number01.miz
begin
registration
cluster
positive for
Integer;
existence
proof
take 1;
thus thesis;
end;
end
theorem ::
NUMBER01:1
for n be
positive
Integer holds (n
+ 1)
divides ((n
^2 )
+ 1) iff n
= 1
proof
let n be
positive
Integer;
thus (n
+ 1)
divides ((n
^2 )
+ 1) implies n
= 1
proof
assume (n
+ 1)
divides ((n
^2 )
+ 1);
then
n: (n
+ 1)
divides ((n
* (n
+ 1))
- (n
- 1));
(n
+ 1)
divides (n
* (n
+ 1)) by
INT_1:def 3;
then
n1: (n
+ 1)
divides (n
- 1) by
n,
INT_5: 2;
assume
o: n
<> 1;
n
>= (
0
+ 1) by
INT_1: 7;
then n
> 1 by
o,
XXREAL_0: 1;
then (n
- 1)
> (1
- 1) by
XREAL_1: 9;
then (n
+ 1)
<= (n
- 1) by
n1,
INT_2: 27;
then ((n
+ 1)
- n)
<= ((n
- 1)
- n) by
XREAL_1: 9;
hence contradiction;
end;
assume n
= 1;
hence (n
+ 1)
divides ((n
^2 )
+ 1);
end;
theorem ::
NUMBER01:2
lemmod: for i,n be
Integer st
|.i.|
= n holds i
= n or i
= (
- n)
proof
let i,n be
Integer;
assume
|.i.|
= n & i
<> n;
then n
= (
- i) by
ABSVALUE:def 1;
hence i
= (
- n);
end;
theorem ::
NUMBER01:3
lem24nat: for n be
natural
number st n
divides 24 holds n
= 1 or n
= 2 or n
= 3 or n
= 4 or n
= 6 or n
= 8 or n
= 12 or n
= 24
proof
let n be
natural
number;
assume
n: n
divides 24;
then n
<= 24 by
INT_2: 27;
then
el: n
=
0 or ... or n
= 24;
n0: not
0
divides 24 by
INT_2: 3;
(5
* 4)
< 24
< (5
* (4
+ 1));
then
n5: not 5
divides 24 by
NEWTON03: 40;
(7
* 3)
< 24
< (7
* (3
+ 1));
then
n7: not 7
divides 24 by
NEWTON03: 40;
(9
* 2)
< 24
< (9
* (2
+ 1));
then
n9: not 9
divides 24 by
NEWTON03: 40;
(10
* 2)
< 24
< (10
* (2
+ 1));
then
n10: not 10
divides 24 by
NEWTON03: 40;
(11
* 2)
< 24
< (11
* (2
+ 1));
then
n11: not 11
divides 24 by
NEWTON03: 40;
(13
* 1)
< 24
< (13
* (1
+ 1));
then
n13: not 13
divides 24 by
NEWTON03: 40;
(14
* 1)
< 24
< (14
* (1
+ 1));
then
n14: not 14
divides 24 by
NEWTON03: 40;
(15
* 1)
< 24
< (15
* (1
+ 1));
then
n15: not 15
divides 24 by
NEWTON03: 40;
(16
* 1)
< 24
< (16
* (1
+ 1));
then
n16: not 16
divides 24 by
NEWTON03: 40;
(17
* 1)
< 24
< (17
* (1
+ 1));
then
n17: not 17
divides 24 by
NEWTON03: 40;
(18
* 1)
< 24
< (18
* (1
+ 1));
then
n18: not 18
divides 24 by
NEWTON03: 40;
(19
* 1)
< 24
< (19
* (1
+ 1));
then
n19: not 19
divides 24 by
NEWTON03: 40;
(20
* 1)
< 24
< (20
* (1
+ 1));
then
n20: not 20
divides 24 by
NEWTON03: 40;
(21
* 1)
< 24
< (21
* (1
+ 1));
then
n21: not 21
divides 24 by
NEWTON03: 40;
(22
* 1)
< 24
< (22
* (1
+ 1));
then
n22: not 22
divides 24 by
NEWTON03: 40;
(23
* 1)
< 24
< (23
* (1
+ 1));
then not 23
divides 24 by
NEWTON03: 40;
hence n
= 1 or n
= 2 or n
= 3 or n
= 4 or n
= 6 or n
= 8 or n
= 12 or n
= 24 by
n,
el,
n0,
n5,
n7,
n9,
n10,
n11,
n13,
n14,
n15,
n16,
n17,
n18,
n19,
n20,
n21,
n22;
end;
theorem ::
NUMBER01:4
lem24: for t be
Integer st t
divides 24 holds t
= (
- 1) or t
= 1 or t
= (
- 2) or t
= 2 or t
= (
- 3) or t
= 3 or t
= (
- 4) or t
= 4 or t
= (
- 6) or t
= 6 or t
= (
- 8) or t
= 8 or t
= (
- 12) or t
= 12 or t
= (
- 24) or t
= 24
proof
let t be
Integer;
reconsider n =
|.t.| as
Nat;
assume t
divides 24;
then n
divides
|.24.| by
INT_2: 16;
then n
divides 24;
then n
= 1 or n
= 2 or n
= 3 or n
= 4 or n
= 6 or n
= 8 or n
= 12 or n
= 24 by
lem24nat;
hence t
= (
- 1) or t
= 1 or t
= (
- 2) or t
= 2 or t
= (
- 3) or t
= 3 or t
= (
- 4) or t
= 4 or t
= (
- 6) or t
= 6 or t
= (
- 8) or t
= 8 or t
= (
- 12) or t
= 12 or t
= (
- 24) or t
= 24 by
lemmod;
end;
begin
theorem ::
NUMBER01:5
for x be
Integer st (x
- 3)
divides ((x
|^ 3)
- 3) holds x
= (
- 21) or x
= (
- 9) or x
= (
- 5) or x
= (
- 3) or x
= (
- 1) or x
=
0 or x
= 1 or x
= 2 or x
= 4 or x
= 5 or x
= 6 or x
= 7 or x
= 9 or x
= 11 or x
= 15 or x
= 27
proof
let x be
Integer;
assume
x: (x
- 3)
divides ((x
|^ 3)
- 3);
set t = (x
- 3);
e: (((t
+ 3)
|^ (2
+ 1))
- 3)
= ((((t
+ 3)
|^ (1
+ 1))
* (t
+ 3))
- 3) by
NEWTON: 6
.= (((((t
+ 3)
|^ 1)
* (t
+ 3))
* (t
+ 3))
- 3) by
NEWTON: 6
.= ((((t
+ 3)
* (t
+ 3))
* (t
+ 3))
- 3) by
NEWTON: 5
.= (((((t
* t)
* t)
+ (27
* t))
+ ((9
* t)
* t))
+ 24);
t: t
divides ((t
* t)
* t) & t
divides (27
* t) & t
divides ((9
* t)
* t) by
INT_1:def 3;
then t
divides (((t
* t)
* t)
+ (27
* t)) by
WSIERP_1: 4;
then t
divides ((((t
* t)
* t)
+ (27
* t))
+ ((9
* t)
* t)) by
t,
WSIERP_1: 4;
then t
divides 24 by
x,
e,
INT_2: 1;
then t
= (
- 1) or t
= 1 or t
= (
- 2) or t
= 2 or t
= (
- 3) or t
= 3 or t
= (
- 4) or t
= 4 or t
= (
- 6) or t
= 6 or t
= (
- 8) or t
= 8 or t
= (
- 12) or t
= 12 or t
= (
- 24) or t
= 24 by
lem24;
hence x
= (
- 21) or x
= (
- 9) or x
= (
- 5) or x
= (
- 3) or x
= (
- 1) or x
=
0 or x
= 1 or x
= 2 or x
= 4 or x
= 5 or x
= 6 or x
= 7 or x
= 9 or x
= 11 or x
= 15 or x
= 27;
end;
begin
theorem ::
NUMBER01:6
{ n where n be
positive
Integer : 5
divides ((4
* (n
|^ 2))
+ 1) & 13
divides ((4
* (n
|^ 2))
+ 1) } is
infinite
proof
set S = { n where n be
positive
Integer : 5
divides ((4
* (n
|^ 2))
+ 1) & 13
divides ((4
* (n
|^ 2))
+ 1) };
deffunc
F(
Nat) = ((65
* $1)
+ 56);
consider f be
ManySortedSet of
NAT such that
f: for n be
Element of
NAT holds (f
. n)
=
F(n) from
PBOOLE:sch 5;
set R = (
rng f);
d: (
dom f)
=
NAT by
PARTFUN1:def 2;
rs: R
c= S
proof
let a be
object;
assume a
in R;
then
consider k be
object such that
k: k
in (
dom f) & a
= (f
. k) by
FUNCT_1:def 3;
reconsider k as
Element of
NAT by
d,
k;
a: a
= ((65
* k)
+ 56) by
f,
k;
then
reconsider n = a as
positive
Integer;
c: ((4
* (n
|^ (1
+ 1)))
+ 1)
= ((4
* ((n
|^ 1)
* n))
+ 1) by
NEWTON: 6
.= ((4
* (n
* n))
+ 1) by
NEWTON: 5;
65
= (5
* 13);
then
p: 13
divides (65
-
0 ) by
INT_1:def 3;
(((65
* k)
+ 56)
- 1)
= (5
* ((13
* k)
+ 11));
then 5
divides (((65
* k)
+ 56)
- 1) by
INT_1:def 3;
then (n,1)
are_congruent_mod 5 by
a,
INT_1:def 4;
then ((n
* n),(1
* 1))
are_congruent_mod 5 & (4,4)
are_congruent_mod 5 by
INT_1: 18,
INT_1: 11;
then ((4
* (n
* n)),(1
* 4))
are_congruent_mod 5 & (1,1)
are_congruent_mod 5 by
INT_1: 18,
INT_1: 11;
then (((4
* (n
* n))
+ 1),(4
+ 1))
are_congruent_mod 5 & (5,
0 )
are_congruent_mod 5 by
INT_1: 16,
INT_1: 12;
then (((4
* (n
* n))
+ 1),
0 )
are_congruent_mod 5 by
INT_1: 15;
then (((4
* (n
|^ 2))
+ 1),
0 )
are_congruent_mod 5 by
c;
then
d1: 5
divides (((4
* (n
|^ 2))
+ 1)
-
0 ) by
INT_1:def 4;
(((65
* k)
+ 56)
- 4)
= (13
* ((5
* k)
+ 4));
then 13
divides (((65
* k)
+ 56)
- 4) by
INT_1:def 3;
then (n,4)
are_congruent_mod 13 by
a,
INT_1:def 4;
then ((n
* n),(4
* 4))
are_congruent_mod 13 & (4,4)
are_congruent_mod 13 by
INT_1: 18,
INT_1: 11;
then ((4
* (n
* n)),((4
* 4)
* 4))
are_congruent_mod 13 & (1,1)
are_congruent_mod 13 by
INT_1: 18,
INT_1: 11;
then (((4
* (n
* n))
+ 1),(64
+ 1))
are_congruent_mod 13 & (65,
0 )
are_congruent_mod 13 by
INT_1: 16,
INT_1:def 4,
p;
then (((4
* (n
* n))
+ 1),
0 )
are_congruent_mod 13 by
INT_1: 15;
then (((4
* (n
|^ 2))
+ 1),
0 )
are_congruent_mod 13 by
c;
then 13
divides (((4
* (n
|^ 2))
+ 1)
-
0 ) by
INT_1:def 4;
hence a
in S by
d1;
end;
for m be
Element of
NAT holds ex n be
Element of
NAT st n
>= m & n
in R
proof
let m be
Element of
NAT ;
take n =
F(m);
(65
* m)
>= (1
* m) by
XREAL_1: 66;
hence n
>= m by
XREAL_1: 38;
m
in (
dom f) by
d;
then (f
. m)
in (
rng f) by
FUNCT_1: 3;
hence n
in R by
f;
end;
then R is
infinite by
PYTHTRIP: 9;
hence thesis by
rs,
FINSET_1: 1;
end;
begin
theorem ::
NUMBER01:7
for n be
positive
Integer holds 169
divides (((3
|^ ((3
* n)
+ 3))
- (26
* n))
- 27)
proof
let n be
positive
Integer;
reconsider k = n as
Nat by
TARSKI: 1;
defpred
P[
Nat] means 169
divides (((3
|^ ((3
* $1)
+ 3))
- (26
* $1))
- 27);
tt: (3
|^ (2
+ 1))
= ((3
|^ (1
+ 1))
* 3) by
NEWTON: 6
.= (((3
|^ (
0
+ 1))
* 3)
* 3) by
NEWTON: 6
.= ((3
* 3)
* 3) by
NEWTON: 5;
(((3
|^ ((3
* 1)
+ 3))
- (26
* 1))
- 27)
= ((3
|^ (5
+ 1))
- 53)
.= (((3
|^ (4
+ 1))
* 3)
- 53) by
NEWTON: 6
.= ((((3
|^ (3
+ 1))
* 3)
* 3)
- 53) by
NEWTON: 6
.= (((((3
|^ (2
+ 1))
* 3)
* 3)
* 3)
- 53) by
NEWTON: 6
.= (169
* 4) by
tt;
then
o:
P[1] by
INT_1:def 3;
i:
now
let n be
Nat;
assume
n: 1
<= n &
P[n];
d: 13
divides (13
* 2) by
INT_1:def 3;
e: ((((3
|^ ((3
* (n
+ 1))
+ 3))
- (26
* (n
+ 1)))
- 27)
- (((3
|^ ((3
* n)
+ 3))
- (26
* n))
- 27))
= (((((3
|^ 3)
* (3
|^ ((3
* n)
+ 3)))
- (26
* (n
+ 1)))
- 27)
- (((3
|^ ((3
* n)
+ 3))
- (26
* n))
- 27)) by
NEWTON: 8
.= (26
* ((3
|^ ((3
* n)
+ 3))
- 1)) by
tt;
((3
|^ (2
+ 1))
- 1)
= (((3
|^ (1
+ 1))
* 3)
- 1) by
NEWTON: 6
.= ((((3
|^ (
0
+ 1))
* 3)
* 3)
- 1) by
NEWTON: 6
.= (((3
* 3)
* 3)
- 1) by
NEWTON: 5;
then ((3
|^ 3)
- 1)
= (13
* 2);
then
t: 13
divides ((3
|^ 3)
- 1) by
INT_1:def 3;
((3
|^ (3
* (n
+ 1)))
- 1)
= (((3
|^ 3)
|^ (n
+ 1))
- 1) by
NEWTON: 9
.= (((3
|^ 3)
|^ (n
+ 1))
- (1
|^ (n
+ 1))) by
NEWTON: 10;
then ((3
|^ 3)
- 1)
divides ((3
|^ ((3
* n)
+ 3))
- 1) by
NEWTON01: 33;
then 13
divides ((3
|^ ((3
* n)
+ 3))
- 1) by
t,
INT_2: 9;
then (13
* 13)
divides ((((3
|^ ((3
* (n
+ 1))
+ 3))
- (26
* (n
+ 1)))
- 27)
- (((3
|^ (3
* (n
+ 1)))
- (26
* n))
- 27)) by
d,
e,
NEWTON03: 5;
then 169
divides (
- ((((3
|^ ((3
* (n
+ 1))
+ 3))
- (26
* (n
+ 1)))
- 27)
- (((3
|^ ((3
* n)
+ 3))
- (26
* n))
- 27))) by
INT_2: 10;
then 169
divides ((((3
|^ ((3
* n)
+ 3))
- (26
* n))
- 27)
- (((3
|^ ((3
* (n
+ 1))
+ 3))
- (26
* (n
+ 1)))
- 27));
then 169
divides (((3
|^ ((3
* (n
+ 1))
+ 3))
- (26
* (n
+ 1)))
- 27) by
n,
INT_5: 2;
hence
P[(n
+ 1)];
end;
for k be
Nat st 1
<= k holds
P[k] from
NAT_1:sch 8(
o,
i);
then
P[k] by
NAT_1: 14;
hence thesis;
end;
begin
theorem ::
NUMBER01:8
for k be
Nat holds 19
divides ((2
|^ (2
|^ ((6
* k)
+ 2)))
+ 3)
proof
let k be
Nat;
(2
|^ 1)
= 2 by
NEWTON: 5;
then
d2: (2
|^ (1
+ 1))
= (2
* 2) by
NEWTON: 6;
then (2
|^ (2
+ 1))
= (2
* 4) by
NEWTON: 6;
then
d4: (2
|^ (3
+ 1))
= (2
* 8) by
NEWTON: 6;
then (2
|^ (4
+ 1))
= (2
* 16) by
NEWTON: 6;
then
d6: (2
|^ (5
+ 1))
= (2
* 32) by
NEWTON: 6;
(64
- 1)
= (9
* 7);
then 9
divides ((2
|^ 6)
- 1) by
d6,
INT_1:def 3;
then ((2
|^ 6),1)
are_congruent_mod 9 by
INT_1:def 4;
then (((2
|^ 6)
|^ k),(1
|^ k))
are_congruent_mod 9 by
GR_CY_3: 34;
then ((2
|^ (6
* k)),(1
|^ k))
are_congruent_mod 9 by
NEWTON: 9;
then
a: ((2
|^ (6
* k)),1)
are_congruent_mod 9 by
NEWTON: 10;
((2
|^ 2),(2
|^ 2))
are_congruent_mod 9 by
INT_1: 11;
then (((2
|^ (6
* k))
* (2
|^ 2)),(1
* (2
|^ 2)))
are_congruent_mod 9 by
a,
INT_1: 18;
then
c9: ((2
|^ ((6
* k)
+ 2)),(2
|^ 2))
are_congruent_mod 9 by
NEWTON: 8;
(2
|^ (((6
* k)
+ 1)
+ 1))
= (2
* (2
|^ ((6
* k)
+ 1))) & (2
|^ (1
+ 1))
= (2
* (2
|^ 1)) by
NEWTON: 6;
then ((2
|^ ((6
* k)
+ 2)),
0 )
are_congruent_mod 2 & ((2
|^ 2),
0 )
are_congruent_mod 2 by
INT_1: 60;
then ((2
|^ ((6
* k)
+ 2)),
0 )
are_congruent_mod 2 & (
0 ,(2
|^ 2))
are_congruent_mod 2 by
INT_1: 14;
then
c2: ((2
|^ ((6
* k)
+ 2)),(2
|^ 2))
are_congruent_mod 2 by
INT_1: 15;
3 is
odd by
POLYFORM: 6;
then (3
* 3) is
odd;
then ((2
|^ 1),9)
are_coprime by
NAT_5: 3;
then (2,9)
are_coprime by
NEWTON: 5;
then ((2
|^ ((6
* k)
+ 2)),(2
|^ 2))
are_congruent_mod (2
* 9) by
c2,
c9,
INT_6: 21;
then
consider t be
Integer such that
t: ((2
|^ ((6
* k)
+ 2))
- (2
|^ 2))
= (18
* t) by
INT_1:def 5;
t1: (2
|^ ((6
* k)
+ 2))
= ((18
* t)
+ (2
|^ 2)) by
t
.= ((18
* t)
+ 4) by
d2;
((6
* k)
+ 2)
>= (
0
+ 2) by
XREAL_1: 7;
then (2
|^ ((6
* k)
+ 2))
>= (2
|^ 2) by
NAT_6: 1;
then (18
* t)
>=
0 & 18
>
0 by
t,
XREAL_1: 48;
then t
>=
0 by
XREAL_1: 132;
then t
in
NAT by
INT_1: 3;
then
reconsider t as
Nat;
dz: 19 is
prime by
NAT_4: 29;
2 is
prime by
INT_2: 28;
then (2,19)
are_coprime by
dz,
INT_2: 30;
then ((2
|^ (
Euler 19))
mod 19)
= 1 & 18
= (19
- 1) by
EULER_2: 18;
then ((2
|^ 18)
mod 19)
= 1 by
EULER_1: 20,
dz;
then ((2
|^ 18),1)
are_congruent_mod 19 by
NAT_6: 10;
then (((2
|^ 18)
|^ t),(1
|^ t))
are_congruent_mod 19 by
GR_CY_3: 34;
then ((2
|^ (18
* t)),(1
|^ t))
are_congruent_mod 19 by
NEWTON: 9;
then ((2
|^ (18
* t)),1)
are_congruent_mod 19 & ((2
|^ 4),(2
|^ 4))
are_congruent_mod 19 by
NEWTON: 10,
INT_1: 11;
then (((2
|^ (18
* t))
* (2
|^ 4)),(1
* (2
|^ 4)))
are_congruent_mod 19 by
INT_1: 18;
then ((2
|^ ((18
* t)
+ 4)),(2
|^ 4))
are_congruent_mod 19 by
NEWTON: 8;
then ((2
|^ (2
|^ ((6
* k)
+ 2))),(2
|^ 4))
are_congruent_mod 19 & (3,3)
are_congruent_mod 19 by
t1,
INT_1: 11;
then (((2
|^ (2
|^ ((6
* k)
+ 2)))
+ 3),((2
|^ 4)
+ 3))
are_congruent_mod 19 by
INT_1: 16;
then (((2
|^ (2
|^ ((6
* k)
+ 2)))
+ 3),19)
are_congruent_mod 19 & (19,
0 )
are_congruent_mod 19 by
d4,
INT_1: 12;
then (((2
|^ (2
|^ ((6
* k)
+ 2)))
+ 3),
0 )
are_congruent_mod 19 by
INT_1: 15;
then 19
divides (((2
|^ (2
|^ ((6
* k)
+ 2)))
+ 3)
-
0 ) by
INT_1:def 4;
hence thesis;
end;
begin
theorem ::
NUMBER01:9
13
divides ((2
|^ 70)
+ (3
|^ 70))
proof
dp: 2 is
prime by
INT_2: 28;
tp: 13 is
prime by
NAT_4: 28;
then (2,13)
are_coprime by
dp,
INT_2: 30;
then ((2
|^ (
Euler 13))
mod 13)
= 1 & 12
= (13
- 1) by
EULER_2: 18;
then ((2
|^ 12)
mod 13)
= 1 by
EULER_1: 20,
tp;
then ((2
|^ 12),1)
are_congruent_mod 13 by
NAT_6: 10;
then (((2
|^ 12)
|^ 5),(1
|^ 5))
are_congruent_mod 13 by
GR_CY_3: 34;
then ((2
|^ (12
* 5)),(1
|^ 5))
are_congruent_mod 13 by
NEWTON: 9;
then
ds: ((2
|^ 60),1)
are_congruent_mod 13 by
NEWTON: 10;
(2
|^ 1)
= 2 by
NEWTON: 5;
then (2
|^ (1
+ 1))
= (2
* 2) by
NEWTON: 6;
then (2
|^ (2
+ 1))
= (2
* 4) by
NEWTON: 6;
then (2
|^ (3
+ 1))
= (2
* 8) by
NEWTON: 6;
then (2
|^ (4
+ 1))
= (2
* 16) by
NEWTON: 6;
then ((2
|^ 5)
- 6)
= (13
* 2);
then ((2
|^ 5),6)
are_congruent_mod 13 by
INT_1:def 5;
then (((2
|^ 5)
|^ 2),(6
|^ 2))
are_congruent_mod 13 by
GR_CY_3: 34;
then ((2
|^ (5
* 2)),(6
|^ 2))
are_congruent_mod 13 by
NEWTON: 9;
then
ts: ((2
|^ (5
* 2)),(6
* 6))
are_congruent_mod 13 by
WSIERP_1: 1;
(36
- (
- 3))
= (13
* 3);
then (36,(
- 3))
are_congruent_mod 13 by
INT_1:def 5;
then ((2
|^ 10),(
- 3))
are_congruent_mod 13 by
ts,
INT_1: 15;
then (((2
|^ 60)
* (2
|^ 10)),(1
* (
- 3)))
are_congruent_mod 13 by
ds,
INT_1: 18;
then
dsi: ((2
|^ (60
+ 10)),(
- 3))
are_congruent_mod 13 by
NEWTON: 8;
(3
|^ (2
+ 1))
= ((3
|^ 2)
* 3) by
NEWTON: 6
.= ((3
* 3)
* 3) by
WSIERP_1: 1
.= ((2
* 13)
+ 1);
then ((3
|^ 3)
- 1)
= (2
* 13);
then ((3
|^ 3),1)
are_congruent_mod 13 by
INT_1:def 5;
then (((3
|^ 3)
|^ 23),(1
|^ 23))
are_congruent_mod 13 by
GR_CY_3: 34;
then ((3
|^ (3
* 23)),(1
|^ 23))
are_congruent_mod 13 by
NEWTON: 9;
then ((3
|^ 69),1)
are_congruent_mod 13 & (3,3)
are_congruent_mod 13 by
NEWTON: 10,
INT_1: 11;
then (((3
|^ 69)
* 3),(1
* 3))
are_congruent_mod 13 by
INT_1: 18;
then ((3
|^ (69
+ 1)),(1
* 3))
are_congruent_mod 13 by
NEWTON: 6;
then (((2
|^ 70)
+ (3
|^ 70)),((
- 3)
+ 3))
are_congruent_mod 13 by
dsi,
INT_1: 16;
then 13
divides (((2
|^ 70)
+ (3
|^ 70))
-
0 ) by
INT_1:def 4;
hence thesis;
end;
begin
theorem ::
NUMBER01:10
((11
* 31)
* 61)
divides ((20
|^ 15)
- 1)
proof
(20
|^ 15)
>= (1
|^ 15) by
PREPOWER: 9;
then (20
|^ 15)
>= 1 by
NEWTON: 10;
then ((20
|^ 15)
- 1)
>= (1
- 1) by
XREAL_1: 9;
then ((20
|^ 15)
- 1)
in
NAT by
INT_1: 3;
then
reconsider D = ((20
|^ 15)
- 1) as
Nat;
jp: 11 is
prime by
NAT_4: 27;
tp: 31 is
prime by
NUMERAL2: 24;
sp: 61 is
prime by
NUMERAL2: 29;
jtc: (11,31)
are_coprime by
jp,
tp,
INT_2: 30;
cp1: (11,61)
are_coprime by
jp,
sp,
INT_2: 30;
cp2: (31,61)
are_coprime by
tp,
sp,
INT_2: 30;
jsc: ((11
* 31),61)
are_coprime by
cp1,
cp2,
EULER_1: 14;
(2
|^ 1)
= 2 by
NEWTON: 5;
then (2
|^ (1
+ 1))
= (2
* 2) by
NEWTON: 6;
then (2
|^ (2
+ 1))
= (2
* 4) by
NEWTON: 6;
then (2
|^ (3
+ 1))
= (2
* 8) by
NEWTON: 6;
then
dc: (2
|^ (4
+ 1))
= (2
* 16) & (3
* 11)
= (32
- (
- 1)) by
NEWTON: 6;
then
dp: ((2
|^ 5),(
- 1))
are_congruent_mod 11 by
INT_1:def 5;
5
= ((2
* 2)
+ 1);
then
po: 5 is
odd;
reconsider J = (
- 1) as
Integer;
(11
* 1)
= (10
- (
- 1));
then (10,(
- 1))
are_congruent_mod 11 by
INT_1:def 5;
then ((10
|^ 5),((
- 1)
|^ 5))
are_congruent_mod 11 by
GR_CY_3: 34;
then ((10
|^ 5),(
- 1))
are_congruent_mod 11 by
po,
POLYFORM: 9;
then (((2
|^ 5)
* (10
|^ 5)),(J
* J))
are_congruent_mod 11 by
dp,
INT_1: 18;
then (((2
* 10)
|^ 5),1)
are_congruent_mod 11 by
NEWTON: 7;
then (((20
|^ 5)
|^ 3),(1
|^ 3))
are_congruent_mod 11 by
GR_CY_3: 34;
then ((20
|^ (5
* 3)),(1
|^ 3))
are_congruent_mod 11 by
NEWTON: 9;
then ((20
|^ 15),1)
are_congruent_mod 11 by
NEWTON: 10;
then
jd: 11
divides D by
INT_1:def 4;
(31
* 4)
= (121
- (
- 3));
then
sd: (121,(
- 3))
are_congruent_mod 31 by
INT_1:def 5;
(31
* 1)
= (33
- 2);
then
tt: (33,2)
are_congruent_mod 31 by
INT_1:def 5;
(31
* 1)
= (20
- (
- 11));
then
dw: (20,(
- 11))
are_congruent_mod 31 by
INT_1:def 5;
then ((20
|^ 2),((
- 11)
|^ 2))
are_congruent_mod 31 by
GR_CY_3: 34;
then ((20
|^ 2),((
- 11)
* (
- 11)))
are_congruent_mod 31 by
WSIERP_1: 1;
then ((20
|^ 2),(
- 3))
are_congruent_mod 31 by
sd,
INT_1: 15;
then ((20
* (20
|^ 2)),((
- 11)
* (
- 3)))
are_congruent_mod 31 by
dw,
INT_1: 18;
then ((20
|^ (2
+ 1)),33)
are_congruent_mod 31 by
NEWTON: 6;
then ((20
|^ 3),2)
are_congruent_mod 31 by
tt,
INT_1: 15;
then (((20
|^ 3)
|^ 5),(2
|^ 5))
are_congruent_mod 31 by
GR_CY_3: 34;
then
dwp: ((20
|^ (3
* 5)),(2
|^ 5))
are_congruent_mod 31 by
NEWTON: 9;
(31
* 1)
= ((2
|^ 5)
- 1) by
dc;
then ((2
|^ 5),1)
are_congruent_mod 31 by
INT_1:def 5;
then ((20
|^ 15),1)
are_congruent_mod 31 by
dwp,
INT_1: 15;
then 31
divides D by
INT_1:def 4;
then
jtd: (11
* 31)
divides D by
jd,
jtc,
PEPIN: 4;
(3
|^ (2
+ 2))
= ((3
|^ 2)
* (3
|^ 2)) by
NEWTON: 8
.= ((3
* 3)
* (3
|^ 2)) by
WSIERP_1: 1
.= ((3
* 3)
* (3
* 3)) by
WSIERP_1: 1;
then (61
* 1)
= ((3
|^ 4)
- 20);
then ((3
|^ 4),20)
are_congruent_mod 61 by
INT_1:def 5;
then (((3
|^ 4)
|^ 15),(20
|^ 15))
are_congruent_mod 61 by
GR_CY_3: 34;
then ((3
|^ (4
* 15)),(20
|^ 15))
are_congruent_mod 61 by
NEWTON: 9;
then
f: ((20
|^ 15),(3
|^ 60))
are_congruent_mod 61 by
INT_1: 14;
(3,61)
are_coprime by
sp,
PEPIN: 41,
INT_2: 30;
then ((3
|^ (
Euler 61))
mod 61)
= 1 & 60
= (61
- 1) by
EULER_2: 18;
then ((3
|^ 60)
mod 61)
= 1 by
EULER_1: 20,
sp;
then ((3
|^ 60),1)
are_congruent_mod 61 by
NAT_6: 10;
then ((20
|^ 15),1)
are_congruent_mod 61 by
f,
INT_1: 15;
then 61
divides D by
INT_1:def 4;
then ((11
* 31)
* 61)
divides D by
jsc,
jtd,
PEPIN: 4;
hence thesis;
end;
theorem ::
NUMBER01:11
lemdiv: for a be
Integer, m be
Nat holds (a
- 1)
divides ((a
|^ m)
- 1)
proof
let a be
Integer, m be
Nat;
defpred
P[
Nat] means (a
- 1)
divides ((a
|^ $1)
- 1);
((a
|^
0 )
- 1)
= (1
- 1) by
NEWTON: 4;
then
z:
P[
0 ] by
INT_2: 12;
i:
now
let k be
Nat;
assume
P[k];
then
consider l be
Integer such that
l: ((a
|^ k)
- 1)
= ((a
- 1)
* l) by
INT_1:def 3;
((a
|^ (k
+ 1))
- 1)
= (((a
|^ k)
* a)
- 1) by
NEWTON: 6
.= ((a
- 1)
* ((a
|^ k)
+ l)) by
l;
hence
P[(k
+ 1)] by
INT_1:def 3;
end;
for k be
Nat holds
P[k] from
NAT_1:sch 2(
z,
i);
hence thesis;
end;
theorem ::
NUMBER01:12
lempowers: for a be
Nat, m be
positive
Integer, f be
XFinSequence of
INT st a
> 1 & (
len f)
= (m
- 1) & for i be
Nat st i
in (
dom f) holds (f
. i)
= ((a
|^ (i
+ 1))
- 1) holds (((a
|^ m)
- 1)
div (a
- 1))
= ((
Sum f)
+ m)
proof
let a be
Nat, m be
positive
Integer, f be
XFinSequence of
INT such that
f: a
> 1 & (
len f)
= (m
- 1) & for i be
Nat st i
in (
dom f) holds (f
. i)
= ((a
|^ (i
+ 1))
- 1);
a: (a
- 1)
<>
0 by
f;
reconsider a1 = (a
- 1) as
Nat by
f,
INT_1: 74;
m
>= (
0
+ 1) by
INT_1: 7;
then
reconsider m0 = m as
Nat by
POLYFORM: 3;
reconsider m1 = (m0
- 1) as
Nat by
INT_1: 74;
defpred
P[
Nat] means for f be
XFinSequence of
INT st (
len f)
= $1 & for i be
Nat st i
in (
dom f) holds (f
. i)
= ((a
|^ (i
+ 1))
- 1) holds (((a
|^ ($1
+ 1))
- 1)
div (a
- 1))
= ((
Sum f)
+ ($1
+ 1));
z:
P[
0 ]
proof
let f0 be
XFinSequence of
INT such that
f0: (
len f0)
=
0 & for i be
Nat st i
in (
dom f0) holds (f0
. i)
= ((a
|^ (i
+ 1))
- 1);
f0
=
{} by
f0;
then
sz: (
Sum f0)
=
0 ;
thus (((a
|^ (
0
+ 1))
- 1)
div (a
- 1))
= ((a
- 1)
div (a
- 1)) by
NEWTON: 5
.= ((
Sum f0)
+ (
0
+ 1)) by
sz,
a,
INT_1: 49;
end;
k:
now
let k be
Nat;
assume
pk:
P[k];
thus
P[(k
+ 1)]
proof
let f1 be
XFinSequence of
INT such that
f1: (
len f1)
= (k
+ 1) & for i be
Nat st i
in (
dom f1) holds (f1
. i)
= ((a
|^ (i
+ 1))
- 1);
set fk = (f1
| k);
km: k
< (k
+ 1) by
NAT_1: 13;
then
df: (
dom fk)
= k by
f1,
AFINSQ_1: 11;
k
in (
Segm (k
+ 1)) & (
dom f1)
= (k
+ 1) by
f1,
km,
NAT_1: 44;
then
kd: k
in (
dom f1);
lek: (
len fk)
= k by
km,
f1,
AFINSQ_1: 54;
now
let i be
Nat;
assume
idk: i
in (
dom fk);
(
dom fk)
c= (
dom f1) by
RELAT_1: 60;
then
idf: i
in (
dom f1) by
idk;
thus (fk
. i)
= (f1
. i) by
df,
km,
idk,
f1,
AFINSQ_1: 53
.= ((a
|^ (i
+ 1))
- 1) by
f1,
idf;
end;
then
pek: (((a
|^ (k
+ 1))
- 1)
div (a
- 1))
= ((
Sum fk)
+ (k
+ 1)) by
pk,
lek;
sf: (
Sum
<%(f1
. k)%>)
= (f1
. k) by
AFINSQ_2: 53;
f1
= (fk
^
<%(f1
. k)%>) by
f1,
AFINSQ_1: 56;
then
ss: (
Sum f1)
= ((
Sum fk)
+ (f1
. k)) by
sf,
AFINSQ_2: 55;
ld: (a
- 1)
divides ((a
|^ ((k
+ 1)
+ 1))
- 1) & (a
- 1)
divides ((a
|^ (k
+ 1))
- 1) by
lemdiv;
hence (((a
|^ ((k
+ 1)
+ 1))
- 1)
div (a
- 1))
= (((a
|^ ((k
+ 1)
+ 1))
- 1)
/ a1) by
RING_3: 6
.= ((((((a
|^ (k
+ 1))
* a)
+ (a
|^ (k
+ 1)))
- (a
|^ (k
+ 1)))
- 1)
/ a1) by
NEWTON: 6
.= ((((a
|^ (k
+ 1))
* (a
- 1))
+ ((a
|^ (k
+ 1))
- 1))
/ a1)
.= ((((a
|^ (k
+ 1))
* (a
- 1))
/ a1)
+ (((a
|^ (k
+ 1))
- 1)
/ a1)) by
XCMPLX_1: 62
.= ((a
|^ (k
+ 1))
+ (((a
|^ (k
+ 1))
- 1)
/ a1)) by
a,
XCMPLX_1: 89
.= ((a
|^ (k
+ 1))
+ (((a
|^ (k
+ 1))
- 1)
div a1)) by
ld,
RING_3: 6
.= ((((a
|^ (k
+ 1))
- 1)
+ (
Sum fk))
+ ((k
+ 1)
+ 1)) by
pek
.= (((f1
. k)
+ (
Sum fk))
+ ((k
+ 1)
+ 1)) by
f1,
kd
.= ((
Sum f1)
+ ((k
+ 1)
+ 1)) by
ss;
end;
end;
for k be
Nat holds
P[k] from
NAT_1:sch 2(
z,
k);
then (((a
|^ (m1
+ 1))
- 1)
div (a
- 1))
= ((
Sum f)
+ (m1
+ 1)) by
f;
hence (((a
|^ m)
- 1)
div (a
- 1))
= ((
Sum f)
+ m);
end;
begin
theorem ::
NUMBER01:13
for m be
positive
Integer, a be
Nat st a
> 1 holds ((((a
|^ m)
- 1)
div (a
- 1))
gcd (a
- 1))
= ((a
- 1)
gcd m)
proof
let m be
positive
Integer, a be
Nat such that
a: a
> 1;
set d = ((((a
|^ m)
- 1)
div (a
- 1))
gcd (a
- 1));
set d1 = ((a
- 1)
gcd m);
m
>= (
0
+ 1) by
INT_1: 7;
then
reconsider m0 = m as
Nat by
POLYFORM: 3;
reconsider m1 = (m0
- 1) as
Nat by
INT_1: 74;
deffunc
F(
Nat) = ((a
|^ ($1
+ 1))
- 1);
consider f be
XFinSequence such that
f: (
len f)
= m1 & for i be
Nat st i
in m1 holds (f
. i)
=
F(i) from
AFINSQ_1:sch 2;
(
rng f)
c=
INT
proof
let o be
object;
assume o
in (
rng f);
then
consider x be
object such that
x: x
in (
dom f) & o
= (f
. x) by
FUNCT_1:def 3;
reconsider x as
Nat by
x;
o
= ((a
|^ (x
+ 1))
- 1) by
f,
x;
hence o
in
INT by
INT_1:def 2;
end;
then
reconsider f as
XFinSequence of
INT by
RELAT_1:def 19;
d2: d
divides (a
- 1) & d
divides (((a
|^ m)
- 1)
div (a
- 1)) by
INT_2:def 2;
now
let i be
Nat;
assume i
in (
dom f);
then (f
. i)
= ((a
|^ (i
+ 1))
- 1) by
f;
hence (a
- 1)
divides (f
. i) by
lemdiv;
end;
then
ad: (a
- 1)
divides (
Sum f) by
NUMERAL2: 16;
then
ds: d
divides (
Sum f) by
d2,
INT_2: 9;
ss: (((a
|^ m)
- 1)
div (a
- 1))
= ((
Sum f)
+ m) by
a,
f,
lempowers;
then d
divides ((
Sum f)
+ m) by
d2;
then
d1: d
divides m by
ds,
INT_2: 1;
now
let q be
Integer;
assume
q: q
divides (a
- 1) & q
divides m;
then q
divides (
Sum f) by
ad,
INT_2: 9;
then q
divides (((a
|^ m)
- 1)
div (a
- 1)) by
ss,
q,
WSIERP_1: 4;
hence q
divides d by
q,
INT_2:def 2;
end;
hence d
= d1 by
d1,
d2,
INT_2:def 2;
end;
begin
theorem ::
NUMBER01:14
for s1,s2 be
XFinSequence of
NAT , n be
Nat st ((
len s1)
= (n
+ 1) & for i be
Nat st i
in (
dom s1) holds (s1
. i)
= (i
|^ 5)) & ((
len s2)
= (n
+ 1) & for i be
Nat st i
in (
dom s2) holds (s2
. i)
= (i
|^ 3)) holds (
Sum s2)
divides (3
* (
Sum s1))
proof
let s1,s2 be
XFinSequence of
NAT , n be
Nat;
assume that
s1: (
len s1)
= (n
+ 1) & for i be
Nat st i
in (
dom s1) holds (s1
. i)
= (i
|^ 5) and
s2: (
len s2)
= (n
+ 1) & for i be
Nat st i
in (
dom s2) holds (s2
. i)
= (i
|^ 3);
deffunc
F(
Nat) = ($1
|^ 3);
consider S2 be
Real_Sequence such that
S2: for i be
Nat holds (S2
. i)
=
F(i) from
SEQ_1:sch 1;
(
Segm (n
+ 1))
c=
NAT & (
dom S2)
=
NAT by
MEMBERED: 6,
PARTFUN1:def 2;
then (
dom (S2
| (
Segm (n
+ 1))))
= (
Segm (n
+ 1)) by
RELAT_1: 62;
then
dr: (
dom (S2
| (
Segm (n
+ 1))))
= (
dom s2) by
s2;
now
let o be
object;
assume
o: o
in (
dom s2);
then o
in (
Segm (n
+ 1)) by
s2;
then o is
natural by
MEMBERED:def 6;
then
reconsider on = o as
Nat by
TARSKI: 1;
thus (s2
. o)
= (on
|^ 3) by
s2,
o
.= (S2
. on) by
S2
.= ((S2
| (
Segm (n
+ 1)))
. o) by
o,
dr,
FUNCT_1: 47;
end;
then s2
= (S2
| (
Segm (n
+ 1))) by
dr,
FUNCT_1: 2;
then (
Sum s2)
= ((
Partial_Sums S2)
. n) by
RVSUM_4: 4;
then
ss: (
Sum s2)
= (((n
|^ 2)
* ((n
+ 1)
|^ 2))
/ 4) by
S2,
SERIES_2: 15;
deffunc
G(
Nat) = ($1
|^ 5);
consider S1 be
Real_Sequence such that
S1: for i be
Nat holds (S1
. i)
=
G(i) from
SEQ_1:sch 1;
(
Segm (n
+ 1))
c=
NAT & (
dom S1)
=
NAT by
MEMBERED: 6,
PARTFUN1:def 2;
then (
dom (S1
| (
Segm (n
+ 1))))
= (
Segm (n
+ 1)) by
RELAT_1: 62;
then
ds: (
dom (S1
| (
Segm (n
+ 1))))
= (
dom s1) by
s1;
now
let o be
object;
assume
o: o
in (
dom s1);
then o
in (
Segm (n
+ 1)) by
s1;
then o is
natural by
MEMBERED:def 6;
then
reconsider on = o as
Nat by
TARSKI: 1;
thus (s1
. o)
= (on
|^ 5) by
s1,
o
.= (S1
. on) by
S1
.= ((S1
| (
Segm (n
+ 1)))
. o) by
o,
ds,
FUNCT_1: 47;
end;
then s1
= (S1
| (
Segm (n
+ 1))) by
ds,
FUNCT_1: 2;
then (
Sum s1)
= ((
Partial_Sums S1)
. n) by
RVSUM_4: 4;
then (
Sum s1)
= ((((n
|^ 2)
* ((n
+ 1)
|^ 2))
* (((2
* (n
|^ 2))
+ (2
* n))
- 1))
/ 12) by
S1,
SERIES_2: 19;
then (3
* (
Sum s1))
= ((((2
* (n
|^ 2))
+ (2
* n))
- 1)
* (
Sum s2)) by
ss;
hence (
Sum s2)
divides (3
* (
Sum s1)) by
INT_1:def 3;
end;
theorem ::
NUMBER01:15
lemman02: for a,b be
Integer, m be
positive
Nat holds (
Sum ((a,b)
In_Power m))
= (((a
|^ m)
+ (b
|^ m))
+ (
Sum ((((a,b)
In_Power m)
| m)
/^ 1)))
proof
let a,b be
Integer;
let m be
positive
Nat;
(
len ((a,b)
In_Power m))
= (m
+ 1) by
NEWTON:def 4;
then (
Sum ((a,b)
In_Power m))
= (((
Sum ((((a,b)
In_Power m)
| m)
/^ 1))
+ (((a,b)
In_Power m)
. 1))
+ (((a,b)
In_Power m)
. (m
+ 1))) by
NEWTON02: 115
.= (((
Sum ((((a,b)
In_Power m)
| m)
/^ 1))
+ (a
|^ m))
+ (((a,b)
In_Power m)
. (m
+ 1))) by
NEWTON: 28
.= (((
Sum ((((a,b)
In_Power m)
| m)
/^ 1))
+ (a
|^ m))
+ (b
|^ m)) by
NEWTON: 29;
hence thesis;
end;
theorem ::
NUMBER01:16
lemmandiv: for n,k be
Nat st n is
odd holds n
divides ((k
|^ n)
+ ((n
- k)
|^ n))
proof
let n,k be
Nat;
assume
no: n is
odd;
then
reconsider p = n as
positive
Nat;
kk: ((k
|^ p)
+ ((p
+ (
- k))
|^ p))
= ((k
|^ p)
+ (
Sum ((p,(
- k))
In_Power p))) by
NEWTON: 30
.= ((k
|^ p)
+ (((p
|^ p)
+ ((
- k)
|^ p))
+ (
Sum ((((p,(
- k))
In_Power p)
| p)
/^ 1)))) by
lemman02
.= ((k
|^ p)
+ (((p
|^ p)
+ (
- (k
|^ p)))
+ (
Sum ((((p,(
- k))
In_Power p)
| p)
/^ 1)))) by
no,
POWER: 2
.= ((p
|^ p)
+ (
Sum ((((p,(
- k))
In_Power p)
| p)
/^ 1)));
pp: p
divides (p
|^ p) by
NAT_3: 3;
reconsider S = (
Sum ((((p,(
- k))
In_Power p)
| p)
/^ 1)) as
Integer;
reconsider f = ((((p,(
- k))
In_Power p)
| p)
/^ 1) as
INT
-valued
FinSequence;
now
let o be
Nat;
assume
o: o
in (
dom f);
then f
<>
{} ;
then 1
<= (
len (((p,(
- k))
In_Power p)
| p)) by
RFINSEQ:def 1;
then
rf: (
len f)
= ((
len (((p,(
- k))
In_Power p)
| p))
- 1) & for l be
Nat st l
in (
dom f) holds (f
. l)
= ((((p,(
- k))
In_Power p)
| p)
. (l
+ 1)) by
RFINSEQ:def 1;
elen: (
len ((p,(
- k))
In_Power p))
= (n
+ 1) & for i,l,m be
Nat st i
in (
dom ((p,(
- k))
In_Power p)) & m
= (i
- 1) & l
= (n
- m) holds (((p,(
- k))
In_Power p)
. i)
= (((n
choose m)
* (p
|^ l))
* ((
- k)
|^ m)) by
NEWTON:def 4;
x: (
0
+ 1)
<= (o
+ 1) by
XREAL_1: 6;
pz: (p
+
0 )
<= (n
+ 1) by
XREAL_1: 6;
(
len (((p,(
- k))
In_Power p)
| p))
= p by
elen,
pz,
FINSEQ_1: 17;
then
lp: (
len f)
= (p
- 1) by
rf;
o
in (
Seg (
len f)) by
o,
FINSEQ_1:def 3;
then o
<= (p
- 1) by
lp,
FINSEQ_1: 1;
then
op: (o
+ 1)
<= ((p
- 1)
+ 1) by
XREAL_1: 6;
then
el: (o
+ 1)
in (
Seg p) by
x;
set i = (o
+ 1);
i
< (p
+ 1) by
NAT_1: 13,
op;
then i
in (
Seg (
len ((p,(
- k))
In_Power p))) by
x,
elen;
then
i: i
in (
dom ((p,(
- k))
In_Power p)) by
FINSEQ_1:def 3;
reconsider m = (i
- 1) as
Nat;
po: (p
- o)
>= ((o
+ 1)
- o) by
op,
XREAL_1: 9;
then
reconsider l = (n
- m) as
Nat;
fo: (f
. o)
= ((((p,(
- k))
In_Power p)
| p)
. (o
+ 1)) by
o,
rf
.= (((p,(
- k))
In_Power p)
. (o
+ 1)) by
el,
FUNCT_1: 49
.= (((n
choose m)
* (p
|^ l))
* ((
- k)
|^ m)) by
elen,
i
.= ((p
|^ l)
* ((n
choose m)
* ((
- k)
|^ m)));
p
divides (p
|^ l) by
po,
NAT_3: 3;
hence n
divides (f
. o) by
fo,
INT_2: 2;
end;
then n
divides (
Sum f) by
NEWTON04: 80;
then n
divides ((k
|^ n)
+ ((n
+ (
- k))
|^ n)) by
kk,
pp,
WSIERP_1: 4;
hence n
divides ((k
|^ n)
+ ((n
- k)
|^ n));
end;
begin
theorem ::
NUMBER01:17
for s be
FinSequence of
NAT , n be
Nat st n
> 1 & (
len s)
= (n
- 1) & for i be
Nat st i
in (
dom s) holds (s
. i)
= (i
|^ n) holds n is
odd implies n
divides (
Sum s)
proof
let s be
FinSequence of
NAT , n be
Nat such that
n: n
> 1 & (
len s)
= (n
- 1) and
s: for i be
Nat st i
in (
dom s) holds (s
. i)
= (i
|^ n);
(
rng s)
c=
REAL ;
then
reconsider s0 = s as
FinSequence of
REAL by
FINSEQ_1:def 4;
reconsider ser = (
Sum s) as
Nat by
TARSKI: 1;
d: (
dom s)
= (
dom (
Rev s)) by
FINSEQ_5: 57;
d2: (
dom (s
+ (
Rev s)))
= ((
dom s)
/\ (
dom (
Rev s))) by
VALUED_1:def 1
.= (
dom s) by
d;
then (
Seg (
len (s
+ (
Rev s))))
= (
dom s) by
FINSEQ_1:def 3
.= (
Seg (
len s)) by
FINSEQ_1:def 3;
then
l1: (
len s0)
= (
len (s0
+ (
Rev s0))) by
FINSEQ_1: 6;
(
Seg (
len s))
= (
dom (
Rev s)) by
d,
FINSEQ_1:def 3;
then
l2: (
len s0)
= (
len (
Rev s0)) by
FINSEQ_1:def 3;
for k be
Nat st k
in (
dom s0) holds ((s0
+ (
Rev s0))
. k)
= ((s0
. k)
+ ((
Rev s0)
. k)) by
d2,
VALUED_1:def 1;
then
ss: (
Sum (s0
+ (
Rev s0)))
= ((
Sum s0)
+ (
Sum (
Rev s0))) by
l1,
l2,
ENTROPY1: 7
.= ((
Sum s)
+ (
Sum s)) by
POLYNOM3: 3
.= (2
* (
Sum s));
(
rng (s
+ (
Rev s)))
c=
NAT
proof
let o be
object;
assume o
in (
rng (s
+ (
Rev s)));
then
consider a be
object such that
a: a
in (
dom (s
+ (
Rev s))) & o
= ((s
+ (
Rev s))
. a) by
FUNCT_1:def 3;
reconsider a as
Nat by
a;
o
= ((s
. a)
+ ((
Rev s)
. a)) by
a,
VALUED_1:def 1;
hence o
in
NAT by
ORDINAL1:def 12;
end;
then
reconsider sr = (s
+ (
Rev s)) as
FinSequence of
NAT by
FINSEQ_1:def 4;
thus n is
odd implies n
divides (
Sum s)
proof
assume
no: n is
odd;
(2
|^ 1)
= 2 by
NEWTON: 5;
then
2c: (2,n)
are_coprime by
NAT_5: 3,
no;
now
let k be
Nat;
assume
k: k
in (
dom sr);
then
serek: (sr
. k)
= ((s
. k)
+ ((
Rev s)
. k)) by
VALUED_1:def 1
.= ((k
|^ n)
+ ((
Rev s)
. k)) by
d2,
k,
s
.= ((k
|^ n)
+ (s
. (((
len s)
- k)
+ 1))) by
FINSEQ_5: 58,
k,
d2
.= ((k
|^ n)
+ (s
. (n
- k))) by
n;
k
in (
Seg (
len s)) by
k,
d2,
FINSEQ_1:def 3;
then
kk: 1
<= k & k
<= (n
- 1) by
FINSEQ_1: 1,
n;
then
nk: (n
- k)
<= (n
- 1) by
XREAL_1: 10;
(k
+ (1
- k))
<= ((n
- 1)
+ (1
- k)) by
kk,
XREAL_1: 6;
then
jk: 1
<= (n
- k);
then
reconsider nik = (n
- k) as
Nat;
nik
in (
Seg (
len s)) by
n,
jk,
nk;
then (n
- k)
in (
dom s) by
FINSEQ_1:def 3;
then (sr
. k)
= ((k
|^ n)
+ ((n
- k)
|^ n)) by
serek,
s;
hence n
divides (sr
. k) by
no,
lemmandiv;
end;
then n
divides (
Sum sr) by
NEWTON04: 80;
then n
divides (2
* (
Sum s)) by
ss;
then n
divides ser by
2c,
EULER_1: 13;
hence n
divides (
Sum s);
end;
end;