pdiffeq1.miz
begin
reserve m,n for non
zero
Element of
NAT ;
reserve i,j,k for
Element of
NAT ;
reserve Z for
Subset of (
REAL 2);
reserve c for
Real;
reserve I for non
empty
FinSequence of
NAT ;
reserve d1,d2 for
Element of
REAL ;
LMSIN1: for n be
Nat holds (
sin
. (n
*
PI ))
=
0
proof
defpred
P[
Nat] means (
sin
. ($1
*
PI ))
=
0 ;
A1:
P[
0 ] by
SIN_COS: 30;
A2: for n be
Nat st
P[n] holds
P[(n
+ 1)]
proof
let n be
Nat;
assume
A3:
P[n];
(
sin
. ((n
+ 1)
*
PI ))
= (
sin
. ((n
*
PI )
+
PI ))
.= ((
0
* (
cos
.
PI ))
+ ((
cos
. (n
*
PI ))
* (
sin
.
PI ))) by
SIN_COS: 74,
A3
.=
0 by
SIN_COS: 77;
hence
P[(n
+ 1)];
end;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
theorem ::
PDIFFEQ1:1
DOMP1: for m be non
zero
Element of
NAT , X be
Subset of (
REAL m), I be non
empty
FinSequence of
NAT , f be
PartFunc of (
REAL m),
REAL st f
is_partial_differentiable_on (X,I) holds (
dom (f
`partial| (X,I)))
= X
proof
let m be non
zero
Element of
NAT , Z be
Subset of (
REAL m), I be non
empty
FinSequence of
NAT , f be
PartFunc of (
REAL m),
REAL ;
reconsider k = ((
len I)
- 1) as
Element of
NAT by
INT_1: 5,
FINSEQ_1: 20;
assume f
is_partial_differentiable_on (Z,I);
then
A1: ((
PartDiffSeq (f,Z,I))
. k)
is_partial_differentiable_on (Z,(I
/. (k
+ 1)));
(
dom ((
PartDiffSeq (f,Z,I))
. (k
+ 1)))
= (
dom (((
PartDiffSeq (f,Z,I))
. k)
`partial| (Z,(I
/. (k
+ 1))))) by
PDIFF_9:def 7;
hence thesis by
A1,
PDIFF_9:def 6;
end;
registration
cluster (
[#]
REAL ) ->
open;
coherence
proof
now
let r be
Element of
REAL ;
assume r
in (
[#]
REAL );
].(r
- 1), (r
+ 1).[ is
Neighbourhood of r by
RCOMP_1:def 6;
hence ex N be
Neighbourhood of r st N
c= (
[#]
REAL );
end;
hence thesis by
RCOMP_1: 20;
end;
cluster (
[#] (
REAL 2)) ->
open;
coherence
proof
for x be
Element of (
REAL 2) st x
in (
[#] (
REAL 2)) holds ex r be
Real st r
>
0 & { y where y be
Element of (
REAL 2) :
|.(y
- x).|
< r }
c= (
[#] (
REAL 2))
proof
let x be
Element of (
REAL 2);
assume x
in (
[#] (
REAL 2));
take 1;
thus
0
< 1;
now
let s be
object;
assume s
in { y where y be
Element of (
REAL 2) :
|.(y
- x).|
< 1 };
then ex y be
Element of (
REAL 2) st s
= y &
|.(y
- x).|
< 1;
hence s
in (
[#] (
REAL 2));
end;
hence { y where y be
Element of (
REAL 2) :
|.(y
- x).|
< 1 }
c= (
[#] (
REAL 2));
end;
hence thesis by
PDIFF_7: 31;
end;
end
LMOP3: (
[#] (
REAL 2))
= {
<*x, t*> where x,t be
Real : x
in (
[#]
REAL ) & t
in (
[#]
REAL ) }
proof
set S = {
<*x, t*> where x,t be
Real : x
in (
[#]
REAL ) & t
in (
[#]
REAL ) };
for z be
object holds (z
in (
[#] (
REAL 2)) iff z
in S)
proof
let z be
object;
hereby
assume z
in (
[#] (
REAL 2));
then z
in the set of all
<*d1, d2*> where d1,d2 be
Element of
REAL by
FINSEQ_2: 99;
then ex d1,d2 be
Element of
REAL st z
=
<*d1, d2*>;
hence z
in S;
end;
assume z
in S;
then ex x,t be
Real st z
=
<*x, t*> & x
in (
[#]
REAL ) & t
in (
[#]
REAL );
then z
in the set of all
<*d1, d2*> where d1,d2 be
Element of
REAL ;
hence z
in (
[#] (
REAL 2)) by
FINSEQ_2: 99;
end;
hence thesis by
TARSKI: 2;
end;
LM001: for f be
PartFunc of
REAL ,
REAL , Z be
Subset of
REAL , x0 be
Real st Z is
open & x0
in Z & f
is_differentiable_in x0 holds (f
| Z)
is_differentiable_in x0 & (
diff (f,x0))
= (
diff ((f
| Z),x0))
proof
let f be
PartFunc of
REAL ,
REAL , Z be
Subset of
REAL , x0 be
Real;
assume that
AS1: Z is
open and
AS3: x0
in Z and
AS4: f
is_differentiable_in x0;
consider N1 be
Neighbourhood of x0 such that
A10: N1
c= Z by
AS1,
AS3,
RCOMP_1: 18;
consider N be
Neighbourhood of x0 such that
A11: N
c= (
dom f) and
A12: ex L be
LinearFunc, R be
RestFunc st for x be
Real st x
in N holds ((f
. x)
- (f
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
AS4,
FDIFF_1:def 4;
consider N2 be
Neighbourhood of x0 such that
A13: N2
c= N1 and
A14: N2
c= N by
RCOMP_1: 17;
A15: N2
c= Z by
A10,
A13;
N2
c= (
dom f) by
A11,
A14;
then N2
c= ((
dom f)
/\ Z) by
A15,
XBOOLE_1: 19;
then
A16: N2
c= (
dom (f
| Z)) by
RELAT_1: 61;
consider L be
LinearFunc, R be
RestFunc such that
A17: for x be
Real st x
in N holds ((f
. x)
- (f
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A12;
A18: x0
in N2 by
RCOMP_1: 16;
Y1:
now
let x be
Real;
assume
A19: x
in N2;
then ((f
. x)
- (f
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A14,
A17;
then (((f
| Z)
. x)
- (f
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A16,
A19,
FUNCT_1: 47;
hence (((f
| Z)
. x)
- ((f
| Z)
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A16,
A18,
FUNCT_1: 47;
end;
hence (f
| Z)
is_differentiable_in x0 by
A16,
FDIFF_1:def 4;
hence (
diff ((f
| Z),x0))
= (L
. 1) by
A16,
Y1,
FDIFF_1:def 5
.= (
diff (f,x0)) by
AS4,
A11,
A17,
FDIFF_1:def 5;
end;
theorem ::
PDIFFEQ1:2
LM002: for f be
PartFunc of
REAL ,
REAL , Z be
Subset of
REAL , x0 be
Real st Z is
open & x0
in Z holds (f
is_differentiable_in x0 iff (f
| Z)
is_differentiable_in x0) & (f
is_differentiable_in x0 implies (
diff (f,x0))
= (
diff ((f
| Z),x0)))
proof
let f be
PartFunc of
REAL ,
REAL , Z be
Subset of
REAL , x0 be
Real;
assume that
AS1: Z is
open and
AS3: x0
in Z;
thus f
is_differentiable_in x0 iff (f
| Z)
is_differentiable_in x0
proof
thus f
is_differentiable_in x0 implies (f
| Z)
is_differentiable_in x0 by
LM001,
AS1,
AS3;
thus (f
| Z)
is_differentiable_in x0 implies f
is_differentiable_in x0
proof
assume (f
| Z)
is_differentiable_in x0;
then
consider N be
Neighbourhood of x0 such that
A11: N
c= (
dom (f
| Z)) and
A12: ex L be
LinearFunc, R be
RestFunc st for x be
Real st x
in N holds (((f
| Z)
. x)
- ((f
| Z)
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
FDIFF_1:def 4;
consider L be
LinearFunc, R be
RestFunc such that
A17: for x be
Real st x
in N holds (((f
| Z)
. x)
- ((f
| Z)
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A12;
Y0: (
dom (f
| Z))
c= (
dom f) by
RELAT_1: 60;
now
let x be
Real;
assume
A19: x
in N;
then
A20: x
in Z by
RELAT_1: 58,
A11,
TARSKI:def 3;
(((f
| Z)
. x)
- ((f
| Z)
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A17,
A19;
then (((f
| Z)
. x)
- (f
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
AS3,
FUNCT_1: 49;
hence ((f
. x)
- (f
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A20,
FUNCT_1: 49;
end;
hence f
is_differentiable_in x0 by
Y0,
A11,
XBOOLE_1: 1,
FDIFF_1:def 4;
end;
end;
thus (f
is_differentiable_in x0 implies (
diff (f,x0))
= (
diff ((f
| Z),x0))) by
AS1,
AS3,
LM001;
end;
theorem ::
PDIFFEQ1:3
LM003: for f be
PartFunc of
REAL ,
REAL , X be
Subset of
REAL st X is
open & X
c= (
dom f) holds f
is_differentiable_on X iff (f
| X)
is_differentiable_on X
proof
let f be
PartFunc of
REAL ,
REAL , X be
Subset of
REAL ;
assume that
AS1: X is
open and
AS2: X
c= (
dom f);
hereby
assume
A1: f
is_differentiable_on X;
A3: (
dom (f
| X))
= X by
RELAT_1: 62,
AS2;
now
let x be
Real;
assume
A4: x
in X;
then f
is_differentiable_in x by
A1,
AS1,
FDIFF_1: 9;
hence (f
| X)
is_differentiable_in x by
LM002,
AS1,
A4;
end;
hence (f
| X)
is_differentiable_on X by
AS1,
A3,
FDIFF_1: 9;
end;
assume
A1: (f
| X)
is_differentiable_on X;
now
let x be
Real;
assume
A4: x
in X;
then (f
| X)
is_differentiable_in x by
A1,
AS1,
FDIFF_1: 9;
hence f
is_differentiable_in x by
LM002,
AS1,
A4;
end;
hence f
is_differentiable_on X by
AS1,
AS2,
FDIFF_1: 9;
end;
theorem ::
PDIFFEQ1:4
LM00: for f be
PartFunc of
REAL ,
REAL , X be
Subset of
REAL st X is
open & X
c= (
dom f) & f
is_differentiable_on X holds ((f
| X)
`| X)
= (f
`| X)
proof
let f be
PartFunc of
REAL ,
REAL , X be
Subset of
REAL ;
assume that
AS1: X is
open and
AS2: X
c= (
dom f) and
AS3: f
is_differentiable_on X;
A1: (f
| X)
is_differentiable_on X by
AS1,
AS2,
AS3,
LM003;
A2: (
dom (f
`| X))
= X & for x be
Real st x
in X holds ((f
`| X)
. x)
= (
diff (f,x)) by
FDIFF_1:def 7,
AS3;
A3: (
dom ((f
| X)
`| X))
= X & for x be
Real st x
in X holds (((f
| X)
`| X)
. x)
= (
diff ((f
| X),x)) by
FDIFF_1:def 7,
A1;
now
let x be
object;
assume
A4: x
in (
dom ((f
| X)
`| X));
then
A5: x
in X by
FDIFF_1:def 7,
A1;
reconsider x0 = x as
Real by
A4;
A6: f
is_differentiable_in x0 by
AS1,
AS3,
A5,
FDIFF_1: 9;
thus (((f
| X)
`| X)
. x)
= (
diff ((f
| X),x0)) by
FDIFF_1:def 7,
A1,
A5
.= (
diff (f,x0)) by
A6,
AS1,
A5,
LM002
.= ((f
`| X)
. x) by
FDIFF_1:def 7,
AS3,
A5;
end;
hence ((f
| X)
`| X)
= (f
`| X) by
FUNCT_1: 2,
A2,
A3;
end;
theorem ::
PDIFFEQ1:5
DIFF1: for f be
PartFunc of
REAL ,
REAL , Z be
Subset of
REAL st Z
c= (
dom f) & Z is
open & f
is_differentiable_on (1,Z) holds f
is_differentiable_on Z & ((
diff (f,Z))
. 1)
= (f
`| Z)
proof
let f be
PartFunc of
REAL ,
REAL , Z be
Subset of
REAL ;
assume
AS: Z
c= (
dom f) & Z is
open & f
is_differentiable_on (1,Z);
then ((
diff (f,Z))
.
0 )
is_differentiable_on Z;
then (f
| Z)
is_differentiable_on Z by
TAYLOR_1:def 5;
hence
X1: f
is_differentiable_on Z by
LM003,
AS;
thus ((
diff (f,Z))
. 1)
= ((
diff (f,Z))
. (
0
+ 1))
.= (((
diff (f,Z))
.
0 )
`| Z) by
TAYLOR_1:def 5
.= ((f
| Z)
`| Z) by
TAYLOR_1:def 5
.= (f
`| Z) by
AS,
X1,
LM00;
end;
theorem ::
PDIFFEQ1:6
DIFF2: for f be
PartFunc of
REAL ,
REAL , Z be
Subset of
REAL st Z
c= (
dom f) & Z is
open & f
is_differentiable_on (2,Z) holds f
is_differentiable_on Z & ((
diff (f,Z))
. 1)
= (f
`| Z) & (f
`| Z)
is_differentiable_on Z & ((
diff (f,Z))
. 2)
= ((f
`| Z)
`| Z)
proof
let f be
PartFunc of
REAL ,
REAL , Z be
Subset of
REAL ;
assume
AS: Z
c= (
dom f) & Z is
open & f
is_differentiable_on (2,Z);
f
is_differentiable_on (1,Z) by
AS,
TAYLOR_1: 23;
then
A3: f
is_differentiable_on Z & ((
diff (f,Z))
. 1)
= (f
`| Z) by
AS,
DIFF1;
((
diff (f,Z))
. 2)
= ((
diff (f,Z))
. (1
+ 1))
.= ((f
`| Z)
`| Z) by
TAYLOR_1:def 5,
A3;
hence thesis by
AS,
A3;
end;
LM02: for x,t be
Real holds
<*x, t*>
in (
REAL 2)
proof
let x,t be
Real;
P1: (2
-tuples_on
REAL )
= the set of all
<*d1, d2*> by
FINSEQ_2: 99;
x
in
REAL & t
in
REAL by
XREAL_0:def 1;
hence
<*x, t*>
in (
REAL 2) by
P1;
end;
LM03: for x,t be
Real, z be
Element of (
REAL 2) st z
=
<*x, t*> holds ((
proj (1,2))
. z)
= x & ((
proj (2,2))
. z)
= t
proof
let x,t be
Real, z be
Element of (
REAL 2);
assume
AS: z
=
<*x, t*>;
thus ((
proj (1,2))
. z)
= (z
. 1) by
PDIFF_1:def 1
.= x by
AS,
FINSEQ_1: 44;
thus ((
proj (2,2))
. z)
= (z
. 2) by
PDIFF_1:def 1
.= t by
AS,
FINSEQ_1: 44;
end;
theorem ::
PDIFFEQ1:7
LM10: for X,T be
Subset of
REAL , f be
PartFunc of
REAL ,
REAL , g be
PartFunc of
REAL ,
REAL st X
c= (
dom f) & T
c= (
dom g) holds ex u be
PartFunc of (
REAL 2),
REAL st (
dom u)
= {
<*x, t*> where x,t be
Real : x
in X & t
in T } & for x,t be
Real st x
in X & t
in T holds (u
/.
<*x, t*>)
= ((f
/. x)
* (g
/. t))
proof
let X,T be
Subset of
REAL , f be
PartFunc of
REAL ,
REAL , g be
PartFunc of
REAL ,
REAL ;
assume X
c= (
dom f) & T
c= (
dom g);
defpred
P1[
object,
object] means ex x,t be
Real st x
in X & t
in T & $1
=
<*x, t*> & $2
= ((f
/. x)
* (g
/. t));
P1: for z,w be
object st z
in (
REAL 2) &
P1[z, w] holds w
in
REAL ;
P2: for z,w1,w2 be
object st z
in (
REAL 2) &
P1[z, w1] &
P1[z, w2] holds w1
= w2
proof
let z,w1,w2 be
object;
assume that z
in (
REAL 2) and
P21:
P1[z, w1] and
P22:
P1[z, w2];
consider x1,t1 be
Real such that
P23: z
=
<*x1, t1*> & w1
= ((f
/. x1)
* (g
/. t1)) by
P21;
consider x2,t2 be
Real such that
P24: z
=
<*x2, t2*> & w2
= ((f
/. x2)
* (g
/. t2)) by
P22;
x1
= x2 & t1
= t2 by
P23,
P24,
FINSEQ_1: 77;
hence w1
= w2 by
P23,
P24;
end;
consider u be
PartFunc of (
REAL 2),
REAL such that
P3: for z be
object holds (z
in (
dom u) iff (z
in (
REAL 2) & ex w be
object st
P1[z, w])) and
P4: for z be
object st z
in (
dom u) holds
P1[z, (u
. z)] from
PARTFUN1:sch 2(
P1,
P2);
take u;
for z be
object holds (z
in (
dom u) iff z
in {
<*x, t*> where x,t be
Real : x
in X & t
in T })
proof
let z be
object;
hereby
assume z
in (
dom u);
then z
in (
REAL 2) & ex w be
object st
P1[z, w] by
P3;
hence z
in {
<*x, t*> where x,t be
Real : x
in X & t
in T };
end;
assume z
in {
<*x, t*> where x,t be
Real : x
in X & t
in T };
then
consider x,t be
Real such that
P51: z
=
<*x, t*> & x
in X & t
in T;
((f
/. x)
* (g
/. t))
in
REAL ;
hence z
in (
dom u) by
P3,
P51,
LM02;
end;
hence
P5: (
dom u)
= {
<*x, t*> where x,t be
Real : x
in X & t
in T } by
TARSKI: 2;
let x,t be
Real;
assume x
in X & t
in T;
then
P7:
<*x, t*>
in (
dom u) by
P5;
then
consider x1,t1 be
Real such that x1
in X & t1
in T and
P9:
<*x, t*>
=
<*x1, t1*> and
P10: (u
.
<*x, t*>)
= ((f
/. x1)
* (g
/. t1)) by
P4;
x
= x1 & t
= t1 by
P9,
FINSEQ_1: 77;
hence (u
/.
<*x, t*>)
= ((f
/. x)
* (g
/. t)) by
P10,
P7,
PARTFUN1:def 6;
end;
theorem ::
PDIFFEQ1:8
LM11: for f be
PartFunc of
REAL ,
REAL , g be
PartFunc of
REAL ,
REAL , u be
PartFunc of (
REAL 2),
REAL , x0,t0 be
Real, z be
Element of (
REAL 2) st (
dom u)
= {
<*x, t*> where x,t be
Real : x
in (
dom f) & t
in (
dom g) } & (for x,t be
Real st x
in (
dom f) & t
in (
dom g) holds (u
/.
<*x, t*>)
= ((f
/. x)
* (g
/. t))) & z
=
<*x0, t0*> & x0
in (
dom f) & t0
in (
dom g) holds (u
* (
reproj (1,z)))
= ((g
/. t0)
(#) f) & (u
* (
reproj (2,z)))
= ((f
/. x0)
(#) g)
proof
let f be
PartFunc of
REAL ,
REAL , g be
PartFunc of
REAL ,
REAL , u be
PartFunc of (
REAL 2),
REAL , x0,t0 be
Real, z be
Element of (
REAL 2);
assume that
AS1: (
dom u)
= {
<*x, t*> where x,t be
Real : x
in (
dom f) & t
in (
dom g) } and
AS2: for x,t be
Real st x
in (
dom f) & t
in (
dom g) holds (u
/.
<*x, t*>)
= ((f
/. x)
* (g
/. t)) and
AS3: z
=
<*x0, t0*> & x0
in (
dom f) & t0
in (
dom g);
P21: for s be
object holds s
in (
dom (u
* (
reproj (1,z)))) iff s
in (
dom f)
proof
let s be
object;
hereby
assume
P10: s
in (
dom (u
* (
reproj (1,z))));
then
reconsider r = s as
Real;
A4a: r is
Element of
REAL by
XREAL_0:def 1;
((
reproj (1,z))
. r)
= (
Replace (z,1,r)) by
PDIFF_1:def 5,
A4a
.=
<*r, t0*> by
AS3,
FINSEQ_7: 13,
A4a;
then
<*r, t0*>
in {
<*x, t*> where x,t be
Real : x
in (
dom f) & t
in (
dom g) } by
P10,
FUNCT_1: 11,
AS1;
then ex x,t be
Real st
<*r, t0*>
=
<*x, t*> & x
in (
dom f) & t
in (
dom g);
hence s
in (
dom f) by
FINSEQ_1: 77;
end;
assume
P12: s
in (
dom f);
then
reconsider r = s as
Real;
P13: s
in
REAL by
P12;
P14: ((
reproj (1,z))
. r)
= (
Replace (z,1,r)) by
PDIFF_1:def 5,
P12
.=
<*r, t0*> by
AS3,
FINSEQ_7: 13,
P12;
P15: ((
reproj (1,z))
. s)
in (
dom u) by
P12,
P14,
AS1,
AS3;
s
in (
dom (
reproj (1,z))) by
P13,
FUNCT_2:def 1;
hence s
in (
dom (u
* (
reproj (1,z)))) by
P15,
FUNCT_1: 11;
end;
then
P2: (
dom (u
* (
reproj (1,z))))
= (
dom f) by
TARSKI: 2;
P31: for s be
object holds (s
in (
dom (u
* (
reproj (2,z)))) iff s
in (
dom g))
proof
let s be
object;
hereby
assume
P10: s
in (
dom (u
* (
reproj (2,z))));
then
reconsider r = s as
Real;
A4: r is
Element of
REAL by
XREAL_0:def 1;
((
reproj (2,z))
. r)
= (
Replace (z,2,r)) by
PDIFF_1:def 5,
A4
.=
<*x0, r*> by
AS3,
FINSEQ_7: 14,
A4;
then
<*x0, r*>
in {
<*x, t*> where x,t be
Real : x
in (
dom f) & t
in (
dom g) } by
P10,
FUNCT_1: 11,
AS1;
then ex x,t be
Real st
<*x0, r*>
=
<*x, t*> & x
in (
dom f) & t
in (
dom g);
hence s
in (
dom g) by
FINSEQ_1: 77;
end;
assume
P12: s
in (
dom g);
then
reconsider r = s as
Real;
P14: ((
reproj (2,z))
. r)
= (
Replace (z,2,r)) by
PDIFF_1:def 5,
P12
.=
<*x0, r*> by
AS3,
FINSEQ_7: 14,
P12;
P15:
<*x0, r*>
in {
<*x, t*> where x,t be
Real : x
in (
dom f) & t
in (
dom g) } by
P12,
AS3;
s
in
REAL by
P12;
then s
in (
dom (
reproj (2,z))) by
FUNCT_2:def 1;
hence s
in (
dom (u
* (
reproj (2,z)))) by
P15,
P14,
AS1,
FUNCT_1: 11;
end;
P4: (
dom ((g
/. t0)
(#) f))
= (
dom f) by
VALUED_1:def 5;
P5: (
dom ((f
/. x0)
(#) g))
= (
dom g) by
VALUED_1:def 5;
for s be
object st s
in (
dom (u
* (
reproj (1,z)))) holds ((u
* (
reproj (1,z)))
. s)
= (((g
/. t0)
(#) f)
. s)
proof
let s be
object;
assume
A1: s
in (
dom (u
* (
reproj (1,z))));
then
reconsider r = s as
Real;
A3:
<*r, t0*>
in (
dom u) by
P2,
A1,
AS3,
AS1;
A4a: r is
Element of
REAL by
XREAL_0:def 1;
thus ((u
* (
reproj (1,z)))
. s)
= (u
. ((
reproj (1,z))
. r)) by
FUNCT_1: 12,
A1
.= (u
. (
Replace (z,1,r))) by
PDIFF_1:def 5,
A4a
.= (u
.
<*r, t0*>) by
AS3,
FINSEQ_7: 13,
A4a
.= (u
/.
<*r, t0*>) by
A3,
PARTFUN1:def 6
.= ((f
/. r)
* (g
/. t0)) by
A1,
AS3,
AS2,
P21
.= ((f
. r)
* (g
/. t0)) by
PARTFUN1:def 6,
A1,
P21
.= (((g
/. t0)
(#) f)
. s) by
VALUED_1:def 5,
A1,
P21,
P4;
end;
hence (u
* (
reproj (1,z)))
= ((g
/. t0)
(#) f) by
FUNCT_1: 2,
P21,
TARSKI: 2,
P4;
for s be
object st s
in (
dom (u
* (
reproj (2,z)))) holds ((u
* (
reproj (2,z)))
. s)
= (((f
/. x0)
(#) g)
. s)
proof
let s be
object;
assume
A1: s
in (
dom (u
* (
reproj (2,z))));
then
reconsider r = s as
Real;
s
in (
dom g) by
P31,
A1;
then
A3:
<*x0, r*>
in (
dom u) by
AS3,
AS1;
A4a: r is
Element of
REAL by
XREAL_0:def 1;
thus ((u
* (
reproj (2,z)))
. s)
= (u
. ((
reproj (2,z))
. r)) by
FUNCT_1: 12,
A1
.= (u
. (
Replace (z,2,r))) by
PDIFF_1:def 5,
A4a
.= (u
.
<*x0, r*>) by
AS3,
FINSEQ_7: 14,
A4a
.= (u
/.
<*x0, r*>) by
A3,
PARTFUN1:def 6
.= ((f
/. x0)
* (g
/. r)) by
P31,
A1,
AS3,
AS2
.= ((g
. r)
* (f
/. x0)) by
PARTFUN1:def 6,
P31,
A1
.= (((f
/. x0)
(#) g)
. s) by
VALUED_1:def 5,
P31,
A1,
P5;
end;
hence (u
* (
reproj (2,z)))
= ((f
/. x0)
(#) g) by
FUNCT_1: 2,
P31,
TARSKI: 2,
P5;
end;
theorem ::
PDIFFEQ1:9
for f be
PartFunc of
REAL ,
REAL , g be
PartFunc of
REAL ,
REAL , u be
PartFunc of (
REAL 2),
REAL , x0,t0 be
Real, z be
Element of (
REAL 2) st x0
in (
dom f) & t0
in (
dom g) & z
=
<*x0, t0*> & (
dom u)
= {
<*x, t*> where x,t be
Real : x
in (
dom f) & t
in (
dom g) } & f
is_differentiable_in x0 & (for x,t be
Real st x
in (
dom f) & t
in (
dom g) holds (u
/.
<*x, t*>)
= ((f
/. x)
* (g
/. t))) holds u
is_partial_differentiable_in (z,1) & (
partdiff (u,z,1))
= ((
diff (f,x0))
* (g
/. t0))
proof
let f be
PartFunc of
REAL ,
REAL , g be
PartFunc of
REAL ,
REAL , u be
PartFunc of (
REAL 2),
REAL , x0,t0 be
Real, z be
Element of (
REAL 2);
assume that
A0: x0
in (
dom f) & t0
in (
dom g) & z
=
<*x0, t0*> and
A4: (
dom u)
= {
<*x, t*> where x,t be
Real : x
in (
dom f) & t
in (
dom g) } and
A5: f
is_differentiable_in x0 and
A7: for x,t be
Real st x
in (
dom f) & t
in (
dom g) holds (u
/.
<*x, t*>)
= ((f
/. x)
* (g
/. t));
P51: (u
* (
reproj (1,z)))
= ((g
/. t0)
(#) f) by
LM11,
A0,
A4,
A7;
((
proj (1,2))
. z)
= x0 by
A0,
LM03;
hence u
is_partial_differentiable_in (z,1) by
A5,
FDIFF_1: 15,
P51;
thus (
partdiff (u,z,1))
= (
diff (((g
/. t0)
(#) f),x0)) by
A0,
LM03,
P51
.= ((
diff (f,x0))
* (g
/. t0)) by
A5,
FDIFF_1: 15;
end;
theorem ::
PDIFFEQ1:10
for f be
PartFunc of
REAL ,
REAL , g be
PartFunc of
REAL ,
REAL , u be
PartFunc of (
REAL 2),
REAL , x0,t0 be
Real, z be
Element of (
REAL 2) st x0
in (
dom f) & t0
in (
dom g) & z
=
<*x0, t0*> & (
dom u)
= {
<*x, t*> where x,t be
Real : x
in (
dom f) & t
in (
dom g) } & g
is_differentiable_in t0 & (for x,t be
Real st x
in (
dom f) & t
in (
dom g) holds (u
/.
<*x, t*>)
= ((f
/. x)
* (g
/. t))) holds u
is_partial_differentiable_in (z,2) & (
partdiff (u,z,2))
= ((f
/. x0)
* (
diff (g,t0)))
proof
let f be
PartFunc of
REAL ,
REAL , g be
PartFunc of
REAL ,
REAL , u be
PartFunc of (
REAL 2),
REAL , x0,t0 be
Real, z be
Element of (
REAL 2);
assume that
A0: x0
in (
dom f) & t0
in (
dom g) & z
=
<*x0, t0*> and
A4: (
dom u)
= {
<*x, t*> where x,t be
Real : x
in (
dom f) & t
in (
dom g) } and
A5: g
is_differentiable_in t0 and
A7: for x,t be
Real st x
in (
dom f) & t
in (
dom g) holds (u
/.
<*x, t*>)
= ((f
/. x)
* (g
/. t));
P52: ((
proj (2,2))
. z)
= t0 by
A0,
LM03;
((f
/. x0)
(#) g)
is_differentiable_in t0 by
A5,
FDIFF_1: 15;
hence u
is_partial_differentiable_in (z,2) by
LM11,
A0,
A4,
A7,
P52;
thus (
partdiff (u,z,2))
= (
diff (((f
/. x0)
(#) g),t0)) by
A0,
LM11,
A4,
A7,
P52
.= ((f
/. x0)
* (
diff (g,t0))) by
A5,
FDIFF_1: 15;
end;
theorem ::
PDIFFEQ1:11
LM20: for X,T be
Subset of
REAL , Z be
Subset of (
REAL 2), f be
PartFunc of
REAL ,
REAL , g be
PartFunc of
REAL ,
REAL , u be
PartFunc of (
REAL 2),
REAL st X
c= (
dom f) & T
c= (
dom g) & X is
open & T is
open & Z is
open & Z
= {
<*x, t*> where x,t be
Real : x
in X & t
in T } & (
dom u)
= {
<*x, t*> where x,t be
Real : x
in (
dom f) & t
in (
dom g) } & f
is_differentiable_on X & g
is_differentiable_on T & (for x,t be
Real st x
in (
dom f) & t
in (
dom g) holds (u
/.
<*x, t*>)
= ((f
/. x)
* (g
/. t))) holds u
is_partial_differentiable_on (Z,
<*1*>) & (for x,t be
Real st x
in X & t
in T holds ((u
`partial| (Z,
<*1*>))
/.
<*x, t*>)
= ((
diff (f,x))
* (g
/. t))) & u
is_partial_differentiable_on (Z,
<*2*>) & (for x,t be
Real st x
in X & t
in T holds ((u
`partial| (Z,
<*2*>))
/.
<*x, t*>)
= ((f
/. x)
* (
diff (g,t))))
proof
let X,T be
Subset of
REAL , Z be
Subset of (
REAL 2), f be
PartFunc of
REAL ,
REAL , g be
PartFunc of
REAL ,
REAL , u be
PartFunc of (
REAL 2),
REAL ;
assume that
A1: X
c= (
dom f) & T
c= (
dom g) and
A2: X is
open & T is
open & Z is
open and
A3: Z
= {
<*x, t*> where x,t be
Real : x
in X & t
in T } and
A4: (
dom u)
= {
<*x, t*> where x,t be
Real : x
in (
dom f) & t
in (
dom g) } and
A5: f
is_differentiable_on X and
A6: g
is_differentiable_on T and
A7: for x,t be
Real st x
in (
dom f) & t
in (
dom g) holds (u
/.
<*x, t*>)
= ((f
/. x)
* (g
/. t));
A8: Z
c= (
dom u)
proof
let z be
object;
assume z
in Z;
then
consider x,t be
Real such that
A80: z
=
<*x, t*> & x
in X & t
in T by
A3;
thus z
in (
dom u) by
A80,
A1,
A4;
end;
for z be
Element of (
REAL 2) st z
in Z holds u
is_partial_differentiable_in (z,1)
proof
let z be
Element of (
REAL 2);
assume z
in Z;
then
consider x,t be
Real such that
P01: z
=
<*x, t*> & x
in X & t
in T by
A3;
P51: (u
* (
reproj (1,z)))
= ((g
/. t)
(#) f) by
A1,
P01,
LM11,
A4,
A7;
P52: ((
proj (1,2))
. z)
= x by
P01,
LM03;
f
is_differentiable_in x by
P01,
A2,
A5,
FDIFF_1: 9;
hence u
is_partial_differentiable_in (z,1) by
P51,
P52,
FDIFF_1: 15;
end;
then
P1: u
is_partial_differentiable_on (Z,1) by
A2,
A8,
PDIFF_9: 60;
hence u
is_partial_differentiable_on (Z,
<*1*>);
P3: (u
`partial| (Z,
<*1*>))
= (u
`partial| (Z,1)) by
A2,
PDIFF_9: 82,
P1;
P5: for x,t be
Real, z be
Element of (
REAL 2) st x
in X & t
in T & z
=
<*x, t*> holds (
partdiff (u,z,1))
= ((
diff (f,x))
* (g
/. t))
proof
let x,t be
Real, z be
Element of (
REAL 2);
assume
P50: x
in X & t
in T & z
=
<*x, t*>;
then
P51: (u
* (
reproj (1,z)))
= ((g
/. t)
(#) f) by
A1,
LM11,
A4,
A7;
P52: ((
proj (1,2))
. z)
= x by
P50,
LM03;
f
is_differentiable_in x by
P50,
A2,
A5,
FDIFF_1: 9;
hence thesis by
P51,
P52,
FDIFF_1: 15;
end;
thus for x,t be
Real st x
in X & t
in T holds ((u
`partial| (Z,
<*1*>))
/.
<*x, t*>)
= ((
diff (f,x))
* (g
/. t))
proof
let x,t be
Real;
assume
P6: x
in X & t
in T;
reconsider z =
<*x, t*> as
Element of (
REAL 2) by
LM02;
<*x, t*>
in Z by
A3,
P6;
hence ((u
`partial| (Z,
<*1*>))
/.
<*x, t*>)
= (
partdiff (u,z,1)) by
P3,
PDIFF_9:def 6,
P1
.= ((
diff (f,x))
* (g
/. t)) by
P5,
P6;
end;
for z be
Element of (
REAL 2) st z
in Z holds u
is_partial_differentiable_in (z,2)
proof
let z be
Element of (
REAL 2);
assume z
in Z;
then
consider x,t be
Real such that
P01: z
=
<*x, t*> & x
in X & t
in T by
A3;
P51: (u
* (
reproj (2,z)))
= ((f
/. x)
(#) g) by
A1,
LM11,
P01,
A4,
A7;
P52: ((
proj (2,2))
. z)
= t by
P01,
LM03;
g
is_differentiable_in t by
P01,
A2,
A6,
FDIFF_1: 9;
hence u
is_partial_differentiable_in (z,2) by
FDIFF_1: 15,
P51,
P52;
end;
then
P1: u
is_partial_differentiable_on (Z,2) by
A2,
A8,
PDIFF_9: 60;
hence u
is_partial_differentiable_on (Z,
<*2*>);
P3: (u
`partial| (Z,
<*2*>))
= (u
`partial| (Z,2)) by
A2,
PDIFF_9: 82,
P1;
P5: for x,t be
Real, z be
Element of (
REAL 2) st x
in X & t
in T & z
=
<*x, t*> holds (
partdiff (u,z,2))
= ((f
/. x)
* (
diff (g,t)))
proof
let x,t be
Real, z be
Element of (
REAL 2);
assume
P50: x
in X & t
in T & z
=
<*x, t*>;
then
P51: (u
* (
reproj (2,z)))
= ((f
/. x)
(#) g) by
A1,
LM11,
A4,
A7;
P52: ((
proj (2,2))
. z)
= t by
P50,
LM03;
g
is_differentiable_in t by
P50,
A2,
A6,
FDIFF_1: 9;
hence thesis by
FDIFF_1: 15,
P51,
P52;
end;
let x,t be
Real;
assume
P6: x
in X & t
in T;
reconsider z =
<*x, t*> as
Element of (
REAL 2) by
LM02;
<*x, t*>
in Z by
A3,
P6;
hence ((u
`partial| (Z,
<*2*>))
/.
<*x, t*>)
= (
partdiff (u,z,2)) by
P3,
PDIFF_9:def 6,
P1
.= ((f
/. x)
* (
diff (g,t))) by
P5,
P6;
end;
theorem ::
PDIFFEQ1:12
LM30: for X,T be
Subset of
REAL , Z be
Subset of (
REAL 2), f be
PartFunc of
REAL ,
REAL , g be
PartFunc of
REAL ,
REAL , u be
PartFunc of (
REAL 2),
REAL st X
c= (
dom f) & T
c= (
dom g) & X is
open & T is
open & Z is
open & Z
= {
<*x, t*> where x,t be
Real : x
in X & t
in T } & (
dom u)
= {
<*x, t*> where x,t be
Real : x
in (
dom f) & t
in (
dom g) } & f
is_differentiable_on (2,X) & g
is_differentiable_on (2,T) & (for x,t be
Real st x
in (
dom f) & t
in (
dom g) holds (u
/.
<*x, t*>)
= ((f
/. x)
* (g
/. t))) holds u
is_partial_differentiable_on (Z,(
<*1*>
^
<*1*>)) & (for x,t be
Real st x
in X & t
in T holds ((u
`partial| (Z,(
<*1*>
^
<*1*>)))
/.
<*x, t*>)
= ((((
diff (f,X))
. 2)
/. x)
* (g
/. t))) & u
is_partial_differentiable_on (Z,(
<*2*>
^
<*2*>)) & (for x,t be
Real st x
in X & t
in T holds ((u
`partial| (Z,(
<*2*>
^
<*2*>)))
/.
<*x, t*>)
= ((f
/. x)
* (((
diff (g,T))
. 2)
/. t)))
proof
let X,T be
Subset of
REAL , Z be
Subset of (
REAL 2), f be
PartFunc of
REAL ,
REAL , g be
PartFunc of
REAL ,
REAL , u be
PartFunc of (
REAL 2),
REAL ;
assume that
A1: X
c= (
dom f) & T
c= (
dom g) and
A2: X is
open & T is
open & Z is
open and
A3: Z
= {
<*x, t*> where x,t be
Real : x
in X & t
in T } and
A4: (
dom u)
= {
<*x, t*> where x,t be
Real : x
in (
dom f) & t
in (
dom g) } and
A5: f
is_differentiable_on (2,X) and
A6: g
is_differentiable_on (2,T) and
A7: for x,t be
Real st x
in (
dom f) & t
in (
dom g) holds (u
/.
<*x, t*>)
= ((f
/. x)
* (g
/. t));
((
diff (f,X))
.
0 )
is_differentiable_on X by
A5;
then
D6: (f
| X)
is_differentiable_on X by
TAYLOR_1:def 5;
then
B50: X
c= (
dom (f
| X)) & (for x be
Real st x
in X holds ((f
| X)
| X)
is_differentiable_in x) by
FDIFF_1:def 6;
B51: ((f
| X)
| X)
= (f
| X) by
RELAT_1: 72;
then
B5: f
is_differentiable_on X by
B50,
FDIFF_1:def 6,
A1;
((
diff (g,T))
.
0 )
is_differentiable_on T by
A6;
then
C6: (g
| T)
is_differentiable_on T by
TAYLOR_1:def 5;
then
B60: T
c= (
dom (g
| T)) & (for x be
Real st x
in T holds ((g
| T)
| T)
is_differentiable_in x) by
FDIFF_1:def 6;
B61: ((g
| T)
| T)
= (g
| T) by
RELAT_1: 72;
then
B6: g
is_differentiable_on T by
B60,
FDIFF_1:def 6,
A1;
B7: u
is_partial_differentiable_on (Z,
<*1*>) & (for x,t be
Real st x
in X & t
in T holds ((u
`partial| (Z,
<*1*>))
/.
<*x, t*>)
= ((
diff (f,x))
* (g
/. t))) & u
is_partial_differentiable_on (Z,
<*2*>) & (for x,t be
Real st x
in X & t
in T holds ((u
`partial| (Z,
<*2*>))
/.
<*x, t*>)
= ((f
/. x)
* (
diff (g,t)))) by
LM20,
A1,
A2,
A3,
A4,
B5,
B6,
A7;
C0: u
is_partial_differentiable_on (Z,1) by
LM20,
A1,
A3,
A4,
B5,
B6,
A7,
A2;
C1: X
= (
dom (f
`| X)) by
FDIFF_1:def 7,
B5;
C3: T
= (
dom (g
| T)) by
A1,
RELAT_1: 62;
(u
`partial| (Z,
<*1*>))
= (u
`partial| (Z,1)) by
C0,
PDIFF_9: 82,
A2;
then
C4: (
dom (u
`partial| (Z,
<*1*>)))
= {
<*x, t*> where x,t be
Real : x
in (
dom (f
`| X)) & t
in (
dom (g
| T)) } by
PDIFF_9:def 6,
C0,
C1,
A3,
C3;
X5: ((
diff (f,X))
. (
0
+ 1))
= (((
diff (f,X))
.
0 )
`| X) by
TAYLOR_1:def 5
.= ((f
| X)
`| X) by
TAYLOR_1:def 5
.= (f
`| X) by
LM00,
A1,
A2,
B51,
B50,
FDIFF_1:def 6;
then
C5: (f
`| X)
is_differentiable_on X by
A5;
C7: for x,t be
Real st x
in (
dom (f
`| X)) & t
in (
dom (g
| T)) holds ((u
`partial| (Z,
<*1*>))
/.
<*x, t*>)
= (((f
`| X)
/. x)
* ((g
| T)
/. t))
proof
let x,t be
Real;
assume
C70: x
in (
dom (f
`| X)) & t
in (
dom (g
| T));
then
C71: x
in X & t
in T by
FDIFF_1:def 7,
B5,
A1,
RELAT_1: 62;
C72: (
diff (f,x))
= ((f
`| X)
. x) by
C71,
B5,
FDIFF_1:def 7
.= ((f
`| X)
/. x) by
C70,
PARTFUN1:def 6;
((g
| T)
/. t)
= ((g
| T)
. t) by
PARTFUN1:def 6,
C70
.= (g
. t) by
C70,
C3,
FUNCT_1: 49
.= (g
/. t) by
PARTFUN1:def 6,
C70,
C3,
A1;
hence ((u
`partial| (Z,
<*1*>))
/.
<*x, t*>)
= (((f
`| X)
/. x)
* ((g
| T)
/. t)) by
LM20,
A1,
A2,
A3,
A4,
B5,
B6,
A7,
C71,
C72;
end;
then (u
`partial| (Z,
<*1*>))
is_partial_differentiable_on (Z,
<*1*>) & (for x,t be
Real st x
in X & t
in T holds (((u
`partial| (Z,
<*1*>))
`partial| (Z,
<*1*>))
/.
<*x, t*>)
= ((
diff ((f
`| X),x))
* ((g
| T)
/. t))) by
LM20,
A2,
A3,
C1,
C3,
C4,
C5,
C6;
hence u
is_partial_differentiable_on (Z,(
<*1*>
^
<*1*>)) by
B7,
PDIFF_9: 80;
thus for x,t be
Real st x
in X & t
in T holds ((u
`partial| (Z,(
<*1*>
^
<*1*>)))
/.
<*x, t*>)
= ((((
diff (f,X))
. 2)
/. x)
* (g
/. t))
proof
let x,t be
Real;
assume
F1: x
in X & t
in T;
then
F2: (((u
`partial| (Z,
<*1*>))
`partial| (Z,
<*1*>))
/.
<*x, t*>)
= ((
diff ((f
`| X),x))
* ((g
| T)
/. t)) by
LM20,
A2,
A3,
C1,
C3,
C4,
C5,
C6,
C7;
G3: x
in (
dom ((f
`| X)
`| X)) by
C5,
F1,
FDIFF_1:def 7;
((
diff (f,X))
. (1
+ 1))
= ((f
`| X)
`| X) by
TAYLOR_1:def 5,
X5;
then
F4: (((
diff (f,X))
. 2)
/. x)
= (((f
`| X)
`| X)
. x) by
G3,
PARTFUN1:def 6
.= (
diff ((f
`| X),x)) by
F1,
C5,
FDIFF_1:def 7;
((g
| T)
/. t)
= ((g
| T)
. t) by
PARTFUN1:def 6,
F1,
B60
.= (g
. t) by
F1,
FUNCT_1: 49
.= (g
/. t) by
PARTFUN1:def 6,
F1,
A1;
hence thesis by
F2,
PDIFF_9: 88,
B7,
F4;
end;
C0: u
is_partial_differentiable_on (Z,2) by
LM20,
A1,
A2,
A3,
A4,
B5,
B6,
A7;
C1: T
= (
dom (g
`| T)) by
FDIFF_1:def 7,
B6;
C3: X
= (
dom (f
| X)) by
A1,
RELAT_1: 62;
(u
`partial| (Z,
<*2*>))
= (u
`partial| (Z,2)) by
C0,
PDIFF_9: 82,
A2;
then
C4: (
dom (u
`partial| (Z,
<*2*>)))
= {
<*x, t*> where x,t be
Real : x
in (
dom (f
| X)) & t
in (
dom (g
`| T)) } by
PDIFF_9:def 6,
C0,
C1,
A3,
C3;
X5: ((
diff (g,T))
. (
0
+ 1))
= (((
diff (g,T))
.
0 )
`| T) by
TAYLOR_1:def 5
.= ((g
| T)
`| T) by
TAYLOR_1:def 5
.= (g
`| T) by
LM00,
A1,
A2,
B60,
B61,
FDIFF_1:def 6;
then
C5: (g
`| T)
is_differentiable_on T by
A6;
C7: for x,t be
Real st x
in (
dom (f
| X)) & t
in (
dom (g
`| T)) holds ((u
`partial| (Z,
<*2*>))
/.
<*x, t*>)
= (((f
| X)
/. x)
* ((g
`| T)
/. t))
proof
let x,t be
Real;
assume
C70: x
in (
dom (f
| X)) & t
in (
dom (g
`| T));
then
C71: x
in X & t
in T by
FDIFF_1:def 7,
B6,
A1,
RELAT_1: 62;
C72: (
diff (g,t))
= ((g
`| T)
. t) by
C71,
B6,
FDIFF_1:def 7
.= ((g
`| T)
/. t) by
C70,
PARTFUN1:def 6;
((f
| X)
/. x)
= ((f
| X)
. x) by
PARTFUN1:def 6,
C70
.= (f
. x) by
C71,
FUNCT_1: 49
.= (f
/. x) by
PARTFUN1:def 6,
C71,
A1;
hence ((u
`partial| (Z,
<*2*>))
/.
<*x, t*>)
= (((f
| X)
/. x)
* ((g
`| T)
/. t)) by
LM20,
A1,
A2,
A3,
A4,
B5,
B6,
A7,
C71,
C72;
end;
then (u
`partial| (Z,
<*2*>))
is_partial_differentiable_on (Z,
<*2*>) & (for x,t be
Real st x
in X & t
in T holds (((u
`partial| (Z,
<*2*>))
`partial| (Z,
<*2*>))
/.
<*x, t*>)
= (((f
| X)
/. x)
* (
diff ((g
`| T),t)))) by
LM20,
A2,
A3,
C1,
C3,
C4,
C5,
D6;
hence u
is_partial_differentiable_on (Z,(
<*2*>
^
<*2*>)) by
B7,
PDIFF_9: 80;
let x,t be
Real;
assume
F1: x
in X & t
in T;
F3: (u
`partial| (Z,(
<*2*>
^
<*2*>)))
= ((u
`partial| (Z,
<*2*>))
`partial| (Z,
<*2*>)) by
PDIFF_9: 88,
B7;
G3: t
in (
dom ((g
`| T)
`| T)) by
C5,
F1,
FDIFF_1:def 7;
((
diff (g,T))
. (1
+ 1))
= ((g
`| T)
`| T) by
TAYLOR_1:def 5,
X5;
then
F4: (((
diff (g,T))
. 2)
/. t)
= (((g
`| T)
`| T)
. t) by
G3,
PARTFUN1:def 6
.= (
diff ((g
`| T),t)) by
F1,
C5,
FDIFF_1:def 7;
((f
| X)
/. x)
= ((f
| X)
. x) by
PARTFUN1:def 6,
F1,
B50
.= (f
. x) by
F1,
FUNCT_1: 49
.= (f
/. x) by
PARTFUN1:def 6,
F1,
A1;
hence thesis by
F1,
F3,
F4,
LM20,
A2,
A3,
C1,
C3,
C4,
C5,
D6,
C7;
end;
theorem ::
PDIFFEQ1:13
LM40: for f,g be
Function of
REAL ,
REAL , u be
PartFunc of (
REAL 2),
REAL , c be
Real st f
is_differentiable_on (2,(
[#]
REAL )) & g
is_differentiable_on (2,(
[#]
REAL )) & (
dom u)
= (
[#] (
REAL 2)) & (for x,t be
Real holds (u
/.
<*x, t*>)
= ((f
/. x)
* (g
/. t))) & for x,t be
Real holds ((f
/. x)
* (((
diff (g,(
[#]
REAL )))
. 2)
/. t))
= (((c
^2 )
* (((
diff (f,(
[#]
REAL )))
. 2)
/. x))
* (g
/. t)) holds u
is_partial_differentiable_on ((
[#] (
REAL 2)),(
<*1*>
^
<*1*>)) & (for x,t be
Real st x
in (
[#]
REAL ) & t
in (
[#]
REAL ) holds ((u
`partial| ((
[#] (
REAL 2)),(
<*1*>
^
<*1*>)))
/.
<*x, t*>)
= ((((
diff (f,(
[#]
REAL )))
. 2)
/. x)
* (g
/. t))) & u
is_partial_differentiable_on ((
[#] (
REAL 2)),(
<*2*>
^
<*2*>)) & (for x,t be
Real st x
in (
[#]
REAL ) & t
in (
[#]
REAL ) holds ((u
`partial| ((
[#] (
REAL 2)),(
<*2*>
^
<*2*>)))
/.
<*x, t*>)
= ((f
/. x)
* (((
diff (g,(
[#]
REAL )))
. 2)
/. t))) & for x,t be
Real holds ((u
`partial| ((
[#] (
REAL 2)),(
<*2*>
^
<*2*>)))
/.
<*x, t*>)
= ((c
^2 )
* ((u
`partial| ((
[#] (
REAL 2)),(
<*1*>
^
<*1*>)))
/.
<*x, t*>))
proof
let f,g be
Function of
REAL ,
REAL , u be
PartFunc of (
REAL 2),
REAL , c be
Real;
assume that
AS1: f
is_differentiable_on (2,(
[#]
REAL )) and
AS2: g
is_differentiable_on (2,(
[#]
REAL )) and
AS3: (
dom u)
= (
[#] (
REAL 2)) and
AS4: for x,t be
Real holds (u
/.
<*x, t*>)
= ((f
/. x)
* (g
/. t)) and
AS5: for x,t be
Real holds ((f
/. x)
* (((
diff (g,(
[#]
REAL )))
. 2)
/. t))
= (((c
^2 )
* (((
diff (f,(
[#]
REAL )))
. 2)
/. x))
* (g
/. t));
P1: (
[#]
REAL )
= (
dom f) & (
[#]
REAL )
= (
dom g) by
FUNCT_2:def 1;
P4: for x,t be
Real st x
in (
dom f) & t
in (
dom g) holds (u
/.
<*x, t*>)
= ((f
/. x)
* (g
/. t)) by
AS4;
for x,t be
Real holds ((u
`partial| ((
[#] (
REAL 2)),(
<*2*>
^
<*2*>)))
/.
<*x, t*>)
= ((c
^2 )
* ((u
`partial| ((
[#] (
REAL 2)),(
<*1*>
^
<*1*>)))
/.
<*x, t*>))
proof
let x,t be
Real;
X1: ((f
/. x)
* (((
diff (g,(
[#]
REAL )))
. 2)
/. t))
= (((c
^2 )
* (((
diff (f,(
[#]
REAL )))
. 2)
/. x))
* (g
/. t)) by
AS5;
X3: x
in (
[#]
REAL ) & t
in (
[#]
REAL ) by
XREAL_0:def 1;
then ((u
`partial| ((
[#] (
REAL 2)),(
<*1*>
^
<*1*>)))
/.
<*x, t*>)
= ((((
diff (f,(
[#]
REAL )))
. 2)
/. x)
* (g
/. t)) by
LM30,
AS1,
AS2,
AS3,
P1,
LMOP3,
P4;
hence thesis by
LM30,
AS1,
AS2,
AS3,
P1,
LMOP3,
P4,
X1,
X3;
end;
hence thesis by
LM30,
AS1,
AS2,
AS3,
P1,
LMOP3,
P4;
end;
LM410: for A,e be
Real, f be
PartFunc of
REAL ,
REAL st f
= (A
(#) (
cos
* (e
(#) (
id (
[#]
REAL ))))) holds f
is_differentiable_on (
[#]
REAL ) & for x be
Real st x
in (
[#]
REAL ) holds ((f
`| (
[#]
REAL ))
. x)
= (
- ((A
* e)
* (
sin
. (e
* x))))
proof
let A,e be
Real, f be
PartFunc of
REAL ,
REAL ;
assume
AS1: f
= (A
(#) (
cos
* (e
(#) (
id (
[#]
REAL )))));
reconsider Z = (
[#]
REAL ) as
open
Subset of
REAL ;
reconsider E = (e
(#) (
id (
[#]
REAL ))) as
Function of
REAL ,
REAL ;
P2: (
[#]
REAL )
= (
dom E) & (
rng E)
c= (
[#]
REAL ) by
FUNCT_2:def 1;
P3: for x be
Real st x
in Z holds (E
. x)
= ((e
* x)
+
0 qua
Real)
proof
let x be
Real;
assume
AS2: x
in Z;
hence (E
. x)
= (e
* ((
id (
[#]
REAL ))
. x)) by
VALUED_1:def 5,
P2
.= ((e
* x)
+
0 qua
Real) by
AS2,
FUNCT_1: 18;
end;
P4: E
is_differentiable_on Z & for x be
Real st x
in Z holds ((E
`| Z)
. x)
= e by
P2,
P3,
FDIFF_1: 23;
P5: (
dom (
cos
* E))
= (
[#]
REAL ) by
FUNCT_2:def 1;
P6: (
dom (A
(#) (
cos
* E)))
= (
[#]
REAL ) by
FUNCT_2:def 1;
P7: for x be
Real st x
in Z holds (
cos
* E)
is_differentiable_in x & (
diff ((
cos
* E),x))
= (
- (e
* (
sin
. (E
. x))))
proof
let x be
Real;
assume
P70: x
in Z;
then
P71: E
is_differentiable_in x by
P4,
FDIFF_1: 9;
P73:
cos
is_differentiable_in (E
. x) & (
diff (
cos ,(E
. x)))
= (
- (
sin
. (E
. x))) by
SIN_COS: 63;
then (
diff ((
cos
* E),x))
= ((
- (
sin
. (E
. x)))
* (
diff (E,x))) by
FDIFF_2: 13,
P71
.= ((
- (
sin
. (E
. x)))
* ((E
`| Z)
. x)) by
FDIFF_1:def 7,
P4,
P70
.= ((
- (
sin
. (E
. x)))
* e) by
P2,
P3,
FDIFF_1: 23,
P70
.= (
- (e
* (
sin
. (E
. x))));
hence thesis by
P73,
FDIFF_2: 13,
P71;
end;
then for x be
Real st x
in Z holds (
cos
* E)
is_differentiable_in x;
then
P8: (
cos
* E)
is_differentiable_on Z by
P5,
FDIFF_1: 9;
for x be
Real st x
in Z holds (((A
(#) (
cos
* E))
`| Z)
. x)
= (
- ((A
* e)
* (
sin
. (e
* x))))
proof
let x be
Real;
assume
P90: x
in Z;
then
P91: (E
. x)
= ((e
* x)
+
0 qua
Real) by
P3;
thus (((A
(#) (
cos
* E))
`| Z)
. x)
= (A
* (
diff ((
cos
* E),x))) by
P90,
P8,
P6,
FDIFF_1: 20
.= (A
* (
- (e
* (
sin
. (E
. x))))) by
P7,
P90
.= (
- ((A
* e)
* (
sin
. (e
* x)))) by
P91;
end;
hence thesis by
AS1,
P8,
P6,
FDIFF_1: 20;
end;
LM411: for A,e be
Real, f be
PartFunc of
REAL ,
REAL st f
= (A
(#) (
sin
* (e
(#) (
id (
[#]
REAL ))))) holds f
is_differentiable_on (
[#]
REAL ) & for x be
Real st x
in (
[#]
REAL ) holds ((f
`| (
[#]
REAL ))
. x)
= ((A
* e)
* (
cos
. (e
* x)))
proof
let A,e be
Real, f be
PartFunc of
REAL ,
REAL ;
assume
AS1: f
= (A
(#) (
sin
* (e
(#) (
id (
[#]
REAL )))));
reconsider Z = (
[#]
REAL ) as
open
Subset of
REAL ;
reconsider E = (e
(#) (
id (
[#]
REAL ))) as
Function of
REAL ,
REAL ;
P2: (
[#]
REAL )
= (
dom E) & (
rng E)
c= (
[#]
REAL ) by
FUNCT_2:def 1;
P3: for x be
Real st x
in Z holds (E
. x)
= ((e
* x)
+
0 qua
Real)
proof
let x be
Real;
assume
AS2: x
in Z;
hence (E
. x)
= (e
* ((
id (
[#]
REAL ))
. x)) by
VALUED_1:def 5,
P2
.= ((e
* x)
+
0 qua
Real) by
AS2,
FUNCT_1: 18;
end;
P4: E
is_differentiable_on Z & for x be
Real st x
in Z holds ((E
`| Z)
. x)
= e by
P2,
P3,
FDIFF_1: 23;
P5: (
dom (
sin
* E))
= (
[#]
REAL ) by
FUNCT_2:def 1;
P6: (
dom (A
(#) (
sin
* E)))
= (
[#]
REAL ) by
FUNCT_2:def 1;
P7: for x be
Real st x
in Z holds (
sin
* E)
is_differentiable_in x & (
diff ((
sin
* E),x))
= (e
* (
cos
. (E
. x)))
proof
let x be
Real;
assume
P70: x
in Z;
then
P71: E
is_differentiable_in x by
P4,
FDIFF_1: 9;
P73:
sin
is_differentiable_in (E
. x) & (
diff (
sin ,(E
. x)))
= (
cos
. (E
. x)) by
SIN_COS: 64;
then (
diff ((
sin
* E),x))
= ((
cos
. (E
. x))
* (
diff (E,x))) by
FDIFF_2: 13,
P71
.= ((
cos
. (E
. x))
* ((E
`| Z)
. x)) by
FDIFF_1:def 7,
P4,
P70
.= (e
* (
cos
. (E
. x))) by
P2,
P3,
FDIFF_1: 23,
P70;
hence thesis by
P73,
FDIFF_2: 13,
P71;
end;
then for x be
Real st x
in Z holds (
sin
* E)
is_differentiable_in x;
then
P8: (
sin
* E)
is_differentiable_on Z by
P5,
FDIFF_1: 9;
for x be
Real st x
in Z holds (((A
(#) (
sin
* E))
`| Z)
. x)
= ((A
* e)
* (
cos
. (e
* x)))
proof
let x be
Real;
assume
P90: x
in Z;
then
P91: (E
. x)
= ((e
* x)
+
0 qua
Real) by
P3;
thus (((A
(#) (
sin
* E))
`| Z)
. x)
= (A
* (
diff ((
sin
* E),x))) by
P90,
P8,
P6,
FDIFF_1: 20
.= (A
* (e
* (
cos
. (E
. x)))) by
P7,
P90
.= ((A
* e)
* (
cos
. (e
* x))) by
P91;
end;
hence thesis by
AS1,
P8,
P6,
FDIFF_1: 20;
end;
theorem ::
PDIFFEQ1:14
LM412: for A,B,e be
Real, f be
Function of
REAL ,
REAL st for x be
Real holds (f
. x)
= ((A
* (
cos
. (e
* x)))
+ (B
* (
sin
. (e
* x)))) holds f
is_differentiable_on (
[#]
REAL ) & for x be
Real holds ((f
`| (
[#]
REAL ))
. x)
= (
- (e
* ((A
* (
sin
. (e
* x)))
- (B
* (
cos
. (e
* x))))))
proof
let A,B,e be
Real, f be
Function of
REAL ,
REAL ;
assume
AS1: for x be
Real holds (f
. x)
= ((A
* (
cos
. (e
* x)))
+ (B
* (
sin
. (e
* x))));
reconsider f1 = (A
(#) (
cos
* (e
(#) (
id (
[#]
REAL ))))), f2 = (B
(#) (
sin
* (e
(#) (
id (
[#]
REAL ))))) as
PartFunc of
REAL ,
REAL ;
reconsider Z = (
[#]
REAL ) as
open
Subset of
REAL ;
reconsider E = (e
(#) (
id (
[#]
REAL ))) as
Function of
REAL ,
REAL ;
P00: (
[#]
REAL )
= (
dom E) & (
rng E)
c= (
[#]
REAL ) by
FUNCT_2:def 1;
E01: for x be
Real st x
in Z holds (E
. x)
= (e
* x)
proof
let x be
Real;
assume
AS2: x
in Z;
hence (E
. x)
= (e
* ((
id (
[#]
REAL ))
. x)) by
VALUED_1:def 5,
P00
.= (e
* x) by
AS2,
FUNCT_1: 18;
end;
P4: (
dom (f1
+ f2))
= Z by
FUNCT_2:def 1;
P01: (
dom f1)
= Z by
FUNCT_2:def 1;
(
dom f2)
= Z by
FUNCT_2:def 1;
then
P6: (
dom f)
= ((
dom f1)
/\ (
dom f2)) by
FUNCT_2:def 1,
P01;
for x be
object st x
in (
dom f) holds (f
. x)
= ((f1
. x)
+ (f2
. x))
proof
let x be
object;
assume
P50: x
in (
dom f);
then
reconsider r = x as
Real;
thus (f
. x)
= ((A
* (
cos
. (e
* r)))
+ (B
* (
sin
. (e
* r)))) by
AS1
.= ((A
* (
cos
. (E
. r)))
+ (B
* (
sin
. (e
* r)))) by
E01,
P50
.= ((A
* (
cos
. (E
. r)))
+ (B
* (
sin
. (E
. r)))) by
E01,
P50
.= ((A
* ((
cos
* E)
. r))
+ (B
* (
sin
. (E
. r)))) by
FUNCT_1: 13,
P50,
P00
.= ((A
* ((
cos
* E)
. r))
+ (B
* ((
sin
* E)
. r))) by
FUNCT_1: 13,
P50,
P00
.= ((f1
. r)
+ (B
* ((
sin
* E)
. r))) by
VALUED_1: 6
.= ((f1
. x)
+ (f2
. x)) by
VALUED_1: 6;
end;
then
P1: f
= (f1
+ f2) by
P6,
VALUED_1:def 1;
P2: f1
is_differentiable_on (
[#]
REAL ) & for x be
Real st x
in (
[#]
REAL ) holds ((f1
`| (
[#]
REAL ))
. x)
= (
- ((A
* e)
* (
sin
. (e
* x)))) by
LM410;
P3: f2
is_differentiable_on (
[#]
REAL ) & for x be
Real st x
in (
[#]
REAL ) holds ((f2
`| (
[#]
REAL ))
. x)
= ((B
* e)
* (
cos
. (e
* x))) by
LM411;
for x be
Real holds ((f
`| (
[#]
REAL ))
. x)
= (
- (e
* ((A
* (
sin
. (e
* x)))
- (B
* (
cos
. (e
* x))))))
proof
let x be
Real;
P60: x
in Z by
XREAL_0:def 1;
((f
`| Z)
. x)
= ((
diff (f1,x))
+ (
diff (f2,x))) by
XREAL_0:def 1,
FDIFF_1: 18,
P1,
P2,
P3,
P4
.= (((f1
`| (
[#]
REAL ))
. x)
+ (
diff (f2,x))) by
P2,
P60,
FDIFF_1:def 7
.= (((f1
`| (
[#]
REAL ))
. x)
+ ((f2
`| (
[#]
REAL ))
. x)) by
P3,
P60,
FDIFF_1:def 7
.= ((
- ((e
* A)
* (
sin
. (e
* x))))
+ ((f2
`| (
[#]
REAL ))
. x)) by
LM410,
XREAL_0:def 1
.= ((
- (e
* (A
* (
sin
. (e
* x)))))
+ ((B
* e)
* (
cos
. (e
* x)))) by
LM411,
XREAL_0:def 1
.= (
- (e
* ((A
* (
sin
. (e
* x)))
- (B
* (
cos
. (e
* x))))));
hence thesis;
end;
hence thesis by
FDIFF_1: 18,
P1,
P2,
P3,
P4;
end;
begin
theorem ::
PDIFFEQ1:15
LM41: for A,B,e be
Real, f be
Function of
REAL ,
REAL st for x be
Real holds (f
. x)
= ((A
* (
cos
. (e
* x)))
+ (B
* (
sin
. (e
* x)))) holds f
is_differentiable_on (2,(
[#]
REAL )) & for x be
Real holds ((f
`| (
[#]
REAL ))
. x)
= (
- (e
* ((A
* (
sin
. (e
* x)))
- (B
* (
cos
. (e
* x)))))) & (((f
`| (
[#]
REAL ))
`| (
[#]
REAL ))
. x)
= (
- ((e
^2 )
* ((A
* (
cos
. (e
* x)))
+ (B
* (
sin
. (e
* x)))))) & ((((
diff (f,(
[#]
REAL )))
. 2)
/. x)
+ ((e
^2 )
* (f
/. x)))
=
0
proof
let A,B,e be
Real, f be
Function of
REAL ,
REAL ;
assume
AS1: for x be
Real holds (f
. x)
= ((A
* (
cos
. (e
* x)))
+ (B
* (
sin
. (e
* x))));
then
P1: f
is_differentiable_on (
[#]
REAL ) & for x be
Real holds ((f
`| (
[#]
REAL ))
. x)
= (
- (e
* ((A
* (
sin
. (e
* x)))
- (B
* (
cos
. (e
* x)))))) by
LM412;
P2: for x be
Real holds ((f
`| (
[#]
REAL ))
. x)
= (((e
* B)
* (
cos
. (e
* x)))
+ ((
- (e
* A))
* (
sin
. (e
* x))))
proof
let x be
Real;
thus ((f
`| (
[#]
REAL ))
. x)
= (
- (e
* ((A
* (
sin
. (e
* x)))
- (B
* (
cos
. (e
* x)))))) by
AS1,
LM412
.= (((e
* B)
* (
cos
. (e
* x)))
+ ((
- (e
* A))
* (
sin
. (e
* x))));
end;
P4: (
rng (f
`| (
[#]
REAL )))
c=
REAL ;
D0: (
dom f)
=
REAL by
FUNCT_2:def 1;
(
dom (f
`| (
[#]
REAL )))
= (
[#]
REAL ) by
FDIFF_1:def 7,
P1;
then
P30: (f
`| (
[#]
REAL )) is
Function of
REAL ,
REAL by
P4,
FUNCT_2: 2;
X1: for i be
Nat st i
<= (2
- 1) holds ((
diff (f,(
[#]
REAL )))
. i)
is_differentiable_on (
[#]
REAL )
proof
let i be
Nat;
assume i
<= (2
- 1);
then i
<= (
0
+ 1);
per cases by
NAT_1: 8;
suppose i
=
0 ;
then ((
diff (f,(
[#]
REAL )))
. i)
= (f
| (
[#]
REAL )) by
TAYLOR_1:def 5
.= f by
D0,
RELAT_1: 69;
hence ((
diff (f,(
[#]
REAL )))
. i)
is_differentiable_on (
[#]
REAL ) by
AS1,
LM412;
end;
suppose i
= 1;
then ((
diff (f,(
[#]
REAL )))
. i)
= ((
diff (f,(
[#]
REAL )))
. (
0
+ 1))
.= (((
diff (f,(
[#]
REAL )))
.
0 )
`| (
[#]
REAL )) by
TAYLOR_1:def 5
.= ((f
| (
[#]
REAL ))
`| (
[#]
REAL )) by
TAYLOR_1:def 5
.= (f
`| (
[#]
REAL )) by
D0,
RELAT_1: 69;
hence ((
diff (f,(
[#]
REAL )))
. i)
is_differentiable_on (
[#]
REAL ) by
P30,
LM412,
P2;
end;
end;
hence f
is_differentiable_on (2,(
[#]
REAL ));
let x be
Real;
thus ((f
`| (
[#]
REAL ))
. x)
= (
- (e
* ((A
* (
sin
. (e
* x)))
- (B
* (
cos
. (e
* x)))))) by
AS1,
LM412;
thus
P90: (((f
`| (
[#]
REAL ))
`| (
[#]
REAL ))
. x)
= (
- (e
* (((e
* B)
* (
sin
. (e
* x)))
- ((
- (e
* A))
* (
cos
. (e
* x)))))) by
P30,
LM412,
P2
.= (
- ((e
* e)
* ((A
* (
cos
. (e
* x)))
+ (B
* (
sin
. (e
* x))))))
.= (
- ((e
^2 )
* ((A
* (
cos
. (e
* x)))
+ (B
* (
sin
. (e
* x)))))) by
SQUARE_1:def 1;
P92: ((
diff (f,(
[#]
REAL )))
. (1
+ 1))
= (((
diff (f,(
[#]
REAL )))
. 1)
`| (
[#]
REAL )) by
TAYLOR_1:def 5;
P93: ((
diff (f,(
[#]
REAL )))
. 1)
= ((
diff (f,(
[#]
REAL )))
. (
0
+ 1))
.= (((
diff (f,(
[#]
REAL )))
.
0 )
`| (
[#]
REAL )) by
TAYLOR_1:def 5
.= ((f
| (
[#]
REAL ))
`| (
[#]
REAL )) by
TAYLOR_1:def 5
.= (f
`| (
[#]
REAL )) by
D0,
RELAT_1: 69;
((
diff (f,(
[#]
REAL )))
. 1)
is_differentiable_on (
[#]
REAL ) by
X1;
then (
dom ((
diff (f,(
[#]
REAL )))
. 2))
= (
[#]
REAL ) by
P92,
FDIFF_1:def 7;
then
P91: (((
diff (f,(
[#]
REAL )))
. 2)
/. x)
= (
- ((e
^2 )
* ((A
* (
cos
. (e
* x)))
+ (B
* (
sin
. (e
* x)))))) by
XREAL_0:def 1,
PARTFUN1:def 6,
P92,
P93,
P90;
(f
/. x)
= (f
. x) by
D0,
XREAL_0:def 1,
PARTFUN1:def 6;
then ((e
^2 )
* (f
/. x))
= ((e
^2 )
* ((A
* (
cos
. (e
* x)))
+ (B
* (
sin
. (e
* x))))) by
AS1;
hence thesis by
P91;
end;
theorem ::
PDIFFEQ1:16
LM42: for A,B,e be
Real holds ex f be
Function of
REAL ,
REAL st for x be
Real holds (f
. x)
= ((A
* (
cos
. (e
* x)))
+ (B
* (
sin
. (e
* x))))
proof
let A,B,e be
Real;
defpred
P[
object,
object] means ex t be
Real st $1
= t & $2
= ((A
* (
cos
. (e
* t)))
+ (B
* (
sin
. (e
* t))));
A0: for x be
object st x
in
REAL holds ex y be
object st y
in
REAL &
P[x, y]
proof
let x be
object;
assume x
in
REAL ;
then
reconsider t = x as
Real;
((A
* (
cos
. (e
* t)))
+ (B
* (
sin
. (e
* t))))
in
REAL by
XREAL_0:def 1;
hence thesis;
end;
consider f be
Function of
REAL ,
REAL such that
A1: for x be
object st x
in
REAL holds
P[x, (f
. x)] from
FUNCT_2:sch 1(
A0);
take f;
let x be
Real;
ex t be
Real st x
= t & (f
. x)
= ((A
* (
cos
. (e
* t)))
+ (B
* (
sin
. (e
* t)))) by
XREAL_0:def 1,
A1;
hence thesis;
end;
theorem ::
PDIFFEQ1:17
LM43: for A,B,C,d,c,e be
Real, f,g be
Function of
REAL ,
REAL st (for x be
Real holds (f
. x)
= ((A
* (
cos
. (e
* x)))
+ (B
* (
sin
. (e
* x))))) & (for t be
Real holds (g
. t)
= ((C
* (
cos
. ((e
* c)
* t)))
+ (d
* (
sin
. ((e
* c)
* t))))) holds for x,t be
Real holds ((f
/. x)
* (((
diff (g,(
[#]
REAL )))
. 2)
/. t))
= (((c
^2 )
* (((
diff (f,(
[#]
REAL )))
. 2)
/. x))
* (g
/. t))
proof
let A,B,C,d,c,e be
Real, f,g be
Function of
REAL ,
REAL ;
assume
AS: (for x be
Real holds (f
. x)
= ((A
* (
cos
. (e
* x)))
+ (B
* (
sin
. (e
* x))))) & (for t be
Real holds (g
. t)
= ((C
* (
cos
. ((e
* c)
* t)))
+ (d
* (
sin
. ((e
* c)
* t)))));
let x,t be
Real;
((((
diff (f,(
[#]
REAL )))
. 2)
/. x)
+ ((e
^2 )
* (f
/. x)))
=
0 by
AS,
LM41;
then
Q3: (((c
^2 )
* (((
diff (f,(
[#]
REAL )))
. 2)
/. x))
* (g
/. t))
= (((c
^2 )
* (
- ((e
^2 )
* (f
/. x))))
* (g
/. t))
.= (
- ((((c
^2 )
* (e
^2 ))
* (f
/. x))
* (g
/. t)));
((((
diff (g,(
[#]
REAL )))
. 2)
/. t)
+ (((e
* c)
^2 )
* (g
/. t)))
=
0 by
AS,
LM41;
then ((f
/. x)
* (((
diff (g,(
[#]
REAL )))
. 2)
/. t))
= ((f
/. x)
* (
- (((e
* c)
^2 )
* (g
/. t))))
.= ((f
/. x)
* (
- (((e
* c)
* (e
* c))
* (g
/. t)))) by
SQUARE_1:def 1
.= ((f
/. x)
* (
- (((e
* e)
* (c
* c))
* (g
/. t))))
.= ((f
/. x)
* (
- (((e
^2 )
* (c
* c))
* (g
/. t)))) by
SQUARE_1:def 1
.= ((f
/. x)
* (
- (((e
^2 )
* (c
^2 ))
* (g
/. t)))) by
SQUARE_1:def 1
.= (
- ((((c
^2 )
* (e
^2 ))
* (f
/. x))
* (g
/. t)));
hence thesis by
Q3;
end;
theorem ::
PDIFFEQ1:18
LM50: for f,g be
Function of
REAL ,
REAL , u be
Function of (
REAL 2),
REAL st f
is_differentiable_on (2,(
[#]
REAL )) & g
is_differentiable_on (2,(
[#]
REAL )) & (for x,t be
Real holds ((f
/. x)
* (((
diff (g,(
[#]
REAL )))
. 2)
/. t))
= (((c
^2 )
* (((
diff (f,(
[#]
REAL )))
. 2)
/. x))
* (g
/. t))) & (for x,t be
Real holds (u
/.
<*x, t*>)
= ((f
/. x)
* (g
/. t))) holds u
is_partial_differentiable_on ((
[#] (
REAL 2)),
<*1*>) & (for x,t be
Real holds ((u
`partial| ((
[#] (
REAL 2)),
<*1*>))
/.
<*x, t*>)
= ((
diff (f,x))
* (g
/. t))) & u
is_partial_differentiable_on ((
[#] (
REAL 2)),
<*2*>) & (for x,t be
Real holds ((u
`partial| ((
[#] (
REAL 2)),
<*2*>))
/.
<*x, t*>)
= ((f
/. x)
* (
diff (g,t)))) & f
is_differentiable_on (2,(
[#]
REAL )) & g
is_differentiable_on (2,(
[#]
REAL )) & u
is_partial_differentiable_on ((
[#] (
REAL 2)),(
<*1*>
^
<*1*>)) & (for x,t be
Real holds ((u
`partial| ((
[#] (
REAL 2)),(
<*1*>
^
<*1*>)))
/.
<*x, t*>)
= ((((
diff (f,(
[#]
REAL )))
. 2)
/. x)
* (g
/. t))) & u
is_partial_differentiable_on ((
[#] (
REAL 2)),(
<*2*>
^
<*2*>)) & (for x,t be
Real holds ((u
`partial| ((
[#] (
REAL 2)),(
<*2*>
^
<*2*>)))
/.
<*x, t*>)
= ((f
/. x)
* (((
diff (g,(
[#]
REAL )))
. 2)
/. t))) & for x,t be
Real holds ((u
`partial| ((
[#] (
REAL 2)),(
<*2*>
^
<*2*>)))
/.
<*x, t*>)
= ((c
^2 )
* ((u
`partial| ((
[#] (
REAL 2)),(
<*1*>
^
<*1*>)))
/.
<*x, t*>))
proof
let f,g be
Function of
REAL ,
REAL , u be
Function of (
REAL 2),
REAL ;
assume that
XP1: f
is_differentiable_on (2,(
[#]
REAL )) and
XP2: g
is_differentiable_on (2,(
[#]
REAL )) and
XP3: for x,t be
Real holds ((f
/. x)
* (((
diff (g,(
[#]
REAL )))
. 2)
/. t))
= (((c
^2 )
* (((
diff (f,(
[#]
REAL )))
. 2)
/. x))
* (g
/. t)) and
AS4: for x,t be
Real holds (u
/.
<*x, t*>)
= ((f
/. x)
* (g
/. t));
P0: (
dom u)
= (
[#] (
REAL 2)) by
FUNCT_2:def 1;
P1: (
[#]
REAL )
= (
dom f) & (
[#]
REAL )
= (
dom g) by
FUNCT_2:def 1;
P4: for x,t be
Real st x
in (
dom f) & t
in (
dom g) holds (u
/.
<*x, t*>)
= ((f
/. x)
* (g
/. t)) by
AS4;
((
diff (f,(
[#]
REAL )))
.
0 )
is_differentiable_on (
[#]
REAL ) by
XP1;
then (f
| (
[#]
REAL ))
is_differentiable_on (
[#]
REAL ) by
TAYLOR_1:def 5;
then
B50: (
[#]
REAL )
c= (
dom (f
| (
[#]
REAL ))) & (for x be
Real st x
in (
[#]
REAL ) holds ((f
| (
[#]
REAL ))
| (
[#]
REAL ))
is_differentiable_in x) by
FDIFF_1:def 6;
((f
| (
[#]
REAL ))
| (
[#]
REAL ))
= (f
| (
[#]
REAL )) by
RELAT_1: 72;
then
Q1: f
is_differentiable_on (
[#]
REAL ) by
B50,
FDIFF_1:def 6,
P1;
((
diff (g,(
[#]
REAL )))
.
0 )
is_differentiable_on (
[#]
REAL ) by
XP2;
then (g
| (
[#]
REAL ))
is_differentiable_on (
[#]
REAL ) by
TAYLOR_1:def 5;
then
B50: (
[#]
REAL )
c= (
dom (g
| (
[#]
REAL ))) & (for x be
Real st x
in (
[#]
REAL ) holds ((g
| (
[#]
REAL ))
| (
[#]
REAL ))
is_differentiable_in x) by
FDIFF_1:def 6;
((g
| (
[#]
REAL ))
| (
[#]
REAL ))
= (g
| (
[#]
REAL )) by
RELAT_1: 72;
then
Q2: g
is_differentiable_on (
[#]
REAL ) by
B50,
FDIFF_1:def 6,
P1;
Y1: for x,t be
Real holds ((u
`partial| ((
[#] (
REAL 2)),
<*1*>))
/.
<*x, t*>)
= ((
diff (f,x))
* (g
/. t))
proof
let x,t be
Real;
x
in (
[#]
REAL ) & t
in (
[#]
REAL ) by
XREAL_0:def 1;
hence thesis by
Q1,
Q2,
LM20,
P4,
P0,
P1,
LMOP3;
end;
Y2: for x,t be
Real holds ((u
`partial| ((
[#] (
REAL 2)),
<*2*>))
/.
<*x, t*>)
= ((f
/. x)
* (
diff (g,t)))
proof
let x,t be
Real;
x
in (
[#]
REAL ) & t
in (
[#]
REAL ) by
XREAL_0:def 1;
hence thesis by
Q1,
Q2,
LM20,
P4,
P0,
P1,
LMOP3;
end;
Y3: for x,t be
Real holds ((u
`partial| ((
[#] (
REAL 2)),(
<*1*>
^
<*1*>)))
/.
<*x, t*>)
= ((((
diff (f,(
[#]
REAL )))
. 2)
/. x)
* (g
/. t))
proof
let x,t be
Real;
x
in (
[#]
REAL ) & t
in (
[#]
REAL ) by
XREAL_0:def 1;
hence thesis by
LM40,
AS4,
P0,
XP1,
XP2,
XP3;
end;
for x,t be
Real holds ((u
`partial| ((
[#] (
REAL 2)),(
<*2*>
^
<*2*>)))
/.
<*x, t*>)
= ((f
/. x)
* (((
diff (g,(
[#]
REAL )))
. 2)
/. t))
proof
let x,t be
Real;
x
in (
[#]
REAL ) & t
in (
[#]
REAL ) by
XREAL_0:def 1;
hence thesis by
LM40,
AS4,
P0,
XP1,
XP2,
XP3;
end;
hence thesis by
AS4,
Q1,
Q2,
LM20,
P4,
P0,
P1,
LMOP3,
Y1,
Y2,
Y3,
XP1,
XP2,
XP3,
LM40;
end;
theorem ::
PDIFFEQ1:19
Th10: for A,B,C,d,e,c be
Real, u be
Function of (
REAL 2),
REAL st for x,t be
Real holds (u
/.
<*x, t*>)
= (((A
* (
cos
. (e
* x)))
+ (B
* (
sin
. (e
* x))))
* ((C
* (
cos
. ((e
* c)
* t)))
+ (d
* (
sin
. ((e
* c)
* t))))) holds u
is_partial_differentiable_on ((
[#] (
REAL 2)),
<*1*>) & (for x,t be
Real holds ((u
`partial| ((
[#] (
REAL 2)),
<*1*>))
/.
<*x, t*>)
= (((
- ((A
* e)
* (
sin
. (e
* x))))
+ ((B
* e)
* (
cos
. (e
* x))))
* ((C
* (
cos
. ((e
* c)
* t)))
+ (d
* (
sin
. ((e
* c)
* t)))))) & u
is_partial_differentiable_on ((
[#] (
REAL 2)),
<*2*>) & (for x,t be
Real holds ((u
`partial| ((
[#] (
REAL 2)),
<*2*>))
/.
<*x, t*>)
= (((A
* (
cos
. (e
* x)))
+ (B
* (
sin
. (e
* x))))
* ((
- ((C
* (e
* c))
* (
sin
. ((e
* c)
* t))))
+ ((d
* (e
* c))
* (
cos
. ((e
* c)
* t)))))) & u
is_partial_differentiable_on ((
[#] (
REAL 2)),(
<*1*>
^
<*1*>)) & (for x,t be
Real holds ((u
`partial| ((
[#] (
REAL 2)),(
<*1*>
^
<*1*>)))
/.
<*x, t*>)
= (
- (((e
^2 )
* ((A
* (
cos
. (e
* x)))
+ (B
* (
sin
. (e
* x)))))
* ((C
* (
cos
. ((e
* c)
* t)))
+ (d
* (
sin
. ((e
* c)
* t)))))) & u
is_partial_differentiable_on ((
[#] (
REAL 2)),(
<*2*>
^
<*2*>)) & (for x,t be
Real holds ((u
`partial| ((
[#] (
REAL 2)),(
<*2*>
^
<*2*>)))
/.
<*x, t*>)
= (
- ((((e
* c)
^2 )
* ((A
* (
cos
. (e
* x)))
+ (B
* (
sin
. (e
* x)))))
* ((C
* (
cos
. ((e
* c)
* t)))
+ (d
* (
sin
. ((e
* c)
* t)))))))) & for x,t be
Real holds ((u
`partial| ((
[#] (
REAL 2)),(
<*2*>
^
<*2*>)))
/.
<*x, t*>)
= ((c
^2 )
* ((u
`partial| ((
[#] (
REAL 2)),(
<*1*>
^
<*1*>)))
/.
<*x, t*>))
proof
let A,B,C,d,e,c be
Real, u be
Function of (
REAL 2),
REAL ;
assume
AS: for x,t be
Real holds (u
/.
<*x, t*>)
= (((A
* (
cos
. (e
* x)))
+ (B
* (
sin
. (e
* x))))
* ((C
* (
cos
. ((e
* c)
* t)))
+ (d
* (
sin
. ((e
* c)
* t)))));
consider f be
Function of
REAL ,
REAL such that
A1: for x be
Real holds (f
. x)
= ((A
* (
cos
. (e
* x)))
+ (B
* (
sin
. (e
* x)))) by
LM42;
consider g be
Function of
REAL ,
REAL such that
A2: for t be
Real holds (g
. t)
= ((C
* (
cos
. ((e
* c)
* t)))
+ (d
* (
sin
. ((e
* c)
* t)))) by
LM42;
D0: (
dom f)
=
REAL & (
dom g)
=
REAL by
FUNCT_2:def 1;
A3: for x,t be
Real holds (u
/.
<*x, t*>)
= ((f
/. x)
* (g
/. t))
proof
let x,t be
Real;
A31: (f
/. x)
= (f
. x) by
PARTFUN1:def 6,
D0,
XREAL_0:def 1
.= ((A
* (
cos
. (e
* x)))
+ (B
* (
sin
. (e
* x)))) by
A1;
(g
/. t)
= (g
. t) by
PARTFUN1:def 6,
D0,
XREAL_0:def 1
.= ((C
* (
cos
. ((e
* c)
* t)))
+ (d
* (
sin
. ((e
* c)
* t)))) by
A2;
hence thesis by
AS,
A31;
end;
X1: f
is_differentiable_on (2,(
[#]
REAL )) by
LM41,
A1;
X2: g
is_differentiable_on (2,(
[#]
REAL )) by
LM41,
A2;
X3: for x,t be
Real holds ((f
/. x)
* (((
diff (g,(
[#]
REAL )))
. 2)
/. t))
= (((c
^2 )
* (((
diff (f,(
[#]
REAL )))
. 2)
/. x))
* (g
/. t)) by
LM43,
A1,
A2;
Y1: for x,t be
Real holds ((u
`partial| ((
[#] (
REAL 2)),
<*1*>))
/.
<*x, t*>)
= (((
- ((A
* e)
* (
sin
. (e
* x))))
+ ((B
* e)
* (
cos
. (e
* x))))
* ((C
* (
cos
. ((e
* c)
* t)))
+ (d
* (
sin
. ((e
* c)
* t)))))
proof
let x,t be
Real;
Y11: ((u
`partial| ((
[#] (
REAL 2)),
<*1*>))
/.
<*x, t*>)
= ((
diff (f,x))
* (g
/. t)) by
X1,
X2,
X3,
LM50,
A3;
Y12: ((f
`| (
[#]
REAL ))
. x)
= (
- (e
* ((A
* (
sin
. (e
* x)))
- (B
* (
cos
. (e
* x)))))) by
LM41,
A1;
Y13: f
is_differentiable_on (
[#]
REAL ) by
D0,
X1,
DIFF2;
Y14: x
in (
[#]
REAL ) by
XREAL_0:def 1;
(g
/. t)
= (g
. t) by
PARTFUN1:def 6,
D0,
XREAL_0:def 1
.= ((C
* (
cos
. ((e
* c)
* t)))
+ (d
* (
sin
. ((e
* c)
* t)))) by
A2;
hence thesis by
Y11,
Y12,
Y13,
Y14,
FDIFF_1:def 7;
end;
Y2: for x,t be
Real holds ((u
`partial| ((
[#] (
REAL 2)),
<*2*>))
/.
<*x, t*>)
= (((A
* (
cos
. (e
* x)))
+ (B
* (
sin
. (e
* x))))
* ((
- ((C
* (e
* c))
* (
sin
. ((e
* c)
* t))))
+ ((d
* (e
* c))
* (
cos
. ((e
* c)
* t)))))
proof
let x,t be
Real;
Y12: ((g
`| (
[#]
REAL ))
. t)
= (
- ((e
* c)
* ((C
* (
sin
. ((e
* c)
* t)))
- (d
* (
cos
. ((e
* c)
* t)))))) by
LM41,
A2;
Y13: g
is_differentiable_on (
[#]
REAL ) by
D0,
X2,
DIFF2;
t
in (
[#]
REAL ) by
XREAL_0:def 1;
then
Y14: (
diff (g,t))
= ((g
`| (
[#]
REAL ))
. t) by
Y13,
FDIFF_1:def 7;
(f
/. x)
= (f
. x) by
PARTFUN1:def 6,
D0,
XREAL_0:def 1
.= ((A
* (
cos
. (e
* x)))
+ (B
* (
sin
. (e
* x)))) by
A1;
hence thesis by
X1,
X2,
X3,
LM50,
A3,
Y12,
Y14;
end;
Y3: for x,t be
Real holds ((u
`partial| ((
[#] (
REAL 2)),(
<*1*>
^
<*1*>)))
/.
<*x, t*>)
= (
- (((e
^2 )
* ((A
* (
cos
. (e
* x)))
+ (B
* (
sin
. (e
* x)))))
* ((C
* (
cos
. ((e
* c)
* t)))
+ (d
* (
sin
. ((e
* c)
* t))))))
proof
let x,t be
Real;
Y11: ((u
`partial| ((
[#] (
REAL 2)),(
<*1*>
^
<*1*>)))
/.
<*x, t*>)
= ((((
diff (f,(
[#]
REAL )))
. 2)
/. x)
* (g
/. t)) by
X1,
X2,
X3,
LM50,
A3;
R1: (
[#]
REAL )
= (
dom f) by
FUNCT_2:def 1;
R2: (f
`| (
[#]
REAL ))
is_differentiable_on (
[#]
REAL ) by
R1,
X1,
DIFF2;
x
in (
[#]
REAL ) by
XREAL_0:def 1;
then
Y13: x
in (
dom ((f
`| (
[#]
REAL ))
`| (
[#]
REAL ))) by
R2,
FDIFF_1:def 7;
Y15: (((
diff (f,(
[#]
REAL )))
. 2)
/. x)
= (((f
`| (
[#]
REAL ))
`| (
[#]
REAL ))
/. x) by
D0,
X1,
DIFF2
.= (((f
`| (
[#]
REAL ))
`| (
[#]
REAL ))
. x) by
Y13,
PARTFUN1:def 6
.= (
- ((e
^2 )
* ((A
* (
cos
. (e
* x)))
+ (B
* (
sin
. (e
* x)))))) by
LM41,
A1;
(g
/. t)
= (g
. t) by
PARTFUN1:def 6,
D0,
XREAL_0:def 1
.= ((C
* (
cos
. ((e
* c)
* t)))
+ (d
* (
sin
. ((e
* c)
* t)))) by
A2;
hence thesis by
Y11,
Y15;
end;
for x,t be
Real holds ((u
`partial| ((
[#] (
REAL 2)),(
<*2*>
^
<*2*>)))
/.
<*x, t*>)
= (
- ((((e
* c)
^2 )
* ((A
* (
cos
. (e
* x)))
+ (B
* (
sin
. (e
* x)))))
* ((C
* (
cos
. ((e
* c)
* t)))
+ (d
* (
sin
. ((e
* c)
* t))))))
proof
let x,t be
Real;
Y11: ((u
`partial| ((
[#] (
REAL 2)),(
<*2*>
^
<*2*>)))
/.
<*x, t*>)
= ((f
/. x)
* (((
diff (g,(
[#]
REAL )))
. 2)
/. t)) by
X1,
X2,
X3,
LM50,
A3;
R1: (
[#]
REAL )
= (
dom g) by
FUNCT_2:def 1;
R2: (g
`| (
[#]
REAL ))
is_differentiable_on (
[#]
REAL ) by
R1,
X2,
DIFF2;
t
in (
[#]
REAL ) by
XREAL_0:def 1;
then
Y13: t
in (
dom ((g
`| (
[#]
REAL ))
`| (
[#]
REAL ))) by
R2,
FDIFF_1:def 7;
Y15: (((
diff (g,(
[#]
REAL )))
. 2)
/. t)
= (((g
`| (
[#]
REAL ))
`| (
[#]
REAL ))
/. t) by
D0,
X2,
DIFF2
.= (((g
`| (
[#]
REAL ))
`| (
[#]
REAL ))
. t) by
Y13,
PARTFUN1:def 6
.= (
- (((e
* c)
^2 )
* ((C
* (
cos
. ((e
* c)
* t)))
+ (d
* (
sin
. ((e
* c)
* t)))))) by
LM41,
A2;
(f
/. x)
= (f
. x) by
PARTFUN1:def 6,
D0,
XREAL_0:def 1
.= ((A
* (
cos
. (e
* x)))
+ (B
* (
sin
. (e
* x)))) by
A1;
hence thesis by
Y11,
Y15;
end;
hence thesis by
X1,
X2,
X3,
LM50,
A3,
Y1,
Y2,
Y3;
end;
theorem ::
PDIFFEQ1:20
for c be
Real holds ex u be
PartFunc of (
REAL 2),
REAL st u
is_partial_differentiable_on ((
[#] (
REAL 2)),(
<*1*>
^
<*1*>)) & u
is_partial_differentiable_on ((
[#] (
REAL 2)),(
<*2*>
^
<*2*>)) & for x,t be
Real holds ((u
`partial| ((
[#] (
REAL 2)),(
<*2*>
^
<*2*>)))
/.
<*x, t*>)
= ((c
^2 )
* ((u
`partial| ((
[#] (
REAL 2)),(
<*1*>
^
<*1*>)))
/.
<*x, t*>))
proof
let c be
Real;
set A = the
Real;
set B = the
Real;
set C = the
Real;
set D = the
Real;
set e = the
Real;
consider f be
Function of
REAL ,
REAL such that
A1: for x be
Real holds (f
. x)
= ((A
* (
cos
. (e
* x)))
+ (B
* (
sin
. (e
* x)))) by
LM42;
consider g be
Function of
REAL ,
REAL such that
A2: for t be
Real holds (g
. t)
= ((C
* (
cos
. ((e
* c)
* t)))
+ (D
* (
sin
. ((e
* c)
* t)))) by
LM42;
F1: (
dom f)
= (
[#]
REAL ) & (
dom g)
= (
[#]
REAL ) by
FUNCT_2:def 1;
consider u be
PartFunc of (
REAL 2),
REAL such that
F2: (
dom u)
= {
<*x, t*> where x,t be
Real : x
in (
[#]
REAL ) & t
in (
[#]
REAL ) } & for x,t be
Real st x
in (
[#]
REAL ) & t
in (
[#]
REAL ) holds (u
/.
<*x, t*>)
= ((f
/. x)
* (g
/. t)) by
LM10,
F1;
u is
total by
PARTFUN1:def 2,
F2,
LMOP3;
then
reconsider u as
Function of (
REAL 2),
REAL ;
take u;
A3: for x,t be
Real holds (u
/.
<*x, t*>)
= ((f
/. x)
* (g
/. t))
proof
let x,t be
Real;
x
in (
[#]
REAL ) & t
in (
[#]
REAL ) by
XREAL_0:def 1;
hence (u
/.
<*x, t*>)
= ((f
/. x)
* (g
/. t)) by
F2;
end;
X1: f
is_differentiable_on (2,(
[#]
REAL )) by
LM41,
A1;
X2: g
is_differentiable_on (2,(
[#]
REAL )) by
LM41,
A2;
for x,t be
Real holds ((f
/. x)
* (((
diff (g,(
[#]
REAL )))
. 2)
/. t))
= (((c
^2 )
* (((
diff (f,(
[#]
REAL )))
. 2)
/. x))
* (g
/. t)) by
LM43,
A1,
A2;
hence u
is_partial_differentiable_on ((
[#] (
REAL 2)),(
<*1*>
^
<*1*>)) & u
is_partial_differentiable_on ((
[#] (
REAL 2)),(
<*2*>
^
<*2*>)) & for x,t be
Real holds ((u
`partial| ((
[#] (
REAL 2)),(
<*2*>
^
<*2*>)))
/.
<*x, t*>)
= ((c
^2 )
* ((u
`partial| ((
[#] (
REAL 2)),(
<*1*>
^
<*1*>)))
/.
<*x, t*>)) by
X1,
X2,
LM50,
A3;
end;
begin
theorem ::
PDIFFEQ1:21
for C,d,c be
Real, n be
Nat, u be
Function of (
REAL 2),
REAL st for x,t be
Real holds (u
/.
<*x, t*>)
= ((
sin
. ((n
*
PI )
* x))
* ((C
* (
cos
. (((n
*
PI )
* c)
* t)))
+ (d
* (
sin
. (((n
*
PI )
* c)
* t))))) holds u
is_partial_differentiable_on ((
[#] (
REAL 2)),
<*1*>) & (for x,t be
Real holds ((u
`partial| ((
[#] (
REAL 2)),
<*1*>))
/.
<*x, t*>)
= (((n
*
PI )
* (
cos
. ((n
*
PI )
* x)))
* ((C
* (
cos
. (((n
*
PI )
* c)
* t)))
+ (d
* (
sin
. (((n
*
PI )
* c)
* t)))))) & u
is_partial_differentiable_on ((
[#] (
REAL 2)),
<*2*>) & (for x,t be
Real holds ((u
`partial| ((
[#] (
REAL 2)),
<*2*>))
/.
<*x, t*>)
= ((
sin
. ((n
*
PI )
* x))
* ((
- ((C
* ((n
*
PI )
* c))
* (
sin
. (((n
*
PI )
* c)
* t))))
+ ((d
* ((n
*
PI )
* c))
* (
cos
. (((n
*
PI )
* c)
* t)))))) & u
is_partial_differentiable_on ((
[#] (
REAL 2)),(
<*1*>
^
<*1*>)) & (for x,t be
Real holds ((u
`partial| ((
[#] (
REAL 2)),(
<*1*>
^
<*1*>)))
/.
<*x, t*>)
= (
- ((((n
*
PI )
^2 )
* (
sin
. ((n
*
PI )
* x)))
* ((C
* (
cos
. (((n
*
PI )
* c)
* t)))
+ (d
* (
sin
. (((n
*
PI )
* c)
* t)))))) & u
is_partial_differentiable_on ((
[#] (
REAL 2)),(
<*2*>
^
<*2*>)) & (for x,t be
Real holds ((u
`partial| ((
[#] (
REAL 2)),(
<*2*>
^
<*2*>)))
/.
<*x, t*>)
= (
- (((((n
*
PI )
* c)
^2 )
* (
sin
. ((n
*
PI )
* x)))
* ((C
* (
cos
. (((n
*
PI )
* c)
* t)))
+ (d
* (
sin
. (((n
*
PI )
* c)
* t)))))))) & (for t be
Real holds (u
/.
<*
0 , t*>)
=
0 & (u
/.
<*1, t*>)
=
0 ) & for x,t be
Real holds ((u
`partial| ((
[#] (
REAL 2)),(
<*2*>
^
<*2*>)))
/.
<*x, t*>)
= ((c
^2 )
* ((u
`partial| ((
[#] (
REAL 2)),(
<*1*>
^
<*1*>)))
/.
<*x, t*>))
proof
let C,d,c be
Real, n be
Nat, u be
Function of (
REAL 2),
REAL ;
assume
AS: for x,t be
Real holds (u
/.
<*x, t*>)
= ((
sin
. ((n
*
PI )
* x))
* ((C
* (
cos
. (((n
*
PI )
* c)
* t)))
+ (d
* (
sin
. (((n
*
PI )
* c)
* t)))));
set A =
0 ;
set B = 1;
set e = (n
*
PI );
AS1: for x,t be
Real holds (u
/.
<*x, t*>)
= (((A
* (
cos
. (e
* x)))
+ (B
* (
sin
. (e
* x))))
* ((C
* (
cos
. ((e
* c)
* t)))
+ (d
* (
sin
. ((e
* c)
* t))))) by
AS;
Y1: for x,t be
Real holds ((u
`partial| ((
[#] (
REAL 2)),
<*1*>))
/.
<*x, t*>)
= ((e
* (
cos
. (e
* x)))
* ((C
* (
cos
. ((e
* c)
* t)))
+ (d
* (
sin
. ((e
* c)
* t)))))
proof
let x,t be
Real;
((u
`partial| ((
[#] (
REAL 2)),
<*1*>))
/.
<*x, t*>)
= (((
- ((A
* e)
* (
sin
. (e
* x))))
+ ((B
* e)
* (
cos
. (e
* x))))
* ((C
* (
cos
. ((e
* c)
* t)))
+ (d
* (
sin
. ((e
* c)
* t))))) by
AS1,
Th10;
hence thesis;
end;
Y2: for x,t be
Real holds ((u
`partial| ((
[#] (
REAL 2)),
<*2*>))
/.
<*x, t*>)
= ((
sin
. (e
* x))
* ((
- ((C
* (e
* c))
* (
sin
. ((e
* c)
* t))))
+ ((d
* (e
* c))
* (
cos
. ((e
* c)
* t)))))
proof
let x,t be
Real;
((u
`partial| ((
[#] (
REAL 2)),
<*2*>))
/.
<*x, t*>)
= (((A
* (
cos
. (e
* x)))
+ (B
* (
sin
. (e
* x))))
* ((
- ((C
* (e
* c))
* (
sin
. ((e
* c)
* t))))
+ ((d
* (e
* c))
* (
cos
. ((e
* c)
* t))))) by
AS1,
Th10;
hence thesis;
end;
Y3: for x,t be
Real holds ((u
`partial| ((
[#] (
REAL 2)),(
<*1*>
^
<*1*>)))
/.
<*x, t*>)
= (
- (((e
^2 )
* (
sin
. (e
* x)))
* ((C
* (
cos
. ((e
* c)
* t)))
+ (d
* (
sin
. ((e
* c)
* t))))))
proof
let x,t be
Real;
((u
`partial| ((
[#] (
REAL 2)),(
<*1*>
^
<*1*>)))
/.
<*x, t*>)
= (
- (((e
^2 )
* ((A
* (
cos
. (e
* x)))
+ (B
* (
sin
. (e
* x)))))
* ((C
* (
cos
. ((e
* c)
* t)))
+ (d
* (
sin
. ((e
* c)
* t)))))) by
AS1,
Th10;
hence thesis;
end;
Y4: for x,t be
Real holds ((u
`partial| ((
[#] (
REAL 2)),(
<*2*>
^
<*2*>)))
/.
<*x, t*>)
= (
- ((((e
* c)
^2 )
* (
sin
. (e
* x)))
* ((C
* (
cos
. ((e
* c)
* t)))
+ (d
* (
sin
. ((e
* c)
* t))))))
proof
let x,t be
Real;
((u
`partial| ((
[#] (
REAL 2)),(
<*2*>
^
<*2*>)))
/.
<*x, t*>)
= (
- ((((e
* c)
^2 )
* ((A
* (
cos
. (e
* x)))
+ (B
* (
sin
. (e
* x)))))
* ((C
* (
cos
. ((e
* c)
* t)))
+ (d
* (
sin
. ((e
* c)
* t)))))) by
AS1,
Th10;
hence thesis;
end;
for t be
Real holds (u
/.
<*
0 , t*>)
=
0 & (u
/.
<*1, t*>)
=
0
proof
let t be
Real;
thus (u
/.
<*
0 , t*>)
= ((
sin
. ((n
*
PI )
*
0 ))
* ((C
* (
cos
. (((n
*
PI )
* c)
* t)))
+ (d
* (
sin
. (((n
*
PI )
* c)
* t))))) by
AS
.=
0 by
SIN_COS: 30;
thus (u
/.
<*1, t*>)
= ((
sin
. ((n
*
PI )
* 1))
* ((C
* (
cos
. (((n
*
PI )
* c)
* t)))
+ (d
* (
sin
. (((n
*
PI )
* c)
* t))))) by
AS
.= (
0
* ((C
* (
cos
. (((n
*
PI )
* c)
* t)))
+ (d
* (
sin
. (((n
*
PI )
* c)
* t))))) by
LMSIN1
.=
0 ;
end;
hence thesis by
AS1,
Th10,
Y1,
Y2,
Y3,
Y4;
end;
theorem ::
PDIFFEQ1:22
Th30Y: for u,v be
PartFunc of (
REAL 2),
REAL , Z be
Subset of (
REAL 2), c be
Real st Z is
open & Z
c= (
dom u) & Z
c= (
dom v) & u
is_partial_differentiable_on (Z,(
<*1*>
^
<*1*>)) & u
is_partial_differentiable_on (Z,(
<*2*>
^
<*2*>)) & (for x,t be
Real st
<*x, t*>
in Z holds ((u
`partial| (Z,(
<*2*>
^
<*2*>)))
/.
<*x, t*>)
= ((c
^2 )
* ((u
`partial| (Z,(
<*1*>
^
<*1*>)))
/.
<*x, t*>))) & v
is_partial_differentiable_on (Z,(
<*1*>
^
<*1*>)) & v
is_partial_differentiable_on (Z,(
<*2*>
^
<*2*>)) & (for x,t be
Real st
<*x, t*>
in Z holds ((v
`partial| (Z,(
<*2*>
^
<*2*>)))
/.
<*x, t*>)
= ((c
^2 )
* ((v
`partial| (Z,(
<*1*>
^
<*1*>)))
/.
<*x, t*>))) holds Z
c= (
dom (u
+ v)) & (u
+ v)
is_partial_differentiable_on (Z,(
<*1*>
^
<*1*>)) & (u
+ v)
is_partial_differentiable_on (Z,(
<*2*>
^
<*2*>)) & (for x,t be
Real st
<*x, t*>
in Z holds (((u
+ v)
`partial| (Z,(
<*2*>
^
<*2*>)))
/.
<*x, t*>)
= ((c
^2 )
* (((u
+ v)
`partial| (Z,(
<*1*>
^
<*1*>)))
/.
<*x, t*>)))
proof
let u,v be
PartFunc of (
REAL 2),
REAL , Z be
Subset of (
REAL 2), c be
Real;
assume that
A0: Z is
open & Z
c= (
dom u) & Z
c= (
dom v) and
A1: u
is_partial_differentiable_on (Z,(
<*1*>
^
<*1*>)) and
A2: u
is_partial_differentiable_on (Z,(
<*2*>
^
<*2*>)) and
A3: (for x,t be
Real st
<*x, t*>
in Z holds ((u
`partial| (Z,(
<*2*>
^
<*2*>)))
/.
<*x, t*>)
= ((c
^2 )
* ((u
`partial| (Z,(
<*1*>
^
<*1*>)))
/.
<*x, t*>))) and
B1: v
is_partial_differentiable_on (Z,(
<*1*>
^
<*1*>)) and
B2: v
is_partial_differentiable_on (Z,(
<*2*>
^
<*2*>)) and
B3: (for x,t be
Real st
<*x, t*>
in Z holds ((v
`partial| (Z,(
<*2*>
^
<*2*>)))
/.
<*x, t*>)
= ((c
^2 )
* ((v
`partial| (Z,(
<*1*>
^
<*1*>)))
/.
<*x, t*>)));
Z
c= ((
dom u)
/\ (
dom v)) by
A0,
XBOOLE_1: 19;
hence Z
c= (
dom (u
+ v)) by
VALUED_1:def 1;
(
rng (
<*1*>
^
<*1*>))
= ((
rng
<*1*>)
\/ (
rng
<*1*>)) by
FINSEQ_1: 31
.=
{1} by
FINSEQ_1: 38;
then
C1: (
rng (
<*1*>
^
<*1*>))
c= (
Seg 2) by
ZFMISC_1: 7,
FINSEQ_1: 2;
(
rng (
<*2*>
^
<*2*>))
= ((
rng
<*2*>)
\/ (
rng
<*2*>)) by
FINSEQ_1: 31
.=
{2} by
FINSEQ_1: 38;
then
C2: (
rng (
<*2*>
^
<*2*>))
c= (
Seg 2) by
ZFMISC_1: 7,
FINSEQ_1: 2;
X2: (u
+ v)
is_partial_differentiable_on (Z,(
<*1*>
^
<*1*>)) & ((u
+ v)
`partial| (Z,(
<*1*>
^
<*1*>)))
= ((u
`partial| (Z,(
<*1*>
^
<*1*>)))
+ (v
`partial| (Z,(
<*1*>
^
<*1*>)))) by
PDIFF_9: 75,
A0,
A1,
B1,
C1;
X3: (u
+ v)
is_partial_differentiable_on (Z,(
<*2*>
^
<*2*>)) & ((u
+ v)
`partial| (Z,(
<*2*>
^
<*2*>)))
= ((u
`partial| (Z,(
<*2*>
^
<*2*>)))
+ (v
`partial| (Z,(
<*2*>
^
<*2*>)))) by
PDIFF_9: 75,
A0,
A2,
B2,
C2;
(for x,t be
Real st
<*x, t*>
in Z holds (((u
+ v)
`partial| (Z,(
<*2*>
^
<*2*>)))
/.
<*x, t*>)
= ((c
^2 )
* (((u
+ v)
`partial| (Z,(
<*1*>
^
<*1*>)))
/.
<*x, t*>)))
proof
let x,t be
Real;
assume
X4:
<*x, t*>
in Z;
then
X9: ((v
`partial| (Z,(
<*2*>
^
<*2*>)))
/.
<*x, t*>)
= ((c
^2 )
* ((v
`partial| (Z,(
<*1*>
^
<*1*>)))
/.
<*x, t*>)) by
B3;
Y1: (
dom ((u
+ v)
`partial| (Z,(
<*2*>
^
<*2*>))))
= Z by
DOMP1,
A0,
PDIFF_9: 75,
A2,
B2,
C2;
Y2: (
dom ((u
+ v)
`partial| (Z,(
<*1*>
^
<*1*>))))
= Z by
A0,
DOMP1,
C1,
PDIFF_9: 75,
A1,
B1;
Y3: (
dom (u
`partial| (Z,(
<*2*>
^
<*2*>))))
= Z by
DOMP1,
A2;
Y4: (
dom (v
`partial| (Z,(
<*2*>
^
<*2*>))))
= Z by
DOMP1,
B2;
Y5: (
dom (u
`partial| (Z,(
<*1*>
^
<*1*>))))
= Z by
DOMP1,
A1;
Y6: (
dom (v
`partial| (Z,(
<*1*>
^
<*1*>))))
= Z by
DOMP1,
B1;
thus (((u
+ v)
`partial| (Z,(
<*2*>
^
<*2*>)))
/.
<*x, t*>)
= (((u
+ v)
`partial| (Z,(
<*2*>
^
<*2*>)))
.
<*x, t*>) by
X4,
Y1,
PARTFUN1:def 6
.= (((u
`partial| (Z,(
<*2*>
^
<*2*>)))
.
<*x, t*>)
+ ((v
`partial| (Z,(
<*2*>
^
<*2*>)))
.
<*x, t*>)) by
X3,
X4,
Y1,
VALUED_1:def 1
.= (((u
`partial| (Z,(
<*2*>
^
<*2*>)))
/.
<*x, t*>)
+ ((v
`partial| (Z,(
<*2*>
^
<*2*>)))
.
<*x, t*>)) by
X4,
Y3,
PARTFUN1:def 6
.= (((u
`partial| (Z,(
<*2*>
^
<*2*>)))
/.
<*x, t*>)
+ ((v
`partial| (Z,(
<*2*>
^
<*2*>)))
/.
<*x, t*>)) by
X4,
Y4,
PARTFUN1:def 6
.= (((c
^2 )
* ((u
`partial| (Z,(
<*1*>
^
<*1*>)))
/.
<*x, t*>))
+ ((c
^2 )
* ((v
`partial| (Z,(
<*1*>
^
<*1*>)))
/.
<*x, t*>))) by
X4,
A3,
X9
.= ((c
^2 )
* (((u
`partial| (Z,(
<*1*>
^
<*1*>)))
/.
<*x, t*>)
+ ((v
`partial| (Z,(
<*1*>
^
<*1*>)))
/.
<*x, t*>)))
.= ((c
^2 )
* (((u
`partial| (Z,(
<*1*>
^
<*1*>)))
.
<*x, t*>)
+ ((v
`partial| (Z,(
<*1*>
^
<*1*>)))
/.
<*x, t*>))) by
Y5,
X4,
PARTFUN1:def 6
.= ((c
^2 )
* (((u
`partial| (Z,(
<*1*>
^
<*1*>)))
.
<*x, t*>)
+ ((v
`partial| (Z,(
<*1*>
^
<*1*>)))
.
<*x, t*>))) by
Y6,
X4,
PARTFUN1:def 6
.= ((c
^2 )
* (((u
+ v)
`partial| (Z,(
<*1*>
^
<*1*>)))
.
<*x, t*>)) by
X2,
X4,
Y2,
VALUED_1:def 1
.= ((c
^2 )
* (((u
+ v)
`partial| (Z,(
<*1*>
^
<*1*>)))
/.
<*x, t*>)) by
X4,
Y2,
PARTFUN1:def 6;
end;
hence thesis by
PDIFF_9: 75,
A1,
B1,
C1,
A0,
A2,
B2,
C2;
end;
theorem ::
PDIFFEQ1:23
for u be
Functional_Sequence of (
REAL 2),
REAL , Z be
Subset of (
REAL 2), c be
Real st Z is
open & for i be
Nat holds (Z
c= (
dom (u
. i)) & (
dom (u
. i))
= (
dom (u
.
0 )) & (u
. i)
is_partial_differentiable_on (Z,(
<*1*>
^
<*1*>)) & (u
. i)
is_partial_differentiable_on (Z,(
<*2*>
^
<*2*>)) & (for x,t be
Real st
<*x, t*>
in Z holds (((u
. i)
`partial| (Z,(
<*2*>
^
<*2*>)))
/.
<*x, t*>)
= ((c
^2 )
* (((u
. i)
`partial| (Z,(
<*1*>
^
<*1*>)))
/.
<*x, t*>)))) holds for i be
Nat holds (Z
c= (
dom ((
Partial_Sums u)
. i)) & ((
Partial_Sums u)
. i)
is_partial_differentiable_on (Z,(
<*1*>
^
<*1*>)) & ((
Partial_Sums u)
. i)
is_partial_differentiable_on (Z,(
<*2*>
^
<*2*>)) & (for x,t be
Real st
<*x, t*>
in Z holds ((((
Partial_Sums u)
. i)
`partial| (Z,(
<*2*>
^
<*2*>)))
/.
<*x, t*>)
= ((c
^2 )
* ((((
Partial_Sums u)
. i)
`partial| (Z,(
<*1*>
^
<*1*>)))
/.
<*x, t*>))))
proof
let u be
Functional_Sequence of (
REAL 2),
REAL , Z be
Subset of (
REAL 2), c be
Real;
assume that
AS1: Z is
open and
AS2: for i be
Nat holds (Z
c= (
dom (u
. i)) & (
dom (u
. i))
= (
dom (u
.
0 )) & (u
. i)
is_partial_differentiable_on (Z,(
<*1*>
^
<*1*>)) & (u
. i)
is_partial_differentiable_on (Z,(
<*2*>
^
<*2*>)) & (for x,t be
Real st
<*x, t*>
in Z holds (((u
. i)
`partial| (Z,(
<*2*>
^
<*2*>)))
/.
<*x, t*>)
= ((c
^2 )
* (((u
. i)
`partial| (Z,(
<*1*>
^
<*1*>)))
/.
<*x, t*>))));
defpred
X[
Nat] means (Z
c= (
dom ((
Partial_Sums u)
. $1)) & ((
Partial_Sums u)
. $1)
is_partial_differentiable_on (Z,(
<*1*>
^
<*1*>)) & ((
Partial_Sums u)
. $1)
is_partial_differentiable_on (Z,(
<*2*>
^
<*2*>)) & (for x,t be
Real st
<*x, t*>
in Z holds ((((
Partial_Sums u)
. $1)
`partial| (Z,(
<*2*>
^
<*2*>)))
/.
<*x, t*>)
= ((c
^2 )
* ((((
Partial_Sums u)
. $1)
`partial| (Z,(
<*1*>
^
<*1*>)))
/.
<*x, t*>))));
A9: for i be
Nat st
X[i] holds
X[(i
+ 1)]
proof
let i be
Nat;
set s = ((
Partial_Sums u)
. i);
set v = (u
. (i
+ 1));
assume that
A11: Z
c= (
dom s) and
A12: s
is_partial_differentiable_on (Z,(
<*1*>
^
<*1*>)) and
A13: s
is_partial_differentiable_on (Z,(
<*2*>
^
<*2*>)) and
A14: for x,t be
Real st
<*x, t*>
in Z holds ((s
`partial| (Z,(
<*2*>
^
<*2*>)))
/.
<*x, t*>)
= ((c
^2 )
* ((s
`partial| (Z,(
<*1*>
^
<*1*>)))
/.
<*x, t*>));
A15: ((
Partial_Sums u)
. (i
+ 1))
= (s
+ v) by
MESFUN9C:def 2;
Z
c= (
dom v) & (
dom v)
= (
dom (u
.
0 )) & v
is_partial_differentiable_on (Z,(
<*1*>
^
<*1*>)) & v
is_partial_differentiable_on (Z,(
<*2*>
^
<*2*>)) & (for x,t be
Real st
<*x, t*>
in Z holds ((v
`partial| (Z,(
<*2*>
^
<*2*>)))
/.
<*x, t*>)
= ((c
^2 )
* ((v
`partial| (Z,(
<*1*>
^
<*1*>)))
/.
<*x, t*>))) by
AS2;
hence thesis by
Th30Y,
A11,
A12,
A13,
A14,
AS1,
A15;
end;
((
Partial_Sums u)
.
0 )
= (u
.
0 ) by
MESFUN9C:def 2;
then
A10:
X[
0 ] by
AS2;
for n be
Nat holds
X[n] from
NAT_1:sch 2(
A10,
A9);
hence thesis;
end;