newton04.miz
begin
reserve a,b,i,j,k,l,m,n for
Nat;
registration
let a be
positive
Real, n be
Nat;
cluster (a
|^ n) ->
positive;
coherence by
PREPOWER: 6;
end
registration
let a be non
negative
Real, n be
Nat;
cluster (a
|^ n) -> non
negative;
coherence
proof
a
=
0 or a
>
0 ;
hence thesis;
end;
end
registration
let a be non
negative
Real;
reduce (
sqrt (a
|^ 2)) to a;
reducibility
proof
(a
|^ 2)
= (a
^2 ) by
NEWTON: 81;
hence thesis by
SQUARE_1: 22;
end;
end
registration
cluster
real for
Complex;
correctness by
COMPLEX1:def 1;
cluster non
real for
Complex;
correctness
proof
not
<i> is
real by
COMPLEX1: 18;
hence thesis;
end;
end
registration
let a be non
real
Complex;
cluster (
Im a) -> non
zero;
coherence
proof
a
<> ((
Re a)
+ (
0
*
<i> ));
hence thesis by
COMPLEX1: 13;
end;
end
registration
let a be
Real;
reduce (
Re a) to a;
reducibility by
COMPLEX1:def 1;
end
theorem ::
NEWTON04:1
for a be non
zero
Real, a1 be
Complex st (a
* a1) is
Real holds a1 is
Real
proof
let a be non
zero
Real, a1 be
Complex;
(
Im (a1
* a))
= (((
Re a1)
* (
Im a))
+ ((
Re a)
* (
Im a1))) by
COMPLEX1: 9
.= (((
Re a1)
*
0 )
+ (a
* (
Im a1)));
hence thesis;
end;
registration
cluster
REAL
-valued ->
COMPLEX
-valued for
Relation;
coherence by
NUMBERS: 11;
cluster
RAT
-valued ->
REAL
-valued for
Relation;
coherence by
NUMBERS: 12;
cluster
RAT
-valued ->
COMPLEX
-valued for
Relation;
coherence by
NUMBERS: 13;
cluster
INT
-valued ->
RAT
-valued for
Relation;
coherence ;
cluster
INT
-valued ->
REAL
-valued for
Relation;
coherence by
NUMBERS: 15;
cluster
INT
-valued ->
COMPLEX
-valued for
Relation;
coherence by
NUMBERS: 16;
cluster
NAT
-valued ->
INT
-valued for
Relation;
coherence ;
cluster
NAT
-valued ->
RAT
-valued for
Relation;
coherence ;
cluster
NAT
-valued ->
REAL
-valued for
Relation;
coherence by
NUMBERS: 19;
cluster
NAT
-valued ->
COMPLEX
-valued for
Relation;
coherence by
NUMBERS: 20;
cluster
real-valued ->
REAL
-valued for
Relation;
coherence
proof
let f be
Relation;
assume f is
real-valued;
hence (
rng f)
c=
REAL by
VALUED_0:def 3;
end;
cluster
complex-valued ->
COMPLEX
-valued for
Relation;
coherence
proof
let f be
Relation;
assume f is
complex-valued;
hence (
rng f)
c=
COMPLEX by
VALUED_0:def 1;
end;
end
registration
let a be
object;
reduce (1
* (
len
<*a*>)) to 1;
reducibility by
FINSEQ_1: 40;
end
registration
let a be
object, f be
FinSequence;
reduce ((
<*a*>
^ f)
. 1) to a;
reducibility by
FINSEQ_1: 41;
reduce ((f
^
<*a*>)
. (1
+ (
len f))) to a;
reducibility by
FINSEQ_1: 42;
end
registration
let x be
Complex;
reduce (
Sum
<*x*>) to x;
reducibility by
RVSUM_2: 30;
end
registration
let f,g be
FinSequence;
reduce ((f
^ g)
| (
dom f)) to f;
reducibility by
FINSEQ_1: 21;
reduce ((f
^ g)
| (
len f)) to f;
reducibility
proof
((f
^ g)
| (
dom f))
= ((f
^ g)
| (
Seg (
len f))) by
FINSEQ_1:def 3;
hence thesis;
end;
end
theorem ::
NEWTON04:2
Th0: for f be
FinSequence holds ex D be non
empty
set st f is
FinSequence of D
proof
let f be
FinSequence;
f is
FinSequence of ((
rng f)
\/
{1}) by
XBOOLE_1: 7,
FINSEQ_1:def 4;
hence thesis;
end;
registration
let f be
FinSequence;
reduce (f
.
0 ) to
0 ;
reducibility
proof
not
0
in (
dom f) by
FINSEQ_3: 24;
hence thesis by
FUNCT_1:def 2;
end;
reduce (f
| (
len f)) to f;
reducibility
proof
f
= (f
^
{} );
hence thesis;
end;
cluster (f
/^ (
len f)) ->
empty;
coherence by
RFINSEQ: 27;
end
registration
let n be
Nat;
reduce (
card (
Seg n)) to n;
reducibility by
FINSEQ_1: 57;
reduce (
card (
Segm n)) to n;
reducibility by
ORDINAL1:def 17;
end
registration
let n be
Nat;
reduce (
len (
id (
Seg n))) to n;
reducibility
proof
n
in
NAT & (
dom (
id (
Seg n)))
= (
Seg n) by
ORDINAL1:def 12;
hence (
len (
id (
Seg n)))
= n by
FINSEQ_1:def 3;
end;
reduce (
len (
idseq n)) to n;
reducibility
proof
(
len (
idseq n))
= (
len (
id (
Seg n))) by
FINSEQ_2:def 1;
hence thesis;
end;
end
registration
let m,n be
Nat;
reduce ((
idseq (m
+ n))
. m) to m;
reducibility
proof
per cases ;
suppose m
=
0 ;
hence thesis;
end;
suppose m
>
0 ;
then (m
+ n)
>= (m
+
0 ) & m
>= 1 by
NAT_1: 14,
XREAL_1: 6;
then m
in (
Seg (m
+ n));
hence thesis by
FINSEQ_2: 49;
end;
end;
reduce ((
Rev (
idseq (m
+ (n
+ 1))))
. (m
+ 1)) to (n
+ 1);
reducibility
proof
set l = (m
+ 1), k = ((m
+ n)
+ 1);
A0: ((m
+ n)
+ 1)
= (
len (
idseq ((m
+ n)
+ 1))) & (
len (
idseq ((m
+ n)
+ 1)))
= (
len (
Rev (
idseq ((m
+ n)
+ 1)))) by
FINSEQ_5:def 3;
1
<= (m
+ 1) & (m
+ 1)
<= ((m
+ 1)
+ n) by
NAT_1: 11;
then l
in (
dom (
Rev (
idseq k))) by
A0,
FINSEQ_3: 25;
then ((
Rev (
idseq k))
. l)
= ((
idseq k)
. ((k
- l)
+ 1)) by
A0,
FINSEQ_5:def 3
.= ((
idseq (m
+ (n
+ 1)))
. (n
+ 1));
hence thesis;
end;
end
definition
let a,b be
Nat;
:: original:
min
redefine
func
min (a,b) ->
Nat ;
coherence by
XXREAL_0:def 9;
:: original:
max
redefine
func
max (a,b) ->
Nat ;
coherence by
XXREAL_0:def 10;
end
registration
let f be
FinSequence, n be
Nat;
reduce (f
| ((
len f)
+ n)) to f;
reducibility by
FINSEQ_1: 58,
NAT_1: 12;
reduce (f
| (
Seg (
max ((
len f),n)))) to f;
reducibility
proof
set l = ((
max ((
len f),n))
- (
len f));
(f
| (
Seg ((
len f)
+ l)))
= (f
| ((
len f)
+ l));
hence thesis;
end;
cluster (f
/^ ((
len f)
+ n)) ->
empty;
coherence
proof
(
0
+ (
len f))
<= (n
+ (
len f)) by
XREAL_1: 6;
hence thesis by
FINSEQ_5: 32;
end;
cluster ((f
/^ (
len f))
. n) ->
zero;
coherence ;
end
theorem ::
NEWTON04:3
for n be
Element of
NAT , D be
set, f be
FinSequence of D st n
in (
dom f) holds (
len (f
| n))
= n
proof
let n be
Element of
NAT , D be
set, f be
FinSequence of D;
assume n
in (
dom f);
then n
<= (
len f) by
FINSEQ_3: 25;
hence thesis by
FINSEQ_1: 59;
end;
theorem ::
NEWTON04:4
for n be
Element of
NAT , D be
set, f be
FinSequence of D st n
>= (
len f) holds (
len (f
| n))
= (
len f)
proof
let n be
Element of
NAT , D be
set, f be
FinSequence of D;
assume n
>= (
len f);
then
reconsider k = (n
- (
len f)) as
Element of
NAT by
NAT_1: 21;
(
len (f
| n))
= (
len (f
| ((
len f)
+ k)));
hence thesis;
end;
registration
let f be
FinSequence, n be non
zero
Nat;
cluster (f
. ((
len f)
+ n)) ->
zero;
coherence
proof
((
len f)
+ n)
> ((
len f)
+
0 ) by
XREAL_1: 6;
then not ((
len f)
+ n)
in (
dom f) by
FINSEQ_3: 25;
hence thesis by
FUNCT_1:def 2;
end;
end
registration
let f be
FinSequence of
REAL , i,j be
Nat;
reduce ((f
| i)
| (i
+ j)) to (f
| i);
reducibility
proof
(
len (f
| i))
= (
min ((
len f),i)) by
FINSEQ_2: 21;
then (i
+ j)
>= (
len (f
| i)) by
XXREAL_0: 17,
NAT_1: 12;
then
reconsider k = ((i
+ j)
- (
len (f
| i))) as
Element of
NAT by
NAT_1: 21;
((f
| i)
| (i
+ j))
= ((f
| i)
| ((
len (f
| i))
+ k));
hence thesis;
end;
end
registration
let a be
Nat;
reduce (
Sum (a
|->
0 )) to
0 ;
reducibility by
RVSUM_1: 81;
cluster (
Sum (a
|->
0 )) ->
zero;
coherence ;
end
registration
let a be
Nat, b be
object;
reduce (
len (a
|-> b)) to a;
reducibility by
CARD_1:def 7;
end
registration
let a be non
zero
Nat, b be
object;
cluster (a
|-> b) -> non
empty;
coherence ;
cluster (a
|-> b) ->
constant;
coherence
proof
((
Seg a)
--> b) is
constant;
hence thesis by
FINSEQ_2:def 2;
end;
reduce (
the_value_of (a
|-> b)) to b;
reducibility
proof
reconsider b as
set by
TARSKI: 1;
(
the_value_of ((
Seg a)
--> b))
= b by
FUNCOP_1: 79;
hence thesis by
FINSEQ_2:def 2;
end;
end
registration
let f be
constant
FinSequence;
reduce (
Rev f) to f;
reducibility
proof
A1: (
dom (
Rev f))
= (
dom f) by
FINSEQ_5: 57;
for i be
object st i
in (
dom f) holds ((
Rev f)
. i)
= (f
. i)
proof
let i be
object such that
B1: i
in (
dom f);
B2: i
in (
dom (
Rev f)) by
B1,
FINSEQ_5: 57;
reconsider i as
Nat by
B1;
set n = (
len f);
B3: n
>= i
>= 1 by
B1,
FINSEQ_3: 25;
then
reconsider k = (n
- i) as
Element of
NAT by
NAT_1: 21;
(k
+ i)
>= (k
+ 1) & (1
+ k)
>= (1
+
0 ) by
B3,
XREAL_1: 6;
then (k
+ 1)
in (
dom f) by
FINSEQ_3: 25;
then (f
. (k
+ 1))
= (f
. i) by
B1,
FUNCT_1:def 10;
hence thesis by
B2,
FINSEQ_5:def 3;
end;
hence thesis by
A1,
FUNCT_1: 2;
end;
end
registration
let a be
Nat, b be non
zero
Nat, x be
object;
reduce (((a
+ b)
|-> x)
. b) to x;
reducibility
proof
(a
+ b)
>= (
0
+ b) by
XREAL_1: 6;
then b
>= 1 & b
<= (a
+ b) by
NAT_1: 14;
then b
in (
Seg (a
+ b));
hence thesis by
FINSEQ_2: 57;
end;
cluster ((a
|-> x)
. (a
+ b)) ->
zero;
coherence
proof
(a
+ b)
> (a
+
0 ) by
XREAL_1: 6;
then (a
+ b)
> (
len (a
|-> x));
hence thesis;
end;
end
registration
let a be
object, n be
Nat;
reduce (
Rev (n
|-> a)) to (n
|-> a);
reducibility
proof
n
=
0 or n
>
0 ;
then (n
|-> a) is
empty or (n
|-> a) is
constant;
hence thesis;
end;
end
registration
let n be
Nat;
reduce (n
choose (
0
* 1)) to 1;
reducibility by
NEWTON: 19;
reduce (n
choose (n
* 1)) to 1;
reducibility by
NEWTON: 21;
end
registration
let f be
nonnegative-yielding
FinSequence of
REAL , i be
Nat;
cluster (f
. i) -> non
negative;
coherence
proof
per cases ;
suppose i
in (
dom f);
then (f
. i)
in (
rng f) by
FUNCT_1:def 3;
hence thesis by
PARTFUN3:def 4;
end;
suppose not i
in (
dom f);
hence thesis by
FUNCT_1:def 2;
end;
end;
end
registration
cluster
empty ->
nonpositive-yielding for
FinSequence;
coherence
proof
let f be
FinSequence;
assume f is
empty;
then for r be
Real st r
in (
rng f) holds r
<=
0 ;
hence thesis by
PARTFUN3:def 3;
end;
end
registration
let f be
nonpositive-yielding
FinSequence of
REAL , i be
Nat;
cluster (f
. i) -> non
positive;
coherence
proof
per cases ;
suppose i
in (
dom f);
then (f
. i)
in (
rng f) by
FUNCT_1: 3;
hence thesis by
PARTFUN3:def 3;
end;
suppose not i
in (
dom f);
hence thesis by
FUNCT_1:def 2;
end;
end;
end
registration
let f be
nonnegative-yielding
FinSequence of
REAL , i,j be
Nat;
cluster ((f
| j)
. i) -> non
negative;
coherence
proof
(
len (f
| j))
= (
min (j,(
len f))) by
FINSEQ_2: 21;
then
A0: j
>= (
len (f
| j)) by
XXREAL_0: 17;
per cases ;
suppose
Q0: j
in (
dom f);
per cases ;
suppose i
in (
dom (f
| j));
then (
len (f
| j))
>= i
>= 1 by
FINSEQ_3: 25;
then
A2: 1
<= i & i
<= j by
A0,
XXREAL_0: 2;
reconsider f as
FinSequence of
COMPLEX by
RVSUM_1: 146;
((f
| j)
. i)
= (f
. i) by
Q0,
A2,
NEWTON02: 107;
hence thesis;
end;
suppose not i
in (
dom (f
| j));
hence thesis by
FUNCT_1:def 2;
end;
end;
suppose not j
in (
dom f);
then j
> (
len f) or j
< 1 by
FINSEQ_3: 25;
then (f
| j)
= f or j
=
0 by
FINSEQ_1: 58,
NAT_1: 14;
hence thesis;
end;
end;
cluster ((f
/^ j)
. i) -> non
negative;
coherence
proof
(
rng (f
/^ j))
c= (
rng f) by
FINSEQ_5: 33;
then for x be
Real holds x
in (
rng (f
/^ j)) implies x
>=
0 by
PARTFUN3:def 4;
then (f
/^ j) is
nonnegative-yielding by
PARTFUN3:def 4;
hence thesis;
end;
end
registration
let f be
empty
real-valued
FinSequence;
cluster (
Product f) -> non
negative;
coherence by
RVSUM_1: 94;
end
registration
let f be
nonnegative-yielding
FinSequence of
REAL ;
cluster (
Sum f) -> non
negative;
coherence
proof
for i be
Nat st i
in (
dom f) holds (f
. i)
>=
0 ;
hence thesis by
RVSUM_1: 84;
end;
cluster (
Product f) -> non
negative;
coherence
proof
reconsider g = f as
real-valued
FinSequence;
per cases ;
suppose g is
positive-yielding;
then for x be
Real st x
in (
rng g) holds x
>
0 by
PARTFUN3:def 1;
then for k be
Element of
NAT st k
in (
dom g) holds (g
. k)
>
0 by
FUNCT_1: 3;
hence thesis by
NAT_4: 42;
end;
suppose
B1: not g is
positive-yielding;
ex i be
object st i
in (
dom g) & (g
. i)
=
0
proof
consider r be
Real such that
C1: r
in (
rng g) & r
<=
0 by
B1,
PARTFUN3:def 1;
r
=
0 by
PARTFUN3:def 4,
C1;
hence thesis by
C1,
FUNCT_1:def 3;
end;
hence thesis by
RVSUM_1: 103;
end;
end;
end
registration
let f be
nonpositive-yielding
FinSequence of
REAL ;
cluster (
Sum f) -> non
positive;
coherence
proof
for i be
Nat st i
in (
dom (
- f)) holds ((
- f)
. i)
>=
0
proof
let i be
Nat such that
A1: i
in (
dom (
- f));
i
in (
dom f) & ((
- f)
. i)
= (
- (f
. i)) by
A1,
VALUED_1: 8;
hence thesis;
end;
then (
Sum (
- f))
>= (
Sum ((
len f)
|->
0 )) by
RVSUM_1: 84;
then ((
- (
Sum f))
+ (
Sum f))
>= (
0
+ (
Sum f)) by
RVSUM_1: 88;
hence thesis;
end;
end
registration
let a be
object, f be
nonnegative-yielding
FinSequence of
REAL ;
cluster (f
. a) -> non
negative;
coherence
proof
a
in (
dom f) or not a
in (
dom f);
hence thesis by
FUNCT_1:def 2;
end;
end
registration
let a be
object, f be
nonpositive-yielding
FinSequence of
REAL ;
cluster (f
. a) -> non
positive;
coherence
proof
a
in (
dom f) or not a
in (
dom f);
hence thesis by
FUNCT_1:def 2;
end;
end
registration
let D be
set;
let f,g be D
-valued
FinSequence;
cluster (f
^ g) -> D
-valued;
correctness
proof
reconsider f, g as
FinSequence of D by
NEWTON02: 103;
(f
^ g) is D
-valued
FinSequence;
hence thesis;
end;
end
registration
let f be
FinSequence of
REAL , n be
Nat;
cluster ((f
| n)
/^ n) ->
empty;
coherence ;
cluster (f
/^ (
max ((
len f),n))) ->
empty;
coherence
proof
((f
| (
max ((
len f),n)))
/^ (
max ((
len f),n))) is
empty;
hence thesis;
end;
end
registration
let D be
set;
cluster
empty for
FinSequence of D;
existence
proof
(
<*> D)
=
{} ;
hence thesis;
end;
cluster
empty ->
nonnegative-yielding for
FinSequence of D;
coherence ;
end
registration
cluster
nonnegative-yielding
INT
-valued ->
NAT
-valued for
FinSequence;
coherence
proof
let f be
FinSequence;
assume
A1: f is
nonnegative-yielding
INT
-valued;
then
reconsider f as
FinSequence of
INT by
NEWTON02: 103;
reconsider f as
FinSequence of
REAL by
FINSEQ_2: 24,
NUMBERS: 15;
for i be
Nat st i
in (
dom f) holds (f
. i)
in
NAT by
A1,
INT_1: 3;
hence thesis by
FINSEQ_2: 12;
end;
cluster
nonnegative-yielding ->
NAT
-valued for
FinSequence of
INT ;
coherence ;
end
registration
let f be
COMPLEX
-valued
FinSequence;
reduce (f
+
0 ) to f;
reducibility
proof
A1: (
dom (f
+
0 ))
= (
dom f) & for c be
object st c
in (
dom (f
+
0 )) holds ((f
+
0 )
. c)
= ((f
. c)
+
0 ) by
VALUED_1:def 2;
for c be
object st c
in (
dom (f
+
0 )) holds ((f
+
0 )
. c)
= (f
. c)
proof
let c be
object such that
B1: c
in (
dom (f
+
0 ));
((f
+
0 )
. c)
= ((f
. c)
+
0 ) by
VALUED_1:def 2,
B1
.= (f
. c);
hence thesis;
end;
hence thesis by
A1,
FUNCT_1: 2;
end;
reduce (f
-
0 ) to f;
reducibility
proof
(f
-
0 )
= ((
-
0 )
+ f) by
VALUED_1:def 3;
hence thesis;
end;
end
registration
let x be
object;
reduce (
<*x*>
. 1) to x;
reducibility by
FINSEQ_1:def 8;
end
theorem ::
NEWTON04:5
for f be
FinSequence, P be
Permutation of (
dom f) holds P is
Permutation of (
dom (
Rev f))
proof
let f be
FinSequence, P be
Permutation of (
dom f);
(
len f)
= (
len (
Rev f)) by
FINSEQ_5:def 3;
then (
dom f)
= (
dom (
Rev f)) by
FINSEQ_3: 29;
hence thesis;
end;
theorem ::
NEWTON04:6
MATRIX94: (
Rev (
idseq n)) is
Permutation of (
Seg n)
proof
reconsider f = (
idseq n) as
one-to-one
FinSequence-like
Function of (
Seg n), (
Seg n) by
FINSEQ_2: 55;
A1: (
dom (
Rev (
idseq n)))
= (
dom (
idseq n)) by
FINSEQ_5: 57
.= (
dom (
id (
Seg n))) by
FINSEQ_2:def 1
.= (
Seg n);
A2: (
rng (
idseq n))
= (
rng (
id (
Seg n))) by
FINSEQ_2:def 1
.= (
Seg n);
then (
rng (
Rev f))
c= (
Seg n) by
FINSEQ_5: 57;
then
reconsider g = (
Rev f) as
FinSequence-like
Function of (
Seg n), (
Seg n) by
A1,
FUNCT_2: 2;
(
rng f)
= (
rng (
Rev f)) by
FINSEQ_5: 57;
then g is
onto by
A2,
FUNCT_2:def 3;
hence thesis;
end;
theorem ::
NEWTON04:7
for f be
FinSequence holds (
idseq (
len f)) is
Permutation of (
dom f)
proof
let f be
FinSequence;
(
Seg (
len f))
= (
dom f) by
FINSEQ_1:def 3;
hence thesis by
FINSEQ_2: 55;
end;
theorem ::
NEWTON04:8
RFP: for f be
FinSequence holds (
Rev (
idseq (
len f))) is
Permutation of (
dom (
Rev f))
proof
let f be
FinSequence;
(
dom (
Rev f))
= (
dom f) by
FINSEQ_5: 57
.= (
Seg (
len f)) by
FINSEQ_1:def 3;
hence thesis by
MATRIX94;
end;
theorem ::
NEWTON04:9
DR: for f be
Function, h be
Permutation of (
dom f) holds (
dom (f
* h))
= (
dom f)
proof
let f be
Function, h be
Permutation of (
dom f);
(
dom (f
* h))
= (h
" (
dom f)) by
RELAT_1: 147
.= (h
" (
rng h)) by
FUNCT_2:def 3
.= (
dom h) by
RELAT_1: 134
.= (
dom f) by
FUNCT_2: 52;
hence thesis;
end;
registration
let f be
FinSequence, h be
Permutation of (
dom f);
cluster (f
* h) ->
FinSequence-like;
coherence
proof
(
dom (f
* h))
= (
dom f) by
DR
.= (
Seg (
len f)) by
FINSEQ_1:def 3;
hence thesis;
end;
cluster (f
* h) -> (
dom f)
-defined;
coherence ;
end
theorem ::
NEWTON04:10
REV: for f be
FinSequence holds f
= ((
Rev f)
* (
Rev (
idseq (
len f))))
proof
let f be
FinSequence;
reconsider P = (
Rev (
idseq (
len f))) as
Permutation of (
dom (
Rev f)) by
RFP;
reconsider g = ((
Rev f)
* P) as
FinSequence;
A1: (
dom f)
= (
dom (
Rev f)) by
FINSEQ_5: 57
.= (
dom ((
Rev f)
* P)) by
DR;
for x be
object st x
in (
dom f) holds (f
. x)
= (g
. x)
proof
set n = (
len f);
let x be
object such that
B1: x
in (
dom f);
reconsider x as
Nat by
B1;
B2: 1
<= x
<= n by
B1,
FINSEQ_3: 25;
then
reconsider m = (x
- 1) as
Nat;
reconsider k = (n
- x) as
Element of
NAT by
B2,
NAT_1: 21;
set l = (k
+ 1);
(1
+
0 )
<= l
<= (k
+ x) by
B2,
XREAL_1: 6;
then l
in (
dom f) by
FINSEQ_3: 25;
then
B3: l
in (
dom (
Rev f)) by
FINSEQ_5: 57;
(g
. x)
= ((
Rev f)
. ((
Rev (
idseq (m
+ l)))
. (m
+ 1))) by
A1,
B1,
FUNCT_1: 12
.= (f
. ((n
- l)
+ 1)) by
B3,
FINSEQ_5:def 3
.= (f
. x);
hence thesis;
end;
hence thesis by
A1,
FUNCT_1: 2;
end;
theorem ::
NEWTON04:11
FFE: for f be
FinSequence holds (f,(
Rev f))
are_fiberwise_equipotent
proof
let f be
FinSequence;
A1: f
= ((
Rev f)
* (
Rev (
idseq (
len f)))) by
REV;
(
Rev (
idseq (
len f))) is
Permutation of (
dom (
Rev f)) by
RFP;
hence thesis by
A1,
RFINSEQ: 4;
end;
theorem ::
NEWTON04:12
for D be non
empty
set, r be D
-valued
FinSequence st (
len r)
= (i
+ j) holds ex p,q be D
-valued
FinSequence st (
len p)
= i & (
len q)
= j & r
= (p
^ q)
proof
let D be non
empty
set, r be D
-valued
FinSequence such that
A1: (
len r)
= (i
+ j);
reconsider r1 = r as
FinSequence of D by
NEWTON02: 103;
ex p1,q1 be
FinSequence of D st (
len p1)
= i & (
len q1)
= j & r1
= (p1
^ q1) by
A1,
FINSEQ_2: 23;
hence thesis;
end;
theorem ::
NEWTON04:13
for f be
nonnegative-yielding
FinSequence of
REAL holds (
Sum f)
>= (
Sum (f
| j))
proof
let f be
nonnegative-yielding
FinSequence of
REAL ;
A1: ((f
| j)
^ (f
/^ j))
= f by
RFINSEQ: 8;
for i be
Nat st i
in (
dom (f
/^ j)) holds ((f
/^ j)
. i)
>=
0 ;
then ((
Sum (f
| j))
+ (
Sum (f
/^ j)))
>= ((
Sum (f
| j))
+
0 ) by
RVSUM_1: 84,
XREAL_1: 6;
hence thesis by
A1,
RVSUM_1: 75;
end;
theorem ::
NEWTON04:14
FXX: for f be
COMPLEX
-valued
FinSequence, x1,x2 be
Complex holds ((f
+ x1)
+ x2)
= (f
+ (x1
+ x2))
proof
let f be
COMPLEX
-valued
FinSequence, x1,x2 be
Complex;
reconsider X = (
dom f) as
set;
A1: (
dom ((f
+ x1)
+ x2))
= (
dom (f
+ x1)) & for c be
object st c
in (
dom ((f
+ x1)
+ x2)) holds (((f
+ x1)
+ x2)
. c)
= (((f
+ x1)
. c)
+ x2) by
VALUED_1:def 2;
A2: (
dom (f
+ x1))
= (
dom f) & for c be
object st c
in (
dom (f
+ x1)) holds ((f
+ x1)
. c)
= ((f
. c)
+ x1) by
VALUED_1:def 2;
A3: (
dom (f
+ (x1
+ x2)))
= (
dom f) & for c be
object st c
in (
dom (f
+ (x1
+ x2))) holds ((f
+ (x1
+ x2))
. c)
= ((f
. c)
+ (x1
+ x2)) by
VALUED_1:def 2;
for c be
object st c
in X holds (((f
+ x1)
+ x2)
. c)
= ((f
+ (x1
+ x2))
. c)
proof
let c be
object such that
B1: c
in X;
(((f
+ x1)
+ x2)
. c)
= (((f
+ x1)
. c)
+ x2) by
A1,
A2,
B1
.= (((f
. c)
+ x1)
+ x2) by
A2,
B1
.= ((f
. c)
+ (x1
+ x2))
.= ((f
+ (x1
+ x2))
. c) by
A3,
B1;
hence thesis;
end;
hence thesis by
A1,
A2,
A3,
FUNCT_1: 2;
end;
registration
let f be
COMPLEX
-valued
FinSequence, x be
Complex;
reduce ((f
+ x)
- x) to f;
reducibility
proof
((f
+ x)
- x)
= ((f
+ x)
+ (
- x)) by
VALUED_1:def 3
.= (f
+ (x
+ (
- x))) by
FXX
.= (f
+
0 );
hence thesis;
end;
reduce ((f
- x)
+ x) to f;
reducibility
proof
((f
- x)
+ x)
= ((f
+ (
- x))
+ x) by
VALUED_1:def 3
.= (f
+ ((
- x)
+ x)) by
FXX
.= (f
+
0 );
hence thesis;
end;
end
registration
let x,y be
Real;
reduce (
max ((
min (x,y)),(
max (x,y)))) to (
max (x,y));
reducibility
proof
(
max (x,y))
>= x
>= (
min (x,y)) by
XXREAL_0: 17,
XXREAL_0: 25;
hence thesis by
XXREAL_0:def 10,
XXREAL_0: 2;
end;
reduce (
min ((
min (x,y)),(
max (x,y)))) to (
min (x,y));
reducibility
proof
(
max (x,y))
>= x
>= (
min (x,y)) by
XXREAL_0: 17,
XXREAL_0: 25;
hence thesis by
XXREAL_0:def 9,
XXREAL_0: 2;
end;
end
registration
let x,y be
Real, z be non
negative
Real;
reduce (
min ((
min (x,y)),(y
+ z))) to (
min (x,y));
reducibility
proof
(y
+ z)
>= (y
+
0 ) by
XREAL_1: 6;
then (
min (y,(y
+ z)))
= y by
XXREAL_0:def 9;
hence thesis by
XXREAL_0: 33;
end;
reduce (
max ((
max (x,y)),(y
- z))) to (
max (x,y));
reducibility
proof
(y
- z)
<= (y
-
0 ) by
XREAL_1: 10;
then (
max ((y
- z),y))
= y by
XXREAL_0:def 10;
hence thesis by
XXREAL_0: 34;
end;
end
registration
let f be
FinSequence, i,j be
Nat;
reduce ((f
| i)
| (i
+ j)) to (f
| i);
reducibility
proof
(
len (f
| i))
= (
min ((
len f),i)) by
FINSEQ_2: 21;
then (i
+ j)
>= (
len (f
| i)) by
XXREAL_0: 17,
NAT_1: 12;
then
reconsider k = ((i
+ j)
- (
len (f
| i))) as
Element of
NAT by
NAT_1: 21;
((f
| i)
| (i
+ j))
= ((f
| i)
| ((
len (f
| i))
+ k));
hence thesis;
end;
end
registration
let f be
nonnegative-yielding
FinSequence of
REAL , n be
Nat;
cluster (f
| n) ->
nonnegative-yielding;
coherence
proof
let r be
Real;
assume r
in (
rng (f
| n));
then ex i be
object st i
in (
dom (f
| n)) & ((f
| n)
. i)
= r by
FUNCT_1:def 3;
hence thesis;
end;
cluster (f
/^ n) ->
nonnegative-yielding;
coherence
proof
let r be
Real;
assume r
in (
rng (f
/^ n));
then ex i be
object st i
in (
dom (f
/^ n)) & ((f
/^ n)
. i)
= r by
FUNCT_1:def 3;
hence thesis;
end;
end
registration
let f be
FinSequence of
REAL ;
cluster (f
- (
min f)) ->
nonnegative-yielding;
coherence
proof
for r be
Real st r
in (
rng (f
- (
min f))) holds r
>=
0
proof
let r be
Real such that
A1: r
in (
rng (f
- (
min f)));
consider x be
object such that
A2: x
in (
dom (f
- (
min f))) & r
= ((f
- (
min f))
. x) by
A1,
FUNCT_1:def 3;
A3: (
dom (f
- (
min f)))
= (
dom f) & for i be
object st i
in (
dom f) holds ((f
- (
min f))
. i)
= ((f
. i)
- (
min f)) by
VALUED_1: 3;
reconsider x as
Nat by
A2;
1
<= x
<= (
len f) by
A2,
A3,
FINSEQ_3: 25;
then ((f
. x)
- (
min f))
>= ((
min f)
- (
min f)) by
XREAL_1: 9,
RFINSEQ2: 2;
hence thesis by
A2,
A3;
end;
hence thesis by
PARTFUN3:def 4;
end;
cluster (f
- (
max f)) ->
nonpositive-yielding;
coherence
proof
for r be
Real st r
in (
rng (f
- (
max f))) holds r
<=
0
proof
let r be
Real such that
A1: r
in (
rng (f
- (
max f)));
consider x be
object such that
A2: x
in (
dom (f
- (
max f))) & r
= ((f
- (
max f))
. x) by
A1,
FUNCT_1:def 3;
A3: (
dom (f
- (
max f)))
= (
dom f) & for i be
object st i
in (
dom f) holds ((f
- (
max f))
. i)
= ((f
. i)
- (
max f)) by
VALUED_1: 3;
reconsider x as
Nat by
A2;
1
<= x
<= (
len f) by
A2,
A3,
FINSEQ_3: 25;
then ((f
. x)
- (
max f))
<= ((
max f)
- (
max f)) by
XREAL_1: 9,
RFINSEQ2: 1;
hence thesis by
A2,
A3;
end;
hence thesis by
PARTFUN3:def 3;
end;
end
registration
let f be
FinSequence;
cluster (
Rev f) -> (
len f)
-element;
coherence
proof
(
len (
Rev f))
= (
len f) by
FINSEQ_5:def 3;
then ((
Rev f)
null f) is (
len f)
-element;
hence thesis;
end;
end
registration
let D be non
empty
set;
let f be D
-valued
FinSequence;
cluster (
Rev f) -> D
-valued;
coherence
proof
(
rng (
Rev f))
= (
rng f) by
FINSEQ_5: 57;
then (
rng (
Rev f))
c= D by
RELAT_1:def 19;
hence thesis by
RELAT_1:def 19;
end;
end
registration
let a be
Complex, f be
complex-valued
FinSequence;
cluster (a
(#) f) -> (
len f)
-element;
coherence
proof
(
dom (a
(#) f))
= (
dom f) by
VALUED_1:def 5;
then (
len (a
(#) f))
= (
len f) by
FINSEQ_3: 29;
then ((a
(#) f)
null f) is (
len f)
-element;
hence thesis;
end;
end
registration
let a,b be
Real, n be
Nat;
reduce (
len ((a,b)
In_Power ((n
+ 1)
- 1))) to (n
+ 1);
reducibility by
NEWTON:def 4;
cluster ((a,b)
In_Power n) -> (n
+ 1)
-element;
coherence
proof
(((a,b)
In_Power ((n
+ 1)
- 1))
null n) is (n
+ 1)
-element;
hence thesis;
end;
end
registration
let n be
Nat;
reduce (
len (
Newton_Coeff ((n
+ 1)
- 1))) to (n
+ 1);
reducibility by
NEWTON:def 5;
cluster (
Newton_Coeff n) ->
nonnegative-yielding;
coherence
proof
for r be
Real st r
in (
rng (
Newton_Coeff n)) holds r
>=
0 ;
hence thesis by
PARTFUN3:def 4;
end;
cluster (
Newton_Coeff n) -> (n
+ 1)
-element;
coherence
proof
((
Newton_Coeff ((n
+ 1)
- 1))
null n) is (n
+ 1)
-element;
hence thesis;
end;
end
registration
let n be non
zero
Nat;
reduce ((
Newton_Coeff n)
. 2) to n;
reducibility
proof
(n
+ 1)
>= (1
+ 1) & (1
+ 1)
>= (1
+
0 ) by
XREAL_1: 6,
NAT_1: 14;
then (
len (
Newton_Coeff n))
>= (1
+ 1)
>= 1 by
NEWTON:def 5;
then 2
in (
dom (
Newton_Coeff n)) by
FINSEQ_3: 25;
then ((
Newton_Coeff n)
. 2)
= (n
choose (2
- 1)) by
NEWTON:def 5;
hence thesis by
NEWTON: 23,
NAT_1: 14;
end;
reduce ((
Newton_Coeff n)
. n) to n;
reducibility
proof
(n
+ 1)
>= (n
+
0 ) & n
>= 1 by
NAT_1: 14,
XREAL_1: 6;
then (
len (
Newton_Coeff n))
>= n
>= 1 by
NEWTON:def 5;
then n
in (
dom (
Newton_Coeff n)) by
FINSEQ_3: 25;
then ((
Newton_Coeff n)
. n)
= (n
choose (n
- 1)) by
NEWTON:def 5;
hence thesis by
NEWTON: 24,
NAT_1: 14;
end;
end
theorem ::
NEWTON04:15
F123: for f1,f2,f3 be
complex-valued
Function holds ((f1
(#) f2)
(#) f3)
= (f1
(#) (f2
(#) f3))
proof
let f1,f2,f3 be
complex-valued
Function;
A1: (
dom ((f1
(#) f2)
(#) f3))
= ((
dom (f1
(#) f2))
/\ (
dom f3)) by
VALUED_1:def 4
.= (((
dom f1)
/\ (
dom f2))
/\ (
dom f3)) by
VALUED_1:def 4;
A2: (
dom (f1
(#) (f2
(#) f3)))
= ((
dom f1)
/\ (
dom (f2
(#) f3))) by
VALUED_1:def 4
.= ((
dom f1)
/\ ((
dom f2)
/\ (
dom f3))) by
VALUED_1:def 4;
then
A3: (
dom ((f1
(#) f2)
(#) f3))
= (
dom (f1
(#) (f2
(#) f3))) by
A1,
XBOOLE_1: 16;
for x be
object st x
in (
dom ((f1
(#) f2)
(#) f3)) holds (((f1
(#) f2)
(#) f3)
. x)
= ((f1
(#) (f2
(#) f3))
. x)
proof
let x be
object such that
B1: x
in (
dom ((f1
(#) f2)
(#) f3));
x
in (
dom (f1
(#) (f2
(#) f3))) by
B1,
A1,
A2,
XBOOLE_1: 16;
then
B2a: x
in ((
dom (f1
(#) f2))
/\ (
dom f3)) & x
in ((
dom f1)
/\ (
dom (f2
(#) f3))) by
VALUED_1:def 4,
B1;
B3: (((f1
(#) f2)
(#) f3)
. x)
= (((f1
(#) f2)
. x)
* (f3
. x)) by
VALUED_1:def 4,
B1
.= (((f1
. x)
* (f2
. x))
* (f3
. x)) by
B2a,
VALUED_1:def 4;
((f1
(#) (f2
(#) f3))
. x)
= ((f1
. x)
* ((f2
(#) f3)
. x)) by
A3,
B1,
VALUED_1:def 4
.= ((f1
. x)
* ((f2
. x)
* (f3
. x))) by
B2a,
VALUED_1:def 4;
hence thesis by
B3;
end;
hence thesis by
A1,
A2,
XBOOLE_1: 16,
FUNCT_1: 2;
end;
theorem ::
NEWTON04:16
for f,g be
FinSequence of
COMPLEX , i be
object holds ((f
(#) g)
. i)
= ((f
. i)
* (g
. i))
proof
let f,g be
FinSequence of
COMPLEX , i be
object;
per cases ;
suppose i
in (
dom (f
(#) g));
hence thesis by
VALUED_1:def 4;
end;
suppose
B1: not i
in (
dom (f
(#) g));
then not i
in ((
dom f)
/\ (
dom g)) by
VALUED_1:def 4;
then not i
in (
dom f) or not i
in (
dom g) by
XBOOLE_0:def 4;
then ((f
. i)
=
{} or (g
. i)
=
{} ) & ((f
(#) g)
. i)
=
{} by
B1,
FUNCT_1:def 2;
hence thesis;
end;
end;
theorem ::
NEWTON04:17
for x,y be
Real holds ((
max (x,y))
- (
min (x,y)))
=
|.(x
- y).|
proof
let x,y be
Real;
per cases ;
suppose x
>= y;
then (
min (x,y))
= y & (
max (x,y))
= x by
XXREAL_0:def 9,
XXREAL_0:def 10;
hence thesis by
ABSVALUE:def 1;
end;
suppose
A1: x
< y;
then
A2: (
min (x,y))
= x & (
max (x,y))
= y by
XXREAL_0:def 9,
XXREAL_0:def 10;
(x
- y)
< (x
- x) by
A1,
XREAL_1: 10;
then
|.(x
- y).|
= (
- (x
- y)) by
ABSVALUE:def 1;
hence thesis by
A2;
end;
end;
theorem ::
NEWTON04:18
for x,y be
Real holds ((
min (x,y))
* (
max (x,y)))
= (x
* y) & ((
min (x,y))
+ (
max (x,y)))
= (x
+ y)
proof
let x,y be
Real;
per cases ;
suppose x
>= y;
then (
min (x,y))
= y & (
max (x,y))
= x by
XXREAL_0:def 9,
XXREAL_0:def 10;
hence thesis;
end;
suppose x
< y;
then (
min (x,y))
= x & (
max (x,y))
= y by
XXREAL_0:def 9,
XXREAL_0:def 10;
hence thesis;
end;
end;
theorem ::
NEWTON04:19
SF: for f be
nonnegative-yielding
FinSequence of
REAL holds (
Sum f)
>= (
Sum (f
| j))
proof
let f be
nonnegative-yielding
FinSequence of
REAL ;
A1: ((f
| j)
^ (f
/^ j))
= f by
RFINSEQ: 8;
((
Sum (f
| j))
+ (
Sum (f
/^ j)))
>= ((
Sum (f
| j))
+
0 ) by
XREAL_1: 6;
hence thesis by
A1,
RVSUM_1: 75;
end;
theorem ::
NEWTON04:20
for f be
nonnegative-yielding
FinSequence of
REAL holds i
>= j implies (
Sum (f
| i))
>= (
Sum (f
| j))
proof
let f be
nonnegative-yielding
FinSequence of
REAL ;
assume i
>= j;
then (
Sum ((f
| i)
| j))
= (
Sum (f
| j)) by
FINSEQ_1: 82;
hence thesis by
SF;
end;
theorem ::
NEWTON04:21
SN: for f be
nonnegative-yielding
FinSequence of
REAL holds (
Sum f)
>= (f
. n)
proof
let f be
nonnegative-yielding
FinSequence of
REAL ;
per cases ;
suppose not n
in (
dom f);
hence thesis by
FUNCT_1:def 2;
end;
suppose
A0: n
in (
dom f);
then
A0a: (
len f)
>= n
>= 1 by
FINSEQ_3: 25;
then
reconsider k = (n
- 1) as
Nat;
A0b: (k
+ 1)
> (k
+
0 ) by
XREAL_1: 6;
then (
len f)
> k by
A0a,
XXREAL_0: 2;
then
A1: (f
| (k
+ 1))
= ((f
| k)
^
<*(f
. (k
+ 1))*>) by
FINSEQ_5: 83;
A2: (
Sum f)
= (
Sum (((f
| k)
^
<*(f
. (k
+ 1))*>)
^ (f
/^ n))) by
A1,
RFINSEQ: 8
.= ((
Sum ((f
| k)
^
<*(f
. (k
+ 1))*>))
+ (
Sum (f
/^ n))) by
RVSUM_1: 75
.= (((
Sum (f
| k))
+ (f
. (k
+ 1)))
+ (
Sum (f
/^ n))) by
RVSUM_1: 74;
((f
. (k
+ 1))
+ ((
Sum (f
| k))
+ (
Sum (f
/^ n))))
>= ((f
. (k
+ 1))
+
0 ) by
XREAL_1: 6;
hence thesis by
A2;
end;
end;
theorem ::
NEWTON04:22
DLS: for f,g,h be
FinSequence of
COMPLEX st (
dom h)
= ((
dom f)
/\ (
dom g)) holds (
len h)
= (
min ((
len f),(
len g)))
proof
let f,g,h be
FinSequence of
COMPLEX such that
A1: (
dom h)
= ((
dom f)
/\ (
dom g));
per cases ;
suppose
B1: (
len f)
>= (
len g);
then ((
dom f)
/\ (
dom g))
= (
dom g) by
FINSEQ_3: 30,
XBOOLE_1: 28;
then (
len h)
= (
len g) by
A1,
FINSEQ_3: 29;
hence thesis by
B1,
XXREAL_0:def 9;
end;
suppose
B1: (
len f)
< (
len g);
then ((
dom f)
/\ (
dom g))
= (
dom f) by
FINSEQ_3: 30,
XBOOLE_1: 28;
then (
len h)
= (
len f) by
A1,
FINSEQ_3: 29;
hence thesis by
B1,
XXREAL_0:def 9;
end;
end;
theorem ::
NEWTON04:23
FLS: for f,g be
FinSequence of
COMPLEX holds (
len (f
+ g))
= (
min ((
len f),(
len g)))
proof
let f,g be
FinSequence of
COMPLEX ;
reconsider h = (f
+ g) as
FinSequence of
COMPLEX by
NEWTON02: 103;
(
dom h)
= ((
dom f)
/\ (
dom g)) by
VALUED_1:def 1;
hence thesis by
DLS;
end;
theorem ::
NEWTON04:24
for f,g be
FinSequence of
COMPLEX holds (
len (f
(#) g))
= (
min ((
len f),(
len g)))
proof
let f,g be
FinSequence of
COMPLEX ;
reconsider h = (f
(#) g) as
FinSequence of
COMPLEX by
NEWTON02: 103;
(
dom h)
= ((
dom f)
/\ (
dom g)) by
VALUED_1:def 4;
hence thesis by
DLS;
end;
theorem ::
NEWTON04:25
for f,g be
FinSequence of
COMPLEX holds (
len (f
- g))
= (
min ((
len f),(
len g)))
proof
let f,g be
FinSequence of
COMPLEX ;
reconsider h = (
- g) as
FinSequence of
COMPLEX by
NEWTON02: 103;
h
= ((
- 1)
(#) g) by
VALUED_1:def 6;
then (
dom h)
= (
dom g) by
VALUED_1:def 5;
then
A1: (
len h)
= (
len g) by
FINSEQ_3: 29;
(f
- g)
= (f
+ h) by
VALUED_1:def 9;
hence thesis by
FLS,
A1;
end;
theorem ::
NEWTON04:26
FS: for f,g be
nonnegative-yielding
FinSequence of
REAL holds ((f
(#) g)
. n)
<= ((
Sum f)
* (g
. n))
proof
let f,g be
nonnegative-yielding
FinSequence of
REAL ;
per cases ;
suppose n
in (
dom (f
(#) g));
then ((f
(#) g)
. n)
= ((f
. n)
* (g
. n)) by
VALUED_1:def 4;
hence thesis by
SN,
XREAL_1: 64;
end;
suppose not n
in (
dom (f
(#) g));
hence thesis by
FUNCT_1:def 2;
end;
end;
theorem ::
NEWTON04:27
for r be
Real, n be non
zero
Nat holds ex f be
FinSequence of
REAL st (
len f)
= n & (
Sum f)
= r
proof
let r be
Real, n be non
zero
Nat;
reconsider k = (n
- 1) as
Nat;
0
in
REAL by
XREAL_0:def 1;
then
reconsider g = (k
|->
0 ) as
FinSequence of
REAL by
FINSEQ_2: 63;
reconsider h = (g
^
<*r*>) as
FinSequence of
REAL by
RVSUM_1: 145;
A1: (
len (g
^
<*r*>))
= ((
len g)
+ 1) by
FINSEQ_2: 16
.= (k
+ 1);
(
Sum (g
^
<*r*>))
= ((
Sum (k
|->
0 ))
+ r) by
RVSUM_1: 74
.= (
0
+ r);
then (
Sum h)
= r & (
len h)
= (k
+ 1) by
A1;
hence thesis;
end;
LmFG: for f,g be
FinSequence of
REAL st (for x be
Nat holds (f
. x)
>= (g
. x)) holds (
Sum (f
| (
min ((
len f),(
len g)))))
>= (
Sum (g
| (
min ((
len f),(
len g)))))
proof
let f,g be
FinSequence of
REAL such that
A0: for x be
Nat holds (f
. x)
>= (g
. x);
set i = (
min ((
len f),(
len g))), h = (f
| i), j = (g
| i);
per cases ;
suppose f is
empty or g is
empty;
then (
min ((
len f),(
len g)))
=
0 by
XXREAL_0:def 9;
hence thesis;
end;
suppose f is non
empty & g is non
empty;
then (
len f)
>= 1 & (
len g)
>= 1 by
FINSEQ_1: 20;
then (
min ((
len f),(
len g)))
>= 1 by
XXREAL_0:def 9;
then
A3: i
in (
dom f) & i
in (
dom g) by
XXREAL_0: 17,
FINSEQ_3: 25;
then
A4: (
len h)
= i & (
len j)
= i by
NEWTON02: 110;
for k be
Element of
NAT st k
in (
dom j) holds (j
. k)
<= (h
. k)
proof
let k be
Element of
NAT ;
assume k
in (
dom j);
then i
>= k
>= 1 by
A4,
FINSEQ_3: 25;
then ((f
| i)
. k)
= (f
. k) & ((g
| i)
. k)
= (g
. k) by
A3,
NEWTON02: 107;
hence thesis by
A0;
end;
hence thesis by
A4,
INTEGRA5: 3;
end;
end;
theorem ::
NEWTON04:28
SL: for f be
FinSequence of
COMPLEX , x be
Complex holds (f
+ x)
= (f
+ ((
len f)
|-> x))
proof
let f be
FinSequence of
COMPLEX , x be
Complex;
reconsider g = ((
len f)
|-> x) as
FinSequence of
COMPLEX by
NEWTON02: 103;
A0: (
dom (f
+ x))
= (
dom f) by
VALUED_1:def 2;
A2: (
len (f
+ g))
= (
min ((
len f),(
len ((
len f)
|-> x)))) by
FLS
.= (
len f);
for i be
Nat st i
in (
dom (f
+ x)) holds ((f
+ x)
. i)
= ((f
+ g)
. i)
proof
let i be
Nat such that
B1: i
in (
dom (f
+ x));
B2: i
in (
dom f) by
B1,
VALUED_1:def 2;
reconsider i as non
zero
Nat by
B1,
FINSEQ_3: 25;
(
len f)
>= i by
B2,
FINSEQ_3: 25;
then
reconsider k = ((
len f)
- i) as
Element of
NAT by
NAT_1: 21;
i
in (
dom (f
+ g)) by
A2,
B2,
FINSEQ_3: 29;
then ((f
+ g)
. i)
= ((f
. i)
+ (((k
+ i)
|-> x)
. i)) by
VALUED_1:def 1
.= ((f
. i)
+ x);
hence thesis by
B1,
VALUED_1:def 2;
end;
hence thesis by
A0,
FINSEQ_3: 29,
A2,
FINSEQ_2: 9;
end;
theorem ::
NEWTON04:29
SFX: for f be
FinSequence of
COMPLEX , x be
Complex holds (
Sum (f
+ x))
= ((
Sum f)
+ (x
* (
len f)))
proof
let f be
FinSequence of
COMPLEX , x be
Complex;
reconsider x as
Element of
COMPLEX by
XCMPLX_0:def 2;
set k = (
len f), g = ((
len f)
|-> x);
(f
null
{} ) is k
-element;
then
reconsider f as k
-element
FinSequence of
COMPLEX ;
reconsider h = (f
+ x) as
FinSequence of
COMPLEX by
RVSUM_1: 146;
(
dom f)
= (
dom (f
+ x)) by
VALUED_1:def 2;
then (
len f)
= (
len (f
+ x)) by
FINSEQ_3: 29;
then (h
null
{} ) is k
-element;
then
reconsider h as k
-element
FinSequence of
COMPLEX ;
(
Sum (f
+ x))
= (
Sum (f
+ g)) by
SL
.= ((
Sum f)
+ (
Sum ((
len f)
|-> x))) by
RVSUM_2: 40
.= ((
Sum f)
+ ((
len f)
* x)) by
RVSUM_2: 36;
hence thesis;
end;
theorem ::
NEWTON04:30
for f be
complex-valued
FinSequence, x be
Complex holds (
Sum (f
- x))
= ((
Sum f)
- (x
* (
len f)))
proof
let f be
complex-valued
FinSequence, x be
Complex;
reconsider f as
FinSequence of
COMPLEX by
RVSUM_1: 146;
(
Sum (f
+ (
- x)))
= ((
Sum f)
+ ((
- x)
* (
len f))) by
SFX;
hence thesis by
VALUED_1:def 3;
end;
theorem ::
NEWTON04:31
for f be
FinSequence of
REAL , g be
nonnegative-yielding
FinSequence of
REAL st (for x be
Nat holds (f
. x)
>= (g
. x)) holds f is
nonnegative-yielding
proof
let f be
FinSequence of
REAL , g be
nonnegative-yielding
FinSequence of
REAL such that
A1: for x be
Nat holds (f
. x)
>= (g
. x);
for r be
Real st r
in (
rng f) holds r
>=
0
proof
let r be
Real such that
B0: r
in (
rng f);
consider k be
object such that
B1: k
in (
dom f) & r
= (f
. k) by
B0,
FUNCT_1:def 3;
reconsider k as
Nat by
B1;
(g
. k)
>=
0 ;
hence thesis by
B1,
A1;
end;
hence thesis by
PARTFUN3:def 4;
end;
theorem ::
NEWTON04:32
NYS: for f,g be
FinSequence of
REAL st (for x be
Nat holds (f
. x)
>= (g
. x)) holds (
Sum f)
>= (
Sum g)
proof
let f,g be
FinSequence of
REAL such that
A0: for x be
Nat holds (f
. x)
>= (g
. x);
per cases ;
suppose (
len f)
<= (
len g);
then (
len f)
= (
min ((
len f),(
len g))) by
XXREAL_0:def 9;
then
B1: (
Sum (f
| (
len f)))
>= (
Sum (g
| (
len f))) by
A0,
LmFG;
for r be
Real st r
in (
rng (g
/^ (
len f))) holds r
<=
0
proof
let r be
Real such that
C1: r
in (
rng (g
/^ (
len f)));
consider k be
object such that
C2: k
in (
dom (g
/^ (
len f))) & r
= ((g
/^ (
len f))
. k) by
C1,
FUNCT_1:def 3;
reconsider k as non
zero
Nat by
C2,
FINSEQ_3: 25;
C4: ((
len f)
+ k)
in (
dom g) by
C2,
FINSEQ_5: 26;
r
= ((g
/^ (
len f))
/. k) by
C2,
PARTFUN1:def 6
.= (g
/. ((
len f)
+ k)) by
C2,
FINSEQ_5: 27
.= (g
. ((
len f)
+ k)) by
PARTFUN1:def 6,
C4;
then r
<= (f
. ((
len f)
+ k)) by
A0;
hence thesis;
end;
then
reconsider h = (g
/^ (
len f)) as
nonpositive-yielding
FinSequence of
REAL by
PARTFUN3:def 3;
C5: (
Sum g)
= (
Sum ((g
| (
len f))
^ (g
/^ (
len f)))) by
RFINSEQ: 8
.= ((
Sum (g
| (
len f)))
+ (
Sum (g
/^ (
len f)))) by
RVSUM_1: 75;
(
Sum h)
<=
0 ;
then ((
Sum (g
| (
len f)))
+
0 )
>= ((
Sum (g
| (
len f)))
+ (
Sum (g
/^ (
len f)))) by
XREAL_1: 6;
hence thesis by
B1,
C5,
XXREAL_0: 2;
end;
suppose (
len f)
> (
len g);
then (
len g)
= (
min ((
len f),(
len g))) by
XXREAL_0:def 9;
then
B1: (
Sum (f
| (
len g)))
>= (
Sum (g
| (
len g))) by
A0,
LmFG;
for r be
Real st r
in (
rng (f
/^ (
len g))) holds r
>=
0
proof
let r be
Real such that
C1: r
in (
rng (f
/^ (
len g)));
consider k be
object such that
C2: k
in (
dom (f
/^ (
len g))) & r
= ((f
/^ (
len g))
. k) by
C1,
FUNCT_1:def 3;
reconsider k as non
zero
Nat by
C2,
FINSEQ_3: 25;
C4: ((
len g)
+ k)
in (
dom f) by
C2,
FINSEQ_5: 26;
r
= ((f
/^ (
len g))
/. k) by
C2,
PARTFUN1:def 6
.= (f
/. ((
len g)
+ k)) by
C2,
FINSEQ_5: 27
.= (f
. ((
len g)
+ k)) by
PARTFUN1:def 6,
C4;
then r
>= (g
. ((
len g)
+ k)) by
A0;
hence thesis;
end;
then
reconsider h = (f
/^ (
len g)) as
nonnegative-yielding
FinSequence of
REAL by
PARTFUN3:def 4;
C5: (
Sum f)
= (
Sum ((f
| (
len g))
^ (f
/^ (
len g)))) by
RFINSEQ: 8
.= ((
Sum (f
| (
len g)))
+ (
Sum (f
/^ (
len g)))) by
RVSUM_1: 75;
(
Sum h)
>=
0 ;
then ((
Sum (f
| (
len g)))
+
0 )
<= ((
Sum (f
| (
len g)))
+ (
Sum (f
/^ (
len g)))) by
XREAL_1: 6;
hence thesis by
B1,
C5,
XXREAL_0: 2;
end;
end;
theorem ::
NEWTON04:33
S1: for f be
FinSequence of
COMPLEX holds (
Sum (f
| 1 qua
Nat))
= (f
. 1 qua
Nat)
proof
let f be
FinSequence of
COMPLEX ;
per cases ;
suppose not f is
empty;
then (f
| 1)
=
<*(f
. 1)*> by
FINSEQ_5: 20;
hence thesis;
end;
suppose
B1: f is
empty;
then (
Sum (f
| 1))
=
0 by
RVSUM_2: 29
.= (f
. 1) by
B1;
hence thesis;
end;
end;
theorem ::
NEWTON04:34
S2: for f be
FinSequence of
COMPLEX , n be
Nat holds (
Sum ((f
/^ n)
| 1))
= (f
. (n
+ 1))
proof
let f be
FinSequence of
COMPLEX , n be
Nat;
per cases ;
suppose
A1: 1
in (
dom (f
/^ n));
(
Sum ((f
/^ n)
| 1))
= ((f
/^ n)
. 1) by
S1
.= (f
. (n
+ 1)) by
A1,
FINSEQ_7: 4;
hence thesis;
end;
suppose not 1
in (
dom (f
/^ n));
then
A1: (f
/^ n) is
empty by
FINSEQ_5: 6;
then
0
= (
len (f
/^ n))
.= ((
len f)
-' n) by
RFINSEQ: 29;
then (
len f)
= n or (
0
+ n)
>= (((
len f)
- n)
+ n) by
XREAL_0:def 2,
XREAL_1: 6;
then ((
len f)
+
0 )
< (n
+ 1) by
XREAL_1: 8;
then
A2: not (n
+ 1)
in (
dom f) by
FINSEQ_3: 25;
(
Sum ((f
/^ n)
| 1))
=
0 by
A1,
RVSUM_2: 29
.= (f
. (n
+ 1)) by
A2,
FUNCT_1:def 2;
hence thesis;
end;
end;
theorem ::
NEWTON04:35
FINSEQ681: for f be
FinSequence, a,b be
Nat holds ((f
/^ a)
/^ b)
= (f
/^ (a
+ b))
proof
let f be
FinSequence, a,b be
Nat;
ex D be non
empty
set st f is
FinSequence of D by
Th0;
hence thesis by
FINSEQ_6: 81;
end;
theorem ::
NEWTON04:36
for f be
FinSequence of
COMPLEX holds f
= (((f
| i)
^ ((f
/^ i)
| 1 qua
Nat))
^ (f
/^ (i
+ 1)))
proof
let f be
FinSequence of
COMPLEX ;
f
= ((f
| i)
^ (f
/^ i)) by
RFINSEQ: 8
.= ((f
| i)
^ (((f
/^ i)
| 1)
^ ((f
/^ i)
/^ 1))) by
RFINSEQ: 8
.= (((f
| i)
^ ((f
/^ i)
| 1))
^ ((f
/^ i)
/^ 1)) by
FINSEQ_1: 32
.= (((f
| i)
^ ((f
/^ i)
| 1))
^ (f
/^ (i
+ 1))) by
FINSEQ681;
hence thesis;
end;
theorem ::
NEWTON04:37
SUM: for f be
FinSequence of
COMPLEX holds (
Sum f)
= (((
Sum (f
| i))
+ (f
. (i
+ 1)))
+ (
Sum (f
/^ (i
+ 1))))
proof
let f be
FinSequence of
COMPLEX ;
set f1 = (f
| i), f2 = (f
/^ i), k = 1, f4 = (f2
/^ k);
(
Sum f)
= (
Sum (f1
^ f2)) by
RFINSEQ: 8
.= ((
Sum (f
| i))
+ (
Sum f2)) by
RVSUM_2: 32
.= ((
Sum (f
| i))
+ (
Sum ((f2
| k)
^ (f2
/^ k)))) by
RFINSEQ: 8
.= ((
Sum (f
| i))
+ ((
Sum (f2
| k))
+ (
Sum (f2
/^ k)))) by
RVSUM_2: 32
.= ((
Sum (f
| i))
+ ((
Sum (f2
| k))
+ (
Sum (f
/^ (i
+ k))))) by
FINSEQ681
.= (((
Sum (f
| i))
+ (
Sum (f2
| k)))
+ (
Sum (f
/^ (i
+ k))));
hence thesis by
S2;
end;
theorem ::
NEWTON04:38
FINSEQ74: for f be
FinSequence, i be non
zero
Nat holds (f
. (n
+ i))
= ((f
/^ n)
. i)
proof
let f be
FinSequence, i be non
zero
Nat;
consider D be non
empty
set such that
A0: f is
FinSequence of D by
Th0;
reconsider f as
FinSequence of D by
A0;
per cases ;
suppose
B1: not i
in (
dom (f
/^ n));
B2: ((f
/^ n)
. i)
=
0 by
B1,
FUNCT_1:def 2;
(n
+ i)
> (
len f)
proof
i
>= 1 by
NAT_1: 14;
then i
> (
len (f
/^ n)) by
B1,
FINSEQ_3: 25;
then
C1: i
> ((
len f)
-' n) by
RFINSEQ: 29;
per cases ;
suppose
D1: (
len f)
< n;
(n
+ i)
>= (n
+
0 ) by
XREAL_1: 6;
hence thesis by
D1,
XXREAL_0: 2;
end;
suppose (
len f)
>= n;
then ((
len f)
- n)
>= (n
- n) by
XREAL_1: 9;
then ((
len f)
-' n)
= ((
len f)
- n) by
XREAL_0:def 2;
then (i
+ n)
> (((
len f)
- n)
+ n) by
C1,
XREAL_1: 6;
hence thesis;
end;
end;
then not (n
+ i)
in (
dom f) by
FINSEQ_3: 25;
hence thesis by
B2,
FUNCT_1:def 2;
end;
suppose i
in (
dom (f
/^ n));
hence thesis by
FINSEQ_7: 4;
end;
end;
theorem ::
NEWTON04:39
NYS1: for f,g be
FinSequence of
REAL st (for x be
Nat holds (f
. x)
>= (g
. x) & ex i st (f
. (i
+ 1))
> (g
. (i
+ 1))) holds (
Sum f)
> (
Sum g)
proof
let f,g be
FinSequence of
REAL such that
A1: for x be
Nat holds (f
. x)
>= (g
. x) & ex i be
Nat st (f
. (i
+ 1))
> (g
. (i
+ 1));
consider i be
Nat such that
A2: (f
. (i
+ 1))
> (g
. (i
+ 1)) by
A1;
f is
FinSequence of
COMPLEX by
RVSUM_1: 146;
then
A5: (
Sum f)
= (((
Sum (f
| i))
+ (f
. (i
+ 1)))
+ (
Sum (f
/^ (i
+ 1)))) by
SUM;
g is
FinSequence of
COMPLEX by
RVSUM_1: 146;
then
A6: (
Sum g)
= (((
Sum (g
| i))
+ (g
. (i
+ 1)))
+ (
Sum (g
/^ (i
+ 1)))) by
SUM;
for x be
Nat holds ((f
| i)
. x)
>= ((g
| i)
. x) & ((f
/^ (i
+ 1))
. x)
>= ((g
/^ (i
+ 1))
. x)
proof
let x be
Nat;
B0: i
>= x implies ((f
| i)
. x)
= (f
. x) & ((g
| i)
. x)
= (g
. x) by
FINSEQ_3: 112;
(
len (f
| i))
<= i & (
len (g
| i))
<= i by
FINSEQ_5: 17;
then i
< x implies (
len (f
| i))
< x & (
len (g
| i))
< x by
XXREAL_0: 2;
then i
< x implies not x
in (
dom (f
| i)) & not x
in (
dom (g
| i)) by
FINSEQ_3: 25;
then
B2: i
< x implies ((f
| i)
. x)
=
0 &
0
= ((g
| i)
. x) by
FUNCT_1:def 2;
x
<>
0 implies ((f
. ((i
+ 1)
+ x))
= ((f
/^ (i
+ 1))
. x) & (g
. ((i
+ 1)
+ x))
= ((g
/^ (i
+ 1))
. x)) by
FINSEQ74;
hence thesis by
A1,
B0,
B2;
end;
then (
Sum (f
| i))
>= (
Sum (g
| i)) & (
Sum (f
/^ (i
+ 1)))
>= (
Sum (g
/^ (i
+ 1))) by
NYS;
then ((
Sum (f
| i))
+ (
Sum (f
/^ (i
+ 1))))
>= ((
Sum (g
| i))
+ (
Sum (g
/^ (i
+ 1)))) by
XREAL_1: 7;
then
A7: (((
Sum (f
| i))
+ (
Sum (f
/^ (i
+ 1))))
+ (f
. (i
+ 1)))
>= (((
Sum (g
| i))
+ (
Sum (g
/^ (i
+ 1))))
+ (f
. (i
+ 1))) by
XREAL_1: 6;
(((
Sum (g
| i))
+ (
Sum (g
/^ (i
+ 1))))
+ (f
. (i
+ 1)))
> (((
Sum (g
| i))
+ (
Sum (g
/^ (i
+ 1))))
+ (g
. (i
+ 1))) by
A2,
XREAL_1: 6;
hence thesis by
A5,
A6,
A7,
XXREAL_0: 2;
end;
theorem ::
NEWTON04:40
for f,g be
nonnegative-yielding
FinSequence of
REAL holds ((
Sum f)
* (
Sum g))
>= (
Sum (f
(#) g))
proof
let f,g be
nonnegative-yielding
FinSequence of
REAL ;
A1: (f
(#) g) is
FinSequence of
REAL & ((
Sum f)
* g) is
FinSequence of
REAL by
NEWTON02: 103;
now
let i be
Nat;
((
Sum f)
* (g
. i))
= (((
Sum f)
(#) g)
. i) by
VALUED_1: 6;
hence ((f
(#) g)
. i)
<= (((
Sum f)
* g)
. i) by
FS;
end;
then (
Sum (f
(#) g))
<= (
Sum ((
Sum f)
* g)) by
A1,
NYS;
hence thesis by
RVSUM_1: 87;
end;
theorem ::
NEWTON04:41
for a be
Complex, f be
complex-valued
FinSequence holds (((
len f)
|-> a)
(#) f)
= (a
(#) f)
proof
let a be
Complex, f be
complex-valued
FinSequence;
(
len ((
len f)
|-> a))
= (
len f);
then (
dom ((
len f)
|-> a))
= (
dom f) by
FINSEQ_3: 29;
then
A1: ((
dom ((
len f)
|-> a))
/\ (
dom f))
= (
dom (a
(#) f)) by
VALUED_1:def 5;
then
A2: (
dom (((
len f)
|-> a)
(#) f))
= (
dom (a
(#) f)) by
VALUED_1:def 4;
for x be
object st x
in (
dom (((
len f)
|-> a)
(#) f)) holds ((((
len f)
|-> a)
(#) f)
. x)
= ((a
(#) f)
. x)
proof
let x be
object such that
B1: x
in (
dom (((
len f)
|-> a)
(#) f));
reconsider x as non
zero
Nat by
B1,
FINSEQ_3: 25;
(
len ((
len f)
|-> a))
>= x
>= 1 by
A1,
A2,
B1,
FINSEQ_3: 25;
then ex k be
Nat st (
len f)
= (x
+ k) by
NAT_1: 10;
then
reconsider k = ((
len f)
- x) as
Nat;
((((
len f)
|-> a)
(#) f)
. x)
= ((((x
+ k)
|-> a)
. x)
* (f
. x)) by
B1,
VALUED_1:def 4
.= ((a
(#) f)
. x) by
A2,
B1,
VALUED_1:def 5;
hence thesis;
end;
hence thesis by
A2,
FUNCT_1: 2;
end;
theorem ::
NEWTON04:42
AMP: for a,b be
Complex holds (a
(#)
<*b*>)
=
<*(a
* b)*>
proof
let a,b be
Complex;
A1: (
dom
<*(a
* b)*>)
= (
Seg 1) & (
dom
<*b*>)
= (
Seg 1) by
FINSEQ_1:def 8;
for x be
object st x
in (
Seg 1) holds (
<*(a
* b)*>
. x)
= (a
* (
<*b*>
. x))
proof
let x be
object;
assume x
in (
Seg 1);
then x
= 1 by
FINSEQ_1: 2,
TARSKI:def 1;
hence thesis;
end;
hence thesis by
A1,
VALUED_1:def 5;
end;
theorem ::
NEWTON04:43
ADP: for a be
Complex, f,g be
complex-valued
FinSequence holds (a
(#) (f
^ g))
= ((a
(#) f)
^ (a
(#) g))
proof
let a be
Complex, f,g be
complex-valued
FinSequence;
A0: (
dom (a
(#) (f
^ g)))
= (
dom (f
^ g)) & (
dom (a
(#) f))
= (
dom f) & (
dom (a
(#) g))
= (
dom g) by
VALUED_1:def 5;
then
A1: (
len (a
(#) (f
^ g)))
= (
len (f
^ g)) & (
len (a
(#) f))
= (
len f) & (
len (a
(#) g))
= (
len g) by
FINSEQ_3: 29;
then (
len (a
(#) (f
^ g)))
= ((
len (a
(#) f))
+ (
len (a
(#) g))) by
FINSEQ_1: 22
.= (
len ((a
(#) f)
^ (a
(#) g))) by
FINSEQ_1: 22;
then
A2: (
dom (a
(#) (f
^ g)))
= (
dom ((a
(#) f)
^ (a
(#) g))) by
FINSEQ_3: 29;
for x be
object st x
in (
dom (a
(#) (f
^ g))) holds ((a
(#) (f
^ g))
. x)
= (((a
(#) f)
^ (a
(#) g))
. x)
proof
let x be
object such that
B1: x
in (
dom (a
(#) (f
^ g)));
per cases ;
suppose
C1: x
in (
dom f);
then
C2: x
in (
dom (a
(#) f)) by
VALUED_1:def 5;
then (((a
(#) f)
^ (a
(#) g))
. x)
= ((a
(#) f)
. x) by
FINSEQ_1:def 7
.= (a
* (f
. x)) by
C2,
VALUED_1:def 5
.= (a
* ((f
^ g)
. x)) by
C1,
FINSEQ_1:def 7
.= ((a
(#) (f
^ g))
. x) by
B1,
VALUED_1:def 5;
hence thesis;
end;
suppose
C0: not x
in (
dom f);
x
in (
dom (f
^ g)) by
VALUED_1:def 5,
B1;
then
consider n be
Nat such that
C2: n
in (
dom g) & x
= ((
len f)
+ n) by
C0,
FINSEQ_1: 25;
(((a
(#) f)
^ (a
(#) g))
. ((
len f)
+ n))
= ((a
(#) g)
. n) by
A0,
A1,
C2,
FINSEQ_1:def 7
.= (a
* (g
. n)) by
A0,
C2,
VALUED_1:def 5
.= (a
* ((f
^ g)
. ((
len f)
+ n))) by
C2,
FINSEQ_1:def 7
.= ((a
(#) (f
^ g))
. x) by
C2,
B1,
VALUED_1:def 5;
hence thesis by
C2;
end;
end;
hence thesis by
A2,
FUNCT_1: 2;
end;
theorem ::
NEWTON04:44
CREV: for a be
Complex, f,g be
complex-valued
FinSequence st g
= (
Rev f) holds (
Rev (a
(#) f))
= (a
(#) g)
proof
let a be
Complex, f,g be
complex-valued
FinSequence such that
A1: g
= (
Rev f);
set h = (a
(#) f), h1 = (a
(#) g), h2 = (
Rev h);
A2: (
dom h1)
= (
dom g) & (
dom h)
= (
dom f) by
VALUED_1:def 5;
A4: (
dom (
Rev h))
= (
dom h) & (
dom (
Rev f))
= (
dom f) by
FINSEQ_5: 57;
then
A5: (
len h1)
= (
len h2) & (
len h2)
= (
len f) & (
len f)
= (
len h) & (
len g)
= (
len f) by
A1,
A2,
FINSEQ_3: 29;
reconsider h1 as (
len f)
-element
complex-valued
FinSequence by
A5;
for x be
object st x
in (
dom h1) holds (h1
. x)
= (h2
. x)
proof
let x be
object such that
B1: x
in (
dom h1);
reconsider x as
Nat by
B1;
B3: 1
<= x
<= (
len f) by
B1,
A1,
A2,
A4,
FINSEQ_3: 25;
then
reconsider k = ((
len f)
- x) as
Element of
NAT by
NAT_1: 21;
set l = (k
+ 1);
B4: (
0
+ 1)
<= (k
+ 1) & (k
+ 1)
<= (k
+ x) by
B3,
XREAL_1: 6;
((
Rev h)
. x)
= (h
. (((
len h)
- x)
+ 1)) by
B1,
A1,
A2,
A4,
FINSEQ_5:def 3
.= ((a
(#) f)
. l) by
A2,
FINSEQ_3: 29
.= (a
* ((
Rev (
Rev f))
. l)) by
A2,
B4,
FINSEQ_3: 25,
VALUED_1:def 5
.= (a
* (g
. (((
len g)
- l)
+ 1))) by
A1,
A4,
B4,
FINSEQ_3: 25,
FINSEQ_5:def 3
.= (a
* (g
. x)) by
A5;
hence thesis by
B1,
VALUED_1:def 5;
end;
hence thesis by
A1,
A2,
A4,
FUNCT_1: 2;
end;
definition
let a,b be
Real;
let n be
natural
Number;
::
NEWTON04:def1
func (a,b)
Subnomial n ->
FinSequence of
REAL equals (((a,b)
In_Power n)
/" (
Newton_Coeff n));
correctness by
NEWTON02: 103;
end
theorem ::
NEWTON04:45
DOMN: for a,b be
Real, n be
Nat holds (
len ((a,b)
In_Power n))
= (
len (
Newton_Coeff n)) & (
len ((a,b)
Subnomial n))
= (
len (
Newton_Coeff n)) & (
len ((a,b)
In_Power n))
= (
len ((a,b)
Subnomial n)) & (
dom ((a,b)
In_Power n))
= (
dom (
Newton_Coeff n)) & (
dom ((a,b)
Subnomial n))
= (
dom (
Newton_Coeff n)) & (
dom ((a,b)
In_Power n))
= (
dom ((a,b)
Subnomial n))
proof
let a,b be
Real, n be
Nat;
(
len ((a,b)
In_Power ((n
+ 1)
- 1)))
= (
len (
Newton_Coeff n));
then
A2: (
dom ((a,b)
In_Power n))
= (
dom (
Newton_Coeff n)) by
FINSEQ_3: 29;
(
dom (((a,b)
In_Power n)
/" (
Newton_Coeff n)))
= ((
dom ((a,b)
In_Power n))
/\ (
dom (
Newton_Coeff n))) by
VALUED_1: 16;
hence thesis by
A2,
FINSEQ_3: 29;
end;
registration
let a,b be
Real, n be
Nat;
reduce (
len ((a,b)
Subnomial ((n
+ 1)
- 1))) to (n
+ 1);
reducibility
proof
(
len ((a,b)
Subnomial ((n
+ 1)
- 1)))
= (
len (
Newton_Coeff ((n
+ 1)
- 1))) by
DOMN;
hence thesis;
end;
cluster ((a,b)
Subnomial n) -> (n
+ 1)
-element;
coherence
proof
(((a,b)
Subnomial ((n
+ 1)
- 1))
null n) is (n
+ 1)
-element;
hence thesis;
end;
end
registration
let a,b be
Integer;
let n,m be
Nat;
cluster (((a,b)
In_Power n)
. m) ->
integer;
coherence
proof
per cases ;
suppose
A0: m
in (
dom ((a,b)
In_Power n));
then
consider k such that
A1: m
= (1
+ k) by
NAT_1: 10,
FINSEQ_3: 25;
(
len ((a,b)
In_Power n))
= (n
+ 1) by
NEWTON:def 4;
then n
>= k by
A0,
FINSEQ_3: 25,
A1,
XREAL_1: 6;
then
consider l such that
A2: n
= (k
+ l) by
NAT_1: 10;
k
= (m
- 1) & l
= (n
- k) by
A1,
A2;
then (((a,b)
In_Power n)
. m)
= (((n
choose k)
* (a
|^ l))
* (b
|^ k)) by
A0,
NEWTON:def 4;
hence thesis;
end;
suppose not m
in (
dom ((a,b)
In_Power n));
hence thesis by
FUNCT_1:def 2;
end;
end;
end
registration
let a,b be
Integer;
let n be
Nat;
cluster ((a,b)
In_Power n) ->
INT
-valued;
coherence
proof
for k st k
in (
dom ((a,b)
In_Power n)) holds (((a,b)
In_Power n)
. k)
in
INT by
INT_1:def 2;
hence thesis by
FINSEQ_2: 12;
end;
end
theorem ::
NEWTON04:46
NIS: for a,b be
Integer, k be
Nat st k
in (
dom (
Newton_Coeff n)) holds ((
Newton_Coeff n)
. k)
divides (((a,b)
In_Power n)
. k)
proof
let a,b be
Integer, k be
Nat such that
A0: k
in (
dom (
Newton_Coeff n));
A0a: k
>= 1 by
A0,
FINSEQ_3: 25;
then
reconsider m = (k
- 1) as
Nat;
A1: (n
+ 1)
= (
len ((a,b)
In_Power n)) by
NEWTON:def 4;
(
len (
Newton_Coeff n))
= (n
+ 1) by
NEWTON:def 5;
then
A1a: (n
+ 1)
>= (m
+ 1) by
A0,
FINSEQ_3: 25;
then
consider l such that
A2: n
= (m
+ l) by
XREAL_1: 6,
NAT_1: 10;
A3: ((
Newton_Coeff n)
. k)
= (n
choose m) by
A0,
NEWTON:def 5;
A4: k
in (
dom ((a,b)
In_Power n)) by
A0a,
A1,
A1a,
FINSEQ_3: 25;
l
= (n
- m) by
A2;
then (((a,b)
In_Power n)
. k)
= (((n
choose m)
* (a
|^ l))
* (b
|^ m)) by
A4,
NEWTON:def 4
.= (((
Newton_Coeff n)
. k)
* ((a
|^ l)
* (b
|^ m))) by
A3;
hence thesis;
end;
registration
let l,k be
Nat;
cluster ((l
+ k)
choose k) ->
positive;
coherence
proof
reconsider n = (l
+ k) as
Nat;
l
= (n
- k) & n
>= k by
NAT_1: 11;
then (n
choose k)
= ((n
! )
/ ((k
! )
* (l
! ))) by
NEWTON:def 3;
hence thesis;
end;
end
registration
let l be
Nat, k be non
zero
Nat;
cluster (l
choose (l
+ k)) ->
zero;
coherence
proof
(l
+
0 )
< (l
+ k) by
XREAL_1: 6;
hence thesis by
NEWTON:def 3;
end;
cluster ((
Newton_Coeff l)
. ((l
+ k)
+ 1)) ->
zero;
coherence
proof
(
len (
Newton_Coeff l))
= (l
+ 1) & ((l
+ 1)
+
0 )
< ((l
+ 1)
+ k) by
XREAL_1: 6,
NEWTON:def 5;
hence thesis;
end;
end
registration
let l be
Nat, k be
Nat;
cluster ((
Newton_Coeff (l
+ k))
. (k
+ 1)) ->
positive;
coherence
proof
((k
+ 1)
+ l)
>= ((k
+ 1)
+
0 ) & (k
+ 1)
>= (
0
+ 1) by
XREAL_1: 6;
then (
len (
Newton_Coeff (l
+ k)))
>= (k
+ 1) & (k
+ 1)
>= 1 by
NEWTON:def 5;
then (k
+ 1)
in (
dom (
Newton_Coeff (l
+ k))) by
FINSEQ_3: 25;
then ((
Newton_Coeff (l
+ k))
. (k
+ 1))
= ((l
+ k)
choose ((k
+ 1)
- 1)) by
NEWTON:def 5;
hence thesis;
end;
end
theorem ::
NEWTON04:47
D1: for k,l be
Nat holds k
in (
dom (
Newton_Coeff l)) implies ((
Newton_Coeff l)
. k) is non
zero
proof
let k,l be
Nat;
assume k
in (
dom (
Newton_Coeff l));
then
A1: (
len (
Newton_Coeff l))
= (l
+ 1) & (
len (
Newton_Coeff l))
>= k & k
>= 1 by
FINSEQ_3: 25,
NEWTON:def 5;
then
reconsider i = (k
- 1) as
Nat;
consider m be
Nat such that
A2: (l
+ 1)
= (k
+ m) by
A1,
NAT_1: 10;
((
Newton_Coeff (m
+ i))
. (i
+ 1)) is non
zero;
hence thesis by
A2;
end;
registration
let a,b be
Integer;
let m,n be
Nat;
cluster (((a,b)
Subnomial n)
. m) ->
integer;
coherence
proof
per cases ;
suppose
A0: m
in (
dom (
Newton_Coeff n));
then ((
Newton_Coeff n)
. m)
divides (((a,b)
In_Power n)
. m) by
NIS;
then
consider x be
Integer such that
A2: (((a,b)
In_Power n)
. m)
= (((
Newton_Coeff n)
. m)
* x);
((
Newton_Coeff n)
. m)
<>
0 by
A0,
D1;
then x
= ((((a,b)
In_Power n)
. m)
/ ((
Newton_Coeff n)
. m)) by
A2,
XCMPLX_1: 89;
hence thesis by
VALUED_1: 17;
end;
suppose not m
in (
dom (
Newton_Coeff n));
then ((
Newton_Coeff n)
. m)
=
0 by
FUNCT_1:def 2;
then
0
= ((((a,b)
In_Power n)
. m)
/ ((
Newton_Coeff n)
. m)) by
XCMPLX_1: 49;
hence thesis by
VALUED_1: 17;
end;
end;
end
registration
let a,b be
Integer;
let n be
Nat;
cluster ((a,b)
Subnomial n) ->
INT
-valued;
coherence
proof
for k st k
in (
dom ((a,b)
Subnomial n)) holds (((a,b)
Subnomial n)
. k)
in
INT by
INT_1:def 2;
hence thesis by
FINSEQ_2: 12;
end;
end
LmS1: for a,b be
Real, n be
Nat holds for i,l,m be
Nat st i
in (
dom ((a,b)
Subnomial n)) & m
= (i
- 1) & l
= (n
- m) holds (((a,b)
Subnomial n)
. i)
= ((a
|^ l)
* (b
|^ m))
proof
let a,b be
Real, n be
Nat;
let i,l,m be
Nat such that
A1: i
in (
dom ((a,b)
Subnomial n)) & m
= (i
- 1) & l
= (n
- m);
(
dom (
Newton_Coeff n))
= (
dom ((a,b)
Subnomial n)) & (
dom (
Newton_Coeff n))
= (
dom ((a,b)
In_Power n)) by
DOMN;
then
A2: (((a,b)
In_Power n)
. i)
= (((n
choose m)
* (a
|^ l))
* (b
|^ m)) & ((
Newton_Coeff n)
. i)
= (n
choose m) by
A1,
NEWTON:def 4,
NEWTON:def 5;
(((a,b)
Subnomial n)
. i)
= ((((m
+ l)
choose m)
* ((a
|^ l)
* (b
|^ m)))
/ ((m
+ l)
choose m)) by
A1,
A2,
VALUED_1: 17
.= ((a
|^ l)
* (b
|^ m)) by
XCMPLX_1: 89;
hence thesis;
end;
definition
let a,b be
Real, n be
Nat;
:: original:
Subnomial
redefine
::
NEWTON04:def2
func (a,b)
Subnomial n ->
FinSequence of
REAL means
:
Def2: (
len it )
= (n
+ 1) & for i,l,m be
Nat st i
in (
dom it ) & m
= (i
- 1) & l
= (n
- m) holds (it
. i)
= ((a
|^ l)
* (b
|^ m));
compatibility
proof
let f be
FinSequence of
REAL ;
L1: (
len ((a,b)
Subnomial n))
= (
len ((a,b)
Subnomial ((n
+ 1)
- 1)))
.= (n
+ 1);
L2: (
len f)
= (
len ((a,b)
Subnomial n)) iff (
dom f)
= (
dom ((a,b)
Subnomial n)) by
FINSEQ_3: 29;
((
len f)
= (
len ((a,b)
Subnomial n)) & for i,l,m be
Nat st i
in (
dom ((a,b)
Subnomial n)) & m
= (i
- 1) & l
= (n
- m) holds (f
. i)
= ((a
|^ l)
* (b
|^ m))) implies f
= ((a,b)
Subnomial n)
proof
assume
A3: ((
len f)
= (
len ((a,b)
Subnomial n)) & for i,l,m be
Nat st i
in (
dom ((a,b)
Subnomial n)) & m
= (i
- 1) & l
= (n
- m) holds (f
. i)
= ((a
|^ l)
* (b
|^ m)));
A4: ((
dom f)
= (
dom ((a,b)
Subnomial n)) & for i,l,m be
Nat st i
in (
dom ((a,b)
Subnomial n)) & m
= (i
- 1) & l
= (n
- m) holds (f
. i)
= ((a
|^ l)
* (b
|^ m))) by
A3,
FINSEQ_3: 29;
for i be
Nat st i
in (
dom ((a,b)
Subnomial n)) holds (f
. i)
= (((a,b)
Subnomial n)
. i)
proof
let i be
Nat such that
B2: i
in (
dom ((a,b)
Subnomial n));
reconsider m = (i
- 1) as
Nat by
B2,
FINSEQ_3: 26;
(
len ((a,b)
Subnomial ((n
+ 1)
- 1)))
= (n
+ 1);
then ((n
+ 1)
- (m
+ 1)) is
Element of
NAT by
FINSEQ_3: 26,
B2;
then
reconsider l = (n
- m) as
Nat;
(f
. i)
= ((a
|^ l)
* (b
|^ m)) by
A3,
B2;
hence thesis by
LmS1,
B2;
end;
hence thesis by
A4,
FINSEQ_1: 13;
end;
hence thesis by
L1,
L2,
LmS1;
end;
coherence ;
end
registration
let a,b be
positive
Real, k,l be
Nat;
cluster (((a,b)
Subnomial (k
+ l))
. (k
+ 1)) ->
positive;
coherence
proof
(1
+
0 )
<= (1
+ k) & ((k
+ 1)
+
0 )
<= ((k
+ 1)
+ l) by
XREAL_1: 6;
then 1
<= (k
+ 1)
<= (
len ((a,b)
Subnomial (((k
+ l)
+ 1)
- 1)));
then k
= ((k
+ 1)
- 1) & l
= ((k
+ l)
- k) & (k
+ 1)
in (
dom ((a,b)
Subnomial (k
+ l))) by
FINSEQ_3: 25;
then (((a,b)
Subnomial (k
+ l))
. (k
+ 1))
= ((a
|^ l)
* (b
|^ k)) by
Def2;
hence thesis;
end;
end
registration
let a,b be
positive
Real, n be
Nat;
cluster (
Sum ((a,b)
Subnomial n)) ->
positive;
coherence
proof
A1: for i be
Nat st i
in (
dom ((a,b)
Subnomial n)) holds
0
<= (((a,b)
Subnomial n)
. i)
proof
let i be
Nat such that
B1: i
in (
dom ((a,b)
Subnomial n));
B2: 1
<= i
<= (
len ((a,b)
Subnomial ((n
+ 1)
- 1))) by
B1,
FINSEQ_3: 25;
then
reconsider s = ((n
+ 1)
- i) as
Element of
NAT by
NAT_1: 21;
reconsider l = (i
- 1) as
Nat by
B2;
(((a,b)
Subnomial (l
+ s))
. (l
+ 1))
>
0 ;
hence thesis;
end;
(
len ((a,b)
Subnomial ((n
+ 1)
- 1)))
>= 1 by
NAT_1: 14;
then 1
in (
dom ((a,b)
Subnomial ((n
+ 1)
- 1))) &
0
< (((a,b)
Subnomial (
0
+ n))
. (
0
+ 1)) by
FINSEQ_3: 25;
hence thesis by
A1,
RVSUM_1: 85;
end;
end
registration
let k be
Nat, n be non
zero
Nat;
cluster (((
0 ,
0 )
In_Power n)
. k) ->
zero;
coherence
proof
per cases ;
suppose
A1: k
in (
dom ((
0 ,
0 )
In_Power n));
then
A2: 1
<= k
<= (
len ((
0 ,
0 )
In_Power ((n
+ 1)
- 1))) by
FINSEQ_3: 25;
then
reconsider m = (k
- 1) as
Nat;
ex l be
Nat st (n
+ 1)
= ((m
+ 1)
+ l) by
A2,
NAT_1: 10;
then
reconsider l = (n
- m) as
Nat;
m
=
0 implies l
>= 1 by
NAT_1: 14;
then
A3: m
< 1 implies (
0
|^ l)
=
0 by
NAT_1: 14,
NEWTON: 11;
A4: m
>= 1 implies (
0
|^ m)
=
0 by
NEWTON: 11;
(((
0 ,
0 )
In_Power ((n
+ 1)
- 1))
. k)
= (((n
choose m)
* (
0
|^ l))
* (
0
|^ m)) by
A1,
NEWTON:def 4;
hence thesis by
A3,
A4;
end;
suppose not k
in (
dom ((
0 ,
0 )
In_Power n));
hence thesis by
FUNCT_1:def 2;
end;
end;
cluster (((
0 ,
0 )
Subnomial n)
. k) ->
zero;
coherence
proof
(((
0 ,
0 )
Subnomial n)
. k)
= ((((
0 ,
0 )
In_Power n)
. k)
/ ((
Newton_Coeff n)
. k)) by
VALUED_1: 17;
hence thesis;
end;
end
registration
let n be non
zero
Nat;
cluster ((
0 ,
0 )
In_Power n) ->
empty-yielding;
coherence
proof
for x be
set st x
in (
rng ((
0 ,
0 )
In_Power n)) holds x
=
{}
proof
let x be
set;
assume x
in (
rng ((
0 ,
0 )
In_Power n));
then ex k be
object st k
in (
dom ((
0 ,
0 )
In_Power n)) & (((
0 ,
0 )
In_Power n)
. k)
= x by
FUNCT_1:def 3;
hence thesis;
end;
hence thesis by
RELAT_1: 149;
end;
cluster ((
0 ,
0 )
Subnomial n) ->
empty-yielding;
coherence
proof
for x be
set st x
in (
rng ((
0 ,
0 )
Subnomial n)) holds x
=
{}
proof
let x be
set;
assume x
in (
rng ((
0 ,
0 )
Subnomial n));
then ex k be
object st k
in (
dom ((
0 ,
0 )
Subnomial n)) & (((
0 ,
0 )
Subnomial n)
. k)
= x by
FUNCT_1:def 3;
hence thesis;
end;
hence thesis by
RELAT_1: 149;
end;
end
registration
let f be
empty-yielding
FinSequence of
COMPLEX ;
cluster (
Sum f) ->
zero;
coherence
proof
f
= ((
len f)
|->
0 );
hence thesis;
end;
end
registration
let n be
Nat;
reduce ((
Newton_Coeff n)
. 1) to 1;
correctness
proof
((
Newton_Coeff n)
. 1)
= (((1,1)
In_Power n)
. 1) by
NEWTON: 31
.= (1
|^ n) by
NEWTON: 28;
hence thesis;
end;
reduce ((
Newton_Coeff n)
. (n
+ 1)) to 1;
reducibility
proof
((
Newton_Coeff n)
. (n
+ 1))
= (((1,1)
In_Power n)
. (n
+ 1)) by
NEWTON: 31
.= (1
|^ n) by
NEWTON: 29;
hence thesis;
end;
end
theorem ::
NEWTON04:48
NS: for a,b be
Real, n be
Nat holds ((((a,b)
In_Power n)
. 1)
= (((a,b)
Subnomial n)
. 1)) & ((((a,b)
In_Power n)
. (n
+ 1))
= (((a,b)
Subnomial n)
. (n
+ 1)))
proof
let a,b be
Real, n be
Nat;
A1: (((a,b)
Subnomial n)
. 1)
= ((((a,b)
In_Power n)
. 1)
/ ((
Newton_Coeff n)
. 1)) by
VALUED_1: 17;
(((a,b)
Subnomial n)
. (n
+ 1))
= ((((a,b)
In_Power n)
. (n
+ 1))
/ ((
Newton_Coeff n)
. (n
+ 1))) by
VALUED_1: 17;
hence thesis by
A1;
end;
theorem ::
NEWTON04:49
RS: for a,b be
Real holds ((a,b)
Subnomial (n
+ 1))
= ((a
* ((a,b)
Subnomial n))
^
<*(b
|^ (n
+ 1))*>)
proof
let a,b be
Real;
A0: ((a,b)
Subnomial n) is
FinSequence of
COMPLEX by
RVSUM_1: 146;
A0a: (
len ((a,b)
Subnomial n))
= (
len (a
* ((a,b)
Subnomial n))) by
COMPLSP2: 3;
A2: (
len ((a,b)
Subnomial (((n
+ 1)
+ 1)
- 1)))
= ((n
+ 1)
+ 1) & (
len ((a,b)
Subnomial ((n
+ 1)
- 1)))
= (n
+ 1);
then
A3: (
len ((a,b)
Subnomial (n
+ 1)))
= ((
len ((a,b)
Subnomial n))
+ (
len
<*(b
|^ (n
+ 1))*>)) by
FINSEQ_1: 39
.= ((
len (a
* ((a,b)
Subnomial n)))
+ (
len
<*(b
|^ (n
+ 1))*>)) by
COMPLSP2: 3
.= (
len ((a
* ((a,b)
Subnomial n))
^
<*(b
|^ (n
+ 1))*>)) by
FINSEQ_1: 22;
for k be
Nat st 1
<= k
<= (
len ((a,b)
Subnomial (n
+ 1))) holds (((a,b)
Subnomial (n
+ 1))
. k)
= (((a
* ((a,b)
Subnomial n))
^
<*(b
|^ (n
+ 1))*>)
. k)
proof
let k be
Nat such that
B0: 1
<= k
<= (
len ((a,b)
Subnomial (n
+ 1)));
reconsider m = (k
- 1) as
Nat by
B0;
per cases ;
suppose
C1: k
in (
dom ((a,b)
Subnomial n));
then
C2: 1
<= k
<= (
len ((a,b)
Subnomial n)) by
FINSEQ_3: 25;
then (m
+ 1)
<= (n
+ 1) by
Def2;
then
reconsider l = (n
- m) as
Element of
NAT by
XREAL_1: 6,
NAT_1: 21;
C3: (l
+ 1)
= ((n
+ 1)
- m);
k
in (
dom ((a,b)
Subnomial (n
+ 1))) by
B0,
FINSEQ_3: 25;
then (((a,b)
Subnomial (n
+ 1))
. k)
= ((a
|^ (l
+ 1))
* (b
|^ m)) by
Def2,
C3
.= ((a
* (a
|^ l))
* (b
|^ m)) by
NEWTON: 6
.= (a
* ((a
|^ l)
* (b
|^ m)))
.= (a
* (((a,b)
Subnomial n)
. k)) by
C1,
Def2
.= ((a
* ((a,b)
Subnomial n))
. k) by
A0,
COMPLSP2: 16
.= (((a
* ((a,b)
Subnomial n))
^
<*(b
|^ (n
+ 1))*>)
. k) by
A0a,
C2,
FINSEQ_1: 64;
hence thesis;
end;
suppose not k
in (
dom ((a,b)
Subnomial n));
then not k
<= (n
+ 1) by
B0,
A2,
FINSEQ_3: 25;
then k
>= ((n
+ 1)
+ 1) by
INT_1: 7;
then
C1: k
= ((n
+ 1)
+ 1) by
B0,
A2,
XXREAL_0: 1;
(
len (a
* ((a,b)
Subnomial n)))
= (n
+ 1) by
A2,
NEWTON: 2;
then (((a
* ((a,b)
Subnomial n))
^
<*(b
|^ (n
+ 1))*>)
. ((n
+ 1)
+ 1))
= (((a,b)
In_Power (n
+ 1))
. ((n
+ 1)
+ 1)) by
NEWTON: 29;
hence thesis by
NS,
C1;
end;
end;
hence thesis by
A3;
end;
theorem ::
NEWTON04:50
LS: for a,b be
Real holds ((a,b)
Subnomial (n
+ 1))
= (
<*(a
|^ (n
+ 1))*>
^ (b
* ((a,b)
Subnomial n)))
proof
let a,b be
Real;
A2: (
len ((a,b)
Subnomial (((n
+ 1)
+ 1)
- 1)))
= ((n
+ 1)
+ 1) & (
len ((a,b)
Subnomial ((n
+ 1)
- 1)))
= (n
+ 1);
then
A3: (
len ((a,b)
Subnomial (n
+ 1)))
= ((
len
<*(a
|^ (n
+ 1))*>)
+ (
len ((a,b)
Subnomial n))) by
FINSEQ_1: 39
.= ((
len
<*(a
|^ (n
+ 1))*>)
+ (
len (b
* ((a,b)
Subnomial n)))) by
NEWTON: 2
.= (
len (
<*(a
|^ (n
+ 1))*>
^ (b
* ((a,b)
Subnomial n)))) by
FINSEQ_1: 22;
for k be
Nat st 1
<= k
<= (
len ((a,b)
Subnomial (n
+ 1))) holds (((a,b)
Subnomial (n
+ 1))
. k)
= ((
<*(a
|^ (n
+ 1))*>
^ (b
* ((a,b)
Subnomial n)))
. k)
proof
let k be
Nat such that
B0: 1
<= k
<= (
len ((a,b)
Subnomial (n
+ 1)));
per cases by
B0,
XXREAL_0: 1;
suppose k
> 1;
then k
>= (1
+ 1) by
NAT_1: 13;
then
reconsider m = (k
- 2) as
Element of
NAT by
NAT_1: 21;
C2: (n
+ 2)
>= (m
+ 2) by
A2,
B0;
then
reconsider l = (n
- m) as
Element of
NAT by
XREAL_1: 6,
NAT_1: 21;
C3: l
= ((n
+ 1)
- (m
+ 1));
m
<= n by
C2,
XREAL_1: 6;
then
C3a: (
0
+ 1)
<= (m
+ 1)
<= (n
+ 1) by
XREAL_1: 6;
then
C4: (m
+ 1)
in (
dom ((a,b)
Subnomial n)) by
A2,
FINSEQ_3: 25;
C5: m
= ((m
+ 1)
- 1) & l
= (n
- m);
C6: 1
<= (m
+ 1)
<= (
len (b
* ((a,b)
Subnomial n))) by
C3a,
A2,
NEWTON: 2;
(m
+ 1)
= (k
- 1) & k
in (
dom ((a,b)
Subnomial (n
+ 1))) by
B0,
FINSEQ_3: 25;
then (((a,b)
Subnomial (n
+ 1))
. k)
= ((a
|^ l)
* (b
|^ (m
+ 1))) by
Def2,
C3
.= ((a
|^ l)
* (b
* (b
|^ m))) by
NEWTON: 6
.= (b
* ((a
|^ l)
* (b
|^ m)))
.= (b
* (((a,b)
Subnomial n)
. (m
+ 1))) by
C4,
C5,
Def2
.= ((b
* ((a,b)
Subnomial n))
. (m
+ 1)) by
RVSUM_1: 45
.= ((
<*(a
|^ (n
+ 1))*>
^ (b
* ((a,b)
Subnomial n)))
. ((
len
<*(a
|^ (n
+ 1))*>)
+ (m
+ 1))) by
C6,
FINSEQ_1: 65
.= ((
<*(a
|^ (n
+ 1))*>
^ (b
* ((a,b)
Subnomial n)))
. ((m
+ 1)
+ 1)) by
FINSEQ_1: 39;
hence thesis;
end;
suppose
C1: k
= 1;
((
<*(a
|^ (n
+ 1))*>
^ (b
* ((a,b)
Subnomial n)))
. 1)
= (((a,b)
In_Power (n
+ 1))
. 1) by
NEWTON: 28;
hence thesis by
NS,
C1;
end;
end;
hence thesis by
A3;
end;
theorem ::
NEWTON04:51
SumS: for a,b be
Real, n be
Nat holds ((a
|^ (n
+ 1))
- (b
|^ (n
+ 1)))
= ((a
- b)
* (
Sum ((a,b)
Subnomial n)))
proof
let a,b be
Real, n be
Nat;
A1: (
Sum ((a,b)
Subnomial (n
+ 1)))
= (
Sum ((a
* ((a,b)
Subnomial n))
^
<*(b
|^ (n
+ 1))*>)) by
RS
.= ((
Sum (a
* ((a,b)
Subnomial n)))
+ (b
|^ (n
+ 1))) by
RVSUM_2: 31
.= ((a
* (
Sum ((a,b)
Subnomial n)))
+ (b
|^ (n
+ 1))) by
RVSUM_2: 38;
(
Sum ((a,b)
Subnomial (n
+ 1)))
= (
Sum (
<*(a
|^ (n
+ 1))*>
^ (b
* ((a,b)
Subnomial n)))) by
LS
.= ((a
|^ (n
+ 1))
+ (
Sum (b
* ((a,b)
Subnomial n)))) by
RVSUM_2: 33
.= ((b
* (
Sum ((a,b)
Subnomial n)))
+ (a
|^ (n
+ 1))) by
RVSUM_2: 38;
hence thesis by
A1;
end;
theorem ::
NEWTON04:52
for a be
Real, n be non
zero
Nat holds (a
|^ n)
= (
Sum ((a,
0 )
Subnomial n))
proof
let a be
Real, n be non
zero
Nat;
per cases ;
suppose
A1: a is
zero;
then for i be
Element of
NAT st i
in (
dom ((a,
0 )
Subnomial n)) holds (((a,
0 )
Subnomial n)
. i)
=
0 ;
hence thesis by
A1,
PRVECT_2: 3;
end;
suppose
A2: a is non
zero;
((a
|^ (n
+ 1))
- (
0
|^ (n
+ 1)))
= ((a
-
0 )
* (
Sum ((a,
0 )
Subnomial n))) by
SumS;
then (a
* (a
|^ n))
= (a
* (
Sum ((a,
0 )
Subnomial n))) by
NEWTON: 6;
hence thesis by
A2,
XCMPLX_1: 5;
end;
end;
theorem ::
NEWTON04:53
for a be
Real, n be
Nat holds (a
|^ (n
+ 1))
= (((
Sum ((a,1)
Subnomial n))
* (a
- 1))
+ 1)
proof
let a be
Real, n be
Nat;
((a
|^ (n
+ 1))
- (1
|^ (n
+ 1)))
= ((a
- 1)
* (
Sum ((a,1)
Subnomial n))) by
SumS;
hence thesis;
end;
theorem ::
NEWTON04:54
STT: for a,b,c,d be
Real, n be
Nat, x be
object st x
in (
dom (((a
* b),(c
* d))
Subnomial n)) holds ((((a
* b),(c
* d))
Subnomial n)
. x)
= ((((a,d)
Subnomial n)
. x)
* (((b,c)
Subnomial n)
. x))
proof
let a,b,c,d be
Real, n be
Nat, x be
object such that
B1: x
in (
dom (((a
* b),(c
* d))
Subnomial n));
(
len (((a
* b),(c
* d))
Subnomial ((n
+ 1)
- 1)))
= (
len ((a,d)
Subnomial ((n
+ 1)
- 1))) & (
len (((a
* b),(c
* d))
Subnomial ((n
+ 1)
- 1)))
= (
len ((b,c)
Subnomial ((n
+ 1)
- 1)));
then
A0: (
dom (((a
* b),(c
* d))
Subnomial n))
= (
dom ((a,d)
Subnomial n)) & (
dom (((a
* b),(c
* d))
Subnomial n))
= (
dom ((b,c)
Subnomial n)) by
FINSEQ_3: 29;
reconsider x as
positive
Nat by
B1,
FINSEQ_3: 25;
set m = (x
- 1);
(
len (((a
* b),(c
* d))
Subnomial ((n
+ 1)
- 1)))
>= x by
B1,
FINSEQ_3: 25;
then
consider k be
Nat such that
B2: (n
+ 1)
= (x
+ k) by
NAT_1: 10;
B3: n
= (m
+ k) & k
= (n
- m) by
B2;
then ((((a
* b),(c
* d))
Subnomial (m
+ k))
. (m
+ 1))
= (((a
* b)
|^ k)
* ((c
* d)
|^ m)) by
B1,
Def2
.= (((a
|^ k)
* (b
|^ k))
* ((c
* d)
|^ m)) by
NEWTON: 7
.= (((a
|^ k)
* (b
|^ k))
* ((c
|^ m)
* (d
|^ m))) by
NEWTON: 7
.= (((a
|^ k)
* (d
|^ m))
* ((b
|^ k)
* (c
|^ m)))
.= ((((a,d)
Subnomial (m
+ k))
. (m
+ 1))
* ((b
|^ k)
* (c
|^ m))) by
A0,
B1,
B3,
Def2
.= ((((a,d)
Subnomial (m
+ k))
. (m
+ 1))
* (((b,c)
Subnomial (m
+ k))
. (m
+ 1))) by
A0,
B1,
B3,
Def2;
hence thesis by
B2;
end;
theorem ::
NEWTON04:55
ST: for a,b,c,d be
Real, n be
Nat holds (((a
* b),(c
* d))
Subnomial n)
= (((a,d)
Subnomial n)
(#) ((b,c)
Subnomial n))
proof
let a,b,c,d be
Real, n be
Nat;
(
len (((a
* b),(c
* d))
Subnomial ((n
+ 1)
- 1)))
= (
len ((a,d)
Subnomial ((n
+ 1)
- 1))) & (
len (((a
* b),(c
* d))
Subnomial ((n
+ 1)
- 1)))
= (
len ((b,c)
Subnomial ((n
+ 1)
- 1)));
then (
dom (((a
* b),(c
* d))
Subnomial n))
= (
dom ((a,d)
Subnomial n)) & (
dom (((a
* b),(c
* d))
Subnomial n))
= (
dom ((b,c)
Subnomial n)) by
FINSEQ_3: 29;
then
A1: (
dom (((a
* b),(c
* d))
Subnomial n))
= ((
dom ((a,d)
Subnomial n))
/\ (
dom ((b,c)
Subnomial n)));
for x be
object st x
in (
dom (((a
* b),(c
* d))
Subnomial n)) holds ((((a
* b),(c
* d))
Subnomial n)
. x)
= ((((a,d)
Subnomial n)
. x)
* (((b,c)
Subnomial n)
. x)) by
STT;
hence thesis by
A1,
VALUED_1:def 4;
end;
theorem ::
NEWTON04:56
DAB: for a,b be
Real, n be
Nat holds ((a,b)
Subnomial n)
= (((a,1)
Subnomial n)
(#) ((1,b)
Subnomial n))
proof
let a,b be
Real, n be
Nat;
(((a
* 1),(b
* 1))
Subnomial n)
= (((a,1)
Subnomial n)
(#) ((1,b)
Subnomial n)) by
ST;
hence thesis;
end;
theorem ::
NEWTON04:57
INS: for a,b be
Real, n be
Nat holds ((a,b)
In_Power n)
= ((
Newton_Coeff n)
(#) ((a,b)
Subnomial n))
proof
let a,b be
Real, n be
Nat;
A0a: (
dom ((a,b)
In_Power n))
= (
dom (
Newton_Coeff n)) by
DOMN;
then
A0: (
dom ((a,b)
In_Power n))
= ((
dom (
Newton_Coeff n))
/\ (
dom ((a,b)
In_Power n)));
then
A1: (
dom ((a,b)
In_Power n))
= (
dom ((a,b)
Subnomial n)) by
VALUED_1: 16;
for c be
object st c
in (
dom ((a,b)
In_Power n)) holds (((a,b)
In_Power n)
. c)
= (((
Newton_Coeff n)
. c)
* (((a,b)
Subnomial n)
. c))
proof
let c be
object such that
B1: c
in (
dom ((a,b)
In_Power n));
reconsider c as
positive
Nat by
B1,
FINSEQ_3: 25;
set m = (c
- 1);
c
<= (
len (
Newton_Coeff ((n
+ 1)
- 1))) by
B1,
A0a,
FINSEQ_3: 25;
then
consider k be
Nat such that
B2: (n
+ 1)
= (c
+ k) by
NAT_1: 10;
B3: n
= (m
+ k) & k
= (n
- m) by
B2;
(((
Newton_Coeff (m
+ k))
. (m
+ 1))
* (((a,b)
Subnomial (m
+ k))
. (m
+ 1)))
= (((m
+ k)
choose m)
* (((a,b)
Subnomial (m
+ k))
. (m
+ 1))) by
B2,
B1,
A0a,
NEWTON:def 5
.= (((m
+ k)
choose m)
* ((a
|^ k)
* (b
|^ m))) by
B1,
A1,
B3,
Def2
.= ((((m
+ k)
choose m)
* (a
|^ k))
* (b
|^ m))
.= (((a,b)
In_Power (m
+ k))
. (m
+ 1)) by
NEWTON:def 4,
B1,
B3;
hence thesis by
B2;
end;
hence thesis by
A0,
A1,
VALUED_1:def 4;
end;
theorem ::
NEWTON04:58
for a,b be
Real, n be
Nat holds ((a,b)
In_Power n)
= (((a,1)
In_Power n)
(#) ((1,b)
Subnomial n)) & ((a,b)
In_Power n)
= (((a,1)
Subnomial n)
(#) ((1,b)
In_Power n))
proof
let a,b be
Real, n be
Nat;
A1: ((a,b)
In_Power n)
= ((
Newton_Coeff n)
(#) ((a,b)
Subnomial n)) by
INS
.= ((
Newton_Coeff n)
(#) (((a,1)
Subnomial n)
(#) ((1,b)
Subnomial n))) by
DAB;
((
Newton_Coeff n)
(#) ((a,1)
Subnomial n))
= ((a,1)
In_Power n) & ((
Newton_Coeff n)
(#) ((1,b)
Subnomial n))
= ((1,b)
In_Power n) by
INS;
hence thesis by
A1,
F123;
end;
theorem ::
NEWTON04:59
for a,b,c,d be
Real, n be
Nat holds (((a
* b),(c
* d))
In_Power n)
= (((
Newton_Coeff n)
(#) ((a,c)
Subnomial n))
(#) ((b,d)
Subnomial n))
proof
let a,b,c,d be
Real, n be
Nat;
(((a
* b),(c
* d))
In_Power n)
= ((
Newton_Coeff n)
(#) (((a
* b),(c
* d))
Subnomial n)) by
INS
.= ((
Newton_Coeff n)
(#) (((a,c)
Subnomial n)
(#) ((b,d)
Subnomial n))) by
ST;
hence thesis by
RFUNCT_1: 9;
end;
theorem ::
NEWTON04:60
CONST: for a be
Real, n,i be
Nat st i
in (
dom ((a,a)
Subnomial n)) holds (((a,a)
Subnomial n)
. i)
= (a
|^ n)
proof
let a be
Real, n,i be
Nat such that
A1: i
in (
dom ((a,a)
Subnomial n));
A2: 1
<= i
<= (
len ((a,a)
Subnomial ((n
+ 1)
- 1))) by
A1,
FINSEQ_3: 25;
then
reconsider k = (i
- 1) as
Nat;
(n
+ 1)
>= (k
+ 1) by
A2;
then
reconsider l = (n
- k) as
Element of
NAT by
XREAL_1: 6,
NAT_1: 21;
((a
|^ k)
* (a
|^ l))
= (a
|^ (k
+ l)) by
NEWTON: 8;
hence thesis by
A1,
Def2;
end;
theorem ::
NEWTON04:61
CONST1: for n be
Nat, a be
Real holds ((a,a)
Subnomial n)
= ((n
+ 1)
|-> (a
|^ n))
proof
let n be
Nat, a be
Real;
A1: for j be
Nat holds (((a,a)
Subnomial n)
. j)
= (((n
+ 1)
|-> (a
|^ n))
. j)
proof
let j be
Nat;
j
<>
0 implies (((a,a)
Subnomial n)
. j)
= (((n
+ 1)
|-> (a
|^ n))
. j)
proof
assume j
<>
0 ;
then
reconsider i = (j
- 1) as
Nat;
per cases ;
suppose ex k be
Nat st n
= (i
+ k);
then
reconsider k = (n
- i) as
Nat;
set l = (i
+ 1);
(
0
+ 1)
<= (i
+ 1) & ((i
+ 1)
+
0 )
<= ((i
+ 1)
+ k) by
XREAL_1: 6;
then 1
<= (i
+ 1)
<= (
len ((a,a)
Subnomial ((n
+ 1)
- 1)));
then (i
+ 1)
in (
dom ((a,a)
Subnomial (i
+ k))) by
FINSEQ_3: 25;
then (((a,a)
Subnomial (i
+ k))
. (i
+ 1))
= (a
|^ n) & (((k
+ (i
+ 1))
|-> (a
|^ n))
. (i
+ 1))
= (a
|^ n) by
CONST;
hence thesis;
end;
suppose not ex k be
Nat st n
= (i
+ k);
then (i
+ 1)
> (n
+ 1) by
XREAL_1: 6,
NAT_1: 10;
then (i
+ 1)
> (
len ((a,a)
Subnomial n)) & (i
+ 1)
> (
len ((n
+ 1)
|-> (a
|^ n)))
= (n
+ 1) by
Def2;
then not (i
+ 1)
in (
dom ((a,a)
Subnomial n)) & not (i
+ 1)
in (
dom ((n
+ 1)
|-> (a
|^ n))) by
FINSEQ_3: 25;
then (((a,a)
Subnomial n)
. (i
+ 1))
=
0 & (((n
+ 1)
|-> (a
|^ n))
. (i
+ 1))
=
0 by
FUNCT_1:def 2;
hence thesis;
end;
end;
hence thesis;
end;
(
len ((a,a)
Subnomial ((n
+ 1)
- 1)))
= (
len ((n
+ 1)
|-> (a
|^ n)));
hence thesis by
A1;
end;
theorem ::
NEWTON04:62
PRA: for n be
Nat, a be
Real holds (
Product ((a,a)
Subnomial n))
= (a
|^ (n
* (n
+ 1)))
proof
let n be
Nat, a be
Real;
set f = ((n
+ 1)
|-> (a
|^ n)), h = (
the_value_of f), i = (
len f);
(
Product ((a,a)
Subnomial n))
= (
Product f) by
CONST1
.= (h
|^ i) by
RVSUM_3: 8
.= (a
|^ (n
* (n
+ 1))) by
NEWTON: 9;
hence thesis;
end;
theorem ::
NEWTON04:63
PRN: for n be
Nat, f,g be n
-element
complex-valued
FinSequence holds (
Product (f
(#) g))
= ((
Product f)
* (
Product g))
proof
let n be
Nat, f,g be n
-element
complex-valued
FinSequence;
reconsider f as
FinSequence of
COMPLEX by
RVSUM_1: 146;
reconsider g as
FinSequence of
COMPLEX by
RVSUM_1: 146;
(
Product (f
(#) g))
= ((
Product f)
* (
Product g)) by
RVSUM_2: 48;
hence thesis;
end;
theorem ::
NEWTON04:64
SAB: for a,b be
Real, n be
Nat holds ((a,b)
Subnomial n)
= (
Rev ((b,a)
Subnomial n))
proof
let a,b be
Real, n be
Nat;
A1: (
dom ((a,b)
Subnomial n))
= (
dom (
Newton_Coeff n)) & (
dom ((b,a)
Subnomial n))
= (
dom (
Newton_Coeff n)) by
DOMN;
then
A2: (
dom ((a,b)
Subnomial n))
= (
dom (
Rev ((b,a)
Subnomial n))) by
FINSEQ_5: 57;
for i be
object st i
in (
dom ((a,b)
Subnomial n)) holds (((a,b)
Subnomial n)
. i)
= ((
Rev ((b,a)
Subnomial n))
. i)
proof
let i be
object such that
B1: i
in (
dom ((a,b)
Subnomial n));
reconsider i as
Nat by
B1;
reconsider m = (i
- 1) as
Nat by
B1,
FINSEQ_3: 26;
((
len ((a,b)
Subnomial ((n
+ 1)
- 1)))
- (m
+ 1)) is
Element of
NAT by
B1,
FINSEQ_3: 26;
then
reconsider l = (n
- m) as
Nat;
set k = (l
+ 1);
B2: i
in (
dom (
Rev ((b,a)
Subnomial ((n
+ 1)
- 1)))) by
A1,
FINSEQ_5: 57,
B1;
(k
+ i)
= ((
len ((b,a)
Subnomial ((n
+ 1)
- 1)))
+ 1)
.= ((
len (
Rev ((b,a)
Subnomial ((n
+ 1)
- 1))))
+ 1) by
FINSEQ_5:def 3;
then
B3: k
in (
dom (
Rev (
Rev ((b,a)
Subnomial ((n
+ 1)
- 1))))) by
B2,
FINSEQ_5: 59;
B4: l
= (k
- 1);
B5: m
= (n
- l);
(((a,b)
Subnomial n)
. i)
= ((a
|^ l)
* (b
|^ m)) by
B1,
Def2
.= (((b,a)
Subnomial n)
. (((
len ((b,a)
Subnomial ((n
+ 1)
- 1)))
- i)
+ 1)) by
B3,
B4,
B5,
Def2
.= ((
Rev ((b,a)
Subnomial n))
. i) by
FINSEQ_5: 58,
A1,
B1;
hence thesis;
end;
hence thesis by
A2,
FUNCT_1: 2;
end;
registration
let n be
Nat, i be
Nat;
reduce (((1,1)
Subnomial (n
+ i))
. (i
+ 1)) to 1;
reducibility
proof
A1: (1
+
0 )
<= (1
+ i) & ((i
+ 1)
+
0 )
<= ((i
+ 1)
+ n) by
XREAL_1: 6;
(
len ((1,1)
Subnomial (((n
+ i)
+ 1)
- 1)))
= ((n
+ i)
+ 1);
then (i
+ 1)
in (
dom ((1,1)
Subnomial (n
+ i))) by
A1,
FINSEQ_3: 25;
then (((1,1)
Subnomial (n
+ i))
. (i
+ 1))
= (1
|^ (n
+ i)) by
CONST;
hence thesis;
end;
end
registration
let n be
Nat, i be non
zero
Nat;
reduce (((1,(
- 1))
Subnomial ((2
* i)
+ n))
. (2
* i)) to (
- 1);
reducibility
proof
A1: (
len ((1,(
- 1))
Subnomial ((((2
* i)
+ n)
+ 1)
- 1)))
= (((2
* i)
+ n)
+ 1);
(i
+ i)
>= (1
+
0 ) & ((2
* i)
+ (n
+ 1))
>= ((2
* i)
+
0 ) by
XREAL_1: 6,
NAT_1: 14;
then
A2: (2
* i)
in (
dom ((1,(
- 1))
Subnomial ((2
* i)
+ n))) by
A1,
FINSEQ_3: 25;
reconsider k = ((2
* i)
- 1) as
odd
Nat;
(n
+ 1)
= (((2
* i)
+ n)
- k);
then (((1,(
- 1))
Subnomial (n
+ (2
* i)))
. (2
* i))
= ((1
|^ (n
+ 1))
* ((
- 1)
|^ k)) by
A2,
Def2
.= (1
* (
- 1));
hence thesis;
end;
end
registration
let n be
Nat, i be
odd
Nat;
reduce (((1,(
- 1))
Subnomial (n
+ i))
. i) to 1;
reducibility
proof
A1: (
len ((1,(
- 1))
Subnomial (((n
+ i)
+ 1)
- 1)))
= ((n
+ i)
+ 1);
i
>= 1 & (i
+ (n
+ 1))
>= (i
+
0 ) by
XREAL_1: 6,
NAT_1: 14;
then
A2: i
in (
dom ((1,(
- 1))
Subnomial (i
+ n))) by
A1,
FINSEQ_3: 25;
reconsider k = (i
- 1) as
even
Nat;
(n
+ 1)
= ((i
+ n)
- k);
then (((1,(
- 1))
Subnomial (n
+ i))
. i)
= ((1
|^ (n
+ 1))
* ((
- 1)
|^ k)) by
A2,
Def2
.= (1
* 1);
hence thesis;
end;
end
registration
let a be
Real, n be
Nat;
cluster (n
|-> a) ->
constant;
coherence
proof
for i,j be
object st i
in (
dom (n
|-> a)) & j
in (
dom (n
|-> a)) holds ((n
|-> a)
. i)
= ((n
|-> a)
. j)
proof
let i,j be
object such that
A1: i
in (
dom (n
|-> a)) & j
in (
dom (n
|-> a));
reconsider i as
Nat by
A1;
reconsider j as
Nat by
A1;
(
dom (n
|-> a))
= (
Seg (
len (n
|-> a))) by
FINSEQ_1:def 3;
then ((n
|-> a)
. i)
= a & ((n
|-> a)
. j)
= a by
A1,
FINSEQ_2: 57;
hence thesis;
end;
hence thesis by
FUNCT_1:def 10;
end;
cluster ((a,a)
Subnomial n) ->
constant;
coherence
proof
((a,a)
Subnomial n)
= ((n
+ 1)
|-> (a
|^ n)) by
CONST1;
hence thesis;
end;
end
registration
let a,b be non
negative
Real;
let n,k be
Nat;
cluster (((a,b)
In_Power n)
. k) -> non
negative;
coherence
proof
per cases ;
suppose
A1: k
in (
dom ((a,b)
In_Power n));
then k
>= 1 by
FINSEQ_3: 25;
then
reconsider l = (k
- 1) as
Nat;
(
len ((a,b)
In_Power n))
>= (l
+ 1) by
FINSEQ_3: 25,
A1;
then (n
+ 1)
>= (l
+ 1) by
NEWTON:def 4;
then
reconsider m = (n
- l) as
Element of
NAT by
XREAL_1: 6,
NAT_1: 21;
(((a,b)
In_Power n)
. k)
= (((n
choose l)
* (a
|^ m))
* (b
|^ l)) by
A1,
NEWTON:def 4;
hence thesis;
end;
suppose not k
in (
dom ((a,b)
In_Power n));
hence thesis by
FUNCT_1:def 2;
end;
end;
cluster (((a,b)
Subnomial n)
. k) -> non
negative;
coherence
proof
(((a,b)
Subnomial n)
. k)
= ((((a,b)
In_Power n)
. k)
/ ((
Newton_Coeff n)
. k)) by
VALUED_1: 17;
hence thesis;
end;
end
theorem ::
NEWTON04:65
SAA: for a be
Real, n be
Nat holds (
Sum ((a,a)
Subnomial n))
= ((n
+ 1)
* (a
|^ n))
proof
let a be
Real, n be
Nat;
A1: (n
+ 1)
= (
len ((a,a)
Subnomial ((n
+ 1)
- 1)));
(n
+ 1)
>= (
0
+ 1) by
XREAL_1: 6;
then
A2: (n
+ 1)
in (
dom ((a,a)
Subnomial n)) by
A1,
FINSEQ_3: 25;
(n
+ 1) is
set & (n
+ 1)
in (
dom ((a,a)
Subnomial n)) & (((a,a)
Subnomial n)
. (n
+ 1))
= (a
|^ n) by
A2,
CONST;
then (
the_value_of ((a,a)
Subnomial n))
= (a
|^ n) by
FUNCT_1:def 12;
hence thesis by
A1,
RVSUM_3: 7;
end;
theorem ::
NEWTON04:66
ES: for a be
Real, n be
even
Nat holds (
Sum ((a,(
- a))
Subnomial n))
= (a
|^ n)
proof
let a be
Real, n be
even
Nat;
per cases ;
suppose
A1: a is
zero;
per cases ;
suppose
B1: n
=
0 ;
(
Sum ((a,(
- a))
Subnomial n))
= ((
0
+ 1)
* (a
|^ n)) by
A1,
B1,
SAA;
hence thesis;
end;
suppose
B1: n
>
0 ;
((a,(
- a))
Subnomial n)
= ((
len ((
0 ,
0 )
Subnomial ((n
+ 1)
- 1)))
|->
0 ) by
B1,
A1;
hence thesis by
A1,
B1,
NAT_1: 14,
NEWTON: 11;
end;
end;
suppose
A1: not a is
zero;
((a
- (
- a))
* (
Sum ((a,(
- a))
Subnomial n)))
= ((a
|^ (n
+ 1))
- (((
- 1)
* a)
|^ (n
+ 1))) by
SumS
.= ((a
|^ (n
+ 1))
- (((
- 1)
|^ (n
+ 1))
* (a
|^ (n
+ 1)))) by
NEWTON: 7
.= (2
* (a
|^ (n
+ 1)))
.= (2
* (a
* (a
|^ n))) by
NEWTON: 6
.= ((2
* a)
* (a
|^ n));
hence thesis by
A1,
XCMPLX_1: 5;
end;
end;
registration
let n be
even
Nat;
reduce (
Sum ((1,(
- 1))
Subnomial n)) to 1;
reducibility
proof
(
Sum ((1,(
- 1))
Subnomial n))
= (1
|^ n) by
ES;
hence thesis;
end;
end
registration
let a be
Real, n be
odd
Nat;
cluster (
Sum ((a,(
- a))
Subnomial n)) ->
zero;
coherence
proof
per cases ;
suppose a is
zero;
then ((a,(
- a))
Subnomial n)
= ((
len ((
0 ,
0 )
Subnomial ((n
+ 1)
- 1)))
|->
0 );
hence thesis;
end;
suppose not a is
zero;
then
A1: (2
* a)
<>
0 ;
((a
- (
- a))
* (
Sum ((a,(
- a))
Subnomial n)))
= ((a
|^ (n
+ 1))
- (((
- 1)
* a)
|^ (n
+ 1))) by
SumS
.= ((a
|^ (n
+ 1))
- (((
- 1)
|^ (n
+ 1))
* (a
|^ (n
+ 1)))) by
NEWTON: 7
.= ((a
|^ (n
+ 1))
- (1
* (a
|^ (n
+ 1))));
hence thesis by
A1;
end;
end;
end
registration
let n be
Nat;
reduce (
Sum ((1,1)
Subnomial ((n
+ 1)
- 1))) to (n
+ 1);
reducibility
proof
(
Sum ((1,1)
Subnomial n))
= ((n
+ 1)
* (1
|^ n)) by
SAA;
hence thesis;
end;
end
registration
let n be
Nat;
cluster (
Sum (
Newton_Coeff n)) -> non
zero;
coherence
proof
set f = (
Newton_Coeff n);
0
in
REAL by
XREAL_0:def 1;
then
reconsider g = (n
|->
0 ) as
FinSequence of
REAL by
FINSEQ_2: 63;
A1: for x be
Nat holds (f
. x)
>= ((n
|->
0 )
. x);
(f
. (
0
+ 1))
> (g
. (
0
+ 1));
then (
Sum f)
> (
Sum (n
|->
0 )) by
A1,
NYS1;
hence thesis;
end;
end
registration
let a,b be non
negative
Real, n be
Nat;
cluster ((a,b)
Subnomial n) ->
nonnegative-yielding;
coherence
proof
for r be
Real st r
in (
rng ((a,b)
Subnomial n)) holds r
>=
0
proof
let r be
Real such that
B1: r
in (
rng ((a,b)
Subnomial n));
ex k be
object st k
in (
dom ((a,b)
Subnomial n)) & r
= (((a,b)
Subnomial n)
. k) by
B1,
FUNCT_1:def 3;
hence thesis;
end;
hence thesis by
PARTFUN3:def 4;
end;
cluster ((a,b)
In_Power n) ->
nonnegative-yielding;
coherence
proof
for r be
Real st r
in (
rng ((a,b)
In_Power n)) holds r
>=
0
proof
let r be
Real such that
B1: r
in (
rng ((a,b)
In_Power n));
ex k be
object st k
in (
dom ((a,b)
In_Power n)) & r
= (((a,b)
In_Power n)
. k) by
B1,
FUNCT_1:def 3;
hence thesis;
end;
hence thesis by
PARTFUN3:def 4;
end;
cluster (
Sum ((a,b)
Subnomial n)) -> non
negative;
coherence ;
cluster (
Sum ((a,b)
In_Power n)) -> non
negative;
coherence ;
end
theorem ::
NEWTON04:67
SFE: for a,b be
Real holds (((a,b)
Subnomial n),((b,a)
Subnomial n))
are_fiberwise_equipotent
proof
let a,b be
Real;
(((a,b)
Subnomial n),(
Rev ((a,b)
Subnomial n)))
are_fiberwise_equipotent by
FFE;
hence thesis by
SAB;
end;
theorem ::
NEWTON04:68
for a,b be
Real holds (
Product ((a,b)
Subnomial n))
= (
Product ((b,a)
Subnomial n)) by
SFE,
RVSUM_3: 4;
theorem ::
NEWTON04:69
for a be non
negative
Real holds (
Product ((a,1)
Subnomial n))
= (a
|^ ((n
+ 1)
choose 2))
proof
let a be non
negative
Real;
set l = (a
|^ (n
choose 2)), f = ((a,1)
Subnomial n), g = ((1,a)
Subnomial n);
A1: (((n
+ 1)
choose 2)
* 2)
= (((n
* (n
+ 1))
/ 2)
* 2) by
NUMPOLY1: 72
.= (n
* (n
+ 1));
A2: ((a
|^ ((n
+ 1)
choose 2))
|^ 2)
= (a
|^ (((n
+ 1)
choose 2)
* 2)) by
NEWTON: 9
.= (
Product (((a
* 1),(a
* 1))
Subnomial n)) by
A1,
PRA
.= (
Product (f
(#) g)) by
ST
.= ((
Product f)
* (
Product g)) by
PRN
.= ((
Product f)
* (
Product f)) by
SFE,
RVSUM_3: 4
.= ((
Product f)
|^ 2) by
NEWTON: 81;
(a
|^ ((n
+ 1)
choose 2))
= (
sqrt ((
Product f)
|^ 2)) by
A2
.= (
Product f);
hence thesis;
end;
theorem ::
NEWTON04:70
ES: ((n
! )
* (k
! ))
<= ((n
+ k)
! )
proof
set s = ((n
+ k)
choose n), l = (n
+ k);
k
= (l
- n) & (n
+ k)
>= (n
+
0 ) by
XREAL_1: 6;
then
A2: (s
* ((n
! )
* (k
! )))
= ((((n
+ k)
! )
/ ((n
! )
* (k
! )))
* ((n
! )
* (k
! ))) by
NEWTON:def 3
.= ((n
+ k)
! ) by
XCMPLX_1: 87;
(s
* ((n
! )
* (k
! )))
>= (1
* ((n
! )
* (k
! ))) by
XREAL_1: 64,
NAT_1: 14;
hence thesis by
A2;
end;
theorem ::
NEWTON04:71
NCK: ((n
+ k)
choose k)
= 1 iff n
=
0 or k
=
0
proof
A1: n
<>
0 & k
<>
0 implies ((n
+ k)
choose k)
<> 1
proof
assume n
<>
0 & k
<>
0 ;
then
reconsider m = (n
- 1), l = (k
- 1) as
Nat;
((m
+ k)
choose k)
>= 1 & ((n
+ l)
choose l)
>= 1 by
NAT_1: 14;
then
B2: (((k
+ m)
choose k)
+ ((l
+ n)
choose l))
>= (1
+ 1) by
XREAL_1: 7;
(((m
+ k)
+ 1)
choose (l
+ 1))
= (((m
+ k)
choose k)
+ ((n
+ l)
choose l)) by
NEWTON: 22;
hence thesis by
B2;
end;
n
=
0 or k
=
0 implies ((n
+ k)
choose (k
* 1))
= 1;
hence thesis by
A1;
end;
theorem ::
NEWTON04:72
EZ: ((n
! )
* (k
! ))
= ((n
+ k)
! ) iff (n
=
0 or k
=
0 )
proof
n
= ((n
+ k)
- k) & (n
+ k)
>= (
0
+ k) by
XREAL_1: 6;
then (((n
+ k)
choose (k
* 1))
* ((n
! )
* (k
! )))
= ((((n
+ k)
! )
/ ((n
! )
* (k
! )))
* ((n
! )
* (k
! ))) by
NEWTON:def 3
.= ((n
+ k)
! ) by
XCMPLX_1: 87;
hence thesis by
NCK,
XCMPLX_1: 7;
end;
registration
let n,k be non
zero
Nat;
cluster (((n
+ k)
! )
- ((n
! )
* (k
! ))) ->
positive;
coherence
proof
((n
! )
* (k
! ))
<= ((n
+ k)
! ) by
ES;
then ((n
! )
* (k
! ))
< ((n
+ k)
! ) by
EZ,
XXREAL_0: 1;
then (((n
! )
* (k
! ))
- ((n
! )
* (k
! )))
< (((n
+ k)
! )
- ((n
! )
* (k
! ))) by
XREAL_1: 9;
then (((n
+ k)
! )
- ((n
! )
* (k
! )))
>
0 ;
hence thesis;
end;
end
theorem ::
NEWTON04:73
for a be
Real holds (
Sum ((a,a)
Subnomial n))
= ((
Sum ((1,1)
Subnomial n))
* (
Sum ((a,
0 )
In_Power n)))
proof
let a be
Real;
((
Sum ((1,1)
Subnomial n))
* (
Sum ((a,
0 )
In_Power ((n
+ 1)
- 1))))
= ((n
+ 1)
* ((a
+
0 )
|^ n)) by
NEWTON: 30;
hence thesis by
SAA;
end;
theorem ::
NEWTON04:74
for a,b,c be
Real holds (
Sum (((a
+ b),c)
In_Power n))
= (
Sum ((a,(b
+ c))
In_Power n))
proof
let a,b,c be
Real;
(
Sum (((a
+ b),c)
In_Power n))
= (((a
+ b)
+ c)
|^ n) by
NEWTON: 30
.= ((a
+ (b
+ c))
|^ n)
.= (
Sum ((a,(b
+ c))
In_Power n)) by
NEWTON: 30;
hence thesis;
end;
theorem ::
NEWTON04:75
NCI: ((
Newton_Coeff n)
. (i
+ 1))
= (n
choose i)
proof
per cases ;
suppose
B1: (i
+ 1)
in (
dom (
Newton_Coeff n));
then 1
<= (i
+ 1)
<= (
len (
Newton_Coeff n)) by
FINSEQ_3: 25;
then 1
<= (i
+ 1)
<= (n
+ 1) by
NEWTON:def 5;
then
reconsider k = ((n
+ 1)
- (i
+ 1)) as
Element of
NAT by
NAT_1: 21;
n
= (i
+ k) & i
= ((i
+ 1)
- 1);
hence thesis by
B1,
NEWTON:def 5;
end;
suppose
B1: not (i
+ 1)
in (
dom (
Newton_Coeff n));
then not 1
<= (i
+ 1)
<= (
len (
Newton_Coeff n)) by
FINSEQ_3: 25;
then not (
0
+ 1)
<= (i
+ 1)
<= (n
+ 1) by
NEWTON:def 5;
then not
0
<= i
<= n by
XREAL_1: 6;
then (n
choose i)
=
0 by
NEWTON:def 3;
hence thesis by
B1,
FUNCT_1:def 2;
end;
end;
theorem ::
NEWTON04:76
((2
* n)
choose n)
= (((2
* n)
! )
/ ((n
! )
|^ 2))
proof
A1: n
= ((2
* n)
- n);
(n
+ n)
>= (n
+
0 ) by
XREAL_1: 6;
then ((2
* n)
choose n)
= (((2
* n)
! )
/ ((n
! )
* (n
! ))) by
A1,
NEWTON:def 3;
hence thesis by
NEWTON: 81;
end;
theorem ::
NEWTON04:77
((
Newton_Coeff ((2
* n)
+ 1))
. (n
+ 1))
= ((
Newton_Coeff ((2
* n)
+ 1))
. (n
+ 2))
proof
reconsider k = ((2
* n)
+ 1) as
Nat;
A0: ((n
+ 1)
+ n)
>= ((n
+ 1)
+
0 ) & (n
+ (n
+ 1))
>= (n
+
0 ) by
XREAL_1: 6;
A2: (
len (
Newton_Coeff ((2
* n)
+ 1)))
= (((2
* n)
+ 1)
+ 1) by
NEWTON:def 5;
(1
+ (n
+ 1))
>= (1
+
0 ) & ((n
+ 2)
+ n)
>= ((n
+ 2)
+
0 ) by
XREAL_1: 6;
then
A4: (n
+ 2)
in (
dom (
Newton_Coeff ((2
* n)
+ 1))) & (n
+ 1)
= ((n
+ 2)
- 1) by
A2,
FINSEQ_3: 25;
(((2
* n)
+ 1)
- n)
= (n
+ 1);
then
reconsider l = (k
- n) as
Nat;
((
Newton_Coeff ((2
* n)
+ 1))
. (n
+ 1))
= (((2
* n)
+ 1)
choose n) by
NCI
.= (k
choose l) by
A0,
NEWTON: 20
.= ((
Newton_Coeff ((2
* n)
+ 1))
. (n
+ 2)) by
A4,
NEWTON:def 5;
hence thesis;
end;
theorem ::
NEWTON04:78
for a be non
zero
Integer st 1
<= k
<= n holds a
divides (((a,b)
Subnomial n)
. k)
proof
let a be non
zero
Integer;
A0: (
len ((a,b)
Subnomial n))
= (n
+ 1) by
Def2;
assume
A1: 1
<= k
<= n;
then
reconsider m = (k
- 1) as
Nat;
((k
- 1)
+ 1)
> ((k
- 1)
+
0 ) by
XREAL_1: 6;
then
consider l be
Nat such that
A2: n
= (m
+ l) by
A1,
XXREAL_0: 2,
NAT_1: 10;
(m
+ l)
>= (m
+ 1) by
A1,
A2;
then l
>= 1 by
XREAL_1: 6;
then
reconsider s = (l
- 1) as
Nat;
A4: l
= (n
- m) by
A2;
(k
+
0 )
<= (n
+ 1) by
XREAL_1: 7,
A1;
then k
in (
dom ((a,b)
Subnomial n)) by
A0,
A1,
FINSEQ_3: 25;
then (((a,b)
Subnomial n)
. k)
= ((a
|^ (s
+ 1))
* (b
|^ m)) by
Def2,
A4
.= ((a
* (a
|^ s))
* (b
|^ m)) by
NEWTON: 6
.= (a
* ((a
|^ s)
* (b
|^ m)));
hence thesis;
end;
theorem ::
NEWTON04:79
DIS: for a,b be
Integer holds (a
* b)
divides ((((a,b)
In_Power n)
. i)
- (((a,b)
Subnomial n)
. i))
proof
let a,b be
Integer;
per cases ;
suppose
A1: i
in (
dom ((a,b)
In_Power ((n
+ 1)
- 1)));
then
A1a: i
in (
dom ((a,b)
Subnomial ((n
+ 1)
- 1))) by
DOMN;
then
A1b: 1
<= i
<= (
len ((a,b)
Subnomial ((n
+ 1)
- 1))) by
FINSEQ_3: 25;
then
A1c: (1
- 1)
<= (i
- 1)
<= n by
XREAL_1: 9;
reconsider m = (i
- 1) as
Nat by
A1b;
(n
- m)
>= (m
- m) by
A1c,
XREAL_1: 9;
then
reconsider l = (n
- m) as
Nat by
INT_1: 3;
A2: (((a,b)
In_Power n)
. i)
= (((n
choose m)
* (a
|^ l))
* (b
|^ m)) by
A1,
NEWTON:def 4;
A3: ((((a,b)
In_Power n)
. i)
- (((a,b)
Subnomial n)
. i))
= ((((n
choose m)
* (a
|^ l))
* (b
|^ m))
- ((a
|^ l)
* (b
|^ m))) by
A1a,
Def2,
A2
.= (((n
choose m)
- 1)
* ((a
|^ l)
* (b
|^ m)));
per cases ;
suppose m
=
0 or m
= n;
then (n
choose m)
= 1 by
NEWTON: 19,
NEWTON: 21;
hence thesis by
A3,
INT_2: 12;
end;
suppose m
>
0 & m
<> n;
then
0
< m
< n by
A1c,
XXREAL_0: 1;
then m
>
0 & (n
- m)
> (m
- m) by
XREAL_1: 9;
then a
divides (a
|^ l) & b
divides (b
|^ m) by
NEWTON02: 14;
then (a
* b)
divides ((a
|^ l)
* (b
|^ m)) by
NEWTON02: 2;
hence thesis by
A3,
INT_2: 2;
end;
end;
suppose
A1: not i
in (
dom ((a,b)
In_Power ((n
+ 1)
- 1)));
then not i
in (
dom ((a,b)
Subnomial ((n
+ 1)
- 1))) by
DOMN;
then (((a,b)
In_Power n)
. i)
=
0 & (((a,b)
Subnomial n)
. i)
=
0 by
A1,
FUNCT_1:def 2;
hence thesis by
INT_2: 12;
end;
end;
theorem ::
NEWTON04:80
INT436: for f be
INT
-valued
FinSequence, a be
Integer st (for n be
Nat st n
in (
dom f) holds a
divides (f
. n)) holds a
divides (
Sum f)
proof
let f be
INT
-valued
FinSequence, a be
Integer such that
A1: for n be
Nat st n
in (
dom f) holds a
divides (f
. n);
reconsider f1 = f as
FinSequence of
REAL by
NEWTON02: 103;
(f1
. (
min_p f1))
in
INT by
INT_1:def 2;
then
reconsider k = (
min f1) as
Integer by
RFINSEQ2:def 4;
reconsider f2 = f as
FinSequence of
COMPLEX by
NEWTON02: 103;
reconsider g = (f2
- k) as
FinSequence of
INT by
NEWTON02: 103;
reconsider g as
FinSequence of
NAT by
NEWTON02: 103;
|.a.|
in
INT &
|.a.|
>=
0 by
INT_1:def 2;
then
reconsider l =
|.a.| as
Nat;
A1a: a
divides k
proof
per cases ;
suppose
B1: (
min_p f1)
in (
dom f1);
reconsider x = (
min_p f1) as
Nat;
a
divides (f
. x) by
B1,
A1;
hence thesis by
RFINSEQ2:def 4;
end;
suppose not (
min_p f1)
in (
dom f1);
then
0
= (f1
. (
min_p f1)) by
FUNCT_1:def 2
.= k by
RFINSEQ2:def 4;
hence thesis by
INT_2: 12;
end;
end;
m
in (
dom g) implies l
divides (g
. m)
proof
assume
B1: m
in (
dom g);
B2: m
in (
dom (f2
+ (
- k))) by
B1,
VALUED_1:def 3;
then m
in (
dom f) by
VALUED_1:def 2;
then a
divides (f
. m) & a
divides (
- k) by
A1,
A1a,
INT_2: 10;
then a
divides ((f
. m)
+ (
- k)) by
WSIERP_1: 4;
then a
divides ((f
+ (
- k))
. m) by
B2,
VALUED_1:def 2;
then a
divides ((f
- k)
. m) by
VALUED_1:def 3;
hence thesis by
WSIERP_1: 13;
end;
then
A2: a
divides (
Sum g) by
INT_4: 36,
WSIERP_1: 13;
A3: a
divides (k
* (
len g)) by
A1a,
INT_2: 2;
reconsider g as
FinSequence of
COMPLEX by
NEWTON02: 103;
(
Sum (g
+ k))
= ((
Sum g)
+ (k
* (
len g))) by
SFX;
hence thesis by
A2,
A3,
WSIERP_1: 4;
end;
theorem ::
NEWTON04:81
for a,b be
Integer holds ((a
* b)
* (a
- b))
divides (((a
- b)
* ((a
+ b)
|^ n))
- ((a
|^ (n
+ 1))
- (b
|^ (n
+ 1))))
proof
let a,b be
Integer;
A0: (
len ((a,b)
In_Power ((n
+ 1)
- 1)))
= (n
+ 1) & (
len ((a,b)
Subnomial ((n
+ 1)
- 1)))
= (n
+ 1);
reconsider R1 = ((a,b)
In_Power n) as
Element of ((n
+ 1)
-tuples_on
REAL ) by
A0,
FINSEQ_2: 92;
reconsider R2 = ((a,b)
Subnomial n) as
Element of ((n
+ 1)
-tuples_on
REAL ) by
A0,
FINSEQ_2: 92;
A1: (
Sum (((a,b)
In_Power n)
- ((a,b)
Subnomial n)))
= (
Sum (R1
- R2))
.= ((
Sum ((a,b)
In_Power n))
- (
Sum ((a,b)
Subnomial n))) by
RVSUM_1: 90;
reconsider f = (((a,b)
In_Power n)
- ((a,b)
Subnomial n)) as
INT
-valued
FinSequence;
for i be
Nat st i
in (
dom f) holds (a
* b)
divides ((((a,b)
In_Power n)
- ((a,b)
Subnomial n))
. i)
proof
let i be
Nat such that
B1: i
in (
dom f);
(a
* b)
divides ((((a,b)
In_Power n)
. i)
- (((a,b)
Subnomial n)
. i)) by
DIS;
hence thesis by
B1,
VALUED_1: 13;
end;
then
A2: (a
* b)
divides (
Sum (((a,b)
In_Power n)
- ((a,b)
Subnomial n))) by
INT436;
(((a
- b)
* ((a
+ b)
|^ n))
- ((a
|^ (n
+ 1))
- (b
|^ (n
+ 1))))
= (((a
- b)
* ((a
+ b)
|^ n))
- ((a
- b)
* (
Sum ((a,b)
Subnomial n)))) by
SumS
.= (((a
- b)
* (
Sum ((a,b)
In_Power n)))
- ((a
- b)
* (
Sum ((a,b)
Subnomial n)))) by
NEWTON: 30
.= ((a
- b)
* ((
Sum ((a,b)
In_Power n))
- (
Sum ((a,b)
Subnomial n))));
hence thesis by
A1,
A2,
NEWTON02: 2;
end;
theorem ::
NEWTON04:82
ILS: for a,b be non
negative
Real holds (((a,b)
In_Power n)
. i)
>= (((a,b)
Subnomial n)
. i)
proof
let a,b be non
negative
Real;
per cases ;
suppose i
in (
dom (
Newton_Coeff n));
then ((
Newton_Coeff n)
. i)
<>
0 by
D1;
then (((
Newton_Coeff n)
. i)
* (((a,b)
Subnomial n)
. i))
>= (1
* (((a,b)
Subnomial n)
. i)) by
NAT_1: 14,
XREAL_1: 64;
then (((
Newton_Coeff n)
(#) ((a,b)
Subnomial n))
. i)
>= (((a,b)
Subnomial n)
. i) by
VALUED_1: 5;
hence thesis by
INS;
end;
suppose not i
in (
dom (
Newton_Coeff n));
then not i
in ((
dom ((a,b)
In_Power n))
/\ (
dom (
Newton_Coeff n)));
then not i
in (
dom ((a,b)
Subnomial n)) by
VALUED_1: 16;
hence thesis by
FUNCT_1:def 2;
end;
end;
theorem ::
NEWTON04:83
SST: for a,b be non
negative
Real holds ((a
+ b)
|^ n)
>= (
Sum ((a,b)
Subnomial n))
proof
let a,b be non
negative
Real;
for i be
Nat holds (((a,b)
In_Power n)
. i)
>= (((a,b)
Subnomial n)
. i) by
ILS;
then (
Sum ((a,b)
In_Power n))
>= (
Sum ((a,b)
Subnomial n)) by
NYS;
hence thesis by
NEWTON: 30;
end;
theorem ::
NEWTON04:84
SLT: for a,b be non
negative
Real, n be non
zero
Nat holds ((a
|^ n)
+ (b
|^ n))
<= (
Sum ((a,b)
Subnomial n))
proof
let a,b be non
negative
Real, n be non
zero
Nat;
reconsider f = ((a,b)
Subnomial n) as
nonnegative-yielding
FinSequence of
REAL ;
(
len f)
= (n
+ 1) by
Def2;
then
A1: (
Sum f)
= (((
Sum ((f
| n)
/^ 1))
+ (f
. 1))
+ (f
. (n
+ 1))) by
NEWTON02: 115;
A2: (((a,b)
Subnomial n)
. 1)
= (((a,b)
In_Power n)
. 1) by
NS
.= (a
|^ n) by
NEWTON: 28;
A3: (((a,b)
Subnomial n)
. (n
+ 1))
= (((a,b)
In_Power n)
. (n
+ 1)) by
NS
.= (b
|^ n) by
NEWTON: 29;
((
Sum ((f
| n)
/^ 1))
+ ((a
|^ n)
+ (b
|^ n)))
>= (
0
+ ((a
|^ n)
+ (b
|^ n))) by
XREAL_1: 6;
hence thesis by
A1,
A2,
A3;
end;
PLT: for a,b be non
negative
Real, n be non
zero
Nat holds (a
* (((a
+ b)
+ b)
|^ n))
>= (((a
+ b)
|^ (n
+ 1))
- (b
|^ (n
+ 1)))
>= (a
* (((a
+ b)
|^ n)
+ (b
|^ n)))
proof
let a,b be non
negative
Real, n be non
zero
Nat;
(((a
+ b)
- b)
* (
Sum (((a
+ b),b)
Subnomial n)))
= (((a
+ b)
|^ (n
+ 1))
- (b
|^ (n
+ 1))) by
SumS;
hence thesis by
SST,
SLT,
XREAL_1: 64;
end;
theorem ::
NEWTON04:85
for a,b be non
negative
Real, n be non
zero
Nat holds ((a
* ((a
+ (2
* b))
|^ n))
+ (b
|^ (n
+ 1)))
>= ((a
+ b)
|^ (n
+ 1))
proof
let a,b be non
negative
Real, n be non
zero
Nat;
((a
* (((a
+ b)
+ b)
|^ n))
+ (b
|^ (n
+ 1)))
>= ((((a
+ b)
|^ (n
+ 1))
- (b
|^ (n
+ 1)))
+ (b
|^ (n
+ 1))) by
PLT,
XREAL_1: 6;
hence thesis;
end;
theorem ::
NEWTON04:86
for a,b be non
negative
Real, n be non
zero
Nat holds ((a
* ((a
+ b)
|^ n))
+ ((a
+ b)
* (b
|^ n)))
<= ((a
+ b)
|^ (n
+ 1))
proof
let a,b be non
negative
Real, n be non
zero
Nat;
((a
* (((a
+ b)
|^ n)
+ (b
|^ n)))
+ (b
* (b
|^ n)))
<= ((((a
+ b)
|^ (n
+ 1))
- (b
|^ (n
+ 1)))
+ (b
* (b
|^ n))) by
PLT,
XREAL_1: 6;
then ((a
* ((a
+ b)
|^ n))
+ ((a
+ b)
* (b
|^ n)))
<= ((((a
+ b)
|^ (n
+ 1))
- (b
|^ (n
+ 1)))
+ (b
|^ (n
+ 1))) by
NEWTON: 6;
hence thesis;
end;
theorem ::
NEWTON04:87
SSI: for a,b be
positive
Real, n be non
zero
Nat holds (
Sum ((a,b)
Subnomial (n
+ 1)))
< (
Sum ((a,b)
In_Power (n
+ 1)))
proof
let a,b be
positive
Real, n be non
zero
Nat;
A1: for i be
Nat holds (((a,b)
Subnomial (n
+ 1))
. i)
<= (((a,b)
In_Power (n
+ 1))
. i) by
ILS;
reconsider h = ((a,b)
Subnomial (n
+ 1)) as
nonnegative-yielding
FinSequence of
REAL ;
reconsider g = ((a,b)
In_Power (n
+ 1)) as
nonnegative-yielding
FinSequence of
REAL ;
(1
+
0 )
< (1
+ n) by
XREAL_1: 6;
then (1
* (((a,b)
Subnomial (n
+ 1))
. (n
+ 1)))
< (((
Newton_Coeff (n
+ 1))
. (n
+ 1))
* (((a,b)
Subnomial (n
+ 1))
. (n
+ 1))) by
XREAL_1: 68;
then (((a,b)
Subnomial (n
+ 1))
. (n
+ 1))
< (((
Newton_Coeff (n
+ 1))
(#) ((a,b)
Subnomial (n
+ 1)))
. (n
+ 1)) by
VALUED_1: 5;
then (((a,b)
Subnomial (n
+ 1))
. (n
+ 1))
< (((a,b)
In_Power (n
+ 1))
. (n
+ 1)) by
INS;
hence thesis by
A1,
NYS1;
end;
theorem ::
NEWTON04:88
for a,b be
positive
Real, n be non
zero
Nat holds (
Sum (((a
+ b),
0 )
Subnomial (n
+ 1)))
> (
Sum ((a,b)
Subnomial (n
+ 1)))
proof
let a,b be
positive
Real, n be non
zero
Nat;
(((a
+ b)
-
0 )
* (
Sum (((a
+ b),
0 )
Subnomial (n
+ 1))))
= (((a
+ b)
|^ ((n
+ 1)
+ 1))
- (
0
|^ ((n
+ 1)
+ 1))) by
SumS;
then ((a
+ b)
* (
Sum (((a
+ b),
0 )
Subnomial (n
+ 1))))
= ((a
+ b)
* ((a
+ b)
|^ (n
+ 1))) by
NEWTON: 6;
then (
Sum (((a
+ b),
0 )
Subnomial (n
+ 1)))
= ((a
+ b)
|^ (n
+ 1)) by
XCMPLX_1: 5;
then (
Sum (((a
+ b),
0 )
Subnomial (n
+ 1)))
= (
Sum ((a,b)
In_Power (n
+ 1))) by
NEWTON: 30;
hence thesis by
SSI;
end;
theorem ::
NEWTON04:89
for a,b be
Real, n,i be
Nat holds (((a,b)
Subnomial n)
. i)
<= (((
|.a.|,
|.b.|)
Subnomial n)
. i)
proof
let a,b be
Real, n,i be
Nat;
reconsider f = ((
|.a.|,
|.b.|)
Subnomial n) as
nonnegative-yielding
FinSequence of
REAL ;
per cases ;
suppose not i
in (
dom ((a,b)
Subnomial n));
hence thesis by
FUNCT_1:def 2;
end;
suppose
A0: i
in (
dom ((a,b)
Subnomial n));
then
A1: 1
<= i
<= (
len ((a,b)
Subnomial ((n
+ 1)
- 1))) by
FINSEQ_3: 25;
then
reconsider l = (i
- 1) as
Nat;
ex k be
Nat st (n
+ 1)
= ((l
+ 1)
+ k) by
A1,
NAT_1: 10;
then
reconsider k = ((n
+ 1)
- (l
+ 1)) as
Nat;
A2: k
= (n
- l) & l
= (i
- 1);
A3: (
|.a.|
|^ k)
=
|.(a
|^ k).| & (
|.b.|
|^ l)
=
|.(b
|^ l).| by
TAYLOR_2: 1;
A4: (
dom ((a,b)
Subnomial n))
= (
dom (
Newton_Coeff n)) by
DOMN
.= (
dom ((
|.a.|,
|.b.|)
Subnomial n)) by
DOMN;
|.((a
|^ k)
* (b
|^ l)).|
>= ((a
|^ k)
* (b
|^ l)) by
ABSVALUE: 4;
then (
|.(a
|^ k).|
*
|.(b
|^ l).|)
>= ((a
|^ k)
* (b
|^ l)) by
COMPLEX1: 65;
then ((
|.a.|
|^ k)
* (
|.b.|
|^ l))
>= (((a,b)
Subnomial (l
+ k))
. (l
+ 1)) by
A0,
A2,
A3,
LmS1;
hence thesis by
A0,
A2,
A4,
LmS1;
end;
end;
theorem ::
NEWTON04:90
for a be
Real, n be
Nat, i be
odd
Nat holds (((a,(
- a))
Subnomial (n
+ i))
. i)
= (a
|^ (n
+ i))
proof
let a be
Real, n be
Nat, i be
odd
Nat;
A1: (
len ((a,a)
Subnomial (((n
+ i)
+ 1)
- 1)))
= ((n
+ i)
+ 1) & (
len ((a,(
- a))
Subnomial (((n
+ i)
+ 1)
- 1)))
= ((n
+ i)
+ 1);
i
>= 1 & (i
+ (n
+ 1))
>= (i
+
0 ) by
XREAL_1: 6,
NAT_1: 14;
then
A2: i
in (
dom ((a,a)
Subnomial (i
+ n))) & i
in (
dom ((a,(
- a))
Subnomial (i
+ n))) by
A1,
FINSEQ_3: 25;
then ((((a
* 1),((
- 1)
* a))
Subnomial (n
+ i))
. i)
= ((((a,a)
Subnomial (n
+ i))
. i)
* (((1,(
- 1))
Subnomial (n
+ i))
. i)) by
STT
.= (a
|^ (n
+ i)) by
A2,
CONST;
hence thesis;
end;
theorem ::
NEWTON04:91
for a be
Real, n be
Nat, i be non
zero
Nat holds (((a,(
- a))
Subnomial (n
+ (2
* i)))
. (2
* i))
= (
- (a
|^ (n
+ (2
* i))))
proof
let a be
Real, n be
Nat, i be non
zero
Nat;
A1: (
len ((a,a)
Subnomial (((n
+ (2
* i))
+ 1)
- 1)))
= ((n
+ (2
* i))
+ 1) & (
len ((a,(
- a))
Subnomial (((n
+ (2
* i))
+ 1)
- 1)))
= ((n
+ (2
* i))
+ 1);
(2
* i)
>= 1 & ((2
* i)
+ (n
+ 1))
>= ((2
* i)
+
0 ) by
XREAL_1: 6,
NAT_1: 14;
then
A2: (2
* i)
in (
dom ((a,a)
Subnomial ((2
* i)
+ n))) & (2
* i)
in (
dom ((a,(
- a))
Subnomial ((2
* i)
+ n))) by
A1,
FINSEQ_3: 25;
then ((((a
* 1),((
- 1)
* a))
Subnomial (n
+ (2
* i)))
. (2
* i))
= ((((a,a)
Subnomial (n
+ (2
* i)))
. (2
* i))
* (((1,(
- 1))
Subnomial (n
+ (2
* i)))
. (2
* i))) by
STT
.= ((a
|^ (n
+ (2
* i)))
* (
- 1)) by
A2,
CONST;
hence thesis;
end;
theorem ::
NEWTON04:92
SAN: for a,b be
Real, n be
Nat holds ((a,b)
Subnomial (n
+ 1))
= (
<*(a
|^ (n
+ 1))*>
^ (b
* ((a,b)
Subnomial n)))
proof
let a,b be
Real, n be
Nat;
A0: (
dom ((a,b)
Subnomial n))
= (
dom (b
* ((a,b)
Subnomial n))) by
VALUED_1:def 5;
A1: (
dom ((a,b)
Subnomial (n
+ 1)))
= (
dom (
<*(a
|^ (n
+ 1))*>
^ (b
* ((a,b)
Subnomial n))))
proof
(
len ((a,b)
Subnomial (((n
+ 1)
+ 1)
- 1)))
= (1
+ (
len ((a,b)
Subnomial ((n
+ 1)
- 1))))
.= ((1
* (
len
<*(a
|^ (n
+ 1))*>))
+ (
len ((a,b)
Subnomial n)))
.= ((
len
<*(a
|^ (n
+ 1))*>)
+ (
len (b
* ((a,b)
Subnomial n)))) by
A0,
FINSEQ_3: 29
.= (
len (
<*(a
|^ (n
+ 1))*>
^ (b
* ((a,b)
Subnomial n)))) by
FINSEQ_1: 22;
hence thesis by
FINSEQ_3: 29;
end;
for i be
object st i
in (
dom ((a,b)
Subnomial (n
+ 1))) holds (((a,b)
Subnomial (n
+ 1))
. i)
= ((
<*(a
|^ (n
+ 1))*>
^ (b
* ((a,b)
Subnomial n)))
. i)
proof
let i be
object such that
B1: i
in (
dom ((a,b)
Subnomial (n
+ 1)));
reconsider i as non
zero
Nat by
B1,
FINSEQ_3: 25;
B2: 1
<= i
<= (
len ((a,b)
Subnomial (((n
+ 1)
+ 1)
- 1))) by
B1,
FINSEQ_3: 25;
reconsider j = (i
- 1) as
Nat;
B3: (j
+ 1)
<= ((n
+ 1)
+ 1) by
B2;
then ex k be
Nat st (n
+ 1)
= (j
+ k) by
XREAL_1: 6,
NAT_1: 10;
then
reconsider k = ((n
+ 1)
- j) as
Nat;
set m = (n
+ 1);
per cases ;
suppose
C1: j
=
0 ;
then
C2: ((
len ((a,b)
Subnomial ((m
+ 1)
- 1)))
- 1)
= m & j
= (1
- 1) & (m
- j)
= m;
(1
+
0 )
<= (1
+ m) by
XREAL_1: 6;
then 1
<= (
len ((a,b)
Subnomial ((m
+ 1)
- 1)));
then 1
in (
dom ((a,b)
Subnomial m)) by
FINSEQ_3: 25;
then (((a,b)
Subnomial m)
. 1)
= ((a
|^ (n
+ 1))
* (1
* (b
|^
0 ))) by
C2,
Def2
.= ((
<*(a
|^ (n
+ 1))*>
^ (b
* ((a,b)
Subnomial n)))
. 1);
hence thesis by
C1;
end;
suppose
C0: j
>
0 ;
then (
len ((a,b)
Subnomial ((n
+ 1)
- 1)))
>= j
>= (
0
+ 1) by
B3,
XREAL_1: 6,
NAT_1: 13;
then
C1: j
in (
dom ((a,b)
Subnomial ((n
+ 1)
- 1))) by
FINSEQ_3: 25;
then
C2: j
in (
dom (b
* ((a,b)
Subnomial ((n
+ 1)
- 1)))) by
VALUED_1:def 5;
then
C3: (
len (b
* ((a,b)
Subnomial ((n
+ 1)
- 1))))
>= j
>= 1 by
FINSEQ_3: 25;
reconsider x = (j
- 1) as
Nat by
C0;
C5: n
= (x
+ k) & k
= (n
- x);
(1
* (
len
<*(a
|^ (n
+ 1))*>))
= 1;
then ((
<*(a
|^ (n
+ 1))*>
^ (b
* ((a,b)
Subnomial n)))
. (1
+ j))
= ((b
* ((a,b)
Subnomial n))
. j) by
C3,
FINSEQ_1: 65
.= (b
* (((a,b)
Subnomial ((n
+ 1)
- 1))
. j)) by
C2,
VALUED_1:def 5
.= (b
* ((a
|^ k)
* (b
|^ x))) by
C1,
C5,
Def2
.= ((a
|^ k)
* (b
* (b
|^ x)))
.= ((a
|^ k)
* (b
|^ (x
+ 1))) by
NEWTON: 6
.= (((a,b)
Subnomial (((n
+ 1)
+ 1)
- 1))
. i) by
B1,
Def2;
hence thesis;
end;
end;
hence thesis by
A1,
FUNCT_1: 2;
end;
theorem ::
NEWTON04:93
for a,b be
Real, n be
Nat holds ((a,b)
Subnomial (n
+ 2))
= ((
<*(a
|^ (n
+ 2))*>
^ ((a
* b)
* ((a,b)
Subnomial n)))
^
<*(b
|^ (n
+ 2))*>)
proof
let a,b be
Real, n be
Nat;
reconsider f = ((b,a)
Subnomial n) as
complex-valued
FinSequence;
A0: (
Rev ((b,a)
Subnomial (n
+ 1)))
= (
Rev (
<*(b
|^ (n
+ 1))*>
^ (a
* ((b,a)
Subnomial n)))) by
SAN
.= ((
Rev (a
* ((b,a)
Subnomial n)))
^ (
Rev
<*(b
|^ (n
+ 1))*>)) by
FINSEQ_5: 64
.= ((a
* (
Rev ((b,a)
Subnomial n)))
^ (
Rev
<*(b
|^ (n
+ 1))*>)) by
CREV
.= ((a
* ((a,b)
Subnomial n))
^
<*(b
|^ (n
+ 1))*>) by
SAB;
((a,b)
Subnomial ((n
+ 1)
+ 1))
= (
<*(a
|^ (n
+ 2))*>
^ (b
* ((a,b)
Subnomial (n
+ 1)))) by
SAN
.= (
<*(a
|^ (n
+ 2))*>
^ (b
* (
Rev ((b,a)
Subnomial (n
+ 1))))) by
SAB
.= (
<*(a
|^ (n
+ 2))*>
^ ((b
* (a
* ((a,b)
Subnomial n)))
^ (b
*
<*(b
|^ (n
+ 1))*>))) by
A0,
ADP
.= ((
<*(a
|^ (n
+ 2))*>
^ (b
* (a
* ((a,b)
Subnomial n))))
^ (b
*
<*(b
|^ (n
+ 1))*>)) by
FINSEQ_1: 32
.= ((
<*(a
|^ (n
+ 2))*>
^ (b
* (a
* ((a,b)
Subnomial n))))
^
<*(b
* (b
|^ (n
+ 1)))*>) by
AMP
.= ((
<*(a
|^ (n
+ 2))*>
^ (b
* (a
* ((a,b)
Subnomial n))))
^
<*(b
|^ ((n
+ 1)
+ 1))*>) by
NEWTON: 6
.= ((
<*(a
|^ (n
+ 2))*>
^ ((b
* a)
* ((a,b)
Subnomial n)))
^
<*(b
|^ ((n
+ 1)
+ 1))*>) by
VALUED_2: 16;
hence thesis;
end;