jordan20.miz
begin
theorem ::
JORDAN20:1
Th1: for P be
Subset of (
TOP-REAL 2), p1,p2,p be
Point of (
TOP-REAL 2) st P
is_an_arc_of (p1,p2) & p
in P holds (
Segment (P,p1,p2,p,p))
=
{p}
proof
let P be
Subset of (
TOP-REAL 2), p1,p2,p be
Point of (
TOP-REAL 2);
assume that
A1: P
is_an_arc_of (p1,p2) and
A2: p
in P;
A3: (
Segment (P,p1,p2,p,p))
= { q where q be
Point of (
TOP-REAL 2) :
LE (p,q,P,p1,p2) &
LE (q,p,P,p1,p2) } by
JORDAN6: 26;
A4:
{p}
c= (
Segment (P,p1,p2,p,p))
proof
let x be
object;
assume x
in
{p};
then
A5: x
= p by
TARSKI:def 1;
LE (p,p,P,p1,p2) by
A2,
JORDAN5C: 9;
hence thesis by
A3,
A5;
end;
(
Segment (P,p1,p2,p,p))
c=
{p}
proof
let x be
object;
assume x
in (
Segment (P,p1,p2,p,p));
then
consider q be
Point of (
TOP-REAL 2) such that
A6: x
= q and
A7:
LE (p,q,P,p1,p2) &
LE (q,p,P,p1,p2) by
A3;
p
= q by
A1,
A7,
JORDAN5C: 12;
hence thesis by
A6,
TARSKI:def 1;
end;
hence thesis by
A4,
XBOOLE_0:def 10;
end;
theorem ::
JORDAN20:2
Th2: for p1,p2,p be
Point of (
TOP-REAL 2), a be
Real st p
in (
LSeg (p1,p2)) & (p1
`1 )
<= a & (p2
`1 )
<= a holds (p
`1 )
<= a
proof
let p1,p2,p be
Point of (
TOP-REAL 2), a be
Real;
assume that
A1: p
in (
LSeg (p1,p2)) and
A2: (p1
`1 )
<= a and
A3: (p2
`1 )
<= a;
consider r be
Real such that
A4: p
= (((1
- r)
* p1)
+ (r
* p2)) and
A5:
0
<= r and
A6: r
<= 1 by
A1;
A7: (p
`1 )
= ((((1
- r)
* p1)
`1 )
+ ((r
* p2)
`1 )) by
A4,
TOPREAL3: 2
.= ((((1
- r)
* p1)
`1 )
+ (r
* (p2
`1 ))) by
TOPREAL3: 4
.= (((1
- r)
* (p1
`1 ))
+ (r
* (p2
`1 ))) by
TOPREAL3: 4;
(1
- r)
>=
0 by
A6,
XREAL_1: 48;
then
A8: ((1
- r)
* (p1
`1 ))
<= ((1
- r)
* a) by
A2,
XREAL_1: 64;
A9: (((1
- r)
* a)
+ (r
* a))
= a;
(r
* (p2
`1 ))
<= (r
* a) by
A3,
A5,
XREAL_1: 64;
hence thesis by
A7,
A8,
A9,
XREAL_1: 7;
end;
theorem ::
JORDAN20:3
Th3: for p1,p2,p be
Point of (
TOP-REAL 2), a be
Real st p
in (
LSeg (p1,p2)) & (p1
`1 )
>= a & (p2
`1 )
>= a holds (p
`1 )
>= a
proof
let p1,p2,p be
Point of (
TOP-REAL 2), a be
Real;
assume that
A1: p
in (
LSeg (p1,p2)) and
A2: (p1
`1 )
>= a and
A3: (p2
`1 )
>= a;
consider r be
Real such that
A4: p
= (((1
- r)
* p1)
+ (r
* p2)) and
A5:
0
<= r and
A6: r
<= 1 by
A1;
A7: (p
`1 )
= ((((1
- r)
* p1)
`1 )
+ ((r
* p2)
`1 )) by
A4,
TOPREAL3: 2
.= ((((1
- r)
* p1)
`1 )
+ (r
* (p2
`1 ))) by
TOPREAL3: 4
.= (((1
- r)
* (p1
`1 ))
+ (r
* (p2
`1 ))) by
TOPREAL3: 4;
(1
- r)
>=
0 by
A6,
XREAL_1: 48;
then
A8: ((1
- r)
* (p1
`1 ))
>= ((1
- r)
* a) by
A2,
XREAL_1: 64;
A9: (((1
- r)
* a)
+ (r
* a))
= a;
(r
* (p2
`1 ))
>= (r
* a) by
A3,
A5,
XREAL_1: 64;
hence thesis by
A7,
A8,
A9,
XREAL_1: 7;
end;
theorem ::
JORDAN20:4
for p1,p2,p be
Point of (
TOP-REAL 2), a be
Real st p
in (
LSeg (p1,p2)) & (p1
`1 )
< a & (p2
`1 )
< a holds (p
`1 )
< a
proof
let p1,p2,p be
Point of (
TOP-REAL 2), a be
Real;
assume that
A1: p
in (
LSeg (p1,p2)) and
A2: (p1
`1 )
< a and
A3: (p2
`1 )
< a;
consider r be
Real such that
A4: p
= (((1
- r)
* p1)
+ (r
* p2)) and
A5:
0
<= r and
A6: r
<= 1 by
A1;
A7: (p
`1 )
= ((((1
- r)
* p1)
`1 )
+ ((r
* p2)
`1 )) by
A4,
TOPREAL3: 2
.= ((((1
- r)
* p1)
`1 )
+ (r
* (p2
`1 ))) by
TOPREAL3: 4
.= (((1
- r)
* (p1
`1 ))
+ (r
* (p2
`1 ))) by
TOPREAL3: 4;
per cases ;
suppose
0
= r;
then p
= (p1
+ (
0
* p2)) by
A4,
RLVECT_1:def 8
.= (p1
+ (
0. (
TOP-REAL 2))) by
RLVECT_1: 10
.= p1 by
RLVECT_1: 4;
hence thesis by
A2;
end;
suppose
A8:
0
<> r;
A9: (((1
- r)
* a)
+ (r
* a))
= a;
(1
- r)
>=
0 by
A6,
XREAL_1: 48;
then
A10: ((1
- r)
* (p1
`1 ))
<= ((1
- r)
* a) by
A2,
XREAL_1: 64;
(r
* (p2
`1 ))
< (r
* a) by
A3,
A5,
A8,
XREAL_1: 68;
hence thesis by
A7,
A10,
A9,
XREAL_1: 8;
end;
end;
theorem ::
JORDAN20:5
for p1,p2,p be
Point of (
TOP-REAL 2), a be
Real st p
in (
LSeg (p1,p2)) & (p1
`1 )
> a & (p2
`1 )
> a holds (p
`1 )
> a
proof
let p1,p2,p be
Point of (
TOP-REAL 2), a be
Real;
assume that
A1: p
in (
LSeg (p1,p2)) and
A2: (p1
`1 )
> a and
A3: (p2
`1 )
> a;
consider r be
Real such that
A4: p
= (((1
- r)
* p1)
+ (r
* p2)) and
A5:
0
<= r and
A6: r
<= 1 by
A1;
A7: (p
`1 )
= ((((1
- r)
* p1)
`1 )
+ ((r
* p2)
`1 )) by
A4,
TOPREAL3: 2
.= ((((1
- r)
* p1)
`1 )
+ (r
* (p2
`1 ))) by
TOPREAL3: 4
.= (((1
- r)
* (p1
`1 ))
+ (r
* (p2
`1 ))) by
TOPREAL3: 4;
per cases ;
suppose
0
= r;
then p
= (p1
+ (
0
* p2)) by
A4,
RLVECT_1:def 8
.= (p1
+ (
0. (
TOP-REAL 2))) by
RLVECT_1: 10
.= p1 by
RLVECT_1: 4;
hence thesis by
A2;
end;
suppose
A8:
0
<> r;
A9: (((1
- r)
* a)
+ (r
* a))
= a;
(1
- r)
>=
0 by
A6,
XREAL_1: 48;
then
A10: ((1
- r)
* (p1
`1 ))
>= ((1
- r)
* a) by
A2,
XREAL_1: 64;
(r
* (p2
`1 ))
> (r
* a) by
A3,
A5,
A8,
XREAL_1: 68;
hence thesis by
A7,
A10,
A9,
XREAL_1: 8;
end;
end;
reserve j for
Nat;
theorem ::
JORDAN20:6
Th6: for f be
S-Sequence_in_R2, p,q be
Point of (
TOP-REAL 2) st 1
<= j & j
< (
len f) & p
in (
LSeg (f,j)) & q
in (
LSeg (f,j)) & ((f
/. j)
`2 )
= ((f
/. (j
+ 1))
`2 ) & ((f
/. j)
`1 )
> ((f
/. (j
+ 1))
`1 ) &
LE (p,q,(
L~ f),(f
/. 1),(f
/. (
len f))) holds (p
`1 )
>= (q
`1 )
proof
let f be
S-Sequence_in_R2, p,q be
Point of (
TOP-REAL 2);
assume that
A1: 1
<= j and
A2: j
< (
len f) and
A3: p
in (
LSeg (f,j)) and
A4: q
in (
LSeg (f,j)) and
A5: ((f
/. j)
`2 )
= ((f
/. (j
+ 1))
`2 ) and
A6: ((f
/. j)
`1 )
> ((f
/. (j
+ 1))
`1 ) and
A7:
LE (p,q,(
L~ f),(f
/. 1),(f
/. (
len f)));
(j
+ 1)
<= (
len f) by
A2,
NAT_1: 13;
then
A8: (
LSeg (f,j))
= (
LSeg ((f
/. j),(f
/. (j
+ 1)))) by
A1,
TOPREAL1:def 3;
per cases ;
suppose
A9: (p
`1 )
<> ((f
/. j)
`1 );
((f
/. j)
`1 )
>= (p
`1 ) by
A3,
A6,
A8,
TOPREAL1: 3;
then ((f
/. j)
`1 )
> (p
`1 ) by
A9,
XXREAL_0: 1;
then
A10: (((f
/. j)
`1 )
- (p
`1 ))
>
0 by
XREAL_1: 50;
now
reconsider a = ((((f
/. j)
`1 )
- (q
`1 ))
/ (((f
/. j)
`1 )
- (p
`1 ))) as
Real;
A11: (1
- a)
= (((((f
/. j)
`1 )
- (p
`1 ))
/ (((f
/. j)
`1 )
- (p
`1 )))
- ((((f
/. j)
`1 )
- (q
`1 ))
/ (((f
/. j)
`1 )
- (p
`1 )))) by
A10,
XCMPLX_1: 60
.= (((((f
/. j)
`1 )
- (p
`1 ))
- (((f
/. j)
`1 )
- (q
`1 )))
/ (((f
/. j)
`1 )
- (p
`1 ))) by
XCMPLX_1: 120
.= (((q
`1 )
- (p
`1 ))
/ (((f
/. j)
`1 )
- (p
`1 )));
A12: ((((1
- a)
* (f
/. j))
+ (a
* p))
`1 )
= ((((1
- a)
* (f
/. j))
`1 )
+ ((a
* p)
`1 )) by
TOPREAL3: 2
.= (((1
- a)
* ((f
/. j)
`1 ))
+ ((a
* p)
`1 )) by
TOPREAL3: 4
.= (((1
* ((f
/. j)
`1 ))
- (a
* ((f
/. j)
`1 )))
+ (a
* (p
`1 ))) by
TOPREAL3: 4
.= (((f
/. j)
`1 )
- (a
* (((f
/. j)
`1 )
- (p
`1 ))))
.= (((f
/. j)
`1 )
- (((f
/. j)
`1 )
- (q
`1 ))) by
A10,
XCMPLX_1: 87
.= (q
`1 );
((f
/. j)
`1 )
>= (q
`1 ) by
A4,
A6,
A8,
TOPREAL1: 3;
then
A13: (((f
/. j)
`1 )
- (q
`1 ))
>=
0 by
XREAL_1: 48;
A14: (p
`2 )
= ((f
/. j)
`2 ) by
A3,
A5,
A8,
GOBOARD7: 6;
((((1
- a)
* (f
/. j))
+ (a
* p))
`2 )
= ((((1
- a)
* (f
/. j))
`2 )
+ ((a
* p)
`2 )) by
TOPREAL3: 2
.= (((1
- a)
* ((f
/. j)
`2 ))
+ ((a
* p)
`2 )) by
TOPREAL3: 4
.= (((1
* ((f
/. j)
`2 ))
- (a
* ((f
/. j)
`2 )))
+ (a
* (p
`2 ))) by
TOPREAL3: 4
.= (q
`2 ) by
A4,
A5,
A8,
A14,
GOBOARD7: 6;
then
A15: q
= (((1
- a)
* (f
/. j))
+ (a
* p)) by
A12,
TOPREAL3: 6;
assume
A16: (p
`1 )
< (q
`1 );
then ((q
`1 )
- (p
`1 ))
>
0 by
XREAL_1: 50;
then ((1
- a)
+ a)
>= (
0
+ a) by
A10,
A11,
XREAL_1: 7;
then q
in (
LSeg ((f
/. j),p)) by
A10,
A13,
A15;
then
LE (q,p,(
L~ f),(f
/. 1),(f
/. (
len f))) by
A1,
A2,
A3,
SPRECT_3: 23;
hence contradiction by
A7,
A16,
JORDAN5C: 12,
TOPREAL1: 25;
end;
hence thesis;
end;
suppose (p
`1 )
= ((f
/. j)
`1 );
hence thesis by
A4,
A6,
A8,
TOPREAL1: 3;
end;
end;
theorem ::
JORDAN20:7
Th7: for f be
S-Sequence_in_R2, p,q be
Point of (
TOP-REAL 2) st 1
<= j & j
< (
len f) & p
in (
LSeg (f,j)) & q
in (
LSeg (f,j)) & ((f
/. j)
`2 )
= ((f
/. (j
+ 1))
`2 ) & ((f
/. j)
`1 )
< ((f
/. (j
+ 1))
`1 ) &
LE (p,q,(
L~ f),(f
/. 1),(f
/. (
len f))) holds (p
`1 )
<= (q
`1 )
proof
let f be
S-Sequence_in_R2, p,q be
Point of (
TOP-REAL 2);
assume that
A1: 1
<= j and
A2: j
< (
len f) and
A3: p
in (
LSeg (f,j)) and
A4: q
in (
LSeg (f,j)) and
A5: ((f
/. j)
`2 )
= ((f
/. (j
+ 1))
`2 ) and
A6: ((f
/. j)
`1 )
< ((f
/. (j
+ 1))
`1 ) and
A7:
LE (p,q,(
L~ f),(f
/. 1),(f
/. (
len f)));
(j
+ 1)
<= (
len f) by
A2,
NAT_1: 13;
then
A8: (
LSeg (f,j))
= (
LSeg ((f
/. j),(f
/. (j
+ 1)))) by
A1,
TOPREAL1:def 3;
per cases ;
suppose
A9: (p
`1 )
<> ((f
/. j)
`1 );
((f
/. j)
`1 )
<= (p
`1 ) by
A3,
A6,
A8,
TOPREAL1: 3;
then ((f
/. j)
`1 )
< (p
`1 ) by
A9,
XXREAL_0: 1;
then
A10: (((f
/. j)
`1 )
- (p
`1 ))
<
0 by
XREAL_1: 49;
now
reconsider a = ((((f
/. j)
`1 )
- (q
`1 ))
/ (((f
/. j)
`1 )
- (p
`1 ))) as
Real;
A11: (1
- a)
= (((((f
/. j)
`1 )
- (p
`1 ))
/ (((f
/. j)
`1 )
- (p
`1 )))
- ((((f
/. j)
`1 )
- (q
`1 ))
/ (((f
/. j)
`1 )
- (p
`1 )))) by
A10,
XCMPLX_1: 60
.= (((((f
/. j)
`1 )
- (p
`1 ))
- (((f
/. j)
`1 )
- (q
`1 )))
/ (((f
/. j)
`1 )
- (p
`1 ))) by
XCMPLX_1: 120
.= (((q
`1 )
- (p
`1 ))
/ (((f
/. j)
`1 )
- (p
`1 )));
A12: ((((1
- a)
* (f
/. j))
+ (a
* p))
`1 )
= ((((1
- a)
* (f
/. j))
`1 )
+ ((a
* p)
`1 )) by
TOPREAL3: 2
.= (((1
- a)
* ((f
/. j)
`1 ))
+ ((a
* p)
`1 )) by
TOPREAL3: 4
.= (((1
* ((f
/. j)
`1 ))
- (a
* ((f
/. j)
`1 )))
+ (a
* (p
`1 ))) by
TOPREAL3: 4
.= (((f
/. j)
`1 )
- (a
* (((f
/. j)
`1 )
- (p
`1 ))))
.= (((f
/. j)
`1 )
- (((f
/. j)
`1 )
- (q
`1 ))) by
A10,
XCMPLX_1: 87
.= (q
`1 );
((f
/. j)
`1 )
<= (q
`1 ) by
A4,
A6,
A8,
TOPREAL1: 3;
then
A13: (((f
/. j)
`1 )
- (q
`1 ))
<=
0 by
XREAL_1: 47;
A14: (p
`2 )
= ((f
/. j)
`2 ) by
A3,
A5,
A8,
GOBOARD7: 6;
((((1
- a)
* (f
/. j))
+ (a
* p))
`2 )
= ((((1
- a)
* (f
/. j))
`2 )
+ ((a
* p)
`2 )) by
TOPREAL3: 2
.= (((1
- a)
* ((f
/. j)
`2 ))
+ ((a
* p)
`2 )) by
TOPREAL3: 4
.= (((1
* ((f
/. j)
`2 ))
- (a
* ((f
/. j)
`2 )))
+ (a
* (p
`2 ))) by
TOPREAL3: 4
.= (q
`2 ) by
A4,
A5,
A8,
A14,
GOBOARD7: 6;
then
A15: q
= (((1
- a)
* (f
/. j))
+ (a
* p)) by
A12,
TOPREAL3: 6;
assume
A16: (p
`1 )
> (q
`1 );
then ((q
`1 )
- (p
`1 ))
<
0 by
XREAL_1: 49;
then ((1
- a)
+ a)
>= (
0
+ a) by
A10,
A11,
XREAL_1: 7;
then q
in (
LSeg ((f
/. j),p)) by
A10,
A13,
A15;
then
LE (q,p,(
L~ f),(f
/. 1),(f
/. (
len f))) by
A1,
A2,
A3,
SPRECT_3: 23;
hence contradiction by
A7,
A16,
JORDAN5C: 12,
TOPREAL1: 25;
end;
hence thesis;
end;
suppose (p
`1 )
= ((f
/. j)
`1 );
hence thesis by
A4,
A6,
A8,
TOPREAL1: 3;
end;
end;
definition
let P be
Subset of (
TOP-REAL 2), p1,p2,p be
Point of (
TOP-REAL 2), e be
Real;
::
JORDAN20:def1
pred p
is_Lin P,p1,p2,e means P
is_an_arc_of (p1,p2) & p
in P & (p
`1 )
= e & ex p4 be
Point of (
TOP-REAL 2) st (p4
`1 )
< e &
LE (p4,p,P,p1,p2) & for p5 be
Point of (
TOP-REAL 2) st
LE (p4,p5,P,p1,p2) &
LE (p5,p,P,p1,p2) holds (p5
`1 )
<= e;
::
JORDAN20:def2
pred p
is_Rin P,p1,p2,e means P
is_an_arc_of (p1,p2) & p
in P & (p
`1 )
= e & ex p4 be
Point of (
TOP-REAL 2) st (p4
`1 )
> e &
LE (p4,p,P,p1,p2) & for p5 be
Point of (
TOP-REAL 2) st
LE (p4,p5,P,p1,p2) &
LE (p5,p,P,p1,p2) holds (p5
`1 )
>= e;
::
JORDAN20:def3
pred p
is_Lout P,p1,p2,e means P
is_an_arc_of (p1,p2) & p
in P & (p
`1 )
= e & ex p4 be
Point of (
TOP-REAL 2) st (p4
`1 )
< e &
LE (p,p4,P,p1,p2) & for p5 be
Point of (
TOP-REAL 2) st
LE (p5,p4,P,p1,p2) &
LE (p,p5,P,p1,p2) holds (p5
`1 )
<= e;
::
JORDAN20:def4
pred p
is_Rout P,p1,p2,e means P
is_an_arc_of (p1,p2) & p
in P & (p
`1 )
= e & ex p4 be
Point of (
TOP-REAL 2) st (p4
`1 )
> e &
LE (p,p4,P,p1,p2) & for p5 be
Point of (
TOP-REAL 2) st
LE (p5,p4,P,p1,p2) &
LE (p,p5,P,p1,p2) holds (p5
`1 )
>= e;
::
JORDAN20:def5
pred p
is_OSin P,p1,p2,e means P
is_an_arc_of (p1,p2) & p
in P & (p
`1 )
= e & ex p7 be
Point of (
TOP-REAL 2) st
LE (p7,p,P,p1,p2) & (for p8 be
Point of (
TOP-REAL 2) st
LE (p7,p8,P,p1,p2) &
LE (p8,p,P,p1,p2) holds (p8
`1 )
= e) & for p4 be
Point of (
TOP-REAL 2) st
LE (p4,p7,P,p1,p2) & p4
<> p7 holds (ex p5 be
Point of (
TOP-REAL 2) st
LE (p4,p5,P,p1,p2) &
LE (p5,p7,P,p1,p2) & (p5
`1 )
> e) & ex p6 be
Point of (
TOP-REAL 2) st
LE (p4,p6,P,p1,p2) &
LE (p6,p7,P,p1,p2) & (p6
`1 )
< e;
::
JORDAN20:def6
pred p
is_OSout P,p1,p2,e means P
is_an_arc_of (p1,p2) & p
in P & (p
`1 )
= e & ex p7 be
Point of (
TOP-REAL 2) st
LE (p,p7,P,p1,p2) & (for p8 be
Point of (
TOP-REAL 2) st
LE (p8,p7,P,p1,p2) &
LE (p,p8,P,p1,p2) holds (p8
`1 )
= e) & for p4 be
Point of (
TOP-REAL 2) st
LE (p7,p4,P,p1,p2) & p4
<> p7 holds (ex p5 be
Point of (
TOP-REAL 2) st
LE (p5,p4,P,p1,p2) &
LE (p7,p5,P,p1,p2) & (p5
`1 )
> e) & ex p6 be
Point of (
TOP-REAL 2) st
LE (p6,p4,P,p1,p2) &
LE (p7,p6,P,p1,p2) & (p6
`1 )
< e;
correctness ;
end
theorem ::
JORDAN20:8
for P be
Subset of (
TOP-REAL 2), p1,p2,p be
Point of (
TOP-REAL 2), e be
Real st P
is_an_arc_of (p1,p2) & (p1
`1 )
<= e & (p2
`1 )
>= e holds ex p3 be
Point of (
TOP-REAL 2) st p3
in P & (p3
`1 )
= e
proof
let P be
Subset of (
TOP-REAL 2), p1,p2,p be
Point of (
TOP-REAL 2), e be
Real;
set x = the
Element of (P
/\ (
Vertical_Line e));
assume P
is_an_arc_of (p1,p2) & (p1
`1 )
<= e & (p2
`1 )
>= e;
then P
meets (
Vertical_Line e) by
JORDAN6: 49;
then
A1: (P
/\ (
Vertical_Line e))
<>
{} by
XBOOLE_0:def 7;
then x
in (
Vertical_Line e) by
XBOOLE_0:def 4;
then x
in { p3 where p3 be
Point of (
TOP-REAL 2) : (p3
`1 )
= e } by
JORDAN6:def 6;
then
A2: ex p4 be
Point of (
TOP-REAL 2) st p4
= x & (p4
`1 )
= e;
x
in P by
A1,
XBOOLE_0:def 4;
hence thesis by
A2;
end;
theorem ::
JORDAN20:9
for P be non
empty
Subset of (
TOP-REAL 2), p1,p2,p be
Point of (
TOP-REAL 2), e be
Real st P
is_an_arc_of (p1,p2) & (p1
`1 )
< e & p
in P & (p
`1 )
= e holds p
is_Lin (P,p1,p2,e) or p
is_Rin (P,p1,p2,e) or p
is_OSin (P,p1,p2,e)
proof
let P be non
empty
Subset of (
TOP-REAL 2), p1,p2,p be
Point of (
TOP-REAL 2), e be
Real;
assume that
A1: P
is_an_arc_of (p1,p2) and
A2: (p1
`1 )
< e and
A3: p
in P and
A4: (p
`1 )
= e;
now
reconsider pr1a =
proj1 as
Function of (
TOP-REAL 2),
R^1 by
TOPMETR: 17;
reconsider pro1 = (pr1a
| P) as
Function of ((
TOP-REAL 2)
| P),
R^1 by
PRE_TOPC: 9;
consider f be
Function of
I[01] , ((
TOP-REAL 2)
| P) such that
A5: f is
being_homeomorphism and
A6: (f
.
0 )
= p1 and
A7: (f
. 1)
= p2 by
A1,
TOPREAL1:def 1;
A8: f is
continuous by
A5,
TOPS_2:def 5;
A9: (
rng f)
= (
[#] ((
TOP-REAL 2)
| P)) by
A5,
TOPS_2:def 5;
then p
in (
rng f) by
A3,
PRE_TOPC:def 5;
then
consider xs be
object such that
A10: xs
in (
dom f) and
A11: p
= (f
. xs) by
FUNCT_1:def 3;
A12: (
dom f)
= (
[#]
I[01] ) by
A5,
TOPS_2:def 5;
then
reconsider s2 = xs as
Element of
REAL by
A10,
BORSUK_1: 40;
A13:
0
<= s2 by
A10,
BORSUK_1: 40,
XXREAL_1: 1;
A14:
0
in
REAL by
XREAL_0:def 1;
for q be
Point of (
TOP-REAL 2) st q
= (f
.
0 ) holds (q
`1 )
<> e by
A2,
A6;
then
A15:
0
in { s where s be
Element of
REAL :
0
<= s & s
<= s2 & (for q be
Point of (
TOP-REAL 2) st q
= (f
. s) holds (q
`1 )
<> e) } by
A13,
A14;
{ s where s be
Element of
REAL :
0
<= s & s
<= s2 & for q be
Point of (
TOP-REAL 2) st q
= (f
. s) holds (q
`1 )
<> e }
c=
REAL
proof
let x be
object;
assume x
in { s where s be
Element of
REAL :
0
<= s & s
<= s2 & (for q be
Point of (
TOP-REAL 2) st q
= (f
. s) holds (q
`1 )
<> e) };
then ex s be
Element of
REAL st s
= x &
0
<= s & s
<= s2 & for q be
Point of (
TOP-REAL 2) st q
= (f
. s) holds (q
`1 )
<> e;
hence thesis;
end;
then
reconsider R = { s where s be
Element of
REAL :
0
<= s & s
<= s2 & (for q be
Point of (
TOP-REAL 2) st q
= (f
. s) holds (q
`1 )
<> e) } as non
empty
Subset of
REAL by
A15;
A16: s2
<= 1 by
A10,
BORSUK_1: 40,
XXREAL_1: 1;
R
c=
[.
0 , 1.]
proof
let x be
object;
assume x
in R;
then
consider s be
Element of
REAL such that
A17: s
= x &
0
<= s and
A18: s
<= s2 and for q be
Point of (
TOP-REAL 2) st q
= (f
. s) holds (q
`1 )
<> e;
s
<= 1 by
A16,
A18,
XXREAL_0: 2;
hence thesis by
A17,
XXREAL_1: 1;
end;
then
reconsider R99 = R as
Subset of
I[01] by
BORSUK_1: 40;
reconsider s0 = (
upper_bound R) as
Element of
REAL by
XREAL_0:def 1;
A19: for s be
Real st s
in R holds s
< s2
proof
let s be
Real;
assume s
in R;
then
A20: ex s3 be
Element of
REAL st s3
= s &
0
<= s3 & s3
<= s2 & for q be
Point of (
TOP-REAL 2) st q
= (f
. s3) holds (q
`1 )
<> e;
then s
<> s2 by
A4,
A11;
hence thesis by
A20,
XXREAL_0: 1;
end;
then for s be
Real st s
in R holds s
<= s2;
then
A21: s0
<= s2 by
SEQ_4: 45;
then
A22: s0
<= 1 by
A16,
XXREAL_0: 2;
R99
= R;
then
A23:
0
<= s0 by
A15,
BORSUK_4: 26;
then s0
in (
dom f) by
A12,
A22,
BORSUK_1: 40,
XXREAL_1: 1;
then (f
. s0)
in (
rng f) by
FUNCT_1:def 3;
then (f
. s0)
in P by
A9,
PRE_TOPC:def 5;
then
reconsider p9 = (f
. s0) as
Point of (
TOP-REAL 2);
A24:
LE (p9,p,P,p1,p2) by
A1,
A5,
A6,
A7,
A11,
A16,
A23,
A21,
A22,
JORDAN5C: 8;
for p7 be
Point of ((
TOP-REAL 2)
| P) holds (pro1
. p7)
= (
proj1
. p7)
proof
let p7 be
Point of ((
TOP-REAL 2)
| P);
the
carrier of ((
TOP-REAL 2)
| P)
= P by
PRE_TOPC: 8;
hence thesis by
FUNCT_1: 49;
end;
then
A25: pro1 is
continuous by
JGRAPH_2: 29;
reconsider h = (pro1
* f) as
Function of
I[01] ,
R^1 ;
A26: (
dom h)
=
[.
0 , 1.] by
BORSUK_1: 40,
FUNCT_2:def 1;
for s be
ExtReal st s
in R holds s
<= s2 by
A19;
then s2 is
UpperBound of R by
XXREAL_2:def 1;
then
A27: R is
bounded_above by
XXREAL_2:def 10;
A28: (
rng f)
= P by
A9,
PRE_TOPC:def 5;
A29: for p8 be
Point of (
TOP-REAL 2) st
LE (p9,p8,P,p1,p2) &
LE (p8,p,P,p1,p2) holds (p8
`1 )
= e
proof
let p8 be
Point of (
TOP-REAL 2);
assume that
A30:
LE (p9,p8,P,p1,p2) and
A31:
LE (p8,p,P,p1,p2);
A32: p8
in P by
A30,
JORDAN5C:def 3;
then
consider x8 be
object such that
A33: x8
in (
dom f) and
A34: p8
= (f
. x8) by
A28,
FUNCT_1:def 3;
reconsider s8 = x8 as
Element of
REAL by
A12,
A33,
BORSUK_1: 40;
A35: s8
<= 1 by
A33,
BORSUK_1: 40,
XXREAL_1: 1;
then
A36: s8
<= s2 by
A5,
A6,
A7,
A11,
A13,
A16,
A31,
A34,
JORDAN5C:def 3;
A37:
0
<= s8 by
A33,
BORSUK_1: 40,
XXREAL_1: 1;
then
A38: s0
<= s8 by
A5,
A6,
A7,
A22,
A30,
A34,
A35,
JORDAN5C:def 3;
now
reconsider s8n = s8 as
Point of
RealSpace by
METRIC_1:def 13;
reconsider s8m = s8 as
Point of (
Closed-Interval-MSpace (
0 ,1)) by
A33,
BORSUK_1: 40,
TOPMETR: 10;
reconsider ee = (
|.((p8
`1 )
- e).|
/ 2) as
Real;
reconsider w = (p8
`1 ) as
Element of
RealSpace by
METRIC_1:def 13,
XREAL_0:def 1;
reconsider B = (
Ball (w,ee)) as
Subset of
R^1 by
METRIC_1:def 13,
TOPMETR: 17;
A39: B
= { s7 where s7 be
Real : ((p8
`1 )
- ee)
< s7 & s7
< ((p8
`1 )
+ ee) } by
JORDAN2B: 17
.=
].((p8
`1 )
- ee), ((p8
`1 )
+ ee).[ by
RCOMP_1:def 2;
assume
A40: (p8
`1 )
<> e;
then ((p8
`1 )
- e)
<>
0 ;
then
|.((p8
`1 )
- e).|
>
0 by
COMPLEX1: 47;
then
A41: w
in (
Ball (w,ee)) by
GOBOARD6: 1,
XREAL_1: 139;
A42: (h
" B) is
open &
I[01]
= (
TopSpaceMetr (
Closed-Interval-MSpace (
0 ,1))) by
A8,
A25,
TOPMETR: 20,
TOPMETR:def 6,
TOPMETR:def 7,
UNIFORM1: 2;
(h
. s8)
= (pro1
. (f
. s8)) by
A26,
A33,
BORSUK_1: 40,
FUNCT_1: 12
.= (
proj1
. p8) by
A32,
A34,
FUNCT_1: 49
.= (p8
`1 ) by
PSCOMP_1:def 5;
then s8
in (h
" B) by
A26,
A33,
A41,
BORSUK_1: 40,
FUNCT_1:def 7;
then
consider r0 be
Real such that
A43: r0
>
0 and
A44: (
Ball (s8m,r0))
c= (h
" B) by
A42,
TOPMETR: 15;
reconsider r0 as
Real;
reconsider r01 = (
min ((s2
- s8),r0)) as
Real;
s8
< s2 by
A4,
A11,
A34,
A36,
A40,
XXREAL_0: 1;
then (s2
- s8)
>
0 by
XREAL_1: 50;
then
A45: r01
>
0 by
A43,
XXREAL_0: 21;
then
A46: ((r01
- (r01
/ 2))
+ (r01
/ 2))
> (
0
+ (r01
/ 2)) by
XREAL_1: 6;
then
A47: (s8
+ (r01
/ 2))
< (s8
+ r01) by
XREAL_1: 6;
reconsider s70 = (s8
+ (r01
/ 2)) as
Real;
the
carrier of (
Closed-Interval-MSpace (
0 ,1))
=
[.
0 , 1.] & (
Ball (s8n,r01))
=
].(s8
- r01), (s8
+ r01).[ by
FRECHET: 7,
TOPMETR: 10;
then
A48: (
Ball (s8m,r01))
= (
].(s8
- r01), (s8
+ r01).[
/\
[.
0 , 1.]) by
TOPMETR: 9;
(s2
- s8)
>= r01 by
XXREAL_0: 17;
then
A49: ((s2
- s8)
+ s8)
>= (r01
+ s8) by
XREAL_1: 7;
then
A50: s70
<= s2 by
A47,
XXREAL_0: 2;
(s8
+ r01)
<= 1 by
A16,
A49,
XXREAL_0: 2;
then (s8
+ (r01
/ 2))
< 1 by
A47,
XXREAL_0: 2;
then
A51: (s8
+ (r01
/ 2))
in
[.
0 , 1.] by
A37,
A45,
XXREAL_1: 1;
(
Ball (s8m,r01))
c= (
Ball (s8m,r0)) by
PCOMPS_1: 1,
XXREAL_0: 17;
then
A52: (
].(s8
- r01), (s8
+ r01).[
/\
[.
0 , 1.])
c= (h
" B) by
A44,
A48;
(s8
+
0 )
< (s8
+ ((r01
/ 2)
+ r01)) by
A45,
XREAL_1: 6;
then ((s8
- r01)
+ r01)
< ((s8
+ (r01
/ 2))
+ r01);
then
A53: (s8
- r01)
< (s8
+ (r01
/ 2)) by
XREAL_1: 6;
(s8
+ (r01
/ 2))
< (s8
+ r01) by
A46,
XREAL_1: 6;
then (s8
+ (r01
/ 2))
in
].(s8
- r01), (s8
+ r01).[ by
A53,
XXREAL_1: 4;
then
A54: (s8
+ (r01
/ 2))
in (
].(s8
- r01), (s8
+ r01).[
/\
[.
0 , 1.]) by
A51,
XBOOLE_0:def 4;
then
A55: (h
. (s8
+ (r01
/ 2)))
in B by
A52,
FUNCT_1:def 7;
A56: (s8
+ (r01
/ 2))
in (
dom h) by
A52,
A54,
FUNCT_1:def 7;
A57: for p7 be
Point of (
TOP-REAL 2) st p7
= (f
. s70) holds (p7
`1 )
<> e
proof
let p7 be
Point of (
TOP-REAL 2);
assume
A58: p7
= (f
. s70);
s70
<= 1 by
A16,
A50,
XXREAL_0: 2;
then s70
in
[.
0 , 1.] by
A37,
A45,
XXREAL_1: 1;
then
A59: p7
in (
rng f) by
A12,
A58,
BORSUK_1: 40,
FUNCT_1:def 3;
A60: (
rng f)
= (
[#] ((
TOP-REAL 2)
| P)) by
A5,
TOPS_2:def 5
.= P by
PRE_TOPC:def 5;
A61: (h
. s70)
= (pro1
. (f
. s70)) by
A56,
FUNCT_1: 12
.= (pr1a
. p7) by
A58,
A59,
A60,
FUNCT_1: 49
.= (p7
`1 ) by
PSCOMP_1:def 5;
then
A62: (p7
`1 )
< ((p8
`1 )
+ ee) by
A39,
A55,
XXREAL_1: 4;
A63: ((p8
`1 )
- ee)
< (p7
`1 ) by
A39,
A55,
A61,
XXREAL_1: 4;
now
assume
A64: (p7
`1 )
= e;
now
per cases ;
case
A65: ((p8
`1 )
- e)
>=
0 ;
then ((p8
`1 )
- (((p8
`1 )
- e)
/ 2))
< e by
A63,
A64,
ABSVALUE:def 1;
then (((p8
`1 )
/ 2)
+ (e
/ 2))
< ((e
/ 2)
+ (e
/ 2));
then ((p8
`1 )
/ 2)
< (e
/ 2) by
XREAL_1: 7;
then
A66: (((p8
`1 )
/ 2)
- (e
/ 2))
< ((e
/ 2)
- (e
/ 2)) by
XREAL_1: 14;
(((p8
`1 )
- e)
/ 2)
>= (
0
/ 2) by
A65;
hence contradiction by
A66;
end;
case
A67: ((p8
`1 )
- e)
<
0 ;
then e
< ((p8
`1 )
+ ((
- ((p8
`1 )
- e))
/ 2)) by
A62,
A64,
ABSVALUE:def 1;
then (((p8
`1 )
/ 2)
+ (e
/ 2))
> ((e
/ 2)
+ (e
/ 2));
then ((p8
`1 )
/ 2)
> (e
/ 2) by
XREAL_1: 7;
then
A68: (((p8
`1 )
/ 2)
- (e
/ 2))
> ((e
/ 2)
- (e
/ 2)) by
XREAL_1: 14;
(((p8
`1 )
- e)
/ 2)
<= (
0
/ 2) by
A67;
hence contradiction by
A68;
end;
end;
hence contradiction;
end;
hence thesis;
end;
s8
< s70 by
A45,
XREAL_1: 29,
XREAL_1: 139;
then
consider s7 be
Real such that
A69: s8
< s7 and
A70:
0
<= s7 & s7
<= s2 & for p7 be
Point of (
TOP-REAL 2) st p7
= (f
. s7) holds (p7
`1 )
<> e by
A37,
A50,
A57;
reconsider s7 as
Element of
REAL by
XREAL_0:def 1;
s7
in R by
A70;
then s7
<= s0 by
A27,
SEQ_4:def 1;
hence contradiction by
A38,
A69,
XXREAL_0: 2;
end;
hence thesis;
end;
assume not p
is_OSin (P,p1,p2,e);
then
consider p4 be
Point of (
TOP-REAL 2) such that
A71:
LE (p4,p9,P,p1,p2) and
A72: p4
<> p9 and
A73: (for p5 be
Point of (
TOP-REAL 2) st
LE (p4,p5,P,p1,p2) &
LE (p5,p9,P,p1,p2) holds (p5
`1 )
<= e) or for p6 be
Point of (
TOP-REAL 2) st
LE (p4,p6,P,p1,p2) &
LE (p6,p9,P,p1,p2) holds (p6
`1 )
>= e by
A1,
A3,
A4,
A24,
A29;
A74: p9
in P by
A71,
JORDAN5C:def 3;
now
per cases by
A73;
case
A75: for p5 be
Point of (
TOP-REAL 2) st
LE (p4,p5,P,p1,p2) &
LE (p5,p9,P,p1,p2) holds (p5
`1 )
<= e;
A76:
now
p4
in P by
A71,
JORDAN5C:def 3;
then p4
in (
rng f) by
A9,
PRE_TOPC:def 5;
then
consider xs4 be
object such that
A77: xs4
in (
dom f) and
A78: p4
= (f
. xs4) by
FUNCT_1:def 3;
reconsider s4 = xs4 as
Real by
A77;
A79:
0
<= s4 by
A77,
BORSUK_1: 40,
XXREAL_1: 1;
A80: s4
<= 1 by
A77,
BORSUK_1: 40,
XXREAL_1: 1;
assume
A81: not ex p51 be
Point of (
TOP-REAL 2) st
LE (p4,p51,P,p1,p2) &
LE (p51,p9,P,p1,p2) & (p51
`1 )
< e;
A82: for p51 be
Point of (
TOP-REAL 2) st
LE (p4,p51,P,p1,p2) &
LE (p51,p9,P,p1,p2) holds (p51
`1 )
= e
proof
let p51 be
Point of (
TOP-REAL 2);
assume
LE (p4,p51,P,p1,p2) &
LE (p51,p9,P,p1,p2);
then (p51
`1 )
>= e & (p51
`1 )
<= e by
A75,
A81;
hence thesis by
XXREAL_0: 1;
end;
A83:
now
assume s4
< s0;
then
A84: (s0
- s4)
>
0 by
XREAL_1: 50;
then
A85: s4
< (s4
+ ((s0
- s4)
/ 2)) by
XREAL_1: 29,
XREAL_1: 139;
((s0
- s4)
/ 2)
>
0 by
A84,
XREAL_1: 139;
then
consider r be
Real such that
A86: r
in R and
A87: (s0
- ((s0
- s4)
/ 2))
< r by
A27,
SEQ_4:def 1;
reconsider rss = r as
Real;
A88: ex s7 be
Element of
REAL st s7
= r &
0
<= s7 & s7
<= s2 & for q be
Point of (
TOP-REAL 2) st q
= (f
. s7) holds (q
`1 )
<> e by
A86;
then
A89: r
<= 1 by
A16,
XXREAL_0: 2;
then r
in
[.
0 , 1.] by
A79,
A85,
A87,
XXREAL_1: 1;
then (f
. rss)
in (
rng f) by
A12,
BORSUK_1: 40,
FUNCT_1:def 3;
then (f
. rss)
in P by
A9,
PRE_TOPC:def 5;
then
reconsider pss = (f
. rss) as
Point of (
TOP-REAL 2);
s4
< r by
A85,
A87,
XXREAL_0: 2;
then
A90:
LE (p4,pss,P,p1,p2) by
A1,
A5,
A6,
A7,
A78,
A79,
A80,
A89,
JORDAN5C: 8;
r
<= s0 by
A27,
A86,
SEQ_4:def 1;
then
LE (pss,p9,P,p1,p2) by
A1,
A5,
A6,
A7,
A22,
A79,
A85,
A87,
A89,
JORDAN5C: 8;
then (pss
`1 )
= e by
A82,
A90;
hence contradiction by
A88;
end;
s4
<= s0 by
A5,
A6,
A7,
A23,
A22,
A71,
A78,
A80,
JORDAN5C:def 3;
hence contradiction by
A72,
A78,
A83,
XXREAL_0: 1;
end;
now
assume ex p51 be
Point of (
TOP-REAL 2) st
LE (p4,p51,P,p1,p2) &
LE (p51,p9,P,p1,p2) & (p51
`1 )
< e;
then
consider p51 be
Point of (
TOP-REAL 2) such that
A91:
LE (p4,p51,P,p1,p2) and
A92:
LE (p51,p9,P,p1,p2) and
A93: (p51
`1 )
< e;
A94: for p5 be
Point of (
TOP-REAL 2) st
LE (p51,p5,P,p1,p2) &
LE (p5,p,P,p1,p2) holds (p5
`1 )
<= e
proof
let p5 be
Point of (
TOP-REAL 2);
assume that
A95:
LE (p51,p5,P,p1,p2) and
A96:
LE (p5,p,P,p1,p2);
A97:
LE (p4,p5,P,p1,p2) by
A91,
A95,
JORDAN5C: 13;
A98: p5
in P by
A95,
JORDAN5C:def 3;
then
A99: p5
= p9 implies
LE (p9,p5,P,p1,p2) by
JORDAN5C: 9;
now
per cases by
A1,
A74,
A98,
A99,
JORDAN5C: 14;
case
LE (p5,p9,P,p1,p2);
hence thesis by
A75,
A97;
end;
case
LE (p9,p5,P,p1,p2);
hence thesis by
A29,
A96;
end;
end;
hence thesis;
end;
LE (p51,p,P,p1,p2) by
A24,
A92,
JORDAN5C: 13;
hence p
is_Lin (P,p1,p2,e) by
A1,
A3,
A4,
A93,
A94;
end;
hence p
is_Lin (P,p1,p2,e) or p
is_Rin (P,p1,p2,e) by
A76;
end;
case
A100: for p6 be
Point of (
TOP-REAL 2) st
LE (p4,p6,P,p1,p2) &
LE (p6,p9,P,p1,p2) holds (p6
`1 )
>= e;
A101:
now
p4
in P by
A71,
JORDAN5C:def 3;
then p4
in (
rng f) by
A9,
PRE_TOPC:def 5;
then
consider xs4 be
object such that
A102: xs4
in (
dom f) and
A103: p4
= (f
. xs4) by
FUNCT_1:def 3;
reconsider s4 = xs4 as
Real by
A102;
A104:
0
<= s4 by
A102,
BORSUK_1: 40,
XXREAL_1: 1;
A105: s4
<= 1 by
A102,
BORSUK_1: 40,
XXREAL_1: 1;
assume
A106: not ex p51 be
Point of (
TOP-REAL 2) st
LE (p4,p51,P,p1,p2) &
LE (p51,p9,P,p1,p2) & (p51
`1 )
> e;
A107: for p51 be
Point of (
TOP-REAL 2) st
LE (p4,p51,P,p1,p2) &
LE (p51,p9,P,p1,p2) holds (p51
`1 )
= e
proof
let p51 be
Point of (
TOP-REAL 2);
assume
LE (p4,p51,P,p1,p2) &
LE (p51,p9,P,p1,p2);
then (p51
`1 )
<= e & (p51
`1 )
>= e by
A100,
A106;
hence thesis by
XXREAL_0: 1;
end;
A108:
now
assume s4
< s0;
then
A109: (s0
- s4)
>
0 by
XREAL_1: 50;
then
A110: s4
< (s4
+ ((s0
- s4)
/ 2)) by
XREAL_1: 29,
XREAL_1: 139;
((s0
- s4)
/ 2)
>
0 by
A109,
XREAL_1: 139;
then
consider r be
Real such that
A111: r
in R and
A112: (s0
- ((s0
- s4)
/ 2))
< r by
A27,
SEQ_4:def 1;
reconsider rss = r as
Real;
A113: ex s7 be
Element of
REAL st s7
= r &
0
<= s7 & s7
<= s2 & for q be
Point of (
TOP-REAL 2) st q
= (f
. s7) holds (q
`1 )
<> e by
A111;
then
A114: r
<= 1 by
A16,
XXREAL_0: 2;
then r
in
[.
0 , 1.] by
A104,
A110,
A112,
XXREAL_1: 1;
then (f
. rss)
in (
rng f) by
A12,
BORSUK_1: 40,
FUNCT_1:def 3;
then (f
. rss)
in P by
A9,
PRE_TOPC:def 5;
then
reconsider pss = (f
. rss) as
Point of (
TOP-REAL 2);
s4
< r by
A110,
A112,
XXREAL_0: 2;
then
A115:
LE (p4,pss,P,p1,p2) by
A1,
A5,
A6,
A7,
A103,
A104,
A105,
A114,
JORDAN5C: 8;
r
<= s0 by
A27,
A111,
SEQ_4:def 1;
then
LE (pss,p9,P,p1,p2) by
A1,
A5,
A6,
A7,
A22,
A104,
A110,
A112,
A114,
JORDAN5C: 8;
then (pss
`1 )
= e by
A107,
A115;
hence contradiction by
A113;
end;
s4
<= s0 by
A5,
A6,
A7,
A23,
A22,
A71,
A103,
A105,
JORDAN5C:def 3;
hence contradiction by
A72,
A103,
A108,
XXREAL_0: 1;
end;
now
assume ex p51 be
Point of (
TOP-REAL 2) st
LE (p4,p51,P,p1,p2) &
LE (p51,p9,P,p1,p2) & (p51
`1 )
> e;
then
consider p51 be
Point of (
TOP-REAL 2) such that
A116:
LE (p4,p51,P,p1,p2) and
A117:
LE (p51,p9,P,p1,p2) and
A118: (p51
`1 )
> e;
A119: for p5 be
Point of (
TOP-REAL 2) st
LE (p51,p5,P,p1,p2) &
LE (p5,p,P,p1,p2) holds (p5
`1 )
>= e
proof
let p5 be
Point of (
TOP-REAL 2);
assume that
A120:
LE (p51,p5,P,p1,p2) and
A121:
LE (p5,p,P,p1,p2);
A122:
LE (p4,p5,P,p1,p2) by
A116,
A120,
JORDAN5C: 13;
A123: p5
in P by
A120,
JORDAN5C:def 3;
then
A124: p5
= p9 implies
LE (p9,p5,P,p1,p2) by
JORDAN5C: 9;
now
per cases by
A1,
A74,
A123,
A124,
JORDAN5C: 14;
case
LE (p5,p9,P,p1,p2);
hence thesis by
A100,
A122;
end;
case
LE (p9,p5,P,p1,p2);
hence thesis by
A29,
A121;
end;
end;
hence thesis;
end;
LE (p51,p,P,p1,p2) by
A24,
A117,
JORDAN5C: 13;
hence p
is_Rin (P,p1,p2,e) by
A1,
A3,
A4,
A118,
A119;
end;
hence p
is_Lin (P,p1,p2,e) or p
is_Rin (P,p1,p2,e) by
A101;
end;
end;
hence p
is_Lin (P,p1,p2,e) or p
is_Rin (P,p1,p2,e);
end;
hence thesis;
end;
theorem ::
JORDAN20:10
for P be non
empty
Subset of (
TOP-REAL 2), p1,p2,p be
Point of (
TOP-REAL 2), e be
Real st P
is_an_arc_of (p1,p2) & (p2
`1 )
> e & p
in P & (p
`1 )
= e holds p
is_Lout (P,p1,p2,e) or p
is_Rout (P,p1,p2,e) or p
is_OSout (P,p1,p2,e)
proof
let P be non
empty
Subset of (
TOP-REAL 2), p1,p2,p be
Point of (
TOP-REAL 2), e be
Real;
assume that
A1: P
is_an_arc_of (p1,p2) and
A2: (p2
`1 )
> e and
A3: p
in P and
A4: (p
`1 )
= e;
now
reconsider pr1a =
proj1 as
Function of (
TOP-REAL 2),
R^1 by
TOPMETR: 17;
reconsider pro1 = (pr1a
| P) as
Function of ((
TOP-REAL 2)
| P),
R^1 by
PRE_TOPC: 9;
consider f be
Function of
I[01] , ((
TOP-REAL 2)
| P) such that
A5: f is
being_homeomorphism and
A6: (f
.
0 )
= p1 and
A7: (f
. 1)
= p2 by
A1,
TOPREAL1:def 1;
A8: f is
continuous by
A5,
TOPS_2:def 5;
A9: (
rng f)
= (
[#] ((
TOP-REAL 2)
| P)) by
A5,
TOPS_2:def 5;
then p
in (
rng f) by
A3,
PRE_TOPC:def 5;
then
consider xs be
object such that
A10: xs
in (
dom f) and
A11: p
= (f
. xs) by
FUNCT_1:def 3;
A12: (
dom f)
= (
[#]
I[01] ) by
A5,
TOPS_2:def 5;
reconsider s2 = xs as
Real by
A10;
A13: s2
<= 1 by
A10,
BORSUK_1: 40,
XXREAL_1: 1;
for q be
Point of (
TOP-REAL 2) st q
= (f
. 1) holds (q
`1 )
<> e by
A2,
A7;
then
A14: 1
in { s where s be
Real : 1
>= s & s
>= s2 & (for q be
Point of (
TOP-REAL 2) st q
= (f
. s) holds (q
`1 )
<> e) } by
A13;
{ s where s be
Real : 1
>= s & s
>= s2 & for q be
Point of (
TOP-REAL 2) st q
= (f
. s) holds (q
`1 )
<> e }
c=
REAL
proof
let x be
object;
assume x
in { s where s be
Real : 1
>= s & s
>= s2 & (for q be
Point of (
TOP-REAL 2) st q
= (f
. s) holds (q
`1 )
<> e) };
then
consider s be
Real such that
A15: s
= x & 1
>= s & s
>= s2 & for q be
Point of (
TOP-REAL 2) st q
= (f
. s) holds (q
`1 )
<> e;
s
in
REAL by
XREAL_0:def 1;
hence thesis by
A15;
end;
then
reconsider R = { s where s be
Real : 1
>= s & s
>= s2 & (for q be
Point of (
TOP-REAL 2) st q
= (f
. s) holds (q
`1 )
<> e) } as non
empty
Subset of
REAL by
A14;
reconsider s0 = (
lower_bound R) as
Real;
A16: for s be
Real st s
in R holds s
> s2
proof
let s be
Real;
assume s
in R;
then
A17: ex s3 be
Real st s3
= s & 1
>= s3 & s3
>= s2 & for q be
Point of (
TOP-REAL 2) st q
= (f
. s3) holds (q
`1 )
<> e;
then s
<> s2 by
A4,
A11;
hence thesis by
A17,
XXREAL_0: 1;
end;
then for s be
Real st s
in R holds s
>= s2;
then
A18: s0
>= s2 by
SEQ_4: 43;
for p7 be
Point of ((
TOP-REAL 2)
| P) holds (pro1
. p7)
= (
proj1
. p7)
proof
let p7 be
Point of ((
TOP-REAL 2)
| P);
the
carrier of ((
TOP-REAL 2)
| P)
= P by
PRE_TOPC: 8;
hence thesis by
FUNCT_1: 49;
end;
then
A19: pro1 is
continuous by
JGRAPH_2: 29;
reconsider h = (pro1
* f) as
Function of
I[01] ,
R^1 ;
A20: (
dom h)
=
[.
0 , 1.] by
BORSUK_1: 40,
FUNCT_2:def 1;
for s be
ExtReal st s
in R holds s
>= s2 by
A16;
then s2 is
LowerBound of R by
XXREAL_2:def 2;
then
A21: R is
bounded_below by
XXREAL_2:def 9;
A22:
0
<= s2 by
A10,
BORSUK_1: 40,
XXREAL_1: 1;
R
c=
[.
0 , 1.]
proof
let x be
object;
assume x
in R;
then ex s be
Real st s
= x & 1
>= s & s
>= s2 & for q be
Point of (
TOP-REAL 2) st q
= (f
. s) holds (q
`1 )
<> e;
hence thesis by
A22,
XXREAL_1: 1;
end;
then
A23: 1
>= s0 by
A14,
BORSUK_1: 40,
BORSUK_4: 26;
then s0
in (
dom f) by
A12,
A22,
A18,
BORSUK_1: 40,
XXREAL_1: 1;
then (f
. s0)
in (
rng f) by
FUNCT_1:def 3;
then (f
. s0)
in P by
A9,
PRE_TOPC:def 5;
then
reconsider p9 = (f
. s0) as
Point of (
TOP-REAL 2);
A24:
LE (p,p9,P,p1,p2) by
A1,
A5,
A6,
A7,
A11,
A22,
A13,
A23,
A18,
JORDAN5C: 8;
A25: (
rng f)
= P by
A9,
PRE_TOPC:def 5;
A26: for p8 be
Point of (
TOP-REAL 2) st
LE (p8,p9,P,p1,p2) &
LE (p,p8,P,p1,p2) holds (p8
`1 )
= e
proof
let p8 be
Point of (
TOP-REAL 2);
assume that
A27:
LE (p8,p9,P,p1,p2) and
A28:
LE (p,p8,P,p1,p2);
A29: p8
in P by
A27,
JORDAN5C:def 3;
then
consider x8 be
object such that
A30: x8
in (
dom f) and
A31: p8
= (f
. x8) by
A25,
FUNCT_1:def 3;
reconsider s8 = x8 as
Element of
REAL by
A12,
A30,
BORSUK_1: 40;
A32: s8
<= 1 by
A30,
BORSUK_1: 40,
XXREAL_1: 1;
0
<= s8 by
A30,
BORSUK_1: 40,
XXREAL_1: 1;
then
A33: s8
>= s2 by
A5,
A6,
A7,
A11,
A13,
A28,
A31,
A32,
JORDAN5C:def 3;
A34: s0
>= s8 by
A5,
A6,
A7,
A22,
A23,
A18,
A27,
A31,
A32,
JORDAN5C:def 3;
now
reconsider s8n = s8 as
Point of
RealSpace by
METRIC_1:def 13;
reconsider s8m = s8 as
Point of (
Closed-Interval-MSpace (
0 ,1)) by
A30,
BORSUK_1: 40,
TOPMETR: 10;
reconsider ee = (
|.((p8
`1 )
- e).|
/ 2) as
Real;
reconsider w = (p8
`1 ) as
Element of
RealSpace by
METRIC_1:def 13,
XREAL_0:def 1;
reconsider B = (
Ball (w,ee)) as
Subset of
R^1 by
METRIC_1:def 13,
TOPMETR: 17;
A35: B
= { s7 where s7 be
Real : ((p8
`1 )
- ee)
< s7 & s7
< ((p8
`1 )
+ ee) } by
JORDAN2B: 17
.=
].((p8
`1 )
- ee), ((p8
`1 )
+ ee).[ by
RCOMP_1:def 2;
assume
A36: (p8
`1 )
<> e;
then ((p8
`1 )
- e)
<>
0 ;
then
|.((p8
`1 )
- e).|
>
0 by
COMPLEX1: 47;
then
A37: w
in (
Ball (w,ee)) by
GOBOARD6: 1,
XREAL_1: 139;
A38: (h
" B) is
open &
I[01]
= (
TopSpaceMetr (
Closed-Interval-MSpace (
0 ,1))) by
A8,
A19,
TOPMETR: 20,
TOPMETR:def 6,
TOPMETR:def 7,
UNIFORM1: 2;
(h
. s8)
= (pro1
. (f
. s8)) by
A20,
A30,
BORSUK_1: 40,
FUNCT_1: 12
.= (
proj1
. p8) by
A29,
A31,
FUNCT_1: 49
.= (p8
`1 ) by
PSCOMP_1:def 5;
then s8
in (h
" B) by
A20,
A30,
A37,
BORSUK_1: 40,
FUNCT_1:def 7;
then
consider r0 be
Real such that
A39: r0
>
0 and
A40: (
Ball (s8m,r0))
c= (h
" B) by
A38,
TOPMETR: 15;
reconsider r0 as
Real;
reconsider r01 = (
min ((s8
- s2),r0)) as
Real;
the
carrier of (
Closed-Interval-MSpace (
0 ,1))
=
[.
0 , 1.] & (
Ball (s8n,r01))
=
].(s8
- r01), (s8
+ r01).[ by
FRECHET: 7,
TOPMETR: 10;
then
A41: (
Ball (s8m,r01))
= (
].(s8
- r01), (s8
+ r01).[
/\
[.
0 , 1.]) by
TOPMETR: 9;
s8
> s2 by
A4,
A11,
A31,
A33,
A36,
XXREAL_0: 1;
then (s8
- s2)
>
0 by
XREAL_1: 50;
then
A42: r01
>
0 by
A39,
XXREAL_0: 21;
then
A43: ((r01
- (r01
/ 2))
+ (r01
/ 2))
> (
0
+ (r01
/ 2)) by
XREAL_1: 6;
then
A44: (s8
- r01)
< (s8
- (r01
/ 2)) by
XREAL_1: 10;
A45: (r01
/ 2)
>
0 by
A42,
XREAL_1: 139;
then
A46: (s8
+ (
- (r01
/ 2)))
< (s8
+ (r01
/ 2)) by
XREAL_1: 8;
(s8
+ (r01
/ 2))
< (s8
+ r01) by
A43,
XREAL_1: 8;
then (s8
- (r01
/ 2))
< (s8
+ r01) by
A46,
XXREAL_0: 2;
then
A47: (s8
- (r01
/ 2))
in
].(s8
- r01), (s8
+ r01).[ by
A44,
XXREAL_1: 4;
A48: (s8
- (r01
/ 2))
> (s8
- r01) by
A43,
XREAL_1: 10;
(
Ball (s8m,r01))
c= (
Ball (s8m,r0)) by
PCOMPS_1: 1,
XXREAL_0: 17;
then
A49: (
].(s8
- r01), (s8
+ r01).[
/\
[.
0 , 1.])
c= (h
" B) by
A40,
A41;
reconsider s70 = (s8
- (r01
/ 2)) as
Real;
(s8
- s2)
>= r01 by
XXREAL_0: 17;
then (
- (s8
- s2))
<= (
- r01) by
XREAL_1: 24;
then
A50: ((s2
- s8)
+ s8)
<= ((
- r01)
+ s8) by
XREAL_1: 7;
(
- (
- (r01
/ 2)))
>
0 by
A42,
XREAL_1: 139;
then (
- (r01
/ 2))
<
0 ;
then
A51: (s8
+
0 )
> (s8
+ (
- (r01
/ 2))) by
XREAL_1: 8;
then
A52: 1
>= s70 by
A32,
XXREAL_0: 2;
(1
-
0 )
> (s8
- (r01
/ 2)) by
A32,
A45,
XREAL_1: 15;
then (s8
- (r01
/ 2))
in
[.
0 , 1.] by
A22,
A50,
A48,
XXREAL_1: 1;
then
A53: (s8
- (r01
/ 2))
in (
].(s8
- r01), (s8
+ r01).[
/\
[.
0 , 1.]) by
A47,
XBOOLE_0:def 4;
then
A54: (h
. (s8
- (r01
/ 2)))
in B by
A49,
FUNCT_1:def 7;
A55: (s8
- (r01
/ 2))
in (
dom h) by
A49,
A53,
FUNCT_1:def 7;
A56: for p7 be
Point of (
TOP-REAL 2) st p7
= (f
. s70) holds (p7
`1 )
<> e
proof
let p7 be
Point of (
TOP-REAL 2);
assume
A57: p7
= (f
. s70);
s70
in
[.
0 , 1.] by
A22,
A50,
A44,
A52,
XXREAL_1: 1;
then
A58: p7
in (
rng f) by
A12,
A57,
BORSUK_1: 40,
FUNCT_1:def 3;
A59: (
rng f)
= (
[#] ((
TOP-REAL 2)
| P)) by
A5,
TOPS_2:def 5
.= P by
PRE_TOPC:def 5;
A60: (h
. s70)
= (pro1
. (f
. s70)) by
A55,
FUNCT_1: 12
.= (pr1a
. p7) by
A57,
A58,
A59,
FUNCT_1: 49
.= (p7
`1 ) by
PSCOMP_1:def 5;
then
A61: (p7
`1 )
< ((p8
`1 )
+ ee) by
A35,
A54,
XXREAL_1: 4;
A62: ((p8
`1 )
- ee)
< (p7
`1 ) by
A35,
A54,
A60,
XXREAL_1: 4;
now
assume
A63: (p7
`1 )
= e;
now
per cases ;
case
A64: ((p8
`1 )
- e)
>=
0 ;
then ((p8
`1 )
- (((p8
`1 )
- e)
/ 2))
< e by
A62,
A63,
ABSVALUE:def 1;
then (((p8
`1 )
/ 2)
+ (e
/ 2))
< ((e
/ 2)
+ (e
/ 2));
then ((p8
`1 )
/ 2)
< (e
/ 2) by
XREAL_1: 7;
then
A65: (((p8
`1 )
/ 2)
- (e
/ 2))
< ((e
/ 2)
- (e
/ 2)) by
XREAL_1: 14;
(((p8
`1 )
- e)
/ 2)
>= (
0
/ 2) by
A64;
hence contradiction by
A65;
end;
case
A66: ((p8
`1 )
- e)
<
0 ;
then e
< ((p8
`1 )
+ ((
- ((p8
`1 )
- e))
/ 2)) by
A61,
A63,
ABSVALUE:def 1;
then (((p8
`1 )
/ 2)
+ (e
/ 2))
> ((e
/ 2)
+ (e
/ 2));
then ((p8
`1 )
/ 2)
> (e
/ 2) by
XREAL_1: 7;
then
A67: (((p8
`1 )
/ 2)
- (e
/ 2))
> ((e
/ 2)
- (e
/ 2)) by
XREAL_1: 14;
(((p8
`1 )
- e)
/ 2)
<= (
0
/ 2) by
A66;
hence contradiction by
A67;
end;
end;
hence contradiction;
end;
hence thesis;
end;
s70
>= s2 by
A50,
A44,
XXREAL_0: 2;
then
consider s7 be
Real such that
A68: s8
> s7 and
A69: 1
>= s7 & s7
>= s2 & for p7 be
Point of (
TOP-REAL 2) st p7
= (f
. s7) holds (p7
`1 )
<> e by
A51,
A52,
A56;
s7
in R by
A69;
then s7
>= s0 by
A21,
SEQ_4:def 2;
hence contradiction by
A34,
A68,
XXREAL_0: 2;
end;
hence thesis;
end;
assume not p
is_OSout (P,p1,p2,e);
then
consider p4 be
Point of (
TOP-REAL 2) such that
A70:
LE (p9,p4,P,p1,p2) and
A71: p4
<> p9 and
A72: (for p5 be
Point of (
TOP-REAL 2) st
LE (p5,p4,P,p1,p2) &
LE (p9,p5,P,p1,p2) holds (p5
`1 )
<= e) or for p6 be
Point of (
TOP-REAL 2) st
LE (p6,p4,P,p1,p2) &
LE (p9,p6,P,p1,p2) holds (p6
`1 )
>= e by
A1,
A3,
A4,
A24,
A26;
A73: p9
in P by
A70,
JORDAN5C:def 3;
now
per cases by
A72;
case
A74: for p5 be
Point of (
TOP-REAL 2) st
LE (p5,p4,P,p1,p2) &
LE (p9,p5,P,p1,p2) holds (p5
`1 )
<= e;
A75:
now
p4
in P by
A70,
JORDAN5C:def 3;
then p4
in (
rng f) by
A9,
PRE_TOPC:def 5;
then
consider xs4 be
object such that
A76: xs4
in (
dom f) and
A77: p4
= (f
. xs4) by
FUNCT_1:def 3;
reconsider s4 = xs4 as
Real by
A76;
A78: s4
<= 1 by
A76,
BORSUK_1: 40,
XXREAL_1: 1;
assume
A79: not ex p51 be
Point of (
TOP-REAL 2) st
LE (p51,p4,P,p1,p2) &
LE (p9,p51,P,p1,p2) & (p51
`1 )
< e;
A80: for p51 be
Point of (
TOP-REAL 2) st
LE (p51,p4,P,p1,p2) &
LE (p9,p51,P,p1,p2) holds (p51
`1 )
= e
proof
let p51 be
Point of (
TOP-REAL 2);
assume
LE (p51,p4,P,p1,p2) &
LE (p9,p51,P,p1,p2);
then (p51
`1 )
>= e & (p51
`1 )
<= e by
A74,
A79;
hence thesis by
XXREAL_0: 1;
end;
A81:
now
assume s4
> s0;
then (
- (
- (s4
- s0)))
>
0 by
XREAL_1: 50;
then (
- (s4
- s0))
<
0 ;
then
A82: ((s0
- s4)
/ 2)
<
0 by
XREAL_1: 141;
then (
- ((s0
- s4)
/ 2))
>
0 by
XREAL_1: 58;
then
consider r be
Real such that
A83: r
in R and
A84: r
< (s0
+ (
- ((s0
- s4)
/ 2))) by
A21,
SEQ_4:def 2;
reconsider rss = r as
Real;
A85: ex s7 be
Real st s7
= r & 1
>= s7 & s7
>= s2 & for q be
Point of (
TOP-REAL 2) st q
= (f
. s7) holds (q
`1 )
<> e by
A83;
then r
in
[.
0 , 1.] by
A22,
XXREAL_1: 1;
then (f
. rss)
in (
rng f) by
A12,
BORSUK_1: 40,
FUNCT_1:def 3;
then (f
. rss)
in P by
A9,
PRE_TOPC:def 5;
then
reconsider pss = (f
. rss) as
Point of (
TOP-REAL 2);
(s4
+
0 )
> (s4
+ ((s0
- s4)
/ 2)) by
A82,
XREAL_1: 8;
then
A86: s4
> r by
A84,
XXREAL_0: 2;
then
A87: 1
> r by
A78,
XXREAL_0: 2;
A88: r
>= s0 by
A21,
A83,
SEQ_4:def 2;
then
A89:
LE (p9,pss,P,p1,p2) by
A1,
A5,
A6,
A7,
A22,
A23,
A18,
A87,
JORDAN5C: 8;
LE (pss,p4,P,p1,p2) by
A1,
A5,
A6,
A7,
A22,
A18,
A77,
A78,
A88,
A86,
A87,
JORDAN5C: 8;
then (pss
`1 )
= e by
A80,
A89;
hence contradiction by
A85;
end;
0
<= s4 by
A76,
BORSUK_1: 40,
XXREAL_1: 1;
then s4
>= s0 by
A5,
A6,
A7,
A23,
A70,
A77,
A78,
JORDAN5C:def 3;
hence contradiction by
A71,
A77,
A81,
XXREAL_0: 1;
end;
now
assume ex p51 be
Point of (
TOP-REAL 2) st
LE (p51,p4,P,p1,p2) &
LE (p9,p51,P,p1,p2) & (p51
`1 )
< e;
then
consider p51 be
Point of (
TOP-REAL 2) such that
A90:
LE (p51,p4,P,p1,p2) and
A91:
LE (p9,p51,P,p1,p2) and
A92: (p51
`1 )
< e;
A93: for p5 be
Point of (
TOP-REAL 2) st
LE (p5,p51,P,p1,p2) &
LE (p,p5,P,p1,p2) holds (p5
`1 )
<= e
proof
let p5 be
Point of (
TOP-REAL 2);
assume that
A94:
LE (p5,p51,P,p1,p2) and
A95:
LE (p,p5,P,p1,p2);
A96:
LE (p5,p4,P,p1,p2) by
A90,
A94,
JORDAN5C: 13;
A97: p5
in P by
A94,
JORDAN5C:def 3;
then
A98: p5
= p9 implies
LE (p9,p5,P,p1,p2) by
JORDAN5C: 9;
now
per cases by
A1,
A73,
A97,
A98,
JORDAN5C: 14;
case
LE (p5,p9,P,p1,p2);
hence thesis by
A26,
A95;
end;
case
LE (p9,p5,P,p1,p2);
hence thesis by
A74,
A96;
end;
end;
hence thesis;
end;
LE (p,p51,P,p1,p2) by
A24,
A91,
JORDAN5C: 13;
hence p
is_Lout (P,p1,p2,e) by
A1,
A3,
A4,
A92,
A93;
end;
hence p
is_Lout (P,p1,p2,e) or p
is_Rout (P,p1,p2,e) by
A75;
end;
case
A99: for p6 be
Point of (
TOP-REAL 2) st
LE (p6,p4,P,p1,p2) &
LE (p9,p6,P,p1,p2) holds (p6
`1 )
>= e;
A100:
now
p4
in P by
A70,
JORDAN5C:def 3;
then p4
in (
rng f) by
A9,
PRE_TOPC:def 5;
then
consider xs4 be
object such that
A101: xs4
in (
dom f) and
A102: p4
= (f
. xs4) by
FUNCT_1:def 3;
reconsider s4 = xs4 as
Real by
A101;
A103: s4
<= 1 by
A101,
BORSUK_1: 40,
XXREAL_1: 1;
assume
A104: not ex p51 be
Point of (
TOP-REAL 2) st
LE (p51,p4,P,p1,p2) &
LE (p9,p51,P,p1,p2) & (p51
`1 )
> e;
A105: for p51 be
Point of (
TOP-REAL 2) st
LE (p51,p4,P,p1,p2) &
LE (p9,p51,P,p1,p2) holds (p51
`1 )
= e
proof
let p51 be
Point of (
TOP-REAL 2);
assume
LE (p51,p4,P,p1,p2) &
LE (p9,p51,P,p1,p2);
then (p51
`1 )
<= e & (p51
`1 )
>= e by
A99,
A104;
hence thesis by
XXREAL_0: 1;
end;
A106:
now
assume s4
> s0;
then (
- (
- (s4
- s0)))
>
0 by
XREAL_1: 50;
then (
- (s4
- s0))
<
0 ;
then
A107: ((s0
- s4)
/ 2)
<
0 by
XREAL_1: 141;
then (
- ((s0
- s4)
/ 2))
>
0 by
XREAL_1: 58;
then
consider r be
Real such that
A108: r
in R and
A109: r
< (s0
+ (
- ((s0
- s4)
/ 2))) by
A21,
SEQ_4:def 2;
reconsider rss = r as
Real;
A110: ex s7 be
Real st s7
= r & 1
>= s7 & s7
>= s2 & for q be
Point of (
TOP-REAL 2) st q
= (f
. s7) holds (q
`1 )
<> e by
A108;
then r
in
[.
0 , 1.] by
A22,
XXREAL_1: 1;
then (f
. rss)
in (
rng f) by
A12,
BORSUK_1: 40,
FUNCT_1:def 3;
then (f
. rss)
in P by
A9,
PRE_TOPC:def 5;
then
reconsider pss = (f
. rss) as
Point of (
TOP-REAL 2);
(s4
+
0 )
> (s4
+ ((s0
- s4)
/ 2)) by
A107,
XREAL_1: 8;
then
A111: s4
> r by
A109,
XXREAL_0: 2;
then
A112: 1
> r by
A103,
XXREAL_0: 2;
A113: r
>= s0 by
A21,
A108,
SEQ_4:def 2;
then
A114:
LE (p9,pss,P,p1,p2) by
A1,
A5,
A6,
A7,
A22,
A23,
A18,
A112,
JORDAN5C: 8;
LE (pss,p4,P,p1,p2) by
A1,
A5,
A6,
A7,
A22,
A18,
A102,
A103,
A113,
A111,
A112,
JORDAN5C: 8;
then (pss
`1 )
= e by
A105,
A114;
hence contradiction by
A110;
end;
0
<= s4 by
A101,
BORSUK_1: 40,
XXREAL_1: 1;
then s4
>= s0 by
A5,
A6,
A7,
A23,
A70,
A102,
A103,
JORDAN5C:def 3;
hence contradiction by
A71,
A102,
A106,
XXREAL_0: 1;
end;
now
assume ex p51 be
Point of (
TOP-REAL 2) st
LE (p51,p4,P,p1,p2) &
LE (p9,p51,P,p1,p2) & (p51
`1 )
> e;
then
consider p51 be
Point of (
TOP-REAL 2) such that
A115:
LE (p51,p4,P,p1,p2) and
A116:
LE (p9,p51,P,p1,p2) and
A117: (p51
`1 )
> e;
A118: for p5 be
Point of (
TOP-REAL 2) st
LE (p5,p51,P,p1,p2) &
LE (p,p5,P,p1,p2) holds (p5
`1 )
>= e
proof
let p5 be
Point of (
TOP-REAL 2);
assume that
A119:
LE (p5,p51,P,p1,p2) and
A120:
LE (p,p5,P,p1,p2);
A121:
LE (p5,p4,P,p1,p2) by
A115,
A119,
JORDAN5C: 13;
A122: p5
in P by
A119,
JORDAN5C:def 3;
then
A123: p5
= p9 implies
LE (p9,p5,P,p1,p2) by
JORDAN5C: 9;
now
per cases by
A1,
A73,
A122,
A123,
JORDAN5C: 14;
case
LE (p9,p5,P,p1,p2);
hence thesis by
A99,
A121;
end;
case
LE (p5,p9,P,p1,p2);
hence thesis by
A26,
A120;
end;
end;
hence thesis;
end;
LE (p,p51,P,p1,p2) by
A24,
A116,
JORDAN5C: 13;
hence p
is_Rout (P,p1,p2,e) by
A1,
A3,
A4,
A117,
A118;
end;
hence p
is_Lout (P,p1,p2,e) or p
is_Rout (P,p1,p2,e) by
A100;
end;
end;
hence p
is_Lout (P,p1,p2,e) or p
is_Rout (P,p1,p2,e);
end;
hence thesis;
end;
theorem ::
JORDAN20:11
Th11: for P be
Subset of
I[01] , s be
Real st P
=
[.
0 , s.[ holds P is
open
proof
A1: (
[#]
I[01] )
=
[.
0 , 1.] by
TOPMETR: 18,
TOPMETR: 20;
let P be
Subset of
I[01] , s be
Real;
assume
A2: P
=
[.
0 , s.[;
per cases ;
suppose
A3: s
in
[.
0 , 1.];
reconsider T =
[.
0 , 1.] as
Subset of
R^1 by
TOPMETR: 17;
0
in
[.
0 , 1.] by
XXREAL_1: 1;
then
[.
0 , s.[
c=
[.
0 , s.] &
[.
0 , s.]
c=
[.
0 , 1.] by
A3,
XXREAL_1: 24,
XXREAL_2:def 12;
then
[.
0 , s.[
c=
[.
0 , 1.];
then P
c= (
[#] (
R^1
| T)) by
A2,
PRE_TOPC:def 5;
then
reconsider P2 = P as
Subset of (
R^1
| T);
reconsider Q =
].(
- 1), s.[ as
Subset of
R^1 by
TOPMETR: 17;
A4: s
<= 1 by
A3,
XXREAL_1: 1;
A5:
[.
0 , s.[
c= (
].(
- 1), s.[
/\
[.
0 , 1.])
proof
let x be
object;
assume
A6: x
in
[.
0 , s.[;
then
reconsider sx = x as
Real;
A7:
0
<= sx by
A6,
XXREAL_1: 3;
A8: sx
< s by
A6,
XXREAL_1: 3;
then sx
<= 1 by
A4,
XXREAL_0: 2;
then
A9: x
in
[.
0 , 1.] by
A7,
XXREAL_1: 1;
(
- 1)
< sx by
A7,
XXREAL_0: 2;
then x
in
].(
- 1), s.[ by
A8,
XXREAL_1: 4;
hence thesis by
A9,
XBOOLE_0:def 4;
end;
(
].(
- 1), s.[
/\
[.
0 , 1.])
c=
[.
0 , s.[
proof
let x be
object;
assume
A10: x
in (
].(
- 1), s.[
/\
[.
0 , 1.]);
then
reconsider sx = x as
Real;
x
in
[.
0 , 1.] by
A10,
XBOOLE_0:def 4;
then
A11:
0
<= sx by
XXREAL_1: 1;
x
in
].(
- 1), s.[ by
A10,
XBOOLE_0:def 4;
then sx
< s by
XXREAL_1: 4;
hence thesis by
A11,
XXREAL_1: 3;
end;
then
[.
0 , s.[
= (
].(
- 1), s.[
/\
[.
0 , 1.]) by
A5,
XBOOLE_0:def 10;
then
A12: P2
= (Q
/\ (
[#] (
R^1
| T))) by
A2,
PRE_TOPC:def 5;
Q is
open & (
Closed-Interval-TSpace (
0 ,1))
= (
R^1
| T) by
JORDAN6: 35,
TOPMETR: 19;
hence thesis by
A12,
TOPMETR: 20,
TOPS_2: 24;
end;
suppose
A13: not s
in
[.
0 , 1.];
now
per cases by
A13,
XXREAL_1: 1;
case s
<
0 ;
then
[.
0 , s.[
=
{} by
XXREAL_1: 27;
then P
in the
topology of
I[01] by
A2,
PRE_TOPC: 1;
hence thesis by
PRE_TOPC:def 2;
end;
case
A14: s
> 1;
A15: for r be
Real st
0
<= r & r
< s holds r
<= 1
proof
let r be
Real;
assume
0
<= r & r
< s;
then r
in
[.
0 , s.[ by
XXREAL_1: 3;
hence thesis by
A2,
A1,
XXREAL_1: 1;
end;
consider t be
Real such that
A16: 1
< t and
A17: t
< s by
A14,
XREAL_1: 5;
reconsider t as
Real;
thus contradiction by
A16,
A17,
A15;
end;
end;
hence thesis;
end;
end;
theorem ::
JORDAN20:12
Th12: for P be
Subset of
I[01] , s be
Real st P
=
].s, 1.] holds P is
open
proof
A1: (
[#]
I[01] )
=
[.
0 , 1.] by
TOPMETR: 18,
TOPMETR: 20;
let P be
Subset of
I[01] , s be
Real;
assume
A2: P
=
].s, 1.];
per cases ;
suppose
A3: s
in
[.
0 , 1.];
reconsider T =
[.
0 , 1.] as
Subset of
R^1 by
TOPMETR: 17;
1
in
[.
0 , 1.] by
XXREAL_1: 1;
then
].s, 1.]
c=
[.s, 1.] &
[.s, 1.]
c=
[.
0 , 1.] by
A3,
XXREAL_1: 23,
XXREAL_2:def 12;
then
].s, 1.]
c=
[.
0 , 1.];
then P
c= (
[#] (
R^1
| T)) by
A2,
PRE_TOPC:def 5;
then
reconsider P2 = P as
Subset of (
R^1
| T);
reconsider Q =
].s, 2.[ as
Subset of
R^1 by
TOPMETR: 17;
A4:
0
<= s by
A3,
XXREAL_1: 1;
A5:
].s, 1.]
c= (
].s, 2.[
/\
[.
0 , 1.])
proof
let x be
object;
assume
A6: x
in
].s, 1.];
then
reconsider sx = x as
Real;
A7: s
< sx by
A6,
XXREAL_1: 2;
A8: sx
<= 1 by
A6,
XXREAL_1: 2;
then 2
> sx by
XXREAL_0: 2;
then
A9: x
in
].s, 2.[ by
A7,
XXREAL_1: 4;
x
in
[.
0 , 1.] by
A4,
A7,
A8,
XXREAL_1: 1;
hence thesis by
A9,
XBOOLE_0:def 4;
end;
(
].s, 2.[
/\
[.
0 , 1.])
c=
].s, 1.]
proof
let x be
object;
assume
A10: x
in (
].s, 2.[
/\
[.
0 , 1.]);
then
reconsider sx = x as
Real;
x
in
[.
0 , 1.] by
A10,
XBOOLE_0:def 4;
then
A11: sx
<= 1 by
XXREAL_1: 1;
x
in
].s, 2.[ by
A10,
XBOOLE_0:def 4;
then s
< sx by
XXREAL_1: 4;
hence thesis by
A11,
XXREAL_1: 2;
end;
then
].s, 1.]
= (
].s, 2.[
/\
[.
0 , 1.]) by
A5,
XBOOLE_0:def 10;
then
A12: P2
= (Q
/\ (
[#] (
R^1
| T))) by
A2,
PRE_TOPC:def 5;
Q is
open & (
Closed-Interval-TSpace (
0 ,1))
= (
R^1
| T) by
JORDAN6: 35,
TOPMETR: 19;
hence thesis by
A12,
TOPMETR: 20,
TOPS_2: 24;
end;
suppose
A13: not s
in
[.
0 , 1.];
now
per cases by
A13,
XXREAL_1: 1;
case s
> 1;
then
].s, 1.]
=
{} by
XXREAL_1: 26;
then P
in the
topology of
I[01] by
A2,
PRE_TOPC: 1;
hence thesis by
PRE_TOPC:def 2;
end;
case
A14: s
<
0 ;
A15: for r be
Real st s
< r & r
<= 1 holds r
>=
0
proof
let r be
Real;
assume s
< r & r
<= 1;
then r
in
].s, 1.] by
XXREAL_1: 2;
hence thesis by
A2,
A1,
XXREAL_1: 1;
end;
consider t be
Real such that
A16: s
< t and
A17: t
<
0 by
A14,
XREAL_1: 5;
reconsider t as
Real;
thus contradiction by
A16,
A17,
A15;
end;
end;
hence thesis;
end;
end;
theorem ::
JORDAN20:13
Th13: for P be non
empty
Subset of (
TOP-REAL 2), P1 be
Subset of ((
TOP-REAL 2)
| P), Q be
Subset of
I[01] , f be
Function of
I[01] , ((
TOP-REAL 2)
| P), s be
Real st s
<= 1 & P1
= { q0 where q0 be
Point of (
TOP-REAL 2) : ex ss be
Real st
0
<= ss & ss
< s & q0
= (f
. ss) } & Q
=
[.
0 , s.[ holds (f
.: Q)
= P1
proof
let P be non
empty
Subset of (
TOP-REAL 2), P1 be
Subset of ((
TOP-REAL 2)
| P), Q be
Subset of
I[01] , f be
Function of
I[01] , ((
TOP-REAL 2)
| P), s be
Real;
assume that
A1: s
<= 1 and
A2: P1
= { q0 where q0 be
Point of (
TOP-REAL 2) : ex ss be
Real st
0
<= ss & ss
< s & q0
= (f
. ss) } and
A3: Q
=
[.
0 , s.[;
A4: the
carrier of ((
TOP-REAL 2)
| P)
= P by
PRE_TOPC: 8;
A5: (f
.: Q)
c= P1
proof
let y be
object;
assume y
in (f
.: Q);
then
consider z be
object such that
A6: z
in (
dom f) and
A7: z
in Q and
A8: (f
. z)
= y by
FUNCT_1:def 6;
reconsider ss = z as
Real by
A6;
y
in (
rng f) by
A6,
A8,
FUNCT_1:def 3;
then y
in P by
A4;
then
reconsider q = y as
Point of (
TOP-REAL 2);
0
<= ss & ss
< s by
A3,
A7,
XXREAL_1: 3;
then ex ss be
Real st
0
<= ss & ss
< s & q
= (f
. ss) by
A8;
hence thesis by
A2;
end;
P1
c= (f
.: Q)
proof
let x be
object;
A9: (
dom f)
=
[.
0 , 1.] by
BORSUK_1: 40,
FUNCT_2:def 1;
assume x
in P1;
then
consider q0 be
Point of (
TOP-REAL 2) such that
A10: q0
= x and
A11: ex ss be
Real st
0
<= ss & ss
< s & q0
= (f
. ss) by
A2;
consider ss be
Real such that
A12:
0
<= ss and
A13: ss
< s and
A14: q0
= (f
. ss) by
A11;
ss
< 1 by
A1,
A13,
XXREAL_0: 2;
then
A15: ss
in (
dom f) by
A12,
A9,
XXREAL_1: 1;
ss
in Q by
A3,
A12,
A13,
XXREAL_1: 3;
hence thesis by
A10,
A14,
A15,
FUNCT_1:def 6;
end;
hence thesis by
A5,
XBOOLE_0:def 10;
end;
theorem ::
JORDAN20:14
Th14: for P be non
empty
Subset of (
TOP-REAL 2), P1 be
Subset of ((
TOP-REAL 2)
| P), Q be
Subset of
I[01] , f be
Function of
I[01] , ((
TOP-REAL 2)
| P), s be
Real st s
>=
0 & P1
= { q0 where q0 be
Point of (
TOP-REAL 2) : ex ss be
Real st s
< ss & ss
<= 1 & q0
= (f
. ss) } & Q
=
].s, 1.] holds (f
.: Q)
= P1
proof
let P be non
empty
Subset of (
TOP-REAL 2), P1 be
Subset of ((
TOP-REAL 2)
| P), Q be
Subset of
I[01] , f be
Function of
I[01] , ((
TOP-REAL 2)
| P), s be
Real;
assume that
A1: s
>=
0 and
A2: P1
= { q0 where q0 be
Point of (
TOP-REAL 2) : ex ss be
Real st s
< ss & ss
<= 1 & q0
= (f
. ss) } and
A3: Q
=
].s, 1.];
A4: the
carrier of ((
TOP-REAL 2)
| P)
= P by
PRE_TOPC: 8;
A5: (f
.: Q)
c= P1
proof
let y be
object;
assume y
in (f
.: Q);
then
consider z be
object such that
A6: z
in (
dom f) and
A7: z
in Q and
A8: (f
. z)
= y by
FUNCT_1:def 6;
reconsider ss = z as
Real by
A6;
y
in (
rng f) by
A6,
A8,
FUNCT_1:def 3;
then y
in P by
A4;
then
reconsider q = y as
Point of (
TOP-REAL 2);
s
< ss & ss
<= 1 by
A3,
A7,
XXREAL_1: 2;
then ex ss be
Real st s
< ss & ss
<= 1 & q
= (f
. ss) by
A8;
hence thesis by
A2;
end;
P1
c= (f
.: Q)
proof
let x be
object;
assume x
in P1;
then
consider q0 be
Point of (
TOP-REAL 2) such that
A9: q0
= x and
A10: ex ss be
Real st s
< ss & ss
<= 1 & q0
= (f
. ss) by
A2;
consider ss be
Real such that
A11: s
< ss & ss
<= 1 and
A12: q0
= (f
. ss) by
A10;
A13: ss
in Q by
A3,
A11,
XXREAL_1: 2;
(
dom f)
=
[.
0 , 1.] by
BORSUK_1: 40,
FUNCT_2:def 1;
then ss
in (
dom f) by
A1,
A11,
XXREAL_1: 1;
hence thesis by
A9,
A12,
A13,
FUNCT_1:def 6;
end;
hence thesis by
A5,
XBOOLE_0:def 10;
end;
Lm1: (
[#]
I[01] )
<>
{} ;
theorem ::
JORDAN20:15
Th15: for P be non
empty
Subset of (
TOP-REAL 2), P1 be
Subset of ((
TOP-REAL 2)
| P), f be
Function of
I[01] , ((
TOP-REAL 2)
| P), s be
Real st s
<= 1 & f is
being_homeomorphism & P1
= { q0 where q0 be
Point of (
TOP-REAL 2) : ex ss be
Real st
0
<= ss & ss
< s & q0
= (f
. ss) } holds P1 is
open
proof
let P be non
empty
Subset of (
TOP-REAL 2), P1 be
Subset of ((
TOP-REAL 2)
| P), f be
Function of
I[01] , ((
TOP-REAL 2)
| P), s be
Real;
assume that
A1: s
<= 1 and
A2: f is
being_homeomorphism and
A3: P1
= { q0 where q0 be
Point of (
TOP-REAL 2) : ex ss be
Real st
0
<= ss & ss
< s & q0
= (f
. ss) };
f is
one-to-one & (
rng f)
= (
[#] ((
TOP-REAL 2)
| P)) by
A2,
TOPS_2:def 5;
then
A4: ((f
" )
" )
= f by
TOPS_2: 51;
[.
0 , s.[
c=
[.
0 , 1.]
proof
let x be
object;
assume
A5: x
in
[.
0 , s.[;
then
reconsider sx = x as
Real;
sx
< s by
A5,
XXREAL_1: 3;
then
A6: sx
< 1 by
A1,
XXREAL_0: 2;
0
<= sx by
A5,
XXREAL_1: 3;
hence thesis by
A6,
XXREAL_1: 1;
end;
then
reconsider Q =
[.
0 , s.[ as
Subset of
I[01] by
TOPMETR: 18,
TOPMETR: 20;
A7: Q is
open by
Th11;
A8: (f
" ) is
being_homeomorphism by
A2,
TOPS_2: 56;
then
A9: (f
" ) is
one-to-one by
TOPS_2:def 5;
(
rng (f
" ))
= (
[#]
I[01] ) by
A8,
TOPS_2:def 5;
then (f
" ) is
onto by
FUNCT_2:def 3;
then ((f
" )
" )
= ((f
" ) qua
Function
" ) by
A9,
TOPS_2:def 4;
then
A10: (((f
" )
" )
.: Q)
= ((f
" )
" Q) by
A9,
FUNCT_1: 85;
A11: P1
= (f
.: Q) by
A1,
A3,
Th13;
(f
" ) is
continuous by
A2,
TOPS_2:def 5;
hence thesis by
A7,
A4,
A10,
Lm1,
A11,
TOPS_2: 43;
end;
theorem ::
JORDAN20:16
Th16: for P be non
empty
Subset of (
TOP-REAL 2), P1 be
Subset of ((
TOP-REAL 2)
| P), f be
Function of
I[01] , ((
TOP-REAL 2)
| P), s be
Real st s
>=
0 & f is
being_homeomorphism & P1
= { q0 where q0 be
Point of (
TOP-REAL 2) : ex ss be
Real st s
< ss & ss
<= 1 & q0
= (f
. ss) } holds P1 is
open
proof
let P be non
empty
Subset of (
TOP-REAL 2), P1 be
Subset of ((
TOP-REAL 2)
| P), f be
Function of
I[01] , ((
TOP-REAL 2)
| P), s be
Real;
assume that
A1: s
>=
0 and
A2: f is
being_homeomorphism and
A3: P1
= { q0 where q0 be
Point of (
TOP-REAL 2) : ex ss be
Real st s
< ss & ss
<= 1 & q0
= (f
. ss) };
f is
one-to-one & (
rng f)
= (
[#] ((
TOP-REAL 2)
| P)) by
A2,
TOPS_2:def 5;
then
A4: ((f
" )
" )
= f by
TOPS_2: 51;
].s, 1.]
c=
[.
0 , 1.]
proof
let x be
object;
assume
A5: x
in
].s, 1.];
then
reconsider sx = x as
Real;
0
< sx & sx
<= 1 by
A1,
A5,
XXREAL_1: 2;
hence thesis by
XXREAL_1: 1;
end;
then
reconsider Q =
].s, 1.] as
Subset of
I[01] by
TOPMETR: 18,
TOPMETR: 20;
A6: (
[#]
I[01] )
<>
{} & Q is
open by
Th12;
A7: (f
" ) is
being_homeomorphism by
A2,
TOPS_2: 56;
then
A8: (f
" ) is
one-to-one by
TOPS_2:def 5;
(
rng (f
" ))
= (
[#]
I[01] ) by
A7,
TOPS_2:def 5;
then (f
" ) is
onto by
FUNCT_2:def 3;
then ((f
" )
" )
= ((f
" ) qua
Function
" ) by
A8,
TOPS_2:def 4;
then
A9: (((f
" )
" )
.: Q)
= ((f
" )
" Q) by
A8,
FUNCT_1: 85;
P1
= (f
.: Q) & (f
" ) is
continuous by
A1,
A2,
A3,
Th14,
TOPS_2:def 5;
hence thesis by
A6,
A4,
A9,
TOPS_2: 43;
end;
theorem ::
JORDAN20:17
Th17: for T be non
empty
TopStruct, Q1,Q2 be
Subset of T, p1,p2 be
Point of T st (Q1
/\ Q2)
=
{} & (Q1
\/ Q2)
= the
carrier of T & p1
in Q1 & p2
in Q2 & Q1 is
open & Q2 is
open holds not ex P be
Function of
I[01] , T st P is
continuous & (P
.
0 )
= p1 & (P
. 1)
= p2
proof
let T be non
empty
TopStruct, Q1,Q2 be
Subset of T, p1,p2 be
Point of T;
assume that
A1: (Q1
/\ Q2)
=
{} and
A2: (Q1
\/ Q2)
= the
carrier of T and
A3: p1
in Q1 and
A4: p2
in Q2 and
A5: Q1 is
open & Q2 is
open;
assume ex P be
Function of
I[01] , T st P is
continuous & (P
.
0 )
= p1 & (P
. 1)
= p2;
then
consider P be
Function of
I[01] , T such that
A6: P is
continuous and
A7: (P
.
0 )
= p1 and
A8: (P
. 1)
= p2;
(
[#] T)
<>
{} ;
then
A9: (P
" Q1) is
open & (P
" Q2) is
open by
A5,
A6,
TOPS_2: 43;
A10: (
[#]
I[01] )
=
[.
0 , 1.] by
TOPMETR: 18,
TOPMETR: 20;
then
0
in the
carrier of
I[01] by
XXREAL_1: 1;
then
0
in (
dom P) by
FUNCT_2:def 1;
then
A11: (
[#]
I[01] )
= the
carrier of
I[01] & (P
" Q1)
<> (
{}
I[01] ) by
A3,
A7,
FUNCT_1:def 7;
((P
" Q1)
/\ (P
" Q2))
= (P
" (Q1
/\ Q2)) by
FUNCT_1: 68
.=
{} by
A1;
then
A12: not (P
" Q1)
meets (P
" Q2) by
XBOOLE_0:def 7;
1
in the
carrier of
I[01] by
A10,
XXREAL_1: 1;
then 1
in (
dom P) by
FUNCT_2:def 1;
then
A13: (P
" Q2)
<> (
{}
I[01] ) by
A4,
A8,
FUNCT_1:def 7;
((P
" Q1)
\/ (P
" Q2))
= (P
" (Q1
\/ Q2)) by
RELAT_1: 140
.= the
carrier of
I[01] by
A2,
FUNCT_2: 40;
hence contradiction by
A9,
A11,
A13,
A12,
CONNSP_1: 11,
TREAL_1: 19;
end;
theorem ::
JORDAN20:18
Th18: for P be non
empty
Subset of (
TOP-REAL 2), Q be
Subset of ((
TOP-REAL 2)
| P), p1,p2,q be
Point of (
TOP-REAL 2) st P
is_an_arc_of (p1,p2) & q
in P & q
<> p1 & q
<> p2 & Q
= (P
\
{q}) holds not Q is
connected & not ex R be
Function of
I[01] , (((
TOP-REAL 2)
| P)
| Q) st R is
continuous & (R
.
0 )
= p1 & (R
. 1)
= p2
proof
let P be non
empty
Subset of (
TOP-REAL 2), Q be
Subset of ((
TOP-REAL 2)
| P), p1,p2,q be
Point of (
TOP-REAL 2);
assume that
A1: P
is_an_arc_of (p1,p2) and
A2: q
in P and
A3: q
<> p1 and
A4: q
<> p2 and
A5: Q
= (P
\
{q});
consider f be
Function of
I[01] , ((
TOP-REAL 2)
| P) such that
A6: f is
being_homeomorphism and
A7: (f
.
0 )
= p1 and
A8: (f
. 1)
= p2 by
A1,
TOPREAL1:def 1;
A9: (
rng f)
= (
[#] ((
TOP-REAL 2)
| P)) by
A6,
TOPS_2:def 5;
A10: (
[#]
I[01] )
=
[.
0 , 1.] by
TOPMETR: 18,
TOPMETR: 20;
A11: (
[#] ((
TOP-REAL 2)
| P))
= P by
PRE_TOPC:def 5;
then
consider xs be
object such that
A12: xs
in (
dom f) and
A13: (f
. xs)
= q by
A2,
A9,
FUNCT_1:def 3;
A14: (
dom f)
= (
[#]
I[01] ) by
A6,
TOPS_2:def 5;
reconsider s = xs as
Real by
A12;
{ q0 where q0 be
Point of (
TOP-REAL 2) : ex ss be
Real st s
< ss & ss
<= 1 & q0
= (f
. ss) }
c= the
carrier of ((
TOP-REAL 2)
| P)
proof
let z be
object;
assume z
in { q0 where q0 be
Point of (
TOP-REAL 2) : ex ss be
Real st s
< ss & ss
<= 1 & q0
= (f
. ss) };
then
consider q0 be
Point of (
TOP-REAL 2) such that
A15: q0
= z and
A16: ex ss be
Real st s
< ss & ss
<= 1 & q0
= (f
. ss);
consider ss be
Real such that
A17: s
< ss and
A18: ss
<= 1 and
A19: q0
= (f
. ss) by
A16;
ss
>
0 by
A12,
A10,
A17,
XXREAL_1: 1;
then ss
in (
dom f) by
A14,
A10,
A18,
XXREAL_1: 1;
then q0
in (
rng f) by
A19,
FUNCT_1:def 3;
hence thesis by
A15;
end;
then
reconsider P29 = { q0 where q0 be
Point of (
TOP-REAL 2) : ex ss be
Real st s
< ss & ss
<= 1 & q0
= (f
. ss) } as
Subset of ((
TOP-REAL 2)
| P);
A20:
0
<= s by
A12,
A10,
XXREAL_1: 1;
then
A21: P29 is
open by
A6,
Th16;
A22: P29
c= Q
proof
let x be
object;
assume x
in P29;
then
consider q00 be
Point of (
TOP-REAL 2) such that
A23: q00
= x and
A24: ex ss be
Real st s
< ss & ss
<= 1 & q00
= (f
. ss);
consider ss be
Real such that
A25: s
< ss and
A26: ss
<= 1 and
A27: q00
= (f
. ss) by
A24;
ss
>
0 by
A12,
A10,
A25,
XXREAL_1: 1;
then
A28: ss
in (
dom f) by
A14,
A10,
A26,
XXREAL_1: 1;
now
assume
A29: q00
= q;
f is
one-to-one by
A6,
TOPS_2:def 5;
hence contradiction by
A12,
A13,
A25,
A27,
A28,
A29,
FUNCT_1:def 4;
end;
then
A30: not q00
in
{q} by
TARSKI:def 1;
q00
in P by
A9,
A11,
A27,
A28,
FUNCT_1:def 3;
hence thesis by
A5,
A23,
A30,
XBOOLE_0:def 5;
end;
{ q0 where q0 be
Point of (
TOP-REAL 2) : ex ss be
Real st
0
<= ss & ss
< s & q0
= (f
. ss) }
c= the
carrier of ((
TOP-REAL 2)
| P)
proof
let z be
object;
assume z
in { q0 where q0 be
Point of (
TOP-REAL 2) : ex ss be
Real st
0
<= ss & ss
< s & q0
= (f
. ss) };
then
consider q0 be
Point of (
TOP-REAL 2) such that
A31: q0
= z and
A32: ex ss be
Real st
0
<= ss & ss
< s & q0
= (f
. ss);
consider ss be
Real such that
A33:
0
<= ss and
A34: ss
< s and
A35: q0
= (f
. ss) by
A32;
s
<= 1 by
A12,
A10,
XXREAL_1: 1;
then ss
< 1 by
A34,
XXREAL_0: 2;
then ss
in (
dom f) by
A14,
A10,
A33,
XXREAL_1: 1;
then q0
in (
rng f) by
A35,
FUNCT_1:def 3;
hence thesis by
A31;
end;
then
reconsider P19 = { q0 where q0 be
Point of (
TOP-REAL 2) : ex ss be
Real st
0
<= ss & ss
< s & q0
= (f
. ss) } as
Subset of ((
TOP-REAL 2)
| P);
A36: s
<= 1 by
A12,
A10,
XXREAL_1: 1;
then
A37: P19 is
open by
A6,
Th15;
A38: Q
c= (P19
\/ P29)
proof
let x be
object;
assume
A39: x
in Q;
then
consider xt be
object such that
A40: xt
in (
dom f) and
A41: (f
. xt)
= x by
A9,
FUNCT_1:def 3;
reconsider t = xt as
Real by
A40;
A42: t
<= 1 by
A10,
A40,
XXREAL_1: 1;
reconsider qq = x as
Point of (
TOP-REAL 2) by
A5,
A39;
not x
in
{q} by
A5,
A39,
XBOOLE_0:def 5;
then
A43: not x
= q by
TARSKI:def 1;
A44:
0
<= t by
A10,
A40,
XXREAL_1: 1;
now
per cases ;
case t
< s;
then ex ss be
Real st
0
<= ss & ss
< s & qq
= (f
. ss) by
A41,
A44;
then x
in P19;
hence thesis by
XBOOLE_0:def 3;
end;
case t
>= s;
then t
> s by
A13,
A41,
A43,
XXREAL_0: 1;
then ex ss be
Real st s
< ss & ss
<= 1 & qq
= (f
. ss) by
A41,
A42;
then x
in P29;
hence thesis by
XBOOLE_0:def 3;
end;
end;
hence thesis;
end;
A45:
now
assume P19
meets P29;
then
consider p0 be
object such that
A46: p0
in P19 and
A47: p0
in P29 by
XBOOLE_0: 3;
consider q00 be
Point of (
TOP-REAL 2) such that
A48: q00
= p0 and
A49: ex ss be
Real st
0
<= ss & ss
< s & q00
= (f
. ss) by
A46;
consider ss1 be
Real such that
A50:
0
<= ss1 and
A51: ss1
< s and
A52: q00
= (f
. ss1) by
A49;
ss1
< 1 by
A36,
A51,
XXREAL_0: 2;
then
A53: ss1
in (
dom f) by
A14,
A10,
A50,
XXREAL_1: 1;
consider q01 be
Point of (
TOP-REAL 2) such that
A54: q01
= p0 and
A55: ex ss be
Real st s
< ss & ss
<= 1 & q01
= (f
. ss) by
A47;
consider ss2 be
Real such that
A56: s
< ss2 and
A57: ss2
<= 1 and
A58: q01
= (f
. ss2) by
A55;
ss2
>
0 by
A12,
A10,
A56,
XXREAL_1: 1;
then
A59: ss2
in (
dom f) by
A14,
A10,
A57,
XXREAL_1: 1;
f is
one-to-one by
A6,
TOPS_2:def 5;
hence contradiction by
A48,
A51,
A52,
A54,
A56,
A58,
A53,
A59,
FUNCT_1:def 4;
end;
1
> s by
A4,
A8,
A13,
A36,
XXREAL_0: 1;
then
A60: p2
in { q0 where q0 be
Point of (
TOP-REAL 2) : ex ss be
Real st s
< ss & ss
<= 1 & q0
= (f
. ss) } by
A8;
then
reconsider Q9 = Q as non
empty
Subset of ((
TOP-REAL 2)
| P) by
A22;
reconsider T = (((
TOP-REAL 2)
| P)
| Q9) as non
empty
TopSpace;
A61: the
carrier of T
= (
[#] T);
then
reconsider P299 = P29 as
Subset of T by
A22,
PRE_TOPC:def 5;
(P29
/\ Q)
<>
{} by
A60,
A22,
XBOOLE_1: 28;
then
A62: P29
meets Q by
XBOOLE_0:def 7;
A63: P19
c= Q
proof
let x be
object;
assume x
in P19;
then
consider q00 be
Point of (
TOP-REAL 2) such that
A64: q00
= x and
A65: ex ss be
Real st
0
<= ss & ss
< s & q00
= (f
. ss);
consider ss be
Real such that
A66:
0
<= ss and
A67: ss
< s and
A68: q00
= (f
. ss) by
A65;
ss
< 1 by
A36,
A67,
XXREAL_0: 2;
then
A69: ss
in (
dom f) by
A14,
A10,
A66,
XXREAL_1: 1;
now
assume
A70: q00
= q;
f is
one-to-one by
A6,
TOPS_2:def 5;
hence contradiction by
A12,
A13,
A67,
A68,
A69,
A70,
FUNCT_1:def 4;
end;
then
A71: not q00
in
{q} by
TARSKI:def 1;
q00
in P by
A9,
A11,
A68,
A69,
FUNCT_1:def 3;
hence thesis by
A5,
A64,
A71,
XBOOLE_0:def 5;
end;
then
reconsider P199 = P19 as
Subset of T by
A61,
PRE_TOPC:def 5;
P199
= (P19
/\ the
carrier of T) by
XBOOLE_1: 28;
then
A72: P199 is
open by
A37,
A61,
TOPS_2: 24;
s
<>
0 by
A3,
A7,
A13;
then
A73: p1
in { q0 where q0 be
Point of (
TOP-REAL 2) : ex ss be
Real st
0
<= ss & ss
< s & q0
= (f
. ss) } by
A7,
A20;
then (P19
/\ Q)
<>
{} by
A63,
XBOOLE_1: 28;
then P19
meets Q by
XBOOLE_0:def 7;
hence not Q is
connected by
A37,
A21,
A38,
A62,
A45,
TOPREAL5: 1;
the
carrier of T
= Q by
A61,
PRE_TOPC:def 5;
then
A74: (P199
\/ P299)
= the
carrier of (((
TOP-REAL 2)
| P)
| Q) by
A38,
XBOOLE_0:def 10;
P299
= (P29
/\ the
carrier of T) by
XBOOLE_1: 28;
then
A75: P299 is
open by
A21,
A61,
TOPS_2: 24;
(P199
/\ P299)
=
{} by
A45,
XBOOLE_0:def 7;
hence thesis by
A73,
A60,
A72,
A75,
A74,
Th17;
end;
theorem ::
JORDAN20:19
Th19: for P be non
empty
Subset of (
TOP-REAL 2), p1,p2,q1,q2 be
Point of (
TOP-REAL 2) st P
is_an_arc_of (p1,p2) & q1
in P & q2
in P holds
LE (q1,q2,P,p1,p2) or
LE (q2,q1,P,p1,p2)
proof
let P be non
empty
Subset of (
TOP-REAL 2), p1,p2,q1,q2 be
Point of (
TOP-REAL 2);
assume that
A1: P
is_an_arc_of (p1,p2) and
A2: q1
in P and
A3: q2
in P;
per cases ;
suppose q1
<> q2;
hence thesis by
A1,
A2,
A3,
JORDAN5C: 14;
end;
suppose q1
= q2;
hence thesis by
A2,
JORDAN5C: 9;
end;
end;
theorem ::
JORDAN20:20
Th20: for n be
Nat, p1,p2 be
Point of (
TOP-REAL n), P,P1 be non
empty
Subset of (
TOP-REAL n) st P
is_an_arc_of (p1,p2) & P1
is_an_arc_of (p1,p2) & P1
c= P holds P1
= P
proof
let n be
Nat, p1,p2 be
Point of (
TOP-REAL n), P,P1 be non
empty
Subset of (
TOP-REAL n);
assume that
A1: P
is_an_arc_of (p1,p2) and
A2: P1
is_an_arc_of (p1,p2) and
A3: P1
c= P;
P1
is_an_arc_of (p2,p1) by
A2,
JORDAN5B: 14;
hence thesis by
A1,
A3,
TOPMETR3: 14;
end;
theorem ::
JORDAN20:21
Th21: for P be non
empty
Subset of (
TOP-REAL 2), p1,p2,q1 be
Point of (
TOP-REAL 2) st P
is_an_arc_of (p1,p2) & q1
in P & p2
<> q1 holds (
Segment (P,p1,p2,q1,p2))
is_an_arc_of (q1,p2)
proof
let P be non
empty
Subset of (
TOP-REAL 2), p1,p2,q1 be
Point of (
TOP-REAL 2);
assume that
A1: P
is_an_arc_of (p1,p2) and
A2: q1
in P and
A3: p2
<> q1;
LE (q1,p2,P,p1,p2) by
A1,
A2,
JORDAN5C: 10;
hence thesis by
A1,
A3,
JORDAN16: 21;
end;
theorem ::
JORDAN20:22
Th22: for P be non
empty
Subset of (
TOP-REAL 2), p1,p2,q1,q2,q3 be
Point of (
TOP-REAL 2) st P
is_an_arc_of (p1,p2) &
LE (q1,q2,P,p1,p2) &
LE (q2,q3,P,p1,p2) holds ((
Segment (P,p1,p2,q1,q2))
\/ (
Segment (P,p1,p2,q2,q3)))
= (
Segment (P,p1,p2,q1,q3))
proof
let P be non
empty
Subset of (
TOP-REAL 2), p1,p2,q1,q2,q3 be
Point of (
TOP-REAL 2);
assume that
A1: P
is_an_arc_of (p1,p2) and
A2:
LE (q1,q2,P,p1,p2) and
A3:
LE (q2,q3,P,p1,p2);
A4: q2
in P by
A2,
JORDAN5C:def 3;
A5: (
Segment (P,p1,p2,q1,q3))
c= ((
Segment (P,p1,p2,q1,q2))
\/ (
Segment (P,p1,p2,q2,q3)))
proof
let x be
object;
assume x
in (
Segment (P,p1,p2,q1,q3));
then x
in { p3 where p3 be
Point of (
TOP-REAL 2) :
LE (q1,p3,P,p1,p2) &
LE (p3,q3,P,p1,p2) } by
JORDAN6: 26;
then
consider p3 be
Point of (
TOP-REAL 2) such that
A6: x
= p3 and
A7:
LE (q1,p3,P,p1,p2) and
A8:
LE (p3,q3,P,p1,p2);
A9: p3
in P by
A7,
JORDAN5C:def 3;
now
per cases ;
suppose
A10: p3
= q2;
then
LE (p3,q2,P,p1,p2) by
A4,
JORDAN5C: 9;
then x
in { p31 where p31 be
Point of (
TOP-REAL 2) :
LE (q1,p31,P,p1,p2) &
LE (p31,q2,P,p1,p2) } by
A2,
A6,
A10;
hence x
in (
Segment (P,p1,p2,q1,q2)) or x
in (
Segment (P,p1,p2,q2,q3)) by
JORDAN6: 26;
end;
suppose
A11: p3
<> q2;
now
per cases by
A1,
A4,
A9,
A11,
JORDAN5C: 14;
case
LE (p3,q2,P,p1,p2) & not
LE (q2,p3,P,p1,p2);
then x
in { p31 where p31 be
Point of (
TOP-REAL 2) :
LE (q1,p31,P,p1,p2) &
LE (p31,q2,P,p1,p2) } by
A6,
A7;
hence x
in (
Segment (P,p1,p2,q1,q2)) or x
in (
Segment (P,p1,p2,q2,q3)) by
JORDAN6: 26;
end;
case
LE (q2,p3,P,p1,p2) & not
LE (p3,q2,P,p1,p2);
then x
in { p31 where p31 be
Point of (
TOP-REAL 2) :
LE (q2,p31,P,p1,p2) &
LE (p31,q3,P,p1,p2) } by
A6,
A8;
hence x
in (
Segment (P,p1,p2,q1,q2)) or x
in (
Segment (P,p1,p2,q2,q3)) by
JORDAN6: 26;
end;
end;
hence x
in (
Segment (P,p1,p2,q1,q2)) or x
in (
Segment (P,p1,p2,q2,q3));
end;
end;
hence thesis by
XBOOLE_0:def 3;
end;
((
Segment (P,p1,p2,q1,q2))
\/ (
Segment (P,p1,p2,q2,q3)))
c= (
Segment (P,p1,p2,q1,q3))
proof
let x be
object;
assume
A12: x
in ((
Segment (P,p1,p2,q1,q2))
\/ (
Segment (P,p1,p2,q2,q3)));
per cases by
A12,
XBOOLE_0:def 3;
suppose x
in (
Segment (P,p1,p2,q1,q2));
then x
in { p where p be
Point of (
TOP-REAL 2) :
LE (q1,p,P,p1,p2) &
LE (p,q2,P,p1,p2) } by
JORDAN6: 26;
then
consider p be
Point of (
TOP-REAL 2) such that
A13: x
= p &
LE (q1,p,P,p1,p2) and
A14:
LE (p,q2,P,p1,p2);
LE (p,q3,P,p1,p2) by
A3,
A14,
JORDAN5C: 13;
then x
in { p3 where p3 be
Point of (
TOP-REAL 2) :
LE (q1,p3,P,p1,p2) &
LE (p3,q3,P,p1,p2) } by
A13;
hence thesis by
JORDAN6: 26;
end;
suppose x
in (
Segment (P,p1,p2,q2,q3));
then x
in { p where p be
Point of (
TOP-REAL 2) :
LE (q2,p,P,p1,p2) &
LE (p,q3,P,p1,p2) } by
JORDAN6: 26;
then
consider p be
Point of (
TOP-REAL 2) such that
A15: x
= p and
A16:
LE (q2,p,P,p1,p2) and
A17:
LE (p,q3,P,p1,p2);
LE (q1,p,P,p1,p2) by
A2,
A16,
JORDAN5C: 13;
then x
in { p3 where p3 be
Point of (
TOP-REAL 2) :
LE (q1,p3,P,p1,p2) &
LE (p3,q3,P,p1,p2) } by
A15,
A17;
hence thesis by
JORDAN6: 26;
end;
end;
hence thesis by
A5,
XBOOLE_0:def 10;
end;
theorem ::
JORDAN20:23
for P be non
empty
Subset of (
TOP-REAL 2), p1,p2,q1,q2,q3 be
Point of (
TOP-REAL 2) st P
is_an_arc_of (p1,p2) &
LE (q1,q2,P,p1,p2) &
LE (q2,q3,P,p1,p2) holds ((
Segment (P,p1,p2,q1,q2))
/\ (
Segment (P,p1,p2,q2,q3)))
=
{q2}
proof
let P be non
empty
Subset of (
TOP-REAL 2), p1,p2,q1,q2,q3 be
Point of (
TOP-REAL 2);
assume that
A1: P
is_an_arc_of (p1,p2) and
A2:
LE (q1,q2,P,p1,p2) and
A3:
LE (q2,q3,P,p1,p2);
A4: q2
in P by
A2,
JORDAN5C:def 3;
A5:
{q2}
c= ((
Segment (P,p1,p2,q1,q2))
/\ (
Segment (P,p1,p2,q2,q3)))
proof
set p3 = q2;
let x be
object;
assume x
in
{q2};
then
A6: x
= q2 by
TARSKI:def 1;
LE (q2,p3,P,p1,p2) by
A4,
JORDAN5C: 9;
then x
in { p31 where p31 be
Point of (
TOP-REAL 2) :
LE (q2,p31,P,p1,p2) &
LE (p31,q3,P,p1,p2) } by
A3,
A6;
then
A7: x
in (
Segment (P,p1,p2,q2,q3)) by
JORDAN6: 26;
LE (p3,q2,P,p1,p2) by
A4,
JORDAN5C: 9;
then x
in { p31 where p31 be
Point of (
TOP-REAL 2) :
LE (q1,p31,P,p1,p2) &
LE (p31,q2,P,p1,p2) } by
A2,
A6;
then x
in (
Segment (P,p1,p2,q1,q2)) by
JORDAN6: 26;
hence thesis by
A7,
XBOOLE_0:def 4;
end;
((
Segment (P,p1,p2,q1,q2))
/\ (
Segment (P,p1,p2,q2,q3)))
c=
{q2}
proof
let x be
object;
assume
A8: x
in ((
Segment (P,p1,p2,q1,q2))
/\ (
Segment (P,p1,p2,q2,q3)));
then x
in (
Segment (P,p1,p2,q2,q3)) by
XBOOLE_0:def 4;
then x
in { p4 where p4 be
Point of (
TOP-REAL 2) :
LE (q2,p4,P,p1,p2) &
LE (p4,q3,P,p1,p2) } by
JORDAN6: 26;
then
A9: ex p4 be
Point of (
TOP-REAL 2) st x
= p4 &
LE (q2,p4,P,p1,p2) &
LE (p4,q3,P,p1,p2);
x
in (
Segment (P,p1,p2,q1,q2)) by
A8,
XBOOLE_0:def 4;
then x
in { p where p be
Point of (
TOP-REAL 2) :
LE (q1,p,P,p1,p2) &
LE (p,q2,P,p1,p2) } by
JORDAN6: 26;
then ex p be
Point of (
TOP-REAL 2) st x
= p &
LE (q1,p,P,p1,p2) &
LE (p,q2,P,p1,p2);
then x
= q2 by
A1,
A9,
JORDAN5C: 12;
hence thesis by
TARSKI:def 1;
end;
hence thesis by
A5,
XBOOLE_0:def 10;
end;
theorem ::
JORDAN20:24
Th24: for P be non
empty
Subset of (
TOP-REAL 2), p1,p2 be
Point of (
TOP-REAL 2) st P
is_an_arc_of (p1,p2) holds (
Segment (P,p1,p2,p1,p2))
= P
proof
let P be non
empty
Subset of (
TOP-REAL 2), p1,p2 be
Point of (
TOP-REAL 2);
assume P
is_an_arc_of (p1,p2);
then
A1: (
R_Segment (P,p1,p2,p1))
= P & (
L_Segment (P,p1,p2,p2))
= P by
JORDAN6: 22,
JORDAN6: 24;
((
R_Segment (P,p1,p2,p1))
/\ (
L_Segment (P,p1,p2,p2)))
= (
Segment (P,p1,p2,p1,p2)) by
JORDAN6:def 5;
hence thesis by
A1;
end;
theorem ::
JORDAN20:25
Th25: for P,Q1 be non
empty
Subset of (
TOP-REAL 2), p1,p2,q1,q2 be
Point of (
TOP-REAL 2) st P
is_an_arc_of (p1,p2) & Q1
is_an_arc_of (q1,q2) &
LE (q1,q2,P,p1,p2) & Q1
c= P holds Q1
= (
Segment (P,p1,p2,q1,q2))
proof
let P,Q1 be non
empty
Subset of (
TOP-REAL 2), p1,p2,q1,q2 be
Point of (
TOP-REAL 2);
assume that
A1: P
is_an_arc_of (p1,p2) and
A2: Q1
is_an_arc_of (q1,q2) and
A3:
LE (q1,q2,P,p1,p2) and
A4: Q1
c= P;
reconsider Q0 = (
Segment (P,p1,p2,q1,q2)) as non
empty
Subset of (
TOP-REAL 2) by
A3,
JORDAN16: 18;
A5: q1
<> q2 by
A2,
JORDAN6: 37;
then
A6: (
Segment (P,p1,p2,q1,q2))
is_an_arc_of (q1,q2) by
A1,
A3,
JORDAN16: 21;
A7: q2
in P by
A3,
JORDAN5C:def 3;
A8:
now
assume
A9: q1
= p2;
LE (q2,p2,P,p1,p2) by
A1,
A7,
JORDAN5C: 10;
hence contradiction by
A1,
A2,
A3,
A9,
JORDAN5C: 12,
JORDAN6: 37;
end;
A10: q1
in P by
A3,
JORDAN5C:def 3;
A11:
now
assume
A12: q2
= p1;
LE (p1,q1,P,p1,p2) by
A1,
A10,
JORDAN5C: 10;
hence contradiction by
A1,
A2,
A3,
A12,
JORDAN5C: 12,
JORDAN6: 37;
end;
A13: p1
in P & p2
in P by
A1,
TOPREAL1: 1;
now
A14:
LE (p1,q1,P,p1,p2) by
A1,
A10,
JORDAN5C: 10;
then
A15: ((
Segment (P,p1,p2,p1,q1))
\/ (
Segment (P,p1,p2,q1,q2)))
= (
Segment (P,p1,p2,p1,q2)) by
A1,
A3,
Th22;
A16: (
[#] ((
TOP-REAL 2)
| P))
= P by
PRE_TOPC:def 5;
A17:
LE (q2,p2,P,p1,p2) by
A1,
A7,
JORDAN5C: 10;
A18: (
[#]
I[01] )
= the
carrier of
I[01] ;
Q0
is_an_arc_of (q1,q2) by
A1,
A3,
A5,
JORDAN16: 21;
then
A19: q2
in Q0 by
TOPREAL1: 1;
assume not Q1
c= Q0;
then
consider x8 be
object such that
A20: x8
in Q1 and
A21: not x8
in Q0;
reconsider q = x8 as
Point of (
TOP-REAL 2) by
A20;
A22: q
<> q1 by
A3,
A21,
JORDAN16: 5;
LE (p1,q2,P,p1,p2) by
A3,
A14,
JORDAN5C: 13;
then ((
Segment (P,p1,p2,p1,q2))
\/ (
Segment (P,p1,p2,q2,p2)))
= (
Segment (P,p1,p2,p1,p2)) by
A1,
A17,
Th22
.= P by
A1,
Th24;
then
A23: q
in (
Segment (P,p1,p2,p1,q2)) or q
in (
Segment (P,p1,p2,q2,p2)) by
A4,
A20,
XBOOLE_0:def 3;
now
per cases by
A21,
A15,
A23,
XBOOLE_0:def 3;
case
A24: q
in (
Segment (P,p1,p2,p1,q1));
A25: not q
in
{q1} by
A22,
TARSKI:def 1;
not q2
in
{q1} by
A5,
TARSKI:def 1;
then
reconsider Qa = (P
\
{q1}) as non
empty
Subset of ((
TOP-REAL 2)
| P) by
A7,
A16,
XBOOLE_0:def 5,
XBOOLE_1: 36;
A26: the
carrier of (((
TOP-REAL 2)
| P)
| Qa)
= Qa by
PRE_TOPC: 8;
reconsider Qa9 = Qa as
Subset of (
TOP-REAL 2);
A27: the
carrier of (((
TOP-REAL 2)
| P)
| Qa)
= Qa by
PRE_TOPC: 8;
A28: (
Segment (Q1,q1,q2,q,q2))
is_an_arc_of (q,q2) by
A2,
A20,
A21,
A19,
Th21;
then
consider f2 be
Function of
I[01] , ((
TOP-REAL 2)
| (
Segment (Q1,q1,q2,q,q2))) such that
A29: f2 is
being_homeomorphism and
A30: (f2
.
0 )
= q & (f2
. 1)
= q2 by
TOPREAL1:def 1;
A31: (
rng f2)
= (
[#] ((
TOP-REAL 2)
| (
Segment (Q1,q1,q2,q,q2)))) by
A29,
TOPS_2:def 5
.= (
Segment (Q1,q1,q2,q,q2)) by
PRE_TOPC:def 5;
A32: ( not p2
in
{q1}) & not q2
in
{q1} by
A5,
A8,
TARSKI:def 1;
q
in { p3 where p3 be
Point of (
TOP-REAL 2) :
LE (p1,p3,P,p1,p2) &
LE (p3,q1,P,p1,p2) } by
A24,
JORDAN6: 26;
then
A33: ex p3 be
Point of (
TOP-REAL 2) st q
= p3 &
LE (p1,p3,P,p1,p2) &
LE (p3,q1,P,p1,p2);
A34:
now
assume
A35: p1
= q1;
then q
= p1 by
A1,
A33,
JORDAN5C: 12;
hence contradiction by
A6,
A21,
A35,
TOPREAL1: 1;
end;
then not p1
in
{q1} by
TARSKI:def 1;
then
reconsider p19 = p1, q9 = q, q29 = q2, p29 = p2 as
Point of (((
TOP-REAL 2)
| P)
| Qa) by
A4,
A7,
A13,
A20,
A26,
A32,
A25,
XBOOLE_0:def 5;
now
per cases ;
case q
<> p1;
then
A36: (
Segment (P,p1,p2,p1,q))
is_an_arc_of (p1,q) by
A1,
A4,
A20,
JORDAN16: 24;
then
consider f1 be
Function of
I[01] , ((
TOP-REAL 2)
| (
Segment (P,p1,p2,p1,q))) such that
A37: f1 is
being_homeomorphism and
A38: (f1
.
0 )
= p1 & (f1
. 1)
= q by
TOPREAL1:def 1;
A39: (
rng f1)
= (
[#] ((
TOP-REAL 2)
| (
Segment (P,p1,p2,p1,q)))) by
A37,
TOPS_2:def 5
.= (
Segment (P,p1,p2,p1,q)) by
PRE_TOPC:def 5;
{ p where p be
Point of (
TOP-REAL 2) :
LE (p1,p,P,p1,p2) &
LE (p,q,P,p1,p2) }
c= Qa
proof
let x be
object;
assume x
in { p where p be
Point of (
TOP-REAL 2) :
LE (p1,p,P,p1,p2) &
LE (p,q,P,p1,p2) };
then
A40: ex p be
Point of (
TOP-REAL 2) st x
= p &
LE (p1,p,P,p1,p2) &
LE (p,q,P,p1,p2);
then x
<> q1 by
A1,
A22,
A33,
JORDAN5C: 12;
then
A41: not x
in
{q1} by
TARSKI:def 1;
x
in P by
A40,
JORDAN5C:def 3;
hence thesis by
A41,
XBOOLE_0:def 5;
end;
then
A42: (
Segment (P,p1,p2,p1,q))
c= Qa by
JORDAN6: 26;
(
dom f1)
= the
carrier of
I[01] by
A18,
A37,
TOPS_2:def 5;
then
reconsider g1 = f1 as
Function of
I[01] , (((
TOP-REAL 2)
| P)
| Qa) by
A26,
A39,
A42,
FUNCT_2: 2;
A43: f1 is
continuous by
A37,
TOPS_2:def 5;
A44: for G be
Subset of (((
TOP-REAL 2)
| P)
| Qa) st G is
open holds (g1
" G) is
open
proof
let G be
Subset of (((
TOP-REAL 2)
| P)
| Qa);
A45: (((
TOP-REAL 2)
| P)
| Qa)
= ((
TOP-REAL 2)
| Qa9) by
PRE_TOPC: 7,
XBOOLE_1: 36;
assume G is
open;
then
consider G4 be
Subset of (
TOP-REAL 2) such that
A46: G4 is
open and
A47: G
= (G4
/\ (
[#] ((
TOP-REAL 2)
| Qa9))) by
A45,
TOPS_2: 24;
reconsider G5 = (G4
/\ (
[#] ((
TOP-REAL 2)
| (
Segment (P,p1,p2,p1,q))))) as
Subset of ((
TOP-REAL 2)
| (
Segment (P,p1,p2,p1,q)));
A48: G5 is
open by
A46,
TOPS_2: 24;
A49: (
rng g1)
= (
[#] ((
TOP-REAL 2)
| (
Segment (P,p1,p2,p1,q)))) by
A37,
TOPS_2:def 5
.= (
Segment (P,p1,p2,p1,q)) by
PRE_TOPC:def 5;
A50: p1
in (
Segment (P,p1,p2,p1,q)) by
A36,
TOPREAL1: 1;
A51: (f1
" G5)
= (g1
" (G4
/\ (
Segment (P,p1,p2,p1,q)))) by
PRE_TOPC:def 5
.= ((g1
" G4)
/\ (g1
" (
Segment (P,p1,p2,p1,q)))) by
FUNCT_1: 68;
(g1
" G)
= ((g1
" G4)
/\ (g1
" (
[#] ((
TOP-REAL 2)
| Qa9)))) by
A47,
FUNCT_1: 68
.= ((g1
" G4)
/\ (g1
" Qa9)) by
PRE_TOPC:def 5
.= ((g1
" G4)
/\ (g1
" ((
rng g1)
/\ Qa9))) by
RELAT_1: 133
.= ((g1
" G4)
/\ (g1
" (
Segment (P,p1,p2,p1,q)))) by
A42,
A49,
XBOOLE_1: 28;
hence thesis by
A43,
A50,
A48,
A51,
TOPS_2: 43;
end;
(
[#] (((
TOP-REAL 2)
| P)
| Qa))
<>
{} ;
then
A52: g1 is
continuous by
A44,
TOPS_2: 43;
then (p19,q9)
are_connected by
A38,
BORSUK_2:def 1;
then g1 is
Path of p19, q9 by
A38,
A52,
BORSUK_2:def 2;
hence ex G1 be
Path of p19, q9 st G1 is
continuous & (G1
.
0 )
= p19 & (G1
. 1)
= q9 by
A38,
A52;
end;
case
A53: q
= p1;
consider g01 be
Function of
I[01] , (((
TOP-REAL 2)
| P)
| Qa) such that
A54: g01 is
continuous & (g01
.
0 )
= p19 & (g01
. 1)
= p19 by
BORSUK_2: 3;
(p19,p19)
are_connected ;
then g01 is
Path of p19, p19 by
A54,
BORSUK_2:def 2;
hence ex G1 be
Path of p19, q9 st G1 is
continuous & (G1
.
0 )
= p19 & (G1
. 1)
= q9 by
A53,
A54;
end;
end;
then
consider G1 be
Path of p19, q9 such that
A55: G1 is
continuous & (G1
.
0 )
= p19 & (G1
. 1)
= q9;
now
per cases ;
case q2
<> p2;
then
A56: (
Segment (P,p1,p2,q2,p2))
is_an_arc_of (q2,p2) by
A1,
A7,
Th21;
then
consider f3 be
Function of
I[01] , ((
TOP-REAL 2)
| (
Segment (P,p1,p2,q2,p2))) such that
A57: f3 is
being_homeomorphism and
A58: (f3
.
0 )
= q2 & (f3
. 1)
= p2 by
TOPREAL1:def 1;
A59: (
rng f3)
= (
[#] ((
TOP-REAL 2)
| (
Segment (P,p1,p2,q2,p2)))) by
A57,
TOPS_2:def 5
.= (
Segment (P,p1,p2,q2,p2)) by
PRE_TOPC:def 5;
{ p where p be
Point of (
TOP-REAL 2) :
LE (q2,p,P,p1,p2) &
LE (p,p2,P,p1,p2) }
c= Qa
proof
let x be
object;
assume x
in { p where p be
Point of (
TOP-REAL 2) :
LE (q2,p,P,p1,p2) &
LE (p,p2,P,p1,p2) };
then
A60: ex p be
Point of (
TOP-REAL 2) st x
= p &
LE (q2,p,P,p1,p2) &
LE (p,p2,P,p1,p2);
then x
<> q1 by
A1,
A2,
A3,
JORDAN5C: 12,
JORDAN6: 37;
then
A61: not x
in
{q1} by
TARSKI:def 1;
x
in P by
A60,
JORDAN5C:def 3;
hence thesis by
A61,
XBOOLE_0:def 5;
end;
then
A62: (
Segment (P,p1,p2,q2,p2))
c= Qa by
JORDAN6: 26;
A63: the
carrier of (((
TOP-REAL 2)
| P)
| Qa)
= Qa by
PRE_TOPC: 8;
(
dom f3)
= the
carrier of
I[01] by
A18,
A57,
TOPS_2:def 5;
then
reconsider g3 = f3 as
Function of
I[01] , (((
TOP-REAL 2)
| P)
| Qa) by
A59,
A63,
A62,
FUNCT_2: 2;
A64: f3 is
continuous by
A57,
TOPS_2:def 5;
A65: for G be
Subset of (((
TOP-REAL 2)
| P)
| Qa) st G is
open holds (g3
" G) is
open
proof
let G be
Subset of (((
TOP-REAL 2)
| P)
| Qa);
A66: (((
TOP-REAL 2)
| P)
| Qa)
= ((
TOP-REAL 2)
| Qa9) by
PRE_TOPC: 7,
XBOOLE_1: 36;
assume G is
open;
then
consider G4 be
Subset of (
TOP-REAL 2) such that
A67: G4 is
open and
A68: G
= (G4
/\ (
[#] ((
TOP-REAL 2)
| Qa9))) by
A66,
TOPS_2: 24;
reconsider G5 = (G4
/\ (
[#] ((
TOP-REAL 2)
| (
Segment (P,p1,p2,q2,p2))))) as
Subset of ((
TOP-REAL 2)
| (
Segment (P,p1,p2,q2,p2)));
A69: G5 is
open by
A67,
TOPS_2: 24;
A70: (
rng g3)
= (
[#] ((
TOP-REAL 2)
| (
Segment (P,p1,p2,q2,p2)))) by
A57,
TOPS_2:def 5
.= (
Segment (P,p1,p2,q2,p2)) by
PRE_TOPC:def 5;
A71: p2
in (
Segment (P,p1,p2,q2,p2)) by
A56,
TOPREAL1: 1;
A72: (f3
" G5)
= (g3
" (G4
/\ (
Segment (P,p1,p2,q2,p2)))) by
PRE_TOPC:def 5
.= ((g3
" G4)
/\ (g3
" (
Segment (P,p1,p2,q2,p2)))) by
FUNCT_1: 68;
(g3
" G)
= ((g3
" G4)
/\ (g3
" (
[#] ((
TOP-REAL 2)
| Qa9)))) by
A68,
FUNCT_1: 68
.= ((g3
" G4)
/\ (g3
" Qa9)) by
PRE_TOPC:def 5
.= ((g3
" G4)
/\ (g3
" ((
rng g3)
/\ Qa9))) by
RELAT_1: 133
.= ((g3
" G4)
/\ (g3
" (
Segment (P,p1,p2,q2,p2)))) by
A62,
A70,
XBOOLE_1: 28;
hence thesis by
A64,
A71,
A69,
A72,
TOPS_2: 43;
end;
(
[#] (((
TOP-REAL 2)
| P)
| Qa))
<>
{} ;
then
A73: g3 is
continuous by
A65,
TOPS_2: 43;
then (q29,p29)
are_connected by
A58,
BORSUK_2:def 1;
then g3 is
Path of q29, p29 by
A58,
A73,
BORSUK_2:def 2;
hence ex G3 be
Path of q29, p29 st G3 is
continuous & (G3
.
0 )
= q29 & (G3
. 1)
= p29 by
A58,
A73;
end;
case
A74: q2
= p2;
consider g01 be
Function of
I[01] , (((
TOP-REAL 2)
| P)
| Qa) such that
A75: g01 is
continuous & (g01
.
0 )
= q29 & (g01
. 1)
= q29 by
BORSUK_2: 3;
(q29,q29)
are_connected ;
then g01 is
Path of q29, q29 by
A75,
BORSUK_2:def 2;
hence ex G3 be
Path of q29, p29 st G3 is
continuous & (G3
.
0 )
= q29 & (G3
. 1)
= p29 by
A74,
A75;
end;
end;
then
consider G3 be
Path of q29, p29 such that
A76: G3 is
continuous & (G3
.
0 )
= q29 & (G3
. 1)
= p29;
{ p where p be
Point of (
TOP-REAL 2) :
LE (q,p,Q1,q1,q2) &
LE (p,q2,Q1,q1,q2) }
c= Qa
proof
let x be
object;
assume x
in { p where p be
Point of (
TOP-REAL 2) :
LE (q,p,Q1,q1,q2) &
LE (p,q2,Q1,q1,q2) };
then
A77: ex p be
Point of (
TOP-REAL 2) st x
= p &
LE (q,p,Q1,q1,q2) &
LE (p,q2,Q1,q1,q2);
now
assume
A78: x
= q1;
LE (q1,q,Q1,q1,q2) by
A2,
A20,
JORDAN5C: 10;
hence contradiction by
A2,
A22,
A77,
A78,
JORDAN5C: 12;
end;
then
A79: not x
in
{q1} by
TARSKI:def 1;
x
in Q1 by
A77,
JORDAN5C:def 3;
hence thesis by
A4,
A79,
XBOOLE_0:def 5;
end;
then
A80: (
Segment (Q1,q1,q2,q,q2))
c= Qa by
JORDAN6: 26;
(
dom f2)
= the
carrier of
I[01] by
A18,
A29,
TOPS_2:def 5;
then
reconsider g2 = f2 as
Function of
I[01] , (((
TOP-REAL 2)
| P)
| Qa) by
A31,
A27,
A80,
FUNCT_2: 2;
A81: f2 is
continuous by
A29,
TOPS_2:def 5;
A82: for G be
Subset of (((
TOP-REAL 2)
| P)
| Qa) st G is
open holds (g2
" G) is
open
proof
let G be
Subset of (((
TOP-REAL 2)
| P)
| Qa);
A83: (((
TOP-REAL 2)
| P)
| Qa)
= ((
TOP-REAL 2)
| Qa9) by
PRE_TOPC: 7,
XBOOLE_1: 36;
assume G is
open;
then
consider G4 be
Subset of (
TOP-REAL 2) such that
A84: G4 is
open and
A85: G
= (G4
/\ (
[#] ((
TOP-REAL 2)
| Qa9))) by
A83,
TOPS_2: 24;
reconsider G5 = (G4
/\ (
[#] ((
TOP-REAL 2)
| (
Segment (Q1,q1,q2,q,q2))))) as
Subset of ((
TOP-REAL 2)
| (
Segment (Q1,q1,q2,q,q2)));
A86: G5 is
open by
A84,
TOPS_2: 24;
A87: (
rng g2)
= (
[#] ((
TOP-REAL 2)
| (
Segment (Q1,q1,q2,q,q2)))) by
A29,
TOPS_2:def 5
.= (
Segment (Q1,q1,q2,q,q2)) by
PRE_TOPC:def 5;
A88: q2
in (
Segment (Q1,q1,q2,q,q2)) by
A28,
TOPREAL1: 1;
A89: (f2
" G5)
= (g2
" (G4
/\ (
Segment (Q1,q1,q2,q,q2)))) by
PRE_TOPC:def 5
.= ((g2
" G4)
/\ (g2
" (
Segment (Q1,q1,q2,q,q2)))) by
FUNCT_1: 68;
(g2
" G)
= ((g2
" G4)
/\ (g2
" (
[#] ((
TOP-REAL 2)
| Qa9)))) by
A85,
FUNCT_1: 68
.= ((g2
" G4)
/\ (g2
" Qa9)) by
PRE_TOPC:def 5
.= ((g2
" G4)
/\ (g2
" ((
rng g2)
/\ Qa9))) by
RELAT_1: 133
.= ((g2
" G4)
/\ (g2
" (
Segment (Q1,q1,q2,q,q2)))) by
A80,
A87,
XBOOLE_1: 28;
hence thesis by
A81,
A88,
A86,
A89,
TOPS_2: 43;
end;
(
[#] (((
TOP-REAL 2)
| P)
| Qa))
<>
{} ;
then
A90: g2 is
continuous by
A82,
TOPS_2: 43;
then (q9,q29)
are_connected by
A30,
BORSUK_2:def 1;
then
reconsider G2 = g2 as
Path of q9, q29 by
A30,
A90,
BORSUK_2:def 2;
A91: ((G1
+ G2)
. 1)
= q29 by
A55,
A30,
A90,
BORSUK_2: 14;
A92: (G1
+ G2) is
continuous & ((G1
+ G2)
.
0 )
= p19 by
A55,
A30,
A90,
BORSUK_2: 14;
then
A93: (((G1
+ G2)
+ G3)
. 1)
= p29 by
A91,
A76,
BORSUK_2: 14;
((G1
+ G2)
+ G3) is
continuous & (((G1
+ G2)
+ G3)
.
0 )
= p19 by
A92,
A91,
A76,
BORSUK_2: 14;
hence contradiction by
A1,
A10,
A8,
A34,
A93,
Th18;
end;
case
A94: q
in (
Segment (P,p1,p2,q2,p2));
A95: ( not p1
in
{q2}) & not q1
in
{q2} by
A5,
A11,
TARSKI:def 1;
not q1
in
{q2} by
A5,
TARSKI:def 1;
then
reconsider Qa = (P
\
{q2}) as non
empty
Subset of ((
TOP-REAL 2)
| P) by
A10,
A16,
XBOOLE_0:def 5,
XBOOLE_1: 36;
A96: the
carrier of (((
TOP-REAL 2)
| P)
| Qa)
= Qa by
PRE_TOPC: 8;
reconsider Qa9 = Qa as
Subset of (
TOP-REAL 2);
A97: the
carrier of (((
TOP-REAL 2)
| P)
| Qa)
= Qa by
PRE_TOPC: 8;
A98: (
Segment (Q1,q1,q2,q1,q))
is_an_arc_of (q1,q) by
A2,
A20,
A22,
JORDAN16: 24;
then
consider f2 be
Function of
I[01] , ((
TOP-REAL 2)
| (
Segment (Q1,q1,q2,q1,q))) such that
A99: f2 is
being_homeomorphism and
A100: (f2
.
0 )
= q1 & (f2
. 1)
= q by
TOPREAL1:def 1;
A101: (
rng f2)
= (
[#] ((
TOP-REAL 2)
| (
Segment (Q1,q1,q2,q1,q)))) by
A99,
TOPS_2:def 5
.= (
Segment (Q1,q1,q2,q1,q)) by
PRE_TOPC:def 5;
A102: not q
in
{q2} by
A21,
A19,
TARSKI:def 1;
q
in { p3 where p3 be
Point of (
TOP-REAL 2) :
LE (q2,p3,P,p1,p2) &
LE (p3,p2,P,p1,p2) } by
A94,
JORDAN6: 26;
then
A103: ex p3 be
Point of (
TOP-REAL 2) st q
= p3 &
LE (q2,p3,P,p1,p2) &
LE (p3,p2,P,p1,p2);
A104:
now
assume
A105: p2
= q2;
then q
= p2 by
A1,
A103,
JORDAN5C: 12;
hence contradiction by
A6,
A21,
A105,
TOPREAL1: 1;
end;
then not p2
in
{q2} by
TARSKI:def 1;
then
reconsider p19 = p1, q9 = q, q19 = q1, p29 = p2 as
Point of (((
TOP-REAL 2)
| P)
| Qa) by
A4,
A10,
A13,
A20,
A96,
A95,
A102,
XBOOLE_0:def 5;
now
per cases ;
case q
<> p2;
then
A106: (
Segment (P,p1,p2,q,p2))
is_an_arc_of (q,p2) by
A1,
A4,
A20,
Th21;
then
consider f1 be
Function of
I[01] , ((
TOP-REAL 2)
| (
Segment (P,p1,p2,q,p2))) such that
A107: f1 is
being_homeomorphism and
A108: (f1
.
0 )
= q & (f1
. 1)
= p2 by
TOPREAL1:def 1;
A109: (
rng f1)
= (
[#] ((
TOP-REAL 2)
| (
Segment (P,p1,p2,q,p2)))) by
A107,
TOPS_2:def 5
.= (
Segment (P,p1,p2,q,p2)) by
PRE_TOPC:def 5;
{ p where p be
Point of (
TOP-REAL 2) :
LE (q,p,P,p1,p2) &
LE (p,p2,P,p1,p2) }
c= Qa
proof
let x be
object;
assume x
in { p where p be
Point of (
TOP-REAL 2) :
LE (q,p,P,p1,p2) &
LE (p,p2,P,p1,p2) };
then
A110: ex p be
Point of (
TOP-REAL 2) st x
= p &
LE (q,p,P,p1,p2) &
LE (p,p2,P,p1,p2);
then x
<> q2 by
A1,
A21,
A19,
A103,
JORDAN5C: 12;
then
A111: not x
in
{q2} by
TARSKI:def 1;
x
in P by
A110,
JORDAN5C:def 3;
hence thesis by
A111,
XBOOLE_0:def 5;
end;
then
A112: (
Segment (P,p1,p2,q,p2))
c= Qa by
JORDAN6: 26;
(
dom f1)
= the
carrier of
I[01] by
A18,
A107,
TOPS_2:def 5;
then
reconsider g1 = f1 as
Function of
I[01] , (((
TOP-REAL 2)
| P)
| Qa) by
A96,
A109,
A112,
FUNCT_2: 2;
A113: f1 is
continuous by
A107,
TOPS_2:def 5;
A114: for G be
Subset of (((
TOP-REAL 2)
| P)
| Qa) st G is
open holds (g1
" G) is
open
proof
let G be
Subset of (((
TOP-REAL 2)
| P)
| Qa);
A115: (((
TOP-REAL 2)
| P)
| Qa)
= ((
TOP-REAL 2)
| Qa9) by
PRE_TOPC: 7,
XBOOLE_1: 36;
assume G is
open;
then
consider G4 be
Subset of (
TOP-REAL 2) such that
A116: G4 is
open and
A117: G
= (G4
/\ (
[#] ((
TOP-REAL 2)
| Qa9))) by
A115,
TOPS_2: 24;
reconsider G5 = (G4
/\ (
[#] ((
TOP-REAL 2)
| (
Segment (P,p1,p2,q,p2))))) as
Subset of ((
TOP-REAL 2)
| (
Segment (P,p1,p2,q,p2)));
A118: G5 is
open by
A116,
TOPS_2: 24;
A119: (
rng g1)
= (
[#] ((
TOP-REAL 2)
| (
Segment (P,p1,p2,q,p2)))) by
A107,
TOPS_2:def 5
.= (
Segment (P,p1,p2,q,p2)) by
PRE_TOPC:def 5;
A120: p2
in (
Segment (P,p1,p2,q,p2)) by
A106,
TOPREAL1: 1;
A121: (f1
" G5)
= (g1
" (G4
/\ (
Segment (P,p1,p2,q,p2)))) by
PRE_TOPC:def 5
.= ((g1
" G4)
/\ (g1
" (
Segment (P,p1,p2,q,p2)))) by
FUNCT_1: 68;
(g1
" G)
= ((g1
" G4)
/\ (g1
" (
[#] ((
TOP-REAL 2)
| Qa9)))) by
A117,
FUNCT_1: 68
.= ((g1
" G4)
/\ (g1
" Qa9)) by
PRE_TOPC:def 5
.= ((g1
" G4)
/\ (g1
" ((
rng g1)
/\ Qa9))) by
RELAT_1: 133
.= ((g1
" G4)
/\ (g1
" (
Segment (P,p1,p2,q,p2)))) by
A112,
A119,
XBOOLE_1: 28;
hence thesis by
A113,
A120,
A118,
A121,
TOPS_2: 43;
end;
(
[#] (((
TOP-REAL 2)
| P)
| Qa))
<>
{} ;
then
A122: g1 is
continuous by
A114,
TOPS_2: 43;
then (q9,p29)
are_connected by
A108,
BORSUK_2:def 1;
then g1 is
Path of q9, p29 by
A108,
A122,
BORSUK_2:def 2;
hence ex G1 be
Path of q9, p29 st G1 is
continuous & (G1
.
0 )
= q9 & (G1
. 1)
= p29 by
A108,
A122;
end;
case
A123: q
= p2;
consider g01 be
Function of
I[01] , (((
TOP-REAL 2)
| P)
| Qa) such that
A124: g01 is
continuous & (g01
.
0 )
= p29 & (g01
. 1)
= p29 by
BORSUK_2: 3;
(p29,p29)
are_connected ;
then g01 is
Path of p29, p29 by
A124,
BORSUK_2:def 2;
hence ex G1 be
Path of q9, p29 st G1 is
continuous & (G1
.
0 )
= q9 & (G1
. 1)
= p29 by
A123,
A124;
end;
end;
then
consider G1 be
Path of q9, p29 such that
A125: G1 is
continuous & (G1
.
0 )
= q9 & (G1
. 1)
= p29;
now
per cases ;
case q1
<> p1;
then
A126: (
Segment (P,p1,p2,p1,q1))
is_an_arc_of (p1,q1) by
A1,
A10,
JORDAN16: 24;
then
consider f3 be
Function of
I[01] , ((
TOP-REAL 2)
| (
Segment (P,p1,p2,p1,q1))) such that
A127: f3 is
being_homeomorphism and
A128: (f3
.
0 )
= p1 & (f3
. 1)
= q1 by
TOPREAL1:def 1;
A129: (
rng f3)
= (
[#] ((
TOP-REAL 2)
| (
Segment (P,p1,p2,p1,q1)))) by
A127,
TOPS_2:def 5
.= (
Segment (P,p1,p2,p1,q1)) by
PRE_TOPC:def 5;
{ p where p be
Point of (
TOP-REAL 2) :
LE (p1,p,P,p1,p2) &
LE (p,q1,P,p1,p2) }
c= Qa
proof
let x be
object;
assume x
in { p where p be
Point of (
TOP-REAL 2) :
LE (p1,p,P,p1,p2) &
LE (p,q1,P,p1,p2) };
then
A130: ex p be
Point of (
TOP-REAL 2) st x
= p &
LE (p1,p,P,p1,p2) &
LE (p,q1,P,p1,p2);
then x
<> q2 by
A1,
A2,
A3,
JORDAN5C: 12,
JORDAN6: 37;
then
A131: not x
in
{q2} by
TARSKI:def 1;
x
in P by
A130,
JORDAN5C:def 3;
hence thesis by
A131,
XBOOLE_0:def 5;
end;
then
A132: (
Segment (P,p1,p2,p1,q1))
c= Qa by
JORDAN6: 26;
A133: the
carrier of (((
TOP-REAL 2)
| P)
| Qa)
= Qa by
PRE_TOPC: 8;
(
dom f3)
= the
carrier of
I[01] by
A18,
A127,
TOPS_2:def 5;
then
reconsider g3 = f3 as
Function of
I[01] , (((
TOP-REAL 2)
| P)
| Qa) by
A129,
A133,
A132,
FUNCT_2: 2;
A134: f3 is
continuous by
A127,
TOPS_2:def 5;
A135: for G be
Subset of (((
TOP-REAL 2)
| P)
| Qa) st G is
open holds (g3
" G) is
open
proof
let G be
Subset of (((
TOP-REAL 2)
| P)
| Qa);
A136: (((
TOP-REAL 2)
| P)
| Qa)
= ((
TOP-REAL 2)
| Qa9) by
PRE_TOPC: 7,
XBOOLE_1: 36;
assume G is
open;
then
consider G4 be
Subset of (
TOP-REAL 2) such that
A137: G4 is
open and
A138: G
= (G4
/\ (
[#] ((
TOP-REAL 2)
| Qa9))) by
A136,
TOPS_2: 24;
reconsider G5 = (G4
/\ (
[#] ((
TOP-REAL 2)
| (
Segment (P,p1,p2,p1,q1))))) as
Subset of ((
TOP-REAL 2)
| (
Segment (P,p1,p2,p1,q1)));
A139: G5 is
open by
A137,
TOPS_2: 24;
A140: (
rng g3)
= (
[#] ((
TOP-REAL 2)
| (
Segment (P,p1,p2,p1,q1)))) by
A127,
TOPS_2:def 5
.= (
Segment (P,p1,p2,p1,q1)) by
PRE_TOPC:def 5;
A141: p1
in (
Segment (P,p1,p2,p1,q1)) by
A126,
TOPREAL1: 1;
A142: (f3
" G5)
= (g3
" (G4
/\ (
Segment (P,p1,p2,p1,q1)))) by
PRE_TOPC:def 5
.= ((g3
" G4)
/\ (g3
" (
Segment (P,p1,p2,p1,q1)))) by
FUNCT_1: 68;
(g3
" G)
= ((g3
" G4)
/\ (g3
" (
[#] ((
TOP-REAL 2)
| Qa9)))) by
A138,
FUNCT_1: 68
.= ((g3
" G4)
/\ (g3
" Qa9)) by
PRE_TOPC:def 5
.= ((g3
" G4)
/\ (g3
" ((
rng g3)
/\ Qa9))) by
RELAT_1: 133
.= ((g3
" G4)
/\ (g3
" (
Segment (P,p1,p2,p1,q1)))) by
A132,
A140,
XBOOLE_1: 28;
hence thesis by
A134,
A141,
A139,
A142,
TOPS_2: 43;
end;
(
[#] (((
TOP-REAL 2)
| P)
| Qa))
<>
{} ;
then
A143: g3 is
continuous by
A135,
TOPS_2: 43;
then (p19,q19)
are_connected by
A128,
BORSUK_2:def 1;
then g3 is
Path of p19, q19 by
A128,
A143,
BORSUK_2:def 2;
hence ex G3 be
Path of p19, q19 st G3 is
continuous & (G3
.
0 )
= p19 & (G3
. 1)
= q19 by
A128,
A143;
end;
case
A144: q1
= p1;
consider g01 be
Function of
I[01] , (((
TOP-REAL 2)
| P)
| Qa) such that
A145: g01 is
continuous & (g01
.
0 )
= q19 & (g01
. 1)
= q19 by
BORSUK_2: 3;
(q19,q19)
are_connected ;
then g01 is
Path of q19, q19 by
A145,
BORSUK_2:def 2;
hence ex G3 be
Path of p19, q19 st G3 is
continuous & (G3
.
0 )
= p19 & (G3
. 1)
= q19 by
A144,
A145;
end;
end;
then
consider G3 be
Path of p19, q19 such that
A146: G3 is
continuous & (G3
.
0 )
= p19 & (G3
. 1)
= q19;
{ p where p be
Point of (
TOP-REAL 2) :
LE (q1,p,Q1,q1,q2) &
LE (p,q,Q1,q1,q2) }
c= Qa
proof
let x be
object;
assume x
in { p where p be
Point of (
TOP-REAL 2) :
LE (q1,p,Q1,q1,q2) &
LE (p,q,Q1,q1,q2) };
then
A147: ex p be
Point of (
TOP-REAL 2) st x
= p &
LE (q1,p,Q1,q1,q2) &
LE (p,q,Q1,q1,q2);
now
assume
A148: x
= q2;
LE (q,q2,Q1,q1,q2) by
A2,
A20,
JORDAN5C: 10;
hence contradiction by
A2,
A21,
A19,
A147,
A148,
JORDAN5C: 12;
end;
then
A149: not x
in
{q2} by
TARSKI:def 1;
x
in Q1 by
A147,
JORDAN5C:def 3;
hence thesis by
A4,
A149,
XBOOLE_0:def 5;
end;
then
A150: (
Segment (Q1,q1,q2,q1,q))
c= Qa by
JORDAN6: 26;
(
dom f2)
= the
carrier of
I[01] by
A18,
A99,
TOPS_2:def 5;
then
reconsider g2 = f2 as
Function of
I[01] , (((
TOP-REAL 2)
| P)
| Qa) by
A101,
A97,
A150,
FUNCT_2: 2;
A151: f2 is
continuous by
A99,
TOPS_2:def 5;
A152: for G be
Subset of (((
TOP-REAL 2)
| P)
| Qa) st G is
open holds (g2
" G) is
open
proof
let G be
Subset of (((
TOP-REAL 2)
| P)
| Qa);
A153: (((
TOP-REAL 2)
| P)
| Qa)
= ((
TOP-REAL 2)
| Qa9) by
PRE_TOPC: 7,
XBOOLE_1: 36;
assume G is
open;
then
consider G4 be
Subset of (
TOP-REAL 2) such that
A154: G4 is
open and
A155: G
= (G4
/\ (
[#] ((
TOP-REAL 2)
| Qa9))) by
A153,
TOPS_2: 24;
reconsider G5 = (G4
/\ (
[#] ((
TOP-REAL 2)
| (
Segment (Q1,q1,q2,q1,q))))) as
Subset of ((
TOP-REAL 2)
| (
Segment (Q1,q1,q2,q1,q)));
A156: G5 is
open by
A154,
TOPS_2: 24;
A157: (
rng g2)
= (
[#] ((
TOP-REAL 2)
| (
Segment (Q1,q1,q2,q1,q)))) by
A99,
TOPS_2:def 5
.= (
Segment (Q1,q1,q2,q1,q)) by
PRE_TOPC:def 5;
A158: q1
in (
Segment (Q1,q1,q2,q1,q)) by
A98,
TOPREAL1: 1;
A159: (f2
" G5)
= (g2
" (G4
/\ (
Segment (Q1,q1,q2,q1,q)))) by
PRE_TOPC:def 5
.= ((g2
" G4)
/\ (g2
" (
Segment (Q1,q1,q2,q1,q)))) by
FUNCT_1: 68;
(g2
" G)
= ((g2
" G4)
/\ (g2
" (
[#] ((
TOP-REAL 2)
| Qa9)))) by
A155,
FUNCT_1: 68
.= ((g2
" G4)
/\ (g2
" Qa9)) by
PRE_TOPC:def 5
.= ((g2
" G4)
/\ (g2
" ((
rng g2)
/\ Qa9))) by
RELAT_1: 133
.= ((g2
" G4)
/\ (g2
" (
Segment (Q1,q1,q2,q1,q)))) by
A150,
A157,
XBOOLE_1: 28;
hence thesis by
A151,
A158,
A156,
A159,
TOPS_2: 43;
end;
(
[#] (((
TOP-REAL 2)
| P)
| Qa))
<>
{} ;
then
A160: g2 is
continuous by
A152,
TOPS_2: 43;
then (q19,q9)
are_connected by
A100,
BORSUK_2:def 1;
then
reconsider G2 = g2 as
Path of q19, q9 by
A100,
A160,
BORSUK_2:def 2;
A161: ((G2
+ G1)
. 1)
= p29 by
A125,
A100,
A160,
BORSUK_2: 14;
A162: (G2
+ G1) is
continuous & ((G2
+ G1)
.
0 )
= q19 by
A125,
A100,
A160,
BORSUK_2: 14;
then
A163: ((G3
+ (G2
+ G1))
. 1)
= p29 by
A161,
A146,
BORSUK_2: 14;
(G3
+ (G2
+ G1)) is
continuous & ((G3
+ (G2
+ G1))
.
0 )
= p19 by
A162,
A161,
A146,
BORSUK_2: 14;
hence contradiction by
A1,
A7,
A11,
A104,
A163,
Th18;
end;
end;
hence contradiction;
end;
hence thesis by
A2,
A6,
Th20;
end;
theorem ::
JORDAN20:26
for P be non
empty
Subset of (
TOP-REAL 2), p1,p2,q1,q2,p be
Point of (
TOP-REAL 2), e be
Real st q1
is_Lin (P,p1,p2,e) & (q2
`1 )
= e & (
LSeg (q1,q2))
c= P & p
in (
LSeg (q1,q2)) holds p
is_Lin (P,p1,p2,e)
proof
let P be non
empty
Subset of (
TOP-REAL 2), p1,p2,q1,q2,p be
Point of (
TOP-REAL 2), e be
Real;
assume that
A1: q1
is_Lin (P,p1,p2,e) and
A2: (q2
`1 )
= e and
A3: (
LSeg (q1,q2))
c= P and
A4: p
in (
LSeg (q1,q2));
A5: q1
in P by
A1;
A6: q2
in (
LSeg (q1,q2)) by
RLTOPSP1: 68;
A7: (q1
`1 )
= e by
A1;
consider p4 be
Point of (
TOP-REAL 2) such that
A8: (p4
`1 )
< e and
A9:
LE (p4,q1,P,p1,p2) and
A10: for p5 be
Point of (
TOP-REAL 2) st
LE (p4,p5,P,p1,p2) &
LE (p5,q1,P,p1,p2) holds (p5
`1 )
<= e by
A1;
A11: P
is_an_arc_of (p1,p2) by
A1;
A12: p4
in P by
A9,
JORDAN5C:def 3;
now
per cases by
A3,
A11,
A5,
A6,
Th19;
case
A13:
LE (q1,q2,P,p1,p2);
A14:
now
per cases ;
case q1
<> q2;
then (
LSeg (q1,q2))
is_an_arc_of (q1,q2) by
TOPREAL1: 9;
hence (
Segment (P,p1,p2,q1,q2))
= (
LSeg (q1,q2)) by
A3,
A11,
A13,
Th25;
end;
case
A15: q1
= q2;
then (
LSeg (q1,q2))
=
{q1} by
RLTOPSP1: 70;
hence (
Segment (P,p1,p2,q1,q2))
= (
LSeg (q1,q2)) by
A11,
A5,
A15,
Th1;
end;
end;
(
Segment (P,p1,p2,q1,q2))
= { p3 where p3 be
Point of (
TOP-REAL 2) :
LE (q1,p3,P,p1,p2) &
LE (p3,q2,P,p1,p2) } by
JORDAN6: 26;
then
A16: ex p3 be
Point of (
TOP-REAL 2) st p
= p3 &
LE (q1,p3,P,p1,p2) &
LE (p3,q2,P,p1,p2) by
A4,
A14;
then
A17:
LE (p4,p,P,p1,p2) by
A9,
JORDAN5C: 13;
A18: for p6 be
Point of (
TOP-REAL 2) st
LE (p4,p6,P,p1,p2) &
LE (p6,p,P,p1,p2) holds (p6
`1 )
<= e
proof
let p6 be
Point of (
TOP-REAL 2);
assume that
A19:
LE (p4,p6,P,p1,p2) and
A20:
LE (p6,p,P,p1,p2);
A21: p6
in P by
A19,
JORDAN5C:def 3;
now
per cases by
A11,
A5,
A21,
Th19;
case
LE (p6,q1,P,p1,p2);
hence thesis by
A10,
A19;
end;
case
A22:
LE (q1,p6,P,p1,p2);
LE (p6,q2,P,p1,p2) by
A16,
A20,
JORDAN5C: 13;
then p6
in { qq where qq be
Point of (
TOP-REAL 2) :
LE (q1,qq,P,p1,p2) &
LE (qq,q2,P,p1,p2) } by
A22;
then p6
in (
LSeg (q1,q2)) by
A14,
JORDAN6: 26;
hence thesis by
A2,
A7,
GOBOARD7: 5;
end;
end;
hence thesis;
end;
(p
`1 )
= e by
A2,
A4,
A7,
GOBOARD7: 5;
hence thesis by
A3,
A4,
A11,
A8,
A17,
A18;
end;
case
A23:
LE (q2,q1,P,p1,p2);
A24:
now
per cases ;
case q1
<> q2;
then (
LSeg (q2,q1))
is_an_arc_of (q2,q1) by
TOPREAL1: 9;
hence (
Segment (P,p1,p2,q2,q1))
= (
LSeg (q2,q1)) by
A3,
A11,
A23,
Th25;
end;
case
A25: q1
= q2;
then (
LSeg (q2,q1))
=
{q1} by
RLTOPSP1: 70;
hence (
Segment (P,p1,p2,q2,q1))
= (
LSeg (q2,q1)) by
A11,
A5,
A25,
Th1;
end;
end;
A26:
now
assume
LE (q2,p4,P,p1,p2);
then p4
in { qq where qq be
Point of (
TOP-REAL 2) :
LE (q2,qq,P,p1,p2) &
LE (qq,q1,P,p1,p2) } by
A9;
then p4
in (
Segment (P,p1,p2,q2,q1)) by
JORDAN6: 26;
hence contradiction by
A2,
A7,
A8,
A24,
GOBOARD7: 5;
end;
(
Segment (P,p1,p2,q2,q1))
= { p3 where p3 be
Point of (
TOP-REAL 2) :
LE (q2,p3,P,p1,p2) &
LE (p3,q1,P,p1,p2) } by
JORDAN6: 26;
then
A27: ex p3 be
Point of (
TOP-REAL 2) st p
= p3 &
LE (q2,p3,P,p1,p2) &
LE (p3,q1,P,p1,p2) by
A4,
A24;
A28: for p6 be
Point of (
TOP-REAL 2) st
LE (p4,p6,P,p1,p2) &
LE (p6,p,P,p1,p2) holds (p6
`1 )
<= e
proof
let p6 be
Point of (
TOP-REAL 2);
assume that
A29:
LE (p4,p6,P,p1,p2) and
A30:
LE (p6,p,P,p1,p2);
LE (p6,q1,P,p1,p2) by
A27,
A30,
JORDAN5C: 13;
hence thesis by
A10,
A29;
end;
LE (q2,p4,P,p1,p2) or
LE (p4,q2,P,p1,p2) by
A3,
A11,
A6,
A12,
Th19;
then
A31:
LE (p4,p,P,p1,p2) by
A27,
A26,
JORDAN5C: 13;
(p
`1 )
= e by
A2,
A4,
A7,
GOBOARD7: 5;
hence thesis by
A3,
A4,
A11,
A8,
A31,
A28;
end;
end;
hence thesis;
end;
theorem ::
JORDAN20:27
for P be non
empty
Subset of (
TOP-REAL 2), p1,p2,q1,q2,p be
Point of (
TOP-REAL 2), e be
Real st q1
is_Rin (P,p1,p2,e) & (q2
`1 )
= e & (
LSeg (q1,q2))
c= P & p
in (
LSeg (q1,q2)) holds p
is_Rin (P,p1,p2,e)
proof
let P be non
empty
Subset of (
TOP-REAL 2), p1,p2,q1,q2,p be
Point of (
TOP-REAL 2), e be
Real;
assume that
A1: q1
is_Rin (P,p1,p2,e) and
A2: (q2
`1 )
= e and
A3: (
LSeg (q1,q2))
c= P and
A4: p
in (
LSeg (q1,q2));
A5: q1
in P by
A1;
A6: q2
in (
LSeg (q1,q2)) by
RLTOPSP1: 68;
A7: (q1
`1 )
= e by
A1;
consider p4 be
Point of (
TOP-REAL 2) such that
A8: (p4
`1 )
> e and
A9:
LE (p4,q1,P,p1,p2) and
A10: for p5 be
Point of (
TOP-REAL 2) st
LE (p4,p5,P,p1,p2) &
LE (p5,q1,P,p1,p2) holds (p5
`1 )
>= e by
A1;
A11: P
is_an_arc_of (p1,p2) by
A1;
A12: p4
in P by
A9,
JORDAN5C:def 3;
now
per cases by
A3,
A11,
A5,
A6,
Th19;
case
A13:
LE (q1,q2,P,p1,p2);
A14:
now
per cases ;
case q1
<> q2;
then (
LSeg (q1,q2))
is_an_arc_of (q1,q2) by
TOPREAL1: 9;
hence (
Segment (P,p1,p2,q1,q2))
= (
LSeg (q1,q2)) by
A3,
A11,
A13,
Th25;
end;
case
A15: q1
= q2;
then (
LSeg (q1,q2))
=
{q1} by
RLTOPSP1: 70;
hence (
Segment (P,p1,p2,q1,q2))
= (
LSeg (q1,q2)) by
A11,
A5,
A15,
Th1;
end;
end;
(
Segment (P,p1,p2,q1,q2))
= { p3 where p3 be
Point of (
TOP-REAL 2) :
LE (q1,p3,P,p1,p2) &
LE (p3,q2,P,p1,p2) } by
JORDAN6: 26;
then
A16: ex p3 be
Point of (
TOP-REAL 2) st p
= p3 &
LE (q1,p3,P,p1,p2) &
LE (p3,q2,P,p1,p2) by
A4,
A14;
then
A17:
LE (p4,p,P,p1,p2) by
A9,
JORDAN5C: 13;
A18: for p6 be
Point of (
TOP-REAL 2) st
LE (p4,p6,P,p1,p2) &
LE (p6,p,P,p1,p2) holds (p6
`1 )
>= e
proof
let p6 be
Point of (
TOP-REAL 2);
assume that
A19:
LE (p4,p6,P,p1,p2) and
A20:
LE (p6,p,P,p1,p2);
A21: p6
in P by
A19,
JORDAN5C:def 3;
now
per cases by
A11,
A5,
A21,
Th19;
case
LE (p6,q1,P,p1,p2);
hence thesis by
A10,
A19;
end;
case
A22:
LE (q1,p6,P,p1,p2);
LE (p6,q2,P,p1,p2) by
A16,
A20,
JORDAN5C: 13;
then p6
in { qq where qq be
Point of (
TOP-REAL 2) :
LE (q1,qq,P,p1,p2) &
LE (qq,q2,P,p1,p2) } by
A22;
then p6
in (
LSeg (q1,q2)) by
A14,
JORDAN6: 26;
hence thesis by
A2,
A7,
GOBOARD7: 5;
end;
end;
hence thesis;
end;
(p
`1 )
= e by
A2,
A4,
A7,
GOBOARD7: 5;
hence thesis by
A3,
A4,
A11,
A8,
A17,
A18;
end;
case
A23:
LE (q2,q1,P,p1,p2);
A24:
now
per cases ;
case q1
<> q2;
then (
LSeg (q2,q1))
is_an_arc_of (q2,q1) by
TOPREAL1: 9;
hence (
Segment (P,p1,p2,q2,q1))
= (
LSeg (q2,q1)) by
A3,
A11,
A23,
Th25;
end;
case
A25: q1
= q2;
then (
LSeg (q2,q1))
=
{q1} by
RLTOPSP1: 70;
hence (
Segment (P,p1,p2,q2,q1))
= (
LSeg (q2,q1)) by
A11,
A5,
A25,
Th1;
end;
end;
A26:
now
assume
LE (q2,p4,P,p1,p2);
then p4
in { qq where qq be
Point of (
TOP-REAL 2) :
LE (q2,qq,P,p1,p2) &
LE (qq,q1,P,p1,p2) } by
A9;
then p4
in (
Segment (P,p1,p2,q2,q1)) by
JORDAN6: 26;
hence contradiction by
A2,
A7,
A8,
A24,
GOBOARD7: 5;
end;
(
Segment (P,p1,p2,q2,q1))
= { p3 where p3 be
Point of (
TOP-REAL 2) :
LE (q2,p3,P,p1,p2) &
LE (p3,q1,P,p1,p2) } by
JORDAN6: 26;
then
A27: ex p3 be
Point of (
TOP-REAL 2) st p
= p3 &
LE (q2,p3,P,p1,p2) &
LE (p3,q1,P,p1,p2) by
A4,
A24;
A28: for p6 be
Point of (
TOP-REAL 2) st
LE (p4,p6,P,p1,p2) &
LE (p6,p,P,p1,p2) holds (p6
`1 )
>= e
proof
let p6 be
Point of (
TOP-REAL 2);
assume that
A29:
LE (p4,p6,P,p1,p2) and
A30:
LE (p6,p,P,p1,p2);
LE (p6,q1,P,p1,p2) by
A27,
A30,
JORDAN5C: 13;
hence thesis by
A10,
A29;
end;
LE (q2,p4,P,p1,p2) or
LE (p4,q2,P,p1,p2) by
A3,
A11,
A6,
A12,
Th19;
then
A31:
LE (p4,p,P,p1,p2) by
A27,
A26,
JORDAN5C: 13;
(p
`1 )
= e by
A2,
A4,
A7,
GOBOARD7: 5;
hence thesis by
A3,
A4,
A11,
A8,
A31,
A28;
end;
end;
hence thesis;
end;
theorem ::
JORDAN20:28
for P be non
empty
Subset of (
TOP-REAL 2), p1,p2,q1,q2,p be
Point of (
TOP-REAL 2), e be
Real st q1
is_Lout (P,p1,p2,e) & (q2
`1 )
= e & (
LSeg (q1,q2))
c= P & p
in (
LSeg (q1,q2)) holds p
is_Lout (P,p1,p2,e)
proof
let P be non
empty
Subset of (
TOP-REAL 2), p1,p2,q1,q2,p be
Point of (
TOP-REAL 2), e be
Real;
assume that
A1: q1
is_Lout (P,p1,p2,e) and
A2: (q2
`1 )
= e and
A3: (
LSeg (q1,q2))
c= P and
A4: p
in (
LSeg (q1,q2));
A5: q1
in P by
A1;
A6: q2
in (
LSeg (q1,q2)) by
RLTOPSP1: 68;
A7: (q1
`1 )
= e by
A1;
consider p4 be
Point of (
TOP-REAL 2) such that
A8: (p4
`1 )
< e and
A9:
LE (q1,p4,P,p1,p2) and
A10: for p5 be
Point of (
TOP-REAL 2) st
LE (p5,p4,P,p1,p2) &
LE (q1,p5,P,p1,p2) holds (p5
`1 )
<= e by
A1;
A11: P
is_an_arc_of (p1,p2) by
A1;
A12: p4
in P by
A9,
JORDAN5C:def 3;
now
per cases by
A3,
A11,
A5,
A6,
Th19;
case
A13:
LE (q2,q1,P,p1,p2);
A14:
now
per cases ;
case q1
<> q2;
then (
LSeg (q2,q1))
is_an_arc_of (q2,q1) by
TOPREAL1: 9;
hence (
Segment (P,p1,p2,q2,q1))
= (
LSeg (q2,q1)) by
A3,
A11,
A13,
Th25;
end;
case
A15: q1
= q2;
then (
LSeg (q1,q2))
=
{q1} by
RLTOPSP1: 70;
hence (
Segment (P,p1,p2,q2,q1))
= (
LSeg (q2,q1)) by
A11,
A5,
A15,
Th1;
end;
end;
(
Segment (P,p1,p2,q2,q1))
= { p3 where p3 be
Point of (
TOP-REAL 2) :
LE (q2,p3,P,p1,p2) &
LE (p3,q1,P,p1,p2) } by
JORDAN6: 26;
then
A16: ex p3 be
Point of (
TOP-REAL 2) st p
= p3 &
LE (q2,p3,P,p1,p2) &
LE (p3,q1,P,p1,p2) by
A4,
A14;
then
A17:
LE (p,p4,P,p1,p2) by
A9,
JORDAN5C: 13;
A18: for p6 be
Point of (
TOP-REAL 2) st
LE (p6,p4,P,p1,p2) &
LE (p,p6,P,p1,p2) holds (p6
`1 )
<= e
proof
let p6 be
Point of (
TOP-REAL 2);
assume that
A19:
LE (p6,p4,P,p1,p2) and
A20:
LE (p,p6,P,p1,p2);
A21: p6
in P by
A19,
JORDAN5C:def 3;
now
per cases by
A11,
A5,
A21,
Th19;
case
LE (q1,p6,P,p1,p2);
hence thesis by
A10,
A19;
end;
case
A22:
LE (p6,q1,P,p1,p2);
LE (q2,p6,P,p1,p2) by
A16,
A20,
JORDAN5C: 13;
then p6
in { qq where qq be
Point of (
TOP-REAL 2) :
LE (q2,qq,P,p1,p2) &
LE (qq,q1,P,p1,p2) } by
A22;
then p6
in (
LSeg (q2,q1)) by
A14,
JORDAN6: 26;
hence thesis by
A2,
A7,
GOBOARD7: 5;
end;
end;
hence thesis;
end;
(p
`1 )
= e by
A2,
A4,
A7,
GOBOARD7: 5;
hence thesis by
A3,
A4,
A11,
A8,
A17,
A18;
end;
case
A23:
LE (q1,q2,P,p1,p2);
A24:
now
per cases ;
case q1
<> q2;
then (
LSeg (q1,q2))
is_an_arc_of (q1,q2) by
TOPREAL1: 9;
hence (
Segment (P,p1,p2,q1,q2))
= (
LSeg (q1,q2)) by
A3,
A11,
A23,
Th25;
end;
case
A25: q1
= q2;
then (
LSeg (q2,q1))
=
{q1} by
RLTOPSP1: 70;
hence (
Segment (P,p1,p2,q1,q2))
= (
LSeg (q1,q2)) by
A11,
A5,
A25,
Th1;
end;
end;
A26:
now
assume
LE (p4,q2,P,p1,p2);
then p4
in { qq where qq be
Point of (
TOP-REAL 2) :
LE (q1,qq,P,p1,p2) &
LE (qq,q2,P,p1,p2) } by
A9;
then p4
in (
Segment (P,p1,p2,q1,q2)) by
JORDAN6: 26;
hence contradiction by
A2,
A7,
A8,
A24,
GOBOARD7: 5;
end;
(
Segment (P,p1,p2,q1,q2))
= { p3 where p3 be
Point of (
TOP-REAL 2) :
LE (q1,p3,P,p1,p2) &
LE (p3,q2,P,p1,p2) } by
JORDAN6: 26;
then
A27: ex p3 be
Point of (
TOP-REAL 2) st p
= p3 &
LE (q1,p3,P,p1,p2) &
LE (p3,q2,P,p1,p2) by
A4,
A24;
A28: for p6 be
Point of (
TOP-REAL 2) st
LE (p6,p4,P,p1,p2) &
LE (p,p6,P,p1,p2) holds (p6
`1 )
<= e
proof
let p6 be
Point of (
TOP-REAL 2);
assume that
A29:
LE (p6,p4,P,p1,p2) and
A30:
LE (p,p6,P,p1,p2);
LE (q1,p6,P,p1,p2) by
A27,
A30,
JORDAN5C: 13;
hence thesis by
A10,
A29;
end;
LE (q2,p4,P,p1,p2) or
LE (p4,q2,P,p1,p2) by
A3,
A11,
A6,
A12,
Th19;
then
A31:
LE (p,p4,P,p1,p2) by
A27,
A26,
JORDAN5C: 13;
(p
`1 )
= e by
A2,
A4,
A7,
GOBOARD7: 5;
hence thesis by
A3,
A4,
A11,
A8,
A31,
A28;
end;
end;
hence thesis;
end;
theorem ::
JORDAN20:29
for P be non
empty
Subset of (
TOP-REAL 2), p1,p2,q1,q2,p be
Point of (
TOP-REAL 2), e be
Real st q1
is_Rout (P,p1,p2,e) & (q2
`1 )
= e & (
LSeg (q1,q2))
c= P & p
in (
LSeg (q1,q2)) holds p
is_Rout (P,p1,p2,e)
proof
let P be non
empty
Subset of (
TOP-REAL 2), p1,p2,q1,q2,p be
Point of (
TOP-REAL 2), e be
Real;
assume that
A1: q1
is_Rout (P,p1,p2,e) and
A2: (q2
`1 )
= e and
A3: (
LSeg (q1,q2))
c= P and
A4: p
in (
LSeg (q1,q2));
A5: q1
in P by
A1;
A6: q2
in (
LSeg (q1,q2)) by
RLTOPSP1: 68;
A7: (q1
`1 )
= e by
A1;
consider p4 be
Point of (
TOP-REAL 2) such that
A8: (p4
`1 )
> e and
A9:
LE (q1,p4,P,p1,p2) and
A10: for p5 be
Point of (
TOP-REAL 2) st
LE (p5,p4,P,p1,p2) &
LE (q1,p5,P,p1,p2) holds (p5
`1 )
>= e by
A1;
A11: P
is_an_arc_of (p1,p2) by
A1;
A12: p4
in P by
A9,
JORDAN5C:def 3;
now
per cases by
A3,
A11,
A5,
A6,
Th19;
case
A13:
LE (q2,q1,P,p1,p2);
A14:
now
per cases ;
case q1
<> q2;
then (
LSeg (q2,q1))
is_an_arc_of (q2,q1) by
TOPREAL1: 9;
hence (
Segment (P,p1,p2,q2,q1))
= (
LSeg (q2,q1)) by
A3,
A11,
A13,
Th25;
end;
case
A15: q1
= q2;
then (
LSeg (q1,q2))
=
{q1} by
RLTOPSP1: 70;
hence (
Segment (P,p1,p2,q2,q1))
= (
LSeg (q2,q1)) by
A11,
A5,
A15,
Th1;
end;
end;
(
Segment (P,p1,p2,q2,q1))
= { p3 where p3 be
Point of (
TOP-REAL 2) :
LE (q2,p3,P,p1,p2) &
LE (p3,q1,P,p1,p2) } by
JORDAN6: 26;
then
A16: ex p3 be
Point of (
TOP-REAL 2) st p
= p3 &
LE (q2,p3,P,p1,p2) &
LE (p3,q1,P,p1,p2) by
A4,
A14;
then
A17:
LE (p,p4,P,p1,p2) by
A9,
JORDAN5C: 13;
A18: for p6 be
Point of (
TOP-REAL 2) st
LE (p6,p4,P,p1,p2) &
LE (p,p6,P,p1,p2) holds (p6
`1 )
>= e
proof
let p6 be
Point of (
TOP-REAL 2);
assume that
A19:
LE (p6,p4,P,p1,p2) and
A20:
LE (p,p6,P,p1,p2);
A21: p6
in P by
A19,
JORDAN5C:def 3;
now
per cases by
A11,
A5,
A21,
Th19;
case
LE (q1,p6,P,p1,p2);
hence thesis by
A10,
A19;
end;
case
A22:
LE (p6,q1,P,p1,p2);
LE (q2,p6,P,p1,p2) by
A16,
A20,
JORDAN5C: 13;
then p6
in { qq where qq be
Point of (
TOP-REAL 2) :
LE (q2,qq,P,p1,p2) &
LE (qq,q1,P,p1,p2) } by
A22;
then p6
in (
LSeg (q2,q1)) by
A14,
JORDAN6: 26;
hence thesis by
A2,
A7,
GOBOARD7: 5;
end;
end;
hence thesis;
end;
(p
`1 )
= e by
A2,
A4,
A7,
GOBOARD7: 5;
hence thesis by
A3,
A4,
A11,
A8,
A17,
A18;
end;
case
A23:
LE (q1,q2,P,p1,p2);
A24:
now
per cases ;
case q1
<> q2;
then (
LSeg (q1,q2))
is_an_arc_of (q1,q2) by
TOPREAL1: 9;
hence (
Segment (P,p1,p2,q1,q2))
= (
LSeg (q1,q2)) by
A3,
A11,
A23,
Th25;
end;
case
A25: q1
= q2;
then (
LSeg (q2,q1))
=
{q1} by
RLTOPSP1: 70;
hence (
Segment (P,p1,p2,q1,q2))
= (
LSeg (q1,q2)) by
A11,
A5,
A25,
Th1;
end;
end;
A26:
now
assume
LE (p4,q2,P,p1,p2);
then p4
in { qq where qq be
Point of (
TOP-REAL 2) :
LE (q1,qq,P,p1,p2) &
LE (qq,q2,P,p1,p2) } by
A9;
then p4
in (
Segment (P,p1,p2,q1,q2)) by
JORDAN6: 26;
hence contradiction by
A2,
A7,
A8,
A24,
GOBOARD7: 5;
end;
(
Segment (P,p1,p2,q1,q2))
= { p3 where p3 be
Point of (
TOP-REAL 2) :
LE (q1,p3,P,p1,p2) &
LE (p3,q2,P,p1,p2) } by
JORDAN6: 26;
then
A27: ex p3 be
Point of (
TOP-REAL 2) st p
= p3 &
LE (q1,p3,P,p1,p2) &
LE (p3,q2,P,p1,p2) by
A4,
A24;
A28: for p6 be
Point of (
TOP-REAL 2) st
LE (p6,p4,P,p1,p2) &
LE (p,p6,P,p1,p2) holds (p6
`1 )
>= e
proof
let p6 be
Point of (
TOP-REAL 2);
assume that
A29:
LE (p6,p4,P,p1,p2) and
A30:
LE (p,p6,P,p1,p2);
LE (q1,p6,P,p1,p2) by
A27,
A30,
JORDAN5C: 13;
hence thesis by
A10,
A29;
end;
LE (q2,p4,P,p1,p2) or
LE (p4,q2,P,p1,p2) by
A3,
A11,
A6,
A12,
Th19;
then
A31:
LE (p,p4,P,p1,p2) by
A27,
A26,
JORDAN5C: 13;
(p
`1 )
= e by
A2,
A4,
A7,
GOBOARD7: 5;
hence thesis by
A3,
A4,
A11,
A8,
A31,
A28;
end;
end;
hence thesis;
end;
theorem ::
JORDAN20:30
for P be non
empty
Subset of (
TOP-REAL 2), p1,p2,p be
Point of (
TOP-REAL 2), e be
Real st P
is_S-P_arc_joining (p1,p2) & (p1
`1 )
< e & p
in P & (p
`1 )
= e holds p
is_Lin (P,p1,p2,e) or p
is_Rin (P,p1,p2,e)
proof
let P be non
empty
Subset of (
TOP-REAL 2), p1,p2,p be
Point of (
TOP-REAL 2), e be
Real;
assume that
A1: P
is_S-P_arc_joining (p1,p2) and
A2: (p1
`1 )
< e and
A3: p
in P and
A4: (p
`1 )
= e;
consider f be
FinSequence of (
TOP-REAL 2) such that
A5: f is
being_S-Seq and
A6: P
= (
L~ f) and
A7: p1
= (f
/. 1) and
A8: p2
= (f
/. (
len f)) by
A1,
TOPREAL4:def 1;
A9: P
is_an_arc_of (p1,p2) by
A1,
TOPREAL4: 2;
(
len f)
>= 2 by
A5,
TOPREAL1:def 8;
then
A10: (
len f)
> 1 by
XXREAL_0: 2;
A11: (
L~ f)
= (
union { (
LSeg (f,i)) where i be
Nat : 1
<= i & (i
+ 1)
<= (
len f) }) by
TOPREAL1:def 4;
then
consider Y be
set such that
A12: p
in Y and
A13: Y
in { (
LSeg (f,i)) where i be
Nat : 1
<= i & (i
+ 1)
<= (
len f) } by
A3,
A6,
TARSKI:def 4;
consider i be
Nat such that
A14: Y
= (
LSeg (f,i)) and
A15: 1
<= i and
A16: (i
+ 1)
<= (
len f) by
A13;
A17: (i
- 1)
>=
0 by
A15,
XREAL_1: 48;
A18: 1
< (i
+ 1) by
A15,
NAT_1: 13;
A19: Y
c= (
L~ f) by
A11,
A13,
TARSKI:def 4;
defpred
P[
Nat] means for p be
Point of (
TOP-REAL 2) st p
= (f
. (i
-' $1)) holds (p
`1 )
<> e;
A20: i
< (
len f) by
A16,
NAT_1: 13;
then
A21: i
in (
dom f) by
A15,
FINSEQ_3: 25;
A22: 1
< (
len f) by
A15,
A20,
XXREAL_0: 2;
then 1
in (
dom f) by
FINSEQ_3: 25;
then (f
/. 1)
= (f
. 1) by
PARTFUN1:def 6;
then
A23:
P[(i
-' 1)] by
A2,
A7,
A15,
NAT_D: 58;
then
A24: ex k be
Nat st
P[k];
ex k be
Nat st
P[k] & for n be
Nat st
P[n] holds k
<= n from
NAT_1:sch 5(
A24);
then
consider k be
Nat such that
A25:
P[k] and
A26: for n be
Nat st
P[n] holds k
<= n;
k
<= (i
-' 1) by
A23,
A26;
then k
<= (i
- 1) by
A17,
XREAL_0:def 2;
then (k
+ 1)
<= ((i
- 1)
+ 1) by
XREAL_1: 7;
then
A27: ((1
+ k)
- k)
<= (i
- k) by
XREAL_1: 9;
then
A28: (i
-' k)
>= 1 by
XREAL_0:def 2;
(i
-' k)
<= i by
NAT_D: 35;
then
A29: (i
-' k)
< (
len f) by
A20,
XXREAL_0: 2;
then
A30: (i
-' k)
in (
dom f) by
A28,
FINSEQ_3: 25;
then
A31: (f
/. (i
-' k))
= (f
. (i
-' k)) by
PARTFUN1:def 6;
then
reconsider pk = (f
. (i
-' k)) as
Point of (
TOP-REAL 2);
A32: (i
-' k)
= (i
- k) by
A27,
XREAL_0:def 2;
now
per cases by
A25,
XXREAL_0: 1;
case
A33: (pk
`1 )
< e;
now
per cases ;
case
A34: k
=
0 ;
set p44 = (f
/. i);
A35: pk
= (f
. i) by
A34,
NAT_D: 40
.= p44 by
A21,
PARTFUN1:def 6;
reconsider ia = (i
+ 1) as
Nat;
reconsider g = (
mid (f,i,(
len f))) as
FinSequence of (
TOP-REAL 2);
A36: i
<= (
len f) by
A16,
NAT_1: 13;
ia
in (
Seg (
len f)) by
A16,
A18,
FINSEQ_1: 1;
then
A37: (i
+ 1)
in (
dom f) by
FINSEQ_1:def 3;
(1
+ (1
+ i))
<= (1
+ (
len f)) by
A16,
XREAL_1: 7;
then
A38: (((1
+ 1)
+ i)
- i)
<= (((
len f)
+ 1)
- i) by
XREAL_1: 9;
then
A39: 1
<= (((
len f)
+ 1)
- i) by
XXREAL_0: 2;
A40: ((
len f)
- i)
>
0 by
A20,
XREAL_1: 50;
then ((
len f)
-' i)
= ((
len f)
- i) by
XREAL_0:def 2;
then
A41: (((
len f)
-' i)
+ 1)
> (
0
+ 1) by
A40,
XREAL_1: 8;
A42: (
len g)
= (((
len f)
-' i)
+ 1) by
A10,
A15,
A20,
FINSEQ_6: 118;
then
A43: (1
+ 1)
<= (
len g) by
A41,
NAT_1: 13;
then (1
+ 1)
in (
Seg (
len g)) by
FINSEQ_1: 1;
then (1
+ 1)
in (
dom g) by
FINSEQ_1:def 3;
then
A44: (g
/. (1
+ 1))
= (g
. (1
+ 1)) by
PARTFUN1:def 6
.= (f
. (((1
+ 1)
- 1)
+ i)) by
A15,
A20,
A38,
FINSEQ_6: 122
.= (f
/. (i
+ 1)) by
A37,
PARTFUN1:def 6;
1
in (
dom g) by
A42,
A41,
FINSEQ_3: 25;
then
A45: (g
/. 1)
= (g
. 1) by
PARTFUN1:def 6
.= (f
. ((1
- 1)
+ i)) by
A15,
A36,
A39,
FINSEQ_6: 122
.= (f
/. i) by
A21,
PARTFUN1:def 6;
(
LSeg (f,i))
= (
LSeg ((f
/. i),(f
/. (i
+ 1)))) by
A15,
A16,
TOPREAL1:def 3
.= (
LSeg (g,1)) by
A43,
A45,
A44,
TOPREAL1:def 3;
then Y
in { (
LSeg (g,i2)) where i2 be
Nat : 1
<= i2 & (i2
+ 1)
<= (
len g) } by
A14,
A43;
then p
in (
union { (
LSeg (g,i2)) where i2 be
Nat : 1
<= i2 & (i2
+ 1)
<= (
len g) }) by
A12,
TARSKI:def 4;
then
A46: p
in (
L~ (
mid (f,i,(
len f)))) by
TOPREAL1:def 4;
A47: (
LSeg (f,i))
= (
LSeg ((f
/. i),(f
/. (i
+ 1)))) by
A15,
A16,
TOPREAL1:def 3;
A48: for p5 be
Point of (
TOP-REAL 2) st
LE (p44,p5,P,p1,p2) &
LE (p5,p,P,p1,p2) holds (p5
`1 )
<= e
proof
p44
in (
LSeg ((f
/. i),(f
/. (i
+ 1)))) by
RLTOPSP1: 68;
then (
LSeg (p44,p))
c= (
LSeg (f,i)) by
A12,
A14,
A47,
TOPREAL1: 6;
then
A49: (
LSeg (p44,p))
c= P by
A6,
A19,
A14;
let p5 be
Point of (
TOP-REAL 2);
A50: (
Segment (P,p1,p2,p44,p))
= { p8 where p8 be
Point of (
TOP-REAL 2) :
LE (p44,p8,P,p1,p2) &
LE (p8,p,P,p1,p2) } by
JORDAN6: 26;
assume
LE (p44,p5,P,p1,p2) &
LE (p5,p,P,p1,p2);
then
A51: p5
in (
Segment (P,p1,p2,p44,p)) by
A50;
now
per cases ;
case p44
<> p;
then (
LSeg (p44,p))
is_an_arc_of (p44,p) by
TOPREAL1: 9;
then (
Segment (P,p1,p2,p44,p))
= (
LSeg (p44,p)) by
A9,
A5,
A6,
A7,
A8,
A15,
A20,
A46,
A49,
Th25,
SPRECT_4: 3;
hence thesis by
A4,
A33,
A35,
A51,
TOPREAL1: 3;
end;
case p44
= p;
hence thesis by
A4,
A33,
A35;
end;
end;
hence thesis;
end;
LE (p44,p,P,p1,p2) by
A5,
A6,
A7,
A8,
A15,
A20,
A46,
SPRECT_4: 3;
hence thesis by
A3,
A4,
A9,
A33,
A35,
A48;
end;
case
A52: k
<>
0 ;
reconsider ia = (i
+ 1) as
Nat;
reconsider g = (
mid (f,i,(
len f))) as
FinSequence of (
TOP-REAL 2);
A53: i
<= (
len f) by
A16,
NAT_1: 13;
ia
in (
Seg (
len f)) by
A16,
A18,
FINSEQ_1: 1;
then
A54: (i
+ 1)
in (
dom f) by
FINSEQ_1:def 3;
(1
+ (1
+ i))
<= (1
+ (
len f)) by
A16,
XREAL_1: 7;
then
A55: (((1
+ 1)
+ i)
- i)
<= (((
len f)
+ 1)
- i) by
XREAL_1: 9;
then
A56: 1
<= (((
len f)
+ 1)
- i) by
XXREAL_0: 2;
A57: ((
len f)
- i)
>
0 by
A20,
XREAL_1: 50;
then ((
len f)
-' i)
= ((
len f)
- i) by
XREAL_0:def 2;
then
A58: (((
len f)
-' i)
+ 1)
> (
0
+ 1) by
A57,
XREAL_1: 8;
A59: (
len g)
= (((
len f)
-' i)
+ 1) by
A10,
A15,
A20,
FINSEQ_6: 118;
then
A60: (1
+ 1)
<= (
len g) by
A58,
NAT_1: 13;
then (1
+ 1)
in (
Seg (
len g)) by
FINSEQ_1: 1;
then (1
+ 1)
in (
dom g) by
FINSEQ_1:def 3;
then
A61: (g
/. (1
+ 1))
= (g
. (1
+ 1)) by
PARTFUN1:def 6
.= (f
. (((1
+ 1)
- 1)
+ i)) by
A15,
A20,
A55,
FINSEQ_6: 122
.= (f
/. (i
+ 1)) by
A54,
PARTFUN1:def 6;
1
in (
dom g) by
A59,
A58,
FINSEQ_3: 25;
then
A62: (g
/. 1)
= (g
. 1) by
PARTFUN1:def 6
.= (f
. ((1
- 1)
+ i)) by
A15,
A53,
A56,
FINSEQ_6: 122
.= (f
/. i) by
A21,
PARTFUN1:def 6;
(
LSeg (f,i))
= (
LSeg ((f
/. i),(f
/. (i
+ 1)))) by
A15,
A16,
TOPREAL1:def 3
.= (
LSeg (g,1)) by
A60,
A62,
A61,
TOPREAL1:def 3;
then Y
in { (
LSeg (g,i2)) where i2 be
Nat : 1
<= i2 & (i2
+ 1)
<= (
len g) } by
A14,
A60;
then p
in (
union { (
LSeg (g,i2)) where i2 be
Nat : 1
<= i2 & (i2
+ 1)
<= (
len g) }) by
A12,
TARSKI:def 4;
then
A63: p
in (
L~ (
mid (f,i,(
len f)))) by
TOPREAL1:def 4;
reconsider g = (
mid (f,1,i)) as
FinSequence of (
TOP-REAL 2);
set p44 = (f
/. i);
A64: i
<= (
len f) & 1
<= (i
-' k) by
A16,
A27,
NAT_1: 13,
XREAL_0:def 2;
A65: k
>= (
0
+ 1) by
A52,
NAT_1: 13;
then
A66: (i
-' k)
<= ((i
+ 1)
- 1) by
A28,
NAT_D: 51;
A67: i
> (i
-' k) by
A28,
A65,
NAT_D: 51;
then
A68: i
> 1 by
A28,
XXREAL_0: 2;
then (i
- 1)
>
0 by
XREAL_1: 50;
then
A69: (i
-' 1)
= (i
- 1) by
XREAL_0:def 2;
A70:
now
assume
A71: ((f
/. i)
`1 )
<> e;
(f
. i)
= (f
/. i) by
A21,
PARTFUN1:def 6;
then for p9 be
Point of (
TOP-REAL 2) st p9
= (f
. (i
-'
0 )) holds (p9
`1 )
<> e by
A71,
NAT_D: 40;
hence contradiction by
A26,
A52;
end;
A72:
now
assume not for p51 be
Point of (
TOP-REAL 2) st
LE (pk,p51,P,p1,p2) &
LE (p51,p44,P,p1,p2) holds (p51
`1 )
<= e;
then
consider p51 be
Point of (
TOP-REAL 2) such that
A73:
LE (pk,p51,P,p1,p2) and
A74:
LE (p51,p44,P,p1,p2) and
A75: (p51
`1 )
> e;
p51
in P by
A73,
JORDAN5C:def 3;
then
consider Y3 be
set such that
A76: p51
in Y3 and
A77: Y3
in { (
LSeg (f,i5)) where i5 be
Nat : 1
<= i5 & (i5
+ 1)
<= (
len f) } by
A6,
A11,
TARSKI:def 4;
consider kk be
Nat such that
A78: Y3
= (
LSeg (f,kk)) and
A79: 1
<= kk and
A80: (kk
+ 1)
<= (
len f) by
A77;
A81: (
LSeg (f,kk))
= (
LSeg ((f
/. kk),(f
/. (kk
+ 1)))) by
A79,
A80,
TOPREAL1:def 3;
1
< (kk
+ 1) by
A79,
NAT_1: 13;
then (kk
+ 1)
in (
Seg (
len f)) by
A80,
FINSEQ_1: 1;
then
A82: (kk
+ 1)
in (
dom f) by
FINSEQ_1:def 3;
A83: kk
< (
len f) by
A80,
NAT_1: 13;
then kk
in (
Seg (
len f)) by
A79,
FINSEQ_1: 1;
then
A84: kk
in (
dom f) by
FINSEQ_1:def 3;
A85:
LE (p51,(f
/. (kk
+ 1)),(
L~ f),(f
/. 1),(f
/. (
len f))) by
A5,
A76,
A78,
A79,
A80,
JORDAN5C: 26;
now
per cases by
A75,
A76,
A78,
A81,
Th2;
case
A86: ((f
/. kk)
`1 )
> e;
A87: (
LSeg ((f
/. kk),(f
/. (kk
+ 1))))
c= (
L~ f)
proof
let z be
object;
assume
A88: z
in (
LSeg ((f
/. kk),(f
/. (kk
+ 1))));
(
LSeg ((f
/. kk),(f
/. (kk
+ 1))))
in { (
LSeg (f,i7)) where i7 be
Nat : 1
<= i7 & (i7
+ 1)
<= (
len f) } by
A79,
A80,
A81;
hence thesis by
A11,
A88,
TARSKI:def 4;
end;
f is
special by
A5,
TOPREAL1:def 8;
then
A89: ((f
/. kk)
`1 )
= ((f
/. (kk
+ 1))
`1 ) or ((f
/. kk)
`2 )
= ((f
/. (kk
+ 1))
`2 ) by
A79,
A80,
TOPREAL1:def 5;
f is
one-to-one & kk
< (kk
+ 1) by
A5,
NAT_1: 13,
TOPREAL1:def 8;
then
A90: (f
. kk)
<> (f
. (kk
+ 1)) by
A84,
A82,
FUNCT_1:def 4;
A91:
LE ((f
/. (i
-' k)),p51,(
L~ f),(f
/. 1),(f
/. (
len f))) by
A6,
A7,
A8,
A30,
A73,
PARTFUN1:def 6;
A92:
LE ((f
/. (i
-' k)),(f
/. (kk
+ 1)),(
L~ f),(f
/. 1),(f
/. (
len f))) by
A6,
A7,
A8,
A31,
A73,
A85,
JORDAN5C: 13;
set k2 = (i
-' kk);
LE ((f
/. kk),p51,(
L~ f),(f
/. 1),(f
/. (
len f))) by
A5,
A76,
A78,
A79,
A80,
JORDAN5C: 25;
then
A93:
LE ((f
/. kk),p44,(
L~ f),(f
/. 1),(f
/. (
len f))) by
A6,
A7,
A8,
A74,
JORDAN5C: 13;
now
assume (i
- kk)
<=
0 ;
then ((i
- kk)
+ kk)
<= (
0
+ kk) by
XREAL_1: 7;
then
LE ((f
/. i),(f
/. kk),(
L~ f),(f
/. 1),(f
/. (
len f))) by
A5,
A68,
A83,
JORDAN5C: 24;
hence contradiction by
A1,
A6,
A7,
A8,
A70,
A86,
A93,
JORDAN5C: 12,
TOPREAL4: 2;
end;
then
A94: (i
-' kk)
= (i
- kk) by
XREAL_0:def 2;
then
A95: (i
- k2)
= (i
-' k2) by
XREAL_0:def 2;
(i
- k2)
>
0 by
A79,
A94;
then (i
-' k2)
>
0 by
XREAL_0:def 2;
then (i
-' k2)
>= (
0
+ 1) by
NAT_1: 13;
then
P[k2] by
A20,
A86,
A94,
A95,
FINSEQ_4: 15,
NAT_D: 50;
then k2
>= k by
A26;
then (i
- k2)
<= (i
- k) by
XREAL_1: 10;
then
A96:
LE ((f
/. (i
-' k2)),(f
/. (i
-' k)),(
L~ f),(f
/. 1),(f
/. (
len f))) by
A5,
A29,
A32,
A79,
A94,
A95,
JORDAN5C: 24;
(f
/. kk)
= (f
. kk) & (f
/. (kk
+ 1))
= (f
. (kk
+ 1)) by
A84,
A82,
PARTFUN1:def 6;
then (
LSeg ((f
/. kk),(f
/. (kk
+ 1))))
is_an_arc_of ((f
/. kk),(f
/. (kk
+ 1))) by
A90,
TOPREAL1: 9;
then
A97: (
Segment ((
L~ f),(f
/. 1),(f
/. (
len f)),(f
/. kk),(f
/. (kk
+ 1))))
= (
LSeg ((f
/. kk),(f
/. (kk
+ 1)))) by
A9,
A6,
A7,
A8,
A94,
A95,
A96,
A92,
A87,
Th25,
JORDAN5C: 13;
(
Segment ((
L~ f),(f
/. 1),(f
/. (
len f)),(f
/. kk),(f
/. (kk
+ 1))))
= { p8 where p8 be
Point of (
TOP-REAL 2) :
LE ((f
/. kk),p8,(
L~ f),(f
/. 1),(f
/. (
len f))) &
LE (p8,(f
/. (kk
+ 1)),(
L~ f),(f
/. 1),(f
/. (
len f))) } by
JORDAN6: 26;
then
A98: (f
/. (i
-' k))
in (
Segment ((
L~ f),(f
/. 1),(f
/. (
len f)),(f
/. kk),(f
/. (kk
+ 1)))) by
A94,
A95,
A96,
A92;
then ((f
/. (kk
+ 1))
`1 )
< e by
A31,
A33,
A86,
A97,
Th3;
then ((f
/. kk)
`1 )
> ((f
/. (kk
+ 1))
`1 ) by
A86,
XXREAL_0: 2;
then ((f
/. (i
-' k))
`1 )
>= (p51
`1 ) by
A5,
A76,
A78,
A79,
A83,
A81,
A91,
A98,
A97,
A89,
Th6;
hence contradiction by
A31,
A33,
A75,
XXREAL_0: 2;
end;
case
A99: ((f
/. (kk
+ 1))
`1 )
> e & ((f
/. kk)
`1 )
<= e;
set k2 = ((i
-' kk)
-' 1);
A100: (
LSeg ((f
/. kk),(f
/. (kk
+ 1))))
c= (
L~ f)
proof
let z be
object;
assume
A101: z
in (
LSeg ((f
/. kk),(f
/. (kk
+ 1))));
(
LSeg ((f
/. kk),(f
/. (kk
+ 1))))
in { (
LSeg (f,i7)) where i7 be
Nat : 1
<= i7 & (i7
+ 1)
<= (
len f) } by
A79,
A80,
A81;
hence thesis by
A11,
A101,
TARSKI:def 4;
end;
f is
one-to-one & kk
< (kk
+ 1) by
A5,
NAT_1: 13,
TOPREAL1:def 8;
then
A102: (f
. kk)
<> (f
. (kk
+ 1)) by
A84,
A82,
FUNCT_1:def 4;
A103: ((f
/. kk)
`1 )
< ((f
/. (kk
+ 1))
`1 ) by
A99,
XXREAL_0: 2;
LE ((f
/. kk),p51,(
L~ f),(f
/. 1),(f
/. (
len f))) by
A5,
A76,
A78,
A79,
A80,
JORDAN5C: 25;
then
A104:
LE ((f
/. kk),p44,(
L~ f),(f
/. 1),(f
/. (
len f))) by
A6,
A7,
A8,
A74,
JORDAN5C: 13;
(f
/. kk)
= (f
. kk) & (f
/. (kk
+ 1))
= (f
. (kk
+ 1)) by
A84,
A82,
PARTFUN1:def 6;
then (
LSeg ((f
/. kk),(f
/. (kk
+ 1))))
is_an_arc_of ((f
/. kk),(f
/. (kk
+ 1))) by
A102,
TOPREAL1: 9;
then
A105: (
Segment ((
L~ f),(f
/. 1),(f
/. (
len f)),(f
/. kk),(f
/. (kk
+ 1))))
= { p8 where p8 be
Point of (
TOP-REAL 2) :
LE ((f
/. kk),p8,(
L~ f),(f
/. 1),(f
/. (
len f))) &
LE (p8,(f
/. (kk
+ 1)),(
L~ f),(f
/. 1),(f
/. (
len f))) } & (
Segment ((
L~ f),(f
/. 1),(f
/. (
len f)),(f
/. kk),(f
/. (kk
+ 1))))
= (
LSeg ((f
/. kk),(f
/. (kk
+ 1)))) by
A9,
A5,
A6,
A7,
A8,
A79,
A80,
A100,
Th25,
JORDAN5C: 23,
JORDAN6: 26;
A106:
now
assume ((i
- kk)
- 1)
<=
0 ;
then ((i
- (kk
+ 1))
+ (kk
+ 1))
<= (
0
+ (kk
+ 1)) by
XREAL_1: 7;
then
LE ((f
/. i),(f
/. (kk
+ 1)),(
L~ f),(f
/. 1),(f
/. (
len f))) by
A5,
A68,
A80,
JORDAN5C: 24;
then
A107: (f
/. i)
in (
LSeg ((f
/. kk),(f
/. (kk
+ 1)))) by
A105,
A104;
f is
special by
A5,
TOPREAL1:def 8;
then
A108: ((f
/. kk)
`1 )
= ((f
/. (kk
+ 1))
`1 ) or ((f
/. kk)
`2 )
= ((f
/. (kk
+ 1))
`2 ) by
A79,
A80,
TOPREAL1:def 5;
(
LSeg (f,kk))
= (
LSeg ((f
/. kk),(f
/. (kk
+ 1)))) by
A79,
A80,
TOPREAL1:def 3;
hence contradiction by
A5,
A6,
A7,
A8,
A70,
A74,
A75,
A76,
A78,
A79,
A83,
A103,
A107,
A108,
Th7;
end;
then (((i
- kk)
- 1)
+ 1)
>= (
0
+ 1) by
XREAL_1: 7;
then (i
-' kk)
= (i
- kk) by
XREAL_0:def 2;
then
A109: (i
- k2)
= (i
- ((i
- kk)
- 1)) by
A106,
XREAL_0:def 2
.= (kk
+ 1);
then (i
-' k2)
>
0 by
XREAL_0:def 2;
then
A110: (i
-' k2)
>= (
0
+ 1) by
NAT_1: 13;
A111: (i
- k2)
= (i
-' k2) by
A109,
XREAL_0:def 2;
then
P[k2] by
A20,
A99,
A109,
A110,
FINSEQ_4: 15,
NAT_D: 50;
then k2
>= k by
A26;
then (i
- k2)
<= (i
- k) by
XREAL_1: 10;
then
A112:
LE ((f
/. (kk
+ 1)),(f
/. (i
-' k)),(
L~ f),(f
/. 1),(f
/. (
len f))) by
A5,
A29,
A32,
A109,
A111,
A110,
JORDAN5C: 24;
LE ((f
/. (i
-' k)),(f
/. (kk
+ 1)),(
L~ f),(f
/. 1),(f
/. (
len f))) by
A6,
A7,
A8,
A31,
A73,
A85,
JORDAN5C: 13;
hence contradiction by
A1,
A6,
A7,
A8,
A31,
A33,
A99,
A112,
JORDAN5C: 12,
TOPREAL4: 2;
end;
end;
hence contradiction;
end;
A113: (
LSeg (f,i))
= (
LSeg ((f
/. i),(f
/. (i
+ 1)))) by
A15,
A16,
TOPREAL1:def 3;
A114: for p5 be
Point of (
TOP-REAL 2) st
LE (p44,p5,P,p1,p2) &
LE (p5,p,P,p1,p2) holds (p5
`1 )
<= e
proof
let p5 be
Point of (
TOP-REAL 2);
A115: (
Segment (P,p1,p2,p44,p))
= { p8 where p8 be
Point of (
TOP-REAL 2) :
LE (p44,p8,P,p1,p2) &
LE (p8,p,P,p1,p2) } by
JORDAN6: 26;
assume
LE (p44,p5,P,p1,p2) &
LE (p5,p,P,p1,p2);
then
A116: p5
in (
Segment (P,p1,p2,p44,p)) by
A115;
p44
in (
LSeg ((f
/. i),(f
/. (i
+ 1)))) by
RLTOPSP1: 68;
then (
LSeg (p44,p))
c= (
LSeg (f,i)) by
A12,
A14,
A113,
TOPREAL1: 6;
then
A117: (
LSeg (p44,p))
c= P by
A6,
A19,
A14;
now
per cases ;
case p44
<> p;
then (
LSeg (p44,p))
is_an_arc_of (p44,p) by
TOPREAL1: 9;
then (
Segment (P,p1,p2,p44,p))
= (
LSeg (p44,p)) by
A9,
A5,
A6,
A7,
A8,
A15,
A20,
A63,
A117,
Th25,
SPRECT_4: 3;
hence thesis by
A4,
A70,
A116,
TOPREAL1: 3;
end;
case p44
= p;
then (
Segment (P,p1,p2,p44,p))
=
{p44} by
A1,
A3,
Th1,
TOPREAL4: 2;
hence thesis by
A70,
A116,
TARSKI:def 1;
end;
end;
hence thesis;
end;
A118: (
len g)
= ((i
-' 1)
+ 1) by
A15,
A20,
A22,
FINSEQ_6: 118;
then ((i
-' k)
+ 1)
<= (
len g) by
A67,
A69,
NAT_1: 13;
then
A119: (
LSeg (g,(i
-' k)))
= (
LSeg ((g
/. (i
-' k)),(g
/. ((i
-' k)
+ 1)))) by
A28,
TOPREAL1:def 3;
(i
-' k)
< i by
A28,
A65,
NAT_D: 51;
then (i
-' k)
in (
Seg (
len g)) by
A28,
A118,
A69,
FINSEQ_1: 1;
then (i
-' k)
in (
dom g) by
FINSEQ_1:def 3;
then (g
/. (i
-' k))
= (g
. (i
-' k)) by
PARTFUN1:def 6
.= (f
. (((i
-' k)
- 1)
+ 1)) by
A15,
A64,
A66,
FINSEQ_6: 122
.= (f
/. (i
-' k)) by
A30,
PARTFUN1:def 6;
then
A120: pk
in (
LSeg (g,(i
-' k))) by
A31,
A119,
RLTOPSP1: 68;
A121: ((i
-' k)
+ 1)
<= i by
A67,
NAT_1: 13;
1
<= (i
-' k) by
A27,
XREAL_0:def 2;
then (
LSeg (g,(i
-' k)))
in { (
LSeg (g,i2)) where i2 be
Nat : 1
<= i2 & (i2
+ 1)
<= (
len g) } by
A118,
A69,
A121;
then pk
in (
union { (
LSeg (g,i2)) where i2 be
Nat : 1
<= i2 & (i2
+ 1)
<= (
len g) }) by
A120,
TARSKI:def 4;
then pk
in (
L~ (
mid (f,1,i))) by
TOPREAL1:def 4;
then
A122:
LE (pk,p44,P,p1,p2) by
A5,
A6,
A7,
A8,
A20,
A68,
SPRECT_3: 17;
then
A123: p44
in P by
JORDAN5C:def 3;
A124: for p5 be
Point of (
TOP-REAL 2) st
LE (pk,p5,P,p1,p2) &
LE (p5,p,P,p1,p2) holds (p5
`1 )
<= e
proof
let p5 be
Point of (
TOP-REAL 2);
assume that
A125:
LE (pk,p5,P,p1,p2) and
A126:
LE (p5,p,P,p1,p2);
A127: p5
in P by
A125,
JORDAN5C:def 3;
now
per cases by
A1,
A123,
A127,
Th19,
TOPREAL4: 2;
case
LE (p5,p44,P,p1,p2);
hence thesis by
A72,
A125;
end;
case
LE (p44,p5,P,p1,p2);
hence thesis by
A114,
A126;
end;
end;
hence thesis;
end;
LE (p44,p,P,p1,p2) by
A5,
A6,
A7,
A8,
A15,
A20,
A63,
SPRECT_4: 3;
then
LE (pk,p,P,p1,p2) by
A122,
JORDAN5C: 13;
hence thesis by
A3,
A4,
A9,
A33,
A124;
end;
end;
hence thesis;
end;
case
A128: (pk
`1 )
> e;
now
per cases ;
case
A129: k
=
0 ;
set p44 = (f
/. i);
A130: pk
= (f
. i) by
A129,
NAT_D: 40
.= p44 by
A21,
PARTFUN1:def 6;
reconsider ia = (i
+ 1) as
Nat;
reconsider g = (
mid (f,i,(
len f))) as
FinSequence of (
TOP-REAL 2);
A131: i
<= (
len f) by
A16,
NAT_1: 13;
ia
in (
Seg (
len f)) by
A16,
A18,
FINSEQ_1: 1;
then
A132: (i
+ 1)
in (
dom f) by
FINSEQ_1:def 3;
(1
+ (1
+ i))
<= (1
+ (
len f)) by
A16,
XREAL_1: 7;
then
A133: (((1
+ 1)
+ i)
- i)
<= (((
len f)
+ 1)
- i) by
XREAL_1: 9;
then
A134: 1
<= (((
len f)
+ 1)
- i) by
XXREAL_0: 2;
A135: ((
len f)
- i)
>
0 by
A20,
XREAL_1: 50;
then ((
len f)
-' i)
= ((
len f)
- i) by
XREAL_0:def 2;
then
A136: (((
len f)
-' i)
+ 1)
> (
0
+ 1) by
A135,
XREAL_1: 8;
A137: (
len g)
= (((
len f)
-' i)
+ 1) by
A10,
A15,
A20,
FINSEQ_6: 118;
then
A138: (1
+ 1)
<= (
len g) by
A136,
NAT_1: 13;
then (1
+ 1)
in (
Seg (
len g)) by
FINSEQ_1: 1;
then (1
+ 1)
in (
dom g) by
FINSEQ_1:def 3;
then
A139: (g
/. (1
+ 1))
= (g
. (1
+ 1)) by
PARTFUN1:def 6
.= (f
. (((1
+ 1)
- 1)
+ i)) by
A15,
A20,
A133,
FINSEQ_6: 122
.= (f
/. (i
+ 1)) by
A132,
PARTFUN1:def 6;
1
in (
Seg (
len g)) by
A137,
A136,
FINSEQ_1: 1;
then 1
in (
dom g) by
FINSEQ_1:def 3;
then
A140: (g
/. 1)
= (g
. 1) by
PARTFUN1:def 6
.= (f
. ((1
- 1)
+ i)) by
A15,
A131,
A134,
FINSEQ_6: 122
.= (f
/. i) by
A21,
PARTFUN1:def 6;
(
LSeg (f,i))
= (
LSeg ((f
/. i),(f
/. (i
+ 1)))) by
A15,
A16,
TOPREAL1:def 3
.= (
LSeg (g,1)) by
A138,
A140,
A139,
TOPREAL1:def 3;
then Y
in { (
LSeg (g,i2)) where i2 be
Nat : 1
<= i2 & (i2
+ 1)
<= (
len g) } by
A14,
A138;
then p
in (
union { (
LSeg (g,i2)) where i2 be
Nat : 1
<= i2 & (i2
+ 1)
<= (
len g) }) by
A12,
TARSKI:def 4;
then
A141: p
in (
L~ (
mid (f,i,(
len f)))) by
TOPREAL1:def 4;
A142: (
LSeg (f,i))
= (
LSeg ((f
/. i),(f
/. (i
+ 1)))) by
A15,
A16,
TOPREAL1:def 3;
A143: for p5 be
Point of (
TOP-REAL 2) st
LE (p44,p5,P,p1,p2) &
LE (p5,p,P,p1,p2) holds (p5
`1 )
>= e
proof
p44
in (
LSeg ((f
/. i),(f
/. (i
+ 1)))) by
RLTOPSP1: 68;
then (
LSeg (p44,p))
c= (
LSeg (f,i)) by
A12,
A14,
A142,
TOPREAL1: 6;
then
A144: (
LSeg (p44,p))
c= P by
A6,
A19,
A14;
let p5 be
Point of (
TOP-REAL 2);
A145: (
Segment (P,p1,p2,p44,p))
= { p8 where p8 be
Point of (
TOP-REAL 2) :
LE (p44,p8,P,p1,p2) &
LE (p8,p,P,p1,p2) } by
JORDAN6: 26;
assume
LE (p44,p5,P,p1,p2) &
LE (p5,p,P,p1,p2);
then
A146: p5
in (
Segment (P,p1,p2,p44,p)) by
A145;
now
per cases ;
case p44
<> p;
then (
LSeg (p44,p))
is_an_arc_of (p44,p) by
TOPREAL1: 9;
then (
Segment (P,p1,p2,p44,p))
= (
LSeg (p44,p)) by
A9,
A5,
A6,
A7,
A8,
A15,
A20,
A141,
A144,
Th25,
SPRECT_4: 3;
hence thesis by
A4,
A128,
A130,
A146,
TOPREAL1: 3;
end;
case p44
= p;
hence thesis by
A4,
A128,
A130;
end;
end;
hence thesis;
end;
LE (p44,p,P,p1,p2) by
A5,
A6,
A7,
A8,
A15,
A20,
A141,
SPRECT_4: 3;
hence thesis by
A3,
A4,
A9,
A128,
A130,
A143;
end;
case
A147: k
<>
0 ;
reconsider ia = (i
+ 1) as
Nat;
reconsider g = (
mid (f,i,(
len f))) as
FinSequence of (
TOP-REAL 2);
A148: i
<= (
len f) by
A16,
NAT_1: 13;
ia
in (
Seg (
len f)) by
A16,
A18,
FINSEQ_1: 1;
then
A149: (i
+ 1)
in (
dom f) by
FINSEQ_1:def 3;
(1
+ (1
+ i))
<= (1
+ (
len f)) by
A16,
XREAL_1: 7;
then
A150: (((1
+ 1)
+ i)
- i)
<= (((
len f)
+ 1)
- i) by
XREAL_1: 9;
then
A151: 1
<= (((
len f)
+ 1)
- i) by
XXREAL_0: 2;
A152: ((
len f)
- i)
>
0 by
A20,
XREAL_1: 50;
then ((
len f)
-' i)
= ((
len f)
- i) by
XREAL_0:def 2;
then
A153: (((
len f)
-' i)
+ 1)
> (
0
+ 1) by
A152,
XREAL_1: 8;
A154: (
len g)
= (((
len f)
-' i)
+ 1) by
A10,
A15,
A20,
FINSEQ_6: 118;
then
A155: (1
+ 1)
<= (
len g) by
A153,
NAT_1: 13;
then (1
+ 1)
in (
Seg (
len g)) by
FINSEQ_1: 1;
then (1
+ 1)
in (
dom g) by
FINSEQ_1:def 3;
then
A156: (g
/. (1
+ 1))
= (g
. (1
+ 1)) by
PARTFUN1:def 6
.= (f
. (((1
+ 1)
- 1)
+ i)) by
A15,
A20,
A150,
FINSEQ_6: 122
.= (f
/. (i
+ 1)) by
A149,
PARTFUN1:def 6;
1
in (
Seg (
len g)) by
A154,
A153,
FINSEQ_1: 1;
then 1
in (
dom g) by
FINSEQ_1:def 3;
then
A157: (g
/. 1)
= (g
. 1) by
PARTFUN1:def 6
.= (f
. ((1
- 1)
+ i)) by
A15,
A148,
A151,
FINSEQ_6: 122
.= (f
/. i) by
A21,
PARTFUN1:def 6;
(
LSeg (f,i))
= (
LSeg ((f
/. i),(f
/. (i
+ 1)))) by
A15,
A16,
TOPREAL1:def 3
.= (
LSeg (g,1)) by
A155,
A157,
A156,
TOPREAL1:def 3;
then Y
in { (
LSeg (g,i2)) where i2 be
Nat : 1
<= i2 & (i2
+ 1)
<= (
len g) } by
A14,
A155;
then p
in (
union { (
LSeg (g,i2)) where i2 be
Nat : 1
<= i2 & (i2
+ 1)
<= (
len g) }) by
A12,
TARSKI:def 4;
then
A158: p
in (
L~ (
mid (f,i,(
len f)))) by
TOPREAL1:def 4;
reconsider g = (
mid (f,1,i)) as
FinSequence of (
TOP-REAL 2);
set p44 = (f
/. i);
A159: i
<= (
len f) & 1
<= (i
-' k) by
A16,
A27,
NAT_1: 13,
XREAL_0:def 2;
A160: k
>= (
0
+ 1) by
A147,
NAT_1: 13;
then
A161: (i
-' k)
<= ((i
+ 1)
- 1) by
A28,
NAT_D: 51;
A162: i
> (i
-' k) by
A28,
A160,
NAT_D: 51;
then
A163: i
> 1 by
A28,
XXREAL_0: 2;
then (i
- 1)
>
0 by
XREAL_1: 50;
then
A164: (i
-' 1)
= (i
- 1) by
XREAL_0:def 2;
A165:
now
assume
A166: ((f
/. i)
`1 )
<> e;
(f
. i)
= (f
/. i) by
A21,
PARTFUN1:def 6;
then for p9 be
Point of (
TOP-REAL 2) st p9
= (f
. (i
-'
0 )) holds (p9
`1 )
<> e by
A166,
NAT_D: 40;
hence contradiction by
A26,
A147;
end;
A167:
now
assume not for p51 be
Point of (
TOP-REAL 2) st
LE (pk,p51,P,p1,p2) &
LE (p51,p44,P,p1,p2) holds (p51
`1 )
>= e;
then
consider p51 be
Point of (
TOP-REAL 2) such that
A168:
LE (pk,p51,P,p1,p2) and
A169:
LE (p51,p44,P,p1,p2) and
A170: (p51
`1 )
< e;
p51
in P by
A168,
JORDAN5C:def 3;
then
consider Y3 be
set such that
A171: p51
in Y3 and
A172: Y3
in { (
LSeg (f,i5)) where i5 be
Nat : 1
<= i5 & (i5
+ 1)
<= (
len f) } by
A6,
A11,
TARSKI:def 4;
consider kk be
Nat such that
A173: Y3
= (
LSeg (f,kk)) and
A174: 1
<= kk and
A175: (kk
+ 1)
<= (
len f) by
A172;
A176: (
LSeg (f,kk))
= (
LSeg ((f
/. kk),(f
/. (kk
+ 1)))) by
A174,
A175,
TOPREAL1:def 3;
1
< (kk
+ 1) by
A174,
NAT_1: 13;
then (kk
+ 1)
in (
Seg (
len f)) by
A175,
FINSEQ_1: 1;
then
A177: (kk
+ 1)
in (
dom f) by
FINSEQ_1:def 3;
A178: kk
< (
len f) by
A175,
NAT_1: 13;
then kk
in (
Seg (
len f)) by
A174,
FINSEQ_1: 1;
then
A179: kk
in (
dom f) by
FINSEQ_1:def 3;
A180:
LE (p51,(f
/. (kk
+ 1)),(
L~ f),(f
/. 1),(f
/. (
len f))) by
A5,
A171,
A173,
A174,
A175,
JORDAN5C: 26;
now
per cases by
A170,
A171,
A173,
A176,
Th3;
case
A181: ((f
/. kk)
`1 )
< e;
set k2 = (i
-' kk);
LE ((f
/. kk),p51,(
L~ f),(f
/. 1),(f
/. (
len f))) by
A5,
A171,
A173,
A174,
A175,
JORDAN5C: 25;
then
A182:
LE ((f
/. kk),p44,(
L~ f),(f
/. 1),(f
/. (
len f))) by
A6,
A7,
A8,
A169,
JORDAN5C: 13;
now
assume (i
- kk)
<=
0 ;
then ((i
- kk)
+ kk)
<= (
0
+ kk) by
XREAL_1: 7;
then
LE ((f
/. i),(f
/. kk),(
L~ f),(f
/. 1),(f
/. (
len f))) by
A5,
A163,
A178,
JORDAN5C: 24;
hence contradiction by
A1,
A6,
A7,
A8,
A165,
A181,
A182,
JORDAN5C: 12,
TOPREAL4: 2;
end;
then
A183: (i
- k2)
= (i
- (i
- kk)) by
XREAL_0:def 2
.= kk;
then
A184: (i
- k2)
= (i
-' k2) by
XREAL_0:def 2;
then
P[k2] by
A20,
A174,
A181,
A183,
FINSEQ_4: 15,
NAT_D: 50;
then k2
>= k by
A26;
then (i
- k2)
<= (i
- k) by
XREAL_1: 10;
then
A185:
LE ((f
/. (i
-' k2)),(f
/. (i
-' k)),(
L~ f),(f
/. 1),(f
/. (
len f))) by
A5,
A29,
A32,
A174,
A183,
A184,
JORDAN5C: 24;
A186: (
LSeg ((f
/. kk),(f
/. (kk
+ 1))))
c= (
L~ f)
proof
let z be
object;
assume
A187: z
in (
LSeg ((f
/. kk),(f
/. (kk
+ 1))));
(
LSeg ((f
/. kk),(f
/. (kk
+ 1))))
in { (
LSeg (f,i7)) where i7 be
Nat : 1
<= i7 & (i7
+ 1)
<= (
len f) } by
A174,
A175,
A176;
hence thesis by
A11,
A187,
TARSKI:def 4;
end;
f is
special by
A5,
TOPREAL1:def 8;
then
A188: ((f
/. kk)
`1 )
= ((f
/. (kk
+ 1))
`1 ) or ((f
/. kk)
`2 )
= ((f
/. (kk
+ 1))
`2 ) by
A174,
A175,
TOPREAL1:def 5;
f is
one-to-one & kk
< (kk
+ 1) by
A5,
NAT_1: 13,
TOPREAL1:def 8;
then
A189: (f
. kk)
<> (f
. (kk
+ 1)) by
A179,
A177,
FUNCT_1:def 4;
A190:
LE ((f
/. (i
-' k)),p51,(
L~ f),(f
/. 1),(f
/. (
len f))) by
A6,
A7,
A8,
A30,
A168,
PARTFUN1:def 6;
A191:
LE ((f
/. (i
-' k)),(f
/. (kk
+ 1)),(
L~ f),(f
/. 1),(f
/. (
len f))) by
A6,
A7,
A8,
A31,
A168,
A180,
JORDAN5C: 13;
(f
/. kk)
= (f
. kk) & (f
/. (kk
+ 1))
= (f
. (kk
+ 1)) by
A179,
A177,
PARTFUN1:def 6;
then (
LSeg ((f
/. kk),(f
/. (kk
+ 1))))
is_an_arc_of ((f
/. kk),(f
/. (kk
+ 1))) by
A189,
TOPREAL1: 9;
then
A192: (
Segment ((
L~ f),(f
/. 1),(f
/. (
len f)),(f
/. kk),(f
/. (kk
+ 1))))
= (
LSeg ((f
/. kk),(f
/. (kk
+ 1)))) by
A9,
A6,
A7,
A8,
A183,
A184,
A185,
A191,
A186,
Th25,
JORDAN5C: 13;
(
Segment ((
L~ f),(f
/. 1),(f
/. (
len f)),(f
/. kk),(f
/. (kk
+ 1))))
= { p8 where p8 be
Point of (
TOP-REAL 2) :
LE ((f
/. kk),p8,(
L~ f),(f
/. 1),(f
/. (
len f))) &
LE (p8,(f
/. (kk
+ 1)),(
L~ f),(f
/. 1),(f
/. (
len f))) } by
JORDAN6: 26;
then
A193: (f
/. (i
-' k))
in (
Segment ((
L~ f),(f
/. 1),(f
/. (
len f)),(f
/. kk),(f
/. (kk
+ 1)))) by
A183,
A184,
A185,
A191;
then ((f
/. (kk
+ 1))
`1 )
> e by
A31,
A128,
A181,
A192,
Th2;
then ((f
/. kk)
`1 )
< ((f
/. (kk
+ 1))
`1 ) by
A181,
XXREAL_0: 2;
then ((f
/. (i
-' k))
`1 )
<= (p51
`1 ) by
A5,
A171,
A173,
A174,
A178,
A176,
A190,
A193,
A192,
A188,
Th7;
hence contradiction by
A31,
A128,
A170,
XXREAL_0: 2;
end;
case
A194: ((f
/. (kk
+ 1))
`1 )
< e & ((f
/. kk)
`1 )
>= e;
set k2 = ((i
-' kk)
-' 1);
A195: (
LSeg ((f
/. kk),(f
/. (kk
+ 1))))
c= (
L~ f)
proof
let z be
object;
assume
A196: z
in (
LSeg ((f
/. kk),(f
/. (kk
+ 1))));
(
LSeg ((f
/. kk),(f
/. (kk
+ 1))))
in { (
LSeg (f,i7)) where i7 be
Nat : 1
<= i7 & (i7
+ 1)
<= (
len f) } by
A174,
A175,
A176;
hence thesis by
A11,
A196,
TARSKI:def 4;
end;
f is
one-to-one & kk
< (kk
+ 1) by
A5,
NAT_1: 13,
TOPREAL1:def 8;
then
A197: (f
. kk)
<> (f
. (kk
+ 1)) by
A179,
A177,
FUNCT_1:def 4;
A198: ((f
/. kk)
`1 )
> ((f
/. (kk
+ 1))
`1 ) by
A194,
XXREAL_0: 2;
LE ((f
/. kk),p51,(
L~ f),(f
/. 1),(f
/. (
len f))) by
A5,
A171,
A173,
A174,
A175,
JORDAN5C: 25;
then
A199:
LE ((f
/. kk),p44,(
L~ f),(f
/. 1),(f
/. (
len f))) by
A6,
A7,
A8,
A169,
JORDAN5C: 13;
(f
/. kk)
= (f
. kk) & (f
/. (kk
+ 1))
= (f
. (kk
+ 1)) by
A179,
A177,
PARTFUN1:def 6;
then (
LSeg ((f
/. kk),(f
/. (kk
+ 1))))
is_an_arc_of ((f
/. kk),(f
/. (kk
+ 1))) by
A197,
TOPREAL1: 9;
then
A200: (
Segment ((
L~ f),(f
/. 1),(f
/. (
len f)),(f
/. kk),(f
/. (kk
+ 1))))
= { p8 where p8 be
Point of (
TOP-REAL 2) :
LE ((f
/. kk),p8,(
L~ f),(f
/. 1),(f
/. (
len f))) &
LE (p8,(f
/. (kk
+ 1)),(
L~ f),(f
/. 1),(f
/. (
len f))) } & (
Segment ((
L~ f),(f
/. 1),(f
/. (
len f)),(f
/. kk),(f
/. (kk
+ 1))))
= (
LSeg ((f
/. kk),(f
/. (kk
+ 1)))) by
A9,
A5,
A6,
A7,
A8,
A174,
A175,
A195,
Th25,
JORDAN5C: 23,
JORDAN6: 26;
A201:
now
assume ((i
- kk)
- 1)
<=
0 ;
then ((i
- (kk
+ 1))
+ (kk
+ 1))
<= (
0
+ (kk
+ 1)) by
XREAL_1: 7;
then
LE ((f
/. i),(f
/. (kk
+ 1)),(
L~ f),(f
/. 1),(f
/. (
len f))) by
A5,
A163,
A175,
JORDAN5C: 24;
then
A202: (f
/. i)
in (
LSeg ((f
/. kk),(f
/. (kk
+ 1)))) by
A200,
A199;
f is
special by
A5,
TOPREAL1:def 8;
then
A203: ((f
/. kk)
`1 )
= ((f
/. (kk
+ 1))
`1 ) or ((f
/. kk)
`2 )
= ((f
/. (kk
+ 1))
`2 ) by
A174,
A175,
TOPREAL1:def 5;
(
LSeg (f,kk))
= (
LSeg ((f
/. kk),(f
/. (kk
+ 1)))) by
A174,
A175,
TOPREAL1:def 3;
hence contradiction by
A5,
A6,
A7,
A8,
A165,
A169,
A170,
A171,
A173,
A174,
A178,
A198,
A202,
A203,
Th6;
end;
then (((i
- kk)
- 1)
+ 1)
>= (
0
+ 1) by
XREAL_1: 7;
then (i
-' kk)
= (i
- kk) by
XREAL_0:def 2;
then
A204: (i
- k2)
= (i
- ((i
- kk)
- 1)) by
A201,
XREAL_0:def 2
.= (kk
+ 1);
then (i
-' k2)
>
0 by
XREAL_0:def 2;
then
A205: (i
-' k2)
>= (
0
+ 1) by
NAT_1: 13;
A206: (i
- k2)
= (i
-' k2) by
A204,
XREAL_0:def 2;
then
P[k2] by
A20,
A194,
A204,
A205,
FINSEQ_4: 15,
NAT_D: 50;
then k2
>= k by
A26;
then (i
- k2)
<= (i
- k) by
XREAL_1: 10;
then
A207:
LE ((f
/. (kk
+ 1)),(f
/. (i
-' k)),(
L~ f),(f
/. 1),(f
/. (
len f))) by
A5,
A29,
A32,
A204,
A206,
A205,
JORDAN5C: 24;
LE ((f
/. (i
-' k)),(f
/. (kk
+ 1)),(
L~ f),(f
/. 1),(f
/. (
len f))) by
A6,
A7,
A8,
A31,
A168,
A180,
JORDAN5C: 13;
hence contradiction by
A1,
A6,
A7,
A8,
A31,
A128,
A194,
A207,
JORDAN5C: 12,
TOPREAL4: 2;
end;
end;
hence contradiction;
end;
A208: (
LSeg (f,i))
= (
LSeg ((f
/. i),(f
/. (i
+ 1)))) by
A15,
A16,
TOPREAL1:def 3;
A209: for p5 be
Point of (
TOP-REAL 2) st
LE (p44,p5,P,p1,p2) &
LE (p5,p,P,p1,p2) holds (p5
`1 )
>= e
proof
let p5 be
Point of (
TOP-REAL 2);
A210: (
Segment (P,p1,p2,p44,p))
= { p8 where p8 be
Point of (
TOP-REAL 2) :
LE (p44,p8,P,p1,p2) &
LE (p8,p,P,p1,p2) } by
JORDAN6: 26;
assume
LE (p44,p5,P,p1,p2) &
LE (p5,p,P,p1,p2);
then
A211: p5
in (
Segment (P,p1,p2,p44,p)) by
A210;
p44
in (
LSeg ((f
/. i),(f
/. (i
+ 1)))) by
RLTOPSP1: 68;
then (
LSeg (p44,p))
c= (
LSeg (f,i)) by
A12,
A14,
A208,
TOPREAL1: 6;
then
A212: (
LSeg (p44,p))
c= P by
A6,
A19,
A14;
now
per cases ;
case p44
<> p;
then (
LSeg (p44,p))
is_an_arc_of (p44,p) by
TOPREAL1: 9;
then (
Segment (P,p1,p2,p44,p))
= (
LSeg (p44,p)) by
A9,
A5,
A6,
A7,
A8,
A15,
A20,
A158,
A212,
Th25,
SPRECT_4: 3;
hence thesis by
A4,
A165,
A211,
TOPREAL1: 3;
end;
case p44
= p;
then (
Segment (P,p1,p2,p44,p))
=
{p44} by
A1,
A3,
Th1,
TOPREAL4: 2;
hence thesis by
A165,
A211,
TARSKI:def 1;
end;
end;
hence thesis;
end;
A213: (
len g)
= ((i
-' 1)
+ 1) by
A15,
A20,
A22,
FINSEQ_6: 118;
then ((i
-' k)
+ 1)
<= (
len g) by
A162,
A164,
NAT_1: 13;
then
A214: (
LSeg (g,(i
-' k)))
= (
LSeg ((g
/. (i
-' k)),(g
/. ((i
-' k)
+ 1)))) by
A28,
TOPREAL1:def 3;
(i
-' k)
< i by
A28,
A160,
NAT_D: 51;
then (i
-' k)
in (
Seg (
len g)) by
A28,
A213,
A164,
FINSEQ_1: 1;
then (i
-' k)
in (
dom g) by
FINSEQ_1:def 3;
then (g
/. (i
-' k))
= (g
. (i
-' k)) by
PARTFUN1:def 6
.= (f
. (((i
-' k)
- 1)
+ 1)) by
A15,
A159,
A161,
FINSEQ_6: 122
.= (f
/. (i
-' k)) by
A30,
PARTFUN1:def 6;
then
A215: pk
in (
LSeg (g,(i
-' k))) by
A31,
A214,
RLTOPSP1: 68;
A216: ((i
-' k)
+ 1)
<= i by
A162,
NAT_1: 13;
1
<= (i
-' k) by
A27,
XREAL_0:def 2;
then (
LSeg (g,(i
-' k)))
in { (
LSeg (g,i2)) where i2 be
Nat : 1
<= i2 & (i2
+ 1)
<= (
len g) } by
A213,
A164,
A216;
then pk
in (
union { (
LSeg (g,i2)) where i2 be
Nat : 1
<= i2 & (i2
+ 1)
<= (
len g) }) by
A215,
TARSKI:def 4;
then pk
in (
L~ (
mid (f,1,i))) by
TOPREAL1:def 4;
then
A217:
LE (pk,p44,P,p1,p2) by
A5,
A6,
A7,
A8,
A20,
A163,
SPRECT_3: 17;
then
A218: p44
in P by
JORDAN5C:def 3;
A219: for p5 be
Point of (
TOP-REAL 2) st
LE (pk,p5,P,p1,p2) &
LE (p5,p,P,p1,p2) holds (p5
`1 )
>= e
proof
let p5 be
Point of (
TOP-REAL 2);
assume that
A220:
LE (pk,p5,P,p1,p2) and
A221:
LE (p5,p,P,p1,p2);
A222: p5
in P by
A220,
JORDAN5C:def 3;
now
per cases by
A1,
A218,
A222,
Th19,
TOPREAL4: 2;
case
LE (p5,p44,P,p1,p2);
hence thesis by
A167,
A220;
end;
case
LE (p44,p5,P,p1,p2);
hence thesis by
A209,
A221;
end;
end;
hence thesis;
end;
LE (p44,p,P,p1,p2) by
A5,
A6,
A7,
A8,
A15,
A20,
A158,
SPRECT_4: 3;
then
LE (pk,p,P,p1,p2) by
A217,
JORDAN5C: 13;
hence thesis by
A3,
A4,
A9,
A128,
A219;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
theorem ::
JORDAN20:31
for P be non
empty
Subset of (
TOP-REAL 2), p1,p2,p be
Point of (
TOP-REAL 2), e be
Real st P
is_S-P_arc_joining (p1,p2) & (p2
`1 )
> e & p
in P & (p
`1 )
= e holds p
is_Lout (P,p1,p2,e) or p
is_Rout (P,p1,p2,e)
proof
let P be non
empty
Subset of (
TOP-REAL 2), p1,p2,p be
Point of (
TOP-REAL 2), e be
Real;
assume that
A1: P
is_S-P_arc_joining (p1,p2) and
A2: (p2
`1 )
> e and
A3: p
in P and
A4: (p
`1 )
= e;
consider f be
FinSequence of (
TOP-REAL 2) such that
A5: f is
being_S-Seq and
A6: P
= (
L~ f) and
A7: p1
= (f
/. 1) and
A8: p2
= (f
/. (
len f)) by
A1,
TOPREAL4:def 1;
A9: P
is_an_arc_of (p1,p2) by
A1,
TOPREAL4: 2;
A10: (
L~ f)
= (
union { (
LSeg (f,i)) where i be
Nat : 1
<= i & (i
+ 1)
<= (
len f) }) by
TOPREAL1:def 4;
then
consider Y be
set such that
A11: p
in Y and
A12: Y
in { (
LSeg (f,i)) where i be
Nat : 1
<= i & (i
+ 1)
<= (
len f) } by
A3,
A6,
TARSKI:def 4;
consider i be
Nat such that
A13: Y
= (
LSeg (f,i)) and
A14: 1
<= i and
A15: (i
+ 1)
<= (
len f) by
A12;
A16: 1
< (i
+ 1) by
A14,
NAT_1: 13;
A17: 1
< (i
+ 1) by
A14,
NAT_1: 13;
then (i
+ 1)
in (
Seg (
len f)) by
A15,
FINSEQ_1: 1;
then
A18: (i
+ 1)
in (
dom f) by
FINSEQ_1:def 3;
A19: Y
c= (
L~ f) by
A10,
A12,
TARSKI:def 4;
defpred
P[
Nat] means for p be
Point of (
TOP-REAL 2) st p
= (f
. ((i
+ 1)
+ $1)) holds (p
`1 )
<> e;
A20: ((
len f)
- (i
+ 1))
>=
0 by
A15,
XREAL_1: 48;
then
A21: ((i
+ 1)
+ ((
len f)
-' (i
+ 1)))
= ((i
+ 1)
+ ((
len f)
- (i
+ 1))) by
XREAL_0:def 2
.= (
len f);
A22: ((
len f)
-' (i
+ 1))
= ((
len f)
- (i
+ 1)) by
A20,
XREAL_0:def 2;
A23: i
< (
len f) by
A15,
NAT_1: 13;
then 1
< (
len f) by
A14,
XXREAL_0: 2;
then (
len f)
in (
Seg (
len f)) by
FINSEQ_1: 1;
then (
len f)
in (
dom f) by
FINSEQ_1:def 3;
then
A24:
P[((
len f)
-' (i
+ 1))] by
A2,
A8,
A21,
PARTFUN1:def 6;
then
A25: ex k be
Nat st
P[k];
ex k be
Nat st
P[k] & for n be
Nat st
P[n] holds k
<= n from
NAT_1:sch 5(
A25);
then
consider k be
Nat such that
A26:
P[k] and
A27: for n be
Nat st
P[n] holds k
<= n;
k
<= ((
len f)
-' (i
+ 1)) by
A24,
A27;
then
A28: (k
+ (i
+ 1))
<= (((
len f)
- (i
+ 1))
+ (i
+ 1)) by
A22,
XREAL_1: 7;
(i
+ k)
>= i by
NAT_1: 11;
then
A29: ((i
+ k)
+ 1)
>= (i
+ 1) by
XREAL_1: 7;
then
A30: ((i
+ 1)
+ k)
> 1 by
A16,
XXREAL_0: 2;
1
<= ((i
+ 1)
+ k) by
A17,
NAT_1: 12;
then ((i
+ 1)
+ k)
in (
Seg (
len f)) by
A28,
FINSEQ_1: 1;
then
A31: ((i
+ 1)
+ k)
in (
dom f) by
FINSEQ_1:def 3;
then
A32: (f
/. ((i
+ 1)
+ k))
= (f
. ((i
+ 1)
+ k)) by
PARTFUN1:def 6;
then
reconsider pk = (f
. ((i
+ 1)
+ k)) as
Point of (
TOP-REAL 2);
A33: ((k
+ i)
+ 1)
> 1 by
A16,
A29,
XXREAL_0: 2;
now
per cases by
A26,
XXREAL_0: 1;
case
A34: (pk
`1 )
< e;
now
per cases ;
case
A35: k
=
0 ;
set p44 = (f
/. (i
+ 1));
A36: pk
= p44 by
A18,
A35,
PARTFUN1:def 6;
A37: p44
in (
LSeg (p,(f
/. (i
+ 1)))) by
RLTOPSP1: 68;
A38: (
LSeg (f,i))
= (
LSeg ((f
/. i),(f
/. (i
+ 1)))) by
A14,
A15,
TOPREAL1:def 3;
A39: for p5 be
Point of (
TOP-REAL 2) st
LE (p5,p44,P,p1,p2) &
LE (p,p5,P,p1,p2) holds (p5
`1 )
<= e
proof
p44
in (
LSeg ((f
/. i),(f
/. (i
+ 1)))) by
RLTOPSP1: 68;
then (
LSeg (p,p44))
c= (
LSeg (f,i)) by
A11,
A13,
A38,
TOPREAL1: 6;
then
A40: (
LSeg (p,p44))
c= P by
A6,
A19,
A13;
let p5 be
Point of (
TOP-REAL 2);
A41: (
Segment (P,p1,p2,p,p44))
= { p8 where p8 be
Point of (
TOP-REAL 2) :
LE (p,p8,P,p1,p2) &
LE (p8,p44,P,p1,p2) } by
JORDAN6: 26;
assume
LE (p5,p44,P,p1,p2) &
LE (p,p5,P,p1,p2);
then
A42: p5
in (
Segment (P,p1,p2,p,p44)) by
A41;
now
per cases ;
case p44
<> p;
then (
LSeg (p,p44))
is_an_arc_of (p,p44) by
TOPREAL1: 9;
then (
Segment (P,p1,p2,p,p44))
= (
LSeg (p,p44)) by
A9,
A5,
A6,
A7,
A8,
A11,
A13,
A14,
A23,
A37,
A40,
Th25,
SPRECT_4: 4;
hence thesis by
A4,
A34,
A36,
A42,
TOPREAL1: 3;
end;
case p44
= p;
hence thesis by
A4,
A18,
A34,
A35,
PARTFUN1:def 6;
end;
end;
hence thesis;
end;
LE (p,p44,P,p1,p2) by
A5,
A6,
A7,
A8,
A11,
A13,
A14,
A23,
A37,
SPRECT_4: 4;
hence thesis by
A3,
A4,
A9,
A34,
A36,
A39;
end;
case
A43: k
<>
0 ;
set p44 = (f
/. (i
+ 1));
A44:
now
assume ((f
/. (i
+ 1))
`1 )
<> e;
then for p9 be
Point of (
TOP-REAL 2) st p9
= (f
. ((i
+ 1)
+
0 )) holds (p9
`1 )
<> e by
A18,
PARTFUN1:def 6;
hence contradiction by
A27,
A43;
end;
A45: (
LSeg (f,i))
= (
LSeg ((f
/. i),(f
/. (i
+ 1)))) by
A14,
A15,
TOPREAL1:def 3;
A46:
now
assume not for p51 be
Point of (
TOP-REAL 2) st
LE (p44,p51,P,p1,p2) &
LE (p51,pk,P,p1,p2) holds (p51
`1 )
<= e;
then
consider p51 be
Point of (
TOP-REAL 2) such that
A47:
LE (p44,p51,P,p1,p2) and
A48:
LE (p51,pk,P,p1,p2) and
A49: (p51
`1 )
> e;
p51
in P by
A47,
JORDAN5C:def 3;
then
consider Y3 be
set such that
A50: p51
in Y3 and
A51: Y3
in { (
LSeg (f,i5)) where i5 be
Nat : 1
<= i5 & (i5
+ 1)
<= (
len f) } by
A6,
A10,
TARSKI:def 4;
consider kk be
Nat such that
A52: Y3
= (
LSeg (f,kk)) and
A53: 1
<= kk and
A54: (kk
+ 1)
<= (
len f) by
A51;
A55:
LE (p51,(f
/. (kk
+ 1)),(
L~ f),(f
/. 1),(f
/. (
len f))) by
A5,
A50,
A52,
A53,
A54,
JORDAN5C: 26;
A56:
LE ((f
/. kk),p51,(
L~ f),(f
/. 1),(f
/. (
len f))) by
A5,
A50,
A52,
A53,
A54,
JORDAN5C: 25;
A57: (kk
- 1)
>=
0 by
A53,
XREAL_1: 48;
A58: (
LSeg (f,kk))
= (
LSeg ((f
/. kk),(f
/. (kk
+ 1)))) by
A53,
A54,
TOPREAL1:def 3;
A59: kk
< (
len f) by
A54,
NAT_1: 13;
then
A60: kk
in (
dom f) by
A53,
FINSEQ_3: 25;
then
A61: (f
/. kk)
= (f
. kk) by
PARTFUN1:def 6;
A62: 1
< (kk
+ 1) by
A53,
NAT_1: 13;
then
A63: (kk
+ 1)
in (
dom f) by
A54,
FINSEQ_3: 25;
f is
one-to-one & kk
< (kk
+ 1) by
A5,
NAT_1: 13,
TOPREAL1:def 8;
then
A64: (f
. kk)
<> (f
. (kk
+ 1)) by
A60,
A63,
FUNCT_1:def 4;
now
per cases by
A49,
A50,
A52,
A58,
Th2;
case
A65: ((f
/. (kk
+ 1))
`1 )
> e;
set k2 = (kk
-' i);
A66:
LE (p44,(f
/. (kk
+ 1)),(
L~ f),(f
/. 1),(f
/. (
len f))) by
A6,
A7,
A8,
A47,
A55,
JORDAN5C: 13;
now
assume (kk
- i)
<
0 ;
then ((kk
- i)
+ i)
< (
0
+ i) by
XREAL_1: 6;
then
LE ((f
/. (kk
+ 1)),(f
/. (i
+ 1)),(
L~ f),(f
/. 1),(f
/. (
len f))) by
A5,
A15,
A62,
JORDAN5C: 24,
XREAL_1: 7;
hence contradiction by
A1,
A6,
A7,
A8,
A44,
A65,
A66,
JORDAN5C: 12,
TOPREAL4: 2;
end;
then
A67: ((i
+ 1)
+ k2)
= ((1
+ i)
+ (kk
- i)) by
XREAL_0:def 2
.= (kk
+ 1);
A68: (
LSeg ((f
/. kk),(f
/. (kk
+ 1))))
c= (
L~ f)
proof
let z be
object;
assume
A69: z
in (
LSeg ((f
/. kk),(f
/. (kk
+ 1))));
(
LSeg ((f
/. kk),(f
/. (kk
+ 1))))
in { (
LSeg (f,i7)) where i7 be
Nat : 1
<= i7 & (i7
+ 1)
<= (
len f) } by
A53,
A54,
A58;
hence thesis by
A10,
A69,
TARSKI:def 4;
end;
f is
special by
A5,
TOPREAL1:def 8;
then
A70: ((f
/. kk)
`1 )
= ((f
/. (kk
+ 1))
`1 ) or ((f
/. kk)
`2 )
= ((f
/. (kk
+ 1))
`2 ) by
A53,
A54,
TOPREAL1:def 5;
f is
one-to-one & kk
< (kk
+ 1) by
A5,
NAT_1: 13,
TOPREAL1:def 8;
then
A71: (f
. kk)
<> (f
. (kk
+ 1)) by
A60,
A63,
FUNCT_1:def 4;
A72:
LE (p51,(f
/. ((i
+ 1)
+ k)),(
L~ f),(f
/. 1),(f
/. (
len f))) by
A6,
A7,
A8,
A31,
A48,
PARTFUN1:def 6;
A73:
LE ((f
/. kk),(f
/. ((i
+ 1)
+ k)),(
L~ f),(f
/. 1),(f
/. (
len f))) by
A6,
A7,
A8,
A32,
A48,
A56,
JORDAN5C: 13;
1
< (kk
+ 1) by
A53,
NAT_1: 13;
then
P[k2] by
A54,
A65,
A67,
FINSEQ_4: 15;
then k2
>= k by
A27;
then
A74:
LE ((f
/. ((i
+ 1)
+ k)),(f
/. ((i
+ 1)
+ k2)),(
L~ f),(f
/. 1),(f
/. (
len f))) by
A5,
A33,
A54,
A67,
JORDAN5C: 24,
XREAL_1: 7;
(f
/. kk)
= (f
. kk) & (f
/. (kk
+ 1))
= (f
. (kk
+ 1)) by
A60,
A63,
PARTFUN1:def 6;
then (
LSeg ((f
/. kk),(f
/. (kk
+ 1))))
is_an_arc_of ((f
/. kk),(f
/. (kk
+ 1))) by
A71,
TOPREAL1: 9;
then
A75: (
Segment ((
L~ f),(f
/. 1),(f
/. (
len f)),(f
/. kk),(f
/. (kk
+ 1))))
= (
LSeg ((f
/. kk),(f
/. (kk
+ 1)))) by
A9,
A6,
A7,
A8,
A67,
A74,
A73,
A68,
Th25,
JORDAN5C: 13;
(
Segment ((
L~ f),(f
/. 1),(f
/. (
len f)),(f
/. kk),(f
/. (kk
+ 1))))
= { p8 where p8 be
Point of (
TOP-REAL 2) :
LE ((f
/. kk),p8,(
L~ f),(f
/. 1),(f
/. (
len f))) &
LE (p8,(f
/. (kk
+ 1)),(
L~ f),(f
/. 1),(f
/. (
len f))) } by
JORDAN6: 26;
then
A76: (f
/. ((i
+ 1)
+ k))
in (
Segment ((
L~ f),(f
/. 1),(f
/. (
len f)),(f
/. kk),(f
/. (kk
+ 1)))) by
A67,
A74,
A73;
then ((f
/. kk)
`1 )
< e by
A32,
A34,
A65,
A75,
Th3;
then ((f
/. kk)
`1 )
< ((f
/. (kk
+ 1))
`1 ) by
A65,
XXREAL_0: 2;
then ((f
/. ((i
+ 1)
+ k))
`1 )
>= (p51
`1 ) by
A5,
A50,
A52,
A53,
A59,
A58,
A72,
A76,
A75,
A70,
Th7;
hence contradiction by
A32,
A34,
A49,
XXREAL_0: 2;
end;
case
A77: ((f
/. kk)
`1 )
> e & ((f
/. (kk
+ 1))
`1 )
<= e;
set k2 = (kk
-' (i
+ 1));
A78: (
LSeg ((f
/. kk),(f
/. (kk
+ 1))))
c= (
L~ f)
proof
let z be
object;
assume
A79: z
in (
LSeg ((f
/. kk),(f
/. (kk
+ 1))));
(
LSeg ((f
/. kk),(f
/. (kk
+ 1))))
in { (
LSeg (f,i7)) where i7 be
Nat : 1
<= i7 & (i7
+ 1)
<= (
len f) } by
A53,
A54,
A58;
hence thesis by
A10,
A79,
TARSKI:def 4;
end;
LE (p51,(f
/. (kk
+ 1)),(
L~ f),(f
/. 1),(f
/. (
len f))) by
A5,
A50,
A52,
A53,
A54,
JORDAN5C: 26;
then
A80:
LE (p44,(f
/. (kk
+ 1)),(
L~ f),(f
/. 1),(f
/. (
len f))) by
A6,
A7,
A8,
A47,
JORDAN5C: 13;
(f
/. (kk
+ 1))
= (f
. (kk
+ 1)) by
A63,
PARTFUN1:def 6;
then (
LSeg ((f
/. kk),(f
/. (kk
+ 1))))
is_an_arc_of ((f
/. kk),(f
/. (kk
+ 1))) by
A64,
A61,
TOPREAL1: 9;
then
A81: (
Segment ((
L~ f),(f
/. 1),(f
/. (
len f)),(f
/. kk),(f
/. (kk
+ 1))))
= { p8 where p8 be
Point of (
TOP-REAL 2) :
LE ((f
/. kk),p8,(
L~ f),(f
/. 1),(f
/. (
len f))) &
LE (p8,(f
/. (kk
+ 1)),(
L~ f),(f
/. 1),(f
/. (
len f))) } & (
Segment ((
L~ f),(f
/. 1),(f
/. (
len f)),(f
/. kk),(f
/. (kk
+ 1))))
= (
LSeg ((f
/. kk),(f
/. (kk
+ 1)))) by
A9,
A5,
A6,
A7,
A8,
A53,
A54,
A78,
Th25,
JORDAN5C: 23,
JORDAN6: 26;
A82:
now
assume (kk
- (i
+ 1))
<
0 ;
then ((kk
- (i
+ 1))
+ (i
+ 1))
< (
0
+ (i
+ 1)) by
XREAL_1: 6;
then kk
<= i by
NAT_1: 13;
then
A83:
LE ((f
/. kk),(f
/. i),(
L~ f),(f
/. 1),(f
/. (
len f))) by
A5,
A23,
A53,
JORDAN5C: 24;
A84: (f
/. i)
in (
LSeg ((f
/. i),(f
/. (i
+ 1)))) by
RLTOPSP1: 68;
LE ((f
/. i),p44,(
L~ f),(f
/. 1),(f
/. (
len f))) by
A5,
A14,
A15,
JORDAN5C: 23;
then
LE ((f
/. i),(f
/. (kk
+ 1)),(
L~ f),(f
/. 1),(f
/. (
len f))) by
A80,
JORDAN5C: 13;
then (f
/. i)
in (
LSeg ((f
/. kk),(f
/. (kk
+ 1)))) by
A81,
A83;
then ((
LSeg ((f
/. kk),(f
/. (kk
+ 1))))
/\ (
LSeg ((f
/. i),(f
/. (i
+ 1)))))
<>
{} by
A84,
XBOOLE_0:def 4;
then
A85: not (
LSeg ((f
/. kk),(f
/. (kk
+ 1))))
misses (
LSeg ((f
/. i),(f
/. (i
+ 1)))) by
XBOOLE_0:def 7;
A86: (kk
- 1)
= (kk
-' 1) by
A57,
XREAL_0:def 2;
A87:
now
assume
A88: i
= ((kk
-' 1)
+ 2);
then (kk
+ 1)
< (i
+ 1) by
A86,
NAT_1: 13;
then
LE ((f
/. (kk
+ 1)),p44,(
L~ f),(f
/. 1),(f
/. (
len f))) by
A5,
A15,
A62,
JORDAN5C: 24;
then p44
= (f
/. (kk
+ 1)) by
A1,
A6,
A7,
A8,
A80,
JORDAN5C: 12,
TOPREAL4: 2;
then (f
. (i
+ 1))
= (f
/. (kk
+ 1)) by
A18,
PARTFUN1:def 6;
then
A89: (f
. (i
+ 1))
= (f
. (kk
+ 1)) by
A63,
PARTFUN1:def 6;
f is
one-to-one by
A5,
TOPREAL1:def 8;
then (i
+ 1)
= (kk
+ 1) by
A18,
A63,
A89,
FUNCT_1:def 4;
hence contradiction by
A86,
A88;
end;
A90: f is
s.n.c. by
A5,
TOPREAL1:def 8;
A91: (
LSeg (f,kk))
= (
LSeg ((f
/. kk),(f
/. (kk
+ 1)))) & (
LSeg (f,i))
= (
LSeg ((f
/. i),(f
/. (i
+ 1)))) by
A14,
A15,
A53,
A54,
TOPREAL1:def 3;
then (i
+ 1)
>= kk by
A85,
A90,
TOPREAL1:def 7;
then
A92: ((i
+ 1)
- 1)
>= (kk
- 1) by
XREAL_1: 9;
(kk
+ 1)
>= i by
A85,
A91,
A90,
TOPREAL1:def 7;
then
A93: i
= ((kk
-' 1)
+
0 ) or ... or i
= ((kk
-' 1)
+ 2) by
A86,
A92,
NAT_1: 62;
A94:
now
per cases by
A86,
A93,
A87;
case i
= kk;
hence p44
in (
LSeg (f,kk)) by
A45,
RLTOPSP1: 68;
end;
case i
= (kk
- 1);
hence p44
in (
LSeg (f,kk)) by
A58,
RLTOPSP1: 68;
end;
end;
f is
special by
A5,
TOPREAL1:def 8;
then ((f
/. kk)
`1 )
= ((f
/. (kk
+ 1))
`1 ) or ((f
/. kk)
`2 )
= ((f
/. (kk
+ 1))
`2 ) by
A53,
A54,
TOPREAL1:def 5;
hence contradiction by
A5,
A6,
A7,
A8,
A44,
A47,
A49,
A50,
A52,
A53,
A59,
A77,
A94,
Th6;
end;
then ((i
+ 1)
+ k2)
= ((i
+ 1)
+ (kk
- (i
+ 1))) by
XREAL_0:def 2
.= kk;
then
P[k2] by
A53,
A59,
A77,
FINSEQ_4: 15;
then
A95: k2
>= k by
A27;
(kk
-' (i
+ 1))
= (kk
- (i
+ 1)) by
A82,
XREAL_0:def 2;
then ((kk
- (i
+ 1))
+ (i
+ 1))
>= (k
+ (i
+ 1)) by
A95,
XREAL_1: 7;
then
A96:
LE ((f
/. ((i
+ 1)
+ k)),(f
/. kk),(
L~ f),(f
/. 1),(f
/. (
len f))) by
A5,
A30,
A59,
JORDAN5C: 24;
LE ((f
/. kk),(f
/. ((i
+ 1)
+ k)),(
L~ f),(f
/. 1),(f
/. (
len f))) by
A6,
A7,
A8,
A32,
A48,
A56,
JORDAN5C: 13;
hence contradiction by
A1,
A6,
A7,
A8,
A32,
A34,
A77,
A96,
JORDAN5C: 12,
TOPREAL4: 2;
end;
end;
hence contradiction;
end;
A97: p44
in (
LSeg (p,(f
/. (i
+ 1)))) by
RLTOPSP1: 68;
A98: for p5 be
Point of (
TOP-REAL 2) st
LE (p,p5,P,p1,p2) &
LE (p5,p44,P,p1,p2) holds (p5
`1 )
<= e
proof
let p5 be
Point of (
TOP-REAL 2);
A99: (
Segment (P,p1,p2,p,p44))
= { p8 where p8 be
Point of (
TOP-REAL 2) :
LE (p,p8,P,p1,p2) &
LE (p8,p44,P,p1,p2) } by
JORDAN6: 26;
assume
LE (p,p5,P,p1,p2) &
LE (p5,p44,P,p1,p2);
then
A100: p5
in (
Segment (P,p1,p2,p,p44)) by
A99;
p44
in (
LSeg ((f
/. i),(f
/. (i
+ 1)))) by
RLTOPSP1: 68;
then (
LSeg (p,p44))
c= (
LSeg (f,i)) by
A11,
A13,
A45,
TOPREAL1: 6;
then
A101: (
LSeg (p,p44))
c= P by
A6,
A19,
A13;
now
per cases ;
case p44
<> p;
then (
LSeg (p,p44))
is_an_arc_of (p,p44) by
TOPREAL1: 9;
then (
Segment (P,p1,p2,p,p44))
= (
LSeg (p,p44)) by
A9,
A5,
A6,
A7,
A8,
A11,
A13,
A14,
A23,
A97,
A101,
Th25,
SPRECT_4: 4;
hence thesis by
A4,
A44,
A100,
TOPREAL1: 3;
end;
case p44
= p;
then (
Segment (P,p1,p2,p,p44))
=
{p44} by
A1,
A3,
Th1,
TOPREAL4: 2;
hence thesis by
A44,
A100,
TARSKI:def 1;
end;
end;
hence thesis;
end;
(i
+ 1)
<= ((i
+ 1)
+ k) by
NAT_1: 11;
then
A102:
LE (p44,pk,P,p1,p2) by
A5,
A6,
A7,
A8,
A17,
A28,
A32,
JORDAN5C: 24;
then
A103: p44
in P by
JORDAN5C:def 3;
A104: for p5 be
Point of (
TOP-REAL 2) st
LE (p5,pk,P,p1,p2) &
LE (p,p5,P,p1,p2) holds (p5
`1 )
<= e
proof
let p5 be
Point of (
TOP-REAL 2);
assume that
A105:
LE (p5,pk,P,p1,p2) and
A106:
LE (p,p5,P,p1,p2);
A107: p5
in P by
A105,
JORDAN5C:def 3;
now
per cases by
A1,
A103,
A107,
Th19,
TOPREAL4: 2;
case
LE (p44,p5,P,p1,p2);
hence thesis by
A46,
A105;
end;
case
LE (p5,p44,P,p1,p2);
hence thesis by
A98,
A106;
end;
end;
hence thesis;
end;
LE (p,p44,P,p1,p2) by
A5,
A6,
A7,
A8,
A11,
A13,
A14,
A23,
A97,
SPRECT_4: 4;
then
LE (p,pk,P,p1,p2) by
A102,
JORDAN5C: 13;
hence thesis by
A3,
A4,
A9,
A34,
A104;
end;
end;
hence thesis;
end;
case
A108: (pk
`1 )
> e;
now
per cases ;
case
A109: k
=
0 ;
set p44 = (f
/. (i
+ 1));
A110: pk
= p44 by
A18,
A109,
PARTFUN1:def 6;
A111: p44
in (
LSeg (p,(f
/. (i
+ 1)))) by
RLTOPSP1: 68;
A112: (
LSeg (f,i))
= (
LSeg ((f
/. i),(f
/. (i
+ 1)))) by
A14,
A15,
TOPREAL1:def 3;
A113: for p5 be
Point of (
TOP-REAL 2) st
LE (p5,p44,P,p1,p2) &
LE (p,p5,P,p1,p2) holds (p5
`1 )
>= e
proof
p44
in (
LSeg ((f
/. i),(f
/. (i
+ 1)))) by
RLTOPSP1: 68;
then (
LSeg (p,p44))
c= (
LSeg (f,i)) by
A11,
A13,
A112,
TOPREAL1: 6;
then
A114: (
LSeg (p,p44))
c= P by
A6,
A19,
A13;
let p5 be
Point of (
TOP-REAL 2);
A115: (
Segment (P,p1,p2,p,p44))
= { p8 where p8 be
Point of (
TOP-REAL 2) :
LE (p,p8,P,p1,p2) &
LE (p8,p44,P,p1,p2) } by
JORDAN6: 26;
assume
LE (p5,p44,P,p1,p2) &
LE (p,p5,P,p1,p2);
then
A116: p5
in (
Segment (P,p1,p2,p,p44)) by
A115;
now
per cases ;
case p44
<> p;
then (
LSeg (p,p44))
is_an_arc_of (p,p44) by
TOPREAL1: 9;
then (
Segment (P,p1,p2,p,p44))
= (
LSeg (p,p44)) by
A9,
A5,
A6,
A7,
A8,
A11,
A13,
A14,
A23,
A111,
A114,
Th25,
SPRECT_4: 4;
hence thesis by
A4,
A108,
A110,
A116,
TOPREAL1: 3;
end;
case p44
= p;
hence thesis by
A4,
A18,
A108,
A109,
PARTFUN1:def 6;
end;
end;
hence thesis;
end;
LE (p,p44,P,p1,p2) by
A5,
A6,
A7,
A8,
A11,
A13,
A14,
A23,
A111,
SPRECT_4: 4;
hence thesis by
A3,
A4,
A9,
A108,
A110,
A113;
end;
case
A117: k
<>
0 ;
set p44 = (f
/. (i
+ 1));
A118:
now
assume ((f
/. (i
+ 1))
`1 )
<> e;
then for p9 be
Point of (
TOP-REAL 2) st p9
= (f
. ((i
+ 1)
+
0 )) holds (p9
`1 )
<> e by
A18,
PARTFUN1:def 6;
hence contradiction by
A27,
A117;
end;
A119: (
LSeg (f,i))
= (
LSeg ((f
/. i),(f
/. (i
+ 1)))) by
A14,
A15,
TOPREAL1:def 3;
A120:
now
assume not for p51 be
Point of (
TOP-REAL 2) st
LE (p44,p51,P,p1,p2) &
LE (p51,pk,P,p1,p2) holds (p51
`1 )
>= e;
then
consider p51 be
Point of (
TOP-REAL 2) such that
A121:
LE (p44,p51,P,p1,p2) and
A122:
LE (p51,pk,P,p1,p2) and
A123: (p51
`1 )
< e;
p51
in P by
A121,
JORDAN5C:def 3;
then
consider Y3 be
set such that
A124: p51
in Y3 and
A125: Y3
in { (
LSeg (f,i5)) where i5 be
Nat : 1
<= i5 & (i5
+ 1)
<= (
len f) } by
A6,
A10,
TARSKI:def 4;
consider kk be
Nat such that
A126: Y3
= (
LSeg (f,kk)) and
A127: 1
<= kk and
A128: (kk
+ 1)
<= (
len f) by
A125;
A129:
LE (p51,(f
/. (kk
+ 1)),(
L~ f),(f
/. 1),(f
/. (
len f))) by
A5,
A124,
A126,
A127,
A128,
JORDAN5C: 26;
A130:
LE ((f
/. kk),p51,(
L~ f),(f
/. 1),(f
/. (
len f))) by
A5,
A124,
A126,
A127,
A128,
JORDAN5C: 25;
A131: (kk
- 1)
>=
0 by
A127,
XREAL_1: 48;
A132: (
LSeg (f,kk))
= (
LSeg ((f
/. kk),(f
/. (kk
+ 1)))) by
A127,
A128,
TOPREAL1:def 3;
A133: kk
< (
len f) by
A128,
NAT_1: 13;
then kk
in (
Seg (
len f)) by
A127,
FINSEQ_1: 1;
then
A134: kk
in (
dom f) by
FINSEQ_1:def 3;
then
A135: (f
/. kk)
= (f
. kk) by
PARTFUN1:def 6;
A136: 1
< (kk
+ 1) by
A127,
NAT_1: 13;
then
A137: (kk
+ 1)
in (
dom f) by
A128,
FINSEQ_3: 25;
f is
one-to-one & kk
< (kk
+ 1) by
A5,
NAT_1: 13,
TOPREAL1:def 8;
then
A138: (f
. kk)
<> (f
. (kk
+ 1)) by
A134,
A137,
FUNCT_1:def 4;
now
per cases by
A123,
A124,
A126,
A132,
Th3;
case
A139: ((f
/. (kk
+ 1))
`1 )
< e;
set k2 = (kk
-' i);
A140:
LE (p44,(f
/. (kk
+ 1)),(
L~ f),(f
/. 1),(f
/. (
len f))) by
A6,
A7,
A8,
A121,
A129,
JORDAN5C: 13;
now
assume (kk
- i)
<
0 ;
then ((kk
- i)
+ i)
< (
0
+ i) by
XREAL_1: 6;
then
LE ((f
/. (kk
+ 1)),(f
/. (i
+ 1)),(
L~ f),(f
/. 1),(f
/. (
len f))) by
A5,
A15,
A136,
JORDAN5C: 24,
XREAL_1: 7;
hence contradiction by
A1,
A6,
A7,
A8,
A118,
A139,
A140,
JORDAN5C: 12,
TOPREAL4: 2;
end;
then
A141: ((i
+ 1)
+ k2)
= ((1
+ i)
+ (kk
- i)) by
XREAL_0:def 2
.= (kk
+ 1);
A142: (
LSeg ((f
/. kk),(f
/. (kk
+ 1))))
c= (
L~ f)
proof
let z be
object;
assume
A143: z
in (
LSeg ((f
/. kk),(f
/. (kk
+ 1))));
(
LSeg ((f
/. kk),(f
/. (kk
+ 1))))
in { (
LSeg (f,i7)) where i7 be
Nat : 1
<= i7 & (i7
+ 1)
<= (
len f) } by
A127,
A128,
A132;
hence thesis by
A10,
A143,
TARSKI:def 4;
end;
f is
special by
A5,
TOPREAL1:def 8;
then
A144: ((f
/. kk)
`1 )
= ((f
/. (kk
+ 1))
`1 ) or ((f
/. kk)
`2 )
= ((f
/. (kk
+ 1))
`2 ) by
A127,
A128,
TOPREAL1:def 5;
f is
one-to-one & kk
< (kk
+ 1) by
A5,
NAT_1: 13,
TOPREAL1:def 8;
then
A145: (f
. kk)
<> (f
. (kk
+ 1)) by
A134,
A137,
FUNCT_1:def 4;
A146:
LE (p51,(f
/. ((i
+ 1)
+ k)),(
L~ f),(f
/. 1),(f
/. (
len f))) by
A6,
A7,
A8,
A31,
A122,
PARTFUN1:def 6;
A147:
LE ((f
/. kk),(f
/. ((i
+ 1)
+ k)),(
L~ f),(f
/. 1),(f
/. (
len f))) by
A6,
A7,
A8,
A32,
A122,
A130,
JORDAN5C: 13;
1
< (kk
+ 1) by
A127,
NAT_1: 13;
then
P[k2] by
A128,
A139,
A141,
FINSEQ_4: 15;
then k2
>= k by
A27;
then
A148:
LE ((f
/. ((i
+ 1)
+ k)),(f
/. ((i
+ 1)
+ k2)),(
L~ f),(f
/. 1),(f
/. (
len f))) by
A5,
A33,
A128,
A141,
JORDAN5C: 24,
XREAL_1: 7;
(f
/. kk)
= (f
. kk) & (f
/. (kk
+ 1))
= (f
. (kk
+ 1)) by
A134,
A137,
PARTFUN1:def 6;
then (
LSeg ((f
/. kk),(f
/. (kk
+ 1))))
is_an_arc_of ((f
/. kk),(f
/. (kk
+ 1))) by
A145,
TOPREAL1: 9;
then
A149: (
Segment ((
L~ f),(f
/. 1),(f
/. (
len f)),(f
/. kk),(f
/. (kk
+ 1))))
= (
LSeg ((f
/. kk),(f
/. (kk
+ 1)))) by
A9,
A6,
A7,
A8,
A141,
A148,
A147,
A142,
Th25,
JORDAN5C: 13;
(
Segment ((
L~ f),(f
/. 1),(f
/. (
len f)),(f
/. kk),(f
/. (kk
+ 1))))
= { p8 where p8 be
Point of (
TOP-REAL 2) :
LE ((f
/. kk),p8,(
L~ f),(f
/. 1),(f
/. (
len f))) &
LE (p8,(f
/. (kk
+ 1)),(
L~ f),(f
/. 1),(f
/. (
len f))) } by
JORDAN6: 26;
then
A150: (f
/. ((i
+ 1)
+ k))
in (
Segment ((
L~ f),(f
/. 1),(f
/. (
len f)),(f
/. kk),(f
/. (kk
+ 1)))) by
A141,
A148,
A147;
then ((f
/. kk)
`1 )
> e by
A32,
A108,
A139,
A149,
Th2;
then ((f
/. kk)
`1 )
> ((f
/. (kk
+ 1))
`1 ) by
A139,
XXREAL_0: 2;
then ((f
/. ((i
+ 1)
+ k))
`1 )
<= (p51
`1 ) by
A5,
A124,
A126,
A127,
A133,
A132,
A146,
A150,
A149,
A144,
Th6;
hence contradiction by
A32,
A108,
A123,
XXREAL_0: 2;
end;
case
A151: ((f
/. kk)
`1 )
< e & ((f
/. (kk
+ 1))
`1 )
>= e;
set k2 = (kk
-' (i
+ 1));
A152: (
LSeg ((f
/. kk),(f
/. (kk
+ 1))))
c= (
L~ f)
proof
let z be
object;
assume
A153: z
in (
LSeg ((f
/. kk),(f
/. (kk
+ 1))));
(
LSeg ((f
/. kk),(f
/. (kk
+ 1))))
in { (
LSeg (f,i7)) where i7 be
Nat : 1
<= i7 & (i7
+ 1)
<= (
len f) } by
A127,
A128,
A132;
hence thesis by
A10,
A153,
TARSKI:def 4;
end;
LE (p51,(f
/. (kk
+ 1)),(
L~ f),(f
/. 1),(f
/. (
len f))) by
A5,
A124,
A126,
A127,
A128,
JORDAN5C: 26;
then
A154:
LE (p44,(f
/. (kk
+ 1)),(
L~ f),(f
/. 1),(f
/. (
len f))) by
A6,
A7,
A8,
A121,
JORDAN5C: 13;
(f
/. (kk
+ 1))
= (f
. (kk
+ 1)) by
A137,
PARTFUN1:def 6;
then (
LSeg ((f
/. kk),(f
/. (kk
+ 1))))
is_an_arc_of ((f
/. kk),(f
/. (kk
+ 1))) by
A138,
A135,
TOPREAL1: 9;
then
A155: (
Segment ((
L~ f),(f
/. 1),(f
/. (
len f)),(f
/. kk),(f
/. (kk
+ 1))))
= { p8 where p8 be
Point of (
TOP-REAL 2) :
LE ((f
/. kk),p8,(
L~ f),(f
/. 1),(f
/. (
len f))) &
LE (p8,(f
/. (kk
+ 1)),(
L~ f),(f
/. 1),(f
/. (
len f))) } & (
Segment ((
L~ f),(f
/. 1),(f
/. (
len f)),(f
/. kk),(f
/. (kk
+ 1))))
= (
LSeg ((f
/. kk),(f
/. (kk
+ 1)))) by
A9,
A5,
A6,
A7,
A8,
A127,
A128,
A152,
Th25,
JORDAN5C: 23,
JORDAN6: 26;
A156:
now
assume (kk
- (i
+ 1))
<
0 ;
then ((kk
- (i
+ 1))
+ (i
+ 1))
< (
0
+ (i
+ 1)) by
XREAL_1: 6;
then kk
<= i by
NAT_1: 13;
then
A157:
LE ((f
/. kk),(f
/. i),(
L~ f),(f
/. 1),(f
/. (
len f))) by
A5,
A23,
A127,
JORDAN5C: 24;
A158: (f
/. i)
in (
LSeg ((f
/. i),(f
/. (i
+ 1)))) by
RLTOPSP1: 68;
LE ((f
/. i),p44,(
L~ f),(f
/. 1),(f
/. (
len f))) by
A5,
A14,
A15,
JORDAN5C: 23;
then
LE ((f
/. i),(f
/. (kk
+ 1)),(
L~ f),(f
/. 1),(f
/. (
len f))) by
A154,
JORDAN5C: 13;
then (f
/. i)
in (
LSeg ((f
/. kk),(f
/. (kk
+ 1)))) by
A155,
A157;
then ((
LSeg ((f
/. kk),(f
/. (kk
+ 1))))
/\ (
LSeg ((f
/. i),(f
/. (i
+ 1)))))
<>
{} by
A158,
XBOOLE_0:def 4;
then
A159: not (
LSeg ((f
/. kk),(f
/. (kk
+ 1))))
misses (
LSeg ((f
/. i),(f
/. (i
+ 1)))) by
XBOOLE_0:def 7;
A160: (kk
- 1)
= (kk
-' 1) by
A131,
XREAL_0:def 2;
A161:
now
assume
A162: i
= ((kk
-' 1)
+ 2);
then (kk
+ 1)
< (i
+ 1) by
A160,
NAT_1: 13;
then
LE ((f
/. (kk
+ 1)),p44,(
L~ f),(f
/. 1),(f
/. (
len f))) by
A5,
A15,
A136,
JORDAN5C: 24;
then p44
= (f
/. (kk
+ 1)) by
A1,
A6,
A7,
A8,
A154,
JORDAN5C: 12,
TOPREAL4: 2;
then (f
. (i
+ 1))
= (f
/. (kk
+ 1)) by
A18,
PARTFUN1:def 6;
then
A163: (f
. (i
+ 1))
= (f
. (kk
+ 1)) by
A137,
PARTFUN1:def 6;
f is
one-to-one by
A5,
TOPREAL1:def 8;
then (i
+ 1)
= (kk
+ 1) by
A18,
A137,
A163,
FUNCT_1:def 4;
hence contradiction by
A160,
A162;
end;
A164: f is
s.n.c. by
A5,
TOPREAL1:def 8;
A165: (
LSeg (f,kk))
= (
LSeg ((f
/. kk),(f
/. (kk
+ 1)))) & (
LSeg (f,i))
= (
LSeg ((f
/. i),(f
/. (i
+ 1)))) by
A14,
A15,
A127,
A128,
TOPREAL1:def 3;
then (i
+ 1)
>= kk by
A159,
A164,
TOPREAL1:def 7;
then
A166: ((i
+ 1)
- 1)
>= (kk
- 1) by
XREAL_1: 9;
(kk
+ 1)
>= i by
A159,
A165,
A164,
TOPREAL1:def 7;
then
A167: i
= ((kk
-' 1)
+
0 ) or ... or i
= ((kk
-' 1)
+ 2) by
A160,
A166,
NAT_1: 62;
A168:
now
per cases by
A160,
A167,
A161;
case i
= kk;
hence p44
in (
LSeg (f,kk)) by
A119,
RLTOPSP1: 68;
end;
case i
= (kk
- 1);
hence p44
in (
LSeg (f,kk)) by
A132,
RLTOPSP1: 68;
end;
end;
f is
special by
A5,
TOPREAL1:def 8;
then ((f
/. kk)
`1 )
= ((f
/. (kk
+ 1))
`1 ) or ((f
/. kk)
`2 )
= ((f
/. (kk
+ 1))
`2 ) by
A127,
A128,
TOPREAL1:def 5;
hence contradiction by
A5,
A6,
A7,
A8,
A118,
A121,
A123,
A124,
A126,
A127,
A133,
A151,
A168,
Th7;
end;
then ((i
+ 1)
+ k2)
= ((i
+ 1)
+ (kk
- (i
+ 1))) by
XREAL_0:def 2
.= kk;
then
P[k2] by
A127,
A133,
A151,
FINSEQ_4: 15;
then
A169: k2
>= k by
A27;
(kk
-' (i
+ 1))
= (kk
- (i
+ 1)) by
A156,
XREAL_0:def 2;
then ((kk
- (i
+ 1))
+ (i
+ 1))
>= (k
+ (i
+ 1)) by
A169,
XREAL_1: 7;
then
A170:
LE ((f
/. ((i
+ 1)
+ k)),(f
/. kk),(
L~ f),(f
/. 1),(f
/. (
len f))) by
A5,
A30,
A133,
JORDAN5C: 24;
LE ((f
/. kk),(f
/. ((i
+ 1)
+ k)),(
L~ f),(f
/. 1),(f
/. (
len f))) by
A6,
A7,
A8,
A32,
A122,
A130,
JORDAN5C: 13;
hence contradiction by
A1,
A6,
A7,
A8,
A32,
A108,
A151,
A170,
JORDAN5C: 12,
TOPREAL4: 2;
end;
end;
hence contradiction;
end;
A171: p44
in (
LSeg (p,(f
/. (i
+ 1)))) by
RLTOPSP1: 68;
A172: for p5 be
Point of (
TOP-REAL 2) st
LE (p,p5,P,p1,p2) &
LE (p5,p44,P,p1,p2) holds (p5
`1 )
>= e
proof
let p5 be
Point of (
TOP-REAL 2);
A173: (
Segment (P,p1,p2,p,p44))
= { p8 where p8 be
Point of (
TOP-REAL 2) :
LE (p,p8,P,p1,p2) &
LE (p8,p44,P,p1,p2) } by
JORDAN6: 26;
assume
LE (p,p5,P,p1,p2) &
LE (p5,p44,P,p1,p2);
then
A174: p5
in (
Segment (P,p1,p2,p,p44)) by
A173;
p44
in (
LSeg ((f
/. i),(f
/. (i
+ 1)))) by
RLTOPSP1: 68;
then (
LSeg (p,p44))
c= (
LSeg (f,i)) by
A11,
A13,
A119,
TOPREAL1: 6;
then
A175: (
LSeg (p,p44))
c= P by
A6,
A19,
A13;
now
per cases ;
case p44
<> p;
then (
LSeg (p,p44))
is_an_arc_of (p,p44) by
TOPREAL1: 9;
then (
Segment (P,p1,p2,p,p44))
= (
LSeg (p,p44)) by
A9,
A5,
A6,
A7,
A8,
A11,
A13,
A14,
A23,
A171,
A175,
Th25,
SPRECT_4: 4;
hence thesis by
A4,
A118,
A174,
TOPREAL1: 3;
end;
case p44
= p;
then (
Segment (P,p1,p2,p,p44))
=
{p44} by
A1,
A3,
Th1,
TOPREAL4: 2;
hence thesis by
A118,
A174,
TARSKI:def 1;
end;
end;
hence thesis;
end;
(i
+ 1)
<= ((i
+ 1)
+ k) by
NAT_1: 11;
then
A176:
LE (p44,pk,P,p1,p2) by
A5,
A6,
A7,
A8,
A17,
A28,
A32,
JORDAN5C: 24;
then
A177: p44
in P by
JORDAN5C:def 3;
A178: for p5 be
Point of (
TOP-REAL 2) st
LE (p5,pk,P,p1,p2) &
LE (p,p5,P,p1,p2) holds (p5
`1 )
>= e
proof
let p5 be
Point of (
TOP-REAL 2);
assume that
A179:
LE (p5,pk,P,p1,p2) and
A180:
LE (p,p5,P,p1,p2);
A181: p5
in P by
A179,
JORDAN5C:def 3;
now
per cases by
A1,
A177,
A181,
Th19,
TOPREAL4: 2;
case
LE (p44,p5,P,p1,p2);
hence thesis by
A120,
A179;
end;
case
LE (p5,p44,P,p1,p2);
hence thesis by
A172,
A180;
end;
end;
hence thesis;
end;
LE (p,p44,P,p1,p2) by
A5,
A6,
A7,
A8,
A11,
A13,
A14,
A23,
A171,
SPRECT_4: 4;
then
LE (p,pk,P,p1,p2) by
A176,
JORDAN5C: 13;
hence thesis by
A3,
A4,
A9,
A108,
A178;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;