clopban3.miz
begin
theorem ::
CLOPBAN3:1
Th1: for X be
add-associative
right_zeroed
right_complementable non
empty
CNORMSTR holds for seq be
sequence of X st (for n be
Nat holds (seq
. n)
= (
0. X)) holds for m be
Nat holds ((
Partial_Sums seq)
. m)
= (
0. X)
proof
let X be
add-associative
right_zeroed
right_complementable non
empty
CNORMSTR;
let seq be
sequence of X such that
A1: for n be
Nat holds (seq
. n)
= (
0. X);
let m be
Nat;
defpred
P[
Nat] means (seq
. $1)
= ((
Partial_Sums seq)
. $1);
A2: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat such that
A3:
P[k];
thus (seq
. (k
+ 1))
= ((
0. X)
+ (seq
. (k
+ 1))) by
RLVECT_1: 4
.= (((
Partial_Sums seq)
. k)
+ (seq
. (k
+ 1))) by
A1,
A3
.= ((
Partial_Sums seq)
. (k
+ 1)) by
BHSP_4:def 1;
end;
A4:
P[
0 ] by
BHSP_4:def 1;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A4,
A2);
then for n be
Element of
NAT holds
P[n];
then seq
= (
Partial_Sums seq) by
FUNCT_2: 63;
hence thesis by
A1;
end;
definition
let X be
ComplexNormSpace;
let seq be
sequence of X;
::
CLOPBAN3:def1
attr seq is
summable means
:
Def1: (
Partial_Sums seq) is
convergent;
end
registration
let X be
ComplexNormSpace;
cluster
summable for
sequence of X;
existence
proof
reconsider C = (
NAT
--> (
0. X)) as
sequence of X;
take C;
take (
0. X);
let p be
Real such that
A1:
0
< p;
take
0 ;
let m be
Nat such that
0
<= m;
for n be
Nat holds (C
. n)
= (
0. X) by
ORDINAL1:def 12,
FUNCOP_1: 7;
then
||.(((
Partial_Sums C)
. m)
- (
0. X)).||
=
||.((
0. X)
- (
0. X)).|| by
Th1
.=
0 by
CLVECT_1: 107;
hence thesis by
A1;
end;
end
definition
let X be
ComplexNormSpace;
let seq be
sequence of X;
::
CLOPBAN3:def2
func
Sum seq ->
Element of X equals (
lim (
Partial_Sums seq));
correctness ;
end
definition
let X be
ComplexNormSpace;
let seq be
sequence of X;
::
CLOPBAN3:def3
attr seq is
norm_summable means
:
Def3:
||.seq.|| is
summable;
end
theorem ::
CLOPBAN3:2
Th2: for X be
ComplexNormSpace, seq be
sequence of X, m be
Nat holds
0
<= (
||.seq.||
. m)
proof
let X be
ComplexNormSpace;
let seq be
sequence of X;
let m be
Nat;
(
||.seq.||
. m)
=
||.(seq
. m).|| by
NORMSP_0:def 4;
hence thesis by
CLVECT_1: 105;
end;
theorem ::
CLOPBAN3:3
Th3: for X be
ComplexNormSpace, x,y,z be
Element of X holds
||.(x
- y).||
=
||.((x
- z)
+ (z
- y)).||
proof
let X be
ComplexNormSpace;
let x,y,z be
Element of X;
thus
||.(x
- y).||
=
||.((x
- (
0. X))
- y).|| by
RLVECT_1: 13
.=
||.((x
- (z
- z))
- y).|| by
RLVECT_1: 5
.=
||.(((x
- z)
+ z)
- y).|| by
RLVECT_1: 29
.=
||.((x
- z)
+ (z
- y)).|| by
RLVECT_1:def 3;
end;
theorem ::
CLOPBAN3:4
Th4: for X be
ComplexNormSpace, seq be
sequence of X holds seq is
convergent implies for s be
Real st
0
< s holds ex n be
Nat st for m be
Nat st n
<= m holds
||.((seq
. m)
- (seq
. n)).||
< s
proof
let X be
ComplexNormSpace;
let seq be
sequence of X;
assume seq is
convergent;
then
consider g1 be
Element of X such that
A1: for s be
Real st
0
< s holds ex n be
Nat st for m be
Nat st n
<= m holds
||.((seq
. m)
- g1).||
< s;
let s be
Real;
assume
0
< s;
then
consider n be
Nat such that
A2: for m be
Nat st n
<= m holds
||.((seq
. m)
- g1).||
< (s
/ 2) by
A1;
now
let m be
Nat;
assume n
<= m;
then
A3:
||.((seq
. m)
- g1).||
< (s
/ 2) by
A2;
A4:
||.(((seq
. m)
- g1)
+ (g1
- (seq
. n))).||
<= (
||.((seq
. m)
- g1).||
+
||.(g1
- (seq
. n)).||) &
||.(((seq
. m)
- g1)
+ (g1
- (seq
. n))).||
=
||.((seq
. m)
- (seq
. n)).|| by
Th3,
CLVECT_1:def 13;
||.((seq
. n)
- g1).||
< (s
/ 2) by
A2;
then
||.(g1
- (seq
. n)).||
< (s
/ 2) by
CLVECT_1: 108;
then (
||.((seq
. m)
- g1).||
+
||.(g1
- (seq
. n)).||)
< ((s
/ 2)
+ (s
/ 2)) by
A3,
XREAL_1: 8;
hence
||.((seq
. m)
- (seq
. n)).||
< s by
A4,
XXREAL_0: 2;
end;
hence thesis;
end;
theorem ::
CLOPBAN3:5
Th5: for X be
ComplexNormSpace, seq be
sequence of X holds seq is
Cauchy_sequence_by_Norm iff for p be
Real st p
>
0 holds ex n be
Nat st for m be
Nat st n
<= m holds
||.((seq
. m)
- (seq
. n)).||
< p
proof
let X be
ComplexNormSpace;
let seq be
sequence of X;
A1:
now
assume
A2: for p be
Real st p
>
0 holds ex n be
Nat st for m be
Nat st n
<= m holds
||.((seq
. m)
- (seq
. n)).||
< p;
now
let s be
Real;
assume
0
< s;
then
consider k be
Nat such that
A3: for m be
Nat st k
<= m holds
||.((seq
. m)
- (seq
. k)).||
< (s
/ 2) by
A2;
now
let m,n be
Nat such that
A4: k
<= m and
A5: k
<= n;
||.((seq
. n)
- (seq
. k)).||
< (s
/ 2) by
A3,
A5;
then
A6:
||.((seq
. k)
- (seq
. n)).||
< (s
/ 2) by
CLVECT_1: 108;
||.((seq
. m)
- (seq
. k)).||
< (s
/ 2) by
A3,
A4;
then
A7: (
||.((seq
. m)
- (seq
. k)).||
+
||.((seq
. k)
- (seq
. n)).||)
< ((s
/ 2)
+ (s
/ 2)) by
A6,
XREAL_1: 8;
||.(((seq
. m)
- (seq
. k))
+ ((seq
. k)
- (seq
. n))).||
<= (
||.((seq
. m)
- (seq
. k)).||
+
||.((seq
. k)
- (seq
. n)).||) &
||.(((seq
. m)
- (seq
. k))
+ ((seq
. k)
- (seq
. n))).||
=
||.((seq
. m)
- (seq
. n)).|| by
Th3,
CLVECT_1:def 13;
hence
||.((seq
. m)
- (seq
. n)).||
< s by
A7,
XXREAL_0: 2;
end;
hence ex k be
Nat st for m,n be
Nat st k
<= m & k
<= n holds
||.((seq
. m)
- (seq
. n)).||
< s;
end;
hence seq is
Cauchy_sequence_by_Norm by
CSSPACE3: 8;
end;
now
assume
A8: seq is
Cauchy_sequence_by_Norm;
thus for p be
Real st p
>
0 holds ex n be
Nat st for m be
Nat st n
<= m holds
||.((seq
. m)
- (seq
. n)).||
< p
proof
let p be
Real;
assume p
>
0 ;
then
consider n be
Nat such that
A9: for m,k be
Nat st n
<= m & n
<= k holds
||.((seq
. m)
- (seq
. k)).||
< p by
A8,
CSSPACE3: 8;
for m be
Nat st n
<= m holds
||.((seq
. m)
- (seq
. n)).||
< p by
A9;
hence thesis;
end;
end;
hence thesis by
A1;
end;
theorem ::
CLOPBAN3:6
Th6: for X be
ComplexNormSpace, seq be
sequence of X st (for n be
Nat holds (seq
. n)
= (
0. X)) holds for m be
Nat holds ((
Partial_Sums
||.seq.||)
. m)
=
0
proof
let X be
ComplexNormSpace;
let seq be
sequence of X such that
A1: for n be
Nat holds (seq
. n)
= (
0. X);
let m be
Nat;
defpred
P[
Nat] means (
||.seq.||
. $1)
= ((
Partial_Sums
||.seq.||)
. $1);
A2: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat such that
A3:
P[k];
thus (
||.seq.||
. (k
+ 1))
= (
0
+ (
||.seq.||
. (k
+ 1)))
.= (
||.(
0. X).||
+ (
||.seq.||
. (k
+ 1)))
.= (
||.(seq
. k).||
+ (
||.seq.||
. (k
+ 1))) by
A1
.= (((
Partial_Sums
||.seq.||)
. k)
+ (
||.seq.||
. (k
+ 1))) by
A3,
NORMSP_0:def 4
.= ((
Partial_Sums
||.seq.||)
. (k
+ 1)) by
SERIES_1:def 1;
end;
A4:
P[
0 ] by
SERIES_1:def 1;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A4,
A2);
hence ((
Partial_Sums
||.seq.||)
. m)
= (
||.seq.||
. m)
.=
||.(seq
. m).|| by
NORMSP_0:def 4
.=
||.(
0. X).|| by
A1
.=
0 ;
end;
theorem ::
CLOPBAN3:7
Th7: for X be
ComplexNormSpace, seq,seq1 be
sequence of X holds seq1 is
subsequence of seq & seq is
convergent implies seq1 is
convergent
proof
let X be
ComplexNormSpace;
let seq,seq1 be
sequence of X;
assume that
A1: seq1 is
subsequence of seq and
A2: seq is
convergent;
consider g1 be
Element of X such that
A3: for p be
Real st
0
< p holds ex n be
Nat st for m be
Nat st n
<= m holds
||.((seq
. m)
- g1).||
< p by
A2;
take g1;
let p be
Real;
assume
0
< p;
then
consider n1 be
Nat such that
A4: for m be
Nat st n1
<= m holds
||.((seq
. m)
- g1).||
< p by
A3;
take n = n1;
let m be
Nat such that
A5: n
<= m;
A6: m
in
NAT by
ORDINAL1:def 12;
consider Nseq be
increasing
sequence of
NAT such that
A7: seq1
= (seq
* Nseq) by
A1,
VALUED_0:def 17;
m
<= (Nseq
. m) by
SEQM_3: 14;
then
A8: n
<= (Nseq
. m) by
A5,
XXREAL_0: 2;
(seq1
. m)
= (seq
. (Nseq
. m)) by
A7,
FUNCT_2: 15,
A6;
hence thesis by
A4,
A8;
end;
theorem ::
CLOPBAN3:8
Th8: for X be
ComplexNormSpace, seq,seq1 be
sequence of X holds seq1 is
subsequence of seq & seq is
convergent implies (
lim seq1)
= (
lim seq)
proof
let X be
ComplexNormSpace;
let seq,seq1 be
sequence of X;
assume that
A1: seq1 is
subsequence of seq and
A2: seq is
convergent;
consider Nseq be
increasing
sequence of
NAT such that
A3: seq1
= (seq
* Nseq) by
A1,
VALUED_0:def 17;
A4:
now
let p be
Real;
assume
0
< p;
then
consider n1 be
Nat such that
A5: for m be
Nat st n1
<= m holds
||.((seq
. m)
- (
lim seq)).||
< p by
A2,
CLVECT_1:def 16;
take n = n1;
let m be
Nat such that
A6: n
<= m;
A7: m
in
NAT by
ORDINAL1:def 12;
m
<= (Nseq
. m) by
SEQM_3: 14;
then
A8: n
<= (Nseq
. m) by
A6,
XXREAL_0: 2;
(seq1
. m)
= (seq
. (Nseq
. m)) by
A3,
FUNCT_2: 15,
A7;
hence
||.((seq1
. m)
- (
lim seq)).||
< p by
A5,
A8;
end;
seq1 is
convergent by
A1,
A2,
Th7;
hence thesis by
A4,
CLVECT_1:def 16;
end;
theorem ::
CLOPBAN3:9
for X be
ComplexNormSpace, seq,seq1 be
sequence of X, k be
Element of
NAT holds seq is
convergent implies (seq
^\ k) is
convergent & (
lim (seq
^\ k))
= (
lim seq) by
Th7,
Th8;
theorem ::
CLOPBAN3:10
Th10: for X be
ComplexNormSpace, seq,seq1 be
sequence of X holds seq is
convergent & (ex k be
Nat st seq
= (seq1
^\ k)) implies seq1 is
convergent
proof
let X be
ComplexNormSpace;
let seq,seq1 be
sequence of X;
assume that
A1: seq is
convergent and
A2: ex k be
Nat st seq
= (seq1
^\ k);
consider k be
Nat such that
A3: seq
= (seq1
^\ k) by
A2;
consider g1 be
Element of X such that
A4: for p be
Real st
0
< p holds ex n be
Nat st for m be
Nat st n
<= m holds
||.((seq
. m)
- g1).||
< p by
A1;
take g1;
let p be
Real;
assume
0
< p;
then
consider n1 be
Nat such that
A5: for m be
Nat st n1
<= m holds
||.((seq
. m)
- g1).||
< p by
A4;
take n = (n1
+ k);
let m be
Nat;
assume
A6: n
<= m;
then
consider l be
Nat such that
A7: m
= ((n1
+ k)
+ l) by
NAT_1: 10;
reconsider l as
Nat;
(m
- k)
= ((n1
+ l)
+
0 ) by
A7;
then
consider m1 be
Nat such that
A8: m1
= (m
- k);
now
assume not n1
<= m1;
then (m1
+ k)
< (n1
+ k) by
XREAL_1: 6;
hence contradiction by
A6,
A8;
end;
then
A9:
||.((seq
. m1)
- g1).||
< p by
A5;
(m1
+ k)
= m by
A8;
hence thesis by
A3,
A9,
NAT_1:def 3;
end;
theorem ::
CLOPBAN3:11
Th11: for X be
ComplexNormSpace, seq,seq1 be
sequence of X holds seq is
convergent & (ex k be
Nat st seq
= (seq1
^\ k)) implies (
lim seq1)
= (
lim seq)
proof
let X be
ComplexNormSpace;
let seq,seq1 be
sequence of X;
assume that
A1: seq is
convergent and
A2: ex k be
Nat st seq
= (seq1
^\ k);
consider k be
Nat such that
A3: seq
= (seq1
^\ k) by
A2;
A4:
now
let p be
Real;
assume
0
< p;
then
consider n1 be
Nat such that
A5: for m be
Nat st n1
<= m holds
||.((seq
. m)
- (
lim seq)).||
< p by
A1,
CLVECT_1:def 16;
take n = (n1
+ k);
let m be
Nat;
assume
A6: n
<= m;
then
consider l be
Nat such that
A7: m
= ((n1
+ k)
+ l) by
NAT_1: 10;
reconsider l as
Nat;
(m
- k)
= ((n1
+ l)
+
0 ) by
A7;
then
consider m1 be
Nat such that
A8: m1
= (m
- k);
now
assume not n1
<= m1;
then (m1
+ k)
< (n1
+ k) by
XREAL_1: 6;
hence contradiction by
A6,
A8;
end;
then
A9:
||.((seq
. m1)
- (
lim seq)).||
< p by
A5;
(m1
+ k)
= m by
A8;
hence
||.((seq1
. m)
- (
lim seq)).||
< p by
A3,
A9,
NAT_1:def 3;
end;
seq1 is
convergent by
A1,
A2,
Th10;
hence thesis by
A4,
CLVECT_1:def 16;
end;
theorem ::
CLOPBAN3:12
Th12: for X be
ComplexNormSpace, seq be
sequence of X holds seq is
constant implies seq is
convergent
proof
let X be
ComplexNormSpace;
let seq be
sequence of X;
assume seq is
constant;
then
consider r be
Element of X such that
A1: for n be
Nat holds (seq
. n)
= r by
VALUED_0:def 18;
take g = r;
let p be
Real such that
A2:
0
< p;
take n =
0 ;
let m be
Nat such that n
<= m;
||.((seq
. m)
- g).||
=
||.(r
- g).|| by
A1
.=
||.(
0. X).|| by
RLVECT_1: 15
.=
0 ;
hence thesis by
A2;
end;
theorem ::
CLOPBAN3:13
Th13: for X be
ComplexNormSpace, seq be
sequence of X st (for n be
Nat holds (seq
. n)
= (
0. X)) holds seq is
norm_summable
proof
let X be
ComplexNormSpace;
let seq be
sequence of X such that
A1: for n be
Nat holds (seq
. n)
= (
0. X);
take
0 ;
let p be
Real such that
A2:
0
< p;
take
0 ;
let m be
Nat such that
0
<= m;
|.(((
Partial_Sums
||.seq.||)
. m)
-
0 ).|
=
|.(
0
-
0 ).| by
A1,
Th6
.=
0 by
ABSVALUE:def 1;
hence thesis by
A2;
end;
registration
let X be
ComplexNormSpace;
cluster
norm_summable for
sequence of X;
existence
proof
reconsider C = (
NAT
--> (
0. X)) as
sequence of X;
take C;
for n be
Nat holds (C
. n)
= (
0. X) by
ORDINAL1:def 12,
FUNCOP_1: 7;
hence thesis by
Th13;
end;
end
theorem ::
CLOPBAN3:14
Th14: for X be
ComplexNormSpace, s be
sequence of X holds s is
summable implies s is
convergent & (
lim s)
= (
0. X)
proof
let X be
ComplexNormSpace;
let s be
sequence of X;
assume s is
summable;
then
A1: (
Partial_Sums s) is
convergent;
then
A2: ((
Partial_Sums s)
^\ 1) is
convergent by
Th7;
(
lim ((
Partial_Sums s)
^\ 1))
= (
lim (
Partial_Sums s)) by
A1,
Th8;
then
A3: (
lim (((
Partial_Sums s)
^\ 1)
- (
Partial_Sums s)))
= ((
lim (
Partial_Sums s))
- (
lim (
Partial_Sums s))) by
A1,
A2,
CLVECT_1: 120
.= (
0. X) by
RLVECT_1: 15;
now
let n be
Nat;
((
Partial_Sums s)
. (n
+ 1))
= (((
Partial_Sums s)
. n)
+ (s
. (n
+ 1))) by
BHSP_4:def 1;
then ((
Partial_Sums s)
. (n
+ 1))
= (((
Partial_Sums s)
. n)
+ ((s
^\ 1)
. n)) by
NAT_1:def 3;
then (((
Partial_Sums s)
^\ 1)
. n)
= (((s
^\ 1)
. n)
+ ((
Partial_Sums s)
. n)) by
NAT_1:def 3;
then ((((
Partial_Sums s)
^\ 1)
. n)
- ((
Partial_Sums s)
. n))
= (((s
^\ 1)
. n)
+ (((
Partial_Sums s)
. n)
- ((
Partial_Sums s)
. n))) by
RLVECT_1:def 3;
then ((((
Partial_Sums s)
^\ 1)
. n)
- ((
Partial_Sums s)
. n))
= (((s
^\ 1)
. n)
+ (
0. X)) by
RLVECT_1: 15;
hence ((((
Partial_Sums s)
^\ 1)
. n)
- ((
Partial_Sums s)
. n))
= ((s
^\ 1)
. n) by
RLVECT_1: 4;
end;
then
A4: (s
^\ 1)
= (((
Partial_Sums s)
^\ 1)
- (
Partial_Sums s)) by
NORMSP_1:def 3;
then (s
^\ 1) is
convergent by
A1,
A2,
CLVECT_1: 114;
hence thesis by
A3,
A4,
Th10,
Th11;
end;
theorem ::
CLOPBAN3:15
Th15: for X be
ComplexNormSpace, s1,s2 be
sequence of X holds ((
Partial_Sums s1)
+ (
Partial_Sums s2))
= (
Partial_Sums (s1
+ s2))
proof
let X be
ComplexNormSpace;
let s1,s2 be
sequence of X;
A1:
now
let n be
Nat;
thus (((
Partial_Sums s1)
+ (
Partial_Sums s2))
. (n
+ 1))
= (((
Partial_Sums s1)
. (n
+ 1))
+ ((
Partial_Sums s2)
. (n
+ 1))) by
NORMSP_1:def 2
.= ((((
Partial_Sums s1)
. n)
+ (s1
. (n
+ 1)))
+ ((
Partial_Sums s2)
. (n
+ 1))) by
BHSP_4:def 1
.= ((((
Partial_Sums s1)
. n)
+ (s1
. (n
+ 1)))
+ ((s2
. (n
+ 1))
+ ((
Partial_Sums s2)
. n))) by
BHSP_4:def 1
.= (((((
Partial_Sums s1)
. n)
+ (s1
. (n
+ 1)))
+ (s2
. (n
+ 1)))
+ ((
Partial_Sums s2)
. n)) by
RLVECT_1:def 3
.= ((((
Partial_Sums s1)
. n)
+ ((s1
. (n
+ 1))
+ (s2
. (n
+ 1))))
+ ((
Partial_Sums s2)
. n)) by
RLVECT_1:def 3
.= ((((
Partial_Sums s1)
. n)
+ ((s1
+ s2)
. (n
+ 1)))
+ ((
Partial_Sums s2)
. n)) by
NORMSP_1:def 2
.= ((((
Partial_Sums s1)
. n)
+ ((
Partial_Sums s2)
. n))
+ ((s1
+ s2)
. (n
+ 1))) by
RLVECT_1:def 3
.= ((((
Partial_Sums s1)
+ (
Partial_Sums s2))
. n)
+ ((s1
+ s2)
. (n
+ 1))) by
NORMSP_1:def 2;
end;
(((
Partial_Sums s1)
+ (
Partial_Sums s2))
.
0 )
= (((
Partial_Sums s1)
.
0 )
+ ((
Partial_Sums s2)
.
0 )) by
NORMSP_1:def 2
.= ((s1
.
0 )
+ ((
Partial_Sums s2)
.
0 )) by
BHSP_4:def 1
.= ((s1
.
0 )
+ (s2
.
0 )) by
BHSP_4:def 1
.= ((s1
+ s2)
.
0 ) by
NORMSP_1:def 2;
hence thesis by
A1,
BHSP_4:def 1;
end;
theorem ::
CLOPBAN3:16
Th16: for X be
ComplexNormSpace, s1,s2 be
sequence of X holds ((
Partial_Sums s1)
- (
Partial_Sums s2))
= (
Partial_Sums (s1
- s2))
proof
let X be
ComplexNormSpace;
let s1,s2 be
sequence of X;
A1:
now
let n be
Nat;
thus (((
Partial_Sums s1)
- (
Partial_Sums s2))
. (n
+ 1))
= (((
Partial_Sums s1)
. (n
+ 1))
- ((
Partial_Sums s2)
. (n
+ 1))) by
NORMSP_1:def 3
.= ((((
Partial_Sums s1)
. n)
+ (s1
. (n
+ 1)))
- ((
Partial_Sums s2)
. (n
+ 1))) by
BHSP_4:def 1
.= ((((
Partial_Sums s1)
. n)
+ (s1
. (n
+ 1)))
- ((s2
. (n
+ 1))
+ ((
Partial_Sums s2)
. n))) by
BHSP_4:def 1
.= (((((
Partial_Sums s1)
. n)
+ (s1
. (n
+ 1)))
- (s2
. (n
+ 1)))
- ((
Partial_Sums s2)
. n)) by
RLVECT_1: 27
.= ((((
Partial_Sums s1)
. n)
+ ((s1
. (n
+ 1))
- (s2
. (n
+ 1))))
- ((
Partial_Sums s2)
. n)) by
RLVECT_1:def 3
.= ((((s1
- s2)
. (n
+ 1))
+ ((
Partial_Sums s1)
. n))
- ((
Partial_Sums s2)
. n)) by
NORMSP_1:def 3
.= (((s1
- s2)
. (n
+ 1))
+ (((
Partial_Sums s1)
. n)
- ((
Partial_Sums s2)
. n))) by
RLVECT_1:def 3
.= ((((
Partial_Sums s1)
- (
Partial_Sums s2))
. n)
+ ((s1
- s2)
. (n
+ 1))) by
NORMSP_1:def 3;
end;
(((
Partial_Sums s1)
- (
Partial_Sums s2))
.
0 )
= (((
Partial_Sums s1)
.
0 )
- ((
Partial_Sums s2)
.
0 )) by
NORMSP_1:def 3
.= ((s1
.
0 )
- ((
Partial_Sums s2)
.
0 )) by
BHSP_4:def 1
.= ((s1
.
0 )
- (s2
.
0 )) by
BHSP_4:def 1
.= ((s1
- s2)
.
0 ) by
NORMSP_1:def 3;
hence thesis by
A1,
BHSP_4:def 1;
end;
registration
let X be
ComplexNormSpace;
let seq be
norm_summable
sequence of X;
cluster
||.seq.|| ->
summable;
coherence by
Def3;
end
registration
let X be
ComplexNormSpace;
cluster
summable ->
convergent for
sequence of X;
coherence by
Th14;
end
theorem ::
CLOPBAN3:17
Th17: for X be
ComplexNormSpace, seq1,seq2 be
sequence of X st seq1 is
summable & seq2 is
summable holds (seq1
+ seq2) is
summable & (
Sum (seq1
+ seq2))
= ((
Sum seq1)
+ (
Sum seq2))
proof
let X be
ComplexNormSpace;
let seq1,seq2 be
sequence of X;
assume seq1 is
summable & seq2 is
summable;
then
A1: (
Partial_Sums seq1) is
convergent & (
Partial_Sums seq2) is
convergent;
then
A2: ((
Partial_Sums seq1)
+ (
Partial_Sums seq2)) is
convergent by
CLVECT_1: 113;
A3: ((
Partial_Sums seq1)
+ (
Partial_Sums seq2))
= (
Partial_Sums (seq1
+ seq2)) by
Th15;
(
Sum (seq1
+ seq2))
= (
lim ((
Partial_Sums seq1)
+ (
Partial_Sums seq2))) by
Th15
.= ((
lim (
Partial_Sums seq1))
+ (
lim (
Partial_Sums seq2))) by
A1,
CLVECT_1: 119;
hence thesis by
A2,
A3;
end;
theorem ::
CLOPBAN3:18
Th18: for X be
ComplexNormSpace, seq1,seq2 be
sequence of X st seq1 is
summable & seq2 is
summable holds (seq1
- seq2) is
summable & (
Sum (seq1
- seq2))
= ((
Sum seq1)
- (
Sum seq2))
proof
let X be
ComplexNormSpace;
let seq1,seq2 be
sequence of X;
assume seq1 is
summable & seq2 is
summable;
then
A1: (
Partial_Sums seq1) is
convergent & (
Partial_Sums seq2) is
convergent;
then
A2: ((
Partial_Sums seq1)
- (
Partial_Sums seq2)) is
convergent by
CLVECT_1: 114;
A3: ((
Partial_Sums seq1)
- (
Partial_Sums seq2))
= (
Partial_Sums (seq1
- seq2)) by
Th16;
(
Sum (seq1
- seq2))
= (
lim ((
Partial_Sums seq1)
- (
Partial_Sums seq2))) by
Th16
.= ((
lim (
Partial_Sums seq1))
- (
lim (
Partial_Sums seq2))) by
A1,
CLVECT_1: 120;
hence thesis by
A2,
A3;
end;
registration
let X be
ComplexNormSpace;
let seq1,seq2 be
summable
sequence of X;
cluster (seq1
+ seq2) ->
summable;
coherence by
Th17;
cluster (seq1
- seq2) ->
summable;
coherence by
Th18;
end
theorem ::
CLOPBAN3:19
Th19: for X be
ComplexNormSpace, seq be
sequence of X, z be
Complex holds (
Partial_Sums (z
* seq))
= (z
* (
Partial_Sums seq))
proof
let X be
ComplexNormSpace;
let seq be
sequence of X;
let z be
Complex;
defpred
P[
Nat] means ((
Partial_Sums (z
* seq))
. $1)
= ((z
* (
Partial_Sums seq))
. $1);
A1:
now
let n be
Nat;
assume
A2:
P[n];
((
Partial_Sums (z
* seq))
. (n
+ 1))
= (((
Partial_Sums (z
* seq))
. n)
+ ((z
* seq)
. (n
+ 1))) by
BHSP_4:def 1
.= ((z
* ((
Partial_Sums seq)
. n))
+ ((z
* seq)
. (n
+ 1))) by
A2,
CLVECT_1:def 14
.= ((z
* ((
Partial_Sums seq)
. n))
+ (z
* (seq
. (n
+ 1)))) by
CLVECT_1:def 14
.= (z
* (((
Partial_Sums seq)
. n)
+ (seq
. (n
+ 1)))) by
CLVECT_1:def 2
.= (z
* ((
Partial_Sums seq)
. (n
+ 1))) by
BHSP_4:def 1
.= ((z
* (
Partial_Sums seq))
. (n
+ 1)) by
CLVECT_1:def 14;
hence
P[(n
+ 1)];
end;
((
Partial_Sums (z
* seq))
.
0 )
= ((z
* seq)
.
0 ) by
BHSP_4:def 1
.= (z
* (seq
.
0 )) by
CLVECT_1:def 14
.= (z
* ((
Partial_Sums seq)
.
0 )) by
BHSP_4:def 1
.= ((z
* (
Partial_Sums seq))
.
0 ) by
CLVECT_1:def 14;
then
A3:
P[
0 ];
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A3,
A1);
then for n be
Element of
NAT holds
P[n];
hence thesis by
FUNCT_2: 63;
end;
theorem ::
CLOPBAN3:20
Th20: for X be
ComplexNormSpace, seq be
summable
sequence of X, z be
Complex holds (z
* seq) is
summable & (
Sum (z
* seq))
= (z
* (
Sum seq))
proof
let X be
ComplexNormSpace;
let seq be
summable
sequence of X;
let z be
Complex;
A1: (
Partial_Sums (z
* seq))
= (z
* (
Partial_Sums seq)) by
Th19;
A2: (
Partial_Sums seq) is
convergent by
Def1;
then
A3: (z
* (
Partial_Sums seq)) is
convergent by
CLVECT_1: 116;
(
Sum (z
* seq))
= (
lim (z
* (
Partial_Sums seq))) by
Th19
.= (z
* (
Sum seq)) by
A2,
CLVECT_1: 122;
hence thesis by
A3,
A1;
end;
registration
let X be
ComplexNormSpace;
let z be
Complex, seq be
summable
sequence of X;
cluster (z
* seq) ->
summable;
coherence by
Th20;
end
theorem ::
CLOPBAN3:21
Th21: for X be
ComplexNormSpace, s,s1 be
sequence of X st for n be
Nat holds (s1
. n)
= (s
.
0 ) holds (
Partial_Sums (s
^\ 1))
= (((
Partial_Sums s)
^\ 1)
- s1)
proof
let X be
ComplexNormSpace;
let s,s1 be
sequence of X;
assume
A1: for n be
Nat holds (s1
. n)
= (s
.
0 );
A2:
now
let k be
Nat;
thus ((((
Partial_Sums s)
^\ 1)
- s1)
. (k
+ 1))
= ((((
Partial_Sums s)
^\ 1)
. (k
+ 1))
- (s1
. (k
+ 1))) by
NORMSP_1:def 3
.= ((((
Partial_Sums s)
^\ 1)
. (k
+ 1))
- (s
.
0 )) by
A1
.= (((
Partial_Sums s)
. ((k
+ 1)
+ 1))
- (s
.
0 )) by
NAT_1:def 3
.= (((s
. ((k
+ 1)
+ 1))
+ ((
Partial_Sums s)
. (k
+ 1)))
- (s
.
0 )) by
BHSP_4:def 1
.= (((s
. ((k
+ 1)
+ 1))
+ ((
Partial_Sums s)
. (k
+ 1)))
- (s1
. k)) by
A1
.= ((s
. ((k
+ 1)
+ 1))
+ (((
Partial_Sums s)
. (k
+ 1))
- (s1
. k))) by
RLVECT_1:def 3
.= ((s
. ((k
+ 1)
+ 1))
+ ((((
Partial_Sums s)
^\ 1)
. k)
- (s1
. k))) by
NAT_1:def 3
.= ((s
. ((k
+ 1)
+ 1))
+ ((((
Partial_Sums s)
^\ 1)
- s1)
. k)) by
NORMSP_1:def 3
.= (((((
Partial_Sums s)
^\ 1)
- s1)
. k)
+ ((s
^\ 1)
. (k
+ 1))) by
NAT_1:def 3;
end;
((((
Partial_Sums s)
^\ 1)
- s1)
.
0 )
= ((((
Partial_Sums s)
^\ 1)
.
0 )
- (s1
.
0 )) by
NORMSP_1:def 3
.= ((((
Partial_Sums s)
^\ 1)
.
0 )
- (s
.
0 )) by
A1
.= (((
Partial_Sums s)
. (
0
+ 1))
- (s
.
0 )) by
NAT_1:def 3
.= ((((
Partial_Sums s)
.
0 )
+ (s
. (
0
+ 1)))
- (s
.
0 )) by
BHSP_4:def 1
.= (((s
. (
0
+ 1))
+ (s
.
0 ))
- (s
.
0 )) by
BHSP_4:def 1
.= ((s
. (
0
+ 1))
+ ((s
.
0 )
- (s
.
0 ))) by
RLVECT_1:def 3
.= ((s
. (
0
+ 1))
+ (
0. X)) by
RLVECT_1: 15
.= (s
. (
0
+ 1)) by
RLVECT_1: 4
.= ((s
^\ 1)
.
0 ) by
NAT_1:def 3;
hence thesis by
A2,
BHSP_4:def 1;
end;
theorem ::
CLOPBAN3:22
Th22: for X be
ComplexNormSpace, s be
sequence of X holds s is
summable implies for n be
Nat holds (s
^\ n) is
summable
proof
let X be
ComplexNormSpace;
let s be
sequence of X;
defpred
X[
Nat] means (s
^\ $1) is
summable;
A1: for n be
Nat st
X[n] holds
X[(n
+ 1)]
proof
let n be
Nat;
reconsider s1 = (
NAT
--> ((s
^\ n)
.
0 )) as
sequence of X;
for k be
Nat holds (s1
. k)
= ((s
^\ n)
.
0 ) by
ORDINAL1:def 12,
FUNCOP_1: 7;
then
A2: (
Partial_Sums ((s
^\ n)
^\ 1))
= (((
Partial_Sums (s
^\ n))
^\ 1)
- s1) by
Th21;
assume (s
^\ n) is
summable;
then (
Partial_Sums (s
^\ n)) is
convergent;
then
A3: ((
Partial_Sums (s
^\ n))
^\ 1) is
convergent by
Th7;
s1 is
convergent by
Th12;
then (s
^\ (n
+ 1))
= ((s
^\ n)
^\ 1) & (
Partial_Sums ((s
^\ n)
^\ 1)) is
convergent by
A3,
A2,
CLVECT_1: 114,
NAT_1: 48;
hence thesis by
Def1;
end;
assume s is
summable;
then
A4:
X[
0 ] by
NAT_1: 47;
thus for n be
Nat holds
X[n] from
NAT_1:sch 2(
A4,
A1);
end;
registration
let X be
ComplexNormSpace;
let seq be
summable
sequence of X, n be
Nat;
cluster (seq
^\ n) ->
summable;
coherence by
Th22;
end
theorem ::
CLOPBAN3:23
Th23: for X be
ComplexNormSpace, seq be
sequence of X holds (
Partial_Sums
||.seq.||) is
bounded_above iff seq is
norm_summable
proof
let X be
ComplexNormSpace;
let seq be
sequence of X;
for n be
Nat holds
0
<= (
||.seq.||
. n) by
Th2;
then (
Partial_Sums
||.seq.||) is
bounded_above iff
||.seq.|| is
summable by
SERIES_1: 17;
hence thesis;
end;
registration
let X be
ComplexNormSpace;
let seq be
norm_summable
sequence of X;
cluster (
Partial_Sums
||.seq.||) ->
bounded_above;
coherence by
Th23;
end
theorem ::
CLOPBAN3:24
Th24: for X be
ComplexBanachSpace, seq be
sequence of X holds seq is
summable iff for p be
Real st
0
< p holds ex n be
Nat st for m be
Nat st n
<= m holds
||.(((
Partial_Sums seq)
. m)
- ((
Partial_Sums seq)
. n)).||
< p by
Th5,
CLOPBAN1:def 13,
Th4;
theorem ::
CLOPBAN3:25
Th25: for X be
ComplexNormSpace, s be
sequence of X, n,m be
Nat st n
<= m holds
||.(((
Partial_Sums s)
. m)
- ((
Partial_Sums s)
. n)).||
<=
|.(((
Partial_Sums
||.s.||)
. m)
- ((
Partial_Sums
||.s.||)
. n)).|
proof
let X be
ComplexNormSpace;
let s be
sequence of X;
set s1 = (
Partial_Sums s);
set s2 = (
Partial_Sums
||.s.||);
let n,m be
Nat;
assume n
<= m;
then
reconsider k = (m
- n) as
Element of
NAT by
INT_1: 5;
defpred
X[
Nat] means
||.((s1
. (n
+ $1))
- (s1
. n)).||
<=
|.((s2
. (n
+ $1))
- (s2
. n)).|;
A1: (n
+ k)
= m;
now
let k be
Nat;
||.(s
. k).||
>=
0 by
CLVECT_1: 105;
hence (
||.s.||
. k)
>=
0 by
NORMSP_0:def 4;
end;
then
A2: s2 is
non-decreasing by
SERIES_1: 16;
A3: for k be
Nat st
X[k] holds
X[(k
+ 1)]
proof
let k be
Nat;
A4:
|.((s2
. (n
+ (k
+ 1)))
- (s2
. n)).|
=
|.(((s2
. (n
+ k))
+ (
||.s.||
. ((n
+ k)
+ 1)))
- (s2
. n)).| by
SERIES_1:def 1
.=
|.(((s2
. (n
+ k))
+
||.(s
. ((n
+ k)
+ 1)).||)
- (s2
. n)).| by
NORMSP_0:def 4
.=
|.(
||.(s
. ((n
+ k)
+ 1)).||
+ ((s2
. (n
+ k))
- (s2
. n))).|;
||.((s1
. (n
+ (k
+ 1)))
- (s1
. n)).||
=
||.(((s
. ((n
+ k)
+ 1))
+ (s1
. (n
+ k)))
- (s1
. n)).|| by
BHSP_4:def 1
.=
||.((s
. ((n
+ k)
+ 1))
+ ((s1
. (n
+ k))
- (s1
. n))).|| by
RLVECT_1:def 3;
then
A5:
||.((s1
. (n
+ (k
+ 1)))
- (s1
. n)).||
<= (
||.(s
. ((n
+ k)
+ 1)).||
+
||.((s1
. (n
+ k))
- (s1
. n)).||) by
CLVECT_1:def 13;
(s2
. (n
+ k))
>= (s2
. n) by
A2,
SEQM_3: 5;
then
A6: ((s2
. (n
+ k))
- (s2
. n))
>=
0 by
XREAL_1: 48;
assume
||.((s1
. (n
+ k))
- (s1
. n)).||
<=
|.((s2
. (n
+ k))
- (s2
. n)).|;
then (
||.(s
. ((n
+ k)
+ 1)).||
+
||.((s1
. (n
+ k))
- (s1
. n)).||)
<= (
||.(s
. ((n
+ k)
+ 1)).||
+
|.((s2
. (n
+ k))
- (s2
. n)).|) by
XREAL_1: 7;
then
||.((s1
. (n
+ (k
+ 1)))
- (s1
. n)).||
<= (
||.(s
. ((n
+ k)
+ 1)).||
+
|.((s2
. (n
+ k))
- (s2
. n)).|) by
A5,
XXREAL_0: 2;
then
A7:
||.((s1
. (n
+ (k
+ 1)))
- (s1
. n)).||
<= (
||.(s
. ((n
+ k)
+ 1)).||
+ ((s2
. (n
+ k))
- (s2
. n))) by
A6,
ABSVALUE:def 1;
||.(s
. ((n
+ k)
+ 1)).||
>=
0 by
CLVECT_1: 105;
hence thesis by
A6,
A7,
A4,
ABSVALUE:def 1;
end;
||.((s1
. (n
+
0 ))
- (s1
. n)).||
=
||.(
0. X).|| by
RLVECT_1: 15
.=
0 ;
then
A8:
X[
0 ] by
COMPLEX1: 46;
for k be
Nat holds
X[k] from
NAT_1:sch 2(
A8,
A3);
hence thesis by
A1;
end;
theorem ::
CLOPBAN3:26
Th26: for X be
ComplexBanachSpace, seq be
sequence of X holds seq is
norm_summable implies seq is
summable
proof
let X be
ComplexBanachSpace;
let seq be
sequence of X;
assume seq is
norm_summable;
then
A1: (
Partial_Sums
||.seq.||) is
convergent by
SERIES_1:def 2;
now
let p be
Real;
assume
0
< p;
then
consider n be
Nat such that
A2: for m be
Nat st n
<= m holds
|.(((
Partial_Sums
||.seq.||)
. m)
- ((
Partial_Sums
||.seq.||)
. n)).|
< p by
A1,
SEQ_4: 41;
take n;
let m be
Nat;
assume
A3: n
<= m;
then
A4:
||.(((
Partial_Sums seq)
. m)
- ((
Partial_Sums seq)
. n)).||
<=
|.(((
Partial_Sums
||.seq.||)
. m)
- ((
Partial_Sums
||.seq.||)
. n)).| by
Th25;
|.(((
Partial_Sums
||.seq.||)
. m)
- ((
Partial_Sums
||.seq.||)
. n)).|
< p by
A2,
A3;
hence
||.(((
Partial_Sums seq)
. m)
- ((
Partial_Sums seq)
. n)).||
< p by
A4,
XXREAL_0: 2;
end;
hence thesis by
Th24;
end;
theorem ::
CLOPBAN3:27
for X be
ComplexNormSpace, rseq1 be
Real_Sequence, seq2 be
sequence of X holds rseq1 is
summable & (ex m be
Nat st for n be
Nat st m
<= n holds
||.(seq2
. n).||
<= (rseq1
. n)) implies seq2 is
norm_summable
proof
let X be
ComplexNormSpace;
let rseq1 be
Real_Sequence;
let seq2 be
sequence of X;
assume that
A1: rseq1 is
summable and
A2: ex m be
Nat st for n be
Nat st m
<= n holds
||.(seq2
. n).||
<= (rseq1
. n);
consider m be
Nat such that
A3: for n be
Nat st m
<= n holds
||.(seq2
. n).||
<= (rseq1
. n) by
A2;
A4:
now
let n be
Nat;
||.(seq2
. n).||
= (
||.seq2.||
. n) by
NORMSP_0:def 4;
hence
0
<= (
||.seq2.||
. n) by
CLVECT_1: 105;
end;
now
let n be
Nat;
assume m
<= n;
then
||.(seq2
. n).||
<= (rseq1
. n) by
A3;
hence (
||.seq2.||
. n)
<= (rseq1
. n) by
NORMSP_0:def 4;
end;
hence
||.seq2.|| is
summable by
A1,
A4,
SERIES_1: 19;
end;
theorem ::
CLOPBAN3:28
for X be
ComplexNormSpace, seq1,seq2 be
sequence of X holds (for n be
Nat holds
0
<= (
||.seq1.||
. n) & (
||.seq1.||
. n)
<= (
||.seq2.||
. n)) & seq2 is
norm_summable implies seq1 is
norm_summable & (
Sum
||.seq1.||)
<= (
Sum
||.seq2.||) by
SERIES_1: 20;
theorem ::
CLOPBAN3:29
for X be
ComplexNormSpace, seq be
sequence of X holds (for n be
Nat holds (
||.seq.||
. n)
>
0 ) & (ex m be
Nat st for n be
Nat st n
>= m holds ((
||.seq.||
. (n
+ 1))
/ (
||.seq.||
. n))
>= 1) implies not seq is
norm_summable by
SERIES_1: 27;
theorem ::
CLOPBAN3:30
for X be
ComplexNormSpace, seq be
sequence of X, rseq1 be
Real_Sequence holds (for n be
Nat holds (rseq1
. n)
= (n
-root (
||.seq.||
. n))) & rseq1 is
convergent & (
lim rseq1)
< 1 implies seq is
norm_summable
proof
let X be
ComplexNormSpace;
let seq be
sequence of X;
let rseq1 be
Real_Sequence;
assume
A1: (for n be
Nat holds (rseq1
. n)
= (n
-root (
||.seq.||
. n))) & rseq1 is
convergent & (
lim rseq1)
< 1;
for n be
Nat holds (
||.seq.||
. n)
>=
0 by
Th2;
hence
||.seq.|| is
summable by
A1,
SERIES_1: 28;
end;
theorem ::
CLOPBAN3:31
for X be
ComplexNormSpace, seq be
sequence of X, rseq1 be
Real_Sequence holds (for n be
Nat holds (rseq1
. n)
= (n
-root (
||.seq.||
. n))) & (ex m be
Nat st for n be
Nat st m
<= n holds (rseq1
. n)
>= 1) implies not
||.seq.|| is
summable
proof
let X be
ComplexNormSpace;
let seq be
sequence of X;
let rseq1 be
Real_Sequence;
assume
A1: (for n be
Nat holds (rseq1
. n)
= (n
-root (
||.seq.||
. n))) & ex m be
Nat st for n be
Nat st m
<= n holds (rseq1
. n)
>= 1;
for n be
Nat holds (
||.seq.||
. n)
>=
0 by
Th2;
hence thesis by
A1,
SERIES_1: 29;
end;
theorem ::
CLOPBAN3:32
for X be
ComplexNormSpace, seq be
sequence of X, rseq1 be
Real_Sequence holds (for n be
Nat holds (rseq1
. n)
= (n
-root (
||.seq.||
. n))) & rseq1 is
convergent & (
lim rseq1)
> 1 implies not seq is
norm_summable
proof
let X be
ComplexNormSpace;
let seq be
sequence of X;
let rseq1 be
Real_Sequence;
assume
A1: (for n be
Nat holds (rseq1
. n)
= (n
-root (
||.seq.||
. n))) & rseq1 is
convergent & (
lim rseq1)
> 1;
for n be
Nat holds (
||.seq.||
. n)
>=
0 by
Th2;
hence not
||.seq.|| is
summable by
A1,
SERIES_1: 30;
end;
theorem ::
CLOPBAN3:33
for X be
ComplexNormSpace, seq be
sequence of X, rseq1 be
Real_Sequence st
||.seq.|| is
non-increasing & (for n be
Nat holds (rseq1
. n)
= ((2
to_power n)
* (
||.seq.||
. (2
to_power n)))) holds (seq is
norm_summable iff rseq1 is
summable)
proof
let X be
ComplexNormSpace;
let seq be
sequence of X;
let rseq1 be
Real_Sequence;
assume
||.seq.|| is
non-increasing & for n be
Nat holds (rseq1
. n)
= ((2
to_power n)
* (
||.seq.||
. (2
to_power n)));
then for n be
Nat holds
||.seq.|| is
non-increasing & (
||.seq.||
. n)
>=
0 & (rseq1
. n)
= ((2
to_power n)
* (
||.seq.||
. (2
to_power n))) by
Th2;
then
||.seq.|| is
summable iff rseq1 is
summable by
SERIES_1: 31;
hence thesis;
end;
theorem ::
CLOPBAN3:34
for X be
ComplexNormSpace, seq be
sequence of X, p be
Real st p
> 1 & (for n be
Nat st n
>= 1 holds (
||.seq.||
. n)
= (1
/ (n
to_power p))) holds seq is
norm_summable by
SERIES_1: 32;
theorem ::
CLOPBAN3:35
for X be
ComplexNormSpace, seq be
sequence of X, p be
Real holds p
<= 1 & (for n be
Nat st n
>= 1 holds (
||.seq.||
. n)
= (1
/ (n
to_power p))) implies not seq is
norm_summable by
SERIES_1: 33;
theorem ::
CLOPBAN3:36
for X be
ComplexNormSpace, seq be
sequence of X, rseq1 be
Real_Sequence holds (for n be
Nat holds (seq
. n)
<> (
0. X) & (rseq1
. n)
= ((
||.seq.||
. (n
+ 1))
/ (
||.seq.||
. n))) & rseq1 is
convergent & (
lim rseq1)
< 1 implies seq is
norm_summable
proof
let X be
ComplexNormSpace;
let seq be
sequence of X;
let rseq1 be
Real_Sequence;
assume that
A1: for n be
Nat holds (seq
. n)
<> (
0. X) & (rseq1
. n)
= ((
||.seq.||
. (n
+ 1))
/ (
||.seq.||
. n)) and
A2: rseq1 is
convergent & (
lim rseq1)
< 1;
now
let n be
Nat;
A3:
0
<= (
||.seq.||
. n) by
Th2;
A4:
0
<= (
||.seq.||
. (n
+ 1)) by
Th2;
A5: ((
abs
||.seq.||)
. (n
+ 1))
=
|.(
||.seq.||
. (n
+ 1)).| by
SEQ_1: 12
.= (
||.seq.||
. (n
+ 1)) by
A4,
ABSVALUE:def 1;
A6: (seq
. n)
<> (
0. X) & (
||.seq.||
. n)
=
||.(seq
. n).|| by
A1,
NORMSP_0:def 4;
((
abs
||.seq.||)
. n)
=
|.(
||.seq.||
. n).| by
SEQ_1: 12
.= (
||.seq.||
. n) by
A3,
ABSVALUE:def 1;
hence (
||.seq.||
. n)
<>
0 & (rseq1
. n)
= (((
abs
||.seq.||)
. (n
+ 1))
/ ((
abs
||.seq.||)
. n)) by
A1,
A5,
A6,
NORMSP_0:def 5;
end;
then
||.seq.|| is
absolutely_summable by
A2,
SERIES_1: 37;
then
A7: (
abs
||.seq.||) is
summable;
now
let n be
Element of
NAT ;
A8:
0
<= (
||.seq.||
. n) by
Th2;
thus ((
abs
||.seq.||)
. n)
=
|.(
||.seq.||
. n).| by
SEQ_1: 12
.= (
||.seq.||
. n) by
A8,
ABSVALUE:def 1;
end;
then (
abs
||.seq.||)
=
||.seq.|| by
FUNCT_2: 63;
hence thesis by
A7;
end;
theorem ::
CLOPBAN3:37
for X be
ComplexNormSpace, seq be
sequence of X holds (for n be
Nat holds (seq
. n)
<> (
0. X)) & (ex m be
Nat st for n be
Nat st n
>= m holds ((
||.seq.||
. (n
+ 1))
/ (
||.seq.||
. n))
>= 1) implies not seq is
norm_summable
proof
let X be
ComplexNormSpace;
let seq be
sequence of X;
assume that
A1: for n be
Nat holds (seq
. n)
<> (
0. X) and
A2: ex m be
Nat st for n be
Nat st n
>= m holds ((
||.seq.||
. (n
+ 1))
/ (
||.seq.||
. n))
>= 1;
consider m be
Nat such that
A3: for n be
Nat st n
>= m holds ((
||.seq.||
. (n
+ 1))
/ (
||.seq.||
. n))
>= 1 by
A2;
A4:
now
let n be
Nat such that
A5: n
>= m;
A6:
0
<= (
||.seq.||
. n) by
Th2;
A7:
0
<= (
||.seq.||
. (n
+ 1)) by
Th2;
A8: ((
abs
||.seq.||)
. (n
+ 1))
=
|.(
||.seq.||
. (n
+ 1)).| by
SEQ_1: 12
.= (
||.seq.||
. (n
+ 1)) by
A7,
ABSVALUE:def 1;
((
abs
||.seq.||)
. n)
=
|.(
||.seq.||
. n).| by
SEQ_1: 12
.= (
||.seq.||
. n) by
A6,
ABSVALUE:def 1;
hence (((
abs
||.seq.||)
. (n
+ 1))
/ ((
abs
||.seq.||)
. n))
>= 1 by
A3,
A5,
A8;
end;
now
let n be
Nat;
(seq
. n)
<> (
0. X) by
A1;
then
||.(seq
. n).||
<>
0 by
NORMSP_0:def 5;
hence (
||.seq.||
. n)
<>
0 by
NORMSP_0:def 4;
end;
hence not
||.seq.|| is
summable by
A4,
SERIES_1: 39;
end;
registration
let X be
ComplexBanachSpace;
cluster
norm_summable ->
summable for
sequence of X;
coherence by
Th26;
end
begin
theorem ::
CLOPBAN3:38
Th38: for X be
Complex_Banach_Algebra holds for x,y,z be
Element of X, a,b be
Complex holds (a
* (x
* y))
= ((a
* x)
* y) & (a
* (x
+ y))
= ((a
* x)
+ (a
* y)) & ((a
+ b)
* x)
= ((a
* x)
+ (b
* x)) & ((a
* b)
* x)
= (a
* (b
* x)) & ((a
* b)
* (x
* y))
= ((a
* x)
* (b
* y)) & (a
* (x
* y))
= (x
* (a
* y)) & ((
0. X)
* x)
= (
0. X) & (x
* (
0. X))
= (
0. X) & (x
* (y
- z))
= ((x
* y)
- (x
* z)) & ((y
- z)
* x)
= ((y
* x)
- (z
* x)) & ((x
+ y)
- z)
= (x
+ (y
- z)) & ((x
- y)
+ z)
= (x
- (y
- z)) & ((x
- y)
- z)
= (x
- (y
+ z)) & (x
+ y)
= ((x
- z)
+ (z
+ y)) & (x
- y)
= ((x
- z)
+ (z
- y)) & x
= ((x
- y)
+ y) & x
= (y
- (y
- x)) & (
||.x.||
=
0 iff x
= (
0. X)) &
||.(a
* x).||
= (
|.a.|
*
||.x.||) &
||.(x
+ y).||
<= (
||.x.||
+
||.y.||) &
||.(x
* y).||
<= (
||.x.||
*
||.y.||) &
||.(
1. X).||
= 1
proof
let X be
Complex_Banach_Algebra;
let x,y,z be
Element of X;
let a,b be
Complex;
thus (a
* (x
* y))
= ((a
* x)
* y) & (a
* (x
+ y))
= ((a
* x)
+ (a
* y)) & ((a
+ b)
* x)
= ((a
* x)
+ (b
* x)) & ((a
* b)
* x)
= (a
* (b
* x)) by
CFUNCDOM:def 9,
CLVECT_1:def 2,
CLVECT_1:def 3,
CLVECT_1:def 4;
thus ((a
* b)
* (x
* y))
= (a
* (b
* (x
* y))) by
CLVECT_1:def 4
.= (a
* (x
* (b
* y))) by
CLOPBAN2:def 11
.= ((a
* x)
* (b
* y)) by
CFUNCDOM:def 9;
thus (a
* (x
* y))
= (x
* (a
* y)) by
CLOPBAN2:def 11;
A1: ((x
* (y
- z))
+ (x
* z))
= (x
* ((y
- z)
+ z)) by
VECTSP_1:def 2
.= (x
* (y
- (z
- z))) by
RLVECT_1: 29
.= (x
* (y
- (
0. X))) by
RLVECT_1: 15
.= (x
* y) by
RLVECT_1: 13;
(x
* (
0. X))
= (x
* ((
0. X)
+ (
0. X))) by
RLVECT_1:def 4
.= ((x
* (
0. X))
+ (x
* (
0. X))) by
VECTSP_1:def 2;
then (
0. X)
= (((x
* (
0. X))
+ (x
* (
0. X)))
- (x
* (
0. X))) by
RLVECT_1: 15;
then (
0. X)
= ((x
* (
0. X))
+ ((x
* (
0. X))
- (x
* (
0. X)))) by
RLVECT_1:def 3;
then
A2: (
0. X)
= ((x
* (
0. X))
+ (
0. X)) by
RLVECT_1: 15;
((
0. X)
* x)
= (((
0. X)
+ (
0. X))
* x) by
RLVECT_1:def 4
.= (((
0. X)
* x)
+ ((
0. X)
* x)) by
VECTSP_1:def 3;
then (
0. X)
= ((((
0. X)
* x)
+ ((
0. X)
* x))
- ((
0. X)
* x)) by
RLVECT_1: 15;
then (
0. X)
= (((
0. X)
* x)
+ (((
0. X)
* x)
- ((
0. X)
* x))) by
RLVECT_1:def 3;
then (
0. X)
= (((
0. X)
* x)
+ (
0. X)) by
RLVECT_1: 15;
hence ((
0. X)
* x)
= (
0. X) & (x
* (
0. X))
= (
0. X) by
A2,
RLVECT_1:def 4;
thus (x
* (y
- z))
= ((x
* (y
- z))
+ (
0. X)) by
RLVECT_1: 4
.= ((x
* (y
- z))
+ ((x
* z)
- (x
* z))) by
RLVECT_1: 15
.= ((x
* y)
- (x
* z)) by
A1,
RLVECT_1:def 3;
A3: (((y
- z)
* x)
+ (z
* x))
= (((y
- z)
+ z)
* x) by
VECTSP_1:def 3
.= ((y
- (z
- z))
* x) by
RLVECT_1: 29
.= ((y
- (
0. X))
* x) by
RLVECT_1: 15
.= (y
* x) by
RLVECT_1: 13;
thus ((y
- z)
* x)
= (((y
- z)
* x)
+ (
0. X)) by
RLVECT_1: 4
.= (((y
- z)
* x)
+ ((z
* x)
- (z
* x))) by
RLVECT_1: 15
.= ((y
* x)
- (z
* x)) by
A3,
RLVECT_1:def 3;
thus ((x
+ y)
- z)
= (x
+ (y
- z)) by
RLVECT_1:def 3;
thus ((x
- y)
+ z)
= (x
- (y
- z)) by
RLVECT_1: 29;
thus ((x
- y)
- z)
= (x
- (y
+ z)) by
RLVECT_1: 27;
thus ((x
- z)
+ (z
+ y))
= (((x
- z)
+ z)
+ y) by
RLVECT_1:def 3
.= ((x
- (z
- z))
+ y) by
RLVECT_1: 29
.= ((x
- (
0. X))
+ y) by
RLVECT_1: 15
.= (x
+ y) by
RLVECT_1: 13;
thus ((x
- z)
+ (z
- y))
= (((x
- z)
+ z)
- y) by
RLVECT_1:def 3
.= ((x
- (z
- z))
- y) by
RLVECT_1: 29
.= ((x
- (
0. X))
- y) by
RLVECT_1: 15
.= (x
- y) by
RLVECT_1: 13;
thus ((x
- y)
+ y)
= (x
- (y
- y)) by
RLVECT_1: 29
.= (x
- (
0. X)) by
RLVECT_1: 15
.= x by
RLVECT_1: 13;
thus (y
- (y
- x))
= ((y
- y)
+ x) by
RLVECT_1: 29
.= ((
0. X)
+ x) by
RLVECT_1: 15
.= x by
RLVECT_1: 4;
thus (
||.x.||
=
0 iff x
= (
0. X)) &
||.(a
* x).||
= (
|.a.|
*
||.x.||) &
||.(x
+ y).||
<= (
||.x.||
+
||.y.||) &
||.(x
* y).||
<= (
||.x.||
*
||.y.||) by
CLOPBAN2:def 9,
CLVECT_1:def 13,
NORMSP_0:def 5;
thus
||.(
1. X).||
= 1 by
CLOPBAN2:def 10;
end;
registration
cluster ->
well-unital for
Complex_Banach_Algebra;
coherence
proof
let X be
Complex_Banach_Algebra;
let x be
Element of X;
thus thesis by
VECTSP_1:def 4,
VECTSP_1:def 8;
end;
end
definition
::$Canceled
end
definition
let X be
Complex_Banach_Algebra;
let z be
Element of X;
::
CLOPBAN3:def7
func z
GeoSeq ->
sequence of X means
:
Def4: (it
.
0 )
= (
1. X) & for n be
Nat holds (it
. (n
+ 1))
= ((it
. n)
* z);
existence
proof
deffunc
G(
set,
set) = (the
multF of X
.
[$2, z]);
consider g be
Function such that
A1: (
dom g)
=
NAT & (g
.
0 )
= (
1. X) & for n be
Nat holds (g
. (n
+ 1))
=
G(n,.) from
NAT_1:sch 11;
defpred
P[
Nat] means (g
. $1)
in the
carrier of X;
A2: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume
P[k];
then
reconsider gk = (g
. k) as
Element of X;
(g
. (k
+ 1))
= (the
multF of X
.
[gk, z]) by
A1;
hence thesis;
end;
A3:
P[
0 ] by
A1;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A3,
A2);
then for n be
object st n
in
NAT holds (g
. n)
in the
carrier of X;
then
reconsider g0 = g as
sequence of X by
A1,
FUNCT_2: 3;
take g0;
thus thesis by
A1;
end;
uniqueness
proof
let seq1,seq2 be
sequence of X;
assume that
A4: (seq1
.
0 )
= (
1. X) and
A5: for n be
Nat holds (seq1
. (n
+ 1))
= ((seq1
. n)
* z) and
A6: (seq2
.
0 )
= (
1. X) and
A7: for n be
Nat holds (seq2
. (n
+ 1))
= ((seq2
. n)
* z);
defpred
P[
Nat] means (seq1
. $1)
= (seq2
. $1);
A8: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume
P[k];
hence (seq1
. (k
+ 1))
= ((seq2
. k)
* z) by
A5
.= (seq2
. (k
+ 1)) by
A7;
end;
A9:
P[
0 ] by
A4,
A6;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A9,
A8);
then for n be
Element of
NAT holds
P[n];
hence seq1
= seq2 by
FUNCT_2: 63;
end;
end
definition
let X be
Complex_Banach_Algebra;
let z be
Element of X, n be
Nat;
::
CLOPBAN3:def8
func z
#N n ->
Element of X equals ((z
GeoSeq )
. n);
correctness ;
end
theorem ::
CLOPBAN3:39
for X be
Complex_Banach_Algebra, z be
Element of X holds (z
#N
0 )
= (
1. X) by
Def4;
theorem ::
CLOPBAN3:40
Th40: for X be
Complex_Banach_Algebra, z be
Element of X holds
||.z.||
< 1 implies (z
GeoSeq ) is
summable
norm_summable
proof
let X be
Complex_Banach_Algebra;
let z be
Element of X;
A1:
0
<=
||.z.|| by
CLVECT_1: 105;
A2: for n be
Nat holds
0
<= (
||.(z
GeoSeq ).||
. n) & (
||.(z
GeoSeq ).||
. n)
<= ((
||.z.||
GeoSeq )
. n)
proof
defpred
P[
Nat] means
0
<= (
||.(z
GeoSeq ).||
. $1) & (
||.(z
GeoSeq ).||
. $1)
<= ((
||.z.||
GeoSeq )
. $1);
A3: (
||.(z
GeoSeq ).||
.
0 )
=
||.((z
GeoSeq )
.
0 ).|| by
NORMSP_0:def 4;
A4: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
A5:
0
<=
||.z.|| by
CLVECT_1: 105;
||.(((z
GeoSeq )
. k)
* z).||
<= (
||.((z
GeoSeq )
. k).||
*
||.z.||) by
CLOPBAN2:def 9;
then
A6:
||.(((z
GeoSeq )
. k)
* z).||
<= ((
||.(z
GeoSeq ).||
. k)
*
||.z.||) by
NORMSP_0:def 4;
assume
P[k];
then ((
||.(z
GeoSeq ).||
. k)
*
||.z.||)
<= (((
||.z.||
GeoSeq )
. k)
*
||.z.||) by
A5,
XREAL_1: 64;
then
A7:
||.(((z
GeoSeq )
. k)
* z).||
<= (((
||.z.||
GeoSeq )
. k)
*
||.z.||) by
A6,
XXREAL_0: 2;
(
||.(z
GeoSeq ).||
. (k
+ 1))
=
||.((z
GeoSeq )
. (k
+ 1)).|| by
NORMSP_0:def 4
.=
||.(((z
GeoSeq )
. k)
* z).|| by
Def4;
hence thesis by
A7,
CLVECT_1: 105,
PREPOWER: 3;
end;
||.((z
GeoSeq )
.
0 ).||
=
||.(
1. X).|| by
Def4
.= 1 by
CLOPBAN2:def 10
.= ((
||.z.||
GeoSeq )
.
0 ) by
PREPOWER: 3;
then
A8:
P[
0 ] by
A3,
CLVECT_1: 105;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A8,
A4);
hence thesis;
end;
assume
||.z.||
< 1;
then
|.
||.z.||.|
< 1 by
A1,
ABSVALUE:def 1;
then (
||.z.||
GeoSeq ) is
summable by
SERIES_1: 24;
then
||.(z
GeoSeq ).|| is
summable by
A2,
SERIES_1: 20;
then (z
GeoSeq ) is
norm_summable;
hence thesis;
end;
theorem ::
CLOPBAN3:41
for X be
Complex_Banach_Algebra, x be
Point of X st
||.((
1. X)
- x).||
< 1 holds (((
1. X)
- x)
GeoSeq ) is
summable & (((
1. X)
- x)
GeoSeq ) is
norm_summable by
Th40;
Lm1: for X be
ComplexNormSpace, x be
Point of X st for e be
Real st e
>
0 holds
||.x.||
< e holds x
= (
0. X)
proof
let X be
ComplexNormSpace;
let x be
Point of X such that
A1: for e be
Real st e
>
0 holds
||.x.||
< e;
now
assume x
<> (
0. X);
then
0
<>
||.x.|| by
NORMSP_0:def 5;
then
0
<
||.x.|| by
CLVECT_1: 105;
hence contradiction by
A1;
end;
hence thesis;
end;
Lm2: for X be
ComplexNormSpace, x,y be
Point of X st for e be
Real st e
>
0 holds
||.(x
- y).||
< e holds x
= y
proof
let X be
ComplexNormSpace;
let x,y be
Point of X;
assume for e be
Real st e
>
0 holds
||.(x
- y).||
< e;
then (x
- y)
= (
0. X) by
Lm1;
hence thesis by
RLVECT_1: 21;
end;
Lm3: for X be
ComplexNormSpace, x,y be
Point of X, seq be
Real_Sequence st (seq is
convergent & (
lim seq)
=
0 & for n be
Nat holds
||.(x
- y).||
<= (seq
. n)) holds x
= y
proof
let X be
ComplexNormSpace;
let x,y be
Point of X;
let seq be
Real_Sequence such that
A1: seq is
convergent & (
lim seq)
=
0 and
A2: for n be
Nat holds
||.(x
- y).||
<= (seq
. n);
now
let e be
Real;
assume
0
< e;
then
consider n be
Nat such that
A3: for m be
Nat st n
<= m holds
|.((seq
. m)
-
0 ).|
< e by
A1,
SEQ_2:def 7;
A4: (seq
. n)
<=
|.(seq
. n).| by
ABSVALUE: 4;
A5:
||.(x
- y).||
<= (seq
. n) by
A2;
|.((seq
. n)
-
0 ).|
< e by
A3;
then (seq
. n)
< e by
A4,
XXREAL_0: 2;
hence
||.(x
- y).||
< e by
A5,
XXREAL_0: 2;
end;
hence thesis by
Lm2;
end;
theorem ::
CLOPBAN3:42
for X be
Complex_Banach_Algebra, x be
Point of X st
||.((
1. X)
- x).||
< 1 holds x is
invertible & (x
" )
= (
Sum (((
1. X)
- x)
GeoSeq ))
proof
let X be
Complex_Banach_Algebra;
let x be
Point of X such that
A1:
||.((
1. X)
- x).||
< 1;
set seq = (((
1. X)
- x)
GeoSeq );
A2: seq is
summable by
A1,
Th40;
then
A3:
||.(seq
^\ 1).|| is
convergent by
CLOPBAN1: 40;
reconsider y = (
Sum seq) as
Element of X;
A4: (
Partial_Sums seq) is
convergent by
A2;
then (
lim
||.((
Partial_Sums seq)
- y).||)
=
0 by
CLVECT_1: 118;
then
A5: (
lim (
||.x.||
(#)
||.((
Partial_Sums seq)
- y).||))
= (
||.x.||
*
0 ) by
A4,
CLVECT_1: 118,
SEQ_2: 8
.=
0 ;
(
lim (seq
^\ 1))
= (
0. X) by
A2,
Th14;
then
A6: (
lim
||.(seq
^\ 1).||)
=
||.(
0. X).|| by
A2,
CLOPBAN1: 40;
A7: (
||.x.||
(#)
||.((
Partial_Sums seq)
- y).||) is
convergent by
A4,
CLVECT_1: 118,
SEQ_2: 7;
then
A8: (
||.(seq
^\ 1).||
+ (
||.x.||
(#)
||.((
Partial_Sums seq)
- y).||)) is
convergent by
A3,
SEQ_2: 5;
A9: (
lim (
||.(seq
^\ 1).||
+ (
||.x.||
(#)
||.((
Partial_Sums seq)
- y).||)))
= ((
lim
||.(seq
^\ 1).||)
+ (
lim (
||.x.||
(#)
||.((
Partial_Sums seq)
- y).||))) by
A7,
A3,
SEQ_2: 6
.=
0 by
A5,
A6;
A10: for n be
Nat holds (((
1. X)
- x)
* (seq
. n))
= (seq
. (n
+ 1))
proof
defpred
P[
Nat] means (((
1. X)
- x)
* (seq
. $1))
= (seq
. ($1
+ 1));
A11: (((
1. X)
- x)
* (seq
.
0 ))
= (((
1. X)
- x)
* (
1. X)) by
Def4
.= ((
1. X)
- x) by
VECTSP_1:def 4;
A12: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat such that
A13:
P[k];
thus (((
1. X)
- x)
* (seq
. (k
+ 1)))
= (((
1. X)
- x)
* ((seq
. k)
* ((
1. X)
- x))) by
Def4
.= ((((
1. X)
- x)
* (seq
. k))
* ((
1. X)
- x)) by
GROUP_1:def 3
.= (seq
. ((k
+ 1)
+ 1)) by
A13,
Def4;
end;
(seq
. (
0
+ 1))
= ((seq
.
0 )
* ((
1. X)
- x)) by
Def4
.= ((
1. X)
* ((
1. X)
- x)) by
Def4
.= ((
1. X)
- x) by
VECTSP_1:def 8;
then
A14:
P[
0 ] by
A11;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A14,
A12);
hence thesis;
end;
A15: for n be
Nat holds (((
1. X)
- x)
* ((
Partial_Sums seq)
. n))
= ((((
Partial_Sums seq)
^\ 1)
. n)
- (seq
.
0 ))
proof
defpred
P[
Nat] means (((
1. X)
- x)
* ((
Partial_Sums seq)
. $1))
= ((((
Partial_Sums seq)
^\ 1)
. $1)
- (seq
.
0 ));
A16: (((
1. X)
- x)
* ((
Partial_Sums seq)
.
0 ))
= (((
1. X)
- x)
* (seq
.
0 )) by
BHSP_4:def 1
.= (((
1. X)
- x)
* (
1. X)) by
Def4
.= ((
1. X)
- x) by
VECTSP_1:def 4;
A17: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume
A18:
P[k];
A19: ((((
Partial_Sums seq)
^\ 1)
. (k
+ 1))
- (seq
.
0 ))
= (((
Partial_Sums seq)
. ((k
+ 1)
+ 1))
- (seq
.
0 )) by
NAT_1:def 3
.= ((((
Partial_Sums seq)
. (k
+ 1))
+ (seq
. ((k
+ 1)
+ 1)))
- (seq
.
0 )) by
BHSP_4:def 1
.= (((((
Partial_Sums seq)
^\ 1)
. k)
+ (seq
. ((k
+ 1)
+ 1)))
+ (
- (seq
.
0 ))) by
NAT_1:def 3
.= (((((
Partial_Sums seq)
^\ 1)
. k)
- (seq
.
0 ))
+ (seq
. ((k
+ 1)
+ 1))) by
RLVECT_1:def 3;
(((
1. X)
- x)
* ((
Partial_Sums seq)
. (k
+ 1)))
= (((
1. X)
- x)
* (((
Partial_Sums seq)
. k)
+ (seq
. (k
+ 1)))) by
BHSP_4:def 1
.= ((((
1. X)
- x)
* ((
Partial_Sums seq)
. k))
+ (((
1. X)
- x)
* (seq
. (k
+ 1)))) by
VECTSP_1:def 2
.= (((((
Partial_Sums seq)
^\ 1)
. k)
- (seq
.
0 ))
+ (seq
. ((k
+ 1)
+ 1))) by
A10,
A18;
hence thesis by
A19;
end;
((((
Partial_Sums seq)
^\ 1)
.
0 )
- (seq
.
0 ))
= (((
Partial_Sums seq)
. (
0
+ 1))
- (seq
.
0 )) by
NAT_1:def 3
.= ((((
Partial_Sums seq)
.
0 )
+ (seq
. 1))
- (seq
.
0 )) by
BHSP_4:def 1
.= (((seq
.
0 )
+ (seq
. 1))
- (seq
.
0 )) by
BHSP_4:def 1
.= ((seq
. 1)
+ ((seq
.
0 )
- (seq
.
0 ))) by
Th38
.= ((seq
. 1)
+ (
0. X)) by
RLVECT_1: 15
.= (seq
. (
0
+ 1)) by
RLVECT_1: 4
.= ((seq
.
0 )
* ((
1. X)
- x)) by
Def4
.= ((
1. X)
* ((
1. X)
- x)) by
Def4
.= ((
1. X)
- x) by
VECTSP_1:def 8;
then
A20:
P[
0 ] by
A16;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A20,
A17);
hence thesis;
end;
now
let n be
Nat;
reconsider yn = ((
Partial_Sums seq)
. n) as
Element of X;
((
Partial_Sums seq)
. (n
+ 1))
= (((
Partial_Sums seq)
. n)
+ (seq
. (n
+ 1))) by
BHSP_4:def 1;
then
A21: ((
Partial_Sums seq)
. (n
+ 1))
= (((
Partial_Sums seq)
. n)
+ ((seq
^\ 1)
. n)) by
NAT_1:def 3;
(((
1. X)
- ((
1. X)
- x))
* yn)
= (((
1. X)
* yn)
- (((
1. X)
- x)
* yn)) by
Th38
.= (yn
- (((
1. X)
- x)
* yn)) by
VECTSP_1:def 8
.= (((
Partial_Sums seq)
. n)
- ((((
Partial_Sums seq)
^\ 1)
. n)
- (seq
.
0 ))) by
A15
.= ((((
Partial_Sums seq)
. n)
- (((
Partial_Sums seq)
^\ 1)
. n))
+ (seq
.
0 )) by
Th38;
then (((
1. X)
- ((
1. X)
- x))
* yn)
= ((((
Partial_Sums seq)
. n)
- (((
Partial_Sums seq)
. n)
+ ((seq
^\ 1)
. n)))
+ (seq
.
0 )) by
A21,
NAT_1:def 3
.= (((((
Partial_Sums seq)
. n)
- ((
Partial_Sums seq)
. n))
- ((seq
^\ 1)
. n))
+ (seq
.
0 )) by
Th38
.= (((
0. X)
- ((seq
^\ 1)
. n))
+ (seq
.
0 )) by
RLVECT_1: 15
.= ((
0. X)
- (((seq
^\ 1)
. n)
- (seq
.
0 ))) by
RLVECT_1: 29
.= (
- (((seq
^\ 1)
. n)
- (seq
.
0 ))) by
RLVECT_1: 14
.= ((seq
.
0 )
- ((seq
^\ 1)
. n)) by
RLVECT_1: 33
.= ((seq
.
0 )
- (seq
. (n
+ 1))) by
NAT_1:def 3
.= ((
1. X)
- (seq
. (n
+ 1))) by
Def4;
then
A22: ((
1. X)
- (x
* yn))
= ((
1. X)
- ((
1. X)
- (seq
. (n
+ 1)))) by
Th38
.= (seq
. (n
+ 1)) by
Th38
.= ((seq
^\ 1)
. n) by
NAT_1:def 3;
||.(x
* (yn
- y)).||
<= (
||.x.||
*
||.(yn
- y).||) by
Th38;
then
A23: ((
||.(seq
^\ 1).||
. n)
+
||.(x
* (yn
- y)).||)
<= ((
||.(seq
^\ 1).||
. n)
+ (
||.x.||
*
||.(yn
- y).||)) by
XREAL_1: 7;
||.(((seq
^\ 1)
. n)
+ (x
* (yn
- y))).||
<= (
||.((seq
^\ 1)
. n).||
+
||.(x
* (yn
- y)).||) & (
||.((seq
^\ 1)
. n).||
+
||.(x
* (yn
- y)).||)
= ((
||.(seq
^\ 1).||
. n)
+
||.(x
* (yn
- y)).||) by
CLVECT_1:def 13,
NORMSP_0:def 4;
then
A24:
||.(((seq
^\ 1)
. n)
+ (x
* (yn
- y))).||
<= ((
||.(seq
^\ 1).||
. n)
+ (
||.x.||
*
||.(yn
- y).||)) by
A23,
XXREAL_0: 2;
((
1. X)
- (x
* y))
= (((
1. X)
- (
0. X))
- (x
* y)) by
RLVECT_1: 13
.= (((
1. X)
- ((x
* yn)
- (x
* yn)))
- (x
* y)) by
RLVECT_1: 15
.= ((((
1. X)
- (x
* yn))
+ (x
* yn))
- (x
* y)) by
RLVECT_1: 29
.= (((
1. X)
- (x
* yn))
+ ((x
* yn)
- (x
* y))) by
RLVECT_1:def 3
.= (((
1. X)
- (x
* yn))
+ (x
* (yn
- y))) by
Th38;
then
||.((
1. X)
- (x
* y)).||
<= ((
||.(seq
^\ 1).||
. n)
+ (
||.x.||
*
||.(((
Partial_Sums seq)
- y)
. n).||)) by
A22,
A24,
NORMSP_1:def 4;
then
||.((
1. X)
- (x
* y)).||
<= ((
||.(seq
^\ 1).||
. n)
+ (
||.x.||
* (
||.((
Partial_Sums seq)
- y).||
. n))) by
NORMSP_0:def 4;
then
||.((
1. X)
- (x
* y)).||
<= ((
||.(seq
^\ 1).||
. n)
+ ((
||.x.||
(#)
||.((
Partial_Sums seq)
- y).||)
. n)) by
SEQ_1: 9;
hence
||.((
1. X)
- (x
* y)).||
<= ((
||.(seq
^\ 1).||
+ (
||.x.||
(#)
||.((
Partial_Sums seq)
- y).||))
. n) by
SEQ_1: 7;
end;
then
A25: (
1. X)
= (x
* y) by
A8,
A9,
Lm3;
A26: for n be
Nat holds (((
Partial_Sums seq)
. n)
* ((
1. X)
- x))
= ((((
Partial_Sums seq)
^\ 1)
. n)
- (seq
.
0 ))
proof
defpred
P[
Nat] means (((
Partial_Sums seq)
. $1)
* ((
1. X)
- x))
= ((((
Partial_Sums seq)
^\ 1)
. $1)
- (seq
.
0 ));
A27: (((
Partial_Sums seq)
.
0 )
* ((
1. X)
- x))
= ((seq
.
0 )
* ((
1. X)
- x)) by
BHSP_4:def 1
.= ((
1. X)
* ((
1. X)
- x)) by
Def4
.= ((
1. X)
- x) by
VECTSP_1:def 8;
A28: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume
A29:
P[k];
A30: ((((
Partial_Sums seq)
^\ 1)
. (k
+ 1))
- (seq
.
0 ))
= (((
Partial_Sums seq)
. ((k
+ 1)
+ 1))
- (seq
.
0 )) by
NAT_1:def 3
.= ((((
Partial_Sums seq)
. (k
+ 1))
+ (seq
. ((k
+ 1)
+ 1)))
- (seq
.
0 )) by
BHSP_4:def 1
.= (((((
Partial_Sums seq)
^\ 1)
. k)
+ (seq
. ((k
+ 1)
+ 1)))
+ (
- (seq
.
0 ))) by
NAT_1:def 3
.= (((((
Partial_Sums seq)
^\ 1)
. k)
- (seq
.
0 ))
+ (seq
. ((k
+ 1)
+ 1))) by
RLVECT_1:def 3;
(((
Partial_Sums seq)
. (k
+ 1))
* ((
1. X)
- x))
= ((((
Partial_Sums seq)
. k)
+ (seq
. (k
+ 1)))
* ((
1. X)
- x)) by
BHSP_4:def 1
.= ((((
Partial_Sums seq)
. k)
* ((
1. X)
- x))
+ ((seq
. (k
+ 1))
* ((
1. X)
- x))) by
VECTSP_1:def 3
.= (((((
Partial_Sums seq)
^\ 1)
. k)
- (seq
.
0 ))
+ (seq
. ((k
+ 1)
+ 1))) by
A29,
Def4;
hence thesis by
A30;
end;
((((
Partial_Sums seq)
^\ 1)
.
0 )
- (seq
.
0 ))
= (((
Partial_Sums seq)
. (
0
+ 1))
- (seq
.
0 )) by
NAT_1:def 3
.= ((((
Partial_Sums seq)
.
0 )
+ (seq
. 1))
- (seq
.
0 )) by
BHSP_4:def 1
.= (((seq
.
0 )
+ (seq
. 1))
- (seq
.
0 )) by
BHSP_4:def 1
.= ((seq
. 1)
+ ((seq
.
0 )
- (seq
.
0 ))) by
Th38
.= ((seq
. 1)
+ (
0. X)) by
RLVECT_1: 15
.= (seq
. (
0
+ 1)) by
RLVECT_1: 4
.= ((seq
.
0 )
* ((
1. X)
- x)) by
Def4
.= ((
1. X)
* ((
1. X)
- x)) by
Def4
.= ((
1. X)
- x) by
VECTSP_1:def 8;
then
A31:
P[
0 ] by
A27;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A31,
A28);
hence thesis;
end;
now
let n be
Nat;
reconsider yn = ((
Partial_Sums seq)
. n) as
Element of X;
((
Partial_Sums seq)
. (n
+ 1))
= (((
Partial_Sums seq)
. n)
+ (seq
. (n
+ 1))) by
BHSP_4:def 1;
then
A32: ((
Partial_Sums seq)
. (n
+ 1))
= (((
Partial_Sums seq)
. n)
+ ((seq
^\ 1)
. n)) by
NAT_1:def 3;
(yn
* ((
1. X)
- ((
1. X)
- x)))
= ((yn
* (
1. X))
- (yn
* ((
1. X)
- x))) by
Th38
.= (yn
- (yn
* ((
1. X)
- x))) by
VECTSP_1:def 4
.= (((
Partial_Sums seq)
. n)
- ((((
Partial_Sums seq)
^\ 1)
. n)
- (seq
.
0 ))) by
A26
.= ((((
Partial_Sums seq)
. n)
- (((
Partial_Sums seq)
^\ 1)
. n))
+ (seq
.
0 )) by
Th38;
then (yn
* ((
1. X)
- ((
1. X)
- x)))
= ((((
Partial_Sums seq)
. n)
- (((
Partial_Sums seq)
. n)
+ ((seq
^\ 1)
. n)))
+ (seq
.
0 )) by
A32,
NAT_1:def 3
.= (((((
Partial_Sums seq)
. n)
- ((
Partial_Sums seq)
. n))
- ((seq
^\ 1)
. n))
+ (seq
.
0 )) by
Th38
.= (((
0. X)
- ((seq
^\ 1)
. n))
+ (seq
.
0 )) by
RLVECT_1: 15
.= ((
0. X)
- (((seq
^\ 1)
. n)
- (seq
.
0 ))) by
RLVECT_1: 29
.= (
- (((seq
^\ 1)
. n)
- (seq
.
0 ))) by
RLVECT_1: 14
.= ((seq
.
0 )
- ((seq
^\ 1)
. n)) by
RLVECT_1: 33
.= ((seq
.
0 )
- (seq
. (n
+ 1))) by
NAT_1:def 3
.= ((
1. X)
- (seq
. (n
+ 1))) by
Def4;
then
A33: ((
1. X)
- (yn
* x))
= ((
1. X)
- ((
1. X)
- (seq
. (n
+ 1)))) by
Th38
.= (seq
. (n
+ 1)) by
Th38
.= ((seq
^\ 1)
. n) by
NAT_1:def 3;
||.((yn
- y)
* x).||
<= (
||.(yn
- y).||
*
||.x.||) by
Th38;
then
A34: ((
||.(seq
^\ 1).||
. n)
+
||.((yn
- y)
* x).||)
<= ((
||.(seq
^\ 1).||
. n)
+ (
||.(yn
- y).||
*
||.x.||)) by
XREAL_1: 7;
||.(((seq
^\ 1)
. n)
+ ((yn
- y)
* x)).||
<= (
||.((seq
^\ 1)
. n).||
+
||.((yn
- y)
* x).||) & (
||.((seq
^\ 1)
. n).||
+
||.((yn
- y)
* x).||)
= ((
||.(seq
^\ 1).||
. n)
+
||.((yn
- y)
* x).||) by
CLVECT_1:def 13,
NORMSP_0:def 4;
then
A35:
||.(((seq
^\ 1)
. n)
+ ((yn
- y)
* x)).||
<= ((
||.(seq
^\ 1).||
. n)
+ (
||.(yn
- y).||
*
||.x.||)) by
A34,
XXREAL_0: 2;
((
1. X)
- (y
* x))
= (((
1. X)
- (
0. X))
- (y
* x)) by
RLVECT_1: 13
.= (((
1. X)
- ((yn
* x)
- (yn
* x)))
- (y
* x)) by
RLVECT_1: 15
.= ((((
1. X)
- (yn
* x))
+ (yn
* x))
- (y
* x)) by
RLVECT_1: 29
.= (((
1. X)
- (yn
* x))
+ ((yn
* x)
- (y
* x))) by
RLVECT_1:def 3
.= (((
1. X)
- (yn
* x))
+ ((yn
- y)
* x)) by
Th38;
then
||.((
1. X)
- (y
* x)).||
<= ((
||.(seq
^\ 1).||
. n)
+ (
||.(((
Partial_Sums seq)
- y)
. n).||
*
||.x.||)) by
A33,
A35,
NORMSP_1:def 4;
then
||.((
1. X)
- (y
* x)).||
<= ((
||.(seq
^\ 1).||
. n)
+ ((
||.((
Partial_Sums seq)
- y).||
. n)
*
||.x.||)) by
NORMSP_0:def 4;
then
||.((
1. X)
- (y
* x)).||
<= ((
||.(seq
^\ 1).||
. n)
+ ((
||.x.||
(#)
||.((
Partial_Sums seq)
- y).||)
. n)) by
SEQ_1: 9;
hence
||.((
1. X)
- (y
* x)).||
<= ((
||.(seq
^\ 1).||
+ (
||.x.||
(#)
||.((
Partial_Sums seq)
- y).||))
. n) by
SEQ_1: 7;
end;
then
A36: (
1. X)
= (y
* x) by
A8,
A9,
Lm3;
hence x is
invertible by
A25,
LOPBAN_3:def 4;
hence thesis by
A36,
A25,
LOPBAN_3:def 8;
end;