ckspace1.miz
begin
definition
let m be non
zero
Element of
NAT ;
let f be
PartFunc of (
REAL m),
REAL ;
let k be
Nat;
let Z be
set;
::
CKSPACE1:def1
pred f
is_continuously_differentiable_up_to_order k,Z means Z
c= (
dom f) & f
is_partial_differentiable_up_to_order (k,Z) & for I be non
empty
FinSequence of
NAT st (
len I)
<= k & (
rng I)
c= (
Seg m) holds (f
`partial| (Z,I))
is_continuous_on Z;
end
theorem ::
CKSPACE1:1
Th1: for m be non
zero
Element of
NAT , Z be
set, I be non
empty
FinSequence of
NAT , f be
PartFunc of (
REAL m),
REAL st f
is_partial_differentiable_on (Z,I) holds (
dom (f
`partial| (Z,I)))
= Z
proof
let m be non
zero
Element of
NAT , Z be
set, I be non
empty
FinSequence of
NAT , f be
PartFunc of (
REAL m),
REAL ;
assume
A1: f
is_partial_differentiable_on (Z,I);
reconsider k = ((
len I)
- 1) as
Element of
NAT by
INT_1: 5,
FINSEQ_1: 20;
A2: (f
`partial| (Z,I))
= (((
PartDiffSeq (f,Z,I))
. k)
`partial| (Z,(I
/. (k
+ 1)))) by
PDIFF_9:def 7;
((
PartDiffSeq (f,Z,I))
. k)
is_partial_differentiable_on (Z,(I
/. (k
+ 1))) by
A1;
hence thesis by
A2,
PDIFF_9:def 6;
end;
theorem ::
CKSPACE1:2
Th2: for m be non
zero
Element of
NAT , k be
Element of
NAT , X be non
empty
Subset of (
REAL m), f be
PartFunc of (
REAL m),
REAL st X is
open & X
c= (
dom f) holds f
is_continuously_differentiable_up_to_order (1,X) iff (f
is_differentiable_on X & for x0 be
Element of (
REAL m), r be
Real st x0
in X &
0
< r holds ex s be
Real st
0
< s & for x1 be
Element of (
REAL m) st x1
in X &
|.(x1
- x0).|
< s holds for v be
Element of (
REAL m) holds
|.(((
diff (f,x1))
. v)
- ((
diff (f,x0))
. v)).|
<= (r
*
|.v.|))
proof
let m be non
zero
Element of
NAT , k be
Element of
NAT , X be non
empty
Subset of (
REAL m), f be
PartFunc of (
REAL m),
REAL ;
assume
A1: X is
open & X
c= (
dom f);
hereby
assume
A2: f
is_continuously_differentiable_up_to_order (1,X);
now
let i be
Nat;
assume
A3: 1
<= i & i
<= m;
reconsider ii = i as
Element of
NAT by
ORDINAL1:def 12;
set I =
<*ii*>;
A4: (
len I)
= 1 by
FINSEQ_1: 40;
i
in (
Seg m) by
A3;
then
{i}
c= (
Seg m) by
ZFMISC_1: 31;
then
A5: (
rng I)
c= (
Seg m) by
FINSEQ_1: 38;
then
A6: (f
`partial| (X,I))
is_continuous_on X by
A2,
A4;
thus f
is_partial_differentiable_on (X,i) by
A4,
A5,
A2,
PDIFF_9:def 11,
PDIFF_9: 81;
hence (f
`partial| (X,i))
is_continuous_on X by
A1,
A3,
PDIFF_9: 82,
A6;
end;
hence f
is_differentiable_on X & for x0 be
Element of (
REAL m), r be
Real st x0
in X &
0
< r holds ex s be
Real st
0
< s & for x1 be
Element of (
REAL m) st x1
in X &
|.(x1
- x0).|
< s holds for v be
Element of (
REAL m) holds
|.(((
diff (f,x1))
. v)
- ((
diff (f,x0))
. v)).|
<= (r
*
|.v.|) by
A1,
PDIFF_9: 63;
end;
assume
A7: f
is_differentiable_on X & for x0 be
Element of (
REAL m), r be
Real st x0
in X &
0
< r holds ex s be
Real st
0
< s & for x1 be
Element of (
REAL m) st x1
in X &
|.(x1
- x0).|
< s holds for v be
Element of (
REAL m) holds
|.(((
diff (f,x1))
. v)
- ((
diff (f,x0))
. v)).|
<= (r
*
|.v.|);
then
A8: for i be
Element of
NAT st 1
<= i & i
<= m holds f
is_partial_differentiable_on (X,i) & (f
`partial| (X,i))
is_continuous_on X by
A1,
PDIFF_9: 63;
A9:
now
let I be non
empty
FinSequence of
NAT ;
assume
A10: (
len I)
<= 1 & (
rng I)
c= (
Seg m);
A11: 1
<= (
len I) by
FINSEQ_1: 20;
then 1
in (
dom I) by
FINSEQ_3: 25;
then
A14: (I
. 1)
in (
rng I) by
FUNCT_1: 3;
reconsider i = (I
. 1) as
Element of
NAT by
ORDINAL1:def 12;
A15: 1
<= i & i
<= m by
A14,
A10,
FINSEQ_1: 1;
A16: I
=
<*(I
. 1)*> by
FINSEQ_5: 14,
A10,
A11,
XXREAL_0: 1;
then
A17: I
=
<*i*>;
thus f
is_partial_differentiable_on (X,I) by
A16,
PDIFF_9: 81,
A15,
A8;
(f
`partial| (X,i))
is_continuous_on X by
A15,
A1,
PDIFF_9: 63,
A7;
hence (f
`partial| (X,I))
is_continuous_on X by
A1,
A8,
A17,
A15,
PDIFF_9: 82;
end;
then for I be non
empty
FinSequence of
NAT st (
len I)
<= 1 & (
rng I)
c= (
Seg m) holds f
is_partial_differentiable_on (X,I);
hence f
is_continuously_differentiable_up_to_order (1,X) by
A1,
A9,
PDIFF_9:def 11;
end;
theorem ::
CKSPACE1:3
Th3: for m be non
zero
Element of
NAT , X be non
empty
Subset of (
REAL m), f be
PartFunc of (
REAL m),
REAL st X is
open & X
c= (
dom f) & f
is_continuously_differentiable_up_to_order (1,X) holds f
is_continuous_on X
proof
let m be non
zero
Element of
NAT , X be non
empty
Subset of (
REAL m), f be
PartFunc of (
REAL m),
REAL ;
assume
A1: X is
open & X
c= (
dom f) & f
is_continuously_differentiable_up_to_order (1,X);
then
A2: f
is_differentiable_on X by
Th2;
reconsider g = (
<>* f) as
PartFunc of (
REAL m), (
REAL 1);
A3: g
is_differentiable_on X by
A1,
A2,
PDIFF_9: 53;
the
carrier of (
REAL-NS m)
= (
REAL m) & the
carrier of (
REAL-NS 1)
= (
REAL 1) by
REAL_NS1:def 4;
then
reconsider h = (
<>* f) as
PartFunc of (
REAL-NS m), (
REAL-NS 1);
h
is_differentiable_on X by
A3,
PDIFF_6: 30;
then h
is_continuous_on X by
NDIFF_1: 45;
then g
is_continuous_on X by
PDIFF_7: 37;
hence f
is_continuous_on X by
PDIFF_9: 44;
end;
theorem ::
CKSPACE1:4
Th4: for m be non
zero
Element of
NAT , k be
Element of
NAT , X be non
empty
Subset of (
REAL m), f,g be
PartFunc of (
REAL m),
REAL st f
is_continuously_differentiable_up_to_order (k,X) & g
is_continuously_differentiable_up_to_order (k,X) & X is
open holds (f
+ g)
is_continuously_differentiable_up_to_order (k,X)
proof
let m be non
zero
Element of
NAT , k be
Element of
NAT , X be non
empty
Subset of (
REAL m), f,g be
PartFunc of (
REAL m),
REAL ;
assume
A1: f
is_continuously_differentiable_up_to_order (k,X) & g
is_continuously_differentiable_up_to_order (k,X) & X is
open;
A2: (
dom (f
+ g))
= ((
dom f)
/\ (
dom g)) by
VALUED_1:def 1;
for I be non
empty
FinSequence of
NAT st (
len I)
<= k & (
rng I)
c= (
Seg m) holds ((f
+ g)
`partial| (X,I))
is_continuous_on X
proof
let I be non
empty
FinSequence of
NAT ;
assume
A3: (
len I)
<= k & (
rng I)
c= (
Seg m);
A4: f
is_partial_differentiable_on (X,I) by
A3,
PDIFF_9:def 11,
A1;
A5: g
is_partial_differentiable_on (X,I) by
A3,
A1,
PDIFF_9:def 11;
reconsider f0 = (f
`partial| (X,I)) as
PartFunc of (
REAL m),
REAL ;
reconsider g0 = (g
`partial| (X,I)) as
PartFunc of (
REAL m),
REAL ;
A6: X
= (
dom f0) by
Th1,
A3,
PDIFF_9:def 11,
A1;
A7: X
= (
dom g0) by
Th1,
A3,
A1,
PDIFF_9:def 11;
A8: f0
is_continuous_on X by
A3,
A1;
A9: g0
is_continuous_on X by
A3,
A1;
(f0
+ g0)
is_continuous_on X by
A8,
A9,
A6,
A7,
PDIFF_9: 46;
hence ((f
+ g)
`partial| (X,I))
is_continuous_on X by
A1,
A3,
A4,
A5,
PDIFF_9: 75;
end;
hence thesis by
A2,
A1,
PDIFF_9: 85,
XBOOLE_1: 19;
end;
theorem ::
CKSPACE1:5
Th5: for m be non
zero
Element of
NAT , k be
Element of
NAT , X be non
empty
Subset of (
REAL m), r be
Real, f be
PartFunc of (
REAL m),
REAL st f
is_continuously_differentiable_up_to_order (k,X) & X is
open holds (r
(#) f)
is_continuously_differentiable_up_to_order (k,X)
proof
let m be non
zero
Element of
NAT , k be
Element of
NAT , X be non
empty
Subset of (
REAL m), r be
Real, f be
PartFunc of (
REAL m),
REAL ;
assume
A1: f
is_continuously_differentiable_up_to_order (k,X) & X is
open;
for I be non
empty
FinSequence of
NAT st (
len I)
<= k & (
rng I)
c= (
Seg m) holds ((r
(#) f)
`partial| (X,I))
is_continuous_on X
proof
let I be non
empty
FinSequence of
NAT ;
assume
A2: (
len I)
<= k & (
rng I)
c= (
Seg m);
A3: f
is_partial_differentiable_on (X,I) by
A2,
PDIFF_9:def 11,
A1;
reconsider f0 = (f
`partial| (X,I)) as
PartFunc of (
REAL m),
REAL ;
X
= (
dom f0) by
Th1,
A2,
PDIFF_9:def 11,
A1;
then (r
(#) f0)
is_continuous_on X by
A2,
A1,
PDIFF_9: 47;
hence ((r
(#) f)
`partial| (X,I))
is_continuous_on X by
A1,
A2,
A3,
PDIFF_9: 79;
end;
hence thesis by
PDIFF_9: 86,
A1,
VALUED_1:def 5;
end;
theorem ::
CKSPACE1:6
for m be non
zero
Element of
NAT , k be
Element of
NAT , X be non
empty
Subset of (
REAL m), f,g be
PartFunc of (
REAL m),
REAL st f
is_continuously_differentiable_up_to_order (k,X) & g
is_continuously_differentiable_up_to_order (k,X) & X is
open holds (f
- g)
is_continuously_differentiable_up_to_order (k,X)
proof
let m be non
zero
Element of
NAT , k be
Element of
NAT , X be non
empty
Subset of (
REAL m), f,g be
PartFunc of (
REAL m),
REAL ;
assume
A1: f
is_continuously_differentiable_up_to_order (k,X) & g
is_continuously_differentiable_up_to_order (k,X) & X is
open;
A2: (
dom (f
- g))
= ((
dom f)
/\ (
dom g)) by
VALUED_1: 12;
for I be non
empty
FinSequence of
NAT st (
len I)
<= k & (
rng I)
c= (
Seg m) holds ((f
- g)
`partial| (X,I))
is_continuous_on X
proof
let I be non
empty
FinSequence of
NAT ;
assume
A3: (
len I)
<= k & (
rng I)
c= (
Seg m);
A4: f
is_partial_differentiable_on (X,I) by
A3,
PDIFF_9:def 11,
A1;
A5: g
is_partial_differentiable_on (X,I) by
A3,
PDIFF_9:def 11,
A1;
reconsider f0 = (f
`partial| (X,I)) as
PartFunc of (
REAL m),
REAL ;
reconsider g0 = (g
`partial| (X,I)) as
PartFunc of (
REAL m),
REAL ;
A6: X
= (
dom f0) by
Th1,
A3,
PDIFF_9:def 11,
A1;
A7: X
= (
dom g0) by
Th1,
A3,
PDIFF_9:def 11,
A1;
A8: f0
is_continuous_on X by
A1,
A3;
A9: g0
is_continuous_on X by
A3,
A1;
(f0
- g0)
is_continuous_on X by
A8,
A9,
A6,
A7,
PDIFF_9: 46;
hence ((f
- g)
`partial| (X,I))
is_continuous_on X by
A1,
A3,
A4,
A5,
PDIFF_9: 77;
end;
hence thesis by
A2,
A1,
PDIFF_9: 85,
XBOOLE_1: 19;
end;
theorem ::
CKSPACE1:7
Th7: for m be non
zero
Element of
NAT , Z be non
empty
Subset of (
REAL m), f be
PartFunc of (
REAL m),
REAL , I,G be non
empty
FinSequence of
NAT st f
is_partial_differentiable_on (Z,G) holds (f
`partial| (Z,(G
^ I)))
= ((f
`partial| (Z,G))
`partial| (Z,I))
proof
let m be non
zero
Element of
NAT , Z be non
empty
Subset of (
REAL m), f be
PartFunc of (
REAL m),
REAL , I,G be non
empty
FinSequence of
NAT ;
set g = (f
`partial| (Z,G));
reconsider Z0 =
0 as
Element of
NAT ;
assume
A1: f
is_partial_differentiable_on (Z,G);
A2: (
dom G)
c= (
dom (G
^ I)) by
FINSEQ_1: 26;
A3: for i be
Nat st i
<= ((
len G)
- 1) holds ((G
^ I)
/. (i
+ 1))
= (G
/. (i
+ 1))
proof
let i be
Nat;
assume i
<= ((
len G)
- 1);
then 1
<= (i
+ 1) & (i
+ 1)
<= (
len G) by
NAT_1: 11,
XREAL_1: 19;
then
A4: (i
+ 1)
in (
dom G) by
FINSEQ_3: 25;
then ((G
^ I)
/. (i
+ 1))
= ((G
^ I)
. (i
+ 1)) by
A2,
PARTFUN1:def 6;
then ((G
^ I)
/. (i
+ 1))
= (G
. (i
+ 1)) by
A4,
FINSEQ_1:def 7;
hence ((G
^ I)
/. (i
+ 1))
= (G
/. (i
+ 1)) by
A4,
PARTFUN1:def 6;
end;
A5: (
len (G
^ I))
= ((
len G)
+ (
len I)) by
FINSEQ_1: 22;
A6: for i be
Nat st i
<= ((
len I)
- 1) holds ((G
^ I)
/. ((
len G)
+ (i
+ 1)))
= (I
/. (i
+ 1))
proof
let i be
Nat;
assume i
<= ((
len I)
- 1);
then
A7: (i
+ 1)
<= (
len I) by
XREAL_1: 19;
then
A8: (i
+ 1)
in (
dom I) by
FINSEQ_3: 25,
NAT_1: 11;
1
<= ((
len G)
+ (i
+ 1)) by
NAT_1: 11,
XREAL_1: 38;
then ((
len G)
+ (i
+ 1))
in (
dom (G
^ I)) by
FINSEQ_3: 25,
A5,
A7,
XREAL_1: 7;
hence ((G
^ I)
/. ((
len G)
+ (i
+ 1)))
= ((G
^ I)
. ((
len G)
+ (i
+ 1))) by
PARTFUN1:def 6
.= (I
. (i
+ 1)) by
A8,
FINSEQ_1:def 7
.= (I
/. (i
+ 1)) by
A8,
PARTFUN1:def 6;
end;
defpred
P0[
Nat] means $1
<= ((
len G)
- 1) implies ((
PartDiffSeq (f,Z,(G
^ I)))
. $1)
= ((
PartDiffSeq (f,Z,G))
. $1);
A9:
P0[
0 ]
proof
assume
0
<= ((
len G)
- 1);
((
PartDiffSeq (f,Z,(G
^ I)))
.
0 )
= (f
| Z) by
PDIFF_9:def 7;
hence ((
PartDiffSeq (f,Z,(G
^ I)))
.
0 )
= ((
PartDiffSeq (f,Z,G))
.
0 ) by
PDIFF_9:def 7;
end;
A10: for k be
Nat st
P0[k] holds
P0[(k
+ 1)]
proof
let k be
Nat;
assume
A11:
P0[k];
assume
A12: (k
+ 1)
<= ((
len G)
- 1);
A13: k
<= (k
+ 1) by
NAT_1: 11;
thus ((
PartDiffSeq (f,Z,(G
^ I)))
. (k
+ 1))
= (((
PartDiffSeq (f,Z,(G
^ I)))
. k)
`partial| (Z,((G
^ I)
/. (k
+ 1)))) by
PDIFF_9:def 7
.= (((
PartDiffSeq (f,Z,G))
. k)
`partial| (Z,(G
/. (k
+ 1)))) by
A13,
A3,
A11,
A12,
XXREAL_0: 2
.= ((
PartDiffSeq (f,Z,G))
. (k
+ 1)) by
PDIFF_9:def 7;
end;
A14: for n be
Nat holds
P0[n] from
NAT_1:sch 2(
A9,
A10);
reconsider j = ((
len G)
- 1) as
Element of
NAT by
INT_1: 5,
FINSEQ_1: 20;
A15: ((
PartDiffSeq (f,Z,(G
^ I)))
. (
len G))
= (((
PartDiffSeq (f,Z,(G
^ I)))
. j)
`partial| (Z,((G
^ I)
/. (j
+ 1)))) by
PDIFF_9:def 7
.= (((
PartDiffSeq (f,Z,G))
. j)
`partial| (Z,((G
^ I)
/. (j
+ 1)))) by
A14
.= (((
PartDiffSeq (f,Z,G))
. j)
`partial| (Z,(G
/. (j
+ 1)))) by
A3
.= ((
PartDiffSeq (f,Z,G))
. (
len G)) by
PDIFF_9:def 7;
defpred
P[
Nat] means $1
<= ((
len I)
- 1) implies ((
PartDiffSeq (g,Z,I))
. $1)
= ((
PartDiffSeq (f,Z,(G
^ I)))
. ((
len G)
+ $1));
A16:
P[
0 ]
proof
assume
0
<= ((
len I)
- 1);
((
PartDiffSeq (f,Z,(G
^ I)))
. ((
len G)
+
0 ))
= ((
PartDiffSeq (f,Z,G))
. (
len G)) by
A15
.= g
.= (g
| Z) by
PDIFF_9: 72,
A1
.= ((
PartDiffSeq (g,Z,I))
.
0 ) by
PDIFF_9:def 7;
hence thesis;
end;
A17: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume
A18:
P[k];
set i = ((
len G)
+ k);
assume
A19: (k
+ 1)
<= ((
len I)
- 1);
A20: k
<= (k
+ 1) by
NAT_1: 11;
((G
^ I)
/. (i
+ 1))
= ((G
^ I)
/. ((
len G)
+ (k
+ 1)));
then
A21: ((G
^ I)
/. (i
+ 1))
= (I
/. (k
+ 1)) by
A6,
A20,
A19,
XXREAL_0: 2;
((
PartDiffSeq (f,Z,(G
^ I)))
. ((
len G)
+ (k
+ 1)))
= (((
PartDiffSeq (f,Z,(G
^ I)))
. i)
`partial| (Z,((G
^ I)
/. (i
+ 1)))) by
PDIFF_9:def 7;
hence thesis by
A20,
A19,
A18,
A21,
PDIFF_9:def 7,
XXREAL_0: 2;
end;
A22: for n be
Nat holds
P[n] from
NAT_1:sch 2(
A16,
A17);
reconsider j0 = ((
len I)
- 1) as
Element of
NAT by
INT_1: 5,
FINSEQ_1: 20;
reconsider j1 = ((
len (G
^ I))
- 1) as
Element of
NAT by
INT_1: 5,
FINSEQ_1: 20;
A23: j1
= ((
len G)
+ j0) by
A5;
(f
`partial| (Z,(G
^ I)))
= (((
PartDiffSeq (f,Z,(G
^ I)))
. j1)
`partial| (Z,((G
^ I)
/. (j1
+ 1)))) by
PDIFF_9:def 7
.= (((
PartDiffSeq (g,Z,I))
. j0)
`partial| (Z,((G
^ I)
/. ((
len G)
+ (j0
+ 1))))) by
A22,
A23
.= (((
PartDiffSeq (g,Z,I))
. j0)
`partial| (Z,(I
/. (j0
+ 1)))) by
A6
.= (g
`partial| (Z,I)) by
PDIFF_9:def 7;
hence thesis;
end;
theorem ::
CKSPACE1:8
for m be non
zero
Element of
NAT , Z be non
empty
Subset of (
REAL m), f be
PartFunc of (
REAL m),
REAL , I,G be non
empty
FinSequence of
NAT st f
is_partial_differentiable_on (Z,G) holds (f
`partial| (Z,(G
^ I)))
is_continuous_on Z iff ((f
`partial| (Z,G))
`partial| (Z,I))
is_continuous_on Z by
Th7;
theorem ::
CKSPACE1:9
Th9: for m be non
zero
Element of
NAT , Z be non
empty
Subset of (
REAL m), f be
PartFunc of (
REAL m),
REAL , i,j be
Nat, I be non
empty
FinSequence of
NAT st f
is_continuously_differentiable_up_to_order ((i
+ j),Z) & (
rng I)
c= (
Seg m) & (
len I)
= j holds (f
`partial| (Z,I))
is_continuously_differentiable_up_to_order (i,Z)
proof
let m be non
zero
Element of
NAT , Z be non
empty
Subset of (
REAL m), f be
PartFunc of (
REAL m),
REAL , i,j be
Nat, I be non
empty
FinSequence of
NAT ;
assume
A1: f
is_continuously_differentiable_up_to_order ((i
+ j),Z) & (
rng I)
c= (
Seg m) & (
len I)
= j;
then
A2: Z
c= (
dom f) & f
is_partial_differentiable_up_to_order ((i
+ j),Z) & for I be non
empty
FinSequence of
NAT st (
len I)
<= (i
+ j) & (
rng I)
c= (
Seg m) holds (f
`partial| (Z,I))
is_continuous_on Z;
A3: f
is_partial_differentiable_on (Z,I) by
A2,
A1,
NAT_1: 11;
f
is_partial_differentiable_on (Z,I) by
A2,
A1,
NAT_1: 11;
hence Z
c= (
dom (f
`partial| (Z,I))) by
Th1;
thus (f
`partial| (Z,I))
is_partial_differentiable_up_to_order (i,Z) by
PDIFF_9: 83,
A1;
let J be non
empty
FinSequence of
NAT ;
assume
A4: (
len J)
<= i & (
rng J)
c= (
Seg m);
reconsider G = (I
^ J) as non
empty
FinSequence of
NAT ;
A5: (
rng G)
= ((
rng I)
\/ (
rng J)) by
FINSEQ_1: 31;
(
len G)
= ((
len I)
+ (
len J)) by
FINSEQ_1: 22;
then (
len G)
<= (i
+ j) & (
rng G)
c= (
Seg m) by
A4,
A5,
A1,
XBOOLE_1: 8,
XREAL_1: 6;
then (f
`partial| (Z,G))
is_continuous_on Z by
A1;
hence thesis by
A3,
Th7;
end;
theorem ::
CKSPACE1:10
Th10: for m be non
zero
Element of
NAT , Z be non
empty
Subset of (
REAL m), f be
PartFunc of (
REAL m),
REAL , i,j be
Nat st f
is_continuously_differentiable_up_to_order (i,Z) & j
<= i holds f
is_continuously_differentiable_up_to_order (j,Z) by
PDIFF_9: 84,
XXREAL_0: 2;
theorem ::
CKSPACE1:11
Th11: for m be non
zero
Element of
NAT , Z be non
empty
Subset of (
REAL m) st Z is
open holds for k be
Element of
NAT , f,g be
PartFunc of (
REAL m),
REAL st f
is_continuously_differentiable_up_to_order (k,Z) & g
is_continuously_differentiable_up_to_order (k,Z) holds (f
(#) g)
is_continuously_differentiable_up_to_order (k,Z)
proof
let m be non
zero
Element of
NAT , Z be non
empty
Subset of (
REAL m);
assume
A1: Z is
open;
defpred
P[
Nat] means for f,g be
PartFunc of (
REAL m),
REAL st f
is_continuously_differentiable_up_to_order ($1,Z) & g
is_continuously_differentiable_up_to_order ($1,Z) holds (f
(#) g)
is_continuously_differentiable_up_to_order ($1,Z);
set Z0 =
0 qua
Nat;
A2:
P[
0 ]
proof
let f,g be
PartFunc of (
REAL m),
REAL ;
assume
A3: f
is_continuously_differentiable_up_to_order (
0 ,Z) & g
is_continuously_differentiable_up_to_order (
0 ,Z);
(
dom (f
(#) g))
= ((
dom f)
/\ (
dom g)) by
VALUED_1:def 4;
hence (f
(#) g)
is_continuously_differentiable_up_to_order (
0 ,Z) by
A3,
XBOOLE_1: 19,
FINSEQ_1: 20,
PDIFF_9: 87,
A1;
end;
A4: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume
A5:
P[k];
let f,g be
PartFunc of (
REAL m),
REAL ;
assume
A6: f
is_continuously_differentiable_up_to_order ((k
+ 1),Z) & g
is_continuously_differentiable_up_to_order ((k
+ 1),Z);
then
A7: f
is_continuously_differentiable_up_to_order (k,Z) & g
is_continuously_differentiable_up_to_order (k,Z) by
Th10,
NAT_1: 11;
(
dom (f
(#) g))
= ((
dom f)
/\ (
dom g)) by
VALUED_1:def 4;
then
A8: Z
c= (
dom (f
(#) g)) by
A6,
XBOOLE_1: 19;
now
let I be non
empty
FinSequence of
NAT ;
assume
A9: (
len I)
<= (k
+ 1) & (
rng I)
c= (
Seg m);
then
A10: f
is_partial_differentiable_on (Z,I) & g
is_partial_differentiable_on (Z,I) by
PDIFF_9:def 11,
A6;
A11: (f
`partial| (Z,I))
is_continuous_on Z & (g
`partial| (Z,I))
is_continuous_on Z by
A9,
A6;
A12: 1
<= (
len I) by
FINSEQ_1: 20;
then
A13: 1
in (
dom I) by
FINSEQ_3: 25;
then
A14: (I
/. 1)
= (I
. 1) by
PARTFUN1:def 6;
A15: (I
. 1)
in (
rng I) by
A13,
FUNCT_1: 3;
reconsider i = (I
. 1) as
Element of
NAT by
ORDINAL1:def 12;
A16: 1
<= i & i
<= m by
A15,
A9,
FINSEQ_1: 1;
per cases ;
suppose
A17: 1
= (
len I);
then
A18: I
=
<*(I
. 1)*> by
FINSEQ_5: 14;
A19: (f
(#) g)
is_continuously_differentiable_up_to_order (k,Z) by
A5,
A7;
now
per cases ;
suppose
A20: k
=
0 ;
A21: I
=
<*i*> by
A17,
FINSEQ_5: 14;
A22: f
is_partial_differentiable_on (Z,i) & g
is_partial_differentiable_on (Z,i) by
A18,
A9,
PDIFF_9:def 11,
A6;
then
A23: ((f
(#) g)
`partial| (Z,I))
= ((f
(#) g)
`partial| (Z,i)) by
A1,
A16,
A21,
PDIFF_9: 68,
PDIFF_9: 82
.= (((f
`partial| (Z,i))
(#) g)
+ (f
(#) (g
`partial| (Z,i)))) by
A1,
A22,
A16,
PDIFF_9: 68
.= (((f
`partial| (Z,I))
(#) g)
+ (f
(#) (g
`partial| (Z,i)))) by
A1,
A16,
A21,
A22,
PDIFF_9: 82
.= (((f
`partial| (Z,I))
(#) g)
+ (f
(#) (g
`partial| (Z,I)))) by
A1,
A16,
A21,
A22,
PDIFF_9: 82;
A24: Z
c= (
dom (f
`partial| (Z,I))) & Z
c= (
dom (g
`partial| (Z,I))) by
A9,
Th1,
PDIFF_9:def 11,
A6;
A25: f
is_continuous_on Z by
A1,
Th3,
A6,
A20;
g
is_continuous_on Z by
A1,
Th3,
A6,
A20;
then
A26: ((f
`partial| (Z,I))
(#) g)
is_continuous_on Z by
A11,
A6,
A24,
PDIFF_9: 48;
A27: (f
(#) (g
`partial| (Z,I)))
is_continuous_on Z by
A11,
A25,
A6,
A24,
PDIFF_9: 48;
(
dom ((f
`partial| (Z,I))
(#) g))
= ((
dom (f
`partial| (Z,I)))
/\ (
dom g)) by
VALUED_1:def 4;
then
A28: Z
c= (
dom ((f
`partial| (Z,I))
(#) g)) by
A24,
A6,
XBOOLE_1: 19;
(
dom (f
(#) (g
`partial| (Z,I))))
= ((
dom f)
/\ (
dom (g
`partial| (Z,I)))) by
VALUED_1:def 4;
then Z
c= (
dom (f
(#) (g
`partial| (Z,I)))) by
A24,
A6,
XBOOLE_1: 19;
hence ((f
(#) g)
`partial| (Z,I))
is_continuous_on Z by
A23,
A26,
A27,
A28,
PDIFF_9: 46;
end;
suppose k
<>
0 ;
hence ((f
(#) g)
`partial| (Z,I))
is_continuous_on Z by
A19,
A9,
A17,
NAT_1: 14;
end;
end;
hence ((f
(#) g)
`partial| (Z,I))
is_continuous_on Z;
end;
suppose 1
<> (
len I);
then 1
< (
len I) by
A12,
XXREAL_0: 1;
then (1
+ 1)
<= (
len I) by
NAT_1: 13;
then 1
<= ((
len I)
- 1) by
XREAL_1: 19;
then 1
<= (
len (I
/^ 1)) by
A12,
RFINSEQ:def 1;
then
reconsider J = (I
/^ 1) as non
empty
FinSequence of
NAT by
FINSEQ_1: 20;
set I1 =
<*i*>;
((
len I)
- 1)
<= k by
A9,
XREAL_1: 20;
then
A29: (
len J)
<= k by
A12,
RFINSEQ:def 1;
A30: I
= (
<*(I
/. 1)*>
^ (I
/^ 1)) by
FINSEQ_5: 29;
then
A31: (
rng I1)
c= (
rng I) & (
rng J)
c= (
rng I) by
A14,
FINSEQ_1: 29,
FINSEQ_1: 30;
then
A32: (
rng J)
c= (
Seg m) by
A9;
I
= (I1
^ J) by
A14,
FINSEQ_5: 29;
then
A33: f
is_partial_differentiable_on (Z,i) & g
is_partial_differentiable_on (Z,i) by
PDIFF_9: 80,
A10;
then
A34: (f
(#) g)
is_partial_differentiable_on (Z,i) by
A1,
A16,
PDIFF_9: 68;
then
A35: ((f
(#) g)
`partial| (Z,I1))
= ((f
(#) g)
`partial| (Z,i)) by
A1,
A16,
PDIFF_9: 82
.= (((f
`partial| (Z,i))
(#) g)
+ (f
(#) (g
`partial| (Z,i)))) by
A33,
A16,
PDIFF_9: 68,
A1
.= (((f
`partial| (Z,I1))
(#) g)
+ (f
(#) (g
`partial| (Z,i)))) by
A1,
A16,
A33,
PDIFF_9: 82
.= (((f
`partial| (Z,I1))
(#) g)
+ (f
(#) (g
`partial| (Z,I1)))) by
A1,
A16,
A33,
PDIFF_9: 82;
(
len I1)
= 1 & (
rng I1)
c= (
Seg m) by
A31,
A9,
FINSEQ_1: 39;
then (f
`partial| (Z,I1))
is_continuously_differentiable_up_to_order (k,Z) & (g
`partial| (Z,I1))
is_continuously_differentiable_up_to_order (k,Z) by
Th9,
A6;
then
A36: ((f
`partial| (Z,I1))
(#) g)
is_continuously_differentiable_up_to_order (k,Z) & (f
(#) (g
`partial| (Z,I1)))
is_continuously_differentiable_up_to_order (k,Z) by
A5,
A7;
then ((f
`partial| (Z,I1))
(#) g)
is_partial_differentiable_on (Z,J) & (f
(#) (g
`partial| (Z,I1)))
is_partial_differentiable_on (Z,J) by
A29,
A32,
PDIFF_9:def 11;
then
A37: ((((f
`partial| (Z,I1))
(#) g)
+ (f
(#) (g
`partial| (Z,I1))))
`partial| (Z,J))
= ((((f
`partial| (Z,I1))
(#) g)
`partial| (Z,J))
+ ((f
(#) (g
`partial| (Z,I1)))
`partial| (Z,J))) by
A1,
A32,
PDIFF_9: 75;
A38: Z
c= (
dom (((f
`partial| (Z,I1))
(#) g)
`partial| (Z,J))) & Z
c= (
dom ((f
(#) (g
`partial| (Z,I1)))
`partial| (Z,J))) by
A36,
Th1,
A29,
A32,
PDIFF_9:def 11;
(((f
`partial| (Z,I1))
(#) g)
`partial| (Z,J))
is_continuous_on Z & ((f
(#) (g
`partial| (Z,I1)))
`partial| (Z,J))
is_continuous_on Z by
A36,
A29,
A9,
XBOOLE_1: 1,
A31;
then ((((f
`partial| (Z,I1))
(#) g)
+ (f
(#) (g
`partial| (Z,I1))))
`partial| (Z,J))
is_continuous_on Z by
A37,
A38,
PDIFF_9: 46;
hence ((f
(#) g)
`partial| (Z,I))
is_continuous_on Z by
A30,
A14,
A34,
A35,
Th7;
end;
end;
hence (f
(#) g)
is_continuously_differentiable_up_to_order ((k
+ 1),Z) by
A8,
PDIFF_9: 87,
A1,
A6;
end;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A2,
A4);
hence thesis;
end;
theorem ::
CKSPACE1:12
Th12: for m be non
zero
Element of
NAT , f be
PartFunc of (
REAL m),
REAL , X be non
empty
Subset of (
REAL m), d be
Real st X is
open & f
= (X
--> d) holds for x be
Element of (
REAL m) st x
in X holds f
is_differentiable_in x & (
diff (f,x))
= ((
REAL m)
-->
0 )
proof
let m be non
zero
Element of
NAT , f be
PartFunc of (
REAL m),
REAL , X be non
empty
Subset of (
REAL m), d be
Real;
assume
A1: X is
open & f
= (X
--> d);
let x be
Element of (
REAL m);
assume
A2: x
in X;
d
in
REAL by
XREAL_0:def 1;
then
<*d*>
in (1
-tuples_on
REAL ) by
FINSEQ_2: 98;
then
<*d*>
in (
REAL 1) by
EUCLID:def 1;
then
reconsider rd =
<*d*> as
Point of (
REAL-NS 1) by
REAL_NS1:def 4;
A3: the
carrier of (
REAL-NS m)
= (
REAL m) & the
carrier of (
REAL-NS 1)
= (
REAL 1) by
REAL_NS1:def 4;
then
reconsider g = (
<>* f) as
PartFunc of (
REAL-NS m), (
REAL-NS 1);
reconsider x1 = x as
Point of (
REAL-NS m) by
REAL_NS1:def 4;
set ZR = (
0. (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS m),(
REAL-NS 1))));
A4: (
0. (
REAL-NS 1))
= (
0* 1) by
REAL_NS1:def 4
.= (1
|->
0 qua
Real) by
EUCLID:def 4
.=
<*
0 *> by
FINSEQ_2: 59;
A5: ZR
= ((
REAL m)
-->
<*
0 *>) by
A4,
A3,
LOPBAN_1: 31;
reconsider Z = X as
Subset of (
REAL-NS m) by
REAL_NS1:def 4;
A6: Z is
open by
PDIFF_9: 10,
A1;
A7: (
dom f)
= X by
A1,
FUNCT_2:def 1;
then
A8: (
dom (
<>* f))
= X by
PDIFF_9: 3;
A9: Z
= (
dom g) by
A7,
PDIFF_9: 3;
now
let x be
object;
assume x
in (
dom (
<>* f));
then
A10: x
in X by
A7,
PDIFF_9: 3;
then
reconsider x1 = x as
Element of (
REAL m);
((
<>* f)
. x)
=
<*(f
. x1)*> by
A7,
A10,
PDIFF_9: 6;
hence ((
<>* f)
. x)
=
<*d*> by
A1,
A10,
FUNCOP_1: 7;
end;
then
A11: (
<>* f)
= (X
-->
<*d*>) by
A8,
FUNCOP_1: 11;
A12: (
rng g)
=
{rd} by
A11,
FUNCOP_1: 8;
then
A13: g
is_differentiable_on Z & for x be
Point of (
REAL-NS m) st x
in Z holds ((g
`| Z)
/. x)
= ZR by
NDIFF_1: 33,
A6,
A9;
then
A14: g
is_differentiable_in x1 by
A2,
NDIFF_1: 31,
A6;
A15: ZR
= ((g
`| Z)
/. x1) by
A12,
A2,
NDIFF_1: 33,
A6,
A9
.= (
diff (g,x1)) by
A2,
NDIFF_1:def 9,
A13;
A16: (
<>* f)
is_differentiable_in x by
PDIFF_6: 2,
A14;
hence f
is_differentiable_in x by
PDIFF_7:def 1;
A17: (
diff ((
<>* f),x))
= ((
REAL m)
-->
<*
0 *>) by
A5,
A15,
A16,
PDIFF_6: 3;
A18: (
dom ((
proj (1,1))
* (
diff ((
<>* f),x))))
= (
REAL m) by
FUNCT_2:def 1;
now
let y be
object;
assume
A19: y
in (
dom ((
proj (1,1))
* (
diff ((
<>* f),x))));
then
reconsider y1 = y as
Element of (
REAL m);
thus (((
proj (1,1))
* (
diff ((
<>* f),x)))
. y)
= ((
proj (1,1))
. ((
diff ((
<>* f),x))
. y1)) by
A19,
FUNCT_1: 12
.= ((
proj (1,1))
.
<*
0 *>) by
A17,
FUNCOP_1: 7
.=
0 by
PDIFF_1: 1;
end;
then ((
proj (1,1))
* (
diff ((
<>* f),x)))
= ((
dom ((
proj (1,1))
* (
diff ((
<>* f),x))))
-->
0 ) by
FUNCOP_1: 11;
hence (
diff (f,x))
= ((
REAL m)
-->
0 ) by
PDIFF_7:def 2,
A18;
end;
theorem ::
CKSPACE1:13
Th13: for m be non
zero
Element of
NAT , f be
PartFunc of (
REAL m),
REAL , X be non
empty
Subset of (
REAL m), d be
Real st X is
open & f
= (X
--> d) holds for x0 be
Element of (
REAL m), r be
Real st x0
in X &
0
< r holds ex s be
Real st
0
< s & for x1 be
Element of (
REAL m) st x1
in X &
|.(x1
- x0).|
< s holds for v be
Element of (
REAL m) holds
|.(((
diff (f,x1))
. v)
- ((
diff (f,x0))
. v)).|
<= (r
*
|.v.|)
proof
let m be non
zero
Element of
NAT , f be
PartFunc of (
REAL m),
REAL , X be non
empty
Subset of (
REAL m), d be
Real;
assume
A1: X is
open & f
= (X
--> d);
let x0 be
Element of (
REAL m), r be
Real;
assume
A2: x0
in X &
0
< r;
take s = 1 qua
Real;
thus
0
< s;
let x1 be
Element of (
REAL m);
assume
A3: x1
in X &
|.(x1
- x0).|
< s;
let v be
Element of (
REAL m);
A4: ((
diff (f,x1))
. v)
= (((
REAL m)
-->
0 )
. v) by
A1,
Th12,
A3
.=
0 qua
Real by
FUNCOP_1: 7;
((
diff (f,x0))
. v)
= (((
REAL m)
-->
0 )
. v) by
A1,
Th12,
A2
.=
0 qua
Real by
FUNCOP_1: 7;
hence
|.(((
diff (f,x1))
. v)
- ((
diff (f,x0))
. v)).|
<= (r
*
|.v.|) by
A4,
A2,
COMPLEX1: 44;
end;
theorem ::
CKSPACE1:14
Th14: for m be non
zero
Element of
NAT , f be
PartFunc of (
REAL m),
REAL , X be non
empty
Subset of (
REAL m), d be
Real st X is
open & f
= (X
--> d) holds f
is_differentiable_on X & (
dom (f
`| X))
= X & for x be
Element of (
REAL m) st x
in X holds ((f
`| X)
/. x)
= ((
REAL m)
-->
0 )
proof
let m be non
zero
Element of
NAT , f be
PartFunc of (
REAL m),
REAL , X be non
empty
Subset of (
REAL m), d be
Real;
assume
A1: X is
open & f
= (X
--> d);
A2: X
= (
dom f) by
A1,
FUNCT_2:def 1;
for x be
Element of (
REAL m) st x
in X holds f
is_differentiable_in x by
Th12,
A1;
hence f
is_differentiable_on X by
A2,
A1,
PDIFF_9: 54;
thus (
dom (f
`| X))
= X by
PDIFF_9:def 4,
A2;
thus for x be
Element of (
REAL m) st x
in X holds ((f
`| X)
/. x)
= ((
REAL m)
-->
0 )
proof
let x be
Element of (
REAL m);
assume
A3: x
in X;
thus ((f
`| X)
/. x)
= (
diff (f,x)) by
A2,
PDIFF_9:def 4,
A3
.= ((
REAL m)
-->
0 ) by
A3,
Th12,
A1;
end;
end;
theorem ::
CKSPACE1:15
Th15: for m be non
zero
Element of
NAT , f be
PartFunc of (
REAL m),
REAL , X be non
empty
Subset of (
REAL m), d be
Real, i be
Element of
NAT st X is
open & f
= (X
--> d) & 1
<= i & i
<= m holds f
is_partial_differentiable_on (X,i) & (f
`partial| (X,i))
is_continuous_on X
proof
let m be non
zero
Element of
NAT , f be
PartFunc of (
REAL m),
REAL , X be non
empty
Subset of (
REAL m), d be
Real, i be
Element of
NAT ;
assume
A1: X is
open;
assume
A2: f
= (X
--> d);
assume
A3: 1
<= i & i
<= m;
A4: (
dom f)
= X by
A2,
FUNCT_2:def 1;
A5: f
is_differentiable_on X by
Th14,
A2,
A1;
for x0 be
Element of (
REAL m), r be
Real st x0
in X &
0
< r holds ex s be
Real st
0
< s & for x1 be
Element of (
REAL m) st x1
in X &
|.(x1
- x0).|
< s holds for v be
Element of (
REAL m) holds
|.(((
diff (f,x1))
. v)
- ((
diff (f,x0))
. v)).|
<= (r
*
|.v.|) by
A2,
Th13,
A1;
hence thesis by
A3,
A4,
A1,
A5,
PDIFF_9: 63;
end;
theorem ::
CKSPACE1:16
Th16: for m be non
zero
Element of
NAT , i be
Element of
NAT , f be
PartFunc of (
REAL m),
REAL , X be non
empty
Subset of (
REAL m), d be
Real st X is
open & f
= (X
--> d) & 1
<= i & i
<= m holds (f
`partial| (X,i))
= (X
-->
0 )
proof
let m be non
zero
Element of
NAT , i be
Element of
NAT , f be
PartFunc of (
REAL m),
REAL , X be non
empty
Subset of (
REAL m), d be
Real;
assume
A1: X is
open & f
= (X
--> d) & 1
<= i & i
<= m;
A2: f
is_partial_differentiable_on (X,i) by
A1,
Th15;
A3: (
dom (f
`partial| (X,i)))
= X by
A2,
PDIFF_9:def 6;
now
let x be
object;
assume
A4: x
in (
dom (f
`partial| (X,i)));
then
reconsider x1 = x as
Element of (
REAL m);
A5: f
is_differentiable_in x1 & (
diff (f,x1))
= ((
REAL m)
-->
0 ) by
Th12,
A1,
A3,
A4;
A6: ((
reproj (i,(
0* m)))
. 1)
in (
REAL m) by
XREAL_0:def 1,
FUNCT_2: 5;
A7: (
partdiff (f,x1,i))
= ((
diff (f,x1))
. ((
reproj (i,(
0* m)))
. 1)) by
PDIFF_7: 23,
A5,
A1
.=
0 by
A6,
FUNCOP_1: 7,
A5;
thus ((f
`partial| (X,i))
. x)
= ((f
`partial| (X,i))
/. x1) by
A4,
PARTFUN1:def 6
.=
0 by
A7,
A2,
A4,
A3,
PDIFF_9:def 6;
end;
hence thesis by
A3,
FUNCOP_1: 11;
end;
Lm1: for m be non
zero
Element of
NAT , I be non
empty
FinSequence of
NAT , i be
Element of
NAT st (
rng I)
c= (
Seg m) & i
<= ((
len I)
- 1) holds 1
<= (I
/. (i
+ 1)) & (I
/. (i
+ 1))
<= m
proof
let m be non
zero
Element of
NAT , I be non
empty
FinSequence of
NAT , i be
Element of
NAT ;
assume
A1: (
rng I)
c= (
Seg m);
assume
A2: i
<= ((
len I)
- 1);
A3: (
0 qua
Real
+ 1)
<= (i
+ 1) by
XREAL_1: 6;
(i
+ 1)
<= (((
len I)
- 1)
+ 1) by
A2,
XREAL_1: 6;
then (i
+ 1)
in (
Seg (
len I)) by
A3;
then
A4: (i
+ 1)
in (
dom I) by
FINSEQ_1:def 3;
then (I
. (i
+ 1))
in (
rng I) by
FUNCT_1: 3;
then (I
/. (i
+ 1))
in (
rng I) by
A4,
PARTFUN1:def 6;
hence 1
<= (I
/. (i
+ 1)) & (I
/. (i
+ 1))
<= m by
FINSEQ_1: 1,
A1;
end;
Lm2: for m be non
zero
Element of
NAT , I be non
empty
FinSequence of
NAT , i be
Element of
NAT st (
rng I)
c= (
Seg m) & 1
<= i & i
<= (
len I) holds 1
<= (I
/. i) & (I
/. i)
<= m
proof
let m be non
zero
Element of
NAT , I be non
empty
FinSequence of
NAT , i be
Element of
NAT ;
assume
A1: (
rng I)
c= (
Seg m);
assume 1
<= i & i
<= (
len I);
then i
in (
Seg (
len I));
then
A2: i
in (
dom I) by
FINSEQ_1:def 3;
then (I
. i)
in (
rng I) by
FUNCT_1: 3;
then (I
/. i)
in (
rng I) by
A2,
PARTFUN1:def 6;
hence 1
<= (I
/. i) & (I
/. i)
<= m by
FINSEQ_1: 1,
A1;
end;
theorem ::
CKSPACE1:17
Th17: for m be non
zero
Element of
NAT , I be non
empty
FinSequence of
NAT , X be non
empty
Subset of (
REAL m), f be
PartFunc of (
REAL m),
REAL , d be
Real st X is
open & f
= (X
--> d) & (
rng I)
c= (
Seg m) holds ((
PartDiffSeq (f,X,I))
.
0 )
= (X
--> d) & for i be
Element of
NAT st 1
<= i & i
<= (
len I) holds ((
PartDiffSeq (f,X,I))
. i)
= (X
-->
0 )
proof
let m be non
zero
Element of
NAT , I be non
empty
FinSequence of
NAT , X be non
empty
Subset of (
REAL m), f be
PartFunc of (
REAL m),
REAL , d be
Real;
assume
A1: X is
open & f
= (X
--> d) & (
rng I)
c= (
Seg m);
thus
A2: ((
PartDiffSeq (f,X,I))
.
0 )
= ((X
--> d)
| X) by
A1,
PDIFF_9:def 7
.= ((X
/\ X)
--> d) by
FUNCOP_1: 12
.= (X
--> d);
defpred
P[
Nat] means 1
<= $1 & $1
<= (
len I) implies ((
PartDiffSeq (f,X,I))
. $1)
= (X
-->
0 );
A3:
P[
0 ];
A4: for i be
Nat st
P[i] holds
P[(i
+ 1)]
proof
let i be
Nat;
assume
A5:
P[i];
assume
A6: 1
<= (i
+ 1) & (i
+ 1)
<= (
len I);
A7: i
<= (i
+ 1) by
NAT_1: 12;
per cases ;
suppose
A8: i
=
0 ;
A9: 1
<= (I
/. (i
+ 1)) & (I
/. (i
+ 1))
<= m by
Lm2,
A1,
A6;
thus ((
PartDiffSeq (f,X,I))
. (i
+ 1))
= (((
PartDiffSeq (f,X,I))
. i)
`partial| (X,(I
/. (i
+ 1)))) by
PDIFF_9:def 7
.= (X
-->
0 ) by
A8,
A9,
A1,
A2,
Th16;
end;
suppose
A10: i
<>
0 ;
A11: 1
<= (I
/. (i
+ 1)) & (I
/. (i
+ 1))
<= m by
Lm2,
A1,
A6;
thus ((
PartDiffSeq (f,X,I))
. (i
+ 1))
= (((
PartDiffSeq (f,X,I))
. i)
`partial| (X,(I
/. (i
+ 1)))) by
PDIFF_9:def 7
.= (X
-->
0 ) by
A10,
A11,
A1,
Th16,
A7,
A5,
NAT_1: 14,
XXREAL_0: 2,
A6;
end;
end;
for i be
Nat holds
P[i] from
NAT_1:sch 2(
A3,
A4);
hence thesis;
end;
theorem ::
CKSPACE1:18
Th18: for m be non
zero
Element of
NAT , I be non
empty
FinSequence of
NAT , X be non
empty
Subset of (
REAL m), f be
PartFunc of (
REAL m),
REAL , d be
Real st X is
open & f
= (X
--> d) & (
rng I)
c= (
Seg m) holds f
is_partial_differentiable_on (X,I) & (f
`partial| (X,I))
is_continuous_on X
proof
let m be non
zero
Element of
NAT , I be non
empty
FinSequence of
NAT , X be non
empty
Subset of (
REAL m), f be
PartFunc of (
REAL m),
REAL , d be
Real;
assume
A1: X is
open & f
= (X
--> d) & (
rng I)
c= (
Seg m);
for i be
Element of
NAT st i
<= ((
len I)
- 1) holds ((
PartDiffSeq (f,X,I))
. i)
is_partial_differentiable_on (X,(I
/. (i
+ 1)))
proof
let i be
Element of
NAT ;
assume
A2: i
<= ((
len I)
- 1);
((
len I)
- 1)
<= ((
len I)
-
0 qua
Real) by
XREAL_1: 10;
then
A3: i
<= (
len I) by
A2,
XXREAL_0: 2;
per cases ;
suppose i
=
0 ;
then
A4: ((
PartDiffSeq (f,X,I))
. i)
= (X
--> d) by
A1,
Th17;
1
<= (I
/. (i
+ 1)) & (I
/. (i
+ 1))
<= m by
Lm1,
A1,
A2;
hence thesis by
A4,
A1,
Th15;
end;
suppose i
<>
0 ;
then 1
<= i by
NAT_1: 14;
then
A5: ((
PartDiffSeq (f,X,I))
. i)
= (X
-->
0 ) by
A1,
A3,
Th17;
1
<= (I
/. (i
+ 1)) & (I
/. (i
+ 1))
<= m by
Lm1,
A1,
A2;
hence thesis by
A5,
A1,
Th15;
end;
end;
hence f
is_partial_differentiable_on (X,I);
reconsider k = ((
len I)
- 1) as
Element of
NAT by
INT_1: 5,
FINSEQ_1: 20;
A6: (f
`partial| (X,I))
= (((
PartDiffSeq (f,X,I))
. k)
`partial| (X,(I
/. (k
+ 1)))) by
PDIFF_9:def 7;
A7: ((
len I)
- 1)
<= ((
len I)
-
0 qua
Real) by
XREAL_1: 10;
per cases ;
suppose k
=
0 ;
then
A8: ((
PartDiffSeq (f,X,I))
. k)
= (X
--> d) by
A1,
Th17;
1
<= (I
/. (k
+ 1)) & (I
/. (k
+ 1))
<= m by
A1,
Lm1;
hence (f
`partial| (X,I))
is_continuous_on X by
A1,
A6,
A8,
Th15;
end;
suppose k
<>
0 ;
then 1
<= k by
NAT_1: 14;
then
A9: ((
PartDiffSeq (f,X,I))
. k)
= (X
-->
0 ) by
A1,
A7,
Th17;
1
<= (I
/. (k
+ 1)) & (I
/. (k
+ 1))
<= m by
A1,
Lm1;
hence (f
`partial| (X,I))
is_continuous_on X by
A1,
A6,
A9,
Th15;
end;
end;
theorem ::
CKSPACE1:19
Th19: for m be non
zero
Element of
NAT , k be
Element of
NAT , X be non
empty
Subset of (
REAL m), f be
PartFunc of (
REAL m),
REAL , d be
Real st X is
open & f
= (X
--> d) holds f
is_continuously_differentiable_up_to_order (k,X)
proof
let m be non
zero
Element of
NAT , k be
Element of
NAT , X be non
empty
Subset of (
REAL m), f be
PartFunc of (
REAL m),
REAL , d be
Real;
assume
A1: X is
open & f
= (X
--> d);
then f
is_partial_differentiable_up_to_order (k,X) by
Th18;
hence thesis by
A1,
Th18,
FUNCT_2:def 1;
end;
registration
let m be non
zero
Element of
NAT ;
cluster
open for non
empty
Subset of (
REAL m);
correctness
proof
(
REAL m)
c= (
REAL m);
then
reconsider X = (
REAL m) as non
empty
Subset of (
REAL m);
for x be
Element of (
REAL m) st x
in X holds ex r be
Real st r
>
0 & { y where y be
Element of (
REAL m) :
|.(y
- x).|
< r }
c= X
proof
let x be
Element of (
REAL m);
assume x
in X;
take r = 1;
thus r
>
0 ;
now
let z be
object;
assume z
in { y where y be
Element of (
REAL m) :
|.(y
- x).|
< r };
then ex y be
Element of (
REAL m) st z
= y &
|.(y
- x).|
< r;
hence z
in X;
end;
hence { y where y be
Element of (
REAL m) :
|.(y
- x).|
< r }
c= X;
end;
then X is
open by
PDIFF_7: 31;
hence thesis;
end;
end
begin
definition
let m be non
zero
Element of
NAT , k be
Element of
NAT , X be non
empty
open
Subset of (
REAL m);
::
CKSPACE1:def2
func
Ck_Functions (k,X) -> non
empty
Subset of (
RAlgebra X) equals { f where f be
PartFunc of (
REAL m),
REAL : f
is_continuously_differentiable_up_to_order (k,X) & (
dom f)
= X };
correctness
proof
A1: { f where f be
PartFunc of (
REAL m),
REAL : f
is_continuously_differentiable_up_to_order (k,X) & (
dom f)
= X }
c= (
Funcs (X,
REAL ))
proof
let x be
object;
assume x
in { f where f be
PartFunc of (
REAL m),
REAL : f
is_continuously_differentiable_up_to_order (k,X) & (
dom f)
= X };
then
consider f be
PartFunc of (
REAL m),
REAL such that
A2: x
= f & f
is_continuously_differentiable_up_to_order (k,X) & (
dom f)
= X;
(
rng f)
c=
REAL ;
then f is
Function of X,
REAL by
A2,
FUNCT_2: 2;
hence x
in (
Funcs (X,
REAL )) by
A2,
FUNCT_2: 8;
end;
A3: (X
-->
0 ) is
Function of X,
REAL by
XREAL_0:def 1,
FUNCOP_1: 45;
(
dom (X
-->
0 ))
= X by
FUNCT_2:def 1;
then
reconsider g = (X
-->
0 ) as
PartFunc of (
REAL m),
REAL by
A3,
RELSET_1: 5;
A4: (
dom g)
= X by
FUNCT_2:def 1;
g
is_continuously_differentiable_up_to_order (k,X) by
Th19;
then g
in { f where f be
PartFunc of (
REAL m),
REAL : f
is_continuously_differentiable_up_to_order (k,X) & (
dom f)
= X } by
A4;
hence thesis by
A1;
end;
end
registration
let m be non
zero
Element of
NAT , k be
Element of
NAT , X be non
empty
open
Subset of (
REAL m);
cluster (
Ck_Functions (k,X)) ->
additively-linearly-closed
multiplicatively-closed;
coherence
proof
set W = (
Ck_Functions (k,X));
set V = (
RAlgebra X);
A1: (
RAlgebra X) is
RealLinearSpace by
C0SP1: 7;
for v,u be
Element of V st v
in W & u
in W holds (v
+ u)
in W
proof
let v,u be
Element of V such that
A2: v
in W & u
in W;
consider v1 be
PartFunc of (
REAL m),
REAL such that
A3: v1
= v & v1
is_continuously_differentiable_up_to_order (k,X) & (
dom v1)
= X by
A2;
consider u1 be
PartFunc of (
REAL m),
REAL such that
A4: u1
= u & u1
is_continuously_differentiable_up_to_order (k,X) & (
dom u1)
= X by
A2;
A5: (
dom (v1
+ u1))
= ((
dom v1)
/\ (
dom u1)) by
VALUED_1:def 1;
A6: (v1
+ u1)
is_continuously_differentiable_up_to_order (k,X) by
A3,
A4,
Th4;
reconsider h = (v
+ u) as
Element of (
Funcs (X,
REAL ));
A7: ex f be
Function st h
= f & (
dom f)
= X & (
rng f)
c=
REAL by
FUNCT_2:def 2;
A8: ((
dom v1)
/\ (
dom u1))
= (X
/\ X) by
A4,
A3;
for x be
object st x
in (
dom h) holds (h
. x)
= ((v1
. x)
+ (u1
. x)) by
A3,
A4,
FUNCSDOM: 1;
then (v
+ u)
= (v1
+ u1) by
A8,
A7,
VALUED_1:def 1;
hence (v
+ u)
in W by
A6,
A3,
A4,
A5;
end;
then
A9: W is
add-closed by
IDEAL_1:def 1;
A10: for v be
Element of V st v
in W holds (
- v)
in W
proof
let v be
Element of V such that
A11: v
in W;
consider v1 be
PartFunc of (
REAL m),
REAL such that
A12: v1
= v & v1
is_continuously_differentiable_up_to_order (k,X) & (
dom v1)
= X by
A11;
A13: (
dom (
- v1))
= X by
VALUED_1:def 5,
A12;
A14: (
- v1)
is_continuously_differentiable_up_to_order (k,X) by
A12,
Th5;
reconsider h = (
- v), v2 = v as
Element of (
Funcs (X,
REAL ));
A15: h
= ((
- 1)
* v) by
A1,
RLVECT_1: 16;
A16: ex f be
Function st h
= f & (
dom f)
= X & (
rng f)
c=
REAL by
FUNCT_2:def 2;
now
let x be
object;
assume x
in (
dom h);
then
reconsider y = x as
Element of X;
(h
. x)
= ((
- 1)
* (v2
. y)) by
A15,
FUNCSDOM: 4;
hence (h
. x)
= (
- (v1
. x)) by
A12;
end;
then (
- v)
= (
- v1) by
A12,
A16,
VALUED_1: 9;
hence (
- v)
in W by
A14,
A13;
end;
for a be
Real, u be
Element of V st u
in W holds (a
* u)
in W
proof
let a be
Real, u be
Element of V such that
A17: u
in W;
consider u1 be
PartFunc of (
REAL m),
REAL such that
A18: u1
= u & u1
is_continuously_differentiable_up_to_order (k,X) & (
dom u1)
= X by
A17;
A19: (
dom (a
(#) u1))
= X by
A18,
VALUED_1:def 5;
A20: (a
(#) u1)
is_continuously_differentiable_up_to_order (k,X) by
A18,
Th5;
reconsider h = (a
* u) as
Element of (
Funcs (X,
REAL ));
A21: ex f be
Function st h
= f & (
dom f)
= X & (
rng f)
c=
REAL by
FUNCT_2:def 2;
for x be
object st x
in (
dom h) holds (h
. x)
= (a
* (u1
. x)) by
A18,
FUNCSDOM: 4;
then (a
* u)
= (a
(#) u1) by
A18,
A21,
VALUED_1:def 5;
hence (a
* u)
in W by
A20,
A19;
end;
hence (
Ck_Functions (k,X)) is
additively-linearly-closed by
A9,
A10,
C0SP1:def 1,
C0SP1:def 10;
A22: for v,u be
Element of V st v
in W & u
in W holds (v
* u)
in W
proof
let v,u be
Element of V such that
A23: v
in W & u
in W;
consider v1 be
PartFunc of (
REAL m),
REAL such that
A24: v1
= v & v1
is_continuously_differentiable_up_to_order (k,X) & (
dom v1)
= X by
A23;
consider u1 be
PartFunc of (
REAL m),
REAL such that
A25: u1
= u & u1
is_continuously_differentiable_up_to_order (k,X) & (
dom u1)
= X by
A23;
A26: (
dom (v1
(#) u1))
= ((
dom v1)
/\ (
dom u1)) by
VALUED_1:def 4
.= X by
A24,
A25;
A27: (v1
(#) u1)
is_continuously_differentiable_up_to_order (k,X) by
A24,
A25,
Th11;
reconsider h = (v
* u) as
Element of (
Funcs (X,
REAL ));
A28: ex f be
Function st h
= f & (
dom f)
= X & (
rng f)
c=
REAL by
FUNCT_2:def 2;
A29: ((
dom v1)
/\ (
dom u1))
= (X
/\ X) by
A25,
A24;
for x be
object st x
in (
dom h) holds (h
. x)
= ((v1
. x)
* (u1
. x)) by
A24,
A25,
FUNCSDOM: 2;
then (v
* u)
= (v1
(#) u1) by
A29,
A28,
VALUED_1:def 4;
hence (v
* u)
in W by
A27,
A26;
end;
set g = (
RealFuncUnit X);
(
dom g)
= X by
FUNCT_2:def 1;
then
reconsider g as
PartFunc of (
REAL m),
REAL by
RELSET_1: 5;
A30: (
dom g)
= X by
FUNCT_2:def 1;
g
is_continuously_differentiable_up_to_order (k,X) by
Th19;
then (
1. V)
in W by
A30;
hence thesis by
A22,
C0SP1:def 4;
end;
end
definition
let m be non
zero
Element of
NAT , k be
Element of
NAT , X be non
empty
open
Subset of (
REAL m);
::
CKSPACE1:def3
func
R_Algebra_of_Ck_Functions (k,X) ->
Subalgebra of (
RAlgebra X) equals
AlgebraStr (# (
Ck_Functions (k,X)), (
mult_ ((
Ck_Functions (k,X)),(
RAlgebra X))), (
Add_ ((
Ck_Functions (k,X)),(
RAlgebra X))), (
Mult_ ((
Ck_Functions (k,X)),(
RAlgebra X))), (
One_ ((
Ck_Functions (k,X)),(
RAlgebra X))), (
Zero_ ((
Ck_Functions (k,X)),(
RAlgebra X))) #);
coherence by
C0SP1: 6;
end
registration
let m be non
zero
Element of
NAT , k be
Element of
NAT , X be non
empty
open
Subset of (
REAL m);
cluster (
R_Algebra_of_Ck_Functions (k,X)) ->
Abelian
add-associative
right_zeroed
right_complementable
vector-distributive
scalar-distributive
scalar-associative
scalar-unital
commutative
associative
right_unital
right-distributive
scalar-associative
vector-associative;
coherence
proof
now
let v be
VECTOR of (
R_Algebra_of_Ck_Functions (k,X));
reconsider v1 = v as
VECTOR of (
RAlgebra X) by
TARSKI:def 3;
(1
* v)
= (1
* v1) by
C0SP1: 8;
hence (1
* v)
= v by
FUNCSDOM: 12;
end;
hence thesis;
end;
end
theorem ::
CKSPACE1:20
for m be non
zero
Element of
NAT , k be
Element of
NAT , X be non
empty
open
Subset of (
REAL m), F,G,H be
VECTOR of (
R_Algebra_of_Ck_Functions (k,X)), f,g,h be
PartFunc of (
REAL m),
REAL holds (f
= F & g
= G & h
= H implies (H
= (F
+ G) iff (for x be
Element of X holds (h
. x)
= ((f
. x)
+ (g
. x)))))
proof
let m be non
zero
Element of
NAT , k be
Element of
NAT , X be non
empty
open
Subset of (
REAL m);
let F,G,H be
VECTOR of (
R_Algebra_of_Ck_Functions (k,X));
let f,g,h be
PartFunc of (
REAL m),
REAL ;
assume
A1: f
= F & g
= G & h
= H;
reconsider f1 = F, g1 = G, h1 = H as
VECTOR of (
RAlgebra X) by
TARSKI:def 3;
hereby
assume
A2: H
= (F
+ G);
let x be
Element of X;
h1
= (f1
+ g1) by
A2,
C0SP1: 8;
hence (h
. x)
= ((f
. x)
+ (g
. x)) by
A1,
FUNCSDOM: 1;
end;
assume for x be
Element of X holds (h
. x)
= ((f
. x)
+ (g
. x));
then h1
= (f1
+ g1) by
A1,
FUNCSDOM: 1;
hence H
= (F
+ G) by
C0SP1: 8;
end;
theorem ::
CKSPACE1:21
for m be non
zero
Element of
NAT , k be
Element of
NAT , X be non
empty
open
Subset of (
REAL m), F,G,H be
VECTOR of (
R_Algebra_of_Ck_Functions (k,X)), f,g,h be
PartFunc of (
REAL m),
REAL , a be
Real holds (f
= F & g
= G implies (G
= (a
* F) iff for x be
Element of X holds (g
. x)
= (a
* (f
. x))))
proof
let m be non
zero
Element of
NAT , k be
Element of
NAT , X be non
empty
open
Subset of (
REAL m), F,G,H be
VECTOR of (
R_Algebra_of_Ck_Functions (k,X)), f,g,h be
PartFunc of (
REAL m),
REAL , a be
Real;
assume
A1: f
= F & g
= G;
reconsider f1 = F, g1 = G as
VECTOR of (
RAlgebra X) by
TARSKI:def 3;
hereby
assume
A2: G
= (a
* F);
let x be
Element of X;
g1
= (a
* f1) by
A2,
C0SP1: 8;
hence (g
. x)
= (a
* (f
. x)) by
A1,
FUNCSDOM: 4;
end;
assume for x be
Element of X holds (g
. x)
= (a
* (f
. x));
then g1
= (a
* f1) by
A1,
FUNCSDOM: 4;
hence G
= (a
* F) by
C0SP1: 8;
end;
theorem ::
CKSPACE1:22
for m be non
zero
Element of
NAT , k be
Element of
NAT , X be non
empty
open
Subset of (
REAL m), F,G,H be
VECTOR of (
R_Algebra_of_Ck_Functions (k,X)), f,g,h be
PartFunc of (
REAL m),
REAL holds (f
= F & g
= G & h
= H implies (H
= (F
* G) iff (for x be
Element of X holds (h
. x)
= ((f
. x)
* (g
. x)))))
proof
let m be non
zero
Element of
NAT , k be
Element of
NAT , X be non
empty
open
Subset of (
REAL m), F,G,H be
VECTOR of (
R_Algebra_of_Ck_Functions (k,X)), f,g,h be
PartFunc of (
REAL m),
REAL ;
assume
A1: f
= F & g
= G & h
= H;
reconsider f1 = F, g1 = G, h1 = H as
VECTOR of (
RAlgebra X) by
TARSKI:def 3;
hereby
assume
A2: H
= (F
* G);
let x be
Element of X;
h1
= (f1
* g1) by
A2,
C0SP1: 8;
hence (h
. x)
= ((f
. x)
* (g
. x)) by
A1,
FUNCSDOM: 2;
end;
assume for x be
Element of X holds (h
. x)
= ((f
. x)
* (g
. x));
then h1
= (f1
* g1) by
A1,
FUNCSDOM: 2;
hence H
= (F
* G) by
C0SP1: 8;
end;
theorem ::
CKSPACE1:23
for m be non
zero
Element of
NAT , k be
Element of
NAT , X be non
empty
open
Subset of (
REAL m) holds (
0. (
R_Algebra_of_Ck_Functions (k,X)))
= (X
-->
0 )
proof
let m be non
zero
Element of
NAT , k be
Element of
NAT , X be non
empty
open
Subset of (
REAL m);
(
0. (
RAlgebra X))
= (X
-->
0 );
hence thesis by
C0SP1: 8;
end;
theorem ::
CKSPACE1:24
for m be non
zero
Element of
NAT , k be
Element of
NAT , X be non
empty
open
Subset of (
REAL m) holds (
1_ (
R_Algebra_of_Ck_Functions (k,X)))
= (X
--> 1)
proof
let m be non
zero
Element of
NAT , k be
Element of
NAT , X be non
empty
open
Subset of (
REAL m);
(
1_ (
RAlgebra X))
= (X
--> 1);
hence thesis by
C0SP1: 8;
end;