mesfun6c.miz
begin
theorem ::
MESFUN6C:1
for a,b be
Real holds (a
+ b)
= (a
+ b) & (
- a)
= (
- a) & (a
- b)
= (a
- b) & (a
* b)
= (a
* b);
begin
reserve X for non
empty
set,
Y for
set,
S for
SigmaField of X,
M for
sigma_Measure of S,
f,g for
PartFunc of X,
COMPLEX ,
r for
Real,
c for
Complex,
E,A,B for
Element of S;
definition
let X be non
empty
set;
let S be
SigmaField of X;
let E be
Element of S;
let f be
PartFunc of X,
COMPLEX ;
::
MESFUN6C:def1
attr f is E
-measurable means (
Re f) is E
-measurable & (
Im f) is E
-measurable;
end
theorem ::
MESFUN6C:2
Th2: (r
(#) (
Re f))
= (
Re (r
(#) f)) & (r
(#) (
Im f))
= (
Im (r
(#) f))
proof
A1: (
dom (r
(#) (
Re f)))
= (
dom (
Re f)) by
VALUED_1:def 5;
A3: (
Im r)
=
0 by
COMPLEX1:def 2;
A4: (
dom (
Re f))
= (
dom f) by
COMSEQ_3:def 3;
A5: (
Re r)
= r by
COMPLEX1:def 1;
A6: (
dom (r
(#) f))
= (
dom f) by
VALUED_1:def 5;
A7: (
dom (
Re (r
(#) f)))
= (
dom (r
(#) f)) by
COMSEQ_3:def 3;
now
let x be
object;
A8: (
Re (r
* (f
. x)))
= (((
Re r)
* (
Re (f
. x)))
- ((
Im r)
* (
Im (f
. x)))) by
COMPLEX1: 9;
assume
A9: x
in (
dom (r
(#) (
Re f)));
then
A10: ((
Re f)
. x)
= (
Re (f
. x)) by
A1,
COMSEQ_3:def 3;
((
Re (r
(#) f))
. x)
= (
Re ((r
(#) f)
. x)) by
A1,
A6,
A7,
A4,
A9,
COMSEQ_3:def 3;
then ((
Re (r
(#) f))
. x)
= (r
* (
Re (f
. x))) by
A1,
A6,
A4,
A5,
A3,
A9,
A8,
VALUED_1:def 5;
hence ((r
(#) (
Re f))
. x)
= ((
Re (r
(#) f))
. x) by
A9,
A10,
VALUED_1:def 5;
end;
hence (r
(#) (
Re f))
= (
Re (r
(#) f)) by
A1,
A6,
A7,
A4,
FUNCT_1: 2;
A11: (
dom (r
(#) (
Im f)))
= (
dom (
Im f)) by
VALUED_1:def 5;
A12: (
dom (
Im f))
= (
dom f) by
COMSEQ_3:def 4;
A13: (
dom (
Im (r
(#) f)))
= (
dom (r
(#) f)) by
COMSEQ_3:def 4;
now
let x be
object;
A14: (
Im (r
* (f
. x)))
= (((
Im r)
* (
Re (f
. x)))
+ ((
Re r)
* (
Im (f
. x)))) by
COMPLEX1: 9;
assume
A15: x
in (
dom (r
(#) (
Im f)));
then
A16: ((
Im f)
. x)
= (
Im (f
. x)) by
A11,
COMSEQ_3:def 4;
((
Im (r
(#) f))
. x)
= (
Im ((r
(#) f)
. x)) by
A11,
A6,
A13,
A12,
A15,
COMSEQ_3:def 4;
then ((
Im (r
(#) f))
. x)
= (r
* (
Im (f
. x))) by
A11,
A6,
A12,
A5,
A3,
A15,
A14,
VALUED_1:def 5;
hence ((r
(#) (
Im f))
. x)
= ((
Im (r
(#) f))
. x) by
A15,
A16,
VALUED_1:def 5;
end;
hence thesis by
A11,
A6,
A13,
A12,
FUNCT_1: 2;
end;
theorem ::
MESFUN6C:3
Th3: (
Re (c
(#) f))
= (((
Re c)
(#) (
Re f))
- ((
Im c)
(#) (
Im f))) & (
Im (c
(#) f))
= (((
Im c)
(#) (
Re f))
+ ((
Re c)
(#) (
Im f)))
proof
A1: (
dom ((
Re c)
(#) (
Re f)))
= (
dom (
Re f)) by
VALUED_1:def 5;
A2: (
dom ((
Im c)
(#) (
Im f)))
= (
dom (
Im f)) by
VALUED_1:def 5;
A3: (
dom (c
(#) f))
= (
dom f) by
VALUED_1:def 5;
A4: (
dom (
Re (c
(#) f)))
= (
dom (c
(#) f)) by
COMSEQ_3:def 3;
A5: (
dom (
Re f))
= (
dom f) by
COMSEQ_3:def 3;
A6: (
dom (
Im f))
= (
dom f) by
COMSEQ_3:def 4;
A7: (
dom (((
Re c)
(#) (
Re f))
- ((
Im c)
(#) (
Im f))))
= ((
dom ((
Re c)
(#) (
Re f)))
/\ (
dom ((
Im c)
(#) (
Im f)))) by
VALUED_1: 12;
now
let x be
object;
A8: (
Re (c
* (f
. x)))
= (((
Re c)
* (
Re (f
. x)))
- ((
Im c)
* (
Im (f
. x)))) by
COMPLEX1: 9;
assume
A9: x
in (
dom (
Re (c
(#) f)));
then
A10: (((
Im c)
(#) (
Im f))
. x)
= ((
Im c)
* ((
Im f)
. x)) by
A4,
A6,
A2,
A3,
VALUED_1:def 5;
A11: ((
Im f)
. x)
= (
Im (f
. x)) by
A4,
A6,
A3,
A9,
COMSEQ_3:def 4;
A12: ((
Re f)
. x)
= (
Re (f
. x)) by
A4,
A5,
A3,
A9,
COMSEQ_3:def 3;
((
Re (c
(#) f))
. x)
= (
Re ((c
(#) f)
. x)) by
A9,
COMSEQ_3:def 3;
then
A13: ((
Re (c
(#) f))
. x)
= (
Re (c
* (f
. x))) by
A4,
A9,
VALUED_1:def 5;
(((
Re c)
(#) (
Re f))
. x)
= ((
Re c)
* ((
Re f)
. x)) by
A4,
A5,
A1,
A3,
A9,
VALUED_1:def 5;
hence ((
Re (c
(#) f))
. x)
= ((((
Re c)
(#) (
Re f))
- ((
Im c)
(#) (
Im f)))
. x) by
A4,
A5,
A6,
A1,
A2,
A3,
A7,
A9,
A13,
A10,
A12,
A11,
A8,
VALUED_1: 13;
end;
hence (
Re (c
(#) f))
= (((
Re c)
(#) (
Re f))
- ((
Im c)
(#) (
Im f))) by
A4,
A5,
A6,
A1,
A2,
A3,
A7,
FUNCT_1: 2;
A14: (
dom ((
Im c)
(#) (
Re f)))
= (
dom (
Re f)) by
VALUED_1:def 5;
A15: (
dom ((
Re c)
(#) (
Im f)))
= (
dom (
Im f)) by
VALUED_1:def 5;
A16: (
dom (
Im (c
(#) f)))
= (
dom (c
(#) f)) by
COMSEQ_3:def 4;
A17: (
dom (((
Im c)
(#) (
Re f))
+ ((
Re c)
(#) (
Im f))))
= ((
dom ((
Im c)
(#) (
Re f)))
/\ (
dom ((
Re c)
(#) (
Im f)))) by
VALUED_1:def 1;
now
let x be
object;
assume
A18: x
in (
dom (
Im (c
(#) f)));
then
A19: (((
Im c)
(#) (
Re f))
. x)
= ((
Im c)
* ((
Re f)
. x)) by
A5,
A16,
A14,
A3,
VALUED_1:def 5;
((
Im (c
(#) f))
. x)
= (
Im ((c
(#) f)
. x)) by
A18,
COMSEQ_3:def 4;
then
A20: ((
Im (c
(#) f))
. x)
= (
Im (c
* (f
. x))) by
A16,
A18,
VALUED_1:def 5;
A21: ((
Im f)
. x)
= (
Im (f
. x)) by
A16,
A6,
A3,
A18,
COMSEQ_3:def 4;
A22: ((
Re f)
. x)
= (
Re (f
. x)) by
A5,
A16,
A3,
A18,
COMSEQ_3:def 3;
A23: (((
Re c)
(#) (
Im f))
. x)
= ((
Re c)
* ((
Im f)
. x)) by
A16,
A6,
A15,
A3,
A18,
VALUED_1:def 5;
((((
Im c)
(#) (
Re f))
+ ((
Re c)
(#) (
Im f)))
. x)
= ((((
Im c)
(#) (
Re f))
. x)
+ (((
Re c)
(#) (
Im f))
. x)) by
A5,
A16,
A6,
A14,
A15,
A3,
A17,
A18,
VALUED_1:def 1;
hence ((
Im (c
(#) f))
. x)
= ((((
Im c)
(#) (
Re f))
+ ((
Re c)
(#) (
Im f)))
. x) by
A20,
A19,
A23,
A22,
A21,
COMPLEX1: 9;
end;
hence thesis by
A5,
A16,
A6,
A14,
A15,
A3,
A17,
FUNCT_1: 2;
end;
theorem ::
MESFUN6C:4
Th4: (
- (
Im f))
= (
Re (
<i>
(#) f)) & (
Re f)
= (
Im (
<i>
(#) f))
proof
A1: (
dom (
- (
Im f)))
= (
dom (
Im f)) by
VALUED_1: 8;
A2: (
dom (
<i>
(#) f))
= (
dom f) by
VALUED_1:def 5;
A3: (
dom (
Im f))
= (
dom f) by
COMSEQ_3:def 4;
A4: (
dom (
Re (
<i>
(#) f)))
= (
dom (
<i>
(#) f)) by
COMSEQ_3:def 3;
now
let x be
object;
A5: ((
- (
Im f))
. x)
= (
- ((
Im f)
. x)) by
VALUED_1: 8;
A6: (
Re (
<i>
* (f
. x)))
= (((
Re
<i> )
* (
Re (f
. x)))
- ((
Im
<i> )
* (
Im (f
. x)))) by
COMPLEX1: 9;
assume
A7: x
in (
dom (
- (
Im f)));
then ((
Re (
<i>
(#) f))
. x)
= (
Re ((
<i>
(#) f)
. x)) by
A1,
A4,
A2,
A3,
COMSEQ_3:def 3;
then ((
Re (
<i>
(#) f))
. x)
= (
- (
Im (f
. x))) by
A1,
A2,
A3,
A7,
A6,
COMPLEX1: 7,
VALUED_1:def 5;
hence ((
- (
Im f))
. x)
= ((
Re (
<i>
(#) f))
. x) by
A1,
A7,
A5,
COMSEQ_3:def 4;
end;
hence (
- (
Im f))
= (
Re (
<i>
(#) f)) by
A4,
A2,
A3,
FUNCT_1: 2,
VALUED_1: 8;
A8: (
dom (
Re f))
= (
dom f) by
COMSEQ_3:def 3;
A9: (
dom (
Im (
<i>
(#) f)))
= (
dom (
<i>
(#) f)) by
COMSEQ_3:def 4;
now
let x be
object;
A10: (
Im (
<i>
* (f
. x)))
= (((
Im
<i> )
* (
Re (f
. x)))
+ ((
Re
<i> )
* (
Im (f
. x)))) by
COMPLEX1: 9;
assume
A11: x
in (
dom (
Re f));
then ((
Im (
<i>
(#) f))
. x)
= (
Im ((
<i>
(#) f)
. x)) by
A8,
A2,
A9,
COMSEQ_3:def 4;
then ((
Im (
<i>
(#) f))
. x)
= (
Re (f
. x)) by
A8,
A2,
A11,
A10,
COMPLEX1: 7,
VALUED_1:def 5;
hence ((
Re f)
. x)
= ((
Im (
<i>
(#) f))
. x) by
A11,
COMSEQ_3:def 3;
end;
hence thesis by
A8,
A2,
A9,
FUNCT_1: 2;
end;
theorem ::
MESFUN6C:5
Th5: (
Re (f
+ g))
= ((
Re f)
+ (
Re g)) & (
Im (f
+ g))
= ((
Im f)
+ (
Im g))
proof
A1: (
dom (
Re (f
+ g)))
= (
dom (f
+ g)) by
COMSEQ_3:def 3;
A2: (
dom (
Re g))
= (
dom g) by
COMSEQ_3:def 3;
A3: (
dom (
Re f))
= (
dom f) by
COMSEQ_3:def 3;
then (
dom ((
Re f)
+ (
Re g)))
= ((
dom f)
/\ (
dom g)) by
A2,
VALUED_1:def 1;
then
A4: (
dom (
Re (f
+ g)))
= (
dom ((
Re f)
+ (
Re g))) by
A1,
VALUED_1:def 1;
now
let x be
object;
assume
A5: x
in (
dom (
Re (f
+ g)));
then ((
Re (f
+ g))
. x)
= (
Re ((f
+ g)
. x)) by
COMSEQ_3:def 3;
then ((
Re (f
+ g))
. x)
= (
Re ((f
. x)
+ (g
. x))) by
A1,
A5,
VALUED_1:def 1;
then
A6: ((
Re (f
+ g))
. x)
= ((
Re (f
. x))
+ (
Re (g
. x))) by
COMPLEX1: 8;
A7: x
in ((
dom f)
/\ (
dom g)) by
A1,
A5,
VALUED_1:def 1;
then x
in (
dom (
Re g)) by
A2,
XBOOLE_0:def 4;
then
A8: ((
Re g)
. x)
= (
Re (g
. x)) by
COMSEQ_3:def 3;
x
in (
dom (
Re f)) by
A3,
A7,
XBOOLE_0:def 4;
then ((
Re f)
. x)
= (
Re (f
. x)) by
COMSEQ_3:def 3;
hence ((
Re (f
+ g))
. x)
= (((
Re f)
+ (
Re g))
. x) by
A4,
A5,
A6,
A8,
VALUED_1:def 1;
end;
hence (
Re (f
+ g))
= ((
Re f)
+ (
Re g)) by
A4,
FUNCT_1: 2;
A9: (
dom (
Im (f
+ g)))
= (
dom (f
+ g)) by
COMSEQ_3:def 4;
A10: (
dom (
Im g))
= (
dom g) by
COMSEQ_3:def 4;
A11: (
dom (
Im f))
= (
dom f) by
COMSEQ_3:def 4;
then (
dom ((
Im f)
+ (
Im g)))
= ((
dom f)
/\ (
dom g)) by
A10,
VALUED_1:def 1;
then
A12: (
dom (
Im (f
+ g)))
= (
dom ((
Im f)
+ (
Im g))) by
A9,
VALUED_1:def 1;
now
let x be
object;
assume
A13: x
in (
dom (
Im (f
+ g)));
then ((
Im (f
+ g))
. x)
= (
Im ((f
+ g)
. x)) by
COMSEQ_3:def 4;
then ((
Im (f
+ g))
. x)
= (
Im ((f
. x)
+ (g
. x))) by
A9,
A13,
VALUED_1:def 1;
then
A14: ((
Im (f
+ g))
. x)
= ((
Im (f
. x))
+ (
Im (g
. x))) by
COMPLEX1: 8;
A15: x
in ((
dom f)
/\ (
dom g)) by
A9,
A13,
VALUED_1:def 1;
then x
in (
dom (
Im g)) by
A10,
XBOOLE_0:def 4;
then
A16: ((
Im g)
. x)
= (
Im (g
. x)) by
COMSEQ_3:def 4;
x
in (
dom (
Im f)) by
A11,
A15,
XBOOLE_0:def 4;
then ((
Im f)
. x)
= (
Im (f
. x)) by
COMSEQ_3:def 4;
hence ((
Im (f
+ g))
. x)
= (((
Im f)
+ (
Im g))
. x) by
A12,
A13,
A14,
A16,
VALUED_1:def 1;
end;
hence thesis by
A12,
FUNCT_1: 2;
end;
theorem ::
MESFUN6C:6
Th6: (
Re (f
- g))
= ((
Re f)
- (
Re g)) & (
Im (f
- g))
= ((
Im f)
- (
Im g))
proof
(
Re (f
- g))
= ((
Re f)
+ (
Re (
- g))) by
Th5;
then
A1: (
Re (f
- g))
= ((
Re f)
+ ((
- 1)
(#) (
Re g))) by
Th2;
(
Im (f
- g))
= ((
Im f)
+ (
Im (
- g))) by
Th5;
hence thesis by
A1,
Th2;
end;
theorem ::
MESFUN6C:7
Th7: ((
Re f)
| A)
= (
Re (f
| A)) & ((
Im f)
| A)
= (
Im (f
| A))
proof
(
dom ((
Re f)
| A))
= ((
dom (
Re f))
/\ A) by
RELAT_1: 61
.= ((
dom f)
/\ A) by
COMSEQ_3:def 3;
then
A1: (
dom ((
Re f)
| A))
= (
dom (f
| A)) by
RELAT_1: 61
.= (
dom (
Re (f
| A))) by
COMSEQ_3:def 3;
now
let x be
object;
assume
A2: x
in (
dom ((
Re f)
| A));
then
A3: x
in ((
dom (
Re f))
/\ A) by
RELAT_1: 61;
then
A4: x
in (
dom (
Re f)) by
XBOOLE_0:def 4;
A5: x
in A by
A3,
XBOOLE_0:def 4;
thus ((
Re (f
| A))
. x)
= (
Re ((f
| A)
. x)) by
A1,
A2,
COMSEQ_3:def 3
.= (
Re (f
. x)) by
A5,
FUNCT_1: 49
.= ((
Re f)
. x) by
A4,
COMSEQ_3:def 3
.= (((
Re f)
| A)
. x) by
A5,
FUNCT_1: 49;
end;
hence ((
Re f)
| A)
= (
Re (f
| A)) by
A1,
FUNCT_1: 2;
(
dom ((
Im f)
| A))
= ((
dom (
Im f))
/\ A) by
RELAT_1: 61
.= ((
dom f)
/\ A) by
COMSEQ_3:def 4;
then
A6: (
dom ((
Im f)
| A))
= (
dom (f
| A)) by
RELAT_1: 61
.= (
dom (
Im (f
| A))) by
COMSEQ_3:def 4;
now
let x be
object;
assume
A7: x
in (
dom ((
Im f)
| A));
then
A8: x
in ((
dom (
Im f))
/\ A) by
RELAT_1: 61;
then
A9: x
in (
dom (
Im f)) by
XBOOLE_0:def 4;
A10: x
in A by
A8,
XBOOLE_0:def 4;
thus ((
Im (f
| A))
. x)
= (
Im ((f
| A)
. x)) by
A6,
A7,
COMSEQ_3:def 4
.= (
Im (f
. x)) by
A10,
FUNCT_1: 49
.= ((
Im f)
. x) by
A9,
COMSEQ_3:def 4
.= (((
Im f)
| A)
. x) by
A10,
FUNCT_1: 49;
end;
hence thesis by
A6,
FUNCT_1: 2;
end;
theorem ::
MESFUN6C:8
Th8: f
= ((
Re f)
+ (
<i>
(#) (
Im f)))
proof
A1: (
dom f)
= (
dom (
Re f)) by
COMSEQ_3:def 3;
A2: (
dom f)
= (
dom (
Im f)) by
COMSEQ_3:def 4;
A3: (
dom ((
Re f)
+ (
<i>
(#) (
Im f))))
= ((
dom (
Re f))
/\ (
dom (
<i>
(#) (
Im f)))) by
VALUED_1:def 1
.= ((
dom f)
/\ (
dom f)) by
A1,
A2,
VALUED_1:def 5;
A4: (
dom (
<i>
(#) (
Im f)))
= (
dom (
Im f)) by
VALUED_1:def 5;
now
let x be
object;
assume
A5: x
in (
dom ((
Re f)
+ (
<i>
(#) (
Im f))));
then (((
Re f)
+ (
<i>
(#) (
Im f)))
. x)
= (((
Re f)
. x)
+ ((
<i>
(#) (
Im f))
. x)) by
VALUED_1:def 1
.= ((
Re (f
. x))
+ ((
<i>
(#) (
Im f))
. x)) by
A1,
A3,
A5,
COMSEQ_3:def 3
.= ((
Re (f
. x))
+ (
<i>
* ((
Im f)
. x))) by
A2,
A4,
A3,
A5,
VALUED_1:def 5
.= ((
Re (f
. x))
+ (
<i>
* (
Im (f
. x)))) by
A2,
A3,
A5,
COMSEQ_3:def 4;
hence (((
Re f)
+ (
<i>
(#) (
Im f)))
. x)
= (f
. x) by
COMPLEX1: 13;
end;
hence thesis by
A3,
FUNCT_1: 2;
end;
theorem ::
MESFUN6C:9
B
c= A & f is A
-measurable implies f is B
-measurable by
MESFUNC6: 16;
theorem ::
MESFUN6C:10
f is A
-measurable & f is B
-measurable implies f is (A
\/ B)
-measurable by
MESFUNC6: 17;
theorem ::
MESFUN6C:11
f is A
-measurable & g is A
-measurable implies (f
+ g) is A
-measurable
proof
assume that
A1: f is A
-measurable and
A2: g is A
-measurable;
A3: (
Im g) is A
-measurable by
A2;
(
Im f) is A
-measurable by
A1;
then ((
Im f)
+ (
Im g)) is A
-measurable by
A3,
MESFUNC6: 26;
then
A4: (
Im (f
+ g)) is A
-measurable by
Th5;
A5: (
Re g) is A
-measurable by
A2;
(
Re f) is A
-measurable by
A1;
then ((
Re f)
+ (
Re g)) is A
-measurable by
A5,
MESFUNC6: 26;
then (
Re (f
+ g)) is A
-measurable by
Th5;
hence thesis by
A4;
end;
theorem ::
MESFUN6C:12
f is A
-measurable & g is A
-measurable & A
c= (
dom g) implies (f
- g) is A
-measurable
proof
assume that
A1: f is A
-measurable and
A2: g is A
-measurable and
A3: A
c= (
dom g);
A4: (
Im g) is A
-measurable by
A2;
A5: A
c= (
dom (
Re g)) by
A3,
COMSEQ_3:def 3;
A6: (
Re g) is A
-measurable by
A2;
A7: A
c= (
dom (
Im g)) by
A3,
COMSEQ_3:def 4;
(
Im f) is A
-measurable by
A1;
then ((
Im f)
- (
Im g)) is A
-measurable by
A4,
A7,
MESFUNC6: 29;
then
A8: (
Im (f
- g)) is A
-measurable by
Th6;
(
Re f) is A
-measurable by
A1;
then ((
Re f)
- (
Re g)) is A
-measurable by
A6,
A5,
MESFUNC6: 29;
then (
Re (f
- g)) is A
-measurable by
Th6;
hence thesis by
A8;
end;
theorem ::
MESFUN6C:13
Y
c= (
dom (f
+ g)) implies (
dom ((f
| Y)
+ (g
| Y)))
= Y & ((f
+ g)
| Y)
= ((f
| Y)
+ (g
| Y))
proof
A1: (
dom (f
+ g))
= ((
dom f)
/\ (
dom g)) by
VALUED_1:def 1;
assume
A2: Y
c= (
dom (f
+ g));
then
A3: (
dom ((f
+ g)
| Y))
= Y by
RELAT_1: 62;
(
dom (g
| Y))
= ((
dom g)
/\ Y) by
RELAT_1: 61;
then
A4: (
dom (g
| Y))
= Y by
A2,
A1,
XBOOLE_1: 18,
XBOOLE_1: 28;
(
dom (f
| Y))
= ((
dom f)
/\ Y) by
RELAT_1: 61;
then
A5: (
dom (f
| Y))
= Y by
A2,
A1,
XBOOLE_1: 18,
XBOOLE_1: 28;
then
A6: (
dom ((f
| Y)
+ (g
| Y)))
= (Y
/\ Y) by
A4,
VALUED_1:def 1;
now
let x be
object;
assume
A7: x
in (
dom ((f
+ g)
| Y));
hence (((f
+ g)
| Y)
. x)
= ((f
+ g)
. x) by
FUNCT_1: 47
.= ((f
. x)
+ (g
. x)) by
A2,
A3,
A7,
VALUED_1:def 1
.= (((f
| Y)
. x)
+ (g
. x)) by
A3,
A5,
A7,
FUNCT_1: 47
.= (((f
| Y)
. x)
+ ((g
| Y)
. x)) by
A3,
A4,
A7,
FUNCT_1: 47
.= (((f
| Y)
+ (g
| Y))
. x) by
A3,
A6,
A7,
VALUED_1:def 1;
end;
hence thesis by
A2,
A6,
FUNCT_1: 2,
RELAT_1: 62;
end;
theorem ::
MESFUN6C:14
f is B
-measurable & A
= ((
dom f)
/\ B) implies (f
| B) is A
-measurable
proof
assume that
A1: f is B
-measurable and
A2: A
= ((
dom f)
/\ B);
A3: A
= ((
dom (
Im f))
/\ B) by
A2,
COMSEQ_3:def 4;
(
Im f) is B
-measurable by
A1;
then ((
Im f)
| B) is A
-measurable by
A3,
MESFUNC6: 76;
then
A4: (
Im (f
| B)) is A
-measurable by
Th7;
A5: A
= ((
dom (
Re f))
/\ B) by
A2,
COMSEQ_3:def 3;
(
Re f) is B
-measurable by
A1;
then ((
Re f)
| B) is A
-measurable by
A5,
MESFUNC6: 76;
then (
Re (f
| B)) is A
-measurable by
Th7;
hence thesis by
A4;
end;
theorem ::
MESFUN6C:15
(
dom f)
in S & (
dom g)
in S implies (
dom (f
+ g))
in S
proof
assume that
A1: (
dom f)
in S and
A2: (
dom g)
in S;
reconsider E1 = (
dom f), E2 = (
dom g) as
Element of S by
A1,
A2;
(
dom (f
+ g))
= (E1
/\ E2) by
VALUED_1:def 1;
hence thesis;
end;
theorem ::
MESFUN6C:16
(
dom f)
= A implies (f is B
-measurable iff f is (A
/\ B)
-measurable)
proof
assume
A1: (
dom f)
= A;
then
A2: (
dom (
Re f))
= A by
COMSEQ_3:def 3;
A3: (
dom (
Im f))
= A by
A1,
COMSEQ_3:def 4;
hence f is B
-measurable implies f is (A
/\ B)
-measurable by
A2,
MESFUNC6: 80;
thus thesis by
A2,
A3,
MESFUNC6: 80;
end;
theorem ::
MESFUN6C:17
Th17: f is A
-measurable & A
c= (
dom f) implies (c
(#) f) is A
-measurable
proof
assume that
A1: f is A
-measurable and
A2: A
c= (
dom f);
A3: (
dom (
Im f))
= (
dom f) by
COMSEQ_3:def 4;
A4: (
Im f) is A
-measurable by
A1;
then
A5: ((
Re c)
(#) (
Im f)) is A
-measurable by
A2,
A3,
MESFUNC6: 21;
A6: ((
Im c)
(#) (
Im f)) is A
-measurable by
A2,
A4,
A3,
MESFUNC6: 21;
A7: (
dom (
Re f))
= (
dom f) by
COMSEQ_3:def 3;
A8: (
Re f) is A
-measurable by
A1;
then ((
Im c)
(#) (
Re f)) is A
-measurable by
A2,
A7,
MESFUNC6: 21;
then (((
Im c)
(#) (
Re f))
+ ((
Re c)
(#) (
Im f))) is A
-measurable by
A5,
MESFUNC6: 26;
then
A9: (
Im (c
(#) f)) is A
-measurable by
Th3;
(
dom ((
Im c)
(#) (
Im f)))
= (
dom (
Im f)) by
VALUED_1:def 5;
then
A10: A
c= (
dom ((
Im c)
(#) (
Im f))) by
A2,
COMSEQ_3:def 4;
((
Re c)
(#) (
Re f)) is A
-measurable by
A2,
A8,
A7,
MESFUNC6: 21;
then (((
Re c)
(#) (
Re f))
- ((
Im c)
(#) (
Im f))) is A
-measurable by
A6,
A10,
MESFUNC6: 29;
then (
Re (c
(#) f)) is A
-measurable by
Th3;
hence thesis by
A9;
end;
theorem ::
MESFUN6C:18
(ex A be
Element of S st (
dom f)
= A) implies for c be
Complex, B be
Element of S st f is B
-measurable holds (c
(#) f) is B
-measurable
proof
assume ex A be
Element of S st A
= (
dom f);
then
consider A be
Element of S such that
A1: A
= (
dom f);
hereby
let c be
Complex, B be
Element of S;
A2: (
dom ((
Re c)
(#) (
Re f)))
= (
dom (
Re f)) by
VALUED_1:def 5;
A3: (
dom ((
Im c)
(#) (
Im f)))
= (
dom (
Im f)) by
VALUED_1:def 5;
(
dom (
Re (c
(#) f)))
= (
dom (((
Re c)
(#) (
Re f))
- ((
Im c)
(#) (
Im f)))) by
Th3;
then
A4: (
dom (
Re (c
(#) f)))
= ((
dom ((
Re c)
(#) (
Re f)))
/\ (
dom ((
Im c)
(#) (
Im f)))) by
VALUED_1: 12;
A5: (
dom ((
Im c)
(#) (
Re f)))
= (
dom (
Re f)) by
VALUED_1:def 5;
(
dom (
Im (c
(#) f)))
= (
dom (((
Im c)
(#) (
Re f))
+ ((
Re c)
(#) (
Im f)))) by
Th3;
then
A6: (
dom (
Im (c
(#) f)))
= ((
dom ((
Im c)
(#) (
Re f)))
/\ (
dom ((
Re c)
(#) (
Im f)))) by
VALUED_1:def 1;
A7: (
dom ((
Re c)
(#) (
Im f)))
= (
dom (
Im f)) by
VALUED_1:def 5;
A8: (
dom (
Re f))
= (
dom f) by
COMSEQ_3:def 3;
A9: (
dom (
Im f))
= (
dom f) by
COMSEQ_3:def 4;
assume
A10: f is B
-measurable;
then (
Im f) is B
-measurable;
then
A11: (
Im f) is (A
/\ B)
-measurable by
A1,
A9,
MESFUNC6: 80;
(
Re f) is B
-measurable by
A10;
then (
Re f) is (A
/\ B)
-measurable by
A1,
A8,
MESFUNC6: 80;
then f is (A
/\ B)
-measurable by
A11;
then
A12: (c
(#) f) is (A
/\ B)
-measurable by
A1,
Th17,
XBOOLE_1: 17;
then (
Im (c
(#) f)) is (A
/\ B)
-measurable;
then
A13: (
Im (c
(#) f)) is B
-measurable by
A1,
A8,
A9,
A5,
A7,
A6,
MESFUNC6: 80;
(
Re (c
(#) f)) is (A
/\ B)
-measurable by
A12;
then (
Re (c
(#) f)) is B
-measurable by
A1,
A8,
A9,
A2,
A3,
A4,
MESFUNC6: 80;
hence (c
(#) f) is B
-measurable by
A13;
end;
end;
begin
definition
let X be non
empty
set;
let S be
SigmaField of X;
let M be
sigma_Measure of S;
let f be
PartFunc of X,
COMPLEX ;
::
MESFUN6C:def2
pred f
is_integrable_on M means (
Re f)
is_integrable_on M & (
Im f)
is_integrable_on M;
end
definition
let X be non
empty
set;
let S be
SigmaField of X;
let M be
sigma_Measure of S;
let f be
PartFunc of X,
COMPLEX ;
assume
A1: f
is_integrable_on M;
::
MESFUN6C:def3
func
Integral (M,f) ->
Complex means
:
Def3: ex R,I be
Real st R
= (
Integral (M,(
Re f))) & I
= (
Integral (M,(
Im f))) & it
= (R
+ (I
*
<i> ));
existence
proof
A2: (
Im f)
is_integrable_on M by
A1;
then
A3:
-infty
< (
Integral (M,(
Im f))) by
MESFUNC6: 90;
A4: (
Re f)
is_integrable_on M by
A1;
then
A5: (
Integral (M,(
Re f)))
<
+infty by
MESFUNC6: 90;
A6: (
Integral (M,(
Im f)))
<
+infty by
A2,
MESFUNC6: 90;
-infty
< (
Integral (M,(
Re f))) by
A4,
MESFUNC6: 90;
then
reconsider R = (
Integral (M,(
Re f))), I = (
Integral (M,(
Im f))) as
Element of
REAL by
A5,
A3,
A6,
XXREAL_0: 14;
take (R
+ (I
*
<i> ));
thus thesis;
end;
uniqueness ;
end
Lm1: for X be non
empty
set, S be
SigmaField of X, M be
sigma_Measure of S, f be
PartFunc of X,
ExtREAL holds (
max+ f) is
nonnegative & (
max- f) is
nonnegative
proof
let X be non
empty
set;
let S be
SigmaField of X;
let M be
sigma_Measure of S;
let f be
PartFunc of X,
ExtREAL ;
A1: for x be
object st x
in (
dom (
max- f)) holds
0
<= ((
max- f)
. x) by
MESFUNC2: 13;
for x be
object st x
in (
dom (
max+ f)) holds
0
<= ((
max+ f)
. x) by
MESFUNC2: 12;
hence thesis by
A1,
SUPINF_2: 52;
end;
theorem ::
MESFUN6C:19
Th19: for X be non
empty
set, S be
SigmaField of X, M be
sigma_Measure of S, f be
PartFunc of X,
ExtREAL , A be
Element of S st (ex E be
Element of S st E
= (
dom f) & f is E
-measurable) & (M
. A)
=
0 holds (f
| A)
is_integrable_on M
proof
let X be non
empty
set, S be
SigmaField of X, M be
sigma_Measure of S, f be
PartFunc of X,
ExtREAL , A be
Element of S;
assume that
A1: ex E be
Element of S st E
= (
dom f) & f is E
-measurable and
A2: (M
. A)
=
0 ;
A3: (
dom f)
= (
dom (
max+ f)) by
MESFUNC2:def 2;
(
max+ f) is
nonnegative by
Lm1;
then (
integral+ (M,((
max+ f)
| A)))
=
0 by
A1,
A2,
A3,
MESFUNC2: 25,
MESFUNC5: 82;
then
A4: (
integral+ (M,(
max+ (f
| A))))
<
+infty by
MESFUNC5: 28;
consider E be
Element of S such that
A5: E
= (
dom f) and
A6: f is E
-measurable by
A1;
A7: ((
dom f)
/\ (A
/\ E))
= (A
/\ E) by
A5,
XBOOLE_1: 17,
XBOOLE_1: 28;
A8: (
dom f)
= (
dom (
max- f)) by
MESFUNC2:def 3;
(
max- f) is
nonnegative by
Lm1;
then (
integral+ (M,((
max- f)
| A)))
=
0 by
A1,
A2,
A8,
MESFUNC2: 26,
MESFUNC5: 82;
then
A9: (
integral+ (M,(
max- (f
| A))))
<
+infty by
MESFUNC5: 28;
A10: (
dom (f
| A))
= ((
dom f)
/\ A) by
RELAT_1: 61;
f is (A
/\ E)
-measurable by
A6,
MESFUNC1: 30,
XBOOLE_1: 17;
then
A11: (f
| (A
/\ E)) is (A
/\ E)
-measurable by
A7,
MESFUNC5: 42;
(f
| (A
/\ E))
= ((f
| A)
/\ (f
| E)) by
RELAT_1: 79
.= ((f
| A)
/\ f) by
A5
.= (f
| A) by
RELAT_1: 59,
XBOOLE_1: 28;
hence thesis by
A5,
A11,
A10,
A4,
A9;
end;
theorem ::
MESFUN6C:20
Th20: for X be non
empty
set, S be
SigmaField of X, M be
sigma_Measure of S, f be
PartFunc of X,
REAL , E,A be
Element of S st (ex E be
Element of S st E
= (
dom f) & f is E
-measurable) & (M
. A)
=
0 holds (f
| A)
is_integrable_on M by
Th19;
theorem ::
MESFUN6C:21
(ex E be
Element of S st E
= (
dom f) & f is E
-measurable) & (M
. A)
=
0 implies (f
| A)
is_integrable_on M & (
Integral (M,(f
| A)))
=
0
proof
set g = (f
| A);
assume that
A1: ex E be
Element of S st E
= (
dom f) & f is E
-measurable and
A2: (M
. A)
=
0 ;
consider E be
Element of S such that
A3: E
= (
dom f) and
A4: f is E
-measurable by
A1;
A5: (
dom (
Im f))
= (
dom f) by
COMSEQ_3:def 4;
A6: (
Im f) is E
-measurable by
A4;
then
A7: (
Integral (M,((
Im f)
| A)))
=
0 by
A2,
A3,
A5,
MESFUNC6: 88;
((
Im f)
| A)
is_integrable_on M by
A2,
A3,
A6,
A5,
Th20;
then
A8: (
Im g)
is_integrable_on M by
Th7;
A9: (
dom (
Re f))
= (
dom f) by
COMSEQ_3:def 3;
A10: (
Im g)
= ((
Im f)
| A) by
Th7;
A11: (
Re f) is E
-measurable by
A4;
A12: (
Re g)
= ((
Re f)
| A) by
Th7;
then
reconsider R = (
Integral (M,(
Re g))), I = (
Integral (M,(
Im g))) as
Real by
A2,
A3,
A11,
A6,
A9,
A5,
A10,
MESFUNC6: 88;
((
Re f)
| A)
is_integrable_on M by
A2,
A3,
A11,
A9,
Th20;
then (
Re g)
is_integrable_on M by
Th7;
hence g
is_integrable_on M by
A8;
hence (
Integral (M,g))
= (R
+ (I
*
<i> )) by
Def3
.=
0 by
A2,
A3,
A11,
A9,
A7,
A12,
A10,
MESFUNC6: 88;
end;
theorem ::
MESFUN6C:22
E
= (
dom f) & f
is_integrable_on M & (M
. A)
=
0 implies (
Integral (M,(f
| (E
\ A))))
= (
Integral (M,f))
proof
assume that
A1: E
= (
dom f) and
A2: f
is_integrable_on M and
A3: (M
. A)
=
0 ;
set C = (E
\ A);
A4: (
dom f)
= (
dom (
Re f)) by
COMSEQ_3:def 3;
A5: (
Im f)
is_integrable_on M by
A2;
then (
R_EAL (
Im f))
is_integrable_on M;
then
consider IE be
Element of S such that
A6: IE
= (
dom (
R_EAL (
Im f))) and
A7: (
R_EAL (
Im f)) is IE
-measurable;
A8: (
dom f)
= (
dom (
Im f)) by
COMSEQ_3:def 4;
A9: (
Integral (M,((
Im f)
| C)))
= (
Integral (M,(
Im (f
| C)))) by
Th7;
(
Im f) is IE
-measurable by
A7;
then
A10: (
Integral (M,(
Im (f
| C))))
= (
Integral (M,(
Im f))) by
A1,
A3,
A8,
A6,
A9,
MESFUNC6: 89;
((
Im f)
| C)
is_integrable_on M by
A5,
MESFUNC6: 91;
then
A11: (
Im (f
| C))
is_integrable_on M by
Th7;
then
A12:
-infty
< (
Integral (M,(
Im (f
| C)))) by
MESFUNC6: 90;
A13: (
Re f)
is_integrable_on M by
A2;
then (
R_EAL (
Re f))
is_integrable_on M;
then
consider RE be
Element of S such that
A14: RE
= (
dom (
R_EAL (
Re f))) and
A15: (
R_EAL (
Re f)) is RE
-measurable;
A16: (
Integral (M,((
Re f)
| C)))
= (
Integral (M,(
Re (f
| C)))) by
Th7;
(
Re f) is RE
-measurable by
A15;
then
A17: (
Integral (M,(
Re (f
| C))))
= (
Integral (M,(
Re f))) by
A1,
A3,
A4,
A14,
A16,
MESFUNC6: 89;
((
Re f)
| C)
is_integrable_on M by
A13,
MESFUNC6: 91;
then
A18: (
Re (f
| C))
is_integrable_on M by
Th7;
then
A19: (
Integral (M,(
Re (f
| C))))
<
+infty by
MESFUNC6: 90;
A20: (
Integral (M,(
Im (f
| C))))
<
+infty by
A11,
MESFUNC6: 90;
-infty
< (
Integral (M,(
Re (f
| C)))) by
A18,
MESFUNC6: 90;
then
reconsider R2 = (
Integral (M,(
Re (f
| C)))), I2 = (
Integral (M,(
Im (f
| C)))) as
Element of
REAL by
A19,
A12,
A20,
XXREAL_0: 14;
(f
| (E
\ A))
is_integrable_on M by
A18,
A11;
hence (
Integral (M,(f
| (E
\ A))))
= (R2
+ (I2
*
<i> )) by
Def3
.= (
Integral (M,f)) by
A2,
A17,
A10,
Def3;
end;
theorem ::
MESFUN6C:23
Th23: f
is_integrable_on M implies (f
| A)
is_integrable_on M
proof
assume
A1: f
is_integrable_on M;
then (
Im f)
is_integrable_on M;
then ((
Im f)
| A)
is_integrable_on M by
MESFUNC6: 91;
then
A2: (
Im (f
| A))
is_integrable_on M by
Th7;
(
Re f)
is_integrable_on M by
A1;
then ((
Re f)
| A)
is_integrable_on M by
MESFUNC6: 91;
then (
Re (f
| A))
is_integrable_on M by
Th7;
hence thesis by
A2;
end;
theorem ::
MESFUN6C:24
f
is_integrable_on M & A
misses B implies (
Integral (M,(f
| (A
\/ B))))
= ((
Integral (M,(f
| A)))
+ (
Integral (M,(f
| B))))
proof
assume that
A1: f
is_integrable_on M and
A2: A
misses B;
A3: (f
| B)
is_integrable_on M by
A1,
Th23;
then
A4: (
Re (f
| B))
is_integrable_on M;
then
A5: (
Integral (M,(
Re (f
| B))))
<
+infty by
MESFUNC6: 90;
A6: (
Im (f
| B))
is_integrable_on M by
A3;
then
A7:
-infty
< (
Integral (M,(
Im (f
| B)))) by
MESFUNC6: 90;
A8: (
Integral (M,(
Im (f
| B))))
<
+infty by
A6,
MESFUNC6: 90;
-infty
< (
Integral (M,(
Re (f
| B)))) by
A4,
MESFUNC6: 90;
then
reconsider R2 = (
Integral (M,(
Re (f
| B)))), I2 = (
Integral (M,(
Im (f
| B)))) as
Element of
REAL by
A5,
A7,
A8,
XXREAL_0: 14;
A9: (f
| A)
is_integrable_on M by
A1,
Th23;
then
A10: (
Re (f
| A))
is_integrable_on M;
then
A11: (
Integral (M,(
Re (f
| A))))
<
+infty by
MESFUNC6: 90;
set C = (A
\/ B);
A12: (f
| (A
\/ B))
is_integrable_on M by
A1,
Th23;
then
A13: (
Re (f
| C))
is_integrable_on M;
then
A14: (
Integral (M,(
Re (f
| C))))
<
+infty by
MESFUNC6: 90;
A15: (
Im (f
| C))
is_integrable_on M by
A12;
then
A16:
-infty
< (
Integral (M,(
Im (f
| C)))) by
MESFUNC6: 90;
A17: (
Integral (M,(
Im (f
| C))))
<
+infty by
A15,
MESFUNC6: 90;
-infty
< (
Integral (M,(
Re (f
| C)))) by
A13,
MESFUNC6: 90;
then
reconsider R3 = (
Integral (M,(
Re (f
| C)))), I3 = (
Integral (M,(
Im (f
| C)))) as
Element of
REAL by
A14,
A16,
A17,
XXREAL_0: 14;
A18: (
Integral (M,(f
| (A
\/ B))))
= (R3
+ (I3
*
<i> )) by
A12,
Def3;
A19: (
Im (f
| A))
is_integrable_on M by
A9;
then
A20:
-infty
< (
Integral (M,(
Im (f
| A)))) by
MESFUNC6: 90;
A21: (
Integral (M,(
Im (f
| A))))
<
+infty by
A19,
MESFUNC6: 90;
-infty
< (
Integral (M,(
Re (f
| A)))) by
A10,
MESFUNC6: 90;
then
reconsider R1 = (
Integral (M,(
Re (f
| A)))), I1 = (
Integral (M,(
Im (f
| A)))) as
Element of
REAL by
A11,
A20,
A21,
XXREAL_0: 14;
(
Im f)
is_integrable_on M by
A1;
then (
Integral (M,((
Im f)
| (A
\/ B))))
= ((
Integral (M,((
Im f)
| A)))
+ (
Integral (M,((
Im f)
| B)))) by
A2,
MESFUNC6: 92;
then (
Integral (M,((
Im f)
| C)))
= ((
Integral (M,(
Im (f
| A))))
+ (
Integral (M,((
Im f)
| B)))) by
Th7
.= ((
Integral (M,(
Im (f
| A))))
+ (
Integral (M,(
Im (f
| B))))) by
Th7;
then I3
= (I1
+ I2 qua
ExtReal) by
Th7;
then
A22: I3
= (I1
+ I2);
(
Re f)
is_integrable_on M by
A1;
then (
Integral (M,((
Re f)
| (A
\/ B))))
= ((
Integral (M,((
Re f)
| A)))
+ (
Integral (M,((
Re f)
| B)))) by
A2,
MESFUNC6: 92;
then (
Integral (M,((
Re f)
| C)))
= ((
Integral (M,(
Re (f
| A))))
+ (
Integral (M,((
Re f)
| B)))) by
Th7
.= ((
Integral (M,(
Re (f
| A))))
+ (
Integral (M,(
Re (f
| B))))) by
Th7;
then R3
= (R1
+ R2 qua
ExtReal) by
Th7;
then R3
= (R1
+ R2);
then (
Integral (M,(f
| (A
\/ B))))
= ((R1
+ (I1
*
<i> ))
+ (R2
+ (I2
*
<i> ))) by
A22,
A18;
then (
Integral (M,(f
| (A
\/ B))))
= ((
Integral (M,(f
| A)))
+ (R2
+ (I2
*
<i> ))) by
A9,
Def3;
hence thesis by
A3,
Def3;
end;
theorem ::
MESFUN6C:25
f
is_integrable_on M & B
= ((
dom f)
\ A) implies (f
| A)
is_integrable_on M & (
Integral (M,f))
= ((
Integral (M,(f
| A)))
+ (
Integral (M,(f
| B))))
proof
assume that
A1: f
is_integrable_on M and
A2: B
= ((
dom f)
\ A);
A3: (
Re f)
is_integrable_on M by
A1;
then
A4: (
Integral (M,(
Re f)))
<
+infty by
MESFUNC6: 90;
A5: (
Im f)
is_integrable_on M by
A1;
then
A6:
-infty
< (
Integral (M,(
Im f))) by
MESFUNC6: 90;
A7: (
Integral (M,(
Im f)))
<
+infty by
A5,
MESFUNC6: 90;
-infty
< (
Integral (M,(
Re f))) by
A3,
MESFUNC6: 90;
then
reconsider R = (
Integral (M,(
Re f))), I = (
Integral (M,(
Im f))) as
Element of
REAL by
A4,
A6,
A7,
XXREAL_0: 14;
A8: (
Integral (M,f))
= (R
+ (I
*
<i> )) by
A1,
Def3;
A9: (f
| B)
is_integrable_on M by
A1,
Th23;
then
A10: (
Re (f
| B))
is_integrable_on M;
then
A11: (
Integral (M,(
Re (f
| B))))
<
+infty by
MESFUNC6: 90;
A12: (
Im (f
| B))
is_integrable_on M by
A9;
then
A13:
-infty
< (
Integral (M,(
Im (f
| B)))) by
MESFUNC6: 90;
A14: (
Integral (M,(
Im (f
| B))))
<
+infty by
A12,
MESFUNC6: 90;
-infty
< (
Integral (M,(
Re (f
| B)))) by
A10,
MESFUNC6: 90;
then
reconsider R2 = (
Integral (M,(
Re (f
| B)))), I2 = (
Integral (M,(
Im (f
| B)))) as
Element of
REAL by
A11,
A13,
A14,
XXREAL_0: 14;
A15: (f
| A)
is_integrable_on M by
A1,
Th23;
then
A16: (
Re (f
| A))
is_integrable_on M;
then
A17: (
Integral (M,(
Re (f
| A))))
<
+infty by
MESFUNC6: 90;
A18: (
Im (f
| A))
is_integrable_on M by
A15;
then
A19:
-infty
< (
Integral (M,(
Im (f
| A)))) by
MESFUNC6: 90;
A20: (
Integral (M,(
Im (f
| A))))
<
+infty by
A18,
MESFUNC6: 90;
-infty
< (
Integral (M,(
Re (f
| A)))) by
A16,
MESFUNC6: 90;
then
reconsider R1 = (
Integral (M,(
Re (f
| A)))), I1 = (
Integral (M,(
Im (f
| A)))) as
Element of
REAL by
A17,
A19,
A20,
XXREAL_0: 14;
(
dom f)
= (
dom (
Im f)) by
COMSEQ_3:def 4;
then (
Integral (M,(
Im f)))
= ((
Integral (M,((
Im f)
| A)))
+ (
Integral (M,((
Im f)
| B)))) by
A2,
A5,
MESFUNC6: 93;
then (
Integral (M,(
Im f)))
= ((
Integral (M,(
Im (f
| A))))
+ (
Integral (M,((
Im f)
| B)))) by
Th7
.= ((
Integral (M,(
Im (f
| A))))
+ (
Integral (M,(
Im (f
| B))))) by
Th7;
then
A21: I
= (I1
+ I2) by
SUPINF_2: 1;
(
dom f)
= (
dom (
Re f)) by
COMSEQ_3:def 3;
then (
Integral (M,(
Re f)))
= ((
Integral (M,((
Re f)
| A)))
+ (
Integral (M,((
Re f)
| B)))) by
A2,
A3,
MESFUNC6: 93;
then (
Integral (M,(
Re f)))
= ((
Integral (M,(
Re (f
| A))))
+ (
Integral (M,((
Re f)
| B)))) by
Th7
.= ((
Integral (M,(
Re (f
| A))))
+ (
Integral (M,(
Re (f
| B))))) by
Th7;
then R
= (R1
+ R2) by
SUPINF_2: 1;
then (
Integral (M,f))
= ((R1
+ (I1
*
<i> ))
+ (R2
+ (I2
*
<i> ))) by
A21,
A8;
then (
Integral (M,f))
= ((
Integral (M,(f
| A)))
+ (R2
+ (I2
*
<i> ))) by
A15,
Def3;
hence thesis by
A1,
A9,
Def3,
Th23;
end;
definition
let k be
Real, X be non
empty
set, f be
PartFunc of X,
REAL ;
::
MESFUN6C:def4
func f
to_power k ->
PartFunc of X,
REAL means
:
Def4: (
dom it )
= (
dom f) & for x be
Element of X st x
in (
dom it ) holds (it
. x)
= ((f
. x)
to_power k);
existence
proof
defpred
P[
set,
set] means $1
in (
dom f) & $2
= ((f
. $1)
to_power k);
consider F be
PartFunc of X,
REAL such that
A1: for z be
Element of X holds z
in (
dom F) iff ex c be
Element of
REAL st
P[z, c] and
A2: for z be
Element of X st z
in (
dom F) holds
P[z, (F
. z)] from
SEQ_1:sch 2;
take F;
now
let z be
Element of X;
hereby
A3: ((f
. z)
to_power k) is
Element of
REAL by
XREAL_0:def 1;
assume z
in (
dom f);
hence z
in (
dom F) by
A1,
A3;
end;
hereby
assume z
in (
dom F);
then ex c be
Element of
REAL st
P[z, c] by
A1;
hence z
in (
dom f);
end;
end;
hence (
dom F)
= (
dom f) by
SUBSET_1: 3;
thus thesis by
A2;
end;
uniqueness
proof
deffunc
f0(
set) = ((f
. $1)
to_power k);
thus for h,g be
PartFunc of X,
REAL st ((
dom h)
= (
dom f) & for z be
Element of X st z
in (
dom h) holds (h
. z)
=
f0(z)) & ((
dom g)
= (
dom f) & for z be
Element of X st z
in (
dom g) holds (g
. z)
=
f0(z)) holds h
= g from
SEQ_1:sch 4;
end;
end
registration
let X;
cluster
nonnegative for
PartFunc of X,
REAL ;
existence
proof
reconsider f =
{} as
Function;
reconsider f as
PartFunc of X,
REAL by
RELSET_1: 12;
take f;
let x be
ExtReal;
thus thesis;
end;
end
registration
let k be non
negative
Real, X;
let f be
nonnegative
PartFunc of X,
REAL ;
cluster (f
to_power k) ->
nonnegative;
coherence
proof
now
let x be
object;
assume
A1: x
in (
dom (f
to_power k));
per cases ;
suppose k
=
0 ;
then ((f
. x)
to_power k)
= 1 by
POWER: 24;
hence
0
<= ((f
to_power k)
. x) by
A1,
Def4;
end;
suppose
A2: k
>
0 ;
per cases by
MESFUNC6: 51;
suppose
0
< (f
. x);
then
0
< ((f
. x)
to_power k) by
POWER: 34;
hence
0
<= ((f
to_power k)
. x) by
A1,
Def4;
end;
suppose
0
= (f
. x);
then
0
= ((f
. x)
to_power k) by
A2,
POWER:def 2;
hence
0
<= ((f
to_power k)
. x) by
A1,
Def4;
end;
end;
end;
hence thesis by
MESFUNC6: 52;
end;
end
theorem ::
MESFUN6C:26
Th26: for k be
Real, X, S, E holds for f be
PartFunc of X,
REAL st f is
nonnegative &
0
<= k holds (f
to_power k) is
nonnegative;
theorem ::
MESFUN6C:27
Th27: for x be
object, X, S, E holds for f be
PartFunc of X,
REAL st f is
nonnegative holds ((f
. x)
to_power (1
/ 2))
= (
sqrt (f
. x))
proof
let x be
object, X, S, E;
let f be
PartFunc of X,
REAL ;
assume f is
nonnegative;
then
A1:
0
<= (f
. x) by
MESFUNC6: 51;
hence ((f
. x)
to_power (1
/ 2))
= (2
-root (f
. x)) by
POWER: 45
.= (2
-Root (f
. x)) by
A1,
POWER:def 1
.= (
sqrt (f
. x)) by
A1,
PREPOWER: 32;
end;
theorem ::
MESFUN6C:28
Th28: for f be
PartFunc of X,
REAL , a be
Real st A
c= (
dom f) holds (A
/\ (
less_dom (f,a)))
= (A
\ (A
/\ (
great_eq_dom (f,a))))
proof
let f be
PartFunc of X,
REAL , a be
Real;
now
let x be
object;
assume
A1: x
in (A
/\ (
less_dom (f,a)));
then x
in (
less_dom (f,a)) by
XBOOLE_0:def 4;
then ex y be
Real st y
= (f
. x) & y
< a by
MESFUNC6: 3;
then not (ex y1 be
Real st y1
= (f
. x) & a
<= y1);
then not x
in (
great_eq_dom (f,a)) by
MESFUNC6: 6;
then
A2: not x
in (A
/\ (
great_eq_dom (f,a))) by
XBOOLE_0:def 4;
x
in A by
A1,
XBOOLE_0:def 4;
hence x
in (A
\ (A
/\ (
great_eq_dom (f,a)))) by
A2,
XBOOLE_0:def 5;
end;
then
A3: (A
/\ (
less_dom (f,a)))
c= (A
\ (A
/\ (
great_eq_dom (f,a)))) by
TARSKI:def 3;
assume
A4: A
c= (
dom f);
now
let x be
object;
assume
A5: x
in (A
\ (A
/\ (
great_eq_dom (f,a))));
then
A6: x
in A by
XBOOLE_0:def 5;
not x
in (A
/\ (
great_eq_dom (f,a))) by
A5,
XBOOLE_0:def 5;
then not x
in (
great_eq_dom (f,a)) by
A6,
XBOOLE_0:def 4;
then not a
<= (f
. x) by
A4,
A6,
MESFUNC6: 6;
then x
in (
less_dom (f,a)) by
A4,
A6,
MESFUNC6: 3;
hence x
in (A
/\ (
less_dom (f,a))) by
A6,
XBOOLE_0:def 4;
end;
then (A
\ (A
/\ (
great_eq_dom (f,a))))
c= (A
/\ (
less_dom (f,a))) by
TARSKI:def 3;
hence thesis by
A3,
XBOOLE_0:def 10;
end;
reconsider jj = 1 as
Real;
theorem ::
MESFUN6C:29
Th29: for k be
Real, X, S, E holds for f be
PartFunc of X,
REAL st f is
nonnegative &
0
<= k & E
c= (
dom f) & f is E
-measurable holds (f
to_power k) is E
-measurable
proof
let k be
Real, X, S, E;
let f be
PartFunc of X,
REAL ;
reconsider k1 = k as
Real;
assume that
A1: f is
nonnegative and
A2:
0
<= k and
A3: E
c= (
dom f) and
A4: f is E
-measurable;
A5: (
dom (f
to_power k))
= (
dom f) by
Def4;
per cases by
A2;
suppose
A6: k
=
0 ;
A7: E
c= (
dom (f
to_power k)) by
A3,
Def4;
now
let r be
Real;
reconsider r1 = r as
Real;
per cases ;
suppose
A8: r
<= 1;
now
let x be
object;
assume
A9: x
in E;
then ((f
to_power k)
. x)
= ((f
. x)
to_power k) by
A3,
A5,
Def4;
then r
<= ((f
to_power k)
. x) by
A6,
A8,
POWER: 24;
hence x
in (
great_eq_dom ((f
to_power k),r1)) by
A3,
A5,
A9,
MESFUNC6: 6;
end;
then E
c= (
great_eq_dom ((f
to_power k),r)) by
TARSKI:def 3;
then (E
/\ (
great_eq_dom ((f
to_power k),r)))
= E by
XBOOLE_1: 28;
then (E
/\ (
less_dom ((f
to_power k),r1)))
= (E
\ E) by
A7,
Th28;
hence (E
/\ (
less_dom ((f
to_power k),r)))
in S;
end;
suppose
A10: 1
< r;
now
let x be
object;
assume
A11: x
in E;
then ((f
to_power k)
. x)
= ((f
. x)
to_power k) by
A3,
A5,
Def4;
then ((f
to_power k)
. x)
< r by
A6,
A10,
POWER: 24;
hence x
in (
less_dom ((f
to_power k),r)) by
A3,
A5,
A11,
MESFUNC6: 3;
end;
then E
c= (
less_dom ((f
to_power k),r)) by
TARSKI:def 3;
then (E
/\ (
less_dom ((f
to_power k),r)))
= E by
XBOOLE_1: 28;
hence (E
/\ (
less_dom ((f
to_power k),r)))
in S;
end;
end;
hence thesis by
MESFUNC6: 12;
end;
suppose
A12: k
>
0 ;
for r be
Real holds (E
/\ (
great_eq_dom ((f
to_power k),r)))
in S
proof
let r be
Real;
reconsider r1 = r as
Real;
per cases ;
suppose
A13: r1
<=
0 ;
now
let x be
object;
assume x
in E;
then x
in (
dom f) by
A3;
then
A14: x
in (
dom (f
to_power k)) by
Def4;
0
<= ((f
to_power k)
. x) by
A1,
A12,
MESFUNC6: 51;
hence x
in (
great_eq_dom ((f
to_power k),r1)) by
A13,
A14,
MESFUNC6: 6;
end;
then E
c= (
great_eq_dom ((f
to_power k),r)) by
TARSKI:def 3;
then (E
/\ (
great_eq_dom ((f
to_power k),r)))
= E by
XBOOLE_1: 28;
hence thesis;
end;
suppose
A15:
0
< r1;
A16:
now
set R = (r
to_power (jj
/ k));
let x be
object;
reconsider xx = x as
set by
TARSKI: 1;
A17:
0
< (r
to_power (jj
/ k)) by
A15,
POWER: 34;
assume
A18: x
in (
great_eq_dom (f,(r1
to_power (1
/ k))));
then
A19: x
in (
dom (f
to_power k)) by
A5,
MESFUNC6: 6;
(R
to_power k)
= (r
to_power ((1
/ k)
* k)) by
A15,
POWER: 33;
then
A20: (R
to_power k)
= (r
to_power 1) by
A12,
XCMPLX_1: 87;
ex y be
Real st y
= (f
. x) & (r1
to_power (1
/ k))
<= y by
A18,
MESFUNC6: 6;
then (r1
to_power jj)
<= ((f
. xx)
to_power k1) by
A12,
A17,
A20,
HOLDER_1: 3;
then r
<= ((f
. xx)
to_power k) by
POWER: 25;
then r
<= ((f
to_power k)
. xx) by
A19,
Def4;
hence x
in (
great_eq_dom ((f
to_power k),r1)) by
A19,
MESFUNC6: 6;
end;
now
let x be
object;
reconsider xx = x as
set by
TARSKI: 1;
assume
A21: x
in (
great_eq_dom ((f
to_power k),r1));
then
A22: x
in (
dom (f
to_power k)) by
MESFUNC6: 6;
0
<= (f
. xx) by
A1,
MESFUNC6: 51;
then (((f
. xx)
to_power k1)
to_power (1
/ k1))
= ((f
. xx)
to_power ((k1
* 1)
/ k1)) by
A12,
HOLDER_1: 2;
then (((f
. xx)
to_power k1)
to_power (1
/ k1))
= ((f
. xx)
to_power 1) by
A12,
XCMPLX_1: 87;
then
A23: (((f
. xx)
to_power k)
to_power (1
/ k))
= (f
. x) by
POWER: 25;
ex y2 be
Real st y2
= ((f
to_power k)
. x) & r1
<= y2 by
A21,
MESFUNC6: 6;
then r
<= ((f
. xx)
to_power k) by
A22,
Def4;
then (r
to_power (1
/ k1))
<= (((f
. xx)
to_power k1)
to_power (1
/ k1)) by
A12,
A15,
HOLDER_1: 3;
hence x
in (
great_eq_dom (f,(r1
to_power (1
/ k)))) by
A5,
A22,
A23,
MESFUNC6: 6;
end;
then (E
/\ (
great_eq_dom ((f
to_power k),r1)))
= (E
/\ (
great_eq_dom (f,(r1
to_power (1
/ k))))) by
A16,
TARSKI: 2;
hence thesis by
A3,
A4,
MESFUNC6: 13;
end;
end;
hence thesis by
A3,
A5,
MESFUNC6: 13;
end;
end;
theorem ::
MESFUN6C:30
Th30: f is A
-measurable & A
c= (
dom f) implies
|.f.| is A
-measurable
proof
assume that
A1: f is A
-measurable and
A2: A
c= (
dom f);
A3: (
dom (
Im f))
= (
dom f) by
COMSEQ_3:def 4;
A4:
now
let x be
object;
assume x
in (
dom
|.(
Im f).|);
then (
|.(
Im f).|
. x)
=
|.((
Im f)
. x) qua
Complex.| by
VALUED_1:def 11;
hence
0
<= (
|.(
Im f).|
. x) by
COMPLEX1: 46;
end;
then
A5: (
|.(
Im f).|
to_power 2) is
nonnegative by
Th26,
MESFUNC6: 52;
A6: (
dom
|.(
Im f).|)
= (
dom (
Im f)) by
VALUED_1:def 11;
then
A7: (
dom (
|.(
Im f).|
to_power 2))
= (
dom f) by
A3,
Def4;
(
Im f) is A
-measurable by
A1;
then
|.(
Im f).| is A
-measurable by
A2,
A3,
MESFUNC6: 48;
then
A8: (
|.(
Im f).|
to_power 2) is A
-measurable by
A2,
A6,
A3,
A4,
Th29,
MESFUNC6: 52;
A9: (
dom (
Re f))
= (
dom f) by
COMSEQ_3:def 3;
A10:
now
let x be
object;
A11:
0
<=
|.((
Re f)
. x) qua
Complex.| by
COMPLEX1: 46;
assume x
in (
dom
|.(
Re f).|);
hence
0
<= (
|.(
Re f).|
. x) by
A11,
VALUED_1:def 11;
end;
then
A12: (
|.(
Re f).|
to_power 2) is
nonnegative by
Th26,
MESFUNC6: 52;
set F = ((
|.(
Re f).|
to_power 2)
+ (
|.(
Im f).|
to_power 2));
A13: (
dom
|.f.|)
= (
dom f) by
VALUED_1:def 11;
A14: (
dom
|.(
Re f).|)
= (
dom (
Re f)) by
VALUED_1:def 11;
then
A15: (
dom (
|.(
Re f).|
to_power 2))
= (
dom f) by
A9,
Def4;
A16: (
dom F)
= ((
dom (
|.(
Re f).|
to_power 2))
/\ (
dom (
|.(
Im f).|
to_power 2))) by
VALUED_1:def 1;
then
A17: (
dom
|.f.|)
= (
dom (F
to_power (1
/ 2))) by
A13,
A15,
A7,
Def4;
now
let x be
object;
assume
A18: x
in (
dom
|.f.|);
then ((
|.(
Re f).|
to_power 2)
. x)
= ((
|.(
Re f).|
. x)
to_power 2) by
A13,
A15,
Def4;
then ((
|.(
Re f).|
to_power 2)
. x)
= (
|.((
Re f)
. x) qua
Complex.|
to_power 2) by
A14,
A13,
A9,
A18,
VALUED_1:def 11;
then ((
|.(
Re f).|
to_power 2)
. x)
= (
|.(
Re (f
. x)) qua
Complex.|
to_power 2) by
A13,
A9,
A18,
COMSEQ_3:def 3;
then ((
|.(
Re f).|
to_power 2)
. x)
= (
|.(
Re (f
. x)) qua
Complex.|
^2 ) by
POWER: 46;
then
A19: ((
|.(
Re f).|
to_power 2)
. x)
= ((
Re (f
. x))
^2 ) by
COMPLEX1: 75;
((
|.(
Im f).|
to_power 2)
. x)
= ((
|.(
Im f).|
. x)
to_power 2) by
A13,
A7,
A18,
Def4;
then ((
|.(
Im f).|
to_power 2)
. x)
= (
|.((
Im f)
. x) qua
Complex.|
to_power 2) by
A6,
A13,
A3,
A18,
VALUED_1:def 11;
then ((
|.(
Im f).|
to_power 2)
. x)
= (
|.(
Im (f
. x)) qua
Complex.|
to_power 2) by
A13,
A3,
A18,
COMSEQ_3:def 4;
then ((
|.(
Im f).|
to_power 2)
. x)
= (
|.(
Im (f
. x)) qua
Complex.|
^2 ) by
POWER: 46;
then
A20: ((
|.(
Im f).|
to_power 2)
. x)
= ((
Im (f
. x))
^2 ) by
COMPLEX1: 75;
((F
. x)
to_power (1
/ 2))
= (
sqrt (F
. x)) by
A12,
A5,
Th27,
MESFUNC6: 56
.= (
sqrt (((
Re (f
. x))
^2 )
+ ((
Im (f
. x))
^2 ))) by
A13,
A16,
A15,
A7,
A18,
A19,
A20,
VALUED_1:def 1;
then ((F
to_power (1
/ 2))
. x)
=
|.(f
. x).| by
A17,
A18,
Def4;
hence (
|.f.|
. x)
= ((F
to_power (1
/ 2))
. x) by
A18,
VALUED_1:def 11;
end;
then
A21:
|.f.|
= (F
to_power (1
/ 2)) by
A17,
FUNCT_1: 2;
(
Re f) is A
-measurable by
A1;
then
|.(
Re f).| is A
-measurable by
A2,
A9,
MESFUNC6: 48;
then (
|.(
Re f).|
to_power 2) is A
-measurable by
A2,
A14,
A9,
A10,
Th29,
MESFUNC6: 52;
then F is A
-measurable by
A8,
MESFUNC6: 26;
hence thesis by
A2,
A12,
A5,
A16,
A15,
A7,
A21,
Th29,
MESFUNC6: 56;
end;
theorem ::
MESFUN6C:31
Th31: (ex A be
Element of S st A
= (
dom f) & f is A
-measurable) implies (f
is_integrable_on M iff
|.f.|
is_integrable_on M)
proof
A1: (
dom (
|.(
Re f).|
+
|.(
Im f).|))
= ((
dom
|.(
Re f).|)
/\ (
dom
|.(
Im f).|)) by
VALUED_1:def 1;
A2: (
dom
|.(
Re f).|)
= (
dom (
Re f)) by
VALUED_1:def 11;
A3: (
dom
|.(
Im f).|)
= (
dom (
Im f)) by
VALUED_1:def 11;
A4: (
dom
|.f.|)
= (
dom f) by
VALUED_1:def 11;
assume ex A be
Element of S st A
= (
dom f) & f is A
-measurable;
then
consider A be
Element of S such that
A5: A
= (
dom f) and
A6: f is A
-measurable;
A7: (
dom (
Re f))
= A by
A5,
COMSEQ_3:def 3;
A8: (
Im f) is A
-measurable by
A6;
A9: (
Re f) is A
-measurable by
A6;
A10: (
dom (
Im f))
= A by
A5,
COMSEQ_3:def 4;
A11:
|.f.| is A
-measurable by
A5,
A6,
Th30;
hereby
A12:
now
let x be
Element of X;
assume
A13: x
in (
dom
|.f.|);
then
A14: (
|.f.|
. x)
=
|.(f
. x).| by
VALUED_1:def 11;
A15:
|.((
Im f)
. x) qua
Complex.|
= (
|.(
Im f).|
. x) by
A5,
A10,
A3,
A4,
A13,
VALUED_1:def 11;
A16:
|.((
Re f)
. x) qua
Complex.|
= (
|.(
Re f).|
. x) by
A5,
A7,
A2,
A4,
A13,
VALUED_1:def 11;
A17: ((
Im f)
. x)
= (
Im (f
. x)) by
A5,
A10,
A4,
A13,
COMSEQ_3:def 4;
A18: ((
Re f)
. x)
= (
Re (f
. x)) by
A5,
A7,
A4,
A13,
COMSEQ_3:def 3;
((
|.(
Re f).|
+
|.(
Im f).|)
. x)
= ((
|.(
Re f).|
. x)
+ (
|.(
Im f).|
. x)) by
A5,
A7,
A10,
A1,
A2,
A3,
A4,
A13,
VALUED_1:def 1;
hence
|.(
|.f.|
. x) qua
Complex.|
<= ((
|.(
Re f).|
+
|.(
Im f).|)
. x) by
A18,
A17,
A14,
A16,
A15,
COMPLEX1: 78;
end;
assume
A19: f
is_integrable_on M;
then (
Im f)
is_integrable_on M;
then
A20:
|.(
Im f).|
is_integrable_on M by
A10,
A8,
MESFUNC6: 94;
(
Re f)
is_integrable_on M by
A19;
then
|.(
Re f).|
is_integrable_on M by
A7,
A9,
MESFUNC6: 94;
then (
|.(
Re f).|
+
|.(
Im f).|)
is_integrable_on M by
A20,
MESFUNC6: 100;
hence
|.f.|
is_integrable_on M by
A5,
A7,
A10,
A1,
A2,
A3,
A4,
A11,
A12,
MESFUNC6: 96;
end;
hereby
assume
A21:
|.f.|
is_integrable_on M;
now
let x be
Element of X;
A22:
|.(
Im (f
. x)) qua
Complex.|
<=
|.(f
. x).| by
COMPLEX1: 79;
assume
A23: x
in (
dom (
Im f));
then (
|.f.|
. x)
=
|.(f
. x).| by
A5,
A10,
A4,
VALUED_1:def 11;
hence
|.((
Im f)
. x) qua
Complex.|
<= (
|.f.|
. x) by
A23,
A22,
COMSEQ_3:def 4;
end;
then
A24: (
Im f)
is_integrable_on M by
A5,
A10,
A8,
A4,
A21,
MESFUNC6: 96;
now
let x be
Element of X;
A25:
|.(
Re (f
. x)) qua
Complex.|
<=
|.(f
. x).| by
COMPLEX1: 79;
assume
A26: x
in (
dom (
Re f));
then (
|.f.|
. x)
=
|.(f
. x).| by
A5,
A7,
A4,
VALUED_1:def 11;
hence
|.((
Re f)
. x) qua
Complex.|
<= (
|.f.|
. x) by
A26,
A25,
COMSEQ_3:def 3;
end;
then (
Re f)
is_integrable_on M by
A5,
A7,
A9,
A4,
A21,
MESFUNC6: 96;
hence f
is_integrable_on M by
A24;
end;
end;
theorem ::
MESFUN6C:32
f
is_integrable_on M & g
is_integrable_on M implies (
dom (f
+ g))
in S
proof
assume that
A1: f
is_integrable_on M and
A2: g
is_integrable_on M;
A3: (
Re g)
is_integrable_on M by
A2;
A4: (
Im g)
is_integrable_on M by
A2;
(
Im f)
is_integrable_on M by
A1;
then (
dom ((
Im f)
+ (
Im g)))
in S by
A4,
MESFUNC6: 99;
then
A5: (
dom (
Im (f
+ g)))
in S by
Th5;
(
Re f)
is_integrable_on M by
A1;
then (
dom ((
Re f)
+ (
Re g)))
in S by
A3,
MESFUNC6: 99;
then
A6: (
dom (
Re (f
+ g)))
in S by
Th5;
(
dom (
<i>
(#) (
Im (f
+ g))))
= (
dom (
Im (f
+ g))) by
VALUED_1:def 5;
then (
dom ((
Re (f
+ g))
+ (
<i>
(#) (
Im (f
+ g)))))
= ((
dom (
Re (f
+ g)))
/\ (
dom (
Im (f
+ g)))) by
VALUED_1:def 1;
then (
dom ((
Re (f
+ g))
+ (
<i>
(#) (
Im (f
+ g)))))
in S by
A6,
A5,
FINSUB_1:def 2;
hence thesis by
Th8;
end;
theorem ::
MESFUN6C:33
Th33: f
is_integrable_on M & g
is_integrable_on M implies (f
+ g)
is_integrable_on M
proof
assume that
A1: f
is_integrable_on M and
A2: g
is_integrable_on M;
A3: (
Im g)
is_integrable_on M by
A2;
(
Im f)
is_integrable_on M by
A1;
then ((
Im f)
+ (
Im g))
is_integrable_on M by
A3,
MESFUNC6: 100;
then
A4: (
Im (f
+ g))
is_integrable_on M by
Th5;
A5: (
Re g)
is_integrable_on M by
A2;
(
Re f)
is_integrable_on M by
A1;
then ((
Re f)
+ (
Re g))
is_integrable_on M by
A5,
MESFUNC6: 100;
then (
Re (f
+ g))
is_integrable_on M by
Th5;
hence thesis by
A4;
end;
theorem ::
MESFUN6C:34
Th34: for X be non
empty
set, S be
SigmaField of X, M be
sigma_Measure of S, f,g be
PartFunc of X,
REAL st f
is_integrable_on M & g
is_integrable_on M holds (f
- g)
is_integrable_on M
proof
let X be non
empty
set, S be
SigmaField of X, M be
sigma_Measure of S, f,g be
PartFunc of X,
REAL ;
assume that
A1: f
is_integrable_on M and
A2: g
is_integrable_on M;
(
R_EAL g)
is_integrable_on M by
A2;
then ((
- jj)
(#) (
R_EAL g))
is_integrable_on M by
MESFUNC5: 110;
then (
- (
R_EAL g))
is_integrable_on M by
MESFUNC2: 9;
then
A3: (
R_EAL (
- g))
is_integrable_on M by
MESFUNC6: 28;
(
R_EAL f)
is_integrable_on M by
A1;
then ((
R_EAL f)
+ (
R_EAL (
- g)))
is_integrable_on M by
A3,
MESFUNC5: 108;
then (
R_EAL (f
- g))
is_integrable_on M by
MESFUNC6: 23;
hence thesis;
end;
theorem ::
MESFUN6C:35
f
is_integrable_on M & g
is_integrable_on M implies (f
- g)
is_integrable_on M
proof
assume that
A1: f
is_integrable_on M and
A2: g
is_integrable_on M;
A3: (
Im g)
is_integrable_on M by
A2;
(
Im f)
is_integrable_on M by
A1;
then ((
Im f)
- (
Im g))
is_integrable_on M by
A3,
Th34;
then
A4: (
Im (f
- g))
is_integrable_on M by
Th6;
A5: (
Re g)
is_integrable_on M by
A2;
(
Re f)
is_integrable_on M by
A1;
then ((
Re f)
- (
Re g))
is_integrable_on M by
A5,
Th34;
then (
Re (f
- g))
is_integrable_on M by
Th6;
hence thesis by
A4;
end;
theorem ::
MESFUN6C:36
Th36: f
is_integrable_on M & g
is_integrable_on M implies ex E be
Element of S st E
= ((
dom f)
/\ (
dom g)) & (
Integral (M,(f
+ g)))
= ((
Integral (M,(f
| E)))
+ (
Integral (M,(g
| E))))
proof
assume that
A1: f
is_integrable_on M and
A2: g
is_integrable_on M;
A3: (
Re g)
is_integrable_on M by
A2;
(
Re f)
is_integrable_on M by
A1;
then
consider E be
Element of S such that
A4: E
= ((
dom (
Re f))
/\ (
dom (
Re g))) and
A5: (
Integral (M,((
Re f)
+ (
Re g))))
= ((
Integral (M,((
Re f)
| E)))
+ (
Integral (M,((
Re g)
| E)))) by
A3,
MESFUNC6: 101;
A6: (f
| E)
is_integrable_on M by
A1,
Th23;
then
A7: (
Re (f
| E))
is_integrable_on M;
then
A8: (
Integral (M,(
Re (f
| E))))
<
+infty by
MESFUNC6: 90;
A9: (
Im (f
| E))
is_integrable_on M by
A6;
then
A10:
-infty
< (
Integral (M,(
Im (f
| E)))) by
MESFUNC6: 90;
A11: (
Integral (M,(
Im (f
| E))))
<
+infty by
A9,
MESFUNC6: 90;
-infty
< (
Integral (M,(
Re (f
| E)))) by
A7,
MESFUNC6: 90;
then
reconsider R1 = (
Integral (M,(
Re (f
| E)))), I1 = (
Integral (M,(
Im (f
| E)))) as
Element of
REAL by
A8,
A10,
A11,
XXREAL_0: 14;
A12: (
dom f)
= (
dom (
Re f)) by
COMSEQ_3:def 3;
A13: (
Im g)
is_integrable_on M by
A2;
(
Im f)
is_integrable_on M by
A1;
then
A14: ex Ei be
Element of S st Ei
= ((
dom (
Im f))
/\ (
dom (
Im g))) & (
Integral (M,((
Im f)
+ (
Im g))))
= ((
Integral (M,((
Im f)
| Ei)))
+ (
Integral (M,((
Im g)
| Ei)))) by
A13,
MESFUNC6: 101;
A15: (
Integral (M,((
Im f)
+ (
Im g))))
= (
Integral (M,(
Im (f
+ g)))) by
Th5;
A16: (f
+ g)
is_integrable_on M by
A1,
A2,
Th33;
then
A17: (
Re (f
+ g))
is_integrable_on M;
then
A18: (
Integral (M,(
Re (f
+ g))))
<
+infty by
MESFUNC6: 90;
A19: (
Im (f
+ g))
is_integrable_on M by
A16;
then
A20:
-infty
< (
Integral (M,(
Im (f
+ g)))) by
MESFUNC6: 90;
A21: (
Integral (M,(
Im (f
+ g))))
<
+infty by
A19,
MESFUNC6: 90;
-infty
< (
Integral (M,(
Re (f
+ g)))) by
A17,
MESFUNC6: 90;
then
reconsider R = (
Integral (M,(
Re (f
+ g)))), I = (
Integral (M,(
Im (f
+ g)))) as
Element of
REAL by
A18,
A20,
A21,
XXREAL_0: 14;
A22: (
Integral (M,(f
+ g)))
= (R
+ (I
*
<i> )) by
A16,
Def3;
A23: (
dom g)
= (
dom (
Im g)) by
COMSEQ_3:def 4;
A24: (g
| E)
is_integrable_on M by
A2,
Th23;
then
A25: (
Re (g
| E))
is_integrable_on M;
then
A26: (
Integral (M,(
Re (g
| E))))
<
+infty by
MESFUNC6: 90;
A27: (
Im (g
| E))
is_integrable_on M by
A24;
then
A28:
-infty
< (
Integral (M,(
Im (g
| E)))) by
MESFUNC6: 90;
A29: (
Integral (M,(
Im (g
| E))))
<
+infty by
A27,
MESFUNC6: 90;
-infty
< (
Integral (M,(
Re (g
| E)))) by
A25,
MESFUNC6: 90;
then
reconsider R2 = (
Integral (M,(
Re (g
| E)))), I2 = (
Integral (M,(
Im (g
| E)))) as
Element of
REAL by
A26,
A28,
A29,
XXREAL_0: 14;
A30: (
dom g)
= (
dom (
Re g)) by
COMSEQ_3:def 3;
(
Integral (M,((
Re f)
+ (
Re g))))
= (
Integral (M,(
Re (f
+ g)))) by
Th5;
then (
Integral (M,(
Re (f
+ g))))
= ((
Integral (M,(
Re (f
| E))))
+ (
Integral (M,((
Re g)
| E)))) by
A5,
Th7
.= ((
Integral (M,(
Re (f
| E))))
+ (
Integral (M,(
Re (g
| E))))) by
Th7;
then
A31: R
= (R1
+ R2) by
SUPINF_2: 1;
(
dom f)
= (
dom (
Im f)) by
COMSEQ_3:def 4;
then (
Integral (M,(
Im (f
+ g))))
= ((
Integral (M,(
Im (f
| E))))
+ (
Integral (M,((
Im g)
| E)))) by
A4,
A12,
A30,
A23,
A14,
A15,
Th7;
then I
= (I1
+ I2 qua
ExtReal) by
Th7;
then I
= (I1
+ I2);
then (
Integral (M,(f
+ g)))
= ((R1
+ (I1
*
<i> ))
+ (R2
+ (I2
*
<i> ))) by
A31,
A22;
then (
Integral (M,(f
+ g)))
= ((
Integral (M,(f
| E)))
+ (R2
+ (I2
*
<i> ))) by
A6,
Def3;
then (
Integral (M,(f
+ g)))
= ((
Integral (M,(f
| E)))
+ (
Integral (M,(g
| E)))) by
A24,
Def3;
hence thesis by
A4,
A12,
A30;
end;
theorem ::
MESFUN6C:37
for X be non
empty
set, S be
SigmaField of X, M be
sigma_Measure of S, f,g be
PartFunc of X,
REAL st f
is_integrable_on M & g
is_integrable_on M holds ex E be
Element of S st E
= ((
dom f)
/\ (
dom g)) & (
Integral (M,(f
- g)))
= ((
Integral (M,(f
| E)))
+ (
Integral (M,((
- g)
| E))))
proof
let X be non
empty
set, S be
SigmaField of X, M be
sigma_Measure of S, f,g be
PartFunc of X,
REAL ;
assume that
A1: f
is_integrable_on M and
A2: g
is_integrable_on M;
(
R_EAL g)
is_integrable_on M by
A2;
then ((
- jj)
(#) (
R_EAL g))
is_integrable_on M by
MESFUNC5: 110;
then (
- (
R_EAL g))
is_integrable_on M by
MESFUNC2: 9;
then
A3: (
R_EAL (
- g))
is_integrable_on M by
MESFUNC6: 28;
(
R_EAL f)
is_integrable_on M by
A1;
then
consider E be
Element of S such that
A4: E
= ((
dom (
R_EAL f))
/\ (
dom (
R_EAL (
- g)))) and
A5: (
Integral (M,((
R_EAL f)
+ (
R_EAL (
- g)))))
= ((
Integral (M,((
R_EAL f)
| E)))
+ (
Integral (M,((
R_EAL (
- g))
| E)))) by
A3,
MESFUNC5: 109;
take E;
(
dom (
R_EAL (
- g)))
= (
dom (
- (
R_EAL g))) by
MESFUNC6: 28;
hence thesis by
A4,
A5,
MESFUNC1:def 7,
MESFUNC6: 23;
end;
theorem ::
MESFUN6C:38
Th38: f
is_integrable_on M implies (r
(#) f)
is_integrable_on M & (
Integral (M,(r
(#) f)))
= (r
* (
Integral (M,f)))
proof
A1: (
Integral (M,(r
(#) (
Re f))))
= (
Integral (M,(
Re (r
(#) f)))) by
Th2;
A2: (
Integral (M,(r
(#) (
Im f))))
= (
Integral (M,(
Im (r
(#) f)))) by
Th2;
assume
A3: f
is_integrable_on M;
then
A4: (
Re f)
is_integrable_on M;
then
A5: (
Integral (M,(
Re f)))
<
+infty by
MESFUNC6: 90;
(r
(#) (
Re f))
is_integrable_on M by
A4,
MESFUNC6: 102;
then
A6: (
Re (r
(#) f))
is_integrable_on M by
Th2;
then
A7: (
Integral (M,(
Re (r
(#) f))))
<
+infty by
MESFUNC6: 90;
A8: (
Im f)
is_integrable_on M by
A3;
then
A9:
-infty
< (
Integral (M,(
Im f))) by
MESFUNC6: 90;
A10: (
Integral (M,(
Im f)))
<
+infty by
A8,
MESFUNC6: 90;
-infty
< (
Integral (M,(
Re f))) by
A4,
MESFUNC6: 90;
then
reconsider R1 = (
Integral (M,(
Re f))), I1 = (
Integral (M,(
Im f))) as
Element of
REAL by
A5,
A9,
A10,
XXREAL_0: 14;
A11: (r qua
ExtReal
* R1)
= (r
* R1);
A12: (r qua
ExtReal
* I1)
= (r
* I1);
(r
(#) (
Im f))
is_integrable_on M by
A8,
MESFUNC6: 102;
then
A13: (
Im (r
(#) f))
is_integrable_on M by
Th2;
then
A14:
-infty
< (
Integral (M,(
Im (r
(#) f)))) by
MESFUNC6: 90;
A15: (
Integral (M,(
Im (r
(#) f))))
<
+infty by
A13,
MESFUNC6: 90;
-infty
< (
Integral (M,(
Re (r
(#) f)))) by
A6,
MESFUNC6: 90;
then
reconsider R2 = (
Integral (M,(
Re (r
(#) f)))), I2 = (
Integral (M,(
Im (r
(#) f)))) as
Element of
REAL by
A7,
A14,
A15,
XXREAL_0: 14;
A16: (
Integral (M,(r
(#) (
Im f))))
= (r
* (
Integral (M,(
Im f)))) by
A8,
MESFUNC6: 102;
A17: (r
(#) f)
is_integrable_on M by
A6,
A13;
(
Integral (M,(r
(#) (
Re f))))
= (r qua
ExtReal
* (
Integral (M,(
Re f)))) by
A4,
MESFUNC6: 102;
then (R2
+ (I2
*
<i> ))
= (r
* (R1
+ (I1
*
<i> ))) by
A16,
A1,
A2,
A11,
A12;
then (
Integral (M,(r
(#) f)))
= (r
* (R1
+ (I1
*
<i> ))) by
A17,
Def3;
hence thesis by
A3,
A6,
A13,
Def3;
end;
theorem ::
MESFUN6C:39
Th39: f
is_integrable_on M implies (
<i>
(#) f)
is_integrable_on M & (
Integral (M,(
<i>
(#) f)))
= (
<i>
* (
Integral (M,f)))
proof
A1: (
Re (
<i>
(#) f))
= (
- (
Im f)) by
Th4;
assume
A2: f
is_integrable_on M;
then
A3: (
Im f)
is_integrable_on M;
A4: (
Im (
<i>
(#) f))
= (
Re f) by
Th4;
then
A5: (
Im (
<i>
(#) f))
is_integrable_on M by
A2;
(
Re (
<i>
(#) f))
is_integrable_on M by
A3,
A1,
MESFUNC6: 102;
hence (
<i>
(#) f)
is_integrable_on M by
A5;
then
consider R1,I1 be
Real such that
A6: R1
= (
Integral (M,(
Re (
<i>
(#) f)))) and
A7: I1
= (
Integral (M,(
Im (
<i>
(#) f)))) and
A8: (
Integral (M,(
<i>
(#) f)))
= (R1
+ (I1
*
<i> )) by
Def3;
consider R,I be
Real such that
A9: R
= (
Integral (M,(
Re f))) and
A10: I
= (
Integral (M,(
Im f))) and
A11: (
Integral (M,f))
= (R
+ (I
*
<i> )) by
A2,
Def3;
R1
= ((
- 1)
* I qua
ExtReal) by
A3,
A1,
A10,
A6,
MESFUNC6: 102
.= ((
- 1)
* I);
hence thesis by
A4,
A9,
A11,
A7,
A8;
end;
theorem ::
MESFUN6C:40
Th40: f
is_integrable_on M implies (c
(#) f)
is_integrable_on M & (
Integral (M,(c
(#) f)))
= (c
* (
Integral (M,f)))
proof
A1: c
= ((
Re c)
+ ((
Im c)
*
<i> )) by
COMPLEX1: 13;
A2: (
dom (
<i>
(#) f))
= (
dom f) by
VALUED_1:def 5;
assume
A3: f
is_integrable_on M;
then
A4: (
Integral (M,((
Re c)
(#) f)))
= ((
Re c)
* (
Integral (M,f))) by
Th38;
A5: (
<i>
(#) f)
is_integrable_on M by
A3,
Th39;
then
A6: ((
Im c)
(#) (
<i>
(#) f))
is_integrable_on M by
Th38;
A7: ((
Re c)
(#) f)
is_integrable_on M by
A3,
Th38;
then
consider E be
Element of S such that
A8: E
= ((
dom ((
Re c)
(#) f))
/\ (
dom ((
Im c)
(#) (
<i>
(#) f)))) and
A9: (
Integral (M,(((
Re c)
(#) f)
+ ((
Im c)
(#) (
<i>
(#) f)))))
= ((
Integral (M,(((
Re c)
(#) f)
| E)))
+ (
Integral (M,(((
Im c)
(#) (
<i>
(#) f))
| E)))) by
A6,
Th36;
A10: (
dom (c
(#) f))
= (
dom f) by
VALUED_1:def 5;
A11: (
Integral (M,((
Im c)
(#) (
<i>
(#) f))))
= ((
Im c)
* (
Integral (M,(
<i>
(#) f)))) by
A5,
Th38;
A12: (
dom ((
Re c)
(#) f))
= (
dom f) by
VALUED_1:def 5;
A13: (
dom ((
Im c)
(#) (
<i>
(#) f)))
= (
dom (
<i>
(#) f)) by
VALUED_1:def 5;
A14: (
dom (((
Re c)
(#) f)
+ ((
Im c)
(#) (
<i>
(#) f))))
= ((
dom ((
Re c)
(#) f))
/\ (
dom ((
Im c)
(#) (
<i>
(#) f)))) by
VALUED_1:def 1;
now
let x be
Element of X;
assume
A15: x
in (
dom (c
(#) f));
then
A16: ((c
(#) f)
. x)
= (c
* (f
. x)) by
VALUED_1:def 5;
A17: (((
Im c)
(#) (
<i>
(#) f))
. x)
= ((
Im c)
* ((
<i>
(#) f)
. x)) by
A10,
A2,
A13,
A15,
VALUED_1:def 5;
A18: (((
Re c)
(#) f)
. x)
= ((
Re c)
* (f
. x)) by
A10,
A12,
A15,
VALUED_1:def 5;
A19: ((
<i>
(#) f)
. x)
= (
<i>
* (f
. x)) by
A10,
A2,
A15,
VALUED_1:def 5;
((((
Re c)
(#) f)
+ ((
Im c)
(#) (
<i>
(#) f)))
. x)
= ((((
Re c)
(#) f)
. x)
+ (((
Im c)
(#) (
<i>
(#) f))
. x)) by
A10,
A12,
A2,
A13,
A14,
A15,
VALUED_1:def 1;
hence ((c
(#) f)
. x)
= ((((
Re c)
(#) f)
+ ((
Im c)
(#) (
<i>
(#) f)))
. x) by
A1,
A16,
A18,
A17,
A19;
end;
then
A20: (c
(#) f)
= (((
Re c)
(#) f)
+ ((
Im c)
(#) (
<i>
(#) f))) by
A10,
A12,
A2,
A13,
A14,
PARTFUN1: 5;
hence (c
(#) f)
is_integrable_on M by
A7,
A6,
Th33;
A21: (
Integral (M,(
<i>
(#) f)))
= (
<i>
* (
Integral (M,f))) by
A3,
Th39;
thus (
Integral (M,(c
(#) f)))
= (((
Re c)
* (
Integral (M,f)))
+ (((
Im c)
*
<i> )
* (
Integral (M,f)))) by
A12,
A2,
A13,
A20,
A4,
A21,
A11,
A8,
A9
.= (c
* (
Integral (M,f))) by
A1;
end;
Lm2: (ex A be
Element of S st A
= (
dom f) & f is A
-measurable) & f
is_integrable_on M & (
Integral (M,f))
=
0 implies
|.(
Integral (M,f)).|
<= (
Integral (M,
|.f.|))
proof
assume that
A1: ex A be
Element of S st A
= (
dom f) & f is A
-measurable and
A2: f
is_integrable_on M and
A3: (
Integral (M,f))
=
0 ;
A4:
|.f.|
is_integrable_on M by
A1,
A2,
Th31;
consider R,I be
Real such that
A5: R
= (
Integral (M,(
Re f))) and I
= (
Integral (M,(
Im f))) and
A6: (
Integral (M,f))
= (R
+ (I
*
<i> )) by
A2,
Def3;
R
=
0 by
A3,
A6,
COMPLEX1: 4,
COMPLEX1: 12;
then
A7:
|.(
Integral (M,(
Re f))).|
=
0 by
A5,
EXTREAL1: 16;
(
Re f)
is_integrable_on M by
A2;
then
A8:
|.(
Integral (M,(
Re f))).|
<= (
Integral (M,
|.(
Re f).|)) by
MESFUNC6: 95;
A9: (
dom
|.f.|)
= (
dom f) by
VALUED_1:def 11;
consider A be
Element of S such that
A10: A
= (
dom f) and
A11: f is A
-measurable by
A1;
A12: (
dom (
Re f))
= A by
A10,
COMSEQ_3:def 3;
A13:
now
let x be
Element of X;
assume
A14: x
in (
dom (
Re f));
then
A15: ((
Re f)
. x)
= (
Re (f
. x)) by
COMSEQ_3:def 3;
(
|.f.|
. x)
=
|.(f
. x).| by
A10,
A12,
A9,
A14,
VALUED_1:def 11;
hence
|.((
Re f)
. x) qua
Complex.|
<= (
|.f.|
. x) by
A15,
COMPLEX1: 79;
end;
(
Re f) is A
-measurable by
A11;
hence thesis by
A3,
A4,
A8,
A10,
A12,
A9,
A13,
A7,
COMPLEX1: 44,
MESFUNC6: 96;
end;
theorem ::
MESFUN6C:41
Th41: for f be
PartFunc of X,
REAL , Y, r holds ((r
(#) f)
| Y)
= (r
(#) (f
| Y))
proof
let f be
PartFunc of X,
REAL , Y, r;
A1: (
dom ((r
(#) f)
| Y))
= ((
dom (r
(#) f))
/\ Y) by
RELAT_1: 61
.= ((
dom f)
/\ Y) by
VALUED_1:def 5
.= (
dom (f
| Y)) by
RELAT_1: 61;
A2: (
dom ((r
(#) f)
| Y))
c= (
dom (r
(#) f)) by
RELAT_1: 60;
A3:
now
let x be
Element of X;
assume
A4: x
in (
dom ((r
(#) f)
| Y));
then x
in (
dom (r
(#) (f
| Y))) by
A1,
VALUED_1:def 5;
then ((r
(#) (f
| Y))
. x)
= (r
* ((f
| Y)
. x)) by
VALUED_1:def 5;
then ((r
(#) (f
| Y))
. x)
= (r
* (f
. x)) by
A1,
A4,
FUNCT_1: 47;
then ((r
(#) (f
| Y))
. x)
= ((r
(#) f)
. x) by
A2,
A4,
VALUED_1:def 5;
hence ((r
(#) (f
| Y))
. x)
= (((r
(#) f)
| Y)
. x) by
A4,
FUNCT_1: 47;
end;
(
dom ((r
(#) f)
| Y))
= (
dom (r
(#) (f
| Y))) by
A1,
VALUED_1:def 5;
hence thesis by
A3,
PARTFUN1: 5;
end;
theorem ::
MESFUN6C:42
Th42: for f,g be
PartFunc of X,
REAL st (ex A be
Element of S st A
= ((
dom f)
/\ (
dom g)) & f is A
-measurable & g is A
-measurable) & f
is_integrable_on M & g
is_integrable_on M & (g
- f) is
nonnegative holds ex E be
Element of S st E
= ((
dom f)
/\ (
dom g)) & (
Integral (M,(f
| E)))
<= (
Integral (M,(g
| E)))
proof
let f,g be
PartFunc of X,
REAL ;
assume that
A1: ex A be
Element of S st A
= ((
dom f)
/\ (
dom g)) & f is A
-measurable & g is A
-measurable and
A2: f
is_integrable_on M and
A3: g
is_integrable_on M and
A4: (g
- f) is
nonnegative;
set h = ((
- 1)
(#) f);
h
is_integrable_on M by
A2,
MESFUNC6: 102;
then
consider E be
Element of S such that
A5: E
= ((
dom h)
/\ (
dom g)) and
A6: (
Integral (M,(h
+ g)))
= ((
Integral (M,(h
| E)))
+ (
Integral (M,(g
| E)))) by
A3,
MESFUNC6: 101;
A7: (f
| E)
is_integrable_on M by
A2,
MESFUNC6: 91;
then
A8: (
Integral (M,(f
| E)))
<
+infty by
MESFUNC6: 90;
-infty
< (
Integral (M,(f
| E))) by
A7,
MESFUNC6: 90;
then
reconsider c1 = (
Integral (M,(f
| E))) as
Element of
REAL by
A8,
XXREAL_0: 14;
A9: ((
- 1)
* (
Integral (M,(f
| E))))
= ((
- 1)
* c1) by
EXTREAL1: 1;
A10: (g
| E)
is_integrable_on M by
A3,
MESFUNC6: 91;
then
A11: (
Integral (M,(g
| E)))
<
+infty by
MESFUNC6: 90;
-infty
< (
Integral (M,(g
| E))) by
A10,
MESFUNC6: 90;
then
reconsider c2 = (
Integral (M,(g
| E))) as
Element of
REAL by
A11,
XXREAL_0: 14;
take E;
A12: (h
| E)
= ((
- 1)
(#) (f
| E)) by
Th41;
consider A be
Element of S such that
A13: A
= ((
dom f)
/\ (
dom g)) and
A14: f is A
-measurable and
A15: g is A
-measurable by
A1;
(
dom h)
= (
dom f) by
VALUED_1:def 5;
then
A16: (
dom (h
+ g))
= A by
A13,
VALUED_1:def 1;
h is A
-measurable by
A13,
A14,
MESFUNC6: 21,
XBOOLE_1: 17;
then
0
<= ((
Integral (M,(h
| E)))
+ (
Integral (M,(g
| E)))) by
A4,
A6,
A15,
A16,
MESFUNC6: 26,
MESFUNC6: 84;
then
0
<= (((
- 1)
* (
Integral (M,(f
| E))))
+ (
Integral (M,(g
| E)))) by
A7,
A12,
MESFUNC6: 102;
then
0
<= ((
- c1)
+ c2) by
A9,
SUPINF_2: 1;
then (
0 qua
Real
+ c1)
<= (((
- c1)
+ c2)
+ c1) by
XREAL_1: 6;
hence thesis by
A5,
VALUED_1:def 5;
end;
Lm3: (ex A be
Element of S st A
= (
dom f) & f is A
-measurable) & f
is_integrable_on M & (
Integral (M,f))
<>
0 implies
|.(
Integral (M,f)).|
<= (
Integral (M,
|.f.|))
proof
assume that
A1: ex A be
Element of S st A
= (
dom f) & f is A
-measurable and
A2: f
is_integrable_on M and
A3: (
Integral (M,f))
<>
0 ;
A4:
|.f.|
is_integrable_on M by
A1,
A2,
Th31;
set a = (
Integral (M,f));
0
<
|.a.| by
A3,
COMPLEX1: 47;
then
A5: (
|.a.|
/
|.a.|)
= 1 by
XCMPLX_1: 60;
set h = (f
(#) (
|.f.|
" ));
set b = (a
/
|.a.|);
A6: (
dom
|.f.|)
= (
dom f) by
VALUED_1:def 11;
(
|.b.|
*
|.(b
*' ).|)
=
|.(b
* (b
*' )).| by
COMPLEX1: 65;
then (
|.b.|
*
|.(b
*' ).|)
=
|.(b
* b).| by
COMPLEX1: 69;
then
A7: (
|.b.|
*
|.(b
*' ).|)
= (
|.(a
/
|.a.|).|
*
|.(a
/
|.a.|).|) by
COMPLEX1: 65;
A8: h
= (f
/"
|.f.|);
then
A9: (
dom h)
= ((
dom f)
/\ (
dom
|.f.|)) by
VALUED_1: 16;
then
A10: (
dom ((b
*' )
(#) h))
= (
dom f) by
A6,
VALUED_1:def 5;
then
A11: (
dom (
|.f.|
(#) ((b
*' )
(#) h)))
= ((
dom f)
/\ (
dom f)) by
A6,
VALUED_1:def 4;
then
A12: (
dom (
Re (
|.f.|
(#) ((b
*' )
(#) h))))
= (
dom f) by
COMSEQ_3:def 3;
A13: (
dom (
|.f.|
(#) h))
= ((
dom
|.f.|)
/\ (
dom h)) by
VALUED_1:def 4;
then
A14: (
dom ((b
*' )
(#) (
|.f.|
(#) h)))
= (
dom f) by
A6,
A9,
VALUED_1:def 5;
now
let x be
object;
assume
A15: x
in (
dom ((b
*' )
(#) (
|.f.|
(#) h)));
then x
in (
dom (
|.f.|
(#) ((b
*' )
(#) h))) by
A6,
A9,
A13,
A11,
VALUED_1:def 5;
then ((
|.f.|
(#) ((b
*' )
(#) h))
. x)
= ((
|.f.|
. x)
* (((b
*' )
(#) h)
. x)) by
VALUED_1:def 4;
then ((
|.f.|
(#) ((b
*' )
(#) h))
. x)
= (
|.(f
. x).|
* (((b
*' )
(#) h)
. x)) by
A6,
A14,
A15,
VALUED_1:def 11;
then
A16: ((
|.f.|
(#) ((b
*' )
(#) h))
. x)
= (((b
*' )
* (h
. x))
*
|.(f
. x).|) by
A14,
A10,
A15,
VALUED_1:def 5;
(((b
*' )
(#) (
|.f.|
(#) h))
. x)
= ((b
*' )
* ((
|.f.|
(#) h)
. x)) by
A15,
VALUED_1:def 5;
then (((b
*' )
(#) (
|.f.|
(#) h))
. x)
= ((b
*' )
* ((
|.f.|
. x)
* (h
. x))) by
A6,
A9,
A13,
A14,
A15,
VALUED_1:def 4;
then (((b
*' )
(#) (
|.f.|
(#) h))
. x)
= ((b
*' )
* (
|.(f
. x).|
* (h
. x))) by
A6,
A14,
A15,
VALUED_1:def 11;
hence (((b
*' )
(#) (
|.f.|
(#) h))
. x)
= ((
|.f.|
(#) ((b
*' )
(#) h))
. x) by
A16;
end;
then
A17: ((b
*' )
(#) (
|.f.|
(#) h))
= (
|.f.|
(#) ((b
*' )
(#) h)) by
A14,
A11,
FUNCT_1: 2;
A18:
|.(a
/
|.a qua
Complex.|) qua
Complex.|
= (
|.a.|
/
|.
|.a qua
Complex.| qua
Complex.|) by
COMPLEX1: 67;
now
let x be
set;
A19: (h
. x)
= ((f
. x)
/ (
|.f.|
. x)) by
A8,
VALUED_1: 17;
assume
A20: x
in ((
dom (
Re (
|.f.|
(#) ((b
*' )
(#) h))))
/\ (
dom
|.f.|));
then (
|.f.|
. x)
=
|.(f
. x).| by
A6,
A12,
VALUED_1:def 11;
then
A21:
|.(h
. x).|
= (
|.(f
. x).|
/
|.
|.(f
. x).| qua
Complex.|) by
A19,
COMPLEX1: 67;
per cases ;
suppose
A22: (f
. x)
<>
0 ;
A23: (
Re ((
|.f.|
(#) ((b
*' )
(#) h))
. x))
= ((
Re (
|.f.|
(#) ((b
*' )
(#) h)))
. x) by
A6,
A12,
A20,
COMSEQ_3:def 3;
((
|.f.|
(#) ((b
*' )
(#) h))
. x)
= ((
|.f.|
. x)
* (((b
*' )
(#) h)
. x)) by
A6,
A11,
A12,
A20,
VALUED_1:def 4;
then ((
|.f.|
(#) ((b
*' )
(#) h))
. x)
= (
|.(f
. x).|
* (((b
*' )
(#) h)
. x)) by
A6,
A12,
A20,
VALUED_1:def 11;
then
A24:
|.((
|.f.|
(#) ((b
*' )
(#) h))
. x) qua
Complex.|
= (
|.
|.(f
. x).| qua
Complex.|
*
|.(((b
*' )
(#) h)
. x) qua
Complex.|) by
COMPLEX1: 65;
x
in (
dom ((b
*' )
(#) h)) by
A9,
A12,
A20,
VALUED_1:def 5;
then (((b
*' )
(#) h)
. x)
= ((b
*' )
* (h
. x)) by
VALUED_1:def 5;
then
A25:
|.(((b
*' )
(#) h)
. x).|
= (
|.(b
*' ).|
*
|.(h
. x).|) by
COMPLEX1: 65;
0
<
|.(f
. x).| by
A22,
COMPLEX1: 47;
then (
|.(f
. x).|
/
|.(f
. x).|)
= 1 by
XCMPLX_1: 60;
then (
Re ((
|.f.|
(#) ((b
*' )
(#) h))
. x))
<=
|.(f
. x).| by
A7,
A18,
A5,
A21,
A25,
A24,
COMPLEX1: 54;
hence ((
Re (
|.f.|
(#) ((b
*' )
(#) h)))
. x)
<= (
|.f.|
. x) by
A6,
A12,
A20,
A23,
VALUED_1:def 11;
end;
suppose
A26: (f
. x)
=
0 ;
((
|.f.|
(#) ((b
*' )
(#) h))
. x)
= ((
|.f.|
. x)
* (((b
*' )
(#) h)
. x)) by
A6,
A11,
A12,
A20,
VALUED_1:def 4;
then ((
|.f.|
(#) ((b
*' )
(#) h))
. x)
= (
|.(f
. x).|
* (((b
*' )
(#) h)
. x)) by
A6,
A12,
A20,
VALUED_1:def 11;
then
A27:
|.((
|.f.|
(#) ((b
*' )
(#) h))
. x) qua
Complex.|
= (
|.
|.(f
. x) qua
Complex.| qua
Complex.|
*
|.(((b
*' )
(#) h)
. x) qua
Complex.|) by
COMPLEX1: 65;
(((
Re (f
. x))
^2 )
+ ((
Im (f
. x))
^2 ))
=
0 by
A26,
COMPLEX1: 5;
then
A28: (
Re ((
|.f.|
(#) ((b
*' )
(#) h))
. x))
<=
|.(f
. x) qua
Complex.| by
A27,
COMPLEX1: 54,
SQUARE_1: 17;
(
Re ((
|.f.|
(#) ((b
*' )
(#) h))
. x))
= ((
Re (
|.f.|
(#) ((b
*' )
(#) h)))
. x) by
A6,
A12,
A20,
COMSEQ_3:def 3;
hence ((
Re (
|.f.|
(#) ((b
*' )
(#) h)))
. x)
<= (
|.f.|
. x) by
A6,
A12,
A20,
A28,
VALUED_1:def 11;
end;
end;
then
A29: (
|.f.|
- (
Re (
|.f.|
(#) ((b
*' )
(#) h)))) is
nonnegative by
MESFUNC6: 58;
set F = (
Re (
|.f.|
(#) ((b
*' )
(#) h)));
reconsider b1 = b as
Element of
COMPLEX by
XCMPLX_0:def 2;
A30: (
Re (b1
* (b1
*' )))
= (((
Re b1)
^2 )
+ ((
Im b1)
^2 )) by
COMPLEX1: 40;
consider A be
Element of S such that
A31: A
= (
dom f) and
A32: f is A
-measurable by
A1;
A33:
|.f.| is A
-measurable by
A31,
A32,
Th30;
A34:
now
let x be
object;
A35: (h
. x)
= ((f
. x)
/ (
|.f.|
. x)) by
A8,
VALUED_1: 17;
assume
A36: x
in (
dom f);
then
A37: (
|.f.|
. x)
=
|.(f
. x).| by
A6,
VALUED_1:def 11;
A38: ((
|.f.|
(#) h)
. x)
= ((
|.f.|
. x)
* (h
. x)) by
A6,
A9,
A13,
A36,
VALUED_1:def 4;
per cases ;
suppose (f
. x)
<>
0 ;
then
0
<
|.(f
. x).| by
COMPLEX1: 47;
hence (f
. x)
= ((
|.f.|
(#) h)
. x) by
A38,
A37,
A35,
XCMPLX_1: 87;
end;
suppose
A39: (f
. x)
=
0 ;
then (((
Re (f
. x))
^2 )
+ ((
Im (f
. x))
^2 ))
=
0 by
COMPLEX1: 5;
then (f
. x)
= ((h
. x)
*
|.(f
. x).|) by
A39,
SQUARE_1: 17;
hence (f
. x)
= ((
|.f.|
(#) h)
. x) by
A6,
A36,
A38,
VALUED_1:def 11;
end;
end;
then
A40: f
= (
|.f.|
(#) h) by
A6,
A9,
A13,
FUNCT_1: 2;
then
A41: ((b
*' )
(#) (
|.f.|
(#) h))
is_integrable_on M by
A2,
Th40;
then
consider R1,I1 be
Real such that
A42: R1
= (
Integral (M,(
Re (
|.f.|
(#) ((b
*' )
(#) h))))) and I1
= (
Integral (M,(
Im (
|.f.|
(#) ((b
*' )
(#) h))))) and
A43: (
Integral (M,(
|.f.|
(#) ((b
*' )
(#) h))))
= (R1
+ (I1
*
<i> )) by
A17,
Def3;
A44: (
Im (b1
* (b1
*' )))
=
0 by
COMPLEX1: 40;
reconsider aa =
|.a.| as
Element of
REAL by
XREAL_0:def 1;
(b
* (b
*' ))
= ((
Re (b
* (b
*' )))
+ ((
Im (b
* (b
*' )))
*
<i> )) by
COMPLEX1: 13;
then (b
* (b
*' ))
=
|.(b
* b) qua
Complex.| by
A30,
A44,
COMPLEX1: 68;
then (((b
*' )
* a)
/
|.a qua
Complex.|)
= 1 by
A7,
A18,
A5,
COMPLEX1: 65;
then
A45: ((b
*' )
* a)
=
|.a.| by
XCMPLX_1: 58;
(
Re (R1
+ (I1
*
<i> )))
= R1 by
COMPLEX1: 12;
then (
Re
|.aa qua
Complex.|)
= R1 by
A2,
A45,
A40,
A17,
A43,
Th40;
then
A46:
|.aa qua
Complex.|
= (
Integral (M,(
Re (
|.f.|
(#) ((b
*' )
(#) h))))) by
A42,
COMPLEX1:def 1;
(
|.f.|
(#) h) is A
-measurable by
A32,
A6,
A9,
A13,
A34,
FUNCT_1: 2;
then ((b
*' )
(#) (
|.f.|
(#) h)) is A
-measurable by
A31,
A6,
A9,
A13,
Th17;
then
A47: (
Re (
|.f.|
(#) ((b
*' )
(#) h))) is A
-measurable by
A17;
(
Re (
|.f.|
(#) ((b
*' )
(#) h)))
is_integrable_on M by
A17,
A41;
then
consider E be
Element of S such that
A48: E
= ((
dom F)
/\ (
dom
|.f.|)) and
A49: (
Integral (M,(F
| E)))
<= (
Integral (M,(
|.f.|
| E))) by
A4,
A31,
A6,
A33,
A47,
A12,
A29,
Th42;
thus thesis by
A6,
A46,
A12,
A48,
A49;
end;
theorem ::
MESFUN6C:43
(ex A be
Element of S st A
= (
dom f) & f is A
-measurable) & f
is_integrable_on M implies
|.(
Integral (M,f)).|
<= (
Integral (M,
|.f.|))
proof
assume that
A1: ex A be
Element of S st A
= (
dom f) & f is A
-measurable and
A2: f
is_integrable_on M;
per cases ;
suppose (
Integral (M,f))
=
0 ;
hence thesis by
A1,
A2,
Lm2;
end;
suppose (
Integral (M,f))
<>
0 ;
hence thesis by
A1,
A2,
Lm3;
end;
end;
definition
let X be non
empty
set;
let S be
SigmaField of X;
let M be
sigma_Measure of S;
let f be
PartFunc of X,
COMPLEX ;
let B be
Element of S;
::
MESFUN6C:def5
func
Integral_on (M,B,f) ->
Complex equals (
Integral (M,(f
| B)));
coherence ;
end
theorem ::
MESFUN6C:44
f
is_integrable_on M & g
is_integrable_on M & B
c= (
dom (f
+ g)) implies (f
+ g)
is_integrable_on M & (
Integral_on (M,B,(f
+ g)))
= ((
Integral_on (M,B,f))
+ (
Integral_on (M,B,g)))
proof
assume that
A1: f
is_integrable_on M and
A2: g
is_integrable_on M and
A3: B
c= (
dom (f
+ g));
A4: (
Re f)
is_integrable_on M by
A1;
then ((
Re f)
| B)
is_integrable_on M by
MESFUNC6: 91;
then
A5: (
Re (f
| B))
is_integrable_on M by
Th7;
then
A6: (
Integral (M,(
Re (f
| B))))
<
+infty by
MESFUNC6: 90;
A7: (
Im f)
is_integrable_on M by
A1;
then ((
Im f)
| B)
is_integrable_on M by
MESFUNC6: 91;
then
A8: (
Im (f
| B))
is_integrable_on M by
Th7;
then
A9:
-infty
< (
Integral (M,(
Im (f
| B)))) by
MESFUNC6: 90;
A10: (
Integral (M,(
Im (f
| B))))
<
+infty by
A8,
MESFUNC6: 90;
-infty
< (
Integral (M,(
Re (f
| B)))) by
A5,
MESFUNC6: 90;
then
reconsider R1 = (
Integral (M,(
Re (f
| B)))), I1 = (
Integral (M,(
Im (f
| B)))) as
Element of
REAL by
A6,
A9,
A10,
XXREAL_0: 14;
(f
| B)
is_integrable_on M by
A5,
A8;
then
A11: (
Integral (M,(f
| B)))
= (R1
+ (I1
*
<i> )) by
Def3;
A12: (
Im g)
is_integrable_on M by
A2;
then ((
Im g)
| B)
is_integrable_on M by
MESFUNC6: 91;
then
A13: (
Im (g
| B))
is_integrable_on M by
Th7;
then
A14:
-infty
< (
Integral (M,(
Im (g
| B)))) by
MESFUNC6: 90;
A15: (
Re g)
is_integrable_on M by
A2;
then ((
Re g)
| B)
is_integrable_on M by
MESFUNC6: 91;
then
A16: (
Re (g
| B))
is_integrable_on M by
Th7;
then
A17: (
Integral (M,(
Re (g
| B))))
<
+infty by
MESFUNC6: 90;
B
c= (
dom (
Im (f
+ g))) by
A3,
COMSEQ_3:def 4;
then
A18: B
c= (
dom ((
Im f)
+ (
Im g))) by
Th5;
then (
Integral_on (M,B,((
Im f)
+ (
Im g))))
= ((
Integral_on (M,B,(
Im f)))
+ (
Integral_on (M,B,(
Im g)))) by
A7,
A12,
MESFUNC6: 103;
then
A19: (
Integral (M,((
Im (f
+ g))
| B)))
= ((
Integral (M,((
Im f)
| B)))
+ (
Integral (M,((
Im g)
| B)))) by
Th5;
A20: (
Integral (M,(
Im (g
| B))))
<
+infty by
A13,
MESFUNC6: 90;
-infty
< (
Integral (M,(
Re (g
| B)))) by
A16,
MESFUNC6: 90;
then
reconsider R2 = (
Integral (M,(
Re (g
| B)))), I2 = (
Integral (M,(
Im (g
| B)))) as
Element of
REAL by
A17,
A14,
A20,
XXREAL_0: 14;
(g
| B)
is_integrable_on M by
A16,
A13;
then
A21: (
Integral (M,(g
| B)))
= (R2
+ (I2
*
<i> )) by
Def3;
A22: (
Integral (M,((
Im g)
| B)))
= I2 by
Th7;
((
Im f)
+ (
Im g))
is_integrable_on M by
A7,
A12,
A18,
MESFUNC6: 103;
then
A23: (
Im (f
+ g))
is_integrable_on M by
Th5;
then ((
Im (f
+ g))
| B)
is_integrable_on M by
MESFUNC6: 91;
then
A24: (
Im ((f
+ g)
| B))
is_integrable_on M by
Th7;
then
A25:
-infty
< (
Integral (M,(
Im ((f
+ g)
| B)))) by
MESFUNC6: 90;
B
c= (
dom (
Re (f
+ g))) by
A3,
COMSEQ_3:def 3;
then
A26: B
c= (
dom ((
Re f)
+ (
Re g))) by
Th5;
then (
Integral_on (M,B,((
Re f)
+ (
Re g))))
= ((
Integral_on (M,B,(
Re f)))
+ (
Integral_on (M,B,(
Re g)))) by
A4,
A15,
MESFUNC6: 103;
then
A27: (
Integral (M,((
Re (f
+ g))
| B)))
= ((
Integral (M,((
Re f)
| B)))
+ (
Integral (M,((
Re g)
| B)))) by
Th5;
((
Re f)
+ (
Re g))
is_integrable_on M by
A4,
A15,
A26,
MESFUNC6: 103;
then
A28: (
Re (f
+ g))
is_integrable_on M by
Th5;
then ((
Re (f
+ g))
| B)
is_integrable_on M by
MESFUNC6: 91;
then
A29: (
Re ((f
+ g)
| B))
is_integrable_on M by
Th7;
then
A30: (
Integral (M,(
Re ((f
+ g)
| B))))
<
+infty by
MESFUNC6: 90;
A31: (
Integral (M,(
Im ((f
+ g)
| B))))
<
+infty by
A24,
MESFUNC6: 90;
-infty
< (
Integral (M,(
Re ((f
+ g)
| B)))) by
A29,
MESFUNC6: 90;
then
reconsider R = (
Integral (M,(
Re ((f
+ g)
| B)))), I = (
Integral (M,(
Im ((f
+ g)
| B)))) as
Element of
REAL by
A30,
A25,
A31,
XXREAL_0: 14;
A32: (
Integral (M,((
Re g)
| B)))
= R2 by
Th7;
(
Integral (M,((
Im f)
| B)))
= I1 by
Th7;
then I
= (I1
+ I2 qua
ExtReal) by
A19,
A22,
Th7;
then
A33: I
= (I1
+ I2);
(
Integral (M,((
Re f)
| B)))
= R1 by
Th7;
then R
= (R1
+ R2 qua
ExtReal) by
A27,
A32,
Th7;
then
A34: R
= (R1
+ R2);
((f
+ g)
| B)
is_integrable_on M by
A29,
A24;
then (
Integral_on (M,B,(f
+ g)))
= (R
+ (I
*
<i> )) by
Def3
.= ((
Integral_on (M,B,f))
+ (
Integral_on (M,B,g))) by
A34,
A33,
A11,
A21;
hence thesis by
A28,
A23;
end;
theorem ::
MESFUN6C:45
f
is_integrable_on M implies (
Integral_on (M,B,(c
(#) f)))
= (c
* (
Integral_on (M,B,f)))
proof
assume f
is_integrable_on M;
then
A1: (f
| B)
is_integrable_on M by
Th23;
A2: (
dom ((c
(#) f)
| B))
= ((
dom (c
(#) f))
/\ B) by
RELAT_1: 61;
then (
dom ((c
(#) f)
| B))
= ((
dom f)
/\ B) by
VALUED_1:def 5;
then
A3: (
dom ((c
(#) f)
| B))
= (
dom (f
| B)) by
RELAT_1: 61;
A4:
now
let x be
object;
assume
A5: x
in (
dom ((c
(#) f)
| B));
then
A6: (((c
(#) f)
| B)
. x)
= ((c
(#) f)
. x) by
FUNCT_1: 47;
x
in (
dom (c
(#) f)) by
A2,
A5,
XBOOLE_0:def 4;
then (((c
(#) f)
| B)
. x)
= (c
* (f
. x)) by
A6,
VALUED_1:def 5;
then
A7: (((c
(#) f)
| B)
. x)
= (c
* ((f
| B)
. x)) by
A3,
A5,
FUNCT_1: 47;
x
in (
dom (c
(#) (f
| B))) by
A3,
A5,
VALUED_1:def 5;
hence (((c
(#) f)
| B)
. x)
= ((c
(#) (f
| B))
. x) by
A7,
VALUED_1:def 5;
end;
(
dom ((c
(#) f)
| B))
= (
dom (c
(#) (f
| B))) by
A3,
VALUED_1:def 5;
then ((c
(#) f)
| B)
= (c
(#) (f
| B)) by
A4,
FUNCT_1: 2;
hence thesis by
A1,
Th40;
end;
begin
reserve f for
PartFunc of X,
REAL ,
a for
Real;
theorem ::
MESFUN6C:46
for f be
PartFunc of X,
REAL , a be
Real st A
c= (
dom f) holds (A
/\ (
great_eq_dom (f,a)))
= (A
\ (A
/\ (
less_dom (f,a))))
proof
let f be
PartFunc of X,
REAL , a be
Real;
now
let x be
object;
assume
A1: x
in (A
/\ (
great_eq_dom (f,a)));
then x
in (
great_eq_dom (f,a)) by
XBOOLE_0:def 4;
then ex y be
Real st y
= (f
. x) & a
<= y by
MESFUNC6: 6;
then not (ex y1 be
Real st y1
= (f
. x) & y1
< a);
then not x
in (
less_dom (f,a)) by
MESFUNC6: 3;
then
A2: not x
in (A
/\ (
less_dom (f,a))) by
XBOOLE_0:def 4;
x
in A by
A1,
XBOOLE_0:def 4;
hence x
in (A
\ (A
/\ (
less_dom (f,a)))) by
A2,
XBOOLE_0:def 5;
end;
then
A3: (A
/\ (
great_eq_dom (f,a)))
c= (A
\ (A
/\ (
less_dom (f,a)))) by
TARSKI:def 3;
assume
A4: A
c= (
dom f);
now
let x be
object;
assume
A5: x
in (A
\ (A
/\ (
less_dom (f,a))));
then
A6: x
in A by
XBOOLE_0:def 5;
not x
in (A
/\ (
less_dom (f,a))) by
A5,
XBOOLE_0:def 5;
then not x
in (
less_dom (f,a)) by
A6,
XBOOLE_0:def 4;
then not (f
. x)
< a by
A4,
A6,
MESFUNC6: 3;
then x
in (
great_eq_dom (f,a)) by
A4,
A6,
MESFUNC6: 6;
hence x
in (A
/\ (
great_eq_dom (f,a))) by
A6,
XBOOLE_0:def 4;
end;
then (A
\ (A
/\ (
less_dom (f,a))))
c= (A
/\ (
great_eq_dom (f,a))) by
TARSKI:def 3;
hence thesis by
A3,
XBOOLE_0:def 10;
end;
theorem ::
MESFUN6C:47
for f be
PartFunc of X,
REAL , a be
Real st A
c= (
dom f) holds (A
/\ (
great_dom (f,a)))
= (A
\ (A
/\ (
less_eq_dom (f,a))))
proof
let f be
PartFunc of X,
REAL , a be
Real;
now
let x be
object;
assume
A1: x
in (A
/\ (
great_dom (f,a)));
then x
in (
great_dom (f,a)) by
XBOOLE_0:def 4;
then ex y be
Real st y
= (f
. x) & a
< y by
MESFUNC6: 5;
then not (ex y1 be
Real st y1
= (f
. x) & y1
<= a);
then not x
in (
less_eq_dom (f,a)) by
MESFUNC6: 4;
then
A2: not x
in (A
/\ (
less_eq_dom (f,a))) by
XBOOLE_0:def 4;
x
in A by
A1,
XBOOLE_0:def 4;
hence x
in (A
\ (A
/\ (
less_eq_dom (f,a)))) by
A2,
XBOOLE_0:def 5;
end;
then
A3: (A
/\ (
great_dom (f,a)))
c= (A
\ (A
/\ (
less_eq_dom (f,a)))) by
TARSKI:def 3;
assume
A4: A
c= (
dom f);
now
let x be
object;
assume
A5: x
in (A
\ (A
/\ (
less_eq_dom (f,a))));
then
A6: x
in A by
XBOOLE_0:def 5;
not x
in (A
/\ (
less_eq_dom (f,a))) by
A5,
XBOOLE_0:def 5;
then not x
in (
less_eq_dom (f,a)) by
A6,
XBOOLE_0:def 4;
then not (f
. x)
<= a by
A4,
A6,
MESFUNC6: 4;
then x
in (
great_dom (f,a)) by
A4,
A6,
MESFUNC6: 5;
hence x
in (A
/\ (
great_dom (f,a))) by
A6,
XBOOLE_0:def 4;
end;
then (A
\ (A
/\ (
less_eq_dom (f,a))))
c= (A
/\ (
great_dom (f,a))) by
TARSKI:def 3;
hence thesis by
A3,
XBOOLE_0:def 10;
end;
theorem ::
MESFUN6C:48
for f be
PartFunc of X,
REAL , a be
Real st A
c= (
dom f) holds (A
/\ (
less_eq_dom (f,a)))
= (A
\ (A
/\ (
great_dom (f,a))))
proof
let f be
PartFunc of X,
REAL , a be
Real;
now
let x be
object;
assume
A1: x
in (A
/\ (
less_eq_dom (f,a)));
then x
in (
less_eq_dom (f,a)) by
XBOOLE_0:def 4;
then ex y be
Real st y
= (f
. x) & y
<= a by
MESFUNC6: 4;
then not (ex y1 be
Real st y1
= (f
. x) & a
< y1);
then not x
in (
great_dom (f,a)) by
MESFUNC6: 5;
then
A2: not x
in (A
/\ (
great_dom (f,a))) by
XBOOLE_0:def 4;
x
in A by
A1,
XBOOLE_0:def 4;
hence x
in (A
\ (A
/\ (
great_dom (f,a)))) by
A2,
XBOOLE_0:def 5;
end;
then
A3: (A
/\ (
less_eq_dom (f,a)))
c= (A
\ (A
/\ (
great_dom (f,a)))) by
TARSKI:def 3;
assume
A4: A
c= (
dom f);
now
let x be
object;
assume
A5: x
in (A
\ (A
/\ (
great_dom (f,a))));
then
A6: x
in A by
XBOOLE_0:def 5;
not x
in (A
/\ (
great_dom (f,a))) by
A5,
XBOOLE_0:def 5;
then not x
in (
great_dom (f,a)) by
A6,
XBOOLE_0:def 4;
then not a
< (f
. x) by
A4,
A6,
MESFUNC6: 5;
then x
in (
less_eq_dom (f,a)) by
A4,
A6,
MESFUNC6: 4;
hence x
in (A
/\ (
less_eq_dom (f,a))) by
A6,
XBOOLE_0:def 4;
end;
then (A
\ (A
/\ (
great_dom (f,a))))
c= (A
/\ (
less_eq_dom (f,a))) by
TARSKI:def 3;
hence thesis by
A3,
XBOOLE_0:def 10;
end;
theorem ::
MESFUN6C:49
(A
/\ (
eq_dom (f,a)))
= ((A
/\ (
great_eq_dom (f,a)))
/\ (
less_eq_dom (f,a)))
proof
now
let x be
object;
assume
A1: x
in ((A
/\ (
great_eq_dom (f,a)))
/\ (
less_eq_dom (f,a)));
then
A2: x
in (
less_eq_dom (f,a)) by
XBOOLE_0:def 4;
then
A3: x
in (
dom f) by
MESFUNC6: 4;
A4: x
in (A
/\ (
great_eq_dom (f,a))) by
A1,
XBOOLE_0:def 4;
then x
in (
great_eq_dom (f,a)) by
XBOOLE_0:def 4;
then
A5: ex y1 be
Real st y1
= (f
. x) & a
<= y1 by
MESFUNC6: 6;
ex y2 be
Real st y2
= (f
. x) & y2
<= a by
A2,
MESFUNC6: 4;
then a
= (f
. x) by
A5,
XXREAL_0: 1;
then
A6: x
in (
eq_dom (f,a)) by
A3,
MESFUNC6: 7;
x
in A by
A4,
XBOOLE_0:def 4;
hence x
in (A
/\ (
eq_dom (f,a))) by
A6,
XBOOLE_0:def 4;
end;
then
A7: ((A
/\ (
great_eq_dom (f,a)))
/\ (
less_eq_dom (f,a)))
c= (A
/\ (
eq_dom (f,a))) by
TARSKI:def 3;
now
let x be
object;
assume
A8: x
in (A
/\ (
eq_dom (f,a)));
then
A9: x
in A by
XBOOLE_0:def 4;
A10: x
in (
eq_dom (f,a)) by
A8,
XBOOLE_0:def 4;
then
A11: ex y be
Real st y
= (f
. x) & a
= y by
MESFUNC6: 7;
A12: x
in (
dom f) by
A10,
MESFUNC6: 7;
then x
in (
great_eq_dom (f,a)) by
A11,
MESFUNC6: 6;
then
A13: x
in (A
/\ (
great_eq_dom (f,a))) by
A9,
XBOOLE_0:def 4;
x
in (
less_eq_dom (f,a)) by
A11,
A12,
MESFUNC6: 4;
hence x
in ((A
/\ (
great_eq_dom (f,a)))
/\ (
less_eq_dom (f,a))) by
A13,
XBOOLE_0:def 4;
end;
then (A
/\ (
eq_dom (f,a)))
c= ((A
/\ (
great_eq_dom (f,a)))
/\ (
less_eq_dom (f,a))) by
TARSKI:def 3;
hence thesis by
A7,
XBOOLE_0:def 10;
end;