pdiff_9.miz
begin
reserve m,n for non
zero
Element of
NAT ;
reserve i,j,k for
Element of
NAT ;
reserve Z for
set;
theorem ::
PDIFF_9:1
Th1: for S,T be
RealNormSpace, f be
Point of (
R_NormSpace_of_BoundedLinearOperators (S,T)), r be
Real st
0
<= r & for x be
Point of S st
||.x.||
<= 1 holds
||.(f
. x).||
<= (r
*
||.x.||) holds
||.f.||
<= r
proof
let S,T be
RealNormSpace, f be
Point of (
R_NormSpace_of_BoundedLinearOperators (S,T)), r be
Real;
assume
A1:
0
<= r & for x be
Point of S st
||.x.||
<= 1 holds
||.(f
. x).||
<= (r
*
||.x.||);
A2:
now
let x be
Point of S;
assume
||.x.||
<= 1;
then
||.(f
. x).||
<= (r
*
||.x.||) & (r
*
||.x.||)
<= (r
* 1) by
A1,
XREAL_1: 64;
hence
||.(f
. x).||
<= r by
XXREAL_0: 2;
end;
reconsider g = f as
Lipschitzian
LinearOperator of S, T by
LOPBAN_1:def 9;
set PreNormS = (
PreNorms (
modetrans (f,S,T)));
A3: for y be
ExtReal st y
in (
PreNorms (
modetrans (f,S,T))) holds y
<= r
proof
let y be
ExtReal;
assume y
in PreNormS;
then
consider x be
VECTOR of S such that
A4: y
=
||.((
modetrans (f,S,T))
. x).|| &
||.x.||
<= 1;
y
=
||.(g
. x).|| by
A4,
LOPBAN_1: 29;
hence thesis by
A2,
A4;
end;
set UBPreNormS = (
upper_bound PreNormS);
set dif = (UBPreNormS
- r);
now
assume UBPreNormS
> r;
then
A5: dif
>
0 by
XREAL_1: 50;
r is
UpperBound of PreNormS by
A3,
XXREAL_2:def 1;
then PreNormS is
bounded_above by
XXREAL_2:def 10;
then ex w be
Real st w
in PreNormS & (UBPreNormS
- dif)
< w by
A5,
SEQ_4:def 1;
hence contradiction by
A3;
end;
then (
upper_bound (
PreNorms g))
<= r by
LOPBAN_1:def 11;
hence thesis by
LOPBAN_1: 30;
end;
theorem ::
PDIFF_9:2
Th2: for S be
RealNormSpace, f be
PartFunc of S,
REAL holds f
is_continuous_on Z iff Z
c= (
dom f) & for s1 be
sequence of S st (
rng s1)
c= Z & s1 is
convergent & (
lim s1)
in Z holds (f
/* s1) is
convergent & (f
/. (
lim s1))
= (
lim (f
/* s1))
proof
let S be
RealNormSpace, f be
PartFunc of S,
REAL ;
thus f
is_continuous_on Z implies Z
c= (
dom f) & for s1 be
sequence of S st (
rng s1)
c= Z & s1 is
convergent & (
lim s1)
in Z holds (f
/* s1) is
convergent & (f
/. (
lim s1))
= (
lim (f
/* s1))
proof
assume
A1: f
is_continuous_on Z;
then
A2: Z
c= (
dom f) by
NFCONT_1:def 8;
now
let s1 be
sequence of S;
assume
A3: (
rng s1)
c= Z & s1 is
convergent & (
lim s1)
in Z;
then
A4: (f
| Z)
is_continuous_in (
lim s1) by
A1,
NFCONT_1:def 8;
(
dom (f
| Z))
= ((
dom f)
/\ Z) by
PARTFUN2: 15;
then
A5: (
dom (f
| Z))
= Z by
A2,
XBOOLE_1: 28;
now
let n be
Element of
NAT ;
(
dom s1)
=
NAT by
FUNCT_2:def 1;
then
A6: (s1
. n)
in (
rng s1) by
FUNCT_1: 3;
thus (((f
| Z)
/* s1)
. n)
= ((f
| Z)
/. (s1
. n)) by
A3,
A5,
FUNCT_2: 109
.= (f
/. (s1
. n)) by
A3,
A5,
A6,
PARTFUN2: 15
.= ((f
/* s1)
. n) by
A2,
A3,
FUNCT_2: 109,
XBOOLE_1: 1;
end;
then
A7: ((f
| Z)
/* s1)
= (f
/* s1);
(f
/. (
lim s1))
= ((f
| Z)
/. (
lim s1)) by
A3,
A5,
PARTFUN2: 15;
hence (f
/* s1) is
convergent & (f
/. (
lim s1))
= (
lim (f
/* s1)) by
A3,
A5,
A4,
A7,
NFCONT_1:def 6;
end;
hence thesis by
A1,
NFCONT_1:def 8;
end;
assume that
A8: Z
c= (
dom f) and
A9: for s1 be
sequence of S st (
rng s1)
c= Z & s1 is
convergent & (
lim s1)
in Z holds (f
/* s1) is
convergent & (f
/. (
lim s1))
= (
lim (f
/* s1));
(
dom (f
| Z))
= ((
dom f)
/\ Z) by
PARTFUN2: 15;
then
A10: (
dom (f
| Z))
= Z by
A8,
XBOOLE_1: 28;
now
let x1 be
Point of S;
assume
A11: x1
in Z;
now
let s1 be
sequence of S such that
A12: (
rng s1)
c= (
dom (f
| Z)) & s1 is
convergent & (
lim s1)
= x1;
now
let n be
Element of
NAT ;
(
dom s1)
=
NAT by
FUNCT_2:def 1;
then
A13: (s1
. n)
in (
rng s1) by
FUNCT_1: 3;
thus (((f
| Z)
/* s1)
. n)
= ((f
| Z)
/. (s1
. n)) by
A12,
FUNCT_2: 109
.= (f
/. (s1
. n)) by
A12,
A13,
PARTFUN2: 15
.= ((f
/* s1)
. n) by
A8,
A10,
A12,
FUNCT_2: 109,
XBOOLE_1: 1;
end;
then
A14: ((f
| Z)
/* s1)
= (f
/* s1);
((f
| Z)
/. (
lim s1))
= (f
/. (
lim s1)) by
A11,
A10,
A12,
PARTFUN2: 15;
hence ((f
| Z)
/* s1) is
convergent & ((f
| Z)
/. x1)
= (
lim ((f
| Z)
/* s1)) by
A9,
A11,
A10,
A12,
A14;
end;
hence (f
| Z)
is_continuous_in x1 by
A11,
A10,
NFCONT_1:def 6;
end;
hence thesis by
A8,
NFCONT_1:def 8;
end;
theorem ::
PDIFF_9:3
Th3: for f be
PartFunc of (
REAL i),
REAL holds (
dom (
<>* f))
= (
dom f)
proof
let f be
PartFunc of (
REAL i),
REAL ;
(
rng f)
c= (
dom ((
proj (1,1)) qua
Function
" )) by
PDIFF_1: 2;
hence thesis by
RELAT_1: 27;
end;
theorem ::
PDIFF_9:4
for f be
PartFunc of (
REAL i),
REAL st Z
c= (
dom f) holds (
dom ((
<>* f)
| Z))
= Z
proof
let f be
PartFunc of (
REAL i),
REAL ;
assume Z
c= (
dom f);
then Z
c= (
dom (
<>* f)) by
Th3;
hence thesis by
RELAT_1: 62;
end;
theorem ::
PDIFF_9:5
Th5: for f be
PartFunc of (
REAL i),
REAL holds (
<>* (f
| Z))
= ((
<>* f)
| Z)
proof
let f be
PartFunc of (
REAL i),
REAL ;
set W = ((
proj (1,1)) qua
Function
" );
(
rng (f
| Z))
c= (
dom W) by
PDIFF_1: 2;
then (
dom (W
* (f
| Z)))
= (
dom (f
| Z)) by
RELAT_1: 27
.= ((
dom f)
/\ Z) by
RELAT_1: 61;
then
A1: (
dom (W
* (f
| Z)))
= ((
dom (
<>* f))
/\ Z) by
Th3;
now
let x be
object;
assume
A2: x
in (
dom ((
<>* f)
| Z));
then x
in ((
dom (
<>* f))
/\ Z) by
RELAT_1: 61;
then x
in ((
dom f)
/\ Z) by
Th3;
then
A3: x
in Z & x
in (
dom f) by
XBOOLE_0:def 4;
(
dom (W
* (f
| Z)))
= (
dom ((
<>* f)
| Z)) by
A1,
RELAT_1: 61;
then ((
<>* (f
| Z))
. x)
= (W
. ((f
| Z)
. x)) by
A2,
FUNCT_1: 12
.= (W
. (f
. x)) by
A3,
FUNCT_1: 49
.= ((W
* f)
. x) by
A3,
FUNCT_1: 13;
hence ((
<>* (f
| Z))
. x)
= (((
<>* f)
| Z)
. x) by
A2,
FUNCT_1: 47;
end;
hence thesis by
A1,
FUNCT_1: 2,
RELAT_1: 61;
end;
theorem ::
PDIFF_9:6
Th6: for f be
PartFunc of (
REAL i),
REAL , x be
Element of (
REAL i) st x
in (
dom f) holds ((
<>* f)
. x)
=
<*(f
. x)*> & ((
<>* f)
/. x)
=
<*(f
/. x)*>
proof
let f be
PartFunc of (
REAL i),
REAL , x be
Element of (
REAL i);
set I = ((
proj (1,1)) qua
Function
" );
assume
A1: x
in (
dom f);
then ((
<>* f)
. x)
= (I
. (f
. x)) by
FUNCT_1: 13;
hence
A2: ((
<>* f)
. x)
=
<*(f
. x)*> by
PDIFF_1: 1;
x
in (
dom (
<>* f)) by
A1,
Th3;
then ((
<>* f)
/. x)
= ((
<>* f)
. x) by
PARTFUN1:def 6;
hence ((
<>* f)
/. x)
=
<*(f
/. x)*> by
A1,
A2,
PARTFUN1:def 6;
end;
theorem ::
PDIFF_9:7
Th7: for f,g be
PartFunc of (
REAL i),
REAL holds (
<>* (f
+ g))
= ((
<>* f)
+ (
<>* g)) & (
<>* (f
- g))
= ((
<>* f)
- (
<>* g))
proof
let f,g be
PartFunc of (
REAL i),
REAL ;
A1: (
dom (
<>* (f
+ g)))
= (
dom (f
+ g)) & (
dom (
<>* (f
- g)))
= (
dom (f
- g)) & (
dom (
<>* f))
= (
dom f) & (
dom (
<>* g))
= (
dom g) by
Th3;
then (
dom (
<>* (f
+ g)))
= ((
dom (
<>* f))
/\ (
dom (
<>* g))) & (
dom (
<>* (f
- g)))
= ((
dom (
<>* f))
/\ (
dom (
<>* g))) by
VALUED_1: 12,
VALUED_1:def 1;
then
A2: (
dom (
<>* (f
+ g)))
= (
dom ((
<>* f)
+ (
<>* g))) & (
dom (
<>* (f
- g)))
= (
dom ((
<>* f)
- (
<>* g))) by
VALUED_2:def 45,
VALUED_2:def 46;
now
let x be
object;
assume
A3: x
in (
dom (
<>* (f
+ g)));
then x
in ((
dom f)
/\ (
dom g)) by
A1,
VALUED_1:def 1;
then x
in (
dom f) & x
in (
dom g) by
XBOOLE_0:def 4;
then
A4:
<*(f
. x)*>
= ((
<>* f)
. x) &
<*(g
. x)*>
= ((
<>* g)
. x) by
Th6;
((
<>* (f
+ g))
. x)
=
<*((f
+ g)
. x)*> by
Th6,
A3,
A1
.=
<*((f
. x)
+ (g
. x))*> by
A3,
A1,
VALUED_1:def 1
.= (((
<>* f)
. x)
+ ((
<>* g)
. x)) by
A4,
RVSUM_1: 13;
hence ((
<>* (f
+ g))
. x)
= (((
<>* f)
+ (
<>* g))
. x) by
A2,
A3,
VALUED_2:def 45;
end;
hence (
<>* (f
+ g))
= ((
<>* f)
+ (
<>* g)) by
A2,
FUNCT_1: 2;
now
let x be
object;
assume
A5: x
in (
dom (
<>* (f
- g)));
then x
in ((
dom f)
/\ (
dom g)) by
A1,
VALUED_1: 12;
then x
in (
dom f) & x
in (
dom g) by
XBOOLE_0:def 4;
then
A6:
<*(f
. x)*>
= ((
<>* f)
. x) &
<*(g
. x)*>
= ((
<>* g)
. x) by
Th6;
thus ((
<>* (f
- g))
. x)
=
<*((f
- g)
. x)*> by
Th6,
A5,
A1
.=
<*((f
. x)
- (g
. x))*> by
A5,
A1,
VALUED_1: 13
.= (((
<>* f)
. x)
- ((
<>* g)
. x)) by
A6,
RVSUM_1: 29
.= (((
<>* f)
- (
<>* g))
. x) by
A2,
A5,
VALUED_2:def 46;
end;
hence thesis by
A2,
FUNCT_1: 2;
end;
theorem ::
PDIFF_9:8
Th8: for f be
PartFunc of (
REAL i),
REAL , r be
Real holds (
<>* (r
(#) f))
= (r
(#) (
<>* f))
proof
let f be
PartFunc of (
REAL i),
REAL , r be
Real;
A1: (
dom (
<>* (r
(#) f)))
= (
dom (r
(#) f)) by
Th3;
then
A2: (
dom (
<>* (r
(#) f)))
= (
dom f) by
VALUED_1:def 5;
then
A3: (
dom (
<>* (r
(#) f)))
= (
dom (
<>* f)) by
Th3
.= (
dom (r
(#) (
<>* f))) by
VALUED_2:def 39;
now
let x be
object;
reconsider fx = (f
. x) as
Element of
REAL by
XREAL_0:def 1;
assume
A4: x
in (
dom (
<>* (r
(#) f)));
then ((
<>* (r
(#) f))
. x)
=
<*((r
(#) f)
. x)*> by
A1,
Th6
.=
<*(r
* (f
. x))*> by
A4,
A1,
VALUED_1:def 5
.= (r
(#)
<*fx*>) by
RVSUM_1: 47
.= (r
(#) ((
<>* f)
. x)) by
A4,
A2,
Th6;
hence ((
<>* (r
(#) f))
. x)
= ((r
(#) (
<>* f))
. x) by
A4,
A3,
VALUED_2:def 39;
end;
hence thesis by
A3,
FUNCT_1: 2;
end;
Lm1: for x be
Real, y be
Element of (
REAL 1) st
<*x*>
= y holds
|.x.|
=
|.y.|
proof
let x be
Real, y be
Element of (
REAL 1);
assume
A1:
<*x*>
= y;
reconsider I = ((
proj (1,1)) qua
Function
" ) as
Function of
REAL , (
REAL 1) by
PDIFF_1: 2;
reconsider y0 = y as
Point of (
REAL-NS 1) by
REAL_NS1:def 4;
(I
. x)
= y by
A1,
PDIFF_1: 1;
then
|.x.|
=
||.y0.|| by
PDIFF_1: 3;
hence thesis by
REAL_NS1: 1;
end;
theorem ::
PDIFF_9:9
Th9: for f be
PartFunc of (
REAL i),
REAL , g be
PartFunc of (
REAL i), (
REAL 1) st (
<>* f)
= g holds
|.f.|
=
|.g.|
proof
let f be
PartFunc of (
REAL i),
REAL , g be
PartFunc of (
REAL i), (
REAL 1);
assume
A1: (
<>* f)
= g;
A2: (
dom
|.g.|)
= (
dom g) by
NFCONT_4:def 2
.= (
dom f) by
A1,
Th3;
then
A3: (
dom
|.g.|)
= (
dom
|.f.|) by
VALUED_1:def 11;
now
let x be
Element of (
REAL i);
assume
A4: x
in (
dom
|.g.|);
then
A5: (g
/. x)
=
<*(f
/. x)*> by
A1,
A2,
Th6;
thus (
|.g.|
. x)
= (
|.g.|
/. x) by
A4,
PARTFUN1:def 6
.=
|.(g
/. x).| by
A4,
NFCONT_4:def 2
.=
|.(f
/. x).| by
A5,
Lm1
.=
|.(f
. x).| by
A2,
A4,
PARTFUN1:def 6
.= (
|.f.|
. x) by
VALUED_1: 18;
end;
hence thesis by
A3,
PARTFUN1: 5;
end;
theorem ::
PDIFF_9:10
for X be
Subset of (
REAL m), Y be
Subset of (
REAL-NS m) st X
= Y holds X is
open iff Y is
open;
theorem ::
PDIFF_9:11
Th11: for q be
Real, i be
Nat st 1
<= i & i
<= j holds
|.((
reproj (i,(
0* j)))
. q).|
=
|.q.|
proof
let q be
Real, i be
Nat;
assume
A1: 1
<= i & i
<= j;
reconsider q as
Element of
REAL by
XREAL_0:def 1;
set y = (
0* j);
A2: ((
reproj (i,(
0* j)))
. q)
= (
Replace (y,i,q)) by
PDIFF_1:def 5;
y
in (j
-tuples_on
REAL );
then ex s be
Element of (
REAL
* ) st s
= y & (
len s)
= j;
then
A3: ((
reproj (i,(
0* j)))
. q)
= (((y
| (i
-' 1))
^
<*q*>)
^ (y
/^ i)) by
A1,
A2,
FINSEQ_7:def 1;
(
sqrt (
Sum (
sqr (y
| (i
-' 1)))))
=
|.(
0* (i
-' 1)).| by
A1,
PDIFF_7: 2;
then (
sqrt (
Sum (
sqr (y
| (i
-' 1)))))
=
0 by
EUCLID: 7;
then
A4: (
Sum (
sqr (y
| (i
-' 1))))
=
0 by
RVSUM_1: 86,
SQUARE_1: 24;
(
sqrt (
Sum (
sqr (y
/^ i))))
=
|.(
0* (j
-' i)).| by
PDIFF_7: 3;
then
A5: (
sqrt (
Sum (
sqr (y
/^ i))))
=
0 by
EUCLID: 7;
reconsider q2 = (q
^2 ) as
Element of
REAL by
XREAL_0:def 1;
(
sqr (((y
| (i
-' 1))
^
<*q*>)
^ (y
/^ i)))
= ((
sqr ((y
| (i
-' 1))
^
<*q*>))
^ (
sqr (y
/^ i))) by
TOPREAL7: 10
.= (((
sqr (y
| (i
-' 1)))
^ (
sqr
<*q*>))
^ (
sqr (y
/^ i))) by
TOPREAL7: 10
.= (((
sqr (y
| (i
-' 1)))
^
<*(q
^2 )*>)
^ (
sqr (y
/^ i))) by
RVSUM_1: 55;
then (
Sum (
sqr (((y
| (i
-' 1))
^
<*q*>)
^ (y
/^ i))))
= ((
Sum ((
sqr (y
| (i
-' 1)))
^
<*q2*>))
+ (
Sum (
sqr (y
/^ i)))) by
RVSUM_1: 75
.= (((
Sum (
sqr (y
| (i
-' 1))))
+ (q
^2 ))
+ (
Sum (
sqr (y
/^ i)))) by
RVSUM_1: 74
.= (q
^2 ) by
A4,
A5,
RVSUM_1: 86,
SQUARE_1: 24;
hence thesis by
A3,
COMPLEX1: 72;
end;
Lm2: for x be
Element of (
REAL m), Z be
Subset of (
REAL m), i be
Nat st Z is
open & x
in Z & 1
<= i & i
<= m holds ex N be
Neighbourhood of ((
proj (i,m))
. x) st for z be
Element of
REAL st z
in N holds ((
reproj (i,x))
. z)
in Z
proof
let x be
Element of (
REAL m), Z be
Subset of (
REAL m), i be
Nat;
assume that
A1: Z is
open & x
in Z and
A2: 1
<= i & i
<= m;
consider r be
Real such that
A3:
0
< r & { y where y be
Element of (
REAL m) :
|.(y
- x).|
< r }
c= Z by
A1,
PDIFF_7: 31;
set N =
].(((
proj (i,m))
. x)
- r), (((
proj (i,m))
. x)
+ r).[;
reconsider N as
Neighbourhood of ((
proj (i,m))
. x) by
A3,
RCOMP_1:def 6;
take N;
let z be
Element of
REAL ;
assume z
in N;
then
A4:
|.(z
- ((
proj (i,m))
. x)).|
< r by
RCOMP_1: 1;
|.(((
reproj (i,x))
. z)
- x).|
=
|.((
reproj (i,(
0* m)))
. (z
- ((
proj (i,m))
. x))).| by
PDIFF_7: 6
.=
|.(z
- ((
proj (i,m))
. x)).| by
A2,
Th11;
then ((
reproj (i,x))
. z)
in { y where y be
Element of (
REAL m) :
|.(y
- x).|
< r } by
A4;
hence thesis by
A3;
end;
theorem ::
PDIFF_9:12
Th12: for x be
Element of (
REAL j) holds x
= ((
reproj (i,x))
. ((
proj (i,j))
. x))
proof
let x be
Element of (
REAL j);
set q = ((
reproj (i,x))
. ((
proj (i,j))
. x));
A1: (
dom q)
= (
Seg j) & (
dom x)
= (
Seg j) by
FINSEQ_1: 89;
A2: (
len x)
= j by
A1,
FINSEQ_1:def 3;
for k be
Nat st k
in (
dom x) holds (x
. k)
= (q
. k)
proof
let k be
Nat;
assume
A3: k
in (
dom x);
then
A4: 1
<= k & k
<= j by
A1,
FINSEQ_1: 1;
q
= (
Replace (x,i,((
proj (i,j))
. x))) by
PDIFF_1:def 5;
then
A5: (q
. k)
= ((
Replace (x,i,((
proj (i,j))
. x)))
/. k) by
A3,
A1,
PARTFUN1:def 6;
per cases ;
suppose
A6: k
= i;
then (q
. k)
= ((
proj (i,j))
. x) by
A2,
A4,
A5,
FINSEQ_7: 8;
hence (x
. k)
= (q
. k) by
A6,
PDIFF_1:def 1;
end;
suppose k
<> i;
then (q
. k)
= (x
/. k) by
A2,
A4,
A5,
FINSEQ_7: 10;
hence (x
. k)
= (q
. k) by
A3,
PARTFUN1:def 6;
end;
end;
hence x
= ((
reproj (i,x))
. ((
proj (i,j))
. x)) by
A1,
FINSEQ_1: 13;
end;
begin
theorem ::
PDIFF_9:13
Th13: for X be
Subset of (
REAL m), f be
PartFunc of (
REAL m), (
REAL n) st f
is_differentiable_on X holds X is
open by
PDIFF_6: 33;
theorem ::
PDIFF_9:14
Th14: for X be
Subset of (
REAL m), f be
PartFunc of (
REAL m), (
REAL n) st X is
open holds (f
is_differentiable_on X iff X
c= (
dom f) & for x be
Element of (
REAL m) st x
in X holds f
is_differentiable_in x) by
PDIFF_6: 32;
definition
let m,n be non
zero
Element of
NAT , Z be
set, f be
PartFunc of (
REAL m), (
REAL n);
assume
A1: Z
c= (
dom f);
::
PDIFF_9:def1
func f
`| Z ->
PartFunc of (
REAL m), (
Funcs ((
REAL m),(
REAL n))) means
:
Def1: (
dom it )
= Z & for x be
Element of (
REAL m) st x
in Z holds (it
/. x)
= (
diff (f,x));
existence
proof
defpred
P[
Element of (
REAL m),
set] means $1
in Z & $2
= (
diff (f,$1));
consider F be
PartFunc of (
REAL m), (
Funcs ((
REAL m),(
REAL n))) such that
A2: (for x be
Element of (
REAL m) holds x
in (
dom F) iff (ex z be
Element of (
Funcs ((
REAL m),(
REAL n))) st
P[x, z])) & for x be
Element of (
REAL m) st x
in (
dom F) holds
P[x, (F
. x)] from
SEQ_1:sch 2;
take F;
A3: Z is
Subset of (
REAL m) by
A1,
XBOOLE_1: 1;
a5:
now
let x be
object;
assume
A4: x
in Z;
then
reconsider z = x as
Element of (
REAL m) by
A3;
reconsider y = (
diff (f,z)) as
Element of (
Funcs ((
REAL m),(
REAL n))) by
FUNCT_2: 8;
P[z, y] by
A4;
hence x
in (
dom F) by
A2;
end;
then
A5: Z
c= (
dom F);
(
dom F)
c= Z by
A2;
hence (
dom F)
= Z by
A5,
XBOOLE_0:def 10;
let x be
Element of (
REAL m);
assume
A6: x
in Z;
then (F
. x)
= (
diff (f,x)) by
A2,
A5;
hence (F
/. x)
= (
diff (f,x)) by
A6,
a5,
PARTFUN1:def 6;
end;
uniqueness
proof
let F,G be
PartFunc of (
REAL m), (
Funcs ((
REAL m),(
REAL n)));
assume that
A7: (
dom F)
= Z and
A8: for x be
Element of (
REAL m) st x
in Z holds (F
/. x)
= (
diff (f,x)) and
A9: (
dom G)
= Z and
A10: for x be
Element of (
REAL m) st x
in Z holds (G
/. x)
= (
diff (f,x));
now
let x be
Element of (
REAL m);
assume
A11: x
in (
dom F);
then (F
/. x)
= (
diff (f,x)) by
A7,
A8;
hence (F
/. x)
= (G
/. x) by
A7,
A10,
A11;
end;
hence thesis by
A7,
A9,
PARTFUN2: 1;
end;
end
theorem ::
PDIFF_9:15
for X be
Subset of (
REAL m), f,g be
PartFunc of (
REAL m), (
REAL n) st f
is_differentiable_on X & g
is_differentiable_on X holds (f
+ g)
is_differentiable_on X & for x be
Element of (
REAL m) st x
in X holds (((f
+ g)
`| X)
/. x)
= ((
diff (f,x))
+ (
diff (g,x)))
proof
let X be
Subset of (
REAL m), f,g be
PartFunc of (
REAL m), (
REAL n);
assume
A1: f
is_differentiable_on X & g
is_differentiable_on X;
then
A2: X is
open by
PDIFF_6: 33;
then
A3: X
c= (
dom f) & X
c= (
dom g) by
A1,
Th14;
(
dom (f
+ g))
= ((
dom f)
/\ (
dom g)) by
VALUED_2:def 45;
then
A4: X
c= (
dom (f
+ g)) by
A3,
XBOOLE_1: 19;
now
let x be
Element of (
REAL m);
assume x
in X;
then f
is_differentiable_in x & g
is_differentiable_in x by
A1,
A2,
Th14;
hence (f
+ g)
is_differentiable_in x by
PDIFF_6: 20;
end;
hence (f
+ g)
is_differentiable_on X by
A4,
A2,
Th14;
let x be
Element of (
REAL m);
assume
A5: x
in X;
then f
is_differentiable_in x & g
is_differentiable_in x by
A1,
A2,
Th14;
then (
diff ((f
+ g),x))
= ((
diff (f,x))
+ (
diff (g,x))) by
PDIFF_6: 20;
hence (((f
+ g)
`| X)
/. x)
= ((
diff (f,x))
+ (
diff (g,x))) by
A4,
A5,
Def1;
end;
theorem ::
PDIFF_9:16
for X be
Subset of (
REAL m), f,g be
PartFunc of (
REAL m), (
REAL n) st f
is_differentiable_on X & g
is_differentiable_on X holds (f
- g)
is_differentiable_on X & for x be
Element of (
REAL m) st x
in X holds (((f
- g)
`| X)
/. x)
= ((
diff (f,x))
- (
diff (g,x)))
proof
let X be
Subset of (
REAL m), f,g be
PartFunc of (
REAL m), (
REAL n);
assume
A1: f
is_differentiable_on X & g
is_differentiable_on X;
then
A2: X is
open by
Th13;
then
A3: X
c= (
dom f) & X
c= (
dom g) by
A1,
Th14;
(
dom (f
- g))
= ((
dom f)
/\ (
dom g)) by
VALUED_2:def 46;
then
A4: X
c= (
dom (f
- g)) by
A3,
XBOOLE_1: 19;
now
let x be
Element of (
REAL m);
assume x
in X;
then f
is_differentiable_in x & g
is_differentiable_in x by
A1,
A2,
Th14;
hence (f
- g)
is_differentiable_in x by
PDIFF_6: 21;
end;
hence (f
- g)
is_differentiable_on X by
A4,
A2,
Th14;
let x be
Element of (
REAL m);
assume
A5: x
in X;
then f
is_differentiable_in x & g
is_differentiable_in x by
A1,
A2,
Th14;
then (
diff ((f
- g),x))
= ((
diff (f,x))
- (
diff (g,x))) by
PDIFF_6: 21;
hence (((f
- g)
`| X)
/. x)
= ((
diff (f,x))
- (
diff (g,x))) by
A4,
A5,
Def1;
end;
theorem ::
PDIFF_9:17
for X be
Subset of (
REAL m), f be
PartFunc of (
REAL m), (
REAL n), r be
Real st f
is_differentiable_on X holds (r
(#) f)
is_differentiable_on X & for x be
Element of (
REAL m) st x
in X holds (((r
(#) f)
`| X)
/. x)
= (r
(#) (
diff (f,x)))
proof
let X be
Subset of (
REAL m), f be
PartFunc of (
REAL m), (
REAL n), r be
Real;
assume
A1: f
is_differentiable_on X;
then
A2: X is
open by
Th13;
then X
c= (
dom f) by
A1,
Th14;
then
A3: X
c= (
dom (r
(#) f)) by
VALUED_2:def 39;
now
let x be
Element of (
REAL m);
assume x
in X;
then f
is_differentiable_in x by
A1,
A2,
Th14;
hence (r
(#) f)
is_differentiable_in x by
PDIFF_6: 22;
end;
hence (r
(#) f)
is_differentiable_on X by
A3,
A2,
Th14;
let x be
Element of (
REAL m);
assume
A4: x
in X;
then f
is_differentiable_in x by
A1,
A2,
Th14;
then (
diff ((r
(#) f),x))
= (r
(#) (
diff (f,x))) by
PDIFF_6: 22;
hence (((r
(#) f)
`| X)
/. x)
= (r
(#) (
diff (f,x))) by
A3,
A4,
Def1;
end;
reconsider jj = 1 as
Element of
REAL by
XREAL_0:def 1;
theorem ::
PDIFF_9:18
Th18: for f be
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS 1),(
REAL-NS j))) holds ex p be
Point of (
REAL-NS j) st p
= (f
.
<*1*>) & (for r be
Real, x be
Point of (
REAL-NS 1) st x
=
<*r*> holds (f
. x)
= (r
* p)) & (for x be
Point of (
REAL-NS 1) holds
||.(f
. x).||
= (
||.p.||
*
||.x.||))
proof
let f be
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS 1),(
REAL-NS j)));
reconsider One =
<*jj*> as
Element of (
REAL 1) by
FINSEQ_2: 98;
reconsider L = f as
Lipschitzian
LinearOperator of (
REAL-NS 1), (
REAL-NS j) by
LOPBAN_1:def 9;
the
carrier of (
REAL-NS 1)
= (
REAL 1) by
REAL_NS1:def 4;
then (
dom L)
= (
REAL 1) by
FUNCT_2:def 1;
then
reconsider p = (f
.
<*jj*>) as
Point of (
REAL-NS j) by
FINSEQ_2: 98,
PARTFUN1: 4;
reconsider OneNS = One as
VECTOR of (
REAL-NS 1) by
REAL_NS1:def 4;
A1:
now
let r be
Real, x be
Point of (
REAL-NS 1);
assume x
=
<*r*>;
then
A2: (f
. x)
= (L
.
<*r*>);
<*r*>
=
<*(r
* 1)*>
.= (r
*
<*1*>) by
RVSUM_1: 47
.= (r
* OneNS) by
REAL_NS1: 3;
hence (f
. x)
= (r
* p) by
A2,
LOPBAN_1:def 5;
end;
now
let x be
Point of (
REAL-NS 1);
A3: the
carrier of (
REAL-NS 1)
= (
REAL 1) by
REAL_NS1:def 4;
then
reconsider x0 = x as
FinSequence of
REAL by
FINSEQ_2:def 3;
consider r be
Element of
REAL such that
A4: x0
=
<*r*> by
A3,
FINSEQ_2: 97;
thus
||.(f
. x).||
=
||.(r
* p).|| by
A1,
A4
.= (
|.r.|
*
||.p.||) by
NORMSP_1:def 1
.= (
||.p.||
*
||.x.||) by
A4,
PDIFF_8: 2;
end;
hence thesis by
A1;
end;
theorem ::
PDIFF_9:19
Th19: for f be
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS 1),(
REAL-NS j))) holds ex p be
Point of (
REAL-NS j) st p
= (f
.
<*1*>) &
||.p.||
=
||.f.||
proof
let f be
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS 1),(
REAL-NS j)));
reconsider g = f as
Lipschitzian
LinearOperator of (
REAL-NS 1), (
REAL-NS j) by
LOPBAN_1:def 9;
consider p be
Point of (
REAL-NS j) such that
A1: p
= (f
.
<*1*>) & (for r be
Real, x be
Point of (
REAL-NS 1) st x
=
<*r*> holds (f
. x)
= (r
* p)) & (for x be
Point of (
REAL-NS 1) holds
||.(f
. x).||
= (
||.p.||
*
||.x.||)) by
Th18;
<*jj*>
in (
REAL 1) by
FINSEQ_2: 98;
then
reconsider One =
<*jj*> as
Point of (
REAL-NS 1) by
REAL_NS1:def 4;
||.(g
. One).||
<= (
||.f.||
*
||.One.||) by
LOPBAN_1: 32;
then
||.(g
. One).||
<= (
||.f.||
*
|.1.|) by
PDIFF_8: 2;
then
A2:
||.(f
. One).||
<= (
||.f.||
* 1) by
ABSVALUE:def 1;
for x be
Point of (
REAL-NS 1) st
||.x.||
<= 1 holds
||.(f
. x).||
<= (
||.p.||
*
||.x.||) by
A1;
then
||.f.||
<=
||.p.|| by
Th1;
hence thesis by
A1,
A2,
XXREAL_0: 1;
end;
theorem ::
PDIFF_9:20
Th20: for f be
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS 1),(
REAL-NS j))), x be
Point of (
REAL-NS 1) holds
||.(f
. x).||
= (
||.f.||
*
||.x.||)
proof
let f be
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS 1),(
REAL-NS j))), x be
Point of (
REAL-NS 1);
A1: ex p be
Point of (
REAL-NS j) st p
= (f
.
<*1*>) & (for r be
Real, x be
Point of (
REAL-NS 1) st x
=
<*r*> holds (f
. x)
= (r
* p)) & (for x be
Point of (
REAL-NS 1) holds
||.(f
. x).||
= (
||.p.||
*
||.x.||)) by
Th18;
ex q be
Point of (
REAL-NS j) st q
= (f
.
<*1*>) &
||.f.||
=
||.q.|| by
Th19;
hence thesis by
A1;
end;
theorem ::
PDIFF_9:21
Th21: for f be
PartFunc of (
REAL m), (
REAL n), g be
PartFunc of (
REAL-NS m), (
REAL-NS n), X be
Subset of (
REAL m), Y be
Subset of (
REAL-NS m), i be
Nat st 1
<= i & i
<= m & X is
open & g
= f & X
= Y & f
is_partial_differentiable_on (X,i) holds for x be
Element of (
REAL m), y be
Point of (
REAL-NS m) st x
in X & x
= y holds (
partdiff (f,x,i))
= ((
partdiff (g,y,i))
.
<*1*>)
proof
let f be
PartFunc of (
REAL m), (
REAL n), g be
PartFunc of (
REAL-NS m), (
REAL-NS n), X be
Subset of (
REAL m), Y be
Subset of (
REAL-NS m), i be
Nat;
assume
A1: 1
<= i & i
<= m & X is
open & g
= f & X
= Y & f
is_partial_differentiable_on (X,i);
let x be
Element of (
REAL m), y be
Point of (
REAL-NS m);
assume
A2: x
in X & x
= y;
then f
is_partial_differentiable_in (x,i) by
A1,
PDIFF_7: 34;
then ex g0 be
PartFunc of (
REAL-NS m), (
REAL-NS n), y0 be
Point of (
REAL-NS m) st f
= g0 & x
= y0 & (
partdiff (f,x,i))
= ((
partdiff (g0,y0,i))
.
<*1*>) by
PDIFF_1:def 14;
hence (
partdiff (f,x,i))
= ((
partdiff (g,y,i))
.
<*1*>) by
A1,
A2;
end;
theorem ::
PDIFF_9:22
Th22: for f be
PartFunc of (
REAL m), (
REAL n), g be
PartFunc of (
REAL-NS m), (
REAL-NS n), X be
Subset of (
REAL m), Y be
Subset of (
REAL-NS m), i be
Nat st 1
<= i & i
<= m & X is
open & g
= f & X
= Y & f
is_partial_differentiable_on (X,i) holds for x0,x1 be
Element of (
REAL m), y0,y1 be
Point of (
REAL-NS m) st x0
= y0 & x1
= y1 & x0
in X & x1
in X holds
|.(((f
`partial| (X,i))
/. x1)
- ((f
`partial| (X,i))
/. x0)).|
=
||.(((g
`partial| (Y,i))
/. y1)
- ((g
`partial| (Y,i))
/. y0)).||
proof
let f be
PartFunc of (
REAL m), (
REAL n), g be
PartFunc of (
REAL-NS m), (
REAL-NS n), X be
Subset of (
REAL m), Y be
Subset of (
REAL-NS m), i be
Nat;
assume
A1: 1
<= i & i
<= m & X is
open & g
= f & X
= Y & f
is_partial_differentiable_on (X,i);
let x0,x1 be
Element of (
REAL m), y0,y1 be
Point of (
REAL-NS m);
assume
A2: x0
= y0 & x1
= y1 & x0
in X & x1
in X;
<*jj*> is
Element of (
REAL 1) by
FINSEQ_2: 98;
then
reconsider Pt1 =
<*jj*> as
Point of (
REAL-NS 1) by
REAL_NS1:def 4;
((f
`partial| (X,i))
/. x1)
= (
partdiff (f,x1,i)) & ((f
`partial| (X,i))
/. x0)
= (
partdiff (f,x0,i)) by
A2,
A1,
PDIFF_7:def 5;
then ((f
`partial| (X,i))
/. x1)
= ((
partdiff (g,y1,i))
. Pt1) & ((f
`partial| (X,i))
/. x0)
= ((
partdiff (g,y0,i))
. Pt1) by
Th21,
A1,
A2;
then (((f
`partial| (X,i))
/. x1)
- ((f
`partial| (X,i))
/. x0))
= (((
partdiff (g,y1,i))
. Pt1)
- ((
partdiff (g,y0,i))
. Pt1)) by
REAL_NS1: 5;
then
A3: (((f
`partial| (X,i))
/. x1)
- ((f
`partial| (X,i))
/. x0))
= (((
partdiff (g,y1,i))
- (
partdiff (g,y0,i)))
. Pt1) by
LOPBAN_1: 40;
||.Pt1.||
=
|.1.| by
PDIFF_8: 2;
then
||.Pt1.||
= 1 by
ABSVALUE:def 1;
then
A4:
||.(((
partdiff (g,y1,i))
- (
partdiff (g,y0,i)))
. Pt1).||
= (
||.((
partdiff (g,y1,i))
- (
partdiff (g,y0,i))).||
* 1) by
Th20;
g
is_partial_differentiable_on (Y,i) by
A1,
PDIFF_7: 33;
then ((g
`partial| (Y,i))
/. y1)
= (
partdiff (g,y1,i)) & ((g
`partial| (Y,i))
/. y0)
= (
partdiff (g,y0,i)) by
A1,
A2,
PDIFF_1:def 20;
hence thesis by
A3,
A4,
REAL_NS1: 1;
end;
theorem ::
PDIFF_9:23
Th23: for f be
PartFunc of (
REAL m), (
REAL n), g be
PartFunc of (
REAL-NS m), (
REAL-NS n), X be
Subset of (
REAL m), Y be
Subset of (
REAL-NS m), i be
Nat st 1
<= i & i
<= m & X is
open & g
= f & X
= Y holds (f
is_partial_differentiable_on (X,i) & (f
`partial| (X,i))
is_continuous_on X) iff (g
is_partial_differentiable_on (Y,i) & (g
`partial| (Y,i))
is_continuous_on Y)
proof
let f be
PartFunc of (
REAL m), (
REAL n), g be
PartFunc of (
REAL-NS m), (
REAL-NS n), X be
Subset of (
REAL m), Y be
Subset of (
REAL-NS m), i be
Nat;
assume
A1: 1
<= i & i
<= m & X is
open & g
= f & X
= Y;
hereby
assume
A2: f
is_partial_differentiable_on (X,i) & (f
`partial| (X,i))
is_continuous_on X;
hence g
is_partial_differentiable_on (Y,i) by
A1,
PDIFF_7: 33;
then
A3: (
dom (g
`partial| (Y,i)))
= Y by
PDIFF_1:def 20;
for y0 be
Point of (
REAL-NS m), r be
Real st y0
in Y &
0
< r holds ex s be
Real st
0
< s & for y1 be
Point of (
REAL-NS m) st y1
in Y &
||.(y1
- y0).||
< s holds
||.(((g
`partial| (Y,i))
/. y1)
- ((g
`partial| (Y,i))
/. y0)).||
< r
proof
let y0 be
Point of (
REAL-NS m), r be
Real;
reconsider x0 = y0 as
Element of (
REAL m) by
REAL_NS1:def 4;
assume
A4: y0
in Y &
0
< r;
then
consider s be
Real such that
A5:
0
< s & for x1 be
Element of (
REAL m) st x1
in X &
|.(x1
- x0).|
< s holds
|.(((f
`partial| (X,i))
/. x1)
- ((f
`partial| (X,i))
/. x0)).|
< r by
A1,
A2,
PDIFF_7: 38;
take s;
thus
0
< s by
A5;
let y1 be
Point of (
REAL-NS m);
reconsider x1 = y1 as
Element of (
REAL m) by
REAL_NS1:def 4;
assume
A6: y1
in Y &
||.(y1
- y0).||
< s;
then
A7:
|.(x1
- x0).|
< s by
REAL_NS1: 1,
REAL_NS1: 5;
|.(((f
`partial| (X,i))
/. x1)
- ((f
`partial| (X,i))
/. x0)).|
=
||.(((g
`partial| (Y,i))
/. y1)
- ((g
`partial| (Y,i))
/. y0)).|| by
A4,
A6,
A1,
A2,
Th22;
hence
||.(((g
`partial| (Y,i))
/. y1)
- ((g
`partial| (Y,i))
/. y0)).||
< r by
A7,
A5,
A6,
A1;
end;
hence (g
`partial| (Y,i))
is_continuous_on Y by
A3,
NFCONT_1: 19;
end;
assume
A8: g
is_partial_differentiable_on (Y,i) & (g
`partial| (Y,i))
is_continuous_on Y;
then
A9: f
is_partial_differentiable_on (X,i) by
A1,
PDIFF_7: 33;
then
A10: (
dom (f
`partial| (X,i)))
= X by
PDIFF_7:def 5;
for x0 be
Element of (
REAL m), r be
Real st x0
in X &
0
< r holds ex s be
Real st
0
< s & for x1 be
Element of (
REAL m) st x1
in X &
|.(x1
- x0).|
< s holds
|.(((f
`partial| (X,i))
/. x1)
- ((f
`partial| (X,i))
/. x0)).|
< r
proof
let x0 be
Element of (
REAL m), r be
Real;
reconsider y0 = x0 as
Point of (
REAL-NS m) by
REAL_NS1:def 4;
assume
A11: x0
in X &
0
< r;
then
consider s be
Real such that
A12:
0
< s & for y1 be
Point of (
REAL-NS m) st y1
in Y &
||.(y1
- y0).||
< s holds
||.(((g
`partial| (Y,i))
/. y1)
- ((g
`partial| (Y,i))
/. y0)).||
< r by
A1,
A8,
NFCONT_1: 19;
take s;
thus
0
< s by
A12;
let x1 be
Element of (
REAL m);
reconsider y1 = x1 as
Element of (
REAL-NS m) by
REAL_NS1:def 4;
assume
A13: x1
in X &
|.(x1
- x0).|
< s;
|.(x1
- x0).|
=
||.(y1
- y0).|| by
REAL_NS1: 1,
REAL_NS1: 5;
then
||.(((g
`partial| (Y,i))
/. y1)
- ((g
`partial| (Y,i))
/. y0)).||
< r by
A12,
A13,
A1;
hence
|.(((f
`partial| (X,i))
/. x1)
- ((f
`partial| (X,i))
/. x0)).|
< r by
A11,
A13,
A1,
A9,
Th22;
end;
hence (f
is_partial_differentiable_on (X,i) & (f
`partial| (X,i))
is_continuous_on X) by
A8,
A10,
A1,
PDIFF_7: 33,
PDIFF_7: 38;
end;
theorem ::
PDIFF_9:24
Th24: for f be
PartFunc of (
REAL m), (
REAL n), g be
PartFunc of (
REAL-NS m), (
REAL-NS n), X be
Subset of (
REAL m), Y be
Subset of (
REAL-NS m) st X
= Y & X is
open & f
= g holds (for i be
Nat st 1
<= i & i
<= m holds f
is_partial_differentiable_on (X,i) & (f
`partial| (X,i))
is_continuous_on X) iff g
is_differentiable_on Y & (g
`| Y)
is_continuous_on Y
proof
let f be
PartFunc of (
REAL m), (
REAL n), g be
PartFunc of (
REAL-NS m), (
REAL-NS n), X be
Subset of (
REAL m), Y be
Subset of (
REAL-NS m);
assume
A1: X
= Y & X is
open & f
= g;
hereby
assume
A3: for i be
Nat st 1
<= i & i
<= m holds f
is_partial_differentiable_on (X,i) & (f
`partial| (X,i))
is_continuous_on X;
now
let i be
Nat;
assume
A4: 1
<= i & i
<= m;
then f
is_partial_differentiable_on (X,i) & (f
`partial| (X,i))
is_continuous_on X by
A3;
hence g
is_partial_differentiable_on (Y,i) & (g
`partial| (Y,i))
is_continuous_on Y by
A1,
A4,
Th23;
end;
hence g
is_differentiable_on Y & (g
`| Y)
is_continuous_on Y by
A1,
PDIFF_8: 22;
end;
assume
A5: g
is_differentiable_on Y & (g
`| Y)
is_continuous_on Y;
let i be
Nat;
assume
A6: 1
<= i & i
<= m;
then g
is_partial_differentiable_on (Y,i) & (g
`partial| (Y,i))
is_continuous_on Y by
A1,
A5,
PDIFF_8: 22;
hence thesis by
A1,
A6,
Th23;
end;
theorem ::
PDIFF_9:25
Th25: for f be
PartFunc of (
REAL m), (
REAL n), g be
PartFunc of (
REAL-NS m), (
REAL-NS n), X be
Subset of (
REAL m), Y be
Subset of (
REAL-NS m) st X is
open & X
c= (
dom f) & g
= f & X
= Y holds (g
is_differentiable_on Y & (g
`| Y)
is_continuous_on Y) iff (f
is_differentiable_on X & for x0 be
Element of (
REAL m), r be
Real st x0
in X &
0
< r holds ex s be
Real st
0
< s & for x1 be
Element of (
REAL m) st x1
in X &
|.(x1
- x0).|
< s holds for v be
Element of (
REAL m) holds
|.(((
diff (f,x1))
. v)
- ((
diff (f,x0))
. v)).|
<= (r
*
|.v.|))
proof
let f be
PartFunc of (
REAL m), (
REAL n), g be
PartFunc of (
REAL-NS m), (
REAL-NS n), X be
Subset of (
REAL m), Y be
Subset of (
REAL-NS m);
assume
A1: X is
open & X
c= (
dom f) & g
= f & X
= Y;
hereby
assume
A2: g
is_differentiable_on Y & (g
`| Y)
is_continuous_on Y;
hence
A3: f
is_differentiable_on X by
A1,
PDIFF_6: 30;
let x0 be
Element of (
REAL m), r be
Real;
assume
A4: x0
in X &
0
< r;
reconsider xx0 = x0 as
Point of (
REAL-NS m) by
REAL_NS1:def 4;
consider s be
Real such that
A5:
0
< s & for xx1 be
Point of (
REAL-NS m) st xx1
in Y &
||.(xx1
- xx0).||
< s holds
||.(((g
`| Y)
/. xx1)
- ((g
`| Y)
/. xx0)).||
< r by
A1,
A2,
A4,
NFCONT_1: 19;
take s;
thus
0
< s by
A5;
let x1 be
Element of (
REAL m);
assume
A6: x1
in X &
|.(x1
- x0).|
< s;
reconsider xx1 = x1 as
Point of (
REAL-NS m) by
REAL_NS1:def 4;
||.(xx1
- xx0).||
< s by
A6,
REAL_NS1: 1,
REAL_NS1: 5;
then
A7:
||.(((g
`| Y)
/. xx1)
- ((g
`| Y)
/. xx0)).||
< r by
A5,
A6,
A1;
let v be
Element of (
REAL m);
reconsider vv = v as
Point of (
REAL-NS m) by
REAL_NS1:def 4;
f
is_differentiable_in x0 by
A4,
A1,
A3,
PDIFF_6: 32;
then ex g be
PartFunc of (
REAL-NS m), (
REAL-NS n), y be
Point of (
REAL-NS m) st f
= g & x0
= y & (
diff (f,x0))
= (
diff (g,y)) by
PDIFF_1:def 8;
then
A8: (((g
`| Y)
/. xx0)
. vv)
= ((
diff (f,x0))
. v) by
A1,
A4,
A2,
NDIFF_1:def 9;
f
is_differentiable_in x1 by
A6,
A1,
A3,
PDIFF_6: 32;
then ex g be
PartFunc of (
REAL-NS m), (
REAL-NS n), y be
Point of (
REAL-NS m) st f
= g & x1
= y & (
diff (f,x1))
= (
diff (g,y)) by
PDIFF_1:def 8;
then
A9: (((g
`| Y)
/. xx1)
. vv)
= ((
diff (f,x1))
. v) by
A1,
A6,
A2,
NDIFF_1:def 9;
reconsider g10 = (((g
`| Y)
/. xx1)
- ((g
`| Y)
/. xx0)) as
Lipschitzian
LinearOperator of (
REAL-NS m), (
REAL-NS n) by
LOPBAN_1:def 9;
((((g
`| Y)
/. xx1)
. vv)
- (((g
`| Y)
/. xx0)
. vv))
= (g10
. vv) by
LOPBAN_1: 40;
then
A10:
||.((((g
`| Y)
/. xx1)
. vv)
- (((g
`| Y)
/. xx0)
. vv)).||
<= (
||.(((g
`| Y)
/. xx1)
- ((g
`| Y)
/. xx0)).||
*
||.vv.||) by
LOPBAN_1: 32;
(
||.(((g
`| Y)
/. xx1)
- ((g
`| Y)
/. xx0)).||
*
||.vv.||)
<= (r
*
||.vv.||) by
A7,
XREAL_1: 64;
then
||.((((g
`| Y)
/. xx1)
. vv)
- (((g
`| Y)
/. xx0)
. vv)).||
<= (r
*
||.vv.||) by
A10,
XXREAL_0: 2;
then
|.(((
diff (f,x1))
. v)
- ((
diff (f,x0))
. v)).|
<= (r
*
||.vv.||) by
A9,
A8,
REAL_NS1: 1,
REAL_NS1: 5;
hence
|.(((
diff (f,x1))
. v)
- ((
diff (f,x0))
. v)).|
<= (r
*
|.v.|) by
REAL_NS1: 1;
end;
assume
A11: f
is_differentiable_on X & for x0 be
Element of (
REAL m), r be
Real st x0
in X &
0
< r holds ex s be
Real st
0
< s & for x1 be
Element of (
REAL m) st x1
in X &
|.(x1
- x0).|
< s holds for v be
Element of (
REAL m) holds
|.(((
diff (f,x1))
. v)
- ((
diff (f,x0))
. v)).|
<= (r
*
|.v.|);
hence
A12: g
is_differentiable_on Y by
A1,
PDIFF_6: 30;
then
A13: (
dom (g
`| Y))
= Y by
NDIFF_1:def 9;
for x0 be
Point of (
REAL-NS m), r be
Real st x0
in Y &
0
< r holds ex s be
Real st
0
< s & for x1 be
Point of (
REAL-NS m) st x1
in Y &
||.(x1
- x0).||
< s holds
||.(((g
`| Y)
/. x1)
- ((g
`| Y)
/. x0)).||
< r
proof
let xx0 be
Point of (
REAL-NS m), r0 be
Real;
assume
A14: xx0
in Y &
0
< r0;
set r = (r0
/ 2);
A15:
0
< r & r
< r0 by
A14,
XREAL_1: 216;
reconsider x0 = xx0 as
Element of (
REAL m) by
REAL_NS1:def 4;
consider s be
Real such that
A16:
0
< s & for x1 be
Element of (
REAL m) st x1
in X &
|.(x1
- x0).|
< s holds for v be
Element of (
REAL m) holds
|.(((
diff (f,x1))
. v)
- ((
diff (f,x0))
. v)).|
<= (r
*
|.v.|) by
A11,
A1,
A14;
take s;
thus
0
< s by
A16;
let xx1 be
Point of (
REAL-NS m);
assume
A17: xx1
in Y &
||.(xx1
- xx0).||
< s;
reconsider x1 = xx1 as
Element of (
REAL m) by
REAL_NS1:def 4;
A18:
|.(x1
- x0).|
< s by
A17,
REAL_NS1: 1,
REAL_NS1: 5;
now
let vv be
Point of (
REAL-NS m);
assume
||.vv.||
<= 1;
reconsider v = vv as
Element of (
REAL m) by
REAL_NS1:def 4;
f
is_differentiable_in x0 by
A14,
A1,
A11,
PDIFF_6: 32;
then ex g be
PartFunc of (
REAL-NS m), (
REAL-NS n), y be
Point of (
REAL-NS m) st f
= g & x0
= y & (
diff (f,x0))
= (
diff (g,y)) by
PDIFF_1:def 8;
then
A19: (((g
`| Y)
/. xx0)
. vv)
= ((
diff (f,x0))
. v) by
A1,
A12,
A14,
NDIFF_1:def 9;
f
is_differentiable_in x1 by
A17,
A1,
A11,
PDIFF_6: 32;
then ex g be
PartFunc of (
REAL-NS m), (
REAL-NS n), y be
Point of (
REAL-NS m) st f
= g & x1
= y & (
diff (f,x1))
= (
diff (g,y)) by
PDIFF_1:def 8;
then
A20: (((g
`| Y)
/. xx1)
. vv)
= ((
diff (f,x1))
. v) by
A1,
A12,
A17,
NDIFF_1:def 9;
|.(((
diff (f,x1))
. v)
- ((
diff (f,x0))
. v)).|
<= (r
*
|.v.|) by
A18,
A16,
A17,
A1;
then
|.(((
diff (f,x1))
. v)
- ((
diff (f,x0))
. v)).|
<= (r
*
||.vv.||) by
REAL_NS1: 1;
then
||.((((g
`| Y)
/. xx1)
. vv)
- (((g
`| Y)
/. xx0)
. vv)).||
<= (r
*
||.vv.||) by
A20,
A19,
REAL_NS1: 1,
REAL_NS1: 5;
hence
||.((((g
`| Y)
/. xx1)
- ((g
`| Y)
/. xx0))
. vv).||
<= (r
*
||.vv.||) by
LOPBAN_1: 40;
end;
then
||.(((g
`| Y)
/. xx1)
- ((g
`| Y)
/. xx0)).||
<= r by
A14,
Th1;
hence
||.(((g
`| Y)
/. xx1)
- ((g
`| Y)
/. xx0)).||
< r0 by
A15,
XXREAL_0: 2;
end;
hence (g
`| Y)
is_continuous_on Y by
A13,
NFCONT_1: 19;
end;
theorem ::
PDIFF_9:26
Th26: for X be
Subset of (
REAL m), f be
PartFunc of (
REAL m), (
REAL n) st X is
open & X
c= (
dom f) holds (for i be
Nat st 1
<= i & i
<= m holds f
is_partial_differentiable_on (X,i) & (f
`partial| (X,i))
is_continuous_on X) iff (f
is_differentiable_on X & for x0 be
Element of (
REAL m), r be
Real st x0
in X &
0
< r holds ex s be
Real st
0
< s & for x1 be
Element of (
REAL m) st x1
in X &
|.(x1
- x0).|
< s holds for v be
Element of (
REAL m) holds
|.(((
diff (f,x1))
. v)
- ((
diff (f,x0))
. v)).|
<= (r
*
|.v.|))
proof
let X be
Subset of (
REAL m), f be
PartFunc of (
REAL m), (
REAL n);
assume
A1: X is
open & X
c= (
dom f);
reconsider Y = X as
Subset of (
REAL-NS m) by
REAL_NS1:def 4;
the
carrier of (
REAL-NS m)
= (
REAL m) & the
carrier of (
REAL-NS n)
= (
REAL n) by
REAL_NS1:def 4;
then
reconsider g = f as
PartFunc of (
REAL-NS m), (
REAL-NS n);
hereby
assume for i be
Nat st 1
<= i & i
<= m holds f
is_partial_differentiable_on (X,i) & (f
`partial| (X,i))
is_continuous_on X;
then g
is_differentiable_on Y & (g
`| Y)
is_continuous_on Y by
A1,
Th24;
hence f
is_differentiable_on X & for x0 be
Element of (
REAL m), r be
Real st x0
in X &
0
< r holds ex s be
Real st
0
< s & for x1 be
Element of (
REAL m) st x1
in X &
|.(x1
- x0).|
< s holds for v be
Element of (
REAL m) holds
|.(((
diff (f,x1))
. v)
- ((
diff (f,x0))
. v)).|
<= (r
*
|.v.|) by
A1,
Th25;
end;
assume (f
is_differentiable_on X & for x0 be
Element of (
REAL m), r be
Real st x0
in X &
0
< r holds ex s be
Real st
0
< s & for x1 be
Element of (
REAL m) st x1
in X &
|.(x1
- x0).|
< s holds for v be
Element of (
REAL m) holds
|.(((
diff (f,x1))
. v)
- ((
diff (f,x0))
. v)).|
<= (r
*
|.v.|));
then g
is_differentiable_on Y & (g
`| Y)
is_continuous_on Y by
A1,
Th25;
hence thesis by
A1,
Th24;
end;
theorem ::
PDIFF_9:27
for f be
PartFunc of (
REAL m), (
REAL n), g be
PartFunc of (
REAL-NS m), (
REAL-NS n) st f
= g & f
is_differentiable_on Z holds (f
`| Z)
= (g
`| Z)
proof
let f be
PartFunc of (
REAL m), (
REAL n), g be
PartFunc of (
REAL-NS m), (
REAL-NS n);
assume
A1: f
= g & f
is_differentiable_on Z;
then
A2: g
is_differentiable_on Z by
PDIFF_6: 30;
then
A3: (
dom (g
`| Z))
= Z by
NDIFF_1:def 9;
A4: Z
c= (
dom f) by
A1,
PDIFF_6:def 4;
then
A5: (
dom (f
`| Z))
= Z by
Def1;
now
let x0 be
object;
assume
A6: x0
in (
dom (f
`| Z));
then
reconsider x = x0 as
Element of (
REAL m);
reconsider Z1 = Z as
Subset of (
REAL-NS m) by
A2,
NDIFF_1: 30;
reconsider z = x as
Point of (
REAL-NS m) by
REAL_NS1:def 4;
Z1 is
open by
A2,
NDIFF_1: 32;
then f
is_differentiable_in x by
A1,
A5,
A6,
PDIFF_6: 32;
then
A7: ex g0 be
PartFunc of (
REAL-NS m), (
REAL-NS n), y0 be
Point of (
REAL-NS m) st f
= g0 & x
= y0 & (
diff (f,x))
= (
diff (g0,y0)) by
PDIFF_1:def 8;
thus ((f
`| Z)
. x0)
= ((f
`| Z)
/. x) by
A6,
PARTFUN1:def 6
.= (
diff (g,z)) by
A4,
A5,
A6,
A7,
A1,
Def1
.= ((g
`| Z)
/. x) by
A6,
A5,
A2,
NDIFF_1:def 9
.= ((g
`| Z)
. x0) by
A6,
A5,
A3,
PARTFUN1:def 6;
end;
hence thesis by
A5,
A3,
FUNCT_1: 2;
end;
theorem ::
PDIFF_9:28
for f be
PartFunc of (
REAL m), (
REAL n), g be
PartFunc of (
REAL-NS m), (
REAL-NS n), X be
Subset of (
REAL m), Y be
Subset of (
REAL-NS m) st X
= Y & X is
open & f
= g holds (for i be
Nat st 1
<= i & i
<= m holds f
is_partial_differentiable_on (X,i) & (f
`partial| (X,i))
is_continuous_on X) iff f
is_differentiable_on X & (g
`| Y)
is_continuous_on Y
proof
let f be
PartFunc of (
REAL m), (
REAL n), g be
PartFunc of (
REAL-NS m), (
REAL-NS n), X be
Subset of (
REAL m), Y be
Subset of (
REAL-NS m);
assume
A1: X
= Y & X is
open & f
= g;
hereby
assume
A3: for i be
Nat st 1
<= i & i
<= m holds f
is_partial_differentiable_on (X,i) & (f
`partial| (X,i))
is_continuous_on X;
now
let i be
Nat;
assume
A4: 1
<= i & i
<= m;
then f
is_partial_differentiable_on (X,i) & (f
`partial| (X,i))
is_continuous_on X by
A3;
hence g
is_partial_differentiable_on (Y,i) & (g
`partial| (Y,i))
is_continuous_on Y by
A1,
A4,
Th23;
end;
then g
is_differentiable_on Y & (g
`| Y)
is_continuous_on Y by
A1,
PDIFF_8: 22;
hence f
is_differentiable_on X & (g
`| Y)
is_continuous_on Y by
A1,
PDIFF_6: 30;
end;
assume f
is_differentiable_on X & (g
`| Y)
is_continuous_on Y;
then
A5: g
is_differentiable_on Y & (g
`| Y)
is_continuous_on Y by
A1,
PDIFF_6: 30;
let i be
Nat;
assume
A6: 1
<= i & i
<= m;
then g
is_partial_differentiable_on (Y,i) & (g
`partial| (Y,i))
is_continuous_on Y by
A1,
A5,
PDIFF_8: 22;
hence thesis by
A1,
A6,
Th23;
end;
theorem ::
PDIFF_9:29
Th29: for f,g be
PartFunc of (
REAL m), (
REAL n), x be
Element of (
REAL m) st f
is_continuous_in x & g
is_continuous_in x holds (f
+ g)
is_continuous_in x & (f
- g)
is_continuous_in x
proof
let f,g be
PartFunc of (
REAL m), (
REAL n), x be
Element of (
REAL m);
assume
A1: f
is_continuous_in x & g
is_continuous_in x;
reconsider y = x as
Point of (
REAL-NS m) by
REAL_NS1:def 4;
A2: the
carrier of (
REAL-NS m)
= (
REAL m) & the
carrier of (
REAL-NS n)
= (
REAL n) by
REAL_NS1:def 4;
then
reconsider f1 = f, g1 = g as
PartFunc of (
REAL-NS m), (
REAL-NS n);
A3: (f1
+ g1)
is_continuous_in y & (f1
- g1)
is_continuous_in y by
NFCONT_1: 15,
A1;
(f
+ g)
= (f1
+ g1) & (f
- g)
= (f1
- g1) by
A2,
NFCONT_4: 5,
NFCONT_4: 10;
hence thesis by
A3;
end;
theorem ::
PDIFF_9:30
Th30: for f be
PartFunc of (
REAL m), (
REAL n), x be
Element of (
REAL m), r be
Real st f
is_continuous_in x holds (r
(#) f)
is_continuous_in x
proof
let f be
PartFunc of (
REAL m), (
REAL n), x be
Element of (
REAL m), r be
Real;
assume
A1: f
is_continuous_in x;
reconsider y = x as
Point of (
REAL-NS m) by
REAL_NS1:def 4;
A2: the
carrier of (
REAL-NS m)
= (
REAL m) & the
carrier of (
REAL-NS n)
= (
REAL n) by
REAL_NS1:def 4;
then
reconsider f1 = f as
PartFunc of (
REAL-NS m), (
REAL-NS n);
A3: (r
(#) f1)
is_continuous_in y by
NFCONT_1: 16,
A1;
(r
(#) f)
= (r
(#) f1) by
A2,
NFCONT_4: 6;
hence thesis by
A3;
end;
theorem ::
PDIFF_9:31
for f be
PartFunc of (
REAL m), (
REAL n), x be
Element of (
REAL m) st f
is_continuous_in x holds (
- f)
is_continuous_in x
proof
let f be
PartFunc of (
REAL m), (
REAL n), x be
Element of (
REAL m);
assume f
is_continuous_in x;
then ((
- 1)
(#) f)
is_continuous_in x by
Th30;
hence thesis by
NFCONT_4: 7;
end;
theorem ::
PDIFF_9:32
Th32: for f be
PartFunc of (
REAL m), (
REAL n), x be
Element of (
REAL m) st f
is_continuous_in x holds
|.f.|
is_continuous_in x
proof
let f be
PartFunc of (
REAL m), (
REAL n), x be
Element of (
REAL m);
assume
A1: f
is_continuous_in x;
reconsider y = x as
Point of (
REAL-NS m) by
REAL_NS1:def 4;
A2: the
carrier of (
REAL-NS m)
= (
REAL m) & the
carrier of (
REAL-NS n)
= (
REAL n) by
REAL_NS1:def 4;
then
reconsider f1 = f as
PartFunc of (
REAL-NS m), (
REAL-NS n);
A3:
||.f1.||
is_continuous_in y by
NFCONT_1: 17,
A1;
|.f.|
=
||.f1.|| by
A2,
NFCONT_4: 9;
hence thesis by
A3,
NFCONT_4: 21;
end;
theorem ::
PDIFF_9:33
Th33: for Z be
set, f,g be
PartFunc of (
REAL m), (
REAL n) st f
is_continuous_on Z & g
is_continuous_on Z holds (f
+ g)
is_continuous_on Z & (f
- g)
is_continuous_on Z
proof
let Z be
set, f,g be
PartFunc of (
REAL m), (
REAL n);
assume
A1: f
is_continuous_on Z & g
is_continuous_on Z;
A2: the
carrier of (
REAL-NS m)
= (
REAL m) & the
carrier of (
REAL-NS n)
= (
REAL n) by
REAL_NS1:def 4;
then
reconsider f1 = f, g1 = g as
PartFunc of (
REAL-NS m), (
REAL-NS n);
f1
is_continuous_on Z & g1
is_continuous_on Z by
A1,
PDIFF_7: 37;
then
A3: (f1
+ g1)
is_continuous_on Z & (f1
- g1)
is_continuous_on Z by
NFCONT_1: 25;
(f
+ g)
= (f1
+ g1) & (f
- g)
= (f1
- g1) by
A2,
NFCONT_4: 5,
NFCONT_4: 10;
hence thesis by
A3,
PDIFF_7: 37;
end;
theorem ::
PDIFF_9:34
Th34: for r be
Real, f,g be
PartFunc of (
REAL m), (
REAL n) st f
is_continuous_on Z holds (r
(#) f)
is_continuous_on Z
proof
let r be
Real, f,g be
PartFunc of (
REAL m), (
REAL n);
assume
A1: f
is_continuous_on Z;
A2: the
carrier of (
REAL-NS m)
= (
REAL m) & the
carrier of (
REAL-NS n)
= (
REAL n) by
REAL_NS1:def 4;
then
reconsider f1 = f as
PartFunc of (
REAL-NS m), (
REAL-NS n);
f1
is_continuous_on Z by
A1,
PDIFF_7: 37;
then
A3: (r
(#) f1)
is_continuous_on Z by
NFCONT_1: 27;
(r
(#) f1)
= (r
(#) f) by
A2,
NFCONT_4: 6;
hence (r
(#) f)
is_continuous_on Z by
A3,
PDIFF_7: 37;
end;
theorem ::
PDIFF_9:35
for f,g be
PartFunc of (
REAL m), (
REAL n) st f
is_continuous_on Z holds (
- f)
is_continuous_on Z
proof
let f,g be
PartFunc of (
REAL m), (
REAL n);
assume
A1: f
is_continuous_on Z;
((
- 1)
(#) f)
is_continuous_on Z by
A1,
Th34;
hence thesis by
NFCONT_4: 7;
end;
theorem ::
PDIFF_9:36
Th36: for f be
PartFunc of (
REAL i),
REAL , x0 be
Element of (
REAL i) holds f
is_continuous_in x0 iff (x0
in (
dom f) & for r be
Real st
0
< r holds ex s be
Real st
0
< s & for x be
Element of (
REAL i) st x
in (
dom f) &
|.(x
- x0).|
< s holds
|.((f
/. x)
- (f
/. x0)).|
< r)
proof
let f be
PartFunc of (
REAL i),
REAL , x0 be
Element of (
REAL i);
hereby
assume f
is_continuous_in x0;
then
consider y0 be
Point of (
REAL-NS i), g be
PartFunc of (
REAL-NS i),
REAL such that
A1: x0
= y0 & f
= g & g
is_continuous_in y0 by
NFCONT_4:def 4;
thus x0
in (
dom f) by
A1,
NFCONT_1: 8;
let r be
Real;
assume
0
< r;
then
consider s be
Real such that
A2:
0
< s & for y1 be
Point of (
REAL-NS i) st y1
in (
dom g) &
||.(y1
- y0).||
< s holds
|.((g
/. y1)
- (g
/. y0)).|
< r by
A1,
NFCONT_1: 8;
take s;
thus
0
< s by
A2;
let a be
Element of (
REAL i);
assume
A3: a
in (
dom f) &
|.(a
- x0).|
< s;
reconsider y1 = a as
Point of (
REAL-NS i) by
REAL_NS1:def 4;
||.(y1
- y0).||
=
|.(a
- x0).| by
A1,
REAL_NS1: 1,
REAL_NS1: 5;
hence
|.((f
/. a)
- (f
/. x0)).|
< r by
A1,
A2,
A3;
end;
assume
A4: x0
in (
dom f) & for r be
Real st
0
< r holds ex s be
Real st
0
< s & for a be
Element of (
REAL i) st a
in (
dom f) &
|.(a
- x0).|
< s holds
|.((f
/. a)
- (f
/. x0)).|
< r;
reconsider y0 = x0 as
Point of (
REAL-NS i) by
REAL_NS1:def 4;
reconsider g = f as
PartFunc of (
REAL-NS i),
REAL by
REAL_NS1:def 4;
now
let r be
Real;
assume
0
< r;
then
consider s be
Real such that
A5:
0
< s & for a be
Element of (
REAL i) st a
in (
dom f) &
|.(a
- x0).|
< s holds
|.((f
/. a)
- (f
/. x0)).|
< r by
A4;
take s;
thus
0
< s by
A5;
hereby
let y1 be
Point of (
REAL-NS i);
assume
A6: y1
in (
dom g) &
||.(y1
- y0).||
< s;
reconsider a = y1 as
Element of (
REAL i) by
REAL_NS1:def 4;
||.(y1
- y0).||
=
|.(a
- x0).| by
REAL_NS1: 1,
REAL_NS1: 5;
hence
|.((g
/. y1)
- (g
/. y0)).|
< r by
A5,
A6;
end;
end;
hence f
is_continuous_in x0 by
NFCONT_4:def 4,
A4,
NFCONT_1: 8;
end;
theorem ::
PDIFF_9:37
Th37: for f be
PartFunc of (
REAL m),
REAL , x0 be
Element of (
REAL m) holds f
is_continuous_in x0 iff (
<>* f)
is_continuous_in x0
proof
let f be
PartFunc of (
REAL m),
REAL , x0 be
Element of (
REAL m);
set g = (
<>* f);
hereby
assume
A1: f
is_continuous_in x0;
then
A2: x0
in (
dom f) by
Th36;
then
A3: x0
in (
dom g) by
Th3;
now
let r be
Real;
assume
0
< r;
then
consider s be
Real such that
A4:
0
< s & for x1 be
Element of (
REAL m) st x1
in (
dom f) &
|.(x1
- x0).|
< s holds
|.((f
/. x1)
- (f
/. x0)).|
< r by
A1,
Th36;
take s;
thus
0
< s by
A4;
hereby
let x1 be
Element of (
REAL m);
assume
A5: x1
in (
dom g) &
|.(x1
- x0).|
< s;
then
A6: x1
in (
dom f) by
Th3;
then
A7:
|.((f
/. x1)
- (f
/. x0)).|
< r by
A4,
A5;
(g
/. x1)
=
<*(f
/. x1)*> & (g
/. x0)
=
<*(f
/. x0)*> by
A2,
A6,
Th6;
then ((g
/. x1)
- (g
/. x0))
=
<*((f
/. x1)
- (f
/. x0))*> by
RVSUM_1: 29;
hence
|.((g
/. x1)
- (g
/. x0)).|
< r by
A7,
Lm1;
end;
end;
hence g
is_continuous_in x0 by
A3,
PDIFF_7: 36;
end;
assume
A8: g
is_continuous_in x0;
then x0
in (
dom g) by
PDIFF_7: 36;
then
A9: x0
in (
dom f) by
Th3;
now
let r be
Real;
assume
0
< r;
then
consider s be
Real such that
A10:
0
< s & for x1 be
Element of (
REAL m) st x1
in (
dom g) &
|.(x1
- x0).|
< s holds
|.((g
/. x1)
- (g
/. x0)).|
< r by
A8,
PDIFF_7: 36;
take s;
thus
0
< s by
A10;
hereby
let x1 be
Element of (
REAL m);
assume
A11: x1
in (
dom f) &
|.(x1
- x0).|
< s;
then x1
in (
dom g) by
Th3;
then
A12:
|.((g
/. x1)
- (g
/. x0)).|
< r by
A10,
A11;
(g
/. x1)
=
<*(f
/. x1)*> & (g
/. x0)
=
<*(f
/. x0)*> by
A9,
A11,
Th6;
then ((g
/. x1)
- (g
/. x0))
=
<*((f
/. x1)
- (f
/. x0))*> by
RVSUM_1: 29;
hence
|.((f
/. x1)
- (f
/. x0)).|
< r by
A12,
Lm1;
end;
end;
hence thesis by
A9,
Th36;
end;
theorem ::
PDIFF_9:38
for f,g be
PartFunc of (
REAL m),
REAL , x0 be
Element of (
REAL m) st f
is_continuous_in x0 & g
is_continuous_in x0 holds (f
+ g)
is_continuous_in x0 & (f
- g)
is_continuous_in x0
proof
let f,g be
PartFunc of (
REAL m),
REAL , x0 be
Element of (
REAL m);
assume f
is_continuous_in x0 & g
is_continuous_in x0;
then (
<>* f)
is_continuous_in x0 & (
<>* g)
is_continuous_in x0 by
Th37;
then
A1: ((
<>* f)
+ (
<>* g))
is_continuous_in x0 & ((
<>* f)
- (
<>* g))
is_continuous_in x0 by
Th29;
((
<>* f)
+ (
<>* g))
= (
<>* (f
+ g)) & ((
<>* f)
- (
<>* g))
= (
<>* (f
- g)) by
Th7;
hence thesis by
A1,
Th37;
end;
theorem ::
PDIFF_9:39
for f be
PartFunc of (
REAL m),
REAL , x0 be
Element of (
REAL m), r be
Real st f
is_continuous_in x0 holds (r
(#) f)
is_continuous_in x0
proof
let f be
PartFunc of (
REAL m),
REAL , x0 be
Element of (
REAL m), r be
Real;
assume f
is_continuous_in x0;
then
A1: (r
(#) (
<>* f))
is_continuous_in x0 by
Th30,
Th37;
(r
(#) (
<>* f))
= (
<>* (r
(#) f)) by
Th8;
hence thesis by
A1,
Th37;
end;
theorem ::
PDIFF_9:40
for f be
PartFunc of (
REAL m),
REAL , x0 be
Element of (
REAL m) st f
is_continuous_in x0 holds
|.f.|
is_continuous_in x0
proof
let f be
PartFunc of (
REAL m),
REAL , x0 be
Element of (
REAL m);
assume f
is_continuous_in x0;
then (
<>* f)
is_continuous_in x0 by
Th37;
then
|.(
<>* f).|
is_continuous_in x0 by
Th32;
hence thesis by
Th9;
end;
Lm3: for f be
PartFunc of (
REAL i),
REAL , g be
PartFunc of (
REAL-NS i),
REAL , x be
Element of (
REAL i), y be
Point of (
REAL-NS i) st f
= g & x
= y holds f
is_continuous_in x iff y
in (
dom g) & (for s be
sequence of (
REAL-NS i) st (
rng s)
c= (
dom g) & s is
convergent & (
lim s)
= y holds (g
/* s) is
convergent & (g
/. y)
= (
lim (g
/* s)))
proof
let f be
PartFunc of (
REAL i),
REAL , g be
PartFunc of (
REAL-NS i),
REAL , x be
Element of (
REAL i), y be
Point of (
REAL-NS i);
assume
A1: f
= g & x
= y;
hereby
assume f
is_continuous_in x;
then g
is_continuous_in y by
A1,
NFCONT_4: 21;
hence y
in (
dom g) & for s1 be
sequence of (
REAL-NS i) st (
rng s1)
c= (
dom g) & s1 is
convergent & (
lim s1)
= y holds (g
/* s1) is
convergent & (g
/. y)
= (
lim (g
/* s1)) by
NFCONT_1:def 6;
end;
hereby
assume y
in (
dom g) & (for s be
sequence of (
REAL-NS i) st (
rng s)
c= (
dom g) & s is
convergent & (
lim s)
= y holds (g
/* s) is
convergent & (g
/. y)
= (
lim (g
/* s)));
then g
is_continuous_in y by
NFCONT_1:def 6;
hence f
is_continuous_in x by
A1,
NFCONT_4: 21;
end;
end;
theorem ::
PDIFF_9:41
for f,g be
PartFunc of (
REAL i),
REAL , x be
Element of (
REAL i) st f
is_continuous_in x & g
is_continuous_in x holds (f
(#) g)
is_continuous_in x
proof
let g1,g2 be
PartFunc of (
REAL i),
REAL , x be
Element of (
REAL i);
assume
A1: g1
is_continuous_in x & g2
is_continuous_in x;
reconsider y = x as
Point of (
REAL-NS i) by
REAL_NS1:def 4;
reconsider f1 = g1, f2 = g2 as
PartFunc of (
REAL-NS i),
REAL by
REAL_NS1:def 4;
A2: (
dom (f1
(#) f2))
= ((
dom f1)
/\ (
dom f2)) by
VALUED_1:def 4;
f1
is_continuous_in y & f2
is_continuous_in y by
A1,
NFCONT_4: 21;
then
A3: y
in (
dom f1) & y
in (
dom f2) by
NFCONT_1:def 6;
then
A4: y
in (
dom (f1
(#) f2)) by
A2,
XBOOLE_0:def 4;
now
let s1 be
sequence of (
REAL-NS i);
assume that
A5: (
rng s1)
c= (
dom (f1
(#) f2)) and
A6: s1 is
convergent & (
lim s1)
= y;
(
dom (f1
(#) f2))
c= (
dom f1) & (
dom (f1
(#) f2))
c= (
dom f2) by
A2,
XBOOLE_1: 17;
then
A7: (
rng s1)
c= (
dom f1) & (
rng s1)
c= (
dom f2) by
A5;
then
A8: (f1
/* s1) is
convergent & (f2
/* s1) is
convergent by
A1,
A6,
Lm3;
then ((f1
/* s1)
(#) (f2
/* s1)) is
convergent;
hence ((f1
(#) f2)
/* s1) is
convergent by
A2,
A5,
RFUNCT_2: 8;
(f1
. y)
= (f1
/. y) & (f2
. y)
= (f2
/. y) by
A3,
PARTFUN1:def 6;
then
A9: (f1
. y)
= (
lim (f1
/* s1)) & (f2
. y)
= (
lim (f2
/* s1)) by
A1,
A6,
A7,
Lm3;
thus ((f1
(#) f2)
/. y)
= ((f1
(#) f2)
. y) by
A4,
PARTFUN1:def 6
.= ((f1
. y)
* (f2
. y)) by
VALUED_1: 5
.= (
lim ((f1
/* s1)
(#) (f2
/* s1))) by
A9,
A8,
SEQ_2: 15
.= (
lim ((f1
(#) f2)
/* s1)) by
A2,
A5,
RFUNCT_2: 8;
end;
hence thesis by
Lm3,
A4;
end;
definition
let m be non
zero
Element of
NAT ;
let Z be
set;
let f be
PartFunc of (
REAL m),
REAL ;
::
PDIFF_9:def2
pred f
is_continuous_on Z means for x0 be
Element of (
REAL m) st x0
in Z holds (f
| Z)
is_continuous_in x0;
end
theorem ::
PDIFF_9:42
Th42: for f be
PartFunc of (
REAL m),
REAL , g be
PartFunc of (
REAL-NS m),
REAL st f
= g holds Z
c= (
dom f) & f
is_continuous_on Z iff g
is_continuous_on Z
proof
let f be
PartFunc of (
REAL m),
REAL , g be
PartFunc of (
REAL-NS m),
REAL ;
assume
A1: f
= g;
hereby
assume
A2: Z
c= (
dom f);
assume
A3: f
is_continuous_on Z;
now
let x0 be
Point of (
REAL-NS m);
assume
A4: x0
in Z;
reconsider y0 = x0 as
Element of (
REAL m) by
REAL_NS1:def 4;
(f
| Z)
is_continuous_in y0 by
A4,
A3;
hence (g
| Z)
is_continuous_in x0 by
A1,
NFCONT_4: 21;
end;
hence g
is_continuous_on Z by
A1,
A2,
NFCONT_1:def 8;
end;
assume
A5: g
is_continuous_on Z;
hence Z
c= (
dom f) by
A1,
NFCONT_1:def 8;
let x0 be
Element of (
REAL m);
assume
A6: x0
in Z;
reconsider y0 = x0 as
Point of (
REAL-NS m) by
REAL_NS1:def 4;
(g
| Z)
is_continuous_in y0 by
A6,
A5,
NFCONT_1:def 8;
hence (f
| Z)
is_continuous_in x0 by
A1,
NFCONT_4: 21;
end;
theorem ::
PDIFF_9:43
Th43: for f be
PartFunc of (
REAL m),
REAL , g be
PartFunc of (
REAL-NS m),
REAL st f
= g & Z
c= (
dom f) holds f
is_continuous_on Z iff for s be
sequence of (
REAL-NS m) st (
rng s)
c= Z & s is
convergent & (
lim s)
in Z holds (g
/* s) is
convergent & (g
/. (
lim s))
= (
lim (g
/* s))
proof
let f be
PartFunc of (
REAL m),
REAL , g be
PartFunc of (
REAL-NS m),
REAL ;
assume
A1: f
= g;
assume
A2: Z
c= (
dom f);
hereby
assume f
is_continuous_on Z;
then g
is_continuous_on Z by
A2,
Th42,
A1;
hence for s1 be
sequence of (
REAL-NS m) st (
rng s1)
c= Z & s1 is
convergent & (
lim s1)
in Z holds (g
/* s1) is
convergent & (g
/. (
lim s1))
= (
lim (g
/* s1)) by
Th2;
end;
assume for s be
sequence of (
REAL-NS m) st (
rng s)
c= Z & s is
convergent & (
lim s)
in Z holds (g
/* s) is
convergent & (g
/. (
lim s))
= (
lim (g
/* s));
then g
is_continuous_on Z by
A1,
A2,
Th2;
hence f
is_continuous_on Z by
Th42,
A1;
end;
theorem ::
PDIFF_9:44
Th44: for f be
PartFunc of (
REAL m),
REAL , g be
PartFunc of (
REAL m), (
REAL 1) st (
<>* f)
= g holds Z
c= (
dom f) & f
is_continuous_on Z iff g
is_continuous_on Z
proof
let f be
PartFunc of (
REAL m),
REAL , g be
PartFunc of (
REAL m), (
REAL 1);
assume
A1: (
<>* f)
= g;
then
A2: (
<>* (f
| Z))
= (g
| Z) by
Th5;
hence Z
c= (
dom f) & f
is_continuous_on Z implies g
is_continuous_on Z by
A1,
Th3,
Th37;
assume
A3: g
is_continuous_on Z;
hence Z
c= (
dom f) by
Th3,
A1;
let x0 be
Element of (
REAL m);
assume x0
in Z;
hence (f
| Z)
is_continuous_in x0 by
A3,
A2,
Th37;
end;
theorem ::
PDIFF_9:45
Th45: for f be
PartFunc of (
REAL m),
REAL st Z
c= (
dom f) holds f
is_continuous_on Z iff for x0 be
Element of (
REAL m), r be
Real st x0
in Z &
0
< r holds ex s be
Real st
0
< s & for x1 be
Element of (
REAL m) st x1
in Z &
|.(x1
- x0).|
< s holds
|.((f
/. x1)
- (f
/. x0)).|
< r
proof
let f be
PartFunc of (
REAL m),
REAL ;
set g = (
<>* f);
assume
A1: Z
c= (
dom f);
hereby
assume f
is_continuous_on Z;
then
A2: g
is_continuous_on Z by
A1,
Th44;
thus for x0 be
Element of (
REAL m), r be
Real st x0
in Z &
0
< r holds ex s be
Real st
0
< s & for x1 be
Element of (
REAL m) st x1
in Z &
|.(x1
- x0).|
< s holds
|.((f
/. x1)
- (f
/. x0)).|
< r
proof
let x0 be
Element of (
REAL m), r be
Real;
assume
A3: x0
in Z &
0
< r;
then
consider s be
Real such that
A4:
0
< s & for x1 be
Element of (
REAL m) st x1
in Z &
|.(x1
- x0).|
< s holds
|.((g
/. x1)
- (g
/. x0)).|
< r by
A2,
PDIFF_7: 38;
take s;
thus
0
< s by
A4;
hereby
let x1 be
Element of (
REAL m);
assume
A5: x1
in Z &
|.(x1
- x0).|
< s;
then
A6:
|.((g
/. x1)
- (g
/. x0)).|
< r by
A4;
(g
/. x1)
=
<*(f
/. x1)*> & (g
/. x0)
=
<*(f
/. x0)*> by
A5,
A1,
A3,
Th6;
then ((g
/. x1)
- (g
/. x0))
=
<*((f
/. x1)
- (f
/. x0))*> by
RVSUM_1: 29;
hence
|.((f
/. x1)
- (f
/. x0)).|
< r by
A6,
Lm1;
end;
end;
end;
assume
A7: for x0 be
Element of (
REAL m), r be
Real st x0
in Z &
0
< r holds ex s be
Real st
0
< s & for x1 be
Element of (
REAL m) st x1
in Z &
|.(x1
- x0).|
< s holds
|.((f
/. x1)
- (f
/. x0)).|
< r;
A8: Z
c= (
dom g) by
A1,
Th3;
for y0 be
Element of (
REAL m), r be
Real st y0
in Z &
0
< r holds ex s be
Real st
0
< s & for y1 be
Element of (
REAL m) st y1
in Z &
|.(y1
- y0).|
< s holds
|.((g
/. y1)
- (g
/. y0)).|
< r
proof
let x0 be
Element of (
REAL m), r be
Real;
assume
A9: x0
in Z &
0
< r;
then
consider s be
Real such that
A10:
0
< s & for x1 be
Element of (
REAL m) st x1
in Z &
|.(x1
- x0).|
< s holds
|.((f
/. x1)
- (f
/. x0)).|
< r by
A7;
take s;
thus
0
< s by
A10;
hereby
let x1 be
Element of (
REAL m);
assume
A11: x1
in Z &
|.(x1
- x0).|
< s;
then
A12:
|.((f
/. x1)
- (f
/. x0)).|
< r by
A10;
(g
/. x1)
=
<*(f
/. x1)*> & (g
/. x0)
=
<*(f
/. x0)*> by
A1,
A11,
A9,
Th6;
then ((g
/. x1)
- (g
/. x0))
=
<*((f
/. x1)
- (f
/. x0))*> by
RVSUM_1: 29;
hence
|.((g
/. x1)
- (g
/. x0)).|
< r by
A12,
Lm1;
end;
end;
then g
is_continuous_on Z by
A8,
PDIFF_7: 38;
hence f
is_continuous_on Z by
Th44;
end;
theorem ::
PDIFF_9:46
for f,g be
PartFunc of (
REAL m),
REAL st f
is_continuous_on Z & g
is_continuous_on Z & Z
c= (
dom f) & Z
c= (
dom g) holds (f
+ g)
is_continuous_on Z & (f
- g)
is_continuous_on Z
proof
let f,g be
PartFunc of (
REAL m),
REAL ;
assume f
is_continuous_on Z & g
is_continuous_on Z & Z
c= (
dom f) & Z
c= (
dom g);
then (
<>* f)
is_continuous_on Z & (
<>* g)
is_continuous_on Z by
Th44;
then
A1: ((
<>* f)
+ (
<>* g))
is_continuous_on Z & ((
<>* f)
- (
<>* g))
is_continuous_on Z by
Th33;
((
<>* f)
+ (
<>* g))
= (
<>* (f
+ g)) & ((
<>* f)
- (
<>* g))
= (
<>* (f
- g)) by
Th7;
hence thesis by
A1,
Th44;
end;
theorem ::
PDIFF_9:47
for f be
PartFunc of (
REAL m),
REAL , r be
Real st Z
c= (
dom f) & f
is_continuous_on Z holds (r
(#) f)
is_continuous_on Z
proof
let f be
PartFunc of (
REAL m),
REAL , r be
Real;
assume Z
c= (
dom f) & f
is_continuous_on Z;
then (
<>* f)
is_continuous_on Z by
Th44;
then
A1: (r
(#) (
<>* f))
is_continuous_on Z by
Th34;
(r
(#) (
<>* f))
= (
<>* (r
(#) f)) by
Th8;
hence thesis by
A1,
Th44;
end;
theorem ::
PDIFF_9:48
for f,g be
PartFunc of (
REAL m),
REAL st f
is_continuous_on Z & g
is_continuous_on Z & Z
c= (
dom f) & Z
c= (
dom g) holds (f
(#) g)
is_continuous_on Z
proof
let f,g be
PartFunc of (
REAL m),
REAL ;
assume
A1: f
is_continuous_on Z & g
is_continuous_on Z;
assume
A2: Z
c= (
dom f) & Z
c= (
dom g);
reconsider f1 = f, g1 = g as
PartFunc of (
REAL-NS m),
REAL by
REAL_NS1:def 4;
A3: Z
c= ((
dom f1)
/\ (
dom g1)) by
A2,
XBOOLE_1: 19;
A4: (
dom (f1
(#) g1))
= ((
dom f1)
/\ (
dom g1)) by
VALUED_1:def 4;
now
let s1 be
sequence of (
REAL-NS m);
assume
A5: (
rng s1)
c= Z & s1 is
convergent & (
lim s1)
in Z;
then
A6: (f1
/* s1) is
convergent & (g1
/* s1) is
convergent by
A2,
Th43,
A1;
then
A7: ((f1
/* s1)
(#) (g1
/* s1)) is
convergent;
A8: (
rng s1)
c= ((
dom f1)
/\ (
dom g1)) by
A3,
A5;
hence ((f1
(#) g1)
/* s1) is
convergent by
A7,
RFUNCT_2: 8;
set y = (
lim s1);
(f1
. y)
= (f1
/. y) & (g1
. y)
= (g1
/. y) by
A5,
A2,
PARTFUN1:def 6;
then
A9: (f1
. y)
= (
lim (f1
/* s1)) & (g1
. y)
= (
lim (g1
/* s1)) by
A5,
A2,
Th43,
A1;
thus ((f1
(#) g1)
/. (
lim s1))
= ((f1
(#) g1)
. y) by
A5,
A3,
A4,
PARTFUN1:def 6
.= ((f1
. y)
* (g1
. y)) by
VALUED_1: 5
.= (
lim ((f1
/* s1)
(#) (g1
/* s1))) by
A9,
A6,
SEQ_2: 15
.= (
lim ((f1
(#) g1)
/* s1)) by
A8,
RFUNCT_2: 8;
end;
hence thesis by
A3,
A4,
Th43;
end;
theorem ::
PDIFF_9:49
Th49: for f be
PartFunc of (
REAL m),
REAL , g be
PartFunc of (
REAL-NS m),
REAL st f
= g holds Z
c= (
dom f) & f
is_continuous_on Z iff g
is_continuous_on Z
proof
let f be
PartFunc of (
REAL m),
REAL , g be
PartFunc of (
REAL-NS m),
REAL ;
assume
A1: f
= g;
hereby
assume
A2: Z
c= (
dom f);
assume
A3: f
is_continuous_on Z;
now
let y0 be
Point of (
REAL-NS m), r be
Real;
reconsider x0 = y0 as
Element of (
REAL m) by
REAL_NS1:def 4;
assume y0
in Z &
0
< r;
then
consider s be
Real such that
A4:
0
< s & for x1 be
Element of (
REAL m) st x1
in Z &
|.(x1
- x0).|
< s holds
|.((f
/. x1)
- (f
/. x0)).|
< r by
A2,
A3,
Th45;
take s;
thus
0
< s by
A4;
let y1 be
Point of (
REAL-NS m);
assume
A5: y1
in Z &
||.(y1
- y0).||
< s;
reconsider x1 = y1 as
Element of (
REAL m) by
REAL_NS1:def 4;
||.(y1
- y0).||
=
|.(x1
- x0).| by
REAL_NS1: 1,
REAL_NS1: 5;
hence
|.((g
/. y1)
- (g
/. y0)).|
< r by
A1,
A5,
A4;
end;
hence g
is_continuous_on Z by
A1,
A2,
NFCONT_1: 20;
end;
assume
A6: g
is_continuous_on Z;
then
A7: Z
c= (
dom f) by
A1,
NFCONT_1: 20;
now
let x0 be
Element of (
REAL m), r be
Real;
reconsider y0 = x0 as
Point of (
REAL-NS m) by
REAL_NS1:def 4;
assume x0
in Z &
0
< r;
then
consider s be
Real such that
A8:
0
< s & for y1 be
Point of (
REAL-NS m) st y1
in Z &
||.(y1
- y0).||
< s holds
|.((g
/. y1)
- (g
/. y0)).|
< r by
A6,
NFCONT_1: 20;
take s;
thus
0
< s by
A8;
let x1 be
Element of (
REAL m);
assume
A9: x1
in Z &
|.(x1
- x0).|
< s;
reconsider y1 = x1 as
Point of (
REAL-NS m) by
REAL_NS1:def 4;
||.(y1
- y0).||
=
|.(x1
- x0).| by
REAL_NS1: 1,
REAL_NS1: 5;
hence
|.((f
/. x1)
- (f
/. x0)).|
< r by
A1,
A9,
A8;
end;
hence thesis by
A7,
Th45;
end;
theorem ::
PDIFF_9:50
for f,g be
PartFunc of (
REAL m), (
REAL n) st f
is_continuous_on Z holds
|.f.|
is_continuous_on Z
proof
let f,g be
PartFunc of (
REAL m), (
REAL n);
assume
A1: f
is_continuous_on Z;
A2: the
carrier of (
REAL-NS m)
= (
REAL m) & the
carrier of (
REAL-NS n)
= (
REAL n) by
REAL_NS1:def 4;
then
reconsider f1 = f as
PartFunc of (
REAL-NS m), (
REAL-NS n);
f1
is_continuous_on Z by
A1,
PDIFF_7: 37;
then
A3:
||.f1.||
is_continuous_on Z by
NFCONT_1: 28;
||.f1.||
=
|.f.| by
A2,
NFCONT_4: 9;
hence
|.f.|
is_continuous_on Z by
A3,
Th49;
end;
theorem ::
PDIFF_9:51
Th51: for f,g be
PartFunc of (
REAL m),
REAL , x be
Element of (
REAL m) st f
is_differentiable_in x & g
is_differentiable_in x holds (f
+ g)
is_differentiable_in x & (
diff ((f
+ g),x))
= ((
diff (f,x))
+ (
diff (g,x))) & (f
- g)
is_differentiable_in x & (
diff ((f
- g),x))
= ((
diff (f,x))
- (
diff (g,x)))
proof
let f,g be
PartFunc of (
REAL m),
REAL , x be
Element of (
REAL m);
assume f
is_differentiable_in x & g
is_differentiable_in x;
then
A1: (
<>* f)
is_differentiable_in x & (
<>* g)
is_differentiable_in x;
then
A2: ((
<>* f)
+ (
<>* g))
is_differentiable_in x & ((
<>* f)
- (
<>* g))
is_differentiable_in x by
PDIFF_6: 20,
PDIFF_6: 21;
hence (f
+ g)
is_differentiable_in x by
Th7;
thus (
diff ((f
+ g),x))
= ((
proj (1,1))
* (
diff (((
<>* f)
+ (
<>* g)),x))) by
Th7
.= ((
proj (1,1))
* ((
diff ((
<>* f),x))
+ (
diff ((
<>* g),x)))) by
A1,
PDIFF_6: 20
.= ((
diff (f,x))
+ (
diff (g,x))) by
INTEGR15: 15;
thus (f
- g)
is_differentiable_in x by
A2,
Th7;
thus (
diff ((f
- g),x))
= ((
proj (1,1))
* (
diff (((
<>* f)
- (
<>* g)),x))) by
Th7
.= ((
proj (1,1))
* ((
diff ((
<>* f),x))
- (
diff ((
<>* g),x)))) by
A1,
PDIFF_6: 21
.= ((
diff (f,x))
- (
diff (g,x))) by
INTEGR15: 15;
end;
theorem ::
PDIFF_9:52
Th52: for f be
PartFunc of (
REAL m),
REAL , r be
Real, x be
Element of (
REAL m) st f
is_differentiable_in x holds (r
(#) f)
is_differentiable_in x & (
diff ((r
(#) f),x))
= (r
(#) (
diff (f,x)))
proof
let f be
PartFunc of (
REAL m),
REAL , r be
Real, x be
Element of (
REAL m);
assume f
is_differentiable_in x;
then
A1: (
<>* f)
is_differentiable_in x;
then (r
(#) (
<>* f))
is_differentiable_in x by
PDIFF_6: 22;
hence (r
(#) f)
is_differentiable_in x by
Th8;
thus (
diff ((r
(#) f),x))
= ((
proj (1,1))
* (
diff ((r
(#) (
<>* f)),x))) by
Th8
.= ((
proj (1,1))
* (r
(#) (
diff ((
<>* f),x)))) by
A1,
PDIFF_6: 22
.= (r
(#) (
diff (f,x))) by
INTEGR15: 16;
end;
definition
let Z be
set;
let m be non
zero
Nat;
let f be
PartFunc of (
REAL m),
REAL ;
::
PDIFF_9:def3
pred f
is_differentiable_on Z means for x be
Element of (
REAL m) st x
in Z holds (f
| Z)
is_differentiable_in x;
end
theorem ::
PDIFF_9:53
Th53: for f be
PartFunc of (
REAL m),
REAL , g be
PartFunc of (
REAL m), (
REAL 1) st (
<>* f)
= g holds Z
c= (
dom f) & f
is_differentiable_on Z iff g
is_differentiable_on Z
proof
let f be
PartFunc of (
REAL m),
REAL , g be
PartFunc of (
REAL m), (
REAL 1);
assume
A1: (
<>* f)
= g;
A2: (
dom (
<>* f))
= (
dom f) by
Th3;
hereby
assume
A3: Z
c= (
dom f);
assume
A4: f
is_differentiable_on Z;
A5: Z
c= (
dom g) by
A3,
Th3,
A1;
now
let x be
Element of (
REAL m);
assume x
in Z;
then (f
| Z)
is_differentiable_in x by
A4;
hence (g
| Z)
is_differentiable_in x by
A1,
Th5;
end;
hence g
is_differentiable_on Z by
A5,
PDIFF_6:def 4;
end;
assume
A6: g
is_differentiable_on Z;
hence Z
c= (
dom f) by
A2,
A1,
PDIFF_6:def 4;
hereby
let x be
Element of (
REAL m);
assume x
in Z;
then (g
| Z)
is_differentiable_in x by
A6,
PDIFF_6:def 4;
hence (f
| Z)
is_differentiable_in x by
A1,
Th5;
end;
end;
theorem ::
PDIFF_9:54
Th54: for X be
Subset of (
REAL m), f be
PartFunc of (
REAL m),
REAL st X
c= (
dom f) & X is
open holds f
is_differentiable_on X iff for x be
Element of (
REAL m) st x
in X holds f
is_differentiable_in x
proof
let X be
Subset of (
REAL m), f be
PartFunc of (
REAL m),
REAL ;
set g = (
<>* f);
assume
A1: X
c= (
dom f);
assume X is
open;
then
A2: g
is_differentiable_on X iff X
c= (
dom g) & for x be
Element of (
REAL m) st x
in X holds g
is_differentiable_in x by
PDIFF_6: 32;
thus f
is_differentiable_on X implies for x be
Element of (
REAL m) st x
in X holds f
is_differentiable_in x by
A1,
A2,
Th53;
assume for x be
Element of (
REAL m) st x
in X holds f
is_differentiable_in x;
hence f
is_differentiable_on X by
A1,
A2,
Th3,
Th53,
PDIFF_7:def 1;
end;
theorem ::
PDIFF_9:55
Th55: for X be
Subset of (
REAL m), f be
PartFunc of (
REAL m),
REAL st X
c= (
dom f) & f
is_differentiable_on X holds X is
open
proof
let X be
Subset of (
REAL m), f be
PartFunc of (
REAL m),
REAL ;
reconsider g = (
<>* f) as
PartFunc of (
REAL m), (
REAL 1);
assume X
c= (
dom f) & f
is_differentiable_on X;
then g
is_differentiable_on X by
Th53;
hence thesis by
PDIFF_6: 33;
end;
definition
let m be non
zero
Element of
NAT ;
let Z be
set;
let f be
PartFunc of (
REAL m),
REAL ;
assume
A1: Z
c= (
dom f);
::
PDIFF_9:def4
func f
`| Z ->
PartFunc of (
REAL m), (
Funcs ((
REAL m),
REAL )) means
:
Def4: (
dom it )
= Z & for x be
Element of (
REAL m) st x
in Z holds (it
/. x)
= (
diff (f,x));
existence
proof
defpred
P[
Element of (
REAL m),
set] means $1
in Z & $2
= (
diff (f,$1));
consider F be
PartFunc of (
REAL m), (
Funcs ((
REAL m),
REAL )) such that
A2: (for x be
Element of (
REAL m) holds x
in (
dom F) iff (ex z be
Element of (
Funcs ((
REAL m),
REAL )) st
P[x, z])) & for x be
Element of (
REAL m) st x
in (
dom F) holds
P[x, (F
. x)] from
SEQ_1:sch 2;
take F;
A3: Z is
Subset of (
REAL m) by
A1,
XBOOLE_1: 1;
a5:
now
let x be
object;
assume
A4: x
in Z;
then
reconsider z = x as
Element of (
REAL m) by
A3;
reconsider y = (
diff (f,z)) as
Element of (
Funcs ((
REAL m),
REAL )) by
FUNCT_2: 8;
P[z, y] by
A4;
hence x
in (
dom F) by
A2;
end;
then
A5: Z
c= (
dom F);
(
dom F)
c= Z by
A2;
hence (
dom F)
= Z by
A5,
XBOOLE_0:def 10;
hereby
let x be
Element of (
REAL m);
assume
A6: x
in Z;
then (F
. x)
= (
diff (f,x)) by
A2,
A5;
hence (F
/. x)
= (
diff (f,x)) by
A6,
a5,
PARTFUN1:def 6;
end;
end;
uniqueness
proof
let F,G be
PartFunc of (
REAL m), (
Funcs ((
REAL m),
REAL ));
assume that
A7: (
dom F)
= Z & for x be
Element of (
REAL m) st x
in Z holds (F
/. x)
= (
diff (f,x)) and
A8: (
dom G)
= Z & for x be
Element of (
REAL m) st x
in Z holds (G
/. x)
= (
diff (f,x));
now
let x be
Element of (
REAL m);
assume
A9: x
in (
dom F);
then (F
/. x)
= (
diff (f,x)) by
A7;
hence (F
/. x)
= (G
/. x) by
A7,
A8,
A9;
end;
hence thesis by
A7,
A8,
PARTFUN2: 1;
end;
end
theorem ::
PDIFF_9:56
for X be
Subset of (
REAL m), f be
PartFunc of (
REAL m),
REAL , g be
PartFunc of (
REAL m), (
REAL 1) st (
<>* f)
= g & X
c= (
dom f) & f
is_differentiable_on X holds g
is_differentiable_on X & for x be
Element of (
REAL m) st x
in X holds ((f
`| X)
/. x)
= ((
proj (1,1))
* ((g
`| X)
/. x))
proof
let X be
Subset of (
REAL m);
let f be
PartFunc of (
REAL m),
REAL , g be
PartFunc of (
REAL m), (
REAL 1);
assume
A1: (
<>* f)
= g & X
c= (
dom f) & f
is_differentiable_on X;
hence g
is_differentiable_on X by
Th53;
A2: (
dom f)
= (
dom (
<>* f)) by
Th3;
let x be
Element of (
REAL m);
assume
A3: x
in X;
then ((f
`| X)
/. x)
= (
diff (f,x)) by
A1,
Def4;
hence thesis by
A2,
A1,
A3,
Def1;
end;
theorem ::
PDIFF_9:57
for X be
Subset of (
REAL m), f,g be
PartFunc of (
REAL m),
REAL st X
c= (
dom f) & X
c= (
dom g) & f
is_differentiable_on X & g
is_differentiable_on X holds (f
+ g)
is_differentiable_on X & for x be
Element of (
REAL m) st x
in X holds (((f
+ g)
`| X)
/. x)
= (((f
`| X)
/. x)
+ ((g
`| X)
/. x))
proof
let X be
Subset of (
REAL m);
let f,g be
PartFunc of (
REAL m),
REAL ;
assume
A1: X
c= (
dom f) & X
c= (
dom g);
assume
A2: f
is_differentiable_on X & g
is_differentiable_on X;
then
A3: X is
open by
A1,
Th55;
(
dom (f
+ g))
= ((
dom f)
/\ (
dom g)) by
VALUED_1:def 1;
then
A4: X
c= (
dom (f
+ g)) by
A1,
XBOOLE_1: 19;
A5:
now
let x be
Element of (
REAL m);
assume x
in X;
then f
is_differentiable_in x & g
is_differentiable_in x by
A1,
A2,
A3,
Th54;
hence (f
+ g)
is_differentiable_in x & (
diff ((f
+ g),x))
= ((
diff (f,x))
+ (
diff (g,x))) by
Th51;
end;
then for x be
Element of (
REAL m) st x
in X holds (f
+ g)
is_differentiable_in x;
hence (f
+ g)
is_differentiable_on X by
A4,
A3,
Th54;
let x be
Element of (
REAL m);
assume
A6: x
in X;
then (((f
+ g)
`| X)
/. x)
= (
diff ((f
+ g),x)) by
A4,
Def4;
then (((f
+ g)
`| X)
/. x)
= ((
diff (f,x))
+ (
diff (g,x))) by
A6,
A5;
then (((f
+ g)
`| X)
/. x)
= (((f
`| X)
/. x)
+ (
diff (g,x))) by
A1,
A6,
Def4;
hence (((f
+ g)
`| X)
/. x)
= (((f
`| X)
/. x)
+ ((g
`| X)
/. x)) by
A1,
A6,
Def4;
end;
theorem ::
PDIFF_9:58
for X be
Subset of (
REAL m), f,g be
PartFunc of (
REAL m),
REAL st X
c= (
dom f) & X
c= (
dom g) & f
is_differentiable_on X & g
is_differentiable_on X holds (f
- g)
is_differentiable_on X & for x be
Element of (
REAL m) st x
in X holds (((f
- g)
`| X)
/. x)
= (((f
`| X)
/. x)
- ((g
`| X)
/. x))
proof
let X be
Subset of (
REAL m), f,g be
PartFunc of (
REAL m),
REAL ;
assume
A1: X
c= (
dom f) & X
c= (
dom g);
assume
A2: f
is_differentiable_on X & g
is_differentiable_on X;
then
A3: X is
open by
A1,
Th55;
(
dom (f
- g))
= ((
dom f)
/\ (
dom g)) by
VALUED_1: 12;
then
A4: X
c= (
dom (f
- g)) by
A1,
XBOOLE_1: 19;
A5:
now
let x be
Element of (
REAL m);
assume x
in X;
then f
is_differentiable_in x & g
is_differentiable_in x by
A1,
A2,
A3,
Th54;
hence (f
- g)
is_differentiable_in x & (
diff ((f
- g),x))
= ((
diff (f,x))
- (
diff (g,x))) by
Th51;
end;
then for x be
Element of (
REAL m) st x
in X holds (f
- g)
is_differentiable_in x;
hence (f
- g)
is_differentiable_on X by
A4,
A3,
Th54;
let x be
Element of (
REAL m);
assume
A6: x
in X;
then (((f
- g)
`| X)
/. x)
= (
diff ((f
- g),x)) by
A4,
Def4;
then (((f
- g)
`| X)
/. x)
= ((
diff (f,x))
- (
diff (g,x))) by
A6,
A5;
then (((f
- g)
`| X)
/. x)
= (((f
`| X)
/. x)
- (
diff (g,x))) by
A1,
A6,
Def4;
hence (((f
- g)
`| X)
/. x)
= (((f
`| X)
/. x)
- ((g
`| X)
/. x)) by
A1,
A6,
Def4;
end;
theorem ::
PDIFF_9:59
for X be
Subset of (
REAL m), f be
PartFunc of (
REAL m),
REAL , r be
Real st X
c= (
dom f) & f
is_differentiable_on X holds (r
(#) f)
is_differentiable_on X & for x be
Element of (
REAL m) st x
in X holds (((r
(#) f)
`| X)
/. x)
= (r
(#) ((f
`| X)
/. x))
proof
let X be
Subset of (
REAL m);
let f be
PartFunc of (
REAL m),
REAL , r be
Real;
assume
A1: X
c= (
dom f);
assume
A2: f
is_differentiable_on X;
then
A3: X is
open by
A1,
Th55;
A4: X
c= (
dom (r
(#) f)) by
A1,
VALUED_1:def 5;
A5:
now
let x be
Element of (
REAL m);
assume x
in X;
then f
is_differentiable_in x by
A2,
A3,
A1,
Th54;
hence (r
(#) f)
is_differentiable_in x & (
diff ((r
(#) f),x))
= (r
(#) (
diff (f,x))) by
Th52;
end;
then for x be
Element of (
REAL m) st x
in X holds (r
(#) f)
is_differentiable_in x;
hence (r
(#) f)
is_differentiable_on X by
A4,
A3,
Th54;
let x be
Element of (
REAL m);
assume
A6: x
in X;
then (((r
(#) f)
`| X)
/. x)
= (
diff ((r
(#) f),x)) by
A4,
Def4;
hence (((r
(#) f)
`| X)
/. x)
= (r
(#) (
diff (f,x))) by
A6,
A5
.= (r
(#) ((f
`| X)
/. x)) by
A1,
A6,
Def4;
end;
definition
let m be non
zero
Element of
NAT ;
let Z be
set;
let i be
Nat;
let f be
PartFunc of (
REAL m),
REAL ;
::
PDIFF_9:def5
pred f
is_partial_differentiable_on Z,i means Z
c= (
dom f) & for x be
Element of (
REAL m) st x
in Z holds (f
| Z)
is_partial_differentiable_in (x,i);
end
definition
let m be non
zero
Element of
NAT ;
let Z be
set;
let i be
Nat;
let f be
PartFunc of (
REAL m),
REAL ;
assume
A1: f
is_partial_differentiable_on (Z,i);
::
PDIFF_9:def6
func f
`partial| (Z,i) ->
PartFunc of (
REAL m),
REAL means
:
Def6: (
dom it )
= Z & for x be
Element of (
REAL m) st x
in Z holds (it
/. x)
= (
partdiff (f,x,i));
existence
proof
deffunc
F(
Element of (
REAL m)) = (
In ((
partdiff (f,$1,i)),
REAL ));
defpred
P[
Element of (
REAL m)] means $1
in Z;
consider F be
PartFunc of (
REAL m),
REAL such that
A2: (for x be
Element of (
REAL m) holds x
in (
dom F) iff
P[x]) & for x be
Element of (
REAL m) st x
in (
dom F) holds (F
. x)
=
F(x) from
SEQ_1:sch 3;
take F;
now
A3: Z is
Subset of (
REAL m) by
A1,
XBOOLE_1: 1;
let y be
object;
assume y
in Z;
hence y
in (
dom F) by
A2,
A3;
end;
then
A4: Z
c= (
dom F);
(
dom F)
c= Z by
A2;
hence (
dom F)
= Z by
A4,
XBOOLE_0:def 10;
hereby
let x be
Element of (
REAL m);
assume
A5: x
in Z;
then (F
. x)
=
F(x) by
A2;
hence (F
/. x)
= (
partdiff (f,x,i)) by
A5,
A2,
PARTFUN1:def 6;
end;
end;
uniqueness
proof
let F,G be
PartFunc of (
REAL m),
REAL ;
assume that
A6: (
dom F)
= Z & for x be
Element of (
REAL m) st x
in Z holds (F
/. x)
= (
partdiff (f,x,i)) and
A7: (
dom G)
= Z & for x be
Element of (
REAL m) st x
in Z holds (G
/. x)
= (
partdiff (f,x,i));
now
let x be
Element of (
REAL m);
assume
A8: x
in (
dom F);
then (F
/. x)
= (
partdiff (f,x,i)) by
A6;
hence (F
/. x)
= (G
/. x) by
A6,
A7,
A8;
end;
hence thesis by
A6,
A7,
PARTFUN2: 1;
end;
end
theorem ::
PDIFF_9:60
Th60: for X be
Subset of (
REAL m), f be
PartFunc of (
REAL m),
REAL , i be
Nat st X is
open & 1
<= i & i
<= m holds (f
is_partial_differentiable_on (X,i) iff X
c= (
dom f) & for x be
Element of (
REAL m) st x
in X holds f
is_partial_differentiable_in (x,i))
proof
let X be
Subset of (
REAL m), f be
PartFunc of (
REAL m),
REAL , i be
Nat;
assume that
A1: X is
open and
A2: 1
<= i & i
<= m;
thus f
is_partial_differentiable_on (X,i) implies X
c= (
dom f) & for x be
Element of (
REAL m) st x
in X holds f
is_partial_differentiable_in (x,i)
proof
assume
A3: f
is_partial_differentiable_on (X,i);
hence
A4: X
c= (
dom f);
let nx0 be
Element of (
REAL m);
reconsider x0 = ((
proj (i,m))
. nx0) as
Element of
REAL ;
assume
A5: nx0
in X;
then (f
| X)
is_partial_differentiable_in (nx0,i) by
A3;
then
consider N0 be
Neighbourhood of x0 such that
A6: N0
c= (
dom ((f
| X)
* (
reproj (i,nx0)))) and
A7: ex L be
LinearFunc, R be
RestFunc st for x be
Real st x
in N0 holds ((((f
| X)
* (
reproj (i,nx0)))
. x)
- (((f
| X)
* (
reproj (i,nx0)))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
FDIFF_1:def 4;
consider L be
LinearFunc, R be
RestFunc such that
A8: for x be
Real st x
in N0 holds ((((f
| X)
* (
reproj (i,nx0)))
. x)
- (((f
| X)
* (
reproj (i,nx0)))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A7;
consider N1 be
Neighbourhood of x0 such that
A9: for x be
Element of
REAL st x
in N1 holds ((
reproj (i,nx0))
. x)
in X by
A1,
A2,
A5,
Lm2;
A10:
now
let x be
Element of
REAL ;
assume x
in N1;
then ((
reproj (i,nx0))
. x)
in X by
A9;
then ((
reproj (i,nx0))
. x)
in ((
dom f)
/\ X) by
A4,
XBOOLE_0:def 4;
hence ((
reproj (i,nx0))
. x)
in (
dom (f
| X)) by
RELAT_1: 61;
end;
consider N be
Neighbourhood of x0 such that
A11: N
c= N0 & N
c= N1 by
RCOMP_1: 17;
((f
| X)
* (
reproj (i,nx0)))
c= (f
* (
reproj (i,nx0))) by
RELAT_1: 29,
RELAT_1: 59;
then (
dom ((f
| X)
* (
reproj (i,nx0))))
c= (
dom (f
* (
reproj (i,nx0)))) by
RELAT_1: 11;
then
A13: N
c= (
dom (f
* (
reproj (i,nx0)))) by
A6,
A11;
now
let xx be
Real;
reconsider x = xx as
Element of
REAL by
XREAL_0:def 1;
assume
A14: xx
in N;
then ((
reproj (i,nx0))
. x)
in (
dom (f
| X)) by
A10,
A11;
then
A15: ((
reproj (i,nx0))
. x)
in (
dom f) & ((
reproj (i,nx0))
. x)
in X by
RELAT_1: 57;
((
reproj (i,nx0))
. x0)
in (
dom (f
| X)) by
A10,
RCOMP_1: 16;
then
A16: ((
reproj (i,nx0))
. x0)
in (
dom f) & ((
reproj (i,nx0))
. x0)
in X by
RELAT_1: 57;
A17: (
dom (
reproj (i,nx0)))
=
REAL by
FUNCT_2:def 1;
then
A18: (((f
| X)
* (
reproj (i,nx0)))
. x)
= ((f
| X)
. ((
reproj (i,nx0))
. x)) by
FUNCT_1: 13
.= (f
. ((
reproj (i,nx0))
. x)) by
A15,
FUNCT_1: 49
.= ((f
* (
reproj (i,nx0)))
. x) by
A17,
FUNCT_1: 13;
(((f
| X)
* (
reproj (i,nx0)))
. x0)
= ((f
| X)
. ((
reproj (i,nx0))
. x0)) by
A17,
FUNCT_1: 13
.= (f
. ((
reproj (i,nx0))
. x0)) by
A16,
FUNCT_1: 49
.= ((f
* (
reproj (i,nx0)))
. x0) by
A17,
FUNCT_1: 13;
hence (((f
* (
reproj (i,nx0)))
. xx)
- ((f
* (
reproj (i,nx0)))
. x0))
= ((L
. (xx
- x0))
+ (R
. (xx
- x0))) by
A8,
A14,
A11,
A18;
end;
hence f
is_partial_differentiable_in (nx0,i) by
A13,
FDIFF_1:def 4;
end;
assume that
A19: X
c= (
dom f) and
A20: for nx be
Element of (
REAL m) st nx
in X holds f
is_partial_differentiable_in (nx,i);
thus X
c= (
dom f) by
A19;
now
let nx0 be
Element of (
REAL m);
assume
A21: nx0
in X;
then
A22: f
is_partial_differentiable_in (nx0,i) by
A20;
reconsider x0 = ((
proj (i,m))
. nx0) as
Element of
REAL ;
consider N0 be
Neighbourhood of x0 such that N0
c= (
dom (f
* (
reproj (i,nx0)))) and
A23: ex L be
LinearFunc, R be
RestFunc st for x be
Real st x
in N0 holds (((f
* (
reproj (i,nx0)))
. x)
- ((f
* (
reproj (i,nx0)))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
FDIFF_1:def 4,
A22;
consider N1 be
Neighbourhood of x0 such that
A24: for x be
Element of
REAL st x
in N1 holds ((
reproj (i,nx0))
. x)
in X by
A1,
A2,
A21,
Lm2;
A25:
now
let x be
Element of
REAL ;
assume x
in N1;
then ((
reproj (i,nx0))
. x)
in X by
A24;
then ((
reproj (i,nx0))
. x)
in ((
dom f)
/\ X) by
A19,
XBOOLE_0:def 4;
hence ((
reproj (i,nx0))
. x)
in (
dom (f
| X)) by
RELAT_1: 61;
end;
A26: N1
c= (
dom ((f
| X)
* (
reproj (i,nx0))))
proof
let z be
object;
assume
A27: z
in N1;
then
A28: z
in
REAL ;
reconsider x = z as
Element of
REAL by
A27;
A29: ((
reproj (i,nx0))
. x)
in (
dom (f
| X)) by
A27,
A25;
z
in (
dom (
reproj (i,nx0))) by
A28,
FUNCT_2:def 1;
hence z
in (
dom ((f
| X)
* (
reproj (i,nx0)))) by
A29,
FUNCT_1: 11;
end;
consider N be
Neighbourhood of x0 such that
A30: N
c= N0 & N
c= N1 by
RCOMP_1: 17;
A31: N
c= (
dom ((f
| X)
* (
reproj (i,nx0)))) by
A30,
A26;
consider L be
LinearFunc, R be
RestFunc such that
A32: for x be
Real st x
in N0 holds (((f
* (
reproj (i,nx0)))
. x)
- ((f
* (
reproj (i,nx0)))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A23;
now
let xx be
Real;
assume
A33: xx
in N;
reconsider x = xx as
Element of
REAL by
XREAL_0:def 1;
A34: (
dom (
reproj (i,nx0)))
=
REAL by
FUNCT_2:def 1;
((
reproj (i,nx0))
. x)
in (
dom (f
| X)) by
A25,
A33,
A30;
then
A35: ((
reproj (i,nx0))
. x)
in ((
dom f)
/\ X) by
RELAT_1: 61;
((
reproj (i,nx0))
. x0)
in (
dom (f
| X)) by
A25,
RCOMP_1: 16;
then
A36: ((
reproj (i,nx0))
. x0)
in ((
dom f)
/\ X) by
RELAT_1: 61;
A37: (((f
| X)
* (
reproj (i,nx0)))
. x)
= ((f
| X)
. ((
reproj (i,nx0))
/. x)) by
A34,
FUNCT_1: 13
.= (f
. ((
reproj (i,nx0))
. x)) by
A35,
FUNCT_1: 48
.= ((f
* (
reproj (i,nx0)))
. x) by
A34,
FUNCT_1: 13;
(((f
| X)
* (
reproj (i,nx0)))
. x0)
= ((f
| X)
. ((
reproj (i,nx0))
. x0)) by
A34,
FUNCT_1: 13
.= (f
. ((
reproj (i,nx0))
. x0)) by
A36,
FUNCT_1: 48
.= ((f
* (
reproj (i,nx0)))
. x0) by
A34,
FUNCT_1: 13;
hence ((((f
| X)
* (
reproj (i,nx0)))
. xx)
- (((f
| X)
* (
reproj (i,nx0)))
. x0))
= ((L
. (xx
- x0))
+ (R
. (xx
- x0))) by
A37,
A33,
A32,
A30;
end;
hence (f
| X)
is_partial_differentiable_in (nx0,i) by
A31,
FDIFF_1:def 4;
end;
hence thesis;
end;
theorem ::
PDIFF_9:61
Th61: for X be
Subset of (
REAL m), f be
PartFunc of (
REAL m),
REAL , g be
PartFunc of (
REAL m), (
REAL 1), i be
Nat st (
<>* f)
= g & X is
open & 1
<= i & i
<= m holds f
is_partial_differentiable_on (X,i) iff g
is_partial_differentiable_on (X,i)
proof
let X be
Subset of (
REAL m);
let f be
PartFunc of (
REAL m),
REAL , g be
PartFunc of (
REAL m), (
REAL 1), i be
Nat;
assume
A1: (
<>* f)
= g & X is
open & 1
<= i & i
<= m;
hereby
assume
A2: f
is_partial_differentiable_on (X,i);
then
A3: X
c= (
dom g) by
Th3,
A1;
now
let x be
Element of (
REAL m);
assume x
in X;
then f
is_partial_differentiable_in (x,i) by
A2,
A1,
Th60;
hence g
is_partial_differentiable_in (x,i) by
A1,
PDIFF_1: 18;
end;
hence g
is_partial_differentiable_on (X,i) by
A3,
A1,
PDIFF_7: 34;
end;
hereby
assume
A4: g
is_partial_differentiable_on (X,i);
then
A5: X
c= (
dom f) by
Th3,
A1;
now
let x be
Element of (
REAL m);
assume x
in X;
then g
is_partial_differentiable_in (x,i) by
A4,
A1,
PDIFF_7: 34;
hence f
is_partial_differentiable_in (x,i) by
A1,
PDIFF_1: 18;
end;
hence f
is_partial_differentiable_on (X,i) by
A1,
Th60,
A5;
end;
end;
theorem ::
PDIFF_9:62
Th62: for X be
Subset of (
REAL m), f be
PartFunc of (
REAL m),
REAL , g be
PartFunc of (
REAL m), (
REAL 1), i be
Nat st (
<>* f)
= g & X is
open & 1
<= i & i
<= m & f
is_partial_differentiable_on (X,i) holds (f
`partial| (X,i))
is_continuous_on X iff (g
`partial| (X,i))
is_continuous_on X
proof
let X be
Subset of (
REAL m);
let f be
PartFunc of (
REAL m),
REAL , g be
PartFunc of (
REAL m), (
REAL 1), i be
Nat;
assume
A1: (
<>* f)
= g & X is
open & 1
<= i & i
<= m & f
is_partial_differentiable_on (X,i);
then
A2: g
is_partial_differentiable_on (X,i) by
Th61;
set ff = (f
`partial| (X,i));
set gg = (g
`partial| (X,i));
A3: for x,y be
Element of (
REAL m) st x
in X & y
in X holds
|.(((f
`partial| (X,i))
/. x)
- ((f
`partial| (X,i))
/. y)).|
=
|.(((g
`partial| (X,i))
/. x)
- ((g
`partial| (X,i))
/. y)).|
proof
let x,y be
Element of (
REAL m);
assume
A4: x
in X & y
in X;
then
A5: ((f
`partial| (X,i))
/. x)
= (
partdiff (f,x,i)) & ((f
`partial| (X,i))
/. y)
= (
partdiff (f,y,i)) by
A1,
Def6;
A6: ((g
`partial| (X,i))
/. x)
= (
partdiff (g,x,i)) & ((g
`partial| (X,i))
/. y)
= (
partdiff (g,y,i)) by
A2,
A4,
PDIFF_7:def 5;
g
is_partial_differentiable_in (x,i) & g
is_partial_differentiable_in (y,i) by
A2,
A4,
A1,
PDIFF_7: 34;
then (
partdiff (g,x,i))
=
<*(
partdiff (f,x,i))*> & (
partdiff (g,y,i))
=
<*(
partdiff (f,y,i))*> by
A1,
PDIFF_1: 19;
then (((g
`partial| (X,i))
/. x)
- ((g
`partial| (X,i))
/. y))
=
<*(((f
`partial| (X,i))
/. x)
- ((f
`partial| (X,i))
/. y))*> by
A5,
A6,
RVSUM_1: 29;
hence thesis by
Lm1;
end;
A7: (
dom gg)
= X by
A2,
PDIFF_7:def 5;
A8: (
dom ff)
= X by
Def6,
A1;
hereby
assume
A9: (f
`partial| (X,i))
is_continuous_on X;
now
let x0 be
Element of (
REAL m), r be
Real;
assume
A10: x0
in X &
0
< r;
then
consider s be
Real such that
A11:
0
< s & for x1 be
Element of (
REAL m) st x1
in X &
|.(x1
- x0).|
< s holds
|.((ff
/. x1)
- (ff
/. x0)).|
< r by
A8,
A9,
Th45;
take s;
thus
0
< s by
A11;
let x1 be
Element of (
REAL m);
assume
A12: x1
in X &
|.(x1
- x0).|
< s;
then
|.((ff
/. x1)
- (ff
/. x0)).|
< r by
A11;
hence
|.((gg
/. x1)
- (gg
/. x0)).|
< r by
A10,
A12,
A3;
end;
hence (g
`partial| (X,i))
is_continuous_on X by
A7,
PDIFF_7: 38;
end;
hereby
assume
A13: (g
`partial| (X,i))
is_continuous_on X;
now
let x0 be
Element of (
REAL m), r be
Real;
assume
A14: x0
in X &
0
< r;
then
consider s be
Real such that
A15:
0
< s & for x1 be
Element of (
REAL m) st x1
in X &
|.(x1
- x0).|
< s holds
|.((gg
/. x1)
- (gg
/. x0)).|
< r by
A13,
PDIFF_7: 38;
take s;
thus
0
< s by
A15;
let x1 be
Element of (
REAL m);
assume
A16: x1
in X &
|.(x1
- x0).|
< s;
then
|.((gg
/. x1)
- (gg
/. x0)).|
< r by
A15;
hence
|.((ff
/. x1)
- (ff
/. x0)).|
< r by
A14,
A16,
A3;
end;
hence (f
`partial| (X,i))
is_continuous_on X by
Th45,
A8;
end;
end;
Lm4: for f be
PartFunc of (
REAL m),
REAL , g be
PartFunc of (
REAL m), (
REAL 1), x1,x0,v be
Element of (
REAL m) st (
<>* f)
= g holds
|.(((
diff (f,x1))
. v)
- ((
diff (f,x0))
. v)).|
=
|.(((
diff (g,x1))
. v)
- ((
diff (g,x0))
. v)).|
proof
let f be
PartFunc of (
REAL m),
REAL , g be
PartFunc of (
REAL m), (
REAL 1), x1,x0,v be
Element of (
REAL m);
assume
A1: (
<>* f)
= g;
set I = (
proj (1,1));
reconsider w0 = ((
diff (g,x0))
. v), w1 = ((
diff (g,x1))
. v) as
Point of (
REAL-NS 1) by
REAL_NS1:def 4;
(
dom (
diff (g,x1)))
= (
REAL m) & (
dom (
diff (g,x0)))
= (
REAL m) by
FUNCT_2:def 1;
then ((
diff (f,x0))
. v)
= (I
. w0) & ((
diff (f,x1))
. v)
= (I
. w1) by
A1,
FUNCT_1: 13;
then (((
diff (f,x1))
. v)
- ((
diff (f,x0))
. v))
= (I
. (w1
- w0)) by
PDIFF_1: 4;
then
|.(((
diff (f,x1))
. v)
- ((
diff (f,x0))
. v)).|
=
||.(w1
- w0).|| by
PDIFF_1: 4;
hence thesis by
REAL_NS1: 1,
REAL_NS1: 5;
end;
theorem ::
PDIFF_9:63
for X be
Subset of (
REAL m), f be
PartFunc of (
REAL m),
REAL st X is
open & X
c= (
dom f) holds ((for i be
Nat st 1
<= i & i
<= m holds f
is_partial_differentiable_on (X,i) & (f
`partial| (X,i))
is_continuous_on X) iff (f
is_differentiable_on X & for x0 be
Element of (
REAL m), r be
Real st x0
in X &
0
< r holds ex s be
Real st
0
< s & for x1 be
Element of (
REAL m) st x1
in X &
|.(x1
- x0).|
< s holds for v be
Element of (
REAL m) holds
|.(((
diff (f,x1))
. v)
- ((
diff (f,x0))
. v)).|
<= (r
*
|.v.|)))
proof
let X be
Subset of (
REAL m), f be
PartFunc of (
REAL m),
REAL ;
set g = (
<>* f);
assume
A1: X is
open & X
c= (
dom f);
then
A2: X
c= (
dom g) by
Th3;
hereby
assume
A3: for i be
Nat st 1
<= i & i
<= m holds f
is_partial_differentiable_on (X,i) & (f
`partial| (X,i))
is_continuous_on X;
A4: for i be
Nat st 1
<= i & i
<= m holds g
is_partial_differentiable_on (X,i) & (g
`partial| (X,i))
is_continuous_on X
proof
let i be
Nat;
assume
A5: 1
<= i & i
<= m;
then f
is_partial_differentiable_on (X,i) & (f
`partial| (X,i))
is_continuous_on X by
A3;
hence g
is_partial_differentiable_on (X,i) & (g
`partial| (X,i))
is_continuous_on X by
A1,
Th61,
Th62,
A5;
end;
then g
is_differentiable_on X by
Th26,
A1,
A2;
hence f
is_differentiable_on X by
Th53;
thus for x0 be
Element of (
REAL m), r be
Real st x0
in X &
0
< r holds ex s be
Real st
0
< s & for x1 be
Element of (
REAL m) st x1
in X &
|.(x1
- x0).|
< s holds for v be
Element of (
REAL m) holds
|.(((
diff (f,x1))
. v)
- ((
diff (f,x0))
. v)).|
<= (r
*
|.v.|)
proof
let x0 be
Element of (
REAL m), r be
Real;
assume x0
in X &
0
< r;
then
consider s be
Real such that
A6:
0
< s & for x1 be
Element of (
REAL m) st x1
in X &
|.(x1
- x0).|
< s holds for v be
Element of (
REAL m) holds
|.(((
diff (g,x1))
. v)
- ((
diff (g,x0))
. v)).|
<= (r
*
|.v.|) by
A4,
Th26,
A1,
A2;
take s;
thus
0
< s by
A6;
let x1 be
Element of (
REAL m);
assume
A7: x1
in X &
|.(x1
- x0).|
< s;
let v be
Element of (
REAL m);
|.(((
diff (g,x1))
. v)
- ((
diff (g,x0))
. v)).|
<= (r
*
|.v.|) by
A7,
A6;
hence
|.(((
diff (f,x1))
. v)
- ((
diff (f,x0))
. v)).|
<= (r
*
|.v.|) by
Lm4;
end;
end;
now
assume
A8: f
is_differentiable_on X & for x0 be
Element of (
REAL m), r be
Real st x0
in X &
0
< r holds ex s be
Real st
0
< s & for x1 be
Element of (
REAL m) st x1
in X &
|.(x1
- x0).|
< s holds for v be
Element of (
REAL m) holds
|.(((
diff (f,x1))
. v)
- ((
diff (f,x0))
. v)).|
<= (r
*
|.v.|);
then
A9: g
is_differentiable_on X by
A1,
Th53;
A10: for x0 be
Element of (
REAL m), r be
Real st x0
in X &
0
< r holds ex s be
Real st
0
< s & for x1 be
Element of (
REAL m) st x1
in X &
|.(x1
- x0).|
< s holds for v be
Element of (
REAL m) holds
|.(((
diff (g,x1))
. v)
- ((
diff (g,x0))
. v)).|
<= (r
*
|.v.|)
proof
let x0 be
Element of (
REAL m), r be
Real;
assume x0
in X &
0
< r;
then
consider s be
Real such that
A11:
0
< s & for x1 be
Element of (
REAL m) st x1
in X &
|.(x1
- x0).|
< s holds for v be
Element of (
REAL m) holds
|.(((
diff (f,x1))
. v)
- ((
diff (f,x0))
. v)).|
<= (r
*
|.v.|) by
A8;
take s;
thus
0
< s by
A11;
let x1 be
Element of (
REAL m);
assume
A12: x1
in X &
|.(x1
- x0).|
< s;
let v be
Element of (
REAL m);
|.(((
diff (f,x1))
. v)
- ((
diff (f,x0))
. v)).|
<= (r
*
|.v.|) by
A12,
A11;
hence
|.(((
diff (g,x1))
. v)
- ((
diff (g,x0))
. v)).|
<= (r
*
|.v.|) by
Lm4;
end;
thus for i be
Nat st 1
<= i & i
<= m holds f
is_partial_differentiable_on (X,i) & (f
`partial| (X,i))
is_continuous_on X
proof
let i be
Nat;
assume
A13: 1
<= i & i
<= m;
then
A14: g
is_partial_differentiable_on (X,i) & (g
`partial| (X,i))
is_continuous_on X by
A10,
Th26,
A2,
A1,
A9;
hence f
is_partial_differentiable_on (X,i) by
A13,
Th61,
A1;
hence (f
`partial| (X,i))
is_continuous_on X by
A13,
A14,
Th62,
A1;
end;
end;
hence thesis;
end;
Lm5: for f,g be
PartFunc of (
REAL i),
REAL , x be
Element of (
REAL i) holds ((f
* (
reproj (k,x)))
(#) (g
* (
reproj (k,x))))
= ((f
(#) g)
* (
reproj (k,x)))
proof
let f1,f2 be
PartFunc of (
REAL i),
REAL , x be
Element of (
REAL i);
A1: (
dom (
reproj (k,x)))
=
REAL by
FUNCT_2:def 1;
A2: (
dom (f1
(#) f2))
= ((
dom f1)
/\ (
dom f2)) by
VALUED_1:def 4;
for s be
Element of
REAL holds s
in (
dom ((f1
(#) f2)
* (
reproj (k,x)))) iff s
in (
dom ((f1
* (
reproj (k,x)))
(#) (f2
* (
reproj (k,x)))))
proof
let s be
Element of
REAL ;
s
in (
dom ((f1
(#) f2)
* (
reproj (k,x)))) iff ((
reproj (k,x))
. s)
in ((
dom f1)
/\ (
dom f2)) by
A2,
A1,
FUNCT_1: 11;
then s
in (
dom ((f1
(#) f2)
* (
reproj (k,x)))) iff ((
reproj (k,x))
. s)
in (
dom f1) & ((
reproj (k,x))
. s)
in (
dom f2) by
XBOOLE_0:def 4;
then s
in (
dom ((f1
(#) f2)
* (
reproj (k,x)))) iff s
in (
dom (f1
* (
reproj (k,x)))) & s
in (
dom (f2
* (
reproj (k,x)))) by
A1,
FUNCT_1: 11;
then s
in (
dom ((f1
(#) f2)
* (
reproj (k,x)))) iff s
in ((
dom (f1
* (
reproj (k,x))))
/\ (
dom (f2
* (
reproj (k,x))))) by
XBOOLE_0:def 4;
hence thesis by
VALUED_1:def 4;
end;
then for s be
object holds s
in (
dom ((f1
(#) f2)
* (
reproj (k,x)))) iff s
in (
dom ((f1
* (
reproj (k,x)))
(#) (f2
* (
reproj (k,x)))));
then
A3: (
dom ((f1
(#) f2)
* (
reproj (k,x))))
= (
dom ((f1
* (
reproj (k,x)))
(#) (f2
* (
reproj (k,x))))) by
TARSKI: 2;
for z be
Element of
REAL st z
in (
dom ((f1
(#) f2)
* (
reproj (k,x)))) holds (((f1
(#) f2)
* (
reproj (k,x)))
. z)
= (((f1
* (
reproj (k,x)))
(#) (f2
* (
reproj (k,x))))
. z)
proof
let z be
Element of
REAL ;
assume
A4: z
in (
dom ((f1
(#) f2)
* (
reproj (k,x))));
then ((
reproj (k,x))
. z)
in ((
dom f1)
/\ (
dom f2)) by
A2,
FUNCT_1: 11;
then ((
reproj (k,x))
. z)
in (
dom f1) & ((
reproj (k,x))
. z)
in (
dom f2) by
XBOOLE_0:def 4;
then z
in (
dom (f1
* (
reproj (k,x)))) & z
in (
dom (f2
* (
reproj (k,x)))) by
A1,
FUNCT_1: 11;
then
A5: (f1
. ((
reproj (k,x))
. z))
= ((f1
* (
reproj (k,x)))
. z) & (f2
. ((
reproj (k,x))
. z))
= ((f2
* (
reproj (k,x)))
. z) by
FUNCT_1: 12;
thus (((f1
(#) f2)
* (
reproj (k,x)))
. z)
= ((f1
(#) f2)
. ((
reproj (k,x))
. z)) by
A4,
FUNCT_1: 12
.= ((f1
. ((
reproj (k,x))
. z))
* (f2
. ((
reproj (k,x))
. z))) by
VALUED_1: 5
.= (((f1
* (
reproj (k,x)))
(#) (f2
* (
reproj (k,x))))
. z) by
A3,
A4,
A5,
VALUED_1:def 4;
end;
hence thesis by
A3,
PARTFUN1: 5;
end;
theorem ::
PDIFF_9:64
Th64: for f,g be
PartFunc of (
REAL m),
REAL , x be
Element of (
REAL m) st f
is_partial_differentiable_in (x,i) & g
is_partial_differentiable_in (x,i) holds (f
(#) g)
is_partial_differentiable_in (x,i) & (
partdiff ((f
(#) g),x,i))
= (((
partdiff (f,x,i))
* (g
. x))
+ ((f
. x)
* (
partdiff (g,x,i))))
proof
let f,g be
PartFunc of (
REAL m),
REAL , x be
Element of (
REAL m);
assume
a1: f
is_partial_differentiable_in (x,i) & g
is_partial_differentiable_in (x,i);
set y = ((
proj (i,m))
. x);
(
dom (
reproj (i,x)))
=
REAL by
FUNCT_2:def 1;
then
A2: ((f
* (
reproj (i,x)))
. y)
= (f
. ((
reproj (i,x))
. y)) & ((g
* (
reproj (i,x)))
. y)
= (g
. ((
reproj (i,x))
. y)) by
FUNCT_1: 13;
then
A3: ((f
* (
reproj (i,x)))
. y)
= (f
. x) by
Th12;
((f
* (
reproj (i,x)))
(#) (g
* (
reproj (i,x))))
= ((f
(#) g)
* (
reproj (i,x))) by
Lm5;
then ((f
(#) g)
* (
reproj (i,x)))
is_differentiable_in ((
proj (i,m))
. x) by
a1,
FDIFF_1: 16;
hence (f
(#) g)
is_partial_differentiable_in (x,i);
thus (
partdiff ((f
(#) g),x,i))
= (
diff (((f
* (
reproj (i,x)))
(#) (g
* (
reproj (i,x)))),y)) by
Lm5
.= ((((g
* (
reproj (i,x)))
. y)
* (
partdiff (f,x,i)))
+ (((f
* (
reproj (i,x)))
. y)
* (
diff ((g
* (
reproj (i,x))),y)))) by
a1,
FDIFF_1: 16
.= (((
partdiff (f,x,i))
* (g
. x))
+ ((f
. x)
* (
partdiff (g,x,i)))) by
A3,
A2,
Th12;
end;
theorem ::
PDIFF_9:65
Th65: for X be
Subset of (
REAL m), f,g be
PartFunc of (
REAL m),
REAL st X is
open & 1
<= i & i
<= m & f
is_partial_differentiable_on (X,i) & g
is_partial_differentiable_on (X,i) holds (f
+ g)
is_partial_differentiable_on (X,i) & ((f
+ g)
`partial| (X,i))
= ((f
`partial| (X,i))
+ (g
`partial| (X,i))) & for x be
Element of (
REAL m) st x
in X holds (((f
+ g)
`partial| (X,i))
/. x)
= ((
partdiff (f,x,i))
+ (
partdiff (g,x,i)))
proof
let X be
Subset of (
REAL m), f,g be
PartFunc of (
REAL m),
REAL ;
assume
A1: X is
open & 1
<= i & i
<= m & f
is_partial_differentiable_on (X,i) & g
is_partial_differentiable_on (X,i);
then
A3: (
dom (f
`partial| (X,i)))
= X & (
dom (g
`partial| (X,i)))
= X by
Def6;
(
dom (f
+ g))
= ((
dom f)
/\ (
dom g)) by
VALUED_1:def 1;
then
A4: X
c= (
dom (f
+ g)) by
A1,
XBOOLE_1: 19;
A5:
now
let x be
Element of (
REAL m);
assume x
in X;
then f
is_partial_differentiable_in (x,i) & g
is_partial_differentiable_in (x,i) by
A1,
Th60;
hence (f
+ g)
is_partial_differentiable_in (x,i) & (
partdiff ((f
+ g),x,i))
= ((
partdiff (f,x,i))
+ (
partdiff (g,x,i))) by
PDIFF_1: 29;
end;
then
A6: for x be
Element of (
REAL m) st x
in X holds (f
+ g)
is_partial_differentiable_in (x,i);
then
A7: (f
+ g)
is_partial_differentiable_on (X,i) by
A4,
Th60,
A1;
then
A8: (
dom ((f
+ g)
`partial| (X,i)))
= X by
Def6;
A9:
now
let x be
Element of (
REAL m);
assume
A10: x
in X;
then (((f
+ g)
`partial| (X,i))
/. x)
= (
partdiff ((f
+ g),x,i)) by
A7,
Def6;
hence (((f
+ g)
`partial| (X,i))
/. x)
= ((
partdiff (f,x,i))
+ (
partdiff (g,x,i))) by
A5,
A10;
end;
A11: (
dom ((f
`partial| (X,i))
+ (g
`partial| (X,i))))
= ((
dom (f
`partial| (X,i)))
/\ (
dom (g
`partial| (X,i)))) by
VALUED_1:def 1;
now
let x be
Element of (
REAL m);
assume
A12: x
in X;
thus (((f
+ g)
`partial| (X,i))
. x)
= (((f
+ g)
`partial| (X,i))
/. x) by
A12,
A8,
PARTFUN1:def 6
.= ((
partdiff (f,x,i))
+ (
partdiff (g,x,i))) by
A9,
A12
.= (((f
`partial| (X,i))
/. x)
+ (
partdiff (g,x,i))) by
A12,
Def6,
A1
.= (((f
`partial| (X,i))
/. x)
+ ((g
`partial| (X,i))
/. x)) by
A12,
Def6,
A1
.= (((f
`partial| (X,i))
. x)
+ ((g
`partial| (X,i))
/. x)) by
A12,
A3,
PARTFUN1:def 6
.= (((f
`partial| (X,i))
. x)
+ ((g
`partial| (X,i))
. x)) by
A12,
A3,
PARTFUN1:def 6
.= (((f
`partial| (X,i))
+ (g
`partial| (X,i)))
. x) by
A12,
A11,
A3,
VALUED_1:def 1;
end;
hence thesis by
A6,
A4,
Th60,
A1,
A8,
A9,
A11,
A3,
PARTFUN1: 5;
end;
theorem ::
PDIFF_9:66
Th66: for X be
Subset of (
REAL m), f,g be
PartFunc of (
REAL m),
REAL st X is
open & 1
<= i & i
<= m & f
is_partial_differentiable_on (X,i) & g
is_partial_differentiable_on (X,i) holds (f
- g)
is_partial_differentiable_on (X,i) & ((f
- g)
`partial| (X,i))
= ((f
`partial| (X,i))
- (g
`partial| (X,i))) & for x be
Element of (
REAL m) st x
in X holds (((f
- g)
`partial| (X,i))
/. x)
= ((
partdiff (f,x,i))
- (
partdiff (g,x,i)))
proof
let X be
Subset of (
REAL m), f,g be
PartFunc of (
REAL m),
REAL ;
assume
A1: X is
open & 1
<= i & i
<= m & f
is_partial_differentiable_on (X,i) & g
is_partial_differentiable_on (X,i);
A3: (
dom (f
`partial| (X,i)))
= X & (
dom (g
`partial| (X,i)))
= X by
Def6,
A1;
(
dom (f
- g))
= ((
dom f)
/\ (
dom g)) by
VALUED_1: 12;
then
A4: X
c= (
dom (f
- g)) by
A1,
XBOOLE_1: 19;
A5:
now
let x be
Element of (
REAL m);
assume x
in X;
then f
is_partial_differentiable_in (x,i) & g
is_partial_differentiable_in (x,i) by
A1,
Th60;
hence (f
- g)
is_partial_differentiable_in (x,i) & (
partdiff ((f
- g),x,i))
= ((
partdiff (f,x,i))
- (
partdiff (g,x,i))) by
PDIFF_1: 31;
end;
then
A6: for x be
Element of (
REAL m) st x
in X holds (f
- g)
is_partial_differentiable_in (x,i);
then
A7: (f
- g)
is_partial_differentiable_on (X,i) by
A4,
Th60,
A1;
then
A8: (
dom ((f
- g)
`partial| (X,i)))
= X by
Def6;
A9:
now
let x be
Element of (
REAL m);
assume
A10: x
in X;
then (((f
- g)
`partial| (X,i))
/. x)
= (
partdiff ((f
- g),x,i)) by
A7,
Def6;
hence (((f
- g)
`partial| (X,i))
/. x)
= ((
partdiff (f,x,i))
- (
partdiff (g,x,i))) by
A5,
A10;
end;
A11: (
dom ((f
`partial| (X,i))
- (g
`partial| (X,i))))
= ((
dom (f
`partial| (X,i)))
/\ (
dom (g
`partial| (X,i)))) by
VALUED_1: 12;
now
let x be
Element of (
REAL m);
assume
A12: x
in X;
hence (((f
- g)
`partial| (X,i))
. x)
= (((f
- g)
`partial| (X,i))
/. x) by
A8,
PARTFUN1:def 6
.= ((
partdiff (f,x,i))
- (
partdiff (g,x,i))) by
A9,
A12
.= (((f
`partial| (X,i))
/. x)
- (
partdiff (g,x,i))) by
A12,
Def6,
A1
.= (((f
`partial| (X,i))
/. x)
- ((g
`partial| (X,i))
/. x)) by
A12,
Def6,
A1
.= (((f
`partial| (X,i))
. x)
- ((g
`partial| (X,i))
/. x)) by
A12,
A3,
PARTFUN1:def 6
.= (((f
`partial| (X,i))
. x)
- ((g
`partial| (X,i))
. x)) by
A12,
A3,
PARTFUN1:def 6
.= (((f
`partial| (X,i))
- (g
`partial| (X,i)))
. x) by
A12,
A11,
A3,
VALUED_1: 13;
end;
hence thesis by
A8,
A11,
A3,
A6,
A9,
A4,
Th60,
A1,
PARTFUN1: 5;
end;
theorem ::
PDIFF_9:67
Th67: for X be
Subset of (
REAL m), r be
Real, f be
PartFunc of (
REAL m),
REAL st X is
open & 1
<= i & i
<= m & f
is_partial_differentiable_on (X,i) holds (r
(#) f)
is_partial_differentiable_on (X,i) & ((r
(#) f)
`partial| (X,i))
= (r
(#) (f
`partial| (X,i))) & for x be
Element of (
REAL m) st x
in X holds (((r
(#) f)
`partial| (X,i))
/. x)
= (r
* (
partdiff (f,x,i)))
proof
let X be
Subset of (
REAL m), r be
Real, f be
PartFunc of (
REAL m),
REAL ;
assume
A1: X is
open & 1
<= i & i
<= m & f
is_partial_differentiable_on (X,i);
A2: (
dom (f
`partial| (X,i)))
= X by
Def6,
A1;
A3: X
c= (
dom (r
(#) f)) by
A1,
VALUED_1:def 5;
A4:
now
let x be
Element of (
REAL m);
assume x
in X;
then f
is_partial_differentiable_in (x,i) by
A1,
Th60;
hence (r
(#) f)
is_partial_differentiable_in (x,i) & (
partdiff ((r
(#) f),x,i))
= (r
* (
partdiff (f,x,i))) by
PDIFF_1: 33;
end;
then
A5: for x be
Element of (
REAL m) st x
in X holds (r
(#) f)
is_partial_differentiable_in (x,i);
then
A6: (r
(#) f)
is_partial_differentiable_on (X,i) by
A3,
Th60,
A1;
then
A7: (
dom ((r
(#) f)
`partial| (X,i)))
= X by
Def6;
A8:
now
let x be
Element of (
REAL m);
assume
A9: x
in X;
then (((r
(#) f)
`partial| (X,i))
/. x)
= (
partdiff ((r
(#) f),x,i)) by
A6,
Def6;
hence (((r
(#) f)
`partial| (X,i))
/. x)
= (r
* (
partdiff (f,x,i))) by
A4,
A9;
end;
(
dom (r
(#) (f
`partial| (X,i))))
= (
dom (f
`partial| (X,i))) by
VALUED_1:def 5;
then
A10: (
dom (r
(#) (f
`partial| (X,i))))
= X by
Def6,
A1;
now
let x be
Element of (
REAL m);
assume
A11: x
in X;
hence (((r
(#) f)
`partial| (X,i))
. x)
= (((r
(#) f)
`partial| (X,i))
/. x) by
A7,
PARTFUN1:def 6
.= (r
* (
partdiff (f,x,i))) by
A8,
A11
.= (r
* ((f
`partial| (X,i))
/. x)) by
A11,
Def6,
A1
.= (r
* ((f
`partial| (X,i))
. x)) by
A11,
A2,
PARTFUN1:def 6
.= ((r
(#) (f
`partial| (X,i)))
. x) by
A11,
A10,
VALUED_1:def 5;
end;
hence thesis by
A7,
A10,
A5,
A8,
A3,
Th60,
A1,
PARTFUN1: 5;
end;
theorem ::
PDIFF_9:68
Th68: for X be
Subset of (
REAL m), f,g be
PartFunc of (
REAL m),
REAL st X is
open & 1
<= i & i
<= m & f
is_partial_differentiable_on (X,i) & g
is_partial_differentiable_on (X,i) holds (f
(#) g)
is_partial_differentiable_on (X,i) & ((f
(#) g)
`partial| (X,i))
= (((f
`partial| (X,i))
(#) g)
+ (f
(#) (g
`partial| (X,i)))) & for x be
Element of (
REAL m) st x
in X holds (((f
(#) g)
`partial| (X,i))
/. x)
= (((
partdiff (f,x,i))
* (g
. x))
+ ((f
. x)
* (
partdiff (g,x,i))))
proof
let X be
Subset of (
REAL m), f,g be
PartFunc of (
REAL m),
REAL ;
assume
A1: X is
open & 1
<= i & i
<= m & f
is_partial_differentiable_on (X,i) & g
is_partial_differentiable_on (X,i);
A2: X
c= (
dom f) & X
c= (
dom g) by
A1;
A3: (
dom (f
`partial| (X,i)))
= X & (
dom (g
`partial| (X,i)))
= X by
Def6,
A1;
(
dom (f
(#) g))
= ((
dom f)
/\ (
dom g)) by
VALUED_1:def 4;
then
A4: X
c= (
dom (f
(#) g)) by
A1,
XBOOLE_1: 19;
A5:
now
let x be
Element of (
REAL m);
assume x
in X;
then f
is_partial_differentiable_in (x,i) & g
is_partial_differentiable_in (x,i) by
A1,
Th60;
hence (f
(#) g)
is_partial_differentiable_in (x,i) & (
partdiff ((f
(#) g),x,i))
= (((
partdiff (f,x,i))
* (g
. x))
+ ((f
. x)
* (
partdiff (g,x,i)))) by
Th64;
end;
then
A6: for x be
Element of (
REAL m) st x
in X holds (f
(#) g)
is_partial_differentiable_in (x,i);
then
A7: (f
(#) g)
is_partial_differentiable_on (X,i) by
A4,
Th60,
A1;
then
A8: (
dom ((f
(#) g)
`partial| (X,i)))
= X by
Def6;
A9:
now
let x be
Element of (
REAL m);
assume
A10: x
in X;
then (((f
(#) g)
`partial| (X,i))
/. x)
= (
partdiff ((f
(#) g),x,i)) by
A7,
Def6;
hence (((f
(#) g)
`partial| (X,i))
/. x)
= (((
partdiff (f,x,i))
* (g
. x))
+ ((f
. x)
* (
partdiff (g,x,i)))) by
A5,
A10;
end;
(
dom ((f
`partial| (X,i))
(#) g))
= ((
dom (f
`partial| (X,i)))
/\ (
dom g)) & (
dom (f
(#) (g
`partial| (X,i))))
= ((
dom f)
/\ (
dom (g
`partial| (X,i)))) by
VALUED_1:def 4;
then
A11: (
dom ((f
`partial| (X,i))
(#) g))
= X & (
dom (f
(#) (g
`partial| (X,i))))
= X by
A3,
A2,
XBOOLE_1: 28;
A12: (
dom (((f
`partial| (X,i))
(#) g)
+ (f
(#) (g
`partial| (X,i)))))
= ((
dom ((f
`partial| (X,i))
(#) g))
/\ (
dom (f
(#) (g
`partial| (X,i))))) by
VALUED_1:def 1;
now
let x be
Element of (
REAL m);
assume
A13: x
in X;
thus (((f
(#) g)
`partial| (X,i))
. x)
= (((f
(#) g)
`partial| (X,i))
/. x) by
A13,
A8,
PARTFUN1:def 6
.= (((
partdiff (f,x,i))
* (g
. x))
+ ((f
. x)
* (
partdiff (g,x,i)))) by
A9,
A13
.= ((((f
`partial| (X,i))
/. x)
* (g
. x))
+ ((f
. x)
* (
partdiff (g,x,i)))) by
A13,
Def6,
A1
.= ((((f
`partial| (X,i))
/. x)
* (g
. x))
+ ((f
. x)
* ((g
`partial| (X,i))
/. x))) by
A13,
Def6,
A1
.= ((((f
`partial| (X,i))
. x)
* (g
. x))
+ ((f
. x)
* ((g
`partial| (X,i))
/. x))) by
A13,
A3,
PARTFUN1:def 6
.= ((((f
`partial| (X,i))
. x)
* (g
. x))
+ ((f
. x)
* ((g
`partial| (X,i))
. x))) by
A13,
A3,
PARTFUN1:def 6
.= ((((f
`partial| (X,i))
(#) g)
. x)
+ ((f
. x)
* ((g
`partial| (X,i))
. x))) by
VALUED_1: 5
.= ((((f
`partial| (X,i))
(#) g)
. x)
+ ((f
(#) (g
`partial| (X,i)))
. x)) by
VALUED_1: 5
.= ((((f
`partial| (X,i))
(#) g)
+ (f
(#) (g
`partial| (X,i))))
. x) by
A13,
A12,
A11,
VALUED_1:def 1;
end;
hence thesis by
A6,
A9,
A4,
Th60,
A1,
A8,
A11,
A12,
PARTFUN1: 5;
end;
begin
definition
let m be non
zero
Element of
NAT , Z be
set, I be
FinSequence of
NAT , f be
PartFunc of (
REAL m),
REAL ;
::
PDIFF_9:def7
func
PartDiffSeq (f,Z,I) ->
Functional_Sequence of (
REAL m),
REAL means
:
Def7: (it
.
0 )
= (f
| Z) & for i be
Nat holds (it
. (i
+ 1))
= ((it
. i)
`partial| (Z,(I
/. (i
+ 1))));
existence
proof
reconsider fZ = (f
| Z) as
Element of (
PFuncs ((
REAL m),
REAL )) by
PARTFUN1: 45;
defpred
R[
set,
set,
set] means ex k be
Nat, h be
PartFunc of (
REAL m),
REAL st $1
= k & $2
= h & $3
= (h
`partial| (Z,(I
/. (k
+ 1))));
A1: for n be
Nat holds for x be
Element of (
PFuncs ((
REAL m),
REAL )) holds ex y be
Element of (
PFuncs ((
REAL m),
REAL )) st
R[n, x, y]
proof
let n be
Nat;
let x be
Element of (
PFuncs ((
REAL m),
REAL ));
reconsider x9 = x as
PartFunc of (
REAL m),
REAL by
PARTFUN1: 46;
reconsider y = (x9
`partial| (Z,(I
/. (n
+ 1)))) as
Element of (
PFuncs ((
REAL m),
REAL )) by
PARTFUN1: 45;
ex h be
PartFunc of (
REAL m),
REAL st x
= h & y
= (h
`partial| (Z,(I
/. (n
+ 1))));
hence thesis;
end;
consider g be
sequence of (
PFuncs ((
REAL m),
REAL )) such that
A2: (g
.
0 )
= fZ & for n be
Nat holds
R[n, (g
. n), (g
. (n
+ 1))] from
RECDEF_1:sch 2(
A1);
reconsider g as
Functional_Sequence of (
REAL m),
REAL ;
take g;
thus (g
.
0 )
= (f
| Z) by
A2;
let i be
Nat;
R[i, (g
. i), (g
. (i
+ 1))] by
A2;
hence thesis;
end;
uniqueness
proof
let seq1,seq2 be
Functional_Sequence of (
REAL m),
REAL ;
assume that
A3: (seq1
.
0 )
= (f
| Z) and
A4: for n be
Nat holds (seq1
. (n
+ 1))
= ((seq1
. n)
`partial| (Z,(I
/. (n
+ 1)))) and
A5: (seq2
.
0 )
= (f
| Z) and
A6: for n be
Nat holds (seq2
. (n
+ 1))
= ((seq2
. n)
`partial| (Z,(I
/. (n
+ 1))));
defpred
P[
Nat] means (seq1
. $1)
= (seq2
. $1);
A7: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume
A8:
P[k];
(seq1
. (k
+ 1))
= ((seq1
. k)
`partial| (Z,(I
/. (k
+ 1)))) by
A4;
hence (seq1
. (k
+ 1))
= (seq2
. (k
+ 1)) by
A6,
A8;
end;
A9:
P[
0 ] by
A3,
A5;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A9,
A7);
hence seq1
= seq2;
end;
end
definition
let m be non
zero
Element of
NAT ;
let Z be
set, I be
FinSequence of
NAT ;
let f be
PartFunc of (
REAL m),
REAL ;
::
PDIFF_9:def8
pred f
is_partial_differentiable_on Z,I means for i be
Element of
NAT st i
<= ((
len I)
- 1) holds ((
PartDiffSeq (f,Z,I))
. i)
is_partial_differentiable_on (Z,(I
/. (i
+ 1)));
end
definition
let m be non
zero
Element of
NAT ;
let Z be
set, I be
FinSequence of
NAT ;
let f be
PartFunc of (
REAL m),
REAL ;
::
PDIFF_9:def9
func f
`partial| (Z,I) ->
PartFunc of (
REAL m),
REAL equals ((
PartDiffSeq (f,Z,I))
. (
len I));
correctness ;
end
Lm6: for I be non
empty
FinSequence of
NAT , X be
set st 1
<= i & i
<= (
len I) & (
rng I)
c= X holds (I
/. i)
in X
proof
let I be non
empty
FinSequence of
NAT , X be
set;
assume
A1: 1
<= i & i
<= (
len I) & (
rng I)
c= X;
then
A2: i
in (
dom I) by
FINSEQ_3: 25;
then (I
. i)
in (
rng I) by
FUNCT_1: 3;
then (I
/. i)
in (
rng I) by
A2,
PARTFUN1:def 6;
hence (I
/. i)
in X by
A1;
end;
theorem ::
PDIFF_9:69
Th69: for m be non
zero
Element of
NAT , Z be
Subset of (
REAL m), i be
Nat, f be
PartFunc of (
REAL m),
REAL , x be
Element of (
REAL m) st Z is
open & Z
c= (
dom f) & 1
<= i & i
<= m & x
in Z & f
is_partial_differentiable_in (x,i) holds (f
| Z)
is_partial_differentiable_in (x,i) & (
partdiff (f,x,i))
= (
partdiff ((f
| Z),x,i))
proof
let m be non
zero
Element of
NAT , X be
Subset of (
REAL m), i be
Nat, f be
PartFunc of (
REAL m),
REAL , nx0 be
Element of (
REAL m);
assume that
A1: X is
open & X
c= (
dom f) & 1
<= i & i
<= m & nx0
in X & f
is_partial_differentiable_in (nx0,i);
set x0 = ((
proj (i,m))
. nx0);
consider N0 be
Neighbourhood of x0 such that
A2: N0
c= (
dom (f
* (
reproj (i,nx0)))) & ex L be
LinearFunc, R be
RestFunc st for x be
Real st x
in N0 holds (((f
* (
reproj (i,nx0)))
. x)
- ((f
* (
reproj (i,nx0)))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A1,
FDIFF_1:def 4;
consider N1 be
Neighbourhood of x0 such that
A3: for x be
Element of
REAL st x
in N1 holds ((
reproj (i,nx0))
. x)
in X by
A1,
Lm2;
A4:
now
let x be
Element of
REAL ;
assume x
in N1;
then ((
reproj (i,nx0))
. x)
in X by
A3;
then ((
reproj (i,nx0))
. x)
in ((
dom f)
/\ X) by
A1,
XBOOLE_0:def 4;
hence ((
reproj (i,nx0))
. x)
in (
dom (f
| X)) by
RELAT_1: 61;
end;
consider N be
Neighbourhood of x0 such that
A5: N
c= N0 & N
c= N1 by
RCOMP_1: 17;
N1
c= (
dom ((f
| X)
* (
reproj (i,nx0))))
proof
let z be
object;
assume
A6: z
in N1;
then
reconsider x = z as
Element of
REAL ;
A7: ((
reproj (i,nx0))
. x)
in (
dom (f
| X)) by
A6,
A4;
z
in
REAL by
A6;
then z
in (
dom (
reproj (i,nx0))) by
FUNCT_2:def 1;
hence z
in (
dom ((f
| X)
* (
reproj (i,nx0)))) by
A7,
FUNCT_1: 11;
end;
then
A8: N
c= (
dom ((f
| X)
* (
reproj (i,nx0)))) by
A5;
consider L be
LinearFunc, R be
RestFunc such that
A9: for x be
Real st x
in N0 holds (((f
* (
reproj (i,nx0)))
. x)
- ((f
* (
reproj (i,nx0)))
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A2;
A10:
now
let xx be
Real;
assume
A11: xx
in N;
reconsider x = xx as
Element of
REAL by
XREAL_0:def 1;
A12: (
dom (
reproj (i,nx0)))
=
REAL by
FUNCT_2:def 1;
A13: ((
reproj (i,nx0))
. x0)
in (
dom (f
| X)) by
A4,
RCOMP_1: 16;
A14: (((f
| X)
* (
reproj (i,nx0)))
. x)
= ((f
| X)
. ((
reproj (i,nx0))
/. x)) by
A12,
FUNCT_1: 13
.= (f
. ((
reproj (i,nx0))
. x)) by
A4,
A11,
A5,
FUNCT_1: 47
.= ((f
* (
reproj (i,nx0)))
. x) by
A12,
FUNCT_1: 13;
(((f
| X)
* (
reproj (i,nx0)))
. x0)
= ((f
| X)
. ((
reproj (i,nx0))
. x0)) by
A12,
FUNCT_1: 13
.= (f
. ((
reproj (i,nx0))
. x0)) by
A13,
FUNCT_1: 47
.= ((f
* (
reproj (i,nx0)))
. x0) by
A12,
FUNCT_1: 13;
hence ((((f
| X)
* (
reproj (i,nx0)))
. xx)
- (((f
| X)
* (
reproj (i,nx0)))
. x0))
= ((L
. (xx
- x0))
+ (R
. (xx
- x0))) by
A14,
A11,
A9,
A5;
end;
hence (f
| X)
is_partial_differentiable_in (nx0,i) by
A8,
FDIFF_1:def 4;
((f
| X)
* (
reproj (i,nx0)))
is_differentiable_in x0 by
A8,
A10,
FDIFF_1:def 4;
then (
partdiff ((f
| X),nx0,i))
= (L
. 1) by
A10,
A8,
FDIFF_1:def 5;
hence thesis by
A2,
A9,
A1,
FDIFF_1:def 5;
end;
theorem ::
PDIFF_9:70
Th70: for m be non
zero
Element of
NAT , Z be
set, i be
Nat, f be
PartFunc of (
REAL m),
REAL holds f
is_partial_differentiable_on (Z,i) iff (f
| Z)
is_partial_differentiable_on (Z,i)
proof
let m be non
zero
Element of
NAT , Z be
set, i be
Nat, f be
PartFunc of (
REAL m),
REAL ;
hereby
assume
A1: f
is_partial_differentiable_on (Z,i);
((f
| Z)
| Z)
= (f
| Z) by
RELAT_1: 72;
hence (f
| Z)
is_partial_differentiable_on (Z,i) by
A1,
RELAT_1: 62;
end;
assume
A2: (f
| Z)
is_partial_differentiable_on (Z,i);
(
dom (f
| Z))
c= (
dom f) by
RELAT_1: 60;
then
A3: Z
c= (
dom f) by
A2;
((f
| Z)
| Z)
= (f
| Z) by
RELAT_1: 72;
hence f
is_partial_differentiable_on (Z,i) by
A2,
A3;
end;
definition
let m be non
zero
Element of
NAT , Z be
set, i be
Nat, f be
PartFunc of (
REAL m),
REAL ;
:: original:
is_partial_differentiable_on
redefine
::
PDIFF_9:def10
pred f
is_partial_differentiable_on Z,i means (f
| Z)
is_partial_differentiable_on (Z,i);
compatibility by
Th70;
end
theorem ::
PDIFF_9:71
Th71: for m be non
zero
Element of
NAT , Z be
Subset of (
REAL m), i be
Nat, f be
PartFunc of (
REAL m),
REAL st Z is
open & 1
<= i & i
<= m & f
is_partial_differentiable_on (Z,i) holds (f
`partial| (Z,i))
= ((f
| Z)
`partial| (Z,i))
proof
let m be non
zero
Element of
NAT , Z be
Subset of (
REAL m), i be
Nat, f be
PartFunc of (
REAL m),
REAL ;
assume
A1: Z is
open & 1
<= i & i
<= m & f
is_partial_differentiable_on (Z,i);
then
A2: (
dom (f
`partial| (Z,i)))
= Z by
Def6;
for x be
Element of (
REAL m) st x
in Z holds ((f
`partial| (Z,i))
/. x)
= (
partdiff ((f
| Z),x,i))
proof
let x be
Element of (
REAL m);
assume
A3: x
in Z;
then f
is_partial_differentiable_in (x,i) & ((f
`partial| (Z,i))
/. x)
= (
partdiff (f,x,i)) by
A1,
Def6,
Th60;
hence ((f
`partial| (Z,i))
/. x)
= (
partdiff ((f
| Z),x,i)) by
A1,
A3,
Th69;
end;
hence thesis by
A1,
A2,
Def6;
end;
theorem ::
PDIFF_9:72
Th72: for f be
PartFunc of (
REAL m),
REAL , I be non
empty
FinSequence of
NAT st f
is_partial_differentiable_on (Z,I) holds ((f
`partial| (Z,I))
| Z)
= (f
`partial| (Z,I))
proof
let f be
PartFunc of (
REAL m),
REAL , I be non
empty
FinSequence of
NAT ;
reconsider k = ((
len I)
- 1) as
Element of
NAT by
INT_1: 5,
FINSEQ_1: 20;
assume f
is_partial_differentiable_on (Z,I);
then
A1: ((
PartDiffSeq (f,Z,I))
. k)
is_partial_differentiable_on (Z,(I
/. (k
+ 1)));
(
dom ((
PartDiffSeq (f,Z,I))
. (k
+ 1)))
= (
dom (((
PartDiffSeq (f,Z,I))
. k)
`partial| (Z,(I
/. (k
+ 1))))) by
Def7;
then (
dom ((
PartDiffSeq (f,Z,I))
. (k
+ 1)))
= Z by
A1,
Def6;
hence ((f
`partial| (Z,I))
| Z)
= (f
`partial| (Z,I)) by
RELAT_1: 68;
end;
theorem ::
PDIFF_9:73
Th73: for f be
PartFunc of (
REAL m),
REAL , I,G be non
empty
FinSequence of
NAT st f
is_partial_differentiable_on (Z,G) holds for n be
Nat st n
<= (
len I) holds ((
PartDiffSeq ((f
`partial| (Z,G)),Z,I))
. n)
= ((
PartDiffSeq (f,Z,(G
^ I)))
. ((
len G)
+ n))
proof
let f be
PartFunc of (
REAL m),
REAL , I,G be non
empty
FinSequence of
NAT ;
assume
A1: f
is_partial_differentiable_on (Z,G);
set g = (f
`partial| (Z,G));
A2: (
dom G)
c= (
dom (G
^ I)) by
FINSEQ_1: 26;
A3: for i be
Nat st i
<= ((
len G)
- 1) holds ((G
^ I)
/. (i
+ 1))
= (G
/. (i
+ 1))
proof
let i be
Nat;
assume i
<= ((
len G)
- 1);
then 1
<= (i
+ 1) & (i
+ 1)
<= (
len G) by
NAT_1: 11,
XREAL_1: 19;
then
A4: (i
+ 1)
in (
dom G) by
FINSEQ_3: 25;
then ((G
^ I)
/. (i
+ 1))
= ((G
^ I)
. (i
+ 1)) by
A2,
PARTFUN1:def 6;
then ((G
^ I)
/. (i
+ 1))
= (G
. (i
+ 1)) by
A4,
FINSEQ_1:def 7;
hence ((G
^ I)
/. (i
+ 1))
= (G
/. (i
+ 1)) by
A4,
PARTFUN1:def 6;
end;
A5: (
len (G
^ I))
= ((
len G)
+ (
len I)) by
FINSEQ_1: 22;
A6: for i be
Nat st i
<= ((
len I)
- 1) holds ((G
^ I)
/. ((
len G)
+ (i
+ 1)))
= (I
/. (i
+ 1))
proof
let i be
Nat;
assume i
<= ((
len I)
- 1);
then
A7: (i
+ 1)
<= (
len I) by
XREAL_1: 19;
then
A8: (i
+ 1)
in (
dom I) by
NAT_1: 11,
FINSEQ_3: 25;
1
<= ((
len G)
+ (i
+ 1)) by
NAT_1: 11,
XREAL_1: 38;
then ((
len G)
+ (i
+ 1))
in (
dom (G
^ I)) by
A5,
A7,
XREAL_1: 7,
FINSEQ_3: 25;
hence ((G
^ I)
/. ((
len G)
+ (i
+ 1)))
= ((G
^ I)
. ((
len G)
+ (i
+ 1))) by
PARTFUN1:def 6
.= (I
. (i
+ 1)) by
A8,
FINSEQ_1:def 7
.= (I
/. (i
+ 1)) by
A8,
PARTFUN1:def 6;
end;
defpred
P0[
Nat] means $1
<= (
len G) implies ((
PartDiffSeq (f,Z,(G
^ I)))
. $1)
= ((
PartDiffSeq (f,Z,G))
. $1);
A9:
P0[
0 ]
proof
assume
0
<= (
len G);
((
PartDiffSeq (f,Z,(G
^ I)))
.
0 )
= (f
| Z) by
Def7;
hence ((
PartDiffSeq (f,Z,(G
^ I)))
.
0 )
= ((
PartDiffSeq (f,Z,G))
.
0 ) by
Def7;
end;
A10: for k be
Nat st
P0[k] holds
P0[(k
+ 1)]
proof
let k be
Nat;
assume
A11:
P0[k];
assume
A12: (k
+ 1)
<= (
len G);
then
A122: ((k
+ 1)
- 1)
<= ((
len G)
- 1) by
XREAL_1: 9;
k
<= (k
+ 1) by
NAT_1: 11;
then
A13: k
<= (
len G) by
A12,
XXREAL_0: 2;
thus ((
PartDiffSeq (f,Z,(G
^ I)))
. (k
+ 1))
= (((
PartDiffSeq (f,Z,(G
^ I)))
. k)
`partial| (Z,((G
^ I)
/. (k
+ 1)))) by
Def7
.= (((
PartDiffSeq (f,Z,G))
. k)
`partial| (Z,(G
/. (k
+ 1)))) by
A13,
A3,
A11,
A122
.= ((
PartDiffSeq (f,Z,G))
. (k
+ 1)) by
Def7;
end;
for n be
Nat holds
P0[n] from
NAT_1:sch 2(
A9,
A10);
then
A15: ((
PartDiffSeq (f,Z,(G
^ I)))
. (
len G))
= ((
PartDiffSeq (f,Z,G))
. (
len G));
defpred
P[
Nat] means $1
<= (
len I) implies ((
PartDiffSeq (g,Z,I))
. $1)
= ((
PartDiffSeq (f,Z,(G
^ I)))
. ((
len G)
+ $1));
A16:
P[
0 ]
proof
assume
0
<= (
len I);
((
PartDiffSeq (f,Z,(G
^ I)))
. ((
len G)
+
0 ))
= (g
| Z) by
A1,
A15,
Th72;
hence thesis by
Def7;
end;
A17: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume
A18:
P[k];
set i = ((
len G)
+ k);
assume
A19: (k
+ 1)
<= (
len I);
then
A199: ((k
+ 1)
- 1)
<= ((
len I)
- 1) by
XREAL_1: 9;
A20: k
<= (k
+ 1) by
NAT_1: 11;
((G
^ I)
/. (i
+ 1))
= ((G
^ I)
/. ((
len G)
+ (k
+ 1)));
then
A21: ((G
^ I)
/. (i
+ 1))
= (I
/. (k
+ 1)) by
A6,
A199;
((
PartDiffSeq (f,Z,(G
^ I)))
. ((
len G)
+ (k
+ 1)))
= (((
PartDiffSeq (f,Z,(G
^ I)))
. i)
`partial| (Z,((G
^ I)
/. (i
+ 1)))) by
Def7;
hence thesis by
A20,
A19,
A18,
A21,
Def7,
XXREAL_0: 2;
end;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A16,
A17);
hence thesis;
end;
theorem ::
PDIFF_9:74
Th74: for X be
Subset of (
REAL m), I be non
empty
FinSequence of
NAT , f,g be
PartFunc of (
REAL m),
REAL st X is
open & (
rng I)
c= (
Seg m) & f
is_partial_differentiable_on (X,I) & g
is_partial_differentiable_on (X,I) holds for i st i
<= ((
len I)
- 1) holds ((
PartDiffSeq ((f
+ g),X,I))
. i)
is_partial_differentiable_on (X,(I
/. (i
+ 1))) & ((
PartDiffSeq ((f
+ g),X,I))
. i)
= (((
PartDiffSeq (f,X,I))
. i)
+ ((
PartDiffSeq (g,X,I))
. i))
proof
let Z be
Subset of (
REAL m), I be non
empty
FinSequence of
NAT ;
let f,g be
PartFunc of (
REAL m),
REAL ;
assume
A1: Z is
open & (
rng I)
c= (
Seg m) & f
is_partial_differentiable_on (Z,I) & g
is_partial_differentiable_on (Z,I);
thus for i be
Element of
NAT st i
<= ((
len I)
- 1) holds ((
PartDiffSeq ((f
+ g),Z,I))
. i)
is_partial_differentiable_on (Z,(I
/. (i
+ 1))) & ((
PartDiffSeq ((f
+ g),Z,I))
. i)
= (((
PartDiffSeq (f,Z,I))
. i)
+ ((
PartDiffSeq (g,Z,I))
. i))
proof
defpred
P[
Nat] means $1
<= ((
len I)
- 1) implies ((
PartDiffSeq ((f
+ g),Z,I))
. $1)
is_partial_differentiable_on (Z,(I
/. ($1
+ 1))) & ((
PartDiffSeq ((f
+ g),Z,I))
. $1)
= (((
PartDiffSeq (f,Z,I))
. $1)
+ ((
PartDiffSeq (g,Z,I))
. $1));
reconsider Z0 =
0 as
Element of
NAT ;
A2:
P[
0 ]
proof
assume
0
<= ((
len I)
- 1);
then
A3: ((
PartDiffSeq (f,Z,I))
. Z0)
is_partial_differentiable_on (Z,(I
/. (Z0
+ 1))) & ((
PartDiffSeq (g,Z,I))
. Z0)
is_partial_differentiable_on (Z,(I
/. (Z0
+ 1))) by
A1;
A4: (f
| Z)
= ((
PartDiffSeq (f,Z,I))
. Z0) & (g
| Z)
= ((
PartDiffSeq (g,Z,I))
. Z0) & ((
PartDiffSeq ((f
+ g),Z,I))
. Z0)
= ((f
+ g)
| Z) by
Def7;
A5: ((f
| Z)
+ (g
| Z))
= ((f
+ g)
| Z) by
RFUNCT_1: 44;
1
<= (
len I) by
FINSEQ_1: 20;
then (I
/. 1)
in (
Seg m) by
A1,
Lm6;
then 1
<= (I
/. 1) & (I
/. 1)
<= m by
FINSEQ_1: 1;
hence thesis by
A4,
A5,
A1,
A3,
Th65;
end;
A6: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume
A7:
P[k];
assume
A8: (k
+ 1)
<= ((
len I)
- 1);
A9: k
<= (k
+ 1) by
NAT_1: 11;
then
A10: k
<= ((
len I)
- 1) by
A8,
XXREAL_0: 2;
A11: ((
PartDiffSeq (f,Z,I))
. (k
+ 1))
is_partial_differentiable_on (Z,(I
/. ((k
+ 1)
+ 1))) & ((
PartDiffSeq (g,Z,I))
. (k
+ 1))
is_partial_differentiable_on (Z,(I
/. ((k
+ 1)
+ 1))) by
A8,
A1;
(k
+ 1)
<= (((
len I)
- 1)
+ 1) by
A10,
XREAL_1: 6;
then (I
/. (k
+ 1))
in (
Seg m) by
A1,
Lm6,
NAT_1: 11;
then
A12: 1
<= (I
/. (k
+ 1)) & (I
/. (k
+ 1))
<= m by
FINSEQ_1: 1;
k
in
NAT by
ORDINAL1:def 12;
then
A13: ((
PartDiffSeq (f,Z,I))
. k)
is_partial_differentiable_on (Z,(I
/. (k
+ 1))) & ((
PartDiffSeq (g,Z,I))
. k)
is_partial_differentiable_on (Z,(I
/. (k
+ 1))) by
A9,
A1,
A8,
XXREAL_0: 2;
A14: ((
PartDiffSeq (f,Z,I))
. (k
+ 1))
= (((
PartDiffSeq (f,Z,I))
. k)
`partial| (Z,(I
/. (k
+ 1)))) by
Def7;
((k
+ 1)
+ 1)
<= (((
len I)
- 1)
+ 1) by
A8,
XREAL_1: 6;
then (I
/. ((k
+ 1)
+ 1))
in (
Seg m) by
A1,
Lm6,
NAT_1: 11;
then
A15: 1
<= (I
/. ((k
+ 1)
+ 1)) & (I
/. ((k
+ 1)
+ 1))
<= m by
FINSEQ_1: 1;
A16: ((
PartDiffSeq ((f
+ g),Z,I))
. (k
+ 1))
= ((((
PartDiffSeq (f,Z,I))
. k)
+ ((
PartDiffSeq (g,Z,I))
. k))
`partial| (Z,(I
/. (k
+ 1)))) by
A9,
A7,
A8,
Def7,
XXREAL_0: 2
.= ((((
PartDiffSeq (f,Z,I))
. k)
`partial| (Z,(I
/. (k
+ 1))))
+ (((
PartDiffSeq (g,Z,I))
. k)
`partial| (Z,(I
/. (k
+ 1))))) by
A13,
A1,
A12,
Th65
.= (((
PartDiffSeq (f,Z,I))
. (k
+ 1))
+ ((
PartDiffSeq (g,Z,I))
. (k
+ 1))) by
A14,
Def7;
hence ((
PartDiffSeq ((f
+ g),Z,I))
. (k
+ 1))
is_partial_differentiable_on (Z,(I
/. ((k
+ 1)
+ 1))) by
A1,
A11,
A15,
Th65;
thus ((
PartDiffSeq ((f
+ g),Z,I))
. (k
+ 1))
= (((
PartDiffSeq (f,Z,I))
. (k
+ 1))
+ ((
PartDiffSeq (g,Z,I))
. (k
+ 1))) by
A16;
end;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A2,
A6);
hence thesis;
end;
end;
theorem ::
PDIFF_9:75
Th75: for X be
Subset of (
REAL m), I be non
empty
FinSequence of
NAT , f,g be
PartFunc of (
REAL m),
REAL st X is
open & (
rng I)
c= (
Seg m) & f
is_partial_differentiable_on (X,I) & g
is_partial_differentiable_on (X,I) holds (f
+ g)
is_partial_differentiable_on (X,I) & ((f
+ g)
`partial| (X,I))
= ((f
`partial| (X,I))
+ (g
`partial| (X,I)))
proof
let Z be
Subset of (
REAL m), I be non
empty
FinSequence of
NAT , f,g be
PartFunc of (
REAL m),
REAL ;
assume
A1: Z is
open & (
rng I)
c= (
Seg m) & f
is_partial_differentiable_on (Z,I) & g
is_partial_differentiable_on (Z,I);
hence (f
+ g)
is_partial_differentiable_on (Z,I) by
Th74;
reconsider k = ((
len I)
- 1) as
Element of
NAT by
FINSEQ_1: 20,
INT_1: 5;
A2: ((
PartDiffSeq (f,Z,I))
. k)
is_partial_differentiable_on (Z,(I
/. (k
+ 1))) & ((
PartDiffSeq (g,Z,I))
. k)
is_partial_differentiable_on (Z,(I
/. (k
+ 1))) by
A1;
1
<= (k
+ 1) by
NAT_1: 11;
then (I
/. (k
+ 1))
in (
Seg m) by
A1,
Lm6;
then
A3: 1
<= (I
/. (k
+ 1)) & (I
/. (k
+ 1))
<= m by
FINSEQ_1: 1;
A4: ((
PartDiffSeq ((f
+ g),Z,I))
. (k
+ 1))
= (((
PartDiffSeq ((f
+ g),Z,I))
. k)
`partial| (Z,(I
/. (k
+ 1)))) by
Def7
.= ((((
PartDiffSeq (f,Z,I))
. k)
+ ((
PartDiffSeq (g,Z,I))
. k))
`partial| (Z,(I
/. (k
+ 1)))) by
A1,
Th74
.= ((((
PartDiffSeq (f,Z,I))
. k)
`partial| (Z,(I
/. (k
+ 1))))
+ (((
PartDiffSeq (g,Z,I))
. k)
`partial| (Z,(I
/. (k
+ 1))))) by
A2,
A1,
A3,
Th65;
((
PartDiffSeq (f,Z,I))
. (k
+ 1))
= (((
PartDiffSeq (f,Z,I))
. k)
`partial| (Z,(I
/. (k
+ 1)))) by
Def7;
hence ((f
+ g)
`partial| (Z,I))
= ((f
`partial| (Z,I))
+ (g
`partial| (Z,I))) by
A4,
Def7;
end;
theorem ::
PDIFF_9:76
Th76: for X be
Subset of (
REAL m), I be non
empty
FinSequence of
NAT , f,g be
PartFunc of (
REAL m),
REAL st X is
open & (
rng I)
c= (
Seg m) & f
is_partial_differentiable_on (X,I) & g
is_partial_differentiable_on (X,I) holds for i st i
<= ((
len I)
- 1) holds ((
PartDiffSeq ((f
- g),X,I))
. i)
is_partial_differentiable_on (X,(I
/. (i
+ 1))) & ((
PartDiffSeq ((f
- g),X,I))
. i)
= (((
PartDiffSeq (f,X,I))
. i)
- ((
PartDiffSeq (g,X,I))
. i))
proof
let Z be
Subset of (
REAL m), I be non
empty
FinSequence of
NAT , f,g be
PartFunc of (
REAL m),
REAL ;
assume
A1: Z is
open & (
rng I)
c= (
Seg m) & f
is_partial_differentiable_on (Z,I) & g
is_partial_differentiable_on (Z,I);
defpred
P[
Nat] means $1
<= ((
len I)
- 1) implies (((
PartDiffSeq ((f
- g),Z,I))
. $1)
is_partial_differentiable_on (Z,(I
/. ($1
+ 1))) & ((
PartDiffSeq ((f
- g),Z,I))
. $1)
= (((
PartDiffSeq (f,Z,I))
. $1)
- ((
PartDiffSeq (g,Z,I))
. $1)));
reconsider Z0 =
0 as
Element of
NAT ;
A2:
P[
0 ]
proof
assume
0
<= ((
len I)
- 1);
then
A3: ((
PartDiffSeq (f,Z,I))
. Z0)
is_partial_differentiable_on (Z,(I
/. (Z0
+ 1))) & ((
PartDiffSeq (g,Z,I))
. Z0)
is_partial_differentiable_on (Z,(I
/. (Z0
+ 1))) by
A1;
A4: ((f
| Z)
- (g
| Z))
= ((f
- g)
| Z) by
RFUNCT_1: 47;
A5: (f
| Z)
= ((
PartDiffSeq (f,Z,I))
.
0 ) & (g
| Z)
= ((
PartDiffSeq (g,Z,I))
.
0 ) & ((f
- g)
| Z)
= ((
PartDiffSeq ((f
- g),Z,I))
.
0 ) by
Def7;
1
<= (
len I) by
FINSEQ_1: 20;
then (I
/. 1)
in (
Seg m) by
A1,
Lm6;
then 1
<= (I
/. 1) & (I
/. 1)
<= m by
FINSEQ_1: 1;
hence thesis by
A5,
A4,
A1,
A3,
Th66;
end;
A6: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume
A7:
P[k];
assume
A8: (k
+ 1)
<= ((
len I)
- 1);
A9: k
<= (k
+ 1) by
NAT_1: 11;
then
A10: k
<= ((
len I)
- 1) by
A8,
XXREAL_0: 2;
A11: ((
PartDiffSeq (f,Z,I))
. (k
+ 1))
is_partial_differentiable_on (Z,(I
/. ((k
+ 1)
+ 1))) & ((
PartDiffSeq (g,Z,I))
. (k
+ 1))
is_partial_differentiable_on (Z,(I
/. ((k
+ 1)
+ 1))) by
A8,
A1;
(k
+ 1)
<= (((
len I)
- 1)
+ 1) by
A10,
XREAL_1: 6;
then (I
/. (k
+ 1))
in (
Seg m) by
A1,
Lm6,
NAT_1: 11;
then
A12: 1
<= (I
/. (k
+ 1)) & (I
/. (k
+ 1))
<= m by
FINSEQ_1: 1;
k
in
NAT by
ORDINAL1:def 12;
then
A13: ((
PartDiffSeq (f,Z,I))
. k)
is_partial_differentiable_on (Z,(I
/. (k
+ 1))) & ((
PartDiffSeq (g,Z,I))
. k)
is_partial_differentiable_on (Z,(I
/. (k
+ 1))) by
A9,
A1,
A8,
XXREAL_0: 2;
A14: ((
PartDiffSeq (f,Z,I))
. (k
+ 1))
= (((
PartDiffSeq (f,Z,I))
. k)
`partial| (Z,(I
/. (k
+ 1)))) by
Def7;
((k
+ 1)
+ 1)
<= (((
len I)
- 1)
+ 1) by
A8,
XREAL_1: 6;
then (I
/. ((k
+ 1)
+ 1))
in (
Seg m) by
A1,
Lm6,
NAT_1: 11;
then
A15: 1
<= (I
/. ((k
+ 1)
+ 1)) & (I
/. ((k
+ 1)
+ 1))
<= m by
FINSEQ_1: 1;
A16: ((
PartDiffSeq ((f
- g),Z,I))
. (k
+ 1))
= (((
PartDiffSeq ((f
- g),Z,I))
. k)
`partial| (Z,(I
/. (k
+ 1)))) by
Def7
.= ((((
PartDiffSeq (f,Z,I))
. k)
`partial| (Z,(I
/. (k
+ 1))))
- (((
PartDiffSeq (g,Z,I))
. k)
`partial| (Z,(I
/. (k
+ 1))))) by
A13,
A1,
A12,
Th66,
A9,
A7,
A8,
XXREAL_0: 2
.= (((
PartDiffSeq (f,Z,I))
. (k
+ 1))
- ((
PartDiffSeq (g,Z,I))
. (k
+ 1))) by
A14,
Def7;
hence ((
PartDiffSeq ((f
- g),Z,I))
. (k
+ 1))
is_partial_differentiable_on (Z,(I
/. ((k
+ 1)
+ 1))) by
A1,
A11,
A15,
Th66;
thus ((
PartDiffSeq ((f
- g),Z,I))
. (k
+ 1))
= (((
PartDiffSeq (f,Z,I))
. (k
+ 1))
- ((
PartDiffSeq (g,Z,I))
. (k
+ 1))) by
A16;
end;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A2,
A6);
hence thesis;
end;
theorem ::
PDIFF_9:77
Th77: for X be
Subset of (
REAL m), I be non
empty
FinSequence of
NAT , f,g be
PartFunc of (
REAL m),
REAL st X is
open & (
rng I)
c= (
Seg m) & f
is_partial_differentiable_on (X,I) & g
is_partial_differentiable_on (X,I) holds (f
- g)
is_partial_differentiable_on (X,I) & ((f
- g)
`partial| (X,I))
= ((f
`partial| (X,I))
- (g
`partial| (X,I)))
proof
let Z be
Subset of (
REAL m), I be non
empty
FinSequence of
NAT , f,g be
PartFunc of (
REAL m),
REAL ;
assume
A1: Z is
open & (
rng I)
c= (
Seg m) & f
is_partial_differentiable_on (Z,I) & g
is_partial_differentiable_on (Z,I);
hence (f
- g)
is_partial_differentiable_on (Z,I) by
Th76;
reconsider k = ((
len I)
- 1) as
Element of
NAT by
INT_1: 5,
FINSEQ_1: 20;
A2: ((
PartDiffSeq (f,Z,I))
. k)
is_partial_differentiable_on (Z,(I
/. (k
+ 1))) & ((
PartDiffSeq (g,Z,I))
. k)
is_partial_differentiable_on (Z,(I
/. (k
+ 1))) by
A1;
1
<= (k
+ 1) by
NAT_1: 11;
then (I
/. (k
+ 1))
in (
Seg m) by
A1,
Lm6;
then
A3: 1
<= (I
/. (k
+ 1)) & (I
/. (k
+ 1))
<= m by
FINSEQ_1: 1;
((
PartDiffSeq ((f
- g),Z,I))
. (k
+ 1))
= (((
PartDiffSeq ((f
- g),Z,I))
. k)
`partial| (Z,(I
/. (k
+ 1)))) by
Def7
.= ((((
PartDiffSeq (f,Z,I))
. k)
- ((
PartDiffSeq (g,Z,I))
. k))
`partial| (Z,(I
/. (k
+ 1)))) by
A1,
Th76;
then
A4: ((
PartDiffSeq ((f
- g),Z,I))
. (k
+ 1))
= ((((
PartDiffSeq (f,Z,I))
. k)
`partial| (Z,(I
/. (k
+ 1))))
- (((
PartDiffSeq (g,Z,I))
. k)
`partial| (Z,(I
/. (k
+ 1))))) by
A2,
A1,
A3,
Th66;
((
PartDiffSeq (f,Z,I))
. (k
+ 1))
= (((
PartDiffSeq (f,Z,I))
. k)
`partial| (Z,(I
/. (k
+ 1)))) by
Def7;
hence ((f
- g)
`partial| (Z,I))
= ((f
`partial| (Z,I))
- (g
`partial| (Z,I))) by
A4,
Def7;
end;
theorem ::
PDIFF_9:78
Th78: for X be
Subset of (
REAL m), r be
Real, I be non
empty
FinSequence of
NAT , f be
PartFunc of (
REAL m),
REAL st X is
open & (
rng I)
c= (
Seg m) & f
is_partial_differentiable_on (X,I) holds for i st i
<= ((
len I)
- 1) holds ((
PartDiffSeq ((r
(#) f),X,I))
. i)
is_partial_differentiable_on (X,(I
/. (i
+ 1))) & ((
PartDiffSeq ((r
(#) f),X,I))
. i)
= (r
(#) ((
PartDiffSeq (f,X,I))
. i))
proof
let Z be
Subset of (
REAL m), r be
Real, I be non
empty
FinSequence of
NAT , f be
PartFunc of (
REAL m),
REAL ;
assume
A1: Z is
open & (
rng I)
c= (
Seg m) & f
is_partial_differentiable_on (Z,I);
defpred
P[
Nat] means $1
<= ((
len I)
- 1) implies (((
PartDiffSeq ((r
(#) f),Z,I))
. $1)
is_partial_differentiable_on (Z,(I
/. ($1
+ 1))) & ((
PartDiffSeq ((r
(#) f),Z,I))
. $1)
= (r
(#) ((
PartDiffSeq (f,Z,I))
. $1)));
reconsider Z0 =
0 as
Element of
NAT ;
A2:
P[
0 ]
proof
assume
0
<= ((
len I)
- 1);
then
A3: ((
PartDiffSeq (f,Z,I))
. Z0)
is_partial_differentiable_on (Z,(I
/. (Z0
+ 1))) by
A1;
A4: ((r
(#) f)
| Z)
= (r
(#) (f
| Z)) by
RFUNCT_1: 49;
((
PartDiffSeq ((r
(#) f),Z,I))
. Z0)
= ((r
(#) f)
| Z) by
Def7;
then
A5: ((
PartDiffSeq ((r
(#) f),Z,I))
. Z0)
= (r
(#) ((
PartDiffSeq (f,Z,I))
. Z0)) by
A4,
Def7;
1
<= (
len I) by
FINSEQ_1: 20;
then (I
/. 1)
in (
Seg m) by
A1,
Lm6;
then 1
<= (I
/. 1) & (I
/. 1)
<= m by
FINSEQ_1: 1;
hence thesis by
A5,
A1,
A3,
Th67;
end;
A6: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume
A7:
P[k];
assume
A8: (k
+ 1)
<= ((
len I)
- 1);
A9: k
<= (k
+ 1) by
NAT_1: 11;
then
A10: k
<= ((
len I)
- 1) by
A8,
XXREAL_0: 2;
A11: ((
PartDiffSeq (f,Z,I))
. (k
+ 1))
is_partial_differentiable_on (Z,(I
/. ((k
+ 1)
+ 1))) by
A8,
A1;
(k
+ 1)
<= (((
len I)
- 1)
+ 1) by
A10,
XREAL_1: 6;
then (I
/. (k
+ 1))
in (
Seg m) by
A1,
Lm6,
NAT_1: 11;
then
A12: 1
<= (I
/. (k
+ 1)) & (I
/. (k
+ 1))
<= m by
FINSEQ_1: 1;
k
in
NAT by
ORDINAL1:def 12;
then
A13: ((
PartDiffSeq (f,Z,I))
. k)
is_partial_differentiable_on (Z,(I
/. (k
+ 1))) by
A1,
A9,
A8,
XXREAL_0: 2;
((k
+ 1)
+ 1)
<= (((
len I)
- 1)
+ 1) by
A8,
XREAL_1: 6;
then (I
/. ((k
+ 1)
+ 1))
in (
Seg m) by
A1,
Lm6,
NAT_1: 11;
then
A14: 1
<= (I
/. ((k
+ 1)
+ 1)) & (I
/. ((k
+ 1)
+ 1))
<= m by
FINSEQ_1: 1;
A15: ((
PartDiffSeq ((r
(#) f),Z,I))
. (k
+ 1))
= ((r
(#) ((
PartDiffSeq (f,Z,I))
. k))
`partial| (Z,(I
/. (k
+ 1)))) by
A9,
A8,
A7,
Def7,
XXREAL_0: 2
.= (r
(#) (((
PartDiffSeq (f,Z,I))
. k)
`partial| (Z,(I
/. (k
+ 1))))) by
A13,
A1,
A12,
Th67
.= (r
(#) ((
PartDiffSeq (f,Z,I))
. (k
+ 1))) by
Def7;
hence ((
PartDiffSeq ((r
(#) f),Z,I))
. (k
+ 1))
is_partial_differentiable_on (Z,(I
/. ((k
+ 1)
+ 1))) by
A1,
A11,
A14,
Th67;
thus ((
PartDiffSeq ((r
(#) f),Z,I))
. (k
+ 1))
= (r
(#) ((
PartDiffSeq (f,Z,I))
. (k
+ 1))) by
A15;
end;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A2,
A6);
hence thesis;
end;
theorem ::
PDIFF_9:79
Th79: for X be
Subset of (
REAL m), r be
Real, I be non
empty
FinSequence of
NAT , f be
PartFunc of (
REAL m),
REAL st X is
open & (
rng I)
c= (
Seg m) & f
is_partial_differentiable_on (X,I) holds (r
(#) f)
is_partial_differentiable_on (X,I) & ((r
(#) f)
`partial| (X,I))
= (r
(#) (f
`partial| (X,I)))
proof
let Z be
Subset of (
REAL m), r be
Real, I be non
empty
FinSequence of
NAT , f be
PartFunc of (
REAL m),
REAL ;
assume
A1: Z is
open & (
rng I)
c= (
Seg m) & f
is_partial_differentiable_on (Z,I);
hence (r
(#) f)
is_partial_differentiable_on (Z,I) by
Th78;
reconsider k = ((
len I)
- 1) as
Element of
NAT by
INT_1: 5,
FINSEQ_1: 20;
A2: ((
PartDiffSeq (f,Z,I))
. k)
is_partial_differentiable_on (Z,(I
/. (k
+ 1))) by
A1;
1
<= (k
+ 1) by
NAT_1: 11;
then (I
/. (k
+ 1))
in (
Seg m) by
A1,
Lm6;
then
A3: 1
<= (I
/. (k
+ 1)) & (I
/. (k
+ 1))
<= m by
FINSEQ_1: 1;
((
PartDiffSeq ((r
(#) f),Z,I))
. (k
+ 1))
= (((
PartDiffSeq ((r
(#) f),Z,I))
. k)
`partial| (Z,(I
/. (k
+ 1)))) by
Def7
.= ((r
(#) ((
PartDiffSeq (f,Z,I))
. k))
`partial| (Z,(I
/. (k
+ 1)))) by
A1,
Th78
.= (r
(#) (((
PartDiffSeq (f,Z,I))
. k)
`partial| (Z,(I
/. (k
+ 1))))) by
A2,
A1,
A3,
Th67;
hence ((r
(#) f)
`partial| (Z,I))
= (r
(#) (f
`partial| (Z,I))) by
Def7;
end;
definition
let m be non
zero
Element of
NAT ;
let f be
PartFunc of (
REAL m),
REAL ;
let k be
Nat;
let Z be
set;
::
PDIFF_9:def11
pred f
is_partial_differentiable_up_to_order k,Z means for I be non
empty
FinSequence of
NAT st (
len I)
<= k & (
rng I)
c= (
Seg m) holds f
is_partial_differentiable_on (Z,I);
end
theorem ::
PDIFF_9:80
Th80: for f be
PartFunc of (
REAL m),
REAL , I,G be non
empty
FinSequence of
NAT holds f
is_partial_differentiable_on (Z,(G
^ I)) iff f
is_partial_differentiable_on (Z,G) & (f
`partial| (Z,G))
is_partial_differentiable_on (Z,I)
proof
let f be
PartFunc of (
REAL m),
REAL , I,G be non
empty
FinSequence of
NAT ;
set g = (f
`partial| (Z,G));
A1: (
dom G)
c= (
dom (G
^ I)) by
FINSEQ_1: 26;
A2: for i be
Nat st i
<= ((
len G)
- 1) holds ((G
^ I)
/. (i
+ 1))
= (G
/. (i
+ 1))
proof
let i be
Nat;
assume i
<= ((
len G)
- 1);
then 1
<= (i
+ 1) & (i
+ 1)
<= (
len G) by
NAT_1: 11,
XREAL_1: 19;
then
A3: (i
+ 1)
in (
dom G) by
FINSEQ_3: 25;
then ((G
^ I)
/. (i
+ 1))
= ((G
^ I)
. (i
+ 1)) by
A1,
PARTFUN1:def 6;
then ((G
^ I)
/. (i
+ 1))
= (G
. (i
+ 1)) by
A3,
FINSEQ_1:def 7;
hence ((G
^ I)
/. (i
+ 1))
= (G
/. (i
+ 1)) by
A3,
PARTFUN1:def 6;
end;
A4: (
len (G
^ I))
= ((
len G)
+ (
len I)) by
FINSEQ_1: 22;
A5: for i be
Nat st i
<= ((
len I)
- 1) holds ((G
^ I)
/. ((
len G)
+ (i
+ 1)))
= (I
/. (i
+ 1))
proof
let i be
Nat;
assume i
<= ((
len I)
- 1);
then
A6: (i
+ 1)
<= (
len I) by
XREAL_1: 19;
then
A7: (i
+ 1)
in (
dom I) by
NAT_1: 11,
FINSEQ_3: 25;
1
<= ((
len G)
+ (i
+ 1)) by
NAT_1: 11,
XREAL_1: 38;
then ((
len G)
+ (i
+ 1))
in (
dom (G
^ I)) by
A4,
A6,
FINSEQ_3: 25,
XREAL_1: 7;
hence ((G
^ I)
/. ((
len G)
+ (i
+ 1)))
= ((G
^ I)
. ((
len G)
+ (i
+ 1))) by
PARTFUN1:def 6
.= (I
. (i
+ 1)) by
A7,
FINSEQ_1:def 7
.= (I
/. (i
+ 1)) by
A7,
PARTFUN1:def 6;
end;
defpred
P0[
Nat] means $1
<= ((
len G)
- 1) implies ((
PartDiffSeq (f,Z,(G
^ I)))
. $1)
= ((
PartDiffSeq (f,Z,G))
. $1);
A8:
P0[
0 ]
proof
assume
0
<= ((
len G)
- 1);
((
PartDiffSeq (f,Z,(G
^ I)))
.
0 )
= (f
| Z) by
Def7;
hence ((
PartDiffSeq (f,Z,(G
^ I)))
.
0 )
= ((
PartDiffSeq (f,Z,G))
.
0 ) by
Def7;
end;
A9: for k be
Nat st
P0[k] holds
P0[(k
+ 1)]
proof
let k be
Nat;
assume
A10:
P0[k];
assume
A11: (k
+ 1)
<= ((
len G)
- 1);
A12: k
<= (k
+ 1) by
NAT_1: 11;
thus ((
PartDiffSeq (f,Z,(G
^ I)))
. (k
+ 1))
= (((
PartDiffSeq (f,Z,(G
^ I)))
. k)
`partial| (Z,((G
^ I)
/. (k
+ 1)))) by
Def7
.= (((
PartDiffSeq (f,Z,G))
. k)
`partial| (Z,(G
/. (k
+ 1)))) by
A12,
A2,
A10,
A11,
XXREAL_0: 2
.= ((
PartDiffSeq (f,Z,G))
. (k
+ 1)) by
Def7;
end;
A13: for n be
Nat holds
P0[n] from
NAT_1:sch 2(
A8,
A9);
hereby
assume
A14: f
is_partial_differentiable_on (Z,(G
^ I));
now
let i be
Element of
NAT ;
assume
A15: i
<= ((
len G)
- 1);
then (i
+
0 )
<= (((
len G)
- 1)
+ (
len I)) by
XREAL_1: 7;
then
A16: ((
PartDiffSeq (f,Z,(G
^ I)))
. i)
is_partial_differentiable_on (Z,((G
^ I)
/. (i
+ 1))) by
A4,
A14;
((G
^ I)
/. (i
+ 1))
= (G
/. (i
+ 1)) by
A15,
A2;
hence ((
PartDiffSeq (f,Z,G))
. i)
is_partial_differentiable_on (Z,(G
/. (i
+ 1))) by
A16,
A15,
A13;
end;
hence
A17: f
is_partial_differentiable_on (Z,G);
now
let i be
Element of
NAT ;
assume
A18: i
<= ((
len I)
- 1);
then ((
len G)
+ i)
<= ((
len G)
+ ((
len I)
- 1)) by
XREAL_1: 6;
then
A19: ((
PartDiffSeq (f,Z,(G
^ I)))
. ((
len G)
+ i))
is_partial_differentiable_on (Z,((G
^ I)
/. (((
len G)
+ i)
+ 1))) by
A4,
A14;
((
len I)
- 1)
<= ((
len I)
-
0 ) by
XREAL_1: 13;
then
A20: i
<= (
len I) by
A18,
XXREAL_0: 2;
((G
^ I)
/. (((
len G)
+ i)
+ 1))
= ((G
^ I)
/. ((
len G)
+ (i
+ 1)));
then ((G
^ I)
/. (((
len G)
+ i)
+ 1))
= (I
/. (i
+ 1)) by
A18,
A5;
hence ((
PartDiffSeq (g,Z,I))
. i)
is_partial_differentiable_on (Z,(I
/. (i
+ 1))) by
A19,
A20,
Th73,
A17;
end;
hence g
is_partial_differentiable_on (Z,I);
end;
now
assume
A20: f
is_partial_differentiable_on (Z,G) & g
is_partial_differentiable_on (Z,I);
now
let i be
Element of
NAT ;
assume
A21: i
<= ((
len (G
^ I))
- 1);
per cases ;
suppose
A22: i
<= ((
len G)
- 1);
then
A23: ((
PartDiffSeq (f,Z,G))
. i)
is_partial_differentiable_on (Z,(G
/. (i
+ 1))) by
A20;
(G
/. (i
+ 1))
= ((G
^ I)
/. (i
+ 1)) by
A22,
A2;
hence ((
PartDiffSeq (f,Z,(G
^ I)))
. i)
is_partial_differentiable_on (Z,((G
^ I)
/. (i
+ 1))) by
A22,
A13,
A23;
end;
suppose not (i
<= ((
len G)
- 1));
then (
len G)
< (i
+ 1) by
XREAL_1: 19;
then (
len G)
<= i by
NAT_1: 13;
then
reconsider k = (i
- (
len G)) as
Element of
NAT by
INT_1: 5;
A24: (i
- (
len G))
<= ((((
len G)
+ (
len I))
- 1)
- (
len G)) by
A21,
A4,
XREAL_1: 9;
then
A25: k
<= ((
len I)
- 1) & i
= (k
+ (
len G));
A26: ((
PartDiffSeq (g,Z,I))
. k)
is_partial_differentiable_on (Z,(I
/. (k
+ 1))) by
A20,
A24;
((
len I)
- 1)
<= ((
len I)
-
0 ) by
XREAL_1: 13;
then
A27: k
<= (
len I) by
A24,
XXREAL_0: 2;
(i
+ 1)
= ((k
+ 1)
+ (
len G));
then (I
/. (k
+ 1))
= ((G
^ I)
/. (i
+ 1)) by
A24,
A5;
hence ((
PartDiffSeq (f,Z,(G
^ I)))
. i)
is_partial_differentiable_on (Z,((G
^ I)
/. (i
+ 1))) by
A20,
A26,
A25,
A27,
Th73;
end;
end;
hence f
is_partial_differentiable_on (Z,(G
^ I));
end;
hence thesis;
end;
set Z0 =
0 ;
theorem ::
PDIFF_9:81
Th81: for f be
PartFunc of (
REAL m),
REAL holds f
is_partial_differentiable_on (Z,
<*i*>) iff f
is_partial_differentiable_on (Z,i)
proof
let f be
PartFunc of (
REAL m),
REAL ;
set I =
<*i*>;
A1: (
len I)
= 1 by
FINSEQ_1: 39;
A2: ((
PartDiffSeq (f,Z,I))
.
0 )
= (f
| Z) by
Def7;
1
in (
Seg 1);
then
A3: 1
in (
dom I) by
FINSEQ_1: 38;
(I
/. (Z0
+ 1))
= (I
. 1) by
A3,
PARTFUN1:def 6;
then (I
/. (Z0
+ 1))
= i by
FINSEQ_1: 40;
hence f
is_partial_differentiable_on (Z,I) implies f
is_partial_differentiable_on (Z,i) by
A2,
A1;
assume
A4: f
is_partial_differentiable_on (Z,i);
now
let k be
Element of
NAT ;
assume k
<= ((
len I)
- 1);
then
A5: k
=
0 by
A1;
then (I
/. (k
+ 1))
= (I
. 1) by
A3,
PARTFUN1:def 6;
then (I
/. (k
+ 1))
= i by
FINSEQ_1: 40;
hence ((
PartDiffSeq (f,Z,I))
. k)
is_partial_differentiable_on (Z,(I
/. (k
+ 1))) by
A4,
A5,
Def7;
end;
hence thesis;
end;
definition
let m be non
zero
Element of
NAT , Z be
set, i be
Element of
NAT , f be
PartFunc of (
REAL m),
REAL ;
:: original:
is_partial_differentiable_on
redefine
::
PDIFF_9:def12
pred f
is_partial_differentiable_on Z,i means f
is_partial_differentiable_on (Z,
<*i*>);
compatibility by
Th81;
end
theorem ::
PDIFF_9:82
Th82: for f be
PartFunc of (
REAL m),
REAL , Z be
Subset of (
REAL m), i be
Element of
NAT st Z is
open & 1
<= i & i
<= m & f
is_partial_differentiable_on (Z,i) holds (f
`partial| (Z,
<*i*>))
= (f
`partial| (Z,i))
proof
let f be
PartFunc of (
REAL m),
REAL , Z be
Subset of (
REAL m), i be
Element of
NAT ;
assume
A1: Z is
open & 1
<= i & i
<= m & f
is_partial_differentiable_on (Z,i);
set I =
<*i*>;
A2: ((
PartDiffSeq (f,Z,I))
.
0 )
= (f
| Z) by
Def7;
1
in (
Seg 1);
then 1
in (
dom I) by
FINSEQ_1: 38;
then (I
/. (
0
+ 1))
= (I
. 1) by
PARTFUN1:def 6;
then
A3: (I
/. (
0
+ 1))
= i by
FINSEQ_1: 40;
thus (f
`partial| (Z,I))
= ((
PartDiffSeq (f,Z,I))
. 1) by
FINSEQ_1: 39
.= (((
PartDiffSeq (f,Z,I))
.
0 )
`partial| (Z,(I
/. (
0
+ 1)))) by
Def7
.= (f
`partial| (Z,i)) by
A2,
A3,
A1,
Th71;
end;
theorem ::
PDIFF_9:83
Th83: for i,j be
Nat holds for f be
PartFunc of (
REAL m),
REAL , I be non
empty
FinSequence of
NAT st f
is_partial_differentiable_up_to_order ((i
+ j),Z) & (
rng I)
c= (
Seg m) & (
len I)
= j holds (f
`partial| (Z,I))
is_partial_differentiable_up_to_order (i,Z)
proof
let i,j be
Nat;
let f be
PartFunc of (
REAL m),
REAL , I be non
empty
FinSequence of
NAT ;
assume
A1: f
is_partial_differentiable_up_to_order ((i
+ j),Z) & (
rng I)
c= (
Seg m) & (
len I)
= j;
let J be non
empty
FinSequence of
NAT ;
assume
A2: (
len J)
<= i & (
rng J)
c= (
Seg m);
reconsider G = (I
^ J) as non
empty
FinSequence of
NAT ;
A3: (
rng G)
= ((
rng I)
\/ (
rng J)) by
FINSEQ_1: 31;
(
len G)
= ((
len I)
+ (
len J)) by
FINSEQ_1: 22;
then (
len G)
<= (i
+ j) & (
rng G)
c= (
Seg m) by
A2,
A3,
A1,
XBOOLE_1: 8,
XREAL_1: 6;
then f
is_partial_differentiable_on (Z,G) by
A1;
hence thesis by
Th80;
end;
theorem ::
PDIFF_9:84
Th84: for i,j be
Nat holds for f be
PartFunc of (
REAL m),
REAL st f
is_partial_differentiable_up_to_order (i,Z) & j
<= i holds f
is_partial_differentiable_up_to_order (j,Z) by
XXREAL_0: 2;
theorem ::
PDIFF_9:85
for X be
Subset of (
REAL m), f,g be
PartFunc of (
REAL m),
REAL st X is
open & f
is_partial_differentiable_up_to_order (i,X) & g
is_partial_differentiable_up_to_order (i,X) holds (f
+ g)
is_partial_differentiable_up_to_order (i,X) & (f
- g)
is_partial_differentiable_up_to_order (i,X)
proof
let Z be
Subset of (
REAL m), f,g be
PartFunc of (
REAL m),
REAL ;
assume
A1: Z is
open & f
is_partial_differentiable_up_to_order (i,Z) & g
is_partial_differentiable_up_to_order (i,Z);
hereby
let I be non
empty
FinSequence of
NAT ;
assume
A2: (
len I)
<= i & (
rng I)
c= (
Seg m);
then f
is_partial_differentiable_on (Z,I) & g
is_partial_differentiable_on (Z,I) by
A1;
hence (f
+ g)
is_partial_differentiable_on (Z,I) by
A1,
A2,
Th75;
end;
let I be non
empty
FinSequence of
NAT ;
assume
A3: (
len I)
<= i & (
rng I)
c= (
Seg m);
then f
is_partial_differentiable_on (Z,I) & g
is_partial_differentiable_on (Z,I) by
A1;
hence thesis by
A1,
A3,
Th77;
end;
theorem ::
PDIFF_9:86
for X be
Subset of (
REAL m), f be
PartFunc of (
REAL m),
REAL , r be
Real st X is
open & f
is_partial_differentiable_up_to_order (i,X) holds (r
(#) f)
is_partial_differentiable_up_to_order (i,X)
proof
let Z be
Subset of (
REAL m), f be
PartFunc of (
REAL m),
REAL , r be
Real;
assume
A1: Z is
open & f
is_partial_differentiable_up_to_order (i,Z);
let I be non
empty
FinSequence of
NAT ;
assume
A2: (
len I)
<= i & (
rng I)
c= (
Seg m);
then f
is_partial_differentiable_on (Z,I) by
A1;
hence thesis by
A1,
A2,
Th79;
end;
theorem ::
PDIFF_9:87
for X be
Subset of (
REAL m) st X is
open holds for i be
Element of
NAT , f,g be
PartFunc of (
REAL m),
REAL st f
is_partial_differentiable_up_to_order (i,X) & g
is_partial_differentiable_up_to_order (i,X) holds (f
(#) g)
is_partial_differentiable_up_to_order (i,X)
proof
let Z be
Subset of (
REAL m);
assume
A1: Z is
open;
defpred
P[
Nat] means for f,g be
PartFunc of (
REAL m),
REAL st f
is_partial_differentiable_up_to_order ($1,Z) & g
is_partial_differentiable_up_to_order ($1,Z) holds (f
(#) g)
is_partial_differentiable_up_to_order ($1,Z);
A2:
P[
0 ]
proof
let f,g be
PartFunc of (
REAL m),
REAL ;
thus thesis;
end;
A3: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume
A4:
P[k];
let f,g be
PartFunc of (
REAL m),
REAL ;
assume
A5: f
is_partial_differentiable_up_to_order ((k
+ 1),Z) & g
is_partial_differentiable_up_to_order ((k
+ 1),Z);
then
A6: f
is_partial_differentiable_up_to_order (k,Z) & g
is_partial_differentiable_up_to_order (k,Z) by
Th84,
NAT_1: 11;
now
let I be non
empty
FinSequence of
NAT ;
assume
A7: (
len I)
<= (k
+ 1) & (
rng I)
c= (
Seg m);
then
A8: f
is_partial_differentiable_on (Z,I) & g
is_partial_differentiable_on (Z,I) by
A5;
A9: 1
<= (
len I) by
FINSEQ_1: 20;
then
A10: 1
in (
dom I) by
FINSEQ_3: 25;
then
A11: (I
/. 1)
= (I
. 1) by
PARTFUN1:def 6;
A12: (I
. 1)
in (
rng I) by
A10,
FUNCT_1: 3;
then (I
. 1)
in (
Seg m) by
A7;
then
reconsider i = (I
. 1) as
Element of
NAT ;
A13: 1
<= i & i
<= m by
A12,
A7,
FINSEQ_1: 1;
per cases ;
suppose 1
= (
len I);
then
A14: I
=
<*(I
. 1)*> by
FINSEQ_5: 14;
then f
is_partial_differentiable_on (Z,i) & g
is_partial_differentiable_on (Z,i) by
A8;
then (f
(#) g)
is_partial_differentiable_on (Z,i) by
A13,
Th68,
A1;
hence (f
(#) g)
is_partial_differentiable_on (Z,I) by
A14;
end;
suppose 1
<> (
len I);
then 1
< (
len I) by
A9,
XXREAL_0: 1;
then (1
+ 1)
<= (
len I) by
NAT_1: 13;
then 1
<= ((
len I)
- 1) by
XREAL_1: 19;
then 1
<= (
len (I
/^ 1)) by
A9,
RFINSEQ:def 1;
then
reconsider J = (I
/^ 1) as non
empty
FinSequence of
NAT ;
set I1 =
<*i*>;
((
len I)
- 1)
<= k by
A7,
XREAL_1: 20;
then
A15: (
len J)
<= k by
A9,
RFINSEQ:def 1;
A16: I
= (
<*(I
/. 1)*>
^ (I
/^ 1)) by
FINSEQ_5: 29;
then
A17: (
rng I1)
c= (
rng I) & (
rng J)
c= (
rng I) by
A11,
FINSEQ_1: 29,
FINSEQ_1: 30;
then
A18: (
rng J)
c= (
Seg m) by
A7;
I
= (I1
^ J) by
A11,
FINSEQ_5: 29;
then
A19: f
is_partial_differentiable_on (Z,i) & g
is_partial_differentiable_on (Z,i) by
A8,
Th80;
then
A20: (f
(#) g)
is_partial_differentiable_on (Z,i) by
A13,
Th68,
A1;
then
A21: (f
(#) g)
is_partial_differentiable_on (Z,I1);
A22: ((f
(#) g)
`partial| (Z,I1))
= ((f
(#) g)
`partial| (Z,i)) by
A1,
A13,
Th82,
A20
.= (((f
`partial| (Z,i))
(#) g)
+ (f
(#) (g
`partial| (Z,i)))) by
A19,
A13,
Th68,
A1
.= (((f
`partial| (Z,I1))
(#) g)
+ (f
(#) (g
`partial| (Z,i)))) by
A1,
A13,
Th82,
A19
.= (((f
`partial| (Z,I1))
(#) g)
+ (f
(#) (g
`partial| (Z,I1)))) by
A1,
A13,
Th82,
A19;
(
len I1)
= 1 & (
rng I1)
c= (
Seg m) by
A17,
A7,
FINSEQ_1: 39;
then (f
`partial| (Z,I1))
is_partial_differentiable_up_to_order (k,Z) & (g
`partial| (Z,I1))
is_partial_differentiable_up_to_order (k,Z) by
Th83,
A5;
then ((f
`partial| (Z,I1))
(#) g)
is_partial_differentiable_up_to_order (k,Z) & (f
(#) (g
`partial| (Z,I1)))
is_partial_differentiable_up_to_order (k,Z) by
A4,
A6;
then ((f
`partial| (Z,I1))
(#) g)
is_partial_differentiable_on (Z,J) & (f
(#) (g
`partial| (Z,I1)))
is_partial_differentiable_on (Z,J) by
A15,
A18;
then (((f
`partial| (Z,I1))
(#) g)
+ (f
(#) (g
`partial| (Z,I1))))
is_partial_differentiable_on (Z,J) by
A1,
A18,
Th75;
hence (f
(#) g)
is_partial_differentiable_on (Z,I) by
A21,
A16,
A11,
A22,
Th80;
end;
end;
hence (f
(#) g)
is_partial_differentiable_up_to_order ((k
+ 1),Z);
end;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A2,
A3);
hence thesis;
end;
theorem ::
PDIFF_9:88
for f be
PartFunc of (
REAL m),
REAL , I,G be non
empty
FinSequence of
NAT st f
is_partial_differentiable_on (Z,G) holds ((f
`partial| (Z,G))
`partial| (Z,I))
= (f
`partial| (Z,(G
^ I)))
proof
let f be
PartFunc of (
REAL m),
REAL , I,G be non
empty
FinSequence of
NAT ;
assume
AS: f
is_partial_differentiable_on (Z,G);
thus ((f
`partial| (Z,G))
`partial| (Z,I))
= ((
PartDiffSeq (f,Z,(G
^ I)))
. ((
len G)
+ (
len I))) by
Th73,
AS
.= (f
`partial| (Z,(G
^ I))) by
FINSEQ_1: 22;
end;