random_2.miz
begin
reserve Omega for non
empty
set;
reserve r for
Real;
reserve Sigma for
SigmaField of Omega;
reserve P for
Probability of Sigma;
theorem ::
RANDOM_2:1
Th1: for f be
one-to-one
Function, A,B be
Subset of (
dom f) st A
misses B holds (
rng (f
| A))
misses (
rng (f
| B))
proof
let f be
one-to-one
Function, A,B be
Subset of (
dom f);
assume
A1: A
misses B;
assume (
rng (f
| A))
meets (
rng (f
| B));
then
consider y be
object such that
A2: y
in (
rng (f
| A)) & y
in (
rng (f
| B)) by
XBOOLE_0: 3;
consider xa be
object such that
A3: xa
in (
dom (f
| A)) & y
= ((f
| A)
. xa) by
A2,
FUNCT_1:def 3;
consider xb be
object such that
A4: xb
in (
dom (f
| B)) & y
= ((f
| B)
. xb) by
A2,
FUNCT_1:def 3;
A5: xa
in (
dom f) & xb
in (
dom f) by
A3,
A4,
RELAT_1: 57;
y
= (f
. xa) & y
= (f
. xb) by
A3,
A4,
FUNCT_1: 47;
then
A6: xa
= xb by
A5,
FUNCT_1:def 4;
(
dom (f
| A))
c= A & (
dom (f
| B))
c= B by
RELAT_1: 58;
then xa
in (A
/\ B) by
A6,
A3,
A4,
XBOOLE_0:def 4;
hence contradiction by
A1,
XBOOLE_0: 4;
end;
theorem ::
RANDOM_2:2
Th2: for f,g be
Function holds (
rng (f
* g))
c= (
rng (f
| (
rng g)))
proof
let f,g be
Function;
let y be
object;
assume y
in (
rng (f
* g));
then
consider x be
object such that
A1: x
in (
dom (f
* g)) & y
= ((f
* g)
. x) by
FUNCT_1:def 3;
A2: x
in (
dom g) & (g
. x)
in (
dom f) by
A1,
FUNCT_1: 11;
reconsider z = (g
. x) as
set;
(f
. z)
in (
rng (f
| (
rng g))) by
A2,
FUNCT_1: 3,
FUNCT_1: 50;
hence thesis by
A1,
FUNCT_1: 12;
end;
registration
let Omega, Sigma;
cluster
nonnegative for
Real-Valued-Random-Variable of Sigma;
existence
proof
set X = the
Real-Valued-Random-Variable of Sigma;
now
let x be
object;
assume x
in (
dom (
abs X));
then ((
abs X)
. x)
=
|.(X
. x) qua
Complex.| by
VALUED_1:def 11;
hence
0
<= ((
abs X)
. x) by
COMPLEX1: 46;
end;
then (
abs X) is
nonnegative by
MESFUNC6: 52;
hence thesis;
end;
end
registration
let Omega, Sigma;
let X be
Real-Valued-Random-Variable of Sigma;
cluster (
abs X) ->
nonnegative;
coherence
proof
now
let x be
object;
assume x
in (
dom (
abs X));
then ((
abs X)
. x)
=
|.(X
. x) qua
Complex.| by
VALUED_1:def 11;
hence
0
<= ((
abs X)
. x) by
COMPLEX1: 46;
end;
hence thesis by
MESFUNC6: 52;
end;
end
theorem ::
RANDOM_2:3
Th3: (Omega
--> 1)
= (
chi (Omega,Omega))
proof
set E0 = (Omega
--> 1);
A1: (
dom (
chi (Omega,Omega)))
= Omega by
FUNCT_3:def 3;
A2: (
dom E0)
= Omega by
FUNCT_2:def 1;
now
let x be
object;
assume
A3: x
in (
dom (
chi (Omega,Omega)));
per cases ;
suppose x
in Omega;
hence ((
chi (Omega,Omega))
. x)
= 1 by
FUNCT_3:def 3
.= (E0
. x) by
A3,
FUNCOP_1: 7;
end;
suppose not x
in Omega;
hence ((
chi (Omega,Omega))
. x)
= (E0
. x) by
A3;
end;
end;
hence thesis by
A1,
A2,
FUNCT_1: 2;
end;
theorem ::
RANDOM_2:4
Th4: (Omega
--> r) is
Real-Valued-Random-Variable of Sigma
proof
set E0 = (Omega
--> 1);
set E = (Omega
--> r);
reconsider S = Omega as
Element of Sigma by
MEASURE1: 7;
A1: (
dom E0)
= Omega & (
rng E0)
c=
{1} by
FUNCOP_1: 13;
reconsider E0 as
Function of Omega,
REAL by
FUNCT_2: 7,
NUMBERS: 19;
A2: (
R_EAL E0)
= (
chi (S,Omega)) by
Th3;
(
chi (S,Omega)) is S
-measurable by
MESFUNC2: 29;
then E0 is (
[#] Sigma)
-measurable by
A2,
MESFUNC6:def 1;
then
A3: E0 is
Real-Valued-Random-Variable of Sigma by
RANDOM_1:def 2;
A4: (
dom E)
= (
dom E0) by
A1,
FUNCT_2:def 1;
now
let x be
object;
assume
A5: x
in (
dom E);
hence (E
. x)
= (r
* 1) by
FUNCOP_1: 7
.= (r
* (E0
. x)) by
A5,
FUNCOP_1: 7;
end;
then E
= (r
(#) E0) by
A4,
VALUED_1:def 5;
hence thesis by
A3,
RANDOM_1: 20;
end;
theorem ::
RANDOM_2:5
Th5: for X be non
empty
set, f be
PartFunc of X,
REAL holds (f
to_power 2)
= ((
- f)
to_power 2) & (f
to_power 2)
= ((
abs f)
to_power 2)
proof
let X be non
empty
set, f be
PartFunc of X,
REAL ;
(
dom (
- f))
= (
dom f) by
VALUED_1: 8;
then (
dom ((
- f)
to_power 2))
= (
dom f) by
MESFUN6C:def 4;
then
A1: (
dom (f
to_power 2))
= (
dom ((
- f)
to_power 2)) by
MESFUN6C:def 4;
(
dom (
abs f))
= (
dom f) by
VALUED_1:def 11;
then
A2: (
dom ((
abs f)
to_power 2))
= (
dom f) by
MESFUN6C:def 4;
then
A3: (
dom (f
to_power 2))
= (
dom ((
abs f)
to_power 2)) by
MESFUN6C:def 4;
for x be
Element of X st x
in (
dom (f
to_power 2)) holds ((f
to_power 2)
. x)
= (((
- f)
to_power 2)
. x) & ((f
to_power 2)
. x)
= (((
abs f)
to_power 2)
. x)
proof
let x be
Element of X;
assume
A4: x
in (
dom (f
to_power 2));
then
A5: x
in (
dom ((
- f)
to_power 2)) & x
in (
dom (f
to_power 2)) & x
in (
dom f) & x
in (
dom (
- f)) & x
in (
dom ((
abs f)
to_power 2)) by
A2,
A1,
MESFUN6C:def 4;
A6: (((
- f)
to_power 2)
. x)
= (((
- f)
. x)
to_power 2) by
A4,
A1,
MESFUN6C:def 4
.= ((
- (f
. x))
to_power 2) by
VALUED_1: 8
.= ((f
. x)
to_power 2) by
FIB_NUM3: 3
.= ((f
to_power 2)
. x) by
A4,
MESFUN6C:def 4;
(((
abs f)
to_power 2)
. x)
= ((f
to_power 2)
. x)
proof
A7: (((
abs f)
to_power 2)
. x)
= (((
abs f)
. x)
to_power 2) by
A5,
MESFUN6C:def 4
.= (
|.(f
. x) qua
Complex.|
to_power 2) by
VALUED_1: 18;
now
per cases by
A7,
ABSVALUE: 1;
case (((
abs f)
to_power 2)
. x)
= ((f
. x)
to_power 2);
hence thesis by
A4,
MESFUN6C:def 4;
end;
case (((
abs f)
to_power 2)
. x)
= ((
- (f
. x))
to_power 2);
then (((
abs f)
to_power 2)
. x)
= ((f
. x)
to_power 2) by
FIB_NUM3: 3
.= ((f
to_power 2)
. x) by
A4,
MESFUN6C:def 4;
hence thesis;
end;
end;
hence thesis;
end;
hence thesis by
A6;
end;
then (for x be
Element of X st x
in (
dom (f
to_power 2)) holds ((f
to_power 2)
. x)
= (((
- f)
to_power 2)
. x)) & (for x be
Element of X st x
in (
dom (f
to_power 2)) holds ((f
to_power 2)
. x)
= (((
abs f)
to_power 2)
. x));
hence thesis by
A1,
A3,
PARTFUN1: 5;
end;
theorem ::
RANDOM_2:6
Th6: for X be non
empty
set, f,g be
PartFunc of X,
REAL holds ((f
+ g)
to_power 2)
= (((f
to_power 2)
+ (2
(#) (f
(#) g)))
+ (g
to_power 2)) & ((f
- g)
to_power 2)
= (((f
to_power 2)
- (2
(#) (f
(#) g)))
+ (g
to_power 2))
proof
let X be non
empty
set, f,g be
PartFunc of X,
REAL ;
A1: (
dom (f
to_power 2))
= (
dom f) & for x be
Element of X st x
in (
dom (f
to_power 2)) holds ((f
to_power 2)
. x)
= ((f
. x)
to_power 2) by
MESFUN6C:def 4;
A2: (
dom (g
to_power 2))
= (
dom g) & for x be
Element of X st x
in (
dom (g
to_power 2)) holds ((g
to_power 2)
. x)
= ((g
. x)
to_power 2) by
MESFUN6C:def 4;
A3: (
dom (2
(#) (f
(#) g)))
= (
dom (f
(#) g)) by
VALUED_1:def 5
.= ((
dom f)
/\ (
dom g)) by
VALUED_1:def 4;
A4:
now
let x be
Element of X;
assume x
in ((
dom f)
/\ (
dom g));
thus ((2
(#) (f
(#) g))
. x)
= (2
* ((f
(#) g)
. x)) by
VALUED_1: 6
.= (2
* ((f
. x)
* (g
. x))) by
VALUED_1: 5
.= ((2
* (f
. x))
* (g
. x));
end;
A5: (
dom ((f
+ g)
to_power 2))
= (
dom (f
+ g)) by
MESFUN6C:def 4
.= ((
dom f)
/\ (
dom g)) by
VALUED_1:def 1;
A6: (
dom ((f
- g)
to_power 2))
= (
dom (f
- g)) by
MESFUN6C:def 4
.= ((
dom f)
/\ (
dom g)) by
VALUED_1: 12;
A7: (
dom ((f
to_power 2)
+ (2
(#) (f
(#) g))))
= ((
dom f)
/\ (
dom (2
(#) (f
(#) g)))) by
A1,
VALUED_1:def 1
.= ((
dom f)
/\ (
dom g)) by
A3,
XBOOLE_1: 17,
XBOOLE_1: 28;
A8: (
dom ((f
to_power 2)
- (2
(#) (f
(#) g))))
= ((
dom f)
/\ (
dom (2
(#) (f
(#) g)))) by
A1,
VALUED_1: 12
.= ((
dom f)
/\ (
dom g)) by
A3,
XBOOLE_1: 17,
XBOOLE_1: 28;
A9: (
dom (((f
to_power 2)
+ (2
(#) (f
(#) g)))
+ (g
to_power 2)))
= ((
dom ((f
to_power 2)
+ (2
(#) (f
(#) g))))
/\ (
dom g)) by
A2,
VALUED_1:def 1
.= (((
dom f)
/\ (
dom (2
(#) (f
(#) g))))
/\ (
dom g)) by
A1,
VALUED_1:def 1
.= (((
dom f)
/\ (
dom g))
/\ (
dom g)) by
A3,
XBOOLE_1: 17,
XBOOLE_1: 28
.= ((
dom f)
/\ (
dom g)) by
XBOOLE_1: 17,
XBOOLE_1: 28;
A10: (
dom (((f
to_power 2)
- (2
(#) (f
(#) g)))
+ (g
to_power 2)))
= ((
dom ((f
to_power 2)
- (2
(#) (f
(#) g))))
/\ (
dom g)) by
A2,
VALUED_1:def 1
.= ((
dom f)
/\ (
dom g)) by
A8,
XBOOLE_1: 17,
XBOOLE_1: 28;
now
let x be
Element of X;
assume
A11: x
in ((
dom f)
/\ (
dom g));
then
A12: x
in (
dom (f
+ g)) by
VALUED_1:def 1;
A13: x
in (
dom f) by
A11,
XBOOLE_0:def 4;
A14: x
in (
dom g) by
A11,
XBOOLE_0:def 4;
A15: x
in (
dom (f
- g)) by
A11,
VALUED_1: 12;
then
A16: x
in (
dom ((f
- g)
to_power 2)) by
MESFUN6C:def 4;
A17: (((f
+ g)
to_power 2)
. x)
= (((f
+ g)
. x)
to_power 2) by
A11,
A5,
MESFUN6C:def 4
.= (((f
. x)
+ (g
. x))
to_power 2) by
A12,
VALUED_1:def 1
.= (((f
. x)
+ (g
. x))
^2 ) by
POWER: 46
.= ((((f
. x)
^2 )
+ ((2
* (f
. x))
* (g
. x)))
+ ((g
. x)
^2 ))
.= ((((f
. x)
to_power 2)
+ ((2
* (f
. x))
* (g
. x)))
+ ((g
. x)
^2 )) by
POWER: 46
.= ((((f
. x)
to_power 2)
+ ((2
* (f
. x))
* (g
. x)))
+ ((g
. x)
to_power 2)) by
POWER: 46
.= ((((f
to_power 2)
. x)
+ ((2
* (f
. x))
* (g
. x)))
+ ((g
. x)
to_power 2)) by
A1,
A13
.= ((((f
to_power 2)
. x)
+ ((2
* (f
. x))
* (g
. x)))
+ ((g
to_power 2)
. x)) by
A2,
A14
.= ((((f
to_power 2)
. x)
+ ((2
(#) (f
(#) g))
. x))
+ ((g
to_power 2)
. x)) by
A4,
A11
.= ((((f
to_power 2)
+ (2
(#) (f
(#) g)))
. x)
+ ((g
to_power 2)
. x)) by
A7,
A11,
VALUED_1:def 1
.= ((((f
to_power 2)
+ (2
(#) (f
(#) g)))
+ (g
to_power 2))
. x) by
A9,
A11,
VALUED_1:def 1;
(((f
- g)
to_power 2)
. x)
= (((f
- g)
. x)
to_power 2) by
A16,
MESFUN6C:def 4
.= (((f
. x)
- (g
. x))
to_power 2) by
A15,
VALUED_1: 13
.= (((f
. x)
- (g
. x))
^2 ) by
POWER: 46
.= ((((f
. x)
^2 )
- ((2
* (f
. x))
* (g
. x)))
+ ((g
. x)
^2 ))
.= ((((f
. x)
to_power 2)
- ((2
* (f
. x))
* (g
. x)))
+ ((g
. x)
^2 )) by
POWER: 46
.= ((((f
. x)
to_power 2)
- ((2
* (f
. x))
* (g
. x)))
+ ((g
. x)
to_power 2)) by
POWER: 46
.= ((((f
to_power 2)
. x)
- ((2
* (f
. x))
* (g
. x)))
+ ((g
. x)
to_power 2)) by
A1,
A13
.= ((((f
to_power 2)
. x)
- ((2
* (f
. x))
* (g
. x)))
+ ((g
to_power 2)
. x)) by
A2,
A14
.= ((((f
to_power 2)
. x)
- ((2
(#) (f
(#) g))
. x))
+ ((g
to_power 2)
. x)) by
A4,
A11
.= ((((f
to_power 2)
- (2
(#) (f
(#) g)))
. x)
+ ((g
to_power 2)
. x)) by
A8,
A11,
VALUED_1: 13
.= ((((f
to_power 2)
- (2
(#) (f
(#) g)))
+ (g
to_power 2))
. x) by
A10,
A11,
VALUED_1:def 1;
hence (((f
+ g)
to_power 2)
. x)
= ((((f
to_power 2)
+ (2
(#) (f
(#) g)))
+ (g
to_power 2))
. x) & (((f
- g)
to_power 2)
. x)
= ((((f
to_power 2)
- (2
(#) (f
(#) g)))
+ (g
to_power 2))
. x) by
A17;
end;
then (for x be
Element of X st x
in (
dom ((f
+ g)
to_power 2)) holds (((f
+ g)
to_power 2)
. x)
= ((((f
to_power 2)
+ (2
(#) (f
(#) g)))
+ (g
to_power 2))
. x)) & (for x be
Element of X st x
in (
dom ((f
- g)
to_power 2)) holds (((f
- g)
to_power 2)
. x)
= ((((f
to_power 2)
- (2
(#) (f
(#) g)))
+ (g
to_power 2))
. x)) by
A5,
A6;
hence thesis by
A5,
A9,
A10,
A6,
PARTFUN1: 5;
end;
definition
let Omega, Sigma, P;
let X be
Real-Valued-Random-Variable of Sigma;
assume
A1: X
is_integrable_on P & ((
abs X)
to_power 2)
is_integrable_on (
P2M P);
::
RANDOM_2:def1
func
variance (X,P) ->
Real means
:
Def1: ex Y be
Real-Valued-Random-Variable of Sigma, E be
Real-Valued-Random-Variable of Sigma st E
= (Omega
--> (
expect (X,P))) & Y
= (X
- E) & Y
is_integrable_on P & ((
abs Y)
to_power 2)
is_integrable_on (
P2M P) & it
= (
Integral ((
P2M P),((
abs Y)
to_power 2)));
correctness
proof
set S = (
[#] Sigma);
A3: 1
in
REAL by
XREAL_0:def 1;
((
P2M P)
. S)
<= 1 by
PROB_1: 35;
then
A4: ((
P2M P)
. S)
<
+infty by
XXREAL_0: 2,
XXREAL_0: 9,
A3;
set r = (
expect (X,P));
set E0 = (Omega
--> 1);
set E = (Omega
--> (
expect (X,P)));
A5: (
dom E0)
= Omega & (
rng E0)
c=
{1} by
FUNCOP_1: 13;
reconsider E0 as
Real-Valued-Random-Variable of Sigma by
Th4;
A6: (
R_EAL E0)
= (
chi (S,Omega)) by
Th3;
A7: (
dom E)
= (
dom E0) by
A5,
FUNCT_2:def 1;
now
let x be
object;
assume
A8: x
in (
dom E);
hence (E
. x)
= (r
* 1) by
FUNCOP_1: 7
.= (r
* (E0
. x)) by
A8,
FUNCOP_1: 7;
end;
then
A9: E
= (r
(#) E0) by
A7,
VALUED_1:def 5;
reconsider E as
Real-Valued-Random-Variable of Sigma by
Th4;
set Y = (X
- E);
reconsider Y as
Real-Valued-Random-Variable of Sigma;
(
chi (S,Omega))
is_integrable_on (
P2M P) by
A4,
MESFUNC7: 24;
then
A10: E0
is_integrable_on (
P2M P) by
A6,
MESFUNC6:def 4;
then
A11: (r
(#) E0)
is_integrable_on (
P2M P) by
MESFUNC6: 102;
A12: ((
- 1)
(#) (r
(#) E0))
is_integrable_on (
P2M P) by
A11,
MESFUNC6: 102;
A13: X
is_integrable_on (
P2M P) by
A1,
RANDOM_1:def 3;
then Y
is_integrable_on (
P2M P) by
A9,
A12,
MESFUNC6: 100;
then
A14: Y
is_integrable_on P by
RANDOM_1:def 3;
((2
* r)
(#) X)
is_integrable_on (
P2M P) by
A13,
MESFUNC6: 102;
then ((
- 1)
(#) ((2
* r)
(#) X))
is_integrable_on (
P2M P) by
MESFUNC6: 102;
then
A15: (((
abs X)
to_power 2)
- ((2
* r)
(#) X))
is_integrable_on (
P2M P) by
A1,
MESFUNC6: 100;
A16: (((X
to_power 2)
- (2
(#) ((r
(#) E0)
(#) X)))
+ ((r
(#) E0)
to_power 2))
= (((X
to_power 2)
- ((2
* r)
(#) X))
+ ((r
* r)
(#) E0))
proof
A17: (
dom (X
to_power 2))
= (
dom X) by
MESFUN6C:def 4;
A18: (
dom (2
(#) ((r
(#) E0)
(#) X)))
= (
dom ((r
(#) E0)
(#) X)) by
VALUED_1:def 5
.= ((
dom (r
(#) E0))
/\ (
dom X)) by
VALUED_1:def 4
.= (Omega
/\ (
dom X)) by
A5,
VALUED_1:def 5;
A19: (
dom ((r
(#) E0)
to_power 2))
= (
dom (r
(#) E0)) by
MESFUN6C:def 4
.= Omega by
A5,
VALUED_1:def 5;
A20: (
dom ((r
* r)
(#) E0))
= Omega by
A5,
VALUED_1:def 5;
A21: (
dom ((2
* r)
(#) X))
= (
dom X) by
VALUED_1:def 5;
A22: (
dom ((X
to_power 2)
- (2
(#) ((r
(#) E0)
(#) X))))
= ((
dom X)
/\ (Omega
/\ (
dom X))) by
A17,
A18,
VALUED_1: 12
.= (((
dom X)
/\ (
dom X))
/\ Omega) by
XBOOLE_1: 16
.= ((
dom X)
/\ Omega);
A23: (
dom ((X
to_power 2)
- ((2
* r)
(#) X)))
= ((
dom (X
to_power 2))
/\ (
dom ((2
* r)
(#) X))) by
VALUED_1: 12
.= (
dom X) by
A17,
A21;
A24: (
dom (((X
to_power 2)
- (2
(#) ((r
(#) E0)
(#) X)))
+ ((r
(#) E0)
to_power 2)))
= ((
dom ((X
to_power 2)
- (2
(#) ((r
(#) E0)
(#) X))))
/\ (
dom ((r
(#) E0)
to_power 2))) by
VALUED_1:def 1
.= ((
dom X)
/\ (Omega
/\ Omega)) by
A19,
A22,
XBOOLE_1: 16
.= ((
dom X)
/\ Omega);
then
A25: (
dom (((X
to_power 2)
- (2
(#) ((r
(#) E0)
(#) X)))
+ ((r
(#) E0)
to_power 2)))
= (
dom (((X
to_power 2)
- ((2
* r)
(#) X))
+ ((r
* r)
(#) E0))) by
A20,
A23,
VALUED_1:def 1;
for x be
Element of Omega st x
in (
dom (((X
to_power 2)
- (2
(#) ((r
(#) E0)
(#) X)))
+ ((r
(#) E0)
to_power 2))) holds ((((X
to_power 2)
- (2
(#) ((r
(#) E0)
(#) X)))
+ ((r
(#) E0)
to_power 2))
. x)
= ((((X
to_power 2)
- ((2
* r)
(#) X))
+ ((r
* r)
(#) E0))
. x)
proof
let x be
Element of Omega;
assume
A26: x
in (
dom (((X
to_power 2)
- (2
(#) ((r
(#) E0)
(#) X)))
+ ((r
(#) E0)
to_power 2)));
then
A27: x
in (
dom X) & x
in Omega by
A24,
XBOOLE_0:def 4;
A28: ((((X
to_power 2)
- (2
(#) ((r
(#) E0)
(#) X)))
+ ((r
(#) E0)
to_power 2))
. x)
= ((((X
to_power 2)
- (2
(#) ((r
(#) E0)
(#) X)))
. x)
+ (((r
(#) E0)
to_power 2)
. x)) by
A26,
VALUED_1:def 1
.= ((((X
to_power 2)
. x)
- ((2
(#) ((r
(#) E0)
(#) X))
. x))
+ (((r
(#) E0)
to_power 2)
. x)) by
A22,
A24,
A26,
VALUED_1: 13
.= ((((X
to_power 2)
. x)
- (2
* (((r
(#) E0)
(#) X)
. x)))
+ (((r
(#) E0)
to_power 2)
. x)) by
VALUED_1: 6
.= ((((X
to_power 2)
. x)
- (2
* (((r
(#) E0)
. x)
* (X
. x))))
+ (((r
(#) E0)
to_power 2)
. x)) by
VALUED_1: 5
.= ((((X
to_power 2)
. x)
- (2
* ((r
* (E0
. x))
* (X
. x))))
+ (((r
(#) E0)
to_power 2)
. x)) by
VALUED_1: 6
.= ((((X
to_power 2)
. x)
- (2
* ((r
* 1)
* (X
. x))))
+ (((r
(#) E0)
to_power 2)
. x)) by
FUNCOP_1: 7
.= ((((X
to_power 2)
. x)
- ((2
* r)
* (X
. x)))
+ (((r
(#) E0)
. x)
to_power 2)) by
A19,
MESFUN6C:def 4
.= ((((X
to_power 2)
. x)
- ((2
* r)
* (X
. x)))
+ ((r
* (E0
. x))
to_power 2)) by
VALUED_1: 6
.= ((((X
to_power 2)
. x)
- ((2
* r)
* (X
. x)))
+ ((r
* 1)
to_power 2)) by
FUNCOP_1: 7
.= ((((X
to_power 2)
. x)
- ((2
* r)
* (X
. x)))
+ (r
^2 )) by
POWER: 46
.= ((((X
to_power 2)
. x)
- ((2
* r)
* (X
. x)))
+ (r
* r));
((((X
to_power 2)
- ((2
* r)
(#) X))
+ ((r
* r)
(#) E0))
. x)
= ((((X
to_power 2)
- ((2
* r)
(#) X))
. x)
+ (((r
* r)
(#) E0)
. x)) by
A26,
A25,
VALUED_1:def 1
.= ((((X
to_power 2)
. x)
- (((2
* r)
(#) X)
. x))
+ (((r
* r)
(#) E0)
. x)) by
A23,
A27,
VALUED_1: 13
.= ((((X
to_power 2)
. x)
- ((2
* r)
* (X
. x)))
+ (((r
* r)
(#) E0)
. x)) by
VALUED_1: 6
.= ((((X
to_power 2)
. x)
- ((2
* r)
* (X
. x)))
+ ((r
* r)
* (E0
. x))) by
VALUED_1: 6
.= ((((X
to_power 2)
. x)
- ((2
* r)
* (X
. x)))
+ ((r
* r)
* 1)) by
FUNCOP_1: 7
.= ((((X
to_power 2)
. x)
- ((2
* r)
* (X
. x)))
+ (r
* r));
hence thesis by
A28;
end;
hence thesis by
A25,
PARTFUN1: 5;
end;
A29: ((
abs Y)
to_power 2)
= ((X
- (r
(#) E0))
to_power 2) by
Th5,
A9
.= (((X
to_power 2)
- (2
(#) ((r
(#) E0)
(#) X)))
+ ((r
(#) E0)
to_power 2)) by
Th6
.= ((((
abs X)
to_power 2)
- ((2
* r)
(#) X))
+ ((r
* r)
(#) E0)) by
Th5,
A16;
A30: ((r
* r)
(#) E0)
is_integrable_on (
P2M P) by
A10,
MESFUNC6: 102;
then ((
abs Y)
to_power 2)
is_integrable_on (
P2M P) by
A15,
A29,
MESFUNC6: 100;
then
-infty
< (
Integral ((
P2M P),((
abs Y)
to_power 2))) & (
Integral ((
P2M P),((
abs Y)
to_power 2)))
<
+infty by
MESFUNC6: 90;
then (
Integral ((
P2M P),((
abs Y)
to_power 2))) is
Element of
REAL by
XXREAL_0: 14;
hence thesis by
A30,
A15,
A29,
A14,
MESFUNC6: 100;
end;
end
begin
theorem ::
RANDOM_2:7
for Omega, Sigma, P, r holds for X be
Real-Valued-Random-Variable of Sigma st
0
< r & X is
nonnegative & X
is_integrable_on P & ((
abs X)
to_power 2)
is_integrable_on (
P2M P) holds (P
. { t where t be
Element of Omega : r
<=
|.((X
. t)
- (
expect (X,P))) qua
Complex.| })
<= ((
variance (X,P))
/ (r
to_power 2))
proof
let Omega, Sigma, P, r;
let X be
Real-Valued-Random-Variable of Sigma;
assume
A1:
0
< r & X is
nonnegative & X
is_integrable_on P & ((
abs X)
to_power 2)
is_integrable_on (
P2M P);
A2: { t where t be
Element of Omega : r
<=
|.((X
. t)
- (
expect (X,P))) qua
Complex.| }
c= { t where t be
Element of Omega : (r
to_power 2)
<= (
|.((X
. t)
- (
expect (X,P))) qua
Complex.|
to_power 2) }
proof
let s be
object;
assume s
in { t where t be
Element of Omega : r
<=
|.((X
. t)
- (
expect (X,P))) qua
Complex.| };
then
A3: ex ss be
Element of Omega st s
= ss & r
<=
|.((X
. ss)
- (
expect (X,P))) qua
Complex.|;
A4: (r
^2 )
= (r
to_power 2) & (
|.((X
. s)
- (
expect (X,P))) qua
Complex.|
^2 )
= (
|.((X
. s)
- (
expect (X,P))) qua
Complex.|
to_power 2) by
POWER: 46;
(r
^2 )
<= (
|.((X
. s)
- (
expect (X,P))) qua
Complex.|
^2 ) by
A1,
A3,
SQUARE_1: 15;
hence thesis by
A3,
A4;
end;
{ t where t be
Element of Omega : (r
to_power 2)
<= (
|.((X
. t)
- (
expect (X,P))) qua
Complex.|
to_power 2) }
c= { t where t be
Element of Omega : r
<=
|.((X
. t)
- (
expect (X,P))) qua
Complex.| }
proof
let s be
object;
assume s
in { t where t be
Element of Omega : (r
to_power 2)
<= (
|.((X
. t)
- (
expect (X,P))) qua
Complex.|
to_power 2) };
then
A5: ex ss be
Element of Omega st s
= ss & (r
to_power 2)
<= (
|.((X
. ss)
- (
expect (X,P))) qua
Complex.|
to_power 2);
A6:
0
<=
|.((X
. s)
- (
expect (X,P))) qua
Complex.| by
COMPLEX1: 46;
(r
^2 )
= (r
to_power 2) & (
|.((X
. s)
- (
expect (X,P))) qua
Complex.|
^2 )
= (
|.((X
. s)
- (
expect (X,P))) qua
Complex.|
to_power 2) by
POWER: 46;
then r
<=
|.((X
. s)
- (
expect (X,P))) qua
Complex.| by
A6,
A5,
SQUARE_1: 47;
hence thesis by
A5;
end;
then
A7: { t where t be
Element of Omega : r
<=
|.((X
. t)
- (
expect (X,P))) qua
Complex.| }
= { t where t be
Element of Omega : (r
to_power 2)
<= (
|.((X
. t)
- (
expect (X,P))) qua
Complex.|
to_power 2) } by
A2,
XBOOLE_0:def 10;
consider Y be
Real-Valued-Random-Variable of Sigma, E be
Real-Valued-Random-Variable of Sigma such that
A8: E
= (Omega
--> (
expect (X,P))) & Y
= (X
- E) & Y
is_integrable_on P & ((
abs Y)
to_power 2)
is_integrable_on (
P2M P) & (
variance (X,P))
= (
Integral ((
P2M P),((
abs Y)
to_power 2))) by
Def1,
A1;
reconsider Z = ((
abs Y)
to_power 2) as
Real-Valued-Random-Variable of Sigma by
RANDOM_1: 23;
A9: Z
is_integrable_on P by
A8,
RANDOM_1:def 3;
then
A10: (P
. { t where t be
Element of Omega : (r
to_power 2)
<= (Z
. t) })
<= ((
expect (Z,P))
/ (r
to_power 2)) by
A1,
POWER: 34,
RANDOM_1: 36;
A11: (
expect (Z,P))
= (
variance (X,P)) by
A8,
A9,
RANDOM_1:def 4;
A12: (
dom X)
= Omega by
FUNCT_2:def 1;
A13: (
dom (Omega
--> (
expect (X,P))))
= Omega by
FUNCOP_1: 13;
A14: (
dom (X
- (Omega
--> (
expect (X,P)))))
= ((
dom X)
/\ (
dom (Omega
--> (
expect (X,P))))) by
VALUED_1: 12
.= Omega by
A12,
A13;
then
A15: (
dom
|.(X
- (Omega
--> (
expect (X,P)))).|)
= Omega by
VALUED_1:def 11;
then
A16: (
dom (
|.(X
- (Omega
--> (
expect (X,P)))).|
to_power 2))
= Omega by
MESFUN6C:def 4;
A17: { t where t be
Element of Omega : (r
to_power 2)
<= (
|.((X
. t)
- (
expect (X,P))) qua
Complex.|
to_power 2) }
c= { t where t be
Element of Omega : (r
to_power 2)
<= (Z
. t) }
proof
let s be
object;
assume s
in { t where t be
Element of Omega : (r
to_power 2)
<= (
|.((X
. t)
- (
expect (X,P))) qua
Complex.|
to_power 2) };
then
A18: ex ss be
Element of Omega st s
= ss & (r
to_power 2)
<= (
|.((X
. ss)
- (
expect (X,P))) qua
Complex.|
to_power 2);
then (Z
. s)
= ((
|.(X
- (Omega
--> (
expect (X,P)))).|
. s)
to_power 2) by
A16,
A8,
MESFUN6C:def 4
.= (
|.((X
- (Omega
--> (
expect (X,P))))
. s) qua
Complex.|
to_power 2) by
A15,
A18,
VALUED_1:def 11
.= (
|.((X
. s)
- ((Omega
--> (
expect (X,P)))
. s)) qua
Complex.|
to_power 2) by
A14,
A18,
VALUED_1: 13
.= (
|.((X
. s)
- (
expect (X,P))) qua
Complex.|
to_power 2) by
A18,
FUNCOP_1: 7;
hence thesis by
A18;
end;
{ t where t be
Element of Omega : (r
to_power 2)
<= (Z
. t) }
c= { t where t be
Element of Omega : (r
to_power 2)
<= (
|.((X
. t)
- (
expect (X,P))) qua
Complex.|
to_power 2) }
proof
let s be
object;
assume s
in { t where t be
Element of Omega : (r
to_power 2)
<= (Z
. t) };
then
A19: ex ss be
Element of Omega st s
= ss & (r
to_power 2)
<= (Z
. ss);
then (Z
. s)
= ((
|.(X
- (Omega
--> (
expect (X,P)))).|
. s)
to_power 2) by
A16,
A8,
MESFUN6C:def 4
.= (
|.((X
- (Omega
--> (
expect (X,P))))
. s) qua
Complex.|
to_power 2) by
A15,
A19,
VALUED_1:def 11
.= (
|.((X
. s)
- ((Omega
--> (
expect (X,P)))
. s)) qua
Complex.|
to_power 2) by
A14,
A19,
VALUED_1: 13
.= (
|.((X
. s)
- (
expect (X,P))) qua
Complex.|
to_power 2) by
A19,
FUNCOP_1: 7;
hence thesis by
A19;
end;
hence thesis by
A11,
A10,
A7,
A17,
XBOOLE_0:def 10;
end;
begin
theorem ::
RANDOM_2:8
Th8: for Omega be non
empty
finite
set, f be
Function of Omega,
REAL , P be
Function of (
bool Omega),
REAL st (for x be
set st x
c= Omega holds
0
<= (P
. x) & (P
. x)
<= 1) & (P
. Omega)
= 1 & for z be
finite
Subset of Omega holds (P
. z)
= (
setopfunc (z,Omega,
REAL ,f,
addreal )) holds P is
Probability of (
Trivial-SigmaField Omega)
proof
let Omega be non
empty
finite
set, f be
Function of Omega,
REAL , P be
Function of (
bool Omega),
REAL ;
assume that
A1: for x be
set st x
c= Omega holds
0
<= (P
. x) & (P
. x)
<= 1 and
A2: (P
. Omega)
= 1 and
A3: for z be
finite
Subset of Omega holds (P
. z)
= (
setopfunc (z,Omega,
REAL ,f,
addreal ));
A4: for A,B be
Event of (
Trivial-SigmaField Omega) st A
misses B holds (P
. (A
\/ B))
= ((P
. A)
+ (P
. B) qua
Real)
proof
let A,B be
Event of (
Trivial-SigmaField Omega);
assume
A5: A
misses B;
reconsider A0 = A, B0 = B as
finite
Subset of Omega;
A6: Omega
= (
dom f) by
FUNCT_2:def 1;
thus (P
. (A
\/ B))
= (
setopfunc ((A0
\/ B0),Omega,
REAL ,f,
addreal )) by
A3
.= (
addreal
. ((
setopfunc (A0,Omega,
REAL ,f,
addreal )),(
setopfunc (B0,Omega,
REAL ,f,
addreal )))) by
A5,
A6,
BHSP_5: 14
.= (
addreal
. ((
setopfunc (A0,Omega,
REAL ,f,
addreal )),(P
. B))) by
A3
.= (
addreal
. ((P
. A),(P
. B))) by
A3
.= ((P
. A)
+ (P
. B) qua
Real) by
BINOP_2:def 9;
end;
A7: for A be
Event of (
Trivial-SigmaField Omega) holds
0
<= (P
. A) by
A1;
for ASeq be
SetSequence of (
Trivial-SigmaField Omega) st ASeq is
non-ascending holds (P
* ASeq) is
convergent & (
lim (P
* ASeq))
= (P
. (
Intersection ASeq))
proof
let ASeq be
SetSequence of (
Trivial-SigmaField Omega);
assume ASeq is
non-ascending;
then
consider N be
Nat such that
A8: for m be
Nat st N
<= m holds (
Intersection ASeq)
= (ASeq
. m) by
RANDOM_1: 15;
now
let m be
Nat;
assume
A9: N
<= m;
m
in
NAT by
ORDINAL1:def 12;
then m
in (
dom ASeq) by
FUNCT_2:def 1;
hence ((P
* ASeq)
. m)
= (P
. (ASeq
. m)) by
FUNCT_1: 13
.= (P
. (
Intersection ASeq)) by
A8,
A9;
end;
hence thesis by
PROB_1: 1;
end;
hence thesis by
A7,
A4,
A2,
PROB_1:def 8;
end;
Lm1: for Omega1,Omega2 be non
empty
finite
set, P1 be
Probability of (
Trivial-SigmaField Omega1), P2 be
Probability of (
Trivial-SigmaField Omega2) holds ex Q be
Function of
[:Omega1, Omega2:],
REAL st for x,y be
set st x
in Omega1 & y
in Omega2 holds (Q
. (x,y))
= ((P1
.
{x})
* (P2
.
{y}))
proof
let Omega1,Omega2 be non
empty
finite
set, P1 be
Probability of (
Trivial-SigmaField Omega1), P2 be
Probability of (
Trivial-SigmaField Omega2);
deffunc
Q0(
object,
object) = ((P1
.
{$1})
* (P2
.
{$2}));
consider f be
Function such that
A1: (
dom f)
=
[:Omega1, Omega2:] & for x,y be
object st x
in Omega1 & y
in Omega2 holds (f
. (x,y))
=
Q0(x,y) from
FUNCT_3:sch 2;
for z be
object st z
in
[:Omega1, Omega2:] holds (f
. z)
in
REAL
proof
let z be
object;
assume z
in
[:Omega1, Omega2:];
then
consider x,y be
object such that
A2: x
in Omega1 & y
in Omega2 & z
=
[x, y] by
ZFMISC_1:def 2;
(f
. z)
= (f
. (x,y)) by
A2
.=
Q0(x,y) by
A1,
A2;
hence (f
. z)
in
REAL by
XREAL_0:def 1;
end;
then
reconsider f as
Function of
[:Omega1, Omega2:],
REAL by
A1,
FUNCT_2: 3;
take f;
thus thesis by
A1;
end;
Lm2: for Omega1,Omega2 be non
empty
finite
set, P1 be
Probability of (
Trivial-SigmaField Omega1), P2 be
Probability of (
Trivial-SigmaField Omega2), Q1,Q2 be
Function of
[:Omega1, Omega2:],
REAL st (for x,y be
set st x
in Omega1 & y
in Omega2 holds (Q1
. (x,y))
= ((P1
.
{x})
* (P2
.
{y}))) & (for x,y be
set st x
in Omega1 & y
in Omega2 holds (Q2
. (x,y))
= ((P1
.
{x})
* (P2
.
{y}))) holds Q1
= Q2
proof
let Omega1,Omega2 be non
empty
finite
set, P1 be
Probability of (
Trivial-SigmaField Omega1), P2 be
Probability of (
Trivial-SigmaField Omega2), Q1,Q2 be
Function of
[:Omega1, Omega2:],
REAL ;
assume
A1: (for x,y be
set st x
in Omega1 & y
in Omega2 holds (Q1
. (x,y))
= ((P1
.
{x})
* (P2
.
{y}))) & (for x,y be
set st x
in Omega1 & y
in Omega2 holds (Q2
. (x,y))
= ((P1
.
{x})
* (P2
.
{y})));
A2: (
dom Q1)
=
[:Omega1, Omega2:] & (
dom Q2)
=
[:Omega1, Omega2:] by
FUNCT_2:def 1;
now
let z be
object;
assume z
in (
dom Q1);
then
consider x,y be
object such that
A3: x
in Omega1 & y
in Omega2 & z
=
[x, y] by
ZFMISC_1:def 2;
thus (Q1
. z)
= (Q1
. (x,y)) by
A3
.= ((P1
.
{x})
* (P2
.
{y})) by
A3,
A1
.= (Q2
. (x,y)) by
A3,
A1
.= (Q2
. z) by
A3;
end;
hence thesis by
A2,
FUNCT_1: 2;
end;
Lm3: for Omega1,Omega2 be non
empty
finite
set, P1 be
Probability of (
Trivial-SigmaField Omega1), P2 be
Probability of (
Trivial-SigmaField Omega2), Q be
Function of
[:Omega1, Omega2:],
REAL holds ex P be
Function of (
bool
[:Omega1, Omega2:]),
REAL st for z be
finite
Subset of
[:Omega1, Omega2:] holds (P
. z)
= (
setopfunc (z,
[:Omega1, Omega2:],
REAL ,Q,
addreal ))
proof
let Omega1,Omega2 be non
empty
finite
set, P1 be
Probability of (
Trivial-SigmaField Omega1), P2 be
Probability of (
Trivial-SigmaField Omega2), Q be
Function of
[:Omega1, Omega2:],
REAL ;
defpred
PF[
object,
object] means ex z be
finite
Subset of
[:Omega1, Omega2:] st $1
= z & $2
= (
setopfunc (z,
[:Omega1, Omega2:],
REAL ,Q,
addreal ));
A1: for x be
object st x
in (
bool
[:Omega1, Omega2:]) holds ex y be
object st y
in
REAL &
PF[x, y]
proof
let x be
object;
assume x
in (
bool
[:Omega1, Omega2:]);
then
reconsider z = x as
finite
Subset of
[:Omega1, Omega2:];
(
setopfunc (z,
[:Omega1, Omega2:],
REAL ,Q,
addreal ))
in
REAL ;
hence thesis;
end;
consider P be
Function of (
bool
[:Omega1, Omega2:]),
REAL such that
A2: for x be
object st x
in (
bool
[:Omega1, Omega2:]) holds
PF[x, (P
. x)] from
FUNCT_2:sch 1(
A1);
take P;
thus for z be
finite
Subset of
[:Omega1, Omega2:] holds (P
. z)
= (
setopfunc (z,
[:Omega1, Omega2:],
REAL ,Q,
addreal ))
proof
let z be
finite
Subset of
[:Omega1, Omega2:];
ex z1 be
finite
Subset of
[:Omega1, Omega2:] st z
= z1 & (P
. z)
= (
setopfunc (z1,
[:Omega1, Omega2:],
REAL ,Q,
addreal )) by
A2;
hence (P
. z)
= (
setopfunc (z,
[:Omega1, Omega2:],
REAL ,Q,
addreal ));
end;
end;
Lm4: for Omega1,Omega2 be non
empty
finite
set, P1 be
Probability of (
Trivial-SigmaField Omega1), P2 be
Probability of (
Trivial-SigmaField Omega2), Q be
Function of
[:Omega1, Omega2:],
REAL holds for P1,P2 be
Function of (
bool
[:Omega1, Omega2:]),
REAL st (for z be
finite
Subset of
[:Omega1, Omega2:] holds (P1
. z)
= (
setopfunc (z,
[:Omega1, Omega2:],
REAL ,Q,
addreal ))) & (for z be
finite
Subset of
[:Omega1, Omega2:] holds (P2
. z)
= (
setopfunc (z,
[:Omega1, Omega2:],
REAL ,Q,
addreal ))) holds P1
= P2
proof
let Omega1,Omega2 be non
empty
finite
set, P1 be
Probability of (
Trivial-SigmaField Omega1), P2 be
Probability of (
Trivial-SigmaField Omega2), Q be
Function of
[:Omega1, Omega2:],
REAL ;
let P1,P2 be
Function of (
bool
[:Omega1, Omega2:]),
REAL ;
assume
A1: for z be
finite
Subset of
[:Omega1, Omega2:] holds (P1
. z)
= (
setopfunc (z,
[:Omega1, Omega2:],
REAL ,Q,
addreal ));
assume
A2: for z be
finite
Subset of
[:Omega1, Omega2:] holds (P2
. z)
= (
setopfunc (z,
[:Omega1, Omega2:],
REAL ,Q,
addreal ));
now
let x be
object;
assume x
in (
bool
[:Omega1, Omega2:]);
then
reconsider z = x as
finite
Subset of
[:Omega1, Omega2:];
thus (P1
. x)
= (
setopfunc (z,
[:Omega1, Omega2:],
REAL ,Q,
addreal )) by
A1
.= (P2
. x) by
A2;
end;
hence P1
= P2 by
FUNCT_2: 12;
end;
Lm5: for DK,DX be non
empty
set, F be
Function of DX, DK, p,q be
FinSequence of DX, fp,fq be
FinSequence of DK st fp
= (F
* p) & fq
= (F
* q) holds (F
* (p
^ q))
= (fp
^ fq)
proof
let DK,DX be non
empty
set, F be
Function of DX, DK, p,q be
FinSequence of DX, fp,fq be
FinSequence of DK;
assume
A1: fp
= (F
* p) & fq
= (F
* q);
then
A2: (
dom fp)
= (
dom p) & (
dom fq)
= (
dom q) by
FINSEQ_3: 120;
A3: (
len fp)
= (
len p) & (
len fq)
= (
len q) by
A1,
FINSEQ_3: 120;
then
A4: (
dom (fp
^ fq))
= (
Seg ((
len p)
+ (
len q))) by
FINSEQ_1:def 7;
A5: (
dom (F
* (p
^ q)))
= (
dom (p
^ q)) by
FINSEQ_3: 120
.= (
Seg ((
len p)
+ (
len q))) by
FINSEQ_1:def 7;
for x be
object st x
in (
dom (F
* (p
^ q))) holds ((fp
^ fq)
. x)
= ((F
* (p
^ q))
. x)
proof
let x be
object;
assume
A6: x
in (
dom (F
* (p
^ q)));
then
reconsider n = x as
Element of
NAT ;
A7: 1
<= n & n
<= ((
len p)
+ (
len q)) by
A6,
A5,
FINSEQ_1: 1;
A8: ((F
* (p
^ q))
. n)
= (F
. ((p
^ q)
. n)) by
A6,
FINSEQ_3: 120;
per cases ;
suppose n
<= (
len p);
then n
in (
Seg (
len p)) by
A7;
then
A9: n
in (
dom p) by
FINSEQ_1:def 3;
hence ((F
* (p
^ q))
. x)
= (F
. (p
. n)) by
A8,
FINSEQ_1:def 7
.= (fp
. n) by
A1,
A9,
A2,
FINSEQ_3: 120
.= ((fp
^ fq)
. x) by
A9,
A2,
FINSEQ_1:def 7;
end;
suppose
A10: not n
<= (
len p);
then (
len p)
< n & n
<= (
len (p
^ q)) by
A7,
FINSEQ_1: 22;
then
A11: ((p
^ q)
. n)
= (q
. (n
- (
len p))) by
FINSEQ_1: 24;
A12: (n
- (
len p))
<= (((
len p)
+ (
len q))
- (
len p)) by
A7,
XREAL_1: 9;
A13: ((
len p)
- (
len p))
< (n
- (
len p)) by
A10,
XREAL_1: 9;
A14: (n
- (
len p)) is
Element of
NAT by
A13,
INT_1: 3;
then 1
<= (n
- (
len p)) by
A13,
NAT_1: 14;
then (n
- (
len p))
in (
Seg (
len q)) by
A12,
A14;
then
A15: (n
- (
len p))
in (
dom q) by
FINSEQ_1:def 3;
A16: (
len fp)
< n & n
<= (
len (fp
^ fq)) by
A3,
A10,
A7,
FINSEQ_1: 22;
thus ((F
* (p
^ q))
. x)
= (fq
. (n
- (
len p))) by
A1,
A15,
A2,
A11,
A8,
FINSEQ_3: 120
.= ((fp
^ fq)
. x) by
A16,
A3,
FINSEQ_1: 24;
end;
end;
hence thesis by
A4,
A5,
FUNCT_1: 2;
end;
theorem ::
RANDOM_2:9
Th9: for DX be non
empty
set, F be
Function of DX,
REAL , Y be
finite
Subset of DX holds ex p be
FinSequence of DX st p is
one-to-one & (
rng p)
= Y & (
setopfunc (Y,DX,
REAL ,F,
addreal ))
= (
Sum (
Func_Seq (F,p)))
proof
let DX be non
empty
set, F be
Function of DX,
REAL , Y be
finite
Subset of DX;
consider p be
FinSequence of DX such that
A1: p is
one-to-one & (
rng p)
= Y & (
setopfunc (Y,DX,
REAL ,F,
addreal ))
= (
addreal
"**" (
Func_Seq (F,p))) by
BHSP_5:def 5;
(
Sum (
Func_Seq (F,p)))
= (
addreal
"**" (
Func_Seq (F,p)));
hence thesis by
A1;
end;
theorem ::
RANDOM_2:10
Th10: for DX be non
empty
set, F be
Function of DX,
REAL , Y be
finite
Subset of DX, p be
FinSequence of DX st p is
one-to-one & (
rng p)
= Y holds (
setopfunc (Y,DX,
REAL ,F,
addreal ))
= (
Sum (
Func_Seq (F,p))) by
BHSP_5:def 5;
Lm6: for p be
Function st (
dom p)
= (
Seg 1) holds p
=
<*(p
. 1)*>
proof
let p be
Function;
assume
A1: (
dom p)
= (
Seg 1);
then
A3: (
rng p)
=
{(p
. 1)} by
FINSEQ_1: 2,
FUNCT_1: 4;
p is
FinSequence-like by
A1;
hence thesis by
A3,
A1,
FINSEQ_1: 38;
end;
theorem ::
RANDOM_2:11
Th11: for DX1,DX2 be non
empty
set, F1 be
Function of DX1,
REAL , F2 be
Function of DX2,
REAL , G be
Function of
[:DX1, DX2:],
REAL , Y1 be non
empty
finite
Subset of DX1 holds for p1 be
FinSequence of DX1 st p1 is
one-to-one & (
rng p1)
= Y1 holds for p2 be
FinSequence of DX2, p3 be
FinSequence of
[:DX1, DX2:], Y2 be non
empty
finite
Subset of DX2, Y3 be
finite
Subset of
[:DX1, DX2:] st p2 is
one-to-one & (
rng p2)
= Y2 & p3 is
one-to-one & (
rng p3)
= Y3 & Y3
=
[:Y1, Y2:] & for x,y be
set st x
in Y1 & y
in Y2 holds (G
. (x,y))
= ((F1
. x)
* (F2
. y)) holds (
Sum (
Func_Seq (G,p3)))
= ((
Sum (
Func_Seq (F1,p1)))
* (
Sum (
Func_Seq (F2,p2))))
proof
let DX1,DX2 be non
empty
set, F1 be
Function of DX1,
REAL , F2 be
Function of DX2,
REAL , G be
Function of
[:DX1, DX2:],
REAL , Y1 be non
empty
finite
Subset of DX1;
let p1 be
FinSequence of DX1;
assume
A1: p1 is
one-to-one & (
rng p1)
= Y1;
defpred
F[
Nat] means for p2 be
FinSequence of DX2, p3 be
FinSequence of
[:DX1, DX2:], Y2 be non
empty
finite
Subset of DX2, Y3 be
finite
Subset of
[:DX1, DX2:] st (
len p2)
= $1 & p2 is
one-to-one & (
rng p2)
= Y2 & p3 is
one-to-one & (
rng p3)
= Y3 & Y3
=
[:Y1, Y2:] & for x,y be
set st x
in Y1 & y
in Y2 holds (G
. (x,y))
= ((F1
. x)
* (F2
. y)) holds (
Sum (
Func_Seq (G,p3)))
= ((
Sum (
Func_Seq (F1,p1)))
* (
Sum (
Func_Seq (F2,p2))));
consider erp1 be
object such that
A2: erp1
in (
rng p1) by
A1,
XBOOLE_0:def 1;
A3: ex x be
object st x
in (
dom p1) & erp1
= (p1
. x) by
A2,
FUNCT_1:def 3;
A4:
F[
0 ]
proof
let p2 be
FinSequence of DX2, p3 be
FinSequence of
[:DX1, DX2:], Y2 be non
empty
finite
Subset of DX2, Y3 be
finite
Subset of
[:DX1, DX2:];
assume
A5: (
len p2)
=
0 & p2 is
one-to-one & (
rng p2)
= Y2 & p3 is
one-to-one & (
rng p3)
= Y3 & Y3
=
[:Y1, Y2:] & for x,y be
set st x
in Y1 & y
in Y2 holds (G
. (x,y))
= ((F1
. x)
* (F2
. y));
then p2
=
{} ;
hence (
Sum (
Func_Seq (G,p3)))
= ((
Sum (
Func_Seq (F1,p1)))
* (
Sum (
Func_Seq (F2,p2)))) by
A5;
end;
A6:
F[1]
proof
let p2 be
FinSequence of DX2, p3 be
FinSequence of
[:DX1, DX2:], Y2 be non
empty
finite
Subset of DX2, Y3 be
finite
Subset of
[:DX1, DX2:];
assume
A7: (
len p2)
= 1 & p2 is
one-to-one & (
rng p2)
= Y2 & p3 is
one-to-one & (
rng p3)
= Y3 & Y3
=
[:Y1, Y2:] & for x,y be
set st x
in Y1 & y
in Y2 holds (G
. (x,y))
= ((F1
. x)
* (F2
. y));
then
A8: p2
=
<*(p2
. 1)*> by
FINSEQ_1: 40;
then
A9: Y2
=
{(p2
. 1)} by
A7,
FINSEQ_1: 38;
set w = (p2
. 1);
set z = ((F2
* p2)
. 1);
(
dom F2)
= DX2 by
FUNCT_2:def 1;
then (
rng p2)
c= (
dom F2);
then (
dom (F2
* p2))
= (
dom p2) by
RELAT_1: 27;
then
A10: (
dom (F2
* p2))
= (
Seg 1) by
A8,
FINSEQ_1: 38;
then (
Func_Seq (F2,p2))
=
<*z*> by
Lm6;
then
A11: (
Sum (
Func_Seq (F2,p2)))
= z by
RVSUM_1: 73;
A12: Y3
=
[:Y1,
{w}:] by
A7,
A8,
FINSEQ_1: 38;
A13: (
len p1)
= (
card Y1) by
A1,
FINSEQ_4: 62;
A14: (
len p3)
= (
card (
rng p3)) by
A7,
FINSEQ_4: 62
.= (
card Y1) by
A12,
A7,
CARD_1: 69;
A15: (
dom p1)
= (
Seg (
card Y1)) by
A13,
FINSEQ_1:def 3
.= (
dom p3) by
A14,
FINSEQ_1:def 3;
deffunc
Q33F(
Nat) =
[(p1
. $1), w];
consider q3 be
FinSequence such that
A16: (
len q3)
= (
len p3) and
A17: for k be
Nat st k
in (
dom q3) holds (q3
. k)
=
Q33F(k) from
FINSEQ_1:sch 2;
A18: (
dom q3)
= (
Seg (
len p3)) by
A16,
FINSEQ_1:def 3;
A19: (
dom p3)
= (
Seg (
len p3)) by
FINSEQ_1:def 3;
now
let k be
Nat;
assume
A20: k
in (
dom q3);
then
A21: (p1
. k)
in Y1 by
A1,
A18,
A19,
A15,
FUNCT_1: 3;
(p2
. 1)
in Y2 by
A9,
TARSKI:def 1;
then
[(p1
. k), w]
in
[:Y1, Y2:] by
A21,
ZFMISC_1: 87;
hence (q3
. k)
in
[:Y1, Y2:] by
A20,
A17;
end;
then q3 is
FinSequence of
[:Y1, Y2:] by
FINSEQ_2: 12;
then
A22: (
rng q3)
c=
[:Y1, Y2:] by
FINSEQ_1:def 4;
[:Y1, Y2:]
c=
[:DX1, DX2:] by
ZFMISC_1: 96;
then (
rng q3)
c=
[:DX1, DX2:] by
A22;
then
reconsider q3 as
FinSequence of
[:DX1, DX2:] by
FINSEQ_1:def 4;
now
let x1,x2 be
object;
assume
A23: x1
in (
dom q3) & x2
in (
dom q3) & (q3
. x1)
= (q3
. x2);
then
A24: x1
in (
dom p1) & x2
in (
dom p1) by
A16,
A19,
A15,
FINSEQ_1:def 3;
reconsider n1 = x1, n2 = x2 as
Element of
NAT by
A23;
[(p1
. n1), w]
= (q3
. n1) by
A17,
A23
.=
[(p1
. n2), w] by
A17,
A23;
then (p1
. n1)
= (p1
. n2) by
XTUPLE_0: 1;
hence x1
= x2 by
A1,
A24,
FUNCT_1:def 4;
end;
then
A25: q3 is
one-to-one by
FUNCT_1:def 4;
A26: (
rng q3)
=
[:Y1, Y2:]
proof
now
let z be
object;
assume z
in
[:Y1, Y2:];
then
consider y1,y2 be
object such that
A27: y1
in Y1 & y2
in Y2 & z
=
[y1, y2] by
ZFMISC_1:def 2;
consider n1 be
object such that
A28: n1
in (
dom p1) & y1
= (p1
. n1) by
A1,
A27,
FUNCT_1:def 3;
reconsider n1 as
Element of
NAT by
A28;
A29: n1
in (
dom q3) by
A28,
A16,
A19,
A15,
FINSEQ_1:def 3;
y2
= w by
A9,
A27,
TARSKI:def 1;
then (q3
. n1)
= z by
A27,
A28,
A17,
A29;
hence z
in (
rng q3) by
A29,
FUNCT_1: 3;
end;
then
[:Y1, Y2:]
c= (
rng q3);
hence thesis by
A22,
XBOOLE_0:def 10;
end;
then
consider P be
Permutation of (
dom p3) such that
A30: q3
= (p3
* P) & (
dom P)
= (
dom p3) & (
rng P)
= (
dom p3) by
A25,
A7,
BHSP_5: 1;
A31: (
Func_Seq (G,q3))
= ((
Func_Seq (G,p3))
* P) by
A30,
RELAT_1: 36;
(
dom G)
=
[:DX1, DX2:] by
FUNCT_2:def 1;
then (
rng p3)
c= (
dom G);
then (
dom (
Func_Seq (G,p3)))
= (
dom p3) by
RELAT_1: 27;
then
A32: (
Sum (
Func_Seq (G,q3)))
= (
Sum (
Func_Seq (G,p3))) by
A31,
FINSOP_1: 7;
A33: (
dom G)
=
[:DX1, DX2:] by
FUNCT_2:def 1;
(
dom F1)
= DX1 by
FUNCT_2:def 1;
then
A34: (
dom (F1
* p1))
= (
dom p1) by
A1,
RELAT_1: 27
.= (
Seg (
len p1)) by
FINSEQ_1:def 3;
A35: (
dom (G
* q3))
= (
dom q3) by
A33,
A26,
RELAT_1: 27
.= (
Seg (
len p1)) by
A13,
A14,
A16,
FINSEQ_1:def 3;
then
A36: (
dom (G
* q3))
= (
dom (z
(#) (F1
* p1))) by
A34,
VALUED_1:def 5;
now
let x be
object;
assume
A37: x
in (
dom (G
* q3));
then
reconsider nx = x as
Element of
NAT ;
(
dom (G
* q3))
= (
dom q3) by
A33,
A26,
RELAT_1: 27
.= (
Seg (
len q3)) by
FINSEQ_1:def 3;
then
A38: nx
in (
dom q3) by
A37,
FINSEQ_1:def 3;
1
<= nx & nx
<= (
len p1) by
A37,
A35,
FINSEQ_1: 1;
then
A39: (p1
/. nx)
= (p1
. nx) by
FINSEQ_4: 15;
A40: (q3
. nx)
=
[(p1
. nx), w] by
A17,
A38;
A41: nx
in (
dom p1) by
A37,
A35,
FINSEQ_1:def 3;
then
A42: (q3
. nx)
=
[(p1
/. nx), w] by
A40,
PARTFUN1:def 6;
(p1
. nx)
in Y1 by
A41,
A1,
FUNCT_1: 3;
then
A43: (p1
/. nx)
in Y1 & w
in Y2 by
A41,
A9,
PARTFUN1:def 6,
TARSKI:def 1;
1
in (
dom (F2
* p2)) by
A10;
then
A44: z
= (F2
. w) by
FUNCT_1: 12;
thus ((G
* q3)
. x)
= (G
. ((p1
/. nx),w)) by
A42,
A37,
FUNCT_1: 12
.= ((F1
. (p1
/. nx))
* z) by
A44,
A7,
A43
.= (((F1
* p1)
. nx)
* z) by
A39,
A35,
A34,
A37,
FUNCT_1: 12
.= ((z
(#) (F1
* p1))
. x) by
VALUED_1: 6;
end;
then (
Func_Seq (G,q3))
= (z
* (
Func_Seq (F1,p1))) by
A36,
FUNCT_1: 2;
hence thesis by
A11,
A32,
RVSUM_1: 87;
end;
A45: for n be
Nat st
F[n] holds
F[(n
+ 1)]
proof
let n be
Nat;
assume
A46:
F[n];
now
per cases ;
case n
=
0 ;
hence
F[(n
+ 1)] by
A6;
end;
case
A47: n
>
0 ;
now
let p2 be
FinSequence of DX2, p3 be
FinSequence of
[:DX1, DX2:], Y2 be non
empty
finite
Subset of DX2, Y3 be
finite
Subset of
[:DX1, DX2:];
assume
A48: (
len p2)
= (n
+ 1) & p2 is
one-to-one & (
rng p2)
= Y2 & p3 is
one-to-one & (
rng p3)
= Y3 & Y3
=
[:Y1, Y2:] & for x,y be
set st x
in Y1 & y
in Y2 holds (G
. (x,y))
= ((F1
. x)
* (F2
. y));
set lb = (
len p1);
set la = (
len p2);
deffunc
FG1(
Nat) =
[(p1
. ((($1
-' 1)
mod lb)
+ 1)), (p2
. ((($1
-' 1)
div lb)
+ 1))];
consider FG be
FinSequence such that
A49: (
len FG)
= (la
* lb) and
A50: for k be
Nat st k
in (
dom FG) holds (FG
. k)
=
FG1(k) from
FINSEQ_1:sch 2;
A51: (
dom FG)
= (
Seg (la
* lb)) by
A49,
FINSEQ_1:def 3;
A52: (
dom p1)
= (
Seg lb) by
FINSEQ_1:def 3;
A53:
now
reconsider lap = la, lbp = lb as
Nat;
let k be
Nat;
set i = (((k
-' 1)
div lb)
+ 1);
set j = (((k
-' 1)
mod lb)
+ 1);
assume k
in (
dom FG);
then
A54: k
in (
Seg (la
* lb)) by
A49,
FINSEQ_1:def 3;
then
A55: k
<= (la
* lb) by
FINSEQ_1: 1;
then (k
-' 1)
<= ((la
* lb)
-' 1) by
NAT_D: 42;
then
A56: ((k
-' 1)
div lb)
<= (((la
* lb)
-' 1)
div lb) by
NAT_2: 24;
1
<= k by
A54,
FINSEQ_1: 1;
then
A57: lbp
divides (lap
* lbp) & 1
<= (la
* lb) by
A55,
NAT_D:def 3,
XXREAL_0: 2;
A58: lb
<>
0 by
A54;
then lb
>= (
0 qua
Nat
+ 1) by
NAT_1: 13;
then (((lap
* lbp)
-' 1)
div lbp)
= (((lap
* lbp)
div lbp)
- 1) by
A57,
NAT_2: 15;
then
A59: (((k
-' 1)
div lb)
+ 1)
<= ((la
* lb)
div lb) by
A56,
XREAL_1: 19;
reconsider la, lb as
Nat;
i
>= (
0 qua
Nat
+ 1) & i
<= la by
A58,
A59,
NAT_D: 18,
XREAL_1: 6;
then i
in (
Seg la);
hence i
in (
dom p2) by
FINSEQ_1:def 3;
((k
-' 1)
mod lb)
< lb by
A58,
NAT_D: 1;
then j
>= (
0 qua
Nat
+ 1) & j
<= lb by
NAT_1: 13;
then j
in (
Seg lb);
hence j
in (
dom p1) by
FINSEQ_1:def 3;
end;
now
let k be
Nat;
set i = (((k
-' 1)
div lb)
+ 1);
set j = (((k
-' 1)
mod lb)
+ 1);
assume
A60: k
in (
dom FG);
then
A61: (p2
. i)
in (
rng p2) by
A53,
FUNCT_1: 3;
(p1
. j)
in (
rng p1) by
A53,
A60,
FUNCT_1: 3;
then
[(p1
. j), (p2
. i)]
in
[:DX1, DX2:] by
A61,
ZFMISC_1: 87;
hence (FG
. k)
in
[:DX1, DX2:] by
A50,
A60;
end;
then
reconsider q3 = FG as
FinSequence of
[:DX1, DX2:] by
FINSEQ_2: 12;
A62: (
len p1)
= (
card Y1) by
A1,
FINSEQ_4: 62;
now
let x1,x2 be
object;
assume
A63: x1
in (
dom q3) & x2
in (
dom q3) & (q3
. x1)
= (q3
. x2);
then
A64: x1
in (
Seg (
len q3)) & x2
in (
Seg (
len q3)) by
FINSEQ_1:def 3;
reconsider n1 = x1, n2 = x2 as
Element of
NAT by
A63;
A65: (q3
. n1)
=
[(p1
. (((n1
-' 1)
mod lb)
+ 1)), (p2
. (((n1
-' 1)
div lb)
+ 1))] by
A50,
A63;
A66: (q3
. n2)
=
[(p1
. (((n2
-' 1)
mod lb)
+ 1)), (p2
. (((n2
-' 1)
div lb)
+ 1))] by
A50,
A63;
then
A67: (p1
. (((n1
-' 1)
mod lb)
+ 1))
= (p1
. (((n2
-' 1)
mod lb)
+ 1)) by
A63,
A65,
XTUPLE_0: 1;
(((n1
-' 1)
mod lb)
+ 1)
in (
dom p1) & (((n2
-' 1)
mod lb)
+ 1)
in (
dom p1) by
A63,
A53;
then
A68: (((n1
-' 1)
mod lb)
+ 1)
= (((n2
-' 1)
mod lb)
+ 1) by
A1,
A67,
FUNCT_1:def 4;
A69: (p2
. (((n1
-' 1)
div lb)
+ 1))
= (p2
. (((n2
-' 1)
div lb)
+ 1)) by
A63,
A65,
A66,
XTUPLE_0: 1;
(((n1
-' 1)
div lb)
+ 1)
in (
dom p2) & (((n2
-' 1)
div lb)
+ 1)
in (
dom p2) by
A63,
A53;
then
A70: (((n1
-' 1)
div lb)
+ 1)
= (((n2
-' 1)
div lb)
+ 1) by
A48,
A69,
FUNCT_1:def 4;
n1
= n2
proof
A71: 1
<= n1 & n1
<= (
len q3) by
A64,
FINSEQ_1: 1;
A72: 1
<= n2 & n2
<= (
len q3) by
A64,
FINSEQ_1: 1;
0
< lb by
A52,
A3;
then
A73: (n1
-' 1)
= ((lb
* ((n1
-' 1)
div lb))
+ ((n1
-' 1)
mod lb)) & (n2
-' 1)
= ((lb
* ((n1
-' 1)
div lb))
+ ((n1
-' 1)
mod lb)) by
A68,
A70,
NAT_D: 2;
A74: ((n1
-' 1)
+ 1)
= ((n1
+ 1)
-' 1) by
A71,
NAT_D: 38
.= n1 by
NAT_D: 34;
((n2
-' 1)
+ 1)
= ((n2
+ 1)
-' 1) by
A72,
NAT_D: 38
.= n2 by
NAT_D: 34;
hence thesis by
A73,
A74;
end;
hence x1
= x2;
end;
then
A75: q3 is
one-to-one by
FUNCT_1:def 4;
A76: (
rng q3)
=
[:Y1, Y2:]
proof
now
let z be
object;
assume z
in
[:Y1, Y2:];
then
consider y1,y2 be
object such that
A77: y1
in Y1 & y2
in Y2 & z
=
[y1, y2] by
ZFMISC_1:def 2;
consider n1 be
object such that
A78: n1
in (
dom p1) & y1
= (p1
. n1) by
A1,
A77,
FUNCT_1:def 3;
A79: n1
in (
Seg (
len p1)) by
A78,
FINSEQ_1:def 3;
reconsider n1 as
Element of
NAT by
A78;
consider n2 be
object such that
A80: n2
in (
dom p2) & y2
= (p2
. n2) by
A48,
A77,
FUNCT_1:def 3;
A81: n2
in (
Seg (
len p2)) by
A80,
FINSEQ_1:def 3;
reconsider n2 as
Element of
NAT by
A80;
A82: 1
<= n1 & n1
<= (
len p1) by
A79,
FINSEQ_1: 1;
A83: 1
<= n2 & n2
<= (
len p2) by
A81,
FINSEQ_1: 1;
reconsider n11 = (n1
- 1) as
Element of
NAT by
A82,
INT_1: 5;
reconsider n21 = (n2
- 1) as
Element of
NAT by
A83,
INT_1: 5;
set k1 = (n11
+ (lb
* n21));
A84: n11
<= ((
len p1)
- 1) by
A82,
XREAL_1: 9;
((
len p1)
- 1)
< (
len p1) by
XREAL_1: 44;
then
A85: n11
< (
len p1) by
A84,
XXREAL_0: 2;
A86: (k1
div lb)
= ((n11
div lb)
+ n21) by
A62,
NAT_D: 61
.= (
0 qua
Nat
+ n21) by
A85,
NAT_D: 27
.= n21;
A87: (k1
mod lb)
= (n11
mod lb) by
NAT_D: 61
.= n11 by
A85,
NAT_D: 24;
set k = (k1
+ 1);
A88: 1
<= k by
NAT_1: 14;
A89: (k
-' 1)
= (k
- 1) by
NAT_1: 14,
XREAL_1: 233
.= k1;
then
A90: n1
= (((k
-' 1)
mod lb)
+ 1) by
A87;
A91: n2
= (((k
-' 1)
div lb)
+ 1) by
A89,
A86;
A92: ((n11
+ 1)
+ (lb
* n21))
<= ((
len p1)
+ (lb
* n21)) by
A82,
XREAL_1: 6;
n21
<= ((
len p2)
- 1) by
A83,
XREAL_1: 9;
then (lb
* n21)
<= (lb
* ((
len p2)
- 1)) by
XREAL_1: 64;
then ((
len p1)
+ (lb
* n21))
<= ((
len p1)
+ (lb
* ((
len p2)
- 1))) by
XREAL_1: 6;
then k
<= (lb
* la) by
A92,
XXREAL_0: 2;
then k
in (
Seg (
len FG)) by
A49,
A88;
then
A93: k
in (
dom FG) by
FINSEQ_1:def 3;
then (q3
. k)
= z by
A77,
A78,
A80,
A50,
A90,
A91;
hence z
in (
rng q3) by
A93,
FUNCT_1: 3;
end;
then
A94:
[:Y1, Y2:]
c= (
rng q3);
now
let z be
object;
assume z
in (
rng q3);
then
consider n1 be
object such that
A95: n1
in (
dom q3) & z
= (q3
. n1) by
FUNCT_1:def 3;
reconsider n1 as
Element of
NAT by
A95;
A96: z
=
[(p1
. (((n1
-' 1)
mod lb)
+ 1)), (p2
. (((n1
-' 1)
div lb)
+ 1))] by
A95,
A50;
A97: (p1
. (((n1
-' 1)
mod lb)
+ 1))
in Y1 by
A1,
A95,
A53,
FUNCT_1: 3;
(((n1
-' 1)
div lb)
+ 1)
in (
dom p2) by
A95,
A53;
then (p2
. (((n1
-' 1)
div lb)
+ 1))
in Y2 by
A48,
FUNCT_1: 3;
hence z
in
[:Y1, Y2:] by
A96,
A97,
ZFMISC_1:def 2;
end;
then (
rng q3)
c=
[:Y1, Y2:];
hence thesis by
A94,
XBOOLE_0:def 10;
end;
set q30 = (q3
| (lb
* n));
(lb
* n)
<= (lb
* la) by
A48,
NAT_1: 11,
XREAL_1: 64;
then
A98: (
len q30)
= (lb
* n) by
A49,
FINSEQ_1: 17;
set q31 = (q3
/^ (lb
* n));
reconsider q30 as
FinSequence of
[:DX1, DX2:];
reconsider q31 as
FinSequence of
[:DX1, DX2:];
A99: q3
= (q30
^ q31) by
RFINSEQ: 8;
set p20 = (p2
| n);
reconsider p20 as
FinSequence of DX2;
A100: (
len p20)
= n by
A48,
FINSEQ_3: 53;
then
A101: (
dom p20) is non
empty by
A47,
FINSEQ_1:def 3;
A102: p20 is
one-to-one by
A48,
FUNCT_1: 52;
reconsider Y20 = (
rng p20) as non
empty
finite
Subset of DX2 by
A101,
RELAT_1: 42;
A103: q30 is
one-to-one by
A75,
FUNCT_1: 52;
A104: (
rng q30)
=
[:Y1, Y20:]
proof
now
let z be
object;
assume z
in
[:Y1, Y20:];
then
consider y1,y2 be
object such that
A105: y1
in Y1 & y2
in Y20 & z
=
[y1, y2] by
ZFMISC_1:def 2;
consider n1 be
object such that
A106: n1
in (
dom p1) & y1
= (p1
. n1) by
A1,
A105,
FUNCT_1:def 3;
A107: n1
in (
Seg (
len p1)) by
A106,
FINSEQ_1:def 3;
reconsider n1 as
Element of
NAT by
A106;
consider n2 be
object such that
A108: n2
in (
dom p20) & y2
= (p20
. n2) by
A105,
FUNCT_1:def 3;
A109: n2
in (
Seg (
len p20)) by
A108,
FINSEQ_1:def 3;
reconsider n2 as
Element of
NAT by
A108;
A110: y2
= (p2
. n2) by
A108,
FUNCT_1: 47;
A111: 1
<= n1 & n1
<= (
len p1) by
A107,
FINSEQ_1: 1;
A112: 1
<= n2 & n2
<= (
len p20) by
A109,
FINSEQ_1: 1;
reconsider n11 = (n1
- 1) as
Element of
NAT by
A111,
INT_1: 5;
reconsider n21 = (n2
- 1) as
Element of
NAT by
A112,
INT_1: 5;
set k1 = (n11
+ (lb
* n21));
A113: n11
<= ((
len p1)
- 1) by
A111,
XREAL_1: 9;
((
len p1)
- 1)
< (
len p1) by
XREAL_1: 44;
then
A114: n11
< (
len p1) by
A113,
XXREAL_0: 2;
A115: (k1
div lb)
= ((n11
div lb)
+ n21) by
A62,
NAT_D: 61
.= (
0 qua
Nat
+ n21) by
A114,
NAT_D: 27
.= n21;
A116: (k1
mod lb)
= (n11
mod lb) by
NAT_D: 61
.= n11 by
A114,
NAT_D: 24;
set k = (k1
+ 1);
A117: 1
<= k by
NAT_1: 14;
A118: (k
-' 1)
= (k
- 1) by
NAT_1: 14,
XREAL_1: 233
.= k1;
then
A119: n1
= (((k
-' 1)
mod lb)
+ 1) by
A116;
A120: n2
= (((k
-' 1)
div lb)
+ 1) by
A118,
A115;
A121: ((n11
+ 1)
+ (lb
* n21))
<= ((
len p1)
+ (lb
* n21)) by
A111,
XREAL_1: 6;
n21
<= ((
len p20)
- 1) by
A112,
XREAL_1: 9;
then (lb
* n21)
<= (lb
* ((
len p20)
- 1)) by
XREAL_1: 64;
then ((
len p1)
+ (lb
* n21))
<= ((
len p1)
+ (lb
* ((
len p20)
- 1))) by
XREAL_1: 6;
then k
<= (lb
* n) by
A121,
A100,
XXREAL_0: 2;
then k
in (
Seg (
len q30)) by
A117,
A98;
then
A122: k
in (
dom q30) by
FINSEQ_1:def 3;
then
A123: k
in (
dom q3) by
RELAT_1: 57;
(q30
. k)
= (q3
. k) by
A122,
FUNCT_1: 47
.= z by
A105,
A106,
A110,
A50,
A123,
A119,
A120;
hence z
in (
rng q30) by
A122,
FUNCT_1: 3;
end;
then
A124:
[:Y1, Y20:]
c= (
rng q30);
now
let z be
object;
assume z
in (
rng q30);
then
consider n1 be
object such that
A125: n1
in (
dom q30) & z
= (q30
. n1) by
FUNCT_1:def 3;
A126: n1
in (
Seg (
len q30)) by
A125,
FINSEQ_1:def 3;
reconsider n1 as
Element of
NAT by
A125;
A127: n1
in (
dom q3) by
A125,
RELAT_1: 57;
z
= (q3
. n1) by
A125,
FUNCT_1: 47;
then
A128: z
=
[(p1
. (((n1
-' 1)
mod lb)
+ 1)), (p2
. (((n1
-' 1)
div lb)
+ 1))] by
A50,
A127;
A129: (p1
. (((n1
-' 1)
mod lb)
+ 1))
in Y1 by
A1,
A127,
A53,
FUNCT_1: 3;
A130: 1
<= n1 & n1
<= (lb
* n) by
A126,
A98,
FINSEQ_1: 1;
A131: lb
divides (lb
* n) by
INT_1:def 3;
A132: 1
<= lb by
A62,
NAT_1: 14;
1
<= (lb
* n) by
A62,
A47,
NAT_1: 14;
then
A133: (((lb
* n)
-' 1)
div lb)
= (((lb
* n)
div lb)
- 1) by
A131,
A132,
NAT_2: 15
.= (n
- 1) by
A62,
NAT_D: 18;
(n1
-' 1)
<= ((lb
* n)
-' 1) by
A130,
NAT_D: 42;
then ((n1
-' 1)
div lb)
<= (((lb
* n)
-' 1)
div lb) by
NAT_2: 24;
then
A134: (((n1
-' 1)
div lb)
+ 1)
<= ((n
- 1)
+ 1) by
A133,
XREAL_1: 6;
(((n1
-' 1)
div lb)
+ 1)
in (
dom p2) by
A127,
A53;
then (((n1
-' 1)
div lb)
+ 1)
in (
Seg (
len p2)) by
FINSEQ_1:def 3;
then 1
<= (((n1
-' 1)
div lb)
+ 1) & (((n1
-' 1)
div lb)
+ 1)
<= n by
A134,
FINSEQ_1: 1;
then
A135: (((n1
-' 1)
div lb)
+ 1)
in (
Seg n);
(((n1
-' 1)
div lb)
+ 1)
in (
dom p2) by
A127,
A53;
then
A136: (((n1
-' 1)
div lb)
+ 1)
in (
dom p20) by
A135,
RELAT_1: 57;
then (p20
. (((n1
-' 1)
div lb)
+ 1))
in Y20 by
FUNCT_1: 3;
then (p2
. (((n1
-' 1)
div lb)
+ 1))
in Y20 by
A136,
FUNCT_1: 47;
hence z
in
[:Y1, Y20:] by
A128,
A129,
ZFMISC_1:def 2;
end;
then (
rng q30)
c=
[:Y1, Y20:];
hence thesis by
A124,
XBOOLE_0:def 10;
end;
now
let x,y be
set;
assume
A137: x
in Y1 & y
in Y20;
Y20
c= (
rng p2) by
RELAT_1: 70;
hence (G
. (x,y))
= ((F1
. x)
* (F2
. y)) by
A48,
A137;
end;
then
A138: (
Sum (
Func_Seq (G,q30)))
= ((
Sum (
Func_Seq (F1,p1)))
* (
Sum (
Func_Seq (F2,p20)))) by
A46,
A102,
A103,
A104,
A100;
(
dom F1)
= DX1 by
FUNCT_2:def 1;
then
A139: (
dom (F1
* p1))
= (
dom p1) by
A1,
RELAT_1: 27
.= (
Seg (
len p1)) by
FINSEQ_1:def 3;
A140: (
dom G)
=
[:DX1, DX2:] by
FUNCT_2:def 1;
(
len q3)
= ((n
* lb)
+ lb) by
A48,
A49;
then
A141: (n
* lb)
<= (
len q3) by
NAT_1: 11;
then
A142: (
len q31)
= ((
len q3)
- (lb
* n)) by
RFINSEQ:def 1
.= lb by
A48,
A49;
A143:
[:Y1, Y2:]
c=
[:DX1, DX2:] & (
rng q31)
c= (
rng q3) by
A48,
FINSEQ_5: 33;
then
A144: (
dom (G
* q31))
= (
dom q31) by
A140,
RELAT_1: 27
.= (
Seg (
len p1)) by
A142,
FINSEQ_1:def 3;
then
A145: (
dom (G
* q31))
= (
dom (((
Func_Seq (F2,p2))
/. (n
+ 1))
(#) (F1
* p1))) by
A139,
VALUED_1:def 5;
now
let x be
object;
assume
A146: x
in (
dom (G
* q31));
then
reconsider nx = x as
Element of
NAT ;
A147: (
dom (G
* q31))
= (
dom q31) by
A140,
A143,
RELAT_1: 27
.= (
Seg (
len q31)) by
FINSEQ_1:def 3;
A148: 1
<= nx & nx
<= (
len p1) by
A146,
A144,
FINSEQ_1: 1;
then
A149: (p1
/. nx)
= (p1
. nx) by
FINSEQ_4: 15;
A150: 1
<= (n
+ 1) & (n
+ 1)
<= (
len p2) by
A48,
XREAL_1: 31;
then
A151: (n
+ 1)
in (
Seg (
len p2));
then
A152: (n
+ 1)
in (
dom p2) by
FINSEQ_1:def 3;
A153: (p2
/. (n
+ 1))
= (p2
. (n
+ 1)) by
A150,
FINSEQ_4: 15;
(
dom F2)
= DX2 by
FUNCT_2:def 1;
then (
rng p2)
c= (
dom F2);
then
A154: (n
+ 1)
in (
dom (F2
* p2)) by
A152,
RELAT_1: 27;
A155: (F2
. (p2
/. (n
+ 1)))
= ((F2
* p2)
. (n
+ 1)) by
A152,
A153,
FUNCT_1: 13
.= ((
Func_Seq (F2,p2))
/. (n
+ 1)) by
A154,
PARTFUN1:def 6;
A156: 1
<= nx & nx
<= lb by
A147,
A146,
A142,
FINSEQ_1: 1;
then
A157: (nx
+ (lb
* n))
<= (lb
+ (lb
* n)) by
XREAL_1: 6;
A158: nx
<= (nx
+ (lb
* n)) by
NAT_1: 11;
then 1
<= (nx
+ (lb
* n)) & (nx
+ (lb
* n))
<= (lb
* la) by
A157,
A48,
A156,
XXREAL_0: 2;
then (nx
+ (lb
* n))
in (
dom FG) by
A51;
then
A159: (q3
. (nx
+ (lb
* n)))
=
[(p1
. ((((nx
+ (lb
* n))
-' 1)
mod lb)
+ 1)), (p2
. ((((nx
+ (lb
* n))
-' 1)
div lb)
+ 1))] by
A50;
A160: nx
in (
dom q31) by
A147,
A146,
FINSEQ_1:def 3;
A161: ((nx
+ (lb
* n))
-' 1)
= ((nx
+ (lb
* n))
- 1) by
A158,
A156,
XREAL_1: 233,
XXREAL_0: 2
.= ((nx
- 1)
+ (lb
* n))
.= ((nx
-' 1)
+ (lb
* n)) by
A148,
XREAL_1: 233;
(nx
- 1)
< nx by
XREAL_1: 44;
then (nx
- 1)
< lb by
A156,
XXREAL_0: 2;
then
A162: (nx
-' 1)
< lb by
A148,
XREAL_1: 233;
A163: ((((nx
-' 1)
+ (lb
* n))
div lb)
+ 1)
= ((((nx
-' 1)
div lb)
+ n)
+ 1) by
A62,
NAT_D: 61
.= ((
0 qua
Nat
+ n)
+ 1) by
A162,
NAT_D: 27;
A164: ((((nx
-' 1)
+ (lb
* n))
mod lb)
+ 1)
= (((nx
-' 1)
mod lb)
+ 1) by
NAT_D: 61
.= ((nx
-' 1)
+ 1) by
A162,
NAT_D: 24
.= ((nx
- 1)
+ 1) by
A148,
XREAL_1: 233;
A165: nx
in (
dom p1) & (n
+ 1)
in (
dom p2) by
A146,
A144,
A151,
FINSEQ_1:def 3;
then (p1
/. nx)
= (p1
. nx) & (p2
. (n
+ 1))
= (p2
/. (n
+ 1)) by
PARTFUN1:def 6;
then
A166: (q31
. nx)
=
[(p1
/. nx), (p2
/. (n
+ 1))] by
A160,
A159,
A141,
A161,
A163,
A164,
RFINSEQ:def 1;
(p1
. nx)
in Y1 & (p2
. (n
+ 1))
in Y2 by
A165,
A48,
A1,
FUNCT_1: 3;
then
A167: (p1
/. nx)
in Y1 & (p2
/. (n
+ 1))
in Y2 by
A165,
PARTFUN1:def 6;
thus ((G
* q31)
. x)
= (G
. ((p1
/. nx),(p2
/. (n
+ 1)))) by
A166,
A146,
FUNCT_1: 12
.= ((F1
. (p1
/. nx))
* (F2
. (p2
/. (n
+ 1)))) by
A48,
A167
.= (((F1
* p1)
. nx)
* ((
Func_Seq (F2,p2))
/. (n
+ 1))) by
A155,
A149,
A139,
A146,
A144,
FUNCT_1: 12
.= ((((
Func_Seq (F2,p2))
/. (n
+ 1))
(#) (F1
* p1))
. x) by
VALUED_1: 6;
end;
then (
Func_Seq (G,q31))
= (((
Func_Seq (F2,p2))
/. (n
+ 1))
* (
Func_Seq (F1,p1))) by
A145,
FUNCT_1: 2;
then
A168: (
Sum (
Func_Seq (G,q31)))
= ((
Sum (
Func_Seq (F1,p1)))
* ((
Func_Seq (F2,p2))
/. (n
+ 1))) by
RVSUM_1: 87;
A169: (
Func_Seq (G,q3))
= ((
Func_Seq (G,q30))
^ (
Func_Seq (G,q31))) by
A99,
Lm5;
(
dom F2)
= DX2 by
FUNCT_2:def 1;
then (
rng p2)
c= (
dom F2);
then (
dom (F2
* p2))
= (
dom p2) by
RELAT_1: 27;
then (
dom (
Func_Seq (F2,p2)))
= (
Seg (
len p2)) by
FINSEQ_1:def 3;
then
A170: (
len (
Func_Seq (F2,p2)))
= (n
+ 1) by
A48,
FINSEQ_1:def 3;
((
Func_Seq (F2,p2))
| n)
= (
Func_Seq (F2,p20)) by
RELAT_1: 83;
then
A171: (
Func_Seq (F2,p2))
= ((
Func_Seq (F2,p20))
^
<*((
Func_Seq (F2,p2))
/. (n
+ 1))*>) by
A170,
FINSEQ_5: 21;
A172: (
Sum (
Func_Seq (G,q3)))
= ((
Sum (
Func_Seq (G,q30)))
+ (
Sum (
Func_Seq (G,q31)))) by
A169,
RVSUM_1: 75
.= ((
Sum (
Func_Seq (F1,p1)))
* ((
Sum (
Func_Seq (F2,p20)))
+ ((
Func_Seq (F2,p2))
/. (n
+ 1)))) by
A138,
A168
.= ((
Sum (
Func_Seq (F1,p1)))
* (
Sum (
Func_Seq (F2,p2)))) by
A171,
RVSUM_1: 74;
consider P be
Permutation of (
dom p3) such that
A173: q3
= (p3
* P) & (
dom P)
= (
dom p3) & (
rng P)
= (
dom p3) by
A75,
A76,
A48,
BHSP_5: 1;
A174: (
Func_Seq (G,q3))
= ((
Func_Seq (G,p3))
* P) by
A173,
RELAT_1: 36;
(
dom G)
=
[:DX1, DX2:] by
FUNCT_2:def 1;
then (
rng p3)
c= (
dom G);
then (
dom (
Func_Seq (G,p3)))
= (
dom p3) by
RELAT_1: 27;
hence (
Sum (
Func_Seq (G,p3)))
= ((
Sum (
Func_Seq (F1,p1)))
* (
Sum (
Func_Seq (F2,p2)))) by
A172,
A174,
FINSOP_1: 7;
end;
hence
F[(n
+ 1)];
end;
end;
hence
F[(n
+ 1)];
end;
A175: for n be
Nat holds
F[n] from
NAT_1:sch 2(
A4,
A45);
now
let p2 be
FinSequence of DX2, p3 be
FinSequence of
[:DX1, DX2:], Y2 be non
empty
finite
Subset of DX2, Y3 be
finite
Subset of
[:DX1, DX2:];
assume
A176: p2 is
one-to-one & (
rng p2)
= Y2 & p3 is
one-to-one & (
rng p3)
= Y3 & Y3
=
[:Y1, Y2:] & for x,y be
set st x
in Y1 & y
in Y2 holds (G
. (x,y))
= ((F1
. x)
* (F2
. y));
(
len p2) is
Element of
NAT ;
hence (
Sum (
Func_Seq (G,p3)))
= ((
Sum (
Func_Seq (F1,p1)))
* (
Sum (
Func_Seq (F2,p2)))) by
A175,
A176;
end;
hence thesis;
end;
theorem ::
RANDOM_2:12
Th12: for DX1,DX2 be non
empty
set, F1 be
Function of DX1,
REAL , F2 be
Function of DX2,
REAL , G be
Function of
[:DX1, DX2:],
REAL , Y1 be non
empty
finite
Subset of DX1, Y2 be non
empty
finite
Subset of DX2, Y3 be
finite
Subset of
[:DX1, DX2:] st Y3
=
[:Y1, Y2:] & for x,y be
set st x
in Y1 & y
in Y2 holds (G
. (x,y))
= ((F1
. x)
* (F2
. y)) holds (
setopfunc (Y3,
[:DX1, DX2:],
REAL ,G,
addreal ))
= ((
setopfunc (Y1,DX1,
REAL ,F1,
addreal ))
* (
setopfunc (Y2,DX2,
REAL ,F2,
addreal )))
proof
let DX1,DX2 be non
empty
set, F1 be
Function of DX1,
REAL , F2 be
Function of DX2,
REAL , G be
Function of
[:DX1, DX2:],
REAL , Y1 be non
empty
finite
Subset of DX1, Y2 be non
empty
finite
Subset of DX2, Y3 be
finite
Subset of
[:DX1, DX2:];
assume
A1: Y3
=
[:Y1, Y2:] & for x,y be
set st x
in Y1 & y
in Y2 holds (G
. (x,y))
= ((F1
. x)
* (F2
. y));
consider p1 be
FinSequence of DX1 such that
A2: p1 is
one-to-one & (
rng p1)
= Y1 & (
setopfunc (Y1,DX1,
REAL ,F1,
addreal ))
= (
Sum (
Func_Seq (F1,p1))) by
Th9;
consider p2 be
FinSequence of DX2 such that
A3: p2 is
one-to-one & (
rng p2)
= Y2 & (
setopfunc (Y2,DX2,
REAL ,F2,
addreal ))
= (
Sum (
Func_Seq (F2,p2))) by
Th9;
consider p3 be
FinSequence of
[:DX1, DX2:] such that
A4: p3 is
one-to-one & (
rng p3)
= Y3 & (
setopfunc (Y3,
[:DX1, DX2:],
REAL ,G,
addreal ))
= (
Sum (
Func_Seq (G,p3))) by
Th9;
thus thesis by
A1,
A2,
A3,
A4,
Th11;
end;
theorem ::
RANDOM_2:13
Th13: for DX be non
empty
set, F be
Function of DX,
REAL , Y be
finite
Subset of DX st for x be
set st x
in Y holds
0
<= (F
. x) holds
0
<= (
setopfunc (Y,DX,
REAL ,F,
addreal ))
proof
let DX be non
empty
set, F be
Function of DX,
REAL , Y be
finite
Subset of DX;
assume
A1: for x be
set st x
in Y holds
0
<= (F
. x);
consider p be
FinSequence of DX such that
A2: p is
one-to-one & (
rng p)
= Y & (
setopfunc (Y,DX,
REAL ,F,
addreal ))
= (
Sum (
Func_Seq (F,p))) by
Th9;
now
let i be
Nat;
assume
A3: i
in (
dom (
Func_Seq (F,p)));
then
A4: ((
Func_Seq (F,p))
. i)
= (F
. (p
. i)) by
FUNCT_1: 12;
i
in (
dom p) by
A3,
FUNCT_1: 11;
hence
0
<= ((
Func_Seq (F,p))
. i) by
A4,
A1,
A2,
FUNCT_1: 3;
end;
hence thesis by
A2,
RVSUM_1: 84;
end;
theorem ::
RANDOM_2:14
Th14: for DX be non
empty
set, F be
Function of DX,
REAL , Y1,Y2 be
finite
Subset of DX st Y1
c= Y2 & for x be
set st x
in Y2 holds
0
<= (F
. x) holds (
setopfunc (Y1,DX,
REAL ,F,
addreal ))
<= (
setopfunc (Y2,DX,
REAL ,F,
addreal ))
proof
let DX be non
empty
set, F be
Function of DX,
REAL , Y1,Y2 be
finite
Subset of DX;
assume
A1: Y1
c= Y2 & for x be
set st x
in Y2 holds
0
<= (F
. x);
consider p1 be
FinSequence of DX such that
A2: p1 is
one-to-one & (
rng p1)
= Y1 & (
setopfunc (Y1,DX,
REAL ,F,
addreal ))
= (
Sum (
Func_Seq (F,p1))) by
Th9;
reconsider Y3 = (Y2
\ Y1) as
finite
Subset of DX;
consider p2 be
FinSequence of DX such that
A3: p2 is
one-to-one & (
rng p2)
= Y3 & (
setopfunc (Y3,DX,
REAL ,F,
addreal ))
= (
Sum (
Func_Seq (F,p2))) by
Th9;
now
let i be
Nat;
assume
A4: i
in (
dom (
Func_Seq (F,p2)));
then
A5: ((
Func_Seq (F,p2))
. i)
= (F
. (p2
. i)) by
FUNCT_1: 12;
i
in (
dom p2) by
A4,
FUNCT_1: 11;
then
A6: (p2
. i)
in Y3 by
A3,
FUNCT_1: 3;
Y3
c= Y2 by
XBOOLE_1: 36;
hence
0
<= ((
Func_Seq (F,p2))
. i) by
A5,
A1,
A6;
end;
then
A7:
0
<= (
Sum (
Func_Seq (F,p2))) by
RVSUM_1: 84;
reconsider p3 = (p1
^ p2) as
FinSequence of DX;
A8: (
rng p3)
= ((
rng p1)
\/ (
rng p2)) by
FINSEQ_1: 31
.= (Y1
\/ Y2) by
A3,
A2,
XBOOLE_1: 39
.= Y2 by
A1,
XBOOLE_1: 12;
(
rng p1)
misses (
rng p2) by
A2,
A3,
XBOOLE_1: 79;
then p3 is
one-to-one by
A2,
A3,
FINSEQ_3: 91;
then
A9: (
setopfunc (Y2,DX,
REAL ,F,
addreal ))
= (
Sum (
Func_Seq (F,p3))) by
A8,
Th10;
A10: (
Func_Seq (F,p3))
= ((
Func_Seq (F,p1))
^ (
Func_Seq (F,p2))) by
Lm5;
((
Sum (
Func_Seq (F,p1)))
+
0 qua
Real)
<= ((
Sum (
Func_Seq (F,p1)))
+ (
Sum (
Func_Seq (F,p2)))) by
A7,
XREAL_1: 6;
hence thesis by
A2,
A10,
A9,
RVSUM_1: 75;
end;
theorem ::
RANDOM_2:15
Th15: for Omega be non
empty
finite
set, P be
Probability of (
Trivial-SigmaField Omega), Y be non
empty
finite
Subset of Omega, f be
Function of Omega,
REAL holds ex G be
FinSequence of
REAL , s be
FinSequence of Y st (
len G)
= (
card Y) & s is
one-to-one & (
rng s)
= Y & (
len s)
= (
card Y) & (for n be
Nat st n
in (
dom G) holds (G
. n)
= ((f
. (s
. n))
* (P
.
{(s
. n)}))) & (
Integral ((
P2M P),(f
| Y)))
= (
Sum G)
proof
let Omega be non
empty
finite
set, P be
Probability of (
Trivial-SigmaField Omega), Y be non
empty
finite
Subset of Omega, f be
Function of Omega,
REAL ;
set YN = (Omega
\ Y);
A1: (
dom (YN
-->
0 ))
= YN & (
rng (YN
-->
0 ))
c=
REAL by
FUNCOP_1: 13;
A2: (
dom (f
+* (YN
-->
0 )))
= ((
dom f)
\/ (
dom (YN
-->
0 ))) by
FUNCT_4:def 1
.= (Omega
\/ YN) by
A1,
FUNCT_2:def 1
.= Omega by
XBOOLE_1: 12;
(
rng (f
+* (YN
-->
0 )))
c=
REAL ;
then
reconsider g = (f
+* (YN
-->
0 )) as
Function of Omega,
REAL by
A2,
FUNCT_2: 2;
consider G be
FinSequence of
REAL , s be
FinSequence of Omega such that
A3: (
len G)
= (
card Omega) & s is
one-to-one & (
rng s)
= Omega & (
len s)
= (
card Omega) & (for n be
Nat st n
in (
dom G) holds (G
. n)
= ((g
. (s
. n))
* (P
.
{(s
. n)}))) & (
Integral ((
P2M P),g))
= (
Sum G) by
RANDOM_1: 13;
reconsider g as
Real-Valued-Random-Variable of (
Trivial-SigmaField Omega) by
RANDOM_1: 29;
A4: (
dom g)
= Omega by
FUNCT_2:def 1;
g
is_integrable_on P by
RANDOM_1: 30;
then
A5: g
is_integrable_on (
P2M P) by
RANDOM_1:def 3;
A6: Y
misses YN by
XBOOLE_1: 79;
A7: (
Integral ((
P2M P),(g
| (Y
\/ YN))))
= ((
Integral ((
P2M P),(g
| Y)))
+ (
Integral ((
P2M P),(g
| YN)))) by
A5,
MESFUNC6: 92,
XBOOLE_1: 79;
(Y
\/ YN)
= (Y
\/ Omega) by
XBOOLE_1: 39
.= Omega by
XBOOLE_1: 12;
then
A8: (g
| (Y
\/ YN))
= g;
A9: (g
| Y)
= (f
| Y) by
A1,
A6,
FUNCT_4: 72;
A10: (
dom (g
| YN))
= YN by
A4,
RELAT_1: 62;
reconsider zz =
0 as
R_eal by
XXREAL_0:def 1;
A11: for x be
object st x
in (
dom (g
| YN)) holds ((g
| YN)
. x)
=
0
proof
let x be
object;
assume
A12: x
in (
dom (g
| YN));
then
A13: x
in YN & ((g
| YN)
. x)
= (g
. x) by
A4,
FUNCT_1: 47,
RELAT_1: 62;
(g
. x)
= ((YN
-->
0 )
. x) by
A12,
A1,
A10,
FUNCT_4: 13;
hence thesis by
A13,
FUNCOP_1: 7;
end;
then (
Integral ((
P2M P),(g
| YN)))
= (zz
* ((
P2M P)
. YN)) by
A10,
MESFUNC6: 97
.=
0 ;
then
A14: (
Integral ((
P2M P),g))
= (
Integral ((
P2M P),(f
| Y))) by
A9,
A7,
A8,
XXREAL_3: 4;
set N1 = (s
" Y);
s is
Function of (
dom s), (
rng s) by
FUNCT_2: 1;
then N1 is
finite
Subset of (
dom s) by
FUNCT_2: 39;
then
reconsider N1 as
finite
Subset of (
Seg (
len G)) by
A3,
FINSEQ_1:def 3;
(
rng (
canFS N1))
c= N1 by
FINSEQ_1:def 4;
then (
rng (
canFS N1))
c= (
Seg (
len G)) by
XBOOLE_1: 1;
then
A15: (
canFS N1) is
FinSequence of (
Seg (
len G)) by
FINSEQ_1:def 4;
(
dom s)
= (
Seg (
len G)) by
A3,
FINSEQ_1:def 3;
then
A16: s is
Function of (
Seg (
len G)), Omega by
A3,
FUNCT_2: 1;
then
reconsider t1 = (s
* (
canFS N1)) as
FinSequence of Omega by
A15,
FINSEQ_2: 32;
A17: (
rng t1)
= (s
.: (
rng (
canFS N1))) by
RELAT_1: 127
.= (s
.: N1) by
FUNCT_2:def 3
.= Y by
A3,
FUNCT_1: 77;
set N2 = ((
Seg (
len G))
\ N1);
reconsider N2 as
finite
Subset of (
Seg (
len G)) by
XBOOLE_1: 36;
(
rng (
canFS N2))
c= N2 by
FINSEQ_1:def 4;
then (
rng (
canFS N2))
c= (
Seg (
len G)) by
XBOOLE_1: 1;
then (
canFS N2) is
FinSequence of (
Seg (
len G)) by
FINSEQ_1:def 4;
then
reconsider t2 = (s
* (
canFS N2)) as
FinSequence of Omega by
A16,
FINSEQ_2: 32;
reconsider t = (t1
^ t2) as
FinSequence of Omega;
A18: (
rng (
canFS N1))
= N1 by
FUNCT_2:def 3;
A19: (
rng (
canFS N2))
= N2 by
FUNCT_2:def 3;
A20: N1 is
finite
Subset of (
dom s) & N2 is
finite
Subset of (
dom s) by
A3,
FINSEQ_1:def 3;
then (
rng (s
| N1))
misses (
rng (s
| N2)) by
Th1,
A3,
XBOOLE_1: 79;
then (
rng t1)
misses (
rng (s
| N2)) by
A18,
Th2,
XBOOLE_1: 63;
then
A21: (
rng t1)
misses (
rng t2) by
A19,
Th2,
XBOOLE_1: 63;
then
A22: t is
one-to-one by
A3,
FINSEQ_3: 91;
(
len (
canFS N1))
= (
card N1) by
FINSEQ_1: 93;
then
A23: (
dom (
canFS N1))
= (
Seg (
card N1)) by
FINSEQ_1:def 3;
(
rng (
canFS N1)) is
Subset of (
dom s) by
A20,
FUNCT_2:def 3;
then (
dom t1)
= (
Seg (
card N1)) by
A23,
RELAT_1: 27;
then
A24: (
len t1)
= (
card N1) by
FINSEQ_1:def 3;
(
len (
canFS N2))
= (
card N2) by
FINSEQ_1: 93;
then
A25: (
dom (
canFS N2))
= (
Seg (
card N2)) by
FINSEQ_1:def 3;
(
rng (
canFS N2)) is
Subset of (
dom s) by
A20,
FUNCT_2:def 3;
then (
dom t2)
= (
Seg (
card N2)) by
A25,
RELAT_1: 27;
then
A26: (
len t2)
= (
card N2) by
FINSEQ_1:def 3;
A27: (N1
\/ N2)
= ((
Seg (
len G))
\/ N1) by
XBOOLE_1: 39
.= (
Seg (
len G)) by
XBOOLE_1: 12
.= (
dom s) by
A3,
FINSEQ_1:def 3;
(
dom t)
= (
Seg ((
len t1)
+ (
len t2))) by
FINSEQ_1:def 7
.= (
Seg (
card (N1
\/ N2))) by
A24,
A26,
CARD_2: 40,
XBOOLE_1: 79;
then
A28: (
len t)
= (
card (N1
\/ N2)) by
FINSEQ_1:def 3;
then
A29: (
len t)
= (
len s) by
A27,
CARD_1: 62;
A30: (
Seg (
len s))
= (
Seg (
len t)) by
A28,
A27,
CARD_1: 62;
A31: (
dom s)
= (
Seg (
len s)) by
FINSEQ_1:def 3
.= (
dom t) by
A30,
FINSEQ_1:def 3;
A32: (
card (
dom t))
= (
card Omega) by
A3,
A29,
CARD_1: 62;
t is
Function of (
dom t), Omega by
FINSEQ_2: 26;
then t is
onto by
A22,
A32,
FINSEQ_4: 63;
then (
rng s)
= (
rng t) by
A3,
FUNCT_2:def 3;
then
consider PN be
Permutation of (
dom s) such that
A33: t
= (s
* PN) & (
dom PN)
= (
dom s) & (
rng PN)
= (
dom s) by
A3,
A22,
BHSP_5: 1;
defpred
FF1[
object,
object] means ((t
. $1)
in Y implies $2
= ((f
. (t
. $1))
* (P
.
{(t
. $1)}))) & (( not (t
. $1)
in Y) implies $2
= ((g
. (t
. $1))
* (P
.
{(t
. $1)})));
A34:
now
let k be
Nat;
assume k
in (
Seg (
card Omega));
now
per cases ;
suppose (t
. k)
in Y;
hence ex x be
Real st
FF1[k, x];
end;
suppose not (t
. k)
in Y;
hence ex x be
Real st
FF1[k, x];
end;
end;
then
consider x be
Real such that
A35:
FF1[k, x];
reconsider x as
Element of
REAL by
XREAL_0:def 1;
take x;
thus
FF1[k, x] by
A35;
end;
consider F be
FinSequence of
REAL such that
A36: (
dom F)
= (
Seg (
card Omega)) and
A37: for n be
Nat st n
in (
Seg (
card Omega)) holds
FF1[n, (F
. n)] from
FINSEQ_1:sch 5(
A34);
A38: (
dom s)
= (
Seg (
len G)) by
A3,
FINSEQ_1:def 3
.= (
dom G) by
FINSEQ_1:def 3;
then
A39: (
dom (G
* PN))
= (
dom PN) by
A33,
RELAT_1: 27;
A40: (
dom F)
= (
dom s) by
A3,
A36,
FINSEQ_1:def 3;
now
let x be
object;
assume
A41: x
in (
dom F);
then
reconsider nx = x as
Element of
NAT ;
A42: nx
in (
dom t) by
A41,
A3,
A36,
A31,
FINSEQ_1:def 3;
A43: (t
. nx)
= (s
. (PN
. nx)) by
A33,
A41,
A40,
A31,
FUNCT_1: 12;
(PN
. nx)
in (
dom G) by
A38,
A42,
A33,
FUNCT_1: 11;
then
A44: (G
. (PN
. nx))
= ((g
. (s
. (PN
. nx)))
* (P
.
{(s
. (PN
. nx))})) by
A3;
now
per cases ;
suppose
A45: (t
. nx)
in Y;
hence (F
. nx)
= ((f
. (t
. nx))
* (P
.
{(t
. nx)})) by
A37,
A36,
A41
.= (((f
| Y)
. (s
. (PN
. nx)))
* (P
.
{(s
. (PN
. nx))})) by
A43,
A45,
FUNCT_1: 49
.= ((g
. (s
. (PN
. nx)))
* (P
.
{(s
. (PN
. nx))})) by
A45,
A43,
A9,
FUNCT_1: 49
.= ((G
* PN)
. nx) by
A40,
A41,
A33,
A44,
FUNCT_1: 13;
end;
suppose not (t
. nx)
in Y;
hence (F
. nx)
= ((g
. (s
. (PN
. nx)))
* (P
.
{(s
. (PN
. nx))})) by
A43,
A37,
A36,
A41
.= ((G
* PN)
. nx) by
A40,
A41,
A33,
A44,
FUNCT_1: 13;
end;
end;
hence (F
. x)
= ((G
* PN)
. x);
end;
then F
= (G
* PN) by
A33,
A39,
A40,
FUNCT_1: 2;
then
A46: (
Sum G)
= (
Sum F) by
A38,
FINSOP_1: 7;
reconsider t1 as
FinSequence of Y by
A17,
FINSEQ_1:def 4;
reconsider F1 = (F
| (
len t1)) as
FinSequence of
REAL ;
reconsider F2 = (F
/^ (
len t1)) as
FinSequence of
REAL ;
A47: F
= (F1
^ F2) by
RFINSEQ: 8;
A48: (
len t1)
= (
card Y) by
A17,
A3,
FINSEQ_4: 62;
A49: (
len F)
= (
card Omega) by
A36,
FINSEQ_1:def 3;
A50: (
len F)
= (
len t) by
A29,
A3,
A36,
FINSEQ_1:def 3;
A51: (
len t)
= ((
len t1)
+ (
len t2)) by
FINSEQ_1: 22;
then
A52: (
len t1)
<= (
len t) by
NAT_1: 11;
then
A53: (
len F2)
= ((
len F)
- (
len t1)) by
A50,
RFINSEQ:def 1
.= (
len t2) by
A51,
A50;
then
A54: (
dom F2)
= (
Seg (
len t2)) by
FINSEQ_1:def 3
.= (
dom ((
len t2)
|->
0 )) by
FUNCOP_1: 13;
now
let m be
Nat;
assume
A55: m
in (
dom F2);
then
A56: m
in (
Seg (
len t2)) by
A53,
FINSEQ_1:def 3;
then
A57: m
in (
dom t2) by
FINSEQ_1:def 3;
A58: 1
<= m & m
<= (
len t2) by
A56,
FINSEQ_1: 1;
m
<= (m
+ (
len t1)) by
NAT_1: 11;
then 1
<= (m
+ (
len t1)) & (m
+ (
len t1))
<= (
len t) by
A51,
A58,
XREAL_1: 6,
XXREAL_0: 2;
then
A59: (m
+ (
len t1))
in (
Seg (
card Omega)) by
A3,
A29;
A60: (t
. (m
+ (
len t1)))
= (t2
. m) by
A57,
FINSEQ_1:def 7;
A61: ((
rng t1)
/\ (
rng t2))
=
{} by
A21,
XBOOLE_0:def 7;
A62: (t2
. m)
in (
rng t2) by
A57,
FUNCT_1: 3;
then not (t2
. m)
in (
rng t1) by
A61,
XBOOLE_0:def 4;
then
A63: (t2
. m)
in (
dom (g
| YN)) by
A10,
A17,
A62,
XBOOLE_0:def 5;
then
A64: (g
. (t2
. m))
= ((g
| YN)
. (t2
. m)) by
FUNCT_1: 47
.=
0 by
A11,
A63;
not (t
. (m
+ (
len t1)))
in Y by
A17,
A61,
A62,
A60,
XBOOLE_0:def 4;
then
A65: (F
. (m
+ (
len t1)))
= ((g
. (t
. (m
+ (
len t1))))
* (P
.
{(t
. (m
+ (
len t1)))})) by
A37,
A59
.=
0 by
A64,
A60;
thus (F2
. m)
= (F
. (m
+ (
len t1))) by
A50,
A52,
A55,
RFINSEQ:def 1
.= (((
len t2)
|->
0 )
. m) by
A56,
A65,
FINSEQ_2: 57;
end;
then
A66: F2
= ((
len t2)
|->
0 ) by
A54,
FINSEQ_1: 13;
(
Segm (
card Y))
c= (
Segm (
card Omega)) by
CARD_1: 11;
then
A67: (
card Y)
<= (
card Omega) by
NAT_1: 39;
A68: (
Sum F)
= ((
Sum F1)
+ (
Sum F2)) by
A47,
RVSUM_1: 75
.= ((
Sum F1)
+
0 qua
Real) by
A66,
RVSUM_1: 81
.= (
Sum F1);
A69: (
len F1)
= (
card Y) by
A49,
A48,
A67,
FINSEQ_1: 59;
for n be
Nat st n
in (
dom F1) holds (F1
. n)
= ((f
. (t1
. n))
* (P
.
{(t1
. n)}))
proof
let n be
Nat;
assume n
in (
dom F1);
then
A70: n
in (
Seg (
len t1)) by
A69,
A48,
FINSEQ_1:def 3;
then
A71: n
in (
dom t1) by
FINSEQ_1:def 3;
then
A72: (t
. n)
= (t1
. n) by
FINSEQ_1:def 7;
then
A73: (t
. n)
in Y by
A17,
A71,
FUNCT_1: 3;
A74: (
Seg (
len t1))
c= (
Seg (
card Omega)) by
A48,
A67,
FINSEQ_1: 5;
thus (F1
. n)
= (F
. n) by
A70,
FUNCT_1: 49
.= ((f
. (t1
. n))
* (P
.
{(t1
. n)})) by
A72,
A74,
A70,
A37,
A73;
end;
hence thesis by
A69,
A48,
A17,
A68,
A46,
A3,
A14;
end;
reconsider jj = 1 as
R_eal by
XXREAL_0:def 1;
Lm7: for Omega1,Omega2 be non
empty
finite
set, P1 be
Probability of (
Trivial-SigmaField Omega1), P2 be
Probability of (
Trivial-SigmaField Omega2), Q be
Function of
[:Omega1, Omega2:],
REAL , P be
Function of (
bool
[:Omega1, Omega2:]),
REAL , Y1 be non
empty
finite
Subset of Omega1, Y2 be non
empty
finite
Subset of Omega2 st (for x,y be
set st x
in Omega1 & y
in Omega2 holds (Q
. (x,y))
= ((P1
.
{x})
* (P2
.
{y}))) & (for z be
finite
Subset of
[:Omega1, Omega2:] holds (P
. z)
= (
setopfunc (z,
[:Omega1, Omega2:],
REAL ,Q,
addreal ))) holds (P
.
[:Y1, Y2:])
= ((P1
. Y1)
* (P2
. Y2))
proof
let Omega1,Omega2 be non
empty
finite
set, P1 be
Probability of (
Trivial-SigmaField Omega1), P2 be
Probability of (
Trivial-SigmaField Omega2), Q be
Function of
[:Omega1, Omega2:],
REAL , P be
Function of (
bool
[:Omega1, Omega2:]),
REAL , Y1 be non
empty
finite
Subset of Omega1, Y2 be non
empty
finite
Subset of Omega2;
assume
A1: (for x,y be
set st x
in Omega1 & y
in Omega2 holds (Q
. (x,y))
= ((P1
.
{x})
* (P2
.
{y}))) & (for z be
finite
Subset of
[:Omega1, Omega2:] holds (P
. z)
= (
setopfunc (z,
[:Omega1, Omega2:],
REAL ,Q,
addreal )));
deffunc
FF1(
object) = (P1
.
{$1});
A2: for x be
object st x
in Y1 holds
FF1(x)
in
REAL by
XREAL_0:def 1;
consider F1 be
Function of Y1,
REAL such that
A3: for x be
object st x
in Y1 holds (F1
. x)
=
FF1(x) from
FUNCT_2:sch 2(
A2);
deffunc
FF2(
object) = (P2
.
{$1});
A4: for x be
object st x
in Y2 holds
FF2(x)
in
REAL by
XREAL_0:def 1;
consider F2 be
Function of Y2,
REAL such that
A5: for x be
object st x
in Y2 holds (F2
. x)
=
FF2(x) from
FUNCT_2:sch 2(
A4);
for x be
object st x
in
{
{} , 1} holds x
in
REAL by
XREAL_0:def 1;
then
A6:
{
{} , 1}
c=
REAL ;
A7: (
dom (
chi (Y1,Omega1)))
= Omega1 & (
rng (
chi (Y1,Omega1)))
c=
{
{} , 1} by
FUNCT_3: 39,
FUNCT_3:def 3;
then (
chi (Y1,Omega1)) is
Function of Omega1,
{
{} , 1} by
FUNCT_2:def 1,
RELSET_1: 4;
then
reconsider f1 = (
chi (Y1,Omega1)) as
Function of Omega1,
REAL by
A6,
FUNCT_2: 7;
A8: (
dom (f1
| Y1))
= ((
dom f1)
/\ Y1) by
RELAT_1: 61
.= Y1 by
A7,
XBOOLE_1: 28;
for x be
object st x
in (
dom (f1
| Y1)) holds ((f1
| Y1)
. x)
= 1
proof
let x be
object;
assume
A9: x
in (
dom (f1
| Y1));
then ((f1
| Y1)
. x)
= (f1
. x) by
FUNCT_1: 47
.= 1 by
A9,
A8,
FUNCT_3:def 3;
hence thesis;
end;
then
A10: (
Integral ((
P2M P1),(f1
| Y1)))
= (jj
* ((
P2M P1)
. (
dom (f1
| Y1)))) by
MESFUNC6: 97
.= (1
* (P1
. Y1)) by
A8,
EXTREAL1: 1
.= (P1
. Y1);
consider G1 be
FinSequence of
REAL , s1 be
FinSequence of Y1 such that
A11: (
len G1)
= (
card Y1) & s1 is
one-to-one & (
rng s1)
= Y1 & (
len s1)
= (
card Y1) & (for n be
Nat st n
in (
dom G1) holds (G1
. n)
= ((f1
. (s1
. n))
* (P1
.
{(s1
. n)}))) & (
Integral ((
P2M P1),(f1
| Y1)))
= (
Sum G1) by
Th15;
Y1
c= Y1;
then
reconsider YY1 = Y1 as
finite
Subset of Y1;
(
dom F1)
= Y1 by
FUNCT_2:def 1;
then
A12: (
dom (F1
* s1))
= (
dom s1) by
A11,
RELAT_1: 27;
A13: (
dom G1)
= (
Seg (
len s1)) by
A11,
FINSEQ_1:def 3
.= (
dom s1) by
FINSEQ_1:def 3;
now
let x be
object;
assume
A14: x
in (
dom G1);
then
reconsider nx = x as
Element of
NAT ;
A15: (s1
. nx)
in Y1 by
A11,
A13,
A14,
FUNCT_1: 3;
thus (G1
. x)
= ((f1
. (s1
. nx))
* (P1
.
{(s1
. nx)})) by
A11,
A14
.= (1
* (P1
.
{(s1
. nx)})) by
A15,
FUNCT_3:def 3
.= (F1
. (s1
. nx)) by
A3,
A11,
A13,
A14,
FUNCT_1: 3
.= ((F1
* s1)
. x) by
A13,
A14,
FUNCT_1: 13;
end;
then G1
= (
Func_Seq (F1,s1)) by
A12,
A13,
FUNCT_1: 2;
then
A16: (
setopfunc (YY1,Y1,
REAL ,F1,
addreal ))
= (
Sum G1) by
A11,
Th10;
A17: (
dom (
chi (Y2,Omega2)))
= Omega2 & (
rng (
chi (Y2,Omega2)))
c=
{
{} , 1} by
FUNCT_3: 39,
FUNCT_3:def 3;
then (
chi (Y2,Omega2)) is
Function of Omega2,
{
{} , 1} by
FUNCT_2:def 1,
RELSET_1: 4;
then
reconsider f2 = (
chi (Y2,Omega2)) as
Function of Omega2,
REAL by
A6,
FUNCT_2: 7;
A18: (
dom (f2
| Y2))
= ((
dom f2)
/\ Y2) by
RELAT_1: 61
.= Y2 by
A17,
XBOOLE_1: 28;
for x be
object st x
in (
dom (f2
| Y2)) holds ((f2
| Y2)
. x)
= 1
proof
let x be
object;
assume
A19: x
in (
dom (f2
| Y2));
then ((f2
| Y2)
. x)
= (f2
. x) by
FUNCT_1: 47
.= 1 by
A19,
A18,
FUNCT_3:def 3;
hence thesis;
end;
then
A20: (
Integral ((
P2M P2),(f2
| Y2)))
= (jj
* ((
P2M P2)
. Y2)) by
A18,
MESFUNC6: 97
.= (1
* (P2
. Y2)) by
EXTREAL1: 1
.= (P2
. Y2);
consider G2 be
FinSequence of
REAL , s2 be
FinSequence of Y2 such that
A21: (
len G2)
= (
card Y2) & s2 is
one-to-one & (
rng s2)
= Y2 & (
len s2)
= (
card Y2) & (for n be
Nat st n
in (
dom G2) holds (G2
. n)
= ((f2
. (s2
. n))
* (P2
.
{(s2
. n)}))) & (
Integral ((
P2M P2),(f2
| Y2)))
= (
Sum G2) by
Th15;
Y2
c= Y2;
then
reconsider YY2 = Y2 as
finite
Subset of Y2;
(
dom F2)
= Y2 by
FUNCT_2:def 1;
then
A22: (
dom (F2
* s2))
= (
dom s2) by
A21,
RELAT_1: 27;
A23: (
dom G2)
= (
Seg (
len s2)) by
A21,
FINSEQ_1:def 3
.= (
dom s2) by
FINSEQ_1:def 3;
now
let x be
object;
assume
A24: x
in (
dom G2);
then
reconsider nx = x as
Element of
NAT ;
A25: (s2
. nx)
in Y2 by
A21,
A23,
A24,
FUNCT_1: 3;
thus (G2
. x)
= ((f2
. (s2
. nx))
* (P2
.
{(s2
. nx)})) by
A21,
A24
.= (1
* (P2
.
{(s2
. nx)})) by
A25,
FUNCT_3:def 3
.= (F2
. (s2
. nx)) by
A5,
A21,
A23,
A24,
FUNCT_1: 3
.= ((F2
* s2)
. x) by
A23,
A24,
FUNCT_1: 13;
end;
then G2
= (
Func_Seq (F2,s2)) by
A22,
A23,
FUNCT_1: 2;
then
A26: (
setopfunc (YY2,Y2,
REAL ,F2,
addreal ))
= (
Sum G2) by
A21,
Th10;
reconsider Y3 =
[:Y1, Y2:] as
finite
Subset of
[:Y1, Y2:] by
ZFMISC_1: 96;
reconsider Y33 =
[:Y1, Y2:] as
finite
Subset of
[:Omega1, Omega2:] by
ZFMISC_1: 96;
A27:
[:Y1, Y2:]
c=
[:Omega1, Omega2:] by
ZFMISC_1: 96;
then
reconsider Q0 = (Q
|
[:Y1, Y2:]) as
Function of
[:Y1, Y2:],
REAL by
FUNCT_2: 32;
A28:
now
let x,y be
set;
assume
A29: x
in Y1 & y
in Y2;
then
[x, y]
in
[:Y1, Y2:] by
ZFMISC_1:def 2;
then
[x, y]
in (
dom Q0) by
FUNCT_2:def 1;
hence (Q0
. (x,y))
= (Q
. (x,y)) by
FUNCT_1: 47
.= ((P1
.
{x})
* (P2
.
{y})) by
A1,
A29
.= ((F1
. x)
* (P2
.
{y})) by
A29,
A3
.= ((F1
. x)
* (F2
. y)) by
A29,
A5;
end;
consider pp1 be
FinSequence of
[:Y1, Y2:] such that
A30: pp1 is
one-to-one & (
rng pp1)
= Y3 & (
setopfunc (Y3,
[:Y1, Y2:],
REAL ,Q0,
addreal ))
= (
addreal
"**" (
Func_Seq (Q0,pp1))) by
BHSP_5:def 5;
A31: (
rng pp1)
c=
[:Omega1, Omega2:] by
A27;
then
reconsider pp2 = pp1 as
FinSequence of
[:Omega1, Omega2:] by
FINSEQ_1:def 4;
(
rng pp1)
c= (
dom Q) by
A31,
FUNCT_2:def 1;
then
A32: (
dom (Q
* pp1))
= (
dom pp1) by
RELAT_1: 27;
A33: (
dom Q0)
=
[:Y1, Y2:] by
FUNCT_2:def 1;
for x be
object st x
in (
dom (Q0
* pp1)) holds ((Q0
* pp1)
. x)
= ((Q
* pp1)
. x)
proof
let x be
object;
assume x
in (
dom (Q0
* pp1));
then
A34: ((Q0
* pp1)
. x)
= (Q0
. (pp1
. x)) & x
in (
dom pp1) by
FUNCT_1: 11,
FUNCT_1: 12;
then (pp1
. x)
in (
rng pp1) by
FUNCT_1: 3;
then (Q0
. (pp1
. x))
= (Q
. (pp1
. x)) by
FUNCT_1: 49;
hence thesis by
A34,
FUNCT_1: 13;
end;
then
A35: (
Func_Seq (Q0,pp1))
= (
Func_Seq (Q,pp2)) by
A33,
A32,
A31,
FUNCT_1: 2,
RELAT_1: 27;
A36: (
setopfunc (Y3,
[:Y1, Y2:],
REAL ,Q0,
addreal ))
= (
setopfunc (Y33,
[:Omega1, Omega2:],
REAL ,Q,
addreal )) by
A30,
A35,
BHSP_5:def 5;
thus (P
.
[:Y1, Y2:])
= (
setopfunc (Y33,
[:Omega1, Omega2:],
REAL ,Q,
addreal )) by
A1
.= ((P1
. Y1)
* (P2
. Y2)) by
A20,
A21,
A10,
A11,
A26,
A16,
Th12,
A28,
A36;
end;
Lm8: for Omega1,Omega2 be non
empty
finite
set, P1 be
Probability of (
Trivial-SigmaField Omega1), P2 be
Probability of (
Trivial-SigmaField Omega2), Q be
Function of
[:Omega1, Omega2:],
REAL , P be
Function of (
bool
[:Omega1, Omega2:]),
REAL st (for x,y be
set st x
in Omega1 & y
in Omega2 holds (Q
. (x,y))
= ((P1
.
{x})
* (P2
.
{y}))) & (for z be
finite
Subset of
[:Omega1, Omega2:] holds (P
. z)
= (
setopfunc (z,
[:Omega1, Omega2:],
REAL ,Q,
addreal ))) holds (P
.
[:Omega1, Omega2:])
= 1
proof
let Omega1,Omega2 be non
empty
finite
set, P1 be
Probability of (
Trivial-SigmaField Omega1), P2 be
Probability of (
Trivial-SigmaField Omega2), Q be
Function of
[:Omega1, Omega2:],
REAL , P be
Function of (
bool
[:Omega1, Omega2:]),
REAL ;
assume
A1: (for x,y be
set st x
in Omega1 & y
in Omega2 holds (Q
. (x,y))
= ((P1
.
{x})
* (P2
.
{y}))) & (for z be
finite
Subset of
[:Omega1, Omega2:] holds (P
. z)
= (
setopfunc (z,
[:Omega1, Omega2:],
REAL ,Q,
addreal )));
deffunc
FF1(
object) = (P1
.
{$1});
A2: for x be
object st x
in Omega1 holds
FF1(x)
in
REAL by
XREAL_0:def 1;
consider F1 be
Function of Omega1,
REAL such that
A3: for x be
object st x
in Omega1 holds (F1
. x)
=
FF1(x) from
FUNCT_2:sch 2(
A2);
deffunc
FF2(
object) = (P2
.
{$1});
A4: for x be
object st x
in Omega2 holds
FF2(x)
in
REAL by
XREAL_0:def 1;
consider F2 be
Function of Omega2,
REAL such that
A5: for x be
object st x
in Omega2 holds (F2
. x)
=
FF2(x) from
FUNCT_2:sch 2(
A4);
A6: (
dom (Omega1
--> 1))
= Omega1 by
FUNCOP_1: 13;
(
rng (Omega1
--> 1))
c=
REAL ;
then
reconsider f1 = (Omega1
--> 1) as
Function of Omega1,
REAL by
A6,
FUNCT_2: 2;
for x be
object st x
in (
dom (Omega1
--> 1)) holds ((Omega1
--> 1)
. x)
= 1 by
FUNCOP_1: 7;
then
A7: (
Integral ((
P2M P1),f1))
= (jj
* ((
P2M P1)
. Omega1)) by
A6,
MESFUNC6: 97
.= (1
* (P1
. Omega1)) by
EXTREAL1: 1
.= 1 by
PROB_1:def 8;
consider G1 be
FinSequence of
REAL , s1 be
FinSequence of Omega1 such that
A8: (
len G1)
= (
card Omega1) & s1 is
one-to-one & (
rng s1)
= Omega1 & (
len s1)
= (
card Omega1) & (for n be
Nat st n
in (
dom G1) holds (G1
. n)
= ((f1
. (s1
. n))
* (P1
.
{(s1
. n)}))) & (
Integral ((
P2M P1),f1))
= (
Sum G1) by
RANDOM_1: 13;
Omega1
c= Omega1;
then
reconsider Y1 = Omega1 as
finite
Subset of Omega1;
(
dom F1)
= Y1 by
FUNCT_2:def 1;
then
A9: (
dom (F1
* s1))
= (
dom s1) by
A8,
RELAT_1: 27;
A10: (
dom G1)
= (
Seg (
len s1)) by
A8,
FINSEQ_1:def 3
.= (
dom s1) by
FINSEQ_1:def 3;
now
let x be
object;
assume
A11: x
in (
dom G1);
then
reconsider nx = x as
Element of
NAT ;
thus (G1
. x)
= ((f1
. (s1
. nx))
* (P1
.
{(s1
. nx)})) by
A8,
A11
.= (1
* (P1
.
{(s1
. nx)})) by
A8,
A10,
A11,
FUNCOP_1: 7,
FUNCT_1: 3
.= (F1
. (s1
. nx)) by
A3,
A8,
A10,
A11,
FUNCT_1: 3
.= ((F1
* s1)
. x) by
A10,
A11,
FUNCT_1: 13;
end;
then G1
= (
Func_Seq (F1,s1)) by
A9,
A10,
FUNCT_1: 2;
then
A12: (
setopfunc (Y1,Omega1,
REAL ,F1,
addreal ))
= 1 by
A7,
A8,
Th10;
A13: (
dom (Omega2
--> 1))
= Omega2 by
FUNCOP_1: 13;
(
rng (Omega2
--> 1))
c=
REAL ;
then
reconsider f2 = (Omega2
--> 1) as
Function of Omega2,
REAL by
A13,
FUNCT_2: 2;
for x be
object st x
in (
dom (Omega2
--> 1)) holds ((Omega2
--> 1)
. x)
= 1 by
FUNCOP_1: 7;
then
A14: (
Integral ((
P2M P2),f2))
= (jj
* ((
P2M P2)
. Omega2)) by
A13,
MESFUNC6: 97
.= (1
* (P2
. Omega2)) by
EXTREAL1: 1
.= 1 by
PROB_1:def 8;
consider G2 be
FinSequence of
REAL , s2 be
FinSequence of Omega2 such that
A15: (
len G2)
= (
card Omega2) & s2 is
one-to-one & (
rng s2)
= Omega2 & (
len s2)
= (
card Omega2) & (for n be
Nat st n
in (
dom G2) holds (G2
. n)
= ((f2
. (s2
. n))
* (P2
.
{(s2
. n)}))) & (
Integral ((
P2M P2),f2))
= (
Sum G2) by
RANDOM_1: 13;
Omega2
c= Omega2;
then
reconsider Y2 = Omega2 as
finite
Subset of Omega2;
(
dom F2)
= Y2 by
FUNCT_2:def 1;
then
A16: (
dom (F2
* s2))
= (
dom s2) by
A15,
RELAT_1: 27;
A17: (
dom G2)
= (
Seg (
len s2)) by
A15,
FINSEQ_1:def 3
.= (
dom s2) by
FINSEQ_1:def 3;
now
let x be
object;
assume
A18: x
in (
dom G2);
then
reconsider nx = x as
Element of
NAT ;
thus (G2
. x)
= ((f2
. (s2
. nx))
* (P2
.
{(s2
. nx)})) by
A15,
A18
.= (1
* (P2
.
{(s2
. nx)})) by
A15,
A17,
A18,
FUNCOP_1: 7,
FUNCT_1: 3
.= (F2
. (s2
. nx)) by
A5,
A15,
A17,
A18,
FUNCT_1: 3
.= ((F2
* s2)
. x) by
A17,
A18,
FUNCT_1: 13;
end;
then
A19: G2
= (
Func_Seq (F2,s2)) by
A16,
A17,
FUNCT_1: 2;
reconsider Y3 =
[:Y1, Y2:] as
finite
Subset of
[:Omega1, Omega2:] by
ZFMISC_1: 96;
A20:
now
let x,y be
set;
assume
A21: x
in Y1 & y
in Y2;
hence (Q
. (x,y))
= ((P1
.
{x})
* (P2
.
{y})) by
A1
.= ((F1
. x)
* (P2
.
{y})) by
A21,
A3
.= ((F1
. x)
* (F2
. y)) by
A21,
A5;
end;
thus (P
.
[:Omega1, Omega2:])
= (
setopfunc (Y3,
[:Omega1, Omega2:],
REAL ,Q,
addreal )) by
A1
.= ((
setopfunc (Y1,Omega1,
REAL ,F1,
addreal ))
* (
setopfunc (Y2,Omega2,
REAL ,F2,
addreal ))) by
Th12,
A20
.= 1 by
A19,
A14,
A15,
Th10,
A12;
end;
Lm9: for Omega1,Omega2 be non
empty
finite
set, P1 be
Probability of (
Trivial-SigmaField Omega1), P2 be
Probability of (
Trivial-SigmaField Omega2), Q be
Function of
[:Omega1, Omega2:],
REAL , P be
Function of (
bool
[:Omega1, Omega2:]),
REAL st (for x,y be
set st x
in Omega1 & y
in Omega2 holds (Q
. (x,y))
= ((P1
.
{x})
* (P2
.
{y}))) & (for z be
finite
Subset of
[:Omega1, Omega2:] holds (P
. z)
= (
setopfunc (z,
[:Omega1, Omega2:],
REAL ,Q,
addreal ))) holds for x be
set st x
c=
[:Omega1, Omega2:] holds
0
<= (P
. x) & (P
. x)
<= 1
proof
let Omega1,Omega2 be non
empty
finite
set, P1 be
Probability of (
Trivial-SigmaField Omega1), P2 be
Probability of (
Trivial-SigmaField Omega2), Q be
Function of
[:Omega1, Omega2:],
REAL , P be
Function of (
bool
[:Omega1, Omega2:]),
REAL ;
assume
A1: (for x,y be
set st x
in Omega1 & y
in Omega2 holds (Q
. (x,y))
= ((P1
.
{x})
* (P2
.
{y}))) & (for z be
finite
Subset of
[:Omega1, Omega2:] holds (P
. z)
= (
setopfunc (z,
[:Omega1, Omega2:],
REAL ,Q,
addreal )));
reconsider Y12 =
[:Omega1, Omega2:] as
finite
Subset of
[:Omega1, Omega2:] by
SUBSET: 3;
A2:
now
let z be
set;
assume z
in
[:Omega1, Omega2:];
then
consider x,y be
object such that
A3: x
in Omega1 & y
in Omega2 & z
=
[x, y] by
ZFMISC_1:def 2;
for xx be
object st xx
in
{x} holds xx
in Omega1 by
A3,
TARSKI:def 1;
then
A4:
{x} is
Event of (
Trivial-SigmaField Omega1) & for xx be
object st xx
in
{y} holds xx
in Omega2 by
A3,
TARSKI:def 1,
TARSKI:def 3;
then
A5:
{y} is
Event of (
Trivial-SigmaField Omega2) by
TARSKI:def 3;
A6: (Q
. z)
= (Q
. (x,y)) by
A3
.= ((P1
.
{x})
* (P2
.
{y})) by
A3,
A1;
0
<= (P1
.
{x}) &
0
<= (P2
.
{y}) by
A4,
A5,
PROB_1:def 8;
hence
0
<= (Q
. z) by
A6;
end;
let x be
set;
assume x
c=
[:Omega1, Omega2:];
then
reconsider Y = x as
finite
Subset of
[:Omega1, Omega2:];
for z be
set st z
in Y holds
0
<= (Q
. z) by
A2;
then
0
<= (
setopfunc (Y,
[:Omega1, Omega2:],
REAL ,Q,
addreal )) by
Th13;
hence
0
<= (P
. x) by
A1;
A7: (
setopfunc (Y,
[:Omega1, Omega2:],
REAL ,Q,
addreal ))
<= (
setopfunc (Y12,
[:Omega1, Omega2:],
REAL ,Q,
addreal )) by
A2,
Th14;
(
setopfunc (Y12,
[:Omega1, Omega2:],
REAL ,Q,
addreal ))
= (P
.
[:Omega1, Omega2:]) by
A1;
then (
setopfunc (Y,
[:Omega1, Omega2:],
REAL ,Q,
addreal ))
<= 1 by
A7,
A1,
Lm8;
hence (P
. x)
<= 1 by
A1;
end;
definition
let Omega1,Omega2 be non
empty
finite
set, P1 be
Probability of (
Trivial-SigmaField Omega1), P2 be
Probability of (
Trivial-SigmaField Omega2);
::
RANDOM_2:def2
func
Product-Probability (Omega1,Omega2,P1,P2) ->
Probability of (
Trivial-SigmaField
[:Omega1, Omega2:]) means
:
Def2: ex Q be
Function of
[:Omega1, Omega2:],
REAL st (for x,y be
set st x
in Omega1 & y
in Omega2 holds (Q
. (x,y))
= ((P1
.
{x})
* (P2
.
{y}))) & (for z be
finite
Subset of
[:Omega1, Omega2:] holds (it
. z)
= (
setopfunc (z,
[:Omega1, Omega2:],
REAL ,Q,
addreal )));
existence
proof
consider Q be
Function of
[:Omega1, Omega2:],
REAL such that
A1: for x,y be
set st x
in Omega1 & y
in Omega2 holds (Q
. (x,y))
= ((P1
.
{x})
* (P2
.
{y})) by
Lm1;
consider P be
Function of (
bool
[:Omega1, Omega2:]),
REAL such that
A2: for z be
finite
Subset of
[:Omega1, Omega2:] holds (P
. z)
= (
setopfunc (z,
[:Omega1, Omega2:],
REAL ,Q,
addreal )) by
Lm3;
A3: for x be
set st x
c=
[:Omega1, Omega2:] holds
0
<= (P
. x) & (P
. x)
<= 1 by
Lm9,
A1,
A2;
(P
.
[:Omega1, Omega2:])
= 1 by
A1,
A2,
Lm8;
then P is
Probability of (
Trivial-SigmaField
[:Omega1, Omega2:]) by
A2,
A3,
Th8;
hence thesis by
A1,
A2;
end;
uniqueness
proof
let PP1,PP2 be
Probability of (
Trivial-SigmaField
[:Omega1, Omega2:]);
assume
A4: ex Q1 be
Function of
[:Omega1, Omega2:],
REAL st (for x,y be
set st x
in Omega1 & y
in Omega2 holds (Q1
. (x,y))
= ((P1
.
{x})
* (P2
.
{y}))) & (for z be
finite
Subset of
[:Omega1, Omega2:] holds (PP1
. z)
= (
setopfunc (z,
[:Omega1, Omega2:],
REAL ,Q1,
addreal )));
assume
A5: ex Q2 be
Function of
[:Omega1, Omega2:],
REAL st (for x,y be
set st x
in Omega1 & y
in Omega2 holds (Q2
. (x,y))
= ((P1
.
{x})
* (P2
.
{y}))) & (for z be
finite
Subset of
[:Omega1, Omega2:] holds (PP2
. z)
= (
setopfunc (z,
[:Omega1, Omega2:],
REAL ,Q2,
addreal )));
consider Q1 be
Function of
[:Omega1, Omega2:],
REAL such that
A6: (for x,y be
set st x
in Omega1 & y
in Omega2 holds (Q1
. (x,y))
= ((P1
.
{x})
* (P2
.
{y}))) & (for z be
finite
Subset of
[:Omega1, Omega2:] holds (PP1
. z)
= (
setopfunc (z,
[:Omega1, Omega2:],
REAL ,Q1,
addreal ))) by
A4;
consider Q2 be
Function of
[:Omega1, Omega2:],
REAL such that
A7: (for x,y be
set st x
in Omega1 & y
in Omega2 holds (Q2
. (x,y))
= ((P1
.
{x})
* (P2
.
{y}))) & (for z be
finite
Subset of
[:Omega1, Omega2:] holds (PP2
. z)
= (
setopfunc (z,
[:Omega1, Omega2:],
REAL ,Q2,
addreal ))) by
A5;
Q1
= Q2 by
A6,
A7,
Lm2;
hence PP1
= PP2 by
Lm4,
A6,
A7;
end;
end
theorem ::
RANDOM_2:16
Th16: for Omega1,Omega2 be non
empty
finite
set, P1 be
Probability of (
Trivial-SigmaField Omega1), P2 be
Probability of (
Trivial-SigmaField Omega2), Y1 be non
empty
finite
Subset of Omega1, Y2 be non
empty
finite
Subset of Omega2 holds ((
Product-Probability (Omega1,Omega2,P1,P2))
.
[:Y1, Y2:])
= ((P1
. Y1)
* (P2
. Y2))
proof
let Omega1,Omega2 be non
empty
finite
set, P1 be
Probability of (
Trivial-SigmaField Omega1), P2 be
Probability of (
Trivial-SigmaField Omega2), Y1 be non
empty
finite
Subset of Omega1, Y2 be non
empty
finite
Subset of Omega2;
set P = (
Product-Probability (Omega1,Omega2,P1,P2));
consider Q be
Function of
[:Omega1, Omega2:],
REAL such that
A1: (for x,y be
set st x
in Omega1 & y
in Omega2 holds (Q
. (x,y))
= ((P1
.
{x})
* (P2
.
{y}))) & (for z be
finite
Subset of
[:Omega1, Omega2:] holds (P
. z)
= (
setopfunc (z,
[:Omega1, Omega2:],
REAL ,Q,
addreal ))) by
Def2;
thus (P
.
[:Y1, Y2:])
= ((P1
. Y1)
* (P2
. Y2)) by
Lm7,
A1;
end;
theorem ::
RANDOM_2:17
for Omega1,Omega2 be non
empty
finite
set, P1 be
Probability of (
Trivial-SigmaField Omega1), P2 be
Probability of (
Trivial-SigmaField Omega2), y1,y2 be
set st y1
in Omega1 & y2
in Omega2 holds ((
Product-Probability (Omega1,Omega2,P1,P2))
.
{
[y1, y2]})
= ((P1
.
{y1})
* (P2
.
{y2}))
proof
let Omega1,Omega2 be non
empty
finite
set, P1 be
Probability of (
Trivial-SigmaField Omega1), P2 be
Probability of (
Trivial-SigmaField Omega2), y1,y2 be
set;
assume
A1: y1
in Omega1 & y2
in Omega2;
then
A2:
{y1} is
finite
Subset of Omega1 by
ZFMISC_1: 31;
for yy be
object st yy
in
{y2} holds yy
in Omega2 by
A1,
TARSKI:def 1;
then
A3:
{y2} is
finite
Subset of Omega2 by
TARSKI:def 3;
[:
{y1},
{y2}:]
=
{
[y1, y2]} by
ZFMISC_1: 29;
hence ((
Product-Probability (Omega1,Omega2,P1,P2))
.
{
[y1, y2]})
= ((P1
.
{y1})
* (P2
.
{y2})) by
Th16,
A2,
A3;
end;
begin
definition
let Omega be non
empty
set;
let Sigma be
SigmaField of Omega;
::
RANDOM_2:def3
func
Real-Valued-Random-Variables-Set Sigma -> non
empty
Subset of (
RAlgebra Omega) equals the set of all f where f be
Real-Valued-Random-Variable of Sigma;
correctness
proof
A1: the set of all f where f be
Real-Valued-Random-Variable of Sigma is non
empty
proof
set g = the
Real-Valued-Random-Variable of Sigma;
g
in the set of all f where f be
Real-Valued-Random-Variable of Sigma;
hence thesis;
end;
the set of all f where f be
Real-Valued-Random-Variable of Sigma
c= (
Funcs (Omega,
REAL ))
proof
let x be
object;
assume x
in the set of all f where f be
Real-Valued-Random-Variable of Sigma;
then
consider f be
Real-Valued-Random-Variable of Sigma such that
A2: x
= f;
thus thesis by
A2,
FUNCT_2: 8;
end;
hence thesis by
A1;
end;
end
Lm10: (
Real-Valued-Random-Variables-Set Sigma) is
additively-linearly-closed
multiplicatively-closed
proof
set W = (
Real-Valued-Random-Variables-Set Sigma);
set V = (
RAlgebra Omega);
A1: for v,u be
Element of V st v
in W & u
in W holds (v
* u)
in W
proof
let v,u be
Element of V such that
A2: v
in W and
A3: u
in W;
consider u1 be
Real-Valued-Random-Variable of Sigma such that
A4: u1
= u by
A3;
reconsider h = (v
* u) as
Element of (
Funcs (Omega,
REAL ));
consider v1 be
Real-Valued-Random-Variable of Sigma such that
A5: v1
= v by
A2;
((
dom v1)
/\ (
dom u1))
= (Omega
/\ (
dom u1)) by
FUNCT_2:def 1;
then
A6: (ex f be
Function st h
= f & (
dom f)
= Omega & (
rng f)
c=
REAL ) & ((
dom v1)
/\ (
dom u1))
= (Omega
/\ Omega) by
FUNCT_2:def 1,
FUNCT_2:def 2;
for x be
object st x
in (
dom h) holds (h
. x)
= ((v1
. x)
* (u1
. x) qua
Complex) by
A5,
A4,
FUNCSDOM: 2;
then (v
* u)
= (v1
(#) u1) by
A6,
VALUED_1:def 4;
hence thesis;
end;
for v,u be
Element of V st v
in W & u
in W holds (v
+ u)
in W
proof
let v,u be
Element of V such that
A7: v
in W and
A8: u
in W;
consider u1 be
Real-Valued-Random-Variable of Sigma such that
A9: u1
= u by
A8;
reconsider h = (v
+ u) as
Element of (
Funcs (Omega,
REAL ));
consider v1 be
Real-Valued-Random-Variable of Sigma such that
A10: v1
= v by
A7;
((
dom v1)
/\ (
dom u1))
= (Omega
/\ (
dom u1)) by
FUNCT_2:def 1;
then
A11: (ex f be
Function st h
= f & (
dom f)
= Omega & (
rng f)
c=
REAL ) & ((
dom v1)
/\ (
dom u1))
= (Omega
/\ Omega) by
FUNCT_2:def 1,
FUNCT_2:def 2;
for x be
object st x
in (
dom h) holds (h
. x)
= ((v1
. x)
+ (u1
. x) qua
Real) by
A10,
A9,
FUNCSDOM: 1;
then (v
+ u)
= (v1
+ u1) by
A11,
VALUED_1:def 1;
hence thesis;
end;
then
A12: W is
add-closed by
IDEAL_1:def 1;
A13: (
RAlgebra Omega) is
RealLinearSpace by
C0SP1: 7;
for v be
Element of V st v
in W holds (
- v)
in W
proof
let v be
Element of V;
assume v
in W;
then
consider v1 be
Real-Valued-Random-Variable of Sigma such that
A14: v1
= v;
A15: (
- v1) is
Real-Valued-Random-Variable of Sigma by
RANDOM_1: 20;
reconsider h = (
- v) as
Element of (
Funcs (Omega,
REAL ));
A16: h
= ((
- 1)
* v) by
A13,
RLVECT_1: 16;
A17:
now
let x be
object;
assume x
in (
dom h);
then
reconsider y = x as
Element of Omega;
thus (h
. x)
= ((
- 1)
* (v1
. y)) by
A16,
A14,
FUNCSDOM: 4
.= (
- (v1
. x) qua
Real);
end;
(ex f be
Function st h
= f & (
dom f)
= Omega & (
rng f)
c=
REAL ) & (
dom v1)
= Omega by
FUNCT_2:def 1,
FUNCT_2:def 2;
then (
- v)
= (
- v1) by
A17,
VALUED_1: 9;
hence thesis by
A15;
end;
then
A18: W is
having-inverse by
C0SP1:def 1;
for a be
Real, u be
Element of V st u
in W holds (a
* u)
in W
proof
let a be
Real, u be
Element of V;
assume u
in W;
then
consider u1 be
Real-Valued-Random-Variable of Sigma such that
A19: u1
= u;
reconsider h = (a
* u) as
Element of (
Funcs (Omega,
REAL ));
A20: (ex f be
Function st h
= f & (
dom f)
= Omega & (
rng f)
c=
REAL ) & (
dom u1)
= Omega by
FUNCT_2:def 1,
FUNCT_2:def 2;
for x be
object st x
in (
dom h) holds (h
. x)
= (a
* (u1
. x)) by
A19,
FUNCSDOM: 4;
then (a
* u)
= (a
(#) u1) by
A20,
VALUED_1:def 5;
hence thesis;
end;
hence (
Real-Valued-Random-Variables-Set Sigma) is
additively-linearly-closed by
A12,
A18,
C0SP1:def 10;
reconsider g = (
RealFuncUnit Omega) as
Function of Omega,
REAL ;
g is
Real-Valued-Random-Variable of Sigma by
Th4;
then (
1. V)
in W;
hence thesis by
A1,
C0SP1:def 4;
end;
registration
let Omega, Sigma;
cluster (
Real-Valued-Random-Variables-Set Sigma) ->
additively-linearly-closed
multiplicatively-closed;
coherence by
Lm10;
end
definition
let Omega, Sigma;
::
RANDOM_2:def4
func
R_Algebra_of_Real-Valued-Random-Variables Sigma ->
Algebra equals
AlgebraStr (# (
Real-Valued-Random-Variables-Set Sigma), (
mult_ ((
Real-Valued-Random-Variables-Set Sigma),(
RAlgebra Omega))), (
Add_ ((
Real-Valued-Random-Variables-Set Sigma),(
RAlgebra Omega))), (
Mult_ ((
Real-Valued-Random-Variables-Set Sigma),(
RAlgebra Omega))), (
One_ ((
Real-Valued-Random-Variables-Set Sigma),(
RAlgebra Omega))), (
Zero_ ((
Real-Valued-Random-Variables-Set Sigma),(
RAlgebra Omega))) #);
coherence by
C0SP1: 6;
end
registration
let Omega, Sigma;
cluster (
R_Algebra_of_Real-Valued-Random-Variables Sigma) ->
scalar-unital;
coherence
proof
let v be
VECTOR of (
R_Algebra_of_Real-Valued-Random-Variables Sigma);
reconsider v1 = v as
VECTOR of (
RAlgebra Omega) by
TARSKI:def 3;
(
R_Algebra_of_Real-Valued-Random-Variables Sigma) is
Subalgebra of (
RAlgebra Omega) by
C0SP1: 6;
then (1
* v)
= (1
* v1) by
C0SP1: 8;
hence (1
* v)
= v by
FUNCSDOM: 12;
end;
end