hilb10_4.miz
begin
reserve i,j,n,n1,n2,m,k,l,u for
Nat,
r,r1,r2 for
Real,
x,y for
Integer,
a,b for non
trivial
Nat,
F for
XFinSequence,
cF,cF1,cF2 for
complex-valued
XFinSequence,
c,c1,c2 for
Complex;
registration
let c1, c2;
cluster
<%c1, c2%> ->
complex-valued;
coherence
proof
c1
in
COMPLEX & c2
in
COMPLEX by
XCMPLX_0:def 2;
hence thesis;
end;
end
definition
let cF be
XFinSequence;
::
HILB10_4:def1
func
Product cF ->
Element of
COMPLEX equals (
multcomplex
"**" cF);
coherence ;
end
theorem ::
HILB10_4:1
Th1: cF is
real-valued implies (
Product cF)
= (
multreal
"**" cF)
proof
assume
A1: cF is
real-valued;
per cases by
NAT_1: 14;
suppose
A2: (
len cF)
=
0 ;
hence (
multreal
"**" cF)
= (
the_unity_wrt
multcomplex ) by
BINOP_2: 6,
BINOP_2: 7,
AFINSQ_2:def 8,
A1
.= (
Product cF) by
AFINSQ_2:def 8,
A2;
end;
suppose
A3: (
len cF)
>= 1;
A4:
REAL
= (
REAL
/\
COMPLEX ) by
MEMBERED: 1,
XBOOLE_1: 28;
now
let x,y be
object;
assume x
in
REAL & y
in
REAL ;
then
reconsider X = x, Y = y as
Element of
REAL ;
(
multreal
. (x,y))
= (X
* Y) by
BINOP_2:def 11;
hence (
multreal
. (x,y))
= (
multcomplex
. (x,y)) & (
multreal
. (x,y))
in
REAL by
BINOP_2:def 5,
XREAL_0:def 1;
end;
hence thesis by
AFINSQ_2: 47,
A3,
A4,
A1;
end;
end;
theorem ::
HILB10_4:2
cF is
INT
-valued implies (
Product cF)
= (
multint
"**" cF)
proof
assume
A1: cF is
INT
-valued;
per cases by
NAT_1: 14;
suppose
A2: (
len cF)
=
0 ;
hence (
multint
"**" cF)
= (
the_unity_wrt
multcomplex ) by
BINOP_2: 6,
BINOP_2: 9,
AFINSQ_2:def 8,
A1
.= (
Product cF) by
AFINSQ_2:def 8,
A2;
end;
suppose
A3: (
len cF)
>= 1;
A4:
INT
= (
INT
/\
COMPLEX ) by
MEMBERED: 1,
XBOOLE_1: 28;
now
let x,y be
object;
assume x
in
INT & y
in
INT ;
then
reconsider X = x, Y = y as
Element of
INT ;
(
multint
. (x,y))
= (X
* Y) by
BINOP_2:def 22;
hence (
multint
. (x,y))
= (
multcomplex
. (x,y)) & (
multint
. (x,y))
in
INT by
BINOP_2:def 5,
INT_1:def 2;
end;
hence thesis by
AFINSQ_2: 47,
A3,
A4,
A1;
end;
end;
theorem ::
HILB10_4:3
Th3: cF is
natural-valued implies (
Product cF)
= (
multnat
"**" cF)
proof
assume cF is
natural-valued;
then (
rng cF)
c=
NAT by
VALUED_0:def 6;
then
A1: cF is
NAT
-valued by
RELAT_1:def 19;
per cases by
NAT_1: 14;
suppose
A2: (
len cF)
=
0 ;
hence (
multnat
"**" cF)
= (
the_unity_wrt
multcomplex ) by
BINOP_2: 6,
BINOP_2: 10,
AFINSQ_2:def 8,
A1
.= (
Product cF) by
AFINSQ_2:def 8,
A2;
end;
suppose
A3: (
len cF)
>= 1;
A4:
NAT
= (
NAT
/\
COMPLEX ) by
MEMBERED: 1,
XBOOLE_1: 28;
now
let x,y be
object;
assume x
in
NAT & y
in
NAT ;
then
reconsider X = x, Y = y as
Element of
NAT ;
(
multnat
. (x,y))
= (X
* Y) by
BINOP_2:def 24;
hence (
multnat
. (x,y))
= (
multcomplex
. (x,y)) & (
multnat
. (x,y))
in
NAT by
BINOP_2:def 5,
ORDINAL1:def 12;
end;
hence thesis by
AFINSQ_2: 47,
A3,
A4,
A1;
end;
end;
registration
let F be
real-valued
XFinSequence;
cluster (
Product F) ->
real;
coherence
proof
(
Product F)
= (
multreal
"**" F) by
Th1;
hence thesis;
end;
end
registration
let F be
natural-valued
XFinSequence;
cluster (
Product F) ->
natural;
coherence
proof
(
Product F)
= (
multnat
"**" F) by
Th3;
hence thesis;
end;
end
theorem ::
HILB10_4:4
Th4: cF
=
{} implies (
Product cF)
= 1
proof
assume cF
=
{} ;
then (
len cF)
=
0 ;
hence thesis by
BINOP_2: 6,
AFINSQ_2:def 8;
end;
theorem ::
HILB10_4:5
Th5: (
Product
<%c%>)
= c
proof
c
in
COMPLEX by
XCMPLX_0:def 2;
hence thesis by
AFINSQ_2: 37;
end;
theorem ::
HILB10_4:6
(
Product
<%c1, c2%>)
= (c1
* c2)
proof
c1
in
COMPLEX & c2
in
COMPLEX by
XCMPLX_0:def 2;
then (
multcomplex
"**"
<%c1, c2%>)
= (
multcomplex
. (c1,c2)) by
AFINSQ_2: 38
.= (c1
* c2) by
BINOP_2:def 5;
hence thesis;
end;
theorem ::
HILB10_4:7
Th7: (
Product (cF1
^ cF2))
= ((
Product cF1)
* (
Product cF2))
proof
thus (
Product (cF1
^ cF2))
= (
multcomplex
. ((
Product cF1),(
Product cF2))) by
AFINSQ_2: 42
.= ((
Product cF1)
* (
Product cF2)) by
BINOP_2:def 5;
end;
theorem ::
HILB10_4:8
Th8: (c
+ (cF1
^ cF2))
= ((c
+ cF1)
^ (c
+ cF2))
proof
A1: (
dom (c
+ cF1))
= (
dom cF1) & (
dom (c
+ cF2))
= (
dom cF2) & (
dom (c
+ (cF1
^ cF2)))
= (
dom (cF1
^ cF2)) by
VALUED_1:def 2;
A2: (
len (cF1
^ cF2))
= ((
len cF1)
+ (
len cF2)) & (
len ((c
+ cF1)
^ (c
+ cF2)))
= ((
len (c
+ cF1))
+ (
len (c
+ cF2))) by
AFINSQ_1: 17;
for x be
object st x
in (
dom (c
+ (cF1
^ cF2))) holds ((c
+ (cF1
^ cF2))
. x)
= (((c
+ cF1)
^ (c
+ cF2))
. x)
proof
let x be
object;
assume
A3: x
in (
dom (c
+ (cF1
^ cF2)));
then
reconsider i = x as
Nat;
per cases by
A3,
A1,
AFINSQ_1: 20;
suppose
A4: i
in (
dom cF1);
then
A5: ((cF1
^ cF2)
. i)
= (cF1
. i) & (((c
+ cF1)
^ (c
+ cF2))
. i)
= ((c
+ cF1)
. i) by
A1,
AFINSQ_1:def 3;
hence ((c
+ (cF1
^ cF2))
. x)
= (c
+ (cF1
. i)) by
A3,
VALUED_1:def 2
.= (((c
+ cF1)
^ (c
+ cF2))
. x) by
A5,
A4,
A1,
VALUED_1:def 2;
end;
suppose ex n st n
in (
dom cF2) & i
= ((
len cF1)
+ n);
then
consider n such that
A6: n
in (
dom cF2) & i
= ((
len cF1)
+ n);
A7: ((cF1
^ cF2)
. i)
= (cF2
. n) & (((c
+ cF1)
^ (c
+ cF2))
. i)
= ((c
+ cF2)
. n) by
A1,
A6,
AFINSQ_1:def 3;
hence ((c
+ (cF1
^ cF2))
. x)
= (c
+ (cF2
. n)) by
A3,
VALUED_1:def 2
.= (((c
+ cF1)
^ (c
+ cF2))
. x) by
A1,
A6,
A7,
VALUED_1:def 2;
end;
end;
hence thesis by
A1,
A2,
FUNCT_1: 2;
end;
theorem ::
HILB10_4:9
Th9: (c1
+
<%c2%>)
=
<%(c1
+ c2)%>
proof
A1: (
dom
<%(c1
+ c2)%>)
= 1
= (
dom
<%c2%>)
= (
dom (c1
+
<%c2%>)) by
VALUED_1:def 2,
AFINSQ_1:def 4;
(
<%(c1
+ c2)%>
.
0 )
= (c1
+ (
<%c2%>
.
0 ))
.= ((c1
+
<%c2%>)
.
0 ) by
A1,
AFINSQ_1: 66,
VALUED_1:def 2;
hence thesis by
A1,
AFINSQ_1:def 4;
end;
theorem ::
HILB10_4:10
Th10: for f1,f2 be
XFinSequence, n st n
<= (
len f1) holds ((f1
^ f2)
/^ n)
= ((f1
/^ n)
^ f2)
proof
let f1,f2 be
XFinSequence, n;
assume n
<= (
len f1);
then
A2: (
len (f1
| n))
= n by
AFINSQ_1: 54;
f1
= ((f1
| n)
^ (f1
/^ n));
then (f1
^ f2)
= ((f1
| n)
^ ((f1
/^ n)
^ f2)) by
AFINSQ_1: 27;
hence ((f1
^ f2)
/^ n)
= ((f1
/^ n)
^ f2) by
A2,
AFINSQ_2: 12;
end;
registration
let n;
cluster n
-element
natural-valued for
XFinSequence;
existence
proof
take the n
-element
XFinSequence of
NAT ;
thus thesis;
end;
end
registration
cluster
natural-valued
positive-yielding for
XFinSequence;
existence
proof
take ((
Segm the
Nat)
--> 1);
thus thesis;
end;
end
registration
let R be
positive-yielding
Relation;
let X be
set;
cluster (R
| X) ->
positive-yielding;
coherence
proof
A1: (
rng (R
| X))
c= (
rng R) by
RELAT_1: 70;
let r be
Real;
assume r
in (
rng (R
| X));
hence thesis by
A1,
PARTFUN3:def 1;
end;
end
registration
let X be
positive-yielding
real-valued
XFinSequence;
cluster (
Product X) ->
positive;
coherence
proof
defpred
P[
Nat] means for X be
positive-yielding
real-valued
XFinSequence st (
len X)
= $1 holds (
Product X) is
positive;
A1:
P[
0 ]
proof
let X be
positive-yielding
real-valued
XFinSequence;
assume (
len X)
=
0 ;
then X
=
{} ;
hence thesis by
Th4;
end;
A2:
P[n] implies
P[(n
+ 1)]
proof
set n1 = (n
+ 1);
assume
A3:
P[n];
let X be
positive-yielding
real-valued
XFinSequence;
set XX =
<%(X
. n)%>;
assume
A4: (
len X)
= n1;
then X
= ((X
| n)
^
<%(X
. n)%>) by
AFINSQ_1: 56;
then
A5: (
Product X)
= ((
Product (X
| n))
* (
Product XX)) by
Th7
.= ((
Product (X
| n))
* (X
. n)) by
Th5;
n
< n1 by
NAT_1: 13;
then n
in (
dom X) & (
len (X
| n))
= n by
A4,
AFINSQ_1: 54,
AFINSQ_1: 66;
then
A6: (
Product (X
| n))
>
0 & (X
. n)
in (
rng X) by
A3,
FUNCT_1:def 3;
then (X
. n)
>
0 by
PARTFUN3:def 1;
hence (
Product X) is
positive by
A5,
A6;
end;
P[n] from
NAT_1:sch 2(
A1,
A2);
then
P[(
len X)];
hence thesis;
end;
end
theorem ::
HILB10_4:11
for X be
natural-valued
positive-yielding
XFinSequence st i
in (
dom X) holds (X
. i)
<= (
Product X)
proof
defpred
P[
Nat] means for X be
natural-valued
positive-yielding
XFinSequence, i be
Nat st (
len X)
= $1 & i
in (
dom X) holds (X
. i)
<= (
Product X);
A1:
P[
0 ] by
XBOOLE_0:def 1;
A2:
P[n] implies
P[(n
+ 1)]
proof
set n1 = (n
+ 1);
assume
A3:
P[n];
let X be
positive-yielding
natural-valued
XFinSequence, i be
Nat;
assume
A4: (
len X)
= n1 & i
in (
dom X);
then X
= ((X
| n)
^
<%(X
. n)%>) by
AFINSQ_1: 56;
then
A5: (
Product X)
= ((
Product (X
| n))
* (
Product
<%(X
. n)%>)) by
Th7
.= ((
Product (X
| n))
* (X
. n)) by
Th5;
A6: n
< n1 by
NAT_1: 13;
then
A7: n
in (
dom X) & (
len (X
| n))
= n by
A4,
AFINSQ_1: 54,
AFINSQ_1: 66;
then (
Product (X
| n))
>
0 & (X
. n)
in (
rng X) by
FUNCT_1:def 3;
then
A8: (X
. n)
>
0 & (
Product (X
| n))
>= 1 by
PARTFUN3:def 1,
NAT_1: 14;
then
A9: (X
. n)
>= 1 by
NAT_1: 14;
i
< (
len X) by
A4,
AFINSQ_1: 66;
then i
<= n by
A4,
NAT_1: 13;
per cases by
XXREAL_0: 1;
suppose i
= n;
then (
Product X)
>= ((X
. i)
* 1) by
A5,
A8,
XREAL_1: 66;
hence thesis;
end;
suppose
A10: i
< n;
then
A11: i
in (
dom (X
| n)) by
A7,
AFINSQ_1: 66;
(
Product (X
| n))
>= ((X
| n)
. i) by
A3,
A7,
AFINSQ_1: 66,
A10;
then (
Product X)
>= (((X
| n)
. i)
* 1) & ((X
| n)
. i)
= (X
. i) by
A6,
A4,
AFINSQ_1: 53,
A11,
A7,
A5,
A9,
XREAL_1: 66;
hence thesis;
end;
end;
A12:
P[n] from
NAT_1:sch 2(
A1,
A2);
let X be
natural-valued
positive-yielding
XFinSequence;
thus thesis by
A12;
end;
registration
let X be
natural-valued
XFinSequence, n be
positive
Nat;
cluster (n
+ X) ->
positive-yielding;
coherence
proof
now
let r be
Real;
assume r
in (
rng (n
+ X));
then
consider x be
object such that
A1: x
in (
dom (n
+ X)) & ((n
+ X)
. x)
= r by
FUNCT_1:def 3;
((n
+ X)
. x)
= (n
+ (X
. x)) by
A1,
VALUED_1:def 2;
hence r
>
0 by
A1;
end;
hence thesis by
PARTFUN3:def 1;
end;
end
theorem ::
HILB10_4:12
for X1,X2 be
natural-valued
XFinSequence st (
len X1)
= (
len X2) & for n st n
in (
dom X1) holds (X1
. n)
<= (X2
. n) holds (
Product X1)
<= (
Product X2)
proof
defpred
P[
Nat] means for X1,X2 be
natural-valued
XFinSequence st (
len X1)
= $1
= (
len X2) & for n st n
in (
dom X1) holds (X1
. n)
<= (X2
. n) holds (
Product X1)
<= (
Product X2);
A1:
P[
0 ]
proof
let X1,X2 be
natural-valued
XFinSequence;
assume (
len X1)
=
0
= (
len X2);
then X1
=
{}
= X2;
hence thesis;
end;
A2:
P[n] implies
P[(n
+ 1)]
proof
set n1 = (n
+ 1);
assume
A3:
P[n];
let X1,X2 be
natural-valued
XFinSequence;
assume that
A4: (
len X1)
= n1
= (
len X2) and
A5: for i st i
in (
dom X1) holds (X1
. i)
<= (X2
. i);
X1
= ((X1
| n)
^
<%(X1
. n)%>) by
A4,
AFINSQ_1: 56;
then
A6: (
Product X1)
= ((
Product (X1
| n))
* (
Product
<%(X1
. n)%>)) by
Th7
.= ((
Product (X1
| n))
* (X1
. n)) by
Th5;
X2
= ((X2
| n)
^
<%(X2
. n)%>) by
A4,
AFINSQ_1: 56;
then
A7: (
Product X2)
= ((
Product (X2
| n))
* (
Product
<%(X2
. n)%>)) by
Th7
.= ((
Product (X2
| n))
* (X2
. n)) by
Th5;
A8: n
< n1 by
NAT_1: 13;
then
A9: n
in (
dom X1) & (
len (X1
| n))
= n
= (
len (X2
| n)) by
A4,
AFINSQ_1: 54,
AFINSQ_1: 66;
A10: (X1
. n)
<= (X2
. n) by
A5,
A8,
A4,
AFINSQ_1: 66;
for i st i
in (
dom (X1
| n)) holds ((X1
| n)
. i)
<= ((X2
| n)
. i)
proof
let i;
assume i
in (
dom (X1
| n));
then ((X1
| n)
. i)
= (X1
. i) & ((X2
| n)
. i)
= (X2
. i) & i
in (
dom X1) by
A8,
A4,
A9,
AFINSQ_1: 53;
hence thesis by
A5;
end;
then (
Product (X1
| n))
<= (
Product (X2
| n)) by
A3,
A9;
hence thesis by
A6,
A7,
A10,
XREAL_1: 66;
end;
P[n] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
begin
theorem ::
HILB10_4:13
Th13: k
<= n implies (n
choose k)
<= (n
|^ k)
proof
defpred
P[
Nat] means $1
<= n implies (n
choose $1)
<= (n
|^ $1);
(n
choose
0 )
= 1 by
NEWTON: 19;
then
A1:
P[
0 ] by
NEWTON: 4;
A2:
P[m] implies
P[(m
+ 1)]
proof
assume
A3:
P[m];
set m1 = (m
+ 1);
assume
A4: m1
<= n;
then m
< n by
NAT_1: 13;
then
A5: (n
- m)
> (m
- m) by
XREAL_1: 14;
A6: (n
- m)
<= (n
-
0 ) by
XREAL_1: 10;
A7: (n
choose m1)
= (((n
- m)
/ m1)
* (n
choose m)) by
IRRAT_1: 5;
((n
- m)
/ m1)
<= ((n
- m)
/ 1) by
A5,
XREAL_1: 118,
NAT_1: 11;
then ((n
- m)
/ m1)
<= n by
A6,
XXREAL_0: 2;
then
A8: (n
choose m1)
<= (n
* (n
choose m)) by
A7,
XREAL_1: 64;
(n
* (n
choose m))
<= (n
* (n
|^ m)) by
A3,
A4,
NAT_1: 13,
XREAL_1: 64;
then (n
choose m1)
<= (n
* (n
|^ m)) by
A8,
XXREAL_0: 2;
hence thesis by
NEWTON: 6;
end;
P[m] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
theorem ::
HILB10_4:14
Th14: u
> (n
|^ k) & n
>= k & k
> i implies ((n
choose i)
* (u
|^ i))
< ((u
|^ k)
/ n)
proof
assume
A1: u
> (n
|^ k) & n
>= k & k
> i;
then
A2: k
>= (i
+ 1) by
NAT_1: 13;
A3: u
>= 1 by
A1,
NAT_1: 14;
A4: n
>
0 by
A1;
then n
>= 1 by
NAT_1: 14;
then (n
|^ (i
+ 1))
<= (n
|^ k) by
A2,
PREPOWER: 93;
then (n
|^ (i
+ 1))
< u by
A1,
XXREAL_0: 2;
then
A5: ((n
|^ (i
+ 1))
* (u
|^ i))
< (u
* (u
|^ i)) by
XREAL_1: 68;
(u
* (u
|^ i))
= (u
|^ (i
+ 1)) by
NEWTON: 6;
then (u
* (u
|^ i))
<= (u
|^ k) by
A3,
A2,
PREPOWER: 93;
then ((n
|^ (i
+ 1))
* (u
|^ i))
< (u
|^ k) & (n
|^ (i
+ 1))
= (n
* (n
|^ i)) by
A5,
XXREAL_0: 2,
NEWTON: 6;
then (n
* ((n
|^ i)
* (u
|^ i)))
< (u
|^ k);
then
A6: ((n
|^ i)
* (u
|^ i))
< ((u
|^ k)
/ n) by
A4,
XREAL_1: 81;
i
<= n by
A1,
XXREAL_0: 2;
then (n
choose i)
<= (n
|^ i) by
Th13;
then ((n
choose i)
* (u
|^ i))
<= ((n
|^ i)
* (u
|^ i)) by
XREAL_1: 64;
hence thesis by
A6,
XXREAL_0: 2;
end;
theorem ::
HILB10_4:15
Th15: u
> (n
|^ k) & n
>= k implies (
[\(((u
+ 1)
|^ n)
/ (u
|^ k))/]
mod u)
= (n
choose k)
proof
assume
A1: u
> (n
|^ k) & n
>= k;
set I = ((1,u)
In_Power n), k1 = (k
+ 1);
consider q be
FinSequence such that
A2: I
= ((I
| k1)
^ q) by
FINSEQ_1: 80;
(
rng I)
c=
NAT by
VALUED_0:def 6;
then
reconsider I1 = I as
FinSequence of
NAT by
FINSEQ_1:def 4;
I1
= ((I1
| k1)
^ q) by
A2;
then
reconsider q as
FinSequence of
NAT by
FINSEQ_1: 36;
A3: (
len I1)
= (n
+ 1) by
NEWTON:def 4;
A4: (
len (I1
| k1))
= k1 by
A1,
XREAL_1: 7,
A3,
FINSEQ_1: 59;
1
<= k1 by
NAT_1: 11;
then k1
in (
dom I) by
A3,
A1,
XREAL_1: 7,
FINSEQ_3: 25;
then
A5: (I1
| k1)
= ((I1
| k)
^
<*(I1
. k1)*>) by
FINSEQ_5: 10;
A6: (
Sum I1)
= ((
Sum (I1
| k1))
+ (
Sum q)) by
A2,
RVSUM_1: 75
.= (((
Sum (I1
| k))
+ (I1
. k1))
+ (
Sum q)) by
A5,
RVSUM_1: 74;
k
<= (n
+ 1) by
A1,
NAT_1: 13;
then
A7: (I1
| k) is k
-element by
A3,
FINSEQ_1: 59;
set kI = (k
|-> ((u
|^ k)
/ n));
A8: for i be
Nat st i
in (
Seg k) holds ((I1
| k)
. i)
< (kI
. i)
proof
let i be
Nat such that
A9: i
in (
Seg k);
A10: (kI
. i)
= ((u
|^ k)
/ n) by
A9,
FINSEQ_2: 57;
A11: 1
<= i
<= k by
A9,
FINSEQ_1: 1;
then
A12: ((I1
| k)
. i)
= (I1
. i) by
FINSEQ_3: 112;
reconsider i1 = (i
- 1) as
Nat by
A11;
set ni = (n
-' i1);
A13: (i1
+ 1)
= i & i
<= n by
A11,
A1,
XXREAL_0: 2;
then
A14: i1
< n & i
<= (n
+ 1) by
NAT_1: 13;
then
A15: i
in (
dom I1) by
A11,
A3,
FINSEQ_3: 25;
ni
= (n
- i1) by
A14,
XREAL_1: 233;
then
A16: (I1
. i)
= (((n
choose i1)
* (1
|^ ni))
* (u
|^ i1)) by
A15,
NEWTON:def 4;
k
> i1 by
A13,
A11,
NAT_1: 13;
hence thesis by
Th14,
A1,
A10,
A16,
A12;
end;
then
A17: for i be
Nat st i
in (
Seg k) holds ((I1
| k)
. i)
<= (kI
. i);
1
<= k1 by
NAT_1: 11;
then
A18: k1
in (
dom I1) by
A1,
XREAL_1: 7,
A3,
FINSEQ_3: 25;
(n
- k)
= (n
-' k) & k
= (k1
- 1) by
A1,
XREAL_1: 233;
then
A19: (I1
. k1)
= (((n
choose k)
* (1
|^ (n
-' k)))
* (u
|^ k)) by
A18,
NEWTON:def 4;
defpred
P[
Nat,
object] means $2
in
NAT & for i be
Nat st i
= $2 holds (q
. $1)
= (((u
|^ k)
* u)
* i);
(
len I)
= (k1
+ (
len q)) by
A2,
A4,
FINSEQ_1: 22;
then
A20: n
= (k
+ (
len q)) by
A3;
A21: for j be
Nat st j
in (
Seg (
len q)) holds ex x be
object st
P[j, x]
proof
let j be
Nat such that
A22: j
in (
Seg (
len q));
A23: 1
<= j
<= (
len q) by
FINSEQ_1: 1,
A22;
A24: ((k1
+ j)
- 1)
= (k
+ j);
A25: n
>= (k
+ j) by
A23,
A20,
XREAL_1: 7;
A26: (n
-' (k
+ j))
= (n
- (k
+ j)) by
XREAL_1: 233,
A23,
A20,
XREAL_1: 7;
1
<= ((k
+ j)
+ 1)
<= (n
+ 1) by
NAT_1: 11,
A25,
XREAL_1: 7;
then (k1
+ j)
in (
dom I1) by
FINSEQ_3: 25,
A3;
then
A27: (I1
. (k1
+ j))
= (((n
choose (k
+ j))
* (1
|^ (n
-' (k
+ j))))
* (u
|^ (k
+ j))) by
A24,
A26,
NEWTON:def 4;
reconsider j1 = (j
- 1) as
Nat by
A23;
A28: (u
|^ (k
+ j))
= ((u
|^ k)
* (u
|^ (j1
+ 1))) by
NEWTON: 8
.= ((u
|^ k)
* ((u
|^ j1)
* u)) by
NEWTON: 6;
take U = (((n
choose (k
+ j))
* (1
|^ (n
-' (k
+ j))))
* (u
|^ j1));
thus thesis by
A27,
A28,
A23,
FINSEQ_1: 65,
A2,
A4,
ORDINAL1:def 12;
end;
consider Q be
FinSequence such that
A29: (
dom Q)
= (
Seg (
len q)) and
A30: for j be
Nat st j
in (
Seg (
len q)) holds
P[j, (Q
. j)] from
FINSEQ_1:sch 1(
A21);
(
rng Q)
c=
NAT
proof
let y be
object such that
A31: y
in (
rng Q);
ex x be
object st x
in (
dom Q) & (Q
. x)
= y by
FUNCT_1:def 3,
A31;
hence thesis by
A30,
A29;
end;
then
reconsider Q as
FinSequence of
NAT by
FINSEQ_1:def 4;
A32: (
len Q)
= (
len q) & (
len (((u
|^ k)
* u)
* Q))
= (
len Q) by
CARD_1:def 7,
A29,
FINSEQ_1:def 3;
for i be
Nat st 1
<= i
<= (
len q) holds (q
. i)
= ((((u
|^ k)
* u)
* Q)
. i)
proof
let i be
Nat;
assume 1
<= i
<= (
len q);
then i
in (
dom Q) by
A29;
then (q
. i)
= (((u
|^ k)
* u)
* (Q
. i)) by
A29,
A30;
hence thesis by
VALUED_1: 6;
end;
then q
= (((u
|^ k)
* u)
* Q) by
A32,
FINSEQ_1: 14;
then
A33: (
Sum q)
= (((u
|^ k)
* u)
* (
Sum Q)) by
RVSUM_1: 87;
A34:
[\((
Sum I1)
/ (u
|^ k))/]
= ((n
choose k)
+ (u
* (
Sum Q)))
proof
per cases by
NAT_1: 14;
suppose k
=
0 ;
then (
Sum (I1
| k))
=
0 by
RVSUM_1: 72;
then (1
* (
Sum I1))
= ((u
|^ k)
* ((n
choose k)
+ (u
* (
Sum Q)))) by
A33,
A19,
A6;
then ((
Sum I1)
/ (u
|^ k))
= (((n
choose k)
+ (u
* (
Sum Q)))
/ 1) by
A1,
XCMPLX_1: 94;
hence thesis by
INT_1: 25;
end;
suppose
A35: k
>= 1;
then
A36: k
in (
Seg k);
then
A37: ((I1
| k)
. k)
< (kI
. k) by
A8;
A38: (
Sum kI)
= (k
* ((u
|^ k)
/ n)) by
RVSUM_1: 80
.= ((u
|^ k)
* (k
/ n)) by
XCMPLX_1: 75;
(
Sum (I1
| k))
< ((u
|^ k)
* (k
/ n)) by
A37,
A36,
A7,
A17,
RVSUM_1: 83,
A38;
then
A39: ((
Sum (I1
| k))
+ ((I1
. k1)
+ (
Sum q)))
< (((u
|^ k)
* (k
/ n))
+ ((I1
. k1)
+ (
Sum q))) by
XREAL_1: 8;
(((u
|^ k)
* (k
/ n))
+ ((I1
. k1)
+ (
Sum q)))
= ((u
|^ k)
* (((k
/ n)
+ (n
choose k))
+ (u
* (
Sum Q)))) by
A33,
A19;
then
A40: ((
Sum I1)
/ (u
|^ k))
< (((k
/ n)
+ (n
choose k))
+ (u
* (
Sum Q))) by
A1,
A39,
A6,
XREAL_1: 83;
(k
/ n)
<= (n
/ n) & (n
/ n)
= 1 by
A35,
XREAL_1: 72,
A1,
XCMPLX_1: 60;
then ((k
/ n)
+ ((n
choose k)
+ (u
* (
Sum Q))))
<= (1
+ ((n
choose k)
+ (u
* (
Sum Q)))) by
XREAL_1: 7;
then ((
Sum I1)
/ (u
|^ k))
< (1
+ ((n
choose k)
+ (u
* (
Sum Q)))) by
A40,
XXREAL_0: 2;
then
A41: (((
Sum I1)
/ (u
|^ k))
- 1)
< ((n
choose k)
+ (u
* (
Sum Q))) by
XREAL_1: 19;
A42: (
0
+ ((I1
. k1)
+ (
Sum q)))
<= ((
Sum (I1
| k))
+ ((I1
. k1)
+ (
Sum q))) by
XREAL_1: 7;
((I1
. k1)
+ (
Sum q))
= ((u
|^ k)
* ((n
choose k)
+ (u
* (
Sum Q)))) by
A33,
A19;
then ((
Sum I1)
/ (u
|^ k))
>= ((n
choose k)
+ (u
* (
Sum Q))) by
A1,
A42,
A6,
XREAL_1: 77;
hence thesis by
A41,
INT_1:def 6;
end;
end;
A43: (
Sum I1)
= ((1
+ u)
|^ n) by
NEWTON: 30;
(n
choose k)
<= (n
|^ k) by
Th13,
A1;
then (n
choose k)
< u by
A1,
XXREAL_0: 2;
then ((n
choose k)
mod u)
= (n
choose k) by
NAT_D: 24;
hence thesis by
A34,
A43,
NAT_D: 21;
end;
theorem ::
HILB10_4:16
Th16: for x,y,z be
Nat holds x
>= z & y
= (x
choose z) iff ex u,v,y1,y2,y3 be
Nat st y1
= (x
|^ z) & y2
= ((u
+ 1)
|^ x) & y3
= (u
|^ z) & u
> y1 & v
=
[\(y2
/ y3)/] & (y,v)
are_congruent_mod u & y
< u & x
>= z
proof
let x,y,z be
Nat;
thus x
>= z & y
= (x
choose z) implies ex u,v,y1,y2,y3 be
Nat st y1
= (x
|^ z) & y2
= ((u
+ 1)
|^ x) & y3
= (u
|^ z) & u
> y1 & v
=
[\(y2
/ y3)/] & (y,v)
are_congruent_mod u & y
< u & x
>= z
proof
assume
A1: x
>= z & y
= (x
choose z);
set y1 = (x
|^ z), u = (y1
+ 1), y2 = ((u
+ 1)
|^ x), y3 = (u
|^ z), v =
[\(y2
/ y3)/];
reconsider v as
Element of
NAT by
INT_1: 3,
INT_1: 54;
take u, v, y1, y2, y3;
thus
A2: y1
= (x
|^ z) & y2
= ((u
+ 1)
|^ x) & y3
= (u
|^ z) & u
> y1 & v
=
[\(y2
/ y3)/] by
NAT_1: 13;
A3: (v
mod u)
= y by
A2,
Th15,
A1;
y
< u by
A1,
NAT_1: 13,
Th13;
then (y
mod u)
= y by
NAT_D: 24;
then ((y
- v)
mod u)
=
0 by
A3,
INT_4: 22;
then u
divides (y
- v) by
INT_1: 62;
hence thesis by
A1,
NAT_1: 13,
Th13,
INT_1:def 4;
end;
given u,v,y1,y2,y3 be
Nat such that
A4: y1
= (x
|^ z) & y2
= ((u
+ 1)
|^ x) & y3
= (u
|^ z) and
A5: u
> y1 & v
=
[\(y2
/ y3)/] & (y,v)
are_congruent_mod u and
A6: y
< u & x
>= z;
u
divides (y
- v) by
A5,
INT_1:def 4;
then ((y
- v)
mod u)
=
0 by
INT_1: 62,
A5;
then (y
mod u)
= (v
mod u) by
INT_4: 22,
A5;
then (y
mod u)
= (x
choose z) by
Th15,
A4,
A5,
A6;
hence thesis by
A6,
NAT_D: 24;
end;
begin
Lm1: k
< n implies (1
- (k
/ n))
= ((n
- k)
/ n) & (1
/ (1
- (k
/ n)))
= (n
/ (n
- k))
proof
assume k
< n;
then (1
- (k
/ n))
= ((n
/ n)
- (k
/ n)) by
XCMPLX_1: 60
.= ((n
- k)
/ n) by
XCMPLX_1: 120;
hence thesis by
XCMPLX_1: 57;
end;
Lm2: for n, k st k
< n holds ((n
|^ k)
/ (n
choose k))
<= (((k
! )
* 1)
/ ((1
- (k
/ n))
|^ k))
proof
let n;
defpred
P[
Nat] means $1
< n implies ((n
|^ $1)
/ (n
choose $1))
<= ((($1
! )
* 1)
/ ((1
- ($1
/ n))
|^ $1));
(n
|^
0 )
= 1 & (n
choose
0 )
= 1 by
NEWTON: 4,
NEWTON: 19;
then
A1:
P[
0 ] by
NEWTON: 12;
A2: for k st
P[k] holds
P[(k
+ 1)]
proof
let k such that
A3:
P[k];
set k1 = (k
+ 1);
assume
A4: k1
< n;
A5: ((n
|^ k1)
/ (n
choose k1))
= ((n
|^ k1)
/ (((n
- k)
/ (k
+ 1))
* (n
choose k))) by
IRRAT_1: 5
.= (((n
|^ k1)
/ (n
choose k))
/ ((n
- k)
/ k1)) by
XCMPLX_1: 78
.= (((n
|^ k1)
/ (n
choose k))
* (k1
/ (n
- k))) by
XCMPLX_1: 79
.= (((n
* (n
|^ k))
/ (n
choose k))
* (k1
/ (n
- k))) by
NEWTON: 6
.= ((((n
|^ k)
/ (n
choose k))
* n)
* (k1
/ (n
- k))) by
XCMPLX_1: 74
.= (((n
|^ k)
/ (n
choose k))
* (n
* (k1
/ (n
- k))));
k
< n by
A4,
NAT_1: 13;
then
A6: (n
- k)
>
0 & (n
- k1)
>
0 by
XREAL_1: 50,
A4;
k
< k1 by
NAT_1: 13;
then (k
/ n)
< (k1
/ n) by
A4,
XREAL_1: 74;
then
A7: (1
- (k
/ n))
> (1
- (k1
/ n)) by
XREAL_1: 10;
A8: (1
- (k1
/ n))
= ((n
- k1)
/ n) by
Lm1,
A4;
then
A9: ((1
- (k
/ n))
|^ k1)
> ((1
- (k1
/ n))
|^ k1) by
NAT_1: 11,
A7,
A6,
PREPOWER: 10;
A10: k
< n by
A4,
NAT_1: 13;
A11: ((n
|^ k1)
/ (n
choose k1))
<= ((((k
! )
* 1)
/ ((1
- (k
/ n))
|^ k))
* (n
* (k1
/ (n
- k)))) by
A3,
A5,
XREAL_1: 64,
A6,
A4,
NAT_1: 13;
A12: ((1
/ ((1
- (k
/ n))
|^ k))
* (n
/ (n
- k)))
= ((1
/ ((1
- (k
/ n))
|^ k))
* (1
/ (1
- (k
/ n)))) by
A10,
Lm1
.= ((1
* 1)
/ (((1
- (k
/ n))
|^ k)
* (1
- (k
/ n)))) by
XCMPLX_1: 76
.= (1
/ ((1
- (k
/ n))
|^ k1)) by
NEWTON: 6;
A13: ((((k
! )
* 1)
/ ((1
- (k
/ n))
|^ k))
* (n
* (k1
/ (n
- k))))
= ((((k
! )
* 1)
/ ((1
- (k
/ n))
|^ k))
* (k1
* (n
/ (n
- k)))) by
XCMPLX_1: 75
.= (((k
! )
* (1
/ ((1
- (k
/ n))
|^ k)))
* (k1
* (n
/ (n
- k)))) by
XCMPLX_1: 74
.= ((((k
! )
* k1)
* (1
/ ((1
- (k
/ n))
|^ k)))
* (n
/ (n
- k)))
.= (((k1
! )
* (1
/ ((1
- (k
/ n))
|^ k)))
* (n
/ (n
- k))) by
NEWTON: 15
.= ((k1
! )
* (1
/ ((1
- (k
/ n))
|^ k1))) by
A12
.= (((k1
! )
* 1)
/ ((1
- (k
/ n))
|^ k1)) by
XCMPLX_1: 74;
(((k1
! )
* 1)
/ ((1
- (k
/ n))
|^ k1))
< (((k1
! )
* 1)
/ ((1
- (k1
/ n))
|^ k1)) by
A8,
A6,
A4,
A9,
XREAL_1: 76;
hence thesis by
A11,
A13,
XXREAL_0: 2;
end;
for k holds
P[k] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
Lm3:
0
< (2
* k)
< n implies (1
/ (1
- (k
/ n)))
<= (1
+ ((2
* k)
/ n))
proof
assume
A1:
0
< (2
* k)
< n;
k
<= (k
+ k) by
NAT_1: 11;
then
A2: k
< n by
A1,
XXREAL_0: 2;
then
A3: (n
- k)
>
0 by
XREAL_1: 50;
A4: k
>
0 by
A1;
(n
* k)
> ((2
* k)
* k) by
A4,
A1,
XREAL_1: 68;
then
0
< ((n
* k)
- ((2
* k)
* k)) by
XREAL_1: 50;
then ((n
* n)
+
0 )
< ((n
* n)
+ ((((2
* n)
* k)
- (k
* n))
- ((2
* k)
* k))) by
XREAL_1: 6;
then (n
* n)
< ((n
+ (2
* k))
* (n
- k));
then
A5: (n
/ (n
- k))
< ((n
+ (2
* k))
/ n) by
A1,
A3,
XREAL_1: 106;
((n
+ (2
* k))
/ n)
= ((n
/ n)
+ ((2
* k)
/ n)) by
XCMPLX_1: 62
.= (1
+ ((2
* k)
/ n)) by
A1,
XCMPLX_1: 60;
hence thesis by
A5,
A2,
Lm1;
end;
Lm4: for n, k st k
< n holds (k
! )
<= ((n
|^ k)
/ (n
choose k))
proof
let n;
defpred
P[
Nat] means $1
< n implies ($1
! )
<= ((n
|^ $1)
/ (n
choose $1));
(n
|^
0 )
= 1 & (n
choose
0 )
= 1 by
NEWTON: 4,
NEWTON: 19;
then
A1:
P[
0 ] by
NEWTON: 12;
A2: for k st
P[k] holds
P[(k
+ 1)]
proof
let k such that
A3:
P[k];
set k1 = (k
+ 1);
assume
A4: k1
< n;
then
A5: k
< n by
NAT_1: 13;
A6: ((n
|^ k1)
/ (n
choose k1))
= ((n
|^ k1)
/ (((n
- k)
/ (k
+ 1))
* (n
choose k))) by
IRRAT_1: 5
.= (((n
|^ k1)
/ (n
choose k))
/ ((n
- k)
/ k1)) by
XCMPLX_1: 78
.= (((n
|^ k1)
/ (n
choose k))
* (k1
/ (n
- k))) by
XCMPLX_1: 79
.= (((n
* (n
|^ k))
/ (n
choose k))
* (k1
/ (n
- k))) by
NEWTON: 6
.= ((((n
|^ k)
/ (n
choose k))
* n)
* (k1
/ (n
- k))) by
XCMPLX_1: 74
.= (((n
|^ k)
/ (n
choose k))
* (n
* (k1
/ (n
- k))));
A7: n
>= (n
- k) by
XREAL_1: 43;
(n
- k)
>
0 by
A5,
XREAL_1: 50;
then (n
/ (n
- k))
>= 1 by
A7,
XREAL_1: 181;
then
A8: (k1
* (n
/ (n
- k)))
>= (k1
* 1) by
XREAL_1: 64;
(k1
* (n
/ (n
- k)))
= ((n
* k1)
/ (n
- k)) by
XCMPLX_1: 74
.= (n
* (k1
/ (n
- k))) by
XCMPLX_1: 74;
then (((n
|^ k)
/ (n
choose k))
* (n
* (k1
/ (n
- k))))
>= ((k
! )
* k1) by
A4,
NAT_1: 13,
A3,
A8,
XREAL_1: 66;
hence thesis by
A6,
NEWTON: 15;
end;
for k holds
P[k] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
Lm5:
0
< r
< (1
/ 2) implies ((1
+ r)
|^ k)
< (1
+ (r
* (2
|^ k)))
proof
assume
A1:
0
< r
< (1
/ 2);
defpred
P[
Nat] means ((1
+ r)
|^ $1)
< (1
+ (r
* (2
|^ $1)));
per cases by
NAT_1: 14;
suppose
A2: k
=
0 ;
((1
+ r)
|^
0 )
= 1 & (2
|^
0 )
= 1 & (1
+
0 )
< (1
+ r) by
NEWTON: 4,
A1,
XREAL_1: 8;
hence thesis by
A2;
end;
suppose
A3: k
>= 1;
((1
+ r)
+
0 )
< ((1
+ r)
+ r) by
A1,
XREAL_1: 8;
then
A4:
P[1];
A5: for k st 1
<= k holds
P[k] implies
P[(k
+ 1)]
proof
let k such that
A6: 1
<= k and
A7:
P[k];
set k1 = (k
+ 1);
(2
|^ k)
>= 2 by
A6,
PREPOWER: 12;
then
A8: ((2
|^ k)
* (1
/ 2))
>= (2
* (1
/ 2)) by
XREAL_1: 64;
(r
* (2
|^ k))
< ((1
/ 2)
* (2
|^ k)) by
A1,
XREAL_1: 68;
then (1
+ (r
* (2
|^ k)))
< (((1
/ 2)
* (2
|^ k))
+ ((1
/ 2)
* (2
|^ k))) by
A8,
XREAL_1: 8;
then
A9: ((2
|^ k)
+ (1
+ (r
* (2
|^ k))))
< ((2
|^ k)
+ (2
|^ k)) by
XREAL_1: 8;
(2
|^ k1)
= (2
* (2
|^ k)) by
NEWTON: 6;
then (r
* (((2
|^ k)
+ 1)
+ (r
* (2
|^ k))))
< (r
* (2
|^ k1)) by
A9,
A1,
XREAL_1: 68;
then
A10: (1
+ (r
* (((2
|^ k)
+ 1)
+ (r
* (2
|^ k)))))
< (1
+ (r
* (2
|^ k1))) by
XREAL_1: 8;
A11: ((1
+ r)
|^ k1)
= (((1
+ r)
|^ k)
* (1
+ r)) by
NEWTON: 6;
((1
+ r)
|^ k1)
< ((1
+ (r
* (2
|^ k)))
* (1
+ r)) by
A7,
A1,
A11,
XREAL_1: 68;
hence thesis by
A10,
XXREAL_0: 2;
end;
for k st 1
<= k holds
P[k] from
NAT_1:sch 8(
A4,
A5);
hence thesis by
A3;
end;
end;
theorem ::
HILB10_4:17
Th17: k
>
0 & n
> ((2
* k)
|^ (k
+ 1)) implies (k
! )
=
[\((n
|^ k)
/ (n
choose k))/]
proof
set k1 = (k
+ 1);
assume
A1: k
>
0 & n
> ((2
* k)
|^ k1);
A2: (2
* k)
>= 1 & k
>= 1 by
A1,
NAT_1: 14;
k1
>= 1 by
NAT_1: 11;
then ((2
* k)
|^ k1)
>= (2
* k) by
A2,
PREPOWER: 12;
then
A3: n
> (2
* k) by
A1,
XXREAL_0: 2;
k1
> (1
+
0 ) by
A1,
XREAL_1: 6;
then k1
>= (1
+ 1) by
NAT_1: 13;
then
A4: ((2
* k)
|^ k1)
>= ((2
* k)
|^ (1
+ 1)) by
A1,
NAT_6: 1;
((2
* k)
|^ (1
+ 1))
= (((2
* k)
|^ 1)
* (2
* k)) by
NEWTON: 6
.= ((2
* k)
* (2
* k));
then
A5: n
> ((4
* k)
* k) by
A1,
A4,
XXREAL_0: 2;
((4
* k)
* k)
>= ((4
* k)
* 1) by
A1,
NAT_1: 14,
XREAL_1: 64;
then
A6: (1
* n)
> (2
* (2
* k)) by
A5,
XXREAL_0: 2;
(k
+ k)
>= k by
NAT_1: 11;
then
A7: n
> k by
A3,
XXREAL_0: 2;
then
A8: ((n
|^ k)
/ (n
choose k))
<= (((k
! )
* 1)
/ ((1
- (k
/ n))
|^ k)) by
Lm2;
A9: (1
/ ((1
- (k
/ n))
|^ k))
= ((1
/ (1
- (k
/ n)))
|^ k) by
PREPOWER: 7;
A10: (n
- k)
>
0 by
A7,
XREAL_1: 50;
A11: (1
/ (1
- (k
/ n)))
= (n
/ (n
- k)) by
A7,
Lm1;
(1
/ (1
- (k
/ n)))
<= (1
+ ((2
* k)
/ n)) by
A1,
A3,
Lm3;
then
A12: (1
/ ((1
- (k
/ n))
|^ k))
<= ((1
+ ((2
* k)
/ n))
|^ k) by
A9,
A11,
A1,
A10,
PREPOWER: 9;
((1
+ ((2
* k)
/ n))
|^ k)
< (1
+ (((2
* k)
/ n)
* (2
|^ k))) by
A6,
XREAL_1: 106,
A1,
Lm5;
then (1
/ ((1
- (k
/ n))
|^ k))
< (1
+ (((2
* k)
/ n)
* (2
|^ k))) by
A12,
XXREAL_0: 2;
then ((k
! )
* (1
/ ((1
- (k
/ n))
|^ k)))
< ((k
! )
* (1
+ (((2
* k)
/ n)
* (2
|^ k)))) by
XREAL_1: 68;
then (((k
! )
* 1)
/ ((1
- (k
/ n))
|^ k))
< ((k
! )
* (1
+ (((2
* k)
/ n)
* (2
|^ k)))) by
XCMPLX_1: 74;
then
A13: ((n
|^ k)
/ (n
choose k))
< ((k
! )
* (1
+ (((2
* k)
/ n)
* (2
|^ k)))) by
A8,
XXREAL_0: 2;
(((2
* k)
/ n)
* (2
|^ k))
= (((2
* k)
* (2
|^ k))
/ n) by
XCMPLX_1: 74;
then
A14: (((k
! )
* ((2
* k)
/ n))
* (2
|^ k))
= ((k
! )
* (((2
* k)
* (2
|^ k))
/ n))
.= (((k
! )
* ((2
* k)
* (2
|^ k)))
/ n) by
XCMPLX_1: 74
.= ((((k
! )
* (2
* k))
* (2
|^ k))
/ n);
((((k
! )
* (2
* k))
* (2
|^ k))
/ n)
< ((((k
! )
* (2
* k))
* (2
|^ k))
/ ((2
* k)
|^ k1)) by
A1,
XREAL_1: 76;
then ((k
! )
+ ((((k
! )
* (2
* k))
* (2
|^ k))
/ n))
< ((k
! )
+ ((((k
! )
* (2
* k))
* (2
|^ k))
/ ((2
* k)
|^ k1))) by
XREAL_1: 6;
then
A15: ((n
|^ k)
/ (n
choose k))
< ((k
! )
+ ((((k
! )
* (2
* k))
* (2
|^ k))
/ ((2
* k)
|^ k1))) by
A13,
XXREAL_0: 2,
A14;
A16: ((2
* k)
* (2
|^ k))
= (k
* (2
* (2
|^ k)))
.= (k
* (2
|^ k1)) by
NEWTON: 6;
A17: (((2
* k)
* (2
|^ k))
/ ((2
* k)
|^ k1))
= ((k
* (2
|^ k1))
/ ((2
|^ k1)
* (k
|^ k1))) by
A16,
NEWTON: 7
.= (k
/ (k
|^ k1)) by
XCMPLX_1: 91
.= (k
/ (k
* (k
|^ k))) by
NEWTON: 6;
A18: ((((k
! )
* (2
* k))
* (2
|^ k))
/ ((2
* k)
|^ k1))
= (((k
! )
* ((2
* k)
* (2
|^ k)))
/ ((2
* k)
|^ k1))
.= ((k
! )
* (k
/ (k
* (k
|^ k)))) by
A17,
XCMPLX_1: 74
.= (((k
! )
* k)
/ (k
* (k
|^ k))) by
XCMPLX_1: 74
.= ((k
! )
/ (k
|^ k)) by
A1,
XCMPLX_1: 91;
((k
! )
/ (k
|^ k))
<= 1 by
XREAL_1: 183,
NEWTON02: 124;
then ((k
! )
+ ((((k
! )
* (2
* k))
* (2
|^ k))
/ ((2
* k)
|^ k1)))
<= ((k
! )
+ 1) by
A18,
XREAL_1: 6;
then ((n
|^ k)
/ (n
choose k))
< ((k
! )
+ 1) by
A15,
XXREAL_0: 2;
then
A19: (((n
|^ k)
/ (n
choose k))
- 1)
< (k
! ) by
XREAL_1: 19;
(k
! )
<= ((n
|^ k)
/ (n
choose k)) by
A7,
Lm4;
hence thesis by
INT_1:def 6,
A19;
end;
theorem ::
HILB10_4:18
Th18: for x,y be
Nat holds y
= (x
! ) iff ex n,y1,y2,y3 be
Nat st y1
= ((2
* x)
|^ (x
+ 1)) & y2
= (n
|^ x) & y3
= (n
choose x) & n
> y1 & y
=
[\(y2
/ y3)/]
proof
let x,y be
Nat;
thus y
= (x
! ) implies ex n,y1,y2,y3 be
Nat st y1
= ((2
* x)
|^ (x
+ 1)) & y2
= (n
|^ x) & y3
= (n
choose x) & n
> y1 & y
=
[\(y2
/ y3)/]
proof
assume
A1: y
= (x
! );
per cases ;
suppose
A2: x
=
0 ;
take n = 1, y1 =
0 , y2 = 1, y3 = 1;
thus y1
= ((2
* x)
|^ (x
+ 1)) & y2
= (n
|^ x) & y3
= (n
choose x) & n
> y1 by
A2,
NEWTON: 19;
thus thesis by
INT_1: 25,
NEWTON: 12,
A2,
A1;
end;
suppose
A3: x
>
0 ;
take n = (((2
* x)
|^ (x
+ 1))
+ 1), y1 = ((2
* x)
|^ (x
+ 1));
take y2 = (n
|^ x), y3 = (n
choose x);
n
> y1 by
NAT_1: 13;
hence thesis by
A1,
A3,
Th17;
end;
end;
given n,y1,y2,y3 be
Nat such that
A4: y1
= ((2
* x)
|^ (x
+ 1)) & y2
= (n
|^ x) & y3
= (n
choose x) & n
> y1 and
A5: y
=
[\(y2
/ y3)/];
per cases ;
suppose
A6: x
=
0 ;
then y1
=
0 & y2
= 1 & y3
= 1 by
A4,
NEWTON: 4,
NEWTON: 19;
hence thesis by
NEWTON: 12,
A6,
A5,
INT_1: 25;
end;
suppose x
>
0 ;
hence thesis by
A4,
A5,
Th17;
end;
end;
begin
reserve x,y,x1,u,w for
Nat;
theorem ::
HILB10_4:19
Th19: for x1,w,u be
Nat st ((x1
* w),1)
are_congruent_mod u holds for x be
Nat holds ((
Product (1
+ (x1
* (
idseq x)))),(((x1
|^ x)
* (x
! ))
* ((w
+ x)
choose x)))
are_congruent_mod u
proof
let x1,w,u be
Nat such that
A1: ((x1
* w),1)
are_congruent_mod u;
consider b be
Integer such that
A2: (u
* b)
= ((x1
* w)
- 1) by
A1,
INT_1:def 5;
defpred
P[
Nat] means ((
Product (1
+ (x1
* (
idseq $1)))),(((x1
|^ $1)
* ($1
! ))
* ((w
+ $1)
choose $1)))
are_congruent_mod u;
(x1
|^
0 )
= 1 & (
0
! )
= 1 & ((w
+
0 )
choose
0 )
= 1 by
NEWTON: 4,
NEWTON: 12,
NEWTON: 19;
then
A3:
P[
0 ] by
RVSUM_1: 94,
INT_1: 11;
A4:
P[n] implies
P[(n
+ 1)]
proof
set n1 = (n
+ 1);
set P = (
Product (1
+ (x1
* (
idseq n))));
set L = (((x1
|^ n)
* (n
! ))
* ((w
+ n)
choose n));
assume
P[n];
then
consider a be
Integer such that
A5: (u
* a)
= (P
- L) by
INT_1:def 5;
A6: (1
+ (x1
*
<*n1*>))
= (1
+
<*(x1
* n1)*>) by
RVSUM_1: 47
.=
<*(1
+ (x1
* n1))*> by
BASEL_1: 2;
(
idseq n1)
= ((
idseq n)
^
<*(n
+ 1)*>) by
FINSEQ_2: 51;
then (x1
* (
idseq n1))
= ((x1
* (
idseq n))
^ (x1
*
<*(n
+ 1)*>)) by
NEWTON04: 43;
then
A7: (1
+ (x1
* (
idseq n1)))
= ((1
+ (x1
* (
idseq n)))
^ (1
+ (x1
*
<*(n
+ 1)*>))) by
BASEL_1: 3;
(w
+ n)
>= n & ((w
+ n)
- n)
= w by
NAT_1: 11;
then ((w
+ n)
choose n)
= (((w
+ n)
! )
/ ((n
! )
* (w
! ))) by
NEWTON:def 3;
then
A8: ((n
! )
* ((w
+ n)
choose n))
= (((n
! )
* ((w
+ n)
! ))
/ ((n
! )
* (w
! ))) by
XCMPLX_1: 74
.= (((w
+ n)
! )
/ (w
! )) by
XCMPLX_1: 91;
(w
+ n1)
>= n1 & ((w
+ n1)
- n1)
= w by
NAT_1: 11;
then ((w
+ n1)
choose n1)
= (((w
+ n1)
! )
/ ((n1
! )
* (w
! ))) by
NEWTON:def 3;
then
A9: ((n1
! )
* ((w
+ n1)
choose n1))
= (((n1
! )
* ((w
+ n1)
! ))
/ ((n1
! )
* (w
! ))) by
XCMPLX_1: 74
.= ((((w
+ n)
+ 1)
! )
/ (w
! )) by
XCMPLX_1: 91
.= ((((w
+ n)
! )
* ((w
+ n)
+ 1))
/ (w
! )) by
NEWTON: 15
.= (((w
+ n)
+ 1)
* (((w
+ n)
! )
/ (w
! ))) by
XCMPLX_1: 74
.= (((w
+ n1)
* (n
! ))
* ((w
+ n)
choose n)) by
A8;
(x1
|^ n1)
= ((x1
|^ n)
* x1) by
NEWTON: 6;
then (((x1
|^ n1)
* (n1
! ))
* ((w
+ n1)
choose n1))
= (((x1
|^ n)
* x1)
* ((n1
! )
* ((w
+ n1)
choose n1)))
.= (((x1
|^ n)
* x1)
* ((((w
+ n)
+ 1)
* (n
! ))
* ((w
+ n)
choose n))) by
A9
.= (((w
+ n1)
* x1)
* L);
then ((
Product (1
+ (x1
* (
idseq n1))))
- (((x1
|^ n1)
* (n1
! ))
* ((w
+ n1)
choose n1)))
= ((P
* (1
+ (x1
* n1)))
- ((x1
* (w
+ n1))
* L)) by
A7,
A6,
RVSUM_1: 96
.= (((P
* (1
+ (x1
* n1)))
- ((x1
* w)
* L))
- ((x1
* n1)
* L))
.= (((P
* (1
+ (x1
* n1)))
- (((u
* b)
+ 1)
* L))
- ((x1
* n1)
* L)) by
A2
.= (((P
- L)
* (1
+ (x1
* n1)))
- (((u
* b)
* 1)
* L))
.= (((u
* a)
* (1
+ (x1
* n1)))
- ((u
* b)
* L)) by
A5
.= (u
* ((a
* (1
+ (x1
* n1)))
- (b
* L)));
hence thesis by
INT_1:def 5;
end;
P[n] from
NAT_1:sch 2(
A3,
A4);
hence thesis;
end;
theorem ::
HILB10_4:20
Th20: for x,y,x1 be
Nat st x1
>= 1 holds y
= (
Product (1
+ (x1
* (
idseq x)))) iff ex u,w,y1,y2,y3,y4,y5 be
Nat st u
> y & ((x1
* w),1)
are_congruent_mod u & y1
= (x1
|^ x) & y2
= (x
! ) & y3
= ((w
+ x)
choose x) & (((y1
* y2)
* y3),y)
are_congruent_mod u & y4
= (1
+ (x1
* x)) & y5
= (y4
|^ x) & u
> y5
proof
let x,y,x1 be
Nat;
assume
A1: x1
>= 1;
defpred
P[
Nat] means ((1
+ (x1
* $1))
|^ $1)
>= (
Product (1
+ (x1
* (
idseq $1))));
A2:
P[
0 ] by
RVSUM_1: 94;
A3:
P[n] implies
P[(n
+ 1)]
proof
assume
A4:
P[n];
set n1 = (n
+ 1);
A5: (1
+ (x1
*
<*n1*>))
= (1
+
<*(x1
* n1)*>) by
RVSUM_1: 47
.=
<*(1
+ (x1
* n1))*> by
BASEL_1: 2;
(
idseq n1)
= ((
idseq n)
^
<*(n
+ 1)*>) by
FINSEQ_2: 51;
then (x1
* (
idseq n1))
= ((x1
* (
idseq n))
^ (x1
*
<*(n
+ 1)*>)) by
NEWTON04: 43;
then (1
+ (x1
* (
idseq n1)))
= ((1
+ (x1
* (
idseq n)))
^ (1
+ (x1
*
<*(n
+ 1)*>))) by
BASEL_1: 3;
then
A6: (
Product (1
+ (x1
* (
idseq n1))))
= ((
Product (1
+ (x1
* (
idseq n))))
* (1
+ (x1
* n1))) by
A5,
RVSUM_1: 96;
(x1
* n)
<= (x1
* n1) by
NAT_1: 11,
XREAL_1: 64;
then (1
+ (x1
* n))
<= (1
+ (x1
* n1)) by
XREAL_1: 7;
then ((1
+ (x1
* n))
|^ n)
<= ((1
+ (x1
* n1))
|^ n) by
PREPOWER: 9;
then (((1
+ (x1
* n))
|^ n)
* (1
+ (x1
* n1)))
<= (((1
+ (x1
* n1))
|^ n)
* (1
+ (x1
* n1))) by
XREAL_1: 64;
then
A7: (((1
+ (x1
* n))
|^ n)
* (1
+ (x1
* n1)))
<= ((1
+ (x1
* n1))
|^ n1) by
NEWTON: 6;
((
Product (1
+ (x1
* (
idseq n))))
* (1
+ (x1
* n1)))
<= (((1
+ (x1
* n))
|^ n)
* (1
+ (x1
* n1))) by
A4,
XREAL_1: 64;
hence thesis by
A7,
A6,
XXREAL_0: 2;
end;
A8:
P[n] from
NAT_1:sch 2(
A2,
A3);
thus y
= (
Product (1
+ (x1
* (
idseq x)))) implies ex u,w,y1,y2,y3,y4,y5 be
Nat st u
> y & ((x1
* w),1)
are_congruent_mod u & y1
= (x1
|^ x) & y2
= (x
! ) & y3
= ((w
+ x)
choose x) & (((y1
* y2)
* y3),y)
are_congruent_mod u & y4
= (1
+ (x1
* x)) & y5
= (y4
|^ x) & u
> y5
proof
assume
A9: y
= (
Product (1
+ (x1
* (
idseq x))));
set u = ((x1
* ((1
+ (x1
* x))
|^ x))
+ 1);
(u
gcd x1)
= (1
gcd x1) by
EULER_1: 16
.= 1 by
WSIERP_1: 8;
then
consider w be
Nat such that
A10: (((x1
* w)
- 1)
mod u)
=
0 by
INT_4: 16,
INT_2:def 3;
take u, w, y1 = (x1
|^ x), y2 = (x
! ), y3 = ((w
+ x)
choose x), y4 = (1
+ (x1
* x)), y5 = (y4
|^ x);
A11: ((x1
* w)
- 1)
= (((((x1
* w)
- 1)
div u)
* u)
+
0 ) by
A10,
INT_1: 59;
then (y,(((x1
|^ x)
* (x
! ))
* ((w
+ x)
choose x)))
are_congruent_mod u by
A9,
Th19,
INT_1:def 5;
then
consider e be
Integer such that
A12: ((((x1
|^ x)
* (x
! ))
* ((w
+ x)
choose x))
- y)
= (u
* e) by
INT_1:def 5,
INT_1: 14;
((1
+ (x1
* x))
|^ x)
>= (
Product (1
+ (x1
* (
idseq x)))) by
A8;
then (x1
* ((1
+ (x1
* x))
|^ x))
>= (1
* (
Product (1
+ (x1
* (
idseq x))))) by
A1,
XREAL_1: 66;
hence u
> y by
A9,
NAT_1: 13;
thus ((x1
* w),1)
are_congruent_mod u by
A11,
INT_1:def 5;
A13: ((x1
* ((1
+ (x1
* x))
|^ x))
+ 1)
> ((x1
* ((1
+ (x1
* x))
|^ x))
+
0 ) by
XREAL_1: 6;
(x1
* ((1
+ (x1
* x))
|^ x))
>= (1
* ((1
+ (x1
* x))
|^ x)) by
A1,
XREAL_1: 66;
hence thesis by
A12,
INT_1:def 5,
A13,
XXREAL_0: 2;
end;
given u,w,y1,y2,y3,y4,y5 be
Nat such that
A14: u
> y & ((x1
* w),1)
are_congruent_mod u and
A15: y1
= (x1
|^ x) & y2
= (x
! ) & y3
= ((w
+ x)
choose x) and
A16: (((y1
* y2)
* y3),y)
are_congruent_mod u and
A17: y4
= (1
+ (x1
* x)) & y5
= (y4
|^ x) & u
> y5;
set U = (((x1
|^ x)
* (x
! ))
* ((w
+ x)
choose x));
((
Product (1
+ (x1
* (
idseq x)))),U)
are_congruent_mod u by
A14,
Th19;
then
A18: (U,(
Product (1
+ (x1
* (
idseq x)))))
are_congruent_mod u by
INT_1: 14;
A19: (
Product (1
+ (x1
* (
idseq x)))) is
Nat by
TARSKI: 1;
(
Product (1
+ (x1
* (
idseq x))))
<= ((1
+ (x1
* x))
|^ x) by
A8;
then (
Product (1
+ (x1
* (
idseq x))))
< u by
A17,
XXREAL_0: 2;
hence thesis by
A19,
A18,
A15,
A16,
A14,
NAT_6: 14;
end;
theorem ::
HILB10_4:21
Th21: (c1
+ (n
|-> c2))
= (n
|-> (c1
+ c2))
proof
A1: (
len (c1
+ (n
|-> c2)))
= (
len (n
|-> c2))
= n
= (
len (n
|-> (c1
+ c2))) by
CARD_1:def 7;
now
let i such that
A2: 1
<= i
<= n;
A3: i
in (
dom (c1
+ (n
|-> c2))) by
A2,
A1,
FINSEQ_3: 25;
A4: i
in (
Seg n) by
A2;
hence ((n
|-> (c1
+ c2))
. i)
= (c1
+ c2) by
FINSEQ_2: 57
.= (c1
+ ((n
|-> c2)
. i)) by
A4,
FINSEQ_2: 57
.= ((c1
+ (n
|-> c2))
. i) by
A3,
VALUED_1:def 2;
end;
hence thesis by
FINSEQ_1: 14,
A1;
end;
theorem ::
HILB10_4:22
for x,y,x1 be
Nat st x1
=
0 holds y
= (
Product (1
+ (x1
* (
idseq x)))) iff y
= 1
proof
let x,y,x1 be
Nat such that
A1: x1
=
0 ;
A2: (
len (
idseq x))
= x;
(
rng (
idseq x))
c=
REAL ;
then (
idseq x) is
FinSequence of
REAL by
FINSEQ_1:def 4;
then (
idseq x) is
Element of (x
-tuples_on
REAL ) by
A2,
FINSEQ_2: 92;
then (x1
* (
idseq x))
= (x
|->
0 ) by
A1,
RVSUM_1: 53;
then (1
+ (x1
* (
idseq x)))
= (x
|-> (1
+
0 )) by
Th21;
hence thesis by
RVSUM_1: 102;
end;
theorem ::
HILB10_4:23
Th23: n
>= k implies (
Product ((n
+ 1)
+ (
- (
idseq k))))
= ((k
! )
* (n
choose k))
proof
defpred
P[
Nat] means $1
<= n implies (
Product ((n
+ 1)
+ (
- (
idseq $1))))
= (($1
! )
* (n
choose $1));
A1:
P[
0 ] by
RVSUM_1: 94,
NEWTON: 12,
NEWTON: 19;
A2:
P[i] implies
P[(i
+ 1)]
proof
set i1 = (i
+ 1);
assume
A3:
P[i] & i1
<= n;
A4: ((
- 1)
*
<*i1*>)
= (
-
<*i1*>)
.=
<*(
- i1)*> by
RVSUM_1: 20;
(
- (
idseq i1))
= ((
- 1)
* ((
idseq i)
^
<*i1*>)) by
FINSEQ_2: 51
.= ((
- (
idseq i))
^
<*(
- i1)*>) by
A4,
NEWTON04: 43;
then ((n
+ 1)
+ (
- (
idseq i1)))
= (((n
+ 1)
+ (
- (
idseq i)))
^ ((n
+ 1)
+
<*(
- i1)*>)) by
BASEL_1: 3
.= (((n
+ 1)
+ (
- (
idseq i)))
^
<*((n
+ 1)
+ (
- i1))*>) by
BASEL_1: 2;
then
A5: (
Product ((n
+ 1)
+ (
- (
idseq i1))))
= ((
Product ((n
+ 1)
+ (
- (
idseq i))))
* ((n
+ 1)
+ (
- i1))) by
RVSUM_1: 96;
reconsider l = (n
- i1) as
Element of
NAT by
A3,
NAT_1: 21;
A6: i
<= n & (n
- i)
= (l
+ 1) by
NAT_1: 13,
A3;
(n
choose i1)
= ((n
! )
/ ((i1
! )
* (l
! ))) by
A3,
NEWTON:def 3;
then ((i1
! )
* (n
choose i1))
= (((i1
! )
* (n
! ))
/ ((i1
! )
* (l
! ))) by
XCMPLX_1: 74
.= ((n
! )
/ (l
! )) by
XCMPLX_1: 91
.= (((n
! )
* (l
+ 1))
/ ((l
! )
* (l
+ 1))) by
XCMPLX_1: 91
.= (((n
! )
* (l
+ 1))
/ ((l
+ 1)
! )) by
NEWTON: 15
.= ((((n
! )
* (l
+ 1))
* (i
! ))
/ (((l
+ 1)
! )
* (i
! ))) by
XCMPLX_1: 91
.= ((((l
+ 1)
* (i
! ))
* (n
! ))
/ (((l
+ 1)
! )
* (i
! )))
.= (((l
+ 1)
* (i
! ))
* ((n
! )
/ (((l
+ 1)
! )
* (i
! )))) by
XCMPLX_1: 74
.= ((((n
+ 1)
+ (
- i1))
* (i
! ))
* (n
choose i)) by
NEWTON:def 3,
A6;
hence thesis by
NAT_1: 13,
A3,
A5;
end;
P[i] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
theorem ::
HILB10_4:24
for y,x1,x2 be
Nat holds y
= (
Product ((x2
+ 1)
+ (
- (
idseq x1)))) & x2
> x1 iff y
= ((x1
! )
* (x2
choose x1)) & x2
> x1 by
Th23;
begin
reserve n,m,k for
Nat,
p,q for n
-element
XFinSequence of
NAT ,
i1,i2,i3,i4,i5,i6 for
Element of n,
a,b,d,f for
Integer;
theorem ::
HILB10_4:25
Th25: for a,b be
Nat, i1, i2, i3 holds { p : (p
. i1)
= (((a
* (p
. i2))
+ b)
* (p
. i3)) } is
diophantine
Subset of (n
-xtuples_of
NAT )
proof
let a,b be
Nat;
deffunc
F1(
Nat,
Nat,
Nat) = ((a
* $1)
+ b);
A1: for n, i1, i2, i3, i4 holds { p :
F1(.,.,.)
= (p
. i4) } is
diophantine
Subset of (n
-xtuples_of
NAT ) by
HILB10_3: 15;
defpred
P1[
Nat,
Nat,
natural
object,
Nat,
Nat,
Nat] means (1
* $1)
= ((1
* $3)
* $2);
A2: for n, i1, i2, i3, i4, i5, i6 holds { p :
P1[(p
. i1), (p
. i2), (p
. i3), (p
. i4), (p
. i5), (p
. i6)] } is
diophantine
Subset of (n
-xtuples_of
NAT ) by
HILB10_3: 9;
A3: for n, i1, i2, i3, i4, i5 holds { p :
P1[(p
. i1), (p
. i2),
F1(.,.,.), (p
. i3), (p
. i4), (p
. i5)] } is
diophantine
Subset of (n
-xtuples_of
NAT ) from
HILB10_3:sch 4(
A2,
A1);
let i1, i2, i3;
defpred
Q1[
XFinSequence of
NAT ] means
P1[($1
. i1), ($1
. i3), ((a
* ($1
. i2))
+ b), ($1
. i3), ($1
. i3), ($1
. i3)];
defpred
Q2[
XFinSequence of
NAT ] means ($1
. i1)
= (((a
* ($1
. i2))
+ b)
* ($1
. i3));
A4: for p holds
Q1[p] iff
Q2[p];
{ p :
Q1[p] }
= { q :
Q2[q] } from
HILB10_3:sch 2(
A4);
hence thesis by
A3;
end;
theorem ::
HILB10_4:26
for a, i1, i2, i3 holds { p : (p
. i1)
= ((a
* (p
. i2))
* (p
. i3)) } is
diophantine
Subset of (n
-xtuples_of
NAT )
proof
let a, i1, i2, i3;
defpred
Q1[
XFinSequence of
NAT ] means (1
* ($1
. i1))
= ((a
* ($1
. i2))
* ($1
. i3));
defpred
Q2[
XFinSequence of
NAT ] means ($1
. i1)
= ((a
* ($1
. i2))
* ($1
. i3));
A1: for p holds
Q1[p] iff
Q2[p];
{ p :
Q1[p] }
= { q :
Q2[q] } from
HILB10_3:sch 2(
A1);
hence thesis by
HILB10_3: 9;
end;
theorem ::
HILB10_4:27
for A be
diophantine
Subset of (n
-xtuples_of
NAT ) holds for k,nk be
Nat st (k
+ nk)
= n holds { (p
/^ nk) : p
in A } is
diophantine
Subset of (k
-xtuples_of
NAT )
proof
let A be
diophantine
Subset of (n
-xtuples_of
NAT );
let k,nk be
Nat such that
A1: (k
+ nk)
= n;
consider nA be
Nat, pA be
INT
-valued
Polynomial of (n
+ nA),
F_Real such that
A2: for s be
object holds s
in A iff ex x be n
-element
XFinSequence of
NAT , y be nA
-element
XFinSequence of
NAT st s
= x & (
eval (pA,(
@ (x
^ y))))
=
0 by
HILB10_2:def 6;
(
dom (
id (n
+ nA)))
= (n
+ nA);
then
reconsider I = (
id (n
+ nA)) as
XFinSequence by
AFINSQ_1: 5;
set I1 = (I
| nk), I2 = ((I
| n)
/^ nk), I3 = (I
/^ n);
(
Segm nk)
c= (
Segm n) by
NAT_1: 39,
NAT_1: 11,
A1;
then
A3: ((I
| n)
| nk)
= I1 by
RELAT_1: 74;
then
A4: I
= ((I
| n)
^ I3) & (I
| n)
= (I1
^ I2);
then
A5: (
rng (I
| n))
misses (
rng I3) by
HILB10_2: 1;
A6: (
len I)
= (n
+ nA);
A7: n
<= (n
+ nA) by
NAT_1: 11;
A8: (
len I3)
= ((n
+ nA)
-' n)
= ((n
+ nA)
- n) & (
len (I
| n))
= n by
A6,
AFINSQ_2:def 2,
AFINSQ_1: 54,
NAT_1: 11;
A9: (
len I2)
= (n
-' nk)
= (n
- nk) & (
len I1)
= nk by
A1,
NAT_1: 11,
A8,
AFINSQ_2:def 2,
AFINSQ_1: 54,
A3;
A10: (
len ((I2
^ I1)
^ I3))
= ((
len (I2
^ I1))
+ (
len I3)) & (
len (I2
^ I1))
= ((
len I2)
+ (
len I1)) by
AFINSQ_1: 17;
A11: (
rng I1)
misses (
rng I2) by
A4,
HILB10_2: 1;
A12: ((
rng (I
| n))
\/ (
rng I3))
= (
rng I) by
A4,
AFINSQ_1: 26;
A13: ((
rng I1)
\/ (
rng I2))
= (
rng (I
| n)) & (
rng (I2
^ I1))
= ((
rng I2)
\/ (
rng I1)) by
A4,
AFINSQ_1: 26;
then (
rng ((I2
^ I1)
^ I3))
= (n
+ nA) by
A12,
AFINSQ_1: 26;
then
reconsider J = ((I2
^ I1)
^ I3) as
Function of (n
+ nA), (n
+ nA) by
A10,
A8,
A9,
FUNCT_2: 1;
A14: J is
onto by
A13,
A12,
AFINSQ_1: 26;
A15: (I2
^ I1) is
one-to-one by
A11,
CARD_FIN: 52;
J is
one-to-one by
A13,
A5,
A15,
CARD_FIN: 52;
then
reconsider J as
Permutation of (n
+ nA) by
A14;
A16: J
= ((J
" )
" ) by
FUNCT_1: 43;
set h = (pA
permuted_by (J
" ));
reconsider H = h as
Polynomial of (k
+ (nk
+ nA)),
F_Real by
A1;
(
rng h)
= (
rng pA)
c=
INT by
HILB10_2: 26,
RELAT_1:def 19;
then
reconsider H as
INT
-valued
Polynomial of (k
+ (nk
+ nA)),
F_Real by
RELAT_1:def 19;
set Y = { (p
/^ nk) : p
in A };
Y
c= (k
-xtuples_of
NAT )
proof
let y be
object;
assume y
in Y;
then
consider p such that
A17: y
= (p
/^ nk) & p
in A;
(
len p)
= n by
CARD_1:def 7;
then (p
/^ nk) is k
-element by
A1,
A9,
AFINSQ_2:def 2;
hence thesis by
A17,
HILB10_2:def 5;
end;
then
reconsider Y as
Subset of (k
-xtuples_of
NAT );
for s be
object holds s
in Y iff ex x be k
-element
XFinSequence of
NAT , y be (nk
+ nA)
-element
XFinSequence of
NAT st s
= x & (
eval (H,(
@ (x
^ y))))
=
0
proof
let s be
object;
thus s
in Y implies ex x be k
-element
XFinSequence of
NAT , y be (nk
+ nA)
-element
XFinSequence of
NAT st s
= x & (
eval (H,(
@ (x
^ y))))
=
0
proof
assume s
in Y;
then
consider w be n
-element
XFinSequence of
NAT such that
A18: s
= (w
/^ nk) & w
in A;
consider x be n
-element
XFinSequence of
NAT , y be nA
-element
XFinSequence of
NAT such that
A19: w
= x & (
eval (pA,(
@ (x
^ y))))
=
0 by
A2,
A18;
A20: (
eval (pA,(
@ (x
^ y))))
= (
eval (h,((
@ (x
^ y))
* ((J
" )
" )))) by
HILB10_2: 25;
A21: (
len x)
= n & (
len y)
= nA by
CARD_1:def 7;
then
A22: (
len (x
/^ nk))
= k by
A1,
A9,
AFINSQ_2:def 2;
(x
/^ nk) is k
-element by
A21,
A1,
A9,
AFINSQ_2:def 2;
then
reconsider S = (x
/^ nk) as k
-element
XFinSequence of
NAT ;
A23: (
len (x
| nk))
= nk by
CARD_1:def 7,
A1;
reconsider XnkY = ((x
| nk)
^ y) as (nk
+ nA)
-element
XFinSequence of
NAT by
A1;
A26: (
len (S
^ XnkY))
= (n
+ nA) by
A1,
CARD_1:def 7;
A27: (
dom ((
@ (x
^ y))
* J))
= (n
+ nA) by
FUNCT_2:def 1;
((x
| nk)
^ (x
/^ nk))
= x;
then
A28: (x
^ y)
= ((x
| nk)
^ (S
^ y)) by
AFINSQ_1: 27;
for i be
object st i
in (
dom (S
^ XnkY)) holds (((
@ (x
^ y))
* J)
. i)
= ((S
^ XnkY)
. i)
proof
let j be
object;
assume
A29: j
in (
dom (S
^ XnkY));
then
reconsider j as
Nat;
A30: j
in (
dom J) & (((
@ (x
^ y))
* J)
. j)
= ((
@ (x
^ y))
. (J
. j)) by
A29,
A26,
A27,
FUNCT_1: 11,
FUNCT_1: 12;
per cases by
A30,
AFINSQ_1: 20;
suppose
A31: j
in (
dom (I2
^ I1));
then
A32: (J
. j)
= ((I2
^ I1)
. j) by
AFINSQ_1:def 3;
per cases by
A31,
AFINSQ_1: 20;
suppose
A33: j
in (
dom I2);
then
A34: ((I2
^ I1)
. j)
= (I2
. j) & (I2
. j)
= ((I
| n)
. (nk
+ j)) & j
< k by
A9,
A1,
AFINSQ_2:def 2,
AFINSQ_1: 66,
AFINSQ_1:def 3;
A35: (nk
+ j)
in n by
A1,
A33,
A9,
AFINSQ_1: 66,
HILB10_3: 3;
then
A36: ((I
| n)
. (nk
+ j))
= (I
. (nk
+ j)) by
FUNCT_1: 49;
A37: (
dom S)
c= (
dom (S
^ y)) by
AFINSQ_1: 21;
A38: (
len S)
= k
= (
len I2) by
CARD_1:def 7,
A1,
A9;
(
Segm n)
= n;
then (nk
+ j)
< (n
+ nA) by
NAT_1: 44,
A35,
A7,
XXREAL_0: 2;
then (nk
+ j)
in (
Segm (n
+ nA)) by
NAT_1: 44;
then (((
@ (x
^ y))
* J)
. j)
= ((
@ (x
^ y))
. (nk
+ j)) by
FUNCT_1: 17,
A32,
A30,
A36,
A34
.= ((x
^ y)
. (nk
+ j)) by
HILB10_2:def 1
.= ((S
^ y)
. j) by
A23,
A37,
A22,
A33,
A1,
A9,
A28,
AFINSQ_1:def 3
.= (S
. j) by
A22,
A33,
A1,
A9,
AFINSQ_1:def 3
.= ((S
^ XnkY)
. j) by
A33,
A38,
AFINSQ_1:def 3;
hence thesis;
end;
suppose ex k st k
in (
dom I1) & j
= ((
len I2)
+ k);
then
consider w such that
A39: w
in (
dom I1) & j
= ((
len I2)
+ w);
A40: ((I2
^ I1)
. j)
= (I1
. w) & (I1
. w)
= (I
. w) & w
< nk by
A39,
A9,
AFINSQ_1: 66,
AFINSQ_1:def 3,
FUNCT_1: 49;
A41: (
dom (x
| nk))
c= (
dom ((x
| nk)
^ y)) by
AFINSQ_1: 21;
nk
<= (nk
+ (k
+ nA)) by
NAT_1: 11;
then w
< (n
+ nA) by
A1,
A39,
A9,
AFINSQ_1: 66,
XXREAL_0: 2;
then
A42: w
in (
Segm (n
+ nA)) by
NAT_1: 44;
(J
. j)
= w by
A42,
A40,
A32,
FUNCT_1: 17;
then (((
@ (x
^ y))
* J)
. j)
= (((x
| nk)
^ (S
^ y))
. w) by
A30,
A28,
HILB10_2:def 1
.= ((x
| nk)
. w) by
AFINSQ_1:def 3,
A39,
A23,
A9
.= (((x
| nk)
^ y)
. w) by
A39,
A23,
A9,
AFINSQ_1:def 3
.= ((S
^ XnkY)
. j) by
A22,
A39,
A1,
A9,
A41,
A23,
AFINSQ_1:def 3;
hence thesis;
end;
end;
suppose ex n st n
in (
dom I3) & j
= ((
len (I2
^ I1))
+ n);
then
consider w such that
A43: w
in (
dom I3) & j
= ((
len (I2
^ I1))
+ w);
A44: (
len (S
^ (x
| nk)))
= n by
CARD_1:def 7,
A1;
(J
. j)
= (I3
. w) by
A43,
AFINSQ_1:def 3
.= (I
. j) by
A9,
A10,
A43,
AFINSQ_2:def 2
.= j by
A29,
A26,
FUNCT_1: 17;
then (((
@ (x
^ y))
* J)
. j)
= ((x
^ y)
. j) by
A30,
HILB10_2:def 1
.= (y
. w) by
A9,
A10,
A43,
A8,
A21,
AFINSQ_1:def 3
.= (((S
^ (x
| nk))
^ y)
. j) by
A44,
A9,
A10,
A43,
A8,
A21,
AFINSQ_1:def 3
.= ((S
^ XnkY)
. j) by
AFINSQ_1: 27;
hence thesis;
end;
end;
then ((
@ (x
^ y))
* J)
= (S
^ XnkY) by
CARD_1:def 7,
A1,
A27,
FUNCT_1: 2;
then ((
@ (x
^ y))
* J)
= (
@ (S
^ XnkY)) by
HILB10_2:def 1;
hence thesis by
A19,
A18,
A20,
A16;
end;
given S be k
-element
XFinSequence of
NAT , XnkY be (nk
+ nA)
-element
XFinSequence of
NAT such that
A45: s
= S & (
eval (H,(
@ (S
^ XnkY))))
=
0 ;
set Xnk = (XnkY
| nk);
set y = (XnkY
/^ nk);
set X = (Xnk
^ S);
A46: (
len S)
= k & (
len XnkY)
= (nk
+ nA) & (nk
+ nA)
>= nk by
NAT_1: 11,
CARD_1:def 7;
then
A47: (
len Xnk)
= nk & (
len y)
= ((nk
+ nA)
-' nk)
= ((nk
+ nA)
- nk) by
AFINSQ_1: 54,
AFINSQ_2:def 2;
reconsider y as nA
-element
XFinSequence of
NAT by
A47,
CARD_1:def 7;
reconsider X as n
-element
XFinSequence of
NAT by
A1;
A48: (X
| nk)
= Xnk by
A47,
AFINSQ_1: 57;
(Xnk
^ S)
= ((X
| nk)
^ (X
/^ nk));
then
A49: (X
/^ nk)
= S by
A48,
AFINSQ_1: 28;
A50: XnkY
= (Xnk
^ y);
A51: (
len X)
= n & (
len y)
= nA by
CARD_1:def 7;
A52: (
len (X
| nk))
= nk by
A47,
AFINSQ_1: 57;
A53: (
len (S
^ XnkY))
= (n
+ nA) by
CARD_1:def 7,
A1;
A54: (
dom ((
@ (X
^ y))
* J))
= (n
+ nA) by
FUNCT_2:def 1;
A55: (X
^ y)
= ((X
| nk)
^ (S
^ y)) by
A48,
AFINSQ_1: 27;
for i be
object st i
in (
dom (S
^ XnkY)) holds (((
@ (X
^ y))
* J)
. i)
= ((S
^ XnkY)
. i)
proof
let j be
object;
assume
A56: j
in (
dom (S
^ XnkY));
then
reconsider j as
Nat;
A57: j
in (
dom J) & (((
@ (X
^ y))
* J)
. j)
= ((
@ (X
^ y))
. (J
. j)) by
A56,
A53,
A54,
FUNCT_1: 11,
FUNCT_1: 12;
per cases by
A57,
AFINSQ_1: 20;
suppose
A58: j
in (
dom (I2
^ I1));
then
A59: (J
. j)
= ((I2
^ I1)
. j) by
AFINSQ_1:def 3;
per cases by
A58,
AFINSQ_1: 20;
suppose
A60: j
in (
dom I2);
then
A61: ((I2
^ I1)
. j)
= (I2
. j) & (I2
. j)
= ((I
| n)
. (nk
+ j)) & j
< k by
A9,
A1,
AFINSQ_2:def 2,
AFINSQ_1: 66,
AFINSQ_1:def 3;
then
A63: ((I
| n)
. (nk
+ j))
= (I
. (nk
+ j)) by
A1,
HILB10_3: 3,
FUNCT_1: 49;
A62: (nk
+ j)
in n by
A60,
A1,
HILB10_3: 3,
A9,
AFINSQ_1: 66;
A64: (
dom S)
c= (
dom (S
^ y)) by
AFINSQ_1: 21;
A65: (
len S)
= k
= (
len I2) by
CARD_1:def 7,
A1,
A9;
(
Segm n)
= n;
then (nk
+ j)
< (n
+ nA) by
NAT_1: 44,
A62,
A7,
XXREAL_0: 2;
then (nk
+ j)
in (
Segm (n
+ nA)) by
NAT_1: 44;
then (I
. (nk
+ j))
= (nk
+ j) by
FUNCT_1: 17;
then (((
@ (X
^ y))
* J)
. j)
= (((X
| nk)
^ (S
^ y))
. (nk
+ j)) by
A55,
HILB10_2:def 1,
A59,
A57,
A63,
A61
.= ((S
^ y)
. j) by
A52,
A64,
A60,
A1,
A46,
A9,
AFINSQ_1:def 3
.= (S
. j) by
A60,
A1,
A46,
A9,
AFINSQ_1:def 3
.= ((S
^ XnkY)
. j) by
A60,
A65,
AFINSQ_1:def 3;
hence thesis;
end;
suppose ex k st k
in (
dom I1) & j
= ((
len I2)
+ k);
then
consider w such that
A66: w
in (
dom I1) & j
= ((
len I2)
+ w);
A67: ((I2
^ I1)
. j)
= (I1
. w) & (I1
. w)
= (I
. w) & w
< nk by
A66,
A9,
AFINSQ_1: 66,
AFINSQ_1:def 3,
FUNCT_1: 49;
A68: (
dom (X
| nk))
c= (
dom ((X
| nk)
^ y)) by
AFINSQ_1: 21;
nk
<= (nk
+ (k
+ nA)) by
NAT_1: 11;
then w
< (n
+ nA) by
A1,
A66,
A9,
AFINSQ_1: 66,
XXREAL_0: 2;
then
A69: w
in (
Segm (n
+ nA)) by
NAT_1: 44;
(J
. j)
= w by
A59,
A69,
FUNCT_1: 17,
A67;
then (((
@ (X
^ y))
* J)
. j)
= ((X
^ y)
. w) by
HILB10_2:def 1,
A57
.= ((X
| nk)
. w) by
AFINSQ_1:def 3,
A66,
A52,
A9,
A55
.= (((X
| nk)
^ y)
. w) by
A66,
A52,
A9,
AFINSQ_1:def 3
.= ((S
^ XnkY)
. j) by
A48,
A46,
A1,
A9,
A68,
A47,
A66,
AFINSQ_1:def 3;
hence thesis;
end;
end;
suppose ex n st n
in (
dom I3) & j
= ((
len (I2
^ I1))
+ n);
then
consider w such that
A70: w
in (
dom I3) & j
= ((
len (I2
^ I1))
+ w);
A71: (
len (S
^ (X
| nk)))
= n by
A1,
CARD_1:def 7;
(J
. j)
= (I3
. w) by
A70,
AFINSQ_1:def 3
.= (I
. j) by
A9,
A10,
A70,
AFINSQ_2:def 2
.= j by
A56,
A53,
FUNCT_1: 17;
then (((
@ (X
^ y))
* J)
. j)
= ((X
^ y)
. j) by
HILB10_2:def 1,
A57
.= (y
. w) by
A9,
A10,
A70,
A8,
A51,
AFINSQ_1:def 3
.= (((S
^ (X
| nk))
^ y)
. j) by
A71,
A9,
A10,
A70,
A8,
A51,
AFINSQ_1:def 3
.= ((S
^ XnkY)
. j) by
AFINSQ_1: 27,
A48,
A50;
hence thesis;
end;
end;
then ((
@ (X
^ y))
* J)
= (S
^ XnkY) by
CARD_1:def 7,
A1,
A54,
FUNCT_1: 2;
then ((
@ (X
^ y))
* J)
= (
@ (S
^ XnkY)) by
HILB10_2:def 1;
then (
eval (H,(
@ (S
^ XnkY))))
= (
eval (pA,(
@ (X
^ y)))) by
A16,
HILB10_2: 25;
then X
in A by
A2,
A45;
hence s
in Y by
A49,
A45;
end;
hence thesis by
HILB10_2:def 6;
end;
theorem ::
HILB10_4:28
Th28: for a,b be
Integer, c be
Nat, i1, i2, i3 holds { p : (a
* (p
. i1))
=
[\((b
* (p
. i2))
/ (c
* (p
. i3)))/] & ((c
* (p
. i3))
<>
0 ) } is
diophantine
Subset of (n
-xtuples_of
NAT )
proof
let a,b be
Integer, c be
Nat;
let i1, i2, i3;
deffunc
F2(
Nat,
Nat,
Nat) = ((c
* $3)
+ (((a
* c)
* $1)
* $3));
A1: for n, i1, i2, i3, i4, d holds { p :
F2(.,.,.)
= (d
* (p
. i4)) } is
diophantine
Subset of (n
-xtuples_of
NAT )
proof
let n, i1, i2, i3, i4, d;
defpred
P1[
Nat,
Nat,
Integer] means (d
* $1)
= (((c
* $2)
+ $3)
+
0 );
A2: for n, i1, i2, i3, f holds { p :
P1[(p
. i1), (p
. i2), (f
* (p
. i3))] } is
diophantine
Subset of (n
-xtuples_of
NAT ) by
HILB10_3: 11;
deffunc
F1(
Nat,
Nat,
Nat) = (((a
* c)
* $1)
* $3);
A3: for n, i1, i2, i3, i4, f holds { p :
F1(.,.,.)
= (f
* (p
. i4)) } is
diophantine
Subset of (n
-xtuples_of
NAT ) by
HILB10_3: 9;
A4: for n, i1, i2, i3, i4, i5 holds { p :
P1[(p
. i1), (p
. i2),
F1(.,.,.)] } is
diophantine
Subset of (n
-xtuples_of
NAT ) from
HILB10_3:sch 5(
A2,
A3);
defpred
R1[
XFinSequence of
NAT ] means
F2(.,.,.)
= (d
* ($1
. i4));
defpred
R2[
XFinSequence of
NAT ] means
P1[($1
. i4), ($1
. i3),
F1(.,.,.)];
A5: for p holds
R1[p] iff
R2[p];
{ p :
R1[p] }
= { q :
R2[q] } from
HILB10_3:sch 2(
A5);
hence thesis by
A4;
end;
defpred
P2[
Nat,
Nat,
Integer] means ((b
* $1)
+
0 )
< $3;
A6: for n, i1, i2, i3, d holds { p :
P2[(p
. i1), (p
. i2), (d
* (p
. i3))] } is
diophantine
Subset of (n
-xtuples_of
NAT ) by
HILB10_3: 7;
A7: for n, i1, i2, i3, i4, i5 holds { p :
P2[(p
. i1), (p
. i2),
F2(.,.,.)] } is
diophantine
Subset of (n
-xtuples_of
NAT ) from
HILB10_3:sch 5(
A6,
A1);
defpred
P3[
Nat,
Nat,
Integer] means (b
* $1)
>= ($3
+
0 );
A8: for n, i1, i2, i3, d holds { p :
P3[(p
. i1), (p
. i2), (d
* (p
. i3))] } is
diophantine
Subset of (n
-xtuples_of
NAT ) by
HILB10_3: 8;
deffunc
F3(
Nat,
Nat,
Nat) = (((a
* c)
* $1)
* $3);
A9: for n, i1, i2, i3, i4, d holds { p :
F3(.,.,.)
= (d
* (p
. i4)) } is
diophantine
Subset of (n
-xtuples_of
NAT ) by
HILB10_3: 9;
A10: for n, i1, i2, i3, i4, i5 holds { p :
P3[(p
. i1), (p
. i2),
F3(.,.,.)] } is
diophantine
Subset of (n
-xtuples_of
NAT ) from
HILB10_3:sch 5(
A8,
A9);
defpred
Q1[
XFinSequence of
NAT ] means
P2[($1
. i2), ($1
. i2),
F2(.,.,.)];
defpred
Q2[
XFinSequence of
NAT ] means
P3[($1
. i2), ($1
. i2),
F3(.,.,.)];
defpred
Q12[
XFinSequence of
NAT ] means
Q1[$1] &
Q2[$1];
defpred
Q3[
XFinSequence of
NAT ] means (c
* ($1
. i3))
<> ((
0
* ($1
. i3))
+
0 );
defpred
Q123[
XFinSequence of
NAT ] means
Q12[$1] &
Q3[$1];
defpred
T[
XFinSequence of
NAT ] means (a
* ($1
. i1))
=
[\((b
* ($1
. i2))
/ (c
* ($1
. i3)))/] & (c
* ($1
. i3))
<>
0 ;
A11: { p :
Q1[p] } is
diophantine
Subset of (n
-xtuples_of
NAT ) by
A7;
A12: { p :
Q2[p] } is
diophantine
Subset of (n
-xtuples_of
NAT ) by
A10;
{ p :
Q1[p] &
Q2[p] } is
diophantine
Subset of (n
-xtuples_of
NAT ) from
HILB10_3:sch 3(
A11,
A12);
then
A13: { p :
Q12[p] } is
diophantine
Subset of (n
-xtuples_of
NAT );
A14: { p :
Q3[p] } is
diophantine
Subset of (n
-xtuples_of
NAT ) by
HILB10_3: 16;
A15: { p :
Q12[p] &
Q3[p] } is
diophantine
Subset of (n
-xtuples_of
NAT ) from
HILB10_3:sch 3(
A13,
A14);
A16: for p holds
T[p] iff
Q123[p]
proof
let p;
thus
T[p] implies
Q123[p]
proof
assume
A17:
T[p];
then
A18: ((a
* (p
. i1))
* (c
* (p
. i3)))
<= (b
* (p
. i2)) by
XREAL_1: 83,
INT_1:def 6;
(((b
* (p
. i2))
/ (c
* (p
. i3)))
* (c
* (p
. i3)))
= (((c
* (p
. i3))
/ (c
* (p
. i3)))
* (b
* (p
. i2))) by
XCMPLX_1: 75
.= (1
* (b
* (p
. i2))) by
A17,
XCMPLX_1: 60;
then
A19: ((((b
* (p
. i2))
/ (c
* (p
. i3)))
- 1)
* (c
* (p
. i3)))
= ((b
* (p
. i2))
- (c
* (p
. i3)));
(((b
* (p
. i2))
/ (c
* (p
. i3)))
- 1)
< (a
* (p
. i1)) by
A17,
INT_1:def 6;
then ((((b
* (p
. i2))
/ (c
* (p
. i3)))
- 1)
* (c
* (p
. i3)))
< ((a
* (p
. i1))
* (c
* (p
. i3))) by
A17,
XREAL_1: 68;
hence thesis by
A18,
A19,
XREAL_1: 19;
end;
assume
A20:
Q123[p];
then
A21: ((a
* (p
. i1))
* (c
* (p
. i3)))
> ((b
* (p
. i2))
- (c
* (p
. i3))) by
XREAL_1: 19;
(((b
* (p
. i2))
/ (c
* (p
. i3)))
* (c
* (p
. i3)))
= (((c
* (p
. i3))
/ (c
* (p
. i3)))
* (b
* (p
. i2))) by
XCMPLX_1: 75
.= (1
* (b
* (p
. i2))) by
A20,
XCMPLX_1: 60;
then ((((b
* (p
. i2))
/ (c
* (p
. i3)))
- 1)
* (c
* (p
. i3)))
= ((b
* (p
. i2))
- (c
* (p
. i3)));
then
A22: (a
* (p
. i1))
> (((b
* (p
. i2))
/ (c
* (p
. i3)))
- 1) by
A21,
XREAL_1: 64;
((a
* (p
. i1))
* (c
* (p
. i3)))
<= (b
* (p
. i2)) by
A20;
then (a
* (p
. i1))
<= ((b
* (p
. i2))
/ (c
* (p
. i3))) by
A20,
XREAL_1: 77;
hence thesis by
A20,
A22,
INT_1:def 6;
end;
{ p :
T[p] }
= { q :
Q123[q] } from
HILB10_3:sch 2(
A16);
hence thesis by
A15;
end;
theorem ::
HILB10_4:29
Th29: for i1, i2, i3 st n
<>
0 holds { p : (p
. i1)
>= (p
. i3) & (p
. i2)
= ((p
. i1)
choose (p
. i3)) } is
diophantine
Subset of (n
-xtuples_of
NAT )
proof
let i1, i2, i3;
set n6 = (n
+ 6);
defpred
R[
XFinSequence of
NAT ] means ($1
. i1)
>= ($1
. i3) & ($1
. i2)
= (($1
. i1)
choose ($1
. i3));
set RR = { p :
R[p] };
assume
A1: n
<>
0 ;
n
= (n
+
0 );
then
reconsider X = i1, Y = i2, Z = i3, U = n, V = (n
+ 1), Y1 = (n
+ 2), Y2 = (n
+ 3), Y3 = (n
+ 4), U1 = (n
+ 5) as
Element of (n
+ 6) by
HILB10_3: 2,
HILB10_3: 3;
defpred
P1[
XFinSequence of
NAT ] means ($1
. Y1)
= (($1
. X)
|^ ($1
. Z));
A2: { p where p be n6
-element
XFinSequence of
NAT :
P1[p] } is
diophantine
Subset of (n6
-xtuples_of
NAT ) by
HILB10_3: 24;
defpred
P2[
XFinSequence of
NAT ] means ($1
. Y2)
= (($1
. U1)
|^ ($1
. X));
A3: { p where p be n6
-element
XFinSequence of
NAT :
P2[p] } is
diophantine
Subset of (n6
-xtuples_of
NAT ) by
HILB10_3: 24;
defpred
P3[
XFinSequence of
NAT ] means ($1
. Y3)
= (($1
. U)
|^ ($1
. Z));
A4: { p where p be n6
-element
XFinSequence of
NAT :
P3[p] } is
diophantine
Subset of (n6
-xtuples_of
NAT ) by
HILB10_3: 24;
defpred
P4[
XFinSequence of
NAT ] means (1
* ($1
. U))
> ((1
* ($1
. Y1))
+
0 );
A5: { p where p be n6
-element
XFinSequence of
NAT :
P4[p] } is
diophantine
Subset of (n6
-xtuples_of
NAT ) by
HILB10_3: 7;
defpred
P5[
XFinSequence of
NAT ] means (1
* ($1
. V))
=
[\((1
* ($1
. Y2))
/ (1
* ($1
. Y3)))/] & (1
* ($1
. Y3))
<>
0 ;
A6: { p where p be n6
-element
XFinSequence of
NAT :
P5[p] } is
diophantine
Subset of (n6
-xtuples_of
NAT ) by
Th28;
defpred
P6[
XFinSequence of
NAT ] means ((1
* ($1
. Y)),(1
* ($1
. V)))
are_congruent_mod (1
* ($1
. U));
A7: { p where p be n6
-element
XFinSequence of
NAT :
P6[p] } is
diophantine
Subset of (n6
-xtuples_of
NAT ) by
HILB10_3: 21;
defpred
P7[
XFinSequence of
NAT ] means (1
* ($1
. U))
> ((1
* ($1
. Y))
+
0 );
A8: { p where p be n6
-element
XFinSequence of
NAT :
P7[p] } is
diophantine
Subset of (n6
-xtuples_of
NAT ) by
HILB10_3: 7;
defpred
P8[
XFinSequence of
NAT ] means (1
* ($1
. X))
>= ((1
* ($1
. Z))
+
0 );
A9: { p where p be n6
-element
XFinSequence of
NAT :
P8[p] } is
diophantine
Subset of (n6
-xtuples_of
NAT ) by
HILB10_3: 8;
defpred
P9[
XFinSequence of
NAT ] means (1
* ($1
. U1))
= ((1
* ($1
. U))
+ 1);
A10: { p where p be n6
-element
XFinSequence of
NAT :
P9[p] } is
diophantine
Subset of (n6
-xtuples_of
NAT ) by
HILB10_3: 6;
defpred
P12[
XFinSequence of
NAT ] means
P1[$1] &
P2[$1];
A11: { p where p be n6
-element
XFinSequence of
NAT :
P12[p] } is
diophantine
Subset of (n6
-xtuples_of
NAT ) from
HILB10_3:sch 3(
A2,
A3);
defpred
P123[
XFinSequence of
NAT ] means
P12[$1] &
P3[$1];
A12: { p where p be n6
-element
XFinSequence of
NAT :
P123[p] } is
diophantine
Subset of (n6
-xtuples_of
NAT ) from
HILB10_3:sch 3(
A11,
A4);
defpred
P1234[
XFinSequence of
NAT ] means
P123[$1] &
P4[$1];
A13: { p where p be n6
-element
XFinSequence of
NAT :
P1234[p] } is
diophantine
Subset of (n6
-xtuples_of
NAT ) from
HILB10_3:sch 3(
A12,
A5);
defpred
P12345[
XFinSequence of
NAT ] means
P1234[$1] &
P5[$1];
A14: { p where p be n6
-element
XFinSequence of
NAT :
P12345[p] } is
diophantine
Subset of (n6
-xtuples_of
NAT ) from
HILB10_3:sch 3(
A13,
A6);
defpred
P123456[
XFinSequence of
NAT ] means
P12345[$1] &
P6[$1];
A15: { p where p be n6
-element
XFinSequence of
NAT :
P123456[p] } is
diophantine
Subset of (n6
-xtuples_of
NAT ) from
HILB10_3:sch 3(
A14,
A7);
defpred
P1234567[
XFinSequence of
NAT ] means
P123456[$1] &
P7[$1];
A16: { p where p be n6
-element
XFinSequence of
NAT :
P1234567[p] } is
diophantine
Subset of (n6
-xtuples_of
NAT ) from
HILB10_3:sch 3(
A15,
A8);
defpred
P12345678[
XFinSequence of
NAT ] means
P1234567[$1] &
P8[$1];
A17: { p where p be n6
-element
XFinSequence of
NAT :
P12345678[p] } is
diophantine
Subset of (n6
-xtuples_of
NAT ) from
HILB10_3:sch 3(
A16,
A9);
defpred
P123456789[
XFinSequence of
NAT ] means
P12345678[$1] &
P9[$1];
set PP = { p where p be n6
-element
XFinSequence of
NAT :
P123456789[p] };
A18: PP is
diophantine
Subset of (n6
-xtuples_of
NAT ) from
HILB10_3:sch 3(
A17,
A10);
reconsider PPn = { (p
| n) where p be n6
-element
XFinSequence of
NAT : p
in PP } as
diophantine
Subset of (n
-xtuples_of
NAT ) by
NAT_1: 11,
HILB10_3: 5,
A18;
A19: PPn
c= RR
proof
let x be
object;
assume x
in PPn;
then
consider p be n6
-element
XFinSequence of
NAT such that
A20: x
= (p
| n) & p
in PP;
ex q be n6
-element
XFinSequence of
NAT st q
= p &
P123456789[q] by
A20;
then
A21: (p
. X)
>= (p
. Z) & (p
. Y)
= ((p
. X)
choose (p
. Z)) by
Th16;
((p
| n)
. X)
= (p
. i1) & ((p
| n)
. Y)
= (p
. i2) & ((p
| n)
. Z)
= (p
. i3) by
A1,
HILB10_3: 4;
hence thesis by
A21,
A20;
end;
RR
c= PPn
proof
let x be
object;
assume x
in RR;
then
consider p such that
A22: x
= p &
R[p];
consider u,v,y1,y2,y3 be
Nat such that
A23: y1
= ((p
. i1)
|^ (p
. i3)) & y2
= ((u
+ 1)
|^ (p
. i1)) & y3
= (u
|^ (p
. i3)) & u
> y1 & v
=
[\(y2
/ y3)/] & ((p
. i2),v)
are_congruent_mod u & (p
. i2)
< u & (p
. i1)
>= (p
. i3) by
A22,
Th16;
reconsider u1 = (u
+ 1) as
Element of
NAT ;
reconsider u, v, y1, y2, y3 as
Element of
NAT by
ORDINAL1:def 12;
set Y = (((((
<%u%>
^
<%v%>)
^
<%y1%>)
^
<%y2%>)
^
<%y3%>)
^
<%u1%>);
set PY = (p
^ Y);
A24: (
len p)
= n & (
len Y)
= 6 by
CARD_1:def 7;
A25: (PY
| n)
= p by
A24,
AFINSQ_1: 57;
A26: (PY
. i3)
= ((PY
| n)
. i3) by
A1,
HILB10_3: 4
.= (p
. i3) by
A24,
AFINSQ_1: 57;
0
in (
dom Y) by
AFINSQ_1: 66;
then
A27: (PY
. (n
+
0 ))
= (Y
.
0 ) by
A24,
AFINSQ_1:def 3
.= u by
AFINSQ_1: 47;
1
in (
dom Y) by
A24,
AFINSQ_1: 66;
then
A28: (PY
. (n
+ 1))
= (Y
. 1) by
A24,
AFINSQ_1:def 3
.= v by
AFINSQ_1: 47;
2
in (
dom Y) by
A24,
AFINSQ_1: 66;
then
A29: (PY
. (n
+ 2))
= (Y
. 2) by
A24,
AFINSQ_1:def 3
.= y1 by
AFINSQ_1: 47;
3
in (
dom Y) by
A24,
AFINSQ_1: 66;
then
A30: (PY
. (n
+ 3))
= (Y
. 3) by
A24,
AFINSQ_1:def 3
.= y2 by
AFINSQ_1: 47;
4
in (
dom Y) by
A24,
AFINSQ_1: 66;
then
A31: (PY
. (n
+ 4))
= (Y
. 4) by
A24,
AFINSQ_1:def 3
.= y3 by
AFINSQ_1: 47;
5
in (
dom Y) by
A24,
AFINSQ_1: 66;
then
A32: (PY
. (n
+ 5))
= (Y
. 5) by
A24,
AFINSQ_1:def 3
.= u1 by
AFINSQ_1: 47;
P123456789[PY] by
A23,
A25,
A1,
HILB10_3: 4,
A26,
A27,
A28,
A29,
A30,
A31,
A32;
then PY
in PP;
hence thesis by
A25,
A22;
end;
hence thesis by
A19,
XBOOLE_0:def 10;
end;
theorem ::
HILB10_4:30
Th30: for i1, i2, i3 holds { p : (p
. i1)
>= (p
. i3) & (p
. i2)
= ((p
. i1)
choose (p
. i3)) } is
diophantine
Subset of (n
-xtuples_of
NAT )
proof
let i1, i2, i3;
set n6 = (n
+ 6);
defpred
R[
XFinSequence of
NAT ] means ($1
. i1)
>= ($1
. i3) & ($1
. i2)
= (($1
. i1)
choose ($1
. i3));
set RR = { p :
R[p] };
per cases ;
suppose
A1: n
=
0 ;
RR
c= (n
-xtuples_of
NAT )
proof
let x be
object;
assume x
in RR;
then ex p be n
-element
XFinSequence of
NAT st x
= p &
R[p];
hence thesis by
HILB10_2:def 5;
end;
hence thesis by
A1;
end;
suppose n
<>
0 ;
hence thesis by
Th29;
end;
end;
theorem ::
HILB10_4:31
Th31: for i1, i2 st n
<>
0 holds { p : (p
. i1)
= ((p
. i2)
! ) } is
diophantine
Subset of (n
-xtuples_of
NAT )
proof
let i1, i2;
set n6 = (n
+ 6);
defpred
R[
XFinSequence of
NAT ] means ($1
. i1)
= (($1
. i2)
! );
set RR = { p :
R[p] };
assume
A1: n
<>
0 ;
n
= (n
+
0 );
then
reconsider Y = i1, X = i2, N = n, Y1 = (n
+ 1), Y2 = (n
+ 2), Y3 = (n
+ 3), X1 = (n
+ 4), X2 = (n
+ 5) as
Element of (n
+ 6) by
HILB10_3: 2,
HILB10_3: 3;
defpred
P1[
XFinSequence of
NAT ] means ($1
. Y1)
= (($1
. X2)
|^ ($1
. X1));
A2: { p where p be n6
-element
XFinSequence of
NAT :
P1[p] } is
diophantine
Subset of (n6
-xtuples_of
NAT ) by
HILB10_3: 24;
defpred
P2[
XFinSequence of
NAT ] means ($1
. Y2)
= (($1
. N)
|^ ($1
. X));
A3: { p where p be n6
-element
XFinSequence of
NAT :
P2[p] } is
diophantine
Subset of (n6
-xtuples_of
NAT ) by
HILB10_3: 24;
defpred
P3[
XFinSequence of
NAT ] means ($1
. N)
>= ($1
. X) & ($1
. Y3)
= (($1
. N)
choose ($1
. X));
A4: { p where p be n6
-element
XFinSequence of
NAT :
P3[p] } is
diophantine
Subset of (n6
-xtuples_of
NAT ) by
Th30;
defpred
P4[
XFinSequence of
NAT ] means (1
* ($1
. Y))
=
[\((1
* ($1
. Y2))
/ (1
* ($1
. Y3)))/] & (1
* ($1
. Y3))
<>
0 ;
A5: { p where p be n6
-element
XFinSequence of
NAT :
P4[p] } is
diophantine
Subset of (n6
-xtuples_of
NAT ) by
Th28;
defpred
P5[
XFinSequence of
NAT ] means (1
* ($1
. X2))
= ((2
* ($1
. X))
+
0 );
A6: { p where p be n6
-element
XFinSequence of
NAT :
P5[p] } is
diophantine
Subset of (n6
-xtuples_of
NAT ) by
HILB10_3: 6;
defpred
P6[
XFinSequence of
NAT ] means (1
* ($1
. X1))
= ((1
* ($1
. X))
+ 1);
A7: { p where p be n6
-element
XFinSequence of
NAT :
P6[p] } is
diophantine
Subset of (n6
-xtuples_of
NAT ) by
HILB10_3: 6;
defpred
P7[
XFinSequence of
NAT ] means (1
* ($1
. N))
> ((1
* ($1
. Y1))
+
0 );
A8: { p where p be n6
-element
XFinSequence of
NAT :
P7[p] } is
diophantine
Subset of (n6
-xtuples_of
NAT ) by
HILB10_3: 7;
defpred
P12[
XFinSequence of
NAT ] means
P1[$1] &
P2[$1];
A9: { p where p be n6
-element
XFinSequence of
NAT :
P12[p] } is
diophantine
Subset of (n6
-xtuples_of
NAT ) from
HILB10_3:sch 3(
A2,
A3);
defpred
P123[
XFinSequence of
NAT ] means
P12[$1] &
P3[$1];
A10: { p where p be n6
-element
XFinSequence of
NAT :
P123[p] } is
diophantine
Subset of (n6
-xtuples_of
NAT ) from
HILB10_3:sch 3(
A9,
A4);
defpred
P1234[
XFinSequence of
NAT ] means
P123[$1] &
P4[$1];
A11: { p where p be n6
-element
XFinSequence of
NAT :
P1234[p] } is
diophantine
Subset of (n6
-xtuples_of
NAT ) from
HILB10_3:sch 3(
A10,
A5);
defpred
P12345[
XFinSequence of
NAT ] means
P1234[$1] &
P5[$1];
A12: { p where p be n6
-element
XFinSequence of
NAT :
P12345[p] } is
diophantine
Subset of (n6
-xtuples_of
NAT ) from
HILB10_3:sch 3(
A11,
A6);
defpred
P123456[
XFinSequence of
NAT ] means
P12345[$1] &
P6[$1];
A13: { p where p be n6
-element
XFinSequence of
NAT :
P123456[p] } is
diophantine
Subset of (n6
-xtuples_of
NAT ) from
HILB10_3:sch 3(
A12,
A7);
defpred
P1234567[
XFinSequence of
NAT ] means
P123456[$1] &
P7[$1];
set PP = { p where p be n6
-element
XFinSequence of
NAT :
P1234567[p] };
A14: PP is
diophantine
Subset of (n6
-xtuples_of
NAT ) from
HILB10_3:sch 3(
A13,
A8);
reconsider PPn = { (p
| n) where p be n6
-element
XFinSequence of
NAT : p
in PP } as
diophantine
Subset of (n
-xtuples_of
NAT ) by
NAT_1: 11,
HILB10_3: 5,
A14;
A15: PPn
c= RR
proof
let x be
object;
assume x
in PPn;
then
consider p be n6
-element
XFinSequence of
NAT such that
A16: x
= (p
| n) & p
in PP;
ex q be n6
-element
XFinSequence of
NAT st q
= p &
P1234567[q] by
A16;
then
A17: (p
. Y)
= ((p
. X)
! ) by
Th18;
((p
| n)
. X)
= (p
. i2) & ((p
| n)
. Y)
= (p
. i1) by
A1,
HILB10_3: 4;
hence thesis by
A17,
A16;
end;
RR
c= PPn
proof
let x be
object;
assume x
in RR;
then
consider p such that
A18: x
= p &
R[p];
consider N,y1,y2,y3 be
Nat such that
A19: y1
= ((2
* (p
. i2))
|^ ((p
. i2)
+ 1)) & y2
= (N
|^ (p
. i2)) & y3
= (N
choose (p
. i2)) & N
> y1 & (p
. i1)
=
[\(y2
/ y3)/] by
Th18,
A18;
A20: (p
. i2)
<>
0 implies N
>= (p
. i2)
proof
assume (p
. i2)
<>
0 ;
then
A21: (2
* (p
. i2))
>= 1 by
NAT_1: 14;
((p
. i2)
+ 1)
>= 1 by
NAT_1: 11;
then
A22: ((2
* (p
. i2))
|^ ((p
. i2)
+ 1))
>= ((2
* (p
. i2))
|^ 1) by
A21,
PREPOWER: 93;
N
> (2
* (p
. i2)) & ((p
. i2)
+ (p
. i2))
>= (p
. i2) by
A22,
A19,
XXREAL_0: 2,
NAT_1: 11;
hence thesis by
XXREAL_0: 2;
end;
reconsider x1 = ((p
. i2)
+ 1), x2 = (2
* (p
. i2)) as
Element of
NAT ;
reconsider N, y1, y2, y3 as
Element of
NAT by
ORDINAL1:def 12;
set Y = (((((
<%N%>
^
<%y1%>)
^
<%y2%>)
^
<%y3%>)
^
<%x1%>)
^
<%x2%>);
set PY = (p
^ Y);
A23: (
len p)
= n & (
len Y)
= 6 by
CARD_1:def 7;
A24: (PY
| n)
= p by
A23,
AFINSQ_1: 57;
0
in (
dom Y) by
AFINSQ_1: 66;
then
A25: (PY
. (n
+
0 ))
= (Y
.
0 ) by
A23,
AFINSQ_1:def 3
.= N by
AFINSQ_1: 47;
1
in (
dom Y) by
A23,
AFINSQ_1: 66;
then
A26: (PY
. (n
+ 1))
= (Y
. 1) by
A23,
AFINSQ_1:def 3
.= y1 by
AFINSQ_1: 47;
2
in (
dom Y) by
A23,
AFINSQ_1: 66;
then
A27: (PY
. (n
+ 2))
= (Y
. 2) by
A23,
AFINSQ_1:def 3
.= y2 by
AFINSQ_1: 47;
3
in (
dom Y) by
A23,
AFINSQ_1: 66;
then
A28: (PY
. (n
+ 3))
= (Y
. 3) by
A23,
AFINSQ_1:def 3
.= y3 by
AFINSQ_1: 47;
4
in (
dom Y) by
A23,
AFINSQ_1: 66;
then
A29: (PY
. (n
+ 4))
= (Y
. 4) by
A23,
AFINSQ_1:def 3
.= x1 by
AFINSQ_1: 47;
5
in (
dom Y) by
A23,
AFINSQ_1: 66;
then
A30: (PY
. (n
+ 5))
= (Y
. 5) by
A23,
AFINSQ_1:def 3
.= x2 by
AFINSQ_1: 47;
P1234567[PY] by
A20,
A19,
CATALAN2: 26,
A24,
A1,
HILB10_3: 4,
A25,
A26,
A27,
A28,
A29,
A30;
then PY
in PP;
hence thesis by
A24,
A18;
end;
hence thesis by
A15,
XBOOLE_0:def 10;
end;
theorem ::
HILB10_4:32
Th32: for i1, i2 holds { p : (p
. i1)
= ((p
. i2)
! ) } is
diophantine
Subset of (n
-xtuples_of
NAT )
proof
let i1, i2;
set n6 = (n
+ 6);
defpred
R[
XFinSequence of
NAT ] means ($1
. i1)
= (($1
. i2)
! );
set RR = { p :
R[p] };
per cases ;
suppose
A1: n
=
0 ;
RR
c= (n
-xtuples_of
NAT )
proof
let x be
object;
assume x
in RR;
then ex p be n
-element
XFinSequence of
NAT st x
= p &
R[p];
hence thesis by
HILB10_2:def 5;
end;
hence thesis by
A1;
end;
suppose n
<>
0 ;
hence thesis by
Th31;
end;
end;
theorem ::
HILB10_4:33
for n, i1, i2, i3 holds { p : (1
+ (((p
. i1)
+ 1)
* ((p
. i2)
! )))
= (p
. i3) } is
diophantine
Subset of (n
-xtuples_of
NAT )
proof
deffunc
F1(
Nat,
Nat,
Nat) = ((1
* $1)
+ (
- 1));
A1: for i1, i2, i3, i4, a holds { p :
F1(.,.,.)
= (a
* (p
. i4)) } is
diophantine
Subset of (n
-xtuples_of
NAT ) by
HILB10_3: 6;
defpred
P1[
Nat,
Nat,
Integer] means ((1
* $1)
* $2)
= $3;
A2: for i1, i2, i3, a holds { p :
P1[(p
. i1), (p
. i2), (a
* (p
. i3))] } is
diophantine
Subset of (n
-xtuples_of
NAT ) by
HILB10_3: 9;
A3: for i1, i2, i3, i4, i5 holds { p :
P1[(p
. i1), (p
. i2),
F1(.,.,.)] } is
diophantine
Subset of (n
-xtuples_of
NAT ) from
HILB10_3:sch 5(
A2,
A1);
deffunc
F2(
Nat,
Nat,
Nat) = ($1
! );
A4: for i1, i2, i3, i4 holds { p :
F2(.,.,.)
= (p
. i4) } is
diophantine
Subset of (n
-xtuples_of
NAT ) by
Th32;
defpred
P2[
Nat,
Nat,
natural
object,
Nat,
Nat,
Nat] means ((1
* $1)
* $3)
= ((1
* $2)
- 1);
A5:
now
let n, i1, i3, i2, i4, i5, i6;
defpred
Q1[
XFinSequence of
NAT ] means
P1[($1
. i1), ($1
. i2), ((1
* ($1
. i3))
+ (
- 1))];
defpred
Q2[
XFinSequence of
NAT ] means
P2[($1
. i1), ($1
. i3), ($1
. i2), ($1
. i4), ($1
. i5), ($1
. i6)];
A6: for p holds
Q1[p] iff
Q2[p];
{ p :
Q1[p] }
= { q :
Q2[q] } from
HILB10_3:sch 2(
A6);
hence { p :
P2[(p
. i1), (p
. i3), (p
. i2), (p
. i4), (p
. i5), (p
. i6)] } is
diophantine
Subset of (n
-xtuples_of
NAT ) by
A3;
end;
A7: for i1, i2, i3, i4, i5 holds { p :
P2[(p
. i1), (p
. i2),
F2(.,.,.), (p
. i3), (p
. i4), (p
. i5)] } is
diophantine
Subset of (n
-xtuples_of
NAT ) from
HILB10_3:sch 4(
A5,
A4);
defpred
P3[
Nat,
Nat,
natural
object,
Nat,
Nat,
Nat] means ((1
* $3)
* ($1
! ))
= ((1
* $2)
- 1);
A8: for n, i1, i4, i2, i3, i5, i6 holds { p :
P3[(p
. i1), (p
. i4), (p
. i2), (p
. i3), (p
. i5), (p
. i6)] } is
diophantine
Subset of (n
-xtuples_of
NAT ) by
A7;
deffunc
F3(
Nat,
Nat,
Nat) = ((1
* $1)
+ 1);
A9: for n holds for i1, i2, i3, i4 holds { p :
F3(.,.,.)
= (p
. i4) } is
diophantine
Subset of (n
-xtuples_of
NAT ) by
HILB10_3: 15;
A10: for n holds for i1, i2, i3, i4, i5 holds { p :
P3[(p
. i1), (p
. i2),
F3(.,.,.), (p
. i3), (p
. i4), (p
. i5)] } is
diophantine
Subset of (n
-xtuples_of
NAT ) from
HILB10_3:sch 4(
A8,
A9);
let n, i1, i2, i3;
defpred
Q1[
XFinSequence of
NAT ] means
P3[($1
. i2), ($1
. i3), ((1
* ($1
. i1))
+ 1), ($1
. i3), ($1
. i3), ($1
. i3)];
defpred
Q2[
XFinSequence of
NAT ] means (1
+ ((($1
. i1)
+ 1)
* (($1
. i2)
! )))
= ($1
. i3);
A11: for p holds
Q1[p] iff
Q2[p];
{ p :
Q1[p] }
= { q :
Q2[q] } from
HILB10_3:sch 2(
A11);
hence thesis by
A10;
end;
theorem ::
HILB10_4:34
Th34: for i1, i2, i3 st n
<>
0 holds { p : (p
. i3)
= (
Product (1
+ ((p
. i1)
* (
idseq (p
. i2))))) & (p
. i1)
>= 1 } is
diophantine
Subset of (n
-xtuples_of
NAT )
proof
let i1, i2, i3;
set n12 = (n
+ 13);
defpred
R[
XFinSequence of
NAT ] means ($1
. i3)
= (
Product (1
+ (($1
. i1)
* (
idseq ($1
. i2))))) & ($1
. i1)
>= 1;
set RR = { p :
R[p] };
assume
A1: n
<>
0 ;
n
= (n
+
0 );
then
reconsider X1 = i1, X = i2, Y = i3, U = n, W = (n
+ 1), Y1 = (n
+ 2), Y2 = (n
+ 3), Y3 = (n
+ 4), Y4 = (n
+ 5), Y5 = (n
+ 6), X1W = (n
+ 7), WX = (n
+ 8), Y1Y2 = (n
+ 9), Y1Y2Y3 = (n
+ 10), X1X = (n
+ 11), ONE = (n
+ 12) as
Element of n12 by
HILB10_3: 2,
HILB10_3: 3;
defpred
P0[
XFinSequence of
NAT ] means (1
* ($1
. X1))
>= ((
0
* ($1
. Y))
+ 1);
A2: { p where p be n12
-element
XFinSequence of
NAT :
P0[p] } is
diophantine
Subset of (n12
-xtuples_of
NAT ) by
HILB10_3: 8;
defpred
P1[
XFinSequence of
NAT ] means (1
* ($1
. U))
> ((1
* ($1
. Y))
+
0 );
A3: { p where p be n12
-element
XFinSequence of
NAT :
P1[p] } is
diophantine
Subset of (n12
-xtuples_of
NAT ) by
HILB10_3: 7;
defpred
P2[
XFinSequence of
NAT ] means (1
* ($1
. X1W))
= ((1
* ($1
. X1))
* ($1
. W));
A4: { p where p be n12
-element
XFinSequence of
NAT :
P2[p] } is
diophantine
Subset of (n12
-xtuples_of
NAT ) by
HILB10_3: 9;
defpred
P3[
XFinSequence of
NAT ] means ($1
. ONE)
= 1;
A5: { p where p be n12
-element
XFinSequence of
NAT :
P3[p] } is
diophantine
Subset of (n12
-xtuples_of
NAT ) by
HILB10_3: 14;
defpred
P4[
XFinSequence of
NAT ] means ((1
* ($1
. X1W)),(1
* ($1
. ONE)))
are_congruent_mod (1
* ($1
. U));
A6: { p where p be n12
-element
XFinSequence of
NAT :
P4[p] } is
diophantine
Subset of (n12
-xtuples_of
NAT ) by
HILB10_3: 21;
defpred
P5[
XFinSequence of
NAT ] means ($1
. Y1)
= (($1
. X1)
|^ ($1
. X));
A7: { p where p be n12
-element
XFinSequence of
NAT :
P5[p] } is
diophantine
Subset of (n12
-xtuples_of
NAT ) by
HILB10_3: 24;
defpred
P6[
XFinSequence of
NAT ] means ($1
. Y2)
= (($1
. X)
! );
A8: { p where p be n12
-element
XFinSequence of
NAT :
P6[p] } is
diophantine
Subset of (n12
-xtuples_of
NAT ) by
Th32;
defpred
P7[
XFinSequence of
NAT ] means (1
* ($1
. WX))
= (((1
* ($1
. W))
+ (1
* ($1
. X)))
+
0 );
A9: { p where p be n12
-element
XFinSequence of
NAT :
P7[p] } is
diophantine
Subset of (n12
-xtuples_of
NAT ) by
HILB10_3: 11;
defpred
P8[
XFinSequence of
NAT ] means ($1
. WX)
>= ($1
. X) & ($1
. Y3)
= (($1
. WX)
choose ($1
. X));
A10: { p where p be n12
-element
XFinSequence of
NAT :
P8[p] } is
diophantine
Subset of (n12
-xtuples_of
NAT ) by
Th30;
defpred
P9[
XFinSequence of
NAT ] means (1
* ($1
. Y1Y2))
= ((1
* ($1
. Y1))
* ($1
. Y2));
A11: { p where p be n12
-element
XFinSequence of
NAT :
P9[p] } is
diophantine
Subset of (n12
-xtuples_of
NAT ) by
HILB10_3: 9;
defpred
PA[
XFinSequence of
NAT ] means (1
* ($1
. Y1Y2Y3))
= ((1
* ($1
. Y1Y2))
* ($1
. Y3));
A12: { p where p be n12
-element
XFinSequence of
NAT :
PA[p] } is
diophantine
Subset of (n12
-xtuples_of
NAT ) by
HILB10_3: 9;
defpred
PB[
XFinSequence of
NAT ] means ((1
* ($1
. Y1Y2Y3)),(1
* ($1
. Y)))
are_congruent_mod (1
* ($1
. U));
A13: { p where p be n12
-element
XFinSequence of
NAT :
PB[p] } is
diophantine
Subset of (n12
-xtuples_of
NAT ) by
HILB10_3: 21;
defpred
PC[
XFinSequence of
NAT ] means (1
* ($1
. X1X))
= ((1
* ($1
. X1))
* ($1
. X));
A14: { p where p be n12
-element
XFinSequence of
NAT :
PC[p] } is
diophantine
Subset of (n12
-xtuples_of
NAT ) by
HILB10_3: 9;
defpred
PD[
XFinSequence of
NAT ] means (1
* ($1
. Y4))
= ((1
* ($1
. X1X))
+ 1);
A15: { p where p be n12
-element
XFinSequence of
NAT :
PD[p] } is
diophantine
Subset of (n12
-xtuples_of
NAT ) by
HILB10_3: 6;
defpred
PE[
XFinSequence of
NAT ] means ($1
. Y5)
= (($1
. Y4)
|^ ($1
. X));
A16: { p where p be n12
-element
XFinSequence of
NAT :
PE[p] } is
diophantine
Subset of (n12
-xtuples_of
NAT ) by
HILB10_3: 24;
defpred
PF[
XFinSequence of
NAT ] means (1
* ($1
. U))
> ((1
* ($1
. Y5))
+
0 );
A17: { p where p be n12
-element
XFinSequence of
NAT :
PF[p] } is
diophantine
Subset of (n12
-xtuples_of
NAT ) by
HILB10_3: 7;
defpred
C1[
XFinSequence of
NAT ] means
P0[$1] &
P1[$1];
A18: { p where p be n12
-element
XFinSequence of
NAT :
C1[p] } is
diophantine
Subset of (n12
-xtuples_of
NAT ) from
HILB10_3:sch 3(
A2,
A3);
defpred
C2[
XFinSequence of
NAT ] means
C1[$1] &
P2[$1];
A19: { p where p be n12
-element
XFinSequence of
NAT :
C2[p] } is
diophantine
Subset of (n12
-xtuples_of
NAT ) from
HILB10_3:sch 3(
A18,
A4);
defpred
C3[
XFinSequence of
NAT ] means
C2[$1] &
P3[$1];
A20: { p where p be n12
-element
XFinSequence of
NAT :
C3[p] } is
diophantine
Subset of (n12
-xtuples_of
NAT ) from
HILB10_3:sch 3(
A19,
A5);
defpred
C4[
XFinSequence of
NAT ] means
C3[$1] &
P4[$1];
A21: { p where p be n12
-element
XFinSequence of
NAT :
C4[p] } is
diophantine
Subset of (n12
-xtuples_of
NAT ) from
HILB10_3:sch 3(
A20,
A6);
defpred
C5[
XFinSequence of
NAT ] means
C4[$1] &
P5[$1];
A22: { p where p be n12
-element
XFinSequence of
NAT :
C5[p] } is
diophantine
Subset of (n12
-xtuples_of
NAT ) from
HILB10_3:sch 3(
A21,
A7);
defpred
C6[
XFinSequence of
NAT ] means
C5[$1] &
P6[$1];
A23: { p where p be n12
-element
XFinSequence of
NAT :
C6[p] } is
diophantine
Subset of (n12
-xtuples_of
NAT ) from
HILB10_3:sch 3(
A22,
A8);
defpred
C7[
XFinSequence of
NAT ] means
C6[$1] &
P7[$1];
A24: { p where p be n12
-element
XFinSequence of
NAT :
C7[p] } is
diophantine
Subset of (n12
-xtuples_of
NAT ) from
HILB10_3:sch 3(
A23,
A9);
defpred
C8[
XFinSequence of
NAT ] means
C7[$1] &
P8[$1];
A25: { p where p be n12
-element
XFinSequence of
NAT :
C8[p] } is
diophantine
Subset of (n12
-xtuples_of
NAT ) from
HILB10_3:sch 3(
A24,
A10);
defpred
C9[
XFinSequence of
NAT ] means
C8[$1] &
P9[$1];
A26: { p where p be n12
-element
XFinSequence of
NAT :
C9[p] } is
diophantine
Subset of (n12
-xtuples_of
NAT ) from
HILB10_3:sch 3(
A25,
A11);
defpred
CA[
XFinSequence of
NAT ] means
C9[$1] &
PA[$1];
A27: { p where p be n12
-element
XFinSequence of
NAT :
CA[p] } is
diophantine
Subset of (n12
-xtuples_of
NAT ) from
HILB10_3:sch 3(
A26,
A12);
defpred
CB[
XFinSequence of
NAT ] means
CA[$1] &
PB[$1];
A28: { p where p be n12
-element
XFinSequence of
NAT :
CB[p] } is
diophantine
Subset of (n12
-xtuples_of
NAT ) from
HILB10_3:sch 3(
A27,
A13);
defpred
CC[
XFinSequence of
NAT ] means
CB[$1] &
PC[$1];
A29: { p where p be n12
-element
XFinSequence of
NAT :
CC[p] } is
diophantine
Subset of (n12
-xtuples_of
NAT ) from
HILB10_3:sch 3(
A28,
A14);
defpred
CD[
XFinSequence of
NAT ] means
CC[$1] &
PD[$1];
A30: { p where p be n12
-element
XFinSequence of
NAT :
CD[p] } is
diophantine
Subset of (n12
-xtuples_of
NAT ) from
HILB10_3:sch 3(
A29,
A15);
defpred
CE[
XFinSequence of
NAT ] means
CD[$1] &
PE[$1];
A31: { p where p be n12
-element
XFinSequence of
NAT :
CE[p] } is
diophantine
Subset of (n12
-xtuples_of
NAT ) from
HILB10_3:sch 3(
A30,
A16);
defpred
CF[
XFinSequence of
NAT ] means
CE[$1] &
PF[$1];
set PP = { p where p be n12
-element
XFinSequence of
NAT :
CF[p] };
A32: PP is
diophantine
Subset of (n12
-xtuples_of
NAT ) from
HILB10_3:sch 3(
A31,
A17);
reconsider PPn = { (p
| n) where p be n12
-element
XFinSequence of
NAT : p
in PP } as
diophantine
Subset of (n
-xtuples_of
NAT ) by
NAT_1: 11,
HILB10_3: 5,
A32;
A33: PPn
c= RR
proof
let x be
object;
assume x
in PPn;
then
consider p be n12
-element
XFinSequence of
NAT such that
A34: x
= (p
| n) & p
in PP;
ex q be n12
-element
XFinSequence of
NAT st q
= p &
CF[q] by
A34;
then
A35:
R[p] by
Th20;
((p
| n)
. X1)
= (p
. i1) & ((p
| n)
. X)
= (p
. i2) & ((p
| n)
. Y)
= (p
. i3) by
A1,
HILB10_3: 4;
hence thesis by
A35,
A34;
end;
RR
c= PPn
proof
let x be
object;
assume x
in RR;
then
consider p such that
A36: x
= p &
R[p];
consider u,w,y1,y2,y3,y4,y5 be
Nat such that
A37: u
> (p
. i3) & (((p
. i1)
* w),1)
are_congruent_mod u & y1
= ((p
. i1)
|^ (p
. i2)) & y2
= ((p
. i2)
! ) & y3
= ((w
+ (p
. i2))
choose (p
. i2)) & (((y1
* y2)
* y3),(p
. i3))
are_congruent_mod u & y4
= (1
+ ((p
. i1)
* (p
. i2))) & y5
= (y4
|^ (p
. i2)) & u
> y5 by
A36,
Th20;
reconsider u, w, n, y1, y2, y3, y4, y5 as
Element of
NAT by
ORDINAL1:def 12;
reconsider x1w = ((p
. i1)
* w), wx = (w
+ (p
. i2)), y12 = (y1
* y2), y123 = ((y1
* y2)
* y3), x1x = ((p
. i1)
* (p
. i2)), One = 1 as
Element of
NAT ;
set Y1 = ((((((((
<%u%>
^
<%w%>)
^
<%y1%>)
^
<%y2%>)
^
<%y3%>)
^
<%y4%>)
^
<%y5%>)
^
<%x1w%>)
^
<%wx%>), Y2 = (((
<%y12%>
^
<%y123%>)
^
<%x1x%>)
^
<%One%>);
set Y = (Y1
^ Y2);
set PY = (p
^ Y);
reconsider PY as
XFinSequence of
NAT ;
A38: (
len p)
= n & (
len Y)
= 13 & (
len Y1)
= 9 & (
len Y2)
= 4 by
CARD_1:def 7;
A39: (PY
| n)
= p by
A38,
AFINSQ_1: 57;
A40: (PY
. i2)
= ((PY
| n)
. i2) by
A1,
HILB10_3: 4
.= (p
. i2) by
A38,
AFINSQ_1: 57;
0
in (
dom Y) by
AFINSQ_1: 66;
then
A41: (PY
. (n
+
0 ))
= (Y
.
0 ) by
A38,
AFINSQ_1:def 3
.= (Y1
.
0 ) by
A38,
AFINSQ_1: 51
.= u by
AFINSQ_1: 50;
1
in (
dom Y) by
A38,
AFINSQ_1: 66;
then
A42: (PY
. (n
+ 1))
= (Y
. 1) by
A38,
AFINSQ_1:def 3
.= (Y1
. 1) by
A38,
AFINSQ_1: 51
.= w by
AFINSQ_1: 50;
2
in (
dom Y) by
A38,
AFINSQ_1: 66;
then
A43: (PY
. (n
+ 2))
= (Y
. 2) by
A38,
AFINSQ_1:def 3
.= (Y1
. 2) by
A38,
AFINSQ_1: 51
.= y1 by
AFINSQ_1: 50;
3
in (
dom Y) by
A38,
AFINSQ_1: 66;
then
A44: (PY
. (n
+ 3))
= (Y
. 3) by
A38,
AFINSQ_1:def 3
.= (Y1
. 3) by
A38,
AFINSQ_1: 51
.= y2 by
AFINSQ_1: 50;
4
in (
dom Y) by
A38,
AFINSQ_1: 66;
then
A45: (PY
. (n
+ 4))
= (Y
. 4) by
A38,
AFINSQ_1:def 3
.= (Y1
. 4) by
A38,
AFINSQ_1: 51
.= y3 by
AFINSQ_1: 50;
5
in (
dom Y) by
A38,
AFINSQ_1: 66;
then
A46: (PY
. (n
+ 5))
= (Y
. 5) by
A38,
AFINSQ_1:def 3
.= (Y1
. 5) by
A38,
AFINSQ_1: 51
.= y4 by
AFINSQ_1: 50;
6
in (
dom Y) by
A38,
AFINSQ_1: 66;
then
A47: (PY
. (n
+ 6))
= (Y
. 6) by
A38,
AFINSQ_1:def 3
.= (Y1
. 6) by
A38,
AFINSQ_1: 51
.= y5 by
AFINSQ_1: 50;
7
in (
dom Y) by
A38,
AFINSQ_1: 66;
then
A48: (PY
. (n
+ 7))
= (Y
. 7) by
A38,
AFINSQ_1:def 3
.= (Y1
. 7) by
A38,
AFINSQ_1: 51
.= x1w by
AFINSQ_1: 50;
8
in (
dom Y) by
A38,
AFINSQ_1: 66;
then
A49: (PY
. (n
+ 8))
= (Y
. 8) by
A38,
AFINSQ_1:def 3
.= (Y1
. 8) by
A38,
AFINSQ_1: 51
.= wx by
AFINSQ_1: 50;
A50: 9
in (
dom Y) &
0
in (
dom Y2) by
A38,
AFINSQ_1: 66;
then
A51: (PY
. (n
+ 9))
= (Y
. (9
+
0 )) by
A38,
AFINSQ_1:def 3
.= (Y2
.
0 ) by
A38,
A50,
AFINSQ_1:def 3
.= y12 by
AFINSQ_1: 45;
A52: 10
in (
dom Y) & 1
in (
dom Y2) by
A38,
AFINSQ_1: 66;
then
A53: (PY
. (n
+ 10))
= (Y
. (9
+ 1)) by
A38,
AFINSQ_1:def 3
.= (Y2
. 1) by
A38,
A52,
AFINSQ_1:def 3
.= y123 by
AFINSQ_1: 45;
A54: 11
in (
dom Y) & 2
in (
dom Y2) by
A38,
AFINSQ_1: 66;
then
A55: (PY
. (n
+ 11))
= (Y
. (9
+ 2)) by
A38,
AFINSQ_1:def 3
.= (Y2
. 2) by
A38,
A54,
AFINSQ_1:def 3
.= x1x by
AFINSQ_1: 45;
A56: 12
in (
dom Y) & 3
in (
dom Y2) by
A38,
AFINSQ_1: 66;
then
A57: (PY
. (n
+ 12))
= (Y
. (9
+ 3)) by
A38,
AFINSQ_1:def 3
.= (Y2
. 3) by
A38,
A56,
AFINSQ_1:def 3
.= One by
AFINSQ_1: 45;
CF[PY] by
A36,
A37,
A39,
A1,
HILB10_3: 4,
A40,
A41,
A42,
A43,
A44,
A45,
A46,
A47,
A48,
A49,
A51,
A53,
A55,
A57,
NAT_1: 11;
then PY
in PP;
hence thesis by
A39,
A36;
end;
hence thesis by
A33,
XBOOLE_0:def 10;
end;
theorem ::
HILB10_4:35
Th35: for i1, i2, i3 holds { p : (p
. i3)
= (
Product (1
+ ((p
. i1)
* (
idseq (p
. i2))))) & (p
. i1)
>= 1 } is
diophantine
Subset of (n
-xtuples_of
NAT )
proof
let i1, i2, i3;
set n12 = (n
+ 13);
defpred
R[
XFinSequence of
NAT ] means ($1
. i3)
= (
Product (1
+ (($1
. i1)
* (
idseq ($1
. i2))))) & ($1
. i1)
>= 1;
set RR = { p :
R[p] };
per cases ;
suppose
A1: n
=
0 ;
RR
c= (n
-xtuples_of
NAT )
proof
let x be
object;
assume x
in RR;
then ex p be n
-element
XFinSequence of
NAT st x
= p &
R[p];
hence thesis by
HILB10_2:def 5;
end;
hence thesis by
A1;
end;
suppose n
<>
0 ;
hence thesis by
Th34;
end;
end;
theorem ::
HILB10_4:36
for n, i1, i2, i3 holds { p : (p
. i3)
= (
Product (1
+ (((p
. i1)
! )
* (
idseq (1
+ (p
. i2)))))) } is
diophantine
Subset of (n
-xtuples_of
NAT )
proof
deffunc
F1(
Nat,
Nat,
Nat) = ($1
! );
A1: for i1, i2, i3, i4 holds { p :
F1(.,.,.)
= (p
. i4) } is
diophantine
Subset of (n
-xtuples_of
NAT ) by
Th32;
defpred
P1[
Nat,
Nat,
natural
object,
Nat,
Nat,
Nat] means $1
= (
Product (1
+ ($3
* (
idseq $2)))) & $3
>= 1;
A2: for i1, i2, i3, i4, i5, i6 holds { p :
P1[(p
. i1), (p
. i2), (p
. i3), (p
. i4), (p
. i5), (p
. i6)] } is
diophantine
Subset of (n
-xtuples_of
NAT ) by
Th35;
A3: for i1, i2, i3, i4, i5 holds { p :
P1[(p
. i1), (p
. i2),
F1(.,.,.), (p
. i3), (p
. i4), (p
. i5)] } is
diophantine
Subset of (n
-xtuples_of
NAT ) from
HILB10_3:sch 4(
A2,
A1);
deffunc
F2(
Nat,
Nat,
Nat) = ((1
* $1)
+ 1);
A4: for i1, i2, i3, i4 holds { p :
F2(.,.,.)
= (p
. i4) } is
diophantine
Subset of (n
-xtuples_of
NAT ) by
HILB10_3: 15;
defpred
P2[
Nat,
Nat,
natural
object,
Nat,
Nat,
Nat] means $1
= (
Product (1
+ (($2
! )
* (
idseq $3)))) & ($2
! )
>= 1;
A5: for n, i1, i3, i2, i4, i5, i6 holds { p :
P2[(p
. i1), (p
. i3), (p
. i2), (p
. i4), (p
. i5), (p
. i6)] } is
diophantine
Subset of (n
-xtuples_of
NAT ) by
A3;
A6: for i1, i2, i3, i4, i5 holds { p :
P2[(p
. i1), (p
. i2),
F2(.,.,.), (p
. i3), (p
. i4), (p
. i5)] } is
diophantine
Subset of (n
-xtuples_of
NAT ) from
HILB10_3:sch 4(
A5,
A4);
let n, i1, i2, i3;
defpred
Q1[
XFinSequence of
NAT ] means
P2[($1
. i3), ($1
. i1), ((1
* ($1
. i2))
+ 1), (1
* ($1
. i3)), ($1
. i3), ($1
. i3)];
defpred
Q2[
XFinSequence of
NAT ] means ($1
. i3)
= (
Product (1
+ ((($1
. i1)
! )
* (
idseq (1
+ ($1
. i2))))));
A7: for p holds
Q1[p] iff
Q2[p] by
NAT_1: 14;
{ p :
Q1[p] }
= { q :
Q2[q] } from
HILB10_3:sch 2(
A7);
hence thesis by
A6;
end;
theorem ::
HILB10_4:37
Th37: for i1, i2, i3 st n
<>
0 holds { p : (p
. i3)
= (
Product (((p
. i2)
+ 1)
+ (
- (
idseq (p
. i1))))) & (p
. i2)
> (p
. i1) } is
diophantine
Subset of (n
-xtuples_of
NAT )
proof
let i1, i2, i3;
set n2 = (n
+ 2);
defpred
R[
XFinSequence of
NAT ] means ($1
. i3)
= (
Product ((($1
. i2)
+ 1)
+ (
- (
idseq ($1
. i1))))) & ($1
. i2)
> ($1
. i1);
set RR = { p :
R[p] };
assume
A1: n
<>
0 ;
n
= (n
+
0 );
then
reconsider Y = i3, X2 = i2, X1 = i1, C = n, F = (n
+ 1) as
Element of n2 by
HILB10_3: 2,
HILB10_3: 3;
defpred
P1[
XFinSequence of
NAT ] means ($1
. X2)
>= ($1
. X1) & ($1
. C)
= (($1
. X2)
choose ($1
. X1));
A2: { p where p be n2
-element
XFinSequence of
NAT :
P1[p] } is
diophantine
Subset of (n2
-xtuples_of
NAT ) by
Th30;
defpred
P2[
XFinSequence of
NAT ] means ($1
. F)
= (($1
. X1)
! );
A3: { p where p be n2
-element
XFinSequence of
NAT :
P2[p] } is
diophantine
Subset of (n2
-xtuples_of
NAT ) by
Th32;
defpred
P3[
XFinSequence of
NAT ] means (1
* ($1
. X2))
> ((1
* ($1
. X1))
+
0 );
A4: { p where p be n2
-element
XFinSequence of
NAT :
P3[p] } is
diophantine
Subset of (n2
-xtuples_of
NAT ) by
HILB10_3: 7;
defpred
P4[
XFinSequence of
NAT ] means (1
* ($1
. Y))
= ((1
* ($1
. F))
* ($1
. C));
A5: { p where p be n2
-element
XFinSequence of
NAT :
P4[p] } is
diophantine
Subset of (n2
-xtuples_of
NAT ) by
HILB10_3: 9;
defpred
P12[
XFinSequence of
NAT ] means
P1[$1] &
P2[$1];
A6: { p where p be n2
-element
XFinSequence of
NAT :
P12[p] } is
diophantine
Subset of (n2
-xtuples_of
NAT ) from
HILB10_3:sch 3(
A2,
A3);
defpred
P123[
XFinSequence of
NAT ] means
P12[$1] &
P3[$1];
A7: { p where p be n2
-element
XFinSequence of
NAT :
P123[p] } is
diophantine
Subset of (n2
-xtuples_of
NAT ) from
HILB10_3:sch 3(
A6,
A4);
defpred
P1234[
XFinSequence of
NAT ] means
P123[$1] &
P4[$1];
set PP = { p where p be n2
-element
XFinSequence of
NAT :
P1234[p] };
A8: PP is
diophantine
Subset of (n2
-xtuples_of
NAT ) from
HILB10_3:sch 3(
A7,
A5);
reconsider PPn = { (p
| n) where p be n2
-element
XFinSequence of
NAT : p
in PP } as
diophantine
Subset of (n
-xtuples_of
NAT ) by
NAT_1: 11,
HILB10_3: 5,
A8;
A9: PPn
c= RR
proof
let x be
object;
assume x
in PPn;
then
consider p be n2
-element
XFinSequence of
NAT such that
A10: x
= (p
| n) & p
in PP;
ex q be n2
-element
XFinSequence of
NAT st q
= p &
P1234[q] by
A10;
then
A11:
R[p] by
Th23;
((p
| n)
. X2)
= (p
. i2) & ((p
| n)
. X1)
= (p
. i1) & ((p
| n)
. Y)
= (p
. i3) by
A1,
HILB10_3: 4;
hence thesis by
A11,
A10;
end;
RR
c= PPn
proof
let x be
object;
assume x
in RR;
then
consider p such that
A12: x
= p &
R[p];
reconsider F = ((p
. i1)
! ), C = ((p
. i2)
choose (p
. i1)) as
Element of
NAT ;
set Y =
<%C, F%>;
set PY = (p
^ Y);
A13: (
len p)
= n & (
len Y)
= 2 by
CARD_1:def 7;
A14: (PY
| n)
= p by
A13,
AFINSQ_1: 57;
A15: (PY
. i2)
= ((PY
| n)
. i2) by
A1,
HILB10_3: 4
.= (p
. i2) by
A13,
AFINSQ_1: 57;
A16: (PY
. i3)
= ((PY
| n)
. i3) by
A1,
HILB10_3: 4
.= (p
. i3) by
A13,
AFINSQ_1: 57;
0
in (
dom Y) by
AFINSQ_1: 66;
then
A17: (PY
. (n
+
0 ))
= (Y
.
0 ) by
A13,
AFINSQ_1:def 3
.= C;
1
in (
dom Y) by
A13,
AFINSQ_1: 66;
then
A18: (PY
. (n
+ 1))
= (Y
. 1) by
A13,
AFINSQ_1:def 3
.= F;
P1234[PY] by
A12,
A14,
A1,
HILB10_3: 4,
A16,
A15,
A17,
A18,
Th23;
then PY
in PP;
hence thesis by
A14,
A12;
end;
hence thesis by
A9,
XBOOLE_0:def 10;
end;
theorem ::
HILB10_4:38
for i1, i2, i3 holds { p : (p
. i3)
= (
Product (((p
. i2)
+ 1)
+ (
- (
idseq (p
. i1))))) & (p
. i2)
> (p
. i1) } is
diophantine
Subset of (n
-xtuples_of
NAT )
proof
let i1, i2, i3;
set n2 = (n
+ 2);
defpred
R[
XFinSequence of
NAT ] means ($1
. i3)
= (
Product ((($1
. i2)
+ 1)
+ (
- (
idseq ($1
. i1))))) & ($1
. i2)
> ($1
. i1);
set RR = { p :
R[p] };
per cases ;
suppose
A1: n
=
0 ;
RR
c= (n
-xtuples_of
NAT )
proof
let x be
object;
assume x
in RR;
then ex p be n
-element
XFinSequence of
NAT st x
= p &
R[p];
hence thesis by
HILB10_2:def 5;
end;
hence thesis by
A1;
end;
suppose n
<>
0 ;
hence thesis by
Th37;
end;
end;
theorem ::
HILB10_4:39
for i, n1, n2, n, i1 holds { p : (p
. i1)
= (
Product (i
+ ((p
/^ n1)
| n2))) } is
diophantine
Subset of (n
-xtuples_of
NAT )
proof
let i, n1, n2;
defpred
P[
Nat] means for n st ($1
+ n1)
<= n holds for i1 holds { p : (p
. i1)
= (
Product (i
+ ((p
/^ n1)
| $1))) } is
diophantine
Subset of (n
-xtuples_of
NAT );
A1:
P[
0 ]
proof
let n;
assume (
0
+ n1)
<= n;
let i1;
defpred
Q1[
XFinSequence of
NAT ] means ($1
. i1)
= (
Product (i
+ (($1
/^ n1)
|
0 )));
defpred
Q2[
XFinSequence of
NAT ] means ($1
. i1)
= 1;
A2: for p holds
Q1[p] iff
Q2[p] by
Th4;
{ p :
Q1[p] }
= { q :
Q2[q] } from
HILB10_3:sch 2(
A2);
hence thesis by
HILB10_3: 14;
end;
A3:
P[m] implies
P[(m
+ 1)]
proof
assume
A4:
P[m];
let n such that
A5: ((m
+ 1)
+ n1)
<= n;
set m1 = (m
+ 1), X = (n
+ 1);
let i1;
m
< m1 by
NAT_1: 13;
then (n1
+ m)
< (n1
+ m1) by
XREAL_1: 8;
then
A6: (n1
+ m)
< n by
A5,
XXREAL_0: 2;
then (n1
+ m)
in (
Segm n) by
NAT_1: 44;
then
reconsider n1m = (n1
+ m) as
Element of n;
A7: n
< X by
NAT_1: 13;
then n
in (
Segm X) by
NAT_1: 44;
then
reconsider N = n, I1 = i1, N1M = n1m as
Element of X by
HILB10_3: 2;
defpred
P[
XFinSequence of
NAT ] means ($1
. N)
= (
Product (i
+ (($1
/^ n1)
| m)));
defpred
Q[
XFinSequence of
NAT ] means ($1
. I1)
= (((1
* ($1
. N1M))
+ i)
* ($1
. N));
(n1
+ m)
<= X by
A6,
NAT_1: 13;
then
A8: { p where p be X
-element
XFinSequence of
NAT :
P[p] } is
diophantine
Subset of (X
-xtuples_of
NAT ) by
A4;
A9: { p where p be X
-element
XFinSequence of
NAT :
Q[p] } is
diophantine
Subset of (X
-xtuples_of
NAT ) by
Th25;
set PQ = { p where p be X
-element
XFinSequence of
NAT :
P[p] &
Q[p] };
A10: PQ is
diophantine
Subset of (X
-xtuples_of
NAT ) from
HILB10_3:sch 3(
A8,
A9);
set PQr = { (p
| n) where p be X
-element
XFinSequence of
NAT : p
in PQ };
set S = { p : (p
. i1)
= (
Product (i
+ ((p
/^ n1)
| m1))) };
A11: PQr is
diophantine
Subset of (n
-xtuples_of
NAT ) by
HILB10_3: 5,
A7,
A10;
A12: n1
<= (n1
+ m1)
<= n by
A5,
NAT_1: 11;
then
A13: (n
-' n1)
= (n
- n1) by
XXREAL_0: 2,
XREAL_1: 233;
A14: m1
<= (n
- n1) by
A5,
XREAL_1: 19;
m
< (m
+ 1) by
NAT_1: 13;
then
A15: (
Segm m)
c= (
Segm m1) & m
in (
Segm m1) by
NAT_1: 39,
NAT_1: 44;
A16: S
c= PQr
proof
let y be
object;
assume y
in S;
then
consider p such that
A17: y
= p & (p
. i1)
= (
Product (i
+ ((p
/^ n1)
| m1)));
A18: (
len p)
= n by
CARD_1:def 7;
then
A19: (
len (p
/^ n1))
>= m1 by
A14,
A13,
AFINSQ_2:def 2;
then (
len ((p
/^ n1)
| m1))
= m1 by
AFINSQ_1: 54;
then
A20: ((p
/^ n1)
| m1)
= ((((p
/^ n1)
| m1)
| m)
^
<%(((p
/^ n1)
| m1)
. m)%>) by
AFINSQ_1: 56;
(((p
/^ n1)
| m1)
| m)
= ((p
/^ n1)
| m) & (((p
/^ n1)
| m1)
. m)
= ((p
/^ n1)
. m) & m
in (
dom (p
/^ n1)) by
A19,
AFINSQ_1: 53,
RELAT_1: 74,
A15;
then ((p
/^ n1)
| m1)
= (((p
/^ n1)
| m)
^
<%(p
. n1m)%>) by
A20,
AFINSQ_2:def 2;
then (i
+ ((p
/^ n1)
| m1))
= ((i
+ ((p
/^ n1)
| m))
^ (i
+
<%(p
. n1m)%>)) by
Th8
.= ((i
+ ((p
/^ n1)
| m))
^
<%(i
+ (p
. n1m))%>) by
Th9;
then
A21: (
Product (i
+ ((p
/^ n1)
| m1)))
= ((
Product (i
+ ((p
/^ n1)
| m)))
* (
Product
<%(i
+ (p
. n1m))%>)) by
Th7
.= ((
Product (i
+ ((p
/^ n1)
| m)))
* (i
+ (p
. n1m))) by
Th5;
reconsider P = (
Product (i
+ ((p
/^ n1)
| m))) as
Element of
NAT by
ORDINAL1:def 12;
reconsider pP = (p
^
<%P%>) as X
-element
XFinSequence of
NAT ;
A22: (
len (p
/^ n1))
> m by
A19,
NAT_1: 13;
A23: ((pP
/^ n1)
| m)
= (((p
/^ n1)
^
<%P%>)
| m) by
Th10,
A18,
A12,
XXREAL_0: 2
.= ((p
/^ n1)
| m) by
AFINSQ_1: 58,
A22;
A24: (pP
| n)
= p by
A18,
AFINSQ_1: 57;
A25: (pP
. I1)
= (p
. i1) & (pP
. N1M)
= (p
. n1m) by
A5,
A24,
HILB10_3: 4;
P[pP] &
Q[pP] by
A23,
A25,
A21,
A18,
AFINSQ_1: 36,
A17;
then pP
in PQ;
hence thesis by
A17,
A24;
end;
PQr
c= S
proof
let y be
object;
assume y
in PQr;
then
consider pP be X
-element
XFinSequence of
NAT such that
A26: y
= (pP
| n) & pP
in PQ;
A27: ex q be X
-element
XFinSequence of
NAT st pP
= q &
P[q] &
Q[q] by
A26;
A28: (
len pP)
= X by
CARD_1:def 7;
A29: (
len (pP
| n))
= n by
CARD_1:def 7;
set p = (pP
| n);
A30: (
len (p
/^ n1))
>= m1 by
A14,
A13,
A29,
AFINSQ_2:def 2;
then (
len ((p
/^ n1)
| m1))
= m1 by
AFINSQ_1: 54;
then
A31: ((p
/^ n1)
| m1)
= ((((p
/^ n1)
| m1)
| m)
^
<%(((p
/^ n1)
| m1)
. m)%>) by
AFINSQ_1: 56;
(((p
/^ n1)
| m1)
| m)
= ((p
/^ n1)
| m) & (((p
/^ n1)
| m1)
. m)
= ((p
/^ n1)
. m) & m
in (
dom (p
/^ n1)) by
A30,
AFINSQ_1: 53,
RELAT_1: 74,
A15;
then ((p
/^ n1)
| m1)
= (((p
/^ n1)
| m)
^
<%(p
. n1m)%>) by
A31,
AFINSQ_2:def 2;
then (i
+ ((p
/^ n1)
| m1))
= ((i
+ ((p
/^ n1)
| m))
^ (i
+
<%(p
. n1m)%>)) by
Th8
.= ((i
+ ((p
/^ n1)
| m))
^
<%(i
+ (p
. n1m))%>) by
Th9;
then
A32: (
Product (i
+ ((p
/^ n1)
| m1)))
= ((
Product (i
+ ((p
/^ n1)
| m)))
* (
Product
<%(i
+ (p
. n1m))%>)) by
Th7
.= ((
Product (i
+ ((p
/^ n1)
| m)))
* (i
+ (p
. n1m))) by
Th5;
set P = (
Product (i
+ ((p
/^ n1)
| m)));
A33: pP
= (p
^
<%(pP
. n)%>) by
A28,
AFINSQ_1: 56;
A34: (
len (p
/^ n1))
> m by
A30,
NAT_1: 13;
A35: ((pP
/^ n1)
| m)
= (((p
/^ n1)
^
<%(pP
. n)%>)
| m) by
A33,
Th10,
A29,
A12,
XXREAL_0: 2
.= ((p
/^ n1)
| m) by
AFINSQ_1: 58,
A34;
(pP
. I1)
= (p
. i1) & (pP
. N1M)
= (p
. n1m) by
A5,
HILB10_3: 4;
hence thesis by
A26,
A35,
A32,
A27;
end;
hence thesis by
A11,
A16,
XBOOLE_0:def 10;
end;
A36:
P[m] from
NAT_1:sch 2(
A1,
A3);
let n, i1;
per cases ;
suppose (n1
+ n2)
<= n;
hence thesis by
A36;
end;
suppose (n1
+ n2)
> n;
then
A37: (n
- n1)
< n2 by
XREAL_1: 19;
per cases ;
suppose
A38: n1
>= n;
defpred
Q1[
XFinSequence of
NAT ] means ($1
. i1)
= (
Product (i
+ (($1
/^ n1)
| n2)));
defpred
Q2[
XFinSequence of
NAT ] means ($1
. i1)
= 1;
A39: for p holds
Q1[p] iff
Q2[p]
proof
let p;
(
len p)
= n by
CARD_1:def 7;
then (p
/^ n1)
=
{} by
A38,
AFINSQ_2: 6;
then (i
+ ((p
/^ n1)
| n2))
=
{} ;
hence thesis by
Th4;
end;
{ p :
Q1[p] }
= { q :
Q2[q] } from
HILB10_3:sch 2(
A39);
hence thesis by
HILB10_3: 14;
end;
suppose
A40: n1
< n;
then
reconsider N = (n
- n1) as
Nat by
NAT_1: 21;
defpred
Q1[
XFinSequence of
NAT ] means ($1
. i1)
= (
Product (i
+ (($1
/^ n1)
| n2)));
defpred
Q2[
XFinSequence of
NAT ] means ($1
. i1)
= (
Product (i
+ (($1
/^ n1)
| N)));
A41: for p holds
Q1[p] iff
Q2[p]
proof
let p;
(
len p)
= n by
CARD_1:def 7;
then (
len (p
/^ n1))
= (n
- n1) by
A40,
AFINSQ_2: 7;
hence thesis by
A37,
AFINSQ_1: 52;
end;
A42: { p :
Q1[p] }
= { q :
Q2[q] } from
HILB10_3:sch 2(
A41);
(n1
+ N)
= n;
hence thesis by
A42,
A36;
end;
end;
end;