euclid11.miz
begin
reserve A,B,C,D,E,F,G for
Point of (
TOP-REAL 2);
theorem ::
EUCLID11:1
Th1: (
angle (A,B,A))
=
0
proof
0
= (
angle ((
euc2cpx A),(
euc2cpx B),(
euc2cpx A))) by
COMPLEX2: 79
.= (
angle (A,B,A)) by
EUCLID_3:def 4;
hence thesis;
end;
theorem ::
EUCLID11:2
Th2:
0
<= (
angle (A,B,C))
< (2
*
PI )
proof
(
angle (A,B,C))
= (
angle ((
euc2cpx A),(
euc2cpx B),(
euc2cpx C))) by
EUCLID_3:def 4;
hence thesis by
COMPLEX2: 70;
end;
Lm1:
[.
0 , (2
*
PI ).[
= ((
[.
0 ,
PI .[
\/
{
PI })
\/
].
PI , (2
*
PI ).[)
proof
[.
0 , (2
*
PI ).[
= (
[.
0 ,
PI .]
\/
].
PI , (2
*
PI ).[) by
COMPTRIG: 5,
XXREAL_1: 169
.= ((
[.
0 ,
PI .[
\/
{
PI })
\/
].
PI , (2
*
PI ).[) by
COMPTRIG: 5,
XXREAL_1: 129;
hence thesis;
end;
theorem ::
EUCLID11:3
0
<= (
angle (A,B,C))
<
PI or (
angle (A,B,C))
=
PI or
PI
< (
angle (A,B,C))
< (2
*
PI )
proof
set alpha = (
angle (A,B,C));
0
<= alpha
< (2
*
PI ) by
Th2;
then alpha
in ((
[.
0 ,
PI .[
\/
{
PI })
\/
].
PI , (2
*
PI ).[) by
Lm1,
XXREAL_1: 3;
then alpha
in (
[.
0 ,
PI .[
\/
{
PI }) or alpha
in
].
PI , (2
*
PI ).[ by
XBOOLE_0:def 3;
then alpha
in
[.
0 ,
PI .[ or alpha
in
{
PI } or alpha
in
].
PI , (2
*
PI ).[ by
XBOOLE_0:def 3;
hence thesis by
XXREAL_1: 3,
TARSKI:def 1,
XXREAL_1: 4;
end;
theorem ::
EUCLID11:4
Th3: (
|.(F
- E).|
^2 )
= (((
|.(A
- E).|
^2 )
+ (
|.(A
- F).|
^2 ))
- (((2
*
|.(A
- E).|)
*
|.(A
- F).|)
* (
cos (
angle (E,A,F)))))
proof
(
|.(F
- E).|
^2 )
= (((
|.(E
- A).|
^2 )
+ (
|.(F
- A).|
^2 ))
- (((2
*
|.(E
- A).|)
*
|.(F
- A).|)
* (
cos (
angle (E,A,F))))) by
EUCLID_6: 7
.= (((
|.(A
- E).|
^2 )
+ (
|.(F
- A).|
^2 ))
- (((2
*
|.(E
- A).|)
*
|.(F
- A).|)
* (
cos (
angle (E,A,F))))) by
EUCLID_6: 43
.= (((
|.(A
- E).|
^2 )
+ (
|.(A
- F).|
^2 ))
- (((2
*
|.(E
- A).|)
*
|.(F
- A).|)
* (
cos (
angle (E,A,F))))) by
EUCLID_6: 43
.= (((
|.(A
- E).|
^2 )
+ (
|.(A
- F).|
^2 ))
- (((2
*
|.(A
- E).|)
*
|.(F
- A).|)
* (
cos (
angle (E,A,F))))) by
EUCLID_6: 43
.= (((
|.(A
- E).|
^2 )
+ (
|.(A
- F).|
^2 ))
- (((2
*
|.(A
- E).|)
*
|.(A
- F).|)
* (
cos (
angle (E,A,F))))) by
EUCLID_6: 43;
hence thesis;
end;
Lm2: for i be
Integer st i
>
0 holds ex k be
Nat st i
= k
proof
let i be
Integer;
assume
A1: i
>
0 ;
i
in
INT by
INT_1:def 2;
then
consider k be
Nat such that
A2: i
= k or i
= (
- k) by
INT_1:def 1;
0
<= k by
NAT_1: 2;
hence thesis by
A1,
A2;
end;
Lm3: for i be
Integer st i
<
0 holds ex k be
Nat st i
= (
- k)
proof
let i be
Integer;
assume
A1: i
<
0 ;
i
in
INT by
INT_1:def 2;
then
consider k be
Nat such that
A2: i
= k or i
= (
- k) by
INT_1:def 1;
thus thesis by
A1,
A2,
NAT_1: 2;
end;
Lm4: for i be
Integer st (3
* i)
<= 1 &
0
< (1
+ (3
* i)) holds i
=
0
proof
let i be
Integer;
assume that
A1: (3
* i)
<= 1 and
A2:
0
< (1
+ (3
* i));
assume
A3: not i
=
0 ;
per cases ;
suppose i
<
0 ;
then
consider k be
Nat such that
A4: i
= (
- k) by
Lm3;
(
0
+ (3
* k))
< ((1
- (3
* k))
+ (3
* k)) by
A2,
A4,
XREAL_1: 8;
then
A5: ((3
* k)
/ 3)
< (1
/ 3) by
XREAL_1: 74;
k
<>
0 by
A3,
A4;
then
consider j be
Nat such that
A6: k
= (j
+ 1) by
NAT_1: 6;
((j
+ 1)
- 1)
< ((1
/ 3)
- 1) by
A6,
A5,
XREAL_1: 8;
then (j
+
0 )
< (
- (2
/ 3));
hence contradiction by
NAT_1: 2;
end;
suppose
A7: i
>
0 ;
then
consider k be
Nat such that
A8: i
= k by
Lm2;
consider j be
Nat such that
A9: k
= (j
+ 1) by
A7,
A8,
NAT_1: 6;
((k
* 3)
/ 3)
<= (1
/ 3) by
A1,
A8,
XREAL_1: 72;
then ((j
+ 1)
- 1)
<= ((1
/ 3)
- 1) by
A9,
XREAL_1: 9;
then (j
+
0 )
<= (
- (2
/ 3));
hence contradiction by
NAT_1: 2;
end;
end;
theorem ::
EUCLID11:5
Th4: (A,B,C)
are_mutually_distinct &
0
< (
angle (A,B,C))
<
PI implies
0
< (
angle (B,C,A))
<
PI &
0
< (
angle (C,A,B))
<
PI
proof
assume that
A1: (A,B,C)
are_mutually_distinct and
A2:
0
< (
angle (A,B,C))
<
PI ;
set z1 = (
euc2cpx A);
set z2 = (
euc2cpx B);
set z3 = (
euc2cpx C);
z1
<> z2 & z2
<> z3 & z1
<> z3 &
0
< (
angle (z1,z2,z3))
<
PI by
A1,
A2,
EUCLID_3: 4,
EUCLID_3:def 4;
then
A3:
0
< (
angle (z2,z3,z1)) &
0
< (
angle (z3,z1,z2)) by
COMPLEX2: 84;
then
A4:
0
< (
angle (B,C,A)) &
0
< (
angle (C,A,B)) by
EUCLID_3:def 4;
A5: (((
angle (A,B,C))
+ (
angle (B,C,A)))
+ (
angle (C,A,B)))
=
PI by
A1,
A2,
EUCLID_3: 47;
now
assume
PI
<= (
angle (B,C,A)) or
PI
<= (
angle (C,A,B));
per cases ;
suppose
PI
<= (
angle (B,C,A));
then ((
angle (A,B,C))
+
PI )
<= ((
angle (A,B,C))
+ (
angle (B,C,A))) by
XREAL_1: 6;
then
A6: (((
angle (A,B,C))
+
PI )
+ (
angle (C,A,B)))
<=
PI by
A5,
XREAL_1: 6;
(
0
+
PI )
< ((
angle (A,B,C))
+
PI ) by
A2,
XREAL_1: 6;
hence contradiction by
A4,
XREAL_1: 8,
A6;
end;
suppose
PI
<= (
angle (C,A,B));
then ((
angle (A,B,C))
+
PI )
<= ((
angle (A,B,C))
+ (
angle (C,A,B))) by
XREAL_1: 6;
then
A7: (((
angle (A,B,C))
+
PI )
+ (
angle (B,C,A)))
<= (((
angle (A,B,C))
+ (
angle (C,A,B)))
+ (
angle (B,C,A))) by
XREAL_1: 6;
(
0
+
PI )
< ((
angle (A,B,C))
+
PI ) by
A2,
XREAL_1: 6;
hence contradiction by
A7,
A5,
A4,
XREAL_1: 8;
end;
end;
hence thesis by
A3,
EUCLID_3:def 4;
end;
theorem ::
EUCLID11:6
(A,B,C)
are_mutually_distinct & (
angle (A,B,C))
=
0 implies ((
angle (B,C,A))
=
0 & (
angle (C,A,B))
=
PI ) or ((
angle (B,C,A))
=
PI & (
angle (C,A,B))
=
0 ) & (((
angle (A,B,C))
+ (
angle (B,C,A)))
+ (
angle (C,A,B)))
=
PI
proof
assume that
A1: (A,B,C)
are_mutually_distinct and
A2: (
angle (A,B,C))
=
0 ;
set z1 = (
euc2cpx A);
set z2 = (
euc2cpx B);
set z3 = (
euc2cpx C);
z1
<> z2 & z2
<> z3 & z1
<> z3 & (
angle (z1,z2,z3))
=
0 by
A1,
A2,
EUCLID_3: 4,
EUCLID_3:def 4;
per cases by
COMPLEX2: 87;
suppose (
angle (z2,z3,z1))
=
0 & (
angle (z3,z1,z2))
=
PI ;
hence thesis by
EUCLID_3:def 4;
end;
suppose (
angle (z2,z3,z1))
=
PI & (
angle (z3,z1,z2))
=
0 ;
then (
angle (B,C,A))
=
PI & (
angle (C,A,B))
=
0 by
EUCLID_3:def 4;
hence thesis by
A2;
end;
end;
theorem ::
EUCLID11:7
(A,B,C)
are_mutually_distinct & (
angle (A,B,C))
=
PI implies (
angle (B,C,A))
=
0 & (
angle (C,A,B))
=
0 & (((
angle (A,B,C))
+ (
angle (B,C,A)))
+ (
angle (C,A,B)))
=
PI
proof
assume that
A1: (A,B,C)
are_mutually_distinct and
A2: (
angle (A,B,C))
=
PI ;
set z1 = (
euc2cpx A);
set z2 = (
euc2cpx B);
set z3 = (
euc2cpx C);
z1
<> z2 & z2
<> z3 & z1
<> z3 & (
angle (z1,z2,z3))
=
PI by
A1,
A2,
EUCLID_3: 4,
EUCLID_3:def 4;
then (
angle (z2,z3,z1))
=
0 & (
angle (z3,z1,z2))
=
0 by
COMPLEX2: 86;
hence (
angle (B,C,A))
=
0 & (
angle (C,A,B))
=
0 by
EUCLID_3:def 4;
hence thesis by
A2;
end;
theorem ::
EUCLID11:8
(A,B,C)
are_mutually_distinct & (
angle (A,B,C))
>
PI implies (
angle (B,C,A))
>
PI & (
angle (C,A,B))
>
PI
proof
assume
A1: (A,B,C)
are_mutually_distinct & (
angle (A,B,C))
>
PI ;
set z1 = (
euc2cpx A);
set z2 = (
euc2cpx B);
set z3 = (
euc2cpx C);
z1
<> z2 & z2
<> z3 & z1
<> z3 & (
angle (z1,z2,z3))
>
PI by
A1,
EUCLID_3: 4,
EUCLID_3:def 4;
then (
angle (z2,z3,z1))
>
PI & (
angle (z3,z1,z2))
>
PI by
COMPLEX2: 85;
hence thesis by
EUCLID_3:def 4;
end;
theorem ::
EUCLID11:9
(A,B,C)
are_mutually_distinct & (
angle (A,B,C))
>
PI implies (((
angle (A,B,C))
+ (
angle (B,C,A)))
+ (
angle (C,A,B)))
= (5
*
PI )
proof
assume that
A1: (A,B,C)
are_mutually_distinct and
A2: (
angle (A,B,C))
>
PI ;
(
angle (A,B,C))
<>
0 & (
angle (B,C,A))
<>
0 & (
angle (C,A,B))
<>
0 by
A1,
A2,
COMPTRIG: 5,
EUCLID_6: 24;
then
A3: (
angle (A,B,C))
= ((2
*
PI )
- (
angle (C,B,A))) & (
angle (B,C,A))
= ((2
*
PI )
- (
angle (A,C,B))) & (
angle (C,A,B))
= ((2
*
PI )
- (
angle (B,A,C))) by
EUCLID_3: 38;
((2
*
PI )
- (
angle (A,B,C)))
< ((2
*
PI )
-
PI ) by
A2,
XREAL_1: 15;
then (((
angle (C,B,A))
+ (
angle (B,A,C)))
+ (
angle (A,C,B)))
=
PI by
A1,
A3,
EUCLID_3: 47;
hence thesis by
A3;
end;
Lm5: for a be
Real holds (
sin (((4
*
PI )
/ 3)
- a))
= (
- (
sin ((
PI
/ 3)
- a)))
proof
let a be
Real;
(
sin (((4
*
PI )
/ 3)
- a))
= (
sin (
PI
+ ((
PI
/ 3)
- a)))
.= (
- (
sin ((
PI
/ 3)
- a))) by
SIN_COS: 79;
hence thesis;
end;
theorem ::
EUCLID11:10
Th5: (
angle (C,B,A))
<
PI implies
0
<= (
the_area_of_polygon3 (A,B,C))
proof
assume (
angle (C,B,A))
<
PI ;
then ((2
*
PI )
*
0 )
<= (
angle (C,B,A))
< (
PI
+ ((2
*
PI )
*
0 )) by
Th2;
then
A1: (
sin (
angle (C,B,A)))
>=
0 by
SIN_COS6: 16;
(
the_area_of_polygon3 (A,B,C))
= (((
|.(A
- B).|
*
|.(C
- B).|)
* (
sin (
angle (C,B,A))))
/ 2) by
EUCLID_6: 5;
hence thesis by
A1;
end;
theorem ::
EUCLID11:11
Th6: (
angle (C,B,A))
<
PI implies
0
<= (
the_diameter_of_the_circumcircle (A,B,C))
proof
assume (
angle (C,B,A))
<
PI ;
then
0
<= (
the_area_of_polygon3 (A,B,C)) by
Th5;
hence thesis;
end;
begin
theorem ::
EUCLID11:12
Th7: (A,F,C)
is_a_triangle & (
angle (C,F,A))
<
PI & (
angle (A,C,F))
= ((
angle (A,C,B))
/ 3) & (
angle (F,A,C))
= ((
angle (B,A,C))
/ 3) & ((((
angle (A,C,B))
/ 3)
+ ((
angle (B,A,C))
/ 3))
+ ((
angle (C,B,A))
/ 3))
= (
PI
/ 3) implies (
|.(A
- F).|
* (
sin ((
PI
/ 3)
- ((
angle (C,B,A))
/ 3))))
= (
|.(A
- C).|
* (
sin ((
angle (A,C,B))
/ 3)))
proof
assume that
A1: (A,F,C)
is_a_triangle and
A2: (
angle (C,F,A))
<
PI and
A3: (
angle (A,C,F))
= ((
angle (A,C,B))
/ 3) and
A4: (
angle (F,A,C))
= ((
angle (B,A,C))
/ 3) and
A5: ((((
angle (A,C,B))
/ 3)
+ ((
angle (B,A,C))
/ 3))
+ ((
angle (C,B,A))
/ 3))
= (
PI
/ 3);
A6: (
angle (F,C,A))
= ((2
*
PI )
- ((
angle (A,C,B))
/ 3)) by
A1,
A3,
EUCLID10: 31;
A7: (
angle (A,C,F))
= ((2
*
PI )
- (
angle (F,C,A))) & (
angle (F,A,C))
= ((2
*
PI )
- (
angle (C,A,F))) by
A1,
EUCLID10: 31;
A8: (A,F,C)
are_mutually_distinct by
A1,
EUCLID_6: 20;
(F,A,C)
is_a_triangle & (
angle (C,F,A))
<
PI by
A1,
A2,
MENELAUS: 15;
then (((
angle (C,A,F))
+ (
angle (A,F,C)))
+ (
angle (F,C,A)))
= (5
*
PI ) by
EUCLID10: 54;
then (
angle (A,F,C))
= (((4
*
PI )
/ 3)
- ((
angle (C,B,A))
/ 3)) by
A7,
A3,
A5,
A4;
then
A9: (
sin (
angle (A,F,C)))
= (
- (
sin ((
PI
/ 3)
- ((
angle (C,B,A))
/ 3)))) by
Lm5;
(
|.(A
- F).|
* (
sin (
angle (A,F,C))))
= (
|.(A
- C).|
* (
sin ((2
*
PI )
- ((
angle (A,C,B))
/ 3)))) by
A8,
A6,
EUCLID_6: 6;
then (
|.(A
- F).|
* (
- (
sin ((
PI
/ 3)
- ((
angle (C,B,A))
/ 3)))))
= (
|.(A
- C).|
* (
- (
sin ((
angle (A,C,B))
/ 3)))) by
A9,
EUCLID10: 3;
hence thesis;
end;
theorem ::
EUCLID11:13
Th8: (A,B,C)
is_a_triangle & (A,F,C)
is_a_triangle & (
angle (C,F,A))
<
PI & (
angle (A,C,F))
= ((
angle (A,C,B))
/ 3) & (
angle (F,A,C))
= ((
angle (B,A,C))
/ 3) & ((((
angle (A,C,B))
/ 3)
+ ((
angle (B,A,C))
/ 3))
+ ((
angle (C,B,A))
/ 3))
= (
PI
/ 3) & (
sin ((
PI
/ 3)
- ((
angle (C,B,A))
/ 3)))
<>
0 implies
|.(A
- F).|
= ((((4
* (
the_diameter_of_the_circumcircle (A,B,C)))
* (
sin ((
angle (C,B,A))
/ 3)))
* (
sin ((
PI
/ 3)
+ ((
angle (C,B,A))
/ 3))))
* (
sin ((
angle (A,C,B))
/ 3)))
proof
assume that
A1: (A,B,C)
is_a_triangle and
A2: (A,F,C)
is_a_triangle and
A3: (
angle (C,F,A))
<
PI and
A4: (
angle (A,C,F))
= ((
angle (A,C,B))
/ 3) and
A5: (
angle (F,A,C))
= ((
angle (B,A,C))
/ 3) and
A6: ((((
angle (A,C,B))
/ 3)
+ ((
angle (B,A,C))
/ 3))
+ ((
angle (C,B,A))
/ 3))
= (
PI
/ 3) and
A7: (
sin ((
PI
/ 3)
- ((
angle (C,B,A))
/ 3)))
<>
0 ;
A8: (
|.(A
- F).|
* (
sin ((
PI
/ 3)
- ((
angle (C,B,A))
/ 3))))
= (
|.(A
- C).|
* (
sin ((
angle (A,C,B))
/ 3))) by
A3,
A4,
A5,
A2,
A6,
Th7
.= (
|.(C
- A).|
* (
sin ((
angle (A,C,B))
/ 3))) by
EUCLID_6: 43
.= (((
the_diameter_of_the_circumcircle (A,B,C))
* (
sin (
angle (C,B,A))))
* (
sin ((
angle (A,C,B))
/ 3))) by
A1,
EUCLID10: 50;
(
sin (
angle (C,B,A)))
= (
sin (3
* ((
angle (C,B,A))
/ 3)))
.= (((4
* (
sin ((
angle (C,B,A))
/ 3)))
* (
sin ((
PI
/ 3)
+ ((
angle (C,B,A))
/ 3))))
* (
sin ((
PI
/ 3)
- ((
angle (C,B,A))
/ 3)))) by
EUCLID10: 29;
then
|.(A
- F).|
= (((((((
the_diameter_of_the_circumcircle (A,B,C))
* 4)
* (
sin ((
angle (C,B,A))
/ 3)))
* (
sin ((
PI
/ 3)
+ ((
angle (C,B,A))
/ 3))))
* (
sin ((
angle (A,C,B))
/ 3)))
* (
sin ((
PI
/ 3)
- ((
angle (C,B,A))
/ 3))))
/ (
sin ((
PI
/ 3)
- ((
angle (C,B,A))
/ 3)))) by
A7,
A8,
XCMPLX_1: 89;
then
A9:
|.(A
- F).|
= ((((((
the_diameter_of_the_circumcircle (A,B,C))
* 4)
* (
sin ((
angle (C,B,A))
/ 3)))
* (
sin ((
PI
/ 3)
+ ((
angle (C,B,A))
/ 3))))
* (
sin ((
angle (A,C,B))
/ 3)))
* ((
sin ((
PI
/ 3)
- ((
angle (C,B,A))
/ 3)))
/ (
sin ((
PI
/ 3)
- ((
angle (C,B,A))
/ 3)))));
((
sin ((
PI
/ 3)
- ((
angle (C,B,A))
/ 3)))
/ (
sin ((
PI
/ 3)
- ((
angle (C,B,A))
/ 3))))
= 1 by
A7,
XCMPLX_1: 60;
hence thesis by
A9;
end;
theorem ::
EUCLID11:14
Th9: (C,A,B)
is_a_triangle & (A,F,C)
is_a_triangle & (F,A,E)
is_a_triangle & (E,A,B)
is_a_triangle & (
angle (B,A,E))
= ((
angle (B,A,C))
/ 3) & (
angle (F,A,C))
= ((
angle (B,A,C))
/ 3) implies (
angle (E,A,F))
= ((
angle (B,A,C))
/ 3)
proof
assume that
A1: (C,A,B)
is_a_triangle and
A2: (A,F,C)
is_a_triangle and
A3: (F,A,E)
is_a_triangle and
A4: (E,A,B)
is_a_triangle and
A5: (
angle (B,A,E))
= ((
angle (B,A,C))
/ 3) and
A6: (
angle (F,A,C))
= ((
angle (B,A,C))
/ 3);
A7: (
angle (C,A,B))
= ((2
*
PI )
- (
angle (B,A,C))) by
A1,
EUCLID10: 31;
A8: ((
angle (C,A,F))
+ (
angle (F,A,E)))
= (
angle (C,A,E)) or ((
angle (C,A,F))
+ (
angle (F,A,E)))
= ((
angle (C,A,E))
+ (2
*
PI )) by
EUCLID_6: 4;
A9: ((
angle (C,A,E))
+ (
angle (E,A,B)))
= (
angle (C,A,B)) or ((
angle (C,A,E))
+ (
angle (E,A,B)))
= ((
angle (C,A,B))
+ (2
*
PI )) by
EUCLID_6: 4;
A10: (
angle (C,A,F))
= ((2
*
PI )
- ((
angle (B,A,C))
/ 3)) by
A2,
A6,
EUCLID10: 31;
A11: (
angle (F,A,E))
= ((2
*
PI )
- (
angle (E,A,F))) by
A3,
EUCLID10: 31;
A12: (
angle (E,A,B))
= ((2
*
PI )
- ((
angle (B,A,C))
/ 3)) by
A5,
A4,
EUCLID10: 31;
A13: not (
angle (E,A,F))
= ((4
*
PI )
+ ((
angle (B,A,C))
/ 3))
proof
assume
A14: (
angle (E,A,F))
= ((4
*
PI )
+ ((
angle (B,A,C))
/ 3));
now
(
0
+ (2
*
PI ))
< ((2
*
PI )
+ (2
*
PI )) by
COMPTRIG: 5,
XREAL_1: 8;
hence (2
*
PI )
< (4
*
PI );
0
<= (
angle (B,A,C)) & (
angle (B,A,C))
<>
0 by
Th2,
A1,
EUCLID10: 30;
hence
0
< ((
angle (B,A,C))
/ 3);
end;
then ((2
*
PI )
+
0 )
< ((4
*
PI )
+ ((
angle (B,A,C))
/ 3)) by
XREAL_1: 8;
hence contradiction by
A14,
Th2;
end;
not (
angle (E,A,F))
= ((2
*
PI )
+ ((
angle (B,A,C))
/ 3))
proof
assume
A15: (
angle (E,A,F))
= ((2
*
PI )
+ ((
angle (B,A,C))
/ 3));
0
<= (
angle (B,A,C)) & (
angle (B,A,C))
<>
0 by
Th2,
A1,
EUCLID10: 30;
then ((2
*
PI )
+
0 )
< ((2
*
PI )
+ ((
angle (B,A,C))
/ 3)) by
XREAL_1: 8;
hence contradiction by
A15,
Th2;
end;
hence thesis by
A12,
A7,
A8,
A9,
A10,
A11,
A13;
end;
theorem ::
EUCLID11:15
Th10: (C,A,B)
is_a_triangle & (
angle (A,C,B))
<
PI & (A,F,C)
is_a_triangle & (F,A,E)
is_a_triangle & (E,A,B)
is_a_triangle & (
angle (B,A,E))
= ((
angle (B,A,C))
/ 3) & (
angle (F,A,C))
= ((
angle (B,A,C))
/ 3) implies ((((
PI
/ 3)
+ ((
angle (A,C,B))
/ 3))
+ ((
PI
/ 3)
+ ((
angle (C,B,A))
/ 3)))
+ (
angle (E,A,F)))
=
PI
proof
assume that
A1: (C,A,B)
is_a_triangle and
A2: (
angle (A,C,B))
<
PI and
A3: (A,F,C)
is_a_triangle and
A4: (F,A,E)
is_a_triangle and
A5: (E,A,B)
is_a_triangle and
A6: (
angle (B,A,E))
= ((
angle (B,A,C))
/ 3) and
A7: (
angle (F,A,C))
= ((
angle (B,A,C))
/ 3);
set lambda = ((((
PI
/ 3)
+ ((
angle (A,C,B))
/ 3))
+ ((
PI
/ 3)
+ ((
angle (C,B,A))
/ 3)))
+ (
angle (E,A,F)));
set theta = ((((
angle (A,C,B))
/ 3)
+ ((
angle (C,B,A))
/ 3))
+ ((
angle (B,A,C))
/ 3));
A8: (
angle (E,A,F))
= ((
angle (B,A,C))
/ 3) by
A1,
A3,
A4,
A5,
A6,
A7,
Th9;
(C,A,B)
are_mutually_distinct & (
angle (A,C,B))
<
PI by
A1,
A2,
EUCLID_6: 20;
then (((
angle (A,C,B))
+ (
angle (C,B,A)))
+ (
angle (B,A,C)))
=
PI by
EUCLID_3: 47;
hence thesis by
A8;
end;
theorem ::
EUCLID11:16
Th11: (A,C,B)
is_a_triangle implies (
sin ((
PI
/ 3)
- ((
angle (A,C,B))
/ 3)))
<>
0
proof
assume
A1: (A,C,B)
is_a_triangle ;
assume (
sin ((
PI
/ 3)
- ((
angle (A,C,B))
/ 3)))
=
0 ;
then
consider i0 be
Integer such that
A2: ((
PI
/ 3)
- ((
angle (A,C,B))
/ 3))
= (
PI
* i0) by
BORSUK_7: 7;
(
0
+ ((3
* i0)
*
PI ))
<= ((
PI
- ((3
* i0)
*
PI ))
+ ((3
* i0)
*
PI )) & ((
PI
- ((3
* i0)
*
PI ))
+ ((3
* i0)
*
PI ))
< ((2
*
PI )
+ ((3
* i0)
*
PI )) by
A2,
XREAL_1: 6,
Th2;
then ((3
* i0)
*
PI )
<=
PI & (
PI
-
PI )
< (((2
*
PI )
+ ((3
* i0)
*
PI ))
-
PI ) by
XREAL_1: 9;
then (((3
* i0)
*
PI )
/
PI )
<= (
PI
/
PI ) &
0
< ((1
+ (3
* i0))
*
PI ) by
COMPTRIG: 5,
XREAL_1: 72;
then ((3
* i0)
* (
PI
/
PI ))
<= (
PI
/
PI ) & (
0
/
PI )
< (((1
+ (3
* i0))
*
PI )
/
PI ) by
COMPTRIG: 5;
then (3
* i0)
<= (
PI
/
PI ) & (
0
/
PI )
< (1
+ (3
* i0)) by
XCMPLX_1: 88,
COMPTRIG: 5;
then (3
* i0)
<= 1 &
0
< (1
+ (3
* i0)) by
XCMPLX_1: 60;
then i0
=
0 by
Lm4;
hence contradiction by
A1,
A2,
EUCLID_6: 20;
end;
theorem ::
EUCLID11:17
Th12: (A,B,C)
is_a_triangle & (A,B,E)
is_a_triangle & (
angle (E,B,A))
= ((
angle (C,B,A))
/ 3) & (
angle (B,A,E))
= ((
angle (B,A,C))
/ 3) & (A,F,C)
is_a_triangle & (
angle (A,C,F))
= ((
angle (A,C,B))
/ 3) & (
angle (F,A,C))
= ((
angle (B,A,C))
/ 3) & (
angle (A,C,B))
<
PI implies
|.(F
- E).|
= ((((4
* (
the_diameter_of_the_circumcircle (A,B,C)))
* (
sin ((
angle (A,C,B))
/ 3)))
* (
sin ((
angle (C,B,A))
/ 3)))
* (
sin ((
angle (B,A,C))
/ 3)))
proof
assume that
A1: (A,B,C)
is_a_triangle and
A2: (A,B,E)
is_a_triangle and
A3: (
angle (E,B,A))
= ((
angle (C,B,A))
/ 3) and
A4: (
angle (B,A,E))
= ((
angle (B,A,C))
/ 3) and
A5: (A,F,C)
is_a_triangle and
A6: (
angle (A,C,F))
= ((
angle (A,C,B))
/ 3) and
A7: (
angle (F,A,C))
= ((
angle (B,A,C))
/ 3) and
A8: (
angle (A,C,B))
<
PI ;
A9: (A,C,B)
is_a_triangle by
A1,
MENELAUS: 15;
then
A10: (
sin ((
PI
/ 3)
- ((
angle (A,C,B))
/ 3)))
<>
0 by
Th11;
(C,B,A)
is_a_triangle by
A1,
MENELAUS: 15;
then
A11: (
sin ((
PI
/ 3)
- ((
angle (C,B,A))
/ 3)))
<>
0 by
Th11;
A12: (A,C,B)
are_mutually_distinct by
A9,
EUCLID_6: 20;
then (((
angle (A,C,B))
+ (
angle (C,B,A)))
+ (
angle (B,A,C)))
=
PI by
A8,
EUCLID_3: 47;
then
A13: ((((
angle (A,C,B))
/ 3)
+ ((
angle (B,A,C))
/ 3))
+ ((
angle (C,B,A))
/ 3))
= (
PI
/ 3);
(
angle (A,C,B))
<>
0 by
A1,
EUCLID10: 30;
then
A14:
0
< (
angle (A,C,B)) by
Th2;
then
A15: (
angle (C,B,A))
<
PI by
A12,
A8,
Th4;
(
angle (A,C,B))
<>
0 by
A1,
EUCLID10: 30;
then
A16:
0
< (
angle (A,C,B))
<
PI & (A,C,B)
are_mutually_distinct by
A9,
EUCLID_6: 20,
A8,
Th2;
then (
angle (B,A,C))
<
PI by
Th4;
then
A17: ((
angle (B,A,C))
/ 3)
< (
PI
/ 3) & (
PI
/ 3)
<
PI by
XREAL_1: 74,
XREAL_1: 221,
COMPTRIG: 5;
A18: (E,A,B)
is_a_triangle & (B,A,E)
is_a_triangle & (E,B,A)
is_a_triangle by
A2,
MENELAUS: 15;
then
A19: (B,A,E)
are_mutually_distinct & (E,B,A)
are_mutually_distinct & (
angle (E,B,A))
<>
0 & (
angle (B,A,E))
<>
0 by
EUCLID_6: 20,
EUCLID10: 30;
0
< (
angle (B,A,E))
<
PI by
A17,
A4,
XXREAL_0: 2,
A19,
Th2;
then
A20: (
angle (A,E,B))
<
PI by
A19,
Th4;
(F,A,C)
is_a_triangle by
A5,
MENELAUS: 15;
then
A21: (F,A,C)
are_mutually_distinct & (
angle (F,A,C))
<>
0 by
EUCLID_6: 20,
EUCLID10: 30;
then
0
< (
angle (F,A,C))
<
PI by
A17,
A7,
XXREAL_0: 2,
Th2;
then
A22: (
angle (C,F,A))
<
PI by
A21,
Th4;
A23: (F,A,E)
is_a_triangle
proof
now
E
<> F
proof
assume
A24: E
= F;
per cases by
EUCLID_6: 4;
suppose
A25: ((
angle (B,A,E))
+ (
angle (E,A,C)))
= (
angle (B,A,C));
A26:
0
< (
angle (B,A,C)) by
A16,
Th4;
then
A27: ((
angle (B,A,C))
/ (
angle (B,A,C)))
= 1 by
XCMPLX_1: 60;
((
angle (B,A,C))
/ (
angle (B,A,C)))
= (((2
/ 3)
* (
angle (B,A,C)))
/ (
angle (B,A,C))) by
A24,
A7,
A4,
A25
.= (2
/ 3) by
A27;
hence contradiction by
A26,
XCMPLX_1: 60;
end;
suppose
A28: ((
angle (B,A,E))
+ (
angle (E,A,C)))
= ((
angle (B,A,C))
+ (2
*
PI ));
A29:
0
< (
angle (B,A,C)) by
A16,
Th4;
(2
*
PI )
= (
- ((1
/ 3)
* (
angle (B,A,C)))) by
A24,
A7,
A4,
A28;
hence contradiction by
A29,
COMPTRIG: 5;
end;
end;
hence (F,A,E)
are_mutually_distinct by
A21,
A19;
now
hereby
assume
A30: (
angle (F,A,E))
=
PI ;
A31: ((
angle (C,A,F))
+ (
angle (F,A,E)))
= (
angle (C,A,E)) or ((
angle (C,A,F))
+ (
angle (F,A,E)))
= ((
angle (C,A,E))
+ (2
*
PI )) by
EUCLID_6: 4;
per cases by
EUCLID_6: 4;
suppose ((
angle (C,A,E))
+ (
angle (E,A,B)))
= (
angle (C,A,B));
per cases by
A31,
A30;
suppose
A32: (((
angle (C,A,F))
+
PI )
+ (
angle (E,A,B)))
= (
angle (C,A,B));
A33:
0
< (
angle (B,A,C)) by
A16,
Th4;
A34: (((
angle (C,A,F))
+
PI )
+ (
angle (E,A,B)))
= ((2
*
PI )
- (
angle (B,A,C))) by
A32,
A1,
EUCLID10: 31;
A35: (
angle (C,A,F))
= ((2
*
PI )
- ((
angle (B,A,C))
/ 3)) by
A7,
A5,
EUCLID10: 31;
(
angle (E,A,B))
= ((2
*
PI )
- (
angle (B,A,E)))
= ((2
*
PI )
- ((
angle (B,A,C))
/ 3)) by
A4,
A2,
EUCLID10: 31;
then (3
*
PI )
= (
- ((1
/ 3)
* (
angle (B,A,C)))) by
A34,
A35;
hence contradiction by
A33,
COMPTRIG: 5;
end;
suppose
A36: (((
angle (C,A,F))
-
PI )
+ (
angle (E,A,B)))
= (
angle (C,A,B));
A37:
0
< (
angle (B,A,C)) by
A16,
Th4;
A38: (((
angle (C,A,F))
-
PI )
+ (
angle (E,A,B)))
= ((2
*
PI )
- (
angle (B,A,C))) by
A36,
A1,
EUCLID10: 31;
A39: (
angle (C,A,F))
= ((2
*
PI )
- (
angle (F,A,C)))
= ((2
*
PI )
- ((
angle (B,A,C))
/ 3)) by
A7,
A5,
EUCLID10: 31;
(
angle (E,A,B))
= ((2
*
PI )
- ((
angle (B,A,C))
/ 3)) by
A4,
A2,
EUCLID10: 31;
hence contradiction by
A37,
COMPTRIG: 5,
A38,
A39;
end;
end;
suppose ((
angle (C,A,E))
+ (
angle (E,A,B)))
= ((
angle (C,A,B))
+ (2
*
PI ));
per cases by
A31,
A30;
suppose
A40: (((
angle (C,A,F))
+
PI )
+ (
angle (E,A,B)))
= ((
angle (C,A,B))
+ (2
*
PI ));
A41:
0
< (
angle (B,A,C)) by
A16,
Th4;
A42: (((
angle (C,A,F))
+
PI )
+ (
angle (E,A,B)))
= (((2
*
PI )
- (
angle (B,A,C)))
+ (2
*
PI )) by
A40,
A1,
EUCLID10: 31;
A43: (
angle (C,A,F))
= ((2
*
PI )
- ((
angle (B,A,C))
/ 3)) by
A7,
A5,
EUCLID10: 31;
(
angle (E,A,B))
= ((2
*
PI )
- ((
angle (B,A,C))
/ 3)) by
A4,
A2,
EUCLID10: 31;
hence contradiction by
A42,
A43,
A41,
COMPTRIG: 5;
end;
suppose
A44: (((
angle (C,A,F))
-
PI )
+ (
angle (E,A,B)))
= ((
angle (C,A,B))
+ (2
*
PI ));
A45: (((
angle (C,A,F))
-
PI )
+ (
angle (E,A,B)))
= (((2
*
PI )
- (
angle (B,A,C)))
+ (2
*
PI )) by
A44,
A1,
EUCLID10: 31;
A46: (
angle (C,A,F))
= ((2
*
PI )
- ((
angle (B,A,C))
/ 3)) by
A7,
A5,
EUCLID10: 31;
(
angle (E,A,B))
= ((2
*
PI )
- ((
angle (B,A,C))
/ 3)) by
A4,
A2,
EUCLID10: 31;
then (3
*
PI )
= (((3
* 1)
/ 3)
* (
angle (B,A,C))) & ((2
*
PI )
+
0 )
< ((2
*
PI )
+
PI ) by
A45,
A46,
XREAL_1: 6,
COMPTRIG: 5;
hence contradiction by
Th2;
end;
end;
end;
hereby
assume (
angle (A,E,F))
=
PI ;
then
A47: E
in (
LSeg (A,F)) & E
<> A by
A19,
EUCLID_6: 11;
A48: ((
angle (C,A,F))
+ (
angle (F,A,B)))
= (
angle (C,A,B)) or ((
angle (C,A,F))
+ (
angle (F,A,B)))
= ((
angle (C,A,B))
+ (2
*
PI )) by
EUCLID_6: 4;
A49: (
angle (C,A,F))
= ((2
*
PI )
- ((
angle (B,A,C))
/ 3)) by
A7,
A5,
EUCLID10: 31;
(
angle (F,A,B))
= (
angle (E,A,B)) by
A47,
EUCLID_6: 9
.= ((2
*
PI )
- ((
angle (B,A,C))
/ 3)) by
A4,
A2,
EUCLID10: 31;
per cases by
A1,
EUCLID10: 31,
A48,
A49;
suppose
A50: ((((2
*
PI )
- ((
angle (B,A,C))
/ 3))
+ (2
*
PI ))
- ((
angle (B,A,C))
/ 3))
= ((2
*
PI )
- (
angle (B,A,C)));
0
< (
angle (B,A,C)) by
A16,
Th4;
hence contradiction by
A50,
COMPTRIG: 5;
end;
suppose ((((2
*
PI )
- ((
angle (B,A,C))
/ 3))
+ (2
*
PI ))
- ((
angle (B,A,C))
/ 3))
= (((2
*
PI )
- (
angle (B,A,C)))
+ (2
*
PI ));
hence contradiction by
A16,
Th4;
end;
end;
hereby
assume (
angle (E,F,A))
=
PI ;
then
A51: F
in (
LSeg (E,A)) & F
<> A by
A21,
EUCLID_6: 11;
A52: ((
angle (C,A,F))
+ (
angle (F,A,B)))
= (
angle (C,A,B)) or ((
angle (C,A,F))
+ (
angle (F,A,B)))
= ((
angle (C,A,B))
+ (2
*
PI )) by
EUCLID_6: 4;
A53: (
angle (C,A,F))
= ((2
*
PI )
- ((
angle (B,A,C))
/ 3)) by
A5,
A7,
EUCLID10: 31;
(
angle (F,A,B))
= (
angle (E,A,B)) by
A51,
EUCLID_6: 9
.= ((2
*
PI )
- ((
angle (B,A,C))
/ 3)) by
A4,
A2,
EUCLID10: 31;
per cases by
A1,
EUCLID10: 31,
A52,
A53;
suppose
A54: ((((2
*
PI )
- ((
angle (B,A,C))
/ 3))
+ (2
*
PI ))
- ((
angle (B,A,C))
/ 3))
= ((2
*
PI )
- (
angle (B,A,C)));
0
< (
angle (B,A,C)) by
A16,
Th4;
hence contradiction by
A54,
COMPTRIG: 5;
end;
suppose ((((2
*
PI )
- ((
angle (B,A,C))
/ 3))
+ (2
*
PI ))
- ((
angle (B,A,C))
/ 3))
= (((2
*
PI )
- (
angle (B,A,C)))
+ (2
*
PI ));
hence contradiction by
A16,
Th4;
end;
end;
end;
hence (
angle (F,A,E))
<>
PI & (
angle (A,E,F))
<>
PI & (
angle (E,F,A))
<>
PI ;
end;
hence thesis by
EUCLID_6: 20;
end;
A55: (
- (
the_diameter_of_the_circumcircle (C,B,A)))
= (
the_diameter_of_the_circumcircle (A,B,C)) by
A1,
EUCLID10: 49;
set lambda = (
- ((((
the_diameter_of_the_circumcircle (C,B,A))
* 4)
* (
sin ((
angle (A,C,B))
/ 3)))
* (
sin ((
angle (C,B,A))
/ 3))));
A56:
|.(A
- E).|
= (
- (((((
the_diameter_of_the_circumcircle (C,B,A))
* 4)
* (
sin ((
angle (A,C,B))
/ 3)))
* (
sin ((
PI
/ 3)
+ ((
angle (A,C,B))
/ 3))))
* (
sin ((
angle (C,B,A))
/ 3)))) by
A1,
A2,
A3,
A4,
A15,
A20,
A10,
EUCLID10: 56
.= (lambda
* (
sin ((
PI
/ 3)
+ ((
angle (A,C,B))
/ 3))));
A57:
|.(A
- F).|
= (((((
the_diameter_of_the_circumcircle (A,B,C))
* 4)
* (
sin ((
angle (C,B,A))
/ 3)))
* (
sin ((
PI
/ 3)
+ ((
angle (C,B,A))
/ 3))))
* (
sin ((
angle (A,C,B))
/ 3))) by
A1,
A5,
A6,
A7,
A11,
A13,
A22,
Th8
.= (lambda
* (
sin ((
PI
/ 3)
+ ((
angle (C,B,A))
/ 3)))) by
A55;
A58: (C,A,B)
is_a_triangle by
A1,
MENELAUS: 15;
then
A59: ((((
PI
/ 3)
+ ((
angle (A,C,B))
/ 3))
+ ((
PI
/ 3)
+ ((
angle (C,B,A))
/ 3)))
+ (
angle (E,A,F)))
=
PI by
Th10,
A5,
A23,
A18,
A4,
A7,
A8;
A60: (
|.(F
- E).|
^2 )
= (((
|.(A
- E).|
^2 )
+ (
|.(A
- F).|
^2 ))
- (((2
*
|.(A
- E).|)
*
|.(A
- F).|)
* (
cos (
angle (E,A,F))))) by
Th3
.= ((lambda
^2 )
* ((((
sin ((
PI
/ 3)
+ ((
angle (A,C,B))
/ 3)))
^2 )
+ ((
sin ((
PI
/ 3)
+ ((
angle (C,B,A))
/ 3)))
^2 ))
- (((2
* (
sin ((
PI
/ 3)
+ ((
angle (A,C,B))
/ 3))))
* (
sin ((
PI
/ 3)
+ ((
angle (C,B,A))
/ 3))))
* (
cos (
angle (E,A,F)))))) by
A56,
A57
.= ((lambda
^2 )
* ((
sin (
angle (E,A,F)))
^2 )) by
A59,
EUCLID10: 25
.= ((lambda
^2 )
* ((
sin ((
angle (B,A,C))
/ 3))
^2 )) by
Th9,
A58,
A5,
A23,
A18,
A4,
A7
.= ((lambda
* (
sin ((
angle (B,A,C))
/ 3)))
^2 );
now
A61: lambda
= ((((
- (
the_diameter_of_the_circumcircle (C,B,A)))
* 4)
* (
sin ((
angle (A,C,B))
/ 3)))
* (
sin ((
angle (C,B,A))
/ 3)))
.= ((((
the_diameter_of_the_circumcircle (A,B,C))
* 4)
* (
sin ((
angle (A,C,B))
/ 3)))
* (
sin ((
angle (C,B,A))
/ 3))) by
A1,
EUCLID10: 49;
now
0
<= (
angle (C,B,A))
<
PI by
A14,
A12,
A8,
Th4;
then
A62:
0
<= ((
angle (C,B,A))
/ 3)
< (
PI
/ 3) by
XREAL_1: 74;
(
PI
/ 3)
< (
PI
/ 1) by
COMPTRIG: 5,
XREAL_1: 76;
then ((2
*
PI )
*
0 )
<= ((
angle (C,B,A))
/ 3)
< (
PI
+ ((2
*
PI )
*
0 )) by
A62,
XXREAL_0: 2;
hence (
sin ((
angle (C,B,A))
/ 3))
>=
0 by
SIN_COS6: 16;
0
<= (
angle (A,C,B))
<
PI by
A8,
Th2;
then
A63:
0
<= ((
angle (A,C,B))
/ 3)
< (
PI
/ 3) by
XREAL_1: 74;
(
PI
/ 3)
< (
PI
/ 1) by
COMPTRIG: 5,
XREAL_1: 76;
then ((2
*
PI )
*
0 )
<= ((
angle (A,C,B))
/ 3)
< (
PI
+ ((2
*
PI )
*
0 )) by
A63,
XXREAL_0: 2;
hence
0
<= (
sin ((
angle (A,C,B))
/ 3)) by
SIN_COS6: 16;
thus
0
<= (
the_diameter_of_the_circumcircle (A,B,C)) by
A15,
Th6;
end;
hence
0
<= lambda by
A61;
now
(A,C,B)
is_a_triangle by
A1,
MENELAUS: 15;
hence (A,C,B)
are_mutually_distinct by
EUCLID_6: 20;
(
angle (A,C,B))
<>
0 by
A1,
EUCLID10: 30;
hence
0
< (
angle (A,C,B))
<
PI by
A8,
Th2;
end;
then
0
<= (
angle (B,A,C))
<
PI by
Th4;
then
A64:
0
<= ((
angle (B,A,C))
/ 3)
< (
PI
/ 3) by
XREAL_1: 74;
(
PI
/ 3)
< (
PI
/ 1) by
COMPTRIG: 5,
XREAL_1: 76;
then ((2
*
PI )
*
0 )
<= ((
angle (B,A,C))
/ 3)
< (
PI
+ ((2
*
PI )
*
0 )) by
A64,
XXREAL_0: 2;
hence
0
<= (
sin ((
angle (B,A,C))
/ 3)) by
SIN_COS6: 16;
end;
then
A65: (
sqrt ((lambda
* (
sin ((
angle (B,A,C))
/ 3)))
^2 ))
= (lambda
* (
sin ((
angle (B,A,C))
/ 3))) by
SQUARE_1: 22;
lambda
= ((((
- (
the_diameter_of_the_circumcircle (C,B,A)))
* 4)
* (
sin ((
angle (A,C,B))
/ 3)))
* (
sin ((
angle (C,B,A))
/ 3)))
.= ((((
the_diameter_of_the_circumcircle (A,B,C))
* 4)
* (
sin ((
angle (A,C,B))
/ 3)))
* (
sin ((
angle (C,B,A))
/ 3))) by
A1,
EUCLID10: 49;
hence thesis by
A60,
SQUARE_1: 22,
A65;
end;
theorem ::
EUCLID11:18
Th13: (A,B,C)
is_a_triangle & (
angle (E,B,A))
= ((
angle (C,B,A))
/ 3) & (
angle (B,A,E))
= ((
angle (B,A,C))
/ 3) implies (A,B,E)
is_a_triangle
proof
assume that
A1: (A,B,C)
is_a_triangle and
A2: (
angle (E,B,A))
= ((
angle (C,B,A))
/ 3) and
A3: (
angle (B,A,E))
= ((
angle (B,A,C))
/ 3);
A4: (A,B,C)
are_mutually_distinct by
A1,
EUCLID_6: 20;
A5: (
angle (C,B,A))
<>
0 & (
angle (B,A,C))
<>
0 by
A1,
EUCLID10: 30;
now
thus (A,B,E)
are_mutually_distinct by
A4,
A2,
Th1,
A3,
A5;
hereby
assume (
angle (A,B,E))
=
PI ;
then B
in (
LSeg (A,E)) & B
<> A by
A4,
EUCLID_6: 11;
then (
angle (E,A,B))
= (
angle (B,A,B)) by
EUCLID_6: 9
.=
0 by
Th1;
hence contradiction by
A5,
A3,
EUCLID_3: 36;
end;
hereby
assume (
angle (B,E,A))
=
PI ;
then E
in (
LSeg (B,A)) & E
<> B by
Th1,
A3,
A5,
EUCLID_6: 11;
then (
angle (A,B,E))
= (
angle (E,B,E)) by
EUCLID_6: 9
.=
0 by
Th1;
hence contradiction by
A5,
A2,
EUCLID_3: 36;
end;
hereby
assume
A6: (
angle (E,A,B))
=
PI ;
then
A7: (
angle (B,A,E))
= ((2
*
PI )
- (
angle (E,A,B))) by
COMPTRIG: 5,
EUCLID_3: 37
.=
PI by
A6;
((2
*
PI )
+
0 )
< ((2
*
PI )
+
PI ) by
XREAL_1: 8,
COMPTRIG: 5;
hence contradiction by
A7,
A3,
Th2;
end;
end;
hence thesis by
EUCLID_6: 20;
end;
theorem ::
EUCLID11:19
Th14: (A,B,C)
is_a_triangle & (
angle (A,C,F))
= ((
angle (A,C,B))
/ 3) & (
angle (F,A,C))
= ((
angle (B,A,C))
/ 3) implies (A,F,C)
is_a_triangle
proof
assume that
A1: (A,B,C)
is_a_triangle and
A2: (
angle (A,C,F))
= ((
angle (A,C,B))
/ 3) and
A3: (
angle (F,A,C))
= ((
angle (B,A,C))
/ 3);
A4: (A,B,C)
are_mutually_distinct by
A1,
EUCLID_6: 20;
A5: (
angle (A,C,B))
<>
0 & (
angle (B,A,C))
<>
0 by
A1,
EUCLID10: 30;
now
thus (A,F,C)
are_mutually_distinct by
A2,
A3,
A4,
A5,
Th1;
hereby
assume (
angle (A,F,C))
=
PI ;
then F
in (
LSeg (A,C)) & F
<> A by
A2,
A5,
Th1,
EUCLID_6: 11;
then (
angle (C,A,F))
= (
angle (F,A,F)) by
EUCLID_6: 9
.=
0 by
Th1;
hence contradiction by
A5,
A3,
EUCLID_3: 36;
end;
hereby
assume
A6: (
angle (C,A,F))
=
PI ;
then
A7: (
angle (F,A,C))
= ((2
*
PI )
- (
angle (C,A,F))) by
COMPTRIG: 5,
EUCLID_3: 37
.=
PI by
A6;
((2
*
PI )
+
0 )
< ((2
*
PI )
+
PI ) by
XREAL_1: 8,
COMPTRIG: 5;
hence contradiction by
A3,
A7,
Th2;
end;
hereby
assume
A8: (
angle (F,C,A))
=
PI ;
then
A9: (
angle (A,C,F))
= ((2
*
PI )
- (
angle (F,C,A))) by
COMPTRIG: 5,
EUCLID_3: 37
.=
PI by
A8;
((2
*
PI )
+
0 )
< ((2
*
PI )
+
PI ) by
COMPTRIG: 5,
XREAL_1: 8;
hence contradiction by
A9,
A2,
Th2;
end;
end;
hence thesis by
EUCLID_6: 20;
end;
theorem ::
EUCLID11:20
Th15: (A,B,C)
is_a_triangle & (
angle (C,B,G))
= ((
angle (C,B,A))
/ 3) & (
angle (G,C,B))
= ((
angle (A,C,B))
/ 3) implies (C,G,B)
is_a_triangle
proof
assume that
A1: (A,B,C)
is_a_triangle and
A2: (
angle (C,B,G))
= ((
angle (C,B,A))
/ 3) and
A3: (
angle (G,C,B))
= ((
angle (A,C,B))
/ 3);
A4: (A,B,C)
are_mutually_distinct by
A1,
EUCLID_6: 20;
A5: (
angle (A,C,B))
<>
0 & (
angle (C,B,A))
<>
0 by
A1,
EUCLID10: 30;
now
thus (C,G,B)
are_mutually_distinct by
A2,
A3,
A4,
A5,
Th1;
hereby
assume (
angle (C,G,B))
=
PI ;
then G
in (
LSeg (C,B)) & G
<> C by
A2,
A5,
Th1,
EUCLID_6: 11;
then (
angle (G,C,B))
= (
angle (B,C,B)) by
EUCLID_6: 9
.=
0 by
Th1;
hence contradiction by
A3,
A1,
EUCLID10: 30;
end;
hereby
assume (
angle (G,B,C))
=
PI ;
then
A6: (
angle (C,B,G))
= ((2
*
PI )
-
PI ) by
COMPTRIG: 5,
EUCLID_3: 37
.=
PI ;
((2
*
PI )
+
0 )
< ((2
*
PI )
+
PI ) by
COMPTRIG: 5,
XREAL_1: 8;
hence contradiction by
A2,
A6,
Th2;
end;
hereby
assume (
angle (B,C,G))
=
PI ;
then
A7: (
angle (G,C,B))
= ((2
*
PI )
-
PI ) by
COMPTRIG: 5,
EUCLID_3: 37
.=
PI ;
((2
*
PI )
+
0 )
< ((2
*
PI )
+
PI ) by
COMPTRIG: 5,
XREAL_1: 8;
hence contradiction by
A3,
A7,
Th2;
end;
end;
hence thesis by
EUCLID_6: 20;
end;
theorem ::
EUCLID11:21
Th16: (A,B,C)
is_a_triangle & (
angle (A,C,B))
<
PI & (
angle (E,B,A))
= ((
angle (C,B,A))
/ 3) & (
angle (B,A,E))
= ((
angle (B,A,C))
/ 3) & (
angle (A,C,F))
= ((
angle (A,C,B))
/ 3) & (
angle (F,A,C))
= ((
angle (B,A,C))
/ 3) & (
angle (C,B,G))
= ((
angle (C,B,A))
/ 3) & (
angle (G,C,B))
= ((
angle (A,C,B))
/ 3) implies
|.(F
- E).|
= ((((4
* (
the_diameter_of_the_circumcircle (A,B,C)))
* (
sin ((
angle (A,C,B))
/ 3)))
* (
sin ((
angle (C,B,A))
/ 3)))
* (
sin ((
angle (B,A,C))
/ 3))) &
|.(G
- F).|
= ((((4
* (
the_diameter_of_the_circumcircle (C,A,B)))
* (
sin ((
angle (C,B,A))
/ 3)))
* (
sin ((
angle (B,A,C))
/ 3)))
* (
sin ((
angle (A,C,B))
/ 3))) &
|.(E
- G).|
= ((((4
* (
the_diameter_of_the_circumcircle (B,C,A)))
* (
sin ((
angle (B,A,C))
/ 3)))
* (
sin ((
angle (A,C,B))
/ 3)))
* (
sin ((
angle (C,B,A))
/ 3)))
proof
assume
A1: (A,B,C)
is_a_triangle & (
angle (A,C,B))
<
PI & (
angle (E,B,A))
= ((
angle (C,B,A))
/ 3) & (
angle (B,A,E))
= ((
angle (B,A,C))
/ 3) & (
angle (A,C,F))
= ((
angle (A,C,B))
/ 3) & (
angle (F,A,C))
= ((
angle (B,A,C))
/ 3) & (
angle (C,B,G))
= ((
angle (C,B,A))
/ 3) & (
angle (G,C,B))
= ((
angle (A,C,B))
/ 3);
then
A2: (A,B,E)
is_a_triangle & (A,F,C)
is_a_triangle & (C,G,B)
is_a_triangle by
Th13,
Th14,
Th15;
now
thus
A3: (C,A,B)
is_a_triangle & (B,C,A)
is_a_triangle by
A1,
MENELAUS: 15;
thus (C,A,F)
is_a_triangle & (B,C,G)
is_a_triangle & (B,E,A)
is_a_triangle by
A2,
MENELAUS: 15;
(
angle (A,C,B))
<>
0 by
A1,
EUCLID10: 30;
then (A,C,B)
are_mutually_distinct &
0
< (
angle (A,C,B))
<
PI by
A1,
A3,
EUCLID_6: 20,
Th2;
hence (
angle (C,B,A))
<
PI & (
angle (B,A,C))
<
PI by
Th4;
end;
hence thesis by
A1,
A2,
Th12;
end;
theorem ::
EUCLID11:22
Th17: (A,B,C)
is_a_triangle & (
angle (A,C,B))
<
PI & (
angle (E,B,A))
= ((
angle (C,B,A))
/ 3) & (
angle (B,A,E))
= ((
angle (B,A,C))
/ 3) & (
angle (A,C,F))
= ((
angle (A,C,B))
/ 3) & (
angle (F,A,C))
= ((
angle (B,A,C))
/ 3) & (
angle (C,B,G))
= ((
angle (C,B,A))
/ 3) & (
angle (G,C,B))
= ((
angle (A,C,B))
/ 3) implies
|.(F
- E).|
=
|.(G
- F).| &
|.(F
- E).|
=
|.(E
- G).| &
|.(G
- F).|
=
|.(E
- G).|
proof
assume (A,B,C)
is_a_triangle & (
angle (A,C,B))
<
PI & (
angle (E,B,A))
= ((
angle (C,B,A))
/ 3) & (
angle (B,A,E))
= ((
angle (B,A,C))
/ 3) & (
angle (A,C,F))
= ((
angle (A,C,B))
/ 3) & (
angle (F,A,C))
= ((
angle (B,A,C))
/ 3) & (
angle (C,B,G))
= ((
angle (C,B,A))
/ 3) & (
angle (G,C,B))
= ((
angle (A,C,B))
/ 3);
then
A1:
|.(F
- E).|
= (((((
the_diameter_of_the_circumcircle (A,B,C))
* 4)
* (
sin ((
angle (A,C,B))
/ 3)))
* (
sin ((
angle (C,B,A))
/ 3)))
* (
sin ((
angle (B,A,C))
/ 3))) &
|.(G
- F).|
= (((((
the_diameter_of_the_circumcircle (C,A,B))
* 4)
* (
sin ((
angle (C,B,A))
/ 3)))
* (
sin ((
angle (B,A,C))
/ 3)))
* (
sin ((
angle (A,C,B))
/ 3))) &
|.(E
- G).|
= (((((
the_diameter_of_the_circumcircle (B,C,A))
* 4)
* (
sin ((
angle (B,A,C))
/ 3)))
* (
sin ((
angle (A,C,B))
/ 3)))
* (
sin ((
angle (C,B,A))
/ 3))) by
Th16;
(
the_diameter_of_the_circumcircle (A,B,C))
= (
the_diameter_of_the_circumcircle (C,A,B)) & (
the_diameter_of_the_circumcircle (A,B,C))
= (
the_diameter_of_the_circumcircle (B,C,A)) by
EUCLID10: 46;
hence thesis by
A1;
end;
::$Notion-Name
theorem ::
EUCLID11:23
(A,B,C)
is_a_triangle & (
angle (A,B,C))
<
PI & (
angle (E,C,A))
= ((
angle (B,C,A))
/ 3) & (
angle (C,A,E))
= ((
angle (C,A,B))
/ 3) & (
angle (A,B,F))
= ((
angle (A,B,C))
/ 3) & (
angle (F,A,B))
= ((
angle (C,A,B))
/ 3) & (
angle (B,C,G))
= ((
angle (B,C,A))
/ 3) & (
angle (G,B,C))
= ((
angle (A,B,C))
/ 3) implies
|.(F
- E).|
=
|.(G
- F).| &
|.(F
- E).|
=
|.(E
- G).| &
|.(G
- F).|
=
|.(E
- G).|
proof
assume
A1: (A,B,C)
is_a_triangle & (
angle (A,B,C))
<
PI & (
angle (E,C,A))
= ((
angle (B,C,A))
/ 3) & (
angle (C,A,E))
= ((
angle (C,A,B))
/ 3) & (
angle (A,B,F))
= ((
angle (A,B,C))
/ 3) & (
angle (F,A,B))
= ((
angle (C,A,B))
/ 3) & (
angle (B,C,G))
= ((
angle (B,C,A))
/ 3) & (
angle (G,B,C))
= ((
angle (A,B,C))
/ 3);
(A,C,B)
is_a_triangle by
A1,
MENELAUS: 15;
hence thesis by
A1,
Th17;
end;