ncfcont2.miz
begin
reserve X,X1 for
set,
r,s for
Real,
z for
Complex,
RNS for
RealNormSpace,
CNS,CNS1,CNS2 for
ComplexNormSpace;
definition
let X be
set;
let CNS1,CNS2 be
ComplexNormSpace;
let f be
PartFunc of CNS1, CNS2;
::
NCFCONT2:def1
pred f
is_uniformly_continuous_on X means X
c= (
dom f) & for r st
0
< r holds ex s st
0
< s & for x1,x2 be
Point of CNS1 st x1
in X & x2
in X &
||.(x1
- x2).||
< s holds
||.((f
/. x1)
- (f
/. x2)).||
< r;
end
definition
let X be
set;
let RNS be
RealNormSpace;
let CNS be
ComplexNormSpace;
let f be
PartFunc of CNS, RNS;
::
NCFCONT2:def2
pred f
is_uniformly_continuous_on X means X
c= (
dom f) & for r st
0
< r holds ex s st
0
< s & for x1,x2 be
Point of CNS st x1
in X & x2
in X &
||.(x1
- x2).||
< s holds
||.((f
/. x1)
- (f
/. x2)).||
< r;
end
definition
let X be
set;
let RNS be
RealNormSpace;
let CNS be
ComplexNormSpace;
let f be
PartFunc of RNS, CNS;
::
NCFCONT2:def3
pred f
is_uniformly_continuous_on X means X
c= (
dom f) & for r st
0
< r holds ex s st
0
< s & for x1,x2 be
Point of RNS st x1
in X & x2
in X &
||.(x1
- x2).||
< s holds
||.((f
/. x1)
- (f
/. x2)).||
< r;
end
definition
let X be
set;
let CNS be
ComplexNormSpace;
let f be
PartFunc of the
carrier of CNS,
COMPLEX ;
::
NCFCONT2:def4
pred f
is_uniformly_continuous_on X means X
c= (
dom f) & for r st
0
< r holds ex s st
0
< s & for x1,x2 be
Point of CNS st x1
in X & x2
in X &
||.(x1
- x2).||
< s holds
|.((f
/. x1)
- (f
/. x2)).|
< r;
end
definition
let X be
set;
let CNS be
ComplexNormSpace;
let f be
PartFunc of the
carrier of CNS,
REAL ;
::
NCFCONT2:def5
pred f
is_uniformly_continuous_on X means X
c= (
dom f) & for r st
0
< r holds ex s st
0
< s & for x1,x2 be
Point of CNS st x1
in X & x2
in X &
||.(x1
- x2).||
< s holds
|.((f
/. x1)
- (f
/. x2)).|
< r;
end
definition
let X be
set;
let RNS be
RealNormSpace;
let f be
PartFunc of the
carrier of RNS,
COMPLEX ;
::
NCFCONT2:def6
pred f
is_uniformly_continuous_on X means X
c= (
dom f) & for r st
0
< r holds ex s st
0
< s & for x1,x2 be
Point of RNS st x1
in X & x2
in X &
||.(x1
- x2).||
< s holds
|.((f
/. x1)
- (f
/. x2)).|
< r;
end
theorem ::
NCFCONT2:1
Th1: for f be
PartFunc of CNS1, CNS2 st f
is_uniformly_continuous_on X & X1
c= X holds f
is_uniformly_continuous_on X1
proof
let f be
PartFunc of CNS1, CNS2;
assume that
A1: f
is_uniformly_continuous_on X and
A2: X1
c= X;
X
c= (
dom f) by
A1;
hence X1
c= (
dom f) by
A2,
XBOOLE_1: 1;
let r;
assume
0
< r;
then
consider s such that
A3:
0
< s and
A4: for x1,x2 be
Point of CNS1 st x1
in X & x2
in X &
||.(x1
- x2).||
< s holds
||.((f
/. x1)
- (f
/. x2)).||
< r by
A1;
take s;
thus
0
< s by
A3;
let x1,x2 be
Point of CNS1;
assume x1
in X1 & x2
in X1 &
||.(x1
- x2).||
< s;
hence thesis by
A2,
A4;
end;
theorem ::
NCFCONT2:2
Th2: for f be
PartFunc of CNS, RNS st f
is_uniformly_continuous_on X & X1
c= X holds f
is_uniformly_continuous_on X1
proof
let f be
PartFunc of CNS, RNS;
assume that
A1: f
is_uniformly_continuous_on X and
A2: X1
c= X;
X
c= (
dom f) by
A1;
hence X1
c= (
dom f) by
A2,
XBOOLE_1: 1;
let r;
assume
0
< r;
then
consider s such that
A3:
0
< s and
A4: for x1,x2 be
Point of CNS st x1
in X & x2
in X &
||.(x1
- x2).||
< s holds
||.((f
/. x1)
- (f
/. x2)).||
< r by
A1;
take s;
thus
0
< s by
A3;
let x1,x2 be
Point of CNS;
assume x1
in X1 & x2
in X1 &
||.(x1
- x2).||
< s;
hence thesis by
A2,
A4;
end;
theorem ::
NCFCONT2:3
Th3: for f be
PartFunc of RNS, CNS st f
is_uniformly_continuous_on X & X1
c= X holds f
is_uniformly_continuous_on X1
proof
let f be
PartFunc of RNS, CNS;
assume that
A1: f
is_uniformly_continuous_on X and
A2: X1
c= X;
X
c= (
dom f) by
A1;
hence X1
c= (
dom f) by
A2,
XBOOLE_1: 1;
let r;
assume
0
< r;
then
consider s such that
A3:
0
< s and
A4: for x1,x2 be
Point of RNS st x1
in X & x2
in X &
||.(x1
- x2).||
< s holds
||.((f
/. x1)
- (f
/. x2)).||
< r by
A1;
take s;
thus
0
< s by
A3;
let x1,x2 be
Point of RNS;
assume x1
in X1 & x2
in X1 &
||.(x1
- x2).||
< s;
hence thesis by
A2,
A4;
end;
theorem ::
NCFCONT2:4
for f1,f2 be
PartFunc of CNS1, CNS2 st f1
is_uniformly_continuous_on X & f2
is_uniformly_continuous_on X1 holds (f1
+ f2)
is_uniformly_continuous_on (X
/\ X1)
proof
let f1,f2 be
PartFunc of CNS1, CNS2;
assume that
A1: f1
is_uniformly_continuous_on X and
A2: f2
is_uniformly_continuous_on X1;
A3: f2
is_uniformly_continuous_on (X
/\ X1) by
A2,
Th1,
XBOOLE_1: 17;
then
A4: (X
/\ X1)
c= (
dom f2);
A5: f1
is_uniformly_continuous_on (X
/\ X1) by
A1,
Th1,
XBOOLE_1: 17;
then (X
/\ X1)
c= (
dom f1);
then (X
/\ X1)
c= ((
dom f1)
/\ (
dom f2)) by
A4,
XBOOLE_1: 19;
hence
A6: (X
/\ X1)
c= (
dom (f1
+ f2)) by
VFUNCT_1:def 1;
let r;
assume
0
< r;
then
A7:
0
< (r
/ 2);
then
consider s such that
A8:
0
< s and
A9: for x1,x2 be
Point of CNS1 st x1
in (X
/\ X1) & x2
in (X
/\ X1) &
||.(x1
- x2).||
< s holds
||.((f1
/. x1)
- (f1
/. x2)).||
< (r
/ 2) by
A5;
consider g be
Real such that
A10:
0
< g and
A11: for x1,x2 be
Point of CNS1 st x1
in (X
/\ X1) & x2
in (X
/\ X1) &
||.(x1
- x2).||
< g holds
||.((f2
/. x1)
- (f2
/. x2)).||
< (r
/ 2) by
A3,
A7;
take p = (
min (s,g));
thus
0
< p by
A8,
A10,
XXREAL_0: 15;
let x1,x2 be
Point of CNS1;
assume that
A12: x1
in (X
/\ X1) and
A13: x2
in (X
/\ X1) and
A14:
||.(x1
- x2).||
< p;
p
<= g by
XXREAL_0: 17;
then
||.(x1
- x2).||
< g by
A14,
XXREAL_0: 2;
then
A15:
||.((f2
/. x1)
- (f2
/. x2)).||
< (r
/ 2) by
A11,
A12,
A13;
p
<= s by
XXREAL_0: 17;
then
||.(x1
- x2).||
< s by
A14,
XXREAL_0: 2;
then
||.((f1
/. x1)
- (f1
/. x2)).||
< (r
/ 2) by
A9,
A12,
A13;
then
A16: (
||.((f1
/. x1)
- (f1
/. x2)).||
+
||.((f2
/. x1)
- (f2
/. x2)).||)
< ((r
/ 2)
+ (r
/ 2)) by
A15,
XREAL_1: 8;
A17:
||.(((f1
/. x1)
- (f1
/. x2))
+ ((f2
/. x1)
- (f2
/. x2))).||
<= (
||.((f1
/. x1)
- (f1
/. x2)).||
+
||.((f2
/. x1)
- (f2
/. x2)).||) by
CLVECT_1:def 13;
||.(((f1
+ f2)
/. x1)
- ((f1
+ f2)
/. x2)).||
=
||.(((f1
/. x1)
+ (f2
/. x1))
- ((f1
+ f2)
/. x2)).|| by
A6,
A12,
VFUNCT_1:def 1
.=
||.(((f1
/. x1)
+ (f2
/. x1))
- ((f1
/. x2)
+ (f2
/. x2))).|| by
A6,
A13,
VFUNCT_1:def 1
.=
||.((f1
/. x1)
+ ((f2
/. x1)
- ((f1
/. x2)
+ (f2
/. x2)))).|| by
RLVECT_1:def 3
.=
||.((f1
/. x1)
+ (((f2
/. x1)
- (f1
/. x2))
- (f2
/. x2))).|| by
RLVECT_1: 27
.=
||.((f1
/. x1)
+ (((
- (f1
/. x2))
+ (f2
/. x1))
- (f2
/. x2))).||
.=
||.((f1
/. x1)
+ ((
- (f1
/. x2))
+ ((f2
/. x1)
- (f2
/. x2)))).|| by
RLVECT_1:def 3
.=
||.(((f1
/. x1)
- (f1
/. x2))
+ ((f2
/. x1)
- (f2
/. x2))).|| by
RLVECT_1:def 3;
hence thesis by
A16,
A17,
XXREAL_0: 2;
end;
theorem ::
NCFCONT2:5
for f1,f2 be
PartFunc of CNS, RNS st f1
is_uniformly_continuous_on X & f2
is_uniformly_continuous_on X1 holds (f1
+ f2)
is_uniformly_continuous_on (X
/\ X1)
proof
let f1,f2 be
PartFunc of CNS, RNS;
assume that
A1: f1
is_uniformly_continuous_on X and
A2: f2
is_uniformly_continuous_on X1;
A3: f2
is_uniformly_continuous_on (X
/\ X1) by
A2,
Th2,
XBOOLE_1: 17;
then
A4: (X
/\ X1)
c= (
dom f2);
A5: f1
is_uniformly_continuous_on (X
/\ X1) by
A1,
Th2,
XBOOLE_1: 17;
then (X
/\ X1)
c= (
dom f1);
then (X
/\ X1)
c= ((
dom f1)
/\ (
dom f2)) by
A4,
XBOOLE_1: 19;
hence
A6: (X
/\ X1)
c= (
dom (f1
+ f2)) by
VFUNCT_1:def 1;
let r;
assume
0
< r;
then
A7:
0
< (r
/ 2);
then
consider s such that
A8:
0
< s and
A9: for x1,x2 be
Point of CNS st x1
in (X
/\ X1) & x2
in (X
/\ X1) &
||.(x1
- x2).||
< s holds
||.((f1
/. x1)
- (f1
/. x2)).||
< (r
/ 2) by
A5;
consider g be
Real such that
A10:
0
< g and
A11: for x1,x2 be
Point of CNS st x1
in (X
/\ X1) & x2
in (X
/\ X1) &
||.(x1
- x2).||
< g holds
||.((f2
/. x1)
- (f2
/. x2)).||
< (r
/ 2) by
A3,
A7;
take p = (
min (s,g));
thus
0
< p by
A8,
A10,
XXREAL_0: 15;
let x1,x2 be
Point of CNS;
assume that
A12: x1
in (X
/\ X1) and
A13: x2
in (X
/\ X1) and
A14:
||.(x1
- x2).||
< p;
p
<= g by
XXREAL_0: 17;
then
||.(x1
- x2).||
< g by
A14,
XXREAL_0: 2;
then
A15:
||.((f2
/. x1)
- (f2
/. x2)).||
< (r
/ 2) by
A11,
A12,
A13;
p
<= s by
XXREAL_0: 17;
then
||.(x1
- x2).||
< s by
A14,
XXREAL_0: 2;
then
||.((f1
/. x1)
- (f1
/. x2)).||
< (r
/ 2) by
A9,
A12,
A13;
then
A16: (
||.((f1
/. x1)
- (f1
/. x2)).||
+
||.((f2
/. x1)
- (f2
/. x2)).||)
< ((r
/ 2)
+ (r
/ 2)) by
A15,
XREAL_1: 8;
A17:
||.(((f1
/. x1)
- (f1
/. x2))
+ ((f2
/. x1)
- (f2
/. x2))).||
<= (
||.((f1
/. x1)
- (f1
/. x2)).||
+
||.((f2
/. x1)
- (f2
/. x2)).||) by
NORMSP_1:def 1;
||.(((f1
+ f2)
/. x1)
- ((f1
+ f2)
/. x2)).||
=
||.(((f1
/. x1)
+ (f2
/. x1))
- ((f1
+ f2)
/. x2)).|| by
A6,
A12,
VFUNCT_1:def 1
.=
||.(((f1
/. x1)
+ (f2
/. x1))
- ((f1
/. x2)
+ (f2
/. x2))).|| by
A6,
A13,
VFUNCT_1:def 1
.=
||.((f1
/. x1)
+ ((f2
/. x1)
- ((f1
/. x2)
+ (f2
/. x2)))).|| by
RLVECT_1:def 3
.=
||.((f1
/. x1)
+ (((f2
/. x1)
- (f1
/. x2))
- (f2
/. x2))).|| by
RLVECT_1: 27
.=
||.((f1
/. x1)
+ (((
- (f1
/. x2))
+ (f2
/. x1))
- (f2
/. x2))).||
.=
||.((f1
/. x1)
+ ((
- (f1
/. x2))
+ ((f2
/. x1)
- (f2
/. x2)))).|| by
RLVECT_1:def 3
.=
||.(((f1
/. x1)
- (f1
/. x2))
+ ((f2
/. x1)
- (f2
/. x2))).|| by
RLVECT_1:def 3;
hence thesis by
A16,
A17,
XXREAL_0: 2;
end;
theorem ::
NCFCONT2:6
for f1,f2 be
PartFunc of RNS, CNS st f1
is_uniformly_continuous_on X & f2
is_uniformly_continuous_on X1 holds (f1
+ f2)
is_uniformly_continuous_on (X
/\ X1)
proof
let f1,f2 be
PartFunc of RNS, CNS;
assume that
A1: f1
is_uniformly_continuous_on X and
A2: f2
is_uniformly_continuous_on X1;
A3: f2
is_uniformly_continuous_on (X
/\ X1) by
A2,
Th3,
XBOOLE_1: 17;
then
A4: (X
/\ X1)
c= (
dom f2);
A5: f1
is_uniformly_continuous_on (X
/\ X1) by
A1,
Th3,
XBOOLE_1: 17;
then (X
/\ X1)
c= (
dom f1);
then (X
/\ X1)
c= ((
dom f1)
/\ (
dom f2)) by
A4,
XBOOLE_1: 19;
hence
A6: (X
/\ X1)
c= (
dom (f1
+ f2)) by
VFUNCT_1:def 1;
let r;
assume
0
< r;
then
A7:
0
< (r
/ 2);
then
consider s such that
A8:
0
< s and
A9: for x1,x2 be
Point of RNS st x1
in (X
/\ X1) & x2
in (X
/\ X1) &
||.(x1
- x2).||
< s holds
||.((f1
/. x1)
- (f1
/. x2)).||
< (r
/ 2) by
A5;
consider g be
Real such that
A10:
0
< g and
A11: for x1,x2 be
Point of RNS st x1
in (X
/\ X1) & x2
in (X
/\ X1) &
||.(x1
- x2).||
< g holds
||.((f2
/. x1)
- (f2
/. x2)).||
< (r
/ 2) by
A3,
A7;
take p = (
min (s,g));
thus
0
< p by
A8,
A10,
XXREAL_0: 15;
let x1,x2 be
Point of RNS;
assume that
A12: x1
in (X
/\ X1) and
A13: x2
in (X
/\ X1) and
A14:
||.(x1
- x2).||
< p;
p
<= g by
XXREAL_0: 17;
then
||.(x1
- x2).||
< g by
A14,
XXREAL_0: 2;
then
A15:
||.((f2
/. x1)
- (f2
/. x2)).||
< (r
/ 2) by
A11,
A12,
A13;
p
<= s by
XXREAL_0: 17;
then
||.(x1
- x2).||
< s by
A14,
XXREAL_0: 2;
then
||.((f1
/. x1)
- (f1
/. x2)).||
< (r
/ 2) by
A9,
A12,
A13;
then
A16: (
||.((f1
/. x1)
- (f1
/. x2)).||
+
||.((f2
/. x1)
- (f2
/. x2)).||)
< ((r
/ 2)
+ (r
/ 2)) by
A15,
XREAL_1: 8;
A17:
||.(((f1
/. x1)
- (f1
/. x2))
+ ((f2
/. x1)
- (f2
/. x2))).||
<= (
||.((f1
/. x1)
- (f1
/. x2)).||
+
||.((f2
/. x1)
- (f2
/. x2)).||) by
CLVECT_1:def 13;
||.(((f1
+ f2)
/. x1)
- ((f1
+ f2)
/. x2)).||
=
||.(((f1
/. x1)
+ (f2
/. x1))
- ((f1
+ f2)
/. x2)).|| by
A6,
A12,
VFUNCT_1:def 1
.=
||.(((f1
/. x1)
+ (f2
/. x1))
- ((f1
/. x2)
+ (f2
/. x2))).|| by
A6,
A13,
VFUNCT_1:def 1
.=
||.((f1
/. x1)
+ ((f2
/. x1)
- ((f1
/. x2)
+ (f2
/. x2)))).|| by
RLVECT_1:def 3
.=
||.((f1
/. x1)
+ (((f2
/. x1)
- (f1
/. x2))
- (f2
/. x2))).|| by
RLVECT_1: 27
.=
||.((f1
/. x1)
+ (((
- (f1
/. x2))
+ (f2
/. x1))
- (f2
/. x2))).||
.=
||.((f1
/. x1)
+ ((
- (f1
/. x2))
+ ((f2
/. x1)
- (f2
/. x2)))).|| by
RLVECT_1:def 3
.=
||.(((f1
/. x1)
- (f1
/. x2))
+ ((f2
/. x1)
- (f2
/. x2))).|| by
RLVECT_1:def 3;
hence thesis by
A16,
A17,
XXREAL_0: 2;
end;
theorem ::
NCFCONT2:7
for f1,f2 be
PartFunc of CNS1, CNS2 st f1
is_uniformly_continuous_on X & f2
is_uniformly_continuous_on X1 holds (f1
- f2)
is_uniformly_continuous_on (X
/\ X1)
proof
let f1,f2 be
PartFunc of CNS1, CNS2;
assume that
A1: f1
is_uniformly_continuous_on X and
A2: f2
is_uniformly_continuous_on X1;
A3: f2
is_uniformly_continuous_on (X
/\ X1) by
A2,
Th1,
XBOOLE_1: 17;
then
A4: (X
/\ X1)
c= (
dom f2);
A5: f1
is_uniformly_continuous_on (X
/\ X1) by
A1,
Th1,
XBOOLE_1: 17;
then (X
/\ X1)
c= (
dom f1);
then (X
/\ X1)
c= ((
dom f1)
/\ (
dom f2)) by
A4,
XBOOLE_1: 19;
hence
A6: (X
/\ X1)
c= (
dom (f1
- f2)) by
VFUNCT_1:def 2;
let r;
assume
0
< r;
then
A7:
0
< (r
/ 2);
then
consider s such that
A8:
0
< s and
A9: for x1,x2 be
Point of CNS1 st x1
in (X
/\ X1) & x2
in (X
/\ X1) &
||.(x1
- x2).||
< s holds
||.((f1
/. x1)
- (f1
/. x2)).||
< (r
/ 2) by
A5;
consider g be
Real such that
A10:
0
< g and
A11: for x1,x2 be
Point of CNS1 st x1
in (X
/\ X1) & x2
in (X
/\ X1) &
||.(x1
- x2).||
< g holds
||.((f2
/. x1)
- (f2
/. x2)).||
< (r
/ 2) by
A3,
A7;
take p = (
min (s,g));
thus
0
< p by
A8,
A10,
XXREAL_0: 15;
let x1,x2 be
Point of CNS1;
assume that
A12: x1
in (X
/\ X1) and
A13: x2
in (X
/\ X1) and
A14:
||.(x1
- x2).||
< p;
p
<= g by
XXREAL_0: 17;
then
||.(x1
- x2).||
< g by
A14,
XXREAL_0: 2;
then
A15:
||.((f2
/. x1)
- (f2
/. x2)).||
< (r
/ 2) by
A11,
A12,
A13;
p
<= s by
XXREAL_0: 17;
then
||.(x1
- x2).||
< s by
A14,
XXREAL_0: 2;
then
||.((f1
/. x1)
- (f1
/. x2)).||
< (r
/ 2) by
A9,
A12,
A13;
then
A16: (
||.((f1
/. x1)
- (f1
/. x2)).||
+
||.((f2
/. x1)
- (f2
/. x2)).||)
< ((r
/ 2)
+ (r
/ 2)) by
A15,
XREAL_1: 8;
A17:
||.(((f1
/. x1)
- (f1
/. x2))
- ((f2
/. x1)
- (f2
/. x2))).||
<= (
||.((f1
/. x1)
- (f1
/. x2)).||
+
||.((f2
/. x1)
- (f2
/. x2)).||) by
CLVECT_1: 104;
||.(((f1
- f2)
/. x1)
- ((f1
- f2)
/. x2)).||
=
||.(((f1
/. x1)
- (f2
/. x1))
- ((f1
- f2)
/. x2)).|| by
A6,
A12,
VFUNCT_1:def 2
.=
||.(((f1
/. x1)
- (f2
/. x1))
- ((f1
/. x2)
- (f2
/. x2))).|| by
A6,
A13,
VFUNCT_1:def 2
.=
||.((f1
/. x1)
- ((f2
/. x1)
+ ((f1
/. x2)
- (f2
/. x2)))).|| by
RLVECT_1: 27
.=
||.((f1
/. x1)
- (((f1
/. x2)
+ (f2
/. x1))
- (f2
/. x2))).|| by
RLVECT_1:def 3
.=
||.((f1
/. x1)
- ((f1
/. x2)
+ ((f2
/. x1)
- (f2
/. x2)))).|| by
RLVECT_1:def 3
.=
||.(((f1
/. x1)
- (f1
/. x2))
- ((f2
/. x1)
- (f2
/. x2))).|| by
RLVECT_1: 27;
hence thesis by
A16,
A17,
XXREAL_0: 2;
end;
theorem ::
NCFCONT2:8
for f1,f2 be
PartFunc of CNS, RNS st f1
is_uniformly_continuous_on X & f2
is_uniformly_continuous_on X1 holds (f1
- f2)
is_uniformly_continuous_on (X
/\ X1)
proof
let f1,f2 be
PartFunc of CNS, RNS;
assume that
A1: f1
is_uniformly_continuous_on X and
A2: f2
is_uniformly_continuous_on X1;
A3: f2
is_uniformly_continuous_on (X
/\ X1) by
A2,
Th2,
XBOOLE_1: 17;
then
A4: (X
/\ X1)
c= (
dom f2);
A5: f1
is_uniformly_continuous_on (X
/\ X1) by
A1,
Th2,
XBOOLE_1: 17;
then (X
/\ X1)
c= (
dom f1);
then (X
/\ X1)
c= ((
dom f1)
/\ (
dom f2)) by
A4,
XBOOLE_1: 19;
hence
A6: (X
/\ X1)
c= (
dom (f1
- f2)) by
VFUNCT_1:def 2;
let r;
assume
0
< r;
then
A7:
0
< (r
/ 2);
then
consider s such that
A8:
0
< s and
A9: for x1,x2 be
Point of CNS st x1
in (X
/\ X1) & x2
in (X
/\ X1) &
||.(x1
- x2).||
< s holds
||.((f1
/. x1)
- (f1
/. x2)).||
< (r
/ 2) by
A5;
consider g be
Real such that
A10:
0
< g and
A11: for x1,x2 be
Point of CNS st x1
in (X
/\ X1) & x2
in (X
/\ X1) &
||.(x1
- x2).||
< g holds
||.((f2
/. x1)
- (f2
/. x2)).||
< (r
/ 2) by
A3,
A7;
take p = (
min (s,g));
thus
0
< p by
A8,
A10,
XXREAL_0: 15;
let x1,x2 be
Point of CNS;
assume that
A12: x1
in (X
/\ X1) and
A13: x2
in (X
/\ X1) and
A14:
||.(x1
- x2).||
< p;
p
<= g by
XXREAL_0: 17;
then
||.(x1
- x2).||
< g by
A14,
XXREAL_0: 2;
then
A15:
||.((f2
/. x1)
- (f2
/. x2)).||
< (r
/ 2) by
A11,
A12,
A13;
p
<= s by
XXREAL_0: 17;
then
||.(x1
- x2).||
< s by
A14,
XXREAL_0: 2;
then
||.((f1
/. x1)
- (f1
/. x2)).||
< (r
/ 2) by
A9,
A12,
A13;
then
A16: (
||.((f1
/. x1)
- (f1
/. x2)).||
+
||.((f2
/. x1)
- (f2
/. x2)).||)
< ((r
/ 2)
+ (r
/ 2)) by
A15,
XREAL_1: 8;
A17:
||.(((f1
/. x1)
- (f1
/. x2))
- ((f2
/. x1)
- (f2
/. x2))).||
<= (
||.((f1
/. x1)
- (f1
/. x2)).||
+
||.((f2
/. x1)
- (f2
/. x2)).||) by
NORMSP_1: 3;
||.(((f1
- f2)
/. x1)
- ((f1
- f2)
/. x2)).||
=
||.(((f1
/. x1)
- (f2
/. x1))
- ((f1
- f2)
/. x2)).|| by
A6,
A12,
VFUNCT_1:def 2
.=
||.(((f1
/. x1)
- (f2
/. x1))
- ((f1
/. x2)
- (f2
/. x2))).|| by
A6,
A13,
VFUNCT_1:def 2
.=
||.((f1
/. x1)
- ((f2
/. x1)
+ ((f1
/. x2)
- (f2
/. x2)))).|| by
RLVECT_1: 27
.=
||.((f1
/. x1)
- (((f1
/. x2)
+ (f2
/. x1))
- (f2
/. x2))).|| by
RLVECT_1:def 3
.=
||.((f1
/. x1)
- ((f1
/. x2)
+ ((f2
/. x1)
- (f2
/. x2)))).|| by
RLVECT_1:def 3
.=
||.(((f1
/. x1)
- (f1
/. x2))
- ((f2
/. x1)
- (f2
/. x2))).|| by
RLVECT_1: 27;
hence thesis by
A16,
A17,
XXREAL_0: 2;
end;
theorem ::
NCFCONT2:9
for f1,f2 be
PartFunc of RNS, CNS st f1
is_uniformly_continuous_on X & f2
is_uniformly_continuous_on X1 holds (f1
- f2)
is_uniformly_continuous_on (X
/\ X1)
proof
let f1,f2 be
PartFunc of RNS, CNS;
assume that
A1: f1
is_uniformly_continuous_on X and
A2: f2
is_uniformly_continuous_on X1;
A3: f2
is_uniformly_continuous_on (X
/\ X1) by
A2,
Th3,
XBOOLE_1: 17;
then
A4: (X
/\ X1)
c= (
dom f2);
A5: f1
is_uniformly_continuous_on (X
/\ X1) by
A1,
Th3,
XBOOLE_1: 17;
then (X
/\ X1)
c= (
dom f1);
then (X
/\ X1)
c= ((
dom f1)
/\ (
dom f2)) by
A4,
XBOOLE_1: 19;
hence
A6: (X
/\ X1)
c= (
dom (f1
- f2)) by
VFUNCT_1:def 2;
let r;
assume
0
< r;
then
A7:
0
< (r
/ 2);
then
consider s such that
A8:
0
< s and
A9: for x1,x2 be
Point of RNS st x1
in (X
/\ X1) & x2
in (X
/\ X1) &
||.(x1
- x2).||
< s holds
||.((f1
/. x1)
- (f1
/. x2)).||
< (r
/ 2) by
A5;
consider g be
Real such that
A10:
0
< g and
A11: for x1,x2 be
Point of RNS st x1
in (X
/\ X1) & x2
in (X
/\ X1) &
||.(x1
- x2).||
< g holds
||.((f2
/. x1)
- (f2
/. x2)).||
< (r
/ 2) by
A3,
A7;
take p = (
min (s,g));
thus
0
< p by
A8,
A10,
XXREAL_0: 15;
let x1,x2 be
Point of RNS;
assume that
A12: x1
in (X
/\ X1) and
A13: x2
in (X
/\ X1) and
A14:
||.(x1
- x2).||
< p;
p
<= g by
XXREAL_0: 17;
then
||.(x1
- x2).||
< g by
A14,
XXREAL_0: 2;
then
A15:
||.((f2
/. x1)
- (f2
/. x2)).||
< (r
/ 2) by
A11,
A12,
A13;
p
<= s by
XXREAL_0: 17;
then
||.(x1
- x2).||
< s by
A14,
XXREAL_0: 2;
then
||.((f1
/. x1)
- (f1
/. x2)).||
< (r
/ 2) by
A9,
A12,
A13;
then
A16: (
||.((f1
/. x1)
- (f1
/. x2)).||
+
||.((f2
/. x1)
- (f2
/. x2)).||)
< ((r
/ 2)
+ (r
/ 2)) by
A15,
XREAL_1: 8;
A17:
||.(((f1
/. x1)
- (f1
/. x2))
- ((f2
/. x1)
- (f2
/. x2))).||
<= (
||.((f1
/. x1)
- (f1
/. x2)).||
+
||.((f2
/. x1)
- (f2
/. x2)).||) by
CLVECT_1: 104;
||.(((f1
- f2)
/. x1)
- ((f1
- f2)
/. x2)).||
=
||.(((f1
/. x1)
- (f2
/. x1))
- ((f1
- f2)
/. x2)).|| by
A6,
A12,
VFUNCT_1:def 2
.=
||.(((f1
/. x1)
- (f2
/. x1))
- ((f1
/. x2)
- (f2
/. x2))).|| by
A6,
A13,
VFUNCT_1:def 2
.=
||.((f1
/. x1)
- ((f2
/. x1)
+ ((f1
/. x2)
- (f2
/. x2)))).|| by
RLVECT_1: 27
.=
||.((f1
/. x1)
- (((f1
/. x2)
+ (f2
/. x1))
- (f2
/. x2))).|| by
RLVECT_1:def 3
.=
||.((f1
/. x1)
- ((f1
/. x2)
+ ((f2
/. x1)
- (f2
/. x2)))).|| by
RLVECT_1:def 3
.=
||.(((f1
/. x1)
- (f1
/. x2))
- ((f2
/. x1)
- (f2
/. x2))).|| by
RLVECT_1: 27;
hence thesis by
A16,
A17,
XXREAL_0: 2;
end;
theorem ::
NCFCONT2:10
Th10: for f be
PartFunc of CNS1, CNS2 st f
is_uniformly_continuous_on X holds (z
(#) f)
is_uniformly_continuous_on X
proof
let f be
PartFunc of CNS1, CNS2;
assume
A1: f
is_uniformly_continuous_on X;
then X
c= (
dom f);
hence
A2: X
c= (
dom (z
(#) f)) by
VFUNCT_2:def 2;
now
per cases ;
suppose
A3: z
=
0 ;
let r;
assume
A4:
0
< r;
then
consider s such that
A5:
0
< s and for x1,x2 be
Point of CNS1 st x1
in X & x2
in X &
||.(x1
- x2).||
< s holds
||.((f
/. x1)
- (f
/. x2)).||
< r by
A1;
take s;
thus
0
< s by
A5;
let x1,x2 be
Point of CNS1;
assume that
A6: x1
in X and
A7: x2
in X and
||.(x1
- x2).||
< s;
||.(((z
(#) f)
/. x1)
- ((z
(#) f)
/. x2)).||
=
||.((z
* (f
/. x1))
- ((z
(#) f)
/. x2)).|| by
A2,
A6,
VFUNCT_2:def 2
.=
||.((
0. CNS2)
- ((z
(#) f)
/. x2)).|| by
A3,
CLVECT_1: 1
.=
||.((
0. CNS2)
- (z
* (f
/. x2))).|| by
A2,
A7,
VFUNCT_2:def 2
.=
||.((
0. CNS2)
- (
0. CNS2)).|| by
A3,
CLVECT_1: 1
.=
||.(
0. CNS2).|| by
RLVECT_1: 13
.=
0 by
NORMSP_0:def 6;
hence
||.(((z
(#) f)
/. x1)
- ((z
(#) f)
/. x2)).||
< r by
A4;
end;
suppose
A8: z
<>
0 ;
let r;
A9:
0
<
|.z.| by
A8,
COMPLEX1: 47;
assume
0
< r;
then
0
< (r
/
|.z.|) by
A9;
then
consider s such that
A10:
0
< s and
A11: for x1,x2 be
Point of CNS1 st x1
in X & x2
in X &
||.(x1
- x2).||
< s holds
||.((f
/. x1)
- (f
/. x2)).||
< (r
/
|.z.|) by
A1;
take s;
thus
0
< s by
A10;
let x1,x2 be
Point of CNS1;
assume that
A12: x1
in X and
A13: x2
in X and
A14:
||.(x1
- x2).||
< s;
A15:
||.(((z
(#) f)
/. x1)
- ((z
(#) f)
/. x2)).||
=
||.((z
* (f
/. x1))
- ((z
(#) f)
/. x2)).|| by
A2,
A12,
VFUNCT_2:def 2
.=
||.((z
* (f
/. x1))
- (z
* (f
/. x2))).|| by
A2,
A13,
VFUNCT_2:def 2
.=
||.(z
* ((f
/. x1)
- (f
/. x2))).|| by
CLVECT_1: 9
.= (
|.z.|
*
||.((f
/. x1)
- (f
/. x2)).||) by
CLVECT_1:def 13;
(
|.z.|
*
||.((f
/. x1)
- (f
/. x2)).||)
< ((r
/
|.z.|)
*
|.z.|) by
A9,
A11,
A12,
A13,
A14,
XREAL_1: 68;
hence
||.(((z
(#) f)
/. x1)
- ((z
(#) f)
/. x2)).||
< r by
A9,
A15,
XCMPLX_1: 87;
end;
end;
hence thesis;
end;
theorem ::
NCFCONT2:11
Th11: for f be
PartFunc of CNS, RNS st f
is_uniformly_continuous_on X holds (r
(#) f)
is_uniformly_continuous_on X
proof
let f be
PartFunc of CNS, RNS;
assume
A1: f
is_uniformly_continuous_on X;
then X
c= (
dom f);
hence
A2: X
c= (
dom (r
(#) f)) by
VFUNCT_1:def 4;
now
per cases ;
suppose
A3: r
=
0 ;
let p be
Real;
assume
A4:
0
< p;
then
consider s such that
A5:
0
< s and for x1,x2 be
Point of CNS st x1
in X & x2
in X &
||.(x1
- x2).||
< s holds
||.((f
/. x1)
- (f
/. x2)).||
< p by
A1;
take s;
thus
0
< s by
A5;
let x1,x2 be
Point of CNS;
assume that
A6: x1
in X and
A7: x2
in X and
||.(x1
- x2).||
< s;
||.(((r
(#) f)
/. x1)
- ((r
(#) f)
/. x2)).||
=
||.((r
* (f
/. x1))
- ((r
(#) f)
/. x2)).|| by
A2,
A6,
VFUNCT_1:def 4
.=
||.((
0. RNS)
- ((r
(#) f)
/. x2)).|| by
A3,
RLVECT_1: 10
.=
||.((
0. RNS)
- (r
* (f
/. x2))).|| by
A2,
A7,
VFUNCT_1:def 4
.=
||.((
0. RNS)
- (
0. RNS)).|| by
A3,
RLVECT_1: 10
.=
||.(
0. RNS).|| by
RLVECT_1: 13
.=
0 by
NORMSP_0:def 6;
hence
||.(((r
(#) f)
/. x1)
- ((r
(#) f)
/. x2)).||
< p by
A4;
end;
suppose
A8: r
<>
0 ;
let p be
Real;
A9:
0
<
|.r.| by
A8,
COMPLEX1: 47;
assume
0
< p;
then
0
< (p
/
|.r.|) by
A9;
then
consider s such that
A10:
0
< s and
A11: for x1,x2 be
Point of CNS st x1
in X & x2
in X &
||.(x1
- x2).||
< s holds
||.((f
/. x1)
- (f
/. x2)).||
< (p
/
|.r.|) by
A1;
take s;
thus
0
< s by
A10;
let x1,x2 be
Point of CNS;
assume that
A12: x1
in X and
A13: x2
in X and
A14:
||.(x1
- x2).||
< s;
A15:
||.(((r
(#) f)
/. x1)
- ((r
(#) f)
/. x2)).||
=
||.((r
* (f
/. x1))
- ((r
(#) f)
/. x2)).|| by
A2,
A12,
VFUNCT_1:def 4
.=
||.((r
* (f
/. x1))
- (r
* (f
/. x2))).|| by
A2,
A13,
VFUNCT_1:def 4
.=
||.(r
* ((f
/. x1)
- (f
/. x2))).|| by
RLVECT_1: 34
.= (
|.r.|
*
||.((f
/. x1)
- (f
/. x2)).||) by
NORMSP_1:def 1;
(
|.r.|
*
||.((f
/. x1)
- (f
/. x2)).||)
< ((p
/
|.r.|)
*
|.r.|) by
A9,
A11,
A12,
A13,
A14,
XREAL_1: 68;
hence
||.(((r
(#) f)
/. x1)
- ((r
(#) f)
/. x2)).||
< p by
A9,
A15,
XCMPLX_1: 87;
end;
end;
hence thesis;
end;
theorem ::
NCFCONT2:12
Th12: for f be
PartFunc of RNS, CNS st f
is_uniformly_continuous_on X holds (z
(#) f)
is_uniformly_continuous_on X
proof
let f be
PartFunc of RNS, CNS;
assume
A1: f
is_uniformly_continuous_on X;
then X
c= (
dom f);
hence
A2: X
c= (
dom (z
(#) f)) by
VFUNCT_2:def 2;
now
per cases ;
suppose
A3: z
=
0 ;
let r;
assume
A4:
0
< r;
then
consider s such that
A5:
0
< s and for x1,x2 be
Point of RNS st x1
in X & x2
in X &
||.(x1
- x2).||
< s holds
||.((f
/. x1)
- (f
/. x2)).||
< r by
A1;
take s;
thus
0
< s by
A5;
let x1,x2 be
Point of RNS;
assume that
A6: x1
in X and
A7: x2
in X and
||.(x1
- x2).||
< s;
||.(((z
(#) f)
/. x1)
- ((z
(#) f)
/. x2)).||
=
||.((z
* (f
/. x1))
- ((z
(#) f)
/. x2)).|| by
A2,
A6,
VFUNCT_2:def 2
.=
||.((
0. CNS)
- ((z
(#) f)
/. x2)).|| by
A3,
CLVECT_1: 1
.=
||.((
0. CNS)
- (z
* (f
/. x2))).|| by
A2,
A7,
VFUNCT_2:def 2
.=
||.((
0. CNS)
- (
0. CNS)).|| by
A3,
CLVECT_1: 1
.=
||.(
0. CNS).|| by
RLVECT_1: 13
.=
0 by
NORMSP_0:def 6;
hence
||.(((z
(#) f)
/. x1)
- ((z
(#) f)
/. x2)).||
< r by
A4;
end;
suppose
A8: z
<>
0 ;
let r;
A9:
0
<
|.z.| by
A8,
COMPLEX1: 47;
assume
0
< r;
then
0
< (r
/
|.z.|) by
A9;
then
consider s such that
A10:
0
< s and
A11: for x1,x2 be
Point of RNS st x1
in X & x2
in X &
||.(x1
- x2).||
< s holds
||.((f
/. x1)
- (f
/. x2)).||
< (r
/
|.z.|) by
A1;
take s;
thus
0
< s by
A10;
let x1,x2 be
Point of RNS;
assume that
A12: x1
in X and
A13: x2
in X and
A14:
||.(x1
- x2).||
< s;
A15:
||.(((z
(#) f)
/. x1)
- ((z
(#) f)
/. x2)).||
=
||.((z
* (f
/. x1))
- ((z
(#) f)
/. x2)).|| by
A2,
A12,
VFUNCT_2:def 2
.=
||.((z
* (f
/. x1))
- (z
* (f
/. x2))).|| by
A2,
A13,
VFUNCT_2:def 2
.=
||.(z
* ((f
/. x1)
- (f
/. x2))).|| by
CLVECT_1: 9
.= (
|.z.|
*
||.((f
/. x1)
- (f
/. x2)).||) by
CLVECT_1:def 13;
(
|.z.|
*
||.((f
/. x1)
- (f
/. x2)).||)
< ((r
/
|.z.|)
*
|.z.|) by
A9,
A11,
A12,
A13,
A14,
XREAL_1: 68;
hence
||.(((z
(#) f)
/. x1)
- ((z
(#) f)
/. x2)).||
< r by
A9,
A15,
XCMPLX_1: 87;
end;
end;
hence thesis;
end;
theorem ::
NCFCONT2:13
for f be
PartFunc of CNS1, CNS2 st f
is_uniformly_continuous_on X holds (
- f)
is_uniformly_continuous_on X
proof
let f be
PartFunc of CNS1, CNS2;
A1: (
- f)
= ((
-
1r )
(#) f) by
VFUNCT_2: 23;
assume f
is_uniformly_continuous_on X;
hence thesis by
A1,
Th10;
end;
theorem ::
NCFCONT2:14
for f be
PartFunc of CNS, RNS st f
is_uniformly_continuous_on X holds (
- f)
is_uniformly_continuous_on X
proof
let f be
PartFunc of CNS, RNS;
A1: (
- f)
= ((
- 1)
(#) f) by
VFUNCT_1: 23;
assume f
is_uniformly_continuous_on X;
hence thesis by
A1,
Th11;
end;
theorem ::
NCFCONT2:15
for f be
PartFunc of RNS, CNS st f
is_uniformly_continuous_on X holds (
- f)
is_uniformly_continuous_on X
proof
let f be
PartFunc of RNS, CNS;
A1: (
- f)
= ((
-
1r )
(#) f) by
VFUNCT_2: 23;
assume f
is_uniformly_continuous_on X;
hence thesis by
A1,
Th12;
end;
theorem ::
NCFCONT2:16
for f be
PartFunc of CNS1, CNS2 st f
is_uniformly_continuous_on X holds
||.f.||
is_uniformly_continuous_on X
proof
let f be
PartFunc of CNS1, CNS2;
assume
A1: f
is_uniformly_continuous_on X;
then X
c= (
dom f);
hence
A2: X
c= (
dom
||.f.||) by
NORMSP_0:def 3;
let r;
assume
0
< r;
then
consider s such that
A3:
0
< s and
A4: for x1,x2 be
Point of CNS1 st x1
in X & x2
in X &
||.(x1
- x2).||
< s holds
||.((f
/. x1)
- (f
/. x2)).||
< r by
A1;
take s;
thus
0
< s by
A3;
let x1,x2 be
Point of CNS1;
assume that
A5: x1
in X and
A6: x2
in X and
A7:
||.(x1
- x2).||
< s;
|.((
||.f.||
/. x1)
- (
||.f.||
/. x2)).|
=
|.((
||.f.||
. x1)
- (
||.f.||
/. x2)).| by
A2,
A5,
PARTFUN1:def 6
.=
|.((
||.f.||
. x1)
- (
||.f.||
. x2)).| by
A2,
A6,
PARTFUN1:def 6
.=
|.(
||.(f
/. x1).||
- (
||.f.||
. x2)).| by
A2,
A5,
NORMSP_0:def 3
.=
|.(
||.(f
/. x1).||
-
||.(f
/. x2).||).| by
A2,
A6,
NORMSP_0:def 3;
then
A8:
|.((
||.f.||
/. x1)
- (
||.f.||
/. x2)).|
<=
||.((f
/. x1)
- (f
/. x2)).|| by
CLVECT_1: 110;
||.((f
/. x1)
- (f
/. x2)).||
< r by
A4,
A5,
A6,
A7;
hence thesis by
A8,
XXREAL_0: 2;
end;
theorem ::
NCFCONT2:17
for f be
PartFunc of CNS, RNS st f
is_uniformly_continuous_on X holds
||.f.||
is_uniformly_continuous_on X
proof
let f be
PartFunc of CNS, RNS;
assume
A1: f
is_uniformly_continuous_on X;
then X
c= (
dom f);
hence
A2: X
c= (
dom
||.f.||) by
NORMSP_0:def 3;
let r;
assume
0
< r;
then
consider s such that
A3:
0
< s and
A4: for x1,x2 be
Point of CNS st x1
in X & x2
in X &
||.(x1
- x2).||
< s holds
||.((f
/. x1)
- (f
/. x2)).||
< r by
A1;
take s;
thus
0
< s by
A3;
let x1,x2 be
Point of CNS;
assume that
A5: x1
in X and
A6: x2
in X and
A7:
||.(x1
- x2).||
< s;
|.((
||.f.||
/. x1)
- (
||.f.||
/. x2)).|
=
|.((
||.f.||
. x1)
- (
||.f.||
/. x2)).| by
A2,
A5,
PARTFUN1:def 6
.=
|.((
||.f.||
. x1)
- (
||.f.||
. x2)).| by
A2,
A6,
PARTFUN1:def 6
.=
|.(
||.(f
/. x1).||
- (
||.f.||
. x2)).| by
A2,
A5,
NORMSP_0:def 3
.=
|.(
||.(f
/. x1).||
-
||.(f
/. x2).||).| by
A2,
A6,
NORMSP_0:def 3;
then
A8:
|.((
||.f.||
/. x1)
- (
||.f.||
/. x2)).|
<=
||.((f
/. x1)
- (f
/. x2)).|| by
NORMSP_1: 9;
||.((f
/. x1)
- (f
/. x2)).||
< r by
A4,
A5,
A6,
A7;
hence thesis by
A8,
XXREAL_0: 2;
end;
theorem ::
NCFCONT2:18
for f be
PartFunc of RNS, CNS st f
is_uniformly_continuous_on X holds
||.f.||
is_uniformly_continuous_on X
proof
let f be
PartFunc of RNS, CNS;
assume
A1: f
is_uniformly_continuous_on X;
then X
c= (
dom f);
then
A2: X
c= (
dom
||.f.||) by
NORMSP_0:def 3;
for r be
Real st
0
< r holds ex s be
Real st
0
< s & for x1,x2 be
Point of RNS st x1
in X & x2
in X &
||.(x1
- x2).||
< s holds
|.((
||.f.||
/. x1)
- (
||.f.||
/. x2)).|
< r
proof
let r be
Real;
assume
0
< r;
then
consider s be
Real such that
A3:
0
< s and
A4: for x1,x2 be
Point of RNS st x1
in X & x2
in X &
||.(x1
- x2).||
< s holds
||.((f
/. x1)
- (f
/. x2)).||
< r by
A1;
reconsider s as
Real;
take s;
thus
0
< s by
A3;
let x1,x2 be
Point of RNS;
assume that
A5: x1
in X and
A6: x2
in X and
A7:
||.(x1
- x2).||
< s;
|.((
||.f.||
/. x1)
- (
||.f.||
/. x2)).|
=
|.((
||.f.||
. x1)
- (
||.f.||
/. x2)).| by
A2,
A5,
PARTFUN1:def 6
.=
|.((
||.f.||
. x1)
- (
||.f.||
. x2)).| by
A2,
A6,
PARTFUN1:def 6
.=
|.(
||.(f
/. x1).||
- (
||.f.||
. x2)).| by
A2,
A5,
NORMSP_0:def 3
.=
|.(
||.(f
/. x1).||
-
||.(f
/. x2).||).| by
A2,
A6,
NORMSP_0:def 3;
then
A8:
|.((
||.f.||
/. x1)
- (
||.f.||
/. x2)).|
<=
||.((f
/. x1)
- (f
/. x2)).|| by
CLVECT_1: 110;
||.((f
/. x1)
- (f
/. x2)).||
< r by
A4,
A5,
A6,
A7;
hence thesis by
A8,
XXREAL_0: 2;
end;
hence thesis by
A2,
NFCONT_2:def 2;
end;
theorem ::
NCFCONT2:19
Th19: for f be
PartFunc of CNS1, CNS2 st f
is_uniformly_continuous_on X holds f
is_continuous_on X
proof
let f be
PartFunc of CNS1, CNS2;
assume
A1: f
is_uniformly_continuous_on X;
A2:
now
let x0 be
Point of CNS1;
let r be
Real;
assume that
A3: x0
in X and
A4:
0
< r;
consider s be
Real such that
A5:
0
< s and
A6: for x1,x2 be
Point of CNS1 st x1
in X & x2
in X &
||.(x1
- x2).||
< s holds
||.((f
/. x1)
- (f
/. x2)).||
< r by
A1,
A4;
take s;
thus
0
< s by
A5;
let x1 be
Point of CNS1;
assume x1
in X &
||.(x1
- x0).||
< s;
hence
||.((f
/. x1)
- (f
/. x0)).||
< r by
A3,
A6;
end;
X
c= (
dom f) by
A1;
hence thesis by
A2,
NCFCONT1: 44;
end;
theorem ::
NCFCONT2:20
Th20: for f be
PartFunc of CNS, RNS st f
is_uniformly_continuous_on X holds f
is_continuous_on X
proof
let f be
PartFunc of CNS, RNS;
assume
A1: f
is_uniformly_continuous_on X;
A2:
now
let x0 be
Point of CNS;
let r be
Real;
assume that
A3: x0
in X and
A4:
0
< r;
consider s be
Real such that
A5:
0
< s and
A6: for x1,x2 be
Point of CNS st x1
in X & x2
in X &
||.(x1
- x2).||
< s holds
||.((f
/. x1)
- (f
/. x2)).||
< r by
A1,
A4;
take s;
thus
0
< s by
A5;
let x1 be
Point of CNS;
assume x1
in X &
||.(x1
- x0).||
< s;
hence
||.((f
/. x1)
- (f
/. x0)).||
< r by
A3,
A6;
end;
X
c= (
dom f) by
A1;
hence thesis by
A2,
NCFCONT1: 45;
end;
theorem ::
NCFCONT2:21
Th21: for f be
PartFunc of RNS, CNS st f
is_uniformly_continuous_on X holds f
is_continuous_on X
proof
let f be
PartFunc of RNS, CNS;
assume
A1: f
is_uniformly_continuous_on X;
A2:
now
let x0 be
Point of RNS;
let r be
Real;
assume that
A3: x0
in X and
A4:
0
< r;
consider s be
Real such that
A5:
0
< s and
A6: for x1,x2 be
Point of RNS st x1
in X & x2
in X &
||.(x1
- x2).||
< s holds
||.((f
/. x1)
- (f
/. x2)).||
< r by
A1,
A4;
take s;
thus
0
< s by
A5;
let x1 be
Point of RNS;
assume x1
in X &
||.(x1
- x0).||
< s;
hence
||.((f
/. x1)
- (f
/. x0)).||
< r by
A3,
A6;
end;
X
c= (
dom f) by
A1;
hence thesis by
A2,
NCFCONT1: 46;
end;
theorem ::
NCFCONT2:22
for f be
PartFunc of the
carrier of CNS,
COMPLEX st f
is_uniformly_continuous_on X holds f
is_continuous_on X
proof
let f be
PartFunc of the
carrier of CNS,
COMPLEX ;
assume
A1: f
is_uniformly_continuous_on X;
A2:
now
let x0 be
Point of CNS;
let r be
Real;
assume that
A3: x0
in X and
A4:
0
< r;
consider s be
Real such that
A5:
0
< s and
A6: for x1,x2 be
Point of CNS st x1
in X & x2
in X &
||.(x1
- x2).||
< s holds
|.((f
/. x1)
- (f
/. x2)).|
< r by
A1,
A4;
take s;
thus
0
< s by
A5;
let x1 be
Point of CNS;
assume x1
in X &
||.(x1
- x0).||
< s;
hence
|.((f
/. x1)
- (f
/. x0)).|
< r by
A3,
A6;
end;
X
c= (
dom f) by
A1;
hence thesis by
A2,
NCFCONT1: 47;
end;
theorem ::
NCFCONT2:23
Th23: for f be
PartFunc of the
carrier of CNS,
REAL st f
is_uniformly_continuous_on X holds f
is_continuous_on X
proof
let f be
PartFunc of the
carrier of CNS,
REAL ;
assume
A1: f
is_uniformly_continuous_on X;
A2:
now
let x0 be
Point of CNS;
let r be
Real;
assume that
A3: x0
in X and
A4:
0
< r;
consider s be
Real such that
A5:
0
< s and
A6: for x1,x2 be
Point of CNS st x1
in X & x2
in X &
||.(x1
- x2).||
< s holds
|.((f
/. x1)
- (f
/. x2)).|
< r by
A1,
A4;
take s;
thus
0
< s by
A5;
let x1 be
Point of CNS;
assume x1
in X &
||.(x1
- x0).||
< s;
hence
|.((f
/. x1)
- (f
/. x0)).|
< r by
A3,
A6;
end;
X
c= (
dom f) by
A1;
hence thesis by
A2,
NCFCONT1: 48;
end;
theorem ::
NCFCONT2:24
for f be
PartFunc of the
carrier of RNS,
COMPLEX st f
is_uniformly_continuous_on X holds f
is_continuous_on X
proof
let f be
PartFunc of the
carrier of RNS,
COMPLEX ;
assume
A1: f
is_uniformly_continuous_on X;
A2:
now
let x0 be
Point of RNS;
let r be
Real;
assume that
A3: x0
in X and
A4:
0
< r;
consider s be
Real such that
A5:
0
< s and
A6: for x1,x2 be
Point of RNS st x1
in X & x2
in X &
||.(x1
- x2).||
< s holds
|.((f
/. x1)
- (f
/. x2)).|
< r by
A1,
A4;
take s;
thus
0
< s by
A5;
let x1 be
Point of RNS;
assume x1
in X &
||.(x1
- x0).||
< s;
hence
|.((f
/. x1)
- (f
/. x0)).|
< r by
A3,
A6;
end;
X
c= (
dom f) by
A1;
hence thesis by
A2,
NCFCONT1: 49;
end;
theorem ::
NCFCONT2:25
Th25: for f be
PartFunc of CNS1, CNS2 st f
is_Lipschitzian_on X holds f
is_uniformly_continuous_on X
proof
let f be
PartFunc of CNS1, CNS2;
assume
A1: f
is_Lipschitzian_on X;
hence X
c= (
dom f) by
NCFCONT1:def 17;
consider r be
Real such that
A2:
0
< r and
A3: for x1,x2 be
Point of CNS1 st x1
in X & x2
in X holds
||.((f
/. x1)
- (f
/. x2)).||
<= (r
*
||.(x1
- x2).||) by
A1,
NCFCONT1:def 17;
let p be
Real such that
A4:
0
< p;
take s = (p
/ r);
thus
0
< s by
A2,
A4;
let x1,x2 be
Point of CNS1;
assume x1
in X & x2
in X &
||.(x1
- x2).||
< s;
then (r
*
||.(x1
- x2).||)
< (s
* r) &
||.((f
/. x1)
- (f
/. x2)).||
<= (r
*
||.(x1
- x2).||) by
A2,
A3,
XREAL_1: 68;
then
||.((f
/. x1)
- (f
/. x2)).||
< ((p
/ r)
* r) by
XXREAL_0: 2;
hence thesis by
A2,
XCMPLX_1: 87;
end;
theorem ::
NCFCONT2:26
Th26: for f be
PartFunc of CNS, RNS st f
is_Lipschitzian_on X holds f
is_uniformly_continuous_on X
proof
let f be
PartFunc of CNS, RNS;
assume
A1: f
is_Lipschitzian_on X;
hence X
c= (
dom f) by
NCFCONT1:def 18;
consider r be
Real such that
A2:
0
< r and
A3: for x1,x2 be
Point of CNS st x1
in X & x2
in X holds
||.((f
/. x1)
- (f
/. x2)).||
<= (r
*
||.(x1
- x2).||) by
A1,
NCFCONT1:def 18;
let p be
Real such that
A4:
0
< p;
take s = (p
/ r);
thus
0
< s by
A2,
A4;
let x1,x2 be
Point of CNS;
assume x1
in X & x2
in X &
||.(x1
- x2).||
< s;
then (r
*
||.(x1
- x2).||)
< (s
* r) &
||.((f
/. x1)
- (f
/. x2)).||
<= (r
*
||.(x1
- x2).||) by
A2,
A3,
XREAL_1: 68;
then
||.((f
/. x1)
- (f
/. x2)).||
< ((p
/ r)
* r) by
XXREAL_0: 2;
hence thesis by
A2,
XCMPLX_1: 87;
end;
theorem ::
NCFCONT2:27
Th27: for f be
PartFunc of RNS, CNS st f
is_Lipschitzian_on X holds f
is_uniformly_continuous_on X
proof
let f be
PartFunc of RNS, CNS;
assume
A1: f
is_Lipschitzian_on X;
hence X
c= (
dom f) by
NCFCONT1:def 19;
consider r be
Real such that
A2:
0
< r and
A3: for x1,x2 be
Point of RNS st x1
in X & x2
in X holds
||.((f
/. x1)
- (f
/. x2)).||
<= (r
*
||.(x1
- x2).||) by
A1,
NCFCONT1:def 19;
let p be
Real such that
A4:
0
< p;
take s = (p
/ r);
thus
0
< s by
A2,
A4;
let x1,x2 be
Point of RNS;
assume x1
in X & x2
in X &
||.(x1
- x2).||
< s;
then (r
*
||.(x1
- x2).||)
< (s
* r) &
||.((f
/. x1)
- (f
/. x2)).||
<= (r
*
||.(x1
- x2).||) by
A2,
A3,
XREAL_1: 68;
then
||.((f
/. x1)
- (f
/. x2)).||
< ((p
/ r)
* r) by
XXREAL_0: 2;
hence thesis by
A2,
XCMPLX_1: 87;
end;
theorem ::
NCFCONT2:28
for f be
PartFunc of CNS1, CNS2, Y be
Subset of CNS1 st Y is
compact & f
is_continuous_on Y holds f
is_uniformly_continuous_on Y
proof
let f be
PartFunc of CNS1, CNS2;
let Y be
Subset of CNS1;
assume that
A1: Y is
compact and
A2: f
is_continuous_on Y;
A3: Y
c= (
dom f) by
A2,
NCFCONT1:def 11;
assume not thesis;
then
consider r such that
A4:
0
< r and
A5: for s st
0
< s holds ex x1,x2 be
Point of CNS1 st x1
in Y & x2
in Y &
||.(x1
- x2).||
< s & not
||.((f
/. x1)
- (f
/. x2)).||
< r by
A3;
defpred
P[
Element of
NAT ,
Point of CNS1] means $2
in Y & ex x2 be
Point of CNS1 st x2
in Y &
||.($2
- x2).||
< (1
/ ($1
+ 1)) & not
||.((f
/. $2)
- (f
/. x2)).||
< r;
A6:
now
let n be
Element of
NAT ;
consider x1 be
Point of CNS1 such that
A7: ex x2 be
Point of CNS1 st x1
in Y & x2
in Y &
||.(x1
- x2).||
< (1
/ (n
+ 1)) & not
||.((f
/. x1)
- (f
/. x2)).||
< r by
A5;
take x1;
thus
P[n, x1] by
A7;
end;
consider s1 be
sequence of CNS1 such that
A8: for n be
Element of
NAT holds
P[n, (s1
. n)] from
FUNCT_2:sch 3(
A6);
defpred
P1[
Nat,
Point of CNS1] means $2
in Y &
||.((s1
. $1)
- $2).||
< (1
/ ($1
+ 1)) & not
||.((f
/. (s1
. $1))
- (f
/. $2)).||
< r;
A9: for n be
Element of
NAT holds ex x2 be
Point of CNS1 st
P1[n, x2] by
A8;
consider s2 be
sequence of CNS1 such that
A10: for n be
Element of
NAT holds
P1[n, (s2
. n)] from
FUNCT_2:sch 3(
A9);
A11: for n be
Nat holds
P1[n, (s2
. n)]
proof
let n be
Nat;
n
in
NAT by
ORDINAL1:def 12;
hence thesis by
A10;
end;
now
let x be
Point of CNS1;
assume x
in (
rng s1);
then
consider n be
Nat such that
A12: x
= (s1
. n) by
NCFCONT1: 7;
n
in
NAT by
ORDINAL1:def 12;
hence x
in Y by
A8,
A12;
end;
then for x be
object st x
in (
rng s1) holds x
in Y;
then
A13: (
rng s1)
c= Y by
TARSKI:def 3;
then
consider q1 be
sequence of CNS1 such that
A14: q1 is
subsequence of s1 and
A15: q1 is
convergent and
A16: (
lim q1)
in Y by
A1,
NCFCONT1:def 2;
consider Ns1 be
increasing
sequence of
NAT such that
A17: q1
= (s1
* Ns1) by
A14,
VALUED_0:def 17;
set q2 = (q1
- ((s1
- s2)
* Ns1));
A18: (f
| Y)
is_continuous_in (
lim q1) by
A2,
A16,
NCFCONT1:def 11;
now
let x be
object;
assume x
in (
rng s2);
then
consider n be
Nat such that
A19: x
= (s2
. n) by
NCFCONT1: 7;
thus x
in Y by
A11,
A19;
end;
then
A20: (
rng s2)
c= Y by
TARSKI:def 3;
now
let n be
Element of
NAT ;
thus (q2
. n)
= (((s1
* Ns1)
. n)
- (((s1
- s2)
* Ns1)
. n)) by
A17,
NORMSP_1:def 3
.= ((s1
. (Ns1
. n))
- (((s1
- s2)
* Ns1)
. n)) by
FUNCT_2: 15
.= ((s1
. (Ns1
. n))
- ((s1
- s2)
. (Ns1
. n))) by
FUNCT_2: 15
.= ((s1
. (Ns1
. n))
- ((s1
. (Ns1
. n))
- (s2
. (Ns1
. n)))) by
NORMSP_1:def 3
.= (((s1
. (Ns1
. n))
- (s1
. (Ns1
. n)))
+ (s2
. (Ns1
. n))) by
RLVECT_1: 29
.= ((
0. CNS1)
+ (s2
. (Ns1
. n))) by
RLVECT_1: 15
.= (s2
. (Ns1
. n)) by
RLVECT_1: 4
.= ((s2
* Ns1)
. n) by
FUNCT_2: 15;
end;
then
A21: q2
= (s2
* Ns1) by
FUNCT_2: 63;
then (
rng q2)
c= (
rng s2) by
VALUED_0: 21;
then
A22: (
rng q2)
c= Y by
A20,
XBOOLE_1: 1;
then (
rng q2)
c= (
dom f) by
A3,
XBOOLE_1: 1;
then (
rng q2)
c= ((
dom f)
/\ Y) by
A22,
XBOOLE_1: 19;
then
A23: (
rng q2)
c= (
dom (f
| Y)) by
RELAT_1: 61;
A24:
now
let p be
Real such that
A25:
0
< p;
consider k be
Nat such that
A26: (p
" )
< k by
SEQ_4: 3;
take k;
let m be
Nat;
assume k
<= m;
then (k
+ 1)
<= (m
+ 1) by
XREAL_1: 6;
then (1
/ (m
+ 1))
<= (1
/ (k
+ 1)) by
XREAL_1: 118;
then
A27:
||.((s1
. m)
- (s2
. m)).||
< (1
/ (k
+ 1)) by
A11,
XXREAL_0: 2;
k
< (k
+ 1) by
NAT_1: 13;
then (p
" )
< (k
+ 1) by
A26,
XXREAL_0: 2;
then (1
/ (k
+ 1))
< (1
/ (p
" )) by
A25,
XREAL_1: 76;
then
A28: (1
/ (k
+ 1))
< p by
XCMPLX_1: 216;
||.(((s1
- s2)
. m)
- (
0. CNS1)).||
=
||.(((s1
. m)
- (s2
. m))
- (
0. CNS1)).|| by
NORMSP_1:def 3
.=
||.((s1
. m)
- (s2
. m)).|| by
RLVECT_1: 13;
hence
||.(((s1
- s2)
. m)
- (
0. CNS1)).||
< p by
A28,
A27,
XXREAL_0: 2;
end;
then
A29: (s1
- s2) is
convergent by
CLVECT_1:def 15;
then
A30: ((s1
- s2)
* Ns1) is
convergent by
CLOPBAN3: 7;
then
A31: q2 is
convergent by
A15,
CLVECT_1: 114;
(
rng q1)
c= (
rng s1) by
A14,
VALUED_0: 21;
then
A32: (
rng q1)
c= Y by
A13,
XBOOLE_1: 1;
then (
rng q1)
c= (
dom f) by
A3,
XBOOLE_1: 1;
then (
rng q1)
c= ((
dom f)
/\ Y) by
A32,
XBOOLE_1: 19;
then
A33: (
rng q1)
c= (
dom (f
| Y)) by
RELAT_1: 61;
then
A34: ((f
| Y)
/. (
lim q1))
= (
lim ((f
| Y)
/* q1)) by
A15,
A18,
NCFCONT1:def 5;
A35: ((f
| Y)
/* q1) is
convergent by
A15,
A18,
A33,
NCFCONT1:def 5;
(
lim (s1
- s2))
= (
0. CNS1) by
A24,
A29,
CLVECT_1:def 16;
then (
lim ((s1
- s2)
* Ns1))
= (
0. CNS1) by
A29,
CLOPBAN3: 8;
then
A36: (
lim q2)
= ((
lim q1)
- (
0. CNS1)) by
A15,
A30,
CLVECT_1: 120
.= (
lim q1) by
RLVECT_1: 13;
then
A37: ((f
| Y)
/* q2) is
convergent by
A18,
A31,
A23,
NCFCONT1:def 5;
then
A38: (((f
| Y)
/* q1)
- ((f
| Y)
/* q2)) is
convergent by
A35,
CLVECT_1: 114;
((f
| Y)
/. (
lim q1))
= (
lim ((f
| Y)
/* q2)) by
A18,
A31,
A36,
A23,
NCFCONT1:def 5;
then
A39: (
lim (((f
| Y)
/* q1)
- ((f
| Y)
/* q2)))
= (((f
| Y)
/. (
lim q1))
- ((f
| Y)
/. (
lim q1))) by
A35,
A34,
A37,
CLVECT_1: 120
.= (
0. CNS2) by
RLVECT_1: 15;
now
let n be
Element of
NAT ;
consider k be
Nat such that
A40: for m be
Nat st k
<= m holds
||.(((((f
| Y)
/* q1)
- ((f
| Y)
/* q2))
. m)
- (
0. CNS2)).||
< r by
A4,
A38,
A39,
CLVECT_1:def 16;
A41: k
in
NAT by
ORDINAL1:def 12;
A42: (q1
. k)
in (
rng q1) by
NCFCONT1: 7;
A43: (q2
. k)
in (
rng q2) by
NCFCONT1: 7;
||.(((((f
| Y)
/* q1)
- ((f
| Y)
/* q2))
. k)
- (
0. CNS2)).||
=
||.((((f
| Y)
/* q1)
- ((f
| Y)
/* q2))
. k).|| by
RLVECT_1: 13
.=
||.((((f
| Y)
/* q1)
. k)
- (((f
| Y)
/* q2)
. k)).|| by
NORMSP_1:def 3
.=
||.(((f
| Y)
/. (q1
. k))
- (((f
| Y)
/* q2)
. k)).|| by
A33,
FUNCT_2: 109,
A41
.=
||.(((f
| Y)
/. (q1
. k))
- ((f
| Y)
/. (q2
. k))).|| by
A23,
FUNCT_2: 109,
A41
.=
||.((f
/. (q1
. k))
- ((f
| Y)
/. (q2
. k))).|| by
A33,
A42,
PARTFUN2: 15
.=
||.((f
/. (q1
. k))
- (f
/. (q2
. k))).|| by
A23,
A43,
PARTFUN2: 15
.=
||.((f
/. (s1
. (Ns1
. k)))
- (f
/. ((s2
* Ns1)
. k))).|| by
A17,
A21,
FUNCT_2: 15,
A41
.=
||.((f
/. (s1
. (Ns1
. k)))
- (f
/. (s2
. (Ns1
. k)))).|| by
FUNCT_2: 15,
A41;
hence contradiction by
A11,
A40;
end;
hence contradiction;
end;
theorem ::
NCFCONT2:29
for f be
PartFunc of CNS, RNS, Y be
Subset of CNS st Y is
compact & f
is_continuous_on Y holds f
is_uniformly_continuous_on Y
proof
let f be
PartFunc of CNS, RNS;
let Y be
Subset of CNS;
assume that
A1: Y is
compact and
A2: f
is_continuous_on Y;
A3: Y
c= (
dom f) by
A2,
NCFCONT1:def 12;
assume not thesis;
then
consider r such that
A4:
0
< r and
A5: for s st
0
< s holds ex x1,x2 be
Point of CNS st x1
in Y & x2
in Y &
||.(x1
- x2).||
< s & not
||.((f
/. x1)
- (f
/. x2)).||
< r by
A3;
defpred
P[
Element of
NAT ,
Point of CNS] means $2
in Y & ex x2 be
Point of CNS st x2
in Y &
||.($2
- x2).||
< (1
/ ($1
+ 1)) & not
||.((f
/. $2)
- (f
/. x2)).||
< r;
A6:
now
let n be
Element of
NAT ;
consider x1 be
Point of CNS such that
A7: ex x2 be
Point of CNS st x1
in Y & x2
in Y &
||.(x1
- x2).||
< (1
/ (n
+ 1)) & not
||.((f
/. x1)
- (f
/. x2)).||
< r by
A5;
take x1;
thus
P[n, x1] by
A7;
end;
consider s1 be
sequence of CNS such that
A8: for n be
Element of
NAT holds
P[n, (s1
. n)] from
FUNCT_2:sch 3(
A6);
defpred
P1[
Nat,
Point of CNS] means $2
in Y &
||.((s1
. $1)
- $2).||
< (1
/ ($1
+ 1)) & not
||.((f
/. (s1
. $1))
- (f
/. $2)).||
< r;
A9: for n be
Element of
NAT holds ex x2 be
Point of CNS st
P1[n, x2] by
A8;
consider s2 be
sequence of CNS such that
A10: for n be
Element of
NAT holds
P1[n, (s2
. n)] from
FUNCT_2:sch 3(
A9);
A11: for n be
Nat holds
P1[n, (s2
. n)]
proof
let n be
Nat;
n
in
NAT by
ORDINAL1:def 12;
hence thesis by
A10;
end;
now
let x be
Point of CNS;
assume x
in (
rng s1);
then
consider n be
Nat such that
A12: x
= (s1
. n) by
NCFCONT1: 7;
n
in
NAT by
ORDINAL1:def 12;
hence x
in Y by
A8,
A12;
end;
then for x be
object st x
in (
rng s1) holds x
in Y;
then
A13: (
rng s1)
c= Y by
TARSKI:def 3;
then
consider q1 be
sequence of CNS such that
A14: q1 is
subsequence of s1 and
A15: q1 is
convergent and
A16: (
lim q1)
in Y by
A1,
NCFCONT1:def 2;
consider Ns1 be
increasing
sequence of
NAT such that
A17: q1
= (s1
* Ns1) by
A14,
VALUED_0:def 17;
set q2 = (q1
- ((s1
- s2)
* Ns1));
A18: (f
| Y)
is_continuous_in (
lim q1) by
A2,
A16,
NCFCONT1:def 12;
now
let x be
object;
assume x
in (
rng s2);
then
consider n be
Nat such that
A19: x
= (s2
. n) by
NCFCONT1: 7;
thus x
in Y by
A11,
A19;
end;
then
A20: (
rng s2)
c= Y by
TARSKI:def 3;
now
let n be
Element of
NAT ;
thus (q2
. n)
= (((s1
* Ns1)
. n)
- (((s1
- s2)
* Ns1)
. n)) by
A17,
NORMSP_1:def 3
.= ((s1
. (Ns1
. n))
- (((s1
- s2)
* Ns1)
. n)) by
FUNCT_2: 15
.= ((s1
. (Ns1
. n))
- ((s1
- s2)
. (Ns1
. n))) by
FUNCT_2: 15
.= ((s1
. (Ns1
. n))
- ((s1
. (Ns1
. n))
- (s2
. (Ns1
. n)))) by
NORMSP_1:def 3
.= (((s1
. (Ns1
. n))
- (s1
. (Ns1
. n)))
+ (s2
. (Ns1
. n))) by
RLVECT_1: 29
.= ((
0. CNS)
+ (s2
. (Ns1
. n))) by
RLVECT_1: 15
.= (s2
. (Ns1
. n)) by
RLVECT_1: 4
.= ((s2
* Ns1)
. n) by
FUNCT_2: 15;
end;
then
A21: q2
= (s2
* Ns1) by
FUNCT_2: 63;
then (
rng q2)
c= (
rng s2) by
VALUED_0: 21;
then
A22: (
rng q2)
c= Y by
A20,
XBOOLE_1: 1;
then (
rng q2)
c= (
dom f) by
A3,
XBOOLE_1: 1;
then (
rng q2)
c= ((
dom f)
/\ Y) by
A22,
XBOOLE_1: 19;
then
A23: (
rng q2)
c= (
dom (f
| Y)) by
RELAT_1: 61;
A24:
now
let p be
Real such that
A25:
0
< p;
consider k be
Nat such that
A26: (p
" )
< k by
SEQ_4: 3;
take k;
let m be
Nat;
assume k
<= m;
then (k
+ 1)
<= (m
+ 1) by
XREAL_1: 6;
then (1
/ (m
+ 1))
<= (1
/ (k
+ 1)) by
XREAL_1: 118;
then
A27:
||.((s1
. m)
- (s2
. m)).||
< (1
/ (k
+ 1)) by
A11,
XXREAL_0: 2;
k
< (k
+ 1) by
NAT_1: 13;
then (p
" )
< (k
+ 1) by
A26,
XXREAL_0: 2;
then (1
/ (k
+ 1))
< (1
/ (p
" )) by
A25,
XREAL_1: 76;
then
A28: (1
/ (k
+ 1))
< p by
XCMPLX_1: 216;
||.(((s1
- s2)
. m)
- (
0. CNS)).||
=
||.(((s1
. m)
- (s2
. m))
- (
0. CNS)).|| by
NORMSP_1:def 3
.=
||.((s1
. m)
- (s2
. m)).|| by
RLVECT_1: 13;
hence
||.(((s1
- s2)
. m)
- (
0. CNS)).||
< p by
A28,
A27,
XXREAL_0: 2;
end;
then
A29: (s1
- s2) is
convergent by
CLVECT_1:def 15;
then
A30: ((s1
- s2)
* Ns1) is
convergent by
CLOPBAN3: 7;
then
A31: q2 is
convergent by
A15,
CLVECT_1: 114;
(
rng q1)
c= (
rng s1) by
A14,
VALUED_0: 21;
then
A32: (
rng q1)
c= Y by
A13,
XBOOLE_1: 1;
then (
rng q1)
c= (
dom f) by
A3,
XBOOLE_1: 1;
then (
rng q1)
c= ((
dom f)
/\ Y) by
A32,
XBOOLE_1: 19;
then
A33: (
rng q1)
c= (
dom (f
| Y)) by
RELAT_1: 61;
then
A34: ((f
| Y)
/. (
lim q1))
= (
lim ((f
| Y)
/* q1)) by
A15,
A18,
NCFCONT1:def 6;
A35: ((f
| Y)
/* q1) is
convergent by
A15,
A18,
A33,
NCFCONT1:def 6;
(
lim (s1
- s2))
= (
0. CNS) by
A24,
A29,
CLVECT_1:def 16;
then (
lim ((s1
- s2)
* Ns1))
= (
0. CNS) by
A29,
CLOPBAN3: 8;
then
A36: (
lim q2)
= ((
lim q1)
- (
0. CNS)) by
A15,
A30,
CLVECT_1: 120
.= (
lim q1) by
RLVECT_1: 13;
then
A37: ((f
| Y)
/* q2) is
convergent by
A18,
A31,
A23,
NCFCONT1:def 6;
then
A38: (((f
| Y)
/* q1)
- ((f
| Y)
/* q2)) is
convergent by
A35,
NORMSP_1: 20;
((f
| Y)
/. (
lim q1))
= (
lim ((f
| Y)
/* q2)) by
A18,
A31,
A36,
A23,
NCFCONT1:def 6;
then
A39: (
lim (((f
| Y)
/* q1)
- ((f
| Y)
/* q2)))
= (((f
| Y)
/. (
lim q1))
- ((f
| Y)
/. (
lim q1))) by
A35,
A34,
A37,
NORMSP_1: 26
.= (
0. RNS) by
RLVECT_1: 15;
now
let n be
Element of
NAT ;
consider k be
Nat such that
A40: for m be
Nat st k
<= m holds
||.(((((f
| Y)
/* q1)
- ((f
| Y)
/* q2))
. m)
- (
0. RNS)).||
< r by
A4,
A38,
A39,
NORMSP_1:def 7;
A41: k
in
NAT by
ORDINAL1:def 12;
A42: (q1
. k)
in (
rng q1) by
NCFCONT1: 7;
A43: (q2
. k)
in (
rng q2) by
NCFCONT1: 7;
||.(((((f
| Y)
/* q1)
- ((f
| Y)
/* q2))
. k)
- (
0. RNS)).||
=
||.((((f
| Y)
/* q1)
- ((f
| Y)
/* q2))
. k).|| by
RLVECT_1: 13
.=
||.((((f
| Y)
/* q1)
. k)
- (((f
| Y)
/* q2)
. k)).|| by
NORMSP_1:def 3
.=
||.(((f
| Y)
/. (q1
. k))
- (((f
| Y)
/* q2)
. k)).|| by
A33,
FUNCT_2: 109,
A41
.=
||.(((f
| Y)
/. (q1
. k))
- ((f
| Y)
/. (q2
. k))).|| by
A23,
FUNCT_2: 109,
A41
.=
||.((f
/. (q1
. k))
- ((f
| Y)
/. (q2
. k))).|| by
A33,
A42,
PARTFUN2: 15
.=
||.((f
/. (q1
. k))
- (f
/. (q2
. k))).|| by
A23,
A43,
PARTFUN2: 15
.=
||.((f
/. (s1
. (Ns1
. k)))
- (f
/. ((s2
* Ns1)
. k))).|| by
A17,
A21,
FUNCT_2: 15,
A41
.=
||.((f
/. (s1
. (Ns1
. k)))
- (f
/. (s2
. (Ns1
. k)))).|| by
FUNCT_2: 15,
A41;
hence contradiction by
A11,
A40;
end;
hence contradiction;
end;
theorem ::
NCFCONT2:30
for f be
PartFunc of RNS, CNS, Y be
Subset of RNS st Y is
compact & f
is_continuous_on Y holds f
is_uniformly_continuous_on Y
proof
let f be
PartFunc of RNS, CNS;
let Y be
Subset of RNS;
assume that
A1: Y is
compact and
A2: f
is_continuous_on Y;
A3: Y
c= (
dom f) by
A2,
NCFCONT1:def 13;
assume not thesis;
then
consider r such that
A4:
0
< r and
A5: for s st
0
< s holds ex x1,x2 be
Point of RNS st x1
in Y & x2
in Y &
||.(x1
- x2).||
< s & not
||.((f
/. x1)
- (f
/. x2)).||
< r by
A3;
defpred
P[
Element of
NAT ,
Point of RNS] means $2
in Y & ex x2 be
Point of RNS st x2
in Y &
||.($2
- x2).||
< (1
/ ($1
+ 1)) & not
||.((f
/. $2)
- (f
/. x2)).||
< r;
A6:
now
let n be
Element of
NAT ;
consider x1 be
Point of RNS such that
A7: ex x2 be
Point of RNS st x1
in Y & x2
in Y &
||.(x1
- x2).||
< (1
/ (n
+ 1)) & not
||.((f
/. x1)
- (f
/. x2)).||
< r by
A5;
take x1;
thus
P[n, x1] by
A7;
end;
consider s1 be
sequence of RNS such that
A8: for n be
Element of
NAT holds
P[n, (s1
. n)] from
FUNCT_2:sch 3(
A6);
defpred
P1[
Nat,
Point of RNS] means $2
in Y &
||.((s1
. $1)
- $2).||
< (1
/ ($1
+ 1)) & not
||.((f
/. (s1
. $1))
- (f
/. $2)).||
< r;
A9: for n be
Element of
NAT holds ex x2 be
Point of RNS st
P1[n, x2] by
A8;
consider s2 be
sequence of RNS such that
A10: for n be
Element of
NAT holds
P1[n, (s2
. n)] from
FUNCT_2:sch 3(
A9);
A11: for n be
Nat holds
P1[n, (s2
. n)]
proof
let n be
Nat;
n
in
NAT by
ORDINAL1:def 12;
hence thesis by
A10;
end;
now
let x be
Point of RNS;
assume x
in (
rng s1);
then
consider n be
Nat such that
A12: x
= (s1
. n) by
NFCONT_1: 6;
n
in
NAT by
ORDINAL1:def 12;
hence x
in Y by
A8,
A12;
end;
then for x be
object st x
in (
rng s1) holds x
in Y;
then
A13: (
rng s1)
c= Y by
TARSKI:def 3;
then
consider q1 be
sequence of RNS such that
A14: q1 is
subsequence of s1 and
A15: q1 is
convergent and
A16: (
lim q1)
in Y by
A1,
NFCONT_1:def 2;
consider Ns1 be
increasing
sequence of
NAT such that
A17: q1
= (s1
* Ns1) by
A14,
VALUED_0:def 17;
set q2 = (q1
- ((s1
- s2)
* Ns1));
A18: (f
| Y)
is_continuous_in (
lim q1) by
A2,
A16,
NCFCONT1:def 13;
now
let x be
object;
assume x
in (
rng s2);
then
consider n be
Nat such that
A19: x
= (s2
. n) by
NFCONT_1: 6;
thus x
in Y by
A11,
A19;
end;
then
A20: (
rng s2)
c= Y by
TARSKI:def 3;
now
let n be
Element of
NAT ;
thus (q2
. n)
= (((s1
* Ns1)
. n)
- (((s1
- s2)
* Ns1)
. n)) by
A17,
NORMSP_1:def 3
.= ((s1
. (Ns1
. n))
- (((s1
- s2)
* Ns1)
. n)) by
FUNCT_2: 15
.= ((s1
. (Ns1
. n))
- ((s1
- s2)
. (Ns1
. n))) by
FUNCT_2: 15
.= ((s1
. (Ns1
. n))
- ((s1
. (Ns1
. n))
- (s2
. (Ns1
. n)))) by
NORMSP_1:def 3
.= (((s1
. (Ns1
. n))
- (s1
. (Ns1
. n)))
+ (s2
. (Ns1
. n))) by
RLVECT_1: 29
.= ((
0. RNS)
+ (s2
. (Ns1
. n))) by
RLVECT_1: 15
.= (s2
. (Ns1
. n)) by
RLVECT_1: 4
.= ((s2
* Ns1)
. n) by
FUNCT_2: 15;
end;
then
A21: q2
= (s2
* Ns1) by
FUNCT_2: 63;
then (
rng q2)
c= (
rng s2) by
VALUED_0: 21;
then
A22: (
rng q2)
c= Y by
A20,
XBOOLE_1: 1;
then (
rng q2)
c= (
dom f) by
A3,
XBOOLE_1: 1;
then (
rng q2)
c= ((
dom f)
/\ Y) by
A22,
XBOOLE_1: 19;
then
A23: (
rng q2)
c= (
dom (f
| Y)) by
RELAT_1: 61;
A24:
now
let p be
Real such that
A25:
0
< p;
consider k be
Nat such that
A26: (p
" )
< k by
SEQ_4: 3;
take k;
let m be
Nat;
assume k
<= m;
then (k
+ 1)
<= (m
+ 1) by
XREAL_1: 6;
then (1
/ (m
+ 1))
<= (1
/ (k
+ 1)) by
XREAL_1: 118;
then
A27:
||.((s1
. m)
- (s2
. m)).||
< (1
/ (k
+ 1)) by
A11,
XXREAL_0: 2;
k
< (k
+ 1) by
NAT_1: 13;
then (p
" )
< (k
+ 1) by
A26,
XXREAL_0: 2;
then (1
/ (k
+ 1))
< (1
/ (p
" )) by
A25,
XREAL_1: 76;
then
A28: (1
/ (k
+ 1))
< p by
XCMPLX_1: 216;
||.(((s1
- s2)
. m)
- (
0. RNS)).||
=
||.(((s1
. m)
- (s2
. m))
- (
0. RNS)).|| by
NORMSP_1:def 3
.=
||.((s1
. m)
- (s2
. m)).|| by
RLVECT_1: 13;
hence
||.(((s1
- s2)
. m)
- (
0. RNS)).||
< p by
A28,
A27,
XXREAL_0: 2;
end;
then
A29: (s1
- s2) is
convergent by
NORMSP_1:def 6;
then
A30: ((s1
- s2)
* Ns1) is
convergent by
LOPBAN_3: 7;
then
A31: q2 is
convergent by
A15,
NORMSP_1: 20;
(
rng q1)
c= (
rng s1) by
A14,
VALUED_0: 21;
then
A32: (
rng q1)
c= Y by
A13,
XBOOLE_1: 1;
then (
rng q1)
c= (
dom f) by
A3,
XBOOLE_1: 1;
then (
rng q1)
c= ((
dom f)
/\ Y) by
A32,
XBOOLE_1: 19;
then
A33: (
rng q1)
c= (
dom (f
| Y)) by
RELAT_1: 61;
then
A34: ((f
| Y)
/. (
lim q1))
= (
lim ((f
| Y)
/* q1)) by
A15,
A18,
NCFCONT1:def 7;
A35: ((f
| Y)
/* q1) is
convergent by
A15,
A18,
A33,
NCFCONT1:def 7;
(
lim (s1
- s2))
= (
0. RNS) by
A24,
A29,
NORMSP_1:def 7;
then (
lim ((s1
- s2)
* Ns1))
= (
0. RNS) by
A29,
LOPBAN_3: 8;
then
A36: (
lim q2)
= ((
lim q1)
- (
0. RNS)) by
A15,
A30,
NORMSP_1: 26
.= (
lim q1) by
RLVECT_1: 13;
then
A37: ((f
| Y)
/* q2) is
convergent by
A18,
A31,
A23,
NCFCONT1:def 7;
then
A38: (((f
| Y)
/* q1)
- ((f
| Y)
/* q2)) is
convergent by
A35,
CLVECT_1: 114;
((f
| Y)
/. (
lim q1))
= (
lim ((f
| Y)
/* q2)) by
A18,
A31,
A36,
A23,
NCFCONT1:def 7;
then
A39: (
lim (((f
| Y)
/* q1)
- ((f
| Y)
/* q2)))
= (((f
| Y)
/. (
lim q1))
- ((f
| Y)
/. (
lim q1))) by
A35,
A34,
A37,
CLVECT_1: 120
.= (
0. CNS) by
RLVECT_1: 15;
now
let n be
Element of
NAT ;
consider k be
Nat such that
A40: for m be
Nat st k
<= m holds
||.(((((f
| Y)
/* q1)
- ((f
| Y)
/* q2))
. m)
- (
0. CNS)).||
< r by
A4,
A38,
A39,
CLVECT_1:def 16;
A41: (q1
. k)
in (
rng q1) by
NFCONT_1: 6;
A42: (q2
. k)
in (
rng q2) by
NFCONT_1: 6;
A43: k
in
NAT by
ORDINAL1:def 12;
||.(((((f
| Y)
/* q1)
- ((f
| Y)
/* q2))
. k)
- (
0. CNS)).||
=
||.((((f
| Y)
/* q1)
- ((f
| Y)
/* q2))
. k).|| by
RLVECT_1: 13
.=
||.((((f
| Y)
/* q1)
. k)
- (((f
| Y)
/* q2)
. k)).|| by
NORMSP_1:def 3
.=
||.(((f
| Y)
/. (q1
. k))
- (((f
| Y)
/* q2)
. k)).|| by
A33,
FUNCT_2: 109,
A43
.=
||.(((f
| Y)
/. (q1
. k))
- ((f
| Y)
/. (q2
. k))).|| by
A23,
FUNCT_2: 109,
A43
.=
||.((f
/. (q1
. k))
- ((f
| Y)
/. (q2
. k))).|| by
A33,
A41,
PARTFUN2: 15
.=
||.((f
/. (q1
. k))
- (f
/. (q2
. k))).|| by
A23,
A42,
PARTFUN2: 15
.=
||.((f
/. (s1
. (Ns1
. k)))
- (f
/. ((s2
* Ns1)
. k))).|| by
A17,
A21,
FUNCT_2: 15,
A43
.=
||.((f
/. (s1
. (Ns1
. k)))
- (f
/. (s2
. (Ns1
. k)))).|| by
FUNCT_2: 15,
A43;
hence contradiction by
A11,
A40;
end;
hence contradiction;
end;
theorem ::
NCFCONT2:31
for f be
PartFunc of CNS1, CNS2, Y be
Subset of CNS1 st Y
c= (
dom f) & Y is
compact & f
is_uniformly_continuous_on Y holds (f
.: Y) is
compact by
Th19,
NCFCONT1: 83;
theorem ::
NCFCONT2:32
for f be
PartFunc of CNS, RNS, Y be
Subset of CNS st Y
c= (
dom f) & Y is
compact & f
is_uniformly_continuous_on Y holds (f
.: Y) is
compact by
Th20,
NCFCONT1: 84;
theorem ::
NCFCONT2:33
for f be
PartFunc of RNS, CNS, Y be
Subset of RNS st Y
c= (
dom f) & Y is
compact & f
is_uniformly_continuous_on Y holds (f
.: Y) is
compact by
Th21,
NCFCONT1: 85;
theorem ::
NCFCONT2:34
for f be
PartFunc of the
carrier of CNS,
REAL , Y be
Subset of CNS st Y
<>
{} & Y
c= (
dom f) & Y is
compact & f
is_uniformly_continuous_on Y holds ex x1,x2 be
Point of CNS st x1
in Y & x2
in Y & (f
/. x1)
= (
upper_bound (f
.: Y)) & (f
/. x2)
= (
lower_bound (f
.: Y)) by
Th23,
NCFCONT1: 96;
theorem ::
NCFCONT2:35
for f be
PartFunc of CNS1, CNS2 st X
c= (
dom f) & (f
| X) is
constant holds f
is_uniformly_continuous_on X by
Th25,
NCFCONT1: 112;
theorem ::
NCFCONT2:36
for f be
PartFunc of CNS, RNS st X
c= (
dom f) & (f
| X) is
constant holds f
is_uniformly_continuous_on X by
Th26,
NCFCONT1: 113;
theorem ::
NCFCONT2:37
for f be
PartFunc of RNS, CNS st X
c= (
dom f) & (f
| X) is
constant holds f
is_uniformly_continuous_on X by
Th27,
NCFCONT1: 114;
begin
definition
let M be non
empty
CNORMSTR;
let f be
Function of M, M;
::
NCFCONT2:def7
attr f is
contraction means
:
Def7: ex L be
Real st
0
< L & L
< 1 & for x,y be
Point of M holds
||.((f
. x)
- (f
. y)).||
<= (L
*
||.(x
- y).||);
end
registration
let M be
ComplexBanachSpace;
cluster
contraction for
Function of M, M;
existence
proof
set x = the
Point of M;
reconsider f = (the
carrier of M
--> x) as
Function of the
carrier of M, the
carrier of M;
reconsider jd = (1
/ 2) as
Real;
take f, jd;
thus
0
< jd & jd
< 1;
let z,y be
Point of M;
(f
. z)
= x & (f
. y)
= x by
FUNCOP_1: 7;
then
A1:
||.((f
. z)
- (f
. y)).||
=
0 by
CLVECT_1: 107;
||.(z
- y).||
>=
0 by
CLVECT_1: 105;
hence thesis by
A1;
end;
end
definition
let M be
ComplexBanachSpace;
mode
Contraction of M is
contraction
Function of M, M;
end
theorem ::
NCFCONT2:38
for X be
ComplexNormSpace, x,y be
Point of X holds
||.(x
- y).||
>
0 iff x
<> y
proof
let X be
ComplexNormSpace;
let x,y be
Point of X;
0
<
||.(x
- y).|| implies (x
- y)
<> (
0. X) by
NORMSP_0:def 6;
hence
0
<
||.(x
- y).|| implies x
<> y by
RLVECT_1: 15;
now
assume x
<> y;
then
0
<>
||.(x
- y).|| by
CLVECT_1: 112;
hence
0
<
||.(x
- y).|| by
CLVECT_1: 105;
end;
hence thesis;
end;
theorem ::
NCFCONT2:39
for X be
ComplexNormSpace, x,y be
Point of X holds
||.(x
- y).||
=
||.(y
- x).||
proof
let X be
ComplexNormSpace;
let x,y be
Point of X;
thus
||.(x
- y).||
=
||.(
- (x
- y)).|| by
CLVECT_1: 103
.=
||.(y
- x).|| by
RLVECT_1: 33;
end;
Lm1: for X be
ComplexNormSpace, x,y,z be
Point of X, e be
Real holds (
||.(x
- z).||
< (e
/ 2) &
||.(z
- y).||
< (e
/ 2) implies
||.(x
- y).||
< e)
proof
let X be
ComplexNormSpace;
let x,y,z be
Point of X;
let e be
Real;
assume
||.(x
- z).||
< (e
/ 2) &
||.(z
- y).||
< (e
/ 2);
then (
||.(x
- z).||
+
||.(z
- y).||)
< ((e
/ 2)
+ (e
/ 2)) by
XREAL_1: 8;
then (
||.(x
- y).||
+ (
||.(x
- z).||
+
||.(z
- y).||))
< ((
||.(x
- z).||
+
||.(z
- y).||)
+ e) by
CLVECT_1: 111,
XREAL_1: 8;
then ((
||.(x
- y).||
+ (
||.(x
- z).||
+
||.(z
- y).||))
+ (
- (
||.(x
- z).||
+
||.(z
- y).||)))
< ((e
+ (
||.(x
- z).||
+
||.(z
- y).||))
+ (
- (
||.(x
- z).||
+
||.(z
- y).||))) by
XREAL_1: 8;
hence thesis;
end;
Lm2: for X be
ComplexNormSpace, x,y,z be
Point of X, e be
Real holds
||.(x
- z).||
< (e
/ 2) &
||.(y
- z).||
< (e
/ 2) implies
||.(x
- y).||
< e
proof
let X be
ComplexNormSpace;
let x,y,z be
Point of X;
let e be
Real;
assume that
A1:
||.(x
- z).||
< (e
/ 2) and
A2:
||.(y
- z).||
< (e
/ 2);
||.(
- (y
- z)).||
< (e
/ 2) by
A2,
CLVECT_1: 103;
then
||.(z
- y).||
< (e
/ 2) by
RLVECT_1: 33;
hence thesis by
A1,
Lm1;
end;
Lm3: for X be
ComplexNormSpace, x be
Point of X st for e be
Real st e
>
0 holds
||.x.||
< e holds x
= (
0. X)
proof
let X be
ComplexNormSpace;
let x be
Point of X such that
A1: for e be
Real st e
>
0 holds
||.x.||
< e;
now
assume x
<> (
0. X);
then
0
<>
||.x.|| by
NORMSP_0:def 5;
then
0
<
||.x.|| by
CLVECT_1: 105;
hence contradiction by
A1;
end;
hence thesis;
end;
Lm4: for X be
ComplexNormSpace, x,y be
Point of X st for e be
Real st e
>
0 holds
||.(x
- y).||
< e holds x
= y
proof
let X be
ComplexNormSpace;
let x,y be
Point of X;
assume for e be
Real st e
>
0 holds
||.(x
- y).||
< e;
then (x
- y)
= (
0. X) by
Lm3;
hence thesis by
RLVECT_1: 21;
end;
theorem ::
NCFCONT2:40
Th40: for X be
ComplexBanachSpace, f be
Function of X, X st f is
Contraction of X holds ex xp be
Point of X st (f
. xp)
= xp & for x be
Point of X st (f
. x)
= x holds xp
= x
proof
let X be
ComplexBanachSpace;
set x0 = the
Element of X;
let f be
Function of X, X;
assume f is
Contraction of X;
then
consider K be
Real such that
A1:
0
< K and
A2: K
< 1 and
A3: for x,y be
Point of X holds
||.((f
. x)
- (f
. y)).||
<= (K
*
||.(x
- y).||) by
Def7;
deffunc
G(
set,
set) = (f
. $2);
consider g be
Function such that
A4: (
dom g)
=
NAT & (g
.
0 )
= x0 & for n be
Nat holds (g
. (n
+ 1))
=
G(n,.) from
NAT_1:sch 11;
defpred
P[
Nat] means (g
. $1)
in the
carrier of X;
A5: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat such that
A6:
P[k];
(g
. (k
+ 1))
= (f
. (g
. k)) by
A4;
hence thesis by
A6,
FUNCT_2: 5;
end;
A7:
P[
0 ] by
A4;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A7,
A5);
then for n be
object st n
in
NAT holds (g
. n)
in the
carrier of X;
then
reconsider g as
sequence of X by
A4,
FUNCT_2: 3;
A8:
now
let n be
Element of
NAT ;
||.(((g
^\ 1)
. n)
- (f
. (
lim g))).||
=
||.((g
. (n
+ 1))
- (f
. (
lim g))).|| by
NAT_1:def 3
.=
||.((f
. (g
. n))
- (f
. (
lim g))).|| by
A4;
hence
||.(((g
^\ 1)
. n)
- (f
. (
lim g))).||
<= (K
*
||.((g
. n)
- (
lim g)).||) by
A3;
end;
A9: for n be
Nat holds
||.((g
. (n
+ 1))
- (g
. n)).||
<= (
||.((g
. 1)
- (g
.
0 )).||
* (K
to_power n))
proof
defpred
P[
Nat] means
||.((g
. ($1
+ 1))
- (g
. $1)).||
<= (
||.((g
. 1)
- (g
.
0 )).||
* (K
to_power $1));
A10: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume
P[k];
then
A11: (K
*
||.((g
. (k
+ 1))
- (g
. k)).||)
<= (K
* (
||.((g
. 1)
- (g
.
0 )).||
* (K
to_power k))) by
A1,
XREAL_1: 64;
||.((f
. (g
. (k
+ 1)))
- (f
. (g
. k))).||
<= (K
*
||.((g
. (k
+ 1))
- (g
. k)).||) by
A3;
then
||.((f
. (g
. (k
+ 1)))
- (f
. (g
. k))).||
<= (
||.((g
. 1)
- (g
.
0 )).||
* (K
* (K
to_power k))) by
A11,
XXREAL_0: 2;
then
A12:
||.((f
. (g
. (k
+ 1)))
- (f
. (g
. k))).||
<= (
||.((g
. 1)
- (g
.
0 )).||
* ((K
to_power 1)
* (K
to_power k))) by
POWER: 25;
(g
. ((k
+ 1)
+ 1))
= (f
. (g
. (k
+ 1))) & (g
. (k
+ 1))
= (f
. (g
. k)) by
A4;
hence thesis by
A1,
A12,
POWER: 27;
end;
||.((g
. (
0
+ 1))
- (g
.
0 )).||
= (
||.((g
. 1)
- (g
.
0 )).||
* 1)
.= (
||.((g
. 1)
- (g
.
0 )).||
* (K
to_power
0 )) by
POWER: 24;
then
A13:
P[
0 ];
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A13,
A10);
hence thesis;
end;
A14: for k,n be
Element of
NAT holds
||.((g
. (n
+ k))
- (g
. n)).||
<= (
||.((g
. 1)
- (g
.
0 )).||
* (((K
to_power n)
- (K
to_power (n
+ k)))
/ (1
- K)))
proof
defpred
P[
Nat] means for n be
Element of
NAT holds
||.((g
. (n
+ $1))
- (g
. n)).||
<= (
||.((g
. 1)
- (g
.
0 )).||
* (((K
to_power n)
- (K
to_power (n
+ $1)))
/ (1
- K)));
A15:
now
let k be
Nat such that
A16:
P[k];
now
let n be
Element of
NAT ;
(1
- K)
<>
0 by
A2;
then
A17: ((
||.((g
. 1)
- (g
.
0 )).||
* (((K
to_power n)
- (K
to_power (n
+ k)))
/ (1
- K)))
+ (
||.((g
. 1)
- (g
.
0 )).||
* (K
to_power (n
+ k))))
= ((
||.((g
. 1)
- (g
.
0 )).||
* (((K
to_power n)
- (K
to_power (n
+ k)))
/ (1
- K)))
+ (((
||.((g
. 1)
- (g
.
0 )).||
* (K
to_power (n
+ k)))
* (1
- K))
/ (1
- K))) by
XCMPLX_1: 89
.= ((
||.((g
. 1)
- (g
.
0 )).||
* (((K
to_power n)
- (K
to_power (n
+ k)))
/ (1
- K)))
+ ((
||.((g
. 1)
- (g
.
0 )).||
* ((K
to_power (n
+ k))
* (1
- K)))
/ (1
- K)))
.= ((
||.((g
. 1)
- (g
.
0 )).||
* (((K
to_power n)
- (K
to_power (n
+ k)))
/ (1
- K)))
+ (
||.((g
. 1)
- (g
.
0 )).||
* (((K
to_power (n
+ k))
* (1
- K))
/ (1
- K)))) by
XCMPLX_1: 74
.= (
||.((g
. 1)
- (g
.
0 )).||
* ((((K
to_power n)
- (K
to_power (n
+ k)))
/ (1
- K))
+ (((K
to_power (n
+ k))
* (1
- K))
/ (1
- K))))
.= (
||.((g
. 1)
- (g
.
0 )).||
* ((((K
to_power n)
- (K
to_power (n
+ k)))
+ ((1
* (K
to_power (n
+ k)))
- (K
* (K
to_power (n
+ k)))))
/ (1
- K))) by
XCMPLX_1: 62
.= (
||.((g
. 1)
- (g
.
0 )).||
* (((K
to_power n)
- (K
* (K
to_power (n
+ k))))
/ (1
- K)))
.= (
||.((g
. 1)
- (g
.
0 )).||
* (((K
to_power n)
- ((K
to_power 1)
* (K
to_power (n
+ k))))
/ (1
- K))) by
POWER: 25
.= (
||.((g
. 1)
- (g
.
0 )).||
* (((K
to_power n)
- (K
to_power ((n
+ k)
+ 1)))
/ (1
- K))) by
A1,
POWER: 27;
||.((g
. (n
+ k))
- (g
. n)).||
<= (
||.((g
. 1)
- (g
.
0 )).||
* (((K
to_power n)
- (K
to_power (n
+ k)))
/ (1
- K))) &
||.((g
. ((n
+ k)
+ 1))
- (g
. (n
+ k))).||
<= (
||.((g
. 1)
- (g
.
0 )).||
* (K
to_power (n
+ k))) by
A9,
A16;
then
||.((g
. (n
+ (k
+ 1)))
- (g
. n)).||
<= (
||.((g
. (n
+ (k
+ 1)))
- (g
. (n
+ k))).||
+
||.((g
. (n
+ k))
- (g
. n)).||) & (
||.((g
. (n
+ (k
+ 1)))
- (g
. (n
+ k))).||
+
||.((g
. (n
+ k))
- (g
. n)).||)
<= ((
||.((g
. 1)
- (g
.
0 )).||
* (K
to_power (n
+ k)))
+ (
||.((g
. 1)
- (g
.
0 )).||
* (((K
to_power n)
- (K
to_power (n
+ k)))
/ (1
- K)))) by
CLVECT_1: 111,
XREAL_1: 7;
hence
||.((g
. (n
+ (k
+ 1)))
- (g
. n)).||
<= (
||.((g
. 1)
- (g
.
0 )).||
* (((K
to_power n)
- (K
to_power (n
+ (k
+ 1))))
/ (1
- K))) by
A17,
XXREAL_0: 2;
end;
hence
P[(k
+ 1)];
end;
now
let n be
Element of
NAT ;
||.((g
. (n
+
0 ))
- (g
. n)).||
=
||.(
0. X).|| by
RLVECT_1: 15
.=
0 by
CLVECT_1: 102;
hence
||.((g
. (n
+
0 ))
- (g
. n)).||
<= (
||.((g
. 1)
- (g
.
0 )).||
* (((K
to_power n)
- (K
to_power (n
+
0 )))
/ (1
- K)));
end;
then
A18:
P[
0 ];
for k be
Nat holds
P[k] from
NAT_1:sch 2(
A18,
A15);
hence thesis;
end;
A19: for k,n be
Element of
NAT holds
||.((g
. (n
+ k))
- (g
. n)).||
<= (
||.((g
. 1)
- (g
.
0 )).||
* ((K
to_power n)
/ (1
- K)))
proof
let k be
Element of
NAT ;
now
let n be
Element of
NAT ;
A20:
0
<=
||.((g
. 1)
- (g
.
0 )).|| by
CLVECT_1: 105;
(K
to_power (n
+ k))
>
0 by
A1,
POWER: 34;
then
A21: ((K
to_power n)
- (K
to_power (n
+ k)))
<= ((K
to_power n)
-
0 ) by
XREAL_1: 13;
(1
- K)
> (1
- 1) by
A2,
XREAL_1: 15;
then (((K
to_power n)
- (K
to_power (n
+ k)))
/ (1
- K))
<= ((K
to_power n)
/ (1
- K)) by
A21,
XREAL_1: 72;
then
A22: (
||.((g
. 1)
- (g
.
0 )).||
* (((K
to_power n)
- (K
to_power (n
+ k)))
/ (1
- K)))
<= (
||.((g
. 1)
- (g
.
0 )).||
* ((K
to_power n)
/ (1
- K))) by
A20,
XREAL_1: 64;
||.((g
. (n
+ k))
- (g
. n)).||
<= (
||.((g
. 1)
- (g
.
0 )).||
* (((K
to_power n)
- (K
to_power (n
+ k)))
/ (1
- K))) by
A14;
hence
||.((g
. (n
+ k))
- (g
. n)).||
<= (
||.((g
. 1)
- (g
.
0 )).||
* ((K
to_power n)
/ (1
- K))) by
A22,
XXREAL_0: 2;
end;
hence thesis;
end;
now
let e be
Real such that
A23: e
>
0 ;
(e
/ 2)
>
0 by
A23;
then
consider n be
Nat such that
A24:
|.((
||.((g
. 1)
- (g
.
0 )).||
/ (1
- K))
* (K
to_power n)).|
< (e
/ 2) by
A1,
A2,
NFCONT_2: 16;
reconsider nn = (n
+ 1) as
Nat;
take nn;
((
||.((g
. 1)
- (g
.
0 )).||
/ (1
- K))
* (K
to_power n))
<=
|.((
||.((g
. 1)
- (g
.
0 )).||
/ (1
- K))
* (K
to_power n)).| by
ABSVALUE: 4;
then ((
||.((g
. 1)
- (g
.
0 )).||
/ (1
- K))
* (K
to_power n))
< (e
/ 2) by
A24,
XXREAL_0: 2;
then
A25: (
||.((g
. 1)
- (g
.
0 )).||
* ((K
to_power n)
/ (1
- K)))
< (e
/ 2) by
XCMPLX_1: 75;
now
let m,l be
Nat such that
A26: nn
<= m and
A27: nn
<= l;
n
< m by
A26,
NAT_1: 13;
then
consider k1 be
Nat such that
A28: (n
+ k1)
= m by
NAT_1: 10;
n
< l by
A27,
NAT_1: 13;
then
consider k2 be
Nat such that
A29: (n
+ k2)
= l by
NAT_1: 10;
reconsider k2 as
Nat;
A30: n
in
NAT by
ORDINAL1:def 12;
A31: k2
in
NAT by
ORDINAL1:def 12;
||.((g
. (n
+ k2))
- (g
. n)).||
<= (
||.((g
. 1)
- (g
.
0 )).||
* ((K
to_power n)
/ (1
- K))) by
A19,
A30,
A31;
then
A32:
||.((g
. l)
- (g
. n)).||
< (e
/ 2) by
A25,
A29,
XXREAL_0: 2;
reconsider k1 as
Element of
NAT by
ORDINAL1:def 12;
||.((g
. (n
+ k1))
- (g
. n)).||
<= (
||.((g
. 1)
- (g
.
0 )).||
* ((K
to_power n)
/ (1
- K))) by
A19,
A30;
then
||.((g
. m)
- (g
. n)).||
< (e
/ 2) by
A25,
A28,
XXREAL_0: 2;
hence
||.((g
. l)
- (g
. m)).||
< e by
A32,
Lm2;
end;
hence for n,m be
Nat st n
>= nn & m
>= nn holds
||.((g
. n)
- (g
. m)).||
< e;
end;
then g is
Cauchy_sequence_by_Norm by
CSSPACE3: 8;
then
A33: g is
convergent by
CLOPBAN1:def 13;
then
A34: (K
(#)
||.(g
- (
lim g)).||) is
convergent by
CLVECT_1: 118,
SEQ_2: 7;
A35: (
lim (K
(#)
||.(g
- (
lim g)).||))
= (K
* (
lim
||.(g
- (
lim g)).||)) by
A33,
CLVECT_1: 118,
SEQ_2: 8
.= (K
*
0 ) by
A33,
CLVECT_1: 118
.=
0 ;
A36: for e be
Real st e
>
0 holds ex n be
Nat st for m be
Nat st n
<= m holds
||.(((g
^\ 1)
. m)
- (f
. (
lim g))).||
< e
proof
let e be
Real;
assume e
>
0 ;
then
consider n be
Nat such that
A37: for m be
Nat st n
<= m holds
|.(((K
(#)
||.(g
- (
lim g)).||)
. m)
-
0 ).|
< e by
A34,
A35,
SEQ_2:def 7;
take n;
now
let m be
Nat;
A38: m
in
NAT by
ORDINAL1:def 12;
assume n
<= m;
then
|.(((K
(#)
||.(g
- (
lim g)).||)
. m)
-
0 ).|
< e by
A37;
then
|.(K
* (
||.(g
- (
lim g)).||
. m)).|
< e by
SEQ_1: 9;
then
|.(K
*
||.((g
- (
lim g))
. m).||).|
< e by
NORMSP_0:def 4;
then
A39:
|.(K
*
||.((g
. m)
- (
lim g)).||).|
< e by
NORMSP_1:def 4;
(K
*
||.((g
. m)
- (
lim g)).||)
<=
|.(K
*
||.((g
. m)
- (
lim g)).||).| by
ABSVALUE: 4;
then
A40: (K
*
||.((g
. m)
- (
lim g)).||)
< e by
A39,
XXREAL_0: 2;
||.(((g
^\ 1)
. m)
- (f
. (
lim g))).||
<= (K
*
||.((g
. m)
- (
lim g)).||) by
A8,
A38;
hence
||.(((g
^\ 1)
. m)
- (f
. (
lim g))).||
< e by
A40,
XXREAL_0: 2;
end;
hence thesis;
end;
take xp = (
lim g);
A41: (g
^\ 1) is
convergent & (
lim (g
^\ 1))
= (
lim g) by
A33,
CLOPBAN3: 9;
then
A42: (
lim g)
= (f
. (
lim g)) by
A36,
CLVECT_1:def 16;
now
let x be
Point of X such that
A43: (f
. x)
= x;
A44: for k be
Element of
NAT holds
||.(x
- xp).||
<= (
||.(x
- xp).||
* (K
to_power k))
proof
defpred
P[
Nat] means
||.(x
- xp).||
<= (
||.(x
- xp).||
* (K
to_power $1));
A45: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume
P[k];
then
A46: (K
*
||.(x
- xp).||)
<= (K
* (
||.(x
- xp).||
* (K
to_power k))) by
A1,
XREAL_1: 64;
||.((f
. x)
- (f
. xp)).||
<= (K
*
||.(x
- xp).||) by
A3;
then
||.((f
. x)
- (f
. xp)).||
<= (
||.(x
- xp).||
* (K
* (K
to_power k))) by
A46,
XXREAL_0: 2;
then
||.((f
. x)
- (f
. xp)).||
<= (
||.(x
- xp).||
* ((K
to_power 1)
* (K
to_power k))) by
POWER: 25;
hence thesis by
A1,
A42,
A43,
POWER: 27;
end;
||.(x
- xp).||
= (
||.(x
- xp).||
* 1)
.= (
||.(x
- xp).||
* (K
to_power
0 )) by
POWER: 24;
then
A47:
P[
0 ];
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A47,
A45);
hence thesis;
end;
for e be
Real st
0
< e holds
||.(x
- xp).||
< e
proof
let e be
Real;
assume
0
< e;
then
consider n be
Nat such that
A48:
|.(
||.(x
- xp).||
* (K
to_power n)).|
< e by
A1,
A2,
NFCONT_2: 16;
A49: n
in
NAT by
ORDINAL1:def 12;
(
||.(x
- xp).||
* (K
to_power n))
<=
|.(
||.(x
- xp).||
* (K
to_power n)).| by
ABSVALUE: 4;
then
A50: (
||.(x
- xp).||
* (K
to_power n))
< e by
A48,
XXREAL_0: 2;
||.(x
- xp).||
<= (
||.(x
- xp).||
* (K
to_power n)) by
A44,
A49;
hence thesis by
A50,
XXREAL_0: 2;
end;
hence x
= xp by
Lm4;
end;
hence thesis by
A41,
A36,
CLVECT_1:def 16;
end;
theorem ::
NCFCONT2:41
for X be
ComplexBanachSpace holds for f be
Function of X, X st ex n0 be
Element of
NAT st (
iter (f,n0)) is
Contraction of X holds ex xp be
Point of X st (f
. xp)
= xp & for x be
Point of X st (f
. x)
= x holds xp
= x
proof
let X be
ComplexBanachSpace;
let f be
Function of X, X;
given n0 be
Element of
NAT such that
A1: (
iter (f,n0)) is
Contraction of X;
consider xp be
Point of X such that
A2: ((
iter (f,n0))
. xp)
= xp and
A3: for x be
Point of X st ((
iter (f,n0))
. x)
= x holds xp
= x by
A1,
Th40;
A4:
now
let x be
Point of X such that
A5: (f
. x)
= x;
for n be
Element of
NAT holds ((
iter (f,n))
. x)
= x
proof
defpred
P[
Nat] means ((
iter (f,$1))
. x)
= x;
A6:
now
let n be
Nat such that
A7:
P[n];
A8: (
iter (f,n)) is
Function of X, X by
FUNCT_7: 83;
((
iter (f,(n
+ 1)))
. x)
= ((f
* (
iter (f,n)))
. x) by
FUNCT_7: 71
.= x by
A5,
A7,
A8,
FUNCT_2: 15;
hence
P[(n
+ 1)];
end;
((
iter (f,
0 ))
. x)
= ((
id the
carrier of X)
. x) by
FUNCT_7: 84
.= x;
then
A9:
P[
0 ];
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A9,
A6);
hence thesis;
end;
then ((
iter (f,n0))
. x)
= x;
hence xp
= x by
A3;
end;
A10: (
iter (f,n0)) is
Function of X, X by
FUNCT_7: 83;
((
iter (f,n0))
. (f
. xp))
= (((
iter (f,n0))
* f)
. xp) by
FUNCT_2: 15
.= ((
iter (f,(n0
+ 1)))
. xp) by
FUNCT_7: 69
.= ((f
* (
iter (f,n0)))
. xp) by
FUNCT_7: 71
.= (f
. xp) by
A2,
A10,
FUNCT_2: 15;
then (f
. xp)
= xp by
A3;
hence thesis by
A4;
end;