integr23.miz
begin
theorem ::
INTEGR23:1
Th1: for E be
Real, q be
FinSequence of
REAL , S be
FinSequence of
REAL st (
len S)
= (
len q) & for i be
Nat st i
in (
dom S) holds ex r be
Real st r
= (q
. i) & (S
. i)
= (r
* E) holds (
Sum S)
= ((
Sum q)
* E)
proof
let E be
Real;
defpred
P[
Nat] means for q be
FinSequence of
REAL , S be
FinSequence of
REAL st $1
= (
len S) & (
len S)
= (
len q) & for i be
Nat st i
in (
dom S) holds ex r be
Real st r
= (q
. i) & (S
. i)
= (r
* E) holds (
Sum S)
= ((
Sum q)
* E);
A1:
P[
0 ]
proof
let q be
FinSequence of
REAL , S be
FinSequence of
REAL ;
assume
0
= (
len S) & (
len S)
= (
len q) & for i be
Nat st i
in (
dom S) holds ex r be
Real st r
= (q
. i) & (S
. i)
= (r
* E);
then (
<*>
REAL )
= S & (
<*>
REAL )
= q;
hence thesis by
RVSUM_1: 72;
end;
A3:
now
let i be
Nat;
assume
A4:
P[i];
now
let q be
FinSequence of
REAL , S be
FinSequence of
REAL ;
set S0 = (S
| i), q0 = (q
| i);
assume
A5: (i
+ 1)
= (
len S) & (
len S)
= (
len q) & for i be
Nat st i
in (
dom S) holds ex r be
Real st r
= (q
. i) & (S
. i)
= (r
* E);
A6: for k be
Nat st k
in (
dom S0) holds ex r be
Real st r
= (q0
. k) & (S0
. k)
= (r
* E)
proof
let k be
Nat;
assume k
in (
dom S0);
then
A7: k
in (
Seg i) & k
in (
dom S) by
RELAT_1: 57;
then
consider r be
Real such that
A8: r
= (q
. k) & (S
. k)
= (r
* E) by
A5;
take r;
thus thesis by
A7,
A8,
FUNCT_1: 49;
end;
(
dom S)
= (
Seg (i
+ 1)) by
A5,
FINSEQ_1:def 3;
then
consider r be
Real such that
A9: r
= (q
. (i
+ 1)) & (S
. (i
+ 1))
= (r
* E) by
A5,
FINSEQ_1: 4;
A10: 1
<= (i
+ 1) & (i
+ 1)
<= (
len q) by
A5,
NAT_1: 11;
q
= ((q
| i)
^
<*(q
/. (i
+ 1))*>) by
A5,
FINSEQ_5: 21;
then q
= (q0
^
<*(q
. (i
+ 1))*>) by
A10,
FINSEQ_4: 15;
then ((
Sum q)
* E)
= (((
Sum q0)
+ (q
. (i
+ 1)))
* E) by
RVSUM_1: 74;
then
A11: ((
Sum q)
* E)
= (((
Sum q0)
* E)
+ ((q
. (i
+ 1))
* E));
A12: i
= (
len S0) & i
= (
len q0) by
A5,
FINSEQ_1: 59,
NAT_1: 11;
reconsider v = (S
. (i
+ 1)) as
Real;
S
= ((S
| i)
^
<*(S
/. (
len S))*>) by
A5,
FINSEQ_5: 21;
then S
= (S0
^
<*v*>) by
A5,
A10,
FINSEQ_4: 15;
then (
Sum S)
= ((
Sum S0)
+ v) by
RVSUM_1: 74;
hence (
Sum S)
= ((
Sum q)
* E) by
A4,
A6,
A9,
A11,
A12;
end;
hence
P[(i
+ 1)];
end;
for i be
Nat holds
P[i] from
NAT_1:sch 2(
A1,
A3);
hence thesis;
end;
Lm1: for xseq,yseq be
FinSequence of
REAL st (
len xseq)
= ((
len yseq)
+ 1) & (xseq
| (
len yseq))
= yseq holds ex v be
Real st v
= (xseq
. (
len xseq)) & (
Sum xseq)
= ((
Sum yseq)
+ v)
proof
let xseq,yseq be
FinSequence of
REAL ;
assume
A1: (
len xseq)
= ((
len yseq)
+ 1) & (xseq
| (
len yseq))
= yseq;
take v = (xseq
. (
len xseq));
(
len xseq)
in (
Seg (
len xseq)) by
A1,
FINSEQ_1: 4;
then (
len xseq)
in (
dom xseq) by
FINSEQ_1:def 3;
then v
= (xseq
/. (
len xseq)) by
PARTFUN1:def 6;
then xseq
= ((xseq
| (
len yseq))
^
<*v*>) by
A1,
FINSEQ_5: 21;
hence thesis by
A1,
RVSUM_1: 74;
end;
theorem ::
INTEGR23:2
Th2: for xseq,yseq be
FinSequence of
REAL st (
len xseq)
= (
len yseq) & (for i be
Element of
NAT st i
in (
dom xseq) holds ex v be
Real st v
= (xseq
. i) & (yseq
. i)
=
|.v.|) holds
|.(
Sum xseq).|
<= (
Sum yseq)
proof
defpred
P[
Nat] means for xseq,yseq be
FinSequence of
REAL st $1
= (
len xseq) & (
len xseq)
= (
len yseq) & (for i be
Element of
NAT st i
in (
dom xseq) holds ex v be
Real st v
= (xseq
. i) & (yseq
. i)
=
|.v.|) holds
|.(
Sum xseq).|
<= (
Sum yseq);
A1:
P[
0 ]
proof
let xseq be
FinSequence of
REAL , yseq be
FinSequence of
REAL ;
assume
A2:
0
= (
len xseq) & (
len xseq)
= (
len yseq) & (for i be
Element of
NAT st i
in (
dom xseq) holds ex v be
Real st v
= (xseq
. i) & (yseq
. i)
=
|.v.|);
then (
<*>
REAL )
= xseq;
then (
Sum xseq)
=
0 & (
<*>
REAL )
= yseq by
A2,
RVSUM_1: 72;
hence thesis by
COMPLEX1: 44,
RVSUM_1: 72;
end;
A3:
now
let i be
Nat;
assume
A4:
P[i];
now
let xseq be
FinSequence of
REAL , yseq be
FinSequence of
REAL ;
set xseq0 = (xseq
| i), yseq0 = (yseq
| i);
assume
A5: (i
+ 1)
= (
len xseq) & (
len xseq)
= (
len yseq) & for i be
Element of
NAT st i
in (
dom xseq) holds ex v be
Real st v
= (xseq
. i) & (yseq
. i)
=
|.v.|;
A6: for k be
Element of
NAT st k
in (
dom xseq0) holds ex v be
Real st v
= (xseq0
. k) & (yseq0
. k)
=
|.v.|
proof
let k be
Element of
NAT ;
assume k
in (
dom xseq0);
then
A8: k
in (
Seg i) & k
in (
dom xseq) by
RELAT_1: 57;
then
consider v be
Real such that
A9: v
= (xseq
. k) & (yseq
. k)
=
|.v.| by
A5;
take v;
thus thesis by
A8,
A9,
FUNCT_1: 49;
end;
(
dom xseq)
= (
Seg (i
+ 1)) by
A5,
FINSEQ_1:def 3;
then
consider w be
Real such that
A10: w
= (xseq
. (i
+ 1)) & (yseq
. (i
+ 1))
=
|.w.| by
A5,
FINSEQ_1: 4;
A11: 1
<= (i
+ 1) & (i
+ 1)
<= (
len yseq) by
A5,
NAT_1: 11;
yseq
= ((yseq
| i)
^
<*(yseq
/. (i
+ 1))*>) by
A5,
FINSEQ_5: 21;
then yseq
= (yseq0
^
<*(yseq
. (i
+ 1))*>) by
A11,
FINSEQ_4: 15;
then
A12: (
Sum yseq)
= ((
Sum yseq0)
+ (yseq
. (i
+ 1))) by
RVSUM_1: 74;
A13: i
= (
len xseq0) by
A5,
FINSEQ_1: 59,
NAT_1: 11;
then
A14: ex v be
Real st v
= (xseq
. (
len xseq)) & (
Sum xseq)
= ((
Sum xseq0)
+ v) by
A5,
Lm1;
A15:
|.((
Sum xseq0)
+ w).|
<= (
|.(
Sum xseq0).|
+
|.w.|) by
COMPLEX1: 56;
(
len xseq0)
= (
len yseq0) by
A5,
A13,
FINSEQ_1: 59,
NAT_1: 11;
then (
|.(
Sum xseq0).|
+
|.w.|)
<= ((
Sum yseq0)
+ (yseq
. (i
+ 1))) by
A4,
A6,
A10,
A13,
XREAL_1: 6;
hence
|.(
Sum xseq).|
<= (
Sum yseq) by
A5,
A10,
A12,
A14,
A15,
XXREAL_0: 2;
end;
hence
P[(i
+ 1)];
end;
for i be
Nat holds
P[i] from
NAT_1:sch 2(
A1,
A3);
hence thesis;
end;
theorem ::
INTEGR23:3
Th3: for p,q be
FinSequence of
REAL st (
len p)
= (
len q) & (for j be
Nat st j
in (
dom p) holds
|.(p
. j).|
<= (q
. j)) holds
|.(
Sum p).|
<= (
Sum q)
proof
let p,q be
FinSequence of
REAL ;
assume
A1: (
len p)
= (
len q) & (for j be
Nat st j
in (
dom p) holds
|.(p
. j).|
<= (q
. j));
defpred
P1[
Nat,
set] means ex v be
Real st v
= (p
. $1) & $2
=
|.v.|;
A2: for i be
Nat st i
in (
Seg (
len p)) holds ex x be
Element of
REAL st
P1[i, x]
proof
let i be
Nat;
assume i
in (
Seg (
len p));
reconsider w =
|.(p
. i).| as
Element of
REAL by
XREAL_0:def 1;
take w;
thus thesis;
end;
consider u be
FinSequence of
REAL such that
A3: (
dom u)
= (
Seg (
len p)) & for i be
Nat st i
in (
Seg (
len p)) holds
P1[i, (u
. i)] from
FINSEQ_1:sch 5(
A2);
A4: for i be
Element of
NAT st i
in (
dom p) holds ex v be
Real st v
= (p
. i) & (u
. i)
=
|.v.|
proof
let i be
Element of
NAT ;
assume i
in (
dom p);
then i
in (
Seg (
len p)) by
FINSEQ_1:def 3;
hence ex v be
Real st v
= (p
. i) & (u
. i)
=
|.v.| by
A3;
end;
A5: (
len u)
= (
len p) by
A3,
FINSEQ_1:def 3;
then
A6:
|.(
Sum p).|
<= (
Sum u) by
A4,
Th2;
set i = (
len p);
reconsider uu = u as
Element of (i
-tuples_on
REAL ) by
A5,
FINSEQ_2: 92;
reconsider qq = q as
Element of (i
-tuples_on
REAL ) by
A1,
FINSEQ_2: 92;
now
let j be
Nat;
assume j
in (
Seg i);
then
A7: j
in (
dom p) by
FINSEQ_1:def 3;
then ex v be
Real st v
= (p
. j) & (u
. j)
=
|.v.| by
A4;
hence (uu
. j)
<= (qq
. j) by
A1,
A7;
end;
then (
Sum uu)
<= (
Sum qq) by
RVSUM_1: 82;
hence thesis by
A6,
XXREAL_0: 2;
end;
theorem ::
INTEGR23:4
Th4: for n be
Nat, a be
object holds (
len (n
|-> a))
= n
proof
let n be
Nat, a be
object;
set x = (n
|-> a);
(
dom x)
= (
Seg (
len x)) by
FINSEQ_1:def 3;
hence thesis by
FINSEQ_1: 6,
FUNCOP_1: 13;
end;
theorem ::
INTEGR23:5
Th5: for p be
FinSequence, a be
object holds p
= ((
len p)
|-> a) iff (for k be
object st k
in (
dom p) holds (p
. k)
= a)
proof
let p be
FinSequence, a be
object;
thus p
= ((
len p)
|-> a) implies for k be
object st k
in (
dom p) holds (p
. k)
= a
proof
assume
A2: p
= ((
len p)
|-> a);
let k be
object;
assume k
in (
dom p);
then k
in (
Seg (
len p)) by
FINSEQ_1:def 3;
hence thesis by
A2,
FINSEQ_2: 57;
end;
assume for k be
object st k
in (
dom p) holds (p
. k)
= a;
then p
= ((
dom p)
--> a) by
FUNCOP_1: 11;
hence thesis by
FINSEQ_1:def 3;
end;
theorem ::
INTEGR23:6
Th8: for p be
FinSequence of
REAL , i be
Nat, r be
Real st i
in (
dom p) & (p
. i)
= r & for k be
Nat st k
in (
dom p) & k
<> i holds (p
. k)
=
0 holds (
Sum p)
= r
proof
defpred
P[
Nat] means for p be
FinSequence of
REAL , i be
Nat, r be
Real st (
len p)
= $1 & i
in (
dom p) & (p
. i)
= r & (for k be
Nat st k
in (
dom p) & k
<> i holds (p
. k)
=
0 ) holds (
Sum p)
= r;
A1:
P[
0 ]
proof
let p be
FinSequence of
REAL , i be
Nat, r be
Real;
assume that
A2: (
len p)
=
0 and
A3: i
in (
dom p) and (p
. i)
= r and for k be
Nat st k
in (
dom p) & k
<> i holds (p
. k)
=
0 ;
p
= (
<*>
REAL ) by
A2;
hence thesis by
A3;
end;
A4: for n be
Nat st
P[n] holds
P[(n
+ 1)]
proof
let n be
Nat;
assume
A5:
P[n];
P[(n
+ 1)]
proof
let p be
FinSequence of
REAL , i be
Nat, r be
Real;
assume that
A6: (
len p)
= (n
+ 1) and
A7: i
in (
dom p) and
A8: (p
. i)
= r and
A9: for k be
Nat st k
in (
dom p) & k
<> i holds (p
. k)
=
0 ;
consider q be
FinSequence of
REAL , a be
Element of
REAL such that
A10: p
= (q
^
<*a*>) by
A6,
FINSEQ_2: 19;
A11: (
len p)
= ((
len q)
+ 1) by
A10,
FINSEQ_2: 16;
A12: 1
<= i
<= (n
+ 1) by
A6,
A7,
FINSEQ_3: 25;
per cases ;
suppose
A13: i
<> (n
+ 1);
then 1
<= i
< (n
+ 1) by
A12,
XXREAL_0: 1;
then
A14: 1
<= i
<= n by
INT_1: 7;
A15: (q
. i)
= r
proof
q
= (p
| (
dom q)) by
A10,
FINSEQ_1: 21;
hence thesis by
A6,
A8,
A11,
A14,
FUNCT_1: 47,
FINSEQ_3: 25;
end;
A17: for k be
Nat st k
in (
dom q) & k
<> i holds (q
. k)
=
0
proof
let k be
Nat;
assume that
A18: k
in (
dom q) and
A19: k
<> i;
A20: (
dom q)
c= (
dom p) by
A10,
FINSEQ_1: 26;
(q
. k)
= (p
. k) by
A10,
A18,
FINSEQ_1:def 7
.=
0 by
A9,
A18,
A19,
A20;
hence thesis;
end;
A21: 1
<= (n
+ 1)
<= (n
+ 1) by
XREAL_1: 31;
a
= (p
. (n
+ 1)) by
A6,
A10,
A11,
FINSEQ_1: 42
.=
0 by
A6,
A9,
A13,
A21,
FINSEQ_3: 25;
then (
Sum p)
= ((
Sum q)
+
0 ) by
A10,
RVSUM_1: 74
.= r by
A5,
A6,
A11,
A14,
A15,
A17,
FINSEQ_3: 25;
hence thesis;
end;
suppose
A22: i
= (n
+ 1);
for k be
object st k
in (
dom q) holds (q
. k)
=
0
proof
let k be
object;
assume
A23: k
in (
dom q);
then
reconsider k as
Nat;
A24: 1
<= k
<= n by
A6,
A11,
A23,
FINSEQ_3: 25;
A25: (
dom q)
c= (
dom p) by
A10,
FINSEQ_1: 26;
A26: (k
+
0 )
< (n
+ 1) by
A24,
XREAL_1: 8;
(q
. k)
= (p
. k) by
A10,
A23,
FINSEQ_1:def 7
.=
0 by
A9,
A22,
A23,
A25,
A26;
hence thesis;
end;
then
A27: q
= (n
|->
0 qua
Real) by
A6,
A11,
Th5;
A28: a
= r by
A6,
A8,
A10,
A11,
A22,
FINSEQ_1: 42;
(
Sum p)
= ((
Sum q)
+ a) by
A10,
RVSUM_1: 74
.= (
0
+ r) by
A27,
A28,
RVSUM_1: 81;
hence thesis;
end;
end;
hence thesis;
end;
A29: for k be
Nat holds
P[k] from
NAT_1:sch 2(
A1,
A4);
let p be
FinSequence of
REAL , i be
Nat, r be
Real;
assume
A30: i
in (
dom p) & (p
. i)
= r & for k be
Nat st k
in (
dom p) & k
<> i holds (p
. k)
=
0 ;
(
len p) is
Nat;
hence thesis by
A29,
A30;
end;
theorem ::
INTEGR23:7
Th9: for p,q be
FinSequence of
REAL st (
len p)
<= (
len q) & for i be
Nat st i
in (
dom q) holds (i
<= (
len p) implies (q
. i)
= (p
. i)) & ((
len p)
< i implies (q
. i)
=
0 ) holds (
Sum q)
= (
Sum p)
proof
let p,q be
FinSequence of
REAL ;
assume that
A1: (
len p)
<= (
len q) and
A2: for i be
Nat st i
in (
dom q) holds (i
<= (
len p) implies (q
. i)
= (p
. i)) & ((
len p)
< i implies (q
. i)
=
0 );
((
len q)
- (
len p)) is
Nat by
A1,
NAT_1: 21;
then
consider ix be
Nat such that
A3: ix
= ((
len q)
- (
len p));
set x = (ix
|->
0 qua
Real);
A5: (
Sum x)
=
0 by
RVSUM_1: 81;
q
= (p
^ x)
proof
A6: (
len x)
= ix by
Th4;
then
A7: (
len q)
= ((
len p)
+ (
len x)) by
A3;
A8: (
dom q)
= (
Seg ((
len p)
+ (
len x))) by
A3,
A6,
FINSEQ_1:def 3;
A9: for i be
Nat st i
in (
dom p) holds (q
. i)
= (p
. i)
proof
let i be
Nat;
assume i
in (
dom p);
then
A10: 1
<= i
<= (
len p) by
FINSEQ_3: 25;
then 1
<= i
<= (
len q) by
A1,
XXREAL_0: 2;
then i
in (
dom q) by
FINSEQ_3: 25;
hence thesis by
A2,
A10;
end;
for i be
Nat st i
in (
dom x) holds (q
. ((
len p)
+ i))
= (x
. i)
proof
let i be
Nat;
assume i
in (
dom x);
then
A11: i
in (
Seg ix) by
FUNCOP_1: 13;
then
A12: (x
. i)
=
0 by
FINSEQ_2: 57;
consider j be
Nat such that
A13: j
= ((
len p)
+ i);
A14: i
>= 1 by
A11,
FINSEQ_1: 1;
then
A15: (
len p)
< j by
A13,
NAT_1: 19;
A16: (
0
+ 1)
<= j by
A13,
A14,
INT_1: 7;
i
<= (
len x) by
A6,
A11,
FINSEQ_1: 1;
then j
<= (
len q) by
A7,
A13,
XREAL_1: 6;
then j
in (
dom q) by
A16,
FINSEQ_3: 25;
hence thesis by
A2,
A12,
A13,
A15;
end;
hence thesis by
A8,
A9,
FINSEQ_1:def 7;
end;
then (
Sum q)
= ((
Sum p)
+ (
Sum x)) by
RVSUM_1: 75
.= (
Sum p) by
A5;
hence thesis;
end;
theorem ::
INTEGR23:8
Th10: for a,b,c,d be
Real st b
<= c holds (
[.a, b.]
/\
[.c, d.])
c=
[.b, b.]
proof
let a,b,c,d be
Real;
assume
A1: b
<= c;
per cases ;
suppose
A2: a
<= b;
per cases ;
suppose c
<= d;
then b
<= d by
A1,
XXREAL_0: 2;
then (
[.a, b.]
/\
[.b, d.])
=
[.b, b.] by
A2,
XXREAL_1: 143;
hence (
[.a, b.]
/\
[.c, d.])
c=
[.b, b.] by
A1,
XBOOLE_1: 26,
XXREAL_1: 34;
end;
suppose d
< c;
then
[.c, d.]
=
{} by
XXREAL_1: 29;
hence (
[.a, b.]
/\
[.c, d.])
c=
[.b, b.];
end;
end;
suppose b
< a;
then
[.a, b.]
=
{} by
XXREAL_1: 29;
hence (
[.a, b.]
/\
[.c, d.])
c=
[.b, b.];
end;
end;
theorem ::
INTEGR23:9
Th11: for a be
Real, A be
Subset of
REAL , rho be
real-valued
Function st A
c=
[.a, a.] holds (
vol (A,rho))
=
0
proof
let a be
Real, A be
Subset of
REAL , rho be
real-valued
Function;
assume A
c=
[.a, a.];
then A
c=
{a} by
XXREAL_1: 17;
per cases by
ZFMISC_1: 33;
suppose A
=
{} ;
hence (
vol (A,rho))
=
0 by
INTEGR22:def 1;
end;
suppose A
=
{a};
hence (
vol (A,rho))
= ((rho
. (
upper_bound
{a}))
- (rho
. (
lower_bound
{a}))) by
INTEGR22:def 1
.= ((rho
. (
upper_bound
{a}))
- (rho
. (
upper_bound
{a}))) by
SEQ_4: 10
.=
0 ;
end;
end;
theorem ::
INTEGR23:10
Th12: for s be non
empty
increasing
FinSequence of
REAL , m be
Nat st m
in (
dom s) holds (s
| m) is non
empty
increasing
FinSequence of
REAL
proof
let s be non
empty
increasing
FinSequence of
REAL , m be
Nat;
assume
a0: m
in (
dom s);
then 1
<= m
<= (
len s) by
FINSEQ_3: 25;
then
A2: (
len (s
| m))
= m by
FINSEQ_1: 59;
set H = (s
| m);
for e1,e2 be
ExtReal st e1
in (
dom H) & e2
in (
dom H) & e1
< e2 holds (H
. e1)
< (H
. e2)
proof
let e1,e2 be
ExtReal;
assume
A3: e1
in (
dom H) & e2
in (
dom H) & e1
< e2;
then
A5: e1
in (
dom s) & e2
in (
dom s) by
RELAT_1: 57;
(s
. e1)
= (H
. e1) & (s
. e2)
= (H
. e2) by
A3,
FUNCT_1: 47;
hence (H
. e1)
< (H
. e2) by
A3,
A5,
VALUED_0:def 13;
end;
hence thesis by
A2,
VALUED_0:def 13,
a0,
FINSEQ_3: 25;
end;
theorem ::
INTEGR23:11
Th13: for s,t be non
empty
increasing
FinSequence of
REAL st (s
. (
len s))
< (t
. 1) holds (s
^ t) is non
empty
increasing
FinSequence of
REAL
proof
let s,t be non
empty
increasing
FinSequence of
REAL ;
assume
A1: (s
. (
len s))
< (t
. 1);
set H = (s
^ t);
A2: (
len H)
= ((
len s)
+ (
len t)) by
FINSEQ_1: 22;
for e1,e2 be
ExtReal st e1
in (
dom H) & e2
in (
dom H) & e1
< e2 holds (H
. e1)
< (H
. e2)
proof
let e1,e2 be
ExtReal;
assume
A3: e1
in (
dom H) & e2
in (
dom H) & e1
< e2;
then
reconsider ie1 = e1, ie2 = e2 as
Nat;
A5: 1
<= ie1
<= ((
len s)
+ (
len t)) & 1
<= ie2
<= ((
len s)
+ (
len t)) by
A2,
A3,
FINSEQ_3: 25;
per cases ;
suppose
A6: ie2
<= (
len s);
then
A7: ie1
<= (
len s) by
A3,
XXREAL_0: 2;
A8: ie1
in (
dom s) & ie2
in (
dom s) by
A5,
A6,
A7,
FINSEQ_3: 25;
then (H
. e1)
= (s
. e1) & (H
. e2)
= (s
. e2) by
FINSEQ_1:def 7;
hence (H
. e1)
< (H
. e2) by
A3,
A8,
VALUED_0:def 13;
end;
suppose
A9: (
len s)
< ie2;
per cases ;
suppose
A10: (
len s)
< ie1;
then
a10: (
len s)
< ie2 by
A3,
XXREAL_0: 2;
A11: not ie1
in (
dom s) & not ie2
in (
dom s) by
A10,
FINSEQ_3: 25,
a10;
then
consider n1 be
Nat such that
A12: n1
in (
dom t) & ie1
= ((
len s)
+ n1) by
A3,
FINSEQ_1: 25;
consider n2 be
Nat such that
A13: n2
in (
dom t) & ie2
= ((
len s)
+ n2) by
A3,
A11,
FINSEQ_1: 25;
A14: (H
. e1)
= (t
. n1) by
A12,
FINSEQ_1:def 7;
A15: (H
. e2)
= (t
. n2) by
A13,
FINSEQ_1:def 7;
(ie1
- (
len s))
< (ie2
- (
len s)) by
A3,
XREAL_1: 14;
hence (H
. e1)
< (H
. e2) by
A12,
A13,
A14,
A15,
VALUED_0:def 13;
end;
suppose
A16: ie1
<= (
len s);
not ie2
in (
dom s) by
FINSEQ_3: 25,
A9;
then
consider n2 be
Nat such that
A17: n2
in (
dom t) & ie2
= ((
len s)
+ n2) by
A3,
FINSEQ_1: 25;
A18: 1
<= n2
<= (
len t) by
A17,
FINSEQ_3: 25;
1
<= (
len t) by
A18,
XXREAL_0: 2;
then 1
in (
dom t) by
FINSEQ_3: 25;
then
A19: (t
. 1)
<= (t
. n2) by
A17,
A18,
VALUED_0:def 15;
A20: (H
. e2)
= (t
. n2) by
A17,
FINSEQ_1:def 7;
A21: ie1
in (
dom s) by
A5,
A16,
FINSEQ_3: 25;
then
A22: (H
. e1)
= (s
. ie1) by
FINSEQ_1:def 7;
(
len s)
in (
Seg (
len s)) by
FINSEQ_1: 3;
then (
len s)
in (
dom s) by
FINSEQ_1:def 3;
then (s
. ie1)
<= (s
. (
len s)) by
A16,
A21,
VALUED_0:def 15;
then (s
. ie1)
< (t
. 1) by
A1,
XXREAL_0: 2;
hence (H
. e1)
< (H
. e2) by
A19,
A20,
A22,
XXREAL_0: 2;
end;
end;
end;
hence thesis by
VALUED_0:def 13;
end;
theorem ::
INTEGR23:12
Th14: for s be non
empty
increasing
FinSequence of
REAL , a be
Real st (s
. (
len s))
< a holds (s
^
<*a*>) is non
empty
increasing
FinSequence of
REAL
proof
let s be non
empty
increasing
FinSequence of
REAL , a be
Real;
assume
A1: (s
. (
len s))
< a;
reconsider a0 = a as
Element of
REAL by
XREAL_0:def 1;
reconsider t =
<*a0*> as non
empty
increasing
FinSequence of
REAL ;
(s
. (
len s))
< (t
. 1) by
A1,
FINSEQ_1: 40;
hence thesis by
Th13;
end;
theorem ::
INTEGR23:13
Th15: for T be
FinSequence of
REAL , n,m be
Nat st (n
+ 1)
< m
<= (
len T) holds ex TM1 be
FinSequence of
REAL st (
len TM1)
= (m
- (n
+ 1)) & (
rng TM1)
c= (
rng T) & for i be
Nat st i
in (
dom TM1) holds (TM1
. i)
= (T
. (i
+ n))
proof
let T be
FinSequence of
REAL , n,m be
Nat;
assume
A1: (n
+ 1)
< m
<= (
len T);
deffunc
F(
Nat) = (T
. ($1
+ n));
(m
- (n
+ 1))
in
NAT by
A1,
INT_1: 5;
then
reconsider m1 = (m
- (n
+ 1)) as
Nat;
consider p be
FinSequence such that
A2: (
len p)
= m1 & for k be
Nat st k
in (
dom p) holds (p
. k)
=
F(k) from
FINSEQ_1:sch 2;
A3: (
rng p)
c= (
rng T)
proof
let x be
object;
assume x
in (
rng p);
then
consider i be
object such that
A4: i
in (
dom p) & x
= (p
. i) by
FUNCT_1:def 3;
reconsider i as
Nat by
A4;
A6: (p
. i)
= (T
. (i
+ n)) by
A2,
A4;
A7: 1
<= i
<= m1 by
A2,
FINSEQ_3: 25,
A4;
A8: (i
+ n)
<= (m1
+ n) by
A7,
XREAL_1: 6;
(m
- 1)
<= (m
-
0 ) by
XREAL_1: 10;
then (m
- 1)
<= (
len T) by
A1,
XXREAL_0: 2;
then
A9: (i
+ n)
<= (
len T) by
A8,
XXREAL_0: 2;
(1
+
0 )
<= (i
+ n) by
A7,
XREAL_1: 7;
then (i
+ n)
in (
dom T) by
FINSEQ_3: 25,
A9;
hence thesis by
A4,
A6,
FUNCT_1: 3;
end;
then
reconsider p as
FinSequence of
REAL by
FINSEQ_1:def 4,
XBOOLE_1: 1;
take p;
thus (
len p)
= (m
- (n
+ 1)) by
A2;
thus (
rng p)
c= (
rng T) by
A3;
let i be
Nat;
assume i
in (
dom p);
hence thesis by
A2;
end;
theorem ::
INTEGR23:14
Th16: for T be non
empty
increasing
FinSequence of
REAL , n,m be
Nat st (n
+ 1)
< m
<= (
len T) holds ex TM1 be non
empty
increasing
FinSequence of
REAL st (
len TM1)
= (m
- (n
+ 1)) & (
rng TM1)
c= (
rng T) & for i be
Nat st i
in (
dom TM1) holds (TM1
. i)
= (T
. (i
+ n))
proof
let T be non
empty
increasing
FinSequence of
REAL , n,m be
Nat;
assume
A1: (n
+ 1)
< m
<= (
len T);
then
consider p be
FinSequence of
REAL such that
A2: (
len p)
= (m
- (n
+ 1)) & (
rng p)
c= (
rng T) & for i be
Nat st i
in (
dom p) holds (p
. i)
= (T
. (i
+ n)) by
Th15;
(m
- (n
+ 1))
in
NAT by
A1,
INT_1: 5;
then
reconsider m1 = (m
- (n
+ 1)) as
Nat;
(
len p)
<>
0 by
A1,
A2;
then
reconsider p as non
empty
FinSequence of
REAL ;
for e1,e2 be
ExtReal st e1
in (
dom p) & e2
in (
dom p) & e1
< e2 holds (p
. e1)
< (p
. e2)
proof
let e1,e2 be
ExtReal;
assume
A3: e1
in (
dom p) & e2
in (
dom p) & e1
< e2;
then
reconsider ie1 = e1, ie2 = e2 as
Nat;
A5: (p
. e1)
= (T
. (ie1
+ n)) by
A2,
A3;
A6: (p
. e2)
= (T
. (ie2
+ n)) by
A2,
A3;
A7: 1
<= ie1
<= m1 by
A2,
A3,
FINSEQ_3: 25;
A8: 1
<= ie2
<= m1 by
A2,
A3,
FINSEQ_3: 25;
A9: (ie1
+ n)
<= (m1
+ n) by
A7,
XREAL_1: 6;
(m
- 1)
<= (m
-
0 ) by
XREAL_1: 10;
then
A10: (m
- 1)
<= (
len T) by
A1,
XXREAL_0: 2;
then
A11: (ie1
+ n)
<= (
len T) by
A9,
XXREAL_0: 2;
(1
+
0 )
<= (ie1
+ n) by
A7,
XREAL_1: 7;
then
A12: (ie1
+ n)
in (
dom T) by
A11,
FINSEQ_3: 25;
A13: (1
+
0 )
<= (ie2
+ n) by
A8,
XREAL_1: 7;
(ie2
+ n)
<= (m1
+ n) by
A8,
XREAL_1: 6;
then (ie2
+ n)
<= (
len T) by
A10,
XXREAL_0: 2;
then
A14: (ie2
+ n)
in (
dom T) by
FINSEQ_3: 25,
A13;
(ie1
+ n)
< (ie2
+ n) by
A3,
XREAL_1: 8;
hence thesis by
A5,
A6,
A12,
A14,
VALUED_0:def 13;
end;
then
reconsider p as non
empty
increasing
FinSequence of
REAL by
VALUED_0:def 13;
take p;
thus thesis by
A2;
end;
theorem ::
INTEGR23:15
Th17: for p be
FinSequence of
REAL , n,m be
Nat st (n
+ 1)
< m
<= (
len p) holds ex pM1 be
FinSequence of
REAL st (
len pM1)
= ((m
- (n
+ 1))
- 1) & (
rng pM1)
c= (
rng p) & for i be
Nat st i
in (
dom pM1) holds (pM1
. i)
= (p
. ((i
+ n)
+ 1))
proof
let p be
FinSequence of
REAL , n,m be
Nat;
assume
A1: (n
+ 1)
< m
<= (
len p);
set n1 = (n
+ 1);
A2: (n1
+ 1)
<= m by
A1,
NAT_1: 13;
per cases ;
suppose
A3: (n1
+ 1)
= m;
set pM1 = (
<*>
REAL );
take pM1;
thus (
len pM1)
= ((m
- (n
+ 1))
- 1) by
A3;
thus (
rng pM1)
c= (
rng p);
thus for i be
Nat st i
in (
dom pM1) holds (pM1
. i)
= (p
. ((i
+ n)
+ 1));
end;
suppose (n1
+ 1)
<> m;
then (n1
+ 1)
< m by
A2,
XXREAL_0: 1;
then
consider TM1 be
FinSequence of
REAL such that
A4: (
len TM1)
= (m
- (n1
+ 1)) & (
rng TM1)
c= (
rng p) & for i be
Nat st i
in (
dom TM1) holds (TM1
. i)
= (p
. (i
+ n1)) by
A1,
Th15;
take TM1;
thus (
len TM1)
= ((m
- (n
+ 1))
- 1) by
A4;
thus (
rng TM1)
c= (
rng p) by
A4;
let i be
Nat;
assume i
in (
dom TM1);
hence (TM1
. i)
= (p
. (i
+ n1)) by
A4
.= (p
. ((i
+ n)
+ 1));
end;
end;
begin
theorem ::
INTEGR23:16
Th18: for A be non
empty
closed_interval
Subset of
REAL , T be
Division of A, rho be
real-valued
Function, B be non
empty
closed_interval
Subset of
REAL , S0 be non
empty
increasing
FinSequence of
REAL , ST be
FinSequence of
REAL st B
c= A & (
lower_bound B)
= (
lower_bound A) & ex S be
Division of B st S
= S0 & (
len ST)
= (
len S) & for j be
Nat st j
in (
dom S) holds ex p be
FinSequence of
REAL st (ST
. j)
= (
Sum p) & (
len p)
= (
len T) & for i be
Nat st i
in (
dom T) holds (p
. i)
=
|.(
vol (((
divset (T,i))
/\ (
divset (S,j))),rho)).| holds ex H be
Division of B, F be
var_volume of rho, H st (
Sum ST)
= (
Sum F)
proof
let A be non
empty
closed_interval
Subset of
REAL , T be
Division of A, rho be
real-valued
Function;
defpred
P[
Nat] means for B be non
empty
closed_interval
Subset of
REAL , S0 be non
empty
increasing
FinSequence of
REAL , ST be
FinSequence of
REAL st B
c= A & (
lower_bound B)
= (
lower_bound A) & (
len S0)
= $1 & ex S be
Division of B st S
= S0 & (
len ST)
= (
len S) & for j be
Nat st j
in (
dom S) holds ex p be
FinSequence of
REAL st (ST
. j)
= (
Sum p) & (
len p)
= (
len T) & for i be
Nat st i
in (
dom T) holds (p
. i)
=
|.(
vol (((
divset (T,i))
/\ (
divset (S,j))),rho)).| holds ex H be
Division of B, F be
var_volume of rho, H st (
Sum ST)
= (
Sum F);
A1:
P[
0 ];
A2: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume
A3:
P[k];
let B be non
empty
closed_interval
Subset of
REAL , S0 be non
empty
increasing
FinSequence of
REAL , ST be
FinSequence of
REAL ;
assume
A4: B
c= A & (
lower_bound B)
= (
lower_bound A) & (
len S0)
= (k
+ 1) & ex S be
Division of B st S
= S0 & (
len ST)
= (
len S) & for j be
Nat st j
in (
dom S) holds ex p be
FinSequence of
REAL st (ST
. j)
= (
Sum p) & (
len p)
= (
len T) & for i be
Nat st i
in (
dom T) holds (p
. i)
=
|.(
vol (((
divset (T,i))
/\ (
divset (S,j))),rho)).|;
then
consider S be
Division of B such that
A5: S
= S0 & (
len ST)
= (
len S) & for j be
Nat st j
in (
dom S) holds ex p be
FinSequence of
REAL st (ST
. j)
= (
Sum p) & (
len p)
= (
len T) & for i be
Nat st i
in (
dom T) holds (p
. i)
=
|.(
vol (((
divset (T,i))
/\ (
divset (S,j))),rho)).|;
Z: (
dom ST)
= (
dom S) by
A5,
FINSEQ_3: 29;
per cases ;
suppose
A6: k
=
0 ;
set IDX = { i where i be
Nat : i
in (
dom T) & (T
. i)
< (
upper_bound B) };
IDX
c= (
dom T)
proof
let x be
object;
assume x
in IDX;
then ex i be
Nat st x
= i & i
in (
dom T) & (T
. i)
< (
upper_bound B);
hence thesis;
end;
then
reconsider IDX as
finite
Subset of
NAT by
XBOOLE_1: 1;
a: 1
<= (
len T) by
NAT_1: 14;
then
A7: 1
in (
dom T) by
FINSEQ_3: 25;
ST
=
<*(ST
. 1)*> by
A4,
A6,
FINSEQ_1: 40;
then
A8: (
Sum ST)
= (ST
. 1) by
RVSUM_1: 73;
A10: 1
in (
dom S) by
A4,
A5,
A6,
FINSEQ_3: 25;
A11: (S
. 1)
= (
upper_bound B) by
A4,
A5,
A6,
INTEGRA1:def 2;
per cases ;
suppose
A12: IDX
=
{} ;
set F = the
var_volume of rho, S;
take S, F;
F
=
<*(F
. 1)*> by
A4,
A5,
A6,
FINSEQ_1: 40,
INTEGR22:def 2;
then
A13: (
Sum F)
= (F
. 1) by
RVSUM_1: 73;
not 1
in IDX by
A12;
then
A14: (
upper_bound B)
<= (T
. 1) by
A7;
A15: (F
. 1)
=
|.(
vol ((
divset (S,1)),rho)).| by
A4,
A5,
A6,
FINSEQ_3: 25,
INTEGR22:def 2;
consider p be
FinSequence of
REAL such that
A16: (ST
. 1)
= (
Sum p) & (
len p)
= (
len T) & for i be
Nat st i
in (
dom T) holds (p
. i)
=
|.(
vol (((
divset (T,i))
/\ (
divset (S,1))),rho)).| by
A4,
A5,
A6,
FINSEQ_3: 25;
Z: (
dom p)
= (
dom T) by
A16,
FINSEQ_3: 29;
A18: (p
. 1)
=
|.(
vol (((
divset (T,1))
/\ (
divset (S,1))),rho)).| by
FINSEQ_3: 25,
a,
A16;
A19: (
divset (S,1))
c= B by
A4,
A5,
A6,
FINSEQ_3: 25,
INTEGRA1: 8;
A20: B
=
[.(
lower_bound B), (
upper_bound B).] by
INTEGRA1: 4;
A22: (
lower_bound (
divset (T,1)))
= (
lower_bound A) & (
upper_bound (
divset (T,1)))
= (T
. 1) by
INTEGRA1:def 4,
A7;
[.(
lower_bound B), (
upper_bound B).]
c=
[.(
lower_bound (
divset (T,1))), (
upper_bound (
divset (T,1))).] by
A4,
A14,
A22,
XXREAL_1: 34;
then
[.(
lower_bound B), (
upper_bound B).]
c= (
divset (T,1)) by
INTEGRA1: 4;
then (
divset (S,1))
c= (
divset (T,1)) by
A19,
A20;
then
A23: (p
. 1)
=
|.(
vol ((
divset (S,1)),rho)).| by
A18,
XBOOLE_1: 28;
for i be
Nat st i
in (
dom p) & i
<> 1 holds (p
. i)
=
0
proof
let i be
Nat;
assume
A24: i
in (
dom p) & i
<> 1;
then
A26: 1
<= i
<= (
len p) by
FINSEQ_3: 25;
then 1
< i by
A24,
XXREAL_0: 1;
then (1
+ 1)
<= i by
NAT_1: 13;
then
A27: (2
- 1)
<= (i
- 1) by
XREAL_1: 9;
then
reconsider i1 = (i
- 1) as
Nat by
INT_1: 3,
ORDINAL1:def 12;
(i
- 1)
<= ((
len p)
-
0 ) by
A26,
XREAL_1: 13;
then i1
in (
dom T) by
A16,
A27,
FINSEQ_3: 25;
then
A28: (T
. 1)
<= (T
. (i
- 1)) by
A7,
A27,
VALUED_0:def 15;
A29: (
lower_bound (
divset (T,i)))
= (T
. (i
- 1)) & (
upper_bound (
divset (T,i)))
= (T
. i) by
Z,
A24,
INTEGRA1:def 4;
(
dom p)
= (
dom T) by
FINSEQ_3: 29,
A16;
then
A30: (p
. i)
=
|.(
vol (((
divset (T,i))
/\ (
divset (S,1))),rho)).| by
A16,
A24;
((
divset (T,i))
/\ (
divset (S,1)))
c= ((
divset (T,i))
/\ B) by
A10,
INTEGRA1: 8,
XBOOLE_1: 26;
then
A31: ((
divset (T,i))
/\ (
divset (S,1)))
c= (
[.(
lower_bound B), (
upper_bound B).]
/\
[.(
lower_bound (
divset (T,i))), (
upper_bound (
divset (T,i))).]) by
A20,
INTEGRA1: 4;
(
[.(
lower_bound B), (
upper_bound B).]
/\
[.(
lower_bound (
divset (T,i))), (
upper_bound (
divset (T,i))).])
c=
[.(
upper_bound B), (
upper_bound B).] by
A14,
A28,
A29,
Th10,
XXREAL_0: 2;
then ((
divset (T,i))
/\ (
divset (S,1)))
c=
[.(
upper_bound B), (
upper_bound B).] by
A31;
hence thesis by
A30,
COMPLEX1: 44,
Th11;
end;
hence (
Sum ST)
= (
Sum F) by
A8,
A13,
A15,
A16,
a,
FINSEQ_3: 25,
A23,
Th8;
end;
suppose
A32: IDX
<>
{} ;
A33: (
sup IDX)
in IDX by
A32,
XXREAL_2:def 6;
then
reconsider n = (
sup IDX) as
Nat;
A34: ex i be
Nat st n
= i & i
in (
dom T) & (T
. i)
< (
upper_bound B) by
A33;
A35: 1
<= n
<= (
len T) by
A34,
FINSEQ_3: 25;
n
<> (
len T)
proof
assume n
= (
len T);
then (
upper_bound A)
< (
upper_bound B) by
A34,
INTEGRA1:def 2;
hence contradiction by
A4,
XXREAL_2: 59;
end;
then n
< (
len T) by
A35,
XXREAL_0: 1;
then
A37: 1
<= (n
+ 1)
<= (
len T) by
NAT_1: 11,
NAT_1: 13;
then
A38: (n
+ 1)
in (
dom T) by
FINSEQ_3: 25;
A39: (
upper_bound B)
<= (T
. (n
+ 1))
proof
assume (T
. (n
+ 1))
< (
upper_bound B);
then (n
+ 1)
in IDX by
A38;
hence contradiction by
NAT_1: 16,
XXREAL_2: 4;
end;
set H = ((T
| n)
^
<*(
upper_bound B)*>);
(
upper_bound B) is
Element of
REAL by
XREAL_0:def 1;
then
A40:
<*(
upper_bound B)*> is
FinSequence of
REAL by
FINSEQ_1: 74;
A41: (
len (T
| n))
= n by
A35,
FINSEQ_1: 59;
(
len
<*(
upper_bound B)*>)
= 1 by
FINSEQ_1: 39;
then
A42: (
len H)
= (n
+ 1) by
A41,
FINSEQ_1: 22;
reconsider H as non
empty
FinSequence of
REAL by
A40,
FINSEQ_1: 75;
for e1,e2 be
ExtReal st e1
in (
dom H) & e2
in (
dom H) & e1
< e2 holds (H
. e1)
< (H
. e2)
proof
let e1,e2 be
ExtReal;
assume
A43: e1
in (
dom H) & e2
in (
dom H) & e1
< e2;
then
reconsider i = e1, j = e2 as
Nat;
A45: 1
<= i
<= (n
+ 1) & 1
<= j
<= (n
+ 1) by
A42,
A43,
FINSEQ_3: 25;
per cases ;
suppose
A46: j
= (n
+ 1);
then
A47: (H
. e2)
= (
upper_bound B) by
A41,
FINSEQ_1: 42;
A48: i
<= n by
A43,
A46,
NAT_1: 13;
then
A49: i
in (
dom (T
| n)) by
A41,
A45,
FINSEQ_3: 25;
then
A50: (H
. e1)
= ((T
| n)
. i) by
FINSEQ_1:def 7
.= (T
. i) by
A49,
FUNCT_1: 47;
i
<= (
len T) by
A37,
A43,
A46,
XXREAL_0: 2;
then i
in (
dom T) by
A45,
FINSEQ_3: 25;
then (T
. i)
<= (T
. n) by
A34,
A48,
VALUED_0:def 15;
hence (H
. e1)
< (H
. e2) by
A34,
A47,
A50,
XXREAL_0: 2;
end;
suppose j
<> (n
+ 1);
then j
< (n
+ 1) by
A45,
XXREAL_0: 1;
then
A52: j
<= n by
NAT_1: 13;
then
A53: j
in (
dom (T
| n)) by
A41,
A45,
FINSEQ_3: 25;
then
A54: (H
. e2)
= ((T
| n)
. j) by
FINSEQ_1:def 7
.= (T
. j) by
A53,
FUNCT_1: 47;
A55: i
<= n by
A43,
A52,
XXREAL_0: 2;
then
A56: i
in (
dom (T
| n)) by
A41,
A45,
FINSEQ_3: 25;
then
A57: (H
. e1)
= ((T
| n)
. i) by
FINSEQ_1:def 7
.= (T
. i) by
A56,
FUNCT_1: 47;
i
<= (
len T) by
A35,
A55,
XXREAL_0: 2;
then
A58: i
in (
dom T) by
A45,
FINSEQ_3: 25;
j
<= (
len T) by
A35,
A52,
XXREAL_0: 2;
then j
in (
dom T) by
A45,
FINSEQ_3: 25;
hence (H
. e1)
< (H
. e2) by
A43,
A54,
A57,
A58,
VALUED_0:def 13;
end;
end;
then
reconsider H as non
empty
increasing
FinSequence of
REAL by
VALUED_0:def 13;
A59: B
=
[.(
lower_bound B), (
upper_bound B).] by
INTEGRA1: 4;
A60: A
=
[.(
lower_bound A), (
upper_bound A).] by
INTEGRA1: 4;
A61: (H
. (
len H))
= (
upper_bound B) by
A41,
A42,
FINSEQ_1: 42;
A62: (
rng H)
= ((
rng (T
| n))
\/ (
rng
<*(
upper_bound B)*>)) by
FINSEQ_1: 31;
A63: (
rng
<*(
upper_bound B)*>)
=
{(
upper_bound B)} by
FINSEQ_1: 39;
A64: (
rng (T
| n))
c= (
rng T) by
RELAT_1: 70;
(
rng T)
c= A by
INTEGRA1:def 2;
then
A65: (
rng (T
| n))
c= A by
A64;
(
lower_bound B)
<= (
upper_bound B) by
SEQ_4: 11;
then (
upper_bound B)
in B by
A59;
then
{(
upper_bound B)}
c= A by
A4,
ZFMISC_1: 31;
then
A66: (
rng H)
c= A by
A62,
A63,
A65,
XBOOLE_1: 8;
for z be
object st z
in (
rng H) holds z
in B
proof
let z be
object;
assume
A67: z
in (
rng H);
then
reconsider x = z as
Real;
x
in A by
A66,
A67;
then
A68: ex r be
Real st x
= r & (
lower_bound A)
<= r & r
<= (
upper_bound A) by
A60;
consider i be
object such that
A69: i
in (
dom H) & x
= (H
. i) by
A67,
FUNCT_1:def 3;
reconsider i as
Nat by
A69;
A70: 1
<= i
<= (
len H) by
A69,
FINSEQ_3: 25;
1
<= (
len H)
<= (
len H) by
A70,
XXREAL_0: 2;
then (
len H)
in (
dom H) by
FINSEQ_3: 25;
then x
<= (
upper_bound B) by
A61,
A69,
A70,
VALUED_0:def 15;
hence z
in B by
A4,
A59,
A68;
end;
then
A71: (
rng H)
c= B;
reconsider H as
Division of B by
A61,
A71,
INTEGRA1:def 2;
set F = the
var_volume of rho, H;
take H, F;
A72: (
len F)
= (
len H) by
INTEGR22:def 2;
ST
=
<*(ST
. 1)*> by
A4,
A6,
FINSEQ_1: 40;
then
A73: (
Sum ST)
= (ST
. 1) by
RVSUM_1: 73;
consider p be
FinSequence of
REAL such that
A74: (ST
. 1)
= (
Sum p) & (
len p)
= (
len T) & for i be
Nat st i
in (
dom T) holds (p
. i)
=
|.(
vol (((
divset (T,i))
/\ (
divset (S,1))),rho)).| by
A4,
A5,
A6,
FINSEQ_3: 25;
for i be
Nat st i
in (
dom p) holds (i
<= (
len F) implies (p
. i)
= (F
. i)) & ((
len F)
< i implies (p
. i)
=
0 )
proof
let i be
Nat;
assume
A75: i
in (
dom p);
(
dom p)
= (
dom T) by
A74,
FINSEQ_3: 29;
then
A76: (p
. i)
=
|.(
vol (((
divset (T,i))
/\ (
divset (S,1))),rho)).| by
A74,
A75;
A77: 1
<= i
<= (
len T) by
A74,
A75,
FINSEQ_3: 25;
A78: (
lower_bound (
divset (S,1)))
= (
lower_bound B) & (
upper_bound (
divset (S,1)))
= (S
. 1) by
A10,
INTEGRA1:def 4;
A79: (
divset (S,1))
=
[.(
lower_bound B), (
upper_bound B).] by
A11,
A78,
INTEGRA1: 4;
thus i
<= (
len F) implies (p
. i)
= (F
. i)
proof
assume i
<= (
len F);
then
A80: 1
<= i
<= (
len H) by
A75,
FINSEQ_3: 25,
INTEGR22:def 2;
then
A81: i
in (
dom H) by
FINSEQ_3: 25;
((
divset (T,i))
/\ (
divset (S,1)))
= (
divset (H,i))
proof
per cases ;
suppose i
<> (n
+ 1);
then i
< (n
+ 1) by
A42,
A80,
XXREAL_0: 1;
then
A82: i
<= n by
NAT_1: 13;
then
A83: i
in (
dom (T
| n)) by
A41,
A80,
FINSEQ_3: 25;
then
A84: (H
. i)
= ((T
| n)
. i) by
FINSEQ_1:def 7
.= (T
. i) by
A83,
FUNCT_1: 47;
A85: i
in (
dom T) by
A83,
RELAT_1: 57;
then (T
. i)
<= (T
. n) by
A34,
A82,
VALUED_0:def 15;
then
A86: (T
. i)
<= (
upper_bound B) by
A34,
XXREAL_0: 2;
thus ((
divset (T,i))
/\ (
divset (S,1)))
= (
divset (H,i))
proof
per cases ;
suppose
A87: i
= 1;
then
A88: (
lower_bound (
divset (T,i)))
= (
lower_bound A) & (
upper_bound (
divset (T,i)))
= (T
. i) by
A85,
INTEGRA1:def 4;
A89: (
lower_bound (
divset (H,i)))
= (
lower_bound B) & (
upper_bound (
divset (H,i)))
= (H
. i) by
A81,
A87,
INTEGRA1:def 4;
A90: (
divset (T,i))
=
[.(
lower_bound B), (T
. i).] by
A4,
A88,
INTEGRA1: 4;
(
divset (H,i))
=
[.(
lower_bound B), (T
. i).] by
A84,
A89,
INTEGRA1: 4
.= (
divset (T,i)) by
A4,
A88,
INTEGRA1: 4;
hence ((
divset (T,i))
/\ (
divset (S,1)))
= (
divset (H,i)) by
A79,
A86,
A90,
XBOOLE_1: 28,
XXREAL_1: 34;
end;
suppose
A91: i
<> 1;
then
A92: (
lower_bound (
divset (T,i)))
= (T
. (i
- 1)) & (
upper_bound (
divset (T,i)))
= (T
. i) by
A85,
INTEGRA1:def 4;
A93: (
lower_bound (
divset (H,i)))
= (H
. (i
- 1)) & (
upper_bound (
divset (H,i)))
= (H
. i) by
A81,
A91,
INTEGRA1:def 4;
1
< i by
A77,
A91,
XXREAL_0: 1;
then
A94: (1
- 1)
< (i
- 1) by
XREAL_1: 14;
then
reconsider i1 = (i
- 1) as
Nat by
INT_1: 3,
ORDINAL1:def 12;
A95: 1
<= i1 by
A94,
NAT_1: 14;
i1
<= ((n
+ 1)
- 1) by
A42,
A80,
XREAL_1: 13;
then
A96: (i
- 1)
in (
dom (T
| n)) by
A41,
A95,
FINSEQ_3: 25;
then (H
. (i
- 1))
= ((T
| n)
. (i
- 1)) by
FINSEQ_1:def 7
.= (T
. (i
- 1)) by
A96,
FUNCT_1: 47;
then
A98: (
divset (H,i))
=
[.(T
. (i
- 1)), (T
. i).] by
A84,
A93,
INTEGRA1: 4;
A99: (
divset (T,i))
=
[.(T
. (i
- 1)), (T
. i).] by
A92,
INTEGRA1: 4;
(i
- 1)
in (
dom T) by
A96,
RELAT_1: 57;
then (T
. (i
- 1))
in A by
INTEGRA1: 6;
then ex r be
Real st r
= (T
. (i
- 1)) & (
lower_bound A)
<= r & r
<= (
upper_bound A) by
A60;
hence ((
divset (T,i))
/\ (
divset (S,1)))
= (
divset (H,i)) by
A4,
A79,
A86,
A98,
A99,
XBOOLE_1: 28,
XXREAL_1: 34;
end;
end;
end;
suppose
A100: i
= (n
+ 1);
A101: 1
< i by
A35,
A100,
NAT_1: 16;
A102: (
lower_bound (
divset (T,i)))
= (T
. (i
- 1)) & (
upper_bound (
divset (T,i)))
= (T
. i) by
A38,
A100,
A101,
INTEGRA1:def 4;
A103: (
lower_bound (
divset (H,i)))
= (H
. (i
- 1)) & (
upper_bound (
divset (H,i)))
= (H
. i) by
A81,
A101,
INTEGRA1:def 4;
reconsider i1 = (i
- 1) as
Nat by
A100;
A104: (i
- 1)
in (
dom (T
| n)) by
A35,
A41,
A100,
FINSEQ_3: 25;
then
A105: (H
. (i
- 1))
= ((T
| n)
. (i
- 1)) by
FINSEQ_1:def 7
.= (T
. (i
- 1)) by
A104,
FUNCT_1: 47;
(T
. (i
- 1))
in A by
A34,
A100,
INTEGRA1: 6;
then
A106: ex r be
Real st r
= (T
. (i
- 1)) & (
lower_bound A)
<= r & r
<= (
upper_bound A) by
A60;
thus ((
divset (T,i))
/\ (
divset (S,1)))
= (
[.(T
. (i
- 1)), (T
. i).]
/\
[.(
lower_bound B), (
upper_bound B).]) by
A79,
A102,
INTEGRA1: 4
.=
[.(T
. (i
- 1)), (
upper_bound B).] by
A4,
A39,
A100,
A106,
XXREAL_1: 143
.=
[.(H
. (i
- 1)), (H
. i).] by
A41,
A100,
A105,
FINSEQ_1: 42
.= (
divset (H,i)) by
A103,
INTEGRA1: 4;
end;
end;
hence thesis by
A76,
A81,
INTEGR22:def 2;
end;
thus (
len F)
< i implies (p
. i)
=
0
proof
assume
A107: (
len F)
< i;
then
A108: (
len H)
< i by
INTEGR22:def 2;
A109: 1
<= (n
+ 1) by
NAT_1: 11;
i
in (
dom T) by
A75,
A74,
FINSEQ_3: 29;
then (
lower_bound (
divset (T,i)))
= (T
. (i
- 1)) & (
upper_bound (
divset (T,i)))
= (T
. i) by
A42,
A72,
A107,
A109,
INTEGRA1:def 4;
then
A110: (
divset (T,i))
=
[.(T
. (i
- 1)), (T
. i).] by
INTEGRA1: 4;
((n
+ 1)
+ 1)
<= i by
A42,
A108,
NAT_1: 13;
then
A111: (((n
+ 1)
+ 1)
- 1)
<= (i
- 1) by
XREAL_1: 9;
1
<= (n
+ 1) by
NAT_1: 11;
then
A112: 1
<= (i
- 1) by
A111,
XXREAL_0: 2;
reconsider i1 = (i
- 1) as
Nat by
A111,
INT_1: 3,
ORDINAL1:def 12;
(i
- 1)
<= (i
-
0 ) by
XREAL_1: 13;
then (i
- 1)
<= (
len T) by
A77,
XXREAL_0: 2;
then i1
in (
dom T) by
A112,
FINSEQ_3: 25;
then (T
. (n
+ 1))
<= (T
. i1) by
A38,
A111,
VALUED_0:def 15;
then ((
divset (T,i))
/\ (
divset (S,1)))
c=
[.(
upper_bound B), (
upper_bound B).] by
A39,
A79,
A110,
Th10,
XXREAL_0: 2;
hence (p
. i)
=
0 by
A76,
COMPLEX1: 44,
Th11;
end;
end;
hence (
Sum ST)
= (
Sum F) by
A37,
A42,
A72,
A73,
A74,
Th9;
end;
end;
suppose
A114: k
<>
0 ;
set S01 = (S0
| k);
A115: B
=
[.(
lower_bound B), (
upper_bound B).] by
INTEGRA1: 4;
A116: A
=
[.(
lower_bound A), (
upper_bound A).] by
INTEGRA1: 4;
A117: k
= (
len S01) by
A4,
FINSEQ_1: 59,
NAT_1: 11;
(
dom S0)
= (
Seg (k
+ 1)) by
A4,
FINSEQ_1:def 3;
then
A118: (
Seg k)
c= (
dom S0) by
FINSEQ_1: 5,
NAT_1: 11;
for e1,e2 be
ExtReal st e1
in (
dom S01) & e2
in (
dom S01) & e1
< e2 holds (S01
. e1)
< (S01
. e2)
proof
let e1,e2 be
ExtReal;
assume
A119: e1
in (
dom S01) & e2
in (
dom S01) & e1
< e2;
then
A120: e1
in (
Seg k) & e2
in (
Seg k) by
A117,
FINSEQ_1:def 3;
then (S01
. e1)
= (S0
. e1) & (S01
. e2)
= (S0
. e2) by
FUNCT_1: 49;
hence thesis by
A118,
A119,
A120,
VALUED_0:def 13;
end;
then
reconsider S01 as non
empty
increasing
FinSequence of
REAL by
A114,
VALUED_0:def 13;
A121: k
in (
dom S0) by
A114,
A118,
FINSEQ_1: 3;
then
consider B1,B2 be non
empty
closed_interval
Subset of
REAL such that
A122: B1
=
[.(
lower_bound B), (S0
. k).] & B2
=
[.(S0
. k), (
upper_bound B).] & B
= (B1
\/ B2) by
A5,
INTEGRA1: 32;
A123: B1
c= B by
A122,
XBOOLE_1: 7;
then
A124: B1
c= A by
A4;
A125: B1
=
[.(
lower_bound B1), (
upper_bound B1).] by
INTEGRA1: 4;
then
A126: (
upper_bound B1)
= (S
. k) by
A5,
A122,
INTEGRA1: 5;
A127: (
lower_bound B1)
= (
lower_bound A) by
A4,
A122,
A125,
INTEGRA1: 5;
A128: (
rng S0)
c= B by
A5,
INTEGRA1:def 2;
A129: (
rng S01)
c= (
rng S0) by
RELAT_1: 70;
for y be
object st y
in (
rng S01) holds y
in B1
proof
let y be
object;
assume
A130: y
in (
rng S01);
then y
in B by
A128,
A129;
then y
in
[.(
lower_bound B), (
upper_bound B).] by
INTEGRA1: 4;
then
consider y1 be
Real such that
A131: y
= y1 & (
lower_bound B)
<= y1 & y1
<= (
upper_bound B);
consider x be
object such that
A132: x
in (
dom S01) & y1
= (S01
. x) by
A130,
A131,
FUNCT_1:def 3;
reconsider x as
Nat by
A132;
A133: x
in (
Seg k) by
A117,
A132,
FINSEQ_1:def 3;
then
A134: x
<= k by
FINSEQ_1: 1;
now
assume x
<> k;
then x
< k by
A134,
XXREAL_0: 1;
hence (S0
. x)
<= (S0
. k) by
A118,
A121,
A133,
VALUED_0:def 13;
end;
then y1
<= (S0
. k) by
A132,
A133,
FUNCT_1: 49;
hence y
in B1 by
A122,
A131;
end;
then
A135: (
rng S01)
c= B1;
A136: (S01
. k)
= (S0
. k) by
A114,
FINSEQ_1: 3,
FUNCT_1: 49;
A137: B1
=
[.(
lower_bound B1), (
upper_bound B1).] by
INTEGRA1: 4;
then (S01
. (
len S01))
= (
upper_bound B1) by
A117,
A122,
A136,
INTEGRA1: 5;
then
reconsider S1 = S01 as
Division of B1 by
A135,
INTEGRA1:def 2;
reconsider ST1 = (ST
| k) as
FinSequence of
REAL ;
A138: (
len S1)
= k by
A4,
FINSEQ_1: 59,
NAT_1: 11;
A139: (
len ST1)
= (
len S1) by
A4,
A138,
FINSEQ_1: 59,
NAT_1: 11;
for j be
Nat st j
in (
dom S1) holds ex p be
FinSequence of
REAL st (ST1
. j)
= (
Sum p) & (
len p)
= (
len T) & for i be
Nat st i
in (
dom T) holds (p
. i)
=
|.(
vol (((
divset (T,i))
/\ (
divset (S1,j))),rho)).|
proof
let j be
Nat;
assume
A140: j
in (
dom S1);
then
A141: j
in (
Seg k) & j
in (
dom S0) by
RELAT_1: 57;
then
consider p be
FinSequence of
REAL such that
A142: (ST
. j)
= (
Sum p) & (
len p)
= (
len T) & for i be
Nat st i
in (
dom T) holds (p
. i)
=
|.(
vol (((
divset (T,i))
/\ (
divset (S,j))),rho)).| by
A5;
A143: for i be
Nat st i
in (
dom T) holds (p
. i)
=
|.(
vol (((
divset (T,i))
/\ (
divset (S1,j))),rho)).|
proof
let i be
Nat;
assume
A144: i
in (
dom T);
A145: (
divset (S,j))
=
[.(
lower_bound (
divset (S,j))), (
upper_bound (
divset (S,j))).] & (
divset (S1,j))
=
[.(
lower_bound (
divset (S1,j))), (
upper_bound (
divset (S1,j))).] by
INTEGRA1: 4;
(
divset (S,j))
= (
divset (S1,j))
proof
per cases ;
suppose j
= 1;
then
A146: (
lower_bound (
divset (S,j)))
= (
lower_bound B) & (
upper_bound (
divset (S,j)))
= (S
. j) & (
lower_bound (
divset (S1,j)))
= (
lower_bound B1) & (
upper_bound (
divset (S1,j)))
= (S1
. j) by
A5,
A140,
A141,
INTEGRA1:def 4;
(
lower_bound B)
= (
lower_bound B1) by
A122,
A137,
INTEGRA1: 5;
hence (
divset (S,j))
= (
divset (S1,j)) by
A5,
A140,
A145,
A146,
FUNCT_1: 47;
end;
suppose
A147: j
<> 1;
then
A148: (
lower_bound (
divset (S,j)))
= (S
. (j
- 1)) & (
upper_bound (
divset (S,j)))
= (S
. j) & (
lower_bound (
divset (S1,j)))
= (S1
. (j
- 1)) & (
upper_bound (
divset (S1,j)))
= (S1
. j) by
A5,
A140,
A141,
INTEGRA1:def 4;
A149: 1
<= j by
A141,
FINSEQ_1: 1;
then (j
- 1)
in
NAT by
INT_1: 5;
then
reconsider j1 = (j
- 1) as
Nat;
1
< j by
A147,
A149,
XXREAL_0: 1;
then (S
. j1)
= (S1
. j1) by
A5,
A141,
FINSEQ_3: 12,
FUNCT_1: 49;
hence (
divset (S,j))
= (
divset (S1,j)) by
A5,
A140,
A145,
A148,
FUNCT_1: 47;
end;
end;
hence (p
. i)
=
|.(
vol (((
divset (T,i))
/\ (
divset (S1,j))),rho)).| by
A142,
A144;
end;
take p;
thus thesis by
A141,
A142,
A143,
FUNCT_1: 49;
end;
then
consider H1 be
Division of B1, F1 be
var_volume of rho, H1 such that
A150: (
Sum ST1)
= (
Sum F1) by
A3,
A124,
A127,
A138,
A139;
A151: 1
<= (k
+ 1)
<= (
len ST) by
A4,
NAT_1: 11;
ST
= ((ST
| k)
^
<*(ST
/. (k
+ 1))*>) by
A4,
FINSEQ_5: 21;
then
A152: ST
= (ST1
^
<*(ST
. (k
+ 1))*>) by
A151,
FINSEQ_4: 15;
(
dom ST)
= (
Seg (k
+ 1)) by
A4,
FINSEQ_1:def 3;
then
consider p be
FinSequence of
REAL such that
A153: (ST
. (k
+ 1))
= (
Sum p) & (
len p)
= (
len T) & for i be
Nat st i
in (
dom T) holds (p
. i)
=
|.(
vol (((
divset (T,i))
/\ (
divset (S,(k
+ 1)))),rho)).| by
Z,
A5,
FINSEQ_1: 4;
set JDX = { i where i be
Nat : i
in (
dom T) & (
upper_bound B)
<= (T
. i) };
JDX
c= (
dom T)
proof
let x be
object;
assume x
in JDX;
then ex i be
Nat st x
= i & i
in (
dom T) & (
upper_bound B)
<= (T
. i);
hence thesis;
end;
then
reconsider JDX as
finite
Subset of
NAT by
XBOOLE_1: 1;
H: (
dom p)
= (
dom T) by
FINSEQ_3: 29,
A153;
A154: (
upper_bound B)
<= (
upper_bound A) by
A4,
XXREAL_2: 59;
A155: (T
. (
len T))
= (
upper_bound A) by
INTEGRA1:def 2;
A156: 1
<= (
len T) by
NAT_1: 14;
then
A157: 1
in (
dom T) by
FINSEQ_3: 25;
reconsider m = (
min* JDX) as
Nat;
A159: (S
. (
len S))
= (
upper_bound B) by
INTEGRA1:def 2;
(
len T)
in (
dom T) by
A156,
FINSEQ_3: 25;
then (
len T)
in JDX by
A154,
A155;
then m
in JDX by
NAT_1:def 1;
then
consider i be
Nat such that
A160: m
= i & i
in (
dom T) & (
upper_bound B)
<= (T
. i);
A161: 1
<= k by
A114,
NAT_1: 14;
k
<= (k
+ 1) by
NAT_1: 11;
then k
in (
Seg (k
+ 1)) by
A161;
then
A162: k
in (
dom S) by
A4,
A5,
FINSEQ_1:def 3;
then (S
. k)
in B by
INTEGRA1: 6;
then
A163: ex r be
Real st r
= (S
. k) & (
lower_bound B)
<= r & r
<= (
upper_bound B) by
A115;
A164: for i be
Nat st m
<= i & i
in (
dom T) holds (
upper_bound B)
<= (T
. i)
proof
let i be
Nat;
assume m
<= i & i
in (
dom T);
then (T
. m)
<= (T
. i) by
A160,
VALUED_0:def 15;
hence thesis by
A160,
XXREAL_0: 2;
end;
(k
+ 1)
in (
Seg (k
+ 1)) by
FINSEQ_1: 4;
then
A167: (k
+ 1)
in (
dom S) by
A4,
A5,
FINSEQ_1:def 3;
(S
. k)
< (S
. (k
+ 1)) by
A162,
A167,
NAT_1: 16,
VALUED_0:def 13;
then
A168: (S
. k)
< (
upper_bound B) by
A4,
A5,
INTEGRA1:def 2;
A169: (
divset (S,(k
+ 1)))
=
[.(
lower_bound (
divset (S,(k
+ 1)))), (
upper_bound (
divset (S,(k
+ 1)))).] by
INTEGRA1: 4;
(k
+ 1)
<> 1 by
A114;
then
A170: (
lower_bound (
divset (S,(k
+ 1))))
= (S
. ((k
+ 1)
- 1)) & (
upper_bound (
divset (S,(k
+ 1))))
= (S
. (k
+ 1)) by
A167,
INTEGRA1:def 4;
A171: (S
. (k
+ 1))
= (
upper_bound B) by
A4,
A5,
INTEGRA1:def 2;
per cases ;
suppose
A172: m
= 1;
set H = (H1
^
<*(
upper_bound B)*>);
A173: (
upper_bound B)
<= (T
. 1) by
A156,
A164,
A172,
FINSEQ_3: 25;
(
upper_bound B) is
Element of
REAL by
XREAL_0:def 1;
then
A174:
<*(
upper_bound B)*> is
FinSequence of
REAL by
FINSEQ_1: 74;
A175: (
len
<*(
upper_bound B)*>)
= 1 by
FINSEQ_1: 39;
then
A176: (
len H)
= ((
len H1)
+ 1) by
FINSEQ_1: 22;
reconsider H as non
empty
FinSequence of
REAL by
A174,
FINSEQ_1: 75;
for e1,e2 be
ExtReal st e1
in (
dom H) & e2
in (
dom H) & e1
< e2 holds (H
. e1)
< (H
. e2)
proof
let e1,e2 be
ExtReal;
assume
A177: e1
in (
dom H) & e2
in (
dom H) & e1
< e2;
then
A178: e1
in (
Seg (
len H)) & e2
in (
Seg (
len H)) by
FINSEQ_1:def 3;
reconsider i = e1, j = e2 as
Nat by
A177;
A179: 1
<= i & i
<= ((
len H1)
+ 1) & 1
<= j & j
<= ((
len H1)
+ 1) by
A176,
A178,
FINSEQ_1: 1;
per cases ;
suppose
A180: j
= ((
len H1)
+ 1);
then
A181: (H
. e2)
= (
upper_bound B) by
FINSEQ_1: 42;
i
<= (
len H1) by
A177,
A180,
NAT_1: 13;
then
A182: i
in (
dom H1) by
A179,
FINSEQ_3: 25;
then
A183: (H
. e1)
= (H1
. i) by
FINSEQ_1:def 7;
(H1
. i)
in
[.(
lower_bound B), (S0
. k).] by
A122,
A182,
INTEGRA1: 6;
then ex r be
Real st r
= (H1
. i) & (
lower_bound B)
<= r & r
<= (S0
. k);
hence (H
. e1)
< (H
. e2) by
A5,
A168,
A181,
A183,
XXREAL_0: 2;
end;
suppose j
<> ((
len H1)
+ 1);
then j
< ((
len H1)
+ 1) by
A179,
XXREAL_0: 1;
then
A184: j
<= (
len H1) by
NAT_1: 13;
then
A185: j
in (
dom H1) by
A179,
FINSEQ_3: 25;
then
A186: (H
. e2)
= (H1
. j) by
FINSEQ_1:def 7;
i
<= (
len H1) by
A177,
A184,
XXREAL_0: 2;
then
A187: i
in (
dom H1) by
A179,
FINSEQ_3: 25;
then (H
. e1)
= (H1
. i) by
FINSEQ_1:def 7;
hence (H
. e1)
< (H
. e2) by
A177,
A185,
A186,
A187,
VALUED_0:def 13;
end;
end;
then
reconsider H as non
empty
increasing
FinSequence of
REAL by
VALUED_0:def 13;
A188: (H
. (
len H))
= (
upper_bound B) by
A176,
FINSEQ_1: 42;
(
rng H1)
c= B1 by
INTEGRA1:def 2;
then
A189: (
rng H1)
c= B by
A123;
A190: (
rng H)
= ((
rng H1)
\/ (
rng
<*(
upper_bound B)*>)) by
FINSEQ_1: 31;
A191: (
rng
<*(
upper_bound B)*>)
=
{(
upper_bound B)} by
FINSEQ_1: 39;
(
lower_bound B)
<= (
upper_bound B) by
SEQ_4: 11;
then (
upper_bound B)
in B by
A115;
then (
rng
<*(
upper_bound B)*>)
c= B by
A191,
ZFMISC_1: 31;
then
reconsider H as
Division of B by
A188,
A189,
A190,
INTEGRA1:def 2,
XBOOLE_1: 8;
set F = (F1
^
<*
|.(
vol (
[.(S
. k), (
upper_bound B).],rho)).|*>);
|.(
vol (
[.(S
. k), (
upper_bound B).],rho)).| is
Element of
REAL by
XREAL_0:def 1;
then
A192:
<*
|.(
vol (
[.(S
. k), (
upper_bound B).],rho)).|*> is
FinSequence of
REAL by
FINSEQ_1: 74;
reconsider F as
FinSequence of
REAL by
A192,
FINSEQ_1: 75;
A193: (
len F)
= ((
len F1)
+ (
len
<*
|.(
vol (
[.(S
. k), (
upper_bound B).],rho)).|*>)) by
FINSEQ_1: 22
.= ((
len H1)
+ (
len
<*
|.(
vol (
[.(S
. k), (
upper_bound B).],rho)).|*>)) by
INTEGR22:def 2
.= ((
len H1)
+ 1) by
FINSEQ_1: 40
.= (
len H) by
A175,
FINSEQ_1: 22;
1
<= (
len H1) by
NAT_1: 14;
then
A194: 1
in (
dom H1) by
FINSEQ_3: 25;
A195: (
len F1)
= (
len H1) by
INTEGR22:def 2;
then
A196: (
dom F1)
= (
dom H1) by
FINSEQ_3: 29;
for j be
Nat st j
in (
dom H) holds (F
. j)
=
|.(
vol ((
divset (H,j)),rho)).|
proof
let j be
Nat;
A197: (
divset (H,j))
=
[.(
lower_bound (
divset (H,j))), (
upper_bound (
divset (H,j))).] & (
divset (H1,j))
=
[.(
lower_bound (
divset (H1,j))), (
upper_bound (
divset (H1,j))).] by
INTEGRA1: 4;
assume
A198: j
in (
dom H);
then
A199: 1
<= j
<= (
len H) by
FINSEQ_3: 25;
per cases ;
suppose
A200: j
= 1;
then
A201: (
lower_bound (
divset (H,j)))
= (
lower_bound B) & (
upper_bound (
divset (H,j)))
= (H
. j) by
A198,
INTEGRA1:def 4;
A203: (
lower_bound (
divset (H1,j)))
= (
lower_bound B1) & (
upper_bound (
divset (H1,j)))
= (H1
. j) by
A194,
A200,
INTEGRA1:def 4;
A204: (
lower_bound B)
= (
lower_bound B1) by
A122,
A137,
INTEGRA1: 5;
thus (F
. j)
= (F1
. j) by
A196,
A194,
A200,
FINSEQ_1:def 7
.=
|.(
vol ((
divset (H1,j)),rho)).| by
A200,
A194,
INTEGR22:def 2
.=
|.(
vol ((
divset (H,j)),rho)).| by
A197,
A201,
A200,
A194,
A203,
A204,
FINSEQ_1:def 7;
end;
suppose
A205: j
<> 1;
per cases ;
suppose
A206: j
= (
len H);
then
A207: j
= ((
len H1)
+ 1) by
A175,
FINSEQ_1: 22;
A208: (F
. j)
=
|.(
vol (
[.(S
. k), (
upper_bound B).],rho)).| by
A176,
A195,
A206,
FINSEQ_1: 42;
A209: (
lower_bound (
divset (H,j)))
= (H
. (j
- 1)) & (
upper_bound (
divset (H,j)))
= (H
. j) by
A198,
A205,
INTEGRA1:def 4;
(j
- 1)
in
NAT by
A198,
INT_1: 5,
FINSEQ_3: 25;
then
reconsider j1 = (j
- 1) as
Nat;
1
< j by
A199,
A205,
XXREAL_0: 1;
then (1
- 1)
< j1 by
XREAL_1: 14;
then
A210: 1
<= j1 by
NAT_1: 14;
(j
- 1)
in (
dom H1) by
A207,
A210,
FINSEQ_3: 25;
then (H
. (j
- 1))
= (H1
. (
len H1)) by
A207,
FINSEQ_1:def 7
.= (S
. k) by
A126,
INTEGRA1:def 2;
hence (F
. j)
=
|.(
vol ((
divset (H,j)),rho)).| by
A197,
A206,
A208,
A209,
INTEGRA1:def 2;
end;
suppose j
<> (
len H);
then j
< ((
len H1)
+ 1) by
A176,
A199,
XXREAL_0: 1;
then
L: j
<= (
len H1) by
NAT_1: 13;
then
A211: j
in (
Seg (
len H1)) by
A199;
A212: j
in (
dom H1) by
A199,
L,
FINSEQ_3: 25;
then
A213: (H
. j)
= (H1
. j) by
FINSEQ_1:def 7;
(j
- 1)
in
NAT by
A198,
FINSEQ_3: 25,
INT_1: 5;
then
reconsider j1 = (j
- 1) as
Nat;
1
< j by
A199,
A205,
XXREAL_0: 1;
then (j
- 1)
in (
Seg (
len H1)) by
A211,
FINSEQ_3: 12;
then (j
- 1)
in (
dom H1) by
FINSEQ_1:def 3;
then
A214: (H
. j1)
= (H1
. j1) by
FINSEQ_1:def 7;
A215: (
lower_bound (
divset (H,j)))
= (H
. (j
- 1)) & (
upper_bound (
divset (H,j)))
= (H
. j) by
A198,
A205,
INTEGRA1:def 4;
thus (F
. j)
= (F1
. j) by
A196,
A212,
FINSEQ_1:def 7
.=
|.(
vol ((
divset (H1,j)),rho)).| by
A212,
INTEGR22:def 2
.=
|.(
vol ((
divset (H,j)),rho)).| by
A205,
A212,
A213,
A214,
A215,
INTEGRA1:def 4;
end;
end;
end;
then
reconsider F as
var_volume of rho, H by
A193,
INTEGR22:def 2;
take H, F;
A217: (p
. 1)
=
|.(
vol (((
divset (T,1))
/\ (
divset (S,(k
+ 1)))),rho)).| by
A156,
FINSEQ_3: 25,
A153;
A218: (
divset (S,(k
+ 1)))
c= B by
A167,
INTEGRA1: 8;
A219: B
=
[.(
lower_bound B), (
upper_bound B).] by
INTEGRA1: 4;
A221: (
lower_bound (
divset (T,1)))
= (
lower_bound A) & (
upper_bound (
divset (T,1)))
= (T
. 1) by
INTEGRA1:def 4,
A157;
[.(
lower_bound B), (
upper_bound B).]
c=
[.(
lower_bound (
divset (T,1))), (
upper_bound (
divset (T,1))).] by
A4,
A173,
A221,
XXREAL_1: 34;
then
[.(
lower_bound B), (
upper_bound B).]
c= (
divset (T,1)) by
INTEGRA1: 4;
then (
divset (S,(k
+ 1)))
c= (
divset (T,1)) by
A218,
A219;
then
A222: (p
. 1)
=
|.(
vol ((
divset (S,(k
+ 1))),rho)).| by
A217,
XBOOLE_1: 28;
for i be
Nat st i
in (
dom p) & i
<> 1 holds (p
. i)
=
0
proof
let i be
Nat;
assume
A223: i
in (
dom p) & i
<> 1;
then
A225: 1
<= i
<= (
len p) by
FINSEQ_3: 25;
then 1
< i by
A223,
XXREAL_0: 1;
then (1
+ 1)
<= i by
NAT_1: 13;
then
A226: (2
- 1)
<= (i
- 1) by
XREAL_1: 9;
then
reconsider i1 = (i
- 1) as
Nat by
INT_1: 3,
ORDINAL1:def 12;
(i
- 1)
<= ((
len p)
-
0 ) by
A225,
XREAL_1: 13;
then i1
in (
dom T) by
A226,
FINSEQ_3: 25,
A153;
then
A227: (T
. 1)
<= (T
. (i
- 1)) by
A157,
A226,
VALUED_0:def 15;
A228: (
lower_bound (
divset (T,i)))
= (T
. (i
- 1)) & (
upper_bound (
divset (T,i)))
= (T
. i) by
INTEGRA1:def 4,
A223,
H;
A229: (p
. i)
=
|.(
vol (((
divset (T,i))
/\ (
divset (S,(k
+ 1)))),rho)).| by
A153,
A223,
H;
((
divset (T,i))
/\ (
divset (S,(k
+ 1))))
c= ((
divset (T,i))
/\ B) by
A167,
INTEGRA1: 8,
XBOOLE_1: 26;
then
A230: ((
divset (T,i))
/\ (
divset (S,(k
+ 1))))
c= (
[.(
lower_bound B), (
upper_bound B).]
/\
[.(
lower_bound (
divset (T,i))), (
upper_bound (
divset (T,i))).]) by
A219,
INTEGRA1: 4;
(
[.(
lower_bound B), (
upper_bound B).]
/\
[.(
lower_bound (
divset (T,i))), (
upper_bound (
divset (T,i))).])
c=
[.(
upper_bound B), (
upper_bound B).] by
A173,
A227,
A228,
Th10,
XXREAL_0: 2;
then ((
divset (T,i))
/\ (
divset (S,(k
+ 1))))
c=
[.(
upper_bound B), (
upper_bound B).] by
A230;
hence thesis by
A229,
COMPLEX1: 44,
Th11;
end;
then
A231: (
Sum p)
=
|.(
vol ((
divset (S,(k
+ 1))),rho)).| by
A153,
A156,
A222,
Th8,
FINSEQ_3: 25
.=
|.(
vol (
[.(S
. k), (
upper_bound B).],rho)).| by
A4,
A5,
A159,
A170,
INTEGRA1: 4;
thus (
Sum ST)
= ((
Sum F1)
+ (
Sum p)) by
A150,
A152,
A153,
RVSUM_1: 74
.= (
Sum F) by
A231,
RVSUM_1: 74;
end;
suppose
A232: m
<> 1;
S: m
in (
Seg (
len T)) by
A160,
FINSEQ_1:def 3;
A233: 1
<= m
<= (
len T) by
A160,
FINSEQ_3: 25;
then 1
< m by
A232,
XXREAL_0: 1;
then
a234: (m
- 1)
in (
Seg (
len T)) by
FINSEQ_3: 12,
S;
then
A234: (m
- 1)
in (
dom T) by
FINSEQ_1:def 3;
then
A235: 1
<= (m
- 1)
<= (
len T) by
FINSEQ_3: 25;
reconsider m1 = (m
- 1) as
Nat by
a234;
LL: m1
in (
dom T) by
a234,
FINSEQ_1:def 3;
set IDX = { i where i be
Nat : i
in (
dom T) & (T
. i)
<= (S
. k) };
IDX
c= (
dom T)
proof
let x be
object;
assume x
in IDX;
then ex i be
Nat st x
= i & i
in (
dom T) & (T
. i)
<= (S
. k);
hence thesis;
end;
then
reconsider IDX as
finite
Subset of
NAT by
XBOOLE_1: 1;
per cases ;
suppose
A237: IDX
=
{} ;
A238: for i be
Nat st i
in (
dom T) holds (S
. k)
< (T
. i)
proof
assume not for i be
Nat st i
in (
dom T) holds (S
. k)
< (T
. i);
then
consider i be
Nat such that
A239: i
in (
dom T) & not (S
. k)
< (T
. i);
i
in IDX by
A239;
hence contradiction by
A237;
end;
reconsider TM1 = (T
| m1) as non
empty
increasing
FinSequence of
REAL by
Th12,
LL;
A240: (
len TM1)
= m1 by
A235,
FINSEQ_1: 59;
then
a240: (
dom TM1)
= (
Seg m1) by
FINSEQ_1:def 3;
then
A242: (TM1
. (
len TM1))
= (T
. m1) by
FUNCT_1: 49,
A240,
FINSEQ_3: 25,
A235;
A243: (T
. m1)
< (
upper_bound B)
proof
assume not (T
. m1)
< (
upper_bound B);
then
A245: m1
in JDX by
A234;
(m
- 1)
< (m
-
0 ) by
XREAL_1: 15;
hence contradiction by
A245,
NAT_1:def 1;
end;
then
reconsider TM1B = (TM1
^
<*(
upper_bound B)*>) as non
empty
increasing
FinSequence of
REAL by
A242,
Th14;
A246: (H1
. (
len H1))
= (S
. k) by
A126,
INTEGRA1:def 2;
1
in (
Seg (
len TM1)) by
A235,
A240;
then
A248: (TM1
. 1)
= (T
. 1) by
A240,
FUNCT_1: 49;
1
in (
dom TM1) by
A235,
A240,
FINSEQ_3: 25;
then
A249: (TM1B
. 1)
= (T
. 1) by
A248,
FINSEQ_1:def 7;
reconsider H = (H1
^ TM1B) as non
empty
increasing
FinSequence of
REAL by
A157,
A238,
A246,
A249,
Th13;
A250: (
rng TM1B)
= ((
rng TM1)
\/ (
rng
<*(
upper_bound B)*>)) by
FINSEQ_1: 31;
A251: (
rng
<*(
upper_bound B)*>)
=
{(
upper_bound B)} by
FINSEQ_1: 39;
A256: (
rng TM1)
c= B
proof
let z be
object;
assume
A252: z
in (
rng TM1);
then
reconsider x = z as
Real;
x
in (
rng T) by
A252,
RELAT_1: 70,
TARSKI:def 3;
then x
in A by
INTEGRA1:def 2,
TARSKI:def 3;
then
A253: ex r be
Real st x
= r & (
lower_bound A)
<= r & r
<= (
upper_bound A) by
A116;
consider i be
object such that
A254: i
in (
dom TM1) & x
= (TM1
. i) by
A252,
FUNCT_1:def 3;
reconsider i as
Nat by
A254;
A255: 1
<= i
<= (
len TM1) by
FINSEQ_3: 25,
A254;
1
<= (
len TM1) by
A255,
XXREAL_0: 2;
then (
len TM1)
in (
dom TM1) by
FINSEQ_3: 25;
then (TM1
. i)
<= (TM1
. (
len TM1)) by
A254,
A255,
VALUED_0:def 15;
then x
<= (
upper_bound B) by
A242,
A243,
A254,
XXREAL_0: 2;
hence z
in B by
A4,
A115,
A253;
end;
(
lower_bound B)
<= (
upper_bound B) by
SEQ_4: 11;
then (
upper_bound B)
in B by
A115;
then
{(
upper_bound B)}
c= B by
ZFMISC_1: 31;
then
A257: (
rng TM1B)
c= B by
A250,
A251,
A256,
XBOOLE_1: 8;
(
rng H1)
c= B1 by
INTEGRA1:def 2;
then (
rng H1)
c= B by
A123;
then ((
rng H1)
\/ (
rng TM1B))
c= B by
A257,
XBOOLE_1: 8;
then
A258: (
rng H)
c= B by
FINSEQ_1: 31;
A259: (
len TM1B)
= ((
len TM1)
+ (
len
<*(
upper_bound B)*>)) by
FINSEQ_1: 22
.= ((
len TM1)
+ 1) by
FINSEQ_1: 40;
((
len TM1)
+ 1)
in (
Seg ((
len TM1)
+ 1)) by
FINSEQ_1: 4;
then
A260: ((
len TM1)
+ 1)
in (
dom TM1B) by
A259,
FINSEQ_1:def 3;
A261: (
len H)
= ((
len H1)
+ ((
len TM1)
+ 1)) by
A259,
FINSEQ_1: 22;
X: 1
in (
Seg 1);
then
A262: 1
in (
dom
<*(
upper_bound B)*>) by
FINSEQ_1: 38;
(H
. (
len H))
= (TM1B
. ((
len TM1)
+ 1)) by
A260,
A261,
FINSEQ_1:def 7
.= (
<*(
upper_bound B)*>
. 1) by
A262,
FINSEQ_1:def 7
.= (
upper_bound B) by
FINSEQ_1: 40;
then
reconsider H as
Division of B by
A258,
INTEGRA1:def 2;
set q = ((p
| m1)
^
<*
|.(
vol (
[.(T
. m1), (
upper_bound B).],rho)).|*>);
(
rng q)
c=
REAL ;
then
reconsider q as
FinSequence of
REAL by
FINSEQ_1:def 4;
A263: (
len (p
| m1))
= m1 by
A153,
A235,
FINSEQ_1: 59;
A264: (
len q)
= ((
len (p
| m1))
+ (
len
<*
|.(
vol (
[.(T
. m1), (
upper_bound B).],rho)).|*>)) by
FINSEQ_1: 22
.= (m1
+ 1) by
A263,
FINSEQ_1: 40
.= m;
A265: 1
in (
dom
<*
|.(
vol (
[.(T
. m1), (
upper_bound B).],rho)).|*>) by
FINSEQ_1: 38,
X;
A266: (q
. m)
= (q
. (m1
+ 1))
.= (
<*
|.(
vol (
[.(T
. m1), (
upper_bound B).],rho)).|*>
. 1) by
A263,
A265,
FINSEQ_1:def 7
.=
|.(
vol (
[.(T
. m1), (
upper_bound B).],rho)).| by
FINSEQ_1: 40;
A267: for i be
Nat st 1
<= i & i
<= m1 holds (q
. i)
=
|.(
vol (((
divset (T,i))
/\ (
divset (S,(k
+ 1)))),rho)).|
proof
let i be
Nat;
assume
A268: 1
<= i
<= m1;
then
A269: i
in (
Seg m1);
then
A270: i
in (
dom (p
| m1)) by
A263,
FINSEQ_1:def 3;
C: i
<= (
len T) by
A235,
A268,
XXREAL_0: 2;
thus (q
. i)
= ((p
| m1)
. i) by
A270,
FINSEQ_1:def 7
.= (p
. i) by
A269,
FUNCT_1: 49
.=
|.(
vol (((
divset (T,i))
/\ (
divset (S,(k
+ 1)))),rho)).| by
A153,
C,
FINSEQ_3: 25,
A268;
end;
reconsider F = (F1
^ q) as
FinSequence of
REAL ;
A272: (
Sum F)
= ((
Sum F1)
+ (
Sum q)) by
RVSUM_1: 75;
A273: (
len F)
= ((
len F1)
+ (
len q)) by
FINSEQ_1: 22;
A274: (
len H)
= (((
len H1)
+ m1)
+ 1) by
A240,
A261;
A275: 1
<= (
len H1) by
NAT_1: 14;
then
A276: 1
in (
dom H1) by
FINSEQ_3: 25;
A277: (
len F1)
= (
len H1) by
INTEGR22:def 2;
then
A278: (
dom F1)
= (
dom H1) by
FINSEQ_3: 29;
(m
- 1)
<= (m
-
0 ) by
XREAL_1: 15;
then 1
<= m by
A235,
XXREAL_0: 2;
then
A279: m
in (
dom q) by
A264,
FINSEQ_3: 25;
for j be
Nat st j
in (
dom H) holds (F
. j)
=
|.(
vol ((
divset (H,j)),rho)).|
proof
let j be
Nat;
A280: (
divset (H,j))
=
[.(
lower_bound (
divset (H,j))), (
upper_bound (
divset (H,j))).] & (
divset (H1,j))
=
[.(
lower_bound (
divset (H1,j))), (
upper_bound (
divset (H1,j))).] by
INTEGRA1: 4;
assume
A281: j
in (
dom H);
then
A282: 1
<= j
<= (
len H) by
FINSEQ_3: 25;
per cases ;
suppose
A283: j
= 1;
then
A284: (
lower_bound (
divset (H,j)))
= (
lower_bound B) & (
upper_bound (
divset (H,j)))
= (H
. j) by
A281,
INTEGRA1:def 4;
A285: j
in (
dom H1) by
A275,
A283,
FINSEQ_3: 25;
then
A286: (
lower_bound (
divset (H1,j)))
= (
lower_bound B1) & (
upper_bound (
divset (H1,j)))
= (H1
. j) by
A283,
INTEGRA1:def 4;
A287: (
lower_bound B)
= (
lower_bound B1) by
A122,
A137,
INTEGRA1: 5;
thus (F
. j)
= (F1
. j) by
A278,
A276,
A283,
FINSEQ_1:def 7
.=
|.(
vol ((
divset (H1,j)),rho)).| by
A285,
INTEGR22:def 2
.=
|.(
vol ((
divset (H,j)),rho)).| by
A280,
A284,
A285,
A286,
A287,
FINSEQ_1:def 7;
end;
suppose
A288: j
<> 1;
per cases ;
suppose
A289: j
= (
len H);
A290: (F
. j)
=
|.(
vol (
[.(T
. m1), (
upper_bound B).],rho)).| by
A240,
A261,
A266,
A277,
A279,
A289,
FINSEQ_1:def 7;
A291: (
lower_bound (
divset (H,j)))
= (H
. (j
- 1)) & (
upper_bound (
divset (H,j)))
= (H
. j) by
A281,
A288,
INTEGRA1:def 4;
(j
- 1)
in
NAT by
A281,
INT_1: 5,
FINSEQ_3: 25;
then
reconsider j1 = (j
- 1) as
Nat;
(m
- 1)
< (m
-
0 ) by
XREAL_1: 15;
then m1
in (
Seg m) by
A235;
then
A292: m1
in (
dom TM1B) by
A240,
A259,
FINSEQ_1:def 3;
A293: m1
in (
dom TM1) by
A240,
A235,
FINSEQ_3: 25;
(H
. j1)
= (TM1B
. m1) by
A274,
A289,
A292,
FINSEQ_1:def 7
.= (TM1
. m1) by
A293,
FINSEQ_1:def 7
.= (T
. m1) by
a240,
A240,
FUNCT_1: 49,
A235,
FINSEQ_3: 25;
hence (F
. j)
=
|.(
vol ((
divset (H,j)),rho)).| by
A280,
A289,
A290,
A291,
INTEGRA1:def 2;
end;
suppose j
<> (
len H);
then
A294: j
< ((
len H1)
+ m) by
A240,
A261,
A282,
XXREAL_0: 1;
per cases ;
suppose j
> (
len H1);
then
A295: (j
- (
len H1))
>
0 by
XREAL_1: 50;
then (j
- (
len H1))
in
NAT by
INT_1: 3;
then
reconsider j1 = (j
- (
len H1)) as
Nat;
A296: j1
< (((
len H1)
+ m)
- (
len H1)) by
A294,
XREAL_1: 14;
then (j1
+ 1)
<= m by
NAT_1: 13;
then
A297: ((j1
+ 1)
- 1)
<= (m
- 1) by
XREAL_1: 13;
A298: 1
<= j1 by
A295,
NAT_1: 14;
then
A299: j1
in (
Seg m) by
A296;
A300: j1
in (
dom q) by
A296,
A264,
FINSEQ_3: 25,
A298;
A301: j1
in (
Seg m1) by
A297,
A298;
then
A302: j1
in (
dom TM1) by
A240,
FINSEQ_1:def 3;
A303: (F
. j)
= (F
. ((
len H1)
+ j1))
.= (q
. j1) by
A277,
A300,
FINSEQ_1:def 7
.=
|.(
vol (((
divset (T,j1))
/\ (
divset (S,(k
+ 1)))),rho)).| by
A267,
A297,
A298;
A304: j1
in (
dom TM1B) by
A240,
A259,
A299,
FINSEQ_1:def 3;
(
len TM1)
in (
Seg (
len TM1)) by
FINSEQ_1: 3;
then
A305: m1
in (
dom TM1) by
A240,
FINSEQ_1:def 3;
A306: (H
. j)
= (H
. ((
len H1)
+ j1))
.= (TM1B
. j1) by
A304,
FINSEQ_1:def 7
.= (TM1
. j1) by
A302,
FINSEQ_1:def 7
.= (T
. j1) by
A301,
FUNCT_1: 49;
A307: j1
in (
dom T) by
A302,
RELAT_1: 57;
m1
in (
dom T) by
A305,
RELAT_1: 57;
then (T
. j1)
<= (T
. m1) by
A297,
A307,
VALUED_0:def 15;
then
A308: (T
. j1)
<= (
upper_bound B) by
A243,
XXREAL_0: 2;
per cases ;
suppose
A309: j1
<> 1;
then
A310: (
lower_bound (
divset (T,j1)))
= (T
. (j1
- 1)) & (
upper_bound (
divset (T,j1)))
= (T
. j1) by
A307,
INTEGRA1:def 4;
1
< j1 by
A298,
A309,
XXREAL_0: 1;
then (1
+ 1)
<= j1 by
NAT_1: 13;
then
A311: ((1
+ 1)
- 1)
<= (j1
- 1) by
XREAL_1: 9;
then (j1
- 1)
in
NAT by
INT_1: 3;
then
reconsider j11 = (j1
- 1) as
Nat;
A312: j11
<= (m1
-
0 ) by
A297,
XREAL_1: 13;
j11
<= (
len T) by
A235,
A312,
XXREAL_0: 2;
then
A313: (
lower_bound (
divset (S,(k
+ 1))))
<= (
lower_bound (
divset (T,j1))) by
A170,
A238,
A310,
A311,
FINSEQ_3: 25;
A314: (
upper_bound (
divset (T,j1)))
<= (
upper_bound (
divset (S,(k
+ 1)))) by
A4,
A5,
A159,
A170,
A307,
A308,
A309,
INTEGRA1:def 4;
A315: (
divset (T,j1))
=
[.(
lower_bound (
divset (T,j1))), (
upper_bound (
divset (T,j1))).] by
INTEGRA1: 4;
A316: ((
divset (T,j1))
/\ (
divset (S,(k
+ 1))))
= (
divset (T,j1)) by
A169,
A313,
A314,
A315,
XBOOLE_1: 28,
XXREAL_1: 34;
(m
- 1)
< (m
-
0 ) by
XREAL_1: 15;
then 1
<= j11
<= m by
A311,
A312,
XXREAL_0: 2;
then
A317: j11
in (
dom TM1B) by
A240,
A259,
FINSEQ_3: 25;
A318: j11
in (
Seg m1) by
A311,
A312;
then
A319: j11
in (
dom TM1) by
A240,
FINSEQ_1:def 3;
A320: (H
. (j
- 1))
= (H
. ((
len H1)
+ j11))
.= (TM1B
. j11) by
A317,
FINSEQ_1:def 7
.= (TM1
. j11) by
A319,
FINSEQ_1:def 7
.= (T
. j11) by
A318,
FUNCT_1: 49;
A321: (
upper_bound (
divset (H,j)))
= (T
. j1) by
A281,
A288,
A306,
INTEGRA1:def 4
.= (
upper_bound (
divset (T,j1))) by
A307,
A309,
INTEGRA1:def 4;
(
lower_bound (
divset (H,j)))
= (T
. (j1
- 1)) by
A281,
A288,
A320,
INTEGRA1:def 4
.= (
lower_bound (
divset (T,j1))) by
A307,
A309,
INTEGRA1:def 4;
hence (F
. j)
=
|.(
vol ((
divset (H,j)),rho)).| by
A303,
A315,
A316,
A321,
INTEGRA1: 4;
end;
suppose
A322: j1
= 1;
then
A323: (
lower_bound (
divset (T,j1)))
= (
lower_bound A) & (
upper_bound (
divset (T,j1)))
= (T
. j1) by
A307,
INTEGRA1:def 4;
A324: (
divset (T,j1))
=
[.(
lower_bound (
divset (T,j1))), (
upper_bound (
divset (T,j1))).] by
INTEGRA1: 4;
A325: (
upper_bound (
divset (H,j)))
= (T
. j1) by
A281,
A288,
A306,
INTEGRA1:def 4
.= (
upper_bound (
divset (T,j1))) by
A307,
A322,
INTEGRA1:def 4;
A326: (
len H1)
in (
dom H1) by
A275,
FINSEQ_3: 25;
A327: (
lower_bound (
divset (H,j)))
= (H
. (((
len H1)
+ j1)
- 1)) by
A281,
A288,
INTEGRA1:def 4
.= (S
. k) by
A246,
A322,
A326,
FINSEQ_1:def 7;
((
divset (T,j1))
/\ (
divset (S,(k
+ 1))))
=
[.(S
. k), (
upper_bound (
divset (T,j1))).] by
A4,
A163,
A169,
A170,
A171,
A308,
A323,
A324,
XXREAL_1: 143
.= (
divset (H,j)) by
A325,
A327,
INTEGRA1: 4;
hence (F
. j)
=
|.(
vol ((
divset (H,j)),rho)).| by
A303;
end;
end;
suppose
B: j
<= (
len H1);
then
A328: j
in (
Seg (
len H1)) by
A282;
A329: j
in (
dom H1) by
A282,
B,
FINSEQ_3: 25;
then
A330: (H
. j)
= (H1
. j) by
FINSEQ_1:def 7;
(j
- 1)
in
NAT by
A281,
INT_1: 5,
FINSEQ_3: 25;
then
reconsider j1 = (j
- 1) as
Nat;
1
< j by
A282,
A288,
XXREAL_0: 1;
then (j
- 1)
in (
Seg (
len H1)) by
A328,
FINSEQ_3: 12;
then (j
- 1)
in (
dom H1) by
FINSEQ_1:def 3;
then
A331: (H
. j1)
= (H1
. j1) by
FINSEQ_1:def 7;
A332: (
lower_bound (
divset (H,j)))
= (H
. (j
- 1)) & (
upper_bound (
divset (H,j)))
= (H
. j) by
A281,
A288,
INTEGRA1:def 4;
thus (F
. j)
= (F1
. j) by
A278,
A329,
FINSEQ_1:def 7
.=
|.(
vol ((
divset (H1,j)),rho)).| by
A329,
INTEGR22:def 2
.=
|.(
vol ((
divset (H,j)),rho)).| by
A288,
A329,
A330,
A331,
A332,
INTEGRA1:def 4;
end;
end;
end;
end;
then
reconsider F as
var_volume of rho, H by
A240,
A261,
A264,
A273,
A277,
INTEGR22:def 2;
take H, F;
Z: (
dom p)
= (
dom T) by
FINSEQ_3: 29,
A153;
A333: for i be
Nat st i
in (
dom p) holds (i
<= (
len q) implies (p
. i)
= (q
. i)) & ((
len q)
< i implies (p
. i)
=
0 )
proof
let i be
Nat;
assume
A334: i
in (
dom p);
then
A335: 1
<= i
<= (
len p) by
FINSEQ_3: 25;
(
dom p)
= (
dom T) by
A153,
FINSEQ_3: 29;
then
A336: (p
. i)
=
|.(
vol (((
divset (T,i))
/\ (
divset (S,(k
+ 1)))),rho)).| by
A153,
A334;
thus i
<= (
len q) implies (p
. i)
= (q
. i)
proof
assume
A337: i
<= (
len q);
A338: (
divset (T,i))
=
[.(
lower_bound (
divset (T,i))), (
upper_bound (
divset (T,i))).] by
INTEGRA1: 4;
per cases ;
suppose i
<> m;
then i
< m by
A264,
A337,
XXREAL_0: 1;
then (i
+ 1)
<= m by
NAT_1: 13;
then ((i
+ 1)
- 1)
<= (m
- 1) by
XREAL_1: 13;
hence thesis by
A267,
A335,
A336;
end;
suppose
A339: i
= m;
(m
- 1)
< (m
-
0 ) by
XREAL_1: 15;
then
A341: (
lower_bound (
divset (T,m)))
= (T
. (m
- 1)) & (
upper_bound (
divset (T,m)))
= (T
. m) by
A235,
A160,
INTEGRA1:def 4;
A342: (
lower_bound (
divset (S,(k
+ 1))))
< (
lower_bound (
divset (T,m))) by
A170,
A234,
A238,
A341;
((
divset (T,i))
/\ (
divset (S,(k
+ 1))))
= (
[.(
lower_bound (
divset (T,i))), (
upper_bound (
divset (T,i))).]
/\
[.(
lower_bound (
divset (S,(k
+ 1)))), (
upper_bound (
divset (S,(k
+ 1)))).]) by
A338,
INTEGRA1: 4
.=
[.(T
. m1), (
upper_bound B).] by
A4,
A5,
A159,
A160,
A170,
A339,
A341,
A342,
XXREAL_1: 143;
hence thesis by
A153,
A266,
A334,
A339,
Z;
end;
end;
A343: (
divset (T,i))
=
[.(
lower_bound (
divset (T,i))), (
upper_bound (
divset (T,i))).] by
INTEGRA1: 4;
thus (
len q)
< i implies (p
. i)
=
0
proof
assume
A344: (
len q)
< i;
(m
- 1)
< (m
-
0 ) by
XREAL_1: 15;
then
A345: 1
< m by
A235,
XXREAL_0: 2;
then
A346: (
lower_bound (
divset (T,i)))
= (T
. (i
- 1)) & (
upper_bound (
divset (T,i)))
= (T
. i) by
A264,
A344,
INTEGRA1:def 4,
A334,
Z;
(m
+ 1)
<= i by
A264,
A344,
NAT_1: 13;
then
A347: ((m
+ 1)
- 1)
<= (i
- 1) by
XREAL_1: 13;
then
A348: 1
< (i
- 1) by
A345,
XXREAL_0: 2;
(i
- 1)
in
NAT by
A347,
INT_1: 3;
then
reconsider i1 = (i
- 1) as
Nat;
((
len T)
- 1)
< ((
len T)
-
0 ) by
XREAL_1: 15;
then i1
<= (
len T) by
A153,
A335,
XREAL_1: 15;
then
A350: i1
in (
dom T) by
A348,
FINSEQ_3: 25;
((
divset (T,i))
/\ (
divset (S,(k
+ 1))))
c=
[.(
upper_bound (
divset (S,(k
+ 1)))), (
upper_bound (
divset (S,(k
+ 1)))).] by
A4,
A5,
A159,
A164,
A169,
A170,
A343,
A346,
A347,
A350,
Th10;
hence thesis by
A336,
COMPLEX1: 44,
Th11;
end;
end;
thus (
Sum ST)
= ((
Sum F1)
+ (
Sum p)) by
A150,
A152,
A153,
RVSUM_1: 74
.= (
Sum F) by
A272,
A264,
A153,
A160,
FINSEQ_3: 25,
A333,
Th9;
end;
suppose IDX
<>
{} ;
then
A351: (
sup IDX)
in IDX by
XXREAL_2:def 6;
then
reconsider n = (
sup IDX) as
Nat;
consider i be
Nat such that
A352: n
= i & i
in (
dom T) & (T
. i)
<= (S
. k) by
A351;
A353: 1
<= n
<= (
len T) by
FINSEQ_3: 25,
A352;
n
<> (
len T)
proof
assume n
= (
len T);
then
A354: (
upper_bound A)
<= (S
. k) by
A352,
INTEGRA1:def 2;
(
upper_bound A)
< (
upper_bound B) by
A168,
A354,
XXREAL_0: 2;
hence contradiction by
A4,
XXREAL_2: 59;
end;
then n
< (
len T) by
A353,
XXREAL_0: 1;
then
Z: 1
<= (n
+ 1)
<= (
len T) by
NAT_1: 11,
NAT_1: 13;
then
A355: (n
+ 1)
in (
dom T) by
FINSEQ_3: 25;
A356: (S
. k)
< (T
. (n
+ 1))
proof
assume (T
. (n
+ 1))
<= (S
. k);
then (n
+ 1)
in IDX by
A355;
hence contradiction by
NAT_1: 16,
XXREAL_2: 4;
end;
A357: for i be
Nat st i
in (
dom T) & n
< i holds (S
. k)
< (T
. i)
proof
let i be
Nat;
assume
A358: i
in (
dom T) & n
< i;
then
A359: (n
+ 1)
<= i by
NAT_1: 13;
(n
+ 1)
in (
dom T) by
Z,
FINSEQ_3: 25;
then (T
. (n
+ 1))
<= (T
. i) by
A358,
A359,
VALUED_0:def 15;
hence (S
. k)
< (T
. i) by
A356,
XXREAL_0: 2;
end;
A361: n
< m
proof
assume m
<= n;
then (T
. m)
<= (T
. n) by
A160,
A352,
VALUED_0:def 15;
then (
upper_bound B)
<= (T
. n) by
A160,
XXREAL_0: 2;
hence contradiction by
A168,
A352,
XXREAL_0: 2;
end;
A364: for i be
Nat st i
<= n & i
in (
dom T) holds (T
. i)
<= (S
. k)
proof
let i be
Nat;
assume
A365: i
<= n & i
in (
dom T);
assume
A366: not (T
. i)
<= (S
. k);
(T
. i)
<= (T
. n) by
A352,
A365,
VALUED_0:def 15;
hence contradiction by
A352,
A366,
XXREAL_0: 2;
end;
A368: for i be
Nat st n
< i & i
< m & i
in (
dom T) holds (S
. k)
< (T
. i) & (T
. i)
< (S
. (k
+ 1))
proof
let i be
Nat;
assume
A369: n
< i & i
< m & i
in (
dom T);
hence (S
. k)
< (T
. i) by
A357;
assume not (T
. i)
< (S
. (k
+ 1));
then i
in JDX by
A4,
A5,
A159,
A369;
hence contradiction by
A369,
NAT_1:def 1;
end;
A370: (n
+ 1)
<= m by
A361,
NAT_1: 13;
per cases ;
suppose
A371: (n
+ 1)
= m;
set H = (H1
^
<*(
upper_bound B)*>);
(H1
. (
len H1))
= (S
. k) by
A126,
INTEGRA1:def 2;
then
reconsider H as non
empty
increasing
FinSequence of
REAL by
A168,
Th14;
A372: (
len
<*(
upper_bound B)*>)
= 1 by
FINSEQ_1: 39;
then
A373: (
len H)
= ((
len H1)
+ 1) by
FINSEQ_1: 22;
A374: (H
. (
len H))
= (
upper_bound B) by
A373,
FINSEQ_1: 42;
(
rng H1)
c= B1 by
INTEGRA1:def 2;
then
A375: (
rng H1)
c= B by
A123;
A376: (
rng H)
= ((
rng H1)
\/ (
rng
<*(
upper_bound B)*>)) by
FINSEQ_1: 31;
A377: (
rng
<*(
upper_bound B)*>)
=
{(
upper_bound B)} by
FINSEQ_1: 39;
(
lower_bound B)
<= (
upper_bound B) by
SEQ_4: 11;
then (
upper_bound B)
in B by
A115;
then (
rng
<*(
upper_bound B)*>)
c= B by
A377,
ZFMISC_1: 31;
then
reconsider H as
Division of B by
A374,
A375,
A376,
INTEGRA1:def 2,
XBOOLE_1: 8;
set F = (F1
^
<*
|.(
vol (
[.(S
. k), (
upper_bound B).],rho)).|*>);
|.(
vol (
[.(S
. k), (
upper_bound B).],rho)).| is
Element of
REAL by
XREAL_0:def 1;
then
A378:
<*
|.(
vol (
[.(S
. k), (
upper_bound B).],rho)).|*> is
FinSequence of
REAL by
FINSEQ_1: 74;
reconsider F as
FinSequence of
REAL by
A378,
FINSEQ_1: 75;
A379: (
len F)
= ((
len F1)
+ (
len
<*
|.(
vol (
[.(S
. k), (
upper_bound B).],rho)).|*>)) by
FINSEQ_1: 22
.= ((
len H1)
+ (
len
<*
|.(
vol (
[.(S
. k), (
upper_bound B).],rho)).|*>)) by
INTEGR22:def 2
.= ((
len H1)
+ 1) by
FINSEQ_1: 40
.= (
len H) by
A372,
FINSEQ_1: 22;
D: 1
<= (
len H1) by
NAT_1: 14;
then
A380: 1
in (
dom H1) by
FINSEQ_3: 25;
A381: (
len F1)
= (
len H1) by
INTEGR22:def 2;
then
A382: (
dom F1)
= (
dom H1) by
FINSEQ_3: 29;
for j be
Nat st j
in (
dom H) holds (F
. j)
=
|.(
vol ((
divset (H,j)),rho)).|
proof
let j be
Nat;
A383: (
divset (H,j))
=
[.(
lower_bound (
divset (H,j))), (
upper_bound (
divset (H,j))).] & (
divset (H1,j))
=
[.(
lower_bound (
divset (H1,j))), (
upper_bound (
divset (H1,j))).] by
INTEGRA1: 4;
assume
A384: j
in (
dom H);
then
A385: 1
<= j
<= (
len H) by
FINSEQ_3: 25;
per cases ;
suppose
A386: j
= 1;
then
A387: (
lower_bound (
divset (H,j)))
= (
lower_bound B) & (
upper_bound (
divset (H,j)))
= (H
. j) by
A384,
INTEGRA1:def 4;
A388: j
in (
dom H1) by
D,
A386,
FINSEQ_3: 25;
A389: (
lower_bound (
divset (H1,j)))
= (
lower_bound B1) & (
upper_bound (
divset (H1,j)))
= (H1
. j) by
INTEGRA1:def 4,
A380,
A386;
A390: (
lower_bound B)
= (
lower_bound B1) by
A122,
A137,
INTEGRA1: 5;
thus (F
. j)
= (F1
. j) by
A382,
A388,
FINSEQ_1:def 7
.=
|.(
vol ((
divset (H1,j)),rho)).| by
A388,
INTEGR22:def 2
.=
|.(
vol ((
divset (H,j)),rho)).| by
A383,
A387,
A388,
A389,
A390,
FINSEQ_1:def 7;
end;
suppose
A391: j
<> 1;
per cases ;
suppose
A392: j
= (
len H);
A393: (F
. j)
=
|.(
vol (
[.(S
. k), (
upper_bound B).],rho)).| by
A373,
A381,
A392,
FINSEQ_1: 42;
A394: (
lower_bound (
divset (H,j)))
= (H
. (j
- 1)) & (
upper_bound (
divset (H,j)))
= (H
. j) by
A384,
A391,
INTEGRA1:def 4;
(j
- 1)
in
NAT by
A384,
INT_1: 5,
FINSEQ_3: 25;
then
reconsider j1 = (j
- 1) as
Nat;
1
< j by
A385,
A391,
XXREAL_0: 1;
then (1
- 1)
< j1 by
XREAL_1: 14;
then 1
<= j1 by
NAT_1: 14;
then j1
in (
dom H1) by
FINSEQ_3: 25,
A373,
A392;
then (H
. (j
- 1))
= (H1
. (
len H1)) by
A373,
A392,
FINSEQ_1:def 7
.= (S
. k) by
A126,
INTEGRA1:def 2;
hence (F
. j)
=
|.(
vol ((
divset (H,j)),rho)).| by
A383,
A392,
A393,
A394,
INTEGRA1:def 2;
end;
suppose j
<> (
len H);
then j
< ((
len H1)
+ 1) by
A373,
A385,
XXREAL_0: 1;
then
K: j
<= (
len H1) by
NAT_1: 13;
then
A396: j
in (
Seg (
len H1)) by
A385;
A397: j
in (
dom H1) by
FINSEQ_3: 25,
K,
A385;
then
A398: (H
. j)
= (H1
. j) by
FINSEQ_1:def 7;
(j
- 1)
in
NAT by
A384,
FINSEQ_3: 25,
INT_1: 5;
then
reconsider j1 = (j
- 1) as
Nat;
1
< j by
A385,
A391,
XXREAL_0: 1;
then (j
- 1)
in (
Seg (
len H1)) by
A396,
FINSEQ_3: 12;
then (j
- 1)
in (
dom H1) by
FINSEQ_1:def 3;
then
A399: (H
. j1)
= (H1
. j1) by
FINSEQ_1:def 7;
A400: (
lower_bound (
divset (H,j)))
= (H
. (j
- 1)) & (
upper_bound (
divset (H,j)))
= (H
. j) by
A384,
A391,
INTEGRA1:def 4;
thus (F
. j)
= (F1
. j) by
A382,
A397,
FINSEQ_1:def 7
.=
|.(
vol ((
divset (H1,j)),rho)).| by
A397,
INTEGR22:def 2
.=
|.(
vol ((
divset (H,j)),rho)).| by
A391,
A397,
A398,
A399,
A400,
INTEGRA1:def 4;
end;
end;
end;
then
reconsider F as
var_volume of rho, H by
A379,
INTEGR22:def 2;
take H, F;
A401: 1
< (1
+ n) by
A353,
NAT_1: 16;
A403: (p
. m)
=
|.(
vol (((
divset (T,m))
/\ (
divset (S,(k
+ 1)))),rho)).| by
A153,
A160;
A405: (
lower_bound (
divset (T,m)))
= (T
. m1) & (
upper_bound (
divset (T,m)))
= (T
. m) by
A160,
A371,
A401,
INTEGRA1:def 4;
[.(
lower_bound (
divset (S,(k
+ 1)))), (
upper_bound (
divset (S,(k
+ 1)))).]
c=
[.(
lower_bound (
divset (T,m))), (
upper_bound (
divset (T,m))).] by
A160,
A170,
A171,
A352,
A371,
A405,
XXREAL_1: 34;
then (
divset (S,(k
+ 1)))
c= (
divset (T,m)) by
A169,
INTEGRA1: 4;
then
A406: (p
. m)
=
|.(
vol ((
divset (S,(k
+ 1))),rho)).| by
A403,
XBOOLE_1: 28;
for i be
Nat st i
in (
dom p) & i
<> m holds (p
. i)
=
0
proof
let i be
Nat;
assume
A407: i
in (
dom p) & i
<> m;
then
A408: i
in (
Seg (
len p)) by
FINSEQ_1:def 3;
A409: 1
<= i
<= (
len p) by
A407,
FINSEQ_3: 25;
per cases by
A407,
XXREAL_0: 1;
suppose
A410: i
< m;
A412: i
in (
dom T) by
A153,
A408,
FINSEQ_1:def 3;
A413: (
upper_bound (
divset (T,i)))
= (T
. i)
proof
per cases ;
suppose i
= 1;
hence (
upper_bound (
divset (T,i)))
= (T
. i) by
A412,
INTEGRA1:def 4;
end;
suppose i
<> 1;
hence (
upper_bound (
divset (T,i)))
= (T
. i) by
A412,
INTEGRA1:def 4;
end;
end;
A414: ((i
+ 1)
- 1)
<= ((n
+ 1)
- 1) by
A371,
A410,
NAT_1: 13;
A415: ((
divset (T,i))
/\ (
divset (S,(k
+ 1))))
= (
[.(
lower_bound (
divset (T,i))), (
upper_bound (
divset (T,i))).]
/\
[.(
lower_bound (
divset (S,(k
+ 1)))), (
upper_bound (
divset (S,(k
+ 1)))).]) by
A169,
INTEGRA1: 4;
((
divset (T,i))
/\ (
divset (S,(k
+ 1))))
c=
[.(
upper_bound (
divset (T,i))), (
upper_bound (
divset (T,i))).] by
H,
A170,
A364,
A407,
A413,
A414,
A415,
Th10;
then (
vol (((
divset (T,i))
/\ (
divset (S,(k
+ 1)))),rho))
=
0 by
Th11;
hence thesis by
A153,
COMPLEX1: 44,
A412;
end;
suppose
A416: m
< i;
then
A417: 1
< i by
A353,
A371,
NAT_1: 16,
XXREAL_0: 2;
a418: i
in (
dom T) by
A153,
A408,
FINSEQ_1:def 3;
then
A419: (
lower_bound (
divset (T,i)))
= (T
. (i
- 1)) & (
upper_bound (
divset (T,i)))
= (T
. i) by
A371,
A401,
A416,
INTEGRA1:def 4;
(m
+ 1)
<= i by
A416,
NAT_1: 13;
then
A420: ((m
+ 1)
- 1)
<= (i
- 1) by
XREAL_1: 9;
(1
+ 1)
<= i by
A417,
NAT_1: 13;
then
A421: (2
- 1)
<= (i
- 1) by
XREAL_1: 9;
then
reconsider i1 = (i
- 1) as
Nat by
INT_1: 3,
ORDINAL1:def 12;
(i
- 1)
<= ((
len p)
-
0 ) by
A409,
XREAL_1: 13;
then i1
in (
dom T) by
A153,
FINSEQ_3: 25,
A421;
then
A422: (T
. m)
<= (T
. i1) by
A160,
A420,
VALUED_0:def 15;
((
divset (T,i))
/\ (
divset (S,(k
+ 1))))
= (
[.(
lower_bound (
divset (T,i))), (
upper_bound (
divset (T,i))).]
/\
[.(
lower_bound (
divset (S,(k
+ 1)))), (
upper_bound (
divset (S,(k
+ 1)))).]) by
A169,
INTEGRA1: 4;
then ((
divset (T,i))
/\ (
divset (S,(k
+ 1))))
c=
[.(
upper_bound (
divset (S,(k
+ 1)))), (
upper_bound (
divset (S,(k
+ 1)))).] by
A160,
A170,
A171,
A419,
A422,
Th10,
XXREAL_0: 2;
then (
vol (((
divset (T,i))
/\ (
divset (S,(k
+ 1)))),rho))
=
0 by
Th11;
hence thesis by
A153,
a418,
COMPLEX1: 44;
end;
end;
then
A423: (
Sum p)
=
|.(
vol ((
divset (S,(k
+ 1))),rho)).| by
A160,
H,
A406,
Th8
.=
|.(
vol (
[.(S
. k), (
upper_bound B).],rho)).| by
A4,
A5,
A159,
A170,
INTEGRA1: 4;
thus (
Sum ST)
= ((
Sum F1)
+ (
Sum p)) by
A150,
A152,
A153,
RVSUM_1: 74
.= (
Sum F) by
A423,
RVSUM_1: 74;
end;
suppose
A424: (n
+ 1)
<> m;
then
A425: (n
+ 1)
< m by
A370,
XXREAL_0: 1;
(m
- (n
+ 1))
in
NAT by
A370,
INT_1: 5;
then
reconsider mn1 = (m
- (n
+ 1)) as
Nat;
(m
- n)
in
NAT by
A361,
INT_1: 5;
then
reconsider mn = (m
- n) as
Nat;
A426: (
0
+ 1)
<= mn1 by
A425,
NAT_1: 13,
XREAL_1: 50;
((m
- n)
- 1)
<= (mn
-
0 ) by
XREAL_1: 13;
then
A427: 1
<= mn by
A426,
XXREAL_0: 2;
consider TM1 be non
empty
increasing
FinSequence of
REAL such that
A428: (
len TM1)
= mn1 & (
rng TM1)
c= (
rng T) & for i be
Nat st i
in (
dom TM1) holds (TM1
. i)
= (T
. (i
+ n)) by
A233,
A425,
Th16;
consider pM1 be
FinSequence of
REAL such that
A429: (
len pM1)
= (mn1
- 1) & (
rng pM1)
c= (
rng p) & for i be
Nat st i
in (
dom pM1) holds (pM1
. i)
= (p
. ((i
+ n)
+ 1)) by
A153,
A233,
A425,
Th17;
reconsider m1 = (m
- 1) as
Nat by
a234;
A430: (TM1
. (
len TM1))
= (T
. (mn1
+ n)) by
FINSEQ_3: 25,
A426,
A428;
A431: (T
. (mn1
+ n))
< (
upper_bound B)
proof
assume
A432: not (T
. (mn1
+ n))
< (
upper_bound B);
A433: (mn1
+ n)
in JDX by
A234,
A432;
(m
- 1)
< (m
-
0 ) by
XREAL_1: 15;
hence contradiction by
A433,
NAT_1:def 1;
end;
then
reconsider TM1B = (TM1
^
<*(
upper_bound B)*>) as non
empty
increasing
FinSequence of
REAL by
A430,
Th14;
A434: (H1
. (
len H1))
= (S
. k) by
A126,
INTEGRA1:def 2;
KK: 1
in (
dom TM1) by
A426,
A428,
FINSEQ_3: 25;
A436: (TM1
. 1)
= (T
. (1
+ n)) by
A428,
A426,
FINSEQ_3: 25;
A437: (TM1B
. 1)
= (T
. (1
+ n)) by
A436,
FINSEQ_1:def 7,
KK;
reconsider H = (H1
^ TM1B) as non
empty
increasing
FinSequence of
REAL by
A356,
A434,
A437,
Th13;
A438: (
rng TM1B)
= ((
rng TM1)
\/ (
rng
<*(
upper_bound B)*>)) by
FINSEQ_1: 31;
A439: (
rng
<*(
upper_bound B)*>)
=
{(
upper_bound B)} by
FINSEQ_1: 39;
A444: (
rng TM1)
c= B
proof
let z be
object;
assume
A440: z
in (
rng TM1);
then
reconsider x = z as
Real;
x
in A by
A428,
A440,
INTEGRA1:def 2,
TARSKI:def 3;
then
A441: ex r be
Real st x
= r & (
lower_bound A)
<= r & r
<= (
upper_bound A) by
A116;
consider i be
object such that
A442: i
in (
dom TM1) & x
= (TM1
. i) by
A440,
FUNCT_1:def 3;
reconsider i as
Nat by
A442;
A443: 1
<= i
<= (
len TM1) by
A442,
FINSEQ_3: 25;
1
<= (
len TM1)
<= (
len TM1) by
A443,
XXREAL_0: 2;
then (
len TM1)
in (
dom TM1) by
FINSEQ_3: 25;
then (TM1
. i)
<= (TM1
. (
len TM1)) by
A442,
A443,
VALUED_0:def 15;
then x
<= (
upper_bound B) by
A430,
A431,
A442,
XXREAL_0: 2;
hence z
in B by
A4,
A115,
A441;
end;
(
lower_bound B)
<= (
upper_bound B) by
SEQ_4: 11;
then (
upper_bound B)
in B by
A115;
then
{(
upper_bound B)}
c= B by
ZFMISC_1: 31;
then
A445: (
rng TM1B)
c= B by
A438,
A439,
A444,
XBOOLE_1: 8;
(
rng H1)
c= B1 by
INTEGRA1:def 2;
then (
rng H1)
c= B by
A123;
then ((
rng H1)
\/ (
rng TM1B))
c= B by
A445,
XBOOLE_1: 8;
then
A446: (
rng H)
c= B by
FINSEQ_1: 31;
A447: (
len TM1B)
= ((
len TM1)
+ (
len
<*(
upper_bound B)*>)) by
FINSEQ_1: 22
.= ((
len TM1)
+ 1) by
FINSEQ_1: 40;
((
len TM1)
+ 1)
in (
Seg ((
len TM1)
+ 1)) by
FINSEQ_1: 4;
then
A448: ((
len TM1)
+ 1)
in (
dom TM1B) by
A447,
FINSEQ_1:def 3;
A449: (
len H)
= ((
len H1)
+ ((
len TM1)
+ 1)) by
A447,
FINSEQ_1: 22;
G: 1
in (
Seg 1);
then
A450: 1
in (
dom
<*(
upper_bound B)*>) by
FINSEQ_1: 38;
(H
. (
len H))
= (TM1B
. ((
len TM1)
+ 1)) by
A448,
A449,
FINSEQ_1:def 7
.= (
<*(
upper_bound B)*>
. 1) by
A450,
FINSEQ_1:def 7
.= (
upper_bound B) by
FINSEQ_1: 40;
then
reconsider H as
Division of B by
A446,
INTEGRA1:def 2;
set q1 = (
<*
|.(
vol (
[.(S
. k), (T
. (n
+ 1)).],rho)).|*>
^ pM1);
set q = (q1
^
<*
|.(
vol (
[.(T
. m1), (
upper_bound B).],rho)).|*>);
(
rng q1)
c=
REAL ;
then
reconsider q1 as
FinSequence of
REAL by
FINSEQ_1:def 4;
(
rng q)
c=
REAL ;
then
reconsider q as
FinSequence of
REAL by
FINSEQ_1:def 4;
A451: (
len q1)
= ((
len
<*
|.(
vol (
[.(S
. k), (T
. (n
+ 1)).],rho)).|*>)
+ (
len pM1)) by
FINSEQ_1: 22
.= (1
+ (mn1
- 1)) by
A429,
FINSEQ_1: 40
.= mn1;
A452: (
len q)
= ((
len q1)
+ (
len
<*
|.(
vol (
[.(T
. m1), (
upper_bound B).],rho)).|*>)) by
FINSEQ_1: 22
.= (mn1
+ 1) by
A451,
FINSEQ_1: 40
.= mn;
A453: 1
in (
dom
<*
|.(
vol (
[.(T
. m1), (
upper_bound B).],rho)).|*>) by
G,
FINSEQ_1: 38;
A454: (q
. (
len q))
= (q
. (mn1
+ 1)) by
A452
.= (
<*
|.(
vol (
[.(T
. m1), (
upper_bound B).],rho)).|*>
. 1) by
A451,
A453,
FINSEQ_1:def 7
.=
|.(
vol (
[.(T
. m1), (
upper_bound B).],rho)).| by
FINSEQ_1: 40;
A455: 1
in (
dom
<*
|.(
vol (
[.(S
. k), (T
. (n
+ 1)).],rho)).|*>) by
FINSEQ_1: 38,
G;
1
in (
Seg mn1) by
A426;
then 1
in (
dom q1) by
A451,
FINSEQ_1:def 3;
then
A456: (q
. 1)
= (q1
. 1) by
FINSEQ_1:def 7
.= (
<*
|.(
vol (
[.(S
. k), (T
. (n
+ 1)).],rho)).|*>
. 1) by
A455,
FINSEQ_1:def 7
.=
|.(
vol (
[.(S
. k), (T
. (n
+ 1)).],rho)).| by
FINSEQ_1: 40;
A457: for i be
Nat st 2
<= i & i
<= (
len q1) holds (q
. i)
=
|.(
vol (((
divset (T,(n
+ i)))
/\ (
divset (S,(k
+ 1)))),rho)).|
proof
let i be
Nat;
assume
A458: 2
<= i & i
<= (
len q1);
then
A459: 1
<= i by
XXREAL_0: 2;
then i
in (
dom q1) by
A458,
FINSEQ_3: 25;
then
A460: (q
. i)
= (q1
. i) by
FINSEQ_1:def 7;
A461: (2
- 1)
<= (i
- 1) by
A458,
XREAL_1: 9;
then
A462: 1
<= (i
- 1) & (i
- 1)
<= (mn1
- 1) by
A451,
A458,
XREAL_1: 9;
(i
- 1)
in
NAT by
A461,
INT_1: 3;
then
reconsider i1 = (i
- 1) as
Nat;
A463: (
len
<*
|.(
vol (
[.(S
. k), (T
. (n
+ 1)).],rho)).|*>)
= 1 by
FINSEQ_1: 40;
A465: i1
in (
dom pM1) by
FINSEQ_3: 25,
A429,
A462;
A466: (q1
. i)
= (q1
. (1
+ i1))
.= (pM1
. i1) by
A463,
A465,
FINSEQ_1:def 7
.= (p
. ((i1
+ n)
+ 1)) by
FINSEQ_3: 25,
A429,
A462
.= (p
. (i
+ n));
i
<= (i
+ n) by
NAT_1: 11;
then
A467: 1
<= (i
+ n) by
A459,
XXREAL_0: 2;
(i
+ n)
<= (((m
- n)
- 1)
+ n) by
A451,
A458,
XREAL_1: 6;
then (i
+ n)
<= (
len T) by
A235,
XXREAL_0: 2;
hence thesis by
A153,
A460,
A466,
FINSEQ_3: 25,
A467;
end;
reconsider F = (F1
^ q) as
FinSequence of
REAL ;
A468: (
len F)
= ((
len F1)
+ (
len q)) by
FINSEQ_1: 22;
E: 1
<= (
len H1) by
NAT_1: 14;
then
A469: 1
in (
dom H1) by
FINSEQ_3: 25;
A470: (
len F1)
= (
len H1) by
INTEGR22:def 2;
then
A471: (
dom F1)
= (
dom H1) by
FINSEQ_3: 29;
mn
in (
Seg mn) by
A427;
then
A472: mn
in (
dom q) by
A452,
FINSEQ_1:def 3;
1
<= (
len q) by
NAT_1: 14;
then
A473: 1
in (
dom q) by
FINSEQ_3: 25;
1
<= (
len TM1B) by
NAT_1: 14;
then
A474: 1
in (
dom TM1B) by
FINSEQ_3: 25;
1
<= (
len TM1) by
NAT_1: 14;
then
A475: 1
in (
dom TM1) by
FINSEQ_3: 25;
A476: (H
. ((
len H1)
+ 1))
= (TM1B
. 1) by
A474,
FINSEQ_1:def 7
.= (TM1
. 1) by
A475,
FINSEQ_1:def 7
.= (T
. (n
+ 1)) by
A428,
A426,
FINSEQ_3: 25;
for j be
Nat st j
in (
dom H) holds (F
. j)
=
|.(
vol ((
divset (H,j)),rho)).|
proof
let j be
Nat;
A477: (
divset (H,j))
=
[.(
lower_bound (
divset (H,j))), (
upper_bound (
divset (H,j))).] & (
divset (H1,j))
=
[.(
lower_bound (
divset (H1,j))), (
upper_bound (
divset (H1,j))).] by
INTEGRA1: 4;
assume
A478: j
in (
dom H);
then
A479: 1
<= j
<= (
len H) by
FINSEQ_3: 25;
per cases ;
suppose
A480: j
= 1;
then
A481: (
lower_bound (
divset (H,j)))
= (
lower_bound B) & (
upper_bound (
divset (H,j)))
= (H
. j) by
A478,
INTEGRA1:def 4;
A482: j
in (
dom H1) by
E,
A480,
FINSEQ_3: 25;
A483: (
lower_bound (
divset (H1,j)))
= (
lower_bound B1) & (
upper_bound (
divset (H1,j)))
= (H1
. j) by
A469,
A480,
INTEGRA1:def 4;
A484: (
lower_bound B)
= (
lower_bound B1) by
A122,
A137,
INTEGRA1: 5;
thus (F
. j)
= (F1
. j) by
A471,
A482,
FINSEQ_1:def 7
.=
|.(
vol ((
divset (H1,j)),rho)).| by
A482,
INTEGR22:def 2
.=
|.(
vol ((
divset (H,j)),rho)).| by
A477,
A481,
A482,
A483,
A484,
FINSEQ_1:def 7;
end;
suppose
A485: j
<> 1;
per cases ;
suppose
A486: j
= (
len H);
then
A487: j
= (((
len H1)
+ mn1)
+ 1) by
A428,
A449;
A488: (F
. j)
=
|.(
vol (
[.(T
. m1), (
upper_bound B).],rho)).| by
A428,
A449,
A452,
A454,
A470,
A472,
A486,
FINSEQ_1:def 7;
A489: (
lower_bound (
divset (H,j)))
= (H
. (j
- 1)) & (
upper_bound (
divset (H,j)))
= (H
. j) by
A478,
A485,
INTEGRA1:def 4;
(j
- 1)
in
NAT by
A478,
INT_1: 5,
FINSEQ_3: 25;
then
reconsider j1 = (j
- 1) as
Nat;
(mn
- 1)
< (mn
-
0 ) by
XREAL_1: 15;
then mn1
in (
Seg mn) by
A426;
then
A490: mn1
in (
dom TM1B) by
A428,
A447,
FINSEQ_1:def 3;
(
len TM1)
in (
Seg (
len TM1)) by
FINSEQ_1: 3;
then
A491: mn1
in (
dom TM1) by
A428,
FINSEQ_1:def 3;
(H
. j1)
= (TM1B
. mn1) by
A487,
A490,
FINSEQ_1:def 7
.= (T
. m1) by
A428,
A430,
A491,
FINSEQ_1:def 7;
hence (F
. j)
=
|.(
vol ((
divset (H,j)),rho)).| by
A477,
A486,
A488,
A489,
INTEGRA1:def 2;
end;
suppose j
<> (
len H);
then
A492: j
< (((
len H1)
+ mn1)
+ 1) by
A428,
A449,
A479,
XXREAL_0: 1;
per cases ;
suppose j
> (
len H1);
then
A493: (j
- (
len H1))
>
0 by
XREAL_1: 50;
then (j
- (
len H1))
in
NAT by
INT_1: 3;
then
reconsider j1 = (j
- (
len H1)) as
Nat;
A494: j1
< (((
len H1)
+ mn)
- (
len H1)) by
A492,
XREAL_1: 14;
then (j1
+ 1)
<= mn by
NAT_1: 13;
then
A495: ((j1
+ 1)
- 1)
<= (mn
- 1) by
XREAL_1: 13;
A496: 1
<= j1 by
A493,
NAT_1: 14;
then
A497: j1
in (
Seg mn) by
A494;
then
A498: j1
in (
dom q) by
A452,
FINSEQ_1:def 3;
1
<= j1
<= mn1 by
A493,
A495,
NAT_1: 14;
then j1
in (
Seg mn1);
then
A500: j1
in (
dom TM1) by
A428,
FINSEQ_1:def 3;
A501: j1
in (
dom TM1B) by
A428,
A447,
A497,
FINSEQ_1:def 3;
A502: (H
. j)
= (H
. ((
len H1)
+ j1))
.= (TM1B
. j1) by
A501,
FINSEQ_1:def 7
.= (TM1
. j1) by
A500,
FINSEQ_1:def 7
.= (T
. (j1
+ n)) by
A428,
A500;
A503: (j1
+ n)
<= (mn1
+ n) by
A495,
XREAL_1: 6;
A504: 1
<= (j1
+ n) by
A493,
NAT_1: 14;
(j1
+ n)
<= (
len T) by
A235,
A503,
XXREAL_0: 2;
then
A505: (j1
+ n)
in (
dom T) by
A504,
FINSEQ_3: 25;
then (T
. (j1
+ n))
<= (T
. (mn1
+ n)) by
A234,
A503,
VALUED_0:def 15;
then
A506: (T
. (j1
+ n))
<= (
upper_bound (
divset (S,(k
+ 1)))) by
A4,
A5,
A159,
A170,
A431,
XXREAL_0: 2;
per cases ;
suppose
A507: j1
= 1;
0
< (
len H1);
then (1
+
0 )
< (1
+ (
len H1)) by
XREAL_1: 8;
then
A508: (
lower_bound (
divset (H,j)))
= (H
. (j
- 1)) & (
upper_bound (
divset (H,j)))
= (H
. j) by
A478,
A507,
INTEGRA1:def 4;
(
len H1)
in (
Seg (
len H1)) by
FINSEQ_1: 3;
then
A509: (
len H1)
in (
dom H1) by
FINSEQ_1:def 3;
A510: (F
. j)
= (F
. ((
len H1)
+ 1)) by
A507
.=
|.(
vol (
[.(S
. k), (T
. (n
+ 1)).],rho)).| by
A456,
A470,
A473,
FINSEQ_1:def 7;
(H
. (
len H1))
= (S
. k) by
A434,
A509,
FINSEQ_1:def 7;
hence (F
. j)
=
|.(
vol ((
divset (H,j)),rho)).| by
A476,
A507,
A508,
A510,
INTEGRA1: 4;
end;
suppose j1
<> 1;
then
A511: 1
< j1 by
A496,
XXREAL_0: 1;
then
A512: (1
+ 1)
<= j1 by
NAT_1: 13;
A513: (F
. j)
= (F
. ((
len H1)
+ j1))
.= (q
. j1) by
A470,
A498,
FINSEQ_1:def 7
.=
|.(
vol (((
divset (T,(j1
+ n)))
/\ (
divset (S,(k
+ 1)))),rho)).| by
A451,
A457,
A495,
A512;
A514: (j1
+ n)
<> 1 by
A511,
NAT_1: 11;
then 1
< (j1
+ n) by
A504,
XXREAL_0: 1;
then (1
+ 1)
<= (j1
+ n) by
NAT_1: 13;
then
A515: ((1
+ 1)
- 1)
<= ((j1
+ n)
- 1) by
XREAL_1: 9;
then ((j1
+ n)
- 1)
in
NAT by
INT_1: 3;
then
reconsider j11 = ((j1
+ n)
- 1) as
Nat;
(2
+ (n
- 1))
<= (j1
+ (n
- 1)) by
A512,
XREAL_1: 6;
then (n
+ 1)
<= j11;
then
A516: n
< j11 by
NAT_1: 16,
XXREAL_0: 2;
A517: (j1
+ (n
- 1))
<= (((m
- n)
- 1)
+ (n
- 1)) by
A495,
XREAL_1: 6;
(m1
- 1)
<= (m1
-
0 ) by
XREAL_1: 13;
then
A518: j11
<= m1 by
A517,
XXREAL_0: 2;
j11
<= (
len T) by
A235,
A518,
XXREAL_0: 2;
then j11
in (
dom T) by
FINSEQ_3: 25,
A515;
then
A519: (S
. k)
< (T
. j11) by
A357,
A516;
A520: (
lower_bound (
divset (S,(k
+ 1))))
<= (
lower_bound (
divset (T,(j1
+ n)))) by
A170,
A505,
A514,
A519,
INTEGRA1:def 4;
A521: (
upper_bound (
divset (T,(j1
+ n))))
<= (
upper_bound (
divset (S,(k
+ 1)))) by
A505,
A506,
A514,
INTEGRA1:def 4;
A522: (
divset (T,(j1
+ n)))
=
[.(
lower_bound (
divset (T,(j1
+ n)))), (
upper_bound (
divset (T,(j1
+ n)))).] by
INTEGRA1: 4;
A523: ((
divset (T,(j1
+ n)))
/\ (
divset (S,(k
+ 1))))
= (
divset (T,(j1
+ n))) by
A169,
A520,
A521,
A522,
XBOOLE_1: 28,
XXREAL_1: 34;
(j1
- 1)
<= (j1
-
0 ) by
XREAL_1: 13;
then
A524: (j11
- n)
<= mn1 by
A495,
XXREAL_0: 2;
A525: (2
- 1)
<= (j1
- 1) by
A512,
XREAL_1: 9;
then (j11
- n)
in
NAT by
INT_1: 3;
then
reconsider j11n = (j11
- n) as
Nat;
j11n
in (
Seg mn1) by
A524,
A525;
then
A527: (j11
- n)
in (
dom TM1) by
A428,
FINSEQ_1:def 3;
(mn
- 1)
<= (mn
-
0 ) by
XREAL_1: 13;
then 1
<= (j11
- n) & (j11
- n)
<= mn by
A524,
A525,
XXREAL_0: 2;
then j11n
in (
Seg mn);
then
A528: (j11
- n)
in (
dom TM1B) by
A428,
A447,
FINSEQ_1:def 3;
A529: (H
. (j
- 1))
= (H
. ((
len H1)
+ (j11
- n)))
.= (TM1B
. (j11
- n)) by
A528,
FINSEQ_1:def 7
.= (TM1
. (j11
- n)) by
A527,
FINSEQ_1:def 7
.= (T
. ((j1
- 1)
+ n)) by
A428,
A527;
A530: (
upper_bound (
divset (H,j)))
= (T
. (j1
+ n)) by
A478,
A485,
A502,
INTEGRA1:def 4
.= (
upper_bound (
divset (T,(j1
+ n)))) by
A505,
A514,
INTEGRA1:def 4;
(
lower_bound (
divset (H,j)))
= (T
. ((j1
+ n)
- 1)) by
A478,
A485,
A529,
INTEGRA1:def 4
.= (
lower_bound (
divset (T,(j1
+ n)))) by
A505,
A514,
INTEGRA1:def 4;
hence (F
. j)
=
|.(
vol ((
divset (H,j)),rho)).| by
A513,
A522,
A523,
A530,
INTEGRA1: 4;
end;
end;
suppose j
<= (
len H1);
then
A531: j
in (
Seg (
len H1)) by
A479;
then
A532: j
in (
dom H1) by
FINSEQ_1:def 3;
then
A533: (H
. j)
= (H1
. j) by
FINSEQ_1:def 7;
(j
- 1)
in
NAT by
A478,
INT_1: 5,
FINSEQ_3: 25;
then
reconsider j1 = (j
- 1) as
Nat;
1
< j by
A479,
A485,
XXREAL_0: 1;
then (j
- 1)
in (
Seg (
len H1)) by
A531,
FINSEQ_3: 12;
then (j
- 1)
in (
dom H1) by
FINSEQ_1:def 3;
then
A534: (H
. j1)
= (H1
. j1) by
FINSEQ_1:def 7;
A535: (
lower_bound (
divset (H,j)))
= (H
. (j
- 1)) & (
upper_bound (
divset (H,j)))
= (H
. j) by
A478,
A485,
INTEGRA1:def 4;
thus (F
. j)
= (F1
. j) by
A471,
A532,
FINSEQ_1:def 7
.=
|.(
vol ((
divset (H1,j)),rho)).| by
A532,
INTEGR22:def 2
.=
|.(
vol ((
divset (H,j)),rho)).| by
A485,
A532,
A533,
A534,
A535,
INTEGRA1:def 4;
end;
end;
end;
end;
then
reconsider F as
var_volume of rho, H by
A428,
A449,
A452,
A468,
A470,
INTEGR22:def 2;
take H, F;
A536: for i be
Nat st i
in (
dom p) holds (i
<= n implies (p
. i)
=
0 ) & (i
<= (
len q) implies (p
. (n
+ i))
= (q
. i)) & (((
len q)
+ n)
< i implies (p
. i)
=
0 )
proof
let i be
Nat;
assume
A537: i
in (
dom p);
then
A538: 1
<= i & i
<= (
len p) by
FINSEQ_3: 25;
F: (
dom p)
= (
dom T) by
A153,
FINSEQ_3: 29;
then
A539: (p
. i)
=
|.(
vol (((
divset (T,i))
/\ (
divset (S,(k
+ 1)))),rho)).| by
A153,
A537;
thus i
<= n implies (p
. i)
=
0
proof
assume
A540: i
<= n;
per cases ;
suppose i
= 1;
then
A542: (
lower_bound (
divset (T,i)))
= (
lower_bound A) & (
upper_bound (
divset (T,i)))
= (T
. i) by
INTEGRA1:def 4,
F,
A537;
((
divset (T,i))
/\ (
divset (S,(k
+ 1))))
= (
[.(
lower_bound (
divset (T,i))), (
upper_bound (
divset (T,i))).]
/\
[.(
lower_bound (
divset (S,(k
+ 1)))), (
upper_bound (
divset (S,(k
+ 1)))).]) by
A169,
INTEGRA1: 4;
then ((
divset (T,i))
/\ (
divset (S,(k
+ 1))))
c=
[.(
upper_bound (
divset (T,i))), (
upper_bound (
divset (T,i))).] by
A170,
A364,
A537,
A540,
F,
A542,
Th10;
hence thesis by
A539,
COMPLEX1: 44,
Th11;
end;
suppose
A543: i
<> 1;
then 1
< i by
A538,
XXREAL_0: 1;
then (1
+ 1)
<= i by
NAT_1: 13;
then ((1
+ 1)
- 1)
<= (i
- 1) by
XREAL_1: 13;
then (i
- 1)
in
NAT by
INT_1: 3;
then
reconsider i1 = (i
- 1) as
Nat;
A544: (
lower_bound (
divset (T,i)))
= (T
. (i
- 1)) & (
upper_bound (
divset (T,i)))
= (T
. i) by
A543,
INTEGRA1:def 4,
A537,
F;
((
divset (T,i))
/\ (
divset (S,(k
+ 1))))
= (
[.(
lower_bound (
divset (T,i))), (
upper_bound (
divset (T,i))).]
/\
[.(
lower_bound (
divset (S,(k
+ 1)))), (
upper_bound (
divset (S,(k
+ 1)))).]) by
A169,
INTEGRA1: 4;
then ((
divset (T,i))
/\ (
divset (S,(k
+ 1))))
c=
[.(
upper_bound (
divset (T,i))), (
upper_bound (
divset (T,i))).] by
A170,
A364,
A537,
A540,
A544,
F,
Th10;
hence thesis by
A539,
COMPLEX1: 44,
Th11;
end;
end;
thus i
<= (
len q) implies (p
. (n
+ i))
= (q
. i)
proof
assume
A545: i
<= (
len q);
per cases ;
suppose
A546: i
= 1;
A547: (
divset (T,(n
+ 1)))
=
[.(
lower_bound (
divset (T,(n
+ 1)))), (
upper_bound (
divset (T,(n
+ 1)))).] by
INTEGRA1: 4;
n
<>
0 by
FINSEQ_3: 25,
A352;
then
A548: (n
+ 1)
<> 1;
A549: (
lower_bound (
divset (T,(n
+ 1))))
= (T
. ((n
+ 1)
- 1)) & (
upper_bound (
divset (T,(n
+ 1))))
= (T
. (n
+ 1)) by
A548,
A355,
INTEGRA1:def 4;
n
< (n
+ 1) & (n
+ 1)
< m by
A370,
A424,
NAT_1: 16,
XXREAL_0: 1;
then
A550: (T
. (n
+ 1))
< (S
. (k
+ 1)) by
A355,
A368;
((
divset (T,(n
+ 1)))
/\ (
divset (S,(k
+ 1))))
=
[.(S
. k), (T
. (n
+ 1)).] by
A169,
A170,
A352,
A547,
A549,
A550,
XXREAL_1: 143;
hence (p
. (n
+ i))
= (q
. i) by
A153,
Z,
A456,
A546,
FINSEQ_3: 25;
end;
suppose i
<> 1;
then 1
< i by
A538,
XXREAL_0: 1;
then
A551: (1
+ 1)
<= i by
NAT_1: 13;
per cases ;
suppose i
<> mn;
then i
< mn by
A452,
A545,
XXREAL_0: 1;
then (i
+ 1)
<= mn by
NAT_1: 13;
then ((i
+ 1)
- 1)
<= (mn
- 1) by
XREAL_1: 9;
then
A552: (q
. i)
=
|.(
vol (((
divset (T,(n
+ i)))
/\ (
divset (S,(k
+ 1)))),rho)).| by
A451,
A457,
A551;
(i
+ n)
<= ((m
- n)
+ n) by
A452,
A545,
XREAL_1: 7;
then
A553: (i
+ n)
<= (
len T) by
A233,
XXREAL_0: 2;
(1
+
0 )
<= (i
+ n) by
A538,
XREAL_1: 7;
then (n
+ i)
in (
Seg (
len T)) by
A553;
then (n
+ i)
in (
dom T) by
FINSEQ_1:def 3;
hence (p
. (n
+ i))
= (q
. i) by
A153,
A552;
end;
suppose
A554: i
= mn;
1
<= (n
+ 1) by
NAT_1: 11;
then
A556: (
lower_bound (
divset (T,m)))
= (T
. (m
- 1)) & (
upper_bound (
divset (T,m)))
= (T
. m) by
A425,
A160,
INTEGRA1:def 4;
A557: (m
- 1)
< (m
-
0 ) by
XREAL_1: 15;
((n
+ 1)
- 1)
< (m
- 1) by
A425,
XREAL_1: 14;
then
A558: (S
. k)
< (T
. m1)
< (S
. (k
+ 1)) by
A234,
A368,
A557;
((
divset (T,m))
/\ (
divset (S,(k
+ 1))))
= (
[.(
lower_bound (
divset (T,m))), (
upper_bound (
divset (T,m))).]
/\
[.(
lower_bound (
divset (S,(k
+ 1)))), (
upper_bound (
divset (S,(k
+ 1)))).]) by
A169,
INTEGRA1: 4
.=
[.(T
. m1), (
upper_bound B).] by
A4,
A5,
A159,
A160,
A170,
A556,
A558,
XXREAL_1: 143;
hence (p
. (n
+ i))
= (q
. i) by
A153,
A160,
A452,
A454,
A554;
end;
end;
end;
thus ((
len q)
+ n)
< i implies (p
. i)
=
0
proof
assume
A559: ((
len q)
+ n)
< i;
(m
- 1)
< (m
-
0 ) by
XREAL_1: 15;
then
A560: 1
< m by
A235,
XXREAL_0: 2;
A561: (
lower_bound (
divset (T,i)))
= (T
. (i
- 1)) & (
upper_bound (
divset (T,i)))
= (T
. i) by
A452,
A559,
A560,
INTEGRA1:def 4,
A537,
F;
(m
+ 1)
<= i by
A452,
A559,
NAT_1: 13;
then
A562: ((m
+ 1)
- 1)
<= (i
- 1) by
XREAL_1: 13;
then
A563: 1
< (i
- 1) by
A560,
XXREAL_0: 2;
(i
- 1)
in
NAT by
A562,
INT_1: 3;
then
reconsider i1 = (i
- 1) as
Nat;
((
len T)
- 1)
< ((
len T)
-
0 ) by
XREAL_1: 15;
then
A565: i1
in (
dom T) by
A563,
FINSEQ_3: 25,
A153,
A538,
XREAL_1: 13;
((
divset (T,i))
/\ (
divset (S,(k
+ 1))))
= (
[.(
lower_bound (
divset (T,i))), (
upper_bound (
divset (T,i))).]
/\
[.(
lower_bound (
divset (S,(k
+ 1)))), (
upper_bound (
divset (S,(k
+ 1)))).]) by
A169,
INTEGRA1: 4;
then ((
divset (T,i))
/\ (
divset (S,(k
+ 1))))
c=
[.(
upper_bound (
divset (S,(k
+ 1)))), (
upper_bound (
divset (S,(k
+ 1)))).] by
A4,
A5,
A159,
A164,
A170,
A561,
A562,
A565,
Th10;
hence thesis by
A539,
COMPLEX1: 44,
Th11;
end;
end;
((
len p)
- ((
len q)
+ n))
in
NAT by
A153,
A233,
A452,
INT_1: 5;
then
reconsider L = ((
len p)
- ((
len q)
+ n)) as
Nat;
set s = (((n
|->
0 qua
Real)
^ q)
^ (L
|->
0 qua
Real));
reconsider nn = n, nL = L as
Element of
NAT by
ORDINAL1:def 12;
reconsider z0 =
0 qua
Real as
Element of
REAL by
XREAL_0:def 1;
A566: (
len (n
|->
0 qua
Real))
= (
len (nn
|-> z0))
.= n by
FINSEQ_2: 133;
A567: (
len (L
|->
0 qua
Real))
= (
len (nL
|-> z0))
.= L by
FINSEQ_2: 133;
A568: (
len s)
= ((
len ((n
|->
0 qua
Real)
^ q))
+ (
len (L
|->
0 qua
Real))) by
FINSEQ_1: 22
.= ((n
+ (
len q))
+ L) by
A566,
A567,
FINSEQ_1: 22
.= (
len p);
for j be
Nat st 1
<= j & j
<= (
len p) holds (p
. j)
= (s
. j)
proof
let j be
Nat;
assume
A569: 1
<= j
<= (
len p);
then
A570: j
in (
dom p) by
FINSEQ_3: 25;
set sw = ((n
|->
0 qua
Real)
^ q);
A571: (
len sw)
= (n
+ (
len q)) by
A566,
FINSEQ_1: 22;
per cases ;
suppose
A572: j
<= n;
then
A573: (p
. j)
=
0 by
A536,
A570;
j
<= (n
+ (
len q)) by
A572,
NAT_1: 12;
then j
in (
Seg (
len sw)) by
A569,
A571;
then j
in (
dom sw) by
FINSEQ_1:def 3;
then
A574: (s
. j)
= (sw
. j) by
FINSEQ_1:def 7;
j
in (
Seg (
len (n
|->
0 qua
Real))) by
A566,
A569,
A572;
then j
in (
dom (n
|->
0 qua
Real)) by
FINSEQ_1:def 3;
then
A575: (sw
. j)
= ((n
|->
0 qua
Real)
. j) by
FINSEQ_1:def 7;
j
in (
Seg n) by
A569,
A572;
hence (p
. j)
= (s
. j) by
A573,
A574,
A575,
FINSEQ_2: 57;
end;
suppose
A576: n
< j;
per cases ;
suppose
A577: j
<= ((
len q)
+ n);
(j
- n)
in
NAT by
A576,
INT_1: 5;
then
reconsider jn = (j
- n) as
Nat;
A578: (
0
+ 1)
<= jn by
A576,
NAT_1: 13,
XREAL_1: 50;
A579: (j
- n)
<= (((
len q)
+ n)
- n) by
A577,
XREAL_1: 9;
then
A580: jn
in (
dom q) by
A578,
FINSEQ_3: 25;
(
len q)
<= ((
len q)
+ n) by
NAT_1: 11;
then (
len q)
<= (
len p) by
A153,
A233,
A452,
XXREAL_0: 2;
then jn
<= (
len p) by
A579,
XXREAL_0: 2;
then jn
in (
dom p) by
FINSEQ_3: 25,
A578;
then
A581: (p
. (n
+ jn))
= (q
. jn) by
A536,
A579;
A582: j
in (
dom sw) by
A569,
A571,
A577,
FINSEQ_3: 25;
(s
. j)
= (sw
. (n
+ jn)) by
A582,
FINSEQ_1:def 7
.= (q
. jn) by
A566,
A580,
FINSEQ_1:def 7;
hence (p
. j)
= (s
. j) by
A581;
end;
suppose
A583: ((
len q)
+ n)
< j;
(j
- ((
len q)
+ n))
in
NAT by
A583,
INT_1: 5;
then
reconsider j1 = (j
- ((
len q)
+ n)) as
Nat;
A584: (
0
+ 1)
<= j1 by
A583,
NAT_1: 13,
XREAL_1: 50;
(j
- ((
len q)
+ n))
<= ((
len p)
- ((
len q)
+ n)) by
A569,
XREAL_1: 9;
then
A585: j1
in (
Seg L) by
A584;
then
A586: j1
in (
dom (L
|->
0 qua
Real)) by
A567,
FINSEQ_1:def 3;
(s
. j)
= (s
. ((
len sw)
+ j1)) by
A571
.= ((L
|->
0 qua
Real)
. j1) by
A586,
FINSEQ_1:def 7
.=
0 by
A585,
FINSEQ_2: 57;
hence (p
. j)
= (s
. j) by
A536,
A570,
A583;
end;
end;
end;
then
A587: p
= s by
A568;
A588: (
Sum p)
= ((
Sum ((n
|->
0 qua
Real)
^ q))
+ (
Sum (L
|->
0 qua
Real))) by
A587,
RVSUM_1: 75
.= (((
Sum (n
|->
0 qua
Real))
+ (
Sum q))
+ (
Sum (L
|->
0 qua
Real))) by
RVSUM_1: 75
.= ((
0
+ (
Sum q))
+ (
Sum (L
|->
0 qua
Real))) by
RVSUM_1: 81
.= (
0
+ (
Sum q)) by
RVSUM_1: 81;
thus (
Sum ST)
= ((
Sum F1)
+ (
Sum p)) by
A150,
A152,
A153,
RVSUM_1: 74
.= (
Sum F) by
A588,
RVSUM_1: 75;
end;
end;
end;
end;
end;
for k be
Nat holds
P[k] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
Lm2: for A be non
empty
closed_interval
Subset of
REAL , rho be
Function of A,
REAL , T,S be
Division of A, ST be
FinSequence of
REAL st rho is
bounded_variation & (
len ST)
= (
len S) & for j be
Nat st j
in (
dom S) holds ex p be
FinSequence of
REAL st (ST
. j)
= (
Sum p) & (
len p)
= (
len T) & for i be
Nat st i
in (
dom T) holds (p
. i)
=
|.(
vol (((
divset (T,i))
/\ (
divset (S,j))),rho)).| holds ex H be
Division of A, F be
var_volume of rho, H st (
Sum ST)
= (
Sum F)
proof
let A be non
empty
closed_interval
Subset of
REAL , rho be
Function of A,
REAL , T,S be
Division of A, ST be
FinSequence of
REAL ;
assume
A1: rho is
bounded_variation & (
len ST)
= (
len S) & for j be
Nat st j
in (
dom S) holds ex p be
FinSequence of
REAL st (ST
. j)
= (
Sum p) & (
len p)
= (
len T) & for i be
Nat st i
in (
dom T) holds (p
. i)
=
|.(
vol (((
divset (T,i))
/\ (
divset (S,j))),rho)).|;
A
c= A & (
lower_bound A)
= (
lower_bound A);
hence thesis by
A1,
Th18;
end;
theorem ::
INTEGR23:17
Th19: for A be non
empty
closed_interval
Subset of
REAL , rho be
Function of A,
REAL , T,S be
Division of A st rho is
bounded_variation holds ex ST be
FinSequence of
REAL st (
len ST)
= (
len S) & (
Sum ST)
<= (
total_vd rho) & for j be
Nat st j
in (
dom S) holds ex p be
FinSequence of
REAL st (ST
. j)
= (
Sum p) & (
len p)
= (
len T) & for i be
Nat st i
in (
dom T) holds (p
. i)
=
|.(
vol (((
divset (T,i))
/\ (
divset (S,j))),rho)).|
proof
let A be non
empty
closed_interval
Subset of
REAL , rho be
Function of A,
REAL , T,S be
Division of A;
assume
A1: rho is
bounded_variation;
defpred
P[
Nat,
object] means ex p be
FinSequence of
REAL st $2
= (
Sum p) & (
len p)
= (
len T) & for i be
Nat st i
in (
dom T) holds (p
. i)
=
|.(
vol (((
divset (T,i))
/\ (
divset (S,$1))),rho)).|;
A2: for j be
Nat st j
in (
Seg (
len S)) holds ex x be
Element of
REAL st
P[j, x]
proof
let j be
Nat;
assume j
in (
Seg (
len S));
defpred
Q[
Nat,
object] means $2
=
|.(
vol (((
divset (T,$1))
/\ (
divset (S,j))),rho)).|;
A3: for i be
Nat st i
in (
Seg (
len T)) holds ex y be
Element of
REAL st
Q[i, y]
proof
let i be
Nat;
assume i
in (
Seg (
len T));
|.(
vol (((
divset (T,i))
/\ (
divset (S,j))),rho)).|
in
REAL by
XREAL_0:def 1;
hence thesis;
end;
consider p be
FinSequence of
REAL such that
A4: (
dom p)
= (
Seg (
len T)) & for i be
Nat st i
in (
Seg (
len T)) holds
Q[i, (p
. i)] from
FINSEQ_1:sch 5(
A3);
reconsider x = (
Sum p) as
Element of
REAL by
XREAL_0:def 1;
Z2: (
dom T)
= (
Seg (
len T)) by
FINSEQ_1:def 3;
(
len p)
= (
len T) by
A4,
FINSEQ_1:def 3;
then
P[j, x] by
A4,
Z2;
hence ex x be
Element of
REAL st
P[j, x];
end;
consider ST be
FinSequence of
REAL such that
A5: (
dom ST)
= (
Seg (
len S)) & for j be
Nat st j
in (
Seg (
len S)) holds
P[j, (ST
. j)] from
FINSEQ_1:sch 5(
A2);
take ST;
thus
A6: (
len ST)
= (
len S) by
A5,
FINSEQ_1:def 3;
a6: (
dom ST)
= (
dom S) by
A5,
FINSEQ_1:def 3;
then
consider H be
Division of A, F be
var_volume of rho, H such that
A7: (
Sum ST)
= (
Sum F) by
A1,
A5,
A6,
Lm2;
thus thesis by
A1,
A5,
A7,
INTEGR22: 5,
a6;
end;
theorem ::
INTEGR23:18
Th20: for A be non
empty
closed_interval
Subset of
REAL , rho be
Function of A,
REAL , u be
PartFunc of
REAL ,
REAL st rho is
bounded_variation & (
dom u)
= A & (u
| A) is
uniformly_continuous holds for T be
DivSequence of A, S be
middle_volume_Sequence of rho, u, T st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum S) is
convergent
proof
let A be non
empty
closed_interval
Subset of
REAL , rho be
Function of A,
REAL , u be
PartFunc of
REAL ,
REAL ;
assume that
A1: rho is
bounded_variation & (
dom u)
= A and
A2: (u
| A) is
uniformly_continuous;
thus for T be
DivSequence of A, S be
middle_volume_Sequence of rho, u, T st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum S) is
convergent
proof
let T be
DivSequence of A, S be
middle_volume_Sequence of rho, u, T;
assume
A4: (
delta T) is
convergent & (
lim (
delta T))
=
0 ;
defpred
P[
Element of
NAT ,
set] means ex p be
FinSequence of
REAL st p
= $2 & (
len p)
= (
len (T
. $1)) & for i be
Nat st i
in (
dom (T
. $1)) holds (p
. i)
in (
dom (u
| (
divset ((T
. $1),i)))) & ex z be
Real st z
= ((u
| (
divset ((T
. $1),i)))
. (p
. i)) & ((S
. $1)
. i)
= (z
* (
vol ((
divset ((T
. $1),i)),rho)));
A5: for k be
Element of
NAT holds ex p be
Element of (
REAL
* ) st
P[k, p]
proof
let k be
Element of
NAT ;
defpred
P1[
Nat,
set] means $2
in (
dom (u
| (
divset ((T
. k),$1)))) & ex c be
Real st c
= ((u
| (
divset ((T
. k),$1)))
. $2) & ((S
. k)
. $1)
= (c
* (
vol ((
divset ((T
. k),$1)),rho)));
A6: (
Seg (
len (T
. k)))
= (
dom (T
. k)) by
FINSEQ_1:def 3;
A7: for i be
Nat st i
in (
Seg (
len (T
. k))) holds ex x be
Element of
REAL st
P1[i, x]
proof
let i be
Nat;
assume i
in (
Seg (
len (T
. k)));
then i
in (
dom (T
. k)) by
FINSEQ_1:def 3;
then
consider c be
Real such that
A8: c
in (
rng (u
| (
divset ((T
. k),i)))) & ((S
. k)
. i)
= (c
* (
vol ((
divset ((T
. k),i)),rho))) by
A1,
INTEGR22:def 5;
consider x be
object such that
A9: x
in (
dom (u
| (
divset ((T
. k),i)))) & c
= ((u
| (
divset ((T
. k),i)))
. x) by
A8,
FUNCT_1:def 3;
reconsider x as
Element of
REAL by
A9;
take x;
thus thesis by
A8,
A9;
end;
consider p be
FinSequence of
REAL such that
A10: (
dom p)
= (
Seg (
len (T
. k))) & for i be
Nat st i
in (
Seg (
len (T
. k))) holds
P1[i, (p
. i)] from
FINSEQ_1:sch 5(
A7);
take p;
(
len p)
= (
len (T
. k)) by
A10,
FINSEQ_1:def 3;
hence thesis by
A6,
A10,
FINSEQ_1:def 11;
end;
consider Fn be
sequence of (
REAL
* ) such that
A11: for x be
Element of
NAT holds
P[x, (Fn
. x)] from
FUNCT_2:sch 3(
A5);
consider Fm be
sequence of (
REAL
* ) such that
A12: for x be
Element of
NAT holds
P[x, (Fm
. x)] from
FUNCT_2:sch 3(
A5);
set TVD = (
total_vd rho);
A13:
0
<= TVD by
A1,
INTEGR22: 6;
now
let p be
Real;
set pp2 = (p
/ 2);
set pv = (pp2
/ (TVD
+ 1));
assume
B13: p
>
0 ;
then
A14:
0
< pp2 & pp2
< p by
XREAL_1: 215,
XREAL_1: 216;
then
A15:
0
< pv by
A13,
XREAL_1: 139;
then (pv
* TVD)
< (pv
* (TVD
+ 1)) by
XREAL_1: 29,
XREAL_1: 68;
then (pv
* TVD)
< pp2 by
A13,
XCMPLX_1: 87;
then
A16: (pv
* TVD)
< p by
A14,
XXREAL_0: 2;
set p2v = (pv
/ 2);
consider sk be
Real such that
A17:
0
< sk & for x1,x2 be
Real st x1
in (
dom (u
| A)) & x2
in (
dom (u
| A)) &
|.(x1
- x2).|
< sk holds
|.(((u
| A)
. x1)
- ((u
| A)
. x2)).|
< p2v by
A2,
A15,
FCONT_2:def 1,
XREAL_1: 215;
consider m be
Nat such that
A18: for i be
Nat st m
<= i holds
|.(((
delta T)
. i)
-
0 ).|
< sk by
A4,
A17,
SEQ_2:def 7;
take m;
let n be
Nat;
A19: n
in
NAT & m
in
NAT by
ORDINAL1:def 12;
assume n
>= m;
then
|.(((
delta T)
. n)
-
0 ).|
< sk &
|.(((
delta T)
. m)
-
0 ).|
< sk by
A18;
then
|.(
delta (T
. n)).|
< sk &
|.(
delta (T
. m)).|
< sk by
A19,
INTEGRA3:def 2;
then
A20: (
delta (T
. n))
< sk & (
delta (T
. m))
< sk by
ABSVALUE:def 1,
INTEGRA3: 9;
A21: ((
middle_sum S)
. n)
= (
Sum (S
. n)) & ((
middle_sum S)
. m)
= (
Sum (S
. m)) by
INTEGR22:def 7;
consider p1 be
FinSequence of
REAL such that
A22: p1
= (Fn
. n) & (
len p1)
= (
len (T
. n)) & for i be
Nat st i
in (
dom (T
. n)) holds (p1
. i)
in (
dom (u
| (
divset ((T
. n),i)))) & ex z be
Real st z
= ((u
| (
divset ((T
. n),i)))
. (p1
. i)) & ((S
. n)
. i)
= (z
* (
vol ((
divset ((T
. n),i)),rho))) by
A11,
A19;
consider p2 be
FinSequence of
REAL such that
A23: p2
= (Fm
. m) & (
len p2)
= (
len (T
. m)) & for i be
Nat st i
in (
dom (T
. m)) holds (p2
. i)
in (
dom (u
| (
divset ((T
. m),i)))) & ex z be
Real st z
= ((u
| (
divset ((T
. m),i)))
. (p2
. i)) & ((S
. m)
. i)
= (z
* (
vol ((
divset ((T
. m),i)),rho))) by
A12,
A19;
defpred
H1[
object,
object,
object] means ex i,j be
Nat, z be
Real st $1
= i & $2
= j & z
= ((u
| (
divset ((T
. n),i)))
. (p1
. i)) & $3
= ((
vol (((
divset ((T
. n),i))
/\ (
divset ((T
. m),j))),rho))
* z);
A24: for x,y be
object st x
in (
Seg (
len (T
. n))) & y
in (
Seg (
len (T
. m))) holds ex w be
object st w
in
REAL &
H1[x, y, w]
proof
let x,y be
object;
assume
A25: x
in (
Seg (
len (T
. n))) & y
in (
Seg (
len (T
. m)));
then
reconsider i = x, j = y as
Nat;
i
in (
dom (T
. n)) by
A25,
FINSEQ_1:def 3;
then
consider z be
Real such that
A26: z
= ((u
| (
divset ((T
. n),i)))
. (p1
. i)) & ((S
. n)
. i)
= (z
* (
vol ((
divset ((T
. n),i)),rho))) by
A22;
((
vol (((
divset ((T
. n),i))
/\ (
divset ((T
. m),j))),rho))
* z)
in
REAL by
XREAL_0:def 1;
hence thesis by
A26;
end;
consider Snm be
Function of
[:(
Seg (
len (T
. n))), (
Seg (
len (T
. m))):],
REAL such that
A27: for x,y be
object st x
in (
Seg (
len (T
. n))) & y
in (
Seg (
len (T
. m))) holds
H1[x, y, (Snm
. (x,y))] from
BINOP_1:sch 1(
A24);
A28: for i,j be
Nat st i
in (
Seg (
len (T
. n))) & j
in (
Seg (
len (T
. m))) holds ex z be
Real st z
= ((u
| (
divset ((T
. n),i)))
. (p1
. i)) & (Snm
. (i,j))
= ((
vol (((
divset ((T
. n),i))
/\ (
divset ((T
. m),j))),rho))
* z)
proof
let i,j be
Nat;
assume i
in (
Seg (
len (T
. n))) & j
in (
Seg (
len (T
. m)));
then ex i1,j1 be
Nat, z be
Real st i
= i1 & j
= j1 & z
= ((u
| (
divset ((T
. n),i1)))
. (p1
. i1)) & (Snm
. (i,j))
= ((
vol (((
divset ((T
. n),i1))
/\ (
divset ((T
. m),j1))),rho))
* z) by
A27;
hence thesis;
end;
defpred
P1[
Nat,
object] means ex r be
FinSequence of
REAL st (
dom r)
= (
Seg (
len (T
. m))) & $2
= (
Sum r) & for j be
Nat st j
in (
dom r) holds (r
. j)
= (Snm
. ($1,j));
A29: for k be
Nat st k
in (
Seg (
len (T
. n))) holds ex x be
object st
P1[k, x]
proof
let k be
Nat;
assume
A30: k
in (
Seg (
len (T
. n)));
deffunc
G(
set) = (Snm
. (k,$1));
consider r be
FinSequence such that
A31: (
len r)
= (
len (T
. m)) and
A32: for j be
Nat st j
in (
dom r) holds (r
. j)
=
G(j) from
FINSEQ_1:sch 2;
A33: (
dom r)
= (
Seg (
len (T
. m))) by
A31,
FINSEQ_1:def 3;
for j be
Nat st j
in (
dom r) holds (r
. j)
in
REAL
proof
let j be
Nat;
assume
A34: j
in (
dom r);
then
[k, j]
in
[:(
Seg (
len (T
. n))), (
Seg (
len (T
. m))):] by
A30,
A33,
ZFMISC_1: 87;
then (Snm
. (k,j))
in
REAL by
FUNCT_2: 5;
hence thesis by
A32,
A34;
end;
then
reconsider r as
FinSequence of
REAL by
FINSEQ_2: 12;
take x = (
Sum r);
thus thesis by
A32,
A33;
end;
consider Xp be
FinSequence such that
A35: (
dom Xp)
= (
Seg (
len (T
. n))) & for k be
Nat st k
in (
Seg (
len (T
. n))) holds
P1[k, (Xp
. k)] from
FINSEQ_1:sch 1(
A29);
for i be
Nat st i
in (
dom Xp) holds (Xp
. i)
in
REAL
proof
let i be
Nat;
assume i
in (
dom Xp);
then ex r be
FinSequence of
REAL st (
dom r)
= (
Seg (
len (T
. m))) & (Xp
. i)
= (
Sum r) & for j be
Nat st j
in (
dom r) holds (r
. j)
= (Snm
. (i,j)) by
A35;
hence thesis by
XREAL_0:def 1;
end;
then
reconsider Xp as
FinSequence of
REAL by
FINSEQ_2: 12;
A36: (
len Xp)
= (
len (T
. n)) by
A35,
FINSEQ_1:def 3;
for k be
Nat st 1
<= k & k
<= (
len Xp) holds (Xp
. k)
= ((S
. n)
. k)
proof
let k be
Nat;
assume 1
<= k & k
<= (
len Xp);
then
A38: k
in (
Seg (
len Xp)) & k
in (
Seg (
len (T
. n))) by
A36;
then
A39: k
in (
dom Xp) & k
in (
dom (T
. n)) by
FINSEQ_1:def 3;
then
consider z be
Real such that
A40: z
= ((u
| (
divset ((T
. n),k)))
. (p1
. k)) & ((S
. n)
. k)
= (z
* (
vol ((
divset ((T
. n),k)),rho))) by
A22;
consider r be
FinSequence of
REAL such that
A41: (
dom r)
= (
Seg (
len (T
. m))) & (Xp
. k)
= (
Sum r) & for j be
Nat st j
in (
dom r) holds (r
. j)
= (Snm
. (k,j)) by
A35,
A38;
defpred
P11[
Nat,
set] means $2
= (
vol (((
divset ((T
. n),k))
/\ (
divset ((T
. m),$1))),rho));
A42: for i be
Nat st i
in (
Seg (
len r)) holds ex x be
Element of
REAL st
P11[i, x]
proof
let i be
Nat;
assume i
in (
Seg (
len r));
(
vol (((
divset ((T
. n),k))
/\ (
divset ((T
. m),i))),rho))
in
REAL by
XREAL_0:def 1;
hence thesis;
end;
consider vtntm be
FinSequence of
REAL such that
A43: (
dom vtntm)
= (
Seg (
len r)) & for i be
Nat st i
in (
Seg (
len r)) holds
P11[i, (vtntm
. i)] from
FINSEQ_1:sch 5(
A42);
A44: (
dom vtntm)
= (
dom r) & for j be
Nat st j
in (
dom vtntm) holds (vtntm
. j)
= (
vol (((
divset ((T
. n),k))
/\ (
divset ((T
. m),j))),rho)) by
A43,
FINSEQ_1:def 3;
A45: (
len vtntm)
= (
len r) & (
len (T
. m))
= (
len r) by
A41,
A43,
FINSEQ_1:def 3;
then
A46: (
Sum vtntm)
= (
vol ((
divset ((T
. n),k)),rho)) by
A39,
A43,
INTEGR22: 1,
INTEGRA1: 8;
for j be
Nat st j
in (
dom r) holds ex x be
Real st x
= (vtntm
. j) & (r
. j)
= (x
* z)
proof
let j be
Nat;
assume
A47: j
in (
dom r);
then
A48: ex w be
Real st w
= ((u
| (
divset ((T
. n),k)))
. (p1
. k)) & (Snm
. (k,j))
= ((
vol (((
divset ((T
. n),k))
/\ (
divset ((T
. m),j))),rho))
* w) by
A28,
A38,
A41;
take (vtntm
. j);
(r
. j)
= ((
vol (((
divset ((T
. n),k))
/\ (
divset ((T
. m),j))),rho))
* z) by
A40,
A41,
A47,
A48;
hence thesis by
A44,
A47;
end;
hence thesis by
A40,
A41,
A45,
A46,
Th1;
end;
then
A49: Xp
= (S
. n) by
A1,
A36,
INTEGR22:def 5;
defpred
P2[
Nat,
object] means ex s be
FinSequence of
REAL st (
dom s)
= (
Seg (
len (T
. n))) & $2
= (
Sum s) & for i be
Nat st i
in (
dom s) holds (s
. i)
= (Snm
. (i,$1));
A50: for k be
Nat st k
in (
Seg (
len (T
. m))) holds ex x be
object st
P2[k, x]
proof
let k be
Nat;
assume
A51: k
in (
Seg (
len (T
. m)));
deffunc
G(
set) = (Snm
. ($1,k));
consider s be
FinSequence such that
A52: (
len s)
= (
len (T
. n)) and
A53: for i be
Nat st i
in (
dom s) holds (s
. i)
=
G(i) from
FINSEQ_1:sch 2;
A54: (
dom s)
= (
Seg (
len (T
. n))) by
A52,
FINSEQ_1:def 3;
for i be
Nat st i
in (
dom s) holds (s
. i)
in
REAL
proof
let i be
Nat;
assume
A55: i
in (
dom s);
then
[i, k]
in
[:(
Seg (
len (T
. n))), (
Seg (
len (T
. m))):] by
A51,
A54,
ZFMISC_1: 87;
then (Snm
. (i,k))
in
REAL by
FUNCT_2: 5;
hence thesis by
A53,
A55;
end;
then
reconsider s as
FinSequence of
REAL by
FINSEQ_2: 12;
take x = (
Sum s);
thus thesis by
A53,
A54;
end;
consider Xq be
FinSequence such that
A56: (
dom Xq)
= (
Seg (
len (T
. m))) & for k be
Nat st k
in (
Seg (
len (T
. m))) holds
P2[k, (Xq
. k)] from
FINSEQ_1:sch 1(
A50);
for j be
Nat st j
in (
dom Xq) holds (Xq
. j)
in
REAL
proof
let j be
Nat;
assume j
in (
dom Xq);
then ex s be
FinSequence of
REAL st (
dom s)
= (
Seg (
len (T
. n))) & (Xq
. j)
= (
Sum s) & for i be
Nat st i
in (
dom s) holds (s
. i)
= (Snm
. (i,j)) by
A56;
hence thesis by
XREAL_0:def 1;
end;
then
reconsider Xq as
FinSequence of
REAL by
FINSEQ_2: 12;
defpred
H2[
object,
object,
object] means ex i,j be
Nat, z be
Real st $1
= i & $2
= j & z
= ((u
| (
divset ((T
. m),j)))
. (p2
. j)) & $3
= ((
vol (((
divset ((T
. n),i))
/\ (
divset ((T
. m),j))),rho))
* z);
A57: for x,y be
object st x
in (
Seg (
len (T
. n))) & y
in (
Seg (
len (T
. m))) holds ex w be
object st w
in
REAL &
H2[x, y, w]
proof
let x,y be
object;
assume
A58: x
in (
Seg (
len (T
. n))) & y
in (
Seg (
len (T
. m)));
then
reconsider i = x, j = y as
Nat;
j
in (
dom (T
. m)) by
A58,
FINSEQ_1:def 3;
then
consider z be
Real such that
A59: z
= ((u
| (
divset ((T
. m),j)))
. (p2
. j)) & ((S
. m)
. j)
= (z
* (
vol ((
divset ((T
. m),j)),rho))) by
A23;
((
vol (((
divset ((T
. n),i))
/\ (
divset ((T
. m),j))),rho))
* z)
in
REAL by
XREAL_0:def 1;
hence thesis by
A59;
end;
consider Smn be
Function of
[:(
Seg (
len (T
. n))), (
Seg (
len (T
. m))):],
REAL such that
A60: for x,y be
object st x
in (
Seg (
len (T
. n))) & y
in (
Seg (
len (T
. m))) holds
H2[x, y, (Smn
. (x,y))] from
BINOP_1:sch 1(
A57);
A61: for i,j be
Nat st i
in (
Seg (
len (T
. n))) & j
in (
Seg (
len (T
. m))) holds ex z be
Real st z
= ((u
| (
divset ((T
. m),j)))
. (p2
. j)) & (Smn
. (i,j))
= ((
vol (((
divset ((T
. n),i))
/\ (
divset ((T
. m),j))),rho))
* z)
proof
let i,j be
Nat;
assume i
in (
Seg (
len (T
. n))) & j
in (
Seg (
len (T
. m)));
then ex i1,j1 be
Nat, z be
Real st i
= i1 & j
= j1 & z
= ((u
| (
divset ((T
. m),j1)))
. (p2
. j1)) & (Smn
. (i,j))
= ((
vol (((
divset ((T
. n),i1))
/\ (
divset ((T
. m),j1))),rho))
* z) by
A60;
hence thesis;
end;
defpred
P3[
Nat,
object] means ex s be
FinSequence of
REAL st (
dom s)
= (
Seg (
len (T
. n))) & $2
= (
Sum s) & for i be
Nat st i
in (
dom s) holds (s
. i)
= (Smn
. (i,$1));
A62: for k be
Nat st k
in (
Seg (
len (T
. m))) holds ex x be
object st
P3[k, x]
proof
let k be
Nat;
assume
A63: k
in (
Seg (
len (T
. m)));
deffunc
G(
set) = (Smn
. ($1,k));
consider s be
FinSequence such that
A64: (
len s)
= (
len (T
. n)) and
A65: for i be
Nat st i
in (
dom s) holds (s
. i)
=
G(i) from
FINSEQ_1:sch 2;
A66: (
dom s)
= (
Seg (
len (T
. n))) by
A64,
FINSEQ_1:def 3;
for i be
Nat st i
in (
dom s) holds (s
. i)
in
REAL
proof
let i be
Nat;
assume
A67: i
in (
dom s);
then
[i, k]
in
[:(
Seg (
len (T
. n))), (
Seg (
len (T
. m))):] by
A63,
A66,
ZFMISC_1: 87;
then (Smn
. (i,k))
in
REAL by
FUNCT_2: 5;
hence thesis by
A65,
A67;
end;
then
reconsider s as
FinSequence of
REAL by
FINSEQ_2: 12;
take x = (
Sum s);
thus thesis by
A65,
A66;
end;
consider Zq be
FinSequence such that
A68: (
dom Zq)
= (
Seg (
len (T
. m))) & for k be
Nat st k
in (
Seg (
len (T
. m))) holds
P3[k, (Zq
. k)] from
FINSEQ_1:sch 1(
A62);
for j be
Nat st j
in (
dom Zq) holds (Zq
. j)
in
REAL
proof
let j be
Nat;
assume j
in (
dom Zq);
then ex s be
FinSequence of
REAL st (
dom s)
= (
Seg (
len (T
. n))) & (Zq
. j)
= (
Sum s) & for i be
Nat st i
in (
dom s) holds (s
. i)
= (Smn
. (i,j)) by
A68;
hence thesis by
XREAL_0:def 1;
end;
then
reconsider Zq as
FinSequence of
REAL by
FINSEQ_2: 12;
A69: (
len Zq)
= (
len (T
. m)) by
A68,
FINSEQ_1:def 3;
for k be
Nat st 1
<= k & k
<= (
len Zq) holds (Zq
. k)
= ((S
. m)
. k)
proof
let k be
Nat;
assume
A71: 1
<= k
<= (
len Zq);
then
consider s be
FinSequence of
REAL such that
A72: (
dom s)
= (
Seg (
len (T
. n))) & (Zq
. k)
= (
Sum s) & for i be
Nat st i
in (
dom s) holds (s
. i)
= (Smn
. (i,k)) by
A68,
FINSEQ_3: 25;
A73: k
in (
Seg (
len (T
. m))) by
A69,
A71;
A74: k
in (
dom (T
. m)) by
A69,
A71,
FINSEQ_3: 25;
then
consider z be
Real such that
A75: z
= ((u
| (
divset ((T
. m),k)))
. (p2
. k)) & ((S
. m)
. k)
= (z
* (
vol ((
divset ((T
. m),k)),rho))) by
A23;
defpred
P11[
Nat,
set] means $2
= (
vol (((
divset ((T
. n),$1))
/\ (
divset ((T
. m),k))),rho));
A76: for i be
Nat st i
in (
Seg (
len s)) holds ex x be
Element of
REAL st
P11[i, x]
proof
let i be
Nat;
assume i
in (
Seg (
len s));
(
vol (((
divset ((T
. n),i))
/\ (
divset ((T
. m),k))),rho))
in
REAL by
XREAL_0:def 1;
hence thesis;
end;
consider vtntm be
FinSequence of
REAL such that
A77: (
dom vtntm)
= (
Seg (
len s)) & for i be
Nat st i
in (
Seg (
len s)) holds
P11[i, (vtntm
. i)] from
FINSEQ_1:sch 5(
A76);
A78: (
dom vtntm)
= (
dom s) & (
len vtntm)
= (
len s) by
A77,
FINSEQ_1:def 3;
A79: for j be
Nat st j
in (
dom vtntm) holds (vtntm
. j)
= (
vol (((
divset ((T
. m),k))
/\ (
divset ((T
. n),j))),rho)) by
A77;
(
len s)
= (
len (T
. n)) by
A72,
FINSEQ_1:def 3;
then
A80: (
Sum vtntm)
= (
vol ((
divset ((T
. m),k)),rho)) by
A74,
A78,
A79,
INTEGR22: 1,
INTEGRA1: 8;
for j be
Nat st j
in (
dom s) holds ex x be
Real st x
= (vtntm
. j) & (s
. j)
= (x
* z)
proof
let j be
Nat;
assume
A81: j
in (
dom s);
then
A82: ex w be
Real st w
= ((u
| (
divset ((T
. m),k)))
. (p2
. k)) & (Smn
. (j,k))
= ((
vol (((
divset ((T
. n),j))
/\ (
divset ((T
. m),k))),rho))
* w) by
A61,
A72,
A73;
take (vtntm
. j);
(s
. j)
= ((
vol (((
divset ((T
. n),j))
/\ (
divset ((T
. m),k))),rho))
* z) by
A72,
A75,
A81,
A82;
hence thesis by
A77,
A78,
A81;
end;
hence thesis by
A72,
A75,
A78,
A80,
Th1;
end;
then Zq
= (S
. m) by
A1,
A69,
INTEGR22:def 5;
then
A83: ((
Sum (S
. n))
- (
Sum (S
. m)))
= ((
Sum Xq)
- (
Sum Zq)) by
A35,
A49,
A56,
INTEGR22: 2;
set XZq = (Xq
- Zq);
A84: (
dom XZq)
= ((
dom Xq)
/\ (
dom Zq)) by
VALUED_1: 12;
reconsider XZq = (Xq
- Zq) as
FinSequence of
REAL ;
(
len Xq)
= (
len Zq) by
A56,
A68,
FINSEQ_3: 29;
then
A86: Xq is
Element of ((
len Xq)
-tuples_on
REAL ) & Zq is
Element of ((
len Xq)
-tuples_on
REAL ) by
FINSEQ_2: 92;
A87: for i,j be
Nat, Snmij,Smnij be
Real st i
in (
Seg (
len (T
. n))) & j
in (
Seg (
len (T
. m))) & Snmij
= (Snm
. (i,j)) & Smnij
= (Smn
. (i,j)) holds
|.(Snmij
- Smnij).|
<= (
|.(
vol (((
divset ((T
. n),i))
/\ (
divset ((T
. m),j))),rho)).|
* pv)
proof
let i,j be
Nat, Snmij,Smnij be
Real;
assume
A88: i
in (
Seg (
len (T
. n))) & j
in (
Seg (
len (T
. m))) & Snmij
= (Snm
. (i,j)) & Smnij
= (Smn
. (i,j));
then
consider z1 be
Real such that
A89: z1
= ((u
| (
divset ((T
. n),i)))
. (p1
. i)) & (Snm
. (i,j))
= ((
vol (((
divset ((T
. n),i))
/\ (
divset ((T
. m),j))),rho))
* z1) by
A28;
consider z2 be
Real such that
A90: z2
= ((u
| (
divset ((T
. m),j)))
. (p2
. j)) & (Smn
. (i,j))
= ((
vol (((
divset ((T
. n),i))
/\ (
divset ((T
. m),j))),rho))
* z2) by
A61,
A88;
A91: i
in (
dom (T
. n)) & j
in (
dom (T
. m)) by
A88,
FINSEQ_1:def 3;
then
A92: (p1
. i)
in (
dom (u
| (
divset ((T
. n),i)))) & (p2
. j)
in (
dom (u
| (
divset ((T
. m),j)))) by
A22,
A23;
then (p1
. i)
in ((
dom u)
/\ (
divset ((T
. n),i))) & (p2
. j)
in ((
dom u)
/\ (
divset ((T
. m),j))) by
RELAT_1: 61;
then
A93: (p1
. i)
in (
dom u) & (p1
. i)
in (
divset ((T
. n),i)) & (p2
. j)
in (
dom u) & (p2
. j)
in (
divset ((T
. m),j)) by
XBOOLE_0:def 4;
A94: z1
= (u
. (p1
. i)) & z2
= (u
. (p2
. j)) by
A89,
A90,
A92,
FUNCT_1: 47;
per cases ;
suppose ((
divset ((T
. n),i))
/\ (
divset ((T
. m),j)))
=
{} ;
then (
vol (((
divset ((T
. n),i))
/\ (
divset ((T
. m),j))),rho))
=
0 qua
Real by
INTEGR22:def 1;
hence
|.(Snmij
- Smnij).|
<= (
|.(
vol (((
divset ((T
. n),i))
/\ (
divset ((T
. m),j))),rho)).|
* pv) by
A88,
A89,
A90,
COMPLEX1: 44;
end;
suppose ((
divset ((T
. n),i))
/\ (
divset ((T
. m),j)))
<>
{} ;
then
consider t be
object such that
A97: t
in ((
divset ((T
. n),i))
/\ (
divset ((T
. m),j))) by
XBOOLE_0:def 1;
reconsider t as
Real by
A97;
A98: (
divset ((T
. m),j))
c= A by
A91,
INTEGRA1: 8;
A99: t
in (
divset ((T
. n),i)) & t
in (
divset ((T
. m),j)) by
A97,
XBOOLE_0:def 4;
then
|.((p1
. i)
- t).|
< sk &
|.(t
- (p2
. j)).|
< sk by
A20,
A91,
A93,
INTEGR20: 12;
then
A100:
|.((u
. (p1
. i))
- (u
. t)).|
< p2v &
|.((u
. t)
- (u
. (p2
. j))).|
< p2v by
A1,
A17,
A93,
A98,
A99;
reconsider DMN = ((
divset ((T
. n),i))
/\ (
divset ((T
. m),j))) as
real-bounded
Subset of
REAL by
XBOOLE_1: 17,
XXREAL_2: 45;
(Snmij
- Smnij)
= (((
vol (DMN,rho))
* ((u
. (p1
. i))
- (u
. t)))
+ ((
vol (DMN,rho))
* ((u
. t)
- (u
. (p2
. j))))) by
A88,
A89,
A90,
A94;
then
A101:
|.(Snmij
- Smnij).|
<= (
|.((
vol (DMN,rho))
* ((u
. (p1
. i))
- (u
. t))).|
+
|.((
vol (DMN,rho))
* ((u
. t)
- (u
. (p2
. j)))).|) by
COMPLEX1: 56;
A102:
|.((
vol (DMN,rho))
* ((u
. (p1
. i))
- (u
. t))).|
= (
|.(
vol (DMN,rho)).|
*
|.((u
. (p1
. i))
- (u
. t)).|) &
|.((
vol (DMN,rho))
* ((u
. t)
- (u
. (p2
. j)))).|
= (
|.(
vol (DMN,rho)).|
*
|.((u
. t)
- (u
. (p2
. j))).|) by
COMPLEX1: 65;
0
<=
|.(
vol (DMN,rho)).| by
COMPLEX1: 46;
then
|.((
vol (DMN,rho))
* ((u
. (p1
. i))
- (u
. t))).|
<= (
|.(
vol (DMN,rho)).|
* p2v) &
|.((
vol (DMN,rho))
* ((u
. t)
- (u
. (p2
. j)))).|
<= (
|.(
vol (DMN,rho)).|
* p2v) by
A100,
A102,
XREAL_1: 64;
then (
|.((
vol (DMN,rho))
* ((u
. (p1
. i))
- (u
. t))).|
+
|.((
vol (DMN,rho))
* ((u
. t)
- (u
. (p2
. j)))).|)
<= ((
|.(
vol (DMN,rho)).|
* p2v)
+ (
|.(
vol (DMN,rho)).|
* p2v)) by
XREAL_1: 7;
hence
|.(Snmij
- Smnij).|
<= (
|.(
vol (((
divset ((T
. n),i))
/\ (
divset ((T
. m),j))),rho)).|
* pv) by
A101,
XXREAL_0: 2;
end;
end;
consider vtntm be
FinSequence of
REAL such that
A103: (
len vtntm)
= (
len (T
. m)) & (
Sum vtntm)
<= (
total_vd rho) & for j be
Nat st j
in (
dom (T
. m)) holds ex p be
FinSequence of
REAL st (vtntm
. j)
= (
Sum p) & (
len p)
= (
len (T
. n)) & for i be
Nat st i
in (
dom (T
. n)) holds (p
. i)
=
|.(
vol (((
divset ((T
. n),i))
/\ (
divset ((T
. m),j))),rho)).| by
A1,
Th19;
reconsider PVD = (pv
* vtntm) as
FinSequence of
REAL ;
(
dom PVD)
= (
dom vtntm) by
VALUED_1:def 5;
then (
dom PVD)
= (
Seg (
len (T
. m))) by
A103,
FINSEQ_1:def 3;
then
A104: (
len PVD)
= (
len (T
. m)) by
FINSEQ_1:def 3;
A105: for j be
Nat st j
in (
Seg (
len (T
. m))) holds ex pvtntm be
FinSequence of
REAL st (PVD
. j)
= (
Sum pvtntm) & (
len pvtntm)
= (
len (T
. n)) & for i be
Nat st i
in (
Seg (
len (T
. n))) holds (pvtntm
. i)
= (pv
*
|.(
vol (((
divset ((T
. n),i))
/\ (
divset ((T
. m),j))),rho)).|)
proof
let j be
Nat;
assume j
in (
Seg (
len (T
. m)));
then j
in (
dom (T
. m)) by
FINSEQ_1:def 3;
then
consider v be
FinSequence of
REAL such that
A107: (vtntm
. j)
= (
Sum v) & (
len v)
= (
len (T
. n)) & for i be
Nat st i
in (
dom (T
. n)) holds (v
. i)
=
|.(
vol (((
divset ((T
. n),i))
/\ (
divset ((T
. m),j))),rho)).| by
A103;
reconsider pvtntm = (pv
* v) as
FinSequence of
REAL ;
take pvtntm;
thus (PVD
. j)
= (pv
* (vtntm
. j)) by
VALUED_1: 6
.= (
Sum pvtntm) by
A107,
RVSUM_1: 87;
(
dom pvtntm)
= (
dom v) by
VALUED_1:def 5;
then (
dom pvtntm)
= (
Seg (
len (T
. n))) by
A107,
FINSEQ_1:def 3;
hence (
len pvtntm)
= (
len (T
. n)) by
FINSEQ_1:def 3;
let i be
Nat;
assume i
in (
Seg (
len (T
. n)));
then
a108: i
in (
dom (T
. n)) by
FINSEQ_1:def 3;
thus (pvtntm
. i)
= (pv
* (v
. i)) by
VALUED_1: 6
.= (pv
*
|.(
vol (((
divset ((T
. n),i))
/\ (
divset ((T
. m),j))),rho)).|) by
A107,
a108;
end;
A109: (
Sum PVD)
= (pv
* (
Sum vtntm)) by
RVSUM_1: 87;
A110: (pv
* (
Sum vtntm))
<= (pv
* (
total_vd rho)) by
A13,
B13,
A103,
XREAL_1: 64;
A111: (
len XZq)
= (
len (T
. m)) by
A56,
A68,
A84,
FINSEQ_1:def 3;
for j be
Nat st j
in (
dom XZq) holds
|.(XZq
. j).|
<= (PVD
. j)
proof
let j be
Nat;
assume
A112: j
in (
dom XZq);
then
A113: (XZq
. j)
= ((Xq
. j)
- (Zq
. j)) by
VALUED_1: 13;
consider Xsq be
FinSequence of
REAL such that
A114: (
dom Xsq)
= (
Seg (
len (T
. n))) & (Xq
. j)
= (
Sum Xsq) & for i be
Nat st i
in (
dom Xsq) holds (Xsq
. i)
= (Snm
. (i,j)) by
A56,
A68,
A84,
A112;
consider Zsq be
FinSequence of
REAL such that
A115: (
dom Zsq)
= (
Seg (
len (T
. n))) & (Zq
. j)
= (
Sum Zsq) & for i be
Nat st i
in (
dom Zsq) holds (Zsq
. i)
= (Smn
. (i,j)) by
A56,
A68,
A84,
A112;
set XZsq = (Xsq
- Zsq);
A116: (
dom XZsq)
= ((
dom Xsq)
/\ (
dom Zsq)) by
VALUED_1: 12;
reconsider XZsq as
FinSequence of
REAL ;
A117: (
len XZsq)
= (
len (T
. n)) by
A114,
A115,
A116,
FINSEQ_1:def 3;
consider pvtntm be
FinSequence of
REAL such that
A118: (PVD
. j)
= (
Sum pvtntm) & (
len pvtntm)
= (
len (T
. n)) & for i be
Nat st i
in (
Seg (
len (T
. n))) holds (pvtntm
. i)
= (pv
*
|.(
vol (((
divset ((T
. n),i))
/\ (
divset ((T
. m),j))),rho)).|) by
A105,
A56,
A68,
A84,
A112;
for i be
Nat st i
in (
dom XZsq) holds
|.(XZsq
. i).|
<= (pvtntm
. i)
proof
let i be
Nat;
assume
A119: i
in (
dom XZsq);
then
A120: (XZsq
. i)
= ((Xsq
. i)
- (Zsq
. i)) by
VALUED_1: 13;
A121: (pvtntm
. i)
= (pv
*
|.(
vol (((
divset ((T
. n),i))
/\ (
divset ((T
. m),j))),rho)).|) by
A118,
A114,
A115,
A116,
A119;
(Xsq
. i)
= (Snm
. (i,j)) & (Zsq
. i)
= (Smn
. (i,j)) by
A114,
A115,
A116,
A119;
hence
|.(XZsq
. i).|
<= (pvtntm
. i) by
A56,
A68,
A84,
A87,
A112,
A114,
A115,
A116,
A119,
A120,
A121;
end;
then
A122:
|.(
Sum XZsq).|
<= (PVD
. j) by
A117,
A118,
Th3;
(
len Xsq)
= (
len Zsq) by
A114,
A115,
FINSEQ_3: 29;
then Xsq is
Element of ((
len Xsq)
-tuples_on
REAL ) & Zsq is
Element of ((
len Xsq)
-tuples_on
REAL ) by
FINSEQ_2: 92;
hence thesis by
A113,
A114,
A115,
A122,
RVSUM_1: 90;
end;
then
|.(
Sum XZq).|
<= (
Sum PVD) by
A104,
A111,
Th3;
then
A124:
|.(
Sum XZq).|
<= (TVD
* pv) by
A109,
A110,
XXREAL_0: 2;
(
Sum XZq)
= (((
middle_sum S)
. n)
- ((
middle_sum S)
. m)) by
A21,
A83,
A86,
RVSUM_1: 90;
hence
|.(((
middle_sum S)
. n)
- ((
middle_sum S)
. m)).|
< p by
A16,
A124,
XXREAL_0: 2;
end;
hence (
middle_sum S) is
convergent by
SEQ_4: 41;
end;
end;
theorem ::
INTEGR23:19
Th21: for A be non
empty
closed_interval
Subset of
REAL , rho be
Function of A,
REAL , u be
PartFunc of
REAL ,
REAL , T0,T,T1 be
DivSequence of A, S0 be
middle_volume_Sequence of rho, u, T0, S be
middle_volume_Sequence of rho, u, T st for i be
Nat holds (T1
. (2
* i))
= (T0
. i) & (T1
. ((2
* i)
+ 1))
= (T
. i) holds ex S1 be
middle_volume_Sequence of rho, u, T1 st for i be
Nat holds (S1
. (2
* i))
= (S0
. i) & (S1
. ((2
* i)
+ 1))
= (S
. i)
proof
let A be non
empty
closed_interval
Subset of
REAL , rho be
Function of A,
REAL , u be
PartFunc of
REAL ,
REAL , T0,T,T1 be
DivSequence of A, S0 be
middle_volume_Sequence of rho, u, T0, S be
middle_volume_Sequence of rho, u, T;
assume
A2: for k be
Nat holds (T1
. (2
* k))
= (T0
. k) & (T1
. ((2
* k)
+ 1))
= (T
. k);
reconsider SS0 = S0, SS = S as
sequence of (
REAL
* );
deffunc
F(
Nat) = (
In ((SS0
. $1),(
REAL
* )));
deffunc
G(
Nat) = (
In ((SS
. $1),(
REAL
* )));
consider S1 be
sequence of (
REAL
* ) such that
A3: for n be
Nat holds (S1
. (2
* n))
=
F(n) & (S1
. ((2
* n)
+ 1))
=
G(n) from
INTEGR20:sch 1;
for i be
Element of
NAT holds (S1
. i) is
middle_volume of rho, u, (T1
. i)
proof
let i be
Element of
NAT ;
consider k be
Nat such that
A4: i
= (2
* k) or i
= ((2
* k)
+ 1) by
INTEGR20: 14;
reconsider k as
Element of
NAT by
ORDINAL1:def 12;
per cases by
A4;
suppose
A5: i
= (2
* k);
then (S1
. i)
= (
In ((SS0
. k),(
REAL
* ))) by
A3
.= (S0
. k) by
FUNCT_2: 5,
SUBSET_1:def 8;
hence (S1
. i) is
middle_volume of rho, u, (T1
. i) by
A2,
A5;
end;
suppose
A6: i
= ((2
* k)
+ 1);
then (S1
. i)
= (
In ((SS
. k),(
REAL
* ))) by
A3
.= (S
. k) by
FUNCT_2: 5,
SUBSET_1:def 8;
hence (S1
. i) is
middle_volume of rho, u, (T1
. i) by
A2,
A6;
end;
end;
then
reconsider S1 as
middle_volume_Sequence of rho, u, T1 by
INTEGR22:def 6;
take S1;
let i be
Nat;
A7: i is
Element of
NAT by
ORDINAL1:def 12;
A8: (S1
. (2
* i))
= (
In ((SS0
. i),(
REAL
* ))) by
A3
.= (S0
. i) by
A7,
FUNCT_2: 5,
SUBSET_1:def 8;
(S1
. ((2
* i)
+ 1))
= (
In ((SS
. i),(
REAL
* ))) by
A3
.= (S
. i) by
A7,
FUNCT_2: 5,
SUBSET_1:def 8;
hence thesis by
A8;
end;
theorem ::
INTEGR23:20
Th22: for Sq0,Sq,Sq1 be
Real_Sequence st Sq1 is
convergent & for i be
Nat holds (Sq1
. (2
* i))
= (Sq0
. i) & (Sq1
. ((2
* i)
+ 1))
= (Sq
. i) holds Sq0 is
convergent & (
lim Sq0)
= (
lim Sq1) & Sq is
convergent & (
lim Sq)
= (
lim Sq1)
proof
let Sq0,Sq,Sq1 be
Real_Sequence;
assume that
A1: Sq1 is
convergent and
A2: for i be
Nat holds (Sq1
. (2
* i))
= (Sq0
. i) & (Sq1
. ((2
* i)
+ 1))
= (Sq
. i);
A3: for r be
Real st
0
< r holds ex m1 be
Nat st for i be
Nat st m1
<= i holds
|.((Sq0
. i)
- (
lim Sq1)).|
< r
proof
let r be
Real;
assume
0
< r;
then
consider m be
Nat such that
A4: for n be
Nat st m
<= n holds
|.((Sq1
. n)
- (
lim Sq1)).|
< r by
A1,
SEQ_2:def 7;
consider k be
Nat such that
A5: m
= (2
* k) or m
= ((2
* k)
+ 1) by
INTEGR20: 14;
((2
* k)
+ 1)
<= (((2
* k)
+ 1)
+ 1) by
NAT_1: 11;
then
A6: m
<= ((2
* k)
+ 2) by
A5,
XREAL_1: 31;
reconsider m1 = (k
+ 1) as
Nat;
take m1;
thus for i be
Nat st m1
<= i holds
|.((Sq0
. i)
- (
lim Sq1)).|
< r
proof
let i be
Nat;
assume m1
<= i;
then (2
* m1)
<= (2
* i) by
XREAL_1: 64;
then m
<= (2
* i) by
A6,
XXREAL_0: 2;
then
|.((Sq1
. (2
* i))
- (
lim Sq1)).|
< r by
A4;
hence
|.((Sq0
. i)
- (
lim Sq1)).|
< r by
A2;
end;
end;
hence Sq0 is
convergent by
SEQ_2:def 6;
hence (
lim Sq0)
= (
lim Sq1) by
A3,
SEQ_2:def 7;
A7: for r be
Real st
0
< r holds ex m1 be
Nat st for i be
Nat st m1
<= i holds
|.((Sq
. i)
- (
lim Sq1)).|
< r
proof
let r be
Real;
assume
0
< r;
then
consider m be
Nat such that
A8: for n be
Nat st m
<= n holds
|.((Sq1
. n)
- (
lim Sq1)).|
< r by
A1,
SEQ_2:def 7;
consider k be
Nat such that
A9: m
= (2
* k) or m
= ((2
* k)
+ 1) by
INTEGR20: 14;
((2
* k)
+ 1)
<= (((2
* k)
+ 1)
+ 1) by
NAT_1: 11;
then
A10: m
<= ((2
* k)
+ 2) by
A9,
XREAL_1: 31;
reconsider m1 = (k
+ 1) as
Nat;
take m1;
thus for i be
Nat st m1
<= i holds
|.((Sq
. i)
- (
lim Sq1)).|
< r
proof
let i be
Nat;
assume m1
<= i;
then (2
* m1)
<= (2
* i) by
XREAL_1: 64;
then m
<= (2
* i) by
A10,
XXREAL_0: 2;
then m
<= ((2
* i)
+ 1) by
XREAL_1: 145;
then
|.((Sq1
. ((2
* i)
+ 1))
- (
lim Sq1)).|
< r by
A8;
hence
|.((Sq
. i)
- (
lim Sq1)).|
< r by
A2;
end;
end;
hence Sq is
convergent by
SEQ_2:def 6;
hence (
lim Sq)
= (
lim Sq1) by
SEQ_2:def 7,
A7;
end;
theorem ::
INTEGR23:21
for A be non
empty
closed_interval
Subset of
REAL , rho be
Function of A,
REAL , u be
continuous
PartFunc of
REAL ,
REAL st rho is
bounded_variation & (
dom u)
= A holds u
is_RiemannStieltjes_integrable_with rho
proof
let A be non
empty
closed_interval
Subset of
REAL , rho be
Function of A,
REAL , u be
continuous
PartFunc of
REAL ,
REAL ;
assume
A1: rho is
bounded_variation & (
dom u)
= A;
A2: (u
| A) is
uniformly_continuous by
A1,
FCONT_2: 11;
consider T0 be
DivSequence of A such that
A3: (
delta T0) is
convergent & (
lim (
delta T0))
=
0 by
INTEGRA4: 11;
set S0 = the
middle_volume_Sequence of rho, u, T0;
set I = (
lim (
middle_sum S0));
for T be
DivSequence of A, S be
middle_volume_Sequence of rho, u, T st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum S) is
convergent & (
lim (
middle_sum S))
= I
proof
let T be
DivSequence of A, S be
middle_volume_Sequence of rho, u, T;
assume
A4: (
delta T) is
convergent & (
lim (
delta T))
=
0 ;
hence (
middle_sum S) is
convergent by
A1,
A2,
Th20;
consider T1 be
DivSequence of A such that
A5: for i be
Nat holds (T1
. (2
* i))
= (T0
. i) & (T1
. ((2
* i)
+ 1))
= (T
. i) by
INTEGR20: 15;
consider S1 be
middle_volume_Sequence of rho, u, T1 such that
A6: for i be
Nat holds (S1
. (2
* i))
= (S0
. i) & (S1
. ((2
* i)
+ 1))
= (S
. i) by
A5,
Th21;
(
delta T1) is
convergent & (
lim (
delta T1))
=
0 by
A3,
A4,
A5,
INTEGR20: 16;
then
A7: (
middle_sum S1) is
convergent by
A1,
A2,
Th20;
A8: for i be
Nat holds ((
middle_sum S1)
. (2
* i))
= ((
middle_sum S0)
. i) & ((
middle_sum S1)
. ((2
* i)
+ 1))
= ((
middle_sum S)
. i)
proof
let i be
Nat;
reconsider S1 as
middle_volume_Sequence of rho, u, T1;
(S1
. (2
* i))
= (S0
. i) & (T1
. (2
* i))
= (T0
. i) & (S1
. ((2
* i)
+ 1))
= (S
. i) & (T1
. ((2
* i)
+ 1))
= (T
. i) by
A5,
A6;
then ((
middle_sum S1)
. (2
* i))
= (
Sum (S0
. i)) & ((
middle_sum S1)
. ((2
* i)
+ 1))
= (
Sum (S
. i)) by
INTEGR22:def 7;
hence thesis by
INTEGR22:def 7;
end;
(
lim (
middle_sum S))
= (
lim (
middle_sum S1)) by
A7,
A8,
Th22;
hence (
lim (
middle_sum S))
= (
lim (
middle_sum S0)) by
A7,
A8,
Th22;
end;
hence u
is_RiemannStieltjes_integrable_with rho by
INTEGR22:def 8;
end;