complex3.miz
    
    begin
    
    registration
    
      let a be
    Complex;
    
      reduce ((a
    " ) 
    " ) to a; 
    
      reducibility ;
    
    end
    
    definition
    
      let a be
    Complex;
    
      :: 
    
    COMPLEX3:def1
    
      attr a is
    
    heavy means 
    
      :
    
    Def1: 
    |.a.|
    > 1; 
    
      :: 
    
    COMPLEX3:def2
    
      attr a is
    
    light means 
    
      :
    
    Def2: 
    |.a.|
    < 1; 
    
      :: 
    
    COMPLEX3:def3
    
      attr a is
    
    weightless means 
    
      :
    
    Def3: 
    |.a.|
    =  
    0 or 
    |.a.|
    = 1; 
    
    end
    
    theorem :: 
    
    COMPLEX3:1
    
    
    
    
    
    TA1: for a be 
    Real holds (a is 
    heavy
    negative iff a 
    < ( 
    - 1)) & (a is 
    light
    negative iff ( 
    - 1) 
    < a 
    <  
    0 ) & (a is 
    light
    positive iff 
    0  
    < a 
    < 1) & (a is 
    heavy
    positive iff a 
    > 1) & (a is 
    weightless
    positive iff a 
    = 1) & (a is 
    weightless
    negative iff a 
    = ( 
    - 1)) 
    
    proof
    
      let a be
    Real;
    
      
    
      
    
    A1: a is 
    heavy
    negative implies a 
    < ( 
    - 1) 
    
      proof
    
        assume a is
    heavy
    negative;
    
        then (
    - a) 
    > 1 by 
    ABSVALUE:def 1;
    
        then (
    - ( 
    - a)) 
    < ( 
    - 1) by 
    XREAL_1: 24;
    
        hence thesis;
    
      end;
    
      
    
      
    
    A1a: a 
    < ( 
    - 1) implies a is 
    heavy
    negative
    
      proof
    
        assume
    
        
    
    B1: a 
    < ( 
    - 1); 
    
        then (
    - a) 
    > ( 
    - ( 
    - 1)) by 
    XREAL_1: 24;
    
        hence thesis by
    B1,
    ABSVALUE:def 1;
    
      end;
    
      
    
      
    
    A3: a is 
    light
    negative implies ( 
    - 1) 
    < a 
    <  
    0  
    
      proof
    
        assume
    
        
    
    B1: a is 
    light
    negative;
    
        then (
    - a) 
    < 1 by 
    ABSVALUE:def 1;
    
        then (
    - ( 
    - a)) 
    > ( 
    - 1) by 
    XREAL_1: 24;
    
        hence thesis by
    B1;
    
      end;
    
      
    
      
    
    A3a: ( 
    - 1) 
    < a 
    <  
    0 implies a is 
    light
    negative
    
      proof
    
        assume
    
        
    
    B1: ( 
    - 1) 
    < a 
    <  
    0 ; 
    
        then (
    - a) 
    < ( 
    - ( 
    - 1)) by 
    XREAL_1: 24;
    
        hence thesis by
    B1,
    ABSVALUE:def 1;
    
      end;
    
      a is
    weightless implies a 
    =  
    0 or 1 
    = a or 1 
    = ( 
    - a) by 
    ABSVALUE: 1;
    
      hence thesis by
    A1,
    A1a,
    ABSVALUE:def 1,
    A3,
    A3a;
    
    end;
    
    theorem :: 
    
    COMPLEX3:2
    
    for a be
    Real holds (a is non 
    light
    negative iff a 
    <= ( 
    - 1)) & (a is non 
    heavy
    negative iff ( 
    - 1) 
    <= a 
    <  
    0 ) & (a is non 
    heavy
    positive iff 
    0  
    < a 
    <= 1) & (a is non 
    light
    positive iff 1 
    <= a) 
    
    proof
    
      let a be
    Real;
    
      
    
      
    
    A1: a is non 
    light
    negative implies a 
    <= ( 
    - 1) 
    
      proof
    
        assume a is non
    light
    negative;
    
        then (
    - a) 
    >= 1 by 
    ABSVALUE:def 1;
    
        then (
    - ( 
    - a)) 
    <= ( 
    - 1) by 
    XREAL_1: 24;
    
        hence thesis;
    
      end;
    
      
    
      
    
    A1a: a 
    <= ( 
    - 1) implies a is non 
    light
    negative
    
      proof
    
        assume
    
        
    
    B1: a 
    <= ( 
    - 1); 
    
        then (
    - a) 
    >= ( 
    - ( 
    - 1)) by 
    XREAL_1: 24;
    
        hence thesis by
    B1,
    ABSVALUE:def 1;
    
      end;
    
      
    
      
    
    A3: a is non 
    heavy
    negative implies ( 
    - 1) 
    <= a 
    <  
    0  
    
      proof
    
        assume
    
        
    
    B1: a is non 
    heavy
    negative;
    
        then (
    - a) 
    <= 1 by 
    ABSVALUE:def 1;
    
        then (
    - ( 
    - a)) 
    >= ( 
    - 1) by 
    XREAL_1: 24;
    
        hence thesis by
    B1;
    
      end;
    
      (
    - 1) 
    <= a 
    <  
    0 implies a is non 
    heavy
    negative
    
      proof
    
        assume
    
        
    
    B1: ( 
    - 1) 
    <= a 
    <  
    0 ; 
    
        then (
    - a) 
    <= ( 
    - ( 
    - 1)) by 
    XREAL_1: 24;
    
        hence thesis by
    B1,
    ABSVALUE:def 1;
    
      end;
    
      hence thesis by
    A1,
    A1a,
    A3;
    
    end;
    
    theorem :: 
    
    COMPLEX3:3
    
    
    
    
    
    Th0: for a be 
    Real holds a is 
    weightless iff a 
    = ( 
    sgn a) 
    
    proof
    
      let a be
    Real;
    
      
    
      
    
    A1: a is 
    weightless implies a 
    = ( 
    sgn a) 
    
      proof
    
        assume a is
    weightless;
    
        then a
    =  
    0 or a 
    =  
    |.1.| or (
    - a) 
    =  
    |.1.| by
    ABSVALUE: 1;
    
        hence thesis by
    ABSVALUE:def 2;
    
      end;
    
      a
    = ( 
    sgn a) implies a is 
    weightless
    
      proof
    
        assume that
    
        
    
    A1: a 
    = ( 
    sgn a); 
    
        a
    >  
    0 or a 
    =  
    0 or a 
    <  
    0 ; 
    
        then (
    sgn a) 
    =  
    0 or ( 
    sgn a) 
    = 1 or ( 
    sgn a) 
    = ( 
    - 1) by 
    ABSVALUE:def 2;
    
        hence thesis by
    A1;
    
      end;
    
      hence thesis by
    A1;
    
    end;
    
    registration
    
      cluster 
    zero -> 
    weightless for 
    Complex;
    
      coherence ;
    
      cluster 
    heavy -> non 
    light for 
    Complex;
    
      coherence ;
    
      cluster non 
    light -> non 
    zero for 
    Complex;
    
      coherence ;
    
      cluster 
    heavy -> non 
    weightless for 
    Complex;
    
      coherence ;
    
      cluster 
    light -> non 
    weightless for non 
    zero  
    Complex;
    
      coherence ;
    
      cluster 
    light -> 
    zero for 
    Integer;
    
      coherence by
    NAT_1: 14;
    
      cluster 
    trivial -> 
    weightless for 
    Nat;
    
      coherence ;
    
      cluster non 
    heavy -> 
    trivial for 
    Nat;
    
      coherence ;
    
      cluster non 
    zero -> non 
    light for 
    Nat;
    
      coherence ;
    
      cluster non 
    trivial -> 
    heavy for 
    Nat;
    
      coherence ;
    
      cluster 
    weightless -> non 
    heavy for 
    Complex;
    
      coherence ;
    
      cluster 
    light -> non 
    heavy for 
    Complex;
    
      coherence ;
    
      cluster non 
    light -> 
    positive for non 
    negative  
    Real;
    
      coherence ;
    
    end
    
    registration
    
      cluster 
    heavy for 
    positive  
    Real;
    
      existence
    
      proof
    
        2 is
    heavy;
    
        hence thesis;
    
      end;
    
      cluster 
    heavy for 
    negative  
    Real;
    
      existence
    
      proof
    
        (
    - 2) is 
    heavy;
    
        hence thesis;
    
      end;
    
      cluster 
    light for 
    positive  
    Real;
    
      existence
    
      proof
    
        (1
    / 2) is 
    light;
    
        hence thesis;
    
      end;
    
      cluster 
    light for 
    negative  
    Real;
    
      existence
    
      proof
    
        
    |.(
    - (1 
    / 2)).| 
    = ( 
    - ( 
    - (1 
    / 2))) by 
    ABSVALUE:def 1;
    
        then (
    - (1 
    / 2)) is 
    light;
    
        hence thesis;
    
      end;
    
      cluster 
    positive for 
    weightless  
    Integer;
    
      existence
    
      proof
    
        1 is
    weightless;
    
        hence thesis;
    
      end;
    
      cluster 
    negative for 
    weightless  
    Integer;
    
      existence
    
      proof
    
        (
    - 1) is 
    weightless;
    
        hence thesis;
    
      end;
    
    end
    
    theorem :: 
    
    COMPLEX3:4
    
    
    
    
    
    COMPLEX154a: for a be 
    Complex holds ( 
    Re a) 
    >= ( 
    -  
    |.a.|)
    
    proof
    
      let a be
    Complex;
    
      reconsider b = (
    - a) as 
    Complex;
    
      (
    Re b) 
    <=  
    |.b.| by
    COMPLEX1: 54;
    
      then (
    - ( 
    Re a)) 
    <= ( 
    - ( 
    -  
    |.b.|)) by
    COMPLEX1: 17;
    
      then (
    Re a) 
    >= ( 
    -  
    |.(
    - a).|) by 
    XREAL_1: 24;
    
      hence thesis by
    COMPLEX1: 52;
    
    end;
    
    theorem :: 
    
    COMPLEX3:5
    
    
    
    
    
    COMPLEX155a: for a be 
    Complex holds ( 
    Im a) 
    >= ( 
    -  
    |.a.|)
    
    proof
    
      let a be
    Complex;
    
      reconsider b = (
    - a) as 
    Complex;
    
      (
    Im b) 
    <=  
    |.b.| by
    COMPLEX1: 55;
    
      then (
    - ( 
    Im a)) 
    <= ( 
    - ( 
    -  
    |.b.|)) by
    COMPLEX1: 17;
    
      then (
    Im a) 
    >= ( 
    -  
    |.(
    - a).|) by 
    XREAL_1: 24;
    
      hence thesis by
    COMPLEX1: 52;
    
    end;
    
    theorem :: 
    
    COMPLEX3:6
    
    
    
    
    
    RI: for a be 
    Complex holds ( 
    |.(
    Re a).| 
    +  
    |.(
    Im a).|) 
    >=  
    |.a.|
    
    proof
    
      let a be
    Complex;
    
      
    |.((
    Im a) 
    *  
    <i> ).| 
    = ( 
    |.(
    Im a).| 
    *  
    |.
    <i> .|) by 
    COMPLEX1: 65
    
      .=
    |.(
    Im a).| by 
    COMPLEX1: 49;
    
      then
    |.((
    Re a) 
    + (( 
    Im a) 
    *  
    <i> )).| 
    <= ( 
    |.(
    Re a).| 
    +  
    |.(
    Im a).|) by 
    COMPLEX1: 56;
    
      hence thesis by
    COMPLEX1: 13;
    
    end;
    
    registration
    
      let a be
    Complex;
    
      cluster (a 
    * (a 
    " )) -> 
    trivial;
    
      coherence
    
      proof
    
        per cases ;
    
          suppose a is
    zero;
    
          hence thesis;
    
        end;
    
          suppose a is non
    zero;
    
          then ((1
    * a) 
    * (a 
    " )) 
    = 1 by 
    XCMPLX_1: 203;
    
          hence thesis by
    NAT_2:def 1;
    
        end;
    
      end;
    
      cluster (a 
    * (a 
    *' )) -> 
    real;
    
      coherence
    
      proof
    
        (a
    * (a 
    *' )) 
    = (a 
    .|. a) by 
    COMPLEX2:def 1
    
        .= (((
    Re a) 
    ^2 ) 
    + (( 
    Im a) 
    ^2 )) by 
    COMPLEX2: 30;
    
        hence thesis;
    
      end;
    
      cluster ((a 
    * (a 
    *' )) 
    |^ 2) -> non 
    negative;
    
      coherence
    
      proof
    
        reconsider b = (a
    * (a 
    *' )) as 
    Real;
    
        (b
    |^ (2 
    * 1)) is non 
    negative;
    
        hence thesis;
    
      end;
    
      cluster (a 
    /  
    |.a.|) ->
    weightless;
    
      coherence
    
      proof
    
        per cases ;
    
          suppose a is
    zero;
    
          hence thesis;
    
        end;
    
          suppose not a is
    zero;
    
          then
    
          reconsider b =
    |.a.| as non
    zero  
    Real;
    
          1
    = ((1 
    * b) 
    /  
    |.b.|) by
    XCMPLX_1: 89
    
          .=
    |.(a
    /  
    |.a.|).| by
    COMPLEX1: 67;
    
          hence thesis;
    
        end;
    
      end;
    
    end
    
    definition
    
      let a be
    Complex;
    
      :: 
    
    COMPLEX3:def4
    
      func
    
    director a -> 
    weightless  
    Complex equals (a 
    /  
    |.a.|);
    
      coherence ;
    
    end
    
    theorem :: 
    
    COMPLEX3:7
    
    for a be
    Complex holds a 
    = ( 
    |.a.|
    * ( 
    director a)) 
    
    proof
    
      let a be
    Complex;
    
      per cases ;
    
        suppose a is
    zero;
    
        hence thesis;
    
      end;
    
        suppose not a is
    zero;
    
        hence thesis by
    XCMPLX_1: 87;
    
      end;
    
    end;
    
    theorem :: 
    
    COMPLEX3:8
    
    
    
    
    
    DIR: for a be 
    Complex holds ( 
    director ( 
    - a)) 
    = ( 
    - ( 
    director a)) 
    
    proof
    
      let a be
    Complex;
    
      (
    director ( 
    - a)) 
    = (( 
    - a) 
    /  
    |.a.|) by
    COMPLEX1: 52;
    
      hence thesis;
    
    end;
    
    registration
    
      let a be
    Real;
    
      identify
    sgn a with 
    director a; 
    
      correctness
    
      proof
    
        per cases ;
    
          suppose a
    =  
    0 ; 
    
          hence thesis by
    ABSVALUE:def 2;
    
        end;
    
          suppose a
    >  
    0 ; 
    
          then
    
          reconsider a as
    positive  
    Real;
    
          
    
          
    
    W1: ( 
    Re ( 
    director a)) 
    = ( 
    Re ((1 
    *  
    |.a.|)
    /  
    |.a.|))
    
          .= (
    Re 1) by 
    XCMPLX_1: 89
    
          .= 1 by
    COMPLEX1:def 1
    
          .= (
    sgn a) by 
    ABSVALUE:def 2
    
          .= (
    Re ( 
    sgn a)) by 
    COMPLEX1:def 1;
    
          (
    Im ( 
    director a)) 
    = ( 
    Im ( 
    sgn a)); 
    
          hence thesis by
    W1,
    COMPLEX1:def 3;
    
        end;
    
          suppose a
    <  
    0 ; 
    
          then
    
          reconsider a as
    negative  
    Real;
    
          (
    - a) 
    =  
    |.a.| by
    ABSVALUE:def 1;
    
          
    
          then
    
          
    
    W1: ( 
    Re ( 
    director a)) 
    = ( 
    Re ((( 
    - 1) 
    *  
    |.a.|)
    /  
    |.a.|))
    
          .= (
    Re ( 
    - 1)) by 
    XCMPLX_1: 89
    
          .= (
    - 1) by 
    COMPLEX1:def 1
    
          .= (
    sgn a) by 
    ABSVALUE:def 2
    
          .= (
    Re ( 
    sgn a)) by 
    COMPLEX1:def 1;
    
          (
    Im ( 
    director a)) 
    = ( 
    Im ( 
    sgn a)); 
    
          hence thesis by
    COMPLEX1:def 3,
    W1;
    
        end;
    
      end;
    
    end
    
    registration
    
      let a be
    Real;
    
      cluster ( 
    director a) -> 
    integer;
    
      coherence ;
    
    end
    
    registration
    
      let a be
    negative  
    Real;
    
      cluster ( 
    director a) -> 
    negative;
    
      coherence ;
    
    end
    
    registration
    
      let a be
    positive  
    Real;
    
      cluster ( 
    director a) -> 
    positive;
    
      coherence ;
    
    end
    
    registration
    
      reduce (
    director  
    0 ) to 
    0 ; 
    
      reducibility ;
    
    end
    
    registration
    
      let a be non
    weightless  
    Complex;
    
      cluster 
    |.a.| ->
    positive;
    
      coherence
    
      proof
    
        
    |.a.|
    >=  
    0 & 
    |.a.|
    <>  
    0 by 
    Def3;
    
        hence thesis;
    
      end;
    
      cluster ( 
    - a) -> non 
    weightless;
    
      coherence
    
      proof
    
        
    |.a.|
    =  
    |.(
    - a).| by 
    COMPLEX1: 52;
    
        hence thesis by
    Def3;
    
      end;
    
      cluster (a 
    *' ) -> non 
    weightless;
    
      coherence
    
      proof
    
        
    |.(a
    *' ).| 
    =  
    |.a.| by
    COMPLEX1: 53;
    
        hence thesis by
    Def3;
    
      end;
    
      cluster (a 
    " ) -> non 
    weightless;
    
      coherence
    
      proof
    
        (
    |.a.|
    " ) 
    <>  
    0 & ( 
    |.a.|
    " ) 
    <> (1 
    " ) by 
    Def3;
    
        hence thesis by
    COMPLEX1: 66;
    
      end;
    
    end
    
    registration
    
      let a be
    weightless  
    Complex;
    
      cluster ( 
    - a) -> 
    weightless;
    
      coherence
    
      proof
    
        
    |.a.|
    =  
    |.(
    - a).| by 
    COMPLEX1: 52;
    
        hence thesis by
    Def3;
    
      end;
    
      cluster (a 
    *' ) -> 
    weightless;
    
      coherence
    
      proof
    
        
    |.(a
    *' ).| 
    =  
    |.a.| by
    COMPLEX1: 53;
    
        hence thesis by
    Def3;
    
      end;
    
      cluster (a 
    " ) -> 
    weightless;
    
      coherence
    
      proof
    
        per cases by
    Def3;
    
          suppose a
    =  
    0 ; 
    
          hence thesis;
    
        end;
    
          suppose
    |.a.|
    = 1; 
    
          then
    |.(a
    " ).| 
    = (1 
    " ) by 
    COMPLEX1: 66;
    
          hence thesis;
    
        end;
    
      end;
    
      cluster (a 
    * (a 
    *' )) -> 
    weightless;
    
      coherence
    
      proof
    
        
    
        
    
    A1: ( 
    |.a.|
    *  
    |.(a
    *' ).|) 
    =  
    |.(a
    * (a 
    *' )).| by 
    COMPLEX1: 65;
    
        a is
    weightless implies (a 
    *' ) is 
    weightless;
    
        hence thesis by
    A1,
    Def3;
    
      end;
    
      cluster 
    |.(
    Re a).| -> non 
    heavy;
    
      coherence
    
      proof
    
        reconsider c =
    |.(
    Re a).| as non 
    negative  
    Real;
    
        (
    -  
    |.a.|)
    <= ( 
    Re a) 
    <=  
    |.a.| by
    COMPLEX1: 54,
    COMPLEX154a;
    
        then c
    <=  
    |.a.| by
    ABSVALUE: 5;
    
        hence thesis by
    Def3;
    
      end;
    
      cluster 
    |.(
    Im a).| -> non 
    heavy;
    
      coherence
    
      proof
    
        reconsider c =
    |.(
    Im a).| as non 
    negative  
    Real;
    
        (
    -  
    |.a.|)
    <= ( 
    Im a) 
    <=  
    |.a.| by
    COMPLEX1: 55,
    COMPLEX155a;
    
        then c
    <=  
    |.a.| by
    ABSVALUE: 5;
    
        hence thesis by
    Def3;
    
      end;
    
      cluster ( 
    |.a.|
    - 1) -> 
    weightless;
    
      coherence
    
      proof
    
        per cases by
    Def3;
    
          suppose
    |.a.|
    =  
    0 ; 
    
          hence thesis;
    
        end;
    
          suppose
    |.a.|
    = 1; 
    
          hence thesis;
    
        end;
    
      end;
    
      cluster (1 
    -  
    |.a.|) ->
    weightless;
    
      coherence
    
      proof
    
        per cases by
    Def3;
    
          suppose
    |.a.|
    =  
    0 ; 
    
          hence thesis;
    
        end;
    
          suppose
    |.a.|
    = 1; 
    
          hence thesis;
    
        end;
    
      end;
    
    end
    
    registration
    
      let a be
    weightless  
    Real;
    
      reduce (
    sgn a) to a; 
    
      reducibility by
    Th0;
    
    end
    
    registration
    
      let a be
    heavy  
    Complex;
    
      cluster ( 
    - a) -> 
    heavy;
    
      coherence
    
      proof
    
        
    |.a.|
    =  
    |.(
    - a).| by 
    COMPLEX1: 52;
    
        hence thesis by
    Def1;
    
      end;
    
      cluster (a 
    *' ) -> 
    heavy;
    
      coherence
    
      proof
    
        
    |.(a
    *' ).| 
    =  
    |.a.| by
    COMPLEX1: 53;
    
        hence thesis by
    Def1;
    
      end;
    
      cluster (a 
    " ) -> 
    light;
    
      coherence
    
      proof
    
        
    |.(a
    " ).| 
    = ( 
    |.a.|
    " ) by 
    COMPLEX1: 66;
    
        hence thesis by
    XREAL_1: 212,
    Def1;
    
      end;
    
      cluster (a 
    * (a 
    *' )) -> 
    heavy;
    
      coherence
    
      proof
    
        a is
    heavy implies (a 
    *' ) is 
    heavy;
    
        then (
    |.a.|
    *  
    |.(a
    *' ).|) 
    > (1 
    * 1) by 
    Def1,
    XREAL_1: 97;
    
        hence thesis by
    COMPLEX1: 65;
    
      end;
    
      cluster ( 
    |.(
    Re a).| 
    +  
    |.(
    Im a).|) -> 
    heavy;
    
      coherence
    
      proof
    
        reconsider c = (
    |.(
    Re a).| 
    +  
    |.(
    Im a).|) as non 
    negative  
    Real;
    
        c
    >=  
    |.a.|
    > 1 by 
    RI,
    Def1;
    
        hence thesis by
    XXREAL_0: 2;
    
      end;
    
      cluster ( 
    |.a.|
    - 1) -> 
    positive;
    
      coherence
    
      proof
    
        (
    |.a.|
    - 1) 
    > (1 
    - 1) by 
    XREAL_1: 9,
    Def1;
    
        hence thesis;
    
      end;
    
      cluster (1 
    -  
    |.a.|) ->
    negative;
    
      coherence
    
      proof
    
        (1
    -  
    |.a.|)
    < ( 
    |.a.|
    -  
    |.a.|) by
    XREAL_1: 9,
    Def1;
    
        hence thesis;
    
      end;
    
    end
    
    registration
    
      let a be non
    light  
    Complex;
    
      cluster ( 
    - a) -> non 
    light;
    
      coherence
    
      proof
    
        
    |.a.|
    =  
    |.(
    - a).| by 
    COMPLEX1: 52;
    
        hence thesis by
    Def2;
    
      end;
    
      cluster (a 
    *' ) -> non 
    light;
    
      coherence
    
      proof
    
        
    |.(a
    *' ).| 
    =  
    |.a.| by
    COMPLEX1: 53;
    
        hence thesis by
    Def2;
    
      end;
    
      cluster (a 
    " ) -> non 
    heavy;
    
      coherence
    
      proof
    
        
    |.(a
    " ).| 
    = ( 
    |.a.|
    " ) by 
    COMPLEX1: 66;
    
        hence thesis by
    XREAL_1: 211,
    Def2;
    
      end;
    
      cluster (a 
    * (a 
    *' )) -> non 
    light;
    
      coherence
    
      proof
    
        
    |.a.|
    >= 1 & 
    |.(a
    *' ).| 
    >= 1 by 
    Def2;
    
        then (
    |.a.|
    *  
    |.(a
    *' ).|) 
    >= (1 
    * 1) by 
    XREAL_1: 66;
    
        hence thesis by
    COMPLEX1: 65;
    
      end;
    
      cluster ( 
    |.(
    Re a).| 
    +  
    |.(
    Im a).|) -> non 
    light;
    
      coherence
    
      proof
    
        reconsider c = (
    |.(
    Re a).| 
    +  
    |.(
    Im a).|) as non 
    negative  
    Real;
    
        c
    >=  
    |.a.|
    >= 1 by 
    RI,
    Def2;
    
        hence thesis by
    XXREAL_0: 2;
    
      end;
    
      cluster ( 
    |.a.|
    - 1) -> non 
    negative;
    
      coherence
    
      proof
    
        (
    |.a.|
    - 1) 
    >= (1 
    - 1) by 
    XREAL_1: 9,
    Def2;
    
        hence thesis;
    
      end;
    
      cluster (1 
    -  
    |.a.|) -> non
    positive;
    
      coherence
    
      proof
    
        (1
    -  
    |.a.|)
    <= ( 
    |.a.|
    -  
    |.a.|) by
    XREAL_1: 9,
    Def2;
    
        hence thesis;
    
      end;
    
    end
    
    registration
    
      let a be
    light  
    Complex;
    
      cluster ( 
    - a) -> 
    light;
    
      coherence
    
      proof
    
        
    |.a.|
    =  
    |.(
    - a).| by 
    COMPLEX1: 52;
    
        hence thesis by
    Def2;
    
      end;
    
      cluster (a 
    *' ) -> 
    light;
    
      coherence
    
      proof
    
        
    |.(a
    *' ).| 
    =  
    |.a.| by
    COMPLEX1: 53;
    
        hence thesis by
    Def2;
    
      end;
    
      cluster (a 
    * (a 
    *' )) -> 
    light;
    
      coherence
    
      proof
    
        
    |.a.|
    < 1 & 
    |.(a
    *' ).| 
    < 1 by 
    Def2;
    
        then (
    |.a.|
    *  
    |.(a
    *' ).|) 
    < (1 
    * 1) by 
    XREAL_1: 96;
    
        hence thesis by
    COMPLEX1: 65;
    
      end;
    
      cluster ( 
    |.a.|
    - 1) -> 
    negative;
    
      coherence
    
      proof
    
        (
    |.a.|
    - 1) 
    < (1 
    - 1) by 
    Def2,
    XREAL_1: 9;
    
        hence thesis;
    
      end;
    
      cluster (1 
    -  
    |.a.|) ->
    positive;
    
      coherence
    
      proof
    
        (1
    -  
    |.a.|)
    > ( 
    |.a.|
    -  
    |.a.|) by
    Def2,
    XREAL_1: 9;
    
        hence thesis;
    
      end;
    
      cluster ( 
    Re a) -> 
    light;
    
      coherence
    
      proof
    
        per cases ;
    
          suppose (
    Re a) is non 
    negative;
    
          then
    
          reconsider b = (
    Re a) as non 
    negative  
    Real;
    
          (
    Re a) 
    <=  
    |.a.| &
    |.a.|
    < 1 by 
    COMPLEX1: 54,
    Def2;
    
          then b
    < 1 by 
    XXREAL_0: 2;
    
          hence thesis;
    
        end;
    
          suppose (
    Re a) is 
    negative;
    
          then
    |.(
    Re a).| 
    = ( 
    - ( 
    Re a)) & ( 
    - ( 
    Re a)) 
    <= ( 
    - ( 
    -  
    |.a.|)) by
    COMPLEX154a,
    ABSVALUE:def 1,
    XREAL_1: 24;
    
          hence thesis by
    XXREAL_0: 2,
    Def2;
    
        end;
    
      end;
    
      cluster ( 
    Im a) -> 
    light;
    
      coherence
    
      proof
    
        per cases ;
    
          suppose (
    Im a) is non 
    negative;
    
          then
    
          reconsider b = (
    Im a) as non 
    negative  
    Real;
    
          (
    Im a) 
    <=  
    |.a.| &
    |.a.|
    < 1 by 
    COMPLEX1: 55,
    Def2;
    
          then b
    < 1 by 
    XXREAL_0: 2;
    
          hence thesis;
    
        end;
    
          suppose (
    Im a) is 
    negative;
    
          then
    |.(
    Im a).| 
    = ( 
    - ( 
    Im a)) & ( 
    - ( 
    Im a)) 
    <= ( 
    - ( 
    -  
    |.a.|)) by
    COMPLEX155a,
    ABSVALUE:def 1,
    XREAL_1: 24;
    
          hence thesis by
    XXREAL_0: 2,
    Def2;
    
        end;
    
      end;
    
      cluster (( 
    Re a) 
    - 1) -> 
    negative;
    
      coherence
    
      proof
    
        ((
    Re a) 
    - 1) 
    <= ( 
    |.a.|
    - 1) by 
    COMPLEX1: 54,
    XREAL_1: 9;
    
        hence thesis;
    
      end;
    
      cluster (( 
    Re a) 
    - 2) -> 
    heavy;
    
      coherence
    
      proof
    
        reconsider k = ((
    Re a) 
    - 1) as 
    negative  
    Real;
    
        (k
    - 1) 
    < ( 
    0  
    - 1) by 
    XREAL_1: 9;
    
        then (
    - (k 
    - 1)) 
    > ( 
    - ( 
    - 1)) by 
    XREAL_1: 24;
    
        then
    |.(k
    - 1).| 
    > 1 by 
    ABSVALUE:def 1;
    
        hence thesis;
    
      end;
    
      cluster (( 
    Im a) 
    - 1) -> 
    negative;
    
      coherence
    
      proof
    
        ((
    Im a) 
    - 1) 
    <= ( 
    |.a.|
    - 1) by 
    COMPLEX1: 55,
    XREAL_1: 9;
    
        hence thesis;
    
      end;
    
      cluster (( 
    Im a) 
    - 2) -> 
    heavy;
    
      coherence
    
      proof
    
        reconsider k = ((
    Im a) 
    - 1) as 
    negative  
    Real;
    
        (k
    - 1) 
    < ( 
    0  
    - 1) by 
    XREAL_1: 9;
    
        then (
    - (k 
    - 1)) 
    > ( 
    - ( 
    - 1)) by 
    XREAL_1: 24;
    
        then
    |.(k
    - 1).| 
    > 1 by 
    ABSVALUE:def 1;
    
        hence thesis;
    
      end;
    
    end
    
    registration
    
      let a be non
    zero
    light  
    Complex;
    
      cluster (a 
    " ) -> 
    heavy;
    
      coherence
    
      proof
    
        (1
    " ) 
    < ( 
    |.a.|
    " ) by 
    XREAL_1: 88,
    Def2;
    
        hence thesis by
    COMPLEX1: 66;
    
      end;
    
    end
    
    registration
    
      let a be non
    heavy  
    Complex;
    
      cluster ( 
    - a) -> non 
    heavy;
    
      coherence
    
      proof
    
        
    |.a.|
    =  
    |.(
    - a).| by 
    COMPLEX1: 52;
    
        hence thesis by
    Def1;
    
      end;
    
      cluster (a 
    *' ) -> non 
    heavy;
    
      coherence
    
      proof
    
        
    |.(a
    *' ).| 
    =  
    |.a.| by
    COMPLEX1: 53;
    
        hence thesis by
    Def1;
    
      end;
    
      cluster (a 
    * (a 
    *' )) -> non 
    heavy;
    
      coherence
    
      proof
    
        
    |.a.|
    <= 1 & 
    |.(a
    *' ).| 
    <= 1 by 
    Def1;
    
        then (
    |.a.|
    *  
    |.(a
    *' ).|) 
    <= (1 
    * 1) by 
    XREAL_1: 66;
    
        hence thesis by
    COMPLEX1: 65;
    
      end;
    
      cluster ( 
    |.a.|
    - 1) -> non 
    positive;
    
      coherence
    
      proof
    
        (
    |.a.|
    - 1) 
    <= (1 
    - 1) by 
    Def1,
    XREAL_1: 9;
    
        hence thesis;
    
      end;
    
      cluster (1 
    -  
    |.a.|) -> non
    negative;
    
      coherence
    
      proof
    
        (1
    -  
    |.a.|)
    >= ( 
    |.a.|
    -  
    |.a.|) by
    Def1,
    XREAL_1: 9;
    
        hence thesis;
    
      end;
    
      cluster ( 
    Re a) -> non 
    heavy;
    
      coherence
    
      proof
    
        per cases ;
    
          suppose (
    Re a) is non 
    negative;
    
          then
    
          reconsider b = (
    Re a) as non 
    negative  
    Real;
    
          (
    Re a) 
    <=  
    |.a.| &
    |.a.|
    <= 1 by 
    COMPLEX1: 54,
    Def1;
    
          then b
    <= 1 by 
    XXREAL_0: 2;
    
          hence thesis;
    
        end;
    
          suppose (
    Re a) is 
    negative;
    
          then
    |.(
    Re a).| 
    = ( 
    - ( 
    Re a)) & ( 
    - ( 
    Re a)) 
    <= ( 
    - ( 
    -  
    |.a.|)) by
    COMPLEX154a,
    ABSVALUE:def 1,
    XREAL_1: 24;
    
          then
    |.(
    Re a).| 
    <=  
    |.a.| &
    |.a.|
    <= 1 by 
    Def1;
    
          hence thesis by
    XXREAL_0: 2;
    
        end;
    
      end;
    
      cluster ( 
    Im a) -> non 
    heavy;
    
      coherence
    
      proof
    
        per cases ;
    
          suppose (
    Im a) is non 
    negative;
    
          then
    
          reconsider b = (
    Im a) as non 
    negative  
    Real;
    
          (
    Im a) 
    <=  
    |.a.| &
    |.a.|
    <= 1 by 
    COMPLEX1: 55,
    Def1;
    
          then b
    <= 1 by 
    XXREAL_0: 2;
    
          hence thesis;
    
        end;
    
          suppose (
    Im a) is 
    negative;
    
          then
    |.(
    Im a).| 
    = ( 
    - ( 
    Im a)) & ( 
    - ( 
    Im a)) 
    <= ( 
    - ( 
    -  
    |.a.|)) by
    COMPLEX155a,
    ABSVALUE:def 1,
    XREAL_1: 24;
    
          then
    |.(
    Im a).| 
    <=  
    |.a.| &
    |.a.|
    <= 1 by 
    Def1;
    
          hence thesis by
    XXREAL_0: 2;
    
        end;
    
      end;
    
      cluster (( 
    Re a) 
    - 1) -> non 
    positive;
    
      coherence
    
      proof
    
        ((
    Re a) 
    - 1) 
    <= ( 
    |.a.|
    - 1) by 
    COMPLEX1: 54,
    XREAL_1: 9;
    
        hence thesis;
    
      end;
    
      cluster (( 
    Im a) 
    - 1) -> non 
    positive;
    
      coherence
    
      proof
    
        ((
    Im a) 
    - 1) 
    <= ( 
    |.a.|
    - 1) by 
    COMPLEX1: 55,
    XREAL_1: 9;
    
        hence thesis;
    
      end;
    
    end
    
    registration
    
      let a be non
    zero non 
    heavy  
    Complex;
    
      cluster (a 
    " ) -> non 
    light;
    
      coherence
    
      proof
    
        (1
    " ) 
    <= ( 
    |.a.|
    " ) by 
    XREAL_1: 85,
    Def1;
    
        hence thesis by
    COMPLEX1: 66;
    
      end;
    
    end
    
    definition
    
      let a be
    Complex;
    
      :: 
    
    COMPLEX3:def5
    
      func
    
    rsgn a -> non 
    heavy  
    Complex equals ( 
    Re ( 
    director a)); 
    
      coherence ;
    
    end
    
    definition
    
      let a be
    Complex;
    
      :: 
    
    COMPLEX3:def6
    
      func
    
    isgn a -> non 
    heavy  
    Complex equals ( 
    Im ( 
    director a)); 
    
      coherence ;
    
    end
    
    registration
    
      let a be
    Real;
    
      identify
    sgn a with 
    rsgn a; 
    
      correctness
    
      proof
    
        per cases ;
    
          suppose a
    =  
    0 ; 
    
          thus thesis by
    COMPLEX1:def 1;
    
        end;
    
          suppose a
    >  
    0 ; 
    
          then
    
          reconsider a as
    positive  
    Real;
    
          (
    Re ( 
    director a)) 
    = ( 
    Re ((1 
    *  
    |.a.|)
    /  
    |.a.|))
    
          .= (
    Re 1) by 
    XCMPLX_1: 89
    
          .= 1 by
    COMPLEX1:def 1;
    
          hence thesis by
    ABSVALUE:def 2;
    
        end;
    
          suppose a
    <  
    0 ; 
    
          then
    
          reconsider a as
    negative  
    Real;
    
          (
    - a) 
    =  
    |.a.| by
    ABSVALUE:def 1;
    
          
    
          then (
    Re ( 
    director a)) 
    = ( 
    Re ((( 
    - 1) 
    *  
    |.a.|)
    /  
    |.a.|))
    
          .= (
    Re ( 
    - 1)) by 
    XCMPLX_1: 89
    
          .= (
    - 1) by 
    COMPLEX1:def 1
    
          .= (
    sgn a) by 
    ABSVALUE:def 2;
    
          hence thesis;
    
        end;
    
      end;
    
      identify
    rsgn a with 
    sgn a; 
    
      correctness ;
    
      cluster ( 
    isgn a) -> 
    zero;
    
      coherence ;
    
    end
    
    registration
    
      let a be
    Real;
    
      cluster ( 
    frac a) -> 
    light;
    
      coherence
    
      proof
    
        reconsider b = (
    frac a) as non 
    negative  
    Real by 
    INT_1: 43;
    
        b
    =  
    |.b.|;
    
        hence thesis by
    INT_1: 43;
    
      end;
    
      cluster ( 
    |.a.|
    + a) -> non 
    negative;
    
      coherence by
    ABSVALUE: 26;
    
      cluster ( 
    |.a.|
    - a) -> non 
    negative;
    
      coherence by
    ABSVALUE: 27;
    
    end
    
    registration
    
      let a be
    heavy
    positive  
    Real;
    
      cluster (a 
    - 1) -> 
    positive;
    
      coherence
    
      proof
    
        
    |.a.|
    > 1 by 
    TA1;
    
        hence thesis;
    
      end;
    
      cluster (1 
    - a) -> 
    negative;
    
      coherence
    
      proof
    
        
    |.a.|
    > 1 by 
    TA1;
    
        hence thesis;
    
      end;
    
    end
    
    registration
    
      let a be
    light
    positive  
    Real;
    
      cluster (a 
    - 1) -> 
    negative;
    
      coherence
    
      proof
    
        
    |.a.|
    < 1 by 
    TA1;
    
        hence thesis;
    
      end;
    
      cluster (1 
    - a) -> 
    positive;
    
      coherence
    
      proof
    
        
    |.a.|
    < 1 by 
    TA1;
    
        hence thesis;
    
      end;
    
    end
    
    theorem :: 
    
    COMPLEX3:9
    
    
    
    
    
    Th1: for a be non 
    heavy  
    Complex holds a is 
    light or a is 
    weightless
    
    proof
    
      let a be non
    heavy  
    Complex;
    
      
    |.a.|
    <= 1 by 
    Def1;
    
      hence thesis by
    XXREAL_0: 1;
    
    end;
    
    theorem :: 
    
    COMPLEX3:10
    
    for a be non
    light  
    Complex holds a is 
    heavy or a is 
    weightless
    
    proof
    
      let a be non
    light  
    Complex;
    
      
    |.a.|
    >= 1 by 
    Def2;
    
      hence thesis by
    XXREAL_0: 1;
    
    end;
    
    theorem :: 
    
    COMPLEX3:11
    
    for a be
    heavy
    positive  
    Real, b be non 
    heavy  
    Real holds a 
    > b 
    > ( 
    - a) 
    
    proof
    
      let a be
    heavy
    positive  
    Real, b be non 
    heavy  
    Real;
    
      a
    > 1 & 1 
    >= b & b 
    >= ( 
    - 1) & ( 
    - 1) 
    > ( 
    - a) by 
    TA1;
    
      hence thesis by
    XXREAL_0: 2;
    
    end;
    
    theorem :: 
    
    COMPLEX3:12
    
    for a be non
    light
    positive  
    Real, b be 
    light  
    Real holds a 
    > b 
    > ( 
    - a) 
    
    proof
    
      let a be non
    light
    positive  
    Real, b be 
    light  
    Real;
    
      a
    >= 1 & 1 
    > b & b 
    > ( 
    - 1) & ( 
    - 1) 
    >= ( 
    - a) by 
    TA1;
    
      hence thesis by
    XXREAL_0: 2;
    
    end;
    
    registration
    
      let a be
    heavy  
    Complex, b be non 
    light  
    Complex;
    
      cluster (a 
    * b) -> 
    heavy;
    
      coherence
    
      proof
    
        
    |.a.|
    > 1 & 
    |.b.|
    >= 1 by 
    Def1,
    Def2;
    
        then (
    |.a.|
    *  
    |.b.|)
    > (1 
    * 1) by 
    XREAL_1: 97;
    
        hence thesis by
    COMPLEX1: 65;
    
      end;
    
    end
    
    registration
    
      let a,b be non
    light  
    Complex;
    
      cluster (a 
    * b) -> non 
    light;
    
      coherence
    
      proof
    
        
    |.a.|
    >= 1 & 
    |.b.|
    >= 1 by 
    Def2;
    
        then (
    |.a.|
    *  
    |.b.|)
    >= 1 by 
    XREAL_1: 159;
    
        hence thesis by
    COMPLEX1: 65;
    
      end;
    
    end
    
    registration
    
      let a be
    light  
    Complex, b be non 
    heavy  
    Complex;
    
      cluster (a 
    * b) -> 
    light;
    
      coherence
    
      proof
    
        
    0  
    <=  
    |.a.|
    < 1 & 
    0  
    <=  
    |.b.|
    <= 1 by 
    Def1,
    Def2;
    
        then (
    |.a.|
    *  
    |.b.|)
    < 1 by 
    XREAL_1: 162;
    
        hence thesis by
    COMPLEX1: 65;
    
      end;
    
    end
    
    registration
    
      let a,b be non
    heavy  
    Complex;
    
      cluster (a 
    * b) -> non 
    heavy;
    
      coherence
    
      proof
    
        
    0  
    <=  
    |.a.|
    <= 1 & 
    0  
    <=  
    |.b.|
    <= 1 by 
    Def1;
    
        then (
    |.a.|
    *  
    |.b.|)
    <= 1 by 
    XREAL_1: 160;
    
        hence thesis by
    COMPLEX1: 65;
    
      end;
    
    end
    
    registration
    
      let a,b be
    weightless  
    Complex;
    
      cluster (a 
    * b) -> 
    weightless;
    
      coherence
    
      proof
    
        per cases by
    Def3;
    
          suppose
    |.a.|
    = 1; 
    
          
    
          then
    |.(a
    * b).| 
    = ( 
    |.1.|
    *  
    |.b.|) by
    COMPLEX1: 65
    
          .=
    |.b.|;
    
          hence thesis by
    Def3;
    
        end;
    
          suppose
    |.a.|
    =  
    0 ; 
    
          
    
          then
    |.(a
    * b).| 
    = ( 
    |.
    0 .| 
    *  
    |.b.|) by
    COMPLEX1: 65
    
          .=
    0 ; 
    
          hence thesis;
    
        end;
    
      end;
    
    end
    
    definition
    
      let a be
    Complex;
    
      :: 
    
    COMPLEX3:def7
    
      func
    
    cfrac a -> 
    light  
    Complex equals (( 
    director a) 
    * ( 
    frac  
    |.a.|));
    
      coherence ;
    
    end
    
    theorem :: 
    
    COMPLEX3:13
    
    for a be
    Complex holds ( 
    cfrac ( 
    - a)) 
    = ( 
    - ( 
    cfrac a)) 
    
    proof
    
      let a be
    Complex;
    
      (
    cfrac ( 
    - a)) 
    = (( 
    - ( 
    director a)) 
    * ( 
    frac  
    |.(
    - a).|)) by 
    DIR
    
      .= ((
    - ( 
    director a)) 
    * ( 
    frac  
    |.a.|)) by
    COMPLEX1: 52;
    
      hence thesis;
    
    end;
    
    registration
    
      let a be non
    negative  
    Real;
    
      identify
    cfrac a with 
    frac a; 
    
      correctness
    
      proof
    
        per cases ;
    
          suppose a
    =  
    0 ; 
    
          hence thesis by
    INT_1: 45;
    
        end;
    
          suppose a
    >  
    0 ; 
    
          then
    
          reconsider a as
    positive  
    Real;
    
          reconsider b = (
    director a) as 
    positive
    weightless  
    Real;
    
          b
    = 1 & ( 
    frac a) 
    = ( 
    frac  
    |.a.|) by
    TA1;
    
          hence thesis;
    
        end;
    
      end;
    
      identify
    frac a with 
    cfrac a; 
    
      correctness ;
    
    end
    
    theorem :: 
    
    COMPLEX3:14
    
    
    
    
    
    TAYLOR21: for a be 
    Complex, n be 
    Nat holds ( 
    |.a.|
    |^ n) 
    =  
    |.(a
    |^ n).| 
    
    proof
    
      let a be
    Complex, n be 
    Nat;
    
      defpred
    
    P[
    Nat] means (
    |.a.|
    |^ $1) 
    =  
    |.(a
    |^ $1).|; 
    
      
    
      
    
    A1: 
    P[
    0 ] 
    
      proof
    
        (
    |.a.|
    |^  
    0 ) 
    =  
    |.1.| by
    NEWTON: 4
    
        .=
    |.(a
    |^  
    0 ).| by 
    NEWTON: 4;
    
        hence thesis;
    
      end;
    
      
    
      
    
    A2: for k be 
    Nat st 
    P[k] holds
    P[(k
    + 1)] 
    
      proof
    
        let k be
    Nat such that 
    
        
    
    B1: ( 
    |.a.|
    |^ k) 
    =  
    |.(a
    |^ k).|; 
    
        
    |.(a
    |^ (k 
    + 1)).| 
    =  
    |.(a
    * (a 
    |^ k)).| by 
    NEWTON: 6
    
        .= (
    |.a.|
    * ( 
    |.a.|
    |^ k)) by 
    B1,
    COMPLEX1: 65;
    
        hence thesis by
    NEWTON: 6;
    
      end;
    
      for l be
    Nat holds 
    P[l] from
    NAT_1:sch 2(
    A1,
    A2);
    
      hence thesis;
    
    end;
    
    registration
    
      let a be
    weightless  
    Complex, n be 
    Nat;
    
      cluster (a 
    |^ n) -> 
    weightless;
    
      coherence
    
      proof
    
        per cases by
    Def3;
    
          suppose
    |.a.|
    =  
    0 ; 
    
          then a
    =  
    0 ; 
    
          then (a
    |^ n) 
    =  
    0 or n 
    =  
    0 by 
    NAT_1: 14,
    NEWTON: 11;
    
          then
    |.(a
    |^ n).| 
    =  
    0 or (a 
    |^ n) 
    = 1 by 
    NEWTON: 4;
    
          hence thesis;
    
        end;
    
          suppose
    |.a.|
    = 1; 
    
          
    
          then 1
    = ( 
    |.a.|
    |^ n) 
    
          .=
    |.(a
    |^ n).| by 
    TAYLOR21;
    
          hence thesis;
    
        end;
    
      end;
    
    end
    
    registration
    
      let a be
    weightless  
    Real, n be 
    Nat;
    
      cluster ((a 
    |^ (2 
    * n)) 
    - 1) -> 
    weightless;
    
      coherence
    
      proof
    
        per cases by
    Def3;
    
          suppose
    |.a.|
    =  
    0 ; 
    
          then a
    =  
    0 ; 
    
          then (a
    |^ (2 
    * n)) 
    =  
    0 or n 
    =  
    0 by 
    NAT_1: 14,
    NEWTON: 11;
    
          then (a
    |^ (2 
    * n)) 
    =  
    0 or (a 
    |^ (2 
    * n)) 
    = 1 by 
    NEWTON: 4;
    
          hence thesis;
    
        end;
    
          suppose
    |.a.|
    = 1; 
    
          then a
    = 1 or ( 
    - a) 
    = 1 by 
    ABSVALUE: 1;
    
          hence thesis;
    
        end;
    
      end;
    
    end
    
    registration
    
      let a be non
    light  
    Complex, n be 
    Nat;
    
      cluster (a 
    |^ n) -> non 
    light;
    
      coherence
    
      proof
    
        per cases ;
    
          suppose n is
    zero;
    
          hence thesis by
    NEWTON: 4;
    
        end;
    
          suppose not n is
    zero;
    
          then
    
          reconsider n as non
    zero  
    Nat;
    
          defpred
    
    P[
    Nat] means (a
    |^ ($1 
    + 1)) is non 
    light;
    
          
    
          
    
    A1: 
    P[
    0 ]; 
    
          
    
          
    
    A2: for k be 
    Nat holds 
    P[k] implies
    P[(k
    + 1)] 
    
          proof
    
            let k be
    Nat;
    
            assume (a
    |^ (k 
    + 1)) is non 
    light;
    
            then (a
    * (a 
    |^ (k 
    + 1))) is non 
    light;
    
            hence thesis by
    NEWTON: 6;
    
          end;
    
          
    
          
    
    A3: for l be 
    Nat holds 
    P[l] from
    NAT_1:sch 2(
    A1,
    A2);
    
          reconsider m = (n
    - 1) as 
    Nat;
    
          (a
    |^ (m 
    + 1)) is non 
    light by 
    A3;
    
          hence thesis;
    
        end;
    
      end;
    
    end
    
    registration
    
      let a be non
    light  
    Real, n be 
    Nat;
    
      cluster ((a 
    |^ (2 
    * n)) 
    - 1) -> non 
    negative;
    
      coherence
    
      proof
    
        
    |.(a
    |^ (2 
    * n)).| 
    >= 1 by 
    TA1;
    
        hence thesis;
    
      end;
    
    end
    
    registration
    
      let a be
    light  
    Complex, n be non 
    zero  
    Nat;
    
      cluster (a 
    |^ n) -> 
    light;
    
      coherence
    
      proof
    
        defpred
    
    P[
    Nat] means (a
    |^ ($1 
    + 1)) is 
    light;
    
        
    
        
    
    A1: 
    P[
    0 ]; 
    
        
    
        
    
    A2: for k be 
    Nat holds 
    P[k] implies
    P[(k
    + 1)] 
    
        proof
    
          let k be
    Nat;
    
          assume (a
    |^ (k 
    + 1)) is 
    light;
    
          then (a
    * (a 
    |^ (k 
    + 1))) is 
    light;
    
          hence thesis by
    NEWTON: 6;
    
        end;
    
        
    
        
    
    A3: for l be 
    Nat holds 
    P[l] from
    NAT_1:sch 2(
    A1,
    A2);
    
        reconsider m = (n
    - 1) as 
    Nat;
    
        (a
    |^ (m 
    + 1)) is 
    light by 
    A3;
    
        hence thesis;
    
      end;
    
      cluster (n 
    -root a) -> 
    light;
    
      coherence
    
      proof
    
        assume not thesis;
    
        then not ((n
    -root a) 
    |^ n) is 
    light;
    
        hence contradiction by
    POLYEQ_5: 7;
    
      end;
    
    end
    
    registration
    
      let a be
    light  
    Real, n be non 
    zero  
    Nat;
    
      cluster ((a 
    |^ (2 
    * n)) 
    - 1) -> 
    negative;
    
      coherence
    
      proof
    
        
    |.(a
    |^ (2 
    * n)).| 
    < 1 by 
    TA1;
    
        hence thesis;
    
      end;
    
    end
    
    registration
    
      let a be non
    heavy  
    Complex, n be 
    Nat;
    
      cluster (a 
    |^ n) -> non 
    heavy;
    
      coherence
    
      proof
    
        per cases by
    Th1;
    
          suppose a is
    weightless;
    
          hence thesis;
    
        end;
    
          suppose a is
    light;
    
          then (a
    |^ n) is 
    light or n 
    =  
    0 ; 
    
          then (a
    |^ n) is 
    light or (a 
    |^ n) 
    = 1 by 
    NEWTON: 4;
    
          hence thesis;
    
        end;
    
      end;
    
    end
    
    registration
    
      let a be non
    heavy  
    Real, n be 
    Nat;
    
      cluster ((a 
    |^ (2 
    * n)) 
    - 1) -> non 
    positive;
    
      coherence
    
      proof
    
        
    |.(a
    |^ (2 
    * n)).| 
    <= 1 by 
    TA1;
    
        hence thesis;
    
      end;
    
    end
    
    registration
    
      let a be
    heavy  
    Complex, n be non 
    zero  
    Nat;
    
      cluster (a 
    |^ n) -> 
    heavy;
    
      coherence
    
      proof
    
        defpred
    
    P[
    Nat] means (a
    |^ ($1 
    + 1)) is 
    heavy;
    
        
    
        
    
    A1: 
    P[
    0 ]; 
    
        
    
        
    
    A2: for k be 
    Nat holds 
    P[k] implies
    P[(k
    + 1)] 
    
        proof
    
          let k be
    Nat;
    
          (a
    * (a 
    |^ (k 
    + 1))) is 
    heavy;
    
          hence thesis by
    NEWTON: 6;
    
        end;
    
        
    
        
    
    A3: for l be 
    Nat holds 
    P[l] from
    NAT_1:sch 2(
    A1,
    A2);
    
        reconsider m = (n
    - 1) as 
    Nat;
    
        (a
    |^ (m 
    + 1)) is 
    heavy by 
    A3;
    
        hence thesis;
    
      end;
    
      cluster (n 
    -root a) -> 
    heavy;
    
      coherence
    
      proof
    
        assume not thesis;
    
        then not ((n
    -root a) 
    |^ n) is 
    heavy;
    
        hence contradiction by
    POLYEQ_5: 7;
    
      end;
    
    end
    
    registration
    
      let a be non
    weightless  
    Complex, n be non 
    zero  
    Nat;
    
      cluster (a 
    |^ n) -> non 
    weightless;
    
      coherence
    
      proof
    
        reconsider b =
    |.a.| as
    positive  
    Real;
    
        
    |.a.|
    <> 1 implies 
    |.a.|
    > 1 or 
    |.a.|
    < 1 by 
    XXREAL_0: 1;
    
        then (
    |.a.|
    |^ n) 
    <> (1 
    * ( 
    0  
    |^ n)) & ( 
    |.a.|
    |^ n) 
    <> (1 
    |^ n) by 
    Def3,
    NEWTON02: 40;
    
        hence thesis by
    TAYLOR21;
    
      end;
    
    end
    
    registration
    
      let a be
    weightless  
    Complex, n be non 
    zero  
    Nat;
    
      cluster (n 
    -root a) -> 
    weightless;
    
      coherence
    
      proof
    
        assume not thesis;
    
        then not ((n
    -root a) 
    |^ n) is 
    weightless;
    
        hence contradiction by
    POLYEQ_5: 7;
    
      end;
    
    end
    
    registration
    
      let a be non
    weightless  
    Complex, n be non 
    zero  
    Nat;
    
      cluster (n 
    -root a) -> non 
    weightless;
    
      coherence
    
      proof
    
        assume not thesis;
    
        then ((n
    -root a) 
    |^ n) is 
    weightless;
    
        hence contradiction by
    POLYEQ_5: 7;
    
      end;
    
    end
    
    registration
    
      let a be non
    light  
    Complex, n be non 
    zero  
    Nat;
    
      cluster (n 
    -root a) -> non 
    light;
    
      coherence
    
      proof
    
        assume not thesis;
    
        then ((n
    -root a) 
    |^ n) is 
    light;
    
        hence contradiction by
    POLYEQ_5: 7;
    
      end;
    
    end
    
    registration
    
      let a be non
    heavy  
    Complex, n be non 
    zero  
    Nat;
    
      cluster (n 
    -root a) -> non 
    heavy;
    
      coherence
    
      proof
    
        assume not thesis;
    
        then not ((n
    -root a) 
    |^ n) is non 
    heavy;
    
        hence contradiction by
    POLYEQ_5: 7;
    
      end;
    
    end
    
    registration
    
      let a,b be
    weightless  
    Complex;
    
      cluster (a 
    / b) -> 
    weightless;
    
      coherence ;
    
    end
    
    registration
    
      let a be non
    heavy  
    Complex, b be 
    heavy  
    Complex;
    
      cluster (a 
    / b) -> 
    light;
    
      coherence ;
    
    end
    
    registration
    
      let a be
    light  
    Complex, b be non 
    light  
    Complex;
    
      cluster (a 
    / b) -> 
    light;
    
      coherence ;
    
    end
    
    registration
    
      let a be non
    light  
    Complex, b be non 
    zero
    light  
    Complex;
    
      cluster (a 
    / b) -> 
    heavy;
    
      coherence ;
    
    end
    
    registration
    
      let a be
    heavy  
    Complex, b be non 
    zero non 
    heavy  
    Complex;
    
      cluster (a 
    / b) -> 
    heavy;
    
      coherence ;
    
    end
    
    registration
    
      let a be
    heavy
    positive  
    Real, b be non 
    negative  
    Real;
    
      cluster (a 
    + b) -> 
    heavy;
    
      coherence
    
      proof
    
        (a
    + b) 
    > (1 
    +  
    0 ) by 
    TA1,
    XREAL_1: 8;
    
        hence thesis;
    
      end;
    
    end
    
    registration
    
      let a be
    heavy
    negative  
    Real, b be non 
    positive  
    Real;
    
      cluster (a 
    + b) -> 
    heavy;
    
      coherence
    
      proof
    
        ((
    - a) 
    + ( 
    - b)) is 
    heavy;
    
        then (
    - ( 
    - (a 
    + b))) is 
    heavy;
    
        hence thesis;
    
      end;
    
    end
    
    registration
    
      let a be non
    light
    positive  
    Real, b be 
    positive  
    Real;
    
      cluster (a 
    + b) -> 
    heavy;
    
      coherence
    
      proof
    
        a
    >= 1 by 
    TA1;
    
        then (a
    + b) 
    > (1 
    +  
    0 ) by 
    XREAL_1: 8;
    
        hence thesis;
    
      end;
    
    end
    
    registration
    
      let a be non
    light
    negative  
    Real, b be 
    negative  
    Real;
    
      cluster (a 
    + b) -> 
    heavy;
    
      coherence
    
      proof
    
        ((
    - a) 
    + ( 
    - b)) is 
    heavy;
    
        then (
    - ( 
    - (a 
    + b))) is 
    heavy;
    
        hence thesis;
    
      end;
    
    end
    
    registration
    
      let a be non
    heavy  
    Real, b be 
    heavy
    positive  
    Real;
    
      cluster (a 
    + b) -> 
    positive;
    
      coherence
    
      proof
    
        a
    >= ( 
    - 1) & b 
    > 1 by 
    TA1;
    
        then (a
    + b) 
    > (( 
    - 1) 
    + 1) by 
    XREAL_1: 8;
    
        hence thesis;
    
      end;
    
    end
    
    registration
    
      let a be
    light  
    Real, b be non 
    light
    positive  
    Real;
    
      cluster (a 
    + b) -> 
    positive;
    
      coherence
    
      proof
    
        a
    > ( 
    - 1) & b 
    >= 1 by 
    TA1;
    
        then (a
    + b) 
    > (( 
    - 1) 
    + 1) by 
    XREAL_1: 8;
    
        hence thesis;
    
      end;
    
    end
    
    registration
    
      let a be non
    heavy  
    Real, b be non 
    light
    positive  
    Real;
    
      cluster (a 
    + b) -> non 
    negative;
    
      coherence
    
      proof
    
        a
    >= ( 
    - 1) & b 
    >= 1 by 
    TA1;
    
        then (a
    + b) 
    >= (( 
    - 1) 
    + 1) by 
    XREAL_1: 7;
    
        hence thesis;
    
      end;
    
    end
    
    registration
    
      let a be non
    heavy  
    Real, b be 
    heavy
    negative  
    Real;
    
      cluster (a 
    + b) -> 
    negative;
    
      coherence
    
      proof
    
        a
    <= 1 & b 
    < ( 
    - 1) by 
    TA1;
    
        then (a
    + b) 
    < (1 
    + ( 
    - 1)) by 
    XREAL_1: 8;
    
        then (a
    + b) 
    <  
    0 ; 
    
        hence thesis;
    
      end;
    
    end
    
    registration
    
      let a be
    light  
    Real, b be non 
    light
    negative  
    Real;
    
      cluster (a 
    + b) -> 
    negative;
    
      coherence
    
      proof
    
        a
    < 1 & b 
    <= ( 
    - 1) by 
    TA1;
    
        then (a
    + b) 
    < (1 
    + ( 
    - 1)) by 
    XREAL_1: 8;
    
        then (a
    + b) 
    <  
    0 ; 
    
        hence thesis;
    
      end;
    
    end
    
    registration
    
      let a be non
    heavy  
    Real, b be non 
    light
    negative  
    Real;
    
      cluster (a 
    + b) -> non 
    positive;
    
      coherence
    
      proof
    
        a
    <= 1 & b 
    <= ( 
    - 1) by 
    TA1;
    
        then (a
    + b) 
    <= (1 
    + ( 
    - 1)) by 
    XREAL_1: 7;
    
        then (a
    + b) 
    <=  
    0 ; 
    
        hence thesis;
    
      end;
    
    end
    
    registration
    
      let a be
    light
    positive  
    Real, c be 
    light
    negative  
    Real;
    
      cluster (a 
    + c) -> 
    light;
    
      coherence
    
      proof
    
        reconsider b = (
    - c) as 
    light
    positive  
    Real;
    
        
    
        
    
    A2: 
    |.b.|
    < 1 by 
    Def2;
    
        
    |.a.|
    < 1 by 
    Def2;
    
        then (a
    - b) 
    < (1 
    - b) & (1 
    - b) 
    <= (1 
    -  
    0 ) by 
    XREAL_1: 9,
    XREAL_1: 10;
    
        then
    
        
    
    A3: (a 
    - b) 
    < 1 by 
    XXREAL_0: 2;
    
        
    
        
    
    A4: (b 
    - a) 
    < (1 
    - a) & (1 
    - a) 
    <= (1 
    -  
    0 ) by 
    A2,
    XREAL_1: 9,
    XREAL_1: 10;
    
        per cases ;
    
          suppose (a
    - b) 
    >=  
    0 ; 
    
          hence thesis by
    A3,
    ABSVALUE:def 1;
    
        end;
    
          suppose (a
    - b) 
    <  
    0 ; 
    
          then
    |.(a
    - b).| 
    = ( 
    - (a 
    - b)) by 
    ABSVALUE:def 1;
    
          hence thesis by
    A4,
    XXREAL_0: 2;
    
        end;
    
      end;
    
    end
    
    registration
    
      let a be non
    heavy
    positive  
    Real, c be non 
    heavy
    negative  
    Real;
    
      cluster (a 
    + c) -> non 
    heavy;
    
      coherence
    
      proof
    
        reconsider b = (
    - c) as non 
    heavy
    positive  
    Real;
    
        
    
        
    
    A1: 
    |.a.|
    <= 1 by 
    Def1;
    
        
    
        
    
    A2: 
    |.b.|
    <= 1 by 
    Def1;
    
        (a
    - b) 
    <= (1 
    - b) & (1 
    - b) 
    <= (1 
    -  
    0 ) by 
    A1,
    XREAL_1: 9,
    XREAL_1: 10;
    
        then
    
        
    
    A3: (a 
    - b) 
    <= 1 by 
    XXREAL_0: 2;
    
        
    
        
    
    A4: (b 
    - a) 
    <= (1 
    - a) & (1 
    - a) 
    <= (1 
    -  
    0 ) by 
    A2,
    XREAL_1: 9,
    XREAL_1: 10;
    
        per cases ;
    
          suppose (a
    - b) 
    >=  
    0 ; 
    
          hence thesis by
    A3,
    ABSVALUE:def 1;
    
        end;
    
          suppose (a
    - b) 
    <  
    0 ; 
    
          then
    |.(a
    - b).| 
    = ( 
    - (a 
    - b)) by 
    ABSVALUE:def 1;
    
          hence thesis by
    A4,
    XXREAL_0: 2;
    
        end;
    
      end;
    
    end
    
    registration
    
      let a,b be
    Real;
    
      cluster (a 
    - ( 
    min (a,b))) -> non 
    negative;
    
      coherence
    
      proof
    
        (a
    - ( 
    min (a,b))) 
    >= (( 
    min (a,b)) 
    - ( 
    min (a,b))) by 
    XREAL_1: 9,
    XXREAL_0: 17;
    
        hence thesis;
    
      end;
    
    end
    
    registration
    
      let a,b be
    weightless  
    Real;
    
      cluster ( 
    min (a,b)) -> 
    weightless;
    
      coherence by
    XXREAL_0:def 9;
    
      cluster ( 
    max (a,b)) -> 
    weightless;
    
      coherence by
    XXREAL_0:def 10;
    
    end
    
    registration
    
      let a,b be
    light  
    Real;
    
      cluster ( 
    min (a,b)) -> 
    light;
    
      coherence by
    XXREAL_0:def 9;
    
      cluster ( 
    max (a,b)) -> 
    light;
    
      coherence by
    XXREAL_0:def 10;
    
    end
    
    registration
    
      let a,b be
    heavy  
    Real;
    
      cluster ( 
    min (a,b)) -> 
    heavy;
    
      coherence by
    XXREAL_0:def 9;
    
      cluster ( 
    max (a,b)) -> 
    heavy;
    
      coherence by
    XXREAL_0:def 10;
    
    end
    
    registration
    
      let a,b be
    positive  
    Real;
    
      cluster (( 
    min (a,b)) 
    / ( 
    max (a,b))) -> non 
    heavy;
    
      coherence
    
      proof
    
        reconsider c = (
    max (a,b)) as 
    positive  
    Real;
    
        (
    max (a,b)) 
    >= a & a 
    >= ( 
    min (a,b)) by 
    XXREAL_0: 17,
    XXREAL_0: 25;
    
        then (
    max (a,b)) 
    >= ( 
    min (a,b)) by 
    XXREAL_0: 2;
    
        then ((
    min (a,b)) 
    / c) 
    <= ((1 
    * c) 
    / c) by 
    XREAL_1: 72;
    
        hence thesis by
    XCMPLX_1: 89;
    
      end;
    
      cluster (( 
    max (a,b)) 
    / ( 
    min (a,b))) -> non 
    light;
    
      coherence
    
      proof
    
        ((
    min (a,b)) 
    / ( 
    max (a,b))) is non 
    heavy;
    
        then (((
    max (a,b)) 
    / ( 
    min (a,b))) 
    " ) is non 
    heavy by 
    XCMPLX_1: 213;
    
        hence thesis;
    
      end;
    
      cluster ((a 
    + b) 
    / a) -> 
    heavy;
    
      coherence
    
      proof
    
        (a
    + b) 
    > (a 
    +  
    0 ) by 
    XREAL_1: 6;
    
        then ((a
    + b) 
    / a) 
    > ((1 
    * a) 
    / a) by 
    XREAL_1: 74;
    
        hence thesis by
    XCMPLX_1: 89;
    
      end;
    
      cluster (a 
    / (a 
    + b)) -> 
    light;
    
      coherence
    
      proof
    
        ((a
    + b) 
    / a) is 
    heavy;
    
        then ((a
    / (a 
    + b)) 
    " ) is 
    heavy by 
    XCMPLX_1: 213;
    
        hence thesis;
    
      end;
    
    end
    
    theorem :: 
    
    COMPLEX3:15
    
    
    
    
    
    MP: for a,b be 
    Real st (a 
    * b) is 
    positive holds 
    |.(a
    - b).| 
    <  
    |.(a
    + b).| 
    
    proof
    
      let a,b be
    Real such that 
    
      
    
    A1: (a 
    * b) is 
    positive;
    
      
    
      
    
    A2: 
    |.(a
    - b).| 
    = (a 
    - b) or 
    |.(a
    - b).| 
    = ( 
    - (a 
    - b)) by 
    ABSVALUE:def 1;
    
      per cases ;
    
        suppose a
    =  
    0 ; 
    
        hence thesis by
    A1;
    
      end;
    
        suppose
    
        
    
    B1: a 
    >  
    0 ; 
    
        then b
    >  
    0 by 
    A1;
    
        then ((a
    - b) 
    + (2 
    * b)) 
    > ((a 
    - b) 
    +  
    0 ) & ((b 
    - a) 
    + (2 
    * a)) 
    > ((b 
    - a) 
    +  
    0 ) by 
    B1,
    XREAL_1: 6;
    
        hence thesis by
    A2,
    ABSVALUE:def 1;
    
      end;
    
        suppose
    
        
    
    B1: a 
    <  
    0 ; 
    
        then
    
        
    
    B2: b 
    <  
    0 by 
    A1;
    
        then ((a
    - b) 
    + (2 
    * b)) 
    < ((a 
    - b) 
    +  
    0 ) & ((b 
    - a) 
    + (2 
    * a)) 
    < ((b 
    - a) 
    +  
    0 ) by 
    B1,
    XREAL_1: 6;
    
        then (
    - (a 
    + b)) 
    > ( 
    - (a 
    - b)) & ( 
    - (a 
    + b)) 
    > ( 
    - (b 
    - a)) by 
    XREAL_1: 24;
    
        hence thesis by
    B1,
    B2,
    A2,
    ABSVALUE:def 1;
    
      end;
    
    end;
    
    theorem :: 
    
    COMPLEX3:16
    
    for a,b be
    Real st (a 
    * b) is 
    negative holds 
    |.(a
    - b).| 
    >  
    |.(a
    + b).| 
    
    proof
    
      let a,b be
    Real such that 
    
      
    
    A1: (a 
    * b) is 
    negative;
    
      
    
      
    
    A2: 
    |.(a
    - b).| 
    = (a 
    - b) or 
    |.(a
    - b).| 
    = ( 
    - (a 
    - b)) by 
    ABSVALUE:def 1;
    
      per cases ;
    
        suppose a
    =  
    0 ; 
    
        hence thesis by
    A1;
    
      end;
    
        suppose
    
        
    
    B1: a 
    >  
    0 ; 
    
        then
    
        
    
    B2: b 
    <  
    0 by 
    A1;
    
        then ((a
    - b) 
    + (2 
    * b)) 
    < ((a 
    - b) 
    +  
    0 ) & (( 
    - (a 
    - b)) 
    + (2 
    * a)) 
    > (( 
    - (a 
    - b)) 
    +  
    0 ) by 
    B1,
    XREAL_1: 6;
    
        then (a
    + b) 
    < (a 
    - b) & ( 
    - (a 
    + b)) 
    < ( 
    - ( 
    - (a 
    - b))) by 
    XREAL_1: 24;
    
        hence thesis by
    B1,
    B2,
    A2,
    ABSVALUE:def 1;
    
      end;
    
        suppose
    
        
    
    B1: a 
    <  
    0 ; 
    
        then
    
        
    
    B2: b 
    >  
    0 by 
    A1;
    
        then ((a
    - b) 
    + (2 
    * b)) 
    > ((a 
    - b) 
    +  
    0 ) & ((b 
    - a) 
    + (2 
    * a)) 
    < ((b 
    - a) 
    +  
    0 ) by 
    B1,
    XREAL_1: 6;
    
        then (
    - (a 
    + b)) 
    < ( 
    - (a 
    - b)) & (a 
    + b) 
    < (b 
    - a) by 
    XREAL_1: 24;
    
        hence thesis by
    B1,
    B2,
    A2,
    ABSVALUE:def 1;
    
      end;
    
    end;
    
    theorem :: 
    
    COMPLEX3:17
    
    for a,b be non
    zero  
    Real holds 
    |.((a
    |^ 2) 
    - (b 
    |^ 2)).| 
    <  
    |.((a
    |^ 2) 
    + (b 
    |^ 2)).| 
    
    proof
    
      let a,b be non
    zero  
    Real;
    
      reconsider c = (a
    |^ (2 
    * 1)) as 
    positive  
    Real;
    
      reconsider d = (b
    |^ (2 
    * 1)) as 
    positive  
    Real;
    
      (c
    * d) 
    >  
    0 ; 
    
      hence thesis by
    MP;
    
    end;
    
    theorem :: 
    
    COMPLEX3:18
    
    for a,b,c be
    positive  
    Real st a 
    < b holds ((b 
    + c) 
    / (a 
    + c)) is 
    heavy by 
    SERIES_5: 3;
    
    theorem :: 
    
    COMPLEX3:19
    
    
    
    
    
    PP1: for a,b be 
    positive  
    Real holds (((a 
    / b) 
    + (b 
    / a)) 
    / 2) 
    >= 1 
    
    proof
    
      let a,b be
    positive  
    Real;
    
      
    
      
    
    A1: ((a 
    * a) 
    / (a 
    * b)) 
    = (a 
    / b) & ((b 
    * b) 
    / (a 
    * b)) 
    = (b 
    / a) by 
    XCMPLX_1: 91;
    
      ((a
    - b) 
    * (a 
    - b)) is non 
    negative;
    
      then ((((a
    * a) 
    - ((2 
    * a) 
    * b)) 
    + (b 
    * b)) 
    + ((2 
    * a) 
    * b)) 
    >= ( 
    0  
    + ((2 
    * a) 
    * b)) by 
    XREAL_1: 6;
    
      then (((a
    * a) 
    + (b 
    * b)) 
    / ((2 
    * a) 
    * b)) 
    >= (((2 
    * a) 
    * b) 
    / ((2 
    * a) 
    * b)) by 
    XREAL_1: 72;
    
      then (((a
    * a) 
    + (b 
    * b)) 
    / (2 
    * (a 
    * b))) 
    >= 1 by 
    XCMPLX_1: 60;
    
      then ((((a
    * a) 
    + (b 
    * b)) 
    / (a 
    * b)) 
    / 2) 
    >= 1 by 
    XCMPLX_1: 78;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    COMPLEX3:20
    
    
    
    
    
    NN1: for a,b be 
    negative  
    Real holds (((a 
    / b) 
    + (b 
    / a)) 
    / 2) 
    >= 1 
    
    proof
    
      let a,b be
    negative  
    Real;
    
      
    
      
    
    A1: ((a 
    * a) 
    / (a 
    * b)) 
    = (a 
    / b) & ((b 
    * b) 
    / (a 
    * b)) 
    = (b 
    / a) by 
    XCMPLX_1: 91;
    
      ((a
    - b) 
    * (a 
    - b)) is non 
    negative;
    
      then ((((a
    * a) 
    - ((2 
    * a) 
    * b)) 
    + (b 
    * b)) 
    + ((2 
    * a) 
    * b)) 
    >= ( 
    0  
    + ((2 
    * a) 
    * b)) by 
    XREAL_1: 6;
    
      then (((a
    * a) 
    + (b 
    * b)) 
    / ((2 
    * a) 
    * b)) 
    >= (((2 
    * a) 
    * b) 
    / ((2 
    * a) 
    * b)) by 
    XREAL_1: 72;
    
      then (((a
    * a) 
    + (b 
    * b)) 
    / (2 
    * (a 
    * b))) 
    >= 1 by 
    XCMPLX_1: 60;
    
      then ((((a
    * a) 
    + (b 
    * b)) 
    / (a 
    * b)) 
    / 2) 
    >= 1 by 
    XCMPLX_1: 78;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    COMPLEX3:21
    
    
    
    
    
    NP1: for a be 
    negative  
    Real, b be 
    positive  
    Real holds (((a 
    / b) 
    + (b 
    / a)) 
    / 2) 
    <= ( 
    - 1) 
    
    proof
    
      let a be
    negative  
    Real, b be 
    positive  
    Real;
    
      
    
      
    
    A1: ((a 
    * a) 
    / (a 
    * b)) 
    = (a 
    / b) & ((b 
    * b) 
    / (a 
    * b)) 
    = (b 
    / a) by 
    XCMPLX_1: 91;
    
      ((a
    + b) 
    * (a 
    + b)) is non 
    negative;
    
      then ((((a
    * a) 
    + ((2 
    * a) 
    * b)) 
    + (b 
    * b)) 
    - ((2 
    * a) 
    * b)) 
    >= ( 
    0  
    - ((2 
    * a) 
    * b)) by 
    XREAL_1: 6;
    
      then (((a
    * a) 
    + (b 
    * b)) 
    / ((2 
    * a) 
    * b)) 
    <= (( 
    - ((2 
    * a) 
    * b)) 
    / ((2 
    * a) 
    * b)) by 
    XREAL_1: 73;
    
      then (((a
    * a) 
    + (b 
    * b)) 
    / ((2 
    * a) 
    * b)) 
    <= ( 
    - (((2 
    * a) 
    * b) 
    / ((2 
    * a) 
    * b))); 
    
      then (((a
    * a) 
    + (b 
    * b)) 
    / (2 
    * (a 
    * b))) 
    <= ( 
    - 1) by 
    XCMPLX_1: 60;
    
      then ((((a
    * a) 
    + (b 
    * b)) 
    / (a 
    * b)) 
    / 2) 
    <= ( 
    - 1) by 
    XCMPLX_1: 78;
    
      hence thesis by
    A1;
    
    end;
    
    registration
    
      let a,b be non
    zero  
    Real;
    
      cluster (((a 
    / b) 
    + (b 
    / a)) 
    / 2) -> non 
    light;
    
      coherence
    
      proof
    
        per cases ;
    
          suppose a is
    positive & b is 
    positive;
    
          hence thesis by
    PP1,
    TA1;
    
        end;
    
          suppose a is
    negative & b is 
    negative;
    
          hence thesis by
    NN1,
    TA1;
    
        end;
    
          suppose a is
    positive & b is 
    negative;
    
          hence thesis by
    NP1,
    TA1;
    
        end;
    
          suppose a is
    negative & b is 
    positive;
    
          hence thesis by
    NP1,
    TA1;
    
        end;
    
      end;
    
      cluster ((a 
    / b) 
    + (b 
    / a)) -> 
    heavy;
    
      coherence
    
      proof
    
        2 is
    heavy & (((a 
    / b) 
    + (b 
    / a)) 
    / 2) is non 
    light;
    
        hence thesis;
    
      end;
    
    end
    
    theorem :: 
    
    COMPLEX3:22
    
    for a,b be non
    zero  
    Real holds (((a 
    / b) 
    + (b 
    / a)) 
    |^ 2) 
    >= 4 
    
    proof
    
      let a,b be non
    zero  
    Real;
    
      ((((a
    / b) 
    + (b 
    / a)) 
    / 2) 
    |^ (2 
    * 1)) 
    >= 1 by 
    TA1;
    
      then (((((a
    / b) 
    + (b 
    / a)) 
    / 2) 
    |^ 2) 
    * 4) 
    >= (1 
    * 4) by 
    XREAL_1: 64;
    
      then (((((a
    / b) 
    + (b 
    / a)) 
    |^ 2) 
    / (2 
    |^ 2)) 
    * (2 
    * 2)) 
    >= 4 by 
    PREPOWER: 8;
    
      then (((((a
    / b) 
    + (b 
    / a)) 
    |^ 2) 
    / (2 
    |^ 2)) 
    * (2 
    |^ 2)) 
    >= 4 by 
    NEWTON: 81;
    
      hence thesis by
    XCMPLX_1: 87;
    
    end;
    
    registration
    
      let a,b be
    positive  
    Real;
    
      cluster (((a 
    + (2 
    * b)) 
    * a) 
    / ((a 
    + b) 
    |^ 2)) -> non 
    heavy;
    
      coherence
    
      proof
    
        reconsider c = (a
    + b) as 
    positive  
    Real;
    
        reconsider d = (a
    + (2 
    * b)) as 
    positive  
    Real;
    
        (a
    + b) 
    > (a 
    +  
    0 ) by 
    XREAL_1: 6;
    
        then (a
    / (a 
    + b)) 
    <= ((a 
    + b) 
    / ((a 
    + b) 
    + b)) by 
    SERIES_3: 1;
    
        then ((d
    / c) 
    * (a 
    / c)) 
    <= ((d 
    / c) 
    * (c 
    / d)) by 
    XREAL_1: 64;
    
        then ((d
    / c) 
    * (a 
    / c)) 
    <= 1 by 
    XCMPLX_1: 112;
    
        then ((d
    * a) 
    / (c 
    * c)) 
    <= 1 by 
    XCMPLX_1: 76;
    
        hence thesis by
    NEWTON: 81;
    
      end;
    
      cluster (((b 
    / a) 
    + (a 
    / b)) 
    - 1) -> non 
    light;
    
      coherence
    
      proof
    
        (((b
    / a) 
    + (a 
    / b)) 
    - 1) 
    >= (2 
    - 1) by 
    SERIES_3: 3,
    XREAL_1: 9;
    
        hence thesis;
    
      end;
    
      cluster (((a 
    + b) 
    * ((a 
    " ) 
    + (b 
    " ))) 
    / 4) -> non 
    light;
    
      coherence
    
      proof
    
        (1
    / a) 
    = (a 
    " ) & (1 
    / b) 
    = (b 
    " ); 
    
        then (((a
    + b) 
    * ((a 
    " ) 
    + (b 
    " ))) 
    / 4) 
    >= ((1 
    * 4) 
    / 4) by 
    XREAL_1: 72,
    SERIES_5: 1;
    
        hence thesis;
    
      end;
    
    end
    
    registration
    
      let a,b be
    light  
    Real;
    
      cluster ((a 
    + b) 
    / (1 
    + (a 
    * b))) -> non 
    heavy;
    
      coherence
    
      proof
    
        
    |.a.|
    < 1 & 
    |.b.|
    < 1 by 
    Def2;
    
        hence thesis by
    SERIES_5: 13;
    
      end;
    
    end
    
    registration
    
      let a,b,c,d be
    positive  
    Real;
    
      cluster ((((a 
    / ((a 
    + b) 
    + d)) 
    + (b 
    / ((a 
    + b) 
    + c))) 
    + (c 
    / ((b 
    + c) 
    + d))) 
    + (d 
    / ((a 
    + c) 
    + d))) -> 
    heavy;
    
      coherence by
    SERIES_5: 15;
    
    end
    
    registration
    
      let a be non
    negative  
    Real;
    
      reduce
    |.(
    - a).| to a; 
    
      reducibility
    
      proof
    
        
    |.(
    - a).| 
    = ( 
    - ( 
    - a)) by 
    ABSVALUE: 30;
    
        hence thesis;
    
      end;
    
    end
    
    registration
    
      cluster 
    trivial non 
    zero for 
    Nat;
    
      existence
    
      proof
    
        1 is
    trivial & 1 
    <>  
    0 ; 
    
        hence thesis;
    
      end;
    
      cluster 
    trivial for 
    Nat;
    
      existence
    
      proof
    
        1 is
    trivial;
    
        hence thesis;
    
      end;
    
    end
    
    registration
    
      let a,b be non
    zero  
    Real;
    
      cluster ( 
    min (a,b)) -> non 
    zero;
    
      coherence by
    XXREAL_0:def 9;
    
      cluster ( 
    max (a,b)) -> non 
    zero;
    
      coherence by
    XXREAL_0:def 10;
    
    end
    
    registration
    
      let a be non
    negative  
    Real, b be 
    Real;
    
      cluster ( 
    max (a,b)) -> non 
    negative;
    
      coherence by
    XXREAL_0: 25;
    
    end
    
    registration
    
      let a be non
    positive  
    Real, b be 
    Real;
    
      cluster ( 
    min (a,b)) -> non 
    positive;
    
      coherence by
    XXREAL_0: 17;
    
    end
    
    registration
    
      let a be
    positive  
    Real, b be 
    Real;
    
      cluster ( 
    max (a,b)) -> 
    positive;
    
      coherence by
    XXREAL_0: 25;
    
    end
    
    registration
    
      let a be
    negative  
    Real, b be 
    Real;
    
      cluster ( 
    min (a,b)) -> 
    negative;
    
      coherence by
    XXREAL_0: 17;
    
    end
    
    registration
    
      let a,b be non
    negative  
    Real;
    
      cluster ( 
    min (a,b)) -> non 
    negative;
    
      coherence by
    XXREAL_0:def 9;
    
    end
    
    registration
    
      let a,b be non
    positive  
    Real;
    
      cluster ( 
    max (a,b)) -> non 
    positive;
    
      coherence by
    XXREAL_0:def 10;
    
    end
    
    registration
    
      let a be
    positive  
    Real, b be non 
    negative  
    Real;
    
      cluster (a 
    / (a 
    + b)) -> non 
    heavy;
    
      coherence
    
      proof
    
        (a
    + b) 
    >= (a 
    +  
    0 ) by 
    XREAL_1: 6;
    
        hence thesis by
    XREAL_1: 185;
    
      end;
    
      cluster ((a 
    + b) 
    / a) -> non 
    light;
    
      coherence
    
      proof
    
        ((a
    / (a 
    + b)) 
    " ) is non 
    light;
    
        hence thesis by
    XCMPLX_1: 213;
    
      end;
    
    end
    
    registration
    
      let a,b be
    positive  
    Real;
    
      cluster (a 
    / ( 
    max (a,b))) -> non 
    heavy;
    
      coherence
    
      proof
    
        reconsider c = ((
    max (a,b)) 
    - a) as non 
    negative  
    Real;
    
        (a
    / (a 
    + c)) is non 
    heavy;
    
        hence thesis;
    
      end;
    
      cluster (a 
    / ( 
    min (a,b))) -> non 
    light;
    
      coherence
    
      proof
    
        reconsider c = (a
    - ( 
    min (a,b))) as non 
    negative  
    Real;
    
        (((
    min (a,b)) 
    + c) 
    / ( 
    min (a,b))) is non 
    light;
    
        hence thesis;
    
      end;
    
    end
    
    theorem :: 
    
    COMPLEX3:23
    
    for a,b be
    Real st ( 
    sgn a) 
    > ( 
    sgn b) holds a 
    > b 
    
    proof
    
      let a,b be
    Real;
    
      assume
    
      
    
    A1: ( 
    sgn a) 
    > ( 
    sgn b); 
    
      a
    >  
    0 or a 
    =  
    0 or a 
    <  
    0 ; 
    
      then
    
      
    
    A2: ( 
    sgn a) 
    = 1 or ( 
    sgn a) 
    =  
    0 or ( 
    sgn a) 
    = ( 
    - 1) by 
    ABSVALUE:def 2;
    
      b
    >  
    0 or b 
    =  
    0 or b 
    <  
    0 ; 
    
      hence thesis by
    A1,
    A2,
    ABSVALUE:def 2;
    
    end;
    
    theorem :: 
    
    COMPLEX3:24
    
    
    
    
    
    SGNZ: for a,b be non 
    zero  
    Real st ( 
    sgn a) 
    > ( 
    sgn b) holds a is 
    positive & b is 
    negative
    
    proof
    
      let a,b be non
    zero  
    Real;
    
      assume
    
      
    
    A1: ( 
    sgn a) 
    > ( 
    sgn b); 
    
      (a
    >  
    0 or a 
    <  
    0 ) & (b 
    >  
    0 or b 
    <  
    0 ); 
    
      then ((
    sgn a) 
    = 1 or ( 
    sgn a) 
    = ( 
    - 1)) & (( 
    sgn b) 
    = 1 or ( 
    sgn b) 
    = ( 
    - 1)) by 
    ABSVALUE:def 2;
    
      hence thesis by
    A1;
    
    end;
    
    registration
    
      let a,b be
    Real;
    
      cluster (( 
    max (a,b)) 
    - ( 
    min (a,b))) -> non 
    negative;
    
      coherence
    
      proof
    
        (
    max (a,b)) 
    >= a 
    >= ( 
    min (a,b)) by 
    XXREAL_0: 17,
    XXREAL_0: 25;
    
        then (
    max (a,b)) 
    >= ( 
    min (a,b)) by 
    XXREAL_0: 2;
    
        then ((
    max (a,b)) 
    - ( 
    min (a,b))) 
    >= (( 
    min (a,b)) 
    - ( 
    min (a,b))) by 
    XREAL_1: 9;
    
        hence thesis;
    
      end;
    
      reduce ((
    sgn (a 
    - b)) 
    * (( 
    max (a,b)) 
    - ( 
    min (a,b)))) to (a 
    - b); 
    
      reducibility
    
      proof
    
        per cases by
    XXREAL_0: 1;
    
          suppose a
    = b; 
    
          hence thesis;
    
        end;
    
          suppose
    
          
    
    B1: a 
    > b; 
    
          then
    
          
    
    B2: ( 
    max (a,b)) 
    = a & ( 
    min (a,b)) 
    = b by 
    XXREAL_0:def 9,
    XXREAL_0:def 10;
    
          (a
    - b) 
    > (b 
    - b) by 
    B1,
    XREAL_1: 9;
    
          then (
    sgn (a 
    - b)) 
    = 1 by 
    ABSVALUE:def 2;
    
          hence thesis by
    B2;
    
        end;
    
          suppose
    
          
    
    B1: a 
    < b; 
    
          then
    
          
    
    B2: ( 
    max (a,b)) 
    = b & ( 
    min (a,b)) 
    = a by 
    XXREAL_0:def 9,
    XXREAL_0:def 10;
    
          (a
    - b) 
    < (b 
    - b) by 
    B1,
    XREAL_1: 9;
    
          then (
    sgn (a 
    - b)) 
    = ( 
    - 1) by 
    ABSVALUE:def 2;
    
          hence thesis by
    B2;
    
        end;
    
      end;
    
    end
    
    registration
    
      let a be
    Real;
    
      reduce (a
    to_power 1) to a; 
    
      reducibility ;
    
      reduce (1
    to_power a) to 1; 
    
      reducibility by
    POWER: 26;
    
      cluster (a 
    to_power  
    0 ) -> 
    natural;
    
      coherence by
    POWER: 24;
    
      cluster (a 
    to_power  
    0 ) -> 
    weightless;
    
      coherence by
    POWER: 24;
    
    end
    
    registration
    
      let a be
    positive  
    Real, b be 
    Real;
    
      cluster (a 
    to_power b) -> 
    positive;
    
      coherence by
    POWER: 34;
    
    end
    
    registration
    
      let a be
    weightless
    positive  
    Real, b be 
    positive  
    Real;
    
      reduce (b
    to_power a) to b; 
    
      reducibility
    
      proof
    
        a
    = 1 by 
    TA1;
    
        hence thesis;
    
      end;
    
    end
    
    registration
    
      let a be
    heavy
    positive  
    Real, b be 
    positive  
    Real;
    
      cluster (a 
    to_power b) -> 
    heavy;
    
      coherence by
    TA1,
    POWER: 35;
    
    end
    
    registration
    
      let a be
    heavy
    positive  
    Real, b be 
    negative  
    Real;
    
      cluster (a 
    to_power b) -> 
    light;
    
      coherence
    
      proof
    
        a
    > 1 & b 
    <  
    0 by 
    TA1;
    
        hence thesis by
    POWER: 36;
    
      end;
    
    end
    
    registration
    
      let a be
    light
    positive  
    Real, b be 
    positive  
    Real;
    
      cluster (a 
    to_power b) -> 
    light;
    
      coherence
    
      proof
    
        ((1
    / a) 
    to_power ( 
    - b)) is 
    light
    positive;
    
        then (a
    to_power ( 
    - ( 
    - b))) is 
    light by 
    POWER: 32;
    
        hence thesis;
    
      end;
    
    end
    
    registration
    
      let a be
    light
    positive  
    Real, b be 
    negative  
    Real;
    
      cluster (a 
    to_power b) -> 
    heavy;
    
      coherence
    
      proof
    
        ((1
    / a) 
    to_power ( 
    - b)) is 
    heavy
    positive;
    
        then (a
    to_power ( 
    - ( 
    - b))) is 
    heavy by 
    POWER: 32;
    
        hence thesis;
    
      end;
    
    end
    
    registration
    
      let a be non
    weightless
    positive  
    Real, b be 
    Real;
    
      reduce (
    log (a,(a 
    to_power b))) to b; 
    
      reducibility
    
      proof
    
        
    |.a.|
    <> 1 & (a 
    to_power b) 
    >  
    0 by 
    TA1;
    
        hence thesis by
    POWER:def 3;
    
      end;
    
    end
    
    registration
    
      let a be non
    weightless
    positive  
    Real, b be 
    positive  
    Real;
    
      reduce (a
    to_power ( 
    log (a,b))) to b; 
    
      reducibility
    
      proof
    
        
    |.a.|
    <> 1 by 
    TA1;
    
        hence thesis by
    POWER:def 3;
    
      end;
    
    end
    
    theorem :: 
    
    COMPLEX3:25
    
    
    
    
    
    ABD: for a,b be 
    positive  
    Real holds a 
    > b iff (1 
    / a) 
    < (1 
    / b) by 
    XREAL_1: 118,
    XREAL_1: 76;
    
    theorem :: 
    
    COMPLEX3:26
    
    
    
    
    
    ABN: for a,b be 
    negative  
    Real holds a 
    > b iff (1 
    / a) 
    < (1 
    / b) by 
    XREAL_1: 119,
    XREAL_1: 99;
    
    theorem :: 
    
    COMPLEX3:27
    
    for a,b be
    positive  
    Real holds (1 
    / a) 
    > (1 
    / b) iff ( 
    - a) 
    > ( 
    - b) by 
    ABD,
    XREAL_1: 24;
    
    theorem :: 
    
    COMPLEX3:28
    
    for a,b be
    negative  
    Real holds (1 
    / a) 
    > (1 
    / b) iff ( 
    - a) 
    > ( 
    - b) by 
    ABN,
    XREAL_1: 24;
    
    theorem :: 
    
    COMPLEX3:29
    
    
    
    
    
    OPR: for a,b be 
    positive  
    Real holds ( 
    sgn ((1 
    / a) 
    - (1 
    / b))) 
    = ( 
    sgn (b 
    - a)) 
    
    proof
    
      let a,b be
    positive  
    Real;
    
      
    
      
    
    A1: ( 
    sgn (a 
    * b)) 
    = 1 by 
    ABSVALUE:def 2;
    
      (((1
    / a) 
    * a) 
    * b) 
    = ((1 
    / a) 
    * (a 
    * b)) & ((1 
    / b) 
    * (a 
    * b)) 
    = (((1 
    / b) 
    * b) 
    * a) & ((1 
    / b) 
    * b) 
    = 1 & ((1 
    / a) 
    * a) 
    = 1 by 
    XCMPLX_1: 87;
    
      then ((1
    / a) 
    * (a 
    * b)) 
    = b & ((1 
    / b) 
    * (a 
    * b)) 
    = a; 
    
      
    
      then (
    sgn (b 
    - a)) 
    = ( 
    sgn (((1 
    / a) 
    - (1 
    / b)) 
    * (a 
    * b))) 
    
      .= ((
    sgn ((1 
    / a) 
    - (1 
    / b))) 
    * ( 
    sgn (a 
    * b))) by 
    ABSVALUE: 18;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    COMPLEX3:30
    
    
    
    
    
    NPR: for a,b be 
    negative  
    Real holds ( 
    sgn ((1 
    / a) 
    - (1 
    / b))) 
    = ( 
    sgn (b 
    - a)) 
    
    proof
    
      let a,b be
    negative  
    Real;
    
      
    
      
    
    A1: ( 
    sgn (a 
    * b)) 
    = 1 by 
    ABSVALUE:def 2;
    
      (((1
    / a) 
    * a) 
    * b) 
    = ((1 
    / a) 
    * (a 
    * b)) & ((1 
    / b) 
    * (a 
    * b)) 
    = (((1 
    / b) 
    * b) 
    * a) & ((1 
    / b) 
    * b) 
    = 1 & ((1 
    / a) 
    * a) 
    = 1 by 
    XCMPLX_1: 87;
    
      then ((1
    / a) 
    * (a 
    * b)) 
    = b & ((1 
    / b) 
    * (a 
    * b)) 
    = a; 
    
      
    
      then (
    sgn (b 
    - a)) 
    = ( 
    sgn (((1 
    / a) 
    - (1 
    / b)) 
    * (a 
    * b))) 
    
      .= ((
    sgn ((1 
    / a) 
    - (1 
    / b))) 
    * ( 
    sgn (a 
    * b))) by 
    ABSVALUE: 18;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    COMPLEX3:31
    
    for a,b be non
    zero  
    Real holds ( 
    sgn ((1 
    / a) 
    - (1 
    / b))) 
    = ( 
    sgn (b 
    - a)) iff ( 
    sgn b) 
    = ( 
    sgn a) 
    
    proof
    
      let a,b be non
    zero  
    Real;
    
      
    
      
    
    A1: ( 
    sgn b) 
    = ( 
    sgn a) implies ( 
    sgn ((1 
    / a) 
    - (1 
    / b))) 
    = ( 
    sgn (b 
    - a)) 
    
      proof
    
        assume (
    sgn a) 
    = ( 
    sgn b); 
    
        then (a is
    positive & b is 
    positive) or (a is
    negative & b is 
    negative);
    
        hence thesis by
    OPR,
    NPR;
    
      end;
    
      (
    sgn b) 
    <> ( 
    sgn a) implies ( 
    sgn ((1 
    / a) 
    - (1 
    / b))) 
    <> ( 
    sgn (b 
    - a)) 
    
      proof
    
        assume (
    sgn b) 
    <> ( 
    sgn a); 
    
        per cases by
    XXREAL_0: 1;
    
          suppose (
    sgn b) 
    > ( 
    sgn a); 
    
          then b is
    positive & a is 
    negative by 
    SGNZ;
    
          hence thesis;
    
        end;
    
          suppose (
    sgn b) 
    < ( 
    sgn a); 
    
          then b is
    negative & a is 
    positive by 
    SGNZ;
    
          hence thesis;
    
        end;
    
      end;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    COMPLEX3:32
    
    
    
    
    
    SIO: for a,b be non 
    zero  
    Real holds (a 
    + b) 
    = (a 
    * b) iff ((1 
    / a) 
    + (1 
    / b)) 
    = 1 
    
    proof
    
      let a,b be non
    zero  
    Real;
    
      ((1
    * a) 
    / (a 
    * b)) 
    = (1 
    / b) & ((1 
    * b) 
    / (a 
    * b)) 
    = (1 
    / a) by 
    XCMPLX_1: 91;
    
      
    
      then (((1
    / a) 
    + (1 
    / b)) 
    * (a 
    * b)) 
    = (((a 
    + b) 
    / (a 
    * b)) 
    * (a 
    * b)) 
    
      .= (a
    + b) by 
    XCMPLX_1: 87;
    
      hence thesis by
    XCMPLX_1: 7;
    
    end;
    
    theorem :: 
    
    COMPLEX3:33
    
    
    
    
    
    SIL: for a,b be 
    positive  
    Real holds (a 
    + b) 
    > (a 
    * b) iff ((1 
    / a) 
    + (1 
    / b)) 
    > 1 
    
    proof
    
      let a,b be
    positive  
    Real;
    
      
    
      
    
    A1: ((1 
    * a) 
    / (a 
    * b)) 
    = (1 
    / b) & ((1 
    * b) 
    / (a 
    * b)) 
    = (1 
    / a) by 
    XCMPLX_1: 91;
    
      
    
      
    
    A2: (a 
    + b) 
    > (a 
    * b) implies ((1 
    / a) 
    + (1 
    / b)) 
    > 1 
    
      proof
    
        assume (a
    + b) 
    > (a 
    * b); 
    
        then ((a
    + b) 
    / (a 
    * b)) 
    > ((a 
    * b) 
    / (a 
    * b)) by 
    XREAL_1: 74;
    
        hence thesis by
    XCMPLX_1: 60,
    A1;
    
      end;
    
      ((1
    / a) 
    + (1 
    / b)) 
    > 1 implies (a 
    + b) 
    > (a 
    * b) 
    
      proof
    
        assume ((1
    / a) 
    + (1 
    / b)) 
    > 1; 
    
        then ((a
    + b) 
    / (a 
    * b)) 
    > ((a 
    * b) 
    / (a 
    * b)) by 
    A1,
    XCMPLX_1: 60;
    
        hence thesis by
    XREAL_1: 72;
    
      end;
    
      hence thesis by
    A2;
    
    end;
    
    theorem :: 
    
    COMPLEX3:34
    
    for a,b be
    positive  
    Real holds (a 
    + b) 
    < (a 
    * b) iff ((1 
    / a) 
    + (1 
    / b)) 
    < 1 
    
    proof
    
      let a,b be
    positive  
    Real;
    
      thus (a
    + b) 
    < (a 
    * b) implies ((1 
    / a) 
    + (1 
    / b)) 
    < 1 
    
      proof
    
        (a
    + b) 
    < (a 
    * b) implies ((1 
    / a) 
    + (1 
    / b)) 
    <= 1 & ((1 
    / a) 
    + (1 
    / b)) 
    <> 1 by 
    SIO,
    SIL;
    
        hence thesis by
    XXREAL_0: 1;
    
      end;
    
      ((1
    / a) 
    + (1 
    / b)) 
    < 1 implies (a 
    + b) 
    <= (a 
    * b) & (a 
    + b) 
    <> (a 
    * b) by 
    SIO,
    SIL;
    
      hence thesis by
    XXREAL_0: 1;
    
    end;
    
    theorem :: 
    
    COMPLEX3:35
    
    for a be non
    heavy
    positive  
    Real, b be 
    positive  
    Real holds (a 
    + b) 
    > (a 
    * b) 
    
    proof
    
      let a be non
    heavy
    positive  
    Real, b be 
    positive  
    Real;
    
      ((1
    / a) 
    + (1 
    / b)) is 
    heavy
    positive;
    
      hence thesis by
    SIL;
    
    end;
    
    theorem :: 
    
    COMPLEX3:36
    
    
    
    
    
    DIO: for a,b be non 
    zero  
    Real holds (a 
    - b) 
    = (a 
    * b) iff ((1 
    / b) 
    - (1 
    / a)) 
    = 1 
    
    proof
    
      let a,b be non
    zero  
    Real;
    
      ((1
    * a) 
    / (a 
    * b)) 
    = (1 
    / b) & ((1 
    * b) 
    / (a 
    * b)) 
    = (1 
    / a) by 
    XCMPLX_1: 91;
    
      
    
      then (((1
    / b) 
    - (1 
    / a)) 
    * (a 
    * b)) 
    = (((a 
    - b) 
    / (a 
    * b)) 
    * (a 
    * b)) 
    
      .= (a
    - b) by 
    XCMPLX_1: 87;
    
      hence thesis by
    XCMPLX_1: 7;
    
    end;
    
    theorem :: 
    
    COMPLEX3:37
    
    for a,b be
    positive  
    Real holds (a 
    - b) 
    = (a 
    * b) implies b is 
    light
    
    proof
    
      let a,b be
    positive  
    Real;
    
      b is non
    light implies ((1 
    / b) 
    - (1 
    / a)) 
    < 1 
    
      proof
    
        assume b is non
    light;
    
        then (1
    / b) 
    <= 1 by 
    TA1;
    
        then
    
        
    
    A1: ((1 
    / b) 
    - (1 
    / a)) 
    <= (1 
    - (1 
    / a)) by 
    XREAL_1: 9;
    
        (1
    - (1 
    / a)) 
    < (1 
    -  
    0 ) by 
    XREAL_1: 15;
    
        hence thesis by
    A1,
    XXREAL_0: 2;
    
      end;
    
      hence thesis by
    DIO;
    
    end;
    
    theorem :: 
    
    COMPLEX3:38
    
    
    
    
    
    SAD: for a,b,c,d be 
    positive  
    Real st (a 
    + b) 
    = (c 
    + d) holds (( 
    max (a,b)) 
    - ( 
    max (c,d))) 
    = (( 
    min (c,d)) 
    - ( 
    min (a,b))) 
    
    proof
    
      let a,b,c,d be
    positive  
    Real such that 
    
      
    
    A1: (a 
    + b) 
    = (c 
    + d); 
    
      (((
    max (a,b)) 
    = a & ( 
    min (a,b)) 
    = b) or (( 
    max (a,b)) 
    = b & ( 
    min (a,b)) 
    = a)) & ((( 
    max (c,d)) 
    = c & ( 
    min (c,d)) 
    = d) or (( 
    max (c,d)) 
    = d & ( 
    min (c,d)) 
    = c)) by 
    XXREAL_0:def 9,
    XXREAL_0:def 10;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    COMPLEX3:39
    
    for a,b,c,d be
    positive  
    Real st (a 
    + b) 
    = (c 
    + d) holds ( 
    max (a,b)) 
    = ( 
    max (c,d)) iff ( 
    min (a,b)) 
    = ( 
    min (c,d)) 
    
    proof
    
      let a,b,c,d be
    positive  
    Real such that 
    
      
    
    A1: (a 
    + b) 
    = (c 
    + d); 
    
      (((
    max (a,b)) 
    = a & ( 
    min (a,b)) 
    = b) or (( 
    max (a,b)) 
    = b & ( 
    min (a,b)) 
    = a)) & ((( 
    max (c,d)) 
    = c & ( 
    min (c,d)) 
    = d) or (( 
    max (c,d)) 
    = d & ( 
    min (c,d)) 
    = c)) by 
    XXREAL_0:def 9,
    XXREAL_0:def 10;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    COMPLEX3:40
    
    for a,b,c,d be
    positive  
    Real st (a 
    + b) 
    = (c 
    + d) holds ( 
    max (a,b)) 
    > ( 
    max (c,d)) iff ( 
    min (a,b)) 
    < ( 
    min (c,d)) 
    
    proof
    
      let a,b,c,d be
    positive  
    Real such that 
    
      
    
    A1: (a 
    + b) 
    = (c 
    + d); 
    
      reconsider k = ((
    max (a,b)) 
    - ( 
    max (c,d))) as 
    Real;
    
      
    
      
    
    A2: k 
    = (( 
    min (c,d)) 
    - ( 
    min (a,b))) by 
    A1,
    SAD;
    
      
    
      
    
    A3: ( 
    max (a,b)) 
    > ( 
    max (c,d)) implies ( 
    min (a,b)) 
    < ( 
    min (c,d)) 
    
      proof
    
        assume (
    max (a,b)) 
    > ( 
    max (c,d)); 
    
        then ((
    max (a,b)) 
    - ( 
    max (c,d))) 
    > (( 
    max (c,d)) 
    - ( 
    max (c,d))) by 
    XREAL_1: 9;
    
        then (k
    + ( 
    min (a,b))) 
    > ( 
    0  
    + ( 
    min (a,b))) by 
    XREAL_1: 6;
    
        hence thesis by
    A2;
    
      end;
    
      (
    max (a,b)) 
    <= ( 
    max (c,d)) implies ( 
    min (a,b)) 
    >= ( 
    min (c,d)) 
    
      proof
    
        assume (
    max (a,b)) 
    <= ( 
    max (c,d)); 
    
        then ((
    max (a,b)) 
    - ( 
    max (c,d))) 
    <= (( 
    max (c,d)) 
    - ( 
    max (c,d))) by 
    XREAL_1: 9;
    
        then (k
    + ( 
    min (a,b))) 
    <= ( 
    0  
    + ( 
    min (a,b))) by 
    XREAL_1: 6;
    
        hence thesis by
    A2;
    
      end;
    
      hence thesis by
    A3;
    
    end;
    
    theorem :: 
    
    COMPLEX3:41
    
    
    
    
    
    ISM: for a,b,c,d be 
    positive  
    Real st ((a 
    + b) 
    = (c 
    + d) & (a 
    * b) 
    = (c 
    * d)) holds ( 
    max (a,b)) 
    = ( 
    max (c,d)) 
    
    proof
    
      let a,b,c,d be
    positive  
    Real such that 
    
      
    
    A1: (a 
    + b) 
    = (c 
    + d) & (a 
    * b) 
    = (c 
    * d); 
    
      reconsider x = (
    max (a,b)) as 
    positive  
    Real;
    
      reconsider y = (
    min (a,b)) as 
    positive  
    Real;
    
      reconsider z = (
    max (c,d)) as 
    positive  
    Real;
    
      reconsider t = (
    min (c,d)) as 
    positive  
    Real;
    
      (((
    max (a,b)) 
    = a & ( 
    min (a,b)) 
    = b) or (( 
    max (a,b)) 
    = b & ( 
    min (a,b)) 
    = a)) & ((( 
    max (c,d)) 
    = c & ( 
    min (c,d)) 
    = d) or (( 
    max (c,d)) 
    = d & ( 
    min (c,d)) 
    = c)) by 
    XXREAL_0:def 9,
    XXREAL_0:def 10;
    
      then (x
    * ((z 
    + t) 
    - x)) 
    = (z 
    * ((x 
    + y) 
    - z)) by 
    A1;
    
      then
    
      
    
    A3: (x 
    * (x 
    - t)) 
    = (z 
    * (z 
    - y)); 
    
      
    
      
    
    A4: (x 
    - z) 
    = (t 
    - y) by 
    A1,
    SAD;
    
      then (x
    - t) 
    =  
    0 or x 
    = z by 
    A3,
    XCMPLX_1: 5;
    
      per cases ;
    
        suppose x
    = z; 
    
        hence thesis;
    
      end;
    
        suppose
    
        
    
    B1: x 
    = t; 
    
        x
    >= a & a 
    >= y & z 
    >= c & c 
    >= t by 
    XXREAL_0: 17,
    XXREAL_0: 25;
    
        then x
    >= y & z 
    >= t by 
    XXREAL_0: 2;
    
        hence thesis by
    B1,
    A4,
    XXREAL_0: 1;
    
      end;
    
    end;
    
    theorem :: 
    
    COMPLEX3:42
    
    
    
    
    
    ABCD: for a,b,c,d be 
    positive  
    Real, n be 
    Real st ((a 
    + b) 
    = (c 
    + d) & (a 
    * b) 
    = (c 
    * d)) holds ((a 
    to_power n) 
    + (b 
    to_power n)) 
    = ((c 
    to_power n) 
    + (d 
    to_power n)) 
    
    proof
    
      let a,b,c,d be
    positive  
    Real, n be 
    Real such that 
    
      
    
    A1: (a 
    + b) 
    = (c 
    + d) & (a 
    * b) 
    = (c 
    * d); 
    
      
    
      
    
    A2: ( 
    max (a,b)) 
    = ( 
    max (c,d)) by 
    A1,
    ISM;
    
      (((
    max (a,b)) 
    = a & ( 
    min (a,b)) 
    = b) or (( 
    max (a,b)) 
    = b & ( 
    min (a,b)) 
    = a)) & ((( 
    max (c,d)) 
    = c & ( 
    min (c,d)) 
    = d) or (( 
    max (c,d)) 
    = d & ( 
    min (c,d)) 
    = c)) by 
    XXREAL_0:def 9,
    XXREAL_0:def 10;
    
      hence thesis by
    A1,
    A2;
    
    end;
    
    theorem :: 
    
    COMPLEX3:43
    
    for a,b,c,d be
    positive  
    Real, n be 
    Real st (a 
    + b) 
    = (c 
    + d) & ((a 
    to_power n) 
    + (b 
    to_power n)) 
    <> ((c 
    to_power n) 
    + (d 
    to_power n)) holds (a 
    * b) 
    <> (c 
    * d) by 
    ABCD;
    
    theorem :: 
    
    COMPLEX3:44
    
    for a,b,c,d be
    positive  
    Real st (a 
    + b) 
    = (c 
    + d) holds ((1 
    / a) 
    + (1 
    / b)) 
    = ((1 
    / c) 
    + (1 
    / d)) iff (a 
    * b) 
    = (c 
    * d) 
    
    proof
    
      let a,b,c,d be
    positive  
    Real;
    
      assume
    
      
    
    A1: (a 
    + b) 
    = (c 
    + d); 
    
      (((1
    / a) 
    * a) 
    * b) 
    = (1 
    * b) & (((1 
    / b) 
    * b) 
    * a) 
    = (1 
    * a) & (((1 
    / c) 
    * c) 
    * d) 
    = (1 
    * d) & (((1 
    / d) 
    * d) 
    * c) 
    = (1 
    * c) by 
    XCMPLX_1: 87;
    
      then (a
    + b) 
    = (((1 
    / a) 
    + (1 
    / b)) 
    * (a 
    * b)) & (c 
    + d) 
    = (((1 
    / c) 
    + (1 
    / d)) 
    * (c 
    * d)); 
    
      hence thesis by
    A1,
    XCMPLX_1: 5;
    
    end;
    
    theorem :: 
    
    COMPLEX3:45
    
    for a,b,c,d be
    positive  
    Real st (a 
    + b) 
    = (c 
    + d) holds ((1 
    / a) 
    + (1 
    / b)) 
    > ((1 
    / c) 
    + (1 
    / d)) iff (a 
    * b) 
    < (c 
    * d) 
    
    proof
    
      let a,b,c,d be
    positive  
    Real such that 
    
      
    
    A1: (a 
    + b) 
    = (c 
    + d); 
    
      (((1
    / a) 
    * a) 
    * b) 
    = (1 
    * b) & (((1 
    / b) 
    * b) 
    * a) 
    = (1 
    * a) & (((1 
    / c) 
    * c) 
    * d) 
    = (1 
    * d) & (((1 
    / d) 
    * d) 
    * c) 
    = (1 
    * c) by 
    XCMPLX_1: 87;
    
      then (a
    + b) 
    = (((1 
    / a) 
    + (1 
    / b)) 
    * (a 
    * b)) & (c 
    + d) 
    = (((1 
    / c) 
    + (1 
    / d)) 
    * (c 
    * d)); 
    
      hence thesis by
    A1,
    XREAL_1: 98;
    
    end;
    
    theorem :: 
    
    COMPLEX3:46
    
    
    
    
    
    SRL: for a,b,c,d be 
    positive  
    Real st (a 
    + b) 
    >= (c 
    + d) & (a 
    * b) 
    < (c 
    * d) holds ((1 
    / a) 
    + (1 
    / b)) 
    > ((1 
    / c) 
    + (1 
    / d)) 
    
    proof
    
      let a,b,c,d be
    positive  
    Real such that 
    
      
    
    A1: (a 
    + b) 
    >= (c 
    + d); 
    
      (((1
    / a) 
    * a) 
    * b) 
    = (1 
    * b) & (((1 
    / b) 
    * b) 
    * a) 
    = (1 
    * a) & (((1 
    / c) 
    * c) 
    * d) 
    = (1 
    * d) & (((1 
    / d) 
    * d) 
    * c) 
    = (1 
    * c) by 
    XCMPLX_1: 87;
    
      then (a
    + b) 
    = (((1 
    / a) 
    + (1 
    / b)) 
    * (a 
    * b)) & (c 
    + d) 
    = (((1 
    / c) 
    + (1 
    / d)) 
    * (c 
    * d)); 
    
      hence thesis by
    A1,
    XREAL_1: 98;
    
    end;
    
    theorem :: 
    
    COMPLEX3:47
    
    for a,b,c,d be
    positive  
    Real st (a 
    * b) 
    < (c 
    * d) & ((1 
    / a) 
    + (1 
    / b)) 
    <= ((1 
    / c) 
    + (1 
    / d)) holds (a 
    + b) 
    < (c 
    + d) by 
    SRL;
    
    theorem :: 
    
    COMPLEX3:48
    
    
    
    
    
    SRI: for a,b,c,d be 
    positive  
    Real st (a 
    + b) 
    <= (c 
    + d) & ((1 
    / a) 
    + (1 
    / b)) 
    > ((1 
    / c) 
    + (1 
    / d)) holds (a 
    * b) 
    < (c 
    * d) 
    
    proof
    
      let a,b,c,d be
    positive  
    Real such that 
    
      
    
    A1: (a 
    + b) 
    <= (c 
    + d); 
    
      (((1
    / a) 
    * a) 
    * b) 
    = (1 
    * b) & (((1 
    / b) 
    * b) 
    * a) 
    = (1 
    * a) & (((1 
    / c) 
    * c) 
    * d) 
    = (1 
    * d) & (((1 
    / d) 
    * d) 
    * c) 
    = (1 
    * c) by 
    XCMPLX_1: 87;
    
      then (a
    + b) 
    = (((1 
    / a) 
    + (1 
    / b)) 
    * (a 
    * b)) & (c 
    + d) 
    = (((1 
    / c) 
    + (1 
    / d)) 
    * (c 
    * d)); 
    
      hence thesis by
    A1,
    XREAL_1: 98;
    
    end;
    
    theorem :: 
    
    COMPLEX3:49
    
    for a,b,c,d be
    positive  
    Real st (a 
    * b) 
    >= (c 
    * d) holds (a 
    + b) 
    > (c 
    + d) or ((1 
    / a) 
    + (1 
    / b)) 
    <= ((1 
    / c) 
    + (1 
    / d)) by 
    SRI;
    
    theorem :: 
    
    COMPLEX3:50
    
    
    
    
    
    N158: for a,b be 
    positive  
    Real, n,m be 
    Real holds ((a 
    to_power (m 
    + n)) 
    + (b 
    to_power (m 
    + n))) 
    = (((((a 
    to_power m) 
    + (b 
    to_power m)) 
    * ((a 
    to_power n) 
    + (b 
    to_power n))) 
    + (((a 
    to_power n) 
    - (b 
    to_power n)) 
    * ((a 
    to_power m) 
    - (b 
    to_power m)))) 
    / 2) & ((a 
    to_power (m 
    + n)) 
    - (b 
    to_power (m 
    + n))) 
    = (((((a 
    to_power m) 
    + (b 
    to_power m)) 
    * ((a 
    to_power n) 
    - (b 
    to_power n))) 
    + (((a 
    to_power n) 
    + (b 
    to_power n)) 
    * ((a 
    to_power m) 
    - (b 
    to_power m)))) 
    / 2) 
    
    proof
    
      let a,b be
    positive  
    Real, n,m be 
    Real;
    
      ((a
    to_power m) 
    * (a 
    to_power n)) 
    = (a 
    to_power (m 
    + n)) & ((b 
    to_power m) 
    * (b 
    to_power n)) 
    = (b 
    to_power (m 
    + n)) by 
    POWER: 27;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMPLEX3:51
    
    for a,b be
    positive  
    Real, n be 
    Real holds ((a 
    to_power (n 
    + 1)) 
    + (b 
    to_power (n 
    + 1))) 
    = (((((a 
    to_power n) 
    + (b 
    to_power n)) 
    * (a 
    + b)) 
    + ((a 
    - b) 
    * ((a 
    to_power n) 
    - (b 
    to_power n)))) 
    / 2) 
    
    proof
    
      let a,b be
    positive  
    Real, n be 
    Real;
    
      (a
    to_power 1) 
    = a & (b 
    to_power 1) 
    = b; 
    
      hence thesis by
    N158;
    
    end;
    
    theorem :: 
    
    COMPLEX3:52
    
    for a,b be
    positive  
    Real, n,m be 
    positive  
    Real holds ((a 
    to_power (n 
    + m)) 
    + (b 
    to_power (n 
    + m))) 
    >= ((((a 
    to_power n) 
    + (b 
    to_power n)) 
    * ((a 
    to_power m) 
    + (b 
    to_power m))) 
    / 2) 
    
    proof
    
      let a,b be
    positive  
    Real, n,m be 
    positive  
    Real;
    
      (((a
    to_power n) 
    - (b 
    to_power n)) 
    * ((a 
    to_power m) 
    - (b 
    to_power m))) 
    >=  
    0  
    
      proof
    
        per cases by
    XXREAL_0: 1;
    
          suppose a
    = b; 
    
          hence thesis;
    
        end;
    
          suppose a
    > b; 
    
          then (a
    to_power n) 
    > (b 
    to_power n) & (a 
    to_power m) 
    > (b 
    to_power m) by 
    POWER: 37;
    
          then ((a
    to_power n) 
    - (b 
    to_power n)) 
    > ((b 
    to_power n) 
    - (b 
    to_power n)) & ((a 
    to_power m) 
    - (b 
    to_power m)) 
    > ((b 
    to_power m) 
    - (b 
    to_power m)) by 
    XREAL_1: 9;
    
          hence thesis;
    
        end;
    
          suppose a
    < b; 
    
          then (a
    to_power n) 
    < (b 
    to_power n) & (a 
    to_power m) 
    < (b 
    to_power m) by 
    POWER: 37;
    
          then ((a
    to_power n) 
    - (b 
    to_power n)) 
    < ((b 
    to_power n) 
    - (b 
    to_power n)) & ((a 
    to_power m) 
    - (b 
    to_power m)) 
    < ((b 
    to_power m) 
    - (b 
    to_power m)) by 
    XREAL_1: 9;
    
          hence thesis;
    
        end;
    
      end;
    
      then ((((a
    to_power m) 
    + (b 
    to_power m)) 
    * ((a 
    to_power n) 
    + (b 
    to_power n))) 
    + (((a 
    to_power n) 
    - (b 
    to_power n)) 
    * ((a 
    to_power m) 
    - (b 
    to_power m)))) 
    >= ((((a 
    to_power m) 
    + (b 
    to_power m)) 
    * ((a 
    to_power n) 
    + (b 
    to_power n))) 
    +  
    0 ) by 
    XREAL_1: 6;
    
      then (((((a
    to_power m) 
    + (b 
    to_power m)) 
    * ((a 
    to_power n) 
    + (b 
    to_power n))) 
    + (((a 
    to_power n) 
    - (b 
    to_power n)) 
    * ((a 
    to_power m) 
    - (b 
    to_power m)))) 
    / 2) 
    >= ((((a 
    to_power m) 
    + (b 
    to_power m)) 
    * ((a 
    to_power n) 
    + (b 
    to_power n))) 
    / 2) by 
    XREAL_1: 72;
    
      hence thesis by
    N158;
    
    end;
    
    theorem :: 
    
    COMPLEX3:53
    
    for a,b be
    positive  
    Real, n,m be 
    positive  
    Real holds ((a 
    to_power (n 
    + m)) 
    + (b 
    to_power (n 
    + m))) 
    = ((((a 
    to_power n) 
    + (b 
    to_power n)) 
    * ((a 
    to_power m) 
    + (b 
    to_power m))) 
    / 2) iff a 
    = b 
    
    proof
    
      let a,b be
    positive  
    Real, n,m be 
    positive  
    Real;
    
      a
    = b implies (((a 
    to_power n) 
    - (b 
    to_power n)) 
    * ((a 
    to_power m) 
    - (b 
    to_power m))) 
    =  
    0 ; 
    
      then
    
      
    
    A1: a 
    = b implies ((a 
    to_power (n 
    + m)) 
    + (b 
    to_power (n 
    + m))) 
    = (((((a 
    to_power n) 
    + (b 
    to_power n)) 
    * ((a 
    to_power m) 
    + (b 
    to_power m))) 
    +  
    0 ) 
    / 2) by 
    N158;
    
      a
    <> b implies (((a 
    to_power n) 
    - (b 
    to_power n)) 
    * ((a 
    to_power m) 
    - (b 
    to_power m))) 
    >  
    0  
    
      proof
    
        assume a
    <> b; 
    
        per cases by
    XXREAL_0: 1;
    
          suppose a
    > b; 
    
          then (a
    to_power n) 
    > (b 
    to_power n) & (a 
    to_power m) 
    > (b 
    to_power m) by 
    POWER: 37;
    
          then ((a
    to_power n) 
    - (b 
    to_power n)) 
    > ((b 
    to_power n) 
    - (b 
    to_power n)) & ((a 
    to_power m) 
    - (b 
    to_power m)) 
    > ((b 
    to_power m) 
    - (b 
    to_power m)) by 
    XREAL_1: 9;
    
          hence thesis;
    
        end;
    
          suppose a
    < b; 
    
          then (a
    to_power n) 
    < (b 
    to_power n) & (a 
    to_power m) 
    < (b 
    to_power m) by 
    POWER: 37;
    
          then ((a
    to_power n) 
    - (b 
    to_power n)) 
    < ((b 
    to_power n) 
    - (b 
    to_power n)) & ((a 
    to_power m) 
    - (b 
    to_power m)) 
    < ((b 
    to_power m) 
    - (b 
    to_power m)) by 
    XREAL_1: 9;
    
          hence thesis;
    
        end;
    
      end;
    
      then a
    <> b implies ((((a 
    to_power m) 
    + (b 
    to_power m)) 
    * ((a 
    to_power n) 
    + (b 
    to_power n))) 
    + (((a 
    to_power n) 
    - (b 
    to_power n)) 
    * ((a 
    to_power m) 
    - (b 
    to_power m)))) 
    > ((((a 
    to_power m) 
    + (b 
    to_power m)) 
    * ((a 
    to_power n) 
    + (b 
    to_power n))) 
    +  
    0 ) by 
    XREAL_1: 6;
    
      then a
    <> b implies (((((a 
    to_power m) 
    + (b 
    to_power m)) 
    * ((a 
    to_power n) 
    + (b 
    to_power n))) 
    + (((a 
    to_power n) 
    - (b 
    to_power n)) 
    * ((a 
    to_power m) 
    - (b 
    to_power m)))) 
    / 2) 
    > ((((a 
    to_power m) 
    + (b 
    to_power m)) 
    * ((a 
    to_power n) 
    + (b 
    to_power n))) 
    / 2) by 
    XREAL_1: 68;
    
      hence thesis by
    A1,
    N158;
    
    end;
    
    theorem :: 
    
    COMPLEX3:54
    
    
    
    
    
    SMI: for a,b,c,d be 
    positive  
    Real st (a 
    + b) 
    <= (c 
    + d) & ( 
    max (a,b)) 
    > ( 
    max (c,d)) holds (a 
    * b) 
    < (c 
    * d) 
    
    proof
    
      let a,b,c,d be
    positive  
    Real;
    
      
    
      
    
    A1: (a 
    + b) 
    = (( 
    max (a,b)) 
    + ( 
    min (a,b))) & (c 
    + d) 
    = (( 
    max (c,d)) 
    + ( 
    min (c,d))) & (a 
    * b) 
    = (( 
    max (a,b)) 
    * ( 
    min (a,b))) & (( 
    max (c,d)) 
    * ( 
    min (c,d))) 
    = (c 
    * d) by 
    NEWTON04: 18;
    
      assume
    
      
    
    A2: (a 
    + b) 
    <= (c 
    + d) & ( 
    max (a,b)) 
    > ( 
    max (c,d)); 
    
      then
    
      
    
    A4: ((( 
    max (a,b)) 
    + ( 
    min (a,b))) 
    * (( 
    max (a,b)) 
    + ( 
    min (a,b)))) 
    <= ((( 
    max (c,d)) 
    + ( 
    min (c,d))) 
    * (( 
    max (c,d)) 
    + ( 
    min (c,d)))) by 
    A1,
    XREAL_1: 66;
    
      (
    min (a,b)) 
    < ( 
    min (c,d)) by 
    A1,
    A2,
    XREAL_1: 8;
    
      then ((
    max (a,b)) 
    * ( 
    max (a,b))) 
    > (( 
    max (c,d)) 
    * ( 
    max (c,d))) & (( 
    min (a,b)) 
    * ( 
    min (a,b))) 
    < (( 
    min (c,d)) 
    * ( 
    min (c,d))) by 
    A2,
    XREAL_1: 96;
    
      then (((
    max (a,b)) 
    * ( 
    max (a,b))) 
    - (( 
    min (a,b)) 
    * ( 
    min (a,b)))) 
    > ((( 
    max (c,d)) 
    * ( 
    max (c,d))) 
    - (( 
    min (c,d)) 
    * ( 
    min (c,d)))) by 
    XREAL_1: 14;
    
      then (((
    max (a,b)) 
    - ( 
    min (a,b))) 
    * (( 
    max (a,b)) 
    + ( 
    min (a,b)))) 
    > ((( 
    max (c,d)) 
    - ( 
    min (c,d))) 
    * (( 
    max (c,d)) 
    + ( 
    min (c,d)))); 
    
      then ((
    max (a,b)) 
    - ( 
    min (a,b))) 
    > (( 
    max (c,d)) 
    - ( 
    min (c,d))) by 
    A1,
    A2,
    XREAL_1: 66;
    
      then (((
    max (a,b)) 
    - ( 
    min (a,b))) 
    * (( 
    max (a,b)) 
    - ( 
    min (a,b)))) 
    > ((( 
    max (c,d)) 
    - ( 
    min (c,d))) 
    * (( 
    max (c,d)) 
    - ( 
    min (c,d)))) by 
    XREAL_1: 96;
    
      then ((((
    max (a,b)) 
    + ( 
    min (a,b))) 
    * (( 
    max (a,b)) 
    + ( 
    min (a,b)))) 
    - ((( 
    max (a,b)) 
    - ( 
    min (a,b))) 
    * (( 
    max (a,b)) 
    - ( 
    min (a,b))))) 
    < (((( 
    max (c,d)) 
    + ( 
    min (c,d))) 
    * (( 
    max (c,d)) 
    + ( 
    min (c,d)))) 
    - ((( 
    max (c,d)) 
    - ( 
    min (c,d))) 
    * (( 
    max (c,d)) 
    - ( 
    min (c,d))))) by 
    A4,
    XREAL_1: 15;
    
      then (4
    * (( 
    max (a,b)) 
    * ( 
    min (a,b)))) 
    < (4 
    * (( 
    max (c,d)) 
    * ( 
    min (c,d)))); 
    
      hence thesis by
    A1,
    XREAL_1: 64;
    
    end;
    
    theorem :: 
    
    COMPLEX3:55
    
    for a,b,c,d be
    positive  
    Real st ((a 
    + b) 
    <= (c 
    + d) & (a 
    * b) 
    > (c 
    * d)) holds ( 
    max (a,b)) 
    < ( 
    max (c,d)) & ( 
    min (a,b)) 
    > ( 
    min (c,d)) 
    
    proof
    
      let a,b,c,d be
    positive  
    Real;
    
      
    
      
    
    A1: (a 
    + b) 
    = (( 
    max (a,b)) 
    + ( 
    min (a,b))) & (c 
    + d) 
    = (( 
    max (c,d)) 
    + ( 
    min (c,d))) & (a 
    * b) 
    = (( 
    max (a,b)) 
    * ( 
    min (a,b))) & (c 
    * d) 
    = (( 
    max (c,d)) 
    * ( 
    min (c,d))) by 
    NEWTON04: 18;
    
      assume
    
      
    
    A2: ((a 
    + b) 
    <= (c 
    + d) & (a 
    * b) 
    > (c 
    * d)); 
    
      then (
    max (a,b)) 
    <= ( 
    max (c,d)) by 
    SMI;
    
      per cases by
    XXREAL_0: 1;
    
        suppose
    
        
    
    B1: ( 
    max (a,b)) 
    = ( 
    max (c,d)); 
    
        then (
    min (a,b)) 
    <= ( 
    min (c,d)) by 
    A1,
    A2,
    XREAL_1: 6;
    
        hence thesis by
    A2,
    B1,
    A1,
    XREAL_1: 64;
    
      end;
    
        suppose (
    max (a,b)) 
    < ( 
    max (c,d)); 
    
        hence thesis by
    A1,
    A2,
    XREAL_1: 66;
    
      end;
    
    end;
    
    theorem :: 
    
    COMPLEX3:56
    
    for a,b,c,d be
    positive  
    Real holds ( 
    max (a,b)) 
    = ( 
    max (c,d)) & ( 
    min (a,b)) 
    = ( 
    min (c,d)) iff ((a 
    * b) 
    = (c 
    * d) & (a 
    + b) 
    = (c 
    + d)) 
    
    proof
    
      let a,b,c,d be
    positive  
    Real;
    
      
    
      
    
    A1: (a 
    + b) 
    = (( 
    max (a,b)) 
    + ( 
    min (a,b))) & (c 
    + d) 
    = (( 
    max (c,d)) 
    + ( 
    min (c,d))) & (a 
    * b) 
    = (( 
    max (a,b)) 
    * ( 
    min (a,b))) & (( 
    max (c,d)) 
    * ( 
    min (c,d))) 
    = (c 
    * d) by 
    NEWTON04: 18;
    
      (a
    * b) 
    = (c 
    * d) & (a 
    + b) 
    = (c 
    + d) implies ( 
    max (a,b)) 
    = ( 
    max (c,d)) & ( 
    min (a,b)) 
    = ( 
    min (c,d)) 
    
      proof
    
        assume
    
        
    
    B1: (a 
    * b) 
    = (c 
    * d) & (a 
    + b) 
    = (c 
    + d); 
    
        then (
    max (a,b)) 
    = ( 
    max (c,d)) by 
    ISM;
    
        hence thesis by
    A1,
    B1;
    
      end;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    COMPLEX3:57
    
    
    
    
    
    POWER37: for a,b be non 
    negative  
    Real, c be 
    positive  
    Real holds a 
    >= b iff (a 
    to_power c) 
    >= (b 
    to_power c) 
    
    proof
    
      let a,b be non
    negative  
    Real, c be 
    positive  
    Real;
    
      b
    =  
    0 implies (b 
    to_power c) 
    =  
    0 by 
    POWER:def 2;
    
      then
    
      
    
    A1: a 
    > b implies (a 
    to_power c) 
    >= (b 
    to_power c) by 
    POWER: 37;
    
      a
    =  
    0 implies (a 
    to_power c) 
    =  
    0 by 
    POWER:def 2;
    
      hence thesis by
    A1,
    XXREAL_0: 1,
    POWER: 37;
    
    end;
    
    theorem :: 
    
    COMPLEX3:58
    
    for a,b,n be non
    negative  
    Real holds ( 
    max ((a 
    to_power n),(b 
    to_power n))) 
    = (( 
    max (a,b)) 
    to_power n) & ( 
    min ((a 
    to_power n),(b 
    to_power n))) 
    = (( 
    min (a,b)) 
    to_power n) 
    
    proof
    
      let a,b,n be non
    negative  
    Real;
    
      per cases ;
    
        suppose n is
    zero;
    
        then ((
    max (a,b)) 
    to_power n) 
    = 1 & (( 
    min (a,b)) 
    to_power n) 
    = 1 & (a 
    to_power n) 
    = 1 & (b 
    to_power n) 
    = 1 by 
    POWER: 24;
    
        hence thesis;
    
      end;
    
        suppose n is non
    zero;
    
        then
    
        reconsider n as
    positive  
    Real;
    
        per cases ;
    
          suppose
    
          
    
    B1: a 
    >= b; 
    
          then
    
          
    
    B2: ( 
    max (a,b)) 
    = a & ( 
    min (a,b)) 
    = b by 
    XXREAL_0:def 9,
    XXREAL_0:def 10;
    
          (a
    to_power n) 
    >= (b 
    to_power n) by 
    B1,
    POWER37;
    
          hence thesis by
    B2,
    XXREAL_0:def 9,
    XXREAL_0:def 10;
    
        end;
    
          suppose
    
          
    
    B1: a 
    < b; 
    
          then
    
          
    
    B2: ( 
    max (a,b)) 
    = b & ( 
    min (a,b)) 
    = a by 
    XXREAL_0:def 9,
    XXREAL_0:def 10;
    
          (a
    to_power n) 
    < (b 
    to_power n) by 
    B1,
    POWER37;
    
          hence thesis by
    B2,
    XXREAL_0:def 9,
    XXREAL_0:def 10;
    
        end;
    
      end;
    
    end;
    
    theorem :: 
    
    COMPLEX3:59
    
    for a,b,c,d be
    positive  
    Real st ((a 
    * b) 
    > (c 
    * d) & (a 
    / b) 
    >= (c 
    / d)) or ((a 
    * b) 
    >= (c 
    * d) & (a 
    / b) 
    > (c 
    / d)) holds a 
    > c 
    
    proof
    
      let a,b,c,d be
    positive  
    Real;
    
      
    
      
    
    A1: ((a 
    / b) 
    * b) 
    = a & ((c 
    / d) 
    * d) 
    = c by 
    XCMPLX_1: 87;
    
      assume ((a
    * b) 
    > (c 
    * d) & (a 
    / b) 
    >= (c 
    / d)) or ((a 
    * b) 
    >= (c 
    * d) & (a 
    / b) 
    > (c 
    / d)); 
    
      then ((a
    * b) 
    * (a 
    / b)) 
    > ((c 
    * d) 
    * (c 
    / d)) by 
    XREAL_1: 98;
    
      then (a
    * a) 
    > (c 
    * c) by 
    A1;
    
      hence thesis by
    XREAL_1: 66;
    
    end;
    
    theorem :: 
    
    COMPLEX3:60
    
    for a be
    positive  
    Real holds (1 
    - a) 
    < (1 
    / (1 
    + a)) 
    
    proof
    
      let a be
    positive  
    Real;
    
      (1
    - (a 
    * a)) 
    < (1 
    -  
    0 ) by 
    XREAL_1: 10;
    
      then ((1
    + a) 
    * (1 
    - a)) 
    < 1; 
    
      hence thesis by
    XREAL_1: 81;
    
    end;
    
    theorem :: 
    
    COMPLEX3:61
    
    for a be
    light
    positive  
    Real holds (1 
    + a) 
    < (1 
    / (1 
    - a)) 
    
    proof
    
      let a be
    light
    positive  
    Real;
    
      (1
    - (a 
    * a)) 
    < (1 
    -  
    0 ) by 
    XREAL_1: 10;
    
      then ((1
    + a) 
    * (1 
    - a)) 
    < 1 & (1 
    - a) 
    >  
    0 ; 
    
      hence thesis by
    XREAL_1: 81;
    
    end;
    
    theorem :: 
    
    COMPLEX3:62
    
    
    
    
    
    Pow: for a,b be 
    positive  
    Real, m be non 
    negative  
    Real, n be 
    positive  
    Real holds ((a 
    to_power m) 
    + (b 
    to_power m)) 
    <= 1 implies ((a 
    to_power (m 
    + n)) 
    + (b 
    to_power (m 
    + n))) 
    < 1 
    
    proof
    
      let a,b be
    positive  
    Real, m be non 
    negative  
    Real, n be 
    positive  
    Real;
    
      assume
    
      
    
    A1: ((a 
    to_power m) 
    + (b 
    to_power m)) 
    <= 1; 
    
      (a
    to_power  
    0 ) 
    = 1 & (b 
    to_power  
    0 ) 
    = 1 by 
    POWER: 24;
    
      then not m
    =  
    0 by 
    A1;
    
      then
    
      reconsider m as
    positive  
    Real;
    
      
    
      
    
    A2: ((a 
    to_power m) 
    +  
    0 ) 
    < ((a 
    to_power m) 
    + (b 
    to_power m)) by 
    XREAL_1: 6;
    
      (a
    > 1 implies (a 
    to_power m) 
    >= 1) & (a 
    = 1 implies (a 
    to_power m) 
    = 1) by 
    POWER: 35;
    
      then a
    >= 1 implies (a 
    to_power m) 
    >= 1 by 
    XXREAL_0: 1;
    
      then
    
      reconsider a as
    light
    positive  
    Real by 
    A1,
    A2,
    TA1,
    XXREAL_0: 2;
    
      
    
      
    
    A3: ((b 
    to_power m) 
    +  
    0 ) 
    < ((b 
    to_power m) 
    + (a 
    to_power m)) by 
    XREAL_1: 6;
    
      (b
    > 1 implies (b 
    to_power m) 
    >= 1) & (b 
    = 1 implies (b 
    to_power m) 
    = 1) by 
    POWER: 35;
    
      then b
    >= 1 implies (b 
    to_power m) 
    >= 1 by 
    XXREAL_0: 1;
    
      then
    
      reconsider b as
    light
    positive  
    Real by 
    A1,
    A3,
    TA1,
    XXREAL_0: 2;
    
      
    0  
    < a 
    < 1 & 
    0  
    < b 
    < 1 & (m 
    +  
    0 ) 
    < (m 
    + n) by 
    TA1,
    XREAL_1: 6;
    
      then (a
    to_power m) 
    > (a 
    to_power (m 
    + n)) & (b 
    to_power m) 
    > (b 
    to_power (m 
    + n)) by 
    POWER: 40;
    
      then ((a
    to_power (m 
    + n)) 
    + (b 
    to_power (m 
    + n))) 
    < ((a 
    to_power m) 
    + (b 
    to_power m)) by 
    XREAL_1: 8;
    
      hence thesis by
    A1,
    XXREAL_0: 2;
    
    end;
    
    theorem :: 
    
    COMPLEX3:63
    
    for a,b be
    positive  
    Real, m be non 
    positive  
    Real, n be 
    negative  
    Real holds ((a 
    to_power m) 
    + (b 
    to_power m)) 
    <= 1 implies ((a 
    to_power (m 
    + n)) 
    + (b 
    to_power (m 
    + n))) 
    < 1 
    
    proof
    
      let a,b be
    positive  
    Real, m be non 
    positive  
    Real, n be 
    negative  
    Real;
    
      reconsider k = (a
    to_power ( 
    - 1)) as 
    positive  
    Real;
    
      reconsider l = (b
    to_power ( 
    - 1)) as 
    positive  
    Real;
    
      (k
    to_power ( 
    - m)) 
    = (a 
    to_power (( 
    - 1) 
    * ( 
    - m))) & (k 
    to_power (( 
    - m) 
    - n)) 
    = (a 
    to_power (( 
    - 1) 
    * (( 
    - m) 
    - n))) & (l 
    to_power ( 
    - m)) 
    = (b 
    to_power (( 
    - 1) 
    * ( 
    - m))) & (l 
    to_power (( 
    - m) 
    - n)) 
    = (b 
    to_power (( 
    - 1) 
    * (( 
    - m) 
    - n))) by 
    POWER: 33;
    
      hence thesis by
    Pow;
    
    end;
    
    theorem :: 
    
    COMPLEX3:64
    
    
    
    
    
    NEW: for a,b,c,n be 
    positive  
    Real, m be non 
    negative  
    Real holds ((a 
    to_power m) 
    + (b 
    to_power m)) 
    <= (c 
    to_power m) implies ((a 
    to_power (m 
    + n)) 
    + (b 
    to_power (m 
    + n))) 
    < (c 
    to_power (m 
    + n)) 
    
    proof
    
      let a,b,c,n be
    positive  
    Real, m be non 
    negative  
    Real;
    
      assume
    
      
    
    A1: ((a 
    to_power m) 
    + (b 
    to_power m)) 
    <= (c 
    to_power m); 
    
      reconsider x = (a
    / c) as 
    positive  
    Real;
    
      reconsider y = (b
    / c) as 
    positive  
    Real;
    
      
    
      
    
    A2: (x 
    * c) 
    = a & (y 
    * c) 
    = b by 
    XCMPLX_1: 87;
    
      
    
      
    
    A3: ((x 
    * c) 
    to_power m) 
    = ((x 
    to_power m) 
    * (c 
    to_power m)) & ((y 
    * c) 
    to_power m) 
    = ((y 
    to_power m) 
    * (c 
    to_power m)) & ((x 
    * c) 
    to_power (m 
    + n)) 
    = ((x 
    to_power (m 
    + n)) 
    * (c 
    to_power (m 
    + n))) & ((y 
    * c) 
    to_power (m 
    + n)) 
    = ((y 
    to_power (m 
    + n)) 
    * (c 
    to_power (m 
    + n))) by 
    POWER: 30;
    
      then ((c
    to_power m) 
    * ((x 
    to_power m) 
    + (y 
    to_power m))) 
    <= ((c 
    to_power m) 
    * 1) by 
    A1,
    A2;
    
      then ((x
    to_power m) 
    + (y 
    to_power m)) 
    <= 1 by 
    XREAL_1: 68;
    
      then ((x
    to_power (m 
    + n)) 
    + (y 
    to_power (m 
    + n))) 
    < 1 by 
    Pow;
    
      then ((c
    to_power (m 
    + n)) 
    * ((x 
    to_power (m 
    + n)) 
    + (y 
    to_power (m 
    + n)))) 
    < ((c 
    to_power (m 
    + n)) 
    * 1) by 
    XREAL_1: 68;
    
      hence thesis by
    A2,
    A3;
    
    end;
    
    theorem :: 
    
    COMPLEX3:65
    
    
    
    
    
    APB: for a,b be 
    positive  
    Real, n be 
    heavy
    positive  
    Real holds ((a 
    to_power n) 
    + (b 
    to_power n)) 
    < ((a 
    + b) 
    to_power n) 
    
    proof
    
      let a,b be
    positive  
    Real, n be 
    heavy
    positive  
    Real;
    
      reconsider m = (n
    - 1) as 
    positive  
    Real;
    
      ((a
    to_power 1) 
    + (b 
    to_power 1)) 
    = ((a 
    + b) 
    to_power 1); 
    
      then ((a
    to_power (1 
    + m)) 
    + (b 
    to_power (1 
    + m))) 
    < ((a 
    + b) 
    to_power (1 
    + m)) by 
    NEW;
    
      hence thesis;
    
    end;
    
    registration
    
      let k be
    positive  
    Real, n be 
    heavy
    positive  
    Real;
    
      cluster (((k 
    + 1) 
    to_power n) 
    - (k 
    to_power n)) -> 
    heavy
    positive;
    
      coherence
    
      proof
    
        ((k
    + 1) 
    to_power n) 
    > ((k 
    to_power n) 
    + (1 
    to_power n)) by 
    APB;
    
        then (((k
    + 1) 
    to_power n) 
    - (k 
    to_power n)) 
    > (((k 
    to_power n) 
    + 1) 
    - (k 
    to_power n)) by 
    XREAL_1: 9;
    
        hence thesis by
    TA1;
    
      end;
    
    end
    
    registration
    
      let k be
    heavy
    positive  
    Real, n be non 
    negative  
    Real;
    
      cluster ((k 
    to_power (n 
    + 1)) 
    - (k 
    to_power n)) -> 
    positive;
    
      coherence
    
      proof
    
        (k
    to_power (n 
    + 1)) 
    = ((k 
    to_power n) 
    * (k 
    to_power 1)) by 
    POWER: 27
    
        .= (k
    * (k 
    to_power n)); 
    
        then ((k
    to_power (n 
    + 1)) 
    - (k 
    to_power n)) 
    = ((k 
    - 1) 
    * (k 
    to_power n)); 
    
        hence thesis;
    
      end;
    
    end
    
    theorem :: 
    
    COMPLEX3:66
    
    for k be
    positive  
    Real, n be 
    heavy
    positive  
    Real holds ((k 
    + 1) 
    to_power n) 
    > ((k 
    to_power n) 
    + 1) 
    
    proof
    
      let k be
    positive  
    Real, n be 
    heavy
    positive  
    Real;
    
      ((k
    + 1) 
    to_power n) 
    > ((k 
    to_power n) 
    + (1 
    to_power n)) by 
    APB;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMPLEX3:67
    
    
    
    
    
    BPA: for a,b be 
    positive  
    Real, n be 
    light
    positive  
    Real holds ((a 
    to_power n) 
    + (b 
    to_power n)) 
    > ((a 
    + b) 
    to_power n) 
    
    proof
    
      let a,b be
    positive  
    Real, n be 
    light
    positive  
    Real;
    
      reconsider m = (1
    - n) as 
    Real;
    
      ((a
    to_power (m 
    + n)) 
    + (b 
    to_power (m 
    + n))) 
    = ((a 
    + b) 
    to_power (m 
    + n)); 
    
      hence thesis by
    NEW;
    
    end;
    
    theorem :: 
    
    COMPLEX3:68
    
    for k be
    positive  
    Real, n be 
    light
    positive  
    Real holds ((k 
    + 1) 
    to_power n) 
    < ((k 
    to_power n) 
    + 1) 
    
    proof
    
      let k be
    positive  
    Real, n be 
    light
    positive  
    Real;
    
      ((k
    + 1) 
    to_power n) 
    < ((k 
    to_power n) 
    + (1 
    to_power n)) by 
    BPA;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMPLEX3:69
    
    
    
    
    
    LMN: for k be 
    positive  
    Real, n be non 
    positive  
    Real holds ((k 
    + 1) 
    to_power n) 
    < ((k 
    to_power n) 
    + 1) 
    
    proof
    
      let k be
    positive  
    Real, n be non 
    positive  
    Real;
    
      per cases ;
    
        suppose n
    =  
    0 ; 
    
        then ((k
    + 1) 
    to_power n) 
    = 1 & (k 
    to_power n) 
    = 1 by 
    POWER: 24;
    
        hence thesis;
    
      end;
    
        suppose n
    <  
    0 ; 
    
        then
    
        reconsider n as
    negative  
    Real;
    
        ((k
    + 1) 
    to_power n) is 
    light
    positive;
    
        then (((k
    + 1) 
    to_power n) 
    +  
    0 ) 
    < (((k 
    + 1) 
    to_power n) 
    + (k 
    to_power n)) 
    < (1 
    + (k 
    to_power n)) by 
    XREAL_1: 6;
    
        hence thesis by
    XXREAL_0: 2;
    
      end;
    
    end;
    
    theorem :: 
    
    COMPLEX3:70
    
    
    
    
    
    BPC: for a,b be 
    positive  
    Real, n be non 
    positive  
    Real holds ((a 
    to_power n) 
    + (b 
    to_power n)) 
    > ((a 
    + b) 
    to_power n) 
    
    proof
    
      let a,b be
    positive  
    Real, n be non 
    positive  
    Real;
    
      reconsider k = (a
    / b) as 
    positive  
    Real;
    
      (k
    + 1) 
    = ((a 
    / b) 
    + (b 
    / b)) by 
    XCMPLX_1: 60
    
      .= ((a
    + b) 
    / b); 
    
      then
    
      
    
    A1: ((k 
    + 1) 
    * b) 
    = (a 
    + b) & (k 
    * b) 
    = a by 
    XCMPLX_1: 87;
    
      
    
      
    
    A2: (((k 
    + 1) 
    to_power n) 
    * (b 
    to_power n)) 
    = (((k 
    + 1) 
    * b) 
    to_power n) & ((k 
    to_power n) 
    * (b 
    to_power n)) 
    = ((k 
    * b) 
    to_power n) by 
    POWER: 30;
    
      (((k
    + 1) 
    to_power n) 
    * (b 
    to_power n)) 
    < (((k 
    to_power n) 
    + 1) 
    * (b 
    to_power n)) by 
    XREAL_1: 68,
    LMN;
    
      hence thesis by
    A1,
    A2;
    
    end;
    
    theorem :: 
    
    COMPLEX3:71
    
    
    
    
    
    LME: for a,b be 
    positive  
    Real, n be 
    Real holds ((a 
    + b) 
    to_power n) 
    > ((a 
    to_power n) 
    + (b 
    to_power n)) iff n is 
    heavy
    positive
    
    proof
    
      let a,b be
    positive  
    Real, n be 
    Real;
    
       not n is
    heavy
    positive implies ((a 
    + b) 
    to_power n) 
    <= ((a 
    to_power n) 
    + (b 
    to_power n)) 
    
      proof
    
        assume not n is
    heavy
    positive;
    
        then n
    <= 1 by 
    TA1;
    
        per cases by
    XXREAL_0: 1;
    
          suppose n
    = 1; 
    
          hence thesis;
    
        end;
    
          suppose
    
          
    
    B1: n 
    < 1; 
    
          per cases ;
    
            suppose n is
    positive;
    
            then n is
    light
    positive by 
    B1,
    TA1;
    
            hence thesis by
    BPA;
    
          end;
    
            suppose n is non
    positive;
    
            hence thesis by
    BPC;
    
          end;
    
        end;
    
      end;
    
      hence thesis by
    APB;
    
    end;
    
    theorem :: 
    
    COMPLEX3:72
    
    
    
    
    
    NE1: for a,b be 
    positive  
    Real, n be 
    Real holds ((a 
    + b) 
    to_power n) 
    = ((a 
    to_power n) 
    + (b 
    to_power n)) iff n 
    = 1 
    
    proof
    
      let a,b be
    positive  
    Real, n be 
    Real;
    
      ((a
    + b) 
    to_power n) 
    = ((a 
    to_power n) 
    + (b 
    to_power n)) implies n 
    = 1 
    
      proof
    
        assume
    
        
    
    A1: ((a 
    + b) 
    to_power n) 
    = ((a 
    to_power n) 
    + (b 
    to_power n)); 
    
        then
    
        
    
    A2: not n is 
    heavy
    positive by 
    LME;
    
        reconsider n as
    positive  
    Real by 
    A1,
    BPC;
    
        n is
    light
    positive or n 
    = 1 by 
    A2,
    XXREAL_0: 1;
    
        hence thesis by
    A1,
    BPA;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMPLEX3:73
    
    for a,b be
    positive  
    Real, n be 
    Real holds ((a 
    + b) 
    to_power n) 
    < ((a 
    to_power n) 
    + (b 
    to_power n)) iff n 
    < 1 
    
    proof
    
      let a,b be
    positive  
    Real, n be 
    Real;
    
      n is
    heavy
    positive iff n 
    > 1 by 
    TA1;
    
      then ((a
    + b) 
    to_power n) 
    <= ((a 
    to_power n) 
    + (b 
    to_power n)) iff n 
    <= 1 by 
    LME;
    
      hence thesis by
    NE1,
    XXREAL_0: 1;
    
    end;
    
    theorem :: 
    
    COMPLEX3:74
    
    
    
    
    
    FPC: for a,b,c be 
    positive  
    Real holds ((a 
    + b) 
    * (a 
    + c)) 
    > (a 
    * ((a 
    + b) 
    + c)) 
    
    proof
    
      let a,b,c be
    positive  
    Real;
    
      ((a
    * ((a 
    + b) 
    + c)) 
    + (b 
    * c)) 
    > ((a 
    * ((a 
    + b) 
    + c)) 
    +  
    0 ) by 
    XREAL_1: 6;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMPLEX3:75
    
    
    
    
    
    FRAC: for a,b,c be 
    positive  
    Real holds (((a 
    + b) 
    + c) 
    / (a 
    + b)) 
    < ((a 
    + c) 
    / a) 
    
    proof
    
      let a,b,c be
    positive  
    Real;
    
      ((a
    + b) 
    * (a 
    + c)) 
    > (((a 
    + b) 
    + c) 
    * a) by 
    FPC;
    
      hence thesis by
    XREAL_1: 106;
    
    end;
    
    theorem :: 
    
    COMPLEX3:76
    
    for a,b,c be
    positive  
    Real, n be 
    positive  
    Real holds ((((a 
    + b) 
    + c) 
    to_power n) 
    / ((a 
    + b) 
    to_power n)) 
    < (((a 
    + c) 
    to_power n) 
    / (a 
    to_power n)) 
    
    proof
    
      let a,b,c be
    positive  
    Real, n be 
    positive  
    Real;
    
      ((((a
    + b) 
    + c) 
    to_power n) 
    / ((a 
    + b) 
    to_power n)) 
    = ((((a 
    + b) 
    + c) 
    / (a 
    + b)) 
    to_power n) & (((a 
    + c) 
    to_power n) 
    / (a 
    to_power n)) 
    = (((a 
    + c) 
    / a) 
    to_power n) by 
    POWER: 31;
    
      hence thesis by
    FRAC,
    POWER: 37;
    
    end;
    
    theorem :: 
    
    COMPLEX3:77
    
    
    
    
    
    ADB: for a,b be 
    heavy
    positive  
    Real holds ((a 
    + b) 
    - 1) 
    > (a 
    / b) 
    > (1 
    / ((a 
    + b) 
    - 1)) 
    
    proof
    
      let a,b be
    heavy
    positive  
    Real;
    
      a
    > 1 & b 
    > 1 by 
    TA1;
    
      then (a
    + b) 
    > (1 
    + 1) by 
    XREAL_1: 8;
    
      then ((a
    + b) 
    - 1) 
    > (2 
    - 1) by 
    XREAL_1: 9;
    
      then
    
      reconsider c = ((a
    + b) 
    - 1) as 
    heavy
    positive  
    Real by 
    TA1;
    
      reconsider k = (a
    / b) as 
    positive  
    Real;
    
      ((k
    + 1) 
    * b) 
    > ((k 
    + 1) 
    * 1) by 
    TA1,
    XREAL_1: 68;
    
      then (((k
    + 1) 
    * b) 
    - 1) 
    > ((k 
    + 1) 
    - 1) by 
    XREAL_1: 9;
    
      then
    
      
    
    A1: (((k 
    * b) 
    + b) 
    - 1) 
    > k; 
    
      (((k
    " ) 
    + 1) 
    * a) 
    > (((k 
    " ) 
    + 1) 
    * 1) by 
    TA1,
    XREAL_1: 68;
    
      then ((((k
    " ) 
    + 1) 
    * a) 
    - 1) 
    > (((k 
    " ) 
    + 1) 
    - 1) by 
    XREAL_1: 9;
    
      then ((((k
    " ) 
    * a) 
    + a) 
    - 1) 
    > (k 
    " ); 
    
      then ((((b
    / a) 
    * a) 
    + a) 
    - 1) 
    > (k 
    " ) by 
    XCMPLX_1: 213;
    
      then ((((b
    + a) 
    - 1) 
    " ) 
    " ) 
    > (k 
    " ) by 
    XCMPLX_1: 87;
    
      hence thesis by
    A1,
    XCMPLX_1: 87,
    XREAL_1: 91;
    
    end;
    
    theorem :: 
    
    COMPLEX3:78
    
    for a,b,c be
    positive  
    Real holds (((a 
    + b) 
    + c) 
    / a) 
    > ((a 
    + b) 
    / (a 
    + c)) 
    > (a 
    / ((a 
    + b) 
    + c)) 
    
    proof
    
      let a,b,c be
    positive  
    Real;
    
      reconsider k = ((a
    + b) 
    / a) as 
    heavy
    positive  
    Real;
    
      
    
      
    
    A1: (a 
    + b) 
    = (k 
    * a) by 
    XCMPLX_1: 87;
    
      reconsider l = ((a
    + c) 
    / a) as 
    heavy
    positive  
    Real;
    
      
    
      
    
    A2: (a 
    + c) 
    = (l 
    * a) by 
    XCMPLX_1: 87;
    
      
    
      
    
    A3: (k 
    / l) 
    = ((a 
    + b) 
    / (a 
    + c)) by 
    XCMPLX_1: 55;
    
      
    
      
    
    A4: ((k 
    + l) 
    - 1) 
    > (k 
    / l) 
    > (1 
    / ((k 
    + l) 
    - 1)) by 
    ADB;
    
      ((a
    + b) 
    + c) 
    = (((k 
    + l) 
    - 1) 
    * a) by 
    A1,
    A2;
    
      then (((a
    + b) 
    + c) 
    / a) 
    = ((k 
    + l) 
    - 1) by 
    XCMPLX_1: 89;
    
      hence thesis by
    A3,
    A4,
    XCMPLX_1: 213;
    
    end;
    
    theorem :: 
    
    COMPLEX3:79
    
    
    
    
    
    IL1: for a be 
    light
    positive  
    Real, n be 
    heavy
    positive  
    Real holds (((1 
    + a) 
    to_power n) 
    * ((1 
    - a) 
    to_power n)) 
    < ((1 
    + (a 
    to_power n)) 
    * (1 
    - (a 
    to_power n))) 
    
    proof
    
      let a be
    light
    positive  
    Real, n be 
    heavy
    positive  
    Real;
    
      
    
      
    
    A1: (((1 
    + a) 
    to_power n) 
    * ((1 
    - a) 
    to_power n)) 
    = (((1 
    - a) 
    * (1 
    + a)) 
    to_power n) by 
    POWER: 30
    
      .= ((1
    - (a 
    * a)) 
    to_power n); 
    
      
    
      
    
    A2: ((1 
    + (a 
    to_power n)) 
    * (1 
    - (a 
    to_power n))) 
    = (1 
    - ((a 
    to_power n) 
    * (a 
    to_power n))) 
    
      .= (1
    - ((a 
    * a) 
    to_power n)) by 
    POWER: 30;
    
      (((1
    - (a 
    * a)) 
    to_power n) 
    + ((a 
    * a) 
    to_power n)) 
    < (((1 
    - (a 
    * a)) 
    + (a 
    * a)) 
    to_power n) by 
    APB;
    
      then ((((1
    - (a 
    * a)) 
    to_power n) 
    + ((a 
    * a) 
    to_power n)) 
    - ((a 
    * a) 
    to_power n)) 
    < ((1 
    to_power n) 
    - ((a 
    * a) 
    to_power n)) by 
    XREAL_1: 9;
    
      hence thesis by
    A1,
    A2;
    
    end;
    
    theorem :: 
    
    COMPLEX3:80
    
    for a be
    light
    positive  
    Real, n be 
    heavy
    positive  
    Real holds (((1 
    + a) 
    to_power n) 
    / (1 
    + (a 
    to_power n))) 
    < ((1 
    - (a 
    to_power n)) 
    / ((1 
    - a) 
    to_power n)) 
    
    proof
    
      let a be
    light
    positive  
    Real, n be 
    heavy
    positive  
    Real;
    
      (((1
    + a) 
    to_power n) 
    * ((1 
    - a) 
    to_power n)) 
    < ((1 
    + (a 
    to_power n)) 
    * (1 
    - (a 
    to_power n))) by 
    IL1;
    
      hence thesis by
    XREAL_1: 106;
    
    end;
    
    theorem :: 
    
    COMPLEX3:81
    
    for a be
    light
    positive  
    Real holds ( 
    max (a,(1 
    - a))) 
    >= (1 
    / 2) & ( 
    min (a,(1 
    - a))) 
    <= (1 
    / 2) 
    
    proof
    
      let a be
    light
    positive  
    Real;
    
      per cases ;
    
        suppose
    
        
    
    B1: a 
    >= (1 
    - a); 
    
        then (a
    + a) 
    >= ((1 
    - a) 
    + a) & (a 
    + (1 
    - a)) 
    >= ((1 
    - a) 
    + (1 
    - a)) by 
    XREAL_1: 6;
    
        then ((2
    * a) 
    / 2) 
    >= (1 
    / 2) & ((2 
    * (1 
    - a)) 
    / 2) 
    <= (1 
    / 2) by 
    XREAL_1: 72;
    
        hence thesis by
    B1,
    XXREAL_0:def 9,
    XXREAL_0:def 10;
    
      end;
    
        suppose
    
        
    
    B1: a 
    < (1 
    - a); 
    
        then (a
    + a) 
    < ((1 
    - a) 
    + a) & (a 
    + (1 
    - a)) 
    < ((1 
    - a) 
    + (1 
    - a)) by 
    XREAL_1: 6;
    
        then ((2
    * a) 
    / 2) 
    < (1 
    / 2) & ((2 
    * (1 
    - a)) 
    / 2) 
    > (1 
    / 2) by 
    XREAL_1: 74;
    
        hence thesis by
    B1,
    XXREAL_0:def 9,
    XXREAL_0:def 10;
    
      end;
    
    end;
    
    theorem :: 
    
    COMPLEX3:82
    
    for a be
    light
    positive  
    Real holds ((1 
    / (1 
    + a)) 
    + (1 
    / (1 
    - a))) 
    > 2 
    
    proof
    
      let a be
    light
    positive  
    Real;
    
      
    
      
    
    A1: (1 
    - (a 
    * a)) 
    < (1 
    -  
    0 ) by 
    XREAL_1: 10;
    
      
    
      
    
    A2: ((1 
    * (1 
    - a)) 
    / ((1 
    - a) 
    * (1 
    + a))) 
    = (1 
    / (1 
    + a)) & ((1 
    * (1 
    + a)) 
    / ((1 
    + a) 
    * (1 
    - a))) 
    = (1 
    / (1 
    - a)) by 
    XCMPLX_1: 91;
    
      (((1
    - a) 
    + (1 
    + a)) 
    / ((1 
    - a) 
    * (1 
    + a))) 
    > (((1 
    - a) 
    + (1 
    + a)) 
    / 1) by 
    A1,
    XREAL_1: 76;
    
      hence thesis by
    A2;
    
    end;
    
    theorem :: 
    
    COMPLEX3:83
    
    for a be
    heavy
    positive  
    Real holds ((1 
    / (a 
    + 1)) 
    + (1 
    / (a 
    - 1))) 
    > (2 
    / a) 
    
    proof
    
      let a be
    heavy
    positive  
    Real;
    
      
    
      
    
    A1: ((1 
    * (a 
    + 1)) 
    / ((a 
    - 1) 
    * (a 
    + 1))) 
    = (1 
    / (a 
    - 1)) & ((1 
    * (a 
    - 1)) 
    / ((a 
    - 1) 
    * (a 
    + 1))) 
    = (1 
    / (a 
    + 1)) & ((2 
    * a) 
    / (a 
    * a)) 
    = (2 
    / a) by 
    XCMPLX_1: 91;
    
      (1
    - 1) 
    < ((a 
    * a) 
    - 1) 
    < ((a 
    * a) 
    -  
    0 ) by 
    XREAL_1: 6;
    
      then (((a
    + 1) 
    + (a 
    - 1)) 
    / ((a 
    + 1) 
    * (a 
    - 1))) 
    > (((a 
    + 1) 
    + (a 
    - 1)) 
    / (a 
    * a)) by 
    XREAL_1: 76;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    COMPLEX3:84
    
    for a,b be
    positive  
    Real, n be 
    heavy
    positive  
    Real holds ((((2 
    * a) 
    + b) 
    to_power n) 
    + (b 
    to_power n)) 
    < ((2 
    * (a 
    + b)) 
    to_power n) 
    
    proof
    
      let a,b be
    positive  
    Real, n be 
    heavy
    positive  
    Real;
    
      ((((2
    * a) 
    + b) 
    to_power n) 
    + (b 
    to_power n)) 
    < ((((2 
    * a) 
    + b) 
    + b) 
    to_power n) by 
    APB;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMPLEX3:85
    
    for a,n be
    heavy
    positive  
    Real holds (((a 
    + 1) 
    to_power n) 
    - ((a 
    - 1) 
    to_power n)) 
    > (2 
    to_power n) 
    
    proof
    
      let a,n be
    heavy
    positive  
    Real;
    
      (a
    + 1) 
    = ((a 
    - 1) 
    + 2); 
    
      then (((a
    + 1) 
    to_power n) 
    - ((a 
    - 1) 
    to_power n)) 
    > ((((a 
    - 1) 
    to_power n) 
    + (2 
    to_power n)) 
    - ((a 
    - 1) 
    to_power n)) by 
    APB,
    XREAL_1: 9;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMPLEX3:86
    
    for a be
    light
    positive  
    Real, n be 
    heavy
    positive  
    Real holds (2 
    to_power n) 
    > (((1 
    + a) 
    to_power n) 
    - ((1 
    - a) 
    to_power n)) 
    > ((2 
    * a) 
    to_power n) 
    
    proof
    
      let a be
    light
    positive  
    Real, n be 
    heavy
    positive  
    Real;
    
      
    
      
    
    A1: a 
    < 1 & n 
    > 1 by 
    TA1;
    
      (1
    + a) 
    = ((1 
    - a) 
    + (2 
    * a)); 
    
      then
    
      
    
    A2: (((1 
    + a) 
    to_power n) 
    - ((1 
    - a) 
    to_power n)) 
    > ((((1 
    - a) 
    to_power n) 
    + ((2 
    * a) 
    to_power n)) 
    - ((1 
    - a) 
    to_power n)) by 
    APB,
    XREAL_1: 9;
    
      (1
    + 1) 
    > (1 
    + a) by 
    A1,
    XREAL_1: 6;
    
      then (2
    to_power n) 
    > ((1 
    + a) 
    to_power n) by 
    POWER: 37;
    
      then ((2
    to_power n) 
    -  
    0 ) 
    > (((1 
    + a) 
    to_power n) 
    - ((1 
    - a) 
    to_power n)) by 
    XREAL_1: 14;
    
      hence thesis by
    A2;
    
    end;
    
    theorem :: 
    
    COMPLEX3:87
    
    for a,n be
    heavy
    positive  
    Real, b be 
    light
    positive  
    Real holds (((a 
    + 1) 
    to_power n) 
    - ((a 
    - 1) 
    to_power n)) 
    > (((a 
    + b) 
    to_power n) 
    - ((a 
    - b) 
    to_power n)) 
    > ((2 
    * b) 
    to_power n) 
    
    proof
    
      let a,n be
    heavy
    positive  
    Real, b be 
    light
    positive  
    Real;
    
      
    
      
    
    A1: a 
    > 1 & n 
    > 1 & 
    0  
    < b 
    < 1 by 
    TA1;
    
      (a
    + b) 
    = ((a 
    - b) 
    + (2 
    * b)); 
    
      then
    
      
    
    A2: (((a 
    + b) 
    to_power n) 
    - ((a 
    - b) 
    to_power n)) 
    > ((((a 
    - b) 
    to_power n) 
    + ((2 
    * b) 
    to_power n)) 
    - ((a 
    - b) 
    to_power n)) by 
    APB,
    XREAL_1: 9;
    
      (1
    + a) 
    > (b 
    + a) & ((a 
    - 1) 
    + (1 
    - b)) 
    > ((a 
    - 1) 
    +  
    0 ) by 
    A1,
    XREAL_1: 6;
    
      then ((a
    + 1) 
    to_power n) 
    > ((a 
    + b) 
    to_power n) & ((a 
    - b) 
    to_power n) 
    > ((a 
    - 1) 
    to_power n) by 
    POWER: 37;
    
      hence thesis by
    A2,
    XREAL_1: 14;
    
    end;
    
    theorem :: 
    
    COMPLEX3:88
    
    for a,b be
    positive  
    Real, n be 
    positive  
    Real holds (2 
    * ((a 
    + b) 
    to_power n)) 
    > (((a 
    + b) 
    to_power n) 
    + (a 
    to_power n)) 
    > (2 
    * (a 
    to_power n)) 
    
    proof
    
      let a,b be
    positive  
    Real, n be 
    positive  
    Real;
    
      (a
    + b) 
    > (a 
    +  
    0 ) by 
    XREAL_1: 6;
    
      then ((a
    + b) 
    to_power n) 
    > (a 
    to_power n) by 
    POWER: 37;
    
      then (((a
    + b) 
    to_power n) 
    + ((a 
    + b) 
    to_power n)) 
    > (((a 
    + b) 
    to_power n) 
    + (a 
    to_power n)) 
    > ((a 
    to_power n) 
    + (a 
    to_power n)) by 
    XREAL_1: 6;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMPLEX3:89
    
    
    
    
    
    ATB: for a,b be 
    positive  
    Real st a 
    <> b holds ex n,m be 
    Real st a 
    = ((a 
    / b) 
    to_power n) & b 
    = ((a 
    / b) 
    to_power m) 
    
    proof
    
      let a,b be
    positive  
    Real such that 
    
      
    
    A1: a 
    <> b; 
    
      reconsider x = (a
    / b) as 
    positive  
    Real;
    
      x
    <> 1 by 
    A1,
    XCMPLX_1: 58;
    
      then (x
    to_power ( 
    log (x,a))) 
    = a & (x 
    to_power ( 
    log (x,b))) 
    = b by 
    POWER:def 3;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMPLEX3:90
    
    for a,b be
    positive  
    Real st a 
    <> b holds ex n,m be 
    Real st (a 
    - b) 
    = (((a 
    / b) 
    to_power n) 
    * (((a 
    / b) 
    to_power m) 
    - 1)) 
    
    proof
    
      let a,b be
    positive  
    Real such that 
    
      
    
    A1: a 
    <> b; 
    
      consider x,y be
    Real such that 
    
      
    
    A2: a 
    = ((a 
    / b) 
    to_power x) & b 
    = ((a 
    / b) 
    to_power y) by 
    A1,
    ATB;
    
      ((a
    / b) 
    to_power x) 
    = ((a 
    / b) 
    to_power (y 
    + (x 
    - y))) 
    
      .= (((a
    / b) 
    to_power y) 
    * ((a 
    / b) 
    to_power (x 
    - y))) by 
    POWER: 27;
    
      then (((a
    / b) 
    to_power y) 
    * (((a 
    / b) 
    to_power (x 
    - y)) 
    - 1)) 
    = (a 
    - b) by 
    A2;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMPLEX3:91
    
    for a,m,n be
    positive  
    Real holds ((a 
    to_power n) 
    + (a 
    to_power m)) 
    = ((a 
    to_power ( 
    min (n,m))) 
    * (1 
    + (a 
    to_power  
    |.(m
    - n).|))) 
    
    proof
    
      let a,m,n be
    positive  
    Real;
    
      per cases ;
    
        suppose
    
        
    
    B1: n 
    >= m; 
    
        then (n
    - m) 
    >= (m 
    - m) by 
    XREAL_1: 9;
    
        then
    
        reconsider k = (n
    - m) as non 
    negative  
    Real;
    
        (a
    to_power n) 
    = (a 
    to_power (m 
    + k)) 
    
        .= ((a
    to_power m) 
    * (a 
    to_power k)) by 
    POWER: 27;
    
        
    
        then ((a
    to_power n) 
    + (a 
    to_power m)) 
    = ((a 
    to_power m) 
    * (1 
    + (a 
    to_power  
    |.(
    - (m 
    - n)).|))) 
    
        .= ((a
    to_power m) 
    * (1 
    + (a 
    to_power  
    |.(m
    - n).|))) by 
    COMPLEX1: 52;
    
        hence thesis by
    B1,
    XXREAL_0:def 9;
    
      end;
    
        suppose
    
        
    
    B1: n 
    < m; 
    
        then (n
    - n) 
    < (m 
    - n) by 
    XREAL_1: 9;
    
        then
    
        reconsider k = (m
    - n) as 
    positive  
    Real;
    
        (a
    to_power m) 
    = (a 
    to_power (n 
    + k)) 
    
        .= ((a
    to_power n) 
    * (a 
    to_power k)) by 
    POWER: 27;
    
        then ((a
    to_power n) 
    + (a 
    to_power m)) 
    = ((a 
    to_power n) 
    * (1 
    + (a 
    to_power  
    |.(m
    - n).|))); 
    
        hence thesis by
    B1,
    XXREAL_0:def 9;
    
      end;
    
    end;
    
    theorem :: 
    
    COMPLEX3:92
    
    
    
    
    
    ABA: for a,b be non 
    weightless
    positive  
    Real holds ( 
    log (a,b)) 
    = (1 
    / ( 
    log (b,a))) 
    
    proof
    
      let a,b be non
    weightless
    positive  
    Real;
    
      
    
      
    
    A1: a 
    >  
    0 & b 
    >  
    0 & a 
    <> 1 & b 
    <> 1 by 
    TA1;
    
      (a
    to_power ( 
    log (a,b))) 
    = b & (b 
    to_power ( 
    log (b,a))) 
    = a; 
    
      then a
    = (a 
    to_power (( 
    log (a,b)) 
    * ( 
    log (b,a)))) by 
    POWER: 33;
    
      
    
      then ((
    log (a,b)) 
    * ( 
    log (b,a))) 
    = ( 
    log (a,a)) 
    
      .= 1 by
    A1,
    POWER: 52;
    
      hence thesis by
    XCMPLX_1: 73;
    
    end;
    
    registration
    
      let a be
    heavy
    positive  
    Real, b be 
    positive  
    Real;
    
      cluster ( 
    log (a,(a 
    + b))) -> 
    heavy;
    
      coherence
    
      proof
    
        
    
        
    
    A1: a 
    > 1 & (a 
    + b) 
    > (a 
    +  
    0 ) by 
    TA1,
    XREAL_1: 6;
    
        then (
    log (a,(a 
    + b))) 
    > ( 
    log (a,a)) by 
    POWER: 57;
    
        then (
    log (a,(a 
    + b))) 
    > 1 by 
    A1,
    POWER: 52;
    
        hence thesis by
    TA1;
    
      end;
    
      cluster ( 
    log ((a 
    + b),a)) -> 
    light;
    
      coherence
    
      proof
    
        (
    log ((a 
    + b),a)) 
    = (1 
    / ( 
    log (a,(a 
    + b)))) by 
    ABA;
    
        hence thesis;
    
      end;
    
    end
    
    theorem :: 
    
    COMPLEX3:93
    
    for a be
    positive non 
    weightless  
    Real, b be 
    positive  
    Real holds ( 
    log (a,b)) 
    =  
    0 iff b 
    = 1 
    
    proof
    
      let a be
    positive non 
    weightless  
    Real, b be 
    positive  
    Real;
    
      
    
      
    
    A1: 
    |.a.|
    <> 1 by 
    TA1;
    
      (
    log (a,b)) 
    =  
    0 implies b 
    = 1 
    
      proof
    
        (a
    to_power ( 
    log (a,b))) 
    = b; 
    
        hence thesis by
    POWER: 24;
    
      end;
    
      hence thesis by
    POWER: 51,
    A1;
    
    end;
    
    theorem :: 
    
    COMPLEX3:94
    
    
    
    
    
    AZ1: for a be non 
    weightless
    positive  
    Real, b be 
    positive  
    Real holds ( 
    log (a,b)) 
    = 1 iff a 
    = b 
    
    proof
    
      let a be non
    weightless
    positive  
    Real, b be 
    positive  
    Real;
    
      
    
      
    
    A1: a 
    <> 1 by 
    TA1;
    
      (
    log (a,b)) 
    = 1 implies a 
    = b 
    
      proof
    
        assume (
    log (a,b)) 
    = 1; 
    
        then b
    = (a 
    to_power 1); 
    
        hence thesis;
    
      end;
    
      hence thesis by
    A1,
    POWER: 52;
    
    end;
    
    theorem :: 
    
    COMPLEX3:95
    
    for a,b be
    positive  
    Real, n be non 
    zero  
    Real holds (a 
    to_power n) 
    = (b 
    to_power n) iff a 
    = b 
    
    proof
    
      let a,b be
    positive  
    Real, n be non 
    zero  
    Real;
    
      a
    <> b implies (a 
    to_power n) 
    <> (b 
    to_power n) 
    
      proof
    
        assume a
    <> b; 
    
        per cases by
    XXREAL_0: 1;
    
          suppose
    
          
    
    B1: a 
    > b; 
    
          per cases ;
    
            suppose n
    >  
    0 ; 
    
            hence thesis by
    B1,
    POWER: 37;
    
          end;
    
            suppose n
    <  
    0 ; 
    
            hence thesis by
    B1,
    POWER: 38;
    
          end;
    
        end;
    
          suppose
    
          
    
    B1: a 
    < b; 
    
          per cases ;
    
            suppose n
    >  
    0 ; 
    
            hence thesis by
    B1,
    POWER: 37;
    
          end;
    
            suppose n
    <  
    0 ; 
    
            hence thesis by
    B1,
    POWER: 38;
    
          end;
    
        end;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    COMPLEX3:96
    
    
    
    
    
    ABO: for a be non 
    weightless
    positive  
    Real, b be 
    positive  
    Real holds ( 
    log (a,b)) 
    = ( 
    - ( 
    log ((1 
    / a),b))) & ( 
    log ((1 
    / a),b)) 
    = ( 
    log (a,(1 
    / b))) & ( 
    log (a,b)) 
    = ( 
    - ( 
    log (a,(1 
    / b)))) & ( 
    log (a,b)) 
    = ( 
    log ((1 
    / a),(1 
    / b))) 
    
    proof
    
      let a be non
    weightless
    positive  
    Real, b be 
    positive  
    Real;
    
      
    
      
    
    A1: a 
    <> 1 by 
    TA1;
    
      reconsider x = (1
    / a) as 
    positive  
    Real;
    
      
    
      
    
    A3: (1 
    / a) 
    <> (1 
    / 1); 
    
      
    
      
    
    A5: (x 
    to_power ( 
    - 1)) 
    = (a 
    to_power ( 
    - ( 
    - 1))) by 
    POWER: 32;
    
      
    
      
    
    A6: ( 
    log (x,b)) 
    = (( 
    log (x,a)) 
    * ( 
    log (a,b))) by 
    A3,
    POWER: 56
    
      .= (((
    - 1) 
    * 1) 
    * ( 
    log (a,b))) by 
    A5;
    
      
    
      
    
    A7: ((1 
    / b) 
    to_power 1) 
    = (b 
    to_power ( 
    - 1)) by 
    POWER: 32;
    
      then
    
      
    
    A8: ( 
    log (a,(1 
    / b))) 
    = (( 
    - 1) 
    * ( 
    log (a,b))) by 
    A1,
    POWER: 55;
    
      (
    log (x,(1 
    / b))) 
    = (( 
    - 1) 
    * ( 
    log (x,b))) by 
    A3,
    A7,
    POWER: 55;
    
      hence thesis by
    A6,
    A8;
    
    end;
    
    theorem :: 
    
    COMPLEX3:97
    
    
    
    
    
    AG1: for a be 
    heavy
    positive  
    Real, b be 
    positive  
    Real holds a 
    > b iff ( 
    log (a,b)) 
    < 1 
    
    proof
    
      let a be
    heavy
    positive  
    Real, b be 
    positive  
    Real;
    
      
    
      
    
    A1: a 
    > 1 by 
    TA1;
    
      
    
      
    
    A2: ( 
    log (a,b)) 
    < 1 implies a 
    > b 
    
      proof
    
        assume (
    log (a,b)) 
    < 1; 
    
        then (a
    to_power ( 
    log (a,b))) 
    < (a 
    to_power 1) by 
    A1,
    POWER: 39;
    
        hence thesis;
    
      end;
    
      a
    > b implies ( 
    log (a,b)) 
    < 1 
    
      proof
    
        assume a
    > b; 
    
        then (a
    to_power 1) 
    > (a 
    to_power ( 
    log (a,b))); 
    
        then 1
    >= ( 
    log (a,b)) & 1 
    <> ( 
    log (a,b)) by 
    A1,
    POWER: 39;
    
        hence thesis by
    XXREAL_0: 1;
    
      end;
    
      hence thesis by
    A2;
    
    end;
    
    theorem :: 
    
    COMPLEX3:98
    
    
    
    
    
    AM1: for a be 
    light
    positive  
    Real, b be 
    positive  
    Real holds a 
    < b iff ( 
    log (a,b)) 
    < 1 
    
    proof
    
      let a be
    light
    positive  
    Real, b be 
    positive  
    Real;
    
      (1
    / a) 
    > (1 
    / b) iff ( 
    log ((1 
    / a),(1 
    / b))) 
    < 1 by 
    AG1;
    
      hence thesis by
    XREAL_1: 76,
    ABO,
    XREAL_1: 118;
    
    end;
    
    theorem :: 
    
    COMPLEX3:99
    
    
    
    
    
    AG2: for a be 
    heavy
    positive  
    Real, b be 
    positive  
    Real holds a 
    < b iff ( 
    log (a,b)) 
    > 1 
    
    proof
    
      let a be
    heavy
    positive  
    Real, b be 
    positive  
    Real;
    
      a
    <= b iff ( 
    log (a,b)) 
    >= 1 by 
    AG1;
    
      hence thesis by
    AZ1,
    XXREAL_0: 1;
    
    end;
    
    theorem :: 
    
    COMPLEX3:100
    
    
    
    
    
    AM2: for a be 
    light
    positive  
    Real, b be 
    positive  
    Real holds a 
    > b iff ( 
    log (a,b)) 
    > 1 
    
    proof
    
      let a be
    light
    positive  
    Real, b be 
    positive  
    Real;
    
      (1
    / a) 
    < (1 
    / b) iff ( 
    log ((1 
    / a),(1 
    / b))) 
    > 1 by 
    AG2;
    
      hence thesis by
    XREAL_1: 76,
    ABO,
    XREAL_1: 118;
    
    end;
    
    theorem :: 
    
    COMPLEX3:101
    
    for a,b be non
    weightless
    positive  
    Real st ( 
    log (a,b)) 
    >= 1 holds 
    0  
    < ( 
    log (b,a)) 
    <= 1 
    
    proof
    
      let a,b be non
    weightless
    positive  
    Real;
    
      assume
    
      
    
    A2: ( 
    log (a,b)) 
    >= 1; 
    
      ((
    log (a,b)) 
    / ( 
    log (a,b))) 
    >= (1 
    / ( 
    log (a,b))) by 
    A2,
    XREAL_1: 72;
    
      then 1
    >= (1 
    / ( 
    log (a,b))) by 
    A2,
    XCMPLX_1: 60;
    
      hence thesis by
    A2,
    ABA;
    
    end;
    
    theorem :: 
    
    COMPLEX3:102
    
    for a,b be non
    weightless
    positive  
    Real st ( 
    log (a,b)) 
    <= ( 
    - 1) holds 
    0  
    > ( 
    log (b,a)) 
    >= ( 
    - 1) 
    
    proof
    
      let a,b be non
    weightless
    positive  
    Real;
    
      assume
    
      
    
    A2: ( 
    log (a,b)) 
    <= ( 
    - 1); 
    
      
    
      
    
    A4: ( 
    log (b,a)) 
    = (1 
    / ( 
    log (a,b))) by 
    ABA;
    
      ((
    log (a,b)) 
    / ( 
    log (a,b))) 
    >= (( 
    - 1) 
    / ( 
    log (a,b))) by 
    A2,
    XREAL_1: 73;
    
      then 1
    >= ( 
    - (1 
    / ( 
    log (a,b)))) by 
    A2,
    XCMPLX_1: 60;
    
      hence thesis by
    A4,
    A2,
    XREAL_1: 26;
    
    end;
    
    theorem :: 
    
    COMPLEX3:103
    
    for a,b be
    heavy
    positive  
    Real holds ( 
    log (a,b)) 
    > ( 
    log (b,a)) 
    >= 1 implies a 
    > b 
    
    proof
    
      let a,b be
    heavy
    positive  
    Real;
    
      
    
      
    
    A1: a 
    > 1 & b 
    > 1 by 
    TA1;
    
      assume
    
      
    
    A2: ( 
    log (a,b)) 
    > ( 
    log (b,a)); 
    
      assume (
    log (b,a)) 
    >= 1; 
    
      then
    
      
    
    B2: ( 
    log (b,a)) 
    >= ( 
    log (b,b)) by 
    A1,
    POWER: 52;
    
      
    
      
    
    B4: a 
    <> b by 
    A2;
    
      a
    >= b by 
    A1,
    B2,
    POWER: 57;
    
      hence thesis by
    B4,
    XXREAL_0: 1;
    
    end;
    
    theorem :: 
    
    COMPLEX3:104
    
    for a,b be
    heavy
    positive  
    Real holds ( 
    log (b,a)) 
    < 1 implies a 
    < b 
    
    proof
    
      let a,b be
    heavy
    positive  
    Real;
    
      
    
      
    
    A1: a 
    > 1 & b 
    > 1 by 
    TA1;
    
      assume
    
      
    
    B1: ( 
    log (b,a)) 
    < 1; 
    
      then
    
      
    
    B2: ( 
    log (b,a)) 
    < ( 
    log (b,b)) by 
    A1,
    POWER: 52;
    
      a
    <= b by 
    A1,
    B2,
    POWER: 57;
    
      hence thesis by
    B1,
    AZ1,
    XXREAL_0: 1;
    
    end;
    
    theorem :: 
    
    COMPLEX3:105
    
    
    
    
    
    ACG: for a,c be 
    heavy
    positive  
    Real, b,d be 
    positive  
    Real st ( 
    log (a,b)) 
    <= ( 
    log (c,d)) & a 
    < b holds c 
    < d 
    
    proof
    
      let a,c be
    heavy
    positive  
    Real, b,d be 
    positive  
    Real;
    
      assume
    
      
    
    A2: ( 
    log (a,b)) 
    <= ( 
    log (c,d)) & a 
    < b; 
    
      then (
    log (a,b)) 
    > 1 by 
    AG2;
    
      then (
    log (c,d)) 
    > 1 by 
    A2,
    XXREAL_0: 2;
    
      hence thesis by
    AG2;
    
    end;
    
    theorem :: 
    
    COMPLEX3:106
    
    
    
    
    
    ACL: for a,c be 
    heavy
    positive  
    Real, b,d be 
    positive  
    Real st ( 
    log (a,b)) 
    >= ( 
    log (c,d)) & a 
    > b holds c 
    > d 
    
    proof
    
      let a,c be
    heavy
    positive  
    Real, b,d be 
    positive  
    Real;
    
      assume
    
      
    
    A2: ( 
    log (a,b)) 
    >= ( 
    log (c,d)) & a 
    > b; 
    
      then (
    log (a,b)) 
    < 1 by 
    AG1;
    
      then (
    log (c,d)) 
    < 1 by 
    A2,
    XXREAL_0: 2;
    
      hence thesis by
    AG1;
    
    end;
    
    theorem :: 
    
    COMPLEX3:107
    
    for a be
    heavy
    positive  
    Real, c be 
    light
    positive  
    Real, b,d be 
    positive  
    Real holds ( 
    log (a,b)) 
    <= ( 
    log (c,d)) & a 
    < b implies c 
    > d 
    
    proof
    
      let a be
    heavy
    positive  
    Real, c be 
    light
    positive  
    Real, b,d be 
    positive  
    Real;
    
      assume
    
      
    
    A2: ( 
    log (a,b)) 
    <= ( 
    log (c,d)) & a 
    < b; 
    
      then (
    log (a,b)) 
    > 1 by 
    AG2;
    
      then (
    log (c,d)) 
    > 1 by 
    A2,
    XXREAL_0: 2;
    
      hence thesis by
    AM2;
    
    end;
    
    theorem :: 
    
    COMPLEX3:108
    
    for a be
    heavy
    positive  
    Real, c be 
    light
    positive  
    Real, b,d be 
    positive  
    Real st ( 
    log (a,b)) 
    >= ( 
    log (c,d)) & a 
    > b holds c 
    < d 
    
    proof
    
      let a be
    heavy
    positive  
    Real, c be 
    light
    positive  
    Real, b,d be 
    positive  
    Real;
    
      assume
    
      
    
    A2: ( 
    log (a,b)) 
    >= ( 
    log (c,d)) & a 
    > b; 
    
      then (
    log (a,b)) 
    < 1 by 
    AG1;
    
      then (
    log (c,d)) 
    < 1 by 
    A2,
    XXREAL_0: 2;
    
      hence thesis by
    AM1;
    
    end;
    
    theorem :: 
    
    COMPLEX3:109
    
    for a,c be
    light
    positive  
    Real, b,d be 
    positive  
    Real st ( 
    log (a,b)) 
    <= ( 
    log (c,d)) & a 
    > b holds c 
    > d 
    
    proof
    
      let a,c be
    light
    positive  
    Real, b,d be 
    positive  
    Real;
    
      assume
    
      
    
    A3: ( 
    log (a,b)) 
    <= ( 
    log (c,d)) & a 
    > b; 
    
      
    
      
    
    A4: ( 
    log (a,b)) 
    = ( 
    log ((1 
    / a),(1 
    / b))) & ( 
    log (c,d)) 
    = ( 
    log ((1 
    / c),(1 
    / d))) by 
    ABO;
    
      (1
    / a) 
    < (1 
    / b) by 
    A3,
    XREAL_1: 76;
    
      then (1
    / c) 
    < (1 
    / d) by 
    A3,
    A4,
    ACG;
    
      hence thesis by
    XREAL_1: 118;
    
    end;
    
    theorem :: 
    
    COMPLEX3:110
    
    for a,c be
    light
    positive  
    Real, b,d be 
    positive  
    Real holds ( 
    log (a,b)) 
    >= ( 
    log (c,d)) & a 
    < b implies c 
    < d 
    
    proof
    
      let a,c be
    light
    positive  
    Real, b,d be 
    positive  
    Real;
    
      assume
    
      
    
    A3: ( 
    log (a,b)) 
    >= ( 
    log (c,d)) & a 
    < b; 
    
      
    
      
    
    A4: ( 
    log (a,b)) 
    = ( 
    log ((1 
    / a),(1 
    / b))) & ( 
    log (c,d)) 
    = ( 
    log ((1 
    / c),(1 
    / d))) by 
    ABO;
    
      (1
    / a) 
    > (1 
    / b) by 
    A3,
    XREAL_1: 76;
    
      then (1
    / c) 
    > (1 
    / d) by 
    A3,
    A4,
    ACL;
    
      hence thesis by
    XREAL_1: 118;
    
    end;
    
    theorem :: 
    
    COMPLEX3:111
    
    for a be
    light
    positive  
    Real, c be 
    heavy
    positive  
    Real, b,d be 
    positive  
    Real st ( 
    log (a,b)) 
    <= ( 
    log (c,d)) & a 
    > b holds c 
    < d 
    
    proof
    
      let a be
    light
    positive  
    Real, c be 
    heavy
    positive  
    Real, b,d be 
    positive  
    Real;
    
      assume
    
      
    
    A2: ( 
    log (a,b)) 
    <= ( 
    log (c,d)) & a 
    > b; 
    
      then (
    log (a,b)) 
    > 1 by 
    AM2;
    
      then (
    log (c,d)) 
    > 1 by 
    A2,
    XXREAL_0: 2;
    
      hence thesis by
    AG2;
    
    end;
    
    theorem :: 
    
    COMPLEX3:112
    
    for a be
    light
    positive  
    Real, c be 
    heavy
    positive  
    Real, b,d be 
    positive  
    Real st ( 
    log (a,b)) 
    >= ( 
    log (c,d)) & a 
    < b holds c 
    > d 
    
    proof
    
      let a be
    light
    positive  
    Real, c be 
    heavy
    positive  
    Real, b,d be 
    positive  
    Real;
    
      assume
    
      
    
    A2: ( 
    log (a,b)) 
    >= ( 
    log (c,d)) & a 
    < b; 
    
      then (
    log (a,b)) 
    < 1 by 
    AM1;
    
      then (
    log (c,d)) 
    < 1 by 
    A2,
    XXREAL_0: 2;
    
      hence thesis by
    AG1;
    
    end;
    
    theorem :: 
    
    COMPLEX3:113
    
    for a,c be
    heavy
    positive  
    Real, b,d be 
    positive  
    Real st ( 
    log (a,b)) 
    < ( 
    log (c,d)) & a 
    <= b holds c 
    < d 
    
    proof
    
      let a,c be
    heavy
    positive  
    Real, b,d be 
    positive  
    Real;
    
      assume
    
      
    
    A2: ( 
    log (a,b)) 
    < ( 
    log (c,d)) & a 
    <= b; 
    
      then (
    log (a,b)) 
    >= 1 by 
    AG1;
    
      then (
    log (c,d)) 
    > 1 by 
    A2,
    XXREAL_0: 2;
    
      hence thesis by
    AG2;
    
    end;
    
    theorem :: 
    
    COMPLEX3:114
    
    for a,c be
    heavy
    positive  
    Real, b,d be 
    positive  
    Real st ( 
    log (a,b)) 
    <= ( 
    log (c,d)) & a 
    <= b holds c 
    <= d 
    
    proof
    
      let a,c be
    heavy
    positive  
    Real, b,d be 
    positive  
    Real;
    
      assume
    
      
    
    A2: ( 
    log (a,b)) 
    <= ( 
    log (c,d)) & a 
    <= b; 
    
      then (
    log (a,b)) 
    >= 1 by 
    AG1;
    
      then (
    log (c,d)) 
    >= 1 by 
    A2,
    XXREAL_0: 2;
    
      hence thesis by
    AG1;
    
    end;
    
    theorem :: 
    
    COMPLEX3:115
    
    for a,b be
    positive  
    Real st a 
    > b holds ( 
    log ((a 
    / b),a)) 
    > ( 
    log ((a 
    / b),b)) 
    
    proof
    
      let a,b be
    positive  
    Real;
    
      assume
    
      
    
    A1: a 
    > b; 
    
      then (a
    / b) 
    > (b 
    / b) by 
    XREAL_1: 68;
    
      then (a
    / b) 
    > 1 by 
    XCMPLX_1: 60;
    
      hence thesis by
    A1,
    POWER: 57;
    
    end;