diff_4.miz
begin
reserve n,m,i,p for
Nat,
h,k,r,r1,r2,x,x0,x1,x2,x3 for
Real;
reserve f,f1,f2,g for
Function of
REAL ,
REAL ;
theorem ::
DIFF_4:1
Th1: x0
>
0 & x1
>
0 implies ((
log (
number_e ,x0))
- (
log (
number_e ,x1)))
= (
log (
number_e ,(x0
/ x1)))
proof
assume
A1: x0
>
0 & x1
>
0 ;
number_e
> 1 by
TAYLOR_1: 11,
XXREAL_0: 2;
hence thesis by
A1,
POWER: 54;
end;
theorem ::
DIFF_4:2
x0
>
0 & x1
>
0 implies ((
log (
number_e ,x0))
+ (
log (
number_e ,x1)))
= (
log (
number_e ,(x0
* x1)))
proof
assume
A1: x0
>
0 & x1
>
0 ;
number_e
> 1 by
TAYLOR_1: 11,
XXREAL_0: 2;
hence thesis by
A1,
POWER: 53;
end;
theorem ::
DIFF_4:3
Th3: x
>
0 implies (
log (
number_e ,x))
= (
ln
. x)
proof
assume
A1: x
>
0 ;
x
in (
right_open_halfline
0 )
proof
x
in { g where g be
Real :
0
< g } by
A1;
hence thesis by
XXREAL_1: 230;
end;
hence thesis by
TAYLOR_1:def 2;
end;
theorem ::
DIFF_4:4
Th4: x0
>
0 & x1
>
0 implies ((
ln
. x0)
- (
ln
. x1))
= (
ln
. (x0
/ x1))
proof
assume
A1: x0
>
0 & x1
>
0 ;
A2: (
log (
number_e ,(x0
/ x1)))
= (
ln
. (x0
/ x1))
proof
(x0
/ x1)
in (
right_open_halfline
0 )
proof
(x0
/ x1)
in { g where g be
Real :
0
< g } by
A1;
hence thesis by
XXREAL_1: 230;
end;
hence thesis by
TAYLOR_1:def 2;
end;
((
ln
. x0)
- (
ln
. x1))
= ((
log (
number_e ,x0))
- (
ln
. x1)) by
A1,
Th3
.= ((
log (
number_e ,x0))
- (
log (
number_e ,x1))) by
A1,
Th3
.= (
log (
number_e ,(x0
/ x1))) by
A1,
Th1;
hence thesis by
A2;
end;
theorem ::
DIFF_4:5
(for x holds (f
. x)
= (k
/ (x
^2 ))) & x0
<>
0 & x1
<>
0 & x2
<>
0 & x3
<>
0 & (x0,x1,x2,x3)
are_mutually_distinct implies
[!f, x0, x1, x2, x3!]
= ((k
* (((1
/ ((x1
* x2)
* x0))
* (((1
/ x0)
+ (1
/ x2))
+ (1
/ x1)))
- ((1
/ ((x2
* x1)
* x3))
* (((1
/ x3)
+ (1
/ x1))
+ (1
/ x2)))))
/ (x0
- x3))
proof
assume that
A1: for x holds (f
. x)
= (k
/ (x
^2 )) and
A2: x0
<>
0 & x1
<>
0 & x2
<>
0 & x3
<>
0 and
A3: (x0,x1,x2,x3)
are_mutually_distinct ;
x0
<> x1 & x0
<> x2 & x1
<> x2 by
A3,
ZFMISC_1:def 6;
then (x0,x1,x2)
are_mutually_distinct by
ZFMISC_1:def 5;
then
A4:
[!f, x0, x1, x2!]
= ((k
/ ((x0
* x1)
* x2))
* (((1
/ x0)
+ (1
/ x1))
+ (1
/ x2))) by
A1,
A2,
DIFF_3: 49
.= ((k
* (1
/ ((x1
* x2)
* x0)))
* (((1
/ x0)
+ (1
/ x2))
+ (1
/ x1)));
x1
<> x2 & x1
<> x3 & x2
<> x3 by
A3,
ZFMISC_1:def 6;
then (x1,x2,x3)
are_mutually_distinct by
ZFMISC_1:def 5;
then
[!f, x1, x2, x3!]
= ((k
/ ((x1
* x2)
* x3))
* (((1
/ x1)
+ (1
/ x2))
+ (1
/ x3))) by
A1,
A2,
DIFF_3: 49;
hence thesis by
A4;
end;
theorem ::
DIFF_4:6
x0
in (
dom
cot ) & x1
in (
dom
cot ) implies
[!(
cot
(#)
cot ), x0, x1!]
= (
- ((((
cos x1)
^2 )
- ((
cos x0)
^2 ))
/ ((((
sin x0)
* (
sin x1))
^2 )
* (x0
- x1))))
proof
assume that
A1: x0
in (
dom
cot ) & x1
in (
dom
cot );
A2: (
sin x0)
<>
0 & (
sin x1)
<>
0 by
A1,
FDIFF_8: 2;
[!(
cot
(#)
cot ), x0, x1!]
= ((((
cot
. x0)
* (
cot
. x0))
- ((
cot
(#)
cot )
. x1))
/ (x0
- x1)) by
VALUED_1: 5
.= ((((
cot
. x0)
* (
cot
. x0))
- ((
cot
. x1)
* (
cot
. x1)))
/ (x0
- x1)) by
VALUED_1: 5
.= (((((
cos
. x0)
* ((
sin
. x0)
" ))
* (
cot
. x0))
- ((
cot
. x1)
* (
cot
. x1)))
/ (x0
- x1)) by
A1,
RFUNCT_1:def 1
.= (((((
cos
. x0)
* ((
sin
. x0)
" ))
* ((
cos
. x0)
* ((
sin
. x0)
" )))
- ((
cot
. x1)
* (
cot
. x1)))
/ (x0
- x1)) by
A1,
RFUNCT_1:def 1
.= (((((
cos
. x0)
* ((
sin
. x0)
" ))
* ((
cos
. x0)
* ((
sin
. x0)
" )))
- (((
cos
. x1)
* ((
sin
. x1)
" ))
* (
cot
. x1)))
/ (x0
- x1)) by
A1,
RFUNCT_1:def 1
.= ((((
cot x0)
^2 )
- ((
cot x1)
^2 ))
/ (x0
- x1)) by
A1,
RFUNCT_1:def 1
.= ((((
cot x0)
- (
cot x1))
* ((
cot x0)
+ (
cot x1)))
/ (x0
- x1))
.= (((
- ((
sin (x0
- x1))
/ ((
sin x0)
* (
sin x1))))
* ((
cot x0)
+ (
cot x1)))
/ (x0
- x1)) by
A2,
SIN_COS4: 24
.= ((
- (((
sin (x0
- x1))
/ ((
sin x0)
* (
sin x1)))
* ((
cot x0)
+ (
cot x1))))
/ (x0
- x1))
.= ((
- (((
sin (x0
- x1))
/ ((
sin x0)
* (
sin x1)))
* ((
sin (x0
+ x1))
/ ((
sin x0)
* (
sin x1)))))
/ (x0
- x1)) by
A2,
SIN_COS4: 23
.= ((
- (((
sin (x0
+ x1))
* (
sin (x0
- x1)))
/ (((
sin x0)
* (
sin x1))
^2 )))
/ (x0
- x1)) by
XCMPLX_1: 76
.= ((
- ((((
cos x1)
^2 )
- ((
cos x0)
^2 ))
/ (((
sin x0)
* (
sin x1))
^2 )))
/ (x0
- x1)) by
SIN_COS4: 38
.= (
- (((((
cos x1)
^2 )
- ((
cos x0)
^2 ))
/ (((
sin x0)
* (
sin x1))
^2 ))
/ (x0
- x1)))
.= (
- ((((
cos x1)
^2 )
- ((
cos x0)
^2 ))
/ ((((
sin x0)
* (
sin x1))
^2 )
* (x0
- x1)))) by
XCMPLX_1: 78;
hence thesis;
end;
theorem ::
DIFF_4:7
x
in (
dom
cot ) & (x
+ h)
in (
dom
cot ) implies ((
fD ((
cot
(#)
cot ),h))
. x)
= (((1
/ 2)
* ((
cos (2
* (x
+ h)))
- (
cos (2
* x))))
/ (((
sin (x
+ h))
* (
sin x))
^2 ))
proof
set f = (
cot
(#)
cot );
assume
A1: x
in (
dom
cot ) & (x
+ h)
in (
dom
cot );
A2: (
sin x)
<>
0 & (
sin (x
+ h))
<>
0 by
A1,
FDIFF_8: 2;
x
in (
dom f) & (x
+ h)
in (
dom f)
proof
x
in ((
dom
cot )
/\ (
dom
cot )) & (x
+ h)
in ((
dom
cot )
/\ (
dom
cot )) by
A1;
hence thesis by
VALUED_1:def 4;
end;
then ((
fD (f,h))
. x)
= (((
cot
(#)
cot )
. (x
+ h))
- ((
cot
(#)
cot )
. x)) by
DIFF_1: 1
.= (((
cot
. (x
+ h))
* (
cot
. (x
+ h)))
- ((
cot
(#)
cot )
. x)) by
VALUED_1: 5
.= (((
cot
. (x
+ h))
* (
cot
. (x
+ h)))
- ((
cot
. x)
* (
cot
. x))) by
VALUED_1: 5
.= ((((
cos
. (x
+ h))
* ((
sin
. (x
+ h))
" ))
* (
cot
. (x
+ h)))
- ((
cot
. x)
* (
cot
. x))) by
A1,
RFUNCT_1:def 1
.= ((((
cos
. (x
+ h))
* ((
sin
. (x
+ h))
" ))
* ((
cos
. (x
+ h))
* ((
sin
. (x
+ h))
" )))
- ((
cot
. x)
* (
cot
. x))) by
A1,
RFUNCT_1:def 1
.= ((((
cos
. (x
+ h))
* ((
sin
. (x
+ h))
" ))
* ((
cos
. (x
+ h))
* ((
sin
. (x
+ h))
" )))
- (((
cos
. x)
* ((
sin
. x)
" ))
* (
cot
. x))) by
A1,
RFUNCT_1:def 1
.= (((
cot (x
+ h))
^2 )
- ((
cot x)
^2 )) by
A1,
RFUNCT_1:def 1
.= (((
cot (x
+ h))
- (
cot x))
* ((
cot (x
+ h))
+ (
cot x)))
.= ((
- ((
sin ((x
+ h)
- x))
/ ((
sin (x
+ h))
* (
sin x))))
* ((
cot (x
+ h))
+ (
cot x))) by
A2,
SIN_COS4: 24
.= ((
- ((
sin ((x
+ h)
- x))
/ ((
sin (x
+ h))
* (
sin x))))
* ((
sin ((x
+ h)
+ x))
/ ((
sin (x
+ h))
* (
sin x)))) by
A2,
SIN_COS4: 23
.= (
- (((
sin ((x
+ h)
- x))
/ ((
sin (x
+ h))
* (
sin x)))
* ((
sin ((x
+ h)
+ x))
/ ((
sin (x
+ h))
* (
sin x)))))
.= (
- (((
sin ((2
* x)
+ h))
* (
sin h))
/ (((
sin (x
+ h))
* (
sin x))
^2 ))) by
XCMPLX_1: 76
.= (
- ((
- ((1
/ 2)
* ((
cos (((2
* x)
+ h)
+ h))
- (
cos (((2
* x)
+ h)
- h)))))
/ (((
sin (x
+ h))
* (
sin x))
^2 ))) by
SIN_COS4: 29
.= (((1
/ 2)
* ((
cos (2
* (x
+ h)))
- (
cos (2
* x))))
/ (((
sin (x
+ h))
* (
sin x))
^2 ));
hence thesis;
end;
theorem ::
DIFF_4:8
x
in (
dom
cot ) & (x
- h)
in (
dom
cot ) implies ((
bD ((
cot
(#)
cot ),h))
. x)
= (((1
/ 2)
* ((
cos (2
* x))
- (
cos (2
* (h
- x)))))
/ (((
sin x)
* (
sin (x
- h)))
^2 ))
proof
set f = (
cot
(#)
cot );
assume
A1: x
in (
dom
cot ) & (x
- h)
in (
dom
cot );
A2: (
sin x)
<>
0 & (
sin (x
- h))
<>
0 by
A1,
FDIFF_8: 2;
x
in (
dom f) & (x
- h)
in (
dom f)
proof
x
in ((
dom
cot )
/\ (
dom
cot )) & (x
- h)
in ((
dom
cot )
/\ (
dom
cot )) by
A1;
hence thesis by
VALUED_1:def 4;
end;
then ((
bD (f,h))
. x)
= (((
cot
(#)
cot )
. x)
- ((
cot
(#)
cot )
. (x
- h))) by
DIFF_1: 38
.= (((
cot
. x)
* (
cot
. x))
- ((
cot
(#)
cot )
. (x
- h))) by
VALUED_1: 5
.= (((
cot
. x)
* (
cot
. x))
- ((
cot
. (x
- h))
* (
cot
. (x
- h)))) by
VALUED_1: 5
.= ((((
cos
. x)
* ((
sin
. x)
" ))
* (
cot
. x))
- ((
cot
. (x
- h))
* (
cot
. (x
- h)))) by
A1,
RFUNCT_1:def 1
.= ((((
cos
. x)
* ((
sin
. x)
" ))
* ((
cos
. x)
* ((
sin
. x)
" )))
- ((
cot
. (x
- h))
* (
cot
. (x
- h)))) by
A1,
RFUNCT_1:def 1
.= ((((
cos
. x)
* ((
sin
. x)
" ))
* ((
cos
. x)
* ((
sin
. x)
" )))
- (((
cos
. (x
- h))
* ((
sin
. (x
- h))
" ))
* (
cot
. (x
- h)))) by
A1,
RFUNCT_1:def 1
.= (((
cot x)
^2 )
- ((
cot (x
- h))
^2 )) by
A1,
RFUNCT_1:def 1
.= (((
cot x)
- (
cot (x
- h)))
* ((
cot x)
+ (
cot (x
- h))))
.= ((
- ((
sin (x
- (x
- h)))
/ ((
sin x)
* (
sin (x
- h)))))
* ((
cot x)
+ (
cot (x
- h)))) by
A2,
SIN_COS4: 24
.= (
- (((
sin (x
- (x
- h)))
/ ((
sin x)
* (
sin (x
- h))))
* ((
cot x)
+ (
cot (x
- h)))))
.= (
- (((
sin h)
/ ((
sin x)
* (
sin (x
- h))))
* ((
sin (x
+ (x
- h)))
/ ((
sin x)
* (
sin (x
- h)))))) by
A2,
SIN_COS4: 23
.= (
- (((
sin h)
* (
sin ((2
* x)
- h)))
/ (((
sin x)
* (
sin (x
- h)))
^2 ))) by
XCMPLX_1: 76
.= (
- ((
- ((1
/ 2)
* ((
cos (h
+ ((2
* x)
- h)))
- (
cos (h
- ((2
* x)
- h))))))
/ (((
sin x)
* (
sin (x
- h)))
^2 ))) by
SIN_COS4: 29
.= (((1
/ 2)
* ((
cos (2
* x))
- (
cos (2
* (h
- x)))))
/ (((
sin x)
* (
sin (x
- h)))
^2 ));
hence thesis;
end;
theorem ::
DIFF_4:9
(x
+ (h
/ 2))
in (
dom
cot ) & (x
- (h
/ 2))
in (
dom
cot ) implies ((
cD ((
cot
(#)
cot ),h))
. x)
= (((1
/ 2)
* ((
cos (h
+ (2
* x)))
- (
cos (h
- (2
* x)))))
/ (((
sin (x
+ (h
/ 2)))
* (
sin (x
- (h
/ 2))))
^2 ))
proof
set f = (
cot
(#)
cot );
assume
A1: (x
+ (h
/ 2))
in (
dom
cot ) & (x
- (h
/ 2))
in (
dom
cot );
A2: (
sin (x
+ (h
/ 2)))
<>
0 & (
sin (x
- (h
/ 2)))
<>
0 by
A1,
FDIFF_8: 2;
(x
+ (h
/ 2))
in (
dom f) & (x
- (h
/ 2))
in (
dom f)
proof
(x
+ (h
/ 2))
in ((
dom
cot )
/\ (
dom
cot )) & (x
- (h
/ 2))
in ((
dom
cot )
/\ (
dom
cot )) by
A1;
hence thesis by
VALUED_1:def 4;
end;
then ((
cD (f,h))
. x)
= (((
cot
(#)
cot )
. (x
+ (h
/ 2)))
- ((
cot
(#)
cot )
. (x
- (h
/ 2)))) by
DIFF_1: 39
.= (((
cot
. (x
+ (h
/ 2)))
* (
cot
. (x
+ (h
/ 2))))
- ((
cot
(#)
cot )
. (x
- (h
/ 2)))) by
VALUED_1: 5
.= (((
cot
. (x
+ (h
/ 2)))
* (
cot
. (x
+ (h
/ 2))))
- ((
cot
. (x
- (h
/ 2)))
* (
cot
. (x
- (h
/ 2))))) by
VALUED_1: 5
.= ((((
cos
. (x
+ (h
/ 2)))
* ((
sin
. (x
+ (h
/ 2)))
" ))
* (
cot
. (x
+ (h
/ 2))))
- ((
cot
. (x
- (h
/ 2)))
* (
cot
. (x
- (h
/ 2))))) by
A1,
RFUNCT_1:def 1
.= ((((
cos
. (x
+ (h
/ 2)))
* ((
sin
. (x
+ (h
/ 2)))
" ))
* ((
cos
. (x
+ (h
/ 2)))
* ((
sin
. (x
+ (h
/ 2)))
" )))
- ((
cot
. (x
- (h
/ 2)))
* (
cot
. (x
- (h
/ 2))))) by
A1,
RFUNCT_1:def 1
.= ((((
cos
. (x
+ (h
/ 2)))
* ((
sin
. (x
+ (h
/ 2)))
" ))
* ((
cos
. (x
+ (h
/ 2)))
* ((
sin
. (x
+ (h
/ 2)))
" )))
- (((
cos
. (x
- (h
/ 2)))
* ((
sin
. (x
- (h
/ 2)))
" ))
* (
cot
. (x
- (h
/ 2))))) by
A1,
RFUNCT_1:def 1
.= (((
cot (x
+ (h
/ 2)))
^2 )
- ((
cot (x
- (h
/ 2)))
^2 )) by
A1,
RFUNCT_1:def 1
.= (((
cot (x
+ (h
/ 2)))
- (
cot (x
- (h
/ 2))))
* ((
cot (x
+ (h
/ 2)))
+ (
cot (x
- (h
/ 2)))))
.= ((
- ((
sin ((x
+ (h
/ 2))
- (x
- (h
/ 2))))
/ ((
sin (x
+ (h
/ 2)))
* (
sin (x
- (h
/ 2))))))
* ((
cot (x
+ (h
/ 2)))
+ (
cot (x
- (h
/ 2))))) by
A2,
SIN_COS4: 24
.= ((
- ((
sin h)
/ ((
sin (x
+ (h
/ 2)))
* (
sin (x
- (h
/ 2))))))
* ((
sin ((x
+ (h
/ 2))
+ (x
- (h
/ 2))))
/ ((
sin (x
+ (h
/ 2)))
* (
sin (x
- (h
/ 2)))))) by
A2,
SIN_COS4: 23
.= (
- (((
sin h)
/ ((
sin (x
+ (h
/ 2)))
* (
sin (x
- (h
/ 2)))))
* ((
sin ((x
+ (h
/ 2))
+ (x
- (h
/ 2))))
/ ((
sin (x
+ (h
/ 2)))
* (
sin (x
- (h
/ 2)))))))
.= (
- (((
sin h)
* (
sin (2
* x)))
/ (((
sin (x
+ (h
/ 2)))
* (
sin (x
- (h
/ 2))))
^2 ))) by
XCMPLX_1: 76
.= (
- ((
- ((1
/ 2)
* ((
cos (h
+ (2
* x)))
- (
cos (h
- (2
* x))))))
/ (((
sin (x
+ (h
/ 2)))
* (
sin (x
- (h
/ 2))))
^2 ))) by
SIN_COS4: 29
.= (((1
/ 2)
* ((
cos (h
+ (2
* x)))
- (
cos (h
- (2
* x)))))
/ (((
sin (x
+ (h
/ 2)))
* (
sin (x
- (h
/ 2))))
^2 ));
hence thesis;
end;
theorem ::
DIFF_4:10
x0
in (
dom
cosec ) & x1
in (
dom
cosec ) implies
[!(
cosec
(#)
cosec ), x0, x1!]
= ((4
* ((
sin (x1
+ x0))
* (
sin (x1
- x0))))
/ ((((
cos (x0
+ x1))
- (
cos (x0
- x1)))
^2 )
* (x0
- x1)))
proof
assume
A1: x0
in (
dom
cosec ) & x1
in (
dom
cosec );
A2: (
sin
. x0)
<>
0 & (
sin
. x1)
<>
0 by
A1,
RFUNCT_1: 3;
[!(
cosec
(#)
cosec ), x0, x1!]
= ((((
cosec
. x0)
* (
cosec
. x0))
- ((
cosec
(#)
cosec )
. x1))
/ (x0
- x1)) by
VALUED_1: 5
.= ((((
cosec
. x0)
* (
cosec
. x0))
- ((
cosec
. x1)
* (
cosec
. x1)))
/ (x0
- x1)) by
VALUED_1: 5
.= (((((
sin
. x0)
" )
* (
cosec
. x0))
- ((
cosec
. x1)
* (
cosec
. x1)))
/ (x0
- x1)) by
A1,
RFUNCT_1:def 2
.= (((((
sin
. x0)
" )
* ((
sin
. x0)
" ))
- ((
cosec
. x1)
* (
cosec
. x1)))
/ (x0
- x1)) by
A1,
RFUNCT_1:def 2
.= (((((
sin
. x0)
" )
* ((
sin
. x0)
" ))
- (((
sin
. x1)
" )
* (
cosec
. x1)))
/ (x0
- x1)) by
A1,
RFUNCT_1:def 2
.= (((((
sin
. x0)
" )
^2 )
- (((
sin
. x1)
" )
^2 ))
/ (x0
- x1)) by
A1,
RFUNCT_1:def 2
.= ((((1
/ (
sin
. x0))
- (1
/ (
sin
. x1)))
* ((1
/ (
sin
. x0))
+ (1
/ (
sin
. x1))))
/ (x0
- x1))
.= (((((1
* (
sin
. x1))
- (1
* (
sin
. x0)))
/ ((
sin
. x0)
* (
sin
. x1)))
* ((1
/ (
sin
. x0))
+ (1
/ (
sin
. x1))))
/ (x0
- x1)) by
A2,
XCMPLX_1: 130
.= (((((
sin
. x1)
- (
sin
. x0))
/ ((
sin
. x0)
* (
sin
. x1)))
* (((
sin
. x1)
+ (
sin
. x0))
/ ((
sin
. x0)
* (
sin
. x1))))
/ (x0
- x1)) by
A2,
XCMPLX_1: 116
.= (((((
sin
. x1)
- (
sin
. x0))
* ((
sin
. x1)
+ (
sin
. x0)))
/ (((
sin
. x0)
* (
sin
. x1))
* ((
sin
. x0)
* (
sin
. x1))))
/ (x0
- x1)) by
XCMPLX_1: 76
.= (((((
sin x1)
* (
sin x1))
- ((
sin x0)
* (
sin x0)))
/ (((
sin x0)
* (
sin x1))
^2 ))
/ (x0
- x1))
.= ((((
sin (x1
+ x0))
* (
sin (x1
- x0)))
/ (((
sin x0)
* (
sin x1))
^2 ))
/ (x0
- x1)) by
SIN_COS4: 37
.= ((((
sin (x1
+ x0))
* (
sin (x1
- x0)))
/ ((
- ((1
/ 2)
* ((
cos (x0
+ x1))
- (
cos (x0
- x1)))))
^2 ))
/ (x0
- x1)) by
SIN_COS4: 29
.= (((1
* ((
sin (x1
+ x0))
* (
sin (x1
- x0))))
/ ((1
/ 4)
* (((
cos (x0
+ x1))
- (
cos (x0
- x1)))
^2 )))
/ (x0
- x1))
.= (((1
/ (1
/ 4))
* (((
sin (x1
+ x0))
* (
sin (x1
- x0)))
/ (((
cos (x0
+ x1))
- (
cos (x0
- x1)))
^2 )))
/ (x0
- x1)) by
XCMPLX_1: 76
.= (((4
* ((
sin (x1
+ x0))
* (
sin (x1
- x0))))
/ (((
cos (x0
+ x1))
- (
cos (x0
- x1)))
^2 ))
/ (x0
- x1))
.= ((4
* ((
sin (x1
+ x0))
* (
sin (x1
- x0))))
/ ((((
cos (x0
+ x1))
- (
cos (x0
- x1)))
^2 )
* (x0
- x1))) by
XCMPLX_1: 78;
hence thesis;
end;
theorem ::
DIFF_4:11
x
in (
dom
cosec ) & (x
+ h)
in (
dom
cosec ) implies ((
fD ((
cosec
(#)
cosec ),h))
. x)
= (
- (((4
* (
sin ((2
* x)
+ h)))
* (
sin h))
/ (((
cos ((2
* x)
+ h))
- (
cos h))
^2 )))
proof
set f = (
cosec
(#)
cosec );
assume
A1: x
in (
dom
cosec ) & (x
+ h)
in (
dom
cosec );
A2: (
sin
. x)
<>
0 & (
sin
. (x
+ h))
<>
0 by
A1,
RFUNCT_1: 3;
x
in (
dom f) & (x
+ h)
in (
dom f)
proof
x
in ((
dom
cosec )
/\ (
dom
cosec )) & (x
+ h)
in ((
dom
cosec )
/\ (
dom
cosec )) by
A1;
hence thesis by
VALUED_1:def 4;
end;
then ((
fD (f,h))
. x)
= (((
cosec
(#)
cosec )
. (x
+ h))
- ((
cosec
(#)
cosec )
. x)) by
DIFF_1: 1
.= (((
cosec
. (x
+ h))
* (
cosec
. (x
+ h)))
- ((
cosec
(#)
cosec )
. x)) by
VALUED_1: 5
.= (((
cosec
. (x
+ h))
* (
cosec
. (x
+ h)))
- ((
cosec
. x)
* (
cosec
. x))) by
VALUED_1: 5
.= ((((
sin
. (x
+ h))
" )
* (
cosec
. (x
+ h)))
- ((
cosec
. x)
* (
cosec
. x))) by
A1,
RFUNCT_1:def 2
.= ((((
sin
. (x
+ h))
" )
* ((
sin
. (x
+ h))
" ))
- ((
cosec
. x)
* (
cosec
. x))) by
A1,
RFUNCT_1:def 2
.= ((((
sin
. (x
+ h))
" )
* ((
sin
. (x
+ h))
" ))
- (((
sin
. x)
" )
* (
cosec
. x))) by
A1,
RFUNCT_1:def 2
.= ((((
sin
. (x
+ h))
" )
^2 )
- (((
sin
. x)
" )
^2 )) by
A1,
RFUNCT_1:def 2
.= (((1
/ (
sin
. (x
+ h)))
- (1
/ (
sin
. x)))
* ((1
/ (
sin
. (x
+ h)))
+ (1
/ (
sin
. x))))
.= ((((1
* (
sin
. x))
- (1
* (
sin
. (x
+ h))))
/ ((
sin
. (x
+ h))
* (
sin
. x)))
* ((1
/ (
sin
. (x
+ h)))
+ (1
/ (
sin
. x)))) by
A2,
XCMPLX_1: 130
.= ((((
sin
. x)
- (
sin
. (x
+ h)))
/ ((
sin
. (x
+ h))
* (
sin
. x)))
* (((
sin
. x)
+ (
sin
. (x
+ h)))
/ ((
sin
. (x
+ h))
* (
sin
. x)))) by
A2,
XCMPLX_1: 116
.= ((((
sin
. x)
- (
sin
. (x
+ h)))
* ((
sin
. x)
+ (
sin
. (x
+ h))))
/ (((
sin
. (x
+ h))
* (
sin
. x))
* ((
sin
. (x
+ h))
* (
sin
. x)))) by
XCMPLX_1: 76
.= ((((
sin x)
* (
sin x))
- ((
sin (x
+ h))
* (
sin (x
+ h))))
/ (((
sin (x
+ h))
* (
sin x))
^2 ))
.= (((
sin (x
+ (x
+ h)))
* (
sin (x
- (x
+ h))))
/ (((
sin (x
+ h))
* (
sin x))
^2 )) by
SIN_COS4: 37
.= (((
sin ((2
* x)
+ h))
* (
sin (
- h)))
/ ((
- ((1
/ 2)
* ((
cos ((x
+ h)
+ x))
- (
cos ((x
+ h)
- x)))))
^2 )) by
SIN_COS4: 29
.= (((
sin ((2
* x)
+ h))
* (
- (
sin h)))
/ ((1
/ 4)
* (((
cos ((2
* x)
+ h))
- (
cos h))
^2 ))) by
SIN_COS: 31
.= (
- ((1
* ((
sin ((2
* x)
+ h))
* (
sin h)))
/ ((1
/ 4)
* (((
cos ((2
* x)
+ h))
- (
cos h))
^2 ))))
.= (
- ((1
/ (1
/ 4))
* (((
sin ((2
* x)
+ h))
* (
sin h))
/ (((
cos ((2
* x)
+ h))
- (
cos h))
^2 )))) by
XCMPLX_1: 76
.= (
- (((4
* (
sin ((2
* x)
+ h)))
* (
sin h))
/ (((
cos ((2
* x)
+ h))
- (
cos h))
^2 )));
hence thesis;
end;
theorem ::
DIFF_4:12
x
in (
dom
cosec ) & (x
- h)
in (
dom
cosec ) implies ((
bD ((
cosec
(#)
cosec ),h))
. x)
= (
- (((4
* (
sin ((2
* x)
- h)))
* (
sin h))
/ (((
cos ((2
* x)
- h))
- (
cos h))
^2 )))
proof
set f = (
cosec
(#)
cosec );
assume
A1: x
in (
dom
cosec ) & (x
- h)
in (
dom
cosec );
A2: (
sin
. x)
<>
0 & (
sin
. (x
- h))
<>
0 by
A1,
RFUNCT_1: 3;
x
in (
dom f) & (x
- h)
in (
dom f)
proof
x
in ((
dom
cosec )
/\ (
dom
cosec )) & (x
- h)
in ((
dom
cosec )
/\ (
dom
cosec )) by
A1;
hence thesis by
VALUED_1:def 4;
end;
then ((
bD (f,h))
. x)
= (((
cosec
(#)
cosec )
. x)
- ((
cosec
(#)
cosec )
. (x
- h))) by
DIFF_1: 38
.= (((
cosec
. x)
* (
cosec
. x))
- ((
cosec
(#)
cosec )
. (x
- h))) by
VALUED_1: 5
.= (((
cosec
. x)
* (
cosec
. x))
- ((
cosec
. (x
- h))
* (
cosec
. (x
- h)))) by
VALUED_1: 5
.= ((((
sin
. x)
" )
* (
cosec
. x))
- ((
cosec
. (x
- h))
* (
cosec
. (x
- h)))) by
A1,
RFUNCT_1:def 2
.= ((((
sin
. x)
" )
* ((
sin
. x)
" ))
- ((
cosec
. (x
- h))
* (
cosec
. (x
- h)))) by
A1,
RFUNCT_1:def 2
.= ((((
sin
. x)
" )
* ((
sin
. x)
" ))
- (((
sin
. (x
- h))
" )
* (
cosec
. (x
- h)))) by
A1,
RFUNCT_1:def 2
.= ((((
sin
. x)
" )
^2 )
- (((
sin
. (x
- h))
" )
^2 )) by
A1,
RFUNCT_1:def 2
.= (((1
/ (
sin
. x))
- (1
/ (
sin
. (x
- h))))
* ((1
/ (
sin
. x))
+ (1
/ (
sin
. (x
- h)))))
.= ((((1
* (
sin
. (x
- h)))
- (1
* (
sin
. x)))
/ ((
sin
. x)
* (
sin
. (x
- h))))
* ((1
/ (
sin
. x))
+ (1
/ (
sin
. (x
- h))))) by
A2,
XCMPLX_1: 130
.= ((((
sin
. (x
- h))
- (
sin
. x))
/ ((
sin
. x)
* (
sin
. (x
- h))))
* (((
sin
. (x
- h))
+ (
sin
. x))
/ ((
sin
. x)
* (
sin
. (x
- h))))) by
A2,
XCMPLX_1: 116
.= ((((
sin
. (x
- h))
- (
sin
. x))
* ((
sin
. (x
- h))
+ (
sin
. x)))
/ (((
sin
. x)
* (
sin
. (x
- h)))
* ((
sin
. x)
* (
sin
. (x
- h))))) by
XCMPLX_1: 76
.= ((((
sin (x
- h))
* (
sin (x
- h)))
- ((
sin x)
* (
sin x)))
/ (((
sin x)
* (
sin (x
- h)))
^2 ))
.= (((
sin ((x
- h)
+ x))
* (
sin ((x
- h)
- x)))
/ (((
sin x)
* (
sin (x
- h)))
^2 )) by
SIN_COS4: 37
.= (((
sin ((2
* x)
- h))
* (
sin (
- h)))
/ ((
- ((1
/ 2)
* ((
cos (x
+ (x
- h)))
- (
cos (x
- (x
- h))))))
^2 )) by
SIN_COS4: 29
.= (((
sin ((2
* x)
- h))
* (
- (
sin h)))
/ ((1
/ 4)
* (((
cos ((2
* x)
- h))
- (
cos h))
^2 ))) by
SIN_COS: 31
.= (
- ((1
* ((
sin ((2
* x)
- h))
* (
sin h)))
/ ((1
/ 4)
* (((
cos ((2
* x)
- h))
- (
cos h))
^2 ))))
.= (
- ((1
/ (1
/ 4))
* (((
sin ((2
* x)
- h))
* (
sin h))
/ (((
cos ((2
* x)
- h))
- (
cos h))
^2 )))) by
XCMPLX_1: 76
.= (
- (((4
* (
sin ((2
* x)
- h)))
* (
sin h))
/ (((
cos ((2
* x)
- h))
- (
cos h))
^2 )));
hence thesis;
end;
theorem ::
DIFF_4:13
(x
+ (h
/ 2))
in (
dom
cosec ) & (x
- (h
/ 2))
in (
dom
cosec ) implies ((
cD ((
cosec
(#)
cosec ),h))
. x)
= (
- (((4
* (
sin (2
* x)))
* (
sin h))
/ (((
cos (2
* x))
- (
cos h))
^2 )))
proof
set f = (
cosec
(#)
cosec );
assume
A1: (x
+ (h
/ 2))
in (
dom
cosec ) & (x
- (h
/ 2))
in (
dom
cosec );
A2: (
sin
. (x
+ (h
/ 2)))
<>
0 & (
sin
. (x
- (h
/ 2)))
<>
0 by
A1,
RFUNCT_1: 3;
(x
+ (h
/ 2))
in (
dom f) & (x
- (h
/ 2))
in (
dom f)
proof
(x
+ (h
/ 2))
in ((
dom
cosec )
/\ (
dom
cosec )) & (x
- (h
/ 2))
in ((
dom
cosec )
/\ (
dom
cosec )) by
A1;
hence thesis by
VALUED_1:def 4;
end;
then ((
cD (f,h))
. x)
= (((
cosec
(#)
cosec )
. (x
+ (h
/ 2)))
- ((
cosec
(#)
cosec )
. (x
- (h
/ 2)))) by
DIFF_1: 39
.= (((
cosec
. (x
+ (h
/ 2)))
* (
cosec
. (x
+ (h
/ 2))))
- ((
cosec
(#)
cosec )
. (x
- (h
/ 2)))) by
VALUED_1: 5
.= (((
cosec
. (x
+ (h
/ 2)))
* (
cosec
. (x
+ (h
/ 2))))
- ((
cosec
. (x
- (h
/ 2)))
* (
cosec
. (x
- (h
/ 2))))) by
VALUED_1: 5
.= ((((
sin
. (x
+ (h
/ 2)))
" )
* (
cosec
. (x
+ (h
/ 2))))
- ((
cosec
. (x
- (h
/ 2)))
* (
cosec
. (x
- (h
/ 2))))) by
A1,
RFUNCT_1:def 2
.= ((((
sin
. (x
+ (h
/ 2)))
" )
* ((
sin
. (x
+ (h
/ 2)))
" ))
- ((
cosec
. (x
- (h
/ 2)))
* (
cosec
. (x
- (h
/ 2))))) by
A1,
RFUNCT_1:def 2
.= ((((
sin
. (x
+ (h
/ 2)))
" )
* ((
sin
. (x
+ (h
/ 2)))
" ))
- (((
sin
. (x
- (h
/ 2)))
" )
* (
cosec
. (x
- (h
/ 2))))) by
A1,
RFUNCT_1:def 2
.= ((((
sin
. (x
+ (h
/ 2)))
" )
^2 )
- (((
sin
. (x
- (h
/ 2)))
" )
^2 )) by
A1,
RFUNCT_1:def 2
.= (((1
/ (
sin
. (x
+ (h
/ 2))))
- (1
/ (
sin
. (x
- (h
/ 2)))))
* ((1
/ (
sin
. (x
+ (h
/ 2))))
+ (1
/ (
sin
. (x
- (h
/ 2))))))
.= ((((1
* (
sin
. (x
- (h
/ 2))))
- (1
* (
sin
. (x
+ (h
/ 2)))))
/ ((
sin
. (x
+ (h
/ 2)))
* (
sin
. (x
- (h
/ 2)))))
* ((1
/ (
sin
. (x
+ (h
/ 2))))
+ (1
/ (
sin
. (x
- (h
/ 2)))))) by
A2,
XCMPLX_1: 130
.= ((((
sin
. (x
- (h
/ 2)))
- (
sin
. (x
+ (h
/ 2))))
/ ((
sin
. (x
+ (h
/ 2)))
* (
sin
. (x
- (h
/ 2)))))
* (((
sin
. (x
- (h
/ 2)))
+ (
sin
. (x
+ (h
/ 2))))
/ ((
sin
. (x
+ (h
/ 2)))
* (
sin
. (x
- (h
/ 2)))))) by
A2,
XCMPLX_1: 116
.= ((((
sin
. (x
- (h
/ 2)))
- (
sin
. (x
+ (h
/ 2))))
* ((
sin
. (x
- (h
/ 2)))
+ (
sin
. (x
+ (h
/ 2)))))
/ (((
sin
. (x
+ (h
/ 2)))
* (
sin
. (x
- (h
/ 2))))
* ((
sin
. (x
+ (h
/ 2)))
* (
sin
. (x
- (h
/ 2)))))) by
XCMPLX_1: 76
.= ((((
sin (x
- (h
/ 2)))
* (
sin (x
- (h
/ 2))))
- ((
sin (x
+ (h
/ 2)))
* (
sin (x
+ (h
/ 2)))))
/ (((
sin (x
+ (h
/ 2)))
* (
sin (x
- (h
/ 2))))
^2 ))
.= (((
sin ((x
- (h
/ 2))
+ (x
+ (h
/ 2))))
* (
sin ((x
- (h
/ 2))
- (x
+ (h
/ 2)))))
/ (((
sin (x
+ (h
/ 2)))
* (
sin (x
- (h
/ 2))))
^2 )) by
SIN_COS4: 37
.= (((
sin (2
* x))
* (
sin (
- h)))
/ ((
- ((1
/ 2)
* ((
cos ((x
+ (h
/ 2))
+ (x
- (h
/ 2))))
- (
cos ((x
+ (h
/ 2))
- (x
- (h
/ 2)))))))
^2 )) by
SIN_COS4: 29
.= (((
sin (2
* x))
* (
- (
sin h)))
/ ((1
/ 4)
* (((
cos (2
* x))
- (
cos h))
^2 ))) by
SIN_COS: 31
.= (
- ((1
* ((
sin (2
* x))
* (
sin h)))
/ ((1
/ 4)
* (((
cos (2
* x))
- (
cos h))
^2 ))))
.= (
- ((1
/ (1
/ 4))
* (((
sin (2
* x))
* (
sin h))
/ (((
cos (2
* x))
- (
cos h))
^2 )))) by
XCMPLX_1: 76
.= (
- (((4
* (
sin (2
* x)))
* (
sin h))
/ (((
cos (2
* x))
- (
cos h))
^2 )));
hence thesis;
end;
theorem ::
DIFF_4:14
x0
in (
dom
sec ) & x1
in (
dom
sec ) implies
[!(
sec
(#)
sec ), x0, x1!]
= ((4
* ((
sin (x0
+ x1))
* (
sin (x0
- x1))))
/ ((((
cos (x0
+ x1))
+ (
cos (x0
- x1)))
^2 )
* (x0
- x1)))
proof
assume
A1: x0
in (
dom
sec ) & x1
in (
dom
sec );
A2: (
cos
. x0)
<>
0 & (
cos
. x1)
<>
0 by
A1,
RFUNCT_1: 3;
[!(
sec
(#)
sec ), x0, x1!]
= ((((
sec
. x0)
* (
sec
. x0))
- ((
sec
(#)
sec )
. x1))
/ (x0
- x1)) by
VALUED_1: 5
.= ((((
sec
. x0)
* (
sec
. x0))
- ((
sec
. x1)
* (
sec
. x1)))
/ (x0
- x1)) by
VALUED_1: 5
.= (((((
cos
. x0)
" )
* (
sec
. x0))
- ((
sec
. x1)
* (
sec
. x1)))
/ (x0
- x1)) by
A1,
RFUNCT_1:def 2
.= (((((
cos
. x0)
" )
* ((
cos
. x0)
" ))
- ((
sec
. x1)
* (
sec
. x1)))
/ (x0
- x1)) by
A1,
RFUNCT_1:def 2
.= (((((
cos
. x0)
" )
* ((
cos
. x0)
" ))
- (((
cos
. x1)
" )
* (
sec
. x1)))
/ (x0
- x1)) by
A1,
RFUNCT_1:def 2
.= (((((
cos
. x0)
" )
^2 )
- (((
cos
. x1)
" )
^2 ))
/ (x0
- x1)) by
A1,
RFUNCT_1:def 2
.= ((((1
/ (
cos
. x0))
- (1
/ (
cos
. x1)))
* ((1
/ (
cos
. x0))
+ (1
/ (
cos
. x1))))
/ (x0
- x1))
.= (((((1
* (
cos
. x1))
- (1
* (
cos
. x0)))
/ ((
cos
. x0)
* (
cos
. x1)))
* ((1
/ (
cos
. x0))
+ (1
/ (
cos
. x1))))
/ (x0
- x1)) by
A2,
XCMPLX_1: 130
.= (((((
cos
. x1)
- (
cos
. x0))
/ ((
cos
. x0)
* (
cos
. x1)))
* (((
cos
. x1)
+ (
cos
. x0))
/ ((
cos
. x0)
* (
cos
. x1))))
/ (x0
- x1)) by
A2,
XCMPLX_1: 116
.= (((((
cos
. x1)
- (
cos
. x0))
* ((
cos
. x1)
+ (
cos
. x0)))
/ (((
cos
. x0)
* (
cos
. x1))
* ((
cos
. x0)
* (
cos
. x1))))
/ (x0
- x1)) by
XCMPLX_1: 76
.= (((((
cos x1)
* (
cos x1))
- ((
cos x0)
* (
cos x0)))
/ (((
cos x0)
* (
cos x1))
^2 ))
/ (x0
- x1))
.= ((((
sin (x0
+ x1))
* (
sin (x0
- x1)))
/ (((
cos x0)
* (
cos x1))
^2 ))
/ (x0
- x1)) by
SIN_COS4: 38
.= ((((
sin (x0
+ x1))
* (
sin (x0
- x1)))
/ (((1
/ 2)
* ((
cos (x0
+ x1))
+ (
cos (x0
- x1))))
^2 ))
/ (x0
- x1)) by
SIN_COS4: 32
.= (((1
* ((
sin (x0
+ x1))
* (
sin (x0
- x1))))
/ ((1
/ 4)
* (((
cos (x0
+ x1))
+ (
cos (x0
- x1)))
^2 )))
/ (x0
- x1))
.= (((1
/ (1
/ 4))
* (((
sin (x0
+ x1))
* (
sin (x0
- x1)))
/ (((
cos (x0
+ x1))
+ (
cos (x0
- x1)))
^2 )))
/ (x0
- x1)) by
XCMPLX_1: 76
.= (((4
* ((
sin (x0
+ x1))
* (
sin (x0
- x1))))
/ (((
cos (x0
+ x1))
+ (
cos (x0
- x1)))
^2 ))
/ (x0
- x1))
.= ((4
* ((
sin (x0
+ x1))
* (
sin (x0
- x1))))
/ ((((
cos (x0
+ x1))
+ (
cos (x0
- x1)))
^2 )
* (x0
- x1))) by
XCMPLX_1: 78;
hence thesis;
end;
theorem ::
DIFF_4:15
x
in (
dom
sec ) & (x
+ h)
in (
dom
sec ) implies ((
fD ((
sec
(#)
sec ),h))
. x)
= (((4
* (
sin ((2
* x)
+ h)))
* (
sin h))
/ (((
cos ((2
* x)
+ h))
+ (
cos h))
^2 ))
proof
set f = (
sec
(#)
sec );
assume
A1: x
in (
dom
sec ) & (x
+ h)
in (
dom
sec );
A2: (
cos
. x)
<>
0 & (
cos
. (x
+ h))
<>
0 by
A1,
RFUNCT_1: 3;
x
in (
dom f) & (x
+ h)
in (
dom f)
proof
x
in ((
dom
sec )
/\ (
dom
sec )) & (x
+ h)
in ((
dom
sec )
/\ (
dom
sec )) by
A1;
hence thesis by
VALUED_1:def 4;
end;
then ((
fD (f,h))
. x)
= (((
sec
(#)
sec )
. (x
+ h))
- ((
sec
(#)
sec )
. x)) by
DIFF_1: 1
.= (((
sec
. (x
+ h))
* (
sec
. (x
+ h)))
- ((
sec
(#)
sec )
. x)) by
VALUED_1: 5
.= (((
sec
. (x
+ h))
* (
sec
. (x
+ h)))
- ((
sec
. x)
* (
sec
. x))) by
VALUED_1: 5
.= ((((
cos
. (x
+ h))
" )
* (
sec
. (x
+ h)))
- ((
sec
. x)
* (
sec
. x))) by
A1,
RFUNCT_1:def 2
.= ((((
cos
. (x
+ h))
" )
* ((
cos
. (x
+ h))
" ))
- ((
sec
. x)
* (
sec
. x))) by
A1,
RFUNCT_1:def 2
.= ((((
cos
. (x
+ h))
" )
* ((
cos
. (x
+ h))
" ))
- (((
cos
. x)
" )
* (
sec
. x))) by
A1,
RFUNCT_1:def 2
.= ((((
cos
. (x
+ h))
" )
^2 )
- (((
cos
. x)
" )
^2 )) by
A1,
RFUNCT_1:def 2
.= (((1
/ (
cos
. (x
+ h)))
- (1
/ (
cos
. x)))
* ((1
/ (
cos
. (x
+ h)))
+ (1
/ (
cos
. x))))
.= ((((1
* (
cos
. x))
- (1
* (
cos
. (x
+ h))))
/ ((
cos
. (x
+ h))
* (
cos
. x)))
* ((1
/ (
cos
. (x
+ h)))
+ (1
/ (
cos
. x)))) by
A2,
XCMPLX_1: 130
.= ((((
cos
. x)
- (
cos
. (x
+ h)))
/ ((
cos
. (x
+ h))
* (
cos
. x)))
* (((
cos
. x)
+ (
cos
. (x
+ h)))
/ ((
cos
. (x
+ h))
* (
cos
. x)))) by
A2,
XCMPLX_1: 116
.= ((((
cos
. x)
- (
cos
. (x
+ h)))
* ((
cos
. x)
+ (
cos
. (x
+ h))))
/ (((
cos
. (x
+ h))
* (
cos
. x))
* ((
cos
. (x
+ h))
* (
cos
. x)))) by
XCMPLX_1: 76
.= ((((
cos x)
* (
cos x))
- ((
cos (x
+ h))
* (
cos (x
+ h))))
/ (((
cos (x
+ h))
* (
cos x))
^2 ))
.= (((
sin ((x
+ h)
+ x))
* (
sin ((x
+ h)
- x)))
/ (((
cos (x
+ h))
* (
cos x))
^2 )) by
SIN_COS4: 38
.= (((
sin ((2
* x)
+ h))
* (
sin h))
/ (((1
/ 2)
* ((
cos ((x
+ h)
+ x))
+ (
cos ((x
+ h)
- x))))
^2 )) by
SIN_COS4: 32
.= ((1
* ((
sin ((2
* x)
+ h))
* (
sin h)))
/ ((1
/ 4)
* (((
cos ((2
* x)
+ h))
+ (
cos h))
^2 )))
.= ((1
/ (1
/ 4))
* (((
sin ((2
* x)
+ h))
* (
sin h))
/ (((
cos ((2
* x)
+ h))
+ (
cos h))
^2 ))) by
XCMPLX_1: 76
.= (((4
* (
sin ((2
* x)
+ h)))
* (
sin h))
/ (((
cos ((2
* x)
+ h))
+ (
cos h))
^2 ));
hence thesis;
end;
theorem ::
DIFF_4:16
x
in (
dom
sec ) & (x
- h)
in (
dom
sec ) implies ((
bD ((
sec
(#)
sec ),h))
. x)
= (((4
* (
sin ((2
* x)
- h)))
* (
sin h))
/ (((
cos ((2
* x)
- h))
+ (
cos h))
^2 ))
proof
set f = (
sec
(#)
sec );
assume
A1: x
in (
dom
sec ) & (x
- h)
in (
dom
sec );
A2: (
cos
. x)
<>
0 & (
cos
. (x
- h))
<>
0 by
A1,
RFUNCT_1: 3;
x
in (
dom f) & (x
- h)
in (
dom f)
proof
x
in ((
dom
sec )
/\ (
dom
sec )) & (x
- h)
in ((
dom
sec )
/\ (
dom
sec )) by
A1;
hence thesis by
VALUED_1:def 4;
end;
then ((
bD (f,h))
. x)
= (((
sec
(#)
sec )
. x)
- ((
sec
(#)
sec )
. (x
- h))) by
DIFF_1: 38
.= (((
sec
. x)
* (
sec
. x))
- ((
sec
(#)
sec )
. (x
- h))) by
VALUED_1: 5
.= (((
sec
. x)
* (
sec
. x))
- ((
sec
. (x
- h))
* (
sec
. (x
- h)))) by
VALUED_1: 5
.= ((((
cos
. x)
" )
* (
sec
. x))
- ((
sec
. (x
- h))
* (
sec
. (x
- h)))) by
A1,
RFUNCT_1:def 2
.= ((((
cos
. x)
" )
* ((
cos
. x)
" ))
- ((
sec
. (x
- h))
* (
sec
. (x
- h)))) by
A1,
RFUNCT_1:def 2
.= ((((
cos
. x)
" )
* ((
cos
. x)
" ))
- (((
cos
. (x
- h))
" )
* (
sec
. (x
- h)))) by
A1,
RFUNCT_1:def 2
.= ((((
cos
. x)
" )
^2 )
- (((
cos
. (x
- h))
" )
^2 )) by
A1,
RFUNCT_1:def 2
.= (((1
/ (
cos
. x))
- (1
/ (
cos
. (x
- h))))
* ((1
/ (
cos
. x))
+ (1
/ (
cos
. (x
- h)))))
.= ((((1
* (
cos
. (x
- h)))
- (1
* (
cos
. x)))
/ ((
cos
. x)
* (
cos
. (x
- h))))
* ((1
/ (
cos
. x))
+ (1
/ (
cos
. (x
- h))))) by
A2,
XCMPLX_1: 130
.= ((((
cos
. (x
- h))
- (
cos
. x))
/ ((
cos
. x)
* (
cos
. (x
- h))))
* (((
cos
. (x
- h))
+ (
cos
. x))
/ ((
cos
. x)
* (
cos
. (x
- h))))) by
A2,
XCMPLX_1: 116
.= ((((
cos
. (x
- h))
- (
cos
. x))
* ((
cos
. (x
- h))
+ (
cos
. x)))
/ (((
cos
. x)
* (
cos
. (x
- h)))
* ((
cos
. x)
* (
cos
. (x
- h))))) by
XCMPLX_1: 76
.= ((((
cos (x
- h))
* (
cos (x
- h)))
- ((
cos x)
* (
cos x)))
/ (((
cos x)
* (
cos (x
- h)))
^2 ))
.= (((
sin (x
+ (x
- h)))
* (
sin (x
- (x
- h))))
/ (((
cos x)
* (
cos (x
- h)))
^2 )) by
SIN_COS4: 38
.= (((
sin ((2
* x)
- h))
* (
sin h))
/ (((1
/ 2)
* ((
cos (x
+ (x
- h)))
+ (
cos (x
- (x
- h)))))
^2 )) by
SIN_COS4: 32
.= ((1
* ((
sin ((2
* x)
- h))
* (
sin h)))
/ ((1
/ 4)
* (((
cos ((2
* x)
- h))
+ (
cos h))
^2 )))
.= ((1
/ (1
/ 4))
* (((
sin ((2
* x)
- h))
* (
sin h))
/ (((
cos ((2
* x)
- h))
+ (
cos h))
^2 ))) by
XCMPLX_1: 76
.= (((4
* (
sin ((2
* x)
- h)))
* (
sin h))
/ (((
cos ((2
* x)
- h))
+ (
cos h))
^2 ));
hence thesis;
end;
theorem ::
DIFF_4:17
(x
+ (h
/ 2))
in (
dom
sec ) & (x
- (h
/ 2))
in (
dom
sec ) implies ((
cD ((
sec
(#)
sec ),h))
. x)
= (((4
* (
sin (2
* x)))
* (
sin h))
/ (((
cos (2
* x))
+ (
cos h))
^2 ))
proof
set f = (
sec
(#)
sec );
assume
A1: (x
+ (h
/ 2))
in (
dom
sec ) & (x
- (h
/ 2))
in (
dom
sec );
A2: (
cos
. (x
+ (h
/ 2)))
<>
0 & (
cos
. (x
- (h
/ 2)))
<>
0 by
A1,
RFUNCT_1: 3;
(x
+ (h
/ 2))
in (
dom f) & (x
- (h
/ 2))
in (
dom f)
proof
(x
+ (h
/ 2))
in ((
dom
sec )
/\ (
dom
sec )) & (x
- (h
/ 2))
in ((
dom
sec )
/\ (
dom
sec )) by
A1;
hence thesis by
VALUED_1:def 4;
end;
then ((
cD (f,h))
. x)
= (((
sec
(#)
sec )
. (x
+ (h
/ 2)))
- ((
sec
(#)
sec )
. (x
- (h
/ 2)))) by
DIFF_1: 39
.= (((
sec
. (x
+ (h
/ 2)))
* (
sec
. (x
+ (h
/ 2))))
- ((
sec
(#)
sec )
. (x
- (h
/ 2)))) by
VALUED_1: 5
.= (((
sec
. (x
+ (h
/ 2)))
* (
sec
. (x
+ (h
/ 2))))
- ((
sec
. (x
- (h
/ 2)))
* (
sec
. (x
- (h
/ 2))))) by
VALUED_1: 5
.= ((((
cos
. (x
+ (h
/ 2)))
" )
* (
sec
. (x
+ (h
/ 2))))
- ((
sec
. (x
- (h
/ 2)))
* (
sec
. (x
- (h
/ 2))))) by
A1,
RFUNCT_1:def 2
.= ((((
cos
. (x
+ (h
/ 2)))
" )
* ((
cos
. (x
+ (h
/ 2)))
" ))
- ((
sec
. (x
- (h
/ 2)))
* (
sec
. (x
- (h
/ 2))))) by
A1,
RFUNCT_1:def 2
.= ((((
cos
. (x
+ (h
/ 2)))
" )
* ((
cos
. (x
+ (h
/ 2)))
" ))
- (((
cos
. (x
- (h
/ 2)))
" )
* (
sec
. (x
- (h
/ 2))))) by
A1,
RFUNCT_1:def 2
.= ((((
cos
. (x
+ (h
/ 2)))
" )
^2 )
- (((
cos
. (x
- (h
/ 2)))
" )
^2 )) by
A1,
RFUNCT_1:def 2
.= (((1
/ (
cos
. (x
+ (h
/ 2))))
- (1
/ (
cos
. (x
- (h
/ 2)))))
* ((1
/ (
cos
. (x
+ (h
/ 2))))
+ (1
/ (
cos
. (x
- (h
/ 2))))))
.= ((((1
* (
cos
. (x
- (h
/ 2))))
- (1
* (
cos
. (x
+ (h
/ 2)))))
/ ((
cos
. (x
+ (h
/ 2)))
* (
cos
. (x
- (h
/ 2)))))
* ((1
/ (
cos
. (x
+ (h
/ 2))))
+ (1
/ (
cos
. (x
- (h
/ 2)))))) by
A2,
XCMPLX_1: 130
.= ((((
cos
. (x
- (h
/ 2)))
- (
cos
. (x
+ (h
/ 2))))
/ ((
cos
. (x
+ (h
/ 2)))
* (
cos
. (x
- (h
/ 2)))))
* (((
cos
. (x
- (h
/ 2)))
+ (
cos
. (x
+ (h
/ 2))))
/ ((
cos
. (x
+ (h
/ 2)))
* (
cos
. (x
- (h
/ 2)))))) by
A2,
XCMPLX_1: 116
.= ((((
cos
. (x
- (h
/ 2)))
- (
cos
. (x
+ (h
/ 2))))
* ((
cos
. (x
- (h
/ 2)))
+ (
cos
. (x
+ (h
/ 2)))))
/ (((
cos
. (x
+ (h
/ 2)))
* (
cos
. (x
- (h
/ 2))))
* ((
cos
. (x
+ (h
/ 2)))
* (
cos
. (x
- (h
/ 2)))))) by
XCMPLX_1: 76
.= ((((
cos (x
- (h
/ 2)))
* (
cos (x
- (h
/ 2))))
- ((
cos (x
+ (h
/ 2)))
* (
cos (x
+ (h
/ 2)))))
/ (((
cos (x
+ (h
/ 2)))
* (
cos (x
- (h
/ 2))))
^2 ))
.= (((
sin ((x
+ (h
/ 2))
+ (x
- (h
/ 2))))
* (
sin ((x
+ (h
/ 2))
- (x
- (h
/ 2)))))
/ (((
cos (x
+ (h
/ 2)))
* (
cos (x
- (h
/ 2))))
^2 )) by
SIN_COS4: 38
.= (((
sin (2
* x))
* (
sin h))
/ (((1
/ 2)
* ((
cos ((x
+ (h
/ 2))
+ (x
- (h
/ 2))))
+ (
cos ((x
+ (h
/ 2))
- (x
- (h
/ 2))))))
^2 )) by
SIN_COS4: 32
.= ((1
* ((
sin (2
* x))
* (
sin h)))
/ ((1
/ 4)
* (((
cos (2
* x))
+ (
cos h))
^2 )))
.= ((1
/ (1
/ 4))
* (((
sin (2
* x))
* (
sin h))
/ (((
cos (2
* x))
+ (
cos h))
^2 ))) by
XCMPLX_1: 76
.= (((4
* (
sin (2
* x)))
* (
sin h))
/ (((
cos (2
* x))
+ (
cos h))
^2 ));
hence thesis;
end;
theorem ::
DIFF_4:18
x0
in ((
dom
cosec )
/\ (
dom
sec )) & x1
in ((
dom
cosec )
/\ (
dom
sec )) implies
[!(
cosec
(#)
sec ), x0, x1!]
= (((4
* ((
cos (x1
+ x0))
* (
sin (x1
- x0))))
/ ((
sin (2
* x0))
* (
sin (2
* x1))))
/ (x0
- x1))
proof
assume
A1: x0
in ((
dom
cosec )
/\ (
dom
sec )) & x1
in ((
dom
cosec )
/\ (
dom
sec ));
A2: x0
in (
dom
cosec ) & x0
in (
dom
sec ) by
A1,
XBOOLE_0:def 4;
A3: x1
in (
dom
cosec ) & x1
in (
dom
sec ) by
A1,
XBOOLE_0:def 4;
A4: (
sin
. x0)
<>
0 & (
cos
. x0)
<>
0 by
A2,
RFUNCT_1: 3;
A5: (
sin
. x1)
<>
0 & (
cos
. x1)
<>
0 by
A3,
RFUNCT_1: 3;
[!(
cosec
(#)
sec ), x0, x1!]
= ((((
cosec
. x0)
* (
sec
. x0))
- ((
cosec
(#)
sec )
. x1))
/ (x0
- x1)) by
VALUED_1: 5
.= ((((
cosec
. x0)
* (
sec
. x0))
- ((
cosec
. x1)
* (
sec
. x1)))
/ (x0
- x1)) by
VALUED_1: 5
.= (((((
sin
. x0)
" )
* (
sec
. x0))
- ((
cosec
. x1)
* (
sec
. x1)))
/ (x0
- x1)) by
A2,
RFUNCT_1:def 2
.= (((((
sin
. x0)
" )
* ((
cos
. x0)
" ))
- ((
cosec
. x1)
* (
sec
. x1)))
/ (x0
- x1)) by
A2,
RFUNCT_1:def 2
.= (((((
sin
. x0)
" )
* ((
cos
. x0)
" ))
- (((
sin
. x1)
" )
* (
sec
. x1)))
/ (x0
- x1)) by
A3,
RFUNCT_1:def 2
.= (((((
sin
. x0)
" )
* ((
cos
. x0)
" ))
- (((
sin
. x1)
" )
* ((
cos
. x1)
" )))
/ (x0
- x1)) by
A3,
RFUNCT_1:def 2
.= (((((
sin
. x0)
* (
cos
. x0))
" )
- (((
sin
. x1)
" )
* ((
cos
. x1)
" )))
/ (x0
- x1)) by
XCMPLX_1: 204
.= (((1
/ ((
sin
. x0)
* (
cos
. x0)))
- (1
/ ((
sin
. x1)
* (
cos
. x1))))
/ (x0
- x1)) by
XCMPLX_1: 204
.= ((((1
* ((
sin
. x1)
* (
cos
. x1)))
- (1
* ((
sin
. x0)
* (
cos
. x0))))
/ (((
sin
. x0)
* (
cos
. x0))
* ((
sin
. x1)
* (
cos
. x1))))
/ (x0
- x1)) by
A4,
A5,
XCMPLX_1: 130
.= ((((
cos (x1
+ x0))
* (
sin (x1
- x0)))
/ (((1
/ 2)
* ((2
* (
sin x0))
* (
cos x0)))
* ((1
/ 2)
* ((2
* (
sin x1))
* (
cos x1)))))
/ (x0
- x1)) by
SIN_COS4: 40
.= ((((
cos (x1
+ x0))
* (
sin (x1
- x0)))
/ (((1
/ 2)
* (
sin (2
* x0)))
* ((1
/ 2)
* ((2
* (
sin x1))
* (
cos x1)))))
/ (x0
- x1)) by
SIN_COS5: 5
.= ((((
cos (x1
+ x0))
* (
sin (x1
- x0)))
/ (((1
/ 2)
* (
sin (2
* x0)))
* ((1
/ 2)
* (
sin (2
* x1)))))
/ (x0
- x1)) by
SIN_COS5: 5
.= ((((
cos (x1
+ x0))
* (
sin (x1
- x0)))
/ ((((
sin (2
* x0))
* (
sin (2
* x1)))
* 1)
/ 4))
/ (x0
- x1))
.= (((1
/ (1
/ 4))
* (((
cos (x1
+ x0))
* (
sin (x1
- x0)))
/ ((
sin (2
* x0))
* (
sin (2
* x1)))))
/ (x0
- x1)) by
XCMPLX_1: 103
.= (((4
* ((
cos (x1
+ x0))
* (
sin (x1
- x0))))
/ ((
sin (2
* x0))
* (
sin (2
* x1))))
/ (x0
- x1));
hence thesis;
end;
theorem ::
DIFF_4:19
(x
+ h)
in ((
dom
cosec )
/\ (
dom
sec )) & x
in ((
dom
cosec )
/\ (
dom
sec )) implies ((
fD ((
cosec
(#)
sec ),h))
. x)
= (
- (4
* (((
cos ((2
* x)
+ h))
* (
sin h))
/ ((
sin (2
* (x
+ h)))
* (
sin (2
* x))))))
proof
set f = (
cosec
(#)
sec );
assume
A1: (x
+ h)
in ((
dom
cosec )
/\ (
dom
sec )) & x
in ((
dom
cosec )
/\ (
dom
sec ));
A2: (x
+ h)
in (
dom
cosec ) & (x
+ h)
in (
dom
sec ) by
A1,
XBOOLE_0:def 4;
A3: x
in (
dom
cosec ) & x
in (
dom
sec ) by
A1,
XBOOLE_0:def 4;
A4: (
sin
. (x
+ h))
<>
0 & (
cos
. (x
+ h))
<>
0 by
A2,
RFUNCT_1: 3;
A5: (
sin
. x)
<>
0 & (
cos
. x)
<>
0 by
A3,
RFUNCT_1: 3;
x
in (
dom f) & (x
+ h)
in (
dom f) by
A1,
VALUED_1:def 4;
then ((
fD (f,h))
. x)
= (((
cosec
(#)
sec )
. (x
+ h))
- ((
cosec
(#)
sec )
. x)) by
DIFF_1: 1
.= (((
cosec
. (x
+ h))
* (
sec
. (x
+ h)))
- ((
cosec
(#)
sec )
. x)) by
VALUED_1: 5
.= (((
cosec
. (x
+ h))
* (
sec
. (x
+ h)))
- ((
cosec
. x)
* (
sec
. x))) by
VALUED_1: 5
.= ((((
sin
. (x
+ h))
" )
* (
sec
. (x
+ h)))
- ((
cosec
. x)
* (
sec
. x))) by
A2,
RFUNCT_1:def 2
.= ((((
sin
. (x
+ h))
" )
* ((
cos
. (x
+ h))
" ))
- ((
cosec
. x)
* (
sec
. x))) by
A2,
RFUNCT_1:def 2
.= ((((
sin
. (x
+ h))
" )
* ((
cos
. (x
+ h))
" ))
- (((
sin
. x)
" )
* (
sec
. x))) by
A3,
RFUNCT_1:def 2
.= ((((
sin
. (x
+ h))
" )
* ((
cos
. (x
+ h))
" ))
- (((
sin
. x)
" )
* ((
cos
. x)
" ))) by
A3,
RFUNCT_1:def 2
.= ((((
sin
. (x
+ h))
* (
cos
. (x
+ h)))
" )
- (((
sin
. x)
" )
* ((
cos
. x)
" ))) by
XCMPLX_1: 204
.= ((1
/ ((
sin
. (x
+ h))
* (
cos
. (x
+ h))))
- (1
/ ((
sin
. x)
* (
cos
. x)))) by
XCMPLX_1: 204
.= (((1
* ((
sin
. x)
* (
cos
. x)))
- (1
* ((
sin
. (x
+ h))
* (
cos
. (x
+ h)))))
/ (((
sin
. (x
+ h))
* (
cos
. (x
+ h)))
* ((
sin
. x)
* (
cos
. x)))) by
A4,
A5,
XCMPLX_1: 130
.= (((
cos (x
+ (x
+ h)))
* (
sin (x
- (x
+ h))))
/ (((
sin (x
+ h))
* (
cos (x
+ h)))
* ((
sin x)
* (
cos x)))) by
SIN_COS4: 40
.= (((
cos ((2
* x)
+ h))
* (
sin (
- h)))
/ (((1
* (
sin (x
+ h)))
* (
cos (x
+ h)))
* ((1
* (
sin x))
* (
cos x))))
.= (((
cos ((2
* x)
+ h))
* (
- (
sin h)))
/ (((((1
/ 2)
* 2)
* (
sin (x
+ h)))
* (
cos (x
+ h)))
* ((((1
/ 2)
* 2)
* (
sin x))
* (
cos x)))) by
SIN_COS: 31
.= ((
- ((
cos ((2
* x)
+ h))
* (
sin h)))
/ (((1
/ 2)
* ((2
* (
sin (x
+ h)))
* (
cos (x
+ h))))
* ((1
/ 2)
* ((2
* (
sin x))
* (
cos x)))))
.= ((
- ((
cos ((2
* x)
+ h))
* (
sin h)))
/ (((1
/ 2)
* (
sin (2
* (x
+ h))))
* ((1
/ 2)
* ((2
* (
sin x))
* (
cos x))))) by
SIN_COS5: 5
.= ((
- ((
cos ((2
* x)
+ h))
* (
sin h)))
/ (((1
/ 2)
* (
sin (2
* (x
+ h))))
* ((1
/ 2)
* (
sin (2
* x))))) by
SIN_COS5: 5
.= (
- (((
cos ((2
* x)
+ h))
* (
sin h))
/ (((
sin (2
* (x
+ h)))
* (
sin (2
* x)))
* (1
/ 4))))
.= (
- ((1
/ (1
/ 4))
* (((
cos ((2
* x)
+ h))
* (
sin h))
/ ((
sin (2
* (x
+ h)))
* (
sin (2
* x)))))) by
XCMPLX_1: 103
.= (
- (4
* (((
cos ((2
* x)
+ h))
* (
sin h))
/ ((
sin (2
* (x
+ h)))
* (
sin (2
* x))))));
hence thesis;
end;
theorem ::
DIFF_4:20
(x
- h)
in ((
dom
cosec )
/\ (
dom
sec )) & x
in ((
dom
cosec )
/\ (
dom
sec )) implies ((
bD ((
cosec
(#)
sec ),h))
. x)
= (
- (4
* (((
cos ((2
* x)
- h))
* (
sin h))
/ ((
sin (2
* x))
* (
sin (2
* (x
- h)))))))
proof
set f = (
cosec
(#)
sec );
assume
A1: (x
- h)
in ((
dom
cosec )
/\ (
dom
sec )) & x
in ((
dom
cosec )
/\ (
dom
sec ));
A2: (x
- h)
in (
dom
cosec ) & (x
- h)
in (
dom
sec ) by
A1,
XBOOLE_0:def 4;
A3: x
in (
dom
cosec ) & x
in (
dom
sec ) by
A1,
XBOOLE_0:def 4;
A4: (
sin
. (x
- h))
<>
0 & (
cos
. (x
- h))
<>
0 by
A2,
RFUNCT_1: 3;
A5: (
sin
. x)
<>
0 & (
cos
. x)
<>
0 by
A3,
RFUNCT_1: 3;
x
in (
dom f) & (x
- h)
in (
dom f) by
A1,
VALUED_1:def 4;
then ((
bD (f,h))
. x)
= (((
cosec
(#)
sec )
. x)
- ((
cosec
(#)
sec )
. (x
- h))) by
DIFF_1: 38
.= (((
cosec
. x)
* (
sec
. x))
- ((
cosec
(#)
sec )
. (x
- h))) by
VALUED_1: 5
.= (((
cosec
. x)
* (
sec
. x))
- ((
cosec
. (x
- h))
* (
sec
. (x
- h)))) by
VALUED_1: 5
.= ((((
sin
. x)
" )
* (
sec
. x))
- ((
cosec
. (x
- h))
* (
sec
. (x
- h)))) by
A3,
RFUNCT_1:def 2
.= ((((
sin
. x)
" )
* ((
cos
. x)
" ))
- ((
cosec
. (x
- h))
* (
sec
. (x
- h)))) by
A3,
RFUNCT_1:def 2
.= ((((
sin
. x)
" )
* ((
cos
. x)
" ))
- (((
sin
. (x
- h))
" )
* (
sec
. (x
- h)))) by
A2,
RFUNCT_1:def 2
.= ((((
sin
. x)
" )
* ((
cos
. x)
" ))
- (((
sin
. (x
- h))
" )
* ((
cos
. (x
- h))
" ))) by
A2,
RFUNCT_1:def 2
.= ((((
sin
. x)
* (
cos
. x))
" )
- (((
sin
. (x
- h))
" )
* ((
cos
. (x
- h))
" ))) by
XCMPLX_1: 204
.= ((1
/ ((
sin
. x)
* (
cos
. x)))
- (1
/ ((
sin
. (x
- h))
* (
cos
. (x
- h))))) by
XCMPLX_1: 204
.= (((1
* ((
sin
. (x
- h))
* (
cos
. (x
- h))))
- (1
* ((
sin
. x)
* (
cos
. x))))
/ (((
sin
. x)
* (
cos
. x))
* ((
sin
. (x
- h))
* (
cos
. (x
- h))))) by
A4,
A5,
XCMPLX_1: 130
.= (((
cos ((x
- h)
+ x))
* (
sin ((x
- h)
- x)))
/ (((
sin x)
* (
cos x))
* ((
sin (x
- h))
* (
cos (x
- h))))) by
SIN_COS4: 40
.= (((
cos ((2
* x)
- h))
* (
- (
sin h)))
/ (((((1
/ 2)
* 2)
* (
sin x))
* (
cos x))
* ((((1
/ 2)
* 2)
* (
sin (x
- h)))
* (
cos (x
- h))))) by
SIN_COS: 31
.= ((
- ((
cos ((2
* x)
- h))
* (
sin h)))
/ (((1
/ 2)
* ((2
* (
sin x))
* (
cos x)))
* ((1
/ 2)
* ((2
* (
sin (x
- h)))
* (
cos (x
- h))))))
.= ((
- ((
cos ((2
* x)
- h))
* (
sin h)))
/ (((1
/ 2)
* (
sin (2
* x)))
* ((1
/ 2)
* ((2
* (
sin (x
- h)))
* (
cos (x
- h)))))) by
SIN_COS5: 5
.= ((
- ((
cos ((2
* x)
- h))
* (
sin h)))
/ (((1
/ 2)
* (
sin (2
* x)))
* ((1
/ 2)
* (
sin (2
* (x
- h)))))) by
SIN_COS5: 5
.= (
- (((
cos ((2
* x)
- h))
* (
sin h))
/ (((
sin (2
* x))
* (
sin (2
* (x
- h))))
* (1
/ 4))))
.= (
- ((1
/ (1
/ 4))
* (((
cos ((2
* x)
- h))
* (
sin h))
/ ((
sin (2
* x))
* (
sin (2
* (x
- h))))))) by
XCMPLX_1: 103
.= (
- (4
* (((
cos ((2
* x)
- h))
* (
sin h))
/ ((
sin (2
* x))
* (
sin (2
* (x
- h)))))));
hence thesis;
end;
theorem ::
DIFF_4:21
(x
+ (h
/ 2))
in ((
dom
cosec )
/\ (
dom
sec )) & (x
- (h
/ 2))
in ((
dom
cosec )
/\ (
dom
sec )) implies ((
cD ((
cosec
(#)
sec ),h))
. x)
= (
- (4
* (((
cos (2
* x))
* (
sin h))
/ ((
sin ((2
* x)
+ h))
* (
sin ((2
* x)
- h))))))
proof
set f = (
cosec
(#)
sec );
assume
A1: (x
+ (h
/ 2))
in ((
dom
cosec )
/\ (
dom
sec )) & (x
- (h
/ 2))
in ((
dom
cosec )
/\ (
dom
sec ));
A2: (x
+ (h
/ 2))
in (
dom
cosec ) & (x
+ (h
/ 2))
in (
dom
sec ) by
A1,
XBOOLE_0:def 4;
A3: (x
- (h
/ 2))
in (
dom
cosec ) & (x
- (h
/ 2))
in (
dom
sec ) by
A1,
XBOOLE_0:def 4;
A4: (
sin
. (x
+ (h
/ 2)))
<>
0 & (
cos
. (x
+ (h
/ 2)))
<>
0 by
A2,
RFUNCT_1: 3;
A5: (
sin
. (x
- (h
/ 2)))
<>
0 & (
cos
. (x
- (h
/ 2)))
<>
0 by
A3,
RFUNCT_1: 3;
(x
+ (h
/ 2))
in (
dom f) & (x
- (h
/ 2))
in (
dom f) by
A1,
VALUED_1:def 4;
then ((
cD (f,h))
. x)
= (((
cosec
(#)
sec )
. (x
+ (h
/ 2)))
- ((
cosec
(#)
sec )
. (x
- (h
/ 2)))) by
DIFF_1: 39
.= (((
cosec
. (x
+ (h
/ 2)))
* (
sec
. (x
+ (h
/ 2))))
- ((
cosec
(#)
sec )
. (x
- (h
/ 2)))) by
VALUED_1: 5
.= (((
cosec
. (x
+ (h
/ 2)))
* (
sec
. (x
+ (h
/ 2))))
- ((
cosec
. (x
- (h
/ 2)))
* (
sec
. (x
- (h
/ 2))))) by
VALUED_1: 5
.= ((((
sin
. (x
+ (h
/ 2)))
" )
* (
sec
. (x
+ (h
/ 2))))
- ((
cosec
. (x
- (h
/ 2)))
* (
sec
. (x
- (h
/ 2))))) by
A2,
RFUNCT_1:def 2
.= ((((
sin
. (x
+ (h
/ 2)))
" )
* ((
cos
. (x
+ (h
/ 2)))
" ))
- ((
cosec
. (x
- (h
/ 2)))
* (
sec
. (x
- (h
/ 2))))) by
A2,
RFUNCT_1:def 2
.= ((((
sin
. (x
+ (h
/ 2)))
" )
* ((
cos
. (x
+ (h
/ 2)))
" ))
- (((
sin
. (x
- (h
/ 2)))
" )
* (
sec
. (x
- (h
/ 2))))) by
A3,
RFUNCT_1:def 2
.= ((((
sin
. (x
+ (h
/ 2)))
" )
* ((
cos
. (x
+ (h
/ 2)))
" ))
- (((
sin
. (x
- (h
/ 2)))
" )
* ((
cos
. (x
- (h
/ 2)))
" ))) by
A3,
RFUNCT_1:def 2
.= ((((
sin
. (x
+ (h
/ 2)))
* (
cos
. (x
+ (h
/ 2))))
" )
- (((
sin
. (x
- (h
/ 2)))
" )
* ((
cos
. (x
- (h
/ 2)))
" ))) by
XCMPLX_1: 204
.= ((1
/ ((
sin
. (x
+ (h
/ 2)))
* (
cos
. (x
+ (h
/ 2)))))
- (1
/ ((
sin
. (x
- (h
/ 2)))
* (
cos
. (x
- (h
/ 2)))))) by
XCMPLX_1: 204
.= (((1
* ((
sin
. (x
- (h
/ 2)))
* (
cos
. (x
- (h
/ 2)))))
- (1
* ((
sin
. (x
+ (h
/ 2)))
* (
cos
. (x
+ (h
/ 2))))))
/ (((
sin
. (x
+ (h
/ 2)))
* (
cos
. (x
+ (h
/ 2))))
* ((
sin
. (x
- (h
/ 2)))
* (
cos
. (x
- (h
/ 2)))))) by
A4,
A5,
XCMPLX_1: 130
.= (((
cos ((x
- (h
/ 2))
+ (x
+ (h
/ 2))))
* (
sin ((x
- (h
/ 2))
- (x
+ (h
/ 2)))))
/ (((
sin (x
+ (h
/ 2)))
* (
cos (x
+ (h
/ 2))))
* ((
sin (x
- (h
/ 2)))
* (
cos (x
- (h
/ 2)))))) by
SIN_COS4: 40
.= (((
cos (2
* x))
* (
sin (
- h)))
/ (((1
* (
sin (x
+ (h
/ 2))))
* (
cos (x
+ (h
/ 2))))
* ((1
* (
sin (x
- (h
/ 2))))
* (
cos (x
- (h
/ 2))))))
.= (((
cos (2
* x))
* (
- (
sin h)))
/ (((((1
/ 2)
* 2)
* (
sin (x
+ (h
/ 2))))
* (
cos (x
+ (h
/ 2))))
* ((((1
/ 2)
* 2)
* (
sin (x
- (h
/ 2))))
* (
cos (x
- (h
/ 2)))))) by
SIN_COS: 31
.= ((
- ((
cos (2
* x))
* (
sin h)))
/ (((1
/ 2)
* ((2
* (
sin (x
+ (h
/ 2))))
* (
cos (x
+ (h
/ 2)))))
* ((1
/ 2)
* ((2
* (
sin (x
- (h
/ 2))))
* (
cos (x
- (h
/ 2)))))))
.= ((
- ((
cos (2
* x))
* (
sin h)))
/ (((1
/ 2)
* (
sin (2
* (x
+ (h
/ 2)))))
* ((1
/ 2)
* ((2
* (
sin (x
- (h
/ 2))))
* (
cos (x
- (h
/ 2))))))) by
SIN_COS5: 5
.= ((
- ((
cos (2
* x))
* (
sin h)))
/ (((1
/ 2)
* (
sin (2
* (x
+ (h
/ 2)))))
* ((1
/ 2)
* (
sin (2
* (x
- (h
/ 2))))))) by
SIN_COS5: 5
.= (
- (((
cos (2
* x))
* (
sin h))
/ (((
sin ((2
* x)
+ h))
* (
sin ((2
* x)
- h)))
* (1
/ 4))))
.= (
- ((1
/ (1
/ 4))
* (((
cos (2
* x))
* (
sin h))
/ ((
sin ((2
* x)
+ h))
* (
sin ((2
* x)
- h)))))) by
XCMPLX_1: 103
.= (
- (4
* (((
cos (2
* x))
* (
sin h))
/ ((
sin ((2
* x)
+ h))
* (
sin ((2
* x)
- h))))));
hence thesis;
end;
theorem ::
DIFF_4:22
x0
in (
dom
tan ) & x1
in (
dom
tan ) implies
[!((
tan
(#)
tan )
(#)
cos ), x0, x1!]
=
[!(
tan
(#)
sin ), x0, x1!]
proof
assume
A1: x0
in (
dom
tan ) & x1
in (
dom
tan );
[!((
tan
(#)
tan )
(#)
cos ), x0, x1!]
= (((((
tan
(#)
tan )
. x0)
* (
cos
. x0))
- (((
tan
(#)
tan )
(#)
cos )
. x1))
/ (x0
- x1)) by
VALUED_1: 5
.= (((((
tan
. x0)
* (
tan
. x0))
* (
cos
. x0))
- (((
tan
(#)
tan )
(#)
cos )
. x1))
/ (x0
- x1)) by
VALUED_1: 5
.= (((((
tan
. x0)
* (
tan
. x0))
* (
cos
. x0))
- (((
tan
(#)
tan )
. x1)
* (
cos
. x1)))
/ (x0
- x1)) by
VALUED_1: 5
.= (((((
tan
. x0)
* (
tan
. x0))
* (
cos
. x0))
- (((
tan
. x1)
* (
tan
. x1))
* (
cos
. x1)))
/ (x0
- x1)) by
VALUED_1: 5
.= ((((((
sin
. x0)
* ((
cos
. x0)
" ))
* (
tan
. x0))
* (
cos
. x0))
- (((
tan
. x1)
* (
tan
. x1))
* (
cos
. x1)))
/ (x0
- x1)) by
A1,
RFUNCT_1:def 1
.= ((((((
sin
. x0)
* ((
cos
. x0)
" ))
* (
tan
. x0))
* (
cos
. x0))
- ((((
sin
. x1)
* ((
cos
. x1)
" ))
* (
tan
. x1))
* (
cos
. x1)))
/ (x0
- x1)) by
A1,
RFUNCT_1:def 1
.= (((((
sin
. x0)
* ((
cos
. x0)
* (1
/ (
cos
. x0))))
* (
tan
. x0))
- (((
sin
. x1)
* ((
cos
. x1)
* (1
/ (
cos
. x1))))
* (
tan
. x1)))
/ (x0
- x1))
.= (((((
sin
. x0)
* 1)
* (
tan
. x0))
- (((
sin
. x1)
* ((
cos
. x1)
* (1
/ (
cos
. x1))))
* (
tan
. x1)))
/ (x0
- x1)) by
A1,
FDIFF_8: 1,
XCMPLX_1: 106
.= (((((
sin
. x0)
* 1)
* (
tan
. x0))
- (((
sin
. x1)
* 1)
* (
tan
. x1)))
/ (x0
- x1)) by
A1,
FDIFF_8: 1,
XCMPLX_1: 106
.= ((((
tan
(#)
sin )
. x0)
- ((
tan
. x1)
* (
sin
. x1)))
/ (x0
- x1)) by
VALUED_1: 5
.=
[!(
tan
(#)
sin ), x0, x1!] by
VALUED_1: 5;
hence thesis;
end;
theorem ::
DIFF_4:23
x
in (
dom
tan ) & (x
+ h)
in (
dom
tan ) implies ((
fD (((
tan
(#)
tan )
(#)
cos ),h))
. x)
= (((
tan
(#)
sin )
. (x
+ h))
- ((
tan
(#)
sin )
. x))
proof
set f = ((
tan
(#)
tan )
(#)
cos );
assume
A1: x
in (
dom
tan ) & (x
+ h)
in (
dom
tan );
x
in (
dom f) & (x
+ h)
in (
dom f)
proof
set f1 = (
tan
(#)
tan );
set f2 =
cos ;
A2: x
in (
dom f1) & (x
+ h)
in (
dom f1)
proof
x
in ((
dom
tan )
/\ (
dom
tan )) & (x
+ h)
in ((
dom
tan )
/\ (
dom
tan )) by
A1;
hence thesis by
VALUED_1:def 4;
end;
x
in ((
dom f1)
/\ (
dom f2)) & (x
+ h)
in ((
dom f1)
/\ (
dom f2)) by
A2,
SIN_COS: 24,
XBOOLE_0:def 4;
hence thesis by
VALUED_1:def 4;
end;
then ((
fD (f,h))
. x)
= ((((
tan
(#)
tan )
(#)
cos )
. (x
+ h))
- (((
tan
(#)
tan )
(#)
cos )
. x)) by
DIFF_1: 1
.= ((((
tan
(#)
tan )
. (x
+ h))
* (
cos
. (x
+ h)))
- (((
tan
(#)
tan )
(#)
cos )
. x)) by
VALUED_1: 5
.= ((((
tan
. (x
+ h))
* (
tan
. (x
+ h)))
* (
cos
. (x
+ h)))
- (((
tan
(#)
tan )
(#)
cos )
. x)) by
VALUED_1: 5
.= ((((
tan
. (x
+ h))
* (
tan
. (x
+ h)))
* (
cos
. (x
+ h)))
- (((
tan
(#)
tan )
. x)
* (
cos
. x))) by
VALUED_1: 5
.= ((((
tan
. (x
+ h))
* (
tan
. (x
+ h)))
* (
cos
. (x
+ h)))
- (((
tan
. x)
* (
tan
. x))
* (
cos
. x))) by
VALUED_1: 5
.= (((((
sin
. (x
+ h))
* ((
cos
. (x
+ h))
" ))
* (
tan
. (x
+ h)))
* (
cos
. (x
+ h)))
- (((
tan
. x)
* (
tan
. x))
* (
cos
. x))) by
A1,
RFUNCT_1:def 1
.= (((((
sin
. (x
+ h))
* ((
cos
. (x
+ h))
" ))
* (
tan
. (x
+ h)))
* (
cos
. (x
+ h)))
- ((((
sin
. x)
* ((
cos
. x)
" ))
* (
tan
. x))
* (
cos
. x))) by
A1,
RFUNCT_1:def 1
.= ((((
sin
. (x
+ h))
* (
tan
. (x
+ h)))
* ((
cos
. (x
+ h))
* (1
/ (
cos
. (x
+ h)))))
- (((
sin
. x)
* (
tan
. x))
* ((
cos
. x)
* (1
/ (
cos
. x)))))
.= ((((
sin
. (x
+ h))
* (
tan
. (x
+ h)))
* 1)
- (((
sin
. x)
* (
tan
. x))
* ((
cos
. x)
* (1
/ (
cos
. x))))) by
A1,
FDIFF_8: 1,
XCMPLX_1: 106
.= ((((
sin
. (x
+ h))
* (
tan
. (x
+ h)))
* 1)
- (((
sin
. x)
* (
tan
. x))
* 1)) by
A1,
FDIFF_8: 1,
XCMPLX_1: 106
.= (((
tan
(#)
sin )
. (x
+ h))
- ((
tan
. x)
* (
sin
. x))) by
VALUED_1: 5
.= (((
tan
(#)
sin )
. (x
+ h))
- ((
tan
(#)
sin )
. x)) by
VALUED_1: 5;
hence thesis;
end;
theorem ::
DIFF_4:24
x
in (
dom
tan ) & (x
- h)
in (
dom
tan ) implies ((
bD (((
tan
(#)
tan )
(#)
cos ),h))
. x)
= (((
tan
(#)
sin )
. x)
- ((
tan
(#)
sin )
. (x
- h)))
proof
set f = ((
tan
(#)
tan )
(#)
cos );
assume
A1: x
in (
dom
tan ) & (x
- h)
in (
dom
tan );
x
in (
dom f) & (x
- h)
in (
dom f)
proof
set f1 = (
tan
(#)
tan );
set f2 =
cos ;
A2: x
in (
dom f1) & (x
- h)
in (
dom f1)
proof
x
in ((
dom
tan )
/\ (
dom
tan )) & (x
- h)
in ((
dom
tan )
/\ (
dom
tan )) by
A1;
hence thesis by
VALUED_1:def 4;
end;
x
in ((
dom f1)
/\ (
dom f2)) & (x
- h)
in ((
dom f1)
/\ (
dom f2)) by
A2,
SIN_COS: 24,
XBOOLE_0:def 4;
hence thesis by
VALUED_1:def 4;
end;
then ((
bD (f,h))
. x)
= ((((
tan
(#)
tan )
(#)
cos )
. x)
- (((
tan
(#)
tan )
(#)
cos )
. (x
- h))) by
DIFF_1: 38
.= ((((
tan
(#)
tan )
. x)
* (
cos
. x))
- (((
tan
(#)
tan )
(#)
cos )
. (x
- h))) by
VALUED_1: 5
.= ((((
tan
. x)
* (
tan
. x))
* (
cos
. x))
- (((
tan
(#)
tan )
(#)
cos )
. (x
- h))) by
VALUED_1: 5
.= ((((
tan
. x)
* (
tan
. x))
* (
cos
. x))
- (((
tan
(#)
tan )
. (x
- h))
* (
cos
. (x
- h)))) by
VALUED_1: 5
.= ((((
tan
. x)
* (
tan
. x))
* (
cos
. x))
- (((
tan
. (x
- h))
* (
tan
. (x
- h)))
* (
cos
. (x
- h)))) by
VALUED_1: 5
.= (((((
sin
. x)
* ((
cos
. x)
" ))
* (
tan
. x))
* (
cos
. x))
- (((
tan
. (x
- h))
* (
tan
. (x
- h)))
* (
cos
. (x
- h)))) by
A1,
RFUNCT_1:def 1
.= (((((
sin
. x)
* ((
cos
. x)
" ))
* (
tan
. x))
* (
cos
. x))
- ((((
sin
. (x
- h))
* ((
cos
. (x
- h))
" ))
* (
tan
. (x
- h)))
* (
cos
. (x
- h)))) by
A1,
RFUNCT_1:def 1
.= ((((
sin
. x)
* (
tan
. x))
* ((
cos
. x)
* (1
/ (
cos
. x))))
- (((
sin
. (x
- h))
* (
tan
. (x
- h)))
* ((
cos
. (x
- h))
* (1
/ (
cos
. (x
- h))))))
.= ((((
sin
. x)
* (
tan
. x))
* 1)
- (((
sin
. (x
- h))
* (
tan
. (x
- h)))
* ((
cos
. (x
- h))
* (1
/ (
cos
. (x
- h)))))) by
A1,
FDIFF_8: 1,
XCMPLX_1: 106
.= ((((
sin
. x)
* (
tan
. x))
* 1)
- (((
sin
. (x
- h))
* (
tan
. (x
- h)))
* 1)) by
A1,
FDIFF_8: 1,
XCMPLX_1: 106
.= (((
tan
(#)
sin )
. x)
- ((
tan
. (x
- h))
* (
sin
. (x
- h)))) by
VALUED_1: 5
.= (((
tan
(#)
sin )
. x)
- ((
tan
(#)
sin )
. (x
- h))) by
VALUED_1: 5;
hence thesis;
end;
theorem ::
DIFF_4:25
(x
+ (h
/ 2))
in (
dom
tan ) & (x
- (h
/ 2))
in (
dom
tan ) implies ((
cD (((
tan
(#)
tan )
(#)
cos ),h))
. x)
= (((
tan
(#)
sin )
. (x
+ (h
/ 2)))
- ((
tan
(#)
sin )
. (x
- (h
/ 2))))
proof
set f = ((
tan
(#)
tan )
(#)
cos );
assume
A1: (x
+ (h
/ 2))
in (
dom
tan ) & (x
- (h
/ 2))
in (
dom
tan );
(x
+ (h
/ 2))
in (
dom f) & (x
- (h
/ 2))
in (
dom f)
proof
set f1 = (
tan
(#)
tan );
set f2 =
cos ;
A2: (x
+ (h
/ 2))
in (
dom f1) & (x
- (h
/ 2))
in (
dom f1)
proof
(x
+ (h
/ 2))
in ((
dom
tan )
/\ (
dom
tan )) & (x
- (h
/ 2))
in ((
dom
tan )
/\ (
dom
tan )) by
A1;
hence thesis by
VALUED_1:def 4;
end;
(x
+ (h
/ 2))
in ((
dom f1)
/\ (
dom f2)) & (x
- (h
/ 2))
in ((
dom f1)
/\ (
dom f2)) by
A2,
SIN_COS: 24,
XBOOLE_0:def 4;
hence thesis by
VALUED_1:def 4;
end;
then ((
cD (f,h))
. x)
= ((((
tan
(#)
tan )
(#)
cos )
. (x
+ (h
/ 2)))
- (((
tan
(#)
tan )
(#)
cos )
. (x
- (h
/ 2)))) by
DIFF_1: 39
.= ((((
tan
(#)
tan )
. (x
+ (h
/ 2)))
* (
cos
. (x
+ (h
/ 2))))
- (((
tan
(#)
tan )
(#)
cos )
. (x
- (h
/ 2)))) by
VALUED_1: 5
.= ((((
tan
. (x
+ (h
/ 2)))
* (
tan
. (x
+ (h
/ 2))))
* (
cos
. (x
+ (h
/ 2))))
- (((
tan
(#)
tan )
(#)
cos )
. (x
- (h
/ 2)))) by
VALUED_1: 5
.= ((((
tan
. (x
+ (h
/ 2)))
* (
tan
. (x
+ (h
/ 2))))
* (
cos
. (x
+ (h
/ 2))))
- (((
tan
(#)
tan )
. (x
- (h
/ 2)))
* (
cos
. (x
- (h
/ 2))))) by
VALUED_1: 5
.= ((((
tan
. (x
+ (h
/ 2)))
* (
tan
. (x
+ (h
/ 2))))
* (
cos
. (x
+ (h
/ 2))))
- (((
tan
. (x
- (h
/ 2)))
* (
tan
. (x
- (h
/ 2))))
* (
cos
. (x
- (h
/ 2))))) by
VALUED_1: 5
.= (((((
sin
. (x
+ (h
/ 2)))
* ((
cos
. (x
+ (h
/ 2)))
" ))
* (
tan
. (x
+ (h
/ 2))))
* (
cos
. (x
+ (h
/ 2))))
- (((
tan
. (x
- (h
/ 2)))
* (
tan
. (x
- (h
/ 2))))
* (
cos
. (x
- (h
/ 2))))) by
A1,
RFUNCT_1:def 1
.= (((((
sin
. (x
+ (h
/ 2)))
* ((
cos
. (x
+ (h
/ 2)))
" ))
* (
tan
. (x
+ (h
/ 2))))
* (
cos
. (x
+ (h
/ 2))))
- ((((
sin
. (x
- (h
/ 2)))
* ((
cos
. (x
- (h
/ 2)))
" ))
* (
tan
. (x
- (h
/ 2))))
* (
cos
. (x
- (h
/ 2))))) by
A1,
RFUNCT_1:def 1
.= ((((
sin
. (x
+ (h
/ 2)))
* (
tan
. (x
+ (h
/ 2))))
* ((
cos
. (x
+ (h
/ 2)))
* (1
/ (
cos
. (x
+ (h
/ 2))))))
- (((
sin
. (x
- (h
/ 2)))
* (
tan
. (x
- (h
/ 2))))
* ((
cos
. (x
- (h
/ 2)))
* (1
/ (
cos
. (x
- (h
/ 2)))))))
.= ((((
sin
. (x
+ (h
/ 2)))
* (
tan
. (x
+ (h
/ 2))))
* 1)
- (((
sin
. (x
- (h
/ 2)))
* (
tan
. (x
- (h
/ 2))))
* ((
cos
. (x
- (h
/ 2)))
* (1
/ (
cos
. (x
- (h
/ 2))))))) by
A1,
FDIFF_8: 1,
XCMPLX_1: 106
.= ((((
sin
. (x
+ (h
/ 2)))
* (
tan
. (x
+ (h
/ 2))))
* 1)
- (((
sin
. (x
- (h
/ 2)))
* (
tan
. (x
- (h
/ 2))))
* 1)) by
A1,
FDIFF_8: 1,
XCMPLX_1: 106
.= (((
tan
(#)
sin )
. (x
+ (h
/ 2)))
- ((
tan
. (x
- (h
/ 2)))
* (
sin
. (x
- (h
/ 2))))) by
VALUED_1: 5
.= (((
tan
(#)
sin )
. (x
+ (h
/ 2)))
- ((
tan
(#)
sin )
. (x
- (h
/ 2)))) by
VALUED_1: 5;
hence thesis;
end;
theorem ::
DIFF_4:26
x0
in (
dom
cot ) & x1
in (
dom
cot ) implies
[!((
cot
(#)
cot )
(#)
sin ), x0, x1!]
=
[!(
cot
(#)
cos ), x0, x1!]
proof
assume
A1: x0
in (
dom
cot ) & x1
in (
dom
cot );
[!((
cot
(#)
cot )
(#)
sin ), x0, x1!]
= (((((
cot
(#)
cot )
. x0)
* (
sin
. x0))
- (((
cot
(#)
cot )
(#)
sin )
. x1))
/ (x0
- x1)) by
VALUED_1: 5
.= (((((
cot
. x0)
* (
cot
. x0))
* (
sin
. x0))
- (((
cot
(#)
cot )
(#)
sin )
. x1))
/ (x0
- x1)) by
VALUED_1: 5
.= (((((
cot
. x0)
* (
cot
. x0))
* (
sin
. x0))
- (((
cot
(#)
cot )
. x1)
* (
sin
. x1)))
/ (x0
- x1)) by
VALUED_1: 5
.= (((((
cot
. x0)
* (
cot
. x0))
* (
sin
. x0))
- (((
cot
. x1)
* (
cot
. x1))
* (
sin
. x1)))
/ (x0
- x1)) by
VALUED_1: 5
.= ((((((
cos
. x0)
* ((
sin
. x0)
" ))
* (
cot
. x0))
* (
sin
. x0))
- (((
cot
. x1)
* (
cot
. x1))
* (
sin
. x1)))
/ (x0
- x1)) by
A1,
RFUNCT_1:def 1
.= ((((((
cos
. x0)
* ((
sin
. x0)
" ))
* (
cot
. x0))
* (
sin
. x0))
- ((((
cos
. x1)
* ((
sin
. x1)
" ))
* (
cot
. x1))
* (
sin
. x1)))
/ (x0
- x1)) by
A1,
RFUNCT_1:def 1
.= (((((
cot
. x0)
* (
cos
. x0))
* ((
sin
. x0)
* (1
/ (
sin
. x0))))
- (((
cot
. x1)
* (
cos
. x1))
* ((
sin
. x1)
* (1
/ (
sin
. x1)))))
/ (x0
- x1))
.= (((((
cot
. x0)
* (
cos
. x0))
* 1)
- (((
cot
. x1)
* (
cos
. x1))
* ((
sin
. x1)
* (1
/ (
sin
. x1)))))
/ (x0
- x1)) by
A1,
FDIFF_8: 2,
XCMPLX_1: 106
.= (((((
cot
. x0)
* (
cos
. x0))
* 1)
- (((
cot
. x1)
* (
cos
. x1))
* 1))
/ (x0
- x1)) by
A1,
FDIFF_8: 2,
XCMPLX_1: 106
.= ((((
cot
(#)
cos )
. x0)
- ((
cot
. x1)
* (
cos
. x1)))
/ (x0
- x1)) by
VALUED_1: 5
.=
[!(
cot
(#)
cos ), x0, x1!] by
VALUED_1: 5;
hence thesis;
end;
theorem ::
DIFF_4:27
x
in (
dom
cot ) & (x
+ h)
in (
dom
cot ) implies ((
fD (((
cot
(#)
cot )
(#)
sin ),h))
. x)
= (((
cot
(#)
cos )
. (x
+ h))
- ((
cot
(#)
cos )
. x))
proof
set f = ((
cot
(#)
cot )
(#)
sin );
assume
A1: x
in (
dom
cot ) & (x
+ h)
in (
dom
cot );
x
in (
dom f) & (x
+ h)
in (
dom f)
proof
set f1 = (
cot
(#)
cot );
set f2 =
sin ;
A2: x
in (
dom f1) & (x
+ h)
in (
dom f1)
proof
x
in ((
dom
cot )
/\ (
dom
cot )) & (x
+ h)
in ((
dom
cot )
/\ (
dom
cot )) by
A1;
hence thesis by
VALUED_1:def 4;
end;
x
in ((
dom f1)
/\ (
dom f2)) & (x
+ h)
in ((
dom f1)
/\ (
dom f2)) by
A2,
SIN_COS: 24,
XBOOLE_0:def 4;
hence thesis by
VALUED_1:def 4;
end;
then ((
fD (f,h))
. x)
= ((((
cot
(#)
cot )
(#)
sin )
. (x
+ h))
- (((
cot
(#)
cot )
(#)
sin )
. x)) by
DIFF_1: 1
.= ((((
cot
(#)
cot )
. (x
+ h))
* (
sin
. (x
+ h)))
- (((
cot
(#)
cot )
(#)
sin )
. x)) by
VALUED_1: 5
.= ((((
cot
. (x
+ h))
* (
cot
. (x
+ h)))
* (
sin
. (x
+ h)))
- (((
cot
(#)
cot )
(#)
sin )
. x)) by
VALUED_1: 5
.= ((((
cot
. (x
+ h))
* (
cot
. (x
+ h)))
* (
sin
. (x
+ h)))
- (((
cot
(#)
cot )
. x)
* (
sin
. x))) by
VALUED_1: 5
.= ((((
cot
. (x
+ h))
* (
cot
. (x
+ h)))
* (
sin
. (x
+ h)))
- (((
cot
. x)
* (
cot
. x))
* (
sin
. x))) by
VALUED_1: 5
.= (((((
cos
. (x
+ h))
* ((
sin
. (x
+ h))
" ))
* (
cot
. (x
+ h)))
* (
sin
. (x
+ h)))
- (((
cot
. x)
* (
cot
. x))
* (
sin
. x))) by
A1,
RFUNCT_1:def 1
.= (((((
cos
. (x
+ h))
* ((
sin
. (x
+ h))
" ))
* (
cot
. (x
+ h)))
* (
sin
. (x
+ h)))
- ((((
cos
. x)
* ((
sin
. x)
" ))
* (
cot
. x))
* (
sin
. x))) by
A1,
RFUNCT_1:def 1
.= ((((
cot
. (x
+ h))
* (
cos
. (x
+ h)))
* ((
sin
. (x
+ h))
* (1
/ (
sin
. (x
+ h)))))
- (((
cot
. x)
* (
cos
. x))
* ((
sin
. x)
* (1
/ (
sin
. x)))))
.= ((((
cot
. (x
+ h))
* (
cos
. (x
+ h)))
* 1)
- (((
cot
. x)
* (
cos
. x))
* ((
sin
. x)
* (1
/ (
sin
. x))))) by
A1,
FDIFF_8: 2,
XCMPLX_1: 106
.= ((((
cot
. (x
+ h))
* (
cos
. (x
+ h)))
* 1)
- (((
cot
. x)
* (
cos
. x))
* 1)) by
A1,
FDIFF_8: 2,
XCMPLX_1: 106
.= (((
cot
(#)
cos )
. (x
+ h))
- ((
cot
. x)
* (
cos
. x))) by
VALUED_1: 5
.= (((
cot
(#)
cos )
. (x
+ h))
- ((
cot
(#)
cos )
. x)) by
VALUED_1: 5;
hence thesis;
end;
theorem ::
DIFF_4:28
x
in (
dom
cot ) & (x
- h)
in (
dom
cot ) implies ((
bD (((
cot
(#)
cot )
(#)
sin ),h))
. x)
= (((
cot
(#)
cos )
. x)
- ((
cot
(#)
cos )
. (x
- h)))
proof
set f = ((
cot
(#)
cot )
(#)
sin );
assume
A1: x
in (
dom
cot ) & (x
- h)
in (
dom
cot );
x
in (
dom f) & (x
- h)
in (
dom f)
proof
set f1 = (
cot
(#)
cot );
set f2 =
sin ;
A2: x
in (
dom f1) & (x
- h)
in (
dom f1)
proof
x
in ((
dom
cot )
/\ (
dom
cot )) & (x
- h)
in ((
dom
cot )
/\ (
dom
cot )) by
A1;
hence thesis by
VALUED_1:def 4;
end;
x
in ((
dom f1)
/\ (
dom f2)) & (x
- h)
in ((
dom f1)
/\ (
dom f2)) by
A2,
SIN_COS: 24,
XBOOLE_0:def 4;
hence thesis by
VALUED_1:def 4;
end;
then ((
bD (f,h))
. x)
= ((((
cot
(#)
cot )
(#)
sin )
. x)
- (((
cot
(#)
cot )
(#)
sin )
. (x
- h))) by
DIFF_1: 38
.= ((((
cot
(#)
cot )
. x)
* (
sin
. x))
- (((
cot
(#)
cot )
(#)
sin )
. (x
- h))) by
VALUED_1: 5
.= ((((
cot
. x)
* (
cot
. x))
* (
sin
. x))
- (((
cot
(#)
cot )
(#)
sin )
. (x
- h))) by
VALUED_1: 5
.= ((((
cot
. x)
* (
cot
. x))
* (
sin
. x))
- (((
cot
(#)
cot )
. (x
- h))
* (
sin
. (x
- h)))) by
VALUED_1: 5
.= ((((
cot
. x)
* (
cot
. x))
* (
sin
. x))
- (((
cot
. (x
- h))
* (
cot
. (x
- h)))
* (
sin
. (x
- h)))) by
VALUED_1: 5
.= (((((
cos
. x)
* ((
sin
. x)
" ))
* (
cot
. x))
* (
sin
. x))
- (((
cot
. (x
- h))
* (
cot
. (x
- h)))
* (
sin
. (x
- h)))) by
A1,
RFUNCT_1:def 1
.= (((((
cos
. x)
* ((
sin
. x)
" ))
* (
cot
. x))
* (
sin
. x))
- ((((
cos
. (x
- h))
* ((
sin
. (x
- h))
" ))
* (
cot
. (x
- h)))
* (
sin
. (x
- h)))) by
A1,
RFUNCT_1:def 1
.= ((((
cot
. x)
* (
cos
. x))
* ((
sin
. x)
* (1
/ (
sin
. x))))
- (((
cot
. (x
- h))
* (
cos
. (x
- h)))
* ((
sin
. (x
- h))
* (1
/ (
sin
. (x
- h))))))
.= ((((
cot
. x)
* (
cos
. x))
* 1)
- (((
cot
. (x
- h))
* (
cos
. (x
- h)))
* ((
sin
. (x
- h))
* (1
/ (
sin
. (x
- h)))))) by
A1,
FDIFF_8: 2,
XCMPLX_1: 106
.= ((((
cot
. x)
* (
cos
. x))
* 1)
- (((
cot
. (x
- h))
* (
cos
. (x
- h)))
* 1)) by
A1,
FDIFF_8: 2,
XCMPLX_1: 106
.= (((
cot
(#)
cos )
. x)
- ((
cot
. (x
- h))
* (
cos
. (x
- h)))) by
VALUED_1: 5
.= (((
cot
(#)
cos )
. x)
- ((
cot
(#)
cos )
. (x
- h))) by
VALUED_1: 5;
hence thesis;
end;
theorem ::
DIFF_4:29
(x
+ (h
/ 2))
in (
dom
cot ) & (x
- (h
/ 2))
in (
dom
cot ) implies ((
cD (((
cot
(#)
cot )
(#)
sin ),h))
. x)
= (((
cot
(#)
cos )
. (x
+ (h
/ 2)))
- ((
cot
(#)
cos )
. (x
- (h
/ 2))))
proof
set f = ((
cot
(#)
cot )
(#)
sin );
assume
A1: (x
+ (h
/ 2))
in (
dom
cot ) & (x
- (h
/ 2))
in (
dom
cot );
(x
+ (h
/ 2))
in (
dom f) & (x
- (h
/ 2))
in (
dom f)
proof
set f1 = (
cot
(#)
cot );
set f2 =
sin ;
A2: (x
+ (h
/ 2))
in (
dom f1) & (x
- (h
/ 2))
in (
dom f1)
proof
(x
+ (h
/ 2))
in ((
dom
cot )
/\ (
dom
cot )) & (x
- (h
/ 2))
in ((
dom
cot )
/\ (
dom
cot )) by
A1;
hence thesis by
VALUED_1:def 4;
end;
(x
+ (h
/ 2))
in ((
dom f1)
/\ (
dom f2)) & (x
- (h
/ 2))
in ((
dom f1)
/\ (
dom f2)) by
A2,
SIN_COS: 24,
XBOOLE_0:def 4;
hence thesis by
VALUED_1:def 4;
end;
then ((
cD (f,h))
. x)
= ((((
cot
(#)
cot )
(#)
sin )
. (x
+ (h
/ 2)))
- (((
cot
(#)
cot )
(#)
sin )
. (x
- (h
/ 2)))) by
DIFF_1: 39
.= ((((
cot
(#)
cot )
. (x
+ (h
/ 2)))
* (
sin
. (x
+ (h
/ 2))))
- (((
cot
(#)
cot )
(#)
sin )
. (x
- (h
/ 2)))) by
VALUED_1: 5
.= ((((
cot
. (x
+ (h
/ 2)))
* (
cot
. (x
+ (h
/ 2))))
* (
sin
. (x
+ (h
/ 2))))
- (((
cot
(#)
cot )
(#)
sin )
. (x
- (h
/ 2)))) by
VALUED_1: 5
.= ((((
cot
. (x
+ (h
/ 2)))
* (
cot
. (x
+ (h
/ 2))))
* (
sin
. (x
+ (h
/ 2))))
- (((
cot
(#)
cot )
. (x
- (h
/ 2)))
* (
sin
. (x
- (h
/ 2))))) by
VALUED_1: 5
.= ((((
cot
. (x
+ (h
/ 2)))
* (
cot
. (x
+ (h
/ 2))))
* (
sin
. (x
+ (h
/ 2))))
- (((
cot
. (x
- (h
/ 2)))
* (
cot
. (x
- (h
/ 2))))
* (
sin
. (x
- (h
/ 2))))) by
VALUED_1: 5
.= (((((
cos
. (x
+ (h
/ 2)))
* ((
sin
. (x
+ (h
/ 2)))
" ))
* (
cot
. (x
+ (h
/ 2))))
* (
sin
. (x
+ (h
/ 2))))
- (((
cot
. (x
- (h
/ 2)))
* (
cot
. (x
- (h
/ 2))))
* (
sin
. (x
- (h
/ 2))))) by
A1,
RFUNCT_1:def 1
.= (((((
cos
. (x
+ (h
/ 2)))
* ((
sin
. (x
+ (h
/ 2)))
" ))
* (
cot
. (x
+ (h
/ 2))))
* (
sin
. (x
+ (h
/ 2))))
- ((((
cos
. (x
- (h
/ 2)))
* ((
sin
. (x
- (h
/ 2)))
" ))
* (
cot
. (x
- (h
/ 2))))
* (
sin
. (x
- (h
/ 2))))) by
A1,
RFUNCT_1:def 1
.= ((((
cot
. (x
+ (h
/ 2)))
* (
cos
. (x
+ (h
/ 2))))
* ((
sin
. (x
+ (h
/ 2)))
* (1
/ (
sin
. (x
+ (h
/ 2))))))
- (((
cot
. (x
- (h
/ 2)))
* (
cos
. (x
- (h
/ 2))))
* ((
sin
. (x
- (h
/ 2)))
* (1
/ (
sin
. (x
- (h
/ 2)))))))
.= ((((
cot
. (x
+ (h
/ 2)))
* (
cos
. (x
+ (h
/ 2))))
* 1)
- (((
cot
. (x
- (h
/ 2)))
* (
cos
. (x
- (h
/ 2))))
* ((
sin
. (x
- (h
/ 2)))
* (1
/ (
sin
. (x
- (h
/ 2))))))) by
A1,
FDIFF_8: 2,
XCMPLX_1: 106
.= ((((
cot
. (x
+ (h
/ 2)))
* (
cos
. (x
+ (h
/ 2))))
* 1)
- (((
cot
. (x
- (h
/ 2)))
* (
cos
. (x
- (h
/ 2))))
* 1)) by
A1,
FDIFF_8: 2,
XCMPLX_1: 106
.= (((
cot
(#)
cos )
. (x
+ (h
/ 2)))
- ((
cot
. (x
- (h
/ 2)))
* (
cos
. (x
- (h
/ 2))))) by
VALUED_1: 5
.= (((
cot
(#)
cos )
. (x
+ (h
/ 2)))
- ((
cot
(#)
cos )
. (x
- (h
/ 2)))) by
VALUED_1: 5;
hence thesis;
end;
theorem ::
DIFF_4:30
x0
>
0 & x1
>
0 implies
[!
ln , x0, x1!]
= ((
ln
. (x0
/ x1))
/ (x0
- x1)) by
Th4;
theorem ::
DIFF_4:31
x
>
0 & (x
+ h)
>
0 implies ((
fD (
ln ,h))
. x)
= (
ln
. (1
+ (h
/ x)))
proof
set f =
ln ;
assume
A1: x
>
0 & (x
+ h)
>
0 ;
A2: x
in (
right_open_halfline
0 )
proof
x
in { g where g be
Real :
0
< g } by
A1;
hence thesis by
XXREAL_1: 230;
end;
A3: (x
+ h)
in (
right_open_halfline
0 )
proof
(x
+ h)
in { g where g be
Real :
0
< g } by
A1;
hence thesis by
XXREAL_1: 230;
end;
((
fD (f,h))
. x)
= ((
ln
. (x
+ h))
- (
ln
. x)) by
A2,
A3,
DIFF_1: 1,
TAYLOR_1: 18
.= (
ln
. ((x
+ h)
/ x)) by
A1,
Th4
.= (
ln
. ((x
/ x)
+ (h
/ x)))
.= (
ln
. (1
+ (h
/ x))) by
A1,
XCMPLX_1: 60;
hence thesis;
end;
theorem ::
DIFF_4:32
x
>
0 & (x
- h)
>
0 implies ((
bD (
ln ,h))
. x)
= (
ln
. (1
+ (h
/ (x
- h))))
proof
set f =
ln ;
assume
A1: x
>
0 & (x
- h)
>
0 ;
A2: x
in (
right_open_halfline
0 )
proof
x
in { g where g be
Real :
0
< g } by
A1;
hence thesis by
XXREAL_1: 230;
end;
A3: (x
- h)
in (
right_open_halfline
0 )
proof
(x
- h)
in { g where g be
Real :
0
< g } by
A1;
hence thesis by
XXREAL_1: 230;
end;
((
bD (f,h))
. x)
= ((
ln
. x)
- (
ln
. (x
- h))) by
A2,
A3,
DIFF_1: 38,
TAYLOR_1: 18
.= (
ln
. (x
/ (x
- h))) by
A1,
Th4
.= (
ln
. (((x
- h)
/ (x
- h))
+ (h
/ (x
- h))))
.= (
ln
. (1
+ (h
/ (x
- h)))) by
A1,
XCMPLX_1: 60;
hence thesis;
end;
theorem ::
DIFF_4:33
(x
+ (h
/ 2))
>
0 & (x
- (h
/ 2))
>
0 implies ((
cD (
ln ,h))
. x)
= (
ln
. (1
+ (h
/ (x
- (h
/ 2)))))
proof
set f =
ln ;
assume
A1: (x
+ (h
/ 2))
>
0 & (x
- (h
/ 2))
>
0 ;
A2: (x
+ (h
/ 2))
in (
right_open_halfline
0 )
proof
(x
+ (h
/ 2))
in { g where g be
Real :
0
< g } by
A1;
hence thesis by
XXREAL_1: 230;
end;
A3: (x
- (h
/ 2))
in (
right_open_halfline
0 )
proof
(x
- (h
/ 2))
in { g where g be
Real :
0
< g } by
A1;
hence thesis by
XXREAL_1: 230;
end;
((
cD (f,h))
. x)
= ((
ln
. (x
+ (h
/ 2)))
- (
ln
. (x
- (h
/ 2)))) by
A2,
A3,
DIFF_1: 39,
TAYLOR_1: 18
.= (
ln
. (((x
- (h
/ 2))
+ h)
/ (x
- (h
/ 2)))) by
A1,
Th4
.= (
ln
. (((x
- (h
/ 2))
/ (x
- (h
/ 2)))
+ (h
/ (x
- (h
/ 2)))))
.= (
ln
. (1
+ (h
/ (x
- (h
/ 2))))) by
A1,
XCMPLX_1: 60;
hence thesis;
end;
theorem ::
DIFF_4:34
for h,k be
Real holds (
exp_R (h
- k))
= ((
exp_R h)
/ (
exp_R k))
proof
let h,k be
Real;
(
exp_R (h
- k))
= ((
exp_R h)
* (
exp_R (
- k))) by
SIN_COS: 50
.= ((
exp_R h)
* (1
/ (
exp_R k))) by
TAYLOR_1: 4
.= ((
exp_R h)
/ (
exp_R k));
hence thesis;
end;
theorem ::
DIFF_4:35
((
fD (f,h))
. x)
= (((
Shift (f,h))
. x)
- (f
. x))
proof
((
fD (f,h))
. x)
= (((
fdif (f,h))
. 1)
. x) by
DIFF_3: 7
.= (((
Shift (f,h))
. x)
- (f
. x)) by
DIFF_1: 11;
hence thesis;
end;
theorem ::
DIFF_4:36
(for x holds (f
. x)
= ((
fD (g,h))
. x)) implies
[!f, x0, x1!]
= (
[!g, (x0
+ h), (x1
+ h)!]
-
[!g, x0, x1!])
proof
assume
A1: for x holds (f
. x)
= ((
fD (g,h))
. x);
[!f, x0, x1!]
= ((((
fD (g,h))
. x0)
- (f
. x1))
/ (x0
- x1)) by
A1
.= ((((
fD (g,h))
. x0)
- ((
fD (g,h))
. x1))
/ (x0
- x1)) by
A1
.= ((((g
. (x0
+ h))
- (g
. x0))
- ((
fD (g,h))
. x1))
/ (x0
- x1)) by
DIFF_1: 3
.= ((((g
. (x0
+ h))
- (g
. x0))
- ((g
. (x1
+ h))
- (g
. x1)))
/ (x0
- x1)) by
DIFF_1: 3
.= (
[!g, (x0
+ h), (x1
+ h)!]
-
[!g, x0, x1!]);
hence thesis;
end;
theorem ::
DIFF_4:37
((
fD ((
fD (f,h)),h))
. x)
= (((
fD (f,(2
* h)))
. x)
- (2
* ((
fD (f,h))
. x)))
proof
((
fD ((
fD (f,h)),h))
. x)
= (((
fD (f,h))
. (x
+ h))
- ((
fD (f,h))
. x)) by
DIFF_1: 3
.= (((f
. ((x
+ h)
+ h))
- (f
. (x
+ h)))
- ((
fD (f,h))
. x)) by
DIFF_1: 3
.= (((f
. ((x
+ h)
+ h))
- (f
. (x
+ h)))
- ((f
. (x
+ h))
- (f
. x))) by
DIFF_1: 3
.= (((f
. (x
+ (2
* h)))
- (f
. x))
- ((2
* (f
. (x
+ h)))
- (2
* (f
. x))))
.= (((
fD (f,(2
* h)))
. x)
- (2
* ((f
. (x
+ h))
- (f
. x)))) by
DIFF_1: 3
.= (((
fD (f,(2
* h)))
. x)
- (2
* ((
fD (f,h))
. x))) by
DIFF_1: 3;
hence thesis;
end;
theorem ::
DIFF_4:38
((
bD ((
fD (f,h)),h))
. x)
= (((
fD (f,h))
. x)
- ((
bD (f,h))
. x))
proof
((
bD ((
fD (f,h)),h))
. x)
= (((
fD (f,h))
. x)
- ((
fD (f,h))
. (x
- h))) by
DIFF_1: 4
.= (((
fD (f,h))
. x)
- ((f
. ((x
- h)
+ h))
- (f
. (x
- h)))) by
DIFF_1: 3
.= (((
fD (f,h))
. x)
- ((
bD (f,h))
. x)) by
DIFF_1: 4;
hence thesis;
end;
theorem ::
DIFF_4:39
((
cD ((
fD (f,h)),h))
. x)
= (((
fD (f,h))
. (x
+ (h
/ 2)))
- ((
cD (f,h))
. x))
proof
((
cD ((
fD (f,h)),h))
. x)
= (((
fD (f,h))
. (x
+ (h
/ 2)))
- ((
fD (f,h))
. (x
- (h
/ 2)))) by
DIFF_1: 5
.= (((
fD (f,h))
. (x
+ (h
/ 2)))
- ((f
. ((x
- (h
/ 2))
+ h))
- (f
. (x
- (h
/ 2))))) by
DIFF_1: 3
.= (((
fD (f,h))
. (x
+ (h
/ 2)))
- ((
cD (f,h))
. x)) by
DIFF_1: 5;
hence thesis;
end;
theorem ::
DIFF_4:40
Th40: (((
fdif (f,h))
. 1)
. x)
= ((((
fdif (f,h))
.
0 )
. (x
+ h))
- (((
fdif (f,h))
.
0 )
. x))
proof
(((
fdif (f,h))
. 1)
. x)
= ((
fD (f,h))
. x) by
DIFF_3: 7
.= ((f
. (x
+ h))
- (f
. x)) by
DIFF_1: 3
.= ((((
fdif (f,h))
.
0 )
. (x
+ h))
- (f
. x)) by
DIFF_1:def 6
.= ((((
fdif (f,h))
.
0 )
. (x
+ h))
- (((
fdif (f,h))
.
0 )
. x)) by
DIFF_1:def 6;
hence thesis;
end;
theorem ::
DIFF_4:41
(((
fdif (f,h))
. (n
+ 1))
. x)
= ((((
fdif (f,h))
. n)
. (x
+ h))
- (((
fdif (f,h))
. n)
. x))
proof
defpred
X[
Nat] means (((
fdif (f,h))
. ($1
+ 1))
. x)
= ((((
fdif (f,h))
. $1)
. (x
+ h))
- (((
fdif (f,h))
. $1)
. x));
A1: for i st
X[i] holds
X[(i
+ 1)]
proof
let i;
assume (((
fdif (f,h))
. (i
+ 1))
. x)
= ((((
fdif (f,h))
. i)
. (x
+ h))
- (((
fdif (f,h))
. i)
. x));
A2: ((
fdif (f,h))
. (i
+ 1)) is
Function of
REAL ,
REAL by
DIFF_1: 2;
(((
fdif (f,h))
. (i
+ 2))
. x)
= (((
fdif (f,h))
. ((i
+ 1)
+ 1))
. x)
.= ((
fD (((
fdif (f,h))
. (i
+ 1)),h))
. x) by
DIFF_1:def 6
.= ((((
fdif (f,h))
. (i
+ 1))
. (x
+ h))
- (((
fdif (f,h))
. (i
+ 1))
. x)) by
A2,
DIFF_1: 3;
hence thesis;
end;
A3:
X[
0 ] by
Th40;
for n holds
X[n] from
NAT_1:sch 2(
A3,
A1);
hence thesis;
end;
theorem ::
DIFF_4:42
((
bD (f,h))
. x)
= ((f
. x)
- ((
Shift (f,(
- h)))
. x))
proof
((
bD (f,h))
. x)
= (((
bdif (f,h))
. 1)
. x) by
DIFF_3: 11
.= ((f
. x)
- ((
Shift (f,(
- h)))
. x)) by
DIFF_1: 18;
hence thesis;
end;
theorem ::
DIFF_4:43
(for x holds (f
. x)
= ((
bD (g,h))
. x)) implies
[!f, x0, x1!]
= (
[!g, x0, x1!]
-
[!g, (x0
- h), (x1
- h)!])
proof
assume
A1: for x holds (f
. x)
= ((
bD (g,h))
. x);
[!f, x0, x1!]
= ((((
bD (g,h))
. x0)
- (f
. x1))
/ (x0
- x1)) by
A1
.= ((((
bD (g,h))
. x0)
- ((
bD (g,h))
. x1))
/ (x0
- x1)) by
A1
.= ((((g
. x0)
- (g
. (x0
- h)))
- ((
bD (g,h))
. x1))
/ (x0
- x1)) by
DIFF_1: 4
.= ((((g
. x0)
- (g
. (x0
- h)))
- ((g
. x1)
- (g
. (x1
- h))))
/ (x0
- x1)) by
DIFF_1: 4
.= (
[!g, x0, x1!]
-
[!g, (x0
- h), (x1
- h)!]);
hence thesis;
end;
theorem ::
DIFF_4:44
((
fD ((
bD (f,h)),h))
. x)
= (((
fD (f,h))
. x)
- ((
bD (f,h))
. x))
proof
((
fD ((
bD (f,h)),h))
. x)
= (((
bD (f,h))
. (x
+ h))
- ((
bD (f,h))
. x)) by
DIFF_1: 3
.= (((f
. (x
+ h))
- (f
. ((x
+ h)
- h)))
- ((
bD (f,h))
. x)) by
DIFF_1: 4
.= (((
fD (f,h))
. x)
- ((
bD (f,h))
. x)) by
DIFF_1: 3;
hence thesis;
end;
theorem ::
DIFF_4:45
((
bD ((
bD (f,h)),h))
. x)
= ((2
* ((
bD (f,h))
. x))
- ((
bD (f,(2
* h)))
. x))
proof
((
bD ((
bD (f,h)),h))
. x)
= (((
bD (f,h))
. x)
- ((
bD (f,h))
. (x
- h))) by
DIFF_1: 4
.= (((f
. x)
- (f
. (x
- h)))
- ((
bD (f,h))
. (x
- h))) by
DIFF_1: 4
.= (((f
. x)
- (f
. (x
- h)))
- ((f
. (x
- h))
- (f
. ((x
- h)
- h)))) by
DIFF_1: 4
.= ((2
* ((f
. x)
- (f
. (x
- h))))
- ((f
. x)
- (f
. (x
- (2
* h)))))
.= ((2
* ((
bD (f,h))
. x))
- ((f
. x)
- (f
. (x
- (2
* h))))) by
DIFF_1: 4
.= ((2
* ((
bD (f,h))
. x))
- ((
bD (f,(2
* h)))
. x)) by
DIFF_1: 4;
hence thesis;
end;
theorem ::
DIFF_4:46
((
cD ((
bD (f,h)),h))
. x)
= (((
cD (f,h))
. x)
- ((
bD (f,h))
. (x
- (h
/ 2))))
proof
((
cD ((
bD (f,h)),h))
. x)
= (((
bD (f,h))
. (x
+ (h
/ 2)))
- ((
bD (f,h))
. (x
- (h
/ 2)))) by
DIFF_1: 5
.= (((f
. (x
+ (h
/ 2)))
- (f
. ((x
+ (h
/ 2))
- h)))
- ((
bD (f,h))
. (x
- (h
/ 2)))) by
DIFF_1: 4
.= (((
cD (f,h))
. x)
- ((
bD (f,h))
. (x
- (h
/ 2)))) by
DIFF_1: 5;
hence thesis;
end;
theorem ::
DIFF_4:47
Th47: (((
bdif (f,h))
. 1)
. x)
= ((((
bdif (f,h))
.
0 )
. x)
- (((
bdif (f,h))
.
0 )
. (x
- h)))
proof
(((
bdif (f,h))
. 1)
. x)
= ((
bD (f,h))
. x) by
DIFF_3: 11
.= ((f
. x)
- (f
. (x
- h))) by
DIFF_1: 4
.= ((((
bdif (f,h))
.
0 )
. x)
- (f
. (x
- h))) by
DIFF_1:def 7
.= ((((
bdif (f,h))
.
0 )
. x)
- (((
bdif (f,h))
.
0 )
. (x
- h))) by
DIFF_1:def 7;
hence thesis;
end;
theorem ::
DIFF_4:48
(((
bdif (f,h))
. (n
+ 1))
. x)
= ((((
bdif (f,h))
. n)
. x)
- (((
bdif (f,h))
. n)
. (x
- h)))
proof
defpred
X[
Nat] means (((
bdif (f,h))
. ($1
+ 1))
. x)
= ((((
bdif (f,h))
. $1)
. x)
- (((
bdif (f,h))
. $1)
. (x
- h)));
A1: for i st
X[i] holds
X[(i
+ 1)]
proof
let i;
assume (((
bdif (f,h))
. (i
+ 1))
. x)
= ((((
bdif (f,h))
. i)
. x)
- (((
bdif (f,h))
. i)
. (x
- h)));
A2: ((
bdif (f,h))
. (i
+ 1)) is
Function of
REAL ,
REAL by
DIFF_1: 12;
(((
bdif (f,h))
. (i
+ 2))
. x)
= (((
bdif (f,h))
. ((i
+ 1)
+ 1))
. x)
.= ((
bD (((
bdif (f,h))
. (i
+ 1)),h))
. x) by
DIFF_1:def 7
.= ((((
bdif (f,h))
. (i
+ 1))
. x)
- (((
bdif (f,h))
. (i
+ 1))
. (x
- h))) by
A2,
DIFF_1: 4;
hence thesis;
end;
A3:
X[
0 ] by
Th47;
for n holds
X[n] from
NAT_1:sch 2(
A3,
A1);
hence thesis;
end;
theorem ::
DIFF_4:49
((
cD (f,h))
. x)
= (((
Shift (f,(h
/ 2)))
. x)
- ((
Shift (f,(
- (h
/ 2))))
. x))
proof
((
cD (f,h))
. x)
= (((
cdif (f,h))
. 1)
. x) by
DIFF_3: 16
.= (((
Shift (f,(h
/ 2)))
. x)
- ((
Shift (f,(
- (h
/ 2))))
. x)) by
DIFF_1: 25;
hence thesis;
end;
theorem ::
DIFF_4:50
(for x holds (f
. x)
= ((
cD (g,h))
. x)) implies
[!f, x0, x1!]
= (
[!g, (x0
+ (h
/ 2)), (x1
+ (h
/ 2))!]
-
[!g, (x0
- (h
/ 2)), (x1
- (h
/ 2))!])
proof
assume
A1: for x holds (f
. x)
= ((
cD (g,h))
. x);
[!f, x0, x1!]
= ((((
cD (g,h))
. x0)
- (f
. x1))
/ (x0
- x1)) by
A1
.= ((((
cD (g,h))
. x0)
- ((
cD (g,h))
. x1))
/ (x0
- x1)) by
A1
.= ((((g
. (x0
+ (h
/ 2)))
- (g
. (x0
- (h
/ 2))))
- ((
cD (g,h))
. x1))
/ (x0
- x1)) by
DIFF_1: 5
.= ((((g
. (x0
+ (h
/ 2)))
- (g
. (x0
- (h
/ 2))))
- ((g
. (x1
+ (h
/ 2)))
- (g
. (x1
- (h
/ 2)))))
/ (x0
- x1)) by
DIFF_1: 5
.= (
[!g, (x0
+ (h
/ 2)), (x1
+ (h
/ 2))!]
-
[!g, (x0
- (h
/ 2)), (x1
- (h
/ 2))!]);
hence thesis;
end;
theorem ::
DIFF_4:51
((
fD ((
cD (f,h)),h))
. x)
= (((
fD (f,h))
. (x
+ (h
/ 2)))
- ((
cD (f,h))
. x))
proof
((
fD ((
cD (f,h)),h))
. x)
= (((
cD (f,h))
. (x
+ h))
- ((
cD (f,h))
. x)) by
DIFF_1: 3
.= (((f
. ((x
+ h)
+ (h
/ 2)))
- (f
. ((x
+ h)
- (h
/ 2))))
- ((
cD (f,h))
. x)) by
DIFF_1: 5
.= (((f
. ((x
+ (h
/ 2))
+ h))
- (f
. (x
+ (h
/ 2))))
- ((
cD (f,h))
. x))
.= (((
fD (f,h))
. (x
+ (h
/ 2)))
- ((
cD (f,h))
. x)) by
DIFF_1: 3;
hence thesis;
end;
theorem ::
DIFF_4:52
((
bD ((
cD (f,h)),h))
. x)
= (((
cD (f,h))
. x)
- ((
bD (f,h))
. (x
- (h
/ 2))))
proof
((
bD ((
cD (f,h)),h))
. x)
= (((
cD (f,h))
. x)
- ((
cD (f,h))
. (x
- h))) by
DIFF_1: 4
.= (((
cD (f,h))
. x)
- ((f
. ((x
- h)
+ (h
/ 2)))
- (f
. ((x
- h)
- (h
/ 2))))) by
DIFF_1: 5
.= (((
cD (f,h))
. x)
- ((f
. (x
- (h
/ 2)))
- (f
. ((x
- (h
/ 2))
- h))))
.= (((
cD (f,h))
. x)
- ((
bD (f,h))
. (x
- (h
/ 2)))) by
DIFF_1: 4;
hence thesis;
end;
theorem ::
DIFF_4:53
((
cD ((
cD (f,h)),h))
. x)
= (((
fD (f,h))
. x)
- ((
bD (f,h))
. x))
proof
((
cD ((
cD (f,h)),h))
. x)
= (((
cD (f,h))
. (x
+ (h
/ 2)))
- ((
cD (f,h))
. (x
- (h
/ 2)))) by
DIFF_1: 5
.= (((f
. ((x
+ (h
/ 2))
+ (h
/ 2)))
- (f
. ((x
+ (h
/ 2))
- (h
/ 2))))
- ((
cD (f,h))
. (x
- (h
/ 2)))) by
DIFF_1: 5
.= (((f
. ((x
+ (h
/ 2))
+ (h
/ 2)))
- (f
. ((x
+ (h
/ 2))
- (h
/ 2))))
- ((f
. ((x
- (h
/ 2))
+ (h
/ 2)))
- (f
. ((x
- (h
/ 2))
- (h
/ 2))))) by
DIFF_1: 5
.= (((f
. (x
+ h))
- (f
. x))
- ((f
. x)
- (f
. (x
- h))))
.= (((
fD (f,h))
. x)
- ((f
. x)
- (f
. (x
- h)))) by
DIFF_1: 3
.= (((
fD (f,h))
. x)
- ((
bD (f,h))
. x)) by
DIFF_1: 4;
hence thesis;
end;
theorem ::
DIFF_4:54
Th54: (((
cdif (f,h))
. 1)
. x)
= ((((
cdif (f,h))
.
0 )
. (x
+ (h
/ 2)))
- (((
cdif (f,h))
.
0 )
. (x
- (h
/ 2))))
proof
(((
cdif (f,h))
. 1)
. x)
= ((
cD (f,h))
. x) by
DIFF_3: 16
.= ((f
. (x
+ (h
/ 2)))
- (f
. (x
- (h
/ 2)))) by
DIFF_1: 5
.= ((((
cdif (f,h))
.
0 )
. (x
+ (h
/ 2)))
- (f
. (x
- (h
/ 2)))) by
DIFF_1:def 8
.= ((((
cdif (f,h))
.
0 )
. (x
+ (h
/ 2)))
- (((
cdif (f,h))
.
0 )
. (x
- (h
/ 2)))) by
DIFF_1:def 8;
hence thesis;
end;
theorem ::
DIFF_4:55
(((
cdif (f,h))
. (n
+ 1))
. x)
= ((((
cdif (f,h))
. n)
. (x
+ (h
/ 2)))
- (((
cdif (f,h))
. n)
. (x
- (h
/ 2))))
proof
defpred
X[
Nat] means (((
cdif (f,h))
. ($1
+ 1))
. x)
= ((((
cdif (f,h))
. $1)
. (x
+ (h
/ 2)))
- (((
cdif (f,h))
. $1)
. (x
- (h
/ 2))));
A1: for i st
X[i] holds
X[(i
+ 1)]
proof
let i;
assume (((
cdif (f,h))
. (i
+ 1))
. x)
= ((((
cdif (f,h))
. i)
. (x
+ (h
/ 2)))
- (((
cdif (f,h))
. i)
. (x
- (h
/ 2))));
A2: ((
cdif (f,h))
. (i
+ 1)) is
Function of
REAL ,
REAL by
DIFF_1: 19;
(((
cdif (f,h))
. (i
+ 2))
. x)
= (((
cdif (f,h))
. ((i
+ 1)
+ 1))
. x)
.= ((
cD (((
cdif (f,h))
. (i
+ 1)),h))
. x) by
DIFF_1:def 8
.= ((((
cdif (f,h))
. (i
+ 1))
. (x
+ (h
/ 2)))
- (((
cdif (f,h))
. (i
+ 1))
. (x
- (h
/ 2)))) by
A2,
DIFF_1: 5;
hence thesis;
end;
A3:
X[
0 ] by
Th54;
for n holds
X[n] from
NAT_1:sch 2(
A3,
A1);
hence thesis;
end;
theorem ::
DIFF_4:56
x0
in (
dom
tan ) & x1
in (
dom
tan ) implies
[!((
tan
(#)
tan )
(#)
sin ), x0, x1!]
= (((((
sin x0)
|^ 3)
* ((
cos x1)
^2 ))
- (((
sin x1)
|^ 3)
* ((
cos x0)
^2 )))
/ ((((
cos x0)
^2 )
* ((
cos x1)
^2 ))
* (x0
- x1)))
proof
assume
A1: x0
in (
dom
tan ) & x1
in (
dom
tan );
A2: (
cos x0)
<>
0 & (
cos x1)
<>
0 by
A1,
FDIFF_8: 1;
[!((
tan
(#)
tan )
(#)
sin ), x0, x1!]
= (((((
tan
(#)
tan )
. x0)
* (
sin
. x0))
- (((
tan
(#)
tan )
(#)
sin )
. x1))
/ (x0
- x1)) by
VALUED_1: 5
.= (((((
tan
. x0)
* (
tan
. x0))
* (
sin
. x0))
- (((
tan
(#)
tan )
(#)
sin )
. x1))
/ (x0
- x1)) by
VALUED_1: 5
.= (((((
tan
. x0)
* (
tan
. x0))
* (
sin
. x0))
- (((
tan
(#)
tan )
. x1)
* (
sin
. x1)))
/ (x0
- x1)) by
VALUED_1: 5
.= (((((
tan
. x0)
* (
tan
. x0))
* (
sin
. x0))
- (((
tan
. x1)
* (
tan
. x1))
* (
sin
. x1)))
/ (x0
- x1)) by
VALUED_1: 5
.= ((((((
sin
. x0)
* ((
cos
. x0)
" ))
* (
tan
. x0))
* (
sin
. x0))
- (((
tan
. x1)
* (
tan
. x1))
* (
sin
. x1)))
/ (x0
- x1)) by
A1,
RFUNCT_1:def 1
.= ((((((
sin
. x0)
* ((
cos
. x0)
" ))
* ((
sin
. x0)
* ((
cos
. x0)
" )))
* (
sin
. x0))
- (((
tan
. x1)
* (
tan
. x1))
* (
sin
. x1)))
/ (x0
- x1)) by
A1,
RFUNCT_1:def 1
.= ((((((
sin
. x0)
* ((
cos
. x0)
" ))
* ((
sin
. x0)
* ((
cos
. x0)
" )))
* (
sin
. x0))
- ((((
sin
. x1)
* ((
cos
. x1)
" ))
* (
tan
. x1))
* (
sin
. x1)))
/ (x0
- x1)) by
A1,
RFUNCT_1:def 1
.= ((((((
sin
. x0)
* ((
cos
. x0)
" ))
* ((
sin
. x0)
* ((
cos
. x0)
" )))
* (
sin
. x0))
- ((((
sin
. x1)
* ((
cos
. x1)
" ))
* ((
sin
. x1)
* ((
cos
. x1)
" )))
* (
sin
. x1)))
/ (x0
- x1)) by
A1,
RFUNCT_1:def 1
.= (((((((
sin
. x0)
* (
sin
. x0))
* (
sin
. x0))
* ((
cos
. x0)
" ))
* ((
cos
. x0)
" ))
- (((((
sin
. x1)
* (
sin
. x1))
* (
sin
. x1))
* ((
cos
. x1)
" ))
* ((
cos
. x1)
" )))
/ (x0
- x1))
.= ((((((((
sin
. x0)
|^ 1)
* (
sin
. x0))
* (
sin
. x0))
* ((
cos
. x0)
" ))
* ((
cos
. x0)
" ))
- (((((
sin
. x1)
* (
sin
. x1))
* (
sin
. x1))
* ((
cos
. x1)
" ))
* ((
cos
. x1)
" )))
/ (x0
- x1))
.= (((((((
sin
. x0)
|^ (1
+ 1))
* (
sin
. x0))
* ((
cos
. x0)
" ))
* ((
cos
. x0)
" ))
- (((((
sin
. x1)
* (
sin
. x1))
* (
sin
. x1))
* ((
cos
. x1)
" ))
* ((
cos
. x1)
" )))
/ (x0
- x1)) by
NEWTON: 6
.= ((((((
sin
. x0)
|^ (2
+ 1))
* ((
cos
. x0)
" ))
* ((
cos
. x0)
" ))
- (((((
sin
. x1)
* (
sin
. x1))
* (
sin
. x1))
* ((
cos
. x1)
" ))
* ((
cos
. x1)
" )))
/ (x0
- x1)) by
NEWTON: 6
.= ((((((
sin
. x0)
|^ 3)
* ((
cos
. x0)
" ))
* ((
cos
. x0)
" ))
- ((((((
sin
. x1)
|^ 1)
* (
sin
. x1))
* (
sin
. x1))
* ((
cos
. x1)
" ))
* ((
cos
. x1)
" )))
/ (x0
- x1))
.= ((((((
sin
. x0)
|^ 3)
* ((
cos
. x0)
" ))
* ((
cos
. x0)
" ))
- (((((
sin
. x1)
|^ (1
+ 1))
* (
sin
. x1))
* ((
cos
. x1)
" ))
* ((
cos
. x1)
" )))
/ (x0
- x1)) by
NEWTON: 6
.= ((((((
sin
. x0)
|^ 3)
* ((
cos
. x0)
" ))
* ((
cos
. x0)
" ))
- ((((
sin
. x1)
|^ (2
+ 1))
* ((
cos
. x1)
" ))
* ((
cos
. x1)
" )))
/ (x0
- x1)) by
NEWTON: 6
.= (((((
sin
. x0)
|^ 3)
* (((
cos
. x0)
" )
* ((
cos
. x0)
" )))
- ((((
sin
. x1)
|^ 3)
* ((
cos
. x1)
" ))
* ((
cos
. x1)
" )))
/ (x0
- x1))
.= (((((
sin
. x0)
|^ 3)
* (((
cos
. x0)
* (
cos
. x0))
" ))
- (((
sin
. x1)
|^ 3)
* (((
cos
. x1)
" )
* ((
cos
. x1)
" ))))
/ (x0
- x1)) by
XCMPLX_1: 204
.= (((((
sin
. x0)
|^ 3)
/ ((
cos
. x0)
^2 ))
- (((
sin
. x1)
|^ 3)
/ ((
cos
. x1)
^2 )))
/ (x0
- x1)) by
XCMPLX_1: 204
.= ((((((
sin x0)
|^ 3)
* ((
cos x1)
^2 ))
- (((
sin x1)
|^ 3)
* ((
cos x0)
^2 )))
/ (((
cos x0)
^2 )
* ((
cos x1)
^2 )))
/ (x0
- x1)) by
A2,
XCMPLX_1: 130
.= (((((
sin x0)
|^ 3)
* ((
cos x1)
^2 ))
- (((
sin x1)
|^ 3)
* ((
cos x0)
^2 )))
/ ((((
cos x0)
^2 )
* ((
cos x1)
^2 ))
* (x0
- x1))) by
XCMPLX_1: 78;
hence thesis;
end;
theorem ::
DIFF_4:57
x
in (
dom
tan ) & (x
+ h)
in (
dom
tan ) implies ((
fD (((
tan
(#)
tan )
(#)
sin ),h))
. x)
= ((((
sin
. (x
+ h))
|^ 3)
* (((
cos
. (x
+ h))
" )
|^ 2))
- (((
sin
. x)
|^ 3)
* (((
cos
. x)
" )
|^ 2)))
proof
set f = ((
tan
(#)
tan )
(#)
sin );
assume
A1: x
in (
dom
tan ) & (x
+ h)
in (
dom
tan );
x
in (
dom f) & (x
+ h)
in (
dom f)
proof
set f1 = (
tan
(#)
tan );
set f2 =
sin ;
A2: x
in (
dom f1) & (x
+ h)
in (
dom f1)
proof
x
in ((
dom
tan )
/\ (
dom
tan )) & (x
+ h)
in ((
dom
tan )
/\ (
dom
tan )) by
A1;
hence thesis by
VALUED_1:def 4;
end;
x
in ((
dom f1)
/\ (
dom f2)) & (x
+ h)
in ((
dom f1)
/\ (
dom f2)) by
A2,
SIN_COS: 24,
XBOOLE_0:def 4;
hence thesis by
VALUED_1:def 4;
end;
then ((
fD (f,h))
. x)
= ((((
tan
(#)
tan )
(#)
sin )
. (x
+ h))
- (((
tan
(#)
tan )
(#)
sin )
. x)) by
DIFF_1: 1
.= ((((
tan
(#)
tan )
. (x
+ h))
* (
sin
. (x
+ h)))
- (((
tan
(#)
tan )
(#)
sin )
. x)) by
VALUED_1: 5
.= ((((
tan
(#)
tan )
. (x
+ h))
* (
sin
. (x
+ h)))
- (((
tan
(#)
tan )
. x)
* (
sin
. x))) by
VALUED_1: 5
.= ((((
tan
. (x
+ h))
* (
tan
. (x
+ h)))
* (
sin
. (x
+ h)))
- (((
tan
(#)
tan )
. x)
* (
sin
. x))) by
VALUED_1: 5
.= ((((
tan
. (x
+ h))
* (
tan
. (x
+ h)))
* (
sin
. (x
+ h)))
- (((
tan
. x)
* (
tan
. x))
* (
sin
. x))) by
VALUED_1: 5
.= (((((
sin
. (x
+ h))
* ((
cos
. (x
+ h))
" ))
* (
tan
. (x
+ h)))
* (
sin
. (x
+ h)))
- (((
tan
. x)
* (
tan
. x))
* (
sin
. x))) by
A1,
RFUNCT_1:def 1
.= (((((
sin
. (x
+ h))
* ((
cos
. (x
+ h))
" ))
* ((
sin
. (x
+ h))
* ((
cos
. (x
+ h))
" )))
* (
sin
. (x
+ h)))
- (((
tan
. x)
* (
tan
. x))
* (
sin
. x))) by
A1,
RFUNCT_1:def 1
.= (((((
sin
. (x
+ h))
* ((
cos
. (x
+ h))
" ))
* ((
sin
. (x
+ h))
* ((
cos
. (x
+ h))
" )))
* (
sin
. (x
+ h)))
- ((((
sin
. x)
* ((
cos
. x)
" ))
* (
tan
. x))
* (
sin
. x))) by
A1,
RFUNCT_1:def 1
.= (((((
sin
. (x
+ h))
* ((
cos
. (x
+ h))
" ))
* ((
sin
. (x
+ h))
* ((
cos
. (x
+ h))
" )))
* (
sin
. (x
+ h)))
- ((((
sin
. x)
* ((
cos
. x)
" ))
* ((
sin
. x)
* ((
cos
. x)
" )))
* (
sin
. x))) by
A1,
RFUNCT_1:def 1
.= (((((
sin
. (x
+ h))
* (
sin
. (x
+ h)))
* (
sin
. (x
+ h)))
* (((
cos
. (x
+ h))
" )
* ((
cos
. (x
+ h))
" )))
- ((((
sin
. x)
* (
sin
. x))
* (
sin
. x))
* (((
cos
. x)
" )
* ((
cos
. x)
" ))))
.= ((((((
sin
. (x
+ h))
|^ 1)
* (
sin
. (x
+ h)))
* (
sin
. (x
+ h)))
* (((
cos
. (x
+ h))
" )
* ((
cos
. (x
+ h))
" )))
- ((((
sin
. x)
* (
sin
. x))
* (
sin
. x))
* (((
cos
. x)
" )
* ((
cos
. x)
" ))))
.= (((((
sin
. (x
+ h))
|^ (1
+ 1))
* (
sin
. (x
+ h)))
* (((
cos
. (x
+ h))
" )
* ((
cos
. (x
+ h))
" )))
- ((((
sin
. x)
* (
sin
. x))
* (
sin
. x))
* (((
cos
. x)
" )
* ((
cos
. x)
" )))) by
NEWTON: 6
.= ((((
sin
. (x
+ h))
|^ (2
+ 1))
* (((
cos
. (x
+ h))
" )
* ((
cos
. (x
+ h))
" )))
- ((((
sin
. x)
* (
sin
. x))
* (
sin
. x))
* (((
cos
. x)
" )
* ((
cos
. x)
" )))) by
NEWTON: 6
.= ((((
sin
. (x
+ h))
|^ 3)
* ((((
cos
. (x
+ h))
" )
|^ 1)
* ((
cos
. (x
+ h))
" )))
- ((((
sin
. x)
* (
sin
. x))
* (
sin
. x))
* (((
cos
. x)
" )
* ((
cos
. x)
" ))))
.= ((((
sin
. (x
+ h))
|^ 3)
* (((
cos
. (x
+ h))
" )
|^ (1
+ 1)))
- ((((
sin
. x)
* (
sin
. x))
* (
sin
. x))
* (((
cos
. x)
" )
* ((
cos
. x)
" )))) by
NEWTON: 6
.= ((((
sin
. (x
+ h))
|^ 3)
* (((
cos
. (x
+ h))
" )
|^ 2))
- (((((
sin
. x)
|^ 1)
* (
sin
. x))
* (
sin
. x))
* (((
cos
. x)
" )
* ((
cos
. x)
" ))))
.= ((((
sin
. (x
+ h))
|^ 3)
* (((
cos
. (x
+ h))
" )
|^ 2))
- ((((
sin
. x)
|^ (1
+ 1))
* (
sin
. x))
* (((
cos
. x)
" )
* ((
cos
. x)
" )))) by
NEWTON: 6
.= ((((
sin
. (x
+ h))
|^ 3)
* (((
cos
. (x
+ h))
" )
|^ 2))
- (((
sin
. x)
|^ (2
+ 1))
* (((
cos
. x)
" )
* ((
cos
. x)
" )))) by
NEWTON: 6
.= ((((
sin
. (x
+ h))
|^ 3)
* (((
cos
. (x
+ h))
" )
|^ 2))
- (((
sin
. x)
|^ 3)
* ((((
cos
. x)
" )
|^ 1)
* ((
cos
. x)
" ))))
.= ((((
sin
. (x
+ h))
|^ 3)
* (((
cos
. (x
+ h))
" )
|^ 2))
- (((
sin
. x)
|^ 3)
* (((
cos
. x)
" )
|^ (1
+ 1)))) by
NEWTON: 6
.= ((((
sin
. (x
+ h))
|^ 3)
* (((
cos
. (x
+ h))
" )
|^ 2))
- (((
sin
. x)
|^ 3)
* (((
cos
. x)
" )
|^ 2)));
hence thesis;
end;
theorem ::
DIFF_4:58
x
in (
dom
tan ) & (x
- h)
in (
dom
tan ) implies ((
bD (((
tan
(#)
tan )
(#)
sin ),h))
. x)
= ((((
sin
. x)
|^ 3)
* (((
cos
. x)
" )
|^ 2))
- (((
sin
. (x
- h))
|^ 3)
* (((
cos
. (x
- h))
" )
|^ 2)))
proof
set f = ((
tan
(#)
tan )
(#)
sin );
assume
A1: x
in (
dom
tan ) & (x
- h)
in (
dom
tan );
x
in (
dom f) & (x
- h)
in (
dom f)
proof
set f1 = (
tan
(#)
tan );
set f2 =
sin ;
A2: x
in (
dom f1) & (x
- h)
in (
dom f1)
proof
x
in ((
dom
tan )
/\ (
dom
tan )) & (x
- h)
in ((
dom
tan )
/\ (
dom
tan )) by
A1;
hence thesis by
VALUED_1:def 4;
end;
x
in ((
dom f1)
/\ (
dom f2)) & (x
- h)
in ((
dom f1)
/\ (
dom f2)) by
A2,
SIN_COS: 24,
XBOOLE_0:def 4;
hence thesis by
VALUED_1:def 4;
end;
then ((
bD (f,h))
. x)
= ((((
tan
(#)
tan )
(#)
sin )
. x)
- (((
tan
(#)
tan )
(#)
sin )
. (x
- h))) by
DIFF_1: 38
.= ((((
tan
(#)
tan )
. x)
* (
sin
. x))
- (((
tan
(#)
tan )
(#)
sin )
. (x
- h))) by
VALUED_1: 5
.= ((((
tan
(#)
tan )
. x)
* (
sin
. x))
- (((
tan
(#)
tan )
. (x
- h))
* (
sin
. (x
- h)))) by
VALUED_1: 5
.= ((((
tan
. x)
* (
tan
. x))
* (
sin
. x))
- (((
tan
(#)
tan )
. (x
- h))
* (
sin
. (x
- h)))) by
VALUED_1: 5
.= ((((
tan
. x)
* (
tan
. x))
* (
sin
. x))
- (((
tan
. (x
- h))
* (
tan
. (x
- h)))
* (
sin
. (x
- h)))) by
VALUED_1: 5
.= (((((
sin
. x)
* ((
cos
. x)
" ))
* (
tan
. x))
* (
sin
. x))
- (((
tan
. (x
- h))
* (
tan
. (x
- h)))
* (
sin
. (x
- h)))) by
A1,
RFUNCT_1:def 1
.= (((((
sin
. x)
* ((
cos
. x)
" ))
* ((
sin
. x)
* ((
cos
. x)
" )))
* (
sin
. x))
- (((
tan
. (x
- h))
* (
tan
. (x
- h)))
* (
sin
. (x
- h)))) by
A1,
RFUNCT_1:def 1
.= (((((
sin
. x)
* ((
cos
. x)
" ))
* ((
sin
. x)
* ((
cos
. x)
" )))
* (
sin
. x))
- ((((
sin
. (x
- h))
* ((
cos
. (x
- h))
" ))
* (
tan
. (x
- h)))
* (
sin
. (x
- h)))) by
A1,
RFUNCT_1:def 1
.= (((((
sin
. x)
* ((
cos
. x)
" ))
* ((
sin
. x)
* ((
cos
. x)
" )))
* (
sin
. x))
- ((((
sin
. (x
- h))
* ((
cos
. (x
- h))
" ))
* ((
sin
. (x
- h))
* ((
cos
. (x
- h))
" )))
* (
sin
. (x
- h)))) by
A1,
RFUNCT_1:def 1
.= (((((
sin
. x)
* (
sin
. x))
* (
sin
. x))
* (((
cos
. x)
" )
* ((
cos
. x)
" )))
- ((((
sin
. (x
- h))
* (
sin
. (x
- h)))
* (
sin
. (x
- h)))
* (((
cos
. (x
- h))
" )
* ((
cos
. (x
- h))
" ))))
.= ((((((
sin
. x)
|^ 1)
* (
sin
. x))
* (
sin
. x))
* (((
cos
. x)
" )
* ((
cos
. x)
" )))
- ((((
sin
. (x
- h))
* (
sin
. (x
- h)))
* (
sin
. (x
- h)))
* (((
cos
. (x
- h))
" )
* ((
cos
. (x
- h))
" ))))
.= (((((
sin
. x)
|^ (1
+ 1))
* (
sin
. x))
* (((
cos
. x)
" )
* ((
cos
. x)
" )))
- ((((
sin
. (x
- h))
* (
sin
. (x
- h)))
* (
sin
. (x
- h)))
* (((
cos
. (x
- h))
" )
* ((
cos
. (x
- h))
" )))) by
NEWTON: 6
.= ((((
sin
. x)
|^ (2
+ 1))
* (((
cos
. x)
" )
* ((
cos
. x)
" )))
- ((((
sin
. (x
- h))
* (
sin
. (x
- h)))
* (
sin
. (x
- h)))
* (((
cos
. (x
- h))
" )
* ((
cos
. (x
- h))
" )))) by
NEWTON: 6
.= ((((
sin
. x)
|^ 3)
* ((((
cos
. x)
" )
|^ 1)
* ((
cos
. x)
" )))
- ((((
sin
. (x
- h))
* (
sin
. (x
- h)))
* (
sin
. (x
- h)))
* (((
cos
. (x
- h))
" )
* ((
cos
. (x
- h))
" ))))
.= ((((
sin
. x)
|^ 3)
* (((
cos
. x)
" )
|^ (1
+ 1)))
- ((((
sin
. (x
- h))
* (
sin
. (x
- h)))
* (
sin
. (x
- h)))
* (((
cos
. (x
- h))
" )
* ((
cos
. (x
- h))
" )))) by
NEWTON: 6
.= ((((
sin
. x)
|^ 3)
* (((
cos
. x)
" )
|^ 2))
- (((((
sin
. (x
- h))
|^ 1)
* (
sin
. (x
- h)))
* (
sin
. (x
- h)))
* (((
cos
. (x
- h))
" )
* ((
cos
. (x
- h))
" ))))
.= ((((
sin
. x)
|^ 3)
* (((
cos
. x)
" )
|^ 2))
- ((((
sin
. (x
- h))
|^ (1
+ 1))
* (
sin
. (x
- h)))
* (((
cos
. (x
- h))
" )
* ((
cos
. (x
- h))
" )))) by
NEWTON: 6
.= ((((
sin
. x)
|^ 3)
* (((
cos
. x)
" )
|^ 2))
- (((
sin
. (x
- h))
|^ (2
+ 1))
* (((
cos
. (x
- h))
" )
* ((
cos
. (x
- h))
" )))) by
NEWTON: 6
.= ((((
sin
. x)
|^ 3)
* (((
cos
. x)
" )
|^ 2))
- (((
sin
. (x
- h))
|^ 3)
* ((((
cos
. (x
- h))
" )
|^ 1)
* ((
cos
. (x
- h))
" ))))
.= ((((
sin
. x)
|^ 3)
* (((
cos
. x)
" )
|^ 2))
- (((
sin
. (x
- h))
|^ 3)
* (((
cos
. (x
- h))
" )
|^ (1
+ 1)))) by
NEWTON: 6
.= ((((
sin
. x)
|^ 3)
* (((
cos
. x)
" )
|^ 2))
- (((
sin
. (x
- h))
|^ 3)
* (((
cos
. (x
- h))
" )
|^ 2)));
hence thesis;
end;
theorem ::
DIFF_4:59
(x
+ (h
/ 2))
in (
dom
tan ) & (x
- (h
/ 2))
in (
dom
tan ) implies ((
cD (((
tan
(#)
tan )
(#)
sin ),h))
. x)
= ((((
sin
. (x
+ (h
/ 2)))
|^ 3)
* (((
cos
. (x
+ (h
/ 2)))
" )
|^ 2))
- (((
sin
. (x
- (h
/ 2)))
|^ 3)
* (((
cos
. (x
- (h
/ 2)))
" )
|^ 2)))
proof
set f = ((
tan
(#)
tan )
(#)
sin );
assume
A1: (x
+ (h
/ 2))
in (
dom
tan ) & (x
- (h
/ 2))
in (
dom
tan );
(x
+ (h
/ 2))
in (
dom f) & (x
- (h
/ 2))
in (
dom f)
proof
set f1 = (
tan
(#)
tan );
set f2 =
sin ;
A2: (x
+ (h
/ 2))
in (
dom f1) & (x
- (h
/ 2))
in (
dom f1)
proof
(x
+ (h
/ 2))
in ((
dom
tan )
/\ (
dom
tan )) & (x
- (h
/ 2))
in ((
dom
tan )
/\ (
dom
tan )) by
A1;
hence thesis by
VALUED_1:def 4;
end;
(x
+ (h
/ 2))
in ((
dom f1)
/\ (
dom f2)) & (x
- (h
/ 2))
in ((
dom f1)
/\ (
dom f2)) by
A2,
SIN_COS: 24,
XBOOLE_0:def 4;
hence thesis by
VALUED_1:def 4;
end;
then ((
cD (f,h))
. x)
= ((((
tan
(#)
tan )
(#)
sin )
. (x
+ (h
/ 2)))
- (((
tan
(#)
tan )
(#)
sin )
. (x
- (h
/ 2)))) by
DIFF_1: 39
.= ((((
tan
(#)
tan )
. (x
+ (h
/ 2)))
* (
sin
. (x
+ (h
/ 2))))
- (((
tan
(#)
tan )
(#)
sin )
. (x
- (h
/ 2)))) by
VALUED_1: 5
.= ((((
tan
(#)
tan )
. (x
+ (h
/ 2)))
* (
sin
. (x
+ (h
/ 2))))
- (((
tan
(#)
tan )
. (x
- (h
/ 2)))
* (
sin
. (x
- (h
/ 2))))) by
VALUED_1: 5
.= ((((
tan
. (x
+ (h
/ 2)))
* (
tan
. (x
+ (h
/ 2))))
* (
sin
. (x
+ (h
/ 2))))
- (((
tan
(#)
tan )
. (x
- (h
/ 2)))
* (
sin
. (x
- (h
/ 2))))) by
VALUED_1: 5
.= ((((
tan
. (x
+ (h
/ 2)))
* (
tan
. (x
+ (h
/ 2))))
* (
sin
. (x
+ (h
/ 2))))
- (((
tan
. (x
- (h
/ 2)))
* (
tan
. (x
- (h
/ 2))))
* (
sin
. (x
- (h
/ 2))))) by
VALUED_1: 5
.= (((((
sin
. (x
+ (h
/ 2)))
* ((
cos
. (x
+ (h
/ 2)))
" ))
* (
tan
. (x
+ (h
/ 2))))
* (
sin
. (x
+ (h
/ 2))))
- (((
tan
. (x
- (h
/ 2)))
* (
tan
. (x
- (h
/ 2))))
* (
sin
. (x
- (h
/ 2))))) by
A1,
RFUNCT_1:def 1
.= (((((
sin
. (x
+ (h
/ 2)))
* ((
cos
. (x
+ (h
/ 2)))
" ))
* ((
sin
. (x
+ (h
/ 2)))
* ((
cos
. (x
+ (h
/ 2)))
" )))
* (
sin
. (x
+ (h
/ 2))))
- (((
tan
. (x
- (h
/ 2)))
* (
tan
. (x
- (h
/ 2))))
* (
sin
. (x
- (h
/ 2))))) by
A1,
RFUNCT_1:def 1
.= (((((
sin
. (x
+ (h
/ 2)))
* ((
cos
. (x
+ (h
/ 2)))
" ))
* ((
sin
. (x
+ (h
/ 2)))
* ((
cos
. (x
+ (h
/ 2)))
" )))
* (
sin
. (x
+ (h
/ 2))))
- ((((
sin
. (x
- (h
/ 2)))
* ((
cos
. (x
- (h
/ 2)))
" ))
* (
tan
. (x
- (h
/ 2))))
* (
sin
. (x
- (h
/ 2))))) by
A1,
RFUNCT_1:def 1
.= (((((
sin
. (x
+ (h
/ 2)))
* ((
cos
. (x
+ (h
/ 2)))
" ))
* ((
sin
. (x
+ (h
/ 2)))
* ((
cos
. (x
+ (h
/ 2)))
" )))
* (
sin
. (x
+ (h
/ 2))))
- ((((
sin
. (x
- (h
/ 2)))
* ((
cos
. (x
- (h
/ 2)))
" ))
* ((
sin
. (x
- (h
/ 2)))
* ((
cos
. (x
- (h
/ 2)))
" )))
* (
sin
. (x
- (h
/ 2))))) by
A1,
RFUNCT_1:def 1
.= (((((
sin
. (x
+ (h
/ 2)))
* (
sin
. (x
+ (h
/ 2))))
* (
sin
. (x
+ (h
/ 2))))
* (((
cos
. (x
+ (h
/ 2)))
" )
* ((
cos
. (x
+ (h
/ 2)))
" )))
- ((((
sin
. (x
- (h
/ 2)))
* (
sin
. (x
- (h
/ 2))))
* (
sin
. (x
- (h
/ 2))))
* (((
cos
. (x
- (h
/ 2)))
" )
* ((
cos
. (x
- (h
/ 2)))
" ))))
.= ((((((
sin
. (x
+ (h
/ 2)))
|^ 1)
* (
sin
. (x
+ (h
/ 2))))
* (
sin
. (x
+ (h
/ 2))))
* (((
cos
. (x
+ (h
/ 2)))
" )
* ((
cos
. (x
+ (h
/ 2)))
" )))
- ((((
sin
. (x
- (h
/ 2)))
* (
sin
. (x
- (h
/ 2))))
* (
sin
. (x
- (h
/ 2))))
* (((
cos
. (x
- (h
/ 2)))
" )
* ((
cos
. (x
- (h
/ 2)))
" ))))
.= (((((
sin
. (x
+ (h
/ 2)))
|^ (1
+ 1))
* (
sin
. (x
+ (h
/ 2))))
* (((
cos
. (x
+ (h
/ 2)))
" )
* ((
cos
. (x
+ (h
/ 2)))
" )))
- ((((
sin
. (x
- (h
/ 2)))
* (
sin
. (x
- (h
/ 2))))
* (
sin
. (x
- (h
/ 2))))
* (((
cos
. (x
- (h
/ 2)))
" )
* ((
cos
. (x
- (h
/ 2)))
" )))) by
NEWTON: 6
.= ((((
sin
. (x
+ (h
/ 2)))
|^ (2
+ 1))
* (((
cos
. (x
+ (h
/ 2)))
" )
* ((
cos
. (x
+ (h
/ 2)))
" )))
- ((((
sin
. (x
- (h
/ 2)))
* (
sin
. (x
- (h
/ 2))))
* (
sin
. (x
- (h
/ 2))))
* (((
cos
. (x
- (h
/ 2)))
" )
* ((
cos
. (x
- (h
/ 2)))
" )))) by
NEWTON: 6
.= ((((
sin
. (x
+ (h
/ 2)))
|^ 3)
* ((((
cos
. (x
+ (h
/ 2)))
" )
|^ 1)
* ((
cos
. (x
+ (h
/ 2)))
" )))
- ((((
sin
. (x
- (h
/ 2)))
* (
sin
. (x
- (h
/ 2))))
* (
sin
. (x
- (h
/ 2))))
* (((
cos
. (x
- (h
/ 2)))
" )
* ((
cos
. (x
- (h
/ 2)))
" ))))
.= ((((
sin
. (x
+ (h
/ 2)))
|^ 3)
* (((
cos
. (x
+ (h
/ 2)))
" )
|^ (1
+ 1)))
- ((((
sin
. (x
- (h
/ 2)))
* (
sin
. (x
- (h
/ 2))))
* (
sin
. (x
- (h
/ 2))))
* (((
cos
. (x
- (h
/ 2)))
" )
* ((
cos
. (x
- (h
/ 2)))
" )))) by
NEWTON: 6
.= ((((
sin
. (x
+ (h
/ 2)))
|^ 3)
* (((
cos
. (x
+ (h
/ 2)))
" )
|^ 2))
- (((((
sin
. (x
- (h
/ 2)))
|^ 1)
* (
sin
. (x
- (h
/ 2))))
* (
sin
. (x
- (h
/ 2))))
* (((
cos
. (x
- (h
/ 2)))
" )
* ((
cos
. (x
- (h
/ 2)))
" ))))
.= ((((
sin
. (x
+ (h
/ 2)))
|^ 3)
* (((
cos
. (x
+ (h
/ 2)))
" )
|^ 2))
- ((((
sin
. (x
- (h
/ 2)))
|^ (1
+ 1))
* (
sin
. (x
- (h
/ 2))))
* (((
cos
. (x
- (h
/ 2)))
" )
* ((
cos
. (x
- (h
/ 2)))
" )))) by
NEWTON: 6
.= ((((
sin
. (x
+ (h
/ 2)))
|^ 3)
* (((
cos
. (x
+ (h
/ 2)))
" )
|^ 2))
- (((
sin
. (x
- (h
/ 2)))
|^ (2
+ 1))
* (((
cos
. (x
- (h
/ 2)))
" )
* ((
cos
. (x
- (h
/ 2)))
" )))) by
NEWTON: 6
.= ((((
sin
. (x
+ (h
/ 2)))
|^ 3)
* (((
cos
. (x
+ (h
/ 2)))
" )
|^ 2))
- (((
sin
. (x
- (h
/ 2)))
|^ 3)
* ((((
cos
. (x
- (h
/ 2)))
" )
|^ 1)
* ((
cos
. (x
- (h
/ 2)))
" ))))
.= ((((
sin
. (x
+ (h
/ 2)))
|^ 3)
* (((
cos
. (x
+ (h
/ 2)))
" )
|^ 2))
- (((
sin
. (x
- (h
/ 2)))
|^ 3)
* (((
cos
. (x
- (h
/ 2)))
" )
|^ (1
+ 1)))) by
NEWTON: 6
.= ((((
sin
. (x
+ (h
/ 2)))
|^ 3)
* (((
cos
. (x
+ (h
/ 2)))
" )
|^ 2))
- (((
sin
. (x
- (h
/ 2)))
|^ 3)
* (((
cos
. (x
- (h
/ 2)))
" )
|^ 2)));
hence thesis;
end;
theorem ::
DIFF_4:60
x0
in (
dom
cot ) & x1
in (
dom
cot ) implies
[!((
cot
(#)
cot )
(#)
cos ), x0, x1!]
= (((((
cos x0)
|^ 3)
* ((
sin x1)
^2 ))
- (((
cos x1)
|^ 3)
* ((
sin x0)
^2 )))
/ ((((
sin x0)
^2 )
* ((
sin x1)
^2 ))
* (x0
- x1)))
proof
assume
A1: x0
in (
dom
cot ) & x1
in (
dom
cot );
A2: (
sin x0)
<>
0 & (
sin x1)
<>
0 by
A1,
FDIFF_8: 2;
[!((
cot
(#)
cot )
(#)
cos ), x0, x1!]
= (((((
cot
(#)
cot )
. x0)
* (
cos
. x0))
- (((
cot
(#)
cot )
(#)
cos )
. x1))
/ (x0
- x1)) by
VALUED_1: 5
.= (((((
cot
. x0)
* (
cot
. x0))
* (
cos
. x0))
- (((
cot
(#)
cot )
(#)
cos )
. x1))
/ (x0
- x1)) by
VALUED_1: 5
.= (((((
cot
. x0)
* (
cot
. x0))
* (
cos
. x0))
- (((
cot
(#)
cot )
. x1)
* (
cos
. x1)))
/ (x0
- x1)) by
VALUED_1: 5
.= (((((
cot
. x0)
* (
cot
. x0))
* (
cos
. x0))
- (((
cot
. x1)
* (
cot
. x1))
* (
cos
. x1)))
/ (x0
- x1)) by
VALUED_1: 5
.= ((((((
cos
. x0)
* ((
sin
. x0)
" ))
* (
cot
. x0))
* (
cos
. x0))
- (((
cot
. x1)
* (
cot
. x1))
* (
cos
. x1)))
/ (x0
- x1)) by
A1,
RFUNCT_1:def 1
.= ((((((
cos
. x0)
* ((
sin
. x0)
" ))
* ((
cos
. x0)
* ((
sin
. x0)
" )))
* (
cos
. x0))
- (((
cot
. x1)
* (
cot
. x1))
* (
cos
. x1)))
/ (x0
- x1)) by
A1,
RFUNCT_1:def 1
.= ((((((
cos
. x0)
* ((
sin
. x0)
" ))
* ((
cos
. x0)
* ((
sin
. x0)
" )))
* (
cos
. x0))
- ((((
cos
. x1)
* ((
sin
. x1)
" ))
* (
cot
. x1))
* (
cos
. x1)))
/ (x0
- x1)) by
A1,
RFUNCT_1:def 1
.= ((((((
cos
. x0)
* ((
sin
. x0)
" ))
* ((
cos
. x0)
* ((
sin
. x0)
" )))
* (
cos
. x0))
- ((((
cos
. x1)
* ((
sin
. x1)
" ))
* ((
cos
. x1)
* ((
sin
. x1)
" )))
* (
cos
. x1)))
/ (x0
- x1)) by
A1,
RFUNCT_1:def 1
.= (((((((
cos
. x0)
* (
cos
. x0))
* (
cos
. x0))
* ((
sin
. x0)
" ))
* ((
sin
. x0)
" ))
- (((((
cos
. x1)
* (
cos
. x1))
* (
cos
. x1))
* ((
sin
. x1)
" ))
* ((
sin
. x1)
" )))
/ (x0
- x1))
.= ((((((((
cos
. x0)
|^ 1)
* (
cos
. x0))
* (
cos
. x0))
* ((
sin
. x0)
" ))
* ((
sin
. x0)
" ))
- (((((
cos
. x1)
* (
cos
. x1))
* (
cos
. x1))
* ((
sin
. x1)
" ))
* ((
sin
. x1)
" )))
/ (x0
- x1))
.= (((((((
cos
. x0)
|^ (1
+ 1))
* (
cos
. x0))
* ((
sin
. x0)
" ))
* ((
sin
. x0)
" ))
- (((((
cos
. x1)
* (
cos
. x1))
* (
cos
. x1))
* ((
sin
. x1)
" ))
* ((
sin
. x1)
" )))
/ (x0
- x1)) by
NEWTON: 6
.= ((((((
cos
. x0)
|^ (2
+ 1))
* ((
sin
. x0)
" ))
* ((
sin
. x0)
" ))
- (((((
cos
. x1)
* (
cos
. x1))
* (
cos
. x1))
* ((
sin
. x1)
" ))
* ((
sin
. x1)
" )))
/ (x0
- x1)) by
NEWTON: 6
.= ((((((
cos
. x0)
|^ 3)
* ((
sin
. x0)
" ))
* ((
sin
. x0)
" ))
- ((((((
cos
. x1)
|^ 1)
* (
cos
. x1))
* (
cos
. x1))
* ((
sin
. x1)
" ))
* ((
sin
. x1)
" )))
/ (x0
- x1))
.= ((((((
cos
. x0)
|^ 3)
* ((
sin
. x0)
" ))
* ((
sin
. x0)
" ))
- (((((
cos
. x1)
|^ (1
+ 1))
* (
cos
. x1))
* ((
sin
. x1)
" ))
* ((
sin
. x1)
" )))
/ (x0
- x1)) by
NEWTON: 6
.= ((((((
cos
. x0)
|^ 3)
* ((
sin
. x0)
" ))
* ((
sin
. x0)
" ))
- ((((
cos
. x1)
|^ (2
+ 1))
* ((
sin
. x1)
" ))
* ((
sin
. x1)
" )))
/ (x0
- x1)) by
NEWTON: 6
.= (((((
cos
. x0)
|^ 3)
* (((
sin
. x0)
" )
* ((
sin
. x0)
" )))
- ((((
cos
. x1)
|^ 3)
* ((
sin
. x1)
" ))
* ((
sin
. x1)
" )))
/ (x0
- x1))
.= (((((
cos
. x0)
|^ 3)
* (((
sin
. x0)
* (
sin
. x0))
" ))
- (((
cos
. x1)
|^ 3)
* (((
sin
. x1)
" )
* ((
sin
. x1)
" ))))
/ (x0
- x1)) by
XCMPLX_1: 204
.= (((((
cos
. x0)
|^ 3)
/ ((
sin
. x0)
^2 ))
- (((
cos
. x1)
|^ 3)
/ ((
sin
. x1)
^2 )))
/ (x0
- x1)) by
XCMPLX_1: 204
.= ((((((
cos x0)
|^ 3)
* ((
sin x1)
^2 ))
- (((
cos x1)
|^ 3)
* ((
sin x0)
^2 )))
/ (((
sin x0)
^2 )
* ((
sin x1)
^2 )))
/ (x0
- x1)) by
A2,
XCMPLX_1: 130
.= (((((
cos x0)
|^ 3)
* ((
sin x1)
^2 ))
- (((
cos x1)
|^ 3)
* ((
sin x0)
^2 )))
/ ((((
sin x0)
^2 )
* ((
sin x1)
^2 ))
* (x0
- x1))) by
XCMPLX_1: 78;
hence thesis;
end;
theorem ::
DIFF_4:61
x
in (
dom
cot ) & (x
+ h)
in (
dom
cot ) implies ((
fD (((
cot
(#)
cot )
(#)
cos ),h))
. x)
= ((((
cos
. (x
+ h))
|^ 3)
* (((
sin
. (x
+ h))
" )
|^ 2))
- (((
cos
. x)
|^ 3)
* (((
sin
. x)
" )
|^ 2)))
proof
set f = ((
cot
(#)
cot )
(#)
cos );
assume
A1: x
in (
dom
cot ) & (x
+ h)
in (
dom
cot );
x
in (
dom f) & (x
+ h)
in (
dom f)
proof
set f1 = (
cot
(#)
cot );
set f2 =
cos ;
A2: x
in (
dom f1) & (x
+ h)
in (
dom f1)
proof
x
in ((
dom
cot )
/\ (
dom
cot )) & (x
+ h)
in ((
dom
cot )
/\ (
dom
cot )) by
A1;
hence thesis by
VALUED_1:def 4;
end;
x
in ((
dom f1)
/\ (
dom f2)) & (x
+ h)
in ((
dom f1)
/\ (
dom f2)) by
A2,
SIN_COS: 24,
XBOOLE_0:def 4;
hence thesis by
VALUED_1:def 4;
end;
then ((
fD (f,h))
. x)
= ((((
cot
(#)
cot )
(#)
cos )
. (x
+ h))
- (((
cot
(#)
cot )
(#)
cos )
. x)) by
DIFF_1: 1
.= ((((
cot
(#)
cot )
. (x
+ h))
* (
cos
. (x
+ h)))
- (((
cot
(#)
cot )
(#)
cos )
. x)) by
VALUED_1: 5
.= ((((
cot
(#)
cot )
. (x
+ h))
* (
cos
. (x
+ h)))
- (((
cot
(#)
cot )
. x)
* (
cos
. x))) by
VALUED_1: 5
.= ((((
cot
. (x
+ h))
* (
cot
. (x
+ h)))
* (
cos
. (x
+ h)))
- (((
cot
(#)
cot )
. x)
* (
cos
. x))) by
VALUED_1: 5
.= ((((
cot
. (x
+ h))
* (
cot
. (x
+ h)))
* (
cos
. (x
+ h)))
- (((
cot
. x)
* (
cot
. x))
* (
cos
. x))) by
VALUED_1: 5
.= (((((
cos
. (x
+ h))
* ((
sin
. (x
+ h))
" ))
* (
cot
. (x
+ h)))
* (
cos
. (x
+ h)))
- (((
cot
. x)
* (
cot
. x))
* (
cos
. x))) by
A1,
RFUNCT_1:def 1
.= (((((
cos
. (x
+ h))
* ((
sin
. (x
+ h))
" ))
* ((
cos
. (x
+ h))
* ((
sin
. (x
+ h))
" )))
* (
cos
. (x
+ h)))
- (((
cot
. x)
* (
cot
. x))
* (
cos
. x))) by
A1,
RFUNCT_1:def 1
.= (((((
cos
. (x
+ h))
* ((
sin
. (x
+ h))
" ))
* ((
cos
. (x
+ h))
* ((
sin
. (x
+ h))
" )))
* (
cos
. (x
+ h)))
- ((((
cos
. x)
* ((
sin
. x)
" ))
* (
cot
. x))
* (
cos
. x))) by
A1,
RFUNCT_1:def 1
.= (((((
cos
. (x
+ h))
* ((
sin
. (x
+ h))
" ))
* ((
cos
. (x
+ h))
* ((
sin
. (x
+ h))
" )))
* (
cos
. (x
+ h)))
- ((((
cos
. x)
* ((
sin
. x)
" ))
* ((
cos
. x)
* ((
sin
. x)
" )))
* (
cos
. x))) by
A1,
RFUNCT_1:def 1
.= (((((
cos
. (x
+ h))
* (
cos
. (x
+ h)))
* (
cos
. (x
+ h)))
* (((
sin
. (x
+ h))
" )
* ((
sin
. (x
+ h))
" )))
- ((((
cos
. x)
* (
cos
. x))
* (
cos
. x))
* (((
sin
. x)
" )
* ((
sin
. x)
" ))))
.= ((((((
cos
. (x
+ h))
|^ 1)
* (
cos
. (x
+ h)))
* (
cos
. (x
+ h)))
* (((
sin
. (x
+ h))
" )
* ((
sin
. (x
+ h))
" )))
- ((((
cos
. x)
* (
cos
. x))
* (
cos
. x))
* (((
sin
. x)
" )
* ((
sin
. x)
" ))))
.= (((((
cos
. (x
+ h))
|^ (1
+ 1))
* (
cos
. (x
+ h)))
* (((
sin
. (x
+ h))
" )
* ((
sin
. (x
+ h))
" )))
- ((((
cos
. x)
* (
cos
. x))
* (
cos
. x))
* (((
sin
. x)
" )
* ((
sin
. x)
" )))) by
NEWTON: 6
.= ((((
cos
. (x
+ h))
|^ (2
+ 1))
* (((
sin
. (x
+ h))
" )
* ((
sin
. (x
+ h))
" )))
- ((((
cos
. x)
* (
cos
. x))
* (
cos
. x))
* (((
sin
. x)
" )
* ((
sin
. x)
" )))) by
NEWTON: 6
.= ((((
cos
. (x
+ h))
|^ 3)
* ((((
sin
. (x
+ h))
" )
|^ 1)
* ((
sin
. (x
+ h))
" )))
- ((((
cos
. x)
* (
cos
. x))
* (
cos
. x))
* (((
sin
. x)
" )
* ((
sin
. x)
" ))))
.= ((((
cos
. (x
+ h))
|^ 3)
* (((
sin
. (x
+ h))
" )
|^ (1
+ 1)))
- ((((
cos
. x)
* (
cos
. x))
* (
cos
. x))
* (((
sin
. x)
" )
* ((
sin
. x)
" )))) by
NEWTON: 6
.= ((((
cos
. (x
+ h))
|^ 3)
* (((
sin
. (x
+ h))
" )
|^ 2))
- (((((
cos
. x)
|^ 1)
* (
cos
. x))
* (
cos
. x))
* (((
sin
. x)
" )
* ((
sin
. x)
" ))))
.= ((((
cos
. (x
+ h))
|^ 3)
* (((
sin
. (x
+ h))
" )
|^ 2))
- ((((
cos
. x)
|^ (1
+ 1))
* (
cos
. x))
* (((
sin
. x)
" )
* ((
sin
. x)
" )))) by
NEWTON: 6
.= ((((
cos
. (x
+ h))
|^ 3)
* (((
sin
. (x
+ h))
" )
|^ 2))
- (((
cos
. x)
|^ (2
+ 1))
* (((
sin
. x)
" )
* ((
sin
. x)
" )))) by
NEWTON: 6
.= ((((
cos
. (x
+ h))
|^ 3)
* (((
sin
. (x
+ h))
" )
|^ 2))
- (((
cos
. x)
|^ 3)
* ((((
sin
. x)
" )
|^ 1)
* ((
sin
. x)
" ))))
.= ((((
cos
. (x
+ h))
|^ 3)
* (((
sin
. (x
+ h))
" )
|^ 2))
- (((
cos
. x)
|^ 3)
* (((
sin
. x)
" )
|^ (1
+ 1)))) by
NEWTON: 6
.= ((((
cos
. (x
+ h))
|^ 3)
* (((
sin
. (x
+ h))
" )
|^ 2))
- (((
cos
. x)
|^ 3)
* (((
sin
. x)
" )
|^ 2)));
hence thesis;
end;
theorem ::
DIFF_4:62
x
in (
dom
cot ) & (x
- h)
in (
dom
cot ) implies ((
bD (((
cot
(#)
cot )
(#)
cos ),h))
. x)
= ((((
cos
. x)
|^ 3)
* (((
sin
. x)
" )
|^ 2))
- (((
cos
. (x
- h))
|^ 3)
* (((
sin
. (x
- h))
" )
|^ 2)))
proof
set f = ((
cot
(#)
cot )
(#)
cos );
assume
A1: x
in (
dom
cot ) & (x
- h)
in (
dom
cot );
x
in (
dom f) & (x
- h)
in (
dom f)
proof
set f1 = (
cot
(#)
cot );
set f2 =
cos ;
A2: x
in (
dom f1) & (x
- h)
in (
dom f1)
proof
x
in ((
dom
cot )
/\ (
dom
cot )) & (x
- h)
in ((
dom
cot )
/\ (
dom
cot )) by
A1;
hence thesis by
VALUED_1:def 4;
end;
x
in ((
dom f1)
/\ (
dom f2)) & (x
- h)
in ((
dom f1)
/\ (
dom f2)) by
A2,
SIN_COS: 24,
XBOOLE_0:def 4;
hence thesis by
VALUED_1:def 4;
end;
then ((
bD (f,h))
. x)
= ((((
cot
(#)
cot )
(#)
cos )
. x)
- (((
cot
(#)
cot )
(#)
cos )
. (x
- h))) by
DIFF_1: 38
.= ((((
cot
(#)
cot )
. x)
* (
cos
. x))
- (((
cot
(#)
cot )
(#)
cos )
. (x
- h))) by
VALUED_1: 5
.= ((((
cot
(#)
cot )
. x)
* (
cos
. x))
- (((
cot
(#)
cot )
. (x
- h))
* (
cos
. (x
- h)))) by
VALUED_1: 5
.= ((((
cot
. x)
* (
cot
. x))
* (
cos
. x))
- (((
cot
(#)
cot )
. (x
- h))
* (
cos
. (x
- h)))) by
VALUED_1: 5
.= ((((
cot
. x)
* (
cot
. x))
* (
cos
. x))
- (((
cot
. (x
- h))
* (
cot
. (x
- h)))
* (
cos
. (x
- h)))) by
VALUED_1: 5
.= (((((
cos
. x)
* ((
sin
. x)
" ))
* (
cot
. x))
* (
cos
. x))
- (((
cot
. (x
- h))
* (
cot
. (x
- h)))
* (
cos
. (x
- h)))) by
A1,
RFUNCT_1:def 1
.= (((((
cos
. x)
* ((
sin
. x)
" ))
* ((
cos
. x)
* ((
sin
. x)
" )))
* (
cos
. x))
- (((
cot
. (x
- h))
* (
cot
. (x
- h)))
* (
cos
. (x
- h)))) by
A1,
RFUNCT_1:def 1
.= (((((
cos
. x)
* ((
sin
. x)
" ))
* ((
cos
. x)
* ((
sin
. x)
" )))
* (
cos
. x))
- ((((
cos
. (x
- h))
* ((
sin
. (x
- h))
" ))
* (
cot
. (x
- h)))
* (
cos
. (x
- h)))) by
A1,
RFUNCT_1:def 1
.= (((((
cos
. x)
* ((
sin
. x)
" ))
* ((
cos
. x)
* ((
sin
. x)
" )))
* (
cos
. x))
- ((((
cos
. (x
- h))
* ((
sin
. (x
- h))
" ))
* ((
cos
. (x
- h))
* ((
sin
. (x
- h))
" )))
* (
cos
. (x
- h)))) by
A1,
RFUNCT_1:def 1
.= (((((
cos
. x)
* (
cos
. x))
* (
cos
. x))
* (((
sin
. x)
" )
* ((
sin
. x)
" )))
- ((((
cos
. (x
- h))
* (
cos
. (x
- h)))
* (
cos
. (x
- h)))
* (((
sin
. (x
- h))
" )
* ((
sin
. (x
- h))
" ))))
.= ((((((
cos
. x)
|^ 1)
* (
cos
. x))
* (
cos
. x))
* (((
sin
. x)
" )
* ((
sin
. x)
" )))
- ((((
cos
. (x
- h))
* (
cos
. (x
- h)))
* (
cos
. (x
- h)))
* (((
sin
. (x
- h))
" )
* ((
sin
. (x
- h))
" ))))
.= (((((
cos
. x)
|^ (1
+ 1))
* (
cos
. x))
* (((
sin
. x)
" )
* ((
sin
. x)
" )))
- ((((
cos
. (x
- h))
* (
cos
. (x
- h)))
* (
cos
. (x
- h)))
* (((
sin
. (x
- h))
" )
* ((
sin
. (x
- h))
" )))) by
NEWTON: 6
.= ((((
cos
. x)
|^ (2
+ 1))
* (((
sin
. x)
" )
* ((
sin
. x)
" )))
- ((((
cos
. (x
- h))
* (
cos
. (x
- h)))
* (
cos
. (x
- h)))
* (((
sin
. (x
- h))
" )
* ((
sin
. (x
- h))
" )))) by
NEWTON: 6
.= ((((
cos
. x)
|^ 3)
* ((((
sin
. x)
" )
|^ 1)
* ((
sin
. x)
" )))
- ((((
cos
. (x
- h))
* (
cos
. (x
- h)))
* (
cos
. (x
- h)))
* (((
sin
. (x
- h))
" )
* ((
sin
. (x
- h))
" ))))
.= ((((
cos
. x)
|^ 3)
* (((
sin
. x)
" )
|^ (1
+ 1)))
- ((((
cos
. (x
- h))
* (
cos
. (x
- h)))
* (
cos
. (x
- h)))
* (((
sin
. (x
- h))
" )
* ((
sin
. (x
- h))
" )))) by
NEWTON: 6
.= ((((
cos
. x)
|^ 3)
* (((
sin
. x)
" )
|^ 2))
- (((((
cos
. (x
- h))
|^ 1)
* (
cos
. (x
- h)))
* (
cos
. (x
- h)))
* (((
sin
. (x
- h))
" )
* ((
sin
. (x
- h))
" ))))
.= ((((
cos
. x)
|^ 3)
* (((
sin
. x)
" )
|^ 2))
- ((((
cos
. (x
- h))
|^ (1
+ 1))
* (
cos
. (x
- h)))
* (((
sin
. (x
- h))
" )
* ((
sin
. (x
- h))
" )))) by
NEWTON: 6
.= ((((
cos
. x)
|^ 3)
* (((
sin
. x)
" )
|^ 2))
- (((
cos
. (x
- h))
|^ (2
+ 1))
* (((
sin
. (x
- h))
" )
* ((
sin
. (x
- h))
" )))) by
NEWTON: 6
.= ((((
cos
. x)
|^ 3)
* (((
sin
. x)
" )
|^ 2))
- (((
cos
. (x
- h))
|^ 3)
* ((((
sin
. (x
- h))
" )
|^ 1)
* ((
sin
. (x
- h))
" ))))
.= ((((
cos
. x)
|^ 3)
* (((
sin
. x)
" )
|^ 2))
- (((
cos
. (x
- h))
|^ 3)
* (((
sin
. (x
- h))
" )
|^ (1
+ 1)))) by
NEWTON: 6
.= ((((
cos
. x)
|^ 3)
* (((
sin
. x)
" )
|^ 2))
- (((
cos
. (x
- h))
|^ 3)
* (((
sin
. (x
- h))
" )
|^ 2)));
hence thesis;
end;
theorem ::
DIFF_4:63
(x
+ (h
/ 2))
in (
dom
cot ) & (x
- (h
/ 2))
in (
dom
cot ) implies ((
cD (((
cot
(#)
cot )
(#)
cos ),h))
. x)
= ((((
cos
. (x
+ (h
/ 2)))
|^ 3)
* (((
sin
. (x
+ (h
/ 2)))
" )
|^ 2))
- (((
cos
. (x
- (h
/ 2)))
|^ 3)
* (((
sin
. (x
- (h
/ 2)))
" )
|^ 2)))
proof
set f = ((
cot
(#)
cot )
(#)
cos );
assume
A1: (x
+ (h
/ 2))
in (
dom
cot ) & (x
- (h
/ 2))
in (
dom
cot );
(x
+ (h
/ 2))
in (
dom f) & (x
- (h
/ 2))
in (
dom f)
proof
set f1 = (
cot
(#)
cot );
set f2 =
cos ;
A2: (x
+ (h
/ 2))
in (
dom f1) & (x
- (h
/ 2))
in (
dom f1)
proof
(x
+ (h
/ 2))
in ((
dom
cot )
/\ (
dom
cot )) & (x
- (h
/ 2))
in ((
dom
cot )
/\ (
dom
cot )) by
A1;
hence thesis by
VALUED_1:def 4;
end;
(x
+ (h
/ 2))
in ((
dom f1)
/\ (
dom f2)) & (x
- (h
/ 2))
in ((
dom f1)
/\ (
dom f2)) by
A2,
SIN_COS: 24,
XBOOLE_0:def 4;
hence thesis by
VALUED_1:def 4;
end;
then ((
cD (f,h))
. x)
= ((((
cot
(#)
cot )
(#)
cos )
. (x
+ (h
/ 2)))
- (((
cot
(#)
cot )
(#)
cos )
. (x
- (h
/ 2)))) by
DIFF_1: 39
.= ((((
cot
(#)
cot )
. (x
+ (h
/ 2)))
* (
cos
. (x
+ (h
/ 2))))
- (((
cot
(#)
cot )
(#)
cos )
. (x
- (h
/ 2)))) by
VALUED_1: 5
.= ((((
cot
(#)
cot )
. (x
+ (h
/ 2)))
* (
cos
. (x
+ (h
/ 2))))
- (((
cot
(#)
cot )
. (x
- (h
/ 2)))
* (
cos
. (x
- (h
/ 2))))) by
VALUED_1: 5
.= ((((
cot
. (x
+ (h
/ 2)))
* (
cot
. (x
+ (h
/ 2))))
* (
cos
. (x
+ (h
/ 2))))
- (((
cot
(#)
cot )
. (x
- (h
/ 2)))
* (
cos
. (x
- (h
/ 2))))) by
VALUED_1: 5
.= ((((
cot
. (x
+ (h
/ 2)))
* (
cot
. (x
+ (h
/ 2))))
* (
cos
. (x
+ (h
/ 2))))
- (((
cot
. (x
- (h
/ 2)))
* (
cot
. (x
- (h
/ 2))))
* (
cos
. (x
- (h
/ 2))))) by
VALUED_1: 5
.= (((((
cos
. (x
+ (h
/ 2)))
* ((
sin
. (x
+ (h
/ 2)))
" ))
* (
cot
. (x
+ (h
/ 2))))
* (
cos
. (x
+ (h
/ 2))))
- (((
cot
. (x
- (h
/ 2)))
* (
cot
. (x
- (h
/ 2))))
* (
cos
. (x
- (h
/ 2))))) by
A1,
RFUNCT_1:def 1
.= (((((
cos
. (x
+ (h
/ 2)))
* ((
sin
. (x
+ (h
/ 2)))
" ))
* ((
cos
. (x
+ (h
/ 2)))
* ((
sin
. (x
+ (h
/ 2)))
" )))
* (
cos
. (x
+ (h
/ 2))))
- (((
cot
. (x
- (h
/ 2)))
* (
cot
. (x
- (h
/ 2))))
* (
cos
. (x
- (h
/ 2))))) by
A1,
RFUNCT_1:def 1
.= (((((
cos
. (x
+ (h
/ 2)))
* ((
sin
. (x
+ (h
/ 2)))
" ))
* ((
cos
. (x
+ (h
/ 2)))
* ((
sin
. (x
+ (h
/ 2)))
" )))
* (
cos
. (x
+ (h
/ 2))))
- ((((
cos
. (x
- (h
/ 2)))
* ((
sin
. (x
- (h
/ 2)))
" ))
* (
cot
. (x
- (h
/ 2))))
* (
cos
. (x
- (h
/ 2))))) by
A1,
RFUNCT_1:def 1
.= (((((
cos
. (x
+ (h
/ 2)))
* ((
sin
. (x
+ (h
/ 2)))
" ))
* ((
cos
. (x
+ (h
/ 2)))
* ((
sin
. (x
+ (h
/ 2)))
" )))
* (
cos
. (x
+ (h
/ 2))))
- ((((
cos
. (x
- (h
/ 2)))
* ((
sin
. (x
- (h
/ 2)))
" ))
* ((
cos
. (x
- (h
/ 2)))
* ((
sin
. (x
- (h
/ 2)))
" )))
* (
cos
. (x
- (h
/ 2))))) by
A1,
RFUNCT_1:def 1
.= (((((
cos
. (x
+ (h
/ 2)))
* (
cos
. (x
+ (h
/ 2))))
* (
cos
. (x
+ (h
/ 2))))
* (((
sin
. (x
+ (h
/ 2)))
" )
* ((
sin
. (x
+ (h
/ 2)))
" )))
- ((((
cos
. (x
- (h
/ 2)))
* (
cos
. (x
- (h
/ 2))))
* (
cos
. (x
- (h
/ 2))))
* (((
sin
. (x
- (h
/ 2)))
" )
* ((
sin
. (x
- (h
/ 2)))
" ))))
.= ((((((
cos
. (x
+ (h
/ 2)))
|^ 1)
* (
cos
. (x
+ (h
/ 2))))
* (
cos
. (x
+ (h
/ 2))))
* (((
sin
. (x
+ (h
/ 2)))
" )
* ((
sin
. (x
+ (h
/ 2)))
" )))
- ((((
cos
. (x
- (h
/ 2)))
* (
cos
. (x
- (h
/ 2))))
* (
cos
. (x
- (h
/ 2))))
* (((
sin
. (x
- (h
/ 2)))
" )
* ((
sin
. (x
- (h
/ 2)))
" ))))
.= (((((
cos
. (x
+ (h
/ 2)))
|^ (1
+ 1))
* (
cos
. (x
+ (h
/ 2))))
* (((
sin
. (x
+ (h
/ 2)))
" )
* ((
sin
. (x
+ (h
/ 2)))
" )))
- ((((
cos
. (x
- (h
/ 2)))
* (
cos
. (x
- (h
/ 2))))
* (
cos
. (x
- (h
/ 2))))
* (((
sin
. (x
- (h
/ 2)))
" )
* ((
sin
. (x
- (h
/ 2)))
" )))) by
NEWTON: 6
.= ((((
cos
. (x
+ (h
/ 2)))
|^ (2
+ 1))
* (((
sin
. (x
+ (h
/ 2)))
" )
* ((
sin
. (x
+ (h
/ 2)))
" )))
- ((((
cos
. (x
- (h
/ 2)))
* (
cos
. (x
- (h
/ 2))))
* (
cos
. (x
- (h
/ 2))))
* (((
sin
. (x
- (h
/ 2)))
" )
* ((
sin
. (x
- (h
/ 2)))
" )))) by
NEWTON: 6
.= ((((
cos
. (x
+ (h
/ 2)))
|^ 3)
* ((((
sin
. (x
+ (h
/ 2)))
" )
|^ 1)
* ((
sin
. (x
+ (h
/ 2)))
" )))
- ((((
cos
. (x
- (h
/ 2)))
* (
cos
. (x
- (h
/ 2))))
* (
cos
. (x
- (h
/ 2))))
* (((
sin
. (x
- (h
/ 2)))
" )
* ((
sin
. (x
- (h
/ 2)))
" ))))
.= ((((
cos
. (x
+ (h
/ 2)))
|^ 3)
* (((
sin
. (x
+ (h
/ 2)))
" )
|^ (1
+ 1)))
- ((((
cos
. (x
- (h
/ 2)))
* (
cos
. (x
- (h
/ 2))))
* (
cos
. (x
- (h
/ 2))))
* (((
sin
. (x
- (h
/ 2)))
" )
* ((
sin
. (x
- (h
/ 2)))
" )))) by
NEWTON: 6
.= ((((
cos
. (x
+ (h
/ 2)))
|^ 3)
* (((
sin
. (x
+ (h
/ 2)))
" )
|^ 2))
- (((((
cos
. (x
- (h
/ 2)))
|^ 1)
* (
cos
. (x
- (h
/ 2))))
* (
cos
. (x
- (h
/ 2))))
* (((
sin
. (x
- (h
/ 2)))
" )
* ((
sin
. (x
- (h
/ 2)))
" ))))
.= ((((
cos
. (x
+ (h
/ 2)))
|^ 3)
* (((
sin
. (x
+ (h
/ 2)))
" )
|^ 2))
- ((((
cos
. (x
- (h
/ 2)))
|^ (1
+ 1))
* (
cos
. (x
- (h
/ 2))))
* (((
sin
. (x
- (h
/ 2)))
" )
* ((
sin
. (x
- (h
/ 2)))
" )))) by
NEWTON: 6
.= ((((
cos
. (x
+ (h
/ 2)))
|^ 3)
* (((
sin
. (x
+ (h
/ 2)))
" )
|^ 2))
- (((
cos
. (x
- (h
/ 2)))
|^ (2
+ 1))
* (((
sin
. (x
- (h
/ 2)))
" )
* ((
sin
. (x
- (h
/ 2)))
" )))) by
NEWTON: 6
.= ((((
cos
. (x
+ (h
/ 2)))
|^ 3)
* (((
sin
. (x
+ (h
/ 2)))
" )
|^ 2))
- (((
cos
. (x
- (h
/ 2)))
|^ 3)
* ((((
sin
. (x
- (h
/ 2)))
" )
|^ 1)
* ((
sin
. (x
- (h
/ 2)))
" ))))
.= ((((
cos
. (x
+ (h
/ 2)))
|^ 3)
* (((
sin
. (x
+ (h
/ 2)))
" )
|^ 2))
- (((
cos
. (x
- (h
/ 2)))
|^ 3)
* (((
sin
. (x
- (h
/ 2)))
" )
|^ (1
+ 1)))) by
NEWTON: 6
.= ((((
cos
. (x
+ (h
/ 2)))
|^ 3)
* (((
sin
. (x
+ (h
/ 2)))
" )
|^ 2))
- (((
cos
. (x
- (h
/ 2)))
|^ 3)
* (((
sin
. (x
- (h
/ 2)))
" )
|^ 2)));
hence thesis;
end;