lp_space.miz
begin
definition
let x be
Real_Sequence;
let p be
Real;
::
LP_SPACE:def1
func x
rto_power p ->
Real_Sequence means
:
Def1: for n be
Nat holds (it
. n)
= (
|.(x
. n).|
to_power p);
existence
proof
deffunc
F(
set) = (
|.(x
. $1).|
to_power p);
ex q1 be
Real_Sequence st for n be
Nat holds (q1
. n)
=
F(n) from
SEQ_1:sch 1;
then
consider q1 be
Real_Sequence such that
A1: for n be
Nat holds (q1
. n)
= (
|.(x
. n).|
to_power p);
take q1;
thus thesis by
A1;
end;
uniqueness
proof
let a1,a2 be
Real_Sequence;
assume that
A2: for n be
Nat holds (a1
. n)
= (
|.(x
. n).|
to_power p) and
A3: for n be
Nat holds (a2
. n)
= (
|.(x
. n).|
to_power p);
for s be
object st s
in
NAT holds (a1
. s)
= (a2
. s)
proof
let s be
object such that
A4: s
in
NAT ;
(a1
. s)
= (
|.(x
. s).|
to_power p) by
A2,
A4
.= (a2
. s) by
A3,
A4;
hence thesis;
end;
hence thesis by
FUNCT_2: 12;
end;
end
definition
let p be
Real;
assume
A1: p
>= 1;
::
LP_SPACE:def2
func
the_set_of_RealSequences_l^ p -> non
empty
Subset of
Linear_Space_of_RealSequences means
:
Def2: for x be
set holds x
in it iff x
in
the_set_of_RealSequences & ((
seq_id x)
rto_power p) is
summable;
existence
proof
defpred
P[
object] means ((
seq_id $1)
rto_power p) is
summable;
consider IT be
set such that
A2: for x be
object holds x
in IT iff x
in
the_set_of_RealSequences &
P[x] from
XBOOLE_0:sch 1;
for x be
object st x
in IT holds x
in
the_set_of_RealSequences by
A2;
then
A3: IT is
Subset of
the_set_of_RealSequences by
TARSKI:def 3;
((
seq_id
Zeroseq )
rto_power p) is
absolutely_summable
proof
reconsider rseq = ((
seq_id
Zeroseq )
rto_power p) as
Real_Sequence;
now
let n be
Nat;
thus (rseq
. n)
= (
|.((
seq_id
Zeroseq )
. n).|
to_power p) by
Def1
.= (
0
to_power p) by
ABSVALUE: 2,
RSSPACE: 4
.=
0 by
A1,
POWER:def 2;
end;
hence thesis by
COMSEQ_3: 3;
end;
then IT is non
empty by
A2;
then
reconsider IT as non
empty
Subset of
Linear_Space_of_RealSequences by
A3;
take IT;
thus thesis by
A2;
end;
uniqueness
proof
let X1,X2 be non
empty
Subset of
Linear_Space_of_RealSequences ;
assume that
A4: for x be
set holds x
in X1 iff x
in
the_set_of_RealSequences & ((
seq_id x)
rto_power p) is
summable and
A5: for x be
set holds x
in X2 iff x
in
the_set_of_RealSequences & ((
seq_id x)
rto_power p) is
summable;
A6: X2
c= X1
proof
let x be
object;
assume
A7: x
in X2;
then
A8: ((
seq_id x)
rto_power p) is
summable by
A5;
x
in
the_set_of_RealSequences by
A7;
hence thesis by
A4,
A8;
end;
X1
c= X2
proof
let x be
object;
assume
A9: x
in X1;
then
A10: ((
seq_id x)
rto_power p) is
summable by
A4;
x
in
the_set_of_RealSequences by
A9;
hence thesis by
A5,
A10;
end;
hence thesis by
A6,
XBOOLE_0:def 10;
end;
end
reserve x1,x2,y1,a,b,c for
Real;
Lm1: x1
>=
0 & y1
>
0 implies (x1
to_power y1)
>=
0
proof
assume that
A1: x1
>=
0 and
A2: y1
>
0 ;
x1
>
0 or x1
=
0 by
A1;
hence thesis by
A2,
POWER: 34,
POWER:def 2;
end;
Lm2: y1
>
0 & x1
>=
0 & x2
>=
0 implies ((x1
* x2)
to_power y1)
= ((x1
to_power y1)
* (x2
to_power y1))
proof
assume that
A1: y1
>
0 and
A2: x1
>=
0 and
A3: x2
>=
0 ;
per cases by
A2,
A3;
suppose x1
>
0 & x2
>
0 ;
hence thesis by
POWER: 30;
end;
suppose
A4: x1
>
0 & x2
=
0 ;
then (x2
to_power y1)
=
0 by
A1,
POWER:def 2;
hence thesis by
A4;
end;
suppose
A5: x1
=
0 & x2
>
0 ;
then (x1
to_power y1)
=
0 by
A1,
POWER:def 2;
hence thesis by
A5;
end;
suppose
A6: x1
=
0 & x2
=
0 ;
then (x2
to_power y1)
=
0 by
A1,
POWER:def 2;
hence thesis by
A6;
end;
end;
theorem ::
LP_SPACE:1
Th1: a
>=
0 & a
< b & c
>
0 implies (a
to_power c)
< (b
to_power c)
proof
a
=
0 & c
>
0 implies (a
to_power c)
=
0 by
POWER:def 2;
hence thesis by
POWER: 34,
POWER: 37;
end;
Lm3: for p be
Real st 1
= p holds for a,b be
Real_Sequence holds for n be
Nat holds (((
Partial_Sums ((a
+ b)
rto_power p))
. n)
to_power (1
/ p))
<= ((((
Partial_Sums (a
rto_power p))
. n)
to_power (1
/ p))
+ (((
Partial_Sums (b
rto_power p))
. n)
to_power (1
/ p)))
proof
let p be
Real such that
A1: p
= 1;
let a,b be
Real_Sequence;
let n be
Nat;
A2:
now
let n be
Nat;
thus (((a
+ b)
rto_power p)
. n)
= (
|.((a
+ b)
. n).|
to_power p) by
Def1
.=
|.((a
+ b)
. n).| by
A1,
POWER: 25;
thus ((a
rto_power p)
. n)
= (
|.(a
. n).|
to_power p) by
Def1
.=
|.(a
. n).| by
A1,
POWER: 25;
thus ((b
rto_power p)
. n)
= (
|.(b
. n).|
to_power p) by
Def1
.=
|.(b
. n).| by
A1,
POWER: 25;
end;
then ((a
+ b)
rto_power p)
=
|.(a
+ b).| by
SEQ_1: 12;
then
A3: (((
Partial_Sums ((a
+ b)
rto_power p))
. n)
to_power (1
/ p))
= ((
Partial_Sums (
abs (a
+ b)))
. n) by
A1,
POWER: 25;
(a
rto_power p)
=
|.a.| by
A2,
SEQ_1: 12;
then
A4: (((
Partial_Sums (a
rto_power p))
. n)
to_power (1
/ p))
= ((
Partial_Sums
|.a.|)
. n) by
A1,
POWER: 25;
deffunc
F(
Nat) = (
|.(a
. $1).|
+
|.(b
. $1).|);
consider c be
Real_Sequence such that
A5: for n be
Nat holds (c
. n)
=
F(n) from
SEQ_1:sch 1;
A6: for n be
Nat holds
|.((a
+ b)
. n).|
<= (
|.(b
. n).|
+
|.(a
. n).|)
proof
let n be
Nat;
|.((a
+ b)
. n).|
=
|.((a
. n)
+ (b
. n)).| by
SEQ_1: 7;
hence thesis by
COMPLEX1: 56;
end;
now
let n be
Nat;
A7:
|.((a
+ b)
. n).|
= ((
abs (a
+ b))
. n) by
SEQ_1: 12;
|.((a
+ b)
. n).|
<= (
|.(b
. n).|
+
|.(a
. n).|) by
A6;
hence ((
abs (a
+ b))
. n)
<= (c
. n) by
A5,
A7;
end;
then
A8: ((
Partial_Sums (
abs (a
+ b)))
. n)
<= ((
Partial_Sums c)
. n) by
SERIES_1: 14;
now
let n be
Nat;
A9:
|.(a
. n).|
= ((
abs a)
. n) by
SEQ_1: 12;
|.(b
. n).|
= ((
abs b)
. n) by
SEQ_1: 12;
hence (c
. n)
= (((
abs a)
. n)
+ ((
abs b)
. n)) by
A5,
A9
.= (((
abs a)
+ (
abs b))
. n) by
SEQ_1: 7;
end;
then for n be
object st n
in
NAT holds (c
. n)
= (((
abs a)
+ (
abs b))
. n);
then
A10: c
= ((
abs a)
+ (
abs b)) by
FUNCT_2: 12;
(b
rto_power p)
=
|.b.| by
A2,
SEQ_1: 12;
then
A11: (((
Partial_Sums (b
rto_power p))
. n)
to_power (1
/ p))
= ((
Partial_Sums
|.b.|)
. n) by
A1,
POWER: 25;
(
Partial_Sums ((
abs a)
+ (
abs b)))
= ((
Partial_Sums (
abs a))
+ (
Partial_Sums
|.b.|)) by
SERIES_1: 5;
hence thesis by
A3,
A4,
A11,
A10,
A8,
SEQ_1: 7;
end;
theorem ::
LP_SPACE:2
Th2: for p be
Real st 1
<= p holds for a,b be
Real_Sequence holds for n be
Nat holds (((
Partial_Sums ((a
+ b)
rto_power p))
. n)
to_power (1
/ p))
<= ((((
Partial_Sums (a
rto_power p))
. n)
to_power (1
/ p))
+ (((
Partial_Sums (b
rto_power p))
. n)
to_power (1
/ p)))
proof
let p be
Real such that
A1: 1
<= p;
reconsider p as
Real;
let a,b be
Real_Sequence;
set ap = (a
rto_power p);
set bp = (b
rto_power p);
set ab = ((a
+ b)
rto_power p);
let n be
Nat;
now
per cases by
A1,
XXREAL_0: 1;
case
A2: p
> 1;
now
let n be
Nat;
thus (ap
. n)
= (
|.(a
. n).|
to_power p) by
Def1;
thus (bp
. n)
= (
|.(b
. n).|
to_power p) by
Def1;
(((a
+ b)
rto_power p)
. n)
= (
|.((a
+ b)
. n).|
to_power p) by
Def1
.= (
|.((a
. n)
+ (b
. n)).|
to_power p) by
SEQ_1: 7;
hence (ab
. n)
= (
|.((a
. n)
+ (b
. n)).|
to_power p);
end;
hence thesis by
A2,
HOLDER_1: 7;
end;
case p
= 1;
hence thesis by
Lm3;
end;
end;
hence thesis;
end;
Lm4: for a,b be
Real_Sequence holds for p be
Real st 1
= p & (a
rto_power p) is
summable & (b
rto_power p) is
summable holds ((a
+ b)
rto_power p) is
summable & ((
Sum ((a
+ b)
rto_power p))
to_power (1
/ p))
<= (((
Sum (a
rto_power p))
to_power (1
/ p))
+ ((
Sum (b
rto_power p))
to_power (1
/ p)))
proof
let a,b be
Real_Sequence;
let p be
Real such that
A1: p
= 1 and
A2: (a
rto_power p) is
summable and
A3: (b
rto_power p) is
summable;
A4:
now
let n be
Nat;
thus (((a
+ b)
rto_power p)
. n)
= (
|.((a
+ b)
. n).|
to_power p) by
Def1
.=
|.((a
+ b)
. n).| by
A1,
POWER: 25;
thus ((a
rto_power p)
. n)
= (
|.(a
. n).|
to_power p) by
Def1
.=
|.(a
. n).| by
A1,
POWER: 25;
thus ((b
rto_power p)
. n)
= (
|.(b
. n).|
to_power p) by
Def1
.=
|.(b
. n).| by
A1,
POWER: 25;
end;
then
A5: ((a
+ b)
rto_power p)
= (
abs (a
+ b)) by
SEQ_1: 12;
A6: a
= (
seq_id a);
A7: (a
rto_power p)
=
|.a.| by
A4,
SEQ_1: 12;
then a is
absolutely_summable by
A2,
SERIES_1:def 4;
then
reconsider a1 = a as
VECTOR of
l1_Space by
A6,
RSSPACE3: 6;
|.b.| is
summable by
A3,
A4,
SEQ_1: 12;
then
A8: (
|.a.|
+
|.b.|) is
summable by
A2,
A7,
SERIES_1: 7;
A9: (b
rto_power p)
=
|.b.| by
A4,
SEQ_1: 12;
then
A10: ((
Sum (b
rto_power p))
to_power (1
/ p))
= (
Sum
|.b.|) by
A1,
POWER: 25;
A11: b
= (
seq_id b);
b is
absolutely_summable by
A3,
A9,
SERIES_1:def 4;
then
reconsider b1 = b as
VECTOR of
l1_Space by
A11,
RSSPACE3: 6;
A12:
||.b1.||
= (
Sum (
abs (
seq_id b1))) by
RSSPACE3:def 2,
RSSPACE3:def 3;
deffunc
F(
Nat) = (
|.(a
. $1).|
+
|.(b
. $1).|);
consider c be
Real_Sequence such that
A14: for n be
Nat holds (c
. n)
=
F(n) from
SEQ_1:sch 1;
A15:
now
let n be
Nat;
A16: ((
abs (a
+ b))
. n)
=
|.((a
+ b)
. n).| by
SEQ_1: 12;
hence ((
abs (a
+ b))
. n)
>=
0 by
COMPLEX1: 46;
thus (c
. n)
= (
|.(a
. n).|
+
|.(b
. n).|) by
A14;
(
|.(a
. n).|
+
|.(b
. n).|)
= ((
|.a.|
. n)
+
|.(b
. n).|) by
SEQ_1: 12
.= ((
|.a.|
. n)
+ (
|.b.|
. n)) by
SEQ_1: 12;
hence (c
. n)
= ((
|.a.|
. n)
+ (
|.b.|
. n)) by
A14;
|.((a
+ b)
. n).|
=
|.((a
. n)
+ (b
. n)).| by
SEQ_1: 7;
then (
|.(a
+ b).|
. n)
<= (
|.(a
. n).|
+
|.(b
. n).|) by
A16,
COMPLEX1: 56;
hence ((
abs (a
+ b))
. n)
<= (c
. n) by
A14;
end;
then c
= (
|.a.|
+
|.b.|) by
SEQ_1: 7;
hence ((a
+ b)
rto_power p) is
summable by
A5,
A8,
A15,
SERIES_1: 20;
A17:
||.a1.||
= (
Sum (
abs (
seq_id a1))) by
RSSPACE3:def 2,
RSSPACE3:def 3;
A19:
||.(a1
+ b1).||
= (
Sum (
abs (
seq_id (a1
+ b1)))) by
RSSPACE3:def 2,
RSSPACE3:def 3
.= (
Sum (
abs (
seq_id ((
seq_id a1)
+ (
seq_id b1))))) by
RSSPACE3: 6
.= (
Sum (
abs ((
seq_id a1)
+ (
seq_id b1))));
A20:
||.(a1
+ b1).||
<= (
||.a1.||
+
||.b1.||) by
RSSPACE3: 7;
((
Sum (a
rto_power p))
to_power (1
/ p))
= (
Sum
|.a.|) by
A1,
A7,
POWER: 25;
hence thesis by
A1,
A5,
A10,
A20,
A19,
A17,
A12,
POWER: 25;
end;
theorem ::
LP_SPACE:3
Th3: for a,b be
Real_Sequence holds for p be
Real st 1
<= p & (a
rto_power p) is
summable & (b
rto_power p) is
summable holds ((a
+ b)
rto_power p) is
summable & ((
Sum ((a
+ b)
rto_power p))
to_power (1
/ p))
<= (((
Sum (a
rto_power p))
to_power (1
/ p))
+ ((
Sum (b
rto_power p))
to_power (1
/ p)))
proof
let a,b be
Real_Sequence;
let p be
Real such that
A1: 1
<= p and
A2: (a
rto_power p) is
summable and
A3: (b
rto_power p) is
summable;
set ab = ((a
+ b)
rto_power p);
set bp = (b
rto_power p);
set ap = (a
rto_power p);
A4:
now
let n be
Nat;
thus (ap
. n)
= (
|.(a
. n).|
to_power p) by
Def1;
thus (bp
. n)
= (
|.(b
. n).|
to_power p) by
Def1;
(((a
+ b)
rto_power p)
. n)
= (
|.((a
+ b)
. n).|
to_power p) by
Def1
.= (
|.((a
. n)
+ (b
. n)).|
to_power p) by
SEQ_1: 7;
hence (ab
. n)
= (
|.((a
. n)
+ (b
. n)).|
to_power p);
end;
reconsider p as
Real;
now
per cases by
A1,
XXREAL_0: 1;
case p
> 1;
hence ((
Sum ab)
to_power (1
/ p))
<= (((
Sum ap)
to_power (1
/ p))
+ ((
Sum bp)
to_power (1
/ p))) & ab is
summable by
A2,
A3,
A4,
HOLDER_1: 13;
end;
case p
= 1;
hence ((
Sum ab)
to_power (1
/ p))
<= (((
Sum ap)
to_power (1
/ p))
+ ((
Sum bp)
to_power (1
/ p))) & ab is
summable by
A2,
A3,
Lm4;
end;
end;
hence thesis;
end;
theorem ::
LP_SPACE:4
Th4: for p be
Real st 1
<= p holds (
the_set_of_RealSequences_l^ p) is
linearly-closed
proof
let p be
Real such that
A1: p
>= 1;
set W = (
the_set_of_RealSequences_l^ p);
A2: for v,u be
VECTOR of
Linear_Space_of_RealSequences st v
in (
the_set_of_RealSequences_l^ p) & u
in (
the_set_of_RealSequences_l^ p) holds (v
+ u)
in (
the_set_of_RealSequences_l^ p)
proof
let v,u be
VECTOR of
Linear_Space_of_RealSequences such that
A3: v
in W and
A4: u
in W;
A5: ((
seq_id (v
+ u))
rto_power p) is
summable
proof
reconsider vq = v as
Real_Sequence by
FUNCT_2: 66;
set up = ((
seq_id u)
rto_power p);
set vp = ((
seq_id v)
rto_power p);
set p1 = (1
/ p);
A7:
now
let n be
Nat;
thus
A8: (vp
. n)
= (
|.((
seq_id v)
. n).|
to_power p) by
Def1;
thus
A9: (up
. n)
= (
|.((
seq_id u)
. n).|
to_power p) by
Def1;
thus
0
<=
|.((
seq_id v)
. n).| by
COMPLEX1: 46;
thus
0
<
|.((
seq_id v)
. n).| or
0
=
|.((
seq_id v)
. n).| by
COMPLEX1: 46;
hence
0
<= (vp
. n) by
A1,
A8,
POWER: 34,
POWER:def 2;
thus
0
<=
|.((
seq_id u)
. n).| by
COMPLEX1: 46;
thus
0
<
|.((
seq_id u)
. n).| or
0
=
|.((
seq_id u)
. n).| by
COMPLEX1: 46;
hence
0
<= (up
. n) by
A1,
A9,
POWER: 34,
POWER:def 2;
end;
((
seq_id v)
rto_power p) is
summable by
A1,
A3,
Def2;
then (
Partial_Sums vp) is
bounded_above by
A7,
SERIES_1: 17;
then
consider r be
Real such that
A10: for n be
object st n
in (
dom (
Partial_Sums vp)) holds ((
Partial_Sums vp)
. n)
< r by
SEQ_2:def 1;
A11: (1
/ p)
>
0 by
A1,
XREAL_1: 139;
reconsider r as
Real;
A12: (
Partial_Sums vp) is
non-decreasing by
A7,
SERIES_1: 16;
now
let n be
set such that
A13: n
in (
dom (
Partial_Sums vp));
reconsider n1 = n as
Nat by
A13;
0
<= (vp
.
0 ) by
A7;
then
A14:
0
<= ((
Partial_Sums vp)
.
0 ) by
SERIES_1:def 1;
((
Partial_Sums vp)
.
0 )
<= ((
Partial_Sums vp)
. n1) by
A12,
SEQM_3: 11;
hence (((
Partial_Sums vp)
. n)
to_power p1)
< (r
to_power p1) by
A11,
A10,
A13,
A14,
Th1;
end;
then
consider q be
Real such that
A15: for n be
set st n
in (
dom (
Partial_Sums vp)) holds (((
Partial_Sums vp)
. n)
to_power p1)
< q;
reconsider uq = u as
Real_Sequence by
FUNCT_2: 66;
A17: ((
seq_id v)
+ (
seq_id u))
= (
seq_id (v
+ u)) by
RSSPACE: 2;
((
seq_id u)
rto_power p) is
summable by
A1,
A4,
Def2;
then (
Partial_Sums up) is
bounded_above by
A7,
SERIES_1: 17;
then
consider r1 be
Real such that
A18: for n be
object st n
in (
dom (
Partial_Sums up)) holds ((
Partial_Sums up)
. n)
< r1 by
SEQ_2:def 1;
reconsider r1 as
Real;
A19: (
Partial_Sums up) is
non-decreasing by
A7,
SERIES_1: 16;
now
let n be
set such that
A20: n
in (
dom (
Partial_Sums up));
reconsider n1 = n as
Nat by
A20;
0
<= (up
.
0 ) by
A7;
then
A21:
0
<= ((
Partial_Sums up)
.
0 ) by
SERIES_1:def 1;
((
Partial_Sums up)
.
0 )
<= ((
Partial_Sums up)
. n1) by
A19,
SEQM_3: 11;
hence (((
Partial_Sums up)
. n)
to_power p1)
< (r1
to_power p1) by
A11,
A18,
A20,
A21,
Th1;
end;
then
consider q1 be
Real such that
A22: for n be
set st n
in (
dom (
Partial_Sums up)) holds (((
Partial_Sums up)
. n)
to_power p1)
< q1;
set g = (q
+ q1);
A24: (p
* (1
/ p))
= ((p
* 1)
/ p) by
XCMPLX_1: 74
.= 1 by
A1,
XCMPLX_1: 60;
now
let n be
Nat;
A25: n
in
NAT by
ORDINAL1:def 12;
A26:
now
assume ((
Partial_Sums ((vq
+ uq)
rto_power p))
. n)
>
0 ;
hence ((((
Partial_Sums ((vq
+ uq)
rto_power p))
. n)
to_power (1
/ p))
to_power p)
= (((
Partial_Sums ((vq
+ uq)
rto_power p))
. n)
to_power ((1
/ p)
* p)) by
POWER: 33
.= ((
Partial_Sums ((vq
+ uq)
rto_power p))
. n) by
A24,
POWER: 25;
end;
NAT
= (
dom (
Partial_Sums up)) by
SEQ_1: 2;
then
A27: (((
Partial_Sums up)
. n)
to_power p1)
< q1 by
A22,
A25;
NAT
= (
dom (
Partial_Sums vp)) by
SEQ_1: 2;
then
A28: ((((
Partial_Sums up)
. n)
to_power (1
/ p))
+ (((
Partial_Sums vp)
. n)
to_power (1
/ p)))
< g by
A15,
A27,
XREAL_1: 8,
A25;
(((
Partial_Sums ((vq
+ uq)
rto_power p))
. n)
to_power (1
/ p))
<= ((((
Partial_Sums up)
. n)
to_power (1
/ p))
+ (((
Partial_Sums vp)
. n)
to_power (1
/ p))) by
A1,
Th2;
then
A29: (((
Partial_Sums ((vq
+ uq)
rto_power p))
. n)
to_power (1
/ p))
< g by
A28,
XXREAL_0: 2;
A30:
now
assume
A31: ((
Partial_Sums ((vq
+ uq)
rto_power p))
. n)
=
0 ;
hence ((((
Partial_Sums ((vq
+ uq)
rto_power p))
. n)
to_power (1
/ p))
to_power p)
= (
0
to_power p) by
A11,
POWER:def 2
.= ((
Partial_Sums ((vq
+ uq)
rto_power p))
. n) by
A1,
A31,
POWER:def 2;
end;
now
let n be
Nat;
thus
A33:
0
<
|.((vq
+ uq)
. n).| or
0
=
|.((vq
+ uq)
. n).| by
COMPLEX1: 46;
(((vq
+ uq)
rto_power p)
. n)
= (
|.((vq
+ uq)
. n).|
to_power p) by
Def1;
hence
0
<= (((vq
+ uq)
rto_power p)
. n) by
A1,
A33,
POWER: 34,
POWER:def 2;
end;
then
A34:
0
<= (((vq
+ uq)
rto_power p)
.
0 );
A35: ((
Partial_Sums ((vq
+ uq)
rto_power p))
.
0 )
<= ((
Partial_Sums ((vq
+ uq)
rto_power p))
. n) by
A32,
SEQM_3: 11,
SERIES_1: 16;
then
0
<= ((
Partial_Sums ((vq
+ uq)
rto_power p))
. n) by
A34,
SERIES_1:def 1;
then (((
Partial_Sums ((vq
+ uq)
rto_power p))
. n)
to_power (1
/ p))
>=
0 by
A11,
Lm1;
hence ((
Partial_Sums ((vq
+ uq)
rto_power p))
. n)
< (g
to_power p) by
A1,
A29,
A26,
A30,
A35,
A34,
Th1,
SERIES_1:def 1;
end;
then for n be
Nat holds (
Partial_Sums ((vq
+ uq)
rto_power p)) is
bounded_above &
0
<= (((vq
+ uq)
rto_power p)
. n) by
SEQ_2:def 3;
hence thesis by
A17,
SERIES_1: 17;
end;
thus thesis by
A1,
A5,
Def2;
end;
for a be
Real holds for v be
VECTOR of
Linear_Space_of_RealSequences st v
in W holds (a
* v)
in W
proof
let a be
Real;
let v be
VECTOR of
Linear_Space_of_RealSequences such that
A37: v
in W;
((
seq_id (a
* v))
rto_power p) is
summable
proof
set vp = ((
seq_id v)
rto_power p);
A38:
now
let n be
Nat;
thus
0
<=
|.((
seq_id v)
. n).| by
COMPLEX1: 46;
thus
A39:
0
<
|.((
seq_id v)
. n).| or
0
=
|.((
seq_id v)
. n).| by
COMPLEX1: 46;
(vp
. n)
= (
|.((
seq_id v)
. n).|
to_power p) by
Def1;
hence
0
<= (vp
. n) by
A1,
A39,
POWER: 34,
POWER:def 2;
end;
vp is
summable by
A1,
A37,
Def2;
then (
Partial_Sums vp) is
bounded_above by
A38,
SERIES_1: 17;
then
consider r be
Real such that
A40: for n be
object st n
in (
dom (
Partial_Sums ((
seq_id v)
rto_power p))) holds ((
Partial_Sums vp)
. n)
< r by
SEQ_2:def 1;
A41: (
seq_id (a
* v))
= (a
(#) (
seq_id v)) by
RSSPACE: 3;
A42: for n be
Nat holds ((
Partial_Sums ((
seq_id (a
* v))
rto_power p))
. n)
= ((
|.a.|
to_power p)
* ((
Partial_Sums ((
seq_id v)
rto_power p))
. n))
proof
let n be
Nat;
now
let n be
Nat;
A43:
|.a.|
>=
0 by
COMPLEX1: 46;
A44:
|.((
seq_id v)
. n).|
>=
0 by
COMPLEX1: 46;
A45: ((a
(#) (
seq_id v))
. n)
= (a
* ((
seq_id v)
. n)) by
SEQ_1: 9;
(((a
(#) (
seq_id v))
rto_power p)
. n)
= (
|.((a
(#) (
seq_id v))
. n).|
to_power p) by
Def1
.= ((
|.a.|
*
|.((
seq_id v)
. n).|)
to_power p) by
A45,
COMPLEX1: 65
.= ((
|.a.|
to_power p)
* (
|.((
seq_id v)
. n).|
to_power p)) by
A1,
A43,
A44,
Lm2;
hence (((
seq_id (a
* v))
rto_power p)
. n)
= ((
|.a.|
to_power p)
* (((
seq_id v)
rto_power p)
. n)) by
A41,
Def1
.= (((
|.a.|
to_power p)
(#) ((
seq_id v)
rto_power p))
. n) by
SEQ_1: 9;
end;
then for n be
object st n
in
NAT holds (((
seq_id (a
* v))
rto_power p)
. n)
= (((
|.a.|
to_power p)
(#) ((
seq_id v)
rto_power p))
. n);
then
A46: ((
seq_id (a
* v))
rto_power p)
= ((
|.a.|
to_power p)
(#) ((
seq_id v)
rto_power p)) by
FUNCT_2: 12;
(
Partial_Sums ((
|.a.|
to_power p)
(#) ((
seq_id v)
rto_power p)))
= ((
|.a.|
to_power p)
(#) (
Partial_Sums ((
seq_id v)
rto_power p))) by
SERIES_1: 9;
hence thesis by
A46,
SEQ_1: 9;
end;
A47:
0
< (
|.a.|
to_power p) or
0
= (
|.a.|
to_power p) by
A1,
Lm1,
COMPLEX1: 46;
A48:
now
let n be
set such that
A49: n
in (
dom (
Partial_Sums ((
seq_id v)
rto_power p)));
(
dom (
Partial_Sums ((
seq_id v)
rto_power p)))
=
NAT by
SEQ_1: 1;
hence n
in (
dom (
Partial_Sums ((
seq_id (a
* v))
rto_power p))) by
A49,
SEQ_1: 1;
thus ((
|.a.|
to_power p)
* ((
Partial_Sums ((
seq_id v)
rto_power p))
. n))
< ((
|.a.|
to_power p)
* r) or ((
|.a.|
to_power p)
* ((
Partial_Sums ((
seq_id v)
rto_power p))
. n))
= ((
|.a.|
to_power p)
* r) by
A40,
A47,
A49,
XREAL_1: 68;
end;
A50: for n be
set st n
in (
dom (
Partial_Sums ((
seq_id (a
* v))
rto_power p))) holds ((
Partial_Sums ((
seq_id (a
* v))
rto_power p))
. n)
< ((
|.a.|
to_power p)
* r) or ((
Partial_Sums ((
seq_id (a
* v))
rto_power p))
. n)
= ((
|.a.|
to_power p)
* r)
proof
let n be
set such that
A51: n
in (
dom (
Partial_Sums ((
seq_id (a
* v))
rto_power p)));
reconsider n1 = n as
Nat by
A51;
n
in
NAT by
A51,
SEQ_1: 1;
then n
in (
dom (
Partial_Sums ((
seq_id v)
rto_power p))) by
SEQ_1: 1;
then ((
|.a.|
to_power p)
* ((
Partial_Sums ((
seq_id v)
rto_power p))
. n))
< ((
|.a.|
to_power p)
* r) or ((
|.a.|
to_power p)
* ((
Partial_Sums ((
seq_id v)
rto_power p))
. n))
= ((
|.a.|
to_power p)
* r) by
A48;
then ((
Partial_Sums ((
seq_id (a
* v))
rto_power p))
. n1)
< ((
|.a.|
to_power p)
* r) or ((
Partial_Sums ((
seq_id (a
* v))
rto_power p))
. n1)
= ((
|.a.|
to_power p)
* r) by
A42;
hence thesis;
end;
ex r1 be
Real st for n be
object st n
in (
dom (
Partial_Sums ((
seq_id (a
* v))
rto_power p))) holds ((
Partial_Sums ((
seq_id (a
* v))
rto_power p))
. n)
< r1
proof
take r1 = (((
|.a.|
to_power p)
* r)
+ 1);
reconsider r1 as
Real;
for n be
object st n
in (
dom (
Partial_Sums ((
seq_id (a
* v))
rto_power p))) holds ((
Partial_Sums ((
seq_id (a
* v))
rto_power p))
. n)
< r1
proof
A52: ((
|.a.|
to_power p)
* r)
< (((
|.a.|
to_power p)
* r)
+ 1) by
XREAL_1: 29;
let n be
object;
assume n
in (
dom (
Partial_Sums ((
seq_id (a
* v))
rto_power p)));
hence thesis by
A50,
A52,
XXREAL_0: 2;
end;
hence thesis;
end;
then
A53: (
Partial_Sums ((
seq_id (a
* v))
rto_power p)) is
bounded_above by
SEQ_2:def 1;
for n be
Nat holds (((
seq_id (a
* v))
rto_power p)
. n)
>=
0
proof
set b = (a
(#) (
seq_id v));
let n be
Nat;
((a
(#) (
seq_id v))
. n)
= (a
* ((
seq_id v)
. n)) by
SEQ_1: 9;
then ((b
rto_power p)
. n)
= (
|.(a
* ((
seq_id v)
. n)).|
to_power p) by
Def1;
hence thesis by
A1,
A41,
Lm1,
COMPLEX1: 46;
end;
hence thesis by
A53,
SERIES_1: 17;
end;
hence thesis by
A1,
Def2;
end;
hence thesis by
A2,
RLSUB_1:def 1;
end;
theorem ::
LP_SPACE:5
Th5: for p be
Real st 1
<= p holds
RLSStruct (# (
the_set_of_RealSequences_l^ p), (
Zero_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Add_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Mult_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )) #) is
Subspace of
Linear_Space_of_RealSequences
proof
let p be
Real;
assume 1
<= p;
then (
the_set_of_RealSequences_l^ p) is
linearly-closed by
Th4;
hence thesis by
RSSPACE: 11;
end;
theorem ::
LP_SPACE:6
for p be
Real st 1
<= p holds
RLSStruct (# (
the_set_of_RealSequences_l^ p), (
Zero_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Add_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Mult_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )) #) is
Abelian
add-associative
right_zeroed
right_complementable
vector-distributive
scalar-distributive
scalar-associative
scalar-unital by
Th5;
theorem ::
LP_SPACE:7
for p be
Real st 1
<= p holds
RLSStruct (# (
the_set_of_RealSequences_l^ p), (
Zero_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Add_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Mult_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )) #) is
RealLinearSpace by
Th5;
definition
let p be
Real;
::
LP_SPACE:def3
func
l_norm^ p ->
Function of (
the_set_of_RealSequences_l^ p),
REAL means
:
Def3: for x be
object st x
in (
the_set_of_RealSequences_l^ p) holds (it
. x)
= ((
Sum ((
seq_id x)
rto_power p))
to_power (1
/ p));
existence
proof
deffunc
F(
object) = ((
Sum ((
seq_id $1)
rto_power p))
to_power (1
/ p));
A1: for z be
object st z
in (
the_set_of_RealSequences_l^ p) holds
F(z)
in
REAL by
XREAL_0:def 1;
ex f be
Function of (
the_set_of_RealSequences_l^ p),
REAL st for x be
object st x
in (
the_set_of_RealSequences_l^ p) holds (f
. x)
=
F(x) from
FUNCT_2:sch 2(
A1);
hence thesis;
end;
uniqueness
proof
let NORM1,NORM2 be
Function of (
the_set_of_RealSequences_l^ p),
REAL such that
A2: for x be
object st x
in (
the_set_of_RealSequences_l^ p) holds (NORM1
. x)
= ((
Sum ((
seq_id x)
rto_power p))
to_power (1
/ p)) and
A3: for x be
object st x
in (
the_set_of_RealSequences_l^ p) holds (NORM2
. x)
= ((
Sum ((
seq_id x)
rto_power p))
to_power (1
/ p));
A4: for z be
object st z
in (
the_set_of_RealSequences_l^ p) holds (NORM1
. z)
= (NORM2
. z)
proof
let z be
object such that
A5: z
in (
the_set_of_RealSequences_l^ p);
(NORM1
. z)
= ((
Sum ((
seq_id z)
rto_power p))
to_power (1
/ p)) by
A2,
A5;
hence thesis by
A3,
A5;
end;
A6: (
dom NORM2)
= (
the_set_of_RealSequences_l^ p) by
FUNCT_2:def 1;
(
dom NORM1)
= (
the_set_of_RealSequences_l^ p) by
FUNCT_2:def 1;
hence thesis by
A6,
A4,
FUNCT_1: 2;
end;
end
theorem ::
LP_SPACE:8
Th8: for p be
Real st 1
<= p holds
NORMSTR (# (
the_set_of_RealSequences_l^ p), (
Zero_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Add_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Mult_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
l_norm^ p) #) is
RealLinearSpace
proof
let p be
Real;
assume 1
<= p;
then
RLSStruct (# (
the_set_of_RealSequences_l^ p), (
Zero_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Add_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Mult_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )) #) is
RealLinearSpace by
Th5;
hence thesis by
RSSPACE3: 2;
end;
theorem ::
LP_SPACE:9
Th9: for p be
Real st p
>= 1 holds
NORMSTR (# (
the_set_of_RealSequences_l^ p), (
Zero_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Add_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Mult_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
l_norm^ p) #) is
Subspace of
Linear_Space_of_RealSequences
proof
set V =
Linear_Space_of_RealSequences ;
let p be
Real such that
A1: 1
<= p;
set lSpacep =
NORMSTR (# (
the_set_of_RealSequences_l^ p), (
Zero_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Add_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Mult_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
l_norm^ p) #);
reconsider lSpacep as
RealLinearSpace by
A1,
Th8;
set w1 = the RLSStruct of lSpacep;
A2: w1 is
Subspace of V by
A1,
Th5;
then
A3: the
Mult of lSpacep
= (the
Mult of V
|
[:
REAL , the
carrier of lSpacep:]) by
RLSUB_1:def 2;
(
0. w1)
= (
0. V) by
A2,
RLSUB_1:def 2;
then
A4: (
0. lSpacep)
= (
0. V);
the
addF of lSpacep
= (the
addF of V
|| the
carrier of lSpacep) by
A2,
RLSUB_1:def 2;
hence thesis by
A4,
A3,
RLSUB_1:def 2;
end;
begin
theorem ::
LP_SPACE:10
Th10: for p be
Real st 1
<= p holds for lp be non
empty
NORMSTR st lp
=
NORMSTR (# (
the_set_of_RealSequences_l^ p), (
Zero_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Add_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Mult_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
l_norm^ p) #) holds the
carrier of lp
= (
the_set_of_RealSequences_l^ p) & (for x be
set holds x is
VECTOR of lp iff x is
Real_Sequence & ((
seq_id x)
rto_power p) is
summable) & (
0. lp)
=
Zeroseq & (for x be
VECTOR of lp holds x
= (
seq_id x)) & (for x,y be
VECTOR of lp holds (x
+ y)
= ((
seq_id x)
+ (
seq_id y))) & (for r be
Real holds for x be
VECTOR of lp holds (r
* x)
= (r
(#) (
seq_id x))) & (for x be
VECTOR of lp holds (
- x)
= (
- (
seq_id x)) & (
seq_id (
- x))
= (
- (
seq_id x))) & (for x,y be
VECTOR of lp holds (x
- y)
= ((
seq_id x)
- (
seq_id y))) & (for x be
VECTOR of lp holds ((
seq_id x)
rto_power p) is
summable) & for x be
VECTOR of lp holds
||.x.||
= ((
Sum ((
seq_id x)
rto_power p))
to_power (1
/ p))
proof
let p be
Real such that
A1: 1
<= p;
let lp be non
empty
NORMSTR such that
A2: lp
=
NORMSTR (# (
the_set_of_RealSequences_l^ p), (
Zero_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Add_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Mult_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
l_norm^ p) #);
A3: for x be
VECTOR of lp holds
||.x.||
= ((
Sum ((
seq_id x)
rto_power p))
to_power (1
/ p)) by
A2,
Def3;
A4: for x,y be
VECTOR of lp holds (x
+ y)
= ((
seq_id x)
+ (
seq_id y))
proof
let x,y be
VECTOR of lp;
A5: lp is
Subspace of
Linear_Space_of_RealSequences by
A1,
A2,
Th9;
then
reconsider x1 = x as
VECTOR of
Linear_Space_of_RealSequences by
RLSUB_1: 10;
reconsider y1 = y as
VECTOR of
Linear_Space_of_RealSequences by
A5,
RLSUB_1: 10;
set L1 =
Linear_Space_of_RealSequences ;
set W = (
the_set_of_RealSequences_l^ p);
(
dom the
addF of L1)
=
[:the
carrier of L1, the
carrier of L1:] by
FUNCT_2:def 1;
then
A6: (
dom (the
addF of
Linear_Space_of_RealSequences
|| W))
=
[:W, W:] by
RELAT_1: 62;
W is
linearly-closed by
A1,
Th4;
then (x
+ y)
= ((the
addF of
Linear_Space_of_RealSequences
|| W)
.
[x, y]) by
A2,
RSSPACE:def 8
.= (x1
+ y1) by
A2,
A6,
FUNCT_1: 47;
hence thesis by
RSSPACE: 2;
end;
A7: for r be
Real holds for x be
VECTOR of lp holds (r
* x)
= (r
(#) (
seq_id x))
proof
set W = (
the_set_of_RealSequences_l^ p);
set L1 =
Linear_Space_of_RealSequences ;
let r be
Real;
reconsider r as
Element of
REAL by
XREAL_0:def 1;
let x be
VECTOR of lp;
(
dom the
Mult of L1)
=
[:
REAL , the
carrier of L1:] by
FUNCT_2:def 1;
then
A8: (
dom (the
Mult of
Linear_Space_of_RealSequences
|
[:
REAL , W:]))
=
[:
REAL , W:] by
RELAT_1: 62,
ZFMISC_1: 96;
lp is
Subspace of
Linear_Space_of_RealSequences by
A1,
A2,
Th9;
then
reconsider x1 = x as
VECTOR of
Linear_Space_of_RealSequences by
RLSUB_1: 10;
W is
linearly-closed by
A1,
Th4;
then (r
* x)
= ((the
Mult of
Linear_Space_of_RealSequences
|
[:
REAL , W:])
.
[r, x]) by
A2,
RSSPACE:def 9
.= (r
* x1) by
A2,
A8,
FUNCT_1: 47;
hence thesis by
RSSPACE: 3;
end;
(
the_set_of_RealSequences_l^ p) is
linearly-closed by
A1,
Th4;
then
A9: (
0. lp)
= (
0.
Linear_Space_of_RealSequences ) by
A2,
RSSPACE:def 10
.=
Zeroseq ;
A10: for x be
set holds x is
Element of lp iff x is
Real_Sequence & ((
seq_id x)
rto_power p) is
summable
proof
let x be
set;
x
in (
the_set_of_RealSequences_l^ p) iff ((
seq_id x)
rto_power p) is
summable & x
in
the_set_of_RealSequences by
A1,
Def2;
hence thesis by
A2,
FUNCT_2: 8,
FUNCT_2: 66;
end;
A11: for x be
set holds x is
VECTOR of lp implies x
= (
seq_id x)
proof
let x be
set;
x
in
the_set_of_RealSequences iff x is
Real_Sequence by
FUNCT_2: 8,
FUNCT_2: 66;
hence thesis by
A1,
A2,
Def2;
end;
A12: for x be
VECTOR of lp holds (
- x)
= (
- (
seq_id x)) & (
seq_id (
- x))
= (
- (
seq_id x))
proof
let x be
VECTOR of lp;
lp is
Subspace of
Linear_Space_of_RealSequences by
A1,
A2,
Th9;
then (
- x)
= ((
- 1)
* x) by
RLVECT_1: 16
.= (
- (
seq_id x)) by
A7;
hence thesis;
end;
for x,y be
VECTOR of lp holds (x
- y)
= ((
seq_id x)
- (
seq_id y))
proof
let x,y be
VECTOR of lp;
thus (x
- y)
= ((
seq_id x)
+ (
seq_id (
- y))) by
A4
.= ((
seq_id x)
- (
seq_id y)) by
A12;
end;
hence thesis by
A2,
A10,
A11,
A9,
A4,
A7,
A12,
A3;
end;
theorem ::
LP_SPACE:11
Th11: for p be
Real st p
>= 1 holds for rseq be
Real_Sequence st (for n be
Nat holds (rseq
. n)
=
0 ) holds (rseq
rto_power p) is
summable & ((
Sum (rseq
rto_power p))
to_power (1
/ p))
=
0
proof
let p be
Real such that
A1: p
>= 1;
A2: (1
/ p)
>
0 by
A1,
XREAL_1: 139;
let rseq be
Real_Sequence such that
A3: for n be
Nat holds (rseq
. n)
=
0 ;
A4: for n be
Nat holds ((rseq
rto_power p)
. n)
=
0
proof
let n be
Nat;
(rseq
. n)
=
0 by
A3;
then
|.(rseq
. n).|
=
0 by
ABSVALUE: 2;
then (
|.(rseq
. n).|
to_power p)
=
0 by
A1,
POWER:def 2;
hence thesis by
Def1;
end;
A5: for m be
Nat holds ((
Partial_Sums (rseq
rto_power p))
. m)
=
0
proof
defpred
P[
Nat] means ((rseq
rto_power p)
. $1)
= ((
Partial_Sums (rseq
rto_power p))
. $1);
let m be
Nat;
A6: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat such that
A7: ((rseq
rto_power p)
. k)
= ((
Partial_Sums (rseq
rto_power p))
. k);
thus ((rseq
rto_power p)
. (k
+ 1))
= (
0
+ ((rseq
rto_power p)
. (k
+ 1)))
.= (((rseq
rto_power p)
. k)
+ ((rseq
rto_power p)
. (k
+ 1))) by
A4
.= ((
Partial_Sums (rseq
rto_power p))
. (k
+ 1)) by
A7,
SERIES_1:def 1;
end;
A8:
P[
0 ] by
SERIES_1:def 1;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A8,
A6);
hence ((
Partial_Sums (rseq
rto_power p))
. m)
= ((rseq
rto_power p)
. m)
.=
0 by
A4;
end;
A9: for e be
Real st
0
< e holds ex n be
Nat st for m be
Nat st n
<= m holds
|.(((
Partial_Sums (rseq
rto_power p))
. m)
-
0 ).|
< e
proof
let e be
Real such that
A10:
0
< e;
take
0 ;
let m be
Nat such that
0
<= m;
|.(((
Partial_Sums (rseq
rto_power p))
. m)
-
0 ).|
=
|.(
0
-
0 ).| by
A5
.=
0 by
ABSVALUE:def 1;
hence thesis by
A10;
end;
then
A11: (
Partial_Sums (rseq
rto_power p)) is
convergent by
SEQ_2:def 6;
then (
lim (
Partial_Sums (rseq
rto_power p)))
=
0 by
A9,
SEQ_2:def 7;
then (
Sum (rseq
rto_power p))
=
0 by
SERIES_1:def 3;
hence thesis by
A2,
A11,
POWER:def 2,
SERIES_1:def 2;
end;
theorem ::
LP_SPACE:12
Th12: for p be
Real st 1
<= p holds for rseq be
Real_Sequence st (rseq
rto_power p) is
summable & ((
Sum (rseq
rto_power p))
to_power (1
/ p))
=
0 holds for n be
Nat holds (rseq
. n)
=
0
proof
let p be
Real such that
A1: 1
<= p;
A2: (1
/ p)
>
0 by
A1,
XREAL_1: 139;
let rseq be
Real_Sequence such that
A3: (rseq
rto_power p) is
summable and
A4: ((
Sum (rseq
rto_power p))
to_power (1
/ p))
=
0 ;
A5: for i be
Nat holds ((rseq
rto_power p)
. i)
>=
0
proof
let i be
Nat;
((rseq
rto_power p)
. i)
= (
|.(rseq
. i).|
to_power p) by
Def1;
hence thesis by
A1,
Lm1,
COMPLEX1: 46;
end;
then (((
Sum (rseq
rto_power p))
to_power (1
/ p))
to_power p)
= ((
Sum (rseq
rto_power p))
to_power ((1
/ p)
* p)) by
A1,
A2,
A3,
HOLDER_1: 2,
SERIES_1: 18
.= ((
Sum (rseq
rto_power p))
to_power 1) by
A1,
XCMPLX_1: 106
.= (
Sum (rseq
rto_power p)) by
POWER: 25;
then
A6: (
Sum (rseq
rto_power p))
=
0 by
A1,
A4,
POWER:def 2;
now
let n be
Nat;
reconsider n9 = n as
Nat;
A7: (
0
to_power (1
/ p))
=
0 by
A2,
POWER:def 2;
((rseq
rto_power p)
. n9)
= (
|.(rseq
. n9).|
to_power p) by
Def1;
then
A8: (
|.(rseq
. n).|
to_power p)
=
0 by
A3,
A5,
A6,
RSSPACE: 17;
((
|.(rseq
. n).|
to_power p)
to_power (1
/ p))
= (
|.(rseq
. n).|
to_power (p
* (1
/ p))) by
A1,
A2,
COMPLEX1: 46,
HOLDER_1: 2
.= (
|.(rseq
. n).|
to_power 1) by
A1,
XCMPLX_1: 106
.=
|.(rseq
. n).| by
POWER: 25;
hence (rseq
. n)
=
0 by
A8,
A7,
ABSVALUE: 2;
end;
hence thesis;
end;
Lm5: for p be
Real st 1
<= p holds for lp be non
empty
NORMSTR st lp
=
NORMSTR (# (
the_set_of_RealSequences_l^ p), (
Zero_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Add_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Mult_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
l_norm^ p) #) holds for x be
Point of lp, a be
Real holds ((
seq_id (a
* x))
rto_power p)
= ((
|.a.|
to_power p)
(#) ((
seq_id x)
rto_power p))
proof
let p be
Real such that
A1: 1
<= p;
let lp be non
empty
NORMSTR such that
A2: lp
=
NORMSTR (# (
the_set_of_RealSequences_l^ p), (
Zero_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Add_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Mult_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
l_norm^ p) #);
let x be
Point of lp;
let a be
Real;
now
let n1 be
object;
assume n1
in
NAT ;
then
reconsider n = n1 as
Nat;
A3:
|.a.|
>=
0 by
COMPLEX1: 46;
A4:
|.((
seq_id x)
. n).|
>=
0 by
COMPLEX1: 46;
(((
seq_id (a
* x))
rto_power p)
. n)
= (
|.((
seq_id (a
* x))
. n).|
to_power p) by
Def1
.= (
|.((
seq_id (a
(#) (
seq_id x)))
. n).|
to_power p) by
A1,
A2,
Th10
.= (
|.(a
* ((
seq_id x)
. n)).|
to_power p) by
SEQ_1: 9
.= ((
|.a.|
*
|.((
seq_id x)
. n).|)
to_power p) by
COMPLEX1: 65
.= ((
|.a.|
to_power p)
* (
|.((
seq_id x)
. n).|
to_power p)) by
A1,
A3,
A4,
Lm2
.= ((
|.a.|
to_power p)
* (((
seq_id x)
rto_power p)
. n)) by
Def1
.= (((
|.a.|
to_power p)
(#) ((
seq_id x)
rto_power p))
. n) by
SEQ_1: 9;
hence (((
seq_id (a
* x))
rto_power p)
. n1)
= (((
|.a.|
to_power p)
(#) ((
seq_id x)
rto_power p))
. n1);
end;
hence thesis by
FUNCT_2: 12;
end;
Lm6: for p be
Real st 1
<= p holds for lp be non
empty
NORMSTR st lp
=
NORMSTR (# (
the_set_of_RealSequences_l^ p), (
Zero_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Add_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Mult_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
l_norm^ p) #) holds for x be
Point of lp, a be
Real holds (
Sum ((
seq_id (a
* x))
rto_power p))
= ((
|.a.|
to_power p)
* (
Sum ((
seq_id x)
rto_power p)))
proof
let p be
Real such that
A1: 1
<= p;
let lp be non
empty
NORMSTR such that
A2: lp
=
NORMSTR (# (
the_set_of_RealSequences_l^ p), (
Zero_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Add_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Mult_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
l_norm^ p) #);
let x be
Point of lp;
A3: ((
seq_id x)
rto_power p) is
summable by
A1,
A2,
Th10;
let a be
Real;
thus (
Sum ((
seq_id (a
* x))
rto_power p))
= (
Sum ((
|.a.|
to_power p)
(#) ((
seq_id x)
rto_power p))) by
A1,
A2,
Lm5
.= ((
|.a.|
to_power p)
* (
Sum ((
seq_id x)
rto_power p))) by
A3,
SERIES_1: 10;
end;
Lm7: for p be
Real st 1
<= p holds for lp be non
empty
NORMSTR st lp
=
NORMSTR (# (
the_set_of_RealSequences_l^ p), (
Zero_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Add_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Mult_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
l_norm^ p) #) holds for x be
Point of lp, a be
Real holds ((
Sum ((
seq_id (a
* x))
rto_power p))
to_power (1
/ p))
= (
|.a.|
* ((
Sum ((
seq_id x)
rto_power p))
to_power (1
/ p)))
proof
let p be
Real such that
A1: 1
<= p;
A2: (1
/ p)
>
0 by
A1,
XREAL_1: 139;
let lp be non
empty
NORMSTR such that
A3: lp
=
NORMSTR (# (
the_set_of_RealSequences_l^ p), (
Zero_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Add_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Mult_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
l_norm^ p) #);
let x be
Point of lp;
A4:
now
let n be
Nat;
(((
seq_id x)
rto_power p)
. n)
= (
|.((
seq_id x)
. n).|
to_power p) by
Def1;
hence (((
seq_id x)
rto_power p)
. n)
>=
0 by
A1,
Lm1,
COMPLEX1: 46;
end;
((
seq_id x)
rto_power p) is
summable by
A1,
A3,
Th10;
then
A5:
0
<= (
Sum ((
seq_id x)
rto_power p)) by
A4,
SERIES_1: 18;
let a be
Real;
A6: (
|.a.|
to_power p)
>=
0 by
A1,
Lm1,
COMPLEX1: 46;
thus ((
Sum ((
seq_id (a
* x))
rto_power p))
to_power (1
/ p))
= (((
|.a.|
to_power p)
* (
Sum ((
seq_id x)
rto_power p)))
to_power (1
/ p)) by
A1,
A3,
Lm6
.= (((
|.a.|
to_power p)
to_power (1
/ p))
* ((
Sum ((
seq_id x)
rto_power p))
to_power (1
/ p))) by
A2,
A5,
A6,
Lm2
.= ((
|.a.|
to_power (p
* (1
/ p)))
* ((
Sum ((
seq_id x)
rto_power p))
to_power (1
/ p))) by
A1,
A2,
COMPLEX1: 46,
HOLDER_1: 2
.= ((
|.a.|
to_power 1)
* ((
Sum ((
seq_id x)
rto_power p))
to_power (1
/ p))) by
A1,
XCMPLX_1: 106
.= (
|.a.|
* ((
Sum ((
seq_id x)
rto_power p))
to_power (1
/ p))) by
POWER: 25;
end;
theorem ::
LP_SPACE:13
Th13: for p be
Real st 1
<= p holds for lp be non
empty
NORMSTR st lp
=
NORMSTR (# (
the_set_of_RealSequences_l^ p), (
Zero_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Add_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Mult_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
l_norm^ p) #) holds for x,y be
Point of lp, a be
Real holds (
||.x.||
=
0 iff x
= (
0. lp)) &
0
<=
||.x.|| &
||.(x
+ y).||
<= (
||.x.||
+
||.y.||) &
||.(a
* x).||
= (
|.a.|
*
||.x.||)
proof
let p be
Real such that
A1: 1
<= p;
A2: (1
/ p)
>
0 by
A1,
XREAL_1: 139;
let lp be non
empty
NORMSTR such that
A3: lp
=
NORMSTR (# (
the_set_of_RealSequences_l^ p), (
Zero_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Add_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Mult_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
l_norm^ p) #);
let x,y be
Point of lp;
A4: ((
seq_id y)
rto_power p) is
summable by
A1,
A3,
Th10;
A5:
||.y.||
= ((
Sum ((
seq_id y)
rto_power p))
to_power (1
/ p)) by
A3,
Def3;
A6:
||.x.||
= ((
Sum ((
seq_id x)
rto_power p))
to_power (1
/ p)) by
A3,
Def3;
A7:
now
A8:
||.x.||
= ((
Sum ((
seq_id x)
rto_power p))
to_power (1
/ p)) by
A3,
Def3;
A9: x
in
the_set_of_RealSequences by
A1,
A3,
Def2;
assume
A10:
||.x.||
=
0 ;
((
seq_id x)
rto_power p) is
summable by
A1,
A3,
Th10;
then for n be
Nat holds
0
= ((
seq_id x)
. n) by
A1,
A10,
A8,
Th12;
hence x
=
Zeroseq by
A9,
RSSPACE: 5
.= (
0. lp) by
A1,
A3,
Th10;
end;
A11: ((
seq_id x)
rto_power p) is
summable by
A1,
A3,
Def2;
A12: ((
Sum ((
seq_id x)
rto_power p))
to_power (1
/ p))
=
||.x.|| by
A3,
Def3;
A13:
now
assume x
= (
0. lp);
then x
=
Zeroseq by
A1,
A3,
Th10;
then
A14: for n be
Nat holds ((
seq_id x)
. n)
=
0 by
RSSPACE: 4;
thus
||.x.||
= ((
Sum ((
seq_id x)
rto_power p))
to_power (1
/ p)) by
A3,
Def3
.=
0 by
A1,
A14,
Th11;
end;
let a be
Real;
A15: for n be
Nat holds
0
<= (((
seq_id x)
rto_power p)
. n)
proof
set xp = ((
seq_id x)
rto_power p);
let n be
Nat;
A16:
0
<
|.((
seq_id x)
. n).| or
0
=
|.((
seq_id x)
. n).| by
COMPLEX1: 46;
(xp
. n)
= (
|.((
seq_id x)
. n).|
to_power p) by
Def1;
hence thesis by
A1,
A16,
POWER: 34,
POWER:def 2;
end;
((
seq_id x)
+ (
seq_id y))
= (
seq_id ((
seq_id x)
+ (
seq_id y)))
.= (
seq_id (x
+ y)) by
A1,
A3,
Th10;
then
A17: ((
Sum (((
seq_id x)
+ (
seq_id y))
rto_power p))
to_power (1
/ p))
=
||.(x
+ y).|| by
A3,
Def3;
((
seq_id x)
rto_power p) is
summable by
A1,
A3,
Th10;
then
A18:
||.(x
+ y).||
<= (
||.x.||
+
||.y.||) by
A1,
A6,
A5,
A17,
A4,
Th3;
A19:
||.x.||
= ((
Sum ((
seq_id x)
rto_power p))
to_power (1
/ p)) by
A3,
Def3;
||.(a
* x).||
= ((
Sum ((
seq_id (a
* x))
rto_power p))
to_power (1
/ p)) by
A3,
Def3
.= (
|.a.|
*
||.x.||) by
A1,
A3,
A19,
Lm7;
hence thesis by
A2,
A7,
A13,
A15,
A11,
A12,
A18,
Lm1,
SERIES_1: 18;
end;
theorem ::
LP_SPACE:14
Th14: for p be
Real st p
>= 1 holds for lp be non
empty
NORMSTR st lp
=
NORMSTR (# (
the_set_of_RealSequences_l^ p), (
Zero_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Add_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Mult_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
l_norm^ p) #) holds lp is
reflexive
discerning
RealNormSpace-like
proof
let p be
Real such that
A1: p
>= 1;
let lp be non
empty
NORMSTR;
assume
A2: lp
=
NORMSTR (# (
the_set_of_RealSequences_l^ p), (
Zero_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Add_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Mult_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
l_norm^ p) #);
hence
||.(
0. lp).||
=
0 by
A1,
Th13;
for x,y be
Point of lp, a be
Real holds (
||.x.||
=
0 iff x
= (
0. lp)) &
0
<=
||.x.|| &
||.(x
+ y).||
<= (
||.x.||
+
||.y.||) &
||.(a
* x).||
= (
|.a.|
*
||.x.||) by
A1,
Th13,
A2;
hence thesis by
NORMSP_1:def 1;
end;
theorem ::
LP_SPACE:15
for p be
Real st p
>= 1 holds for lp be non
empty
NORMSTR st lp
=
NORMSTR (# (
the_set_of_RealSequences_l^ p), (
Zero_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Add_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Mult_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
l_norm^ p) #) holds lp is
RealNormSpace by
Th9,
Th14;
Lm8: for p be
Real st
0
< p holds for c be
Real, seq be
Real_Sequence st seq is
convergent holds for rseq be
Real_Sequence st (for i be
Nat holds (rseq
. i)
= (
|.((seq
. i)
- c).|
to_power p)) holds rseq is
convergent & (
lim rseq)
= (
|.((
lim seq)
- c).|
to_power p)
proof
let p be
Real such that
A1:
0
< p;
let c be
Real;
let seq be
Real_Sequence such that
A2: seq is
convergent;
deffunc
F(
set) =
|.((seq
. $1)
- c).|;
consider b be
Real_Sequence such that
A3: for n be
Nat holds (b
. n)
=
F(n) from
SEQ_1:sch 1;
let rseq be
Real_Sequence such that
A4: for i be
Nat holds (rseq
. i)
= (
|.((seq
. i)
- c).|
to_power p);
A5: for n be
Nat holds (rseq
. n)
= ((b
. n)
to_power p)
proof
let n be
Nat;
(rseq
. n)
= (
|.((seq
. n)
- c).|
to_power p) by
A4
.= ((b
. n)
to_power p) by
A3;
hence thesis;
end;
A6: for n be
Nat holds
0
<= (b
. n)
proof
let n be
Nat;
(b
. n)
=
|.((seq
. n)
- c).| by
A3;
hence thesis by
COMPLEX1: 46;
end;
A7: (
lim b)
=
|.((
lim seq)
- c).| by
A2,
A3,
RSSPACE3: 1;
b is
convergent by
A2,
A3,
RSSPACE3: 1;
hence thesis by
A1,
A7,
A6,
A5,
HOLDER_1: 10;
end;
Lm9: for p be
Real st
0
< p holds for c be
Real, seq,seq1 be
Real_Sequence st seq is
convergent & seq1 is
convergent holds for rseq be
Real_Sequence st (for i be
Nat holds (rseq
. i)
= ((
|.((seq
. i)
- c).|
to_power p)
+ (seq1
. i))) holds rseq is
convergent & (
lim rseq)
= ((
|.((
lim seq)
- c).|
to_power p)
+ (
lim seq1))
proof
let p be
Real such that
A1:
0
< p;
let c be
Real;
let seq,seq1 be
Real_Sequence such that
A2: seq is
convergent and
A3: seq1 is
convergent;
deffunc
F(
set) = (
|.((seq
. $1)
- c).|
to_power p);
consider b be
Real_Sequence such that
A4: for n be
Nat holds (b
. n)
=
F(n) from
SEQ_1:sch 1;
let rseq be
Real_Sequence such that
A5: for i be
Nat holds (rseq
. i)
= ((
|.((seq
. i)
- c).|
to_power p)
+ (seq1
. i));
now
let n be
Nat;
thus (rseq
. n)
= ((
|.((seq
. n)
- c).|
to_power p)
+ (seq1
. n)) by
A5
.= ((b
. n)
+ (seq1
. n)) by
A4;
end;
then
A6: rseq
= (b
+ seq1) by
SEQ_1: 7;
A7: b is
convergent by
A1,
A2,
A4,
Lm8;
hence rseq is
convergent by
A3,
A6,
SEQ_2: 5;
(
lim b)
= (
|.((
lim seq)
- c).|
to_power p) by
A1,
A2,
A4,
Lm8;
hence thesis by
A3,
A7,
A6,
SEQ_2: 6;
end;
Lm10: for a,b be
Real_Sequence holds a
= ((a
+ b)
- b)
proof
let a,b be
Real_Sequence;
now
let n be
Element of
NAT ;
((a
+ (b
+ (
- b)))
. n)
= ((a
. n)
+ ((b
+ (
- b))
. n)) by
SEQ_1: 7
.= ((a
. n)
+ ((b
. n)
+ ((
- b)
. n))) by
SEQ_1: 7
.= ((a
. n)
+ ((b
. n)
+ (
- (b
. n)))) by
SEQ_1: 10
.= (a
. n);
hence (((a
+ b)
- b)
. n)
= (a
. n) by
SEQ_1: 13;
end;
hence thesis by
FUNCT_2: 63;
end;
Lm11: for p be
Real st p
>= 1 holds for a,b be
Real_Sequence st (a
rto_power p) is
summable & (b
rto_power p) is
summable holds ((a
+ b)
rto_power p) is
summable
proof
let p be
Real such that
A1: p
>= 1;
let a,b be
Real_Sequence such that
A2: (a
rto_power p) is
summable and
A3: (b
rto_power p) is
summable;
reconsider a1 = a, b1 = b as
set;
A4: a1
in
the_set_of_RealSequences by
FUNCT_2: 8;
(
seq_id a1)
= a;
then
A6: a1
in (
the_set_of_RealSequences_l^ p) by
A1,
A2,
A4,
Def2;
A7: b1
in
the_set_of_RealSequences by
FUNCT_2: 8;
(
seq_id b1)
= b;
then
A9: b1
in (
the_set_of_RealSequences_l^ p) by
A1,
A3,
A7,
Def2;
then
reconsider b1 as
VECTOR of
Linear_Space_of_RealSequences ;
reconsider a1 as
VECTOR of
Linear_Space_of_RealSequences by
A6;
A10: (
seq_id (a1
+ b1))
= (
seq_id ((
seq_id a1)
+ (
seq_id b1))) by
RSSPACE: 2
.= (a
+ b);
(
the_set_of_RealSequences_l^ p) is
linearly-closed by
A1,
Th4;
then (a1
+ b1)
in (
the_set_of_RealSequences_l^ p) by
A6,
A9,
RLSUB_1:def 1;
hence thesis by
A1,
A10,
Def2;
end;
theorem ::
LP_SPACE:16
Th16: for p be
Real st 1
<= p holds for lp be
RealNormSpace st lp
=
NORMSTR (# (
the_set_of_RealSequences_l^ p), (
Zero_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Add_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Mult_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
l_norm^ p) #) holds for vseq be
sequence of lp st vseq is
Cauchy_sequence_by_Norm holds vseq is
convergent
proof
let p be
Real such that
A1: 1
<= p;
A2: (1
/ p)
>
0 by
A1,
XREAL_1: 139;
let lp be
RealNormSpace such that
A3: lp
=
NORMSTR (# (
the_set_of_RealSequences_l^ p), (
Zero_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Add_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Mult_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
l_norm^ p) #);
let vseq be
sequence of lp such that
A4: vseq is
Cauchy_sequence_by_Norm;
defpred
P[
object,
object] means ex i be
Nat st $1
= i & ex rseqi be
Real_Sequence st (for n be
Nat holds (rseqi
. n)
= ((
seq_id (vseq
. n))
. i)) & rseqi is
convergent & $2
= (
lim rseqi);
A5: (p
* (1
/ p))
= ((p
* 1)
/ p) by
XCMPLX_1: 74
.= 1 by
A1,
XCMPLX_1: 60;
A6: for x be
object st x
in
NAT holds ex y be
object st y
in
REAL &
P[x, y]
proof
let x be
object;
assume x
in
NAT ;
then
reconsider i = x as
Nat;
deffunc
F(
Nat) = ((
seq_id (vseq
. $1))
. i);
consider rseqi be
Real_Sequence such that
A7: for n be
Nat holds (rseqi
. n)
=
F(n) from
SEQ_1:sch 1;
reconsider lr = (
lim rseqi) as
Element of
REAL by
XREAL_0:def 1;
take lr;
now
let e1 be
Real such that
A8: e1
>
0 ;
reconsider e = e1 as
Real;
thus ex k be
Nat st for m be
Nat st k
<= m holds
|.((rseqi
. m)
- (rseqi
. k)).|
< e1
proof
consider k be
Nat such that
A9: for n,m be
Nat st n
>= k & m
>= k holds
||.((vseq
. n)
- (vseq
. m)).||
< e by
A4,
A8,
RSSPACE3: 8;
for m be
Nat st k
<= m holds
|.((rseqi
. m)
- (rseqi
. k)).|
< e
proof
let m be
Nat such that
A10: k
<= m;
A11:
||.((vseq
. m)
- (vseq
. k)).||
= ((
Sum ((
seq_id ((vseq
. m)
- (vseq
. k)))
rto_power p))
to_power (1
/ p)) by
A3,
Def3;
then ((
Sum ((
seq_id ((vseq
. m)
- (vseq
. k)))
rto_power p))
to_power (1
/ p))
< e by
A9,
A10;
then
A12: (((
Sum ((
seq_id ((vseq
. m)
- (vseq
. k)))
rto_power p))
to_power (1
/ p))
to_power p)
< (e
to_power p) by
A1,
A11,
Th1,
NORMSP_1: 4;
A13:
now
let i be
Nat;
(((
seq_id ((vseq
. m)
- (vseq
. k)))
rto_power p)
. i)
= (
|.((
seq_id ((vseq
. m)
- (vseq
. k)))
. i).|
to_power p) by
Def1;
hence (((
seq_id ((vseq
. m)
- (vseq
. k)))
rto_power p)
. i)
>=
0 by
A1,
Lm1,
COMPLEX1: 46;
end;
reconsider vsem = (vseq
. m), vsek = (vseq
. k) as
VECTOR of lp;
A14:
now
let a,b,c be
Real such that
A15: a
=
0 and
A16: b
>
0 and
A17: c
>
0 ;
(b
* c)
>
0 by
A16,
A17,
XREAL_1: 129;
hence (a
to_power (b
* c))
=
0 by
A15,
POWER:def 2;
end;
A18:
now
let a,b,c be
Real such that
A19: a
=
0 and
A20: b
>
0 and
A21: c
>
0 ;
(a
to_power b)
=
0 by
A19,
A20,
POWER:def 2;
hence ((a
to_power b)
to_power c)
=
0 by
A21,
POWER:def 2;
end;
A22:
now
let a,b,c be
Real such that
A23: a
=
0 and
A24: b
>
0 and
A25: c
>
0 ;
thus ((a
to_power b)
to_power c)
=
0 by
A18,
A23,
A24,
A25
.= (a
to_power (b
* c)) by
A14,
A23,
A24,
A25;
end;
A26: for a,b,c be
Real st a
>=
0 & b
>
0 & c
>
0 holds ((a
to_power b)
to_power c)
= (a
to_power (b
* c))
proof
let a,b,c be
Real such that
A27: a
>=
0 and
A28: b
>
0 and
A29: c
>
0 ;
a
>
0 or a
=
0 by
A27;
hence thesis by
A22,
A28,
A29,
POWER: 33;
end;
(((
seq_id ((vseq
. m)
- (vseq
. k)))
rto_power p)
. i)
= (
|.((
seq_id ((vseq
. m)
- (vseq
. k)))
. i).|
to_power p) by
Def1;
then
A30: ((((
seq_id ((vseq
. m)
- (vseq
. k)))
rto_power p)
. i)
to_power (1
/ p))
= (
|.((
seq_id ((vseq
. m)
- (vseq
. k)))
. i).|
to_power 1) by
A1,
A2,
A5,
A26,
COMPLEX1: 46
.=
|.((
seq_id ((vseq
. m)
- (vseq
. k)))
. i).| by
POWER: 25;
A31: (rseqi
. m)
= ((
seq_id (vseq
. m))
. i) by
A7;
A32: ((
seq_id ((vseq
. m)
- (vseq
. k)))
rto_power p) is
summable by
A1,
A3,
Th10;
then
A33: (((
seq_id ((vseq
. m)
- (vseq
. k)))
rto_power p)
. i)
<= (
Sum ((
seq_id ((vseq
. m)
- (vseq
. k)))
rto_power p)) by
A13,
RSSPACE2: 3;
(((
Sum ((
seq_id ((vseq
. m)
- (vseq
. k)))
rto_power p))
to_power (1
/ p))
to_power p)
= ((
Sum ((
seq_id ((vseq
. m)
- (vseq
. k)))
rto_power p))
to_power ((1
/ p)
* p)) by
A1,
A2,
A32,
A13,
HOLDER_1: 2,
SERIES_1: 18
.= (
Sum ((
seq_id ((vseq
. m)
- (vseq
. k)))
rto_power p)) by
A5,
POWER: 25;
then
A34: (((
seq_id ((vseq
. m)
- (vseq
. k)))
rto_power p)
. i)
< (e
to_power p) by
A12,
A33,
XXREAL_0: 2;
A35: (rseqi
. k)
= ((
seq_id (vseq
. k))
. i) by
A7;
(vsem
- vsek)
= ((
seq_id vsem)
- (
seq_id vsek)) by
A1,
A3,
Th10;
then
A36:
|.((
seq_id ((vseq
. m)
- (vseq
. k)))
. i).|
=
|.(((
seq_id (vseq
. m))
. i)
+ ((
- (
seq_id (vseq
. k)))
. i)).| by
SEQ_1: 7
.=
|.(((
seq_id (vseq
. m))
. i)
+ (
- ((
seq_id (vseq
. k))
. i))).| by
SEQ_1: 10
.=
|.((rseqi
. m)
- (rseqi
. k)).| by
A31,
A35;
((e
to_power p)
to_power (1
/ p))
= (e
to_power ((1
/ p)
* p)) by
A8,
POWER: 33
.= (e
to_power 1) by
A1,
XCMPLX_1: 106
.= e by
POWER: 25;
hence thesis by
A2,
A13,
A30,
A34,
A36,
Th1;
end;
hence thesis;
end;
end;
then rseqi is
convergent by
SEQ_4: 41;
hence thesis by
A7;
end;
consider f be
sequence of
REAL such that
A37: for x be
object st x
in
NAT holds
P[x, (f
. x)] from
FUNCT_2:sch 1(
A6);
reconsider tseq = f as
Real_Sequence;
A38:
now
let i be
Nat;
reconsider x = i as
set;
A39: i
in
NAT by
ORDINAL1:def 12;
ex i0 be
Nat st x
= i0 & ex rseqi be
Real_Sequence st (for n be
Nat holds (rseqi
. n)
= ((
seq_id (vseq
. n))
. i0)) & rseqi is
convergent & (f
. x)
= (
lim rseqi) by
A37,
A39;
hence ex rseqi be
Real_Sequence st (for n be
Nat holds (rseqi
. n)
= ((
seq_id (vseq
. n))
. i)) & rseqi is
convergent & (tseq
. i)
= (
lim rseqi);
end;
A40: for e be
Real st e
>
0 holds ex k be
Nat st for n be
Nat st n
>= k holds (((
seq_id tseq)
- (
seq_id (vseq
. n)))
rto_power p) is
summable & (
Sum (((
seq_id tseq)
- (
seq_id (vseq
. n)))
rto_power p))
< e
proof
A41: for n be
Nat holds for i be
Nat holds for rseq be
Real_Sequence st (for m be
Nat holds (rseq
. m)
= ((
Partial_Sums ((
seq_id ((vseq
. m)
- (vseq
. n)))
rto_power p))
. i)) holds rseq is
convergent & (
lim rseq)
= ((
Partial_Sums (((
seq_id tseq)
- (
seq_id (vseq
. n)))
rto_power p))
. i)
proof
let n be
Nat;
defpred
P[
Nat] means for rseq be
Real_Sequence st for m be
Nat holds (rseq
. m)
= ((
Partial_Sums ((
seq_id ((vseq
. m)
- (vseq
. n)))
rto_power p))
. $1) holds rseq is
convergent & (
lim rseq)
= ((
Partial_Sums (((
seq_id tseq)
- (
seq_id (vseq
. n)))
rto_power p))
. $1);
A42: for m,k be
Nat holds (
seq_id ((vseq
. m)
- (vseq
. k)))
= ((
seq_id (vseq
. m))
- (
seq_id (vseq
. k)))
proof
let m,k be
Nat;
(
seq_id ((vseq
. m)
- (vseq
. k)))
= (
seq_id ((
seq_id (vseq
. m))
- (
seq_id (vseq
. k)))) by
A1,
A3,
Th10;
hence thesis;
end;
now
let i be
Nat such that
A43: for rseq be
Real_Sequence st (for m be
Nat holds (rseq
. m)
= ((
Partial_Sums ((
seq_id ((vseq
. m)
- (vseq
. n)))
rto_power p))
. i)) holds rseq is
convergent & (
lim rseq)
= ((
Partial_Sums (((
seq_id tseq)
- (
seq_id (vseq
. n)))
rto_power p))
. i);
thus for rseq be
Real_Sequence st (for m be
Nat holds (rseq
. m)
= ((
Partial_Sums ((
seq_id ((vseq
. m)
- (vseq
. n)))
rto_power p))
. (i
+ 1))) holds rseq is
convergent & (
lim rseq)
= ((
Partial_Sums (((
seq_id tseq)
- (
seq_id (vseq
. n)))
rto_power p))
. (i
+ 1))
proof
deffunc
F(
Nat) = ((
Partial_Sums ((
seq_id ((vseq
. $1)
- (vseq
. n)))
rto_power p))
. i);
consider rseqb be
Real_Sequence such that
A44: for m be
Nat holds (rseqb
. m)
=
F(m) from
SEQ_1:sch 1;
consider rseq0 be
Real_Sequence such that
A45: for m be
Nat holds (rseq0
. m)
= ((
seq_id (vseq
. m))
. (i
+ 1)) and
A46: rseq0 is
convergent and
A47: (tseq
. (i
+ 1))
= (
lim rseq0) by
A38;
let rseq be
Real_Sequence such that
A48: for m be
Nat holds (rseq
. m)
= ((
Partial_Sums ((
seq_id ((vseq
. m)
- (vseq
. n)))
rto_power p))
. (i
+ 1));
A49:
now
let m be
Nat;
thus (rseq
. m)
= ((
Partial_Sums ((
seq_id ((vseq
. m)
- (vseq
. n)))
rto_power p))
. (i
+ 1)) by
A48
.= ((((
seq_id ((vseq
. m)
- (vseq
. n)))
rto_power p)
. (i
+ 1))
+ ((
Partial_Sums ((
seq_id ((vseq
. m)
- (vseq
. n)))
rto_power p))
. i)) by
SERIES_1:def 1
.= (((((
seq_id (vseq
. m))
- (
seq_id (vseq
. n)))
rto_power p)
. (i
+ 1))
+ ((
Partial_Sums ((
seq_id ((vseq
. m)
- (vseq
. n)))
rto_power p))
. i)) by
A42
.= (((((
seq_id (vseq
. m))
- (
seq_id (vseq
. n)))
rto_power p)
. (i
+ 1))
+ (rseqb
. m)) by
A44
.= ((
|.(((
seq_id (vseq
. m))
+ (
- (
seq_id (vseq
. n))))
. (i
+ 1)).|
to_power p)
+ (rseqb
. m)) by
Def1
.= ((
|.(((
seq_id (vseq
. m))
. (i
+ 1))
+ ((
- (
seq_id (vseq
. n)))
. (i
+ 1))).|
to_power p)
+ (rseqb
. m)) by
SEQ_1: 7
.= ((
|.(((
seq_id (vseq
. m))
. (i
+ 1))
+ (
- ((
seq_id (vseq
. n))
. (i
+ 1)))).|
to_power p)
+ (rseqb
. m)) by
SEQ_1: 10
.= ((
|.(((
seq_id (vseq
. m))
. (i
+ 1))
- ((
seq_id (vseq
. n))
. (i
+ 1))).|
to_power p)
+ (rseqb
. m))
.= ((
|.((rseq0
. m)
- ((
seq_id (vseq
. n))
. (i
+ 1))).|
to_power p)
+ (rseqb
. m)) by
A45;
end;
A50: (
lim rseqb)
= ((
Partial_Sums (((
seq_id tseq)
- (
seq_id (vseq
. n)))
rto_power p))
. i) by
A43,
A44;
A51: rseqb is
convergent by
A43,
A44;
then (
lim rseq)
= ((
|.((
lim rseq0)
- ((
seq_id (vseq
. n))
. (i
+ 1))).|
to_power p)
+ (
lim rseqb)) by
A1,
A46,
A49,
Lm9
.= ((
|.((tseq
. (i
+ 1))
+ (
- ((
seq_id (vseq
. n))
. (i
+ 1)))).|
to_power p)
+ (
lim rseqb)) by
A47
.= ((
|.((tseq
. (i
+ 1))
+ ((
- (
seq_id (vseq
. n)))
. (i
+ 1))).|
to_power p)
+ (
lim rseqb)) by
SEQ_1: 10
.= ((
|.((tseq
- (
seq_id (vseq
. n)))
. (i
+ 1)).|
to_power p)
+ (
lim rseqb)) by
SEQ_1: 7
.= ((((tseq
- (
seq_id (vseq
. n)))
rto_power p)
. (i
+ 1))
+ ((
Partial_Sums (((
seq_id tseq)
- (
seq_id (vseq
. n)))
rto_power p))
. i)) by
A50,
Def1
.= ((
Partial_Sums (((
seq_id tseq)
- (
seq_id (vseq
. n)))
rto_power p))
. (i
+ 1)) by
SERIES_1:def 1;
hence thesis by
A1,
A51,
A46,
A49,
Lm9;
end;
end;
then
A52: for i be
Nat st
P[i] holds
P[(i
+ 1)];
now
let rseq be
Real_Sequence such that
A53: for m be
Nat holds (rseq
. m)
= ((
Partial_Sums ((
seq_id ((vseq
. m)
- (vseq
. n)))
rto_power p))
.
0 );
thus rseq is
convergent & (
lim rseq)
= ((
Partial_Sums (((
seq_id tseq)
- (
seq_id (vseq
. n)))
rto_power p))
.
0 )
proof
consider rseq0 be
Real_Sequence such that
A54: for m be
Nat holds (rseq0
. m)
= ((
seq_id (vseq
. m))
.
0 ) and
A55: rseq0 is
convergent and
A56: (tseq
.
0 )
= (
lim rseq0) by
A38;
A57: for m be
Nat holds (rseq
. m)
= (
|.((rseq0
. m)
- ((
seq_id (vseq
. n))
.
0 )).|
to_power p)
proof
let m be
Nat;
(rseq
. m)
= ((
Partial_Sums ((
seq_id ((vseq
. m)
- (vseq
. n)))
rto_power p))
.
0 ) by
A53
.= (((
seq_id ((vseq
. m)
- (vseq
. n)))
rto_power p)
.
0 ) by
SERIES_1:def 1
.= ((((
seq_id (vseq
. m))
- (
seq_id (vseq
. n)))
rto_power p)
.
0 ) by
A42
.= (
|.(((
seq_id (vseq
. m))
+ (
- (
seq_id (vseq
. n))))
.
0 ).|
to_power p) by
Def1
.= (
|.(((
seq_id (vseq
. m))
.
0 )
+ ((
- (
seq_id (vseq
. n)))
.
0 )).|
to_power p) by
SEQ_1: 7
.= (
|.(((
seq_id (vseq
. m))
.
0 )
+ (
- ((
seq_id (vseq
. n))
.
0 ))).|
to_power p) by
SEQ_1: 10
.= (
|.(((
seq_id (vseq
. m))
.
0 )
- ((
seq_id (vseq
. n))
.
0 )).|
to_power p);
hence thesis by
A54;
end;
then (
lim rseq)
= (
|.((
lim rseq0)
- ((
seq_id (vseq
. n))
.
0 )).|
to_power p) by
A1,
A55,
Lm8
.= (
|.((tseq
.
0 )
+ (
- ((
seq_id (vseq
. n))
.
0 ))).|
to_power p) by
A56
.= (
|.((tseq
.
0 )
+ ((
- (
seq_id (vseq
. n)))
.
0 )).|
to_power p) by
SEQ_1: 10
.= (
|.((tseq
- (
seq_id (vseq
. n)))
.
0 ).|
to_power p) by
SEQ_1: 7
.= ((((
seq_id tseq)
+ (
- (
seq_id (vseq
. n))))
rto_power p)
.
0 ) by
Def1
.= ((
Partial_Sums (((
seq_id tseq)
- (
seq_id (vseq
. n)))
rto_power p))
.
0 ) by
SERIES_1:def 1;
hence thesis by
A1,
A55,
A57,
Lm8;
end;
end;
then
A58:
P[
0 ];
for i be
Nat holds
P[i] from
NAT_1:sch 2(
A58,
A52);
hence thesis;
end;
let e2 be
Real such that
A59: e2
>
0 ;
set e = (e2
/ 2);
reconsider e1 = (e
to_power (1
/ p)) as
Real;
e
>
0 by
A59,
XREAL_1: 215;
then e1
>
0 by
POWER: 34;
then
consider k be
Nat such that
A60: for n,m be
Nat st n
>= k & m
>= k holds
||.((vseq
. n)
- (vseq
. m)).||
< e1 by
A4,
RSSPACE3: 8;
A61: for m,n be
Nat st n
>= k & m
>= k holds (((
seq_id ((vseq
. m)
- (vseq
. n)))
rto_power p) is
summable & (
Sum ((
seq_id ((vseq
. m)
- (vseq
. n)))
rto_power p))
< e & for i be
Nat holds
0
<= (((
seq_id ((vseq
. m)
- (vseq
. n)))
rto_power p)
. i))
proof
let m,n be
Nat such that
A62: n
>= k and
A63: m
>= k;
||.((vseq
. m)
- (vseq
. n)).||
< e1 by
A60,
A62,
A63;
then (the
normF of lp
. ((vseq
. m)
- (vseq
. n)))
< e1;
then
A64: ((
Sum ((
seq_id ((vseq
. m)
- (vseq
. n)))
rto_power p))
to_power (1
/ p))
< e1 by
A3,
Def3;
A65: for i be
Nat holds (((
seq_id ((vseq
. m)
- (vseq
. n)))
rto_power p)
. i)
>=
0
proof
let i be
Nat;
(((
seq_id ((vseq
. m)
- (vseq
. n)))
rto_power p)
. i)
= (
|.((
seq_id ((vseq
. m)
- (vseq
. n)))
. i).|
to_power p) by
Def1;
hence thesis by
A1,
Lm1,
COMPLEX1: 46;
end;
A66: ((
seq_id ((vseq
. m)
- (vseq
. n)))
rto_power p) is
summable by
A1,
A3,
Th10;
then
A67: ((
Sum ((
seq_id ((vseq
. m)
- (vseq
. n)))
rto_power p))
to_power (1
/ p))
>=
0 by
A2,
A65,
Lm1,
SERIES_1: 18;
A68: (e1
to_power p)
= (e
to_power ((1
/ p)
* p)) by
A59,
POWER: 33,
XREAL_1: 215
.= (e
to_power 1) by
A1,
XCMPLX_1: 106
.= e by
POWER: 25;
(((
Sum ((
seq_id ((vseq
. m)
- (vseq
. n)))
rto_power p))
to_power (1
/ p))
to_power p)
= ((
Sum ((
seq_id ((vseq
. m)
- (vseq
. n)))
rto_power p))
to_power ((1
/ p)
* p)) by
A1,
A2,
A65,
A66,
HOLDER_1: 2,
SERIES_1: 18
.= (
Sum ((
seq_id ((vseq
. m)
- (vseq
. n)))
rto_power p)) by
A5,
POWER: 25;
hence thesis by
A1,
A3,
A65,
A64,
A68,
A67,
Th1,
Th10;
end;
A69: e2
> e by
A59,
XREAL_1: 216;
for n be
Nat st n
>= k holds (((
seq_id tseq)
- (
seq_id (vseq
. n)))
rto_power p) is
summable & (
Sum (((
seq_id tseq)
- (
seq_id (vseq
. n)))
rto_power p))
< e2
proof
let n be
Nat such that
A70: n
>= k;
A71: for i be
Nat st
0
<= i holds ((
Partial_Sums (((
seq_id tseq)
- (
seq_id (vseq
. n)))
rto_power p))
. i)
<= e
proof
let i be
Nat such that
0
<= i;
deffunc
F(
Nat) = ((
Partial_Sums ((
seq_id ((vseq
. $1)
- (vseq
. n)))
rto_power p))
. i);
consider rseq be
Real_Sequence such that
A72: for m be
Nat holds (rseq
. m)
=
F(m) from
SEQ_1:sch 1;
A73: for m be
Nat st m
>= k holds (rseq
. m)
<= e
proof
let m be
Nat;
A74: (rseq
. m)
= ((
Partial_Sums ((
seq_id ((vseq
. m)
- (vseq
. n)))
rto_power p))
. i) by
A72;
assume
A75: m
>= k;
then
A76: for i be
Nat holds
0
<= (((
seq_id ((vseq
. m)
- (vseq
. n)))
rto_power p)
. i) by
A61,
A70;
((
seq_id ((vseq
. m)
- (vseq
. n)))
rto_power p) is
summable by
A61,
A70,
A75;
then
A77: ((
Partial_Sums ((
seq_id ((vseq
. m)
- (vseq
. n)))
rto_power p))
. i)
<= (
Sum ((
seq_id ((vseq
. m)
- (vseq
. n)))
rto_power p)) by
A76,
RSSPACE2: 3;
(
Sum ((
seq_id ((vseq
. m)
- (vseq
. n)))
rto_power p))
< e by
A61,
A70,
A75;
hence thesis by
A77,
A74,
XXREAL_0: 2;
end;
A78: (
lim rseq)
= ((
Partial_Sums (((
seq_id tseq)
- (
seq_id (vseq
. n)))
rto_power p))
. i) by
A41,
A72;
rseq is
convergent by
A41,
A72;
hence thesis by
A78,
A73,
RSSPACE2: 5;
end;
now
take e2 = (e
+ 1);
A79: e2
> e by
XREAL_1: 29;
let i be
Nat;
((
Partial_Sums (((
seq_id tseq)
- (
seq_id (vseq
. n)))
rto_power p))
. i)
<= e by
A71,
NAT_1: 2;
hence ((
Partial_Sums (((
seq_id tseq)
- (
seq_id (vseq
. n)))
rto_power p))
. i)
< e2 by
A79,
XXREAL_0: 2;
end;
then
A80: (
Partial_Sums (((
seq_id tseq)
- (
seq_id (vseq
. n)))
rto_power p)) is
bounded_above by
SEQ_2:def 3;
A81: (
Sum (((
seq_id tseq)
- (
seq_id (vseq
. n)))
rto_power p))
= (
lim (
Partial_Sums (((
seq_id tseq)
- (
seq_id (vseq
. n)))
rto_power p))) by
SERIES_1:def 3;
A82: for i be
Nat holds
0
<= ((((
seq_id tseq)
- (
seq_id (vseq
. n)))
rto_power p)
. i)
proof
let i be
Nat;
((((
seq_id tseq)
- (
seq_id (vseq
. n)))
rto_power p)
. i)
= (
|.(((
seq_id tseq)
- (
seq_id (vseq
. n)))
. i).|
to_power p) by
Def1;
hence thesis by
A1,
Lm1,
COMPLEX1: 46;
end;
then (((
seq_id tseq)
- (
seq_id (vseq
. n)))
rto_power p) is
summable by
A80,
SERIES_1: 17;
then (
Partial_Sums (((
seq_id tseq)
- (
seq_id (vseq
. n)))
rto_power p)) is
convergent by
SERIES_1:def 2;
then (
lim (
Partial_Sums (((
seq_id tseq)
- (
seq_id (vseq
. n)))
rto_power p)))
<= e by
A71,
RSSPACE2: 5;
hence thesis by
A69,
A82,
A80,
A81,
SERIES_1: 17,
XXREAL_0: 2;
end;
hence thesis;
end;
((
seq_id tseq)
rto_power p) is
summable
proof
consider m be
Nat such that
A83: for n be
Nat st n
>= m holds (((
seq_id tseq)
- (
seq_id (vseq
. n)))
rto_power p) is
summable & (
Sum (((
seq_id tseq)
- (
seq_id (vseq
. n)))
rto_power p))
< 1 by
A40;
A84: (((
seq_id tseq)
- (
seq_id (vseq
. m)))
rto_power p) is
summable by
A83;
set d = (
seq_id tseq);
set b = (
seq_id (vseq
. m));
set a = ((
seq_id tseq)
- (
seq_id (vseq
. m)));
A85: (a
+ b)
= (((
seq_id tseq)
+ (
seq_id (vseq
. m)))
+ (
- (
seq_id (vseq
. m)))) by
SEQ_1: 13
.= (((
seq_id tseq)
+ (
seq_id (vseq
. m)))
- (
seq_id (vseq
. m)))
.= d by
Lm10;
((
seq_id (vseq
. m))
rto_power p) is
summable by
A1,
A3,
Def2;
hence thesis by
A1,
A84,
A85,
Lm11;
end;
then
reconsider tv = tseq as
Point of lp by
A1,
A3,
Th10;
for e be
Real st e
>
0 holds ex m be
Nat st for n be
Nat st n
>= m holds
||.((vseq
. n)
- tv).||
< e
proof
let e be
Real such that
A86: e
>
0 ;
set e1 = (e
to_power p);
consider m be
Nat such that
A87: for n be
Nat st n
>= m holds (((
seq_id tseq)
- (
seq_id (vseq
. n)))
rto_power p) is
summable & (
Sum (((
seq_id tseq)
- (
seq_id (vseq
. n)))
rto_power p))
< e1 by
A40,
A86,
POWER: 34;
now
let n be
Nat such that
A88: n
>= m;
A89: (
Sum (((
seq_id tseq)
- (
seq_id (vseq
. n)))
rto_power p))
< e1 by
A87,
A88;
for i be
Nat holds ((((
seq_id tseq)
- (
seq_id (vseq
. n)))
rto_power p)
. i)
>=
0
proof
let i be
Nat;
((((
seq_id tseq)
- (
seq_id (vseq
. n)))
rto_power p)
. i)
= (
|.(((
seq_id tseq)
- (
seq_id (vseq
. n)))
. i).|
to_power p) by
Def1;
hence thesis by
A1,
Lm1,
COMPLEX1: 46;
end;
then
A90: (
Sum (((
seq_id tseq)
- (
seq_id (vseq
. n)))
rto_power p))
>=
0 by
A87,
A88,
SERIES_1: 18;
A91: (e1
to_power (1
/ p))
= (e
to_power (p
* (1
/ p))) by
A86,
POWER: 33
.= (e
to_power 1) by
A1,
XCMPLX_1: 106
.= e by
POWER: 25;
((
Sum (((
seq_id tv)
- (
seq_id (vseq
. n)))
rto_power p))
to_power (1
/ p))
= ((
Sum ((
seq_id ((
seq_id tv)
- (
seq_id (vseq
. n))))
rto_power p))
to_power (1
/ p))
.= ((
Sum ((
seq_id (tv
- (vseq
. n)))
rto_power p))
to_power (1
/ p)) by
A1,
A3,
Th10
.=
||.(tv
+ (
- (vseq
. n))).|| by
A3,
Def3
.=
||.(
- ((vseq
. n)
- tv)).|| by
RLVECT_1: 33
.=
||.((vseq
. n)
- tv).|| by
NORMSP_1: 2;
hence
||.((vseq
. n)
- tv).||
< e by
A2,
A90,
A89,
A91,
Th1;
end;
hence thesis;
end;
hence thesis by
NORMSP_1:def 6;
end;
definition
let p be
Real;
::
LP_SPACE:def4
func
l_Space^ p ->
RealBanachSpace equals
NORMSTR (# (
the_set_of_RealSequences_l^ p), (
Zero_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Add_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Mult_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
l_norm^ p) #);
coherence
proof
set lp =
NORMSTR (# (
the_set_of_RealSequences_l^ p), (
Zero_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Add_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
Mult_ ((
the_set_of_RealSequences_l^ p),
Linear_Space_of_RealSequences )), (
l_norm^ p) #);
reconsider lp as
RealNormSpace by
A1,
Th9,
Th14;
for vseq be
sequence of lp st vseq is
Cauchy_sequence_by_Norm holds vseq is
convergent by
A1,
Th16;
hence thesis by
LOPBAN_1:def 15;
end;
end