pdiff_7.miz
begin
reserve n for
Nat,
p,p1,p2 for
Point of (
TOP-REAL n),
x for
Real;
registration
let n be
Nat;
let p,q be
Element of (
TOP-REAL n);
let f,g be
real-valued
FinSequence;
identify f
+ g with p
+ q when p = f, q = g;
compatibility ;
end
registration
let r,s be
Real;
let n be
Nat;
let p be
Element of (
TOP-REAL n);
let f be
real-valued
FinSequence;
identify s
* f with r
* p when r = s, p = f;
compatibility ;
end
registration
let n be
Nat;
let p be
Element of (
TOP-REAL n);
let f be
real-valued
FinSequence;
identify
- f with
- p when p = f;
compatibility ;
end
registration
let n be
Nat;
let p,q be
Element of (
TOP-REAL n);
let f,g be
real-valued
FinSequence;
identify f
- g with p
- q when p = f, q = g;
compatibility ;
end
reserve n,m for non
zero
Nat;
reserve i,j for
Nat;
reserve f for
PartFunc of (
REAL-NS m), (
REAL-NS n);
reserve g for
PartFunc of (
REAL m), (
REAL n);
reserve h for
PartFunc of (
REAL m),
REAL ;
reserve x for
Point of (
REAL-NS m);
reserve y for
Element of (
REAL m);
reserve X for
set;
Lm1: for S be
RealNormSpace, x be
Point of S, N1,N2 be
Neighbourhood of x holds (N1
/\ N2) is
Neighbourhood of x
proof
let S be
RealNormSpace, x be
Point of S, N1,N2 be
Neighbourhood of x;
consider N be
Neighbourhood of x such that
A1: N
c= N1 & N
c= N2 by
NDIFF_1: 1;
A2: N
c= (N1
/\ N2) by
A1,
XBOOLE_1: 19;
consider g be
Real such that
A3:
0
< g and
A4: { y where y be
Point of S :
||.(y
- x).||
< g }
c= N by
NFCONT_1:def 1;
{ y where y be
Point of S :
||.(y
- x).||
< g }
c= (N1
/\ N2) by
A2,
A4;
hence thesis by
A3,
NFCONT_1:def 1;
end;
Lm2: i
<= j implies (i
+ (j
-' i))
= ((i
+ j)
-' i)
proof
assume i
<= j;
then
0
<= (j
- i) by
XREAL_1: 48;
then
A1: (j
-' i)
= (j
- i) by
XREAL_0:def 2;
((i
+ j)
-' i)
= ((i
+ j)
- i) by
XREAL_0:def 2;
hence thesis by
A1;
end;
theorem ::
PDIFF_7:1
Th1: i
<= j implies ((
0* j)
| i)
= (
0* i)
proof
assume
A1: i
<= j;
A2: (((
0* i)
^ (
0* (j
-' i)))
| (
len (
0* i)))
= (
0* i) by
FINSEQ_5: 23;
(i
+ (j
-' i))
= ((i
+ j)
-' i) by
A1,
Lm2;
then (i
+ (j
-' i))
= ((i
+ j)
- i) by
XREAL_0:def 2;
then ((
0* i)
^ (
0* (j
-' i)))
= (
0* j) by
FINSEQ_2: 123;
hence thesis by
A2,
CARD_1:def 7;
end;
theorem ::
PDIFF_7:2
Th2: i
<= j implies ((
0* j)
| (i
-' 1))
= (
0* (i
-' 1))
proof
assume i
<= j;
then
A1: (i
- 1)
<= (j
- 1) by
XREAL_1: 9;
(j
- 1)
<= j by
XREAL_1: 43;
then (i
- 1)
<= j by
A1,
XXREAL_0: 2;
then (i
-' 1)
<= j by
XREAL_0:def 2;
hence thesis by
Th1;
end;
Lm3: i
<= j implies ((
0* j)
/^ i)
= (
0* (j
-' i))
proof
assume
A1: i
<= j;
(
len ((
0* j)
/^ i))
= ((
len (
0* j))
-' i) by
RFINSEQ: 29;
then
A2: (
len ((
0* j)
/^ i))
= (j
-' i) by
CARD_1:def 7;
A3: (
len (
0* (j
-' i)))
= (j
-' i) by
CARD_1:def 7;
A4: i
<= (
len (
0* j)) by
A1,
CARD_1:def 7;
for k be
Nat st 1
<= k & k
<= (
len ((
0* j)
/^ i)) holds (((
0* j)
/^ i)
. k)
= ((
0* (j
-' i))
. k)
proof
let k be
Nat;
assume
A5: 1
<= k & k
<= (
len ((
0* j)
/^ i));
k
in (
dom ((
0* j)
/^ i)) by
A5,
FINSEQ_3: 25;
then (((
0* j)
/^ i)
. k)
= ((
0* j)
. (k
+ i)) by
A4,
RFINSEQ:def 1;
then
A6: (((
0* j)
/^ i)
. k)
=
0 ;
thus thesis by
A6;
end;
hence thesis by
A2,
A3;
end;
Lm4: i
> j implies ((
0* j)
/^ i)
= (
0* (j
-' i))
proof
assume
A1: i
> j;
then
A2: i
> (
len (
0* j)) by
CARD_1:def 7;
0
> (j
- i) by
A1,
XREAL_1: 49;
then
A3: (j
-' i)
=
0 by
XREAL_0:def 2;
((
0* j)
/^ i)
=
0 by
A2,
RFINSEQ:def 1;
hence thesis by
A3;
end;
theorem ::
PDIFF_7:3
Th3: ((
0* j)
/^ i)
= (
0* (j
-' i))
proof
per cases ;
suppose i
<= j;
hence thesis by
Lm3;
end;
suppose i
> j;
hence thesis by
Lm4;
end;
end;
theorem ::
PDIFF_7:4
(i
<= j implies ((
0* j)
| (i
-' 1))
= (
0* (i
-' 1))) & ((
0* j)
/^ i)
= (
0* (j
-' i)) by
Th2,
Th3;
theorem ::
PDIFF_7:5
Th5: for xi be
Element of (
REAL-NS 1) st 1
<= i & i
<= j holds
||.((
reproj (i,(
0. (
REAL-NS j))))
. xi).||
=
||.xi.||
proof
let xi be
Element of (
REAL-NS 1);
assume
A1: 1
<= i & i
<= j;
consider q be
Element of
REAL , y be
Element of (
REAL j) such that
A2: xi
=
<*q*> & y
= (
0. (
REAL-NS j)) & ((
reproj (i,(
0. (
REAL-NS j))))
. xi)
= ((
reproj (i,y))
. q) by
PDIFF_1:def 6;
A3: ((
reproj (i,(
0. (
REAL-NS j))))
. xi)
= (
Replace (y,i,q)) by
A2,
PDIFF_1:def 5;
(
len y)
= j by
CARD_1:def 7;
then ((
reproj (i,(
0. (
REAL-NS j))))
. xi)
= (((y
| (i
-' 1))
^
<*q*>)
^ (y
/^ i)) by
A1,
A3,
FINSEQ_7:def 1;
then
A4:
||.((
reproj (i,(
0. (
REAL-NS j))))
. xi).||
=
|.(((y
| (i
-' 1))
^
<*q*>)
^ (y
/^ i)).| by
A2,
REAL_NS1: 1;
(y
| (i
-' 1))
= ((
0* j)
| (i
-' 1)) by
A2,
REAL_NS1:def 4;
then (
sqrt (
Sum (
sqr (y
| (i
-' 1)))))
=
|.(
0* (i
-' 1)).| by
A1,
Th2;
then (
sqrt (
Sum (
sqr (y
| (i
-' 1)))))
=
0 by
EUCLID: 7;
then
A5: (
Sum (
sqr (y
| (i
-' 1))))
=
0 by
RVSUM_1: 86,
SQUARE_1: 24;
(y
/^ i)
= ((
0* j)
/^ i) by
A2,
REAL_NS1:def 4;
then (
sqrt (
Sum (
sqr (y
/^ i))))
=
|.(
0* (j
-' i)).| by
Th3;
then
A6: (
sqrt (
Sum (
sqr (y
/^ i))))
=
0 by
EUCLID: 7;
reconsider q2 = (q
^2 ) as
Real;
(
sqr (((y
| (i
-' 1))
^
<*q*>)
^ (y
/^ i)))
= ((
sqr ((y
| (i
-' 1))
^
<*q*>))
^ (
sqr (y
/^ i))) by
RVSUM_1: 144
.= (((
sqr (y
| (i
-' 1)))
^ (
sqr
<*q*>))
^ (
sqr (y
/^ i))) by
RVSUM_1: 144
.= (((
sqr (y
| (i
-' 1)))
^
<*(q
^2 )*>)
^ (
sqr (y
/^ i))) by
RVSUM_1: 55;
then (
Sum (
sqr (((y
| (i
-' 1))
^
<*q*>)
^ (y
/^ i))))
= ((
Sum ((
sqr (y
| (i
-' 1)))
^
<*q2*>))
+ (
Sum (
sqr (y
/^ i)))) by
RVSUM_1: 75
.= (((
Sum (
sqr (y
| (i
-' 1))))
+ (q
^2 ))
+ (
Sum (
sqr (y
/^ i)))) by
RVSUM_1: 74
.= (q
^2 ) by
A5,
A6,
RVSUM_1: 86,
SQUARE_1: 24;
then
A7:
||.((
reproj (i,(
0. (
REAL-NS j))))
. xi).||
=
|.q.| by
A4,
COMPLEX1: 72;
((
proj (1,1))
.
<*q*>)
= q by
PDIFF_1: 1;
hence thesis by
A7,
A2,
PDIFF_1: 4;
end;
theorem ::
PDIFF_7:6
Th6: for m,i be
Nat, x be
Element of (
REAL m), r be
Real holds (((
reproj (i,x))
. r)
- x)
= ((
reproj (i,(
0* m)))
. (r
- ((
proj (i,m))
. x))) & (x
- ((
reproj (i,x))
. r))
= ((
reproj (i,(
0* m)))
. (((
proj (i,m))
. x)
- r))
proof
let m,i be
Nat, x be
Element of (
REAL m), r1 be
Real;
reconsider r = r1 as
Element of
REAL by
XREAL_0:def 1;
reconsider rr = (r
- ((
proj (i,m))
. x)) as
Element of
REAL ;
reconsider rs = (((
proj (i,m))
. x)
- r) as
Element of
REAL ;
reconsider p = (((
reproj (i,x))
. r)
- x) as m
-element
FinSequence;
reconsider q = ((
reproj (i,(
0* m)))
. rr) as m
-element
FinSequence;
reconsider s = (x
- ((
reproj (i,x))
. r)) as m
-element
FinSequence;
reconsider t = ((
reproj (i,(
0* m)))
. rs) as m
-element
FinSequence;
A1: (
dom p)
= (
Seg m) & (
dom q)
= (
Seg m) & (
dom s)
= (
Seg m) & (
dom t)
= (
Seg m) & (
dom x)
= (
Seg m) & (
dom (
0* m))
= (
Seg m) by
FINSEQ_1: 89;
reconsider x1 = x as
Element of (m
-tuples_on
REAL );
A2: ((
reproj (i,x))
. r)
= (
Replace (x,i,r)) by
PDIFF_1:def 5;
reconsider y1 = ((
reproj (i,x))
. r) as
Element of (m
-tuples_on
REAL );
reconsider mm = m as
Element of
NAT by
ORDINAL1:def 12;
A3: (
len x)
= mm & (
len (
0* m))
= mm by
A1,
FINSEQ_1:def 3;
then
A4: (
len (
Replace (x,i,r)))
= m by
FINSEQ_7: 5;
for k be
Nat st k
in (
dom p) holds (p
. k)
= (q
. k)
proof
let k be
Nat;
assume
A5: k
in (
dom p);
then
A6: 1
<= k & k
<= m by
A1,
FINSEQ_1: 1;
then k
in (
dom (
Replace (x,i,r))) by
A4,
FINSEQ_3: 25;
then
A7: ((
Replace (x,i,r))
/. k)
= ((
Replace (x,i,r))
. k) by
PARTFUN1:def 6;
A8: (p
. k)
= ((y1
. k)
- (x1
. k)) by
RVSUM_1: 27;
q
= (
Replace ((
0* m),i,rr)) by
PDIFF_1:def 5;
then
A9: (q
. k)
= ((
Replace ((
0* m),i,rr))
/. k) by
A5,
A1,
PARTFUN1:def 6;
per cases ;
suppose
A10: k
= i;
then (p
. k)
= (r
- (x1
. k)) & (q
. k)
= (r
- ((
proj (i,m))
. x)) by
A2,
A3,
A6,
A7,
A8,
A9,
FINSEQ_7: 8;
hence (p
. k)
= (q
. k) by
A10,
PDIFF_1:def 1;
end;
suppose k
<> i;
then ((
Replace (x,i,r))
. k)
= (x1
/. k) & (q
. k)
= ((
0* m)
/. k) by
A3,
A6,
A7,
A9,
FINSEQ_7: 10;
then ((
Replace (x,i,r))
. k)
= (x1
. k) & (q
. k)
= ((m
|->
0 )
. k) by
A5,
A1,
PARTFUN1:def 6;
hence (p
. k)
= (q
. k) by
A2,
A8;
end;
end;
then (((
reproj (i,x))
. r)
- x)
= ((
reproj (i,(
0* m)))
. (r
- ((
proj (i,m))
. x))) by
A1,
FINSEQ_1: 13;
hence (((
reproj (i,x))
. r1)
- x)
= ((
reproj (i,(
0* m)))
. (r1
- ((
proj (i,m))
. x)));
for k be
Nat st k
in (
dom s) holds (s
. k)
= (t
. k)
proof
let k be
Nat;
assume
A11: k
in (
dom s);
then
A12: 1
<= k & k
<= m by
A1,
FINSEQ_1: 1;
then k
in (
dom (
Replace (x,i,r))) by
A4,
FINSEQ_3: 25;
then
A13: ((
Replace (x,i,r))
/. k)
= ((
Replace (x,i,r))
. k) by
PARTFUN1:def 6;
A14: (s
. k)
= ((x1
. k)
- (y1
. k)) by
RVSUM_1: 27;
t
= (
Replace ((
0* m),i,rs)) by
PDIFF_1:def 5;
then
A15: (t
. k)
= ((
Replace ((
0* m),i,rs))
/. k) by
A1,
A11,
PARTFUN1:def 6;
per cases ;
suppose
A16: k
= i;
then (s
. k)
= ((x1
. k)
- r) & (t
. k)
= (((
proj (i,m))
. x)
- r) by
A2,
A3,
A12,
A13,
A14,
A15,
FINSEQ_7: 8;
hence (s
. k)
= (t
. k) by
A16,
PDIFF_1:def 1;
end;
suppose k
<> i;
then ((
Replace (x,i,r))
. k)
= (x1
/. k) & (t
. k)
= ((
0* m)
/. k) by
A3,
A12,
A13,
A15,
FINSEQ_7: 10;
then ((
Replace (x,i,r))
. k)
= (x1
. k) & (t
. k)
= ((m
|->
0 )
. k) by
A1,
A11,
PARTFUN1:def 6;
hence (s
. k)
= (t
. k) by
A2,
A14;
end;
end;
hence (x
- ((
reproj (i,x))
. r1))
= ((
reproj (i,(
0* m)))
. (((
proj (i,m))
. x)
- r1)) by
A1,
FINSEQ_1: 13;
end;
theorem ::
PDIFF_7:7
Th7: for m,i be
Nat, x be
Point of (
REAL-NS m), p be
Point of (
REAL-NS 1) holds (((
reproj (i,x))
. p)
- x)
= ((
reproj (i,(
0. (
REAL-NS m))))
. (p
- ((
Proj (i,m))
. x))) & (x
- ((
reproj (i,x))
. p))
= ((
reproj (i,(
0. (
REAL-NS m))))
. (((
Proj (i,m))
. x)
- p))
proof
let m,i be
Nat, x be
Point of (
REAL-NS m), p be
Point of (
REAL-NS 1);
consider p1 be
Element of
REAL , y be
Element of (
REAL m) such that
A1: p
=
<*p1*> & y
= x & ((
reproj (i,x))
. p)
= ((
reproj (i,y))
. p1) by
PDIFF_1:def 6;
reconsider pm = p as
Element of (
REAL 1) by
REAL_NS1:def 4;
reconsider rm = ((
reproj (i,y))
. p1) as
Element of (
REAL m);
(((
reproj (i,x))
. p)
- x)
= (rm
- y) by
A1,
REAL_NS1: 5;
then
A2: (((
reproj (i,x))
. p)
- x)
= ((
reproj (i,(
0* m)))
. (p1
- ((
proj (i,m))
. y))) by
Th6;
A3: (
0* m)
= (
0. (
REAL-NS m)) by
REAL_NS1:def 4;
A4:
<*((
proj (i,m))
. y)*>
= ((
Proj (i,m))
. x) by
A1,
PDIFF_1:def 4;
reconsider Pr = ((
Proj (i,m))
. x) as
Element of (
REAL 1) by
REAL_NS1:def 4;
consider r1 be
Element of
REAL , z be
Element of (
REAL m) such that
A5: (p
- ((
Proj (i,m))
. x))
=
<*r1*> & z
= (
0. (
REAL-NS m)) & ((
reproj (i,(
0. (
REAL-NS m))))
. (p
- ((
Proj (i,m))
. x)))
= ((
reproj (i,z))
. r1) by
PDIFF_1:def 6;
(p
- ((
Proj (i,m))
. x))
= (pm
- Pr) by
REAL_NS1: 5;
then (p
- ((
Proj (i,m))
. x))
=
<*(p1
- ((
proj (i,m))
. y))*> by
A1,
A4,
RVSUM_1: 29;
hence (((
reproj (i,x))
. p)
- x)
= ((
reproj (i,(
0. (
REAL-NS m))))
. (p
- ((
Proj (i,m))
. x))) by
A2,
A3,
A5,
FINSEQ_1: 76;
(x
- ((
reproj (i,x))
. p))
= (y
- rm) by
A1,
REAL_NS1: 5;
then
A6: (x
- ((
reproj (i,x))
. p))
= ((
reproj (i,(
0* m)))
. (((
proj (i,m))
. y)
- p1)) by
Th6;
consider r2 be
Element of
REAL , z be
Element of (
REAL m) such that
A7: (((
Proj (i,m))
. x)
- p)
=
<*r2*> & z
= (
0. (
REAL-NS m)) & ((
reproj (i,(
0. (
REAL-NS m))))
. (((
Proj (i,m))
. x)
- p))
= ((
reproj (i,z))
. r2) by
PDIFF_1:def 6;
(((
Proj (i,m))
. x)
- p)
= (Pr
- pm) by
REAL_NS1: 5;
then (((
Proj (i,m))
. x)
- p)
=
<*(((
proj (i,m))
. y)
- p1)*> by
A1,
A4,
RVSUM_1: 29;
hence (x
- ((
reproj (i,x))
. p))
= ((
reproj (i,(
0. (
REAL-NS m))))
. (((
Proj (i,m))
. x)
- p)) by
A3,
A7,
A6,
FINSEQ_1: 76;
end;
Lm5: for m be
Nat, nx be
Point of (
REAL-NS m), Z be
Subset of (
REAL-NS m), i be
Nat st Z is
open & nx
in Z & 1
<= i & i
<= m holds ex N be
Neighbourhood of ((
Proj (i,m))
. nx) st for z be
Point of (
REAL-NS 1) st z
in N holds ((
reproj (i,nx))
. z)
in Z
proof
let m be
Nat, nx be
Point of (
REAL-NS m), Z be
Subset of (
REAL-NS m), i be
Nat;
assume that
A1: Z is
open and
A2: nx
in Z and
A3: 1
<= i & i
<= m;
consider r be
Real such that
A4:
0
< r & { y where y be
Point of (
REAL-NS m) :
||.(y
- nx).||
< r }
c= Z by
A1,
A2,
NDIFF_1: 3;
set N = { y where y be
Point of (
REAL-NS 1) :
||.(y
- ((
Proj (i,m))
. nx)).||
< r };
reconsider N as
Neighbourhood of ((
Proj (i,m))
. nx) by
A4,
NFCONT_1: 3;
take N;
let z be
Point of (
REAL-NS 1);
assume z
in N;
then
A5: ex y be
Point of (
REAL-NS 1) st y
= z &
||.(y
- ((
Proj (i,m))
. nx)).||
< r;
||.(((
reproj (i,nx))
. z)
- nx).||
=
||.((
reproj (i,(
0. (
REAL-NS m))))
. (z
- ((
Proj (i,m))
. nx))).|| by
Th7
.=
||.(z
- ((
Proj (i,m))
. nx)).|| by
A3,
Th5;
then ((
reproj (i,nx))
. z)
in { y where y be
Point of (
REAL-NS m) :
||.(y
- nx).||
< r } by
A5;
hence thesis by
A4;
end;
theorem ::
PDIFF_7:8
Th8: for m,n be non
zero
Nat, i be
Nat, f be
PartFunc of (
REAL-NS m), (
REAL-NS n), Z be
Subset of (
REAL-NS m) st Z is
open & 1
<= i & i
<= m holds f
is_partial_differentiable_on (Z,i) iff Z
c= (
dom f) & for x be
Point of (
REAL-NS m) st x
in Z holds f
is_partial_differentiable_in (x,i)
proof
let m,n be non
zero
Nat, i be
Nat, f be
PartFunc of (
REAL-NS m), (
REAL-NS n), Z be
Subset of (
REAL-NS m);
assume that
A1: Z is
open and
A2: 1
<= i & i
<= m;
set S = (
REAL-NS 1);
set T = (
REAL-NS n);
set RNS = (
R_NormSpace_of_BoundedLinearOperators (S,T));
thus f
is_partial_differentiable_on (Z,i) implies Z
c= (
dom f) & for x be
Point of (
REAL-NS m) st x
in Z holds f
is_partial_differentiable_in (x,i)
proof
assume
A3: f
is_partial_differentiable_on (Z,i);
hence
A4: Z
c= (
dom f);
let nx0 be
Point of (
REAL-NS m);
reconsider x0 = ((
Proj (i,m))
. nx0) as
Point of S;
assume
A5: nx0
in Z;
then (f
| Z)
is_partial_differentiable_in (nx0,i) by
A3;
then ((f
| Z)
* (
reproj (i,nx0)))
is_differentiable_in x0;
then
consider N0 be
Neighbourhood of x0 such that
A6: N0
c= (
dom ((f
| Z)
* (
reproj (i,nx0)))) and
A7: ex L be
Point of RNS, R be
RestFunc of S, T st for x be
Point of S st x
in N0 holds ((((f
| Z)
* (
reproj (i,nx0)))
/. x)
- (((f
| Z)
* (
reproj (i,nx0)))
/. x0))
= ((L
. (x
- x0))
+ (R
/. (x
- x0))) by
NDIFF_1:def 6;
consider L be
Point of RNS, R be
RestFunc of S, T such that
A8: for x be
Point of S st x
in N0 holds ((((f
| Z)
* (
reproj (i,nx0)))
/. x)
- (((f
| Z)
* (
reproj (i,nx0)))
/. x0))
= ((L
. (x
- x0))
+ (R
/. (x
- x0))) by
A7;
consider N1 be
Neighbourhood of x0 such that
A9: for x be
Point of S st x
in N1 holds ((
reproj (i,nx0))
. x)
in Z by
A1,
A2,
A5,
Lm5;
A10:
now
let x be
Point of S;
assume x
in N1;
then ((
reproj (i,nx0))
. x)
in Z by
A9;
then ((
reproj (i,nx0))
. x)
in ((
dom f)
/\ Z) by
A4,
XBOOLE_0:def 4;
hence ((
reproj (i,nx0))
. x)
in (
dom (f
| Z)) by
RELAT_1: 61;
end;
reconsider N = (N0
/\ N1) as
Neighbourhood of x0 by
Lm1;
((f
| Z)
* (
reproj (i,nx0)))
c= (f
* (
reproj (i,nx0))) by
RELAT_1: 29,
RELAT_1: 59;
then
A11: (
dom ((f
| Z)
* (
reproj (i,nx0))))
c= (
dom (f
* (
reproj (i,nx0)))) by
RELAT_1: 11;
N
c= N0 by
XBOOLE_1: 17;
then N
c= (
dom ((f
| Z)
* (
reproj (i,nx0)))) by
A6;
then
A12: N
c= (
dom (f
* (
reproj (i,nx0)))) by
A11;
now
let x be
Point of S;
assume
A13: x
in N;
then
A14: x
in N0 by
XBOOLE_0:def 4;
A15: (
dom (
reproj (i,nx0)))
= the
carrier of (
REAL-NS 1) by
FUNCT_2:def 1;
x
in N1 by
A13,
XBOOLE_0:def 4;
then
A16: ((
reproj (i,nx0))
. x)
in (
dom (f
| Z)) by
A10;
then
A17: ((
reproj (i,nx0))
. x)
in (
dom f) & ((
reproj (i,nx0))
. x)
in Z by
RELAT_1: 57;
A18: ((
reproj (i,nx0))
. x0)
in (
dom (f
| Z)) by
A10,
NFCONT_1: 4;
then
A19: ((
reproj (i,nx0))
. x0)
in (
dom f) & ((
reproj (i,nx0))
. x0)
in Z by
RELAT_1: 57;
A20: (((f
| Z)
* (
reproj (i,nx0)))
/. x)
= ((f
| Z)
/. ((
reproj (i,nx0))
/. x)) by
A16,
A15,
PARTFUN2: 4
.= (f
/. ((
reproj (i,nx0))
/. x)) by
A17,
PARTFUN2: 17
.= ((f
* (
reproj (i,nx0)))
/. x) by
A15,
A17,
PARTFUN2: 4;
(((f
| Z)
* (
reproj (i,nx0)))
/. x0)
= ((f
| Z)
/. ((
reproj (i,nx0))
/. x0)) by
A15,
A18,
PARTFUN2: 4
.= (f
/. ((
reproj (i,nx0))
/. x0)) by
A19,
PARTFUN2: 17
.= ((f
* (
reproj (i,nx0)))
/. x0) by
A15,
A19,
PARTFUN2: 4;
hence (((f
* (
reproj (i,nx0)))
/. x)
- ((f
* (
reproj (i,nx0)))
/. x0))
= ((L
. (x
- x0))
+ (R
/. (x
- x0))) by
A8,
A14,
A20;
end;
then (f
* (
reproj (i,nx0)))
is_differentiable_in x0 by
A12,
NDIFF_1:def 6;
hence f
is_partial_differentiable_in (nx0,i);
end;
assume that
A21: Z
c= (
dom f) and
A22: for nx be
Point of (
REAL-NS m) st nx
in Z holds f
is_partial_differentiable_in (nx,i);
thus Z
c= (
dom f) by
A21;
now
let nx0 be
Point of (
REAL-NS m);
assume
A23: nx0
in Z;
then
A24: f
is_partial_differentiable_in (nx0,i) by
A22;
reconsider x0 = ((
Proj (i,m))
. nx0) as
Point of S;
(f
* (
reproj (i,nx0)))
is_differentiable_in x0 by
A24;
then
consider N0 be
Neighbourhood of x0 such that N0
c= (
dom (f
* (
reproj (i,nx0)))) and
A25: ex L be
Point of RNS, R be
RestFunc of S, T st for x be
Point of S st x
in N0 holds (((f
* (
reproj (i,nx0)))
/. x)
- ((f
* (
reproj (i,nx0)))
/. x0))
= ((L
. (x
- x0))
+ (R
/. (x
- x0))) by
NDIFF_1:def 6;
consider N1 be
Neighbourhood of x0 such that
A26: for x be
Point of S st x
in N1 holds ((
reproj (i,nx0))
. x)
in Z by
A1,
A2,
A23,
Lm5;
A27:
now
let x be
Point of S;
assume x
in N1;
then ((
reproj (i,nx0))
. x)
in Z by
A26;
then ((
reproj (i,nx0))
. x)
in ((
dom f)
/\ Z) by
A21,
XBOOLE_0:def 4;
hence ((
reproj (i,nx0))
. x)
in (
dom (f
| Z)) by
RELAT_1: 61;
end;
A28: N1
c= (
dom ((f
| Z)
* (
reproj (i,nx0))))
proof
let z be
object;
assume
A29: z
in N1;
then
A30: z
in the
carrier of S;
reconsider x = z as
Point of S by
A29;
A31: ((
reproj (i,nx0))
. x)
in (
dom (f
| Z)) by
A29,
A27;
z
in (
dom (
reproj (i,nx0))) by
A30,
FUNCT_2:def 1;
hence z
in (
dom ((f
| Z)
* (
reproj (i,nx0)))) by
A31,
FUNCT_1: 11;
end;
reconsider N = (N0
/\ N1) as
Neighbourhood of x0 by
Lm1;
N
c= N1 by
XBOOLE_1: 17;
then
A32: N
c= (
dom ((f
| Z)
* (
reproj (i,nx0)))) by
A28;
consider L be
Point of RNS, R be
RestFunc of S, T such that
A33: for x be
Point of S st x
in N0 holds (((f
* (
reproj (i,nx0)))
/. x)
- ((f
* (
reproj (i,nx0)))
/. x0))
= ((L
. (x
- x0))
+ (R
/. (x
- x0))) by
A25;
now
let x be
Point of S;
assume
A34: x
in N;
then
A35: x
in N0 by
XBOOLE_0:def 4;
A36: (
dom (
reproj (i,nx0)))
= the
carrier of (
REAL-NS 1) by
FUNCT_2:def 1;
x
in N1 by
A34,
XBOOLE_0:def 4;
then
A37: ((
reproj (i,nx0))
. x)
in (
dom (f
| Z)) by
A27;
then
A38: ((
reproj (i,nx0))
. x)
in ((
dom f)
/\ Z) by
RELAT_1: 61;
then
A39: ((
reproj (i,nx0))
. x)
in (
dom f) by
XBOOLE_0:def 4;
A40: ((
reproj (i,nx0))
. x0)
in (
dom (f
| Z)) by
A27,
NFCONT_1: 4;
then
A41: ((
reproj (i,nx0))
. x0)
in ((
dom f)
/\ Z) by
RELAT_1: 61;
then
A42: ((
reproj (i,nx0))
. x0)
in (
dom f) by
XBOOLE_0:def 4;
A43: (((f
| Z)
* (
reproj (i,nx0)))
/. x)
= ((f
| Z)
/. ((
reproj (i,nx0))
/. x)) by
A37,
A36,
PARTFUN2: 4
.= (f
/. ((
reproj (i,nx0))
/. x)) by
A38,
PARTFUN2: 16
.= ((f
* (
reproj (i,nx0)))
/. x) by
A36,
A39,
PARTFUN2: 4;
(((f
| Z)
* (
reproj (i,nx0)))
/. x0)
= ((f
| Z)
/. ((
reproj (i,nx0))
/. x0)) by
A36,
A40,
PARTFUN2: 4
.= (f
/. ((
reproj (i,nx0))
/. x0)) by
A41,
PARTFUN2: 16
.= ((f
* (
reproj (i,nx0)))
/. x0) by
A36,
A42,
PARTFUN2: 4;
hence ((((f
| Z)
* (
reproj (i,nx0)))
/. x)
- (((f
| Z)
* (
reproj (i,nx0)))
/. x0))
= ((L
. (x
- x0))
+ (R
/. (x
- x0))) by
A43,
A35,
A33;
end;
then ((f
| Z)
* (
reproj (i,nx0)))
is_differentiable_in x0 by
A32,
NDIFF_1:def 6;
hence (f
| Z)
is_partial_differentiable_in (nx0,i);
end;
hence thesis;
end;
Lm6: for v be
Element of (
REAL m), x be
Real, i be
Nat holds (
len (
Replace (v,i,x)))
= m
proof
let v be
Element of (
REAL m);
let x be
Real;
let i be
Nat;
(
len (
Replace (v,i,x)))
= (
len v) by
FUNCT_7: 97;
hence (
len (
Replace (v,i,x)))
= m by
CARD_1:def 7;
end;
Lm7: for x be
Real, i,j be
Nat st 1
<= j & j
<= m holds (i
= j implies ((
Replace ((
0* m),i,x))
. j)
= x) & (i
<> j implies ((
Replace ((
0* m),i,x))
. j)
=
0 )
proof
let x be
Real;
let i,j be
Nat;
assume 1
<= j & j
<= m;
then
A1: j
in (
Seg m);
(
len (
0* m))
= m by
CARD_1:def 7;
then
A2: j
in (
dom (
0* m)) by
A1,
FINSEQ_1:def 3;
now
assume i
<> j;
then (((
0* m)
+* (i,x))
. j)
= ((
0* m)
. j) by
FUNCT_7: 32;
hence ((
Replace ((
0* m),i,x))
. j)
=
0 ;
end;
hence thesis by
A2,
FUNCT_7: 31;
end;
theorem ::
PDIFF_7:9
Th9: for x,y be
Element of
REAL , i be
Nat st 1
<= i & i
<= m holds (
Replace ((
0* m),i,(x
+ y)))
= ((
Replace ((
0* m),i,x))
+ (
Replace ((
0* m),i,y)))
proof
let x,y be
Element of
REAL ;
let i be
Nat;
assume
A1: 1
<= i & i
<= m;
reconsider xy = (x
+ y) as
Element of
REAL ;
A2: (
len (
Replace ((
0* m),i,xy)))
= m & (
len (
Replace ((
0* m),i,x)))
= m & (
len (
Replace ((
0* m),i,y)))
= m by
Lm6;
then
A3: (
len ((
Replace ((
0* m),i,x))
+ (
Replace ((
0* m),i,y))))
= (
len (
Replace ((
0* m),i,xy))) by
RVSUM_1: 115;
for j be
Nat st 1
<= j & j
<= (
len (
Replace ((
0* m),i,xy))) holds ((
Replace ((
0* m),i,xy))
. j)
= (((
Replace ((
0* m),i,x))
+ (
Replace ((
0* m),i,y)))
. j)
proof
let j be
Nat;
assume
A4: 1
<= j & j
<= (
len (
Replace ((
0* m),i,xy)));
reconsider j as
Nat;
A5: (
dom ((
Replace ((
0* m),i,x))
+ (
Replace ((
0* m),i,y))))
= ((
dom (
Replace ((
0* m),i,x)))
/\ (
dom (
Replace ((
0* m),i,y)))) by
VALUED_1:def 1;
j
in (
dom (
Replace ((
0* m),i,x))) & j
in (
dom (
Replace ((
0* m),i,y))) by
A4,
A2,
FINSEQ_3: 25;
then j
in (
dom ((
Replace ((
0* m),i,x))
+ (
Replace ((
0* m),i,y)))) by
A5,
XBOOLE_0:def 4;
then
A6: (((
Replace ((
0* m),i,x))
+ (
Replace ((
0* m),i,y)))
. j)
= (((
Replace ((
0* m),i,x))
. j)
+ ((
Replace ((
0* m),i,y))
. j)) by
VALUED_1:def 1;
per cases ;
suppose
A7: i
= j;
then (((
Replace ((
0* m),i,x))
+ (
Replace ((
0* m),i,y)))
. j)
= (x
+ ((
Replace ((
0* m),i,y))
. j)) by
A1,
A6,
Lm7
.= (x
+ y) by
A1,
A7,
Lm7;
hence thesis by
A1,
A7,
Lm7;
end;
suppose
A8: i
<> j;
then (((
Replace ((
0* m),i,x))
+ (
Replace ((
0* m),i,y)))
. j)
= (
0 qua
Real
+ ((
Replace ((
0* m),i,y))
. j)) by
A4,
A6,
A2,
Lm7
.=
0 by
A4,
A2,
A8,
Lm7;
hence thesis by
A4,
A2,
A8,
Lm7;
end;
end;
hence thesis by
A3;
end;
registration
let f be
real-valued
FinSequence;
let i be
Nat;
let p be
Real;
cluster (
Replace (f,i,p)) ->
real-valued;
coherence
proof
(
rng (
Replace (f,i,p)))
c= ((
rng f)
\/
{p}) by
FUNCT_7: 100;
then (
rng (
Replace (f,i,p)))
c=
REAL by
XBOOLE_1: 1;
hence thesis by
VALUED_0:def 3;
end;
end
theorem ::
PDIFF_7:10
Th10: for x,a be
Real, i be
Nat st 1
<= i & i
<= m holds ((
0* m)
+* (i,(a
* x)))
= (a
* (
Replace ((
0* m),i,x)))
proof
let x,a be
Real;
let i be
Nat;
assume
A1: 1
<= i & i
<= m;
reconsider ax = (a
* x) as
Real;
A2: (
len (
Replace ((
0* m),i,ax)))
= m & (
len (
Replace ((
0* m),i,x)))
= m by
Lm6;
then
A3: (
len (a
* (
Replace ((
0* m),i,x))))
= (
len (
Replace ((
0* m),i,ax))) by
RVSUM_1: 117;
for j be
Nat st 1
<= j & j
<= (
len (
Replace ((
0* m),i,ax))) holds ((
Replace ((
0* m),i,ax))
. j)
= ((a
* (
Replace ((
0* m),i,x)))
. j)
proof
let j be
Nat;
assume
A4: 1
<= j & j
<= (
len (
Replace ((
0* m),i,ax)));
reconsider j as
Nat;
per cases ;
suppose
A5: i
= j;
then ((
Replace ((
0* m),i,ax))
. j)
= (a
* x) by
A1,
Lm7
.= (a
* ((
Replace ((
0* m),i,x))
. j)) by
A1,
A5,
Lm7;
hence thesis by
RVSUM_1: 44;
end;
suppose
A6: i
<> j;
then ((
Replace ((
0* m),i,x))
. j)
=
0 by
A2,
A4,
Lm7;
then ((
Replace ((
0* m),i,ax))
. j)
= (a
* ((
Replace ((
0* m),i,x))
. j)) by
A2,
A4,
A6,
Lm7;
hence thesis by
RVSUM_1: 44;
end;
end;
hence thesis by
A3;
end;
theorem ::
PDIFF_7:11
Th11: for x be
Element of
REAL , i be
Nat st 1
<= i & i
<= m & x
<>
0 holds (
Replace ((
0* m),i,x))
<> (
0* m)
proof
let x be
Element of
REAL ;
let i be
Nat;
assume
A1: 1
<= i & i
<= m & x
<>
0 ;
then
A2: i
in (
Seg m);
assume
A3: (
Replace ((
0* m),i,x))
= (
0* m);
(
len (
0* m))
= m by
CARD_1:def 7;
then (
Seg m)
= (
proj1 (
0* m)) by
FINSEQ_1:def 3;
then x
= ((
0* m)
. i) by
A3,
A2,
FUNCT_7: 31;
hence contradiction by
A1;
end;
theorem ::
PDIFF_7:12
Th12: for x,y be
Element of
REAL , z be
Element of (
REAL m), i be
Nat st 1
<= i & i
<= m & y
= ((
proj (i,m))
. z) holds ((
Replace (z,i,x))
- z)
= ((
0* m)
+* (i,(x
- y))) & (z
- (
Replace (z,i,x)))
= ((
0* m)
+* (i,(y
- x)))
proof
let x,y be
Element of
REAL ;
let z be
Element of (
REAL m);
let i be
Nat;
assume that
A1: 1
<= i & i
<= m and
A2: y
= ((
proj (i,m))
. z);
reconsider xy = (x
- y), my = (
- y) as
Element of
REAL ;
A3: (
len (
Replace ((
0* m),i,xy)))
= m & (
len (
Replace ((
0* m),i,x)))
= m & (
len (
Replace ((
0* m),i,my)))
= m by
Lm6;
A4: (
dom (
Replace (z,i,x)))
= (
dom z) by
FUNCT_7: 30;
A5: (
dom (
- z))
= (
dom z) & (
dom (
- (
Replace (z,i,x))))
= (
dom (
Replace (z,i,x))) by
VALUED_1:def 5;
A6: (
dom ((
Replace (z,i,x))
- z))
= ((
dom (
Replace (z,i,x)))
/\ (
dom (
- z))) by
VALUED_1:def 1;
A7: (
len (
0* m))
= m by
CARD_1:def 7;
(
dom ((
Replace (z,i,x))
- z))
= (
Seg m) by
A4,
A5,
A6,
FINSEQ_1: 89;
then (
len ((
Replace (z,i,x))
- z))
= (
len (
0* m)) by
A7,
FINSEQ_1:def 3;
then
A8: (
len ((
Replace (z,i,x))
- z))
= (
len (
Replace ((
0* m),i,xy))) by
FINSEQ_7: 5;
for j be
Nat st 1
<= j & j
<= (
len ((
Replace (z,i,x))
- z)) holds ((
Replace ((
0* m),i,xy))
. j)
= (((
Replace (z,i,x))
- z)
. j)
proof
let j be
Nat;
assume
A9: 1
<= j & j
<= (
len ((
Replace (z,i,x))
- z));
reconsider j as
Nat;
A10: j
in (
dom ((
Replace (z,i,x))
- z)) by
A9,
FINSEQ_3: 25;
((
- z)
. j)
= ((
- 1)
* (z
. j)) by
RVSUM_1: 44;
then (((
Replace (z,i,x))
- z)
. j)
= (((
Replace (z,i,x))
. j)
+ (
- (z
. j))) by
A10,
VALUED_1:def 1;
then
A11: (((
Replace (z,i,x))
- z)
. j)
= (((
Replace (z,i,x))
. j)
- (z
. j));
A12: 1
<= i & i
<= (
len z) implies ((
Replace (z,i,x))
. i)
= x
proof
assume 1
<= i & i
<= (
len z);
then i
in (
dom z) by
FINSEQ_3: 25;
hence thesis by
FUNCT_7: 31;
end;
A13: (
dom ((
Replace ((
0* m),i,x))
+ (
Replace ((
0* m),i,my))))
= ((
dom (
Replace ((
0* m),i,x)))
/\ (
dom (
Replace ((
0* m),i,my)))) by
VALUED_1:def 1;
j
in (
dom (
Replace ((
0* m),i,x))) & j
in (
dom (
Replace ((
0* m),i,my))) by
A3,
A9,
A8,
FINSEQ_3: 25;
then j
in (
dom ((
Replace ((
0* m),i,x))
+ (
Replace ((
0* m),i,my)))) by
A13,
XBOOLE_0:def 4;
then
A14: (((
Replace ((
0* m),i,x))
+ (
Replace ((
0* m),i,my)))
. j)
= (((
Replace ((
0* m),i,x))
. j)
+ ((
Replace ((
0* m),i,my))
. j)) by
VALUED_1:def 1;
per cases ;
suppose
A15: i
= j;
reconsider xmy = (x
+ my) as
Real;
((
Replace ((
0* m),i,xy))
. j)
= ((
Replace ((
0* m),i,xmy))
. j)
.= (((
Replace ((
0* m),i,x))
+ (
Replace ((
0* m),i,my)))
. j) by
A1,
Th9
.= (x
+ ((
Replace ((
0* m),i,my))
. j)) by
A1,
A14,
A15,
Lm7
.= (x
+ (
- y)) by
A1,
A15,
Lm7
.= (x
- ((
proj (i,m))
. z)) by
A2;
hence thesis by
A11,
A9,
A4,
A5,
A6,
A12,
A15,
FINSEQ_3: 29,
PDIFF_1:def 1;
end;
suppose
A16: not (i
= j);
then ((
Replace ((
0* m),i,xy))
. j)
= ((z
. j)
- (z
. j)) by
A3,
A9,
A8,
Lm7;
hence thesis by
A11,
A16,
FUNCT_7: 32;
end;
end;
hence
A17: ((
Replace (z,i,x))
- z)
= ((
0* m)
+* (i,(x
- y))) by
A8;
reconsider a = (
- 1) as
Element of
REAL by
XREAL_0:def 1;
reconsider axy = (a
* xy) as
Element of
REAL ;
(z
- (
Replace (z,i,x)))
= (
- (
Replace ((
0* m),i,xy))) by
A17,
RVSUM_1: 35;
then (z
- (
Replace (z,i,x)))
= (
Replace ((
0* m),i,axy)) by
A1,
Th10;
hence (z
- (
Replace (z,i,x)))
= ((
0* m)
+* (i,(y
- x)));
end;
theorem ::
PDIFF_7:13
Th13: for x,y be
Element of
REAL , i be
Nat st 1
<= i & i
<= m holds ((
reproj (i,(
0* m)))
. (x
+ y))
= (((
reproj (i,(
0* m)))
. x)
+ ((
reproj (i,(
0* m)))
. y))
proof
let x,y be
Element of
REAL , i be
Nat;
assume
A1: 1
<= i & i
<= m;
reconsider xy = (x
+ y) as
Element of
REAL ;
(
Replace ((
0* m),i,x))
= ((
reproj (i,(
0* m)))
. x) & (
Replace ((
0* m),i,y))
= ((
reproj (i,(
0* m)))
. y) & ((
reproj (i,(
0* m)))
. (x
+ y))
= (
Replace ((
0* m),i,xy)) by
PDIFF_1:def 5;
hence thesis by
A1,
Th9;
end;
theorem ::
PDIFF_7:14
Th14: for x,y be
Point of (
REAL-NS 1), i be
Nat st 1
<= i & i
<= m holds ((
reproj (i,(
0. (
REAL-NS m))))
. (x
+ y))
= (((
reproj (i,(
0. (
REAL-NS m))))
. x)
+ ((
reproj (i,(
0. (
REAL-NS m))))
. y))
proof
let x,y be
Point of (
REAL-NS 1), i be
Nat;
assume
A1: 1
<= i & i
<= m;
consider q1 be
Element of
REAL , z1 be
Element of (
REAL m) such that
A2: x
=
<*q1*> & z1
= (
0. (
REAL-NS m)) & ((
reproj (i,(
0. (
REAL-NS m))))
. x)
= ((
reproj (i,z1))
. q1) by
PDIFF_1:def 6;
consider q2 be
Element of
REAL , z2 be
Element of (
REAL m) such that
A3: y
=
<*q2*> & z2
= (
0. (
REAL-NS m)) & ((
reproj (i,(
0. (
REAL-NS m))))
. y)
= ((
reproj (i,z2))
. q2) by
PDIFF_1:def 6;
consider q12 be
Element of
REAL , z12 be
Element of (
REAL m) such that
A4: (x
+ y)
=
<*q12*> & z12
= (
0. (
REAL-NS m)) & ((
reproj (i,(
0. (
REAL-NS m))))
. (x
+ y))
= ((
reproj (i,z12))
. q12) by
PDIFF_1:def 6;
A5: (
0. (
REAL-NS m))
= (
0* m) by
REAL_NS1:def 4;
reconsider qq1 =
<*q1*> as
Element of (
REAL 1) by
FINSEQ_2: 98;
reconsider qq2 =
<*q2*> as
Element of (
REAL 1) by
FINSEQ_2: 98;
(x
+ y)
= (qq1
+ qq2) by
A2,
A3,
REAL_NS1: 2;
then
A6: (x
+ y)
=
<*(q1
+ q2)*> by
RVSUM_1: 13;
(((
reproj (i,(
0. (
REAL-NS m))))
. x)
+ ((
reproj (i,(
0. (
REAL-NS m))))
. y))
= (((
reproj (i,(
0* m)))
. q1)
+ ((
reproj (i,(
0* m)))
. q2)) by
A2,
A3,
A5,
REAL_NS1: 2
.= ((
reproj (i,(
0* m)))
. (q1
+ q2)) by
A1,
Th13;
hence thesis by
A6,
A4,
A5,
FINSEQ_1: 76;
end;
theorem ::
PDIFF_7:15
Th15: for x,a be
Real, i be
Nat st 1
<= i
<= m holds ((
reproj (i,(
0* m)))
. (a
* x))
= (a
(#) ((
reproj (i,(
0* m)))
. x))
proof
let x,a be
Real, i be
Nat;
assume
A1: 1
<= i & i
<= m;
reconsider a, x as
Element of
REAL by
XREAL_0:def 1;
reconsider ax = (a
* x) as
Element of
REAL ;
A2: (
Replace ((
0* m),i,ax))
= (a
* (
Replace ((
0* m),i,x))) by
Th10,
A1;
(
Replace ((
0* m),i,x))
= ((
reproj (i,(
0* m)))
. x) by
PDIFF_1:def 5;
then ((
reproj (i,(
0* m)))
. (a
* x))
= (a
* ((
reproj (i,(
0* m)))
. x)) by
A2,
PDIFF_1:def 5;
hence thesis;
end;
theorem ::
PDIFF_7:16
Th16: for x be
Point of (
REAL-NS 1), a be
Real, i be
Nat st 1
<= i & i
<= m holds ((
reproj (i,(
0. (
REAL-NS m))))
. (a
* x))
= (a
* ((
reproj (i,(
0. (
REAL-NS m))))
. x))
proof
let x be
Point of (
REAL-NS 1), a be
Real, i be
Nat;
assume
A1: 1
<= i & i
<= m;
consider q1 be
Element of
REAL , z1 be
Element of (
REAL m) such that
A2: x
=
<*q1*> & z1
= (
0. (
REAL-NS m)) & ((
reproj (i,(
0. (
REAL-NS m))))
. x)
= ((
reproj (i,z1))
. q1) by
PDIFF_1:def 6;
consider q12 be
Element of
REAL , z12 be
Element of (
REAL m) such that
A3: (a
* x)
=
<*q12*> & z12
= (
0. (
REAL-NS m)) & ((
reproj (i,(
0. (
REAL-NS m))))
. (a
* x))
= ((
reproj (i,z12))
. q12) by
PDIFF_1:def 6;
A4: (
0. (
REAL-NS m))
= (
0* m) by
REAL_NS1:def 4;
reconsider qq1 =
<*q1*> as
Element of (
REAL 1) by
FINSEQ_2: 98;
(a
* x)
= (a
* qq1) by
A2,
REAL_NS1: 3;
then
A5: (a
* x)
=
<*(a
* q1)*> by
RVSUM_1: 47;
(a
* ((
reproj (i,(
0. (
REAL-NS m))))
. x))
= (a
* ((
reproj (i,(
0* m)))
. q1)) by
A2,
A4,
REAL_NS1: 3
.= ((
reproj (i,(
0* m)))
. (a
* q1)) by
A1,
Th15;
hence thesis by
A5,
A3,
A4,
FINSEQ_1: 76;
end;
theorem ::
PDIFF_7:17
Th17: for x be
Element of
REAL , i be
Nat st 1
<= i & i
<= m & x
<>
0 holds ((
reproj (i,(
0* m)))
. x)
<> (
0* m)
proof
let x be
Element of
REAL , i be
Nat;
assume 1
<= i & i
<= m & x
<>
0 ;
then (
Replace ((
0* m),i,x))
<> (
0* m) by
Th11;
hence thesis by
PDIFF_1:def 5;
end;
theorem ::
PDIFF_7:18
Th18: for x be
Point of (
REAL-NS 1), i be
Nat st 1
<= i & i
<= m & x
<> (
0. (
REAL-NS 1)) holds ((
reproj (i,(
0. (
REAL-NS m))))
. x)
<> (
0. (
REAL-NS m))
proof
let x be
Point of (
REAL-NS 1), i be
Nat;
assume
A1: 1
<= i & i
<= m & x
<> (
0. (
REAL-NS 1));
consider q1 be
Element of
REAL , z1 be
Element of (
REAL m) such that
A2: x
=
<*q1*> & z1
= (
0. (
REAL-NS m)) & ((
reproj (i,(
0. (
REAL-NS m))))
. x)
= ((
reproj (i,z1))
. q1) by
PDIFF_1:def 6;
A3: (
0. (
REAL-NS m))
= (
0* m) by
REAL_NS1:def 4;
now
assume q1
=
0 ;
then
<*q1*>
= (
0* 1) by
FINSEQ_2: 59;
hence contradiction by
A2,
A1,
REAL_NS1:def 4;
end;
hence thesis by
A2,
A3,
A1,
Th17;
end;
theorem ::
PDIFF_7:19
Th19: for x,y be
Element of
REAL , z be
Element of (
REAL m), i be
Nat st 1
<= i & i
<= m & y
= ((
proj (i,m))
. z) holds (((
reproj (i,z))
. x)
- z)
= ((
reproj (i,(
0* m)))
. (x
- y)) & (z
- ((
reproj (i,z))
. x))
= ((
reproj (i,(
0* m)))
. (y
- x))
proof
let x,y be
Element of
REAL , z be
Element of (
REAL m), i be
Nat;
reconsider xy = (x
- y), yx = (y
- x) as
Element of
REAL ;
assume 1
<= i & i
<= m & y
= ((
proj (i,m))
. z);
then
A1: ((
Replace (z,i,x))
- z)
= (
Replace ((
0* m),i,xy)) & (z
- (
Replace (z,i,x)))
= (
Replace ((
0* m),i,yx)) by
Th12;
(
Replace (z,i,x))
= ((
reproj (i,z))
. x) by
PDIFF_1:def 5;
hence thesis by
A1,
PDIFF_1:def 5;
end;
theorem ::
PDIFF_7:20
Th20: for x,y be
Point of (
REAL-NS 1), i be
Nat, z be
Point of (
REAL-NS m) st 1
<= i & i
<= m & y
= ((
Proj (i,m))
. z) holds (((
reproj (i,z))
. x)
- z)
= ((
reproj (i,(
0. (
REAL-NS m))))
. (x
- y)) & (z
- ((
reproj (i,z))
. x))
= ((
reproj (i,(
0. (
REAL-NS m))))
. (y
- x))
proof
let x,y be
Point of (
REAL-NS 1), i be
Nat, z be
Point of (
REAL-NS m);
assume
A1: 1
<= i & i
<= m & y
= ((
Proj (i,m))
. z);
consider q1 be
Element of
REAL , z1 be
Element of (
REAL m) such that
A2: x
=
<*q1*> & z1
= z & ((
reproj (i,z))
. x)
= ((
reproj (i,z1))
. q1) by
PDIFF_1:def 6;
consider q2 be
Element of
REAL , z2 be
Element of (
REAL m) such that
A3: y
=
<*q2*> & z2
= z & ((
reproj (i,z))
. y)
= ((
reproj (i,z2))
. q2) by
PDIFF_1:def 6;
consider q12 be
Element of
REAL , z12 be
Element of (
REAL m) such that
A4: (x
- y)
=
<*q12*> & z12
= (
0. (
REAL-NS m)) & ((
reproj (i,(
0. (
REAL-NS m))))
. (x
- y))
= ((
reproj (i,z12))
. q12) by
PDIFF_1:def 6;
consider q21 be
Element of
REAL , z21 be
Element of (
REAL m) such that
A5: (y
- x)
=
<*q21*> & z21
= (
0. (
REAL-NS m)) & ((
reproj (i,(
0. (
REAL-NS m))))
. (y
- x))
= ((
reproj (i,z21))
. q21) by
PDIFF_1:def 6;
A6: (
0. (
REAL-NS m))
= (
0* m) by
REAL_NS1:def 4;
reconsider qq1 =
<*q1*> as
Element of (
REAL 1) by
FINSEQ_2: 98;
reconsider qq2 =
<*q2*> as
Element of (
REAL 1) by
FINSEQ_2: 98;
(x
- y)
= (qq1
- qq2) & (y
- x)
= (qq2
- qq1) by
A2,
A3,
REAL_NS1: 5;
then (x
- y)
=
<*(q1
- q2)*> & (y
- x)
=
<*(q2
- q1)*> by
RVSUM_1: 29;
then
A7: ((
reproj (i,(
0. (
REAL-NS m))))
. (x
- y))
= ((
reproj (i,(
0* m)))
. (q1
- q2)) & ((
reproj (i,(
0. (
REAL-NS m))))
. (y
- x))
= ((
reproj (i,(
0* m)))
. (q2
- q1)) by
A4,
A5,
A6,
FINSEQ_1: 76;
y
=
<*((
proj (i,m))
. z)*> by
A1,
PDIFF_1:def 4;
then q2
= ((
proj (i,m))
. z1) by
A2,
A3,
FINSEQ_1: 76;
then (((
reproj (i,z1))
. q1)
- z1)
= ((
reproj (i,(
0* m)))
. (q1
- q2)) & (z1
- ((
reproj (i,z1))
. q1))
= ((
reproj (i,(
0* m)))
. (q2
- q1)) by
Th19,
A1;
hence thesis by
A7,
A2,
REAL_NS1: 5;
end;
theorem ::
PDIFF_7:21
Th21: f
is_differentiable_in x & 1
<= i & i
<= m implies f
is_partial_differentiable_in (x,i) & (
partdiff (f,x,i))
= ((
diff (f,x))
* (
reproj (i,(
0. (
REAL-NS m)))))
proof
assume
A1: f
is_differentiable_in x;
assume
A2: 1
<= i & i
<= m;
consider N be
Neighbourhood of x such that
A3: N
c= (
dom f) & ex R be
RestFunc of (
REAL-NS m), (
REAL-NS n) st for y be
Point of (
REAL-NS m) st y
in N holds ((f
/. y)
- (f
/. x))
= (((
diff (f,x))
. (y
- x))
+ (R
/. (y
- x))) by
A1,
NDIFF_1:def 7;
consider R be
RestFunc of (
REAL-NS m), (
REAL-NS n) such that
A4: for y be
Point of (
REAL-NS m) st y
in N holds ((f
/. y)
- (f
/. x))
= (((
diff (f,x))
. (y
- x))
+ (R
/. (y
- x))) by
A3;
consider r0 be
Real such that
A5:
0
< r0 & { z where z be
Point of (
REAL-NS m) :
||.(z
- x).||
< r0 }
c= N by
NFCONT_1:def 1;
set u = (f
* (
reproj (i,x)));
reconsider x0 = ((
Proj (i,m))
. x) as
Point of (
REAL-NS 1);
set Z = (
0. (
REAL-NS m));
set Nx0 = { z where z be
Point of (
REAL-NS 1) :
||.(z
- x0).||
< r0 };
now
let s be
object;
assume s
in Nx0;
then ex z be
Point of (
REAL-NS 1) st s
= z &
||.(z
- x0).||
< r0;
hence s
in the
carrier of (
REAL-NS 1);
end;
then Nx0 is
Subset of (
REAL-NS 1) by
TARSKI:def 3;
then
reconsider Nx0 as
Neighbourhood of x0 by
A5,
NFCONT_1:def 1;
A6: for xi be
Element of (
REAL-NS 1) st xi
in Nx0 holds ((
reproj (i,x))
. xi)
in N
proof
let xi be
Element of (
REAL-NS 1);
assume xi
in Nx0;
then
A7: ex z be
Point of (
REAL-NS 1) st xi
= z &
||.(z
- x0).||
< r0;
(((
reproj (i,x))
. xi)
- x)
= ((
reproj (i,Z))
. (xi
- x0)) by
A2,
Th20;
then
||.(((
reproj (i,x))
. xi)
- x).||
< r0 by
A2,
Th5,
A7;
then ((
reproj (i,x))
. xi)
in { z where z be
Point of (
REAL-NS m) :
||.(z
- x).||
< r0 };
hence thesis by
A5;
end;
A8: R is
total by
NDIFF_1:def 5;
then
A9: (
dom R)
= the
carrier of (
REAL-NS m) by
PARTFUN1:def 2;
reconsider R1 = (R
* (
reproj (i,(
0. (
REAL-NS m))))) as
PartFunc of (
REAL-NS 1), (
REAL-NS n);
A10: (
dom (
reproj (i,(
0. (
REAL-NS m)))))
= the
carrier of (
REAL-NS 1) by
FUNCT_2:def 1;
A11: (
dom R1)
= the
carrier of (
REAL-NS 1) by
A8,
PARTFUN1:def 2;
for r be
Real st r
>
0 holds ex d be
Real st d
>
0 & for z be
Point of (
REAL-NS 1) st z
<> (
0. (
REAL-NS 1)) &
||.z.||
< d holds ((
||.z.||
" )
*
||.(R1
/. z).||)
< r
proof
let r be
Real;
assume r
>
0 ;
then
consider d be
Real such that
A12: d
>
0 & for z be
Point of (
REAL-NS m) st z
<> (
0. (
REAL-NS m)) &
||.z.||
< d holds ((
||.z.||
" )
*
||.(R
/. z).||)
< r by
A8,
NDIFF_1: 23;
take d;
now
let z be
Point of (
REAL-NS 1);
assume
A13: z
<> (
0. (
REAL-NS 1)) &
||.z.||
< d;
A14:
||.((
reproj (i,Z))
. z).||
=
||.z.|| by
A2,
Th5;
(R
/. ((
reproj (i,Z))
. z))
= (R
. ((
reproj (i,Z))
. z)) by
A9,
PARTFUN1:def 6;
then (R
/. ((
reproj (i,Z))
. z))
= (R1
. z) by
A10,
FUNCT_1: 13;
then (R
/. ((
reproj (i,Z))
. z))
= (R1
/. z) by
A11,
PARTFUN1:def 6;
hence ((
||.z.||
" )
*
||.(R1
/. z).||)
< r by
A12,
A14,
A13,
Th18,
A2;
end;
hence thesis by
A12;
end;
then
reconsider R1 as
RestFunc of (
REAL-NS 1), (
REAL-NS n) by
A8,
NDIFF_1: 23;
reconsider dfx = (
diff (f,x)) as
Lipschitzian
LinearOperator of (
REAL-NS m), (
REAL-NS n) by
LOPBAN_1:def 9;
reconsider LD1 = (dfx
* (
reproj (i,(
0. (
REAL-NS m))))) as
Function of (
REAL-NS 1), (
REAL-NS n);
A15:
now
let x,y be
Element of (
REAL-NS 1);
(LD1
. (x
+ y))
= (dfx
. ((
reproj (i,Z))
. (x
+ y))) by
FUNCT_2: 15;
then (LD1
. (x
+ y))
= (dfx
. (((
reproj (i,Z))
. x)
+ ((
reproj (i,Z))
. y))) by
Th14,
A2;
then (LD1
. (x
+ y))
= ((dfx
. ((
reproj (i,Z))
. x))
+ (dfx
. ((
reproj (i,Z))
. y))) by
VECTSP_1:def 20;
then (LD1
. (x
+ y))
= ((LD1
. x)
+ (dfx
. ((
reproj (i,Z))
. y))) by
FUNCT_2: 15;
hence (LD1
. (x
+ y))
= ((LD1
. x)
+ (LD1
. y)) by
FUNCT_2: 15;
end;
now
let x be
Element of (
REAL-NS 1), a be
Real;
(LD1
. (a
* x))
= (dfx
. ((
reproj (i,Z))
. (a
* x))) by
FUNCT_2: 15;
then (LD1
. (a
* x))
= (dfx
. (a
* ((
reproj (i,Z))
. x))) by
Th16,
A2;
then (LD1
. (a
* x))
= (a
* (dfx
. ((
reproj (i,Z))
. x))) by
LOPBAN_1:def 5;
hence (LD1
. (a
* x))
= (a
* (LD1
. x)) by
FUNCT_2: 15;
end;
then
reconsider LD1 as
LinearOperator of (
REAL-NS 1), (
REAL-NS n) by
A15,
LOPBAN_1:def 5,
VECTSP_1:def 20;
reconsider LD1 as
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS 1),(
REAL-NS n))) by
LOPBAN_1:def 9;
now
let s be
object;
assume s
in ((
reproj (i,x))
.: Nx0);
then ex t be
Element of (
REAL-NS 1) st t
in Nx0 & s
= ((
reproj (i,x))
. t) by
FUNCT_2: 65;
then s
in N by
A6;
hence s
in (
dom f) by
A3;
end;
then
A16: ((
reproj (i,x))
.: Nx0)
c= (
dom f);
(
dom (
reproj (i,x)))
= the
carrier of (
REAL-NS 1) by
FUNCT_2:def 1;
then
A17: Nx0
c= (
dom u) by
A16,
FUNCT_3: 3;
A18: for y be
Point of (
REAL-NS 1) st y
in Nx0 holds ((u
/. y)
- (u
/. x0))
= ((LD1
. (y
- x0))
+ (R1
/. (y
- x0)))
proof
let y be
Point of (
REAL-NS 1);
assume
A19: y
in Nx0;
then
A20: ((
reproj (i,x))
. y)
in N by
A6;
consider q be
Element of
REAL , z be
Element of (
REAL m) such that
A21: x0
=
<*q*> & z
= x & ((
reproj (i,x))
. x0)
= ((
reproj (i,z))
. q) by
PDIFF_1:def 6;
reconsider zi = (z
. i) as
Element of
REAL by
XREAL_0:def 1;
x0
=
<*((
proj (i,m))
. x)*> by
PDIFF_1:def 4;
then q
= ((
proj (i,m))
. z) by
A21,
FINSEQ_1: 76;
then ((
reproj (i,x))
. x0)
= ((
reproj (i,z))
. (z
. i)) by
A21,
PDIFF_1:def 1;
then ((
reproj (i,x))
. x0)
= (
Replace (z,i,zi)) by
PDIFF_1:def 5;
then
A22: ((
reproj (i,x))
. x0)
= x by
A21,
FUNCT_7: 35;
A23: x0
in Nx0 by
NFCONT_1: 4;
A24: ((
reproj (i,x))
. x0)
in N by
A6,
NFCONT_1: 4;
(u
/. y)
= (u
. y) by
A19,
A17,
PARTFUN1:def 6;
then (u
/. y)
= (f
. ((
reproj (i,x))
. y)) by
FUNCT_2: 15;
then
A25: (u
/. y)
= (f
/. ((
reproj (i,x))
. y)) by
A20,
A3,
PARTFUN1:def 6;
(u
/. x0)
= (u
. x0) by
A23,
A17,
PARTFUN1:def 6;
then (u
/. x0)
= (f
. ((
reproj (i,x))
. x0)) by
FUNCT_2: 15;
then
A26: ((u
/. y)
- (u
/. x0))
= ((f
/. ((
reproj (i,x))
. y))
- (f
/. x)) by
A25,
A22,
A24,
A3,
PARTFUN1:def 6;
(R
/. ((
reproj (i,Z))
. (y
- x0)))
= (R
. ((
reproj (i,Z))
. (y
- x0))) by
A9,
PARTFUN1:def 6;
then (R
/. ((
reproj (i,Z))
. (y
- x0)))
= (R1
. (y
- x0)) by
A10,
FUNCT_1: 13;
then
A27: (R
/. ((
reproj (i,Z))
. (y
- x0)))
= (R1
/. (y
- x0)) by
A11,
PARTFUN1:def 6;
((u
/. y)
- (u
/. x0))
= (((
diff (f,x))
. (((
reproj (i,x))
. y)
- x))
+ (R
/. (((
reproj (i,x))
. y)
- x))) by
A26,
A4,
A19,
A6;
then ((u
/. y)
- (u
/. x0))
= ((dfx
. ((
reproj (i,Z))
. (y
- x0)))
+ (R
/. (((
reproj (i,x))
. y)
- x))) by
A2,
Th20;
then ((u
/. y)
- (u
/. x0))
= ((dfx
. ((
reproj (i,Z))
. (y
- x0)))
+ (R
/. ((
reproj (i,Z))
. (y
- x0)))) by
A2,
Th20;
hence ((u
/. y)
- (u
/. x0))
= ((LD1
. (y
- x0))
+ (R1
/. (y
- x0))) by
A27,
FUNCT_2: 15;
end;
then
A28: u
is_differentiable_in x0 by
A17,
NDIFF_1:def 6;
hence f
is_partial_differentiable_in (x,i);
thus (
partdiff (f,x,i))
= ((
diff (f,x))
* (
reproj (i,(
0. (
REAL-NS m))))) by
A28,
A17,
A18,
NDIFF_1:def 7;
end;
theorem ::
PDIFF_7:22
Th22: g
is_differentiable_in y & 1
<= i & i
<= m implies g
is_partial_differentiable_in (y,i) & (
partdiff (g,y,i))
= (((
diff (g,y))
* (
reproj (i,(
0. (
REAL-NS m)))))
.
<*1*>)
proof
assume
A1: g
is_differentiable_in y & 1
<= i & i
<= m;
then
consider f be
PartFunc of (
REAL-NS m), (
REAL-NS n), x be
Point of (
REAL-NS m) such that
A2: f
= g & x
= y & f
is_differentiable_in x;
A3: ex f2 be
PartFunc of (
REAL-NS m), (
REAL-NS n), x2 be
Point of (
REAL-NS m) st f2
= g & x2
= y & (
diff (g,y))
= (
diff (f2,x2)) by
A1,
PDIFF_1:def 8;
A4: f
is_partial_differentiable_in (x,i) & (
partdiff (f,x,i))
= ((
diff (f,x))
* (
reproj (i,(
0. (
REAL-NS m))))) by
Th21,
A2,
A1;
then g
is_partial_differentiable_in (y,i) by
A2;
then ex f1 be
PartFunc of (
REAL-NS m), (
REAL-NS n), x1 be
Point of (
REAL-NS m) st f1
= g & x1
= y & (
partdiff (g,y,i))
= ((
partdiff (f1,x1,i))
.
<*1*>) by
PDIFF_1:def 14;
hence thesis by
A4,
A3,
A2;
end;
definition
let n be non
zero
Nat;
let f be
PartFunc of (
REAL n),
REAL ;
let x be
Element of (
REAL n);
::
PDIFF_7:def1
pred f
is_differentiable_in x means (
<>* f)
is_differentiable_in x;
end
definition
let n be non
zero
Nat;
let f be
PartFunc of (
REAL n),
REAL ;
let x be
Element of (
REAL n);
::
PDIFF_7:def2
func
diff (f,x) ->
Function of (
REAL n),
REAL equals ((
proj (1,1))
* (
diff ((
<>* f),x)));
coherence ;
end
reconsider jj = 1 as
Element of
REAL by
XREAL_0:def 1;
theorem ::
PDIFF_7:23
h
is_differentiable_in y & 1
<= i & i
<= m implies h
is_partial_differentiable_in (y,i) & (
partdiff (h,y,i))
= (
diff ((h
* (
reproj (i,y))),((
proj (i,m))
. y))) & (
partdiff (h,y,i))
= ((
diff (h,y))
. ((
reproj (i,(
0* m)))
. 1))
proof
assume
A1: h
is_differentiable_in y & 1
<= i & i
<= m;
A2: (
<>* h)
is_partial_differentiable_in (y,i) & (
partdiff ((
<>* h),y,i))
= (((
diff ((
<>* h),y))
* (
reproj (i,(
0. (
REAL-NS m)))))
.
<*1*>) by
Th22,
A1;
then
A3: ex g be
PartFunc of (
REAL-NS m), (
REAL-NS 1), x be
Point of (
REAL-NS m) st (
<>* h)
= g & x
= y & g
is_partial_differentiable_in (x,i);
hence h
is_partial_differentiable_in (y,i) by
PDIFF_1: 14;
thus (
partdiff (h,y,i))
= (
diff ((h
* (
reproj (i,y))),((
proj (i,m))
. y)));
A4: ex k be
PartFunc of (
REAL-NS m), (
REAL-NS 1), z be
Point of (
REAL-NS m) st (
<>* h)
= k & y
= z & (
partdiff ((
<>* h),y,i))
= ((
partdiff (k,z,i))
.
<*1*>) by
A2,
PDIFF_1:def 14;
<*jj*>
in (
REAL 1) by
FINSEQ_2: 98;
then
A5:
<*1*>
in the
carrier of (
REAL-NS 1) by
REAL_NS1:def 4;
<*(
partdiff (h,y,i))*>
= (
partdiff ((
<>* h),y,i)) by
A4,
A3,
PDIFF_1: 15;
then
A6:
<*(
partdiff (h,y,i))*>
= ((
diff ((
<>* h),y))
. ((
reproj (i,(
0. (
REAL-NS m))))
.
<*1*>)) by
A2,
A5,
FUNCT_2: 15;
(
0. (
REAL-NS m))
= (
0* m) by
REAL_NS1:def 4;
then ex q be
Element of
REAL , z be
Element of (
REAL m) st
<*1*>
=
<*q*> & z
= (
0* m) & ((
reproj (i,(
0. (
REAL-NS m))))
.
<*1*>)
= ((
reproj (i,z))
. q) by
A5,
PDIFF_1:def 6;
then ((
reproj (i,(
0. (
REAL-NS m))))
.
<*1*>)
= ((
reproj (i,(
0* m)))
. 1) by
FINSEQ_1: 76;
then (
partdiff (h,y,i))
= ((
proj (1,1))
. ((
diff ((
<>* h),y))
. ((
reproj (i,(
0* m)))
. jj))) by
A6,
PDIFF_1: 1;
hence (
partdiff (h,y,i))
= ((
diff (h,y))
. ((
reproj (i,(
0* m)))
. 1)) by
FUNCT_2: 15;
end;
theorem ::
PDIFF_7:24
Th24: for m be non
zero
Nat, v,w,u be
FinSequence of (
REAL m) st (
dom v)
= (
dom w) & u
= (v
+ w) holds (
Sum u)
= ((
Sum v)
+ (
Sum w))
proof
let m be non
zero
Nat;
defpred
P[
Nat] means for xseq,yseq,zseq be
FinSequence of (
REAL m) st $1
= (
len zseq) & (
len zseq)
= (
len xseq) & (
len zseq)
= (
len yseq) & for i be
Nat st i
in (
dom zseq) holds (zseq
/. i)
= ((xseq
/. i)
+ (yseq
/. i)) holds (
Sum zseq)
= ((
Sum xseq)
+ (
Sum yseq));
A1:
P[
0 ]
proof
let xseq,yseq,zseq be
FinSequence of (
REAL m);
assume
A2:
0
= (
len zseq) & (
len zseq)
= (
len xseq) & (
len zseq)
= (
len yseq) & for i be
Nat st i
in (
dom zseq) holds (zseq
/. i)
= ((xseq
/. i)
+ (yseq
/. i));
then
A3: (
Sum zseq)
= (
0* m) & (
Sum yseq)
= (
0* m) by
EUCLID_7:def 11;
(
0* m)
= (
0. (
TOP-REAL m)) by
EUCLID: 70;
then ((
Sum xseq)
+ (
Sum yseq))
= ((
0. (
TOP-REAL m))
+ (
0. (
TOP-REAL m))) by
A2,
A3,
EUCLID_7:def 11
.= (
0. (
TOP-REAL m)) by
RLVECT_1: 4;
hence thesis by
A3,
EUCLID: 70;
end;
A4:
now
let i be
Nat;
assume
A5:
P[i];
now
let xseq,yseq,zseq be
FinSequence of (
REAL m);
assume
A6: (i
+ 1)
= (
len zseq) & (
len zseq)
= (
len xseq) & (
len zseq)
= (
len yseq) & for k be
Nat st k
in (
dom zseq) holds (zseq
/. k)
= ((xseq
/. k)
+ (yseq
/. k));
set xseq0 = (xseq
| i);
set yseq0 = (yseq
| i);
set zseq0 = (zseq
| i);
A7: (
dom xseq)
= (
dom yseq) & (
dom zseq)
= (
dom yseq) by
A6,
FINSEQ_3: 29;
A8: i
= (
len xseq0) by
A6,
FINSEQ_1: 59,
NAT_1: 11;
then
A9: (
len xseq0)
= (
len yseq0) & (
len xseq0)
= (
len zseq0) by
A6,
FINSEQ_1: 59,
NAT_1: 11;
for k be
Nat st k
in (
dom zseq0) holds (zseq0
/. k)
= ((xseq0
/. k)
+ (yseq0
/. k))
proof
let k be
Nat;
assume
A10: k
in (
dom zseq0);
then
A11: k
in (
dom (yseq
| (
Seg i))) & k
in (
dom (xseq
| (
Seg i))) & k
in (
dom (zseq
| (
Seg i))) by
A9,
FINSEQ_3: 29;
A12: k
in (
Seg i) & k
in (
dom zseq) by
A10,
RELAT_1: 57;
then
A13: (zseq
/. k)
= ((xseq
/. k)
+ (yseq
/. k)) by
A6;
A14: (xseq
/. k)
= (xseq
. k) by
A12,
A7,
PARTFUN1:def 6
.= ((xseq
| (
Seg i))
. k) by
A12,
FUNCT_1: 49
.= ((xseq
| (
Seg i))
/. k) by
A11,
PARTFUN1:def 6;
A15: (yseq
/. k)
= (yseq
. k) by
A7,
A12,
PARTFUN1:def 6
.= ((yseq
| (
Seg i))
. k) by
A12,
FUNCT_1: 49
.= ((yseq
| (
Seg i))
/. k) by
A11,
PARTFUN1:def 6;
(zseq0
/. k)
= ((zseq
| (
Seg i))
. k) by
A10,
PARTFUN1:def 6
.= (zseq
. k) by
A12,
FUNCT_1: 49;
hence (zseq0
/. k)
= ((xseq0
/. k)
+ (yseq0
/. k)) by
A13,
A14,
A15,
A12,
PARTFUN1:def 6;
end;
then
A16: (
Sum zseq0)
= ((
Sum xseq0)
+ (
Sum yseq0)) by
A8,
A9,
A5;
consider v be
Element of (
REAL m) such that
A17: v
= (xseq
. (
len xseq)) & (
Sum xseq)
= ((
Sum xseq0)
+ v) by
A6,
A8,
PDIFF_6: 15;
consider w be
Element of (
REAL m) such that
A18: w
= (yseq
. (
len yseq)) & (
Sum yseq)
= ((
Sum yseq0)
+ w) by
A6,
A8,
A9,
PDIFF_6: 15;
consider t be
Element of (
REAL m) such that
A19: t
= (zseq
. (
len zseq)) & (
Sum zseq)
= ((
Sum zseq0)
+ t) by
A6,
A8,
A9,
PDIFF_6: 15;
A20: (
dom zseq)
= (
Seg (i
+ 1)) by
A6,
FINSEQ_1:def 3;
then (
len zseq)
in (
dom zseq) by
A6,
FINSEQ_1: 4;
then t
= (zseq
/. (
len zseq)) by
A19,
PARTFUN1:def 6;
then
A21: t
= ((xseq
/. (
len xseq))
+ (yseq
/. (
len yseq))) by
A6,
A20,
FINSEQ_1: 4;
(
dom xseq)
= (
Seg (i
+ 1)) & (
dom yseq)
= (
Seg (i
+ 1)) by
A6,
FINSEQ_1:def 3;
then
A22: v
= (xseq
/. (
len xseq)) & w
= (yseq
/. (
len yseq)) by
A6,
A17,
A18,
FINSEQ_1: 4,
PARTFUN1:def 6;
reconsider F1 = (
Sum xseq0) as
real-valued
FinSequence;
reconsider F2 = (
Sum yseq0) as
real-valued
FinSequence;
reconsider F3 = (xseq
/. (
len xseq)) as
real-valued
FinSequence;
reconsider F4 = (yseq
/. (
len yseq)) as
real-valued
FinSequence;
(
Sum zseq)
= (((F1
+ F2)
+ F3)
+ F4) by
A19,
A16,
A21,
RVSUM_1: 15;
then (
Sum zseq)
= (((F1
+ F3)
+ F2)
+ F4) by
RVSUM_1: 15;
hence (
Sum zseq)
= ((
Sum xseq)
+ (
Sum yseq)) by
A22,
A17,
A18,
RVSUM_1: 15;
end;
hence
P[(i
+ 1)];
end;
A23: for k be
Nat holds
P[k] from
NAT_1:sch 2(
A1,
A4);
let xseq,yseq,zseq be
FinSequence of (
REAL m);
assume
A24: (
dom xseq)
= (
dom yseq) & zseq
= (xseq
+ yseq);
then
A25: (
len yseq)
= (
len xseq) by
FINSEQ_3: 29;
(xseq
+ yseq)
= (xseq
<++> yseq) by
INTEGR15:def 9;
then (
dom zseq)
= ((
dom xseq)
/\ (
dom yseq)) by
A24,
VALUED_2:def 45;
then
A26: (
len zseq)
= (
len xseq) by
A24,
FINSEQ_3: 29;
for i be
Nat st i
in (
dom zseq) holds (zseq
/. i)
= ((xseq
/. i)
+ (yseq
/. i)) by
A24,
INTEGR15: 21;
hence (
Sum zseq)
= ((
Sum xseq)
+ (
Sum yseq)) by
A25,
A26,
A23;
end;
theorem ::
PDIFF_7:25
Th25: for m be non
zero
Nat, r be
Real, w,u be
FinSequence of (
REAL m) st u
= (r
(#) w) holds (
Sum u)
= (r
* (
Sum w))
proof
let m be non
zero
Nat, r be
Real;
defpred
P[
Nat] means for xseq,yseq be
FinSequence of (
REAL m) st $1
= (
len xseq) & (
len xseq)
= (
len yseq) & for i be
Nat st i
in (
dom xseq) holds (yseq
/. i)
= (r
* (xseq
/. i)) holds (
Sum yseq)
= (r
* (
Sum xseq));
A1:
P[
0 ]
proof
let xseq,yseq be
FinSequence of (
REAL m);
assume
A2:
0
= (
len xseq) & (
len xseq)
= (
len yseq) & for i be
Nat st i
in (
dom xseq) holds (yseq
/. i)
= (r
* (xseq
/. i));
reconsider r1 = r as
Real;
(
Sum xseq)
= (
0* m) by
A2,
EUCLID_7:def 11;
then (r
* (
Sum xseq))
= (r1
* (
0. (
TOP-REAL m))) by
EUCLID: 70
.= (
0. (
TOP-REAL m)) by
RLVECT_1: 10
.= (
0* m) by
EUCLID: 70;
hence thesis by
A2,
EUCLID_7:def 11;
end;
A3:
now
let i be
Nat;
assume
A4:
P[i];
now
let xseq,yseq be
FinSequence of (
REAL m);
assume
A5: (i
+ 1)
= (
len xseq) & (
len xseq)
= (
len yseq) & for k be
Nat st k
in (
dom xseq) holds (yseq
/. k)
= (r
* (xseq
/. k));
then
A6: (
dom xseq)
= (
dom yseq) by
FINSEQ_3: 29;
set xseq0 = (xseq
| i);
set yseq0 = (yseq
| i);
A7: i
= (
len xseq0) by
A5,
FINSEQ_1: 59,
NAT_1: 11;
then
A8: (
len xseq0)
= (
len yseq0) by
A5,
FINSEQ_1: 59,
NAT_1: 11;
for k be
Nat st k
in (
dom xseq0) holds (yseq0
/. k)
= (r
* (xseq0
/. k))
proof
let k be
Nat;
assume
A9: k
in (
dom xseq0);
then
A10: k
in (
dom xseq) & k
in (
Seg i) by
RELAT_1: 57;
A11: k
in (
dom (yseq
| (
Seg i))) by
A9,
A8,
FINSEQ_3: 29;
A12: (xseq
/. k)
= (xseq
. k) by
A10,
PARTFUN1:def 6
.= ((xseq
| (
Seg i))
. k) by
A10,
FUNCT_1: 49
.= (xseq0
/. k) by
A9,
PARTFUN1:def 6;
(yseq0
/. k)
= ((yseq
| (
Seg i))
. k) by
A11,
PARTFUN1:def 6
.= (yseq
. k) by
A10,
FUNCT_1: 49
.= (yseq
/. k) by
A10,
A6,
PARTFUN1:def 6;
hence (yseq0
/. k)
= (r
* (xseq0
/. k)) by
A5,
A10,
A12;
end;
then
A13: (
Sum yseq0)
= (r
* (
Sum xseq0)) by
A7,
A8,
A4;
consider v be
Element of (
REAL m) such that
A14: v
= (xseq
. (
len xseq)) & (
Sum xseq)
= ((
Sum xseq0)
+ v) by
A5,
A7,
PDIFF_6: 15;
consider w be
Element of (
REAL m) such that
A15: w
= (yseq
. (
len yseq)) & (
Sum yseq)
= ((
Sum yseq0)
+ w) by
A5,
A7,
A8,
PDIFF_6: 15;
A16: (
dom xseq)
= (
Seg (i
+ 1)) by
A5,
FINSEQ_1:def 3;
then
A17: (
len yseq)
in (
dom xseq) by
A5,
FINSEQ_1: 4;
then w
= (yseq
/. (
len yseq)) by
A15,
A6,
PARTFUN1:def 6
.= (r
* (xseq
/. (
len yseq))) by
A5,
A16,
FINSEQ_1: 4
.= (r
* v) by
A17,
A5,
A14,
PARTFUN1:def 6;
hence (
Sum yseq)
= (r
* (
Sum xseq)) by
A15,
A13,
A14,
RVSUM_1: 51;
end;
hence
P[(i
+ 1)];
end;
A18: for k be
Nat holds
P[k] from
NAT_1:sch 2(
A1,
A3);
let xseq,yseq be
FinSequence of (
REAL m);
A19: (r
(#) xseq)
= (xseq
[#] r) by
INTEGR15:def 11;
assume
A20: yseq
= (r
(#) xseq);
then
A21: (
dom yseq)
= (
dom xseq) by
A19,
VALUED_2:def 39;
then
A22: (
len xseq)
= (
len yseq) by
FINSEQ_3: 29;
for i be
Nat st i
in (
dom xseq) holds (yseq
/. i)
= (r
* (xseq
/. i)) by
A20,
A21,
INTEGR15: 23;
hence (
Sum yseq)
= (r
* (
Sum xseq)) by
A22,
A18;
end;
Lm8: for m,n be non
zero
Nat, f be
PartFunc of (
REAL m), (
REAL n), x be
Element of (
REAL m) holds ex L be
Lipschitzian
LinearOperator of m, n st for h be
Element of (
REAL m) holds ex w be
FinSequence of (
REAL n) st (
dom w)
= (
Seg m) & (for i be
Nat st i
in (
Seg m) holds (w
. i)
= (((
proj (i,m))
. h)
* (
partdiff (f,x,i)))) & (L
. h)
= (
Sum w)
proof
let m,n be non
zero
Nat, f be
PartFunc of (
REAL m), (
REAL n), x be
Element of (
REAL m);
defpred
LX[
set,
set] means ex w be
FinSequence of (
REAL n) st (
dom w)
= (
Seg m) & (for i be
Nat st i
in (
Seg m) holds (w
. i)
= (((
proj (i,m))
. $1)
* (
partdiff (f,x,i)))) & $2
= (
Sum w);
A1: for v be
Element of (
REAL m) holds ex y be
Element of (
REAL n) st
LX[v, y]
proof
let v be
Element of (
REAL m);
defpred
YX[
set,
set] means ex i be
Nat st i
= $1 & $2
= (((
proj (i,m))
. v)
* (
partdiff (f,x,i)));
A2: for i be
Nat st i
in (
Seg m) holds ex r be
Element of (
REAL n) st
YX[i, r]
proof
let i be
Nat;
assume i
in (
Seg m);
reconsider i0 = i as
Nat;
(((
proj (i0,m))
. v)
* (
partdiff (f,x,i0)))
in (
REAL n);
hence thesis;
end;
consider w be
FinSequence of (
REAL n) such that
A3: (
dom w)
= (
Seg m) & for i be
Nat st i
in (
Seg m) holds
YX[i, (w
. i)] from
FINSEQ_1:sch 5(
A2);
A4:
now
let i be
Nat;
assume i
in (
Seg m);
then
YX[i, (w
. i)] by
A3;
hence (w
. i)
= (((
proj (i,m))
. v)
* (
partdiff (f,x,i)));
end;
reconsider w0 = (
Sum w) as
Element of (
REAL n);
ex w be
FinSequence of (
REAL n) st (
dom w)
= (
Seg m) & (for i be
Nat st i
in (
Seg m) holds (w
. i)
= (((
proj (i,m))
. v)
* (
partdiff (f,x,i)))) & w0
= (
Sum w) by
A4,
A3;
hence ex y0 be
Element of (
REAL n) st
LX[v, y0];
end;
consider L be
Function of (
REAL m), (
REAL n) such that
A5: for h be
Element of (
REAL m) holds
LX[h, (L
. h)] from
FUNCT_2:sch 3(
A1);
A6: for s,t be
Element of (
REAL m) holds (L
. (s
+ t))
= ((L
. s)
+ (L
. t))
proof
let s,t be
Element of (
REAL m);
consider w be
FinSequence of (
REAL n) such that
A7: (
dom w)
= (
Seg m) & (for i be
Nat st i
in (
Seg m) holds (w
. i)
= (((
proj (i,m))
. s)
* (
partdiff (f,x,i)))) & (L
. s)
= (
Sum w) by
A5;
consider v be
FinSequence of (
REAL n) such that
A8: (
dom v)
= (
Seg m) & (for i be
Nat st i
in (
Seg m) holds (v
. i)
= (((
proj (i,m))
. t)
* (
partdiff (f,x,i)))) & (L
. t)
= (
Sum v) by
A5;
consider u be
FinSequence of (
REAL n) such that
A9: (
dom u)
= (
Seg m) & (for i be
Nat st i
in (
Seg m) holds (u
. i)
= (((
proj (i,m))
. (s
+ t))
* (
partdiff (f,x,i)))) & (L
. (s
+ t))
= (
Sum u) by
A5;
A10: (w
+ v)
= (w
<++> v) by
INTEGR15:def 9;
A11: (
dom u)
= ((
dom w)
/\ (
dom v)) by
A7,
A8,
A9;
now
let j be
object;
assume
A12: j
in (
dom u);
then
reconsider i = j as
Nat;
A13: (w
. i)
= (((
proj (i,m))
. s)
* (
partdiff (f,x,i))) by
A7,
A9,
A12;
A14: (v
. i)
= (((
proj (i,m))
. t)
* (
partdiff (f,x,i))) by
A8,
A9,
A12;
thus (u
. j)
= (((
proj (i,m))
. (s
+ t))
* (
partdiff (f,x,i))) by
A9,
A12
.= (((s
+ t)
. i)
* (
partdiff (f,x,i))) by
PDIFF_1:def 1
.= (((s
. i)
+ (t
. i))
* (
partdiff (f,x,i))) by
RVSUM_1: 11
.= ((((
proj (i,m))
. s)
+ (t
. i))
* (
partdiff (f,x,i))) by
PDIFF_1:def 1
.= ((((
proj (i,m))
. s)
+ ((
proj (i,m))
. t))
* (
partdiff (f,x,i))) by
PDIFF_1:def 1
.= ((w
. j)
+ (v
. j)) by
A13,
A14,
RVSUM_1: 50;
end;
then u
= (w
+ v) by
A10,
A11,
VALUED_2:def 45;
hence (L
. (s
+ t))
= ((L
. s)
+ (L
. t)) by
A9,
A7,
A8,
Th24;
end;
for s be
Element of (
REAL m), r be
Real holds (L
. (r
* s))
= (r
* (L
. s))
proof
let s be
Element of (
REAL m), r be
Real;
consider w be
FinSequence of (
REAL n) such that
A15: (
dom w)
= (
Seg m) & (for i be
Nat st i
in (
Seg m) holds (w
. i)
= (((
proj (i,m))
. s)
* (
partdiff (f,x,i)))) & (L
. s)
= (
Sum w) by
A5;
consider u be
FinSequence of (
REAL n) such that
A16: (
dom u)
= (
Seg m) & (for i be
Nat st i
in (
Seg m) holds (u
. i)
= (((
proj (i,m))
. (r
* s))
* (
partdiff (f,x,i)))) & (L
. (r
* s))
= (
Sum u) by
A5;
A17: (r
(#) w)
= (w
[#] r) by
INTEGR15:def 11;
now
let j be
object;
assume
A18: j
in (
dom u);
then
reconsider i = j as
Nat;
A19: (w
. i)
= (((
proj (i,m))
. s)
* (
partdiff (f,x,i))) by
A15,
A16,
A18;
thus (u
. j)
= (((
proj (i,m))
. (r
* s))
* (
partdiff (f,x,i))) by
A16,
A18
.= (((r
* s)
. i)
* (
partdiff (f,x,i))) by
PDIFF_1:def 1
.= ((r
* (s
. i))
* (
partdiff (f,x,i))) by
RVSUM_1: 45
.= ((r
* ((
proj (i,m))
. s))
* (
partdiff (f,x,i))) by
PDIFF_1:def 1
.= (r
(#) (w
. j)) by
A19,
RVSUM_1: 49;
end;
then u
= (r
(#) w) by
A17,
A15,
A16,
VALUED_2:def 39;
hence (L
. (r
* s))
= (r
* (L
. s)) by
A15,
A16,
Th25;
end;
then
reconsider L as
LinearOperator of m, n by
A6,
PDIFF_6:def 1,
PDIFF_6:def 2;
take L;
thus thesis by
A5;
end;
theorem ::
PDIFF_7:26
Th26: for n be non
zero
Nat, h,g be
FinSequence of (
REAL n) st (
len h)
= ((
len g)
+ 1) & (for i be
Nat st i
in (
dom g) holds (g
/. i)
= ((h
/. i)
- (h
/. (i
+ 1)))) holds ((h
/. 1)
- (h
/. (
len h)))
= (
Sum g)
proof
let n be non
zero
Nat, h,g be
FinSequence of (
REAL n);
assume that
A1: (
len h)
= ((
len g)
+ 1) and
A2: for i be
Nat st i
in (
dom g) holds (g
/. i)
= ((h
/. i)
- (h
/. (i
+ 1)));
per cases ;
suppose
A3: (
len g)
=
0 ;
then ((h
/. 1)
- (h
/. (
len h)))
= (
0* n) by
A1,
EUCLIDLP: 9;
hence thesis by
A3,
EUCLID_7:def 11;
end;
suppose
A4: (
len g)
>
0 ;
then
A5: (
Sum g)
= ((
accum g)
. (
len g)) by
EUCLID_7:def 11;
defpred
P[
Nat] means $1
<= (
len g) implies ((
accum g)
. $1)
= ((h
/. 1)
- (h
/. ($1
+ 1)));
A6:
P[1]
proof
assume 1
<= (
len g);
then 1
in (
Seg (
len g));
then
A7: 1
in (
dom g) by
FINSEQ_1:def 3;
((
accum g)
. 1)
= (g
. 1) by
EUCLID_7:def 10;
then ((
accum g)
. 1)
= (g
/. 1) by
A7,
PARTFUN1:def 6;
hence ((
accum g)
. 1)
= ((h
/. 1)
- (h
/. (1
+ 1))) by
A7,
A2;
end;
A8: for j be
Nat st 1
<= j holds
P[j] implies
P[(j
+ 1)]
proof
let j be
Nat;
assume
A9: 1
<= j;
assume
A10:
P[j];
assume
A11: (j
+ 1)
<= (
len g);
then
A12: j
< (
len g) by
NAT_1: 13;
1
<= (j
+ 1) by
XREAL_1: 38;
then
A13: (j
+ 1)
in (
dom g) by
A11,
FINSEQ_3: 25;
(
len g)
= (
len (
accum g)) by
EUCLID_7:def 10;
then
A14: j
in (
dom (
accum g)) by
A9,
A12,
FINSEQ_3: 25;
((
accum g)
. (j
+ 1))
= (((
accum g)
/. j)
+ (g
/. (j
+ 1))) by
A9,
A12,
EUCLID_7:def 10;
then
A15: ((
accum g)
. (j
+ 1))
= (((
accum g)
/. j)
+ ((h
/. (j
+ 1))
- (h
/. ((j
+ 1)
+ 1)))) by
A2,
A13;
reconsider hj1 = (h
/. (j
+ 1)) as
Point of (
TOP-REAL n) by
EUCLID: 22;
reconsider hj2 = (h
/. (j
+ 2)) as
Point of (
TOP-REAL n) by
EUCLID: 22;
reconsider hj3 = ((h
/. 1)
- (h
/. (j
+ 1))) as
Point of (
TOP-REAL n) by
EUCLID: 22;
((
accum g)
. (j
+ 1))
= (hj3
+ (hj1
- hj2)) by
A15,
A10,
A11,
A14,
NAT_1: 13,
PARTFUN1:def 6;
then ((
accum g)
. (j
+ 1))
= ((hj3
+ hj1)
- hj2) by
RLVECT_1:def 3;
hence thesis by
RVSUM_1: 43;
end;
A16: 1
<= (
len g) by
A4,
NAT_1: 14;
for i be
Nat st 1
<= i holds
P[i] from
NAT_1:sch 8(
A6,
A8);
hence thesis by
A5,
A1,
A16;
end;
end;
theorem ::
PDIFF_7:27
Th27: for n be non
zero
Nat, h,g,j be
FinSequence of (
REAL n) st (
len h)
= (
len j) & (
len g)
= (
len j) & (for i be
Nat st i
in (
dom j) holds (j
/. i)
= ((h
/. i)
- (g
/. i))) holds (
Sum j)
= ((
Sum h)
- (
Sum g))
proof
let n be non
zero
Nat, h,g,j be
FinSequence of (
REAL n);
assume that
A1: (
len h)
= (
len j) & (
len g)
= (
len j) and
A2: for i be
Nat st i
in (
dom j) holds (j
/. i)
= ((h
/. i)
- (g
/. i));
A3: (
dom j)
= (
Seg (
len j)) & (
dom g)
= (
Seg (
len g)) & (
dom h)
= (
Seg (
len h)) by
FINSEQ_1:def 3;
A4: for i be
Nat st i
in (
dom h) holds (h
/. i)
= ((j
/. i)
+ (g
/. i))
proof
let i be
Nat;
reconsider ji = (j
/. i), hi = (h
/. i), gi = (g
/. i) as
Point of (
TOP-REAL n) by
EUCLID: 22;
assume i
in (
dom h);
then ji
= (hi
- gi) by
A1,
A2,
A3;
then (ji
+ gi)
= hi by
RLVECT_4: 1;
hence thesis;
end;
(j
+ g)
= (j
<++> g) by
INTEGR15:def 9;
then
A5: (
dom (j
+ g))
= ((
dom j)
/\ (
dom g)) by
VALUED_2:def 45;
reconsider Sj = (
Sum j), Sh = (
Sum h), Sg = (
Sum g) as
Point of (
TOP-REAL n) by
EUCLID: 22;
for k be
Element of
NAT st k
in (
dom h) holds (h
. k)
= ((j
+ g)
. k)
proof
let k be
Element of
NAT ;
assume
A6: k
in (
dom h);
then (h
/. k)
= ((j
/. k)
+ (g
/. k)) by
A4;
then
A7: (h
. k)
= ((j
/. k)
+ (g
/. k)) by
A6,
PARTFUN1:def 6;
((j
+ g)
/. k)
= ((j
/. k)
+ (g
/. k)) by
A6,
A1,
A3,
A5,
INTEGR15: 21;
hence thesis by
A7,
A6,
A1,
A3,
A5,
PARTFUN1:def 6;
end;
then Sh
= (Sj
+ Sg) by
A1,
A3,
Th24,
A5,
PARTFUN1: 5;
then (Sh
- Sg)
= Sj by
RLVECT_4: 1;
hence ((
Sum h)
- (
Sum g))
= (
Sum j);
end;
theorem ::
PDIFF_7:28
Th28: for m,n be non
zero
Nat, f be
PartFunc of (
REAL m), (
REAL n), x,y be
Element of (
REAL m) holds ex h be
FinSequence of (
REAL m), g be
FinSequence of (
REAL n) st (
len h)
= (m
+ 1) & (
len g)
= m & (for i be
Nat st i
in (
dom h) holds (h
/. i)
= ((y
| ((m
+ 1)
-' i))
^ (
0* (i
-' 1)))) & (for i be
Nat st i
in (
dom g) holds (g
/. i)
= ((f
/. (x
+ (h
/. i)))
- (f
/. (x
+ (h
/. (i
+ 1)))))) & (for i be
Nat, hi be
Element of (
REAL m) st i
in (
dom h) & (h
/. i)
= hi holds
|.hi.|
<=
|.y.|) & ((f
/. (x
+ y))
- (f
/. x))
= (
Sum g)
proof
let m,n be non
zero
Nat, f be
PartFunc of (
REAL m), (
REAL n), x,y be
Element of (
REAL m);
reconsider mm = m as
Element of
NAT by
ORDINAL1:def 12;
A1: (
len y)
= mm by
FINSEQ_2: 133;
defpred
H[
Nat,
set] means $2
= ((y
| ((m
+ 1)
-' $1))
^ (
0* ($1
-' 1)));
A2: for k be
Nat st k
in (
Seg (m
+ 1)) holds ex x be
Element of (
REAL m) st
H[k, x]
proof
let k be
Nat;
assume k
in (
Seg (m
+ 1));
then
A3: 1
<= k & k
<= (m
+ 1) by
FINSEQ_1: 1;
then (k
- 1)
>=
0 & ((m
+ 1)
- k)
>=
0 by
XREAL_1: 48;
then
A4: ((m
+ 1)
-' k)
= ((m
+ 1)
- k) & (k
-' 1)
= (k
- 1) by
XREAL_0:def 2;
set l1 = ((m
+ 1)
-' k);
set l2 = (k
-' 1);
(m
+ 1)
<= (m
+ k) by
A3,
XREAL_1: 6;
then l1
<= (
len y) by
A1,
A4,
XREAL_1: 20;
then
A5: (
len (y
| l1))
= l1 by
FINSEQ_1: 59;
(
len (
0* l2))
= l2 by
FINSEQ_2: 132;
then (
len ((y
| l1)
^ (
0* l2)))
= (l1
+ l2) by
A5,
FINSEQ_1: 22;
then ((y
| l1)
^ (
0* l2)) is
Element of ((l1
+ l2)
-tuples_on
REAL ) by
FINSEQ_2: 133;
hence thesis by
A4;
end;
consider h be
FinSequence of (
REAL m) such that
A6: (
dom h)
= (
Seg (m
+ 1)) & for j be
Nat st j
in (
Seg (m
+ 1)) holds
H[j, (h
. j)] from
FINSEQ_1:sch 5(
A2);
A7:
now
let j be
Nat;
assume
A8: j
in (
dom h);
then (h
/. j)
= (h
. j) by
PARTFUN1:def 6;
hence (h
/. j)
= ((y
| ((m
+ 1)
-' j))
^ (
0* (j
-' 1))) by
A8,
A6;
end;
deffunc
Z(
Nat) = (f
/. (x
+ (h
/. $1)));
consider z be
FinSequence of (
REAL n) such that
A9: (
len z)
= (m
+ 1) & for j be
Nat st j
in (
dom z) holds (z
. j)
=
Z(j) from
FINSEQ_2:sch 1;
A10:
now
let j be
Nat;
assume
A11: j
in (
dom z);
then (z
/. j)
= (z
. j) by
PARTFUN1:def 6;
hence (z
/. j)
= (f
/. (x
+ (h
/. j))) by
A11,
A9;
end;
deffunc
G(
Nat) = ((z
/. $1)
- (z
/. ($1
+ 1)));
consider g be
FinSequence of (
REAL n) such that
A12: (
len g)
= m & for j be
Nat st j
in (
dom g) holds (g
. j)
=
G(j) from
FINSEQ_2:sch 1;
A13:
now
let j be
Nat;
assume
A14: j
in (
dom g);
then (g
/. j)
= (g
. j) by
PARTFUN1:def 6;
hence (g
/. j)
= ((z
/. j)
- (z
/. (j
+ 1))) by
A14,
A12;
end;
A15: 1
<= (m
+ 1) by
NAT_1: 11;
A16: ((m
+ 1)
-' 1)
= ((m
+ 1)
- 1) by
NAT_1: 11,
XREAL_1: 233;
1
in (
dom h) by
A6,
A15;
then (h
/. 1)
= ((y
| ((m
+ 1)
-' 1))
^ (
0* (1
-' 1))) by
A7;
then (h
/. 1)
= ((y
| m)
^ (
0*
0 )) by
A16,
XREAL_1: 232;
then (h
/. 1)
= (y
^ (
0*
0 )) by
A1,
FINSEQ_1: 58;
then
A17: (h
/. 1)
= y by
FINSEQ_1: 34;
A18: 1
<= (
len z) & (
len z)
<= (m
+ 1) by
A9,
NAT_1: 14;
A19: ((m
+ 1)
-' (
len z))
= ((m
+ 1)
- (
len z)) by
A9,
XREAL_1: 233;
A20: ((
len z)
-' 1)
= ((
len z)
- 1) by
A9,
NAT_1: 14,
XREAL_1: 233;
(
len z)
in (
dom h) by
A6,
A18;
then (h
/. (
len z))
= ((y
|
0 )
^ (
0* ((
len z)
-' 1))) by
A7,
A19,
A9;
then
A21: (h
/. (
len z))
= (
0* m) by
A20,
A9,
FINSEQ_1: 34;
1
<= (m
+ 1) by
NAT_1: 11;
then 1
in (
Seg (m
+ 1));
then 1
in (
dom z) by
A9,
FINSEQ_1:def 3;
then
A22: (z
/. 1)
= (f
/. (x
+ y)) by
A10,
A17;
(
len z)
in (
Seg (m
+ 1)) by
A9,
FINSEQ_1: 4;
then (
len z)
in (
dom z) by
A9,
FINSEQ_1:def 3;
then (z
/. (
len z))
= (f
/. (x
+ (h
/. (
len z)))) by
A10;
then
A23: (z
/. (
len z))
= (f
/. x) by
A21,
EUCLID_4: 1;
take h, g;
(m
+ 1)
in
NAT by
ORDINAL1:def 12;
hence (
len h)
= (m
+ 1) & (
len g)
= m by
A6,
A12,
FINSEQ_1:def 3;
A24:
now
let i be
Nat;
assume
A25: i
in (
dom g);
then
A26: i
in (
Seg m) by
A12,
FINSEQ_1:def 3;
m
<= (m
+ 1) by
NAT_1: 11;
then
A27: (
Seg m)
c= (
Seg (m
+ 1)) by
FINSEQ_1: 5;
(
dom h)
= (
dom z) by
A6,
A9,
FINSEQ_1:def 3;
then
A28: (z
/. i)
= (f
/. (x
+ (h
/. i))) by
A10,
A27,
A6,
A26;
i
in (
Seg m) by
A12,
A25,
FINSEQ_1:def 3;
then 1
<= i & i
<= m by
FINSEQ_1: 1;
then
A29: (i
+ 1)
<= (m
+ 1) by
XREAL_1: 6;
1
<= (i
+ 1) by
NAT_1: 11;
then (i
+ 1)
in (
Seg (m
+ 1)) by
A29;
then (i
+ 1)
in (
dom z) by
A9,
FINSEQ_1:def 3;
then (z
/. (i
+ 1))
= (f
/. (x
+ (h
/. (i
+ 1)))) by
A10;
hence (g
/. i)
= ((f
/. (x
+ (h
/. i)))
- (f
/. (x
+ (h
/. (i
+ 1))))) by
A13,
A25,
A28;
end;
for i be
Nat, hi be
Element of (
REAL m) st i
in (
dom h) & (h
/. i)
= hi holds
|.hi.|
<=
|.y.|
proof
let i be
Nat, hi be
Element of (
REAL m);
assume i
in (
dom h) & (h
/. i)
= hi;
then
A30: hi
= ((y
| ((m
+ 1)
-' i))
^ (
0* (i
-' 1))) by
A7;
A31: for j be
Nat st j
in (
Seg m) holds ((
sqr hi)
. j)
<= ((
sqr y)
. j)
proof
let j be
Nat;
assume
A32: j
in (
Seg m);
(
len hi)
= m by
CARD_1:def 7;
then
A33: j
in (
dom ((y
| ((m
+ 1)
-' i))
^ (
0* (i
-' 1)))) by
A32,
A30,
FINSEQ_1:def 3;
per cases by
A33,
FINSEQ_1: 25;
suppose
A34: j
in (
dom (y
| ((m
+ 1)
-' i)));
then j
in (
Seg (
len (y
| ((m
+ 1)
-' i)))) by
FINSEQ_1:def 3;
then
A35: j
<= (
len (y
| ((m
+ 1)
-' i))) by
FINSEQ_1: 1;
A36: (
len (y
| ((m
+ 1)
-' i)))
<= ((m
+ 1)
-' i) by
FINSEQ_5: 17;
((
sqr hi)
. j)
= ((
sqrreal
* hi)
. j) by
RVSUM_1:def 8
.= (
sqrreal
. (((y
| ((m
+ 1)
-' i))
^ (
0* (i
-' 1)))
. j)) by
A30,
A33,
FUNCT_1: 13
.= (
sqrreal
. ((y
| ((m
+ 1)
-' i))
. j)) by
A34,
FINSEQ_1:def 7
.= (
sqrreal
. (y
. j)) by
A36,
A35,
FINSEQ_3: 112,
XXREAL_0: 2
.= ((y
. j)
^2 ) by
RVSUM_1:def 2
.= ((
sqr y)
. j) by
VALUED_1: 11;
hence thesis;
end;
suppose ex k be
Nat st k
in (
dom (
0* (i
-' 1))) & j
= ((
len (y
| ((m
+ 1)
-' i)))
+ k);
then
consider k be
Nat such that
A37: k
in (
dom (
0* (i
-' 1))) & j
= ((
len (y
| ((m
+ 1)
-' i)))
+ k);
A38: ((
sqr hi)
. j)
= ((
sqrreal
* hi)
. j) by
RVSUM_1:def 8
.= (
sqrreal
. (((y
| ((m
+ 1)
-' i))
^ (
0* (i
-' 1)))
. j)) by
A30,
A33,
FUNCT_1: 13
.= (
sqrreal
. ((
0* (i
-' 1))
. k)) by
A37,
FINSEQ_1:def 7
.= (((
0* (i
-' 1))
. k)
^2 ) by
RVSUM_1:def 2
.=
0 ;
((
sqr y)
. j)
= ((y
. j)
^2 ) by
VALUED_1: 11
.= ((y
. j)
* (y
. j));
hence thesis by
A38,
XREAL_1: 63;
end;
end;
0
<= (
Sum (
sqr hi)) by
RVSUM_1: 86;
hence
|.hi.|
<=
|.y.| by
A31,
RVSUM_1: 82,
SQUARE_1: 26;
end;
hence thesis by
A7,
A22,
A23,
A24,
A9,
A12,
A13,
Th26;
end;
theorem ::
PDIFF_7:29
Th29: for m be non
zero
Nat, f be
PartFunc of (
REAL m), (
REAL 1) holds ex f0 be
PartFunc of (
REAL m),
REAL st f
= (
<>* f0)
proof
let m be non
zero
Nat, f be
PartFunc of (
REAL m), (
REAL 1);
defpred
P[
object] means $1
in (
dom f);
deffunc
F(
object) = ((
proj (1,1))
. (f
/. $1));
A1: for x be
object st
P[x] holds
F(x)
in
REAL ;
consider f0 be
PartFunc of (
REAL m),
REAL such that
A2: (for x be
object holds x
in (
dom f0) iff x
in (
REAL m) &
P[x]) & for x be
object st x
in (
dom f0) holds (f0
. x)
=
F(x) from
PARTFUN1:sch 3(
A1);
take f0;
for x be
object st x
in (
dom f) holds x
in (
dom f0) by
A2;
then
A3: (
dom f)
c= (
dom f0);
for x be
object st x
in (
dom f0) holds x
in (
dom f) by
A2;
then
A4: (
dom f0)
c= (
dom f);
then
A5: (
dom f)
= (
dom f0) by
A3;
A6: (
rng f0)
c= (
dom ((
proj (1,1)) qua
Function
" )) by
PDIFF_1: 2;
then
A7: (
dom (((
proj (1,1)) qua
Function
" )
* f0))
= (
dom f0) by
RELAT_1: 27;
for x be
Element of (
REAL m) st x
in (
dom (
<>* f0)) holds ((
<>* f0)
. x)
= (f
. x)
proof
let x be
Element of (
REAL m);
assume
A8: x
in (
dom (
<>* f0));
then ((
<>* f0)
. x)
= (((
proj (1,1)) qua
Function
" )
. (f0
. x)) by
FUNCT_1: 12;
then
A9: ((
<>* f0)
. x)
= (((
proj (1,1)) qua
Function
" )
. ((
proj (1,1))
. (f
/. x))) by
A8,
A7,
A2;
(f
/. x) is
Element of (1
-tuples_on
REAL );
then
consider x0 be
Element of
REAL such that
A10: (f
/. x)
=
<*x0*> by
FINSEQ_2: 97;
((
proj (1,1))
. (f
/. x))
= x0 by
A10,
PDIFF_1: 1;
then ((
<>* f0)
. x)
= (f
/. x) by
A9,
A10,
PDIFF_1: 1;
hence thesis by
A7,
A4,
A8,
PARTFUN1:def 6;
end;
hence f
= (
<>* f0) by
A6,
A5,
PARTFUN1: 5,
RELAT_1: 27;
end;
theorem ::
PDIFF_7:30
Th30: for m,n be non
zero
Nat, f be
PartFunc of (
REAL m), (
REAL n), f0 be
PartFunc of (
REAL-NS m), (
REAL-NS n), x be
Element of (
REAL m), x0 be
Element of (
REAL-NS m) st x
in (
dom f) & x
= x0 & f
= f0 holds (f
/. x)
= (f0
/. x0)
proof
let m,n be non
zero
Nat, f be
PartFunc of (
REAL m), (
REAL n), f0 be
PartFunc of (
REAL-NS m), (
REAL-NS n), x be
Element of (
REAL m), x0 be
Element of (
REAL-NS m);
assume
A1: x
in (
dom f) & x
= x0 & f
= f0;
then (f
/. x)
= (f0
. x0) by
PARTFUN1:def 6;
hence (f
/. x)
= (f0
/. x0) by
A1,
PARTFUN1:def 6;
end;
definition
let m be non
zero
Nat;
let X be
Subset of (
REAL m);
::
PDIFF_7:def3
attr X is
open means ex X0 be
Subset of (
REAL-NS m) st X0
= X & X0 is
open;
end
theorem ::
PDIFF_7:31
Th31: for m be non
zero
Nat, X be
Subset of (
REAL m) holds X is
open iff for x be
Element of (
REAL m) st x
in X holds ex r be
Real st r
>
0 & { y where y be
Element of (
REAL m) :
|.(y
- x).|
< r }
c= X
proof
let m be non
zero
Nat, X be
Subset of (
REAL m);
hereby
assume X is
open;
then
consider VV0 be
Subset of (
REAL-NS m) such that
A1: X
= VV0 & VV0 is
open;
let x be
Element of (
REAL m);
assume
A2: x
in X;
reconsider V0 = VV0 as
Subset of (
TopSpaceNorm (
REAL-NS m));
reconsider v0 = x as
Point of (
REAL-NS m) by
REAL_NS1:def 4;
V0 is
open by
A1,
NORMSP_2: 16;
then
consider d0 be
Real such that
A3: d0
>
0 & { w where w be
Point of (
REAL-NS m) :
||.(v0
- w).||
< d0 }
c= V0 by
A2,
A1,
NORMSP_2: 7;
take d0;
thus
0
< d0 by
A3;
thus { y where y be
Element of (
REAL m) :
|.(y
- x).|
< d0 }
c= X
proof
let z be
object;
assume z
in { y where y be
Element of (
REAL m) :
|.(y
- x).|
< d0 };
then
consider y be
Element of (
REAL m) such that
A4: z
= y &
|.(y
- x).|
< d0;
reconsider w = y as
Point of (
REAL-NS m) by
REAL_NS1:def 4;
|.(y
- x).|
=
||.(w
- v0).|| by
REAL_NS1: 1,
REAL_NS1: 5;
then
||.(v0
- w).||
< d0 by
A4,
NORMSP_1: 7;
then w
in { w1 where w1 be
Point of (
REAL-NS m) :
||.(v0
- w1).||
< d0 };
hence z
in X by
A4,
A1,
A3;
end;
end;
assume
A5: for x be
Element of (
REAL m) st x
in X holds ex r be
Real st r
>
0 & { y where y be
Element of (
REAL m) :
|.(y
- x).|
< r }
c= X;
reconsider VV0 = X as
Subset of (
REAL-NS m) by
REAL_NS1:def 4;
reconsider V0 = VV0 as
Subset of (
TopSpaceNorm (
REAL-NS m));
for v be
Point of (
REAL-NS m) st v
in V0 holds ex r be
Real st r
>
0 & { w where w be
Point of (
REAL-NS m) :
||.(v
- w).||
< r }
c= V0
proof
let v be
Point of (
REAL-NS m);
assume
A6: v
in V0;
reconsider x = v as
Element of (
REAL m) by
REAL_NS1:def 4;
consider d0 be
Real such that
A7: d0
>
0 & { y where y be
Element of (
REAL m) :
|.(y
- x).|
< d0 }
c= X by
A5,
A6;
take d0;
thus
0
< d0 by
A7;
thus { w where w be
Point of (
REAL-NS m) :
||.(v
- w).||
< d0 }
c= V0
proof
let z be
object;
assume z
in { w where w be
Point of (
REAL-NS m) :
||.(v
- w).||
< d0 };
then
consider w be
Point of (
REAL-NS m) such that
A8: z
= w &
||.(v
- w).||
< d0;
reconsider y = w as
Element of (
REAL m) by
REAL_NS1:def 4;
|.(y
- x).|
=
||.(w
- v).|| by
REAL_NS1: 1,
REAL_NS1: 5;
then
|.(y
- x).|
< d0 by
A8,
NORMSP_1: 7;
then y
in { t where t be
Element of (
REAL m) :
|.(t
- x).|
< d0 };
hence z
in V0 by
A8,
A7;
end;
end;
then V0 is
open by
NORMSP_2: 7;
then VV0 is
open by
NORMSP_2: 16;
hence X is
open;
end;
definition
let m,n be non
zero
Nat;
let i be
Nat;
let f be
PartFunc of (
REAL m), (
REAL n);
let X be
set;
::
PDIFF_7:def4
pred f
is_partial_differentiable_on X,i means X
c= (
dom f) & for x be
Element of (
REAL m) st x
in X holds (f
| X)
is_partial_differentiable_in (x,i);
end
theorem ::
PDIFF_7:32
Th32: for m,n be non
zero
Nat, f be
PartFunc of (
REAL m), (
REAL n) st f
is_partial_differentiable_on (X,i) holds X is
Subset of (
REAL m) by
XBOOLE_1: 1;
theorem ::
PDIFF_7:33
Th33: for m,n be non
zero
Nat, i be
Nat, f be
PartFunc of (
REAL m), (
REAL n), g be
PartFunc of (
REAL-NS m), (
REAL-NS n), Z be
set st f
= g holds f
is_partial_differentiable_on (Z,i) iff g
is_partial_differentiable_on (Z,i)
proof
let m,n be non
zero
Nat, i be
Nat, f be
PartFunc of (
REAL m), (
REAL n), g be
PartFunc of (
REAL-NS m), (
REAL-NS n), Z be
set;
assume
A1: f
= g;
hereby
assume
A2: f
is_partial_differentiable_on (Z,i);
then
A3: Z
c= (
dom f) & for x be
Element of (
REAL m) st x
in Z holds (f
| Z)
is_partial_differentiable_in (x,i);
now
let y be
Point of (
REAL-NS m);
assume
A4: y
in Z;
reconsider x = y as
Element of (
REAL m) by
REAL_NS1:def 4;
(f
| Z)
is_partial_differentiable_in (x,i) by
A2,
A4;
then ex gZ be
PartFunc of (
REAL-NS m), (
REAL-NS n), y be
Point of (
REAL-NS m) st (f
| Z)
= gZ & x
= y & gZ
is_partial_differentiable_in (y,i);
hence (g
| Z)
is_partial_differentiable_in (y,i) by
A1;
end;
hence g
is_partial_differentiable_on (Z,i) by
A1,
A3;
end;
assume
A5: g
is_partial_differentiable_on (Z,i);
then
A6: Z
c= (
dom g) & for y be
Point of (
REAL-NS m) st y
in Z holds (g
| Z)
is_partial_differentiable_in (y,i);
now
let x be
Element of (
REAL m);
assume
A7: x
in Z;
reconsider y = x as
Point of (
REAL-NS m) by
REAL_NS1:def 4;
(g
| Z)
is_partial_differentiable_in (y,i) by
A5,
A7;
hence (f
| Z)
is_partial_differentiable_in (x,i) by
A1;
end;
hence f
is_partial_differentiable_on (Z,i) by
A1,
A6;
end;
theorem ::
PDIFF_7:34
Th34: for m,n be non
zero
Nat, i be
Nat, f be
PartFunc of (
REAL m), (
REAL n), Z be
Subset of (
REAL m) st Z is
open & 1
<= i & i
<= m holds f
is_partial_differentiable_on (Z,i) iff Z
c= (
dom f) & for x be
Element of (
REAL m) st x
in Z holds f
is_partial_differentiable_in (x,i)
proof
let m,n be non
zero
Nat, i be
Nat, f be
PartFunc of (
REAL m), (
REAL n), Z be
Subset of (
REAL m);
assume
A1: Z is
open & 1
<= i & i
<= m;
then
consider Z0 be
Subset of (
REAL-NS m) such that
A2: Z
= Z0 & Z0 is
open;
the
carrier of (
REAL-NS m)
= (
REAL m) & the
carrier of (
REAL-NS n)
= (
REAL n) by
REAL_NS1:def 4;
then
reconsider g = f as
PartFunc of (
REAL-NS m), (
REAL-NS n);
hereby
assume f
is_partial_differentiable_on (Z,i);
then
A3: g
is_partial_differentiable_on (Z0,i) by
A2,
Th33;
hence Z
c= (
dom f) by
A2;
thus for x be
Element of (
REAL m) st x
in Z holds f
is_partial_differentiable_in (x,i)
proof
let x be
Element of (
REAL m);
assume
A4: x
in Z;
reconsider y = x as
Point of (
REAL-NS m) by
REAL_NS1:def 4;
g
is_partial_differentiable_in (y,i) by
A2,
A3,
A4,
A1,
Th8;
hence f
is_partial_differentiable_in (x,i);
end;
end;
assume
A5: Z
c= (
dom f) & for x be
Element of (
REAL m) st x
in Z holds f
is_partial_differentiable_in (x,i);
now
let y be
Point of (
REAL-NS m);
assume
A6: y
in Z0;
reconsider x = y as
Element of (
REAL m) by
REAL_NS1:def 4;
f
is_partial_differentiable_in (x,i) by
A2,
A6,
A5;
then ex gZ be
PartFunc of (
REAL-NS m), (
REAL-NS n), y be
Point of (
REAL-NS m) st f
= gZ & x
= y & gZ
is_partial_differentiable_in (y,i);
hence g
is_partial_differentiable_in (y,i);
end;
then g
is_partial_differentiable_on (Z0,i) by
A1,
Th8,
A2,
A5;
hence f
is_partial_differentiable_on (Z,i) by
Th33,
A2;
end;
definition
let m,n be non
zero
Nat;
let i be
Nat;
let f be
PartFunc of (
REAL m), (
REAL n);
let X;
assume
A1: f
is_partial_differentiable_on (X,i);
::
PDIFF_7:def5
func f
`partial| (X,i) ->
PartFunc of (
REAL m), (
REAL n) means
:
Def5: (
dom it )
= X & for x be
Element of (
REAL m) st x
in X holds (it
/. x)
= (
partdiff (f,x,i));
existence
proof
deffunc
F(
Element of (
REAL m)) = (
partdiff (f,$1,i));
defpred
P[
Element of (
REAL m)] means $1
in X;
consider F be
PartFunc of (
REAL m), (
REAL n) such that
A2: (for x be
Element of (
REAL m) holds x
in (
dom F) iff
P[x]) & for x be
Element of (
REAL m) st x
in (
dom F) holds (F
. x)
=
F(x) from
SEQ_1:sch 3;
take F;
now
A3: X is
Subset of (
REAL m) by
A1,
Th32;
let y be
object;
assume y
in X;
hence y
in (
dom F) by
A2,
A3;
end;
then
A4: X
c= (
dom F);
for y be
object st y
in (
dom F) holds y
in X by
A2;
then (
dom F)
c= X;
hence (
dom F)
= X by
A4;
hereby
let x be
Element of (
REAL m);
assume x
in X;
then
A5: x
in (
dom F) by
A2;
then (F
. x)
= (
partdiff (f,x,i)) by
A2;
hence (F
/. x)
= (
partdiff (f,x,i)) by
A5,
PARTFUN1:def 6;
end;
end;
uniqueness
proof
let F,G be
PartFunc of (
REAL m), (
REAL n);
assume that
A6: (
dom F)
= X and
A7: for x be
Element of (
REAL m) st x
in X holds (F
/. x)
= (
partdiff (f,x,i)) and
A8: (
dom G)
= X and
A9: for x be
Element of (
REAL m) st x
in X holds (G
/. x)
= (
partdiff (f,x,i));
now
let x be
Element of (
REAL m);
assume
A10: x
in (
dom F);
then (F
/. x)
= (
partdiff (f,x,i)) by
A6,
A7;
hence (F
/. x)
= (G
/. x) by
A6,
A9,
A10;
end;
hence thesis by
A6,
A8,
PARTFUN2: 1;
end;
end
definition
let m,n be non
zero
Nat;
let f be
PartFunc of (
REAL m), (
REAL n);
let x0 be
Element of (
REAL m);
::
PDIFF_7:def6
pred f
is_continuous_in x0 means ex y0 be
Point of (
REAL-NS m), g be
PartFunc of (
REAL-NS m), (
REAL-NS n) st x0
= y0 & f
= g & g
is_continuous_in y0;
end
theorem ::
PDIFF_7:35
for m,n be non
zero
Nat, f be
PartFunc of (
REAL m), (
REAL n), g be
PartFunc of (
REAL-NS m), (
REAL-NS n), x be
Element of (
REAL m), y be
Point of (
REAL-NS m) st f
= g & x
= y holds f
is_continuous_in x iff g
is_continuous_in y;
theorem ::
PDIFF_7:36
for m,n be non
zero
Nat, f be
PartFunc of (
REAL m), (
REAL n), x0 be
Element of (
REAL m) holds f
is_continuous_in x0 iff (x0
in (
dom f) & for r be
Real st
0
< r holds ex s be
Real st
0
< s & for x1 be
Element of (
REAL m) st x1
in (
dom f) &
|.(x1
- x0).|
< s holds
|.((f
/. x1)
- (f
/. x0)).|
< r)
proof
let m,n be non
zero
Nat, f be
PartFunc of (
REAL m), (
REAL n), x0 be
Element of (
REAL m);
the
carrier of (
REAL-NS m)
= (
REAL m) & the
carrier of (
REAL-NS n)
= (
REAL n) by
REAL_NS1:def 4;
then
reconsider g = f as
PartFunc of (
REAL-NS m), (
REAL-NS n);
reconsider y0 = x0 as
Point of (
REAL-NS m) by
REAL_NS1:def 4;
hereby
assume f
is_continuous_in x0;
then
A1: g
is_continuous_in y0;
then
A2: y0
in (
dom g) & for r be
Real st
0
< r holds ex s be
Real st
0
< s & for y1 be
Point of (
REAL-NS m) st y1
in (
dom g) &
||.(y1
- y0).||
< s holds
||.((g
/. y1)
- (g
/. y0)).||
< r by
NFCONT_1: 7;
thus x0
in (
dom f) by
A1,
NFCONT_1: 7;
thus for r be
Real st
0
< r holds ex s be
Real st
0
< s & for x1 be
Element of (
REAL m) st x1
in (
dom f) &
|.(x1
- x0).|
< s holds
|.((f
/. x1)
- (f
/. x0)).|
< r
proof
let r be
Real;
assume
0
< r;
then
consider s be
Real such that
A3:
0
< s & for y1 be
Point of (
REAL-NS m) st y1
in (
dom g) &
||.(y1
- y0).||
< s holds
||.((g
/. y1)
- (g
/. y0)).||
< r by
A1,
NFCONT_1: 7;
take s;
thus
0
< s by
A3;
hereby
let x1 be
Element of (
REAL m);
assume
A4: x1
in (
dom f) &
|.(x1
- x0).|
< s;
reconsider y1 = x1 as
Point of (
REAL-NS m) by
REAL_NS1:def 4;
y1
in (
dom g) &
||.(y1
- y0).||
< s by
A4,
REAL_NS1: 1,
REAL_NS1: 5;
then
A5:
||.((g
/. y1)
- (g
/. y0)).||
< r by
A3;
(g
/. y1)
= (f
/. x1) & (g
/. y0)
= (f
/. x0) by
A2,
Th30,
A4;
hence
|.((f
/. x1)
- (f
/. x0)).|
< r by
A5,
REAL_NS1: 1,
REAL_NS1: 5;
end;
end;
end;
assume
A6: x0
in (
dom f) & for r be
Real st
0
< r holds ex s be
Real st
0
< s & for x1 be
Element of (
REAL m) st x1
in (
dom f) &
|.(x1
- x0).|
< s holds
|.((f
/. x1)
- (f
/. x0)).|
< r;
reconsider y0 = x0 as
Point of (
REAL-NS m) by
REAL_NS1:def 4;
for r be
Real st
0
< r holds ex s be
Real st
0
< s & for y1 be
Point of (
REAL-NS m) st y1
in (
dom g) &
||.(y1
- y0).||
< s holds
||.((g
/. y1)
- (g
/. y0)).||
< r
proof
let r be
Real;
assume
0
< r;
then
consider s be
Real such that
A7:
0
< s & for x1 be
Element of (
REAL m) st x1
in (
dom f) &
|.(x1
- x0).|
< s holds
|.((f
/. x1)
- (f
/. x0)).|
< r by
A6;
take s;
thus
0
< s by
A7;
hereby
let y1 be
Point of (
REAL-NS m);
assume
A8: y1
in (
dom g) &
||.(y1
- y0).||
< s;
reconsider x1 = y1 as
Element of (
REAL m) by
REAL_NS1:def 4;
x1
in (
dom f) &
|.(x1
- x0).|
< s by
A8,
REAL_NS1: 1,
REAL_NS1: 5;
then
A9:
|.((f
/. x1)
- (f
/. x0)).|
< r by
A7;
(g
/. y1)
= (f
/. x1) & (g
/. y0)
= (f
/. x0) by
A8,
A6,
Th30;
hence
||.((g
/. y1)
- (g
/. y0)).||
< r by
A9,
REAL_NS1: 1,
REAL_NS1: 5;
end;
end;
then g
is_continuous_in y0 by
A6,
NFCONT_1: 7;
hence f
is_continuous_in x0;
end;
definition
let m,n be non
zero
Nat;
let f be
PartFunc of (
REAL m), (
REAL n);
let X;
::
PDIFF_7:def7
pred f
is_continuous_on X means X
c= (
dom f) & for x0 be
Element of (
REAL m) st x0
in X holds (f
| X)
is_continuous_in x0;
end
theorem ::
PDIFF_7:37
Th37: for m,n be non
zero
Nat, f be
PartFunc of (
REAL m), (
REAL n), g be
PartFunc of (
REAL-NS m), (
REAL-NS n), X be
set st f
= g holds f
is_continuous_on X iff g
is_continuous_on X
proof
let m,n be non
zero
Nat, f be
PartFunc of (
REAL m), (
REAL n), g be
PartFunc of (
REAL-NS m), (
REAL-NS n), X be
set;
assume
A1: f
= g;
hereby
assume
A2: f
is_continuous_on X;
then
A3: X
c= (
dom f) & for x0 be
Element of (
REAL m) st x0
in X holds (f
| X)
is_continuous_in x0;
now
let y0 be
Point of (
REAL-NS m);
assume
A4: y0
in X;
reconsider x0 = y0 as
Element of (
REAL m) by
REAL_NS1:def 4;
(f
| X)
is_continuous_in x0 by
A2,
A4;
hence (g
| X)
is_continuous_in y0 by
A1;
end;
hence g
is_continuous_on X by
A3,
A1,
NFCONT_1:def 7;
end;
assume
A5: g
is_continuous_on X;
then
A6: X
c= (
dom g) & for y0 be
Point of (
REAL-NS m) st y0
in X holds (g
| X)
is_continuous_in y0 by
NFCONT_1:def 7;
now
let x0 be
Element of (
REAL m);
assume
A7: x0
in X;
reconsider y0 = x0 as
Point of (
REAL-NS m) by
REAL_NS1:def 4;
(g
| X)
is_continuous_in y0 by
A5,
A7,
NFCONT_1:def 7;
hence (f
| X)
is_continuous_in x0 by
A1;
end;
hence f
is_continuous_on X by
A6,
A1;
end;
theorem ::
PDIFF_7:38
Th38: for m,n be non
zero
Nat, f be
PartFunc of (
REAL m), (
REAL n), X be
set holds f
is_continuous_on X iff X
c= (
dom f) & for x0 be
Element of (
REAL m), r be
Real st x0
in X &
0
< r holds ex s be
Real st
0
< s & for x1 be
Element of (
REAL m) st x1
in X &
|.(x1
- x0).|
< s holds
|.((f
/. x1)
- (f
/. x0)).|
< r
proof
let m,n be non
zero
Nat, f be
PartFunc of (
REAL m), (
REAL n), X be
set;
the
carrier of (
REAL-NS m)
= (
REAL m) & the
carrier of (
REAL-NS n)
= (
REAL n) by
REAL_NS1:def 4;
then
reconsider g = f as
PartFunc of (
REAL-NS m), (
REAL-NS n);
hereby
assume f
is_continuous_on X;
then
A1: g
is_continuous_on X by
Th37;
hence
A2: X
c= (
dom f) by
NFCONT_1: 19;
thus for x0 be
Element of (
REAL m), r be
Real st x0
in X &
0
< r holds ex s be
Real st
0
< s & for x1 be
Element of (
REAL m) st x1
in X &
|.(x1
- x0).|
< s holds
|.((f
/. x1)
- (f
/. x0)).|
< r
proof
let x0 be
Element of (
REAL m), r be
Real;
reconsider y0 = x0 as
Point of (
REAL-NS m) by
REAL_NS1:def 4;
assume
A3: x0
in X &
0
< r;
then
consider s be
Real such that
A4:
0
< s & for y1 be
Point of (
REAL-NS m) st y1
in X &
||.(y1
- y0).||
< s holds
||.((g
/. y1)
- (g
/. y0)).||
< r by
A1,
NFCONT_1: 19;
take s;
thus
0
< s by
A4;
hereby
let x1 be
Element of (
REAL m);
assume
A5: x1
in X &
|.(x1
- x0).|
< s;
reconsider y1 = x1 as
Point of (
REAL-NS m) by
REAL_NS1:def 4;
y1
in X &
||.(y1
- y0).||
< s by
A5,
REAL_NS1: 1,
REAL_NS1: 5;
then
A6:
||.((g
/. y1)
- (g
/. y0)).||
< r by
A4;
(g
/. y1)
= (f
/. x1) & (g
/. y0)
= (f
/. x0) by
A5,
A2,
A3,
Th30;
hence
|.((f
/. x1)
- (f
/. x0)).|
< r by
A6,
REAL_NS1: 1,
REAL_NS1: 5;
end;
end;
end;
assume
A7: X
c= (
dom f) & for x0 be
Element of (
REAL m), r be
Real st x0
in X &
0
< r holds ex s be
Real st
0
< s & for x1 be
Element of (
REAL m) st x1
in X &
|.(x1
- x0).|
< s holds
|.((f
/. x1)
- (f
/. x0)).|
< r;
for y0 be
Point of (
REAL-NS m), r be
Real st y0
in X &
0
< r holds ex s be
Real st
0
< s & for y1 be
Point of (
REAL-NS m) st y1
in X &
||.(y1
- y0).||
< s holds
||.((g
/. y1)
- (g
/. y0)).||
< r
proof
let y0 be
Point of (
REAL-NS m), r be
Real;
reconsider x0 = y0 as
Element of (
REAL m) by
REAL_NS1:def 4;
assume
A8: y0
in X &
0
< r;
then
consider s be
Real such that
A9:
0
< s & for x1 be
Element of (
REAL m) st x1
in X &
|.(x1
- x0).|
< s holds
|.((f
/. x1)
- (f
/. x0)).|
< r by
A7;
take s;
thus
0
< s by
A9;
hereby
let y1 be
Point of (
REAL-NS m);
assume
A10: y1
in X &
||.(y1
- y0).||
< s;
reconsider x1 = y1 as
Element of (
REAL m) by
REAL_NS1:def 4;
x1
in X &
|.(x1
- x0).|
< s by
A10,
REAL_NS1: 1,
REAL_NS1: 5;
then
A11:
|.((f
/. x1)
- (f
/. x0)).|
< r by
A9;
(g
/. y1)
= (f
/. x1) & (g
/. y0)
= (f
/. x0) by
A10,
A7,
A8,
Th30;
hence
||.((g
/. y1)
- (g
/. y0)).||
< r by
A11,
REAL_NS1: 1,
REAL_NS1: 5;
end;
end;
then g
is_continuous_on X by
A7,
NFCONT_1: 19;
hence f
is_continuous_on X by
Th37;
end;
theorem ::
PDIFF_7:39
Th39: for m be non
zero
Nat, x,y be
Element of (
REAL m), i be
Nat, xi be
Real st 1
<= i & i
<= m & y
= ((
reproj (i,x))
. xi) holds ((
proj (i,m))
. y)
= xi
proof
let m be non
zero
Nat, x,y be
Element of (
REAL m), i be
Nat, xi be
Real;
reconsider xx = xi as
Element of
REAL by
XREAL_0:def 1;
assume
A1: 1
<= i & i
<= m & y
= ((
reproj (i,x))
. xi);
then
A2: y
= (
Replace (x,i,xx)) by
PDIFF_1:def 5;
A3: (
len x)
= m & (
len y)
= m by
CARD_1:def 7;
then
A4: i
in (
dom y) by
A1,
FINSEQ_3: 25;
(y
/. i)
= xi by
A1,
A2,
A3,
FINSEQ_7: 8;
then (y
. i)
= xi by
A4,
PARTFUN1:def 6;
hence ((
proj (i,m))
. y)
= xi by
PDIFF_1:def 1;
end;
theorem ::
PDIFF_7:40
Th40: for m be non
zero
Nat, f be
PartFunc of (
REAL m),
REAL , x,y be
Element of (
REAL m), i be
Nat, xi be
Real st 1
<= i & i
<= m & y
= ((
reproj (i,x))
. xi) holds (
reproj (i,x))
= (
reproj (i,y))
proof
let m be non
zero
Nat, f be
PartFunc of (
REAL m),
REAL , x,y be
Element of (
REAL m), i be
Nat, xi be
Real;
reconsider xx = xi as
Element of
REAL by
XREAL_0:def 1;
assume
A1: 1
<= i & i
<= m & y
= ((
reproj (i,x))
. xi);
then
A2: y
= (
Replace (x,i,xx)) by
PDIFF_1:def 5;
A3: (
len x)
= m & (
len y)
= m by
CARD_1:def 7;
then
A4: y
= (((x
| (i
-' 1))
^
<*xi*>)
^ (x
/^ i)) by
A1,
A2,
FINSEQ_7:def 1;
A5: (
dom (
reproj (i,x)))
=
REAL by
PDIFF_1:def 5
.= (
dom (
reproj (i,y))) by
PDIFF_1:def 5;
for r be
object st r
in (
dom (
reproj (i,x))) holds ((
reproj (i,x))
. r)
= ((
reproj (i,y))
. r)
proof
let r be
object;
assume
A6: r
in (
dom (
reproj (i,x)));
A7: (i
-' 1)
<= (
len y) & (i
-' 1)
<= (
len x) by
A1,
A3,
NAT_D: 44;
reconsider r1 = r as
Element of
REAL by
A6;
((
reproj (i,x))
. r)
= (
Replace (x,i,r1)) by
PDIFF_1:def 5;
then
A8: ((
reproj (i,x))
. r)
= (((x
| (i
-' 1))
^
<*r1*>)
^ (x
/^ i)) by
A1,
A3,
FINSEQ_7:def 1;
((
reproj (i,y))
. r)
= (
Replace (y,i,r1)) by
PDIFF_1:def 5;
then
A9: ((
reproj (i,y))
. r)
= (((y
| (i
-' 1))
^
<*r1*>)
^ (y
/^ i)) by
A1,
A3,
FINSEQ_7:def 1;
A10: (
dom (y
| (i
-' 1)))
= (
Seg (i
-' 1)) by
A7,
FINSEQ_1: 17;
then
A11: (
dom (y
| (i
-' 1)))
= (
dom (x
| (i
-' 1))) by
A7,
FINSEQ_1: 17;
A12: for n be
Nat st n
in (
dom (y
| (i
-' 1))) holds ((y
| (i
-' 1))
/. n)
= ((x
| (i
-' 1))
/. n)
proof
let n be
Nat;
assume
A13: n
in (
dom (y
| (i
-' 1)));
then n
in (
Seg (
len (x
| (i
-' 1)))) by
A7,
A10,
FINSEQ_1: 17;
then
A14: n
<= (
len (x
| (i
-' 1))) by
FINSEQ_1: 1;
A15: (
len (x
| (i
-' 1)))
<= (i
-' 1) by
FINSEQ_5: 17;
A16: 1
<= n & n
<= (
len (x
| (i
-' 1))) by
A13,
A11,
FINSEQ_3: 25;
((y
| (i
-' 1))
/. n)
= ((y
| (i
-' 1))
. n) by
A13,
PARTFUN1:def 6
.= ((((x
| (i
-' 1))
^
<*xi*>)
^ (x
/^ i))
. n) by
A4,
A15,
A14,
FINSEQ_3: 112,
XXREAL_0: 2
.= (((x
| (i
-' 1))
^ (
<*xi*>
^ (x
/^ i)))
. n) by
FINSEQ_1: 32
.= ((x
| (i
-' 1))
. n) by
A16,
FINSEQ_1: 64
.= ((x
| (i
-' 1))
/. n) by
A13,
A11,
PARTFUN1:def 6;
hence thesis;
end;
A17: (
len (y
/^ i))
= ((
len y)
-' i) & (
len (x
/^ i))
= ((
len x)
-' i) by
RFINSEQ: 29;
for n be
Nat st 1
<= n & n
<= (
len (y
/^ i)) holds ((y
/^ i)
. n)
= ((x
/^ i)
. n)
proof
let n be
Nat;
assume
A18: 1
<= n & n
<= (
len (y
/^ i));
then
A19: n
in (
dom (y
/^ i)) & n
in (
dom (x
/^ i)) by
A17,
A3,
FINSEQ_3: 25;
A20: (
len (x
| (i
-' 1)))
= (i
-' 1) by
A1,
A3,
FINSEQ_1: 59,
NAT_D: 44;
A21: (
len
<*xi*>)
= 1 by
FINSEQ_1: 39;
(i
- 1)
>=
0 by
A1,
XREAL_1: 48;
then (i
-' 1)
= (i
- 1) by
XREAL_0:def 2;
then
A22: (
len ((x
| (i
-' 1))
^
<*xi*>))
= ((i
- 1)
+ 1) by
A20,
A21,
FINSEQ_1: 22
.= i;
((y
/^ i)
. n)
= (y
. (i
+ n)) by
A19,
FINSEQ_7: 4
.= ((x
/^ i)
. n) by
A18,
A4,
A22,
FINSEQ_1: 65;
hence thesis;
end;
then (y
/^ i)
= (x
/^ i) by
A17,
A3;
hence thesis by
A8,
A9,
A11,
A12,
FINSEQ_5: 12;
end;
hence thesis by
A5,
FUNCT_1: 2;
end;
theorem ::
PDIFF_7:41
Th41: for m be non
zero
Nat, f be
PartFunc of (
REAL m),
REAL , g be
PartFunc of
REAL ,
REAL , x,y be
Element of (
REAL m), i be
Nat, xi be
Real st 1
<= i & i
<= m & y
= ((
reproj (i,x))
. xi) & g
= (f
* (
reproj (i,x))) holds (
diff (g,xi))
= (
partdiff (f,y,i))
proof
let m be non
zero
Nat, f be
PartFunc of (
REAL m),
REAL , g be
PartFunc of
REAL ,
REAL , x,y be
Element of (
REAL m), i be
Nat, xi be
Real;
assume
A1: 1
<= i & i
<= m & y
= ((
reproj (i,x))
. xi) & g
= (f
* (
reproj (i,x)));
then (
reproj (i,x))
= (
reproj (i,y)) & ((
proj (i,m))
. y)
= xi by
Th39,
Th40;
hence (
partdiff (f,y,i))
= (
diff (g,xi)) by
A1;
end;
theorem ::
PDIFF_7:42
Th42: for m be non
zero
Nat, f be
PartFunc of (
REAL m),
REAL , p,q be
Real, x be
Element of (
REAL m), i be
Nat st 1
<= i & i
<= m & p
< q & (for h be
Real st h
in
[.p, q.] holds ((
reproj (i,x))
. h)
in (
dom f)) & (for h be
Element of
REAL st h
in
[.p, q.] holds f
is_partial_differentiable_in (((
reproj (i,x))
. h),i)) holds ex r be
Real, y be
Element of (
REAL m) st r
in
].p, q.[ & y
= ((
reproj (i,x))
. r) & ((f
/. ((
reproj (i,x))
. q))
- (f
/. ((
reproj (i,x))
. p)))
= ((q
- p)
* (
partdiff (f,y,i)))
proof
let m be non
zero
Nat, f be
PartFunc of (
REAL m),
REAL , p,q be
Real, x be
Element of (
REAL m), i be
Nat;
assume
A1: 1
<= i & i
<= m & p
< q & (for h be
Real st h
in
[.p, q.] holds ((
reproj (i,x))
. h)
in (
dom f)) & (for h be
Element of
REAL st h
in
[.p, q.] holds f
is_partial_differentiable_in (((
reproj (i,x))
. h),i));
set g = (f
* (
reproj (i,x)));
now
let h be
object;
assume
A2: h
in
[.p, q.];
then
reconsider h1 = h as
Element of
REAL ;
A3: (
dom (
reproj (i,x)))
=
REAL by
PDIFF_1:def 5;
((
reproj (i,x))
. h1)
in (
dom f) by
A1,
A2;
hence h
in (
dom g) by
A3,
FUNCT_1: 11;
end;
then
A4:
[.p, q.]
c= (
dom g);
A5:
now
let x0 be
Real;
assume
A6: x0
in
[.p, q.];
reconsider xx = x0 as
Element of
REAL by
XREAL_0:def 1;
set y = ((
reproj (i,x))
. xx);
A7: ((
proj (i,m))
. y)
= x0 by
Th39,
A1;
f
is_partial_differentiable_in (y,i) by
A1,
A6;
then (f
* (
reproj (i,y)))
is_differentiable_in x0 by
A7;
hence g
is_differentiable_in x0 by
Th40,
A1;
end;
now
let z be
object;
assume z
in
].p, q.[;
then ex z1 be
Real st z
= z1 & p
< z1 & z1
< q;
hence z
in
[.p, q.];
end;
then
A8:
].p, q.[
c=
[.p, q.];
then
A9:
].p, q.[
c= (
dom g) by
A4;
for x be
Real st x
in
].p, q.[ holds g
is_differentiable_in x by
A5,
A8;
then
A10: g
is_differentiable_on
].p, q.[ by
A9,
FDIFF_1: 9;
now
let x0,r be
Real;
assume
A11: x0
in
[.p, q.] &
0
< r;
then g
is_continuous_in x0 by
A5,
FDIFF_1: 24;
then
consider s be
Real such that
A12:
0
< s & for x1 be
Real st x1
in (
dom g) &
|.(x1
- x0).|
< s holds
|.((g
. x1)
- (g
. x0)).|
< r by
A11,
FCONT_1: 3;
take s;
thus
0
< s by
A12;
thus for x1 be
Real st x1
in
[.p, q.] &
|.(x1
- x0).|
< s holds
|.((g
. x1)
- (g
. x0)).|
< r by
A4,
A12;
end;
then (g
|
[.p, q.]) is
continuous by
A4,
FCONT_1: 14;
then
consider r be
Real such that
A13: r
in
].p, q.[ & (
diff (g,r))
= (((g
. q)
- (g
. p))
/ (q
- p)) by
A1,
A4,
A10,
ROLLE: 3;
(q
- p)
<>
0 by
A1;
then
A14: ((
diff (g,r))
* (q
- p))
= ((g
. q)
- (g
. p)) by
A13,
XCMPLX_1: 87;
A15: p
in { s where s be
Real : p
<= s & s
<= q } by
A1;
then
A16: (f
/. ((
reproj (i,x))
. p))
= (f
. ((
reproj (i,x))
. p)) by
A1,
PARTFUN1:def 6
.= (g
. p) by
A4,
A15,
FUNCT_1: 12;
A17: q
in { s where s be
Real : p
<= s & s
<= q } by
A1;
then
A18: (f
/. ((
reproj (i,x))
. q))
= (f
. ((
reproj (i,x))
. q)) by
A1,
PARTFUN1:def 6
.= (g
. q) by
A4,
A17,
FUNCT_1: 12;
reconsider r as
Element of
REAL by
XREAL_0:def 1;
set y = ((
reproj (i,x))
. r);
(
diff (g,r))
= (
partdiff (f,y,i)) by
A1,
Th41;
hence thesis by
A13,
A14,
A16,
A18;
end;
theorem ::
PDIFF_7:43
Th43: for m be non
zero
Nat, f be
PartFunc of (
REAL m),
REAL , p,q be
Real, x be
Element of (
REAL m), i be
Nat st 1
<= i & i
<= m & p
<= q & (for h be
Real st h
in
[.p, q.] holds ((
reproj (i,x))
. h)
in (
dom f)) & (for h be
Element of
REAL st h
in
[.p, q.] holds f
is_partial_differentiable_in (((
reproj (i,x))
. h),i)) holds ex r be
Real, y be
Element of (
REAL m) st r
in
[.p, q.] & y
= ((
reproj (i,x))
. r) & ((f
/. ((
reproj (i,x))
. q))
- (f
/. ((
reproj (i,x))
. p)))
= ((q
- p)
* (
partdiff (f,y,i)))
proof
let m be non
zero
Nat, f be
PartFunc of (
REAL m),
REAL , p,q be
Real, x be
Element of (
REAL m), i be
Nat;
assume
A1: 1
<= i & i
<= m & p
<= q & (for h be
Real st h
in
[.p, q.] holds ((
reproj (i,x))
. h)
in (
dom f)) & (for h be
Element of
REAL st h
in
[.p, q.] holds f
is_partial_differentiable_in (((
reproj (i,x))
. h),i));
per cases ;
suppose
A2: p
= q;
then
A3: p
in
[.p, q.];
reconsider p as
Element of
REAL by
XREAL_0:def 1;
reconsider y = ((
reproj (i,x))
. p) as
Element of (
REAL m);
((q
- p)
* (
partdiff (f,y,i)))
=
0 by
A2;
hence thesis by
A3,
A2;
end;
suppose p
<> q;
then p
< q by
A1,
XXREAL_0: 1;
then
A4: ex r be
Real, y be
Element of (
REAL m) st r
in
].p, q.[ & y
= ((
reproj (i,x))
. r) & ((f
/. ((
reproj (i,x))
. q))
- (f
/. ((
reproj (i,x))
. p)))
= ((q
- p)
* (
partdiff (f,y,i))) by
Th42,
A1;
].p, q.[
c=
[.p, q.] by
XXREAL_1: 25;
hence thesis by
A4;
end;
end;
theorem ::
PDIFF_7:44
Th44: for m be non
zero
Nat, x,y,z,w be
Element of (
REAL m), i be
Nat, d,p,q,r be
Real st 1
<= i & i
<= m &
|.(y
- x).|
< d &
|.(z
- x).|
< d & p
= ((
proj (i,m))
. y) & z
= ((
reproj (i,y))
. q) & r
in
[.p, q.] & w
= ((
reproj (i,y))
. r) holds
|.(w
- x).|
< d
proof
let m be non
zero
Nat, x,y,z,w be
Element of (
REAL m), i be
Nat, d,p,q,r be
Real;
assume that
A1: 1
<= i & i
<= m and
A2:
|.(y
- x).|
< d &
|.(z
- x).|
< d and
A3: p
= ((
proj (i,m))
. y) & z
= ((
reproj (i,y))
. q) and
A4: r
in
[.p, q.] and
A5: w
= ((
reproj (i,y))
. r);
set wx = (w
- x);
set yx = (y
- x);
set zx = (z
- x);
A6: (
Sum (
sqr yx))
= (
|.yx.|
^2 ) & (
Sum (
sqr wx))
= (
|.wx.|
^2 ) & (
Sum (
sqr zx))
= (
|.zx.|
^2 ) by
TOPREAL9: 5;
A7: ((
proj (i,m))
. z)
= q & ((
proj (i,m))
. w)
= r by
A1,
A3,
A5,
Th39;
A8: p
<= r & r
<= q by
A4,
XXREAL_1: 1;
i
in (
Seg m) by
A1;
then
A9: i
in (
dom yx) & i
in (
dom wx) & i
in (
dom zx) by
FINSEQ_1: 89;
set x1 = x;
reconsider r as
Element of
REAL by
XREAL_0:def 1;
A10: for l be
Nat st l
in (
Seg m) & l
<> i holds ((
sqr yx)
. l)
= ((
sqr wx)
. l)
proof
let l be
Nat;
assume
A11: l
in (
Seg m) & l
<> i;
then
A12: l
in (
dom yx) & l
in (
dom wx) & l
in (
dom y) by
FINSEQ_1: 89;
then
A13: l
in (
Seg (
len y)) by
FINSEQ_1:def 3;
then
A14: 1
<= l & l
<= (
len y) by
FINSEQ_1: 1;
l
in (
Seg (
len y)) & l
in (
Seg (
len (
Replace (y,i,r)))) by
A13,
FINSEQ_7: 5;
then
A15: l
in (
dom y) & l
in (
dom (
Replace (y,i,r))) by
FINSEQ_1:def 3;
(
sqr yx)
= (
sqrreal
* yx) & (
sqr wx)
= (
sqrreal
* wx) by
RVSUM_1:def 8;
then ((
sqr yx)
. l)
= (
sqrreal
. (yx
. l)) & ((
sqr wx)
. l)
= (
sqrreal
. (wx
. l)) by
A12,
FUNCT_1: 13;
then ((
sqr yx)
. l)
= ((yx
. l)
^2 ) & ((
sqr wx)
. l)
= ((wx
. l)
^2 ) by
RVSUM_1:def 2;
then
A16: ((
sqr yx)
. l)
= (((y
. l)
- (x1
. l))
^2 ) & ((
sqr wx)
. l)
= (((w
. l)
- (x1
. l))
^2 ) by
A12,
VALUED_1: 13;
(w
. l)
= ((
Replace (y,i,r))
. l) by
A5,
PDIFF_1:def 5;
then (w
. l)
= ((
Replace (y,i,r))
/. l) by
A15,
PARTFUN1:def 6;
then (w
. l)
= (y
/. l) by
A11,
A14,
FINSEQ_7: 10;
hence thesis by
A15,
A16,
PARTFUN1:def 6;
end;
A17: for l be
Nat st l
in (
Seg m) & l
<> i holds ((
sqr zx)
. l)
= ((
sqr wx)
. l)
proof
let l be
Nat;
assume
A18: l
in (
Seg m) & l
<> i;
then
A19: l
in (
dom zx) & l
in (
dom wx) & l
in (
dom z) by
FINSEQ_1: 89;
then
A20: l
in (
Seg (
len z)) by
FINSEQ_1:def 3;
then
A21: 1
<= l & l
<= (
len z) by
FINSEQ_1: 1;
l
in (
Seg (
len z)) & l
in (
Seg (
len (
Replace (z,i,r)))) by
A20,
FINSEQ_7: 5;
then
A22: l
in (
dom z) & l
in (
dom (
Replace (z,i,r))) by
FINSEQ_1:def 3;
(
sqr zx)
= (
sqrreal
* zx) & (
sqr wx)
= (
sqrreal
* wx) by
RVSUM_1:def 8;
then ((
sqr zx)
. l)
= (
sqrreal
. (zx
. l)) & ((
sqr wx)
. l)
= (
sqrreal
. (wx
. l)) by
A19,
FUNCT_1: 13;
then ((
sqr zx)
. l)
= ((zx
. l)
^2 ) & ((
sqr wx)
. l)
= ((wx
. l)
^2 ) by
RVSUM_1:def 2;
then
A23: ((
sqr zx)
. l)
= (((z
. l)
- (x1
. l))
^2 ) & ((
sqr wx)
. l)
= (((w
. l)
- (x1
. l))
^2 ) by
A19,
VALUED_1: 13;
(w
. l)
= (((
reproj (i,z))
. r)
. l) by
A1,
A3,
Th40,
A5;
then (w
. l)
= ((
Replace (z,i,r))
. l) by
PDIFF_1:def 5;
then (w
. l)
= ((
Replace (z,i,r))
/. l) by
A22,
PARTFUN1:def 6;
then (w
. l)
= (z
/. l) by
A18,
A21,
FINSEQ_7: 10;
hence thesis by
A22,
A23,
PARTFUN1:def 6;
end;
A24:
now
assume
A25:
|.(w
- x).|
>
|.(y
- x).| &
|.(w
- x).|
>
|.(z
- x).|;
A26:
now
assume
A27: ((
sqr wx)
. i)
<= ((
sqr yx)
. i);
A28: (
len (
sqr wx))
= m by
CARD_1:def 7
.= (
len (
sqr yx)) by
CARD_1:def 7;
for l be
Element of
NAT st l
in (
dom (
sqr wx)) holds ((
sqr wx)
. l)
<= ((
sqr yx)
. l)
proof
let l be
Element of
NAT ;
assume l
in (
dom (
sqr wx));
then
A29: l
in (
Seg m) by
FINSEQ_1: 89;
per cases ;
suppose l
= i;
hence ((
sqr wx)
. l)
<= ((
sqr yx)
. l) by
A27;
end;
suppose l
<> i;
hence ((
sqr wx)
. l)
<= ((
sqr yx)
. l) by
A29,
A10;
end;
end;
hence contradiction by
A28,
A6,
A25,
INTEGRA5: 3,
SQUARE_1: 16;
end;
A30:
now
assume
A31: ((
sqr wx)
. i)
<= ((
sqr zx)
. i);
A32: (
len (
sqr wx))
= m by
CARD_1:def 7
.= (
len (
sqr zx)) by
CARD_1:def 7;
for l be
Element of
NAT st l
in (
dom (
sqr wx)) holds ((
sqr wx)
. l)
<= ((
sqr zx)
. l)
proof
let l be
Element of
NAT ;
assume l
in (
dom (
sqr wx));
then
A33: l
in (
Seg m) by
FINSEQ_1: 89;
per cases ;
suppose l
= i;
hence ((
sqr wx)
. l)
<= ((
sqr zx)
. l) by
A31;
end;
suppose l
<> i;
hence ((
sqr wx)
. l)
<= ((
sqr zx)
. l) by
A33,
A17;
end;
end;
hence contradiction by
A32,
A6,
A25,
INTEGRA5: 3,
SQUARE_1: 16;
end;
(
sqr yx)
= (
sqrreal
* yx) & (
sqr wx)
= (
sqrreal
* wx) & (
sqr zx)
= (
sqrreal
* zx) by
RVSUM_1:def 8;
then ((
sqr yx)
. i)
= (
sqrreal
. (yx
. i)) & ((
sqr wx)
. i)
= (
sqrreal
. (wx
. i)) & ((
sqr zx)
. i)
= (
sqrreal
. (zx
. i)) by
A9,
FUNCT_1: 13;
then
A34: ((
sqr yx)
. i)
= ((yx
. i)
^2 ) & ((
sqr wx)
. i)
= ((wx
. i)
^2 ) & ((
sqr zx)
. i)
= ((zx
. i)
^2 ) by
RVSUM_1:def 2;
(y
. i)
= p & (w
. i)
= r & (z
. i)
= q by
A3,
A7,
PDIFF_1:def 1;
then
A35: ((
sqr yx)
. i)
= ((p
- (x1
. i))
^2 ) & ((
sqr wx)
. i)
= ((r
- (x1
. i))
^2 ) & ((
sqr zx)
. i)
= ((q
- (x1
. i))
^2 ) by
A34,
A9,
VALUED_1: 13;
A36: p
<= q by
A8,
XXREAL_0: 2;
per cases ;
suppose (x1
. i)
< p;
then (x1
. i)
< r & (x1
. i)
< q by
A8,
A36,
XXREAL_0: 2;
then (q
- (x1
. i))
>
0 & (r
- (x1
. i))
>
0 by
XREAL_1: 50;
then (q
- (x1
. i))
< (r
- (x1
. i)) by
A35,
A30,
SQUARE_1: 15;
hence contradiction by
A8,
XREAL_1: 13;
end;
suppose
A37: p
<= (x1
. i) & (x1
. i)
<= r;
then (x1
. i)
<= q by
A8,
XXREAL_0: 2;
then (r
- (x1
. i))
>=
0 & (q
- (x1
. i))
>=
0 by
A37,
XREAL_1: 48;
then (q
- (x1
. i))
< (r
- (x1
. i)) by
A35,
A30,
SQUARE_1: 15;
hence contradiction by
A8,
XREAL_1: 13;
end;
suppose
A38: r
< (x1
. i) & (x1
. i)
<= q;
then p
< (x1
. i) by
A8,
XXREAL_0: 2;
then
A39: ((x1
. i)
- p)
>=
0 & ((x1
. i)
- r)
>=
0 by
A38,
XREAL_1: 48;
((p
- (x1
. i))
^2 )
= (((x1
. i)
- p)
^2 ) & ((r
- (x1
. i))
^2 )
= (((x1
. i)
- r)
^2 );
then ((x1
. i)
- p)
< ((x1
. i)
- r) by
A35,
A26,
A39,
SQUARE_1: 15;
hence contradiction by
A8,
XREAL_1: 13;
end;
suppose q
< (x1
. i);
then r
< (x1
. i) by
A8,
XXREAL_0: 2;
then p
< (x1
. i) & r
< (x1
. i) by
A8,
XXREAL_0: 2;
then
A40: ((x1
. i)
- r)
>=
0 & ((x1
. i)
- p)
>=
0 by
XREAL_1: 48;
((p
- (x1
. i))
^2 )
= (((x1
. i)
- p)
^2 ) & ((r
- (x1
. i))
^2 )
= (((x1
. i)
- r)
^2 );
then ((x1
. i)
- p)
< ((x1
. i)
- r) by
A35,
A26,
A40,
SQUARE_1: 15;
hence contradiction by
A8,
XREAL_1: 13;
end;
end;
per cases by
A24;
suppose
|.(w
- x).|
<=
|.(y
- x).|;
hence
|.(w
- x).|
< d by
A2,
XXREAL_0: 2;
end;
suppose
|.(w
- x).|
<=
|.(z
- x).|;
hence
|.(w
- x).|
< d by
A2,
XXREAL_0: 2;
end;
end;
theorem ::
PDIFF_7:45
Th45: for m be non
zero
Nat, f be
PartFunc of (
REAL m),
REAL , X be
Subset of (
REAL m), x,y,z be
Element of (
REAL m), i be
Nat, d,p,q be
Real st 1
<= i & i
<= m & X is
open & x
in X &
|.(y
- x).|
< d &
|.(z
- x).|
< d & X
c= (
dom f) & (for x be
Element of (
REAL m) st x
in X holds f
is_partial_differentiable_in (x,i)) &
0
< d & (for z be
Element of (
REAL m) st
|.(z
- x).|
< d holds z
in X) & z
= ((
reproj (i,y))
. p) & q
= ((
proj (i,m))
. y) holds ex w be
Element of (
REAL m) st
|.(w
- x).|
< d & f
is_partial_differentiable_in (w,i) & ((f
/. z)
- (f
/. y))
= ((p
- q)
* (
partdiff (f,w,i)))
proof
let m be non
zero
Nat, f be
PartFunc of (
REAL m),
REAL , X be
Subset of (
REAL m), x,y,z be
Element of (
REAL m), i be
Nat, d,p,q be
Real;
assume
A1: 1
<= i & i
<= m & X is
open & x
in X &
|.(y
- x).|
< d &
|.(z
- x).|
< d & X
c= (
dom f) & (for x be
Element of (
REAL m) st x
in X holds f
is_partial_differentiable_in (x,i)) &
0
< d & (for z be
Element of (
REAL m) st
|.(z
- x).|
< d holds z
in X) & z
= ((
reproj (i,y))
. p) & q
= ((
proj (i,m))
. y);
then
A2: p
= ((
proj (i,m))
. z) by
Th39;
reconsider yi = (y
. i) as
Element of
REAL by
XREAL_0:def 1;
((
reproj (i,y))
. q)
= ((
reproj (i,y))
. (y
. i)) by
A1,
PDIFF_1:def 1;
then ((
reproj (i,y))
. q)
= (
Replace (y,i,yi)) by
PDIFF_1:def 5;
then
A3: y
= ((
reproj (i,y))
. q) by
FUNCT_7: 35;
per cases ;
suppose
A4: q
<= p;
A5: for h be
Element of
REAL st h
in
[.q, p.] holds ((
reproj (i,y))
. h)
in X
proof
let h be
Element of
REAL ;
assume h
in
[.q, p.];
then
|.(((
reproj (i,y))
. h)
- x).|
< d by
A1,
Th44;
hence ((
reproj (i,y))
. h)
in X by
A1;
end;
then
A6: for h be
Real st h
in
[.q, p.] holds ((
reproj (i,y))
. h)
in (
dom f) by
A1;
reconsider p, q as
Real;
for h be
Element of
REAL st h
in
[.q, p.] holds f
is_partial_differentiable_in (((
reproj (i,y))
. h),i) by
A1,
A5;
then
consider r be
Real, w be
Element of (
REAL m) such that
A7: r
in
[.q, p.] & w
= ((
reproj (i,y))
. r) & ((f
/. ((
reproj (i,y))
. p))
- (f
/. ((
reproj (i,y))
. q)))
= ((p
- q)
* (
partdiff (f,w,i))) by
Th43,
A1,
A4,
A6;
A8:
|.(w
- x).|
< d by
A7,
A1,
Th44;
then f
is_partial_differentiable_in (w,i) by
A1;
hence thesis by
A7,
A3,
A1,
A8;
end;
suppose
A9: p
< q;
reconsider p as
Element of
REAL by
XREAL_0:def 1;
reconsider mm = m as
Element of
NAT by
ORDINAL1:def 12;
A10: (
dom y)
= (
Seg m) by
FINSEQ_1: 89;
then
A11: i
in (
dom y) & (
len y)
= mm by
A1,
FINSEQ_1:def 3;
then (
len (
Replace (y,i,p)))
= m by
FINSEQ_7: 5;
then
A12: (
dom y)
= (
dom (
Replace (y,i,p))) by
A10,
FINSEQ_1:def 3;
z
= (
Replace (y,i,p)) by
A1,
PDIFF_1:def 5;
then (z
. i)
= ((
Replace (y,i,p))
/. i) by
A11,
A12,
PARTFUN1:def 6;
then
A13: (z
. i)
= p by
A1,
A11,
FINSEQ_7: 8;
A14: y
= ((
reproj (i,z))
. q) by
A1,
Th40,
A3;
A15: for h be
Element of
REAL st h
in
[.p, q.] holds ((
reproj (i,z))
. h)
in X
proof
let h be
Element of
REAL ;
assume h
in
[.p, q.];
then
|.(((
reproj (i,z))
. h)
- x).|
< d by
A2,
A14,
A1,
Th44;
then ((
reproj (i,z))
. h)
in X by
A1;
hence thesis;
end;
A16: for h be
Real st h
in
[.p, q.] holds ((
reproj (i,z))
. h)
in (
dom f) by
A15,
A1;
for h be
Element of
REAL st h
in
[.p, q.] holds f
is_partial_differentiable_in (((
reproj (i,z))
. h),i) by
A15,
A1;
then
consider r be
Real, w be
Element of (
REAL m) such that
A17: r
in
[.p, q.] & w
= ((
reproj (i,z))
. r) & ((f
/. ((
reproj (i,z))
. q))
- (f
/. ((
reproj (i,z))
. p)))
= ((q
- p)
* (
partdiff (f,w,i))) by
Th43,
A1,
A9,
A16;
A18:
|.(w
- x).|
< d by
A2,
A14,
A17,
A1,
Th44;
then
A19: f
is_partial_differentiable_in (w,i) by
A1;
reconsider zi = (z
. i) as
Real;
((
reproj (i,z))
. p)
= (
Replace (z,i,zi)) by
A13,
PDIFF_1:def 5;
then ((f
/. y)
- (f
/. z))
= ((q
- p)
* (
partdiff (f,w,i))) by
A14,
A17,
FUNCT_7: 35;
then ((f
/. z)
- (f
/. y))
= ((p
- q)
* (
partdiff (f,w,i)));
hence thesis by
A18,
A19;
end;
end;
theorem ::
PDIFF_7:46
Th46: for m be non
zero
Nat, h be
FinSequence of (
REAL m), y,x be
Element of (
REAL m), j be
Nat st (
len h)
= (m
+ 1) & 1
<= j & j
<= m & (for i be
Nat st i
in (
dom h) holds (h
/. i)
= ((y
| ((m
+ 1)
-' i))
^ (
0* (i
-' 1)))) holds (x
+ (h
/. j))
= ((
reproj (((m
+ 1)
-' j),(x
+ (h
/. (j
+ 1)))))
. ((
proj (((m
+ 1)
-' j),m))
. (x
+ y)))
proof
let m be non
zero
Nat, h be
FinSequence of (
REAL m), y,x be
Element of (
REAL m), j be
Nat such that
A1: (
len h)
= (m
+ 1) & 1
<= j & j
<= m & (for i be
Nat st i
in (
dom h) holds (h
/. i)
= ((y
| ((m
+ 1)
-' i))
^ (
0* (i
-' 1))));
reconsider mj = (m
- j) as
Nat by
A1,
NAT_1: 21;
reconsider xxx = ((x
/. ((m
+ 1)
-' j))
+ (y
/. ((m
+ 1)
-' j))) as
Element of
REAL ;
m
<= (m
+ 1) by
NAT_1: 11;
then
A2: (
Seg m)
c= (
Seg (m
+ 1)) by
FINSEQ_1: 5;
A3: j
in (
Seg m) by
A1;
then j
in (
Seg (m
+ 1)) by
A2;
then j
in (
dom h) by
A1,
FINSEQ_1:def 3;
then
A4: (h
/. j)
= ((y
| ((m
+ 1)
-' j))
^ (
0* (j
-' 1))) by
A1;
(j
+ 1)
in (
Seg (m
+ 1)) by
A3,
FINSEQ_1: 60;
then (j
+ 1)
in (
dom h) by
A1,
FINSEQ_1:def 3;
then
A5: (h
/. (j
+ 1))
= ((y
| ((m
+ 1)
-' (j
+ 1)))
^ (
0* ((j
+ 1)
-' 1))) by
A1;
((m
+ 1)
-' j)
= ((m
-' j)
+ 1) by
A1,
NAT_D: 38;
then
A6: 1
<= ((m
+ 1)
-' j) by
NAT_1: 11;
A7: (1
- j)
<=
0 by
A1,
XREAL_1: 47;
((m
+ 1)
-' j)
= ((m
+ 1)
- j) by
A1,
NAT_D: 37
.= (m
+ (1
- j));
then
A8: ((m
+ 1)
-' j)
<= m by
A7,
XREAL_1: 32;
then ((m
+ 1)
-' j)
in (
Seg m) by
A6;
then
A9: ((m
+ 1)
-' j)
in (
dom (x
+ y)) & ((m
+ 1)
-' j)
in (
dom y) & ((m
+ 1)
-' j)
in (
dom x) by
FINSEQ_1: 89;
((m
+ 1)
-' j)
<= (
len y) by
A8,
CARD_1:def 7;
then
A10: (
len (y
| ((m
+ 1)
-' j)))
= ((m
+ 1)
-' j) by
FINSEQ_1: 59;
(j
+ 1)
<= (m
+ 1) by
A1,
XREAL_1: 6;
then
A11: ((m
+ 1)
-' (j
+ 1))
= ((m
+ 1)
- (j
+ 1)) by
XREAL_1: 233;
then ((m
+ 1)
-' (j
+ 1))
= (m
- j) & j
>=
0 ;
then ((m
+ 1)
-' (j
+ 1))
<= m by
XREAL_1: 43;
then ((m
+ 1)
-' (j
+ 1))
<= (
len y) by
CARD_1:def 7;
then
A12: (
len (y
| ((m
+ 1)
-' (j
+ 1))))
= ((m
+ 1)
-' (j
+ 1)) by
FINSEQ_1: 59;
((
proj (((m
+ 1)
-' j),m))
. (x
+ y))
= ((x
+ y)
. ((m
+ 1)
-' j)) by
PDIFF_1:def 1
.= ((x
. ((m
+ 1)
-' j))
+ (y
. ((m
+ 1)
-' j))) by
A9,
VALUED_1:def 1
.= ((x
. ((m
+ 1)
-' j))
+ (y
/. ((m
+ 1)
-' j))) by
A9,
PARTFUN1:def 6
.= ((x
/. ((m
+ 1)
-' j))
+ (y
/. ((m
+ 1)
-' j))) by
A9,
PARTFUN1:def 6;
then
A13: ((
reproj (((m
+ 1)
-' j),(x
+ (h
/. (j
+ 1)))))
. ((
proj (((m
+ 1)
-' j),m))
. (x
+ y)))
= (
Replace ((x
+ (h
/. (j
+ 1))),((m
+ 1)
-' j),xxx)) by
PDIFF_1:def 5;
((
reproj (((m
+ 1)
-' j),(x
+ (h
/. (j
+ 1)))))
/. ((
proj (((m
+ 1)
-' j),m))
. (x
+ y))) is
Element of (
REAL m);
then
reconsider rep = ((
reproj (((m
+ 1)
-' j),(x
+ (h
/. (j
+ 1)))))
/. ((
proj (((m
+ 1)
-' j),m))
. (x
+ y))) as
FinSequence of
REAL ;
reconsider hj = (h
/. j) as
Element of (
REAL m);
reconsider hj1 = (h
/. (j
+ 1)) as
Element of (
REAL m);
A14: (
len (x
+ hj))
= m by
CARD_1:def 7
.= (
len rep) by
CARD_1:def 7;
now
let n be
Nat;
assume
A15: 1
<= n & n
<= (
len rep);
then
A16: 1
<= n & n
<= m by
CARD_1:def 7;
then n
in (
Seg m);
then
A17: n
in (
Seg (
len (x
+ (h
/. j)))) & n
in (
Seg (
len (x
+ (h
/. (j
+ 1))))) & n
in (
Seg (
len x)) & n
in (
Seg (
len y)) by
CARD_1:def 7;
then
A18: n
in (
dom (x
+ (h
/. j))) & n
in (
dom (x
+ (h
/. (j
+ 1)))) & n
in (
dom rep) & n
in (
dom x) & n
in (
dom y) by
A14,
FINSEQ_1:def 3;
then
A19: ((x
+ (h
/. j))
. n)
= ((x
. n)
+ (hj
. n)) & ((x
+ (h
/. (j
+ 1)))
. n)
= ((x
. n)
+ (hj1
. n)) by
VALUED_1:def 1;
per cases by
XXREAL_0: 1;
suppose
A20: n
< ((m
+ 1)
-' j);
then
A21: n
in (
Seg ((m
+ 1)
-' j)) by
A15;
A22: (hj
. n)
= ((y
| (
Seg ((m
+ 1)
-' j)))
. n) by
A4,
A10,
A15,
A20,
FINSEQ_1: 64
.= (y
. n) by
A21,
FUNCT_1: 49;
m
<= (m
+ 1) by
NAT_1: 11;
then n
< ((m
+ 1)
- j) by
A1,
A20,
XREAL_1: 233,
XXREAL_0: 2;
then n
< (mj
+ 1);
then
A23: n
<= mj by
NAT_1: 13;
then
A24: n
in (
Seg mj) by
A15;
A25: (hj1
. n)
= ((y
| (
Seg mj))
. n) by
A11,
A23,
A12,
A5,
A15,
FINSEQ_1: 64
.= (y
. n) by
A24,
FUNCT_1: 49;
n
<> ((m
+ 1)
-' j) & n
<= (
len (x
+ (h
/. (j
+ 1)))) by
A20,
A17,
FINSEQ_1: 1;
then (rep
/. n)
= ((x
+ (h
/. (j
+ 1)))
/. n) by
A13,
A15,
FINSEQ_7: 10;
then (rep
. n)
= ((x
+ (h
/. (j
+ 1)))
/. n) by
A18,
PARTFUN1:def 6
.= ((x
+ (h
/. (j
+ 1)))
. n) by
A18,
PARTFUN1:def 6;
hence ((x
+ (h
/. j))
. n)
= (rep
. n) by
A19,
A25,
A22;
end;
suppose
A26: n
= ((m
+ 1)
-' j);
then
A27: n
in (
Seg ((m
+ 1)
-' j)) by
A15;
A28: (hj
. n)
= ((y
| (
Seg ((m
+ 1)
-' j)))
. n) by
A4,
A10,
A15,
A26,
FINSEQ_1: 64
.= (y
. n) by
A27,
FUNCT_1: 49;
n
<= (
len (x
+ (h
/. (j
+ 1)))) by
A17,
FINSEQ_1: 1;
then (rep
/. n)
= ((x
/. n)
+ (y
/. n)) by
A26,
A13,
A15,
FINSEQ_7: 8;
then
A29: (rep
. n)
= ((x
/. n)
+ (y
/. n)) by
A18,
PARTFUN1:def 6;
thus ((x
+ (h
/. j))
. n)
= ((x
/. n)
+ (y
. n)) by
A18,
A19,
A28,
PARTFUN1:def 6
.= (rep
. n) by
A29,
A18,
PARTFUN1:def 6;
end;
suppose
A30: n
> ((m
+ 1)
-' j);
then
reconsider nm = (n
- ((m
+ 1)
-' j)) as
Nat by
NAT_1: 21;
A31: m
<= (m
+ 1) by
NAT_1: 11;
n
<= (
len hj) by
A16,
CARD_1:def 7;
then
A32: (hj
. n)
= ((
0* (j
-' 1))
. nm) by
A4,
A10,
A30,
FINSEQ_1: 24
.=
0 ;
A33: (
len y)
= m by
CARD_1:def 7;
(j
+ 1)
<= (m
+ 1) by
A1,
XREAL_1: 6;
then ((m
+ 1)
-' (j
+ 1))
= ((m
+ 1)
- (j
+ 1)) by
XREAL_1: 233
.= (m
- j)
.= (m
-' j) by
A1,
XREAL_1: 233;
then
A34: (
len (y
| ((m
+ 1)
-' (j
+ 1))))
= (m
-' j) by
A33,
FINSEQ_1: 59,
NAT_D: 35;
n
> ((m
+ 1)
- j) by
A30,
A31,
A1,
XREAL_1: 233,
XXREAL_0: 2;
then n
> ((m
- j)
+ 1) & ((m
- j)
+ 1)
> ((m
- j)
+
0 qua
Real) by
XREAL_1: 8;
then n
> (m
- j) by
XXREAL_0: 2;
then
A35: n
> (m
-' j) by
A1,
XREAL_1: 233;
then
reconsider nmj = (n
- (m
-' j)) as
Nat by
NAT_1: 21;
n
<= (
len hj1) by
A16,
CARD_1:def 7;
then
A36: (hj1
. n)
= ((
0* ((j
+ 1)
-' 1))
. (n
- (m
-' j))) by
A5,
A34,
A35,
FINSEQ_1: 24
.=
0 ;
n
<> ((m
+ 1)
-' j) & n
<= (
len (x
+ (h
/. (j
+ 1)))) by
A30,
A17,
FINSEQ_1: 1;
then (rep
/. n)
= ((x
+ (h
/. (j
+ 1)))
/. n) by
A13,
A15,
FINSEQ_7: 10;
then (rep
. n)
= ((x
+ (h
/. (j
+ 1)))
/. n) by
A18,
PARTFUN1:def 6
.= ((x
+ (h
/. (j
+ 1)))
. n) by
A18,
PARTFUN1:def 6;
hence ((x
+ (h
/. j))
. n)
= (rep
. n) by
A19,
A36,
A32;
end;
end;
hence (x
+ (h
/. j))
= ((
reproj (((m
+ 1)
-' j),(x
+ (h
/. (j
+ 1)))))
. ((
proj (((m
+ 1)
-' j),m))
. (x
+ y))) by
A14;
end;
theorem ::
PDIFF_7:47
Th47: for m be non
zero
Nat, f be
PartFunc of (
REAL m), (
REAL 1), X be
Subset of (
REAL m), x be
Element of (
REAL m) st X is
open & x
in X & (for i be
Nat st 1
<= i & i
<= m holds f
is_partial_differentiable_on (X,i) & (f
`partial| (X,i))
is_continuous_on X) holds f
is_differentiable_in x & for h be
Element of (
REAL m) holds ex w be
FinSequence of (
REAL 1) st (
dom w)
= (
Seg m) & (for i be
Nat st i
in (
Seg m) holds (w
. i)
= (((
proj (i,m))
. h)
* (
partdiff (f,x,i)))) & ((
diff (f,x))
. h)
= (
Sum w)
proof
let m be non
zero
Nat, f be
PartFunc of (
REAL m), (
REAL 1), X be
Subset of (
REAL m), x be
Element of (
REAL m);
assume
A1: X is
open & x
in X & for i be
Nat st 1
<= i & i
<= m holds f
is_partial_differentiable_on (X,i) & (f
`partial| (X,i))
is_continuous_on X;
consider L be
Lipschitzian
LinearOperator of m, 1 such that
A2: for h be
Element of (
REAL m) holds ex w be
FinSequence of (
REAL 1) st (
dom w)
= (
Seg m) & (for i be
Nat st i
in (
Seg m) holds (w
. i)
= (((
proj (i,m))
. h)
* (
partdiff (f,x,i)))) & (L
. h)
= (
Sum w) by
Lm8;
consider d0 be
Real such that
A3: d0
>
0 and
A4: { y where y be
Element of (
REAL m) :
|.(y
- x).|
< d0 }
c= X by
A1,
Th31;
set N = { y where y be
Element of (
REAL m) :
|.(y
- x).|
< d0 };
1
<= m by
NAT_1: 14;
then f
is_partial_differentiable_on (X,m) by
A1;
then X
c= (
dom f);
then
A5: N
c= (
dom f) by
A4;
deffunc
RF(
Element of (
REAL m)) = (((f
/. (x
+ $1))
- (f
/. x))
- (L
. $1));
consider R be
Function of (
REAL m), (
REAL 1) such that
A6: for h be
Element of (
REAL m) holds (R
. h)
=
RF(h) from
FUNCT_2:sch 4;
consider f0 be
PartFunc of (
REAL m),
REAL such that
A7: f
= (
<>* f0) by
Th29;
A8:
now
let r0 be
Real;
assume
A9: r0
>
0 ;
set r1 = (r0
/ 2);
set r = (r1
/ m);
defpred
DSQ[
Nat,
Real] means ex k be
Nat st $1
= k &
0
< $2 & for q be
Element of (
REAL m) st q
in X &
|.(q
- x).|
< $2 holds
|.((
partdiff (f,q,k))
- (
partdiff (f,x,k))).|
< r;
A10: for k0 be
Nat st k0
in (
Seg m) holds ex d be
Element of
REAL st
DSQ[k0, d]
proof
let k0 be
Nat;
assume
A11: k0
in (
Seg m);
reconsider k = k0 as
Nat;
A12: 1
<= k & k
<= m by
A11,
FINSEQ_1: 1;
then (f
`partial| (X,k))
is_continuous_on X by
A1;
then
consider d be
Real such that
A13:
0
< d & for q be
Element of (
REAL m) st q
in X &
|.(q
- x).|
< d holds
|.(((f
`partial| (X,k))
/. q)
- ((f
`partial| (X,k))
/. x)).|
< r by
A9,
A1,
Th38;
reconsider d as
Element of
REAL by
XREAL_0:def 1;
take d;
for q be
Element of (
REAL m) st q
in X &
|.(q
- x).|
< d holds
|.((
partdiff (f,q,k))
- (
partdiff (f,x,k))).|
< r
proof
let q be
Element of (
REAL m);
assume
A14: q
in X &
|.(q
- x).|
< d;
then
A15:
|.(((f
`partial| (X,k))
/. q)
- ((f
`partial| (X,k))
/. x)).|
< r by
A13;
A16: f
is_partial_differentiable_on (X,k) by
A1,
A12;
then ((f
`partial| (X,k))
/. q)
= (
partdiff (f,q,k)) by
A14,
Def5;
hence
|.((
partdiff (f,q,k))
- (
partdiff (f,x,k))).|
< r by
A15,
A16,
A1,
Def5;
end;
hence ex k be
Nat st k0
= k &
0
< d & for q be
Element of (
REAL m) st q
in X &
|.(q
- x).|
< d holds
|.((
partdiff (f,q,k))
- (
partdiff (f,x,k))).|
< r by
A13;
end;
consider Dseq be
FinSequence of
REAL such that
A17: (
dom Dseq)
= (
Seg m) & for i be
Nat st i
in (
Seg m) holds
DSQ[i, (Dseq
. i)] from
FINSEQ_1:sch 5(
A10);
A18: (
rng Dseq) is
finite by
A17,
FINSET_1: 8;
m
in (
Seg m) by
FINSEQ_1: 3;
then
reconsider rDseq = (
rng Dseq) as non
empty
ext-real-membered
set by
A17,
FUNCT_1: 3;
reconsider rDseq as
left_end
right_end non
empty
ext-real-membered
set by
A18;
A19: (
min rDseq)
in (
rng Dseq) by
XXREAL_2:def 7;
reconsider d1 = (
min rDseq) as
Real;
set d = (
min (d0,d1));
consider i1 be
object such that
A20: i1
in (
dom Dseq) & d1
= (Dseq
. i1) by
A19,
FUNCT_1:def 3;
reconsider i1 as
Nat by
A20;
A21: ex k be
Nat st i1
= k &
0
< (Dseq
. i1) & for q be
Element of (
REAL m) st q
in X &
|.(q
- x).|
< (Dseq
. i1) holds
|.((
partdiff (f,q,k))
- (
partdiff (f,x,k))).|
< r by
A17,
A20;
A22:
now
let q be
Element of (
REAL m);
assume
A23:
|.(q
- x).|
< d;
d
<= d0 by
XXREAL_0: 17;
then
|.(q
- x).|
< d0 by
A23,
XXREAL_0: 2;
then q
in { y where y be
Element of (
REAL m) :
|.(y
- x).|
< d0 };
hence q
in X by
A4;
end;
A24:
now
let q be
Element of (
REAL m), i be
Nat;
assume
A25:
|.(q
- x).|
< d & i
in (
Seg m);
reconsider i0 = i as
Nat;
consider k be
Nat such that
A26: i0
= k &
0
< (Dseq
. i0) & for q be
Element of (
REAL m) st q
in X &
|.(q
- x).|
< (Dseq
. i0) holds
|.((
partdiff (f,q,k))
- (
partdiff (f,x,k))).|
< r by
A17,
A25;
(Dseq
. i0)
in (
rng Dseq) by
A17,
A25,
FUNCT_1: 3;
then
A27: d1
<= (Dseq
. i0) by
XXREAL_2:def 7;
d
<= d1 by
XXREAL_0: 17;
then d
<= (Dseq
. i0) by
A27,
XXREAL_0: 2;
then
|.(q
- x).|
< (Dseq
. i0) by
A25,
XXREAL_0: 2;
hence
|.((
partdiff (f,q,i))
- (
partdiff (f,x,i))).|
< r by
A22,
A25,
A26;
end;
take d;
thus
0
< d by
A3,
A20,
A21,
XXREAL_0: 21;
thus for y be
Element of (
REAL m), z be
Element of (
REAL 1) st y
<> (
0* m) &
|.y.|
< d & z
= (R
. y) holds ((
|.y.|
" )
*
|.z.|)
< r0
proof
let y be
Element of (
REAL m), z be
Element of (
REAL 1);
assume
A28: y
<> (
0* m) &
|.y.|
< d & z
= (R
. y);
consider h be
FinSequence of (
REAL m), g be
FinSequence of (
REAL 1) such that
A29: (
len h)
= (m
+ 1) & (
len g)
= m & (for i be
Nat st i
in (
dom h) holds (h
/. i)
= ((y
| ((m
+ 1)
-' i))
^ (
0* (i
-' 1)))) & (for i be
Nat st i
in (
dom g) holds (g
/. i)
= ((f
/. (x
+ (h
/. i)))
- (f
/. (x
+ (h
/. (i
+ 1)))))) & (for i be
Nat, hi be
Element of (
REAL m) st i
in (
dom h) & (h
/. i)
= hi holds
|.hi.|
<=
|.y.|) & ((f
/. (x
+ y))
- (f
/. x))
= (
Sum g) by
Th28;
A30: (R
/. y)
= ((
Sum g)
- (L
. y)) by
A6,
A29;
consider w be
FinSequence of (
REAL 1) such that
A31: (
dom w)
= (
Seg m) & (for i be
Nat st i
in (
Seg m) holds (w
. i)
= (((
proj (i,m))
. y)
* (
partdiff (f,x,i)))) & (L
. y)
= (
Sum w) by
A2;
(
idseq m) is
Permutation of (
Seg m) by
FINSEQ_2: 55;
then
A32: (
dom (
idseq m))
= (
Seg m) & (
rng (
idseq m))
= (
Seg m) & (
idseq m) is
one-to-one by
FUNCT_2:def 1,
FUNCT_2:def 3;
then
A33: (
dom (
Rev (
idseq m)))
= (
Seg m) & (
rng (
Rev (
idseq m)))
= (
Seg m) by
FINSEQ_5: 57;
then
reconsider Ri = (
Rev (
idseq m)) as
Function of (
Seg m), (
Seg m) by
FUNCT_2: 1;
Ri is
one-to-one
onto by
A33,
FUNCT_2:def 3;
then
reconsider Ri = (
Rev (
idseq m)) as
Permutation of (
dom w) by
A31;
reconsider mm = m as
Element of
NAT by
ORDINAL1:def 12;
A34: (
len (
idseq m))
= mm by
A32,
FINSEQ_1:def 3
.= (
len w) by
A31,
FINSEQ_1:def 3;
A35: (
dom (w
(*) Ri))
= (
dom Ri) by
A33,
RELAT_1: 27
.= (
dom (
Rev w)) by
A33,
A31,
FINSEQ_5: 57;
now
let k be
Nat;
assume
A36: k
in (
dom (
Rev w));
then
A37: k
in (
dom (
Rev (
idseq m))) by
A33,
A31,
FINSEQ_5: 57;
then
A38: 1
<= k & k
<= m by
A33,
FINSEQ_1: 1;
then
reconsider mk = (m
- k) as
Nat by
NAT_1: 21;
reconsider mm = m as
Element of
NAT by
ORDINAL1:def 12;
A39: (
len (
idseq m))
= mm by
A32,
FINSEQ_1:def 3;
0
<= mk;
then
A40: (
0
+ 1)
<= ((m
- k)
+ 1) by
XREAL_1: 6;
(k
- 1)
>= (1
- 1) by
A38,
XREAL_1: 9;
then (m
- (k
- 1))
<= m by
XREAL_1: 43;
then
A41: (mk
+ 1)
in (
Seg m) by
A40;
thus ((
Rev w)
. k)
= (w
. (((
len (
idseq m))
- k)
+ 1)) by
A34,
A36,
FINSEQ_5:def 3
.= (w
. ((
idseq m)
. (((
len (
idseq m))
- k)
+ 1))) by
A41,
A39,
FINSEQ_2: 49
.= (w
. ((
Rev (
idseq m))
. k)) by
A37,
FINSEQ_5:def 3
.= ((w
(*) Ri)
. k) by
A36,
A35,
FUNCT_1: 12;
end;
then
A42: (
Sum (
Rev w))
= (
Sum w) by
A35,
EUCLID_7: 21,
FINSEQ_1: 13;
deffunc
GW(
Nat) = ((g
/. $1)
- ((
Rev w)
/. $1));
consider gw be
FinSequence of (
REAL 1) such that
A43: (
len gw)
= m & for j be
Nat st j
in (
dom gw) holds (gw
. j)
=
GW(j) from
FINSEQ_2:sch 1;
A44:
now
let j be
Nat;
assume
A45: j
in (
dom gw);
hence (gw
/. j)
= (gw
. j) by
PARTFUN1:def 6
.= ((g
/. j)
- ((
Rev w)
/. j)) by
A45,
A43;
end;
reconsider mm = m as
Element of
NAT by
ORDINAL1:def 12;
A46: (
len w)
= mm by
A31,
FINSEQ_1:def 3;
then (
len (
Rev w))
= m by
FINSEQ_5:def 3;
then
A47: (R
/. y)
= (
Sum gw) by
A29,
A30,
A31,
A43,
A44,
A42,
Th27;
A48: for j be
Nat st j
in (
dom gw) holds ex gwj be
Element of (
REAL 1) st (gw
. j)
= gwj &
|.gwj.|
<= (
|.y.|
* r)
proof
let j be
Nat;
assume
A49: j
in (
dom gw);
then
A50: j
in (
Seg m) by
A43,
FINSEQ_1:def 3;
then j
in (
dom g) by
A29,
FINSEQ_1:def 3;
then
A51: (g
/. j)
= ((f
/. (x
+ (h
/. j)))
- (f
/. (x
+ (h
/. (j
+ 1))))) by
A29;
A52: 1
<= j & j
<= m by
A50,
FINSEQ_1: 1;
then (m
+ 1)
<= (m
+ j) & (j
+ 1)
<= (m
+ 1) by
XREAL_1: 6;
then ((m
+ 1)
- j)
<= m & 1
<= ((m
+ 1)
- j) by
XREAL_1: 19,
XREAL_1: 20;
then
A53: ((m
+ 1)
-' j)
<= m & 1
<= ((m
+ 1)
-' j) by
A52,
NAT_D: 37;
then
A54: f
is_partial_differentiable_on (X,((m
+ 1)
-' j)) by
A1;
then
A55: X
c= (
dom f) & for x be
Element of (
REAL m) st x
in X holds f
is_partial_differentiable_in (x,((m
+ 1)
-' j)) by
A53,
Th34,
A1;
A56: ((m
+ 1)
-' j)
in (
Seg m) by
A53;
then
A57: (w
/. ((m
+ 1)
-' j))
= (w
. ((m
+ 1)
-' j)) by
A31,
PARTFUN1:def 6
.= (((
proj (((m
+ 1)
-' j),m))
. y)
* (
partdiff (f,x,((m
+ 1)
-' j)))) by
A31,
A56;
A58:
now
let j be
Nat;
assume 1
<= j & j
<= (m
+ 1);
then j
in (
Seg (m
+ 1));
then
A59: j
in (
dom h) by
A29,
FINSEQ_1:def 3;
A60: ((x
+ (h
/. j))
- x)
= (h
/. j) by
RVSUM_1: 42;
reconsider hj = (h
/. j) as
Element of (
REAL m);
|.hj.|
<=
|.y.| by
A29,
A59;
hence
|.((x
+ (h
/. j))
- x).|
< d by
A60,
A28,
XXREAL_0: 2;
end;
(
rng f0)
c= (
dom ((
proj (1,1)) qua
Function
" )) by
PDIFF_1: 2;
then
A61: (
dom f)
= (
dom f0) by
A7,
RELAT_1: 27;
m
<= (m
+ 1) by
NAT_1: 11;
then (
Seg m)
c= (
Seg (m
+ 1)) by
FINSEQ_1: 5;
then 1
<= j & j
<= (m
+ 1) by
A50,
FINSEQ_1: 1;
then
A62:
|.((x
+ (h
/. j))
- x).|
< d by
A58;
then
A63: (x
+ (h
/. j))
in X by
A22;
then
A64: (f
/. (x
+ (h
/. j)))
= ((
<>* f0)
. (x
+ (h
/. j))) by
A55,
A7,
PARTFUN1:def 6
.= (((
proj (1,1)) qua
Function
" )
. (f0
. (x
+ (h
/. j)))) by
A63,
A55,
A61,
FUNCT_1: 13
.=
<*(f0
. (x
+ (h
/. j)))*> by
PDIFF_1: 1
.=
<*(f0
/. (x
+ (h
/. j)))*> by
A63,
A55,
A61,
PARTFUN1:def 6;
A65: 1
<= j & j
<= m by
A50,
FINSEQ_1: 1;
A66: 1
<= (j
+ 1) by
NAT_1: 11;
A67: (j
+ 1)
<= (m
+ 1) by
A65,
XREAL_1: 6;
then
A68:
|.((x
+ (h
/. (j
+ 1)))
- x).|
< d by
A66,
A58;
then
A69: (x
+ (h
/. (j
+ 1)))
in X by
A22;
then
A70: (f
/. (x
+ (h
/. (j
+ 1))))
= ((
<>* f0)
. (x
+ (h
/. (j
+ 1)))) by
A55,
A7,
PARTFUN1:def 6
.= (((
proj (1,1)) qua
Function
" )
. (f0
. (x
+ (h
/. (j
+ 1))))) by
A69,
A55,
A61,
FUNCT_1: 13
.=
<*(f0
. (x
+ (h
/. (j
+ 1))))*> by
PDIFF_1: 1
.=
<*(f0
/. (x
+ (h
/. (j
+ 1))))*> by
A69,
A55,
A61,
PARTFUN1:def 6;
f
is_partial_differentiable_in (x,((m
+ 1)
-' j)) by
A54,
A53,
Th34,
A1;
then
A71: (
partdiff (f,x,((m
+ 1)
-' j)))
=
<*(
partdiff (f0,x,((m
+ 1)
-' j)))*> by
A7,
PDIFF_1: 19;
then
A72: (((
proj (((m
+ 1)
-' j),m))
. y)
* (
partdiff (f,x,((m
+ 1)
-' j))))
=
<*(((
proj (((m
+ 1)
-' j),m))
. y)
* (
partdiff (f0,x,((m
+ 1)
-' j))))*> by
RVSUM_1: 47;
A73: ((f
/. (x
+ (h
/. j)))
- (f
/. (x
+ (h
/. (j
+ 1)))))
=
<*((f0
/. (x
+ (h
/. j)))
- (f0
/. (x
+ (h
/. (j
+ 1)))))*> by
A64,
A70,
RVSUM_1: 29;
A74: X
c= (
dom f0) & for x be
Element of (
REAL m) st x
in X holds f0
is_partial_differentiable_in (x,((m
+ 1)
-' j))
proof
thus X
c= (
dom f0) by
A54,
A61;
let x be
Element of (
REAL m);
assume x
in X;
then f
is_partial_differentiable_in (x,((m
+ 1)
-' j)) by
A54,
A53,
Th34,
A1;
hence f0
is_partial_differentiable_in (x,((m
+ 1)
-' j)) by
A7,
PDIFF_1: 18;
end;
A75: (x
+ (h
/. j))
= ((
reproj (((m
+ 1)
-' j),(x
+ (h
/. (j
+ 1)))))
. ((
proj (((m
+ 1)
-' j),m))
. (x
+ y))) by
Th46,
A29,
A65;
((m
+ 1)
-' (j
+ 1))
= ((m
+ 1)
- (j
+ 1)) by
A67,
XREAL_1: 233;
then ((m
+ 1)
-' (j
+ 1))
= (m
- j);
then
A76: ((m
+ 1)
-' (j
+ 1))
= (m
-' j) by
A65,
XREAL_1: 233;
A77: ((j
+ 1)
-' 1)
= ((j
+ 1)
- 1) by
NAT_1: 11,
XREAL_1: 233;
consider q be
Element of (
REAL m) such that
A78:
|.(q
- x).|
< d & f0
is_partial_differentiable_in (q,((m
+ 1)
-' j)) & ((f0
/. (x
+ (h
/. j)))
- (f0
/. (x
+ (h
/. (j
+ 1)))))
= ((((
proj (((m
+ 1)
-' j),m))
. (x
+ y))
- ((
proj (((m
+ 1)
-' j),m))
. (x
+ (h
/. (j
+ 1)))))
* (
partdiff (f0,q,((m
+ 1)
-' j)))) by
A62,
A68,
A75,
A53,
A74,
A22,
A1,
Th45;
A79:
|.((
partdiff (f,q,((m
+ 1)
-' j)))
- (
partdiff (f,x,((m
+ 1)
-' j)))).|
< r by
A78,
A56,
A24;
f
is_partial_differentiable_in (q,((m
+ 1)
-' j)) by
A78,
A7,
PDIFF_1: 18;
then
A80: (
partdiff (f,q,((m
+ 1)
-' j)))
=
<*(
partdiff (f0,q,((m
+ 1)
-' j)))*> by
A7,
PDIFF_1: 19;
set mij = ((m
+ 1)
-' j);
set mj = (m
-' j);
reconsider hj1 = (h
/. (j
+ 1)) as
Element of (
REAL m);
A81: (
len x)
= m & (
len y)
= m & (
len hj1)
= m by
CARD_1:def 7;
then mij
in (
dom x) & mij
in (
dom y) & mij
in (
dom hj1) by
A56,
FINSEQ_1:def 3;
then mij
in ((
dom x)
/\ (
dom y)) & mij
in ((
dom x)
/\ (
dom hj1)) by
XBOOLE_0:def 4;
then
A82: mij
in (
dom (x
+ y)) & mij
in (
dom (x
+ hj1)) by
VALUED_1:def 1;
(j
+ 1)
in (
Seg (m
+ 1)) by
A66,
A67;
then (j
+ 1)
in (
dom h) by
A29,
FINSEQ_1:def 3;
then
A83: (h
/. (j
+ 1))
= ((y
| mj)
^ (
0* j)) by
A29,
A76,
A77;
A84: (
len (y
| mj))
= mj by
A81,
FINSEQ_1: 59,
NAT_D: 35;
mij
= (mj
+ 1) by
A65,
NAT_D: 38;
then mij
> (
len (y
| mj)) by
A84,
NAT_1: 13;
then
A85: (hj1
. mij)
= ((
0* j)
. (mij
- mj)) by
A53,
A81,
A83,
A84,
FINSEQ_1: 24
.=
0 ;
A86: (((
proj (((m
+ 1)
-' j),m))
. (x
+ y))
- ((
proj (((m
+ 1)
-' j),m))
. (x
+ (h
/. (j
+ 1)))))
= (((x
+ y)
. mij)
- ((
proj (((m
+ 1)
-' j),m))
. (x
+ (h
/. (j
+ 1))))) by
PDIFF_1:def 1
.= (((x
+ y)
. mij)
- ((x
+ (h
/. (j
+ 1)))
. mij)) by
PDIFF_1:def 1
.= (((x
. mij)
+ (y
. mij))
- ((x
+ (h
/. (j
+ 1)))
. mij)) by
A82,
VALUED_1:def 1
.= (((x
. mij)
+ (y
. mij))
- ((x
. mij)
+
0 )) by
A85,
A82,
VALUED_1:def 1
.= ((
proj (((m
+ 1)
-' j),m))
. y) by
PDIFF_1:def 1;
reconsider gwj = (gw
/. j) as
Element of (
REAL 1);
take gwj;
thus (gw
. j)
= gwj by
A49,
PARTFUN1:def 6;
A87: ((m
+ 1)
-' j)
= ((m
+ 1)
- j) by
A65,
NAT_1: 12,
XREAL_1: 233;
j
in (
Seg (
len (
Rev w))) by
A50,
A46,
FINSEQ_5:def 3;
then
A88: j
in (
dom (
Rev w)) by
FINSEQ_1:def 3;
then ((
Rev w)
/. j)
= ((
Rev w)
. j) by
PARTFUN1:def 6
.= (w
. ((m
- j)
+ 1)) by
A46,
A88,
FINSEQ_5:def 3
.= (w
/. ((m
+ 1)
-' j)) by
A87,
A56,
A31,
PARTFUN1:def 6;
then (gw
/. j)
= ((g
/. j)
- (w
/. ((m
+ 1)
-' j))) by
A49,
A44
.=
<*((((
proj (((m
+ 1)
-' j),m))
. y)
* (
partdiff (f0,q,((m
+ 1)
-' j))))
- (((
proj (((m
+ 1)
-' j),m))
. y)
* (
partdiff (f0,x,((m
+ 1)
-' j)))))*> by
A78,
A86,
A57,
A51,
A72,
A73,
RVSUM_1: 29
.=
<*(((
proj (((m
+ 1)
-' j),m))
. y)
* ((
partdiff (f0,q,((m
+ 1)
-' j)))
- (
partdiff (f0,x,((m
+ 1)
-' j)))))*>
.= (((
proj (((m
+ 1)
-' j),m))
. y)
*
<*((
partdiff (f0,q,((m
+ 1)
-' j)))
- (
partdiff (f0,x,((m
+ 1)
-' j))))*>) by
RVSUM_1: 47
.= (((
proj (((m
+ 1)
-' j),m))
. y)
* ((
partdiff (f,q,((m
+ 1)
-' j)))
- (
partdiff (f,x,((m
+ 1)
-' j))))) by
A71,
A80,
RVSUM_1: 29;
then
A89:
|.gwj.|
= (
|.((
proj (((m
+ 1)
-' j),m))
. y).|
*
|.((
partdiff (f,q,((m
+ 1)
-' j)))
- (
partdiff (f,x,((m
+ 1)
-' j)))).|) by
EUCLID: 11;
0
<=
|.((
proj (((m
+ 1)
-' j),m))
. y).| by
COMPLEX1: 46;
then
A90:
|.gwj.|
<= (
|.((
proj (((m
+ 1)
-' j),m))
. y).|
* r) by
A89,
A79,
XREAL_1: 64;
|.(y
. ((m
+ 1)
-' j)).|
<=
|.y.| by
A56,
REAL_NS1: 8;
then
|.((
proj (((m
+ 1)
-' j),m))
. y).|
<=
|.y.| by
PDIFF_1:def 1;
then (
|.((
proj (((m
+ 1)
-' j),m))
. y).|
* r)
<= (
|.y.|
* r) by
A9,
XREAL_1: 64;
hence
|.gwj.|
<= (
|.y.|
* r) by
A90,
XXREAL_0: 2;
end;
defpred
YSQ[
set,
set] means ex v be
Element of (
REAL 1) st v
= (gw
. $1) & $2
=
|.v.|;
A91:
now
let k be
Nat;
assume k
in (
Seg m);
then k
in (
dom gw) by
A43,
FINSEQ_1:def 3;
then
reconsider v = (gw
. k) as
Element of (
REAL 1) by
PARTFUN1: 4;
|.v.|
in
REAL by
XREAL_0:def 1;
hence ex x be
Element of
REAL st
YSQ[k, x];
end;
consider yseq be
FinSequence of
REAL such that
A92: (
dom yseq)
= (
Seg m) & for i be
Nat st i
in (
Seg m) holds
YSQ[i, (yseq
. i)] from
FINSEQ_1:sch 5(
A91);
A93: (
len gw)
= (
len yseq) by
A43,
A92,
FINSEQ_1:def 3;
A94:
now
let i be
Nat;
assume i
in (
dom gw);
then i
in (
Seg m) by
A43,
FINSEQ_1:def 3;
hence ex v be
Element of (
REAL 1) st v
= (gw
. i) & (yseq
. i)
=
|.v.| by
A92;
end;
reconsider yseq as
Element of (
REAL m) by
A93,
A43,
FINSEQ_2: 92;
A95:
|.(
Sum gw).|
<= (
Sum yseq) by
A94,
A93,
PDIFF_6: 17;
reconsider yr = (
|.y.|
* r) as
Element of
REAL by
XREAL_0:def 1;
for j be
Nat st j
in (
Seg m) holds (yseq
. j)
<= ((m
|-> yr)
. j)
proof
let j be
Nat;
assume
A96: j
in (
Seg m);
then
A97: j
in (
dom gw) by
A43,
FINSEQ_1:def 3;
then
A98: ex v be
Element of (
REAL 1) st v
= (gw
. j) & (yseq
. j)
=
|.v.| by
A94;
ex gwj be
Element of (
REAL 1) st (gw
. j)
= gwj &
|.gwj.|
<= (
|.y.|
* r) by
A48,
A97;
hence (yseq
. j)
<= ((m
|-> yr)
. j) by
A98,
A96,
FINSEQ_2: 57;
end;
then (
Sum yseq)
<= (
Sum (m
|-> yr)) by
RVSUM_1: 82;
then (
Sum yseq)
<= (m
* (
|.y.|
* r)) by
RVSUM_1: 80;
then
|.z.|
<= (m
* (
|.y.|
* r)) by
A47,
A28,
A95,
XXREAL_0: 2;
then (
|.z.|
* (
|.y.|
" ))
<= (((m
*
|.y.|)
* r)
* (
|.y.|
" )) by
XREAL_1: 64;
then (
|.z.|
* (
|.y.|
" ))
<= (m
* ((r
*
|.y.|)
* (
|.y.|
" )));
then ((
|.y.|
" )
*
|.z.|)
<= (m
* r) by
A28,
EUCLID: 8,
XCMPLX_1: 203;
then
A99: ((
|.y.|
" )
*
|.z.|)
<= r1 by
XCMPLX_1: 87;
r1
< r0 by
A9,
XREAL_1: 216;
hence ((
|.y.|
" )
*
|.z.|)
< r0 by
A99,
XXREAL_0: 2;
end;
end;
for y be
Element of (
REAL m) st
|.(y
- x).|
< d0 holds ((f
/. y)
- (f
/. x))
= ((L
. (y
- x))
+ (R
. (y
- x)))
proof
let y be
Element of (
REAL m);
assume
|.(y
- x).|
< d0;
(R
. (y
- x))
= (((f
/. (x
+ (y
- x)))
- (f
/. x))
- (L
. (y
- x))) by
A6;
hence ((L
. (y
- x))
+ (R
. (y
- x)))
= (((f
/. (x
+ (y
- x)))
- (f
/. x))
- ((L
. (y
- x))
- (L
. (y
- x)))) by
RVSUM_1: 41
.= (((f
/. (x
+ (y
- x)))
- (f
/. x))
- (
0* 1)) by
RVSUM_1: 37
.= ((f
/. (x
+ (y
- x)))
- (f
/. x)) by
RVSUM_1: 32
.= ((f
/. ((x
+ y)
- x))
- (f
/. x)) by
RVSUM_1: 40
.= ((f
/. (y
+ (x
- x)))
- (f
/. x)) by
RVSUM_1: 40
.= ((f
/. (y
+ (
0* m)))
- (f
/. x)) by
RVSUM_1: 37
.= ((f
/. y)
- (f
/. x)) by
RVSUM_1: 16;
end;
then f
is_differentiable_in x & (
diff (f,x))
= L by
A3,
A5,
A8,
PDIFF_6: 24;
hence thesis by
A2;
end;
theorem ::
PDIFF_7:48
Th48: for m be non
zero
Nat, f be
PartFunc of (
REAL-NS m), (
REAL-NS 1), X be
Subset of (
REAL-NS m), x be
Point of (
REAL-NS m) st X is
open & x
in X & (for i be
Nat st 1
<= i & i
<= m holds f
is_partial_differentiable_on (X,i) & (f
`partial| (X,i))
is_continuous_on X) holds f
is_differentiable_in x & for h be
Point of (
REAL-NS m) holds ex w be
FinSequence of (
REAL 1) st (
dom w)
= (
Seg m) & (for i be
Nat st i
in (
Seg m) holds (w
. i)
= ((
partdiff (f,x,i))
.
<*((
proj (i,m))
. h)*>)) & ((
diff (f,x))
. h)
= (
Sum w)
proof
let m be non
zero
Nat, f be
PartFunc of (
REAL-NS m), (
REAL-NS 1), X be
Subset of (
REAL-NS m), x be
Point of (
REAL-NS m);
assume
A1: X is
open & x
in X & (for i be
Nat st 1
<= i & i
<= m holds f
is_partial_differentiable_on (X,i) & (f
`partial| (X,i))
is_continuous_on X);
A2: the
carrier of (
REAL-NS m)
= (
REAL m) & the
carrier of (
REAL-NS 1)
= (
REAL 1) by
REAL_NS1:def 4;
reconsider One0 =
<*jj*> as
Element of (
REAL 1) by
FINSEQ_2: 98;
reconsider One = One0 as
Point of (
REAL-NS 1) by
REAL_NS1:def 4;
reconsider f0 = f as
PartFunc of (
REAL m), (
REAL 1) by
A2;
reconsider X0 = X as
Subset of (
REAL m) by
REAL_NS1:def 4;
reconsider x0 = x as
Element of (
REAL m) by
REAL_NS1:def 4;
A3: X0 is
open by
A1;
A4:
now
let i be
Nat;
assume
A5: 1
<= i & i
<= m;
then
A6: f
is_partial_differentiable_on (X,i) by
A1;
hence
A7: f0
is_partial_differentiable_on (X0,i) by
Th33;
A8: (f
`partial| (X,i))
is_continuous_on X by
A1,
A5;
A9: (
dom (f0
`partial| (X0,i)))
= X0 & for x0 be
Element of (
REAL m) st x0
in X0 holds ((f0
`partial| (X0,i))
/. x0)
= (
partdiff (f0,x0,i)) by
Def5,
A7;
A10: for z be
Element of (
REAL m) st z
in X0 holds ex y be
Point of (
REAL-NS m) st z
= y & ((f0
`partial| (X0,i))
/. z)
= ((
partdiff (f,y,i))
. One)
proof
let z be
Element of (
REAL m);
assume
A11: z
in X0;
then f0
is_partial_differentiable_in (z,i) by
A7,
A5,
A3,
Th34;
then
consider g be
PartFunc of (
REAL-NS m), (
REAL-NS 1), y be
Point of (
REAL-NS m) such that
A12: f0
= g & z
= y & (
partdiff (f0,z,i))
= ((
partdiff (g,y,i))
.
<*1*>) by
PDIFF_1:def 14;
take y;
thus z
= y by
A12;
thus ((f0
`partial| (X0,i))
/. z)
= ((
partdiff (f,y,i))
. One) by
A12,
A11,
Def5,
A7;
end;
for z0 be
Element of (
REAL m), r be
Real st z0
in X0 &
0
< r holds ex s be
Real st
0
< s & for z1 be
Element of (
REAL m) st z1
in X &
|.(z1
- z0).|
< s holds
|.(((f0
`partial| (X0,i))
/. z1)
- ((f0
`partial| (X0,i))
/. z0)).|
< r
proof
let z0 be
Element of (
REAL m), r be
Real;
assume
A13: z0
in X0 &
0
< r;
reconsider y0 = z0 as
Point of (
REAL-NS m) by
REAL_NS1:def 4;
consider s be
Real such that
A14:
0
< s & for y1 be
Point of (
REAL-NS m) st y1
in X &
||.(y1
- y0).||
< s holds
||.(((f
`partial| (X,i))
/. y1)
- ((f
`partial| (X,i))
/. y0)).||
< r by
A8,
A13,
NFCONT_1: 19;
reconsider s as
Real;
take s;
thus
0
< s by
A14;
thus for z1 be
Element of (
REAL m) st z1
in X &
|.(z1
- z0).|
< s holds
|.(((f0
`partial| (X0,i))
/. z1)
- ((f0
`partial| (X0,i))
/. z0)).|
< r
proof
let z1 be
Element of (
REAL m);
assume
A15: z1
in X &
|.(z1
- z0).|
< s;
reconsider y1 = z1 as
Point of (
REAL-NS m) by
REAL_NS1:def 4;
|.(z1
- z0).|
=
||.(y1
- y0).|| by
REAL_NS1: 1,
REAL_NS1: 5;
then
A16:
||.(((f
`partial| (X,i))
/. y1)
- ((f
`partial| (X,i))
/. y0)).||
< r by
A15,
A14;
((f
`partial| (X,i))
/. y1)
= (
partdiff (f,y1,i)) by
A6,
A15,
PDIFF_1:def 20;
then
A17:
||.((
partdiff (f,y1,i))
- (
partdiff (f,y0,i))).||
< r by
A16,
A6,
A13,
PDIFF_1:def 20;
A18: ex y1 be
Point of (
REAL-NS m) st z1
= y1 & ((f0
`partial| (X0,i))
/. z1)
= ((
partdiff (f,y1,i))
. One) by
A10,
A15;
A19: ex y0 be
Point of (
REAL-NS m) st z0
= y0 & ((f0
`partial| (X0,i))
/. z0)
= ((
partdiff (f,y0,i))
. One) by
A10,
A13;
reconsider PDP = ((
partdiff (f,y1,i))
- (
partdiff (f,y0,i))) as
Lipschitzian
LinearOperator of (
REAL-NS 1), (
REAL-NS 1) by
LOPBAN_1:def 9;
(((
partdiff (f,y1,i))
. One)
- ((
partdiff (f,y0,i))
. One))
= (PDP
. One) by
LOPBAN_1: 40;
then
A20:
||.(((
partdiff (f,y1,i))
. One)
- ((
partdiff (f,y0,i))
. One)).||
<= (
||.((
partdiff (f,y1,i))
- (
partdiff (f,y0,i))).||
*
||.One.||) by
LOPBAN_1: 32;
||.One.||
=
|.One0.| by
REAL_NS1: 1
.=
|.1.| by
TOPREALC: 18
.= 1 by
ABSVALUE:def 1;
then
||.(((
partdiff (f,y1,i))
. One)
- ((
partdiff (f,y0,i))
. One)).||
< r by
A20,
A17,
XXREAL_0: 2;
hence
|.(((f0
`partial| (X0,i))
/. z1)
- ((f0
`partial| (X0,i))
/. z0)).|
< r by
A18,
A19,
REAL_NS1: 1,
REAL_NS1: 5;
end;
end;
hence (f0
`partial| (X0,i))
is_continuous_on X0 by
A9,
Th38;
end;
then
A21: f0
is_differentiable_in x0 & for h0 be
Element of (
REAL m) holds ex w be
FinSequence of (
REAL 1) st (
dom w)
= (
Seg m) & (for i be
Nat st i
in (
Seg m) holds (w
. i)
= (((
proj (i,m))
. h0)
* (
partdiff (f0,x0,i)))) & ((
diff (f0,x0))
. h0)
= (
Sum w) by
Th47,
A3,
A1;
then ex g be
PartFunc of (
REAL-NS m), (
REAL-NS 1), y be
Point of (
REAL-NS m) st f0
= g & x0
= y & g
is_differentiable_in y;
hence f
is_differentiable_in x;
A22: ex g be
PartFunc of (
REAL-NS m), (
REAL-NS 1), y be
Point of (
REAL-NS m) st f0
= g & x0
= y & (
diff (f0,x0))
= (
diff (g,y)) by
A21,
PDIFF_1:def 8;
now
let h be
Point of (
REAL-NS m);
reconsider h0 = h as
Element of (
REAL m) by
REAL_NS1:def 4;
consider w be
FinSequence of (
REAL 1) such that
A23: (
dom w)
= (
Seg m) & (for i be
Nat st i
in (
Seg m) holds (w
. i)
= (((
proj (i,m))
. h0)
* (
partdiff (f0,x0,i)))) & ((
diff (f0,x0))
. h0)
= (
Sum w) by
Th47,
A3,
A1,
A4;
take w;
thus (
dom w)
= (
Seg m) by
A23;
thus for i be
Nat st i
in (
Seg m) holds (w
. i)
= ((
partdiff (f,x,i))
.
<*((
proj (i,m))
. h)*>)
proof
let i be
Nat;
assume
A24: i
in (
Seg m);
then
A25: 1
<= i & i
<= m by
FINSEQ_1: 1;
then f0
is_partial_differentiable_on (X0,i) by
A4;
then f0
is_partial_differentiable_in (x0,i) by
A1,
A3,
A25,
Th34;
then
A26: ex g be
PartFunc of (
REAL-NS m), (
REAL-NS 1), y be
Point of (
REAL-NS m) st f0
= g & x0
= y & (
partdiff (f0,x0,i))
= ((
partdiff (g,y,i))
.
<*1*>) by
PDIFF_1:def 14;
A27: (((
proj (i,m))
. h)
* One)
= (((
proj (i,m))
. h0)
* One0) by
REAL_NS1: 3
.=
<*(((
proj (i,m))
. h0)
* 1)*> by
RVSUM_1: 47
.=
<*((
proj (i,m))
. h)*>;
reconsider PDP = (
partdiff (f,x,i)) as
Lipschitzian
LinearOperator of (
REAL-NS 1), (
REAL-NS 1) by
LOPBAN_1:def 9;
(((
proj (i,m))
. h0)
* (
partdiff (f0,x0,i)))
= (((
proj (i,m))
. h0)
* (PDP
. One)) by
A26,
REAL_NS1: 3
.= ((
partdiff (f,x,i))
.
<*((
proj (i,m))
. h)*>) by
A27,
LOPBAN_1:def 5;
hence (w
. i)
= ((
partdiff (f,x,i))
.
<*((
proj (i,m))
. h)*>) by
A24,
A23;
end;
thus ((
diff (f,x))
. h)
= (
Sum w) by
A23,
A22;
end;
hence thesis;
end;
theorem ::
PDIFF_7:49
for m be non
zero
Nat, f be
PartFunc of (
REAL-NS m), (
REAL-NS 1), X be
Subset of (
REAL-NS m) st X is
open holds (for i be
Nat st 1
<= i & i
<= m holds f
is_partial_differentiable_on (X,i) & (f
`partial| (X,i))
is_continuous_on X) iff f
is_differentiable_on X & (f
`| X)
is_continuous_on X
proof
let m be non
zero
Nat, f be
PartFunc of (
REAL-NS m), (
REAL-NS 1), X be
Subset of (
REAL-NS m);
assume
A1: X is
open;
hereby
assume
A2: for i be
Nat st 1
<= i & i
<= m holds f
is_partial_differentiable_on (X,i) & (f
`partial| (X,i))
is_continuous_on X;
A3:
now
let i be
Nat;
assume 1
<= i & i
<= m;
then (f
`partial| (X,i))
is_continuous_on X by
A2;
hence X
c= (
dom (f
`partial| (X,i))) & for y0 be
Point of (
REAL-NS m), r be
Real st y0
in X &
0
< r holds ex s be
Real st
0
< s & for y1 be
Point of (
REAL-NS m) st y1
in X &
||.(y1
- y0).||
< s holds
||.(((f
`partial| (X,i))
/. y1)
- ((f
`partial| (X,i))
/. y0)).||
< r by
NFCONT_1: 19;
end;
1
<= m by
NAT_1: 14;
then f
is_partial_differentiable_on (X,m) by
A2;
then
A4: X
c= (
dom f);
for x be
Point of (
REAL-NS m) st x
in X holds f
is_differentiable_in x by
A1,
A2,
Th48;
hence
A5: f
is_differentiable_on X by
A1,
A4,
NDIFF_1: 31;
then
A6: (
dom (f
`| X))
= X by
NDIFF_1:def 9;
for y0 be
Point of (
REAL-NS m), r be
Real st y0
in X &
0
< r holds ex s be
Real st
0
< s & for y1 be
Point of (
REAL-NS m) st y1
in X &
||.(y1
- y0).||
< s holds
||.(((f
`| X)
/. y1)
- ((f
`| X)
/. y0)).||
< r
proof
let y0 be
Point of (
REAL-NS m), r be
Real;
assume
A7: y0
in X &
0
< r;
defpred
P[
Nat,
Real] means for i be
Nat st i
= $1 holds (
0
< $2 & for y1 be
Point of (
REAL-NS m) st y1
in X &
||.(y1
- y0).||
< $2 holds
||.(((f
`partial| (X,i))
/. y1)
- ((f
`partial| (X,i))
/. y0)).||
< (r
/ (2
* m)));
A8:
now
let i be
Nat;
reconsider j = i as
Nat;
assume i
in (
Seg m);
then 1
<= j & j
<= m by
FINSEQ_1: 1;
then
consider s be
Real such that
A9:
0
< s & for y1 be
Point of (
REAL-NS m) st y1
in X &
||.(y1
- y0).||
< s holds
||.(((f
`partial| (X,j))
/. y1)
- ((f
`partial| (X,j))
/. y0)).||
< (r
/ (2
* m)) by
A7,
A3;
reconsider s as
Element of
REAL by
XREAL_0:def 1;
take s;
thus
P[i, s] by
A9;
end;
consider S be
FinSequence of
REAL such that
A10: (
dom S)
= (
Seg m) & for i be
Nat st i
in (
Seg m) holds
P[i, (S
. i)] from
FINSEQ_1:sch 5(
A8);
take s = (
min S);
reconsider mm = m as
Element of
NAT by
ORDINAL1:def 12;
A11: (
len S)
= mm by
A10,
FINSEQ_1:def 3;
then s
= (S
. (
min_p S)) & (
min_p S)
in (
dom S) by
RFINSEQ2:def 2,
RFINSEQ2:def 4;
hence s
>
0 by
A10;
let y1 be
Point of (
REAL-NS m);
assume
A12: y1
in X &
||.(y1
- y0).||
< s;
reconsider DD = ((
diff (f,y1))
- (
diff (f,y0))) as
Lipschitzian
LinearOperator of (
REAL-NS m), (
REAL-NS 1) by
LOPBAN_1:def 9;
A13: (
upper_bound (
PreNorms DD))
=
||.((
diff (f,y1))
- (
diff (f,y0))).|| by
LOPBAN_1: 30;
now
let mt be
Real;
assume mt
in (
PreNorms DD);
then
consider t be
VECTOR of (
REAL-NS m) such that
A14: mt
=
||.(DD
. t).|| &
||.t.||
<= 1;
reconsider tt = t as
Element of (
REAL m) by
REAL_NS1:def 4;
consider w0 be
FinSequence of (
REAL 1) such that
A15: (
dom w0)
= (
Seg m) & (for i be
Nat st i
in (
Seg m) holds (w0
. i)
= ((
partdiff (f,y0,i))
.
<*((
proj (i,m))
. t)*>)) & ((
diff (f,y0))
. t)
= (
Sum w0) by
A1,
A2,
Th48,
A7;
reconsider Sw0 = (
Sum w0) as
Point of (
REAL-NS 1) by
A15;
consider w1 be
FinSequence of (
REAL 1) such that
A16: (
dom w1)
= (
Seg m) & (for i be
Nat st i
in (
Seg m) holds (w1
. i)
= ((
partdiff (f,y1,i))
.
<*((
proj (i,m))
. t)*>)) & ((
diff (f,y1))
. t)
= (
Sum w1) by
A1,
A2,
Th48,
A12;
reconsider Sw1 = (
Sum w1) as
Point of (
REAL-NS 1) by
A16;
deffunc
F(
set) = ((w1
/. $1)
- (w0
/. $1));
consider w2 be
FinSequence of (
REAL 1) such that
A17: (
len w2)
= m & for i be
Nat st i
in (
dom w2) holds (w2
. i)
=
F(i) from
FINSEQ_2:sch 1;
reconsider mm = m as
Element of
NAT by
ORDINAL1:def 12;
A18: (
len w1)
= mm & (
len w0)
= mm by
A15,
A16,
FINSEQ_1:def 3;
now
let i be
Nat;
assume
A19: i
in (
dom w2);
then (w2
. i)
=
F(i) by
A17;
hence (w2
/. i)
=
F(i) by
A19,
PARTFUN1:def 6;
end;
then
A20: (
Sum w2)
= ((
Sum w1)
- (
Sum w0)) by
A17,
Th27,
A18;
(DD
. t)
= (Sw1
- Sw0) by
A16,
A15,
LOPBAN_1: 40
.= (
Sum w2) by
A20,
REAL_NS1: 5;
then
A21: mt
=
|.(
Sum w2).| by
A14,
REAL_NS1: 1;
deffunc
F(
Nat) = (
In (
|.(w2
/. $1) qua
Element of (
REAL 1).|,
REAL ));
consider ys be
FinSequence of
REAL such that
A22: (
len ys)
= m & for j be
Nat st j
in (
dom ys) holds (ys
. j)
=
F(j) from
FINSEQ_2:sch 1;
A23:
now
let i be
Nat;
assume
A24: i
in (
dom w2);
reconsider v = (w2
/. i) as
Element of (
REAL 1);
take v;
thus v
= (w2
. i) by
A24,
PARTFUN1:def 6;
i
in (
Seg m) by
A17,
A24,
FINSEQ_1:def 3;
then i
in (
dom ys) by
A22,
FINSEQ_1:def 3;
then (ys
. i)
=
F(i) by
A22;
hence (ys
. i)
=
|.v.|;
end;
then
A25:
|.(
Sum w2).|
<= (
Sum ys) by
A17,
A22,
PDIFF_6: 17;
reconsider rm = (r
/ (2
* m)) as
Element of
REAL by
XREAL_0:def 1;
deffunc
F(
Nat) = rm;
consider rs be
FinSequence of
REAL such that
A26: (
len rs)
= m & for j be
Nat st j
in (
dom rs) holds (rs
. j)
=
F(j) from
FINSEQ_2:sch 1;
A27: (
dom rs)
= (
Seg m) by
A26,
FINSEQ_1:def 3;
(
rng rs)
=
{rm}
proof
thus (
rng rs)
c=
{rm}
proof
let a be
object;
assume a
in (
rng rs);
then
consider b be
object such that
A28: b
in (
dom rs) & a
= (rs
. b) by
FUNCT_1:def 3;
reconsider b as
Nat by
A28;
(rs
. b)
= rm by
A28,
A26;
hence a
in
{rm} by
A28,
TARSKI:def 1;
end;
let a be
object;
assume a
in
{rm};
then
A29: a
= rm by
TARSKI:def 1;
1
<= m by
NAT_1: 14;
then
A30: 1
in (
dom rs) by
A27;
then a
= (rs
. 1) by
A29,
A26;
hence a
in (
rng rs) by
A30,
FUNCT_1: 3;
end;
then rs
= (m
|-> (r
/ (2
* m))) by
A27,
FUNCOP_1: 9;
then
A31: (
Sum rs)
= (m
* (r
/ (2
* m))) by
RVSUM_1: 80
.= (m
* ((r
/ 2)
/ m)) by
XCMPLX_1: 78
.= (r
/ 2) by
XCMPLX_1: 87;
now
let i be
Element of
NAT ;
assume i
in (
dom ys);
then
A32: i
in (
Seg m) by
A22,
FINSEQ_1:def 3;
then
A33: i
in (
dom w2) & i
in (
dom w1) & i
in (
dom w0) by
A15,
A16,
A17,
FINSEQ_1:def 3;
then
consider v be
Element of (
REAL 1) such that
A34: v
= (w2
. i) & (ys
. i)
=
|.v.| by
A23;
A35: i
in (
dom rs) by
A26,
A32,
FINSEQ_1:def 3;
reconsider p1 = (
partdiff (f,y1,i)), p0 = (
partdiff (f,y0,i)) as
Lipschitzian
LinearOperator of (
REAL-NS 1), (
REAL-NS 1) by
LOPBAN_1:def 9;
A36: (
dom p1)
= the
carrier of (
REAL-NS 1) & (
rng p1)
c= the
carrier of (
REAL-NS 1) by
FUNCT_2:def 1;
((
proj (i,m))
. t)
in
REAL by
XREAL_0:def 1;
then
<*((
proj (i,m))
. t)*>
in (
REAL 1) by
FINSEQ_2: 98;
then
<*((
proj (i,m))
. t)*>
in the
carrier of (
REAL-NS 1) by
REAL_NS1:def 4;
then (p1
.
<*((
proj (i,m))
. t)*>)
in (
rng p1) by
A36,
FUNCT_1: 3;
then
reconsider P1 = (p1
.
<*((
proj (i,m))
. t)*>) as
VECTOR of (
REAL-NS 1);
A37: (
dom p0)
= the
carrier of (
REAL-NS 1) & (
rng p0)
c= the
carrier of (
REAL-NS 1) by
FUNCT_2:def 1;
((
proj (i,m))
. t)
in
REAL by
XREAL_0:def 1;
then
<*((
proj (i,m))
. t)*>
in (
REAL 1) by
FINSEQ_2: 98;
then
<*((
proj (i,m))
. t)*>
in the
carrier of (
REAL-NS 1) by
REAL_NS1:def 4;
then (p0
.
<*((
proj (i,m))
. t)*>)
in (
rng p0) by
A37,
FUNCT_1: 3;
then
reconsider P0 = (p0
.
<*((
proj (i,m))
. t)*>) as
VECTOR of (
REAL-NS 1);
A38: (w1
/. i)
= (w1
. i) by
A32,
A16,
PARTFUN1:def 6
.= P1 by
A16,
A32;
A39: (w0
/. i)
= (w0
. i) by
A32,
A15,
PARTFUN1:def 6
.= P0 by
A15,
A32;
A40: (w2
. i)
= ((w1
/. i)
- (w0
/. i)) by
A33,
A17
.= (P1
- P0) by
A39,
A38,
REAL_NS1: 5;
1
<= i & i
<= (
len S) by
A11,
A32,
FINSEQ_1: 1;
then
A41: s
<= (S
. i) & f
is_partial_differentiable_on (X,i) by
A11,
A2,
RFINSEQ2: 2;
then
||.(y1
- y0).||
< (S
. i) by
A12,
XXREAL_0: 2;
then
||.(((f
`partial| (X,i))
/. y1)
- ((f
`partial| (X,i))
/. y0)).||
< (r
/ (2
* m)) by
A10,
A32,
A12;
then
||.((
partdiff (f,y1,i))
- ((f
`partial| (X,i))
/. y0)).||
< (r
/ (2
* m)) by
A12,
A41,
PDIFF_1:def 20;
then
A42:
||.((
partdiff (f,y1,i))
- (
partdiff (f,y0,i))).||
< (r
/ (2
* m)) by
A7,
A41,
PDIFF_1:def 20;
reconsider PP = ((
partdiff (f,y1,i))
- (
partdiff (f,y0,i))) as
Lipschitzian
LinearOperator of (
REAL-NS 1), (
REAL-NS 1) by
LOPBAN_1:def 9;
A43: (
upper_bound (
PreNorms PP))
=
||.((
partdiff (f,y1,i))
- (
partdiff (f,y0,i))).|| by
LOPBAN_1: 30;
((
proj (i,m))
. t)
in
REAL by
XREAL_0:def 1;
then
<*((
proj (i,m))
. t)*>
in (
REAL 1) by
FINSEQ_2: 98;
then
reconsider pt =
<*((
proj (i,m))
. t)*> as
VECTOR of (
REAL-NS 1) by
REAL_NS1:def 4;
A44: (PP
. pt)
= (P1
- P0) by
LOPBAN_1: 40;
((
proj (i,m))
. t)
in
REAL by
XREAL_0:def 1;
then
reconsider pt1 =
<*((
proj (i,m))
. t)*> as
Element of (
REAL 1) by
FINSEQ_2: 98;
reconsider p2 = (((
proj (i,m))
. t)
^2 ) as
Real;
A45:
||.pt.||
=
|.pt1.| by
REAL_NS1: 1
.= (
sqrt (
Sum
<*p2*>)) by
RVSUM_1: 55
.= (
sqrt (((
proj (i,m))
. t)
^2 )) by
RVSUM_1: 73;
A46: (((
proj (i,m))
. t)
^2 )
>=
0
proof
per cases ;
suppose ((
proj (i,m))
. t)
=
0 ;
hence thesis;
end;
suppose ((
proj (i,m))
. t)
<>
0 ;
hence thesis by
SQUARE_1: 12;
end;
end;
now
assume
||.pt.||
> 1;
then (((
proj (i,m))
. t)
^2 )
> 1 by
A45,
A46,
SQUARE_1: 18,
SQUARE_1: 26;
then
A47: ((tt
. i)
^2 )
> 1 by
PDIFF_1:def 1;
|.tt.|
<= 1 by
A14,
REAL_NS1: 1;
then
A48: (
Sum (
sqr tt))
<= 1 by
SQUARE_1: 18,
SQUARE_1: 27;
(
len tt)
= m by
CARD_1:def 7;
then i
in (
dom tt) by
A32,
FINSEQ_1:def 3;
then
A49: i
in (
dom (
sqr tt)) by
RVSUM_1: 143;
now
let k be
Element of
NAT ;
assume k
in (
dom (
sqr tt));
A50: ((
sqr tt)
. k)
= ((tt
. k)
^2 ) by
VALUED_1: 11;
per cases ;
suppose (tt
. k)
=
0 ;
hence ((
sqr tt)
. k)
>=
0 by
A50;
end;
suppose (tt
. k)
<>
0 ;
hence ((
sqr tt)
. k)
>=
0 by
A50,
SQUARE_1: 12;
end;
end;
then (
Sum (
sqr tt))
>= ((
sqr tt)
. i) by
A49,
POLYNOM5: 4;
then (
Sum (
sqr tt))
>= ((tt
. i)
^2 ) by
VALUED_1: 11;
hence contradiction by
A47,
A48,
XXREAL_0: 2;
end;
then
||.(PP
. pt).||
in (
PreNorms PP) & (
PreNorms PP) is non
empty
bounded_above by
LOPBAN_1: 27;
then
||.(PP
. pt).||
<= (
upper_bound (
PreNorms PP)) by
SEQ_4:def 1;
then
||.(P1
- P0).||
<= (r
/ (2
* m)) by
A44,
A42,
A43,
XXREAL_0: 2;
then
|.v.|
<= (r
/ (2
* m)) by
A34,
A40,
REAL_NS1: 1;
hence (ys
. i)
<= (rs
. i) by
A34,
A26,
A35;
end;
then (
Sum ys)
<= (r
/ 2) by
A31,
A26,
A22,
INTEGRA5: 3;
hence mt
<= (r
/ 2) by
A21,
A25,
XXREAL_0: 2;
end;
then
A51:
||.((
diff (f,y1))
- (
diff (f,y0))).||
<= (r
/ 2) & (r
/ 2)
< r by
A13,
A7,
SEQ_4: 45,
XREAL_1: 216;
||.(((f
`| X)
/. y1)
- ((f
`| X)
/. y0)).||
=
||.((
diff (f,y1))
- ((f
`| X)
/. y0)).|| by
A5,
A12,
NDIFF_1:def 9
.=
||.((
diff (f,y1))
- (
diff (f,y0))).|| by
A5,
A7,
NDIFF_1:def 9;
hence
||.(((f
`| X)
/. y1)
- ((f
`| X)
/. y0)).||
< r by
A51,
XXREAL_0: 2;
end;
hence (f
`| X)
is_continuous_on X by
A6,
NFCONT_1: 19;
end;
assume
A52: f
is_differentiable_on X & (f
`| X)
is_continuous_on X;
then
A53: X
c= (
dom f) & for x be
Point of (
REAL-NS m) st x
in X holds f
is_differentiable_in x by
A1,
NDIFF_1: 31;
thus for i be
Nat st 1
<= i & i
<= m holds f
is_partial_differentiable_on (X,i) & (f
`partial| (X,i))
is_continuous_on X
proof
let i be
Nat;
assume
A54: 1
<= i & i
<= m;
now
let x be
Point of (
REAL-NS m);
assume x
in X;
then f
is_differentiable_in x by
A52,
A1,
NDIFF_1: 31;
hence f
is_partial_differentiable_in (x,i) & (
partdiff (f,x,i))
= ((
diff (f,x))
* (
reproj (i,(
0. (
REAL-NS m))))) by
A54,
Th21;
end;
then for x be
Point of (
REAL-NS m) st x
in X holds f
is_partial_differentiable_in (x,i);
hence
A55: f
is_partial_differentiable_on (X,i) by
A1,
A54,
Th8,
A53;
then
A56: (
dom (f
`partial| (X,i)))
= X by
PDIFF_1:def 20;
for y0 be
Point of (
REAL-NS m), r be
Real st y0
in X &
0
< r holds ex s be
Real st
0
< s & for y1 be
Point of (
REAL-NS m) st y1
in X &
||.(y1
- y0).||
< s holds
||.(((f
`partial| (X,i))
/. y1)
- ((f
`partial| (X,i))
/. y0)).||
< r
proof
let y0 be
Point of (
REAL-NS m), r be
Real;
assume
A57: y0
in X &
0
< r;
then
consider s be
Real such that
A58:
0
< s & for y1 be
Point of (
REAL-NS m) st y1
in X &
||.(y1
- y0).||
< s holds
||.(((f
`| X)
/. y1)
- ((f
`| X)
/. y0)).||
< r by
A52,
NFCONT_1: 19;
take s;
thus
0
< s by
A58;
let y1 be
Point of (
REAL-NS m);
assume
A59: y1
in X &
||.(y1
- y0).||
< s;
then
||.(((f
`| X)
/. y1)
- ((f
`| X)
/. y0)).||
< r by
A58;
then
||.((
diff (f,y1))
- ((f
`| X)
/. y0)).||
< r by
A59,
A52,
NDIFF_1:def 9;
then
A60:
||.((
diff (f,y1))
- (
diff (f,y0))).||
< r by
A57,
A52,
NDIFF_1:def 9;
f
is_differentiable_in y1 & f
is_differentiable_in y0 by
A52,
A1,
A59,
A57,
NDIFF_1: 31;
then
A61: (
partdiff (f,y1,i))
= ((
diff (f,y1))
* (
reproj (i,(
0. (
REAL-NS m))))) & (
partdiff (f,y0,i))
= ((
diff (f,y0))
* (
reproj (i,(
0. (
REAL-NS m))))) by
Th21,
A54;
reconsider PP = ((
partdiff (f,y1,i))
- (
partdiff (f,y0,i))) as
Lipschitzian
LinearOperator of (
REAL-NS 1), (
REAL-NS 1) by
LOPBAN_1:def 9;
reconsider DD = ((
diff (f,y1))
- (
diff (f,y0))) as
Lipschitzian
LinearOperator of (
REAL-NS m), (
REAL-NS 1) by
LOPBAN_1:def 9;
A62: (
upper_bound (
PreNorms PP))
=
||.((
partdiff (f,y1,i))
- (
partdiff (f,y0,i))).|| by
LOPBAN_1: 30;
A63: (
upper_bound (
PreNorms DD))
=
||.((
diff (f,y1))
- (
diff (f,y0))).|| by
LOPBAN_1: 30;
A64: (
PreNorms PP) is
bounded_above & (
PreNorms DD) is
bounded_above by
LOPBAN_1: 28;
(
PreNorms PP)
c= (
PreNorms DD)
proof
let a be
object;
assume a
in (
PreNorms PP);
then
consider t be
VECTOR of (
REAL-NS 1) such that
A65: a
=
||.(PP
. t).|| &
||.t.||
<= 1;
A66: (
dom (
reproj (i,(
0. (
REAL-NS m)))))
= the
carrier of (
REAL-NS 1) by
FUNCT_2:def 1;
set tm = ((
reproj (i,(
0. (
REAL-NS m))))
. t);
A67:
||.tm.||
<= 1 by
A65,
Th5,
A54;
A68: ((
partdiff (f,y1,i))
. t)
= ((
diff (f,y1))
. tm) by
A66,
A61,
FUNCT_1: 13;
((
partdiff (f,y0,i))
. t)
= ((
diff (f,y0))
. tm) by
A66,
A61,
FUNCT_1: 13;
then
||.(PP
. t).||
=
||.(((
diff (f,y1))
. tm)
- ((
diff (f,y0))
. tm)).|| by
A68,
LOPBAN_1: 40
.=
||.(DD
. tm).|| by
LOPBAN_1: 40;
hence a
in (
PreNorms DD) by
A65,
A67;
end;
then
||.((
partdiff (f,y1,i))
- (
partdiff (f,y0,i))).||
<=
||.((
diff (f,y1))
- (
diff (f,y0))).|| by
A64,
A62,
A63,
SEQ_4: 48;
then
||.((
partdiff (f,y1,i))
- (
partdiff (f,y0,i))).||
< r by
A60,
XXREAL_0: 2;
then
||.((
partdiff (f,y1,i))
- ((f
`partial| (X,i))
/. y0)).||
< r by
A57,
A55,
PDIFF_1:def 20;
hence
||.(((f
`partial| (X,i))
/. y1)
- ((f
`partial| (X,i))
/. y0)).||
< r by
A59,
A55,
PDIFF_1:def 20;
end;
hence (f
`partial| (X,i))
is_continuous_on X by
A56,
NFCONT_1: 19;
end;
end;