jordan13.miz
begin
reserve i,j,k,l,m,n,i1,i2,j1,j2 for
Nat;
definition
let C be non
vertical non
horizontal non
empty
being_simple_closed_curve
Subset of (
TOP-REAL 2), n be
Nat;
assume
A1: n
is_sufficiently_large_for C;
::
JORDAN13:def1
func
Span (C,n) ->
clockwise_oriented
standard non
constant
special_circular_sequence means it
is_sequence_on (
Gauge (C,n)) & (it
/. 1)
= ((
Gauge (C,n))
* ((
X-SpanStart (C,n)),(
Y-SpanStart (C,n)))) & (it
/. 2)
= ((
Gauge (C,n))
* (((
X-SpanStart (C,n))
-' 1),(
Y-SpanStart (C,n)))) & for k be
Nat st 1
<= k & (k
+ 2)
<= (
len it ) holds ((
front_right_cell (it ,k,(
Gauge (C,n))))
misses C & (
front_left_cell (it ,k,(
Gauge (C,n))))
misses C implies it
turns_left (k,(
Gauge (C,n)))) & ((
front_right_cell (it ,k,(
Gauge (C,n))))
misses C & (
front_left_cell (it ,k,(
Gauge (C,n))))
meets C implies it
goes_straight (k,(
Gauge (C,n)))) & ((
front_right_cell (it ,k,(
Gauge (C,n))))
meets C implies it
turns_right (k,(
Gauge (C,n))));
existence
proof
set XS = (
X-SpanStart (C,n)), YS = (
Y-SpanStart (C,n));
set G = (
Gauge (C,n));
A2: (
len G)
= ((2
|^ n)
+ 3) by
JORDAN8:def 1;
defpred
P[
Nat,
set,
set] means ($1
=
0 implies $3
=
<*(G
* ((
X-SpanStart (C,n)),(
Y-SpanStart (C,n))))*>) & ($1
= 1 implies $3
=
<*(G
* ((
X-SpanStart (C,n)),(
Y-SpanStart (C,n)))), (G
* (((
X-SpanStart (C,n))
-' 1),(
Y-SpanStart (C,n))))*>) & ($1
> 1 & $2 is
FinSequence of (
TOP-REAL 2) implies for f be
FinSequence of (
TOP-REAL 2) st $2
= f holds ((
len f)
= $1 implies (f
is_sequence_on G & (
left_cell (f,((
len f)
-' 1),G))
meets C implies ((
front_right_cell (f,((
len f)
-' 1),G))
misses C & (
front_left_cell (f,((
len f)
-' 1),G))
misses C implies ex i, j st (f
^
<*(G
* (i,j))*>)
turns_left (((
len f)
-' 1),G) & $3
= (f
^
<*(G
* (i,j))*>)) & ((
front_right_cell (f,((
len f)
-' 1),G))
misses C & (
front_left_cell (f,((
len f)
-' 1),G))
meets C implies ex i, j st (f
^
<*(G
* (i,j))*>)
goes_straight (((
len f)
-' 1),G) & $3
= (f
^
<*(G
* (i,j))*>)) & ((
front_right_cell (f,((
len f)
-' 1),G))
meets C implies ex i, j st (f
^
<*(G
* (i,j))*>)
turns_right (((
len f)
-' 1),G) & $3
= (f
^
<*(G
* (i,j))*>))) & ( not f
is_sequence_on G or (
left_cell (f,((
len f)
-' 1),G))
misses C implies $3
= (f
^
<*(G
* (1,1))*>))) & ((
len f)
<> $1 implies $3
=
{} )) & ($1
> 1 & not $2 is
FinSequence of (
TOP-REAL 2) implies $3
=
{} );
A3: (1
+ 1)
<= XS by
JORDAN1H: 49;
A4: the TopStruct of (
TOP-REAL 2)
= (
TopSpaceMetr (
Euclid 2)) by
EUCLID:def 8;
A5:
[(
X-SpanStart (C,n)), (
Y-SpanStart (C,n))]
in (
Indices G) by
A1,
JORDAN11: 8;
A6: (
len G)
= (
width G) by
JORDAN8:def 1;
A7: for k be
Nat, x be
set holds ex y be
set st
P[k, x, y]
proof
let k be
Nat, x be
set;
per cases by
NAT_1: 25;
suppose
A8: k
=
0 ;
take
<*(G
* ((
X-SpanStart (C,n)),(
Y-SpanStart (C,n))))*>;
thus thesis by
A8;
end;
suppose
A9: k
= 1;
take
<*(G
* ((
X-SpanStart (C,n)),(
Y-SpanStart (C,n)))), (G
* (((
X-SpanStart (C,n))
-' 1),(
Y-SpanStart (C,n))))*>;
thus thesis by
A9;
end;
suppose that
A10: k
> 1 and
A11: x is
FinSequence of (
TOP-REAL 2);
reconsider f = x as
FinSequence of (
TOP-REAL 2) by
A11;
thus thesis
proof
per cases ;
suppose
A12: (
len f)
= k;
thus thesis
proof
per cases ;
suppose
A13: f
is_sequence_on G & (
left_cell (f,((
len f)
-' 1),G))
meets C;
A14: (((
len f)
-' 1)
+ 1)
= (
len f) by
A10,
A12,
XREAL_1: 235;
then
A15: (((
len f)
-' 1)
+ (1
+ 1))
= ((
len f)
+ 1);
A16: (((
len f)
-' 1)
+ 1)
in (
dom f) by
A10,
A12,
A14,
FINSEQ_3: 25;
A17: 1
<= ((
len f)
-' 1) by
A10,
A12,
NAT_D: 49;
then
consider i1,j1,i2,j2 be
Nat such that
A18:
[i1, j1]
in (
Indices G) and
A19: (f
/. ((
len f)
-' 1))
= (G
* (i1,j1)) and
A20:
[i2, j2]
in (
Indices G) and
A21: (f
/. (((
len f)
-' 1)
+ 1))
= (G
* (i2,j2)) and
A22: i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
A13,
A14,
JORDAN8: 3;
A23: i1
<= (
len G) by
A18,
MATRIX_0: 32;
A24: 1
<= (j2
+ 1) by
NAT_1: 12;
A25: 1
<= i2 by
A20,
MATRIX_0: 32;
A26: j1
<= (
width G) by
A18,
MATRIX_0: 32;
A27: 1
<= (i2
+ 1) by
NAT_1: 12;
A28: 1
<= j2 by
A20,
MATRIX_0: 32;
((
len f)
-' 1)
<= (
len f) by
NAT_D: 35;
then
A29: ((
len f)
-' 1)
in (
dom f) by
A17,
FINSEQ_3: 25;
A30: j2
<= (
width G) by
A20,
MATRIX_0: 32;
then
A31: (j2
-' 1)
<= (
width G) by
NAT_D: 44;
A32: i2
<= (
len G) by
A20,
MATRIX_0: 32;
then
A33: (i2
-' 1)
<= (
len G) by
NAT_D: 44;
thus thesis
proof
per cases ;
suppose
A34: (
front_right_cell (f,((
len f)
-' 1),G))
misses C & (
front_left_cell (f,((
len f)
-' 1),G))
misses C;
thus thesis
proof
per cases by
A22;
suppose
A35: i1
= i2 & (j1
+ 1)
= j2;
take f1 = (f
^
<*(G
* ((i2
-' 1),j2))*>);
now
take i = (i2
-' 1), j = j2;
now
A36:
now
assume (i2
-' 1)
< 1;
then i2
<= 1 by
NAT_1: 14,
NAT_D: 36;
then i2
= 1 by
A25,
XXREAL_0: 1;
then (
cell (G,(1
-' 1),j1))
meets C by
A13,
A17,
A14,
A18,
A19,
A20,
A21,
A35,
GOBRD13: 21;
then (
cell (G,
0 ,j1))
meets C by
XREAL_1: 232;
hence contradiction by
A6,
A26,
JORDAN8: 18;
end;
let i19,j19,i29,j29 be
Nat;
assume that
A37:
[i19, j19]
in (
Indices G) and
A38:
[i29, j29]
in (
Indices G) and
A39: (f1
/. ((
len f)
-' 1))
= (G
* (i19,j19)) and
A40: (f1
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29));
A41: (f
/. ((
len f)
-' 1))
= (G
* (i19,j19)) by
A29,
A39,
FINSEQ_4: 68;
A42: (f
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29)) by
A16,
A40,
FINSEQ_4: 68;
then
A43: j2
= j29 by
A20,
A21,
A38,
GOBOARD1: 5;
i2
= i29 by
A20,
A21,
A38,
A42,
GOBOARD1: 5;
hence i19
= i29 & (j19
+ 1)
= j29 &
[(i29
-' 1), j29]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* ((i29
-' 1),j29)) or (i19
+ 1)
= i29 & j19
= j29 &
[i29, (j29
+ 1)]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* (i29,(j29
+ 1))) or i19
= (i29
+ 1) & j19
= j29 &
[i29, (j29
-' 1)]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* (i29,(j29
-' 1))) or i19
= i29 & j19
= (j29
+ 1) &
[(i29
+ 1), j29]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* ((i29
+ 1),j29)) by
A18,
A19,
A28,
A30,
A33,
A15,
A35,
A37,
A41,
A43,
A36,
FINSEQ_4: 67,
GOBOARD1: 5,
MATRIX_0: 30;
end;
hence f1
turns_left (((
len f)
-' 1),G) by
GOBRD13:def 7;
thus f1
= (f
^
<*(G
* (i,j))*>);
end;
hence thesis by
A10,
A12,
A13,
A34;
end;
suppose
A44: (i1
+ 1)
= i2 & j1
= j2;
take f1 = (f
^
<*(G
* (i2,(j2
+ 1)))*>);
now
take i = i2, j = (j2
+ 1);
now
A45:
now
assume (j2
+ 1)
> (
len G);
then
A46: ((
len G)
+ 1)
<= (j2
+ 1) by
NAT_1: 13;
(j2
+ 1)
<= ((
len G)
+ 1) by
A6,
A30,
XREAL_1: 6;
then (j2
+ 1)
= ((
len G)
+ 1) by
A46,
XXREAL_0: 1;
then (
cell (G,i1,(
len G)))
meets C by
A13,
A17,
A14,
A18,
A19,
A20,
A21,
A44,
GOBRD13: 23;
hence contradiction by
A23,
JORDAN8: 15;
end;
let i19,j19,i29,j29 be
Nat;
assume that
A47:
[i19, j19]
in (
Indices G) and
A48:
[i29, j29]
in (
Indices G) and
A49: (f1
/. ((
len f)
-' 1))
= (G
* (i19,j19)) and
A50: (f1
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29));
A51: (f
/. ((
len f)
-' 1))
= (G
* (i19,j19)) by
A29,
A49,
FINSEQ_4: 68;
A52: (f
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29)) by
A16,
A50,
FINSEQ_4: 68;
then
A53: j2
= j29 by
A20,
A21,
A48,
GOBOARD1: 5;
i2
= i29 by
A20,
A21,
A48,
A52,
GOBOARD1: 5;
hence i19
= i29 & (j19
+ 1)
= j29 &
[(i29
-' 1), j29]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* ((i29
-' 1),j29)) or (i19
+ 1)
= i29 & j19
= j29 &
[i29, (j29
+ 1)]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* (i29,(j29
+ 1))) or i19
= (i29
+ 1) & j19
= j29 &
[i29, (j29
-' 1)]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* (i29,(j29
-' 1))) or i19
= i29 & j19
= (j29
+ 1) &
[(i29
+ 1), j29]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* ((i29
+ 1),j29)) by
A6,
A18,
A19,
A25,
A32,
A24,
A15,
A44,
A47,
A51,
A53,
A45,
FINSEQ_4: 67,
GOBOARD1: 5,
MATRIX_0: 30;
end;
hence f1
turns_left (((
len f)
-' 1),G) by
GOBRD13:def 7;
thus f1
= (f
^
<*(G
* (i,j))*>);
end;
hence thesis by
A10,
A12,
A13,
A34;
end;
suppose
A54: i1
= (i2
+ 1) & j1
= j2;
take f1 = (f
^
<*(G
* (i2,(j2
-' 1)))*>);
now
take i = i2, j = (j2
-' 1);
now
A55:
now
assume (j2
-' 1)
< 1;
then j2
<= 1 by
NAT_1: 14,
NAT_D: 36;
then j2
= 1 by
A28,
XXREAL_0: 1;
then (
cell (G,i2,(1
-' 1)))
meets C by
A13,
A17,
A14,
A18,
A19,
A20,
A21,
A54,
GOBRD13: 25;
then (
cell (G,i2,
0 ))
meets C by
XREAL_1: 232;
hence contradiction by
A32,
JORDAN8: 17;
end;
let i19,j19,i29,j29 be
Nat;
assume that
A56:
[i19, j19]
in (
Indices G) and
A57:
[i29, j29]
in (
Indices G) and
A58: (f1
/. ((
len f)
-' 1))
= (G
* (i19,j19)) and
A59: (f1
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29));
A60: (f
/. ((
len f)
-' 1))
= (G
* (i19,j19)) by
A29,
A58,
FINSEQ_4: 68;
A61: (f
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29)) by
A16,
A59,
FINSEQ_4: 68;
then
A62: j2
= j29 by
A20,
A21,
A57,
GOBOARD1: 5;
i2
= i29 by
A20,
A21,
A57,
A61,
GOBOARD1: 5;
hence i19
= i29 & (j19
+ 1)
= j29 &
[(i29
-' 1), j29]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* ((i29
-' 1),j29)) or (i19
+ 1)
= i29 & j19
= j29 &
[i29, (j29
+ 1)]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* (i29,(j29
+ 1))) or i19
= (i29
+ 1) & j19
= j29 &
[i29, (j29
-' 1)]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* (i29,(j29
-' 1))) or i19
= i29 & j19
= (j29
+ 1) &
[(i29
+ 1), j29]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* ((i29
+ 1),j29)) by
A18,
A19,
A25,
A32,
A31,
A15,
A54,
A56,
A60,
A62,
A55,
FINSEQ_4: 67,
GOBOARD1: 5,
MATRIX_0: 30;
end;
hence f1
turns_left (((
len f)
-' 1),G) by
GOBRD13:def 7;
thus f1
= (f
^
<*(G
* (i,j))*>);
end;
hence thesis by
A10,
A12,
A13,
A34;
end;
suppose
A63: i1
= i2 & j1
= (j2
+ 1);
take f1 = (f
^
<*(G
* ((i2
+ 1),j2))*>);
now
take i = (i2
+ 1), j = j2;
now
A64:
now
assume (i2
+ 1)
> (
len G);
then
A65: ((
len G)
+ 1)
<= (i2
+ 1) by
NAT_1: 13;
(i2
+ 1)
<= ((
len G)
+ 1) by
A32,
XREAL_1: 6;
then (i2
+ 1)
= ((
len G)
+ 1) by
A65,
XXREAL_0: 1;
then (
cell (G,(
len G),j2))
meets C by
A13,
A17,
A14,
A18,
A19,
A20,
A21,
A63,
GOBRD13: 27;
hence contradiction by
A6,
A30,
JORDAN8: 16;
end;
let i19,j19,i29,j29 be
Nat;
assume that
A66:
[i19, j19]
in (
Indices G) and
A67:
[i29, j29]
in (
Indices G) and
A68: (f1
/. ((
len f)
-' 1))
= (G
* (i19,j19)) and
A69: (f1
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29));
A70: (f
/. ((
len f)
-' 1))
= (G
* (i19,j19)) by
A29,
A68,
FINSEQ_4: 68;
A71: (f
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29)) by
A16,
A69,
FINSEQ_4: 68;
then
A72: j2
= j29 by
A20,
A21,
A67,
GOBOARD1: 5;
i2
= i29 by
A20,
A21,
A67,
A71,
GOBOARD1: 5;
hence i19
= i29 & (j19
+ 1)
= j29 &
[(i29
-' 1), j29]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* ((i29
-' 1),j29)) or (i19
+ 1)
= i29 & j19
= j29 &
[i29, (j29
+ 1)]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* (i29,(j29
+ 1))) or i19
= (i29
+ 1) & j19
= j29 &
[i29, (j29
-' 1)]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* (i29,(j29
-' 1))) or i19
= i29 & j19
= (j29
+ 1) &
[(i29
+ 1), j29]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* ((i29
+ 1),j29)) by
A18,
A19,
A28,
A30,
A27,
A15,
A63,
A66,
A70,
A72,
A64,
FINSEQ_4: 67,
GOBOARD1: 5,
MATRIX_0: 30;
end;
hence f1
turns_left (((
len f)
-' 1),G) by
GOBRD13:def 7;
thus f1
= (f
^
<*(G
* (i,j))*>);
end;
hence thesis by
A10,
A12,
A13,
A34;
end;
end;
end;
suppose
A73: (
front_right_cell (f,((
len f)
-' 1),G))
misses C & (
front_left_cell (f,((
len f)
-' 1),G))
meets C;
thus thesis
proof
per cases by
A22;
suppose
A74: i1
= i2 & (j1
+ 1)
= j2;
take f1 = (f
^
<*(G
* (i2,(j2
+ 1)))*>);
now
take i = i2, j = (j2
+ 1);
now
A75:
now
assume (j2
+ 1)
> (
len G);
then
A76: ((
len G)
+ 1)
<= (j2
+ 1) by
NAT_1: 13;
(j2
+ 1)
<= ((
len G)
+ 1) by
A6,
A30,
XREAL_1: 6;
then (j2
+ 1)
= ((
len G)
+ 1) by
A76,
XXREAL_0: 1;
then (
cell (G,(i1
-' 1),(
len G)))
meets C by
A13,
A17,
A14,
A18,
A19,
A20,
A21,
A73,
A74,
GOBRD13: 34;
hence contradiction by
A23,
JORDAN8: 15,
NAT_D: 44;
end;
let i19,j19,i29,j29 be
Nat;
assume that
A77:
[i19, j19]
in (
Indices G) and
A78:
[i29, j29]
in (
Indices G) and
A79: (f1
/. ((
len f)
-' 1))
= (G
* (i19,j19)) and
A80: (f1
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29));
A81: (f
/. ((
len f)
-' 1))
= (G
* (i19,j19)) by
A29,
A79,
FINSEQ_4: 68;
A82: (f
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29)) by
A16,
A80,
FINSEQ_4: 68;
then
A83: j2
= j29 by
A20,
A21,
A78,
GOBOARD1: 5;
i2
= i29 by
A20,
A21,
A78,
A82,
GOBOARD1: 5;
hence i19
= i29 & (j19
+ 1)
= j29 &
[i29, (j29
+ 1)]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* (i29,(j29
+ 1))) or (i19
+ 1)
= i29 & j19
= j29 &
[(i29
+ 1), j29]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* ((i29
+ 1),j29)) or i19
= (i29
+ 1) & j19
= j29 &
[(i29
-' 1), j29]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* ((i29
-' 1),j29)) or i19
= i29 & j19
= (j29
+ 1) &
[i29, (j29
-' 1)]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* (i29,(j29
-' 1))) by
A6,
A18,
A19,
A25,
A32,
A24,
A15,
A74,
A77,
A81,
A83,
A75,
FINSEQ_4: 67,
GOBOARD1: 5,
MATRIX_0: 30;
end;
hence f1
goes_straight (((
len f)
-' 1),G) by
GOBRD13:def 8;
thus f1
= (f
^
<*(G
* (i,j))*>);
end;
hence thesis by
A10,
A12,
A13,
A73;
end;
suppose
A84: (i1
+ 1)
= i2 & j1
= j2;
take f1 = (f
^
<*(G
* ((i2
+ 1),j2))*>);
now
take i = (i2
+ 1), j = j2;
now
A85:
now
assume (i2
+ 1)
> (
len G);
then
A86: ((
len G)
+ 1)
<= (i2
+ 1) by
NAT_1: 13;
(i2
+ 1)
<= ((
len G)
+ 1) by
A32,
XREAL_1: 6;
then (i2
+ 1)
= ((
len G)
+ 1) by
A86,
XXREAL_0: 1;
then (
cell (G,(
len G),j1))
meets C by
A13,
A17,
A14,
A18,
A19,
A20,
A21,
A73,
A84,
GOBRD13: 36;
hence contradiction by
A6,
A26,
JORDAN8: 16;
end;
let i19,j19,i29,j29 be
Nat;
assume that
A87:
[i19, j19]
in (
Indices G) and
A88:
[i29, j29]
in (
Indices G) and
A89: (f1
/. ((
len f)
-' 1))
= (G
* (i19,j19)) and
A90: (f1
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29));
A91: (f
/. ((
len f)
-' 1))
= (G
* (i19,j19)) by
A29,
A89,
FINSEQ_4: 68;
A92: (f
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29)) by
A16,
A90,
FINSEQ_4: 68;
then
A93: j2
= j29 by
A20,
A21,
A88,
GOBOARD1: 5;
i2
= i29 by
A20,
A21,
A88,
A92,
GOBOARD1: 5;
hence i19
= i29 & (j19
+ 1)
= j29 &
[i29, (j29
+ 1)]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* (i29,(j29
+ 1))) or (i19
+ 1)
= i29 & j19
= j29 &
[(i29
+ 1), j29]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* ((i29
+ 1),j29)) or i19
= (i29
+ 1) & j19
= j29 &
[(i29
-' 1), j29]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* ((i29
-' 1),j29)) or i19
= i29 & j19
= (j29
+ 1) &
[i29, (j29
-' 1)]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* (i29,(j29
-' 1))) by
A18,
A19,
A28,
A30,
A27,
A15,
A84,
A87,
A91,
A93,
A85,
FINSEQ_4: 67,
GOBOARD1: 5,
MATRIX_0: 30;
end;
hence f1
goes_straight (((
len f)
-' 1),G) by
GOBRD13:def 8;
thus f1
= (f
^
<*(G
* (i,j))*>);
end;
hence thesis by
A10,
A12,
A13,
A73;
end;
suppose
A94: i1
= (i2
+ 1) & j1
= j2;
take f1 = (f
^
<*(G
* ((i2
-' 1),j2))*>);
now
take i = (i2
-' 1), j = j2;
now
A95:
now
assume (i2
-' 1)
< 1;
then i2
<= 1 by
NAT_1: 14,
NAT_D: 36;
then i2
= 1 by
A25,
XXREAL_0: 1;
then (
cell (G,(1
-' 1),(j1
-' 1)))
meets C by
A13,
A17,
A14,
A18,
A19,
A20,
A21,
A73,
A94,
GOBRD13: 38;
then (
cell (G,
0 ,(j1
-' 1)))
meets C by
XREAL_1: 232;
hence contradiction by
A6,
A26,
JORDAN8: 18,
NAT_D: 44;
end;
let i19,j19,i29,j29 be
Nat;
assume that
A96:
[i19, j19]
in (
Indices G) and
A97:
[i29, j29]
in (
Indices G) and
A98: (f1
/. ((
len f)
-' 1))
= (G
* (i19,j19)) and
A99: (f1
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29));
A100: (f
/. ((
len f)
-' 1))
= (G
* (i19,j19)) by
A29,
A98,
FINSEQ_4: 68;
A101: (f
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29)) by
A16,
A99,
FINSEQ_4: 68;
then
A102: j2
= j29 by
A20,
A21,
A97,
GOBOARD1: 5;
i2
= i29 by
A20,
A21,
A97,
A101,
GOBOARD1: 5;
hence i19
= i29 & (j19
+ 1)
= j29 &
[i29, (j29
+ 1)]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* (i29,(j29
+ 1))) or (i19
+ 1)
= i29 & j19
= j29 &
[(i29
+ 1), j29]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* ((i29
+ 1),j29)) or i19
= (i29
+ 1) & j19
= j29 &
[(i29
-' 1), j29]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* ((i29
-' 1),j29)) or i19
= i29 & j19
= (j29
+ 1) &
[i29, (j29
-' 1)]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* (i29,(j29
-' 1))) by
A18,
A19,
A28,
A30,
A33,
A15,
A94,
A96,
A100,
A102,
A95,
FINSEQ_4: 67,
GOBOARD1: 5,
MATRIX_0: 30;
end;
hence f1
goes_straight (((
len f)
-' 1),G) by
GOBRD13:def 8;
thus f1
= (f
^
<*(G
* (i,j))*>);
end;
hence thesis by
A10,
A12,
A13,
A73;
end;
suppose
A103: i1
= i2 & j1
= (j2
+ 1);
take f1 = (f
^
<*(G
* (i2,(j2
-' 1)))*>);
now
take i = i2, j = (j2
-' 1);
now
A104:
now
assume (j2
-' 1)
< 1;
then j2
<= 1 by
NAT_1: 14,
NAT_D: 36;
then j2
= 1 by
A28,
XXREAL_0: 1;
then (
cell (G,i1,(1
-' 1)))
meets C by
A13,
A17,
A14,
A18,
A19,
A20,
A21,
A73,
A103,
GOBRD13: 40;
then (
cell (G,i1,
0 ))
meets C by
XREAL_1: 232;
hence contradiction by
A23,
JORDAN8: 17;
end;
let i19,j19,i29,j29 be
Nat;
assume that
A105:
[i19, j19]
in (
Indices G) and
A106:
[i29, j29]
in (
Indices G) and
A107: (f1
/. ((
len f)
-' 1))
= (G
* (i19,j19)) and
A108: (f1
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29));
A109: (f
/. ((
len f)
-' 1))
= (G
* (i19,j19)) by
A29,
A107,
FINSEQ_4: 68;
A110: (f
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29)) by
A16,
A108,
FINSEQ_4: 68;
then
A111: j2
= j29 by
A20,
A21,
A106,
GOBOARD1: 5;
i2
= i29 by
A20,
A21,
A106,
A110,
GOBOARD1: 5;
hence i19
= i29 & (j19
+ 1)
= j29 &
[i29, (j29
+ 1)]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* (i29,(j29
+ 1))) or (i19
+ 1)
= i29 & j19
= j29 &
[(i29
+ 1), j29]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* ((i29
+ 1),j29)) or i19
= (i29
+ 1) & j19
= j29 &
[(i29
-' 1), j29]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* ((i29
-' 1),j29)) or i19
= i29 & j19
= (j29
+ 1) &
[i29, (j29
-' 1)]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* (i29,(j29
-' 1))) by
A18,
A19,
A25,
A32,
A31,
A15,
A103,
A105,
A109,
A111,
A104,
FINSEQ_4: 67,
GOBOARD1: 5,
MATRIX_0: 30;
end;
hence f1
goes_straight (((
len f)
-' 1),G) by
GOBRD13:def 8;
thus f1
= (f
^
<*(G
* (i,j))*>);
end;
hence thesis by
A10,
A12,
A13,
A73;
end;
end;
end;
suppose
A112: (
front_right_cell (f,((
len f)
-' 1),G))
meets C;
thus thesis
proof
per cases by
A22;
suppose
A113: i1
= i2 & (j1
+ 1)
= j2;
take f1 = (f
^
<*(G
* ((i2
+ 1),j2))*>);
now
take i = (i2
+ 1), j = j2;
now
A114:
now
assume (i2
+ 1)
> (
len G);
then
A115: ((
len G)
+ 1)
<= (i2
+ 1) by
NAT_1: 13;
(i2
+ 1)
<= ((
len G)
+ 1) by
A32,
XREAL_1: 6;
then (i2
+ 1)
= ((
len G)
+ 1) by
A115,
XXREAL_0: 1;
then (
cell (G,(
len G),j2))
meets C by
A13,
A17,
A14,
A18,
A19,
A20,
A21,
A112,
A113,
GOBRD13: 35;
hence contradiction by
A6,
A30,
JORDAN8: 16;
end;
let i19,j19,i29,j29 be
Nat;
assume that
A116:
[i19, j19]
in (
Indices G) and
A117:
[i29, j29]
in (
Indices G) and
A118: (f1
/. ((
len f)
-' 1))
= (G
* (i19,j19)) and
A119: (f1
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29));
A120: (f
/. ((
len f)
-' 1))
= (G
* (i19,j19)) by
A29,
A118,
FINSEQ_4: 68;
A121: (f
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29)) by
A16,
A119,
FINSEQ_4: 68;
then
A122: j2
= j29 by
A20,
A21,
A117,
GOBOARD1: 5;
i2
= i29 by
A20,
A21,
A117,
A121,
GOBOARD1: 5;
hence i19
= i29 & (j19
+ 1)
= j29 &
[(i29
+ 1), j29]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* ((i29
+ 1),j29)) or (i19
+ 1)
= i29 & j19
= j29 &
[i29, (j29
-' 1)]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* (i29,(j29
-' 1))) or i19
= (i29
+ 1) & j19
= j29 &
[i29, (j29
+ 1)]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* (i29,(j29
+ 1))) or i19
= i29 & j19
= (j29
+ 1) &
[(i29
-' 1), j29]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* ((i29
-' 1),j29)) by
A18,
A19,
A28,
A30,
A27,
A15,
A113,
A116,
A120,
A122,
A114,
FINSEQ_4: 67,
GOBOARD1: 5,
MATRIX_0: 30;
end;
hence f1
turns_right (((
len f)
-' 1),G) by
GOBRD13:def 6;
thus f1
= (f
^
<*(G
* (i,j))*>);
end;
hence thesis by
A10,
A12,
A13,
A112;
end;
suppose
A123: (i1
+ 1)
= i2 & j1
= j2;
take f1 = (f
^
<*(G
* (i2,(j2
-' 1)))*>);
now
take i = i2, j = (j2
-' 1);
now
A124:
now
assume (j2
-' 1)
< 1;
then j2
<= 1 by
NAT_1: 14,
NAT_D: 36;
then j2
= 1 by
A28,
XXREAL_0: 1;
then (
cell (G,i2,(1
-' 1)))
meets C by
A13,
A17,
A14,
A18,
A19,
A20,
A21,
A112,
A123,
GOBRD13: 37;
then (
cell (G,i2,
0 ))
meets C by
XREAL_1: 232;
hence contradiction by
A32,
JORDAN8: 17;
end;
let i19,j19,i29,j29 be
Nat;
assume that
A125:
[i19, j19]
in (
Indices G) and
A126:
[i29, j29]
in (
Indices G) and
A127: (f1
/. ((
len f)
-' 1))
= (G
* (i19,j19)) and
A128: (f1
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29));
A129: (f
/. ((
len f)
-' 1))
= (G
* (i19,j19)) by
A29,
A127,
FINSEQ_4: 68;
A130: (f
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29)) by
A16,
A128,
FINSEQ_4: 68;
then
A131: j2
= j29 by
A20,
A21,
A126,
GOBOARD1: 5;
i2
= i29 by
A20,
A21,
A126,
A130,
GOBOARD1: 5;
hence i19
= i29 & (j19
+ 1)
= j29 &
[(i29
+ 1), j29]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* ((i29
+ 1),j29)) or (i19
+ 1)
= i29 & j19
= j29 &
[i29, (j29
-' 1)]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* (i29,(j29
-' 1))) or i19
= (i29
+ 1) & j19
= j29 &
[i29, (j29
+ 1)]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* (i29,(j29
+ 1))) or i19
= i29 & j19
= (j29
+ 1) &
[(i29
-' 1), j29]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* ((i29
-' 1),j29)) by
A18,
A19,
A25,
A32,
A31,
A15,
A123,
A125,
A129,
A131,
A124,
FINSEQ_4: 67,
GOBOARD1: 5,
MATRIX_0: 30;
end;
hence f1
turns_right (((
len f)
-' 1),G) by
GOBRD13:def 6;
thus f1
= (f
^
<*(G
* (i,j))*>);
end;
hence thesis by
A10,
A12,
A13,
A112;
end;
suppose
A132: i1
= (i2
+ 1) & j1
= j2;
take f1 = (f
^
<*(G
* (i2,(j2
+ 1)))*>);
now
take i = i2, j = (j2
+ 1);
now
A133:
now
assume (j2
+ 1)
> (
len G);
then
A134: ((
len G)
+ 1)
<= (j2
+ 1) by
NAT_1: 13;
(j2
+ 1)
<= ((
len G)
+ 1) by
A6,
A30,
XREAL_1: 6;
then (j2
+ 1)
= ((
len G)
+ 1) by
A134,
XXREAL_0: 1;
then (
cell (G,(i2
-' 1),(
len G)))
meets C by
A13,
A17,
A14,
A18,
A19,
A20,
A21,
A112,
A132,
GOBRD13: 39;
hence contradiction by
A32,
JORDAN8: 15,
NAT_D: 44;
end;
let i19,j19,i29,j29 be
Nat;
assume that
A135:
[i19, j19]
in (
Indices G) and
A136:
[i29, j29]
in (
Indices G) and
A137: (f1
/. ((
len f)
-' 1))
= (G
* (i19,j19)) and
A138: (f1
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29));
A139: (f
/. ((
len f)
-' 1))
= (G
* (i19,j19)) by
A29,
A137,
FINSEQ_4: 68;
A140: (f
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29)) by
A16,
A138,
FINSEQ_4: 68;
then
A141: j2
= j29 by
A20,
A21,
A136,
GOBOARD1: 5;
i2
= i29 by
A20,
A21,
A136,
A140,
GOBOARD1: 5;
hence i19
= i29 & (j19
+ 1)
= j29 &
[(i29
+ 1), j29]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* ((i29
+ 1),j29)) or (i19
+ 1)
= i29 & j19
= j29 &
[i29, (j29
-' 1)]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* (i29,(j29
-' 1))) or i19
= (i29
+ 1) & j19
= j29 &
[i29, (j29
+ 1)]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* (i29,(j29
+ 1))) or i19
= i29 & j19
= (j29
+ 1) &
[(i29
-' 1), j29]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* ((i29
-' 1),j29)) by
A6,
A18,
A19,
A25,
A32,
A24,
A15,
A132,
A135,
A139,
A141,
A133,
FINSEQ_4: 67,
GOBOARD1: 5,
MATRIX_0: 30;
end;
hence f1
turns_right (((
len f)
-' 1),G) by
GOBRD13:def 6;
thus f1
= (f
^
<*(G
* (i,j))*>);
end;
hence thesis by
A10,
A12,
A13,
A112;
end;
suppose
A142: i1
= i2 & j1
= (j2
+ 1);
take f1 = (f
^
<*(G
* ((i2
-' 1),j2))*>);
now
take i = (i2
-' 1), j = j2;
now
A143:
now
assume (i2
-' 1)
< 1;
then i2
<= 1 by
NAT_1: 14,
NAT_D: 36;
then i2
= 1 by
A25,
XXREAL_0: 1;
then (
cell (G,(1
-' 1),(j2
-' 1)))
meets C by
A13,
A17,
A14,
A18,
A19,
A20,
A21,
A112,
A142,
GOBRD13: 41;
then (
cell (G,
0 ,(j2
-' 1)))
meets C by
XREAL_1: 232;
hence contradiction by
A6,
A30,
JORDAN8: 18,
NAT_D: 44;
end;
let i19,j19,i29,j29 be
Nat;
assume that
A144:
[i19, j19]
in (
Indices G) and
A145:
[i29, j29]
in (
Indices G) and
A146: (f1
/. ((
len f)
-' 1))
= (G
* (i19,j19)) and
A147: (f1
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29));
A148: (f
/. ((
len f)
-' 1))
= (G
* (i19,j19)) by
A29,
A146,
FINSEQ_4: 68;
A149: (f
/. (((
len f)
-' 1)
+ 1))
= (G
* (i29,j29)) by
A16,
A147,
FINSEQ_4: 68;
then
A150: j2
= j29 by
A20,
A21,
A145,
GOBOARD1: 5;
i2
= i29 by
A20,
A21,
A145,
A149,
GOBOARD1: 5;
hence i19
= i29 & (j19
+ 1)
= j29 &
[(i29
+ 1), j29]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* ((i29
+ 1),j29)) or (i19
+ 1)
= i29 & j19
= j29 &
[i29, (j29
-' 1)]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* (i29,(j29
-' 1))) or i19
= (i29
+ 1) & j19
= j29 &
[i29, (j29
+ 1)]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* (i29,(j29
+ 1))) or i19
= i29 & j19
= (j29
+ 1) &
[(i29
-' 1), j29]
in (
Indices G) & (f1
/. (((
len f)
-' 1)
+ 2))
= (G
* ((i29
-' 1),j29)) by
A18,
A19,
A28,
A30,
A33,
A15,
A142,
A144,
A148,
A150,
A143,
FINSEQ_4: 67,
GOBOARD1: 5,
MATRIX_0: 30;
end;
hence f1
turns_right (((
len f)
-' 1),G) by
GOBRD13:def 6;
thus f1
= (f
^
<*(G
* (i,j))*>);
end;
hence thesis by
A10,
A12,
A13,
A112;
end;
end;
end;
end;
end;
suppose
A151: not f
is_sequence_on G or (
left_cell (f,((
len f)
-' 1),G))
misses C;
take (f
^
<*(G
* (1,1))*>);
thus thesis by
A10,
A12,
A151;
end;
end;
end;
suppose
A152: (
len f)
<> k;
take
{} ;
thus thesis by
A10,
A152;
end;
end;
end;
suppose
A153: k
> 1 & not x is
FinSequence of (
TOP-REAL 2);
take
{} ;
thus thesis by
A153;
end;
end;
consider F be
Function such that
A154: (
dom F)
=
NAT and
A155: (F
.
0 )
=
{} and
A156: for k be
Nat holds
P[k, (F
. k), (F
. (k
+ 1))] from
RECDEF_1:sch 1(
A7);
defpred
P[
Nat] means (F
. $1) is
FinSequence of (
TOP-REAL 2);
A157:
{}
= (
<*> the
carrier of (
TOP-REAL 2));
A158: for k st
P[k] holds
P[(k
+ 1)]
proof
let k such that
A159: (F
. k) is
FinSequence of (
TOP-REAL 2);
per cases by
NAT_1: 25;
suppose k
=
0 ;
hence thesis by
A156;
end;
suppose k
= 1;
hence thesis by
A156;
end;
suppose
A160: k
> 1;
reconsider f = (F
. k) as
FinSequence of (
TOP-REAL 2) by
A159;
per cases ;
suppose
A161: (
len f)
= k;
per cases ;
suppose
A162: f
is_sequence_on G & (
left_cell (f,((
len f)
-' 1),G))
meets C;
then
A163: (
front_right_cell (f,((
len f)
-' 1),G))
meets C implies ex i, j st (f
^
<*(G
* (i,j))*>)
turns_right (((
len f)
-' 1),G) & (F
. (k
+ 1))
= (f
^
<*(G
* (i,j))*>) by
A156,
A160,
A161;
A164: (
front_right_cell (f,((
len f)
-' 1),G))
misses C & (
front_left_cell (f,((
len f)
-' 1),G))
meets C implies ex i, j st (f
^
<*(G
* (i,j))*>)
goes_straight (((
len f)
-' 1),G) & (F
. (k
+ 1))
= (f
^
<*(G
* (i,j))*>) by
A156,
A160,
A161,
A162;
(
front_right_cell (f,((
len f)
-' 1),G))
misses C & (
front_left_cell (f,((
len f)
-' 1),G))
misses C implies ex i, j st (f
^
<*(G
* (i,j))*>)
turns_left (((
len f)
-' 1),G) & (F
. (k
+ 1))
= (f
^
<*(G
* (i,j))*>) by
A156,
A160,
A161,
A162;
hence thesis by
A164,
A163;
end;
suppose
A165: not f
is_sequence_on G or (
left_cell (f,((
len f)
-' 1),G))
misses C;
(f
^
<*(G
* (1,1))*>) is
FinSequence of (
TOP-REAL 2);
hence thesis by
A156,
A160,
A161,
A165;
end;
end;
suppose
A166: (
len f)
<> k;
thus thesis by
A156,
A157,
A160,
A166;
end;
end;
end;
A167:
P[
0 ] by
A155,
A157;
A168: for k holds
P[k] from
NAT_1:sch 2(
A167,
A158);
(
rng F)
c= (the
carrier of (
TOP-REAL 2)
* )
proof
let y be
object;
assume y
in (
rng F);
then ex x be
object st x
in (
dom F) & (F
. x)
= y by
FUNCT_1:def 3;
then y is
FinSequence of (
TOP-REAL 2) by
A154,
A168;
hence thesis by
FINSEQ_1:def 11;
end;
then
reconsider F as
sequence of (the
carrier of (
TOP-REAL 2)
* ) by
A154,
FUNCT_2:def 1,
RELSET_1: 4;
defpred
P[
Nat] means (
len (F
. $1) qua
FinSequence of (
TOP-REAL 2))
= $1;
A169: for k st
P[k] holds
P[(k
+ 1)]
proof
let k such that
A170: (
len (F
. k))
= k;
A171:
P[k, (F
. k), (F
. (k
+ 1))] by
A156;
per cases by
NAT_1: 25;
suppose k
=
0 ;
hence thesis by
A171,
FINSEQ_1: 39;
end;
suppose k
= 1;
hence thesis by
A171,
FINSEQ_1: 44;
end;
suppose
A172: k
> 1;
thus thesis
proof
per cases ;
suppose
A173: (F
. k)
is_sequence_on G & (
left_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C;
then
A174: (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C implies ex i, j st ((F
. k)
^
<*(G
* (i,j))*>)
turns_right (((
len (F
. k))
-' 1),G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>) by
A156,
A170,
A172;
A175: (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C & (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C implies ex i, j st ((F
. k)
^
<*(G
* (i,j))*>)
goes_straight (((
len (F
. k))
-' 1),G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>) by
A156,
A170,
A172,
A173;
(
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C & (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C implies ex i, j st ((F
. k)
^
<*(G
* (i,j))*>)
turns_left (((
len (F
. k))
-' 1),G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>) by
A156,
A170,
A172,
A173;
hence thesis by
A170,
A175,
A174,
FINSEQ_2: 16;
end;
suppose not (F
. k)
is_sequence_on G or (
left_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C;
then (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (1,1))*>) by
A156,
A170,
A172;
hence thesis by
A170,
FINSEQ_2: 16;
end;
end;
end;
end;
defpred
Q[
Nat] means (F
. $1)
is_sequence_on G & for m st 1
<= m & (m
+ 1)
<= (
len (F
. $1)) holds (
right_cell ((F
. $1),m,G))
misses C & (
left_cell ((F
. $1),m,G))
meets C;
A176:
P[
0 ] by
A155,
CARD_1: 27;
A177: for k holds
P[k] from
NAT_1:sch 2(
A176,
A169);
A178: 1
<= XS by
JORDAN1H: 49,
XXREAL_0: 2;
A179: for k st
Q[k] holds
Q[(k
+ 1)]
proof
let k such that
A180: (F
. k)
is_sequence_on G and
A181: for m st 1
<= m & (m
+ 1)
<= (
len (F
. k)) holds (
right_cell ((F
. k),m,G))
misses C & (
left_cell ((F
. k),m,G))
meets C;
A182: (
len (F
. k))
= k by
A177;
A183: (
len (F
. (k
+ 1)))
= (k
+ 1) by
A177;
per cases by
NAT_1: 25;
suppose
A184: k
=
0 ;
then
A185: (F
. (k
+ 1))
=
<*(G
* ((
X-SpanStart (C,n)),(
Y-SpanStart (C,n))))*> by
A156;
A186:
now
let l;
assume
A187: l
in (
dom (F
. (k
+ 1)));
then
A188: 1
<= l by
FINSEQ_3: 25;
l
<= 1 by
A183,
A184,
A187,
FINSEQ_3: 25;
then l
= 1 by
A188,
XXREAL_0: 1;
hence ex i, j st
[i, j]
in (
Indices G) & ((F
. (k
+ 1))
/. l)
= (G
* (i,j)) by
A5,
A185,
FINSEQ_4: 16;
end;
now
let l;
assume that
A189: l
in (
dom (F
. (k
+ 1))) and
A190: (l
+ 1)
in (
dom (F
. (k
+ 1)));
A191: 1
<= l by
A189,
FINSEQ_3: 25;
l
<= 1 by
A183,
A184,
A189,
FINSEQ_3: 25;
then l
= 1 by
A191,
XXREAL_0: 1;
hence for i1, j1, i2, j2 st
[i1, j1]
in (
Indices G) &
[i2, j2]
in (
Indices G) & ((F
. (k
+ 1))
/. l)
= (G
* (i1,j1)) & ((F
. (k
+ 1))
/. (l
+ 1))
= (G
* (i2,j2)) holds (
|.(i1
- i2).|
+
|.(j1
- j2).|)
= 1 by
A183,
A184,
A190,
FINSEQ_3: 25;
end;
hence (F
. (k
+ 1))
is_sequence_on G by
A186,
GOBOARD1:def 9;
let m;
assume that
A192: 1
<= m and
A193: (m
+ 1)
<= (
len (F
. (k
+ 1)));
1
<= (m
+ 1) by
NAT_1: 12;
then (m
+ 1)
= (
0
+ 1) by
A183,
A184,
A193,
XXREAL_0: 1;
hence thesis by
A192;
end;
suppose
A194: k
= 1;
A195: (XS
-' 1)
< XS by
A178,
JORDAN5B: 1;
A196: XS
<= (XS
+ 1) by
NAT_1: 11;
A197:
[(
X-SpanStart (C,n)), (
Y-SpanStart (C,n))]
in (
Indices G) by
A1,
JORDAN11: 8;
A198: (F
. (k
+ 1))
=
<*(G
* ((
X-SpanStart (C,n)),(
Y-SpanStart (C,n)))), (G
* (((
X-SpanStart (C,n))
-' 1),(
Y-SpanStart (C,n))))*> by
A156,
A194;
then
A199: ((F
. (k
+ 1))
/. 1)
= (G
* ((
X-SpanStart (C,n)),(
Y-SpanStart (C,n)))) by
FINSEQ_4: 17;
A200:
[((
X-SpanStart (C,n))
-' 1), (
Y-SpanStart (C,n))]
in (
Indices G) by
A1,
JORDAN11: 9;
A201: ((F
. (k
+ 1))
/. 2)
= (G
* (((
X-SpanStart (C,n))
-' 1),(
Y-SpanStart (C,n)))) by
A198,
FINSEQ_4: 17;
A202:
now
let l;
assume that
A203: l
in (
dom (F
. (k
+ 1))) and
A204: (l
+ 1)
in (
dom (F
. (k
+ 1)));
let i1,j1,i2,j2 be
Nat such that
A205:
[i1, j1]
in (
Indices G) and
A206:
[i2, j2]
in (
Indices G) and
A207: ((F
. (k
+ 1))
/. l)
= (G
* (i1,j1)) and
A208: ((F
. (k
+ 1))
/. (l
+ 1))
= (G
* (i2,j2));
l
<= 2 by
A183,
A194,
A203,
FINSEQ_3: 25;
then
A209: l
=
0 or ... or l
= 2;
then
A210: i2
= (XS
-' 1) by
A183,
A194,
A201,
A200,
A203,
A204,
A206,
A208,
FINSEQ_3: 25,
GOBOARD1: 5;
A211: j1
= YS by
A199,
A201,
A197,
A200,
A203,
A209,
A205,
A207,
FINSEQ_3: 25,
GOBOARD1: 5;
j2
= YS by
A183,
A194,
A199,
A201,
A197,
A200,
A204,
A209,
A206,
A208,
FINSEQ_3: 25,
GOBOARD1: 5;
then
A212:
|.(j1
- j2).|
=
0 by
A211,
ABSVALUE:def 1;
i1
= XS by
A183,
A194,
A199,
A197,
A203,
A204,
A209,
A205,
A207,
FINSEQ_3: 25,
GOBOARD1: 5;
then (i2
+ 1)
= i1 by
A3,
A210,
NAT_D: 43,
NAT_D: 55;
hence (
|.(i1
- i2).|
+
|.(j1
- j2).|)
= 1 by
A212,
ABSVALUE:def 1;
end;
now
let l;
assume
A213: l
in (
dom (F
. (k
+ 1)));
then l
<= 2 by
A183,
A194,
FINSEQ_3: 25;
then l
=
0 or ... or l
= 2;
hence ex i, j st
[i, j]
in (
Indices G) & ((F
. (k
+ 1))
/. l)
= (G
* (i,j)) by
A199,
A201,
A197,
A200,
A213,
FINSEQ_3: 25;
end;
hence
A214: (F
. (k
+ 1))
is_sequence_on G by
A202,
GOBOARD1:def 9;
let m;
assume that
A215: 1
<= m and
A216: (m
+ 1)
<= (
len (F
. (k
+ 1)));
(1
+ 1)
<= (m
+ 1) by
A215,
XREAL_1: 6;
then
A217: (m
+ 1)
= (1
+ 1) by
A183,
A194,
A216,
XXREAL_0: 1;
then (
right_cell ((F
. (k
+ 1)),m,G))
= (
cell (G,(XS
-' 1),YS)) by
A199,
A201,
A197,
A200,
A214,
A216,
A195,
A196,
GOBRD13:def 2;
hence (
right_cell ((F
. (k
+ 1)),m,G))
misses C by
A1,
JORDAN11: 11;
(
left_cell ((F
. (k
+ 1)),m,G))
= (
cell (G,(XS
-' 1),(YS
-' 1))) by
A199,
A201,
A197,
A200,
A214,
A216,
A217,
A195,
A196,
GOBRD13:def 3;
hence thesis by
A1,
JORDAN11: 10;
end;
suppose
A218: k
> 1;
then
A219: (
len (F
. k))
in (
dom (F
. k)) by
A182,
FINSEQ_3: 25;
A220: (((
len (F
. k))
-' 1)
+ 1)
= (
len (F
. k)) by
A182,
A218,
XREAL_1: 235;
then
A221: (((
len (F
. k))
-' 1)
+ (1
+ 1))
= ((
len (F
. k))
+ 1);
A222: 1
<= ((
len (F
. k))
-' 1) by
A182,
A218,
NAT_D: 49;
then
consider i1,j1,i2,j2 be
Nat such that
A223:
[i1, j1]
in (
Indices G) and
A224: ((F
. k)
/. ((
len (F
. k))
-' 1))
= (G
* (i1,j1)) and
A225:
[i2, j2]
in (
Indices G) and
A226: ((F
. k)
/. (
len (F
. k)))
= (G
* (i2,j2)) and i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
A180,
A220,
JORDAN8: 3;
A227: (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C & i1
= (i2
+ 1) & j1
= j2 implies
[(i2
-' 1), j2]
in (
Indices G) by
A180,
A182,
A218,
A223,
A224,
A225,
A226,
JORDAN1H: 58;
((i1
+ 1)
+ 1)
= (i1
+ 2);
then
A228: (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C & (i1
+ 1)
= i2 & j1
= j2 implies
[(i2
+ 1), j2]
in (
Indices G) by
A180,
A182,
A218,
A223,
A224,
A225,
A226,
JORDAN1H: 57;
((j1
+ 1)
+ 1)
= (j1
+ 2);
then
A229: (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C & i1
= i2 & (j1
+ 1)
= j2 implies
[i1, (j2
+ 1)]
in (
Indices G) by
A180,
A182,
A218,
A223,
A224,
A225,
A226,
JORDAN1H: 56;
A230: (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C & i1
= i2 & j1
= (j2
+ 1) implies
[(i2
-' 1), j2]
in (
Indices G) by
A180,
A182,
A218,
A223,
A224,
A225,
A226,
JORDAN1H: 63;
((
len (F
. k))
-' 1)
<= (
len (F
. k)) by
NAT_D: 35;
then
A231: ((
len (F
. k))
-' 1)
in (
dom (F
. k)) by
A222,
FINSEQ_3: 25;
A232: (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C & i1
= (i2
+ 1) & j1
= j2 implies
[i2, (j2
+ 1)]
in (
Indices G) by
A180,
A182,
A218,
A223,
A224,
A225,
A226,
JORDAN1H: 62;
A233: (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C & (i1
+ 1)
= i2 & j1
= j2 implies
[i2, (j2
-' 1)]
in (
Indices G) by
A180,
A182,
A218,
A223,
A224,
A225,
A226,
JORDAN1H: 61;
A234: (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C & i1
= i2 & (j1
+ 1)
= j2 implies
[(i2
+ 1), j2]
in (
Indices G) by
A180,
A182,
A218,
A223,
A224,
A225,
A226,
JORDAN1H: 60;
A235: (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C & i1
= i2 & j1
= (j2
+ 1) implies
[i2, (j2
-' 1)]
in (
Indices G) by
A180,
A182,
A218,
A223,
A224,
A225,
A226,
JORDAN1H: 59;
A236: 1
<= j2 by
A225,
MATRIX_0: 32;
A237: (
left_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C by
A181,
A222,
A220;
then
A238: i1
= i2 & (j1
+ 1)
= j2 implies
[(i1
-' 1), (j1
+ 1)]
in (
Indices G) by
A180,
A182,
A218,
A223,
A224,
A225,
A226,
JORDAN1H: 52;
A239: i1
= i2 & j1
= (j2
+ 1) implies
[(i1
+ 1), j2]
in (
Indices G) by
A180,
A182,
A218,
A223,
A224,
A225,
A226,
A237,
JORDAN1H: 55;
A240: i1
= (i2
+ 1) & j1
= j2 implies
[i2, (j1
-' 1)]
in (
Indices G) by
A180,
A182,
A218,
A223,
A224,
A225,
A226,
A237,
JORDAN1H: 54;
A241: (i1
+ 1)
= i2 & j1
= j2 implies
[(i1
+ 1), (j1
+ 1)]
in (
Indices G) by
A180,
A182,
A218,
A223,
A224,
A225,
A226,
A237,
JORDAN1H: 53;
A242: 1
<= i2 by
A225,
MATRIX_0: 32;
thus
A243: (F
. (k
+ 1))
is_sequence_on G
proof
per cases ;
suppose (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C & (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C;
then
consider i, j such that
A244: ((F
. k)
^
<*(G
* (i,j))*>)
turns_left (((
len (F
. k))
-' 1),G) and
A245: (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>) by
A156,
A180,
A182,
A218,
A237;
set f = ((F
. k)
^
<*(G
* (i,j))*>);
A246: (f
/. ((
len (F
. k))
+ 1))
= (G
* (i,j)) by
FINSEQ_4: 67;
A247: (f
/. (
len (F
. k)))
= (G
* (i2,j2)) by
A226,
A219,
FINSEQ_4: 68;
A248: (f
/. ((
len (F
. k))
-' 1))
= (G
* (i1,j1)) by
A224,
A231,
FINSEQ_4: 68;
thus thesis
proof
per cases by
A220,
A223,
A225,
A221,
A244,
A248,
A247,
GOBRD13:def 7;
suppose that
A249: i1
= i2 & (j1
+ 1)
= j2 and
A250: (f
/. ((
len (F
. k))
+ 1))
= (G
* ((i2
-' 1),j2));
now
let i19,j19,i29,j29 be
Nat;
assume that
A251:
[i19, j19]
in (
Indices G) and
A252:
[i29, j29]
in (
Indices G) and
A253: ((F
. k)
/. (
len (F
. k)))
= (G
* (i19,j19)) and
A254: (G
* ((i2
-' 1),j2))
= (G
* (i29,j29));
A255: (i2
-' 1)
= i29 by
A238,
A249,
A252,
A254,
GOBOARD1: 5;
i2
= i19 by
A225,
A226,
A251,
A253,
GOBOARD1: 5;
then (i19
- i29)
= (i2
- (i2
- 1)) by
A242,
A255,
XREAL_1: 233;
then
A256:
|.(i19
- i29).|
= 1 by
ABSVALUE:def 1;
A257: j2
= j29 by
A238,
A249,
A252,
A254,
GOBOARD1: 5;
j2
= j19 by
A225,
A226,
A251,
A253,
GOBOARD1: 5;
then
|.(j29
- j19).|
=
0 by
A257,
ABSVALUE:def 1;
hence (
|.(i29
- i19).|
+
|.(j29
- j19).|)
= 1 by
A256,
UNIFORM1: 11;
end;
hence thesis by
A180,
A182,
A218,
A238,
A245,
A246,
A249,
A250,
CARD_1: 27,
JORDAN8: 6;
end;
suppose that
A258: (i1
+ 1)
= i2 & j1
= j2 and
A259: (f
/. ((
len (F
. k))
+ 1))
= (G
* (i2,(j2
+ 1)));
now
let i19,j19,i29,j29 be
Nat;
assume that
A260:
[i19, j19]
in (
Indices G) and
A261:
[i29, j29]
in (
Indices G) and
A262: ((F
. k)
/. (
len (F
. k)))
= (G
* (i19,j19)) and
A263: (G
* (i2,(j2
+ 1)))
= (G
* (i29,j29));
A264: i2
= i29 by
A241,
A258,
A261,
A263,
GOBOARD1: 5;
i2
= i19 by
A225,
A226,
A260,
A262,
GOBOARD1: 5;
then
A265:
|.(i29
- i19).|
=
0 by
A264,
ABSVALUE:def 1;
A266: (j2
+ 1)
= j29 by
A241,
A258,
A261,
A263,
GOBOARD1: 5;
j2
= j19 by
A225,
A226,
A260,
A262,
GOBOARD1: 5;
hence (
|.(i29
- i19).|
+
|.(j29
- j19).|)
= 1 by
A266,
A265,
ABSVALUE:def 1;
end;
hence thesis by
A180,
A182,
A218,
A241,
A245,
A246,
A258,
A259,
CARD_1: 27,
JORDAN8: 6;
end;
suppose that
A267: i1
= (i2
+ 1) & j1
= j2 and
A268: (f
/. ((
len (F
. k))
+ 1))
= (G
* (i2,(j2
-' 1)));
now
let i19,j19,i29,j29 be
Nat;
assume that
A269:
[i19, j19]
in (
Indices G) and
A270:
[i29, j29]
in (
Indices G) and
A271: ((F
. k)
/. (
len (F
. k)))
= (G
* (i19,j19)) and
A272: (G
* (i2,(j2
-' 1)))
= (G
* (i29,j29));
A273: (j2
-' 1)
= j29 by
A240,
A267,
A270,
A272,
GOBOARD1: 5;
j2
= j19 by
A225,
A226,
A269,
A271,
GOBOARD1: 5;
then (j19
- j29)
= (j2
- (j2
- 1)) by
A236,
A273,
XREAL_1: 233;
then
A274:
|.(j19
- j29).|
= 1 by
ABSVALUE:def 1;
A275: i2
= i29 by
A240,
A267,
A270,
A272,
GOBOARD1: 5;
i2
= i19 by
A225,
A226,
A269,
A271,
GOBOARD1: 5;
then
|.(i29
- i19).|
=
0 by
A275,
ABSVALUE:def 1;
hence (
|.(i29
- i19).|
+
|.(j29
- j19).|)
= 1 by
A274,
UNIFORM1: 11;
end;
hence thesis by
A180,
A182,
A218,
A240,
A245,
A246,
A267,
A268,
CARD_1: 27,
JORDAN8: 6;
end;
suppose that
A276: i1
= i2 & j1
= (j2
+ 1) and
A277: (f
/. ((
len (F
. k))
+ 1))
= (G
* ((i2
+ 1),j2));
now
let i19,j19,i29,j29 be
Nat;
assume that
A278:
[i19, j19]
in (
Indices G) and
A279:
[i29, j29]
in (
Indices G) and
A280: ((F
. k)
/. (
len (F
. k)))
= (G
* (i19,j19)) and
A281: (G
* ((i2
+ 1),j2))
= (G
* (i29,j29));
A282: j2
= j29 by
A239,
A276,
A279,
A281,
GOBOARD1: 5;
j2
= j19 by
A225,
A226,
A278,
A280,
GOBOARD1: 5;
then
A283:
|.(j29
- j19).|
=
0 by
A282,
ABSVALUE:def 1;
A284: (i2
+ 1)
= i29 by
A239,
A276,
A279,
A281,
GOBOARD1: 5;
i2
= i19 by
A225,
A226,
A278,
A280,
GOBOARD1: 5;
hence (
|.(i29
- i19).|
+
|.(j29
- j19).|)
= 1 by
A284,
A283,
ABSVALUE:def 1;
end;
hence thesis by
A180,
A182,
A218,
A239,
A245,
A246,
A276,
A277,
CARD_1: 27,
JORDAN8: 6;
end;
end;
end;
suppose
A285: (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C & (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C;
then
consider i, j such that
A286: ((F
. k)
^
<*(G
* (i,j))*>)
goes_straight (((
len (F
. k))
-' 1),G) and
A287: (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>) by
A156,
A180,
A182,
A218,
A237;
set f = ((F
. k)
^
<*(G
* (i,j))*>);
A288: (f
/. ((
len (F
. k))
+ 1))
= (G
* (i,j)) by
FINSEQ_4: 67;
A289: (f
/. (
len (F
. k)))
= (G
* (i2,j2)) by
A226,
A219,
FINSEQ_4: 68;
A290: (f
/. ((
len (F
. k))
-' 1))
= (G
* (i1,j1)) by
A224,
A231,
FINSEQ_4: 68;
thus thesis
proof
per cases by
A220,
A223,
A225,
A221,
A286,
A290,
A289,
GOBRD13:def 8;
suppose that
A291: i1
= i2 & (j1
+ 1)
= j2 and
A292: (f
/. ((
len (F
. k))
+ 1))
= (G
* (i2,(j2
+ 1)));
now
let i19,j19,i29,j29 be
Nat;
assume that
A293:
[i19, j19]
in (
Indices G) and
A294:
[i29, j29]
in (
Indices G) and
A295: ((F
. k)
/. (
len (F
. k)))
= (G
* (i19,j19)) and
A296: (G
* (i2,(j2
+ 1)))
= (G
* (i29,j29));
A297: i2
= i19 by
A225,
A226,
A293,
A295,
GOBOARD1: 5;
i2
= i29 by
A229,
A285,
A291,
A294,
A296,
GOBOARD1: 5;
then
A298:
|.(i29
- i19).|
=
0 by
A297,
ABSVALUE:def 1;
A299: j2
= j19 by
A225,
A226,
A293,
A295,
GOBOARD1: 5;
(j2
+ 1)
= j29 by
A229,
A285,
A291,
A294,
A296,
GOBOARD1: 5;
hence (
|.(i29
- i19).|
+
|.(j29
- j19).|)
= 1 by
A299,
A298,
ABSVALUE:def 1;
end;
hence thesis by
A180,
A182,
A218,
A229,
A285,
A287,
A288,
A291,
A292,
CARD_1: 27,
JORDAN8: 6;
end;
suppose that
A300: (i1
+ 1)
= i2 & j1
= j2 and
A301: (f
/. ((
len (F
. k))
+ 1))
= (G
* ((i2
+ 1),j2));
now
let i19,j19,i29,j29 be
Nat;
assume that
A302:
[i19, j19]
in (
Indices G) and
A303:
[i29, j29]
in (
Indices G) and
A304: ((F
. k)
/. (
len (F
. k)))
= (G
* (i19,j19)) and
A305: (G
* ((i2
+ 1),j2))
= (G
* (i29,j29));
A306: j2
= j19 by
A225,
A226,
A302,
A304,
GOBOARD1: 5;
j2
= j29 by
A228,
A285,
A300,
A303,
A305,
GOBOARD1: 5;
then
A307:
|.(j29
- j19).|
=
0 by
A306,
ABSVALUE:def 1;
A308: i2
= i19 by
A225,
A226,
A302,
A304,
GOBOARD1: 5;
(i2
+ 1)
= i29 by
A228,
A285,
A300,
A303,
A305,
GOBOARD1: 5;
hence (
|.(i29
- i19).|
+
|.(j29
- j19).|)
= 1 by
A308,
A307,
ABSVALUE:def 1;
end;
hence thesis by
A180,
A182,
A218,
A228,
A285,
A287,
A288,
A300,
A301,
CARD_1: 27,
JORDAN8: 6;
end;
suppose that
A309: i1
= (i2
+ 1) & j1
= j2 and
A310: (f
/. ((
len (F
. k))
+ 1))
= (G
* ((i2
-' 1),j2));
now
let i19,j19,i29,j29 be
Nat;
assume that
A311:
[i19, j19]
in (
Indices G) and
A312:
[i29, j29]
in (
Indices G) and
A313: ((F
. k)
/. (
len (F
. k)))
= (G
* (i19,j19)) and
A314: (G
* ((i2
-' 1),j2))
= (G
* (i29,j29));
A315: i2
= i19 by
A225,
A226,
A311,
A313,
GOBOARD1: 5;
(i2
-' 1)
= i29 by
A227,
A285,
A309,
A312,
A314,
GOBOARD1: 5;
then (i19
- i29)
= (i2
- (i2
- 1)) by
A242,
A315,
XREAL_1: 233;
then
A316:
|.(i19
- i29).|
= 1 by
ABSVALUE:def 1;
A317: j2
= j19 by
A225,
A226,
A311,
A313,
GOBOARD1: 5;
j2
= j29 by
A227,
A285,
A309,
A312,
A314,
GOBOARD1: 5;
then
|.(j29
- j19).|
=
0 by
A317,
ABSVALUE:def 1;
hence (
|.(i29
- i19).|
+
|.(j29
- j19).|)
= 1 by
A316,
UNIFORM1: 11;
end;
hence thesis by
A180,
A182,
A218,
A227,
A285,
A287,
A288,
A309,
A310,
CARD_1: 27,
JORDAN8: 6;
end;
suppose that
A318: i1
= i2 & j1
= (j2
+ 1) and
A319: (f
/. ((
len (F
. k))
+ 1))
= (G
* (i2,(j2
-' 1)));
now
let i19,j19,i29,j29 be
Nat;
assume that
A320:
[i19, j19]
in (
Indices G) and
A321:
[i29, j29]
in (
Indices G) and
A322: ((F
. k)
/. (
len (F
. k)))
= (G
* (i19,j19)) and
A323: (G
* (i2,(j2
-' 1)))
= (G
* (i29,j29));
A324: j2
= j19 by
A225,
A226,
A320,
A322,
GOBOARD1: 5;
(j2
-' 1)
= j29 by
A235,
A285,
A318,
A321,
A323,
GOBOARD1: 5;
then (j19
- j29)
= (j2
- (j2
- 1)) by
A236,
A324,
XREAL_1: 233;
then
A325:
|.(j19
- j29).|
= 1 by
ABSVALUE:def 1;
A326: i2
= i19 by
A225,
A226,
A320,
A322,
GOBOARD1: 5;
i2
= i29 by
A235,
A285,
A318,
A321,
A323,
GOBOARD1: 5;
then
|.(i29
- i19).|
=
0 by
A326,
ABSVALUE:def 1;
hence (
|.(i29
- i19).|
+
|.(j29
- j19).|)
= 1 by
A325,
UNIFORM1: 11;
end;
hence thesis by
A180,
A182,
A218,
A235,
A285,
A287,
A288,
A318,
A319,
CARD_1: 27,
JORDAN8: 6;
end;
end;
end;
suppose
A327: (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C;
then
consider i, j such that
A328: ((F
. k)
^
<*(G
* (i,j))*>)
turns_right (((
len (F
. k))
-' 1),G) and
A329: (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>) by
A156,
A180,
A182,
A218,
A237;
set f = ((F
. k)
^
<*(G
* (i,j))*>);
A330: (f
/. ((
len (F
. k))
+ 1))
= (G
* (i,j)) by
FINSEQ_4: 67;
A331: (f
/. (
len (F
. k)))
= (G
* (i2,j2)) by
A226,
A219,
FINSEQ_4: 68;
A332: (f
/. ((
len (F
. k))
-' 1))
= (G
* (i1,j1)) by
A224,
A231,
FINSEQ_4: 68;
thus thesis
proof
per cases by
A220,
A223,
A225,
A221,
A328,
A332,
A331,
GOBRD13:def 6;
suppose that
A333: i1
= i2 & (j1
+ 1)
= j2 and
A334: (f
/. ((
len (F
. k))
+ 1))
= (G
* ((i2
+ 1),j2));
now
let i19,j19,i29,j29 be
Nat;
assume that
A335:
[i19, j19]
in (
Indices G) and
A336:
[i29, j29]
in (
Indices G) and
A337: ((F
. k)
/. (
len (F
. k)))
= (G
* (i19,j19)) and
A338: (G
* ((i2
+ 1),j2))
= (G
* (i29,j29));
A339: j2
= j19 by
A225,
A226,
A335,
A337,
GOBOARD1: 5;
j2
= j29 by
A234,
A327,
A333,
A336,
A338,
GOBOARD1: 5;
then
A340:
|.(j29
- j19).|
=
0 by
A339,
ABSVALUE:def 1;
A341: i2
= i19 by
A225,
A226,
A335,
A337,
GOBOARD1: 5;
(i2
+ 1)
= i29 by
A234,
A327,
A333,
A336,
A338,
GOBOARD1: 5;
hence (
|.(i29
- i19).|
+
|.(j29
- j19).|)
= 1 by
A341,
A340,
ABSVALUE:def 1;
end;
hence thesis by
A180,
A182,
A218,
A234,
A327,
A329,
A330,
A333,
A334,
CARD_1: 27,
JORDAN8: 6;
end;
suppose that
A342: (i1
+ 1)
= i2 & j1
= j2 and
A343: (f
/. ((
len (F
. k))
+ 1))
= (G
* (i2,(j2
-' 1)));
now
let i19,j19,i29,j29 be
Nat;
assume that
A344:
[i19, j19]
in (
Indices G) and
A345:
[i29, j29]
in (
Indices G) and
A346: ((F
. k)
/. (
len (F
. k)))
= (G
* (i19,j19)) and
A347: (G
* (i2,(j2
-' 1)))
= (G
* (i29,j29));
A348: j2
= j19 by
A225,
A226,
A344,
A346,
GOBOARD1: 5;
(j2
-' 1)
= j29 by
A233,
A327,
A342,
A345,
A347,
GOBOARD1: 5;
then (j19
- j29)
= (j2
- (j2
- 1)) by
A236,
A348,
XREAL_1: 233;
then
A349:
|.(j19
- j29).|
= 1 by
ABSVALUE:def 1;
A350: i2
= i19 by
A225,
A226,
A344,
A346,
GOBOARD1: 5;
i2
= i29 by
A233,
A327,
A342,
A345,
A347,
GOBOARD1: 5;
then
|.(i29
- i19).|
=
0 by
A350,
ABSVALUE:def 1;
hence (
|.(i29
- i19).|
+
|.(j29
- j19).|)
= 1 by
A349,
UNIFORM1: 11;
end;
hence thesis by
A180,
A182,
A218,
A233,
A327,
A329,
A330,
A342,
A343,
CARD_1: 27,
JORDAN8: 6;
end;
suppose that
A351: i1
= (i2
+ 1) & j1
= j2 and
A352: (f
/. ((
len (F
. k))
+ 1))
= (G
* (i2,(j2
+ 1)));
now
let i19,j19,i29,j29 be
Nat;
assume that
A353:
[i19, j19]
in (
Indices G) and
A354:
[i29, j29]
in (
Indices G) and
A355: ((F
. k)
/. (
len (F
. k)))
= (G
* (i19,j19)) and
A356: (G
* (i2,(j2
+ 1)))
= (G
* (i29,j29));
A357: i2
= i19 by
A225,
A226,
A353,
A355,
GOBOARD1: 5;
i2
= i29 by
A232,
A327,
A351,
A354,
A356,
GOBOARD1: 5;
then
A358:
|.(i29
- i19).|
=
0 by
A357,
ABSVALUE:def 1;
A359: j2
= j19 by
A225,
A226,
A353,
A355,
GOBOARD1: 5;
(j2
+ 1)
= j29 by
A232,
A327,
A351,
A354,
A356,
GOBOARD1: 5;
hence (
|.(i29
- i19).|
+
|.(j29
- j19).|)
= 1 by
A359,
A358,
ABSVALUE:def 1;
end;
hence thesis by
A180,
A182,
A218,
A232,
A327,
A329,
A330,
A351,
A352,
CARD_1: 27,
JORDAN8: 6;
end;
suppose that
A360: i1
= i2 & j1
= (j2
+ 1) and
A361: (f
/. ((
len (F
. k))
+ 1))
= (G
* ((i2
-' 1),j2));
now
let i19,j19,i29,j29 be
Nat;
assume that
A362:
[i19, j19]
in (
Indices G) and
A363:
[i29, j29]
in (
Indices G) and
A364: ((F
. k)
/. (
len (F
. k)))
= (G
* (i19,j19)) and
A365: (G
* ((i2
-' 1),j2))
= (G
* (i29,j29));
A366: i2
= i19 by
A225,
A226,
A362,
A364,
GOBOARD1: 5;
(i2
-' 1)
= i29 by
A230,
A327,
A360,
A363,
A365,
GOBOARD1: 5;
then (i19
- i29)
= (i2
- (i2
- 1)) by
A242,
A366,
XREAL_1: 233;
then
A367:
|.(i19
- i29).|
= 1 by
ABSVALUE:def 1;
A368: j2
= j19 by
A225,
A226,
A362,
A364,
GOBOARD1: 5;
j2
= j29 by
A230,
A327,
A360,
A363,
A365,
GOBOARD1: 5;
then
|.(j29
- j19).|
=
0 by
A368,
ABSVALUE:def 1;
hence (
|.(i29
- i19).|
+
|.(j29
- j19).|)
= 1 by
A367,
UNIFORM1: 11;
end;
hence thesis by
A180,
A182,
A218,
A230,
A327,
A329,
A330,
A360,
A361,
CARD_1: 27,
JORDAN8: 6;
end;
end;
end;
end;
let m such that
A369: 1
<= m and
A370: (m
+ 1)
<= (
len (F
. (k
+ 1)));
A371: (
right_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C by
A181,
A222,
A220;
now
per cases ;
suppose
A372: (m
+ 1)
= (
len (F
. (k
+ 1)));
A373: ((j2
-' 1)
+ 1)
= j2 by
A236,
XREAL_1: 235;
A374: ((i2
-' 1)
+ 1)
= i2 by
A242,
XREAL_1: 235;
thus thesis
proof
per cases ;
suppose
A375: (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C & (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C;
then
A376: ex i, j st ((F
. k)
^
<*(G
* (i,j))*>)
turns_left (((
len (F
. k))
-' 1),G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>) by
A156,
A180,
A182,
A218,
A237;
then
A377: ((F
. (k
+ 1))
/. (
len (F
. k)))
= (G
* (i2,j2)) by
A226,
A219,
FINSEQ_4: 68;
A378: ((F
. (k
+ 1))
/. ((
len (F
. k))
-' 1))
= (G
* (i1,j1)) by
A224,
A231,
A376,
FINSEQ_4: 68;
now
per cases by
A220,
A223,
A225,
A221,
A376,
A378,
A377,
GOBRD13:def 7;
suppose that
A379: i1
= i2 & (j1
+ 1)
= j2 and
A380: ((F
. (k
+ 1))
/. ((
len (F
. k))
+ 1))
= (G
* ((i2
-' 1),j2));
(
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
= (
cell (G,(i1
-' 1),j2)) by
A180,
A222,
A220,
A223,
A224,
A225,
A226,
A379,
GOBRD13: 34;
hence (
right_cell ((F
. (k
+ 1)),m,G))
misses C by
A182,
A183,
A225,
A238,
A243,
A369,
A372,
A374,
A375,
A377,
A379,
A380,
GOBRD13: 26;
A381: (j2
-' 1)
= j1 by
A379,
NAT_D: 34;
(
cell (G,(i1
-' 1),j1))
meets C by
A180,
A222,
A220,
A223,
A224,
A225,
A226,
A237,
A379,
GOBRD13: 21;
hence (
left_cell ((F
. (k
+ 1)),m,G))
meets C by
A182,
A183,
A225,
A238,
A243,
A369,
A372,
A374,
A377,
A379,
A380,
A381,
GOBRD13: 25;
end;
suppose that
A382: (i1
+ 1)
= i2 & j1
= j2 and
A383: ((F
. (k
+ 1))
/. ((
len (F
. k))
+ 1))
= (G
* (i2,(j2
+ 1)));
(
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
= (
cell (G,i2,j2)) by
A180,
A222,
A220,
A223,
A224,
A225,
A226,
A382,
GOBRD13: 36;
hence (
right_cell ((F
. (k
+ 1)),m,G))
misses C by
A182,
A183,
A225,
A241,
A243,
A369,
A372,
A375,
A377,
A382,
A383,
GOBRD13: 22;
A384: ((i1
+ 1)
-' 1)
= i1 by
NAT_D: 34;
(
cell (G,i1,j1))
meets C by
A180,
A222,
A220,
A223,
A224,
A225,
A226,
A237,
A382,
GOBRD13: 23;
hence (
left_cell ((F
. (k
+ 1)),m,G))
meets C by
A182,
A183,
A225,
A241,
A243,
A369,
A372,
A377,
A382,
A383,
A384,
GOBRD13: 21;
end;
suppose that
A385: i1
= (i2
+ 1) & j1
= j2 and
A386: ((F
. (k
+ 1))
/. ((
len (F
. k))
+ 1))
= (G
* (i2,(j2
-' 1)));
(
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
= (
cell (G,(i2
-' 1),(j2
-' 1))) by
A180,
A222,
A220,
A223,
A224,
A225,
A226,
A385,
GOBRD13: 38;
hence (
right_cell ((F
. (k
+ 1)),m,G))
misses C by
A182,
A183,
A225,
A240,
A243,
A369,
A372,
A373,
A375,
A377,
A385,
A386,
GOBRD13: 28;
(
cell (G,i2,(j2
-' 1)))
meets C by
A180,
A222,
A220,
A223,
A224,
A225,
A226,
A237,
A385,
GOBRD13: 25;
hence (
left_cell ((F
. (k
+ 1)),m,G))
meets C by
A182,
A183,
A225,
A240,
A243,
A369,
A372,
A373,
A377,
A385,
A386,
GOBRD13: 27;
end;
suppose that
A387: i1
= i2 & j1
= (j2
+ 1) and
A388: ((F
. (k
+ 1))
/. ((
len (F
. k))
+ 1))
= (G
* ((i2
+ 1),j2));
(
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
= (
cell (G,i2,(j2
-' 1))) by
A180,
A222,
A220,
A223,
A224,
A225,
A226,
A387,
GOBRD13: 40;
hence (
right_cell ((F
. (k
+ 1)),m,G))
misses C by
A182,
A183,
A225,
A239,
A243,
A369,
A372,
A375,
A377,
A387,
A388,
GOBRD13: 24;
(
cell (G,i2,j2))
meets C by
A180,
A222,
A220,
A223,
A224,
A225,
A226,
A237,
A387,
GOBRD13: 27;
hence (
left_cell ((F
. (k
+ 1)),m,G))
meets C by
A182,
A183,
A225,
A239,
A243,
A369,
A372,
A377,
A387,
A388,
GOBRD13: 23;
end;
end;
hence thesis;
end;
suppose
A389: (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C & (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C;
then
A390: ex i, j st ((F
. k)
^
<*(G
* (i,j))*>)
goes_straight (((
len (F
. k))
-' 1),G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>) by
A156,
A180,
A182,
A218,
A237;
then
A391: ((F
. (k
+ 1))
/. (
len (F
. k)))
= (G
* (i2,j2)) by
A226,
A219,
FINSEQ_4: 68;
A392: ((F
. (k
+ 1))
/. ((
len (F
. k))
-' 1))
= (G
* (i1,j1)) by
A224,
A231,
A390,
FINSEQ_4: 68;
now
per cases by
A220,
A223,
A225,
A221,
A390,
A392,
A391,
GOBRD13:def 8;
suppose that
A393: i1
= i2 & (j1
+ 1)
= j2 and
A394: ((F
. (k
+ 1))
/. ((
len (F
. k))
+ 1))
= (G
* (i2,(j2
+ 1)));
(
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
= (
cell (G,i1,j2)) by
A180,
A222,
A220,
A223,
A224,
A225,
A226,
A393,
GOBRD13: 35;
hence (
right_cell ((F
. (k
+ 1)),m,G))
misses C by
A182,
A183,
A225,
A229,
A243,
A369,
A372,
A389,
A391,
A393,
A394,
GOBRD13: 22;
(
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
= (
cell (G,(i1
-' 1),j2)) by
A180,
A222,
A220,
A223,
A224,
A225,
A226,
A393,
GOBRD13: 34;
hence (
left_cell ((F
. (k
+ 1)),m,G))
meets C by
A182,
A183,
A225,
A229,
A243,
A369,
A372,
A389,
A391,
A393,
A394,
GOBRD13: 21;
end;
suppose that
A395: (i1
+ 1)
= i2 & j1
= j2 and
A396: ((F
. (k
+ 1))
/. ((
len (F
. k))
+ 1))
= (G
* ((i2
+ 1),j2));
(
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
= (
cell (G,i2,(j2
-' 1))) by
A180,
A222,
A220,
A223,
A224,
A225,
A226,
A395,
GOBRD13: 37;
hence (
right_cell ((F
. (k
+ 1)),m,G))
misses C by
A182,
A183,
A225,
A228,
A243,
A369,
A372,
A389,
A391,
A395,
A396,
GOBRD13: 24;
(
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
= (
cell (G,i2,j2)) by
A180,
A222,
A220,
A223,
A224,
A225,
A226,
A395,
GOBRD13: 36;
hence (
left_cell ((F
. (k
+ 1)),m,G))
meets C by
A182,
A183,
A225,
A228,
A243,
A369,
A372,
A389,
A391,
A395,
A396,
GOBRD13: 23;
end;
suppose that
A397: i1
= (i2
+ 1) & j1
= j2 and
A398: ((F
. (k
+ 1))
/. ((
len (F
. k))
+ 1))
= (G
* ((i2
-' 1),j2));
(
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
= (
cell (G,(i2
-' 1),j2)) by
A180,
A222,
A220,
A223,
A224,
A225,
A226,
A397,
GOBRD13: 39;
hence (
right_cell ((F
. (k
+ 1)),m,G))
misses C by
A182,
A183,
A225,
A227,
A243,
A369,
A372,
A374,
A389,
A391,
A397,
A398,
GOBRD13: 26;
(
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
= (
cell (G,(i2
-' 1),(j2
-' 1))) by
A180,
A222,
A220,
A223,
A224,
A225,
A226,
A397,
GOBRD13: 38;
hence (
left_cell ((F
. (k
+ 1)),m,G))
meets C by
A182,
A183,
A225,
A227,
A243,
A369,
A372,
A374,
A389,
A391,
A397,
A398,
GOBRD13: 25;
end;
suppose that
A399: i1
= i2 & j1
= (j2
+ 1) and
A400: ((F
. (k
+ 1))
/. ((
len (F
. k))
+ 1))
= (G
* (i2,(j2
-' 1)));
(
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
= (
cell (G,(i2
-' 1),(j2
-' 1))) by
A180,
A222,
A220,
A223,
A224,
A225,
A226,
A399,
GOBRD13: 41;
hence (
right_cell ((F
. (k
+ 1)),m,G))
misses C by
A182,
A183,
A225,
A235,
A243,
A369,
A372,
A373,
A389,
A391,
A399,
A400,
GOBRD13: 28;
(
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
= (
cell (G,i2,(j2
-' 1))) by
A180,
A222,
A220,
A223,
A224,
A225,
A226,
A399,
GOBRD13: 40;
hence (
left_cell ((F
. (k
+ 1)),m,G))
meets C by
A182,
A183,
A225,
A235,
A243,
A369,
A372,
A373,
A389,
A391,
A399,
A400,
GOBRD13: 27;
end;
end;
hence thesis;
end;
suppose
A401: (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C;
then
A402: ex i, j st ((F
. k)
^
<*(G
* (i,j))*>)
turns_right (((
len (F
. k))
-' 1),G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>) by
A156,
A180,
A182,
A218,
A237;
then
A403: ((F
. (k
+ 1))
/. (
len (F
. k)))
= (G
* (i2,j2)) by
A226,
A219,
FINSEQ_4: 68;
A404: ((F
. (k
+ 1))
/. ((
len (F
. k))
-' 1))
= (G
* (i1,j1)) by
A224,
A231,
A402,
FINSEQ_4: 68;
now
per cases by
A220,
A223,
A225,
A221,
A402,
A404,
A403,
GOBRD13:def 6;
suppose that
A405: i1
= i2 & (j1
+ 1)
= j2 and
A406: ((F
. (k
+ 1))
/. ((
len (F
. k))
+ 1))
= (G
* ((i2
+ 1),j2));
A407: (j2
-' 1)
= j1 by
A405,
NAT_D: 34;
(
cell (G,i1,j1))
misses C by
A180,
A222,
A220,
A223,
A224,
A225,
A226,
A371,
A405,
GOBRD13: 22;
hence (
right_cell ((F
. (k
+ 1)),m,G))
misses C by
A182,
A183,
A225,
A234,
A243,
A369,
A372,
A401,
A403,
A405,
A406,
A407,
GOBRD13: 24;
(
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
= (
cell (G,i2,j2)) by
A180,
A222,
A220,
A223,
A224,
A225,
A226,
A405,
GOBRD13: 35;
hence (
left_cell ((F
. (k
+ 1)),m,G))
meets C by
A182,
A183,
A225,
A234,
A243,
A369,
A372,
A401,
A403,
A405,
A406,
GOBRD13: 23;
end;
suppose that
A408: (i1
+ 1)
= i2 & j1
= j2 and
A409: ((F
. (k
+ 1))
/. ((
len (F
. k))
+ 1))
= (G
* (i2,(j2
-' 1)));
A410: (i2
-' 1)
= i1 by
A408,
NAT_D: 34;
(
cell (G,i1,(j1
-' 1)))
misses C by
A180,
A222,
A220,
A223,
A224,
A225,
A226,
A371,
A408,
GOBRD13: 24;
hence (
right_cell ((F
. (k
+ 1)),m,G))
misses C by
A182,
A183,
A225,
A233,
A243,
A369,
A372,
A373,
A401,
A403,
A408,
A409,
A410,
GOBRD13: 28;
(
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
= (
cell (G,i2,(j2
-' 1))) by
A180,
A222,
A220,
A223,
A224,
A225,
A226,
A408,
GOBRD13: 37;
hence (
left_cell ((F
. (k
+ 1)),m,G))
meets C by
A182,
A183,
A225,
A233,
A243,
A369,
A372,
A373,
A401,
A403,
A408,
A409,
GOBRD13: 27;
end;
suppose that
A411: i1
= (i2
+ 1) & j1
= j2 and
A412: ((F
. (k
+ 1))
/. ((
len (F
. k))
+ 1))
= (G
* (i2,(j2
+ 1)));
(
cell (G,i2,j2))
misses C by
A180,
A222,
A220,
A223,
A224,
A225,
A226,
A371,
A411,
GOBRD13: 26;
hence (
right_cell ((F
. (k
+ 1)),m,G))
misses C by
A182,
A183,
A225,
A232,
A243,
A369,
A372,
A401,
A403,
A411,
A412,
GOBRD13: 22;
(
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
= (
cell (G,(i2
-' 1),j2)) by
A180,
A222,
A220,
A223,
A224,
A225,
A226,
A411,
GOBRD13: 39;
hence (
left_cell ((F
. (k
+ 1)),m,G))
meets C by
A182,
A183,
A225,
A232,
A243,
A369,
A372,
A401,
A403,
A411,
A412,
GOBRD13: 21;
end;
suppose that
A413: i1
= i2 & j1
= (j2
+ 1) and
A414: ((F
. (k
+ 1))
/. ((
len (F
. k))
+ 1))
= (G
* ((i2
-' 1),j2));
(
cell (G,(i2
-' 1),j2))
misses C by
A180,
A222,
A220,
A223,
A224,
A225,
A226,
A371,
A413,
GOBRD13: 28;
hence (
right_cell ((F
. (k
+ 1)),m,G))
misses C by
A182,
A183,
A225,
A230,
A243,
A369,
A372,
A374,
A401,
A403,
A413,
A414,
GOBRD13: 26;
(
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
= (
cell (G,(i2
-' 1),(j2
-' 1))) by
A180,
A222,
A220,
A223,
A224,
A225,
A226,
A413,
GOBRD13: 41;
hence (
left_cell ((F
. (k
+ 1)),m,G))
meets C by
A182,
A183,
A225,
A230,
A243,
A369,
A372,
A374,
A401,
A403,
A413,
A414,
GOBRD13: 25;
end;
end;
hence thesis;
end;
end;
end;
suppose (m
+ 1)
<> (
len (F
. (k
+ 1)));
then (m
+ 1)
< (
len (F
. (k
+ 1))) by
A370,
XXREAL_0: 1;
then
A415: (m
+ 1)
<= (
len (F
. k)) by
A182,
A183,
NAT_1: 13;
then
consider i1,j1,i2,j2 be
Nat such that
A416:
[i1, j1]
in (
Indices G) and
A417: ((F
. k)
/. m)
= (G
* (i1,j1)) and
A418:
[i2, j2]
in (
Indices G) and
A419: ((F
. k)
/. (m
+ 1))
= (G
* (i2,j2)) and
A420: i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
A180,
A369,
JORDAN8: 3;
A421: (
right_cell ((F
. k),m,G))
misses C by
A181,
A369,
A415;
A422:
now
per cases ;
suppose (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C & (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C;
then
consider i, j such that ((F
. k)
^
<*(G
* (i,j))*>)
turns_left (((
len (F
. k))
-' 1),G) and
A423: (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>) by
A156,
A180,
A182,
A218,
A237;
take i, j;
thus (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>) by
A423;
end;
suppose (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C & (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C;
then
consider i, j such that ((F
. k)
^
<*(G
* (i,j))*>)
goes_straight (((
len (F
. k))
-' 1),G) and
A424: (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>) by
A156,
A180,
A182,
A218,
A237;
take i, j;
thus (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>) by
A424;
end;
suppose (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C;
then
consider i, j such that ((F
. k)
^
<*(G
* (i,j))*>)
turns_right (((
len (F
. k))
-' 1),G) and
A425: (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>) by
A156,
A180,
A182,
A218,
A237;
take i, j;
thus (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>) by
A425;
end;
end;
1
<= (m
+ 1) by
NAT_1: 12;
then (m
+ 1)
in (
dom (F
. k)) by
A415,
FINSEQ_3: 25;
then
A426: ((F
. (k
+ 1))
/. (m
+ 1))
= (G
* (i2,j2)) by
A419,
A422,
FINSEQ_4: 68;
A427: (
left_cell ((F
. k),m,G))
meets C by
A181,
A369,
A415;
m
<= (
len (F
. k)) by
A415,
NAT_1: 13;
then m
in (
dom (F
. k)) by
A369,
FINSEQ_3: 25;
then
A428: ((F
. (k
+ 1))
/. m)
= (G
* (i1,j1)) by
A417,
A422,
FINSEQ_4: 68;
now
per cases by
A420;
suppose
A429: i1
= i2 & (j1
+ 1)
= j2;
then
A430: (
right_cell ((F
. k),m,G))
= (
cell (G,i1,j1)) by
A180,
A369,
A415,
A416,
A417,
A418,
A419,
GOBRD13: 22;
(
left_cell ((F
. k),m,G))
= (
cell (G,(i1
-' 1),j1)) by
A180,
A369,
A415,
A416,
A417,
A418,
A419,
A429,
GOBRD13: 21;
hence thesis by
A243,
A369,
A370,
A416,
A418,
A421,
A427,
A428,
A426,
A429,
A430,
GOBRD13: 21,
GOBRD13: 22;
end;
suppose
A431: (i1
+ 1)
= i2 & j1
= j2;
then
A432: (
right_cell ((F
. k),m,G))
= (
cell (G,i1,(j1
-' 1))) by
A180,
A369,
A415,
A416,
A417,
A418,
A419,
GOBRD13: 24;
(
left_cell ((F
. k),m,G))
= (
cell (G,i1,j1)) by
A180,
A369,
A415,
A416,
A417,
A418,
A419,
A431,
GOBRD13: 23;
hence thesis by
A243,
A369,
A370,
A416,
A418,
A421,
A427,
A428,
A426,
A431,
A432,
GOBRD13: 23,
GOBRD13: 24;
end;
suppose
A433: i1
= (i2
+ 1) & j1
= j2;
then
A434: (
right_cell ((F
. k),m,G))
= (
cell (G,i2,j2)) by
A180,
A369,
A415,
A416,
A417,
A418,
A419,
GOBRD13: 26;
(
left_cell ((F
. k),m,G))
= (
cell (G,i2,(j2
-' 1))) by
A180,
A369,
A415,
A416,
A417,
A418,
A419,
A433,
GOBRD13: 25;
hence thesis by
A243,
A369,
A370,
A416,
A418,
A421,
A427,
A428,
A426,
A433,
A434,
GOBRD13: 25,
GOBRD13: 26;
end;
suppose
A435: i1
= i2 & j1
= (j2
+ 1);
then
A436: (
right_cell ((F
. k),m,G))
= (
cell (G,(i1
-' 1),j2)) by
A180,
A369,
A415,
A416,
A417,
A418,
A419,
GOBRD13: 28;
(
left_cell ((F
. k),m,G))
= (
cell (G,i2,j2)) by
A180,
A369,
A415,
A416,
A417,
A418,
A419,
A435,
GOBRD13: 27;
hence thesis by
A243,
A369,
A370,
A416,
A418,
A421,
A427,
A428,
A426,
A435,
A436,
GOBRD13: 27,
GOBRD13: 28;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
end;
A437:
Q[
0 ]
proof
A438: for n st n
in (
dom (F
.
0 )) & (n
+ 1)
in (
dom (F
.
0 )) holds for m, k, i, j st
[m, k]
in (
Indices G) &
[i, j]
in (
Indices G) & ((F
.
0 )
/. n)
= (G
* (m,k)) & ((F
.
0 )
/. (n
+ 1))
= (G
* (i,j)) holds (
|.(m
- i).|
+
|.(k
- j).|)
= 1 by
A155;
for n st n
in (
dom (F
.
0 )) holds ex i, j st
[i, j]
in (
Indices G) & ((F
.
0 )
/. n)
= (G
* (i,j)) by
A155;
hence (F
.
0 )
is_sequence_on G by
A438,
GOBOARD1:def 9;
let m;
assume that 1
<= m and
A439: (m
+ 1)
<= (
len (F
.
0 ));
thus thesis by
A155,
A439,
CARD_1: 27;
end;
A440: for k holds
Q[k] from
NAT_1:sch 2(
A437,
A179);
A441: for k, i1, i2, j1, j2 st k
> 1 &
[i1, j1]
in (
Indices G) & ((F
. k)
/. ((
len (F
. k))
-' 1))
= (G
* (i1,j1)) &
[i2, j2]
in (
Indices G) & ((F
. k)
/. (
len (F
. k)))
= (G
* (i2,j2)) holds ((
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C & (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C implies (F
. (k
+ 1))
turns_left (((
len (F
. k))
-' 1),G) & (i1
= i2 & (j1
+ 1)
= j2 implies
[(i2
-' 1), j2]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
-' 1),j2))*>)) & ((i1
+ 1)
= i2 & j1
= j2 implies
[i2, (j2
+ 1)]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
+ 1)))*>)) & (i1
= (i2
+ 1) & j1
= j2 implies
[i2, (j2
-' 1)]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
-' 1)))*>)) & (i1
= i2 & j1
= (j2
+ 1) implies
[(i2
+ 1), j2]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
+ 1),j2))*>)))
proof
let k, i1, i2, j1, j2 such that
A442: k
> 1 and
A443:
[i1, j1]
in (
Indices G) and
A444: ((F
. k)
/. ((
len (F
. k))
-' 1))
= (G
* (i1,j1)) and
A445:
[i2, j2]
in (
Indices G) and
A446: ((F
. k)
/. (
len (F
. k)))
= (G
* (i2,j2));
A447: (
len (F
. k))
= k by
A177;
then
A448: 1
<= ((
len (F
. k))
-' 1) by
A442,
NAT_D: 49;
((
len (F
. k))
-' 1)
<= (
len (F
. k)) by
NAT_D: 35;
then
A449: ((
len (F
. k))
-' 1)
in (
dom (F
. k)) by
A448,
FINSEQ_3: 25;
A450: (i1
+ 1)
> i1 by
NAT_1: 13;
A451: (F
. k)
is_sequence_on G by
A440;
A452: (j1
+ 1)
> j1 by
NAT_1: 13;
A453: (
len (F
. k))
in (
dom (F
. k)) by
A442,
A447,
FINSEQ_3: 25;
A454: (i2
+ 1)
> i2 by
NAT_1: 13;
A455: (j2
+ 1)
> j2 by
NAT_1: 13;
A456: (((
len (F
. k))
-' 1)
+ 1)
= (
len (F
. k)) by
A442,
A447,
XREAL_1: 235;
then
A457: (((
len (F
. k))
-' 1)
+ (1
+ 1))
= ((
len (F
. k))
+ 1);
A458: (
left_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C by
A440,
A448,
A456;
hereby
assume that
A459: (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C and
A460: (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C;
consider i, j such that
A461: ((F
. k)
^
<*(G
* (i,j))*>)
turns_left (((
len (F
. k))
-' 1),G) and
A462: (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>) by
A156,
A442,
A451,
A447,
A458,
A459,
A460;
thus (F
. (k
+ 1))
turns_left (((
len (F
. k))
-' 1),G) by
A461,
A462;
A463: ((F
. (k
+ 1))
/. ((
len (F
. k))
+ 1))
= (G
* (i,j)) by
A462,
FINSEQ_4: 67;
A464: ((F
. (k
+ 1))
/. (
len (F
. k)))
= (G
* (i2,j2)) by
A446,
A453,
A462,
FINSEQ_4: 68;
A465: ((F
. (k
+ 1))
/. ((
len (F
. k))
-' 1))
= (G
* (i1,j1)) by
A444,
A449,
A462,
FINSEQ_4: 68;
hence i1
= i2 & (j1
+ 1)
= j2 implies
[(i2
-' 1), j2]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
-' 1),j2))*>) by
A443,
A445,
A456,
A457,
A452,
A455,
A461,
A462,
A464,
A463,
GOBRD13:def 7;
thus (i1
+ 1)
= i2 & j1
= j2 implies
[i2, (j2
+ 1)]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
+ 1)))*>) by
A443,
A445,
A456,
A457,
A450,
A454,
A461,
A462,
A465,
A464,
A463,
GOBRD13:def 7;
thus i1
= (i2
+ 1) & j1
= j2 implies
[i2, (j2
-' 1)]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
-' 1)))*>) by
A443,
A445,
A456,
A457,
A450,
A454,
A461,
A462,
A465,
A464,
A463,
GOBRD13:def 7;
thus i1
= i2 & j1
= (j2
+ 1) implies
[(i2
+ 1), j2]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
+ 1),j2))*>) by
A443,
A445,
A456,
A457,
A452,
A455,
A461,
A462,
A465,
A464,
A463,
GOBRD13:def 7;
end;
end;
defpred
P[
Nat] means for m st m
<= $1 holds ((F
. $1)
| m)
= (F
. m);
A466:
P[
0 ]
proof
let m;
assume m
<=
0 ;
then
0
= m;
hence thesis by
A155;
end;
defpred
K[
Nat] means ex w be
Nat st w
= $1 & $1
>= 1 & ex m st m
in (
dom (F
. w)) & m
<> (
len (F
. w)) & ((F
. w)
/. m)
= ((F
. w)
/. (
len (F
. w)));
A467:
P[
0 , (F
.
0 ), (F
. (
0
+ 1))] by
A156;
A468: for k, i1, i2, j1, j2 st k
> 1 &
[i1, j1]
in (
Indices G) & ((F
. k)
/. ((
len (F
. k))
-' 1))
= (G
* (i1,j1)) &
[i2, j2]
in (
Indices G) & ((F
. k)
/. (
len (F
. k)))
= (G
* (i2,j2)) holds ((
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C & (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C implies (F
. (k
+ 1))
goes_straight (((
len (F
. k))
-' 1),G) & (i1
= i2 & (j1
+ 1)
= j2 implies
[i2, (j2
+ 1)]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
+ 1)))*>)) & ((i1
+ 1)
= i2 & j1
= j2 implies
[(i2
+ 1), j2]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
+ 1),j2))*>)) & (i1
= (i2
+ 1) & j1
= j2 implies
[(i2
-' 1), j2]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
-' 1),j2))*>)) & (i1
= i2 & j1
= (j2
+ 1) implies
[i2, (j2
-' 1)]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
-' 1)))*>)))
proof
let k, i1, i2, j1, j2 such that
A469: k
> 1 and
A470:
[i1, j1]
in (
Indices G) and
A471: ((F
. k)
/. ((
len (F
. k))
-' 1))
= (G
* (i1,j1)) and
A472:
[i2, j2]
in (
Indices G) and
A473: ((F
. k)
/. (
len (F
. k)))
= (G
* (i2,j2));
A474: (
len (F
. k))
= k by
A177;
then
A475: 1
<= ((
len (F
. k))
-' 1) by
A469,
NAT_D: 49;
((
len (F
. k))
-' 1)
<= (
len (F
. k)) by
NAT_D: 35;
then
A476: ((
len (F
. k))
-' 1)
in (
dom (F
. k)) by
A475,
FINSEQ_3: 25;
A477: (i1
+ 1)
> i1 by
NAT_1: 13;
A478: (F
. k)
is_sequence_on G by
A440;
A479: (j1
+ 1)
> j1 by
NAT_1: 13;
A480: (
len (F
. k))
in (
dom (F
. k)) by
A469,
A474,
FINSEQ_3: 25;
A481: (i2
+ 1)
> i2 by
NAT_1: 13;
A482: (j2
+ 1)
> j2 by
NAT_1: 13;
A483: (((
len (F
. k))
-' 1)
+ 1)
= (
len (F
. k)) by
A469,
A474,
XREAL_1: 235;
then
A484: (((
len (F
. k))
-' 1)
+ (1
+ 1))
= ((
len (F
. k))
+ 1);
A485: (
left_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C by
A440,
A475,
A483;
hereby
assume that
A486: (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C and
A487: (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C;
consider i, j such that
A488: ((F
. k)
^
<*(G
* (i,j))*>)
goes_straight (((
len (F
. k))
-' 1),G) and
A489: (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>) by
A156,
A469,
A478,
A474,
A485,
A486,
A487;
thus (F
. (k
+ 1))
goes_straight (((
len (F
. k))
-' 1),G) by
A488,
A489;
A490: ((F
. (k
+ 1))
/. ((
len (F
. k))
+ 1))
= (G
* (i,j)) by
A489,
FINSEQ_4: 67;
A491: ((F
. (k
+ 1))
/. (
len (F
. k)))
= (G
* (i2,j2)) by
A473,
A480,
A489,
FINSEQ_4: 68;
A492: ((F
. (k
+ 1))
/. ((
len (F
. k))
-' 1))
= (G
* (i1,j1)) by
A471,
A476,
A489,
FINSEQ_4: 68;
hence i1
= i2 & (j1
+ 1)
= j2 implies
[i2, (j2
+ 1)]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
+ 1)))*>) by
A470,
A472,
A483,
A484,
A479,
A482,
A488,
A489,
A491,
A490,
GOBRD13:def 8;
thus (i1
+ 1)
= i2 & j1
= j2 implies
[(i2
+ 1), j2]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
+ 1),j2))*>) by
A470,
A472,
A483,
A484,
A477,
A481,
A488,
A489,
A492,
A491,
A490,
GOBRD13:def 8;
thus i1
= (i2
+ 1) & j1
= j2 implies
[(i2
-' 1), j2]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
-' 1),j2))*>) by
A470,
A472,
A483,
A484,
A477,
A481,
A488,
A489,
A492,
A491,
A490,
GOBRD13:def 8;
thus i1
= i2 & j1
= (j2
+ 1) implies
[i2, (j2
-' 1)]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
-' 1)))*>) by
A470,
A472,
A483,
A484,
A479,
A482,
A488,
A489,
A492,
A491,
A490,
GOBRD13:def 8;
end;
end;
A493: for k, i1, i2, j1, j2 st k
> 1 &
[i1, j1]
in (
Indices G) & ((F
. k)
/. ((
len (F
. k))
-' 1))
= (G
* (i1,j1)) &
[i2, j2]
in (
Indices G) & ((F
. k)
/. (
len (F
. k)))
= (G
* (i2,j2)) holds ((
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C implies (F
. (k
+ 1))
turns_right (((
len (F
. k))
-' 1),G) & (i1
= i2 & (j1
+ 1)
= j2 implies
[(i2
+ 1), j2]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
+ 1),j2))*>)) & ((i1
+ 1)
= i2 & j1
= j2 implies
[i2, (j2
-' 1)]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
-' 1)))*>)) & (i1
= (i2
+ 1) & j1
= j2 implies
[i2, (j2
+ 1)]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
+ 1)))*>)) & (i1
= i2 & j1
= (j2
+ 1) implies
[(i2
-' 1), j2]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
-' 1),j2))*>)))
proof
let k, i1, i2, j1, j2 such that
A494: k
> 1 and
A495:
[i1, j1]
in (
Indices G) and
A496: ((F
. k)
/. ((
len (F
. k))
-' 1))
= (G
* (i1,j1)) and
A497:
[i2, j2]
in (
Indices G) and
A498: ((F
. k)
/. (
len (F
. k)))
= (G
* (i2,j2));
A499: (
len (F
. k))
= k by
A177;
then
A500: (((
len (F
. k))
-' 1)
+ 1)
= (
len (F
. k)) by
A494,
XREAL_1: 235;
then
A501: (((
len (F
. k))
-' 1)
+ (1
+ 1))
= ((
len (F
. k))
+ 1);
A502: (F
. k)
is_sequence_on G by
A440;
assume
A503: (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C;
A504: 1
<= ((
len (F
. k))
-' 1) by
A494,
A499,
NAT_D: 49;
then (
left_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C by
A440,
A500;
then
consider i, j such that
A505: ((F
. k)
^
<*(G
* (i,j))*>)
turns_right (((
len (F
. k))
-' 1),G) and
A506: (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>) by
A156,
A494,
A502,
A499,
A503;
(
len (F
. k))
in (
dom (F
. k)) by
A494,
A499,
FINSEQ_3: 25;
then
A507: ((F
. (k
+ 1))
/. (
len (F
. k)))
= (G
* (i2,j2)) by
A498,
A506,
FINSEQ_4: 68;
((
len (F
. k))
-' 1)
<= (
len (F
. k)) by
NAT_D: 35;
then ((
len (F
. k))
-' 1)
in (
dom (F
. k)) by
A504,
FINSEQ_3: 25;
then
A508: ((F
. (k
+ 1))
/. ((
len (F
. k))
-' 1))
= (G
* (i1,j1)) by
A496,
A506,
FINSEQ_4: 68;
thus (F
. (k
+ 1))
turns_right (((
len (F
. k))
-' 1),G) by
A505,
A506;
A509: ((F
. (k
+ 1))
/. ((
len (F
. k))
+ 1))
= (G
* (i,j)) by
A506,
FINSEQ_4: 67;
A510: (j2
+ 1)
> j2 by
NAT_1: 13;
A511: (i2
+ 1)
> i2 by
NAT_1: 13;
A512: (j1
+ 1)
> j1 by
NAT_1: 13;
hence i1
= i2 & (j1
+ 1)
= j2 implies
[(i2
+ 1), j2]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
+ 1),j2))*>) by
A495,
A497,
A500,
A501,
A510,
A505,
A506,
A508,
A507,
A509,
GOBRD13:def 6;
A513: (i1
+ 1)
> i1 by
NAT_1: 13;
hence (i1
+ 1)
= i2 & j1
= j2 implies
[i2, (j2
-' 1)]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
-' 1)))*>) by
A495,
A497,
A500,
A501,
A511,
A505,
A506,
A508,
A507,
A509,
GOBRD13:def 6;
thus i1
= (i2
+ 1) & j1
= j2 implies
[i2, (j2
+ 1)]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
+ 1)))*>) by
A495,
A497,
A500,
A501,
A513,
A511,
A505,
A506,
A508,
A507,
A509,
GOBRD13:def 6;
thus thesis by
A495,
A497,
A500,
A501,
A512,
A510,
A505,
A506,
A508,
A507,
A509,
GOBRD13:def 6;
end;
A514: for k st k
> 1 holds ((
front_right_cell ((F
. k),(k
-' 1),(
Gauge (C,n))))
misses C & (
front_left_cell ((F
. k),(k
-' 1),(
Gauge (C,n))))
misses C implies (F
. (k
+ 1))
turns_left ((k
-' 1),(
Gauge (C,n)))) & ((
front_right_cell ((F
. k),(k
-' 1),(
Gauge (C,n))))
misses C & (
front_left_cell ((F
. k),(k
-' 1),(
Gauge (C,n))))
meets C implies (F
. (k
+ 1))
goes_straight ((k
-' 1),(
Gauge (C,n)))) & ((
front_right_cell ((F
. k),(k
-' 1),(
Gauge (C,n))))
meets C implies (F
. (k
+ 1))
turns_right ((k
-' 1),(
Gauge (C,n))))
proof
let k such that
A515: k
> 1;
A516: (F
. k)
is_sequence_on G by
A440;
A517: (
len (F
. k))
= k by
A177;
then
A518: (((
len (F
. k))
-' 1)
+ 1)
= (
len (F
. k)) by
A515,
XREAL_1: 235;
1
<= ((
len (F
. k))
-' 1) by
A515,
A517,
NAT_D: 49;
then ex i1,j1,i2,j2 be
Nat st
[i1, j1]
in (
Indices G) & ((F
. k)
/. ((
len (F
. k))
-' 1))
= (G
* (i1,j1)) &
[i2, j2]
in (
Indices G) & ((F
. k)
/. (
len (F
. k)))
= (G
* (i2,j2)) & (i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1)) by
A516,
A518,
JORDAN8: 3;
hence thesis by
A441,
A468,
A493,
A515,
A517;
end;
A519:
P[1, (F
. 1), (F
. (1
+ 1))] by
A156;
A520: for k holds ex i, j st
[i, j]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>)
proof
let k;
A521: (F
. k)
is_sequence_on G by
A440;
A522: (
len (F
. k))
= k by
A177;
per cases by
XXREAL_0: 1;
suppose
A523: k
< 1;
take (
X-SpanStart (C,n)), (
Y-SpanStart (C,n));
thus
[(
X-SpanStart (C,n)), (
Y-SpanStart (C,n))]
in (
Indices G) by
A1,
JORDAN11: 8;
k
=
0 by
A523,
NAT_1: 14;
hence thesis by
A155,
A467,
FINSEQ_1: 34;
end;
suppose
A524: k
= 1;
take ((
X-SpanStart (C,n))
-' 1), (
Y-SpanStart (C,n));
thus
[((
X-SpanStart (C,n))
-' 1), (
Y-SpanStart (C,n))]
in (
Indices G) by
A1,
JORDAN11: 9;
thus thesis by
A467,
A519,
A524,
FINSEQ_1:def 9;
end;
suppose
A525: k
> 1;
then
A526: (((
len (F
. k))
-' 1)
+ 1)
= (
len (F
. k)) by
A522,
XREAL_1: 235;
1
<= ((
len (F
. k))
-' 1) by
A522,
A525,
NAT_D: 49;
then
consider i1,j1,i2,j2 be
Nat such that
A527:
[i1, j1]
in (
Indices G) and
A528: ((F
. k)
/. ((
len (F
. k))
-' 1))
= (G
* (i1,j1)) and
A529:
[i2, j2]
in (
Indices G) and
A530: ((F
. k)
/. (
len (F
. k)))
= (G
* (i2,j2)) and
A531: i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
A521,
A526,
JORDAN8: 3;
now
per cases ;
suppose
A532: (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C & (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C;
now
per cases by
A531;
suppose
A533: i1
= i2 & (j1
+ 1)
= j2;
then
A534: (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
-' 1),j2))*>) by
A441,
A525,
A527,
A528,
A529,
A530,
A532;
[(i2
-' 1), j2]
in (
Indices G) by
A441,
A525,
A527,
A528,
A529,
A530,
A532,
A533;
hence thesis by
A534;
end;
suppose
A535: (i1
+ 1)
= i2 & j1
= j2;
then
A536: (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
+ 1)))*>) by
A441,
A525,
A527,
A528,
A529,
A530,
A532;
[i2, (j2
+ 1)]
in (
Indices G) by
A441,
A525,
A527,
A528,
A529,
A530,
A532,
A535;
hence thesis by
A536;
end;
suppose
A537: i1
= (i2
+ 1) & j1
= j2;
then
A538: (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
-' 1)))*>) by
A441,
A525,
A527,
A528,
A529,
A530,
A532;
[i2, (j2
-' 1)]
in (
Indices G) by
A441,
A525,
A527,
A528,
A529,
A530,
A532,
A537;
hence thesis by
A538;
end;
suppose
A539: i1
= i2 & j1
= (j2
+ 1);
then
A540: (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
+ 1),j2))*>) by
A441,
A525,
A527,
A528,
A529,
A530,
A532;
[(i2
+ 1), j2]
in (
Indices G) by
A441,
A525,
A527,
A528,
A529,
A530,
A532,
A539;
hence thesis by
A540;
end;
end;
hence thesis;
end;
suppose
A541: (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C & (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C;
now
per cases by
A531;
suppose
A542: i1
= i2 & (j1
+ 1)
= j2;
then
A543: (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
+ 1)))*>) by
A468,
A525,
A527,
A528,
A529,
A530,
A541;
[i2, (j2
+ 1)]
in (
Indices G) by
A468,
A525,
A527,
A528,
A529,
A530,
A541,
A542;
hence thesis by
A543;
end;
suppose
A544: (i1
+ 1)
= i2 & j1
= j2;
then
A545: (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
+ 1),j2))*>) by
A468,
A525,
A527,
A528,
A529,
A530,
A541;
[(i2
+ 1), j2]
in (
Indices G) by
A468,
A525,
A527,
A528,
A529,
A530,
A541,
A544;
hence thesis by
A545;
end;
suppose
A546: i1
= (i2
+ 1) & j1
= j2;
then
A547: (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
-' 1),j2))*>) by
A468,
A525,
A527,
A528,
A529,
A530,
A541;
[(i2
-' 1), j2]
in (
Indices G) by
A468,
A525,
A527,
A528,
A529,
A530,
A541,
A546;
hence thesis by
A547;
end;
suppose
A548: i1
= i2 & j1
= (j2
+ 1);
then
A549: (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
-' 1)))*>) by
A468,
A525,
A527,
A528,
A529,
A530,
A541;
[i2, (j2
-' 1)]
in (
Indices G) by
A468,
A525,
A527,
A528,
A529,
A530,
A541,
A548;
hence thesis by
A549;
end;
end;
hence thesis;
end;
suppose
A550: (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C;
now
per cases by
A531;
suppose
A551: i1
= i2 & (j1
+ 1)
= j2;
then
A552: (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
+ 1),j2))*>) by
A493,
A525,
A527,
A528,
A529,
A530,
A550;
[(i2
+ 1), j2]
in (
Indices G) by
A493,
A525,
A527,
A528,
A529,
A530,
A550,
A551;
hence thesis by
A552;
end;
suppose
A553: (i1
+ 1)
= i2 & j1
= j2;
then
A554: (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
-' 1)))*>) by
A493,
A525,
A527,
A528,
A529,
A530,
A550;
[i2, (j2
-' 1)]
in (
Indices G) by
A493,
A525,
A527,
A528,
A529,
A530,
A550,
A553;
hence thesis by
A554;
end;
suppose
A555: i1
= (i2
+ 1) & j1
= j2;
then
A556: (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
+ 1)))*>) by
A493,
A525,
A527,
A528,
A529,
A530,
A550;
[i2, (j2
+ 1)]
in (
Indices G) by
A493,
A525,
A527,
A528,
A529,
A530,
A550,
A555;
hence thesis by
A556;
end;
suppose
A557: i1
= i2 & j1
= (j2
+ 1);
then
A558: (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
-' 1),j2))*>) by
A493,
A525,
A527,
A528,
A529,
A530,
A550;
[(i2
-' 1), j2]
in (
Indices G) by
A493,
A525,
A527,
A528,
A529,
A530,
A550,
A557;
hence thesis by
A558;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
end;
A559: for k st
P[k] holds
P[(k
+ 1)]
proof
let k such that
A560: for m st m
<= k holds ((F
. k)
| m)
= (F
. m);
let m such that
A561: m
<= (k
+ 1);
per cases by
A561,
XXREAL_0: 1;
suppose m
< (k
+ 1);
then
A562: m
<= k by
NAT_1: 13;
A563: ex i, j st
[i, j]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>) by
A520;
(
len (F
. k))
= k by
A177;
then ((F
. (k
+ 1))
| m)
= ((F
. k)
| m) by
A562,
A563,
FINSEQ_5: 22;
hence thesis by
A560,
A562;
end;
suppose
A564: m
= (k
+ 1);
(
len (F
. (k
+ 1)))
= (k
+ 1) by
A177;
hence thesis by
A564,
FINSEQ_1: 58;
end;
end;
A565: for k holds
P[k] from
NAT_1:sch 2(
A466,
A559);
A566: for j, k st 1
<= j & j
<= k holds ((F
. k)
/. j)
= ((F
. j)
/. j)
proof
let j, k;
assume that
A567: 1
<= j and
A568: j
<= k;
j
<= (
len (F
. k)) by
A177,
A568;
then (
len ((F
. k)
| j))
= j by
FINSEQ_1: 59;
then
A569: j
in (
dom ((F
. k)
| j)) by
A567,
FINSEQ_3: 25;
((F
. k)
| j)
= (F
. j) by
A565,
A568;
hence thesis by
A569,
FINSEQ_4: 70;
end;
defpred
P[
Nat] means (F
. $1) is
unfolded;
A570: for k st
P[k] holds
P[(k
+ 1)]
proof
let k such that
A571: (F
. k) is
unfolded;
A572: (F
. k)
is_sequence_on G by
A440;
per cases ;
suppose k
<= 1;
then (k
+ 1)
<= (1
+ 1) by
XREAL_1: 6;
then (
len (F
. (k
+ 1)))
<= 2 by
A177;
hence thesis by
SPPOL_2: 26;
end;
suppose
A573: k
> 1;
set m = (k
-' 1);
A574: (m
+ 1)
= k by
A573,
XREAL_1: 235;
A575: (
len (F
. k))
= k by
A177;
A576: 1
<= m by
A573,
NAT_D: 49;
then
consider i1,j1,i2,j2 be
Nat such that
A577:
[i1, j1]
in (
Indices G) and
A578: ((F
. k)
/. m)
= (G
* (i1,j1)) and
A579:
[i2, j2]
in (
Indices G) and
A580: ((F
. k)
/. (
len (F
. k)))
= (G
* (i2,j2)) and
A581: i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
A572,
A574,
A575,
JORDAN8: 3;
A582: (
LSeg ((F
. k),m))
= (
LSeg ((G
* (i1,j1)),(G
* (i2,j2)))) by
A576,
A574,
A575,
A578,
A580,
TOPREAL1:def 3;
A583: 1
<= j2 by
A579,
MATRIX_0: 32;
then
A584: ((j2
-' 1)
+ 1)
= j2 by
XREAL_1: 235;
A585: 1
<= j1 by
A577,
MATRIX_0: 32;
A586: 1
<= i2 by
A579,
MATRIX_0: 32;
then
A587: ((i2
-' 1)
+ 1)
= i2 by
XREAL_1: 235;
A588: i1
<= (
len G) by
A577,
MATRIX_0: 32;
A589: j2
<= (
width G) by
A579,
MATRIX_0: 32;
A590: 1
<= i1 by
A577,
MATRIX_0: 32;
A591: j1
<= (
width G) by
A577,
MATRIX_0: 32;
A592: i2
<= (
len G) by
A579,
MATRIX_0: 32;
now
per cases ;
suppose
A593: (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C & (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C;
now
per cases by
A581;
suppose
A594: i1
= i2 & (j1
+ 1)
= j2;
then
[(i2
-' 1), j2]
in (
Indices G) by
A441,
A573,
A575,
A577,
A578,
A579,
A580,
A593;
then 1
<= (i2
-' 1) by
MATRIX_0: 32;
then
A595: ((
LSeg ((F
. k),m))
/\ (
LSeg (((F
. k)
/. (
len (F
. k))),(G
* ((i2
-' 1),j2)))))
=
{((F
. k)
/. (
len (F
. k)))} by
A580,
A588,
A585,
A589,
A587,
A582,
A594,
GOBOARD7: 16;
(F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
-' 1),j2))*>) by
A441,
A573,
A575,
A577,
A578,
A579,
A580,
A593,
A594;
hence thesis by
A571,
A574,
A575,
A595,
SPPOL_2: 30;
end;
suppose
A596: (i1
+ 1)
= i2 & j1
= j2;
then
[i2, (j2
+ 1)]
in (
Indices G) by
A441,
A573,
A575,
A577,
A578,
A579,
A580,
A593;
then (j2
+ 1)
<= (
width G) by
MATRIX_0: 32;
then
A597: ((
LSeg ((F
. k),m))
/\ (
LSeg (((F
. k)
/. (
len (F
. k))),(G
* (i2,(j2
+ 1))))))
=
{((F
. k)
/. (
len (F
. k)))} by
A580,
A590,
A585,
A592,
A582,
A596,
GOBOARD7: 18;
(F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
+ 1)))*>) by
A441,
A573,
A575,
A577,
A578,
A579,
A580,
A593,
A596;
hence thesis by
A571,
A574,
A575,
A597,
SPPOL_2: 30;
end;
suppose
A598: i1
= (i2
+ 1) & j1
= j2;
then
[i2, (j2
-' 1)]
in (
Indices G) by
A441,
A573,
A575,
A577,
A578,
A579,
A580,
A593;
then 1
<= (j2
-' 1) by
MATRIX_0: 32;
then
A599: ((
LSeg ((F
. k),m))
/\ (
LSeg (((F
. k)
/. (
len (F
. k))),(G
* (i2,(j2
-' 1))))))
=
{((F
. k)
/. (
len (F
. k)))} by
A580,
A588,
A591,
A586,
A584,
A582,
A598,
GOBOARD7: 15;
(F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
-' 1)))*>) by
A441,
A573,
A575,
A577,
A578,
A579,
A580,
A593,
A598;
hence thesis by
A571,
A574,
A575,
A599,
SPPOL_2: 30;
end;
suppose
A600: i1
= i2 & j1
= (j2
+ 1);
then
[(i2
+ 1), j2]
in (
Indices G) by
A441,
A573,
A575,
A577,
A578,
A579,
A580,
A593;
then (i2
+ 1)
<= (
len G) by
MATRIX_0: 32;
then
A601: ((
LSeg ((F
. k),m))
/\ (
LSeg (((F
. k)
/. (
len (F
. k))),(G
* ((i2
+ 1),j2)))))
=
{((F
. k)
/. (
len (F
. k)))} by
A580,
A590,
A591,
A583,
A582,
A600,
GOBOARD7: 17;
(F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
+ 1),j2))*>) by
A441,
A573,
A575,
A577,
A578,
A579,
A580,
A593,
A600;
hence thesis by
A571,
A574,
A575,
A601,
SPPOL_2: 30;
end;
end;
hence thesis;
end;
suppose
A602: (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
misses C & (
front_left_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C;
now
per cases by
A581;
suppose
A603: i1
= i2 & (j1
+ 1)
= j2;
then
[i2, (j2
+ 1)]
in (
Indices G) by
A468,
A573,
A575,
A577,
A578,
A579,
A580,
A602;
then
A604: (j2
+ 1)
<= (
width G) by
MATRIX_0: 32;
(j2
+ 1)
= (j1
+ (1
+ 1)) by
A603;
then
A605: ((
LSeg ((F
. k),m))
/\ (
LSeg (((F
. k)
/. (
len (F
. k))),(G
* (i2,(j2
+ 1))))))
=
{((F
. k)
/. (
len (F
. k)))} by
A580,
A590,
A588,
A585,
A582,
A603,
A604,
GOBOARD7: 13;
(F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
+ 1)))*>) by
A468,
A573,
A575,
A577,
A578,
A579,
A580,
A602,
A603;
hence thesis by
A571,
A574,
A575,
A605,
SPPOL_2: 30;
end;
suppose
A606: (i1
+ 1)
= i2 & j1
= j2;
then
[(i2
+ 1), j2]
in (
Indices G) by
A468,
A573,
A575,
A577,
A578,
A579,
A580,
A602;
then
A607: (i2
+ 1)
<= (
len G) by
MATRIX_0: 32;
(i2
+ 1)
= (i1
+ (1
+ 1)) by
A606;
then
A608: ((
LSeg ((F
. k),m))
/\ (
LSeg (((F
. k)
/. (
len (F
. k))),(G
* ((i2
+ 1),j2)))))
=
{((F
. k)
/. (
len (F
. k)))} by
A580,
A590,
A585,
A591,
A582,
A606,
A607,
GOBOARD7: 14;
(F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
+ 1),j2))*>) by
A468,
A573,
A575,
A577,
A578,
A579,
A580,
A602,
A606;
hence thesis by
A571,
A574,
A575,
A608,
SPPOL_2: 30;
end;
suppose
A609: i1
= (i2
+ 1) & j1
= j2;
then
[(i2
-' 1), j2]
in (
Indices G) by
A468,
A573,
A575,
A577,
A578,
A579,
A580,
A602;
then
A610: 1
<= (i2
-' 1) by
MATRIX_0: 32;
(((i2
-' 1)
+ 1)
+ 1)
= ((i2
-' 1)
+ (1
+ 1));
then
A611: ((
LSeg ((F
. k),m))
/\ (
LSeg (((F
. k)
/. (
len (F
. k))),(G
* ((i2
-' 1),j2)))))
=
{((F
. k)
/. (
len (F
. k)))} by
A580,
A588,
A585,
A591,
A587,
A582,
A609,
A610,
GOBOARD7: 14;
(F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
-' 1),j2))*>) by
A468,
A573,
A575,
A577,
A578,
A579,
A580,
A602,
A609;
hence thesis by
A571,
A574,
A575,
A611,
SPPOL_2: 30;
end;
suppose
A612: i1
= i2 & j1
= (j2
+ 1);
then
[i2, (j2
-' 1)]
in (
Indices G) by
A468,
A573,
A575,
A577,
A578,
A579,
A580,
A602;
then
A613: 1
<= (j2
-' 1) by
MATRIX_0: 32;
(((j2
-' 1)
+ 1)
+ 1)
= ((j2
-' 1)
+ (1
+ 1));
then
A614: ((
LSeg ((F
. k),m))
/\ (
LSeg (((F
. k)
/. (
len (F
. k))),(G
* (i2,(j2
-' 1))))))
=
{((F
. k)
/. (
len (F
. k)))} by
A580,
A590,
A588,
A591,
A584,
A582,
A612,
A613,
GOBOARD7: 13;
(F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
-' 1)))*>) by
A468,
A573,
A575,
A577,
A578,
A579,
A580,
A602,
A612;
hence thesis by
A571,
A574,
A575,
A614,
SPPOL_2: 30;
end;
end;
hence thesis;
end;
suppose
A615: (
front_right_cell ((F
. k),((
len (F
. k))
-' 1),G))
meets C;
now
per cases by
A581;
suppose
A616: i1
= i2 & (j1
+ 1)
= j2;
then
[(i2
+ 1), j2]
in (
Indices G) by
A493,
A573,
A575,
A577,
A578,
A579,
A580,
A615;
then (i2
+ 1)
<= (
len G) by
MATRIX_0: 32;
then
A617: ((
LSeg ((F
. k),m))
/\ (
LSeg (((F
. k)
/. (
len (F
. k))),(G
* ((i2
+ 1),j2)))))
=
{((F
. k)
/. (
len (F
. k)))} by
A580,
A590,
A585,
A589,
A582,
A616,
GOBOARD7: 15;
(F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
+ 1),j2))*>) by
A493,
A573,
A575,
A577,
A578,
A579,
A580,
A615,
A616;
hence thesis by
A571,
A574,
A575,
A617,
SPPOL_2: 30;
end;
suppose
A618: (i1
+ 1)
= i2 & j1
= j2;
then
[i2, (j2
-' 1)]
in (
Indices G) by
A493,
A573,
A575,
A577,
A578,
A579,
A580,
A615;
then 1
<= (j2
-' 1) by
MATRIX_0: 32;
then
A619: ((
LSeg ((F
. k),m))
/\ (
LSeg (((F
. k)
/. (
len (F
. k))),(G
* (i2,(j2
-' 1))))))
=
{((F
. k)
/. (
len (F
. k)))} by
A580,
A590,
A591,
A592,
A584,
A582,
A618,
GOBOARD7: 16;
(F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
-' 1)))*>) by
A493,
A573,
A575,
A577,
A578,
A579,
A580,
A615,
A618;
hence thesis by
A571,
A574,
A575,
A619,
SPPOL_2: 30;
end;
suppose
A620: i1
= (i2
+ 1) & j1
= j2;
then
[i2, (j2
+ 1)]
in (
Indices G) by
A493,
A573,
A575,
A577,
A578,
A579,
A580,
A615;
then (j2
+ 1)
<= (
width G) by
MATRIX_0: 32;
then
A621: ((
LSeg ((F
. k),m))
/\ (
LSeg (((F
. k)
/. (
len (F
. k))),(G
* (i2,(j2
+ 1))))))
=
{((F
. k)
/. (
len (F
. k)))} by
A580,
A588,
A585,
A586,
A582,
A620,
GOBOARD7: 17;
(F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i2,(j2
+ 1)))*>) by
A493,
A573,
A575,
A577,
A578,
A579,
A580,
A615,
A620;
hence thesis by
A571,
A574,
A575,
A621,
SPPOL_2: 30;
end;
suppose
A622: i1
= i2 & j1
= (j2
+ 1);
then
[(i2
-' 1), j2]
in (
Indices G) by
A493,
A573,
A575,
A577,
A578,
A579,
A580,
A615;
then 1
<= (i2
-' 1) by
MATRIX_0: 32;
then
A623: ((
LSeg ((F
. k),m))
/\ (
LSeg (((F
. k)
/. (
len (F
. k))),(G
* ((i2
-' 1),j2)))))
=
{((F
. k)
/. (
len (F
. k)))} by
A580,
A588,
A591,
A583,
A587,
A582,
A622,
GOBOARD7: 18;
(F
. (k
+ 1))
= ((F
. k)
^
<*(G
* ((i2
-' 1),j2))*>) by
A493,
A573,
A575,
A577,
A578,
A579,
A580,
A615,
A622;
hence thesis by
A571,
A574,
A575,
A623,
SPPOL_2: 30;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
end;
now
defpred
P[
Nat] means (F
. $1) is
one-to-one;
assume
A624: for k st k
>= 1 holds for m st m
in (
dom (F
. k)) & m
<> (
len (F
. k)) holds ((F
. k)
/. m)
<> ((F
. k)
/. (
len (F
. k)));
A625: for k st
P[k] holds
P[(k
+ 1)]
proof
let k;
assume
A626: (F
. k) is
one-to-one;
now
let n,m be
Element of
NAT such that
A627: n
in (
dom (F
. (k
+ 1))) and
A628: m
in (
dom (F
. (k
+ 1))) and
A629: ((F
. (k
+ 1))
/. n)
= ((F
. (k
+ 1))
/. m);
A630: 1
<= n by
A627,
FINSEQ_3: 25;
A631: m
<= (
len (F
. (k
+ 1))) by
A628,
FINSEQ_3: 25;
A632: 1
<= m by
A628,
FINSEQ_3: 25;
A633: n
<= (
len (F
. (k
+ 1))) by
A627,
FINSEQ_3: 25;
A634: ex i, j st
[i, j]
in (
Indices G) & (F
. (k
+ 1))
= ((F
. k)
^
<*(G
* (i,j))*>) by
A520;
A635: (
len (F
. k))
= k by
A177;
A636: (
len (F
. (k
+ 1)))
= (k
+ 1) by
A177;
per cases by
A633,
A631,
A636,
NAT_1: 8;
suppose
A637: n
<= k & m
<= k;
then
A638: m
in (
dom (F
. k)) by
A632,
A635,
FINSEQ_3: 25;
then
A639: ((F
. (k
+ 1))
/. m)
= ((F
. k)
/. m) by
A634,
FINSEQ_4: 68;
A640: n
in (
dom (F
. k)) by
A630,
A635,
A637,
FINSEQ_3: 25;
then ((F
. (k
+ 1))
/. n)
= ((F
. k)
/. n) by
A634,
FINSEQ_4: 68;
hence n
= m by
A626,
A629,
A640,
A638,
A639,
PARTFUN2: 10;
end;
suppose n
= (k
+ 1) & m
<= k;
hence n
= m by
A624,
A628,
A629,
A636,
NAT_1: 12;
end;
suppose n
<= k & m
= (k
+ 1);
hence n
= m by
A624,
A627,
A629,
A636,
NAT_1: 12;
end;
suppose n
= (k
+ 1) & m
= (k
+ 1);
hence n
= m;
end;
end;
hence thesis by
PARTFUN2: 9;
end;
A641:
P[
0 ] by
A155;
A642: for k holds
P[k] from
NAT_1:sch 2(
A641,
A625);
A643: for k holds (
card (
rng (F
. k)))
= k
proof
let k;
(F
. k) is
one-to-one by
A642;
hence (
card (
rng (F
. k)))
= (
len (F
. k)) by
FINSEQ_4: 62
.= k by
A177;
end;
reconsider k = (((
len G)
* (
width G))
+ 1) as
Nat;
A644: k
> ((
len G)
* (
width G)) by
NAT_1: 13;
(F
. k)
is_sequence_on G by
A440;
then
A645: (
card (
rng (F
. k)))
<= (
card (
Values G)) by
GOBRD13: 8,
NAT_1: 43;
(
card (
Values G))
<= ((
len G)
* (
width G)) by
MATRIX_0: 40;
then (
card (
rng (F
. k)))
<= ((
len G)
* (
width G)) by
A645,
XXREAL_0: 2;
hence contradiction by
A643,
A644;
end;
then
A646: ex k be
Nat st
K[k];
consider k be
Nat such that
A647:
K[k] and
A648: for l be
Nat st
K[l] holds k
<= l from
NAT_1:sch 5(
A646);
reconsider k as
Nat;
consider m such that
A649: m
in (
dom (F
. k)) and
A650: m
<> (
len (F
. k)) and
A651: ((F
. k)
/. m)
= ((F
. k)
/. (
len (F
. k))) by
A647;
A652: 1
<= m by
A649,
FINSEQ_3: 25;
reconsider f = (F
. k) as non
empty
FinSequence of (
TOP-REAL 2) by
A647;
A653: f
is_sequence_on G by
A440;
A654: m
<= (
len f) by
A649,
FINSEQ_3: 25;
then
A655: m
< (
len f) by
A650,
XXREAL_0: 1;
then 1
< (
len f) by
A652,
XXREAL_0: 2;
then
A656: (
len f)
>= (1
+ 1) by
NAT_1: 13;
then
A657: k
>= 2 by
A177;
A658:
P[
0 ] by
A155,
CARD_1: 27,
SPPOL_2: 26;
for k holds
P[k] from
NAT_1:sch 2(
A658,
A570);
then
reconsider f as non
constant
special
unfolded non
empty
FinSequence of (
TOP-REAL 2) by
A653,
A656,
JORDAN8: 4,
JORDAN8: 5;
set g = (f
/^ (m
-' 1));
A659: (m
+ 1)
<= (
len f) by
A655,
NAT_1: 13;
A660: for h be
standard non
constant
special_circular_sequence st (
L~ h)
c= (
L~ f) holds for Comp be
Subset of (
TOP-REAL 2) st Comp
is_a_component_of ((
L~ h)
` ) holds for n st 1
<= n & (n
+ 1)
<= (
len f) & (f
/. n)
in Comp & not (f
/. n)
in (
L~ h) holds C
meets Comp
proof
let h be
standard non
constant
special_circular_sequence such that
A661: (
L~ h)
c= (
L~ f);
let Comp be
Subset of (
TOP-REAL 2) such that
A662: Comp
is_a_component_of ((
L~ h)
` );
let n such that
A663: 1
<= n and
A664: (n
+ 1)
<= (
len f) and
A665: (f
/. n)
in Comp and
A666: not (f
/. n)
in (
L~ h);
set rc = ((
left_cell (f,n,G))
\ (
L~ h));
reconsider rc as
Subset of (
TOP-REAL 2);
A667: (
Int (
left_cell (f,n,G)))
c= (
left_cell (f,n,G)) by
TOPS_1: 16;
(f
/. n)
in (
left_cell (f,n,G)) by
A653,
A663,
A664,
JORDAN9: 8;
then (f
/. n)
in rc by
A666,
XBOOLE_0:def 5;
then
A668: rc
meets Comp by
A665,
XBOOLE_0: 3;
A669: rc
= ((
left_cell (f,n,G))
/\ ((
L~ h)
` )) by
SUBSET_1: 13;
then
A670: rc
c= ((
L~ h)
` ) by
XBOOLE_1: 17;
(
Int (
left_cell (f,n,G)))
misses (
L~ f) by
A653,
A663,
A664,
JORDAN9: 15;
then (
Int (
left_cell (f,n,G)))
misses (
L~ h) by
A661,
XBOOLE_1: 63;
then
A671: (
Int (
left_cell (f,n,G)))
c= ((
L~ h)
` ) by
SUBSET_1: 23;
rc
c= (
left_cell (f,n,G)) by
XBOOLE_1: 36;
then
A672: rc
c= (
Cl (
Int (
left_cell (f,n,G)))) by
A653,
A663,
A664,
JORDAN9: 11;
A673: rc
meets C
proof
(
left_cell (f,n,G))
meets C by
A440,
A663,
A664;
then
consider p be
object such that
A674: p
in (
left_cell (f,n,G)) and
A675: p
in C by
XBOOLE_0: 3;
reconsider p as
Element of (
TOP-REAL 2) by
A674;
now
take p;
now
assume p
in (
L~ h);
then
consider j such that
A676: 1
<= j and
A677: (j
+ 1)
<= (
len f) and
A678: p
in (
LSeg (f,j)) by
A661,
SPPOL_2: 13;
p
in ((
right_cell (f,j,G))
/\ (
left_cell (f,j,G))) by
A440,
A676,
A677,
A678,
GOBRD13: 29;
then
A679: p
in (
right_cell (f,j,G)) by
XBOOLE_0:def 4;
(
right_cell (f,j,G))
misses C by
A440,
A676,
A677;
hence contradiction by
A675,
A679,
XBOOLE_0: 3;
end;
hence p
in rc by
A674,
XBOOLE_0:def 5;
thus p
in C by
A675;
end;
hence thesis by
XBOOLE_0: 3;
end;
(
Int (
left_cell (f,n,G))) is
convex by
A653,
A663,
A664,
JORDAN9: 10;
then rc is
connected by
A669,
A671,
A667,
A672,
CONNSP_1: 18,
XBOOLE_1: 19;
then rc
c= Comp by
A662,
A668,
A670,
GOBOARD9: 4;
hence thesis by
A673,
XBOOLE_1: 63;
end;
A680: for i st 1
<= i & (i
+ 1)
<= (
len f) holds (
left_cell (f,i,G))
= (
Cl (
Int (
left_cell (f,i,G))))
proof
let i such that
A681: 1
<= i and
A682: (i
+ 1)
<= (
len f);
consider i1, j1, i2, j2 such that
A683:
[i1, j1]
in (
Indices G) and
A684: (f
/. i)
= (G
* (i1,j1)) and
A685:
[i2, j2]
in (
Indices G) and
A686: (f
/. (i
+ 1))
= (G
* (i2,j2)) and
A687: i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
A653,
A681,
A682,
JORDAN8: 3;
A688: i1
<= (
len G) by
A683,
MATRIX_0: 32;
A689: i2
<= (
len G) by
A685,
MATRIX_0: 32;
A690: (i1
+ 1)
> i1 by
NAT_1: 13;
A691: j1
<= (
width G) by
A683,
MATRIX_0: 32;
A692: (j1
+ 1)
> j1 by
NAT_1: 13;
A693: j2
<= (
width G) by
A685,
MATRIX_0: 32;
A694: (i2
+ 1)
> i2 by
NAT_1: 13;
A695: (j2
+ 1)
> j2 by
NAT_1: 13;
per cases by
A687;
suppose
A696: i1
= i2 & (j1
+ 1)
= j2;
A697: (i1
-' 1)
<= (
len G) by
A688,
NAT_D: 44;
(
left_cell (f,i,G))
= (
cell (G,(i1
-' 1),j1)) by
A653,
A681,
A682,
A683,
A684,
A685,
A686,
A692,
A695,
A696,
GOBRD13:def 3;
hence thesis by
A691,
A697,
GOBRD11: 35;
end;
suppose (i1
+ 1)
= i2 & j1
= j2;
then (
left_cell (f,i,G))
= (
cell (G,i1,j1)) by
A653,
A681,
A682,
A683,
A684,
A685,
A686,
A690,
A694,
GOBRD13:def 3;
hence thesis by
A688,
A691,
GOBRD11: 35;
end;
suppose
A698: i1
= (i2
+ 1) & j1
= j2;
A699: (j2
-' 1)
<= (
width G) by
A693,
NAT_D: 44;
(
left_cell (f,i,G))
= (
cell (G,i2,(j2
-' 1))) by
A653,
A681,
A682,
A683,
A684,
A685,
A686,
A690,
A694,
A698,
GOBRD13:def 3;
hence thesis by
A689,
A699,
GOBRD11: 35;
end;
suppose i1
= i2 & j1
= (j2
+ 1);
then (
left_cell (f,i,G))
= (
cell (G,i1,j2)) by
A653,
A681,
A682,
A683,
A684,
A685,
A686,
A692,
A695,
GOBRD13:def 3;
hence thesis by
A688,
A693,
GOBRD11: 35;
end;
end;
(m
-' 1)
<= m by
NAT_D: 44;
then (m
-' 1)
< (m
+ 1) by
NAT_1: 13;
then
A700: (m
-' 1)
< (
len f) by
A659,
XXREAL_0: 2;
then
A701: (
len g)
= ((
len f)
- (m
-' 1)) by
RFINSEQ:def 1;
then ((m
-' 1)
- (m
-' 1))
< (
len g) by
A700,
XREAL_1: 9;
then
reconsider g as non
empty
FinSequence of (
TOP-REAL 2) by
CARD_1: 27;
(
len g)
in (
dom g) by
FINSEQ_5: 6;
then
A702: (g
/. (
len g))
= (f
/. ((m
-' 1)
+ (
len g))) by
FINSEQ_5: 27
.= (f
/. (
len f)) by
A701;
((m
+ 1)
- (m
-' 1))
<= (
len g) by
A659,
A701,
XREAL_1: 9;
then
A703: ((m
+ 1)
- (m
- 1))
<= (
len g) by
A652,
XREAL_1: 233;
then
A704: (((1
+ m)
- m)
+ 1)
<= (
len g);
A705: g
is_sequence_on G by
A440,
JORDAN8: 2;
then
A706: g is
standard by
JORDAN8: 4;
A707: g is non
constant
proof
take 1, 2;
thus
A708: 1
in (
dom g) by
FINSEQ_5: 6;
thus
A709: 2
in (
dom g) by
A703,
FINSEQ_3: 25;
then (g
/. 1)
<> (g
/. (1
+ 1)) by
A706,
FINSEQ_5: 6,
GOBOARD7: 29;
then (g
. 1)
<> (g
/. (1
+ 1)) by
A708,
PARTFUN1:def 6;
hence thesis by
A709,
PARTFUN1:def 6;
end;
A710: (
len (F
. k))
= k by
A177;
A711: for i st 1
<= i & i
< (
len g) & 1
<= j & j
< (
len g) & (g
/. i)
= (g
/. j) holds i
= j
proof
let i such that
A712: 1
<= i and
A713: i
< (
len g) and
A714: 1
<= j and
A715: j
< (
len g) and
A716: (g
/. i)
= (g
/. j) and
A717: i
<> j;
A718: i
in (
dom g) by
A712,
A713,
FINSEQ_3: 25;
then
A719: (g
/. i)
= (f
/. ((m
-' 1)
+ i)) by
FINSEQ_5: 27;
A720: j
in (
dom g) by
A714,
A715,
FINSEQ_3: 25;
then
A721: (g
/. j)
= (f
/. ((m
-' 1)
+ j)) by
FINSEQ_5: 27;
per cases by
A717,
XXREAL_0: 1;
suppose
A722: i
< j;
set l = ((m
-' 1)
+ j), m9 = ((m
-' 1)
+ i);
A723: m9
< l by
A722,
XREAL_1: 6;
A724: (
len (F
. l))
= l by
A177;
A725: l
< k by
A710,
A701,
A715,
XREAL_1: 20;
then
A726: (f
| l)
= (F
. l) by
A565;
(
0
+ j)
<= l by
XREAL_1: 6;
then
A727: 1
<= l by
A714,
XXREAL_0: 2;
then l
in (
dom (F
. l)) by
A724,
FINSEQ_3: 25;
then
A728: ((F
. l)
/. l)
= (f
/. l) by
A726,
FINSEQ_4: 70;
(
0
+ i)
<= m9 by
XREAL_1: 6;
then 1
<= m9 by
A712,
XXREAL_0: 2;
then
A729: m9
in (
dom (F
. l)) by
A723,
A724,
FINSEQ_3: 25;
then ((F
. l)
/. m9)
= (f
/. m9) by
A726,
FINSEQ_4: 70;
hence contradiction by
A648,
A716,
A719,
A720,
A723,
A725,
A727,
A724,
A729,
A728,
FINSEQ_5: 27;
end;
suppose
A730: j
< i;
set l = ((m
-' 1)
+ i), m9 = ((m
-' 1)
+ j);
A731: m9
< l by
A730,
XREAL_1: 6;
A732: (
len (F
. l))
= l by
A177;
A733: l
< k by
A710,
A701,
A713,
XREAL_1: 20;
then
A734: (f
| l)
= (F
. l) by
A565;
(
0
+ i)
<= l by
XREAL_1: 6;
then
A735: 1
<= l by
A712,
XXREAL_0: 2;
then l
in (
dom (F
. l)) by
A732,
FINSEQ_3: 25;
then
A736: ((F
. l)
/. l)
= (f
/. l) by
A734,
FINSEQ_4: 70;
(
0
+ j)
<= m9 by
XREAL_1: 6;
then 1
<= m9 by
A714,
XXREAL_0: 2;
then
A737: m9
in (
dom (F
. l)) by
A731,
A732,
FINSEQ_3: 25;
then ((F
. l)
/. m9)
= (f
/. m9) by
A734,
FINSEQ_4: 70;
hence contradiction by
A648,
A716,
A718,
A721,
A731,
A733,
A735,
A732,
A737,
A736,
FINSEQ_5: 27;
end;
end;
1
in (
dom g) by
FINSEQ_5: 6;
then
A738: (g
/. 1)
= (f
/. ((m
-' 1)
+ 1)) by
FINSEQ_5: 27
.= (f
/. m) by
A652,
XREAL_1: 235;
A739: for i st 1
< i & i
< j & j
<= (
len g) holds (g
/. i)
<> (g
/. j)
proof
let i such that
A740: 1
< i and
A741: i
< j and
A742: j
<= (
len g) and
A743: (g
/. i)
= (g
/. j);
A744: 1
< j by
A740,
A741,
XXREAL_0: 2;
A745: i
< (
len g) by
A741,
A742,
XXREAL_0: 2;
then
A746: 1
< (
len g) by
A740,
XXREAL_0: 2;
per cases ;
suppose j
<> (
len g);
then j
< (
len g) by
A742,
XXREAL_0: 1;
hence contradiction by
A711,
A740,
A741,
A743,
A744,
A745;
end;
suppose j
= (
len g);
hence contradiction by
A651,
A738,
A702,
A711,
A740,
A741,
A743,
A746;
end;
end;
A747: for i st 1
<= i & i
< j & j
< (
len g) holds (g
/. i)
<> (g
/. j)
proof
let i such that
A748: 1
<= i and
A749: i
< j and
A750: j
< (
len g) and
A751: (g
/. i)
= (g
/. j);
A752: i
< (
len g) by
A749,
A750,
XXREAL_0: 2;
1
< j by
A748,
A749,
XXREAL_0: 2;
hence contradiction by
A711,
A748,
A749,
A750,
A751,
A752;
end;
g is
s.c.c.
proof
let i, j such that
A753: (i
+ 1)
< j and
A754: i
> 1 & j
< (
len g) or (j
+ 1)
< (
len g);
A755: 1
< j by
A753,
NAT_1: 12;
A756: 1
<= (i
+ 1) by
NAT_1: 12;
A757: j
<= (j
+ 1) by
NAT_1: 12;
then
A758: (i
+ 1)
< (j
+ 1) by
A753,
XXREAL_0: 2;
i
< j by
A753,
NAT_1: 13;
then
A759: i
< (j
+ 1) by
A757,
XXREAL_0: 2;
per cases by
A754,
NAT_1: 14;
suppose
A760: i
> 1 & j
< (
len g);
then
A761: (i
+ 1)
< (
len g) by
A753,
XXREAL_0: 2;
then
A762: (
LSeg (g,i))
= (
LSeg ((g
/. i),(g
/. (i
+ 1)))) by
A760,
TOPREAL1:def 3;
A763: i
< (
len g) by
A761,
NAT_1: 13;
consider i1, j1, i2, j2 such that
A764:
[i1, j1]
in (
Indices G) and
A765: (g
/. i)
= (G
* (i1,j1)) and
A766:
[i2, j2]
in (
Indices G) and
A767: (g
/. (i
+ 1))
= (G
* (i2,j2)) and
A768: i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
A705,
A760,
A761,
JORDAN8: 3;
A769: 1
<= i1 by
A764,
MATRIX_0: 32;
A770: j2
<= (
width G) by
A766,
MATRIX_0: 32;
A771: 1
<= i2 by
A766,
MATRIX_0: 32;
A772: i1
<= (
len G) by
A764,
MATRIX_0: 32;
A773: 1
<= j2 by
A766,
MATRIX_0: 32;
A774: j1
<= (
width G) by
A764,
MATRIX_0: 32;
A775: i2
<= (
len G) by
A766,
MATRIX_0: 32;
A776: 1
<= j1 by
A764,
MATRIX_0: 32;
A777: 1
< (i
+ 1) by
A760,
NAT_1: 13;
A778: (j
+ 1)
<= (
len g) by
A760,
NAT_1: 13;
then
A779: (
LSeg (g,j))
= (
LSeg ((g
/. j),(g
/. (j
+ 1)))) by
A755,
TOPREAL1:def 3;
consider i19,j19,i29,j29 be
Nat such that
A780:
[i19, j19]
in (
Indices G) and
A781: (g
/. j)
= (G
* (i19,j19)) and
A782:
[i29, j29]
in (
Indices G) and
A783: (g
/. (j
+ 1))
= (G
* (i29,j29)) and
A784: i19
= i29 & (j19
+ 1)
= j29 or (i19
+ 1)
= i29 & j19
= j29 or i19
= (i29
+ 1) & j19
= j29 or i19
= i29 & j19
= (j29
+ 1) by
A705,
A755,
A778,
JORDAN8: 3;
A785: 1
<= i19 by
A780,
MATRIX_0: 32;
A786: j29
<= (
width G) by
A782,
MATRIX_0: 32;
A787: j19
<= (
width G) by
A780,
MATRIX_0: 32;
A788: 1
<= j29 by
A782,
MATRIX_0: 32;
A789: 1
<= j19 by
A780,
MATRIX_0: 32;
A790: i29
<= (
len G) by
A782,
MATRIX_0: 32;
A791: i19
<= (
len G) by
A780,
MATRIX_0: 32;
assume ((
LSeg (g,i))
/\ (
LSeg (g,j)))
<>
{} ;
then
A792: (
LSeg (g,i))
meets (
LSeg (g,j)) by
XBOOLE_0:def 7;
A793: 1
<= i29 by
A782,
MATRIX_0: 32;
now
per cases by
A768,
A784;
suppose
A794: i1
= i2 & (j1
+ 1)
= j2 & i19
= i29 & (j19
+ 1)
= j29;
then
A795: i1
= i19 by
A762,
A765,
A767,
A769,
A772,
A776,
A770,
A779,
A781,
A783,
A785,
A791,
A789,
A786,
A792,
GOBOARD7: 19;
now
per cases by
A762,
A765,
A767,
A769,
A772,
A776,
A770,
A779,
A781,
A783,
A785,
A791,
A789,
A786,
A792,
A794,
GOBOARD7: 22;
suppose j1
= j19;
hence contradiction by
A711,
A753,
A757,
A755,
A760,
A763,
A765,
A781,
A795;
end;
suppose j1
= (j19
+ 1);
hence contradiction by
A739,
A759,
A760,
A765,
A778,
A783,
A794,
A795;
end;
suppose (j1
+ 1)
= j19;
hence contradiction by
A711,
A753,
A756,
A755,
A760,
A761,
A767,
A781,
A794,
A795;
end;
end;
hence contradiction;
end;
suppose
A796: i1
= i2 & (j1
+ 1)
= j2 & (i19
+ 1)
= i29 & j19
= j29;
now
per cases by
A762,
A765,
A767,
A769,
A772,
A776,
A770,
A779,
A781,
A783,
A785,
A789,
A787,
A790,
A792,
A796,
GOBOARD7: 21;
suppose i1
= i19 & j1
= j19;
hence contradiction by
A711,
A753,
A757,
A755,
A760,
A763,
A765,
A781;
end;
suppose i1
= i19 & (j1
+ 1)
= j19;
hence contradiction by
A739,
A753,
A760,
A777,
A767,
A781,
A796;
end;
suppose i1
= (i19
+ 1) & j1
= j19;
hence contradiction by
A739,
A759,
A760,
A765,
A778,
A783,
A796;
end;
suppose i1
= (i19
+ 1) & (j1
+ 1)
= j19;
hence contradiction by
A739,
A758,
A777,
A767,
A778,
A783,
A796;
end;
end;
hence contradiction;
end;
suppose
A797: i1
= i2 & (j1
+ 1)
= j2 & i19
= (i29
+ 1) & j19
= j29;
now
per cases by
A762,
A765,
A767,
A769,
A772,
A776,
A770,
A779,
A781,
A783,
A791,
A789,
A787,
A793,
A792,
A797,
GOBOARD7: 21;
suppose i1
= i29 & j19
= j1;
hence contradiction by
A739,
A759,
A760,
A765,
A778,
A783,
A797;
end;
suppose i1
= i29 & (j1
+ 1)
= j19;
hence contradiction by
A739,
A758,
A777,
A767,
A778,
A783,
A797;
end;
suppose i1
= (i29
+ 1) & j19
= j1;
hence contradiction by
A711,
A753,
A757,
A755,
A760,
A763,
A765,
A781,
A797;
end;
suppose i1
= (i29
+ 1) & (j1
+ 1)
= j19;
hence contradiction by
A711,
A753,
A756,
A755,
A760,
A761,
A767,
A781,
A797;
end;
end;
hence contradiction;
end;
suppose
A798: i1
= i2 & (j1
+ 1)
= j2 & i19
= i29 & j19
= (j29
+ 1);
then
A799: i1
= i19 by
A762,
A765,
A767,
A769,
A772,
A776,
A770,
A779,
A781,
A783,
A785,
A791,
A787,
A788,
A792,
GOBOARD7: 19;
now
per cases by
A762,
A765,
A767,
A769,
A772,
A776,
A770,
A779,
A781,
A783,
A785,
A791,
A787,
A788,
A792,
A798,
GOBOARD7: 22;
suppose j1
= j29;
hence contradiction by
A711,
A753,
A756,
A755,
A760,
A761,
A767,
A781,
A798,
A799;
end;
suppose j1
= (j29
+ 1);
hence contradiction by
A711,
A753,
A757,
A755,
A760,
A763,
A765,
A781,
A798,
A799;
end;
suppose (j1
+ 1)
= j29;
hence contradiction by
A739,
A758,
A777,
A767,
A778,
A783,
A798,
A799;
end;
end;
hence contradiction;
end;
suppose
A800: (i1
+ 1)
= i2 & j1
= j2 & i19
= i29 & (j19
+ 1)
= j29;
now
per cases by
A762,
A765,
A767,
A769,
A776,
A774,
A775,
A779,
A781,
A783,
A785,
A791,
A789,
A786,
A792,
A800,
GOBOARD7: 21;
suppose i19
= i1 & j1
= j19;
hence contradiction by
A711,
A753,
A757,
A755,
A760,
A763,
A765,
A781;
end;
suppose i19
= i1 & (j19
+ 1)
= j1;
hence contradiction by
A739,
A759,
A760,
A765,
A778,
A783,
A800;
end;
suppose i19
= (i1
+ 1) & j1
= j19;
hence contradiction by
A711,
A753,
A756,
A755,
A760,
A761,
A767,
A781,
A800;
end;
suppose i19
= (i1
+ 1) & (j19
+ 1)
= j1;
hence contradiction by
A739,
A758,
A777,
A767,
A778,
A783,
A800;
end;
end;
hence contradiction;
end;
suppose
A801: (i1
+ 1)
= i2 & j1
= j2 & (i19
+ 1)
= i29 & j19
= j29;
then
A802: j1
= j19 by
A762,
A765,
A767,
A769,
A776,
A774,
A775,
A779,
A781,
A783,
A785,
A789,
A787,
A790,
A792,
GOBOARD7: 20;
now
per cases by
A762,
A765,
A767,
A769,
A776,
A774,
A775,
A779,
A781,
A783,
A785,
A789,
A787,
A790,
A792,
A801,
GOBOARD7: 23;
suppose i1
= i19;
hence contradiction by
A711,
A753,
A757,
A755,
A760,
A763,
A765,
A781,
A802;
end;
suppose i1
= (i19
+ 1);
hence contradiction by
A739,
A759,
A760,
A765,
A778,
A783,
A801,
A802;
end;
suppose (i1
+ 1)
= i19;
hence contradiction by
A711,
A753,
A756,
A755,
A760,
A761,
A767,
A781,
A801,
A802;
end;
end;
hence contradiction;
end;
suppose
A803: (i1
+ 1)
= i2 & j1
= j2 & i19
= (i29
+ 1) & j19
= j29;
then
A804: j1
= j19 by
A762,
A765,
A767,
A769,
A776,
A774,
A775,
A779,
A781,
A783,
A791,
A789,
A787,
A793,
A792,
GOBOARD7: 20;
now
per cases by
A762,
A765,
A767,
A769,
A776,
A774,
A775,
A779,
A781,
A783,
A791,
A789,
A787,
A793,
A792,
A803,
GOBOARD7: 23;
suppose i1
= i29;
hence contradiction by
A739,
A759,
A760,
A765,
A778,
A783,
A803,
A804;
end;
suppose i1
= (i29
+ 1);
hence contradiction by
A711,
A753,
A757,
A755,
A760,
A763,
A765,
A781,
A803,
A804;
end;
suppose (i1
+ 1)
= i29;
hence contradiction by
A739,
A758,
A777,
A767,
A778,
A783,
A803,
A804;
end;
end;
hence contradiction;
end;
suppose
A805: (i1
+ 1)
= i2 & j1
= j2 & i19
= i29 & j19
= (j29
+ 1);
now
per cases by
A762,
A765,
A767,
A769,
A776,
A774,
A775,
A779,
A781,
A783,
A785,
A791,
A787,
A788,
A792,
A805,
GOBOARD7: 21;
suppose i19
= i1 & j1
= j29;
hence contradiction by
A739,
A759,
A760,
A765,
A778,
A783,
A805;
end;
suppose i19
= i1 & (j29
+ 1)
= j1;
hence contradiction by
A711,
A753,
A757,
A755,
A760,
A763,
A765,
A781,
A805;
end;
suppose i19
= (i1
+ 1) & j1
= j29;
hence contradiction by
A739,
A758,
A777,
A767,
A778,
A783,
A805;
end;
suppose i19
= (i1
+ 1) & (j29
+ 1)
= j1;
hence contradiction by
A711,
A753,
A756,
A755,
A760,
A761,
A767,
A781,
A805;
end;
end;
hence contradiction;
end;
suppose
A806: i1
= (i2
+ 1) & j1
= j2 & i19
= i29 & (j19
+ 1)
= j29;
now
per cases by
A762,
A765,
A767,
A772,
A776,
A774,
A771,
A779,
A781,
A783,
A785,
A791,
A789,
A786,
A792,
A806,
GOBOARD7: 21;
suppose i19
= i2 & j19
= j1;
hence contradiction by
A711,
A753,
A756,
A755,
A760,
A761,
A767,
A781,
A806;
end;
suppose i19
= i2 & (j19
+ 1)
= j1;
hence contradiction by
A739,
A758,
A777,
A767,
A778,
A783,
A806;
end;
suppose i19
= (i2
+ 1) & j19
= j1;
hence contradiction by
A711,
A753,
A757,
A755,
A760,
A763,
A765,
A781,
A806;
end;
suppose i19
= (i2
+ 1) & (j19
+ 1)
= j1;
hence contradiction by
A739,
A759,
A760,
A765,
A778,
A783,
A806;
end;
end;
hence contradiction;
end;
suppose
A807: i1
= (i2
+ 1) & j1
= j2 & (i19
+ 1)
= i29 & j19
= j29;
then
A808: j1
= j19 by
A762,
A765,
A767,
A772,
A776,
A774,
A771,
A779,
A781,
A783,
A785,
A789,
A787,
A790,
A792,
GOBOARD7: 20;
now
per cases by
A762,
A765,
A767,
A772,
A776,
A774,
A771,
A779,
A781,
A783,
A785,
A789,
A787,
A790,
A792,
A807,
GOBOARD7: 23;
suppose i2
= i19;
hence contradiction by
A711,
A753,
A756,
A755,
A760,
A761,
A767,
A781,
A807,
A808;
end;
suppose i2
= (i19
+ 1);
hence contradiction by
A739,
A758,
A777,
A767,
A778,
A783,
A807,
A808;
end;
suppose (i2
+ 1)
= i19;
hence contradiction by
A711,
A753,
A757,
A755,
A760,
A763,
A765,
A781,
A807,
A808;
end;
end;
hence contradiction;
end;
suppose
A809: i1
= (i2
+ 1) & j1
= j2 & i19
= (i29
+ 1) & j19
= j29;
then
A810: j1
= j19 by
A762,
A765,
A767,
A772,
A776,
A774,
A771,
A779,
A781,
A783,
A791,
A789,
A787,
A793,
A792,
GOBOARD7: 20;
now
per cases by
A762,
A765,
A767,
A772,
A776,
A774,
A771,
A779,
A781,
A783,
A791,
A789,
A787,
A793,
A792,
A809,
GOBOARD7: 23;
suppose i2
= i29;
hence contradiction by
A739,
A758,
A777,
A767,
A778,
A783,
A809,
A810;
end;
suppose i2
= (i29
+ 1);
hence contradiction by
A711,
A753,
A756,
A755,
A760,
A761,
A767,
A781,
A809,
A810;
end;
suppose (i2
+ 1)
= i29;
hence contradiction by
A739,
A759,
A760,
A765,
A778,
A783,
A809,
A810;
end;
end;
hence contradiction;
end;
suppose
A811: i1
= (i2
+ 1) & j1
= j2 & i19
= i29 & j19
= (j29
+ 1);
now
per cases by
A762,
A765,
A767,
A772,
A776,
A774,
A771,
A779,
A781,
A783,
A785,
A791,
A787,
A788,
A792,
A811,
GOBOARD7: 21;
suppose i19
= i2 & j29
= j1;
hence contradiction by
A739,
A758,
A777,
A767,
A778,
A783,
A811;
end;
suppose i19
= i2 & (j29
+ 1)
= j1;
hence contradiction by
A711,
A753,
A756,
A755,
A760,
A761,
A767,
A781,
A811;
end;
suppose i19
= (i2
+ 1) & j29
= j1;
hence contradiction by
A739,
A759,
A760,
A765,
A778,
A783,
A811;
end;
suppose i19
= (i2
+ 1) & (j29
+ 1)
= j1;
hence contradiction by
A711,
A753,
A757,
A755,
A760,
A763,
A765,
A781,
A811;
end;
end;
hence contradiction;
end;
suppose
A812: i1
= i2 & j1
= (j2
+ 1) & i19
= i29 & (j19
+ 1)
= j29;
then
A813: i1
= i19 by
A762,
A765,
A767,
A769,
A772,
A774,
A773,
A779,
A781,
A783,
A785,
A791,
A789,
A786,
A792,
GOBOARD7: 19;
now
per cases by
A762,
A765,
A767,
A769,
A772,
A774,
A773,
A779,
A781,
A783,
A785,
A791,
A789,
A786,
A792,
A812,
GOBOARD7: 22;
suppose j2
= j19;
hence contradiction by
A711,
A753,
A756,
A755,
A760,
A761,
A767,
A781,
A812,
A813;
end;
suppose j2
= (j19
+ 1);
hence contradiction by
A739,
A758,
A777,
A767,
A778,
A783,
A812,
A813;
end;
suppose (j2
+ 1)
= j19;
hence contradiction by
A711,
A753,
A757,
A755,
A760,
A763,
A765,
A781,
A812,
A813;
end;
end;
hence contradiction;
end;
suppose
A814: i1
= i2 & j1
= (j2
+ 1) & (i19
+ 1)
= i29 & j19
= j29;
now
per cases by
A762,
A765,
A767,
A769,
A772,
A774,
A773,
A779,
A781,
A783,
A785,
A789,
A787,
A790,
A792,
A814,
GOBOARD7: 21;
suppose i1
= i19 & j2
= j19;
hence contradiction by
A711,
A753,
A756,
A755,
A760,
A761,
A767,
A781,
A814;
end;
suppose i1
= i19 & (j2
+ 1)
= j19;
hence contradiction by
A711,
A753,
A757,
A755,
A760,
A763,
A765,
A781,
A814;
end;
suppose i1
= (i19
+ 1) & j2
= j19;
hence contradiction by
A739,
A758,
A777,
A767,
A778,
A783,
A814;
end;
suppose i1
= (i19
+ 1) & (j2
+ 1)
= j19;
hence contradiction by
A739,
A759,
A760,
A765,
A778,
A783,
A814;
end;
end;
hence contradiction;
end;
suppose
A815: i1
= i2 & j1
= (j2
+ 1) & i19
= (i29
+ 1) & j19
= j29;
now
per cases by
A762,
A765,
A767,
A769,
A772,
A774,
A773,
A779,
A781,
A783,
A791,
A789,
A787,
A793,
A792,
A815,
GOBOARD7: 21;
suppose i1
= i29 & j2
= j19;
hence contradiction by
A739,
A758,
A777,
A767,
A778,
A783,
A815;
end;
suppose i1
= i29 & (j2
+ 1)
= j19;
hence contradiction by
A739,
A759,
A760,
A765,
A778,
A783,
A815;
end;
suppose i1
= (i29
+ 1) & j2
= j19;
hence contradiction by
A711,
A753,
A756,
A755,
A760,
A761,
A767,
A781,
A815;
end;
suppose i1
= (i29
+ 1) & (j2
+ 1)
= j19;
hence contradiction by
A711,
A753,
A757,
A755,
A760,
A763,
A765,
A781,
A815;
end;
end;
hence contradiction;
end;
suppose
A816: i1
= i2 & j1
= (j2
+ 1) & i19
= i29 & j19
= (j29
+ 1);
then
A817: i1
= i19 by
A762,
A765,
A767,
A769,
A772,
A774,
A773,
A779,
A781,
A783,
A785,
A791,
A787,
A788,
A792,
GOBOARD7: 19;
now
per cases by
A762,
A765,
A767,
A769,
A772,
A774,
A773,
A779,
A781,
A783,
A785,
A791,
A787,
A788,
A792,
A816,
GOBOARD7: 22;
suppose j2
= j29;
hence contradiction by
A739,
A758,
A777,
A767,
A778,
A783,
A816,
A817;
end;
suppose j2
= (j29
+ 1);
hence contradiction by
A711,
A753,
A756,
A755,
A760,
A761,
A767,
A781,
A816,
A817;
end;
suppose (j2
+ 1)
= j29;
hence contradiction by
A739,
A759,
A760,
A765,
A778,
A783,
A816,
A817;
end;
end;
hence contradiction;
end;
end;
hence contradiction;
end;
suppose i
=
0 & (j
+ 1)
< (
len g);
then (
LSeg (g,i))
=
{} by
TOPREAL1:def 3;
hence ((
LSeg (g,i))
/\ (
LSeg (g,j)))
=
{} ;
end;
suppose
A818: 1
<= i & (j
+ 1)
< (
len g);
then
consider i19,j19,i29,j29 be
Nat such that
A819:
[i19, j19]
in (
Indices G) and
A820: (g
/. j)
= (G
* (i19,j19)) and
A821:
[i29, j29]
in (
Indices G) and
A822: (g
/. (j
+ 1))
= (G
* (i29,j29)) and
A823: i19
= i29 & (j19
+ 1)
= j29 or (i19
+ 1)
= i29 & j19
= j29 or i19
= (i29
+ 1) & j19
= j29 or i19
= i29 & j19
= (j29
+ 1) by
A705,
A755,
JORDAN8: 3;
A824: 1
<= i19 by
A819,
MATRIX_0: 32;
A825: j29
<= (
width G) by
A821,
MATRIX_0: 32;
A826: 1
<= i29 by
A821,
MATRIX_0: 32;
A827: i19
<= (
len G) by
A819,
MATRIX_0: 32;
A828: 1
<= j29 by
A821,
MATRIX_0: 32;
A829: j19
<= (
width G) by
A819,
MATRIX_0: 32;
A830: i29
<= (
len G) by
A821,
MATRIX_0: 32;
A831: 1
<= j19 by
A819,
MATRIX_0: 32;
assume ((
LSeg (g,i))
/\ (
LSeg (g,j)))
<>
{} ;
then
A832: (
LSeg (g,i))
meets (
LSeg (g,j)) by
XBOOLE_0:def 7;
A833: 1
< (i
+ 1) by
A818,
NAT_1: 13;
A834: j
< (
len g) by
A818,
NAT_1: 12;
A835: (i
+ 1)
< (
len g) by
A758,
A818,
XXREAL_0: 2;
then
A836: (
LSeg (g,i))
= (
LSeg ((g
/. i),(g
/. (i
+ 1)))) by
A818,
TOPREAL1:def 3;
A837: i
< (
len g) by
A835,
NAT_1: 13;
consider i1, j1, i2, j2 such that
A838:
[i1, j1]
in (
Indices G) and
A839: (g
/. i)
= (G
* (i1,j1)) and
A840:
[i2, j2]
in (
Indices G) and
A841: (g
/. (i
+ 1))
= (G
* (i2,j2)) and
A842: i1
= i2 & (j1
+ 1)
= j2 or (i1
+ 1)
= i2 & j1
= j2 or i1
= (i2
+ 1) & j1
= j2 or i1
= i2 & j1
= (j2
+ 1) by
A705,
A818,
A835,
JORDAN8: 3;
A843: 1
<= i1 by
A838,
MATRIX_0: 32;
A844: j2
<= (
width G) by
A840,
MATRIX_0: 32;
A845: j1
<= (
width G) by
A838,
MATRIX_0: 32;
A846: 1
<= j2 by
A840,
MATRIX_0: 32;
A847: 1
<= j1 by
A838,
MATRIX_0: 32;
A848: i2
<= (
len G) by
A840,
MATRIX_0: 32;
A849: i1
<= (
len G) by
A838,
MATRIX_0: 32;
A850: (
LSeg (g,j))
= (
LSeg ((g
/. j),(g
/. (j
+ 1)))) by
A755,
A818,
TOPREAL1:def 3;
A851: 1
<= i2 by
A840,
MATRIX_0: 32;
now
per cases by
A842,
A823;
suppose
A852: i1
= i2 & (j1
+ 1)
= j2 & i19
= i29 & (j19
+ 1)
= j29;
then
A853: i1
= i19 by
A836,
A839,
A841,
A843,
A849,
A847,
A844,
A850,
A820,
A822,
A824,
A827,
A831,
A825,
A832,
GOBOARD7: 19;
now
per cases by
A836,
A839,
A841,
A843,
A849,
A847,
A844,
A850,
A820,
A822,
A824,
A827,
A831,
A825,
A832,
A852,
GOBOARD7: 22;
suppose j1
= j19;
hence contradiction by
A711,
A753,
A757,
A755,
A818,
A837,
A834,
A839,
A820,
A853;
end;
suppose j1
= (j19
+ 1);
hence contradiction by
A747,
A759,
A818,
A839,
A822,
A852,
A853;
end;
suppose (j1
+ 1)
= j19;
hence contradiction by
A711,
A753,
A756,
A755,
A835,
A834,
A841,
A820,
A852,
A853;
end;
end;
hence contradiction;
end;
suppose
A854: i1
= i2 & (j1
+ 1)
= j2 & (i19
+ 1)
= i29 & j19
= j29;
now
per cases by
A836,
A839,
A841,
A843,
A849,
A847,
A844,
A850,
A820,
A822,
A824,
A831,
A829,
A830,
A832,
A854,
GOBOARD7: 21;
suppose i1
= i19 & j1
= j19;
hence contradiction by
A711,
A753,
A757,
A755,
A818,
A837,
A834,
A839,
A820;
end;
suppose i1
= i19 & (j1
+ 1)
= j19;
hence contradiction by
A739,
A753,
A833,
A834,
A841,
A820,
A854;
end;
suppose i1
= (i19
+ 1) & j1
= j19;
hence contradiction by
A747,
A759,
A818,
A839,
A822,
A854;
end;
suppose i1
= (i19
+ 1) & (j1
+ 1)
= j19;
hence contradiction by
A739,
A758,
A818,
A833,
A841,
A822,
A854;
end;
end;
hence contradiction;
end;
suppose
A855: i1
= i2 & (j1
+ 1)
= j2 & i19
= (i29
+ 1) & j19
= j29;
now
per cases by
A836,
A839,
A841,
A843,
A849,
A847,
A844,
A850,
A820,
A822,
A827,
A831,
A829,
A826,
A832,
A855,
GOBOARD7: 21;
suppose i1
= i29 & j19
= j1;
hence contradiction by
A747,
A759,
A818,
A839,
A822,
A855;
end;
suppose i1
= i29 & (j1
+ 1)
= j19;
hence contradiction by
A739,
A758,
A818,
A833,
A841,
A822,
A855;
end;
suppose i1
= (i29
+ 1) & j19
= j1;
hence contradiction by
A711,
A753,
A757,
A755,
A818,
A837,
A834,
A839,
A820,
A855;
end;
suppose i1
= (i29
+ 1) & (j1
+ 1)
= j19;
hence contradiction by
A711,
A753,
A756,
A755,
A835,
A834,
A841,
A820,
A855;
end;
end;
hence contradiction;
end;
suppose
A856: i1
= i2 & (j1
+ 1)
= j2 & i19
= i29 & j19
= (j29
+ 1);
then
A857: i1
= i19 by
A836,
A839,
A841,
A843,
A849,
A847,
A844,
A850,
A820,
A822,
A824,
A827,
A829,
A828,
A832,
GOBOARD7: 19;
now
per cases by
A836,
A839,
A841,
A843,
A849,
A847,
A844,
A850,
A820,
A822,
A824,
A827,
A829,
A828,
A832,
A856,
GOBOARD7: 22;
suppose j1
= j29;
hence contradiction by
A711,
A753,
A756,
A755,
A835,
A834,
A841,
A820,
A856,
A857;
end;
suppose j1
= (j29
+ 1);
hence contradiction by
A711,
A753,
A757,
A755,
A818,
A837,
A834,
A839,
A820,
A856,
A857;
end;
suppose (j1
+ 1)
= j29;
hence contradiction by
A739,
A758,
A818,
A833,
A841,
A822,
A856,
A857;
end;
end;
hence contradiction;
end;
suppose
A858: (i1
+ 1)
= i2 & j1
= j2 & i19
= i29 & (j19
+ 1)
= j29;
now
per cases by
A836,
A839,
A841,
A843,
A847,
A845,
A848,
A850,
A820,
A822,
A824,
A827,
A831,
A825,
A832,
A858,
GOBOARD7: 21;
suppose i19
= i1 & j1
= j19;
hence contradiction by
A711,
A753,
A757,
A755,
A818,
A837,
A834,
A839,
A820;
end;
suppose i19
= i1 & (j19
+ 1)
= j1;
hence contradiction by
A747,
A759,
A818,
A839,
A822,
A858;
end;
suppose i19
= (i1
+ 1) & j1
= j19;
hence contradiction by
A711,
A753,
A756,
A755,
A835,
A834,
A841,
A820,
A858;
end;
suppose i19
= (i1
+ 1) & (j19
+ 1)
= j1;
hence contradiction by
A739,
A758,
A818,
A833,
A841,
A822,
A858;
end;
end;
hence contradiction;
end;
suppose
A859: (i1
+ 1)
= i2 & j1
= j2 & (i19
+ 1)
= i29 & j19
= j29;
then
A860: j1
= j19 by
A836,
A839,
A841,
A843,
A847,
A845,
A848,
A850,
A820,
A822,
A824,
A831,
A829,
A830,
A832,
GOBOARD7: 20;
now
per cases by
A836,
A839,
A841,
A843,
A847,
A845,
A848,
A850,
A820,
A822,
A824,
A831,
A829,
A830,
A832,
A859,
GOBOARD7: 23;
suppose i1
= i19;
hence contradiction by
A711,
A753,
A757,
A755,
A818,
A837,
A834,
A839,
A820,
A860;
end;
suppose i1
= (i19
+ 1);
hence contradiction by
A747,
A759,
A818,
A839,
A822,
A859,
A860;
end;
suppose (i1
+ 1)
= i19;
hence contradiction by
A711,
A753,
A756,
A755,
A835,
A834,
A841,
A820,
A859,
A860;
end;
end;
hence contradiction;
end;
suppose
A861: (i1
+ 1)
= i2 & j1
= j2 & i19
= (i29
+ 1) & j19
= j29;
then
A862: j1
= j19 by
A836,
A839,
A841,
A843,
A847,
A845,
A848,
A850,
A820,
A822,
A827,
A831,
A829,
A826,
A832,
GOBOARD7: 20;
now
per cases by
A836,
A839,
A841,
A843,
A847,
A845,
A848,
A850,
A820,
A822,
A827,
A831,
A829,
A826,
A832,
A861,
GOBOARD7: 23;
suppose i1
= i29;
hence contradiction by
A747,
A759,
A818,
A839,
A822,
A861,
A862;
end;
suppose i1
= (i29
+ 1);
hence contradiction by
A711,
A753,
A757,
A755,
A818,
A837,
A834,
A839,
A820,
A861,
A862;
end;
suppose (i1
+ 1)
= i29;
hence contradiction by
A739,
A758,
A818,
A833,
A841,
A822,
A861,
A862;
end;
end;
hence contradiction;
end;
suppose
A863: (i1
+ 1)
= i2 & j1
= j2 & i19
= i29 & j19
= (j29
+ 1);
now
per cases by
A836,
A839,
A841,
A843,
A847,
A845,
A848,
A850,
A820,
A822,
A824,
A827,
A829,
A828,
A832,
A863,
GOBOARD7: 21;
suppose i19
= i1 & j1
= j29;
hence contradiction by
A747,
A759,
A818,
A839,
A822,
A863;
end;
suppose i19
= i1 & (j29
+ 1)
= j1;
hence contradiction by
A711,
A753,
A757,
A755,
A818,
A837,
A834,
A839,
A820,
A863;
end;
suppose i19
= (i1
+ 1) & j1
= j29;
hence contradiction by
A739,
A758,
A818,
A833,
A841,
A822,
A863;
end;
suppose i19
= (i1
+ 1) & (j29
+ 1)
= j1;
hence contradiction by
A711,
A753,
A756,
A755,
A835,
A834,
A841,
A820,
A863;
end;
end;
hence contradiction;
end;
suppose
A864: i1
= (i2
+ 1) & j1
= j2 & i19
= i29 & (j19
+ 1)
= j29;
now
per cases by
A836,
A839,
A841,
A849,
A847,
A845,
A851,
A850,
A820,
A822,
A824,
A827,
A831,
A825,
A832,
A864,
GOBOARD7: 21;
suppose i19
= i2 & j19
= j1;
hence contradiction by
A711,
A753,
A756,
A755,
A835,
A834,
A841,
A820,
A864;
end;
suppose i19
= i2 & (j19
+ 1)
= j1;
hence contradiction by
A739,
A758,
A818,
A833,
A841,
A822,
A864;
end;
suppose i19
= (i2
+ 1) & j19
= j1;
hence contradiction by
A711,
A753,
A757,
A755,
A818,
A837,
A834,
A839,
A820,
A864;
end;
suppose i19
= (i2
+ 1) & (j19
+ 1)
= j1;
hence contradiction by
A747,
A759,
A818,
A839,
A822,
A864;
end;
end;
hence contradiction;
end;
suppose
A865: i1
= (i2
+ 1) & j1
= j2 & (i19
+ 1)
= i29 & j19
= j29;
then
A866: j1
= j19 by
A836,
A839,
A841,
A849,
A847,
A845,
A851,
A850,
A820,
A822,
A824,
A831,
A829,
A830,
A832,
GOBOARD7: 20;
now
per cases by
A836,
A839,
A841,
A849,
A847,
A845,
A851,
A850,
A820,
A822,
A824,
A831,
A829,
A830,
A832,
A865,
GOBOARD7: 23;
suppose i2
= i19;
hence contradiction by
A711,
A753,
A756,
A755,
A835,
A834,
A841,
A820,
A865,
A866;
end;
suppose i2
= (i19
+ 1);
hence contradiction by
A739,
A758,
A818,
A833,
A841,
A822,
A865,
A866;
end;
suppose (i2
+ 1)
= i19;
hence contradiction by
A711,
A753,
A757,
A755,
A818,
A837,
A834,
A839,
A820,
A865,
A866;
end;
end;
hence contradiction;
end;
suppose
A867: i1
= (i2
+ 1) & j1
= j2 & i19
= (i29
+ 1) & j19
= j29;
then
A868: j1
= j19 by
A836,
A839,
A841,
A849,
A847,
A845,
A851,
A850,
A820,
A822,
A827,
A831,
A829,
A826,
A832,
GOBOARD7: 20;
now
per cases by
A836,
A839,
A841,
A849,
A847,
A845,
A851,
A850,
A820,
A822,
A827,
A831,
A829,
A826,
A832,
A867,
GOBOARD7: 23;
suppose i2
= i29;
hence contradiction by
A739,
A758,
A818,
A833,
A841,
A822,
A867,
A868;
end;
suppose i2
= (i29
+ 1);
hence contradiction by
A711,
A753,
A756,
A755,
A835,
A834,
A841,
A820,
A867,
A868;
end;
suppose (i2
+ 1)
= i29;
hence contradiction by
A747,
A759,
A818,
A839,
A822,
A867,
A868;
end;
end;
hence contradiction;
end;
suppose
A869: i1
= (i2
+ 1) & j1
= j2 & i19
= i29 & j19
= (j29
+ 1);
now
per cases by
A836,
A839,
A841,
A849,
A847,
A845,
A851,
A850,
A820,
A822,
A824,
A827,
A829,
A828,
A832,
A869,
GOBOARD7: 21;
suppose i19
= i2 & j29
= j1;
hence contradiction by
A739,
A758,
A818,
A833,
A841,
A822,
A869;
end;
suppose i19
= i2 & (j29
+ 1)
= j1;
hence contradiction by
A711,
A753,
A756,
A755,
A835,
A834,
A841,
A820,
A869;
end;
suppose i19
= (i2
+ 1) & j29
= j1;
hence contradiction by
A747,
A759,
A818,
A839,
A822,
A869;
end;
suppose i19
= (i2
+ 1) & (j29
+ 1)
= j1;
hence contradiction by
A711,
A753,
A757,
A755,
A818,
A837,
A834,
A839,
A820,
A869;
end;
end;
hence contradiction;
end;
suppose
A870: i1
= i2 & j1
= (j2
+ 1) & i19
= i29 & (j19
+ 1)
= j29;
then
A871: i1
= i19 by
A836,
A839,
A841,
A843,
A849,
A845,
A846,
A850,
A820,
A822,
A824,
A827,
A831,
A825,
A832,
GOBOARD7: 19;
now
per cases by
A836,
A839,
A841,
A843,
A849,
A845,
A846,
A850,
A820,
A822,
A824,
A827,
A831,
A825,
A832,
A870,
GOBOARD7: 22;
suppose j2
= j19;
hence contradiction by
A711,
A753,
A756,
A755,
A835,
A834,
A841,
A820,
A870,
A871;
end;
suppose j2
= (j19
+ 1);
hence contradiction by
A739,
A758,
A818,
A833,
A841,
A822,
A870,
A871;
end;
suppose (j2
+ 1)
= j19;
hence contradiction by
A711,
A753,
A757,
A755,
A818,
A837,
A834,
A839,
A820,
A870,
A871;
end;
end;
hence contradiction;
end;
suppose
A872: i1
= i2 & j1
= (j2
+ 1) & (i19
+ 1)
= i29 & j19
= j29;
now
per cases by
A836,
A839,
A841,
A843,
A849,
A845,
A846,
A850,
A820,
A822,
A824,
A831,
A829,
A830,
A832,
A872,
GOBOARD7: 21;
suppose i1
= i19 & j2
= j19;
hence contradiction by
A711,
A753,
A756,
A755,
A835,
A834,
A841,
A820,
A872;
end;
suppose i1
= i19 & (j2
+ 1)
= j19;
hence contradiction by
A711,
A753,
A757,
A755,
A818,
A837,
A834,
A839,
A820,
A872;
end;
suppose i1
= (i19
+ 1) & j2
= j19;
hence contradiction by
A739,
A758,
A818,
A833,
A841,
A822,
A872;
end;
suppose i1
= (i19
+ 1) & (j2
+ 1)
= j19;
hence contradiction by
A747,
A759,
A818,
A839,
A822,
A872;
end;
end;
hence contradiction;
end;
suppose
A873: i1
= i2 & j1
= (j2
+ 1) & i19
= (i29
+ 1) & j19
= j29;
now
per cases by
A836,
A839,
A841,
A843,
A849,
A845,
A846,
A850,
A820,
A822,
A827,
A831,
A829,
A826,
A832,
A873,
GOBOARD7: 21;
suppose i1
= i29 & j2
= j19;
hence contradiction by
A739,
A758,
A818,
A833,
A841,
A822,
A873;
end;
suppose i1
= i29 & (j2
+ 1)
= j19;
hence contradiction by
A747,
A759,
A818,
A839,
A822,
A873;
end;
suppose i1
= (i29
+ 1) & j2
= j19;
hence contradiction by
A711,
A753,
A756,
A755,
A835,
A834,
A841,
A820,
A873;
end;
suppose i1
= (i29
+ 1) & (j2
+ 1)
= j19;
hence contradiction by
A711,
A753,
A757,
A755,
A818,
A837,
A834,
A839,
A820,
A873;
end;
end;
hence contradiction;
end;
suppose
A874: i1
= i2 & j1
= (j2
+ 1) & i19
= i29 & j19
= (j29
+ 1);
then
A875: i1
= i19 by
A836,
A839,
A841,
A843,
A849,
A845,
A846,
A850,
A820,
A822,
A824,
A827,
A829,
A828,
A832,
GOBOARD7: 19;
now
per cases by
A836,
A839,
A841,
A843,
A849,
A845,
A846,
A850,
A820,
A822,
A824,
A827,
A829,
A828,
A832,
A874,
GOBOARD7: 22;
suppose j2
= j29;
hence contradiction by
A739,
A758,
A818,
A833,
A841,
A822,
A874,
A875;
end;
suppose j2
= (j29
+ 1);
hence contradiction by
A711,
A753,
A756,
A755,
A835,
A834,
A841,
A820,
A874,
A875;
end;
suppose (j2
+ 1)
= j29;
hence contradiction by
A747,
A759,
A818,
A839,
A822,
A874,
A875;
end;
end;
hence contradiction;
end;
end;
hence contradiction;
end;
end;
then
reconsider g as
standard non
constant
special_circular_sequence by
A651,
A738,
A702,
A705,
A707,
FINSEQ_6:def 1,
JORDAN8: 4;
reconsider Lg9 = ((
L~ g)
` ) as
Subset of (
TOP-REAL 2);
A876: C
c= Lg9
proof
let c be
object;
assume that
A877: c
in C and
A878: not c
in Lg9;
reconsider c as
Point of (
TOP-REAL 2) by
A877;
consider i such that
A879: 1
<= i and
A880: (i
+ 1)
<= (
len g) and
A881: c
in (
LSeg ((g
/. i),(g
/. (i
+ 1)))) by
A878,
SPPOL_2: 14,
SUBSET_1: 29;
A882: 1
<= (i
+ (m
-' 1)) by
A879,
NAT_1: 12;
(i
+ 1)
in (
dom g) by
A879,
A880,
SEQ_4: 134;
then
A883: (g
/. (i
+ 1))
= (f
/. ((i
+ 1)
+ (m
-' 1))) by
FINSEQ_5: 27;
((i
+ 1)
+ (m
-' 1))
= ((i
+ (m
-' 1))
+ 1);
then
A884: ((i
+ (m
-' 1))
+ 1)
<= ((
len g)
+ (m
-' 1)) by
A880,
XREAL_1: 6;
i
in (
dom g) by
A879,
A880,
SEQ_4: 134;
then (g
/. i)
= (f
/. (i
+ (m
-' 1))) by
FINSEQ_5: 27;
then c
in (
LSeg (f,(i
+ (m
-' 1)))) by
A701,
A881,
A883,
A882,
A884,
TOPREAL1:def 3;
then c
in ((
right_cell (f,(i
+ (m
-' 1)),G))
/\ (
left_cell (f,(i
+ (m
-' 1)),G))) by
A440,
A701,
A882,
A884,
GOBRD13: 29;
then c
in (
right_cell (f,(i
+ (m
-' 1)),G)) by
XBOOLE_0:def 4;
then (
right_cell (f,(i
+ (m
-' 1)),G))
meets C by
A877,
XBOOLE_0: 3;
hence contradiction by
A440,
A701,
A882,
A884;
end;
A885: (
LeftComp g)
is_a_component_of ((
L~ g)
` ) by
GOBOARD9:def 1;
((
L~ g)
` ) is
open by
TOPS_1: 3;
then
A886: ((
L~ g)
` )
= (
Int ((
L~ g)
` )) by
TOPS_1: 23;
A887: C
meets (
LeftComp g)
proof
(
left_cell (f,m,G))
meets C by
A440,
A652,
A659;
then
consider p be
object such that
A888: p
in (
left_cell (f,m,G)) and
A889: p
in C by
XBOOLE_0: 3;
reconsider p as
Element of (
TOP-REAL 2) by
A888;
now
reconsider u = p as
Element of (
Euclid 2) by
TOPREAL3: 8;
take p;
thus p
in C by
A889;
A890: (
Int (
left_cell (g,1)))
c= (
LeftComp g) by
A704,
GOBOARD9: 21;
(
Int (
left_cell (g,1,G)))
c= (
Int (
left_cell (g,1))) by
A705,
A704,
GOBRD13: 33,
TOPS_1: 19;
then (
Int (
left_cell (g,1,G)))
c= (
LeftComp g) by
A890;
then (
Int (
left_cell (f,((m
-' 1)
+ 1),G)))
c= (
LeftComp g) by
A653,
A700,
A704,
GOBRD13: 32;
then
A891: (
Int (
left_cell (f,m,G)))
c= (
LeftComp g) by
A652,
XREAL_1: 235;
consider r be
Real such that
A892: r
>
0 and
A893: (
Ball (u,r))
c= ((
L~ g)
` ) by
A876,
A886,
A889,
GOBOARD6: 5;
reconsider r as
Real;
reconsider B = (
Ball (u,r)) as non
empty
Subset of (
TOP-REAL 2) by
A4,
A892,
TBSP_1: 11,
TOPMETR: 12;
A894: B is
open by
GOBOARD6: 3;
A895: (
left_cell (f,m,G))
= (
Cl (
Int (
left_cell (f,m,G)))) by
A652,
A659,
A680;
p
in (
Ball (u,r)) by
A892,
TBSP_1: 11;
then
A896: (
Int (
left_cell (f,m,G)))
meets B by
A888,
A895,
A894,
TOPS_1: 12;
A897: p
in B by
A892,
TBSP_1: 11;
B is
connected by
SPRECT_3: 7;
then B
c= (
LeftComp g) by
A885,
A893,
A891,
A896,
GOBOARD9: 4;
hence p
in (
LeftComp g) by
A897;
end;
hence thesis by
XBOOLE_0: 3;
end;
A898: (
L~ g)
c= (
L~ f) by
JORDAN3: 40;
A899: (
RightComp g)
is_a_component_of ((
L~ g)
` ) by
GOBOARD9:def 2;
m
= 1
proof
A900: for n st 1
<= n holds ((n
-' 1)
+ 2)
= (n
+ 1)
proof
let n;
assume 1
<= n;
hence ((n
-' 1)
+ 2)
= ((n
+ 2)
-' 1) by
NAT_D: 38
.= (((n
+ 1)
+ 1)
- 1) by
NAT_D: 37
.= (n
+ 1);
end;
assume m
<> 1;
then
A901: 1
< m by
A652,
XXREAL_0: 1;
A902: for n st 1
<= n & n
<= (m
-' 1) holds not (f
/. n)
in (
L~ g)
proof
A903: 2
<= (
len G) by
A2,
NAT_1: 12;
let n such that
A904: 1
<= n and
A905: n
<= (m
-' 1);
set p = (f
/. n);
A906: n
<= (
len f) by
A700,
A905,
XXREAL_0: 2;
then
A907: p
in (
Values G) by
A440,
A904,
JORDAN9: 6;
assume p
in (
L~ g);
then
consider j such that
A908: ((m
-' 1)
+ 1)
<= j and
A909: (j
+ 1)
<= (
len f) and
A910: p
in (
LSeg (f,j)) by
A700,
JORDAN9: 7;
A911: (j
+ 1)
<= k by
A177,
A909;
A912: j
< k by
A710,
A909,
NAT_1: 13;
A913: n
< ((m
-' 1)
+ 1) by
A905,
NAT_1: 13;
then
A914: n
< j by
A908,
XXREAL_0: 2;
A915: ((m
-' 1)
+ 1)
= m by
A652,
XREAL_1: 235;
then
A916: 1
< j by
A901,
A908,
XXREAL_0: 2;
per cases by
A6,
A440,
A909,
A910,
A916,
A903,
A907,
JORDAN9: 23;
suppose
A917: p
= (f
/. j);
A918: n
<> (
len (F
. j)) by
A177,
A908,
A913;
n
<= (
len (F
. j)) by
A177,
A914;
then
A919: n
in (
dom (F
. j)) by
A904,
FINSEQ_3: 25;
((F
. j)
/. n)
= ((F
. n)
/. n) by
A566,
A904,
A914
.= p by
A710,
A566,
A904,
A906
.= ((F
. j)
/. j) by
A566,
A916,
A912,
A917
.= ((F
. j)
/. (
len (F
. j))) by
A177;
hence contradiction by
A648,
A916,
A912,
A919,
A918;
end;
suppose
A920: p
= (f
/. (j
+ 1));
now
per cases by
A911,
XXREAL_0: 1;
suppose
A921: (j
+ 1)
= k;
A922: n
<> (
len (F
. m)) by
A177,
A913,
A915;
n
<= (
len (F
. m)) by
A177,
A913,
A915;
then
A923: n
in (
dom (F
. m)) by
A904,
FINSEQ_3: 25;
((F
. m)
/. n)
= ((F
. n)
/. n) by
A566,
A904,
A913,
A915
.= p by
A710,
A566,
A904,
A906
.= ((F
. m)
/. m) by
A651,
A710,
A652,
A654,
A566,
A920,
A921
.= ((F
. m)
/. (
len (F
. m))) by
A177;
hence contradiction by
A648,
A710,
A652,
A655,
A923,
A922;
end;
suppose
A924: (j
+ 1)
< k;
set l = (j
+ 1);
A925: 1
<= l by
NAT_1: 11;
A926: n
< (n
+ 1) by
XREAL_1: 29;
A927: (n
+ 1)
< l by
A914,
XREAL_1: 6;
then
A928: n
<> (
len (F
. l)) by
A177,
A926;
A929: n
< l by
A926,
A927,
XXREAL_0: 2;
then n
<= (
len (F
. l)) by
A177;
then
A930: n
in (
dom (F
. l)) by
A904,
FINSEQ_3: 25;
((F
. l)
/. n)
= ((F
. n)
/. n) by
A566,
A904,
A929
.= p by
A710,
A566,
A904,
A906
.= ((F
. l)
/. l) by
A566,
A920,
A924,
A925
.= ((F
. l)
/. (
len (F
. l))) by
A177;
hence contradiction by
A648,
A924,
A930,
A928,
NAT_1: 11;
end;
end;
hence contradiction;
end;
end;
C
meets (
LeftComp (
Rev g))
proof
1
<= (
len g) by
A704,
XREAL_1: 145;
then
A931: (((
len g)
-' 1)
+ 2)
= ((
len g)
+ 1) by
A900;
A932: (1
- 1)
< (m
- 1) by
A901,
XREAL_1: 9;
A933: ((m
-' 1)
+ 2)
= (m
+ 1) by
A652,
A900;
set l = ((m
-' 1)
+ ((
len g)
-' 1));
set a = (f
/. (m
-' 1));
set rg = (
Rev g);
set p = (rg
/. 1), q = (rg
/. 2);
A934: ((1
+ 1)
- 1)
<= ((
len g)
- 1) by
A703,
XREAL_1: 9;
((1
+ 1)
-' 1)
<= ((
len g)
-' 1) by
A703,
NAT_D: 42;
then
A935: 1
<= ((
len g)
-' 1) by
NAT_D: 34;
then ((m
-' 1)
+ 1)
<= l by
XREAL_1: 6;
then (m
-' 1)
< l by
NAT_1: 13;
then
A936: (m
-' 1)
<> (
len (F
. l)) by
A177;
A937: (1
+ 1)
<= (
len rg) by
A703,
FINSEQ_5:def 3;
then ((1
+ 1)
-' 1)
<= ((
len rg)
-' 1) by
NAT_D: 42;
then
A938: 1
<= ((
len rg)
-' 1) by
NAT_D: 34;
A939: rg
is_sequence_on G by
A705,
JORDAN9: 5;
then
consider p1,p2,q1,q2 be
Nat such that
A940:
[p1, p2]
in (
Indices G) and
A941: p
= (G
* (p1,p2)) and
A942:
[q1, q2]
in (
Indices G) and
A943: q
= (G
* (q1,q2)) and
A944: p1
= q1 & (p2
+ 1)
= q2 or (p1
+ 1)
= q1 & p2
= q2 or p1
= (q1
+ 1) & p2
= q2 or p1
= q1 & p2
= (q2
+ 1) by
A937,
JORDAN8: 3;
A945: 1
<= p1 by
A940,
MATRIX_0: 32;
A946: p2
<= (
width G) by
A940,
MATRIX_0: 32;
A947: p1
<= (
len G) by
A940,
MATRIX_0: 32;
A948: 1
<= p2 by
A940,
MATRIX_0: 32;
A949: p
= (f
/. m) by
A651,
A702,
FINSEQ_5: 65;
((
len g)
-' 1)
<= (
len g) by
NAT_D: 44;
then
A950: ((
len g)
-' 1)
in (
dom g) by
A935,
FINSEQ_3: 25;
then
A951: q
= (g
/. ((
len g)
-' 1)) by
A931,
FINSEQ_5: 66
.= (f
/. l) by
A950,
FINSEQ_5: 27;
1
< (
len rg) by
A937,
NAT_1: 13;
then
A952: (((
len rg)
-' 1)
+ 1)
= (
len rg) by
XREAL_1: 235;
A953: l
= ((m
+ ((
len g)
-' 1))
-' 1) by
A652,
NAT_D: 38
.= ((((
len g)
-' 1)
+ m)
- 1) by
A935,
NAT_D: 37
.= ((((
len g)
- 1)
+ m)
- 1) by
A934,
XREAL_0:def 2
.= ((((k
- (m
- 1))
- 1)
+ m)
- 1) by
A710,
A701,
A932,
XREAL_0:def 2
.= (k
- 1);
then
A954: p
= (f
/. (l
+ 1)) by
A710,
A702,
FINSEQ_5: 65;
A955: ((m
-' 1)
+ 1)
= m by
A652,
XREAL_1: 235;
then
A956: 1
<= (m
-' 1) by
A901,
NAT_1: 13;
then
A957: (
left_cell (f,(m
-' 1),G))
meets C by
A440,
A654,
A955;
(m
-' 1)
<= l by
NAT_1: 11;
then (m
-' 1)
<= (
len (F
. l)) by
A177;
then
A958: (m
-' 1)
in (
dom (F
. l)) by
A956,
FINSEQ_3: 25;
not a
in (
L~ g) by
A902,
A956;
then
A959: not a
in (
L~ rg) by
SPPOL_2: 22;
A960: k
= (l
+ 1) by
A953;
then
A961: l
< k by
XREAL_1: 29;
((
len g)
-' 1)
<= l by
NAT_1: 11;
then
A962: 1
<= l by
A935,
XXREAL_0: 2;
then
A963: (
left_cell (f,l,G))
meets C by
A440,
A710,
A960;
per cases by
A944;
suppose
A964: p1
= q1 & (p2
+ 1)
= q2;
consider a1,a2,p91,p92 be
Nat such that
A965:
[a1, a2]
in (
Indices G) and
A966: a
= (G
* (a1,a2)) and
A967:
[p91, p92]
in (
Indices G) and
A968: p
= (G
* (p91,p92)) and
A969: a1
= p91 & (a2
+ 1)
= p92 or (a1
+ 1)
= p91 & a2
= p92 or a1
= (p91
+ 1) & a2
= p92 or a1
= p91 & a2
= (p92
+ 1) by
A653,
A654,
A949,
A955,
A956,
JORDAN8: 3;
A970: 1
<= a2 by
A965,
MATRIX_0: 32;
thus thesis
proof
per cases by
A969;
suppose
A971: a1
= p91 & (a2
+ 1)
= p92;
A972: (m
-' 1)
<= m by
A955,
NAT_1: 11;
A973: (f
/. (m
-' 1))
= ((F
. (m
-' 1))
/. (m
-' 1)) by
A710,
A700,
A566,
A956
.= ((F
. m)
/. (m
-' 1)) by
A566,
A956,
A972;
A974: 2
in (
dom g) by
A703,
FINSEQ_3: 25;
(((
len rg)
-' 1)
+ 2)
= ((
len g)
+ 1) by
A931,
FINSEQ_5:def 3;
then
A975: (rg
/. ((
len rg)
-' 1))
= (g
/. 2) by
A974,
FINSEQ_5: 66
.= (f
/. (m
+ 1)) by
A933,
A974,
FINSEQ_5: 27;
A976: (
L~ rg)
c= (
L~ f) by
A898,
SPPOL_2: 22;
A977: p
= (g
/. 1) by
A651,
A738,
A702,
FINSEQ_5: 65
.= (rg
/. (
len g)) by
FINSEQ_5: 65
.= (rg
/. (
len rg)) by
FINSEQ_5:def 3;
A978: ((F
. k)
| (m
+ 1))
= (F
. (m
+ 1)) by
A565,
A710,
A659;
A979: a1
= p1 by
A940,
A941,
A967,
A968,
A971,
GOBOARD1: 5;
A980: (f
/. ((m
-' 1)
+ 1))
= ((F
. m)
/. m) by
A710,
A652,
A654,
A566,
A955;
A981: ((m
-' 1)
+ 1)
<= (
len (F
. m)) by
A177,
A955;
set rc = ((
left_cell (rg,((
len rg)
-' 1),G))
\ (
L~ rg));
A982: (a2
+ 1)
> a2 by
NAT_1: 13;
A983: (a2
+ 1)
= p2 by
A940,
A941,
A967,
A968,
A971,
GOBOARD1: 5;
then
A984: (p2
-' 1)
= a2 by
NAT_D: 34;
(
left_cell (f,l,G))
= (
cell (G,p1,p2)) by
A440,
A710,
A953,
A962,
A951,
A954,
A940,
A941,
A942,
A943,
A964,
GOBRD13: 27
.= (
front_right_cell ((F
. m),(m
-' 1),G)) by
A440,
A949,
A955,
A956,
A940,
A941,
A965,
A966,
A979,
A983,
A981,
A973,
A980,
GOBRD13: 35;
then (F
. (m
+ 1))
turns_right ((m
-' 1),G) by
A514,
A901,
A963;
then
A985: f
turns_right ((m
-' 1),G) by
A956,
A933,
A978,
GOBRD13: 43;
A986: (p2
+ 1)
> (a2
+ 1) by
A983,
NAT_1: 13;
then
A987:
[(p1
+ 1), p2]
in (
Indices G) by
A949,
A955,
A940,
A941,
A965,
A966,
A982,
A985,
GOBRD13:def 6;
then
A988: (p1
+ 1)
<= (
len G) by
MATRIX_0: 32;
(f
/. (m
+ 1))
= (G
* ((p1
+ 1),p2)) by
A949,
A955,
A933,
A940,
A941,
A965,
A966,
A986,
A982,
A985,
GOBRD13:def 6;
then (
left_cell (rg,((
len rg)
-' 1),G))
= (
cell (G,p1,a2)) by
A939,
A938,
A952,
A940,
A941,
A987,
A984,
A975,
A977,
GOBRD13: 25;
then a
in (
left_cell (rg,((
len rg)
-' 1),G)) by
A945,
A946,
A966,
A970,
A979,
A983,
A988,
JORDAN9: 20;
then
A989: a
in rc by
A959,
XBOOLE_0:def 5;
A990: (
LeftComp rg)
is_a_component_of ((
L~ rg)
` ) by
GOBOARD9:def 1;
rc
c= (
LeftComp rg) by
A939,
A938,
A952,
JORDAN9: 27;
hence thesis by
A654,
A660,
A955,
A956,
A959,
A989,
A976,
A990;
end;
suppose
A991: (a1
+ 1)
= p91 & a2
= p92;
then (a1
+ 1)
= p1 by
A940,
A941,
A967,
A968,
GOBOARD1: 5;
then
A992: (q1
-' 1)
= a1 by
A964,
NAT_D: 34;
a2
= p2 by
A940,
A941,
A967,
A968,
A991,
GOBOARD1: 5;
then (
right_cell (f,l,G))
= (
cell (G,a1,a2)) by
A440,
A710,
A953,
A962,
A951,
A954,
A940,
A941,
A942,
A943,
A964,
A992,
GOBRD13: 28
.= (
left_cell (f,(m
-' 1),G)) by
A440,
A654,
A949,
A955,
A956,
A965,
A966,
A967,
A968,
A991,
GOBRD13: 23;
hence thesis by
A440,
A710,
A960,
A962,
A957;
end;
suppose
A993: a1
= (p91
+ 1) & a2
= p92;
then
A994: a2
= p2 by
A940,
A941,
A967,
A968,
GOBOARD1: 5;
a1
= (p1
+ 1) by
A940,
A941,
A967,
A968,
A993,
GOBOARD1: 5;
then (
right_cell (f,(m
-' 1),G))
= (
cell (G,p1,p2)) by
A651,
A653,
A654,
A702,
A955,
A956,
A940,
A941,
A965,
A966,
A994,
FINSEQ_5: 65,
GOBRD13: 26
.= (
left_cell (f,l,G)) by
A440,
A710,
A953,
A962,
A951,
A954,
A940,
A941,
A942,
A943,
A964,
GOBRD13: 27;
hence thesis by
A440,
A654,
A955,
A956,
A963;
end;
suppose
A995: a1
= p91 & a2
= (p92
+ 1);
then
A996: a2
= q2 by
A940,
A941,
A964,
A967,
A968,
GOBOARD1: 5;
A997: a1
= q1 by
A940,
A941,
A964,
A967,
A968,
A995,
GOBOARD1: 5;
((F
. l)
/. (m
-' 1))
= ((F
. (m
-' 1))
/. (m
-' 1)) by
A566,
A956,
NAT_1: 11
.= q by
A710,
A700,
A566,
A956,
A943,
A966,
A997,
A996
.= ((F
. l)
/. l) by
A566,
A961,
A962,
A951
.= ((F
. l)
/. (
len (F
. l))) by
A177;
hence thesis by
A648,
A961,
A962,
A958,
A936;
end;
end;
end;
suppose
A998: (p1
+ 1)
= q1 & p2
= q2;
consider a1,a2,p91,p92 be
Nat such that
A999:
[a1, a2]
in (
Indices G) and
A1000: a
= (G
* (a1,a2)) and
A1001:
[p91, p92]
in (
Indices G) and
A1002: p
= (G
* (p91,p92)) and
A1003: a1
= p91 & (a2
+ 1)
= p92 or (a1
+ 1)
= p91 & a2
= p92 or a1
= (p91
+ 1) & a2
= p92 or a1
= p91 & a2
= (p92
+ 1) by
A653,
A654,
A949,
A955,
A956,
JORDAN8: 3;
A1004: 1
<= a2 by
A999,
MATRIX_0: 32;
A1005: a2
<= (
width G) by
A999,
MATRIX_0: 32;
A1006: 1
<= a1 by
A999,
MATRIX_0: 32;
thus thesis
proof
per cases by
A1003;
suppose
A1007: a1
= p91 & (a2
+ 1)
= p92;
then (a2
+ 1)
= p2 by
A940,
A941,
A1001,
A1002,
GOBOARD1: 5;
then
A1008: (q2
-' 1)
= a2 by
A998,
NAT_D: 34;
A1009: a1
= p1 by
A940,
A941,
A1001,
A1002,
A1007,
GOBOARD1: 5;
(
right_cell (f,(m
-' 1),G))
= (
cell (G,a1,a2)) by
A440,
A654,
A949,
A955,
A956,
A999,
A1000,
A1001,
A1002,
A1007,
GOBRD13: 22
.= (
left_cell (f,l,G)) by
A440,
A710,
A953,
A962,
A951,
A954,
A940,
A941,
A942,
A943,
A998,
A1009,
A1008,
GOBRD13: 25;
hence thesis by
A440,
A654,
A955,
A956,
A963;
end;
suppose
A1010: (a1
+ 1)
= p91 & a2
= p92;
A1011: (m
-' 1)
<= m by
A955,
NAT_1: 11;
A1012: (f
/. (m
-' 1))
= ((F
. (m
-' 1))
/. (m
-' 1)) by
A710,
A700,
A566,
A956
.= ((F
. m)
/. (m
-' 1)) by
A566,
A956,
A1011;
A1013: 2
in (
dom g) by
A703,
FINSEQ_3: 25;
(((
len rg)
-' 1)
+ 2)
= ((
len g)
+ 1) by
A931,
FINSEQ_5:def 3;
then
A1014: (rg
/. ((
len rg)
-' 1))
= (g
/. 2) by
A1013,
FINSEQ_5: 66
.= (f
/. (m
+ 1)) by
A933,
A1013,
FINSEQ_5: 27;
A1015: (
L~ rg)
c= (
L~ f) by
A898,
SPPOL_2: 22;
A1016: ((F
. k)
| (m
+ 1))
= (F
. (m
+ 1)) by
A565,
A710,
A659;
A1017: ((m
-' 1)
+ 1)
<= (
len (F
. m)) by
A177,
A955;
A1018: a2
= p2 by
A940,
A941,
A1001,
A1002,
A1010,
GOBOARD1: 5;
A1019: p
= (g
/. 1) by
A651,
A738,
A702,
FINSEQ_5: 65
.= (rg
/. (
len g)) by
FINSEQ_5: 65
.= (rg
/. (
len rg)) by
FINSEQ_5:def 3;
set rc = ((
left_cell (rg,((
len rg)
-' 1),G))
\ (
L~ rg));
A1020: p1
< (p1
+ 1) by
XREAL_1: 29;
A1021: (f
/. ((m
-' 1)
+ 1))
= ((F
. m)
/. m) by
A710,
A652,
A654,
A566,
A955;
A1022: ((a2
-' 1)
+ 1)
= a2 by
A1004,
XREAL_1: 235;
A1023: (a1
+ 1)
= p1 by
A940,
A941,
A1001,
A1002,
A1010,
GOBOARD1: 5;
then
A1024: a1
= (p1
-' 1) by
NAT_D: 34;
(
left_cell (f,l,G))
= (
cell (G,p1,(p2
-' 1))) by
A440,
A710,
A953,
A962,
A951,
A954,
A940,
A941,
A942,
A943,
A998,
GOBRD13: 25
.= (
front_right_cell ((F
. m),(m
-' 1),G)) by
A440,
A949,
A955,
A956,
A940,
A941,
A999,
A1000,
A1023,
A1018,
A1017,
A1012,
A1021,
GOBRD13: 37;
then (F
. (m
+ 1))
turns_right ((m
-' 1),G) by
A514,
A901,
A963;
then
A1025: f
turns_right ((m
-' 1),G) by
A956,
A933,
A1016,
GOBRD13: 43;
A1026: a1
< (a1
+ 1) by
XREAL_1: 29;
then
A1027:
[p1, (p2
-' 1)]
in (
Indices G) by
A949,
A955,
A940,
A941,
A999,
A1000,
A1023,
A1020,
A1025,
GOBRD13:def 6;
then
A1028: 1
<= (a2
-' 1) by
A1018,
MATRIX_0: 32;
(f
/. (m
+ 1))
= (G
* (p1,(p2
-' 1))) by
A949,
A955,
A933,
A940,
A941,
A999,
A1000,
A1023,
A1026,
A1020,
A1025,
GOBRD13:def 6;
then (
left_cell (rg,((
len rg)
-' 1),G))
= (
cell (G,a1,(a2
-' 1))) by
A939,
A938,
A952,
A940,
A941,
A1018,
A1027,
A1024,
A1014,
A1022,
A1019,
GOBRD13: 21;
then a
in (
left_cell (rg,((
len rg)
-' 1),G)) by
A947,
A1000,
A1006,
A1005,
A1023,
A1022,
A1028,
JORDAN9: 20;
then
A1029: a
in rc by
A959,
XBOOLE_0:def 5;
A1030: (
LeftComp rg)
is_a_component_of ((
L~ rg)
` ) by
GOBOARD9:def 1;
rc
c= (
LeftComp rg) by
A939,
A938,
A952,
JORDAN9: 27;
hence thesis by
A654,
A660,
A955,
A956,
A959,
A1029,
A1015,
A1030;
end;
suppose
A1031: a1
= (p91
+ 1) & a2
= p92;
then
A1032: a2
= q2 by
A940,
A941,
A998,
A1001,
A1002,
GOBOARD1: 5;
A1033: a1
= q1 by
A940,
A941,
A998,
A1001,
A1002,
A1031,
GOBOARD1: 5;
((F
. l)
/. (m
-' 1))
= ((F
. (m
-' 1))
/. (m
-' 1)) by
A566,
A956,
NAT_1: 11
.= q by
A710,
A700,
A566,
A956,
A943,
A1000,
A1033,
A1032
.= ((F
. l)
/. l) by
A566,
A961,
A962,
A951
.= ((F
. l)
/. (
len (F
. l))) by
A177;
hence thesis by
A648,
A961,
A962,
A958,
A936;
end;
suppose
A1034: a1
= p91 & a2
= (p92
+ 1);
then
A1035: a2
= (p2
+ 1) by
A940,
A941,
A1001,
A1002,
GOBOARD1: 5;
A1036: a1
= p1 by
A940,
A941,
A1001,
A1002,
A1034,
GOBOARD1: 5;
(
right_cell (f,l,G))
= (
cell (G,p1,p2)) by
A440,
A710,
A953,
A962,
A951,
A954,
A940,
A941,
A942,
A943,
A998,
GOBRD13: 26
.= (
left_cell (f,(m
-' 1),G)) by
A651,
A653,
A654,
A702,
A955,
A956,
A940,
A941,
A999,
A1000,
A1036,
A1035,
FINSEQ_5: 65,
GOBRD13: 27;
hence thesis by
A440,
A710,
A960,
A962,
A957;
end;
end;
end;
suppose
A1037: p1
= (q1
+ 1) & p2
= q2;
consider a1,a2,p91,p92 be
Nat such that
A1038:
[a1, a2]
in (
Indices G) and
A1039: a
= (G
* (a1,a2)) and
A1040:
[p91, p92]
in (
Indices G) and
A1041: p
= (G
* (p91,p92)) and
A1042: a1
= p91 & (a2
+ 1)
= p92 or (a1
+ 1)
= p91 & a2
= p92 or a1
= (p91
+ 1) & a2
= p92 or a1
= p91 & a2
= (p92
+ 1) by
A653,
A654,
A949,
A955,
A956,
JORDAN8: 3;
A1043: a1
<= (
len G) by
A1038,
MATRIX_0: 32;
thus thesis
proof
per cases by
A1042;
suppose
A1044: a1
= p91 & (a2
+ 1)
= p92;
then (a2
+ 1)
= p2 by
A940,
A941,
A1040,
A1041,
GOBOARD1: 5;
then
A1045: (q2
-' 1)
= a2 by
A1037,
NAT_D: 34;
a1
= p1 by
A940,
A941,
A1040,
A1041,
A1044,
GOBOARD1: 5;
then
A1046: q1
= (a1
-' 1) by
A1037,
NAT_D: 34;
(
right_cell (f,l,G))
= (
cell (G,q1,(q2
-' 1))) by
A440,
A710,
A953,
A962,
A951,
A954,
A940,
A941,
A942,
A943,
A1037,
GOBRD13: 24
.= (
left_cell (f,(m
-' 1),G)) by
A440,
A654,
A949,
A955,
A956,
A1038,
A1039,
A1040,
A1041,
A1044,
A1046,
A1045,
GOBRD13: 21;
hence thesis by
A440,
A710,
A960,
A962,
A957;
end;
suppose
A1047: (a1
+ 1)
= p91 & a2
= p92;
then
A1048: a2
= p2 by
A940,
A941,
A1040,
A1041,
GOBOARD1: 5;
A1049: (a1
+ 1)
= p1 by
A940,
A941,
A1040,
A1041,
A1047,
GOBOARD1: 5;
((F
. l)
/. (m
-' 1))
= ((F
. (m
-' 1))
/. (m
-' 1)) by
A566,
A956,
NAT_1: 11
.= q by
A710,
A700,
A566,
A956,
A943,
A1037,
A1039,
A1049,
A1048
.= ((F
. l)
/. l) by
A566,
A961,
A962,
A951
.= ((F
. l)
/. (
len (F
. l))) by
A177;
hence thesis by
A648,
A961,
A962,
A958,
A936;
end;
suppose
A1050: a1
= (p91
+ 1) & a2
= p92;
A1051: (m
-' 1)
<= m by
A955,
NAT_1: 11;
A1052: (f
/. (m
-' 1))
= ((F
. (m
-' 1))
/. (m
-' 1)) by
A710,
A700,
A566,
A956
.= ((F
. m)
/. (m
-' 1)) by
A566,
A956,
A1051;
A1053: 2
in (
dom g) by
A703,
FINSEQ_3: 25;
(((
len rg)
-' 1)
+ 2)
= ((
len g)
+ 1) by
A931,
FINSEQ_5:def 3;
then
A1054: (rg
/. ((
len rg)
-' 1))
= (g
/. 2) by
A1053,
FINSEQ_5: 66
.= (f
/. (m
+ 1)) by
A933,
A1053,
FINSEQ_5: 27;
A1055: (
L~ rg)
c= (
L~ f) by
A898,
SPPOL_2: 22;
set rc = ((
left_cell (rg,((
len rg)
-' 1),G))
\ (
L~ rg));
A1056: (
LeftComp rg)
is_a_component_of ((
L~ rg)
` ) by
GOBOARD9:def 1;
A1057: (p1
-' 1)
= q1 by
A1037,
NAT_D: 34;
A1058: ((F
. k)
| (m
+ 1))
= (F
. (m
+ 1)) by
A565,
A710,
A659;
A1059: a1
= (p1
+ 1) by
A940,
A941,
A1040,
A1041,
A1050,
GOBOARD1: 5;
A1060: (f
/. ((m
-' 1)
+ 1))
= ((F
. m)
/. m) by
A710,
A652,
A654,
A566,
A955;
A1061: ((m
-' 1)
+ 1)
<= (
len (F
. m)) by
A177,
A955;
A1062: a2
= p2 by
A940,
A941,
A1040,
A1041,
A1050,
GOBOARD1: 5;
(
left_cell (f,l,G))
= (
cell (G,q1,q2)) by
A440,
A710,
A953,
A962,
A951,
A954,
A940,
A941,
A942,
A943,
A1037,
GOBRD13: 23
.= (
front_right_cell ((F
. m),(m
-' 1),G)) by
A440,
A949,
A955,
A956,
A940,
A941,
A1037,
A1038,
A1039,
A1059,
A1062,
A1057,
A1061,
A1052,
A1060,
GOBRD13: 39;
then (F
. (m
+ 1))
turns_right ((m
-' 1),G) by
A514,
A901,
A963;
then
A1063: f
turns_right ((m
-' 1),G) by
A956,
A933,
A1058,
GOBRD13: 43;
(p1
+ 1)
> p1 by
XREAL_1: 29;
then
A1064: (a1
+ 1)
> p1 by
A1059,
NAT_1: 13;
then
A1065:
[p1, (p2
+ 1)]
in (
Indices G) by
A949,
A955,
A940,
A941,
A1038,
A1039,
A1062,
A1063,
GOBRD13:def 6;
then
A1066: (p2
+ 1)
<= (
width G) by
MATRIX_0: 32;
(a2
+ 1)
> p2 by
A1062,
NAT_1: 13;
then
A1067: (f
/. (m
+ 1))
= (G
* (p1,(p2
+ 1))) by
A949,
A955,
A933,
A940,
A941,
A1038,
A1039,
A1062,
A1064,
A1063,
GOBRD13:def 6;
p
= (g
/. 1) by
A651,
A738,
A702,
FINSEQ_5: 65
.= (rg
/. (
len g)) by
FINSEQ_5: 65
.= (rg
/. (
len rg)) by
FINSEQ_5:def 3;
then (
left_cell (rg,((
len rg)
-' 1),G))
= (
cell (G,p1,p2)) by
A939,
A938,
A952,
A940,
A941,
A1067,
A1065,
A1054,
GOBRD13: 27;
then a
in (
left_cell (rg,((
len rg)
-' 1),G)) by
A945,
A948,
A1039,
A1043,
A1059,
A1062,
A1066,
JORDAN9: 20;
then
A1068: a
in rc by
A959,
XBOOLE_0:def 5;
rc
c= (
LeftComp rg) by
A939,
A938,
A952,
JORDAN9: 27;
hence thesis by
A654,
A660,
A955,
A956,
A959,
A1068,
A1055,
A1056;
end;
suppose
A1069: a1
= p91 & a2
= (p92
+ 1);
then a1
= p1 by
A940,
A941,
A1040,
A1041,
GOBOARD1: 5;
then
A1070: q1
= (a1
-' 1) by
A1037,
NAT_D: 34;
a2
= (p2
+ 1) by
A940,
A941,
A1040,
A1041,
A1069,
GOBOARD1: 5;
then (
right_cell (f,(m
-' 1),G))
= (
cell (G,q1,q2)) by
A651,
A653,
A654,
A702,
A955,
A956,
A1037,
A1038,
A1039,
A1040,
A1041,
A1069,
A1070,
FINSEQ_5: 65,
GOBRD13: 28
.= (
left_cell (f,l,G)) by
A440,
A710,
A953,
A962,
A951,
A954,
A940,
A941,
A942,
A943,
A1037,
GOBRD13: 23;
hence thesis by
A440,
A654,
A955,
A956,
A963;
end;
end;
end;
suppose
A1071: p1
= q1 & p2
= (q2
+ 1);
consider a1,a2,p91,p92 be
Nat such that
A1072:
[a1, a2]
in (
Indices G) and
A1073: a
= (G
* (a1,a2)) and
A1074:
[p91, p92]
in (
Indices G) and
A1075: p
= (G
* (p91,p92)) and
A1076: a1
= p91 & (a2
+ 1)
= p92 or (a1
+ 1)
= p91 & a2
= p92 or a1
= (p91
+ 1) & a2
= p92 or a1
= p91 & a2
= (p92
+ 1) by
A653,
A654,
A949,
A955,
A956,
JORDAN8: 3;
A1077: a2
<= (
width G) by
A1072,
MATRIX_0: 32;
thus thesis
proof
per cases by
A1076;
suppose
A1078: a1
= p91 & (a2
+ 1)
= p92;
then
A1079: (a2
+ 1)
= p2 by
A940,
A941,
A1074,
A1075,
GOBOARD1: 5;
A1080: a1
= p1 by
A940,
A941,
A1074,
A1075,
A1078,
GOBOARD1: 5;
((F
. l)
/. (m
-' 1))
= ((F
. (m
-' 1))
/. (m
-' 1)) by
A566,
A956,
NAT_1: 11
.= q by
A710,
A700,
A566,
A956,
A943,
A1071,
A1073,
A1080,
A1079
.= ((F
. l)
/. l) by
A566,
A961,
A962,
A951
.= ((F
. l)
/. (
len (F
. l))) by
A177;
hence thesis by
A648,
A961,
A962,
A958,
A936;
end;
suppose
A1081: (a1
+ 1)
= p91 & a2
= p92;
then a2
= p2 by
A940,
A941,
A1074,
A1075,
GOBOARD1: 5;
then
A1082: (a2
-' 1)
= q2 by
A1071,
NAT_D: 34;
(a1
+ 1)
= p1 by
A940,
A941,
A1074,
A1075,
A1081,
GOBOARD1: 5;
then
A1083: a1
= (q1
-' 1) by
A1071,
NAT_D: 34;
(
right_cell (f,(m
-' 1),G))
= (
cell (G,a1,(a2
-' 1))) by
A440,
A654,
A949,
A955,
A956,
A1072,
A1073,
A1074,
A1075,
A1081,
GOBRD13: 24
.= (
left_cell (f,l,G)) by
A440,
A710,
A953,
A962,
A951,
A954,
A940,
A941,
A942,
A943,
A1071,
A1083,
A1082,
GOBRD13: 21;
hence thesis by
A440,
A654,
A955,
A956,
A963;
end;
suppose
A1084: a1
= (p91
+ 1) & a2
= p92;
then a2
= p2 by
A940,
A941,
A1074,
A1075,
GOBOARD1: 5;
then
A1085: (a2
-' 1)
= q2 by
A1071,
NAT_D: 34;
A1086: a1
= (p1
+ 1) by
A940,
A941,
A1074,
A1075,
A1084,
GOBOARD1: 5;
(
right_cell (f,l,G))
= (
cell (G,q1,q2)) by
A440,
A710,
A953,
A962,
A951,
A954,
A940,
A941,
A942,
A943,
A1071,
GOBRD13: 22
.= (
left_cell (f,(m
-' 1),G)) by
A651,
A653,
A654,
A702,
A955,
A956,
A1071,
A1072,
A1073,
A1074,
A1075,
A1084,
A1086,
A1085,
FINSEQ_5: 65,
GOBRD13: 25;
hence thesis by
A440,
A710,
A960,
A962,
A957;
end;
suppose
A1087: a1
= p91 & a2
= (p92
+ 1);
then
A1088: a2
= (p2
+ 1) by
A940,
A941,
A1074,
A1075,
GOBOARD1: 5;
A1089: (f
/. ((m
-' 1)
+ 1))
= ((F
. m)
/. m) by
A710,
A652,
A654,
A566,
A955;
A1090: 2
in (
dom g) by
A703,
FINSEQ_3: 25;
(((
len rg)
-' 1)
+ 2)
= ((
len g)
+ 1) by
A931,
FINSEQ_5:def 3;
then
A1091: (rg
/. ((
len rg)
-' 1))
= (g
/. 2) by
A1090,
FINSEQ_5: 66
.= (f
/. (m
+ 1)) by
A933,
A1090,
FINSEQ_5: 27;
A1092: ((p1
-' 1)
+ 1)
= p1 by
A945,
XREAL_1: 235;
A1093: (m
-' 1)
<= m by
A955,
NAT_1: 11;
A1094: (f
/. (m
-' 1))
= ((F
. (m
-' 1))
/. (m
-' 1)) by
A710,
A700,
A566,
A956
.= ((F
. m)
/. (m
-' 1)) by
A566,
A956,
A1093;
A1095: (p2
-' 1)
= q2 by
A1071,
NAT_D: 34;
set rc = ((
left_cell (rg,((
len rg)
-' 1),G))
\ (
L~ rg));
A1096: (p2
+ 1)
> p2 by
NAT_1: 13;
A1097: p
= (g
/. 1) by
A651,
A738,
A702,
FINSEQ_5: 65
.= (rg
/. (
len g)) by
FINSEQ_5: 65
.= (rg
/. (
len rg)) by
FINSEQ_5:def 3;
A1098: ((m
-' 1)
+ 1)
<= (
len (F
. m)) by
A177,
A955;
A1099: ((F
. k)
| (m
+ 1))
= (F
. (m
+ 1)) by
A565,
A710,
A659;
A1100: (
L~ rg)
c= (
L~ f) by
A898,
SPPOL_2: 22;
A1101: a1
= p1 by
A940,
A941,
A1074,
A1075,
A1087,
GOBOARD1: 5;
(
left_cell (f,l,G))
= (
cell (G,(q1
-' 1),q2)) by
A440,
A710,
A953,
A962,
A951,
A954,
A940,
A941,
A942,
A943,
A1071,
GOBRD13: 21
.= (
front_right_cell ((F
. m),(m
-' 1),G)) by
A440,
A949,
A955,
A956,
A940,
A941,
A1071,
A1072,
A1073,
A1101,
A1088,
A1095,
A1098,
A1094,
A1089,
GOBRD13: 41;
then (F
. (m
+ 1))
turns_right ((m
-' 1),G) by
A514,
A901,
A963;
then
A1102: f
turns_right ((m
-' 1),G) by
A956,
A933,
A1099,
GOBRD13: 43;
A1103: (a2
+ 1)
> (p2
+ 1) by
A1088,
NAT_1: 13;
then
A1104:
[(p1
-' 1), p2]
in (
Indices G) by
A949,
A955,
A940,
A941,
A1072,
A1073,
A1096,
A1102,
GOBRD13:def 6;
then
A1105: 1
<= (p1
-' 1) by
MATRIX_0: 32;
(f
/. (m
+ 1))
= (G
* ((p1
-' 1),p2)) by
A949,
A955,
A933,
A940,
A941,
A1072,
A1073,
A1103,
A1096,
A1102,
GOBRD13:def 6;
then (
left_cell (rg,((
len rg)
-' 1),G))
= (
cell (G,(p1
-' 1),p2)) by
A939,
A938,
A952,
A940,
A941,
A1104,
A1091,
A1097,
A1092,
GOBRD13: 23;
then a
in (
left_cell (rg,((
len rg)
-' 1),G)) by
A947,
A948,
A1073,
A1077,
A1101,
A1088,
A1105,
A1092,
JORDAN9: 20;
then
A1106: a
in rc by
A959,
XBOOLE_0:def 5;
A1107: (
LeftComp rg)
is_a_component_of ((
L~ rg)
` ) by
GOBOARD9:def 1;
rc
c= (
LeftComp rg) by
A939,
A938,
A952,
JORDAN9: 27;
hence thesis by
A654,
A660,
A955,
A956,
A959,
A1106,
A1100,
A1107;
end;
end;
end;
end;
then C
meets (
RightComp g) by
GOBOARD9: 23;
hence contradiction by
A876,
A885,
A899,
A887,
JORDAN9: 1,
SPRECT_4: 6;
end;
then
A1108: g
= (f
/^
0 ) by
XREAL_1: 232
.= f by
FINSEQ_5: 28;
then
reconsider f as
standard non
constant
special_circular_sequence;
(F
. (
0
+ 1))
=
<*(G
* (XS,YS))*> by
A156;
then
A1109: (G
* (XS,YS))
= ((F
. 1)
/. 1) by
FINSEQ_4: 16
.= (f
/. 1) by
A647,
A566;
(F
. (1
+ 1))
=
<*(G
* (XS,YS)), (G
* ((XS
-' 1),YS))*> by
A156;
then
A1110: (G
* ((XS
-' 1),YS))
= ((F
. 2)
/. 2) by
FINSEQ_4: 17
.= (f
/. 2) by
A657,
A566;
A1111: 2
< XS by
JORDAN1H: 49;
f is
clockwise_oriented
proof
(
LeftComp f)
is_a_component_of ((
L~ f)
` ) by
GOBOARD9:def 1;
then C
c= (
LeftComp f) by
A876,
A887,
A1108,
GOBOARD9: 4;
then (
RightComp f)
misses C by
GOBRD14: 14,
XBOOLE_1: 63;
then
A1112: (
RightComp f)
c= (C
` ) by
SUBSET_1: 23;
(
UBD (
L~ f))
is_outside_component_of (
L~ f) by
JORDAN2C: 68;
then (
UBD (
L~ f))
is_a_component_of ((
L~ f)
` ) by
JORDAN2C:def 3;
then
A1113: (
UBD (
L~ f))
= (
RightComp f) or (
UBD (
L~ f))
= (
LeftComp f) by
JORDAN1H: 24;
A1114: ((XS
-' 1)
+ 1)
= XS by
A1111,
XREAL_1: 235,
XXREAL_0: 2;
set W = { B where B be
Subset of (
TOP-REAL 2) : B
is_inside_component_of C };
A1115: (
Int (
right_cell (f,1,G)))
c= (
right_cell (f,1,G)) by
TOPS_1: 16;
A1116: (
BDD C)
= (
union W) by
JORDAN2C:def 4;
A1117: (
Int (
right_cell (f,1,G)))
<>
{} by
A653,
A656,
JORDAN9: 9;
A1118:
[(XS
-' 1), YS]
in (
Indices G) by
A1,
JORDAN11: 9;
(
cell (G,(XS
-' 1),YS))
c= (
BDD C) by
A1,
JORDAN11: 6;
then (
right_cell (f,1,G))
c= (
BDD C) by
A5,
A440,
A656,
A1109,
A1110,
A1114,
A1118,
GOBRD13: 26;
then
A1119: (
Int (
right_cell (f,1,G)))
c= (
BDD C) by
A1115;
(
Int (
right_cell (f,1,G)))
c= (
RightComp f) by
A653,
A656,
JORDAN1H: 25;
then (
BDD C)
meets (
RightComp f) by
A1119,
A1117,
XBOOLE_1: 68;
then
consider e be
set such that
A1120: e
in W and
A1121: (
RightComp f)
meets e by
A1116,
ZFMISC_1: 80;
consider B be
Subset of (
TOP-REAL 2) such that
A1122: e
= B and
A1123: B
is_inside_component_of C by
A1120;
A1124: B is
bounded by
A1123,
JORDAN2C:def 2;
B
is_a_component_of (C
` ) by
A1123,
JORDAN2C:def 2;
then (
RightComp f) is
bounded by
A1121,
A1122,
A1112,
A1124,
GOBOARD9: 4,
RLTOPSP1: 42;
hence thesis by
A1113,
JORDAN1H: 39,
JORDAN1H: 41;
end;
then
reconsider f as
clockwise_oriented
standard non
constant
special_circular_sequence;
take f;
thus f
is_sequence_on G by
A440;
thus (f
/. 1)
= (G
* (XS,YS)) by
A1109;
thus (f
/. 2)
= (G
* ((XS
-' 1),YS)) by
A1110;
let m such that
A1125: 1
<= m and
A1126: (m
+ 2)
<= (
len f);
A1127: (F
. ((m
+ 1)
+ 1))
= (f
| ((m
+ 1)
+ 1)) by
A565,
A710,
A1126;
A1128: (m
+ 1)
< (m
+ 2) by
XREAL_1: 6;
then
A1129: (f
| (m
+ 1))
= (F
. (m
+ 1)) by
A565,
A710,
A1126,
XXREAL_0: 2;
A1130: (m
+ 1)
<= (
len f) by
A1126,
A1128,
XXREAL_0: 2;
then
A1131: (
front_right_cell ((F
. (m
+ 1)),m,G))
= (
front_right_cell (f,m,G)) by
A653,
A1125,
A1129,
GOBRD13: 42;
A1132: (m
+ 1)
> 1 by
A1125,
NAT_1: 13;
A1133: m
= ((m
+ 1)
-' 1) by
NAT_D: 34;
A1134: (
front_left_cell ((F
. (m
+ 1)),m,G))
= (
front_left_cell (f,m,G)) by
A653,
A1125,
A1130,
A1129,
GOBRD13: 42;
hereby
assume that
A1135: (
front_right_cell (f,m,G))
misses C and
A1136: (
front_left_cell (f,m,G))
misses C;
(F
. ((m
+ 1)
+ 1))
turns_left (m,G) by
A514,
A1133,
A1132,
A1131,
A1134,
A1135,
A1136;
hence f
turns_left (m,G) by
A1125,
A1126,
A1127,
GOBRD13: 44;
end;
hereby
assume that
A1137: (
front_right_cell (f,m,G))
misses C and
A1138: (
front_left_cell (f,m,G))
meets C;
(F
. ((m
+ 1)
+ 1))
goes_straight (m,G) by
A514,
A1133,
A1132,
A1131,
A1134,
A1137,
A1138;
hence f
goes_straight (m,G) by
A1125,
A1126,
A1127,
GOBRD13: 45;
end;
assume (
front_right_cell (f,m,G))
meets C;
then (F
. ((m
+ 1)
+ 1))
turns_right (m,G) by
A514,
A1133,
A1132,
A1131;
hence thesis by
A1125,
A1126,
A1127,
GOBRD13: 43;
end;
uniqueness
proof
let f1,f2 be
clockwise_oriented
standard non
constant
special_circular_sequence such that
A1139: f1
is_sequence_on (
Gauge (C,n)) and
A1140: (f1
/. 1)
= ((
Gauge (C,n))
* ((
X-SpanStart (C,n)),(
Y-SpanStart (C,n)))) and
A1141: (f1
/. 2)
= ((
Gauge (C,n))
* (((
X-SpanStart (C,n))
-' 1),(
Y-SpanStart (C,n)))) and
A1142: for k st 1
<= k & (k
+ 2)
<= (
len f1) holds ((
front_right_cell (f1,k,(
Gauge (C,n))))
misses C & (
front_left_cell (f1,k,(
Gauge (C,n))))
misses C implies f1
turns_left (k,(
Gauge (C,n)))) & ((
front_right_cell (f1,k,(
Gauge (C,n))))
misses C & (
front_left_cell (f1,k,(
Gauge (C,n))))
meets C implies f1
goes_straight (k,(
Gauge (C,n)))) & ((
front_right_cell (f1,k,(
Gauge (C,n))))
meets C implies f1
turns_right (k,(
Gauge (C,n)))) and
A1143: f2
is_sequence_on (
Gauge (C,n)) and
A1144: (f2
/. 1)
= ((
Gauge (C,n))
* ((
X-SpanStart (C,n)),(
Y-SpanStart (C,n)))) and
A1145: (f2
/. 2)
= ((
Gauge (C,n))
* (((
X-SpanStart (C,n))
-' 1),(
Y-SpanStart (C,n)))) and
A1146: for k st 1
<= k & (k
+ 2)
<= (
len f2) holds ((
front_right_cell (f2,k,(
Gauge (C,n))))
misses C & (
front_left_cell (f2,k,(
Gauge (C,n))))
misses C implies f2
turns_left (k,(
Gauge (C,n)))) & ((
front_right_cell (f2,k,(
Gauge (C,n))))
misses C & (
front_left_cell (f2,k,(
Gauge (C,n))))
meets C implies f2
goes_straight (k,(
Gauge (C,n)))) & ((
front_right_cell (f2,k,(
Gauge (C,n))))
meets C implies f2
turns_right (k,(
Gauge (C,n))));
defpred
P[
Nat] means (f1
| $1)
= (f2
| $1);
A1147: for k st
P[k] holds
P[(k
+ 1)]
proof
A1148: (
len f2)
> 4 by
GOBOARD7: 34;
A1149: (
len f1)
> 4 by
GOBOARD7: 34;
let k such that
A1151: (f1
| k)
= (f2
| k);
per cases by
NAT_1: 25;
suppose
W: k
=
0 ;
1
<= (
len f1) & 1
<= (
len f2) by
A1148,
A1149,
XXREAL_0: 2;
then 1
in (
dom f1) & 1
in (
dom f2) by
FINSEQ_3: 25;
then
W2:
<*(f1
. 1)*>
=
<*(f1
/. 1)*> &
<*(f2
. 1)*>
=
<*(f2
/. 1)*> by
PARTFUN1:def 6;
W1:
<*(f1
. 1)*>
= (f1
| 1) &
<*(f2
. 1)*>
= (f2
| 1) by
FINSEQ_5: 20;
<*(f1
. 1)*>
=
<*(f2
. 1)*> by
A1140,
A1144,
W2;
then (f1
| 1)
= (f2
| 1) by
W1;
hence thesis by
W;
end;
suppose
A1152: k
= 1;
(f1
| 2)
=
<*(f1
/. 1), (f1
/. 2)*> by
A1149,
FINSEQ_5: 81,
XXREAL_0: 2;
hence thesis by
A1140,
A1141,
A1144,
A1145,
A1148,
A1152,
FINSEQ_5: 81,
XXREAL_0: 2;
end;
suppose
A1153: k
> 1;
A1154: (f2
/. 1)
= (f2
/. (
len f2)) by
FINSEQ_6:def 1;
A1155: (f1
/. 1)
= (f1
/. (
len f1)) by
FINSEQ_6:def 1;
now
per cases ;
suppose
A1156: (
len f1)
> k;
set m = (k
-' 1);
A1157: 1
<= m by
A1153,
NAT_D: 49;
then
A1158: (m
+ 1)
= k by
NAT_D: 43;
then
A1159: (
front_right_cell (f1,m,(
Gauge (C,n))))
= (
front_right_cell ((f1
| k),m,(
Gauge (C,n)))) by
A1139,
A1156,
A1157,
GOBRD13: 42;
A1160: (k
+ 1)
<= (
len f1) by
A1156,
NAT_1: 13;
A1161:
now
A1162: 1
< (
len f2) by
GOBOARD7: 34,
XXREAL_0: 2;
assume
A1163: (
len f2)
<= k;
then
A1164: f2
= (f2
| k) by
FINSEQ_1: 58;
then
A1165: 1
in (
dom (f2
| k)) by
FINSEQ_5: 6;
(
len f2)
in (
dom (f2
| k)) by
A1164,
FINSEQ_5: 6;
then
A1166: ((f1
| k)
/. (
len f2))
= (f1
/. (
len f2)) by
A1151,
FINSEQ_4: 70;
(
len f2)
<= (
len f1) by
A1151,
A1164,
FINSEQ_5: 16;
hence contradiction by
A1151,
A1155,
A1154,
A1156,
A1163,
A1164,
A1165,
A1166,
A1162,
FINSEQ_4: 70,
GOBOARD7: 38;
end;
then
A1167: (k
+ 1)
<= (
len f2) by
NAT_1: 13;
A1168: (
front_left_cell (f2,m,(
Gauge (C,n))))
= (
front_left_cell ((f2
| k),m,(
Gauge (C,n)))) by
A1143,
A1157,
A1158,
A1161,
GOBRD13: 42;
A1169: (
front_right_cell (f2,m,(
Gauge (C,n))))
= (
front_right_cell ((f2
| k),m,(
Gauge (C,n)))) by
A1143,
A1157,
A1158,
A1161,
GOBRD13: 42;
A1170: (m
+ (1
+ 1))
= (k
+ 1) by
A1158;
A1171: (
front_left_cell (f1,m,(
Gauge (C,n))))
= (
front_left_cell ((f1
| k),m,(
Gauge (C,n)))) by
A1139,
A1156,
A1157,
A1158,
GOBRD13: 42;
now
per cases ;
suppose
A1172: (
front_right_cell (f1,m,(
Gauge (C,n))))
misses C & (
front_left_cell (f1,m,(
Gauge (C,n))))
misses C;
then
A1173: f1
turns_left (m,(
Gauge (C,n))) by
A1142,
A1157,
A1160,
A1170;
f2
turns_left (m,(
Gauge (C,n))) by
A1146,
A1151,
A1157,
A1167,
A1159,
A1171,
A1169,
A1168,
A1170,
A1172;
hence thesis by
A1143,
A1151,
A1153,
A1167,
A1160,
A1173,
GOBRD13: 47;
end;
suppose
A1174: (
front_right_cell (f1,m,(
Gauge (C,n))))
misses C & (
front_left_cell (f1,m,(
Gauge (C,n))))
meets C;
then
A1175: f1
goes_straight (m,(
Gauge (C,n))) by
A1142,
A1157,
A1160,
A1170;
f2
goes_straight (m,(
Gauge (C,n))) by
A1146,
A1151,
A1157,
A1167,
A1159,
A1171,
A1169,
A1168,
A1170,
A1174;
hence thesis by
A1143,
A1151,
A1153,
A1167,
A1160,
A1175,
GOBRD13: 48;
end;
suppose
A1176: (
front_right_cell (f1,m,(
Gauge (C,n))))
meets C;
then
A1177: f1
turns_right (m,(
Gauge (C,n))) by
A1142,
A1157,
A1160,
A1170;
f2
turns_right (m,(
Gauge (C,n))) by
A1146,
A1151,
A1157,
A1167,
A1159,
A1169,
A1170,
A1176;
hence thesis by
A1143,
A1151,
A1153,
A1167,
A1160,
A1177,
GOBRD13: 46;
end;
end;
hence thesis;
end;
suppose
A1178: k
>= (
len f1);
A1179: 1
< (
len f1) by
GOBOARD7: 34,
XXREAL_0: 2;
A1180: f1
= (f1
| k) by
A1178,
FINSEQ_1: 58;
then
A1181: 1
in (
dom (f1
| k)) by
FINSEQ_5: 6;
(
len f1)
in (
dom (f1
| k)) by
A1180,
FINSEQ_5: 6;
then
A1182: ((f2
| k)
/. (
len f1))
= (f2
/. (
len f1)) by
A1151,
FINSEQ_4: 70;
(
len f1)
<= (
len f2) by
A1151,
A1180,
FINSEQ_5: 16;
then (
len f2)
= (
len f1) by
A1151,
A1155,
A1154,
A1180,
A1181,
A1182,
A1179,
FINSEQ_4: 70,
GOBOARD7: 38;
hence thesis by
A1151,
A1178,
A1180,
FINSEQ_1: 58;
end;
end;
hence thesis;
end;
end;
A1183:
P[
0 ];
for k holds
P[k] from
NAT_1:sch 2(
A1183,
A1147);
hence thesis by
JORDAN9: 2;
end;
end