gtarski2.miz
begin
theorem ::
GTARSKI2:1
Th1: for r,s,t,u be
Real st s
<>
0 & t
<>
0 & (r
^2 )
= (((s
^2 )
+ (t
^2 ))
- (((2
* s)
* t)
* u)) holds u
= ((((r
^2 )
- (s
^2 ))
- (t
^2 ))
/ (
- ((2
* s)
* t)))
proof
let r,s,t,u be
Real;
assume that
A1: s
<>
0 and
A2: t
<>
0 and
A3: (r
^2 )
= (((s
^2 )
+ (t
^2 ))
- (((2
* s)
* t)
* u));
(((r
^2 )
- (s
^2 ))
- (t
^2 ))
= (u
* (
- ((2
* s)
* t))) by
A3;
hence thesis by
A1,
A2,
XCMPLX_1: 89;
end;
theorem ::
GTARSKI2:2
THJE: for n be
Nat holds for u,v be
Element of (
TOP-REAL n) holds (u
+ (
0
* v))
= u
proof
let n be
Nat;
let u,v be
Element of (
TOP-REAL n);
(
0. (
TOP-REAL n))
= (
0
* v) by
RLVECT_1: 10;
hence thesis;
end;
theorem ::
GTARSKI2:3
THJC: for n be
Nat holds for r,s be
Real, u,v,w be
Element of (
TOP-REAL n) st ((r
* u)
- (r
* v))
= ((s
* w)
- (s
* u)) holds ((r
+ s)
* u)
= ((r
* v)
+ (s
* w))
proof
let n be
Nat;
let r,s be
Real, u,v,w be
Element of (
TOP-REAL n);
assume ((r
* u)
- (r
* v))
= ((s
* w)
- (s
* u));
then (((r
* u)
- (r
* v))
+ (s
* u))
= ((s
* w)
+ ((
- (s
* u))
+ (s
* u))) by
RVSUM_1: 15
.= ((s
* w)
+ ((((
- 1)
* s)
* u)
+ (s
* u))) by
RVSUM_1: 49
.= ((s
* w)
+ (((
- s)
+ s)
* u)) by
RVSUM_1: 50
.= (s
* w) by
THJE;
then ((s
* w)
+ (r
* v))
= ((((r
* u)
+ (((
- 1)
* r)
* v))
+ (s
* u))
+ (r
* v)) by
RVSUM_1: 49
.= ((((r
* u)
+ (s
* u))
+ (((
- 1)
* r)
* v))
+ (r
* v)) by
RVSUM_1: 15
.= (((r
* u)
+ (s
* u))
+ ((((
- 1)
* r)
* v)
+ (r
* v))) by
RVSUM_1: 15
.= (((r
* u)
+ (s
* u))
+ (((
- r)
+ r)
* v)) by
RVSUM_1: 50
.= ((r
* u)
+ (s
* u)) by
THJE;
hence thesis by
RVSUM_1: 50;
end;
theorem ::
GTARSKI2:4
THJD: for r,s be
Real st
0
< r &
0
< s holds
0
<= (r
/ (r
+ s))
<= 1
proof
let r,s be
Real;
assume that
A1:
0
< r and
A2:
0
< s;
thus
0
<= (r
/ (r
+ s)) by
A1,
A2;
(
0
+ r)
<= (s
+ r) by
A2,
XREAL_1: 6;
then (r
/ (r
+ s))
<= ((r
+ s)
/ (r
+ s)) by
A1,
XREAL_1: 72;
hence (r
/ (r
+ s))
<= 1 by
A1,
A2,
XCMPLX_1: 60;
end;
theorem ::
GTARSKI2:5
Th2: for a be
Real holds (
cos ((3
*
PI )
- a))
= (
- (
cos a))
proof
let a be
Real;
(
cos ((3
*
PI )
- a))
= (
cos ((2
*
PI )
+ (
PI
- a)))
.= (
cos (
PI
- a)) by
SIN_COS: 79
.= (
- (
cos a)) by
EUCLID10: 2;
hence thesis;
end;
theorem ::
GTARSKI2:6
THSD2: for n be
Nat holds for a,b,c be
Element of (
TOP-REAL n) st (a
- c)
= (b
- c) holds a
= b
proof
let n be
Nat;
let a,b,c be
Element of (
TOP-REAL n);
assume (a
- c)
= (b
- c);
then (a
+ ((
- c)
+ c))
= ((b
- c)
+ c) by
RLVECT_1:def 3;
then (a
+ (
0. (
TOP-REAL n)))
= ((b
- c)
+ c) by
RLVECT_1: 5;
then a
= (b
+ ((
- c)
+ c)) by
RLVECT_1:def 3;
then a
= (b
+ (
0. (
TOP-REAL n))) by
RLVECT_1: 5;
hence thesis;
end;
theorem ::
GTARSKI2:7
ThWW: for n be
Nat holds for a,b,c be
Element of (
TOP-REAL n) holds ((c
- a)
- (b
- a))
= (c
- b)
proof
let n be
Nat;
let a,b,c be
Element of (
TOP-REAL n);
thus ((c
- a)
- (b
- a))
= (((c
- a)
- b)
+ a) by
RLVECT_1: 29
.= (((c
- a)
+ a)
+ (
- b)) by
RLVECT_1:def 3
.= ((c
+ ((
- a)
+ a))
+ (
- b)) by
RLVECT_1:def 3
.= ((c
+ (
0. (
TOP-REAL n)))
+ (
- b)) by
RLVECT_1: 5
.= (c
- b);
end;
theorem ::
GTARSKI2:8
THYQ: for a,b,c,d be
Real holds (
dist (
|[a, b]|,
|[c, d]|))
= (
sqrt (((a
- c)
^2 )
+ ((b
- d)
^2 )))
proof
let a,b,c,d be
Real;
A1: (
|[a, b]|
`1 )
= a & (
|[a, b]|
`2 )
= b & (
|[c, d]|
`1 )
= c & (
|[c, d]|
`2 )
= d by
EUCLID: 52;
reconsider P =
|[a, b]|, Q =
|[c, d]| as
Point of (
Euclid 2) by
EUCLID: 22;
(
dist (
|[a, b]|,
|[c, d]|))
= (
dist (P,Q)) by
TOPREAL6:def 1
.= ((
Pitag_dist 2)
. (P,Q)) by
METRIC_1:def 1
.= (
sqrt (((a
- c)
^2 )
+ ((b
- d)
^2 ))) by
A1,
TOPREAL3: 7;
hence thesis;
end;
theorem ::
GTARSKI2:9
THY1: (
dist (
|[
0 ,
0 ]|,
|[1,
0 ]|))
= 1
proof
(
dist (
|[
0 ,
0 ]|,
|[1,
0 ]|))
= (
sqrt (((
0
- 1)
^2 )
+ ((
0
-
0 )
^2 ))) by
THYQ
.= (
sqrt (((
- 1)
* (
- 1))
+ (
0
^2 ))) by
SQUARE_1:def 1
.= (
sqrt (1
+ (
0
*
0 ))) by
SQUARE_1:def 1
.= 1 by
SQUARE_1: 18;
hence thesis;
end;
theorem ::
GTARSKI2:10
THY2: (
dist (
|[
0 ,
0 ]|,
|[
0 , 1]|))
= 1
proof
(
dist (
|[
0 ,
0 ]|,
|[
0 , 1]|))
= (
sqrt (((
0
-
0 )
^2 )
+ ((
0
- 1)
^2 ))) by
THYQ
.= (
sqrt ((
0
*
0 )
+ ((
- 1)
^2 ))) by
SQUARE_1:def 1
.= (
sqrt (
0
+ ((
- 1)
* (
- 1)))) by
SQUARE_1:def 1
.= 1 by
SQUARE_1: 18;
hence thesis;
end;
theorem ::
GTARSKI2:11
THY3: (
dist (
|[1,
0 ]|,
|[
0 , 1]|))
= (
sqrt 2)
proof
(
dist (
|[1,
0 ]|,
|[
0 , 1]|))
= (
sqrt (((1
-
0 )
^2 )
+ ((
0
- 1)
^2 ))) by
THYQ
.= (
sqrt ((1
^2 )
+ (1
^2 ))) by
SQUARE_1: 3
.= (
sqrt ((1
* 1)
+ (1
^2 ))) by
SQUARE_1:def 1
.= (
sqrt ((1
* 1)
+ (1
* 1))) by
SQUARE_1:def 1
.= (
sqrt 2);
hence thesis;
end;
definition
let n be
Nat;
::
GTARSKI2:def1
func
TarskiEuclidSpace n ->
MetrTarskiStr equals the
naturally_generated
TarskiExtension of (
Euclid n);
coherence ;
end
definition
::
GTARSKI2:def2
func
TarskiEuclid2Space ->
MetrTarskiStr equals (
TarskiEuclidSpace 2);
coherence ;
end
begin
registration
let n be
Nat;
cluster (
TarskiEuclidSpace n) -> non
empty;
coherence ;
end
registration
cluster
TarskiEuclid2Space ->
Reflexive
symmetric
discerning;
coherence ;
end
registration
let n be
Nat;
cluster (
TarskiEuclidSpace n) ->
Reflexive
symmetric
discerning;
coherence ;
end
definition
let n be
Nat;
let P be
POINT of (
TarskiEuclidSpace n);
::
GTARSKI2:def3
func
Tn2TR P ->
Element of (
TOP-REAL n) equals P;
coherence
proof
the MetrStruct of (
TarskiEuclidSpace n)
= the MetrStruct of (
Euclid n) by
GTARSKI1:def 13;
hence thesis by
EUCLID: 22;
end;
end
definition
let P be
POINT of
TarskiEuclid2Space ;
::
GTARSKI2:def4
func
Tn2TR P ->
Element of (
TOP-REAL 2) equals P;
coherence
proof
the MetrStruct of
TarskiEuclid2Space
= the MetrStruct of (
Euclid 2) by
GTARSKI1:def 13;
hence thesis by
EUCLID: 22;
end;
end
definition
let P be
POINT of
TarskiEuclid2Space ;
::
GTARSKI2:def5
func
Tn2E P ->
Point of (
Euclid 2) equals P;
coherence
proof
the MetrStruct of
TarskiEuclid2Space
= the MetrStruct of (
Euclid 2) by
GTARSKI1:def 13;
hence thesis;
end;
end
definition
let P be
POINT of
TarskiEuclid2Space ;
::
GTARSKI2:def6
func
Tn2R P ->
Element of (
REAL 2) equals P;
coherence
proof
the MetrStruct of
TarskiEuclid2Space
= the MetrStruct of (
Euclid 2) by
GTARSKI1:def 13;
hence thesis;
end;
end
theorem ::
GTARSKI2:12
ThEquiv: for n be
Nat holds for p,q be
POINT of (
TarskiEuclidSpace n), p1,q1 be
Element of (
TOP-REAL n) st p
= p1 & q
= q1 holds (
dist (p,q))
= ((
Pitag_dist n)
. (p1,q1)) & (
dist (p,q))
=
|.(p1
- q1).|
proof
let n be
Nat;
let p,q be
POINT of (
TarskiEuclidSpace n), p1,q1 be
Element of (
TOP-REAL n);
assume
A0: p
= p1 & q
= q1;
A1: the MetrStruct of (
TarskiEuclidSpace n)
= the MetrStruct of (
Euclid n) by
GTARSKI1:def 13;
then ((
Pitag_dist n)
. (p1,q1))
=
|.(p1
- q1).| by
A0,
EUCLID:def 6;
hence thesis by
A1,
METRIC_1:def 1,
A0;
end;
theorem ::
GTARSKI2:13
ThLawOfCosines: for a,b,c be
POINT of
TarskiEuclid2Space holds ((
dist (c,a))
^2 )
= ((((
dist (a,b))
^2 )
+ ((
dist (b,c))
^2 ))
- (((2
* (
dist (a,b)))
* (
dist (b,c)))
* (
cos (
angle ((
Tn2TR a),(
Tn2TR b),(
Tn2TR c))))))
proof
let a,b,c be
POINT of
TarskiEuclid2Space ;
set ta =
|.((
Tn2TR a)
- (
Tn2TR b)).|, tb =
|.((
Tn2TR c)
- (
Tn2TR b)).|, tc =
|.((
Tn2TR c)
- (
Tn2TR a)).|;
|.((
Tn2TR a)
- (
Tn2TR b)).|
= (
dist (a,b)) &
|.((
Tn2TR c)
- (
Tn2TR b)).|
= (
dist (c,b)) &
|.((
Tn2TR c)
- (
Tn2TR a)).|
= (
dist (c,a)) by
ThEquiv;
hence thesis by
EUCLID_6: 7;
end;
theorem ::
GTARSKI2:14
for a,b,c,e,f,g be
POINT of
TarskiEuclid2Space st ((
Tn2TR a),(
Tn2TR b),(
Tn2TR c))
is_a_triangle & (
angle ((
Tn2TR a),(
Tn2TR b),(
Tn2TR c)))
<
PI & (
angle ((
Tn2TR e),(
Tn2TR c),(
Tn2TR a)))
= ((
angle ((
Tn2TR b),(
Tn2TR c),(
Tn2TR a)))
/ 3) & (
angle ((
Tn2TR c),(
Tn2TR a),(
Tn2TR e)))
= ((
angle ((
Tn2TR c),(
Tn2TR a),(
Tn2TR b)))
/ 3) & (
angle ((
Tn2TR a),(
Tn2TR b),(
Tn2TR f)))
= ((
angle ((
Tn2TR a),(
Tn2TR b),(
Tn2TR c)))
/ 3) & (
angle ((
Tn2TR f),(
Tn2TR a),(
Tn2TR b)))
= ((
angle ((
Tn2TR c),(
Tn2TR a),(
Tn2TR b)))
/ 3) & (
angle ((
Tn2TR b),(
Tn2TR c),(
Tn2TR g)))
= ((
angle ((
Tn2TR b),(
Tn2TR c),(
Tn2TR a)))
/ 3) & (
angle ((
Tn2TR g),(
Tn2TR b),(
Tn2TR c)))
= ((
angle ((
Tn2TR a),(
Tn2TR b),(
Tn2TR c)))
/ 3) holds (
dist (f,e))
= (
dist (g,f)) & (
dist (f,e))
= (
dist (e,g)) & (
dist (g,f))
= (
dist (e,g))
proof
let a,b,c,e,f,g be
POINT of
TarskiEuclid2Space ;
assume
A1: ((
Tn2TR a),(
Tn2TR b),(
Tn2TR c))
is_a_triangle & (
angle ((
Tn2TR a),(
Tn2TR b),(
Tn2TR c)))
<
PI & (
angle ((
Tn2TR e),(
Tn2TR c),(
Tn2TR a)))
= ((
angle ((
Tn2TR b),(
Tn2TR c),(
Tn2TR a)))
/ 3) & (
angle ((
Tn2TR c),(
Tn2TR a),(
Tn2TR e)))
= ((
angle ((
Tn2TR c),(
Tn2TR a),(
Tn2TR b)))
/ 3) & (
angle ((
Tn2TR a),(
Tn2TR b),(
Tn2TR f)))
= ((
angle ((
Tn2TR a),(
Tn2TR b),(
Tn2TR c)))
/ 3) & (
angle ((
Tn2TR f),(
Tn2TR a),(
Tn2TR b)))
= ((
angle ((
Tn2TR c),(
Tn2TR a),(
Tn2TR b)))
/ 3) & (
angle ((
Tn2TR b),(
Tn2TR c),(
Tn2TR g)))
= ((
angle ((
Tn2TR b),(
Tn2TR c),(
Tn2TR a)))
/ 3) & (
angle ((
Tn2TR g),(
Tn2TR b),(
Tn2TR c)))
= ((
angle ((
Tn2TR a),(
Tn2TR b),(
Tn2TR c)))
/ 3);
|.((
Tn2TR f)
- (
Tn2TR e)).|
= (
dist (f,e)) &
|.((
Tn2TR g)
- (
Tn2TR f)).|
= (
dist (g,f)) &
|.((
Tn2TR e)
- (
Tn2TR g)).|
= (
dist (e,g)) by
ThEquiv;
hence thesis by
A1,
EUCLID11: 23;
end;
theorem ::
GTARSKI2:15
ThConv: for n be
Nat holds for p,q be
Element of (
TarskiEuclidSpace n), p1,q1 be
Element of (
Euclid n) st p
= p1 & q
= q1 holds (
dist (p,q))
= (
dist (p1,q1))
proof
let n be
Nat;
let p,q be
Element of (
TarskiEuclidSpace n);
let p1,q1 be
Element of (
Euclid n);
assume
A1: p
= p1 & q
= q1;
thus (
dist (p,q))
= (the
distance of the MetrStruct of (
TarskiEuclidSpace n)
. (p,q)) by
METRIC_1:def 1
.= (the
distance of the MetrStruct of (
Euclid n)
. (p,q)) by
GTARSKI1:def 13
.= (
dist (p1,q1)) by
METRIC_1:def 1,
A1;
end;
theorem ::
GTARSKI2:16
ThConv2: for p,q be
POINT of
TarskiEuclid2Space holds (
dist (p,q))
= (
sqrt (((((
Tn2TR p)
`1 )
- ((
Tn2TR q)
`1 ))
^2 )
+ ((((
Tn2TR p)
`2 )
- ((
Tn2TR q)
`2 ))
^2 )))
proof
let p,q be
POINT of
TarskiEuclid2Space ;
A1: the MetrStruct of
TarskiEuclid2Space
= the MetrStruct of (
Euclid 2) by
GTARSKI1:def 13;
((
Pitag_dist 2)
. ((
Tn2E p),(
Tn2E q)))
= (
sqrt (((((
Tn2TR p)
`1 )
- ((
Tn2TR q)
`1 ))
^2 )
+ ((((
Tn2TR p)
`2 )
- ((
Tn2TR q)
`2 ))
^2 ))) by
TOPREAL3: 7;
hence thesis by
A1,
METRIC_1:def 1;
end;
theorem ::
GTARSKI2:17
ThConv3: for A,B be
POINT of
TarskiEuclid2Space holds (
dist (A,B))
=
|.((
Tn2TR A)
- (
Tn2TR B)).| & (
dist (A,B))
=
|.((
Tn2R A)
- (
Tn2R B)).|
proof
let A,B be
POINT of
TarskiEuclid2Space ;
the MetrStruct of
TarskiEuclid2Space
= the MetrStruct of (
Euclid 2) by
GTARSKI1:def 13;
then (
dist (A,B))
= ((
Pitag_dist 2)
. ((
Tn2TR A),(
Tn2TR B))) by
METRIC_1:def 1
.=
|.((
Tn2R A)
- (
Tn2R B)).| by
EUCLID:def 6;
hence thesis;
end;
theorem ::
GTARSKI2:18
ThConv4: for a,b,c,d be
POINT of
TarskiEuclid2Space holds
|.((
Tn2TR a)
- (
Tn2TR b)).|
=
|.((
Tn2TR c)
- (
Tn2TR d)).| iff (a,b)
equiv (c,d)
proof
let a,b,c,d be
POINT of
TarskiEuclid2Space ;
A1: (
dist (a,b))
=
|.((
Tn2TR a)
- (
Tn2TR b)).| & (
dist (c,d))
=
|.((
Tn2TR c)
- (
Tn2TR d)).| by
ThConv3;
thus
|.((
Tn2TR a)
- (
Tn2TR b)).|
=
|.((
Tn2TR c)
- (
Tn2TR d)).| implies (a,b)
equiv (c,d) by
A1,
GTARSKI1:def 15;
assume (a,b)
equiv (c,d);
hence thesis by
A1,
GTARSKI1:def 15;
end;
theorem ::
GTARSKI2:19
ThConv5: for p,q,r be
POINT of
TarskiEuclid2Space holds p
is_Between (q,r) iff (
Tn2TR p)
in (
LSeg ((
Tn2TR q),(
Tn2TR r)))
proof
let p,q,r be
POINT of
TarskiEuclid2Space ;
A1: (
dist ((
Tn2TR q),(
Tn2TR p)))
= (
dist ((
Tn2E q),(
Tn2E p))) & (
dist ((
Tn2TR p),(
Tn2TR r)))
= (
dist ((
Tn2E p),(
Tn2E r))) & (
dist ((
Tn2TR q),(
Tn2TR r)))
= (
dist ((
Tn2E q),(
Tn2E r))) by
TOPREAL6:def 1;
(
dist (q,p))
= (
dist ((
Tn2E q),(
Tn2E p))) & (
dist (p,r))
= (
dist ((
Tn2E p),(
Tn2E r))) & (
dist (q,r))
= (
dist ((
Tn2E q),(
Tn2E r))) by
ThConv;
hence thesis by
A1,
EUCLID12: 12;
end;
reserve n for
Nat;
theorem ::
GTARSKI2:20
ThConv6: for p,q,r be
POINT of
TarskiEuclid2Space holds
between (p,q,r) iff (
Tn2TR q)
in (
LSeg ((
Tn2TR p),(
Tn2TR r)))
proof
let p,q,r be
POINT of
TarskiEuclid2Space ;
hereby
assume
between (p,q,r);
then q
is_Between (p,r) by
GTARSKI1:def 15;
hence (
Tn2TR q)
in (
LSeg ((
Tn2TR p),(
Tn2TR r))) by
ThConv5;
end;
assume (
Tn2TR q)
in (
LSeg ((
Tn2TR p),(
Tn2TR r)));
then q
is_Between (p,r) by
ThConv5;
hence thesis by
GTARSKI1:def 15;
end;
theorem ::
GTARSKI2:21
ThConv7: for a,b be
Point of
TarskiEuclid2Space holds
between (a,a,b) &
between (a,b,b)
proof
let a,b be
Point of
TarskiEuclid2Space ;
(
Tn2TR a)
in (
LSeg ((
Tn2TR a),(
Tn2TR b))) by
RLTOPSP1: 68;
hence
between (a,a,b) by
ThConv6;
(
Tn2TR b)
in (
LSeg ((
Tn2TR a),(
Tn2TR b))) by
RLTOPSP1: 68;
hence
between (a,b,b) by
ThConv6;
end;
theorem ::
GTARSKI2:22
ThConv7bis: for a,b,c be
Point of
TarskiEuclid2Space st
between (a,b,c) holds
between (c,b,a)
proof
let a,b,c be
Point of
TarskiEuclid2Space ;
assume
between (a,b,c);
then (
Tn2TR b)
in (
LSeg ((
Tn2TR a),(
Tn2TR c))) by
ThConv6;
hence thesis by
ThConv6;
end;
theorem ::
GTARSKI2:23
ThConv7ter: for a,b be
Point of
TarskiEuclid2Space st
between (a,b,a) holds a
= b
proof
let a,b be
Point of
TarskiEuclid2Space ;
assume
between (a,b,a);
then (
Tn2TR b)
in (
LSeg ((
Tn2TR a),(
Tn2TR a))) by
ThConv6;
then (
Tn2TR b)
in
{(
Tn2TR a)} by
RLTOPSP1: 70;
hence thesis by
TARSKI:def 1;
end;
theorem ::
GTARSKI2:24
ThEgal: for a,b be
POINT of
TarskiEuclid2Space holds a
= b iff (
dist (a,b))
=
0
proof
let a,b be
POINT of
TarskiEuclid2Space ;
hereby
assume a
= b;
then (
Tn2R a)
= (
Tn2R b);
then
0
=
|.((
Tn2TR a)
- (
Tn2TR b)).|;
hence (
dist (a,b))
=
0 by
ThEquiv;
end;
assume (
dist (a,b))
=
0 ;
hence thesis by
METRIC_1: 2;
end;
theorem ::
GTARSKI2:25
ThNull: for a,b,c,d be
POINT of
TarskiEuclid2Space st ((
dist (a,b))
+ (
dist (c,d)))
=
0 holds a
= b & c
= d
proof
let a,b,c,d be
POINT of
TarskiEuclid2Space ;
assume
A1: ((
dist (a,b))
+ (
dist (c,d)))
=
0 ;
0
<= (
dist (a,b)) &
0
<= (
dist (c,d)) by
METRIC_1: 5;
then (
dist (a,b))
=
0 & (
dist (c,d))
=
0 by
A1;
hence thesis by
ThEgal;
end;
theorem ::
GTARSKI2:26
for a,b,c,a1,b1,c1 be
POINT of
TarskiEuclid2Space holds (a,b,c)
cong (a1,b1,c1) iff ((
dist (a,b))
= (
dist (a1,b1)) & (
dist (a,c))
= (
dist (a1,c1)) & (
dist (b,c))
= (
dist (b1,c1))) by
GTARSKI1:def 15;
theorem ::
GTARSKI2:27
ThConv8: for a,b,c be
POINT of
TarskiEuclid2Space holds
between (a,b,c) iff (
dist (a,c))
= ((
dist (a,b))
+ (
dist (b,c)))
proof
let a,b,c be
POINT of
TarskiEuclid2Space ;
hereby
assume
between (a,b,c);
then b
is_Between (a,c) by
GTARSKI1:def 15;
hence (
dist (a,c))
= ((
dist (a,b))
+ (
dist (b,c)));
end;
assume (
dist (a,c))
= ((
dist (a,b))
+ (
dist (b,c)));
then b
is_Between (a,c);
hence thesis by
GTARSKI1:def 15;
end;
theorem ::
GTARSKI2:28
ThConv9: for a,b,c,d be
POINT of
TarskiEuclid2Space holds ((
dist (a,b))
^2 )
= ((
dist (c,d))
^2 ) iff (a,b)
equiv (c,d)
proof
let a,b,c,d be
POINT of
TarskiEuclid2Space ;
hereby
assume
A1: ((
dist (a,b))
^2 )
= ((
dist (c,d))
^2 );
(
sqrt ((
dist (a,b))
^2 ))
= (
dist (a,b)) & (
sqrt ((
dist (c,d))
^2 ))
= (
dist (c,d)) by
METRIC_1: 5,
SQUARE_1: 22;
hence (a,b)
equiv (c,d) by
A1,
GTARSKI1:def 15;
end;
assume (a,b)
equiv (c,d);
hence thesis by
GTARSKI1:def 15;
end;
theorem ::
GTARSKI2:29
for a be
Point of
TarskiEuclid2Space holds
between (a,a,a) by
ThConv7;
ThCongruenceSymmetry:
TarskiEuclid2Space is
satisfying_CongruenceSymmetry
proof
for a,b be
POINT of
TarskiEuclid2Space holds (a,b)
equiv (b,a)
proof
let a,b be
POINT of
TarskiEuclid2Space ;
(
dist (a,b))
= (
dist (b,a));
hence thesis by
GTARSKI1:def 15;
end;
hence thesis;
end;
ThCongruenceEquivalenceRelation:
TarskiEuclid2Space is
satisfying_CongruenceEquivalenceRelation
proof
let a,b,p,q,r,s be
POINT of
TarskiEuclid2Space ;
assume (a,b)
equiv (p,q) & (a,b)
equiv (r,s);
then (
dist (a,b))
= (
dist (p,q)) & (
dist (a,b))
= (
dist (r,s)) by
GTARSKI1:def 15;
hence thesis by
GTARSKI1:def 15;
end;
ThCongruenceIdentity:
TarskiEuclid2Space is
satisfying_CongruenceIdentity
proof
let a,b,c be
POINT of
TarskiEuclid2Space ;
assume (a,b)
equiv (c,c);
then (
dist (a,b))
= (
dist (c,c)) by
GTARSKI1:def 15;
hence thesis by
METRIC_1: 2,
METRIC_1: 1;
end;
ThSegmentConstruction:
TarskiEuclid2Space is
satisfying_SegmentConstruction
proof
A1: the MetrStruct of
TarskiEuclid2Space
= the MetrStruct of (
Euclid 2) by
GTARSKI1:def 13;
let a,q,b,c be
POINT of
TarskiEuclid2Space ;
per cases ;
suppose
A1bis: a
= q;
now
set alpha =
|.((
Tn2TR b)
- (
Tn2TR c)).|;
reconsider P =
|[alpha,
0 ]| as
Element of (
TOP-REAL 2);
reconsider x =
|[(((
Tn2TR a)
`1 )
+ alpha), ((
Tn2TR a)
`2 )]| as
POINT of
TarskiEuclid2Space by
A1,
EUCLID: 67;
A2: ((
Tn2TR x)
`1 )
= (((
Tn2TR a)
`1 )
+ alpha) & ((
Tn2TR x)
`2 )
= ((
Tn2TR a)
`2 ) by
EUCLID: 52;
A3:
|.((
Tn2TR a)
- (
Tn2TR x)).|
= (
dist (a,x)) by
ThEquiv
.= (
sqrt (((((
Tn2TR a)
`1 )
- (((
Tn2TR a)
`1 )
+ alpha))
^2 )
+ ((((
Tn2TR a)
`2 )
- ((
Tn2TR a)
`2 ))
^2 ))) by
A2,
ThConv2
.= (
sqrt (((
0
- alpha)
^2 )
+ (
0
*
0 ))) by
SQUARE_1:def 1
.= (
sqrt (alpha
^2 )) by
SQUARE_1: 3
.= alpha by
SQUARE_1: 22;
take x;
thus
between (q,a,x) by
A1bis,
ThConv7;
thus (a,x)
equiv (b,c) by
A3,
ThConv4;
end;
hence thesis;
end;
suppose
A4: a
<> q;
A5: b
= c implies thesis
proof
assume
A6: b
= c;
set x = a;
thus ex x be
POINT of
TarskiEuclid2Space st
between (q,a,x) & (a,x)
equiv (b,c)
proof
take x;
A7: (
Tn2R a)
= (
Tn2R x);
(
Tn2R b)
= (
Tn2R c) by
A6;
then
|.((
Tn2TR b)
- (
Tn2TR c)).|
=
0 ;
then
|.((
Tn2TR a)
- (
Tn2TR x)).|
=
|.((
Tn2TR b)
- (
Tn2TR c)).| by
A7;
hence thesis by
ThConv7,
ThConv4;
end;
end;
b
<> c implies thesis
proof
assume b
<> c;
then (
Tn2R b)
<> (
Tn2R c);
then
reconsider alpha =
|.((
Tn2TR b)
- (
Tn2TR c)).| as
positive
Real by
EUCLID: 17;
(
Tn2R a)
<> (
Tn2R q) by
A4;
then
reconsider mu =
|.((
Tn2TR a)
- (
Tn2TR q)).| as
positive
Real by
EUCLID: 17;
reconsider nu = (alpha
/ mu) as
positive
Real;
reconsider y =
|[(((
Tn2TR a)
`1 )
+ (nu
* (((
Tn2TR a)
`1 )
- ((
Tn2TR q)
`1 )))), (((
Tn2TR a)
`2 )
+ (nu
* (((
Tn2TR a)
`2 )
- ((
Tn2TR q)
`2 ))))]| as
POINT of
TarskiEuclid2Space by
A1,
EUCLID: 67;
reconsider x = ((
Tn2TR a)
+ (nu
* ((
Tn2TR a)
- (
Tn2TR q)))) as
POINT of
TarskiEuclid2Space by
A1,
EUCLID: 67;
ex x be
POINT of
TarskiEuclid2Space st
between (q,a,x) & (a,x)
equiv (b,c)
proof
take x;
reconsider t1 = (
- (nu
* ((
Tn2TR a)
- (
Tn2TR q)))), t2 = (
Tn2TR a) as
Element of (2
-tuples_on
REAL ) by
EUCLID: 22;
((
Tn2TR a)
- (
Tn2TR x))
= ((
Tn2TR a)
+ ((
- (
Tn2TR a))
+ (
- (nu
* ((
Tn2TR a)
- (
Tn2TR q)))))) by
RVSUM_1: 26
.= ((t1
+ t2)
- t2) by
RVSUM_1: 15
.= (
- (nu
* ((
Tn2TR a)
- (
Tn2TR q)))) by
RVSUM_1: 42;
then
A8:
|.((
Tn2TR a)
- (
Tn2TR x)).|
=
|.(nu
* ((
Tn2TR a)
- (
Tn2TR q))).| by
EUCLID: 10
.= (
|.nu.|
*
|.((
Tn2TR a)
- (
Tn2TR q)).|) by
EUCLID: 11
.= ((alpha
/ mu)
* mu) by
COMPLEX1: 43
.= alpha by
XCMPLX_1: 87;
reconsider aq = ((
Tn2TR a)
- (
Tn2TR q)), qa = ((
Tn2TR q)
- (
Tn2TR a)) as
Element of (2
-tuples_on
REAL ) by
EUCLID: 22;
A9: ((
Tn2TR q)
- (
Tn2TR x))
= ((
Tn2TR q)
+ ((
- (
Tn2TR a))
+ (
- (nu
* ((
Tn2TR a)
- (
Tn2TR q)))))) by
RVSUM_1: 26
.= ((
- (nu
* ((
Tn2TR a)
- (
Tn2TR q))))
+ ((
- (
- (
Tn2TR q)))
+ (
- (
Tn2TR a)))) by
RVSUM_1: 15
.= ((
- (nu
* ((
Tn2TR a)
- (
Tn2TR q))))
- ((
- (
Tn2TR q))
+ (
Tn2TR a))) by
RVSUM_1: 26
.= ((((
- 1)
* nu)
* aq)
+ ((
- 1)
* aq)) by
RVSUM_1: 49
.= (((
- 1)
- nu)
* ((
Tn2TR a)
- (
Tn2TR q))) by
RVSUM_1: 50;
|.((
Tn2TR q)
- (
Tn2TR x)).|
= (
|.(
- (1
+ nu)).|
*
|.((
Tn2TR a)
- (
Tn2TR q)).|) by
A9,
EUCLID: 11
.= (
|.(1
+ nu).|
*
|.((
Tn2TR a)
- (
Tn2TR q)).|) by
COMPLEX1: 52
.= ((1
+ nu)
*
|.((
Tn2TR a)
- (
Tn2TR q)).|) by
COMPLEX1: 43
.= (mu
+ ((alpha
/ mu)
* mu))
.= (mu
+ alpha) by
XCMPLX_1: 87;
then
|.((
Tn2TR q)
- (
Tn2TR x)).|
= (
|.((
Tn2R q)
- (
Tn2R a)).|
+
|.((
Tn2TR a)
- (
Tn2TR x)).|) by
A8,
EUCLID: 18
.= (
|.((
Tn2TR q)
- (
Tn2TR a)).|
+
|.((
Tn2TR a)
- (
Tn2TR x)).|);
then (
Tn2TR a)
in (
LSeg ((
Tn2TR q),(
Tn2TR x))) by
EUCLID12: 11;
hence thesis by
ThConv6,
A8,
ThConv4;
end;
hence thesis;
end;
hence thesis by
A5;
end;
end;
ThSAS:
TarskiEuclid2Space is
satisfying_SAS
proof
set TP =
TarskiEuclid2Space ;
let a,b,c,x,a1,b1,c1,x1 be
POINT of TP;
assume that
A1: a
<> b and
A2: (a,b,c)
cong (a1,b1,c1) and
A3:
between (a,b,x) and
A4:
between (a1,b1,x1) and
A5: (b,x)
equiv (b1,x1);
A6: ((
dist (a,b))
= (
dist (a1,b1)) & (
dist (a,c))
= (
dist (a1,c1)) & (
dist (b,c))
= (
dist (b1,c1))) by
A2,
GTARSKI1:def 15;
A7: (
dist (a,x))
= ((
dist (a,b))
+ (
dist (b,x))) by
A3,
ThConv8;
A8: (
dist (a1,x1))
= ((
dist (a1,b1))
+ (
dist (b1,x1))) by
A4,
ThConv8;
A9: (
dist (b,x))
= (
dist (b1,x1)) by
A5,
GTARSKI1:def 15;
A10: ((
dist (c1,x1))
^2 )
= ((((
dist (x1,b1))
^2 )
+ ((
dist (c1,b1))
^2 ))
- (((2
* (
dist (x1,b1)))
* (
dist (c1,b1)))
* (
cos (
angle ((
Tn2TR x1),(
Tn2TR b1),(
Tn2TR c1)))))) by
ThLawOfCosines;
((
dist (c,x))
^2 )
= ((
dist (c1,x1))
^2 )
proof
per cases ;
suppose x
= b;
then
A11:
0
= (
dist (x,b)) by
ThEgal;
then
A12: (
dist (x1,b1))
=
0 by
A5,
GTARSKI1:def 15;
A12bis: ((
dist (c,x))
^2 )
= (((
0
^2 )
+ ((
dist (c,b))
^2 ))
- (((2
*
0 )
* (
dist (c,b)))
* (
cos (
angle ((
Tn2TR x),(
Tn2TR b),(
Tn2TR c)))))) by
A11,
ThLawOfCosines
.= ((
0
*
0 )
+ ((
dist (c,b))
^2 )) by
SQUARE_1:def 1;
((
dist (c1,x1))
^2 )
= (((
0
^2 )
+ ((
dist (c1,b1))
^2 ))
- (((2
*
0 )
* (
dist (c1,b1)))
* (
cos (
angle ((
Tn2TR x1),(
Tn2TR b1),(
Tn2TR c1)))))) by
ThLawOfCosines,
A12
.= ((
0
*
0 )
+ ((
dist (c1,b1))
^2 )) by
SQUARE_1:def 1;
hence thesis by
A12bis,
A2,
GTARSKI1:def 15;
end;
suppose
A13: c
= b;
then
0
= (
dist (c,b)) by
ThEgal;
then (
dist (c1,b1))
=
0 by
A2,
GTARSKI1:def 15;
then ((
dist (c1,x1))
^2 )
= ((
0
*
0 )
+ ((
dist (x1,b1))
^2 )) by
A10,
SQUARE_1:def 1;
hence thesis by
A13,
A5,
GTARSKI1:def 15;
end;
suppose
A14: x
<> b & c
<> b;
A15: a
<> x
proof
assume a
= x;
then ((
dist (a,b))
+ (
dist (b,x)))
=
0 by
A7,
ThEgal;
hence contradiction by
A1,
ThNull;
end;
(
dist (a,b))
<>
0 & (
dist (a,x))
<>
0 & (
dist (b,x))
<>
0 by
A1,
A14,
A15,
ThEgal;
then
A16: (
Tn2TR a1)
<> (
Tn2TR b1) & (
Tn2TR a1)
<> (
Tn2TR x1) & (
Tn2TR b1)
<> (
Tn2TR x1) by
ThEgal,
A6,
A7,
A8,
A9;
(
Tn2TR b)
in (
LSeg ((
Tn2TR a),(
Tn2TR x))) by
A3,
ThConv6;
then ((
angle ((
Tn2TR a),(
Tn2TR b),(
Tn2TR c)))
+ (
angle ((
Tn2TR c),(
Tn2TR b),(
Tn2TR x))))
=
PI or ((
angle ((
Tn2TR a),(
Tn2TR b),(
Tn2TR c)))
+ (
angle ((
Tn2TR c),(
Tn2TR b),(
Tn2TR x))))
= (3
*
PI ) by
A1,
A14,
EUCLID_6: 13;
then (
cos (
angle ((
Tn2TR a),(
Tn2TR b),(
Tn2TR c))))
= (
cos (
PI
- (
angle ((
Tn2TR c),(
Tn2TR b),(
Tn2TR x))))) or (
cos (
angle ((
Tn2TR a),(
Tn2TR b),(
Tn2TR c))))
= (
cos ((3
*
PI )
- (
angle ((
Tn2TR c),(
Tn2TR b),(
Tn2TR x)))));
then
A17: (
cos (
angle ((
Tn2TR a),(
Tn2TR b),(
Tn2TR c))))
= (
- (
cos (
angle ((
Tn2TR c),(
Tn2TR b),(
Tn2TR x))))) by
Th2,
EUCLID10: 2;
(
Tn2TR b1)
in (
LSeg ((
Tn2TR a1),(
Tn2TR x1))) by
A4,
ThConv6;
then ((
angle ((
Tn2TR a1),(
Tn2TR b1),(
Tn2TR c1)))
+ (
angle ((
Tn2TR c1),(
Tn2TR b1),(
Tn2TR x1))))
=
PI or ((
angle ((
Tn2TR a1),(
Tn2TR b1),(
Tn2TR c1)))
+ (
angle ((
Tn2TR c1),(
Tn2TR b1),(
Tn2TR x1))))
= (3
*
PI ) by
A16,
EUCLID_6: 13;
then (
cos (
angle ((
Tn2TR a1),(
Tn2TR b1),(
Tn2TR c1))))
= (
cos (
PI
- (
angle ((
Tn2TR c1),(
Tn2TR b1),(
Tn2TR x1))))) or (
cos (
angle ((
Tn2TR a1),(
Tn2TR b1),(
Tn2TR c1))))
= (
cos ((3
*
PI )
- (
angle ((
Tn2TR c1),(
Tn2TR b1),(
Tn2TR x1)))));
then
A18: (
cos (
angle ((
Tn2TR a1),(
Tn2TR b1),(
Tn2TR c1))))
= (
- (
cos (
angle ((
Tn2TR c1),(
Tn2TR b1),(
Tn2TR x1))))) by
Th2,
EUCLID10: 2;
A19: (
dist (a,b))
<>
0 & (
dist (c,b))
<>
0 by
A1,
A14,
ThEgal;
A20: ((
dist (c,a))
^2 )
= ((((
dist (a,b))
^2 )
+ ((
dist (c,b))
^2 ))
- (((2
* (
dist (a,b)))
* (
dist (c,b)))
* (
cos (
angle ((
Tn2TR a),(
Tn2TR b),(
Tn2TR c)))))) by
ThLawOfCosines;
A21: (
dist (a1,b1))
<>
0 & (
dist (c1,b1))
<>
0 by
A1,
A6,
A14,
ThEgal;
((
dist (c1,a1))
^2 )
= ((((
dist (a1,b1))
^2 )
+ ((
dist (c1,b1))
^2 ))
- (((2
* (
dist (a1,b1)))
* (
dist (c1,b1)))
* (
cos (
angle ((
Tn2TR a1),(
Tn2TR b1),(
Tn2TR c1)))))) by
ThLawOfCosines;
then
A22: (
cos (
angle ((
Tn2TR a1),(
Tn2TR b1),(
Tn2TR c1))))
= (((((
dist (c,a))
^2 )
- ((
dist (a,b))
^2 ))
- ((
dist (c,b))
^2 ))
/ (
- ((2
* (
dist (a,b)))
* (
dist (c,b))))) by
A6,
Th1,
A21
.= (
cos (
angle ((
Tn2TR a),(
Tn2TR b),(
Tn2TR c)))) by
A20,
A19,
Th1;
((
dist (c,x))
^2 )
= ((((
dist (x,b))
^2 )
+ ((
dist (c,b))
^2 ))
- (((2
* (
dist (x,b)))
* (
dist (c,b)))
* (
cos (
angle ((
Tn2TR x),(
Tn2TR b),(
Tn2TR c)))))) by
ThLawOfCosines
.= ((((
dist (x1,b1))
^2 )
+ ((
dist (c1,b1))
^2 ))
- (((2
* (
dist (x1,b1)))
* (
dist (c1,b1)))
* (
- (
cos (
angle ((
Tn2TR a1),(
Tn2TR b1),(
Tn2TR c1))))))) by
A17,
EUCLID_6: 3,
A6,
A9,
A22
.= ((((
dist (x1,b1))
^2 )
+ ((
dist (c1,b1))
^2 ))
- (((2
* (
dist (x1,b1)))
* (
dist (c1,b1)))
* (
cos (
angle ((
Tn2TR x1),(
Tn2TR b1),(
Tn2TR c1)))))) by
A18,
EUCLID_6: 3
.= ((
dist (c1,x1))
^2 ) by
ThLawOfCosines;
hence thesis;
end;
end;
hence thesis by
ThConv9;
end;
ThBetweennessIdentity:
TarskiEuclid2Space is
satisfying_BetweennessIdentity
proof
let a,b be
POINT of
TarskiEuclid2Space ;
assume
between (a,b,a);
then (
Tn2TR b)
in (
LSeg ((
Tn2TR a),(
Tn2TR a))) by
ThConv6;
then (
Tn2TR b)
in
{(
Tn2TR a)} by
RLTOPSP1: 70;
hence thesis by
TARSKI:def 1;
end;
begin
theorem ::
GTARSKI2:30
THQQ: (
OASpace (
TOP-REAL 2)) is
OAffinSpace
proof
(ex u,v be
VECTOR of (
TOP-REAL 2) st for a,b be
Real st ((a
* u)
+ (b
* v))
= (
0. (
TOP-REAL 2)) holds a
=
0 & b
=
0 )
proof
reconsider u =
|[1,
0 ]|, v =
|[
0 , 1]| as
VECTOR of (
TOP-REAL 2);
now
let a,b be
Real;
assume
A1: ((a
* u)
+ (b
* v))
= (
0. (
TOP-REAL 2));
A2: ((a
* u)
+ (b
* v))
= (
|[(a
* 1), (a
*
0 )]|
+ (b
* v)) by
EUCLID: 58
.= (
|[(a
* 1), (a
*
0 )]|
+
|[(b
*
0 ), (b
* 1)]|) by
EUCLID: 58
.=
|[(a
+
0 ), (
0
+ b)]| by
EUCLID: 56
.=
|[a, b]|;
(
|[a, b]|
`1 )
= a & (
|[a, b]|
`2 )
= b & (
|[
0 ,
0 ]|
`1 )
=
0 & (
|[
0 ,
0 ]|
`2 )
=
0 by
EUCLID: 52;
hence a
=
0 & b
=
0 by
A1,
A2,
EUCLID: 54;
end;
hence thesis;
end;
hence thesis by
ANALOAF: 26;
end;
theorem ::
GTARSKI2:31
THSS: for a,b,c be
Element of (
OASpace (
TOP-REAL 2)) holds
Mid (a,b,c) iff a
= b or b
= c or (ex u,v be
Point of (
TOP-REAL 2) st u
= a & v
= c & b
in (
LSeg (u,v)))
proof
let a,b,c be
Element of (
OASpace (
TOP-REAL 2));
A1:
now
assume
Mid (a,b,c);
then (a,b)
// (b,c);
then
consider u,v,w,y be
VECTOR of (
TOP-REAL 2) such that
A2:
[a, b]
=
[u, v] and
A3:
[b, c]
=
[w, y] and
A4: (u,v)
// (w,y) by
ANALOAF:def 3;
A5: a
= u & b
= v & b
= w & c
= y by
A2,
A3,
XTUPLE_0: 1;
per cases by
A4;
suppose u
= v;
hence a
= b or b
= c or (ex u,v be
Point of (
TOP-REAL 2) st u
= a & v
= c & b
in (
LSeg (u,v))) by
A5;
end;
suppose w
= y;
hence a
= b or b
= c or (ex u,v be
Point of (
TOP-REAL 2) st u
= a & v
= c & b
in (
LSeg (u,v))) by
A5;
end;
suppose ex r,s be
Real st
0
< r &
0
< s & (r
* (v
- u))
= (s
* (y
- w));
then
consider r,s be
Real such that
A6:
0
< r and
A7:
0
< s and
A8: (r
* (v
- u))
= (s
* (y
- w));
((r
* v)
- (r
* u))
= (r
* (v
- u)) by
RLVECT_1: 34
.= ((s
* y)
- (s
* v)) by
A5,
A8,
RLVECT_1: 34;
then
A9: ((r
+ s)
* v)
= ((r
* u)
+ (s
* y)) by
THJC;
reconsider t = (1
/ (r
+ s)) as
Real;
A10: (1
- (s
/ (r
+ s)))
= (((r
+ s)
/ (r
+ s))
- (s
/ (r
+ s))) by
A6,
A7,
XCMPLX_1: 60
.= (r
/ (r
+ s));
A11: ((1
/ (r
+ s))
* (r
+ s))
= ((r
+ s)
/ (r
+ s))
.= 1 by
A6,
A7,
XCMPLX_1: 60;
A12: v
= (1
* v) by
RVSUM_1: 52
.= (t
* ((r
+ s)
* v)) by
A11,
RVSUM_1: 49
.= ((t
* (r
* u))
+ (t
* (s
* y))) by
RVSUM_1: 51,
A9
.= (((t
* r)
* u)
+ (t
* (s
* y))) by
RVSUM_1: 49
.= (((1
- (s
/ (r
+ s)))
* u)
+ ((s
/ (r
+ s))
* y)) by
A10,
RVSUM_1: 49;
reconsider l = (s
/ (r
+ s)) as
Real;
0
<= l
<= 1 & v
= (((1
- l)
* u)
+ (l
* y)) by
A12,
A6,
A7,
THJD;
then v
in { (((1
- l)
* u)
+ (l
* y)) where l be
Real :
0
<= l & l
<= 1 };
then b
in (
LSeg (u,y)) by
A5,
RLTOPSP1:def 2;
hence a
= b or b
= c or (ex u,v be
Point of (
TOP-REAL 2) st u
= a & v
= c & b
in (
LSeg (u,v))) by
A5;
end;
end;
now
assume
A13: a
= b or b
= c or (ex u,v be
Point of (
TOP-REAL 2) st u
= a & v
= c & b
in (
LSeg (u,v)));
reconsider OAS = (
OASpace (
TOP-REAL 2)) as
OAffinSpace by
THQQ;
per cases by
A13;
suppose
A14: a
= b;
a is
Element of OAS & b is
Element of OAS;
hence
Mid (a,b,c) by
A14,
DIRAF: 10;
end;
suppose
A15: b
= c;
b is
Element of OAS & c is
Element of OAS;
hence
Mid (a,b,c) by
A15,
DIRAF: 10;
end;
suppose ex u,v be
Point of (
TOP-REAL 2) st u
= a & v
= c & b
in (
LSeg (u,v));
then
consider u,v be
Point of (
TOP-REAL 2) such that
A16: u
= a and
A17: v
= c and
A18: b
in (
LSeg (u,v));
b
in { (((1
- l)
* u)
+ (l
* v)) where l be
Real :
0
<= l & l
<= 1 } by
RLTOPSP1:def 2,
A18;
then
consider l be
Real such that
A19: b
= (((1
- l)
* u)
+ (l
* v)) and
A20:
0
<= l and
A21: l
<= 1;
reconsider w = b, y = b as
Point of (
TOP-REAL 2);
now
take u, w, y, v;
thus
[a, b]
=
[u, w] &
[b, c]
=
[y, v] by
A16,
A17;
A22: (w
- ((1
- l)
* u))
= (((l
* v)
+ ((1
- l)
* u))
+ (((
- 1)
* (1
- l))
* u)) by
A19,
RVSUM_1: 49
.= ((l
* v)
+ (((1
- l)
* u)
+ ((
- (1
- l))
* u))) by
RVSUM_1: 15
.= ((l
* v)
+ (((1
- l)
+ (
- (1
- l)))
* u)) by
RVSUM_1: 50
.= (l
* v) by
THJE;
|[(l
* (v
`1 )), (l
* (v
`2 ))]|
= (l
* v) by
EUCLID: 57
.= (
|[(w
`1 ), (w
`2 )]|
- ((1
- l)
* u)) by
A22,
EUCLID: 53
.= (
|[(w
`1 ), (w
`2 )]|
-
|[((1
- l)
* (u
`1 )), ((1
- l)
* (u
`2 ))]|) by
EUCLID: 57
.=
|[((w
`1 )
- ((1
- l)
* (u
`1 ))), ((w
`2 )
- ((1
- l)
* (u
`2 )))]| by
EUCLID: 62;
then
A23: (l
* (v
`1 ))
= ((w
`1 )
- ((1
- l)
* (u
`1 ))) & (l
* (v
`2 ))
= ((w
`2 )
- ((1
- l)
* (u
`2 ))) by
FINSEQ_1: 77;
A24: (((1
- l)
* w)
- ((1
- l)
* u))
= ((l
* v)
- (l
* w))
proof
A25: (((1
- l)
* w)
- ((1
- l)
* u))
= (((1
- l)
*
|[(w
`1 ), (w
`2 )]|)
- ((1
- l)
* u)) by
EUCLID: 53
.= (((1
- l)
*
|[(w
`1 ), (w
`2 )]|)
- ((1
- l)
*
|[(u
`1 ), (u
`2 )]|)) by
EUCLID: 53
.= (
|[((1
- l)
* (w
`1 )), ((1
- l)
* (w
`2 ))]|
- ((1
- l)
*
|[(u
`1 ), (u
`2 )]|)) by
EUCLID: 58
.= (
|[((1
- l)
* (w
`1 )), ((1
- l)
* (w
`2 ))]|
-
|[((1
- l)
* (u
`1 )), ((1
- l)
* (u
`2 ))]|) by
EUCLID: 58
.=
|[(((1
- l)
* (w
`1 ))
- ((1
- l)
* (u
`1 ))), (((1
- l)
* (w
`2 ))
- ((1
- l)
* (u
`2 )))]| by
EUCLID: 62
.=
|[((l
* (v
`1 ))
- (l
* (w
`1 ))), ((l
* (v
`2 ))
- (l
* (w
`2 )))]| by
A23;
((l
* v)
- (l
* w))
= ((l
*
|[(v
`1 ), (v
`2 )]|)
- (l
* w)) by
EUCLID: 53
.= ((l
*
|[(v
`1 ), (v
`2 )]|)
- (l
*
|[(w
`1 ), (w
`2 )]|)) by
EUCLID: 53
.= (
|[(l
* (v
`1 )), (l
* (v
`2 ))]|
- (l
*
|[(w
`1 ), (w
`2 )]|)) by
EUCLID: 58
.= (
|[(l
* (v
`1 )), (l
* (v
`2 ))]|
-
|[(l
* (w
`1 )), (l
* (w
`2 ))]|) by
EUCLID: 58
.=
|[((l
* (v
`1 ))
- (l
* (w
`1 ))), ((l
* (v
`2 ))
- (l
* (w
`2 )))]| by
EUCLID: 62;
hence thesis by
A25;
end;
A26: ((1
- l)
* (w
- u))
= (((1
- l)
* w)
+ ((1
- l)
* (
- u))) by
RVSUM_1: 51
.= (((1
- l)
* w)
+ (((1
- l)
* (
- 1))
* u)) by
RVSUM_1: 49
.= (((1
- l)
* w)
- ((1
- l)
* u)) by
RVSUM_1: 49
.= ((l
* v)
+ (((
- 1)
* l)
* w)) by
A24,
RVSUM_1: 49
.= ((l
* v)
+ (l
* ((
- 1)
* w))) by
RVSUM_1: 49
.= (l
* (v
- w)) by
RVSUM_1: 51;
per cases by
A20,
A21,
XXREAL_0: 1;
suppose l
= 1;
then w
= (v
+ (
0
* u)) by
A19,
RVSUM_1: 52
.= v by
THJE;
hence (u,w)
// (y,v);
end;
suppose l
=
0 ;
then w
= (u
+ (
0
* v)) by
A19,
RVSUM_1: 52
.= u by
THJE;
hence (u,w)
// (y,v);
end;
suppose
A27:
0
< l
< 1;
then (l
- l)
< (1
- l) by
XREAL_1: 9;
hence (u,w)
// (y,v) by
A27,
A26;
end;
end;
then (a,b)
// (b,c) by
ANALOAF:def 3;
hence
Mid (a,b,c);
end;
end;
hence thesis by
A1;
end;
theorem ::
GTARSKI2:32
THSS2: for a,b,c be
Element of (
OASpace (
TOP-REAL 2)) holds
Mid (a,b,c) iff (ex u,v be
Point of (
TOP-REAL 2) st u
= a & v
= c & b
in (
LSeg (u,v)))
proof
let a,b,c be
Element of (
OASpace (
TOP-REAL 2));
hereby
assume
Mid (a,b,c);
per cases by
THSS;
suppose
A1: a
= b;
reconsider u = a, v = c as
Point of (
TOP-REAL 2);
u
in (
LSeg (u,v)) by
RLTOPSP1: 68;
hence ex u,v be
Point of (
TOP-REAL 2) st u
= a & v
= c & b
in (
LSeg (u,v)) by
A1;
end;
suppose
A2: b
= c;
reconsider u = a, v = c as
Point of (
TOP-REAL 2);
v
in (
LSeg (u,v)) by
RLTOPSP1: 68;
hence ex u,v be
Point of (
TOP-REAL 2) st u
= a & v
= c & b
in (
LSeg (u,v)) by
A2;
end;
suppose ex u,v be
Point of (
TOP-REAL 2) st u
= a & v
= c & b
in (
LSeg (u,v));
hence ex u,v be
Point of (
TOP-REAL 2) st u
= a & v
= c & b
in (
LSeg (u,v));
end;
end;
assume ex u,v be
Point of (
TOP-REAL 2) st u
= a & v
= c & b
in (
LSeg (u,v));
hence
Mid (a,b,c) by
THSS;
end;
theorem ::
GTARSKI2:33
THSS3: for a,b,c be
Element of (
OASpace (
TOP-REAL 2)), ap,bp,cp be
POINT of
TarskiEuclid2Space st a
= ap & b
= bp & c
= cp holds
Mid (a,b,c) iff
between (ap,bp,cp)
proof
let a,b,c be
Element of (
OASpace (
TOP-REAL 2)), ap,bp,cp be
POINT of
TarskiEuclid2Space ;
assume that
A1: a
= ap and
A2: b
= bp and
A3: c
= cp;
hereby
assume
Mid (a,b,c);
then ex u,v be
Point of (
TOP-REAL 2) st u
= a & v
= c & b
in (
LSeg (u,v)) by
THSS2;
then (
Tn2TR bp)
in (
LSeg ((
Tn2TR ap),(
Tn2TR cp))) by
A1,
A2,
A3;
hence
between (ap,bp,cp) by
ThConv6;
end;
assume
between (ap,bp,cp);
then (
Tn2TR bp)
in (
LSeg ((
Tn2TR ap),(
Tn2TR cp))) by
ThConv6;
hence
Mid (a,b,c) by
A1,
A2,
A3,
THSS2;
end;
begin
theorem ::
GTARSKI2:34
THORANGE: for A,B,C,D be
Element of (
TOP-REAL 2) st B
in (
LSeg (A,C)) & C
in (
LSeg (A,D)) holds B
in (
LSeg (A,D))
proof
let A,B,C,D be
Element of (
TOP-REAL 2);
assume that
A1: B
in (
LSeg (A,C)) and
A2: C
in (
LSeg (A,D));
B
in { (((1
- r)
* A)
+ (r
* C)) where r be
Real :
0
<= r & r
<= 1 } by
A1,
RLTOPSP1:def 2;
then
consider r be
Real such that
A3: B
= (((1
- r)
* A)
+ (r
* C)) and
A4:
0
<= r and
A5: r
<= 1;
C
in { (((1
- r)
* A)
+ (r
* D)) where r be
Real :
0
<= r & r
<= 1 } by
A2,
RLTOPSP1:def 2;
then
consider s be
Real such that
A6: C
= (((1
- s)
* A)
+ (s
* D)) and
A7:
0
<= s and
A8: s
<= 1;
reconsider t = (r
* s) as
Real;
A9: (r
* s)
<= (1
* 1) by
A4,
A5,
A7,
A8,
XREAL_1: 66;
(s
* D)
=
|[(s
* (D
`1 )), (s
* (D
`2 ))]| by
EUCLID: 57;
then
A10: (r
* (((1
- s)
* A)
+ (s
* D)))
= (r
* (
|[((1
- s)
* (A
`1 )), ((1
- s)
* (A
`2 ))]|
+
|[(s
* (D
`1 )), (s
* (D
`2 ))]|)) by
EUCLID: 57
.= (r
*
|[(((1
- s)
* (A
`1 ))
+ (s
* (D
`1 ))), (((1
- s)
* (A
`2 ))
+ (s
* (D
`2 )))]|) by
EUCLID: 56
.=
|[(r
* (((1
- s)
* (A
`1 ))
+ (s
* (D
`1 )))), (r
* (((1
- s)
* (A
`2 ))
+ (s
* (D
`2 ))))]| by
EUCLID: 58;
B
= (
|[((1
- r)
* (A
`1 )), ((1
- r)
* (A
`2 ))]|
+
|[(r
* (((1
- s)
* (A
`1 ))
+ (s
* (D
`1 )))), (r
* (((1
- s)
* (A
`2 ))
+ (s
* (D
`2 ))))]|) by
A3,
A6,
A10,
EUCLID: 57
.=
|[(((1
- r)
* (A
`1 ))
+ (r
* (((1
- s)
* (A
`1 ))
+ (s
* (D
`1 ))))), (((1
- r)
* (A
`2 ))
+ (r
* (((1
- s)
* (A
`2 ))
+ (s
* (D
`2 )))))]| by
EUCLID: 56
.=
|[(((1
- (r
* s))
* (A
`1 ))
+ ((r
* s)
* (D
`1 ))), (((1
- (r
* s))
* (A
`2 ))
+ ((r
* s)
* (D
`2 )))]|
.= (
|[((1
- (r
* s))
* (A
`1 )), ((1
- (r
* s))
* (A
`2 ))]|
+
|[((r
* s)
* (D
`1 )), ((r
* s)
* (D
`2 ))]|) by
EUCLID: 56
.= (((1
- (r
* s))
* A)
+
|[((r
* s)
* (D
`1 )), ((r
* s)
* (D
`2 ))]|) by
EUCLID: 57
.= (((1
- t)
* A)
+ (t
* D)) by
EUCLID: 57;
then B
in { (((1
- r)
* A)
+ (r
* D)) where r be
Real :
0
<= r & r
<= 1 } by
A9,
A4,
A7;
hence thesis by
RLTOPSP1:def 2;
end;
theorem ::
GTARSKI2:35
THORANGE2: for A,B,C,D be
Element of (
TOP-REAL 2) st B
<> C & B
in (
LSeg (A,C)) & C
in (
LSeg (B,D)) holds C
in (
LSeg (A,D))
proof
let A,B,C,D be
Element of (
TOP-REAL 2);
assume that
A1: B
<> C and
A2: B
in (
LSeg (A,C)) and
A3: C
in (
LSeg (B,D));
reconsider OAS = (
OASpace (
TOP-REAL 2)) as
OAffinSpace by
THQQ;
reconsider ta = A, tb = B, tc = C, td = D as
Element of OAS;
Mid (ta,tb,tc) &
Mid (tb,tc,td) by
A2,
A3,
THSS2;
then ex u,v be
Point of (
TOP-REAL 2) st u
= ta & v
= td & tc
in (
LSeg (u,v)) by
A1,
DIRAF: 12,
THSS2;
hence thesis;
end;
theorem ::
GTARSKI2:36
THPOIRE: for p,q,r,s be
Point of
TarskiEuclid2Space st
between (p,q,r) &
between (p,r,s) holds
between (p,q,s)
proof
let p,q,r,s be
Point of
TarskiEuclid2Space ;
assume that
A1:
between (p,q,r) and
A2:
between (p,r,s);
(
Tn2TR q)
in (
LSeg ((
Tn2TR p),(
Tn2TR r))) & (
Tn2TR r)
in (
LSeg ((
Tn2TR p),(
Tn2TR s))) by
A1,
A2,
ThConv6;
hence thesis by
ThConv6,
THORANGE;
end;
theorem ::
GTARSKI2:37
THNOIX: for A,B,C,D be
Point of (
TOP-REAL 2) st B
in (
LSeg (A,C)) & D
in (
LSeg (A,B)) holds B
in (
LSeg (D,C))
proof
let A,B,C,D be
Point of (
TOP-REAL 2);
assume that
A1: B
in (
LSeg (A,C)) and
A2: D
in (
LSeg (A,B));
A3: ((
dist (A,D))
+ (
dist (D,C)))
= (
dist (A,C)) by
A1,
A2,
THORANGE,
EUCLID12: 12;
A4: ((
dist (A,B))
+ (
dist (B,C)))
= (
dist (A,C)) by
A1,
EUCLID12: 12;
((
dist (A,D))
+ (
dist (D,B)))
= (
dist (A,B)) by
A2,
EUCLID12: 12;
then ((
dist (D,B))
+ (
dist (B,C)))
= (
dist (D,C)) by
A3,
A4;
hence thesis by
EUCLID12: 12;
end;
theorem ::
GTARSKI2:38
THNOIX2: for p,q,r,s be
Point of
TarskiEuclid2Space st
between (p,q,r) &
between (p,s,q) holds
between (s,q,r)
proof
let p,q,r,s be
Point of
TarskiEuclid2Space ;
assume that
A1:
between (p,q,r) and
A2:
between (p,s,q);
A3: (
Tn2TR q)
in (
LSeg ((
Tn2TR p),(
Tn2TR r))) by
A1,
ThConv6;
(
Tn2TR s)
in (
LSeg ((
Tn2TR p),(
Tn2TR q))) by
A2,
ThConv6;
then (
Tn2TR q)
in (
LSeg ((
Tn2TR s),(
Tn2TR r))) by
A3,
THNOIX;
hence thesis by
ThConv6;
end;
theorem ::
GTARSKI2:39
THNOIX3: for p,q,r,s be
Point of
TarskiEuclid2Space st q
<> r &
between (p,q,r) &
between (q,r,s) holds
between (p,q,s)
proof
let p,q,r,s be
Point of
TarskiEuclid2Space ;
assume that
A1: q
<> r and
A2:
between (p,q,r) and
A3:
between (q,r,s);
A4: (
Tn2TR q)
in (
LSeg ((
Tn2TR p),(
Tn2TR r))) by
A2,
ThConv6;
then
A5: ((
dist ((
Tn2TR p),(
Tn2TR q)))
+ (
dist ((
Tn2TR q),(
Tn2TR r))))
= (
dist ((
Tn2TR p),(
Tn2TR r))) by
EUCLID12: 12;
A6: (
Tn2TR r)
in (
LSeg ((
Tn2TR q),(
Tn2TR s))) by
A3,
ThConv6;
A7: (
Tn2TR r)
in (
LSeg ((
Tn2TR p),(
Tn2TR s))) by
A1,
A4,
A6,
THORANGE2;
((
dist ((
Tn2TR p),(
Tn2TR q)))
+ (
dist ((
Tn2TR q),(
Tn2TR s))))
= (((
dist ((
Tn2TR p),(
Tn2TR r)))
- (
dist ((
Tn2TR q),(
Tn2TR r))))
+ ((
dist ((
Tn2TR q),(
Tn2TR r)))
+ (
dist ((
Tn2TR r),(
Tn2TR s))))) by
A5,
A6,
EUCLID12: 12
.= ((
dist ((
Tn2TR p),(
Tn2TR r)))
+ (
dist ((
Tn2TR r),(
Tn2TR s))))
.= (
dist ((
Tn2TR p),(
Tn2TR s))) by
A7,
EUCLID12: 12;
then (
Tn2TR q)
in (
LSeg ((
Tn2TR p),(
Tn2TR s))) by
EUCLID12: 12;
hence thesis by
ThConv6;
end;
theorem ::
GTARSKI2:40
for p,q,r,s be
Point of
TarskiEuclid2Space st q
<> r &
between (p,q,r) &
between (q,r,s) holds
between (p,r,s)
proof
let p,q,r,s be
Point of
TarskiEuclid2Space ;
assume that
A1: q
<> r and
A2:
between (p,q,r) and
A3:
between (q,r,s);
A4: (
Tn2TR q)
in (
LSeg ((
Tn2TR p),(
Tn2TR r))) by
A2,
ThConv6;
A6: (
Tn2TR r)
in (
LSeg ((
Tn2TR q),(
Tn2TR s))) by
A3,
ThConv6;
(
Tn2TR r)
in (
LSeg ((
Tn2TR p),(
Tn2TR s))) by
A1,
A4,
A6,
THORANGE2;
hence thesis by
ThConv6;
end;
ThPasch:
TarskiEuclid2Space is
satisfying_Pasch
proof
set S =
TarskiEuclid2Space ;
now
let a,b,p,q,z be
POINT of S;
assume that
A1:
between (a,p,z) and
A2:
between (b,q,z);
reconsider OAS = (
OASpace (
TOP-REAL 2)) as
OAffinSpace by
THQQ;
A3: OAS is
satisfying_Int_Bet_Pasch by
PASCH: 30;
(
Tn2TR a) is
Element of (
REAL 2) & (
Tn2TR b) is
Element of (
REAL 2) & (
Tn2TR p) is
Element of (
REAL 2) & (
Tn2TR z) is
Element of (
REAL 2) & (
Tn2TR q) is
Element of (
REAL 2) by
EUCLID: 22;
then
reconsider a1 = a, b1 = b, p1 = p, z1 = z, q1 = q as
Element of OAS;
Mid (a1,p1,z1) by
A1,
THSS3;
then
A4:
Mid (z1,p1,a1) by
DIRAF: 9;
Mid (b1,q1,z1) by
A2,
THSS3;
then
A5:
Mid (z1,q1,b1) by
DIRAF: 9;
per cases ;
suppose (z1,p1,b1)
are_collinear ;
then (z1,p1)
'||' (z1,b1);
per cases by
DIRAF: 2;
suppose (z1,p1)
// (z1,b1);
then
consider u,v,w,y be
VECTOR of (
TOP-REAL 2) such that
A6:
[z1, p1]
=
[u, v] and
A7:
[z1, b1]
=
[w, y] and
A8: (u,v)
// (w,y) by
ANALOAF:def 3;
A9: u
= z1 & p1
= v & z1
= w & b1
= y by
A6,
A7,
XTUPLE_0: 1;
per cases by
A8;
suppose u
= v;
then
A10:
between (p,q,b) by
A9,
A2,
ThConv7bis;
between (q,q,a) by
ThConv7;
hence ex x be
POINT of S st
between (p,x,b) &
between (q,x,a) by
A10;
end;
suppose u
= y;
then
A11: b
= q by
A2,
A9,
ThConv7ter;
A12:
between (p,b,b) by
ThConv7;
between (q,b,a) by
A11,
ThConv7;
hence ex x be
POINT of S st
between (p,x,b) &
between (q,x,a) by
A12;
end;
suppose ex a,b be
Real st
0
< a &
0
< b & (a
* (v
- u))
= (b
* (y
- u));
then
consider r,s be
Real such that
A13:
0
< r and
A14:
0
< s and
A15: (r
* (v
- u))
= (s
* (y
- u));
per cases by
XXREAL_0: 1;
suppose r
= s;
then (v
- u)
= (y
- u) by
A13,
A15,
RLVECT_1: 36;
then
A16: v
= y by
THSD2;
A17:
between (p,p,b) by
ThConv7;
(
Tn2TR p)
in (
LSeg ((
Tn2TR z),(
Tn2TR a))) by
A1,
ThConv6;
then
A18:
between (z,b,a) by
A16,
A9,
ThConv6;
(
Tn2TR q)
in (
LSeg ((
Tn2TR b),(
Tn2TR z))) by
A2,
ThConv6;
then
A19:
between (z,q,b) by
ThConv6;
between (q,p,a) by
A16,
A9,
A18,
A19,
THNOIX2;
hence ex x be
POINT of S st
between (p,x,b) &
between (q,x,a) by
A17;
end;
suppose
A20: r
< s;
reconsider t = (r
/ s) as
Real;
A21: (r
/ s)
< (s
/ s) by
A13,
A20,
XREAL_1: 74;
A22: ((t
* v)
- (t
* u))
= (
|[(t
* (v
`1 )), (t
* (v
`2 ))]|
- (t
* u)) by
EUCLID: 57
.= (
|[(t
* (v
`1 )), (t
* (v
`2 ))]|
-
|[(t
* (u
`1 )), (t
* (u
`2 ))]|) by
EUCLID: 57
.=
|[((((1
/ s)
* r)
* (v
`1 ))
- (((1
/ s)
* r)
* (u
`1 ))), ((t
* (v
`2 ))
- (t
* (u
`2 )))]| by
EUCLID: 62
.=
|[((1
/ s)
* ((r
* (v
`1 ))
- (r
* (u
`1 )))), ((1
/ s)
* ((r
* (v
`2 ))
- (r
* (u
`2 ))))]|
.= ((1
/ s)
*
|[((r
* (v
`1 ))
- (r
* (u
`1 ))), ((r
* (v
`2 ))
- (r
* (u
`2 )))]|) by
EUCLID: 58;
A23:
|[((r
* (v
`1 ))
- (r
* (u
`1 ))), ((r
* (v
`2 ))
- (r
* (u
`2 )))]|
=
|[(r
* ((v
`1 )
- (u
`1 ))), (r
* ((v
`2 )
- (u
`2 )))]|
.= (r
*
|[((v
`1 )
- (u
`1 )), ((v
`2 )
- (u
`2 ))]|) by
EUCLID: 58
.= (s
* (y
- u)) by
A15,
EUCLID: 61;
A24: ((t
* v)
- (t
* u))
= ((1
/ s)
*
|[(s
* ((y
- u)
`1 )), (s
* ((y
- u)
`2 ))]|) by
A23,
A22,
EUCLID: 57
.=
|[((1
/ s)
* (s
* ((y
- u)
`1 ))), ((1
/ s)
* (s
* ((y
- u)
`2 )))]| by
EUCLID: 58
.=
|[((s
* (1
/ s))
* ((y
- u)
`1 )), ((s
* (1
/ s))
* ((y
- u)
`2 ))]|
.=
|[(1
* ((y
- u)
`1 )), ((s
* (1
/ s))
* ((y
- u)
`2 ))]| by
XCMPLX_1: 106,
A14
.=
|[((y
- u)
`1 ), (1
* ((y
- u)
`2 ))]| by
XCMPLX_1: 106,
A14
.= (y
- u) by
EUCLID: 53;
y
=
|[(((y
`1 )
- (u
`1 ))
+ (u
`1 )), (((y
`2 )
- (u
`2 ))
+ (u
`2 ))]| by
EUCLID: 53
.= (
|[((y
`1 )
- (u
`1 )), ((y
`2 )
- (u
`2 ))]|
+
|[(u
`1 ), (u
`2 )]|) by
EUCLID: 56
.= ((
|[(y
`1 ), (y
`2 )]|
-
|[(u
`1 ), (u
`2 )]|)
+
|[(u
`1 ), (u
`2 )]|) by
EUCLID: 62
.= ((y
-
|[(u
`1 ), (u
`2 )]|)
+
|[(u
`1 ), (u
`2 )]|) by
EUCLID: 53
.= ((y
- u)
+
|[(u
`1 ), (u
`2 )]|) by
EUCLID: 53
.= ((y
- u)
+ u) by
EUCLID: 53
.= ((
|[(t
* (v
`1 )), (t
* (v
`2 ))]|
- (t
* u))
+ u) by
A24,
EUCLID: 57
.= ((
|[(t
* (v
`1 )), (t
* (v
`2 ))]|
-
|[(t
* (u
`1 )), (t
* (u
`2 ))]|)
+ u) by
EUCLID: 57
.= ((
|[(t
* (v
`1 )), (t
* (v
`2 ))]|
-
|[(t
* (u
`1 )), (t
* (u
`2 ))]|)
+
|[(u
`1 ), (u
`2 )]|) by
EUCLID: 53
.= (
|[((t
* (v
`1 ))
- (t
* (u
`1 ))), ((t
* (v
`2 ))
- (t
* (u
`2 )))]|
+
|[(u
`1 ), (u
`2 )]|) by
EUCLID: 62
.=
|[(((t
* (v
`1 ))
- (t
* (u
`1 )))
+ (u
`1 )), (((t
* (v
`2 ))
- (t
* (u
`2 )))
+ (u
`2 ))]| by
EUCLID: 56
.=
|[((t
* (v
`1 ))
+ ((1
- t)
* (u
`1 ))), ((t
* (v
`2 ))
+ ((1
- t)
* (u
`2 )))]|
.= (
|[((1
- t)
* (u
`1 )), ((1
- t)
* (u
`2 ))]|
+
|[(t
* (v
`1 )), (t
* (v
`2 ))]|) by
EUCLID: 56
.= (((1
- t)
* u)
+
|[(t
* (v
`1 )), (t
* (v
`2 ))]|) by
EUCLID: 57
.= (((1
- t)
* u)
+ (t
* v)) by
EUCLID: 57;
then (((1
- t)
* u)
+ (t
* v))
= y &
0
< t & t
< 1 by
A21,
A13,
A14,
XCMPLX_1: 60;
then y
in { (((1
- t)
* u)
+ (t
* v)) where t be
Real :
0
<= t & t
<= 1 };
then (
Tn2TR b)
in (
LSeg ((
Tn2TR z),(
Tn2TR p))) by
A9,
RLTOPSP1:def 2;
then
A25:
between (z,b,p) by
ThConv6;
A26:
between (z,p,a) by
A1,
ThConv7bis;
A27:
between (z,q,b) by
A2,
ThConv7bis;
then
A28:
between (z,q,p) by
A25,
THPOIRE;
(
Tn2TR p)
in (
LSeg ((
Tn2TR z),(
Tn2TR a))) by
A1,
ThConv6;
then
A29: ((
dist ((
Tn2TR z),(
Tn2TR p)))
+ (
dist ((
Tn2TR p),(
Tn2TR a))))
= (
dist ((
Tn2TR z),(
Tn2TR a))) by
EUCLID12: 12;
(
Tn2TR q)
in (
LSeg ((
Tn2TR z),(
Tn2TR p))) by
A27,
A25,
THPOIRE,
ThConv6;
then
A30: ((
dist ((
Tn2TR z),(
Tn2TR q)))
+ (
dist ((
Tn2TR q),(
Tn2TR p))))
= (
dist ((
Tn2TR z),(
Tn2TR p))) by
EUCLID12: 12;
(
Tn2TR q)
in (
LSeg ((
Tn2TR z),(
Tn2TR a))) by
A28,
A26,
THPOIRE,
ThConv6;
then ((
dist ((
Tn2TR z),(
Tn2TR q)))
+ (
dist ((
Tn2TR q),(
Tn2TR a))))
= (
dist ((
Tn2TR z),(
Tn2TR a))) by
EUCLID12: 12;
then ((
dist ((
Tn2TR q),(
Tn2TR p)))
+ (
dist ((
Tn2TR p),(
Tn2TR a))))
= (
dist ((
Tn2TR q),(
Tn2TR a))) by
A29,
A30;
then
A31: (
Tn2TR p)
in (
LSeg ((
Tn2TR q),(
Tn2TR a))) by
EUCLID12: 12;
A32:
between (p,p,b) by
ThConv7;
between (q,p,a) by
A31,
ThConv6;
hence ex x be
POINT of S st
between (p,x,b) &
between (q,x,a) by
A32;
end;
suppose
A33: s
< r;
set t = (s
/ r);
t
< (r
/ r) by
A33,
A13,
XREAL_1: 74;
then
A34: t
< 1 by
A13,
XCMPLX_1: 60;
A35: ((t
* y)
- (t
* u))
= (
|[(t
* (y
`1 )), (t
* (y
`2 ))]|
- (t
* u)) by
EUCLID: 57
.= (
|[(t
* (y
`1 )), (t
* (y
`2 ))]|
-
|[(t
* (u
`1 )), (t
* (u
`2 ))]|) by
EUCLID: 57
.=
|[((((1
/ r)
* s)
* (y
`1 ))
- (((1
/ r)
* s)
* (u
`1 ))), ((((1
/ r)
* s)
* (y
`2 ))
- (((1
/ r)
* s)
* (u
`2 )))]| by
EUCLID: 62
.=
|[((1
/ r)
* ((s
* (y
`1 ))
- (s
* (u
`1 )))), ((1
/ r)
* ((s
* (y
`2 ))
- (s
* (u
`2 ))))]|
.= ((1
/ r)
*
|[((s
* (y
`1 ))
- (s
* (u
`1 ))), ((s
* (y
`2 ))
- (s
* (u
`2 )))]|) by
EUCLID: 58;
A36:
|[((s
* (y
`1 ))
- (s
* (u
`1 ))), ((s
* (y
`2 ))
- (s
* (u
`2 )))]|
=
|[(s
* ((y
`1 )
- (u
`1 ))), (s
* ((y
`2 )
- (u
`2 )))]|
.= (s
*
|[((y
`1 )
- (u
`1 )), ((y
`2 )
- (u
`2 ))]|) by
EUCLID: 58
.= (r
* (v
- u)) by
A15,
EUCLID: 61;
A37: ((t
* y)
- (t
* u))
= ((1
/ r)
*
|[(r
* ((v
- u)
`1 )), (r
* ((v
- u)
`2 ))]|) by
A36,
A35,
EUCLID: 57
.=
|[((1
/ r)
* (r
* ((v
- u)
`1 ))), ((1
/ r)
* (r
* ((v
- u)
`2 )))]| by
EUCLID: 58
.=
|[((r
* (1
/ r))
* ((v
- u)
`1 )), ((r
* (1
/ r))
* ((v
- u)
`2 ))]|
.=
|[(1
* ((v
- u)
`1 )), ((r
* (1
/ r))
* ((v
- u)
`2 ))]| by
XCMPLX_1: 106,
A13
.=
|[((v
- u)
`1 ), (1
* ((v
- u)
`2 ))]| by
XCMPLX_1: 106,
A13
.= (v
- u) by
EUCLID: 53;
v
=
|[(((v
`1 )
- (u
`1 ))
+ (u
`1 )), (((v
`2 )
- (u
`2 ))
+ (u
`2 ))]| by
EUCLID: 53
.= (
|[((v
`1 )
- (u
`1 )), ((v
`2 )
- (u
`2 ))]|
+
|[(u
`1 ), (u
`2 )]|) by
EUCLID: 56
.= ((
|[(v
`1 ), (v
`2 )]|
-
|[(u
`1 ), (u
`2 )]|)
+
|[(u
`1 ), (u
`2 )]|) by
EUCLID: 62
.= ((v
-
|[(u
`1 ), (u
`2 )]|)
+
|[(u
`1 ), (u
`2 )]|) by
EUCLID: 53
.= ((v
- u)
+
|[(u
`1 ), (u
`2 )]|) by
EUCLID: 53
.= (((t
* y)
- (t
* u))
+ u) by
A37,
EUCLID: 53
.= ((
|[(t
* (y
`1 )), (t
* (y
`2 ))]|
- (t
* u))
+ u) by
EUCLID: 57
.= ((
|[(t
* (y
`1 )), (t
* (y
`2 ))]|
-
|[(t
* (u
`1 )), (t
* (u
`2 ))]|)
+ u) by
EUCLID: 57
.= ((
|[(t
* (y
`1 )), (t
* (y
`2 ))]|
-
|[(t
* (u
`1 )), (t
* (u
`2 ))]|)
+
|[(u
`1 ), (u
`2 )]|) by
EUCLID: 53
.= (
|[((t
* (y
`1 ))
- (t
* (u
`1 ))), ((t
* (y
`2 ))
- (t
* (u
`2 )))]|
+
|[(u
`1 ), (u
`2 )]|) by
EUCLID: 62
.=
|[(((t
* (y
`1 ))
- (t
* (u
`1 )))
+ (u
`1 )), (((t
* (y
`2 ))
- (t
* (u
`2 )))
+ (u
`2 ))]| by
EUCLID: 56
.=
|[((t
* (y
`1 ))
+ ((1
- t)
* (u
`1 ))), ((t
* (y
`2 ))
+ ((1
- t)
* (u
`2 )))]|
.= (
|[((1
- t)
* (u
`1 )), ((1
- t)
* (u
`2 ))]|
+
|[(t
* (y
`1 )), (t
* (y
`2 ))]|) by
EUCLID: 56
.= (((1
- t)
* u)
+
|[(t
* (y
`1 )), (t
* (y
`2 ))]|) by
EUCLID: 57
.= (((1
- t)
* u)
+ (t
* y)) by
EUCLID: 57;
then v
in { (((1
- t)
* u)
+ (t
* y)) where t be
Real :
0
<= t & t
<= 1 } by
A13,
A14,
A34;
then (
Tn2TR p)
in (
LSeg ((
Tn2TR z),(
Tn2TR b))) by
A9,
RLTOPSP1:def 2;
then
A38:
between (z,p,b) by
ThConv6;
A39:
between (z,p,a) by
A1,
ThConv7bis;
A40:
between (z,q,b) by
A2,
ThConv7bis;
A41:
Mid (z1,p1,b1) &
Mid (z1,q1,b1) by
A38,
A40,
THSS3;
per cases ;
suppose
A42: z
<> p;
Mid (z1,p1,b1) &
Mid (z1,p1,a1) by
A38,
A39,
THSS3;
per cases by
A42,
DIRAF: 15;
suppose
Mid (p1,b1,a1);
per cases by
A41,
DIRAF: 17;
suppose
Mid (z1,p1,q1);
then
between (z,p,q) by
THSS3;
then
A43:
between (p,q,b) by
A40,
THNOIX2;
between (q,q,a) by
ThConv7;
hence ex x be
POINT of S st
between (p,x,b) &
between (q,x,a) by
A43;
end;
suppose
Mid (z1,q1,p1);
then
between (z,q,p) by
THSS3;
then
A44:
between (q,p,a) by
A39,
THNOIX2;
between (p,p,b) by
ThConv7;
hence ex x be
POINT of S st
between (p,x,b) &
between (q,x,a) by
A44;
end;
end;
suppose
Mid (p1,a1,b1);
per cases by
A41,
DIRAF: 17;
suppose
Mid (z1,p1,q1);
then
between (z,p,q) by
THSS3;
then
A45:
between (p,q,b) by
A40,
THNOIX2;
between (q,q,a) by
ThConv7;
hence ex x be
POINT of S st
between (p,x,b) &
between (q,x,a) by
A45;
end;
suppose
Mid (z1,q1,p1);
then
between (z,q,p) by
THSS3;
then
A46:
between (q,p,a) by
A39,
THNOIX2;
between (p,p,b) by
ThConv7;
hence ex x be
POINT of S st
between (p,x,b) &
between (q,x,a) by
A46;
end;
end;
end;
suppose
A47: z
= p;
between (q,q,a) by
ThConv7;
hence ex x be
POINT of S st
between (p,x,b) &
between (q,x,a) by
A47,
A40;
end;
end;
end;
end;
suppose (b1,z1)
// (z1,p1);
then
Mid (b1,z1,p1);
then
Mid (p1,z1,b1) by
DIRAF: 9;
then
A48:
between (p,z,b) by
THSS3;
then
A49:
between (b,z,p) by
ThConv7bis;
A50:
between (q,z,p) by
A2,
A49,
THNOIX2;
A51:
between (z,p,a) by
A1,
ThConv7bis;
per cases ;
suppose z
= p;
then
A52:
between (p,q,b) by
A2,
ThConv7bis;
between (q,q,a) by
ThConv7;
hence ex x be
POINT of S st
between (p,x,b) &
between (q,x,a) by
A52;
end;
suppose z
<> p;
then
between (q,z,a) by
A50,
A51,
THNOIX3;
hence ex x be
POINT of S st
between (p,x,b) &
between (q,x,a) by
A48;
end;
end;
end;
suppose
A53: not (z1,p1,b1)
are_collinear ;
consider y be
Element of OAS such that
A54:
Mid (p1,y,b1) and
A55:
Mid (q1,y,a1) by
A3,
A53,
A4,
A5;
the MetrStruct of
TarskiEuclid2Space
= the MetrStruct of (
Euclid 2) by
GTARSKI1:def 13;
then
reconsider yt = y as
POINT of S by
EUCLID: 22;
A56:
between (p,yt,b) by
A54,
THSS3;
between (q,yt,a) by
A55,
THSS3;
hence ex x be
POINT of S st
between (p,x,b) &
between (q,x,a) by
A56;
end;
end;
hence thesis;
end;
registration
cluster
TarskiEuclid2Space ->
satisfying_CongruenceSymmetry
satisfying_CongruenceEquivalenceRelation
satisfying_CongruenceIdentity
satisfying_SegmentConstruction
satisfying_SAS
satisfying_BetweennessIdentity
satisfying_Pasch;
coherence by
ThCongruenceSymmetry,
ThCongruenceEquivalenceRelation,
ThCongruenceIdentity,
ThSegmentConstruction,
ThSAS,
ThBetweennessIdentity,
ThPasch;
end
registration
cluster
TarskiEuclid2Space ->
satisfying_Tarski-model;
coherence ;
end
begin
theorem ::
GTARSKI2:41
ThAZ9: for P,Q,R be
Point of (
TOP-REAL 2), L be
Element of (
line_of_REAL 2) st P
in L & Q
in L & R
in L holds P
in (
LSeg (Q,R)) or Q
in (
LSeg (R,P)) or R
in (
LSeg (P,Q))
proof
let P,Q,R be
Point of (
TOP-REAL 2), L be
Element of (
line_of_REAL 2);
assume that
A1: P
in L and
A2: Q
in L and
A3: R
in L;
L
in (
line_of_REAL 2);
then L
in the set of all (
Line (x1,x2)) where x1,x2 be
Element of (
REAL 2) by
EUCLIDLP:def 4;
then
consider x1,x2 be
Element of (
REAL 2) such that
A4: L
= (
Line (x1,x2));
reconsider tx1 = x1, tx2 = x2 as
Element of (
TOP-REAL 2) by
EUCLID: 22;
P
in (
Line (tx1,tx2)) & Q
in (
Line (tx1,tx2)) & R
in (
Line (tx1,tx2)) by
A1,
A2,
A3,
A4,
EUCLID12: 4;
hence thesis by
RLTOPSP1:def 16,
TOPREAL9: 67;
end;
theorem ::
GTARSKI2:42
ThConvAG: for a,b,c be
Element of
TarskiEuclid2Space holds (
Tn2TR b)
in (
LSeg ((
Tn2TR a),(
Tn2TR c))) implies ex jj be
Real st
0
<= jj & jj
<= 1 & ((
Tn2TR b)
- (
Tn2TR a))
= (jj
* ((
Tn2TR c)
- (
Tn2TR a)))
proof
let a,b,c be
Element of
TarskiEuclid2Space ;
assume (
Tn2TR b)
in (
LSeg ((
Tn2TR a),(
Tn2TR c)));
then
consider jj be
Real such that
G2:
0
<= jj & jj
<= 1 & (
Tn2TR b)
= (((1
- jj)
* (
Tn2TR a))
+ (jj
* (
Tn2TR c))) by
RLTOPSP1: 76;
set v = (
Tn2TR a), w = (
Tn2TR c);
((
Tn2TR b)
- (
Tn2TR a))
= ((((1
- jj)
* v)
- v)
+ (jj
* w)) by
RVSUM_1: 15,
G2
.= ((((1
- jj)
+ (
- 1))
* v)
+ (jj
* w)) by
RVSUM_1: 50
.= ((jj
* w)
+ ((jj
* (
- 1))
* v))
.= ((jj
* w)
+ (jj
* ((
- 1)
* v))) by
RVSUM_1: 49
.= (jj
* (w
- v)) by
RVSUM_1: 51;
hence thesis by
G2;
end;
theorem ::
GTARSKI2:43
for n be
Nat holds for a,b,c be
Element of (
TarskiEuclidSpace n) holds (
Tn2TR b)
in (
LSeg ((
Tn2TR a),(
Tn2TR c))) implies ex jj be
Real st
0
<= jj
<= 1 & ((
Tn2TR b)
- (
Tn2TR a))
= (jj
* ((
Tn2TR c)
- (
Tn2TR a)))
proof
let n be
Nat;
let a,b,c be
Element of (
TarskiEuclidSpace n);
assume (
Tn2TR b)
in (
LSeg ((
Tn2TR a),(
Tn2TR c)));
then
consider jj be
Real such that
G2:
0
<= jj
<= 1 & (
Tn2TR b)
= (((1
- jj)
* (
Tn2TR a))
+ (jj
* (
Tn2TR c))) by
RLTOPSP1: 76;
set v = (
Tn2TR a), w = (
Tn2TR c);
((
Tn2TR b)
- (
Tn2TR a))
= ((((1
- jj)
* v)
- v)
+ (jj
* w)) by
RVSUM_1: 15,
G2
.= ((((1
- jj)
+ (
- 1))
* v)
+ (jj
* w)) by
RVSUM_1: 50
.= ((jj
* w)
+ ((jj
* (
- 1))
* v))
.= ((jj
* w)
+ (jj
* ((
- 1)
* v))) by
RVSUM_1: 49
.= (jj
* (w
- v)) by
RVSUM_1: 51;
hence thesis by
G2;
end;
theorem ::
GTARSKI2:44
ThConvAGI: for a,b,c be
Element of
TarskiEuclid2Space holds (ex jj be
Real st
0
<= jj & jj
<= 1 & ((
Tn2TR b)
- (
Tn2TR a))
= (jj
* ((
Tn2TR c)
- (
Tn2TR a)))) implies (
Tn2TR b)
in (
LSeg ((
Tn2TR a),(
Tn2TR c)))
proof
let a,b,c be
Element of
TarskiEuclid2Space ;
given jj be
Real such that
G2:
0
<= jj
<= 1 & ((
Tn2TR b)
- (
Tn2TR a))
= (jj
* ((
Tn2TR c)
- (
Tn2TR a)));
set v = (
Tn2TR a), w = (
Tn2TR c);
SS: ((
Tn2TR b)
+ (v
- v))
= ((
Tn2TR b)
+ (
0. (
TOP-REAL 2))) by
RLVECT_1: 5
.= (
Tn2TR b);
G3: v
= (1
* v) by
RVSUM_1: 52;
((
Tn2TR b)
+ ((
- v)
+ v))
= ((jj
* ((
Tn2TR c)
- (
Tn2TR a)))
+ v) by
G2,
RVSUM_1: 15;
then (
Tn2TR b)
= (((jj
* w)
+ (jj
* (
- v)))
+ v) by
RVSUM_1: 51,
SS
.= (((jj
* w)
+ ((jj
* (
- 1))
* v))
+ v) by
RVSUM_1: 49
.= (((jj
* w)
+ ((
- 1)
* (jj
* v)))
+ v) by
RVSUM_1: 49
.= ((jj
* w)
+ ((
- (jj
* v))
+ (1
* v))) by
RVSUM_1: 15,
G3
.= ((jj
* w)
+ ((((
- 1)
* jj)
* v)
+ (1
* v))) by
RVSUM_1: 49
.= (((1
- jj)
* v)
+ (jj
* w)) by
RVSUM_1: 50;
then (
Tn2TR b)
in { (((1
- r)
* v)
+ (r
* w)) where r be
Real :
0
<= r & r
<= 1 } by
G2;
hence thesis by
RLTOPSP1:def 2;
end;
begin
definition
let S be
TarskiGeometryStruct;
::
GTARSKI2:def7
attr S is
satisfying_A8 means ex a,b,c be
POINT of S st not
between (a,b,c) & not
between (b,c,a) & not
between (c,a,b);
::
GTARSKI2:def8
attr S is
satisfying_A9 means for a,b,c,p,q be
POINT of S st p
<> q & (a,p)
equiv (a,q) & (b,p)
equiv (b,q) & (c,p)
equiv (c,q) holds
between (a,b,c) or
between (b,c,a) or
between (c,a,b);
::
GTARSKI2:def9
attr S is
satisfying_A10 means for a,b,c,d,t be
POINT of S st
between (a,d,t) &
between (b,d,c) & a
<> d holds ex x,y be
POINT of S st
between (a,b,x) &
between (a,c,y) &
between (x,t,y);
::
GTARSKI2:def10
attr S is
satisfying_A11 means for X,Y be
Subset of S st (ex a be
POINT of S st for x,y be
POINT of S st x
in X & y
in Y holds
between (a,x,y)) holds (ex b be
POINT of S st for x,y be
POINT of S st x
in X & y
in Y holds
between (x,b,y));
end
notation
let S be
TarskiGeometryStruct;
synonym S is
satisfying_Lower_Dimension_Axiom for S is
satisfying_A8;
synonym S is
satisfying_Upper_Dimension_Axiom for S is
satisfying_A9;
synonym S is
satisfying_Euclid_Axiom for S is
satisfying_A10;
synonym S is
satisfying_Continuity_Axiom for S is
satisfying_A11;
end
::$Notion-Name
theorem ::
GTARSKI2:45
AxiomA8: ex a,b,c be
Point of
TarskiEuclid2Space st not
between (a,b,c) & not
between (b,c,a) & not
between (c,a,b)
proof
the MetrStruct of
TarskiEuclid2Space
= the MetrStruct of (
Euclid 2) by
GTARSKI1:def 13;
then
reconsider a =
|[
0 ,
0 ]|, b =
|[1,
0 ]|, c =
|[
0 , 1]| as
Point of
TarskiEuclid2Space by
EUCLID: 22;
take a, b, c;
thus not
between (a,b,c)
proof
assume
between (a,b,c);
then (
Tn2TR b)
in (
LSeg ((
Tn2TR a),(
Tn2TR c))) by
ThConv6;
then ((
dist ((
Tn2TR a),(
Tn2TR b)))
+ (
dist ((
Tn2TR b),(
Tn2TR c))))
= (
dist ((
Tn2TR a),(
Tn2TR c))) by
EUCLID12: 12;
hence thesis by
SQUARE_1: 19,
THY1,
THY2,
THY3;
end;
thus not
between (b,c,a)
proof
assume
between (b,c,a);
then (
Tn2TR c)
in (
LSeg ((
Tn2TR b),(
Tn2TR a))) by
ThConv6;
then ((
dist ((
Tn2TR b),(
Tn2TR c)))
+ (
dist ((
Tn2TR c),(
Tn2TR a))))
= (
dist ((
Tn2TR b),(
Tn2TR a))) by
EUCLID12: 12;
hence thesis by
SQUARE_1: 19,
THY1,
THY2,
THY3;
end;
assume
between (c,a,b);
then (
Tn2TR a)
in (
LSeg ((
Tn2TR c),(
Tn2TR b))) by
ThConv6;
then ((
dist ((
Tn2TR c),(
Tn2TR a)))
+ (
dist ((
Tn2TR a),(
Tn2TR b))))
= (
dist ((
Tn2TR c),(
Tn2TR b))) by
EUCLID12: 12;
hence thesis by
SQUARE_1: 21,
THY1,
THY2,
THY3;
end;
::$Notion-Name
theorem ::
GTARSKI2:46
AxiomA9: for a,b,c,p,q be
Point of
TarskiEuclid2Space st p
<> q & (a,p)
equiv (a,q) & (b,p)
equiv (b,q) & (c,p)
equiv (c,q) holds
between (a,b,c) or
between (b,c,a) or
between (c,a,b)
proof
let a,b,c,p,q be
Point of
TarskiEuclid2Space ;
assume that
A1: p
<> q and
A2: (a,p)
equiv (a,q) and
A3: (b,p)
equiv (b,q) and
A4: (c,p)
equiv (c,q);
|.((
Tn2TR a)
- (
Tn2TR p)).|
=
|.((
Tn2TR a)
- (
Tn2TR q)).| by
A2,
ThConv4;
then
A5: (
Tn2TR a)
in (
the_perpendicular_bisector ((
Tn2TR p),(
Tn2TR q))) by
A1,
EUCLID12: 60;
|.((
Tn2TR b)
- (
Tn2TR p)).|
=
|.((
Tn2TR b)
- (
Tn2TR q)).| by
A3,
ThConv4;
then
A6: (
Tn2TR b)
in (
the_perpendicular_bisector ((
Tn2TR p),(
Tn2TR q))) by
A1,
EUCLID12: 60;
|.((
Tn2TR c)
- (
Tn2TR p)).|
=
|.((
Tn2TR c)
- (
Tn2TR q)).| by
A4,
ThConv4;
then (
Tn2TR c)
in (
the_perpendicular_bisector ((
Tn2TR p),(
Tn2TR q))) by
A1,
EUCLID12: 60;
then (
Tn2TR a)
in (
LSeg ((
Tn2TR b),(
Tn2TR c))) or (
Tn2TR b)
in (
LSeg ((
Tn2TR c),(
Tn2TR a))) or (
Tn2TR c)
in (
LSeg ((
Tn2TR a),(
Tn2TR b))) by
A5,
A6,
ThAZ9;
hence thesis by
ThConv6;
end;
::$Notion-Name
theorem ::
GTARSKI2:47
AxiomA10: for a,b,c,d,t be
Element of
TarskiEuclid2Space st
between (a,d,t) &
between (b,d,c) & a
<> d holds ex x,y be
Element of
TarskiEuclid2Space st
between (a,b,x) &
between (a,c,y) &
between (x,t,y)
proof
let a,b,c,d,t be
Element of
TarskiEuclid2Space ;
assume that
A1:
between (a,d,t) and
A2:
between (b,d,c) and
A3: a
<> d;
G0: (
Tn2TR d)
in (
LSeg ((
Tn2TR a),(
Tn2TR t))) by
A1,
ThConv6;
set v = (
Tn2TR a), w = (
Tn2TR t);
consider jj be
Real such that
G2:
0
<= jj & jj
<= 1 & (
Tn2TR d)
= (((1
- jj)
* v)
+ (jj
* w)) by
RLTOPSP1: 76,
G0;
g1: ((
Tn2TR d)
- (
Tn2TR a))
= ((((1
- jj)
* v)
- v)
+ (jj
* w)) by
RVSUM_1: 15,
G2
.= ((((1
- jj)
+ (
- 1))
* v)
+ (jj
* w)) by
RVSUM_1: 50
.= ((jj
* w)
+ ((jj
* (
- 1))
* v))
.= ((jj
* w)
+ (jj
* ((
- 1)
* v))) by
RVSUM_1: 49
.= (jj
* (w
- v)) by
RVSUM_1: 51;
set jt = (1
/ jj);
JJ: jj
<>
0
proof
assume jj
=
0 ;
then ((
Tn2TR d)
- (
Tn2TR a))
= (
0. (
TOP-REAL 2)) by
g1,
RLVECT_1: 10;
hence thesis by
A3,
RLVECT_1: 21;
end;
set xxx = ((jt
* ((
Tn2TR b)
- (
Tn2TR a)))
+ (
Tn2TR a));
ww: the MetrStruct of
TarskiEuclid2Space
= the MetrStruct of (
Euclid 2) by
GTARSKI1:def 13;
then
reconsider xx = xxx as
Element of
TarskiEuclid2Space by
EUCLID: 22;
(jj
* (xxx
- (
Tn2TR a)))
= (jj
* ((jt
* ((
Tn2TR b)
- (
Tn2TR a)))
+ ((
Tn2TR a)
- (
Tn2TR a)))) by
RLVECT_1: 28
.= (jj
* (((1
/ jj)
* ((
Tn2TR b)
- (
Tn2TR a)))
+ (
0. (
TOP-REAL 2)))) by
RLVECT_1: 15
.= ((jj
* (1
/ jj))
* ((
Tn2TR b)
- (
Tn2TR a))) by
RLVECT_1:def 7
.= (1
* ((
Tn2TR b)
- (
Tn2TR a))) by
XCMPLX_0:def 7,
JJ
.= ((
Tn2TR b)
- (
Tn2TR a)) by
RVSUM_1: 52;
then (
Tn2TR b)
in (
LSeg ((
Tn2TR a),(
Tn2TR xx))) by
G2,
ThConvAGI;
then
T1:
between (a,b,xx) by
ThConv6;
set yyy = ((jt
* ((
Tn2TR c)
- (
Tn2TR a)))
+ (
Tn2TR a));
reconsider yy = yyy as
Element of
TarskiEuclid2Space by
ww,
EUCLID: 22;
(jj
* (yyy
- (
Tn2TR a)))
= (jj
* ((jt
* ((
Tn2TR c)
- (
Tn2TR a)))
+ ((
Tn2TR a)
- (
Tn2TR a)))) by
RLVECT_1: 28
.= (jj
* ((jt
* ((
Tn2TR c)
- (
Tn2TR a)))
+ (
0. (
TOP-REAL 2)))) by
RLVECT_1: 15
.= ((jj
* jt)
* ((
Tn2TR c)
- (
Tn2TR a))) by
RLVECT_1:def 7
.= (1
* ((
Tn2TR c)
- (
Tn2TR a))) by
XCMPLX_0:def 7,
JJ
.= ((
Tn2TR c)
- (
Tn2TR a)) by
RVSUM_1: 52;
then (
Tn2TR c)
in (
LSeg ((
Tn2TR a),(
Tn2TR yy))) by
G2,
ThConvAGI;
then
T2:
between (a,c,yy) by
ThConv6;
(
Tn2TR d)
in (
LSeg ((
Tn2TR b),(
Tn2TR c))) by
A2,
ThConv6;
then
consider kk be
Real such that
Y1:
0
<= kk & kk
<= 1 & ((
Tn2TR d)
- (
Tn2TR b))
= (kk
* ((
Tn2TR c)
- (
Tn2TR b))) by
ThConvAG;
(jt
* ((
Tn2TR d)
- (
Tn2TR a)))
= (((1
/ jj)
* jj)
* ((
Tn2TR t)
- (
Tn2TR a))) by
g1,
RLVECT_1:def 7
.= (1
* ((
Tn2TR t)
- (
Tn2TR a))) by
JJ,
XCMPLX_0:def 7
.= ((
Tn2TR t)
- (
Tn2TR a)) by
RVSUM_1: 52;
then
w1: ((jt
* ((
Tn2TR d)
- (
Tn2TR a)))
+ (
Tn2TR a))
= ((
Tn2TR t)
+ ((
- (
Tn2TR a))
+ (
Tn2TR a))) by
RLVECT_1:def 3
.= ((
Tn2TR t)
+ (
0. (
TOP-REAL 2))) by
RLVECT_1: 5;
W2: ((
Tn2TR yy)
- (
Tn2TR xx))
= (((((1
/ jj)
* ((
Tn2TR c)
- (
Tn2TR a)))
+ (
Tn2TR a))
- (
Tn2TR a))
- ((1
/ jj)
* ((
Tn2TR b)
- (
Tn2TR a)))) by
RLVECT_1: 27
.= (((jt
* ((
Tn2TR c)
- (
Tn2TR a)))
+ ((
Tn2TR a)
- (
Tn2TR a)))
- ((1
/ jj)
* ((
Tn2TR b)
- (
Tn2TR a)))) by
RLVECT_1: 28
.= (((jt
* ((
Tn2TR c)
- (
Tn2TR a)))
+ (
0. (
TOP-REAL 2)))
- ((1
/ jj)
* ((
Tn2TR b)
- (
Tn2TR a)))) by
RLVECT_1: 15
.= (jt
* (((
Tn2TR c)
- (
Tn2TR a))
- ((
Tn2TR b)
- (
Tn2TR a)))) by
RLVECT_1: 34
.= (jt
* ((
Tn2TR c)
- (
Tn2TR b))) by
ThWW;
((
Tn2TR t)
- (
Tn2TR xx))
= ((((jt
* ((
Tn2TR d)
- (
Tn2TR a)))
+ (
Tn2TR a))
- (
Tn2TR a))
- ((1
/ jj)
* ((
Tn2TR b)
- (
Tn2TR a)))) by
RLVECT_1: 27,
w1
.= (((jt
* ((
Tn2TR d)
- (
Tn2TR a)))
+ ((
Tn2TR a)
- (
Tn2TR a)))
- ((1
/ jj)
* ((
Tn2TR b)
- (
Tn2TR a)))) by
RLVECT_1:def 3
.= (((jt
* ((
Tn2TR d)
- (
Tn2TR a)))
+ (
0. (
TOP-REAL 2)))
- ((1
/ jj)
* ((
Tn2TR b)
- (
Tn2TR a)))) by
RLVECT_1: 5
.= (jt
* (((
Tn2TR d)
- (
Tn2TR a))
- ((
Tn2TR b)
- (
Tn2TR a)))) by
RLVECT_1: 34
.= (jt
* ((
Tn2TR d)
- (
Tn2TR b))) by
ThWW
.= ((jt
* kk)
* ((
Tn2TR c)
- (
Tn2TR b))) by
RLVECT_1:def 7,
Y1
.= (kk
* ((
Tn2TR yy)
- (
Tn2TR xx))) by
W2,
RLVECT_1:def 7;
then (
Tn2TR t)
in (
LSeg ((
Tn2TR xx),(
Tn2TR yy))) by
Y1,
ThConvAGI;
then
between (xx,t,yy) by
ThConv6;
hence thesis by
T1,
T2;
end;
begin
::$Notion-Name
theorem ::
GTARSKI2:48
AxiomA11: for X,Y be
Subset of
TarskiEuclid2Space st (ex a be
Element of
TarskiEuclid2Space st for x,y be
Element of
TarskiEuclid2Space st x
in X & y
in Y holds
between (a,x,y)) holds (ex b be
Element of
TarskiEuclid2Space st for x,y be
Element of
TarskiEuclid2Space st x
in X & y
in Y holds
between (x,b,y))
proof
let X,Y be
Subset of
TarskiEuclid2Space ;
given a be
Element of
TarskiEuclid2Space such that
A1: for x,y be
Element of
TarskiEuclid2Space st x
in X & y
in Y holds
between (a,x,y);
per cases ;
suppose
SS: X
c=
{a} or Y
=
{} ;
ex b be
Element of
TarskiEuclid2Space st for x,y be
Element of
TarskiEuclid2Space st x
in X & y
in Y holds
between (x,b,y)
proof
take b = a;
let x,y be
Element of
TarskiEuclid2Space ;
assume x
in X & y
in Y;
then x
= a by
SS,
TARSKI:def 1;
hence thesis by
GTARSKI1: 17;
end;
hence thesis;
end;
suppose
SSS: not X
c=
{a} & Y
<>
{} ;
(X
\
{a})
<>
{} by
XBOOLE_1: 37,
SSS;
then
consider c be
object such that
G9: c
in (X
\
{a}) by
XBOOLE_0:def 1;
reconsider c as
Element of
TarskiEuclid2Space by
G9;
su: (X
\
{a})
c= X by
XBOOLE_1: 36;
set S = { j where j be
Real : j
>= 1 & ((
Tn2TR a)
+ (j
* ((
Tn2TR c)
- (
Tn2TR a))))
in Y };
S is
real-membered
proof
let w be
object;
assume w
in S;
then
consider j1 be
Real such that
G1: w
= j1 & j1
>= 1 & ((
Tn2TR a)
+ (j1
* ((
Tn2TR c)
- (
Tn2TR a))))
in Y;
thus thesis by
G1;
end;
then
reconsider S as
real-membered
set;
gg: 1 is
LowerBound of S
proof
let x be
ExtReal;
assume x
in S;
then
consider j1 be
Real such that
G1: x
= j1 & j1
>= 1 & ((
Tn2TR a)
+ (j1
* ((
Tn2TR c)
- (
Tn2TR a))))
in Y;
thus thesis by
G1;
end;
consider d be
object such that
G2: d
in Y by
XBOOLE_0:def 1,
SSS;
reconsider d as
Element of
TarskiEuclid2Space by
G2;
(
Tn2TR c)
in (
LSeg ((
Tn2TR a),(
Tn2TR d))) by
ThConv6,
su,
G9,
A1,
G2;
then
consider jda be
Real such that
G0:
0
<= jda & jda
<= 1 & ((
Tn2TR c)
- (
Tn2TR a))
= (jda
* ((
Tn2TR d)
- (
Tn2TR a))) by
ThConvAG;
set jd = (1
/ jda);
hh: jda
<>
0
proof
assume jda
=
0 ;
then ((
Tn2TR c)
- (
Tn2TR a))
= ((
0. (
TOP-REAL 2))
+ (
0
* ((
Tn2TR d)
- (
Tn2TR a)))) by
G0
.= (
0. (
TOP-REAL 2)) by
THJE;
hence thesis by
G9,
ZFMISC_1: 56,
RLVECT_1: 21;
end;
Lem: for y be
Element of
TarskiEuclid2Space st y
in Y holds ex j1 be
Real st j1
>= 1 & ((
Tn2TR y)
- (
Tn2TR a))
= (j1
* ((
Tn2TR c)
- (
Tn2TR a)))
proof
let y be
Element of
TarskiEuclid2Space ;
assume y
in Y;
then (
Tn2TR c)
in (
LSeg ((
Tn2TR a),(
Tn2TR y))) by
A1,
su,
G9,
ThConv6;
then
consider j be
Real such that
H1:
0
<= j & j
<= 1 & ((
Tn2TR c)
- (
Tn2TR a))
= (j
* ((
Tn2TR y)
- (
Tn2TR a))) by
ThConvAG;
set j1 = (1
/ j);
H2: j
<>
0
proof
assume j
=
0 ;
then ((
Tn2TR c)
- (
Tn2TR a))
= ((
0. (
TOP-REAL 2))
+ (
0
* ((
Tn2TR y)
- (
Tn2TR a)))) by
H1
.= (
0. (
TOP-REAL 2)) by
THJE;
hence thesis by
G9,
ZFMISC_1: 56,
RLVECT_1: 21;
end;
then
H5: j1
>= 1 by
H1,
XREAL_1: 181;
(j1
* ((
Tn2TR c)
- (
Tn2TR a)))
= ((j1
* j)
* ((
Tn2TR y)
- (
Tn2TR a))) by
RLVECT_1:def 7,
H1
.= (1
* ((
Tn2TR y)
- (
Tn2TR a))) by
H2,
XCMPLX_0:def 7
.= ((
Tn2TR y)
- (
Tn2TR a)) by
RVSUM_1: 52;
hence thesis by
H5;
end;
Gy: (jd
* ((
Tn2TR c)
- (
Tn2TR a)))
= ((jd
* jda)
* ((
Tn2TR d)
- (
Tn2TR a))) by
RLVECT_1:def 7,
G0
.= (1
* ((
Tn2TR d)
- (
Tn2TR a))) by
hh,
XCMPLX_0:def 7
.= ((
Tn2TR d)
- (
Tn2TR a)) by
RVSUM_1: 52;
J2: jd
>= 1 by
XREAL_1: 181,
G0,
hh;
((jd
* ((
Tn2TR c)
- (
Tn2TR a)))
+ (
Tn2TR a))
= ((
Tn2TR d)
+ ((
- (
Tn2TR a))
+ (
Tn2TR a))) by
RLVECT_1:def 3,
Gy
.= ((
Tn2TR d)
+ (
0. (
TOP-REAL 2))) by
RLVECT_1: 5;
then
J1: jd
in S by
J2,
G2;
reconsider S as non
empty
bounded_below
real-membered
set by
J1,
gg,
XXREAL_2:def 9;
set k = (
inf S);
set bb = ((
Tn2TR a)
+ (k
* ((
Tn2TR c)
- (
Tn2TR a))));
p2: the MetrStruct of
TarskiEuclid2Space
= the MetrStruct of (
Euclid 2) by
GTARSKI1:def 13;
reconsider bb as
Element of
TarskiEuclid2Space by
p2,
EUCLID: 67;
ex b be
Element of
TarskiEuclid2Space st for x,y be
Element of
TarskiEuclid2Space st x
in X & y
in Y holds
between (x,b,y)
proof
take b = bb;
let x,y be
Element of
TarskiEuclid2Space ;
assume
T1: x
in X & y
in Y;
then
consider j1 be
Real such that
HH: j1
>= 1 & ((
Tn2TR y)
- (
Tn2TR a))
= (j1
* ((
Tn2TR c)
- (
Tn2TR a))) by
Lem;
((
Tn2TR y)
+ ((
- (
Tn2TR a))
+ (
Tn2TR a)))
= ((
Tn2TR a)
+ (j1
* ((
Tn2TR c)
- (
Tn2TR a)))) by
HH,
RLVECT_1:def 3;
then
hH: ((
Tn2TR y)
+ (
0. (
TOP-REAL 2)))
= ((
Tn2TR a)
+ (j1
* ((
Tn2TR c)
- (
Tn2TR a)))) by
RLVECT_1: 5;
(
Tn2TR x)
in (
LSeg ((
Tn2TR a),(
Tn2TR d))) by
T1,
A1,
G2,
ThConv6;
then
consider l be
Real such that
z1:
0
<= l & l
<= 1 & ((
Tn2TR x)
- (
Tn2TR a))
= (l
* ((
Tn2TR d)
- (
Tn2TR a))) by
ThConvAG;
z2: ((
Tn2TR x)
- (
Tn2TR a))
= ((l
* jd)
* ((
Tn2TR c)
- (
Tn2TR a))) by
RLVECT_1:def 7,
z1,
Gy;
set i = (l
* jd);
((
Tn2TR x)
+ ((
- (
Tn2TR a))
+ (
Tn2TR a)))
= ((i
* ((
Tn2TR c)
- (
Tn2TR a)))
+ (
Tn2TR a)) by
z2,
RLVECT_1:def 3;
then
E3: ((
Tn2TR x)
+ (
0. (
TOP-REAL 2)))
= ((i
* ((
Tn2TR c)
- (
Tn2TR a)))
+ (
Tn2TR a)) by
RLVECT_1: 5;
for h be
ExtReal st h
in S holds i
<= h
proof
let h be
ExtReal;
assume h
in S;
then
consider j1 be
Real such that
G1: h
= j1 & j1
>= 1 & ((
Tn2TR a)
+ (j1
* ((
Tn2TR c)
- (
Tn2TR a))))
in Y;
set z = ((
Tn2TR a)
+ (j1
* ((
Tn2TR c)
- (
Tn2TR a))));
reconsider z as
Element of
TarskiEuclid2Space by
EUCLID: 67,
p2;
(
Tn2TR x)
in (
LSeg ((
Tn2TR a),(
Tn2TR z))) by
T1,
A1,
G1,
ThConv6;
then
consider ll be
Real such that
z1:
0
<= ll & ll
<= 1 & ((
Tn2TR x)
- (
Tn2TR a))
= (ll
* ((
Tn2TR z)
- (
Tn2TR a))) by
ThConvAG;
z0: ((
Tn2TR c)
- (
Tn2TR a))
<> (
0. (
TOP-REAL 2))
proof
assume ((
Tn2TR c)
- (
Tn2TR a))
= (
0. (
TOP-REAL 2));
then ((
Tn2TR c)
+ ((
- (
Tn2TR a))
+ (
Tn2TR a)))
= ((
0. (
TOP-REAL 2))
+ (
Tn2TR a)) by
RLVECT_1:def 3;
then ((
Tn2TR c)
+ (
0. (
TOP-REAL 2)))
= ((
0. (
TOP-REAL 2))
+ (
Tn2TR a)) by
RLVECT_1: 5;
hence thesis by
G9,
ZFMISC_1: 56;
end;
((
Tn2TR z)
- (
Tn2TR a))
= ((j1
* ((
Tn2TR c)
- (
Tn2TR a)))
+ ((
Tn2TR a)
+ (
- (
Tn2TR a)))) by
RLVECT_1:def 3
.= ((j1
* ((
Tn2TR c)
- (
Tn2TR a)))
+ (
0. (
TOP-REAL 2))) by
RLVECT_1: 5
.= (j1
* ((
Tn2TR c)
- (
Tn2TR a)));
then ((
Tn2TR x)
- (
Tn2TR a))
= ((ll
* j1)
* ((
Tn2TR c)
- (
Tn2TR a))) by
z1,
RLVECT_1:def 7;
then (ll
* j1)
= i by
RLVECT_1: 37,
z0,
z2;
hence thesis by
G1,
XREAL_1: 153,
z1;
end;
then
fF: i is
LowerBound of S by
XXREAL_2:def 2;
then
f1: i
<= k by
XXREAL_2:def 4;
j1
in S by
hH,
HH,
T1;
then
F0: k
<= j1 by
XXREAL_2: 3;
then
f2: i
<= j1 by
f1,
XXREAL_0: 2;
ff: ((
Tn2TR b)
- (
Tn2TR x))
= (((
Tn2TR a)
+ (k
* ((
Tn2TR c)
- (
Tn2TR a))))
+ ((
- (i
* ((
Tn2TR c)
- (
Tn2TR a))))
+ (
- (
Tn2TR a)))) by
E3,
RLVECT_1: 31
.= ((((k
* ((
Tn2TR c)
- (
Tn2TR a)))
+ (
Tn2TR a))
+ (
- (
Tn2TR a)))
+ (
- (i
* ((
Tn2TR c)
- (
Tn2TR a))))) by
RLVECT_1:def 3
.= (((k
* ((
Tn2TR c)
- (
Tn2TR a)))
+ ((
Tn2TR a)
+ (
- (
Tn2TR a))))
+ (
- (i
* ((
Tn2TR c)
- (
Tn2TR a))))) by
RLVECT_1:def 3
.= (((k
* ((
Tn2TR c)
- (
Tn2TR a)))
+ (
0. (
TOP-REAL 2)))
+ (
- (i
* ((
Tn2TR c)
- (
Tn2TR a))))) by
RLVECT_1: 5
.= ((k
* ((
Tn2TR c)
- (
Tn2TR a)))
- (i
* ((
Tn2TR c)
- (
Tn2TR a))))
.= ((k
- i)
* ((
Tn2TR c)
- (
Tn2TR a))) by
RLVECT_1: 35;
set l = ((k
- i)
/ (j1
- i));
per cases ;
suppose i
= j1;
then k
= i by
F0,
f1,
XXREAL_0: 1;
then ((
Tn2TR b)
- (
Tn2TR x))
= ((
0. (
TOP-REAL 2))
+ (
0
* ((
Tn2TR c)
- (
Tn2TR a)))) by
ff
.= (
0. (
TOP-REAL 2)) by
THJE;
then ((
Tn2TR b)
+ ((
- (
Tn2TR x))
+ (
Tn2TR x)))
= ((
0. (
TOP-REAL 2))
+ (
Tn2TR x)) by
RLVECT_1:def 3;
then ((
Tn2TR b)
+ (
0. (
TOP-REAL 2)))
= ((
0. (
TOP-REAL 2))
+ (
Tn2TR x)) by
RLVECT_1: 5;
hence thesis by
GTARSKI1: 17;
end;
suppose i
<> j1;
then i
< j1 by
f2,
XXREAL_0: 1;
then
R1: (j1
- i)
>
0 by
XREAL_1: 50;
((
Tn2TR y)
- (
Tn2TR x))
= (((
Tn2TR a)
+ (j1
* ((
Tn2TR c)
- (
Tn2TR a))))
+ ((
- (i
* ((
Tn2TR c)
- (
Tn2TR a))))
+ (
- (
Tn2TR a)))) by
RLVECT_1: 31,
E3,
hH
.= ((((j1
* ((
Tn2TR c)
- (
Tn2TR a)))
+ (
Tn2TR a))
+ (
- (
Tn2TR a)))
- (i
* ((
Tn2TR c)
- (
Tn2TR a)))) by
RLVECT_1:def 3
.= (((j1
* ((
Tn2TR c)
- (
Tn2TR a)))
+ ((
Tn2TR a)
+ (
- (
Tn2TR a))))
- (i
* ((
Tn2TR c)
- (
Tn2TR a)))) by
RLVECT_1:def 3
.= (((j1
* ((
Tn2TR c)
- (
Tn2TR a)))
+ (
0. (
TOP-REAL 2)))
- (i
* ((
Tn2TR c)
- (
Tn2TR a)))) by
RLVECT_1: 5
.= ((j1
- i)
* ((
Tn2TR c)
- (
Tn2TR a))) by
RLVECT_1: 35;
then ((1
/ (j1
- i))
* ((
Tn2TR y)
- (
Tn2TR x)))
= (((1
/ (j1
- i))
* (j1
- i))
* ((
Tn2TR c)
- (
Tn2TR a))) by
RLVECT_1:def 7;
then ((1
/ (j1
- i))
* ((
Tn2TR y)
- (
Tn2TR x)))
= (1
* ((
Tn2TR c)
- (
Tn2TR a))) by
XCMPLX_0:def 7,
R1;
then ((
Tn2TR c)
- (
Tn2TR a))
= ((1
/ (j1
- i))
* ((
Tn2TR y)
- (
Tn2TR x))) by
RVSUM_1: 52;
then
S2: ((
Tn2TR b)
- (
Tn2TR x))
= (l
* ((
Tn2TR y)
- (
Tn2TR x))) by
RLVECT_1:def 7,
ff;
R4: (k
- i)
<= (j1
- i) by
XREAL_1: 13,
F0;
(k
- i)
>=
0 by
fF,
XREAL_1: 48,
XXREAL_2:def 4;
then (
Tn2TR b)
in (
LSeg ((
Tn2TR x),(
Tn2TR y))) by
S2,
ThConvAGI,
R4,
XREAL_1: 183;
hence thesis by
ThConv6;
end;
end;
hence thesis;
end;
end;
registration
cluster
TarskiEuclid2Space ->
satisfying_Lower_Dimension_Axiom
satisfying_Upper_Dimension_Axiom
satisfying_Euclid_Axiom
satisfying_Continuity_Axiom;
coherence by
AxiomA8,
AxiomA9,
AxiomA10,
AxiomA11;
end
begin
reserve X,Y for
Subset of
TarskiEuclid2Space ;
theorem ::
GTARSKI2:49
for a be
Element of
TarskiEuclid2Space st (for x,y be
Element of
TarskiEuclid2Space st x
in X & y
in Y holds
between (a,x,y)) & a
in Y holds X
=
{a} or X is
empty
proof
let a be
Element of
TarskiEuclid2Space ;
assume that
A1: for x,y be
Element of
TarskiEuclid2Space st x
in X & y
in Y holds
between (a,x,y) and
A2: a
in Y;
M1: X
c=
{a}
proof
let x be
object;
assume
L1: x
in X;
then
reconsider x as
Element of
TarskiEuclid2Space ;
a
= x by
GTARSKI1:def 10,
A1,
A2,
L1;
hence thesis by
TARSKI:def 1;
end;
per cases ;
suppose X is
empty;
hence thesis;
end;
suppose X is non
empty;
then
consider x be
object such that
A3: x
in X;
reconsider x as
Element of
TarskiEuclid2Space by
A3;
a
= x by
GTARSKI1:def 10,
A1,
A2,
A3;
then
{a}
c= X by
TARSKI:def 1,
A3;
hence thesis by
M1;
end;
end;
theorem ::
GTARSKI2:50
for a be
Element of
TarskiEuclid2Space st (for x,y be
Element of
TarskiEuclid2Space st x
in X & y
in Y holds
between (a,x,y)) & X is non
empty & Y is non
empty & (X is
trivial implies X
<>
{a}) holds ex b be
Element of
TarskiEuclid2Space st X
c= (
Line ((
Tn2TR a),(
Tn2TR b))) & Y
c= (
Line ((
Tn2TR a),(
Tn2TR b)))
proof
let a be
Element of
TarskiEuclid2Space such that
A1: for x,y be
Element of
TarskiEuclid2Space st x
in X & y
in Y holds
between (a,x,y) and
A1A: X is non
empty and
A1B: Y is non
empty and
A3: X is
trivial implies X
<>
{a};
consider x0 be
object such that
K1: x0
in X by
A1A;
reconsider x0 as
Element of
TarskiEuclid2Space by
K1;
consider c be
object such that
MM: c
in Y by
A1B;
reconsider c as
Element of
TarskiEuclid2Space by
MM;
V1: X
c= (
LSeg ((
Tn2TR a),(
Tn2TR c)))
proof
let x be
object;
assume
DA: x
in X;
then
reconsider x1 = x as
Element of
TarskiEuclid2Space ;
(
Tn2TR x1)
in (
LSeg ((
Tn2TR a),(
Tn2TR c))) by
ThConv6,
A1,
DA,
MM;
hence x
in (
LSeg ((
Tn2TR a),(
Tn2TR c)));
end;
t2: (
LSeg ((
Tn2TR a),(
Tn2TR c)))
c= (
Line ((
Tn2TR a),(
Tn2TR c))) by
RLTOPSP1: 73;
then
T1: X
c= (
Line ((
Tn2TR a),(
Tn2TR c))) by
V1;
T2: x0
in (
Line ((
Tn2TR a),(
Tn2TR c))) by
t2,
V1,
K1;
Y
c= (
Line ((
Tn2TR a),(
Tn2TR c)))
proof
let y be
object;
assume
V2: y
in Y;
then
reconsider y0 = y as
Element of
TarskiEuclid2Space ;
per cases ;
suppose
MU: x0
= a;
per cases ;
suppose X is
trivial;
then
consider xx be
object such that
KL: X
=
{xx} by
A1A,
ZFMISC_1: 131;
thus thesis by
MU,
K1,
KL,
TARSKI:def 1,
A3;
end;
suppose X is non
trivial;
then
consider a0,b0 be
object such that
LO1: a0
in X and
LO2: b0
in X and
LO3: a0
<> b0;
ex x1 be
object st x1
in X & x1
<> a
proof
assume
AA: for x1 be
object holds not x1
in X or x1
= a;
a0
<> a or b0
<> a by
LO3;
hence contradiction by
LO1,
LO2,
AA;
end;
then
consider x1 be
object such that
K1: x1
in X and
VAL: x1
<> a;
reconsider x1 as
Element of
TarskiEuclid2Space by
K1;
N1: (
Tn2TR x1)
in (
LSeg ((
Tn2TR a),(
Tn2TR y0))) by
ThConv6,
V2,
K1,
A1;
n2: (
LSeg ((
Tn2TR a),(
Tn2TR y0)))
c= (
Line ((
Tn2TR a),(
Tn2TR y0))) by
RLTOPSP1: 73;
(
Tn2TR a)
in (
Line ((
Tn2TR a),(
Tn2TR y0))) by
RLTOPSP1: 72;
then
ff: (
Line ((
Tn2TR x1),(
Tn2TR a)))
= (
Line ((
Tn2TR a),(
Tn2TR y0))) by
N1,
n2,
VAL,
RLTOPSP1: 75;
(
Tn2TR a)
in (
Line ((
Tn2TR a),(
Tn2TR c))) by
RLTOPSP1: 72;
then (
Line ((
Tn2TR a),(
Tn2TR x1)))
c= (
Line ((
Tn2TR a),(
Tn2TR c))) by
K1,
T1,
RLTOPSP1: 74;
hence thesis by
ff,
RLTOPSP1: 72;
end;
end;
suppose
VAL: x0
<> a;
N1: (
Tn2TR x0)
in (
LSeg ((
Tn2TR a),(
Tn2TR y0))) by
ThConv6,
V2,
K1,
A1;
n2: (
LSeg ((
Tn2TR a),(
Tn2TR y0)))
c= (
Line ((
Tn2TR a),(
Tn2TR y0))) by
RLTOPSP1: 73;
(
Tn2TR a)
in (
Line ((
Tn2TR a),(
Tn2TR y0))) by
RLTOPSP1: 72;
then
ff: (
Line ((
Tn2TR x0),(
Tn2TR a)))
= (
Line ((
Tn2TR a),(
Tn2TR y0))) by
N1,
n2,
VAL,
RLTOPSP1: 75;
(
Tn2TR a)
in (
Line ((
Tn2TR a),(
Tn2TR c))) by
RLTOPSP1: 72;
then (
Line ((
Tn2TR a),(
Tn2TR x0)))
c= (
Line ((
Tn2TR a),(
Tn2TR c))) by
T2,
RLTOPSP1: 74;
hence thesis by
ff,
RLTOPSP1: 72;
end;
end;
hence thesis by
T1;
end;