mesfun9c.miz
begin
reserve X for non
empty
set,
S for
SigmaField of X,
M for
sigma_Measure of S,
E for
Element of S,
F for
Functional_Sequence of X,
REAL ,
f for
PartFunc of X,
REAL ,
seq for
Real_Sequence,
n,m for
Nat,
x for
Element of X,
z,D for
set;
definition
let X,Y be
set, F be
Functional_Sequence of X, Y;
let D be
set;
::
MESFUN9C:def1
func F
|| D ->
Functional_Sequence of X, Y means
:
Def1: for n be
Nat holds (it
. n)
= ((F
. n)
| D);
existence
proof
deffunc
F(
Nat) = ((F
. $1)
| D);
ex G be
Functional_Sequence of X, Y st for n be
Nat holds (G
. n)
=
F(n) from
SEQFUNC:sch 1;
hence thesis;
end;
uniqueness
proof
let A,B be
Functional_Sequence of X, Y such that
A1: for n be
Nat holds (A
. n)
= ((F
. n)
| D) and
A2: for n be
Nat holds (B
. n)
= ((F
. n)
| D);
let x be
Element of
NAT ;
thus (A
. x)
= ((F
. x)
| D) by
A1
.= (B
. x) by
A2;
end;
end
theorem ::
MESFUN9C:1
Th1: x
in D & (F
# x) is
convergent implies ((F
|| D)
# x) is
convergent
proof
set G = (F
|| D);
assume
A1: x
in D;
A2: ((
R_EAL G)
# x)
= (G
# x) by
MESFUN7C: 1;
assume (F
# x) is
convergent;
then (
R_EAL (F
# x)) is
convergent_to_finite_number by
RINFSUP2: 14;
then
A3: ((
R_EAL F)
# x) is
convergent_to_finite_number by
MESFUN7C: 1;
for n be
Nat holds ((
R_EAL G)
. n)
= (((
R_EAL F)
. n)
| D) by
Def1;
then ((
R_EAL G)
# x) is
convergent_to_finite_number by
A1,
A3,
MESFUNC9: 12;
hence thesis by
A2,
RINFSUP2: 15;
end;
theorem ::
MESFUN9C:2
Th2: for X,Y,D be
set, F be
Functional_Sequence of X, Y st F is
with_the_same_dom holds (F
|| D) is
with_the_same_dom
proof
let X,Y,D be
set, F be
Functional_Sequence of X, Y;
assume
A1: F is
with_the_same_dom;
let n,m be
Nat;
set G = (F
|| D);
(G
. m)
= ((F
. m)
| D) by
Def1;
then
A2: (
dom (G
. m))
= ((
dom (F
. m))
/\ D) by
RELAT_1: 61;
(G
. n)
= ((F
. n)
| D) by
Def1;
then (
dom (G
. n))
= ((
dom (F
. n))
/\ D) by
RELAT_1: 61;
hence (
dom (G
. n))
= (
dom (G
. m)) by
A1,
A2;
end;
theorem ::
MESFUN9C:3
Th3: D
c= (
dom (F
.
0 )) & (for x be
Element of X st x
in D holds (F
# x) is
convergent) implies ((
lim F)
| D)
= (
lim (F
|| D))
proof
set G = (F
|| D);
assume that
A1: D
c= (
dom (F
.
0 )) and
A2: for x be
Element of X st x
in D holds (F
# x) is
convergent;
A3: for x be
Element of X st x
in D holds ((
R_EAL F)
# x) is
convergent
proof
let x be
Element of X;
assume x
in D;
then
A4: (F
# x) is
convergent by
A2;
((
R_EAL F)
# x)
= (F
# x) by
MESFUN7C: 1;
hence ((
R_EAL F)
# x) is
convergent by
A4,
RINFSUP2: 14;
end;
for n be
Nat holds ((
R_EAL G)
. n)
= (((
R_EAL F)
. n)
| D) by
Def1;
hence ((
lim F)
| D)
= (
lim G) by
A1,
A3,
MESFUNC9: 19;
end;
theorem ::
MESFUN9C:4
Th4: F is
with_the_same_dom & E
c= (
dom (F
.
0 )) & (for m be
Nat holds (F
. m) is E
-measurable) implies ((F
|| E)
. n) is E
-measurable
proof
set G = (F
|| E);
assume
A1: F is
with_the_same_dom & E
c= (
dom (F
.
0 ));
assume
A2: for m be
Nat holds (F
. m) is E
-measurable;
for m be
Nat holds ((
R_EAL F)
. m) is E
-measurable & ((
R_EAL G)
. m)
= (((
R_EAL F)
. m)
| E)
proof
let m be
Nat;
(F
. m) is E
-measurable by
A2;
then (
R_EAL (F
. m)) is E
-measurable;
hence ((
R_EAL F)
. m) is E
-measurable;
thus ((
R_EAL G)
. m)
= (((
R_EAL F)
. m)
| E) by
Def1;
end;
then (
R_EAL (G
. n)) is E
-measurable by
A1,
MESFUNC9: 20;
hence (G
. n) is E
-measurable;
end;
reserve i for
Element of
NAT ;
theorem ::
MESFUN9C:5
Th5: (
Partial_Sums (
R_EAL seq))
= (
R_EAL (
Partial_Sums seq))
proof
defpred
P[
Nat] means ((
Partial_Sums (
R_EAL seq))
. $1)
= ((
R_EAL (
Partial_Sums seq))
. $1);
A1: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume
P[k];
then ((
Partial_Sums (
R_EAL seq))
. (k
+ 1))
= (((
Partial_Sums seq)
. k)
+ (seq
. (k
+ 1))) by
MESFUNC9:def 1
.= (((
Partial_Sums seq)
. k)
+ (seq
. (k
+ 1)));
hence thesis by
SERIES_1:def 1;
end;
((
Partial_Sums (
R_EAL seq))
.
0 )
= (seq
.
0 ) by
MESFUNC9:def 1;
then
A2:
P[
0 ] by
SERIES_1:def 1;
for i be
Nat holds
P[i] from
NAT_1:sch 2(
A2,
A1);
hence thesis;
end;
theorem ::
MESFUN9C:6
Th6: (for x be
Element of X st x
in E holds (F
# x) is
summable) implies for x be
Element of X st x
in E holds ((F
|| E)
# x) is
summable
proof
set G = (F
|| E);
assume
A1: for x be
Element of X st x
in E holds (F
# x) is
summable;
let x be
Element of X;
assume
A2: x
in E;
for n be
Element of
NAT holds ((F
# x)
. n)
= ((G
# x)
. n)
proof
let n be
Element of
NAT ;
((F
# x)
. n)
= ((F
. n)
. x) by
SEQFUNC:def 10;
then ((F
# x)
. n)
= (((F
. n)
| E)
. x) by
A2,
FUNCT_1: 49;
then ((F
# x)
. n)
= ((G
. n)
. x) by
Def1;
hence ((F
# x)
. n)
= ((G
# x)
. n) by
SEQFUNC:def 10;
end;
then
A3: (
Partial_Sums (F
# x))
= (
Partial_Sums (G
# x)) by
FUNCT_2: 63;
(F
# x) is
summable by
A1,
A2;
then (
Partial_Sums (F
# x)) is
convergent;
hence (G
# x) is
summable by
A3;
end;
definition
let X be non
empty
set, F be
Functional_Sequence of X,
REAL ;
::
MESFUN9C:def2
func
Partial_Sums F ->
Functional_Sequence of X,
REAL means
:
Def2: (it
.
0 )
= (F
.
0 ) & for n be
Nat holds (it
. (n
+ 1))
= ((it
. n)
+ (F
. (n
+ 1)));
existence
proof
defpred
P[
Nat,
set,
set] means ( not $2 is
PartFunc of X,
REAL & $3
= (F
. $1)) or ($2 is
PartFunc of X,
REAL & for F2 be
PartFunc of X,
REAL st F2
= $2 holds $3
= (F2
+ (F
. ($1
+ 1))));
A1: for n be
Nat holds for x be
set holds ex y be
set st
P[n, x, y]
proof
let n be
Nat;
let x be
set;
now
assume x is
PartFunc of X,
REAL ;
then
reconsider G2 = x as
PartFunc of X,
REAL ;
take y = (G2
+ (F
. (n
+ 1)));
thus not x is
PartFunc of X,
REAL & y
= (F
. n) or (x is
PartFunc of X,
REAL & for F2 be
PartFunc of X,
REAL st F2
= x holds y
= (F2
+ (F
. (n
+ 1))));
end;
hence thesis;
end;
consider IT be
Function such that
A2: (
dom IT)
=
NAT & (IT
.
0 )
= (F
.
0 ) & for n be
Nat holds
P[n, (IT
. n), (IT
. (n
+ 1))] from
RECDEF_1:sch 1(
A1);
now
defpred
IND[
Nat] means (IT
. $1) is
PartFunc of X,
REAL ;
let f be
object;
assume f
in (
rng IT);
then
consider m be
object such that
A3: m
in (
dom IT) and
A4: f
= (IT
. m) by
FUNCT_1:def 3;
reconsider m as
Element of
NAT by
A2,
A3;
A5: for n be
Nat st
IND[n] holds
IND[(n
+ 1)]
proof
let n be
Nat;
assume
IND[n];
then
reconsider F2 = (IT
. n) as
PartFunc of X,
REAL ;
(IT
. (n
+ 1))
= (F2
+ (F
. (n
+ 1))) by
A2;
hence
IND[(n
+ 1)];
end;
A6:
IND[
0 ] by
A2;
for n be
Nat holds
IND[n] from
NAT_1:sch 2(
A6,
A5);
then (IT
. m) is
PartFunc of X,
REAL ;
hence f
in (
PFuncs (X,
REAL )) by
A4,
PARTFUN1: 45;
end;
then (
rng IT)
c= (
PFuncs (X,
REAL )) by
TARSKI:def 3;
then
reconsider IT as
Functional_Sequence of X,
REAL by
A2,
FUNCT_2:def 1,
RELSET_1: 4;
take IT;
thus thesis by
A2;
end;
uniqueness
proof
let PS1,PS2 be
Functional_Sequence of X,
REAL ;
assume that
A7: (PS1
.
0 )
= (F
.
0 ) and
A8: for n be
Nat holds (PS1
. (n
+ 1))
= ((PS1
. n)
+ (F
. (n
+ 1))) and
A9: (PS2
.
0 )
= (F
.
0 ) and
A10: for n be
Nat holds (PS2
. (n
+ 1))
= ((PS2
. n)
+ (F
. (n
+ 1)));
defpred
IND[
Nat] means (PS1
. $1)
= (PS2
. $1);
A11: for n be
Nat st
IND[n] holds
IND[(n
+ 1)]
proof
let n be
Nat;
assume
A12:
IND[n];
(PS1
. (n
+ 1))
= ((PS1
. n)
+ (F
. (n
+ 1))) by
A8;
hence (PS1
. (n
+ 1))
= (PS2
. (n
+ 1)) by
A10,
A12;
end;
A13:
IND[
0 ] by
A7,
A9;
for n be
Nat holds
IND[n] from
NAT_1:sch 2(
A13,
A11);
then for m be
Element of
NAT holds (PS1
. m)
= (PS2
. m);
hence thesis;
end;
end
theorem ::
MESFUN9C:7
Th7: (
Partial_Sums (
R_EAL F))
= (
R_EAL (
Partial_Sums F))
proof
defpred
P[
Nat] means ((
Partial_Sums (
R_EAL F))
. $1)
= ((
R_EAL (
Partial_Sums F))
. $1);
A1: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume
P[k];
then ((
Partial_Sums (
R_EAL F))
. (k
+ 1))
= ((
R_EAL ((
Partial_Sums F)
. k))
+ (
R_EAL (F
. (k
+ 1)))) by
MESFUNC9:def 4
.= (
R_EAL (((
Partial_Sums F)
. k)
+ (F
. (k
+ 1)))) by
MESFUNC6: 23;
hence thesis by
Def2;
end;
((
Partial_Sums (
R_EAL F))
.
0 )
= ((
R_EAL F)
.
0 ) by
MESFUNC9:def 4
.= (
R_EAL ((
Partial_Sums F)
.
0 )) by
Def2;
then
A2:
P[
0 ];
for i be
Nat holds
P[i] from
NAT_1:sch 2(
A2,
A1);
hence thesis;
end;
theorem ::
MESFUN9C:8
Th8: z
in (
dom ((
Partial_Sums F)
. n)) & m
<= n implies z
in (
dom ((
Partial_Sums F)
. m)) & z
in (
dom (F
. m))
proof
((
Partial_Sums F)
. n)
= ((
R_EAL (
Partial_Sums F))
. n);
then
A1: ((
Partial_Sums F)
. n)
= ((
Partial_Sums (
R_EAL F))
. n) by
Th7;
((
Partial_Sums (
R_EAL F))
. m)
= ((
R_EAL (
Partial_Sums F))
. m) by
Th7;
hence thesis by
A1,
MESFUNC9: 22;
end;
theorem ::
MESFUN9C:9
Th9: (
R_EAL F) is
additive
proof
now
let n,m be
Nat;
assume n
<> m;
let x be
set;
assume x
in ((
dom ((
R_EAL F)
. n))
/\ (
dom ((
R_EAL F)
. m)));
((
R_EAL F)
. n)
= (
R_EAL (F
. n));
hence (((
R_EAL F)
. n)
. x)
<>
+infty or (((
R_EAL F)
. m)
. x)
<>
-infty ;
end;
hence thesis by
MESFUNC9:def 5;
end;
theorem ::
MESFUN9C:10
Th10: (
dom ((
Partial_Sums F)
. n))
= (
meet { (
dom (F
. k)) where k be
Element of
NAT : k
<= n })
proof
(
dom ((
Partial_Sums (
R_EAL F))
. n))
= (
meet { (
dom ((
R_EAL F)
. k)) where k be
Element of
NAT : k
<= n }) & ((
Partial_Sums (
R_EAL F))
. n)
= ((
R_EAL (
Partial_Sums F))
. n) by
Th7,
Th9,
MESFUNC9: 28;
hence thesis;
end;
theorem ::
MESFUN9C:11
Th11: F is
with_the_same_dom implies (
dom ((
Partial_Sums F)
. n))
= (
dom (F
.
0 ))
proof
assume F is
with_the_same_dom;
then (
dom ((
Partial_Sums (
R_EAL F))
. n))
= (
dom ((
R_EAL F)
.
0 )) by
Th9,
MESFUNC9: 29;
then (
dom ((
R_EAL (
Partial_Sums F))
. n))
= (
dom ((
R_EAL F)
.
0 )) by
Th7;
hence thesis;
end;
theorem ::
MESFUN9C:12
Th12: F is
with_the_same_dom & D
c= (
dom (F
.
0 )) & x
in D implies ((
Partial_Sums (F
# x))
. n)
= (((
Partial_Sums F)
# x)
. n)
proof
assume F is
with_the_same_dom & D
c= (
dom (F
.
0 )) & x
in D;
then ((
Partial_Sums ((
R_EAL F)
# x))
. n)
= (((
Partial_Sums (
R_EAL F))
# x)
. n) by
Th9,
MESFUNC9: 32;
then ((
Partial_Sums (
R_EAL (F
# x)))
. n)
= (((
Partial_Sums (
R_EAL F))
# x)
. n) by
MESFUN7C: 1;
then ((
R_EAL (
Partial_Sums (F
# x)))
. n)
= (((
Partial_Sums (
R_EAL F))
# x)
. n) by
Th5;
then ((
Partial_Sums (F
# x))
. n)
= (((
R_EAL (
Partial_Sums F))
# x)
. n) by
Th7;
hence thesis by
MESFUN7C: 1;
end;
theorem ::
MESFUN9C:13
Th13: F is
with_the_same_dom & D
c= (
dom (F
.
0 )) & x
in D implies ((
Partial_Sums (F
# x)) is
convergent iff ((
Partial_Sums F)
# x) is
convergent)
proof
assume
A1: F is
with_the_same_dom & D
c= (
dom (F
.
0 )) & x
in D;
A2: (
R_EAL (F
# x))
= ((
R_EAL F)
# x) by
MESFUN7C: 1;
(
Partial_Sums (
R_EAL F))
= (
R_EAL (
Partial_Sums F)) by
Th7;
then
A3: ((
Partial_Sums (
R_EAL F))
# x)
= ((
Partial_Sums F)
# x) by
MESFUN7C: 1;
A4: (
Partial_Sums (F
# x))
= (
R_EAL (
Partial_Sums (F
# x)))
.= (
Partial_Sums (
R_EAL (F
# x))) by
Th5;
A5: (
R_EAL F) is
additive by
Th9;
hereby
assume (
Partial_Sums (F
# x)) is
convergent;
then (
Partial_Sums (
R_EAL (F
# x))) is
convergent_to_finite_number by
A4,
RINFSUP2: 14;
then ((
Partial_Sums (
R_EAL F))
# x) is
convergent_to_finite_number by
A1,
A5,
A2,
MESFUNC9: 33;
hence ((
Partial_Sums F)
# x) is
convergent by
A3,
RINFSUP2: 15;
end;
assume ((
Partial_Sums F)
# x) is
convergent;
then ((
Partial_Sums (
R_EAL F))
# x) is
convergent_to_finite_number by
A3,
RINFSUP2: 14;
then (
Partial_Sums ((
R_EAL F)
# x)) is
convergent_to_finite_number by
A1,
A5,
MESFUNC9: 33;
hence (
Partial_Sums (F
# x)) is
convergent by
A4,
A2,
RINFSUP2: 15;
end;
theorem ::
MESFUN9C:14
Th14: F is
with_the_same_dom & (
dom f)
c= (
dom (F
.
0 )) & x
in (
dom f) & (f
. x)
= (
Sum (F
# x)) implies (f
. x)
= (
lim ((
Partial_Sums F)
# x))
proof
assume that
A1: F is
with_the_same_dom & (
dom f)
c= (
dom (F
.
0 )) & x
in (
dom f) and
A2: (f
. x)
= (
Sum (F
# x));
A3: (
dom (
Partial_Sums (F
# x)))
=
NAT & (
dom ((
Partial_Sums F)
# x))
=
NAT by
FUNCT_2:def 1;
for n be
object st n
in
NAT holds ((
Partial_Sums (F
# x))
. n)
= (((
Partial_Sums F)
# x)
. n) by
A1,
Th12;
hence (f
. x)
= (
lim ((
Partial_Sums F)
# x)) by
A2,
A3,
FUNCT_1: 2;
end;
theorem ::
MESFUN9C:15
Th15: (for m be
Nat holds (F
. m)
is_simple_func_in S) implies ((
Partial_Sums F)
. n)
is_simple_func_in S
proof
assume
A1: for m be
Nat holds (F
. m)
is_simple_func_in S;
for m be
Nat holds ((
R_EAL F)
. m)
is_simple_func_in S
proof
let m be
Nat;
(F
. m)
is_simple_func_in S by
A1;
then (
R_EAL (F
. m))
is_simple_func_in S by
MESFUNC6: 49;
hence ((
R_EAL F)
. m)
is_simple_func_in S;
end;
then ((
Partial_Sums (
R_EAL F))
. n)
is_simple_func_in S by
MESFUNC9: 35;
then ((
R_EAL (
Partial_Sums F))
. n)
is_simple_func_in S by
Th7;
then (
R_EAL ((
Partial_Sums F)
. n))
is_simple_func_in S;
hence ((
Partial_Sums F)
. n)
is_simple_func_in S by
MESFUNC6: 49;
end;
theorem ::
MESFUN9C:16
Th16: (for n be
Nat holds (F
. n) is E
-measurable) implies ((
Partial_Sums F)
. m) is E
-measurable
proof
set PF = (
Partial_Sums F);
defpred
P[
Nat] means (PF
. $1) is E
-measurable;
assume
A1: for n be
Nat holds (F
. n) is E
-measurable;
A2: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume
A3:
P[k];
(F
. (k
+ 1)) is E
-measurable by
A1;
then ((PF
. k)
+ (F
. (k
+ 1))) is E
-measurable by
A3,
MESFUNC6: 26;
hence thesis by
Def2;
end;
(PF
.
0 )
= (F
.
0 ) by
Def2;
then
A4:
P[
0 ] by
A1;
for k be
Nat holds
P[k] from
NAT_1:sch 2(
A4,
A2);
hence ((
Partial_Sums F)
. m) is E
-measurable;
end;
theorem ::
MESFUN9C:17
Th17: for X be non
empty
set, F be
Functional_Sequence of X,
REAL st F is
with_the_same_dom holds (
Partial_Sums F) is
with_the_same_dom
proof
let X be non
empty
set, F be
Functional_Sequence of X,
REAL ;
assume
A1: F is
with_the_same_dom;
let n,m be
Nat;
(
dom ((
Partial_Sums F)
. n))
= (
dom (F
.
0 )) by
A1,
Th11;
hence (
dom ((
Partial_Sums F)
. n))
= (
dom ((
Partial_Sums F)
. m)) by
A1,
Th11;
end;
theorem ::
MESFUN9C:18
Th18: (
dom (F
.
0 ))
= E & F is
with_the_same_dom & (for n be
Nat holds ((
Partial_Sums F)
. n) is E
-measurable) & (for x be
Element of X st x
in E holds (F
# x) is
summable) implies (
lim (
Partial_Sums F)) is E
-measurable
proof
assume that
A1: (
dom (F
.
0 ))
= E & F is
with_the_same_dom and
A2: for n be
Nat holds ((
Partial_Sums F)
. n) is E
-measurable and
A3: for x be
Element of X st x
in E holds (F
# x) is
summable;
A4:
now
let x be
Element of X;
assume
A5: x
in E;
then (F
# x) is
summable by
A3;
then (
Partial_Sums (F
# x)) is
convergent;
hence ((
Partial_Sums F)
# x) is
convergent by
A1,
A5,
Th13;
end;
(
dom ((
Partial_Sums F)
.
0 ))
= E & (
Partial_Sums F) is
with_the_same_dom
Functional_Sequence of X,
REAL by
A1,
Th11,
Th17;
hence thesis by
A2,
A4,
MESFUN7C: 21;
end;
theorem ::
MESFUN9C:19
Th19: (for n be
Nat holds (F
. n)
is_integrable_on M) implies for m be
Nat holds ((
Partial_Sums F)
. m)
is_integrable_on M
proof
assume
A1: for n be
Nat holds (F
. n)
is_integrable_on M;
let m be
Nat;
for n be
Nat holds ((
R_EAL F)
. n)
is_integrable_on M
proof
let n be
Nat;
(F
. n)
is_integrable_on M by
A1;
then (
R_EAL (F
. n))
is_integrable_on M;
hence ((
R_EAL F)
. n)
is_integrable_on M;
end;
then ((
Partial_Sums (
R_EAL F))
. m)
is_integrable_on M by
MESFUNC9: 45;
then ((
R_EAL (
Partial_Sums F))
. m)
is_integrable_on M by
Th7;
then (
R_EAL ((
Partial_Sums F)
. m))
is_integrable_on M;
hence ((
Partial_Sums F)
. m)
is_integrable_on M;
end;
begin
reserve F for
Functional_Sequence of X,
COMPLEX ,
f for
PartFunc of X,
COMPLEX ,
A for
set;
theorem ::
MESFUN9C:20
Th20: ((
Re f)
| A)
= (
Re (f
| A)) & ((
Im f)
| A)
= (
Im (f
| A))
proof
(
dom ((
Re f)
| A))
= ((
dom (
Re f))
/\ A) by
RELAT_1: 61
.= ((
dom f)
/\ A) by
COMSEQ_3:def 3;
then
A1: (
dom ((
Re f)
| A))
= (
dom (f
| A)) by
RELAT_1: 61
.= (
dom (
Re (f
| A))) by
COMSEQ_3:def 3;
now
let x be
object;
assume
A2: x
in (
dom ((
Re f)
| A));
then
A3: x
in ((
dom (
Re f))
/\ A) by
RELAT_1: 61;
then
A4: x
in (
dom (
Re f)) by
XBOOLE_0:def 4;
A5: x
in A by
A3,
XBOOLE_0:def 4;
thus ((
Re (f
| A))
. x)
= (
Re ((f
| A)
. x)) by
A1,
A2,
COMSEQ_3:def 3
.= (
Re (f
. x)) by
A5,
FUNCT_1: 49
.= ((
Re f)
. x) by
A4,
COMSEQ_3:def 3
.= (((
Re f)
| A)
. x) by
A5,
FUNCT_1: 49;
end;
hence ((
Re f)
| A)
= (
Re (f
| A)) by
A1,
FUNCT_1: 2;
(
dom ((
Im f)
| A))
= ((
dom (
Im f))
/\ A) by
RELAT_1: 61;
then (
dom ((
Im f)
| A))
= ((
dom f)
/\ A) by
COMSEQ_3:def 4;
then
A6: (
dom ((
Im f)
| A))
= (
dom (f
| A)) by
RELAT_1: 61
.= (
dom (
Im (f
| A))) by
COMSEQ_3:def 4;
now
let x be
object;
assume
A7: x
in (
dom ((
Im f)
| A));
then
A8: x
in ((
dom (
Im f))
/\ A) by
RELAT_1: 61;
then
A9: x
in (
dom (
Im f)) by
XBOOLE_0:def 4;
A10: x
in A by
A8,
XBOOLE_0:def 4;
thus ((
Im (f
| A))
. x)
= (
Im ((f
| A)
. x)) by
A6,
A7,
COMSEQ_3:def 4
.= (
Im (f
. x)) by
A10,
FUNCT_1: 49
.= ((
Im f)
. x) by
A9,
COMSEQ_3:def 4
.= (((
Im f)
| A)
. x) by
A10,
FUNCT_1: 49;
end;
hence ((
Im f)
| A)
= (
Im (f
| A)) by
A6,
FUNCT_1: 2;
end;
Lm1: for n be
Nat holds ((
Re (F
|| D))
. n)
= (((
Re F)
. n)
| D) & ((
Im (F
|| D))
. n)
= (((
Im F)
. n)
| D)
proof
set G = (F
|| D);
let n be
Nat;
(
Re ((F
. n)
| D))
= ((
Re (F
. n))
| D) by
Th20;
then
A1: (
Re ((F
. n)
| D))
= (((
Re F)
. n)
| D) by
MESFUN7C: 24;
(
Im ((F
. n)
| D))
= ((
Im (F
. n))
| D) by
Th20;
then
A2: (
Im ((F
. n)
| D))
= (((
Im F)
. n)
| D) by
MESFUN7C: 24;
(
Re (G
. n))
= ((
Re G)
. n) & (
Im (G
. n))
= ((
Im G)
. n) by
MESFUN7C: 24;
hence ((
Re G)
. n)
= (((
Re F)
. n)
| D) & ((
Im G)
. n)
= (((
Im F)
. n)
| D) by
A1,
A2,
Def1;
end;
theorem ::
MESFUN9C:21
Th21: (
Re (F
|| D))
= ((
Re F)
|| D)
proof
let n be
Element of
NAT ;
((
Re (F
|| D))
. n)
= (((
Re F)
. n)
| D) by
Lm1;
hence thesis by
Def1;
end;
theorem ::
MESFUN9C:22
Th22: (
Im (F
|| D))
= ((
Im F)
|| D)
proof
let n be
Element of
NAT ;
((
Im (F
|| D))
. n)
= (((
Im F)
. n)
| D) by
Lm1;
hence thesis by
Def1;
end;
theorem ::
MESFUN9C:23
Th23: F is
with_the_same_dom & D
c= (
dom (F
.
0 )) & x
in D implies ((F
# x) is
convergent implies ((F
|| D)
# x) is
convergent)
proof
set G = (F
|| D);
assume that
A1: F is
with_the_same_dom and
A2: D
c= (
dom (F
.
0 )) and
A3: x
in D;
(
Re G)
= ((
Re F)
|| D) by
Th21;
then
A4: ((
Re F)
# x) is
convergent implies ((
Re G)
# x) is
convergent by
A3,
Th1;
(
dom ((
Re F)
.
0 ))
= (
dom (F
.
0 )) by
MESFUN7C:def 11;
then (
dom (((
Re F)
.
0 )
| D))
= D by
A2,
RELAT_1: 62;
then (
dom ((
Re G)
.
0 ))
= D by
Lm1;
then
A5: (
dom (G
.
0 ))
= D by
MESFUN7C:def 11;
G is
with_the_same_dom by
A1,
Th2;
then
A6: ((
Re G)
# x)
= (
Re (G
# x)) & ((
Im G)
# x)
= (
Im (G
# x)) by
A3,
A5,
MESFUN7C: 23;
(
Im G)
= ((
Im F)
|| D) by
Th22;
then
A7: ((
Im F)
# x) is
convergent implies ((
Im G)
# x) is
convergent by
A3,
Th1;
((
Re F)
# x)
= (
Re (F
# x)) & ((
Im F)
# x)
= (
Im (F
# x)) by
A1,
A2,
A3,
MESFUN7C: 23;
hence thesis by
A4,
A7,
A6,
COMSEQ_3: 42;
end;
theorem ::
MESFUN9C:24
Th24: F is
with_the_same_dom iff (
Re F) is
with_the_same_dom
proof
thus F is
with_the_same_dom implies (
Re F) is
with_the_same_dom;
assume
A1: (
Re F) is
with_the_same_dom;
now
let n,m be
Nat;
(
dom ((
Re F)
. n))
= (
dom (F
. n)) & (
dom ((
Re F)
. m))
= (
dom (F
. m)) by
MESFUN7C:def 11;
hence (
dom (F
. n))
= (
dom (F
. m)) by
A1;
end;
hence F is
with_the_same_dom;
end;
theorem ::
MESFUN9C:25
Th25: (
Re F) is
with_the_same_dom iff (
Im F) is
with_the_same_dom
proof
hereby
assume (
Re F) is
with_the_same_dom;
then F is
with_the_same_dom by
Th24;
then for n,m be
Nat holds (
dom ((
Im F)
. n))
= (
dom ((
Im F)
. m)) by
MESFUN7C:def 12,
MESFUNC8:def 2;
hence (
Im F) is
with_the_same_dom;
end;
assume
A1: (
Im F) is
with_the_same_dom;
now
let n,m be
Nat;
(
dom ((
Im F)
. n))
= (
dom (F
. n)) & (
dom ((
Im F)
. m))
= (
dom (F
. m)) by
MESFUN7C:def 12;
hence (
dom (F
. n))
= (
dom (F
. m)) by
A1;
end;
then F is
with_the_same_dom;
hence (
Re F) is
with_the_same_dom;
end;
theorem ::
MESFUN9C:26
F is
with_the_same_dom & D
= (
dom (F
.
0 )) & (for x be
Element of X st x
in D holds (F
# x) is
convergent) implies ((
lim F)
| D)
= (
lim (F
|| D))
proof
set G = (F
|| D);
assume that
A1: F is
with_the_same_dom and
A2: D
= (
dom (F
.
0 )) and
A3: for x be
Element of X st x
in D holds (F
# x) is
convergent;
A4: (
Re G)
= ((
Re F)
|| D) by
Th21;
A5:
now
let x be
Element of X;
(
dom ((F
.
0 )
| D))
= D by
A2,
RELAT_1: 62;
then
A6: (
dom (G
.
0 ))
= D by
Def1;
assume
A7: x
in (
dom (G
.
0 ));
then (F
# x) is
convergent by
A3,
A6;
hence (G
# x) is
convergent by
A1,
A2,
A7,
A6,
Th23;
end;
A8: for x be
Element of X st x
in D holds ((
Re F)
# x) is
convergent
proof
let x be
Element of X;
assume
A9: x
in D;
then (F
# x) is
convergent
Complex_Sequence by
A3;
then (
Re (F
# x)) is
convergent;
hence ((
Re F)
# x) is
convergent by
A1,
A2,
A9,
MESFUN7C: 23;
end;
D
c= (
dom ((
Re F)
.
0 )) by
A2,
MESFUN7C:def 11;
then ((
lim (
Re F))
| D)
= (
lim (
Re G)) by
A4,
A8,
Th3;
then
A10: ((
Re (
lim F))
| D)
= (
lim (
Re G)) by
A1,
A2,
A3,
MESFUN7C: 25;
A11: G is
with_the_same_dom by
A1,
Th2;
then (
lim (
Re G))
= (
Re (
lim G)) by
A5,
MESFUN7C: 25;
then
A12: (
Re ((
lim F)
| D))
= (
Re (
lim G)) by
A10,
Th20;
A13: for x be
Element of X st x
in D holds ((
Im F)
# x) is
convergent
proof
let x be
Element of X;
assume
A14: x
in D;
then (F
# x) is
convergent
Complex_Sequence by
A3;
then (
Im (F
# x)) is
convergent;
hence ((
Im F)
# x) is
convergent by
A1,
A2,
A14,
MESFUN7C: 23;
end;
A15: (
Im G)
= ((
Im F)
|| D) by
Th22;
D
c= (
dom ((
Im F)
.
0 )) by
A2,
MESFUN7C:def 12;
then ((
lim (
Im F))
| D)
= (
lim (
Im G)) by
A15,
A13,
Th3;
then
A16: ((
Im (
lim F))
| D)
= (
lim (
Im G)) by
A1,
A2,
A3,
MESFUN7C: 25;
(
lim (
Im G))
= (
Im (
lim G)) by
A11,
A5,
MESFUN7C: 25;
then
A17: (
Im ((
lim F)
| D))
= (
Im (
lim G)) by
A16,
Th20;
thus (
lim G)
= ((
Re (
lim G))
+ (
<i>
(#) (
Im (
lim G)))) by
MESFUN6C: 8
.= ((
lim F)
| D) by
A12,
A17,
MESFUN6C: 8;
end;
theorem ::
MESFUN9C:27
F is
with_the_same_dom & E
c= (
dom (F
.
0 )) & (for m be
Nat holds (F
. m) is E
-measurable) implies ((F
|| E)
. n) is E
-measurable
proof
set G = (F
|| E);
A1: (
Re G)
= ((
Re F)
|| E) by
Th21;
A2: (
Im G)
= ((
Im F)
|| E) by
Th22;
assume F is
with_the_same_dom;
then
A3: (
Re F) is
with_the_same_dom;
then
A4: (
Im F) is
with_the_same_dom by
Th25;
assume
A5: E
c= (
dom (F
.
0 ));
assume
A6: for m be
Nat holds (F
. m) is E
-measurable;
A7: for m be
Nat holds ((
Re F)
. m) is E
-measurable & ((
Im F)
. m) is E
-measurable
proof
let m be
Nat;
(F
. m) is E
-measurable by
A6;
then (
Re (F
. m)) is E
-measurable & (
Im (F
. m)) is E
-measurable by
MESFUN6C:def 1;
hence thesis by
MESFUN7C: 24;
end;
E
c= (
dom ((
Im F)
.
0 )) by
A5,
MESFUN7C:def 12;
then ((
Im G)
. n) is E
-measurable by
A4,
A2,
A7,
Th4;
then
A8: (
Im (G
. n)) is E
-measurable by
MESFUN7C: 24;
E
c= (
dom ((
Re F)
.
0 )) by
A5,
MESFUN7C:def 11;
then ((
Re G)
. n) is E
-measurable by
A3,
A1,
A7,
Th4;
then (
Re (G
. n)) is E
-measurable by
MESFUN7C: 24;
hence thesis by
A8,
MESFUN6C:def 1;
end;
theorem ::
MESFUN9C:28
E
c= (
dom (F
.
0 )) & F is
with_the_same_dom & (for x be
Element of X st x
in E holds (F
# x) is
summable) implies for x be
Element of X st x
in E holds ((F
|| E)
# x) is
summable
proof
set G = (F
|| E);
assume that
A1: E
c= (
dom (F
.
0 )) and
A2: F is
with_the_same_dom and
A3: for x be
Element of X st x
in E holds (F
# x) is
summable;
A4: G is
with_the_same_dom by
A2,
Th2;
A5: for x be
Element of X st x
in E holds ((
Im F)
# x) is
summable
proof
let x be
Element of X;
assume
A6: x
in E;
then (F
# x) is
summable by
A3;
then (
Im (F
# x)) is
summable;
hence ((
Im F)
# x) is
summable by
A1,
A2,
A6,
MESFUN7C: 23;
end;
A7: for x be
Element of X st x
in E holds ((
Re F)
# x) is
summable
proof
let x be
Element of X;
assume
A8: x
in E;
then (F
# x) is
summable by
A3;
then (
Re (F
# x)) is
summable;
hence ((
Re F)
# x) is
summable by
A1,
A2,
A8,
MESFUN7C: 23;
end;
hereby
let x be
Element of X;
assume
A9: x
in E;
(G
.
0 )
= ((F
.
0 )
| E) by
Def1;
then
A10: x
in (
dom (G
.
0 )) by
A1,
A9,
RELAT_1: 62;
(
Im G)
= ((
Im F)
|| E) by
Th22;
then ((
Im G)
# x) is
summable by
A5,
A9,
Th6;
then
A11: (
Im (G
# x)) is
summable by
A4,
A10,
MESFUN7C: 23;
(
Re G)
= ((
Re F)
|| E) by
Th21;
then ((
Re G)
# x) is
summable by
A7,
A9,
Th6;
then (
Re (G
# x)) is
summable by
A4,
A10,
MESFUN7C: 23;
hence (G
# x) is
summable by
A11,
COMSEQ_3: 57;
end;
end;
definition
let X be non
empty
set, F be
Functional_Sequence of X,
COMPLEX ;
::
MESFUN9C:def3
func
Partial_Sums F ->
Functional_Sequence of X,
COMPLEX means
:
Def3: (it
.
0 )
= (F
.
0 ) & for n be
Nat holds (it
. (n
+ 1))
= ((it
. n)
+ (F
. (n
+ 1)));
existence
proof
defpred
P[
Nat,
set,
set] means ( not $2 is
PartFunc of X,
COMPLEX & $3
= (F
. $1)) or ($2 is
PartFunc of X,
COMPLEX & for F2 be
PartFunc of X,
COMPLEX st F2
= $2 holds $3
= (F2
+ (F
. ($1
+ 1))));
A1: for n be
Nat, x be
set holds ex y be
set st
P[n, x, y]
proof
let n be
Nat;
let x be
set;
now
assume x is
PartFunc of X,
COMPLEX ;
then
reconsider G2 = x as
PartFunc of X,
COMPLEX ;
take y = (G2
+ (F
. (n
+ 1)));
thus not x is
PartFunc of X,
COMPLEX & y
= (F
. n) or (x is
PartFunc of X,
COMPLEX & for F2 be
PartFunc of X,
COMPLEX st F2
= x holds y
= (F2
+ (F
. (n
+ 1))));
end;
hence thesis;
end;
consider IT be
Function such that
A2: (
dom IT)
=
NAT & (IT
.
0 )
= (F
.
0 ) & for n be
Nat holds
P[n, (IT
. n), (IT
. (n
+ 1))] from
RECDEF_1:sch 1(
A1);
now
defpred
IND[
Nat] means (IT
. $1) is
PartFunc of X,
COMPLEX ;
let f be
object;
assume f
in (
rng IT);
then
consider m be
object such that
A3: m
in (
dom IT) and
A4: f
= (IT
. m) by
FUNCT_1:def 3;
reconsider m as
Element of
NAT by
A2,
A3;
A5: for n be
Nat st
IND[n] holds
IND[(n
+ 1)]
proof
let n be
Nat;
assume
IND[n];
then
reconsider F2 = (IT
. n) as
PartFunc of X,
COMPLEX ;
(IT
. (n
+ 1))
= (F2
+ (F
. (n
+ 1))) by
A2;
hence
IND[(n
+ 1)];
end;
A6:
IND[
0 ] by
A2;
for n be
Nat holds
IND[n] from
NAT_1:sch 2(
A6,
A5);
then (IT
. m) is
PartFunc of X,
COMPLEX ;
hence f
in (
PFuncs (X,
COMPLEX )) by
A4,
PARTFUN1: 45;
end;
then (
rng IT)
c= (
PFuncs (X,
COMPLEX )) by
TARSKI:def 3;
then
reconsider IT as
Functional_Sequence of X,
COMPLEX by
A2,
FUNCT_2:def 1,
RELSET_1: 4;
take IT;
thus thesis by
A2;
end;
uniqueness
proof
let PS1,PS2 be
Functional_Sequence of X,
COMPLEX ;
assume that
A7: (PS1
.
0 )
= (F
.
0 ) and
A8: for n be
Nat holds (PS1
. (n
+ 1))
= ((PS1
. n)
+ (F
. (n
+ 1))) and
A9: (PS2
.
0 )
= (F
.
0 ) and
A10: for n be
Nat holds (PS2
. (n
+ 1))
= ((PS2
. n)
+ (F
. (n
+ 1)));
defpred
IND[
Nat] means (PS1
. $1)
= (PS2
. $1);
A11: for n be
Nat st
IND[n] holds
IND[(n
+ 1)]
proof
let n be
Nat;
assume
A12:
IND[n];
(PS1
. (n
+ 1))
= ((PS1
. n)
+ (F
. (n
+ 1))) by
A8;
hence (PS1
. (n
+ 1))
= (PS2
. (n
+ 1)) by
A10,
A12;
end;
A13:
IND[
0 ] by
A7,
A9;
for n be
Nat holds
IND[n] from
NAT_1:sch 2(
A13,
A11);
then for m be
Element of
NAT holds (PS1
. m)
= (PS2
. m);
hence thesis;
end;
end
theorem ::
MESFUN9C:29
Th29: (
Partial_Sums (
Re F))
= (
Re (
Partial_Sums F)) & (
Partial_Sums (
Im F))
= (
Im (
Partial_Sums F))
proof
defpred
P[
Nat] means ((
Partial_Sums (
Re F))
. $1)
= ((
Re (
Partial_Sums F))
. $1);
defpred
R[
Nat] means ((
Partial_Sums (
Im F))
. $1)
= ((
Im (
Partial_Sums F))
. $1);
A1: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume
P[k];
then ((
Partial_Sums (
Re F))
. (k
+ 1))
= (((
Re (
Partial_Sums F))
. k)
+ ((
Re F)
. (k
+ 1))) by
Def2
.= (((
Re (
Partial_Sums F))
. k)
+ (
Re (F
. (k
+ 1)))) by
MESFUN7C: 24
.= ((
Re ((
Partial_Sums F)
. k))
+ (
Re (F
. (k
+ 1)))) by
MESFUN7C: 24
.= (
Re (((
Partial_Sums F)
. k)
+ (F
. (k
+ 1)))) by
MESFUN6C: 5
.= (
Re ((
Partial_Sums F)
. (k
+ 1))) by
Def3;
hence thesis by
MESFUN7C: 24;
end;
A2: for k be
Nat st
R[k] holds
R[(k
+ 1)]
proof
let k be
Nat;
assume
R[k];
then ((
Partial_Sums (
Im F))
. (k
+ 1))
= (((
Im (
Partial_Sums F))
. k)
+ ((
Im F)
. (k
+ 1))) by
Def2
.= (((
Im (
Partial_Sums F))
. k)
+ (
Im (F
. (k
+ 1)))) by
MESFUN7C: 24
.= ((
Im ((
Partial_Sums F)
. k))
+ (
Im (F
. (k
+ 1)))) by
MESFUN7C: 24
.= (
Im (((
Partial_Sums F)
. k)
+ (F
. (k
+ 1)))) by
MESFUN6C: 5
.= (
Im ((
Partial_Sums F)
. (k
+ 1))) by
Def3;
hence thesis by
MESFUN7C: 24;
end;
((
Partial_Sums (
Im F))
.
0 )
= ((
Im F)
.
0 ) by
Def2
.= (
Im (F
.
0 )) by
MESFUN7C: 24
.= (
Im ((
Partial_Sums F)
.
0 )) by
Def3;
then
A3:
R[
0 ] by
MESFUN7C: 24;
A4: for i be
Nat holds
R[i] from
NAT_1:sch 2(
A3,
A2);
((
Partial_Sums (
Re F))
.
0 )
= ((
Re F)
.
0 ) by
Def2
.= (
Re (F
.
0 )) by
MESFUN7C: 24
.= (
Re ((
Partial_Sums F)
.
0 )) by
Def3;
then
A5:
P[
0 ] by
MESFUN7C: 24;
for i be
Nat holds
P[i] from
NAT_1:sch 2(
A5,
A1);
hence thesis by
A4;
end;
theorem ::
MESFUN9C:30
z
in (
dom ((
Partial_Sums F)
. n)) & m
<= n implies z
in (
dom ((
Partial_Sums F)
. m)) & z
in (
dom (F
. m))
proof
assume
A1: z
in (
dom ((
Partial_Sums F)
. n)) & m
<= n;
A2: (
dom ((
Partial_Sums F)
. n))
= (
dom ((
Re (
Partial_Sums F))
. n)) by
MESFUN7C:def 11
.= (
dom ((
Partial_Sums (
Re F))
. n)) by
Th29;
(
dom ((
Partial_Sums (
Re F))
. m))
= (
dom ((
Re (
Partial_Sums F))
. m)) by
Th29
.= (
dom ((
Partial_Sums F)
. m)) by
MESFUN7C:def 11;
hence z
in (
dom ((
Partial_Sums F)
. m)) by
A1,
A2,
Th8;
z
in (
dom ((
Re F)
. m)) by
A1,
A2,
Th8;
hence z
in (
dom (F
. m)) by
MESFUN7C:def 11;
end;
theorem ::
MESFUN9C:31
(
dom ((
Partial_Sums F)
. n))
= (
meet { (
dom (F
. k)) where k be
Element of
NAT : k
<= n })
proof
now
let A be
object;
assume A
in { (
dom ((
Re F)
. k)) where k be
Element of
NAT : k
<= n };
then
consider i be
Element of
NAT such that
A1: A
= (
dom ((
Re F)
. i)) and
A2: i
<= n;
A
= (
dom (F
. i)) by
A1,
MESFUN7C:def 11;
hence A
in { (
dom (F
. k)) where k be
Element of
NAT : k
<= n } by
A2;
end;
then
A3: { (
dom ((
Re F)
. k)) where k be
Element of
NAT : k
<= n }
c= { (
dom (F
. k)) where k be
Element of
NAT : k
<= n } by
TARSKI:def 3;
now
let A be
object;
assume A
in { (
dom (F
. k)) where k be
Element of
NAT : k
<= n };
then
consider i be
Element of
NAT such that
A4: A
= (
dom (F
. i)) and
A5: i
<= n;
A
= (
dom ((
Re F)
. i)) by
A4,
MESFUN7C:def 11;
hence A
in { (
dom ((
Re F)
. k)) where k be
Element of
NAT : k
<= n } by
A5;
end;
then
A6: { (
dom (F
. k)) where k be
Element of
NAT : k
<= n }
c= { (
dom ((
Re F)
. k)) where k be
Element of
NAT : k
<= n } by
TARSKI:def 3;
(
dom ((
Partial_Sums (
Re F))
. n))
= (
dom ((
Re (
Partial_Sums F))
. n)) by
Th29;
then
A7: (
dom ((
Partial_Sums (
Re F))
. n))
= (
dom ((
Partial_Sums F)
. n)) by
MESFUN7C:def 11;
(
dom ((
Partial_Sums (
Re F))
. n))
= (
meet { (
dom ((
Re F)
. k)) where k be
Element of
NAT : k
<= n }) by
Th10;
hence thesis by
A7,
A3,
A6,
XBOOLE_0:def 10;
end;
theorem ::
MESFUN9C:32
Th32: F is
with_the_same_dom implies (
dom ((
Partial_Sums F)
. n))
= (
dom (F
.
0 ))
proof
assume F is
with_the_same_dom;
then (
Re F) is
with_the_same_dom;
then (
dom ((
Partial_Sums (
Re F))
. n))
= (
dom ((
Re F)
.
0 )) by
Th11;
then (
dom ((
Partial_Sums (
Re F))
. n))
= (
dom (F
.
0 )) by
MESFUN7C:def 11;
then (
dom ((
Re (
Partial_Sums F))
. n))
= (
dom (F
.
0 )) by
Th29;
hence (
dom ((
Partial_Sums F)
. n))
= (
dom (F
.
0 )) by
MESFUN7C:def 11;
end;
theorem ::
MESFUN9C:33
F is
with_the_same_dom & D
c= (
dom (F
.
0 )) & x
in D implies ((
Partial_Sums (F
# x))
. n)
= (((
Partial_Sums F)
# x)
. n)
proof
assume that
A1: F is
with_the_same_dom and
A2: D
c= (
dom (F
.
0 )) and
A3: x
in D;
A4: D
c= (
dom ((
Im F)
.
0 )) by
A2,
MESFUN7C:def 12;
(
dom ((
Partial_Sums F)
. n))
= (
dom (F
.
0 )) by
A1,
Th32;
then
A5: x
in (
dom ((
Partial_Sums F)
. n)) by
A2,
A3;
then
A6: x
in (
dom (
Re ((
Partial_Sums F)
. n))) by
COMSEQ_3:def 3;
A7: (
Re F) is
with_the_same_dom by
A1;
then (
Im F) is
with_the_same_dom by
Th25;
then
A8: ((
Partial_Sums ((
Im F)
# x))
. n)
= (((
Partial_Sums (
Im F))
# x)
. n) by
A3,
A4,
Th12;
D
c= (
dom ((
Re F)
.
0 )) by
A2,
MESFUN7C:def 11;
then
A9: ((
Partial_Sums ((
Re F)
# x))
. n)
= (((
Partial_Sums (
Re F))
# x)
. n) by
A3,
A7,
Th12;
A10: (
Re ((
Partial_Sums (F
# x))
. n))
= ((
Re (
Partial_Sums (F
# x)))
. n) by
COMSEQ_3:def 5
.= ((
Partial_Sums (
Re (F
# x)))
. n) by
COMSEQ_3: 26
.= ((
Partial_Sums ((
Re F)
# x))
. n) by
A1,
A2,
A3,
MESFUN7C: 23
.= (((
Partial_Sums (
Re F))
. n)
. x) by
A9,
SEQFUNC:def 10
.= (((
Re (
Partial_Sums F))
. n)
. x) by
Th29
.= ((
Re ((
Partial_Sums F)
. n))
. x) by
MESFUN7C: 24
.= (
Re (((
Partial_Sums F)
. n)
. x)) by
A6,
COMSEQ_3:def 3
.= (
Re (((
Partial_Sums F)
# x)
. n)) by
MESFUN7C:def 9;
A11: x
in (
dom (
Im ((
Partial_Sums F)
. n))) by
A5,
COMSEQ_3:def 4;
A12: (
Im ((
Partial_Sums (F
# x))
. n))
= ((
Im (
Partial_Sums (F
# x)))
. n) by
COMSEQ_3:def 6
.= ((
Partial_Sums (
Im (F
# x)))
. n) by
COMSEQ_3: 26
.= ((
Partial_Sums ((
Im F)
# x))
. n) by
A1,
A2,
A3,
MESFUN7C: 23
.= (((
Partial_Sums (
Im F))
. n)
. x) by
A8,
SEQFUNC:def 10
.= (((
Im (
Partial_Sums F))
. n)
. x) by
Th29
.= ((
Im ((
Partial_Sums F)
. n))
. x) by
MESFUN7C: 24
.= (
Im (((
Partial_Sums F)
. n)
. x)) by
A11,
COMSEQ_3:def 4
.= (
Im (((
Partial_Sums F)
# x)
. n)) by
MESFUN7C:def 9;
thus ((
Partial_Sums (F
# x))
. n)
= ((
Re ((
Partial_Sums (F
# x))
. n))
+ ((
Im ((
Partial_Sums (F
# x))
. n))
*
<i> )) by
COMPLEX1: 13
.= (((
Partial_Sums F)
# x)
. n) by
A10,
A12,
COMPLEX1: 13;
end;
theorem ::
MESFUN9C:34
Th34: F is
with_the_same_dom implies (
Partial_Sums F) is
with_the_same_dom
proof
assume F is
with_the_same_dom;
then (
Re F) is
with_the_same_dom;
then (
Partial_Sums (
Re F)) is
with_the_same_dom by
Th17;
then (
Re (
Partial_Sums F)) is
with_the_same_dom by
Th29;
hence (
Partial_Sums F) is
with_the_same_dom by
Th24;
end;
theorem ::
MESFUN9C:35
Th35: F is
with_the_same_dom & D
c= (
dom (F
.
0 )) & x
in D implies ((
Partial_Sums (F
# x)) is
convergent iff ((
Partial_Sums F)
# x) is
convergent)
proof
assume that
A1: F is
with_the_same_dom and
A2: D
c= (
dom (F
.
0 )) and
A3: x
in D;
A4: D
c= (
dom ((
Re F)
.
0 )) by
A2,
MESFUN7C:def 11;
A5: D
c= (
dom ((
Im F)
.
0 )) by
A2,
MESFUN7C:def 12;
A6: (
dom ((
Partial_Sums F)
.
0 ))
= (
dom (F
.
0 )) & (
Partial_Sums F) is
with_the_same_dom by
A1,
Th32,
Th34;
A7: (
Re F) is
with_the_same_dom by
A1;
then
A8: (
Im F) is
with_the_same_dom by
Th25;
hereby
assume
A9: (
Partial_Sums (F
# x)) is
convergent;
then (
Im (
Partial_Sums (F
# x))) is
convergent;
then (
Partial_Sums (
Im (F
# x))) is
convergent by
COMSEQ_3: 26;
then (
Partial_Sums ((
Im F)
# x)) is
convergent by
A1,
A2,
A3,
MESFUN7C: 23;
then ((
Partial_Sums (
Im F))
# x) is
convergent by
A3,
A8,
A5,
Th13;
then ((
Im (
Partial_Sums F))
# x) is
convergent by
Th29;
then
A10: (
Im ((
Partial_Sums F)
# x)) is
convergent by
A2,
A3,
A6,
MESFUN7C: 23;
(
Re (
Partial_Sums (F
# x))) is
convergent by
A9;
then (
Partial_Sums (
Re (F
# x))) is
convergent by
COMSEQ_3: 26;
then (
Partial_Sums ((
Re F)
# x)) is
convergent by
A1,
A2,
A3,
MESFUN7C: 23;
then ((
Partial_Sums (
Re F))
# x) is
convergent by
A3,
A7,
A4,
Th13;
then ((
Re (
Partial_Sums F))
# x) is
convergent by
Th29;
then (
Re ((
Partial_Sums F)
# x)) is
convergent by
A2,
A3,
A6,
MESFUN7C: 23;
hence ((
Partial_Sums F)
# x) is
convergent by
A10,
COMSEQ_3: 42;
end;
assume
A11: ((
Partial_Sums F)
# x) is
convergent;
then (
Im ((
Partial_Sums F)
# x)) is
convergent;
then
A12: ((
Im (
Partial_Sums F))
# x) is
convergent by
A2,
A3,
A6,
MESFUN7C: 23;
A13: ((
Im F)
# x)
= (
Im (F
# x)) by
A1,
A2,
A3,
MESFUN7C: 23;
(
Re ((
Partial_Sums F)
# x)) is
convergent by
A11;
then
A14: ((
Re (
Partial_Sums F))
# x) is
convergent by
A2,
A3,
A6,
MESFUN7C: 23;
(
Partial_Sums ((
Im F)
# x)) is
convergent iff ((
Partial_Sums (
Im F))
# x) is
convergent by
A3,
A8,
A5,
Th13;
then
A15: (
Im (
Partial_Sums (F
# x))) is
convergent by
A12,
A13,
Th29,
COMSEQ_3: 26;
A16: ((
Re F)
# x)
= (
Re (F
# x)) by
A1,
A2,
A3,
MESFUN7C: 23;
(
Partial_Sums ((
Re F)
# x)) is
convergent iff ((
Partial_Sums (
Re F))
# x) is
convergent by
A3,
A7,
A4,
Th13;
then (
Re (
Partial_Sums (F
# x))) is
convergent by
A14,
A16,
Th29,
COMSEQ_3: 26;
hence (
Partial_Sums (F
# x)) is
convergent by
A15,
COMSEQ_3: 42;
end;
theorem ::
MESFUN9C:36
F is
with_the_same_dom & (
dom f)
c= (
dom (F
.
0 )) & x
in (
dom f) & (F
# x) is
summable & (f
. x)
= (
Sum (F
# x)) implies (f
. x)
= (
lim ((
Partial_Sums F)
# x))
proof
assume that
A1: F is
with_the_same_dom and
A2: (
dom f)
c= (
dom (F
.
0 )) and
A3: x
in (
dom f) and
A4: (F
# x) is
summable and
A5: (f
. x)
= (
Sum (F
# x));
(
dom (
Re f))
= (
dom f) by
COMSEQ_3:def 3;
then
A6: (
dom (
Re f))
c= (
dom ((
Re F)
.
0 )) by
A2,
MESFUN7C:def 11;
(
Partial_Sums (F
# x)) is
convergent by
A4;
then ((
Partial_Sums F)
# x) is
convergent by
A1,
A2,
A3,
Th35;
then
A7: (
lim (
Re ((
Partial_Sums F)
# x)))
= (
Re (
lim ((
Partial_Sums F)
# x))) & (
lim (
Im ((
Partial_Sums F)
# x)))
= (
Im (
lim ((
Partial_Sums F)
# x))) by
COMSEQ_3: 41;
(
dom (
Im f))
= (
dom f) by
COMSEQ_3:def 4;
then
A8: (
dom (
Im f))
c= (
dom ((
Im F)
.
0 )) by
A2,
MESFUN7C:def 12;
A9: x
in (
dom (
Im f)) by
A3,
COMSEQ_3:def 4;
then
A10: ((
Im f)
. x)
= (
Im (f
. x)) by
COMSEQ_3:def 4;
A11: (
Partial_Sums F) is
with_the_same_dom & (
dom ((
Partial_Sums F)
.
0 ))
= (
dom (F
.
0 )) by
A1,
Th32,
Th34;
then ((
Re (
Partial_Sums F))
# x)
= (
Re ((
Partial_Sums F)
# x)) by
A2,
A3,
MESFUN7C: 23;
then
A12: (
lim ((
Partial_Sums (
Re F))
# x))
= (
lim (
Re ((
Partial_Sums F)
# x))) by
Th29;
((
Im (
Partial_Sums F))
# x)
= (
Im ((
Partial_Sums F)
# x)) by
A2,
A3,
A11,
MESFUN7C: 23;
then
A13: (
lim ((
Partial_Sums (
Im F))
# x))
= (
lim (
Im ((
Partial_Sums F)
# x))) by
Th29;
A14: x
in (
dom (
Re f)) by
A3,
COMSEQ_3:def 3;
then
A15: ((
Re f)
. x)
= (
Re (f
. x)) by
COMSEQ_3:def 3;
A16: (
Re F) is
with_the_same_dom by
A1;
then
A17: (
Im F) is
with_the_same_dom by
Th25;
(
Re (F
# x))
= ((
Re F)
# x) & (
Im (F
# x))
= ((
Im F)
# x) by
A1,
A2,
A3,
MESFUN7C: 23;
then
A18: (
Sum (F
# x))
= ((
Sum ((
Re F)
# x))
+ ((
Sum ((
Im F)
# x))
*
<i> )) by
A4,
COMSEQ_3: 53;
then (
Re (
Sum (F
# x)))
= (
Sum ((
Re F)
# x)) by
COMPLEX1: 12;
then ((
Re f)
. x)
= (
Sum ((
Re F)
# x)) by
A5,
A14,
COMSEQ_3:def 3;
then
A19: ((
Re f)
. x)
= (
lim ((
Partial_Sums (
Re F))
# x)) by
A16,
A6,
A14,
Th14;
(
Im (
Sum (F
# x)))
= (
Sum ((
Im F)
# x)) by
A18,
COMPLEX1: 12;
then ((
Im f)
. x)
= (
Sum ((
Im F)
# x)) by
A5,
A9,
COMSEQ_3:def 4;
then
A20: ((
Im f)
. x)
= (
lim ((
Partial_Sums (
Im F))
# x)) by
A17,
A8,
A9,
Th14;
thus (f
. x)
= ((
Re (f
. x))
+ ((
Im (f
. x))
*
<i> )) by
COMPLEX1: 13
.= (
lim ((
Partial_Sums F)
# x)) by
A15,
A10,
A19,
A20,
A7,
A12,
A13,
COMPLEX1: 13;
end;
theorem ::
MESFUN9C:37
(for m be
Nat holds (F
. m)
is_simple_func_in S) implies ((
Partial_Sums F)
. n)
is_simple_func_in S
proof
assume
A1: for m be
Nat holds (F
. m)
is_simple_func_in S;
for m be
Nat holds ((
Im F)
. m)
is_simple_func_in S
proof
let m be
Nat;
(F
. m)
is_simple_func_in S by
A1;
then (
Im (F
. m))
is_simple_func_in S by
MESFUN7C: 43;
hence ((
Im F)
. m)
is_simple_func_in S by
MESFUN7C: 24;
end;
then ((
Partial_Sums (
Im F))
. n)
is_simple_func_in S by
Th15;
then ((
Im (
Partial_Sums F))
. n)
is_simple_func_in S by
Th29;
then
A2: (
Im ((
Partial_Sums F)
. n))
is_simple_func_in S by
MESFUN7C: 24;
for m be
Nat holds ((
Re F)
. m)
is_simple_func_in S
proof
let m be
Nat;
(F
. m)
is_simple_func_in S by
A1;
then (
Re (F
. m))
is_simple_func_in S by
MESFUN7C: 43;
hence ((
Re F)
. m)
is_simple_func_in S by
MESFUN7C: 24;
end;
then ((
Partial_Sums (
Re F))
. n)
is_simple_func_in S by
Th15;
then ((
Re (
Partial_Sums F))
. n)
is_simple_func_in S by
Th29;
then (
Re ((
Partial_Sums F)
. n))
is_simple_func_in S by
MESFUN7C: 24;
hence ((
Partial_Sums F)
. n)
is_simple_func_in S by
A2,
MESFUN7C: 43;
end;
Lm2: (for n be
Nat holds (F
. n) is E
-measurable) implies ((
Re F)
. m) is E
-measurable & ((
Im F)
. m) is E
-measurable
proof
assume for n be
Nat holds (F
. n) is E
-measurable;
then (F
. m) is E
-measurable;
then (
Re (F
. m)) is E
-measurable & (
Im (F
. m)) is E
-measurable by
MESFUN6C:def 1;
hence ((
Re F)
. m) is E
-measurable & ((
Im F)
. m) is E
-measurable by
MESFUN7C: 24;
end;
theorem ::
MESFUN9C:38
(for n be
Nat holds (F
. n) is E
-measurable) implies ((
Partial_Sums F)
. m) is E
-measurable
proof
assume
A1: for n be
Nat holds (F
. n) is E
-measurable;
then for n be
Nat holds ((
Im F)
. n) is E
-measurable by
Lm2;
then ((
Partial_Sums (
Im F))
. m) is E
-measurable by
Th16;
then ((
Im (
Partial_Sums F))
. m) is E
-measurable by
Th29;
then
A2: (
Im ((
Partial_Sums F)
. m)) is E
-measurable by
MESFUN7C: 24;
for n be
Nat holds ((
Re F)
. n) is E
-measurable by
A1,
Lm2;
then ((
Partial_Sums (
Re F))
. m) is E
-measurable by
Th16;
then ((
Re (
Partial_Sums F))
. m) is E
-measurable by
Th29;
then (
Re ((
Partial_Sums F)
. m)) is E
-measurable by
MESFUN7C: 24;
hence ((
Partial_Sums F)
. m) is E
-measurable by
A2,
MESFUN6C:def 1;
end;
theorem ::
MESFUN9C:39
(
dom (F
.
0 ))
= E & F is
with_the_same_dom & (for n be
Nat holds ((
Partial_Sums F)
. n) is E
-measurable) & (for x be
Element of X st x
in E holds (F
# x) is
summable) implies (
lim (
Partial_Sums F)) is E
-measurable
proof
assume that
A1: (
dom (F
.
0 ))
= E and
A2: F is
with_the_same_dom and
A3: for n be
Nat holds ((
Partial_Sums F)
. n) is E
-measurable and
A4: for x be
Element of X st x
in E holds (F
# x) is
summable;
A5: (
dom ((
Im F)
.
0 ))
= E by
A1,
MESFUN7C:def 12;
A6: for x be
Element of X st x
in (
dom ((
Partial_Sums F)
.
0 )) holds ((
Partial_Sums F)
# x) is
convergent
proof
let x be
Element of X;
assume
A7: x
in (
dom ((
Partial_Sums F)
.
0 ));
A8: (
dom ((
Partial_Sums F)
.
0 ))
= (
dom (F
.
0 )) by
A2,
Th32;
then (F
# x) is
summable by
A1,
A4,
A7;
then (
Partial_Sums (F
# x)) is
convergent;
hence ((
Partial_Sums F)
# x) is
convergent by
A2,
A7,
A8,
Th35;
end;
A9: for n be
Nat holds ((
Partial_Sums (
Im F))
. n) is E
-measurable
proof
let n be
Nat;
((
Partial_Sums F)
. n) is E
-measurable by
A3;
then (
Im ((
Partial_Sums F)
. n)) is E
-measurable by
MESFUN6C:def 1;
then ((
Im (
Partial_Sums F))
. n) is E
-measurable by
MESFUN7C: 24;
hence ((
Partial_Sums (
Im F))
. n) is E
-measurable by
Th29;
end;
A10: for x be
Element of X st x
in E holds ((
Im F)
# x) is
summable
proof
let x be
Element of X;
assume
A11: x
in E;
then (F
# x) is
summable by
A4;
then (
Im (F
# x)) is
summable;
hence ((
Im F)
# x) is
summable by
A1,
A2,
A11,
MESFUN7C: 23;
end;
A12: (
Re F) is
with_the_same_dom by
A2;
then (
Im F) is
with_the_same_dom by
Th25;
then (
lim (
Partial_Sums (
Im F))) is E
-measurable by
A5,
A9,
A10,
Th18;
then
A13: (
lim (
Im (
Partial_Sums F))) is E
-measurable by
Th29;
A14: for x be
Element of X st x
in E holds ((
Re F)
# x) is
summable
proof
let x be
Element of X;
assume
A15: x
in E;
then (F
# x) is
summable by
A4;
then (
Re (F
# x)) is
summable;
hence ((
Re F)
# x) is
summable by
A1,
A2,
A15,
MESFUN7C: 23;
end;
A16: for n be
Nat holds ((
Partial_Sums (
Re F))
. n) is E
-measurable
proof
let n be
Nat;
((
Partial_Sums F)
. n) is E
-measurable by
A3;
then (
Re ((
Partial_Sums F)
. n)) is E
-measurable by
MESFUN6C:def 1;
then ((
Re (
Partial_Sums F))
. n) is E
-measurable by
MESFUN7C: 24;
hence ((
Partial_Sums (
Re F))
. n) is E
-measurable by
Th29;
end;
A17: (
Partial_Sums F) is
with_the_same_dom by
A2,
Th34;
then (
lim (
Im (
Partial_Sums F)))
= (
R_EAL (
Im (
lim (
Partial_Sums F)))) by
A6,
MESFUN7C: 25;
then
A18: (
Im (
lim (
Partial_Sums F))) is E
-measurable by
A13;
(
dom ((
Re F)
.
0 ))
= E by
A1,
MESFUN7C:def 11;
then (
lim (
Partial_Sums (
Re F))) is E
-measurable by
A12,
A16,
A14,
Th18;
then
A19: (
lim (
Re (
Partial_Sums F))) is E
-measurable by
Th29;
(
lim (
Re (
Partial_Sums F)))
= (
R_EAL (
Re (
lim (
Partial_Sums F)))) by
A6,
A17,
MESFUN7C: 25;
then (
Re (
lim (
Partial_Sums F))) is E
-measurable by
A19;
hence (
lim (
Partial_Sums F)) is E
-measurable by
A18,
MESFUN6C:def 1;
end;
theorem ::
MESFUN9C:40
(for n be
Nat holds (F
. n)
is_integrable_on M) implies for m be
Nat holds ((
Partial_Sums F)
. m)
is_integrable_on M
proof
assume
A1: for n be
Nat holds (F
. n)
is_integrable_on M;
A2: for n be
Nat holds ((
Im F)
. n)
is_integrable_on M
proof
let n be
Nat;
(F
. n)
is_integrable_on M by
A1;
then (
Im (F
. n))
is_integrable_on M by
MESFUN6C:def 2;
hence ((
Im F)
. n)
is_integrable_on M by
MESFUN7C: 24;
end;
A3: for n be
Nat holds ((
Re F)
. n)
is_integrable_on M
proof
let n be
Nat;
(F
. n)
is_integrable_on M by
A1;
then (
Re (F
. n))
is_integrable_on M by
MESFUN6C:def 2;
hence ((
Re F)
. n)
is_integrable_on M by
MESFUN7C: 24;
end;
thus for m be
Nat holds ((
Partial_Sums F)
. m)
is_integrable_on M
proof
let m be
Nat;
((
Partial_Sums (
Im F))
. m)
is_integrable_on M by
A2,
Th19;
then ((
Im (
Partial_Sums F))
. m)
is_integrable_on M by
Th29;
then
A4: (
Im ((
Partial_Sums F)
. m))
is_integrable_on M by
MESFUN7C: 24;
((
Partial_Sums (
Re F))
. m)
is_integrable_on M by
A3,
Th19;
then ((
Re (
Partial_Sums F))
. m)
is_integrable_on M by
Th29;
then (
Re ((
Partial_Sums F)
. m))
is_integrable_on M by
MESFUN7C: 24;
hence ((
Partial_Sums F)
. m)
is_integrable_on M by
A4,
MESFUN6C:def 2;
end;
end;
begin
reserve f,g for
PartFunc of X,
COMPLEX ,
A for
Element of S;
theorem ::
MESFUN9C:41
f
is_simple_func_in S implies f is A
-measurable
proof
assume
A1: f
is_simple_func_in S;
then (
Im f)
is_simple_func_in S by
MESFUN7C: 43;
then
A2: (
Im f) is A
-measurable by
MESFUNC6: 50;
(
Re f)
is_simple_func_in S by
A1,
MESFUN7C: 43;
then (
Re f) is A
-measurable by
MESFUNC6: 50;
hence f is A
-measurable by
A2,
MESFUN6C:def 1;
end;
theorem ::
MESFUN9C:42
f
is_simple_func_in S implies (f
| A)
is_simple_func_in S
proof
assume
A1: f
is_simple_func_in S;
then (
Im f)
is_simple_func_in S by
MESFUN7C: 43;
then (
R_EAL (
Im f))
is_simple_func_in S by
MESFUNC6: 49;
then (
R_EAL ((
Im f)
| A))
is_simple_func_in S by
MESFUNC5: 34;
then ((
Im f)
| A)
is_simple_func_in S by
MESFUNC6: 49;
then
A2: (
Im (f
| A))
is_simple_func_in S by
MESFUN6C: 7;
(
Re f)
is_simple_func_in S by
A1,
MESFUN7C: 43;
then (
R_EAL (
Re f))
is_simple_func_in S by
MESFUNC6: 49;
then (
R_EAL ((
Re f)
| A))
is_simple_func_in S by
MESFUNC5: 34;
then ((
Re f)
| A)
is_simple_func_in S by
MESFUNC6: 49;
then (
Re (f
| A))
is_simple_func_in S by
MESFUN6C: 7;
hence (f
| A)
is_simple_func_in S by
A2,
MESFUN7C: 43;
end;
theorem ::
MESFUN9C:43
f
is_simple_func_in S implies (
dom f) is
Element of S by
MESFUNC2: 31;
theorem ::
MESFUN9C:44
f
is_simple_func_in S & g
is_simple_func_in S implies (f
+ g)
is_simple_func_in S
proof
assume
A1: f
is_simple_func_in S & g
is_simple_func_in S;
then (
Im f)
is_simple_func_in S & (
Im g)
is_simple_func_in S by
MESFUN7C: 43;
then ((
Im f)
+ (
Im g))
is_simple_func_in S by
MESFUNC6: 72;
then
A2: (
Im (f
+ g))
is_simple_func_in S by
MESFUN6C: 5;
(
Re f)
is_simple_func_in S & (
Re g)
is_simple_func_in S by
A1,
MESFUN7C: 43;
then ((
Re f)
+ (
Re g))
is_simple_func_in S by
MESFUNC6: 72;
then (
Re (f
+ g))
is_simple_func_in S by
MESFUN6C: 5;
hence thesis by
A2,
MESFUN7C: 43;
end;
theorem ::
MESFUN9C:45
for c be
Complex st f
is_simple_func_in S holds (c
(#) f)
is_simple_func_in S
proof
let c be
Complex;
assume
A1: f
is_simple_func_in S;
then
A2: (
Re f)
is_simple_func_in S by
MESFUN7C: 43;
then
A3: ((
Im c)
(#) (
Re f))
is_simple_func_in S by
MESFUNC6: 73;
A4: (
Im f)
is_simple_func_in S by
A1,
MESFUN7C: 43;
then ((
Im c)
(#) (
Im f))
is_simple_func_in S by
MESFUNC6: 73;
then ((
- 1)
(#) ((
Im c)
(#) (
Im f)))
is_simple_func_in S by
MESFUNC6: 73;
then
A5: (
R_EAL (
- ((
Im c)
(#) (
Im f))))
is_simple_func_in S by
MESFUNC6: 49;
((
Re c)
(#) (
Re f))
is_simple_func_in S by
A2,
MESFUNC6: 73;
then (
R_EAL ((
Re c)
(#) (
Re f)))
is_simple_func_in S by
MESFUNC6: 49;
then ((
R_EAL ((
Re c)
(#) (
Re f)))
+ (
R_EAL (
- ((
Im c)
(#) (
Im f)))))
is_simple_func_in S by
A5,
MESFUNC5: 38;
then (
R_EAL (((
Re c)
(#) (
Re f))
- ((
Im c)
(#) (
Im f))))
is_simple_func_in S by
MESFUNC6: 23;
then (((
Re c)
(#) (
Re f))
- ((
Im c)
(#) (
Im f)))
is_simple_func_in S by
MESFUNC6: 49;
then
A6: (
Re (c
(#) f))
is_simple_func_in S by
MESFUN6C: 3;
((
Re c)
(#) (
Im f))
is_simple_func_in S by
A4,
MESFUNC6: 73;
then (((
Im c)
(#) (
Re f))
+ ((
Re c)
(#) (
Im f)))
is_simple_func_in S by
A3,
MESFUNC6: 72;
then (
Im (c
(#) f))
is_simple_func_in S by
MESFUN6C: 3;
hence thesis by
A6,
MESFUN7C: 43;
end;
begin
reserve F for
with_the_same_dom
Functional_Sequence of X,
ExtREAL ,
P for
PartFunc of X,
ExtREAL ;
theorem ::
MESFUN9C:46
Th46: E
= (
dom (F
.
0 )) & E
= (
dom P) & (for n be
Nat holds (F
. n) is E
-measurable) & P
is_integrable_on M & (for x be
Element of X, n be
Nat st x
in E holds (
|.(F
. n).|
. x)
<= (P
. x)) & (for x be
Element of X st x
in E holds (F
# x) is
convergent) implies (
lim F)
is_integrable_on M
proof
assume that
A1: E
= (
dom (F
.
0 )) and
A2: E
= (
dom P) and
A3: for n be
Nat holds (F
. n) is E
-measurable and
A4: P
is_integrable_on M and
A5: for x be
Element of X, n be
Nat st x
in E holds (
|.(F
. n).|
. x)
<= (P
. x) and
A6: for x be
Element of X st x
in E holds (F
# x) is
convergent;
A7: E
= (
dom (
lim_sup F)) by
A1,
MESFUNC8:def 8;
A8: for x be
Element of X, k be
Nat st x
in E holds (
- (P
. x))
<= ((F
# x)
. k) & ((F
# x)
. k)
<= (P
. x)
proof
let x be
Element of X, k be
Nat;
assume
A9: x
in E;
then x
in (
dom (F
. k)) by
A1,
MESFUNC8:def 2;
then
A10: x
in (
dom
|.(F
. k).|) by
MESFUNC1:def 10;
(
|.(F
. k).|
. x)
<= (P
. x) by
A5,
A9;
then
|.((F
. k)
. x).|
<= (P
. x) by
A10,
MESFUNC1:def 10;
then (
- (P
. x))
<= ((F
. k)
. x) & ((F
. k)
. x)
<= (P
. x) by
EXTREAL1: 23;
hence (
- (P
. x))
<= ((F
# x)
. k) & ((F
# x)
. k)
<= (P
. x) by
MESFUNC5:def 13;
end;
A11:
now
let x be
Element of X;
assume
A12: x
in (
dom (
lim_sup F));
for k be
Nat holds ((
superior_realsequence (F
# x))
. k)
>= (
- (P
. x))
proof
let k be
Nat;
A13: ((
superior_realsequence (F
# x))
. k)
>= ((F
# x)
. k) by
RINFSUP2: 8;
((F
# x)
. k)
>= (
- (P
. x)) by
A7,
A8,
A12;
hence ((
superior_realsequence (F
# x))
. k)
>= (
- (P
. x)) by
A13,
XXREAL_0: 2;
end;
then (
lim_sup (F
# x))
>= (
- (P
. x)) by
MESFUN10: 4;
then
A14: ((
lim_sup F)
. x)
>= (
- (P
. x)) by
A12,
MESFUNC8:def 8;
now
let y be
ExtReal;
assume y
in (
rng (F
# x));
then ex k be
object st k
in (
dom (F
# x)) & y
= ((F
# x)
. k) by
FUNCT_1:def 3;
hence (P
. x)
>= y by
A7,
A8,
A12;
end;
then (P
. x) is
UpperBound of (
rng (F
# x)) by
XXREAL_2:def 1;
then (P
. x)
>= (
sup (
rng (F
# x))) by
XXREAL_2:def 3;
then (P
. x)
>= (
sup ((F
# x)
^\
0 )) by
NAT_1: 47;
then
A15: (P
. x)
>= ((
superior_realsequence (F
# x))
.
0 ) by
RINFSUP2: 27;
((
superior_realsequence (F
# x))
.
0 )
>= (
inf (
superior_realsequence (F
# x))) by
RINFSUP2: 23;
then (P
. x)
>= (
lim_sup (F
# x)) by
A15,
XXREAL_0: 2;
then (P
. x)
>= ((
lim_sup F)
. x) by
A12,
MESFUNC8:def 8;
hence
|.((
lim_sup F)
. x).|
<= (P
. x) by
A14,
EXTREAL1: 23;
end;
A16:
now
let x be
Element of X;
assume
A17: x
in (
dom (
lim F));
then x
in E by
A1,
MESFUNC8:def 9;
then (F
# x) is
convergent by
A6;
hence ((
lim F)
. x)
= ((
lim_sup F)
. x) by
A17,
MESFUNC8: 14;
end;
A18: (
lim_sup F) is E
-measurable by
A1,
A3,
MESFUNC8: 23;
E
= (
dom (
lim F)) by
A1,
MESFUNC8:def 9;
then (
lim F)
= (
lim_sup F) by
A7,
A16,
PARTFUN1: 5;
hence (
lim F)
is_integrable_on M by
A2,
A4,
A7,
A18,
A11,
MESFUNC5: 102;
end;
reserve F for
with_the_same_dom
Functional_Sequence of X,
REAL ,
f,P for
PartFunc of X,
REAL ;
theorem ::
MESFUN9C:47
Th47: E
= (
dom (F
.
0 )) & E
= (
dom P) & (for n be
Nat holds (F
. n) is E
-measurable) & P
is_integrable_on M & (for x be
Element of X, n be
Nat st x
in E holds (
|.(F
. n).|
. x)
<= (P
. x)) & (for x be
Element of X st x
in E holds (F
# x) is
convergent) implies (
lim F)
is_integrable_on M
proof
assume that
A1: E
= (
dom (F
.
0 )) & E
= (
dom P) and
A2: for n be
Nat holds (F
. n) is E
-measurable and
A3: P
is_integrable_on M and
A4: for x be
Element of X, n be
Nat st x
in E holds (
|.(F
. n).|
. x)
<= (P
. x) and
A5: for x be
Element of X st x
in E holds (F
# x) is
convergent;
A6: for n be
Nat holds ((
R_EAL F)
. n) is E
-measurable
proof
let n be
Nat;
(F
. n) is E
-measurable by
A2;
then (
R_EAL (F
. n)) is E
-measurable;
hence ((
R_EAL F)
. n) is E
-measurable;
end;
A7: for x be
Element of X st x
in E holds ((
R_EAL F)
# x) is
convergent
proof
let x be
Element of X;
assume x
in E;
then
A8: (F
# x) is
convergent by
A5;
((
R_EAL F)
# x)
= (F
# x) by
MESFUN7C: 1;
hence ((
R_EAL F)
# x) is
convergent by
A8,
RINFSUP2: 14;
end;
A9: for x be
Element of X, n be
Nat st x
in E holds (
|.((
R_EAL F)
. n).|
. x)
<= ((
R_EAL P)
. x)
proof
let x be
Element of X, n be
Nat;
A10: (
R_EAL
|.(F
. n).|)
=
|.(
R_EAL (F
. n)).| by
MESFUNC6: 1;
assume x
in E;
hence (
|.((
R_EAL F)
. n).|
. x)
<= ((
R_EAL P)
. x) by
A4,
A10;
end;
(
R_EAL P)
is_integrable_on M by
A3;
hence (
lim F)
is_integrable_on M by
A1,
A6,
A9,
A7,
Th46;
end;
theorem ::
MESFUN9C:48
Th48: E
= (
dom (F
.
0 )) & E
= (
dom P) & (for n be
Nat holds (F
. n) is E
-measurable) & P
is_integrable_on M & (for x be
Element of X, n be
Nat st x
in E holds (
|.(F
. n).|
. x)
<= (P
. x)) implies ex I be
Real_Sequence st (for n be
Nat holds (I
. n)
= (
Integral (M,(F
. n)))) & ((for x be
Element of X st x
in E holds (F
# x) is
convergent) implies I is
convergent & (
lim I)
= (
Integral (M,(
lim F))))
proof
assume that
A1: E
= (
dom (F
.
0 )) and
A2: E
= (
dom P) and
A3: for n be
Nat holds (F
. n) is E
-measurable and
A4: P
is_integrable_on M and
A5: for x be
Element of X, n be
Nat st x
in E holds (
|.(F
. n).|
. x)
<= (P
. x);
A6: (
R_EAL P)
is_integrable_on M by
A4;
A7: for x be
Element of X, n be
Nat st x
in E holds (
|.((
R_EAL F)
. n).|
. x)
<= ((
R_EAL P)
. x)
proof
let x be
Element of X, n be
Nat;
A8: (
R_EAL
|.(F
. n).|)
=
|.(
R_EAL (F
. n)).| by
MESFUNC6: 1;
assume x
in E;
hence (
|.((
R_EAL F)
. n).|
. x)
<= ((
R_EAL P)
. x) by
A5,
A8;
end;
A9: for n be
Nat holds ((
R_EAL F)
. n) is E
-measurable
proof
let n be
Nat;
(F
. n) is E
-measurable by
A3;
then (
R_EAL (F
. n)) is E
-measurable;
hence ((
R_EAL F)
. n) is E
-measurable;
end;
now
let x be
object;
assume
A10: x
in (
dom P);
then x
in (
dom
|.(F
.
0 ).|) by
A1,
A2,
VALUED_1:def 11;
then (
|.(F
.
0 ).|
. x)
=
|.((F
.
0 )
. x) qua
Complex.| by
VALUED_1:def 11;
then
|.((F
.
0 )
. x) qua
Complex.|
<= (P
. x) by
A2,
A5,
A10;
hence
0
<= (P
. x) by
COMPLEX1: 46;
end;
then P is
nonnegative by
MESFUNC6: 52;
then
consider J be
ExtREAL_sequence such that
A11: for n be
Nat holds (J
. n)
= (
Integral (M,((
R_EAL F)
. n))) and (
lim_inf J)
>= (
Integral (M,(
lim_inf (
R_EAL F)))) and (
lim_sup J)
<= (
Integral (M,(
lim_sup (
R_EAL F)))) and
A12: (for x be
Element of X st x
in E holds ((
R_EAL F)
# x) is
convergent) implies J is
convergent & (
lim J)
= (
Integral (M,(
lim (
R_EAL F)))) by
A1,
A2,
A9,
A6,
A7,
MESFUN10: 17;
A13: (
Integral (M,(
R_EAL P)))
<
+infty by
A6,
MESFUNC5: 96;
for n be
Nat holds
|.(J
. n).|
<
+infty
proof
let n be
Nat;
A14: E
= (
dom ((
R_EAL F)
. n)) & ((
R_EAL F)
. n) is E
-measurable by
A1,
A9,
MESFUNC8:def 2;
|.((
R_EAL F)
. n).|
is_integrable_on M by
A1,
A2,
A9,
A6,
A7,
MESFUN10: 16;
then ((
R_EAL F)
. n)
is_integrable_on M by
A14,
MESFUNC5: 100;
then
A15:
|.(
Integral (M,((
R_EAL F)
. n))).|
<= (
Integral (M,
|.((
R_EAL F)
. n).|)) by
MESFUNC5: 101;
for x be
Element of X st x
in (
dom ((
R_EAL F)
. n)) holds
|.(((
R_EAL F)
. n)
. x).|
<= ((
R_EAL P)
. x)
proof
let x be
Element of X;
assume
A16: x
in (
dom ((
R_EAL F)
. n));
then x
in E by
A1,
MESFUNC8:def 2;
then
A17: (
|.((
R_EAL F)
. n).|
. x)
<= ((
R_EAL P)
. x) by
A7;
x
in (
dom
|.((
R_EAL F)
. n).|) by
A16,
MESFUNC1:def 10;
hence
|.(((
R_EAL F)
. n)
. x).|
<= ((
R_EAL P)
. x) by
A17,
MESFUNC1:def 10;
end;
then (
Integral (M,
|.((
R_EAL F)
. n).|))
<= (
Integral (M,(
R_EAL P))) by
A2,
A6,
A14,
MESFUNC5: 102;
then
|.(
Integral (M,((
R_EAL F)
. n))).|
<= (
Integral (M,(
R_EAL P))) by
A15,
XXREAL_0: 2;
then
|.(
Integral (M,((
R_EAL F)
. n))).|
<
+infty by
A13,
XXREAL_0: 2;
hence
|.(J
. n).|
<
+infty by
A11;
end;
then for n be
Element of
NAT st n
in (
dom J) holds
|.(J
. n).|
<
+infty ;
then J is
real-valued by
MESFUNC2:def 1;
then
reconsider I = J as
Real_Sequence by
RINFSUP2: 6;
(for x be
Element of X st x
in E holds (F
# x) is
convergent) implies J is
convergent_to_finite_number & (
lim J)
= (
Integral (M,(
lim F)))
proof
assume
A18: for x be
Element of X st x
in E holds (F
# x) is
convergent;
A19:
now
let x be
Element of X;
assume x
in E;
then
A20: (F
# x) is
convergent by
A18;
(F
# x)
= ((
R_EAL F)
# x) by
MESFUN7C: 1;
hence ((
R_EAL F)
# x) is
convergent by
A20,
RINFSUP2: 14;
end;
(
lim F)
is_integrable_on M by
A1,
A2,
A3,
A4,
A5,
A18,
Th47;
then
A21:
-infty
< (
Integral (M,(
lim F))) & (
Integral (M,(
lim F)))
<
+infty by
MESFUNC5: 96;
J is
convergent implies J is
convergent_to_finite_number by
A12,
A19,
A21,
MESFUNC5:def 12;
hence thesis by
A12,
A19;
end;
then
A22: (for x be
Element of X st x
in E holds (F
# x) is
convergent) implies I is
convergent & (
lim I)
= (
Integral (M,(
lim F))) by
RINFSUP2: 15;
for n be
Nat holds (I
. n)
= (
Integral (M,(F
. n))) by
A11;
hence thesis by
A22;
end;
definition
let X be
set, F be
Functional_Sequence of X,
REAL ;
::
MESFUN9C:def4
attr F is
uniformly_bounded means ex K be
Real st for n be
Nat, x be
Element of X st x
in (
dom (F
.
0 )) holds
|.((F
. n)
. x) qua
Complex.|
<= K;
end
theorem ::
MESFUN9C:49
Th49: (M
. E)
<
+infty & E
= (
dom (F
.
0 )) & (for n be
Nat holds (F
. n) is E
-measurable) & F is
uniformly_bounded & (for x be
Element of X st x
in E holds (F
# x) is
convergent) implies (for n be
Nat holds (F
. n)
is_integrable_on M) & (
lim F)
is_integrable_on M & ex I be
ExtREAL_sequence st (for n be
Nat holds (I
. n)
= (
Integral (M,(F
. n)))) & I is
convergent & (
lim I)
= (
Integral (M,(
lim F)))
proof
assume that
A1: (M
. E)
<
+infty & E
= (
dom (F
.
0 )) and
A2: for n be
Nat holds (F
. n) is E
-measurable and
A3: F is
uniformly_bounded and
A4: for x be
Element of X st x
in E holds (F
# x) is
convergent;
consider K be
Real such that
A5: for n be
Nat, x be
Element of X st x
in (
dom (F
.
0 )) holds
|.((F
. n)
. x) qua
Complex.|
<= K by
A3;
A6: for x be
Element of X st x
in E holds ((
R_EAL F)
# x) is
convergent
proof
let x be
Element of X;
assume x
in E;
then
A7: (F
# x) is
convergent by
A4;
((
R_EAL F)
# x)
= (F
# x) by
MESFUN7C: 1;
hence ((
R_EAL F)
# x) is
convergent by
A7,
RINFSUP2: 14;
end;
for n be
Nat, x be
set st x
in (
dom ((
R_EAL F)
.
0 )) holds
|.(((
R_EAL F)
. n)
. x).|
<= K
proof
let n be
Nat, x be
set;
A8:
|.((F
. n)
. x) qua
Complex.|
=
|.((F
. n)
. x).| by
MESFUNC6: 43;
assume x
in (
dom ((
R_EAL F)
.
0 ));
hence
|.(((
R_EAL F)
. n)
. x).|
<= K by
A5,
A8;
end;
then
A9: (
R_EAL F) is
uniformly_bounded by
MESFUN10:def 1;
A10: for n be
Nat holds ((
R_EAL F)
. n) is E
-measurable
proof
let n be
Nat;
(F
. n) is E
-measurable by
A2;
then (
R_EAL (F
. n)) is E
-measurable;
hence ((
R_EAL F)
. n) is E
-measurable;
end;
then
consider I be
ExtREAL_sequence such that
A11: for n be
Nat holds (I
. n)
= (
Integral (M,((
R_EAL F)
. n))) and
A12: I is
convergent & (
lim I)
= (
Integral (M,(
lim (
R_EAL F)))) by
A1,
A9,
A6,
MESFUN10: 19;
for n be
Nat holds (I
. n)
= (
Integral (M,(F
. n))) by
A11;
hence thesis by
A1,
A10,
A9,
A6,
A12,
MESFUN10: 19;
end;
definition
let X be
set, F be
Functional_Sequence of X,
REAL , f be
PartFunc of X,
REAL ;
::
MESFUN9C:def5
pred F
is_uniformly_convergent_to f means F is
with_the_same_dom & (
dom (F
.
0 ))
= (
dom f) & for e be
Real st e
>
0 holds ex N be
Nat st for n be
Nat, x be
Element of X st n
>= N & x
in (
dom (F
.
0 )) holds
|.(((F
. n)
. x)
- (f
. x)) qua
Complex.|
< e;
end
theorem ::
MESFUN9C:50
Th50: (M
. E)
<
+infty & E
= (
dom (F
.
0 )) & (for n be
Nat holds (F
. n)
is_integrable_on M) & F
is_uniformly_convergent_to f implies f
is_integrable_on M & ex I be
ExtREAL_sequence st (for n be
Nat holds (I
. n)
= (
Integral (M,(F
. n)))) & I is
convergent & (
lim I)
= (
Integral (M,f))
proof
assume that
A1: (M
. E)
<
+infty & E
= (
dom (F
.
0 )) and
A2: for n be
Nat holds (F
. n)
is_integrable_on M and
A3: F
is_uniformly_convergent_to f;
A4: for n be
Nat holds ((
R_EAL F)
. n)
is_integrable_on M
proof
let n be
Nat;
(F
. n)
is_integrable_on M by
A2;
then (
R_EAL (F
. n))
is_integrable_on M;
hence ((
R_EAL F)
. n)
is_integrable_on M;
end;
A5: for e be
Real st e
>
0 holds ex N be
Nat st for n be
Nat, x be
set st n
>= N & x
in (
dom ((
R_EAL F)
.
0 )) holds
|.((((
R_EAL F)
. n)
. x)
- ((
R_EAL f)
. x)).|
< e
proof
let e be
Real;
assume e
>
0 ;
then
consider N be
Nat such that
A6: for n be
Nat, x be
Element of X st n
>= N & x
in (
dom (F
.
0 )) holds
|.(((F
. n)
. x)
- (f
. x)) qua
Complex.|
< e by
A3;
now
let n be
Nat, x be
set;
assume n
>= N & x
in (
dom ((
R_EAL F)
.
0 ));
then
A7:
|.(((F
. n)
. x)
- (f
. x)) qua
Complex.|
< e by
A6;
|.(((F
. n)
. x)
- (f
. x)) qua
Complex.|
=
|.(((F
. n)
. x)
- (f
. x)).| by
MESFUNC6: 43;
hence
|.((((
R_EAL F)
. n)
. x)
- ((
R_EAL f)
. x)).|
< e by
A7;
end;
hence thesis;
end;
(
dom ((
R_EAL F)
.
0 ))
= (
dom (
R_EAL f)) by
A3;
then
A8: (
R_EAL F)
is_uniformly_convergent_to (
R_EAL f) by
A5,
MESFUN10:def 2;
then
A9: (
R_EAL f)
is_integrable_on M by
A1,
A4,
MESFUN10: 21;
consider I be
ExtREAL_sequence such that
A10: for n be
Nat holds (I
. n)
= (
Integral (M,((
R_EAL F)
. n))) and
A11: I is
convergent & (
lim I)
= (
Integral (M,(
R_EAL f))) by
A1,
A4,
A8,
MESFUN10: 21;
for n be
Nat holds (I
. n)
= (
Integral (M,(F
. n))) by
A10;
hence thesis by
A9,
A11;
end;
reserve F for
with_the_same_dom
Functional_Sequence of X,
COMPLEX ,
f for
PartFunc of X,
COMPLEX ;
theorem ::
MESFUN9C:51
Th51: E
= (
dom (F
.
0 )) & E
= (
dom P) & (for n be
Nat holds (F
. n) is E
-measurable) & P
is_integrable_on M & (for x be
Element of X, n be
Nat st x
in E holds (
|.(F
. n).|
. x)
<= (P
. x)) & (for x be
Element of X st x
in E holds (F
# x) is
convergent) implies (
lim F)
is_integrable_on M
proof
assume that
A1: E
= (
dom (F
.
0 )) and
A2: E
= (
dom P) and
A3: for n be
Nat holds (F
. n) is E
-measurable and
A4: P
is_integrable_on M and
A5: for x be
Element of X, n be
Nat st x
in E holds (
|.(F
. n).|
. x)
<= (P
. x) and
A6: for x be
Element of X st x
in E holds (F
# x) is
convergent;
A7: for n be
Nat holds ((
Re F)
. n) is E
-measurable & ((
Im F)
. n) is E
-measurable by
A3,
Lm2;
for x be
Element of X, n be
Nat st x
in E holds (
|.((
Re F)
. n).|
. x)
<= (P
. x) & (
|.((
Im F)
. n).|
. x)
<= (P
. x)
proof
let x be
Element of X, n be
Nat;
reconsider n1 = n as
Element of
NAT by
ORDINAL1:def 12;
(
Re ((F
# x)
. n1))
= ((
Re (F
# x))
. n1) by
COMSEQ_3:def 5;
then
A8:
|.((
Re (F
# x))
. n) qua
Complex.|
<=
|.((F
# x)
. n) qua
Complex.| by
COMSEQ_3: 13;
(
Im ((F
# x)
. n1))
= ((
Im (F
# x))
. n1) by
COMSEQ_3:def 6;
then
A9:
|.((
Im (F
# x))
. n) qua
Complex.|
<=
|.((F
# x)
. n) qua
Complex.| by
COMSEQ_3: 13;
assume
A10: x
in E;
then (
|.(F
. n).|
. x)
<= (P
. x) by
A5;
then
|.((F
. n)
. x).|
<= (P
. x) by
VALUED_1: 18;
then
A11:
|.((F
# x)
. n).|
<= (P
. x) by
MESFUN7C:def 9;
((
Im F)
# x)
= (
Im (F
# x)) by
A1,
A10,
MESFUN7C: 23;
then
|.(((
Im F)
# x)
. n1) qua
Complex.|
<= (P
. x) by
A11,
A9,
XXREAL_0: 2;
then
A12:
|.(((
Im F)
. n1)
. x) qua
Complex.|
<= (P
. x) by
SEQFUNC:def 10;
((
Re F)
# x)
= (
Re (F
# x)) by
A1,
A10,
MESFUN7C: 23;
then
|.(((
Re F)
# x)
. n1) qua
Complex.|
<= (P
. x) by
A11,
A8,
XXREAL_0: 2;
then
|.(((
Re F)
. n1)
. x) qua
Complex.|
<= (P
. x) by
SEQFUNC:def 10;
hence (
|.((
Re F)
. n).|
. x)
<= (P
. x) & (
|.((
Im F)
. n).|
. x)
<= (P
. x) by
A12,
VALUED_1: 18;
end;
then
A13: for x be
Element of X, n be
Nat holds (x
in E implies (
|.((
Re F)
. n).|
. x)
<= (P
. x)) & (x
in E implies (
|.((
Im F)
. n).|
. x)
<= (P
. x));
A14: for x be
Element of X st x
in E holds ((
Re F)
# x) is
convergent & ((
Im F)
# x) is
convergent
proof
let x be
Element of X;
assume
A15: x
in E;
then (F
# x) is
convergent
Complex_Sequence by
A6;
then (
Re (F
# x)) is
convergent & (
Im (F
# x)) is
convergent;
hence ((
Re F)
# x) is
convergent & ((
Im F)
# x) is
convergent by
A1,
A15,
MESFUN7C: 23;
end;
then
A16: for x be
Element of X st x
in E holds ((
Im F)
# x) is
convergent;
E
= (
dom ((
Im F)
.
0 )) by
A1,
MESFUN7C:def 12;
then (
lim (
Im F))
is_integrable_on M by
A2,
A4,
A7,
A13,
A16,
Th47;
then (
R_EAL (
Im (
lim F)))
is_integrable_on M by
A1,
A6,
MESFUN7C: 25;
then
A17: (
Im (
lim F))
is_integrable_on M;
A18: for x be
Element of X st x
in E holds ((
Re F)
# x) is
convergent by
A14;
E
= (
dom ((
Re F)
.
0 )) by
A1,
MESFUN7C:def 11;
then (
lim (
Re F))
is_integrable_on M by
A2,
A4,
A7,
A13,
A18,
Th47;
then (
R_EAL (
Re (
lim F)))
is_integrable_on M by
A1,
A6,
MESFUN7C: 25;
then (
Re (
lim F))
is_integrable_on M;
hence (
lim F)
is_integrable_on M by
A17,
MESFUN6C:def 2;
end;
theorem ::
MESFUN9C:52
E
= (
dom (F
.
0 )) & E
= (
dom P) & (for n be
Nat holds (F
. n) is E
-measurable) & P
is_integrable_on M & (for x be
Element of X, n be
Nat st x
in E holds (
|.(F
. n).|
. x)
<= (P
. x)) implies ex I be
Complex_Sequence st (for n be
Nat holds (I
. n)
= (
Integral (M,(F
. n)))) & ((for x be
Element of X st x
in E holds (F
# x) is
convergent) implies I is
convergent & (
lim I)
= (
Integral (M,(
lim F))))
proof
assume that
A1: E
= (
dom (F
.
0 )) and
A2: E
= (
dom P) and
A3: for n be
Nat holds (F
. n) is E
-measurable and
A4: P
is_integrable_on M and
A5: for x be
Element of X, n be
Nat st x
in E holds (
|.(F
. n).|
. x)
<= (P
. x);
A6: E
= (
dom ((
Re F)
.
0 )) by
A1,
MESFUN7C:def 11;
A7: for n be
Nat holds ((
Re F)
. n) is E
-measurable & ((
Im F)
. n) is E
-measurable by
A3,
Lm2;
A8: for x be
Element of X, n be
Nat st x
in E holds (
|.((
Re F)
. n).|
. x)
<= (P
. x) & (
|.((
Im F)
. n).|
. x)
<= (P
. x)
proof
let x be
Element of X, n be
Nat;
reconsider n1 = n as
Element of
NAT by
ORDINAL1:def 12;
(
Re ((F
# x)
. n1))
= ((
Re (F
# x))
. n1) by
COMSEQ_3:def 5;
then
A9:
|.((
Re (F
# x))
. n) qua
Complex.|
<=
|.((F
# x)
. n).| by
COMSEQ_3: 13;
(
Im ((F
# x)
. n1))
= ((
Im (F
# x))
. n1) by
COMSEQ_3:def 6;
then
A10:
|.((
Im (F
# x))
. n) qua
Complex.|
<=
|.((F
# x)
. n).| by
COMSEQ_3: 13;
assume
A11: x
in E;
then (
|.(F
. n).|
. x)
<= (P
. x) by
A5;
then
|.((F
. n)
. x).|
<= (P
. x) by
VALUED_1: 18;
then
A12:
|.((F
# x)
. n).|
<= (P
. x) by
MESFUN7C:def 9;
((
Im F)
# x)
= (
Im (F
# x)) by
A1,
A11,
MESFUN7C: 23;
then
A13:
|.(((
Im F)
# x)
. n1) qua
Complex.|
<= (P
. x) by
A12,
A10,
XXREAL_0: 2;
((
Re F)
# x)
= (
Re (F
# x)) by
A1,
A11,
MESFUN7C: 23;
then
|.(((
Re F)
# x)
. n) qua
Complex.|
<= (P
. x) by
A12,
A9,
XXREAL_0: 2;
then
A14:
|.(((
Re F)
. n)
. x) qua
Complex.|
<= (P
. x) by
SEQFUNC:def 10;
|.(((
Im F)
. n)
. x) qua
Complex.|
<= (P
. x) by
A13,
SEQFUNC:def 10;
hence (
|.((
Re F)
. n).|
. x)
<= (P
. x) & (
|.((
Im F)
. n).|
. x)
<= (P
. x) by
A14,
VALUED_1: 18;
end;
then for x be
Element of X, n be
Nat st x
in E holds (
|.((
Re F)
. n).|
. x)
<= (P
. x);
then
consider A be
Real_Sequence such that
A15: for n be
Nat holds (A
. n)
= (
Integral (M,((
Re F)
. n))) and
A16: (for x be
Element of X st x
in E holds ((
Re F)
# x) is
convergent) implies A is
convergent & (
lim A)
= (
Integral (M,(
lim (
Re F)))) by
A2,
A4,
A6,
A7,
Th48;
defpred
P[
Element of
NAT ,
set] means $2
= (
Integral (M,(F
. $1)));
A17: for n be
Element of
NAT holds ex y be
Element of
COMPLEX st
P[n, y]
proof
let n be
Element of
NAT ;
(
Integral (M,(F
. n))) is
Element of
COMPLEX by
XCMPLX_0:def 2;
hence thesis;
end;
consider I be
sequence of
COMPLEX such that
A18: for n be
Element of
NAT holds
P[n, (I
. n)] from
FUNCT_2:sch 3(
A17);
reconsider I as
Complex_Sequence;
A19: E
= (
dom ((
Im F)
.
0 )) by
A1,
MESFUN7C:def 12;
for x be
Element of X, n be
Nat st x
in E holds (
|.((
Im F)
. n).|
. x)
<= (P
. x) by
A8;
then
consider B be
Real_Sequence such that
A20: for n be
Nat holds (B
. n)
= (
Integral (M,((
Im F)
. n))) and
A21: (for x be
Element of X st x
in E holds ((
Im F)
# x) is
convergent) implies B is
convergent & (
lim B)
= (
Integral (M,(
lim (
Im F)))) by
A2,
A4,
A19,
A7,
Th48;
A22: for n be
Nat holds ((
Re F)
. n)
is_integrable_on M & ((
Im F)
. n)
is_integrable_on M
proof
let n be
Nat;
A23:
now
let x be
Element of X;
assume x
in (
dom ((
Re F)
. n));
then x
in E by
A6,
MESFUNC8:def 2;
then (
|.((
Re F)
. n).|
. x)
<= (P
. x) by
A8;
hence
|.(((
Re F)
. n)
. x) qua
Complex.|
<= (P
. x) by
VALUED_1: 18;
end;
A24:
now
let x be
Element of X;
assume x
in (
dom ((
Im F)
. n));
then x
in E by
A19,
MESFUNC8:def 2;
then (
|.((
Im F)
. n).|
. x)
<= (P
. x) by
A8;
hence
|.(((
Im F)
. n)
. x) qua
Complex.|
<= (P
. x) by
VALUED_1: 18;
end;
A25: ((
Re F)
. n) is E
-measurable & ((
Im F)
. n) is E
-measurable by
A3,
Lm2;
(
dom ((
Re F)
. n))
= E & (
dom ((
Im F)
. n))
= E by
A6,
A19,
MESFUNC8:def 2;
hence ((
Re F)
. n)
is_integrable_on M & ((
Im F)
. n)
is_integrable_on M by
A2,
A4,
A23,
A24,
A25,
MESFUNC6: 96;
end;
A26:
now
let n1 be
set;
assume n1
in
NAT ;
then
reconsider n = n1 as
Element of
NAT ;
A27: ((
Re I)
. n)
= (
Re (I
. n)) & ((
Im I)
. n)
= (
Im (I
. n)) by
COMSEQ_3:def 5,
COMSEQ_3:def 6;
A28: ((
Im F)
. n)
= (
Im (F
. n)) by
MESFUN7C: 24;
then
A29: (
Im (F
. n))
is_integrable_on M by
A22;
A30: ((
Re F)
. n)
= (
Re (F
. n)) by
MESFUN7C: 24;
then (
Re (F
. n))
is_integrable_on M by
A22;
then (F
. n)
is_integrable_on M by
A29,
MESFUN6C:def 2;
then
consider RF,IF be
Real such that
A31: RF
= (
Integral (M,(
Re (F
. n)))) & IF
= (
Integral (M,(
Im (F
. n)))) and
A32: (
Integral (M,(F
. n)))
= (RF
+ (IF
*
<i> )) by
MESFUN6C:def 3;
(I
. n1)
= (
Integral (M,(F
. n))) by
A18;
then (
Re (I
. n1))
= RF & (
Im (I
. n1))
= IF by
A32,
COMPLEX1: 12;
hence ((
Re I)
. n1)
= (A
. n1) & ((
Im I)
. n1)
= (B
. n1) by
A15,
A20,
A30,
A28,
A31,
A27;
end;
then for x be
object st x
in
NAT holds ((
Re I)
. x)
= (A
. x);
then
A33: (
Re I)
= A;
take I;
hereby
let n be
Nat;
n is
Element of
NAT by
ORDINAL1:def 12;
hence (I
. n)
= (
Integral (M,(F
. n))) by
A18;
end;
for x be
object st x
in
NAT holds ((
Im I)
. x)
= (B
. x) by
A26;
then
A34: (
Im I)
= B;
hereby
assume
A35: for x be
Element of X st x
in E holds (F
# x) is
convergent;
then
A36: (
Integral (M,(
lim (
Im F))))
= (
Integral (M,(
Im (
lim F)))) by
A1,
MESFUN7C: 25;
A37: (
lim F)
is_integrable_on M & (
Integral (M,(
lim (
Re F))))
= (
Integral (M,(
Re (
lim F)))) by
A1,
A2,
A3,
A4,
A5,
A35,
Th51,
MESFUN7C: 25;
A38:
now
let x be
Element of X such that
A39: x
in E;
(F
# x) is
convergent
Complex_Sequence by
A35,
A39;
then (
Re (F
# x)) is
convergent & (
Im (F
# x)) is
convergent;
hence ((
Re F)
# x) is
convergent & ((
Im F)
# x) is
convergent by
A1,
A39,
MESFUN7C: 23;
end;
hence I is
convergent by
A16,
A21,
A33,
A34,
COMSEQ_3: 42;
for n be
Nat holds ((
Re I)
. n)
= (
Re (I
. n)) & ((
Im I)
. n)
= (
Im (I
. n)) by
COMSEQ_3:def 5,
COMSEQ_3:def 6;
then (
lim I)
= ((
lim (
Re I))
+ ((
lim (
Im I))
*
<i> )) by
A16,
A21,
A33,
A34,
A38,
COMSEQ_3: 39;
hence (
lim I)
= (
Integral (M,(
lim F))) by
A16,
A21,
A33,
A34,
A38,
A37,
A36,
MESFUN6C:def 3;
end;
end;
definition
let X be
set, F be
Functional_Sequence of X,
COMPLEX ;
::
MESFUN9C:def6
attr F is
uniformly_bounded means ex K be
Real st for n be
Nat, x be
Element of X st x
in (
dom (F
.
0 )) holds
|.((F
. n)
. x).|
<= K;
end
theorem ::
MESFUN9C:53
(M
. E)
<
+infty & E
= (
dom (F
.
0 )) & (for n be
Nat holds (F
. n) is E
-measurable) & F is
uniformly_bounded & (for x be
Element of X st x
in E holds (F
# x) is
convergent) implies (for n be
Nat holds (F
. n)
is_integrable_on M) & (
lim F)
is_integrable_on M & ex I be
Complex_Sequence st (for n be
Nat holds (I
. n)
= (
Integral (M,(F
. n)))) & I is
convergent & (
lim I)
= (
Integral (M,(
lim F)))
proof
assume that
A1: (M
. E)
<
+infty and
A2: E
= (
dom (F
.
0 )) and
A3: for n be
Nat holds (F
. n) is E
-measurable and
A4: F is
uniformly_bounded and
A5: for x be
Element of X st x
in E holds (F
# x) is
convergent;
consider K be
Real such that
A6: for n be
Nat, x be
Element of X st x
in (
dom (F
.
0 )) holds
|.((F
. n)
. x).|
<= K by
A4;
A7: for x be
Element of X st x
in E holds ((
Re F)
# x) is
convergent
proof
let x be
Element of X;
assume
A8: x
in E;
then (F
# x) is
convergent
Complex_Sequence by
A5;
then (
Re (F
# x)) is
convergent;
hence ((
Re F)
# x) is
convergent by
A2,
A8,
MESFUN7C: 23;
end;
for n be
Nat, x be
Element of X st x
in (
dom ((
Im F)
.
0 )) holds
|.(((
Im F)
. n)
. x) qua
Complex.|
<= K
proof
let n be
Nat, x be
Element of X;
assume x
in (
dom ((
Im F)
.
0 ));
then
A9: x
in E by
A2,
MESFUN7C:def 12;
then
|.((F
. n)
. x).|
<= K by
A2,
A6;
then
A10:
|.((F
# x)
. n).|
<= K by
MESFUN7C:def 9;
(
Im ((F
# x)
. n))
= ((
Im (F
# x))
. n) by
COMSEQ_3:def 6;
then (
Im ((F
# x)
. n))
= (((
Im F)
# x)
. n) by
A2,
A9,
MESFUN7C: 23;
then
|.(((
Im F)
# x)
. n) qua
Complex.|
<=
|.((F
# x)
. n).| by
COMSEQ_3: 13;
then
|.(((
Im F)
# x)
. n) qua
Complex.|
<= K by
A10,
XXREAL_0: 2;
hence thesis by
SEQFUNC:def 10;
end;
then
A11: (
Im F) is
uniformly_bounded;
A12: for x be
Element of X st x
in E holds ((
Im F)
# x) is
convergent
proof
let x be
Element of X;
assume
A13: x
in E;
then (F
# x) is
convergent
Complex_Sequence by
A5;
then (
Im (F
# x)) is
convergent;
hence ((
Im F)
# x) is
convergent by
A2,
A13,
MESFUN7C: 23;
end;
defpred
P[
Element of
NAT ,
set] means $2
= (
Integral (M,(F
. $1)));
A14: for n be
Element of
NAT holds ex y be
Element of
COMPLEX st
P[n, y]
proof
let n be
Element of
NAT ;
take (
Integral (M,(F
. n)));
thus thesis by
XCMPLX_0:def 2,
TARSKI: 1;
end;
consider I be
sequence of
COMPLEX such that
A15: for n be
Element of
NAT holds
P[n, (I
. n)] from
FUNCT_2:sch 3(
A14);
reconsider I as
Complex_Sequence;
A16: for n be
Nat holds ((
Re F)
. n) is E
-measurable & ((
Im F)
. n) is E
-measurable by
A3,
Lm2;
for n be
Nat, x be
Element of X st x
in (
dom ((
Re F)
.
0 )) holds
|.(((
Re F)
. n)
. x) qua
Complex.|
<= K
proof
let n be
Nat, x be
Element of X;
assume x
in (
dom ((
Re F)
.
0 ));
then
A17: x
in E by
A2,
MESFUN7C:def 11;
then
|.((F
. n)
. x).|
<= K by
A2,
A6;
then
A18:
|.((F
# x)
. n).|
<= K by
MESFUN7C:def 9;
(
Re ((F
# x)
. n))
= ((
Re (F
# x))
. n) by
COMSEQ_3:def 5;
then (
Re ((F
# x)
. n))
= (((
Re F)
# x)
. n) by
A2,
A17,
MESFUN7C: 23;
then
|.(((
Re F)
# x)
. n) qua
Complex.|
<=
|.((F
# x)
. n).| by
COMSEQ_3: 13;
then
|.(((
Re F)
# x)
. n) qua
Complex.|
<= K by
A18,
XXREAL_0: 2;
hence
|.(((
Re F)
. n)
. x) qua
Complex.|
<= K by
SEQFUNC:def 10;
end;
then
A19: (
Re F) is
uniformly_bounded;
A20: E
= (
dom ((
Im F)
.
0 )) by
A2,
MESFUN7C:def 12;
then
consider B be
ExtREAL_sequence such that
A21: for n be
Nat holds (B
. n)
= (
Integral (M,((
Im F)
. n))) and
A22: B is
convergent and
A23: (
lim B)
= (
Integral (M,(
lim (
Im F)))) by
A1,
A16,
A12,
A11,
Th49;
A24: (
lim (
Im F))
is_integrable_on M by
A1,
A20,
A16,
A12,
A11,
Th49;
then (
R_EAL (
Im (
lim F)))
is_integrable_on M by
A2,
A5,
MESFUN7C: 25;
then
A25: (
Im (
lim F))
is_integrable_on M;
A26: E
= (
dom ((
Re F)
.
0 )) by
A2,
MESFUN7C:def 11;
then
consider A be
ExtREAL_sequence such that
A27: for n be
Nat holds (A
. n)
= (
Integral (M,((
Re F)
. n))) and
A28: A is
convergent and
A29: (
lim A)
= (
Integral (M,(
lim (
Re F)))) by
A1,
A16,
A7,
A19,
Th49;
thus
A30: for n be
Nat holds (F
. n)
is_integrable_on M
proof
let n be
Nat;
((
Im F)
. n)
= (
Im (F
. n)) by
MESFUN7C: 24;
then
A31: (
Im (F
. n))
is_integrable_on M by
A1,
A20,
A16,
A12,
A11,
Th49;
((
Re F)
. n)
= (
Re (F
. n)) by
MESFUN7C: 24;
then (
Re (F
. n))
is_integrable_on M by
A1,
A26,
A16,
A7,
A19,
Th49;
hence (F
. n)
is_integrable_on M by
A31,
MESFUN6C:def 2;
end;
A32: for n1 be
set st n1
in
NAT holds ((
R_EAL (
Re I))
. n1)
= (A
. n1) & ((
R_EAL (
Im I))
. n1)
= (B
. n1)
proof
let n1 be
set;
assume n1
in
NAT ;
then
reconsider n = n1 as
Element of
NAT ;
A33: (I
. n1)
= (
Integral (M,(F
. n))) by
A15;
(F
. n)
is_integrable_on M by
A30;
then
consider RF,IF be
Real such that
A34: RF
= (
Integral (M,(
Re (F
. n)))) and
A35: IF
= (
Integral (M,(
Im (F
. n)))) and
A36: (
Integral (M,(F
. n)))
= (RF
+ (IF
*
<i> )) by
MESFUN6C:def 3;
((
Re I)
. n)
= (
Re (I
. n)) by
COMSEQ_3:def 5;
then ((
Re F)
. n)
= (
Re (F
. n)) & ((
Re I)
. n1)
= RF by
A36,
A33,
COMPLEX1: 12,
MESFUN7C: 24;
hence ((
R_EAL (
Re I))
. n1)
= (A
. n1) by
A27,
A34;
((
Im I)
. n)
= (
Im (I
. n)) by
COMSEQ_3:def 6;
then ((
Im F)
. n)
= (
Im (F
. n)) & ((
Im I)
. n1)
= IF by
A36,
A33,
COMPLEX1: 12,
MESFUN7C: 24;
hence ((
R_EAL (
Im I))
. n1)
= (B
. n1) by
A21,
A35;
end;
then for n1 be
object st n1
in
NAT holds ((
R_EAL (
Im I))
. n1)
= (B
. n1);
then
A37: (
Im I)
= B;
A38:
-infty
< (
Integral (M,(
lim (
Im F)))) & (
Integral (M,(
lim (
Im F))))
<
+infty by
A24,
MESFUNC5: 96;
A39: B is
convergent implies B is
convergent_to_finite_number by
A23,
A38,
MESFUNC5:def 12;
then
A40: (
lim (
Im I))
= (
Integral (M,(
lim (
Im F)))) by
A22,
A23,
A37,
RINFSUP2: 15;
A41: (
Im I) is
convergent by
A22,
A37,
A39,
RINFSUP2: 15;
A42: (
lim (
Re F))
is_integrable_on M by
A1,
A26,
A16,
A7,
A19,
Th49;
then (
R_EAL (
Re (
lim F)))
is_integrable_on M by
A2,
A5,
MESFUN7C: 25;
then (
Re (
lim F))
is_integrable_on M;
hence
A43: (
lim F)
is_integrable_on M by
A25,
MESFUN6C:def 2;
take I;
for n1 be
object st n1
in
NAT holds ((
R_EAL (
Re I))
. n1)
= (A
. n1) by
A32;
then
A44: (
Re I)
= A;
thus for n be
Nat holds (I
. n)
= (
Integral (M,(F
. n)))
proof
let n be
Nat;
A45: ((
Re I)
. n)
= (
Re (I
. n)) & ((
Im I)
. n)
= (
Im (I
. n)) by
COMSEQ_3:def 5,
COMSEQ_3:def 6;
((
Re F)
. n)
= (
Re (F
. n)) by
MESFUN7C: 24;
then
A46: ((
Re I)
. n)
= (
Integral (M,(
Re (F
. n)))) by
A27,
A44;
((
Im F)
. n)
= (
Im (F
. n)) by
MESFUN7C: 24;
then
A47: ((
Im I)
. n)
= (
Integral (M,(
Im (F
. n)))) by
A21,
A37;
(I
. n)
= ((
Re (I
. n))
+ ((
Im (I
. n))
*
<i> )) & (F
. n)
is_integrable_on M by
A30,
COMPLEX1: 13;
hence (I
. n)
= (
Integral (M,(F
. n))) by
A45,
A46,
A47,
MESFUN6C:def 3;
end;
A48:
-infty
< (
Integral (M,(
lim (
Re F)))) & (
Integral (M,(
lim (
Re F))))
<
+infty by
A42,
MESFUNC5: 96;
A49: A is
convergent implies A is
convergent_to_finite_number by
A29,
A48,
MESFUNC5:def 12;
then
A50: (
Re I) is
convergent by
A28,
A44,
RINFSUP2: 15;
hence I is
convergent by
A41,
COMSEQ_3: 42;
for n be
Nat holds ((
Re I)
. n)
= (
Re (I
. n)) & ((
Im I)
. n)
= (
Im (I
. n)) by
COMSEQ_3:def 5,
COMSEQ_3:def 6;
then
A51: (
lim I)
= ((
lim (
Re I))
+ ((
lim (
Im I))
*
<i> )) by
A50,
A41,
COMSEQ_3: 39;
A52: (
Integral (M,(
lim (
Re F))))
= (
Integral (M,(
Re (
lim F)))) & (
Integral (M,(
lim (
Im F))))
= (
Integral (M,(
Im (
lim F)))) by
A2,
A5,
MESFUN7C: 25;
(
lim (
Re I))
= (
Integral (M,(
lim (
Re F)))) by
A28,
A29,
A44,
A49,
RINFSUP2: 15;
hence (
lim I)
= (
Integral (M,(
lim F))) by
A43,
A40,
A51,
A52,
MESFUN6C:def 3;
end;
definition
let X be
set, F be
Functional_Sequence of X,
COMPLEX , f be
PartFunc of X,
COMPLEX ;
::
MESFUN9C:def7
pred F
is_uniformly_convergent_to f means F is
with_the_same_dom & (
dom (F
.
0 ))
= (
dom f) & for e be
Real st e
>
0 holds ex N be
Nat st for n be
Nat, x be
Element of X st n
>= N & x
in (
dom (F
.
0 )) holds
|.(((F
. n)
. x)
- (f
. x)).|
< e;
end
theorem ::
MESFUN9C:54
(M
. E)
<
+infty & E
= (
dom (F
.
0 )) & (for n be
Nat holds (F
. n)
is_integrable_on M) & F
is_uniformly_convergent_to f implies f
is_integrable_on M & ex I be
Complex_Sequence st (for n be
Nat holds (I
. n)
= (
Integral (M,(F
. n)))) & I is
convergent & (
lim I)
= (
Integral (M,f))
proof
assume that
A1: (M
. E)
<
+infty and
A2: E
= (
dom (F
.
0 )) and
A3: for n be
Nat holds (F
. n)
is_integrable_on M and
A4: F
is_uniformly_convergent_to f;
A5: for n be
Nat holds ((
Im F)
. n)
is_integrable_on M
proof
let n be
Nat;
(F
. n)
is_integrable_on M by
A3;
then (
Im (F
. n))
is_integrable_on M by
MESFUN6C:def 2;
hence ((
Im F)
. n)
is_integrable_on M by
MESFUN7C: 24;
end;
A6: (
dom (F
.
0 ))
= (
dom f) by
A4;
A7: for e be
Real st e
>
0 holds ex N be
Nat st for n be
Nat, x be
Element of X st n
>= N & x
in (
dom ((
Im F)
.
0 )) holds
|.((((
Im F)
. n)
. x)
- ((
Im f)
. x)) qua
Complex.|
< e
proof
let e be
Real;
assume e
>
0 ;
then
consider N be
Nat such that
A8: for n be
Nat, x be
Element of X st n
>= N & x
in (
dom (F
.
0 )) holds
|.(((F
. n)
. x)
- (f
. x)).|
< e by
A4;
for n be
Nat, x be
Element of X st n
>= N & x
in (
dom ((
Im F)
.
0 )) holds
|.((((
Im F)
. n)
. x)
- ((
Im f)
. x)) qua
Complex.|
< e
proof
let n be
Nat, x be
Element of X;
assume that
A9: n
>= N and
A10: x
in (
dom ((
Im F)
.
0 ));
reconsider n1 = n as
Element of
NAT by
ORDINAL1:def 12;
A11: x
in (
dom (F
.
0 )) by
A10,
MESFUN7C:def 12;
then
|.(((F
. n)
. x)
- (f
. x)).|
< e by
A8,
A9;
then
A12:
|.(((F
# x)
. n)
- (f
. x)).|
< e by
MESFUN7C:def 9;
A13: (
Im (((F
# x)
. n)
- (f
. x)))
= ((
Im ((F
# x)
. n))
- (
Im (f
. x))) by
COMPLEX1: 19;
A14:
|.((
Im ((F
# x)
. n))
- (
Im (f
. x))) qua
Complex.|
<=
|.(((F
# x)
. n)
- (f
. x)).| by
A13,
COMSEQ_3: 13;
x
in (
dom (
Im f)) by
A6,
A11,
COMSEQ_3:def 4;
then
A15: (
Im (f
. x))
= ((
Im f)
. x) by
COMSEQ_3:def 4;
(
Im ((F
# x)
. n1))
= ((
Im (F
# x))
. n) by
COMSEQ_3:def 6
.= (((
Im F)
# x)
. n1) by
A11,
MESFUN7C: 23
.= (((
Im F)
. n)
. x) by
SEQFUNC:def 10;
hence
|.((((
Im F)
. n)
. x)
- ((
Im f)
. x)) qua
Complex.|
< e by
A12,
A14,
A15,
XXREAL_0: 2;
end;
hence thesis;
end;
(
dom ((
Im F)
.
0 ))
= (
dom f) by
A6,
MESFUN7C:def 12;
then (
dom ((
Im F)
.
0 ))
= (
dom (
Im f)) by
COMSEQ_3:def 4;
then
A16: (
Im F)
is_uniformly_convergent_to (
Im f) by
A7;
A17: for e be
Real st e
>
0 holds ex N be
Nat st for n be
Nat, x be
Element of X st n
>= N & x
in (
dom ((
Re F)
.
0 )) holds
|.((((
Re F)
. n)
. x)
- ((
Re f)
. x)) qua
Complex.|
< e
proof
let e be
Real;
assume e
>
0 ;
then
consider N be
Nat such that
A18: for n be
Nat, x be
Element of X st n
>= N & x
in (
dom (F
.
0 )) holds
|.(((F
. n)
. x)
- (f
. x)).|
< e by
A4;
for n be
Nat, x be
Element of X st n
>= N & x
in (
dom ((
Re F)
.
0 )) holds
|.((((
Re F)
. n)
. x)
- ((
Re f)
. x)) qua
Complex.|
< e
proof
let n be
Nat, x be
Element of X;
assume that
A19: n
>= N and
A20: x
in (
dom ((
Re F)
.
0 ));
A21: x
in (
dom (F
.
0 )) by
A20,
MESFUN7C:def 11;
A22: (
Re (((F
# x)
. n)
- (f
. x)))
= ((
Re ((F
# x)
. n))
- (
Re (f
. x))) by
COMPLEX1: 19;
((F
. n)
. x)
= ((F
# x)
. n) by
MESFUN7C:def 9;
then
A23:
|.(((F
# x)
. n)
- (f
. x)).|
< e by
A18,
A19,
A21;
x
in (
dom (
Re f)) by
A6,
A21,
COMSEQ_3:def 3;
then
A24: (
Re (f
. x))
= ((
Re f)
. x) by
COMSEQ_3:def 3;
reconsider n1 = n as
Element of
NAT by
ORDINAL1:def 12;
A25:
|.((
Re ((F
# x)
. n))
- (
Re (f
. x))) qua
Complex.|
<=
|.(((F
# x)
. n)
- (f
. x)).| by
A22,
COMSEQ_3: 13;
(
Re ((F
# x)
. n))
= ((
Re (F
# x))
. n1) by
COMSEQ_3:def 5
.= (((
Re F)
# x)
. n) by
A21,
MESFUN7C: 23
.= (((
Re F)
. n1)
. x) by
SEQFUNC:def 10;
hence
|.((((
Re F)
. n)
. x)
- ((
Re f)
. x)) qua
Complex.|
< e by
A23,
A25,
A24,
XXREAL_0: 2;
end;
hence thesis;
end;
(
dom ((
Re F)
.
0 ))
= (
dom f) by
A6,
MESFUN7C:def 11;
then (
dom ((
Re F)
.
0 ))
= (
dom (
Re f)) by
COMSEQ_3:def 3;
then
A26: (
Re F)
is_uniformly_convergent_to (
Re f) by
A17;
defpred
P[
Element of
NAT ,
set] means $2
= (
Integral (M,(F
. $1)));
A27: for n be
Element of
NAT holds ex y be
Element of
COMPLEX st
P[n, y]
proof
let n be
Element of
NAT ;
(
Integral (M,(F
. n))) is
Element of
COMPLEX by
XCMPLX_0:def 2;
hence thesis;
end;
consider I be
sequence of
COMPLEX such that
A28: for n be
Element of
NAT holds
P[n, (I
. n)] from
FUNCT_2:sch 3(
A27);
A29: for n be
Nat holds ((
Re F)
. n)
is_integrable_on M
proof
let n be
Nat;
(F
. n)
is_integrable_on M by
A3;
then (
Re (F
. n))
is_integrable_on M by
MESFUN6C:def 2;
hence ((
Re F)
. n)
is_integrable_on M by
MESFUN7C: 24;
end;
A30: E
= (
dom ((
Im F)
.
0 )) by
A2,
MESFUN7C:def 12;
then
A31: (
Im f)
is_integrable_on M by
A1,
A5,
A16,
Th50;
A32: E
= (
dom ((
Re F)
.
0 )) by
A2,
MESFUN7C:def 11;
then
consider A be
ExtREAL_sequence such that
A33: for n be
Nat holds (A
. n)
= (
Integral (M,((
Re F)
. n))) and
A34: A is
convergent and
A35: (
lim A)
= (
Integral (M,(
Re f))) by
A1,
A29,
A26,
Th50;
A36: (
Re f)
is_integrable_on M by
A1,
A32,
A29,
A26,
Th50;
hence
A37: f
is_integrable_on M by
A31,
MESFUN6C:def 2;
reconsider I as
Complex_Sequence;
consider B be
ExtREAL_sequence such that
A38: for n be
Nat holds (B
. n)
= (
Integral (M,((
Im F)
. n))) and
A39: B is
convergent and
A40: (
lim B)
= (
Integral (M,(
Im f))) by
A1,
A30,
A5,
A16,
Th50;
A41:
now
let n1 be
set;
assume n1
in
NAT ;
then
reconsider n = n1 as
Element of
NAT ;
A42: ((
Re F)
. n)
= (
Re (F
. n)) & ((
Im F)
. n)
= (
Im (F
. n)) by
MESFUN7C: 24;
(F
. n)
is_integrable_on M by
A3;
then
consider RF,IF be
Real such that
A43: RF
= (
Integral (M,(
Re (F
. n)))) & IF
= (
Integral (M,(
Im (F
. n)))) and
A44: (
Integral (M,(F
. n)))
= (RF
+ (IF
*
<i> )) by
MESFUN6C:def 3;
A45: ((
Re I)
. n)
= (
Re (I
. n)) & ((
Im I)
. n)
= (
Im (I
. n)) by
COMSEQ_3:def 5,
COMSEQ_3:def 6;
(I
. n1)
= (
Integral (M,(F
. n))) by
A28;
then (
Re (I
. n1))
= RF & (
Im (I
. n1))
= IF by
A44,
COMPLEX1: 12;
hence ((
R_EAL (
Re I))
. n1)
= (A
. n1) & ((
R_EAL (
Im I))
. n1)
= (B
. n1) by
A33,
A38,
A42,
A45,
A43;
end;
then for x be
object st x
in
NAT holds ((
R_EAL (
Im I))
. x)
= (B
. x);
then
A46: (
Im I)
= B;
A47:
-infty
< (
Integral (M,(
Im f))) & (
Integral (M,(
Im f)))
<
+infty by
A31,
MESFUNC6: 90;
A48: B is
convergent implies B is
convergent_to_finite_number by
A40,
A47,
MESFUNC5:def 12;
then
A49: (
lim (
Im I))
= (
Integral (M,(
Im f))) by
A39,
A40,
A46,
RINFSUP2: 15;
A50: (
Im I) is
convergent by
A39,
A46,
A48,
RINFSUP2: 15;
take I;
for x be
object st x
in
NAT holds ((
R_EAL (
Re I))
. x)
= (A
. x) by
A41;
then
A51: (
Re I)
= A;
thus for n be
Nat holds (I
. n)
= (
Integral (M,(F
. n)))
proof
let n be
Nat;
reconsider n1 = n as
Element of
NAT by
ORDINAL1:def 12;
((
Re I)
. n1)
= (
Re (I
. n1)) & ((
Im I)
. n1)
= (
Im (I
. n1)) by
COMSEQ_3:def 5,
COMSEQ_3:def 6;
then
A52: (I
. n)
= (((
Re I)
. n)
+ (((
Im I)
. n)
*
<i> )) by
COMPLEX1: 13;
((
Re F)
. n)
= (
Re (F
. n)) by
MESFUN7C: 24;
then
A53: ((
Re I)
. n)
= (
Integral (M,(
Re (F
. n)))) by
A33,
A51;
((
Im F)
. n)
= (
Im (F
. n)) by
MESFUN7C: 24;
then
A54: ((
Im I)
. n)
= (
Integral (M,(
Im (F
. n)))) by
A38,
A46;
(F
. n)
is_integrable_on M by
A3;
hence (I
. n)
= (
Integral (M,(F
. n))) by
A52,
A53,
A54,
MESFUN6C:def 3;
end;
A55:
-infty
< (
Integral (M,(
Re f))) & (
Integral (M,(
Re f)))
<
+infty by
A36,
MESFUNC6: 90;
A56: A is
convergent implies A is
convergent_to_finite_number by
A35,
A55,
MESFUNC5:def 12;
then
A57: (
Re I) is
convergent by
A34,
A51,
RINFSUP2: 15;
hence I is
convergent by
A50,
COMSEQ_3: 42;
for n be
Nat holds ((
Re I)
. n)
= (
Re (I
. n)) & ((
Im I)
. n)
= (
Im (I
. n)) by
COMSEQ_3:def 5,
COMSEQ_3:def 6;
then
A58: (
lim I)
= ((
lim (
Re I))
+ ((
lim (
Im I))
*
<i> )) by
A57,
A50,
COMSEQ_3: 39;
(
lim (
Re I))
= (
Integral (M,(
Re f))) by
A34,
A35,
A51,
A56,
RINFSUP2: 15;
hence (
lim I)
= (
Integral (M,f)) by
A37,
A49,
A58,
MESFUN6C:def 3;
end;