catalan2.miz
    
    begin
    
    reserve x,x1,x2,y,X,D for
    set, 
    
i,j,k,l,m,n,N for
    Nat, 
    
p,q for
    XFinSequence of 
    NAT , 
    
q9 for
    XFinSequence, 
    
pd,qd for
    XFinSequence of D; 
    
    definition
    
      let p, q;
    
      :: original:
    ^
    
      redefine
    
      func p
    
    ^ q -> 
    XFinSequence of 
    NAT ; 
    
      coherence ;
    
    end
    
    theorem :: 
    
    CATALAN2:1
    
    
    
    
    
    Th1: ex qd st pd 
    = ((pd 
    | n) 
    ^ qd) 
    
    proof
    
      consider q9 such that
    
      
    
    A1: pd 
    = ((pd 
    | n) 
    ^ q9) by 
    AFINSQ_1: 60;
    
      (
    rng q9) 
    c= ( 
    rng pd) by 
    A1,
    AFINSQ_1: 25;
    
      then (
    rng q9) 
    c= D by 
    XBOOLE_1: 1;
    
      then q9 is
    XFinSequence of D by 
    RELAT_1:def 19;
    
      hence thesis by
    A1;
    
    end;
    
    definition
    
      let p;
    
      :: 
    
    CATALAN2:def1
    
      attr p is
    
    dominated_by_0 means ( 
    rng p) 
    c=  
    {
    0 , 1} & for k st k 
    <= ( 
    dom p) holds (2 
    * ( 
    Sum (p 
    | k))) 
    <= k; 
    
    end
    
    theorem :: 
    
    CATALAN2:2
    
    
    
    
    
    Th2: p is 
    dominated_by_0 implies (2 
    * ( 
    Sum (p 
    | k))) 
    <= k 
    
    proof
    
      assume
    
      
    
    A1: p is 
    dominated_by_0;
    
      now
    
        per cases ;
    
          suppose k
    <= ( 
    dom p); 
    
          hence thesis by
    A1;
    
        end;
    
          suppose
    
          
    
    A2: k 
    > ( 
    dom p); 
    
          then (
    Segm ( 
    len p)) 
    c= ( 
    Segm k) by 
    NAT_1: 39;
    
          then
    
          
    
    A3: (p 
    | k) 
    = p by 
    RELAT_1: 68;
    
          (2
    * ( 
    Sum (p 
    | ( 
    len p)))) 
    <= ( 
    dom p) & (p 
    | ( 
    len p)) 
    = p by 
    A1;
    
          hence thesis by
    A2,
    A3,
    XXREAL_0: 2;
    
        end;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    CATALAN2:3
    
    
    
    
    
    Th3: p is 
    dominated_by_0 implies (p 
    .  
    0 ) 
    =  
    0  
    
    proof
    
      assume
    
      
    
    A1: p is 
    dominated_by_0;
    
      now
    
        per cases ;
    
          suppose not
    0  
    in ( 
    dom p); 
    
          hence thesis by
    FUNCT_1:def 2;
    
        end;
    
          suppose
    0  
    in ( 
    dom p); 
    
          then (
    len p) 
    >= 1 by 
    NAT_1: 14;
    
          then
    
          
    
    A2: ( 
    Segm 1) 
    c= ( 
    Segm ( 
    len p)) by 
    NAT_1: 39;
    
          
    0  
    in ( 
    Segm 1) by 
    NAT_1: 44;
    
          then
    0  
    in (( 
    dom p) 
    /\ ( 
    Segm 1)) by 
    A2,
    XBOOLE_0:def 4;
    
          then
    
          
    
    A3: ((p 
    | 1) 
    .  
    0 ) 
    = (p 
    .  
    0 ) by 
    FUNCT_1: 48;
    
          
    
          
    
    A4: ( 
    Sum  
    <%(p
    .  
    0 )%>) 
    = ( 
    addnat  
    "**"  
    <%(p
    .  
    0 )%>) by 
    AFINSQ_2: 51
    
          .= (p
    .  
    0 ) by 
    AFINSQ_2: 37;
    
          (
    len (p 
    | 1)) 
    = 1 by 
    A2,
    RELAT_1: 62;
    
          then (p
    | 1) 
    =  
    <%(p
    .  
    0 )%> by 
    A3,
    AFINSQ_1: 34;
    
          then (2
    * (p 
    .  
    0 )) 
    <= (1 
    +  
    0 qua 
    Nat) by
    A1,
    A4,
    Th2;
    
          then (2
    * (p 
    .  
    0 )) 
    = 1 or (2 
    * (p 
    .  
    0 )) 
    =  
    0 by 
    NAT_1: 9;
    
          hence thesis by
    NAT_1: 15;
    
        end;
    
      end;
    
      hence thesis;
    
    end;
    
    registration
    
      let x;
    
      let k be
    Nat;
    
      cluster (x 
    --> k) -> 
    NAT  
    -valued;
    
      coherence
    
      proof
    
        k
    in  
    NAT by 
    ORDINAL1:def 12;
    
        then (
    rng (x 
    --> k)) 
    c=  
    {k} &
    {k}
    c=  
    NAT by 
    ZFMISC_1: 31;
    
        then (
    rng (x 
    --> k)) 
    c=  
    NAT ; 
    
        hence thesis by
    RELAT_1:def 19;
    
      end;
    
    end
    
    
    
    
    
    Lm1: n 
    <= m implies ((m 
    --> k) 
    | n) 
    = (n 
    --> k) 
    
    proof
    
      assume n
    <= m; 
    
      then (
    Segm n) 
    c= ( 
    Segm m) by 
    NAT_1: 39;
    
      then (n
    /\ m) 
    = n by 
    XBOOLE_1: 28;
    
      hence thesis by
    FUNCOP_1: 12;
    
    end;
    
    
    
    
    
    Lm2: (k 
    -->  
    0 ) is 
    dominated_by_0
    
    proof
    
      (
    rng (k 
    -->  
    0 )) 
    c=  
    {
    0 } & 
    {
    0 } 
    c=  
    {
    0 , 1} by 
    FUNCOP_1: 13,
    ZFMISC_1: 7;
    
      hence (
    rng (k 
    -->  
    0 )) 
    c=  
    {
    0 , 1}; 
    
      let n;
    
      assume n
    <= ( 
    dom (k 
    -->  
    0 )); 
    
      then
    
      
    
    A2: ((k 
    -->  
    0 ) 
    | n) 
    = (n 
    -->  
    0 ) by 
    Lm1;
    
      (
    Sum (n 
    -->  
    0 )) 
    = ( 
    0  
    * n) by 
    AFINSQ_2: 58;
    
      hence thesis by
    A2;
    
    end;
    
    registration
    
      cluster 
    empty
    dominated_by_0 for 
    XFinSequence of 
    NAT ; 
    
      existence
    
      proof
    
        (
    0  
    -->  
    0 ) is 
    dominated_by_0 by 
    Lm2;
    
        hence thesis;
    
      end;
    
      cluster non 
    empty
    dominated_by_0 for 
    XFinSequence of 
    NAT ; 
    
      existence
    
      proof
    
        (1
    -->  
    0 ) is 
    dominated_by_0 by 
    Lm2;
    
        hence thesis;
    
      end;
    
    end
    
    theorem :: 
    
    CATALAN2:4
    
    (n
    -->  
    0 ) is 
    dominated_by_0 by 
    Lm2;
    
    theorem :: 
    
    CATALAN2:5
    
    
    
    
    
    Th5: n 
    >= m implies ((n 
    -->  
    0 ) 
    ^ (m 
    --> 1)) is 
    dominated_by_0
    
    proof
    
      assume
    
      
    
    A1: n 
    >= m; 
    
      set p = ((n
    -->  
    0 ) 
    ^ (m 
    --> 1)); 
    
      (
    rng (m 
    --> 1)) 
    c=  
    {1} &
    {1}
    c=  
    {
    0 , 1} by 
    FUNCOP_1: 13,
    ZFMISC_1: 7;
    
      then
    
      
    
    A2: ( 
    rng (m 
    --> 1)) 
    c=  
    {
    0 , 1}; 
    
      (
    rng (n 
    -->  
    0 )) 
    c=  
    {
    0 } & 
    {
    0 } 
    c=  
    {
    0 , 1} by 
    FUNCOP_1: 13,
    ZFMISC_1: 7;
    
      then (
    rng (n 
    -->  
    0 )) 
    c=  
    {
    0 , 1}; 
    
      then ((
    rng (n 
    -->  
    0 )) 
    \/ ( 
    rng (m 
    --> 1))) 
    c=  
    {
    0 , 1} by 
    A2,
    XBOOLE_1: 8;
    
      hence (
    rng p) 
    c=  
    {
    0 , 1} by 
    AFINSQ_1: 26;
    
      let k such that
    
      
    
    A3: k 
    <= ( 
    dom p); 
    
      now
    
        per cases ;
    
          suppose
    
          
    
    A4: k 
    <= ( 
    dom (n 
    -->  
    0 )); 
    
          
    
          
    
    A5: ((n 
    -->  
    0 ) 
    | k) 
    = (k 
    -->  
    0 ) by 
    A4,
    Lm1;
    
          
    
          
    
    A6: ( 
    Sum (k 
    -->  
    0 )) 
    = ( 
    0  
    * k) by 
    AFINSQ_2: 58;
    
          (p
    | k) 
    = ((n 
    -->  
    0 ) 
    | k) by 
    A4,
    AFINSQ_1: 58;
    
          hence thesis by
    A5,
    A6;
    
        end;
    
          suppose k
    > ( 
    dom (n 
    -->  
    0 )); 
    
          then
    
          reconsider kd = (k
    - ( 
    dom (n 
    -->  
    0 ))) as 
    Nat by 
    NAT_1: 21;
    
          k
    <= (( 
    len (n 
    -->  
    0 )) 
    + ( 
    len (m 
    --> 1))) by 
    A3,
    AFINSQ_1: 17;
    
          then (k
    - ( 
    len (n 
    -->  
    0 ))) 
    <= ((( 
    len (m 
    --> 1)) 
    + ( 
    len (n 
    -->  
    0 ))) 
    - ( 
    len (n 
    -->  
    0 ))) by 
    XREAL_1: 9;
    
          then kd
    <= m; 
    
          then
    
          
    
    A8: ((m 
    --> 1) 
    | kd) 
    = (kd 
    --> 1) by 
    Lm1;
    
          reconsider m1 = (m
    --> 1) as 
    XFinSequence of 
    NAT ; 
    
          k
    = (kd 
    + ( 
    dom (n 
    -->  
    0 ))); 
    
          then (p
    | k) 
    = ((n 
    -->  
    0 ) 
    ^ (m1 
    | kd)) by 
    AFINSQ_1: 59;
    
          then
    
          
    
    A9: ( 
    Sum (p 
    | k)) 
    = (( 
    Sum (n 
    -->  
    0 )) 
    + ( 
    Sum (kd 
    --> 1))) by 
    A8,
    AFINSQ_2: 55;
    
          (
    dom p) 
    = (( 
    len (n 
    -->  
    0 )) 
    + ( 
    len (m 
    --> 1))) & ( 
    dom (m 
    --> 1)) 
    = m by 
    AFINSQ_1:def 3;
    
          then (k
    - n) 
    <= ((m 
    + n) 
    - n) by 
    A3,
    XREAL_1: 9;
    
          then (k
    - n) 
    <= n by 
    A1,
    XXREAL_0: 2;
    
          then
    
          
    
    A10: ((k 
    - n) 
    + (k 
    - n)) 
    <= (n 
    + (k 
    - n)) by 
    XREAL_1: 6;
    
          (
    Sum (n 
    -->  
    0 )) 
    = (n 
    *  
    0 ) & ( 
    Sum (kd 
    --> 1)) 
    = (kd 
    * 1) by 
    AFINSQ_2: 58;
    
          hence thesis by
    A9,
    A10;
    
        end;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    CATALAN2:6
    
    
    
    
    
    Th6: p is 
    dominated_by_0 implies (p 
    | n) is 
    dominated_by_0
    
    proof
    
      assume
    
      
    
    A1: p is 
    dominated_by_0;
    
      
    
      
    
    A2: for k st k 
    <= ( 
    dom (p 
    | n)) holds (2 
    * ( 
    Sum ((p 
    | n) 
    | k))) 
    <= k 
    
      proof
    
        let k;
    
        assume k
    <= ( 
    dom (p 
    | n)); 
    
        then
    
        
    
    A3: ( 
    Segm k) 
    c= ( 
    Segm ( 
    len (p 
    | n))) by 
    NAT_1: 39;
    
        (
    dom (p 
    | n)) 
    = (( 
    dom p) 
    /\ n) by 
    RELAT_1: 61;
    
        then ((p
    | n) 
    | k) 
    = (p 
    | k) by 
    A3,
    RELAT_1: 74,
    XBOOLE_1: 18;
    
        hence thesis by
    A1,
    Th2;
    
      end;
    
      (
    rng (p 
    | n)) 
    c= ( 
    rng p) & ( 
    rng p) 
    c=  
    {
    0 , 1} by 
    A1;
    
      then (
    rng (p 
    | n)) 
    c=  
    {
    0 , 1}; 
    
      hence thesis by
    A2;
    
    end;
    
    theorem :: 
    
    CATALAN2:7
    
    
    
    
    
    Th7: p is 
    dominated_by_0 & q is 
    dominated_by_0 implies (p 
    ^ q) is 
    dominated_by_0
    
    proof
    
      assume that
    
      
    
    A1: p is 
    dominated_by_0 and 
    
      
    
    A2: q is 
    dominated_by_0;
    
      (
    rng p) 
    c=  
    {
    0 , 1} & ( 
    rng q) 
    c=  
    {
    0 , 1} by 
    A1,
    A2;
    
      then ((
    rng p) 
    \/ ( 
    rng q)) 
    c=  
    {
    0 , 1} by 
    XBOOLE_1: 8;
    
      hence (
    rng (p 
    ^ q)) 
    c=  
    {
    0 , 1} by 
    AFINSQ_1: 26;
    
      let k such that k
    <= ( 
    dom (p 
    ^ q)); 
    
      now
    
        per cases ;
    
          suppose
    
          
    
    A3: k 
    <= ( 
    dom p); 
    
          then ((p
    ^ q) 
    | k) 
    = (p 
    | k) by 
    AFINSQ_1: 58;
    
          hence thesis by
    A1,
    A3;
    
        end;
    
          suppose k
    > ( 
    dom p); 
    
          then
    
          reconsider kd = (k
    - ( 
    dom p)) as 
    Nat by 
    NAT_1: 21;
    
          k
    = (kd 
    + ( 
    dom p)); 
    
          then ((p
    ^ q) 
    | k) 
    = (p 
    ^ (q 
    | kd)) by 
    AFINSQ_1: 59;
    
          then
    
          
    
    A4: ( 
    Sum ((p 
    ^ q) 
    | k)) 
    = (( 
    Sum p) 
    + ( 
    Sum (q 
    | kd))) by 
    AFINSQ_2: 55;
    
          (2
    * ( 
    Sum (p 
    | ( 
    len p)))) 
    <= ( 
    len p) & (2 
    * ( 
    Sum (q 
    | kd))) 
    <= kd by 
    A1,
    A2,
    Th2;
    
          then ((2
    * ( 
    Sum p)) 
    + (2 
    * ( 
    Sum (q 
    | kd)))) 
    <= (( 
    dom p) 
    + kd) by 
    XREAL_1: 7;
    
          hence thesis by
    A4;
    
        end;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    CATALAN2:8
    
    
    
    
    
    Th8: p is 
    dominated_by_0 implies (2 
    * ( 
    Sum (p 
    | ((2 
    * n) 
    + 1)))) 
    < ((2 
    * n) 
    + 1) 
    
    proof
    
      assume p is
    dominated_by_0;
    
      then
    
      
    
    A1: (2 
    * ( 
    Sum (p 
    | ((2 
    * n) 
    + 1)))) 
    <= ((2 
    * n) 
    + 1) by 
    Th2;
    
      assume (2
    * ( 
    Sum (p 
    | ((2 
    * n) 
    + 1)))) 
    >= ((2 
    * n) 
    + 1); 
    
      then (2
    * ( 
    Sum (p 
    | ((2 
    * n) 
    + 1)))) 
    = ((2 
    * n) 
    + 1) by 
    A1,
    XXREAL_0: 1;
    
      then (2
    * (( 
    Sum (p 
    | ((2 
    * n) 
    + 1))) 
    - n)) 
    = 1; 
    
      hence thesis by
    INT_1: 9;
    
    end;
    
    theorem :: 
    
    CATALAN2:9
    
    
    
    
    
    Th9: p is 
    dominated_by_0 & n 
    <= (( 
    len p) 
    - (2 
    * ( 
    Sum p))) implies (p 
    ^ (n 
    --> 1)) is 
    dominated_by_0
    
    proof
    
      set q = (n
    --> 1); 
    
      assume that
    
      
    
    A1: p is 
    dominated_by_0 and 
    
      
    
    A2: n 
    <= (( 
    len p) 
    - (2 
    * ( 
    Sum p))); 
    
      (
    rng q) 
    c=  
    {1} &
    {1}
    c=  
    {
    0 , 1} by 
    FUNCOP_1: 13,
    ZFMISC_1: 7;
    
      then
    
      
    
    A3: ( 
    rng q) 
    c=  
    {
    0 , 1}; 
    
      (
    rng p) 
    c=  
    {
    0 , 1} by 
    A1;
    
      then ((
    rng p) 
    \/ ( 
    rng q)) 
    c=  
    {
    0 , 1} by 
    A3,
    XBOOLE_1: 8;
    
      hence (
    rng (p 
    ^ q)) 
    c=  
    {
    0 , 1} by 
    AFINSQ_1: 26;
    
      let m such that
    
      
    
    A4: m 
    <= ( 
    dom (p 
    ^ q)); 
    
      now
    
        per cases ;
    
          suppose m
    <= ( 
    dom p); 
    
          then ((p
    ^ q) 
    | m) 
    = (p 
    | m) by 
    AFINSQ_1: 58;
    
          hence thesis by
    A1,
    Th2;
    
        end;
    
          suppose m
    > ( 
    dom p); 
    
          then
    
          reconsider md = (m
    - ( 
    dom p)) as 
    Nat by 
    NAT_1: 21;
    
          
    
          
    
    A5: m 
    = (( 
    dom p) 
    + md); 
    
          (
    Sum (md 
    --> 1)) 
    = (md 
    * 1) by 
    AFINSQ_2: 58;
    
          then
    
          
    
    A6: ( 
    Sum (p 
    ^ (md 
    --> 1))) 
    = (( 
    Sum p) 
    + md) by 
    AFINSQ_2: 55;
    
          (
    dom q) 
    = n & ( 
    len q) 
    = ( 
    dom q); 
    
          then (
    dom (p 
    ^ q)) 
    = (( 
    len p) 
    + n) by 
    AFINSQ_1:def 3;
    
          then (md
    + ( 
    dom p)) 
    <= (n 
    + ( 
    dom p)) by 
    A4;
    
          then
    
          
    
    A7: md 
    <= n by 
    XREAL_1: 6;
    
          then (q
    | md) 
    = (md 
    --> 1) by 
    Lm1;
    
          then ((p
    ^ q) 
    | m) 
    = (p 
    ^ (md 
    --> 1)) by 
    A5,
    AFINSQ_1: 59;
    
          then (2
    * ( 
    Sum ((p 
    ^ q) 
    | m))) 
    = ((((2 
    * ( 
    Sum p)) 
    + m) 
    - ( 
    dom p)) 
    + md) by 
    A6;
    
          then
    
          
    
    A8: (2 
    * ( 
    Sum ((p 
    ^ q) 
    | m))) 
    <= ((((2 
    * ( 
    Sum p)) 
    + m) 
    - ( 
    dom p)) 
    + n) by 
    A7,
    XREAL_1: 6;
    
          (n
    - n) 
    <= ((( 
    len p) 
    - (2 
    * ( 
    Sum p))) 
    - n) by 
    A2,
    XREAL_1: 9;
    
          then (m
    - ((( 
    len p) 
    - (2 
    * ( 
    Sum p))) 
    - n)) 
    <= (m 
    -  
    0 ) by 
    XREAL_1: 10;
    
          hence thesis by
    A8,
    XXREAL_0: 2;
    
        end;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    CATALAN2:10
    
    
    
    
    
    Th10: p is 
    dominated_by_0 & n 
    <= ((k 
    + ( 
    len p)) 
    - (2 
    * ( 
    Sum p))) implies (((k 
    -->  
    0 ) 
    ^ p) 
    ^ (n 
    --> 1)) is 
    dominated_by_0
    
    proof
    
      assume that
    
      
    
    A1: p is 
    dominated_by_0 and 
    
      
    
    A2: n 
    <= ((k 
    + ( 
    len p)) 
    - (2 
    * ( 
    Sum p))); 
    
      set q = (k
    -->  
    0 ); 
    
      (
    dom q) 
    = k & ( 
    len q) 
    = ( 
    dom q); 
    
      then
    
      
    
    A3: ( 
    len (q 
    ^ p)) 
    = (k 
    + ( 
    len p)) by 
    AFINSQ_1: 17;
    
      (
    Sum q) 
    = (k 
    *  
    0 ) by 
    AFINSQ_2: 58;
    
      then
    
      
    
    A4: ( 
    Sum (q 
    ^ p)) 
    = ( 
    0 qua 
    Nat
    + ( 
    Sum p)) by 
    AFINSQ_2: 55;
    
      q is
    dominated_by_0 by 
    Lm2;
    
      then (q
    ^ p) is 
    dominated_by_0 by 
    A1,
    Th7;
    
      hence thesis by
    A2,
    A3,
    A4,
    Th9;
    
    end;
    
    theorem :: 
    
    CATALAN2:11
    
    
    
    
    
    Th11: p is 
    dominated_by_0 & (2 
    * ( 
    Sum (p 
    | k))) 
    = k implies k 
    <= ( 
    len p) & ( 
    len (p 
    | k)) 
    = k 
    
    proof
    
      assume
    
      
    
    A1: p is 
    dominated_by_0 & (2 
    * ( 
    Sum (p 
    | k))) 
    = k; 
    
      
    
      
    
    A2: k 
    <= ( 
    len p) 
    
      proof
    
        
    
        
    
    A3: (p 
    | ( 
    len p)) 
    = p; 
    
        assume
    
        
    
    A4: k 
    > ( 
    len p); 
    
        then (
    Segm ( 
    len p)) 
    c= ( 
    Segm k) by 
    NAT_1: 39;
    
        then (p
    | k) 
    = p by 
    RELAT_1: 68;
    
        hence thesis by
    A1,
    A4,
    A3;
    
      end;
    
      then (
    Segm k) 
    c= ( 
    Segm ( 
    len p)) by 
    NAT_1: 39;
    
      then ((
    dom p) 
    /\ k) 
    = k by 
    XBOOLE_1: 28;
    
      hence thesis by
    A2,
    RELAT_1: 61;
    
    end;
    
    theorem :: 
    
    CATALAN2:12
    
    
    
    
    
    Th12: p is 
    dominated_by_0 & (2 
    * ( 
    Sum (p 
    | k))) 
    = k & p 
    = ((p 
    | k) 
    ^ q) implies q is 
    dominated_by_0
    
    proof
    
      assume that
    
      
    
    A1: p is 
    dominated_by_0 and 
    
      
    
    A2: (2 
    * ( 
    Sum (p 
    | k))) 
    = k and 
    
      
    
    A3: p 
    = ((p 
    | k) 
    ^ q); 
    
      
    
      
    
    A4: ( 
    len (p 
    | k)) 
    = k by 
    A1,
    A2,
    Th11;
    
      (
    rng q) 
    c= ( 
    rng p) & ( 
    rng p) 
    c=  
    {
    0 , 1} by 
    A1,
    A3,
    AFINSQ_1: 25;
    
      hence (
    rng q) 
    c=  
    {
    0 , 1}; 
    
      let n such that n
    <= ( 
    dom q); 
    
      (p
    | (( 
    len (p 
    | k)) 
    + n)) 
    = ((p 
    | k) 
    ^ (q 
    | n)) by 
    A3,
    AFINSQ_1: 59;
    
      then
    
      
    
    A5: ( 
    Sum (p 
    | (( 
    len (p 
    | k)) 
    + n))) 
    = (( 
    Sum (p 
    | k)) 
    + ( 
    Sum (q 
    | n))) by 
    AFINSQ_2: 55;
    
      (2
    * ( 
    Sum (p 
    | (( 
    len (p 
    | k)) 
    + n)))) 
    <= (( 
    len (p 
    | k)) 
    + n) by 
    A1,
    Th2;
    
      then (k
    + (2 
    * ( 
    Sum (q 
    | n)))) 
    <= (( 
    len (p 
    | k)) 
    + n) by 
    A2,
    A5;
    
      hence thesis by
    A4,
    XREAL_1: 6;
    
    end;
    
    theorem :: 
    
    CATALAN2:13
    
    
    
    
    
    Th13: p is 
    dominated_by_0 & (2 
    * ( 
    Sum (p 
    | k))) 
    = k & k 
    = (n 
    + 1) implies (p 
    | k) 
    = ((p 
    | n) 
    ^ (1 
    --> 1)) 
    
    proof
    
      assume that
    
      
    
    A1: p is 
    dominated_by_0 and 
    
      
    
    A2: (2 
    * ( 
    Sum (p 
    | k))) 
    = k and 
    
      
    
    A3: k 
    = (n 
    + 1); 
    
      reconsider q = (p
    | k) as 
    XFinSequence of 
    NAT ; 
    
      (q
    . n) 
    = 1 
    
      proof
    
        (
    Sum (p 
    | k)) 
    <>  
    0 by 
    A2,
    A3;
    
        then
    
        reconsider s = ((
    Sum (p 
    | k)) 
    - 1) as 
    Nat by 
    NAT_1: 14,
    NAT_1: 21;
    
        
    
        
    
    A4: q is 
    dominated_by_0 by 
    A1,
    Th6;
    
        then
    
        
    
    A5: ( 
    rng q) 
    c=  
    {
    0 , 1}; 
    
        ((2
    * s) 
    + 1) 
    = n by 
    A2,
    A3;
    
        then
    
        
    
    A6: ( 
    Sum  
    <%
    0 %>) 
    =  
    0 & (2 
    * ( 
    Sum (q 
    | n))) 
    < n by 
    A4,
    Th8,
    AFINSQ_2: 53;
    
        
    
        
    
    A7: ( 
    len q) 
    = (n 
    + 1) by 
    A1,
    A2,
    A3,
    Th11;
    
        then
    
        
    
    A8: q 
    = ((q 
    | n) 
    ^  
    <%(q
    . n)%>) by 
    AFINSQ_1: 56;
    
        n
    < (n 
    + 1) by 
    NAT_1: 13;
    
        then n
    in ( 
    Segm (n 
    + 1)) by 
    NAT_1: 44;
    
        then
    
        
    
    A9: (q 
    . n) 
    in ( 
    rng q) by 
    A7,
    FUNCT_1: 3;
    
        assume (q
    . n) 
    <> 1; 
    
        then (q
    . n) 
    =  
    0 by 
    A5,
    A9,
    TARSKI:def 2;
    
        then (
    Sum q) 
    = (( 
    Sum (q 
    | n)) 
    + ( 
    Sum  
    <%
    0 %>)) by 
    A8,
    AFINSQ_2: 55;
    
        hence thesis by
    A2,
    A3,
    A6,
    NAT_1: 13;
    
      end;
    
      then
    
      
    
    A10: ( 
    dom  
    <%(q
    . n)%>) 
    = 1 & ( 
    rng  
    <%(q
    . n)%>) 
    =  
    {1} by
    AFINSQ_1: 33;
    
      n
    <= (n 
    + 1) by 
    NAT_1: 11;
    
      then (
    Segm n) 
    c= ( 
    Segm k) by 
    A3,
    NAT_1: 39;
    
      then
    
      
    
    A11: (q 
    | n) 
    = (p 
    | n) by 
    RELAT_1: 74;
    
      (
    len q) 
    = (n 
    + 1) by 
    A1,
    A2,
    A3,
    Th11;
    
      then q
    = ((q 
    | n) 
    ^  
    <%(q
    . n)%>) by 
    AFINSQ_1: 56;
    
      hence thesis by
    A11,
    A10,
    FUNCOP_1: 9;
    
    end;
    
    theorem :: 
    
    CATALAN2:14
    
    
    
    
    
    Th14: for m, p st m 
    = ( 
    min* { N : (2 
    * ( 
    Sum (p 
    | N))) 
    = N & N 
    >  
    0 }) & m 
    >  
    0 & p is 
    dominated_by_0 holds ex q st (p 
    | m) 
    = (((1 
    -->  
    0 ) 
    ^ q) 
    ^ (1 
    --> 1)) & q is 
    dominated_by_0
    
    proof
    
      
    
      
    
    A1: ( 
    dom  
    <%
    0 %>) 
    = 1 & ( 
    rng  
    <%
    0 %>) 
    =  
    {
    0 } by 
    AFINSQ_1: 33;
    
      set q1 = (1
    --> 1); 
    
      set q0 = (1
    -->  
    0 ); 
    
      let m, p such that
    
      
    
    A2: m 
    = ( 
    min* { N : (2 
    * ( 
    Sum (p 
    | N))) 
    = N & N 
    >  
    0 }) & m 
    >  
    0 and 
    
      
    
    A3: p is 
    dominated_by_0;
    
      reconsider M = { N : (2
    * ( 
    Sum (p 
    | N))) 
    = N & N 
    >  
    0 } as non 
    empty  
    Subset of 
    NAT by 
    A2,
    NAT_1:def 1;
    
      (
    min* M) 
    in M by 
    NAT_1:def 1;
    
      then
    
      consider n be
    Nat such that 
    
      
    
    A4: n 
    = ( 
    min* M) and 
    
      
    
    A5: (2 
    * ( 
    Sum (p 
    | n))) 
    = n and 
    
      
    
    A6: n 
    >  
    0 ; 
    
      reconsider n1 = (n
    - 1) as 
    Nat by 
    A6,
    NAT_1: 20;
    
      (
    Sum (p 
    | n)) 
    <>  
    0 by 
    A5,
    A6;
    
      then n
    >= (2 
    * 1) by 
    A5,
    NAT_1: 14,
    XREAL_1: 64;
    
      then
    
      
    
    A7: n1 
    >= (2 
    - 1) by 
    XREAL_1: 9;
    
      then
    
      
    
    A8: ( 
    Segm 1) 
    c= ( 
    Segm n1) by 
    NAT_1: 39;
    
      then
    
      
    
    A9: ((p 
    | n1) 
    | 1) 
    = (p 
    | 1) by 
    RELAT_1: 74;
    
      
    
      
    
    A10: n1 
    < (n1 
    + 1) by 
    NAT_1: 13;
    
      n
    <= ( 
    len p) by 
    A3,
    A5,
    Th11;
    
      then
    
      
    
    A11: n1 
    < ( 
    len p) by 
    A10,
    XXREAL_0: 2;
    
      then 1
    < ( 
    len p) by 
    A7,
    XXREAL_0: 2;
    
      then (
    len (p 
    | 1)) 
    = 1 by 
    AFINSQ_1: 11;
    
      then
    
      
    
    A12: (p 
    | 1) 
    =  
    <%((p
    | 1) 
    .  
    0 )%> by 
    AFINSQ_1: 34;
    
      (p
    | 1) is 
    dominated_by_0 by 
    A3,
    Th6;
    
      then ((p
    | 1) 
    .  
    0 ) 
    =  
    0 by 
    Th3;
    
      then
    
      
    
    A13: (p 
    | 1) 
    = (1 
    -->  
    0 ) by 
    A12,
    A1,
    FUNCOP_1: 9;
    
      consider q such that
    
      
    
    A14: (p 
    | n1) 
    = (((p 
    | n1) 
    | 1) 
    ^ q) by 
    Th1;
    
      set qq = ((q0
    ^ q) 
    ^ q1); 
    
      take q;
    
      
    
      
    
    A15: (p 
    | (n1 
    + 1)) 
    = ((p 
    | n1) 
    ^ (1 
    --> 1)) by 
    A3,
    A5,
    Th13;
    
      hence (p
    | m) 
    = qq by 
    A2,
    A4,
    A14,
    A8,
    A13,
    RELAT_1: 74;
    
      (
    rng q) 
    c= ( 
    rng (q0 
    ^ q)) & ( 
    rng (q0 
    ^ q)) 
    c= ( 
    rng qq) by 
    AFINSQ_1: 24,
    AFINSQ_1: 25;
    
      then
    
      
    
    A16: ( 
    rng q) 
    c= ( 
    rng qq); 
    
      (p
    | m) is 
    dominated_by_0 by 
    A3,
    Th6;
    
      then (
    rng qq) 
    c=  
    {
    0 , 1} by 
    A2,
    A4,
    A14,
    A13,
    A9,
    A15;
    
      hence (
    rng q) 
    c=  
    {
    0 , 1} by 
    A16;
    
      
    
      
    
    A17: ( 
    dom q0) 
    = 1; 
    
      (
    len (p 
    | n1)) 
    = n1 by 
    A11,
    AFINSQ_1: 11;
    
      then
    
      
    
    A18: n1 
    = (( 
    len q0) 
    + ( 
    len q)) by 
    A14,
    A13,
    A9,
    AFINSQ_1: 17;
    
      let k;
    
      assume k
    <= ( 
    dom q); 
    
      then
    
      
    
    A19: (( 
    len q0) 
    + k) 
    <= n1 by 
    A18,
    XREAL_1: 6;
    
      then (
    Segm (( 
    len q0) 
    + k)) 
    c= ( 
    Segm n1) by 
    NAT_1: 39;
    
      then
    
      
    
    A20: ((p 
    | n1) 
    | (1 
    + k)) 
    = (p 
    | (1 
    + k)) by 
    RELAT_1: 74;
    
      
    
      
    
    A21: (1 
    + k) 
    < n by 
    A15,
    A19,
    NAT_1: 13;
    
      
    
      
    
    A22: (2 
    * ( 
    Sum (p 
    | (1 
    + k)))) 
    < (1 
    + k) 
    
      proof
    
        assume
    
        
    
    A23: (2 
    * ( 
    Sum (p 
    | (1 
    + k)))) 
    >= (1 
    + k); 
    
        (2
    * ( 
    Sum (p 
    | (k 
    + 1)))) 
    <= (k 
    + 1) by 
    A3,
    Th2;
    
        then (2
    * ( 
    Sum (p 
    | (1 
    + k)))) 
    = (1 
    + k) by 
    A23,
    XXREAL_0: 1;
    
        then (1
    + k) 
    in M; 
    
        hence thesis by
    A4,
    A21,
    NAT_1:def 1;
    
      end;
    
      ((p
    | n1) 
    | (1 
    + k)) 
    = (q0 
    ^ (q 
    | k)) by 
    A14,
    A13,
    A9,
    A17,
    AFINSQ_1: 59;
    
      then
    
      
    
    A24: ( 
    Sum (p 
    | (1 
    + k))) 
    = (( 
    Sum q0) 
    + ( 
    Sum (q 
    | k))) by 
    A20,
    AFINSQ_2: 55;
    
      (
    Sum q0) 
    = ( 
    0  
    * 1) by 
    AFINSQ_2: 58;
    
      hence thesis by
    A24,
    A22,
    NAT_1: 13;
    
    end;
    
    theorem :: 
    
    CATALAN2:15
    
    
    
    
    
    Th15: for p st ( 
    rng p) 
    c=  
    {
    0 , 1} & not p is 
    dominated_by_0 holds ex k st ((2 
    * k) 
    + 1) 
    = ( 
    min* { N : (2 
    * ( 
    Sum (p 
    | N))) 
    > N }) & ((2 
    * k) 
    + 1) 
    <= ( 
    dom p) & k 
    = ( 
    Sum (p 
    | (2 
    * k))) & (p 
    . (2 
    * k)) 
    = 1 
    
    proof
    
      let p such that
    
      
    
    A1: ( 
    rng p) 
    c=  
    {
    0 , 1} and 
    
      
    
    A2: not p is 
    dominated_by_0;
    
      set M = { N : (2
    * ( 
    Sum (p 
    | N))) 
    > N }; 
    
      M
    c=  
    NAT  
    
      proof
    
        let x be
    object;
    
        assume x
    in M; 
    
        then ex N st x
    = N & (2 
    * ( 
    Sum (p 
    | N))) 
    > N; 
    
        hence thesis by
    ORDINAL1:def 12;
    
      end;
    
      then
    
      reconsider M as
    Subset of 
    NAT ; 
    
      consider k be
    Nat such that 
    
      
    
    A3: k 
    <= ( 
    dom p) and 
    
      
    
    A4: (2 
    * ( 
    Sum (p 
    | k))) 
    > k by 
    A1,
    A2;
    
      reconsider k as
    Nat;
    
      k
    in M by 
    A4;
    
      then
    
      reconsider M as non
    empty  
    Subset of 
    NAT ; 
    
      (
    min* M) 
    in M by 
    NAT_1:def 1;
    
      then
    
      consider n be
    Nat such that 
    
      
    
    A5: ( 
    min* M) 
    = n and 
    
      
    
    A6: (2 
    * ( 
    Sum (p 
    | n))) 
    > n; 
    
      
    
      
    
    A7: ( 
    Sum (p 
    |  
    0 )) 
    =  
    0 ; 
    
      (
    Sum (p 
    | n)) 
    >  
    0 by 
    A6;
    
      then n
    >  
    0 by 
    A7;
    
      then
    
      reconsider n1 = (n
    - 1) as 
    Nat by 
    NAT_1: 20;
    
      reconsider S = (
    Sum (p 
    | n1)) as 
    Nat;
    
      take S;
    
      k
    in M by 
    A4;
    
      then
    
      
    
    A8: k 
    >= n by 
    A5,
    NAT_1:def 1;
    
      then
    
      
    
    A9: ( 
    dom p) 
    >= n by 
    A3,
    XXREAL_0: 2;
    
      
    
      
    
    A10: (2 
    * ( 
    Sum (p 
    | n1))) 
    = n1 
    
      proof
    
        
    
        
    
    A11: n1 
    < (n1 
    + 1) by 
    NAT_1: 13;
    
        then (
    Segm n1) 
    c= ( 
    Segm (n1 
    + 1)) by 
    NAT_1: 39;
    
        then
    
        
    
    A12: ((p 
    | n) 
    | n1) 
    = (p 
    | n1) by 
    RELAT_1: 74;
    
        n
    = ( 
    len p) & (p 
    | ( 
    dom p)) 
    = p or n 
    < ( 
    len p) by 
    A9,
    XXREAL_0: 1;
    
        then
    
        
    
    A13: ( 
    len (p 
    | n)) 
    = (n1 
    + 1) by 
    AFINSQ_1: 11;
    
        then n1
    in ( 
    Segm ( 
    len (p 
    | n))) by 
    A11,
    NAT_1: 44;
    
        then
    
        
    
    A14: ((p 
    | n) 
    . n1) 
    in ( 
    rng (p 
    | n)) by 
    FUNCT_1: 3;
    
        (p
    | n) 
    = (((p 
    | n) 
    | n1) 
    ^  
    <%((p
    | n) 
    . n1)%>) by 
    A13,
    AFINSQ_1: 56;
    
        then (
    Sum (p 
    | n)) 
    = (( 
    Sum (p 
    | n1)) 
    + ( 
    Sum  
    <%((p
    | n) 
    . n1)%>)) by 
    A12,
    AFINSQ_2: 55;
    
        then
    
        
    
    A15: ((2 
    * ( 
    Sum (p 
    | n1))) 
    + (2 
    * ( 
    Sum  
    <%((p
    | n) 
    . n1)%>))) 
    >= (n 
    + 1) by 
    A6,
    NAT_1: 13;
    
        n1
    < (n1 
    + 1) by 
    NAT_1: 13;
    
        then not n1
    in M by 
    A5,
    NAT_1:def 1;
    
        then
    
        
    
    A16: (2 
    * ( 
    Sum (p 
    | n1))) 
    <= n1; 
    
        ((p
    | n) 
    . n1) 
    in  
    {
    0 , 1} by 
    A1,
    A14;
    
        then
    
        
    
    A17: ((p 
    | n) 
    . n1) 
    =  
    0 or ((p 
    | n) 
    . n1) 
    = 1 by 
    TARSKI:def 2;
    
        assume (2
    * ( 
    Sum (p 
    | n1))) 
    <> n1; 
    
        then (
    Sum  
    <%((p
    | n) 
    . n1)%>) 
    = ((p 
    | n) 
    . n1) & (2 
    * ( 
    Sum (p 
    | n1))) 
    < n1 by 
    A16,
    AFINSQ_2: 53,
    XXREAL_0: 1;
    
        then ((2
    * ( 
    Sum (p 
    | n1))) 
    + (2 
    * ( 
    Sum  
    <%((p
    | n) 
    . n1)%>))) 
    < (n1 
    + 2) by 
    A17,
    XREAL_1: 8;
    
        hence contradiction by
    A15;
    
      end;
    
      (p
    . n1) 
    = 1 
    
      proof
    
        (
    Segm n) 
    c= ( 
    Segm ( 
    len p)) by 
    A9,
    NAT_1: 39;
    
        then
    
        
    
    A18: ( 
    dom (p 
    | n)) 
    = (n1 
    + 1) by 
    RELAT_1: 62;
    
        
    
        
    
    A19: ( 
    Sum  
    <%
    0 %>) 
    =  
    0 & (p 
    | n) 
    = (((p 
    | n) 
    | n1) 
    ^  
    <%((p
    | n) 
    . n1)%>) by 
    A18,
    AFINSQ_1: 56,
    AFINSQ_2: 53;
    
        assume
    
        
    
    A20: (p 
    . n1) 
    <> 1; 
    
        
    
        
    
    A21: n1 
    < (n1 
    + 1) by 
    NAT_1: 13;
    
        then n1
    < ( 
    len p) by 
    A9,
    XXREAL_0: 2;
    
        then
    
        
    
    A22: n1 
    in ( 
    dom p) by 
    AFINSQ_1: 86;
    
        (
    Segm n1) 
    c= ( 
    Segm n) by 
    A21,
    NAT_1: 39;
    
        then
    
        
    
    A23: ((p 
    | n) 
    | n1) 
    = (p 
    | n1) by 
    RELAT_1: 74;
    
        n1
    in ( 
    Segm n) by 
    A21,
    NAT_1: 44;
    
        then n1
    in (( 
    dom p) 
    /\ n) by 
    A22,
    XBOOLE_0:def 4;
    
        then
    
        
    
    A24: ((p 
    | n) 
    . n1) 
    = (p 
    . n1) by 
    FUNCT_1: 48;
    
        
    
        
    
    A25: n1 
    < (n1 
    + 1) by 
    NAT_1: 13;
    
        (p
    . n1) 
    in ( 
    rng p) by 
    A22,
    FUNCT_1: 3;
    
        then (p
    . n1) 
    =  
    0 by 
    A1,
    A20,
    TARSKI:def 2;
    
        then (
    Sum (p 
    | n)) 
    = (( 
    Sum (p 
    | n1)) 
    +  
    0 qua 
    Nat) by
    A19,
    A24,
    A23,
    AFINSQ_2: 55;
    
        hence thesis by
    A6,
    A10,
    A25;
    
      end;
    
      hence thesis by
    A3,
    A5,
    A8,
    A10,
    XXREAL_0: 2;
    
    end;
    
    theorem :: 
    
    CATALAN2:16
    
    
    
    
    
    Th16: for p, q, k st (p 
    | ((2 
    * k) 
    + ( 
    len q))) 
    = (((k 
    -->  
    0 ) 
    ^ q) 
    ^ (k 
    --> 1)) & q is 
    dominated_by_0 & (2 
    * ( 
    Sum q)) 
    = ( 
    len q) & k 
    >  
    0 holds ( 
    min* { N : (2 
    * ( 
    Sum (p 
    | N))) 
    = N & N 
    >  
    0 }) 
    = ((2 
    * k) 
    + ( 
    len q)) 
    
    proof
    
      let p, q, k such that
    
      
    
    A1: (p 
    | ((2 
    * k) 
    + ( 
    len q))) 
    = (((k 
    -->  
    0 ) 
    ^ q) 
    ^ (k 
    --> 1)) and 
    
      
    
    A2: q is 
    dominated_by_0 and 
    
      
    
    A3: (2 
    * ( 
    Sum q)) 
    = ( 
    len q) and 
    
      
    
    A4: k 
    >  
    0 ; 
    
      set k0 = (k
    -->  
    0 ); 
    
      
    
      
    
    A5: ( 
    Sum k0) 
    = (k 
    *  
    0 ) by 
    AFINSQ_2: 58;
    
      then
    
      
    
    A6: (2 
    * k) 
    >  
    0 by 
    A4,
    XREAL_1: 68;
    
      reconsider k1 = (k
    --> 1) as 
    XFinSequence of 
    NAT ; 
    
      set M = { N : (2
    * ( 
    Sum (p 
    | N))) 
    = N & N 
    >  
    0 }; 
    
      set kqk = ((k0
    ^ q) 
    ^ k1); 
    
      (
    Sum kqk) 
    = (( 
    Sum (k0 
    ^ q)) 
    + ( 
    Sum k1)) by 
    AFINSQ_2: 55;
    
      then
    
      
    
    A7: ( 
    Sum kqk) 
    = ((( 
    Sum k0) 
    + ( 
    Sum q)) 
    + ( 
    Sum k1)) by 
    AFINSQ_2: 55;
    
      (
    Sum k1) 
    = (k 
    * 1) by 
    AFINSQ_2: 58;
    
      then (2
    * ( 
    Sum (p 
    | ((2 
    * k) 
    + ( 
    len q))))) 
    = (( 
    len q) 
    + (2 
    * k)) by 
    A1,
    A3,
    A7,
    A5;
    
      then
    
      
    
    A8: ((2 
    * k) 
    + ( 
    len q)) 
    in M by 
    A6;
    
      M
    c=  
    NAT  
    
      proof
    
        let y be
    object;
    
        assume y
    in M; 
    
        then ex i be
    Nat st i 
    = y & (2 
    * ( 
    Sum (p 
    | i))) 
    = i & i 
    >  
    0 ; 
    
        hence thesis by
    ORDINAL1:def 12;
    
      end;
    
      then
    
      reconsider M as non
    empty  
    Subset of 
    NAT by 
    A8;
    
      (
    min* M) 
    = ((2 
    * k) 
    + ( 
    len q)) 
    
      proof
    
        kqk
    = (k0 
    ^ (q 
    ^ k1)) by 
    AFINSQ_1: 27;
    
        then
    
        
    
    A9: ( 
    len kqk) 
    = (( 
    len k0) 
    + ( 
    len (q 
    ^ k1))) by 
    AFINSQ_1: 17;
    
        
    
        
    
    A10: ( 
    len kqk) 
    = (k 
    + (( 
    len q) 
    + ( 
    len k1))) by 
    A9,
    AFINSQ_1: 17;
    
        assume
    
        
    
    A11: ( 
    min* M) 
    <> ((2 
    * k) 
    + ( 
    len q)); 
    
        (
    min* M) 
    in M by 
    NAT_1:def 1;
    
        then
    
        
    
    A12: ex i be 
    Nat st i 
    = ( 
    min* M) & (2 
    * ( 
    Sum (p 
    | i))) 
    = i & i 
    >  
    0 ; 
    
        
    
        
    
    A14: ((2 
    * k) 
    + ( 
    len q)) 
    >= ( 
    min* M) by 
    A8,
    NAT_1:def 1;
    
        then
    
        
    
    A15: ( 
    Segm ( 
    min* M)) 
    c= ( 
    Segm ((2 
    * k) 
    + ( 
    len q))) by 
    NAT_1: 39;
    
        then
    
        
    
    A16: (p 
    | ( 
    min* M)) 
    = (kqk 
    | ( 
    min* M)) by 
    A1,
    RELAT_1: 74;
    
        now
    
          per cases ;
    
            suppose
    
            
    
    A17: ( 
    min* M) 
    <= k; 
    
            k
    = ( 
    dom k0) & kqk 
    = (k0 
    ^ (q 
    ^ k1)) by 
    AFINSQ_1: 27;
    
            then
    
            
    
    A18: (kqk 
    | ( 
    min* M)) 
    = (k0 
    | ( 
    min* M)) by 
    A17,
    AFINSQ_1: 58;
    
            
    
            
    
    A19: ( 
    Sum (( 
    min* M) 
    -->  
    0 )) 
    = (( 
    min* M) 
    *  
    0 ) by 
    AFINSQ_2: 58;
    
            (k0
    | ( 
    min* M)) 
    = (( 
    min* M) 
    -->  
    0 ) by 
    A17,
    Lm1;
    
            then (
    Sum (p 
    | ( 
    min* M))) 
    = ( 
    Sum (( 
    min* M) 
    -->  
    0 )) by 
    A1,
    A15,
    A18,
    RELAT_1: 74;
    
            hence contradiction by
    A12,
    A19;
    
          end;
    
            suppose (
    min* M) 
    > k; 
    
            then
    
            reconsider mk = ((
    min* M) 
    - k) as 
    Nat by 
    NAT_1: 21;
    
            now
    
              per cases ;
    
                suppose
    
                
    
    A20: ( 
    min* M) 
    <= (k 
    + ( 
    len q)); 
    
                
    
                
    
    A21: ( 
    dom k0) 
    = k; 
    
                (
    min* M) 
    = (mk 
    + k); 
    
                then
    
                
    
    A22: ((k0 
    ^ q) 
    | ( 
    min* M)) 
    = (k0 
    ^ (q 
    | mk)) by 
    A21,
    AFINSQ_1: 59;
    
                (
    dom (k0 
    ^ q)) 
    = (( 
    len k0) 
    + ( 
    len q)) by 
    AFINSQ_1:def 3;
    
                then (kqk
    | ( 
    min* M)) 
    = ((k0 
    ^ q) 
    | ( 
    min* M)) by 
    A20,
    AFINSQ_1: 58;
    
                then
    
                
    
    A23: ( 
    Sum (p 
    | ( 
    min* M))) 
    = (( 
    Sum k0) 
    + ( 
    Sum (q 
    | mk))) by 
    A16,
    A22,
    AFINSQ_2: 55;
    
                
    
                
    
    A24: 1 
    <= k by 
    A4,
    NAT_1: 14;
    
                (
    Sum k0) 
    = (k 
    *  
    0 ) by 
    AFINSQ_2: 58;
    
                then (mk
    + k) 
    <= mk by 
    A2,
    A12,
    A23,
    Th2;
    
                hence contradiction by
    A24,
    NAT_1: 19;
    
              end;
    
                suppose (
    min* M) 
    > (k 
    + ( 
    len q)); 
    
                then
    
                reconsider mkL = ((
    min* M) 
    - (k 
    + ( 
    len q))) as 
    Nat by 
    NAT_1: 21;
    
                
    
                
    
    A25: (2 
    * ( 
    Sum (p 
    | ( 
    min* M)))) 
    = ( 
    min* M) by 
    A12;
    
                (
    dom (k0 
    ^ q)) 
    = (( 
    len k0) 
    + ( 
    len q)) & ( 
    dom k0) 
    = k by 
    AFINSQ_1:def 3;
    
                then (
    min* M) 
    = (( 
    dom (k0 
    ^ q)) 
    + mkL); 
    
                then (kqk
    | ( 
    min* M)) 
    = ((k0 
    ^ q) 
    ^ (k1 
    | mkL)) by 
    AFINSQ_1: 59;
    
                then
    
                
    
    A26: ( 
    Sum (p 
    | ( 
    min* M))) 
    = (( 
    Sum (k0 
    ^ q)) 
    + ( 
    Sum (k1 
    | mkL))) by 
    A16,
    AFINSQ_2: 55;
    
                (
    min* M) 
    < ( 
    len kqk) by 
    A11,
    A10,
    A14,
    XXREAL_0: 1;
    
                then mkL
    < (((2 
    * k) 
    + ( 
    len q)) 
    - (k 
    + ( 
    len q))) by 
    A10,
    XREAL_1: 9;
    
                then (k1
    | mkL) 
    = (mkL 
    --> 1) by 
    Lm1;
    
                then
    
                
    
    A27: ( 
    Sum (k1 
    | mkL)) 
    = (mkL 
    * 1) by 
    AFINSQ_2: 58;
    
                (
    Sum (k0 
    ^ q)) 
    = (( 
    Sum k0) 
    + ( 
    Sum q)) & ( 
    Sum k0) 
    = (k 
    *  
    0 ) by 
    AFINSQ_2: 55,
    AFINSQ_2: 58;
    
                hence contradiction by
    A3,
    A11,
    A26,
    A27,
    A25;
    
              end;
    
            end;
    
            hence contradiction;
    
          end;
    
        end;
    
        hence contradiction;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    CATALAN2:17
    
    
    
    
    
    Th17: for p st p is 
    dominated_by_0 & { N : (2 
    * ( 
    Sum (p 
    | N))) 
    = N & N 
    >  
    0 } 
    =  
    {} & ( 
    len p) 
    >  
    0 holds ex q st p 
    = ( 
    <%
    0 %> 
    ^ q) & q is 
    dominated_by_0
    
    proof
    
      let p such that
    
      
    
    A1: p is 
    dominated_by_0 and 
    
      
    
    A2: { N : (2 
    * ( 
    Sum (p 
    | N))) 
    = N & N 
    >  
    0 } 
    =  
    {} & ( 
    len p) 
    >  
    0 ; 
    
      set M = { N : (2
    * ( 
    Sum (p 
    | N))) 
    = N & N 
    >  
    0 }; 
    
      consider q such that
    
      
    
    A3: p 
    = ((p 
    | 1) 
    ^ q) by 
    Th1;
    
      take q;
    
      
    
      
    
    A4: ( 
    rng p) 
    c=  
    {
    0 , 1} by 
    A1;
    
      (
    rng q) 
    c= ( 
    rng p) by 
    A3,
    AFINSQ_1: 25;
    
      then
    
      
    
    A5: ( 
    rng q) 
    c=  
    {
    0 , 1} by 
    A4;
    
      (
    len p) 
    >= 1 by 
    A2,
    NAT_1: 14;
    
      then (
    Segm 1) 
    c= ( 
    Segm ( 
    len p)) by 
    NAT_1: 39;
    
      then
    
      
    
    A6: ( 
    dom (p 
    | 1)) 
    = 1 by 
    RELAT_1: 62;
    
      
    
      
    
    A7: (p 
    | 1) 
    =  
    <%((p
    | 1) 
    .  
    0 )%> by 
    A6,
    AFINSQ_1: 34;
    
      
    0  
    in ( 
    Segm 1) by 
    NAT_1: 44;
    
      then
    
      
    
    A8: ((p 
    | 1) 
    .  
    0 ) 
    = (p 
    .  
    0 ) by 
    A6,
    FUNCT_1: 47;
    
      hence p
    = ( 
    <%
    0 %> 
    ^ q) by 
    A1,
    A3,
    A7,
    Th3;
    
      assume not q is
    dominated_by_0;
    
      then
    
      consider i such that i
    <= ( 
    dom q) and 
    
      
    
    A9: (2 
    * ( 
    Sum (q 
    | i))) 
    > i by 
    A5;
    
      reconsider i as
    Nat;
    
      (p
    | (1 
    + i)) 
    = ((p 
    | 1) 
    ^ (q 
    | i)) by 
    A3,
    A6,
    AFINSQ_1: 59;
    
      then
    
      
    
    A10: ( 
    Sum (p 
    | (1 
    + i))) 
    = (( 
    Sum  
    <%(p
    .  
    0 )%>) 
    + ( 
    Sum (q 
    | i))) by 
    A7,
    A8,
    AFINSQ_2: 55;
    
      
    
      
    
    A11: (2 
    * ( 
    Sum (q 
    | i))) 
    >= (i 
    + 1) by 
    A9,
    NAT_1: 13;
    
      (
    Sum  
    <%(p
    .  
    0 )%>) 
    = (p 
    .  
    0 ) by 
    AFINSQ_2: 53;
    
      then
    
      
    
    A12: ( 
    Sum (p 
    | (1 
    + i))) 
    = ( 
    0 qua 
    Nat
    + ( 
    Sum (q 
    | i))) by 
    A1,
    A10,
    Th3;
    
      then (1
    + i) 
    >= (2 
    * ( 
    Sum (q 
    | i))) by 
    A1,
    Th2;
    
      then (1
    + i) 
    = (2 
    * ( 
    Sum (q 
    | i))) by 
    A11,
    XXREAL_0: 1;
    
      then (1
    + i) 
    in M by 
    A12;
    
      hence thesis by
    A2;
    
    end;
    
    theorem :: 
    
    CATALAN2:18
    
    
    
    
    
    Th18: p is 
    dominated_by_0 implies ( 
    <%
    0 %> 
    ^ p) is 
    dominated_by_0 & { N : (2 
    * ( 
    Sum (( 
    <%
    0 %> 
    ^ p) 
    | N))) 
    = N & N 
    >  
    0 } 
    =  
    {}  
    
    proof
    
      reconsider q = (1
    -->  
    0 ) as 
    XFinSequence of 
    NAT ; 
    
      assume
    
      
    
    A1: p is 
    dominated_by_0;
    
      (
    dom q) 
    = 1 & ( 
    len q) 
    = ( 
    dom q); 
    
      then
    
      
    
    A2: q 
    =  
    <%(q
    .  
    0 )%> by 
    AFINSQ_1: 34;
    
      q is
    dominated_by_0 by 
    Lm2;
    
      then q is
    dominated_by_0 & (q 
    .  
    0 ) 
    =  
    0 ; 
    
      hence (
    <%
    0 %> 
    ^ p) is 
    dominated_by_0 by 
    A1,
    A2,
    Th7;
    
      set M = { N : (2
    * ( 
    Sum (( 
    <%
    0 %> 
    ^ p) 
    | N))) 
    = N & N 
    >  
    0 }; 
    
      assume M
    <>  
    {} ; 
    
      then
    
      consider x be
    object such that 
    
      
    
    A3: x 
    in M by 
    XBOOLE_0:def 1;
    
      consider i be
    Nat such that x 
    = i and 
    
      
    
    A4: (2 
    * ( 
    Sum (( 
    <%
    0 %> 
    ^ p) 
    | i))) 
    = i and 
    
      
    
    A5: i 
    >  
    0 by 
    A3;
    
      reconsider i1 = (i
    - 1) as 
    Nat by 
    A5,
    NAT_1: 20;
    
      (
    dom  
    <%
    0 %>) 
    = 1 by 
    AFINSQ_1: 33;
    
      then i
    = (( 
    dom  
    <%
    0 %>) 
    + i1); 
    
      then ((
    <%
    0 %> 
    ^ p) 
    | i) 
    = ( 
    <%
    0 %> 
    ^ (p 
    | i1)) by 
    AFINSQ_1: 59;
    
      then
    
      
    
    A6: ( 
    Sum (( 
    <%
    0 %> 
    ^ p) 
    | i)) 
    = (( 
    Sum  
    <%
    0 %>) 
    + ( 
    Sum (p 
    | i1))) by 
    AFINSQ_2: 55;
    
      (
    Sum  
    <%
    0 %>) 
    =  
    0 & i1 
    < (i1 
    + 1) by 
    AFINSQ_2: 53,
    NAT_1: 13;
    
      hence thesis by
    A1,
    A4,
    A6,
    Th2;
    
    end;
    
    theorem :: 
    
    CATALAN2:19
    
    (
    rng p) 
    c=  
    {
    0 , 1} & ((2 
    * k) 
    + 1) 
    = ( 
    min* { N : (2 
    * ( 
    Sum (p 
    | N))) 
    > N }) implies (p 
    | (2 
    * k)) is 
    dominated_by_0
    
    proof
    
      set M = { N : (2
    * ( 
    Sum (p 
    | N))) 
    > N }; 
    
      set q = (p
    | (2 
    * k)); 
    
      assume that
    
      
    
    A1: ( 
    rng p) 
    c=  
    {
    0 , 1} and 
    
      
    
    A2: ((2 
    * k) 
    + 1) 
    = ( 
    min* M); 
    
      thus (
    rng q) 
    c=  
    {
    0 , 1} by 
    A1;
    
      reconsider M as non
    empty  
    Subset of 
    NAT by 
    A2,
    NAT_1:def 1;
    
      let m;
    
      assume
    
      
    
    A3: m 
    <= ( 
    dom q); 
    
      then
    
      
    
    A4: ( 
    Segm m) 
    c= ( 
    Segm ( 
    len q)) by 
    NAT_1: 39;
    
      (
    len q) 
    <= (2 
    * k) by 
    AFINSQ_1: 55;
    
      then (
    Segm ( 
    len q)) 
    c= ( 
    Segm (2 
    * k)) by 
    NAT_1: 39;
    
      then (
    Segm m) 
    c= ( 
    Segm (2 
    * k)) by 
    A4;
    
      then m
    <= (2 
    * k) by 
    NAT_1: 39;
    
      then
    
      
    
    A5: m 
    < ((2 
    * k) 
    + 1) by 
    NAT_1: 13;
    
      assume
    
      
    
    A6: (2 
    * ( 
    Sum (q 
    | m))) 
    > m; 
    
      reconsider m as
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
      (q
    | m) 
    = (p 
    | m) & m 
    in  
    NAT by 
    A4,
    RELAT_1: 74,
    XBOOLE_1: 1,
    A3;
    
      then m
    in M by 
    A6;
    
      hence thesis by
    A2,
    A5,
    NAT_1:def 1;
    
    end;
    
    begin
    
    definition
    
      let n,m be
    Nat;
    
      :: 
    
    CATALAN2:def2
    
      func
    
    Domin_0 (n,m) -> 
    Subset of ( 
    {
    0 , 1} 
    ^omega ) means 
    
      :
    
    Def2: x 
    in it iff ex p be 
    XFinSequence of 
    NAT st p 
    = x & p is 
    dominated_by_0 & ( 
    dom p) 
    = n & ( 
    Sum p) 
    = m; 
    
      existence
    
      proof
    
        defpred
    
    Q[
    object] means ex p st p
    = $1 & p is 
    dominated_by_0 & ( 
    dom p) 
    = n & ( 
    Sum p) 
    = m; 
    
        consider X such that
    
        
    
    A1: for x be 
    object holds x 
    in X iff x 
    in ( 
    bool  
    [:
    NAT , 
    NAT :]) & 
    Q[x] from
    XBOOLE_0:sch 1;
    
        X
    c= ( 
    {
    0 , 1} 
    ^omega ) 
    
        proof
    
          let x be
    object;
    
          assume x
    in X; 
    
          then
    
          consider p such that
    
          
    
    A2: p 
    = x and 
    
          
    
    A3: p is 
    dominated_by_0 and ( 
    dom p) 
    = n and ( 
    Sum p) 
    = m by 
    A1;
    
          (
    rng p) 
    c=  
    {
    0 , 1} by 
    A3;
    
          then p is
    XFinSequence of 
    {
    0 , 1} by 
    RELAT_1:def 19;
    
          hence thesis by
    A2,
    AFINSQ_1: 42;
    
        end;
    
        then
    
        reconsider X as
    Subset of ( 
    {
    0 , 1} 
    ^omega ); 
    
        take X;
    
        let x;
    
        thus x
    in X implies 
    Q[x] by
    A1;
    
        given p such that
    
        
    
    A4: p 
    = x & p is 
    dominated_by_0 & ( 
    dom p) 
    = n & ( 
    Sum p) 
    = m; 
    
        p
    c=  
    [:(
    dom p), ( 
    rng p):] & 
    [:(
    dom p), ( 
    rng p):] 
    c=  
    [:
    NAT , 
    NAT :] by 
    RELAT_1: 7,
    ZFMISC_1: 96;
    
        then p
    c=  
    [:
    NAT , 
    NAT :]; 
    
        hence thesis by
    A1,
    A4;
    
      end;
    
      uniqueness
    
      proof
    
        let X1,X2 be
    Subset of ( 
    {
    0 , 1} 
    ^omega ) such that 
    
        
    
    A5: x 
    in X1 iff ex p st p 
    = x & p is 
    dominated_by_0 & ( 
    dom p) 
    = n & ( 
    Sum p) 
    = m and 
    
        
    
    A6: x 
    in X2 iff ex p st p 
    = x & p is 
    dominated_by_0 & ( 
    dom p) 
    = n & ( 
    Sum p) 
    = m; 
    
        for x be
    object holds x 
    in X1 iff x 
    in X2 
    
        proof
    
          let x be
    object;
    
          x
    in X1 iff ex p st p 
    = x & p is 
    dominated_by_0 & ( 
    dom p) 
    = n & ( 
    Sum p) 
    = m by 
    A5;
    
          hence thesis by
    A6;
    
        end;
    
        hence thesis by
    TARSKI: 2;
    
      end;
    
    end
    
    theorem :: 
    
    CATALAN2:20
    
    
    
    
    
    Th20: p 
    in ( 
    Domin_0 (n,m)) iff p is 
    dominated_by_0 & ( 
    dom p) 
    = n & ( 
    Sum p) 
    = m 
    
    proof
    
      thus p
    in ( 
    Domin_0 (n,m)) implies p is 
    dominated_by_0 & ( 
    dom p) 
    = n & ( 
    Sum p) 
    = m 
    
      proof
    
        assume p
    in ( 
    Domin_0 (n,m)); 
    
        then ex q st q
    = p & q is 
    dominated_by_0 & ( 
    dom q) 
    = n & ( 
    Sum q) 
    = m by 
    Def2;
    
        hence thesis;
    
      end;
    
      thus thesis by
    Def2;
    
    end;
    
    theorem :: 
    
    CATALAN2:21
    
    
    
    
    
    Th21: ( 
    Domin_0 (n,m)) 
    c= ( 
    Choose (n,m,1, 
    0 )) 
    
    proof
    
      let x be
    object;
    
      assume x
    in ( 
    Domin_0 (n,m)); 
    
      then
    
      consider p such that
    
      
    
    A1: p 
    = x and 
    
      
    
    A2: p is 
    dominated_by_0 and 
    
      
    
    A3: ( 
    dom p) 
    = n & ( 
    Sum p) 
    = m by 
    Def2;
    
      (
    rng p) 
    c=  
    {
    0 , 1} by 
    A2;
    
      hence thesis by
    A1,
    A3,
    CARD_FIN: 40;
    
    end;
    
    registration
    
      let n, m;
    
      cluster ( 
    Domin_0 (n,m)) -> 
    finite;
    
      coherence
    
      proof
    
        (
    Domin_0 (n,m)) 
    c= ( 
    Choose (n,m,1, 
    0 )) by 
    Th21;
    
        hence thesis;
    
      end;
    
    end
    
    theorem :: 
    
    CATALAN2:22
    
    
    
    
    
    Th22: ( 
    Domin_0 (n,m)) is 
    empty iff (2 
    * m) 
    > n 
    
    proof
    
      thus (
    Domin_0 (n,m)) is 
    empty implies (2 
    * m) 
    > n 
    
      proof
    
        set q = (m
    --> 1); 
    
        assume
    
        
    
    A1: ( 
    Domin_0 (n,m)) is 
    empty;
    
        assume
    
        
    
    A2: (2 
    * m) 
    <= n; 
    
        m
    <= (m 
    + m) by 
    NAT_1: 12;
    
        then
    
        reconsider nm = (n
    - m) as 
    Nat by 
    A2,
    NAT_1: 21,
    XXREAL_0: 2;
    
        set p = (nm
    -->  
    0 ); 
    
        ((2
    * m) 
    - m) 
    <= nm by 
    A2,
    XREAL_1: 9;
    
        then
    
        
    
    A3: (p 
    ^ q) is 
    dominated_by_0 by 
    Th5;
    
        (
    dom (p 
    ^ q)) 
    = (( 
    len p) 
    + ( 
    len q)) & ( 
    dom p) 
    = nm by 
    AFINSQ_1:def 3;
    
        then
    
        
    
    A4: ( 
    dom (p 
    ^ q)) 
    = (nm 
    + m); 
    
        
    
        
    
    A5: ( 
    Sum (p 
    ^ q)) 
    = (( 
    Sum p) 
    + ( 
    Sum q)) by 
    AFINSQ_2: 55;
    
        (
    Sum p) 
    = ( 
    0  
    * nm) & ( 
    Sum q) 
    = (1 
    * m) by 
    AFINSQ_2: 58;
    
        hence thesis by
    A1,
    A5,
    A4,
    A3,
    Def2;
    
      end;
    
      assume
    
      
    
    A6: (2 
    * m) 
    > n; 
    
      assume (
    Domin_0 (n,m)) is non 
    empty;
    
      then
    
      consider x be
    object such that 
    
      
    
    A7: x 
    in ( 
    Domin_0 (n,m)); 
    
      consider p such that p
    = x and 
    
      
    
    A8: p is 
    dominated_by_0 and 
    
      
    
    A9: ( 
    dom p) 
    = n and 
    
      
    
    A10: ( 
    Sum p) 
    = m by 
    A7,
    Def2;
    
      (p
    | n) 
    = p by 
    A9;
    
      hence thesis by
    A6,
    A8,
    A10,
    Th2;
    
    end;
    
    theorem :: 
    
    CATALAN2:23
    
    
    
    
    
    Th23: ( 
    Domin_0 (n, 
    0 )) 
    =  
    {(n
    -->  
    0 )} 
    
    proof
    
      set p = (n
    -->  
    0 ); 
    
      
    
      
    
    A1: ( 
    Domin_0 (n, 
    0 )) 
    c=  
    {p}
    
      proof
    
        let x be
    object;
    
        assume x
    in ( 
    Domin_0 (n, 
    0 )); 
    
        then
    
        consider q such that
    
        
    
    A2: x 
    = q and q is 
    dominated_by_0 and 
    
        
    
    A3: ( 
    dom q) 
    = n and 
    
        
    
    A4: ( 
    Sum q) 
    =  
    0 by 
    Def2;
    
        (
    len q) 
    = n & q is 
    nonnegative-yielding by 
    A3;
    
        then q
    = (n 
    -->  
    0 ) or (q 
    =  
    {} & n 
    =  
    0 ) by 
    A4,
    AFINSQ_2: 62;
    
        then q
    = (n 
    -->  
    0 ); 
    
        hence thesis by
    A2,
    TARSKI:def 1;
    
      end;
    
      
    {p}
    c= ( 
    Domin_0 (n, 
    0 )) 
    
      proof
    
        
    
        
    
    A5: p is 
    dominated_by_0 by 
    Lm2;
    
        (
    dom p) 
    = n & ( 
    Sum p) 
    = (n 
    *  
    0 ) by 
    AFINSQ_2: 58;
    
        then
    
        
    
    A6: p 
    in ( 
    Domin_0 (n, 
    0 )) by 
    A5,
    Def2;
    
        let x be
    object;
    
        assume x
    in  
    {p};
    
        hence thesis by
    A6,
    TARSKI:def 1;
    
      end;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    CATALAN2:24
    
    
    
    
    
    Th24: ( 
    card ( 
    Domin_0 (n, 
    0 ))) 
    = 1 
    
    proof
    
      (
    Domin_0 (n, 
    0 )) 
    =  
    {(n
    -->  
    0 )} by 
    Th23;
    
      hence thesis by
    CARD_1: 30;
    
    end;
    
    theorem :: 
    
    CATALAN2:25
    
    
    
    
    
    Th25: for p, n st ( 
    rng p) 
    c=  
    {
    0 , n} holds ex q st ( 
    len p) 
    = ( 
    len q) & ( 
    rng q) 
    c=  
    {
    0 , n} & (for k st k 
    <= ( 
    len p) holds (( 
    Sum (p 
    | k)) 
    + ( 
    Sum (q 
    | k))) 
    = (n 
    * k)) & for k st k 
    in ( 
    len p) holds (q 
    . k) 
    = (n 
    - (p 
    . k)) 
    
    proof
    
      let p, n such that
    
      
    
    A1: ( 
    rng p) 
    c=  
    {
    0 , n}; 
    
      reconsider nn = n as
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
      defpred
    
    P[
    set, 
    set] means for k st k
    = $1 holds $2 
    = (n 
    - (p 
    . k)); 
    
      
    
      
    
    A2: for k st k 
    in ( 
    Segm ( 
    len p)) holds ex x be 
    Element of 
    {
    0 , n} st 
    P[k, x]
    
      proof
    
        let k;
    
        assume k
    in ( 
    Segm ( 
    len p)); 
    
        then (p
    . k) 
    in ( 
    rng p) by 
    FUNCT_1: 3;
    
        then (p
    . k) 
    =  
    0 or (p 
    . k) 
    = n by 
    A1,
    TARSKI:def 2;
    
        then
    
        
    
    A3: (n 
    - (p 
    . k)) 
    in  
    {
    0 , n} by 
    TARSKI:def 2;
    
        
    P[k, (n
    - (p 
    . k))]; 
    
        hence thesis by
    A3;
    
      end;
    
      consider q be
    XFinSequence of 
    {
    0 , n} such that 
    
      
    
    A4: ( 
    dom q) 
    = ( 
    Segm ( 
    len p)) & for k st k 
    in ( 
    Segm ( 
    len p)) holds 
    P[k, (q
    . k)] from 
    STIRL2_1:sch 5(
    A2);
    
      (
    rng q) 
    c=  
    {
    0 , nn}; 
    
      then (
    rng q) 
    c=  
    NAT by 
    XBOOLE_1: 1;
    
      then
    
      reconsider q as
    XFinSequence of 
    NAT by 
    RELAT_1:def 19;
    
      defpred
    
    Q[
    Nat] means $1
    <= ( 
    len p) implies (( 
    Sum (p 
    | $1)) 
    + ( 
    Sum (q 
    | $1))) 
    = (n 
    * $1); 
    
      
    
      
    
    A5: for k st 
    Q[k] holds
    Q[(k
    + 1)] 
    
      proof
    
        let k such that
    
        
    
    A6: 
    Q[k];
    
        set k1 = (k
    + 1); 
    
        
    
        
    
    A7: k 
    < (k 
    + 1) by 
    NAT_1: 13;
    
        then
    
        
    
    A8: ( 
    Segm k) 
    c= ( 
    Segm (k 
    + 1)) by 
    NAT_1: 39;
    
        then
    
        
    
    A9: ((p 
    | k1) 
    | k) 
    = (p 
    | k) by 
    RELAT_1: 74;
    
        
    
        
    
    A10: ((q 
    | k1) 
    | k) 
    = (q 
    | k) by 
    A8,
    RELAT_1: 74;
    
        assume
    
        
    
    A11: (k 
    + 1) 
    <= ( 
    len p); 
    
        then
    
        
    
    A12: ( 
    Segm k1) 
    c= ( 
    Segm ( 
    len p)) by 
    NAT_1: 39;
    
        then
    
        
    
    A13: ( 
    len (q 
    | k1)) 
    = k1 by 
    A4,
    RELAT_1: 62;
    
        then
    
        
    
    A14: (q 
    | k1) 
    = (((q 
    | k1) 
    | k) 
    ^  
    <%((q
    | k1) 
    . k)%>) by 
    AFINSQ_1: 56;
    
        (
    len (p 
    | k1)) 
    = k1 by 
    A12,
    RELAT_1: 62;
    
        then
    
        
    
    A15: k 
    in ( 
    dom (p 
    | k1)) by 
    A7,
    AFINSQ_1: 86;
    
        then
    
        
    
    A16: ((p 
    | k1) 
    . k) 
    = (p 
    . k) by 
    FUNCT_1: 47;
    
        (
    len (p 
    | k1)) 
    = k1 by 
    A12,
    RELAT_1: 62;
    
        then (p
    | k1) 
    = (((p 
    | k1) 
    | k) 
    ^  
    <%((p
    | k1) 
    . k)%>) by 
    AFINSQ_1: 56;
    
        then (
    Sum (p 
    | k1)) 
    = (( 
    Sum (p 
    | k)) 
    + ( 
    Sum  
    <%(p
    . k)%>)) by 
    A16,
    A9,
    AFINSQ_2: 55;
    
        then
    
        
    
    A17: ( 
    Sum (p 
    | k1)) 
    = (( 
    Sum (p 
    | k)) 
    + (p 
    . k)) by 
    AFINSQ_2: 53;
    
        k
    < ( 
    len p) by 
    A11,
    NAT_1: 13;
    
        then k
    in ( 
    len p) by 
    AFINSQ_1: 86;
    
        then
    
        
    
    A18: (q 
    . k) 
    = (n 
    - (p 
    . k)) by 
    A4;
    
        ((q
    | k1) 
    . k) 
    = (q 
    . k) by 
    A13,
    A15,
    FUNCT_1: 47;
    
        then (
    Sum (q 
    | k1)) 
    = (( 
    Sum (q 
    | k)) 
    + ( 
    Sum  
    <%(q
    . k)%>)) by 
    A14,
    A10,
    AFINSQ_2: 55;
    
        then (
    Sum (q 
    | k1)) 
    = (( 
    Sum (q 
    | k)) 
    + (n 
    - (p 
    . k))) by 
    A18,
    AFINSQ_2: 53;
    
        hence thesis by
    A6,
    A11,
    A17,
    NAT_1: 13;
    
      end;
    
      take q;
    
      thus (
    len p) 
    = ( 
    len q) by 
    A4;
    
      thus (
    rng q) 
    c=  
    {
    0 , n} by 
    RELAT_1:def 19;
    
      
    
      
    
    A19: 
    Q[
    0 ]; 
    
      for k holds
    Q[k] from
    NAT_1:sch 2(
    A19,
    A5);
    
      hence thesis by
    A4;
    
    end;
    
    theorem :: 
    
    CATALAN2:26
    
    
    
    
    
    Th26: m 
    <= n implies (n 
    choose m) 
    >  
    0  
    
    proof
    
      assume
    
      
    
    A1: m 
    <= n; 
    
      then
    
      reconsider nm = (n
    - m) as 
    Nat by 
    NAT_1: 21;
    
      
    
      
    
    A2: ((m 
    ! ) 
    * (nm 
    ! )) 
    > ((m 
    ! ) 
    *  
    0 ) by 
    XREAL_1: 68;
    
      (n
    ! ) 
    > ( 
    0  
    * ((m 
    ! ) 
    * (nm 
    ! ))); 
    
      then ((n
    ! ) 
    / ((m 
    ! ) 
    * (nm 
    ! ))) 
    >  
    0 by 
    A2,
    XREAL_1: 81;
    
      hence thesis by
    A1,
    NEWTON:def 3;
    
    end;
    
    theorem :: 
    
    CATALAN2:27
    
    
    
    
    
    Th27: (2 
    * (m 
    + 1)) 
    <= n implies ( 
    card (( 
    Choose (n,(m 
    + 1),1, 
    0 )) 
    \ ( 
    Domin_0 (n,(m 
    + 1))))) 
    = ( 
    card ( 
    Choose (n,m,1, 
    0 ))) 
    
    proof
    
      defpred
    
    P[
    object, 
    object] means for p, k st $1
    = p & ((2 
    * k) 
    + 1) 
    = ( 
    min* { N : (2 
    * ( 
    Sum (p 
    | N))) 
    > N }) holds ex r1,r2 be 
    XFinSequence of 
    NAT st $2 
    = (r1 
    ^ r2) & ( 
    len r1) 
    = ((2 
    * k) 
    + 1) & ( 
    len r1) 
    = ( 
    len (p 
    | ((2 
    * k) 
    + 1))) & p 
    = ((p 
    | ((2 
    * k) 
    + 1)) 
    ^ r2) & (for o be 
    Nat st o 
    < ((2 
    * k) 
    + 1) holds (r1 
    . o) 
    = (1 
    - (p 
    . o))); 
    
      assume
    
      
    
    A1: (2 
    * (m 
    + 1)) 
    <= n; 
    
      
    
      
    
    A2: m 
    <= (m 
    + m) by 
    XREAL_1: 31;
    
      m
    <= (m 
    + 1) by 
    NAT_1: 13;
    
      then (2
    * m) 
    <= (2 
    * (m 
    + 1)) by 
    XREAL_1: 64;
    
      then (2
    * m) 
    <= n by 
    A1,
    XXREAL_0: 2;
    
      then m
    <= n by 
    A2,
    XXREAL_0: 2;
    
      then ((
    card n) 
    choose m) 
    >  
    0 by 
    Th26;
    
      then
    
      reconsider W = (
    Choose (n,m,1, 
    0 )) as non 
    empty
    finite  
    set by 
    CARD_1: 27,
    CARD_FIN: 16;
    
      set Z = (
    Domin_0 (n,(m 
    + 1))); 
    
      set CH = (
    Choose (n,(m 
    + 1),1, 
    0 )); 
    
      
    
      
    
    A3: for x be 
    object st x 
    in (CH 
    \ Z) holds ex y be 
    object st y 
    in W & 
    P[x, y]
    
      proof
    
        let x be
    object such that 
    
        
    
    A4: x 
    in (CH 
    \ Z); 
    
        x
    in CH by 
    A4,
    XBOOLE_0:def 5;
    
        then
    
        consider p be
    XFinSequence of 
    NAT such that 
    
        
    
    A5: p 
    = x and 
    
        
    
    A6: ( 
    dom p) 
    = n and 
    
        
    
    A7: ( 
    rng p) 
    c=  
    {
    0 , 1} and 
    
        
    
    A8: ( 
    Sum p) 
    = (m 
    + 1) by 
    CARD_FIN: 40;
    
         not p
    in Z by 
    A4,
    A5,
    XBOOLE_0:def 5;
    
        then not p is
    dominated_by_0 by 
    A6,
    A8,
    Def2;
    
        then
    
        consider o be
    Nat such that 
    
        
    
    A9: ((2 
    * o) 
    + 1) 
    = ( 
    min* { N : (2 
    * ( 
    Sum (p 
    | N))) 
    > N }) & ((2 
    * o) 
    + 1) 
    <= ( 
    dom p) & o 
    = ( 
    Sum (p 
    | (2 
    * o))) & (p 
    . (2 
    * o)) 
    = 1 by 
    A7,
    Th15;
    
        set q = (p
    | ((2 
    * o) 
    + 1)); 
    
        consider r2 be
    XFinSequence of 
    NAT such that 
    
        
    
    A10: p 
    = (q 
    ^ r2) by 
    Th1;
    
        (
    rng q) 
    c=  
    {
    0 , 1} by 
    A7;
    
        then
    
        consider r1 be
    XFinSequence of 
    NAT such that 
    
        
    
    A11: ( 
    len q) 
    = ( 
    len r1) and 
    
        
    
    A12: ( 
    rng r1) 
    c=  
    {
    0 , 1} and 
    
        
    
    A13: for i st i 
    <= ( 
    len q) holds (( 
    Sum (q 
    | i)) 
    + ( 
    Sum (r1 
    | i))) 
    = (1 
    * i) and 
    
        
    
    A14: for i st i 
    in ( 
    len q) holds (r1 
    . i) 
    = (1 
    - (q 
    . i)) by 
    Th25;
    
        take R = (r1
    ^ r2); 
    
        (
    len p) 
    = (( 
    len r1) 
    + ( 
    len r2)) by 
    A11,
    A10,
    AFINSQ_1: 17;
    
        then
    
        
    
    A15: ( 
    dom R) 
    = n by 
    A6,
    AFINSQ_1:def 3;
    
        (
    rng r2) 
    c= ( 
    rng p) by 
    A10,
    AFINSQ_1: 25;
    
        then (
    rng r2) 
    c=  
    {
    0 , 1} by 
    A7;
    
        then ((
    rng r1) 
    \/ ( 
    rng r2)) 
    c=  
    {
    0 , 1} by 
    A12,
    XBOOLE_1: 8;
    
        then
    
        
    
    A16: ( 
    rng R) 
    c=  
    {
    0 , 1} by 
    AFINSQ_1: 26;
    
        (q
    | ( 
    dom q)) 
    = q & (r1 
    | ( 
    dom r1)) 
    = r1; 
    
        then
    
        
    
    A17: (( 
    Sum q) 
    + ( 
    Sum r1)) 
    = (1 
    * ( 
    len q)) by 
    A11,
    A13;
    
        
    
        
    
    A18: (2 
    * o) 
    < ((2 
    * o) 
    + 1) by 
    NAT_1: 13;
    
        then (
    Segm (2 
    * o)) 
    c= ( 
    Segm ((2 
    * o) 
    + 1)) by 
    NAT_1: 39;
    
        then
    
        
    
    A19: (q 
    | (2 
    * o)) 
    = (p 
    | (2 
    * o)) by 
    RELAT_1: 74;
    
        
    
        
    
    A20: ( 
    Segm ((2 
    * o) 
    + 1)) 
    c= ( 
    Segm ( 
    len p)) by 
    A9,
    NAT_1: 39;
    
        then
    
        
    
    A21: ( 
    dom q) 
    = ((2 
    * o) 
    + 1) by 
    RELAT_1: 62;
    
        
    
        
    
    A22: ( 
    len q) 
    = ((2 
    * o) 
    + 1) by 
    A20,
    RELAT_1: 62;
    
        then
    
        
    
    A23: q 
    = ((q 
    | (2 
    * o)) 
    ^  
    <%(q
    . (2 
    * o))%>) by 
    AFINSQ_1: 56;
    
        (2
    * o) 
    in ( 
    Segm ((2 
    * o) 
    + 1)) by 
    A18,
    NAT_1: 44;
    
        then (q
    . (2 
    * o)) 
    = (p 
    . (2 
    * o)) by 
    A22,
    FUNCT_1: 47;
    
        then (
    Sum q) 
    = (( 
    Sum (p 
    | (2 
    * o))) 
    + ( 
    Sum  
    <%(p
    . (2 
    * o))%>)) by 
    A23,
    A19,
    AFINSQ_2: 55;
    
        then
    
        
    
    A24: ( 
    Sum q) 
    = (o 
    + 1) by 
    A9,
    AFINSQ_2: 53;
    
        (m
    + 1) 
    = (( 
    Sum q) 
    + ( 
    Sum r2)) by 
    A8,
    A10,
    AFINSQ_2: 55;
    
        then ((
    Sum r1) 
    + ( 
    Sum r2)) 
    = (((m 
    + 1) 
    - ((2 
    * o) 
    + 1)) 
    + (2 
    * o)) by 
    A17,
    A21,
    A24;
    
        then (
    Sum (r1 
    ^ r2)) 
    = m by 
    AFINSQ_2: 55;
    
        hence R
    in W by 
    A15,
    A16,
    CARD_FIN: 40;
    
        thus
    P[x, R]
    
        proof
    
          let p9 be
    XFinSequence of 
    NAT , k such that 
    
          
    
    A25: x 
    = p9 & ((2 
    * k) 
    + 1) 
    = ( 
    min* { N : (2 
    * ( 
    Sum (p9 
    | N))) 
    > N }); 
    
          set q9 = (p9
    | ((2 
    * k) 
    + 1)); 
    
          take r1, r2;
    
          thus R
    = (r1 
    ^ r2) & ( 
    len r1) 
    = ((2 
    * k) 
    + 1) & ( 
    len r1) 
    = ( 
    len q9) & p9 
    = (q9 
    ^ r2) by 
    A5,
    A9,
    A11,
    A10,
    A20,
    A25,
    RELAT_1: 62;
    
          thus for i be
    Nat st i 
    < ((2 
    * k) 
    + 1) holds (r1 
    . i) 
    = (1 
    - (p9 
    . i)) 
    
          proof
    
            let i be
    Nat;
    
            assume i
    < ((2 
    * k) 
    + 1); 
    
            then
    
            
    
    A26: i 
    in ( 
    len q) by 
    A5,
    A9,
    A21,
    A25,
    AFINSQ_1: 86;
    
            then (r1
    . i) 
    = (1 
    - (q 
    . i)) by 
    A14;
    
            hence thesis by
    A5,
    A25,
    A26,
    FUNCT_1: 47;
    
          end;
    
        end;
    
      end;
    
      consider F be
    Function of (CH 
    \ Z), W such that 
    
      
    
    A27: for x be 
    object st x 
    in (CH 
    \ Z) holds 
    P[x, (F
    . x)] from 
    FUNCT_2:sch 1(
    A3);
    
      W
    c= ( 
    rng F) 
    
      proof
    
        let x be
    object;
    
        assume x
    in W; 
    
        then
    
        consider p such that
    
        
    
    A28: p 
    = x and 
    
        
    
    A29: ( 
    dom p) 
    = n and 
    
        
    
    A30: ( 
    rng p) 
    c=  
    {
    0 , 1} and 
    
        
    
    A31: ( 
    Sum p) 
    = m by 
    CARD_FIN: 40;
    
        set M = { N : (2
    * ( 
    Sum (p 
    | N))) 
    < N }; 
    
        m
    < (m 
    + 1) by 
    NAT_1: 13;
    
        then (2
    * m) 
    < (2 
    * (m 
    + 1)) by 
    XREAL_1: 68;
    
        then (2
    * m) 
    < n by 
    A1,
    XXREAL_0: 2;
    
        then (2
    * ( 
    Sum (p 
    | n))) 
    < n & n 
    in  
    NAT by 
    A29,
    A31,
    ORDINAL1:def 12;
    
        then
    
        
    
    A32: n 
    in M; 
    
        M
    c=  
    NAT  
    
        proof
    
          let y be
    object;
    
          assume y
    in M; 
    
          then ex i be
    Nat st i 
    = y & (2 
    * ( 
    Sum (p 
    | i))) 
    < i; 
    
          hence thesis by
    ORDINAL1:def 12;
    
        end;
    
        then
    
        reconsider M as non
    empty  
    Subset of 
    NAT by 
    A32;
    
        ex k st ((2
    * k) 
    + 1) 
    = ( 
    min* M) & ( 
    Sum (p 
    | ((2 
    * k) 
    + 1))) 
    = k & ((2 
    * k) 
    + 1) 
    <= ( 
    dom p) 
    
        proof
    
          set mm = (
    min* M); 
    
          mm
    in M by 
    NAT_1:def 1;
    
          then
    
          
    
    A33: ex o be 
    Nat st mm 
    = o & (2 
    * ( 
    Sum (p 
    | o))) 
    < o; 
    
          then
    
          reconsider m1 = (mm
    - 1) as 
    Nat by 
    NAT_1: 20;
    
          
    
          
    
    A34: (2 
    * ( 
    Sum (p 
    | mm))) 
    < (m1 
    + 1) by 
    A33;
    
          
    
          
    
    A35: m1 
    < (m1 
    + 1) by 
    NAT_1: 13;
    
          then (
    Segm m1) 
    c= ( 
    Segm mm) by 
    NAT_1: 39;
    
          then
    
          
    
    A36: ((p 
    | mm) 
    | m1) 
    = (p 
    | m1) by 
    RELAT_1: 74;
    
          mm
    <= ( 
    dom p) by 
    A29,
    A32,
    NAT_1:def 1;
    
          then
    
          
    
    A37: ( 
    Segm mm) 
    c= ( 
    Segm ( 
    len p)) by 
    NAT_1: 39;
    
          then (
    dom (p 
    | mm)) 
    = mm by 
    RELAT_1: 62;
    
          then m1
    in ( 
    Segm ( 
    dom (p 
    | mm))) by 
    A35,
    NAT_1: 44;
    
          then
    
          
    
    A38: ((p 
    | mm) 
    . m1) 
    = (p 
    . m1) by 
    FUNCT_1: 47;
    
          m1
    < (m1 
    + 1) by 
    NAT_1: 13;
    
          then not m1
    in M by 
    NAT_1:def 1;
    
          then (2
    * ( 
    Sum (p 
    | m1))) 
    >= m1; 
    
          then
    
          
    
    A39: ( 
    Sum  
    <%(p
    . m1)%>) 
    = (p 
    . m1) & ((2 
    * ( 
    Sum (p 
    | m1))) 
    + (2 
    * (p 
    . m1))) 
    >= (m1 
    +  
    0 qua 
    Nat) by
    AFINSQ_2: 53,
    XREAL_1: 7;
    
          reconsider S = (
    Sum (p 
    | mm)) as 
    Nat;
    
          take S;
    
          
    
          
    
    A40: mm 
    <= ( 
    dom p) by 
    A29,
    A32,
    NAT_1:def 1;
    
          (
    len (p 
    | mm)) 
    = (m1 
    + 1) by 
    A37,
    RELAT_1: 62;
    
          then (p
    | mm) 
    = (((p 
    | mm) 
    | m1) 
    ^  
    <%((p
    | mm) 
    . m1)%>) by 
    AFINSQ_1: 56;
    
          then (
    Sum (p 
    | mm)) 
    = (( 
    Sum (p 
    | m1)) 
    + ( 
    Sum  
    <%(p
    . m1)%>)) by 
    A38,
    A36,
    AFINSQ_2: 55;
    
          hence thesis by
    A40,
    A39,
    A34,
    NAT_1: 9;
    
        end;
    
        then
    
        consider k such that
    
        
    
    A41: ((2 
    * k) 
    + 1) 
    = ( 
    min* M) and 
    
        
    
    A42: ( 
    Sum (p 
    | ((2 
    * k) 
    + 1))) 
    = k and 
    
        
    
    A43: ((2 
    * k) 
    + 1) 
    <= ( 
    dom p); 
    
        set k1 = ((2
    * k) 
    + 1); 
    
        consider q such that
    
        
    
    A44: p 
    = ((p 
    | k1) 
    ^ q) by 
    Th1;
    
        (
    rng (p 
    | k1)) 
    c=  
    {
    0 , 1} by 
    A30;
    
        then
    
        consider r be
    XFinSequence of 
    NAT such that 
    
        
    
    A45: ( 
    len r) 
    = ( 
    len (p 
    | k1)) and 
    
        
    
    A46: ( 
    rng r) 
    c=  
    {
    0 , 1} and 
    
        
    
    A47: for i st i 
    <= ( 
    len (p 
    | k1)) holds (( 
    Sum ((p 
    | k1) 
    | i)) 
    + ( 
    Sum (r 
    | i))) 
    = (1 
    * i) and 
    
        
    
    A48: for i st i 
    in ( 
    len (p 
    | k1)) holds (r 
    . i) 
    = (1 
    - ((p 
    | k1) 
    . i)) by 
    Th25;
    
        set rq = (r
    ^ q); 
    
        
    
        
    
    A49: ( 
    dom rq) 
    = (( 
    len (p 
    | k1)) 
    + ( 
    len q)) by 
    A45,
    AFINSQ_1:def 3;
    
        
    
        
    
    A50: m 
    = (k 
    + ( 
    Sum q)) by 
    A31,
    A42,
    A44,
    AFINSQ_2: 55;
    
        (
    dom rq) 
    = (( 
    len (p 
    | k1)) 
    + ( 
    len q)) by 
    A45,
    AFINSQ_1:def 3;
    
        then
    
        
    
    A51: ( 
    dom rq) 
    = ( 
    dom p) by 
    A44,
    AFINSQ_1:def 3;
    
        ((p
    | k1) 
    | ( 
    dom (p 
    | k1))) 
    = (p 
    | k1) & (r 
    | ( 
    dom r)) 
    = r; 
    
        then
    
        
    
    A52: (( 
    Sum (p 
    | k1)) 
    + ( 
    Sum r)) 
    = (1 
    * ( 
    len (p 
    | k1))) by 
    A45,
    A47;
    
        (
    rng q) 
    c= ( 
    rng p) by 
    A44,
    AFINSQ_1: 25;
    
        then (
    rng q) 
    c=  
    {
    0 , 1} by 
    A30;
    
        then ((
    rng r) 
    \/ ( 
    rng q)) 
    c=  
    {
    0 , 1} by 
    A46,
    XBOOLE_1: 8;
    
        then
    
        
    
    A53: ( 
    rng rq) 
    c=  
    {
    0 , 1} by 
    AFINSQ_1: 26;
    
        
    
        
    
    A54: ( 
    Segm k1) 
    c= ( 
    Segm ( 
    len p)) by 
    A43,
    NAT_1: 39;
    
        then
    
        
    
    A55: ( 
    len (p 
    | k1)) 
    = k1 by 
    RELAT_1: 62;
    
        then
    
        
    
    A56: ((r 
    ^ q) 
    | k1) 
    = r by 
    A45,
    AFINSQ_1: 57;
    
        
    
        
    
    A57: (k1 
    + 1) 
    > k1 by 
    NAT_1: 13;
    
        then
    
        
    
    A58: k1 
    < (2 
    * ( 
    Sum r)) by 
    A42,
    A52,
    A55;
    
        
    
        
    
    A59: (2 
    * ( 
    Sum r)) 
    > k1 by 
    A42,
    A52,
    A55,
    A57;
    
        then
    
        consider j be
    Nat such that 
    
        
    
    A60: ((2 
    * j) 
    + 1) 
    = ( 
    min* { N : (2 
    * ( 
    Sum (rq 
    | N))) 
    > N }) & ((2 
    * j) 
    + 1) 
    <= ( 
    dom rq) & j 
    = ( 
    Sum (rq 
    | (2 
    * j))) & (rq 
    . (2 
    * j)) 
    = 1 by 
    A53,
    A56,
    Th2,
    Th15;
    
        set j1 = ((2
    * j) 
    + 1); 
    
        
    
        
    
    A61: ( 
    len ((p 
    | k1) 
    ^ q)) 
    = (( 
    len (p 
    | k1)) 
    + ( 
    len q)) by 
    AFINSQ_1:def 3;
    
         not rq is
    dominated_by_0 by 
    A59,
    A56,
    Th2;
    
        then
    
        
    
    A62: not rq 
    in Z by 
    Th20;
    
        set rqj = (rq
    | ((2 
    * j) 
    + 1)); 
    
        (
    Sum rq) 
    = (( 
    Sum r) 
    + ( 
    Sum q)) by 
    AFINSQ_2: 55;
    
        then rq
    in CH by 
    A29,
    A42,
    A52,
    A55,
    A51,
    A53,
    A50,
    CARD_FIN: 40;
    
        then
    
        
    
    A63: rq 
    in (CH 
    \ Z) by 
    A62,
    XBOOLE_0:def 5;
    
        then
    
        consider r1,r2 be
    XFinSequence of 
    NAT such that 
    
        
    
    A64: (F 
    . rq) 
    = (r1 
    ^ r2) and 
    
        
    
    A65: ( 
    len r1) 
    = j1 and 
    
        
    
    A66: ( 
    len r1) 
    = ( 
    len rqj) & rq 
    = (rqj 
    ^ r2) and 
    
        
    
    A67: for i be 
    Nat st i 
    < j1 holds (r1 
    . i) 
    = (1 
    - (rq 
    . i)) by 
    A27,
    A60;
    
        
    
        
    
    A68: ( 
    dom rq) 
    = (( 
    len r1) 
    + ( 
    len r2)) by 
    A66,
    AFINSQ_1:def 3;
    
        then
    
        
    
    A69: ( 
    len (r1 
    ^ r2)) 
    = ( 
    len ((p 
    | k1) 
    ^ q)) by 
    A49,
    A61,
    AFINSQ_1: 17;
    
        reconsider K = { N : (2
    * ( 
    Sum (rq 
    | N))) 
    > N } as non 
    empty  
    Subset of 
    NAT by 
    A60,
    NAT_1:def 1;
    
        (rq
    | k1) 
    = r by 
    A45,
    A55,
    AFINSQ_1: 57;
    
        then k1
    in K by 
    A58;
    
        then
    
        
    
    A70: k1 
    >= j1 by 
    A60,
    NAT_1:def 1;
    
        then (
    Segm j1) 
    c= ( 
    Segm k1) by 
    NAT_1: 39;
    
        then
    
        
    
    A71: ((p 
    | k1) 
    | j1) 
    = (p 
    | j1) by 
    RELAT_1: 74;
    
        j1
    in K by 
    A60,
    NAT_1:def 1;
    
        then
    
        
    
    A72: ex N st N 
    = j1 & (2 
    * ( 
    Sum (rq 
    | N))) 
    > N; 
    
        ((
    Sum ((p 
    | k1) 
    | j1)) 
    + ( 
    Sum (r 
    | j1))) 
    = (j1 
    * 1) by 
    A47,
    A55,
    A70;
    
        then (2
    * ( 
    Sum (r 
    | j1))) 
    = ((2 
    * j1) 
    - (2 
    * ( 
    Sum (p 
    | j1)))) by 
    A71;
    
        then (j1
    + (j1 
    - (2 
    * ( 
    Sum (p 
    | j1))))) 
    > ((2 
    * ( 
    Sum (p 
    | j1))) 
    + (j1 
    - (2 
    * ( 
    Sum (p 
    | j1))))) by 
    A45,
    A55,
    A70,
    A72,
    AFINSQ_1: 58;
    
        then j1
    > (2 
    * ( 
    Sum (p 
    | j1))) by 
    XREAL_1: 6;
    
        then j1
    in M; 
    
        then j1
    >= k1 by 
    A41,
    NAT_1:def 1;
    
        then
    
        
    
    A73: j1 
    = k1 by 
    A70,
    XXREAL_0: 1;
    
        
    
        
    
    A74: ( 
    len ((p 
    | k1) 
    ^ q)) 
    = ( 
    len rq) by 
    A49,
    AFINSQ_1:def 3;
    
        now
    
          let i be
    Nat such that 
    
          
    
    A75: i 
    < ( 
    len (r1 
    ^ r2)); 
    
          now
    
            per cases ;
    
              suppose
    
              
    
    A76: i 
    < ( 
    len r1); 
    
              then
    
              
    
    A77: i 
    in ( 
    dom r1) & (r1 
    . i) 
    = (1 
    - (rq 
    . i)) by 
    A65,
    A67,
    AFINSQ_1: 86;
    
              
    
              
    
    A78: i 
    in ( 
    len r1) by 
    A76,
    AFINSQ_1: 86;
    
              
    
              
    
    A79: ( 
    len r1) 
    = ( 
    len (p 
    | k1)) & i 
    in  
    NAT by 
    A54,
    A65,
    A73,
    ORDINAL1:def 12,
    RELAT_1: 62;
    
              then
    
              
    
    A80: (r 
    . i) 
    = (1 
    - ((p 
    | k1) 
    . i)) by 
    A48,
    A78;
    
              (((p
    | k1) 
    ^ q) 
    . i) 
    = ((p 
    | k1) 
    . i) & (rq 
    . i) 
    = (r 
    . i) by 
    A45,
    A78,
    A79,
    AFINSQ_1:def 3;
    
              hence ((r1
    ^ r2) 
    . i) 
    = (((p 
    | k1) 
    ^ q) 
    . i) by 
    A80,
    A77,
    AFINSQ_1:def 3;
    
            end;
    
              suppose
    
              
    
    A81: i 
    >= ( 
    len r1); 
    
              then
    
              
    
    A82: (((p 
    | k1) 
    ^ q) 
    . i) 
    = (q 
    . (i 
    - ( 
    len r))) by 
    A45,
    A55,
    A65,
    A73,
    A69,
    A75,
    AFINSQ_1: 19;
    
              ((r1
    ^ r2) 
    . i) 
    = (r2 
    . (i 
    - ( 
    len r1))) & (rq 
    . i) 
    = (q 
    . (i 
    - ( 
    len r))) by 
    A45,
    A55,
    A65,
    A73,
    A69,
    A74,
    A75,
    A81,
    AFINSQ_1: 19;
    
              hence ((r1
    ^ r2) 
    . i) 
    = (((p 
    | k1) 
    ^ q) 
    . i) by 
    A66,
    A69,
    A74,
    A75,
    A81,
    A82,
    AFINSQ_1: 19;
    
            end;
    
          end;
    
          hence ((r1
    ^ r2) 
    . i) 
    = (((p 
    | k1) 
    ^ q) 
    . i); 
    
        end;
    
        then
    
        
    
    A83: (r1 
    ^ r2) 
    = ((p 
    | k1) 
    ^ q) by 
    A68,
    A49,
    A61,
    AFINSQ_1: 9,
    AFINSQ_1: 17;
    
        rq
    in ( 
    dom F) by 
    A63,
    FUNCT_2:def 1;
    
        hence thesis by
    A28,
    A44,
    A64,
    A83,
    FUNCT_1: 3;
    
      end;
    
      then
    
      
    
    A84: ( 
    rng F) 
    = W; 
    
      
    
      
    
    A85: F is 
    one-to-one
    
      proof
    
        let x,y be
    object such that 
    
        
    
    A86: x 
    in ( 
    dom F) and 
    
        
    
    A87: y 
    in ( 
    dom F) and 
    
        
    
    A88: (F 
    . x) 
    = (F 
    . y); 
    
        x
    in CH by 
    A86,
    XBOOLE_0:def 5;
    
        then
    
        consider p such that
    
        
    
    A89: p 
    = x and 
    
        
    
    A90: ( 
    dom p) 
    = n and 
    
        
    
    A91: ( 
    rng p) 
    c=  
    {
    0 , 1} and 
    
        
    
    A92: ( 
    Sum p) 
    = (m 
    + 1) by 
    CARD_FIN: 40;
    
         not p
    in Z by 
    A86,
    A89,
    XBOOLE_0:def 5;
    
        then not p is
    dominated_by_0 by 
    A90,
    A92,
    Def2;
    
        then
    
        consider k1 be
    Nat such that 
    
        
    
    A93: ((2 
    * k1) 
    + 1) 
    = ( 
    min* { N : (2 
    * ( 
    Sum (p 
    | N))) 
    > N }) & ((2 
    * k1) 
    + 1) 
    <= ( 
    dom p) & k1 
    = ( 
    Sum (p 
    | (2 
    * k1))) & (p 
    . (2 
    * k1)) 
    = 1 by 
    A91,
    Th15;
    
        y
    in CH by 
    A87,
    XBOOLE_0:def 5;
    
        then
    
        consider q such that
    
        
    
    A94: q 
    = y and 
    
        
    
    A95: ( 
    dom q) 
    = n and 
    
        
    
    A96: ( 
    rng q) 
    c=  
    {
    0 , 1} and 
    
        
    
    A97: ( 
    Sum q) 
    = (m 
    + 1) by 
    CARD_FIN: 40;
    
         not q
    in Z by 
    A87,
    A94,
    XBOOLE_0:def 5;
    
        then not q is
    dominated_by_0 by 
    A95,
    A97,
    Def2;
    
        then
    
        consider k2 be
    Nat such that 
    
        
    
    A98: ((2 
    * k2) 
    + 1) 
    = ( 
    min* { N : (2 
    * ( 
    Sum (q 
    | N))) 
    > N }) & ((2 
    * k2) 
    + 1) 
    <= ( 
    dom q) & k2 
    = ( 
    Sum (q 
    | (2 
    * k2))) & (q 
    . (2 
    * k2)) 
    = 1 by 
    A96,
    Th15;
    
        
    
        
    
    A99: ( 
    len q) 
    = n by 
    A95;
    
        reconsider M = { N : (2
    * ( 
    Sum (q 
    | N))) 
    > N } as non 
    empty  
    Subset of 
    NAT by 
    A98,
    NAT_1:def 1;
    
        set qk = (q
    | ((2 
    * k2) 
    + 1)); 
    
        consider s1,s2 be
    XFinSequence of 
    NAT such that 
    
        
    
    A100: (F 
    . y) 
    = (s1 
    ^ s2) and 
    
        
    
    A101: ( 
    len s1) 
    = ((2 
    * k2) 
    + 1) and 
    
        
    
    A102: ( 
    len s1) 
    = ( 
    len qk) and 
    
        
    
    A103: q 
    = (qk 
    ^ s2) and 
    
        
    
    A104: for i be 
    Nat st i 
    < ((2 
    * k2) 
    + 1) holds (s1 
    . i) 
    = (1 
    - (q 
    . i)) by 
    A27,
    A87,
    A94,
    A98;
    
        
    
        
    
    A105: ( 
    len q) 
    = (( 
    len qk) 
    + ( 
    len s2)) by 
    A103,
    AFINSQ_1: 17;
    
        then
    
        
    
    A106: ( 
    len q) 
    = ( 
    len (s1 
    ^ s2)) by 
    A102,
    AFINSQ_1: 17;
    
        reconsider K = { N : (2
    * ( 
    Sum (p 
    | N))) 
    > N } as non 
    empty  
    Subset of 
    NAT by 
    A93,
    NAT_1:def 1;
    
        set pk = (p
    | ((2 
    * k1) 
    + 1)); 
    
        consider r1,r2 be
    XFinSequence of 
    NAT such that 
    
        
    
    A107: (F 
    . x) 
    = (r1 
    ^ r2) and 
    
        
    
    A108: ( 
    len r1) 
    = ((2 
    * k1) 
    + 1) and 
    
        
    
    A109: ( 
    len r1) 
    = ( 
    len (p 
    | ((2 
    * k1) 
    + 1))) and 
    
        
    
    A110: p 
    = ((p 
    | ((2 
    * k1) 
    + 1)) 
    ^ r2) and 
    
        
    
    A111: for i be 
    Nat st i 
    < ((2 
    * k1) 
    + 1) holds (r1 
    . i) 
    = (1 
    - (p 
    . i)) by 
    A27,
    A86,
    A89,
    A93;
    
        assume x
    <> y; 
    
        then
    
        consider i be
    Nat such that 
    
        
    
    A112: i 
    < ( 
    len p) and 
    
        
    
    A113: (p 
    . i) 
    <> (q 
    . i) by 
    A89,
    A90,
    A94,
    A95,
    AFINSQ_1: 9;
    
        
    
        
    
    A114: ( 
    len p) 
    = (( 
    len pk) 
    + ( 
    len r2)) by 
    A110,
    AFINSQ_1: 17;
    
        then
    
        
    
    A115: ( 
    len p) 
    = ( 
    len (r1 
    ^ r2)) by 
    A109,
    AFINSQ_1: 17;
    
        now
    
          per cases by
    XXREAL_0: 1;
    
            suppose
    
            
    
    A116: k1 
    = k2; 
    
            now
    
              per cases ;
    
                suppose
    
                
    
    A117: i 
    < ( 
    len pk); 
    
                then i
    in ( 
    len pk) by 
    AFINSQ_1: 86;
    
                then
    
                
    
    A118: (r1 
    . i) 
    = ((r1 
    ^ r2) 
    . i) & (s1 
    . i) 
    = ((s1 
    ^ s2) 
    . i) by 
    A108,
    A109,
    A101,
    A116,
    AFINSQ_1:def 3;
    
                (r1
    . i) 
    = (1 
    - (p 
    . i)) & (s1 
    . i) 
    = (1 
    - (q 
    . i)) by 
    A108,
    A109,
    A111,
    A104,
    A116,
    A117;
    
                hence contradiction by
    A88,
    A107,
    A100,
    A113,
    A118;
    
              end;
    
                suppose
    
                
    
    A119: i 
    >= ( 
    len pk); 
    
                then
    
                
    
    A120: ((s1 
    ^ s2) 
    . i) 
    = (s2 
    . (i 
    - ( 
    len pk))) by 
    A90,
    A108,
    A109,
    A95,
    A101,
    A106,
    A112,
    A116,
    AFINSQ_1: 19;
    
                (p
    . i) 
    = (r2 
    . (i 
    - ( 
    len pk))) & (q 
    . i) 
    = (s2 
    . (i 
    - ( 
    len pk))) by 
    A90,
    A108,
    A109,
    A110,
    A101,
    A102,
    A103,
    A99,
    A112,
    A116,
    A119,
    AFINSQ_1: 19;
    
                hence contradiction by
    A88,
    A107,
    A109,
    A100,
    A115,
    A112,
    A113,
    A119,
    A120,
    AFINSQ_1: 19;
    
              end;
    
            end;
    
            hence contradiction;
    
          end;
    
            suppose
    
            
    
    A121: k1 
    > k2; 
    
            (
    len s1) 
    <= ( 
    len p) by 
    A90,
    A95,
    A102,
    A105,
    NAT_1: 11;
    
            then
    
            
    
    A122: ( 
    Segm ( 
    len s1)) 
    c= ( 
    Segm ( 
    len p)) by 
    NAT_1: 39;
    
            (2
    * k2) 
    < (2 
    * k1) by 
    A121,
    XREAL_1: 68;
    
            then
    
            
    
    A123: ( 
    len s1) 
    < ( 
    len r1) by 
    A108,
    A101,
    XREAL_1: 6;
    
            then ((s1
    ^ s2) 
    | ( 
    len s1)) 
    = (r1 
    | ( 
    len s1)) by 
    A88,
    A107,
    A100,
    AFINSQ_1: 58;
    
            then
    
            
    
    A124: s1 
    = (r1 
    | ( 
    len s1)) by 
    AFINSQ_1: 57;
    
            
    
            
    
    A125: for k be 
    Nat st k 
    < ( 
    len qk) holds (qk 
    . k) 
    = ((p 
    | ( 
    len qk)) 
    . k) 
    
            proof
    
              let k be
    Nat such that 
    
              
    
    A126: k 
    < ( 
    len qk); 
    
              
    
              
    
    A127: k 
    in ( 
    len s1) by 
    A102,
    A126,
    AFINSQ_1: 86;
    
              then
    
              
    
    A128: k 
    in (( 
    dom q) 
    /\ ( 
    len s1)) by 
    A90,
    A95,
    A122,
    XBOOLE_0:def 4;
    
              k
    in (( 
    dom p) 
    /\ ( 
    len s1)) by 
    A122,
    A127,
    XBOOLE_0:def 4;
    
              then
    
              
    
    A129: (p 
    . k) 
    = ((p 
    | ( 
    len qk)) 
    . k) by 
    A102,
    FUNCT_1: 48;
    
              
    
              
    
    A130: k 
    < ( 
    len r1) by 
    A102,
    A123,
    A126,
    XXREAL_0: 2;
    
              then
    
              
    
    A131: (r1 
    . k) 
    = (1 
    - (p 
    . k)) by 
    A108,
    A111;
    
              k
    in ( 
    dom r1) by 
    A130,
    AFINSQ_1: 86;
    
              then k
    in (( 
    dom r1) 
    /\ ( 
    len s1)) by 
    A127,
    XBOOLE_0:def 4;
    
              then
    
              
    
    A132: (r1 
    . k) 
    = ((r1 
    | ( 
    len s1)) 
    . k) by 
    FUNCT_1: 48;
    
              (s1
    . k) 
    = (1 
    - (q 
    . k)) by 
    A101,
    A102,
    A104,
    A126;
    
              hence thesis by
    A101,
    A124,
    A131,
    A132,
    A128,
    A129,
    FUNCT_1: 48;
    
            end;
    
            ((2
    * k2) 
    + 1) 
    in M by 
    A98,
    NAT_1:def 1;
    
            then
    
            
    
    A133: ex N st ((2 
    * k2) 
    + 1) 
    = N & (2 
    * ( 
    Sum (q 
    | N))) 
    > N; 
    
            (
    len qk) 
    = ( 
    len (p 
    | ( 
    len qk))) by 
    A102,
    A122,
    RELAT_1: 62;
    
            then qk
    = (p 
    | ( 
    len qk)) by 
    A125,
    AFINSQ_1: 9;
    
            then (
    len qk) 
    in K by 
    A101,
    A102,
    A133;
    
            hence contradiction by
    A93,
    A108,
    A102,
    A123,
    NAT_1:def 1;
    
          end;
    
            suppose
    
            
    
    A134: k1 
    < k2; 
    
            (
    len r1) 
    <= ( 
    len q) by 
    A90,
    A109,
    A95,
    A114,
    NAT_1: 11;
    
            then
    
            
    
    A135: ( 
    Segm ( 
    len r1)) 
    c= ( 
    Segm ( 
    len q)) by 
    NAT_1: 39;
    
            (2
    * k1) 
    < (2 
    * k2) by 
    A134,
    XREAL_1: 68;
    
            then
    
            
    
    A136: ( 
    len r1) 
    < ( 
    len s1) by 
    A108,
    A101,
    XREAL_1: 6;
    
            then ((r1
    ^ r2) 
    | ( 
    len r1)) 
    = (s1 
    | ( 
    len r1)) by 
    A88,
    A107,
    A100,
    AFINSQ_1: 58;
    
            then
    
            
    
    A137: r1 
    = (s1 
    | ( 
    len r1)) by 
    AFINSQ_1: 57;
    
            
    
            
    
    A138: for k be 
    Nat st k 
    < ( 
    len pk) holds (pk 
    . k) 
    = ((q 
    | ( 
    len pk)) 
    . k) 
    
            proof
    
              let k be
    Nat such that 
    
              
    
    A139: k 
    < ( 
    len pk); 
    
              
    
              
    
    A140: k 
    in ( 
    len r1) by 
    A109,
    A139,
    AFINSQ_1: 86;
    
              then
    
              
    
    A141: k 
    in (( 
    dom p) 
    /\ ( 
    len r1)) by 
    A90,
    A95,
    A135,
    XBOOLE_0:def 4;
    
              k
    in (( 
    dom q) 
    /\ ( 
    len r1)) by 
    A135,
    A140,
    XBOOLE_0:def 4;
    
              then
    
              
    
    A142: (q 
    . k) 
    = ((q 
    | ( 
    len pk)) 
    . k) by 
    A109,
    FUNCT_1: 48;
    
              
    
              
    
    A143: k 
    < ( 
    len s1) by 
    A109,
    A136,
    A139,
    XXREAL_0: 2;
    
              then
    
              
    
    A144: (s1 
    . k) 
    = (1 
    - (q 
    . k)) by 
    A101,
    A104;
    
              k
    in ( 
    dom s1) by 
    A143,
    AFINSQ_1: 86;
    
              then k
    in (( 
    dom s1) 
    /\ ( 
    len r1)) by 
    A140,
    XBOOLE_0:def 4;
    
              then
    
              
    
    A145: (s1 
    . k) 
    = ((s1 
    | ( 
    len r1)) 
    . k) by 
    FUNCT_1: 48;
    
              (r1
    . k) 
    = (1 
    - (p 
    . k)) by 
    A108,
    A109,
    A111,
    A139;
    
              hence thesis by
    A108,
    A137,
    A144,
    A145,
    A141,
    A142,
    FUNCT_1: 48;
    
            end;
    
            ((2
    * k1) 
    + 1) 
    in K by 
    A93,
    NAT_1:def 1;
    
            then
    
            
    
    A146: ex N st ((2 
    * k1) 
    + 1) 
    = N & (2 
    * ( 
    Sum (p 
    | N))) 
    > N; 
    
            (
    len pk) 
    = ( 
    len (q 
    | ( 
    len pk))) by 
    A109,
    A135,
    RELAT_1: 62;
    
            then pk
    = (q 
    | ( 
    len pk)) by 
    A138,
    AFINSQ_1: 9;
    
            then (
    len pk) 
    in M by 
    A108,
    A109,
    A146;
    
            hence contradiction by
    A109,
    A98,
    A101,
    A136,
    NAT_1:def 1;
    
          end;
    
        end;
    
        hence contradiction;
    
      end;
    
      (
    dom F) 
    = (CH 
    \ Z) by 
    FUNCT_2:def 1;
    
      then ((CH
    \ Z),W) 
    are_equipotent by 
    A85,
    A84,
    WELLORD2:def 4;
    
      hence thesis by
    CARD_1: 5;
    
    end;
    
    theorem :: 
    
    CATALAN2:28
    
    
    
    
    
    Th28: (2 
    * (m 
    + 1)) 
    <= n implies ( 
    card ( 
    Domin_0 (n,(m 
    + 1)))) 
    = ((n 
    choose (m 
    + 1)) 
    - (n 
    choose m)) 
    
    proof
    
      set CH = (
    Choose (n,(m 
    + 1),1, 
    0 )); 
    
      set Z = (
    Domin_0 (n,(m 
    + 1))); 
    
      set W = (
    Choose (n,m,1, 
    0 )); 
    
      
    
      
    
    A1: ( 
    card CH) 
    = (( 
    card n) 
    choose (m 
    + 1)) & ( 
    card n) 
    = n by 
    CARD_FIN: 16;
    
      (
    card (CH 
    \ Z)) 
    = (( 
    card CH) 
    - ( 
    card Z)) by 
    Th21,
    CARD_2: 44;
    
      then
    
      
    
    A2: ( 
    card Z) 
    = (( 
    card CH) 
    - ( 
    card (CH 
    \ Z))); 
    
      assume (2
    * (m 
    + 1)) 
    <= n; 
    
      then (
    card Z) 
    = (( 
    card CH) 
    - ( 
    card W)) by 
    A2,
    Th27;
    
      hence thesis by
    A1,
    CARD_FIN: 16;
    
    end;
    
    theorem :: 
    
    CATALAN2:29
    
    
    
    
    
    Th29: (2 
    * m) 
    <= n implies ( 
    card ( 
    Domin_0 (n,m))) 
    = ((((n 
    + 1) 
    - (2 
    * m)) 
    / ((n 
    + 1) 
    - m)) 
    * (n 
    choose m)) 
    
    proof
    
      assume
    
      
    
    A1: (2 
    * m) 
    <= n; 
    
      now
    
        per cases ;
    
          suppose
    
          
    
    A2: m 
    =  
    0 ; 
    
          then (n
    choose m) 
    = 1 by 
    NEWTON: 19;
    
          then ((((n
    + 1) 
    - (2 
    * m)) 
    / ((n 
    + 1) 
    - m)) 
    * (n 
    choose m)) 
    = 1 by 
    A2,
    XCMPLX_1: 60;
    
          hence thesis by
    A2,
    Th24;
    
        end;
    
          suppose
    
          
    
    A3: m 
    >  
    0 ; 
    
          
    
          
    
    A4: m 
    <= (m 
    + m) by 
    NAT_1: 11;
    
          then
    
          reconsider nm = (n
    - m) as 
    Nat by 
    A1,
    NAT_1: 21,
    XXREAL_0: 2;
    
          reconsider m1 = (m
    - 1) as 
    Nat by 
    A3,
    NAT_1: 20;
    
          set n9 = (n
    ! ); 
    
          set m9 = (m
    ! ); 
    
          set nm19 = ((nm
    + 1) 
    ! ); 
    
          set nm9 = (nm
    ! ); 
    
          m
    <= n by 
    A1,
    A4,
    XXREAL_0: 2;
    
          then
    
          
    
    A5: (n 
    choose m) 
    = (n9 
    / (m9 
    * nm9)) by 
    NEWTON:def 3;
    
          
    
          
    
    A6: (2 
    * (m1 
    + 1)) 
    <= n by 
    A1;
    
          set m19 = (m1
    ! ); 
    
          
    
          
    
    A7: (1 
    / (m19 
    * nm19)) 
    = (((m1 
    + 1) 
    * 1) 
    / ((m19 
    * nm19) 
    * (m1 
    + 1))) by 
    XCMPLX_1: 91
    
          .= (m
    / (nm19 
    * (m19 
    * (m1 
    + 1)))) 
    
          .= (m
    / (nm19 
    * ((m1 
    + 1) 
    ! ))) by 
    NEWTON: 15
    
          .= (
    - (( 
    - m) 
    / (nm19 
    * m9))) by 
    XCMPLX_1: 190;
    
          (1
    / (m9 
    * nm9)) 
    = (((nm 
    + 1) 
    * 1) 
    / ((m9 
    * nm9) 
    * (nm 
    + 1))) by 
    XCMPLX_1: 91
    
          .= ((nm
    + 1) 
    / (m9 
    * (nm9 
    * (nm 
    + 1)))) 
    
          .= ((nm
    + 1) 
    / (m9 
    * nm19)) by 
    NEWTON: 15;
    
          
    
          then
    
          
    
    A8: ((1 
    / (m9 
    * nm9)) 
    - (1 
    / (m19 
    * nm19))) 
    = (((nm 
    + 1) 
    / (m9 
    * nm19)) 
    + (( 
    - m) 
    / (m9 
    * nm19))) by 
    A7
    
          .= (((nm
    + 1) 
    + ( 
    - m)) 
    / (m9 
    * nm19)) by 
    XCMPLX_1: 62
    
          .= (((n
    + 1) 
    - (2 
    * m)) 
    / (m9 
    * (nm9 
    * (nm 
    + 1)))) by 
    NEWTON: 15
    
          .= ((1
    * ((n 
    + 1) 
    - (2 
    * m))) 
    / ((m9 
    * nm9) 
    * (nm 
    + 1))) 
    
          .= ((1
    / (m9 
    * nm9)) 
    * (((n 
    + 1) 
    - (2 
    * m)) 
    / (nm 
    + 1))) by 
    XCMPLX_1: 76;
    
          m1
    <= (m1 
    + ((1 
    + m1) 
    + 1)) by 
    NAT_1: 11;
    
          then
    
          
    
    A9: m1 
    <= n by 
    A1,
    XXREAL_0: 2;
    
          (n
    - m1) 
    = (nm 
    + 1); 
    
          then
    
          
    
    A10: (n 
    choose m1) 
    = (n9 
    / (m19 
    * nm19)) by 
    A9,
    NEWTON:def 3;
    
          ((n9
    / (m9 
    * nm9)) 
    - (n9 
    / (m19 
    * nm19))) 
    = ((n9 
    * (1 
    / (m9 
    * nm9))) 
    - (n9 
    / (m19 
    * nm19))) by 
    XCMPLX_1: 99
    
          .= ((n9
    * (1 
    / (m9 
    * nm9))) 
    - (n9 
    * (1 
    / (m19 
    * nm19)))) by 
    XCMPLX_1: 99
    
          .= (n9
    * ((1 
    / (m9 
    * nm9)) 
    - (1 
    / (m19 
    * nm19)))) 
    
          .= (n9
    * ((1 
    / (m9 
    * nm9)) 
    * (((n 
    + 1) 
    - (2 
    * m)) 
    / (nm 
    + 1)))) by 
    A8
    
          .= ((n9
    * (1 
    / (m9 
    * nm9))) 
    * (((n 
    + 1) 
    - (2 
    * m)) 
    / (nm 
    + 1))) 
    
          .= (((n9
    * 1) 
    / (m9 
    * nm9)) 
    * (((n 
    + 1) 
    - (2 
    * m)) 
    / (nm 
    + 1))) by 
    XCMPLX_1: 74;
    
          hence thesis by
    A5,
    A10,
    A6,
    Th28;
    
        end;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    CATALAN2:30
    
    
    
    
    
    Th30: ( 
    card ( 
    Domin_0 ((2 
    + k),1))) 
    = (k 
    + 1) 
    
    proof
    
      (
    card ( 
    Domin_0 ((2 
    + k),1))) 
    = (((((2 
    + k) 
    + 1) 
    - (2 
    * 1)) 
    / (((2 
    + k) 
    + 1) 
    - 1)) 
    * ((2 
    + k) 
    choose 1)) by 
    Th29,
    NAT_1: 11
    
      .= (((k
    + 1) 
    / (2 
    + k)) 
    * (2 
    + k)) by 
    STIRL2_1: 51
    
      .= (k
    + 1) by 
    XCMPLX_1: 87;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    CATALAN2:31
    
    (
    card ( 
    Domin_0 ((4 
    + k),2))) 
    = (((k 
    + 1) 
    * (k 
    + 4)) 
    / 2) 
    
    proof
    
      (
    card ( 
    Domin_0 ((4 
    + k),2))) 
    = (((((4 
    + k) 
    + 1) 
    - (2 
    * 2)) 
    / (((4 
    + k) 
    + 1) 
    - 2)) 
    * ((4 
    + k) 
    choose 2)) by 
    Th29,
    NAT_1: 11
    
      .= (((k
    + 1) 
    / (k 
    + 3)) 
    * (((4 
    + k) 
    * ((4 
    + k) 
    - 1)) 
    / 2)) by 
    STIRL2_1: 51
    
      .= (((((k
    + 1) 
    / (k 
    + 3)) 
    * (3 
    + k)) 
    * (4 
    + k)) 
    / 2) 
    
      .= (((k
    + 1) 
    * (4 
    + k)) 
    / 2) by 
    XCMPLX_1: 87;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    CATALAN2:32
    
    (
    card ( 
    Domin_0 ((6 
    + k),3))) 
    = ((((k 
    + 1) 
    * (k 
    + 5)) 
    * (k 
    + 6)) 
    / 6) 
    
    proof
    
      (
    card ( 
    Domin_0 ((6 
    + k),3))) 
    = (((((6 
    + k) 
    + 1) 
    - (2 
    * 3)) 
    / (((6 
    + k) 
    + 1) 
    - 3)) 
    * ((6 
    + k) 
    choose 3)) by 
    Th29,
    NAT_1: 11
    
      .= (((k
    + 1) 
    / (k 
    + 4)) 
    * ((((6 
    + k) 
    * ((6 
    + k) 
    - 1)) 
    * ((6 
    + k) 
    - 2)) 
    / 6)) by 
    STIRL2_1: 51
    
      .= ((((((k
    + 1) 
    / (k 
    + 4)) 
    * (4 
    + k)) 
    * (5 
    + k)) 
    * (6 
    + k)) 
    / 6) 
    
      .= ((((k
    + 1) 
    * (5 
    + k)) 
    * (6 
    + k)) 
    / 6) by 
    XCMPLX_1: 87;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    CATALAN2:33
    
    
    
    
    
    Th33: ( 
    card ( 
    Domin_0 ((2 
    * n),n))) 
    = (((2 
    * n) 
    choose n) 
    / (n 
    + 1)) 
    
    proof
    
      (
    card ( 
    Domin_0 ((2 
    * n),n))) 
    = (((((2 
    * n) 
    + 1) 
    - (2 
    * n)) 
    / (((2 
    * n) 
    + 1) 
    - n)) 
    * ((2 
    * n) 
    choose n)) by 
    Th29
    
      .= ((1
    * ((2 
    * n) 
    choose n)) 
    / (n 
    + 1)) by 
    XCMPLX_1: 74;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    CATALAN2:34
    
    
    
    
    
    Th34: ( 
    card ( 
    Domin_0 ((2 
    * n),n))) 
    = ( 
    Catalan (n 
    + 1)) 
    
    proof
    
      
    
      
    
    A1: ( 
    Catalan (n 
    + 1)) 
    = ((((2 
    * (n 
    + 1)) 
    -' 2) 
    choose ((n 
    + 1) 
    -' 1)) 
    / (n 
    + 1)) by 
    CATALAN1:def 1;
    
      (((2
    * n) 
    + 2) 
    -' 2) 
    = (((2 
    * n) 
    + 2) 
    - 2) & ((n 
    + 1) 
    -' 1) 
    = ((n 
    + 1) 
    - 1) by 
    XREAL_0:def 2;
    
      hence thesis by
    A1,
    Th33;
    
    end;
    
    definition
    
      let D;
    
      :: 
    
    CATALAN2:def3
    
      mode
    
    OMEGA of D -> 
    functional non 
    empty  
    set means 
    
      :
    
    Def3: for x st x 
    in it holds x is 
    XFinSequence of D; 
    
      existence
    
      proof
    
        reconsider D9OMEGA = (D
    ^omega ) as 
    functional non 
    empty  
    set;
    
        take D9OMEGA;
    
        thus thesis by
    AFINSQ_1:def 7;
    
      end;
    
    end
    
    definition
    
      let D;
    
      :: original:
    ^omega
    
      redefine
    
      func D
    
    ^omega -> 
    OMEGA of D ; 
    
      coherence
    
      proof
    
        (D
    ^omega ) is 
    functional & for x st x 
    in (D 
    ^omega ) holds x is 
    XFinSequence of D by 
    AFINSQ_1:def 7;
    
        hence thesis by
    Def3;
    
      end;
    
    end
    
    registration
    
      let D;
    
      let F be
    OMEGA of D; 
    
      cluster -> 
    finiteD
    -valued
    Sequence-like for 
    Element of F; 
    
      coherence by
    Def3;
    
    end
    
    reserve pN,qN for
    Element of ( 
    NAT  
    ^omega ); 
    
    theorem :: 
    
    CATALAN2:35
    
    (
    card { pN : ( 
    dom pN) 
    = (2 
    * n) & pN is 
    dominated_by_0 })
    = ((2 
    * n) 
    choose n) 
    
    proof
    
      set D = (
    bool ( 
    {
    0 , 1} 
    ^omega )); 
    
      set 2n = (2
    * n); 
    
      defpred
    
    P[
    set, 
    set] means for i st i
    = $1 holds $2 
    = ( 
    Domin_0 (2n,i)); 
    
      set Z = { pN : (
    dom pN) 
    = (2 
    * n) & pN is 
    dominated_by_0 };
    
      
    
      
    
    A1: for k st k 
    in ( 
    Segm (n 
    + 1)) holds ex x be 
    Element of D st 
    P[k, x]
    
      proof
    
        let k such that k
    in ( 
    Segm (n 
    + 1)); 
    
        reconsider Z = (
    Domin_0 (2n,k)) as 
    Element of D; 
    
        take Z;
    
        thus thesis;
    
      end;
    
      consider r be
    XFinSequence of D such that 
    
      
    
    A2: ( 
    dom r) 
    = ( 
    Segm (n 
    + 1)) & for k st k 
    in ( 
    Segm (n 
    + 1)) holds 
    P[k, (r
    . k)] from 
    STIRL2_1:sch 5(
    A1);
    
      
    
      
    
    A3: Z 
    c= ( 
    union ( 
    rng r)) 
    
      proof
    
        let x be
    object;
    
        assume x
    in Z; 
    
        then
    
        consider pN such that
    
        
    
    A4: x 
    = pN and 
    
        
    
    A5: ( 
    dom pN) 
    = 2n & pN is 
    dominated_by_0;
    
        pN
    in ( 
    Domin_0 ((2 
    * n),( 
    Sum pN))) by 
    A5,
    Th20;
    
        then (2
    * ( 
    Sum pN)) 
    <= 2n by 
    Th22;
    
        then ((1
    / 2) 
    * (2 
    * ( 
    Sum pN))) 
    <= ((1 
    / 2) 
    * (2 
    * n)) by 
    XREAL_1: 64;
    
        then (
    Sum pN) 
    < (n 
    + 1) by 
    NAT_1: 13;
    
        then
    
        
    
    A6: ( 
    Sum pN) 
    in ( 
    Segm (n 
    + 1)) by 
    NAT_1: 44;
    
        then (r
    . ( 
    Sum pN)) 
    = ( 
    Domin_0 (2n,( 
    Sum pN))) by 
    A2;
    
        then
    
        
    
    A7: pN 
    in (r 
    . ( 
    Sum pN)) by 
    A5,
    Th20;
    
        (r
    . ( 
    Sum pN)) 
    in ( 
    rng r) by 
    A2,
    A6,
    FUNCT_1: 3;
    
        hence thesis by
    A4,
    A7,
    TARSKI:def 4;
    
      end;
    
      
    
      
    
    A8: ( 
    union ( 
    rng r)) 
    c= Z 
    
      proof
    
        let x be
    object;
    
        assume x
    in ( 
    union ( 
    rng r)); 
    
        then
    
        consider y such that
    
        
    
    A9: x 
    in y and 
    
        
    
    A10: y 
    in ( 
    rng r) by 
    TARSKI:def 4;
    
        consider i be
    object such that 
    
        
    
    A11: i 
    in ( 
    dom r) and 
    
        
    
    A12: y 
    = (r 
    . i) by 
    A10,
    FUNCT_1:def 3;
    
        reconsider i as
    Nat by 
    A11;
    
        y
    = ( 
    Domin_0 (2n,i)) by 
    A2,
    A11,
    A12;
    
        then
    
        consider p such that
    
        
    
    A13: p 
    = x & p is 
    dominated_by_0 & ( 
    dom p) 
    = 2n and ( 
    Sum p) 
    = i by 
    A9,
    Def2;
    
        p
    in ( 
    NAT  
    ^omega ) by 
    AFINSQ_1:def 7;
    
        hence thesis by
    A13;
    
      end;
    
      
    
      
    
    A14: for i,j be 
    Nat st i 
    in ( 
    dom r) & j 
    in ( 
    dom r) & i 
    <> j holds (r 
    . i) 
    misses (r 
    . j) 
    
      proof
    
        let i,j be
    Nat such that 
    
        
    
    A15: i 
    in ( 
    dom r) and 
    
        
    
    A16: j 
    in ( 
    dom r) and 
    
        
    
    A17: i 
    <> j; 
    
        assume (r
    . i) 
    meets (r 
    . j); 
    
        then ((r
    . i) 
    /\ (r 
    . j)) 
    <>  
    {} ; 
    
        then
    
        consider x be
    object such that 
    
        
    
    A18: x 
    in ((r 
    . i) 
    /\ (r 
    . j)) by 
    XBOOLE_0:def 1;
    
        
    
        
    
    A19: x 
    in (r 
    . j) by 
    A18,
    XBOOLE_0:def 4;
    
        (r
    . j) 
    = ( 
    Domin_0 (2n,j)) by 
    A2,
    A16;
    
        then
    
        
    
    A20: ex q st q 
    = x & q is 
    dominated_by_0 & ( 
    dom q) 
    = (2 
    * n) & ( 
    Sum q) 
    = j by 
    A19,
    Def2;
    
        
    
        
    
    A21: x 
    in (r 
    . i) by 
    A18,
    XBOOLE_0:def 4;
    
        (r
    . i) 
    = ( 
    Domin_0 (2n,i)) by 
    A2,
    A15;
    
        then ex p st p
    = x & p is 
    dominated_by_0 & ( 
    dom p) 
    = 2n & ( 
    Sum p) 
    = i by 
    A21,
    Def2;
    
        hence thesis by
    A17,
    A20;
    
      end;
    
      
    
      
    
    A22: for i st i 
    in ( 
    dom r) holds (r 
    . i) is 
    finite
    
      proof
    
        let i;
    
        assume i
    in ( 
    dom r); 
    
        then (r
    . i) 
    = ( 
    Domin_0 (2n,i)) by 
    A2;
    
        hence thesis;
    
      end;
    
      consider Cardr be
    XFinSequence of 
    NAT such that 
    
      
    
    A23: ( 
    dom Cardr) 
    = ( 
    dom r) and 
    
      
    
    A24: for i st i 
    in ( 
    dom Cardr) holds (Cardr 
    . i) 
    = ( 
    card (r 
    . i)) and 
    
      
    
    A25: ( 
    card ( 
    union ( 
    rng r))) 
    = ( 
    Sum Cardr) by 
    A22,
    A14,
    STIRL2_1: 66;
    
      
    
      
    
    A26: n 
    < ( 
    dom Cardr) & (Cardr 
    | (n 
    + 1)) 
    = Cardr by 
    A2,
    A23,
    NAT_1: 13;
    
      defpred
    
    Q[
    Nat] means $1
    < ( 
    len Cardr) implies ( 
    Sum (Cardr 
    | ($1 
    + 1))) 
    = (2n 
    choose $1); 
    
      
    
      
    
    A27: 
    Q[
    0 ] 
    
      proof
    
        
    0  
    in ( 
    Segm (n 
    + 1)) by 
    NAT_1: 44;
    
        then (r
    .  
    0 ) 
    = ( 
    Domin_0 (2n, 
    0 )) by 
    A2;
    
        then
    
        
    
    A28: ( 
    card (r 
    .  
    0 )) 
    = 1 by 
    Th24;
    
        
    
        
    
    A29: 
    0  
    in ( 
    Segm 1) by 
    NAT_1: 44;
    
        assume
    
        
    
    A30: 
    0  
    < ( 
    len Cardr); 
    
        then 1
    <= ( 
    len Cardr) by 
    NAT_1: 14;
    
        then
    
        
    
    A31: ( 
    Segm 1) 
    c= ( 
    Segm ( 
    len Cardr)) by 
    NAT_1: 39;
    
        then
    
        
    
    A32: ( 
    len (Cardr 
    | 1)) 
    = 1 by 
    RELAT_1: 62;
    
        (
    dom (Cardr 
    | 1)) 
    = 1 by 
    A31,
    RELAT_1: 62;
    
        then ((Cardr
    | 1) 
    .  
    0 ) 
    = (Cardr 
    .  
    0 ) by 
    A29,
    FUNCT_1: 47;
    
        then
    
        
    
    A33: (Cardr 
    | 1) 
    =  
    <%(Cardr
    .  
    0 )%> by 
    A32,
    AFINSQ_1: 34;
    
        
    0  
    in ( 
    len Cardr) by 
    A30,
    AFINSQ_1: 86;
    
        then (Cardr
    .  
    0 ) 
    = ( 
    card (r 
    .  
    0 )) by 
    A24;
    
        then (
    Sum (Cardr 
    | 1)) 
    = 1 by 
    A33,
    A28,
    AFINSQ_2: 53;
    
        hence thesis by
    NEWTON: 19;
    
      end;
    
      
    
      
    
    A34: for i st 
    Q[i] holds
    Q[(i
    + 1)] 
    
      proof
    
        let i such that
    
        
    
    A35: 
    Q[i];
    
        set i1 = (i
    + 1); 
    
        assume
    
        
    
    A36: (i 
    + 1) 
    < ( 
    len Cardr); 
    
        then
    
        
    
    A37: i1 
    in ( 
    dom Cardr) by 
    AFINSQ_1: 86;
    
        then
    
        
    
    A38: (( 
    Sum (Cardr 
    | i1)) 
    + (Cardr 
    . i1)) 
    = ( 
    Sum (Cardr 
    | (i1 
    + 1))) & (Cardr 
    . i1) 
    = ( 
    card (r 
    . i1)) by 
    A24,
    AFINSQ_2: 65;
    
        i1
    <= n by 
    A2,
    A23,
    A36,
    NAT_1: 13;
    
        then
    
        
    
    A39: (2 
    * i1) 
    <= 2n by 
    XREAL_1: 64;
    
        (r
    . i1) 
    = ( 
    Domin_0 (2n,i1)) by 
    A2,
    A23,
    A37;
    
        then (
    Sum (Cardr 
    | (i1 
    + 1))) 
    = ((2n 
    choose i) 
    + ((2n 
    choose i1) 
    - (2n 
    choose i))) by 
    A35,
    A36,
    A38,
    A39,
    Th28,
    NAT_1: 13;
    
        hence thesis;
    
      end;
    
      for i holds
    Q[i] from
    NAT_1:sch 2(
    A27,
    A34);
    
      then (
    Sum Cardr) 
    = (2n 
    choose n) by 
    A26;
    
      hence thesis by
    A25,
    A3,
    A8,
    XBOOLE_0:def 10;
    
    end;
    
    theorem :: 
    
    CATALAN2:36
    
    
    
    
    
    Th36: for n, m, k, j, l st j 
    = (n 
    - (2 
    * (k 
    + 1))) & l 
    = (m 
    - (k 
    + 1)) holds ( 
    card { pN : pN 
    in ( 
    Domin_0 (n,m)) & (2 
    * (k 
    + 1)) 
    = ( 
    min* { N : (2 
    * ( 
    Sum (pN 
    | N))) 
    = N & N 
    >  
    0 }) }) 
    = (( 
    card ( 
    Domin_0 ((2 
    * k),k))) 
    * ( 
    card ( 
    Domin_0 (j,l)))) 
    
    proof
    
      set q1 = (1
    --> 1); 
    
      set q0 = (1
    -->  
    0 ); 
    
      let n, m, k, j, l such that
    
      
    
    A1: j 
    = (n 
    - (2 
    * (k 
    + 1))) & l 
    = (m 
    - (k 
    + 1)); 
    
      defpred
    
    P[
    object, 
    object] means ex r1,r2 be
    XFinSequence of 
    NAT st $1 
    = (((q0 
    ^ r1) 
    ^ q1) 
    ^ r2) & ( 
    len ((q0 
    ^ r1) 
    ^ q1)) 
    = (2 
    * (k 
    + 1)) & $2 
    =  
    [r1, r2];
    
      set Z2 = (
    Domin_0 (j,l)); 
    
      set Z1 = (
    Domin_0 ((2 
    * k),k)); 
    
      set F = { pN : pN
    in ( 
    Domin_0 (n,m)) & (2 
    * (k 
    + 1)) 
    = ( 
    min* { N : (2 
    * ( 
    Sum (pN 
    | N))) 
    = N & N 
    >  
    0 }) }; 
    
      set 2k1 = (2
    * (k 
    + 1)); 
    
      
    
      
    
    A2: for x be 
    object st x 
    in F holds ex y be 
    object st y 
    in  
    [:Z1, Z2:] &
    P[x, y]
    
      proof
    
        
    
        
    
    A3: ( 
    dom q0) 
    = 1 & ( 
    Sum q0) 
    = ( 
    0  
    * 1) by 
    AFINSQ_2: 58;
    
        let x be
    object;
    
        assume x
    in F; 
    
        then
    
        consider pN such that
    
        
    
    A4: pN 
    = x & pN 
    in ( 
    Domin_0 (n,m)) & 2k1 
    = ( 
    min* { N : (2 
    * ( 
    Sum (pN 
    | N))) 
    = N & N 
    >  
    0 }); 
    
        2k1
    > (2 
    *  
    0 ) by 
    XREAL_1: 68;
    
        then
    
        reconsider M = { N : (2
    * ( 
    Sum (pN 
    | N))) 
    = N & N 
    >  
    0 } as non 
    empty  
    Subset of 
    NAT by 
    A4,
    NAT_1:def 1;
    
        consider r2 be
    XFinSequence of 
    NAT such that 
    
        
    
    A5: pN 
    = ((pN 
    | 2k1) 
    ^ r2) by 
    Th1;
    
        2k1
    > (2 
    *  
    0 ) & pN is 
    dominated_by_0 by 
    A4,
    Th20,
    XREAL_1: 68;
    
        then
    
        consider r1 be
    XFinSequence of 
    NAT such that 
    
        
    
    A6: (pN 
    | 2k1) 
    = ((q0 
    ^ r1) 
    ^ q1) and 
    
        
    
    A7: r1 is 
    dominated_by_0 by 
    A4,
    Th14;
    
        
    
        
    
    A8: ( 
    Sum q1) 
    = (1 
    * 1) by 
    AFINSQ_2: 58;
    
        2k1
    in M by 
    A4,
    NAT_1:def 1;
    
        then
    
        
    
    A9: ex o be 
    Nat st o 
    = 2k1 & (2 
    * ( 
    Sum (pN 
    | o))) 
    = o & o 
    >  
    0 ; 
    
        then (k
    + 1) 
    = (( 
    Sum (q0 
    ^ r1)) 
    + ( 
    Sum q1)) by 
    A6,
    AFINSQ_2: 55;
    
        then
    
        
    
    A10: k 
    = (( 
    Sum q0) 
    + ( 
    Sum r1)) by 
    A8,
    AFINSQ_2: 55;
    
        pN is
    dominated_by_0 by 
    A4,
    Th20;
    
        then
    
        
    
    A11: r2 is 
    dominated_by_0 by 
    A5,
    A9,
    Th12;
    
        pN is
    dominated_by_0 by 
    A4,
    Th20;
    
        then
    
        
    
    A12: ( 
    len (pN 
    | 2k1)) 
    = 2k1 by 
    A9,
    Th11;
    
        (
    Sum pN) 
    = m by 
    A4,
    Th20;
    
        then
    
        
    
    A13: m 
    = ((k 
    + 1) 
    + ( 
    Sum r2)) by 
    A5,
    A9,
    AFINSQ_2: 55;
    
        take
    [r1, r2];
    
        (
    dom pN) 
    = n by 
    A4,
    Th20;
    
        then n
    = (2k1 
    + ( 
    len r2)) by 
    A5,
    A12,
    AFINSQ_1:def 3;
    
        then
    
        
    
    A15: r2 
    in Z2 by 
    A1,
    A13,
    A11,
    Th20;
    
        2k1
    = (( 
    len (q0 
    ^ r1)) 
    + ( 
    len q1)) by 
    A6,
    A12,
    AFINSQ_1: 17;
    
        then ((2
    * k) 
    + 1) 
    = (( 
    len q0) 
    + ( 
    len r1)) by 
    AFINSQ_1: 17;
    
        then r1
    in Z1 by 
    A7,
    A10,
    A3,
    Th20;
    
        hence thesis by
    A4,
    A5,
    A6,
    A12,
    A15,
    ZFMISC_1:def 2;
    
      end;
    
      consider f be
    Function of F, 
    [:Z1, Z2:] such that
    
      
    
    A16: for x be 
    object st x 
    in F holds 
    P[x, (f
    . x)] from 
    FUNCT_2:sch 1(
    A2);
    
      
    
      
    
    A17: 
    [:Z1, Z2:]
    =  
    {} implies F 
    =  
    {}  
    
      proof
    
        assume
    [:Z1, Z2:]
    =  
    {} ; 
    
        then Z1
    =  
    {} or Z2 
    =  
    {} ; 
    
        then (2
    * l) 
    > j by 
    Th22;
    
        then ((2
    * m) 
    - (2 
    * (k 
    + 1))) 
    > (n 
    - (2 
    * (k 
    + 1))) by 
    A1;
    
        then
    
        
    
    A18: (2 
    * m) 
    > n by 
    XREAL_1: 9;
    
        assume F
    <>  
    {} ; 
    
        then
    
        consider x be
    object such that 
    
        
    
    A19: x 
    in F by 
    XBOOLE_0:def 1;
    
        ex pN st pN
    = x & pN 
    in ( 
    Domin_0 (n,m)) & 2k1 
    = ( 
    min* { N : (2 
    * ( 
    Sum (pN 
    | N))) 
    = N & N 
    >  
    0 }) by 
    A19;
    
        hence thesis by
    A18,
    Th22;
    
      end;
    
      then
    
      
    
    A20: ( 
    dom f) 
    = F by 
    FUNCT_2:def 1;
    
      
    
      
    
    A21: ( 
    rng f) 
    =  
    [:Z1, Z2:]
    
      proof
    
        
    
        
    
    A22: ( 
    Sum q0) 
    = (1 
    *  
    0 ) & ( 
    Sum q1) 
    = (1 
    * 1) by 
    AFINSQ_2: 58;
    
        thus (
    rng f) 
    c=  
    [:Z1, Z2:];
    
        let x be
    object;
    
        assume x
    in  
    [:Z1, Z2:];
    
        then
    
        consider x1,x2 be
    object such that 
    
        
    
    A24: x1 
    in Z1 and 
    
        
    
    A25: x2 
    in Z2 and 
    
        
    
    A26: x 
    =  
    [x1, x2] by
    ZFMISC_1:def 2;
    
        consider p such that
    
        
    
    A27: p 
    = x1 and 
    
        
    
    A28: p is 
    dominated_by_0 and 
    
        
    
    A29: ( 
    dom p) 
    = (2 
    * k) and 
    
        
    
    A30: ( 
    Sum p) 
    = k by 
    A24,
    Def2;
    
        consider q such that
    
        
    
    A31: q 
    = x2 and 
    
        
    
    A32: q is 
    dominated_by_0 and 
    
        
    
    A33: ( 
    dom q) 
    = j and 
    
        
    
    A34: ( 
    Sum q) 
    = l by 
    A25,
    Def2;
    
        set 0p1 = ((q0
    ^ p) 
    ^ q1); 
    
        
    
        
    
    A35: ( 
    dom (0p1 
    ^ q)) 
    = (( 
    len 0p1) 
    + ( 
    len q)) by 
    AFINSQ_1:def 3;
    
        (
    dom 0p1) 
    = (( 
    len (q0 
    ^ p)) 
    + ( 
    len q1)) & ( 
    dom q1) 
    = 1 by 
    AFINSQ_1:def 3;
    
        then
    
        
    
    A36: ( 
    dom 0p1) 
    = ((( 
    len q0) 
    + ( 
    len p)) 
    + 1) by 
    AFINSQ_1: 17;
    
        then ((0p1
    ^ q) 
    | ((2 
    * 1) 
    + ( 
    len p))) 
    = 0p1 by 
    AFINSQ_1: 57;
    
        then
    
        
    
    A37: ( 
    min* { N : (2 
    * ( 
    Sum ((0p1 
    ^ q) 
    | N))) 
    = N & N 
    >  
    0 }) 
    = ((2 
    * 1) 
    + ( 
    len p)) by 
    A28,
    A29,
    A30,
    Th16;
    
        1
    <= ((1 
    + ( 
    len p)) 
    - (2 
    * ( 
    Sum p))) by 
    A29,
    A30;
    
        then 0p1 is
    dominated_by_0 by 
    A28,
    Th10;
    
        then
    
        
    
    A38: (0p1 
    ^ q) is 
    dominated_by_0 by 
    A32,
    Th7;
    
        
    
        
    
    A39: (0p1 
    ^ q) 
    in ( 
    NAT  
    ^omega ) by 
    AFINSQ_1:def 7;
    
        0p1
    = (q0 
    ^ (p 
    ^ q1)) by 
    AFINSQ_1: 27;
    
        then (
    Sum 0p1) 
    = (( 
    Sum q0) 
    + ( 
    Sum (p 
    ^ q1))) by 
    AFINSQ_2: 55;
    
        then (
    Sum 0p1) 
    = ( 
    0 qua 
    Nat
    + (( 
    Sum p) 
    + 1)) by 
    A22,
    AFINSQ_2: 55;
    
        then (
    Sum (0p1 
    ^ q)) 
    = ((k 
    + 1) 
    + l) by 
    A30,
    A34,
    AFINSQ_2: 55;
    
        then (0p1
    ^ q) 
    in ( 
    Domin_0 (n,m)) by 
    A1,
    A29,
    A33,
    A38,
    A36,
    A35,
    Th20;
    
        then
    
        
    
    A40: (0p1 
    ^ q) 
    in F by 
    A29,
    A37,
    A39;
    
        then
    
        consider r1,r2 be
    XFinSequence of 
    NAT such that 
    
        
    
    A41: (0p1 
    ^ q) 
    = (((q0 
    ^ r1) 
    ^ q1) 
    ^ r2) and 
    
        
    
    A42: ( 
    len ((q0 
    ^ r1) 
    ^ q1)) 
    = 2k1 and 
    
        
    
    A43: (f 
    . (0p1 
    ^ q)) 
    =  
    [r1, r2] by
    A16;
    
        
    
        
    
    A44: ((0p1 
    ^ q) 
    | 2k1) 
    = 0p1 by 
    A29,
    A36,
    AFINSQ_1: 57;
    
        then (q0
    ^ p) 
    = (q0 
    ^ r1) by 
    A41,
    A42,
    AFINSQ_1: 28,
    AFINSQ_1: 57;
    
        then
    
        
    
    A45: p 
    = r1 by 
    AFINSQ_1: 28;
    
        ((((q0
    ^ r1) 
    ^ q1) 
    ^ r2) 
    | 2k1) 
    = ((q0 
    ^ r1) 
    ^ q1) by 
    A42,
    AFINSQ_1: 57;
    
        then q
    = r2 by 
    A41,
    A44,
    AFINSQ_1: 28;
    
        hence thesis by
    A20,
    A26,
    A27,
    A31,
    A40,
    A43,
    A45,
    FUNCT_1: 3;
    
      end;
    
      for x,y be
    object st x 
    in F & y 
    in F & (f 
    . x) 
    = (f 
    . y) holds x 
    = y 
    
      proof
    
        let x,y be
    object such that 
    
        
    
    A46: x 
    in F and 
    
        
    
    A47: y 
    in F and 
    
        
    
    A48: (f 
    . x) 
    = (f 
    . y); 
    
        consider y1,y2 be
    XFinSequence of 
    NAT such that 
    
        
    
    A49: y 
    = (((q0 
    ^ y1) 
    ^ q1) 
    ^ y2) and ( 
    len ((q0 
    ^ y1) 
    ^ q1)) 
    = 2k1 and 
    
        
    
    A50: (f 
    . y) 
    =  
    [y1, y2] by
    A16,
    A47;
    
        consider x1,x2 be
    XFinSequence of 
    NAT such that 
    
        
    
    A51: x 
    = (((q0 
    ^ x1) 
    ^ q1) 
    ^ x2) and ( 
    len ((q0 
    ^ x1) 
    ^ q1)) 
    = 2k1 and 
    
        
    
    A52: (f 
    . x) 
    =  
    [x1, x2] by
    A16,
    A46;
    
        x1
    = y1 by 
    A48,
    A52,
    A50,
    XTUPLE_0: 1;
    
        hence thesis by
    A48,
    A51,
    A52,
    A49,
    A50,
    XTUPLE_0: 1;
    
      end;
    
      then f is
    one-to-one by 
    A17,
    FUNCT_2: 19;
    
      then (F,
    [:Z1, Z2:])
    are_equipotent by 
    A20,
    A21,
    WELLORD2:def 4;
    
      then (
    card F) 
    = ( 
    card  
    [:Z1, Z2:]) by
    CARD_1: 5;
    
      hence thesis by
    CARD_2: 46;
    
    end;
    
    theorem :: 
    
    CATALAN2:37
    
    
    
    
    
    Th37: for n, m st (2 
    * m) 
    <= n holds ex CardF be 
    XFinSequence of 
    NAT st ( 
    card { pN : pN 
    in ( 
    Domin_0 (n,m)) & { N : (2 
    * ( 
    Sum (pN 
    | N))) 
    = N & N 
    >  
    0 } 
    <>  
    {} }) 
    = ( 
    Sum CardF) & ( 
    dom CardF) 
    = m & for j st j 
    < m holds (CardF 
    . j) 
    = (( 
    card ( 
    Domin_0 ((2 
    * j),j))) 
    * ( 
    card ( 
    Domin_0 ((n 
    -' (2 
    * (j 
    + 1))),(m 
    -' (j 
    + 1)))))) 
    
    proof
    
      let n, m such that
    
      
    
    A1: (2 
    * m) 
    <= n; 
    
      set Z = (
    Domin_0 (n,m)); 
    
      defpred
    
    P[
    set, 
    set] means for j st j
    = $1 holds $2 
    = { pN : pN 
    in ( 
    Domin_0 (n,m)) & (2 
    * (j 
    + 1)) 
    = ( 
    min* { N : (2 
    * ( 
    Sum (pN 
    | N))) 
    = N & N 
    >  
    0 }) }; 
    
      set W = { pN : pN
    in ( 
    Domin_0 (n,m)) & { N : (2 
    * ( 
    Sum (pN 
    | N))) 
    = N & N 
    >  
    0 } 
    <>  
    {} }; 
    
      
    
      
    
    A2: for k st k 
    in ( 
    Segm m) holds ex x be 
    Element of ( 
    bool Z) st 
    P[k, x]
    
      proof
    
        let k such that k
    in ( 
    Segm m); 
    
        set NN = { pN : pN
    in ( 
    Domin_0 (n,m)) & (2 
    * (k 
    + 1)) 
    = ( 
    min* { N : (2 
    * ( 
    Sum (pN 
    | N))) 
    = N & N 
    >  
    0 }) }; 
    
        NN
    c= Z 
    
        proof
    
          let x be
    object;
    
          assume x
    in NN; 
    
          then ex pN st x
    = pN & pN 
    in Z & (2 
    * (k 
    + 1)) 
    = ( 
    min* { N : (2 
    * ( 
    Sum (pN 
    | N))) 
    = N & N 
    >  
    0 }); 
    
          hence thesis;
    
        end;
    
        then
    
        reconsider NN as
    Element of ( 
    bool Z); 
    
        take NN;
    
        thus thesis;
    
      end;
    
      consider C be
    XFinSequence of ( 
    bool Z) such that 
    
      
    
    A3: ( 
    dom C) 
    = ( 
    Segm m) & for k st k 
    in ( 
    Segm m) holds 
    P[k, (C
    . k)] from 
    STIRL2_1:sch 5(
    A2);
    
      
    
      
    
    A4: W 
    c= ( 
    union ( 
    rng C)) 
    
      proof
    
        let x be
    object;
    
        assume x
    in W; 
    
        then
    
        consider pN such that
    
        
    
    A5: x 
    = pN & pN 
    in ( 
    Domin_0 (n,m)) & { N : (2 
    * ( 
    Sum (pN 
    | N))) 
    = N & N 
    >  
    0 } 
    <>  
    {} ; 
    
        set I = { N : (2
    * ( 
    Sum (pN 
    | N))) 
    = N & N 
    >  
    0 }; 
    
        I
    c=  
    NAT  
    
        proof
    
          let y be
    object;
    
          assume y
    in I; 
    
          then ex i be
    Nat st i 
    = y & (2 
    * ( 
    Sum (pN 
    | i))) 
    = i & i 
    >  
    0 ; 
    
          hence thesis by
    ORDINAL1:def 12;
    
        end;
    
        then
    
        reconsider I as non
    empty  
    Subset of 
    NAT by 
    A5;
    
        (
    min* I) 
    in I by 
    NAT_1:def 1;
    
        then
    
        consider M be
    Nat such that 
    
        
    
    A6: ( 
    min* I) 
    = M and 
    
        
    
    A7: (2 
    * ( 
    Sum (pN 
    | M))) 
    = M and 
    
        
    
    A8: M 
    >  
    0 ; 
    
        (
    Sum (pN 
    | M)) 
    >  
    0 by 
    A7,
    A8;
    
        then
    
        reconsider Sum1 = ((
    Sum (pN 
    | M)) 
    - 1) as 
    Nat by 
    NAT_1: 20;
    
        consider q such that
    
        
    
    A9: pN 
    = ((pN 
    | M) 
    ^ q) by 
    Th1;
    
        (
    Sum pN) 
    = (( 
    Sum (pN 
    | M)) 
    + ( 
    Sum q)) by 
    A9,
    AFINSQ_2: 55;
    
        then m
    = (( 
    Sum (pN 
    | M)) 
    + ( 
    Sum q)) by 
    A5,
    Th20;
    
        then
    
        
    
    A10: m 
    >= ( 
    Sum (pN 
    | M)) by 
    NAT_1: 11;
    
        (Sum1
    + 1) 
    > Sum1 by 
    NAT_1: 13;
    
        then m
    > Sum1 by 
    A10,
    XXREAL_0: 2;
    
        then
    
        
    
    A11: Sum1 
    in ( 
    Segm m) by 
    NAT_1: 44;
    
        then (C
    . Sum1) 
    = { qN : qN 
    in ( 
    Domin_0 (n,m)) & (2 
    * (Sum1 
    + 1)) 
    = ( 
    min* { N : (2 
    * ( 
    Sum (qN 
    | N))) 
    = N & N 
    >  
    0 }) } by 
    A3;
    
        then
    
        
    
    A12: pN 
    in (C 
    . Sum1) by 
    A5,
    A6,
    A7;
    
        (C
    . Sum1) 
    in ( 
    rng C) by 
    A3,
    A11,
    FUNCT_1: 3;
    
        hence thesis by
    A5,
    A12,
    TARSKI:def 4;
    
      end;
    
      
    
      
    
    A13: for i, j st i 
    in ( 
    dom C) & j 
    in ( 
    dom C) & i 
    <> j holds (C 
    . i) 
    misses (C 
    . j) 
    
      proof
    
        let i, j such that
    
        
    
    A14: i 
    in ( 
    dom C) and 
    
        
    
    A15: j 
    in ( 
    dom C) and 
    
        
    
    A16: i 
    <> j; 
    
        assume (C
    . i) 
    meets (C 
    . j); 
    
        then ((C
    . i) 
    /\ (C 
    . j)) 
    <>  
    {} ; 
    
        then
    
        consider x be
    object such that 
    
        
    
    A17: x 
    in ((C 
    . i) 
    /\ (C 
    . j)) by 
    XBOOLE_0:def 1;
    
        
    
        
    
    A18: x 
    in (C 
    . j) by 
    A17,
    XBOOLE_0:def 4;
    
        (C
    . j) 
    = { qN : qN 
    in ( 
    Domin_0 (n,m)) & (2 
    * (j 
    + 1)) 
    = ( 
    min* { N : (2 
    * ( 
    Sum (qN 
    | N))) 
    = N & N 
    >  
    0 }) } by 
    A3,
    A15;
    
        then
    
        
    
    A19: ex qN st x 
    = qN & qN 
    in ( 
    Domin_0 (n,m)) & (2 
    * (j 
    + 1)) 
    = ( 
    min* { N : (2 
    * ( 
    Sum (qN 
    | N))) 
    = N & N 
    >  
    0 }) by 
    A18;
    
        
    
        
    
    A20: x 
    in (C 
    . i) by 
    A17,
    XBOOLE_0:def 4;
    
        (C
    . i) 
    = { pN : pN 
    in ( 
    Domin_0 (n,m)) & (2 
    * (i 
    + 1)) 
    = ( 
    min* { N : (2 
    * ( 
    Sum (pN 
    | N))) 
    = N & N 
    >  
    0 }) } by 
    A3,
    A14;
    
        then ex pN st x
    = pN & pN 
    in ( 
    Domin_0 (n,m)) & (2 
    * (i 
    + 1)) 
    = ( 
    min* { N : (2 
    * ( 
    Sum (pN 
    | N))) 
    = N & N 
    >  
    0 }) by 
    A20;
    
        hence thesis by
    A16,
    A19;
    
      end;
    
      
    
      
    
    A21: for k st k 
    in ( 
    dom C) holds (C 
    . k) is 
    finite
    
      proof
    
        let k;
    
        assume k
    in ( 
    dom C); 
    
        then
    
        
    
    A22: (C 
    . k) 
    in ( 
    rng C) by 
    FUNCT_1: 3;
    
        thus thesis by
    A22;
    
      end;
    
      consider CardC be
    XFinSequence of 
    NAT such that 
    
      
    
    A23: ( 
    dom CardC) 
    = ( 
    dom C) and 
    
      
    
    A24: for i st i 
    in ( 
    dom CardC) holds (CardC 
    . i) 
    = ( 
    card (C 
    . i)) and 
    
      
    
    A25: ( 
    card ( 
    union ( 
    rng C))) 
    = ( 
    Sum CardC) by 
    A21,
    A13,
    STIRL2_1: 66;
    
      take CardC;
    
      (
    union ( 
    rng C)) 
    c= W 
    
      proof
    
        let x be
    object;
    
        assume x
    in ( 
    union ( 
    rng C)); 
    
        then
    
        consider y such that
    
        
    
    A26: x 
    in y and 
    
        
    
    A27: y 
    in ( 
    rng C) by 
    TARSKI:def 4;
    
        consider j be
    object such that 
    
        
    
    A28: j 
    in ( 
    dom C) and 
    
        
    
    A29: (C 
    . j) 
    = y by 
    A27,
    FUNCT_1:def 3;
    
        reconsider j as
    Nat by 
    A28;
    
        y
    = { pN : pN 
    in ( 
    Domin_0 (n,m)) & (2 
    * (j 
    + 1)) 
    = ( 
    min* { N : (2 
    * ( 
    Sum (pN 
    | N))) 
    = N & N 
    >  
    0 }) } by 
    A3,
    A28,
    A29;
    
        then
    
        consider pN such that
    
        
    
    A30: x 
    = pN & pN 
    in ( 
    Domin_0 (n,m)) & (2 
    * (j 
    + 1)) 
    = ( 
    min* { N : (2 
    * ( 
    Sum (pN 
    | N))) 
    = N & N 
    >  
    0 }) by 
    A26;
    
        (2
    * (j 
    + 1)) 
    <>  
    0 ; 
    
        then { N : (2
    * ( 
    Sum (pN 
    | N))) 
    = N & N 
    >  
    0 } 
    <>  
    {} by 
    A30,
    NAT_1:def 1;
    
        hence thesis by
    A30;
    
      end;
    
      hence (
    card W) 
    = ( 
    Sum CardC) & ( 
    dom CardC) 
    = m by 
    A3,
    A23,
    A25,
    A4,
    XBOOLE_0:def 10;
    
      let j such that
    
      
    
    A31: j 
    < m; 
    
      
    
      
    
    A32: m 
    >= (j 
    + 1) by 
    A31,
    NAT_1: 13;
    
      then
    
      
    
    A33: (m 
    -' (j 
    + 1)) 
    = (m 
    - (j 
    + 1)) by 
    XREAL_1: 233;
    
      set P = { pN : pN
    in ( 
    Domin_0 (n,m)) & (2 
    * (j 
    + 1)) 
    = ( 
    min* { N : (2 
    * ( 
    Sum (pN 
    | N))) 
    = N & N 
    >  
    0 }) }; 
    
      j
    < ( 
    len C) by 
    A3,
    A31;
    
      then
    
      
    
    A34: j 
    in ( 
    dom C) by 
    A3,
    NAT_1: 44;
    
      then
    
      
    
    A35: (C 
    . j) 
    = P by 
    A3;
    
      (2
    * (j 
    + 1)) 
    <= (2 
    * m) by 
    A32,
    XREAL_1: 64;
    
      then
    
      
    
    A36: (n 
    -' (2 
    * (j 
    + 1))) 
    = (n 
    - (2 
    * (j 
    + 1))) by 
    A1,
    XREAL_1: 233,
    XXREAL_0: 2;
    
      (CardC
    . j) 
    = ( 
    card (C 
    . j)) by 
    A23,
    A24,
    A34;
    
      hence thesis by
    A36,
    A33,
    A35,
    Th36;
    
    end;
    
    theorem :: 
    
    CATALAN2:38
    
    
    
    
    
    Th38: for n st n 
    >  
    0 holds ( 
    Domin_0 ((2 
    * n),n)) 
    = { pN : pN 
    in ( 
    Domin_0 ((2 
    * n),n)) & { N : (2 
    * ( 
    Sum (pN 
    | N))) 
    = N & N 
    >  
    0 } 
    <>  
    {} } 
    
    proof
    
      let n such that
    
      
    
    A1: n 
    >  
    0 ; 
    
      set P = { pN : pN
    in ( 
    Domin_0 ((2 
    * n),n)) & { N : (2 
    * ( 
    Sum (pN 
    | N))) 
    = N & N 
    >  
    0 } 
    <>  
    {} }; 
    
      thus (
    Domin_0 ((2 
    * n),n)) 
    c= P 
    
      proof
    
        
    
        
    
    A2: (n 
    + n) 
    > ( 
    0 qua 
    Nat
    +  
    0 qua 
    Nat) by
    A1;
    
        let x be
    object such that 
    
        
    
    A3: x 
    in ( 
    Domin_0 ((2 
    * n),n)); 
    
        consider p such that
    
        
    
    A4: x 
    = p and p is 
    dominated_by_0 and 
    
        
    
    A5: ( 
    dom p) 
    = (2 
    * n) & ( 
    Sum p) 
    = n by 
    A3,
    Def2;
    
        
    
        
    
    A6: p 
    in ( 
    NAT  
    ^omega ) by 
    AFINSQ_1:def 7;
    
        (2
    * ( 
    Sum (p 
    | (2 
    * n)))) 
    = (2 
    * n) by 
    A5;
    
        then (2
    * n) 
    in { N : (2 
    * ( 
    Sum (p 
    | N))) 
    = N & N 
    >  
    0 } by 
    A2;
    
        hence thesis by
    A3,
    A4,
    A6;
    
      end;
    
      thus P
    c= ( 
    Domin_0 ((2 
    * n),n)) 
    
      proof
    
        let x be
    object;
    
        assume x
    in P; 
    
        then ex pN st x
    = pN & pN 
    in ( 
    Domin_0 ((2 
    * n),n)) & { N : (2 
    * ( 
    Sum (pN 
    | N))) 
    = N & N 
    >  
    0 } 
    <>  
    {} ; 
    
        hence thesis;
    
      end;
    
    end;
    
    theorem :: 
    
    CATALAN2:39
    
    
    
    
    
    Th39: for n st n 
    >  
    0 holds ex Catal be 
    XFinSequence of 
    NAT st ( 
    Sum Catal) 
    = ( 
    Catalan (n 
    + 1)) & ( 
    dom Catal) 
    = n & for j st j 
    < n holds (Catal 
    . j) 
    = (( 
    Catalan (j 
    + 1)) 
    * ( 
    Catalan (n 
    -' j))) 
    
    proof
    
      let n such that
    
      
    
    A1: n 
    >  
    0 ; 
    
      consider CardF be
    XFinSequence of 
    NAT such that 
    
      
    
    A2: ( 
    card { pN : pN 
    in ( 
    Domin_0 ((2 
    * n),n)) & { N : (2 
    * ( 
    Sum (pN 
    | N))) 
    = N & N 
    >  
    0 } 
    <>  
    {} }) 
    = ( 
    Sum CardF) and 
    
      
    
    A3: ( 
    dom CardF) 
    = n and 
    
      
    
    A4: for j st j 
    < n holds (CardF 
    . j) 
    = (( 
    card ( 
    Domin_0 ((2 
    * j),j))) 
    * ( 
    card ( 
    Domin_0 (((2 
    * n) 
    -' (2 
    * (j 
    + 1))),(n 
    -' (j 
    + 1)))))) by 
    Th37;
    
      take CardF;
    
      (
    Sum CardF) 
    = ( 
    card ( 
    Domin_0 ((2 
    * n),n))) by 
    A1,
    A2,
    Th38;
    
      hence (
    Sum CardF) 
    = ( 
    Catalan (n 
    + 1)) & ( 
    dom CardF) 
    = n by 
    A3,
    Th34;
    
      let j such that
    
      
    
    A5: j 
    < n; 
    
      (n
    - j) 
    > (j 
    - j) by 
    A5,
    XREAL_1: 9;
    
      then (n
    -' j) 
    >  
    0 by 
    A5,
    XREAL_1: 233;
    
      then
    
      reconsider nj = ((n
    -' j) 
    - 1) as 
    Nat by 
    NAT_1: 20;
    
      (j
    + 1) 
    <= n by 
    A5,
    NAT_1: 13;
    
      then
    
      
    
    A6: ((2 
    * n) 
    -' (2 
    * (j 
    + 1))) 
    = ((2 
    * n) 
    - (2 
    * (j 
    + 1))) & (n 
    -' (j 
    + 1)) 
    = (n 
    - (j 
    + 1)) by 
    XREAL_1: 64,
    XREAL_1: 233;
    
      
    
      
    
    A7: ( 
    card ( 
    Domin_0 ((2 
    * j),j))) 
    = ( 
    Catalan (j 
    + 1)) by 
    Th34;
    
      (n
    - j) 
    = (n 
    -' j) by 
    A5,
    XREAL_1: 233;
    
      
    
      then (
    card ( 
    Domin_0 (((2 
    * n) 
    -' (2 
    * (j 
    + 1))),(n 
    -' (j 
    + 1))))) 
    = ( 
    card ( 
    Domin_0 ((2 
    * nj),nj))) by 
    A6
    
      .= (
    Catalan (nj 
    + 1)) by 
    Th34;
    
      hence thesis by
    A4,
    A5,
    A7;
    
    end;
    
    theorem :: 
    
    CATALAN2:40
    
    
    
    
    
    Th40: ( 
    card { pN : pN 
    in ( 
    Domin_0 ((n 
    + 1),m)) & { N : (2 
    * ( 
    Sum (pN 
    | N))) 
    = N & N 
    >  
    0 } 
    =  
    {} }) 
    = ( 
    card ( 
    Domin_0 (n,m))) 
    
    proof
    
      defpred
    
    P[
    object, 
    object] means ex p st $1
    = ( 
    <%
    0 %> 
    ^ p) & $2 
    = p; 
    
      set F = { pN : pN
    in ( 
    Domin_0 ((n 
    + 1),m)) & { N : (2 
    * ( 
    Sum (pN 
    | N))) 
    = N & N 
    >  
    0 } 
    =  
    {} }; 
    
      set Z = (
    Domin_0 (n,m)); 
    
      
    
      
    
    A1: for x be 
    object st x 
    in F holds ex y be 
    object st y 
    in Z & 
    P[x, y]
    
      proof
    
        
    
        
    
    A2: ( 
    len  
    <%
    0 %>) 
    = 1 by 
    AFINSQ_1: 33;
    
        let x be
    object;
    
        
    
        
    
    A3: ( 
    Sum  
    <%
    0 %>) 
    =  
    0 by 
    AFINSQ_2: 53;
    
        assume x
    in F; 
    
        then
    
        consider pN such that
    
        
    
    A4: x 
    = pN & pN 
    in ( 
    Domin_0 ((n 
    + 1),m)) & { N : (2 
    * ( 
    Sum (pN 
    | N))) 
    = N & N 
    >  
    0 } 
    =  
    {} ; 
    
        pN is
    dominated_by_0 & ( 
    dom pN) 
    = (n 
    + 1) by 
    A4,
    Th20;
    
        then
    
        consider q such that
    
        
    
    A6: pN 
    = ( 
    <%
    0 %> 
    ^ q) and 
    
        
    
    A7: q is 
    dominated_by_0 by 
    A4,
    Th17;
    
        (
    dom pN) 
    = (( 
    len  
    <%
    0 %>) 
    + ( 
    len q)) by 
    A6,
    AFINSQ_1:def 3;
    
        then
    
        
    
    A8: (n 
    + 1) 
    = (( 
    len q) 
    + 1) by 
    A4,
    A2,
    Th20;
    
        take q;
    
        (
    Sum pN) 
    = (( 
    Sum  
    <%
    0 %>) 
    + ( 
    Sum q)) by 
    A6,
    AFINSQ_2: 55;
    
        then (
    Sum q) 
    = m by 
    A4,
    A3,
    Th20;
    
        hence thesis by
    A4,
    A6,
    A7,
    A8,
    Th20;
    
      end;
    
      consider f be
    Function of F, Z such that 
    
      
    
    A9: for x be 
    object st x 
    in F holds 
    P[x, (f
    . x)] from 
    FUNCT_2:sch 1(
    A1);
    
      
    
      
    
    A10: Z 
    =  
    {} implies F 
    =  
    {}  
    
      proof
    
        assume Z
    =  
    {} ; 
    
        then (2
    * m) 
    > n by 
    Th22;
    
        then
    
        
    
    A11: (2 
    * m) 
    >= (n 
    + 1) by 
    NAT_1: 13;
    
        assume F
    <>  
    {} ; 
    
        then
    
        consider x be
    object such that 
    
        
    
    A12: x 
    in F by 
    XBOOLE_0:def 1;
    
        consider pN such that
    
        
    
    A13: x 
    = pN & pN 
    in ( 
    Domin_0 ((n 
    + 1),m)) & { N : (2 
    * ( 
    Sum (pN 
    | N))) 
    = N & N 
    >  
    0 } 
    =  
    {} by 
    A12;
    
        (
    dom pN) 
    = (n 
    + 1) by 
    A13,
    Th20;
    
        then (pN
    | (n 
    + 1)) 
    = pN; 
    
        then
    
        
    
    A14: ( 
    Sum (pN 
    | (n 
    + 1))) 
    = m by 
    A13,
    Th20;
    
        pN is
    dominated_by_0 by 
    A13,
    Th20;
    
        then (2
    * m) 
    <= (n 
    + 1) by 
    A14,
    Th2;
    
        then (2
    * ( 
    Sum (pN 
    | (n 
    + 1)))) 
    = (n 
    + 1) by 
    A14,
    A11,
    XXREAL_0: 1;
    
        then (n
    + 1) 
    in { N : (2 
    * ( 
    Sum (pN 
    | N))) 
    = N & N 
    >  
    0 }; 
    
        hence thesis by
    A13;
    
      end;
    
      then
    
      
    
    A15: ( 
    dom f) 
    = F by 
    FUNCT_2:def 1;
    
      
    
      
    
    A16: ( 
    rng f) 
    = Z 
    
      proof
    
        thus (
    rng f) 
    c= Z; 
    
        let x be
    object;
    
        assume x
    in Z; 
    
        then
    
        consider p such that
    
        
    
    A17: p 
    = x and 
    
        
    
    A18: p is 
    dominated_by_0 and 
    
        
    
    A19: ( 
    dom p) 
    = n and 
    
        
    
    A20: ( 
    Sum p) 
    = m by 
    Def2;
    
        set q = (
    <%
    0 %> 
    ^ p); 
    
        
    
        
    
    A21: { N : (2 
    * ( 
    Sum (q 
    | N))) 
    = N & N 
    >  
    0 } 
    =  
    {} by 
    A18,
    Th18;
    
        (
    Sum q) 
    = (( 
    Sum  
    <%
    0 %>) 
    + ( 
    Sum p)) by 
    AFINSQ_2: 55;
    
        then
    
        
    
    A22: ( 
    Sum q) 
    = ( 
    0 qua 
    Nat
    + m) by 
    A20,
    AFINSQ_2: 53;
    
        
    
        
    
    A23: q 
    in ( 
    NAT  
    ^omega ) by 
    AFINSQ_1:def 7;
    
        (
    dom q) 
    = (( 
    len  
    <%
    0 %>) 
    + ( 
    len p)) by 
    AFINSQ_1:def 3;
    
        then
    
        
    
    A24: ( 
    dom q) 
    = (1 
    + n) by 
    A19,
    AFINSQ_1: 33;
    
        q is
    dominated_by_0 by 
    A18,
    Th18;
    
        then q
    in ( 
    Domin_0 ((n 
    + 1),m)) by 
    A24,
    A22,
    Th20;
    
        then
    
        
    
    A25: q 
    in F by 
    A21,
    A23;
    
        then
    
        consider r be
    XFinSequence of 
    NAT such that 
    
        
    
    A26: q 
    = ( 
    <%
    0 %> 
    ^ r) and 
    
        
    
    A27: (f 
    . q) 
    = r by 
    A9;
    
        r
    = p by 
    A26,
    AFINSQ_1: 28;
    
        hence thesis by
    A15,
    A17,
    A25,
    A27,
    FUNCT_1: 3;
    
      end;
    
      for x,y be
    object st x 
    in F & y 
    in F & (f 
    . x) 
    = (f 
    . y) holds x 
    = y 
    
      proof
    
        let x,y be
    object such that 
    
        
    
    A28: x 
    in F & y 
    in F and 
    
        
    
    A29: (f 
    . x) 
    = (f 
    . y); 
    
        (ex p st x
    = ( 
    <%
    0 %> 
    ^ p) & (f 
    . x) 
    = p) & ex q st y 
    = ( 
    <%
    0 %> 
    ^ q) & (f 
    . y) 
    = q by 
    A9,
    A28;
    
        hence thesis by
    A29;
    
      end;
    
      then f is
    one-to-one by 
    A10,
    FUNCT_2: 19;
    
      then (F,Z)
    are_equipotent by 
    A15,
    A16,
    WELLORD2:def 4;
    
      hence thesis by
    CARD_1: 5;
    
    end;
    
    theorem :: 
    
    CATALAN2:41
    
    for n, m st (2
    * m) 
    <= n holds ex CardF be 
    XFinSequence of 
    NAT st ( 
    card ( 
    Domin_0 (n,m))) 
    = (( 
    Sum CardF) 
    + ( 
    card ( 
    Domin_0 ((n 
    -' 1),m)))) & ( 
    dom CardF) 
    = m & for j st j 
    < m holds (CardF 
    . j) 
    = (( 
    card ( 
    Domin_0 ((2 
    * j),j))) 
    * ( 
    card ( 
    Domin_0 ((n 
    -' (2 
    * (j 
    + 1))),(m 
    -' (j 
    + 1)))))) 
    
    proof
    
      let n, m such that
    
      
    
    A1: (2 
    * m) 
    <= n; 
    
      set Z = (
    Domin_0 (n,m)); 
    
      set Zne = { pN : pN
    in ( 
    Domin_0 (n,m)) & { N : (2 
    * ( 
    Sum (pN 
    | N))) 
    = N & N 
    >  
    0 } 
    <>  
    {} }; 
    
      
    
      
    
    A2: Zne 
    c= Z 
    
      proof
    
        let x be
    object;
    
        assume x
    in Zne; 
    
        then ex pN st x
    = pN & pN 
    in ( 
    Domin_0 (n,m)) & { N : (2 
    * ( 
    Sum (pN 
    | N))) 
    = N & N 
    >  
    0 } 
    <>  
    {} ; 
    
        hence thesis;
    
      end;
    
      set Ze = { pN : pN
    in ( 
    Domin_0 (n,m)) & { N : (2 
    * ( 
    Sum (pN 
    | N))) 
    = N & N 
    >  
    0 } 
    =  
    {} }; 
    
      
    
      
    
    A3: Ze 
    c= Z 
    
      proof
    
        let x be
    object;
    
        assume x
    in Ze; 
    
        then ex pN st x
    = pN & pN 
    in ( 
    Domin_0 (n,m)) & { N : (2 
    * ( 
    Sum (pN 
    | N))) 
    = N & N 
    >  
    0 } 
    =  
    {} ; 
    
        hence thesis;
    
      end;
    
      reconsider Zne as
    finite  
    set by 
    A2;
    
      consider C be
    XFinSequence of 
    NAT such that 
    
      
    
    A4: ( 
    card Zne) 
    = ( 
    Sum C) and 
    
      
    
    A5: ( 
    dom C) 
    = m and 
    
      
    
    A6: for j st j 
    < m holds (C 
    . j) 
    = (( 
    card ( 
    Domin_0 ((2 
    * j),j))) 
    * ( 
    card ( 
    Domin_0 ((n 
    -' (2 
    * (j 
    + 1))),(m 
    -' (j 
    + 1)))))) by 
    A1,
    Th37;
    
      reconsider Ze as
    finite  
    set by 
    A3;
    
      take C;
    
      
    
      
    
    A7: Ze 
    misses Zne 
    
      proof
    
        assume Ze
    meets Zne; 
    
        then
    
        consider x be
    object such that 
    
        
    
    A8: x 
    in Ze and 
    
        
    
    A9: x 
    in Zne by 
    XBOOLE_0: 3;
    
        
    
        
    
    A10: ex qN st qN 
    = x & qN 
    in Z & { N : (2 
    * ( 
    Sum (qN 
    | N))) 
    = N & N 
    >  
    0 } 
    =  
    {} by 
    A8;
    
        ex pN st pN
    = x & pN 
    in Z & { N : (2 
    * ( 
    Sum (pN 
    | N))) 
    = N & N 
    >  
    0 } 
    <>  
    {} by 
    A9;
    
        hence thesis by
    A10;
    
      end;
    
      
    
      
    
    A11: Z 
    c= (Ze 
    \/ Zne) 
    
      proof
    
        let x be
    object such that 
    
        
    
    A12: x 
    in Z; 
    
        consider p be
    XFinSequence of 
    NAT such that 
    
        
    
    A13: p 
    = x and p is 
    dominated_by_0 and ( 
    dom p) 
    = n and ( 
    Sum p) 
    = m by 
    A12,
    Def2;
    
        reconsider p as
    Element of ( 
    NAT  
    ^omega ) by 
    AFINSQ_1:def 7;
    
        set I = { N : (2
    * ( 
    Sum (p 
    | N))) 
    = N & N 
    >  
    0 }; 
    
        now
    
          per cases ;
    
            suppose I
    =  
    {} ; 
    
            then p
    in Ze by 
    A12,
    A13;
    
            hence thesis by
    A13,
    XBOOLE_0:def 3;
    
          end;
    
            suppose I
    <>  
    {} ; 
    
            then p
    in Zne by 
    A12,
    A13;
    
            hence thesis by
    A13,
    XBOOLE_0:def 3;
    
          end;
    
        end;
    
        hence thesis;
    
      end;
    
      (Ze
    \/ Zne) 
    c= Z by 
    A3,
    A2,
    XBOOLE_1: 8;
    
      then
    
      
    
    A14: (Ze 
    \/ Zne) 
    = Z by 
    A11;
    
      now
    
        per cases ;
    
          suppose
    
          
    
    A15: n 
    =  
    0 ; 
    
          then (2
    * m) 
    =  
    0 by 
    A1;
    
          then C
    =  
    {} by 
    A5;
    
          then
    
          
    
    A16: ( 
    Sum C) 
    =  
    0 ; 
    
          (n
    - 1) 
    < (1 
    - 1) by 
    A15;
    
          hence (
    card Z) 
    = (( 
    Sum C) 
    + ( 
    card ( 
    Domin_0 ((n 
    -' 1),m)))) by 
    A15,
    A16,
    XREAL_0:def 2;
    
        end;
    
          suppose
    
          
    
    A17: n 
    >  
    0 ; 
    
          then
    
          reconsider n1 = (n
    - 1) as 
    Nat by 
    NAT_1: 20;
    
          n
    = (n1 
    + 1); 
    
          then
    
          
    
    A18: ( 
    card Ze) 
    = ( 
    card ( 
    Domin_0 (n1,m))) by 
    Th40;
    
          n1
    = (n 
    -' 1) by 
    A17,
    NAT_1: 14,
    XREAL_1: 233;
    
          hence (
    card Z) 
    = (( 
    Sum C) 
    + ( 
    card ( 
    Domin_0 ((n 
    -' 1),m)))) by 
    A7,
    A14,
    A4,
    A18,
    CARD_2: 40;
    
        end;
    
      end;
    
      hence thesis by
    A5,
    A6;
    
    end;
    
    theorem :: 
    
    CATALAN2:42
    
    for n, k holds ex p st (
    Sum p) 
    = ( 
    card ( 
    Domin_0 ((((2 
    * n) 
    + 2) 
    + k),(n 
    + 1)))) & ( 
    dom p) 
    = (k 
    + 1) & for i st i 
    <= k holds (p 
    . i) 
    = ( 
    card ( 
    Domin_0 ((((2 
    * n) 
    + 1) 
    + i),n))) 
    
    proof
    
      let n, k;
    
      defpred
    
    P[
    set, 
    set] means for j st $1
    = j holds $2 
    = ( 
    card ( 
    Domin_0 ((((2 
    * n) 
    + 1) 
    + j),n))); 
    
      
    
      
    
    A1: for i st i 
    in ( 
    Segm (k 
    + 1)) holds ex x be 
    Element of 
    NAT st 
    P[i, x]
    
      proof
    
        let i such that i
    in ( 
    Segm (k 
    + 1)); 
    
        
    P[i, (
    card ( 
    Domin_0 ((((2 
    * n) 
    + 1) 
    + i),n)))]; 
    
        hence thesis;
    
      end;
    
      consider p such that
    
      
    
    A2: ( 
    dom p) 
    = ( 
    Segm (k 
    + 1)) and 
    
      
    
    A3: for i be 
    Nat st i 
    in ( 
    Segm (k 
    + 1)) holds 
    P[i, (p
    . i)] from 
    STIRL2_1:sch 5(
    A1);
    
      take p;
    
      
    
      
    
    A4: for i st i 
    <= k holds (p 
    . i) 
    = ( 
    card ( 
    Domin_0 ((((2 
    * n) 
    + 1) 
    + i),n))) 
    
      proof
    
        let i;
    
        assume i
    <= k; 
    
        then i
    < (k 
    + 1) by 
    NAT_1: 13;
    
        then i
    in ( 
    Segm (k 
    + 1)) by 
    NAT_1: 44;
    
        hence thesis by
    A3;
    
      end;
    
      now
    
        per cases ;
    
          suppose
    
          
    
    A5: n 
    =  
    0 ; 
    
          for x be
    object st x 
    in ( 
    dom p) holds (p 
    . x) 
    = 1 
    
          proof
    
            let x be
    object such that 
    
            
    
    A6: x 
    in ( 
    dom p); 
    
            reconsider i = x as
    Nat by 
    A6;
    
            (p
    . i) 
    = ( 
    card ( 
    Domin_0 ((((2 
    * n) 
    + 1) 
    + i),n))) by 
    A2,
    A3,
    A6;
    
            hence thesis by
    A5,
    Th24;
    
          end;
    
          then p
    = ((k 
    + 1) 
    --> 1) by 
    A2,
    FUNCOP_1: 11;
    
          then (
    Sum p) 
    = ((k 
    + 1) 
    * 1) by 
    AFINSQ_2: 58;
    
          hence (
    Sum p) 
    = ( 
    card ( 
    Domin_0 ((((2 
    * n) 
    + 2) 
    + k),(n 
    + 1)))) by 
    A5,
    Th30;
    
        end;
    
          suppose n
    >  
    0 ; 
    
          then
    
          reconsider n1 = (n
    - 1) as 
    Nat by 
    NAT_1: 20;
    
          defpred
    
    Q[
    Nat] means for q st (
    dom q) 
    = ($1 
    + 1) & for i st i 
    <= $1 holds (q 
    . i) 
    = ( 
    card ( 
    Domin_0 ((((2 
    * n) 
    + 1) 
    + i),n))) holds ( 
    Sum q) 
    = ( 
    card ( 
    Domin_0 ((((2 
    * n) 
    + 2) 
    + $1),(n 
    + 1)))); 
    
          
    
          
    
    A7: for j st 
    Q[j] holds
    Q[(j
    + 1)] 
    
          proof
    
            let j such that
    
            
    
    A8: 
    Q[j];
    
            set CH2 = ((((2
    * n) 
    + 2) 
    + j) 
    choose (n1 
    + 1)); 
    
            set CH1 = ((((2
    * n) 
    + 2) 
    + j) 
    choose (n 
    + 1)); 
    
            set j1 = (j
    + 1); 
    
            let q such that
    
            
    
    A9: ( 
    dom q) 
    = (j1 
    + 1) and 
    
            
    
    A10: for i st i 
    <= j1 holds (q 
    . i) 
    = ( 
    card ( 
    Domin_0 ((((2 
    * n) 
    + 1) 
    + i),n))); 
    
            
    
            
    
    A11: (2 
    * (n 
    + 1)) 
    <= ((2 
    * (n 
    + 1)) 
    + j1) by 
    NAT_1: 11;
    
            j1
    <= (j1 
    + 1) by 
    NAT_1: 11;
    
            then (
    Segm j1) 
    c= ( 
    Segm (j1 
    + 1)) by 
    NAT_1: 39;
    
            then
    
            
    
    A12: ( 
    dom (q 
    | j1)) 
    = j1 by 
    A9,
    RELAT_1: 62;
    
            
    
            
    
    A13: for i st i 
    <= j holds ((q 
    | j1) 
    . i) 
    = ( 
    card ( 
    Domin_0 ((((2 
    * n) 
    + 1) 
    + i),n))) 
    
            proof
    
              let i;
    
              assume i
    <= j; 
    
              then i
    < j1 by 
    NAT_1: 13;
    
              then i
    < ( 
    len (q 
    | j1)) by 
    A12;
    
              then i
    in ( 
    dom (q 
    | j1)) & (q 
    . i) 
    = ( 
    card ( 
    Domin_0 ((((2 
    * n) 
    + 1) 
    + i),n))) by 
    A10,
    A12,
    AFINSQ_1: 86;
    
              hence thesis by
    FUNCT_1: 47;
    
            end;
    
            set CH4 = ((((2
    * n) 
    + 1) 
    + j1) 
    choose n1); 
    
            set CH3 = ((((2
    * n) 
    + 1) 
    + j1) 
    choose n); 
    
            
    
            
    
    A14: (2 
    * n) 
    <= ((2 
    * n) 
    + (1 
    + j1)) & (n1 
    + 1) 
    = n by 
    NAT_1: 11;
    
            (q
    . j1) 
    = ( 
    card ( 
    Domin_0 ((((2 
    * n) 
    + 1) 
    + j1),n))) by 
    A10;
    
            then
    
            
    
    A15: (q 
    . j1) 
    = (CH3 
    - CH4) by 
    A14,
    Th28;
    
            j1
    < (j1 
    + 1) by 
    NAT_1: 13;
    
            then j1
    < ( 
    len q) by 
    A9;
    
            then j1
    in ( 
    dom q) by 
    AFINSQ_1: 86;
    
            then
    
            
    
    A16: ( 
    Sum (q 
    | (j1 
    + 1))) 
    = (( 
    Sum (q 
    | j1)) 
    + (q 
    . j1)) by 
    AFINSQ_2: 65;
    
            (2
    * (n 
    + 1)) 
    <= (((2 
    * n) 
    + 2) 
    + j) by 
    NAT_1: 11;
    
            then (
    card ( 
    Domin_0 ((((2 
    * n) 
    + 2) 
    + j),(n 
    + 1)))) 
    = (CH1 
    - CH2) by 
    Th28;
    
            then (
    Sum (q 
    | j1)) 
    = (CH1 
    - CH2) by 
    A8,
    A12,
    A13;
    
            
    
            then ((
    Sum (q 
    | j1)) 
    + (q 
    . j1)) 
    = ((CH1 
    + CH2) 
    - (CH3 
    + CH4)) by 
    A15
    
            .= ((((((2
    * n) 
    + 2) 
    + j) 
    + 1) 
    choose (n 
    + 1)) 
    - (CH3 
    + CH4)) by 
    NEWTON: 22
    
            .= (((((2
    * n) 
    + 2) 
    + j1) 
    choose (n 
    + 1)) 
    - ((((2 
    * n) 
    + 2) 
    + j1) 
    choose (n1 
    + 1))) by 
    NEWTON: 22
    
            .= (
    card ( 
    Domin_0 ((((2 
    * n) 
    + 2) 
    + j1),(n 
    + 1)))) by 
    A11,
    Th28;
    
            hence thesis by
    A9,
    A16;
    
          end;
    
          
    
          
    
    A17: 
    Q[
    0 ] 
    
          proof
    
            reconsider 2n1 = ((2
    * n) 
    + 1) as 
    Nat;
    
            set 2CHn = (((2
    * n) 
    + 2) 
    choose n); 
    
            set 2CHn91 = (((2
    * n) 
    + 2) 
    choose (n 
    + 1)); 
    
            set CHn91 = (2n1
    choose (n 
    + 1)); 
    
            set CHn1 = (2n1
    choose n1); 
    
            set CHn = (2n1
    choose n); 
    
            let q;
    
            assume (
    dom q) 
    = ( 
    0 qua 
    Nat
    + 1) & for i st i 
    <=  
    0 holds (q 
    . i) 
    = ( 
    card ( 
    Domin_0 ((((2 
    * n) 
    + 1) 
    + i),n))); 
    
            then
    
            
    
    A18: (q 
    .  
    0 ) 
    = ( 
    card ( 
    Domin_0 ((((2 
    * n) 
    + 1) 
    +  
    0 qua 
    Nat),n))) & (
    len q) 
    = 1; 
    
            
    
            
    
    A19: ((2 
    * n) 
    + 2) 
    = (((2 
    * n) 
    + 1) 
    + 1); 
    
            then
    
            
    
    A20: 2CHn91 
    = (CHn91 
    + CHn) by 
    NEWTON: 22;
    
            (n1
    + 1) 
    = n; 
    
            then
    
            
    
    A21: 2CHn 
    = (CHn 
    + CHn1) by 
    A19,
    NEWTON: 22;
    
            n
    <= (n 
    + (n 
    + 1)) & (((2 
    * n) 
    + 1) 
    - n) 
    = (n 
    + 1) by 
    NAT_1: 11;
    
            then
    
            
    
    A22: CHn 
    = CHn91 by 
    NEWTON: 20;
    
            (2
    * (n 
    + 1)) 
    = ((2 
    * n) 
    + 2); 
    
            then
    
            
    
    A23: ( 
    card ( 
    Domin_0 (((2 
    * n) 
    + 2),(n 
    + 1)))) 
    = (2CHn91 
    - 2CHn) by 
    Th28;
    
            (
    card ( 
    Domin_0 (2n1,(n1 
    + 1)))) 
    = (CHn 
    - CHn1) & ( 
    Sum  
    <%(q
    .  
    0 )%>) 
    = (q 
    .  
    0 ) by 
    Th28,
    AFINSQ_2: 53,
    NAT_1: 11;
    
            hence thesis by
    A20,
    A21,
    A22,
    A23,
    A18,
    AFINSQ_1: 34;
    
          end;
    
          for j holds
    Q[j] from
    NAT_1:sch 2(
    A17,
    A7);
    
          hence (
    Sum p) 
    = ( 
    card ( 
    Domin_0 ((((2 
    * n) 
    + 2) 
    + k),(n 
    + 1)))) by 
    A2,
    A4;
    
        end;
    
      end;
    
      hence thesis by
    A2,
    A4;
    
    end;
    
    begin
    
    reserve seq1,seq2,seq3,seq4 for
    Real_Sequence, 
    
r,s,e for
    Real, 
    
Fr,Fr1,Fr2 for
    XFinSequence of 
    REAL ; 
    
    
    
    
    
    Lm3: (( 
    dom Fr) 
    = 1 or ( 
    len Fr) 
    = 1) implies ( 
    Sum Fr) 
    = (Fr 
    .  
    0 ) 
    
    proof
    
      assume (
    dom Fr) 
    = 1 or ( 
    len Fr) 
    = 1; 
    
      then (
    len Fr) 
    = 1; 
    
      then Fr
    =  
    <%(Fr
    .  
    0 )%> by 
    AFINSQ_1: 34;
    
      hence thesis by
    AFINSQ_2: 53;
    
    end;
    
    
    
    
    
    Lm4: for Fr1, Fr2 st ( 
    dom Fr1) 
    = ( 
    dom Fr2) & for n st n 
    in ( 
    len Fr1) holds (Fr1 
    . n) 
    = (Fr2 
    . (( 
    len Fr1) 
    -' (1 
    + n))) holds ( 
    Sum Fr1) 
    = ( 
    Sum Fr2) 
    
    proof
    
      let Fr1, Fr2 such that
    
      
    
    A1: ( 
    dom Fr1) 
    = ( 
    dom Fr2) and 
    
      
    
    A2: for n st n 
    in ( 
    len Fr1) holds (Fr1 
    . n) 
    = (Fr2 
    . (( 
    len Fr1) 
    -' (1 
    + n))); 
    
      defpred
    
    P[
    object, 
    object] means for i st i
    = $1 holds $2 
    = (( 
    len Fr1) 
    -' (1 
    + i)); 
    
      
    
      
    
    A3: ( 
    card ( 
    len Fr1)) 
    = ( 
    card ( 
    len Fr1)); 
    
      
    
      
    
    A4: for x be 
    object st x 
    in ( 
    len Fr1) holds ex y be 
    object st y 
    in ( 
    len Fr1) & 
    P[x, y]
    
      proof
    
        let x be
    object such that 
    
        
    
    A5: x 
    in ( 
    len Fr1); 
    
        reconsider k = x as
    Nat by 
    A5;
    
        k
    < ( 
    len Fr1) by 
    A5,
    AFINSQ_1: 86;
    
        then (k
    + 1) 
    <= ( 
    len Fr1) by 
    NAT_1: 13;
    
        then
    
        
    
    A6: (( 
    len Fr1) 
    -' (1 
    + k)) 
    = (( 
    len Fr1) 
    - (1 
    + k)) by 
    XREAL_1: 233;
    
        take ((
    len Fr1) 
    -' (1 
    + k)); 
    
        ((
    len Fr1) 
    +  
    0 qua 
    Nat)
    < (( 
    len Fr1) 
    + (1 
    + k)) by 
    XREAL_1: 8;
    
        then ((
    len Fr1) 
    - (1 
    + k)) 
    < ((( 
    len Fr1) 
    + (1 
    + k)) 
    - (1 
    + k)) by 
    XREAL_1: 9;
    
        hence thesis by
    A6,
    AFINSQ_1: 86;
    
      end;
    
      consider P be
    Function of ( 
    len Fr1), ( 
    len Fr1) such that 
    
      
    
    A7: for x be 
    object st x 
    in ( 
    len Fr1) holds 
    P[x, (P
    . x)] from 
    FUNCT_2:sch 1(
    A4);
    
      for x1,x2 be
    object st x1 
    in ( 
    len Fr1) & x2 
    in ( 
    len Fr1) & (P 
    . x1) 
    = (P 
    . x2) holds x1 
    = x2 
    
      proof
    
        let x1,x2 be
    object such that 
    
        
    
    A8: x1 
    in ( 
    len Fr1) and 
    
        
    
    A9: x2 
    in ( 
    len Fr1) and 
    
        
    
    A10: (P 
    . x1) 
    = (P 
    . x2); 
    
        reconsider i = x1, j = x2 as
    Nat by 
    A8,
    A9;
    
        j
    < ( 
    len Fr1) by 
    A9,
    AFINSQ_1: 86;
    
        then (j
    + 1) 
    <= ( 
    len Fr1) by 
    NAT_1: 13;
    
        then ((
    len Fr1) 
    -' (1 
    + j)) 
    = (( 
    len Fr1) 
    - (1 
    + j)) by 
    XREAL_1: 233;
    
        then
    
        
    
    A11: (P 
    . x2) 
    = (( 
    len Fr1) 
    - (1 
    + j)) by 
    A7,
    A9;
    
        i
    < ( 
    len Fr1) by 
    A8,
    AFINSQ_1: 86;
    
        then (i
    + 1) 
    <= ( 
    len Fr1) by 
    NAT_1: 13;
    
        then ((
    len Fr1) 
    -' (1 
    + i)) 
    = (( 
    len Fr1) 
    - (1 
    + i)) by 
    XREAL_1: 233;
    
        then (P
    . x1) 
    = (( 
    len Fr1) 
    - (1 
    + i)) by 
    A7,
    A8;
    
        hence thesis by
    A10,
    A11;
    
      end;
    
      then
    
      
    
    A12: P is 
    one-to-one by 
    FUNCT_2: 56;
    
      then P is
    onto by 
    A3,
    FINSEQ_4: 63;
    
      then
    
      reconsider P as
    Permutation of ( 
    dom Fr1) by 
    A12;
    
      
    
    A13: 
    
      now
    
        let x be
    object such that 
    
        
    
    A14: x 
    in ( 
    dom Fr1); 
    
        reconsider k = x as
    Nat by 
    A14;
    
        (P
    . k) 
    = (( 
    len Fr1) 
    -' (1 
    + k)) by 
    A7,
    A14;
    
        hence (Fr1
    . x) 
    = (Fr2 
    . (P 
    . x)) by 
    A2,
    A14;
    
      end;
    
      
    
      
    
    A15: for x be 
    object st x 
    in ( 
    dom Fr1) holds x 
    in ( 
    dom P) & (P 
    . x) 
    in ( 
    dom Fr2) 
    
      proof
    
        let x be
    object;
    
        assume x
    in ( 
    dom Fr1); 
    
        hence x
    in ( 
    dom P) by 
    FUNCT_2: 52;
    
        then (P
    . x) 
    in ( 
    rng P) by 
    FUNCT_1: 3;
    
        then (P
    . x) 
    in ( 
    dom Fr1); 
    
        then (P
    . x) 
    in ( 
    dom P) by 
    FUNCT_2: 52;
    
        hence thesis by
    A1;
    
      end;
    
      for x be
    object st x 
    in ( 
    dom P) & (P 
    . x) 
    in ( 
    dom Fr2) holds x 
    in ( 
    dom Fr1); 
    
      then Fr1
    = (Fr2 
    * P) by 
    A15,
    A13,
    FUNCT_1: 10;
    
      
    
      then (
    addreal  
    "**" Fr1) 
    = ( 
    addreal  
    "**" Fr2) by 
    A1,
    AFINSQ_2: 45
    
      .= (
    Sum Fr2) by 
    AFINSQ_2: 48;
    
      hence thesis by
    AFINSQ_2: 48;
    
    end;
    
    definition
    
      let seq1,seq2 be
    Real_Sequence;
    
      :: 
    
    CATALAN2:def4
    
      func seq1
    
    (##) seq2 -> 
    Real_Sequence means 
    
      :
    
    Def4: for k be 
    Nat holds ex Fr be 
    XFinSequence of 
    REAL st ( 
    dom Fr) 
    = (k 
    + 1) & (for n st n 
    in (k 
    + 1) holds (Fr 
    . n) 
    = ((seq1 
    . n) 
    * (seq2 
    . (k 
    -' n)))) & ( 
    Sum Fr) 
    = (it 
    . k); 
    
      existence
    
      proof
    
        defpred
    
    P[
    object, 
    object] means for k be
    Nat st k 
    = $1 holds ex Fr st ( 
    dom Fr) 
    = (k 
    + 1) & (for n st n 
    in (k 
    + 1) holds (Fr 
    . n) 
    = ((seq1 
    . n) 
    * (seq2 
    . (k 
    -' n)))) & ( 
    Sum Fr) 
    = $2; 
    
        
    
        
    
    A1: for x be 
    object st x 
    in  
    NAT holds ex y be 
    object st y 
    in  
    REAL & 
    P[x, y]
    
        proof
    
          let x be
    object;
    
          assume x
    in  
    NAT ; 
    
          then
    
          reconsider k = x as
    Nat;
    
          defpred
    
    Q[
    set, 
    set] means for i st i
    = $1 holds $2 
    = ((seq1 
    . i) 
    * (seq2 
    . (k 
    -' i))); 
    
          
    
          
    
    A2: for i st i 
    in ( 
    Segm (k 
    + 1)) holds ex z be 
    Element of 
    REAL st 
    Q[i, z]
    
          proof
    
            let i such that i
    in ( 
    Segm (k 
    + 1)); 
    
            reconsider ss = ((seq1
    . i) 
    * (seq2 
    . (k 
    -' i))) as 
    Element of 
    REAL ; 
    
            take ss;
    
            thus thesis;
    
          end;
    
          consider Fr such that
    
          
    
    A3: ( 
    dom Fr) 
    = ( 
    Segm (k 
    + 1)) and 
    
          
    
    A4: for i st i 
    in ( 
    Segm (k 
    + 1)) holds 
    Q[i, (Fr
    . i)] from 
    STIRL2_1:sch 5(
    A2);
    
          take (
    Sum Fr); 
    
          for n be
    Nat st n 
    in (k 
    + 1) holds (Fr 
    . n) 
    = ((seq1 
    . n) 
    * (seq2 
    . (k 
    -' n))) by 
    A4;
    
          hence thesis by
    A3,
    XREAL_0:def 1;
    
        end;
    
        consider seq3 such that
    
        
    
    A5: for x be 
    object st x 
    in  
    NAT holds 
    P[x, (seq3
    . x)] from 
    FUNCT_2:sch 1(
    A1);
    
        for k be
    Nat holds ex Fr st ( 
    dom Fr) 
    = (k 
    + 1) & (for n st n 
    in (k 
    + 1) holds (Fr 
    . n) 
    = ((seq1 
    . n) 
    * (seq2 
    . (k 
    -' n)))) & ( 
    Sum Fr) 
    = (seq3 
    . k) by 
    ORDINAL1:def 12,
    A5;
    
        hence thesis;
    
      end;
    
      uniqueness
    
      proof
    
        let seq3, seq4 such that
    
        
    
    A6: for k be 
    Nat holds ex Fr be 
    XFinSequence of 
    REAL st ( 
    dom Fr) 
    = (k 
    + 1) & (for n st n 
    in (k 
    + 1) holds (Fr 
    . n) 
    = ((seq1 
    . n) 
    * (seq2 
    . (k 
    -' n)))) & ( 
    Sum Fr) 
    = (seq3 
    . k) and 
    
        
    
    A7: for k be 
    Nat holds ex Fr be 
    XFinSequence of 
    REAL st ( 
    dom Fr) 
    = (k 
    + 1) & (for n st n 
    in (k 
    + 1) holds (Fr 
    . n) 
    = ((seq1 
    . n) 
    * (seq2 
    . (k 
    -' n)))) & ( 
    Sum Fr) 
    = (seq4 
    . k); 
    
        now
    
          let x be
    object;
    
          assume x
    in  
    NAT ; 
    
          then
    
          reconsider k = x as
    Nat;
    
          consider Fr1 be
    XFinSequence of 
    REAL such that 
    
          
    
    A8: ( 
    dom Fr1) 
    = (k 
    + 1) and 
    
          
    
    A9: for n st n 
    in (k 
    + 1) holds (Fr1 
    . n) 
    = ((seq1 
    . n) 
    * (seq2 
    . (k 
    -' n))) and 
    
          
    
    A10: ( 
    Sum Fr1) 
    = (seq3 
    . k) by 
    A6;
    
          consider Fr2 be
    XFinSequence of 
    REAL such that 
    
          
    
    A11: ( 
    dom Fr2) 
    = (k 
    + 1) and 
    
          
    
    A12: for n st n 
    in (k 
    + 1) holds (Fr2 
    . n) 
    = ((seq1 
    . n) 
    * (seq2 
    . (k 
    -' n))) and 
    
          
    
    A13: ( 
    Sum Fr2) 
    = (seq4 
    . k) by 
    A7;
    
          now
    
            let n be
    Nat such that 
    
            
    
    A14: n 
    in ( 
    dom Fr1); 
    
            (Fr1
    . n) 
    = ((seq1 
    . n) 
    * (seq2 
    . (k 
    -' n))) by 
    A8,
    A9,
    A14;
    
            hence (Fr1
    . n) 
    = (Fr2 
    . n) by 
    A8,
    A12,
    A14;
    
          end;
    
          hence (seq3
    . x) 
    = (seq4 
    . x) by 
    A8,
    A10,
    A11,
    A13,
    AFINSQ_1: 8;
    
        end;
    
        hence seq3
    = seq4 by 
    FUNCT_2: 12;
    
      end;
    
      commutativity
    
      proof
    
        let seq3, seq1, seq2;
    
        assume
    
        
    
    A15: for k be 
    Nat holds ex Fr be 
    XFinSequence of 
    REAL st ( 
    dom Fr) 
    = (k 
    + 1) & (for n st n 
    in (k 
    + 1) holds (Fr 
    . n) 
    = ((seq1 
    . n) 
    * (seq2 
    . (k 
    -' n)))) & ( 
    Sum Fr) 
    = (seq3 
    . k); 
    
        let k be
    Nat;
    
        consider Fr1 be
    XFinSequence of 
    REAL such that 
    
        
    
    A16: ( 
    dom Fr1) 
    = (k 
    + 1) and 
    
        
    
    A17: for n st n 
    in (k 
    + 1) holds (Fr1 
    . n) 
    = ((seq1 
    . n) 
    * (seq2 
    . (k 
    -' n))) and 
    
        
    
    A18: ( 
    Sum Fr1) 
    = (seq3 
    . k) by 
    A15;
    
        defpred
    
    Q[
    set, 
    set] means for i st i
    = $1 holds $2 
    = ((seq2 
    . i) 
    * (seq1 
    . (k 
    -' i))); 
    
        reconsider k9 = k as
    Nat;
    
        
    
        
    
    A19: for i st i 
    in ( 
    Segm (k9 
    + 1)) holds ex z be 
    Element of 
    REAL st 
    Q[i, z]
    
        proof
    
          let i such that i
    in ( 
    Segm (k9 
    + 1)); 
    
          reconsider ss = ((seq2
    . i) 
    * (seq1 
    . (k 
    -' i))) as 
    Element of 
    REAL ; 
    
          take ss;
    
          thus thesis;
    
        end;
    
        consider Fr2 such that
    
        
    
    A20: ( 
    dom Fr2) 
    = ( 
    Segm (k9 
    + 1)) and 
    
        
    
    A21: for i st i 
    in ( 
    Segm (k9 
    + 1)) holds 
    Q[i, (Fr2
    . i)] from 
    STIRL2_1:sch 5(
    A19);
    
        take Fr2;
    
        thus (
    dom Fr2) 
    = (k 
    + 1) & for n st n 
    in (k 
    + 1) holds (Fr2 
    . n) 
    = ((seq2 
    . n) 
    * (seq1 
    . (k 
    -' n))) by 
    A20,
    A21;
    
        now
    
          let n such that
    
          
    
    A22: n 
    in ( 
    len Fr1); 
    
          
    
          
    
    A23: n 
    < (k 
    + 1) by 
    A16,
    A22,
    AFINSQ_1: 86;
    
          then n
    <= k by 
    NAT_1: 13;
    
          then
    
          
    
    A24: (k 
    -' n) 
    = (k 
    - n) by 
    XREAL_1: 233;
    
          (k
    -' n) 
    <= ((k 
    -' n) 
    + n) by 
    NAT_1: 11;
    
          then
    
          
    
    A25: (k 
    -' (k 
    -' n)) 
    = (k 
    - (k 
    -' n)) by 
    A24,
    XREAL_1: 233;
    
          (n
    + 1) 
    <= ( 
    len Fr2) by 
    A20,
    A23,
    NAT_1: 13;
    
          then
    
          
    
    A26: (( 
    len Fr2) 
    -' (n 
    + 1)) 
    = ((k 
    + 1) 
    - (n 
    + 1)) by 
    A20,
    XREAL_1: 233;
    
          (k
    - n) 
    <= k & k 
    < (k 
    + 1) by 
    NAT_1: 13,
    XREAL_1: 43;
    
          then (k
    - n) 
    < (k 
    + 1) by 
    XXREAL_0: 2;
    
          then ((
    len Fr2) 
    -' (n 
    + 1)) 
    in ( 
    Segm (k 
    + 1)) by 
    A26,
    NAT_1: 44;
    
          then (Fr2
    . (( 
    len Fr2) 
    -' (n 
    + 1))) 
    = ((seq2 
    . (k 
    -' n)) 
    * (seq1 
    . n)) by 
    A21,
    A26,
    A24,
    A25;
    
          hence (Fr1
    . n) 
    = (Fr2 
    . (( 
    len Fr1) 
    -' (1 
    + n))) by 
    A16,
    A17,
    A20,
    A22;
    
        end;
    
        hence thesis by
    A16,
    A18,
    A20,
    Lm4;
    
      end;
    
    end
    
    theorem :: 
    
    CATALAN2:43
    
    for Fr1, Fr2 st (
    dom Fr1) 
    = ( 
    dom Fr2) & for n st n 
    in ( 
    len Fr1) holds (Fr1 
    . n) 
    = (Fr2 
    . (( 
    len Fr1) 
    -' (1 
    + n))) holds ( 
    Sum Fr1) 
    = ( 
    Sum Fr2) by 
    Lm4;
    
    theorem :: 
    
    CATALAN2:44
    
    
    
    
    
    Th44: for Fr1, Fr2 st ( 
    dom Fr1) 
    = ( 
    dom Fr2) & for n st n 
    in ( 
    len Fr1) holds (Fr1 
    . n) 
    = (r 
    * (Fr2 
    . n)) holds ( 
    Sum Fr1) 
    = (r 
    * ( 
    Sum Fr2)) 
    
    proof
    
      let Fr1, Fr2 such that
    
      
    
    A1: ( 
    dom Fr1) 
    = ( 
    dom Fr2) and 
    
      
    
    A2: for n st n 
    in ( 
    len Fr1) holds (Fr1 
    . n) 
    = (r 
    * (Fr2 
    . n)); 
    
      
    
      
    
    A3: (Fr1 
    | ( 
    dom Fr1)) 
    = Fr1 & (Fr2 
    | ( 
    dom Fr1)) 
    = Fr2 by 
    A1;
    
      defpred
    
    P[
    Nat] means $1
    <= ( 
    len Fr1) implies ( 
    Sum (Fr1 
    | $1)) 
    = (r 
    * ( 
    Sum (Fr2 
    | $1))); 
    
      
    
      
    
    A4: for i st 
    P[i] holds
    P[(i
    + 1)] 
    
      proof
    
        let i such that
    
        
    
    A5: 
    P[i];
    
        assume
    
        
    
    A6: (i 
    + 1) 
    <= ( 
    len Fr1); 
    
        then i
    < ( 
    len Fr1) by 
    NAT_1: 13;
    
        then
    
        
    
    A7: i 
    in ( 
    len Fr1) by 
    AFINSQ_1: 86;
    
        then
    
        
    
    A8: (Fr1 
    . i) 
    = (r 
    * (Fr2 
    . i)) by 
    A2;
    
        (
    Sum (Fr1 
    | (i 
    + 1))) 
    = ((Fr1 
    . i) 
    + ( 
    Sum (Fr1 
    | i))) & ( 
    Sum (Fr2 
    | (i 
    + 1))) 
    = ((Fr2 
    . i) 
    + ( 
    Sum (Fr2 
    | i))) by 
    A1,
    A7,
    AFINSQ_2: 65;
    
        hence thesis by
    A5,
    A6,
    A8,
    NAT_1: 13;
    
      end;
    
      
    
      
    
    A9: 
    P[
    0 ]; 
    
      for i holds
    P[i] from
    NAT_1:sch 2(
    A9,
    A4);
    
      hence thesis by
    A3;
    
    end;
    
    theorem :: 
    
    CATALAN2:45
    
    (seq1
    (##) (r 
    (#) seq2)) 
    = (r 
    (#) (seq1 
    (##) seq2)) 
    
    proof
    
      set RS = (r
    (#) seq2); 
    
      set S = (seq1
    (##) seq2); 
    
      now
    
        let x be
    object;
    
        assume x
    in  
    NAT ; 
    
        then
    
        reconsider k = x as
    Nat;
    
        consider Fr1 such that
    
        
    
    A1: ( 
    dom Fr1) 
    = (k 
    + 1) and 
    
        
    
    A2: for n st n 
    in (k 
    + 1) holds (Fr1 
    . n) 
    = ((seq1 
    . n) 
    * (RS 
    . (k 
    -' n))) and 
    
        
    
    A3: ( 
    Sum Fr1) 
    = ((seq1 
    (##) RS) 
    . k) by 
    Def4;
    
        consider Fr2 such that
    
        
    
    A4: ( 
    dom Fr2) 
    = (k 
    + 1) and 
    
        
    
    A5: for n st n 
    in (k 
    + 1) holds (Fr2 
    . n) 
    = ((seq1 
    . n) 
    * (seq2 
    . (k 
    -' n))) and 
    
        
    
    A6: ( 
    Sum Fr2) 
    = (S 
    . k) by 
    Def4;
    
        now
    
          let n;
    
          assume n
    in ( 
    len Fr1); 
    
          then
    
          
    
    A7: (Fr1 
    . n) 
    = ((seq1 
    . n) 
    * (RS 
    . (k 
    -' n))) & (Fr2 
    . n) 
    = ((seq1 
    . n) 
    * (seq2 
    . (k 
    -' n))) by 
    A1,
    A2,
    A5;
    
          (RS
    . (k 
    -' n)) 
    = (r 
    * (seq2 
    . (k 
    -' n))) by 
    SEQ_1: 9;
    
          hence (Fr1
    . n) 
    = (r 
    * (Fr2 
    . n)) by 
    A7;
    
        end;
    
        then (
    Sum Fr1) 
    = (r 
    * ( 
    Sum Fr2)) by 
    A1,
    A4,
    Th44;
    
        hence ((seq1
    (##) RS) 
    . x) 
    = ((r 
    (#) S) 
    . x) by 
    A3,
    A6,
    SEQ_1: 9;
    
      end;
    
      hence thesis by
    FUNCT_2: 12;
    
    end;
    
    theorem :: 
    
    CATALAN2:46
    
    (seq1
    (##) (seq2 
    + seq3)) 
    = ((seq1 
    (##) seq2) 
    + (seq1 
    (##) seq3)) 
    
    proof
    
      set S = (seq2
    + seq3); 
    
      set S2 = (seq1
    (##) seq2); 
    
      set S3 = (seq1
    (##) seq3); 
    
      now
    
        let x be
    object;
    
        assume x
    in  
    NAT ; 
    
        then
    
        reconsider k = x as
    Nat;
    
        consider Fr be
    XFinSequence of 
    REAL such that 
    
        
    
    A1: ( 
    dom Fr) 
    = (k 
    + 1) and 
    
        
    
    A2: for n st n 
    in (k 
    + 1) holds (Fr 
    . n) 
    = ((seq1 
    . n) 
    * (S 
    . (k 
    -' n))) and 
    
        
    
    A3: ( 
    Sum Fr) 
    = ((seq1 
    (##) S) 
    . k) by 
    Def4;
    
        consider Fr1 be
    XFinSequence of 
    REAL such that 
    
        
    
    A4: ( 
    dom Fr1) 
    = (k 
    + 1) and 
    
        
    
    A5: for n st n 
    in (k 
    + 1) holds (Fr1 
    . n) 
    = ((seq1 
    . n) 
    * (seq2 
    . (k 
    -' n))) and 
    
        
    
    A6: ( 
    Sum Fr1) 
    = (S2 
    . k) by 
    Def4;
    
        
    
        
    
    A7: ( 
    len Fr1) 
    = ( 
    len Fr) by 
    A1,
    A4;
    
        consider Fr2 be
    XFinSequence of 
    REAL such that 
    
        
    
    A8: ( 
    dom Fr2) 
    = (k 
    + 1) and 
    
        
    
    A9: for n st n 
    in (k 
    + 1) holds (Fr2 
    . n) 
    = ((seq1 
    . n) 
    * (seq3 
    . (k 
    -' n))) and 
    
        
    
    A10: ( 
    Sum Fr2) 
    = (S3 
    . k) by 
    Def4;
    
        
    
        
    
    A11: for n be 
    Nat st n 
    in ( 
    dom Fr) holds (Fr 
    . n) 
    = ( 
    addreal  
    . ((Fr1 
    . n),(Fr2 
    . n))) 
    
        proof
    
          let n be
    Nat such that 
    
          
    
    A12: n 
    in ( 
    dom Fr); 
    
          
    
          
    
    A13: (Fr 
    . n) 
    = ((seq1 
    . n) 
    * (S 
    . (k 
    -' n))) by 
    A1,
    A2,
    A12;
    
          
    
          
    
    A14: (S 
    . (k 
    -' n)) 
    = ((seq2 
    . (k 
    -' n)) 
    + (seq3 
    . (k 
    -' n))) by 
    SEQ_1: 7;
    
          (Fr1
    . n) 
    = ((seq1 
    . n) 
    * (seq2 
    . (k 
    -' n))) & (Fr2 
    . n) 
    = ((seq1 
    . n) 
    * (seq3 
    . (k 
    -' n))) by 
    A1,
    A5,
    A9,
    A12;
    
          then (Fr
    . n) 
    = ((Fr1 
    . n) 
    + (Fr2 
    . n)) by 
    A13,
    A14;
    
          hence thesis by
    BINOP_2:def 9;
    
        end;
    
        (
    len Fr1) 
    = ( 
    len Fr2) by 
    A4,
    A8;
    
        then (
    addreal  
    "**" (Fr1 
    ^ Fr2)) 
    = ( 
    addreal  
    "**" Fr) by 
    A11,
    A7,
    AFINSQ_2: 46;
    
        then (
    Sum Fr) 
    = ( 
    addreal  
    "**" (Fr1 
    ^ Fr2)) by 
    AFINSQ_2: 48;
    
        then (
    Sum Fr) 
    = ( 
    Sum (Fr1 
    ^ Fr2)) by 
    AFINSQ_2: 48;
    
        then (
    Sum Fr) 
    = (( 
    Sum Fr1) 
    + ( 
    Sum Fr2)) by 
    AFINSQ_2: 55;
    
        hence ((seq1
    (##) S) 
    . x) 
    = ((S2 
    + S3) 
    . x) by 
    A3,
    A6,
    A10,
    SEQ_1: 7;
    
      end;
    
      hence thesis by
    FUNCT_2: 12;
    
    end;
    
    theorem :: 
    
    CATALAN2:47
    
    
    
    
    
    Th47: ((seq1 
    (##) seq2) 
    .  
    0 ) 
    = ((seq1 
    .  
    0 ) 
    * (seq2 
    .  
    0 )) 
    
    proof
    
      set S = ((seq1
    .  
    0 ) 
    * (seq2 
    .  
    0 )); 
    
      consider Fr such that
    
      
    
    A1: ( 
    dom Fr) 
    = ( 
    0 qua 
    Nat
    + 1) and 
    
      
    
    A2: for n st n 
    in ( 
    0 qua 
    Nat
    + 1) holds (Fr 
    . n) 
    = ((seq1 
    . n) 
    * (seq2 
    . ( 
    0  
    -' n))) and 
    
      
    
    A3: ( 
    Sum Fr) 
    = ((seq1 
    (##) seq2) 
    .  
    0 ) by 
    Def4;
    
      
    
      
    
    A4: ( 
    0  
    -'  
    0 ) 
    =  
    0 & ( 
    len Fr) 
    = 1 by 
    A1,
    XREAL_1: 232;
    
      
    0  
    in ( 
    Segm 1) by 
    NAT_1: 44;
    
      then (Fr
    .  
    0 ) 
    = ((seq1 
    .  
    0 ) 
    * (seq2 
    . ( 
    0  
    -'  
    0 ))) by 
    A2;
    
      then Fr
    =  
    <%S%> by
    A4,
    AFINSQ_1: 34;
    
      hence thesis by
    A3,
    AFINSQ_2: 53;
    
    end;
    
    reconsider zz =
    0 as 
    Nat;
    
    theorem :: 
    
    CATALAN2:48
    
    
    
    
    
    Th48: for seq1, seq2, n holds ex Fr st (( 
    Partial_Sums (seq1 
    (##) seq2)) 
    . n) 
    = ( 
    Sum Fr) & ( 
    dom Fr) 
    = (n 
    + 1) & for i st i 
    in (n 
    + 1) holds (Fr 
    . i) 
    = ((seq1 
    . i) 
    * (( 
    Partial_Sums seq2) 
    . (n 
    -' i))) 
    
    proof
    
      let seq1, seq2, n;
    
      set S = (seq1
    (##) seq2); 
    
      set P = (
    Partial_Sums seq2); 
    
      defpred
    
    P[
    Nat] means ex Fr st ((
    Partial_Sums S) 
    . $1) 
    = ( 
    Sum Fr) & ( 
    dom Fr) 
    = ($1 
    + 1) & for i st i 
    in ($1 
    + 1) holds (Fr 
    . i) 
    = ((seq1 
    . i) 
    * (P 
    . ($1 
    -' i))); 
    
      
    
      
    
    A1: for n st 
    P[n] holds
    P[(n
    + 1)] 
    
      proof
    
        set A =
    addreal ; 
    
        let n;
    
        set n1 = (n
    + 1); 
    
        defpred
    
    Q[
    set, 
    set] means for i st i
    = $1 holds $2 
    = ((seq1 
    . i) 
    * (P 
    . (n1 
    -' i))); 
    
        
    
        
    
    A2: (n1 
    -' n1) 
    =  
    0 & (P 
    .  
    0 ) 
    = (seq2 
    .  
    0 ) by 
    SERIES_1:def 1,
    XREAL_1: 232;
    
        
    
        
    
    A3: for i st i 
    in ( 
    Segm (n1 
    + 1)) holds ex x be 
    Element of 
    REAL st 
    Q[i, x]
    
        proof
    
          let i such that i
    in ( 
    Segm (n1 
    + 1)); 
    
          reconsider ss = ((seq1
    . i) 
    * (( 
    Partial_Sums seq2) 
    . (n1 
    -' i))) as 
    Element of 
    REAL ; 
    
          take ss;
    
          thus thesis;
    
        end;
    
        consider Fr2 such that
    
        
    
    A4: ( 
    dom Fr2) 
    = ( 
    Segm (n1 
    + 1)) and 
    
        
    
    A5: for i st i 
    in ( 
    Segm (n1 
    + 1)) holds 
    Q[i, (Fr2
    . i)] from 
    STIRL2_1:sch 5(
    A3);
    
        assume
    P[n];
    
        then
    
        consider Fr such that
    
        
    
    A6: (( 
    Partial_Sums S) 
    . n) 
    = ( 
    Sum Fr) and 
    
        
    
    A7: ( 
    dom Fr) 
    = n1 and 
    
        
    
    A8: for i st i 
    in (n 
    + 1) holds (Fr 
    . i) 
    = ((seq1 
    . i) 
    * (P 
    . (n 
    -' i))); 
    
        consider Fr1 such that
    
        
    
    A9: ( 
    dom Fr1) 
    = (n1 
    + 1) and 
    
        
    
    A10: for i st i 
    in (n1 
    + 1) holds (Fr1 
    . i) 
    = ((seq1 
    . i) 
    * (seq2 
    . (n1 
    -' i))) and 
    
        
    
    A11: ( 
    Sum Fr1) 
    = (S 
    . n1) by 
    Def4;
    
        
    
        
    
    A12: (Fr1 
    | (n1 
    + 1)) 
    = Fr1 by 
    A9;
    
        
    
        
    
    A13: for i be 
    Nat st i 
    in ( 
    dom (Fr2 
    | n1)) holds ((Fr2 
    | n1) 
    . i) 
    = ( 
    addreal  
    . ((Fr 
    . i),((Fr1 
    | n1) 
    . i))) 
    
        proof
    
          let i be
    Nat such that 
    
          
    
    A14: i 
    in ( 
    dom (Fr2 
    | n1)); 
    
          
    
          
    
    A15: i 
    in (( 
    dom Fr2) 
    /\ n1) by 
    A14,
    RELAT_1: 61;
    
          then i
    in ( 
    dom (Fr1 
    | n1)) by 
    A9,
    A4,
    RELAT_1: 61;
    
          then
    
          
    
    A16: (Fr1 
    . i) 
    = ((Fr1 
    | n1) 
    . i) by 
    FUNCT_1: 47;
    
          
    
          
    
    A17: i 
    in ( 
    Segm n1) by 
    A15,
    XBOOLE_0:def 4;
    
          then
    
          
    
    A18: i 
    < n1 by 
    NAT_1: 44;
    
          then i
    <= n by 
    NAT_1: 13;
    
          then
    
          
    
    A19: (n 
    -' i) 
    = (n 
    - i) by 
    XREAL_1: 233;
    
          i
    in (n1 
    + 1) & i 
    in  
    NAT by 
    A4,
    A15,
    XBOOLE_0:def 4;
    
          then
    
          
    
    A20: (Fr1 
    . i) 
    = ((seq1 
    . i) 
    * (seq2 
    . (n1 
    -' i))) & (Fr2 
    . i) 
    = ((seq1 
    . i) 
    * (P 
    . (n1 
    -' i))) by 
    A10,
    A5;
    
          
    
          
    
    A21: (Fr2 
    . i) 
    = ((Fr2 
    | n1) 
    . i) by 
    A14,
    FUNCT_1: 47;
    
          (n1
    -' i) 
    = (n1 
    - i) by 
    A18,
    XREAL_1: 233;
    
          then ((n
    -' i) 
    + 1) 
    = (n1 
    -' i) by 
    A19;
    
          then
    
          
    
    A22: (P 
    . (n1 
    -' i)) 
    = ((P 
    . (n 
    -' i)) 
    + (seq2 
    . (n1 
    -' i))) by 
    SERIES_1:def 1;
    
          (Fr
    . i) 
    = ((seq1 
    . i) 
    * (P 
    . (n 
    -' i))) by 
    A8,
    A17;
    
          then (Fr2
    . i) 
    = ((Fr 
    . i) 
    + (Fr1 
    . i)) by 
    A20,
    A22;
    
          hence thesis by
    A16,
    A21,
    BINOP_2:def 9;
    
        end;
    
        n1
    <= (n1 
    + 1) by 
    NAT_1: 11;
    
        then
    
        
    
    A23: ( 
    Segm n1) 
    c= ( 
    Segm (n1 
    + 1)) by 
    NAT_1: 39;
    
        then
    
        
    
    A24: ( 
    len (Fr1 
    | n1)) 
    = ( 
    len Fr) by 
    A7,
    A9,
    RELAT_1: 62;
    
        n1
    < (n1 
    + 1) by 
    NAT_1: 13;
    
        then
    
        
    
    A25: n1 
    in ( 
    Segm (n1 
    + 1)) by 
    NAT_1: 44;
    
        then
    
        
    
    A26: (Fr1 
    . n1) 
    = ((seq1 
    . n1) 
    * (seq2 
    . (n1 
    -' n1))) & ( 
    Sum (Fr1 
    | (n1 
    + 1))) 
    = ((Fr1 
    . n1) 
    + ( 
    Sum (Fr1 
    | n1))) by 
    A9,
    A10,
    AFINSQ_2: 65;
    
        (
    len (Fr2 
    | n1)) 
    = ( 
    len Fr) by 
    A7,
    A4,
    A23,
    RELAT_1: 62;
    
        
    
        then (A
    "**" (Fr2 
    | n1)) 
    = (A 
    "**" (Fr 
    ^ (Fr1 
    | n1))) by 
    A13,
    A24,
    AFINSQ_2: 46
    
        .= (
    Sum (Fr 
    ^ (Fr1 
    | n1))) by 
    AFINSQ_2: 48
    
        .= ((
    Sum Fr) 
    + ( 
    Sum (Fr1 
    | n1))) by 
    AFINSQ_2: 55;
    
        then
    
        
    
    A27: ( 
    Sum (Fr2 
    | n1)) 
    = (( 
    Sum Fr) 
    + ( 
    Sum (Fr1 
    | n1))) by 
    AFINSQ_2: 48;
    
        take Fr2;
    
        (Fr2
    . n1) 
    = ((seq1 
    . n1) 
    * (P 
    . (n1 
    -' n1))) & ( 
    Sum (Fr2 
    | (n1 
    + 1))) 
    = ((Fr2 
    . n1) 
    + ( 
    Sum (Fr2 
    | n1))) by 
    A4,
    A5,
    A25,
    AFINSQ_2: 65;
    
        then (
    Sum Fr2) 
    = ((( 
    Partial_Sums S) 
    . n) 
    + (S 
    . n1)) & n 
    in  
    NAT & n1 
    in  
    NAT by 
    A6,
    A11,
    A4,
    A27,
    A2,
    A26,
    A12,
    ORDINAL1:def 12;
    
        hence thesis by
    A4,
    A5,
    SERIES_1:def 1;
    
      end;
    
      
    
      
    
    A28: 
    P[
    0 ] 
    
      proof
    
        reconsider rr = ((seq1
    .  
    0 ) 
    * (seq2 
    .  
    0 )) as 
    Element of 
    REAL ; 
    
        set Fr = (1
    --> rr); 
    
        reconsider Fr as
    XFinSequence of 
    REAL ; 
    
        take Fr;
    
        
    
        
    
    A29: ( 
    dom Fr) 
    = 1; 
    
        
    
        
    
    A30: ( 
    Sum (Fr 
    | zz)) 
    =  
    0 ; 
    
        
    
        
    
    A31: 
    0  
    in ( 
    Segm 1) by 
    NAT_1: 44;
    
        then
    
        
    
    A32: (Fr 
    . zz) 
    = ((seq1 
    .  
    0 ) 
    * (seq2 
    .  
    0 )) by 
    FUNCOP_1: 7;
    
        
    
        
    
    A33: (( 
    Sum (Fr 
    | zz)) 
    + (Fr 
    . zz)) 
    = ( 
    Sum (Fr 
    | (zz 
    + 1))) by 
    A29,
    A31,
    AFINSQ_2: 65;
    
        (
    Sum Fr) 
    = ( 
    Sum (Fr 
    | ( 
    0 qua 
    Nat
    + 1))) 
    
        .= ((
    Sum (Fr 
    | zz)) 
    + (Fr 
    . zz)) by 
    A33
    
        .= (Fr
    . zz) by 
    A30
    
        .= (S
    .  
    0 ) by 
    Th47,
    A32;
    
        hence ((
    Partial_Sums S) 
    .  
    0 ) 
    = ( 
    Sum Fr) & ( 
    dom Fr) 
    = ( 
    0 qua 
    Nat
    + 1) by 
    SERIES_1:def 1;
    
        let i such that
    
        
    
    A34: i 
    in ( 
    0 qua 
    Nat
    + 1); 
    
        i
    in ( 
    Segm 1) by 
    A34;
    
        then i
    < 1 by 
    NAT_1: 44;
    
        then
    
        
    
    A35: i 
    =  
    0 by 
    NAT_1: 14;
    
        then (
    0  
    -' i) 
    =  
    0 by 
    XREAL_1: 232;
    
        then (P
    . ( 
    0  
    -' i)) 
    = (seq2 
    .  
    0 ) by 
    SERIES_1:def 1;
    
        hence thesis by
    A34,
    A35,
    FUNCOP_1: 7;
    
      end;
    
      for i holds
    P[i] from
    NAT_1:sch 2(
    A28,
    A1);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    CATALAN2:49
    
    
    
    
    
    Th49: for seq1, seq2, n st seq2 is 
    summable holds ex Fr st (( 
    Partial_Sums (seq1 
    (##) seq2)) 
    . n) 
    = ((( 
    Sum seq2) 
    * (( 
    Partial_Sums seq1) 
    . n)) 
    - ( 
    Sum Fr)) & ( 
    dom Fr) 
    = (n 
    + 1) & for i st i 
    in (n 
    + 1) holds (Fr 
    . i) 
    = ((seq1 
    . i) 
    * ( 
    Sum (seq2 
    ^\ ((n 
    -' i) 
    + 1)))) 
    
    proof
    
      let seq1, seq2, n such that
    
      
    
    A1: seq2 is 
    summable;
    
      defpred
    
    Q[
    set, 
    set] means for i st i
    = $1 holds $2 
    = ((seq1 
    . i) 
    * ( 
    Sum (seq2 
    ^\ ((n 
    -' i) 
    + 1)))); 
    
      set P2 = (
    Partial_Sums seq2); 
    
      set P1 = (
    Partial_Sums seq1); 
    
      set S = (seq1
    (##) seq2); 
    
      
    
      
    
    A2: for i st i 
    in ( 
    Segm (n 
    + 1)) holds ex x be 
    Element of 
    REAL st 
    Q[i, x]
    
      proof
    
        let i such that i
    in ( 
    Segm (n 
    + 1)); 
    
        reconsider ss = ((seq1
    . i) 
    * ( 
    Sum (seq2 
    ^\ ((n 
    -' i) 
    + 1)))) as 
    Element of 
    REAL by 
    XREAL_0:def 1;
    
        take ss;
    
        thus thesis;
    
      end;
    
      consider Fr such that
    
      
    
    A3: ( 
    dom Fr) 
    = ( 
    Segm (n 
    + 1)) and 
    
      
    
    A4: for i st i 
    in ( 
    Segm (n 
    + 1)) holds 
    Q[i, (Fr
    . i)] from 
    STIRL2_1:sch 5(
    A2);
    
      consider Fr1 such that
    
      
    
    A5: (( 
    Partial_Sums S) 
    . n) 
    = ( 
    Sum Fr1) and 
    
      
    
    A6: ( 
    dom Fr1) 
    = (n 
    + 1) and 
    
      
    
    A7: for i st i 
    in (n 
    + 1) holds (Fr1 
    . i) 
    = ((seq1 
    . i) 
    * (P2 
    . (n 
    -' i))) by 
    Th48;
    
      
    
      
    
    A8: 
    0  
    in ( 
    Segm (n 
    + 1)) by 
    NAT_1: 44;
    
      then
    
      
    
    A9: (Fr1 
    .  
    0 ) 
    = ((seq1 
    .  
    0 ) 
    * (P2 
    . (n 
    -'  
    0 ))) & ( 
    Sum (Fr1 
    | (zz 
    + 1))) 
    = ((Fr1 
    .  
    0 ) 
    + ( 
    Sum (Fr1 
    | zz))) by 
    A6,
    A7,
    AFINSQ_2: 65;
    
      defpred
    
    P[
    Nat] means ($1
    + 1) 
    <= (n 
    + 1) implies (( 
    Sum (Fr1 
    | ($1 
    + 1))) 
    + ( 
    Sum (Fr 
    | ($1 
    + 1)))) 
    = (( 
    Sum seq2) 
    * (P1 
    . $1)); 
    
      
    
      
    
    A10: for k st 
    P[k] holds
    P[(k
    + 1)] 
    
      proof
    
        let k such that
    
        
    
    A11: 
    P[k];
    
        reconsider k1 = (k
    + 1) as 
    Nat;
    
        assume
    
        
    
    A12: ((k 
    + 1) 
    + 1) 
    <= (n 
    + 1); 
    
        then k1
    < (n 
    + 1) by 
    NAT_1: 13;
    
        then
    
        
    
    A13: k1 
    in ( 
    Segm (n 
    + 1)) by 
    NAT_1: 44;
    
        then
    
        
    
    A14: (Fr 
    . k1) 
    = ((seq1 
    . k1) 
    * ( 
    Sum (seq2 
    ^\ ((n 
    -' k1) 
    + 1)))) & ( 
    Sum (Fr1 
    | (k1 
    + 1))) 
    = ((Fr1 
    . k1) 
    + ( 
    Sum (Fr1 
    | k1))) by 
    A4,
    A6,
    AFINSQ_2: 65;
    
        
    
        
    
    A15: (( 
    Sum (Fr1 
    | k1)) 
    + ( 
    Sum (Fr 
    | k1))) 
    = (( 
    Sum seq2) 
    * (P1 
    . k)) by 
    A12,
    A11,
    NAT_1: 13;
    
        (
    Sum (Fr 
    | (k1 
    + 1))) 
    = ((Fr 
    . k1) 
    + ( 
    Sum (Fr 
    | k1))) & (Fr1 
    . k1) 
    = ((seq1 
    . k1) 
    * (P2 
    . (n 
    -' k1))) by 
    A3,
    A7,
    A13,
    AFINSQ_2: 65;
    
        
    
        then ((
    Sum (Fr 
    | (k1 
    + 1))) 
    + ( 
    Sum (Fr1 
    | (k1 
    + 1)))) 
    = (((seq1 
    . k1) 
    * (( 
    Sum (seq2 
    ^\ ((n 
    -' k1) 
    + 1))) 
    + (P2 
    . (n 
    -' k1)))) 
    + (( 
    Sum seq2) 
    * (P1 
    . k))) by 
    A15,
    A14
    
        .= (((seq1
    . k1) 
    * ( 
    Sum seq2)) 
    + (( 
    Sum seq2) 
    * (P1 
    . k))) by 
    A1,
    SERIES_1: 15
    
        .= ((
    Sum seq2) 
    * ((P1 
    . k) 
    + (seq1 
    . k1))) 
    
        .= ((P1
    . k1) 
    * ( 
    Sum seq2)) by 
    SERIES_1:def 1;
    
        hence thesis;
    
      end;
    
      
    
      
    
    A16: ( 
    Sum (Fr 
    | zz)) 
    =  
    0 ; 
    
      
    
      
    
    A17: ( 
    Sum (Fr1 
    | zz)) 
    =  
    0 ; 
    
      
    
      
    
    A18: ( 
    Sum (Fr 
    | (zz 
    + 1))) 
    = ((Fr 
    .  
    0 ) 
    + ( 
    Sum (Fr 
    | zz))) & (Fr 
    .  
    0 ) 
    = ((seq1 
    .  
    0 ) 
    * ( 
    Sum (seq2 
    ^\ ((n 
    -'  
    0 ) 
    + 1)))) by 
    A3,
    A4,
    A8,
    AFINSQ_2: 65;
    
      
    
      then ((
    Sum (Fr 
    | (zz 
    + 1))) 
    + ( 
    Sum (Fr1 
    | (zz 
    + 1)))) 
    = (((Fr 
    .  
    0 ) 
    + ( 
    Sum (Fr 
    | zz))) 
    + ( 
    Sum (Fr1 
    | (zz 
    + 1)))) 
    
      .= ((Fr
    .  
    0 ) 
    + ( 
    Sum (Fr1 
    | (zz 
    + 1)))) by 
    A16
    
      .= (((seq1
    .  
    0 ) 
    * ( 
    Sum (seq2 
    ^\ ((n 
    -'  
    0 ) 
    + 1)))) 
    + ( 
    Sum (Fr1 
    | (zz 
    + 1)))) by 
    A18
    
      .= ((((seq1
    .  
    0 ) 
    * ( 
    Sum (seq2 
    ^\ ((n 
    -'  
    0 ) 
    + 1)))) 
    + (Fr1 
    .  
    0 )) 
    + ( 
    Sum (Fr1 
    | zz))) by 
    A9
    
      .= ((((seq1
    .  
    0 ) 
    * ( 
    Sum (seq2 
    ^\ ((n 
    -'  
    0 ) 
    + 1)))) 
    + ((seq1 
    .  
    0 ) 
    * (P2 
    . (n 
    -'  
    0 )))) 
    + ( 
    Sum (Fr1 
    | zz))) by 
    A9
    
      .= ((seq1
    .  
    0 ) 
    * (( 
    Sum (seq2 
    ^\ ((n 
    -'  
    0 ) 
    + 1))) 
    + (P2 
    . (n 
    -'  
    0 )))) by 
    A17
    
      .= ((seq1
    .  
    0 ) 
    * ( 
    Sum seq2)) by 
    A1,
    SERIES_1: 15;
    
      then
    
      
    
    A19: 
    P[
    0 ] by 
    SERIES_1:def 1;
    
      
    
      
    
    A20: for k holds 
    P[k] from
    NAT_1:sch 2(
    A19,
    A10);
    
      take Fr;
    
      
    
      
    
    A21: (Fr1 
    | (n 
    + 1)) 
    = Fr1 by 
    A6;
    
      (Fr
    | (n 
    + 1)) 
    = Fr by 
    A3;
    
      then ((
    Sum Fr1) 
    + ( 
    Sum Fr)) 
    = (( 
    Sum seq2) 
    * (P1 
    . n)) by 
    A20,
    A21;
    
      hence thesis by
    A3,
    A4,
    A5;
    
    end;
    
    theorem :: 
    
    CATALAN2:50
    
    
    
    
    
    Th50: for Fr holds ex absFr be 
    XFinSequence of 
    REAL st ( 
    dom absFr) 
    = ( 
    dom Fr) & 
    |.(
    Sum Fr).| 
    <= ( 
    Sum absFr) & for i st i 
    in ( 
    dom absFr) holds (absFr 
    . i) 
    =  
    |.(Fr
    . i).| 
    
    proof
    
      let Fr;
    
      defpred
    
    P[
    object, 
    object] means $2
    =  
    |.(Fr
    . $1).|; 
    
      
    
      
    
    A1: for i st i 
    in ( 
    Segm ( 
    len Fr)) holds ex x be 
    Element of 
    REAL st 
    P[i, x]
    
      proof
    
        let i;
    
        assume i
    in ( 
    Segm ( 
    len Fr)); 
    
        consider x be
    Real such that 
    
        
    
    A2: 
    P[i, x];
    
        reconsider x as
    Element of 
    REAL by 
    XREAL_0:def 1;
    
        
    P[i, x] by
    A2;
    
        hence thesis;
    
      end;
    
      consider absFr be
    XFinSequence of 
    REAL such that 
    
      
    
    A3: ( 
    dom absFr) 
    = ( 
    Segm ( 
    len Fr)) and 
    
      
    
    A4: for i st i 
    in ( 
    Segm ( 
    len Fr)) holds 
    P[i, (absFr
    . i)] from 
    STIRL2_1:sch 5(
    A1);
    
      defpred
    
    Q[
    Nat] means $1
    <= ( 
    len Fr) implies 
    |.(
    Sum (Fr 
    | $1)).| 
    <= ( 
    Sum (absFr 
    | $1)); 
    
      
    
      
    
    A5: for i st 
    Q[i] holds
    Q[(i
    + 1)] 
    
      proof
    
        let i such that
    
        
    
    A6: 
    Q[i];
    
        set i1 = (i
    + 1); 
    
        assume
    
        
    
    A7: i1 
    <= ( 
    len Fr); 
    
        then i
    < ( 
    len Fr) by 
    NAT_1: 13;
    
        then
    
        
    
    A8: i 
    in ( 
    dom Fr) by 
    AFINSQ_1: 86;
    
        then (
    Sum (Fr 
    | i1)) 
    = ((Fr 
    . i) 
    + ( 
    Sum (Fr 
    | i))) & (absFr 
    . i) 
    =  
    |.(Fr
    . i).| by 
    A4,
    AFINSQ_2: 65;
    
        then
    
        
    
    A9: 
    |.(
    Sum (Fr 
    | i1)).| 
    <= ((absFr 
    . i) 
    +  
    |.(
    Sum (Fr 
    | i)).|) by 
    COMPLEX1: 56;
    
        (
    Sum (absFr 
    | i1)) 
    = ((absFr 
    . i) 
    + ( 
    Sum (absFr 
    | i))) by 
    A3,
    A8,
    AFINSQ_2: 65;
    
        then ((absFr
    . i) 
    +  
    |.(
    Sum (Fr 
    | i)).|) 
    <= ( 
    Sum (absFr 
    | i1)) by 
    A6,
    A7,
    NAT_1: 13,
    XREAL_1: 7;
    
        hence thesis by
    A9,
    XXREAL_0: 2;
    
      end;
    
      take absFr;
    
      
    
      
    
    A10: 
    Q[
    0 ] by 
    COMPLEX1: 44;
    
      for i holds
    Q[i] from
    NAT_1:sch 2(
    A10,
    A5);
    
      then
    |.(
    Sum (Fr 
    | ( 
    len Fr))).| 
    <= ( 
    Sum (absFr 
    | ( 
    len Fr))); 
    
      hence thesis by
    A3,
    A4;
    
    end;
    
    theorem :: 
    
    CATALAN2:51
    
    
    
    
    
    Th51: for seq1 st seq1 is 
    summable holds ex r st 
    0  
    < r & for k holds 
    |.(
    Sum (seq1 
    ^\ k)).| 
    < r 
    
    proof
    
      let seq1 such that
    
      
    
    A1: seq1 is 
    summable;
    
      defpred
    
    P[
    Nat] means ex r st r
    >=  
    0 & for i st i 
    <= $1 holds 
    |.(
    Sum (seq1 
    ^\ i)).| 
    <= r; 
    
      
    
      
    
    A2: for k st 
    P[k] holds
    P[(k
    + 1)] 
    
      proof
    
        let k;
    
        assume
    P[k];
    
        then
    
        consider r such that
    
        
    
    A3: r 
    >=  
    0 and 
    
        
    
    A4: for i st i 
    <= k holds 
    |.(
    Sum (seq1 
    ^\ i)).| 
    <= r; 
    
        take M = (
    max (r, 
    |.(
    Sum (seq1 
    ^\ (k 
    + 1))).|)); 
    
        thus M
    >=  
    0 by 
    A3,
    XXREAL_0: 25;
    
        let i such that
    
        
    
    A5: i 
    <= (k 
    + 1); 
    
        now
    
          per cases by
    A5,
    NAT_1: 8;
    
            suppose i
    = (k 
    + 1); 
    
            hence thesis by
    XXREAL_0: 25;
    
          end;
    
            suppose
    
            
    
    A6: i 
    <= k; 
    
            
    
            
    
    A7: r 
    <= M by 
    XXREAL_0: 25;
    
            
    |.(
    Sum (seq1 
    ^\ i)).| 
    <= r by 
    A4,
    A6;
    
            hence thesis by
    A7,
    XXREAL_0: 2;
    
          end;
    
        end;
    
        hence thesis;
    
      end;
    
      set P = (
    Partial_Sums seq1); 
    
      
    
      
    
    A8: ( 
    lim P) 
    = ( 
    Sum seq1) by 
    SERIES_1:def 3;
    
      P is
    convergent by 
    A1,
    SERIES_1:def 2;
    
      then
    
      consider n be
    Nat such that 
    
      
    
    A9: for m be 
    Nat st n 
    <= m holds 
    |.((P
    . m) 
    - ( 
    Sum seq1)).| 
    < 1 by 
    A8,
    SEQ_2:def 7;
    
      
    
      
    
    A10: 
    P[
    0 ] 
    
      proof
    
        take
    |.(
    Sum seq1).|; 
    
        thus
    |.(
    Sum seq1).| 
    >=  
    0 by 
    COMPLEX1: 46;
    
        let i;
    
        assume i
    <=  
    0 ; 
    
        then i
    =  
    0 ; 
    
        hence thesis by
    NAT_1: 47;
    
      end;
    
      for k holds
    P[k] from
    NAT_1:sch 2(
    A10,
    A2);
    
      then
    
      consider r such that
    
      
    
    A11: r 
    >=  
    0 and 
    
      
    
    A12: for i st i 
    <= n holds 
    |.(
    Sum (seq1 
    ^\ i)).| 
    <= r; 
    
      take r1 = (r
    + 1); 
    
      thus r1
    >  
    0 by 
    A11;
    
      let k;
    
      now
    
        per cases ;
    
          suppose
    
          
    
    A13: k 
    <= n; 
    
          
    
          
    
    A14: ( 
    0 qua 
    Nat
    + r) 
    < r1 by 
    XREAL_1: 8;
    
          
    |.(
    Sum (seq1 
    ^\ k)).| 
    <= r by 
    A12,
    A13;
    
          hence thesis by
    A14,
    XXREAL_0: 2;
    
        end;
    
          suppose
    
          
    
    A15: k 
    > n; 
    
          then
    
          reconsider k1 = (k
    - 1) as 
    Nat by 
    NAT_1: 20;
    
          (k1
    + 1) 
    > n by 
    A15;
    
          then k1
    >= n by 
    NAT_1: 13;
    
          then
    
          
    
    A16: 
    |.((P
    . k1) 
    - ( 
    Sum seq1)).| 
    < 1 by 
    A9;
    
          (
    Sum seq1) 
    = ((P 
    . k1) 
    + ( 
    Sum (seq1 
    ^\ (k1 
    + 1)))) by 
    A1,
    SERIES_1: 15;
    
          then
    |.(
    - ( 
    Sum (seq1 
    ^\ (k1 
    + 1)))).| 
    < 1 by 
    A16;
    
          then
    
          
    
    A17: 
    |.(
    Sum (seq1 
    ^\ (k1 
    + 1))).| 
    < 1 by 
    COMPLEX1: 52;
    
          (1
    +  
    0 qua 
    Nat)
    <= r1 by 
    A11,
    XREAL_1: 6;
    
          hence thesis by
    A17,
    XXREAL_0: 2;
    
        end;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    CATALAN2:52
    
    
    
    
    
    Th52: for seq1, n, m st n 
    <= m & for i holds (seq1 
    . i) 
    >=  
    0 holds (( 
    Partial_Sums seq1) 
    . n) 
    <= (( 
    Partial_Sums seq1) 
    . m) 
    
    proof
    
      let seq1, n, m such that
    
      
    
    A1: n 
    <= m and 
    
      
    
    A2: for i holds (seq1 
    . i) 
    >=  
    0 ; 
    
      set S = (
    Partial_Sums seq1); 
    
      defpred
    
    P[
    Nat] means (S
    . n) 
    <= (S 
    . (n 
    + $1)); 
    
      
    
      
    
    A3: for i st 
    P[i] holds
    P[(i
    + 1)] 
    
      proof
    
        let i such that
    
        
    
    A4: 
    P[i];
    
        set ni = (n
    + i); 
    
        (S
    . (ni 
    + 1)) 
    = ((S 
    . ni) 
    + (seq1 
    . (ni 
    + 1))) & (seq1 
    . (ni 
    + 1)) 
    >=  
    0 by 
    A2,
    SERIES_1:def 1;
    
        then (S
    . (ni 
    + 1)) 
    >= ((S 
    . ni) 
    +  
    0 qua 
    Nat) by
    XREAL_1: 6;
    
        hence thesis by
    A4,
    XXREAL_0: 2;
    
      end;
    
      
    
      
    
    A5: 
    P[
    0 ]; 
    
      
    
      
    
    A6: for i holds 
    P[i] from
    NAT_1:sch 2(
    A5,
    A3);
    
      reconsider m9 = m, n9 = n as
    Nat;
    
      
    
      
    
    A7: (n9 
    + (m9 
    - n9)) 
    = m9; 
    
      (m9
    - n9) is 
    Nat by 
    A1,
    NAT_1: 21;
    
      hence thesis by
    A6,
    A7;
    
    end;
    
    theorem :: 
    
    CATALAN2:53
    
    
    
    
    
    Th53: for seq1, seq2 st seq1 is 
    absolutely_summable & seq2 is 
    summable holds (seq1 
    (##) seq2) is 
    summable & ( 
    Sum (seq1 
    (##) seq2)) 
    = (( 
    Sum seq1) 
    * ( 
    Sum seq2)) 
    
    proof
    
      let seq1, seq2 such that
    
      
    
    A1: seq1 is 
    absolutely_summable and 
    
      
    
    A2: seq2 is 
    summable;
    
      set S2 = (
    Sum seq2); 
    
      set S1 = (
    Sum seq1); 
    
      set PA = (
    Partial_Sums  
    |.seq1.|);
    
      set P2 = (
    Partial_Sums seq2); 
    
      set P1 = (
    Partial_Sums seq1); 
    
      set S = (seq1
    (##) seq2); 
    
      set P = (
    Partial_Sums S); 
    
      
    
      
    
    A3: for e st 
    0  
    < e holds ex n be 
    Nat st for m be 
    Nat st n 
    <= m holds 
    |.((P
    . m) 
    - (S1 
    * S2)).| 
    < e 
    
      proof
    
        seq1 is
    summable by 
    A1;
    
        then
    
        
    
    A4: P1 is 
    convergent by 
    SERIES_1:def 2;
    
        let e such that
    
        
    
    A5: 
    0  
    < e; 
    
        set e1 = (e
    / (3 
    * ( 
    |.S2.|
    + 1))); 
    
        (
    |.S2.|
    + 1) 
    > ( 
    0 qua 
    Nat
    +  
    0 qua 
    Nat) by
    COMPLEX1: 46,
    XREAL_1: 8;
    
        then
    
        
    
    A6: (3 
    * ( 
    |.S2.|
    + 1)) 
    > (3 
    *  
    0 ) by 
    XREAL_1: 68;
    
        then (
    lim P1) 
    = S1 & e1 
    >  
    0 by 
    A5,
    SERIES_1:def 3,
    XREAL_1: 139;
    
        then
    
        consider n0 be
    Nat such that 
    
        
    
    A7: for n be 
    Nat st n0 
    <= n holds 
    |.((P1
    . n) 
    - S1).| 
    < e1 by 
    A4,
    SEQ_2:def 7;
    
        set e3 = (e
    / (3 
    * (( 
    Sum ( 
    abs seq1)) 
    + 1))); 
    
        (
    |.S2.|
    + 1) 
    > ( 
    0 qua 
    Nat
    +  
    0 qua 
    Nat) by
    COMPLEX1: 46,
    XREAL_1: 8;
    
        then
    
        
    
    A8: (e1 
    * ( 
    |.S2.|
    + 1)) 
    = (e 
    / 3) by 
    XCMPLX_1: 92;
    
        
    
        
    
    A9: P2 is 
    convergent & ( 
    lim P2) 
    = S2 by 
    A2,
    SERIES_1:def 2,
    SERIES_1:def 3;
    
        consider r such that
    
        
    
    A10: 
    0  
    < r and 
    
        
    
    A11: for k holds 
    |.(
    Sum (seq2 
    ^\ k)).| 
    < r by 
    A2,
    Th51;
    
        set e2 = (e
    / (3 
    * r)); 
    
        
    
        
    
    A12: ( 
    |.S2.|
    + 1) 
    > ( 
    |.S2.|
    +  
    0 qua 
    Nat) by
    XREAL_1: 8;
    
        
    
    A13: 
    
        now
    
          let n;
    
          
    |.(seq1
    . n).| 
    = (( 
    abs seq1) 
    . n) by 
    SEQ_1: 12;
    
          hence ((
    abs seq1) 
    . n) 
    >=  
    0 by 
    COMPLEX1: 46;
    
        end;
    
        then
    
        
    
    A14: for n be 
    Nat holds ( 
    |.seq1.|
    . n) 
    >=  
    0 ; 
    
        
    
        
    
    A15: ( 
    abs seq1) is 
    summable by 
    A1,
    SERIES_1:def 4;
    
        then (
    Sum ( 
    abs seq1)) 
    >=  
    0 by 
    A14,
    SERIES_1: 18;
    
        then
    
        
    
    A16: ((( 
    Sum ( 
    abs seq1)) 
    + 1) 
    * e3) 
    = (e 
    / 3) by 
    XCMPLX_1: 92;
    
        
    
        
    
    A17: ( 
    Sum ( 
    abs seq1)) 
    >=  
    0 by 
    A15,
    A14,
    SERIES_1: 18;
    
        then (3
    * (( 
    Sum ( 
    abs seq1)) 
    + 1)) 
    > ( 
    0  
    * 3) by 
    XREAL_1: 68;
    
        then e3
    >  
    0 by 
    A5,
    XREAL_1: 139;
    
        then
    
        consider n2 be
    Nat such that 
    
        
    
    A18: for n be 
    Nat st n2 
    <= n holds 
    |.((P2
    . n) 
    - S2).| 
    < e3 by 
    A9,
    SEQ_2:def 7;
    
        (3
    * r) 
    > ( 
    0  
    * 3) by 
    A10,
    XREAL_1: 68;
    
        then e2
    >  
    0 by 
    A5,
    XREAL_1: 139;
    
        then
    
        consider n1 be
    Nat such that 
    
        
    
    A19: for n be 
    Nat st n1 
    <= n holds 
    |.((PA
    . n) 
    - (PA 
    . n1)).| 
    < e2 by 
    A15,
    SERIES_1: 21;
    
        reconsider M = (
    max (( 
    max (1,n0)),( 
    max ((n1 
    + 1),n2)))) as 
    Nat by 
    TARSKI: 1;
    
        
    
        
    
    A20: ( 
    max ((n1 
    + 1),n2)) 
    <= M by 
    XXREAL_0: 25;
    
        take 2M = (M
    * 2); 
    
        let m be
    Nat such that 
    
        
    
    A21: 2M 
    <= m; 
    
        
    
        
    
    A22: ( 
    max (1,n0)) 
    <= M by 
    XXREAL_0: 25;
    
        then
    0  
    < M by 
    XXREAL_0: 25;
    
        then
    
        reconsider M1 = (M
    - 1) as 
    Nat by 
    NAT_1: 20;
    
        
    
        
    
    A23: M 
    = (M1 
    + 1); 
    
        
    
        
    
    A24: (n1 
    + 1) 
    <= ( 
    max ((n1 
    + 1),n2)) by 
    XXREAL_0: 25;
    
        then (M1
    + 1) 
    >= (n1 
    + 1) by 
    A20,
    XXREAL_0: 2;
    
        then M1
    >= n1 by 
    XREAL_1: 8;
    
        then (PA
    . M1) 
    >= (PA 
    . n1) by 
    A13,
    Th52;
    
        then ((PA
    . m) 
    - (PA 
    . M1)) 
    <= ((PA 
    . m) 
    - (PA 
    . n1)) by 
    XREAL_1: 10;
    
        then
    
        
    
    A25: (r 
    * ((PA 
    . m) 
    - (PA 
    . M1))) 
    <= (r 
    * ((PA 
    . m) 
    - (PA 
    . n1))) by 
    A10,
    XREAL_1: 64;
    
        consider Fr such that
    
        
    
    A26: (P 
    . m) 
    = ((S2 
    * (P1 
    . m)) 
    - ( 
    Sum Fr)) and 
    
        
    
    A27: ( 
    dom Fr) 
    = (m 
    + 1) and 
    
        
    
    A28: for i st i 
    in (m 
    + 1) holds (Fr 
    . i) 
    = ((seq1 
    . i) 
    * ( 
    Sum (seq2 
    ^\ ((m 
    -' i) 
    + 1)))) by 
    A2,
    Th49;
    
        consider absFr be
    XFinSequence of 
    REAL such that 
    
        
    
    A29: ( 
    dom absFr) 
    = ( 
    dom Fr) and 
    
        
    
    A30: 
    |.(
    Sum Fr).| 
    <= ( 
    Sum absFr) and 
    
        
    
    A31: for i st i 
    in ( 
    dom absFr) holds (absFr 
    . i) 
    =  
    |.(Fr
    . i).| by 
    Th50;
    
        
    
        
    
    A32: M 
    <= (M 
    + M) by 
    NAT_1: 11;
    
        then
    
        
    
    A33: M 
    <= m by 
    A21,
    XXREAL_0: 2;
    
        then M
    < ( 
    len absFr) by 
    A27,
    A29,
    NAT_1: 13;
    
        then
    
        
    
    A34: ( 
    len (absFr 
    | M)) 
    = M by 
    AFINSQ_1: 11;
    
        (n1
    + 1) 
    <= M by 
    A24,
    A20,
    XXREAL_0: 2;
    
        then (n1
    + 1) 
    <= m by 
    A33,
    XXREAL_0: 2;
    
        then
    
        
    
    A35: n1 
    <= m by 
    NAT_1: 13;
    
        then (PA
    . m) 
    >= (PA 
    . n1) by 
    A13,
    Th52;
    
        then ((PA
    . m) 
    - (PA 
    . n1)) 
    >= ((PA 
    . n1) 
    - (PA 
    . n1)) by 
    XREAL_1: 9;
    
        then
    
        
    
    A36: 
    |.((PA
    . m) 
    - (PA 
    . n1)).| 
    = ((PA 
    . m) 
    - (PA 
    . n1)) by 
    ABSVALUE:def 1;
    
        consider Fr1 such that
    
        
    
    A37: absFr 
    = ((absFr 
    | M) 
    ^ Fr1) by 
    Th1;
    
        
    
        
    
    A38: (m 
    + 1) 
    = (( 
    len (absFr 
    | M)) 
    + ( 
    len Fr1)) by 
    A27,
    A29,
    A37,
    AFINSQ_1:def 3;
    
        then
    
        
    
    A39: (Fr1 
    | ((m 
    - M) 
    + 1)) 
    = Fr1 by 
    A34;
    
        
    
        
    
    A40: n2 
    <= ( 
    max ((n1 
    + 1),n2)) by 
    XXREAL_0: 25;
    
        then n2
    <= M by 
    A20,
    XXREAL_0: 2;
    
        then n2
    <= 2M by 
    A32,
    XXREAL_0: 2;
    
        then n2
    <= m & m 
    in  
    NAT by 
    A21,
    XXREAL_0: 2,
    ORDINAL1:def 12;
    
        then
    
        
    
    A41: 
    |.((P2
    . m) 
    - S2).| 
    < e3 by 
    A18;
    
        defpred
    
    S[
    Nat] means ((M
    + $1) 
    + 1) 
    <= (m 
    + 1) implies ( 
    Sum (Fr1 
    | ($1 
    + 1))) 
    <= (r 
    * ((PA 
    . (M 
    + $1)) 
    - (PA 
    . M1))); 
    
        
    
        
    
    A42: for k st 
    S[k] holds
    S[(k
    + 1)] 
    
        proof
    
          let k such that
    
          
    
    A43: 
    S[k];
    
          set k1 = (k
    + 1); 
    
          set Mk1 = (M
    + k1); 
    
          reconsider Mk = (M
    + k) as 
    Nat;
    
          
    
          
    
    A44: 
    |.(seq1
    . Mk1).| 
    = (( 
    abs seq1) 
    . Mk1) by 
    SEQ_1: 12;
    
          assume
    
          
    
    A45: (Mk1 
    + 1) 
    <= (m 
    + 1); 
    
          then
    
          
    
    A46: Mk1 
    < (m 
    + 1) by 
    NAT_1: 13;
    
          then
    
          
    
    A47: Mk1 
    in ( 
    Segm (m 
    + 1)) by 
    NAT_1: 44;
    
          then (Fr
    . Mk1) 
    = ((seq1 
    . Mk1) 
    * ( 
    Sum (seq2 
    ^\ ((m 
    -' Mk1) 
    + 1)))) by 
    A28;
    
          then
    
          
    
    A48: 
    |.(Fr
    . Mk1).| 
    = ( 
    |.(seq1
    . Mk1).| 
    *  
    |.(
    Sum (seq2 
    ^\ ((m 
    -' Mk1) 
    + 1))).|) by 
    COMPLEX1: 65;
    
          Mk1
    < (m 
    + 1) by 
    A45,
    NAT_1: 13;
    
          then k1
    < ( 
    len Fr1) by 
    A38,
    A34,
    XREAL_1: 7;
    
          then k1
    in ( 
    len Fr1) by 
    AFINSQ_1: 86;
    
          then
    
          
    
    A49: ( 
    Sum (Fr1 
    | (k1 
    + 1))) 
    = ((Fr1 
    . k1) 
    + ( 
    Sum (Fr1 
    | k1))) by 
    AFINSQ_2: 65;
    
          (m
    + 1) 
    = ( 
    len absFr) by 
    A27,
    A29;
    
          then (absFr
    . Mk1) 
    = (Fr1 
    . (Mk1 
    - M)) by 
    A37,
    A34,
    A46,
    AFINSQ_1: 19,
    NAT_1: 11;
    
          then
    
          
    
    A50: (Fr1 
    . k1) 
    =  
    |.(Fr
    . Mk1).| by 
    A27,
    A29,
    A31,
    A47;
    
          
    
          
    
    A51: (( 
    |.seq1.|
    . (Mk 
    + 1)) 
    + (PA 
    . Mk)) 
    = (PA 
    . (Mk 
    + 1)) by 
    SERIES_1:def 1;
    
          
    |.(seq1
    . Mk1).| 
    >=  
    0 & 
    |.(
    Sum (seq2 
    ^\ ((m 
    -' Mk1) 
    + 1))).| 
    < r by 
    A11,
    COMPLEX1: 46;
    
          then (Fr1
    . k1) 
    <= (r 
    *  
    |.(seq1
    . Mk1).|) by 
    A50,
    A48,
    XREAL_1: 64;
    
          then (
    Sum (Fr1 
    | (k1 
    + 1))) 
    <= ((r 
    * ( 
    |.seq1.|
    . Mk1)) 
    + (r 
    * ((PA 
    . (M 
    + k)) 
    - (PA 
    . M1)))) by 
    A43,
    A45,
    A49,
    A44,
    NAT_1: 13,
    XREAL_1: 7;
    
          then (
    Sum (Fr1 
    | (k1 
    + 1))) 
    <= (r 
    * ((( 
    |.seq1.|
    . Mk1) 
    + (PA 
    . (M 
    + k))) 
    - (PA 
    . M1))); 
    
          then (
    Sum (Fr1 
    | (k1 
    + 1))) 
    <= (r 
    * ((PA 
    . ((M 
    + k) 
    + 1)) 
    - (PA 
    . M1))) by 
    A51;
    
          hence thesis;
    
        end;
    
        
    |.((PA
    . m) 
    - (PA 
    . n1)).| 
    < e2 by 
    A19,
    A35;
    
        then (r
    * ((PA 
    . m) 
    - (PA 
    . n1))) 
    <= (r 
    * e2) by 
    A10,
    A36,
    XREAL_1: 64;
    
        then
    
        
    
    A52: (r 
    * ((PA 
    . m) 
    - (PA 
    . M1))) 
    <= (r 
    * e2) by 
    A25,
    XXREAL_0: 2;
    
        
    
        
    
    A53: m 
    = (M 
    + (m 
    - M)) & (m 
    - M) 
    = (m 
    -' M) by 
    A21,
    A32,
    XREAL_1: 233,
    XXREAL_0: 2;
    
        
    
        
    
    A54: 
    S[
    0 ] 
    
        proof
    
          assume
    
          
    
    A55: ((M 
    +  
    0 qua 
    Nat)
    + 1) 
    <= (m 
    + 1); 
    
          then
    
          
    
    A56: M 
    < (m 
    + 1) by 
    NAT_1: 13;
    
          then
    
          
    
    A57: M 
    in ( 
    Segm (m 
    + 1)) by 
    NAT_1: 44;
    
          then
    
          
    
    A58: (Fr 
    . M) 
    = ((seq1 
    . M) 
    * ( 
    Sum (seq2 
    ^\ ((m 
    -' M) 
    + 1)))) by 
    A28;
    
          ((M
    + 1) 
    - M) 
    <= ((m 
    + 1) 
    - M) by 
    A55,
    XREAL_1: 9;
    
          then (
    Segm 1) 
    c= ( 
    Segm ( 
    len Fr1)) by 
    A38,
    A34,
    NAT_1: 39;
    
          then
    
          
    
    A59: ( 
    dom (Fr1 
    | 1)) 
    = 1 by 
    RELAT_1: 62;
    
          (m
    + 1) 
    = ( 
    len absFr) by 
    A27,
    A29;
    
          then (absFr
    . M) 
    = (Fr1 
    . (M 
    - M)) by 
    A37,
    A34,
    A56,
    AFINSQ_1: 19;
    
          then (Fr1
    .  
    0 ) 
    =  
    |.(Fr
    . M).| by 
    A27,
    A29,
    A31,
    A57;
    
          then
    
          
    
    A60: (Fr1 
    .  
    0 ) 
    = ( 
    |.(seq1
    . M).| 
    *  
    |.(
    Sum (seq2 
    ^\ ((m 
    -' M) 
    + 1))).|) by 
    A58,
    COMPLEX1: 65;
    
          
    
          
    
    A61: 
    |.(seq1
    . M).| 
    >=  
    0 & r 
    >  
    |.(
    Sum (seq2 
    ^\ ((m 
    -' M) 
    + 1))).| by 
    A11,
    COMPLEX1: 46;
    
          
    0  
    in ( 
    Segm 1) by 
    NAT_1: 44;
    
          then
    
          
    
    A62: ((Fr1 
    | 1) 
    .  
    0 ) 
    = (Fr1 
    .  
    0 ) by 
    A59,
    FUNCT_1: 47;
    
          ((PA
    . M1) 
    + ( 
    |.seq1.|
    . (M1 
    + 1))) 
    = (PA 
    . (M1 
    + 1)) by 
    SERIES_1:def 1;
    
          then
    
          
    
    A63: ((PA 
    . M) 
    - (PA 
    . M1)) 
    =  
    |.(seq1
    . M).| by 
    SEQ_1: 12;
    
          (
    Sum (Fr1 
    | 1)) 
    = ((Fr1 
    | 1) 
    .  
    0 ) by 
    A59,
    Lm3;
    
          hence thesis by
    A62,
    A60,
    A63,
    A61,
    XREAL_1: 64;
    
        end;
    
        for k holds
    S[k] from
    NAT_1:sch 2(
    A54,
    A42);
    
        then (
    Sum Fr1) 
    <= (r 
    * ((PA 
    . m) 
    - (PA 
    . M1))) by 
    A39,
    A53;
    
        then (
    Sum Fr1) 
    <= (r 
    * e2) by 
    A52,
    XXREAL_0: 2;
    
        then
    
        
    
    A64: ( 
    Sum Fr1) 
    <= (e 
    / 3) by 
    A10,
    XCMPLX_1: 92;
    
        (
    |.seq1.|
    .  
    0 ) 
    >=  
    0 by 
    A13;
    
        then
    
        
    
    A65: (( 
    |.seq1.|
    .  
    0 ) 
    *  
    |.((P2
    . m) 
    - S2).|) 
    <= (e3 
    * ( 
    |.seq1.|
    .  
    0 )) by 
    A41,
    XREAL_1: 64;
    
        
    
        
    
    A66: 
    0  
    in ( 
    Segm (m 
    + 1)) by 
    NAT_1: 44;
    
        then
    
        
    
    A67: (Fr 
    .  
    0 ) 
    = ((seq1 
    .  
    0 ) 
    * ( 
    Sum (seq2 
    ^\ ((m 
    -'  
    0 ) 
    + 1)))) by 
    A28;
    
        (PA
    . M1) 
    <= ( 
    Sum  
    |.seq1.|) by
    A14,
    A15,
    RSSPACE2: 3;
    
        then
    
        
    
    A68: (e3 
    * (PA 
    . M1)) 
    <= (e3 
    * ( 
    Sum  
    |.seq1.|)) by
    A5,
    A17,
    XREAL_1: 64;
    
        S2
    = ((P2 
    . (m 
    -'  
    0 )) 
    + ( 
    Sum (seq2 
    ^\ ((m 
    -'  
    0 ) 
    + 1)))) & (m 
    -'  
    0 ) 
    = m by 
    A2,
    NAT_D: 40,
    SERIES_1: 15;
    
        then
    
        
    
    A69: ( 
    Sum (seq2 
    ^\ ((m 
    -'  
    0 ) 
    + 1))) 
    = (S2 
    - (P2 
    . m)); 
    
        n0
    <= ( 
    max (1,n0)) by 
    XXREAL_0: 25;
    
        then n0
    <= M by 
    A22,
    XXREAL_0: 2;
    
        then n0
    <= m & m 
    in  
    NAT by 
    A33,
    XXREAL_0: 2,
    ORDINAL1:def 12;
    
        then
    
        
    
    A70: 
    |.((P1
    . m) 
    - S1).| 
    < e1 by 
    A7;
    
        
    |.(S2
    * ((P1 
    . m) 
    - S1)).| 
    = ( 
    |.S2.|
    *  
    |.((P1
    . m) 
    - S1).|) & 
    |.S2.|
    >=  
    0 by 
    COMPLEX1: 46,
    COMPLEX1: 65;
    
        then
    
        
    
    A71: 
    |.(S2
    * ((P1 
    . m) 
    - S1)).| 
    <= ( 
    |.S2.|
    * e1) by 
    A70,
    XREAL_1: 64;
    
        
    
        
    
    A72: ( 
    Sum absFr) 
    = (( 
    Sum (absFr 
    | M)) 
    + ( 
    Sum Fr1)) by 
    A37,
    AFINSQ_2: 55;
    
        defpred
    
    Q[
    Nat] means ($1
    + 1) 
    <= M implies ( 
    Sum (absFr 
    | ($1 
    + 1))) 
    <= (e3 
    * (PA 
    . $1)); 
    
        
    
        
    
    A73: n2 
    <= M by 
    A40,
    A20,
    XXREAL_0: 2;
    
        
    
        
    
    A74: for k st 
    Q[k] holds
    Q[(k
    + 1)] 
    
        proof
    
          let k such that
    
          
    
    A75: 
    Q[k];
    
          reconsider k1 = (k
    + 1) as 
    Nat;
    
          
    
          
    
    A76: 
    |.(seq1
    . k1).| 
    = (( 
    abs seq1) 
    . k1) by 
    SEQ_1: 12;
    
          
    
          
    
    A77: (m 
    - M) 
    >= (2M 
    - M) by 
    A21,
    XREAL_1: 9;
    
          assume
    
          
    
    A78: ((k 
    + 1) 
    + 1) 
    <= M; 
    
          then
    
          
    
    A79: k1 
    < M by 
    NAT_1: 13;
    
          then (m
    - k1) 
    >= (m 
    - M) by 
    XREAL_1: 10;
    
          then (m
    - k1) 
    >= M by 
    A77,
    XXREAL_0: 2;
    
          then
    
          
    
    A80: (m 
    - k1) 
    >= n2 by 
    A73,
    XXREAL_0: 2;
    
          ((e3
    *  
    |.(seq1
    . k1).|) 
    + ( 
    Sum (absFr 
    | k1))) 
    <= ((e3 
    *  
    |.(seq1
    . k1).|) 
    + (e3 
    * (PA 
    . k))) by 
    A75,
    A78,
    NAT_1: 13,
    XREAL_1: 6;
    
          then ((e3
    *  
    |.(seq1
    . k1).|) 
    + ( 
    Sum (absFr 
    | k1))) 
    <= (e3 
    * ((( 
    abs seq1) 
    . k1) 
    + (PA 
    . k))) & k 
    in  
    NAT by 
    A76,
    ORDINAL1:def 12;
    
          then
    
          
    
    A81: ((e3 
    *  
    |.(seq1
    . k1).|) 
    + ( 
    Sum (absFr 
    | k1))) 
    <= (e3 
    * (PA 
    . k1)) by 
    SERIES_1:def 1;
    
          k1
    < m by 
    A33,
    A79,
    XXREAL_0: 2;
    
          then k1
    < (m 
    + 1) by 
    NAT_1: 13;
    
          then
    
          
    
    A82: k1 
    in ( 
    Segm (m 
    + 1)) by 
    NAT_1: 44;
    
          then
    
          
    
    A83: ( 
    Sum (absFr 
    | (k1 
    + 1))) 
    = ((absFr 
    . k1) 
    + ( 
    Sum (absFr 
    | k1))) by 
    A27,
    A29,
    AFINSQ_2: 65;
    
          (m
    - k1) 
    = (m 
    -' k1) by 
    A33,
    A79,
    XREAL_1: 233,
    XXREAL_0: 2;
    
          then
    |.((P2
    . (m 
    -' k1)) 
    - S2).| 
    < e3 by 
    A18,
    A80;
    
          then
    
          
    
    A84: 
    |.(S2
    - (P2 
    . (m 
    -' k1))).| 
    < e3 by 
    COMPLEX1: 60;
    
          
    
          
    
    A85: S2 
    = ((P2 
    . (m 
    -' k1)) 
    + ( 
    Sum (seq2 
    ^\ ((m 
    -' k1) 
    + 1)))) by 
    A2,
    SERIES_1: 15;
    
          
    |.(seq1
    . k1).| 
    >=  
    0 by 
    COMPLEX1: 46;
    
          then (
    |.(S2
    - (P2 
    . (m 
    -' k1))).| 
    *  
    |.(seq1
    . k1).|) 
    <= (e3 
    *  
    |.(seq1
    . k1).|) by 
    A84,
    XREAL_1: 64;
    
          then
    
          
    
    A86: 
    |.((seq1
    . k1) 
    * ( 
    Sum (seq2 
    ^\ ((m 
    -' k1) 
    + 1)))).| 
    <= (e3 
    *  
    |.(seq1
    . k1).|) by 
    A85,
    COMPLEX1: 65;
    
          (Fr
    . k1) 
    = ((seq1 
    . k1) 
    * ( 
    Sum (seq2 
    ^\ ((m 
    -' k1) 
    + 1)))) & 
    |.(Fr
    . k1).| 
    = (absFr 
    . k1) by 
    A27,
    A28,
    A29,
    A31,
    A82;
    
          then (
    Sum (absFr 
    | (k1 
    + 1))) 
    <= ((e3 
    *  
    |.(seq1
    . k1).|) 
    + ( 
    Sum (absFr 
    | k1))) by 
    A83,
    A86,
    XREAL_1: 6;
    
          hence thesis by
    A81,
    XXREAL_0: 2;
    
        end;
    
        
    
        
    
    A87: ( 
    Sum (absFr 
    | zz)) 
    =  
    0 ; 
    
        (
    Sum (absFr 
    | (zz 
    + 1))) 
    = ((absFr 
    .  
    0 ) 
    + ( 
    Sum (absFr 
    | zz))) & (absFr 
    .  
    0 ) 
    =  
    |.(Fr
    .  
    0 ).| by 
    A27,
    A29,
    A31,
    A66,
    AFINSQ_2: 65;
    
        
    
        then (
    Sum (absFr 
    | (zz 
    + 1))) 
    = ( 
    |.(seq1
    .  
    0 ).| 
    *  
    |.(
    Sum (seq2 
    ^\ ((m 
    -'  
    0 ) 
    + 1))).|) by 
    A67,
    A87,
    COMPLEX1: 65
    
        .= (((
    abs seq1) 
    .  
    0 ) 
    *  
    |.(
    Sum (seq2 
    ^\ ((m 
    -'  
    0 ) 
    + 1))).|) by 
    SEQ_1: 12
    
        .= (((
    abs seq1) 
    .  
    0 ) 
    *  
    |.((P2
    . m) 
    - S2).|) by 
    A69,
    COMPLEX1: 60;
    
        then
    
        
    
    A88: 
    Q[
    0 ] by 
    A65,
    SERIES_1:def 1;
    
        for k holds
    Q[k] from
    NAT_1:sch 2(
    A88,
    A74);
    
        then
    
        
    
    A89: ( 
    Sum (absFr 
    | M)) 
    <= (e3 
    * (PA 
    . M1)) by 
    A23;
    
        ((
    Sum ( 
    abs seq1)) 
    + 1) 
    > (( 
    Sum ( 
    abs seq1)) 
    +  
    0 qua 
    Nat) by
    XREAL_1: 8;
    
        then (e3
    * (( 
    Sum ( 
    abs seq1)) 
    + 1)) 
    >= (e3 
    * ( 
    Sum ( 
    abs seq1))) by 
    A5,
    A17,
    XREAL_1: 64;
    
        then (e3
    * (PA 
    . M1)) 
    <= (e 
    / 3) by 
    A68,
    A16,
    XXREAL_0: 2;
    
        then (
    Sum (absFr 
    | M)) 
    <= (e 
    / 3) by 
    A89,
    XXREAL_0: 2;
    
        then ((
    Sum (absFr 
    | M)) 
    + ( 
    Sum Fr1)) 
    <= ((e 
    / 3) 
    + (e 
    / 3)) by 
    A64,
    XREAL_1: 7;
    
        then
    
        
    
    A90: 
    |.(
    Sum Fr).| 
    <= ((e 
    / 3) 
    + (e 
    / 3)) by 
    A30,
    A72,
    XXREAL_0: 2;
    
        ((P
    . m) 
    - (S1 
    * S2)) 
    = ((S2 
    * ((P1 
    . m) 
    - S1)) 
    - ( 
    Sum Fr)) by 
    A26;
    
        then
    
        
    
    A91: 
    |.((P
    . m) 
    - (S1 
    * S2)).| 
    <= ( 
    |.(S2
    * ((P1 
    . m) 
    - S1)).| 
    +  
    |.(
    Sum Fr).|) by 
    COMPLEX1: 57;
    
        e1
    >  
    0 by 
    A5,
    A6,
    XREAL_1: 139;
    
        then (e1
    * ( 
    |.S2.|
    + 1)) 
    > (e1 
    *  
    |.S2.|) by
    A12,
    XREAL_1: 68;
    
        then
    |.(S2
    * ((P1 
    . m) 
    - S1)).| 
    < (e 
    / 3) by 
    A8,
    A71,
    XXREAL_0: 2;
    
        then (
    |.(S2
    * ((P1 
    . m) 
    - S1)).| 
    +  
    |.(
    Sum Fr).|) 
    < ((e 
    / 3) 
    + ((e 
    / 3) 
    + (e 
    / 3))) by 
    A90,
    XREAL_1: 8;
    
        hence thesis by
    A91,
    XXREAL_0: 2;
    
      end;
    
      then
    
      
    
    A92: P is 
    convergent by 
    SEQ_2:def 6;
    
      hence S is
    summable by 
    SERIES_1:def 2;
    
      (
    lim P) 
    = (S1 
    * S2) by 
    A3,
    A92,
    SEQ_2:def 7;
    
      hence thesis by
    SERIES_1:def 3;
    
    end;
    
    begin
    
    theorem :: 
    
    CATALAN2:54
    
    for r holds ex Catal be
    Real_Sequence st (for n holds (Catal 
    . n) 
    = (( 
    Catalan (n 
    + 1)) 
    * (r 
    |^ n))) & ( 
    |.r.|
    < (1 
    / 4) implies Catal is 
    absolutely_summable & ( 
    Sum Catal) 
    = (1 
    + (r 
    * (( 
    Sum Catal) 
    |^ 2))) & ( 
    Sum Catal) 
    = (2 
    / (1 
    + ( 
    sqrt (1 
    - (4 
    * r))))) & (r 
    <>  
    0 implies ( 
    Sum Catal) 
    = ((1 
    - ( 
    sqrt (1 
    - (4 
    * r)))) 
    / (2 
    * r)))) 
    
    proof
    
      defpred
    
    E[
    object, 
    object] means for r st $1
    = r holds ex Catal be 
    Real_Sequence st (for n holds (Catal 
    . n) 
    = (( 
    Catalan (n 
    + 1)) 
    * (r 
    |^ n))) & ( 
    |.r.|
    < (1 
    / 4) implies Catal is 
    absolutely_summable & ( 
    Sum Catal) 
    = (1 
    + (r 
    * (( 
    Sum Catal) 
    |^ 2))) & $2 
    = ( 
    Sum Catal)); 
    
      
    
      
    
    A1: for x be 
    object st x 
    in  
    REAL holds ex y be 
    object st y 
    in  
    REAL & 
    E[x, y]
    
      proof
    
        let x be
    object;
    
        
    
        
    
    A2: 
    |.1.|
    = 1 by 
    ABSVALUE:def 1;
    
        assume x
    in  
    REAL ; 
    
        then
    
        reconsider r = x as
    Real;
    
        set a = (4
    *  
    |.r.|);
    
        deffunc
    
    C(
    Nat) = (
    In ((( 
    Catalan ($1 
    + 1)) 
    * (r 
    |^ $1)), 
    REAL )); 
    
        consider Cat be
    Real_Sequence such that 
    
        
    
    A3: for n be 
    Element of 
    NAT holds (Cat 
    . n) 
    =  
    C(n) from
    FUNCT_2:sch 4;
    
        set G = (a
    GeoSeq ); 
    
        defpred
    
    P[
    Nat] means ((
    abs Cat) 
    . $1) 
    <= (G 
    . $1); 
    
        
    
        
    
    A4: for n st 
    P[n] holds
    P[(n
    + 1)] 
    
        proof
    
          
    
          
    
    A5: 
    |.r.|
    >=  
    0 by 
    COMPLEX1: 46;
    
          let n;
    
          assume
    P[n];
    
          then
    
          
    
    A6: (a 
    * (( 
    abs Cat) 
    . n)) 
    <= (a 
    * (G 
    . n)) by 
    A5,
    XREAL_1: 64;
    
          set n1 = (n
    + 1); 
    
          
    
          
    
    A7: 
    |.(r
    |^ n1).| 
    >=  
    0 & (r 
    |^ n1) 
    = (r 
    * (r 
    |^ n)) by 
    COMPLEX1: 46,
    NEWTON: 6;
    
          (
    Catalan (n1 
    + 1)) 
    >=  
    0 by 
    CATALAN1: 17;
    
          then
    
          
    
    A8: 
    |.(
    Catalan (n1 
    + 1)).| 
    = ( 
    Catalan (n1 
    + 1)) by 
    ABSVALUE:def 1;
    
          (
    Catalan n1) 
    >=  
    0 by 
    CATALAN1: 17;
    
          then
    |.(
    Catalan n1).| 
    = ( 
    Catalan n1) by 
    ABSVALUE:def 1;
    
          then
    |.(
    Catalan (n1 
    + 1)).| 
    < (4 
    *  
    |.(
    Catalan n1).|) by 
    A8,
    CATALAN1: 21;
    
          then
    
          
    
    A9: ( 
    |.(r
    |^ n1).| 
    *  
    |.(
    Catalan (n1 
    + 1)).|) 
    <= ((4 
    *  
    |.(
    Catalan n1).|) 
    *  
    |.(r
    * (r 
    |^ n)).|) by 
    A7,
    XREAL_1: 64;
    
          
    |.(r
    * (r 
    |^ n)).| 
    = ( 
    |.r.|
    *  
    |.(r
    |^ n).|) by 
    COMPLEX1: 65;
    
          then
    |.
    C(n1).|
    <= (a 
    * ( 
    |.(
    Catalan n1).| 
    *  
    |.(r
    |^ n).|)) by 
    A9,
    COMPLEX1: 65;
    
          then
    |.(Cat
    . n1).| 
    <= (a 
    * ( 
    |.(
    Catalan n1).| 
    *  
    |.(r
    |^ n).|)) by 
    A3;
    
          then
    |.(Cat
    . n1).| 
    <= (a 
    *  
    |.
    C(n).|) & n
    in  
    NAT by 
    COMPLEX1: 65,
    ORDINAL1:def 12;
    
          then
    
          
    
    A10: 
    |.(Cat
    . n1).| 
    <= (a 
    *  
    |.(Cat
    . n).|) by 
    A3;
    
          
    |.(Cat
    . n).| 
    = (( 
    abs Cat) 
    . n) by 
    SEQ_1: 12;
    
          then ((
    abs Cat) 
    . n1) 
    <= (a 
    * (( 
    abs Cat) 
    . n)) by 
    A10,
    SEQ_1: 12;
    
          then ((
    abs Cat) 
    . n1) 
    <= (a 
    * (G 
    . n)) by 
    A6,
    XXREAL_0: 2;
    
          hence thesis by
    PREPOWER: 3;
    
        end;
    
        (Cat
    .  
    0 ) 
    =  
    C(0) by
    A3;
    
        then
    
        
    
    A11: (( 
    abs Cat) 
    .  
    0 ) 
    =  
    |.(r
    |^  
    0 ).| by 
    CATALAN1: 11,
    SEQ_1: 12;
    
        (r
    |^  
    0 ) 
    = 1 & (a 
    |^  
    0 ) 
    = 1 by 
    NEWTON: 4;
    
        then
    
        
    
    A12: 
    P[
    0 ] by 
    A11,
    A2,
    PREPOWER:def 1;
    
        for n holds
    P[n] from
    NAT_1:sch 2(
    A12,
    A4);
    
        then
    
        
    
    A13: for n be 
    Nat holds 
    P[n];
    
        
    
    A14: 
    
        now
    
          let n be
    Nat;
    
          ((
    abs Cat) 
    . n) 
    =  
    |.(Cat
    . n).| by 
    SEQ_1: 12;
    
          hence ((
    abs Cat) 
    . n) 
    >=  
    0 by 
    COMPLEX1: 46;
    
        end;
    
        take (
    Sum Cat); 
    
        thus (
    Sum Cat) 
    in  
    REAL by 
    XREAL_0:def 1;
    
        let s such that
    
        
    
    A15: x 
    = s; 
    
        for y be
    object st y 
    in  
    NAT holds ((Cat 
    ^\ 1) 
    . y) 
    = ((Cat 
    (##) (r 
    (#) Cat)) 
    . y) 
    
        proof
    
          let y be
    object;
    
          assume y
    in  
    NAT ; 
    
          then
    
          reconsider n = y as
    Nat;
    
          set n1 = (n
    + 1); 
    
          consider Fr1 such that
    
          
    
    A16: ( 
    dom Fr1) 
    = n1 and 
    
          
    
    A17: for i st i 
    in (n 
    + 1) holds (Fr1 
    . i) 
    = ((Cat 
    . i) 
    * ((r 
    (#) Cat) 
    . (n 
    -' i))) and 
    
          
    
    A18: ( 
    Sum Fr1) 
    = ((Cat 
    (##) (r 
    (#) Cat)) 
    . n) by 
    Def4;
    
          consider Catal be
    XFinSequence of 
    NAT such that 
    
          
    
    A19: ( 
    Sum Catal) 
    = ( 
    Catalan (n1 
    + 1)) and 
    
          
    
    A20: ( 
    dom Catal) 
    = n1 and 
    
          
    
    A21: for j st j 
    < n1 holds (Catal 
    . j) 
    = (( 
    Catalan (j 
    + 1)) 
    * ( 
    Catalan (n1 
    -' j))) by 
    Th39;
    
          (
    rng Catal) 
    c=  
    REAL by 
    NUMBERS: 19;
    
          then
    
          reconsider CatalR = Catal as
    XFinSequence of 
    REAL by 
    RELAT_1:def 19;
    
          defpred
    
    Q[
    set, 
    set] means for k st k
    = $1 holds $2 
    = ((r 
    |^ n1) 
    * (Catal 
    . k)); 
    
          
    
          
    
    A22: for k st k 
    in ( 
    Segm n1) holds ex x be 
    Element of 
    REAL st 
    Q[k, x]
    
          proof
    
            let k such that k
    in ( 
    Segm n1); 
    
            reconsider rr = ((r
    |^ n1) 
    * (Catal 
    . k)) as 
    Element of 
    REAL by 
    XREAL_0:def 1;
    
            take rr;
    
            thus thesis;
    
          end;
    
          consider Fr2 such that
    
          
    
    A23: ( 
    dom Fr2) 
    = ( 
    Segm n1) and 
    
          
    
    A24: for k be 
    Nat st k 
    in ( 
    Segm n1) holds 
    Q[k, (Fr2
    . k)] from 
    STIRL2_1:sch 5(
    A22);
    
          
    
    A25: 
    
          now
    
            let k be
    Nat such that 
    
            
    
    A26: k 
    in ( 
    dom Fr2); 
    
            k
    < ( 
    len Fr2) by 
    A26,
    AFINSQ_1: 86;
    
            then
    
            
    
    A27: k 
    < (n 
    + 1) by 
    A23;
    
            then
    
            
    
    A28: (n1 
    -' k) 
    = (n1 
    - k) by 
    XREAL_1: 233;
    
            
    
            
    
    A29: n 
    = (k 
    + (n 
    - k)); 
    
            k
    <= n by 
    A27,
    NAT_1: 13;
    
            then
    
            
    
    A30: (n 
    -' k) 
    = (n 
    - k) by 
    XREAL_1: 233;
    
            
    
            then (Fr1
    . k) 
    = ((Cat 
    . k) 
    * ((r 
    (#) Cat) 
    . (n 
    - k))) by 
    A17,
    A23,
    A26
    
            .= (
    C(k)
    * ((r 
    (#) Cat) 
    . (n 
    - k))) by 
    A26,
    A3
    
            .= (((
    Catalan (k 
    + 1)) 
    * (r 
    |^ k)) 
    * ((r 
    (#) Cat) 
    . (n 
    - k))) 
    
            .= (((
    Catalan (k 
    + 1)) 
    * (r 
    |^ k)) 
    * (r 
    * (Cat 
    . (n 
    - k)))) by 
    A30,
    SEQ_1: 9
    
            .= (((
    Catalan (k 
    + 1)) 
    * (r 
    |^ k)) 
    * (r 
    *  
    C(-'))) by
    A3,
    A30
    
            .= ((((
    Catalan (k 
    + 1)) 
    * ( 
    Catalan (n1 
    -' k))) 
    * r) 
    * ((r 
    |^ k) 
    * (r 
    |^ (n 
    -' k)))) by 
    A30,
    A28
    
            .= ((((
    Catalan (k 
    + 1)) 
    * ( 
    Catalan (n1 
    -' k))) 
    * r) 
    * (r 
    |^ n)) by 
    A30,
    A29,
    NEWTON: 8
    
            .= (((Catal
    . k) 
    * r) 
    * (r 
    |^ n)) by 
    A21,
    A27
    
            .= ((Catal
    . k) 
    * (r 
    * (r 
    |^ n))) 
    
            .= ((Catal
    . k) 
    * (r 
    |^ n1)) by 
    NEWTON: 6
    
            .= (Fr2
    . k) by 
    A23,
    A24,
    A26;
    
            hence (Fr1
    . k) 
    = (Fr2 
    . k); 
    
          end;
    
          for k st k
    in ( 
    len Fr2) holds (Fr2 
    . k) 
    = ((r 
    |^ n1) 
    * (CatalR 
    . k)) by 
    A23,
    A24;
    
          
    
          then (
    Sum Fr2) 
    = ((r 
    |^ n1) 
    * ( 
    Sum CatalR)) by 
    A20,
    A23,
    Th44
    
          .=
    C(n1) by
    A19
    
          .= (Cat
    . n1) by 
    A3
    
          .= ((Cat
    ^\ 1) 
    . n) by 
    NAT_1:def 3;
    
          hence thesis by
    A16,
    A18,
    A23,
    A25,
    AFINSQ_1: 8;
    
        end;
    
        then
    
        
    
    A31: (Cat 
    ^\ 1) 
    = (Cat 
    (##) (r 
    (#) Cat)) by 
    FUNCT_2: 12;
    
        
    |.r.|
    >=  
    0 by 
    COMPLEX1: 46;
    
        then
    
        
    
    A32: 
    |.a.|
    = a by 
    ABSVALUE:def 1;
    
        take Cat;
    
        hereby
    
          let n;
    
          n
    in  
    NAT by 
    ORDINAL1:def 12;
    
          
    
          hence (Cat
    . n) 
    =  
    C(n) by
    A3
    
          .= ((
    Catalan (n 
    + 1)) 
    * (s 
    |^ n)) by 
    A15;
    
        end;
    
        
    
        
    
    A33: (r 
    |^  
    0 ) 
    = 1 by 
    NEWTON: 4;
    
        (Cat
    .  
    0 ) 
    =  
    C(0) by
    A3
    
        .= ((
    Catalan ( 
    0 qua 
    Nat
    + 1)) 
    * (r 
    |^  
    0 )); 
    
        then
    
        
    
    A34: (( 
    Partial_Sums Cat) 
    .  
    0 ) 
    = 1 by 
    A33,
    CATALAN1: 11,
    SERIES_1:def 1;
    
        assume
    |.s.|
    < (1 
    / 4); 
    
        then a
    < (4 
    * (1 
    / 4)) by 
    A15,
    XREAL_1: 68;
    
        then G is
    summable by 
    A32,
    SERIES_1: 24;
    
        then (
    abs Cat) is 
    summable by 
    A14,
    A13,
    SERIES_1: 20;
    
        hence
    
        
    
    A35: Cat is 
    absolutely_summable by 
    SERIES_1:def 4;
    
        then Cat is
    summable;
    
        then (r
    (#) Cat) is 
    summable & ( 
    Sum (r 
    (#) Cat)) 
    = (r 
    * ( 
    Sum Cat)) by 
    SERIES_1: 10;
    
        then (
    Sum (Cat 
    ^\ ( 
    0 qua 
    Nat
    + 1))) 
    = (( 
    Sum Cat) 
    * (r 
    * ( 
    Sum Cat))) by 
    A35,
    A31,
    Th53;
    
        then (
    Sum Cat) 
    = (1 
    + (r 
    * (( 
    Sum Cat) 
    * ( 
    Sum Cat)))) by 
    A35,
    A34,
    SERIES_1: 15;
    
        hence thesis by
    A15,
    WSIERP_1: 1;
    
      end;
    
      consider SumC be
    Function of 
    REAL , 
    REAL such that 
    
      
    
    A36: for x be 
    object st x 
    in  
    REAL holds 
    E[x, (SumC
    . x)] from 
    FUNCT_2:sch 1(
    A1);
    
      
    
      
    
    A37: for r, s st 
    0  
    < s & s 
    <= r & r 
    < (1 
    / 4) holds (SumC 
    . s) 
    <= (SumC 
    . r) 
    
      proof
    
        let r, s such that
    
        
    
    A38: 
    0  
    < s and 
    
        
    
    A39: s 
    <= r and 
    
        
    
    A40: r 
    < (1 
    / 4); 
    
        r
    in  
    REAL by 
    XREAL_0:def 1;
    
        then
    
        consider Cr be
    Real_Sequence such that 
    
        
    
    A41: for n holds (Cr 
    . n) 
    = (( 
    Catalan (n 
    + 1)) 
    * (r 
    |^ n)) and 
    
        
    
    A42: 
    |.r.|
    < (1 
    / 4) implies Cr is 
    absolutely_summable & ( 
    Sum Cr) 
    = (1 
    + (r 
    * (( 
    Sum Cr) 
    |^ 2))) & (SumC 
    . r) 
    = ( 
    Sum Cr) by 
    A36;
    
        s
    in  
    REAL by 
    XREAL_0:def 1;
    
        then
    
        consider Cs be
    Real_Sequence such that 
    
        
    
    A43: for n holds (Cs 
    . n) 
    = (( 
    Catalan (n 
    + 1)) 
    * (s 
    |^ n)) and 
    
        
    
    A44: 
    |.s.|
    < (1 
    / 4) implies Cs is 
    absolutely_summable & ( 
    Sum Cs) 
    = (1 
    + (s 
    * (( 
    Sum Cs) 
    |^ 2))) & (SumC 
    . s) 
    = ( 
    Sum Cs) by 
    A36;
    
        
    
    A45: 
    
        now
    
          let n be
    Nat;
    
          (s
    |^ n) 
    <= (r 
    |^ n) & ( 
    Catalan (n 
    + 1)) 
    >=  
    0 by 
    A38,
    A39,
    CATALAN1: 17,
    PREPOWER: 9;
    
          then
    
          
    
    A46: (( 
    Catalan (n 
    + 1)) 
    * (s 
    |^ n)) 
    <= (( 
    Catalan (n 
    + 1)) 
    * (r 
    |^ n)) by 
    XREAL_1: 64;
    
          ((
    Catalan (n 
    + 1)) 
    * (r 
    |^ n)) 
    = (Cr 
    . n) by 
    A41;
    
          hence (Cs
    . n) 
    <= (Cr 
    . n) by 
    A43,
    A46;
    
        end;
    
        
    
        
    
    A47: s 
    < (1 
    / 4) by 
    A39,
    A40,
    XXREAL_0: 2;
    
        thus thesis by
    A38,
    A39,
    A40,
    A47,
    A44,
    A42,
    A45,
    ABSVALUE:def 1,
    TIETZE: 5;
    
      end;
    
      set R = { r where r be
    Real : 
    0  
    < r & r 
    < (1 
    / 4) & (SumC 
    . r) 
    = ((1 
    + ( 
    sqrt (1 
    - (4 
    * r)))) 
    / (2 
    * r)) }; 
    
      
    
      
    
    A48: for r st r 
    <>  
    0 & 
    |.r.|
    < (1 
    / 4) holds (SumC 
    . r) 
    = ((1 
    - ( 
    sqrt (1 
    - (4 
    * r)))) 
    / (2 
    * r)) or (SumC 
    . r) 
    = ((1 
    + ( 
    sqrt (1 
    - (4 
    * r)))) 
    / (2 
    * r)) 
    
      proof
    
        let r such that
    
        
    
    A49: r 
    <>  
    0 and 
    
        
    
    A50: 
    |.r.|
    < (1 
    / 4); 
    
        r
    <= (1 
    / 4) by 
    A50,
    ABSVALUE: 5;
    
        then (4
    * r) 
    <= ((1 
    / 4) 
    * 4) by 
    XREAL_1: 64;
    
        then
    
        
    
    A51: ((4 
    * r) 
    - (4 
    * r)) 
    <= (1 
    - (4 
    * r)) by 
    XREAL_1: 9;
    
        r
    in  
    REAL by 
    XREAL_0:def 1;
    
        then
    
        consider Catal be
    Real_Sequence such that for n holds (Catal 
    . n) 
    = (( 
    Catalan (n 
    + 1)) 
    * (r 
    |^ n)) and 
    
        
    
    A52: 
    |.r.|
    < (1 
    / 4) implies Catal is 
    absolutely_summable & ( 
    Sum Catal) 
    = (1 
    + (r 
    * (( 
    Sum Catal) 
    |^ 2))) & (SumC 
    . r) 
    = ( 
    Sum Catal) by 
    A36;
    
        set S = (
    Sum Catal); 
    
        S
    = (1 
    + (r 
    * (S 
    ^2 ))) by 
    A50,
    A52,
    WSIERP_1: 1;
    
        then
    
        
    
    A53: (((r 
    * (S 
    ^2 )) 
    + (( 
    - 1) 
    * S)) 
    + 1) 
    =  
    0 ; 
    
        (
    delta (r,( 
    - 1),1)) 
    = (1 
    - (4 
    * r)) & ( 
    - ( 
    - 1)) 
    = 1; 
    
        hence thesis by
    A49,
    A50,
    A52,
    A53,
    A51,
    FIB_NUM: 6;
    
      end;
    
      
    
      
    
    A54: for r, s st 
    0  
    < r & r 
    < s & s 
    < (1 
    / 4) holds ((1 
    + ( 
    sqrt (1 
    - (4 
    * r)))) 
    / (2 
    * r)) 
    > ((1 
    + ( 
    sqrt (1 
    - (4 
    * s)))) 
    / (2 
    * s)) 
    
      proof
    
        let r, s such that
    
        
    
    A55: 
    0  
    < r and 
    
        
    
    A56: r 
    < s and 
    
        
    
    A57: s 
    < (1 
    / 4); 
    
        (4
    * s) 
    < (4 
    * (1 
    / 4)) by 
    A57,
    XREAL_1: 68;
    
        then
    
        
    
    A58: ((4 
    * s) 
    - (4 
    * s)) 
    < (1 
    - (4 
    * s)) by 
    XREAL_1: 9;
    
        then
    
        
    
    A59: ( 
    sqrt (1 
    - (4 
    * s))) 
    >  
    0 by 
    SQUARE_1: 25;
    
        (4
    * r) 
    < (4 
    * s) by 
    A56,
    XREAL_1: 68;
    
        then (1
    - (4 
    * r)) 
    >= (1 
    - (4 
    * s)) by 
    XREAL_1: 10;
    
        then (
    sqrt (1 
    - (4 
    * r))) 
    >= ( 
    sqrt (1 
    - (4 
    * s))) by 
    A58,
    SQUARE_1: 26;
    
        then (1
    + ( 
    sqrt (1 
    - (4 
    * r)))) 
    >= (1 
    + ( 
    sqrt (1 
    - (4 
    * s)))) by 
    XREAL_1: 7;
    
        then
    
        
    
    A60: ((1 
    + ( 
    sqrt (1 
    - (4 
    * r)))) 
    / (2 
    * r)) 
    >= ((1 
    + ( 
    sqrt (1 
    - (4 
    * s)))) 
    / (2 
    * r)) by 
    A55,
    XREAL_1: 72;
    
        (2
    * r) 
    > (2 
    *  
    0 ) & (2 
    * r) 
    < (2 
    * s) by 
    A55,
    A56,
    XREAL_1: 68;
    
        then ((1
    + ( 
    sqrt (1 
    - (4 
    * s)))) 
    / (2 
    * r)) 
    > ((1 
    + ( 
    sqrt (1 
    - (4 
    * s)))) 
    / (2 
    * s)) by 
    A59,
    XREAL_1: 76;
    
        hence thesis by
    A60,
    XXREAL_0: 2;
    
      end;
    
      
    
      
    
    A61: R 
    =  
    {}  
    
      proof
    
        assume R
    <>  
    {} ; 
    
        then
    
        consider x be
    object such that 
    
        
    
    A62: x 
    in R by 
    XBOOLE_0:def 1;
    
        consider r be
    Real such that x 
    = r and 
    
        
    
    A63: 
    0  
    < r and 
    
        
    
    A64: r 
    < (1 
    / 4) and 
    
        
    
    A65: (SumC 
    . r) 
    = ((1 
    + ( 
    sqrt (1 
    - (4 
    * r)))) 
    / (2 
    * r)) by 
    A62;
    
        consider s be
    Real such that 
    
        
    
    A66: r 
    < s and 
    
        
    
    A67: s 
    < (1 
    / 4) by 
    A64,
    XREAL_1: 5;
    
        
    
        
    
    A68: 
    |.s.|
    = s by 
    A63,
    A66,
    ABSVALUE:def 1;
    
        (4
    * s) 
    < (4 
    * (1 
    / 4)) by 
    A67,
    XREAL_1: 68;
    
        then ((4
    * s) 
    - (4 
    * s)) 
    < (1 
    - (4 
    * s)) by 
    XREAL_1: 9;
    
        then (
    sqrt (1 
    - (4 
    * s))) 
    >  
    0 by 
    SQUARE_1: 25;
    
        then (1
    - ( 
    sqrt (1 
    - (4 
    * s)))) 
    <= (1 
    -  
    0 ) by 
    XREAL_1: 10;
    
        then
    
        
    
    A69: ((1 
    - ( 
    sqrt (1 
    - (4 
    * s)))) 
    / (2 
    * s)) 
    <= (1 
    / (2 
    * s)) by 
    A63,
    A66,
    XREAL_1: 72;
    
        
    
        
    
    A70: (2 
    * r) 
    > (2 
    *  
    0 ) by 
    A63,
    XREAL_1: 68;
    
        R
    c=  
    {r}
    
        proof
    
          assume not R
    c=  
    {r};
    
          then (R
    \  
    {r})
    <>  
    {} by 
    XBOOLE_1: 37;
    
          then
    
          consider y be
    object such that 
    
          
    
    A71: y 
    in (R 
    \  
    {r}) by
    XBOOLE_0:def 1;
    
          y
    in R by 
    A71;
    
          then
    
          consider s be
    Real such that 
    
          
    
    A72: y 
    = s and 
    
          
    
    A73: 
    0  
    < s and 
    
          
    
    A74: s 
    < (1 
    / 4) and 
    
          
    
    A75: (SumC 
    . s) 
    = ((1 
    + ( 
    sqrt (1 
    - (4 
    * s)))) 
    / (2 
    * s)); 
    
          
    
          
    
    A76: r 
    <> s by 
    A71,
    A72,
    ZFMISC_1: 56;
    
          now
    
            per cases by
    A76,
    XXREAL_0: 1;
    
              suppose
    
              
    
    A77: r 
    > s; 
    
              then (SumC
    . s) 
    > (SumC 
    . r) by 
    A54,
    A64,
    A65,
    A73,
    A75;
    
              hence contradiction by
    A37,
    A64,
    A73,
    A77;
    
            end;
    
              suppose
    
              
    
    A78: r 
    < s; 
    
              then (SumC
    . r) 
    > (SumC 
    . s) by 
    A54,
    A63,
    A65,
    A74,
    A75;
    
              hence contradiction by
    A37,
    A63,
    A74,
    A78;
    
            end;
    
          end;
    
          hence contradiction;
    
        end;
    
        then not s
    in R by 
    A66,
    TARSKI:def 1;
    
        then (SumC
    . s) 
    <> ((1 
    + ( 
    sqrt (1 
    - (4 
    * s)))) 
    / (2 
    * s)) by 
    A63,
    A66,
    A67;
    
        then
    
        
    
    A79: (SumC 
    . s) 
    = ((1 
    - ( 
    sqrt (1 
    - (4 
    * s)))) 
    / (2 
    * s)) by 
    A48,
    A63,
    A66,
    A67,
    A68;
    
        (4
    * r) 
    < (4 
    * (1 
    / 4)) by 
    A64,
    XREAL_1: 68;
    
        then ((4
    * r) 
    - (4 
    * r)) 
    < (1 
    - (4 
    * r)) by 
    XREAL_1: 9;
    
        then (
    sqrt (1 
    - (4 
    * r))) 
    >  
    0 by 
    SQUARE_1: 25;
    
        then (1
    +  
    0 qua 
    Nat)
    < (1 
    + ( 
    sqrt (1 
    - (4 
    * r)))) by 
    XREAL_1: 8;
    
        then
    
        
    
    A80: (1 
    / (2 
    * r)) 
    < (SumC 
    . r) by 
    A65,
    A70,
    XREAL_1: 74;
    
        (2
    * r) 
    < (2 
    * s) by 
    A66,
    XREAL_1: 68;
    
        then (1
    / (2 
    * s)) 
    < (1 
    / (2 
    * r)) by 
    A70,
    XREAL_1: 76;
    
        then (SumC
    . s) 
    < (1 
    / (2 
    * r)) by 
    A79,
    A69,
    XXREAL_0: 2;
    
        then (SumC
    . s) 
    < (SumC 
    . r) by 
    A80,
    XXREAL_0: 2;
    
        hence thesis by
    A37,
    A63,
    A66,
    A67;
    
      end;
    
      
    
      
    
    A81: for r st 
    0  
    < r & 
    |.r.|
    < (1 
    / 4) holds (SumC 
    . r) 
    = ((1 
    - ( 
    sqrt (1 
    - (4 
    * r)))) 
    / (2 
    * r)) 
    
      proof
    
        let r such that
    
        
    
    A82: 
    0  
    < r and 
    
        
    
    A83: 
    |.r.|
    < (1 
    / 4); 
    
        assume (SumC
    . r) 
    <> ((1 
    - ( 
    sqrt (1 
    - (4 
    * r)))) 
    / (2 
    * r)); 
    
        then
    
        
    
    A84: (SumC 
    . r) 
    = ((1 
    + ( 
    sqrt (1 
    - (4 
    * r)))) 
    / (2 
    * r)) by 
    A48,
    A82,
    A83;
    
        
    |.r.|
    = r by 
    A82,
    ABSVALUE:def 1;
    
        then r
    in R by 
    A82,
    A83,
    A84;
    
        hence thesis by
    A61;
    
      end;
    
      
    
      
    
    A85: for r st r 
    <  
    0 & 
    |.r.|
    < (1 
    / 4) holds (SumC 
    . r) 
    = ((1 
    - ( 
    sqrt (1 
    - (4 
    * r)))) 
    / (2 
    * r)) 
    
      proof
    
        let r such that
    
        
    
    A86: r 
    <  
    0 and 
    
        
    
    A87: 
    |.r.|
    < (1 
    / 4); 
    
        (2
    * r) 
    < (2 
    *  
    0 ) by 
    A86,
    XREAL_1: 68;
    
        then
    
        
    
    A88: 
    |.(2
    * r).| 
    = ( 
    - (2 
    * r)) & ( 
    0 qua 
    Nat
    - (2 
    * r)) 
    > ( 
    0 qua 
    Nat
    -  
    0 ) by 
    ABSVALUE:def 1;
    
        
    
        
    
    A89: 
    |.(
    - r).| 
    < (1 
    / 4) by 
    A87,
    COMPLEX1: 52;
    
        then (1
    / 4) 
    >= ( 
    - r) by 
    ABSVALUE: 5;
    
        then (4
    * (1 
    / 4)) 
    >= (4 
    * ( 
    - r)) by 
    XREAL_1: 64;
    
        then (1
    - (4 
    * ( 
    - r))) 
    >= ((4 
    * ( 
    - r)) 
    - (4 
    * ( 
    - r))) by 
    XREAL_1: 9;
    
        then (
    sqrt (1 
    - (4 
    * ( 
    - r)))) 
    >=  
    0 by 
    SQUARE_1:def 2;
    
        then
    
        
    
    A90: (1 
    - ( 
    sqrt (1 
    - (4 
    * ( 
    - r))))) 
    <= (1 
    -  
    0 ) by 
    XREAL_1: 10;
    
        
    
        
    
    A91: ( 
    sqrt (1 
    - (4 
    * r))) 
    >  
    0 by 
    A86,
    SQUARE_1: 25;
    
        then (1
    + ( 
    sqrt (1 
    - (4 
    * r)))) 
    > (1 
    +  
    0 qua 
    Nat) by
    XREAL_1: 8;
    
        then
    
        
    
    A92: (1 
    - ( 
    sqrt (1 
    - (4 
    * ( 
    - r))))) 
    < (1 
    + ( 
    sqrt (1 
    - (4 
    * r)))) by 
    A90,
    XXREAL_0: 2;
    
        (1
    + ( 
    sqrt (1 
    - (4 
    * r)))) 
    =  
    |.(1
    + ( 
    sqrt (1 
    - (4 
    * r)))).| by 
    A91,
    ABSVALUE:def 1;
    
        then
    
        
    
    A93: ((1 
    - ( 
    sqrt (1 
    - (4 
    * ( 
    - r))))) 
    / (2 
    * ( 
    - r))) 
    < ( 
    |.(1
    + ( 
    sqrt (1 
    - (4 
    * r)))).| 
    /  
    |.(2
    * r).|) by 
    A92,
    A88,
    XREAL_1: 74;
    
        (
    - r) 
    in  
    REAL by 
    XREAL_0:def 1;
    
        then
    E[(
    - r), (SumC 
    . ( 
    - r))] by 
    A36;
    
        then for s st (
    - r) 
    = s holds ex Catal be 
    Real_Sequence st (for n holds (Catal 
    . n) 
    = (( 
    Catalan (n 
    + 1)) 
    * (s 
    |^ n))) & ( 
    |.s.|
    < (1 
    / 4) implies Catal is 
    absolutely_summable & ( 
    Sum Catal) 
    = (1 
    + (s 
    * (( 
    Sum Catal) 
    |^ 2))) & (SumC 
    . ( 
    - r)) 
    = ( 
    Sum Catal)); 
    
        then
    
        consider CR be
    Real_Sequence such that 
    
        
    
    A94: for n holds (CR 
    . n) 
    = (( 
    Catalan (n 
    + 1)) 
    * (( 
    - r) 
    |^ n)) and 
    
        
    
    A95: 
    |.(
    - r).| 
    < (1 
    / 4) implies CR is 
    absolutely_summable & ( 
    Sum CR) 
    = (1 
    + (( 
    - r) 
    * (( 
    Sum CR) 
    |^ 2))) & (SumC 
    . ( 
    - r)) 
    = ( 
    Sum CR); 
    
        assume
    
        
    
    A96: (SumC 
    . r) 
    <> ((1 
    - ( 
    sqrt (1 
    - (4 
    * r)))) 
    / (2 
    * r)); 
    
        r
    in  
    REAL by 
    XREAL_0:def 1;
    
        then
    
        consider Cr be
    Real_Sequence such that 
    
        
    
    A97: for n holds (Cr 
    . n) 
    = (( 
    Catalan (n 
    + 1)) 
    * (r 
    |^ n)) and 
    
        
    
    A98: 
    |.r.|
    < (1 
    / 4) implies Cr is 
    absolutely_summable & ( 
    Sum Cr) 
    = (1 
    + (r 
    * (( 
    Sum Cr) 
    |^ 2))) & (SumC 
    . r) 
    = ( 
    Sum Cr) by 
    A36;
    
        now
    
          let x be
    object;
    
          assume x
    in  
    NAT ; 
    
          then
    
          reconsider n = x as
    Element of 
    NAT ; 
    
          ((
    - r) 
    |^ n) 
    = ((( 
    - 1) 
    * r) 
    |^ n) 
    
          .= (((
    - 1) 
    |^ n) 
    * (r 
    |^ n)) by 
    NEWTON: 7;
    
          
    
          then
    
          
    
    A99: 
    |.((
    - r) 
    |^ n).| 
    = ( 
    |.((
    - 1) 
    |^ n).| 
    *  
    |.(r
    |^ n).|) by 
    COMPLEX1: 65
    
          .= (1
    *  
    |.(r
    |^ n).|) by 
    SERIES_2: 1;
    
          (
    Catalan (n 
    + 1)) 
    >=  
    0 by 
    CATALAN1: 17;
    
          then
    
          
    
    A100: 
    |.(
    Catalan (n 
    + 1)).| 
    = ( 
    Catalan (n 
    + 1)) by 
    ABSVALUE:def 1;
    
          ((
    - r) 
    |^ n) 
    >=  
    0 by 
    A86,
    POWER: 3;
    
          then
    |.((
    - r) 
    |^ n).| 
    = (( 
    - r) 
    |^ n) by 
    ABSVALUE:def 1;
    
          
    
          then (CR
    . n) 
    = ( 
    |.(r
    |^ n).| 
    *  
    |.(
    Catalan (n 
    + 1)).|) by 
    A94,
    A99,
    A100
    
          .=
    |.((r
    |^ n) 
    * ( 
    Catalan (n 
    + 1))).| by 
    COMPLEX1: 65
    
          .=
    |.(Cr
    . n).| by 
    A97
    
          .= ((
    abs Cr) 
    . n) by 
    SEQ_1: 12;
    
          hence ((
    abs Cr) 
    . x) 
    = (CR 
    . x); 
    
        end;
    
        then
    
        
    
    A101: ( 
    abs Cr) 
    = CR by 
    FUNCT_2: 12;
    
        (
    0 qua 
    Nat
    - r) 
    > ( 
    0 qua 
    Nat
    -  
    0 ) by 
    A86;
    
        then
    
        
    
    A102: ( 
    Sum CR) 
    = ((1 
    - ( 
    sqrt (1 
    - (4 
    * ( 
    - r))))) 
    / (2 
    * ( 
    - r))) by 
    A81,
    A95,
    A89;
    
        
    |.(
    Sum Cr).| 
    <= ( 
    Sum ( 
    abs Cr)) by 
    A87,
    A98,
    TIETZE: 6;
    
        then
    |.((1
    + ( 
    sqrt (1 
    - (4 
    * r)))) 
    / (2 
    * r)).| 
    <= ( 
    Sum CR) by 
    A48,
    A86,
    A87,
    A98,
    A101,
    A96;
    
        hence thesis by
    A102,
    A93,
    COMPLEX1: 67;
    
      end;
    
      let r;
    
      r
    in  
    REAL by 
    XREAL_0:def 1;
    
      then
    
      consider Cat be
    Real_Sequence such that 
    
      
    
    A103: for n holds (Cat 
    . n) 
    = (( 
    Catalan (n 
    + 1)) 
    * (r 
    |^ n)) and 
    
      
    
    A104: 
    |.r.|
    < (1 
    / 4) implies Cat is 
    absolutely_summable & ( 
    Sum Cat) 
    = (1 
    + (r 
    * (( 
    Sum Cat) 
    |^ 2))) & (SumC 
    . r) 
    = ( 
    Sum Cat) by 
    A36;
    
      set s = (
    sqrt (1 
    - (4 
    * r))); 
    
      take Cat;
    
      thus for n holds (Cat
    . n) 
    = (( 
    Catalan (n 
    + 1)) 
    * (r 
    |^ n)) by 
    A103;
    
      assume
    
      
    
    A105: 
    |.r.|
    < (1 
    / 4); 
    
      hence Cat is
    absolutely_summable & ( 
    Sum Cat) 
    = (1 
    + (r 
    * (( 
    Sum Cat) 
    |^ 2))) by 
    A104;
    
      
    
      
    
    A106: r 
    <>  
    0 implies ( 
    Sum Cat) 
    = ((1 
    - ( 
    sqrt (1 
    - (4 
    * r)))) 
    / (2 
    * r)) 
    
      proof
    
        assume r
    <>  
    0 ; 
    
        then r
    >  
    0 or r 
    <  
    0 ; 
    
        hence thesis by
    A81,
    A85,
    A104,
    A105;
    
      end;
    
      now
    
        per cases ;
    
          suppose r
    =  
    0 ; 
    
          hence (2
    / (1 
    + s)) 
    = ( 
    Sum Cat) by 
    A104,
    A105,
    SQUARE_1: 18;
    
        end;
    
          suppose
    
          
    
    A107: r 
    <>  
    0 ; 
    
          then
    
          
    
    A108: (2 
    * r) 
    <>  
    0 ; 
    
          r
    <= (1 
    / 4) by 
    A105,
    ABSVALUE: 5;
    
          then (4
    * r) 
    <= (4 
    * (1 
    / 4)) by 
    XREAL_1: 64;
    
          then
    
          
    
    A109: (1 
    - (4 
    * r)) 
    >= ((4 
    * r) 
    - (4 
    * r)) by 
    XREAL_1: 9;
    
          then s
    >=  
    0 by 
    SQUARE_1:def 2;
    
          then ((1
    + s) 
    / (1 
    + s)) 
    = 1 by 
    XCMPLX_1: 60;
    
          
    
          then ((1
    - s) 
    / (2 
    * r)) 
    = (((1 
    - s) 
    / (2 
    * r)) 
    * ((1 
    + s) 
    / (1 
    + s))) 
    
          .= (((1
    - s) 
    * (1 
    + s)) 
    / ((2 
    * r) 
    * (1 
    + s))) by 
    XCMPLX_1: 76
    
          .= (((1
    ^2 ) 
    - (s 
    ^2 )) 
    / ((2 
    * r) 
    * (1 
    + s))) 
    
          .= ((1
    - (1 
    - (4 
    * r))) 
    / ((2 
    * r) 
    * (1 
    + s))) by 
    A109,
    SQUARE_1:def 2
    
          .= (((2
    * r) 
    * 2) 
    / ((2 
    * r) 
    * (1 
    + s))) 
    
          .= (((2
    * r) 
    / (2 
    * r)) 
    * (2 
    / (1 
    + s))) by 
    XCMPLX_1: 76
    
          .= (1
    * (2 
    / (1 
    + s))) by 
    A108,
    XCMPLX_1: 60;
    
          hence (
    Sum Cat) 
    = (2 
    / (1 
    + s)) by 
    A106,
    A107;
    
        end;
    
      end;
    
      hence thesis by
    A106;
    
    end;