pdiff_8.miz
begin
theorem ::
PDIFF_8:1
Th1: for n,i be
Element of
NAT , q be
Element of (
REAL n), p be
Point of (
TOP-REAL n) st i
in (
Seg n) & q
= p holds
|.(p
/. i).|
<=
|.q.|
proof
let n,i be
Element of
NAT ;
let q be
Element of (
REAL n);
let p be
Point of (
TOP-REAL n);
assume that
A1: i
in (
Seg n) and
A2: q
= p;
reconsider p2 = ((p
/. i)
^2 ), q2 = ((q
/. i)
^2 ) as
Element of
REAL by
XREAL_0:def 1;
A3: (
Sum ((
0* n)
+* (i,p2)))
= ((p
/. i)
^2 ) by
A1,
JORDAN2B: 10;
(
len (
0* n))
= n by
CARD_1:def 7;
then (
len ((
0* n)
+* (i,p2)))
= n by
FUNCT_7: 97;
then
reconsider w1 = ((
0* n)
+* (i,p2)) as
Element of (n
-tuples_on
REAL ) by
FINSEQ_2: 92;
A4: (
len w1)
= n by
CARD_1:def 7;
reconsider w2 = (
sqr q) as
Element of (n
-tuples_on
REAL );
A5: (
Sum (
sqr q))
>=
0 by
RVSUM_1: 86;
A6: (
len q)
= n by
CARD_1:def 7;
for j be
Nat st j
in (
Seg n) holds (w1
. j)
<= (w2
. j)
proof
let j be
Nat such that
A7: j
in (
Seg n);
set r1 = (w1
. j), r2 = (w2
. j);
per cases ;
suppose
A8: j
= i;
then j
in (
dom q) by
A1,
A6,
FINSEQ_1:def 3;
then
A9: (q
/. j)
= (q
. j) by
PARTFUN1:def 6;
A10: (
dom (
0* n))
= (
Seg (
len (
0* n))) by
FINSEQ_1:def 3
.= (
Seg n) by
CARD_1:def 7;
i
in (
dom w1) by
A1,
A4,
FINSEQ_1:def 3;
then r1
= (w1
/. i) by
A8,
PARTFUN1:def 6
.= q2 by
A2,
A1,
A10,
FUNCT_7: 36;
hence thesis by
A8,
A9,
VALUED_1: 11;
end;
suppose
A11: j
<> i;
A12: (
dom (
0* n))
= (
Seg (
len (
0* n))) by
FINSEQ_1:def 3
.= (
Seg n) by
CARD_1:def 7;
(
dom q)
= (
Seg n) by
A6,
FINSEQ_1:def 3;
then (q
/. j)
= (q
. j) by
A7,
PARTFUN1:def 6;
then
A13: r2
= ((q
/. j)
^2 ) by
VALUED_1: 11;
j
in (
dom w1) by
A4,
A7,
FINSEQ_1:def 3;
then r1
= (w1
/. j) by
PARTFUN1:def 6
.= ((
0* n)
/. j) by
A7,
A11,
A12,
FUNCT_7: 37
.= ((n
|->
0 )
. j) by
A7,
A12,
PARTFUN1:def 6
.=
0 ;
hence thesis by
A13,
XREAL_1: 63;
end;
end;
then (
Sum w1)
<= (
Sum w2) by
RVSUM_1: 82;
then
0
<= ((p
/. i)
^2 ) & ((p
/. i)
^2 )
<= ((
sqrt (
Sum (
sqr q)))
^2 ) by
A5,
A3,
SQUARE_1:def 2,
XREAL_1: 63;
then (
sqrt ((p
/. i)
^2 ))
<= (
sqrt ((
sqrt (
Sum (
sqr q)))
^2 )) by
SQUARE_1: 26;
then
|.
|.(p
/. i).|.|
<= (
sqrt ((
sqrt (
Sum (
sqr q)))
^2 )) by
COMPLEX1: 72;
then
0
<=
|.q.| &
|.(p
/. i).|
<=
|.(
sqrt (
Sum (
sqr q))).| by
COMPLEX1: 72;
hence thesis by
ABSVALUE:def 1;
end;
theorem ::
PDIFF_8:2
Th2: for x be
Real, vx be
Element of (
REAL-NS 1) st vx
=
<*x*> holds
||.vx.||
=
|.x.|
proof
let x be
Real;
let vx be
Element of (
REAL-NS 1);
reconsider xx = vx as
Element of (
REAL 1) by
REAL_NS1:def 4;
reconsider x2 = (x
^2 ) as
Element of
REAL by
XREAL_0:def 1;
assume vx
=
<*x*>;
then (
sqrt (
Sum (
sqr xx)))
= (
sqrt (
Sum
<*x2*>)) by
RVSUM_1: 55;
then
A1: (
sqrt (
Sum (
sqr xx)))
= (
sqrt (x
^2 )) by
RVSUM_1: 73;
||.vx.||
=
|.xx.| by
REAL_NS1: 1;
hence thesis by
A1,
COMPLEX1: 72;
end;
theorem ::
PDIFF_8:3
Th3: for n be non
zero
Element of
NAT , x be
Point of (
REAL-NS n), i be
Nat st 1
<= i
<= n holds
||.((
Proj (i,n))
. x).||
<=
||.x.||
proof
let n be non
zero
Element of
NAT ;
let x be
Point of (
REAL-NS n);
let i be
Nat;
assume
A1: 1
<= i & i
<= n;
reconsider y = x as
Element of (
REAL n) by
REAL_NS1:def 4;
A2:
||.x.||
=
|.y.| by
REAL_NS1: 1;
((
Proj (i,n))
. x)
=
<*((
proj (i,n))
. x)*> by
PDIFF_1:def 4
.=
<*(y
. i)*> by
PDIFF_1:def 1;
then
A3:
||.((
Proj (i,n))
. x).||
=
|.(y
. i).| by
Th2;
reconsider p = y as
Element of (
TOP-REAL n) by
EUCLID: 22;
A4: i
in (
Seg n) by
A1;
then
A5:
|.(p
/. i).|
<=
|.y.| by
Th1;
i
in (
dom y) by
A4,
FINSEQ_1: 89;
hence thesis by
A2,
A3,
A5,
PARTFUN1:def 6;
end;
theorem ::
PDIFF_8:4
Th4: for n be non
zero
Element of
NAT , x be
Element of (
REAL-NS n), i be
Element of
NAT holds
||.((
Proj (i,n))
. x).||
=
|.((
proj (i,n))
. x).|
proof
let n be non
zero
Element of
NAT ;
let x be
Element of (
REAL-NS n);
let i be
Element of
NAT ;
reconsider y = x as
Element of (
REAL n) by
REAL_NS1:def 4;
((
Proj (i,n))
. x)
=
<*((
proj (i,n))
. x)*> by
PDIFF_1:def 4
.=
<*(y
. i)*> by
PDIFF_1:def 1;
then
||.((
Proj (i,n))
. x).||
=
|.(y
. i).| by
Th2;
hence thesis by
PDIFF_1:def 1;
end;
theorem ::
PDIFF_8:5
for n be non
zero
Element of
NAT , x be
Element of (
REAL n), i be
Element of
NAT st 1
<= i & i
<= n holds
|.((
proj (i,n))
. x).|
<=
|.x.|
proof
let n be non
zero
Element of
NAT ;
let x be
Element of (
REAL n);
let i be
Element of
NAT ;
assume
A1: 1
<= i & i
<= n;
reconsider y = x as
Element of (
REAL-NS n) by
REAL_NS1:def 4;
A2:
||.((
Proj (i,n))
. y).||
=
|.((
proj (i,n))
. y).| by
Th4;
||.((
Proj (i,n))
. y).||
<=
||.y.|| by
A1,
Th3;
hence thesis by
A2,
REAL_NS1: 1;
end;
theorem ::
PDIFF_8:6
Th6: for m,n be non
zero
Element of
NAT , s be
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS m),(
REAL-NS n))), i be
Nat st 1
<= i
<= n holds (
Proj (i,n)) is
Lipschitzian
LinearOperator of (
REAL-NS n), (
REAL-NS 1) & ((
BoundedLinearOperatorsNorm ((
REAL-NS n),(
REAL-NS 1)))
. (
Proj (i,n)))
<= 1
proof
let m,n be non
zero
Element of
NAT ;
let s be
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS m),(
REAL-NS n)));
let i be
Nat;
assume
A1: 1
<= i & i
<= n;
A2: for y be
Point of (
REAL-NS n), r be
Real holds ((
Proj (i,n))
. (r
* y))
= (r
* ((
Proj (i,n))
. y)) by
PDIFF_6: 27;
for y1,y2 be
Point of (
REAL-NS n) holds ((
Proj (i,n))
. (y1
+ y2))
= (((
Proj (i,n))
. y1)
+ ((
Proj (i,n))
. y2)) by
PDIFF_6: 26;
hence
A3: (
Proj (i,n)) is
Lipschitzian
LinearOperator of (
REAL-NS n), (
REAL-NS 1) by
A2,
LOPBAN_1:def 5,
VECTSP_1:def 20;
deffunc
BLONorm(
Nat,
Nat) = (
BoundedLinearOperatorsNorm ((
REAL-NS $1),(
REAL-NS $2)));
A4: (
Proj (i,n))
in (
BoundedLinearOperators ((
REAL-NS n),(
REAL-NS 1))) by
A3,
LOPBAN_1:def 9;
set s0 = (
modetrans ((
Proj (i,n)),(
REAL-NS n),(
REAL-NS 1)));
(
upper_bound (
PreNorms s0))
<= 1
proof
A5: for x be
Real st x
in (
PreNorms s0) holds x
<= 1
proof
let x be
Real;
assume x
in (
PreNorms s0);
then
consider y be
VECTOR of (
REAL-NS n) such that
A6: x
=
||.(s0
. y).|| &
||.y.||
<= 1;
A7:
||.((
Proj (i,n))
. y).||
<=
||.y.|| by
A1,
Th3;
(
Proj (i,n))
= s0 by
A3,
LOPBAN_1: 29;
hence thesis by
A6,
A7,
XXREAL_0: 2;
end;
A8: (
PreNorms s0) is
bounded_above
proof
for x be
ExtReal st x
in (
PreNorms s0) holds x
<= 1 by
A5;
then 1 is
UpperBound of (
PreNorms s0) by
XXREAL_2:def 1;
hence thesis by
XXREAL_2:def 10;
end;
assume
A9: (
upper_bound (
PreNorms s0))
> 1;
set dif = ((
upper_bound (
PreNorms s0))
- 1);
A10: dif
>
0 by
A9,
XREAL_1: 50;
ex w be
Real st w
in (
PreNorms s0) & ((
upper_bound (
PreNorms s0))
- dif)
< w by
A10,
A8,
SEQ_4:def 1;
hence contradiction by
A5;
end;
hence thesis by
A4,
LOPBAN_1:def 13;
end;
theorem ::
PDIFF_8:7
Th7: for m,n be non
zero
Element of
NAT , s be
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS m),(
REAL-NS n))), i be
Nat st 1
<= i
<= n holds ((
Proj (i,n))
* s) is
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS m),(
REAL-NS 1))) & ((
BoundedLinearOperatorsNorm ((
REAL-NS m),(
REAL-NS 1)))
. ((
Proj (i,n))
* s))
<= (((
BoundedLinearOperatorsNorm ((
REAL-NS n),(
REAL-NS 1)))
. (
Proj (i,n)))
* ((
BoundedLinearOperatorsNorm ((
REAL-NS m),(
REAL-NS n)))
. s))
proof
let m,n be non
zero
Element of
NAT ;
let s be
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS m),(
REAL-NS n)));
let i be
Nat;
deffunc
BLONorm(
Nat,
Nat) = (
BoundedLinearOperatorsNorm ((
REAL-NS $1),(
REAL-NS $2)));
assume 1
<= i & i
<= n;
then
A1: (
Proj (i,n)) is
Lipschitzian
LinearOperator of (
REAL-NS n), (
REAL-NS 1) by
Th6;
s is
Lipschitzian
LinearOperator of (
REAL-NS m), (
REAL-NS n) by
LOPBAN_1:def 9;
then ((
Proj (i,n))
* s) is
Lipschitzian
LinearOperator of (
REAL-NS m), (
REAL-NS 1) & (
BLONorm(m,)
. ((
Proj (i,n))
* s))
<= ((
BLONorm(n,)
. (
Proj (i,n)))
* (
BLONorm(m,n)
. s)) by
A1,
LOPBAN_2: 2;
hence thesis by
LOPBAN_1:def 9;
end;
theorem ::
PDIFF_8:8
for n be non
zero
Element of
NAT , i be
Element of
NAT holds (
Proj (i,n)) is
homogeneous
proof
let n be non
zero
Element of
NAT , i be
Element of
NAT ;
thus for x be
Point of (
REAL-NS n), r be
Real holds ((
Proj (i,n))
. (r
* x))
= (r
* ((
Proj (i,n))
. x)) by
PDIFF_6: 27;
end;
theorem ::
PDIFF_8:9
for n be non
zero
Element of
NAT , x be
Element of (
REAL n), r be
Real, i be
Element of
NAT holds ((
proj (i,n))
. (r
* x))
= (r
* ((
proj (i,n))
. x))
proof
let n be non
zero
Element of
NAT , x be
Element of (
REAL n), r be
Real, i be
Element of
NAT ;
thus ((
proj (i,n))
. (r
* x))
= ((r
* x)
. i) by
PDIFF_1:def 1
.= (r
* (x
. i)) by
RVSUM_1: 44
.= (r
* ((
proj (i,n))
. x)) by
PDIFF_1:def 1;
end;
theorem ::
PDIFF_8:10
for n be non
zero
Element of
NAT , x,y be
Element of (
REAL n), i be
Element of
NAT holds ((
proj (i,n))
. (x
+ y))
= (((
proj (i,n))
. x)
+ ((
proj (i,n))
. y))
proof
let n be non
zero
Element of
NAT , x,y be
Element of (
REAL n), i be
Element of
NAT ;
thus ((
proj (i,n))
. (x
+ y))
= ((x
+ y)
. i) by
PDIFF_1:def 1
.= ((x
. i)
+ (y
. i)) by
RVSUM_1: 11
.= (((
proj (i,n))
. x)
+ (y
. i)) by
PDIFF_1:def 1
.= (((
proj (i,n))
. x)
+ ((
proj (i,n))
. y)) by
PDIFF_1:def 1;
end;
theorem ::
PDIFF_8:11
Th11: for n be non
zero
Element of
NAT , x,y be
Point of (
REAL-NS n), i be
Nat holds ((
Proj (i,n))
. (x
- y))
= (((
Proj (i,n))
. x)
- ((
Proj (i,n))
. y))
proof
let n be non
zero
Element of
NAT , x,y be
Point of (
REAL-NS n), i be
Nat;
reconsider x1 = x, y1 = y as
Element of (
REAL n) by
REAL_NS1:def 4;
reconsider rx = (x1
. i), ry = (y1
. i) as
Element of
REAL by
XREAL_0:def 1;
((
Proj (i,n))
. x)
=
<*((
proj (i,n))
. x)*> & ((
Proj (i,n))
. y)
=
<*((
proj (i,n))
. y)*> by
PDIFF_1:def 4;
then
A1: ((
Proj (i,n))
. x)
=
<*rx*> & ((
Proj (i,n))
. y)
=
<*ry*> by
PDIFF_1:def 1;
A2:
<*rx*> is
Element of (
REAL 1) &
<*ry*> is
Element of (
REAL 1) by
FINSEQ_2: 98;
((
Proj (i,n))
. (x
- y))
=
<*((
proj (i,n))
. (x
- y))*> by
PDIFF_1:def 4
.=
<*((
proj (i,n))
. (x1
- y1))*> by
REAL_NS1: 5
.=
<*((x1
- y1)
. i)*> by
PDIFF_1:def 1
.=
<*((x1
. i)
- (y1
. i))*> by
RVSUM_1: 27
.= (
<*rx*>
-
<*ry*>) by
RVSUM_1: 29;
hence thesis by
A1,
A2,
REAL_NS1: 5;
end;
theorem ::
PDIFF_8:12
for n be non
zero
Element of
NAT , x,y be
Element of (
REAL n), i be
Element of
NAT holds ((
proj (i,n))
. (x
- y))
= (((
proj (i,n))
. x)
- ((
proj (i,n))
. y))
proof
let n be non
zero
Element of
NAT , x,y be
Element of (
REAL n), i be
Element of
NAT ;
thus ((
proj (i,n))
. (x
- y))
= ((x
- y)
. i) by
PDIFF_1:def 1
.= ((x
. i)
- (y
. i)) by
RVSUM_1: 27
.= (((
proj (i,n))
. x)
- (y
. i)) by
PDIFF_1:def 1
.= (((
proj (i,n))
. x)
- ((
proj (i,n))
. y)) by
PDIFF_1:def 1;
end;
Lm1: for m,n be non
zero
Element of
NAT , s,t be
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS m),(
REAL-NS n))), i be
Nat, si,ti be
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS m),(
REAL-NS 1))) st si
= ((
Proj (i,n))
* s) & ti
= ((
Proj (i,n))
* t) & 1
<= i
<= n holds (si
- ti)
= ((
Proj (i,n))
* (s
- t))
proof
let m,n be non
zero
Element of
NAT , s,t be
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS m),(
REAL-NS n))), i be
Nat, si,ti be
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS m),(
REAL-NS 1)));
assume
A1: si
= ((
Proj (i,n))
* s) & ti
= ((
Proj (i,n))
* t) & 1
<= i & i
<= n;
deffunc
RealNormSpaceOfBLO( non
zero
Element of
NAT , non
zero
Element of
NAT ) = (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS $1),(
REAL-NS $2)));
A2: the
carrier of (
REAL-NS m)
= (
REAL m) by
REAL_NS1:def 4;
A3: (
Proj (i,n)) is
Lipschitzian
LinearOperator of (
REAL-NS n), (
REAL-NS 1) by
Th6,
A1;
A4: (
dom (si
- ti))
= (
REAL m)
proof
(si
- ti) is
LinearOperator of (
REAL-NS m), (
REAL-NS 1) by
LOPBAN_1:def 9;
hence thesis by
A2,
FUNCT_2:def 1;
end;
A5: (
dom (si
- ti))
= (
dom ((
Proj (i,n))
* (s
- t)))
proof
(s
- t) is
Lipschitzian
LinearOperator of (
REAL-NS m), (
REAL-NS n) by
LOPBAN_1:def 9;
then ((
Proj (i,n))
* (s
- t)) is
LinearOperator of (
REAL-NS m), (
REAL-NS 1) by
A3,
LOPBAN_2: 1;
hence thesis by
A4,
A2,
FUNCT_2:def 1;
end;
A6: (
dom si)
= (
REAL m)
proof
si is
LinearOperator of (
REAL-NS m), (
REAL-NS 1) by
LOPBAN_1:def 9;
hence thesis by
A2,
FUNCT_2:def 1;
end;
A7: (
dom ti)
= (
REAL m)
proof
ti is
LinearOperator of (
REAL-NS m), (
REAL-NS 1) by
LOPBAN_1:def 9;
hence thesis by
A2,
FUNCT_2:def 1;
end;
A8: for x be
Point of (
REAL-NS m) holds ((si
- ti)
. x)
= (((
Proj (i,n))
* (s
- t))
. x)
proof
let x be
Point of (
REAL-NS m);
reconsider x as
Element of (
REAL m) by
REAL_NS1:def 4;
reconsider y = x as
Point of (
REAL-NS m);
(((
Proj (i,n))
* (s
- t))
. x)
= ((
Proj (i,n))
. ((s
- t)
. x)) by
A4,
A5,
FUNCT_1: 12
.= ((
Proj (i,n))
. ((s
. y)
- (t
. y))) by
LOPBAN_1: 40
.= (((
Proj (i,n))
. (s
. y))
- ((
Proj (i,n))
. (t
. y))) by
Th11
.= ((si
. y)
- ((
Proj (i,n))
. (t
. y))) by
A1,
A6,
FUNCT_1: 12
.= ((si
. y)
- (ti
. y)) by
A1,
A7,
FUNCT_1: 12
.= ((si
- ti)
. x) by
LOPBAN_1: 40;
hence thesis;
end;
for x be
object st x
in (
dom (si
- ti)) holds ((si
- ti)
. x)
= (((
Proj (i,n))
* (s
- t))
. x)
proof
let x be
object;
assume
A9: x
in (
dom (si
- ti));
reconsider x as
Point of (
REAL-NS m) by
A9,
A4,
REAL_NS1:def 4;
((si
- ti)
. x)
= (((
Proj (i,n))
* (s
- t))
. x) by
A8;
hence thesis;
end;
hence thesis by
A5,
FUNCT_1: 2;
end;
theorem ::
PDIFF_8:13
Th13: for m,n be non
zero
Element of
NAT , s be
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS m),(
REAL-NS n))), i be
Nat, si be
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS m),(
REAL-NS 1))) st si
= ((
Proj (i,n))
* s) & 1
<= i
<= n holds
||.si.||
<=
||.s.||
proof
let m,n be non
zero
Element of
NAT , s be
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS m),(
REAL-NS n))), i be
Nat, si be
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS m),(
REAL-NS 1)));
assume
A1: si
= ((
Proj (i,n))
* s) & 1
<= i & i
<= n;
deffunc
BLONorm(
Nat,
Nat) = (
BoundedLinearOperatorsNorm ((
REAL-NS $1),(
REAL-NS $2)));
A2: (
Proj (i,n)) is
Lipschitzian
LinearOperator of (
REAL-NS n), (
REAL-NS 1) & (
BLONorm(n,)
. (
Proj (i,n)))
<= 1 by
Th6,
A1;
s is
Lipschitzian
LinearOperator of (
REAL-NS m), (
REAL-NS n) by
LOPBAN_1:def 9;
then
A3:
||.si.||
<= ((
BLONorm(n,)
. (
Proj (i,n)))
*
||.s.||) by
A2,
A1,
LOPBAN_2: 2;
0
<=
||.s.|| by
NORMSP_1: 4;
then ((
BLONorm(n,)
. (
Proj (i,n)))
*
||.s.||)
<= (1
*
||.s.||) by
Th6,
A1,
XREAL_1: 64;
hence thesis by
A3,
XXREAL_0: 2;
end;
theorem ::
PDIFF_8:14
Th14: for m,n be non
zero
Element of
NAT , s,t be
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS m),(
REAL-NS n))), si,ti be
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS m),(
REAL-NS 1))), i be
Nat st si
= ((
Proj (i,n))
* s) & ti
= ((
Proj (i,n))
* t) & 1
<= i
<= n holds
||.(si
- ti).||
<=
||.(s
- t).||
proof
let m,n be non
zero
Element of
NAT , s,t be
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS m),(
REAL-NS n))), si,ti be
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS m),(
REAL-NS 1))), i be
Nat;
deffunc
BLONorm(
Element of
NAT ,
Element of
NAT ) = (
BoundedLinearOperatorsNorm ((
REAL-NS $1),(
REAL-NS $2)));
assume
A1: si
= ((
Proj (i,n))
* s) & ti
= ((
Proj (i,n))
* t) & 1
<= i & i
<= n;
(si
- ti)
= ((
Proj (i,n))
* (s
- t)) by
Lm1,
A1;
hence thesis by
A1,
Th13;
end;
theorem ::
PDIFF_8:15
Th15: for K be
Real, n be
Nat, s be
Element of (
REAL n) st for i be
Element of
NAT st 1
<= i & i
<= n holds
|.(s
. i).|
<= K holds
|.s.|
<= (n
* K)
proof
let K be
Real;
defpred
P[
Nat] means for s be
Element of (
REAL $1) st for i be
Element of
NAT st 1
<= i & i
<= $1 holds
|.(s
. i).|
<= K holds
|.s.|
<= ($1
* K);
A1:
P[
0 ]
proof
let s be
Element of (
REAL
0 );
s
= (
0*
0 );
hence thesis by
EUCLID: 7;
end;
A2: for n be
Nat st
P[n] holds
P[(n
+ 1)]
proof
let n be
Nat;
assume
A3:
P[n];
let s be
Element of (
REAL (n
+ 1));
assume
A4: for i be
Element of
NAT st 1
<= i & i
<= (n
+ 1) holds
|.(s
. i).|
<= K;
set sn = (s
| n);
(
len s)
= (n
+ 1) by
CARD_1:def 7;
then (
len sn)
= n by
FINSEQ_3: 53;
then
reconsider sn as
Element of (
REAL n) by
FINSEQ_2: 92;
A5:
now
let i be
Element of
NAT ;
assume
A6: 1
<= i & i
<= n;
n
<= (n
+ 1) by
NAT_1: 11;
then 1
<= i & i
<= (n
+ 1) by
A6,
XXREAL_0: 2;
then
|.(s
. i).|
<= K by
A4;
hence
|.(sn
. i).|
<= K by
A6,
FINSEQ_3: 112;
end;
A7: (n
+ 1)
in
NAT by
ORDINAL1:def 12;
1
<= (n
+ 1) & (n
+ 1)
<= (n
+ 1) by
NAT_1: 11;
then
A8:
|.(s
. (n
+ 1)).|
<= K by
A4,
A7;
A9: (
|.s.|
^2 )
= ((
|.sn.|
^2 )
+ ((s
. (n
+ 1))
^2 )) by
REAL_NS1: 10;
A10: K
>=
0 by
A8,
COMPLEX1: 46;
A11: (
|.sn.|
^2 )
<= ((n
* K)
^2 ) by
A3,
A5,
SQUARE_1: 15;
A12: ((s
. (n
+ 1))
^2 )
<= (K
^2 ) by
A8,
SERIES_3: 24;
A13: ((((n
* K)
^2 )
+ (K
^2 ))
+ ((2
* (n
* K))
* K))
>= (((n
* K)
^2 )
+ (K
^2 )) by
A10,
XREAL_1: 38;
((
|.sn.|
^2 )
+ ((s
. (n
+ 1))
^2 ))
<= (((n
* K)
^2 )
+ (K
^2 )) by
A11,
A12,
XREAL_1: 7;
then
A14: (
|.s.|
^2 )
<= (((n
+ 1)
* K)
^2 ) by
A9,
A13,
XXREAL_0: 2;
A15: (
sqrt (((n
+ 1)
* K)
^2 ))
=
|.((n
+ 1)
* K).| by
COMPLEX1: 72;
(
sqrt (
|.s.|
^2 ))
<= (
sqrt (((n
+ 1)
* K)
^2 )) by
A14,
SQUARE_1: 26;
then
|.
|.
|.s.|.|.|
<= (
sqrt (((n
+ 1)
* K)
^2 )) by
COMPLEX1: 72;
then
|.s.|
<= (
sqrt (((n
+ 1)
* K)
^2 )) by
ABSVALUE:def 1;
hence thesis by
A10,
A15,
ABSVALUE:def 1;
end;
thus for n be
Nat holds
P[n] from
NAT_1:sch 2(
A1,
A2);
end;
theorem ::
PDIFF_8:16
Th16: for K be
Real, n be non
zero
Element of
NAT , s be
Element of (
REAL-NS n) st for i be
Element of
NAT st 1
<= i & i
<= n holds
||.((
Proj (i,n))
. s).||
<= K holds
||.s.||
<= (n
* K)
proof
let K be
Real, n be non
zero
Element of
NAT , s be
Element of (
REAL-NS n);
assume
A1: for i be
Element of
NAT st 1
<= i & i
<= n holds
||.((
Proj (i,n))
. s).||
<= K;
consider m be
Nat such that
A2: n
= (m
+ 1) by
NAT_1: 6;
reconsider m as
Element of
NAT by
ORDINAL1:def 12;
reconsider s0 = s as
Element of (
REAL n) by
REAL_NS1:def 4;
now
let i be
Element of
NAT ;
assume 1
<= i & i
<= (m
+ 1);
then
A3:
||.((
Proj (i,n))
. s).||
<= K by
A2,
A1;
((
Proj (i,n))
. s)
=
<*((
proj (i,n))
. s0)*> by
PDIFF_1:def 4
.=
<*(s0
. i)*> by
PDIFF_1:def 1;
hence
|.(s0
. i).|
<= K by
A3,
Th2;
end;
then
|.s0.|
<= (n
* K) by
A2,
Th15;
hence thesis by
REAL_NS1: 1;
end;
theorem ::
PDIFF_8:17
for K be
Real, n be non
zero
Element of
NAT , s be
Element of (
REAL n) st for i be
Element of
NAT st 1
<= i & i
<= n holds
|.((
proj (i,n))
. s).|
<= K holds
|.s.|
<= (n
* K)
proof
let K be
Real, n be non
zero
Element of
NAT , s be
Element of (
REAL n);
assume
A1: for i be
Element of
NAT st 1
<= i & i
<= n holds
|.((
proj (i,n))
. s).|
<= K;
reconsider t = s as
Element of (
REAL-NS n) by
REAL_NS1:def 4;
for i be
Element of
NAT st 1
<= i & i
<= n holds
||.((
Proj (i,n))
. t).||
<= K
proof
let i be
Element of
NAT ;
assume 1
<= i & i
<= n;
then
|.((
proj (i,n))
. t).|
<= K by
A1;
hence
||.((
Proj (i,n))
. t).||
<= K by
Th4;
end;
then
||.t.||
<= (n
* K) by
Th16;
hence thesis by
REAL_NS1: 1;
end;
theorem ::
PDIFF_8:18
Th18: for m,n be non
zero
Element of
NAT , s be
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS m),(
REAL-NS n))), K be
Real st for i be
Element of
NAT , si be
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS m),(
REAL-NS 1))) st si
= ((
Proj (i,n))
* s) & 1
<= i & i
<= n holds
||.si.||
<= K holds
||.s.||
<= (n
* K)
proof
deffunc
RealNormSpaceOfBLO( non
zero
Nat, non
zero
Nat) = (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS $1),(
REAL-NS $2)));
let m,n be non
zero
Element of
NAT , s be
Point of
RealNormSpaceOfBLO(m,n), K be
Real;
assume
A1: for i be
Element of
NAT , si be
Point of
RealNormSpaceOfBLO(m,) st si
= ((
Proj (i,n))
* s) & 1
<= i & i
<= n holds
||.si.||
<= K;
reconsider s0 = s as
Lipschitzian
LinearOperator of (
REAL-NS m), (
REAL-NS n) by
LOPBAN_1:def 9;
A2:
now
let x be
Point of (
REAL-NS m);
assume
A3:
||.x.||
<= 1;
now
let i be
Element of
NAT ;
assume
A4: 1
<= i & i
<= n;
set si = ((
Proj (i,n))
* s);
reconsider si as
Point of
RealNormSpaceOfBLO(m,) by
Th7,
A4;
reconsider sii = si as
Lipschitzian
LinearOperator of (
REAL-NS m), (
REAL-NS 1) by
LOPBAN_1:def 9;
A5:
||.(sii
. x).||
<= (
||.si.||
*
||.x.||) by
LOPBAN_1: 32;
A6: the
carrier of (
REAL-NS m)
= (
REAL m) by
REAL_NS1:def 4;
A7: (
Proj (i,n)) is
Lipschitzian
LinearOperator of (
REAL-NS n), (
REAL-NS 1) by
A4,
Th6;
s is
Lipschitzian
LinearOperator of (
REAL-NS m), (
REAL-NS n) by
LOPBAN_1:def 9;
then ((
Proj (i,n))
* s) is
LinearOperator of (
REAL-NS m), (
REAL-NS 1) by
A7,
LOPBAN_2: 1;
then (
dom ((
Proj (i,n))
* s))
= (
REAL m) by
A6,
FUNCT_2:def 1;
then
A8: (sii
. x)
= ((
Proj (i,n))
. (s
. x)) by
A6,
FUNCT_1: 12;
A9:
0
<=
||.x.|| by
NORMSP_1: 4;
(
||.si.||
*
||.x.||)
<= (K
*
||.x.||) by
A4,
A1,
A9,
XREAL_1: 64;
hence
||.((
Proj (i,n))
. (s
. x)).||
<= (K
*
||.x.||) by
A5,
A8,
XXREAL_0: 2;
end;
then
A10:
||.(s
. x).||
<= (n
* (K
*
||.x.||)) by
Th16;
A11: 1
<= 1 & 1
<= n by
NAT_1: 14;
then
reconsider s1 = ((
Proj (1,n))
* s) as
Point of
RealNormSpaceOfBLO(m,) by
Th7;
||.s1.||
<= K by
A11,
A1;
then
A12:
0
<= K by
NORMSP_1: 4;
((n
* K)
*
||.x.||)
<= ((n
* K)
* 1) by
A12,
A3,
XREAL_1: 64;
hence
||.(s0
. x).||
<= (n
* K) by
A10,
XXREAL_0: 2;
end;
set PreNormS = (
PreNorms (
modetrans (s,(
REAL-NS m),(
REAL-NS n))));
A13: for y be
ExtReal st y
in (
PreNorms (
modetrans (s,(
REAL-NS m),(
REAL-NS n)))) holds y
<= (n
* K)
proof
let y be
ExtReal;
assume
A14: y
in PreNormS;
consider x be
VECTOR of (
REAL-NS m) such that
A15: y
=
||.((
modetrans (s,(
REAL-NS m),(
REAL-NS n)))
. x).|| &
||.x.||
<= 1 by
A14;
y
=
||.(s0
. x).|| by
A15,
LOPBAN_1: 29;
hence thesis by
A2,
A15;
end;
A16: PreNormS is
bounded_above
proof
(n
* K) is
UpperBound of PreNormS by
A13,
XXREAL_2:def 1;
hence thesis by
XXREAL_2:def 10;
end;
set UBPreNormS = (
upper_bound PreNormS);
not UBPreNormS
> (n
* K)
proof
assume
A17: UBPreNormS
> (n
* K);
set dif = (UBPreNormS
- (n
* K));
A18: dif
>
0 by
A17,
XREAL_1: 50;
consider w be
Real such that
A19: w
in PreNormS & (UBPreNormS
- dif)
< w by
A18,
A16,
SEQ_4:def 1;
thus contradiction by
A19,
A13;
end;
then (
upper_bound (
PreNorms s0))
<= (n
* K) by
LOPBAN_1:def 11;
hence thesis by
LOPBAN_1: 30;
end;
theorem ::
PDIFF_8:19
Th19: for m,n be non
zero
Element of
NAT , s,t be
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS m),(
REAL-NS n))), K be
Real st for i be
Element of
NAT , si,ti be
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS m),(
REAL-NS 1))) st si
= ((
Proj (i,n))
* s) & ti
= ((
Proj (i,n))
* t) & 1
<= i & i
<= n holds
||.(si
- ti).||
<= K holds
||.(s
- t).||
<= (n
* K)
proof
deffunc
RealNormSpaceOfBLO( non
zero
Nat, non
zero
Nat) = (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS $1),(
REAL-NS $2)));
let m,n be non
zero
Element of
NAT , s,t be
Point of
RealNormSpaceOfBLO(m,n), K be
Real;
assume
A1: for i be
Element of
NAT , si,ti be
Point of
RealNormSpaceOfBLO(m,) st si
= ((
Proj (i,n))
* s) & ti
= ((
Proj (i,n))
* t) & 1
<= i & i
<= n holds
||.(si
- ti).||
<= K;
now
let i be
Element of
NAT , sti be
Point of
RealNormSpaceOfBLO(m,);
assume
A2: sti
= ((
Proj (i,n))
* (s
- t)) & 1
<= i & i
<= n;
reconsider si = ((
Proj (i,n))
* s), ti = ((
Proj (i,n))
* t) as
Point of
RealNormSpaceOfBLO(m,) by
Th7,
A2;
(si
- ti)
= sti by
A2,
Lm1;
hence
||.sti.||
<= K by
A2,
A1;
end;
hence thesis by
Th18;
end;
theorem ::
PDIFF_8:20
Th20: for m,n be non
zero
Element of
NAT , f be
PartFunc of (
REAL-NS m), (
REAL-NS n), X be
Subset of (
REAL-NS m), i be
Nat st 1
<= i & i
<= m & X is
open holds (f
is_partial_differentiable_on (X,i) & (f
`partial| (X,i))
is_continuous_on X) iff for j be
Nat st 1
<= j
<= n holds ((
Proj (j,n))
* f)
is_partial_differentiable_on (X,i) & (((
Proj (j,n))
* f)
`partial| (X,i))
is_continuous_on X
proof
let m,n be non
zero
Element of
NAT , f be
PartFunc of (
REAL-NS m), (
REAL-NS n), X be
Subset of (
REAL-NS m), i be
Nat;
assume
A1: 1
<= i & i
<= m & X is
open;
hereby
assume
A2: f
is_partial_differentiable_on (X,i) & (f
`partial| (X,i))
is_continuous_on X;
then
A3: X
c= (
dom f) by
A1,
PDIFF_7: 8;
thus for j be
Nat st 1
<= j
<= n holds (((
Proj (j,n))
* f)
is_partial_differentiable_on (X,i) & (((
Proj (j,n))
* f)
`partial| (X,i))
is_continuous_on X)
proof
let j be
Nat;
assume
A4: 1
<= j & j
<= n;
A5: (
dom (
Proj (j,n)))
= the
carrier of (
REAL-NS n) by
FUNCT_2:def 1;
(
rng f)
c= the
carrier of (
REAL-NS n);
then
A6: X
c= (
dom ((
Proj (j,n))
* f)) by
A5,
A3,
RELAT_1: 27;
now
let x0 be
Point of (
REAL-NS m);
assume x0
in X;
then f
is_partial_differentiable_in (x0,i) by
A2,
A1,
PDIFF_7: 8;
then (f
* (
reproj (i,x0)))
is_differentiable_in ((
Proj (i,m))
. x0) by
PDIFF_1:def 9;
then ((
Proj (j,n))
* (f
* (
reproj (i,x0))))
is_differentiable_in ((
Proj (i,m))
. x0) by
A4,
PDIFF_6: 29;
then (((
Proj (j,n))
* f)
* (
reproj (i,x0)))
is_differentiable_in ((
Proj (i,m))
. x0) by
RELAT_1: 36;
hence ((
Proj (j,n))
* f)
is_partial_differentiable_in (x0,i) by
PDIFF_1:def 9;
end;
hence
A7: ((
Proj (j,n))
* f)
is_partial_differentiable_on (X,i) by
A6,
A1,
PDIFF_7: 8;
then
A8: X
c= (
dom (((
Proj (j,n))
* f)
`partial| (X,i))) by
PDIFF_1:def 20;
A9: for x0 be
Point of (
REAL-NS m) st x0
in X holds ((((
Proj (j,n))
* f)
`partial| (X,i))
/. x0)
= ((
Proj (j,n))
* ((f
`partial| (X,i))
/. x0))
proof
let x0 be
Point of (
REAL-NS m);
assume
A10: x0
in X;
then f
is_partial_differentiable_in (x0,i) by
A2,
A1,
PDIFF_7: 8;
then
A11: (f
* (
reproj (i,x0)))
is_differentiable_in ((
Proj (i,m))
. x0) by
PDIFF_1:def 9;
thus ((((
Proj (j,n))
* f)
`partial| (X,i))
/. x0)
= (
partdiff (((
Proj (j,n))
* f),x0,i)) by
A7,
A10,
PDIFF_1:def 20
.= (
diff ((((
Proj (j,n))
* f)
* (
reproj (i,x0))),((
Proj (i,m))
. x0))) by
PDIFF_1:def 10
.= (
diff (((
Proj (j,n))
* (f
* (
reproj (i,x0)))),((
Proj (i,m))
. x0))) by
RELAT_1: 36
.= ((
Proj (j,n))
* (
diff ((f
* (
reproj (i,x0))),((
Proj (i,m))
. x0)))) by
A11,
A4,
PDIFF_6: 28
.= ((
Proj (j,n))
* (
partdiff (f,x0,i))) by
PDIFF_1:def 10
.= ((
Proj (j,n))
* ((f
`partial| (X,i))
/. x0)) by
A2,
A10,
PDIFF_1:def 20;
end;
for x0 be
Point of (
REAL-NS m), r be
Real st x0
in X &
0
< r holds ex s be
Real st
0
< s & for x1 be
Point of (
REAL-NS m) st x1
in X &
||.(x1
- x0).||
< s holds
||.(((((
Proj (j,n))
* f)
`partial| (X,i))
/. x1)
- ((((
Proj (j,n))
* f)
`partial| (X,i))
/. x0)).||
< r
proof
let x0 be
Point of (
REAL-NS m), r be
Real;
assume
A12: x0
in X &
0
< r;
then
consider s be
Real such that
A13:
0
< s & for x1 be
Point of (
REAL-NS m) st x1
in X &
||.(x1
- x0).||
< s holds
||.(((f
`partial| (X,i))
/. x1)
- ((f
`partial| (X,i))
/. x0)).||
< r by
A2,
NFCONT_1: 19;
take s;
thus
0
< s by
A13;
let x1 be
Point of (
REAL-NS m);
assume
A14: x1
in X &
||.(x1
- x0).||
< s;
then
A15:
||.(((f
`partial| (X,i))
/. x1)
- ((f
`partial| (X,i))
/. x0)).||
< r by
A13;
A16: ((((
Proj (j,n))
* f)
`partial| (X,i))
/. x0)
= ((
Proj (j,n))
* ((f
`partial| (X,i))
/. x0)) by
A9,
A12;
reconsider p1 = ((
Proj (j,n))
* ((f
`partial| (X,i))
/. x1)) as
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS 1),(
REAL-NS 1))) by
Th7,
A4;
reconsider p0 = ((
Proj (j,n))
* ((f
`partial| (X,i))
/. x0)) as
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS 1),(
REAL-NS 1))) by
Th7,
A4;
||.(((((
Proj (j,n))
* f)
`partial| (X,i))
/. x1)
- ((((
Proj (j,n))
* f)
`partial| (X,i))
/. x0)).||
=
||.(p1
- p0).|| by
A9,
A14,
A16;
then
||.(((((
Proj (j,n))
* f)
`partial| (X,i))
/. x1)
- ((((
Proj (j,n))
* f)
`partial| (X,i))
/. x0)).||
<=
||.(((f
`partial| (X,i))
/. x1)
- ((f
`partial| (X,i))
/. x0)).|| by
Th14,
A4;
hence
||.(((((
Proj (j,n))
* f)
`partial| (X,i))
/. x1)
- ((((
Proj (j,n))
* f)
`partial| (X,i))
/. x0)).||
< r by
A15,
XXREAL_0: 2;
end;
hence (((
Proj (j,n))
* f)
`partial| (X,i))
is_continuous_on X by
A8,
NFCONT_1: 19;
end;
end;
assume
A17: for j be
Nat st 1
<= j
<= n holds (((
Proj (j,n))
* f)
is_partial_differentiable_on (X,i) & (((
Proj (j,n))
* f)
`partial| (X,i))
is_continuous_on X);
1
<= n by
NAT_1: 14;
then ((
Proj (1,n))
* f)
is_partial_differentiable_on (X,i) by
A17;
then
A18: X
c= (
dom ((
Proj (1,n))
* f)) by
PDIFF_1:def 19;
A19: (
dom (
Proj (1,n)))
= the
carrier of (
REAL-NS n) by
FUNCT_2:def 1;
(
rng f)
c= the
carrier of (
REAL-NS n);
then
A20: X
c= (
dom f) by
A18,
A19,
RELAT_1: 27;
A21:
now
let x0 be
Point of (
REAL-NS m);
assume
A22: x0
in X;
now
let j be
Nat;
assume 1
<= j & j
<= n;
then ((
Proj (j,n))
* f)
is_partial_differentiable_on (X,i) by
A17;
then ((
Proj (j,n))
* f)
is_partial_differentiable_in (x0,i) by
A22,
A1,
PDIFF_7: 8;
then (((
Proj (j,n))
* f)
* (
reproj (i,x0)))
is_differentiable_in ((
Proj (i,m))
. x0) by
PDIFF_1:def 9;
hence ((
Proj (j,n))
* (f
* (
reproj (i,x0))))
is_differentiable_in ((
Proj (i,m))
. x0) by
RELAT_1: 36;
end;
then (f
* (
reproj (i,x0)))
is_differentiable_in ((
Proj (i,m))
. x0) by
PDIFF_6: 29;
hence f
is_partial_differentiable_in (x0,i) by
PDIFF_1:def 9;
end;
hence
A23: f
is_partial_differentiable_on (X,i) by
A1,
A20,
PDIFF_7: 8;
then
A24: X
c= (
dom (f
`partial| (X,i))) by
PDIFF_1:def 20;
A25: for x0 be
Point of (
REAL-NS m), j be
Element of
NAT st x0
in X & 1
<= j & j
<= n holds ((
Proj (j,n))
* ((f
`partial| (X,i))
/. x0))
= ((((
Proj (j,n))
* f)
`partial| (X,i))
/. x0)
proof
let x0 be
Point of (
REAL-NS m), j be
Element of
NAT ;
assume
A26: x0
in X & 1
<= j & j
<= n;
then f
is_partial_differentiable_in (x0,i) by
A21;
then
A27: (f
* (
reproj (i,x0)))
is_differentiable_in ((
Proj (i,m))
. x0) by
PDIFF_1:def 9;
A28: ((
Proj (j,n))
* f)
is_partial_differentiable_on (X,i) by
A17,
A26;
thus ((
Proj (j,n))
* ((f
`partial| (X,i))
/. x0))
= ((
Proj (j,n))
* (
partdiff (f,x0,i))) by
A26,
A23,
PDIFF_1:def 20
.= ((
Proj (j,n))
* (
diff ((f
* (
reproj (i,x0))),((
Proj (i,m))
. x0)))) by
PDIFF_1:def 10
.= (
diff (((
Proj (j,n))
* (f
* (
reproj (i,x0)))),((
Proj (i,m))
. x0))) by
A27,
A26,
PDIFF_6: 28
.= (
diff ((((
Proj (j,n))
* f)
* (
reproj (i,x0))),((
Proj (i,m))
. x0))) by
RELAT_1: 36
.= (
partdiff (((
Proj (j,n))
* f),x0,i)) by
PDIFF_1:def 10
.= ((((
Proj (j,n))
* f)
`partial| (X,i))
/. x0) by
A28,
A26,
PDIFF_1:def 20;
end;
for x0 be
Point of (
REAL-NS m), r be
Real st x0
in X &
0
< r holds ex s be
Real st
0
< s & for x1 be
Point of (
REAL-NS m) st x1
in X &
||.(x1
- x0).||
< s holds
||.(((f
`partial| (X,i))
/. x1)
- ((f
`partial| (X,i))
/. x0)).||
< r
proof
let x0 be
Point of (
REAL-NS m), r0 be
Real;
assume
A29: x0
in X &
0
< r0;
set r = (r0
/ 2);
defpred
P[
set,
set] means ex j be
Element of
NAT , sj be
Real st $2
= sj & $1
= j &
0
< sj & for x1 be
Point of (
REAL-NS m) st x1
in X &
||.(x1
- x0).||
< sj holds
||.(((((
Proj (j,n))
* f)
`partial| (X,i))
/. x1)
- ((((
Proj (j,n))
* f)
`partial| (X,i))
/. x0)).||
< (r
/ n);
A30: for j0 be
Nat st j0
in (
Seg n) holds ex x be
Element of
REAL st
P[j0, x]
proof
let j0 be
Nat;
assume j0
in (
Seg n);
then
A31: 1
<= j0 & j0
<= n by
FINSEQ_1: 1;
reconsider j = j0 as
Element of
NAT by
ORDINAL1:def 12;
(((
Proj (j,n))
* f)
`partial| (X,i))
is_continuous_on X by
A17,
A31;
then
consider sj be
Real such that
A32:
0
< sj & for x1 be
Point of (
REAL-NS m) st x1
in X &
||.(x1
- x0).||
< sj holds
||.(((((
Proj (j,n))
* f)
`partial| (X,i))
/. x1)
- ((((
Proj (j,n))
* f)
`partial| (X,i))
/. x0)).||
< (r
/ n) by
A29,
NFCONT_1: 19;
reconsider sj as
Element of
REAL by
XREAL_0:def 1;
0
< sj by
A32;
hence thesis by
A32;
end;
consider s0 be
FinSequence of
REAL such that
A33: (
dom s0)
= (
Seg n) & for k be
Nat st k
in (
Seg n) holds
P[k, (s0
. k)] from
FINSEQ_1:sch 5(
A30);
A34: (
rng s0) is
finite by
A33,
FINSET_1: 8;
n
in (
Seg n) by
FINSEQ_1: 3;
then
reconsider rs0 = (
rng s0) as non
empty
ext-real-membered
set by
A33,
FUNCT_1: 3;
reconsider rs0 as
left_end
right_end non
empty
ext-real-membered
set by
A34;
A35: (
min rs0)
in (
rng s0) by
XXREAL_2:def 7;
reconsider s = (
min rs0) as
Real;
take s;
consider i1 be
object such that
A36: i1
in (
dom s0) & s
= (s0
. i1) by
A35,
FUNCT_1:def 3;
ex j be
Element of
NAT , sj be
Real st (s0
. i1)
= sj & i1
= j &
0
< sj & for x1 be
Point of (
REAL-NS m) st x1
in X &
||.(x1
- x0).||
< sj holds
||.(((((
Proj (j,n))
* f)
`partial| (X,i))
/. x1)
- ((((
Proj (j,n))
* f)
`partial| (X,i))
/. x0)).||
< (r
/ n) by
A33,
A36;
hence
0
< s by
A36;
let x1 be
Point of (
REAL-NS m);
assume
A37: x1
in X &
||.(x1
- x0).||
< s;
now
let j be
Element of
NAT , p1,p0 be
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS 1),(
REAL-NS 1)));
assume
A38: p1
= ((
Proj (j,n))
* ((f
`partial| (X,i))
/. x1)) & p0
= ((
Proj (j,n))
* ((f
`partial| (X,i))
/. x0)) & 1
<= j & j
<= n;
then
A39: j
in (
Seg n);
then
consider jj be
Element of
NAT , sj be
Real such that
A40: (s0
. j)
= sj & jj
= j &
0
< sj & for x1 be
Point of (
REAL-NS m) st x1
in X &
||.(x1
- x0).||
< sj holds
||.(((((
Proj (jj,n))
* f)
`partial| (X,i))
/. x1)
- ((((
Proj (jj,n))
* f)
`partial| (X,i))
/. x0)).||
< (r
/ n) by
A33;
A41: ((
Proj (j,n))
* ((f
`partial| (X,i))
/. x0))
= ((((
Proj (j,n))
* f)
`partial| (X,i))
/. x0) by
A25,
A29,
A38;
A42: ((
Proj (j,n))
* ((f
`partial| (X,i))
/. x1))
= ((((
Proj (j,n))
* f)
`partial| (X,i))
/. x1) by
A25,
A37,
A38;
sj
in (
rng s0) by
A39,
A40,
A33,
FUNCT_1: 3;
then s
<= sj by
XXREAL_2:def 7;
then
||.(x1
- x0).||
< sj by
A37,
XXREAL_0: 2;
hence
||.(p1
- p0).||
<= (r
/ n) by
A40,
A37,
A38,
A41,
A42;
end;
then
||.(((f
`partial| (X,i))
/. x1)
- ((f
`partial| (X,i))
/. x0)).||
<= (n
* (r
/ n)) by
Th19;
then
A43:
||.(((f
`partial| (X,i))
/. x1)
- ((f
`partial| (X,i))
/. x0)).||
<= r by
XCMPLX_1: 87;
r
< r0 by
A29,
XREAL_1: 216;
hence
||.(((f
`partial| (X,i))
/. x1)
- ((f
`partial| (X,i))
/. x0)).||
< r0 by
A43,
XXREAL_0: 2;
end;
hence thesis by
A24,
NFCONT_1: 19;
end;
theorem ::
PDIFF_8:21
Th21: for m,n be non
zero
Element of
NAT , f be
PartFunc of (
REAL-NS m), (
REAL-NS n), X be
Subset of (
REAL-NS m) st X is
open holds (f
is_differentiable_on X & (f
`| X)
is_continuous_on X) iff for j be
Nat st 1
<= j
<= n holds ((
Proj (j,n))
* f)
is_differentiable_on X & (((
Proj (j,n))
* f)
`| X)
is_continuous_on X
proof
let m,n be non
zero
Element of
NAT , f be
PartFunc of (
REAL-NS m), (
REAL-NS n), X be
Subset of (
REAL-NS m);
assume
A1: X is
open;
hereby
assume
A2: f
is_differentiable_on X & (f
`| X)
is_continuous_on X;
then
A3: X
c= (
dom f) by
A1,
NDIFF_1: 31;
thus for j be
Nat st 1
<= j
<= n holds (((
Proj (j,n))
* f)
is_differentiable_on X & (((
Proj (j,n))
* f)
`| X)
is_continuous_on X)
proof
let j be
Nat;
assume
A4: 1
<= j & j
<= n;
A5: (
dom (
Proj (j,n)))
= the
carrier of (
REAL-NS n) by
FUNCT_2:def 1;
(
rng f)
c= the
carrier of (
REAL-NS n);
then
A6: X
c= (
dom ((
Proj (j,n))
* f)) by
A3,
A5,
RELAT_1: 27;
now
let x0 be
Point of (
REAL-NS m);
assume x0
in X;
then f
is_differentiable_in x0 by
A2,
A1,
NDIFF_1: 31;
hence ((
Proj (j,n))
* f)
is_differentiable_in x0 by
A4,
PDIFF_6: 29;
end;
hence
A7: ((
Proj (j,n))
* f)
is_differentiable_on X by
A6,
A1,
NDIFF_1: 31;
then
A8: X
c= (
dom (((
Proj (j,n))
* f)
`| X)) by
NDIFF_1:def 9;
A9: for x0 be
Point of (
REAL-NS m) st x0
in X holds ((((
Proj (j,n))
* f)
`| X)
/. x0)
= ((
Proj (j,n))
* ((f
`| X)
/. x0))
proof
let x0 be
Point of (
REAL-NS m);
assume
A10: x0
in X;
then
A11: f
is_differentiable_in x0 by
A2,
A1,
NDIFF_1: 31;
thus ((((
Proj (j,n))
* f)
`| X)
/. x0)
= (
diff (((
Proj (j,n))
* f),x0)) by
A7,
A10,
NDIFF_1:def 9
.= ((
Proj (j,n))
* (
diff (f,x0))) by
A11,
A4,
PDIFF_6: 28
.= ((
Proj (j,n))
* ((f
`| X)
/. x0)) by
A2,
A10,
NDIFF_1:def 9;
end;
for x0 be
Point of (
REAL-NS m), r be
Real st x0
in X &
0
< r holds ex s be
Real st
0
< s & for x1 be
Point of (
REAL-NS m) st x1
in X &
||.(x1
- x0).||
< s holds
||.(((((
Proj (j,n))
* f)
`| X)
/. x1)
- ((((
Proj (j,n))
* f)
`| X)
/. x0)).||
< r
proof
let x0 be
Point of (
REAL-NS m), r be
Real;
assume
A12: x0
in X &
0
< r;
then
consider s be
Real such that
A13:
0
< s & for x1 be
Point of (
REAL-NS m) st x1
in X &
||.(x1
- x0).||
< s holds
||.(((f
`| X)
/. x1)
- ((f
`| X)
/. x0)).||
< r by
A2,
NFCONT_1: 19;
take s;
thus
0
< s by
A13;
let x1 be
Point of (
REAL-NS m);
assume
A14: x1
in X &
||.(x1
- x0).||
< s;
then
A15:
||.(((f
`| X)
/. x1)
- ((f
`| X)
/. x0)).||
< r by
A13;
A16: ((((
Proj (j,n))
* f)
`| X)
/. x0)
= ((
Proj (j,n))
* ((f
`| X)
/. x0)) by
A9,
A12;
reconsider p1 = ((
Proj (j,n))
* ((f
`| X)
/. x1)) as
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS m),(
REAL-NS 1))) by
Th7,
A4;
reconsider p0 = ((
Proj (j,n))
* ((f
`| X)
/. x0)) as
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS m),(
REAL-NS 1))) by
Th7,
A4;
||.(((((
Proj (j,n))
* f)
`| X)
/. x1)
- ((((
Proj (j,n))
* f)
`| X)
/. x0)).||
=
||.(p1
- p0).|| by
A9,
A14,
A16;
then
||.(((((
Proj (j,n))
* f)
`| X)
/. x1)
- ((((
Proj (j,n))
* f)
`| X)
/. x0)).||
<=
||.(((f
`| X)
/. x1)
- ((f
`| X)
/. x0)).|| by
Th14,
A4;
hence
||.(((((
Proj (j,n))
* f)
`| X)
/. x1)
- ((((
Proj (j,n))
* f)
`| X)
/. x0)).||
< r by
A15,
XXREAL_0: 2;
end;
hence (((
Proj (j,n))
* f)
`| X)
is_continuous_on X by
A8,
NFCONT_1: 19;
end;
end;
assume
A17: for j be
Nat st 1
<= j
<= n holds (((
Proj (j,n))
* f)
is_differentiable_on X & (((
Proj (j,n))
* f)
`| X)
is_continuous_on X);
1
<= n by
NAT_1: 14;
then ((
Proj (1,n))
* f)
is_differentiable_on X by
A17;
then
A18: X
c= (
dom ((
Proj (1,n))
* f)) by
A1,
NDIFF_1: 31;
A19: (
dom (
Proj (1,n)))
= the
carrier of (
REAL-NS n) by
FUNCT_2:def 1;
(
rng f)
c= the
carrier of (
REAL-NS n);
then
A20: X
c= (
dom f) by
A18,
A19,
RELAT_1: 27;
A21:
now
let x0 be
Point of (
REAL-NS m);
assume
A22: x0
in X;
now
let j be
Nat;
assume 1
<= j & j
<= n;
then ((
Proj (j,n))
* f)
is_differentiable_on X by
A17;
hence ((
Proj (j,n))
* f)
is_differentiable_in x0 by
A22,
A1,
NDIFF_1: 31;
end;
hence f
is_differentiable_in x0 by
PDIFF_6: 29;
end;
hence
A23: f
is_differentiable_on X by
A1,
A20,
NDIFF_1: 31;
then
A24: X
c= (
dom (f
`| X)) by
NDIFF_1:def 9;
A25: for x0 be
Point of (
REAL-NS m), j be
Element of
NAT st x0
in X & 1
<= j & j
<= n holds ((
Proj (j,n))
* ((f
`| X)
/. x0))
= ((((
Proj (j,n))
* f)
`| X)
/. x0)
proof
let x0 be
Point of (
REAL-NS m), j be
Element of
NAT ;
assume
A26: x0
in X & 1
<= j & j
<= n;
then
A27: f
is_differentiable_in x0 by
A21;
A28: ((
Proj (j,n))
* f)
is_differentiable_on X by
A17,
A26;
thus ((
Proj (j,n))
* ((f
`| X)
/. x0))
= ((
Proj (j,n))
* (
diff (f,x0))) by
A26,
A23,
NDIFF_1:def 9
.= (
diff (((
Proj (j,n))
* f),x0)) by
A27,
A26,
PDIFF_6: 28
.= ((((
Proj (j,n))
* f)
`| X)
/. x0) by
A28,
A26,
NDIFF_1:def 9;
end;
for x0 be
Point of (
REAL-NS m), r0 be
Real st x0
in X &
0
< r0 holds ex s be
Real st
0
< s & for x1 be
Point of (
REAL-NS m) st x1
in X &
||.(x1
- x0).||
< s holds
||.(((f
`| X)
/. x1)
- ((f
`| X)
/. x0)).||
< r0
proof
let x0 be
Point of (
REAL-NS m), r0 be
Real;
assume
A29: x0
in X &
0
< r0;
set r = (r0
/ 2);
defpred
P[
set,
set] means ex j be
Element of
NAT , sj be
Real st $2
= sj & $1
= j &
0
< sj & for x1 be
Point of (
REAL-NS m) st x1
in X &
||.(x1
- x0).||
< sj holds
||.(((((
Proj (j,n))
* f)
`| X)
/. x1)
- ((((
Proj (j,n))
* f)
`| X)
/. x0)).||
< (r
/ n);
A30: for j0 be
Nat st j0
in (
Seg n) holds ex x be
Element of
REAL st
P[j0, x]
proof
let j0 be
Nat;
assume j0
in (
Seg n);
then
A31: 1
<= j0 & j0
<= n by
FINSEQ_1: 1;
reconsider j = j0 as
Element of
NAT by
ORDINAL1:def 12;
(((
Proj (j,n))
* f)
`| X)
is_continuous_on X by
A17,
A31;
then
consider sj be
Real such that
A32:
0
< sj & for x1 be
Point of (
REAL-NS m) st x1
in X &
||.(x1
- x0).||
< sj holds
||.(((((
Proj (j,n))
* f)
`| X)
/. x1)
- ((((
Proj (j,n))
* f)
`| X)
/. x0)).||
< (r
/ n) by
A29,
NFCONT_1: 19;
reconsider sj as
Element of
REAL by
XREAL_0:def 1;
0
< sj by
A32;
hence thesis by
A32;
end;
consider s0 be
FinSequence of
REAL such that
A33: (
dom s0)
= (
Seg n) & for k be
Nat st k
in (
Seg n) holds
P[k, (s0
. k)] from
FINSEQ_1:sch 5(
A30);
A34: (
rng s0) is
finite by
A33,
FINSET_1: 8;
n
in (
Seg n) by
FINSEQ_1: 3;
then
reconsider rs0 = (
rng s0) as non
empty
ext-real-membered
set by
A33,
FUNCT_1: 3;
reconsider rs0 as
left_end
right_end non
empty
ext-real-membered
set by
A34;
A35: (
min rs0)
in (
rng s0) by
XXREAL_2:def 7;
reconsider s = (
min rs0) as
Real;
take s;
consider i1 be
object such that
A36: i1
in (
dom s0) & s
= (s0
. i1) by
A35,
FUNCT_1:def 3;
ex j be
Element of
NAT , sj be
Real st (s0
. i1)
= sj & i1
= j &
0
< sj & for x1 be
Point of (
REAL-NS m) st x1
in X &
||.(x1
- x0).||
< sj holds
||.(((((
Proj (j,n))
* f)
`| X)
/. x1)
- ((((
Proj (j,n))
* f)
`| X)
/. x0)).||
< (r
/ n) by
A33,
A36;
hence
0
< s by
A36;
let x1 be
Point of (
REAL-NS m);
assume
A37: x1
in X &
||.(x1
- x0).||
< s;
now
let j be
Element of
NAT , p1,p0 be
Point of (
R_NormSpace_of_BoundedLinearOperators ((
REAL-NS m),(
REAL-NS 1)));
assume
A38: p1
= ((
Proj (j,n))
* ((f
`| X)
/. x1)) & p0
= ((
Proj (j,n))
* ((f
`| X)
/. x0)) & 1
<= j & j
<= n;
then
A39: j
in (
Seg n);
then
consider jj be
Element of
NAT , sj be
Real such that
A40: (s0
. j)
= sj & jj
= j &
0
< sj & for x1 be
Point of (
REAL-NS m) st x1
in X &
||.(x1
- x0).||
< sj holds
||.(((((
Proj (jj,n))
* f)
`| X)
/. x1)
- ((((
Proj (jj,n))
* f)
`| X)
/. x0)).||
< (r
/ n) by
A33;
A41: ((
Proj (j,n))
* ((f
`| X)
/. x0))
= ((((
Proj (j,n))
* f)
`| X)
/. x0) by
A25,
A29,
A38;
A42: ((
Proj (j,n))
* ((f
`| X)
/. x1))
= ((((
Proj (j,n))
* f)
`| X)
/. x1) by
A25,
A37,
A38;
sj
in (
rng s0) by
A39,
A40,
A33,
FUNCT_1: 3;
then s
<= sj by
XXREAL_2:def 7;
then
||.(x1
- x0).||
< sj by
A37,
XXREAL_0: 2;
hence
||.(p1
- p0).||
<= (r
/ n) by
A40,
A37,
A38,
A41,
A42;
end;
then
||.(((f
`| X)
/. x1)
- ((f
`| X)
/. x0)).||
<= (n
* (r
/ n)) by
Th19;
then
A43:
||.(((f
`| X)
/. x1)
- ((f
`| X)
/. x0)).||
<= r by
XCMPLX_1: 87;
r
< r0 by
A29,
XREAL_1: 216;
hence
||.(((f
`| X)
/. x1)
- ((f
`| X)
/. x0)).||
< r0 by
A43,
XXREAL_0: 2;
end;
hence thesis by
A24,
NFCONT_1: 19;
end;
theorem ::
PDIFF_8:22
for m,n be non
zero
Element of
NAT , f be
PartFunc of (
REAL-NS m), (
REAL-NS n), X be
Subset of (
REAL-NS m) st X is
open holds (for i be
Nat st 1
<= i
<= m holds f
is_partial_differentiable_on (X,i) & (f
`partial| (X,i))
is_continuous_on X) iff f
is_differentiable_on X & (f
`| X)
is_continuous_on X
proof
let m,n be non
zero
Element of
NAT , f be
PartFunc of (
REAL-NS m), (
REAL-NS n), X be
Subset of (
REAL-NS m);
assume
A1: X is
open;
hereby
assume
A2: for i be
Nat st 1
<= i & i
<= m holds f
is_partial_differentiable_on (X,i) & (f
`partial| (X,i))
is_continuous_on X;
now
let j be
Nat;
assume
A3: 1
<= j
<= n;
now
let i be
Nat;
assume
A4: 1
<= i
<= m;
then f
is_partial_differentiable_on (X,i) & (f
`partial| (X,i))
is_continuous_on X by
A2;
hence ((
Proj (j,n))
* f)
is_partial_differentiable_on (X,i) & (((
Proj (j,n))
* f)
`partial| (X,i))
is_continuous_on X by
Th20,
A1,
A3,
A4;
end;
hence ((
Proj (j,n))
* f)
is_differentiable_on X & (((
Proj (j,n))
* f)
`| X)
is_continuous_on X by
A1,
PDIFF_7: 49;
end;
hence f
is_differentiable_on X & (f
`| X)
is_continuous_on X by
A1,
Th21;
end;
assume
A5: f
is_differentiable_on X & (f
`| X)
is_continuous_on X;
let i be
Nat;
assume
A6: 1
<= i & i
<= m;
now
let j be
Nat;
assume 1
<= j & j
<= n;
then ((
Proj (j,n))
* f)
is_differentiable_on X & (((
Proj (j,n))
* f)
`| X)
is_continuous_on X by
A1,
A5,
Th21;
hence ((
Proj (j,n))
* f)
is_partial_differentiable_on (X,i) & (((
Proj (j,n))
* f)
`partial| (X,i))
is_continuous_on X by
A1,
A6,
PDIFF_7: 49;
end;
hence thesis by
A6,
A1,
Th20;
end;