pdiff_8.miz
    
    begin
    
    theorem :: 
    
    PDIFF_8:1
    
    
    
    
    
    Th1: for n,i be 
    Element of 
    NAT , q be 
    Element of ( 
    REAL n), p be 
    Point of ( 
    TOP-REAL n) st i 
    in ( 
    Seg n) & q 
    = p holds 
    |.(p
    /. i).| 
    <=  
    |.q.|
    
    proof
    
      let n,i be
    Element of 
    NAT ; 
    
      let q be
    Element of ( 
    REAL n); 
    
      let p be
    Point of ( 
    TOP-REAL n); 
    
      assume that
    
      
    
    A1: i 
    in ( 
    Seg n) and 
    
      
    
    A2: q 
    = p; 
    
      reconsider p2 = ((p
    /. i) 
    ^2 ), q2 = ((q 
    /. i) 
    ^2 ) as 
    Element of 
    REAL by 
    XREAL_0:def 1;
    
      
    
      
    
    A3: ( 
    Sum (( 
    0* n) 
    +* (i,p2))) 
    = ((p 
    /. i) 
    ^2 ) by 
    A1,
    JORDAN2B: 10;
    
      (
    len ( 
    0* n)) 
    = n by 
    CARD_1:def 7;
    
      then (
    len (( 
    0* n) 
    +* (i,p2))) 
    = n by 
    FUNCT_7: 97;
    
      then
    
      reconsider w1 = ((
    0* n) 
    +* (i,p2)) as 
    Element of (n 
    -tuples_on  
    REAL ) by 
    FINSEQ_2: 92;
    
      
    
      
    
    A4: ( 
    len w1) 
    = n by 
    CARD_1:def 7;
    
      reconsider w2 = (
    sqr q) as 
    Element of (n 
    -tuples_on  
    REAL ); 
    
      
    
      
    
    A5: ( 
    Sum ( 
    sqr q)) 
    >=  
    0 by 
    RVSUM_1: 86;
    
      
    
      
    
    A6: ( 
    len q) 
    = n by 
    CARD_1:def 7;
    
      for j be
    Nat st j 
    in ( 
    Seg n) holds (w1 
    . j) 
    <= (w2 
    . j) 
    
      proof
    
        let j be
    Nat such that 
    
        
    
    A7: j 
    in ( 
    Seg n); 
    
        set r1 = (w1
    . j), r2 = (w2 
    . j); 
    
        per cases ;
    
          suppose
    
          
    
    A8: j 
    = i; 
    
          then j
    in ( 
    dom q) by 
    A1,
    A6,
    FINSEQ_1:def 3;
    
          then
    
          
    
    A9: (q 
    /. j) 
    = (q 
    . j) by 
    PARTFUN1:def 6;
    
          
    
          
    
    A10: ( 
    dom ( 
    0* n)) 
    = ( 
    Seg ( 
    len ( 
    0* n))) by 
    FINSEQ_1:def 3
    
          .= (
    Seg n) by 
    CARD_1:def 7;
    
          i
    in ( 
    dom w1) by 
    A1,
    A4,
    FINSEQ_1:def 3;
    
          
    
          then r1
    = (w1 
    /. i) by 
    A8,
    PARTFUN1:def 6
    
          .= q2 by
    A2,
    A1,
    A10,
    FUNCT_7: 36;
    
          hence thesis by
    A8,
    A9,
    VALUED_1: 11;
    
        end;
    
          suppose
    
          
    
    A11: j 
    <> i; 
    
          
    
          
    
    A12: ( 
    dom ( 
    0* n)) 
    = ( 
    Seg ( 
    len ( 
    0* n))) by 
    FINSEQ_1:def 3
    
          .= (
    Seg n) by 
    CARD_1:def 7;
    
          (
    dom q) 
    = ( 
    Seg n) by 
    A6,
    FINSEQ_1:def 3;
    
          then (q
    /. j) 
    = (q 
    . j) by 
    A7,
    PARTFUN1:def 6;
    
          then
    
          
    
    A13: r2 
    = ((q 
    /. j) 
    ^2 ) by 
    VALUED_1: 11;
    
          j
    in ( 
    dom w1) by 
    A4,
    A7,
    FINSEQ_1:def 3;
    
          
    
          then r1
    = (w1 
    /. j) by 
    PARTFUN1:def 6
    
          .= ((
    0* n) 
    /. j) by 
    A7,
    A11,
    A12,
    FUNCT_7: 37
    
          .= ((n
    |->  
    0 ) 
    . j) by 
    A7,
    A12,
    PARTFUN1:def 6
    
          .=
    0 ; 
    
          hence thesis by
    A13,
    XREAL_1: 63;
    
        end;
    
      end;
    
      then (
    Sum w1) 
    <= ( 
    Sum w2) by 
    RVSUM_1: 82;
    
      then
    0  
    <= ((p 
    /. i) 
    ^2 ) & ((p 
    /. i) 
    ^2 ) 
    <= (( 
    sqrt ( 
    Sum ( 
    sqr q))) 
    ^2 ) by 
    A5,
    A3,
    SQUARE_1:def 2,
    XREAL_1: 63;
    
      then (
    sqrt ((p 
    /. i) 
    ^2 )) 
    <= ( 
    sqrt (( 
    sqrt ( 
    Sum ( 
    sqr q))) 
    ^2 )) by 
    SQUARE_1: 26;
    
      then
    |.
    |.(p
    /. i).|.| 
    <= ( 
    sqrt (( 
    sqrt ( 
    Sum ( 
    sqr q))) 
    ^2 )) by 
    COMPLEX1: 72;
    
      then
    0  
    <=  
    |.q.| &
    |.(p
    /. i).| 
    <=  
    |.(
    sqrt ( 
    Sum ( 
    sqr q))).| by 
    COMPLEX1: 72;
    
      hence thesis by
    ABSVALUE:def 1;
    
    end;
    
    theorem :: 
    
    PDIFF_8:2
    
    
    
    
    
    Th2: for x be 
    Real, vx be 
    Element of ( 
    REAL-NS 1) st vx 
    =  
    <*x*> holds
    ||.vx.||
    =  
    |.x.|
    
    proof
    
      let x be
    Real;
    
      let vx be
    Element of ( 
    REAL-NS 1); 
    
      reconsider xx = vx as
    Element of ( 
    REAL 1) by 
    REAL_NS1:def 4;
    
      reconsider x2 = (x
    ^2 ) as 
    Element of 
    REAL by 
    XREAL_0:def 1;
    
      assume vx
    =  
    <*x*>;
    
      then (
    sqrt ( 
    Sum ( 
    sqr xx))) 
    = ( 
    sqrt ( 
    Sum  
    <*x2*>)) by
    RVSUM_1: 55;
    
      then
    
      
    
    A1: ( 
    sqrt ( 
    Sum ( 
    sqr xx))) 
    = ( 
    sqrt (x 
    ^2 )) by 
    RVSUM_1: 73;
    
      
    ||.vx.||
    =  
    |.xx.| by
    REAL_NS1: 1;
    
      hence thesis by
    A1,
    COMPLEX1: 72;
    
    end;
    
    theorem :: 
    
    PDIFF_8:3
    
    
    
    
    
    Th3: for n be non 
    zero  
    Element of 
    NAT , x be 
    Point of ( 
    REAL-NS n), i be 
    Nat st 1 
    <= i 
    <= n holds 
    ||.((
    Proj (i,n)) 
    . x).|| 
    <=  
    ||.x.||
    
    proof
    
      let n be non
    zero  
    Element of 
    NAT ; 
    
      let x be
    Point of ( 
    REAL-NS n); 
    
      let i be
    Nat;
    
      assume
    
      
    
    A1: 1 
    <= i & i 
    <= n; 
    
      reconsider y = x as
    Element of ( 
    REAL n) by 
    REAL_NS1:def 4;
    
      
    
      
    
    A2: 
    ||.x.||
    =  
    |.y.| by
    REAL_NS1: 1;
    
      ((
    Proj (i,n)) 
    . x) 
    =  
    <*((
    proj (i,n)) 
    . x)*> by 
    PDIFF_1:def 4
    
      .=
    <*(y
    . i)*> by 
    PDIFF_1:def 1;
    
      then
    
      
    
    A3: 
    ||.((
    Proj (i,n)) 
    . x).|| 
    =  
    |.(y
    . i).| by 
    Th2;
    
      reconsider p = y as
    Element of ( 
    TOP-REAL n) by 
    EUCLID: 22;
    
      
    
      
    
    A4: i 
    in ( 
    Seg n) by 
    A1;
    
      then
    
      
    
    A5: 
    |.(p
    /. i).| 
    <=  
    |.y.| by
    Th1;
    
      i
    in ( 
    dom y) by 
    A4,
    FINSEQ_1: 89;
    
      hence thesis by
    A2,
    A3,
    A5,
    PARTFUN1:def 6;
    
    end;
    
    theorem :: 
    
    PDIFF_8:4
    
    
    
    
    
    Th4: for n be non 
    zero  
    Element of 
    NAT , x be 
    Element of ( 
    REAL-NS n), i be 
    Element of 
    NAT holds 
    ||.((
    Proj (i,n)) 
    . x).|| 
    =  
    |.((
    proj (i,n)) 
    . x).| 
    
    proof
    
      let n be non
    zero  
    Element of 
    NAT ; 
    
      let x be
    Element of ( 
    REAL-NS n); 
    
      let i be
    Element of 
    NAT ; 
    
      reconsider y = x as
    Element of ( 
    REAL n) by 
    REAL_NS1:def 4;
    
      ((
    Proj (i,n)) 
    . x) 
    =  
    <*((
    proj (i,n)) 
    . x)*> by 
    PDIFF_1:def 4
    
      .=
    <*(y
    . i)*> by 
    PDIFF_1:def 1;
    
      then
    ||.((
    Proj (i,n)) 
    . x).|| 
    =  
    |.(y
    . i).| by 
    Th2;
    
      hence thesis by
    PDIFF_1:def 1;
    
    end;
    
    theorem :: 
    
    PDIFF_8:5
    
    for n be non
    zero  
    Element of 
    NAT , x be 
    Element of ( 
    REAL n), i be 
    Element of 
    NAT st 1 
    <= i & i 
    <= n holds 
    |.((
    proj (i,n)) 
    . x).| 
    <=  
    |.x.|
    
    proof
    
      let n be non
    zero  
    Element of 
    NAT ; 
    
      let x be
    Element of ( 
    REAL n); 
    
      let i be
    Element of 
    NAT ; 
    
      assume
    
      
    
    A1: 1 
    <= i & i 
    <= n; 
    
      reconsider y = x as
    Element of ( 
    REAL-NS n) by 
    REAL_NS1:def 4;
    
      
    
      
    
    A2: 
    ||.((
    Proj (i,n)) 
    . y).|| 
    =  
    |.((
    proj (i,n)) 
    . y).| by 
    Th4;
    
      
    ||.((
    Proj (i,n)) 
    . y).|| 
    <=  
    ||.y.|| by
    A1,
    Th3;
    
      hence thesis by
    A2,
    REAL_NS1: 1;
    
    end;
    
    theorem :: 
    
    PDIFF_8:6
    
    
    
    
    
    Th6: for m,n be non 
    zero  
    Element of 
    NAT , s be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (( 
    REAL-NS m),( 
    REAL-NS n))), i be 
    Nat st 1 
    <= i 
    <= n holds ( 
    Proj (i,n)) is 
    Lipschitzian  
    LinearOperator of ( 
    REAL-NS n), ( 
    REAL-NS 1) & (( 
    BoundedLinearOperatorsNorm (( 
    REAL-NS n),( 
    REAL-NS 1))) 
    . ( 
    Proj (i,n))) 
    <= 1 
    
    proof
    
      let m,n be non
    zero  
    Element of 
    NAT ; 
    
      let s be
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (( 
    REAL-NS m),( 
    REAL-NS n))); 
    
      let i be
    Nat;
    
      assume
    
      
    
    A1: 1 
    <= i & i 
    <= n; 
    
      
    
      
    
    A2: for y be 
    Point of ( 
    REAL-NS n), r be 
    Real holds (( 
    Proj (i,n)) 
    . (r 
    * y)) 
    = (r 
    * (( 
    Proj (i,n)) 
    . y)) by 
    PDIFF_6: 27;
    
      for y1,y2 be
    Point of ( 
    REAL-NS n) holds (( 
    Proj (i,n)) 
    . (y1 
    + y2)) 
    = ((( 
    Proj (i,n)) 
    . y1) 
    + (( 
    Proj (i,n)) 
    . y2)) by 
    PDIFF_6: 26;
    
      hence
    
      
    
    A3: ( 
    Proj (i,n)) is 
    Lipschitzian  
    LinearOperator of ( 
    REAL-NS n), ( 
    REAL-NS 1) by 
    A2,
    LOPBAN_1:def 5,
    VECTSP_1:def 20;
    
      deffunc
    
    BLONorm(
    Nat, 
    Nat) = (
    BoundedLinearOperatorsNorm (( 
    REAL-NS $1),( 
    REAL-NS $2))); 
    
      
    
      
    
    A4: ( 
    Proj (i,n)) 
    in ( 
    BoundedLinearOperators (( 
    REAL-NS n),( 
    REAL-NS 1))) by 
    A3,
    LOPBAN_1:def 9;
    
      set s0 = (
    modetrans (( 
    Proj (i,n)),( 
    REAL-NS n),( 
    REAL-NS 1))); 
    
      (
    upper_bound ( 
    PreNorms s0)) 
    <= 1 
    
      proof
    
        
    
        
    
    A5: for x be 
    Real st x 
    in ( 
    PreNorms s0) holds x 
    <= 1 
    
        proof
    
          let x be
    Real;
    
          assume x
    in ( 
    PreNorms s0); 
    
          then
    
          consider y be
    VECTOR of ( 
    REAL-NS n) such that 
    
          
    
    A6: x 
    =  
    ||.(s0
    . y).|| & 
    ||.y.||
    <= 1; 
    
          
    
          
    
    A7: 
    ||.((
    Proj (i,n)) 
    . y).|| 
    <=  
    ||.y.|| by
    A1,
    Th3;
    
          (
    Proj (i,n)) 
    = s0 by 
    A3,
    LOPBAN_1: 29;
    
          hence thesis by
    A6,
    A7,
    XXREAL_0: 2;
    
        end;
    
        
    
        
    
    A8: ( 
    PreNorms s0) is 
    bounded_above
    
        proof
    
          for x be
    ExtReal st x 
    in ( 
    PreNorms s0) holds x 
    <= 1 by 
    A5;
    
          then 1 is
    UpperBound of ( 
    PreNorms s0) by 
    XXREAL_2:def 1;
    
          hence thesis by
    XXREAL_2:def 10;
    
        end;
    
        assume
    
        
    
    A9: ( 
    upper_bound ( 
    PreNorms s0)) 
    > 1; 
    
        set dif = ((
    upper_bound ( 
    PreNorms s0)) 
    - 1); 
    
        
    
        
    
    A10: dif 
    >  
    0 by 
    A9,
    XREAL_1: 50;
    
        ex w be
    Real st w 
    in ( 
    PreNorms s0) & (( 
    upper_bound ( 
    PreNorms s0)) 
    - dif) 
    < w by 
    A10,
    A8,
    SEQ_4:def 1;
    
        hence contradiction by
    A5;
    
      end;
    
      hence thesis by
    A4,
    LOPBAN_1:def 13;
    
    end;
    
    theorem :: 
    
    PDIFF_8:7
    
    
    
    
    
    Th7: for m,n be non 
    zero  
    Element of 
    NAT , s be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (( 
    REAL-NS m),( 
    REAL-NS n))), i be 
    Nat st 1 
    <= i 
    <= n holds (( 
    Proj (i,n)) 
    * s) is 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (( 
    REAL-NS m),( 
    REAL-NS 1))) & (( 
    BoundedLinearOperatorsNorm (( 
    REAL-NS m),( 
    REAL-NS 1))) 
    . (( 
    Proj (i,n)) 
    * s)) 
    <= ((( 
    BoundedLinearOperatorsNorm (( 
    REAL-NS n),( 
    REAL-NS 1))) 
    . ( 
    Proj (i,n))) 
    * (( 
    BoundedLinearOperatorsNorm (( 
    REAL-NS m),( 
    REAL-NS n))) 
    . s)) 
    
    proof
    
      let m,n be non
    zero  
    Element of 
    NAT ; 
    
      let s be
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (( 
    REAL-NS m),( 
    REAL-NS n))); 
    
      let i be
    Nat;
    
      deffunc
    
    BLONorm(
    Nat, 
    Nat) = (
    BoundedLinearOperatorsNorm (( 
    REAL-NS $1),( 
    REAL-NS $2))); 
    
      assume 1
    <= i & i 
    <= n; 
    
      then
    
      
    
    A1: ( 
    Proj (i,n)) is 
    Lipschitzian  
    LinearOperator of ( 
    REAL-NS n), ( 
    REAL-NS 1) by 
    Th6;
    
      s is
    Lipschitzian  
    LinearOperator of ( 
    REAL-NS m), ( 
    REAL-NS n) by 
    LOPBAN_1:def 9;
    
      then ((
    Proj (i,n)) 
    * s) is 
    Lipschitzian  
    LinearOperator of ( 
    REAL-NS m), ( 
    REAL-NS 1) & ( 
    BLONorm(m,)
    . (( 
    Proj (i,n)) 
    * s)) 
    <= (( 
    BLONorm(n,)
    . ( 
    Proj (i,n))) 
    * ( 
    BLONorm(m,n)
    . s)) by 
    A1,
    LOPBAN_2: 2;
    
      hence thesis by
    LOPBAN_1:def 9;
    
    end;
    
    theorem :: 
    
    PDIFF_8:8
    
    for n be non
    zero  
    Element of 
    NAT , i be 
    Element of 
    NAT holds ( 
    Proj (i,n)) is 
    homogeneous
    
    proof
    
      let n be non
    zero  
    Element of 
    NAT , i be 
    Element of 
    NAT ; 
    
      thus for x be
    Point of ( 
    REAL-NS n), r be 
    Real holds (( 
    Proj (i,n)) 
    . (r 
    * x)) 
    = (r 
    * (( 
    Proj (i,n)) 
    . x)) by 
    PDIFF_6: 27;
    
    end;
    
    theorem :: 
    
    PDIFF_8:9
    
    for n be non
    zero  
    Element of 
    NAT , x be 
    Element of ( 
    REAL n), r be 
    Real, i be 
    Element of 
    NAT holds (( 
    proj (i,n)) 
    . (r 
    * x)) 
    = (r 
    * (( 
    proj (i,n)) 
    . x)) 
    
    proof
    
      let n be non
    zero  
    Element of 
    NAT , x be 
    Element of ( 
    REAL n), r be 
    Real, i be 
    Element of 
    NAT ; 
    
      
    
      thus ((
    proj (i,n)) 
    . (r 
    * x)) 
    = ((r 
    * x) 
    . i) by 
    PDIFF_1:def 1
    
      .= (r
    * (x 
    . i)) by 
    RVSUM_1: 44
    
      .= (r
    * (( 
    proj (i,n)) 
    . x)) by 
    PDIFF_1:def 1;
    
    end;
    
    theorem :: 
    
    PDIFF_8:10
    
    for n be non
    zero  
    Element of 
    NAT , x,y be 
    Element of ( 
    REAL n), i be 
    Element of 
    NAT holds (( 
    proj (i,n)) 
    . (x 
    + y)) 
    = ((( 
    proj (i,n)) 
    . x) 
    + (( 
    proj (i,n)) 
    . y)) 
    
    proof
    
      let n be non
    zero  
    Element of 
    NAT , x,y be 
    Element of ( 
    REAL n), i be 
    Element of 
    NAT ; 
    
      
    
      thus ((
    proj (i,n)) 
    . (x 
    + y)) 
    = ((x 
    + y) 
    . i) by 
    PDIFF_1:def 1
    
      .= ((x
    . i) 
    + (y 
    . i)) by 
    RVSUM_1: 11
    
      .= (((
    proj (i,n)) 
    . x) 
    + (y 
    . i)) by 
    PDIFF_1:def 1
    
      .= (((
    proj (i,n)) 
    . x) 
    + (( 
    proj (i,n)) 
    . y)) by 
    PDIFF_1:def 1;
    
    end;
    
    theorem :: 
    
    PDIFF_8:11
    
    
    
    
    
    Th11: for n be non 
    zero  
    Element of 
    NAT , x,y be 
    Point of ( 
    REAL-NS n), i be 
    Nat holds (( 
    Proj (i,n)) 
    . (x 
    - y)) 
    = ((( 
    Proj (i,n)) 
    . x) 
    - (( 
    Proj (i,n)) 
    . y)) 
    
    proof
    
      let n be non
    zero  
    Element of 
    NAT , x,y be 
    Point of ( 
    REAL-NS n), i be 
    Nat;
    
      reconsider x1 = x, y1 = y as
    Element of ( 
    REAL n) by 
    REAL_NS1:def 4;
    
      reconsider rx = (x1
    . i), ry = (y1 
    . i) as 
    Element of 
    REAL by 
    XREAL_0:def 1;
    
      ((
    Proj (i,n)) 
    . x) 
    =  
    <*((
    proj (i,n)) 
    . x)*> & (( 
    Proj (i,n)) 
    . y) 
    =  
    <*((
    proj (i,n)) 
    . y)*> by 
    PDIFF_1:def 4;
    
      then
    
      
    
    A1: (( 
    Proj (i,n)) 
    . x) 
    =  
    <*rx*> & ((
    Proj (i,n)) 
    . y) 
    =  
    <*ry*> by
    PDIFF_1:def 1;
    
      
    
      
    
    A2: 
    <*rx*> is
    Element of ( 
    REAL 1) & 
    <*ry*> is
    Element of ( 
    REAL 1) by 
    FINSEQ_2: 98;
    
      ((
    Proj (i,n)) 
    . (x 
    - y)) 
    =  
    <*((
    proj (i,n)) 
    . (x 
    - y))*> by 
    PDIFF_1:def 4
    
      .=
    <*((
    proj (i,n)) 
    . (x1 
    - y1))*> by 
    REAL_NS1: 5
    
      .=
    <*((x1
    - y1) 
    . i)*> by 
    PDIFF_1:def 1
    
      .=
    <*((x1
    . i) 
    - (y1 
    . i))*> by 
    RVSUM_1: 27
    
      .= (
    <*rx*>
    -  
    <*ry*>) by
    RVSUM_1: 29;
    
      hence thesis by
    A1,
    A2,
    REAL_NS1: 5;
    
    end;
    
    theorem :: 
    
    PDIFF_8:12
    
    for n be non
    zero  
    Element of 
    NAT , x,y be 
    Element of ( 
    REAL n), i be 
    Element of 
    NAT holds (( 
    proj (i,n)) 
    . (x 
    - y)) 
    = ((( 
    proj (i,n)) 
    . x) 
    - (( 
    proj (i,n)) 
    . y)) 
    
    proof
    
      let n be non
    zero  
    Element of 
    NAT , x,y be 
    Element of ( 
    REAL n), i be 
    Element of 
    NAT ; 
    
      
    
      thus ((
    proj (i,n)) 
    . (x 
    - y)) 
    = ((x 
    - y) 
    . i) by 
    PDIFF_1:def 1
    
      .= ((x
    . i) 
    - (y 
    . i)) by 
    RVSUM_1: 27
    
      .= (((
    proj (i,n)) 
    . x) 
    - (y 
    . i)) by 
    PDIFF_1:def 1
    
      .= (((
    proj (i,n)) 
    . x) 
    - (( 
    proj (i,n)) 
    . y)) by 
    PDIFF_1:def 1;
    
    end;
    
    
    
    
    
    Lm1: for m,n be non 
    zero  
    Element of 
    NAT , s,t be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (( 
    REAL-NS m),( 
    REAL-NS n))), i be 
    Nat, si,ti be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (( 
    REAL-NS m),( 
    REAL-NS 1))) st si 
    = (( 
    Proj (i,n)) 
    * s) & ti 
    = (( 
    Proj (i,n)) 
    * t) & 1 
    <= i 
    <= n holds (si 
    - ti) 
    = (( 
    Proj (i,n)) 
    * (s 
    - t)) 
    
    proof
    
      let m,n be non
    zero  
    Element of 
    NAT , s,t be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (( 
    REAL-NS m),( 
    REAL-NS n))), i be 
    Nat, si,ti be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (( 
    REAL-NS m),( 
    REAL-NS 1))); 
    
      assume
    
      
    
    A1: si 
    = (( 
    Proj (i,n)) 
    * s) & ti 
    = (( 
    Proj (i,n)) 
    * t) & 1 
    <= i & i 
    <= n; 
    
      deffunc
    
    RealNormSpaceOfBLO( non
    zero  
    Element of 
    NAT , non 
    zero  
    Element of 
    NAT ) = ( 
    R_NormSpace_of_BoundedLinearOperators (( 
    REAL-NS $1),( 
    REAL-NS $2))); 
    
      
    
      
    
    A2: the 
    carrier of ( 
    REAL-NS m) 
    = ( 
    REAL m) by 
    REAL_NS1:def 4;
    
      
    
      
    
    A3: ( 
    Proj (i,n)) is 
    Lipschitzian  
    LinearOperator of ( 
    REAL-NS n), ( 
    REAL-NS 1) by 
    Th6,
    A1;
    
      
    
      
    
    A4: ( 
    dom (si 
    - ti)) 
    = ( 
    REAL m) 
    
      proof
    
        (si
    - ti) is 
    LinearOperator of ( 
    REAL-NS m), ( 
    REAL-NS 1) by 
    LOPBAN_1:def 9;
    
        hence thesis by
    A2,
    FUNCT_2:def 1;
    
      end;
    
      
    
      
    
    A5: ( 
    dom (si 
    - ti)) 
    = ( 
    dom (( 
    Proj (i,n)) 
    * (s 
    - t))) 
    
      proof
    
        (s
    - t) is 
    Lipschitzian  
    LinearOperator of ( 
    REAL-NS m), ( 
    REAL-NS n) by 
    LOPBAN_1:def 9;
    
        then ((
    Proj (i,n)) 
    * (s 
    - t)) is 
    LinearOperator of ( 
    REAL-NS m), ( 
    REAL-NS 1) by 
    A3,
    LOPBAN_2: 1;
    
        hence thesis by
    A4,
    A2,
    FUNCT_2:def 1;
    
      end;
    
      
    
      
    
    A6: ( 
    dom si) 
    = ( 
    REAL m) 
    
      proof
    
        si is
    LinearOperator of ( 
    REAL-NS m), ( 
    REAL-NS 1) by 
    LOPBAN_1:def 9;
    
        hence thesis by
    A2,
    FUNCT_2:def 1;
    
      end;
    
      
    
      
    
    A7: ( 
    dom ti) 
    = ( 
    REAL m) 
    
      proof
    
        ti is
    LinearOperator of ( 
    REAL-NS m), ( 
    REAL-NS 1) by 
    LOPBAN_1:def 9;
    
        hence thesis by
    A2,
    FUNCT_2:def 1;
    
      end;
    
      
    
      
    
    A8: for x be 
    Point of ( 
    REAL-NS m) holds ((si 
    - ti) 
    . x) 
    = ((( 
    Proj (i,n)) 
    * (s 
    - t)) 
    . x) 
    
      proof
    
        let x be
    Point of ( 
    REAL-NS m); 
    
        reconsider x as
    Element of ( 
    REAL m) by 
    REAL_NS1:def 4;
    
        reconsider y = x as
    Point of ( 
    REAL-NS m); 
    
        (((
    Proj (i,n)) 
    * (s 
    - t)) 
    . x) 
    = (( 
    Proj (i,n)) 
    . ((s 
    - t) 
    . x)) by 
    A4,
    A5,
    FUNCT_1: 12
    
        .= ((
    Proj (i,n)) 
    . ((s 
    . y) 
    - (t 
    . y))) by 
    LOPBAN_1: 40
    
        .= (((
    Proj (i,n)) 
    . (s 
    . y)) 
    - (( 
    Proj (i,n)) 
    . (t 
    . y))) by 
    Th11
    
        .= ((si
    . y) 
    - (( 
    Proj (i,n)) 
    . (t 
    . y))) by 
    A1,
    A6,
    FUNCT_1: 12
    
        .= ((si
    . y) 
    - (ti 
    . y)) by 
    A1,
    A7,
    FUNCT_1: 12
    
        .= ((si
    - ti) 
    . x) by 
    LOPBAN_1: 40;
    
        hence thesis;
    
      end;
    
      for x be
    object st x 
    in ( 
    dom (si 
    - ti)) holds ((si 
    - ti) 
    . x) 
    = ((( 
    Proj (i,n)) 
    * (s 
    - t)) 
    . x) 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A9: x 
    in ( 
    dom (si 
    - ti)); 
    
        reconsider x as
    Point of ( 
    REAL-NS m) by 
    A9,
    A4,
    REAL_NS1:def 4;
    
        ((si
    - ti) 
    . x) 
    = ((( 
    Proj (i,n)) 
    * (s 
    - t)) 
    . x) by 
    A8;
    
        hence thesis;
    
      end;
    
      hence thesis by
    A5,
    FUNCT_1: 2;
    
    end;
    
    theorem :: 
    
    PDIFF_8:13
    
    
    
    
    
    Th13: for m,n be non 
    zero  
    Element of 
    NAT , s be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (( 
    REAL-NS m),( 
    REAL-NS n))), i be 
    Nat, si be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (( 
    REAL-NS m),( 
    REAL-NS 1))) st si 
    = (( 
    Proj (i,n)) 
    * s) & 1 
    <= i 
    <= n holds 
    ||.si.||
    <=  
    ||.s.||
    
    proof
    
      let m,n be non
    zero  
    Element of 
    NAT , s be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (( 
    REAL-NS m),( 
    REAL-NS n))), i be 
    Nat, si be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (( 
    REAL-NS m),( 
    REAL-NS 1))); 
    
      assume
    
      
    
    A1: si 
    = (( 
    Proj (i,n)) 
    * s) & 1 
    <= i & i 
    <= n; 
    
      deffunc
    
    BLONorm(
    Nat, 
    Nat) = (
    BoundedLinearOperatorsNorm (( 
    REAL-NS $1),( 
    REAL-NS $2))); 
    
      
    
      
    
    A2: ( 
    Proj (i,n)) is 
    Lipschitzian  
    LinearOperator of ( 
    REAL-NS n), ( 
    REAL-NS 1) & ( 
    BLONorm(n,)
    . ( 
    Proj (i,n))) 
    <= 1 by 
    Th6,
    A1;
    
      s is
    Lipschitzian  
    LinearOperator of ( 
    REAL-NS m), ( 
    REAL-NS n) by 
    LOPBAN_1:def 9;
    
      then
    
      
    
    A3: 
    ||.si.||
    <= (( 
    BLONorm(n,)
    . ( 
    Proj (i,n))) 
    *  
    ||.s.||) by
    A2,
    A1,
    LOPBAN_2: 2;
    
      
    0  
    <=  
    ||.s.|| by
    NORMSP_1: 4;
    
      then ((
    BLONorm(n,)
    . ( 
    Proj (i,n))) 
    *  
    ||.s.||)
    <= (1 
    *  
    ||.s.||) by
    Th6,
    A1,
    XREAL_1: 64;
    
      hence thesis by
    A3,
    XXREAL_0: 2;
    
    end;
    
    theorem :: 
    
    PDIFF_8:14
    
    
    
    
    
    Th14: for m,n be non 
    zero  
    Element of 
    NAT , s,t be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (( 
    REAL-NS m),( 
    REAL-NS n))), si,ti be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (( 
    REAL-NS m),( 
    REAL-NS 1))), i be 
    Nat st si 
    = (( 
    Proj (i,n)) 
    * s) & ti 
    = (( 
    Proj (i,n)) 
    * t) & 1 
    <= i 
    <= n holds 
    ||.(si
    - ti).|| 
    <=  
    ||.(s
    - t).|| 
    
    proof
    
      let m,n be non
    zero  
    Element of 
    NAT , s,t be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (( 
    REAL-NS m),( 
    REAL-NS n))), si,ti be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (( 
    REAL-NS m),( 
    REAL-NS 1))), i be 
    Nat;
    
      deffunc
    
    BLONorm(
    Element of 
    NAT , 
    Element of 
    NAT ) = ( 
    BoundedLinearOperatorsNorm (( 
    REAL-NS $1),( 
    REAL-NS $2))); 
    
      assume
    
      
    
    A1: si 
    = (( 
    Proj (i,n)) 
    * s) & ti 
    = (( 
    Proj (i,n)) 
    * t) & 1 
    <= i & i 
    <= n; 
    
      (si
    - ti) 
    = (( 
    Proj (i,n)) 
    * (s 
    - t)) by 
    Lm1,
    A1;
    
      hence thesis by
    A1,
    Th13;
    
    end;
    
    theorem :: 
    
    PDIFF_8:15
    
    
    
    
    
    Th15: for K be 
    Real, n be 
    Nat, s be 
    Element of ( 
    REAL n) st for i be 
    Element of 
    NAT st 1 
    <= i & i 
    <= n holds 
    |.(s
    . i).| 
    <= K holds 
    |.s.|
    <= (n 
    * K) 
    
    proof
    
      let K be
    Real;
    
      defpred
    
    P[
    Nat] means for s be
    Element of ( 
    REAL $1) st for i be 
    Element of 
    NAT st 1 
    <= i & i 
    <= $1 holds 
    |.(s
    . i).| 
    <= K holds 
    |.s.|
    <= ($1 
    * K); 
    
      
    
      
    
    A1: 
    P[
    0 ] 
    
      proof
    
        let s be
    Element of ( 
    REAL  
    0 ); 
    
        s
    = ( 
    0*  
    0 ); 
    
        hence thesis by
    EUCLID: 7;
    
      end;
    
      
    
      
    
    A2: for n be 
    Nat st 
    P[n] holds
    P[(n
    + 1)] 
    
      proof
    
        let n be
    Nat;
    
        assume
    
        
    
    A3: 
    P[n];
    
        let s be
    Element of ( 
    REAL (n 
    + 1)); 
    
        assume
    
        
    
    A4: for i be 
    Element of 
    NAT st 1 
    <= i & i 
    <= (n 
    + 1) holds 
    |.(s
    . i).| 
    <= K; 
    
        set sn = (s
    | n); 
    
        (
    len s) 
    = (n 
    + 1) by 
    CARD_1:def 7;
    
        then (
    len sn) 
    = n by 
    FINSEQ_3: 53;
    
        then
    
        reconsider sn as
    Element of ( 
    REAL n) by 
    FINSEQ_2: 92;
    
        
    
    A5: 
    
        now
    
          let i be
    Element of 
    NAT ; 
    
          assume
    
          
    
    A6: 1 
    <= i & i 
    <= n; 
    
          n
    <= (n 
    + 1) by 
    NAT_1: 11;
    
          then 1
    <= i & i 
    <= (n 
    + 1) by 
    A6,
    XXREAL_0: 2;
    
          then
    |.(s
    . i).| 
    <= K by 
    A4;
    
          hence
    |.(sn
    . i).| 
    <= K by 
    A6,
    FINSEQ_3: 112;
    
        end;
    
        
    
        
    
    A7: (n 
    + 1) 
    in  
    NAT by 
    ORDINAL1:def 12;
    
        1
    <= (n 
    + 1) & (n 
    + 1) 
    <= (n 
    + 1) by 
    NAT_1: 11;
    
        then
    
        
    
    A8: 
    |.(s
    . (n 
    + 1)).| 
    <= K by 
    A4,
    A7;
    
        
    
        
    
    A9: ( 
    |.s.|
    ^2 ) 
    = (( 
    |.sn.|
    ^2 ) 
    + ((s 
    . (n 
    + 1)) 
    ^2 )) by 
    REAL_NS1: 10;
    
        
    
        
    
    A10: K 
    >=  
    0 by 
    A8,
    COMPLEX1: 46;
    
        
    
        
    
    A11: ( 
    |.sn.|
    ^2 ) 
    <= ((n 
    * K) 
    ^2 ) by 
    A3,
    A5,
    SQUARE_1: 15;
    
        
    
        
    
    A12: ((s 
    . (n 
    + 1)) 
    ^2 ) 
    <= (K 
    ^2 ) by 
    A8,
    SERIES_3: 24;
    
        
    
        
    
    A13: ((((n 
    * K) 
    ^2 ) 
    + (K 
    ^2 )) 
    + ((2 
    * (n 
    * K)) 
    * K)) 
    >= (((n 
    * K) 
    ^2 ) 
    + (K 
    ^2 )) by 
    A10,
    XREAL_1: 38;
    
        ((
    |.sn.|
    ^2 ) 
    + ((s 
    . (n 
    + 1)) 
    ^2 )) 
    <= (((n 
    * K) 
    ^2 ) 
    + (K 
    ^2 )) by 
    A11,
    A12,
    XREAL_1: 7;
    
        then
    
        
    
    A14: ( 
    |.s.|
    ^2 ) 
    <= (((n 
    + 1) 
    * K) 
    ^2 ) by 
    A9,
    A13,
    XXREAL_0: 2;
    
        
    
        
    
    A15: ( 
    sqrt (((n 
    + 1) 
    * K) 
    ^2 )) 
    =  
    |.((n
    + 1) 
    * K).| by 
    COMPLEX1: 72;
    
        (
    sqrt ( 
    |.s.|
    ^2 )) 
    <= ( 
    sqrt (((n 
    + 1) 
    * K) 
    ^2 )) by 
    A14,
    SQUARE_1: 26;
    
        then
    |.
    |.
    |.s.|.|.|
    <= ( 
    sqrt (((n 
    + 1) 
    * K) 
    ^2 )) by 
    COMPLEX1: 72;
    
        then
    |.s.|
    <= ( 
    sqrt (((n 
    + 1) 
    * K) 
    ^2 )) by 
    ABSVALUE:def 1;
    
        hence thesis by
    A10,
    A15,
    ABSVALUE:def 1;
    
      end;
    
      thus for n be
    Nat holds 
    P[n] from
    NAT_1:sch 2(
    A1,
    A2);
    
    end;
    
    theorem :: 
    
    PDIFF_8:16
    
    
    
    
    
    Th16: for K be 
    Real, n be non 
    zero  
    Element of 
    NAT , s be 
    Element of ( 
    REAL-NS n) st for i be 
    Element of 
    NAT st 1 
    <= i & i 
    <= n holds 
    ||.((
    Proj (i,n)) 
    . s).|| 
    <= K holds 
    ||.s.||
    <= (n 
    * K) 
    
    proof
    
      let K be
    Real, n be non 
    zero  
    Element of 
    NAT , s be 
    Element of ( 
    REAL-NS n); 
    
      assume
    
      
    
    A1: for i be 
    Element of 
    NAT st 1 
    <= i & i 
    <= n holds 
    ||.((
    Proj (i,n)) 
    . s).|| 
    <= K; 
    
      consider m be
    Nat such that 
    
      
    
    A2: n 
    = (m 
    + 1) by 
    NAT_1: 6;
    
      reconsider m as
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
      reconsider s0 = s as
    Element of ( 
    REAL n) by 
    REAL_NS1:def 4;
    
      now
    
        let i be
    Element of 
    NAT ; 
    
        assume 1
    <= i & i 
    <= (m 
    + 1); 
    
        then
    
        
    
    A3: 
    ||.((
    Proj (i,n)) 
    . s).|| 
    <= K by 
    A2,
    A1;
    
        ((
    Proj (i,n)) 
    . s) 
    =  
    <*((
    proj (i,n)) 
    . s0)*> by 
    PDIFF_1:def 4
    
        .=
    <*(s0
    . i)*> by 
    PDIFF_1:def 1;
    
        hence
    |.(s0
    . i).| 
    <= K by 
    A3,
    Th2;
    
      end;
    
      then
    |.s0.|
    <= (n 
    * K) by 
    A2,
    Th15;
    
      hence thesis by
    REAL_NS1: 1;
    
    end;
    
    theorem :: 
    
    PDIFF_8:17
    
    for K be
    Real, n be non 
    zero  
    Element of 
    NAT , s be 
    Element of ( 
    REAL n) st for i be 
    Element of 
    NAT st 1 
    <= i & i 
    <= n holds 
    |.((
    proj (i,n)) 
    . s).| 
    <= K holds 
    |.s.|
    <= (n 
    * K) 
    
    proof
    
      let K be
    Real, n be non 
    zero  
    Element of 
    NAT , s be 
    Element of ( 
    REAL n); 
    
      assume
    
      
    
    A1: for i be 
    Element of 
    NAT st 1 
    <= i & i 
    <= n holds 
    |.((
    proj (i,n)) 
    . s).| 
    <= K; 
    
      reconsider t = s as
    Element of ( 
    REAL-NS n) by 
    REAL_NS1:def 4;
    
      for i be
    Element of 
    NAT st 1 
    <= i & i 
    <= n holds 
    ||.((
    Proj (i,n)) 
    . t).|| 
    <= K 
    
      proof
    
        let i be
    Element of 
    NAT ; 
    
        assume 1
    <= i & i 
    <= n; 
    
        then
    |.((
    proj (i,n)) 
    . t).| 
    <= K by 
    A1;
    
        hence
    ||.((
    Proj (i,n)) 
    . t).|| 
    <= K by 
    Th4;
    
      end;
    
      then
    ||.t.||
    <= (n 
    * K) by 
    Th16;
    
      hence thesis by
    REAL_NS1: 1;
    
    end;
    
    theorem :: 
    
    PDIFF_8:18
    
    
    
    
    
    Th18: for m,n be non 
    zero  
    Element of 
    NAT , s be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (( 
    REAL-NS m),( 
    REAL-NS n))), K be 
    Real st for i be 
    Element of 
    NAT , si be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (( 
    REAL-NS m),( 
    REAL-NS 1))) st si 
    = (( 
    Proj (i,n)) 
    * s) & 1 
    <= i & i 
    <= n holds 
    ||.si.||
    <= K holds 
    ||.s.||
    <= (n 
    * K) 
    
    proof
    
      deffunc
    
    RealNormSpaceOfBLO( non
    zero  
    Nat, non 
    zero  
    Nat) = (
    R_NormSpace_of_BoundedLinearOperators (( 
    REAL-NS $1),( 
    REAL-NS $2))); 
    
      let m,n be non
    zero  
    Element of 
    NAT , s be 
    Point of 
    RealNormSpaceOfBLO(m,n), K be
    Real;
    
      assume
    
      
    
    A1: for i be 
    Element of 
    NAT , si be 
    Point of 
    RealNormSpaceOfBLO(m,) st si
    = (( 
    Proj (i,n)) 
    * s) & 1 
    <= i & i 
    <= n holds 
    ||.si.||
    <= K; 
    
      reconsider s0 = s as
    Lipschitzian  
    LinearOperator of ( 
    REAL-NS m), ( 
    REAL-NS n) by 
    LOPBAN_1:def 9;
    
      
    
    A2: 
    
      now
    
        let x be
    Point of ( 
    REAL-NS m); 
    
        assume
    
        
    
    A3: 
    ||.x.||
    <= 1; 
    
        now
    
          let i be
    Element of 
    NAT ; 
    
          assume
    
          
    
    A4: 1 
    <= i & i 
    <= n; 
    
          set si = ((
    Proj (i,n)) 
    * s); 
    
          reconsider si as
    Point of 
    RealNormSpaceOfBLO(m,) by
    Th7,
    A4;
    
          reconsider sii = si as
    Lipschitzian  
    LinearOperator of ( 
    REAL-NS m), ( 
    REAL-NS 1) by 
    LOPBAN_1:def 9;
    
          
    
          
    
    A5: 
    ||.(sii
    . x).|| 
    <= ( 
    ||.si.||
    *  
    ||.x.||) by
    LOPBAN_1: 32;
    
          
    
          
    
    A6: the 
    carrier of ( 
    REAL-NS m) 
    = ( 
    REAL m) by 
    REAL_NS1:def 4;
    
          
    
          
    
    A7: ( 
    Proj (i,n)) is 
    Lipschitzian  
    LinearOperator of ( 
    REAL-NS n), ( 
    REAL-NS 1) by 
    A4,
    Th6;
    
          s is
    Lipschitzian  
    LinearOperator of ( 
    REAL-NS m), ( 
    REAL-NS n) by 
    LOPBAN_1:def 9;
    
          then ((
    Proj (i,n)) 
    * s) is 
    LinearOperator of ( 
    REAL-NS m), ( 
    REAL-NS 1) by 
    A7,
    LOPBAN_2: 1;
    
          then (
    dom (( 
    Proj (i,n)) 
    * s)) 
    = ( 
    REAL m) by 
    A6,
    FUNCT_2:def 1;
    
          then
    
          
    
    A8: (sii 
    . x) 
    = (( 
    Proj (i,n)) 
    . (s 
    . x)) by 
    A6,
    FUNCT_1: 12;
    
          
    
          
    
    A9: 
    0  
    <=  
    ||.x.|| by
    NORMSP_1: 4;
    
          (
    ||.si.||
    *  
    ||.x.||)
    <= (K 
    *  
    ||.x.||) by
    A4,
    A1,
    A9,
    XREAL_1: 64;
    
          hence
    ||.((
    Proj (i,n)) 
    . (s 
    . x)).|| 
    <= (K 
    *  
    ||.x.||) by
    A5,
    A8,
    XXREAL_0: 2;
    
        end;
    
        then
    
        
    
    A10: 
    ||.(s
    . x).|| 
    <= (n 
    * (K 
    *  
    ||.x.||)) by
    Th16;
    
        
    
        
    
    A11: 1 
    <= 1 & 1 
    <= n by 
    NAT_1: 14;
    
        then
    
        reconsider s1 = ((
    Proj (1,n)) 
    * s) as 
    Point of 
    RealNormSpaceOfBLO(m,) by
    Th7;
    
        
    ||.s1.||
    <= K by 
    A11,
    A1;
    
        then
    
        
    
    A12: 
    0  
    <= K by 
    NORMSP_1: 4;
    
        ((n
    * K) 
    *  
    ||.x.||)
    <= ((n 
    * K) 
    * 1) by 
    A12,
    A3,
    XREAL_1: 64;
    
        hence
    ||.(s0
    . x).|| 
    <= (n 
    * K) by 
    A10,
    XXREAL_0: 2;
    
      end;
    
      set PreNormS = (
    PreNorms ( 
    modetrans (s,( 
    REAL-NS m),( 
    REAL-NS n)))); 
    
      
    
      
    
    A13: for y be 
    ExtReal st y 
    in ( 
    PreNorms ( 
    modetrans (s,( 
    REAL-NS m),( 
    REAL-NS n)))) holds y 
    <= (n 
    * K) 
    
      proof
    
        let y be
    ExtReal;
    
        assume
    
        
    
    A14: y 
    in PreNormS; 
    
        consider x be
    VECTOR of ( 
    REAL-NS m) such that 
    
        
    
    A15: y 
    =  
    ||.((
    modetrans (s,( 
    REAL-NS m),( 
    REAL-NS n))) 
    . x).|| & 
    ||.x.||
    <= 1 by 
    A14;
    
        y
    =  
    ||.(s0
    . x).|| by 
    A15,
    LOPBAN_1: 29;
    
        hence thesis by
    A2,
    A15;
    
      end;
    
      
    
      
    
    A16: PreNormS is 
    bounded_above
    
      proof
    
        (n
    * K) is 
    UpperBound of PreNormS by 
    A13,
    XXREAL_2:def 1;
    
        hence thesis by
    XXREAL_2:def 10;
    
      end;
    
      set UBPreNormS = (
    upper_bound PreNormS); 
    
       not UBPreNormS
    > (n 
    * K) 
    
      proof
    
        assume
    
        
    
    A17: UBPreNormS 
    > (n 
    * K); 
    
        set dif = (UBPreNormS
    - (n 
    * K)); 
    
        
    
        
    
    A18: dif 
    >  
    0 by 
    A17,
    XREAL_1: 50;
    
        consider w be
    Real such that 
    
        
    
    A19: w 
    in PreNormS & (UBPreNormS 
    - dif) 
    < w by 
    A18,
    A16,
    SEQ_4:def 1;
    
        thus contradiction by
    A19,
    A13;
    
      end;
    
      then (
    upper_bound ( 
    PreNorms s0)) 
    <= (n 
    * K) by 
    LOPBAN_1:def 11;
    
      hence thesis by
    LOPBAN_1: 30;
    
    end;
    
    theorem :: 
    
    PDIFF_8:19
    
    
    
    
    
    Th19: for m,n be non 
    zero  
    Element of 
    NAT , s,t be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (( 
    REAL-NS m),( 
    REAL-NS n))), K be 
    Real st for i be 
    Element of 
    NAT , si,ti be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (( 
    REAL-NS m),( 
    REAL-NS 1))) st si 
    = (( 
    Proj (i,n)) 
    * s) & ti 
    = (( 
    Proj (i,n)) 
    * t) & 1 
    <= i & i 
    <= n holds 
    ||.(si
    - ti).|| 
    <= K holds 
    ||.(s
    - t).|| 
    <= (n 
    * K) 
    
    proof
    
      deffunc
    
    RealNormSpaceOfBLO( non
    zero  
    Nat, non 
    zero  
    Nat) = (
    R_NormSpace_of_BoundedLinearOperators (( 
    REAL-NS $1),( 
    REAL-NS $2))); 
    
      let m,n be non
    zero  
    Element of 
    NAT , s,t be 
    Point of 
    RealNormSpaceOfBLO(m,n), K be
    Real;
    
      assume
    
      
    
    A1: for i be 
    Element of 
    NAT , si,ti be 
    Point of 
    RealNormSpaceOfBLO(m,) st si
    = (( 
    Proj (i,n)) 
    * s) & ti 
    = (( 
    Proj (i,n)) 
    * t) & 1 
    <= i & i 
    <= n holds 
    ||.(si
    - ti).|| 
    <= K; 
    
      now
    
        let i be
    Element of 
    NAT , sti be 
    Point of 
    RealNormSpaceOfBLO(m,);
    
        assume
    
        
    
    A2: sti 
    = (( 
    Proj (i,n)) 
    * (s 
    - t)) & 1 
    <= i & i 
    <= n; 
    
        reconsider si = ((
    Proj (i,n)) 
    * s), ti = (( 
    Proj (i,n)) 
    * t) as 
    Point of 
    RealNormSpaceOfBLO(m,) by
    Th7,
    A2;
    
        (si
    - ti) 
    = sti by 
    A2,
    Lm1;
    
        hence
    ||.sti.||
    <= K by 
    A2,
    A1;
    
      end;
    
      hence thesis by
    Th18;
    
    end;
    
    theorem :: 
    
    PDIFF_8:20
    
    
    
    
    
    Th20: for m,n be non 
    zero  
    Element of 
    NAT , f be 
    PartFunc of ( 
    REAL-NS m), ( 
    REAL-NS n), X be 
    Subset of ( 
    REAL-NS m), i be 
    Nat st 1 
    <= i & i 
    <= m & X is 
    open holds (f 
    is_partial_differentiable_on (X,i) & (f 
    `partial| (X,i)) 
    is_continuous_on X) iff for j be 
    Nat st 1 
    <= j 
    <= n holds (( 
    Proj (j,n)) 
    * f) 
    is_partial_differentiable_on (X,i) & ((( 
    Proj (j,n)) 
    * f) 
    `partial| (X,i)) 
    is_continuous_on X 
    
    proof
    
      let m,n be non
    zero  
    Element of 
    NAT , f be 
    PartFunc of ( 
    REAL-NS m), ( 
    REAL-NS n), X be 
    Subset of ( 
    REAL-NS m), i be 
    Nat;
    
      assume
    
      
    
    A1: 1 
    <= i & i 
    <= m & X is 
    open;
    
      hereby
    
        assume
    
        
    
    A2: f 
    is_partial_differentiable_on (X,i) & (f 
    `partial| (X,i)) 
    is_continuous_on X; 
    
        then
    
        
    
    A3: X 
    c= ( 
    dom f) by 
    A1,
    PDIFF_7: 8;
    
        thus for j be
    Nat st 1 
    <= j 
    <= n holds ((( 
    Proj (j,n)) 
    * f) 
    is_partial_differentiable_on (X,i) & ((( 
    Proj (j,n)) 
    * f) 
    `partial| (X,i)) 
    is_continuous_on X) 
    
        proof
    
          let j be
    Nat;
    
          assume
    
          
    
    A4: 1 
    <= j & j 
    <= n; 
    
          
    
          
    
    A5: ( 
    dom ( 
    Proj (j,n))) 
    = the 
    carrier of ( 
    REAL-NS n) by 
    FUNCT_2:def 1;
    
          (
    rng f) 
    c= the 
    carrier of ( 
    REAL-NS n); 
    
          then
    
          
    
    A6: X 
    c= ( 
    dom (( 
    Proj (j,n)) 
    * f)) by 
    A5,
    A3,
    RELAT_1: 27;
    
          now
    
            let x0 be
    Point of ( 
    REAL-NS m); 
    
            assume x0
    in X; 
    
            then f
    is_partial_differentiable_in (x0,i) by 
    A2,
    A1,
    PDIFF_7: 8;
    
            then (f
    * ( 
    reproj (i,x0))) 
    is_differentiable_in (( 
    Proj (i,m)) 
    . x0) by 
    PDIFF_1:def 9;
    
            then ((
    Proj (j,n)) 
    * (f 
    * ( 
    reproj (i,x0)))) 
    is_differentiable_in (( 
    Proj (i,m)) 
    . x0) by 
    A4,
    PDIFF_6: 29;
    
            then (((
    Proj (j,n)) 
    * f) 
    * ( 
    reproj (i,x0))) 
    is_differentiable_in (( 
    Proj (i,m)) 
    . x0) by 
    RELAT_1: 36;
    
            hence ((
    Proj (j,n)) 
    * f) 
    is_partial_differentiable_in (x0,i) by 
    PDIFF_1:def 9;
    
          end;
    
          hence
    
          
    
    A7: (( 
    Proj (j,n)) 
    * f) 
    is_partial_differentiable_on (X,i) by 
    A6,
    A1,
    PDIFF_7: 8;
    
          then
    
          
    
    A8: X 
    c= ( 
    dom ((( 
    Proj (j,n)) 
    * f) 
    `partial| (X,i))) by 
    PDIFF_1:def 20;
    
          
    
          
    
    A9: for x0 be 
    Point of ( 
    REAL-NS m) st x0 
    in X holds (((( 
    Proj (j,n)) 
    * f) 
    `partial| (X,i)) 
    /. x0) 
    = (( 
    Proj (j,n)) 
    * ((f 
    `partial| (X,i)) 
    /. x0)) 
    
          proof
    
            let x0 be
    Point of ( 
    REAL-NS m); 
    
            assume
    
            
    
    A10: x0 
    in X; 
    
            then f
    is_partial_differentiable_in (x0,i) by 
    A2,
    A1,
    PDIFF_7: 8;
    
            then
    
            
    
    A11: (f 
    * ( 
    reproj (i,x0))) 
    is_differentiable_in (( 
    Proj (i,m)) 
    . x0) by 
    PDIFF_1:def 9;
    
            
    
            thus ((((
    Proj (j,n)) 
    * f) 
    `partial| (X,i)) 
    /. x0) 
    = ( 
    partdiff ((( 
    Proj (j,n)) 
    * f),x0,i)) by 
    A7,
    A10,
    PDIFF_1:def 20
    
            .= (
    diff (((( 
    Proj (j,n)) 
    * f) 
    * ( 
    reproj (i,x0))),(( 
    Proj (i,m)) 
    . x0))) by 
    PDIFF_1:def 10
    
            .= (
    diff ((( 
    Proj (j,n)) 
    * (f 
    * ( 
    reproj (i,x0)))),(( 
    Proj (i,m)) 
    . x0))) by 
    RELAT_1: 36
    
            .= ((
    Proj (j,n)) 
    * ( 
    diff ((f 
    * ( 
    reproj (i,x0))),(( 
    Proj (i,m)) 
    . x0)))) by 
    A11,
    A4,
    PDIFF_6: 28
    
            .= ((
    Proj (j,n)) 
    * ( 
    partdiff (f,x0,i))) by 
    PDIFF_1:def 10
    
            .= ((
    Proj (j,n)) 
    * ((f 
    `partial| (X,i)) 
    /. x0)) by 
    A2,
    A10,
    PDIFF_1:def 20;
    
          end;
    
          for x0 be
    Point of ( 
    REAL-NS m), r be 
    Real st x0 
    in X & 
    0  
    < r holds ex s be 
    Real st 
    0  
    < s & for x1 be 
    Point of ( 
    REAL-NS m) st x1 
    in X & 
    ||.(x1
    - x0).|| 
    < s holds 
    ||.(((((
    Proj (j,n)) 
    * f) 
    `partial| (X,i)) 
    /. x1) 
    - (((( 
    Proj (j,n)) 
    * f) 
    `partial| (X,i)) 
    /. x0)).|| 
    < r 
    
          proof
    
            let x0 be
    Point of ( 
    REAL-NS m), r be 
    Real;
    
            assume
    
            
    
    A12: x0 
    in X & 
    0  
    < r; 
    
            then
    
            consider s be
    Real such that 
    
            
    
    A13: 
    0  
    < s & for x1 be 
    Point of ( 
    REAL-NS m) st x1 
    in X & 
    ||.(x1
    - x0).|| 
    < s holds 
    ||.(((f
    `partial| (X,i)) 
    /. x1) 
    - ((f 
    `partial| (X,i)) 
    /. x0)).|| 
    < r by 
    A2,
    NFCONT_1: 19;
    
            take s;
    
            thus
    0  
    < s by 
    A13;
    
            let x1 be
    Point of ( 
    REAL-NS m); 
    
            assume
    
            
    
    A14: x1 
    in X & 
    ||.(x1
    - x0).|| 
    < s; 
    
            then
    
            
    
    A15: 
    ||.(((f
    `partial| (X,i)) 
    /. x1) 
    - ((f 
    `partial| (X,i)) 
    /. x0)).|| 
    < r by 
    A13;
    
            
    
            
    
    A16: (((( 
    Proj (j,n)) 
    * f) 
    `partial| (X,i)) 
    /. x0) 
    = (( 
    Proj (j,n)) 
    * ((f 
    `partial| (X,i)) 
    /. x0)) by 
    A9,
    A12;
    
            reconsider p1 = ((
    Proj (j,n)) 
    * ((f 
    `partial| (X,i)) 
    /. x1)) as 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (( 
    REAL-NS 1),( 
    REAL-NS 1))) by 
    Th7,
    A4;
    
            reconsider p0 = ((
    Proj (j,n)) 
    * ((f 
    `partial| (X,i)) 
    /. x0)) as 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (( 
    REAL-NS 1),( 
    REAL-NS 1))) by 
    Th7,
    A4;
    
            
    ||.(((((
    Proj (j,n)) 
    * f) 
    `partial| (X,i)) 
    /. x1) 
    - (((( 
    Proj (j,n)) 
    * f) 
    `partial| (X,i)) 
    /. x0)).|| 
    =  
    ||.(p1
    - p0).|| by 
    A9,
    A14,
    A16;
    
            then
    ||.(((((
    Proj (j,n)) 
    * f) 
    `partial| (X,i)) 
    /. x1) 
    - (((( 
    Proj (j,n)) 
    * f) 
    `partial| (X,i)) 
    /. x0)).|| 
    <=  
    ||.(((f
    `partial| (X,i)) 
    /. x1) 
    - ((f 
    `partial| (X,i)) 
    /. x0)).|| by 
    Th14,
    A4;
    
            hence
    ||.(((((
    Proj (j,n)) 
    * f) 
    `partial| (X,i)) 
    /. x1) 
    - (((( 
    Proj (j,n)) 
    * f) 
    `partial| (X,i)) 
    /. x0)).|| 
    < r by 
    A15,
    XXREAL_0: 2;
    
          end;
    
          hence (((
    Proj (j,n)) 
    * f) 
    `partial| (X,i)) 
    is_continuous_on X by 
    A8,
    NFCONT_1: 19;
    
        end;
    
      end;
    
      assume
    
      
    
    A17: for j be 
    Nat st 1 
    <= j 
    <= n holds ((( 
    Proj (j,n)) 
    * f) 
    is_partial_differentiable_on (X,i) & ((( 
    Proj (j,n)) 
    * f) 
    `partial| (X,i)) 
    is_continuous_on X); 
    
      1
    <= n by 
    NAT_1: 14;
    
      then ((
    Proj (1,n)) 
    * f) 
    is_partial_differentiable_on (X,i) by 
    A17;
    
      then
    
      
    
    A18: X 
    c= ( 
    dom (( 
    Proj (1,n)) 
    * f)) by 
    PDIFF_1:def 19;
    
      
    
      
    
    A19: ( 
    dom ( 
    Proj (1,n))) 
    = the 
    carrier of ( 
    REAL-NS n) by 
    FUNCT_2:def 1;
    
      (
    rng f) 
    c= the 
    carrier of ( 
    REAL-NS n); 
    
      then
    
      
    
    A20: X 
    c= ( 
    dom f) by 
    A18,
    A19,
    RELAT_1: 27;
    
      
    
    A21: 
    
      now
    
        let x0 be
    Point of ( 
    REAL-NS m); 
    
        assume
    
        
    
    A22: x0 
    in X; 
    
        now
    
          let j be
    Nat;
    
          assume 1
    <= j & j 
    <= n; 
    
          then ((
    Proj (j,n)) 
    * f) 
    is_partial_differentiable_on (X,i) by 
    A17;
    
          then ((
    Proj (j,n)) 
    * f) 
    is_partial_differentiable_in (x0,i) by 
    A22,
    A1,
    PDIFF_7: 8;
    
          then (((
    Proj (j,n)) 
    * f) 
    * ( 
    reproj (i,x0))) 
    is_differentiable_in (( 
    Proj (i,m)) 
    . x0) by 
    PDIFF_1:def 9;
    
          hence ((
    Proj (j,n)) 
    * (f 
    * ( 
    reproj (i,x0)))) 
    is_differentiable_in (( 
    Proj (i,m)) 
    . x0) by 
    RELAT_1: 36;
    
        end;
    
        then (f
    * ( 
    reproj (i,x0))) 
    is_differentiable_in (( 
    Proj (i,m)) 
    . x0) by 
    PDIFF_6: 29;
    
        hence f
    is_partial_differentiable_in (x0,i) by 
    PDIFF_1:def 9;
    
      end;
    
      hence
    
      
    
    A23: f 
    is_partial_differentiable_on (X,i) by 
    A1,
    A20,
    PDIFF_7: 8;
    
      then
    
      
    
    A24: X 
    c= ( 
    dom (f 
    `partial| (X,i))) by 
    PDIFF_1:def 20;
    
      
    
      
    
    A25: for x0 be 
    Point of ( 
    REAL-NS m), j be 
    Element of 
    NAT st x0 
    in X & 1 
    <= j & j 
    <= n holds (( 
    Proj (j,n)) 
    * ((f 
    `partial| (X,i)) 
    /. x0)) 
    = (((( 
    Proj (j,n)) 
    * f) 
    `partial| (X,i)) 
    /. x0) 
    
      proof
    
        let x0 be
    Point of ( 
    REAL-NS m), j be 
    Element of 
    NAT ; 
    
        assume
    
        
    
    A26: x0 
    in X & 1 
    <= j & j 
    <= n; 
    
        then f
    is_partial_differentiable_in (x0,i) by 
    A21;
    
        then
    
        
    
    A27: (f 
    * ( 
    reproj (i,x0))) 
    is_differentiable_in (( 
    Proj (i,m)) 
    . x0) by 
    PDIFF_1:def 9;
    
        
    
        
    
    A28: (( 
    Proj (j,n)) 
    * f) 
    is_partial_differentiable_on (X,i) by 
    A17,
    A26;
    
        
    
        thus ((
    Proj (j,n)) 
    * ((f 
    `partial| (X,i)) 
    /. x0)) 
    = (( 
    Proj (j,n)) 
    * ( 
    partdiff (f,x0,i))) by 
    A26,
    A23,
    PDIFF_1:def 20
    
        .= ((
    Proj (j,n)) 
    * ( 
    diff ((f 
    * ( 
    reproj (i,x0))),(( 
    Proj (i,m)) 
    . x0)))) by 
    PDIFF_1:def 10
    
        .= (
    diff ((( 
    Proj (j,n)) 
    * (f 
    * ( 
    reproj (i,x0)))),(( 
    Proj (i,m)) 
    . x0))) by 
    A27,
    A26,
    PDIFF_6: 28
    
        .= (
    diff (((( 
    Proj (j,n)) 
    * f) 
    * ( 
    reproj (i,x0))),(( 
    Proj (i,m)) 
    . x0))) by 
    RELAT_1: 36
    
        .= (
    partdiff ((( 
    Proj (j,n)) 
    * f),x0,i)) by 
    PDIFF_1:def 10
    
        .= ((((
    Proj (j,n)) 
    * f) 
    `partial| (X,i)) 
    /. x0) by 
    A28,
    A26,
    PDIFF_1:def 20;
    
      end;
    
      for x0 be
    Point of ( 
    REAL-NS m), r be 
    Real st x0 
    in X & 
    0  
    < r holds ex s be 
    Real st 
    0  
    < s & for x1 be 
    Point of ( 
    REAL-NS m) st x1 
    in X & 
    ||.(x1
    - x0).|| 
    < s holds 
    ||.(((f
    `partial| (X,i)) 
    /. x1) 
    - ((f 
    `partial| (X,i)) 
    /. x0)).|| 
    < r 
    
      proof
    
        let x0 be
    Point of ( 
    REAL-NS m), r0 be 
    Real;
    
        assume
    
        
    
    A29: x0 
    in X & 
    0  
    < r0; 
    
        set r = (r0
    / 2); 
    
        defpred
    
    P[
    set, 
    set] means ex j be
    Element of 
    NAT , sj be 
    Real st $2 
    = sj & $1 
    = j & 
    0  
    < sj & for x1 be 
    Point of ( 
    REAL-NS m) st x1 
    in X & 
    ||.(x1
    - x0).|| 
    < sj holds 
    ||.(((((
    Proj (j,n)) 
    * f) 
    `partial| (X,i)) 
    /. x1) 
    - (((( 
    Proj (j,n)) 
    * f) 
    `partial| (X,i)) 
    /. x0)).|| 
    < (r 
    / n); 
    
        
    
        
    
    A30: for j0 be 
    Nat st j0 
    in ( 
    Seg n) holds ex x be 
    Element of 
    REAL st 
    P[j0, x]
    
        proof
    
          let j0 be
    Nat;
    
          assume j0
    in ( 
    Seg n); 
    
          then
    
          
    
    A31: 1 
    <= j0 & j0 
    <= n by 
    FINSEQ_1: 1;
    
          reconsider j = j0 as
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
          (((
    Proj (j,n)) 
    * f) 
    `partial| (X,i)) 
    is_continuous_on X by 
    A17,
    A31;
    
          then
    
          consider sj be
    Real such that 
    
          
    
    A32: 
    0  
    < sj & for x1 be 
    Point of ( 
    REAL-NS m) st x1 
    in X & 
    ||.(x1
    - x0).|| 
    < sj holds 
    ||.(((((
    Proj (j,n)) 
    * f) 
    `partial| (X,i)) 
    /. x1) 
    - (((( 
    Proj (j,n)) 
    * f) 
    `partial| (X,i)) 
    /. x0)).|| 
    < (r 
    / n) by 
    A29,
    NFCONT_1: 19;
    
          reconsider sj as
    Element of 
    REAL by 
    XREAL_0:def 1;
    
          
    0  
    < sj by 
    A32;
    
          hence thesis by
    A32;
    
        end;
    
        consider s0 be
    FinSequence of 
    REAL such that 
    
        
    
    A33: ( 
    dom s0) 
    = ( 
    Seg n) & for k be 
    Nat st k 
    in ( 
    Seg n) holds 
    P[k, (s0
    . k)] from 
    FINSEQ_1:sch 5(
    A30);
    
        
    
        
    
    A34: ( 
    rng s0) is 
    finite by 
    A33,
    FINSET_1: 8;
    
        n
    in ( 
    Seg n) by 
    FINSEQ_1: 3;
    
        then
    
        reconsider rs0 = (
    rng s0) as non 
    empty
    ext-real-membered  
    set by 
    A33,
    FUNCT_1: 3;
    
        reconsider rs0 as
    left_end
    right_end non 
    empty
    ext-real-membered  
    set by 
    A34;
    
        
    
        
    
    A35: ( 
    min rs0) 
    in ( 
    rng s0) by 
    XXREAL_2:def 7;
    
        reconsider s = (
    min rs0) as 
    Real;
    
        take s;
    
        consider i1 be
    object such that 
    
        
    
    A36: i1 
    in ( 
    dom s0) & s 
    = (s0 
    . i1) by 
    A35,
    FUNCT_1:def 3;
    
        ex j be
    Element of 
    NAT , sj be 
    Real st (s0 
    . i1) 
    = sj & i1 
    = j & 
    0  
    < sj & for x1 be 
    Point of ( 
    REAL-NS m) st x1 
    in X & 
    ||.(x1
    - x0).|| 
    < sj holds 
    ||.(((((
    Proj (j,n)) 
    * f) 
    `partial| (X,i)) 
    /. x1) 
    - (((( 
    Proj (j,n)) 
    * f) 
    `partial| (X,i)) 
    /. x0)).|| 
    < (r 
    / n) by 
    A33,
    A36;
    
        hence
    0  
    < s by 
    A36;
    
        let x1 be
    Point of ( 
    REAL-NS m); 
    
        assume
    
        
    
    A37: x1 
    in X & 
    ||.(x1
    - x0).|| 
    < s; 
    
        now
    
          let j be
    Element of 
    NAT , p1,p0 be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (( 
    REAL-NS 1),( 
    REAL-NS 1))); 
    
          assume
    
          
    
    A38: p1 
    = (( 
    Proj (j,n)) 
    * ((f 
    `partial| (X,i)) 
    /. x1)) & p0 
    = (( 
    Proj (j,n)) 
    * ((f 
    `partial| (X,i)) 
    /. x0)) & 1 
    <= j & j 
    <= n; 
    
          then
    
          
    
    A39: j 
    in ( 
    Seg n); 
    
          then
    
          consider jj be
    Element of 
    NAT , sj be 
    Real such that 
    
          
    
    A40: (s0 
    . j) 
    = sj & jj 
    = j & 
    0  
    < sj & for x1 be 
    Point of ( 
    REAL-NS m) st x1 
    in X & 
    ||.(x1
    - x0).|| 
    < sj holds 
    ||.(((((
    Proj (jj,n)) 
    * f) 
    `partial| (X,i)) 
    /. x1) 
    - (((( 
    Proj (jj,n)) 
    * f) 
    `partial| (X,i)) 
    /. x0)).|| 
    < (r 
    / n) by 
    A33;
    
          
    
          
    
    A41: (( 
    Proj (j,n)) 
    * ((f 
    `partial| (X,i)) 
    /. x0)) 
    = (((( 
    Proj (j,n)) 
    * f) 
    `partial| (X,i)) 
    /. x0) by 
    A25,
    A29,
    A38;
    
          
    
          
    
    A42: (( 
    Proj (j,n)) 
    * ((f 
    `partial| (X,i)) 
    /. x1)) 
    = (((( 
    Proj (j,n)) 
    * f) 
    `partial| (X,i)) 
    /. x1) by 
    A25,
    A37,
    A38;
    
          sj
    in ( 
    rng s0) by 
    A39,
    A40,
    A33,
    FUNCT_1: 3;
    
          then s
    <= sj by 
    XXREAL_2:def 7;
    
          then
    ||.(x1
    - x0).|| 
    < sj by 
    A37,
    XXREAL_0: 2;
    
          hence
    ||.(p1
    - p0).|| 
    <= (r 
    / n) by 
    A40,
    A37,
    A38,
    A41,
    A42;
    
        end;
    
        then
    ||.(((f
    `partial| (X,i)) 
    /. x1) 
    - ((f 
    `partial| (X,i)) 
    /. x0)).|| 
    <= (n 
    * (r 
    / n)) by 
    Th19;
    
        then
    
        
    
    A43: 
    ||.(((f
    `partial| (X,i)) 
    /. x1) 
    - ((f 
    `partial| (X,i)) 
    /. x0)).|| 
    <= r by 
    XCMPLX_1: 87;
    
        r
    < r0 by 
    A29,
    XREAL_1: 216;
    
        hence
    ||.(((f
    `partial| (X,i)) 
    /. x1) 
    - ((f 
    `partial| (X,i)) 
    /. x0)).|| 
    < r0 by 
    A43,
    XXREAL_0: 2;
    
      end;
    
      hence thesis by
    A24,
    NFCONT_1: 19;
    
    end;
    
    theorem :: 
    
    PDIFF_8:21
    
    
    
    
    
    Th21: for m,n be non 
    zero  
    Element of 
    NAT , f be 
    PartFunc of ( 
    REAL-NS m), ( 
    REAL-NS n), X be 
    Subset of ( 
    REAL-NS m) st X is 
    open holds (f 
    is_differentiable_on X & (f 
    `| X) 
    is_continuous_on X) iff for j be 
    Nat st 1 
    <= j 
    <= n holds (( 
    Proj (j,n)) 
    * f) 
    is_differentiable_on X & ((( 
    Proj (j,n)) 
    * f) 
    `| X) 
    is_continuous_on X 
    
    proof
    
      let m,n be non
    zero  
    Element of 
    NAT , f be 
    PartFunc of ( 
    REAL-NS m), ( 
    REAL-NS n), X be 
    Subset of ( 
    REAL-NS m); 
    
      assume
    
      
    
    A1: X is 
    open;
    
      hereby
    
        assume
    
        
    
    A2: f 
    is_differentiable_on X & (f 
    `| X) 
    is_continuous_on X; 
    
        then
    
        
    
    A3: X 
    c= ( 
    dom f) by 
    A1,
    NDIFF_1: 31;
    
        thus for j be
    Nat st 1 
    <= j 
    <= n holds ((( 
    Proj (j,n)) 
    * f) 
    is_differentiable_on X & ((( 
    Proj (j,n)) 
    * f) 
    `| X) 
    is_continuous_on X) 
    
        proof
    
          let j be
    Nat;
    
          assume
    
          
    
    A4: 1 
    <= j & j 
    <= n; 
    
          
    
          
    
    A5: ( 
    dom ( 
    Proj (j,n))) 
    = the 
    carrier of ( 
    REAL-NS n) by 
    FUNCT_2:def 1;
    
          (
    rng f) 
    c= the 
    carrier of ( 
    REAL-NS n); 
    
          then
    
          
    
    A6: X 
    c= ( 
    dom (( 
    Proj (j,n)) 
    * f)) by 
    A3,
    A5,
    RELAT_1: 27;
    
          now
    
            let x0 be
    Point of ( 
    REAL-NS m); 
    
            assume x0
    in X; 
    
            then f
    is_differentiable_in x0 by 
    A2,
    A1,
    NDIFF_1: 31;
    
            hence ((
    Proj (j,n)) 
    * f) 
    is_differentiable_in x0 by 
    A4,
    PDIFF_6: 29;
    
          end;
    
          hence
    
          
    
    A7: (( 
    Proj (j,n)) 
    * f) 
    is_differentiable_on X by 
    A6,
    A1,
    NDIFF_1: 31;
    
          then
    
          
    
    A8: X 
    c= ( 
    dom ((( 
    Proj (j,n)) 
    * f) 
    `| X)) by 
    NDIFF_1:def 9;
    
          
    
          
    
    A9: for x0 be 
    Point of ( 
    REAL-NS m) st x0 
    in X holds (((( 
    Proj (j,n)) 
    * f) 
    `| X) 
    /. x0) 
    = (( 
    Proj (j,n)) 
    * ((f 
    `| X) 
    /. x0)) 
    
          proof
    
            let x0 be
    Point of ( 
    REAL-NS m); 
    
            assume
    
            
    
    A10: x0 
    in X; 
    
            then
    
            
    
    A11: f 
    is_differentiable_in x0 by 
    A2,
    A1,
    NDIFF_1: 31;
    
            
    
            thus ((((
    Proj (j,n)) 
    * f) 
    `| X) 
    /. x0) 
    = ( 
    diff ((( 
    Proj (j,n)) 
    * f),x0)) by 
    A7,
    A10,
    NDIFF_1:def 9
    
            .= ((
    Proj (j,n)) 
    * ( 
    diff (f,x0))) by 
    A11,
    A4,
    PDIFF_6: 28
    
            .= ((
    Proj (j,n)) 
    * ((f 
    `| X) 
    /. x0)) by 
    A2,
    A10,
    NDIFF_1:def 9;
    
          end;
    
          for x0 be
    Point of ( 
    REAL-NS m), r be 
    Real st x0 
    in X & 
    0  
    < r holds ex s be 
    Real st 
    0  
    < s & for x1 be 
    Point of ( 
    REAL-NS m) st x1 
    in X & 
    ||.(x1
    - x0).|| 
    < s holds 
    ||.(((((
    Proj (j,n)) 
    * f) 
    `| X) 
    /. x1) 
    - (((( 
    Proj (j,n)) 
    * f) 
    `| X) 
    /. x0)).|| 
    < r 
    
          proof
    
            let x0 be
    Point of ( 
    REAL-NS m), r be 
    Real;
    
            assume
    
            
    
    A12: x0 
    in X & 
    0  
    < r; 
    
            then
    
            consider s be
    Real such that 
    
            
    
    A13: 
    0  
    < s & for x1 be 
    Point of ( 
    REAL-NS m) st x1 
    in X & 
    ||.(x1
    - x0).|| 
    < s holds 
    ||.(((f
    `| X) 
    /. x1) 
    - ((f 
    `| X) 
    /. x0)).|| 
    < r by 
    A2,
    NFCONT_1: 19;
    
            take s;
    
            thus
    0  
    < s by 
    A13;
    
            let x1 be
    Point of ( 
    REAL-NS m); 
    
            assume
    
            
    
    A14: x1 
    in X & 
    ||.(x1
    - x0).|| 
    < s; 
    
            then
    
            
    
    A15: 
    ||.(((f
    `| X) 
    /. x1) 
    - ((f 
    `| X) 
    /. x0)).|| 
    < r by 
    A13;
    
            
    
            
    
    A16: (((( 
    Proj (j,n)) 
    * f) 
    `| X) 
    /. x0) 
    = (( 
    Proj (j,n)) 
    * ((f 
    `| X) 
    /. x0)) by 
    A9,
    A12;
    
            reconsider p1 = ((
    Proj (j,n)) 
    * ((f 
    `| X) 
    /. x1)) as 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (( 
    REAL-NS m),( 
    REAL-NS 1))) by 
    Th7,
    A4;
    
            reconsider p0 = ((
    Proj (j,n)) 
    * ((f 
    `| X) 
    /. x0)) as 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (( 
    REAL-NS m),( 
    REAL-NS 1))) by 
    Th7,
    A4;
    
            
    ||.(((((
    Proj (j,n)) 
    * f) 
    `| X) 
    /. x1) 
    - (((( 
    Proj (j,n)) 
    * f) 
    `| X) 
    /. x0)).|| 
    =  
    ||.(p1
    - p0).|| by 
    A9,
    A14,
    A16;
    
            then
    ||.(((((
    Proj (j,n)) 
    * f) 
    `| X) 
    /. x1) 
    - (((( 
    Proj (j,n)) 
    * f) 
    `| X) 
    /. x0)).|| 
    <=  
    ||.(((f
    `| X) 
    /. x1) 
    - ((f 
    `| X) 
    /. x0)).|| by 
    Th14,
    A4;
    
            hence
    ||.(((((
    Proj (j,n)) 
    * f) 
    `| X) 
    /. x1) 
    - (((( 
    Proj (j,n)) 
    * f) 
    `| X) 
    /. x0)).|| 
    < r by 
    A15,
    XXREAL_0: 2;
    
          end;
    
          hence (((
    Proj (j,n)) 
    * f) 
    `| X) 
    is_continuous_on X by 
    A8,
    NFCONT_1: 19;
    
        end;
    
      end;
    
      assume
    
      
    
    A17: for j be 
    Nat st 1 
    <= j 
    <= n holds ((( 
    Proj (j,n)) 
    * f) 
    is_differentiable_on X & ((( 
    Proj (j,n)) 
    * f) 
    `| X) 
    is_continuous_on X); 
    
      1
    <= n by 
    NAT_1: 14;
    
      then ((
    Proj (1,n)) 
    * f) 
    is_differentiable_on X by 
    A17;
    
      then
    
      
    
    A18: X 
    c= ( 
    dom (( 
    Proj (1,n)) 
    * f)) by 
    A1,
    NDIFF_1: 31;
    
      
    
      
    
    A19: ( 
    dom ( 
    Proj (1,n))) 
    = the 
    carrier of ( 
    REAL-NS n) by 
    FUNCT_2:def 1;
    
      (
    rng f) 
    c= the 
    carrier of ( 
    REAL-NS n); 
    
      then
    
      
    
    A20: X 
    c= ( 
    dom f) by 
    A18,
    A19,
    RELAT_1: 27;
    
      
    
    A21: 
    
      now
    
        let x0 be
    Point of ( 
    REAL-NS m); 
    
        assume
    
        
    
    A22: x0 
    in X; 
    
        now
    
          let j be
    Nat;
    
          assume 1
    <= j & j 
    <= n; 
    
          then ((
    Proj (j,n)) 
    * f) 
    is_differentiable_on X by 
    A17;
    
          hence ((
    Proj (j,n)) 
    * f) 
    is_differentiable_in x0 by 
    A22,
    A1,
    NDIFF_1: 31;
    
        end;
    
        hence f
    is_differentiable_in x0 by 
    PDIFF_6: 29;
    
      end;
    
      hence
    
      
    
    A23: f 
    is_differentiable_on X by 
    A1,
    A20,
    NDIFF_1: 31;
    
      then
    
      
    
    A24: X 
    c= ( 
    dom (f 
    `| X)) by 
    NDIFF_1:def 9;
    
      
    
      
    
    A25: for x0 be 
    Point of ( 
    REAL-NS m), j be 
    Element of 
    NAT st x0 
    in X & 1 
    <= j & j 
    <= n holds (( 
    Proj (j,n)) 
    * ((f 
    `| X) 
    /. x0)) 
    = (((( 
    Proj (j,n)) 
    * f) 
    `| X) 
    /. x0) 
    
      proof
    
        let x0 be
    Point of ( 
    REAL-NS m), j be 
    Element of 
    NAT ; 
    
        assume
    
        
    
    A26: x0 
    in X & 1 
    <= j & j 
    <= n; 
    
        then
    
        
    
    A27: f 
    is_differentiable_in x0 by 
    A21;
    
        
    
        
    
    A28: (( 
    Proj (j,n)) 
    * f) 
    is_differentiable_on X by 
    A17,
    A26;
    
        
    
        thus ((
    Proj (j,n)) 
    * ((f 
    `| X) 
    /. x0)) 
    = (( 
    Proj (j,n)) 
    * ( 
    diff (f,x0))) by 
    A26,
    A23,
    NDIFF_1:def 9
    
        .= (
    diff ((( 
    Proj (j,n)) 
    * f),x0)) by 
    A27,
    A26,
    PDIFF_6: 28
    
        .= ((((
    Proj (j,n)) 
    * f) 
    `| X) 
    /. x0) by 
    A28,
    A26,
    NDIFF_1:def 9;
    
      end;
    
      for x0 be
    Point of ( 
    REAL-NS m), r0 be 
    Real st x0 
    in X & 
    0  
    < r0 holds ex s be 
    Real st 
    0  
    < s & for x1 be 
    Point of ( 
    REAL-NS m) st x1 
    in X & 
    ||.(x1
    - x0).|| 
    < s holds 
    ||.(((f
    `| X) 
    /. x1) 
    - ((f 
    `| X) 
    /. x0)).|| 
    < r0 
    
      proof
    
        let x0 be
    Point of ( 
    REAL-NS m), r0 be 
    Real;
    
        assume
    
        
    
    A29: x0 
    in X & 
    0  
    < r0; 
    
        set r = (r0
    / 2); 
    
        defpred
    
    P[
    set, 
    set] means ex j be
    Element of 
    NAT , sj be 
    Real st $2 
    = sj & $1 
    = j & 
    0  
    < sj & for x1 be 
    Point of ( 
    REAL-NS m) st x1 
    in X & 
    ||.(x1
    - x0).|| 
    < sj holds 
    ||.(((((
    Proj (j,n)) 
    * f) 
    `| X) 
    /. x1) 
    - (((( 
    Proj (j,n)) 
    * f) 
    `| X) 
    /. x0)).|| 
    < (r 
    / n); 
    
        
    
        
    
    A30: for j0 be 
    Nat st j0 
    in ( 
    Seg n) holds ex x be 
    Element of 
    REAL st 
    P[j0, x]
    
        proof
    
          let j0 be
    Nat;
    
          assume j0
    in ( 
    Seg n); 
    
          then
    
          
    
    A31: 1 
    <= j0 & j0 
    <= n by 
    FINSEQ_1: 1;
    
          reconsider j = j0 as
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
          (((
    Proj (j,n)) 
    * f) 
    `| X) 
    is_continuous_on X by 
    A17,
    A31;
    
          then
    
          consider sj be
    Real such that 
    
          
    
    A32: 
    0  
    < sj & for x1 be 
    Point of ( 
    REAL-NS m) st x1 
    in X & 
    ||.(x1
    - x0).|| 
    < sj holds 
    ||.(((((
    Proj (j,n)) 
    * f) 
    `| X) 
    /. x1) 
    - (((( 
    Proj (j,n)) 
    * f) 
    `| X) 
    /. x0)).|| 
    < (r 
    / n) by 
    A29,
    NFCONT_1: 19;
    
          reconsider sj as
    Element of 
    REAL by 
    XREAL_0:def 1;
    
          
    0  
    < sj by 
    A32;
    
          hence thesis by
    A32;
    
        end;
    
        consider s0 be
    FinSequence of 
    REAL such that 
    
        
    
    A33: ( 
    dom s0) 
    = ( 
    Seg n) & for k be 
    Nat st k 
    in ( 
    Seg n) holds 
    P[k, (s0
    . k)] from 
    FINSEQ_1:sch 5(
    A30);
    
        
    
        
    
    A34: ( 
    rng s0) is 
    finite by 
    A33,
    FINSET_1: 8;
    
        n
    in ( 
    Seg n) by 
    FINSEQ_1: 3;
    
        then
    
        reconsider rs0 = (
    rng s0) as non 
    empty
    ext-real-membered  
    set by 
    A33,
    FUNCT_1: 3;
    
        reconsider rs0 as
    left_end
    right_end non 
    empty
    ext-real-membered  
    set by 
    A34;
    
        
    
        
    
    A35: ( 
    min rs0) 
    in ( 
    rng s0) by 
    XXREAL_2:def 7;
    
        reconsider s = (
    min rs0) as 
    Real;
    
        take s;
    
        consider i1 be
    object such that 
    
        
    
    A36: i1 
    in ( 
    dom s0) & s 
    = (s0 
    . i1) by 
    A35,
    FUNCT_1:def 3;
    
        ex j be
    Element of 
    NAT , sj be 
    Real st (s0 
    . i1) 
    = sj & i1 
    = j & 
    0  
    < sj & for x1 be 
    Point of ( 
    REAL-NS m) st x1 
    in X & 
    ||.(x1
    - x0).|| 
    < sj holds 
    ||.(((((
    Proj (j,n)) 
    * f) 
    `| X) 
    /. x1) 
    - (((( 
    Proj (j,n)) 
    * f) 
    `| X) 
    /. x0)).|| 
    < (r 
    / n) by 
    A33,
    A36;
    
        hence
    0  
    < s by 
    A36;
    
        let x1 be
    Point of ( 
    REAL-NS m); 
    
        assume
    
        
    
    A37: x1 
    in X & 
    ||.(x1
    - x0).|| 
    < s; 
    
        now
    
          let j be
    Element of 
    NAT , p1,p0 be 
    Point of ( 
    R_NormSpace_of_BoundedLinearOperators (( 
    REAL-NS m),( 
    REAL-NS 1))); 
    
          assume
    
          
    
    A38: p1 
    = (( 
    Proj (j,n)) 
    * ((f 
    `| X) 
    /. x1)) & p0 
    = (( 
    Proj (j,n)) 
    * ((f 
    `| X) 
    /. x0)) & 1 
    <= j & j 
    <= n; 
    
          then
    
          
    
    A39: j 
    in ( 
    Seg n); 
    
          then
    
          consider jj be
    Element of 
    NAT , sj be 
    Real such that 
    
          
    
    A40: (s0 
    . j) 
    = sj & jj 
    = j & 
    0  
    < sj & for x1 be 
    Point of ( 
    REAL-NS m) st x1 
    in X & 
    ||.(x1
    - x0).|| 
    < sj holds 
    ||.(((((
    Proj (jj,n)) 
    * f) 
    `| X) 
    /. x1) 
    - (((( 
    Proj (jj,n)) 
    * f) 
    `| X) 
    /. x0)).|| 
    < (r 
    / n) by 
    A33;
    
          
    
          
    
    A41: (( 
    Proj (j,n)) 
    * ((f 
    `| X) 
    /. x0)) 
    = (((( 
    Proj (j,n)) 
    * f) 
    `| X) 
    /. x0) by 
    A25,
    A29,
    A38;
    
          
    
          
    
    A42: (( 
    Proj (j,n)) 
    * ((f 
    `| X) 
    /. x1)) 
    = (((( 
    Proj (j,n)) 
    * f) 
    `| X) 
    /. x1) by 
    A25,
    A37,
    A38;
    
          sj
    in ( 
    rng s0) by 
    A39,
    A40,
    A33,
    FUNCT_1: 3;
    
          then s
    <= sj by 
    XXREAL_2:def 7;
    
          then
    ||.(x1
    - x0).|| 
    < sj by 
    A37,
    XXREAL_0: 2;
    
          hence
    ||.(p1
    - p0).|| 
    <= (r 
    / n) by 
    A40,
    A37,
    A38,
    A41,
    A42;
    
        end;
    
        then
    ||.(((f
    `| X) 
    /. x1) 
    - ((f 
    `| X) 
    /. x0)).|| 
    <= (n 
    * (r 
    / n)) by 
    Th19;
    
        then
    
        
    
    A43: 
    ||.(((f
    `| X) 
    /. x1) 
    - ((f 
    `| X) 
    /. x0)).|| 
    <= r by 
    XCMPLX_1: 87;
    
        r
    < r0 by 
    A29,
    XREAL_1: 216;
    
        hence
    ||.(((f
    `| X) 
    /. x1) 
    - ((f 
    `| X) 
    /. x0)).|| 
    < r0 by 
    A43,
    XXREAL_0: 2;
    
      end;
    
      hence thesis by
    A24,
    NFCONT_1: 19;
    
    end;
    
    theorem :: 
    
    PDIFF_8:22
    
    for m,n be non
    zero  
    Element of 
    NAT , f be 
    PartFunc of ( 
    REAL-NS m), ( 
    REAL-NS n), X be 
    Subset of ( 
    REAL-NS m) st X is 
    open holds (for i be 
    Nat st 1 
    <= i 
    <= m holds f 
    is_partial_differentiable_on (X,i) & (f 
    `partial| (X,i)) 
    is_continuous_on X) iff f 
    is_differentiable_on X & (f 
    `| X) 
    is_continuous_on X 
    
    proof
    
      let m,n be non
    zero  
    Element of 
    NAT , f be 
    PartFunc of ( 
    REAL-NS m), ( 
    REAL-NS n), X be 
    Subset of ( 
    REAL-NS m); 
    
      assume
    
      
    
    A1: X is 
    open;
    
      hereby
    
        assume
    
        
    
    A2: for i be 
    Nat st 1 
    <= i & i 
    <= m holds f 
    is_partial_differentiable_on (X,i) & (f 
    `partial| (X,i)) 
    is_continuous_on X; 
    
        now
    
          let j be
    Nat;
    
          assume
    
          
    
    A3: 1 
    <= j 
    <= n; 
    
          now
    
            let i be
    Nat;
    
            assume
    
            
    
    A4: 1 
    <= i 
    <= m; 
    
            then f
    is_partial_differentiable_on (X,i) & (f 
    `partial| (X,i)) 
    is_continuous_on X by 
    A2;
    
            hence ((
    Proj (j,n)) 
    * f) 
    is_partial_differentiable_on (X,i) & ((( 
    Proj (j,n)) 
    * f) 
    `partial| (X,i)) 
    is_continuous_on X by 
    Th20,
    A1,
    A3,
    A4;
    
          end;
    
          hence ((
    Proj (j,n)) 
    * f) 
    is_differentiable_on X & ((( 
    Proj (j,n)) 
    * f) 
    `| X) 
    is_continuous_on X by 
    A1,
    PDIFF_7: 49;
    
        end;
    
        hence f
    is_differentiable_on X & (f 
    `| X) 
    is_continuous_on X by 
    A1,
    Th21;
    
      end;
    
      assume
    
      
    
    A5: f 
    is_differentiable_on X & (f 
    `| X) 
    is_continuous_on X; 
    
      let i be
    Nat;
    
      assume
    
      
    
    A6: 1 
    <= i & i 
    <= m; 
    
      now
    
        let j be
    Nat;
    
        assume 1
    <= j & j 
    <= n; 
    
        then ((
    Proj (j,n)) 
    * f) 
    is_differentiable_on X & ((( 
    Proj (j,n)) 
    * f) 
    `| X) 
    is_continuous_on X by 
    A1,
    A5,
    Th21;
    
        hence ((
    Proj (j,n)) 
    * f) 
    is_partial_differentiable_on (X,i) & ((( 
    Proj (j,n)) 
    * f) 
    `partial| (X,i)) 
    is_continuous_on X by 
    A1,
    A6,
    PDIFF_7: 49;
    
      end;
    
      hence thesis by
    A6,
    A1,
    Th20;
    
    end;