euclid10.miz
begin
theorem ::
EUCLID10:1
Thm1: for a be
Real holds (
sin (
PI
- a))
= (
sin a)
proof
let a be
Real;
(
sin (
PI
- a))
= ((
0
* (
cos a))
- ((
cos
PI )
* (
sin a))) by
SIN_COS: 77,
SIN_COS: 82
.= (
sin a) by
SIN_COS: 77;
hence thesis;
end;
theorem ::
EUCLID10:2
for a be
Real holds (
cos (
PI
- a))
= (
- (
cos a))
proof
let a be
Real;
(
cos (
PI
- a))
= (((
cos
PI )
* (
cos a))
+ ((
sin
PI )
* (
sin a))) by
SIN_COS: 83
.= (
- (
cos a)) by
SIN_COS: 77;
hence thesis;
end;
theorem ::
EUCLID10:3
for a be
Real holds (
sin ((2
*
PI )
- a))
= (
- (
sin a))
proof
let a be
Real;
(
sin ((2
*
PI )
- a))
= ((
0
* (
cos a))
- ((
cos (2
*
PI ))
* (
sin a))) by
SIN_COS: 77,
SIN_COS: 82
.= (
- (
sin a)) by
SIN_COS: 77;
hence thesis;
end;
theorem ::
EUCLID10:4
for a be
Real holds (
cos ((2
*
PI )
- a))
= (
cos a)
proof
let a be
Real;
(
cos ((2
*
PI )
- a))
= ((1
* (
cos a))
+ (
0
* (
sin a))) by
SIN_COS: 77,
SIN_COS: 83
.= (
cos a);
hence thesis;
end;
theorem ::
EUCLID10:5
Thm2: for a be
Real holds (
sin ((
- (2
*
PI ))
+ a))
= (
sin a)
proof
let a be
Real;
(
sin ((
- (2
*
PI ))
+ a))
= (
sin (a
- (2
*
PI )))
.= (((
sin a)
* 1)
- ((
cos a)
* (
sin (2
*
PI )))) by
SIN_COS: 77,
SIN_COS: 82
.= (
sin a) by
SIN_COS: 77;
hence thesis;
end;
theorem ::
EUCLID10:6
for a be
Real holds (
cos ((
- (2
*
PI ))
+ a))
= (
cos a)
proof
let a be
Real;
(
cos ((
- (2
*
PI ))
+ a))
= (
cos (a
- (2
*
PI )))
.= (((
cos a)
* 1)
+ ((
sin a)
* (
sin (2
*
PI )))) by
SIN_COS: 77,
SIN_COS: 83
.= (
cos a) by
SIN_COS: 77;
hence thesis;
end;
theorem ::
EUCLID10:7
Thm3: for a be
Real holds (
sin (((3
*
PI )
/ 2)
+ a))
= (
- (
cos a))
proof
let a be
Real;
(
sin (((3
*
PI )
/ 2)
+ a))
= (((
sin ((3
*
PI )
/ 2))
* (
cos a))
+ ((
cos ((3
*
PI )
/ 2))
* (
sin a))) by
SIN_COS: 75
.= (
- (
cos a)) by
SIN_COS: 77;
hence thesis;
end;
theorem ::
EUCLID10:8
Thm4: for a be
Real holds (
cos (((3
*
PI )
/ 2)
+ a))
= (
sin a)
proof
let a be
Real;
(
cos (((3
*
PI )
/ 2)
+ a))
= (((
cos ((3
*
PI )
/ 2))
* (
cos a))
- ((
sin ((3
*
PI )
/ 2))
* (
sin a))) by
SIN_COS: 75
.= (
- (
- (
sin a))) by
SIN_COS: 77;
hence thesis;
end;
theorem ::
EUCLID10:9
for a be
Real holds (
sin (((3
*
PI )
/ 2)
+ a))
= (
- (
sin ((
PI
/ 2)
- a)))
proof
let a be
Real;
(
sin (((3
*
PI )
/ 2)
+ a))
= (
- (
cos a)) by
Thm3
.= (
- (
sin ((
PI
/ 2)
- a))) by
SIN_COS: 79;
hence thesis;
end;
theorem ::
EUCLID10:10
for a be
Real holds (
cos (((3
*
PI )
/ 2)
+ a))
= (
cos ((
PI
/ 2)
- a))
proof
let a be
Real;
(
cos (((3
*
PI )
/ 2)
+ a))
= (
sin a) by
Thm4
.= (
cos ((
PI
/ 2)
- a)) by
SIN_COS: 79;
hence thesis;
end;
theorem ::
EUCLID10:11
Thm5: for a be
Real holds (
sin (((2
*
PI )
/ 3)
- a))
= (
sin ((
PI
/ 3)
+ a))
proof
let a be
Real;
(
sin (((2
*
PI )
/ 3)
- a))
= (
sin (
PI
- ((
PI
/ 3)
+ a)))
.= (((
sin
PI )
* (
cos ((
PI
/ 3)
+ a)))
- ((
cos
PI )
* (
sin ((
PI
/ 3)
+ a)))) by
SIN_COS: 82
.= (
sin ((
PI
/ 3)
+ a)) by
SIN_COS: 77;
hence thesis;
end;
theorem ::
EUCLID10:12
Thm6: for a be
Real holds (
cos (((2
*
PI )
/ 3)
- a))
= (
- (
cos ((
PI
/ 3)
+ a)))
proof
let a be
Real;
(
cos (((2
*
PI )
/ 3)
- a))
= (
cos (
PI
- ((
PI
/ 3)
+ a)))
.= (((
cos
PI )
* (
cos ((
PI
/ 3)
+ a)))
+ ((
sin
PI )
* (
sin ((
PI
/ 3)
+ a)))) by
SIN_COS: 83
.= (
- (
cos ((
PI
/ 3)
+ a))) by
SIN_COS: 77;
hence thesis;
end;
theorem ::
EUCLID10:13
Thm7: for a be
Real holds (
sin (((2
*
PI )
/ 3)
+ a))
= (
sin ((
PI
/ 3)
- a))
proof
let a be
Real;
(
sin (((2
*
PI )
/ 3)
+ a))
= (
sin (
PI
- ((
PI
/ 3)
- a)))
.= (((
sin
PI )
* (
cos ((
PI
/ 3)
- a)))
- ((
cos
PI )
* (
sin ((
PI
/ 3)
- a)))) by
SIN_COS: 82
.= (
sin ((
PI
/ 3)
- a)) by
SIN_COS: 77;
hence thesis;
end;
Lm1: (
angle (
|[
0 ,
0 ]|,
|[
0 , 1]|,
|[((
sqrt 3)
/ 2), (1
/ 2)]|))
<
PI
proof
set O = (
euc2cpx
|[
0 ,
0 ]|);
set A = (
euc2cpx
|[
0 , 1]|);
set B = (
euc2cpx
|[((
sqrt 3)
/ 2), (1
/ 2)]|);
(
|[
0 ,
0 ]|
`1 )
=
0 & (
|[
0 ,
0 ]|
`2 )
=
0 & (
|[
0 , 1]|
`1 )
=
0 & (
|[
0 , 1]|
`2 )
= 1 & (
|[((
sqrt 3)
/ 2), (1
/ 2)]|
`1 )
= ((
sqrt 3)
/ 2) & (
|[((
sqrt 3)
/ 2), (1
/ 2)]|
`2 )
= (1
/ 2) by
EUCLID: 52;
then
A1: O
= (
0
+ (
0
*
<i> )) & A
= (
0
+ (1
*
<i> )) & B
= (((
sqrt 3)
/ 2)
+ ((1
/ 2)
*
<i> )) by
EUCLID_3:def 2;
A2: (
Arg ((
- 1)
*
<i> ))
= ((3
/ 2)
*
PI ) by
COMPTRIG: 38;
(B
- A)
= (((
sqrt 3)
/ 2)
+ ((
- (1
/ 2))
*
<i> )) by
A1;
then
A3: (
Re (B
- A))
= ((
sqrt 3)
/ 2) & (
Im (B
- A))
= (
- (1
/ 2)) by
COMPLEX1: 12;
(
sqrt 3)
>
0 by
SQUARE_1: 25;
then (
Arg (B
- A))
in
].((3
/ 2)
*
PI ), (2
*
PI ).[ by
A3,
COMPTRIG: 44;
then ((3
/ 2)
*
PI )
< (
Arg (B
- A)) & (
Arg (B
- A))
< (2
*
PI ) by
XXREAL_1: 4;
then
A4: (((3
/ 2)
*
PI )
- ((3
/ 2)
*
PI ))
< ((
Arg (B
- A))
- ((3
/ 2)
*
PI )) & ((
Arg (B
- A))
- ((3
/ 2)
*
PI ))
< ((2
*
PI )
- ((3
/ 2)
*
PI )) by
XREAL_1: 14;
set th = ((
Arg (B
- A))
- (
Arg (O
- A)));
PI
in
].
0 , 4.[ by
SIN_COS:def 28;
then
A5:
0
<
PI by
XXREAL_1: 4;
th
< ((1
/ 2)
*
PI ) & ((1
/ 2)
*
PI )
<
PI by
A1,
A2,
A4,
A5,
XREAL_1: 157;
then
A6: not
PI
<= th by
XXREAL_0: 2;
(
angle (O,A,B))
= th by
A1,
A2,
A4,
COMPLEX2:def 4;
hence thesis by
A6,
EUCLID_3:def 4;
end;
Lm2:
|.
|[((
sqrt 3)
/ 2), (1
/ 2)]|.|
= 1
proof
set B =
|[((
sqrt 3)
/ 2), (1
/ 2)]|;
(B
`1 )
= ((
sqrt 3)
/ 2) & (B
`2 )
= (1
/ 2) by
EUCLID: 52;
then
A1:
|.B.|
= (
sqrt ((((
sqrt 3)
/ 2)
^2 )
+ ((1
/ 2)
^2 ))) by
JGRAPH_1: 30;
A2: (((
sqrt 3)
/ 2)
^2 )
= (((
sqrt 3)
/ 2)
* ((
sqrt 3)
/ 2)) by
SQUARE_1:def 1;
A3: ((1
/ 2)
^2 )
= ((1
/ 2)
* (1
/ 2)) by
SQUARE_1:def 1;
((
sqrt 3)
^2 )
= 3 by
SQUARE_1:def 2;
then ((((
sqrt 3)
* (
sqrt 3))
/ 2)
/ 2)
= ((3
/ 2)
/ 2) by
SQUARE_1:def 1;
hence thesis by
A1,
A2,
A3,
SQUARE_1: 18;
end;
Lm3: for O,A,B be
Point of (
TOP-REAL 2) st O
=
|[
0 ,
0 ]| & A
=
|[
0 , 1]| & B
=
|[((
sqrt 3)
/ 2), (1
/ 2)]| holds
|.(O
- A).|
=
|.(O
- B).| &
|.(O
- A).|
=
|.(A
- B).| &
|.(O
- A).|
= 1
proof
let O,A,B be
Point of (
TOP-REAL 2) such that
A1: O
=
|[
0 ,
0 ]| and
A2: A
=
|[
0 , 1]| and
A3: B
=
|[((
sqrt 3)
/ 2), (1
/ 2)]|;
A4: (A
`1 )
=
0 & (A
`2 )
= 1 & (O
`1 )
=
0 & (O
`2 )
=
0 & (B
`1 )
= ((
sqrt 3)
/ 2) & (B
`2 )
= (1
/ 2) by
A1,
A2,
A3,
EUCLID: 52;
then
A5: (A
- O)
=
|[(
0
-
0 ), (1
-
0 )]| by
EUCLID: 61;
(
0
^2 )
= (
0
*
0 ) & (1
^2 )
= (1
* 1) by
SQUARE_1:def 1;
then
A6:
|.A.|
= (
sqrt ((
0
*
0 )
+ (1
* 1))) by
A4,
JGRAPH_1: 30;
A7: (B
- O)
=
|[(((
sqrt 3)
/ 2)
-
0 ), ((1
/ 2)
-
0 )]| by
A4,
EUCLID: 61
.=
|[((
sqrt 3)
/ 2), (1
/ 2)]|;
(A
- B)
=
|[(
0
- ((
sqrt 3)
/ 2)), (1
- (1
/ 2))]| by
A4,
EUCLID: 61;
then ((A
- B)
`1 )
= (
- ((
sqrt 3)
/ 2)) & ((A
- B)
`2 )
= (1
/ 2) by
EUCLID: 52;
then
A8:
|.(A
- B).|
= (
sqrt (((
- ((
sqrt 3)
/ 2))
^2 )
+ ((1
/ 2)
^2 ))) by
JGRAPH_1: 30;
A9: ((
- ((
sqrt 3)
/ 2))
^2 )
= ((
- ((
sqrt 3)
/ 2))
* (
- ((
sqrt 3)
/ 2))) by
SQUARE_1:def 1;
A10: ((1
/ 2)
^2 )
= ((1
/ 2)
* (1
/ 2)) by
SQUARE_1:def 1;
((
sqrt 3)
^2 )
= 3 by
SQUARE_1:def 2;
then
A11: ((((
sqrt 3)
* (
sqrt 3))
/ 2)
/ 2)
= ((3
/ 2)
/ 2) by
SQUARE_1:def 1;
|.(O
- B).|
=
|.(B
- O).| by
EUCLID_6: 43;
hence thesis by
EUCLID_6: 43,
A6,
A5,
A2,
A9,
A10,
A8,
A11,
SQUARE_1: 18,
A7,
Lm2;
end;
Lm4: for O,A,B be
Point of (
TOP-REAL 2) st O
=
|[
0 ,
0 ]| & A
=
|[
0 , 1]| & B
=
|[((
sqrt 3)
/ 2), (1
/ 2)]| holds O
<> A & A
<> B & O
<> B & A
<> O & B
<> A & B
<> O
proof
let O,A,B be
Point of (
TOP-REAL 2) such that
A1: O
=
|[
0 ,
0 ]| and
A2: A
=
|[
0 , 1]| and
A3: B
=
|[((
sqrt 3)
/ 2), (1
/ 2)]|;
O
<> A & A
<> B & O
<> B
proof
(O
`2 )
=
0 & (B
`2 )
= (1
/ 2) by
A1,
A3,
EUCLID: 52;
hence thesis by
A2,
EUCLID: 52;
end;
hence thesis;
end;
Lm5: for O,A,B be
Point of (
TOP-REAL 2) st O
=
|[
0 ,
0 ]| & A
=
|[
0 , 1]| & B
=
|[((
sqrt 3)
/ 2), (1
/ 2)]| holds (
angle (B,O,A))
= (
angle (O,A,B)) & (
angle (O,A,B))
= (
angle (A,B,O))
proof
let O,A,B be
Point of (
TOP-REAL 2) such that
A1: O
=
|[
0 ,
0 ]| and
A2: A
=
|[
0 , 1]| and
A3: B
=
|[((
sqrt 3)
/ 2), (1
/ 2)]|;
A4:
|.(O
- A).|
=
|.(O
- B).| &
|.(O
- A).|
=
|.(A
- B).| by
A1,
A2,
A3,
Lm3;
then
A5:
|.(O
- A).|
=
|.(B
- O).| &
|.(A
- O).|
=
|.(O
- B).| &
|.(O
- A).|
=
|.(B
- A).| &
|.(A
- O).|
=
|.(A
- B).| by
EUCLID_6: 43;
O
<> A & A
<> B & O
<> B by
A1,
A2,
A3,
Lm4;
hence thesis by
A4,
A5,
EUCLID_6: 16;
end;
Lm6: for O,A,B be
Point of (
TOP-REAL 2) st O
=
|[
0 ,
0 ]| & A
=
|[
0 , 1]| & B
=
|[((
sqrt 3)
/ 2), (1
/ 2)]| & (
angle (O,A,B))
<
PI holds (
angle (B,O,A))
= (
PI
/ 3)
proof
let O,A,B be
Point of (
TOP-REAL 2) such that
A1: O
=
|[
0 ,
0 ]| and
A2: A
=
|[
0 , 1]| and
A3: B
=
|[((
sqrt 3)
/ 2), (1
/ 2)]| and
A4: (
angle (O,A,B))
<
PI ;
A
<> O & O
<> B & B
<> A by
A1,
A2,
A3,
Lm4;
then
A5: (((
angle (O,A,B))
+ (
angle (A,B,O)))
+ (
angle (B,O,A)))
=
PI by
A4,
EUCLID_3: 47;
(
angle (B,O,A))
= (
angle (O,A,B)) & (
angle (O,A,B))
= (
angle (A,B,O)) by
A1,
A2,
A3,
Lm5;
hence thesis by
A5;
end;
theorem ::
EUCLID10:14
Thm8: (
cos (
PI
/ 3))
= (1
/ 2)
proof
set O =
|[
0 ,
0 ]|;
set A =
|[
0 , 1]|;
set B =
|[((
sqrt 3)
/ 2), (1
/ 2)]|;
set a =
|.(B
- O).|;
set b =
|.(A
- O).|;
set c =
|.(A
- B).|;
|.(O
- A).|
=
|.(O
- B).| &
|.(O
- A).|
=
|.(A
- B).| &
|.(O
- A).|
= 1 by
Lm3;
then
A1: b
= 1 & c
= 1 & a
= 1 by
EUCLID_6: 43;
(1
^2 )
= (1
* 1) by
SQUARE_1:def 1
.= 1;
then 1
= ((1
+ 1)
- (((2
* 1)
* 1)
* (
cos (
angle (B,O,A))))) by
A1,
EUCLID_6: 7;
hence thesis by
Lm1,
Lm6;
end;
theorem ::
EUCLID10:15
Thm9: (
sin (
PI
/ 3))
= ((
sqrt 3)
/ 2)
proof
A1: (((
sin (
PI
/ 3))
^2 )
+ ((
cos (
PI
/ 3))
^2 ))
= 1 by
SIN_COS: 29;
A2: ((
cos (
PI
/ 3))
^2 )
= ((
cos (
PI
/ 3))
* (
cos (
PI
/ 3))) by
SQUARE_1:def 1
.= (1
/ 4) by
Thm8;
(
sin (
PI
/ 3))
>=
0
proof
A3: ((
PI
/ 2)
- (
PI
/ 3))
in
].
0 , (
PI
/ 2).[
proof
set n = ((
PI
/ 2)
- (
PI
/ 3));
(
PI
/ 6)
< (
PI
/ 2) by
COMPTRIG: 5,
XREAL_1: 76;
hence thesis by
COMPTRIG: 5,
XXREAL_1: 4;
end;
(
sin (
PI
/ 3))
= (
cos ((
PI
/ 2)
- (
PI
/ 3))) by
SIN_COS: 79;
hence thesis by
A3,
SIN_COS: 81;
end;
then (
sin (
PI
/ 3))
= (
sqrt (3
/ 4)) by
A1,
A2,
SQUARE_1: 22;
hence thesis by
SQUARE_1: 20,
SQUARE_1: 30;
end;
theorem ::
EUCLID10:16
Thm10: (
tan (
PI
/ 3))
= (
sqrt 3)
proof
(
tan (
PI
/ 3))
= (((
sqrt 3)
/ 2)
/ (1
/ 2)) by
Thm8,
Thm9,
SIN_COS4:def 1
.= (
sqrt 3);
hence thesis;
end;
theorem ::
EUCLID10:17
Thm11: (
sin (
PI
/ 6))
= (1
/ 2)
proof
(
sin (
PI
/ 6))
= (
sin ((
PI
/ 2)
- (
PI
/ 3)))
.= (1
/ 2) by
Thm8,
SIN_COS: 79;
hence thesis;
end;
theorem ::
EUCLID10:18
Thm12: (
cos (
PI
/ 6))
= ((
sqrt 3)
/ 2)
proof
(
cos (
PI
/ 6))
= (
cos ((
PI
/ 2)
- (
PI
/ 3)))
.= ((
sqrt 3)
/ 2) by
Thm9,
SIN_COS: 79;
hence thesis;
end;
theorem ::
EUCLID10:19
Thm13: (
tan (
PI
/ 6))
= ((
sqrt 3)
/ 3)
proof
(
tan (
PI
/ 6))
= ((1
/ 2)
/ ((
sqrt 3)
/ 2)) by
Thm11,
Thm12,
SIN_COS4:def 1
.= (1
/ (
sqrt 3)) by
XCMPLX_1: 55;
hence thesis by
SQUARE_1: 33;
end;
theorem ::
EUCLID10:20
(
sin (
- (
PI
/ 6)))
= (
- (1
/ 2)) & (
cos (
- (
PI
/ 6)))
= ((
sqrt 3)
/ 2) & (
tan (
- (
PI
/ 6)))
= (
- ((
sqrt 3)
/ 3)) & (
sin (
- (
PI
/ 3)))
= (
- ((
sqrt 3)
/ 2)) & (
cos (
- (
PI
/ 3)))
= (1
/ 2) & (
tan (
- (
PI
/ 3)))
= (
- (
sqrt 3)) by
SIN_COS: 31,
SIN_COS4: 1,
Thm8,
Thm9,
Thm11,
Thm12,
Thm10,
Thm13;
theorem ::
EUCLID10:21
(
arcsin (1
/ 2))
= (
PI
/ 6) & (
arcsin ((
sqrt 3)
/ 2))
= (
PI
/ 3)
proof
(
PI
/ 6)
< (
PI
/ 2) & (
PI
/ 3)
< (
PI
/ 2) & (
- (
PI
/ 2))
<= (
PI
/ 6) & (
- (
PI
/ 2))
<= (
PI
/ 3) by
XREAL_1: 76,
COMPTRIG: 5;
hence thesis by
Thm9,
Thm11,
SIN_COS6: 69;
end;
theorem ::
EUCLID10:22
Thm14: (
sin ((2
*
PI )
/ 3))
= ((
sqrt 3)
/ 2)
proof
(
sin ((2
*
PI )
/ 3))
= (
sin (((2
*
PI )
/ 3)
-
0 ))
.= (
sin ((
PI
/ 3)
+
0 )) by
Thm5
.= (
sin (
PI
/ 3));
hence thesis by
Thm9;
end;
theorem ::
EUCLID10:23
Thm15: (
cos ((2
*
PI )
/ 3))
= (
- (1
/ 2))
proof
(
cos ((2
*
PI )
/ 3))
= (
cos (((2
*
PI )
/ 3)
-
0 ))
.= (
- (
cos ((
PI
/ 3)
+
0 ))) by
Thm6
.= (
- (
cos (
PI
/ 3)));
hence thesis by
Thm8;
end;
begin
theorem ::
EUCLID10:24
Thm16: for x be
Real holds ((
sin (
- x))
^2 )
= ((
sin x)
^2 )
proof
let x be
Real;
((
sin (
- x))
^2 )
= ((
sin (
- x))
* (
sin (
- x))) by
SQUARE_1:def 1
.= ((
- (
sin x))
* (
sin (
- x))) by
SIN_COS: 31
.= ((
- (
sin x))
* (
- (
sin x))) by
SIN_COS: 31
.= ((
sin x)
* (
sin x));
hence thesis by
SQUARE_1:def 1;
end;
theorem ::
EUCLID10:25
Thm17: for x,y,z be
Real st ((x
+ y)
+ z)
=
PI holds ((((
sin x)
^2 )
+ ((
sin y)
^2 ))
- (((2
* (
sin x))
* (
sin y))
* (
cos z)))
= ((
sin z)
^2 )
proof
let x,y,z be
Real such that
A1: ((x
+ y)
+ z)
=
PI ;
(
sin ((x
+ y)
-
PI ))
= (
- (
sin (x
+ y))) by
COMPLEX2: 5;
then (
- (
sin ((x
+ y)
-
PI )))
= (
sin (x
+ y));
then
A2: ((
sin (
- ((x
+ y)
-
PI )))
^2 )
= ((
sin (x
+ y))
^2 ) by
SIN_COS: 31;
A3: (((
cos y)
^2 )
+ ((
sin y)
^2 ))
= 1 by
SIN_COS: 29;
A4: (((
cos x)
^2 )
+ ((
sin x)
^2 ))
= 1 by
SIN_COS: 29;
A5: ((
sin (x
+ y))
^2 )
= ((((
sin x)
* (
cos y))
+ ((
cos x)
* (
sin y)))
^2 ) by
SIN_COS: 75
.= (((((
sin x)
* (
cos y))
^2 )
+ ((2
* ((
sin x)
* (
cos y)))
* ((
cos x)
* (
sin y))))
+ (((
cos x)
* (
sin y))
^2 )) by
SQUARE_1: 4
.= (((((
sin x)
* (
cos y))
* ((
sin x)
* (
cos y)))
+ ((((2
* (
sin x))
* (
cos y))
* (
cos x))
* (
sin y)))
+ (((
cos x)
* (
sin y))
^2 )) by
SQUARE_1:def 1
.= (((((
sin x)
* (
cos y))
* ((
sin x)
* (
cos y)))
+ ((((2
* (
sin x))
* (
cos y))
* (
cos x))
* (
sin y)))
+ (((
cos x)
* (
sin y))
* ((
cos x)
* (
sin y)))) by
SQUARE_1:def 1
.= (((((
sin x)
* (
sin x))
* ((
cos y)
* (
cos y)))
+ ((((2
* (
sin x))
* (
cos y))
* (
cos x))
* (
sin y)))
+ ((((
cos x)
* (
cos x))
* (
sin y))
* (
sin y)))
.= (((((
sin x)
^2 )
* ((
cos y)
* (
cos y)))
+ ((((2
* (
sin x))
* (
cos y))
* (
cos x))
* (
sin y)))
+ ((((
cos x)
* (
cos x))
* (
sin y))
* (
sin y))) by
SQUARE_1:def 1
.= (((((
sin x)
^2 )
* ((
cos y)
^2 ))
+ ((((2
* (
sin x))
* (
cos y))
* (
cos x))
* (
sin y)))
+ ((((
cos x)
* (
cos x))
* (
sin y))
* (
sin y))) by
SQUARE_1:def 1
.= (((((
sin x)
^2 )
* ((
cos y)
^2 ))
+ ((((2
* (
sin x))
* (
cos y))
* (
cos x))
* (
sin y)))
+ ((((
cos x)
^2 )
* (
sin y))
* (
sin y))) by
SQUARE_1:def 1
.= (((((
sin x)
^2 )
* ((
cos y)
^2 ))
+ ((((2
* (
sin x))
* (
cos y))
* (
cos x))
* (
sin y)))
+ (((
cos x)
^2 )
* ((
sin y)
* (
sin y))))
.= (((((
sin x)
^2 )
* ((
cos y)
^2 ))
+ ((((2
* (
sin x))
* (
cos y))
* (
cos x))
* (
sin y)))
+ (((
cos x)
^2 )
* ((
sin y)
^2 ))) by
SQUARE_1:def 1;
((((
sin x)
^2 )
+ ((
sin y)
^2 ))
- (((2
* (
sin x))
* (
sin y))
* (
cos z)))
= ((((
sin x)
^2 )
+ ((
sin y)
^2 ))
- (((2
* (
sin x))
* (
sin y))
* (
cos (
- ((x
+ y)
-
PI ))))) by
A1
.= ((((
sin x)
^2 )
+ ((
sin y)
^2 ))
- (((2
* (
sin x))
* (
sin y))
* (
cos ((x
+ y)
-
PI )))) by
SIN_COS: 31
.= ((((
sin x)
^2 )
+ ((
sin y)
^2 ))
- (((2
* (
sin x))
* (
sin y))
* (
- (
cos (x
+ y))))) by
COMPLEX2: 5
.= ((((
sin x)
^2 )
+ ((
sin y)
^2 ))
+ (((2
* (
sin x))
* (
sin y))
* (
cos (x
+ y))))
.= ((((
sin x)
^2 )
+ ((
sin y)
^2 ))
+ (((2
* (
sin x))
* (
sin y))
* (((
cos x)
* (
cos y))
- ((
sin x)
* (
sin y))))) by
SIN_COS: 75
.= (((((
sin x)
^2 )
+ ((
sin y)
^2 ))
+ ((((2
* (
sin x))
* (
sin y))
* (
cos x))
* (
cos y)))
- (((2
* ((
sin x)
* (
sin x)))
* (
sin y))
* (
sin y)))
.= (((((
sin x)
^2 )
+ ((
sin y)
^2 ))
+ ((((2
* (
sin x))
* (
sin y))
* (
cos x))
* (
cos y)))
- (((2
* ((
sin x)
^2 ))
* (
sin y))
* (
sin y))) by
SQUARE_1:def 1
.= (((((
sin x)
^2 )
+ ((
sin y)
^2 ))
+ ((((2
* (
sin x))
* (
sin y))
* (
cos x))
* (
cos y)))
- ((2
* ((
sin x)
^2 ))
* ((
sin y)
* (
sin y))))
.= (((((
sin x)
^2 )
+ ((
sin y)
^2 ))
+ ((((2
* (
sin x))
* (
sin y))
* (
cos x))
* (
cos y)))
- ((2
* ((
sin x)
^2 ))
* ((
sin y)
^2 ))) by
SQUARE_1:def 1
.= ((((((
sin x)
^2 )
* (1
- ((
sin y)
^2 )))
+ ((
sin y)
^2 ))
+ ((((2
* (
sin x))
* (
sin y))
* (
cos x))
* (
cos y)))
- (((
sin x)
^2 )
* ((
sin y)
^2 )))
.= (((((
sin x)
^2 )
* ((
cos y)
^2 ))
+ (((
sin y)
^2 )
* (1
- ((
sin x)
^2 ))))
+ ((((2
* (
sin x))
* (
sin y))
* (
cos x))
* (
cos y))) by
A3
.= (((((
sin x)
^2 )
* ((
cos y)
^2 ))
+ (((
sin y)
^2 )
* ((
cos x)
^2 )))
+ ((((2
* (
sin x))
* (
sin y))
* (
cos x))
* (
cos y))) by
A4;
hence thesis by
A1,
A2,
A5;
end;
theorem ::
EUCLID10:26
for x,y,z be
Real st ((x
- y)
+ z)
=
PI holds ((((
sin x)
^2 )
+ ((
sin y)
^2 ))
+ (((2
* (
sin x))
* (
sin y))
* (
cos z)))
= ((
sin z)
^2 )
proof
let x,y,z be
Real;
assume ((x
- y)
+ z)
=
PI ;
then
A1: ((x
+ (
- y))
+ z)
=
PI ;
((((
sin x)
^2 )
+ ((
sin (
- y))
^2 ))
- (((2
* (
sin x))
* (
sin (
- y)))
* (
cos z)))
= ((((
sin x)
^2 )
+ ((
sin (
- y))
^2 ))
- (((2
* (
sin x))
* (
- (
sin y)))
* (
cos z))) by
SIN_COS: 31
.= ((((
sin x)
^2 )
+ ((
sin (
- y))
^2 ))
+ (((2
* (
sin x))
* (
sin y))
* (
cos z)))
.= ((((
sin x)
^2 )
+ ((
sin y)
^2 ))
+ (((2
* (
sin x))
* (
sin y))
* (
cos z))) by
Thm16;
hence thesis by
A1,
Thm17;
end;
theorem ::
EUCLID10:27
for x,y,z be
Real st ((x
- ((
- (2
*
PI ))
+ y))
+ z)
=
PI holds ((((
sin x)
^2 )
+ ((
sin y)
^2 ))
+ (((2
* (
sin x))
* (
sin y))
* (
cos z)))
= ((
sin z)
^2 )
proof
let x,y,z be
Real;
assume ((x
- ((
- (2
*
PI ))
+ y))
+ z)
=
PI ;
then
A1: ((x
+ (
- ((
- (2
*
PI ))
+ y)))
+ z)
=
PI ;
((((
sin x)
^2 )
+ ((
sin (
- ((
- (2
*
PI ))
+ y)))
^2 ))
- (((2
* (
sin x))
* (
sin (
- ((
- (2
*
PI ))
+ y))))
* (
cos z)))
= ((((
sin x)
^2 )
+ ((
sin (
- ((
- (2
*
PI ))
+ y)))
^2 ))
- (((2
* (
sin x))
* (
- (
sin ((
- (2
*
PI ))
+ y))))
* (
cos z))) by
SIN_COS: 31
.= ((((
sin x)
^2 )
+ ((
sin (
- ((
- (2
*
PI ))
+ y)))
^2 ))
+ (((2
* (
sin x))
* (
sin ((
- (2
*
PI ))
+ y)))
* (
cos z)))
.= ((((
sin x)
^2 )
+ ((
sin ((
- (2
*
PI ))
+ y))
^2 ))
+ (((2
* (
sin x))
* (
sin ((
- (2
*
PI ))
+ y)))
* (
cos z))) by
Thm16
.= ((((
sin x)
^2 )
+ ((
sin y)
^2 ))
+ (((2
* (
sin x))
* (
sin ((
- (2
*
PI ))
+ y)))
* (
cos z))) by
Thm2
.= ((((
sin x)
^2 )
+ ((
sin y)
^2 ))
+ (((2
* (
sin x))
* (
sin y))
* (
cos z))) by
Thm2;
hence thesis by
A1,
Thm17;
end;
theorem ::
EUCLID10:28
for x,y,z be
Real st (((
PI
- x)
- (
PI
- y))
+ z)
=
PI holds ((((
sin x)
^2 )
+ ((
sin y)
^2 ))
+ (((2
* (
sin x))
* (
sin y))
* (
cos z)))
= ((
sin z)
^2 )
proof
let x,y,z be
Real;
assume (((
PI
- x)
- (
PI
- y))
+ z)
=
PI ;
then
A1: (((
PI
- x)
+ (
- (
PI
- y)))
+ z)
=
PI ;
((((
sin (
PI
- x))
^2 )
+ ((
sin (
- (
PI
- y)))
^2 ))
- (((2
* (
sin (
PI
- x)))
* (
sin (
- (
PI
- y))))
* (
cos z)))
= ((((
sin (
PI
- x))
^2 )
+ ((
sin (
- (
PI
- y)))
^2 ))
- (((2
* (
sin (
PI
- x)))
* (
- (
sin (
PI
- y))))
* (
cos z))) by
SIN_COS: 31
.= ((((
sin (
PI
- x))
^2 )
+ ((
sin (
- (
PI
- y)))
^2 ))
+ (((2
* (
sin (
PI
- x)))
* (
sin (
PI
- y)))
* (
cos z)))
.= ((((
sin (
PI
- x))
^2 )
+ ((
sin (
PI
- y))
^2 ))
+ (((2
* (
sin (
PI
- x)))
* (
sin (
PI
- y)))
* (
cos z))) by
Thm16
.= ((((
sin x)
^2 )
+ ((
sin (
PI
- y))
^2 ))
+ (((2
* (
sin (
PI
- x)))
* (
sin (
PI
- y)))
* (
cos z))) by
Thm1
.= ((((
sin x)
^2 )
+ ((
sin y)
^2 ))
+ (((2
* (
sin (
PI
- x)))
* (
sin (
PI
- y)))
* (
cos z))) by
Thm1
.= ((((
sin x)
^2 )
+ ((
sin y)
^2 ))
+ (((2
* (
sin x))
* (
sin (
PI
- y)))
* (
cos z))) by
Thm1
.= ((((
sin x)
^2 )
+ ((
sin y)
^2 ))
+ (((2
* (
sin x))
* (
sin y))
* (
cos z))) by
Thm1;
hence thesis by
A1,
Thm17;
end;
theorem ::
EUCLID10:29
Thm18: for a be
Real holds (
sin (3
* a))
= (((4
* (
sin a))
* (
sin ((
PI
/ 3)
+ a)))
* (
sin ((
PI
/ 3)
- a)))
proof
let a be
Real;
A1: (((
sqrt 3)
/ 2)
^2 )
= (((
sqrt 3)
/ 2)
* ((
sqrt 3)
/ 2)) by
SQUARE_1:def 1
.= ((((
sqrt 3)
* (
sqrt 3))
/ 2)
/ 2)
.= (((
sqrt (3
* 3))
/ 2)
/ 2) by
SQUARE_1: 29
.= (((
sqrt (3
^2 ))
/ 2)
/ 2) by
SQUARE_1:def 1
.= ((3
/ 2)
/ 2) by
SQUARE_1: 22
.= (3
/ 4);
(
sin (3
* a))
= ((
- (4
* ((
sin a)
|^ 3)))
+ (3
* (
sin a))) by
SIN_COS5: 16
.= ((((4
* (
sin a))
* 3)
/ 4)
- (4
* ((
sin a)
|^ (2
+ 1))))
.= ((((4
* (
sin a))
* 3)
/ 4)
- (4
* (((
sin a)
|^ 2)
* (
sin a)))) by
NEWTON: 6
.= ((4
* (
sin a))
* ((((
sqrt 3)
/ 2)
^2 )
- ((
sin a)
|^ 2))) by
A1
.= ((4
* (
sin a))
* (((
sin (
PI
/ 3))
^2 )
- ((
sin a)
^2 ))) by
Thm9,
NEWTON: 81
.= ((4
* (
sin a))
* (((
sin (
PI
/ 3))
- (
sin a))
* ((
sin (
PI
/ 3))
+ (
sin a)))) by
SQUARE_1: 8
.= (((4
* (
sin a))
* ((
sin (
PI
/ 3))
+ (
sin a)))
* ((
sin (
PI
/ 3))
- (
sin a)))
.= (((4
* (
sin a))
* (2
* ((
cos (((
PI
/ 3)
- a)
/ 2))
* (
sin (((
PI
/ 3)
+ a)
/ 2)))))
* ((
sin (
PI
/ 3))
- (
sin a))) by
SIN_COS4: 15
.= (((4
* (
sin a))
* (2
* ((
cos (((
PI
/ 3)
- a)
/ 2))
* (
sin (((
PI
/ 3)
+ a)
/ 2)))))
* (2
* ((
cos (((
PI
/ 3)
+ a)
/ 2))
* (
sin (((
PI
/ 3)
- a)
/ 2))))) by
SIN_COS4: 16
.= (((4
* (
sin a))
* ((2
* (
sin (((
PI
/ 3)
- a)
/ 2)))
* (
cos (((
PI
/ 3)
- a)
/ 2))))
* ((2
* (
sin (((
PI
/ 3)
+ a)
/ 2)))
* (
cos (((
PI
/ 3)
+ a)
/ 2))))
.= (((4
* (
sin a))
* (
sin (2
* (((
PI
/ 3)
- a)
/ 2))))
* ((2
* (
sin (((
PI
/ 3)
+ a)
/ 2)))
* (
cos (((
PI
/ 3)
+ a)
/ 2)))) by
SIN_COS5: 5
.= (((4
* (
sin a))
* (
sin (2
* (((
PI
/ 3)
- a)
/ 2))))
* (
sin (2
* (((
PI
/ 3)
+ a)
/ 2)))) by
SIN_COS5: 5
.= (((4
* (
sin a))
* (
sin ((
PI
/ 3)
- a)))
* (
sin ((
PI
/ 3)
+ a)));
hence thesis;
end;
begin
Lm7: for A,B,C be
Point of (
TOP-REAL 2) st (A,B,C)
is_a_triangle holds (
angle (A,B,C))
<>
0
proof
let A,B,C be
Point of (
TOP-REAL 2);
assume
A1: (A,B,C)
is_a_triangle ;
then
A2: (A,B,C)
are_mutually_distinct by
EUCLID_6: 20;
now
assume (
angle (A,B,C))
=
0 ;
then (
angle (B,C,A))
=
PI or (
angle (B,A,C))
=
PI by
A2,
MENELAUS: 8;
then C
in (
LSeg (B,A)) or A
in (
LSeg (B,C)) by
EUCLID_6: 11;
hence contradiction by
A1,
TOPREAL9: 67;
end;
hence thesis;
end;
theorem ::
EUCLID10:30
Thm19: for A,B,C be
Point of (
TOP-REAL 2) st (A,B,C)
is_a_triangle holds (
angle (A,B,C)) is non
zero & (
angle (B,C,A)) is non
zero & (
angle (C,A,B)) is non
zero & (
angle (A,C,B)) is non
zero & (
angle (C,B,A)) is non
zero & (
angle (B,A,C)) is non
zero
proof
let A,B,C be
Point of (
TOP-REAL 2);
assume
A1: (A,B,C)
is_a_triangle ;
then (B,C,A)
is_a_triangle & (C,A,B)
is_a_triangle & (B,A,C)
is_a_triangle & (A,C,B)
is_a_triangle & (C,B,A)
is_a_triangle by
MENELAUS: 15;
hence thesis by
A1,
Lm7;
end;
Lm9: for A,B,C be
Point of (
TOP-REAL 2) st (A,B,C)
is_a_triangle holds (
angle (A,B,C))
= ((2
*
PI )
- (
angle (C,B,A))) & (
angle (C,B,A))
= ((2
*
PI )
- (
angle (A,B,C)))
proof
let A,B,C be
Point of (
TOP-REAL 2);
assume (A,B,C)
is_a_triangle ;
then (
angle (A,B,C))
<>
0 by
Thm19;
hence (
angle (A,B,C))
= ((2
*
PI )
- (
angle (C,B,A))) by
EUCLID_3: 38;
hence thesis;
end;
theorem ::
EUCLID10:31
Thm20: for A,B,C be
Point of (
TOP-REAL 2) st (A,B,C)
is_a_triangle holds (
angle (A,B,C))
= ((2
*
PI )
- (
angle (C,B,A))) & (
angle (B,C,A))
= ((2
*
PI )
- (
angle (A,C,B))) & (
angle (C,A,B))
= ((2
*
PI )
- (
angle (B,A,C))) & (
angle (B,A,C))
= ((2
*
PI )
- (
angle (C,A,B))) & (
angle (A,C,B))
= ((2
*
PI )
- (
angle (B,C,A))) & (
angle (C,B,A))
= ((2
*
PI )
- (
angle (A,B,C)))
proof
let A,B,C be
Point of (
TOP-REAL 2);
assume (A,B,C)
is_a_triangle ;
then (B,C,A)
is_a_triangle & (C,A,B)
is_a_triangle & (B,A,C)
is_a_triangle & (A,C,B)
is_a_triangle & (C,B,A)
is_a_triangle by
MENELAUS: 15;
hence thesis by
Lm9;
end;
theorem ::
EUCLID10:32
for A,B,C be
Point of (
TOP-REAL 2) st (A,B,C)
is_a_triangle &
|((B
- A), (C
- A))|
=
0 holds (
|.(C
- B).|
* (
sin (
angle (C,B,A))))
=
|.(A
- C).| or (
|.(C
- B).|
* (
- (
sin (
angle (C,B,A)))))
=
|.(A
- C).|
proof
let A,B,C be
Point of (
TOP-REAL 2) such that
A1: (A,B,C)
is_a_triangle and
A2:
|((B
- A), (C
- A))|
=
0 ;
A3: (A,B,C)
are_mutually_distinct by
A1,
EUCLID_6: 20;
then
A4: (
|.(C
- B).|
* (
sin (
angle (C,B,A))))
= (
|.(C
- A).|
* (
sin (
angle (B,A,C)))) by
EUCLID_6: 6;
(
sin (
angle (B,A,C)))
= 1 or (
sin (
angle (B,A,C)))
= (
- 1) by
A2,
A3,
SIN_COS: 77,
EUCLID_3: 45;
hence thesis by
A4,
EUCLID_6: 43;
end;
theorem ::
EUCLID10:33
for A,B,C be
Point of (
TOP-REAL 2) st (A,B,C)
is_a_triangle & (
angle (B,A,C))
= (
PI
/ 2) holds ((
angle (C,B,A))
+ (
angle (A,C,B)))
= (
PI
/ 2)
proof
let A,B,C be
Point of (
TOP-REAL 2) such that
A1: (A,B,C)
is_a_triangle and
A2: (
angle (B,A,C))
= (
PI
/ 2);
A3: (A,B,C)
are_mutually_distinct by
A1,
EUCLID_6: 20;
(((
angle (B,A,C))
+ (
angle (A,C,B)))
+ (
angle (C,B,A)))
=
PI by
A2,
COMPTRIG: 5,
A3,
EUCLID_3: 47;
hence thesis by
A2;
end;
theorem ::
EUCLID10:34
Thm21: for A,B,C be
Point of (
TOP-REAL 2) st (A,B,C)
is_a_triangle & (
angle (B,A,C))
= (
PI
/ 2) holds (
|.(C
- B).|
* (
sin (
angle (C,B,A))))
=
|.(A
- C).| & (
|.(C
- B).|
* (
sin (
angle (A,C,B))))
=
|.(A
- B).| & (
|.(C
- B).|
* (
cos (
angle (C,B,A))))
=
|.(A
- B).| & (
|.(C
- B).|
* (
cos (
angle (A,C,B))))
=
|.(A
- C).|
proof
let A,B,C be
Point of (
TOP-REAL 2) such that
A1: (A,B,C)
is_a_triangle and
A2: (
angle (B,A,C))
= (
PI
/ 2);
A3: (A,B,C)
are_mutually_distinct by
A1,
EUCLID_6: 20;
then
A4: (
|.(C
- B).|
* (
sin (
angle (C,B,A))))
= (
|.(C
- A).|
* (
sin (
angle (B,A,C)))) by
EUCLID_6: 6;
A5: (
|.(B
- A).|
* (
sin (
angle (B,A,C))))
= (
|.(B
- C).|
* (
sin (
angle (A,C,B)))) by
A3,
EUCLID_6: 6;
thus
A6: (
|.(C
- B).|
* (
sin (
angle (C,B,A))))
=
|.(A
- C).| by
A2,
A4,
SIN_COS: 77,
EUCLID_6: 43;
(
|.(A
- B).|
* (
sin (
angle (B,A,C))))
= (
|.(B
- C).|
* (
sin (
angle (A,C,B)))) by
A5,
EUCLID_6: 43;
hence
A7: (
|.(C
- B).|
* (
sin (
angle (A,C,B))))
=
|.(A
- B).| by
A2,
SIN_COS: 77,
EUCLID_6: 43;
(((
angle (B,A,C))
+ (
angle (A,C,B)))
+ (
angle (C,B,A)))
=
PI by
A2,
A3,
COMPTRIG: 5,
EUCLID_3: 47;
then (
sin (
angle (A,C,B)))
= (
sin ((
PI
/ 2)
- (
angle (C,B,A)))) by
A2;
hence (
|.(C
- B).|
* (
cos (
angle (C,B,A))))
=
|.(A
- B).| by
A7,
SIN_COS: 79;
(((
angle (B,A,C))
+ (
angle (A,C,B)))
+ (
angle (C,B,A)))
=
PI by
A2,
A3,
COMPTRIG: 5,
EUCLID_3: 47;
then (
sin (
angle (C,B,A)))
= (
sin ((
PI
/ 2)
- (
angle (A,C,B)))) by
A2;
hence (
|.(C
- B).|
* (
cos (
angle (A,C,B))))
=
|.(A
- C).| by
A6,
SIN_COS: 79;
end;
theorem ::
EUCLID10:35
for A,B,C be
Point of (
TOP-REAL 2) st (A,B,C)
is_a_triangle & (
angle (B,A,C))
= (
PI
/ 2) holds (
tan (
angle (A,C,B)))
= (
|.(A
- B).|
/
|.(A
- C).|) & (
tan (
angle (C,B,A)))
= (
|.(A
- C).|
/
|.(A
- B).|)
proof
let A,B,C be
Point of (
TOP-REAL 2) such that
A1: (A,B,C)
is_a_triangle and
A2: (
angle (B,A,C))
= (
PI
/ 2);
A3: (A,B,C)
are_mutually_distinct by
A1,
EUCLID_6: 20;
(
|.(C
- B).|
* (
sin (
angle (A,C,B))))
=
|.(A
- B).| & (
|.(C
- B).|
* (
cos (
angle (A,C,B))))
=
|.(A
- C).| by
A1,
A2,
Thm21;
then (((
|.(C
- B).|
/
|.(C
- B).|)
* (
sin (
angle (A,C,B))))
/ (
cos (
angle (A,C,B))))
= (
|.(A
- B).|
/
|.(A
- C).|) by
XCMPLX_1: 83;
then
A4: ((1
* (
sin (
angle (A,C,B))))
/ (
cos (
angle (A,C,B))))
= (
|.(A
- B).|
/
|.(A
- C).|) by
A3,
EUCLID_6: 42,
XCMPLX_1: 60;
hence (
tan (
angle (A,C,B)))
= (
|.(A
- B).|
/
|.(A
- C).|) by
SIN_COS4:def 1;
(((
angle (B,A,C))
+ (
angle (A,C,B)))
+ (
angle (C,B,A)))
=
PI by
A2,
A3,
COMPTRIG: 5,
EUCLID_3: 47;
then (
tan (
angle (C,B,A)))
= ((
sin ((
PI
/ 2)
- (
angle (A,C,B))))
/ (
cos ((
PI
/ 2)
- (
angle (A,C,B))))) by
A2,
SIN_COS4:def 1
.= ((
cos (
angle (A,C,B)))
/ (
cos ((
PI
/ 2)
- (
angle (A,C,B))))) by
SIN_COS: 79
.= ((
cos (
angle (A,C,B)))
/ (
sin (
angle (A,C,B)))) by
SIN_COS: 79
.= (1
/ ((
sin (
angle (A,C,B)))
/ (
cos (
angle (A,C,B))))) by
XCMPLX_1: 57
.= (
|.(A
- C).|
/
|.(A
- B).|) by
A4,
XCMPLX_1: 57;
hence thesis;
end;
begin
registration
let a,b be
Real, r be
negative
Real;
cluster (
circle (a,b,r)) ->
empty;
coherence
proof
(
circle (a,b,r))
= (
Sphere (
|[a, b]|,r)) by
TOPREAL9: 52;
hence thesis;
end;
end
theorem ::
EUCLID10:36
Thm23: for a,b be
Real holds (
circle (a,b,
0 ))
=
{
|[a, b]|}
proof
let a,b be
Real;
now
hereby
let t be
object;
assume t
in { p where p be
Point of (
TOP-REAL 2) :
|.(p
-
|[a, b]|).|
=
0 };
then
consider p0 be
Point of (
TOP-REAL 2) such that
A1: t
= p0 and
A2:
|.(p0
-
|[a, b]|).|
=
0 ;
p0
=
|[a, b]| by
A2,
EUCLID_6: 42;
hence t
in
{
|[a, b]|} by
A1,
TARSKI:def 1;
end;
let t be
object;
assume
A3: t
in
{
|[a, b]|};
then
A4: t
=
|[a, b]| by
TARSKI:def 1;
reconsider p0 = t as
Point of (
TOP-REAL 2) by
A3,
TARSKI:def 1;
|.(p0
-
|[a, b]|).|
=
0 by
A4,
EUCLID_6: 42;
hence t
in { p where p be
Point of (
TOP-REAL 2) :
|.(p
-
|[a, b]|).|
=
0 };
end;
then { p where p be
Point of (
TOP-REAL 2) :
|.(p
-
|[a, b]|).|
=
0 }
c=
{
|[a, b]|} &
{
|[a, b]|}
c= { p where p be
Point of (
TOP-REAL 2) :
|.(p
-
|[a, b]|).|
=
0 };
hence thesis by
JGRAPH_6:def 5;
end;
registration
let a,b be
Real;
cluster (
circle (a,b,
0 )) ->
trivial;
coherence
proof
(
circle (a,b,
0 ))
=
{
|[a, b]|} by
Thm23;
hence thesis;
end;
end
theorem ::
EUCLID10:37
Thm24: for A,B,C be
Point of (
TOP-REAL 2), a,b,r be
Real st (A,B,C)
is_a_triangle & A
in (
circle (a,b,r)) & B
in (
circle (a,b,r)) holds r is
positive
proof
let A,B,C be
Point of (
TOP-REAL 2), a,b,r be
Real such that
A1: (A,B,C)
is_a_triangle and
A2: A
in (
circle (a,b,r)) & B
in (
circle (a,b,r));
A3: (A,B,C)
are_mutually_distinct by
A1,
EUCLID_6: 20;
assume not r is
positive;
per cases ;
suppose r
<
0 ;
hence contradiction by
A2;
end;
suppose r
=
0 ;
then A
in
{
|[a, b]|} & B
in
{
|[a, b]|} by
A2,
Thm23;
then A
=
|[a, b]| & B
=
|[a, b]| by
TARSKI:def 1;
hence contradiction by
A3;
end;
end;
theorem ::
EUCLID10:38
Thm25: for A be
Point of (
TOP-REAL 2), a,b be
Real, r be
positive
Real st A
in (
circle (a,b,r)) holds A
<>
|[a, b]|
proof
let A be
Point of (
TOP-REAL 2), a,b be
Real, r be
positive
Real such that
A1: A
in (
circle (a,b,r));
(
circle (a,b,r))
= { p where p be
Point of (
TOP-REAL 2) :
|.(p
-
|[a, b]|).|
= r } by
JGRAPH_6:def 5;
then
consider p0 be
Point of (
TOP-REAL 2) such that
A2: A
= p0 and
A3:
|.(p0
-
|[a, b]|).|
= r by
A1;
thus thesis by
A2,
A3,
EUCLID_6: 42;
end;
theorem ::
EUCLID10:39
for A,B,C be
Point of (
TOP-REAL 2), a,b,r be
Real st (A,B,C)
is_a_triangle & (
angle (C,B,A))
in
].
0 ,
PI .[ & (
angle (B,A,C))
in
].
0 ,
PI .[ & A
in (
circle (a,b,r)) & B
in (
circle (a,b,r)) & C
in (
circle (a,b,r)) &
|[a, b]|
in (
LSeg (A,C)) holds (
angle (C,B,A))
= (
PI
/ 2)
proof
let A,B,C be
Point of (
TOP-REAL 2), a,b,r be
Real such that
A1: (A,B,C)
is_a_triangle and
A2: (
angle (C,B,A))
in
].
0 ,
PI .[ and
A3: (
angle (B,A,C))
in
].
0 ,
PI .[ and
A4: A
in (
circle (a,b,r)) & B
in (
circle (a,b,r)) & C
in (
circle (a,b,r)) and
A5:
|[a, b]|
in (
LSeg (A,C));
A6: (A,B,C)
are_mutually_distinct by
A1,
EUCLID_6: 20;
set O =
|[a, b]|;
A7: (
angle (C,B,A))
>
0 & (
angle (C,B,A))
<
PI by
A2,
XXREAL_1: 4;
A8: (
angle (B,A,C))
>
0 & (
angle (B,A,C))
<
PI by
A3,
XXREAL_1: 4;
A9: (
circle (a,b,r))
= { p where p be
Point of (
TOP-REAL 2) :
|.(p
-
|[a, b]|).|
= r } by
JGRAPH_6:def 5;
consider JA be
Point of (
TOP-REAL 2) such that
A10: A
= JA and
A11:
|.(JA
-
|[a, b]|).|
= r by
A4,
A9;
consider JB be
Point of (
TOP-REAL 2) such that
A12: B
= JB and
A13:
|.(JB
-
|[a, b]|).|
= r by
A4,
A9;
consider JC be
Point of (
TOP-REAL 2) such that
A14: C
= JC and
A15:
|.(JC
-
|[a, b]|).|
= r by
A4,
A9;
r is
positive by
A1,
A4,
Thm24;
then
A16: O
<> A & O
<> C by
A4,
Thm25;
A17: (
angle (C,B,A))
<
PI by
A2,
XXREAL_1: 4;
A18:
|.(B
- O).|
=
|.(O
- C).| & B
<> C by
A12,
A13,
A14,
A15,
A6,
EUCLID_6: 43;
A19: (
angle (C,B,O))
<
PI
proof
assume (
angle (C,B,O))
>=
PI ;
then (
angle (O,C,B))
>=
PI by
A18,
EUCLID_6: 16;
then
A20: (
angle (A,C,B))
>=
PI by
A5,
A16,
EUCLID_6: 9;
(((
angle (C,B,A))
+ (
angle (B,A,C)))
+ (
angle (A,C,B)))
=
PI by
A17,
A6,
EUCLID_3: 47;
then
A21: ((
angle (C,B,A))
+ (
angle (B,A,C)))
= (
PI
- (
angle (A,C,B)));
(
angle (B,A,C))
<=
0
proof
assume
A22: (
angle (B,A,C))
>
0 ;
(
angle (C,B,A))
>
0 by
A2,
XXREAL_1: 4;
hence contradiction by
A21,
A20,
A22,
XREAL_1: 47;
end;
hence contradiction by
A3,
XXREAL_1: 4;
end;
A23: (A,O,B)
is_a_triangle & (C,O,B)
is_a_triangle
proof
A23a: r is
positive by
A1,
A4,
Thm24;
then
A24: O
<> B & O
<> A & O
<> C by
A4,
Thm25;
not A
in (
Line (O,B))
proof
assume
A25: A
in (
Line (O,B));
B
in (
Line (O,B)) by
RLTOPSP1: 72;
then (
Line (A,B))
= (
Line (O,B)) by
A6,
A25,
RLTOPSP1: 75;
then O
in (
Line (A,B)) & A
in (
Line (A,B)) by
RLTOPSP1: 72;
then
A26: (
Line (O,A))
= (
Line (A,B)) by
A4,
A23a,
Thm25,
RLTOPSP1: 75;
O
in (
Line (A,C)) & A
in (
Line (A,C)) by
A5,
MENELAUS: 12,
RLTOPSP1: 72;
then (
Line (O,A))
= (
Line (A,C)) by
A4,
A23a,
Thm25,
RLTOPSP1: 75;
then A
in (
Line (A,B)) & B
in (
Line (A,B)) & C
in (
Line (A,B)) by
A26,
RLTOPSP1: 72;
hence contradiction by
A1,
RLTOPSP1:def 16;
end;
hence (A,O,B)
is_a_triangle by
A24,
MENELAUS: 13;
not (C,O,B)
are_collinear
proof
assume
A28: (C,O,B)
are_collinear ;
then C
in (
Line (O,B)) & B
in (
Line (O,B)) by
A24,
MENELAUS: 13,
RLTOPSP1: 72;
then
A29: (
Line (C,B))
= (
Line (O,B)) by
A6,
RLTOPSP1: 75;
C
in (
Line (O,B)) & O
in (
Line (O,B)) & O
<> C by
A28,
A24,
MENELAUS: 13,
RLTOPSP1: 72;
then
A30: (
Line (C,O))
= (
Line (O,B)) by
RLTOPSP1: 75;
A31: O
in (
Line (A,C)) & A
in (
Line (A,C)) & C
in (
Line (C,A)) by
A5,
MENELAUS: 12,
RLTOPSP1: 72;
then (
Line (C,O))
= (
Line (A,C)) by
A4,
A23a,
Thm25,
RLTOPSP1: 75;
hence contradiction by
A30,
A31,
A29,
A1,
A6,
MENELAUS: 13;
end;
hence (C,O,B)
is_a_triangle ;
end;
then
A32: (A,O,B)
are_mutually_distinct & (C,O,B)
are_mutually_distinct by
EUCLID_6: 20;
then (
angle (B,A,O))
<
PI by
A8,
A5,
EUCLID_6: 10;
then
A33: (((
angle (B,A,O))
+ (
angle (A,O,B)))
+ (
angle (O,B,A)))
=
PI by
A32,
EUCLID_3: 47;
|.(O
- A).|
=
|.(B
- O).| by
A10,
A11,
A12,
A13,
EUCLID_6: 43;
then
A34: (
angle (O,A,B))
= (
angle (A,B,O)) by
A6,
EUCLID_6: 16;
|.(O
- B).|
=
|.(C
- O).| by
A12,
A13,
A14,
A15,
EUCLID_6: 43;
then
A35: (
angle (O,B,C))
= (
angle (B,C,O)) by
A6,
EUCLID_6: 16;
A36: ((((
angle (C,B,O))
+ (
angle (O,C,B)))
+ (
angle (O,B,A)))
+ (
angle (B,A,O)))
=
PI or ((((
angle (C,B,O))
+ (
angle (O,C,B)))
+ (
angle (O,B,A)))
+ (
angle (B,A,O)))
= (
-
PI )
proof
A37: ((
angle (A,O,B))
+ (
angle (B,O,C)))
=
PI or ((
angle (A,O,B))
+ (
angle (B,O,C)))
= (3
*
PI ) by
A32,
A5,
EUCLID_6: 13;
(((
angle (C,B,O))
+ (
angle (B,O,C)))
+ (
angle (O,C,B)))
=
PI by
A19,
A32,
EUCLID_3: 47;
hence thesis by
A33,
A37;
end;
(
angle (O,C,B))
= (
angle (C,B,O)) & (
angle (B,A,O))
= (
angle (O,B,A))
proof
((2
*
PI )
- (
angle (C,B,O)))
= (
angle (O,B,C)) & ((2
*
PI )
- (
angle (O,C,B)))
= (
angle (B,C,O)) by
A23,
Thm20;
hence (
angle (O,C,B))
= (
angle (C,B,O)) by
A35;
((2
*
PI )
- (
angle (O,B,A)))
= (
angle (A,B,O)) & ((2
*
PI )
- (
angle (O,A,B)))
= (
angle (B,A,O)) by
A23,
Thm20;
hence thesis by
A34;
end;
then ((
angle (C,B,O))
+ (
angle (O,B,A)))
= (
PI
/ 2) or ((
angle (C,B,O))
+ (
angle (O,B,A)))
= (
- (
PI
/ 2)) by
A36;
then (
angle (C,B,A))
= (
PI
/ 2) or ((
angle (C,B,A))
+ (2
*
PI ))
= (
PI
/ 2) or (
angle (C,B,A))
= (
- (
PI
/ 2)) or ((
angle (C,B,A))
+ (2
*
PI ))
= (
- (
PI
/ 2)) by
EUCLID_6: 4;
then (
angle (C,B,A))
= (
PI
/ 2) or (
angle (C,B,A))
= (
- ((3
*
PI )
/ 2)) or (
angle (C,B,A))
= (
- (
PI
/ 2)) or (
angle (C,B,A))
= (
- ((5
*
PI )
/ 2));
hence thesis by
A7;
end;
theorem ::
EUCLID10:40
Thm26: for A,B,C be
Point of (
TOP-REAL 2), r be
positive
Real st (
angle (A,B,C)) is non
zero holds (
sin (r
* (
angle (C,B,A))))
= (((
sin ((r
* 2)
*
PI ))
* (
cos (r
* (
angle (A,B,C)))))
- ((
cos ((r
* 2)
*
PI ))
* (
sin (r
* (
angle (A,B,C))))))
proof
let A,B,C be
Point of (
TOP-REAL 2), r be
positive
Real;
assume (
angle (A,B,C)) is non
zero;
then (
angle (C,B,A))
= ((2
*
PI )
- (
angle (A,B,C))) by
EUCLID_3: 37;
then (r
* (
angle (C,B,A)))
= (((r
* 2)
*
PI )
- (r
* (
angle (A,B,C))));
hence thesis by
SIN_COS: 82;
end;
theorem ::
EUCLID10:41
for A,B,C be
Point of (
TOP-REAL 2) st (
angle (A,B,C)) is non
zero holds (
sin ((
angle (C,B,A))
/ 3))
= ((((
sqrt 3)
/ 2)
* (
cos ((
angle (A,B,C))
/ 3)))
+ ((1
/ 2)
* (
sin ((
angle (A,B,C))
/ 3))))
proof
let A,B,C be
Point of (
TOP-REAL 2);
assume (
angle (A,B,C)) is non
zero;
then (
sin ((1
/ 3)
* (
angle (C,B,A))))
= (((
sin ((2
*
PI )
/ 3))
* (
cos ((1
/ 3)
* (
angle (A,B,C)))))
- ((
cos (((1
/ 3)
* 2)
*
PI ))
* (
sin ((1
/ 3)
* (
angle (A,B,C)))))) by
Thm26
.= ((((
sqrt 3)
/ 2)
* (
cos ((
angle (A,B,C))
/ 3)))
+ ((1
/ 2)
* (
sin ((
angle (A,B,C))
/ 3)))) by
Thm14,
Thm15;
hence thesis;
end;
begin
theorem ::
EUCLID10:42
Thm27: for A,B,C be
Point of (
TOP-REAL 2) holds (
the_area_of_polygon3 (A,B,C))
= (
the_area_of_polygon3 (B,C,A)) & (
the_area_of_polygon3 (A,B,C))
= (
the_area_of_polygon3 (C,A,B))
proof
let A,B,C be
Point of (
TOP-REAL 2);
A1: (
the_area_of_polygon3 (A,B,C))
= ((((((A
`1 )
* (B
`2 ))
- ((B
`1 )
* (A
`2 )))
+ (((B
`1 )
* (C
`2 ))
- ((C
`1 )
* (B
`2 ))))
+ (((C
`1 )
* (A
`2 ))
- ((A
`1 )
* (C
`2 ))))
/ 2) by
EUCLID_6:def 1;
(
the_area_of_polygon3 (B,C,A))
= ((((((B
`1 )
* (C
`2 ))
- ((C
`1 )
* (B
`2 )))
+ (((C
`1 )
* (A
`2 ))
- ((A
`1 )
* (C
`2 ))))
+ (((A
`1 )
* (B
`2 ))
- ((B
`1 )
* (A
`2 ))))
/ 2) by
EUCLID_6:def 1;
hence (
the_area_of_polygon3 (A,B,C))
= (
the_area_of_polygon3 (B,C,A)) by
A1;
(
the_area_of_polygon3 (C,A,B))
= ((((((C
`1 )
* (A
`2 ))
- ((A
`1 )
* (C
`2 )))
+ (((A
`1 )
* (B
`2 ))
- ((B
`1 )
* (A
`2 ))))
+ (((B
`1 )
* (C
`2 ))
- ((C
`1 )
* (B
`2 ))))
/ 2) by
EUCLID_6:def 1;
hence thesis by
A1;
end;
theorem ::
EUCLID10:43
Thm28: for A,B,C be
Point of (
TOP-REAL 2) holds (
the_area_of_polygon3 (A,B,C))
= (
- (
the_area_of_polygon3 (B,A,C)))
proof
let A,B,C be
Point of (
TOP-REAL 2);
A1: (
the_area_of_polygon3 (A,B,C))
= ((((((A
`1 )
* (B
`2 ))
- ((B
`1 )
* (A
`2 )))
+ (((B
`1 )
* (C
`2 ))
- ((C
`1 )
* (B
`2 ))))
+ (((C
`1 )
* (A
`2 ))
- ((A
`1 )
* (C
`2 ))))
/ 2) by
EUCLID_6:def 1;
(
the_area_of_polygon3 (B,A,C))
= ((((((B
`1 )
* (A
`2 ))
- ((A
`1 )
* (B
`2 )))
+ (((A
`1 )
* (C
`2 ))
- ((C
`1 )
* (A
`2 ))))
+ (((C
`1 )
* (B
`2 ))
- ((B
`1 )
* (C
`2 ))))
/ 2) by
EUCLID_6:def 1;
hence thesis by
A1;
end;
definition
let A,B,C be
Point of (
TOP-REAL 2);
::
EUCLID10:def1
func
the_diameter_of_the_circumcircle (A,B,C) ->
Real equals ((((
|.(A
- B).|
*
|.(B
- C).|)
*
|.(C
- A).|)
/ 2)
/ (
the_area_of_polygon3 (A,B,C)));
correctness ;
end
theorem ::
EUCLID10:44
Thm29: for A,B,C be
Point of (
TOP-REAL 2) st (A,B,C)
is_a_triangle holds (
the_diameter_of_the_circumcircle (A,B,C))
= (
|.(C
- A).|
/ (
sin (
angle (C,B,A))))
proof
let A,B,C be
Point of (
TOP-REAL 2);
assume (A,B,C)
is_a_triangle ;
then
A2: (A,B,C)
are_mutually_distinct by
EUCLID_6: 20;
(
the_diameter_of_the_circumcircle (A,B,C))
= ((((
|.(A
- B).|
*
|.(B
- C).|)
*
|.(C
- A).|)
/ 2)
/ (((
|.(A
- B).|
*
|.(C
- B).|)
* (
sin (
angle (C,B,A))))
/ 2)) by
EUCLID_6: 5
.= ((((
|.(A
- B).|
*
|.(B
- C).|)
*
|.(C
- A).|)
/ 2)
/ ((1
/ 2)
* ((
|.(A
- B).|
*
|.(C
- B).|)
* (
sin (
angle (C,B,A))))))
.= (((((
|.(A
- B).|
*
|.(B
- C).|)
*
|.(C
- A).|)
/ 2)
/ (1
/ 2))
/ (
|.(A
- B).|
* (
|.(C
- B).|
* (
sin (
angle (C,B,A)))))) by
XCMPLX_1: 78
.= ((((((
|.(A
- B).|
*
|.(B
- C).|)
*
|.(C
- A).|)
/ 2)
/ (1
/ 2))
/
|.(A
- B).|)
/ (
|.(C
- B).|
* (
sin (
angle (C,B,A))))) by
XCMPLX_1: 78
.= ((((
|.(A
- B).|
* (
|.(B
- C).|
*
|.(C
- A).|))
/
|.(A
- B).|)
/
|.(C
- B).|)
/ (
sin (
angle (C,B,A)))) by
XCMPLX_1: 78
.= (((
|.(B
- C).|
*
|.(C
- A).|)
/
|.(C
- B).|)
/ (
sin (
angle (C,B,A)))) by
XCMPLX_1: 89,
A2,
EUCLID_6: 42
.= (((
|.(B
- C).|
*
|.(C
- A).|)
/
|.(B
- C).|)
/ (
sin (
angle (C,B,A)))) by
EUCLID_6: 43
.= (
|.(C
- A).|
/ (
sin (
angle (C,B,A)))) by
XCMPLX_1: 89,
A2,
EUCLID_6: 42;
hence thesis;
end;
theorem ::
EUCLID10:45
for A,B,C be
Point of (
TOP-REAL 2) st (A,B,C)
is_a_triangle holds (
the_diameter_of_the_circumcircle (A,B,C))
= (
- (
|.(C
- A).|
/ (
sin (
angle (A,B,C)))))
proof
let A,B,C be
Point of (
TOP-REAL 2);
assume (A,B,C)
is_a_triangle ;
then (
the_diameter_of_the_circumcircle (A,B,C))
= (
|.(C
- A).|
/ (
sin (
angle (C,B,A)))) by
Thm29
.= (
|.(C
- A).|
/ (
- (
sin (
angle (A,B,C))))) by
EUCLID_6: 2
.= (
- (
|.(C
- A).|
/ (
sin (
angle (A,B,C))))) by
XCMPLX_1: 188;
hence thesis;
end;
theorem ::
EUCLID10:46
for A,B,C be
Point of (
TOP-REAL 2) holds (
the_diameter_of_the_circumcircle (A,B,C))
= (
the_diameter_of_the_circumcircle (B,C,A)) by
Thm27;
theorem ::
EUCLID10:47
Thm31: for A,B,C be
Point of (
TOP-REAL 2) st (A,B,C)
is_a_triangle holds (
the_diameter_of_the_circumcircle (A,B,C))
= (
- (
the_diameter_of_the_circumcircle (B,A,C)))
proof
let A,B,C be
Point of (
TOP-REAL 2);
A3:
|.(B
- A).|
=
|.(A
- B).| &
|.(A
- C).|
=
|.(C
- A).| &
|.(C
- B).|
=
|.(B
- C).| by
EUCLID_6: 43;
(
the_diameter_of_the_circumcircle (B,A,C))
= ((((
|.(A
- B).|
*
|.(C
- A).|)
*
|.(B
- C).|)
/ 2)
/ (
- (
the_area_of_polygon3 (A,B,C)))) by
A3,
Thm28
.= (
- ((((
|.(A
- B).|
*
|.(C
- A).|)
*
|.(B
- C).|)
/ 2)
/ (
the_area_of_polygon3 (A,B,C)))) by
XCMPLX_1: 188;
hence thesis;
end;
theorem ::
EUCLID10:48
Thm32: for A,B,C be
Point of (
TOP-REAL 2) st (A,B,C)
is_a_triangle holds (
the_diameter_of_the_circumcircle (A,B,C))
= (
- (
the_diameter_of_the_circumcircle (A,C,B)))
proof
let A,B,C be
Point of (
TOP-REAL 2);
assume (A,B,C)
is_a_triangle ;
then
A2: (A,C,B)
is_a_triangle & (B,C,A)
is_a_triangle by
MENELAUS: 15;
(
the_diameter_of_the_circumcircle (A,B,C))
= (
the_diameter_of_the_circumcircle (B,C,A)) by
Thm27
.= (
- (
the_diameter_of_the_circumcircle (C,B,A))) by
A2,
Thm31;
hence thesis by
Thm27;
end;
theorem ::
EUCLID10:49
Thm33: for A,B,C be
Point of (
TOP-REAL 2) st (A,B,C)
is_a_triangle holds (
the_diameter_of_the_circumcircle (A,B,C))
= (
- (
the_diameter_of_the_circumcircle (C,B,A)))
proof
let A,B,C be
Point of (
TOP-REAL 2);
assume (A,B,C)
is_a_triangle ;
then (
the_diameter_of_the_circumcircle (A,B,C))
= (
- (
the_diameter_of_the_circumcircle (A,C,B))) by
Thm32;
hence thesis by
Thm27;
end;
begin
Lm10: for A,B,C be
Point of (
TOP-REAL 2) st (A,B,C)
is_a_triangle holds
|.(A
- B).|
= ((
the_diameter_of_the_circumcircle (A,B,C))
* (
sin (
angle (A,C,B))))
proof
let A,B,C be
Point of (
TOP-REAL 2);
assume (A,B,C)
is_a_triangle ;
then
A2: (
the_area_of_polygon3 (A,B,C))
<>
0 by
MENELAUS: 9;
set k = (((
|.(A
- B).|
*
|.(B
- C).|)
*
|.(C
- A).|)
/ (
the_area_of_polygon3 (B,C,A)));
A3: (
the_area_of_polygon3 (B,C,A))
= (((
|.(B
- C).|
*
|.(A
- C).|)
* (
sin (
angle (A,C,B))))
/ 2) by
EUCLID_6: 5;
(
the_area_of_polygon3 (B,C,A))
<>
0 by
A2,
Thm27;
then
A4:
|.(A
- B).|
= ((
|.(A
- B).|
* (
the_area_of_polygon3 (B,C,A)))
/ (
the_area_of_polygon3 (B,C,A))) by
XCMPLX_1: 89;
A5:
|.(A
- B).|
= (((((
|.(A
- B).|
*
|.(B
- C).|)
*
|.(A
- C).|)
* (
sin (
angle (A,C,B))))
/ 2)
/ (
the_area_of_polygon3 (B,C,A))) by
A4,
A3;
set abc = ((
|.(A
- B).|
*
|.(B
- C).|)
*
|.(C
- A).|);
set S = (
the_area_of_polygon3 (B,C,A));
set an = (
sin (
angle (A,C,B)));
A6: (((abc
* an)
/ 2)
/ S)
= ((((abc
* an)
* 1)
/ 2)
* (1
/ S)) by
XCMPLX_1: 99
.= ((((abc
* (1
/ S))
* 1)
/ 2)
* an)
.= ((k
/ 2)
* an) by
XCMPLX_1: 99;
(k
/ 2)
= ((((
|.(A
- B).|
*
|.(B
- C).|)
*
|.(C
- A).|)
* (1
/ (
the_area_of_polygon3 (B,C,A))))
/ 2) by
XCMPLX_1: 99
.= ((((
|.(A
- B).|
*
|.(B
- C).|)
*
|.(C
- A).|)
/ 2)
* (1
/ (
the_area_of_polygon3 (B,C,A))))
.= ((((
|.(A
- B).|
*
|.(B
- C).|)
*
|.(C
- A).|)
/ 2)
* (1
/ (
the_area_of_polygon3 (A,B,C)))) by
Thm27
.= ((((
|.(A
- B).|
*
|.(B
- C).|)
*
|.(C
- A).|)
/ 2)
/ (
the_area_of_polygon3 (A,B,C))) by
XCMPLX_1: 99;
hence thesis by
A6,
A5,
EUCLID_6: 43;
end;
theorem ::
EUCLID10:50
Thm34: for A,B,C be
Point of (
TOP-REAL 2) st (A,B,C)
is_a_triangle holds
|.(A
- B).|
= ((
the_diameter_of_the_circumcircle (A,B,C))
* (
sin (
angle (A,C,B)))) &
|.(B
- C).|
= ((
the_diameter_of_the_circumcircle (A,B,C))
* (
sin (
angle (B,A,C)))) &
|.(C
- A).|
= ((
the_diameter_of_the_circumcircle (A,B,C))
* (
sin (
angle (C,B,A))))
proof
let A,B,C be
Point of (
TOP-REAL 2);
assume
A1: (A,B,C)
is_a_triangle ;
then
A2: (B,C,A)
is_a_triangle & (C,A,B)
is_a_triangle by
MENELAUS: 15;
A3:
|.(B
- C).|
= ((
the_diameter_of_the_circumcircle (B,C,A))
* (
sin (
angle (B,A,C)))) by
A2,
Lm10;
thus
|.(A
- B).|
= ((
the_diameter_of_the_circumcircle (A,B,C))
* (
sin (
angle (A,C,B)))) by
A1,
Lm10;
thus
|.(B
- C).|
= ((
the_diameter_of_the_circumcircle (A,B,C))
* (
sin (
angle (B,A,C)))) by
A3,
Thm27;
|.(C
- A).|
= ((
the_diameter_of_the_circumcircle (C,A,B))
* (
sin (
angle (C,B,A)))) by
A2,
Lm10;
hence
|.(C
- A).|
= ((
the_diameter_of_the_circumcircle (A,B,C))
* (
sin (
angle (C,B,A)))) by
Thm27;
end;
theorem ::
EUCLID10:51
for A,B,C be
Point of (
TOP-REAL 2) st (A,B,C)
is_a_triangle holds
|.(A
- B).|
= (((((
the_diameter_of_the_circumcircle (A,B,C))
* 4)
* (
sin ((
angle (A,C,B))
/ 3)))
* (
sin ((
PI
/ 3)
+ ((
angle (A,C,B))
/ 3))))
* (
sin ((
PI
/ 3)
- ((
angle (A,C,B))
/ 3))))
proof
let A,B,C be
Point of (
TOP-REAL 2);
assume
A1: (A,B,C)
is_a_triangle ;
|.(A
- B).|
= ((
the_diameter_of_the_circumcircle (A,B,C))
* (
sin (3
* ((
angle (A,C,B))
/ 3)))) by
A1,
Lm10;
then
|.(A
- B).|
= ((
the_diameter_of_the_circumcircle (A,B,C))
* (((4
* (
sin ((
angle (A,C,B))
/ 3)))
* (
sin ((
PI
/ 3)
+ ((
angle (A,C,B))
/ 3))))
* (
sin ((
PI
/ 3)
- ((
angle (A,C,B))
/ 3))))) by
Thm18;
hence thesis;
end;
theorem ::
EUCLID10:52
for A,B,C,P be
Point of (
TOP-REAL 2) st (A,B,P)
are_mutually_distinct & (
angle (P,B,A))
= ((
angle (C,B,A))
/ 3) & (
angle (B,A,P))
= ((
angle (B,A,C))
/ 3) & (
angle (A,P,B))
<
PI holds (
|.(A
- P).|
* (
sin (
PI
- (((
angle (C,B,A))
/ 3)
+ ((
angle (B,A,C))
/ 3)))))
= (
|.(A
- B).|
* (
sin ((
angle (C,B,A))
/ 3)))
proof
let A,B,C,P be
Point of (
TOP-REAL 2);
assume that
A1: (A,B,P)
are_mutually_distinct and
A2: (
angle (P,B,A))
= ((
angle (C,B,A))
/ 3) and
A3: (
angle (B,A,P))
= ((
angle (B,A,C))
/ 3) and
A4: (
angle (A,P,B))
<
PI ;
(((
angle (A,P,B))
+ (
angle (P,B,A)))
+ (
angle (B,A,P)))
=
PI by
A1,
A4,
EUCLID_3: 47;
hence thesis by
A1,
A2,
A3,
EUCLID_6: 6;
end;
Lm11: for A,B,C be
Point of (
TOP-REAL 2) st (A,B,C)
is_a_triangle & (
angle (C,B,A))
<
PI holds (((
angle (C,B,A))
+ (
angle (B,A,C)))
+ (
angle (A,C,B)))
=
PI & (((
angle (C,A,B))
+ (
angle (A,B,C)))
+ (
angle (B,C,A)))
= (5
*
PI )
proof
let A,B,C be
Point of (
TOP-REAL 2);
assume that
A1: (A,B,C)
is_a_triangle and
A2: (
angle (C,B,A))
<
PI ;
A3: (A,B,C)
are_mutually_distinct by
A1,
EUCLID_6: 20;
hence (((
angle (C,B,A))
+ (
angle (B,A,C)))
+ (
angle (A,C,B)))
=
PI by
A2,
EUCLID_3: 47;
(
angle (C,B,A))
= ((2
*
PI )
- (
angle (A,B,C))) & (
angle (B,A,C))
= ((2
*
PI )
- (
angle (C,A,B))) & (
angle (A,C,B))
= ((2
*
PI )
- (
angle (B,C,A))) by
A1,
Thm20;
then (((
angle (C,A,B))
+ (
angle (A,B,C)))
+ (
angle (B,C,A)))
= ((6
*
PI )
- (((
angle (B,A,C))
+ (
angle (C,B,A)))
+ (
angle (A,C,B))))
.= ((6
*
PI )
-
PI ) by
A2,
A3,
EUCLID_3: 47
.= (5
*
PI );
hence thesis;
end;
Lm12: for A,B,C be
Point of (
TOP-REAL 2) st (A,B,C)
is_a_triangle & (
angle (C,B,A))
<
PI holds ((((
angle (C,B,A))
/ 3)
+ ((
angle (B,A,C))
/ 3))
+ ((
angle (A,C,B))
/ 3))
= (
PI
/ 3)
proof
let A,B,C be
Point of (
TOP-REAL 2);
assume that
A1: (A,B,C)
is_a_triangle and
A2: (
angle (C,B,A))
<
PI ;
(((
angle (C,B,A))
+ (
angle (B,A,C)))
+ (
angle (A,C,B)))
=
PI by
A1,
A2,
Lm11;
hence thesis;
end;
theorem ::
EUCLID10:53
Thm35: for A,B,C,P be
Point of (
TOP-REAL 2) st (A,B,P)
are_mutually_distinct & (
angle (P,B,A))
= ((
angle (C,B,A))
/ 3) & (
angle (B,A,P))
= ((
angle (B,A,C))
/ 3) & (
angle (A,P,B))
<
PI & ((((
angle (C,B,A))
/ 3)
+ ((
angle (B,A,C))
/ 3))
+ ((
angle (A,C,B))
/ 3))
= (
PI
/ 3) holds (
|.(A
- P).|
* (
sin (((2
*
PI )
/ 3)
+ ((
angle (A,C,B))
/ 3))))
= (
|.(A
- B).|
* (
sin ((
angle (C,B,A))
/ 3)))
proof
let A,B,C,P be
Point of (
TOP-REAL 2);
assume that
A1: (A,B,P)
are_mutually_distinct and
A2: (
angle (P,B,A))
= ((
angle (C,B,A))
/ 3) and
A3: (
angle (B,A,P))
= ((
angle (B,A,C))
/ 3) and
A4: (
angle (A,P,B))
<
PI and
A5: ((((
angle (C,B,A))
/ 3)
+ ((
angle (B,A,C))
/ 3))
+ ((
angle (A,C,B))
/ 3))
= (
PI
/ 3);
(((
angle (A,P,B))
+ (
angle (P,B,A)))
+ (
angle (B,A,P)))
=
PI by
A1,
A4,
EUCLID_3: 47;
hence thesis by
A1,
A2,
A3,
A5,
EUCLID_6: 6;
end;
theorem ::
EUCLID10:54
for A,B,C be
Point of (
TOP-REAL 2) st (A,B,C)
is_a_triangle & (
angle (C,A,B))
<
PI holds (((
angle (C,B,A))
+ (
angle (B,A,C)))
+ (
angle (A,C,B)))
= (5
*
PI ) & (((
angle (C,A,B))
+ (
angle (A,B,C)))
+ (
angle (B,C,A)))
=
PI
proof
let A,B,C be
Point of (
TOP-REAL 2);
assume that
A1: (A,B,C)
is_a_triangle and
A2: (
angle (C,A,B))
<
PI ;
(B,A,C)
is_a_triangle by
A1,
MENELAUS: 15;
hence thesis by
A2,
Lm11;
end;
theorem ::
EUCLID10:55
for A,B,C,P be
Point of (
TOP-REAL 2) st (A,B,C)
is_a_triangle & (
angle (C,B,A))
<
PI & (A,B,P)
are_mutually_distinct & (
angle (P,B,A))
= ((
angle (C,B,A))
/ 3) & (
angle (B,A,P))
= ((
angle (B,A,C))
/ 3) & (
angle (A,P,B))
<
PI holds (
|.(A
- P).|
* (
sin ((
PI
/ 3)
- ((
angle (A,C,B))
/ 3))))
= (
|.(A
- B).|
* (
sin ((
angle (C,B,A))
/ 3)))
proof
let A,B,C,P be
Point of (
TOP-REAL 2);
assume that
A1: (A,B,C)
is_a_triangle and
A2: (
angle (C,B,A))
<
PI and
A3: (A,B,P)
are_mutually_distinct and
A4: (
angle (P,B,A))
= ((
angle (C,B,A))
/ 3) and
A5: (
angle (B,A,P))
= ((
angle (B,A,C))
/ 3) and
A6: (
angle (A,P,B))
<
PI ;
A7: ((((
angle (C,B,A))
/ 3)
+ ((
angle (B,A,C))
/ 3))
+ ((
angle (A,C,B))
/ 3))
= (
PI
/ 3) by
A1,
A2,
Lm12;
A8: (((
angle (A,P,B))
+ (
angle (P,B,A)))
+ (
angle (B,A,P)))
=
PI by
A3,
A6,
EUCLID_3: 47;
(
|.(A
- P).|
* (
sin (
PI
- (((
angle (C,B,A))
/ 3)
+ ((
angle (B,A,C))
/ 3)))))
= (
|.(A
- B).|
* (
sin ((
angle (C,B,A))
/ 3))) by
A3,
A4,
EUCLID_6: 6,
A8,
A5;
hence thesis by
A7,
Thm1;
end;
theorem ::
EUCLID10:56
for A,B,C,P be
Point of (
TOP-REAL 2) st (A,B,C)
is_a_triangle & (A,B,P)
is_a_triangle & (
angle (C,B,A))
<
PI & (
angle (A,P,B))
<
PI & (
angle (P,B,A))
= ((
angle (C,B,A))
/ 3) & (
angle (B,A,P))
= ((
angle (B,A,C))
/ 3) & (
sin ((
PI
/ 3)
- ((
angle (A,C,B))
/ 3)))
<>
0 holds
|.(A
- P).|
= (
- (((((
the_diameter_of_the_circumcircle (C,B,A))
* 4)
* (
sin ((
angle (A,C,B))
/ 3)))
* (
sin ((
PI
/ 3)
+ ((
angle (A,C,B))
/ 3))))
* (
sin ((
angle (C,B,A))
/ 3))))
proof
let A,B,C,P be
Point of (
TOP-REAL 2);
assume that
A1: (A,B,C)
is_a_triangle and
A2: (A,B,P)
is_a_triangle and
A3: (
angle (C,B,A))
<
PI and
A4: (
angle (A,P,B))
<
PI and
A5: (
angle (P,B,A))
= ((
angle (C,B,A))
/ 3) and
A6: (
angle (B,A,P))
= ((
angle (B,A,C))
/ 3) and
A7: (
sin ((
PI
/ 3)
- ((
angle (A,C,B))
/ 3)))
<>
0 ;
A8: ((((
angle (C,B,A))
/ 3)
+ ((
angle (B,A,C))
/ 3))
+ ((
angle (A,C,B))
/ 3))
= (
PI
/ 3) by
A1,
A3,
Lm12;
(A,B,P)
are_mutually_distinct by
A2,
EUCLID_6: 20;
then
A9: (
|.(A
- P).|
* (
sin (((2
*
PI )
/ 3)
+ ((
angle (A,C,B))
/ 3))))
= (
|.(A
- B).|
* (
sin ((
angle (C,B,A))
/ 3))) by
A5,
A6,
A4,
A8,
Thm35;
(
sin (
angle (A,C,B)))
= (
sin (3
* ((
angle (A,C,B))
/ 3)))
.= (((4
* (
sin ((
angle (A,C,B))
/ 3)))
* (
sin ((
PI
/ 3)
+ ((
angle (A,C,B))
/ 3))))
* (
sin ((
PI
/ 3)
- ((
angle (A,C,B))
/ 3)))) by
Thm18;
then
A10: (
|.(A
- P).|
* (
sin (((2
*
PI )
/ 3)
+ ((
angle (A,C,B))
/ 3))))
= (((
the_diameter_of_the_circumcircle (A,B,C))
* (((4
* (
sin ((
angle (A,C,B))
/ 3)))
* (
sin ((
PI
/ 3)
+ ((
angle (A,C,B))
/ 3))))
* (
sin ((
PI
/ 3)
- ((
angle (A,C,B))
/ 3)))))
* (
sin ((
angle (C,B,A))
/ 3))) by
A9,
A1,
Thm34;
(
|.(A
- P).|
* (
sin ((
PI
/ 3)
- ((
angle (A,C,B))
/ 3))))
= (((
the_diameter_of_the_circumcircle (A,B,C))
* (((4
* (
sin ((
angle (A,C,B))
/ 3)))
* (
sin ((
PI
/ 3)
+ ((
angle (A,C,B))
/ 3))))
* (
sin ((
PI
/ 3)
- ((
angle (A,C,B))
/ 3)))))
* (
sin ((
angle (C,B,A))
/ 3))) by
A10,
Thm7;
then
|.(A
- P).|
= (((((((
the_diameter_of_the_circumcircle (A,B,C))
* 4)
* (
sin ((
angle (A,C,B))
/ 3)))
* (
sin ((
PI
/ 3)
+ ((
angle (A,C,B))
/ 3))))
* (
sin ((
angle (C,B,A))
/ 3)))
* (
sin ((
PI
/ 3)
- ((
angle (A,C,B))
/ 3))))
/ (
sin ((
PI
/ 3)
- ((
angle (A,C,B))
/ 3)))) by
A7,
XCMPLX_1: 89;
then
A11:
|.(A
- P).|
= ((((((
the_diameter_of_the_circumcircle (A,B,C))
* 4)
* (
sin ((
angle (A,C,B))
/ 3)))
* (
sin ((
PI
/ 3)
+ ((
angle (A,C,B))
/ 3))))
* (
sin ((
angle (C,B,A))
/ 3)))
* ((
sin ((
PI
/ 3)
- ((
angle (A,C,B))
/ 3)))
/ (
sin ((
PI
/ 3)
- ((
angle (A,C,B))
/ 3))))) by
XCMPLX_1: 74;
((
sin ((
PI
/ 3)
- ((
angle (A,C,B))
/ 3)))
/ (
sin ((
PI
/ 3)
- ((
angle (A,C,B))
/ 3))))
= 1 by
A7,
XCMPLX_1: 60;
then
|.(A
- P).|
= (((((
- (
the_diameter_of_the_circumcircle (C,B,A)))
* 4)
* (
sin ((
angle (A,C,B))
/ 3)))
* (
sin ((
PI
/ 3)
+ ((
angle (A,C,B))
/ 3))))
* (
sin ((
angle (C,B,A))
/ 3))) by
A11,
A1,
Thm33;
hence thesis;
end;
begin
theorem ::
EUCLID10:57
Thm37: for A,B,C be
Point of (
TOP-REAL 2) st (A,B,C)
are_mutually_distinct & C
in (
LSeg (A,B)) holds
|.(A
- B).|
= (
|.(A
- C).|
+
|.(C
- B).|)
proof
let A,B,C be
Point of (
TOP-REAL 2) such that
A1: (A,B,C)
are_mutually_distinct and
A2: C
in (
LSeg (A,B));
(
|.(B
- A).|
^2 )
= (((
|.(A
- C).|
^2 )
+ (
|.(B
- C).|
^2 ))
- (((2
*
|.(A
- C).|)
*
|.(B
- C).|)
* (
cos (
angle (A,C,B))))) by
EUCLID_6: 7
.= (((
|.(A
- C).|
^2 )
+ (
|.(B
- C).|
^2 ))
- (((2
*
|.(A
- C).|)
*
|.(B
- C).|)
* (
- 1))) by
A1,
A2,
SIN_COS: 77,
EUCLID_6: 8
.= (((
|.(A
- C).|
^2 )
+ ((2
*
|.(A
- C).|)
*
|.(B
- C).|))
+ (
|.(B
- C).|
^2 ))
.= ((
|.(A
- C).|
+
|.(B
- C).|)
^2 ) by
SQUARE_1: 4;
then
A3:
|.(B
- A).|
= (
|.(A
- C).|
+
|.(B
- C).|) or
|.(B
- A).|
= (
- (
|.(A
- C).|
+
|.(B
- C).|)) by
SQUARE_1: 40;
|.(B
- A).|
>=
0 &
|.(A
- C).|
>=
0 &
|.(B
- C).|
>=
0 & not
|.(B
- A).|
=
0 & not
|.(A
- C).|
=
0 & not
|.(B
- C).|
=
0 by
A1,
EUCLID_6: 42;
then
|.(A
- B).|
= (
|.(A
- C).|
+
|.(B
- C).|) by
A3,
EUCLID_6: 43;
hence thesis by
EUCLID_6: 43;
end;
theorem ::
EUCLID10:58
Thm38: for A,B be
Point of (
TOP-REAL 2), a,b be
Real, r be
positive
Real st (A,B,
|[a, b]|)
are_mutually_distinct & A
in (
circle (a,b,r)) & B
in (
circle (a,b,r)) &
|[a, b]|
in (
LSeg (A,B)) holds
|.(A
- B).|
= (2
* r)
proof
let A,B be
Point of (
TOP-REAL 2), a,b be
Real, r be
positive
Real such that
A1: (A,B,
|[a, b]|)
are_mutually_distinct and
A2: A
in (
circle (a,b,r)) & B
in (
circle (a,b,r)) and
A3:
|[a, b]|
in (
LSeg (A,B));
A4: (
circle (a,b,r))
= { p where p be
Point of (
TOP-REAL 2) :
|.(p
-
|[a, b]|).|
= r } by
JGRAPH_6:def 5;
consider JA be
Point of (
TOP-REAL 2) such that
A5: A
= JA and
A6:
|.(JA
-
|[a, b]|).|
= r by
A2,
A4;
consider JB be
Point of (
TOP-REAL 2) such that
A7: B
= JB and
A8:
|.(JB
-
|[a, b]|).|
= r by
A2,
A4;
|.(A
- B).|
= (
|.(A
-
|[a, b]|).|
+
|.(
|[a, b]|
- B).|) by
A1,
A3,
Thm37
.= (r
+ r) by
A5,
A6,
A7,
A8,
EUCLID_6: 43;
hence thesis;
end;
theorem ::
EUCLID10:59
for a,b be
Real, r be
positive
Real, C be
Subset of (
Euclid 2) st C
= (
circle (a,b,r)) holds (
diameter C)
= (2
* r)
proof
let a,b be
Real, r be
positive
Real, C be
Subset of (
Euclid 2) such that
A1: C
= (
circle (a,b,r));
A2: (
circle (a,b,r))
= { p where p be
Point of (
TOP-REAL 2) :
|.(p
-
|[a, b]|).|
= r } by
JGRAPH_6:def 5;
A3: for x,y be
Point of (
Euclid 2) st x
in C & y
in C holds (
dist (x,y))
<= (2
* r)
proof
let x,y be
Point of (
Euclid 2) such that
A4: x
in C and
A5: y
in C;
consider JA be
Point of (
TOP-REAL 2) such that
A6: x
= JA and
A7:
|.(JA
-
|[a, b]|).|
= r by
A1,
A4,
A2;
consider JB be
Point of (
TOP-REAL 2) such that
A8: y
= JB and
A9:
|.(JB
-
|[a, b]|).|
= r by
A1,
A5,
A2;
reconsider KA = JA, KB = JB as
Element of (
REAL 2) by
EUCLID: 22;
reconsider O =
|[a, b]| as
Element of (
REAL 2) by
EUCLID: 22;
reconsider O2 =
|[a, b]| as
Point of (
Euclid 2) by
EUCLID: 67;
A10: (
dist (x,y))
<= ((
dist (x,O2))
+ (
dist (y,O2))) by
METRIC_1: 4;
(
dist (y,O2))
=
|.(KB
- O).| by
A8,
SPPOL_1: 5;
then (
dist (x,y))
<= (
|.(KA
- O).|
+
|.(KB
- O).|) by
A10,
A6,
SPPOL_1: 5;
hence thesis by
A7,
A9;
end;
A12: C is
bounded by
A1,
JORDAN2C: 11;
for s be
Real st (for x,y be
Point of (
Euclid 2) st x
in C & y
in C holds (
dist (x,y))
<= s) holds (2
* r)
<= s
proof
let s be
Real;
assume
A13: for x,y be
Point of (
Euclid 2) st x
in C & y
in C holds (
dist (x,y))
<= s;
assume
A14: s
< (2
* r);
set A1 =
|[(a
+ r), b]|;
set B1 =
|[(a
- r), b]|;
A15: (A1
-
|[a, b]|)
=
|[((a
+ r)
- a), (b
- b)]| by
EUCLID: 62
.=
|[r,
0 ]|;
A16: (B1
-
|[a, b]|)
=
|[((a
- r)
- a), (b
- b)]| by
EUCLID: 62
.=
|[(
- r),
0 ]|;
A17: ((r
^2 )
+ (
0
^2 ))
= ((r
^2 )
+ (
0
*
0 )) by
SQUARE_1:def 1
.= (r
^2 );
(
Re (r
+ (
0
*
<i> )))
= r & (
Im (r
+ (
0
*
<i> )))
=
0 by
COMPLEX1: 12;
then
|.(
cpx2euc (r
+ (
0
*
<i> ))).|
= (
sqrt (r
^2 )) by
A17,
EUCLID_3: 24
.= r by
SQUARE_1: 22;
then
A18:
|.(A1
-
|[a, b]|).|
= r by
A15,
EUCLID_3: 5;
then
A19: A1
in (
circle (a,b,r)) by
A2;
A20: A1
in C by
A18,
A1,
A2;
A21: (((
- r)
^2 )
+ (
0
^2 ))
= (((
- r)
^2 )
+ (
0
*
0 )) by
SQUARE_1:def 1
.= (r
^2 ) by
SQUARE_1: 3;
(
Re ((
- r)
+ (
0
*
<i> )))
= (
- r) & (
Im ((
- r)
+ (
0
*
<i> )))
=
0 by
COMPLEX1: 12;
then
|.(
cpx2euc ((
- r)
+ (
0
*
<i> ))).|
= (
sqrt (r
^2 )) by
A21,
EUCLID_3: 24
.= r by
SQUARE_1: 22;
then
A22:
|.
|[(
- r),
0 ]|.|
= r by
EUCLID_3: 5;
then
A23: B1
in (
circle (a,b,r)) by
A2,
A16;
A24: B1
in C by
A1,
A2,
A22,
A16;
A25:
|[a, b]|
in (
LSeg (A1,B1))
proof
(
|[(a
+ r), b]|
+
|[(a
- r), b]|)
=
|[((a
+ r)
+ (a
- r)), (b
+ b)]| by
EUCLID: 56;
then ((1
/ 2)
* (A1
+ B1))
=
|[((1
/ 2)
* (2
* a)), ((1
/ 2)
* (2
* b))]| by
EUCLID: 58
.=
|[a, b]|;
hence thesis by
RLTOPSP1: 69;
end;
A26: A1
<> B1
proof
assume A1
= B1;
then (a
+ r)
= (a
- r) & b
= b by
SPPOL_2: 1;
then r
=
0 ;
hence contradiction;
end;
A27: A1
<>
|[a, b]|
proof
assume A1
=
|[a, b]|;
then (a
+ r)
= a & b
= b by
SPPOL_2: 1;
then r
=
0 ;
hence contradiction;
end;
(A1,B1,
|[a, b]|)
are_mutually_distinct
proof
B1
<>
|[a, b]|
proof
assume B1
=
|[a, b]|;
then (a
- r)
= a & b
= b by
SPPOL_2: 1;
then (
- r)
=
0 ;
hence contradiction;
end;
hence thesis by
A26,
A27;
end;
then
A28:
|.(A1
- B1).|
= (2
* r) by
A19,
A23,
A25,
Thm38;
reconsider a1 = A1, b1 = B1 as
Point of (
Euclid 2) by
EUCLID: 67;
reconsider A2 = A1, B2 = B1 as
Element of (
REAL 2) by
EUCLID: 22;
(
Euclid 2)
=
MetrStruct (# (
REAL 2), (
Pitag_dist 2) #) by
EUCLID:def 7;
then (
dist (a1,b1))
= ((
Pitag_dist 2)
. (A1,B1)) by
METRIC_1:def 1
.=
|.(A2
- B2).| by
EUCLID:def 6
.= (2
* r) by
A28;
hence contradiction by
A14,
A20,
A24,
A13;
end;
hence thesis by
A3,
A12,
A1,
TBSP_1:def 8;
end;