euclid_9.miz
    
    begin
    
    reserve x,y for
    object, 
    
i,n for
    Nat, 
    
r,s for
    Real, 
    
f1,f2 for n
    -element
    real-valued  
    FinSequence;
    
    registration
    
      let s be
    Real;
    
      let r be non
    positive  
    Real;
    
      cluster 
    ].(s
    - r), (s 
    + r).[ -> 
    empty;
    
      coherence by
    XREAL_1: 6,
    XXREAL_1: 28;
    
      cluster 
    [.(s
    - r), (s 
    + r).[ -> 
    empty;
    
      coherence by
    XREAL_1: 6,
    XXREAL_1: 27;
    
      cluster 
    ].(s
    - r), (s 
    + r).] -> 
    empty;
    
      coherence by
    XREAL_1: 6,
    XXREAL_1: 26;
    
    end
    
    registration
    
      let s be
    Real;
    
      let r be
    negative  
    Real;
    
      cluster 
    [.(s
    - r), (s 
    + r).] -> 
    empty;
    
      coherence by
    XREAL_1: 6,
    XXREAL_1: 29;
    
    end
    
    registration
    
      let n;
    
      let f be n
    -element
    complex-valued  
    FinSequence;
    
      cluster ( 
    - f) -> n 
    -element;
    
      coherence
    
      proof
    
        
    
        
    
    A1: ( 
    dom ( 
    - f)) 
    = ( 
    dom f) by 
    VALUED_1: 8;
    
        (
    len f) 
    = n by 
    CARD_1:def 7;
    
        hence (
    len ( 
    - f)) 
    = n by 
    A1,
    FINSEQ_3: 29;
    
      end;
    
      cluster (f 
    " ) -> n 
    -element;
    
      coherence
    
      proof
    
        
    
        
    
    A2: ( 
    dom (f 
    " )) 
    = ( 
    dom f) by 
    VALUED_1:def 7;
    
        (
    len f) 
    = n by 
    CARD_1:def 7;
    
        hence (
    len (f 
    " )) 
    = n by 
    A2,
    FINSEQ_3: 29;
    
      end;
    
      cluster (f 
    ^2 ) -> n 
    -element;
    
      coherence
    
      proof
    
        
    
        
    
    A3: ( 
    dom (f 
    ^2 )) 
    = ( 
    dom f) by 
    VALUED_1: 11;
    
        (
    len f) 
    = n by 
    CARD_1:def 7;
    
        hence (
    len (f 
    ^2 )) 
    = n by 
    A3,
    FINSEQ_3: 29;
    
      end;
    
      cluster ( 
    abs f) -> n 
    -element;
    
      coherence
    
      proof
    
        
    
        
    
    A4: ( 
    dom ( 
    abs f)) 
    = ( 
    dom f) by 
    VALUED_1:def 11;
    
        (
    len f) 
    = n by 
    CARD_1:def 7;
    
        hence (
    len ( 
    abs f)) 
    = n by 
    A4,
    FINSEQ_3: 29;
    
      end;
    
      let g be n
    -element
    complex-valued  
    FinSequence;
    
      cluster (f 
    + g) -> n 
    -element;
    
      coherence
    
      proof
    
        
    
        
    
    A5: n 
    in  
    NAT by 
    ORDINAL1:def 12;
    
        
    
        
    
    A6: ( 
    dom (f 
    + g)) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    VALUED_1:def 1;
    
        (
    len f) 
    = n & ( 
    len g) 
    = n by 
    CARD_1:def 7;
    
        then (
    dom f) 
    = ( 
    Seg n) & ( 
    dom g) 
    = ( 
    Seg n) by 
    FINSEQ_1:def 3;
    
        hence (
    len (f 
    + g)) 
    = n by 
    A5,
    A6,
    FINSEQ_1:def 3;
    
      end;
    
      cluster (f 
    - g) -> n 
    -element;
    
      coherence ;
    
      cluster (f 
    (#) g) -> n 
    -element;
    
      coherence
    
      proof
    
        
    
        
    
    A7: n 
    in  
    NAT by 
    ORDINAL1:def 12;
    
        
    
        
    
    A8: ( 
    dom (f 
    (#) g)) 
    = (( 
    dom f) 
    /\ ( 
    dom g)) by 
    VALUED_1:def 4;
    
        (
    len f) 
    = n & ( 
    len g) 
    = n by 
    CARD_1:def 7;
    
        then (
    dom f) 
    = ( 
    Seg n) & ( 
    dom g) 
    = ( 
    Seg n) by 
    FINSEQ_1:def 3;
    
        hence (
    len (f 
    (#) g)) 
    = n by 
    A7,
    A8,
    FINSEQ_1:def 3;
    
      end;
    
      cluster (f 
    /" g) -> n 
    -element;
    
      coherence ;
    
    end
    
    registration
    
      let c be
    Complex, n be 
    Nat, f be n 
    -element
    complex-valued  
    FinSequence;
    
      cluster (c 
    + f) -> n 
    -element;
    
      coherence
    
      proof
    
        
    
        
    
    A1: ( 
    dom (c 
    + f)) 
    = ( 
    dom f) by 
    VALUED_1:def 2;
    
        (
    len f) 
    = n by 
    CARD_1:def 7;
    
        hence (
    len (c 
    + f)) 
    = n by 
    A1,
    FINSEQ_3: 29;
    
      end;
    
      cluster (f 
    - c) -> n 
    -element;
    
      coherence ;
    
      cluster (c 
    (#) f) -> n 
    -element;
    
      coherence
    
      proof
    
        
    
        
    
    A2: ( 
    dom (c 
    (#) f)) 
    = ( 
    dom f) by 
    VALUED_1:def 5;
    
        (
    len f) 
    = n by 
    CARD_1:def 7;
    
        hence (
    len (c 
    (#) f)) 
    = n by 
    A2,
    FINSEQ_3: 29;
    
      end;
    
    end
    
    registration
    
      let f be
    real-valued  
    Function;
    
      cluster 
    {f} ->
    real-functions-membered;
    
      coherence by
    TARSKI:def 1;
    
      let g be
    real-valued  
    Function;
    
      cluster 
    {f, g} ->
    real-functions-membered;
    
      coherence by
    TARSKI:def 2;
    
    end
    
    registration
    
      let n, x, y;
    
      let f be n
    -element  
    FinSequence;
    
      cluster (f 
    +* (x,y)) -> n 
    -element;
    
      coherence
    
      proof
    
        (
    dom (f 
    +* (x,y))) 
    = ( 
    dom f) by 
    FUNCT_7: 30;
    
        
    
        hence (
    len (f 
    +* (x,y))) 
    = ( 
    len f) by 
    FINSEQ_3: 29
    
        .= n by
    CARD_1:def 7;
    
      end;
    
    end
    
    theorem :: 
    
    EUCLID_9:1
    
    for f be n
    -element  
    FinSequence st f is 
    empty holds n 
    =  
    0 ; 
    
    theorem :: 
    
    EUCLID_9:2
    
    for f be n
    -element
    real-valued  
    FinSequence holds f 
    in ( 
    REAL n) 
    
    proof
    
      let f be n
    -element
    real-valued  
    FinSequence;
    
      (
    rng f) 
    c=  
    REAL ; 
    
      then f is
    FinSequence of 
    REAL by 
    FINSEQ_1:def 4;
    
      then
    
      
    
    A1: f is 
    Element of ( 
    REAL  
    * ) by 
    FINSEQ_1:def 11;
    
      (
    len f) 
    = n by 
    CARD_1:def 7;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    EUCLID_9:3
    
    
    
    
    
    Th3: for f,g be 
    complex-valued  
    Function holds ( 
    abs (f 
    - g)) 
    = ( 
    abs (g 
    - f)) 
    
    proof
    
      let f,g be
    complex-valued  
    Function;
    
      (f
    - g) 
    = ( 
    - (g 
    - f)) by 
    VALUED_2: 18;
    
      hence thesis by
    EUCLID: 5;
    
    end;
    
    definition
    
      let n, f1, f2;
    
      :: 
    
    EUCLID_9:def1
    
      func
    
    max_diff_index (f1,f2) -> 
    Nat equals the 
    Element of (( 
    abs (f1 
    - f2)) 
    "  
    {(
    sup ( 
    rng ( 
    abs (f1 
    - f2))))}); 
    
      coherence ;
    
      commutativity
    
      proof
    
        let i, f1, f2;
    
        (
    abs (f1 
    - f2)) 
    = ( 
    abs (f2 
    - f1)) by 
    Th3;
    
        hence thesis;
    
      end;
    
    end
    
    theorem :: 
    
    EUCLID_9:4
    
    n
    <>  
    0 implies ( 
    max_diff_index (f1,f2)) 
    in ( 
    dom f1) 
    
    proof
    
      set F = (
    abs (f1 
    - f2)); 
    
      assume n
    <>  
    0 ; 
    
      then F is non
    empty;
    
      then (
    sup ( 
    rng F)) 
    in ( 
    rng F) by 
    XXREAL_2:def 6;
    
      then
    
      
    
    A1: (F 
    "  
    {(
    sup ( 
    rng F))}) 
    <>  
    {} by 
    FUNCT_1: 72;
    
      
    
      
    
    A2: ( 
    dom f1) 
    = ( 
    Seg n) by 
    FINSEQ_1: 89;
    
      
    
      
    
    A3: ( 
    dom ( 
    abs (f1 
    - f2))) 
    = ( 
    Seg n) by 
    FINSEQ_1: 89;
    
      
    
      
    
    A4: (F 
    "  
    {(
    sup ( 
    rng F))}) 
    c= ( 
    dom F) by 
    RELAT_1: 132;
    
      (
    max_diff_index (f1,f2)) 
    in (F 
    "  
    {(
    sup ( 
    rng F))}) by 
    A1;
    
      hence thesis by
    A4,
    A2,
    A3;
    
    end;
    
    theorem :: 
    
    EUCLID_9:5
    
    
    
    
    
    Th5: (( 
    abs (f1 
    - f2)) 
    . x) 
    <= (( 
    abs (f1 
    - f2)) 
    . ( 
    max_diff_index (f1,f2))) 
    
    proof
    
      set F = (
    abs (f1 
    - f2)); 
    
      
    
      
    
    A1: ( 
    dom F) 
    = ( 
    dom (f1 
    - f2)) by 
    VALUED_1:def 11
    
      .= ((
    dom f1) 
    /\ ( 
    dom f2)) by 
    VALUED_1: 12;
    
      set m = (
    max_diff_index (f1,f2)); 
    
      
    
      
    
    A2: ( 
    dom f1) 
    = ( 
    Seg n) & ( 
    dom f2) 
    = ( 
    Seg n) by 
    FINSEQ_1: 89;
    
      per cases ;
    
        suppose x
    in ( 
    dom f1); 
    
        then
    
        
    
    A3: (F 
    . x) 
    in ( 
    rng F) by 
    A2,
    A1,
    FUNCT_1:def 3;
    
        then (
    sup ( 
    rng F)) 
    in ( 
    rng F) by 
    XXREAL_2:def 6;
    
        then (F
    "  
    {(
    sup ( 
    rng F))}) 
    <>  
    {} by 
    FUNCT_1: 72;
    
        then (F
    . m) 
    in  
    {(
    sup ( 
    rng F))} by 
    FUNCT_1:def 7;
    
        then (F
    . m) 
    = ( 
    sup ( 
    rng F)) by 
    TARSKI:def 1;
    
        hence thesis by
    A3,
    XXREAL_2: 4;
    
      end;
    
        suppose not x
    in ( 
    dom f1); 
    
        then
    
        
    
    A4: not x 
    in ( 
    dom F) by 
    A1,
    XBOOLE_0:def 4;
    
        (F
    . m) 
    =  
    |.((f1
    - f2) 
    . m).| by 
    VALUED_1: 18;
    
        hence thesis by
    A4,
    FUNCT_1:def 2;
    
      end;
    
    end;
    
    registration
    
      cluster ( 
    TopSpaceMetr ( 
    Euclid  
    0 )) -> 
    trivial;
    
      coherence by
    EUCLID: 77;
    
    end
    
    registration
    
      let n;
    
      cluster ( 
    Euclid n) -> 
    constituted-FinSeqs;
    
      coherence ;
    
    end
    
    registration
    
      let n;
    
      cluster -> 
    REAL  
    -valued for 
    Point of ( 
    Euclid n); 
    
      coherence
    
      proof
    
        let a be
    Element of ( 
    Euclid n); 
    
        let y be
    object;
    
        assume y
    in ( 
    rng a); 
    
        hence y
    in  
    REAL by 
    XREAL_0:def 1;
    
      end;
    
    end
    
    registration
    
      let n;
    
      cluster -> n 
    -element for 
    Point of ( 
    Euclid n); 
    
      coherence ;
    
    end
    
    theorem :: 
    
    EUCLID_9:6
    
    
    
    
    
    Th6: ( 
    Family_open_set ( 
    Euclid  
    0 )) 
    =  
    {
    {} , 
    {
    {} }} 
    
    proof
    
      
    
      
    
    A1: the TopStruct of ( 
    TOP-REAL  
    0 ) 
    = ( 
    TopSpaceMetr ( 
    Euclid  
    0 )) by 
    EUCLID:def 8;
    
      thus thesis by
    A1,
    EUCLID: 77,
    YELLOW_9: 9;
    
    end;
    
    theorem :: 
    
    EUCLID_9:7
    
    for B be
    Subset of ( 
    Euclid  
    0 ) holds B 
    =  
    {} or B 
    =  
    {
    {} } by 
    EUCLID: 77,
    ZFMISC_1: 33;
    
    reserve e,e1 for
    Point of ( 
    Euclid n); 
    
    definition
    
      let n, e;
    
      :: 
    
    EUCLID_9:def2
    
      func
    
    @ e -> 
    Point of ( 
    TopSpaceMetr ( 
    Euclid n)) equals e; 
    
      coherence ;
    
    end
    
    registration
    
      let n, e;
    
      let r be non
    positive  
    Real;
    
      cluster ( 
    Ball (e,r)) -> 
    empty;
    
      coherence
    
      proof
    
        assume not thesis;
    
        then
    
        consider x be
    Point of ( 
    Euclid n) such that 
    
        
    
    A1: x 
    in ( 
    Ball (e,r)); 
    
        (
    dist (x,e)) 
    < r by 
    A1,
    METRIC_1: 11;
    
        hence thesis by
    METRIC_1: 5;
    
      end;
    
    end
    
    registration
    
      let n, e;
    
      let r be
    positive  
    Real;
    
      cluster ( 
    Ball (e,r)) -> non 
    empty;
    
      coherence by
    GOBOARD6: 1;
    
    end
    
    theorem :: 
    
    EUCLID_9:8
    
    
    
    
    
    Th8: for p1,p2 be 
    Point of ( 
    TOP-REAL n) st i 
    in ( 
    dom p1) holds (((p1 
    /. i) 
    - (p2 
    /. i)) 
    ^2 ) 
    <= ( 
    Sum ( 
    sqr (p1 
    - p2))) 
    
    proof
    
      let p1,p2 be
    Point of ( 
    TOP-REAL n) such that 
    
      
    
    A1: i 
    in ( 
    dom p1); 
    
      set e = (
    sqr (p1 
    - p2)); 
    
      
    
    A2: 
    
      now
    
        let i be
    Nat such that i 
    in ( 
    dom e); 
    
        (e
    . i) 
    = (((p1 
    - p2) 
    . i) 
    ^2 ) by 
    VALUED_1: 11;
    
        hence
    0  
    <= (e 
    . i); 
    
      end;
    
      
    
      
    
    A3: ( 
    dom e) 
    = ( 
    dom (p1 
    - p2)) by 
    VALUED_1: 11;
    
      
    
      
    
    A4: ( 
    dom (p1 
    - p2)) 
    = (( 
    dom p1) 
    /\ ( 
    dom p2)) by 
    VALUED_1: 12;
    
      
    
      
    
    A5: ( 
    dom p1) 
    = ( 
    Seg n) by 
    FINSEQ_1: 89
    
      .= (
    dom p2) by 
    FINSEQ_1: 89;
    
      
    
      
    
    A6: (p1 
    . i) 
    = (p1 
    /. i) by 
    A1,
    PARTFUN1:def 6;
    
      
    
      
    
    A7: (p2 
    . i) 
    = (p2 
    /. i) by 
    A1,
    A5,
    PARTFUN1:def 6;
    
      (e
    . i) 
    = (((p1 
    - p2) 
    . i) 
    ^2 ) by 
    VALUED_1: 11
    
      .= (((p1
    /. i) 
    - (p2 
    /. i)) 
    ^2 ) by 
    A6,
    A7,
    A1,
    A5,
    A4,
    VALUED_1: 13;
    
      hence thesis by
    A1,
    A2,
    A3,
    A5,
    A4,
    MATRPROB: 5;
    
    end;
    
    theorem :: 
    
    EUCLID_9:9
    
    
    
    
    
    Th9: for a,o,p be 
    Element of ( 
    TOP-REAL n) st a 
    in ( 
    Ball (o,r)) holds for x be 
    object holds 
    |.((a
    - o) 
    . x).| 
    < r & 
    |.((a
    . x) 
    - (o 
    . x)).| 
    < r 
    
    proof
    
      let a,o,p be
    Element of ( 
    TOP-REAL n); 
    
      assume
    
      
    
    A1: a 
    in ( 
    Ball (o,r)); 
    
      then
    
      
    
    A2: 
    |.(a
    - o).| 
    < r by 
    TOPREAL9: 7;
    
      
    0  
    <= ( 
    Sum ( 
    sqr (a 
    - o))) by 
    RVSUM_1: 86;
    
      then ((
    sqrt ( 
    Sum ( 
    sqr (a 
    - o)))) 
    ^2 ) 
    = ( 
    Sum ( 
    sqr (a 
    - o))) by 
    SQUARE_1:def 2;
    
      then
    
      
    
    A3: ( 
    Sum ( 
    sqr (a 
    - o))) 
    < (r 
    ^2 ) by 
    A2,
    SQUARE_1: 16;
    
      
    
      
    
    A4: ( 
    sqr (a 
    - o)) 
    = ( 
    sqr (o 
    - a)) by 
    EUCLID: 20;
    
      
    
      
    
    A5: r 
    >  
    0 by 
    A1;
    
      let x;
    
      
    
      
    
    A6: ( 
    dom (a 
    - o)) 
    = (( 
    dom a) 
    /\ ( 
    dom o)) by 
    VALUED_1: 12;
    
      
    
      
    
    A7: ( 
    dom a) 
    = ( 
    Seg n) & ( 
    dom o) 
    = ( 
    Seg n) by 
    FINSEQ_1: 89;
    
      per cases ;
    
        suppose
    
        
    
    A8: x 
    in ( 
    dom a); 
    
        then
    
        reconsider x as
    Nat;
    
        
    
        
    
    A9: ((a 
    - o) 
    . x) 
    = ((a 
    . x) 
    - (o 
    . x)) by 
    A8,
    A6,
    A7,
    VALUED_1: 13;
    
        
    
        
    
    A10: (a 
    /. x) 
    = (a 
    . x) & (o 
    /. x) 
    = (o 
    . x) by 
    A8,
    A7,
    PARTFUN1:def 6;
    
        now
    
          assume ((o
    . x) 
    - (a 
    . x)) 
    >= r; 
    
          then
    
          
    
    A11: (((o 
    . x) 
    - (a 
    . x)) 
    ^2 ) 
    >= (r 
    ^2 ) by 
    A5,
    SQUARE_1: 15;
    
          (
    Sum ( 
    sqr (o 
    - a))) 
    >= (((o 
    /. x) 
    - (a 
    /. x)) 
    ^2 ) by 
    A8,
    A7,
    Th8;
    
          hence contradiction by
    A3,
    A11,
    A4,
    A10,
    XXREAL_0: 2;
    
        end;
    
        then
    
        
    
    A12: ((o 
    . x) 
    - r) 
    < (a 
    . x) by 
    XREAL_1: 11;
    
        now
    
          assume ((a
    . x) 
    - (o 
    . x)) 
    >= r; 
    
          then
    
          
    
    A13: (((a 
    . x) 
    - (o 
    . x)) 
    ^2 ) 
    >= (r 
    ^2 ) by 
    A5,
    SQUARE_1: 15;
    
          (
    Sum ( 
    sqr (a 
    - o))) 
    >= (((a 
    /. x) 
    - (o 
    /. x)) 
    ^2 ) by 
    A8,
    Th8;
    
          hence contradiction by
    A3,
    A13,
    A10,
    XXREAL_0: 2;
    
        end;
    
        then (a
    . x) 
    < ((o 
    . x) 
    + r) by 
    XREAL_1: 19;
    
        hence thesis by
    A9,
    A12,
    RINFSUP1: 1;
    
      end;
    
        suppose
    
        
    
    A14: not x 
    in ( 
    dom a); 
    
        then not x
    in ( 
    dom ( 
    abs (a 
    - o))) by 
    A6,
    A7,
    VALUED_1:def 11;
    
        then ((
    abs (a 
    - o)) 
    . x) 
    =  
    0 by 
    FUNCT_1:def 2;
    
        then
    
        
    
    A15: 
    |.((a
    - o) 
    . x).| 
    =  
    0 by 
    VALUED_1: 18;
    
        (a
    . x) 
    =  
    0 & (o 
    . x) 
    =  
    0 by 
    A7,
    A14,
    FUNCT_1:def 2;
    
        hence thesis by
    A15,
    A1;
    
      end;
    
    end;
    
    theorem :: 
    
    EUCLID_9:10
    
    
    
    
    
    Th10: for a,o be 
    Point of ( 
    Euclid n) st a 
    in ( 
    Ball (o,r)) holds for x be 
    object holds 
    |.((a
    - o) 
    . x).| 
    < r & 
    |.((a
    . x) 
    - (o 
    . x)).| 
    < r 
    
    proof
    
      let a,o be
    Point of ( 
    Euclid n); 
    
      reconsider a1 = a, o1 = o as
    Point of ( 
    TOP-REAL n) by 
    EUCLID: 67;
    
      
    
      
    
    A1: ( 
    Ball (o,r)) 
    = ( 
    Ball (o1,r)) by 
    TOPREAL9: 13;
    
      (a
    - o) 
    = (a1 
    - o1); 
    
      hence thesis by
    A1,
    Th9;
    
    end;
    
    definition
    
      let f be
    real-valued  
    Function, r be 
    Real;
    
      :: 
    
    EUCLID_9:def3
    
      func
    
    Intervals (f,r) -> 
    Function means 
    
      :
    
    Def3: ( 
    dom it ) 
    = ( 
    dom f) & for x be 
    object st x 
    in ( 
    dom f) holds (it 
    . x) 
    =  
    ].((f
    . x) 
    - r), ((f 
    . x) 
    + r).[; 
    
      existence
    
      proof
    
        deffunc
    
    F(
    object) =
    ].((f
    . $1) 
    - r), ((f 
    . $1) 
    + r).[; 
    
        ex g be
    Function st ( 
    dom g) 
    = ( 
    dom f) & for x be 
    object st x 
    in ( 
    dom f) holds (g 
    . x) 
    =  
    F(x) from
    FUNCT_1:sch 3;
    
        hence thesis;
    
      end;
    
      uniqueness
    
      proof
    
        let g,h be
    Function such that 
    
        
    
    A1: ( 
    dom g) 
    = ( 
    dom f) and 
    
        
    
    A2: for x be 
    object st x 
    in ( 
    dom f) holds (g 
    . x) 
    =  
    ].((f
    . x) 
    - r), ((f 
    . x) 
    + r).[ and 
    
        
    
    A3: ( 
    dom h) 
    = ( 
    dom f) and 
    
        
    
    A4: for x be 
    object st x 
    in ( 
    dom f) holds (h 
    . x) 
    =  
    ].((f
    . x) 
    - r), ((f 
    . x) 
    + r).[; 
    
        now
    
          let x be
    object;
    
          assume
    
          
    
    A5: x 
    in ( 
    dom g); 
    
          
    
          hence (g
    . x) 
    =  
    ].((f
    . x) 
    - r), ((f 
    . x) 
    + r).[ by 
    A1,
    A2
    
          .= (h
    . x) by 
    A1,
    A4,
    A5;
    
        end;
    
        hence thesis by
    A1,
    A3,
    FUNCT_1: 2;
    
      end;
    
    end
    
    registration
    
      let r;
    
      cluster ( 
    Intervals ( 
    {} ,r)) -> 
    empty;
    
      coherence
    
      proof
    
        (
    dom ( 
    Intervals ( 
    {} ,r))) 
    = ( 
    dom  
    {} ) by 
    Def3;
    
        hence thesis;
    
      end;
    
    end
    
    registration
    
      let f be
    real-valued  
    FinSequence;
    
      let r;
    
      cluster ( 
    Intervals (f,r)) -> 
    FinSequence-like;
    
      coherence
    
      proof
    
        take (
    len f); 
    
        (
    dom ( 
    Intervals (f,r))) 
    = ( 
    dom f) by 
    Def3;
    
        hence thesis by
    FINSEQ_1:def 3;
    
      end;
    
    end
    
    definition
    
      let n, e, r;
    
      :: 
    
    EUCLID_9:def4
    
      func
    
    OpenHypercube (e,r) -> 
    Subset of ( 
    TopSpaceMetr ( 
    Euclid n)) equals ( 
    product ( 
    Intervals (e,r))); 
    
      coherence
    
      proof
    
        set T = (
    TopSpaceMetr ( 
    Euclid n)); 
    
        set f = (
    Intervals (e,r)); 
    
        (
    product f) 
    c= the 
    carrier of T 
    
        proof
    
          let x be
    object;
    
          assume x
    in ( 
    product f); 
    
          then
    
          consider g be
    Function such that 
    
          
    
    A1: x 
    = g and 
    
          
    
    A2: ( 
    dom g) 
    = ( 
    dom f) and 
    
          
    
    A3: for y be 
    object st y 
    in ( 
    dom f) holds (g 
    . y) 
    in (f 
    . y) by 
    CARD_3:def 5;
    
          
    
          
    
    A4: ( 
    dom f) 
    = ( 
    dom e) by 
    Def3;
    
          (
    dom e) 
    = ( 
    Seg n) by 
    FINSEQ_1: 89;
    
          then
    
          reconsider x as
    FinSequence by 
    A1,
    A2,
    A4,
    FINSEQ_1:def 2;
    
          (
    rng x) 
    c=  
    REAL  
    
          proof
    
            let b be
    object;
    
            assume b
    in ( 
    rng x); 
    
            then
    
            consider a be
    object such that 
    
            
    
    A5: a 
    in ( 
    dom x) and 
    
            
    
    A6: (x 
    . a) 
    = b by 
    FUNCT_1:def 3;
    
            
    
            
    
    A7: (g 
    . a) 
    in (f 
    . a) by 
    A1,
    A2,
    A3,
    A5;
    
            (f
    . a) 
    =  
    ].((e
    . a) 
    - r), ((e 
    . a) 
    + r).[ by 
    A1,
    A2,
    A4,
    A5,
    Def3;
    
            hence thesis by
    A1,
    A6,
    A7;
    
          end;
    
          then x is
    FinSequence of 
    REAL by 
    FINSEQ_1:def 4;
    
          then
    
          
    
    A8: x 
    in ( 
    REAL  
    * ) by 
    FINSEQ_1:def 11;
    
          (
    len e) 
    = n by 
    CARD_1:def 7;
    
          then (
    len x) 
    = n by 
    A1,
    A2,
    A4,
    FINSEQ_3: 29;
    
          hence thesis by
    A8;
    
        end;
    
        hence thesis;
    
      end;
    
    end
    
    theorem :: 
    
    EUCLID_9:11
    
    
    
    
    
    Th11: 
    0  
    < r implies e 
    in ( 
    OpenHypercube (e,r)) 
    
    proof
    
      assume
    
      
    
    A1: 
    0  
    < r; 
    
      set f = (
    Intervals (e,r)); 
    
      
    
      
    
    A2: ( 
    dom f) 
    = ( 
    dom e) by 
    Def3;
    
      now
    
        let x be
    object;
    
        assume x
    in ( 
    dom f); 
    
        then
    
        
    
    A3: (f 
    . x) 
    =  
    ].((e
    . x) 
    - r), ((e 
    . x) 
    + r).[ by 
    A2,
    Def3;
    
        
    
        
    
    A4: ((e 
    . x) 
    - r) 
    < ((e 
    . x) 
    -  
    0 ) by 
    A1,
    XREAL_1: 10;
    
        ((e
    . x) 
    +  
    0 ) 
    < ((e 
    . x) 
    + r) by 
    A1,
    XREAL_1: 8;
    
        hence (e
    . x) 
    in (f 
    . x) by 
    A3,
    A4,
    XXREAL_1: 4;
    
      end;
    
      hence thesis by
    A2,
    CARD_3: 9;
    
    end;
    
    registration
    
      let n be non
    zero  
    Nat;
    
      let e be
    Point of ( 
    Euclid n); 
    
      let r be non
    positive  
    Real;
    
      cluster ( 
    OpenHypercube (e,r)) -> 
    empty;
    
      coherence
    
      proof
    
        assume not thesis;
    
        then
    
        consider x be
    object such that 
    
        
    
    A1: x 
    in ( 
    OpenHypercube (e,r)); 
    
        reconsider e1 = e as
    real-valued  
    Function;
    
        set f = (
    Intervals (e,r)); 
    
        
    
        
    
    A2: ( 
    dom f) 
    = ( 
    dom e) by 
    Def3;
    
        
    
        
    
    A3: ( 
    dom e) 
    = ( 
    Seg n) by 
    FINSEQ_1: 89;
    
        consider N be
    object such that 
    
        
    
    A4: N 
    in ( 
    Seg n) by 
    XBOOLE_0:def 1;
    
        (f
    . N) 
    =  
    ].((e1
    . N) 
    - r), ((e1 
    . N) 
    + r).[ by 
    A4,
    A3,
    Def3;
    
        hence thesis by
    A1,
    A2,
    A3,
    A4,
    CARD_3: 9;
    
      end;
    
    end
    
    theorem :: 
    
    EUCLID_9:12
    
    
    
    
    
    Th12: for e be 
    Point of ( 
    Euclid  
    0 ) holds ( 
    OpenHypercube (e,r)) 
    =  
    {
    {} } by 
    CARD_3: 10;
    
    registration
    
      let e be
    Point of ( 
    Euclid  
    0 ); 
    
      let r;
    
      cluster ( 
    OpenHypercube (e,r)) -> non 
    empty;
    
      coherence by
    CARD_3: 10;
    
    end
    
    registration
    
      let n, e;
    
      let r be
    positive  
    Real;
    
      cluster ( 
    OpenHypercube (e,r)) -> non 
    empty;
    
      coherence by
    Th11;
    
    end
    
    theorem :: 
    
    EUCLID_9:13
    
    
    
    
    
    Th13: r 
    <= s implies ( 
    OpenHypercube (e,r)) 
    c= ( 
    OpenHypercube (e,s)) 
    
    proof
    
      assume
    
      
    
    A1: r 
    <= s; 
    
      
    
      
    
    A2: ( 
    dom ( 
    Intervals (e,s))) 
    = ( 
    dom e) by 
    Def3;
    
      
    
      
    
    A3: ( 
    dom ( 
    Intervals (e,r))) 
    = ( 
    dom e) by 
    Def3;
    
      now
    
        let x be
    object;
    
        assume
    
        
    
    A4: x 
    in ( 
    dom ( 
    Intervals (e,r))); 
    
        reconsider u = (e
    . x) as 
    Real;
    
        
    
        
    
    A5: (( 
    Intervals (e,r)) 
    . x) 
    =  
    ].(u
    - r), (u 
    + r).[ & (( 
    Intervals (e,s)) 
    . x) 
    =  
    ].(u
    - s), (u 
    + s).[ by 
    A4,
    A3,
    Def3;
    
        (u
    - s) 
    <= (u 
    - r) & (u 
    + r) 
    <= (u 
    + s) by 
    A1,
    XREAL_1: 6,
    XREAL_1: 10;
    
        hence ((
    Intervals (e,r)) 
    . x) 
    c= (( 
    Intervals (e,s)) 
    . x) by 
    A5,
    XXREAL_1: 46;
    
      end;
    
      hence thesis by
    A2,
    A3,
    CARD_3: 27;
    
    end;
    
    theorem :: 
    
    EUCLID_9:14
    
    
    
    
    
    Th14: (n 
    <>  
    0 or 
    0  
    < r) & e1 
    in ( 
    OpenHypercube (e,r)) implies for x be 
    set holds 
    |.((e1
    - e) 
    . x).| 
    < r & 
    |.((e1
    . x) 
    - (e 
    . x)).| 
    < r 
    
    proof
    
      assume that
    
      
    
    A1: n 
    <>  
    0 or 
    0  
    < r and 
    
      
    
    A2: e1 
    in ( 
    OpenHypercube (e,r)); 
    
      
    
      
    
    A3: ( 
    dom e1) 
    = ( 
    Seg n) & ( 
    dom e) 
    = ( 
    Seg n) by 
    FINSEQ_1: 89;
    
      
    
      
    
    A4: ( 
    dom (e1 
    - e)) 
    = (( 
    dom e1) 
    /\ ( 
    dom e)) by 
    VALUED_1: 12;
    
      let x be
    set;
    
      per cases ;
    
        suppose
    
        
    
    A5: x 
    in ( 
    dom e1); 
    
        then
    
        
    
    A6: ((e1 
    - e) 
    . x) 
    = ((e1 
    . x) 
    - (e 
    . x)) by 
    A3,
    A4,
    VALUED_1: 13;
    
        (
    dom e) 
    = ( 
    dom ( 
    Intervals (e,r))) by 
    Def3;
    
        then
    
        
    
    A7: (e1 
    . x) 
    in (( 
    Intervals (e,r)) 
    . x) by 
    A5,
    A3,
    A2,
    CARD_3: 9;
    
        ((
    Intervals (e,r)) 
    . x) 
    =  
    ].((e
    . x) 
    - r), ((e 
    . x) 
    + r).[ by 
    A3,
    A5,
    Def3;
    
        hence thesis by
    A6,
    A7,
    FCONT_3: 1;
    
      end;
    
        suppose
    
        
    
    A8: not x 
    in ( 
    dom e1); 
    
        then not x
    in ( 
    dom ( 
    abs (e1 
    - e))) by 
    A4,
    A3,
    VALUED_1:def 11;
    
        then ((
    abs (e1 
    - e)) 
    . x) 
    =  
    0 by 
    FUNCT_1:def 2;
    
        then
    
        
    
    A9: 
    |.((e1
    - e) 
    . x).| 
    =  
    0 by 
    VALUED_1: 18;
    
        (e1
    . x) 
    =  
    0 & (e 
    . x) 
    =  
    0 by 
    A3,
    A8,
    FUNCT_1:def 2;
    
        hence thesis by
    A9,
    A1,
    A2;
    
      end;
    
    end;
    
    theorem :: 
    
    EUCLID_9:15
    
    
    
    
    
    Th15: n 
    <>  
    0 & e1 
    in ( 
    OpenHypercube (e,r)) implies ( 
    Sum ( 
    sqr (e1 
    - e))) 
    < (n 
    * (r 
    ^2 )) 
    
    proof
    
      assume that
    
      
    
    A1: n 
    <>  
    0 and 
    
      
    
    A2: e1 
    in ( 
    OpenHypercube (e,r)); 
    
      set R1 = (
    sqr (e1 
    - e)); 
    
      set R2 = (n
    |-> (r 
    ^2 )); 
    
      
    
    A6: 
    
      now
    
        let i;
    
        assume
    
        
    
    A7: i 
    in ( 
    Seg n); 
    
        
    
        
    
    A8: ( 
    dom e1) 
    = ( 
    Seg n) & ( 
    dom e) 
    = ( 
    Seg n) by 
    FINSEQ_1: 89;
    
        (
    dom (e1 
    - e)) 
    = (( 
    dom e1) 
    /\ ( 
    dom e)) by 
    VALUED_1: 12;
    
        then
    
        
    
    A9: ((e1 
    - e) 
    . i) 
    = ((e1 
    . i) 
    - (e 
    . i)) by 
    A7,
    A8,
    VALUED_1: 13;
    
        
    
        
    
    A10: (R1 
    . i) 
    = (((e1 
    - e) 
    . i) 
    ^2 ) by 
    VALUED_1: 11;
    
        
    
        
    
    A11: (R2 
    . i) 
    = (r 
    ^2 ) by 
    A7,
    FINSEQ_2: 57;
    
        
    
        
    
    A12: 
    |.((e1
    . i) 
    - (e 
    . i)).| 
    < r by 
    A1,
    A2,
    Th14;
    
        (((e1
    - e) 
    . i) 
    ^2 ) 
    = ( 
    |.((e1
    - e) 
    . i).| 
    ^2 ) by 
    COMPLEX1: 75;
    
        hence (R1
    . i) 
    < (R2 
    . i) by 
    A9,
    A10,
    A11,
    A12,
    SQUARE_1: 16;
    
      end;
    
      then
    
      
    
    A13: for i st i 
    in ( 
    Seg n) holds (R1 
    . i) 
    <= (R2 
    . i); 
    
      ex i st i
    in ( 
    Seg n) & (R1 
    . i) 
    < (R2 
    . i) 
    
      proof
    
        consider i be
    object such that 
    
        
    
    A14: i 
    in ( 
    Seg n) by 
    A1,
    XBOOLE_0:def 1;
    
        reconsider i as
    Nat by 
    A14;
    
        take i;
    
        thus thesis by
    A14,
    A6;
    
      end;
    
      then (
    Sum R1) 
    < ( 
    Sum R2) by 
    A13,
    RVSUM_1: 83;
    
      hence thesis by
    RVSUM_1: 80;
    
    end;
    
    theorem :: 
    
    EUCLID_9:16
    
    
    
    
    
    Th16: n 
    <>  
    0 & e1 
    in ( 
    OpenHypercube (e,r)) implies ( 
    dist (e1,e)) 
    < (r 
    * ( 
    sqrt n)) 
    
    proof
    
      assume that
    
      
    
    A1: n 
    <>  
    0 and 
    
      
    
    A2: e1 
    in ( 
    OpenHypercube (e,r)); 
    
      
    
      
    
    A3: ( 
    dist (e1,e)) 
    =  
    |.(e1
    - e).| by 
    EUCLID:def 6;
    
      
    0  
    <= ( 
    Sum ( 
    sqr (e1 
    - e))) by 
    RVSUM_1: 86;
    
      then
    
      
    
    A4: ( 
    sqrt ( 
    Sum ( 
    sqr (e1 
    - e)))) 
    < ( 
    sqrt (n 
    * (r 
    ^2 ))) by 
    A1,
    A2,
    Th15,
    SQUARE_1: 27;
    
      
    0  
    <= r by 
    A1,
    A2;
    
      then (
    sqrt (r 
    ^2 )) 
    = r by 
    SQUARE_1: 22;
    
      hence thesis by
    A3,
    A4,
    SQUARE_1: 29;
    
    end;
    
    theorem :: 
    
    EUCLID_9:17
    
    
    
    
    
    Th17: n 
    <>  
    0 implies ( 
    OpenHypercube (e,(r 
    / ( 
    sqrt n)))) 
    c= ( 
    Ball (e,r)) 
    
    proof
    
      assume
    
      
    
    A1: n 
    <>  
    0 ; 
    
      let x be
    object;
    
      assume
    
      
    
    A2: x 
    in ( 
    OpenHypercube (e,(r 
    / ( 
    sqrt n)))); 
    
      then
    
      reconsider x as
    Point of ( 
    Euclid n); 
    
      
    
      
    
    A3: ( 
    dist (x,e)) 
    < ((r 
    / ( 
    sqrt n)) 
    * ( 
    sqrt n)) by 
    A1,
    A2,
    Th16;
    
      ((r
    / ( 
    sqrt n)) 
    * ( 
    sqrt n)) 
    = r by 
    A1,
    XCMPLX_1: 87;
    
      hence thesis by
    A3,
    METRIC_1: 11;
    
    end;
    
    theorem :: 
    
    EUCLID_9:18
    
    n
    <>  
    0 implies ( 
    OpenHypercube (e,r)) 
    c= ( 
    Ball (e,(r 
    * ( 
    sqrt n)))) 
    
    proof
    
      assume
    
      
    
    A1: n 
    <>  
    0 ; 
    
      then
    
      
    
    A2: ( 
    OpenHypercube (e,((r 
    * ( 
    sqrt n)) 
    / ( 
    sqrt n)))) 
    c= ( 
    Ball (e,(r 
    * ( 
    sqrt n)))) by 
    Th17;
    
      ((r
    / ( 
    sqrt n)) 
    * ( 
    sqrt n)) 
    = r by 
    A1,
    XCMPLX_1: 87;
    
      hence thesis by
    A2,
    XCMPLX_1: 74;
    
    end;
    
    theorem :: 
    
    EUCLID_9:19
    
    
    
    
    
    Th19: e1 
    in ( 
    Ball (e,r)) implies ex m be non 
    zero  
    Element of 
    NAT st ( 
    OpenHypercube (e1,(1 
    / m))) 
    c= ( 
    Ball (e,r)) 
    
    proof
    
      reconsider B = (
    Ball (e,r)) as 
    Subset of ( 
    TopSpaceMetr ( 
    Euclid n)); 
    
      assume
    
      
    
    A1: e1 
    in ( 
    Ball (e,r)); 
    
      B is
    open by 
    TOPMETR: 14;
    
      then
    
      consider s be
    Real such that 
    
      
    
    A2: s 
    >  
    0 and 
    
      
    
    A3: ( 
    Ball (e1,s)) 
    c= B by 
    A1,
    TOPMETR: 15;
    
      per cases ;
    
        suppose
    
        
    
    A4: n 
    <>  
    0 ; 
    
        then
    
        consider m be
    Nat such that 
    
        
    
    A5: (1 
    / m) 
    < (s 
    / ( 
    sqrt n)) and 
    
        
    
    A6: m 
    >  
    0 by 
    A2,
    FRECHET: 36;
    
        reconsider m as non
    zero  
    Element of 
    NAT by 
    A6,
    ORDINAL1:def 12;
    
        
    
        
    
    A7: ( 
    OpenHypercube (e1,(s 
    / ( 
    sqrt n)))) 
    c= ( 
    Ball (e1,s)) by 
    A4,
    Th17;
    
        (
    OpenHypercube (e1,(1 
    / m))) 
    c= ( 
    OpenHypercube (e1,(s 
    / ( 
    sqrt n)))) by 
    A5,
    Th13;
    
        then (
    OpenHypercube (e1,(1 
    / m))) 
    c= ( 
    Ball (e1,s)) by 
    A7;
    
        hence thesis by
    A3,
    XBOOLE_1: 1;
    
      end;
    
        suppose n
    =  
    0 ; 
    
        then ((
    OpenHypercube (e1,(1 
    / 1))) 
    =  
    {} or ( 
    OpenHypercube (e1,(1 
    / 1))) 
    =  
    {
    {} }) & ( 
    Ball (e,r)) 
    =  
    {
    {} } by 
    A1,
    EUCLID: 77,
    ZFMISC_1: 33;
    
        hence thesis;
    
      end;
    
    end;
    
    theorem :: 
    
    EUCLID_9:20
    
    
    
    
    
    Th20: n 
    <>  
    0 & e1 
    in ( 
    OpenHypercube (e,r)) implies r 
    > (( 
    abs (e1 
    - e)) 
    . ( 
    max_diff_index (e1,e))) 
    
    proof
    
      set d = (
    max_diff_index (e1,e)); 
    
      ((
    abs (e1 
    - e)) 
    . d) 
    =  
    |.((e1
    - e) 
    . d).| by 
    VALUED_1: 18;
    
      hence thesis by
    Th14;
    
    end;
    
    theorem :: 
    
    EUCLID_9:21
    
    
    
    
    
    Th21: ( 
    OpenHypercube (e1,(r 
    - (( 
    abs (e1 
    - e)) 
    . ( 
    max_diff_index (e1,e)))))) 
    c= ( 
    OpenHypercube (e,r)) 
    
    proof
    
      set d = (
    max_diff_index (e1,e)); 
    
      set F = (
    abs (e1 
    - e)); 
    
      set s = (r
    - (F 
    . d)); 
    
      
    
      
    
    A1: ( 
    dom e1) 
    = ( 
    Seg n) & ( 
    dom e) 
    = ( 
    Seg n) by 
    FINSEQ_1: 89;
    
      let y be
    Point of ( 
    TopSpaceMetr ( 
    Euclid n)); 
    
      assume
    
      
    
    A2: y 
    in ( 
    OpenHypercube (e1,s)); 
    
      reconsider y as
    Point of ( 
    Euclid n); 
    
      
    
      
    
    A3: ( 
    dom y) 
    = ( 
    dom ( 
    Intervals (e1,s))) by 
    A2,
    CARD_3: 9;
    
      
    
      
    
    A4: ( 
    dom ( 
    Intervals (e1,s))) 
    = ( 
    dom e1) by 
    Def3;
    
      then
    
      
    
    A5: ( 
    dom y) 
    = ( 
    dom ( 
    Intervals (e,r))) by 
    A1,
    A3,
    Def3;
    
      now
    
        let x be
    object;
    
        assume
    
        
    
    A6: x 
    in ( 
    dom ( 
    Intervals (e,r))); 
    
        then
    
        
    
    A7: (( 
    Intervals (e,r)) 
    . x) 
    =  
    ].((e
    . x) 
    - r), ((e 
    . x) 
    + r).[ by 
    A1,
    A3,
    A4,
    A5,
    Def3;
    
        
    
        
    
    A8: (( 
    Intervals (e1,s)) 
    . x) 
    =  
    ].((e1
    . x) 
    - s), ((e1 
    . x) 
    + s).[ by 
    A3,
    A4,
    A5,
    A6,
    Def3;
    
        (y
    . x) 
    in (( 
    Intervals (e1,s)) 
    . x) by 
    A2,
    A3,
    A5,
    A6,
    CARD_3: 9;
    
        then
    
        
    
    A9: 
    |.((y
    . x) 
    - (e1 
    . x)).| 
    < s by 
    A8,
    RCOMP_1: 1;
    
        (
    dom (e1 
    - e)) 
    = (( 
    dom e1) 
    /\ ( 
    dom e)) by 
    VALUED_1: 12;
    
        
    
        then
    |.((e1
    . x) 
    - (e 
    . x)).| 
    =  
    |.((e1
    - e) 
    . x).| by 
    A1,
    A3,
    A4,
    A5,
    A6,
    VALUED_1: 13
    
        .= ((
    abs (e1 
    - e)) 
    . x) by 
    VALUED_1: 18;
    
        then
    
        
    
    A10: ( 
    |.((y
    . x) 
    - (e1 
    . x)).| 
    +  
    |.((e1
    . x) 
    - (e 
    . x)).|) 
    < (s 
    + (F 
    . d)) by 
    A9,
    Th5,
    XREAL_1: 8;
    
        
    |.((y
    . x) 
    - (e 
    . x)).| 
    <= ( 
    |.((y
    . x) 
    - (e1 
    . x)).| 
    +  
    |.((e1
    . x) 
    - (e 
    . x)).|) by 
    COMPLEX1: 63;
    
        then
    |.((y
    . x) 
    - (e 
    . x)).| 
    < r by 
    A10,
    XXREAL_0: 2;
    
        hence (y
    . x) 
    in (( 
    Intervals (e,r)) 
    . x) by 
    A7,
    RCOMP_1: 1;
    
      end;
    
      hence thesis by
    A5,
    CARD_3: 9;
    
    end;
    
    theorem :: 
    
    EUCLID_9:22
    
    
    
    
    
    Th22: ( 
    Ball (e,r)) 
    c= ( 
    OpenHypercube (e,r)) 
    
    proof
    
      let g be
    object;
    
      assume
    
      
    
    A1: g 
    in ( 
    Ball (e,r)); 
    
      then
    
      reconsider g as
    Point of ( 
    Euclid n); 
    
      
    
      
    
    A2: ( 
    dom ( 
    Intervals (e,r))) 
    = ( 
    dom e) by 
    Def3;
    
      
    
      
    
    A3: ( 
    dom g) 
    = ( 
    Seg n) & ( 
    dom e) 
    = ( 
    Seg n) by 
    FINSEQ_1: 89;
    
      now
    
        let x be
    object;
    
        reconsider u = (e
    . x), v = (g 
    . x) as 
    Real;
    
        assume
    
        
    
    A4: x 
    in ( 
    dom ( 
    Intervals (e,r))); 
    
        then
    
        
    
    A5: (( 
    Intervals (e,r)) 
    . x) 
    =  
    ].(u
    - r), (u 
    + r).[ by 
    A2,
    Def3;
    
        (
    dom (g 
    - e)) 
    = (( 
    dom g) 
    /\ ( 
    dom e)) by 
    VALUED_1: 12;
    
        then
    
        
    
    A6: ((g 
    - e) 
    . x) 
    = (v 
    - u) by 
    A2,
    A3,
    A4,
    VALUED_1: 13;
    
        
    
        
    
    A7: v 
    = (u 
    + (v 
    - u)); 
    
        
    |.((g
    - e) 
    . x).| 
    < r by 
    A1,
    Th10;
    
        hence (g
    . x) 
    in (( 
    Intervals (e,r)) 
    . x) by 
    A6,
    A5,
    A7,
    FCONT_3: 3;
    
      end;
    
      hence thesis by
    A2,
    A3,
    CARD_3: 9;
    
    end;
    
    registration
    
      let n, e, r;
    
      cluster ( 
    OpenHypercube (e,r)) -> 
    open;
    
      coherence
    
      proof
    
        per cases ;
    
          suppose
    
          
    
    A1: n 
    <>  
    0 ; 
    
          for p be
    Point of ( 
    Euclid n) st p 
    in ( 
    OpenHypercube (e,r)) holds ex s be 
    Real st s 
    >  
    0 & ( 
    Ball (p,s)) 
    c= ( 
    OpenHypercube (e,r)) 
    
          proof
    
            let p be
    Point of ( 
    Euclid n); 
    
            assume
    
            
    
    A2: p 
    in ( 
    OpenHypercube (e,r)); 
    
            set d = ((
    abs (p 
    - e)) 
    . ( 
    max_diff_index (p,e))); 
    
            take s = (r
    - d); 
    
            (r
    - d) 
    > (d 
    - d) by 
    A1,
    A2,
    Th20,
    XREAL_1: 8;
    
            hence s
    >  
    0 ; 
    
            
    
            
    
    A3: ( 
    OpenHypercube (p,s)) 
    c= ( 
    OpenHypercube (e,r)) by 
    Th21;
    
            (
    Ball (p,s)) 
    c= ( 
    OpenHypercube (p,s)) by 
    Th22;
    
            hence (
    Ball (p,s)) 
    c= ( 
    OpenHypercube (e,r)) by 
    A3;
    
          end;
    
          hence thesis by
    TOPMETR: 15;
    
        end;
    
          suppose
    
          
    
    A4: n 
    =  
    0 ; 
    
          then (
    OpenHypercube (e,r)) 
    =  
    {
    {} } by 
    Th12;
    
          then (
    OpenHypercube (e,r)) 
    in the 
    topology of ( 
    TopSpaceMetr ( 
    Euclid  
    0 )) by 
    Th6,
    TARSKI:def 2;
    
          hence thesis by
    A4,
    PRE_TOPC:def 2;
    
        end;
    
      end;
    
    end
    
    theorem :: 
    
    EUCLID_9:23
    
    for V be
    Subset of ( 
    TopSpaceMetr ( 
    Euclid n)) holds V is 
    open implies for e be 
    Point of ( 
    Euclid n) st e 
    in V holds ex m be non 
    zero  
    Element of 
    NAT st ( 
    OpenHypercube (e,(1 
    / m))) 
    c= V 
    
    proof
    
      let V be
    Subset of ( 
    TopSpaceMetr ( 
    Euclid n)); 
    
      assume
    
      
    
    A1: V is 
    open;
    
      let e be
    Point of ( 
    Euclid n); 
    
      assume e
    in V; 
    
      then
    
      consider r be
    Real such that 
    
      
    
    A2: r 
    >  
    0 and 
    
      
    
    A3: ( 
    Ball (e,r)) 
    c= V by 
    A1,
    TOPMETR: 15;
    
      consider m be non
    zero  
    Element of 
    NAT such that 
    
      
    
    A4: ( 
    OpenHypercube (e,(1 
    / m))) 
    c= ( 
    Ball (e,r)) by 
    A2,
    Th19,
    GOBOARD6: 1;
    
      take m;
    
      thus thesis by
    A3,
    A4;
    
    end;
    
    theorem :: 
    
    EUCLID_9:24
    
    for V be
    Subset of ( 
    TopSpaceMetr ( 
    Euclid n)) st for e be 
    Point of ( 
    Euclid n) st e 
    in V holds ex r be 
    Real st r 
    >  
    0 & ( 
    OpenHypercube (e,r)) 
    c= V holds V is 
    open
    
    proof
    
      let V be
    Subset of ( 
    TopSpaceMetr ( 
    Euclid n)); 
    
      assume
    
      
    
    A1: for e be 
    Point of ( 
    Euclid n) st e 
    in V holds ex r be 
    Real st r 
    >  
    0 & ( 
    OpenHypercube (e,r)) 
    c= V; 
    
      for e be
    Point of ( 
    Euclid n) st e 
    in V holds ex r be 
    Real st r 
    >  
    0 & ( 
    Ball (e,r)) 
    c= V 
    
      proof
    
        let e be
    Point of ( 
    Euclid n); 
    
        assume e
    in V; 
    
        then
    
        consider r be
    Real such that 
    
        
    
    A2: r 
    >  
    0 and 
    
        
    
    A3: ( 
    OpenHypercube (e,r)) 
    c= V by 
    A1;
    
        (
    Ball (e,r)) 
    c= ( 
    OpenHypercube (e,r)) by 
    Th22;
    
        hence thesis by
    A2,
    A3,
    XBOOLE_1: 1;
    
      end;
    
      hence thesis by
    TOPMETR: 15;
    
    end;
    
    deffunc
    
    K(
    Nat, 
    Point of ( 
    Euclid $1)) = the set of all ( 
    OpenHypercube ($2,(1 
    / m))) where m be non 
    zero  
    Element of 
    NAT ; 
    
    definition
    
      let n, e;
    
      :: 
    
    EUCLID_9:def5
    
      func
    
    OpenHypercubes (e) -> 
    Subset-Family of ( 
    TopSpaceMetr ( 
    Euclid n)) equals the set of all ( 
    OpenHypercube (e,(1 
    / m))) where m be non 
    zero  
    Element of 
    NAT ; 
    
      coherence
    
      proof
    
        
    K(n,e)
    c= ( 
    bool the 
    carrier of ( 
    TopSpaceMetr ( 
    Euclid n))) 
    
        proof
    
          let x be
    object;
    
          assume x
    in  
    K(n,e);
    
          then ex m be non
    zero  
    Element of 
    NAT st x 
    = ( 
    OpenHypercube (e,(1 
    / m))); 
    
          hence thesis by
    ZFMISC_1:def 1;
    
        end;
    
        hence thesis;
    
      end;
    
    end
    
    registration
    
      let n, e;
    
      cluster ( 
    OpenHypercubes e) -> non 
    empty
    open(
    @ e) 
    -quasi_basis;
    
      coherence
    
      proof
    
        set T = (
    TopSpaceMetr ( 
    Euclid n)); 
    
        (
    OpenHypercube (e,(1 
    / 1))) 
    in ( 
    OpenHypercubes e); 
    
        hence (
    OpenHypercubes e) is non 
    empty;
    
        hereby
    
          let A be
    Subset of T; 
    
          assume A
    in ( 
    OpenHypercubes e); 
    
          then ex m be non
    zero  
    Element of 
    NAT st A 
    = ( 
    OpenHypercube (e,(1 
    / m))); 
    
          hence A is
    open;
    
        end;
    
        now
    
          let Y be
    set;
    
          assume Y
    in ( 
    OpenHypercubes e); 
    
          then ex m be non
    zero  
    Element of 
    NAT st Y 
    = ( 
    OpenHypercube (e,(1 
    / m))); 
    
          hence (
    @ e) 
    in Y by 
    Th11;
    
        end;
    
        hence (
    @ e) 
    in ( 
    Intersect ( 
    OpenHypercubes e)) by 
    SETFAM_1: 43;
    
        let S be
    Subset of T such that 
    
        
    
    A1: S is 
    open and 
    
        
    
    A2: ( 
    @ e) 
    in S; 
    
        consider r be
    Real such that 
    
        
    
    A3: r 
    >  
    0 and 
    
        
    
    A4: ( 
    Ball (e,r)) 
    c= S by 
    A1,
    A2,
    TOPMETR: 15;
    
        consider m be non
    zero  
    Element of 
    NAT such that 
    
        
    
    A5: ( 
    OpenHypercube (e,(1 
    / m))) 
    c= ( 
    Ball (e,r)) by 
    A3,
    Th19,
    GOBOARD6: 1;
    
        take V = (
    OpenHypercube (e,(1 
    / m))); 
    
        thus V
    in ( 
    OpenHypercubes e); 
    
        thus V
    c= S by 
    A4,
    A5;
    
      end;
    
    end
    
    
    
    Lm1: 
    
    now
    
      set J = (
    {}  
    -->  
    R^1 ); 
    
      set C = (
    Carrier J); 
    
      set P = (
    product J); 
    
      set T = (
    TopSpaceMetr ( 
    Euclid  
    0 )); 
    
      
    
      
    
    A1: the 
    carrier of P 
    = ( 
    product C) by 
    WAYBEL18:def 3;
    
      
    
      
    
    A2: ( 
    product  
    {} ) 
    =  
    {
    {} } by 
    CARD_3: 10;
    
      
    
      
    
    A3: ( 
    REAL  
    0 ) 
    =  
    {(
    0. ( 
    TOP-REAL  
    0 ))} by 
    EUCLID: 77;
    
      
    
      
    
    A4: 
    {the 
    carrier of T} is 
    Basis of T by 
    YELLOW_9: 10;
    
      the
    carrier of T 
    = the 
    carrier of P by 
    A1,
    A2,
    A3;
    
      then P is 1
    -element;
    
      then
    {the 
    carrier of P} is 
    Basis of P by 
    YELLOW_9: 10;
    
      hence T
    = P by 
    A1,
    A2,
    A3,
    A4,
    YELLOW_9: 25;
    
    end;
    
    theorem :: 
    
    EUCLID_9:25
    
    
    
    
    
    Th25: ( 
    Funcs (( 
    Seg n), 
    REAL )) 
    = ( 
    product ( 
    Carrier (( 
    Seg n) 
    -->  
    R^1 ))) 
    
    proof
    
      set J = ((
    Seg n) 
    -->  
    R^1 ); 
    
      set C = (
    Carrier J); 
    
      
    
      
    
    A1: ( 
    dom C) 
    = ( 
    Seg n) by 
    PARTFUN1:def 2;
    
      thus (
    Funcs (( 
    Seg n), 
    REAL )) 
    c= ( 
    product C) 
    
      proof
    
        let f be
    object;
    
        assume f
    in ( 
    Funcs (( 
    Seg n), 
    REAL )); 
    
        then
    
        reconsider f as
    Function of ( 
    Seg n), 
    REAL by 
    FUNCT_2: 66;
    
        
    
        
    
    A2: ( 
    dom f) 
    = ( 
    Seg n) by 
    FUNCT_2:def 1;
    
        now
    
          let x be
    object;
    
          assume
    
          
    
    A3: x 
    in ( 
    dom C); 
    
          then
    
          
    
    A4: ex R be 
    1-sorted st R 
    = (J 
    . x) & (C 
    . x) 
    = the 
    carrier of R by 
    PRALG_1:def 15;
    
          (f
    . x) 
    in  
    REAL by 
    A3,
    FUNCT_2: 5;
    
          hence (f
    . x) 
    in (C 
    . x) by 
    A4,
    A3,
    FUNCOP_1: 7;
    
        end;
    
        hence thesis by
    A2,
    A1,
    CARD_3: 9;
    
      end;
    
      let x be
    object;
    
      assume x
    in ( 
    product C); 
    
      then
    
      consider g be
    Function such that 
    
      
    
    A5: x 
    = g and 
    
      
    
    A6: ( 
    dom g) 
    = ( 
    dom C) and 
    
      
    
    A7: for y be 
    object st y 
    in ( 
    dom C) holds (g 
    . y) 
    in (C 
    . y) by 
    CARD_3:def 5;
    
      (
    rng g) 
    c=  
    REAL  
    
      proof
    
        let z be
    object;
    
        assume z
    in ( 
    rng g); 
    
        then
    
        consider a be
    object such that 
    
        
    
    A8: a 
    in ( 
    dom g) and 
    
        
    
    A9: (g 
    . a) 
    = z by 
    FUNCT_1:def 3;
    
        
    
        
    
    A10: ex R be 
    1-sorted st R 
    = (J 
    . a) & (C 
    . a) 
    = the 
    carrier of R by 
    A6,
    A8,
    PRALG_1:def 15;
    
        (J
    . a) 
    =  
    R^1 by 
    A6,
    A8,
    FUNCOP_1: 7;
    
        hence thesis by
    A6,
    A7,
    A8,
    A9,
    A10;
    
      end;
    
      hence thesis by
    A1,
    A5,
    A6,
    FUNCT_2:def 2;
    
    end;
    
    theorem :: 
    
    EUCLID_9:26
    
    
    
    
    
    Th26: n 
    <>  
    0 implies for PP be 
    Subset-Family of ( 
    TopSpaceMetr ( 
    Euclid n)) st PP 
    = ( 
    product_prebasis (( 
    Seg n) 
    -->  
    R^1 )) holds PP is 
    quasi_prebasis
    
    proof
    
      assume
    
      
    
    A1: n 
    <>  
    0 ; 
    
      set E = (
    Euclid n); 
    
      set T = (
    TopSpaceMetr E); 
    
      let PP be
    Subset-Family of T; 
    
      set J = ((
    Seg n) 
    -->  
    R^1 ); 
    
      set C = (
    Carrier J); 
    
      set S = (
    Seg n); 
    
      reconsider S as non
    empty
    finite  
    set by 
    A1;
    
      assume
    
      
    
    A2: PP 
    = ( 
    product_prebasis (( 
    Seg n) 
    -->  
    R^1 )); 
    
      
    
      
    
    A3: ( 
    REAL n) 
    = ( 
    Funcs (( 
    Seg n), 
    REAL )) by 
    FINSEQ_2: 93;
    
      
    
      
    
    A4: ( 
    dom C) 
    = ( 
    Seg n) by 
    PARTFUN1:def 2;
    
      
    
      
    
    A5: ( 
    Funcs (( 
    Seg n), 
    REAL )) 
    = ( 
    product C) by 
    Th25;
    
      defpred
    
    P[
    set, 
    object] means ex e be
    Point of E st e 
    = $1 & $2 
    = ( 
    OpenHypercubes e); 
    
      
    
      
    
    A6: for i be 
    Element of T holds ex j be 
    object st 
    P[i, j]
    
      proof
    
        let i be
    Element of T; 
    
        reconsider j = i as
    Point of E; 
    
        take (
    OpenHypercubes j), j; 
    
        thus thesis;
    
      end;
    
      consider NS be
    ManySortedSet of T such that 
    
      
    
    A7: for x be 
    Point of T holds 
    P[x, (NS
    . x)] from 
    PBOOLE:sch 6(
    A6);
    
      now
    
        let x be
    Point of T; 
    
        reconsider y = x as
    Point of E; 
    
        
    P[y, (NS
    . y)] by 
    A7;
    
        hence (NS
    . x) is 
    Basis of x; 
    
      end;
    
      then
    
      reconsider NS as
    Neighborhood_System of T by 
    TOPGEN_2:def 3;
    
      take B = (
    Union NS); 
    
      let b be
    object;
    
      reconsider bb = b as
    set by 
    TARSKI: 1;
    
      assume b
    in B; 
    
      then
    
      consider Z be
    set such that 
    
      
    
    A8: b 
    in Z and 
    
      
    
    A9: Z 
    in ( 
    rng NS) by 
    TARSKI:def 4;
    
      consider x be
    object such that 
    
      
    
    A10: x 
    in ( 
    dom NS) and 
    
      
    
    A11: (NS 
    . x) 
    = Z by 
    A9,
    FUNCT_1:def 3;
    
      reconsider x as
    Point of E by 
    A10;
    
      
    
      
    
    A12: ( 
    dom x) 
    = ( 
    Seg n) by 
    FINSEQ_1: 89;
    
      
    P[x, (NS
    . x)] by 
    A7;
    
      then
    
      consider m be non
    zero  
    Element of 
    NAT such that 
    
      
    
    A13: b 
    = ( 
    OpenHypercube (x,(1 
    / m))) by 
    A8,
    A11;
    
      deffunc
    
    A(
    object) = (
    product (C 
    +* ($1,( 
    R^1  
    ].((x
    . $1) 
    - (1 
    / m)), ((x 
    . $1) 
    + (1 
    / m)).[)))); 
    
      defpred
    
    R[
    set] means not contradiction;
    
      set Y = {
    A(q) where q be
    Element of S : 
    R[q] };
    
      
    
      
    
    A14: Y is 
    finite from 
    PRE_CIRC:sch 1;
    
      Y
    c= ( 
    bool the 
    carrier of T) 
    
      proof
    
        let s be
    object;
    
        assume s
    in Y; 
    
        then
    
        consider q be
    Element of S such that 
    
        
    
    A15: s 
    =  
    A(q);
    
        
    A(q)
    c= the 
    carrier of T 
    
        proof
    
          let z be
    object;
    
          set f = (C
    +* (q,( 
    R^1  
    ].((x
    . q) 
    - (1 
    / m)), ((x 
    . q) 
    + (1 
    / m)).[))); 
    
          assume z
    in  
    A(q);
    
          then
    
          consider g be
    Function such that 
    
          
    
    A16: z 
    = g and 
    
          
    
    A17: ( 
    dom g) 
    = ( 
    dom f) and 
    
          
    
    A18: for d be 
    object st d 
    in ( 
    dom f) holds (g 
    . d) 
    in (f 
    . d) by 
    CARD_3:def 5;
    
          
    
          
    
    A19: ( 
    dom f) 
    = ( 
    dom C) by 
    FUNCT_7: 30;
    
          then
    
          reconsider g as
    FinSequence by 
    A4,
    A17,
    FINSEQ_1:def 2;
    
          (
    rng g) 
    c=  
    REAL  
    
          proof
    
            let b be
    object;
    
            assume b
    in ( 
    rng g); 
    
            then
    
            consider a be
    object such that 
    
            
    
    A20: a 
    in ( 
    dom g) and 
    
            
    
    A21: (g 
    . a) 
    = b by 
    FUNCT_1:def 3;
    
            
    
            
    
    A22: (g 
    . a) 
    in (f 
    . a) by 
    A17,
    A18,
    A20;
    
            per cases ;
    
              suppose a
    = q; 
    
              then (f
    . a) 
    = ( 
    R^1  
    ].((x
    . q) 
    - (1 
    / m)), ((x 
    . q) 
    + (1 
    / m)).[) by 
    A17,
    A19,
    A20,
    FUNCT_7: 31;
    
              hence thesis by
    A21,
    A22;
    
            end;
    
              suppose a
    <> q; 
    
              then
    
              
    
    A23: (f 
    . a) 
    = (C 
    . a) by 
    FUNCT_7: 32;
    
              ex R be
    1-sorted st R 
    = (J 
    . a) & (C 
    . a) 
    = the 
    carrier of R by 
    A20,
    A17,
    A19,
    PRALG_1:def 15;
    
              hence thesis by
    A21,
    A22,
    A23,
    A20,
    A17,
    A19,
    FUNCOP_1: 7;
    
            end;
    
          end;
    
          then g is
    FinSequence of 
    REAL by 
    FINSEQ_1:def 4;
    
          then
    
          
    
    A24: g is 
    Element of ( 
    REAL  
    * ) by 
    FINSEQ_1:def 11;
    
          n
    in  
    NAT by 
    ORDINAL1:def 12;
    
          then (
    len g) 
    = n by 
    A4,
    A17,
    A19,
    FINSEQ_1:def 3;
    
          hence thesis by
    A16,
    A24;
    
        end;
    
        hence thesis by
    A15,
    ZFMISC_1:def 1;
    
      end;
    
      then
    
      reconsider Y as
    Subset-Family of T; 
    
      
    
      
    
    A25: Y 
    c= PP 
    
      proof
    
        let z be
    object;
    
        assume
    
        
    
    A26: z 
    in Y; 
    
        then
    
        consider i be
    Element of S such that 
    
        
    
    A27: z 
    =  
    A(i);
    
        (J
    . i) 
    =  
    R^1 ; 
    
        hence thesis by
    A2,
    A5,
    A26,
    A3,
    A27,
    WAYBEL18:def 2;
    
      end;
    
      consider N be
    object such that 
    
      
    
    A28: N 
    in S by 
    XBOOLE_0:def 1;
    
      
    
      
    
    A29: 
    A(N)
    in Y by 
    A28;
    
      then
    
      
    
    A30: ( 
    Intersect Y) 
    = ( 
    meet Y) by 
    SETFAM_1:def 9;
    
      
    
      
    
    A31: ( 
    dom ( 
    Intervals (x,(1 
    / m)))) 
    = ( 
    dom x) by 
    Def3;
    
      
    
    A32: 
    
      now
    
        let i be
    Element of S; 
    
        set f = (C
    +* (i,( 
    R^1  
    ].((x
    . i) 
    - (1 
    / m)), ((x 
    . i) 
    + (1 
    / m)).[))); 
    
        thus (
    product ( 
    Intervals (x,(1 
    / m)))) 
    c= ( 
    product f) 
    
        proof
    
          let d be
    object;
    
          assume d
    in ( 
    product ( 
    Intervals (x,(1 
    / m)))); 
    
          then
    
          consider d1 be
    Function such that 
    
          
    
    A33: d 
    = d1 and 
    
          
    
    A34: ( 
    dom d1) 
    = ( 
    dom ( 
    Intervals (x,(1 
    / m)))) and 
    
          
    
    A35: for a be 
    object st a 
    in ( 
    dom ( 
    Intervals (x,(1 
    / m)))) holds (d1 
    . a) 
    in (( 
    Intervals (x,(1 
    / m))) 
    . a) by 
    CARD_3:def 5;
    
          
    
          
    
    A36: ( 
    dom f) 
    = ( 
    dom C) by 
    FUNCT_7: 30;
    
          now
    
            let k be
    object;
    
            assume
    
            
    
    A37: k 
    in ( 
    dom f); 
    
            then
    
            
    
    A38: (( 
    Intervals (x,(1 
    / m))) 
    . k) 
    =  
    ].((x
    . k) 
    - (1 
    / m)), ((x 
    . k) 
    + (1 
    / m)).[ by 
    A36,
    A12,
    Def3;
    
            
    
            
    
    A39: (d1 
    . k) 
    in (( 
    Intervals (x,(1 
    / m))) 
    . k) by 
    A35,
    A31,
    A12,
    A36,
    A37;
    
            per cases ;
    
              suppose k
    = i; 
    
              hence (d1
    . k) 
    in (f 
    . k) by 
    A38,
    A39,
    A37,
    A36,
    FUNCT_7: 31;
    
            end;
    
              suppose k
    <> i; 
    
              then
    
              
    
    A40: (f 
    . k) 
    = (C 
    . k) by 
    FUNCT_7: 32;
    
              
    
              
    
    A41: ex R be 
    1-sorted st R 
    = (J 
    . k) & (C 
    . k) 
    = the 
    carrier of R by 
    A37,
    A36,
    PRALG_1:def 15;
    
              (d1
    . k) 
    in  
    REAL by 
    A38,
    A39;
    
              hence (d1
    . k) 
    in (f 
    . k) by 
    A40,
    A41,
    A37,
    A36,
    FUNCOP_1: 7;
    
            end;
    
          end;
    
          hence d
    in ( 
    product f) by 
    A33,
    A4,
    A34,
    A31,
    A12,
    A36,
    CARD_3: 9;
    
        end;
    
      end;
    
      bb
    = ( 
    Intersect Y) 
    
      proof
    
        now
    
          let M be
    set;
    
          assume M
    in Y; 
    
          then ex i be
    Element of S st M 
    =  
    A(i);
    
          hence bb
    c= M by 
    A13,
    A32;
    
        end;
    
        hence bb
    c= ( 
    Intersect Y) by 
    A30,
    A29,
    SETFAM_1: 5;
    
        let q be
    object;
    
        assume
    
        
    
    A42: q 
    in ( 
    Intersect Y); 
    
        then
    
        reconsider q as
    Function;
    
        
    
        
    
    A43: ( 
    dom q) 
    = ( 
    Seg n) by 
    A42,
    FINSEQ_1: 89;
    
        now
    
          let a be
    object such that 
    
          
    
    A44: a 
    in ( 
    dom ( 
    Intervals (x,(1 
    / m)))); 
    
          
    
          
    
    A45: (( 
    Intervals (x,(1 
    / m))) 
    . a) 
    =  
    ].((x
    . a) 
    - (1 
    / m)), ((x 
    . a) 
    + (1 
    / m)).[ by 
    A44,
    A31,
    Def3;
    
          set f = (C
    +* (a,( 
    R^1  
    ].((x
    . a) 
    - (1 
    / m)), ((x 
    . a) 
    + (1 
    / m)).[))); 
    
          
    A(a)
    in Y by 
    A44,
    A31,
    A12;
    
          then
    
          
    
    A46: q 
    in  
    A(a) by
    A42,
    SETFAM_1: 43;
    
          then
    
          
    
    A47: ( 
    dom q) 
    = ( 
    dom f) by 
    CARD_3: 9;
    
          then
    
          
    
    A48: (q 
    . a) 
    in (f 
    . a) by 
    A43,
    A44,
    A31,
    A12,
    A46,
    CARD_3: 9;
    
          (
    dom f) 
    = ( 
    dom C) by 
    FUNCT_7: 30;
    
          hence (q
    . a) 
    in (( 
    Intervals (x,(1 
    / m))) 
    . a) by 
    A45,
    A48,
    A43,
    A44,
    A31,
    A12,
    A47,
    FUNCT_7: 31;
    
        end;
    
        hence thesis by
    A13,
    A43,
    A31,
    A12,
    CARD_3: 9;
    
      end;
    
      hence thesis by
    A25,
    A14,
    CANTOR_1:def 3;
    
    end;
    
    theorem :: 
    
    EUCLID_9:27
    
    
    
    
    
    Th27: for PP be 
    Subset-Family of ( 
    TopSpaceMetr ( 
    Euclid n)) st PP 
    = ( 
    product_prebasis (( 
    Seg n) 
    -->  
    R^1 )) holds PP is 
    open
    
    proof
    
      let PP be
    Subset-Family of ( 
    TopSpaceMetr ( 
    Euclid n)); 
    
      set J = ((
    Seg n) 
    -->  
    R^1 ); 
    
      set C = (
    Carrier J); 
    
      set T = (
    TopSpaceMetr ( 
    Euclid n)); 
    
      set E = (
    Euclid n); 
    
      assume
    
      
    
    A1: PP 
    = ( 
    product_prebasis (( 
    Seg n) 
    -->  
    R^1 )); 
    
      let x be
    Subset of T; 
    
      assume x
    in PP; 
    
      then
    
      consider i be
    set, R be 
    TopStruct, V be 
    Subset of R such that 
    
      
    
    A2: i 
    in ( 
    Seg n) and 
    
      
    
    A3: V is 
    open and 
    
      
    
    A4: R 
    = (J 
    . i) and 
    
      
    
    A5: x 
    = ( 
    product (C 
    +* (i,V))) by 
    A1,
    WAYBEL18:def 2;
    
      
    
      
    
    A6: ( 
    dom C) 
    = ( 
    Seg n) by 
    PARTFUN1:def 2;
    
      
    
    A7: 
    
      now
    
        let i be
    set;
    
        let e,y be
    Point of E; 
    
        let r be
    Real;
    
        assume
    
        
    
    A8: y 
    in ( 
    Ball (e,r)); 
    
        set O =
    ].((e
    . i) 
    - r), ((e 
    . i) 
    + r).[; 
    
        set G = (C
    +* (i,O)); 
    
        
    
        
    
    A9: ( 
    dom y) 
    = ( 
    Seg n) by 
    FINSEQ_1: 89;
    
        
    
        
    
    A10: ( 
    dom G) 
    = ( 
    dom C) by 
    FUNCT_7: 30;
    
        now
    
          let a be
    object;
    
          assume
    
          
    
    A11: a 
    in ( 
    dom G); 
    
          per cases ;
    
            suppose
    
            
    
    A12: a 
    = i; 
    
            
    
            
    
    A13: (y 
    . i) 
    = ((e 
    . i) 
    + ((y 
    . i) 
    - (e 
    . i))); 
    
            
    
            
    
    A14: ( 
    dom e) 
    = ( 
    Seg n) by 
    FINSEQ_1: 89;
    
            (
    dom (y 
    - e)) 
    = (( 
    dom y) 
    /\ ( 
    dom e)) by 
    VALUED_1: 12;
    
            then
    
            
    
    A15: ((y 
    - e) 
    . i) 
    = ((y 
    . i) 
    - (e 
    . i)) by 
    A9,
    A14,
    A11,
    A12,
    A10,
    VALUED_1: 13;
    
            
    |.((y
    - e) 
    . i).| 
    < r by 
    A8,
    Th10;
    
            then (y
    . i) 
    in O by 
    A15,
    A13,
    FCONT_3: 3;
    
            hence (y
    . a) 
    in (G 
    . a) by 
    A12,
    A10,
    A11,
    FUNCT_7: 31;
    
          end;
    
            suppose a
    <> i; 
    
            then
    
            
    
    A16: (G 
    . a) 
    = (C 
    . a) by 
    FUNCT_7: 32;
    
            
    
            
    
    A17: ex R be 
    1-sorted st R 
    = (J 
    . a) & (C 
    . a) 
    = the 
    carrier of R by 
    A11,
    A10,
    PRALG_1:def 15;
    
            (y
    . a) 
    in  
    REAL by 
    XREAL_0:def 1;
    
            hence (y
    . a) 
    in (G 
    . a) by 
    A16,
    A11,
    A10,
    A17,
    FUNCOP_1: 7;
    
          end;
    
        end;
    
        hence y
    in ( 
    product G) by 
    A10,
    A6,
    A9,
    CARD_3: 9;
    
      end;
    
      set F = (C
    +* (i,V)); 
    
      
    
      
    
    A18: R 
    =  
    R^1 by 
    A2,
    A4,
    FUNCOP_1: 7;
    
      for e be
    Element of E st e 
    in x holds ex r be 
    Real st r 
    >  
    0 & ( 
    Ball (e,r)) 
    c= x 
    
      proof
    
        let e be
    Element of E; 
    
        assume
    
        
    
    A19: e 
    in x; 
    
        
    
        
    
    A20: ( 
    dom F) 
    = ( 
    dom C) by 
    FUNCT_7: 30;
    
        then
    
        
    
    A21: (e 
    . i) 
    in (F 
    . i) by 
    A2,
    A6,
    A19,
    A5,
    CARD_3: 9;
    
        
    
        
    
    A22: (F 
    . i) 
    = V by 
    A2,
    A6,
    FUNCT_7: 31;
    
        then
    
        consider r be
    Real such that 
    
        
    
    A23: r 
    >  
    0 and 
    
        
    
    A24: 
    ].((e
    . i) 
    - r), ((e 
    . i) 
    + r).[ 
    c= V by 
    A3,
    A18,
    A21,
    FRECHET: 8;
    
        take r;
    
        thus r
    >  
    0 by 
    A23;
    
        let y be
    object;
    
        assume
    
        
    
    A25: y 
    in ( 
    Ball (e,r)); 
    
        then
    
        reconsider y as
    Point of E; 
    
        set O =
    ].((e
    . i) 
    - r), ((e 
    . i) 
    + r).[; 
    
        set G = (C
    +* (i,O)); 
    
        
    
        
    
    A26: ( 
    dom G) 
    = ( 
    dom C) by 
    FUNCT_7: 30;
    
        
    
        
    
    A27: y 
    in ( 
    product G) by 
    A25,
    A7;
    
        now
    
          let a be
    object;
    
          assume
    
          
    
    A28: a 
    in ( 
    dom G); 
    
          per cases ;
    
            suppose a
    = i; 
    
            hence (G
    . a) 
    c= (F 
    . a) by 
    A24,
    A22,
    A26,
    A28,
    FUNCT_7: 31;
    
          end;
    
            suppose a
    <> i; 
    
            then (G
    . a) 
    = (C 
    . a) & (F 
    . a) 
    = (C 
    . a) by 
    FUNCT_7: 32;
    
            hence (G
    . a) 
    c= (F 
    . a); 
    
          end;
    
        end;
    
        then (
    product G) 
    c= ( 
    product F) by 
    A20,
    CARD_3: 27,
    FUNCT_7: 30;
    
        hence thesis by
    A27,
    A5;
    
      end;
    
      then x
    in the 
    topology of T by 
    PCOMPS_1:def 4;
    
      hence thesis by
    PRE_TOPC:def 2;
    
    end;
    
    theorem :: 
    
    EUCLID_9:28
    
    (
    TopSpaceMetr ( 
    Euclid n)) 
    = ( 
    product (( 
    Seg n) 
    -->  
    R^1 )) 
    
    proof
    
      set J = ((
    Seg n) 
    -->  
    R^1 ); 
    
      per cases ;
    
        suppose
    
        
    
    A1: n 
    =  
    0 ; 
    
        then J
    = ( 
    {}  
    -->  
    R^1 ); 
    
        hence thesis by
    A1,
    Lm1;
    
      end;
    
        suppose
    
        
    
    A2: n 
    <>  
    0 ; 
    
        
    
        
    
    A3: ( 
    REAL n) 
    = ( 
    Funcs (( 
    Seg n), 
    REAL )) by 
    FINSEQ_2: 93;
    
        
    
        
    
    A4: ( 
    Funcs (( 
    Seg n), 
    REAL )) 
    = ( 
    product ( 
    Carrier J)) by 
    Th25;
    
        then
    
        reconsider PP = (
    product_prebasis J) as 
    Subset-Family of ( 
    TopSpaceMetr ( 
    Euclid n)) by 
    FINSEQ_2: 93;
    
        
    
        
    
    A5: PP is 
    open by 
    Th27;
    
        PP is
    quasi_prebasis by 
    A2,
    Th26;
    
        hence thesis by
    A4,
    A3,
    A5,
    WAYBEL18:def 3;
    
      end;
    
    end;