lopban11.miz
begin
theorem ::
LOPBAN11:1
NDIFF825: for n be
Nat, r be
Real st
0
< r holds ex s be
Real st
0
< s & s
< r & (
sqrt ((s
* s)
* n))
< r
proof
let n be
Nat, r be
Real;
assume
A1:
0
< r;
per cases ;
suppose
A2:
0
= n;
set s = (r
/ 2);
take s;
thus
0
< s & s
< r & (
sqrt ((s
* s)
* n))
< r by
A1,
A2,
SQUARE_1: 17,
XREAL_1: 216;
end;
suppose
A3:
0
<> n;
set s = (r
/ (n
+ 1));
take s;
set s = (r
/ (n
+ 1));
A4: (n
+
0 )
< (n
+ 1) by
XREAL_1: 8;
thus
0
< s by
A1;
(
0
+ 1)
<= n by
A3,
NAT_1: 13;
then (1
* n)
<= (n
* n) by
XREAL_1: 66;
then
A6: ((s
* s)
* n)
<= ((s
* s)
* (n
* n)) by
XREAL_1: 66;
0
< 1 & (
0
+ 1)
< (n
+ 1) by
A3,
XREAL_1: 8;
then (1
/ (n
+ 1))
< 1 by
XREAL_1: 191;
then ((1
/ (n
+ 1))
* r)
< (r
* 1) by
A1,
XREAL_1: 68;
hence s
< r;
(
sqrt ((s
* s)
* n))
<= (
sqrt ((s
* n)
^2 )) by
A6,
SQUARE_1: 26;
then
A8: (
sqrt ((s
* s)
* n))
<= (s
* n) by
A1,
SQUARE_1: 22;
(n
/ (n
+ 1))
< 1 by
A4,
XREAL_1: 191;
then ((n
/ (n
+ 1))
* r)
< (r
* 1) by
A1,
XREAL_1: 68;
hence (
sqrt ((s
* s)
* n))
< r by
A8,
XXREAL_0: 2;
end;
end;
theorem ::
LOPBAN11:2
LM03: for R1,R2 be
FinSequence of
REAL , n,i be
Nat, r be
Real st i
in (
dom R1) & R1
= (n
|-> 1 qua
Real) & R2
= (R1
+* (i,r)) holds (
Product R2)
= r
proof
let R1,R2 be
FinSequence of
REAL , n,i be
Nat, r be
Real;
assume that
A1: i
in (
dom R1) and
A2: R1
= (n
|-> 1 qua
Real) and
A3: R2
= (R1
+* (i,r));
i
in (
Seg n) by
A1,
A2,
FUNCT_2:def 1;
then
A4: (R1
. i)
= 1 by
A2,
FUNCOP_1: 7;
A5: (
Product R1)
= 1 by
A2,
RVSUM_1: 102;
thus (
Product R2)
= (((
Product R1)
* r)
/ (R1
. i)) by
A1,
A2,
A3,
RVSUM_3: 25
.= r by
A4,
A5;
end;
theorem ::
LOPBAN11:3
for F be
FinSequence of
REAL st (for k be
Element of
NAT st k
in (
dom F) holds
0
<= (F
. k)) holds
0
<= (
Product F)
proof
defpred
P[
Nat] means for F be
FinSequence of
REAL st (for k be
Element of
NAT st k
in (
dom F) holds
0
<= (F
. k)) & (
len F)
= $1 holds
0
<= (
Product F);
let F be
FinSequence of
REAL ;
A1: for n be
Nat st
P[n] holds
P[(n
+ 1)]
proof
let n be
Nat;
assume
A2:
P[n];
for F be
FinSequence of
REAL st (for k be
Element of
NAT st k
in (
dom F) holds
0
<= (F
. k)) & (
len F)
= (n
+ 1) holds
0
<= (
Product F)
proof
let F be
FinSequence of
REAL ;
assume
A3: for k be
Element of
NAT st k
in (
dom F) holds
0
<= (F
. k);
assume
A4: (
len F)
= (n
+ 1);
then
consider F1,F2 be
FinSequence of
REAL such that
A5: (
len F1)
= n and
A6: (
len F2)
= 1 and
A7: F
= (F1
^ F2) by
FINSEQ_2: 23;
1
in (
Seg 1);
then 1
in (
dom F2) by
A6,
FINSEQ_1:def 3;
then
A8: (F
. (n
+ 1))
= (F2
. 1) by
A5,
A7,
FINSEQ_1:def 7;
for k be
Element of
NAT st k
in (
dom F1) holds
0
<= (F1
. k)
proof
let k be
Element of
NAT ;
assume
A9: k
in (
dom F1);
then
0
<= (F
. k) by
A3,
A7,
FINSEQ_2: 15;
hence thesis by
A7,
A9,
FINSEQ_1:def 7;
end;
then
A10:
0
<= (
Product F1) by
A2,
A5;
set x = (F2
. 1);
(
Seg (n
+ 1))
= (
dom F) by
A4,
FINSEQ_1:def 3;
then
A11:
0
<= x by
A3,
A8,
FINSEQ_1: 3;
(
Product F)
= (
Product (F1
^
<*x*>)) by
A6,
A7,
FINSEQ_1: 40
.= ((
Product F1)
* x) by
RVSUM_1: 96;
hence thesis by
A10,
A11;
end;
hence thesis;
end;
A12:
P[
0 ]
proof
let F be
FinSequence of
REAL such that for k be
Element of
NAT st k
in (
dom F) holds
0
<= (F
. k);
assume (
len F)
=
0 ;
then F
= (
<*>
REAL );
hence thesis by
RVSUM_1: 94;
end;
A13: for n be
Nat holds
P[n] from
NAT_1:sch 2(
A12,
A1);
A14: ex n be
Element of
NAT st n
= (
len F);
assume for k be
Element of
NAT st k
in (
dom F) holds
0
<= (F
. k);
hence thesis by
A13,
A14;
end;
reserve X,G for
RealNormSpace-Sequence,
Y for
RealNormSpace;
reserve f for
MultilinearOperator of X, Y;
theorem ::
LOPBAN11:4
DCARXX: (
dom (
carr X))
= (
dom X)
proof
(
dom (
carr X))
= (
Seg (
len (
carr X))) by
FINSEQ_1:def 3;
hence (
dom (
carr X))
= (
Seg (
len X)) by
PRVECT_1:def 11
.= (
dom X) by
FINSEQ_1:def 3;
end;
theorem ::
LOPBAN11:5
ZERXI: for z be
Element of (
product X) st z
= (
0. (
product X)) holds for i be
Element of (
dom X) holds (z
. i)
= (
0. (X
. i))
proof
let z be
Element of (
product X);
assume
A1: z
= (
0. (
product X));
let i be
Element of (
dom X);
A2: (
product X)
=
NORMSTR (# (
product (
carr X)), (
zeros X),
[:(
addop X):],
[:(
multop X):], (
productnorm X) #) by
PRVECT_2: 6;
reconsider j = i as
Element of (
dom (
carr X)) by
DCARXX;
((
zeros X)
. j)
= (
0. (X
. j)) by
PRVECT_1:def 14;
hence (z
. i)
= (
0. (X
. i)) by
A1,
A2;
end;
theorem ::
LOPBAN11:6
FXZER: (f
. (
0. (
product X)))
= (
0. Y)
proof
A1: (
product X)
=
NORMSTR (# (
product (
carr X)), (
zeros X),
[:(
addop X):],
[:(
multop X):], (
productnorm X) #) by
PRVECT_2: 6;
reconsider z = (
0. (
product X)) as
Element of (
product (
carr X)) by
A1;
set i = the
Element of (
dom X);
(z
. i)
= (
0. (X
. i)) by
ZERXI;
hence (f
. (
0. (
product X)))
= (
0. Y) by
LOPBAN10: 36;
end;
theorem ::
LOPBAN11:7
PSPROD: for F be
FinSequence of
REAL st for i be
Element of (
dom F) holds (F
. i)
>
0 holds (
Product F)
>
0
proof
let F be
FinSequence of
REAL ;
assume for i be
Element of (
dom F) holds (F
. i)
>
0 ;
then for j be
Element of
NAT st j
in (
dom F) holds (F
. j)
>
0 ;
hence (
Product F)
>
0 by
NAT_4: 42;
end;
theorem ::
LOPBAN11:8
Th42: for X be
RealNormSpace-Sequence, Y be
RealNormSpace st Y is
complete holds for seq be
sequence of (
R_NormSpace_of_BoundedMultilinearOperators (X,Y)) st seq is
Cauchy_sequence_by_Norm holds seq is
convergent
proof
let X be
RealNormSpace-Sequence, Y be
RealNormSpace such that
A1: Y is
complete;
let vseq be
sequence of (
R_NormSpace_of_BoundedMultilinearOperators (X,Y)) such that
A2: vseq is
Cauchy_sequence_by_Norm;
defpred
P[
set,
set] means ex xseq be
sequence of Y st (for n be
Nat holds (xseq
. n)
= ((
modetrans ((vseq
. n),X,Y))
. $1)) & xseq is
convergent & $2
= (
lim xseq);
A3: for x be
Element of (
product X) holds ex y be
Element of Y st
P[x, y]
proof
let x be
Element of (
product X);
deffunc
F(
Nat) = ((
modetrans ((vseq
. $1),X,Y))
. x);
consider xseq be
sequence of Y such that
A4: for n be
Element of
NAT holds (xseq
. n)
=
F(n) from
FUNCT_2:sch 4;
A5: for n be
Nat holds (xseq
. n)
=
F(n)
proof
let n be
Nat;
n
in
NAT by
ORDINAL1:def 12;
hence thesis by
A4;
end;
take (
lim xseq);
A6: for m,k be
Nat holds
||.((xseq
. m)
- (xseq
. k)).||
<= (
||.((vseq
. m)
- (vseq
. k)).||
* (
NrProduct x))
proof
let m,k be
Nat;
reconsider h1 = ((vseq
. m)
- (vseq
. k)) as
Lipschitzian
MultilinearOperator of X, Y by
LOPBAN10:def 11;
k
in
NAT by
ORDINAL1:def 12;
then
A7: (xseq
. k)
= ((
modetrans ((vseq
. k),X,Y))
. x) by
A4;
a8: (vseq
. m) is
Lipschitzian
MultilinearOperator of X, Y by
LOPBAN10:def 11;
a9: (vseq
. k) is
Lipschitzian
MultilinearOperator of X, Y by
LOPBAN10:def 11;
m
in
NAT by
ORDINAL1:def 12;
then (xseq
. m)
= ((
modetrans ((vseq
. m),X,Y))
. x) by
A4;
then ((xseq
. m)
- (xseq
. k))
= (h1
. x) by
A7,
a8,
a9,
LOPBAN10: 52;
hence thesis by
LOPBAN10: 45;
end;
now
let e be
Real such that
A10: e
>
0 ;
now
per cases ;
case
A11: ex i be
Element of (
dom X) st (x
. i)
= (
0. (X
. i));
reconsider k =
0 as
Nat;
take k;
thus for n,m be
Nat st n
>= k & m
>= k holds
||.((xseq
. n)
- (xseq
. m)).||
< e
proof
let n,m be
Nat such that n
>= k and m
>= k;
m
in
NAT by
ORDINAL1:def 12;
then
A12: (xseq
. m)
= ((
modetrans ((vseq
. m),X,Y))
. x) by
A4
.= (
0. Y) by
A11,
LOPBAN10: 36;
n
in
NAT by
ORDINAL1:def 12;
then (xseq
. n)
= ((
modetrans ((vseq
. n),X,Y))
. x) by
A4
.= (
0. Y) by
A11,
LOPBAN10: 36;
hence thesis by
A10,
A12;
end;
end;
case not ex i be
Element of (
dom X) st (x
. i)
= (
0. (X
. i));
then
A13: (
NrProduct x)
>
0 by
LOPBAN10: 27;
then
consider k be
Nat such that
A15: for n,m be
Nat st n
>= k & m
>= k holds
||.((vseq
. n)
- (vseq
. m)).||
< (e
/ (
NrProduct x)) by
A2,
A10,
RSSPACE3: 8;
take k;
thus for n,m be
Nat st n
>= k & m
>= k holds
||.((xseq
. n)
- (xseq
. m)).||
< e
proof
let n,m be
Nat such that
A16: n
>= k and
A17: m
>= k;
||.((vseq
. n)
- (vseq
. m)).||
< (e
/ (
NrProduct x)) by
A15,
A16,
A17;
then
A18: (
||.((vseq
. n)
- (vseq
. m)).||
* (
NrProduct x))
< ((e
/ (
NrProduct x))
* (
NrProduct x)) by
A13,
XREAL_1: 68;
A19: ((e
/ (
NrProduct x))
* (
NrProduct x))
= (e
* (((
NrProduct x)
" )
* (
NrProduct x)))
.= (e
* 1) by
A13,
XCMPLX_0:def 7
.= e;
||.((xseq
. n)
- (xseq
. m)).||
<= (
||.((vseq
. n)
- (vseq
. m)).||
* (
NrProduct x)) by
A6;
hence thesis by
A18,
A19,
XXREAL_0: 2;
end;
end;
end;
hence ex k be
Nat st for n,m be
Nat st n
>= k & m
>= k holds
||.((xseq
. n)
- (xseq
. m)).||
< e;
end;
then xseq is
Cauchy_sequence_by_Norm by
RSSPACE3: 8;
hence thesis by
A1,
A5;
end;
consider f be
Function of the
carrier of (
product X), the
carrier of Y such that
A20: for x be
Element of (
product X) holds
P[x, (f
. x)] from
FUNCT_2:sch 3(
A3);
reconsider tseq = f as
Function of (
product X), Y;
A21: for u be
Point of (
product X), i be
Element of (
dom X), x be
Point of (X
. i) holds ex xseqi be
sequence of Y st (for n be
Nat holds (xseqi
. n)
= (((
modetrans ((vseq
. n),X,Y))
* (
reproj (i,u)))
. x)) & xseqi is
convergent & ((tseq
* (
reproj (i,u)))
. x)
= (
lim xseqi)
proof
let u be
Point of (
product X), i be
Element of (
dom X), x be
Point of (X
. i);
reconsider v = ((
reproj (i,u))
. x) as
Point of (
product X);
consider xseq be
sequence of Y such that
A22: (for n be
Nat holds (xseq
. n)
= ((
modetrans ((vseq
. n),X,Y))
. v)) & xseq is
convergent & (tseq
. v)
= (
lim xseq) by
A20;
A23: (
dom (
reproj (i,u)))
= the
carrier of (X
. i) by
FUNCT_2:def 1;
take xseq;
thus for n be
Nat holds (xseq
. n)
= (((
modetrans ((vseq
. n),X,Y))
* (
reproj (i,u)))
. x)
proof
let n be
Nat;
thus (xseq
. n)
= ((
modetrans ((vseq
. n),X,Y))
. v) by
A22
.= ((vseq
. n)
. ((
reproj (i,u))
. x)) by
LOPBAN10:def 13
.= (((vseq
. n)
* (
reproj (i,u)))
. x) by
A23,
FUNCT_1: 13
.= (((
modetrans ((vseq
. n),X,Y))
* (
reproj (i,u)))
. x) by
LOPBAN10:def 13;
end;
thus xseq is
convergent by
A22;
thus ((tseq
* (
reproj (i,u)))
. x)
= (
lim xseq) by
A22,
A23,
FUNCT_1: 13;
end;
now
let i be
Element of (
dom X), u be
Point of (
product X);
set tseqiu = (tseq
* (
reproj (i,u)));
deffunc
H(
Nat) = ((
modetrans ((vseq
. $1),X,Y))
* (
reproj (i,u)));
A24:
now
let x,y be
Point of (X
. i);
consider xseq be
sequence of Y such that
A25: for n be
Nat holds (xseq
. n)
= (
H(n)
. x) and
A26: xseq is
convergent and
A27: (tseqiu
. x)
= (
lim xseq) by
A21;
consider zseq be
sequence of Y such that
A28: for n be
Nat holds (zseq
. n)
= (
H(n)
. (x
+ y)) and zseq is
convergent and
A29: (tseqiu
. (x
+ y))
= (
lim zseq) by
A21;
consider yseq be
sequence of Y such that
A30: for n be
Nat holds (yseq
. n)
= (
H(n)
. y) and
A31: yseq is
convergent and
A32: (tseqiu
. y)
= (
lim yseq) by
A21;
now
let n be
Nat;
A33:
H(n) is
LinearOperator of (X
. i), Y by
LOPBAN10:def 6;
thus (zseq
. n)
= (
H(n)
. (x
+ y)) by
A28
.= ((
H(n)
. x)
+ (
H(n)
. y)) by
A33,
VECTSP_1:def 20
.= ((xseq
. n)
+ (
H(n)
. y)) by
A25
.= ((xseq
. n)
+ (yseq
. n)) by
A30;
end;
then zseq
= (xseq
+ yseq) by
NORMSP_1:def 2;
hence (tseqiu
. (x
+ y))
= ((tseqiu
. x)
+ (tseqiu
. y)) by
A26,
A27,
A29,
A31,
A32,
NORMSP_1: 25;
end;
now
let x be
Point of (X
. i);
let a be
Real;
consider xseq be
sequence of Y such that
A34: for n be
Nat holds (xseq
. n)
= (
H(n)
. x) and
A35: xseq is
convergent and
A36: (tseqiu
. x)
= (
lim xseq) by
A21;
consider zseq be
sequence of Y such that
A37: for n be
Nat holds (zseq
. n)
= (
H(n)
. (a
* x)) and zseq is
convergent and
A38: (tseqiu
. (a
* x))
= (
lim zseq) by
A21;
now
let n be
Nat;
A39:
H(n) is
LinearOperator of (X
. i), Y by
LOPBAN10:def 6;
thus (zseq
. n)
= (
H(n)
. (a
* x)) by
A37
.= (a
* (
H(n)
. x)) by
A39,
LOPBAN_1:def 5
.= (a
* (xseq
. n)) by
A34;
end;
then zseq
= (a
* xseq) by
NORMSP_1:def 5;
hence (tseqiu
. (a
* x))
= (a
* (tseqiu
. x)) by
A35,
A36,
A38,
NORMSP_1: 28;
end;
hence (tseq
* (
reproj (i,u))) is
LinearOperator of (X
. i), Y by
A24,
LOPBAN_1:def 5,
VECTSP_1:def 20;
end;
then
reconsider tseq as
MultilinearOperator of X, Y by
LOPBAN10:def 6;
B39:
now
let e1 be
Real such that
A40: e1
>
0 ;
reconsider e = e1 as
Real;
consider k be
Nat such that
A41: for n,m be
Nat st n
>= k & m
>= k holds
||.((vseq
. n)
- (vseq
. m)).||
< e by
A2,
A40,
RSSPACE3: 8;
reconsider k as
Nat;
take k;
now
let m be
Nat;
assume m
>= k;
then
A42:
||.((vseq
. m)
- (vseq
. k)).||
< e by
A41;
A43:
||.(vseq
. m).||
= (
||.vseq.||
. m) by
NORMSP_0:def 4;
A44:
||.(vseq
. k).||
= (
||.vseq.||
. k) by
NORMSP_0:def 4;
|.(
||.(vseq
. m).||
-
||.(vseq
. k).||).|
<=
||.((vseq
. m)
- (vseq
. k)).|| by
NORMSP_1: 9;
hence
|.((
||.vseq.||
. m)
- (
||.vseq.||
. k)).|
< e1 by
A42,
A43,
A44,
XXREAL_0: 2;
end;
hence for m be
Nat st m
>= k holds
|.((
||.vseq.||
. m)
- (
||.vseq.||
. k)).|
< e1;
end;
then
A45:
||.vseq.|| is
convergent by
SEQ_4: 41;
A46: tseq is
Lipschitzian
proof
take (
lim
||.vseq.||);
A47:
now
let x be
Point of (
product X);
consider xseq be
sequence of Y such that
A48: for n be
Nat holds (xseq
. n)
= ((
modetrans ((vseq
. n),X,Y))
. x) and
A49: xseq is
convergent and
A50: (tseq
. x)
= (
lim xseq) by
A20;
A51:
||.(tseq
. x).||
= (
lim
||.xseq.||) by
A49,
A50,
LOPBAN_1: 20;
A52: for m be
Nat holds
||.(xseq
. m).||
<= (
||.(vseq
. m).||
* (
NrProduct x))
proof
let m be
Nat;
A53: (xseq
. m)
= ((
modetrans ((vseq
. m),X,Y))
. x) by
A48;
(vseq
. m) is
Lipschitzian
MultilinearOperator of X, Y by
LOPBAN10:def 11;
hence thesis by
A53,
LOPBAN10: 45;
end;
A54: for n be
Nat holds (
||.xseq.||
. n)
<= (((
NrProduct x)
(#)
||.vseq.||)
. n)
proof
let n be
Nat;
A55: (
||.xseq.||
. n)
=
||.(xseq
. n).|| by
NORMSP_0:def 4;
A56:
||.(vseq
. n).||
= (
||.vseq.||
. n) by
NORMSP_0:def 4;
||.(xseq
. n).||
<= (
||.(vseq
. n).||
* (
NrProduct x)) by
A52;
hence thesis by
A55,
A56,
SEQ_1: 9;
end;
A58: (
lim ((
NrProduct x)
(#)
||.vseq.||))
= ((
lim
||.vseq.||)
* (
NrProduct x)) by
B39,
SEQ_2: 8,
SEQ_4: 41;
||.xseq.|| is
convergent by
A49,
A50,
LOPBAN_1: 20;
hence
||.(tseq
. x).||
<= ((
lim
||.vseq.||)
* (
NrProduct x)) by
A45,
A51,
A54,
A58,
SEQ_2: 18;
end;
now
let n be
Nat;
||.(vseq
. n).||
>=
0 ;
hence (
||.vseq.||
. n)
>=
0 by
NORMSP_0:def 4;
end;
hence thesis by
B39,
A47,
SEQ_2: 17,
SEQ_4: 41;
end;
A59: for e be
Real st e
>
0 holds ex k be
Nat st for n be
Nat st n
>= k holds for x be
Point of (
product X) holds
||.(((
modetrans ((vseq
. n),X,Y))
. x)
- (tseq
. x)).||
<= (e
* (
NrProduct x))
proof
let e be
Real;
assume e
>
0 ;
then
consider k be
Nat such that
A60: for n,m be
Nat st n
>= k & m
>= k holds
||.((vseq
. n)
- (vseq
. m)).||
< e by
A2,
RSSPACE3: 8;
take k;
now
let n be
Nat such that
A61: n
>= k;
now
let x be
Point of (
product X);
consider xseq be
sequence of Y such that
A62: for n be
Nat holds (xseq
. n)
= ((
modetrans ((vseq
. n),X,Y))
. x) and
A63: xseq is
convergent and
A64: (tseq
. x)
= (
lim xseq) by
A20;
A65: for m,k be
Nat holds
||.((xseq
. m)
- (xseq
. k)).||
<= (
||.((vseq
. m)
- (vseq
. k)).||
* (
NrProduct x))
proof
let m,k be
Nat;
reconsider h1 = ((vseq
. m)
- (vseq
. k)) as
Lipschitzian
MultilinearOperator of X, Y by
LOPBAN10:def 11;
A66: (xseq
. k)
= ((
modetrans ((vseq
. k),X,Y))
. x) by
A62;
a67: (vseq
. m) is
Lipschitzian
MultilinearOperator of X, Y by
LOPBAN10:def 11;
a68: (vseq
. k) is
Lipschitzian
MultilinearOperator of X, Y by
LOPBAN10:def 11;
(xseq
. m)
= ((
modetrans ((vseq
. m),X,Y))
. x) by
A62;
then ((xseq
. m)
- (xseq
. k))
= (h1
. x) by
A66,
a67,
a68,
LOPBAN10: 52;
hence thesis by
LOPBAN10: 45;
end;
A69: for m be
Nat st m
>= k holds
||.((xseq
. n)
- (xseq
. m)).||
<= (e
* (
NrProduct x))
proof
let m be
Nat;
assume m
>= k;
then
A70:
||.((vseq
. n)
- (vseq
. m)).||
< e by
A60,
A61;
A71:
||.((xseq
. n)
- (xseq
. m)).||
<= (
||.((vseq
. n)
- (vseq
. m)).||
* (
NrProduct x)) by
A65;
(
||.((vseq
. n)
- (vseq
. m)).||
* (
NrProduct x))
<= (e
* (
NrProduct x)) by
A70,
XREAL_1: 64;
hence thesis by
A71,
XXREAL_0: 2;
end;
||.((xseq
. n)
- (tseq
. x)).||
<= (e
* (
NrProduct x))
proof
deffunc
F(
Nat) =
||.((xseq
. $1)
- (xseq
. n)).||;
consider rseq be
Real_Sequence such that
A72: for m be
Nat holds (rseq
. m)
=
F(m) from
SEQ_1:sch 1;
now
let x be
object;
assume x
in
NAT ;
then
reconsider k = x as
Nat;
thus (rseq
. x)
=
||.((xseq
. k)
- (xseq
. n)).|| by
A72
.=
||.((xseq
- (xseq
. n))
. k).|| by
NORMSP_1:def 4
.= (
||.(xseq
- (xseq
. n)).||
. x) by
NORMSP_0:def 4;
end;
then
A73: rseq
=
||.(xseq
- (xseq
. n)).|| by
FUNCT_2: 12;
A74: (xseq
- (xseq
. n)) is
convergent by
A63,
NORMSP_1: 21;
(
lim (xseq
- (xseq
. n)))
= ((tseq
. x)
- (xseq
. n)) by
A63,
A64,
NORMSP_1: 27;
then
A75: (
lim rseq)
=
||.((tseq
. x)
- (xseq
. n)).|| by
A73,
A74,
LOPBAN_1: 41;
for m be
Nat st m
>= k holds (rseq
. m)
<= (e
* (
NrProduct x))
proof
let m be
Nat such that
A76: m
>= k;
(rseq
. m)
=
||.((xseq
. m)
- (xseq
. n)).|| by
A72
.=
||.((xseq
. n)
- (xseq
. m)).|| by
NORMSP_1: 7;
hence thesis by
A69,
A76;
end;
then (
lim rseq)
<= (e
* (
NrProduct x)) by
A73,
A74,
LOPBAN_1: 41,
RSSPACE2: 5;
hence thesis by
A75,
NORMSP_1: 7;
end;
hence
||.(((
modetrans ((vseq
. n),X,Y))
. x)
- (tseq
. x)).||
<= (e
* (
NrProduct x)) by
A62;
end;
hence for x be
Point of (
product X) holds
||.(((
modetrans ((vseq
. n),X,Y))
. x)
- (tseq
. x)).||
<= (e
* (
NrProduct x));
end;
hence thesis;
end;
reconsider tseq as
Lipschitzian
MultilinearOperator of X, Y by
A46;
reconsider tv = tseq as
Point of (
R_NormSpace_of_BoundedMultilinearOperators (X,Y)) by
LOPBAN10:def 11;
A77: for e be
Real st e
>
0 holds ex k be
Nat st for n be
Nat st n
>= k holds
||.((vseq
. n)
- tv).||
<= e
proof
let e be
Real such that
A78: e
>
0 ;
consider k be
Nat such that
A79: for n be
Nat st n
>= k holds for x be
Point of (
product X) holds
||.(((
modetrans ((vseq
. n),X,Y))
. x)
- (tseq
. x)).||
<= (e
* (
NrProduct x)) by
A59,
A78;
now
set g1 = tseq;
let n be
Nat such that
A80: n
>= k;
reconsider h1 = ((vseq
. n)
- tv) as
Lipschitzian
MultilinearOperator of X, Y by
LOPBAN10:def 11;
set f1 = (
modetrans ((vseq
. n),X,Y));
A81:
now
let t be
Point of (
product X);
assume for i be
Element of (
dom X) holds
||.(t
. i).||
<= 1;
then
0
<= (
NrProduct t) & (
NrProduct t)
<= 1 by
LOPBAN10: 35;
then
A82: (e
* (
NrProduct t))
<= (e
* 1) by
A78,
XREAL_1: 64;
A83:
||.((f1
. t)
- (g1
. t)).||
<= (e
* (
NrProduct t)) by
A79,
A80;
(vseq
. n) is
Lipschitzian
MultilinearOperator of X, Y by
LOPBAN10:def 11;
then
||.(h1
. t).||
=
||.((f1
. t)
- (g1
. t)).|| by
LOPBAN10: 52;
hence
||.(h1
. t).||
<= e by
A82,
A83,
XXREAL_0: 2;
end;
A84:
now
let r be
Real;
assume r
in (
PreNorms h1);
then ex t be
Point of (
product X) st r
=
||.(h1
. t).|| & for i be
Element of (
dom X) holds
||.(t
. i).||
<= 1;
hence r
<= e by
A81;
end;
(for s be
Real st s
in (
PreNorms h1) holds s
<= e) implies (
upper_bound (
PreNorms h1))
<= e by
SEQ_4: 45;
hence
||.((vseq
. n)
- tv).||
<= e by
A84,
LOPBAN10: 43;
end;
hence thesis;
end;
for e be
Real st e
>
0 holds ex m be
Nat st for n be
Nat st n
>= m holds
||.((vseq
. n)
- tv).||
< e
proof
let e be
Real such that
A86: e
>
0 ;
consider m be
Nat such that
A87: for n be
Nat st n
>= m holds
||.((vseq
. n)
- tv).||
<= (e
/ 2) by
A77,
A86;
A88: (e
/ 2)
< e by
A86,
XREAL_1: 216;
now
let n be
Nat;
assume n
>= m;
then
||.((vseq
. n)
- tv).||
<= (e
/ 2) by
A87;
hence
||.((vseq
. n)
- tv).||
< e by
A88,
XXREAL_0: 2;
end;
hence thesis;
end;
hence thesis by
NORMSP_1:def 6;
end;
theorem ::
LOPBAN11:9
Th43: for X be
RealNormSpace-Sequence holds for Y be
RealBanachSpace holds (
R_NormSpace_of_BoundedMultilinearOperators (X,Y)) is
RealBanachSpace
proof
let X be
RealNormSpace-Sequence;
let Y be
RealBanachSpace;
for seq be
sequence of (
R_NormSpace_of_BoundedMultilinearOperators (X,Y)) st seq is
Cauchy_sequence_by_Norm holds seq is
convergent by
Th42;
hence thesis by
LOPBAN_1:def 15;
end;
registration
let X be
RealNormSpace-Sequence;
let Y be
RealBanachSpace;
cluster (
R_NormSpace_of_BoundedMultilinearOperators (X,Y)) ->
complete;
coherence by
Th43;
end
begin
theorem ::
LOPBAN11:10
NDIFF823: for n be
Nat, F be
Element of (
REAL n), s be
Real st for i be
Nat st i
in (
dom F) holds
0
<= (F
. i) & (F
. i)
<= s holds
|.F.|
<= (
sqrt ((s
* s)
* (
len F)))
proof
let n be
Nat, F be
Element of (
REAL n), s be
Real;
assume
A1: for i be
Nat st i
in (
dom F) holds
0
<= (F
. i) & (F
. i)
<= s;
A2:
0
<= (
Sum (
sqr F)) by
RVSUM_1: 86;
set G = ((
len F)
|-> s);
A3: (
sqr G)
= ((
len F)
|-> (s
^2 )) by
RVSUM_1: 56;
(
len F) is
natural
Number & s is
Element of
REAL by
XREAL_0:def 1;
then
reconsider G as
Element of ((
len F)
-tuples_on
REAL ) by
FINSEQ_2: 112;
reconsider F0 = F as
Element of ((
len F)
-tuples_on
REAL ) by
FINSEQ_2: 92;
for j be
Nat st j
in (
Seg (
len F0)) holds ((
sqr F0)
. j)
<= ((
sqr G)
. j)
proof
let j be
Nat;
assume
A4: j
in (
Seg (
len F0));
then
A5: j
in (
dom F) by
FINSEQ_1:def 3;
A6: ((
sqr F0)
. j)
= ((F
. j)
^2 ) by
VALUED_1: 11;
A7: ((
sqr G)
. j)
= ((G
. j)
^2 ) by
VALUED_1: 11;
A8:
0
<= (F0
. j) by
A1,
A5;
(F0
. j)
<= s by
A1,
A5;
then (F0
. j)
<= (G
. j) by
A4,
FINSEQ_2: 57;
hence thesis by
A6,
A7,
A8,
SQUARE_1: 15;
end;
then (
Sum (
sqr F0))
<= (
Sum (
sqr G)) by
RVSUM_1: 82;
then (
Sum (
sqr F))
<= ((s
* s)
* (
len F)) by
A3,
RVSUM_1: 80;
hence thesis by
A2,
SQUARE_1: 26;
end;
theorem ::
LOPBAN11:11
LM02: for X be
RealNormSpace-Sequence, Y be
RealNormSpace, f be
MultilinearOperator of X, Y, K be
Real st (
0
<= K & for x be
Point of (
product X) holds
||.(f
. x).||
<= (K
* (
NrProduct x))) holds for v0,v1 be
Point of (
product X), Cv0,Cv1 be
FinSequence, i be
Element of (
dom X) st Cv0
= v0 & Cv1
= v1 &
||.(v1
- v0).||
<= 1 & for j be
Element of (
dom X) st i
<> j holds (Cv1
. j)
= (Cv0
. j) holds
||.((f
/. v1)
- (f
/. v0)).||
<= ((((
||.v0.||
+ 1)
|^ (
len X))
* K)
*
||.((v1
- v0)
. i).||)
proof
let X be
RealNormSpace-Sequence, Y be
RealNormSpace, f be
MultilinearOperator of X, Y, K be
Real;
assume
A1:
0
<= K & for x be
Point of (
product X) holds
||.(f
. x).||
<= (K
* (
NrProduct x));
let v0,v1 be
Point of (
product X), Cv0,Cv1 be
FinSequence, i be
Element of (
dom X);
assume
A2: Cv0
= v0 & Cv1
= v1 &
||.(v1
- v0).||
<= 1 & for j be
Element of (
dom X) st i
<> j holds (Cv1
. j)
= (Cv0
. j);
f is
Function of (
product X), Y & f is
Multilinear;
then
A3: (f
* (
reproj (i,v0))) is
LinearOperator of (X
. i), Y;
A4: (
product X)
=
NORMSTR (# (
product (
carr X)), (
zeros X),
[:(
addop X):],
[:(
multop X):], (
productnorm X) #) by
PRVECT_2: 6;
then
A5: ex g be
Function st Cv1
= g & (
dom g)
= (
dom (
carr X)) & for i be
object st i
in (
dom (
carr X)) holds (g
. i)
in ((
carr X)
. i) by
A2,
CARD_3:def 5;
A6: ex g be
Function st ((
reproj (i,v0))
. (v1
. i))
= g & (
dom g)
= (
dom (
carr X)) & for i be
object st i
in (
dom (
carr X)) holds (g
. i)
in ((
carr X)
. i) by
A4,
CARD_3:def 5;
for x be
object st x
in (
dom v1) holds (v1
. x)
= (((
reproj (i,v0))
. (v1
. i))
. x)
proof
let x be
object;
assume x
in (
dom v1);
then
reconsider j = x as
Element of (
dom X) by
A2,
A5,
DCARXX;
per cases ;
suppose j
= i;
hence (v1
. x)
= (((
reproj (i,v0))
. (v1
. i))
. x) by
LOPBAN10: 15;
end;
suppose
A8: j
<> i;
then (((
reproj (i,v0))
. (v1
. i))
. j)
= (v0
. j) by
LOPBAN10: 16
.= (v1
. j) by
A2,
A8;
hence (v1
. x)
= (((
reproj (i,v0))
. (v1
. i))
. x);
end;
end;
then
A10: v1
= ((
reproj (i,v0))
. (v1
. i)) by
A2,
A5,
A6,
FUNCT_1: 2;
reconsider v3 = ((
reproj (i,v0))
. ((v1
. i)
- (v0
. i))) as
Point of (
product X);
((f
/. v1)
- (f
/. v0))
= ((f
. ((
reproj (i,v0))
. (v1
. i)))
- (f
. ((
reproj (i,v0))
. (v0
. i)))) by
A10,
LOPBAN10: 17
.= (((f
* (
reproj (i,v0)))
. (v1
. i))
- (f
. ((
reproj (i,v0))
. (v0
. i)))) by
FUNCT_2: 15
.= (((f
* (
reproj (i,v0)))
. (v1
. i))
- ((f
* (
reproj (i,v0)))
. (v0
. i))) by
FUNCT_2: 15
.= (((f
* (
reproj (i,v0)))
. (v1
. i))
+ ((
- 1)
* ((f
* (
reproj (i,v0)))
. (v0
. i)))) by
RLVECT_1: 16
.= (((f
* (
reproj (i,v0)))
. (v1
. i))
+ ((f
* (
reproj (i,v0)))
. ((
- 1)
* (v0
. i)))) by
A3,
LOPBAN_1:def 5
.= ((f
* (
reproj (i,v0)))
. ((v1
. i)
+ ((
- 1)
* (v0
. i)))) by
A3,
VECTSP_1:def 20
.= ((f
* (
reproj (i,v0)))
. ((v1
. i)
- (v0
. i))) by
RLVECT_1: 16
.= (f
. v3) by
FUNCT_2: 15;
then
A12:
||.((f
/. v1)
- (f
/. v0)).||
<= (K
* (
NrProduct v3)) by
A1;
1 is
Element of
REAL by
XREAL_0:def 1;
then
reconsider R1 = ((
len X)
|-> 1 qua
Real) as
FinSequence of
REAL by
FINSEQ_2: 63;
A13: (
dom R1)
= (
Seg (
len X)) by
FUNCT_2:def 1;
i
in (
dom X);
then
A14: i
in (
dom R1) by
A13,
FINSEQ_1:def 3;
reconsider Nv1v0 =
||.((v1
- v0)
. i).|| as
Element of
REAL ;
reconsider R2 = (R1
+* (i,Nv1v0)) as
FinSequence of
REAL ;
(
||.v0.||
+ 1) is
Element of
REAL by
XREAL_0:def 1;
then
reconsider R3 = ((
len X)
|-> (
||.v0.||
+ 1)) as
FinSequence of
REAL by
FINSEQ_2: 63;
set R4 = (
mlt (R2,R3));
(
dom R2)
= (
dom R1) by
FUNCT_7: 30;
then (
dom R2)
= (
Seg (
len X)) & (
dom R3)
= (
Seg (
len X)) by
FUNCT_2:def 1;
then
A15: (
len R2)
= (
len X) & (
len R3)
= (
len X) by
FINSEQ_1:def 3;
then R2 is
Element of ((
len X)
-tuples_on
REAL ) & R3 is
Element of ((
len X)
-tuples_on
REAL ) by
FINSEQ_2: 92;
then
A16: (
Product R4)
= ((
Product R2)
* (
Product R3)) by
RVSUM_1: 107;
A17: (
Product R2)
=
||.((v1
- v0)
. i).|| by
A14,
LM03;
A18: (
Product R3)
= ((
||.v0.||
+ 1)
to_power (
len X)) by
NAT_4: 55
.= ((
||.v0.||
+ 1)
|^ (
len X));
consider Nx be
FinSequence of
REAL such that
A19: (
dom Nx)
= (
dom X) & (for i be
Element of (
dom X) holds (Nx
. i)
=
||.(v3
. i).||) & (
NrProduct v3)
= (
Product Nx) by
LOPBAN10:def 9;
(
dom Nx)
= (
Seg (
len X)) by
A19,
FINSEQ_1:def 3;
then
A20: (
len Nx)
= (
len X) by
FINSEQ_1:def 3;
(
dom R4)
= ((
dom R2)
/\ (
dom R3)) by
VALUED_1:def 4
.= ((
Seg (
len R2))
/\ (
dom R3)) by
FINSEQ_1:def 3
.= ((
Seg (
len R2))
/\ (
Seg (
len R3))) by
FINSEQ_1:def 3
.= (
Seg (
len X)) by
A15;
then
A21: (
len R4)
= (
len X) by
FINSEQ_1:def 3;
for k be
Element of
NAT st k
in (
dom Nx) holds (Nx
. k)
<= (R4
. k) &
0
<= (Nx
. k)
proof
let k be
Element of
NAT ;
assume k
in (
dom Nx);
then
A22: k
in (
Seg (
len Nx)) by
FINSEQ_1:def 3;
then
reconsider j = k as
Element of (
dom X) by
A20,
FINSEQ_1:def 3;
A24: (Nx
. k)
=
||.(v3
. j).|| by
A19;
A26: (R4
. k)
= ((R2
. k)
* (R3
. j)) by
RVSUM_1: 60
.= ((R2
. k)
* (
||.v0.||
+ 1)) by
A20,
A22,
FUNCOP_1: 7;
now
per cases ;
suppose
A27: j
= i;
(v3
. j)
= ((v1
. i)
- (v0
. i)) by
A27,
LOPBAN10: 15
.= ((v1
- v0)
. i) by
LOPBAN10: 26;
then
A29: (Nx
. k)
=
||.((v1
- v0)
. i).|| by
A19,
A27;
(1
+
0 )
<= (
||.v0.||
+ 1) by
XREAL_1: 7;
then (
||.((v1
- v0)
. i).||
* 1)
<= (
||.((v1
- v0)
. i).||
* (
||.v0.||
+ 1)) by
XREAL_1: 66;
hence (Nx
. k)
<= (R4
. k) by
A13,
A20,
A22,
A26,
A27,
A29,
FUNCT_7: 31;
end;
suppose
A30: j
<> i;
then
A31: (R2
. k)
= (R1
. j) by
FUNCT_7: 32
.= 1 by
A20,
A22,
FUNCOP_1: 7;
||.(v0
. j).||
<=
||.v0.|| by
A4,
PRVECT_2: 10;
then (
||.(v0
. j).||
+
0 )
<= (
||.v0.||
+ 1) by
XREAL_1: 7;
hence (Nx
. k)
<= (R4
. k) by
A24,
A26,
A30,
A31,
LOPBAN10: 16;
end;
end;
hence thesis by
A24;
end;
then (
NrProduct v3)
<= (
||.((v1
- v0)
. i).||
* ((
||.v0.||
+ 1)
|^ (
len X))) by
A16,
A17,
A18,
A19,
A20,
A21,
FINSEQ_9: 34;
then (K
* (
NrProduct v3))
<= (K
* (((
||.v0.||
+ 1)
|^ (
len X))
*
||.((v1
- v0)
. i).||)) by
A1,
XREAL_1: 66;
hence thesis by
A12,
XXREAL_0: 2;
end;
theorem ::
LOPBAN11:12
LM01: for X be
RealNormSpace-Sequence, Y be
RealNormSpace, f be
MultilinearOperator of X, Y, K be
Real st (
0
<= K & for x be
Point of (
product X) holds
||.(f
. x).||
<= (K
* (
NrProduct x))) holds for v0 be
Point of (
product X) holds ex M be
Real st
0
<= M & for v1 be
Point of (
product X) st
||.(v1
- v0).||
<= 1 holds ex F be
FinSequence of
REAL st (
dom F)
= (
dom X) &
||.((f
/. v1)
- (f
/. v0)).||
<= ((M
* K)
* (
Sum F)) & for i be
Element of (
dom X) holds (F
. i)
=
||.((v1
- v0)
. i).||
proof
let X be
RealNormSpace-Sequence, Y be
RealNormSpace, f be
MultilinearOperator of X, Y, K be
Real;
assume that
A1:
0
<= K and
A2: for x be
Point of (
product X) holds
||.(f
. x).||
<= (K
* (
NrProduct x));
A3: (
product X)
=
NORMSTR (# (
product (
carr X)), (
zeros X),
[:(
addop X):],
[:(
multop X):], (
productnorm X) #) by
PRVECT_2: 6;
let v0 be
Point of (
product X);
consider g be
Function such that
A4: v0
= g & (
dom g)
= (
dom (
carr X)) & for i be
object st i
in (
dom (
carr X)) holds (g
. i)
in ((
carr X)
. i) by
A3,
CARD_3:def 5;
(
dom g)
= (
Seg (
len (
carr X))) by
A4,
FINSEQ_1:def 3;
then
reconsider Cv0 = v0 as
FinSequence by
A4,
FINSEQ_1:def 2;
set L = (
||.v0.||
+ 3);
set M = (L
|^ (
len X));
take M;
thus
0
<= M by
POWER: 3;
defpred
P[
Nat] means for v0,v1 be
Point of (
product X), Cv0,Cv1 be
FinSequence st
||.(v1
- v0).||
<= 1 & v0
= Cv0 & v1
= Cv1 & $1
<= (
len X) & (Cv1
| ((
len X)
-' $1))
= (Cv0
| ((
len X)
-' $1)) holds ex F be
FinSequence of
REAL st (
dom F)
= (
Seg $1) &
||.((f
/. v1)
- (f
/. v0)).||
<= ((((
||.v0.||
+ 3)
|^ (
len X))
* K)
* (
Sum F)) & for n be
Nat st n
in (
Seg $1) holds ex i be
Element of (
dom X) st i
= (((
len X)
-' $1)
+ n) & (F
. n)
=
||.((v1
- v0)
. i).||;
A6:
P[
0 ]
proof
let v0,v1 be
Point of (
product X), Cv0,Cv1 be
FinSequence;
assume
A7:
||.(v1
- v0).||
<= 1 & v0
= Cv0 & v1
= Cv1 &
0
<= (
len X) & (Cv1
| ((
len X)
-'
0 ))
= (Cv0
| ((
len X)
-'
0 ));
A8: ((
len X)
-'
0 )
= (((
len X)
+
0 )
-'
0 )
.= (
len X) by
NAT_D: 34;
reconsider F = (
<*>
REAL ) as
FinSequence of
REAL ;
take F;
thus (
dom F)
= (
Seg
0 );
consider g be
Function such that
A9: v0
= g & (
dom g)
= (
dom (
carr X)) & for i be
object st i
in (
dom (
carr X)) holds (g
. i)
in ((
carr X)
. i) by
A3,
CARD_3:def 5;
A10: (
dom g)
= (
Seg (
len (
carr X))) by
A9,
FINSEQ_1:def 3;
then
reconsider Cv0 = v0 as
FinSequence by
A9,
FINSEQ_1:def 2;
A11: (
len Cv0)
= (
len (
carr X)) by
A9,
A10,
FINSEQ_1:def 3
.= (
len X) by
PRVECT_1:def 11;
consider g be
Function such that
A12: v1
= g & (
dom g)
= (
dom (
carr X)) & for i be
object st i
in (
dom (
carr X)) holds (g
. i)
in ((
carr X)
. i) by
A3,
CARD_3:def 5;
(
dom Cv1)
= (
Seg (
len (
carr X))) by
A7,
A12,
FINSEQ_1:def 3;
then
A14: (
len Cv1)
= (
len (
carr X)) by
FINSEQ_1:def 3
.= (
len X) by
PRVECT_1:def 11;
Cv1
= (Cv0
| (
len X)) by
A7,
A8,
A14,
FINSEQ_1: 58
.= Cv0 by
A11,
FINSEQ_1: 58;
then ((f
/. v1)
- (f
/. v0))
= (
0. Y) by
A7,
RLVECT_1: 15;
hence
||.((f
/. v1)
- (f
/. v0)).||
<= ((((
||.v0.||
+ 3)
|^ (
len X))
* K)
* (
Sum F)) by
RVSUM_1: 72;
thus for n be
Nat st n
in (
Seg
0 ) holds ex i be
Element of (
dom X) st i
= (((
len X)
-'
0 )
+ n) & (F
. n)
=
||.((v1
- v0)
. i).||;
end;
A16: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume
A17:
P[k];
let v0,v1 be
Point of (
product X), Cv0,Cv1 be
FinSequence;
assume
A18:
||.(v1
- v0).||
<= 1 & v0
= Cv0 & v1
= Cv1 & (k
+ 1)
<= (
len X) & (Cv1
| ((
len X)
-' (k
+ 1)))
= (Cv0
| ((
len X)
-' (k
+ 1)));
consider g be
Function such that
A19: v0
= g & (
dom g)
= (
dom (
carr X)) & for i be
object st i
in (
dom (
carr X)) holds (g
. i)
in ((
carr X)
. i) by
A3,
CARD_3:def 5;
(
dom g)
= (
Seg (
len (
carr X))) by
A19,
FINSEQ_1:def 3;
then
reconsider Cv0 = v0 as
FinSequence by
A19,
FINSEQ_1:def 2;
(
dom Cv0)
= (
Seg (
len (
carr X))) by
A19,
FINSEQ_1:def 3;
then
A21: (
len Cv0)
= (
len (
carr X)) by
FINSEQ_1:def 3
.= (
len X) by
PRVECT_1:def 11;
then
A22: (
dom Cv0)
= (
Seg (
len X)) by
FINSEQ_1:def 3
.= (
dom X) by
FINSEQ_1:def 3;
consider g1 be
Function such that
A23: v1
= g1 & (
dom g1)
= (
dom (
carr X)) & for i be
object st i
in (
dom (
carr X)) holds (g1
. i)
in ((
carr X)
. i) by
A3,
CARD_3:def 5;
(
dom g1)
= (
Seg (
len (
carr X))) by
A23,
FINSEQ_1:def 3;
then
reconsider Cv1 = v1 as
FinSequence by
A23,
FINSEQ_1:def 2;
1
<= (1
+ k) by
NAT_1: 11;
then 1
<= (
len X) by
A18,
XXREAL_0: 2;
then (
len X)
in (
Seg (
len X));
then
reconsider i = (
len X) as
Element of (
dom X) by
FINSEQ_1:def 3;
per cases ;
suppose
A25: k
=
0 ;
then
A26: ((
len X)
-' (k
+ 1))
= ((
len X)
- 1) by
A18,
XREAL_0:def 2;
for j be
Element of (
dom X) st i
<> j holds (Cv1
. j)
= (Cv0
. j)
proof
let j be
Element of (
dom X);
j
in (
dom X);
then j
in (
Seg (
len X)) by
FINSEQ_1:def 3;
then
A27: 1
<= j & j
<= (
len X) by
FINSEQ_1: 1;
assume i
<> j;
then j
< (
len X) by
A27,
XXREAL_0: 1;
then (j
+ 1)
<= (
len X) by
NAT_1: 13;
then ((j
+ 1)
- 1)
<= ((
len X)
- 1) by
XREAL_1: 9;
then
A28: j
in (
Seg ((
len X)
-' (k
+ 1))) by
A26,
A27;
thus (Cv1
. j)
= ((Cv0
| ((
len X)
-' (k
+ 1)))
. j) by
A18,
A28,
FUNCT_1: 49
.= (Cv0
. j) by
A28,
FUNCT_1: 49;
end;
then
A29:
||.((f
/. v1)
- (f
/. v0)).||
<= ((((
||.v0.||
+ 1)
|^ (
len X))
* K)
*
||.((v1
- v0)
. i).||) by
A1,
A2,
A18,
LM02;
set F =
<*
||.((v1
- v0)
. i).||*>;
(
rng F)
c=
REAL ;
then
reconsider F as
FinSequence of
REAL by
FINSEQ_1:def 4;
take F;
thus (
dom F)
= (
Seg (
len F)) by
FINSEQ_1:def 3
.= (
Seg (k
+ 1)) by
A25,
FINSEQ_1: 40;
A31:
||.((f
/. v1)
- (f
/. v0)).||
<= ((((
||.v0.||
+ 1)
|^ (
len X))
* K)
* (
Sum F)) by
A29,
RVSUM_1: 73;
((
||.v0.||
+ 1)
+
0 )
<= ((
||.v0.||
+ 1)
+ 2) by
XREAL_1: 7;
then
A32: ((
||.v0.||
+ 1)
|^ (
len X))
<= ((
||.v0.||
+ 3)
|^ (
len X)) by
PREPOWER: 9;
0
<= (
Sum F) by
RVSUM_1: 73;
then (((
||.v0.||
+ 1)
|^ (
len X))
* (K
* (
Sum F)))
<= (((
||.v0.||
+ 3)
|^ (
len X))
* (K
* (
Sum F))) by
A1,
A32,
XREAL_1: 64;
hence
||.((f
/. v1)
- (f
/. v0)).||
<= ((((
||.v0.||
+ 3)
|^ (
len X))
* K)
* (
Sum F)) by
A31,
XXREAL_0: 2;
thus for n be
Nat st n
in (
Seg (k
+ 1)) holds ex j be
Element of (
dom X) st j
= (((
len X)
-' (k
+ 1))
+ n) & (F
. n)
=
||.((v1
- v0)
. j).||
proof
let n be
Nat;
assume
A33: n
in (
Seg (k
+ 1));
then
A34: (((
len X)
-' (k
+ 1))
+ n)
= (((
len X)
- 1)
+ 1) by
A25,
A26,
FINSEQ_1: 2,
TARSKI:def 1
.= i;
take i;
n
= 1 by
A25,
A33,
FINSEQ_1: 2,
TARSKI:def 1;
hence thesis by
A34,
FINSEQ_1: 40;
end;
end;
suppose k
<>
0 ;
A35: ((k
+ 1)
- k)
<= ((
len X)
- k) by
A18,
XREAL_1: 13;
A36: ((
len X)
- k)
<= ((
len X)
-
0 ) by
XREAL_1: 13;
((
len X)
- k)
in
NAT by
A35,
INT_1: 3;
then ((
len X)
- k)
in (
Seg (
len X)) by
A35,
A36;
then
reconsider k1 = ((
len X)
- k) as
Element of (
dom X) by
FINSEQ_1:def 3;
(Cv0
. k1)
= (v0
. k1);
then
reconsider Cv0k1 = (Cv0
. k1) as
Point of (X
. k1);
k
<= (k
+ 1) by
NAT_1: 11;
then
A38: k
<= (
len X) by
A18,
XXREAL_0: 2;
reconsider v2 = ((
reproj (k1,v1))
. Cv0k1) as
Point of (
product X);
consider g be
Function such that
A39: v2
= g & (
dom g)
= (
dom (
carr X)) & for i be
object st i
in (
dom (
carr X)) holds (g
. i)
in ((
carr X)
. i) by
A3,
CARD_3:def 5;
A40: (
dom g)
= (
Seg (
len (
carr X))) by
A39,
FINSEQ_1:def 3;
then
reconsider Cv2 = v2 as
FinSequence by
A39,
FINSEQ_1:def 2;
A41: (
len Cv2)
= (
len (
carr X)) by
A39,
A40,
FINSEQ_1:def 3
.= (
len X) by
PRVECT_1:def 11;
reconsider w12 = (v1
- v2) as
Element of (
product (
carr X)) by
A3;
reconsider w02 = (v2
- v0) as
Element of (
product (
carr X)) by
A3;
reconsider w10 = (v1
- v0) as
Element of (
product (
carr X)) by
A3;
||.(v2
- v0).||
<=
||.(v1
- v0).||
proof
A42:
||.(v2
- v0).||
=
|.(
normsequence (X,w02)).| by
A3,
PRVECT_2:def 12;
A43:
||.(v1
- v0).||
=
|.(
normsequence (X,w10)).| by
A3,
PRVECT_2:def 12;
A44:
0
<= (
Sum (
sqr (
normsequence (X,w02)))) by
RVSUM_1: 86;
for j be
Nat st j
in (
Seg (
len X)) holds ((
sqr (
normsequence (X,w02)))
. j)
<= ((
sqr (
normsequence (X,w10)))
. j)
proof
let j be
Nat;
assume
A45: j
in (
Seg (
len X));
reconsider i = j as
Element of (
dom X) by
A45,
FINSEQ_1:def 3;
A46: ((
sqr (
normsequence (X,w02)))
. j)
= (((
normsequence (X,w02))
. j)
^2 ) by
VALUED_1: 11
.= (
||.((v2
- v0)
. i).||
^2 ) by
PRVECT_2:def 11;
A47: ((
sqr (
normsequence (X,w10)))
. j)
= (((
normsequence (X,w10))
. j)
^2 ) by
VALUED_1: 11
.= (
||.((v1
- v0)
. i).||
^2 ) by
PRVECT_2:def 11;
A48: ((v2
- v0)
. i)
= ((v2
. i)
- (v0
. i)) by
LOPBAN10: 26;
A49: ((v1
- v0)
. i)
= ((v1
. i)
- (v0
. i)) by
LOPBAN10: 26;
||.((v2
- v0)
. i).||
<=
||.((v1
- v0)
. i).||
proof
per cases ;
suppose
A50: i
= k1;
(v2
. i)
= (v0
. i) by
A50,
LOPBAN10: 15;
then ((v2
. i)
- (v0
. i))
= (
0. (X
. i)) by
RLVECT_1: 15;
hence
||.((v2
- v0)
. i).||
<=
||.((v1
- v0)
. i).|| by
A48;
end;
suppose i
<> k1;
hence
||.((v2
- v0)
. i).||
<=
||.((v1
- v0)
. i).|| by
A48,
A49,
LOPBAN10: 16;
end;
end;
hence thesis by
A46,
A47,
SQUARE_1: 15;
end;
hence thesis by
A42,
A43,
A44,
SQUARE_1: 26,
RVSUM_1: 82;
end;
then
A51:
||.(v2
- v0).||
<= 1 by
A18,
XXREAL_0: 2;
A52: ((
len X)
-' k)
= k1 by
XREAL_0:def 2;
(
len (Cv0
| ((
len X)
-' k)))
= k1 by
A21,
A36,
A52,
FINSEQ_1: 59;
then
A53: (
dom (Cv0
| ((
len X)
-' k)))
= (
Seg k1) by
FINSEQ_1:def 3;
(
len (Cv2
| ((
len X)
-' k)))
= k1 by
A36,
A41,
A52,
FINSEQ_1: 59;
then
A54: (
dom (Cv2
| ((
len X)
-' k)))
= (
Seg k1) by
FINSEQ_1:def 3;
A55: ((
len X)
-' (k
+ 1))
= ((
len X)
- (k
+ 1)) by
A18,
XREAL_0:def 2,
XREAL_1: 48;
for j be
Nat st j
in (
dom (Cv0
| ((
len X)
-' k))) holds ((Cv0
| ((
len X)
-' k))
. j)
= ((Cv2
| ((
len X)
-' k))
. j)
proof
let j be
Nat;
assume
A56: j
in (
dom (Cv0
| ((
len X)
-' k)));
then
A57: ((Cv0
| ((
len X)
-' k))
. j)
= (Cv0
. j) by
FUNCT_1: 47;
A59: 1
<= j & j
<= k1 by
A53,
A56,
FINSEQ_1: 1;
per cases ;
suppose j
= k1;
then (Cv0
. j)
= (Cv2
. j) by
LOPBAN10: 15;
hence ((Cv0
| ((
len X)
-' k))
. j)
= ((Cv2
| ((
len X)
-' k))
. j) by
A53,
A54,
A56,
A57,
FUNCT_1: 47;
end;
suppose
A61: j
<> k1;
then j
< k1 by
A59,
XXREAL_0: 1;
then (j
+ 1)
<= k1 by
NAT_1: 13;
then ((j
+ 1)
- 1)
<= (k1
- 1) by
XREAL_1: 13;
then
A62: j
in (
Seg ((
len X)
-' (k
+ 1))) by
A55,
A59;
j
in (
dom X) by
A22,
A56,
RELAT_1: 60,
TARSKI:def 3;
then (v2
. j)
= (Cv1
. j) by
A61,
LOPBAN10: 16
.= ((Cv0
| ((
len X)
-' (k
+ 1)))
. j) by
A18,
A62,
FUNCT_1: 49
.= (v0
. j) by
A62,
FUNCT_1: 49;
hence ((Cv0
| ((
len X)
-' k))
. j)
= ((Cv2
| ((
len X)
-' k))
. j) by
A53,
A54,
A56,
A57,
FUNCT_1: 47;
end;
end;
then
A63: (Cv0
| ((
len X)
-' k))
= (Cv2
| ((
len X)
-' k)) by
A53,
A54,
FINSEQ_1: 13;
consider F1 be
FinSequence of
REAL such that
A64: (
dom F1)
= (
Seg k) &
||.((f
/. v2)
- (f
/. v0)).||
<= ((((
||.v0.||
+ 3)
|^ (
len X))
* K)
* (
Sum F1)) & for n be
Nat st n
in (
Seg k) holds ex i be
Element of (
dom X) st i
= (((
len X)
-' k)
+ n) & (F1
. n)
=
||.((v2
- v0)
. i).|| by
A17,
A38,
A51,
A63;
||.(v1
- v2).||
<=
||.(v1
- v0).||
proof
A65:
||.(v1
- v2).||
=
|.(
normsequence (X,w12)).| by
A3,
PRVECT_2:def 12;
A66:
||.(v1
- v0).||
=
|.(
normsequence (X,w10)).| by
A3,
PRVECT_2:def 12;
A67:
0
<= (
Sum (
sqr (
normsequence (X,w12)))) by
RVSUM_1: 86;
for j be
Nat st j
in (
Seg (
len X)) holds ((
sqr (
normsequence (X,w12)))
. j)
<= ((
sqr (
normsequence (X,w10)))
. j)
proof
let j be
Nat;
assume
A68: j
in (
Seg (
len X));
reconsider i = j as
Element of (
dom X) by
A68,
FINSEQ_1:def 3;
A69: ((
sqr (
normsequence (X,w12)))
. j)
= (((
normsequence (X,w12))
. j)
^2 ) by
VALUED_1: 11
.= (
||.((v1
- v2)
. i).||
^2 ) by
PRVECT_2:def 11;
A70: ((
sqr (
normsequence (X,w10)))
. j)
= (((
normsequence (X,w10))
. j)
^2 ) by
VALUED_1: 11
.= (
||.((v1
- v0)
. i).||
^2 ) by
PRVECT_2:def 11;
A71: ((v1
- v2)
. i)
= ((v1
. i)
- (v2
. i)) by
LOPBAN10: 26;
||.((v1
- v2)
. i).||
<=
||.((v1
- v0)
. i).||
proof
per cases ;
suppose i
= k1;
then (v2
. i)
= (v0
. i) by
LOPBAN10: 15;
hence
||.((v1
- v2)
. i).||
<=
||.((v1
- v0)
. i).|| by
A71,
LOPBAN10: 26;
end;
suppose i
<> k1;
then (v2
. i)
= (v1
. i) by
LOPBAN10: 16;
then ((v1
. i)
- (v2
. i))
= (
0. (X
. i)) by
RLVECT_1: 15;
hence
||.((v1
- v2)
. i).||
<=
||.((v1
- v0)
. i).|| by
A71;
end;
end;
hence thesis by
A69,
A70,
SQUARE_1: 15;
end;
hence thesis by
A65,
A66,
A67,
RVSUM_1: 82,
SQUARE_1: 26;
end;
then
A74:
||.(v1
- v2).||
<= 1 by
A18,
XXREAL_0: 2;
for j be
Element of (
dom X) st k1
<> j holds (Cv1
. j)
= (Cv2
. j) by
LOPBAN10: 16;
then
A75:
||.((f
/. v1)
- (f
/. v2)).||
<= ((((
||.v2.||
+ 1)
|^ (
len X))
* K)
*
||.((v1
- v2)
. k1).||) by
A1,
A2,
A74,
LM02;
v2
= (v1
+ (v2
- v1)) by
RLVECT_4: 1;
then
A76:
||.v2.||
<= (
||.v1.||
+
||.(v2
- v1).||) by
NORMSP_1:def 1;
||.(v2
- v1).||
<= 1 by
A74,
NORMSP_1: 7;
then (
||.v1.||
+
||.(v2
- v1).||)
<= (
||.v1.||
+ 1) by
XREAL_1: 7;
then
A77:
||.v2.||
<= (
||.v1.||
+ 1) by
A76,
XXREAL_0: 2;
v1
= ((v1
- v0)
+ v0) by
RLVECT_4: 1;
then
||.v1.||
<= (
||.v0.||
+
||.(v1
- v0).||) by
NORMSP_1:def 1;
then
A78:
||.v1.||
<= (
||.v0.||
+
||.(v0
- v1).||) by
NORMSP_1: 7;
||.(v0
- v1).||
<= 1 by
A18,
NORMSP_1: 7;
then (
||.v0.||
+
||.(v0
- v1).||)
<= (
||.v0.||
+ 1) by
XREAL_1: 7;
then
||.v1.||
<= (
||.v0.||
+ 1) by
A78,
XXREAL_0: 2;
then (
||.v1.||
+ 1)
<= ((
||.v0.||
+ 1)
+ 1) by
XREAL_1: 7;
then
||.v2.||
<= (
||.v0.||
+ 2) by
A77,
XXREAL_0: 2;
then
A79: (
||.v2.||
+ 1)
<= ((
||.v0.||
+ 2)
+ 1) by
XREAL_1: 7;
A80: ((
||.v2.||
+ 1)
|^ (
len X))
<= ((
||.v0.||
+ 3)
|^ (
len X)) by
A79,
PREPOWER: 9;
A81:
0
< ((
||.v2.||
+ 1)
|^ (
len X)) by
PREPOWER: 6;
((v1
- v2)
. k1)
= ((v1
. k1)
- (v2
. k1)) by
LOPBAN10: 26
.= ((v1
. k1)
- (v0
. k1)) by
LOPBAN10: 15
.= ((v1
- v0)
. k1) by
LOPBAN10: 26;
then (((
||.v2.||
+ 1)
|^ (
len X))
* (K
*
||.((v1
- v2)
. k1).||))
<= (((
||.v0.||
+ 3)
|^ (
len X))
* (K
*
||.((v1
- v0)
. k1).||)) by
A1,
A80,
A81,
XREAL_1: 66;
then
A84:
||.((f
/. v1)
- (f
/. v2)).||
<= ((((
||.v0.||
+ 3)
|^ (
len X))
* K)
*
||.((v1
- v0)
. k1).||) by
A75,
XXREAL_0: 2;
set F = (
<*
||.((v1
- v0)
. k1).||*>
^ F1);
(
rng F)
c=
REAL ;
then
reconsider F as
FinSequence of
REAL by
FINSEQ_1:def 4;
k is
Element of
NAT by
ORDINAL1:def 12;
then
A85: (
len F1)
= k by
A64,
FINSEQ_1:def 3;
(
len F)
= ((
len F1)
+ (
len
<*
||.((v1
- v0)
. k1).||*>)) by
FINSEQ_1: 22
.= (k
+ 1) by
A85,
FINSEQ_1: 40;
then
A86: (
dom F)
= (
Seg (k
+ 1)) by
FINSEQ_1:def 3;
A87: for n be
Nat st n
in (
Seg (k
+ 1)) holds ex i be
Element of (
dom X) st i
= (((
len X)
-' (k
+ 1))
+ n) & (F
. n)
=
||.((v1
- v0)
. i).||
proof
let n be
Nat;
assume n
in (
Seg (k
+ 1));
then
A88: 1
<= n & n
<= (k
+ 1) by
FINSEQ_1: 1;
per cases ;
suppose
A89: n
= 1;
then
A90: (((
len X)
-' (k
+ 1))
+ n)
= (((
len X)
- (k
+ 1))
+ 1) by
A18,
XREAL_0:def 2,
XREAL_1: 48
.= k1;
take k1;
thus thesis by
A89,
A90,
FINSEQ_1: 41;
end;
suppose n
<> 1;
then 1
< n by
A88,
XXREAL_0: 1;
then
A91: (1
+ 1)
<= n by
NAT_1: 13;
A93: (((
len X)
- (k
+ 1))
+ n)
<= (((
len X)
- (k
+ 1))
+ (k
+ 1)) by
A88,
XREAL_1: 7;
A94: (((
len X)
- (k
+ 1))
+ 2)
<= (((
len X)
- (k
+ 1))
+ n) by
A91,
XREAL_1: 7;
(1
+
0 )
<= (1
+ ((
len X)
- k)) by
A35,
XREAL_1: 7;
then 1
<= (((
len X)
-' (k
+ 1))
+ n) by
A55,
A94,
XXREAL_0: 2;
then (((
len X)
-' (k
+ 1))
+ n)
in (
Seg (
len X)) by
A55,
A93;
then
reconsider i = (((
len X)
-' (k
+ 1))
+ n) as
Element of (
dom X) by
FINSEQ_1:def 3;
take i;
thus i
= (((
len X)
-' (k
+ 1))
+ n);
A95: (2
- 1)
<= (n
- 1) by
A91,
XREAL_1: 9;
A96: (n
- 1)
<= ((k
+ 1)
- 1) by
A88,
XREAL_1: 9;
reconsider n1 = (n
- 1) as
Element of
NAT by
A88,
INT_1: 3;
A97: n1
in (
Seg k) by
A95,
A96;
A98: (
len
<*
||.((v1
- v0)
. k1).||*>)
= 1 by
FINSEQ_1: 40;
A100: (F
. n)
= (F
. (1
+ n1))
.= (F1
. n1) by
A85,
A95,
A96,
A98,
FINSEQ_1: 65;
consider i1 be
Element of (
dom X) such that
A101: i1
= (((
len X)
-' k)
+ n1) & (F1
. n1)
=
||.((v2
- v0)
. i1).|| by
A64,
A97;
A102: i1
= (((
len X)
- (k
+ 1))
+ n) by
A52,
A101
.= i by
A18,
XREAL_0:def 2,
XREAL_1: 48;
A105: (k1
+
0 )
< (k1
+ 1) by
XREAL_1: 8;
A106: (k1
+ 1)
<= (k1
+ n1) by
A95,
XREAL_1: 7;
((v2
- v0)
. i)
= ((v2
. i)
- (v0
. i)) by
LOPBAN10: 26
.= ((v1
. i)
- (v0
. i)) by
A52,
A101,
A102,
A105,
A106,
LOPBAN10: 16
.= ((v1
- v0)
. i) by
LOPBAN10: 26;
hence (F
. n)
=
||.((v1
- v0)
. i).|| by
A100,
A101,
A102;
end;
end;
((f
/. v1)
- (f
/. v0))
= ((((f
/. v1)
- (f
/. v2))
+ (f
/. v2))
- (f
/. v0)) by
RLVECT_4: 1
.= (((f
/. v1)
- (f
/. v2))
+ ((f
/. v2)
- (f
/. v0))) by
RLVECT_1: 28;
then
A107:
||.((f
/. v1)
- (f
/. v0)).||
<= (
||.((f
/. v1)
- (f
/. v2)).||
+
||.((f
/. v2)
- (f
/. v0)).||) by
NORMSP_1:def 1;
A108: (
||.((f
/. v1)
- (f
/. v2)).||
+
||.((f
/. v2)
- (f
/. v0)).||)
<= (((((
||.v0.||
+ 3)
|^ (
len X))
* K)
*
||.((v1
- v0)
. k1).||)
+ ((((
||.v0.||
+ 3)
|^ (
len X))
* K)
* (
Sum F1))) by
A64,
A84,
XREAL_1: 7;
(((((
||.v0.||
+ 3)
|^ (
len X))
* K)
*
||.((v1
- v0)
. k1).||)
+ ((((
||.v0.||
+ 3)
|^ (
len X))
* K)
* (
Sum F1)))
= ((((
||.v0.||
+ 3)
|^ (
len X))
* K)
* (
||.((v1
- v0)
. k1).||
+ (
Sum F1)))
.= ((((
||.v0.||
+ 3)
|^ (
len X))
* K)
* (
Sum F)) by
RVSUM_1: 76;
hence ex F be
FinSequence of
REAL st (
dom F)
= (
Seg (k
+ 1)) &
||.((f
/. v1)
- (f
/. v0)).||
<= ((((
||.v0.||
+ 3)
|^ (
len X))
* K)
* (
Sum F)) & for n be
Nat st n
in (
Seg (k
+ 1)) holds ex i be
Element of (
dom X) st i
= (((
len X)
-' (k
+ 1))
+ n) & (F
. n)
=
||.((v1
- v0)
. i).|| by
A86,
A87,
A107,
A108,
XXREAL_0: 2;
end;
end;
A109: for n be
Nat holds
P[n] from
NAT_1:sch 2(
A6,
A16);
let v1 be
Point of (
product X);
assume
A110:
||.(v1
- v0).||
<= 1;
consider g be
Function such that
A111: v1
= g & (
dom g)
= (
dom (
carr X)) & for i be
object st i
in (
dom (
carr X)) holds (g
. i)
in ((
carr X)
. i) by
A3,
CARD_3:def 5;
(
dom g)
= (
Seg (
len (
carr X))) by
A111,
FINSEQ_1:def 3;
then
reconsider Cv1 = v1 as
FinSequence by
A111,
FINSEQ_1:def 2;
A112: ((
len X)
-' (
len X))
= ((
0
+ (
len X))
-' (
len X))
.=
0 by
NAT_D: 34;
(Cv1
| ((
len X)
-' (
len X)))
=
{} by
A112
.= (Cv0
| ((
len X)
-' (
len X))) by
A112;
then
consider F be
FinSequence of
REAL such that
A113: (
dom F)
= (
Seg (
len X)) &
||.((f
/. v1)
- (f
/. v0)).||
<= ((((
||.v0.||
+ 3)
|^ (
len X))
* K)
* (
Sum F)) & for n be
Nat st n
in (
Seg (
len X)) holds ex i be
Element of (
dom X) st i
= (((
len X)
-' (
len X))
+ n) & (F
. n)
=
||.((v1
- v0)
. i).|| by
A109,
A110;
for i be
Element of (
dom X) holds (F
. i)
=
||.((v1
- v0)
. i).||
proof
let i be
Element of (
dom X);
i
in (
dom X);
then
A116: i
in (
Seg (
len X)) by
FINSEQ_1:def 3;
reconsider n = i as
Nat;
consider j be
Element of (
dom X) such that
A117: j
= (((
len X)
-' (
len X))
+ n) & (F
. n)
=
||.((v1
- v0)
. j).|| by
A113,
A116;
thus thesis by
A112,
A117;
end;
hence thesis by
A113,
FINSEQ_1:def 3;
end;
theorem ::
LOPBAN11:13
NDIFF824: for x be
Point of (
product X), r be
Real st
0
< r holds ex s be
FinSequence of
REAL , Y be non
empty
non-empty
FinSequence st (
dom s)
= (
dom X) & (
dom Y)
= (
dom X) & (
product Y)
c= (
Ball (x,r)) & for i be
Element of (
dom X) holds
0
< (s
. i) & (s
. i)
< r & (Y
. i)
= (
Ball ((x
. i),(s
. i)))
proof
let x be
Point of (
product X), r be
Real;
assume
A1:
0
< r;
A2: (
product X)
=
NORMSTR (# (
product (
carr X)), (
zeros X),
[:(
addop X):],
[:(
multop X):], (
productnorm X) #) by
PRVECT_2: 6;
consider s0 be
Real such that
A3:
0
< s0 & s0
< r and
A4: (
sqrt ((s0
* s0)
* (
len X)))
< r by
A1,
NDIFF825;
set CST = ((
len X)
|-> s0);
(
len X) is
natural
Number & s0 is
Element of
REAL by
XREAL_0:def 1;
then
reconsider CST as
Element of ((
len X)
-tuples_on
REAL ) by
FINSEQ_2: 112;
A5: for i be
Element of (
dom X) holds
0
< (CST
. i) & (CST
. i)
< r
proof
let i be
Element of (
dom X);
i
in (
dom X);
then i
in (
Seg (
len X)) by
FINSEQ_1:def 3;
hence thesis by
A3,
FINSEQ_2: 57;
end;
defpred
P1[
object,
object] means ex i be
Element of (
dom X) st $1
= i & $2
= (
Ball ((x
. i),(CST
. i)));
A6: for n be
Nat st n
in (
Seg (
len X)) holds ex d be
object st
P1[n, d]
proof
let n be
Nat;
assume n
in (
Seg (
len X));
then
reconsider i = n as
Element of (
dom X) by
FINSEQ_1:def 3;
set d = (
Ball ((x
. i),(CST
. i)));
take d;
thus thesis;
end;
consider Y be
FinSequence such that
A7: (
dom Y)
= (
Seg (
len X)) & for n be
Nat st n
in (
Seg (
len X)) holds
P1[n, (Y
. n)] from
FINSEQ_1:sch 1(
A6);
not
{}
in (
rng Y)
proof
assume
{}
in (
rng Y);
then
consider z be
object such that
A9: z
in (
dom Y) &
{}
= (Y
. z) by
FUNCT_1:def 3;
reconsider n = z as
Nat by
A9;
consider i be
Element of (
dom X) such that
A10: n
= i & (Y
. n)
= (
Ball ((x
. i),(CST
. i))) by
A7,
A9;
0
< (CST
. i) by
A5;
hence contradiction by
A9,
A10,
NDIFF_8: 14;
end;
then
reconsider Y as non
empty
non-empty
FinSequence by
A7,
FINSEQ_1:def 3,
RELAT_1:def 9;
take CST, Y;
thus (
dom CST)
= (
Seg (
len X)) by
FUNCT_2:def 1
.= (
dom X) by
FINSEQ_1:def 3;
thus
A12: (
dom Y)
= (
dom X) by
A7,
FINSEQ_1:def 3;
A14: for i be
Element of (
dom X) holds (Y
. i)
= (
Ball ((x
. i),(CST
. i)))
proof
let i be
Element of (
dom X);
A13: i
in (
dom X);
reconsider n = i as
Nat;
n
in (
Seg (
len X)) by
A13,
FINSEQ_1:def 3;
then ex i be
Element of (
dom X) st n
= i & (Y
. n)
= (
Ball ((x
. i),(CST
. i))) by
A7;
hence (Y
. i)
= (
Ball ((x
. i),(CST
. i)));
end;
for z be
object st z
in (
product Y) holds z
in (
Ball (x,r))
proof
let z be
object;
assume z
in (
product Y);
then
consider g be
Function such that
A15: z
= g & (
dom g)
= (
dom Y) & for i be
object st i
in (
dom Y) holds (g
. i)
in (Y
. i) by
CARD_3:def 5;
A16: (
dom (
carr X))
= (
dom X) by
DCARXX;
A17: (
dom g)
= (
dom (
carr X)) by
A12,
A15,
DCARXX;
A18: for i0 be
object st i0
in (
dom (
carr X)) holds ((g
. i0)
in ((
carr X)
. i0) & ex i be
Element of (
dom X) st i0
= i & (g
. i)
in (
Ball ((x
. i),(CST
. i))) & (g
. i)
in the
carrier of (X
. i))
proof
let i0 be
object;
assume i0
in (
dom (
carr X));
then
reconsider i = i0 as
Element of (
dom X) by
DCARXX;
(g
. i)
in (Y
. i) by
A12,
A15;
then
A19: (g
. i)
in (
Ball ((x
. i),(CST
. i))) by
A14;
then (g
. i)
in the
carrier of (X
. i);
hence thesis by
A19,
PRVECT_1:def 11;
end;
then
A20: for i0 be
object st i0
in (
dom (
carr X)) holds (g
. i0)
in ((
carr X)
. i0);
then
reconsider x1 = g as
Point of (
product X) by
A2,
A17,
CARD_3:def 5;
reconsider y1 = g as
Element of (
product (
carr X)) by
A20,
A17,
CARD_3:def 5;
reconsider xx1 = (x
- x1) as
Element of (
product (
carr X)) by
A2;
A21:
||.(x
- x1).||
=
|.(
normsequence (X,xx1)).| by
A2,
PRVECT_2:def 12;
A22: (
len (
normsequence (X,xx1)))
= (
len X) by
PRVECT_2:def 11;
then
A23: (
dom (
normsequence (X,xx1)))
= (
Seg (
len X)) by
FINSEQ_1:def 3
.= (
dom X) by
FINSEQ_1:def 3;
now
let i0 be
Nat;
assume i0
in (
dom (
normsequence (X,xx1)));
then
reconsider i = i0 as
Element of (
dom X) by
A23;
reconsider xx1i = (xx1
. i) as
Point of (X
. i);
reconsider yi = (x
. i) as
Point of (X
. i);
reconsider y1i = (y1
. i) as
Point of (X
. i);
i
in (
dom X);
then
A24: i
in (
Seg (
len X)) by
FINSEQ_1:def 3;
A25: ((
normsequence (X,xx1))
. i)
=
||.xx1i.|| by
PRVECT_2:def 11;
hence
0
<= ((
normsequence (X,xx1))
. i0);
A26: (xx1
. i)
= ((x
. i)
- (y1
. i)) by
LOPBAN10: 26;
ex j be
Element of (
dom X) st i
= j & (g
. j)
in (
Ball ((x
. j),(CST
. j))) & (g
. j)
in the
carrier of (X
. j) by
A16,
A18;
then ex y be
Point of (X
. i) st y
= y1i &
||.((x
. i)
- y).||
< (CST
. i);
hence ((
normsequence (X,xx1))
. i0)
<= s0 by
A24,
A25,
A26,
FINSEQ_2: 57;
end;
then
|.(
normsequence (X,xx1)).|
<= (
sqrt ((s0
* s0)
* (
len X))) by
A22,
NDIFF823;
then
||.(x
- x1).||
< r by
A4,
A21,
XXREAL_0: 2;
hence z
in (
Ball (x,r)) by
A15;
end;
hence thesis by
A5,
A14,
TARSKI:def 3;
end;
theorem ::
LOPBAN11:14
for X be
RealNormSpace-Sequence, Y be
RealNormSpace, f be
MultilinearOperator of X, Y holds (f
is_continuous_on the
carrier of (
product X) iff f
is_continuous_in (
0. (
product X))) & (f
is_continuous_on the
carrier of (
product X) iff f is
Lipschitzian)
proof
let X be
RealNormSpace-Sequence, Y be
RealNormSpace, f be
MultilinearOperator of X, Y;
A1: (
dom f)
= the
carrier of (
product X) by
FUNCT_2:def 1;
A2: (f
/. (
0. (
product X)))
= (
0. Y) by
FXZER;
A3: (
product X)
=
NORMSTR (# (
product (
carr X)), (
zeros X),
[:(
addop X):],
[:(
multop X):], (
productnorm X) #) by
PRVECT_2: 6;
A4: f
is_continuous_in (
0. (
product X)) implies f is
Lipschitzian
proof
assume f
is_continuous_in (
0. (
product X));
then
consider s be
Real such that
A5:
0
< s & for z be
Point of (
product X) st z
in (
dom f) &
||.(z
- (
0. (
product X))).||
< s holds
||.((f
/. z)
- (f
/. (
0. (
product X)))).||
< 1 by
NFCONT_1: 7;
set z = (
0. (
product X));
consider s1 be
FinSequence of
REAL , Balls be non
empty
non-empty
FinSequence such that
A6: (
dom s1)
= (
dom X) & (
dom X)
= (
dom Balls) & (
product Balls)
c= (
Ball ((
0. (
product X)),s)) & for i be
Element of (
dom X) holds
0
< (s1
. i) & (s1
. i)
< s & (Balls
. i)
= (
Ball ((z
. i),(s1
. i))) by
A5,
NDIFF824;
defpred
P1[
object,
object] means ex i be
Element of (
dom X) st $1
= i & $2
= ((s1
. i)
/ 2);
A7: for n be
Nat st n
in (
Seg (
len X)) holds ex d be
Element of
REAL st
P1[n, d]
proof
let n be
Nat;
assume n
in (
Seg (
len X));
then
reconsider i = n as
Element of (
dom X) by
FINSEQ_1:def 3;
reconsider si = ((s1
. i)
/ 2) as
Element of
REAL by
XREAL_0:def 1;
take si;
thus
P1[n, si];
end;
consider s2 be
FinSequence of
REAL such that
A8: (
len s2)
= (
len X) & for n be
Nat st n
in (
Seg (
len X)) holds
P1[n, (s2
/. n)] from
FINSEQ_4:sch 1(
A7);
A9: (
dom s2)
= (
Seg (
len X)) by
A8,
FINSEQ_1:def 3
.= (
dom X) by
FINSEQ_1:def 3;
A11: for i be
Element of (
dom X) holds (s2
. i)
= ((s1
. i)
/ 2)
proof
let i be
Element of (
dom X);
i
in (
dom X);
then i
in (
Seg (
len X)) by
FINSEQ_1:def 3;
then ex j be
Element of (
dom X) st i
= j & (s2
/. i)
= ((s1
. j)
/ 2) by
A8;
hence (s2
. i)
= ((s1
. i)
/ 2) by
A9,
PARTFUN1:def 6;
end;
A12: for i be
Element of (
dom X) holds
0
< (s2
. i) & (s2
. i)
< (s1
. i)
proof
let i be
Element of (
dom X);
(s2
. i)
= ((s1
. i)
/ 2) &
0
< (s1
. i) by
A6,
A11;
hence
0
< (s2
. i) & (s2
. i)
< (s1
. i) by
XREAL_1: 216;
end;
(
dom s2)
= (
Seg (
len X)) by
A9,
FINSEQ_1:def 3;
then
A13: (
len s2)
= (
len X) by
FINSEQ_1:def 3;
A14:
now
let x be
Point of (
product X);
assume
A15: for i be
Element of (
dom X) holds
||.(x
. i).||
<= (s2
. i);
ex g be
Function st x
= g & (
dom g)
= (
dom (
carr X)) & for i be
object st i
in (
dom (
carr X)) holds (g
. i)
in ((
carr X)
. i) by
A3,
CARD_3:def 5;
then
A16: (
dom x)
= (
dom X) by
DCARXX;
now
let i0 be
object;
assume i0
in (
dom X);
then
reconsider i = i0 as
Element of (
dom X);
A18: (z
. i)
= (
0. (X
. i)) by
ZERXI;
||.((x
. i)
- (
0. (X
. i))).||
<= (s2
. i) by
A15;
then
A19:
||.((
0. (X
. i))
- (x
. i)).||
<= (s2
. i) by
NORMSP_1: 7;
(s2
. i)
= ((s1
. i)
/ 2) &
0
< (s1
. i) by
A6,
A11;
then
0
< (s2
. i) & (s2
. i)
< (s1
. i) by
XREAL_1: 216;
then
||.((
0. (X
. i))
- (x
. i)).||
< (s1
. i) by
A19,
XXREAL_0: 2;
then (x
. i)
in (
Ball ((
0. (X
. i)),(s1
. i)));
hence (x
. i0)
in (Balls
. i0) by
A6,
A18;
end;
then x
in (
product Balls) by
A6,
A16,
CARD_3:def 5;
then x
in (
Ball ((
0. (
product X)),s)) by
A6;
then ex p be
Point of (
product X) st x
= p &
||.((
0. (
product X))
- p).||
< s;
then
A20:
||.(x
- (
0. (
product X))).||
< s by
NORMSP_1: 7;
||.((f
/. x)
- (f
/. (
0. (
product X)))).||
< 1 by
A1,
A5,
A20;
hence
||.(f
/. x).||
< 1 by
A2;
end;
A21:
0
< (
Product s2) by
A9,
A12,
PSPROD;
set K = (1
/ (
Product s2));
now
let x be
Point of (
product X);
consider F be
FinSequence of
REAL such that
A23: (
dom F)
= (
dom X) & (for i be
Element of (
dom X) holds (F
. i)
=
||.(x
. i).||) & (
NrProduct x)
= (
Product F) by
LOPBAN10:def 9;
thus
||.(f
. x).||
<= (K
* (
NrProduct x))
proof
per cases ;
suppose
A24: for i be
Element of (
dom X) holds (x
. i)
<> (
0. (X
. i));
then
A25:
0
< (
NrProduct x) by
LOPBAN10: 27;
consider d be
FinSequence of
REAL such that
A26: (
dom d)
= (
dom X) & for i be
Element of (
dom X) holds (d
. i)
= (
||.(x
. i).||
" ) by
LOPBAN10: 37;
(
dom d)
= (
Seg (
len X)) by
A26,
FINSEQ_1:def 3;
then
A27: (
len d)
= (
len X) by
FINSEQ_1:def 3;
set F1 = (
mlt (s2,d));
A28: for i be
Element of (
dom F) holds (d
. i)
= ((F
. i)
" )
proof
let i be
Element of (
dom F);
reconsider j = i as
Element of (
dom X) by
A23;
(d
. j)
= (
||.(x
. j).||
" ) by
A26;
hence thesis by
A23;
end;
A32: (
dom F1)
= ((
dom X)
/\ (
dom X)) by
A9,
A26,
VALUED_1:def 4
.= (
dom X);
s2 is
Element of ((
len X)
-tuples_on
REAL ) & d is
Element of ((
len X)
-tuples_on
REAL ) by
A13,
A27,
FINSEQ_2: 92;
then
A33: (
Product F1)
= ((
Product s2)
* (
Product d)) by
RVSUM_1: 107
.= ((
Product s2)
* ((
Product F)
" )) by
A23,
A26,
LOPBAN10: 40,
A28;
consider x1 be
Element of (
product X) such that
A34: for i be
Element of (
dom X) holds (x1
. i)
= ((F1
/. i)
* (x
. i)) by
LOPBAN10: 38;
A35: for i be
Element of (
dom X) holds
||.(x1
. i).||
<= (s2
. i)
proof
let i be
Element of (
dom X);
A36: (x1
. i)
= ((F1
/. i)
* (x
. i)) by
A34;
A37: (F1
/. i)
= (F1
. i) by
A32,
PARTFUN1:def 6
.= ((s2
. i)
* (d
. i)) by
RVSUM_1: 60
.= ((s2
. i)
* ((F
. i)
" )) by
A23,
A28;
A39: (x1
. i)
= (((s2
. i)
* (
||.(x
. i).||
" ))
* (x
. i)) by
A23,
A36,
A37;
A41:
0
<= (s2
. i) by
A12;
A42:
|.((s2
. i)
* (
||.(x
. i).||
" )).|
= ((s2
. i)
* (
||.(x
. i).||
" )) by
A41,
COMPLEX1: 43;
(x
. i)
<> (
0. (X
. i)) by
A24;
then
A43:
||.(x
. i).||
<>
0 by
NORMSP_0:def 5;
||.(x1
. i).||
= (((s2
. i)
* (
||.(x
. i).||
" ))
*
||.(x
. i).||) by
A39,
A42,
NORMSP_1:def 1
.= ((s2
. i)
* ((
||.(x
. i).||
" )
*
||.(x
. i).||))
.= ((s2
. i)
* 1) by
A43,
XCMPLX_0:def 7;
hence thesis;
end;
A44:
||.(f
/. x1).||
< 1 by
A14,
A35;
A45:
|.((
Product F)
" ).|
= ((
Product F)
" ) by
A23,
ABSVALUE:def 1;
A46:
|.((
Product s2)
* ((
Product F)
" )).|
= (
|.(
Product s2).|
*
|.((
Product F)
" ).|) by
COMPLEX1: 65
.= ((
Product s2)
* ((
Product F)
" )) by
A21,
A45,
COMPLEX1: 43;
(f
. x1)
= (((
Product s2)
* ((
Product F)
" ))
* (f
. x)) by
A32,
A33,
A34,
LOPBAN10: 39;
then
||.(f
. x1).||
= (((
Product s2)
* ((
Product F)
" ))
*
||.(f
. x).||) by
A46,
NORMSP_1:def 1;
then (((
Product s2)
* (((
Product F)
" )
*
||.(f
. x).||))
/ (
Product s2))
< (1
/ (
Product s2)) by
A21,
A44,
XREAL_1: 74;
then (((
Product F)
" )
*
||.(f
. x).||)
< K by
A21,
XCMPLX_1: 89;
then ((
Product F)
* (((
Product F)
" )
*
||.(f
. x).||))
< (K
* (
Product F)) by
A23,
A25,
XREAL_1: 68;
then (((
Product F)
* ((
Product F)
" ))
*
||.(f
. x).||)
< (K
* (
Product F));
then (1
*
||.(f
. x).||)
< (K
* (
Product F)) by
A23,
A25,
XCMPLX_0:def 7;
hence
||.(f
. x).||
<= (K
* (
NrProduct x)) by
A23;
end;
suppose
A47: ex i be
Element of (
dom X) st (x
. i)
= (
0. (X
. i));
then
A48: (f
. x)
= (
0. Y) by
LOPBAN10: 36;
consider i be
Element of (
dom X) such that
A49: (x
. i)
= (
0. (X
. i)) by
A47;
A50: (F
. i)
=
||.(x
. i).|| by
A23;
(F
. i)
=
0 by
A49,
A50;
then (
Product F)
=
0 by
A23,
RVSUM_1: 103;
hence
||.(f
. x).||
<= (K
* (
NrProduct x)) by
A23,
A48;
end;
end;
end;
hence f is
Lipschitzian by
A21;
end;
f is
Lipschitzian implies f
is_continuous_on the
carrier of (
product X)
proof
assume f is
Lipschitzian;
then
consider K be
Real such that
A52:
0
<= K and
A53: for x be
Point of (
product X) holds
||.(f
. x).||
<= (K
* (
NrProduct x));
for v0 be
Point of (
product X) holds for r be
Real st v0
in the
carrier of (
product X) &
0
< r holds ex s be
Real st
0
< s & for v1 be
Point of (
product X) st v1
in the
carrier of (
product X) &
||.(v1
- v0).||
< s holds
||.((f
/. v1)
- (f
/. v0)).||
< r
proof
let v0 be
Point of (
product X), r0 be
Real;
assume
A54: v0
in the
carrier of (
product X) &
0
< r0;
set r = (r0
/ 2);
A58:
0
< r & r
< r0 by
A54,
XREAL_1: 216;
set L = (
||.v0.||
+ 1);
consider M be
Real such that
A59:
0
<= M & for v1 be
Point of (
product X) st
||.(v1
- v0).||
<= 1 holds ex F be
FinSequence of
REAL st (
dom F)
= (
dom X) &
||.((f
/. v1)
- (f
/. v0)).||
<= ((M
* K)
* (
Sum F)) & for i be
Element of (
dom X) holds (F
. i)
=
||.((v1
- v0)
. i).|| by
A52,
A53,
LM01;
set BL = (((M
* K)
* (
len X))
+ 1);
set s = (
min ((r
/ BL),1));
A64:
0
< s & s
<= 1 & s
<= (r
/ BL) by
A52,
A54,
A59,
XXREAL_0: 17,
XXREAL_0: 21;
(
0
+ ((M
* K)
* (
len X)))
<= BL by
XREAL_1: 7;
then (((M
* K)
* (
len X))
* s)
<= ((r
/ BL)
* BL) by
A52,
A59,
A64,
XREAL_1: 66;
then
A65: (((M
* K)
* (
len X))
* s)
<= r by
A52,
A59,
XCMPLX_1: 87;
take s;
thus
0
< s by
A52,
A54,
A59,
XXREAL_0: 21;
let v1 be
Point of (
product X);
assume
A66: v1
in the
carrier of (
product X) &
||.(v1
- v0).||
< s;
reconsider w1 = (v1
- v0) as
Element of (
product X);
consider H be
FinSequence of
REAL such that
A67: (
dom H)
= (
dom X) &
||.((f
/. v1)
- (f
/. v0)).||
<= ((M
* K)
* (
Sum H)) & for i be
Element of (
dom X) holds (H
. i)
=
||.(w1
. i).|| by
A59,
A64,
A66,
XXREAL_0: 2;
for i be
Nat st i
in (
dom H) holds
0
<= (H
. i)
proof
let i be
Nat;
assume i
in (
dom H);
then
reconsider j = i as
Element of (
dom X) by
A67;
(H
. j)
=
||.(w1
. j).|| by
A67;
hence thesis;
end;
then
A68:
0
<= (
Sum H) by
RVSUM_1: 84;
A69: for i be
Element of (
dom X) holds
||.(w1
. i).||
< s
proof
let i be
Element of (
dom X);
||.(w1
. i).||
<=
||.(v1
- v0).|| by
A3,
PRVECT_2: 10;
hence
||.(w1
. i).||
< s by
A66,
XXREAL_0: 2;
end;
set CST = ((
len H)
|-> s);
A71: H is
Element of ((
len H)
-tuples_on
REAL ) by
FINSEQ_2: 92;
(
len H) is
natural
Number & s is
Element of
REAL by
XREAL_0:def 1;
then
reconsider CST as
Element of ((
len H)
-tuples_on
REAL ) by
FINSEQ_2: 112;
(
dom H)
= (
Seg (
len X)) by
A67,
FINSEQ_1:def 3;
then
A72: (
len H)
= (
len X) by
FINSEQ_1:def 3;
for i be
Nat st i
in (
Seg (
len H)) holds (H
. i)
<= (CST
. i)
proof
let i0 be
Nat;
assume
A73: i0
in (
Seg (
len H));
then
reconsider i = i0 as
Element of (
dom X) by
A67,
FINSEQ_1:def 3;
A74:
||.(w1
. i).||
< s by
A69;
(H
. i)
<= s by
A67,
A74;
hence thesis by
A73,
FINSEQ_2: 57;
end;
then (
Sum H)
<= (
Sum CST) by
A71,
RVSUM_1: 82;
then (
Sum H)
<= (s
* (
len X)) by
A72,
RVSUM_1: 80;
then ((M
* K)
* (
Sum H))
<= ((M
* K)
* (s
* (
len X))) by
A52,
A59,
A68,
XREAL_1: 66;
then
||.((f
/. v1)
- (f
/. v0)).||
<= ((M
* K)
* (s
* (
len X))) by
A67,
XXREAL_0: 2;
then
||.((f
/. v1)
- (f
/. v0)).||
<= r by
A65,
XXREAL_0: 2;
hence
||.((f
/. v1)
- (f
/. v0)).||
< r0 by
A58,
XXREAL_0: 2;
end;
hence f
is_continuous_on the
carrier of (
product X) by
A1,
NFCONT_1: 19;
end;
hence thesis by
A4;
end;