    is_partial_differentiable_in (nx0,i0) by 
    A29,
    NDIFF_1:def 6;
    
      end;
    
      hence thesis by
    A19;
    
    end;
    
    theorem :: 
    
    NDIFF_5:33
    
    
    
    
    
    Th33: for i,j be 
    Element of ( 
    dom G), x be 
    Point of (G 
    . i), z be 
    Element of ( 
    product ( 
    carr G)) st z 
    = (( 
    reproj (i,( 
    0. ( 
    product G)))) 
    . x) holds (i 
    = j implies (z 
    . j) 
    = x) & (i 
    <> j implies (z 
    . j) 
    = ( 
    0. (G 
    . j))) 
    
    proof
    
      let i,j be
    Element of ( 
    dom G), x be 
    Point of (G 
    . i), z be 
    Element of ( 
    product ( 
    carr G)); 
    
      assume
    
      
    
    A1: z 
    = (( 
    reproj (i,( 
    0. ( 
    product G)))) 
    . x); 
    
      reconsider Zr = (
    0. ( 
    product G)) as 
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      reconsider ixr = ((
    reproj (i,( 
    0. ( 
    product G)))) 
    . x) as 
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      
    
      
    
    A2: (( 
    reproj (i,( 
    0. ( 
    product G)))) 
    . x) 
    = (( 
    0. ( 
    product G)) 
    +* (i,x)) by 
    Def4;
    
      set ix = (i
    .--> x); 
    
      consider g be
    Function such that 
    
      
    
    A3: Zr 
    = g & ( 
    dom g) 
    = ( 
    dom ( 
    carr G)) & for i be 
    object st i 
    in ( 
    dom ( 
    carr G)) holds (g 
    . i) 
    in (( 
    carr G) 
    . i) by 
    CARD_3:def 5;
    
      
    
      
    
    A4: ( 
    dom Zr) 
    = ( 
    dom G) by 
    A3,
    Lm1;
    
      now
    
        assume i
    <> j; 
    
        then (z
    . j) 
    = (Zr 
    . j) by 
    A1,
    A2,
    FUNCT_7: 32;
    
        hence (z
    . j) 
    = ( 
    0. (G 
    . j)) by 
    Th14;
    
      end;
    
      hence thesis by
    A1,
    A2,
    A4,
    FUNCT_7: 31;
    
    end;
    
    theorem :: 
    
    NDIFF_5:34
    
    
    
    
    
    Th34: for x,y be 
    Point of (G 
    . i) holds (( 
    reproj (i,( 
    0. ( 
    product G)))) 
    . (x 
    + y)) 
    = ((( 
    reproj (i,( 
    0. ( 
    product G)))) 
    . x) 
    + (( 
    reproj (i,( 
    0. ( 
    product G)))) 
    . y)) 
    
    proof
    
      let x,y be
    Point of (G 
    . i); 
    
      reconsider v = ((
    reproj (i,( 
    0. ( 
    product G)))) 
    . (x 
    + y)) as 
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      reconsider s = ((
    reproj (i,( 
    0. ( 
    product G)))) 
    . x) as 
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      reconsider t = ((
    reproj (i,( 
    0. ( 
    product G)))) 
    . y) as 
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      for j be
    Element of ( 
    dom G) holds (v 
    . j) 
    = ((s 
    . j) 
    + (t 
    . j)) 
    
      proof
    
        let j be
    Element of ( 
    dom G); 
    
        per cases ;
    
          suppose
    
          
    
    A1: i 
    = j; 
    
          then
    
          reconsider yy = y as
    Point of (G 
    . j); 
    
          (v
    . j) 
    = (x 
    + y) by 
    Th33,
    A1;
    
          then (v
    . j) 
    = ((s 
    . j) 
    + yy) by 
    Th33,
    A1;
    
          hence (v
    . j) 
    = ((s 
    . j) 
    + (t 
    . j)) by 
    Th33,
    A1;
    
        end;
    
          suppose
    
          
    
    A2: i 
    <> j; 
    
          then (v
    . j) 
    = ( 
    0. (G 
    . j)) by 
    Th33;
    
          then (v
    . j) 
    = (( 
    0. (G 
    . j)) 
    + ( 
    0. (G 
    . j))) by 
    RLVECT_1:def 4;
    
          then (v
    . j) 
    = ((s 
    . j) 
    + ( 
    0. (G 
    . j))) by 
    Th33,
    A2;
    
          hence (v
    . j) 
    = ((s 
    . j) 
    + (t 
    . j)) by 
    Th33,
    A2;
    
        end;
    
      end;
    
      hence thesis by
    Th12;
    
    end;
    
    theorem :: 
    
    NDIFF_5:35
    
    
    
    
    
    Th35: for x,y be 
    Point of ( 
    product G) holds (( 
    proj i) 
    . (x 
    + y)) 
    = ((( 
    proj i) 
    . x) 
    + (( 
    proj i) 
    . y)) 
    
    proof
    
      let x,y be
    Point of ( 
    product G); 
    
      reconsider v = (x
    + y) as 
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      reconsider s = x as
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      reconsider t = y as
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      ((
    proj i) 
    . (x 
    + y)) 
    = (v 
    . i) & (( 
    proj i) 
    . x) 
    = (s 
    . i) & (( 
    proj i) 
    . y) 
    = (t 
    . i) by 
    Def3;
    
      hence thesis by
    Th12;
    
    end;
    
    theorem :: 
    
    NDIFF_5:36
    
    for x,y be
    Point of (G 
    . i) holds (( 
    reproj (i,( 
    0. ( 
    product G)))) 
    . (x 
    - y)) 
    = ((( 
    reproj (i,( 
    0. ( 
    product G)))) 
    . x) 
    - (( 
    reproj (i,( 
    0. ( 
    product G)))) 
    . y)) 
    
    proof
    
      let x,y be
    Point of (G 
    . i); 
    
      reconsider v = ((
    reproj (i,( 
    0. ( 
    product G)))) 
    . (x 
    - y)) as 
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      reconsider s = ((
    reproj (i,( 
    0. ( 
    product G)))) 
    . x) as 
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      reconsider t = ((
    reproj (i,( 
    0. ( 
    product G)))) 
    . y) as 
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      for j be
    Element of ( 
    dom G) holds (v 
    . j) 
    = ((s 
    . j) 
    - (t 
    . j)) 
    
      proof
    
        let j be
    Element of ( 
    dom G); 
    
        per cases ;
    
          suppose
    
          
    
    A1: i 
    = j; 
    
          then
    
          reconsider yy = y as
    Point of (G 
    . j); 
    
          (v
    . j) 
    = (x 
    - y) by 
    Th33,
    A1;
    
          then (v
    . j) 
    = ((s 
    . j) 
    - yy) by 
    Th33,
    A1;
    
          hence (v
    . j) 
    = ((s 
    . j) 
    - (t 
    . j)) by 
    Th33,
    A1;
    
        end;
    
          suppose
    
          
    
    A2: i 
    <> j; 
    
          then (v
    . j) 
    = ( 
    0. (G 
    . j)) by 
    Th33;
    
          then (v
    . j) 
    = (( 
    0. (G 
    . j)) 
    - ( 
    0. (G 
    . j))) by 
    RLVECT_1: 13;
    
          then (v
    . j) 
    = ((s 
    . j) 
    - ( 
    0. (G 
    . j))) by 
    Th33,
    A2;
    
          hence (v
    . j) 
    = ((s 
    . j) 
    - (t 
    . j)) by 
    Th33,
    A2;
    
        end;
    
      end;
    
      hence thesis by
    Th15;
    
    end;
    
    theorem :: 
    
    NDIFF_5:37
    
    
    
    
    
    Th37: for x,y be 
    Point of ( 
    product G) holds (( 
    proj i) 
    . (x 
    - y)) 
    = ((( 
    proj i) 
    . x) 
    - (( 
    proj i) 
    . y)) 
    
    proof
    
      let x,y be
    Point of ( 
    product G); 
    
      reconsider v = (x
    - y) as 
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      reconsider s = x as
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      reconsider t = y as
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      ((
    proj i) 
    . (x 
    - y)) 
    = (v 
    . i) & (( 
    proj i) 
    . x) 
    = (s 
    . i) & (( 
    proj i) 
    . y) 
    = (t 
    . i) by 
    Def3;
    
      hence thesis by
    Th15;
    
    end;
    
    theorem :: 
    
    NDIFF_5:38
    
    
    
    
    
    Th38: for x be 
    Point of (G 
    . i) st x 
    <> ( 
    0. (G 
    . i)) holds (( 
    reproj (i,( 
    0. ( 
    product G)))) 
    . x) 
    <> ( 
    0. ( 
    product G)) 
    
    proof
    
      let x be
    Point of (G 
    . i); 
    
      assume
    
      
    
    A1: x 
    <> ( 
    0. (G 
    . i)); 
    
      assume
    
      
    
    A2: (( 
    reproj (i,( 
    0. ( 
    product G)))) 
    . x) 
    = ( 
    0. ( 
    product G)); 
    
      reconsider v = ((
    reproj (i,( 
    0. ( 
    product G)))) 
    . x) as 
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      x
    = (v 
    . i) by 
    Th33;
    
      hence contradiction by
    A1,
    Th14,
    A2;
    
    end;
    
    theorem :: 
    
    NDIFF_5:39
    
    
    
    
    
    Th39: for x be 
    Point of (G 
    . i), a be 
    Real holds (( 
    reproj (i,( 
    0. ( 
    product G)))) 
    . (a 
    * x)) 
    = (a 
    * (( 
    reproj (i,( 
    0. ( 
    product G)))) 
    . x)) 
    
    proof
    
      let x be
    Point of (G 
    . i), a be 
    Real;
    
      reconsider a as
    Real;
    
      reconsider v = ((
    reproj (i,( 
    0. ( 
    product G)))) 
    . (a 
    * x)) as 
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      reconsider s = ((
    reproj (i,( 
    0. ( 
    product G)))) 
    . x) as 
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      for j be
    Element of ( 
    dom G) holds (v 
    . j) 
    = (a 
    * (s 
    . j)) 
    
      proof
    
        let j be
    Element of ( 
    dom G); 
    
        per cases ;
    
          suppose
    
          
    
    A1: i 
    = j; 
    
          then (v
    . j) 
    = (a 
    * x) by 
    Th33;
    
          hence (v
    . j) 
    = (a 
    * (s 
    . j)) by 
    Th33,
    A1;
    
        end;
    
          suppose
    
          
    
    A2: i 
    <> j; 
    
          then (v
    . j) 
    = ( 
    0. (G 
    . j)) by 
    Th33;
    
          then (v
    . j) 
    = (a 
    * ( 
    0. (G 
    . j))) by 
    RLVECT_1: 10;
    
          hence (v
    . j) 
    = (a 
    * (s 
    . j)) by 
    Th33,
    A2;
    
        end;
    
      end;
    
      hence thesis by
    Th13;
    
    end;
    
    theorem :: 
    
    NDIFF_5:40
    
    
    
    
    
    Th40: for x be 
    Point of ( 
    product G), a be 
    Real holds (( 
    proj i) 
    . (a 
    * x)) 
    = (a 
    * (( 
    proj i) 
    . x)) 
    
    proof
    
      let x be
    Point of ( 
    product G), a be 
    Real;
    
      reconsider a as
    Real;
    
      reconsider v = (a
    * x) as 
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      reconsider s = x as
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      ((
    proj i) 
    . (a 
    * x)) 
    = (v 
    . i) & (( 
    proj i) 
    . x) 
    = (s 
    . i) by 
    Def3;
    
      hence thesis by
    Th13;
    
    end;
    
    theorem :: 
    
    NDIFF_5:41
    
    
    
    
    
    Th41: for G be 
    RealNormSpace-Sequence, S be 
    RealNormSpace, f be 
    PartFunc of ( 
    product G), S, x be 
    Point of ( 
    product G), i be 
    set st f 
    is_differentiable_in x holds f 
    is_partial_differentiable_in (x,i) & ( 
    partdiff (f,x,i)) 
    = (( 
    diff (f,x)) 
    * ( 
    reproj (( 
    In (i,( 
    dom G))),( 
    0. ( 
    product G))))) 
    
    proof
    
      let G be
    RealNormSpace-Sequence, S be 
    RealNormSpace, f be 
    PartFunc of ( 
    product G), S, x be 
    Point of ( 
    product G), i0 be 
    set;
    
      assume
    
      
    
    A1: f 
    is_differentiable_in x; 
    
      set i = (
    In (i0,( 
    dom G))); 
    
      consider N be
    Neighbourhood of x such that 
    
      
    
    A2: N 
    c= ( 
    dom f) & ex R be 
    RestFunc of ( 
    product G), S st for y be 
    Point of ( 
    product G) st y 
    in N holds ((f 
    /. y) 
    - (f 
    /. x)) 
    = ((( 
    diff (f,x)) 
    . (y 
    - x)) 
    + (R 
    /. (y 
    - x))) by 
    A1,
    NDIFF_1:def 7;
    
      consider R be
    RestFunc of ( 
    product G), S such that 
    
      
    
    A3: for y be 
    Point of ( 
    product G) st y 
    in N holds ((f 
    /. y) 
    - (f 
    /. x)) 
    = ((( 
    diff (f,x)) 
    . (y 
    - x)) 
    + (R 
    /. (y 
    - x))) by 
    A2;
    
      consider r0 be
    Real such that 
    
      
    
    A4: 
    0  
    < r0 & { z where z be 
    Point of ( 
    product G) : 
    ||.(z
    - x).|| 
    < r0 } 
    c= N by 
    NFCONT_1:def 1;
    
      set u = (f
    * ( 
    reproj (i,x))); 
    
      reconsider x0 = ((
    proj i) 
    . x) as 
    Point of (G 
    . i); 
    
      set Z = (
    0. ( 
    product G)); 
    
      set Nx0 = { z where z be
    Point of (G 
    . i) : 
    ||.(z
    - x0).|| 
    < r0 }; 
    
      now
    
        let s be
    object;
    
        assume s
    in Nx0; 
    
        then ex z be
    Point of (G 
    . i) st s 
    = z & 
    ||.(z
    - x0).|| 
    < r0; 
    
        hence s
    in the 
    carrier of (G 
    . i); 
    
      end;
    
      then Nx0 is
    Subset of (G 
    . i) by 
    TARSKI:def 3;
    
      then
    
      reconsider Nx0 as
    Neighbourhood of x0 by 
    A4,
    NFCONT_1:def 1;
    
      
    
      
    
    A5: for xi be 
    Element of (G 
    . i) st xi 
    in Nx0 holds (( 
    reproj (i,x)) 
    . xi) 
    in N 
    
      proof
    
        let xi be
    Element of (G 
    . i); 
    
        assume xi
    in Nx0; 
    
        then
    
        
    
    A6: ex z be 
    Point of (G 
    . i) st xi 
    = z & 
    ||.(z
    - x0).|| 
    < r0; 
    
        (((
    reproj (i,x)) 
    . xi) 
    - x) 
    = (( 
    reproj (i,Z)) 
    . (xi 
    - x0)) by 
    Th22;
    
        then
    ||.(((
    reproj (i,x)) 
    . xi) 
    - x).|| 
    < r0 by 
    Th21,
    A6;
    
        then ((
    reproj (i,x)) 
    . xi) 
    in { z where z be 
    Point of ( 
    product G) : 
    ||.(z
    - x).|| 
    < r0 }; 
    
        hence thesis by
    A4;
    
      end;
    
      
    
      
    
    A7: R is 
    total by 
    NDIFF_1:def 5;
    
      then
    
      
    
    A8: ( 
    dom R) 
    = the 
    carrier of ( 
    product G) by 
    PARTFUN1:def 2;
    
      reconsider R1 = (R
    * ( 
    reproj (i,( 
    0. ( 
    product G))))) as 
    PartFunc of (G 
    . i), S; 
    
      
    
      
    
    A9: ( 
    dom ( 
    reproj (i,( 
    0. ( 
    product G))))) 
    = the 
    carrier of (G 
    . i) by 
    FUNCT_2:def 1;
    
      
    
      
    
    A10: ( 
    dom R1) 
    = the 
    carrier of (G 
    . i) by 
    A7,
    PARTFUN1:def 2;
    
      for r be
    Real st r 
    >  
    0 holds ex d be 
    Real st d 
    >  
    0 & for z be 
    Point of (G 
    . i) st z 
    <> ( 
    0. (G 
    . i)) & 
    ||.z.||
    < d holds (( 
    ||.z.||
    " ) 
    *  
    ||.(R1
    /. z).||) 
    < r 
    
      proof
    
        let r be
    Real;
    
        assume r
    >  
    0 ; 
    
        then
    
        consider d be
    Real such that 
    
        
    
    A11: d 
    >  
    0 & for z be 
    Point of ( 
    product G) st z 
    <> ( 
    0. ( 
    product G)) & 
    ||.z.||
    < d holds (( 
    ||.z.||
    " ) 
    *  
    ||.(R
    /. z).||) 
    < r by 
    A7,
    NDIFF_1: 23;
    
        take d;
    
        now
    
          let z be
    Point of (G 
    . i); 
    
          assume
    
          
    
    A12: z 
    <> ( 
    0. (G 
    . i)) & 
    ||.z.||
    < d; 
    
          
    
          
    
    A13: 
    ||.((
    reproj (i,Z)) 
    . z).|| 
    =  
    ||.z.|| by
    Th21;
    
          (R
    /. (( 
    reproj (i,Z)) 
    . z)) 
    = (R 
    . (( 
    reproj (i,Z)) 
    . z)) by 
    A8,
    PARTFUN1:def 6;
    
          then (R
    /. (( 
    reproj (i,Z)) 
    . z)) 
    = (R1 
    . z) by 
    A9,
    FUNCT_1: 13;
    
          then (R
    /. (( 
    reproj (i,Z)) 
    . z)) 
    = (R1 
    /. z) by 
    A10,
    PARTFUN1:def 6;
    
          hence ((
    ||.z.||
    " ) 
    *  
    ||.(R1
    /. z).||) 
    < r by 
    A11,
    A13,
    A12,
    Th38;
    
        end;
    
        hence thesis by
    A11;
    
      end;
    
      then
    
      reconsider R1 as
    RestFunc of (G 
    . i), S by 
    A7,
    NDIFF_1: 23;
    
      reconsider dfx = (
    diff (f,x)) as 
    Lipschitzian  
    LinearOperator of ( 
    product G), S by 
    LOPBAN_1:def 9;
    
      reconsider LD1 = (dfx
    * ( 
    reproj (i,( 
    0. ( 
    product G))))) as 
    Function of (G 
    . i), S; 
    
      
    
    A14: 
    
      now
    
        let x,y be
    Element of (G 
    . i); 
    
        (LD1
    . (x 
    + y)) 
    = (dfx 
    . (( 
    reproj (i,Z)) 
    . (x 
    + y))) by 
    FUNCT_2: 15;
    
        then (LD1
    . (x 
    + y)) 
    = (dfx 
    . ((( 
    reproj (i,Z)) 
    . x) 
    + (( 
    reproj (i,Z)) 
    . y))) by 
    Th34;
    
        then (LD1
    . (x 
    + y)) 
    = ((dfx 
    . (( 
    reproj (i,Z)) 
    . x)) 
    + (dfx 
    . (( 
    reproj (i,Z)) 
    . y))) by 
    VECTSP_1:def 20;
    
        then (LD1
    . (x 
    + y)) 
    = ((LD1 
    . x) 
    + (dfx 
    . (( 
    reproj (i,Z)) 
    . y))) by 
    FUNCT_2: 15;
    
        hence (LD1
    . (x 
    + y)) 
    = ((LD1 
    . x) 
    + (LD1 
    . y)) by 
    FUNCT_2: 15;
    
      end;
    
      now
    
        let x be
    Element of (G 
    . i), a be 
    Real;
    
        (LD1
    . (a 
    * x)) 
    = (dfx 
    . (( 
    reproj (i,Z)) 
    . (a 
    * x))) by 
    FUNCT_2: 15;
    
        then (LD1
    . (a 
    * x)) 
    = (dfx 
    . (a 
    * (( 
    reproj (i,Z)) 
    . x))) by 
    Th39;
    
        then (LD1
    . (a 
    * x)) 
    = (a 
    * (dfx 
    . (( 
    reproj (i,Z)) 
    . x))) by 
    LOPBAN_1:def 5;
    
        hence (LD1
    . (a 
    * x)) 
    = (a 
    * (LD1 
    . x)) by 
    FUNCT_2: 15;
    
      end;
    
      then
    
      reconsider LD1 as
    LinearOperator of (G 
    . i), S by 
    A14,
    LOPBAN_1:def 5,
    VECTSP_1:def 20;
    
      consider K0 be
    Real such that 
    
      
    
    A15: 
    0  
    <= K0 & for x be 
    VECTOR of ( 
    product G) holds 
    ||.(dfx
    . x).|| 
    <= (K0 
    *  
    ||.x.||) by
    LOPBAN_1:def 8;
    
      now
    
        let r be
    VECTOR of (G 
    . i); 
    
        
    ||.(dfx
    . (( 
    reproj (i,Z)) 
    . r)).|| 
    <= (K0 
    *  
    ||.((
    reproj (i,Z)) 
    . r).||) by 
    A15;
    
        then
    ||.(dfx
    . (( 
    reproj (i,Z)) 
    . r)).|| 
    <= (K0 
    *  
    ||.r.||) by
    Th21;
    
        hence
    ||.(LD1
    . r).|| 
    <= (K0 
    *  
    ||.r.||) by
    FUNCT_2: 15;
    
      end;
    
      then LD1 is
    Lipschitzian by 
    A15;
    
      then
    
      reconsider LD1 as
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators ((G 
    . i),S)) by 
    LOPBAN_1:def 9;
    
      now
    
        let s be
    object;
    
        assume s
    in (( 
    reproj (i,x)) 
    .: Nx0); 
    
        then ex t be
    Element of (G 
    . i) st t 
    in Nx0 & s 
    = (( 
    reproj (i,x)) 
    . t) by 
    FUNCT_2: 65;
    
        hence s
    in ( 
    dom f) by 
    A2,
    A5;
    
      end;
    
      then
    
      
    
    A16: (( 
    reproj (i,x)) 
    .: Nx0) 
    c= ( 
    dom f); 
    
      (
    dom ( 
    reproj (i,x))) 
    = the 
    carrier of (G 
    . i) by 
    FUNCT_2:def 1;
    
      then
    
      
    
    A17: Nx0 
    c= ( 
    dom u) by 
    A16,
    FUNCT_3: 3;
    
      
    
      
    
    A18: for y be 
    Point of (G 
    . i) st y 
    in Nx0 holds ((u 
    /. y) 
    - (u 
    /. x0)) 
    = ((LD1 
    . (y 
    - x0)) 
    + (R1 
    /. (y 
    - x0))) 
    
      proof
    
        let y be
    Point of (G 
    . i); 
    
        assume
    
        
    
    A19: y 
    in Nx0; 
    
        then
    
        
    
    A20: (( 
    reproj (i,x)) 
    . y) 
    in N by 
    A5;
    
        
    
        
    
    A21: (( 
    reproj (i,x)) 
    . x0) 
    = (x 
    +* (i,x0)) by 
    Def4;
    
        
    
        
    
    A22: the 
    carrier of ( 
    product G) 
    = ( 
    product ( 
    carr G)) by 
    Th10;
    
        (x
    . i) 
    = x0 by 
    Def3,
    A22;
    
        then
    
        
    
    A23: x 
    = (x 
    +* (i,x0)) by 
    FUNCT_7: 35;
    
        
    
        
    
    A24: (( 
    reproj (i,x)) 
    . x0) 
    in N by 
    A5,
    NFCONT_1: 4;
    
        (u
    /. y) 
    = (u 
    . y) by 
    A19,
    A17,
    PARTFUN1:def 6;
    
        then (u
    /. y) 
    = (f 
    . (( 
    reproj (i,x)) 
    . y)) by 
    FUNCT_2: 15;
    
        then
    
        
    
    A25: (u 
    /. y) 
    = (f 
    /. (( 
    reproj (i,x)) 
    . y)) by 
    A20,
    A2,
    PARTFUN1:def 6;
    
        (R
    /. (( 
    reproj (i,Z)) 
    . (y 
    - x0))) 
    = (R 
    . (( 
    reproj (i,Z)) 
    . (y 
    - x0))) by 
    A8,
    PARTFUN1:def 6;
    
        then (R
    /. (( 
    reproj (i,Z)) 
    . (y 
    - x0))) 
    = (R1 
    . (y 
    - x0)) by 
    A9,
    FUNCT_1: 13;
    
        then
    
        
    
    A26: (R 
    /. (( 
    reproj (i,Z)) 
    . (y 
    - x0))) 
    = (R1 
    /. (y 
    - x0)) by 
    A10,
    PARTFUN1:def 6;
    
        x0
    in Nx0 by 
    NFCONT_1: 4;
    
        then (u
    /. x0) 
    = (u 
    . x0) by 
    A17,
    PARTFUN1:def 6;
    
        then (u
    /. x0) 
    = (f 
    . (( 
    reproj (i,x)) 
    . x0)) by 
    FUNCT_2: 15;
    
        then ((u
    /. y) 
    - (u 
    /. x0)) 
    = ((f 
    /. (( 
    reproj (i,x)) 
    . y)) 
    - (f 
    /. x)) by 
    A25,
    A23,
    A24,
    A2,
    A21,
    PARTFUN1:def 6;
    
        then ((u
    /. y) 
    - (u 
    /. x0)) 
    = ((( 
    diff (f,x)) 
    . ((( 
    reproj (i,x)) 
    . y) 
    - x)) 
    + (R 
    /. ((( 
    reproj (i,x)) 
    . y) 
    - x))) by 
    A3,
    A19,
    A5;
    
        then ((u
    /. y) 
    - (u 
    /. x0)) 
    = ((dfx 
    . (( 
    reproj (i,Z)) 
    . (y 
    - x0))) 
    + (R 
    /. ((( 
    reproj (i,x)) 
    . y) 
    - x))) by 
    Th22;
    
        then ((u
    /. y) 
    - (u 
    /. x0)) 
    = ((dfx 
    . (( 
    reproj (i,Z)) 
    . (y 
    - x0))) 
    + (R 
    /. (( 
    reproj (i,Z)) 
    . (y 
    - x0)))) by 
    Th22;
    
        hence ((u
    /. y) 
    - (u 
    /. x0)) 
    = ((LD1 
    . (y 
    - x0)) 
    + (R1 
    /. (y 
    - x0))) by 
    A26,
    FUNCT_2: 15;
    
      end;
    
      hence f
    is_partial_differentiable_in (x,i0) by 
    A17,
    NDIFF_1:def 6;
    
      u
    is_differentiable_in x0 by 
    A17,
    A18,
    NDIFF_1:def 6;
    
      hence thesis by
    A17,
    A18,
    NDIFF_1:def 7;
    
    end;
    
    
    
    
    
    Lm5: for G be 
    RealNormSpace-Sequence, S be 
    RealNormSpace, f be 
    PartFunc of ( 
    product G), S, x be 
    Point of ( 
    product G) holds ex L be 
    Lipschitzian  
    LinearOperator of ( 
    product G), S st for h be 
    Element of ( 
    product G) holds ex w be 
    FinSequence of S st ( 
    dom w) 
    = ( 
    Seg ( 
    len G)) & (for i be 
    Element of 
    NAT st i 
    in ( 
    Seg ( 
    len G)) holds (w 
    . i) 
    = (( 
    partdiff (f,x,i)) 
    . (( 
    proj ( 
    In (i,( 
    dom G)))) 
    . h))) & (L 
    . h) 
    = ( 
    Sum w) 
    
    proof
    
      let G be
    RealNormSpace-Sequence, S be 
    RealNormSpace, f be 
    PartFunc of ( 
    product G), S, x be 
    Point of ( 
    product G); 
    
      set m = (
    len G); 
    
      defpred
    
    LX[
    set, 
    set] means ex w be
    FinSequence of S st ( 
    dom w) 
    = ( 
    Seg m) & (for i be 
    Element of 
    NAT st i 
    in ( 
    Seg m) holds (w 
    . i) 
    = (( 
    partdiff (f,x,i)) 
    . (( 
    proj ( 
    In (i,( 
    dom G)))) 
    . $1))) & $2 
    = ( 
    Sum w); 
    
      
    
      
    
    A1: for v be 
    Element of ( 
    product G) holds ex y be 
    Element of S st 
    LX[v, y]
    
      proof
    
        let v be
    Element of ( 
    product G); 
    
        defpred
    
    YX[
    set, 
    set] means ex i be
    Element of 
    NAT st i 
    = $1 & $2 
    = (( 
    partdiff (f,x,i)) 
    . (( 
    proj ( 
    In (i,( 
    dom G)))) 
    . v)); 
    
        
    
        
    
    A2: for i be 
    Nat st i 
    in ( 
    Seg m) holds ex r be 
    Element of S st 
    YX[i, r]
    
        proof
    
          let i be
    Nat;
    
          assume i
    in ( 
    Seg m); 
    
          reconsider i0 = i as
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
          ((
    partdiff (f,x,i0)) 
    . (( 
    proj ( 
    In (i0,( 
    dom G)))) 
    . v)) 
    in the 
    carrier of S; 
    
          hence thesis;
    
        end;
    
        consider w be
    FinSequence of S such that 
    
        
    
    A3: ( 
    dom w) 
    = ( 
    Seg m) & for i be 
    Nat st i 
    in ( 
    Seg m) holds 
    YX[i, (w
    . i)] from 
    FINSEQ_1:sch 5(
    A2);
    
        
    
    A4: 
    
        now
    
          let i be
    Element of 
    NAT ; 
    
          assume i
    in ( 
    Seg m); 
    
          then
    YX[i, (w
    . i)] by 
    A3;
    
          hence (w
    . i) 
    = (( 
    partdiff (f,x,i)) 
    . (( 
    proj ( 
    In (i,( 
    dom G)))) 
    . v)); 
    
        end;
    
        reconsider w0 = (
    Sum w) as 
    Element of S; 
    
        ex w be
    FinSequence of S st ( 
    dom w) 
    = ( 
    Seg m) & (for i be 
    Element of 
    NAT st i 
    in ( 
    Seg m) holds (w 
    . i) 
    = (( 
    partdiff (f,x,i)) 
    . (( 
    proj ( 
    In (i,( 
    dom G)))) 
    . v))) & w0 
    = ( 
    Sum w) by 
    A4,
    A3;
    
        hence ex y0 be
    Element of S st 
    LX[v, y0];
    
      end;
    
      consider L be
    Function of ( 
    product G), S such that 
    
      
    
    A5: for h be 
    Element of ( 
    product G) holds 
    LX[h, (L
    . h)] from 
    FUNCT_2:sch 3(
    A1);
    
      
    
      
    
    A6: for s,t be 
    Element of ( 
    product G) holds (L 
    . (s 
    + t)) 
    = ((L 
    . s) 
    + (L 
    . t)) 
    
      proof
    
        let s,t be
    Element of ( 
    product G); 
    
        consider w be
    FinSequence of S such that 
    
        
    
    A7: ( 
    dom w) 
    = ( 
    Seg m) & (for i be 
    Element of 
    NAT st i 
    in ( 
    Seg m) holds (w 
    . i) 
    = (( 
    partdiff (f,x,i)) 
    . (( 
    proj ( 
    In (i,( 
    dom G)))) 
    . s))) & (L 
    . s) 
    = ( 
    Sum w) by 
    A5;
    
        consider v be
    FinSequence of S such that 
    
        
    
    A8: ( 
    dom v) 
    = ( 
    Seg m) & (for i be 
    Element of 
    NAT st i 
    in ( 
    Seg m) holds (v 
    . i) 
    = (( 
    partdiff (f,x,i)) 
    . (( 
    proj ( 
    In (i,( 
    dom G)))) 
    . t))) & (L 
    . t) 
    = ( 
    Sum v) by 
    A5;
    
        consider u be
    FinSequence of S such that 
    
        
    
    A9: ( 
    dom u) 
    = ( 
    Seg m) & (for i be 
    Element of 
    NAT st i 
    in ( 
    Seg m) holds (u 
    . i) 
    = (( 
    partdiff (f,x,i)) 
    . (( 
    proj ( 
    In (i,( 
    dom G)))) 
    . (s 
    + t)))) & (L 
    . (s 
    + t)) 
    = ( 
    Sum u) by 
    A5;
    
        
    
        
    
    A10: ( 
    len w) 
    = m by 
    A7,
    FINSEQ_1:def 3;
    
        
    
        
    
    A11: ( 
    len v) 
    = m by 
    A8,
    FINSEQ_1:def 3;
    
        
    
        
    
    A12: ( 
    len u) 
    = m by 
    A9,
    FINSEQ_1:def 3;
    
        now
    
          let i be
    Nat;
    
          assume
    
          
    
    A13: i 
    in ( 
    dom w); 
    
          then
    
          
    
    A14: 1 
    <= i & i 
    <= m by 
    A7,
    FINSEQ_1: 1;
    
          then (w
    /. i) 
    = (w 
    . i) by 
    A10,
    FINSEQ_4: 15;
    
          then
    
          
    
    A15: (w 
    /. i) 
    = (( 
    partdiff (f,x,i)) 
    . (( 
    proj ( 
    In (i,( 
    dom G)))) 
    . s)) by 
    A7,
    A13;
    
          (v
    /. i) 
    = (v 
    . i) by 
    A14,
    A11,
    FINSEQ_4: 15;
    
          then
    
          
    
    A16: (v 
    /. i) 
    = (( 
    partdiff (f,x,i)) 
    . (( 
    proj ( 
    In (i,( 
    dom G)))) 
    . t)) by 
    A7,
    A8,
    A13;
    
          
    
          
    
    A17: ( 
    partdiff (f,x,i)) is 
    Lipschitzian  
    LinearOperator of (G 
    . ( 
    In (i,( 
    dom G)))), S by 
    LOPBAN_1:def 9;
    
          (u
    . i) 
    = (( 
    partdiff (f,x,i)) 
    . (( 
    proj ( 
    In (i,( 
    dom G)))) 
    . (s 
    + t))) by 
    A7,
    A9,
    A13;
    
          then (u
    . i) 
    = (( 
    partdiff (f,x,i)) 
    . ((( 
    proj ( 
    In (i,( 
    dom G)))) 
    . s) 
    + (( 
    proj ( 
    In (i,( 
    dom G)))) 
    . t))) by 
    Th35;
    
          hence (u
    . i) 
    = ((w 
    /. i) 
    + (v 
    /. i)) by 
    A15,
    A16,
    A17,
    VECTSP_1:def 20;
    
        end;
    
        hence (L
    . (s 
    + t)) 
    = ((L 
    . s) 
    + (L 
    . t)) by 
    A9,
    A7,
    A8,
    A10,
    A11,
    A12,
    RLVECT_2: 2;
    
      end;
    
      for s be
    Element of ( 
    product G), r be 
    Real holds (L 
    . (r 
    * s)) 
    = (r 
    * (L 
    . s)) 
    
      proof
    
        let s be
    Element of ( 
    product G), r be 
    Real;
    
        consider w be
    FinSequence of S such that 
    
        
    
    A18: ( 
    dom w) 
    = ( 
    Seg m) & (for i be 
    Element of 
    NAT st i 
    in ( 
    Seg m) holds (w 
    . i) 
    = (( 
    partdiff (f,x,i)) 
    . (( 
    proj ( 
    In (i,( 
    dom G)))) 
    . s))) & (L 
    . s) 
    = ( 
    Sum w) by 
    A5;
    
        consider u be
    FinSequence of S such that 
    
        
    
    A19: ( 
    dom u) 
    = ( 
    Seg m) & (for i be 
    Element of 
    NAT st i 
    in ( 
    Seg m) holds (u 
    . i) 
    = (( 
    partdiff (f,x,i)) 
    . (( 
    proj ( 
    In (i,( 
    dom G)))) 
    . (r 
    * s)))) & (L 
    . (r 
    * s)) 
    = ( 
    Sum u) by 
    A5;
    
        
    
        
    
    A20: ( 
    len w) 
    = m & ( 
    len u) 
    = m by 
    A18,
    A19,
    FINSEQ_1:def 3;
    
        now
    
          let i be
    Nat;
    
          assume
    
          
    
    A21: i 
    in ( 
    dom w); 
    
          then 1
    <= i & i 
    <= m by 
    A18,
    FINSEQ_1: 1;
    
          then (w
    /. i) 
    = (w 
    . i) by 
    A20,
    FINSEQ_4: 15;
    
          then
    
          
    
    A22: (w 
    /. i) 
    = (( 
    partdiff (f,x,i)) 
    . (( 
    proj ( 
    In (i,( 
    dom G)))) 
    . s)) by 
    A18,
    A21;
    
          
    
          
    
    A23: ( 
    partdiff (f,x,i)) is 
    Lipschitzian  
    LinearOperator of (G 
    . ( 
    In (i,( 
    dom G)))), S by 
    LOPBAN_1:def 9;
    
          (u
    . i) 
    = (( 
    partdiff (f,x,i)) 
    . (( 
    proj ( 
    In (i,( 
    dom G)))) 
    . (r 
    * s))) by 
    A18,
    A19,
    A21;
    
          then (u
    . i) 
    = (( 
    partdiff (f,x,i)) 
    . (r 
    * (( 
    proj ( 
    In (i,( 
    dom G)))) 
    . s))) by 
    Th40;
    
          hence (u
    . i) 
    = (r 
    * (w 
    /. i)) by 
    A22,
    A23,
    LOPBAN_1:def 5;
    
        end;
    
        hence (L
    . (r 
    * s)) 
    = (r 
    * (L 
    . s)) by 
    A18,
    A19,
    A20,
    RLVECT_2: 3;
    
      end;
    
      then
    
      reconsider L as
    LinearOperator of ( 
    product G), S by 
    A6,
    LOPBAN_1:def 5,
    VECTSP_1:def 20;
    
      defpred
    
    YXL[
    set, 
    set] means ex i be
    Element of 
    NAT st i 
    = $1 & $2 
    =  
    ||.(
    partdiff (f,x,i)).||; 
    
      
    
      
    
    A24: for i be 
    Nat st i 
    in ( 
    Seg m) holds ex r be 
    Element of 
    REAL st 
    YXL[i, r]
    
      proof
    
        let i be
    Nat;
    
        assume i
    in ( 
    Seg m); 
    
        reconsider i0 = i as
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
        reconsider r =
    ||.(
    partdiff (f,x,i0)).|| as 
    Element of 
    REAL ; 
    
        
    YXL[i, r];
    
        hence thesis;
    
      end;
    
      consider Kw be
    FinSequence of 
    REAL such that 
    
      
    
    A25: ( 
    dom Kw) 
    = ( 
    Seg m) & for i be 
    Nat st i 
    in ( 
    Seg m) holds 
    YXL[i, (Kw
    . i)] from 
    FINSEQ_1:sch 5(
    A24);
    
      
    
    A26: 
    
      now
    
        let i be
    Element of 
    NAT ; 
    
        assume i
    in ( 
    Seg m); 
    
        then
    YXL[i, (Kw
    . i)] by 
    A25;
    
        hence (Kw
    . i) 
    =  
    ||.(
    partdiff (f,x,i)).||; 
    
      end;
    
      
    
    A27: 
    
      now
    
        let i be
    Nat;
    
        assume i
    in ( 
    dom Kw); 
    
        then (Kw
    . i) 
    =  
    ||.(
    partdiff (f,x,i)).|| by 
    A26,
    A25;
    
        hence
    0  
    <= (Kw 
    . i); 
    
      end;
    
      set LK = (
    Sum Kw); 
    
      for s be
    Element of ( 
    product G) holds 
    ||.(L
    . s).|| 
    <= (LK 
    *  
    ||.s.||)
    
      proof
    
        let s be
    Element of ( 
    product G); 
    
        consider w be
    FinSequence of S such that 
    
        
    
    A29: ( 
    dom w) 
    = ( 
    Seg m) & (for i be 
    Element of 
    NAT st i 
    in ( 
    Seg m) holds (w 
    . i) 
    = (( 
    partdiff (f,x,i)) 
    . (( 
    proj ( 
    In (i,( 
    dom G)))) 
    . s))) & (L 
    . s) 
    = ( 
    Sum w) by 
    A5;
    
        defpred
    
    YXD[
    set, 
    set] means ex i be
    Element of 
    NAT st i 
    = $1 & $2 
    = ( 
    ||.(
    partdiff (f,x,i)).|| 
    *  
    ||.s.||);
    
        
    
        
    
    A30: for i be 
    Nat st i 
    in ( 
    Seg m) holds ex r be 
    Element of 
    REAL st 
    YXD[i, r]
    
        proof
    
          let i be
    Nat;
    
          assume i
    in ( 
    Seg m); 
    
          reconsider i0 = i as
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
          reconsider r = (
    ||.(
    partdiff (f,x,i0)).|| 
    *  
    ||.s.||) as
    Element of 
    REAL by 
    XREAL_0:def 1;
    
          
    YXD[i, r];
    
          hence thesis;
    
        end;
    
        consider Dw be
    FinSequence of 
    REAL such that 
    
        
    
    A31: ( 
    dom Dw) 
    = ( 
    Seg m) & for i be 
    Nat st i 
    in ( 
    Seg m) holds 
    YXD[i, (Dw
    . i)] from 
    FINSEQ_1:sch 5(
    A30);
    
        
    
    A32: 
    
        now
    
          let i be
    Element of 
    NAT ; 
    
          assume i
    in ( 
    Seg m); 
    
          then
    YXD[i, (Dw
    . i)] by 
    A31;
    
          hence (Dw
    . i) 
    = ( 
    ||.(
    partdiff (f,x,i)).|| 
    *  
    ||.s.||);
    
        end;
    
        defpred
    
    YXH[
    set, 
    set] means ex i be
    Element of 
    NAT st i 
    = $1 & $2 
    =  
    ||.(w
    /. i).||; 
    
        
    
        
    
    A33: for i be 
    Nat st i 
    in ( 
    Seg m) holds ex r be 
    Element of 
    REAL st 
    YXH[i, r]
    
        proof
    
          let i be
    Nat;
    
          assume i
    in ( 
    Seg m); 
    
          reconsider i0 = i as
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
          reconsider r =
    ||.(w
    /. i0).|| as 
    Element of 
    REAL ; 
    
          
    YXH[i, r];
    
          hence thesis;
    
        end;
    
        consider yseq be
    FinSequence of 
    REAL such that 
    
        
    
    A34: ( 
    dom yseq) 
    = ( 
    Seg m) & for i be 
    Nat st i 
    in ( 
    Seg m) holds 
    YXH[i, (yseq
    . i)] from 
    FINSEQ_1:sch 5(
    A33);
    
        
    
    A35: 
    
        now
    
          let i be
    Element of 
    NAT ; 
    
          assume i
    in ( 
    Seg m); 
    
          then
    YXH[i, (yseq
    . i)] by 
    A34;
    
          hence (yseq
    . i) 
    =  
    ||.(w
    /. i).||; 
    
        end;
    
        (
    len w) 
    = ( 
    len yseq) by 
    A29,
    A34,
    FINSEQ_3: 29;
    
        then
    
        
    
    A36: 
    ||.(L
    . s).|| 
    <= ( 
    Sum yseq) by 
    A29,
    A35,
    Th7;
    
        m
    = ( 
    len yseq) by 
    A34,
    FINSEQ_1:def 3;
    
        then
    
        
    
    A37: yseq is 
    Element of (m 
    -tuples_on  
    REAL ) by 
    FINSEQ_2: 92;
    
        (
    len Dw) 
    = m by 
    A31,
    FINSEQ_1:def 3;
    
        then
    
        
    
    A38: Dw is 
    Element of (m 
    -tuples_on  
    REAL ) by 
    FINSEQ_2: 92;
    
        now
    
          let i be
    Nat;
    
          assume
    
          
    
    A39: i 
    in ( 
    Seg m); 
    
          then
    
          
    
    A40: (yseq 
    . i) 
    =  
    ||.(w
    /. i).|| by 
    A35;
    
          (w
    /. i) 
    = (w 
    . i) by 
    A39,
    A29,
    PARTFUN1:def 6;
    
          then
    
          
    
    A41: 
    ||.(w
    /. i).|| 
    =  
    ||.((
    partdiff (f,x,i)) 
    . (( 
    proj ( 
    In (i,( 
    dom G)))) 
    . s)).|| by 
    A29,
    A39;
    
          reconsider DF1 = (
    partdiff (f,x,i)) as 
    Lipschitzian  
    LinearOperator of (G 
    . ( 
    In (i,( 
    dom G)))), S by 
    LOPBAN_1:def 9;
    
          
    
          
    
    A42: 
    ||.(DF1
    . (( 
    proj ( 
    In (i,( 
    dom G)))) 
    . s)).|| 
    <= ( 
    ||.(
    partdiff (f,x,i)).|| 
    *  
    ||.((
    proj ( 
    In (i,( 
    dom G)))) 
    . s).||) by 
    LOPBAN_1: 32;
    
          (
    product G) 
    =  
    NORMSTR (# ( 
    product ( 
    carr G)), ( 
    zeros G), 
    [:(
    addop G):], 
    [:(
    multop G):], ( 
    productnorm G) #) by 
    PRVECT_2: 6;
    
          then
    
          reconsider ss = s as
    Element of ( 
    product ( 
    carr G)); 
    
          reconsider xi = ((
    proj ( 
    In (i,( 
    dom G)))) 
    . s) as 
    Point of (G 
    . ( 
    In (i,( 
    dom G)))); 
    
          xi
    = (ss 
    . ( 
    In (i,( 
    dom G)))) by 
    Def3;
    
          then (
    ||.(
    partdiff (f,x,i)).|| 
    *  
    ||.((
    proj ( 
    In (i,( 
    dom G)))) 
    . s).||) 
    <= ( 
    ||.(
    partdiff (f,x,i)).|| 
    *  
    ||.s.||) by
    PRVECT_2: 10,
    XREAL_1: 64;
    
          then
    ||.(w
    /. i).|| 
    <= ( 
    ||.(
    partdiff (f,x,i)).|| 
    *  
    ||.s.||) by
    A41,
    A42,
    XXREAL_0: 2;
    
          hence (yseq
    . i) 
    <= (Dw 
    . i) by 
    A32,
    A39,
    A40;
    
        end;
    
        then
    
        
    
    A43: ( 
    Sum yseq) 
    <= ( 
    Sum Dw) by 
    A37,
    A38,
    RVSUM_1: 82;
    
        (
    len Kw) 
    = m by 
    A25,
    FINSEQ_1:def 3;
    
        then
    
        reconsider KKw = Kw as
    Element of (m 
    -tuples_on  
    REAL ) by 
    FINSEQ_2: 92;
    
        (
    ||.s.||
    * KKw) 
    in (m 
    -tuples_on  
    REAL ); 
    
        then ex t be
    Element of ( 
    REAL  
    * ) st t 
    = ( 
    ||.s.||
    * KKw) & ( 
    len t) 
    = m; 
    
        then
    
        
    
    A44: ( 
    dom Dw) 
    = ( 
    dom ( 
    ||.s.||
    * Kw)) by 
    A31,
    FINSEQ_1:def 3;
    
        now
    
          let k be
    Nat;
    
          assume
    
          
    
    A45: k 
    in ( 
    dom Dw); 
    
          then (Dw
    . k) 
    = ( 
    ||.(
    partdiff (f,x,k)).|| 
    *  
    ||.s.||) by
    A32,
    A31;
    
          then (Dw
    . k) 
    = ( 
    ||.s.||
    * (Kw 
    . k)) by 
    A26,
    A45,
    A31;
    
          hence (Dw
    . k) 
    = (( 
    ||.s.||
    * Kw) 
    . k) by 
    RVSUM_1: 45;
    
        end;
    
        then Dw
    = ( 
    ||.s.||
    * Kw) by 
    A44,
    FINSEQ_1: 13;
    
        then (
    Sum Dw) 
    = (( 
    Sum Kw) 
    *  
    ||.s.||) by
    RVSUM_1: 87;
    
        hence thesis by
    A36,
    A43,
    XXREAL_0: 2;
    
      end;
    
      then
    
      reconsider L as
    Lipschitzian  
    LinearOperator of ( 
    product G), S by 
    A27,
    RVSUM_1: 84,
    LOPBAN_1:def 8;
    
      take L;
    
      thus thesis by
    A5;
    
    end;
    
    theorem :: 
    
    NDIFF_5:42
    
    
    
    
    
    Th42: for S be 
    RealNormSpace, h,g be 
    FinSequence of S st ( 
    len h) 
    = (( 
    len g) 
    + 1) & (for i be 
    Nat st i 
    in ( 
    dom g) holds (g 
    /. i) 
    = ((h 
    /. i) 
    - (h 
    /. (i 
    + 1)))) holds ((h 
    /. 1) 
    - (h 
    /. ( 
    len h))) 
    = ( 
    Sum g) 
    
    proof
    
      let S be
    RealNormSpace, h,g be 
    FinSequence of S; 
    
      assume that
    
      
    
    A1: ( 
    len h) 
    = (( 
    len g) 
    + 1) and 
    
      
    
    A2: for i be 
    Nat st i 
    in ( 
    dom g) holds (g 
    /. i) 
    = ((h 
    /. i) 
    - (h 
    /. (i 
    + 1))); 
    
      consider F be
    sequence of the 
    carrier of S such that 
    
      
    
    A3: ( 
    Sum g) 
    = (F 
    . ( 
    len g)) & (F 
    .  
    0 ) 
    = ( 
    0. S) & for j be 
    Nat, v be 
    Element of S st j 
    < ( 
    len g) & v 
    = (g 
    . (j 
    + 1)) holds (F 
    . (j 
    + 1)) 
    = ((F 
    . j) 
    + v) by 
    RLVECT_1:def 12;
    
      per cases ;
    
        suppose (
    len g) 
    =  
    0 ; 
    
        hence thesis by
    A3,
    A1,
    RLVECT_1: 15;
    
      end;
    
        suppose
    
        
    
    A4: ( 
    len g) 
    >  
    0 ; 
    
        defpred
    
    P[
    Nat] means $1
    <= ( 
    len g) implies (F 
    . $1) 
    = ((h 
    /. 1) 
    - (h 
    /. ($1 
    + 1))); 
    
        
    
        
    
    A5: 
    P[1]
    
        proof
    
          assume
    
          
    
    A6: 1 
    <= ( 
    len g); 
    
          then 1
    in ( 
    Seg ( 
    len g)); 
    
          then
    
          
    
    A7: 1 
    in ( 
    dom g) by 
    FINSEQ_1:def 3;
    
          reconsider zz0 =
    0 as 
    Element of 
    NAT ; 
    
          (g
    /. 1) 
    = (g 
    . (zz0 
    + 1)) by 
    A7,
    PARTFUN1:def 6;
    
          
    
          then (F
    . (zz0 
    + 1)) 
    = ((F 
    .  
    0 ) 
    + (g 
    /. 1)) by 
    A3,
    A6
    
          .= (g
    /. 1) by 
    A3,
    RLVECT_1: 4;
    
          hence (F
    . 1) 
    = ((h 
    /. 1) 
    - (h 
    /. (1 
    + 1))) by 
    A7,
    A2;
    
        end;
    
        
    
        
    
    A8: for j be 
    Nat st 1 
    <= j holds 
    P[j] implies
    P[(j
    + 1)] 
    
        proof
    
          let j be
    Nat;
    
          assume 1
    <= j; 
    
          assume
    
          
    
    A9: 
    P[j];
    
          assume
    
          
    
    A10: (j 
    + 1) 
    <= ( 
    len g); 
    
          then
    
          
    
    A12: (j 
    + 1) 
    in ( 
    dom g) by 
    XREAL_1: 38,
    FINSEQ_3: 25;
    
          then
    
          
    
    A13: (g 
    . (j 
    + 1)) 
    = (g 
    /. (j 
    + 1)) by 
    PARTFUN1:def 6;
    
          (F
    . (j 
    + 1)) 
    = ((F 
    . j) 
    + (g 
    /. (j 
    + 1))) by 
    A13,
    A10,
    A3,
    NAT_1: 13
    
          .= ((F
    . j) 
    + ((h 
    /. (j 
    + 1)) 
    - (h 
    /. ((j 
    + 1) 
    + 1)))) by 
    A2,
    A12
    
          .= ((((h
    /. 1) 
    - (h 
    /. (j 
    + 1))) 
    + (h 
    /. (j 
    + 1))) 
    - (h 
    /. ((j 
    + 1) 
    + 1))) by 
    A9,
    A10,
    NAT_1: 13,
    RLVECT_1: 28
    
          .= (((h
    /. 1) 
    - ((h 
    /. (j 
    + 1)) 
    - (h 
    /. (j 
    + 1)))) 
    - (h 
    /. ((j 
    + 1) 
    + 1))) by 
    RLVECT_1: 29
    
          .= (((h
    /. 1) 
    - ( 
    0. S)) 
    - (h 
    /. ((j 
    + 1) 
    + 1))) by 
    RLVECT_1: 15;
    
          hence thesis by
    RLVECT_1: 13;
    
        end;
    
        
    
        
    
    A14: 1 
    <= ( 
    len g) by 
    A4,
    NAT_1: 14;
    
        for i be
    Nat st 1 
    <= i holds 
    P[i] from
    NAT_1:sch 8(
    A5,
    A8);
    
        hence thesis by
    A3,
    A1,
    A14;
    
      end;
    
    end;
    
    theorem :: 
    
    NDIFF_5:43
    
    for G be
    RealNormSpace-Sequence, x,y be 
    Element of ( 
    product ( 
    carr G)), Z be 
    set holds (x 
    +* (y 
    | Z)) is 
    Element of ( 
    product ( 
    carr G)) by 
    CARD_3: 79;
    
    theorem :: 
    
    NDIFF_5:44
    
    
    
    
    
    Th44: for G be 
    RealNormSpace-Sequence, x,y be 
    Point of ( 
    product G), Z,x0 be 
    Element of ( 
    product ( 
    carr G)), X be 
    set st Z 
    = ( 
    0. ( 
    product G)) & x0 
    = x & y 
    = (Z 
    +* (x0 
    | X)) holds 
    ||.y.||
    <=  
    ||.x.||
    
    proof
    
      let G be
    RealNormSpace-Sequence, x,y be 
    Point of ( 
    product G), Z,x0 be 
    Element of ( 
    product ( 
    carr G)), X be 
    set;
    
      assume
    
      
    
    A1: Z 
    = ( 
    0. ( 
    product G)) & x0 
    = x & y 
    = (Z 
    +* (x0 
    | X)); 
    
      reconsider y0 = y as
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      
    
      
    
    A2: 
    ||.y.||
    = (( 
    productnorm G) 
    . y) by 
    PRVECT_2:def 13
    
      .=
    |.(
    normsequence (G,y0)).| by 
    PRVECT_2:def 12;
    
      
    
      
    
    A3: 
    ||.x.||
    = (( 
    productnorm G) 
    . x) by 
    PRVECT_2:def 13
    
      .=
    |.(
    normsequence (G,x0)).| by 
    A1,
    PRVECT_2:def 12;
    
      reconsider Ny = (
    normsequence (G,y0)) as ( 
    len G) 
    -element  
    FinSequence of 
    REAL ; 
    
      reconsider Nx = (
    normsequence (G,x0)) as ( 
    len G) 
    -element  
    FinSequence of 
    REAL ; 
    
      
    
      
    
    A4: ( 
    len Nx) 
    = ( 
    len G) & ( 
    len Ny) 
    = ( 
    len G) by 
    CARD_1:def 7;
    
      for k be
    Element of 
    NAT st k 
    in ( 
    Seg ( 
    len Ny)) holds 
    0  
    <= (Ny 
    . k) & (Ny 
    . k) 
    <= (Nx 
    . k) 
    
      proof
    
        let k be
    Element of 
    NAT ; 
    
        assume
    
        
    
    A5: k 
    in ( 
    Seg ( 
    len Ny)); 
    
        then
    
        reconsider k1 = k as
    Element of ( 
    dom G) by 
    CARD_1:def 7,
    FINSEQ_1:def 3;
    
        x0 is
    Element of the 
    carrier of ( 
    product G) by 
    Th10;
    
        then
    
        reconsider xx = x0 as (
    len G) 
    -element  
    FinSequence;
    
        (
    dom xx) 
    = ( 
    Seg ( 
    len G)) by 
    FINSEQ_1: 89;
    
        then
    
        
    
    A6: k 
    in ( 
    dom x0) by 
    A5,
    CARD_1:def 7;
    
        reconsider yk = (y0
    . k1), xk = (x0 
    . k1) as 
    Element of the 
    carrier of (G 
    . k1); 
    
        
    
        
    
    A7: (Nx 
    . k) 
    = (the 
    normF of (G 
    . k1) 
    . (x0 
    . k1)) by 
    PRVECT_2:def 11;
    
        
    
        
    
    A8: (Ny 
    . k) 
    =  
    ||.yk.|| by
    PRVECT_2:def 11;
    
        hence
    0  
    <= (Ny 
    . k); 
    
        
    
        
    
    A9: (Nx 
    . k) 
    =  
    ||.xk.|| by
    PRVECT_2:def 11;
    
        per cases ;
    
          suppose k1
    in X; 
    
          then
    
          
    
    A10: k1 
    in ( 
    dom (x0 
    | X)) by 
    A6,
    RELAT_1: 57;
    
          then (y0
    . k1) 
    = ((x0 
    | X) 
    . k1) by 
    A1,
    FUNCT_4: 13;
    
          then (y0
    . k1) 
    = (x0 
    . k1) by 
    A10,
    FUNCT_1: 47;
    
          hence (Ny
    . k) 
    <= (Nx 
    . k) by 
    A7,
    PRVECT_2:def 11;
    
        end;
    
          suppose not k1
    in X; 
    
          then not k1
    in ( 
    dom (x0 
    | X)); 
    
          then (y0
    . k1) 
    = (Z 
    . k1) by 
    A1,
    FUNCT_4: 11;
    
          then (y0
    . k1) 
    = ( 
    0. (G 
    . k1)) by 
    A1,
    Th14;
    
          hence (Ny
    . k) 
    <= (Nx 
    . k) by 
    A8,
    A9;
    
        end;
    
      end;
    
      hence
    ||.y.||
    <=  
    ||.x.|| by
    A2,
    A3,
    A4,
    PRVECT_2: 2;
    
    end;
    
    theorem :: 
    
    NDIFF_5:45
    
    
    
    
    
    Th45: for G be 
    RealNormSpace-Sequence, S be 
    RealNormSpace, f be 
    PartFunc of ( 
    product G), S, x,y be 
    Point of ( 
    product G) holds ex h be 
    FinSequence of ( 
    product G), g be 
    FinSequence of S, Z,y0 be 
    Element of ( 
    product ( 
    carr G)) st y0 
    = y & Z 
    = ( 
    0. ( 
    product G)) & ( 
    len h) 
    = (( 
    len G) 
    + 1) & ( 
    len g) 
    = ( 
    len G) & (for i be 
    Nat st i 
    in ( 
    dom h) holds (h 
    /. i) 
    = (Z 
    +* (y0 
    | ( 
    Seg ((( 
    len G) 
    + 1) 
    -' i))))) & (for i be 
    Nat st i 
    in ( 
    dom g) holds (g 
    /. i) 
    = ((f 
    /. (x 
    + (h 
    /. i))) 
    - (f 
    /. (x 
    + (h 
    /. (i 
    + 1)))))) & (for i be 
    Nat, hi be 
    Point of ( 
    product G) st i 
    in ( 
    dom h) & (h 
    /. i) 
    = hi holds 
    ||.hi.||
    <=  
    ||.y.||) & ((f
    /. (x 
    + y)) 
    - (f 
    /. x)) 
    = ( 
    Sum g) 
    
    proof
    
      let G be
    RealNormSpace-Sequence, S be 
    RealNormSpace, f be 
    PartFunc of ( 
    product G), S, x,y be 
    Point of ( 
    product G); 
    
      set m = (
    len G); 
    
      
    
      
    
    A1: the 
    carrier of ( 
    product G) 
    = ( 
    product ( 
    carr G)) by 
    Th10;
    
      reconsider Z0 = (
    0. ( 
    product G)) as 
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      reconsider y0 = y as
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      reconsider y1 = y as (
    len G) 
    -element  
    FinSequence;
    
      reconsider Z1 = (
    0. ( 
    product G)) as ( 
    len G) 
    -element  
    FinSequence;
    
      (
    len y1) 
    = m by 
    CARD_1:def 7;
    
      then
    
      
    
    A2: ( 
    dom y1) 
    = ( 
    dom G) by 
    FINSEQ_3: 29;
    
      (
    len Z1) 
    = m by 
    CARD_1:def 7;
    
      then
    
      
    
    A3: ( 
    dom Z1) 
    = ( 
    dom G) by 
    FINSEQ_3: 29;
    
      defpred
    
    H[
    Nat, 
    set] means $2
    = (Z0 
    +* (y0 
    | ( 
    Seg ((( 
    len G) 
    + 1) 
    -' $1)))); 
    
      
    
      
    
    A4: for k be 
    Nat st k 
    in ( 
    Seg (m 
    + 1)) holds ex x be 
    Element of ( 
    product G) st 
    H[k, x]
    
      proof
    
        let k be
    Nat;
    
        assume k
    in ( 
    Seg (m 
    + 1)); 
    
        (Z0
    +* (y0 
    | ( 
    Seg ((( 
    len G) 
    + 1) 
    -' k)))) is 
    Element of ( 
    product ( 
    carr G)) by 
    CARD_3: 79;
    
        hence thesis by
    A1;
    
      end;
    
      consider h be
    FinSequence of ( 
    product G) such that 
    
      
    
    A5: ( 
    dom h) 
    = ( 
    Seg (m 
    + 1)) & for j be 
    Nat st j 
    in ( 
    Seg (m 
    + 1)) holds 
    H[j, (h
    . j)] from 
    FINSEQ_1:sch 5(
    A4);
    
      
    
    A6: 
    
      now
    
        let j be
    Nat;
    
        assume
    
        
    
    A7: j 
    in ( 
    dom h); 
    
        then (h
    /. j) 
    = (h 
    . j) by 
    PARTFUN1:def 6;
    
        hence (h
    /. j) 
    = (Z0 
    +* (y0 
    | ( 
    Seg ((( 
    len G) 
    + 1) 
    -' j)))) by 
    A7,
    A5;
    
      end;
    
      deffunc
    
    Z(
    Nat) = (f
    /. (x 
    + (h 
    /. $1))); 
    
      consider z be
    FinSequence of S such that 
    
      
    
    A8: ( 
    len z) 
    = (m 
    + 1) & for j be 
    Nat st j 
    in ( 
    dom z) holds (z 
    . j) 
    =  
    Z(j) from
    FINSEQ_2:sch 1;
    
      
    
    A9: 
    
      now
    
        let j be
    Nat;
    
        assume
    
        
    
    A10: j 
    in ( 
    dom z); 
    
        then (z
    /. j) 
    = (z 
    . j) by 
    PARTFUN1:def 6;
    
        hence (z
    /. j) 
    = (f 
    /. (x 
    + (h 
    /. j))) by 
    A10,
    A8;
    
      end;
    
      deffunc
    
    G(
    Nat) = ((z
    /. $1) 
    - (z 
    /. ($1 
    + 1))); 
    
      consider g be
    FinSequence of S such that 
    
      
    
    A11: ( 
    len g) 
    = m & for j be 
    Nat st j 
    in ( 
    dom g) holds (g 
    . j) 
    =  
    G(j) from
    FINSEQ_2:sch 1;
    
      
    
    A12: 
    
      now
    
        let j be
    Nat;
    
        assume
    
        
    
    A13: j 
    in ( 
    dom g); 
    
        then (g
    /. j) 
    = (g 
    . j) by 
    PARTFUN1:def 6;
    
        hence (g
    /. j) 
    = ((z 
    /. j) 
    - (z 
    /. (j 
    + 1))) by 
    A13,
    A11;
    
      end;
    
      
    
      
    
    A14: ((m 
    + 1) 
    -' 1) 
    = ((m 
    + 1) 
    - 1) by 
    NAT_1: 11,
    XREAL_1: 233;
    
      reconsider zz0 =
    0 as 
    Element of 
    NAT ; 
    
      1
    <= (m 
    + 1) by 
    NAT_1: 11;
    
      then
    
      
    
    A15: 1 
    in ( 
    dom h) by 
    A5;
    
      
    
      then (h
    /. 1) 
    = (Z0 
    +* (y0 
    | ( 
    Seg ((( 
    len G) 
    + 1) 
    -' 1)))) by 
    A6
    
      .= (Z0
    +* (y0 
    | ( 
    dom G))) by 
    A14,
    FINSEQ_1:def 3
    
      .= (Z0
    +* y0) by 
    A2;
    
      then
    
      
    
    A16: (h 
    /. 1) 
    = y by 
    A2,
    A3,
    FUNCT_4: 19;
    
      
    
      
    
    A17: ((m 
    + 1) 
    -' ( 
    len z)) 
    = ((m 
    + 1) 
    - ( 
    len z)) by 
    A8,
    XREAL_1: 233;
    
      1
    <= ( 
    len z) & ( 
    len z) 
    <= (m 
    + 1) by 
    A8,
    NAT_1: 14;
    
      then
    
      
    
    A18: ( 
    len z) 
    in ( 
    dom h) by 
    A5;
    
      
    
      then
    
      
    
    A19: (h 
    /. ( 
    len z)) 
    = (Z0 
    +* (y0 
    | ( 
    Seg  
    0 ))) by 
    A6,
    A17,
    A8
    
      .= (
    0. ( 
    product G)); 
    
      
    
      
    
    A20: ( 
    dom h) 
    = ( 
    dom z) by 
    A5,
    A8,
    FINSEQ_1:def 3;
    
      then
    
      
    
    A21: (z 
    /. 1) 
    = (f 
    /. (x 
    + y)) by 
    A9,
    A16,
    A15;
    
      (z
    /. ( 
    len z)) 
    = (f 
    /. (x 
    + (h 
    /. ( 
    len z)))) by 
    A9,
    A20,
    A18;
    
      then
    
      
    
    A22: (z 
    /. ( 
    len z)) 
    = (f 
    /. x) by 
    A19,
    RLVECT_1:def 4;
    
      take h, g, Z0, y0;
    
      
    
    A23: 
    
      now
    
        let i be
    Nat;
    
        assume
    
        
    
    A24: i 
    in ( 
    dom g); 
    
        then
    
        
    
    A25: i 
    in ( 
    Seg m) by 
    A11,
    FINSEQ_1:def 3;
    
        then 1
    <= i & i 
    <= m by 
    FINSEQ_1: 1;
    
        then
    
        
    
    A26: (i 
    + 1) 
    <= (m 
    + 1) by 
    XREAL_1: 6;
    
        (
    Seg m) 
    c= ( 
    Seg (m 
    + 1)) by 
    NAT_1: 11,
    FINSEQ_1: 5;
    
        then
    
        
    
    A27: (z 
    /. i) 
    = (f 
    /. (x 
    + (h 
    /. i))) by 
    A9,
    A5,
    A25,
    A20;
    
        1
    <= (i 
    + 1) by 
    NAT_1: 11;
    
        then (i
    + 1) 
    in ( 
    Seg (m 
    + 1)) by 
    A26;
    
        then (i
    + 1) 
    in ( 
    dom z) by 
    A8,
    FINSEQ_1:def 3;
    
        then (z
    /. (i 
    + 1)) 
    = (f 
    /. (x 
    + (h 
    /. (i 
    + 1)))) by 
    A9;
    
        hence (g
    /. i) 
    = ((f 
    /. (x 
    + (h 
    /. i))) 
    - (f 
    /. (x 
    + (h 
    /. (i 
    + 1))))) by 
    A12,
    A24,
    A27;
    
      end;
    
      now
    
        let i be
    Nat, hi be 
    Element of ( 
    product G); 
    
        assume
    
        
    
    A28: i 
    in ( 
    dom h) & (h 
    /. i) 
    = hi; 
    
        then (h
    /. i) 
    = (Z0 
    +* (y0 
    | ( 
    Seg ((( 
    len G) 
    + 1) 
    -' i)))) by 
    A6;
    
        hence
    ||.hi.||
    <=  
    ||.y.|| by
    Th44,
    A28;
    
      end;
    
      hence thesis by
    A6,
    A21,
    A22,
    A23,
    A8,
    A12,
    Th42,
    A5,
    A11,
    FINSEQ_1:def 3;
    
    end;
    
    theorem :: 
    
    NDIFF_5:46
    
    
    
    
    
    Th46: for G be 
    RealNormSpace-Sequence, i be 
    Element of ( 
    dom G), x,y be 
    Point of ( 
    product G), xi be 
    Point of (G 
    . i) st y 
    = (( 
    reproj (i,x)) 
    . xi) holds (( 
    proj i) 
    . y) 
    = xi 
    
    proof
    
      let G be
    RealNormSpace-Sequence, i be 
    Element of ( 
    dom G), x,y be 
    Point of ( 
    product G), xi be 
    Point of (G 
    . i); 
    
      assume
    
      
    
    A1: y 
    = (( 
    reproj (i,x)) 
    . xi); 
    
      
    
      
    
    A2: y 
    = (x 
    +* (i,xi)) by 
    A1,
    Def4;
    
      x
    in the 
    carrier of ( 
    product G); 
    
      then x
    in ( 
    product ( 
    carr G)) by 
    Th10;
    
      then
    
      consider g be
    Function such that 
    
      
    
    A3: x 
    = g & ( 
    dom g) 
    = ( 
    dom ( 
    carr G)) & for y be 
    object st y 
    in ( 
    dom ( 
    carr G)) holds (g 
    . y) 
    in (( 
    carr G) 
    . y) by 
    CARD_3:def 5;
    
      
    
      
    
    A4: i 
    in ( 
    dom G); 
    
      
    
      
    
    A5: i 
    in ( 
    dom x) by 
    Lm1,
    A4,
    A3;
    
      y is
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      then ((
    proj i) 
    . y) 
    = ((x 
    +* (i,xi)) 
    . i) by 
    A2,
    Def3;
    
      hence ((
    proj i) 
    . y) 
    = xi by 
    A5,
    FUNCT_7: 31;
    
    end;
    
    theorem :: 
    
    NDIFF_5:47
    
    
    
    
    
    Th47: for G be 
    RealNormSpace-Sequence, i be 
    Element of ( 
    dom G), y be 
    Point of ( 
    product G), q be 
    Point of (G 
    . i) st q 
    = (( 
    proj i) 
    . y) holds y 
    = (( 
    reproj (i,y)) 
    . q) 
    
    proof
    
      let G be
    RealNormSpace-Sequence, i be 
    Element of ( 
    dom G), y be 
    Point of ( 
    product G), q be 
    Point of (G 
    . i); 
    
      assume
    
      
    
    A1: q 
    = (( 
    proj i) 
    . y); 
    
      reconsider z1 = ((
    reproj (i,y)) 
    . q) as ( 
    len G) 
    -element  
    FinSequence;
    
      reconsider z2 = y as (
    len G) 
    -element  
    FinSequence;
    
      
    
      
    
    A2: ( 
    dom z1) 
    = ( 
    Seg ( 
    len G)) by 
    FINSEQ_1: 89
    
      .= (
    dom z2) by 
    FINSEQ_1: 89;
    
      for k be
    Nat st k 
    in ( 
    dom z1) holds (z1 
    . k) 
    = (z2 
    . k) 
    
      proof
    
        let k be
    Nat;
    
        assume k
    in ( 
    dom z1); 
    
        (
    product G) 
    =  
    NORMSTR (# ( 
    product ( 
    carr G)), ( 
    zeros G), 
    [:(
    addop G):], 
    [:(
    multop G):], ( 
    productnorm G) #) by 
    PRVECT_2: 6;
    
        then
    
        
    
    A3: q 
    = (y 
    . i) by 
    A1,
    Def3;
    
        per cases ;
    
          suppose
    
          
    
    A4: k 
    = i; 
    
          then ((y
    +* (i,q)) 
    . k) 
    = q by 
    A3,
    FUNCT_7: 35;
    
          hence (z1
    . k) 
    = (z2 
    . k) by 
    A4,
    A3,
    Def4;
    
        end;
    
          suppose k
    <> i; 
    
          then ((y
    +* (i,q)) 
    . k) 
    = (y 
    . k) by 
    FUNCT_7: 32;
    
          hence (z1
    . k) 
    = (z2 
    . k) by 
    Def4;
    
        end;
    
      end;
    
      hence thesis by
    A2,
    FINSEQ_1: 13;
    
    end;
    
    theorem :: 
    
    NDIFF_5:48
    
    
    
    
    
    Th48: for G be 
    RealNormSpace-Sequence, i be 
    Element of ( 
    dom G), x,y be 
    Point of ( 
    product G), xi be 
    Point of (G 
    . i) st y 
    = (( 
    reproj (i,x)) 
    . xi) holds ( 
    reproj (i,x)) 
    = ( 
    reproj (i,y)) 
    
    proof
    
      let G be
    RealNormSpace-Sequence, i be 
    Element of ( 
    dom G), x,y be 
    Point of ( 
    product G), xi be 
    Point of (G 
    . i); 
    
      assume
    
      
    
    A1: y 
    = (( 
    reproj (i,x)) 
    . xi); 
    
      for v be
    Element of (G 
    . i) holds (( 
    reproj (i,x)) 
    . v) 
    = (( 
    reproj (i,y)) 
    . v) 
    
      proof
    
        let v be
    Element of (G 
    . i); 
    
        
    
        
    
    A2: (( 
    reproj (i,x)) 
    . v) 
    = (x 
    +* (i,v)) & (( 
    reproj (i,y)) 
    . v) 
    = (y 
    +* (i,v)) by 
    Def4;
    
        reconsider xv = ((
    reproj (i,x)) 
    . v), yv = (( 
    reproj (i,y)) 
    . v) as ( 
    len G) 
    -element  
    FinSequence;
    
        
    
        
    
    A3: ( 
    dom xv) 
    = ( 
    Seg ( 
    len G)) & ( 
    dom yv) 
    = ( 
    Seg ( 
    len G)) by 
    FINSEQ_1: 89;
    
        then
    
        
    
    A4: ( 
    dom xv) 
    = ( 
    dom G) by 
    FINSEQ_1:def 3;
    
        for k be
    Nat st k 
    in ( 
    dom xv) holds (xv 
    . k) 
    = (yv 
    . k) 
    
        proof
    
          let k be
    Nat;
    
          assume
    
          
    
    A5: k 
    in ( 
    dom xv); 
    
          x
    in the 
    carrier of ( 
    product G) & y 
    in the 
    carrier of ( 
    product G); 
    
          then
    
          
    
    A6: x 
    in ( 
    product ( 
    carr G)) & y 
    in ( 
    product ( 
    carr G)) by 
    Th10;
    
          then
    
          consider g be
    Function such that 
    
          
    
    A7: x 
    = g & ( 
    dom g) 
    = ( 
    dom ( 
    carr G)) & for i be 
    object st i 
    in ( 
    dom ( 
    carr G)) holds (g 
    . i) 
    in (( 
    carr G) 
    . i) by 
    CARD_3:def 5;
    
          consider g1 be
    Function such that 
    
          
    
    A8: y 
    = g1 & ( 
    dom g1) 
    = ( 
    dom ( 
    carr G)) & for i be 
    object st i 
    in ( 
    dom ( 
    carr G)) holds (g1 
    . i) 
    in (( 
    carr G) 
    . i) by 
    A6,
    CARD_3:def 5;
    
          
    
          
    
    A9: k 
    in ( 
    dom y) & k 
    in ( 
    dom x) by 
    A7,
    A8,
    Lm1,
    A5,
    A4;
    
          per cases ;
    
            suppose k
    = i; 
    
            then ((y
    +* (i,v)) 
    . k) 
    = v & ((x 
    +* (i,v)) 
    . k) 
    = v by 
    A9,
    FUNCT_7: 31;
    
            hence (yv
    . k) 
    = (xv 
    . k) by 
    A2;
    
          end;
    
            suppose
    
            
    
    A10: k 
    <> i; 
    
            
    
            
    
    A11: (yv 
    . k) 
    = (y 
    . k) & (xv 
    . k) 
    = (x 
    . k) by 
    A2,
    A10,
    FUNCT_7: 32;
    
            y
    = (x 
    +* (i,xi)) by 
    A1,
    Def4;
    
            hence (yv
    . k) 
    = (xv 
    . k) by 
    A11,
    A10,
    FUNCT_7: 32;
    
          end;
    
        end;
    
        hence ((
    reproj (i,x)) 
    . v) 
    = (( 
    reproj (i,y)) 
    . v) by 
    A3,
    FINSEQ_1: 13;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    NDIFF_5:49
    
    
    
    
    
    Th49: for G be 
    RealNormSpace-Sequence, i,j be 
    Element of ( 
    dom G), x,y be 
    Point of ( 
    product G), xi be 
    Point of (G 
    . i) st y 
    = (( 
    reproj (i,x)) 
    . xi) & i 
    <> j holds (( 
    proj j) 
    . x) 
    = (( 
    proj j) 
    . y) 
    
    proof
    
      let G be
    RealNormSpace-Sequence, i,j be 
    Element of ( 
    dom G), x,y be 
    Point of ( 
    product G), xi be 
    Point of (G 
    . i); 
    
      assume
    
      
    
    A1: y 
    = (( 
    reproj (i,x)) 
    . xi) & i 
    <> j; 
    
      reconsider y1 = y as
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      
    
      
    
    A2: y 
    = (x 
    +* (i,xi)) by 
    A1,
    Def4;
    
      set ix = (i
    .--> xi); 
    
      
    
      
    
    A3: the 
    carrier of ( 
    product G) 
    = ( 
    product ( 
    carr G)) by 
    Th10;
    
      (y1
    . j) 
    = (x 
    . j) by 
    A2,
    A1,
    FUNCT_7: 32;
    
      then ((
    proj j) 
    . y) 
    = (x 
    . j) by 
    Def3;
    
      hence thesis by
    A3,
    Def3;
    
    end;
    
    theorem :: 
    
    NDIFF_5:50
    
    for G be
    RealNormSpace-Sequence, F be 
    RealNormSpace, i be 
    Element of ( 
    dom G), x be 
    Point of ( 
    product G), xi be 
    Point of (G 
    . i), f be 
    PartFunc of ( 
    product G), F, g be 
    PartFunc of (G 
    . i), F st (( 
    proj i) 
    . x) 
    = xi & g 
    = (f 
    * ( 
    reproj (i,x))) holds ( 
    diff (g,xi)) 
    = ( 
    partdiff (f,x,i)) 
    
    proof
    
      let G be
    RealNormSpace-Sequence, F be 
    RealNormSpace, i be 
    Element of ( 
    dom G), x be 
    Point of ( 
    product G), xi be 
    Point of (G 
    . i), f be 
    PartFunc of ( 
    product G), F, g be 
    PartFunc of (G 
    . i), F; 
    
      i
    = ( 
    In (i,( 
    dom G))) by 
    SUBSET_1:def 8;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    NDIFF_5:51
    
    
    
    
    
    Th51: for G be 
    RealNormSpace-Sequence, F be 
    RealNormSpace, f be 
    PartFunc of ( 
    product G), F, x be 
    Point of ( 
    product G), i be 
    set, M be 
    Real, L be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators ((G 
    . ( 
    In (i,( 
    dom G)))),F)), p,q be 
    Point of (G 
    . ( 
    In (i,( 
    dom G)))) st i 
    in ( 
    dom G) & (for h be 
    Point of (G 
    . ( 
    In (i,( 
    dom G)))) st h 
    in  
    ].p, q.[ holds
    ||.((
    partdiff (f,(( 
    reproj (( 
    In (i,( 
    dom G))),x)) 
    . h),i)) 
    - L).|| 
    <= M) & (for h be 
    Point of (G 
    . ( 
    In (i,( 
    dom G)))) st h 
    in  
    [.p, q.] holds ((
    reproj (( 
    In (i,( 
    dom G))),x)) 
    . h) 
    in ( 
    dom f)) & (for h be 
    Point of (G 
    . ( 
    In (i,( 
    dom G)))) st h 
    in  
    [.p, q.] holds f
    is_partial_differentiable_in ((( 
    reproj (( 
    In (i,( 
    dom G))),x)) 
    . h),i)) holds 
    ||.(((f
    /. (( 
    reproj (( 
    In (i,( 
    dom G))),x)) 
    . q)) 
    - (f 
    /. (( 
    reproj (( 
    In (i,( 
    dom G))),x)) 
    . p))) 
    - (L 
    . (q 
    - p))).|| 
    <= (M 
    *  
    ||.(q
    - p).||) 
    
    proof
    
      let G be
    RealNormSpace-Sequence, F be 
    RealNormSpace, f be 
    PartFunc of ( 
    product G), F, x be 
    Point of ( 
    product G), i be 
    set, M be 
    Real, L be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators ((G 
    . ( 
    In (i,( 
    dom G)))),F)), p,q be 
    Point of (G 
    . ( 
    In (i,( 
    dom G)))); 
    
      assume
    
      
    
    A1: i 
    in ( 
    dom G) & (for h be 
    Point of (G 
    . ( 
    In (i,( 
    dom G)))) st h 
    in  
    ].p, q.[ holds
    ||.((
    partdiff (f,(( 
    reproj (( 
    In (i,( 
    dom G))),x)) 
    . h),i)) 
    - L).|| 
    <= M) & (for h be 
    Point of (G 
    . ( 
    In (i,( 
    dom G)))) st h 
    in  
    [.p, q.] holds ((
    reproj (( 
    In (i,( 
    dom G))),x)) 
    . h) 
    in ( 
    dom f)) & (for h be 
    Point of (G 
    . ( 
    In (i,( 
    dom G)))) st h 
    in  
    [.p, q.] holds f
    is_partial_differentiable_in ((( 
    reproj (( 
    In (i,( 
    dom G))),x)) 
    . h),i)); 
    
      per cases ;
    
        suppose
    
        
    
    B2: p 
    = q; 
    
        set S = (G
    . ( 
    In (i,( 
    dom G)))); 
    
        reconsider LL = L as
    Lipschitzian  
    LinearOperator of S, F by 
    LOPBAN_1:def 9;
    
        
    
        
    
    B3: (L 
    . ( 
    0. S)) 
    = (LL 
    . ( 
    0  
    * ( 
    0. S))) by 
    RLVECT_1: 10
    
        .= (
    0  
    * (LL 
    . ( 
    0. S))) by 
    LOPBAN_1:def 5
    
        .= (
    0. F) by 
    RLVECT_1: 10;
    
        
    
        
    
    B4: 
    ||.(((f
    /. (( 
    reproj (( 
    In (i,( 
    dom G))),x)) 
    . q)) 
    - (f 
    /. (( 
    reproj (( 
    In (i,( 
    dom G))),x)) 
    . p))) 
    - (L 
    . (q 
    - p))).|| 
    =  
    ||.((
    0. F) 
    - (L 
    . (q 
    - p))).|| by 
    B2,
    RLVECT_1: 15
    
        .=
    ||.((
    0. F) 
    - (L 
    . ( 
    0. S))).|| by 
    B2,
    RLVECT_1: 15
    
        .=
    ||.(
    0. F).|| by 
    B3,
    RLVECT_1: 13
    
        .=
    0 ; 
    
        (M
    *  
    ||.(q
    - p).||) 
    = (M 
    *  
    ||.(
    0. S).||) by 
    B2,
    RLVECT_1: 15
    
        .=
    0 ; 
    
        hence thesis by
    B4;
    
      end;
    
        suppose
    
        
    
    ASM: p 
    <> q; 
    
        set m = (
    len G); 
    
        set S = (G
    . ( 
    In (i,( 
    dom G)))); 
    
        set g = (f
    * ( 
    reproj (( 
    In (i,( 
    dom G))),x))); 
    
        
    
    A2: 
    
        now
    
          let h be
    object;
    
          assume
    
          
    
    A3: h 
    in  
    [.p, q.];
    
          then
    
          reconsider h1 = h as
    Point of S; 
    
          
    
          
    
    A4: ( 
    dom ( 
    reproj (( 
    In (i,( 
    dom G))),x))) 
    = the 
    carrier of S by 
    FUNCT_2:def 1;
    
          ((
    reproj (( 
    In (i,( 
    dom G))),x)) 
    . h1) 
    in ( 
    dom f) by 
    A1,
    A3;
    
          hence h
    in ( 
    dom g) by 
    A4,
    FUNCT_1: 11;
    
        end;
    
        then
    
        
    
    A5: 
    [.p, q.]
    c= ( 
    dom g); 
    
        
    
    A6: 
    
        now
    
          let x0 be
    Point of S; 
    
          assume
    
          
    
    A7: x0 
    in  
    [.p, q.];
    
          set y = ((
    reproj (( 
    In (i,( 
    dom G))),x)) 
    . x0); 
    
          
    
          
    
    A8: (( 
    proj ( 
    In (i,( 
    dom G)))) 
    . y) 
    = x0 by 
    Th46;
    
          f
    is_partial_differentiable_in (y,i) by 
    A1,
    A7;
    
          hence g
    is_differentiable_in x0 by 
    A8,
    Th48;
    
        end;
    
        
    
        
    
    X1: 
    ].p, q.[
    = { (p 
    + (t 
    * (q 
    - p))) where t be 
    Real : 
    0  
    < t & t 
    < 1 } by 
    ASM,
    LMOPN;
    
        now
    
          let z be
    object;
    
          assume z
    in  
    ].p, q.[;
    
          then
    
          consider z1 be
    Real such that 
    
          
    
    A9: z 
    = (p 
    + (z1 
    * (q 
    - p))) & 
    0  
    < z1 & z1 
    < 1 by 
    X1;
    
          z
    = (((1 
    - z1) 
    * p) 
    + (z1 
    * q)) by 
    A9,
    Lm2;
    
          then z
    in { (((1 
    - r1) 
    * p) 
    + (r1 
    * q)) where r1 be 
    Real : 
    0  
    <= r1 & r1 
    <= 1 } by 
    A9;
    
          hence z
    in  
    [.p, q.] by
    RLTOPSP1:def 2;
    
        end;
    
        then
    
        
    
    A10: for x be 
    Point of S st x 
    in  
    ].p, q.[ holds g
    is_differentiable_in x by 
    A6;
    
        
    
        
    
    A11: for x be 
    Point of S st x 
    in  
    [.p, q.] holds g
    is_continuous_in x by 
    A6,
    NDIFF_1: 44;
    
        
    
    A12: 
    
        now
    
          let h be
    Point of S; 
    
          set y = ((
    reproj (( 
    In (i,( 
    dom G))),x)) 
    . h); 
    
          assume h
    in  
    ].p, q.[;
    
          then
    
          
    
    A13: 
    ||.((
    partdiff (f,y,i)) 
    - L).|| 
    <= M by 
    A1;
    
          ((
    proj ( 
    In (i,( 
    dom G)))) 
    . y) 
    = h by 
    Th46;
    
          hence
    ||.((
    diff (g,h)) 
    - L).|| 
    <= M by 
    A13,
    Th48;
    
        end;
    
        
    
        
    
    A14: p 
    in ( 
    dom g) & q 
    in ( 
    dom g) by 
    A2,
    RLTOPSP1: 68;
    
        (f
    /. (( 
    reproj (( 
    In (i,( 
    dom G))),x)) 
    . p)) 
    = (f 
    /. (( 
    reproj (( 
    In (i,( 
    dom G))),x)) 
    /. p)) & (f 
    /. (( 
    reproj (( 
    In (i,( 
    dom G))),x)) 
    . q)) 
    = (f 
    /. (( 
    reproj (( 
    In (i,( 
    dom G))),x)) 
    /. q)); 
    
        then (f
    /. (( 
    reproj (( 
    In (i,( 
    dom G))),x)) 
    . p)) 
    = (g 
    /. p) & (f 
    /. (( 
    reproj (( 
    In (i,( 
    dom G))),x)) 
    . q)) 
    = (g 
    /. q) by 
    A14,
    PARTFUN2: 3;
    
        hence
    ||.(((f
    /. (( 
    reproj (( 
    In (i,( 
    dom G))),x)) 
    . q)) 
    - (f 
    /. (( 
    reproj (( 
    In (i,( 
    dom G))),x)) 
    . p))) 
    - (L 
    . (q 
    - p))).|| 
    <= (M 
    *  
    ||.(q
    - p).||) by 
    A12,
    Th20,
    A5,
    A10,
    A11;
    
      end;
    
    end;
    
    theorem :: 
    
    NDIFF_5:52
    
    
    
    
    
    Th52: for G be 
    RealNormSpace-Sequence, x,y,z,w be 
    Point of ( 
    product G), i be 
    Element of ( 
    dom G), d be 
    Real, p,q,r be 
    Point of (G 
    . i) st 
    ||.(y
    - x).|| 
    < d & 
    ||.(z
    - x).|| 
    < d & p 
    = (( 
    proj i) 
    . y) & z 
    = (( 
    reproj (i,y)) 
    . q) & r 
    in  
    [.p, q.] & w
    = (( 
    reproj (i,y)) 
    . r) holds 
    ||.(w
    - x).|| 
    < d 
    
    proof
    
      let G be
    RealNormSpace-Sequence, x,y,z,w be 
    Point of ( 
    product G), i be 
    Element of ( 
    dom G), d be 
    Real, p,q,r be 
    Point of (G 
    . i); 
    
      assume that
    
      
    
    A1: 
    ||.(y
    - x).|| 
    < d & 
    ||.(z
    - x).|| 
    < d and 
    
      
    
    A2: p 
    = (( 
    proj i) 
    . y) & z 
    = (( 
    reproj (i,y)) 
    . q) and 
    
      
    
    A3: r 
    in  
    [.p, q.] and
    
      
    
    A4: w 
    = (( 
    reproj (i,y)) 
    . r); 
    
      set wx = (w
    - x); 
    
      set yx = (y
    - x); 
    
      set zx = (z
    - x); 
    
      reconsider xi = ((
    proj i) 
    . x) as 
    Point of (G 
    . i); 
    
      r
    in { (((1 
    - t) 
    * p) 
    + (t 
    * q)) where t be 
    Real : 
    0  
    <= t & t 
    <= 1 } by 
    A3,
    RLTOPSP1:def 2;
    
      then
    
      consider t be
    Real such that 
    
      
    
    A5: r 
    = (((1 
    - t) 
    * p) 
    + (t 
    * q)) & 
    0  
    <= t & t 
    <= 1; 
    
      
    
      
    
    A6: r 
    = (p 
    + (t 
    * (q 
    - p))) & 
    0  
    <= t & t 
    <= 1 by 
    A5,
    Lm2;
    
      reconsider wx0 = wx, yx0 = yx, zx0 = zx as
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      reconsider Nwx = (
    normsequence (G,wx0)) as ( 
    len G) 
    -element  
    FinSequence of 
    REAL ; 
    
      reconsider Nyx = (
    normsequence (G,yx0)) as ( 
    len G) 
    -element  
    FinSequence of 
    REAL ; 
    
      reconsider Nzx = (
    normsequence (G,zx0)) as ( 
    len G) 
    -element  
    FinSequence of 
    REAL ; 
    
      set tyz = (((1
    - t) 
    * yx) 
    + (t 
    * zx)); 
    
      reconsider tyz0 = tyz as
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      reconsider Ntyz = (
    normsequence (G,tyz0)) as ( 
    len G) 
    -element  
    FinSequence of 
    REAL ; 
    
      
    
      
    
    A7: 1 
    = ((1 
    - t) 
    + t); 
    
      r
    = (p 
    + ((t 
    * q) 
    - (t 
    * p))) by 
    A6,
    RLVECT_1: 34
    
      .= ((p
    + ( 
    - (t 
    * p))) 
    + (t 
    * q)) by 
    RLVECT_1:def 3
    
      .= (((1
    * p) 
    - (t 
    * p)) 
    + (t 
    * q)) by 
    RLVECT_1:def 8
    
      .= (((1
    - t) 
    * p) 
    + (t 
    * q)) by 
    RLVECT_1: 35;
    
      
    
      then
    
      
    
    A8: (r 
    - xi) 
    = ((((1 
    - t) 
    * p) 
    + (t 
    * q)) 
    - (1 
    * xi)) by 
    RLVECT_1:def 8
    
      .= ((((1
    - t) 
    * p) 
    + (t 
    * q)) 
    - (((1 
    - t) 
    * xi) 
    + (t 
    * xi))) by 
    A7,
    RLVECT_1:def 6
    
      .= (((((1
    - t) 
    * p) 
    + (t 
    * q)) 
    - (t 
    * xi)) 
    - ((1 
    - t) 
    * xi)) by 
    RLVECT_1: 27
    
      .= ((((1
    - t) 
    * p) 
    + ((t 
    * q) 
    - (t 
    * xi))) 
    - ((1 
    - t) 
    * xi)) by 
    RLVECT_1: 28
    
      .= (((t
    * q) 
    - (t 
    * xi)) 
    + (((1 
    - t) 
    * p) 
    - ((1 
    - t) 
    * xi))) by 
    RLVECT_1:def 3
    
      .= ((t
    * (q 
    - xi)) 
    + (((1 
    - t) 
    * p) 
    - ((1 
    - t) 
    * xi))) by 
    RLVECT_1: 34
    
      .= ((t
    * (q 
    - xi)) 
    + ((1 
    - t) 
    * (p 
    - xi))) by 
    RLVECT_1: 34;
    
      reconsider Swx = wx as (
    len G) 
    -element  
    FinSequence;
    
      reconsider Syz = (((1
    - t) 
    * yx) 
    + (t 
    * zx)) as ( 
    len G) 
    -element  
    FinSequence;
    
      
    
      
    
    A9: ( 
    dom Swx) 
    = ( 
    Seg ( 
    len G)) & ( 
    dom Syz) 
    = ( 
    Seg ( 
    len G)) by 
    FINSEQ_1: 89;
    
      
    
      
    
    A10: for k be 
    Nat st k 
    in ( 
    dom Swx) holds (Swx 
    . k) 
    = (Syz 
    . k) 
    
      proof
    
        let k be
    Nat;
    
        assume k
    in ( 
    dom Swx); 
    
        then
    
        reconsider k0 = k as
    Element of ( 
    dom G) by 
    A9,
    FINSEQ_1:def 3;
    
        per cases ;
    
          suppose
    
          
    
    A11: k 
    = i; 
    
          then (Swx
    . k) 
    = (( 
    proj i) 
    . wx0) by 
    Def3;
    
          then
    
          
    
    A12: (Swx 
    . k) 
    = ((( 
    proj i) 
    . w) 
    - (( 
    proj i) 
    . x)) by 
    Th37;
    
          
    
          
    
    A13: (( 
    proj i) 
    . z) 
    = q by 
    A2,
    Th46;
    
          (Syz
    . k) 
    = (( 
    proj i) 
    . tyz0) by 
    A11,
    Def3;
    
          then (Syz
    . k) 
    = ((( 
    proj i) 
    . ((1 
    - t) 
    * yx)) 
    + (( 
    proj i) 
    . (t 
    * zx))) by 
    Th35;
    
          then (Syz
    . k) 
    = (((1 
    - t) 
    * (( 
    proj i) 
    . yx)) 
    + (( 
    proj i) 
    . (t 
    * zx))) by 
    Th40;
    
          then (Syz
    . k) 
    = (((1 
    - t) 
    * (( 
    proj i) 
    . yx)) 
    + (t 
    * (( 
    proj i) 
    . zx))) by 
    Th40;
    
          then (Syz
    . k) 
    = (((1 
    - t) 
    * ((( 
    proj i) 
    . y) 
    - (( 
    proj i) 
    . x))) 
    + (t 
    * (( 
    proj i) 
    . zx))) by 
    Th37;
    
          then (Syz
    . k) 
    = (((1 
    - t) 
    * (p 
    - xi)) 
    + (t 
    * (q 
    - xi))) by 
    A2,
    A13,
    Th37;
    
          hence (Swx
    . k) 
    = (Syz 
    . k) by 
    A12,
    A8,
    A4,
    Th46;
    
        end;
    
          suppose k
    <> i; 
    
          then
    
          
    
    A14: (( 
    proj k0) 
    . y) 
    = (( 
    proj k0) 
    . w) & (( 
    proj k0) 
    . z) 
    = (( 
    proj k0) 
    . y) by 
    A2,
    A4,
    Th49;
    
          (Swx
    . k) 
    = (( 
    proj k0) 
    . wx0) by 
    Def3;
    
          then
    
          
    
    A15: (Swx 
    . k) 
    = ((( 
    proj k0) 
    . w) 
    - (( 
    proj k0) 
    . x)) by 
    Th37;
    
          (Syz
    . k) 
    = (( 
    proj k0) 
    . tyz0) by 
    Def3
    
          .= (((
    proj k0) 
    . ((1 
    - t) 
    * yx)) 
    + (( 
    proj k0) 
    . (t 
    * zx))) by 
    Th35
    
          .= (((1
    - t) 
    * (( 
    proj k0) 
    . yx)) 
    + (( 
    proj k0) 
    . (t 
    * zx))) by 
    Th40
    
          .= (((1
    - t) 
    * (( 
    proj k0) 
    . yx)) 
    + (t 
    * (( 
    proj k0) 
    . zx))) by 
    Th40;
    
          then (Syz
    . k) 
    = (((1 
    - t) 
    * ((( 
    proj k0) 
    . y) 
    - (( 
    proj k0) 
    . x))) 
    + (t 
    * (( 
    proj k0) 
    . zx))) by 
    Th37;
    
          then (Syz
    . k) 
    = (((1 
    - t) 
    * ((( 
    proj k0) 
    . y) 
    - (( 
    proj k0) 
    . x))) 
    + (t 
    * ((( 
    proj k0) 
    . y) 
    - (( 
    proj k0) 
    . x)))) by 
    A14,
    Th37;
    
          then (Syz
    . k) 
    = ((((1 
    - t) 
    * (( 
    proj k0) 
    . y)) 
    - ((1 
    - t) 
    * (( 
    proj k0) 
    . x))) 
    + (t 
    * ((( 
    proj k0) 
    . y) 
    - (( 
    proj k0) 
    . x)))) by 
    RLVECT_1: 34;
    
          then (Syz
    . k) 
    = ((((1 
    - t) 
    * (( 
    proj k0) 
    . y)) 
    - ((1 
    - t) 
    * (( 
    proj k0) 
    . x))) 
    + ((t 
    * (( 
    proj k0) 
    . y)) 
    - (t 
    * (( 
    proj k0) 
    . x)))) by 
    RLVECT_1: 34;
    
          then (Syz
    . k) 
    = (((((1 
    - t) 
    * (( 
    proj k0) 
    . y)) 
    - ((1 
    - t) 
    * (( 
    proj k0) 
    . x))) 
    + (t 
    * (( 
    proj k0) 
    . y))) 
    - (t 
    * (( 
    proj k0) 
    . x))) by 
    RLVECT_1:def 3;
    
          then (Syz
    . k) 
    = ((((1 
    - t) 
    * (( 
    proj k0) 
    . y)) 
    - (((1 
    - t) 
    * (( 
    proj k0) 
    . x)) 
    - (t 
    * (( 
    proj k0) 
    . y)))) 
    - (t 
    * (( 
    proj k0) 
    . x))) by 
    RLVECT_1: 29;
    
          then (Syz
    . k) 
    = ((((1 
    - t) 
    * (( 
    proj k0) 
    . y)) 
    + ((t 
    * (( 
    proj k0) 
    . y)) 
    + ( 
    - ((1 
    - t) 
    * (( 
    proj k0) 
    . x))))) 
    - (t 
    * (( 
    proj k0) 
    . x))) by 
    RLVECT_1: 33;
    
          then (Syz
    . k) 
    = (((((1 
    - t) 
    * (( 
    proj k0) 
    . y)) 
    + (t 
    * (( 
    proj k0) 
    . y))) 
    + ( 
    - ((1 
    - t) 
    * (( 
    proj k0) 
    . x)))) 
    - (t 
    * (( 
    proj k0) 
    . x))) by 
    RLVECT_1:def 3;
    
          then (Syz
    . k) 
    = (((((1 
    - t) 
    + t) 
    * (( 
    proj k0) 
    . y)) 
    + ( 
    - ((1 
    - t) 
    * (( 
    proj k0) 
    . x)))) 
    - (t 
    * (( 
    proj k0) 
    . x))) by 
    RLVECT_1:def 6;
    
          then (Syz
    . k) 
    = (((( 
    proj k0) 
    . y) 
    + ( 
    - ((1 
    - t) 
    * (( 
    proj k0) 
    . x)))) 
    - (t 
    * (( 
    proj k0) 
    . x))) by 
    RLVECT_1:def 8;
    
          then (Syz
    . k) 
    = ((( 
    proj k0) 
    . y) 
    + (( 
    - ((1 
    - t) 
    * (( 
    proj k0) 
    . x))) 
    - (t 
    * (( 
    proj k0) 
    . x)))) by 
    RLVECT_1: 28;
    
          then (Syz
    . k) 
    = ((( 
    proj k0) 
    . y) 
    + ( 
    - ((t 
    * (( 
    proj k0) 
    . x)) 
    + ((1 
    - t) 
    * (( 
    proj k0) 
    . x))))) by 
    RLVECT_1: 30;
    
          then (Syz
    . k) 
    = ((( 
    proj k0) 
    . y) 
    + ( 
    - ((t 
    + (1 
    - t)) 
    * (( 
    proj k0) 
    . x)))) by 
    RLVECT_1:def 6;
    
          hence (Swx
    . k) 
    = (Syz 
    . k) by 
    A15,
    A14,
    RLVECT_1:def 8;
    
        end;
    
      end;
    
      
    
      
    
    A16: ( 
    len Nwx) 
    = ( 
    len G) & ( 
    len Ntyz) 
    = ( 
    len G) by 
    CARD_1:def 7;
    
      for k be
    Element of 
    NAT st k 
    in ( 
    Seg ( 
    len Nwx)) holds 
    0  
    <= (Nwx 
    . k) & (Nwx 
    . k) 
    <= (Ntyz 
    . k) 
    
      proof
    
        let k be
    Element of 
    NAT ; 
    
        assume
    
        
    
    A17: k 
    in ( 
    Seg ( 
    len Nwx)); 
    
        then
    
        reconsider k1 = k as
    Element of ( 
    dom G) by 
    CARD_1:def 7,
    FINSEQ_1:def 3;
    
        reconsider wxk = (wx0
    . k1) as 
    Element of (G 
    . k1); 
    
        
    
        
    
    A18: (Nwx 
    . k) 
    =  
    ||.wxk.|| by
    PRVECT_2:def 11;
    
        (wx0
    . k1) 
    = (Syz 
    . k) by 
    A10,
    A17,
    A16,
    A9;
    
        hence thesis by
    A18,
    PRVECT_2:def 11;
    
      end;
    
      then
    
      
    
    A19: 
    |.Nwx.|
    <=  
    |.Ntyz.| by
    A16,
    PRVECT_2: 2;
    
      
    
      
    
    A20: 
    ||.(w
    - x).|| 
    = (( 
    productnorm G) 
    . wx) by 
    PRVECT_2:def 13;
    
      
    ||.(((1
    - t) 
    * yx) 
    + (t 
    * zx)).|| 
    = (( 
    productnorm G) 
    . tyz) by 
    PRVECT_2:def 13
    
      .=
    |.(
    normsequence (G,tyz0)).| by 
    PRVECT_2:def 12;
    
      then
    
      
    
    A21: 
    ||.(w
    - x).|| 
    <=  
    ||.(((1
    - t) 
    * yx) 
    + (t 
    * zx)).|| by 
    A19,
    A20,
    PRVECT_2:def 12;
    
      
    
      
    
    A22: 
    ||.(((1
    - t) 
    * yx) 
    + (t 
    * zx)).|| 
    <= (( 
    |.(1
    - t).| 
    *  
    ||.(y
    - x).||) 
    + ( 
    |.t.|
    *  
    ||.(z
    - x).||)) by 
    NORMSP_1: 5;
    
      
    
      
    
    A23: 
    |.(1
    - t).| 
    = (1 
    - t) & 
    |.t.|
    = t by 
    A5,
    ABSVALUE:def 1,
    XREAL_1: 48;
    
      ((
    |.(1
    - t).| 
    *  
    ||.(y
    - x).||) 
    + ( 
    |.t.|
    *  
    ||.(z
    - x).||)) 
    < d 
    
      proof
    
        per cases ;
    
          suppose t
    = 1 or t 
    =  
    0 ; 
    
          hence thesis by
    A1,
    A23;
    
        end;
    
          suppose t
    <> 1 & t 
    <>  
    0 ; 
    
          then
    0  
    < t & t 
    < 1 by 
    A5,
    XXREAL_0: 1;
    
          then
    0  
    < t & (1 
    - t) 
    >  
    0 by 
    XREAL_1: 50;
    
          then (
    |.(1
    - t).| 
    *  
    ||.(y
    - x).||) 
    < ((1 
    - t) 
    * d) & ( 
    |.t.|
    *  
    ||.(z
    - x).||) 
    < (t 
    * d) by 
    A1,
    A23,
    XREAL_1: 68;
    
          then ((
    |.(1
    - t).| 
    *  
    ||.(y
    - x).||) 
    + ( 
    |.t.|
    *  
    ||.(z
    - x).||)) 
    < (((1 
    - t) 
    * d) 
    + (t 
    * d)) by 
    XREAL_1: 8;
    
          hence thesis;
    
        end;
    
      end;
    
      then
    ||.(((1
    - t) 
    * yx) 
    + (t 
    * zx)).|| 
    < d by 
    A22,
    XXREAL_0: 2;
    
      hence
    ||.(w
    - x).|| 
    < d by 
    A21,
    XXREAL_0: 2;
    
    end;
    
    theorem :: 
    
    NDIFF_5:53
    
    
    
    
    
    Th53: for G be 
    RealNormSpace-Sequence, S be 
    RealNormSpace, f be 
    PartFunc of ( 
    product G), S, X be 
    Subset of ( 
    product G), x,y,z be 
    Point of ( 
    product G), i be 
    set, p,q be 
    Point of (G 
    . ( 
    In (i,( 
    dom G)))), d,r be 
    Real st i 
    in ( 
    dom G) & X is 
    open & x 
    in X & 
    ||.(y
    - x).|| 
    < d & 
    ||.(z
    - x).|| 
    < d & X 
    c= ( 
    dom f) & (for x be 
    Point of ( 
    product G) st x 
    in X holds f 
    is_partial_differentiable_in (x,i)) & (for z be 
    Point of ( 
    product G) st 
    ||.(z
    - x).|| 
    < d holds z 
    in X) & (for z be 
    Point of ( 
    product G) st 
    ||.(z
    - x).|| 
    < d holds 
    ||.((
    partdiff (f,z,i)) 
    - ( 
    partdiff (f,x,i))).|| 
    <= r) & z 
    = (( 
    reproj (( 
    In (i,( 
    dom G))),y)) 
    . p) & q 
    = (( 
    proj ( 
    In (i,( 
    dom G)))) 
    . y) holds 
    ||.(((f
    /. z) 
    - (f 
    /. y)) 
    - (( 
    partdiff (f,x,i)) 
    . (p 
    - q))).|| 
    <= ( 
    ||.(p
    - q).|| 
    * r) 
    
    proof
    
      let G be
    RealNormSpace-Sequence, S be 
    RealNormSpace, f be 
    PartFunc of ( 
    product G), S, X be 
    Subset of ( 
    product G), x,y,z be 
    Point of ( 
    product G), i0 be 
    set, p,q be 
    Point of (G 
    . ( 
    In (i0,( 
    dom G)))), d,r be 
    Real;
    
      assume
    
      
    
    A1: i0 
    in ( 
    dom G) & X is 
    open & x 
    in X & 
    ||.(y
    - x).|| 
    < d & 
    ||.(z
    - x).|| 
    < d & X 
    c= ( 
    dom f) & (for x be 
    Point of ( 
    product G) st x 
    in X holds f 
    is_partial_differentiable_in (x,i0)) & (for z be 
    Point of ( 
    product G) st 
    ||.(z
    - x).|| 
    < d holds z 
    in X) & (for z be 
    Point of ( 
    product G) st 
    ||.(z
    - x).|| 
    < d holds 
    ||.((
    partdiff (f,z,i0)) 
    - ( 
    partdiff (f,x,i0))).|| 
    <= r) & z 
    = (( 
    reproj (( 
    In (i0,( 
    dom G))),y)) 
    . p) & q 
    = (( 
    proj ( 
    In (i0,( 
    dom G)))) 
    . y); 
    
      set i = (
    In (i0,( 
    dom G))); 
    
      
    
      
    
    A2: y 
    = (( 
    reproj (i,y)) 
    . q) by 
    A1,
    Th47;
    
      
    
    A3: 
    
      now
    
        let h be
    Point of (G 
    . i); 
    
        assume h
    in  
    [.q, p.];
    
        then
    ||.(((
    reproj (i,y)) 
    . h) 
    - x).|| 
    < d by 
    A1,
    Th52;
    
        hence ((
    reproj (i,y)) 
    . h) 
    in ( 
    dom f) by 
    A1;
    
      end;
    
      
    
    A4: 
    
      now
    
        let h be
    Point of (G 
    . i); 
    
        assume h
    in  
    [.q, p.];
    
        then
    ||.(((
    reproj (i,y)) 
    . h) 
    - x).|| 
    < d by 
    A1,
    Th52;
    
        hence f
    is_partial_differentiable_in ((( 
    reproj (i,y)) 
    . h),i0) by 
    A1;
    
      end;
    
      for h be
    Point of (G 
    . i) st h 
    in  
    ].q, p.[ holds
    ||.((
    partdiff (f,(( 
    reproj (i,y)) 
    . h),i0)) 
    - ( 
    partdiff (f,x,i0))).|| 
    <= r 
    
      proof
    
        let h be
    Point of (G 
    . i); 
    
        assume
    
        
    
    A5: h 
    in  
    ].q, p.[;
    
        
    ].q, p.[
    c=  
    [.q, p.] by
    XBOOLE_1: 36;
    
        then
    ||.(((
    reproj (i,y)) 
    . h) 
    - x).|| 
    < d by 
    A1,
    A5,
    Th52;
    
        hence
    ||.((
    partdiff (f,(( 
    reproj (i,y)) 
    . h),i0)) 
    - ( 
    partdiff (f,x,i0))).|| 
    <= r by 
    A1;
    
      end;
    
      hence thesis by
    A2,
    A1,
    Th51,
    A3,
    A4;
    
    end;
    
    theorem :: 
    
    NDIFF_5:54
    
    
    
    
    
    Th54: for G be 
    RealNormSpace-Sequence, h be 
    FinSequence of ( 
    product G), y,x be 
    Point of ( 
    product G), y0,Z be 
    Element of ( 
    product ( 
    carr G)), j be 
    Element of 
    NAT st y 
    = y0 & Z 
    = ( 
    0. ( 
    product G)) & ( 
    len h) 
    = (( 
    len G) 
    + 1) & 1 
    <= j & j 
    <= ( 
    len G) & (for i be 
    Nat st i 
    in ( 
    dom h) holds (h 
    /. i) 
    = (Z 
    +* (y0 
    | ( 
    Seg ((( 
    len G) 
    + 1) 
    -' i))))) holds (x 
    + (h 
    /. j)) 
    = (( 
    reproj (( 
    In (((( 
    len G) 
    + 1) 
    -' j),( 
    dom G))),(x 
    + (h 
    /. (j 
    + 1))))) 
    . (( 
    proj ( 
    In (((( 
    len G) 
    + 1) 
    -' j),( 
    dom G)))) 
    . (x 
    + y))) 
    
    proof
    
      let G be
    RealNormSpace-Sequence, h be 
    FinSequence of ( 
    product G), y,x be 
    Point of ( 
    product G), y0,Z be 
    Element of ( 
    product ( 
    carr G)), j be 
    Element of 
    NAT ; 
    
      assume that
    
      
    
    A1: y 
    = y0 and 
    
      
    
    A2: Z 
    = ( 
    0. ( 
    product G)) and 
    
      
    
    A3: ( 
    len h) 
    = (( 
    len G) 
    + 1) and 
    
      
    
    A4: 1 
    <= j & j 
    <= ( 
    len G) and 
    
      
    
    A5: for i be 
    Nat st i 
    in ( 
    dom h) holds (h 
    /. i) 
    = (Z 
    +* (y0 
    | ( 
    Seg ((( 
    len G) 
    + 1) 
    -' i)))); 
    
      (
    len G) 
    <= ( 
    len h) by 
    A3,
    NAT_1: 11;
    
      then j
    <= ( 
    len h) by 
    A4,
    XXREAL_0: 2;
    
      then j
    in ( 
    Seg ( 
    len h)) by 
    A4;
    
      then j
    in ( 
    dom h) by 
    FINSEQ_1:def 3;
    
      then
    
      
    
    A6: (h 
    /. j) 
    = (Z 
    +* (y0 
    | ( 
    Seg ((( 
    len G) 
    + 1) 
    -' j)))) by 
    A5;
    
      1
    <= (j 
    + 1) & (j 
    + 1) 
    <= ( 
    len h) by 
    A3,
    A4,
    NAT_1: 12,
    XREAL_1: 6;
    
      then (j
    + 1) 
    in ( 
    Seg ( 
    len h)); 
    
      then (j
    + 1) 
    in ( 
    dom h) by 
    FINSEQ_1:def 3;
    
      then
    
      
    
    A7: (h 
    /. (j 
    + 1)) 
    = (Z 
    +* (y0 
    | ( 
    Seg ((( 
    len G) 
    + 1) 
    -' (j 
    + 1))))) by 
    A5;
    
      j
    in ( 
    Seg ( 
    len G)) by 
    A4;
    
      then (((
    len G) 
    -' j) 
    + 1) 
    in ( 
    Seg ( 
    len G)) by 
    NAT_2: 6;
    
      then (((
    len G) 
    + 1) 
    -' j) 
    in ( 
    Seg ( 
    len G)) by 
    A4,
    NAT_D: 38;
    
      then (((
    len G) 
    + 1) 
    -' j) 
    in ( 
    dom G) by 
    FINSEQ_1:def 3;
    
      then
    
      
    
    A8: ( 
    In (((( 
    len G) 
    + 1) 
    -' j),( 
    dom G))) 
    = ((( 
    len G) 
    + 1) 
    -' j) by 
    SUBSET_1:def 8;
    
      set xh = (x
    + (h 
    /. (j 
    + 1))); 
    
      reconsider x1 = x, y1 = y as
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      reconsider xy = (x
    + y) as 
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      xh is
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      then
    
      consider g be
    Function such that 
    
      
    
    A9: xh 
    = g & ( 
    dom g) 
    = ( 
    dom ( 
    carr G)) & for y be 
    object st y 
    in ( 
    dom ( 
    carr G)) holds (g 
    . y) 
    in (( 
    carr G) 
    . y) by 
    CARD_3:def 5;
    
      
    
      
    
    A10: ( 
    dom xh) 
    = ( 
    dom G) by 
    A9,
    Lm1;
    
      ((
    proj ( 
    In (((( 
    len G) 
    + 1) 
    -' j),( 
    dom G)))) 
    . (x 
    + y)) 
    = (xy 
    . ((( 
    len G) 
    + 1) 
    -' j)) by 
    A8,
    Def3;
    
      
    
      then
    
      
    
    A11: (( 
    reproj (( 
    In (((( 
    len G) 
    + 1) 
    -' j),( 
    dom G))),(x 
    + (h 
    /. (j 
    + 1))))) 
    . (( 
    proj ( 
    In (((( 
    len G) 
    + 1) 
    -' j),( 
    dom G)))) 
    . (x 
    + y))) 
    = (xh 
    +* (( 
    In (((( 
    len G) 
    + 1) 
    -' j),( 
    dom G))),(xy 
    . ((( 
    len G) 
    + 1) 
    -' j)))) by 
    Def4
    
      .= (xh
    +* (( 
    In (((( 
    len G) 
    + 1) 
    -' j),( 
    dom G))) 
    .--> (xy 
    . ((( 
    len G) 
    + 1) 
    -' j)))) by 
    A10,
    FUNCT_7:def 3
    
      .= (xh
    +* ( 
    {(((
    len G) 
    + 1) 
    -' j)} 
    --> (xy 
    . ((( 
    len G) 
    + 1) 
    -' j)))) by 
    A8,
    FUNCOP_1:def 9;
    
      reconsider F1 = (x
    + (h 
    /. j)) as ( 
    len G) 
    -element  
    FinSequence;
    
      reconsider F2 = ((
    reproj (( 
    In (((( 
    len G) 
    + 1) 
    -' j),( 
    dom G))),(x 
    + (h 
    /. (j 
    + 1))))) 
    . (( 
    proj ( 
    In (((( 
    len G) 
    + 1) 
    -' j),( 
    dom G)))) 
    . (x 
    + y))) as ( 
    len G) 
    -element  
    FinSequence;
    
      reconsider h1 = (h
    /. j) as 
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      reconsider xh1 = (x
    + (h 
    /. j)) as 
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      reconsider h2 = (h
    /. (j 
    + 1)) as 
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      
    
      
    
    A12: ( 
    len F1) 
    = ( 
    len G) & ( 
    len F2) 
    = ( 
    len G) by 
    CARD_1:def 7;
    
      for k be
    Nat st 1 
    <= k & k 
    <= ( 
    len F1) holds (F1 
    . k) 
    = (F2 
    . k) 
    
      proof
    
        let k be
    Nat;
    
        assume
    
        
    
    A13: 1 
    <= k & k 
    <= ( 
    len F1); 
    
        then
    
        
    
    A14: k 
    in ( 
    Seg ( 
    len F1)); 
    
        then
    
        reconsider k1 = k as
    Element of ( 
    dom G) by 
    CARD_1:def 7,
    FINSEQ_1:def 3;
    
        ((
    proj k1) 
    . xh1) 
    = ((( 
    proj k1) 
    . x) 
    + (( 
    proj k1) 
    . (h 
    /. j))) by 
    Th35;
    
        then
    
        
    
    A15: (F1 
    . k) 
    = ((( 
    proj k1) 
    . x) 
    + (( 
    proj k1) 
    . (h 
    /. j))) by 
    Def3;
    
        y0 is
    Element of the 
    carrier of ( 
    product G) by 
    Th10;
    
        then
    
        
    
    A16: ( 
    dom y0) 
    = ( 
    Seg ( 
    len G)) by 
    FINSEQ_1: 89;
    
        
    
        
    
    A17: (( 
    proj k1) 
    . (h 
    /. j)) 
    = (h1 
    . k) by 
    Def3;
    
        
    
        
    
    A18: ( 
    dom (y0 
    | ( 
    Seg ((( 
    len G) 
    + 1) 
    -' j)))) 
    = (( 
    dom y0) 
    /\ ( 
    Seg ((( 
    len G) 
    + 1) 
    -' j))) by 
    RELAT_1: 61;
    
        
    
        
    
    A19: the 
    carrier of ( 
    product G) 
    = ( 
    product ( 
    carr G)) by 
    Th10;
    
        per cases ;
    
          suppose
    
          
    
    A20: not k 
    in ( 
    Seg ((( 
    len G) 
    + 1) 
    -' j)); 
    
          then not k
    in ( 
    dom (y0 
    | ( 
    Seg ((( 
    len G) 
    + 1) 
    -' j)))) by 
    A18,
    XBOOLE_0:def 4;
    
          then ((
    proj k1) 
    . (h 
    /. j)) 
    = (Z 
    . k) by 
    A17,
    A6,
    FUNCT_4: 11;
    
          then
    
          
    
    A21: (( 
    proj k1) 
    . (h 
    /. j)) 
    = (( 
    proj k1) 
    . ( 
    0. ( 
    product G))) by 
    A2,
    Def3;
    
           not 1
    <= k or not k 
    <= ((( 
    len G) 
    + 1) 
    -' j) by 
    A20;
    
          then not k
    in ( 
    dom ( 
    {(((
    len G) 
    + 1) 
    -' j)} 
    --> (xy 
    . ((( 
    len G) 
    + 1) 
    -' j)))) by 
    A13,
    TARSKI:def 1;
    
          then ((xh
    +* ( 
    {(((
    len G) 
    + 1) 
    -' j)} 
    --> (xy 
    . ((( 
    len G) 
    + 1) 
    -' j)))) 
    . k1) 
    = (xh 
    . k1) by 
    FUNCT_4: 11;
    
          then
    
          
    
    A22: (F2 
    . k) 
    = (( 
    proj k1) 
    . (x 
    + (h 
    /. (j 
    + 1)))) by 
    A19,
    A11,
    Def3;
    
          
    
          
    
    A23: (( 
    proj k1) 
    . (h 
    /. (j 
    + 1))) 
    = (h2 
    . k) by 
    Def3;
    
          (((
    len G) 
    + 1) 
    -' (j 
    + 1)) 
    <= ((( 
    len G) 
    + 1) 
    -' j) by 
    NAT_1: 11,
    NAT_D: 41;
    
          then (
    Seg ((( 
    len G) 
    + 1) 
    -' (j 
    + 1))) 
    c= ( 
    Seg ((( 
    len G) 
    + 1) 
    -' j)) by 
    FINSEQ_1: 5;
    
          then not k
    in ( 
    Seg ((( 
    len G) 
    + 1) 
    -' (j 
    + 1))) by 
    A20;
    
          then not k
    in (( 
    dom y0) 
    /\ ( 
    Seg ((( 
    len G) 
    + 1) 
    -' (j 
    + 1)))) by 
    XBOOLE_0:def 4;
    
          then not k
    in ( 
    dom (y0 
    | ( 
    Seg ((( 
    len G) 
    + 1) 
    -' (j 
    + 1))))) by 
    RELAT_1: 61;
    
          then ((Z
    +* (y0 
    | ( 
    Seg ((( 
    len G) 
    + 1) 
    -' (j 
    + 1))))) 
    . k) 
    = (Z 
    . k) by 
    FUNCT_4: 11;
    
          then ((
    proj k1) 
    . (h 
    /. (j 
    + 1))) 
    = (( 
    proj k1) 
    . ( 
    0. ( 
    product G))) by 
    A2,
    A23,
    A7,
    Def3;
    
          hence (F1
    . k) 
    = (F2 
    . k) by 
    A21,
    A15,
    A22,
    Th35;
    
        end;
    
          suppose
    
          
    
    A24: k 
    in ( 
    Seg ((( 
    len G) 
    + 1) 
    -' j)); 
    
          then
    
          
    
    A25: k 
    in ( 
    dom (y0 
    | ( 
    Seg ((( 
    len G) 
    + 1) 
    -' j)))) by 
    A18,
    A14,
    A16,
    A12,
    XBOOLE_0:def 4;
    
          then ((
    proj k1) 
    . (h 
    /. j)) 
    = ((y0 
    | ( 
    Seg ((( 
    len G) 
    + 1) 
    -' j))) 
    . k) by 
    A17,
    A6,
    FUNCT_4: 13;
    
          then ((
    proj k1) 
    . (h 
    /. j)) 
    = (y0 
    . k) by 
    A25,
    FUNCT_1: 47;
    
          then
    
          
    
    A26: (( 
    proj k1) 
    . (h 
    /. j)) 
    = (( 
    proj k1) 
    . y) by 
    A1,
    Def3;
    
          then
    
          
    
    A27: (F1 
    . k) 
    = (( 
    proj k1) 
    . (x 
    + y)) by 
    A15,
    Th35;
    
          per cases ;
    
            suppose
    
            
    
    A28: k 
    = ((( 
    len G) 
    + 1) 
    -' j); 
    
            
    
            
    
    A29: k 
    in  
    {k} by
    TARSKI:def 1;
    
            then k
    in ( 
    dom ( 
    {k}
    --> (xy 
    . k))); 
    
            then ((xh
    +* ( 
    {k}
    --> (xy 
    . k))) 
    . k1) 
    = (( 
    {k}
    --> (xy 
    . k)) 
    . k) by 
    FUNCT_4: 13;
    
            then (F2
    . k) 
    = (xy 
    . k) by 
    A11,
    A29,
    A28,
    FUNCOP_1: 7;
    
            hence (F1
    . k) 
    = (F2 
    . k) by 
    A27,
    Def3;
    
          end;
    
            suppose
    
            
    
    A30: k 
    <> ((( 
    len G) 
    + 1) 
    -' j); 
    
            then not k
    in ( 
    dom ( 
    {(((
    len G) 
    + 1) 
    -' j)} 
    --> (xy 
    . ((( 
    len G) 
    + 1) 
    -' j)))) by 
    TARSKI:def 1;
    
            then (F2
    . k) 
    = (xh 
    . k) by 
    A11,
    FUNCT_4: 11;
    
            then
    
            
    
    A31: (F2 
    . k) 
    = (( 
    proj k1) 
    . (x 
    + (h 
    /. (j 
    + 1)))) by 
    A19,
    Def3;
    
            k
    <= ((( 
    len G) 
    + 1) 
    -' j) by 
    A24,
    FINSEQ_1: 1;
    
            then k
    < ((( 
    len G) 
    + 1) 
    -' j) by 
    A30,
    XXREAL_0: 1;
    
            then k
    <= (((( 
    len G) 
    + 1) 
    -' j) 
    -' 1) by 
    NAT_D: 49;
    
            then k
    <= ((( 
    len G) 
    + 1) 
    -' (j 
    + 1)) by 
    NAT_2: 30;
    
            then k
    in ( 
    Seg ((( 
    len G) 
    + 1) 
    -' (j 
    + 1))) by 
    A13;
    
            then
    
            
    
    A32: k 
    in ( 
    dom (y0 
    | ( 
    Seg ((( 
    len G) 
    + 1) 
    -' (j 
    + 1))))) by 
    A14,
    A16,
    A12,
    RELAT_1: 57;
    
            ((
    proj k1) 
    . (h 
    /. (j 
    + 1))) 
    = (h2 
    . k) by 
    Def3;
    
            then ((
    proj k1) 
    . (h 
    /. (j 
    + 1))) 
    = ((y0 
    | ( 
    Seg ((( 
    len G) 
    + 1) 
    -' (j 
    + 1)))) 
    . k1) by 
    A7,
    A32,
    FUNCT_4: 13;
    
            then ((
    proj k1) 
    . (h 
    /. (j 
    + 1))) 
    = (y0 
    . k) by 
    A32,
    FUNCT_1: 47;
    
            then ((
    proj k1) 
    . (h 
    /. (j 
    + 1))) 
    = (( 
    proj k1) 
    . y) by 
    A1,
    Def3;
    
            hence (F1
    . k) 
    = (F2 
    . k) by 
    A26,
    A15,
    A31,
    Th35;
    
          end;
    
        end;
    
      end;
    
      hence thesis by
    A12;
    
    end;
    
    theorem :: 
    
    NDIFF_5:55
    
    
    
    
    
    Th55: for G be 
    RealNormSpace-Sequence, h be 
    FinSequence of ( 
    product G), y,x be 
    Point of ( 
    product G), y0,Z be 
    Element of ( 
    product ( 
    carr G)), j be 
    Element of 
    NAT st y 
    = y0 & Z 
    = ( 
    0. ( 
    product G)) & ( 
    len h) 
    = (( 
    len G) 
    + 1) & 1 
    <= j & j 
    <= ( 
    len G) & (for i be 
    Nat st i 
    in ( 
    dom h) holds (h 
    /. i) 
    = (Z 
    +* (y0 
    | ( 
    Seg ((( 
    len G) 
    + 1) 
    -' i))))) holds ((( 
    proj ( 
    In (((( 
    len G) 
    + 1) 
    -' j),( 
    dom G)))) 
    . (x 
    + y)) 
    - (( 
    proj ( 
    In (((( 
    len G) 
    + 1) 
    -' j),( 
    dom G)))) 
    . (x 
    + (h 
    /. (j 
    + 1))))) 
    = (( 
    proj ( 
    In (((( 
    len G) 
    + 1) 
    -' j),( 
    dom G)))) 
    . y) 
    
    proof
    
      let G be
    RealNormSpace-Sequence, h be 
    FinSequence of ( 
    product G), y,x be 
    Point of ( 
    product G), y0,Z be 
    Element of ( 
    product ( 
    carr G)), j be 
    Element of 
    NAT ; 
    
      assume that
    
      
    
    A1: y 
    = y0 and 
    
      
    
    A2: Z 
    = ( 
    0. ( 
    product G)) and 
    
      
    
    A3: ( 
    len h) 
    = (( 
    len G) 
    + 1) & 1 
    <= j & j 
    <= ( 
    len G) and 
    
      
    
    A4: for i be 
    Nat st i 
    in ( 
    dom h) holds (h 
    /. i) 
    = (Z 
    +* (y0 
    | ( 
    Seg ((( 
    len G) 
    + 1) 
    -' i)))); 
    
      (x
    + (h 
    /. j)) 
    = (( 
    reproj (( 
    In (((( 
    len G) 
    + 1) 
    -' j),( 
    dom G))),(x 
    + (h 
    /. (j 
    + 1))))) 
    . (( 
    proj ( 
    In (((( 
    len G) 
    + 1) 
    -' j),( 
    dom G)))) 
    . (x 
    + y))) by 
    A1,
    A2,
    A3,
    A4,
    Th54;
    
      then ((
    proj ( 
    In (((( 
    len G) 
    + 1) 
    -' j),( 
    dom G)))) 
    . (x 
    + (h 
    /. j))) 
    = (( 
    proj ( 
    In (((( 
    len G) 
    + 1) 
    -' j),( 
    dom G)))) 
    . (x 
    + y)) by 
    Th46;
    
      then
    
      
    
    A5: ((( 
    proj ( 
    In (((( 
    len G) 
    + 1) 
    -' j),( 
    dom G)))) 
    . (x 
    + y)) 
    - (( 
    proj ( 
    In (((( 
    len G) 
    + 1) 
    -' j),( 
    dom G)))) 
    . (x 
    + (h 
    /. (j 
    + 1))))) 
    = (( 
    proj ( 
    In (((( 
    len G) 
    + 1) 
    -' j),( 
    dom G)))) 
    . ((x 
    + (h 
    /. j)) 
    - (x 
    + (h 
    /. (j 
    + 1))))) by 
    Th37;
    
      ((x
    + (h 
    /. j)) 
    - (x 
    + (h 
    /. (j 
    + 1)))) 
    = ((((h 
    /. j) 
    + x) 
    - x) 
    - (h 
    /. (j 
    + 1))) by 
    RLVECT_1: 27
    
      .= (((h
    /. j) 
    + (x 
    - x)) 
    - (h 
    /. (j 
    + 1))) by 
    RLVECT_1: 28
    
      .= (((h
    /. j) 
    + ( 
    0. ( 
    product G))) 
    - (h 
    /. (j 
    + 1))) by 
    RLVECT_1: 15
    
      .= ((h
    /. j) 
    - (h 
    /. (j 
    + 1))) by 
    RLVECT_1: 4;
    
      then
    
      
    
    A6: ((( 
    proj ( 
    In (((( 
    len G) 
    + 1) 
    -' j),( 
    dom G)))) 
    . (x 
    + y)) 
    - (( 
    proj ( 
    In (((( 
    len G) 
    + 1) 
    -' j),( 
    dom G)))) 
    . (x 
    + (h 
    /. (j 
    + 1))))) 
    = ((( 
    proj ( 
    In (((( 
    len G) 
    + 1) 
    -' j),( 
    dom G)))) 
    . (h 
    /. j)) 
    - (( 
    proj ( 
    In (((( 
    len G) 
    + 1) 
    -' j),( 
    dom G)))) 
    . (h 
    /. (j 
    + 1)))) by 
    A5,
    Th37;
    
      y0 is
    Element of the 
    carrier of ( 
    product G) by 
    Th10;
    
      then
    
      
    
    A7: ( 
    dom y0) 
    = ( 
    Seg ( 
    len G)) by 
    FINSEQ_1: 89;
    
      j
    in ( 
    Seg ( 
    len G)) by 
    A3;
    
      then (((
    len G) 
    -' j) 
    + 1) 
    in ( 
    Seg ( 
    len G)) by 
    NAT_2: 6;
    
      then
    
      
    
    A8: ((( 
    len G) 
    + 1) 
    -' j) 
    in ( 
    Seg ( 
    len G)) by 
    A3,
    NAT_D: 38;
    
      
    
      
    
    A9: j 
    < (( 
    len G) 
    + 1) by 
    A3,
    NAT_1: 13;
    
      then (((
    len G) 
    + 1) 
    -' j) 
    in ( 
    Seg ((( 
    len G) 
    + 1) 
    -' j)) by 
    FINSEQ_1: 3,
    NAT_D: 36;
    
      then
    
      
    
    A10: ((( 
    len G) 
    + 1) 
    -' j) 
    in ( 
    dom (y0 
    | ( 
    Seg ((( 
    len G) 
    + 1) 
    -' j)))) by 
    A7,
    A8,
    RELAT_1: 57;
    
      (((
    len G) 
    + 1) 
    -' j) 
    = (((( 
    len G) 
    + 1) 
    -' (j 
    + 1)) 
    + 1) by 
    A9,
    NAT_2: 7;
    
      then
    
      
    
    A11: ((( 
    len G) 
    + 1) 
    -' (j 
    + 1)) 
    < ((( 
    len G) 
    + 1) 
    -' j) by 
    NAT_1: 13;
    
      (
    dom (y0 
    | ( 
    Seg ((( 
    len G) 
    + 1) 
    -' (j 
    + 1))))) 
    c= ( 
    Seg ((( 
    len G) 
    + 1) 
    -' (j 
    + 1))) by 
    RELAT_1: 58;
    
      then
    
      
    
    A12: not ((( 
    len G) 
    + 1) 
    -' j) 
    in ( 
    dom (y0 
    | ( 
    Seg ((( 
    len G) 
    + 1) 
    -' (j 
    + 1))))) by 
    A11,
    FINSEQ_1: 1;
    
      reconsider h1 = (h
    /. j) as 
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      reconsider h2 = (h
    /. (j 
    + 1)) as 
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      j
    in ( 
    Seg ( 
    len h)) by 
    A3,
    A9;
    
      then j
    in ( 
    dom h) by 
    FINSEQ_1:def 3;
    
      then
    
      
    
    A13: (h 
    /. j) 
    = (Z 
    +* (y0 
    | ( 
    Seg ((( 
    len G) 
    + 1) 
    -' j)))) by 
    A4;
    
      (((
    len G) 
    + 1) 
    -' j) 
    in ( 
    dom G) by 
    A8,
    FINSEQ_1:def 3;
    
      then
    
      
    
    A14: ( 
    In (((( 
    len G) 
    + 1) 
    -' j),( 
    dom G))) 
    = ((( 
    len G) 
    + 1) 
    -' j) by 
    SUBSET_1:def 8;
    
      
    
      then
    
      
    
    A15: (( 
    proj ( 
    In (((( 
    len G) 
    + 1) 
    -' j),( 
    dom G)))) 
    . (h 
    /. j)) 
    = (h1 
    . ((( 
    len G) 
    + 1) 
    -' j)) by 
    Def3
    
      .= ((y0
    | ( 
    Seg ((( 
    len G) 
    + 1) 
    -' j))) 
    . ((( 
    len G) 
    + 1) 
    -' j)) by 
    A10,
    A13,
    FUNCT_4: 13
    
      .= (y0
    . ((( 
    len G) 
    + 1) 
    -' j)) by 
    A10,
    FUNCT_1: 47
    
      .= ((
    proj ( 
    In (((( 
    len G) 
    + 1) 
    -' j),( 
    dom G)))) 
    . y) by 
    A1,
    A14,
    Def3;
    
      1
    <= (j 
    + 1) & (j 
    + 1) 
    <= ( 
    len h) by 
    A3,
    NAT_1: 12,
    XREAL_1: 6;
    
      then (j
    + 1) 
    in ( 
    Seg ( 
    len h)); 
    
      then (j
    + 1) 
    in ( 
    dom h) by 
    FINSEQ_1:def 3;
    
      then
    
      
    
    A16: (h 
    /. (j 
    + 1)) 
    = (Z 
    +* (y0 
    | ( 
    Seg ((( 
    len G) 
    + 1) 
    -' (j 
    + 1))))) by 
    A4;
    
      ((
    proj ( 
    In (((( 
    len G) 
    + 1) 
    -' j),( 
    dom G)))) 
    . (h 
    /. (j 
    + 1))) 
    = (h2 
    . ((( 
    len G) 
    + 1) 
    -' j)) by 
    A14,
    Def3
    
      .= (Z
    . ((( 
    len G) 
    + 1) 
    -' j)) by 
    A16,
    A12,
    FUNCT_4: 11
    
      .= ((
    proj ( 
    In (((( 
    len G) 
    + 1) 
    -' j),( 
    dom G)))) 
    . ( 
    0. ( 
    product G))) by 
    A14,
    A2,
    Def3;
    
      
    
      hence (((
    proj ( 
    In (((( 
    len G) 
    + 1) 
    -' j),( 
    dom G)))) 
    . (x 
    + y)) 
    - (( 
    proj ( 
    In (((( 
    len G) 
    + 1) 
    -' j),( 
    dom G)))) 
    . (x 
    + (h 
    /. (j 
    + 1))))) 
    = (( 
    proj ( 
    In (((( 
    len G) 
    + 1) 
    -' j),( 
    dom G)))) 
    . (y 
    - ( 
    0. ( 
    product G)))) by 
    A6,
    A15,
    Th37
    
      .= ((
    proj ( 
    In (((( 
    len G) 
    + 1) 
    -' j),( 
    dom G)))) 
    . y) by 
    RLVECT_1: 13;
    
    end;
    
    theorem :: 
    
    NDIFF_5:56
    
    
    
    
    
    Th56: for G be 
    RealNormSpace-Sequence, S be 
    RealNormSpace, f be 
    PartFunc of ( 
    product G), S, X be 
    Subset of ( 
    product G), x be 
    Point of ( 
    product G) st X is 
    open & x 
    in X & (for i be 
    set st i 
    in ( 
    dom G) holds f 
    is_partial_differentiable_on (X,i) & (f 
    `partial| (X,i)) 
    is_continuous_on X) holds f 
    is_differentiable_in x & for h be 
    Point of ( 
    product G) holds ex w be 
    FinSequence of S st ( 
    dom w) 
    = ( 
    dom G) & (for i be 
    set st i 
    in ( 
    dom G) holds (w 
    . i) 
    = (( 
    partdiff (f,x,i)) 
    . (( 
    proj ( 
    In (i,( 
    dom G)))) 
    . h))) & (( 
    diff (f,x)) 
    . h) 
    = ( 
    Sum w) 
    
    proof
    
      let G be
    RealNormSpace-Sequence, S be 
    RealNormSpace, f be 
    PartFunc of ( 
    product G), S, X be 
    Subset of ( 
    product G), x be 
    Point of ( 
    product G); 
    
      assume
    
      
    
    A1: X is 
    open & x 
    in X & (for i be 
    set st i 
    in ( 
    dom G) holds f 
    is_partial_differentiable_on (X,i) & (f 
    `partial| (X,i)) 
    is_continuous_on X); 
    
      set m = (
    len G); 
    
      
    
      
    
    A2: ( 
    dom G) 
    = ( 
    Seg m) by 
    FINSEQ_1:def 3;
    
      reconsider Z0 = (
    0. ( 
    product G)) as 
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      reconsider x0 = x as
    Element of ( 
    product ( 
    carr G)) by 
    Th10;
    
      reconsider x1 = x as (
    len G) 
    -element  
    FinSequence;
    
      reconsider Z1 = (
    0. ( 
    product G)) as ( 
    len G) 
    -element  
    FinSequence;
    
      consider L be
    Lipschitzian  
    LinearOperator of ( 
    product G), S such that 
    
      
    
    A3: for h be 
    Point of ( 
    product G) holds ex w be 
    FinSequence of S st ( 
    dom w) 
    = ( 
    Seg m) & (for i be 
    Element of 
    NAT st i 
    in ( 
    Seg m) holds (w 
    . i) 
    = (( 
    partdiff (f,x,i)) 
    . (( 
    proj ( 
    In (i,( 
    dom G)))) 
    . h))) & (L 
    . h) 
    = ( 
    Sum w) by 
    Lm5;
    
      
    
      
    
    A4: for h be 
    Point of ( 
    product G) holds ex w be 
    FinSequence of S st ( 
    dom w) 
    = ( 
    dom G) & (for i be 
    set st i 
    in ( 
    dom G) holds (w 
    . i) 
    = (( 
    partdiff (f,x,i)) 
    . (( 
    proj ( 
    In (i,( 
    dom G)))) 
    . h))) & (L 
    . h) 
    = ( 
    Sum w) 
    
      proof
    
        let h be
    Point of ( 
    product G); 
    
        consider w be
    FinSequence of S such that 
    
        
    
    A5: ( 
    dom w) 
    = ( 
    Seg m) & (for i be 
    Element of 
    NAT st i 
    in ( 
    Seg m) holds (w 
    . i) 
    = (( 
    partdiff (f,x,i)) 
    . (( 
    proj ( 
    In (i,( 
    dom G)))) 
    . h))) & (L 
    . h) 
    = ( 
    Sum w) by 
    A3;
    
        take w;
    
        thus (
    dom w) 
    = ( 
    dom G) by 
    A5,
    FINSEQ_1:def 3;
    
        thus thesis by
    A5,
    A2;
    
      end;
    
      consider d0 be
    Real such that 
    
      
    
    A6: d0 
    >  
    0 and 
    
      
    
    A7: { y where y be 
    Element of ( 
    product G) : 
    ||.(y
    - x).|| 
    < d0 } 
    c= X by 
    A1,
    NDIFF_1: 3;
    
      set N = { y where y be
    Element of ( 
    product G) : 
    ||.(y
    - x).|| 
    < d0 }; 
    
      N
    c= the 
    carrier of ( 
    product G) by 
    A7,
    XBOOLE_1: 1;
    
      then
    
      
    
    A8: N is 
    Neighbourhood of x by 
    A6,
    NFCONT_1:def 1;
    
      
    
      
    
    A9: 1 
    <= m by 
    NAT_1: 14;
    
      then m
    in ( 
    dom G) by 
    A2;
    
      then f
    is_partial_differentiable_on (X,m) by 
    A1;
    
      then X
    c= ( 
    dom f); 
    
      then
    
      
    
    A10: N 
    c= ( 
    dom f) by 
    A7;
    
      deffunc
    
    RF(
    Element of ( 
    product G)) = (((f 
    /. (x 
    + $1)) 
    - (f 
    /. x)) 
    - (L 
    . $1)); 
    
      consider R be
    Function of the 
    carrier of ( 
    product G), the 
    carrier of S such that 
    
      
    
    A11: for h be 
    Element of the 
    carrier of ( 
    product G) holds (R 
    . h) 
    =  
    RF(h) from
    FUNCT_2:sch 4;
    
      now
    
        let r0 be
    Real;
    
        assume
    
        
    
    A12: r0 
    >  
    0 ; 
    
        set r1 = (r0
    / 2); 
    
        set r = (r1
    / m); 
    
        defpred
    
    DSQ[
    Nat, 
    Real] means ex k be
    Element of 
    NAT st $1 
    = k & 
    0  
    < $2 & for q be 
    Element of ( 
    product G) st q 
    in X & 
    ||.(q
    - x).|| 
    < $2 holds 
    ||.((
    partdiff (f,q,k)) 
    - ( 
    partdiff (f,x,k))).|| 
    < r; 
    
        
    
        
    
    A13: for k0 be 
    Nat st k0 
    in ( 
    Seg m) holds ex d be 
    Element of 
    REAL st 
    DSQ[k0, d]
    
        proof
    
          let k0 be
    Nat;
    
          assume
    
          
    
    A14: k0 
    in ( 
    Seg m); 
    
          reconsider k = k0 as
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
          (f
    `partial| (X,k)) 
    is_continuous_on X by 
    A2,
    A14,
    A1;
    
          then
    
          consider d be
    Real such that 
    
          
    
    A15: 
    0  
    < d & for q be 
    Point of ( 
    product G) st q 
    in X & 
    ||.(q
    - x).|| 
    < d holds 
    ||.(((f
    `partial| (X,k)) 
    /. q) 
    - ((f 
    `partial| (X,k)) 
    /. x)).|| 
    < r by 
    A12,
    A1,
    NFCONT_1: 19;
    
          reconsider d as
    Element of 
    REAL by 
    XREAL_0:def 1;
    
          take d;
    
          for q be
    Point of ( 
    product G) st q 
    in X & 
    ||.(q
    - x).|| 
    < d holds 
    ||.((
    partdiff (f,q,k)) 
    - ( 
    partdiff (f,x,k))).|| 
    < r 
    
          proof
    
            let q be
    Point of ( 
    product G); 
    
            assume
    
            
    
    A16: q 
    in X & 
    ||.(q
    - x).|| 
    < d; 
    
            then
    
            
    
    A17: 
    ||.(((f
    `partial| (X,k)) 
    /. q) 
    - ((f 
    `partial| (X,k)) 
    /. x)).|| 
    < r by 
    A15;
    
            
    
            
    
    A18: f 
    is_partial_differentiable_on (X,k) by 
    A1,
    A14,
    A2;
    
            then ((f
    `partial| (X,k)) 
    /. q) 
    = ( 
    partdiff (f,q,k)) by 
    A16,
    Def9;
    
            hence
    ||.((
    partdiff (f,q,k)) 
    - ( 
    partdiff (f,x,k))).|| 
    < r by 
    A17,
    A18,
    A1,
    Def9;
    
          end;
    
          hence ex k be
    Element of 
    NAT st k0 
    = k & 
    0  
    < d & for q be 
    Element of ( 
    product G) st q 
    in X & 
    ||.(q
    - x).|| 
    < d holds 
    ||.((
    partdiff (f,q,k)) 
    - ( 
    partdiff (f,x,k))).|| 
    < r by 
    A15;
    
        end;
    
        consider Dseq be
    FinSequence of 
    REAL such that 
    
        
    
    A19: ( 
    dom Dseq) 
    = ( 
    Seg m) & for i be 
    Nat st i 
    in ( 
    Seg m) holds 
    DSQ[i, (Dseq
    . i)] from 
    FINSEQ_1:sch 5(
    A13);
    
        m
    in ( 
    Seg m) by 
    A9;
    
        then
    
        reconsider rDseq = (
    rng Dseq) as non 
    empty
    ext-real-membered  
    set by 
    A19,
    FUNCT_1: 3;
    
        reconsider rDseq as
    left_end
    right_end non 
    empty
    ext-real-membered  
    set;
    
        
    
        
    
    A20: ( 
    min rDseq) 
    in ( 
    rng Dseq) by 
    XXREAL_2:def 7;
    
        reconsider d1 = (
    min rDseq) as 
    Real;
    
        set d = (
    min (d0,d1)); 
    
        
    
        
    
    A21: d 
    <= d0 & d 
    <= d1 by 
    XXREAL_0: 17;
    
        consider i1 be
    object such that 
    
        
    
    A22: i1 
    in ( 
    dom Dseq) & d1 
    = (Dseq 
    . i1) by 
    A20,
    FUNCT_1:def 3;
    
        reconsider i1 as
    Nat by 
    A22;
    
        
    
        
    
    A23: ex k be 
    Element of 
    NAT st i1 
    = k & 
    0  
    < (Dseq 
    . i1) & for q be 
    Element of ( 
    product G) st q 
    in X & 
    ||.(q
    - x).|| 
    < (Dseq 
    . i1) holds 
    ||.((
    partdiff (f,q,k)) 
    - ( 
    partdiff (f,x,k))).|| 
    < r by 
    A19,
    A22;
    
        
    
    A24: 
    
        now
    
          let q be
    Element of ( 
    product G); 
    
          assume
    ||.(q
    - x).|| 
    < d; 
    
          then
    ||.(q
    - x).|| 
    < d0 by 
    A21,
    XXREAL_0: 2;
    
          then q
    in { y where y be 
    Element of ( 
    product G) : 
    ||.(y
    - x).|| 
    < d0 }; 
    
          hence q
    in X by 
    A7;
    
        end;
    
        
    
    A25: 
    
        now
    
          let q be
    Element of ( 
    product G), i be 
    Element of 
    NAT ; 
    
          assume
    
          
    
    A26: 
    ||.(q
    - x).|| 
    < d & i 
    in ( 
    Seg m); 
    
          reconsider i0 = i as
    Nat;
    
          consider k be
    Element of 
    NAT such that 
    
          
    
    A27: i0 
    = k & 
    0  
    < (Dseq 
    . i0) & for q be 
    Element of ( 
    product G) st q 
    in X & 
    ||.(q
    - x).|| 
    < (Dseq 
    . i0) holds 
    ||.((
    partdiff (f,q,k)) 
    - ( 
    partdiff (f,x,k))).|| 
    < r by 
    A19,
    A26;
    
          (Dseq
    . i0) 
    in ( 
    rng Dseq) by 
    A19,
    A26,
    FUNCT_1: 3;
    
          then d1
    <= (Dseq 
    . i0) by 
    XXREAL_2:def 7;
    
          then d
    <= (Dseq 
    . i0) by 
    A21,
    XXREAL_0: 2;
    
          then
    ||.(q
    - x).|| 
    < (Dseq 
    . i0) by 
    A26,
    XXREAL_0: 2;
    
          hence
    ||.((
    partdiff (f,q,i)) 
    - ( 
    partdiff (f,x,i))).|| 
    < r by 
    A24,
    A26,
    A27;
    
        end;
    
        take d;
    
        thus
    0  
    < d by 
    A6,
    A22,
    A23,
    XXREAL_0: 21;
    
        thus for y be
    Point of ( 
    product G) st y 
    <> ( 
    0. ( 
    product G)) & 
    ||.y.||
    < d holds (( 
    ||.y.||
    " ) 
    *  
    ||.(R
    /. y).||) 
    < r0 
    
        proof
    
          let y be
    Point of ( 
    product G); 
    
          assume
    
          
    
    A28: y 
    <> ( 
    0. ( 
    product G)) & 
    ||.y.||
    < d; 
    
          set z = (R
    /. y); 
    
          consider h be
    FinSequence of ( 
    product G), g be 
    FinSequence of S, Z,y0 be 
    Element of ( 
    product ( 
    carr G)) such that 
    
          
    
    A30: y0 
    = y & Z 
    = ( 
    0. ( 
    product G)) & ( 
    len h) 
    = (( 
    len G) 
    + 1) & ( 
    len g) 
    = ( 
    len G) & (for i be 
    Nat st i 
    in ( 
    dom h) holds (h 
    /. i) 
    = (Z 
    +* (y0 
    | ( 
    Seg ((( 
    len G) 
    + 1) 
    -' i))))) & (for i be 
    Nat st i 
    in ( 
    dom g) holds (g 
    /. i) 
    = ((f 
    /. (x 
    + (h 
    /. i))) 
    - (f 
    /. (x 
    + (h 
    /. (i 
    + 1)))))) & (for i be 
    Nat, hi be 
    Point of ( 
    product G) st i 
    in ( 
    dom h) & (h 
    /. i) 
    = hi holds 
    ||.hi.||
    <=  
    ||.y.||) & ((f
    /. (x 
    + y)) 
    - (f 
    /. x)) 
    = ( 
    Sum g) by 
    Th45;
    
          consider w be
    FinSequence of S such that 
    
          
    
    A31: ( 
    dom w) 
    = ( 
    Seg m) & (for i be 
    Element of 
    NAT st i 
    in ( 
    Seg m) holds (w 
    . i) 
    = (( 
    partdiff (f,x,i)) 
    . (( 
    proj ( 
    In (i,( 
    dom G)))) 
    . y))) & (L 
    . y) 
    = ( 
    Sum w) by 
    A3;
    
          
    
          
    
    A32: ( 
    dom ( 
    idseq m)) 
    = ( 
    Seg m) & ( 
    rng ( 
    idseq m)) 
    = ( 
    Seg m); 
    
          then
    
          
    
    A33: ( 
    dom ( 
    Rev ( 
    idseq m))) 
    = ( 
    Seg m) & ( 
    rng ( 
    Rev ( 
    idseq m))) 
    = ( 
    Seg m) by 
    FINSEQ_5: 57;
    
          then
    
          reconsider Ri = (
    Rev ( 
    idseq m)) as 
    Function of ( 
    Seg m), ( 
    Seg m) by 
    FUNCT_2: 1;
    
          Ri is
    one-to-one
    onto by 
    A32,
    FINSEQ_5: 57;
    
          then
    
          reconsider Ri = (
    Rev ( 
    idseq m)) as 
    Permutation of ( 
    dom w) by 
    A31;
    
          
    
          
    
    A34: ( 
    len ( 
    idseq m)) 
    = m & ( 
    len w) 
    = m by 
    A31,
    A32,
    FINSEQ_1:def 3;
    
          (
    dom (w 
    * Ri)) 
    = ( 
    dom Ri) by 
    A33,
    RELAT_1: 27;
    
          then
    
          
    
    A35: ( 
    dom (w 
    * Ri)) 
    = ( 
    dom ( 
    Rev w)) by 
    A33,
    A31,
    FINSEQ_5: 57;
    
          reconsider wRi = (w
    * Ri) as 
    FinSequence of S by 
    FINSEQ_2: 47;
    
          now
    
            let k be
    Nat;
    
            assume
    
            
    
    A36: k 
    in ( 
    dom ( 
    Rev w)); 
    
            then
    
            
    
    A37: k 
    in ( 
    dom ( 
    Rev ( 
    idseq m))) by 
    A33,
    A31,
    FINSEQ_5: 57;
    
            then
    
            
    
    A38: 1 
    <= k & k 
    <= m by 
    A33,
    FINSEQ_1: 1;
    
            then
    
            reconsider mk = (m
    - k) as 
    Nat by 
    NAT_1: 21;
    
            reconsider zr0 =
    0 as 
    Nat;
    
            
    0  
    <= mk; 
    
            then
    
            
    
    A39: (zr0 
    + 1) 
    <= ((m 
    - k) 
    + 1) by 
    XREAL_1: 6;
    
            (k
    - 1) 
    >= (1 
    - 1) by 
    A38,
    XREAL_1: 9;
    
            then (m
    - (k 
    - 1)) 
    <= m by 
    XREAL_1: 43;
    
            then
    
            
    
    A40: (mk 
    + 1) 
    in ( 
    Seg m) by 
    A39;
    
            ((
    Rev w) 
    . k) 
    = (w 
    . ((( 
    len ( 
    idseq m)) 
    - k) 
    + 1)) by 
    A34,
    A36,
    FINSEQ_5:def 3
    
            .= (w
    . (( 
    idseq m) 
    . ((( 
    len ( 
    idseq m)) 
    - k) 
    + 1))) by 
    A40,
    A34,
    FINSEQ_2: 49
    
            .= (w
    . (( 
    Rev ( 
    idseq m)) 
    . k)) by 
    A37,
    FINSEQ_5:def 3;
    
            hence ((
    Rev w) 
    . k) 
    = (wRi 
    . k) by 
    A36,
    A35,
    FUNCT_1: 12;
    
          end;
    
          then
    
          
    
    A41: ( 
    Sum ( 
    Rev w)) 
    = ( 
    Sum w) by 
    A35,
    FINSEQ_1: 13,
    RLVECT_2: 7;
    
          deffunc
    
    GW(
    Nat) = ((g
    /. $1) 
    - (( 
    Rev w) 
    /. $1)); 
    
          consider gw be
    FinSequence of S such that 
    
          
    
    A42: ( 
    len gw) 
    = m & for j be 
    Nat st j 
    in ( 
    dom gw) holds (gw 
    . j) 
    =  
    GW(j) from
    FINSEQ_2:sch 1;
    
          
    
    A43: 
    
          now
    
            let j be
    Nat;
    
            assume j
    in ( 
    dom g); 
    
            then j
    in ( 
    Seg m) by 
    A30,
    FINSEQ_1:def 3;
    
            then j
    in ( 
    dom gw) by 
    A42,
    FINSEQ_1:def 3;
    
            hence (gw
    . j) 
    = ((g 
    /. j) 
    - (( 
    Rev w) 
    /. j)) by 
    A42;
    
          end;
    
          (
    len ( 
    Rev w)) 
    = ( 
    len g) by 
    A30,
    A34,
    FINSEQ_5:def 3;
    
          then (
    Sum gw) 
    = (( 
    Sum g) 
    - ( 
    Sum ( 
    Rev w))) by 
    A30,
    A42,
    A43,
    RLVECT_2: 5;
    
          then
    
          
    
    A44: (R 
    /. y) 
    = ( 
    Sum gw) by 
    A11,
    A30,
    A31,
    A41;
    
          
    
          
    
    A45: for j be 
    Element of 
    NAT st j 
    in ( 
    dom gw) holds 
    ||.(gw
    /. j).|| 
    <= ( 
    ||.y.||
    * r) 
    
          proof
    
            let j be
    Element of 
    NAT ; 
    
            assume
    
            
    
    A46: j 
    in ( 
    dom gw); 
    
            then
    
            
    
    A47: j 
    in ( 
    Seg m) by 
    A42,
    FINSEQ_1:def 3;
    
            then
    
            
    
    A48: j 
    in ( 
    dom g) by 
    A30,
    FINSEQ_1:def 3;
    
            then
    
            
    
    A49: (g 
    /. j) 
    = ((f 
    /. (x 
    + (h 
    /. j))) 
    - (f 
    /. (x 
    + (h 
    /. (j 
    + 1))))) by 
    A30;
    
            
    
            
    
    A50: 1 
    <= j & j 
    <= m by 
    A47,
    FINSEQ_1: 1;
    
            then (m
    + 1) 
    <= (m 
    + j) & (j 
    + 1) 
    <= (m 
    + 1) by 
    XREAL_1: 6;
    
            then ((m
    + 1) 
    - j) 
    <= m & 1 
    <= ((m 
    + 1) 
    - j) by 
    XREAL_1: 19,
    XREAL_1: 20;
    
            then ((m
    + 1) 
    -' j) 
    <= m & 1 
    <= ((m 
    + 1) 
    -' j) by 
    A50,
    NAT_D: 37;
    
            then
    
            
    
    A52: ((m 
    + 1) 
    -' j) 
    in ( 
    Seg m); 
    
            then f
    is_partial_differentiable_on (X,((m 
    + 1) 
    -' j)) by 
    A1,
    A2;
    
            then
    
            
    
    A53: X 
    c= ( 
    dom f) & for x be 
    Element of ( 
    product G) st x 
    in X holds f 
    is_partial_differentiable_in (x,((m 
    + 1) 
    -' j)) by 
    Th24,
    A1;
    
            (w
    /. ((m 
    + 1) 
    -' j)) 
    = (w 
    . ((m 
    + 1) 
    -' j)) by 
    A31,
    A52,
    PARTFUN1:def 6;
    
            then
    
            
    
    A54: (w 
    /. ((m 
    + 1) 
    -' j)) 
    = (( 
    partdiff (f,x,((m 
    + 1) 
    -' j))) 
    . (( 
    proj ( 
    In (((m 
    + 1) 
    -' j),( 
    dom G)))) 
    . y)) by 
    A52,
    A31;
    
            
    
    A55: 
    
            now
    
              let j be
    Element of 
    NAT ; 
    
              reconsider hj = (h
    /. j) as 
    Element of ( 
    product G); 
    
              assume 1
    <= j & j 
    <= (m 
    + 1); 
    
              then
    
              
    
    A56: 
    ||.hj.||
    <=  
    ||.y.|| by
    A30,
    FINSEQ_3: 25;
    
              ((x
    + (h 
    /. j)) 
    - x) 
    = ((h 
    /. j) 
    + (x 
    - x)) by 
    RLVECT_1: 28
    
              .= ((h
    /. j) 
    + ( 
    0. ( 
    product G))) by 
    RLVECT_1: 15;
    
              then ((x
    + (h 
    /. j)) 
    - x) 
    = (h 
    /. j) by 
    RLVECT_1: 4;
    
              hence
    ||.((x
    + (h 
    /. j)) 
    - x).|| 
    < d by 
    A56,
    A28,
    XXREAL_0: 2;
    
            end;
    
            (
    Seg m) 
    c= ( 
    Seg (m 
    + 1)) by 
    FINSEQ_1: 5,
    NAT_1: 11;
    
            then 1
    <= j & j 
    <= (m 
    + 1) by 
    A47,
    FINSEQ_1: 1;
    
            then
    
            
    
    A57: 
    ||.((x
    + (h 
    /. j)) 
    - x).|| 
    < d by 
    A55;
    
            1
    <= (j 
    + 1) by 
    NAT_1: 11;
    
            then
    
            
    
    A58: 
    ||.((x
    + (h 
    /. (j 
    + 1))) 
    - x).|| 
    < d by 
    A50,
    A55,
    XREAL_1: 6;
    
            
    
            
    
    A59: (x 
    + (h 
    /. j)) 
    = (( 
    reproj (( 
    In (((m 
    + 1) 
    -' j),( 
    dom G))),(x 
    + (h 
    /. (j 
    + 1))))) 
    . (( 
    proj ( 
    In (((m 
    + 1) 
    -' j),( 
    dom G)))) 
    . (x 
    + y))) by 
    Th54,
    A30,
    A50;
    
            
    
            
    
    A60: ((( 
    proj ( 
    In (((m 
    + 1) 
    -' j),( 
    dom G)))) 
    . (x 
    + y)) 
    - (( 
    proj ( 
    In (((m 
    + 1) 
    -' j),( 
    dom G)))) 
    . (x 
    + (h 
    /. (j 
    + 1))))) 
    = (( 
    proj ( 
    In (((m 
    + 1) 
    -' j),( 
    dom G)))) 
    . y) by 
    Th55,
    A30,
    A50;
    
            for z be
    Point of ( 
    product G) st 
    ||.(z
    - x).|| 
    < d holds 
    ||.((
    partdiff (f,z,((m 
    + 1) 
    -' j))) 
    - ( 
    partdiff (f,x,((m 
    + 1) 
    -' j)))).|| 
    <= r by 
    A25,
    A52;
    
            then
    
            
    
    A61: 
    ||.(((f
    /. (x 
    + (h 
    /. j))) 
    - (f 
    /. (x 
    + (h 
    /. (j 
    + 1))))) 
    - (( 
    partdiff (f,x,((m 
    + 1) 
    -' j))) 
    . (( 
    proj ( 
    In (((m 
    + 1) 
    -' j),( 
    dom G)))) 
    . y))).|| 
    <= ( 
    ||.((
    proj ( 
    In (((m 
    + 1) 
    -' j),( 
    dom G)))) 
    . y).|| 
    * r) by 
    A1,
    A53,
    A52,
    A2,
    A24,
    A57,
    A58,
    A59,
    A60,
    Th53;
    
            
    
            
    
    A62: ((m 
    + 1) 
    -' j) 
    = ((m 
    + 1) 
    - j) by 
    A50,
    NAT_1: 12,
    XREAL_1: 233;
    
            j
    in ( 
    Seg ( 
    len ( 
    Rev w))) by 
    A42,
    A46,
    A34,
    FINSEQ_1:def 3,
    FINSEQ_5:def 3;
    
            then
    
            
    
    A63: j 
    in ( 
    dom ( 
    Rev w)) by 
    FINSEQ_1:def 3;
    
            
    
            then
    
            
    
    A64: (( 
    Rev w) 
    /. j) 
    = (( 
    Rev w) 
    . j) by 
    PARTFUN1:def 6
    
            .= (w
    . ((m 
    - j) 
    + 1)) by 
    A34,
    A63,
    FINSEQ_5:def 3
    
            .= (w
    /. ((m 
    + 1) 
    -' j)) by 
    A62,
    A52,
    A31,
    PARTFUN1:def 6;
    
            
    
            
    
    A65: (gw 
    /. j) 
    = (gw 
    . j) by 
    A46,
    PARTFUN1:def 6
    
            .= (((f
    /. (x 
    + (h 
    /. j))) 
    - (f 
    /. (x 
    + (h 
    /. (j 
    + 1))))) 
    - (( 
    partdiff (f,x,((m 
    + 1) 
    -' j))) 
    . (( 
    proj ( 
    In (((m 
    + 1) 
    -' j),( 
    dom G)))) 
    . y))) by 
    A54,
    A49,
    A64,
    A48,
    A43;
    
            (
    ||.((
    proj ( 
    In (((m 
    + 1) 
    -' j),( 
    dom G)))) 
    . y).|| 
    * r) 
    <= ( 
    ||.y.||
    * r) by 
    A12,
    Th31,
    XREAL_1: 64;
    
            hence
    ||.(gw
    /. j).|| 
    <= ( 
    ||.y.||
    * r) by 
    A65,
    A61,
    XXREAL_0: 2;
    
          end;
    
          defpred
    
    YSQ[
    set, 
    set] means $2
    =  
    ||.(gw
    /. $1).||; 
    
          
    
          
    
    A66: for k be 
    Nat st k 
    in ( 
    Seg m) holds ex x be 
    Element of 
    REAL st 
    YSQ[k, x];
    
          consider yseq be
    FinSequence of 
    REAL such that 
    
          
    
    A67: ( 
    dom yseq) 
    = ( 
    Seg m) & for i be 
    Nat st i 
    in ( 
    Seg m) holds 
    YSQ[i, (yseq
    . i)] from 
    FINSEQ_1:sch 5(
    A66);
    
          
    
          
    
    A68: ( 
    len gw) 
    = ( 
    len yseq) by 
    A42,
    A67,
    FINSEQ_1:def 3;
    
          
    
    A69: 
    
          now
    
            let i be
    Element of 
    NAT ; 
    
            assume i
    in ( 
    dom gw); 
    
            then i
    in ( 
    Seg m) by 
    A42,
    FINSEQ_1:def 3;
    
            hence (yseq
    . i) 
    =  
    ||.(gw
    /. i).|| by 
    A67;
    
          end;
    
          reconsider yseq as
    Element of ( 
    REAL m) by 
    A68,
    A42,
    FINSEQ_2: 92;
    
          
    
          
    
    A70: 
    ||.(
    Sum gw).|| 
    <= ( 
    Sum yseq) by 
    A69,
    A68,
    Th7;
    
          reconsider yr = (
    ||.y.||
    * r) as 
    Element of 
    REAL by 
    XREAL_0:def 1;
    
          for j be
    Nat st j 
    in ( 
    Seg m) holds (yseq 
    . j) 
    <= ((m 
    |-> yr) 
    . j) 
    
          proof
    
            let j be
    Nat;
    
            assume
    
            
    
    A71: j 
    in ( 
    Seg m); 
    
            then j
    in ( 
    dom gw) by 
    A42,
    FINSEQ_1:def 3;
    
            then
    
            
    
    A72: 
    ||.(gw
    /. j).|| 
    <= ( 
    ||.y.||
    * r) by 
    A45;
    
            (yseq
    . j) 
    =  
    ||.(gw
    /. j).|| by 
    A67,
    A71;
    
            hence (yseq
    . j) 
    <= ((m 
    |-> yr) 
    . j) by 
    A71,
    A72,
    FINSEQ_2: 57;
    
          end;
    
          then (
    Sum yseq) 
    <= ( 
    Sum (m 
    |-> yr)) by 
    RVSUM_1: 82;
    
          then (
    Sum yseq) 
    <= (m 
    * ( 
    ||.y.||
    * r)) by 
    RVSUM_1: 80;
    
          then
    ||.z.||
    <= (m 
    * ( 
    ||.y.||
    * r)) by 
    A44,
    A70,
    XXREAL_0: 2;
    
          then (
    ||.z.||
    * ( 
    ||.y.||
    " )) 
    <= (((m 
    *  
    ||.y.||)
    * r) 
    * ( 
    ||.y.||
    " )) by 
    XREAL_1: 64;
    
          then (
    ||.z.||
    * ( 
    ||.y.||
    " )) 
    <= (m 
    * ((r 
    *  
    ||.y.||)
    * ( 
    ||.y.||
    " ))); 
    
          then ((
    ||.y.||
    " ) 
    *  
    ||.z.||)
    <= (m 
    * r) by 
    A28,
    NORMSP_0:def 5,
    XCMPLX_1: 203;
    
          then
    
          
    
    A73: (( 
    ||.y.||
    " ) 
    *  
    ||.z.||)
    <= r1 by 
    XCMPLX_1: 87;
    
          r1
    < r0 by 
    A12,
    XREAL_1: 216;
    
          hence ((
    ||.y.||
    " ) 
    *  
    ||.z.||)
    < r0 by 
    A73,
    XXREAL_0: 2;
    
        end;
    
      end;
    
      then
    
      reconsider R as
    RestFunc of ( 
    product G), S by 
    NDIFF_1: 23;
    
      reconsider L as
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (( 
    product G),S)) by 
    LOPBAN_1:def 9;
    
      
    
      
    
    A74: for y be 
    Point of ( 
    product G) st y 
    in N holds ((f 
    /. y) 
    - (f 
    /. x)) 
    = ((L 
    . (y 
    - x)) 
    + (R 
    /. (y 
    - x))) 
    
      proof
    
        let y be
    Point of ( 
    product G); 
    
        assume y
    in N; 
    
        (y
    - x) 
    in the 
    carrier of ( 
    product G); 
    
        then (y
    - x) 
    in ( 
    dom R) by 
    PARTFUN1:def 2;
    
        then (R
    /. (y 
    - x)) 
    = (R 
    . (y 
    - x)) by 
    PARTFUN1:def 6;
    
        then (R
    /. (y 
    - x)) 
    = (((f 
    /. (x 
    + (y 
    - x))) 
    - (f 
    /. x)) 
    - (L 
    . (y 
    - x))) by 
    A11;
    
        
    
        hence ((L
    . (y 
    - x)) 
    + (R 
    /. (y 
    - x))) 
    = (((f 
    /. (x 
    + (y 
    - x))) 
    - (f 
    /. x)) 
    - ((L 
    . (y 
    - x)) 
    - (L 
    . (y 
    - x)))) by 
    RLVECT_1: 29
    
        .= (((f
    /. (x 
    + (y 
    - x))) 
    - (f 
    /. x)) 
    - ( 
    0. S)) by 
    RLVECT_1: 5
    
        .= ((f
    /. (x 
    + (y 
    - x))) 
    - (f 
    /. x)) by 
    RLVECT_1: 13
    
        .= ((f
    /. (y 
    - (x 
    - x))) 
    - (f 
    /. x)) by 
    RLVECT_1: 29
    
        .= ((f
    /. (y 
    - ( 
    0. ( 
    product G)))) 
    - (f 
    /. x)) by 
    RLVECT_1: 5
    
        .= ((f
    /. y) 
    - (f 
    /. x)) by 
    RLVECT_1: 13;
    
      end;
    
      then f
    is_differentiable_in x by 
    A10,
    A8,
    NDIFF_1:def 6;
    
      then (
    diff (f,x)) 
    = L by 
    A8,
    A10,
    A74,
    NDIFF_1:def 7;
    
      hence thesis by
    A4,
    A74,
    A10,
    A8,
    NDIFF_1:def 6;
    
    end;
    
    theorem :: 
    
    NDIFF_5:57
    
    for G be
    RealNormSpace-Sequence, F be 
    RealNormSpace, f be 
    PartFunc of ( 
    product G), F, X be 
    Subset of ( 
    product G) st X is 
    open holds (for i be 
    set st i 
    in ( 
    dom G) holds f 
    is_partial_differentiable_on (X,i) & (f 
    `partial| (X,i)) 
    is_continuous_on X) iff f 
    is_differentiable_on X & (f 
    `| X) 
    is_continuous_on X 
    
    proof
    
      let G be
    RealNormSpace-Sequence, F be 
    RealNormSpace, f be 
    PartFunc of ( 
    product G), F, X be 
    Subset of ( 
    product G); 
    
      assume
    
      
    
    A1: X is 
    open;
    
      set m = (
    len G); 
    
      
    
      
    
    A2: ( 
    dom G) 
    = ( 
    Seg m) by 
    FINSEQ_1:def 3;
    
      hereby
    
        assume
    
        
    
    A3: for i be 
    set st i 
    in ( 
    dom G) holds f 
    is_partial_differentiable_on (X,i) & (f 
    `partial| (X,i)) 
    is_continuous_on X; 
    
        
    
    A4: 
    
        now
    
          let i be
    Element of 
    NAT ; 
    
          assume 1
    <= i & i 
    <= m; 
    
          then i
    in ( 
    Seg m); 
    
          then (f
    `partial| (X,i)) 
    is_continuous_on X by 
    A3,
    A2;
    
          hence X
    c= ( 
    dom (f 
    `partial| (X,i))) & for y0 be 
    Point of ( 
    product G), r be 
    Real st y0 
    in X & 
    0  
    < r holds ex s be 
    Real st 
    0  
    < s & for y1 be 
    Point of ( 
    product G) st y1 
    in X & 
    ||.(y1
    - y0).|| 
    < s holds 
    ||.(((f
    `partial| (X,i)) 
    /. y1) 
    - ((f 
    `partial| (X,i)) 
    /. y0)).|| 
    < r by 
    NFCONT_1: 19;
    
        end;
    
        
    
        
    
    A5: 1 
    <= m by 
    NAT_1: 14;
    
        then m
    in ( 
    dom G) by 
    A2;
    
        then
    
        
    
    A6: f 
    is_partial_differentiable_on (X,m) by 
    A3;
    
        for x be
    Point of ( 
    product G) st x 
    in X holds f 
    is_differentiable_in x by 
    A1,
    A3,
    Th56;
    
        hence
    
        
    
    A7: f 
    is_differentiable_on X by 
    A1,
    A6,
    NDIFF_1: 31;
    
        then
    
        
    
    A8: ( 
    dom (f 
    `| X)) 
    = X by 
    NDIFF_1:def 9;
    
        for y0 be
    Point of ( 
    product G), r be 
    Real st y0 
    in X & 
    0  
    < r holds ex s be 
    Real st 
    0  
    < s & for y1 be 
    Point of ( 
    product G) st y1 
    in X & 
    ||.(y1
    - y0).|| 
    < s holds 
    ||.(((f
    `| X) 
    /. y1) 
    - ((f 
    `| X) 
    /. y0)).|| 
    < r 
    
        proof
    
          let y0 be
    Point of ( 
    product G), r be 
    Real;
    
          assume
    
          
    
    A9: y0 
    in X & 
    0  
    < r; 
    
          defpred
    
    P[
    Nat, 
    Real] means for i be
    Element of 
    NAT st i 
    = $1 holds ( 
    0  
    < $2 & for y1 be 
    Point of ( 
    product G) st y1 
    in X & 
    ||.(y1
    - y0).|| 
    < $2 holds 
    ||.(((f
    `partial| (X,i)) 
    /. y1) 
    - ((f 
    `partial| (X,i)) 
    /. y0)).|| 
    < (r 
    / (2 
    * m))); 
    
          
    
    A10: 
    
          now
    
            let i be
    Nat;
    
            reconsider j = i as
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
            assume i
    in ( 
    Seg m); 
    
            then 1
    <= j & j 
    <= m by 
    FINSEQ_1: 1;
    
            then
    
            consider s be
    Real such that 
    
            
    
    A11: 
    0  
    < s & for y1 be 
    Point of ( 
    product G) st y1 
    in X & 
    ||.(y1
    - y0).|| 
    < s holds 
    ||.(((f
    `partial| (X,j)) 
    /. y1) 
    - ((f 
    `partial| (X,j)) 
    /. y0)).|| 
    < (r 
    / (2 
    * m)) by 
    A9,
    A4;
    
            reconsider s as
    Element of 
    REAL by 
    XREAL_0:def 1;
    
            take s;
    
            thus
    P[i, s] by
    A11;
    
          end;
    
          consider S be
    FinSequence of 
    REAL such that 
    
          
    
    A12: ( 
    dom S) 
    = ( 
    Seg m) & for i be 
    Nat st i 
    in ( 
    Seg m) holds 
    P[i, (S
    . i)] from 
    FINSEQ_1:sch 5(
    A10);
    
          take s = (
    min S); 
    
          
    
          
    
    A13: ( 
    len S) 
    = m by 
    A12,
    FINSEQ_1:def 3;
    
          then (
    min_p S) 
    in ( 
    dom S) by 
    RFINSEQ2:def 2;
    
          hence s
    >  
    0 by 
    A12;
    
          let y1 be
    Point of ( 
    product G); 
    
          assume
    
          
    
    A14: y1 
    in X & 
    ||.(y1
    - y0).|| 
    < s; 
    
          reconsider DD = ((
    diff (f,y1)) 
    - ( 
    diff (f,y0))) as 
    Lipschitzian  
    LinearOperator of ( 
    product G), F by 
    LOPBAN_1:def 9;
    
          
    
          
    
    A15: ( 
    upper_bound ( 
    PreNorms DD)) 
    =  
    ||.((
    diff (f,y1)) 
    - ( 
    diff (f,y0))).|| by 
    LOPBAN_1: 30;
    
          now
    
            let mt be
    Real;
    
            assume mt
    in ( 
    PreNorms DD); 
    
            then
    
            consider t be
    VECTOR of ( 
    product G) such that 
    
            
    
    A16: mt 
    =  
    ||.(DD
    . t).|| & 
    ||.t.||
    <= 1; 
    
            consider w0 be
    FinSequence of F such that 
    
            
    
    A17: ( 
    dom w0) 
    = ( 
    dom G) & (for i be 
    set st i 
    in ( 
    dom G) holds (w0 
    . i) 
    = (( 
    partdiff (f,y0,i)) 
    . (( 
    proj ( 
    In (i,( 
    dom G)))) 
    . t))) & (( 
    diff (f,y0)) 
    . t) 
    = ( 
    Sum w0) by 
    A1,
    A3,
    Th56,
    A9;
    
            reconsider Sw0 = (
    Sum w0) as 
    Point of F; 
    
            consider w1 be
    FinSequence of F such that 
    
            
    
    A18: ( 
    dom w1) 
    = ( 
    dom G) & (for i be 
    set st i 
    in ( 
    dom G) holds (w1 
    . i) 
    = (( 
    partdiff (f,y1,i)) 
    . (( 
    proj ( 
    In (i,( 
    dom G)))) 
    . t))) & (( 
    diff (f,y1)) 
    . t) 
    = ( 
    Sum w1) by 
    A1,
    A3,
    Th56,
    A14;
    
            reconsider Sw1 = (
    Sum w1) as 
    Point of F; 
    
            deffunc
    
    F(
    set) = ((w1
    /. $1) 
    - (w0 
    /. $1)); 
    
            consider w2 be
    FinSequence of F such that 
    
            
    
    A19: ( 
    len w2) 
    = m & for i be 
    Nat st i 
    in ( 
    dom w2) holds (w2 
    . i) 
    =  
    F(i) from
    FINSEQ_2:sch 1;
    
            
    
            
    
    A20: ( 
    len w1) 
    = m & ( 
    len w0) 
    = m by 
    A2,
    A17,
    A18,
    FINSEQ_1:def 3;
    
            now
    
              let i be
    Nat;
    
              assume i
    in ( 
    dom w1); 
    
              then i
    in ( 
    dom w2) by 
    A19,
    A2,
    A18,
    FINSEQ_1:def 3;
    
              hence (w2
    . i) 
    =  
    F(i) by
    A19;
    
            end;
    
            then (
    Sum w2) 
    = (( 
    Sum w1) 
    - ( 
    Sum w0)) by 
    A19,
    A20,
    RLVECT_2: 5;
    
            then
    
            
    
    A21: mt 
    =  
    ||.(
    Sum w2).|| by 
    A16,
    A18,
    A17,
    LOPBAN_1: 40;
    
            deffunc
    
    F(
    Nat) = (
    In ( 
    ||.(w2
    /. $1).||, 
    REAL )); 
    
            consider ys be
    FinSequence of 
    REAL such that 
    
            
    
    A22: ( 
    len ys) 
    = m & for j be 
    Nat st j 
    in ( 
    dom ys) holds (ys 
    . j) 
    =  
    F(j) from
    FINSEQ_2:sch 1;
    
            
    
    A23: 
    
            now
    
              let i be
    Element of 
    NAT ; 
    
              assume i
    in ( 
    dom w2); 
    
              then i
    in ( 
    Seg m) by 
    A19,
    FINSEQ_1:def 3;
    
              then i
    in ( 
    dom ys) by 
    A22,
    FINSEQ_1:def 3;
    
              
    
              hence (ys
    . i) 
    =  
    F(i) by
    A22
    
              .=
    ||.(w2
    /. i).||; 
    
            end;
    
            then
    
            
    
    A24: 
    ||.(
    Sum w2).|| 
    <= ( 
    Sum ys) by 
    A19,
    A22,
    Th7;
    
            reconsider rm = (r
    / (2 
    * m)) as 
    Element of 
    REAL by 
    XREAL_0:def 1;
    
            deffunc
    
    F(
    Nat) = rm;
    
            consider rs be
    FinSequence of 
    REAL such that 
    
            
    
    A25: ( 
    len rs) 
    = m & for j be 
    Nat st j 
    in ( 
    dom rs) holds (rs 
    . j) 
    =  
    F(j) from
    FINSEQ_2:sch 1;
    
            
    
            
    
    A26: ( 
    dom rs) 
    = ( 
    Seg m) by 
    A25,
    FINSEQ_1:def 3;
    
            now
    
              let a be
    object;
    
              assume a
    in ( 
    rng rs); 
    
              then
    
              consider b be
    object such that 
    
              
    
    A27: b 
    in ( 
    dom rs) & a 
    = (rs 
    . b) by 
    FUNCT_1:def 3;
    
              reconsider b as
    Nat by 
    A27;
    
              (rs
    . b) 
    = rm by 
    A27,
    A25;
    
              hence a
    in  
    {rm} by
    A27,
    TARSKI:def 1;
    
            end;
    
            then
    
            
    
    A28: ( 
    rng rs) 
    c=  
    {rm};
    
            now
    
              let a be
    object;
    
              assume a
    in  
    {rm};
    
              then
    
              
    
    A29: a 
    = rm by 
    TARSKI:def 1;
    
              
    
              
    
    A30: 1 
    in ( 
    dom rs) by 
    A5,
    A26;
    
              then a
    = (rs 
    . 1) by 
    A29,
    A25;
    
              hence a
    in ( 
    rng rs) by 
    A30,
    FUNCT_1: 3;
    
            end;
    
            then
    {rm}
    c= ( 
    rng rs); 
    
            then rs
    = (m 
    |-> (r 
    / (2 
    * m))) by 
    A26,
    A28,
    XBOOLE_0:def 10,
    FUNCOP_1: 9;
    
            
    
            then (
    Sum rs) 
    = (m 
    * (r 
    / (2 
    * m))) by 
    RVSUM_1: 80
    
            .= (m
    * ((r 
    / 2) 
    / m)) by 
    XCMPLX_1: 78;
    
            then
    
            
    
    A31: ( 
    Sum rs) 
    = (r 
    / 2) by 
    XCMPLX_1: 87;
    
            now
    
              let i be
    Element of 
    NAT ; 
    
              assume i
    in ( 
    dom ys); 
    
              then
    
              
    
    A32: i 
    in ( 
    Seg m) by 
    A22,
    FINSEQ_1:def 3;
    
              then
    
              
    
    A33: i 
    in ( 
    dom w2) & i 
    in ( 
    dom w1) & i 
    in ( 
    dom w0) by 
    A17,
    A18,
    A19,
    FINSEQ_1:def 3;
    
              then
    
              
    
    A34: (ys 
    . i) 
    =  
    ||.(w2
    /. i).|| & (w2 
    /. i) 
    = (w2 
    . i) by 
    A23,
    PARTFUN1:def 6;
    
              
    
              
    
    A35: i 
    in ( 
    dom rs) by 
    A25,
    A32,
    FINSEQ_1:def 3;
    
              reconsider p1 = (
    partdiff (f,y1,i)), p0 = ( 
    partdiff (f,y0,i)) as 
    Lipschitzian  
    LinearOperator of (G 
    . ( 
    In (i,( 
    dom G)))), F by 
    LOPBAN_1:def 9;
    
              reconsider P1 = (p1
    . (( 
    proj ( 
    In (i,( 
    dom G)))) 
    . t)) as 
    VECTOR of F; 
    
              reconsider P0 = (p0
    . (( 
    proj ( 
    In (i,( 
    dom G)))) 
    . t)) as 
    VECTOR of F; 
    
              (w0
    /. i) 
    = (w0 
    . i) & (w1 
    /. i) 
    = (w1 
    . i) by 
    A33,
    PARTFUN1:def 6;
    
              then (w0
    /. i) 
    = P0 & (w1 
    /. i) 
    = P1 by 
    A2,
    A17,
    A18,
    A32;
    
              then
    
              
    
    A36: (w2 
    . i) 
    = (P1 
    - P0) by 
    A33,
    A19;
    
              1
    <= i & i 
    <= ( 
    len S) by 
    A13,
    A32,
    FINSEQ_1: 1;
    
              then
    
              
    
    A37: s 
    <= (S 
    . i) & f 
    is_partial_differentiable_on (X,i) by 
    A2,
    A32,
    A3,
    RFINSEQ2: 2;
    
              then
    ||.(y1
    - y0).|| 
    < (S 
    . i) by 
    A14,
    XXREAL_0: 2;
    
              then
    ||.(((f
    `partial| (X,i)) 
    /. y1) 
    - ((f 
    `partial| (X,i)) 
    /. y0)).|| 
    < (r 
    / (2 
    * m)) by 
    A12,
    A32,
    A14;
    
              then
    ||.((
    partdiff (f,y1,i)) 
    - ((f 
    `partial| (X,i)) 
    /. y0)).|| 
    < (r 
    / (2 
    * m)) by 
    Def9,
    A14,
    A37;
    
              then
    
              
    
    A38: 
    ||.((
    partdiff (f,y1,i)) 
    - ( 
    partdiff (f,y0,i))).|| 
    < (r 
    / (2 
    * m)) by 
    Def9,
    A9,
    A37;
    
              reconsider PP = ((
    partdiff (f,y1,i)) 
    - ( 
    partdiff (f,y0,i))) as 
    Lipschitzian  
    LinearOperator of (G 
    . ( 
    In (i,( 
    dom G)))), F by 
    LOPBAN_1:def 9;
    
              
    
              
    
    A39: ( 
    upper_bound ( 
    PreNorms PP)) 
    =  
    ||.((
    partdiff (f,y1,i)) 
    - ( 
    partdiff (f,y0,i))).|| by 
    LOPBAN_1: 30;
    
              reconsider pt = ((
    proj ( 
    In (i,( 
    dom G)))) 
    . t) as 
    VECTOR of (G 
    . ( 
    In (i,( 
    dom G)))); 
    
              
    
              
    
    A40: (PP 
    . pt) 
    = (P1 
    - P0) by 
    LOPBAN_1: 40;
    
              
    ||.pt.||
    <=  
    ||.t.|| by
    Th31;
    
              then
    ||.pt.||
    <= 1 by 
    A16,
    XXREAL_0: 2;
    
              then
    ||.(PP
    . pt).|| 
    in ( 
    PreNorms PP) & ( 
    PreNorms PP) is non 
    empty
    bounded_above by 
    LOPBAN_1: 27;
    
              then
    ||.(PP
    . pt).|| 
    <= ( 
    upper_bound ( 
    PreNorms PP)) by 
    SEQ_4:def 1;
    
              then
    ||.(P1
    - P0).|| 
    <= (r 
    / (2 
    * m)) by 
    A40,
    A38,
    A39,
    XXREAL_0: 2;
    
              hence (ys
    . i) 
    <= (rs 
    . i) by 
    A34,
    A25,
    A35,
    A36;
    
            end;
    
            then (
    Sum ys) 
    <= (r 
    / 2) by 
    A31,
    A25,
    A22,
    INTEGRA5: 3;
    
            hence mt
    <= (r 
    / 2) by 
    A21,
    A24,
    XXREAL_0: 2;
    
          end;
    
          then
    ||.((
    diff (f,y1)) 
    - ( 
    diff (f,y0))).|| 
    <= (r 
    / 2) & (r 
    / 2) 
    < r by 
    A15,
    A9,
    SEQ_4: 45,
    XREAL_1: 216;
    
          then
    ||.((
    diff (f,y1)) 
    - ( 
    diff (f,y0))).|| 
    < r by 
    XXREAL_0: 2;
    
          then
    ||.((
    diff (f,y1)) 
    - ((f 
    `| X) 
    /. y0)).|| 
    < r by 
    A7,
    A9,
    NDIFF_1:def 9;
    
          hence
    ||.(((f
    `| X) 
    /. y1) 
    - ((f 
    `| X) 
    /. y0)).|| 
    < r by 
    A7,
    A14,
    NDIFF_1:def 9;
    
        end;
    
        hence (f
    `| X) 
    is_continuous_on X by 
    A8,
    NFCONT_1: 19;
    
      end;
    
      assume
    
      
    
    A41: f 
    is_differentiable_on X & (f 
    `| X) 
    is_continuous_on X; 
    
      then
    
      
    
    A42: X 
    c= ( 
    dom f) & for x be 
    Point of ( 
    product G) st x 
    in X holds f 
    is_differentiable_in x by 
    A1,
    NDIFF_1: 31;
    
      thus for i be
    set st i 
    in ( 
    dom G) holds f 
    is_partial_differentiable_on (X,i) & (f 
    `partial| (X,i)) 
    is_continuous_on X 
    
      proof
    
        let i be
    set;
    
        assume i
    in ( 
    dom G); 
    
        then
    
        reconsider i0 = i as
    Element of 
    NAT ; 
    
        now
    
          let x be
    Point of ( 
    product G); 
    
          assume x
    in X; 
    
          then f
    is_differentiable_in x by 
    A41,
    A1,
    NDIFF_1: 31;
    
          hence f
    is_partial_differentiable_in (x,i) & ( 
    partdiff (f,x,i)) 
    = (( 
    diff (f,x)) 
    * ( 
    reproj (( 
    In (i,( 
    dom G))),( 
    0. ( 
    product G))))) by 
    Th41;
    
        end;
    
        then for x be
    Point of ( 
    product G) st x 
    in X holds f 
    is_partial_differentiable_in (x,i); 
    
        hence
    
        
    
    A44: f 
    is_partial_differentiable_on (X,i) by 
    A1,
    Th32,
    A42;
    
        then
    
        
    
    A45: ( 
    dom (f 
    `partial| (X,i))) 
    = X by 
    Def9;
    
        for y0 be
    Point of ( 
    product G), r be 
    Real st y0 
    in X & 
    0  
    < r holds ex s be 
    Real st 
    0  
    < s & for y1 be 
    Point of ( 
    product G) st y1 
    in X & 
    ||.(y1
    - y0).|| 
    < s holds 
    ||.(((f
    `partial| (X,i)) 
    /. y1) 
    - ((f 
    `partial| (X,i)) 
    /. y0)).|| 
    < r 
    
        proof
    
          let y0 be
    Point of ( 
    product G), r be 
    Real;
    
          assume
    
          
    
    A46: y0 
    in X & 
    0  
    < r; 
    
          then
    
          consider s be
    Real such that 
    
          
    
    A47: 
    0  
    < s & for y1 be 
    Point of ( 
    product G) st y1 
    in X & 
    ||.(y1
    - y0).|| 
    < s holds 
    ||.(((f
    `| X) 
    /. y1) 
    - ((f 
    `| X) 
    /. y0)).|| 
    < r by 
    A41,
    NFCONT_1: 19;
    
          take s;
    
          thus
    0  
    < s by 
    A47;
    
          let y1 be
    Point of ( 
    product G); 
    
          assume
    
          
    
    A48: y1 
    in X & 
    ||.(y1
    - y0).|| 
    < s; 
    
          then
    ||.(((f
    `| X) 
    /. y1) 
    - ((f 
    `| X) 
    /. y0)).|| 
    < r by 
    A47;
    
          then
    ||.((
    diff (f,y1)) 
    - ((f 
    `| X) 
    /. y0)).|| 
    < r by 
    A48,
    A41,
    NDIFF_1:def 9;
    
          then
    
          
    
    A49: 
    ||.((
    diff (f,y1)) 
    - ( 
    diff (f,y0))).|| 
    < r by 
    A46,
    A41,
    NDIFF_1:def 9;
    
          f
    is_differentiable_in y1 & f 
    is_differentiable_in y0 by 
    A41,
    A1,
    A48,
    A46,
    NDIFF_1: 31;
    
          then
    
          
    
    A50: ( 
    partdiff (f,y1,i)) 
    = (( 
    diff (f,y1)) 
    * ( 
    reproj (( 
    In (i,( 
    dom G))),( 
    0. ( 
    product G))))) & ( 
    partdiff (f,y0,i)) 
    = (( 
    diff (f,y0)) 
    * ( 
    reproj (( 
    In (i,( 
    dom G))),( 
    0. ( 
    product G))))) by 
    Th41;
    
          reconsider PP = ((
    partdiff (f,y1,i)) 
    - ( 
    partdiff (f,y0,i))) as 
    Lipschitzian  
    LinearOperator of (G 
    . ( 
    In (i,( 
    dom G)))), F by 
    LOPBAN_1:def 9;
    
          reconsider DD = ((
    diff (f,y1)) 
    - ( 
    diff (f,y0))) as 
    Lipschitzian  
    LinearOperator of ( 
    product G), F by 
    LOPBAN_1:def 9;
    
          
    
          
    
    A51: ( 
    upper_bound ( 
    PreNorms PP)) 
    =  
    ||.((
    partdiff (f,y1,i)) 
    - ( 
    partdiff (f,y0,i))).|| & ( 
    upper_bound ( 
    PreNorms DD)) 
    =  
    ||.((
    diff (f,y1)) 
    - ( 
    diff (f,y0))).|| by 
    LOPBAN_1: 30;
    
          
    
          
    
    A52: ( 
    PreNorms PP) is 
    bounded_above & ( 
    PreNorms DD) is 
    bounded_above by 
    LOPBAN_1: 28;
    
          now
    
            let a be
    object;
    
            assume a
    in ( 
    PreNorms PP); 
    
            then
    
            consider t be
    VECTOR of (G 
    . ( 
    In (i,( 
    dom G)))) such that 
    
            
    
    A53: a 
    =  
    ||.(PP
    . t).|| & 
    ||.t.||
    <= 1; 
    
            
    
            
    
    A54: ( 
    dom ( 
    reproj (( 
    In (i,( 
    dom G))),( 
    0. ( 
    product G))))) 
    = the 
    carrier of (G 
    . ( 
    In (i,( 
    dom G)))) by 
    FUNCT_2:def 1;
    
            reconsider tm = ((
    reproj (( 
    In (i,( 
    dom G))),( 
    0. ( 
    product G)))) 
    . t) as 
    Point of ( 
    product G); 
    
            
    
            
    
    A55: 
    ||.tm.||
    <= 1 by 
    A53,
    Th21;
    
            ((
    partdiff (f,y1,i)) 
    . t) 
    = (( 
    diff (f,y1)) 
    . tm) & (( 
    partdiff (f,y0,i)) 
    . t) 
    = (( 
    diff (f,y0)) 
    . tm) by 
    A54,
    A50,
    FUNCT_1: 13;
    
            then
    ||.(PP
    . t).|| 
    =  
    ||.(((
    diff (f,y1)) 
    . tm) 
    - (( 
    diff (f,y0)) 
    . tm)).|| by 
    LOPBAN_1: 40;
    
            then
    ||.(PP
    . t).|| 
    =  
    ||.(DD
    . tm).|| by 
    LOPBAN_1: 40;
    
            hence a
    in ( 
    PreNorms DD) by 
    A53,
    A55;
    
          end;
    
          then (
    PreNorms PP) 
    c= ( 
    PreNorms DD); 
    
          then
    ||.((
    partdiff (f,y1,i)) 
    - ( 
    partdiff (f,y0,i))).|| 
    <=  
    ||.((
    diff (f,y1)) 
    - ( 
    diff (f,y0))).|| by 
    A52,
    A51,
    SEQ_4: 48;
    
          then
    ||.((
    partdiff (f,y1,i)) 
    - ( 
    partdiff (f,y0,i))).|| 
    < r by 
    A49,
    XXREAL_0: 2;
    
          then
    ||.((
    partdiff (f,y1,i)) 
    - ((f 
    `partial| (X,i)) 
    /. y0)).|| 
    < r by 
    Def9,
    A46,
    A44;
    
          hence
    ||.(((f
    `partial| (X,i)) 
    /. y1) 
    - ((f 
    `partial| (X,i)) 
    /. y0)).|| 
    < r by 
    Def9,
    A48,
    A44;
    
        end;
    
        hence (f
    `partial| (X,i)) 
    is_continuous_on X by 
    A45,
    NFCONT_1: 19;
    
      end;
    
    end;