jgraph_6.miz
begin
Lm1: for a,b be
Real st b
<=
0 & a
<= b holds (a
* (
sqrt (1
+ (b
^2 ))))
<= (b
* (
sqrt (1
+ (a
^2 ))))
proof
let a,b be
Real;
assume that
A1: b
<=
0 and
A2: a
<= b;
A3: (a
^2 )
>=
0 by
XREAL_1: 63;
then
A4: ((
- b)
* (
sqrt (1
+ (a
^2 ))))
= (
sqrt (((
- b)
^2 )
* (1
+ (a
^2 )))) by
A1,
SQUARE_1: 54;
A5: ((
- a)
* (
sqrt (1
+ (b
^2 ))))
= (
sqrt (((
- a)
^2 )
* (1
+ (b
^2 )))) by
A1,
A2,
SQUARE_1: 54;
a
< b or a
= b by
A2,
XXREAL_0: 1;
then (b
^2 )
< (a
^2 ) or a
= b by
A1,
SQUARE_1: 44;
then
A6: (((b
^2 )
* 1)
+ ((b
^2 )
* (a
^2 )))
<= (((a
^2 )
* 1)
+ ((a
^2 )
* (b
^2 ))) by
XREAL_1: 7;
(b
^2 )
>=
0 by
XREAL_1: 63;
then (
- (a
* (
sqrt (1
+ (b
^2 )))))
>= (
- (b
* (
sqrt (1
+ (a
^2 ))))) by
A3,
A4,
A5,
A6,
SQUARE_1: 26;
hence thesis by
XREAL_1: 24;
end;
Lm2: for a,b be
Real st a
<=
0 & a
<= b holds (a
* (
sqrt (1
+ (b
^2 ))))
<= (b
* (
sqrt (1
+ (a
^2 ))))
proof
let a,b be
Real;
assume that
A1: a
<=
0 and
A2: a
<= b;
now
per cases ;
case b
<=
0 ;
hence thesis by
A2,
Lm1;
end;
case
A3: b
>
0 ;
(b
^2 )
>=
0 by
XREAL_1: 63;
then (
sqrt (1
+ (b
^2 )))
>
0 by
SQUARE_1: 25;
then
A4: (a
* (
sqrt (1
+ (b
^2 ))))
<=
0 by
A1;
(a
^2 )
>=
0 by
XREAL_1: 63;
then (
sqrt (1
+ (a
^2 )))
>
0 by
SQUARE_1: 25;
hence thesis by
A3,
A4;
end;
end;
hence thesis;
end;
Lm3: for a,b be
Real st a
>=
0 & a
>= b holds (a
* (
sqrt (1
+ (b
^2 ))))
>= (b
* (
sqrt (1
+ (a
^2 ))))
proof
let a,b be
Real;
assume that
A1: a
>=
0 and
A2: a
>= b;
(
- a)
<= (
- b) by
A2,
XREAL_1: 24;
then ((
- a)
* (
sqrt (1
+ ((
- b)
^2 ))))
<= ((
- b)
* (
sqrt (1
+ ((
- a)
^2 )))) by
A1,
Lm2;
then (
- (a
* (
sqrt (1
+ (b
^2 )))))
<= (
- (b
* (
sqrt (1
+ (a
^2 )))));
hence thesis by
XREAL_1: 24;
end;
theorem ::
JGRAPH_6:1
Th1: for a,c,d be
Real, p be
Point of (
TOP-REAL 2) st c
<= d & p
in (
LSeg (
|[a, c]|,
|[a, d]|)) holds (p
`1 )
= a & c
<= (p
`2 ) & (p
`2 )
<= d
proof
let a,c,d be
Real, p be
Point of (
TOP-REAL 2);
assume that
A1: c
<= d and
A2: p
in (
LSeg (
|[a, c]|,
|[a, d]|));
thus (p
`1 )
= a by
A2,
TOPREAL3: 11;
A3: (
|[a, c]|
`2 )
= c by
EUCLID: 52;
(
|[a, d]|
`2 )
= d by
EUCLID: 52;
hence thesis by
A1,
A2,
A3,
TOPREAL1: 4;
end;
theorem ::
JGRAPH_6:2
Th2: for a,c,d be
Real, p be
Point of (
TOP-REAL 2) st c
< d & (p
`1 )
= a & c
<= (p
`2 ) & (p
`2 )
<= d holds p
in (
LSeg (
|[a, c]|,
|[a, d]|))
proof
let a,c,d be
Real, p be
Point of (
TOP-REAL 2);
assume that
A1: c
< d and
A2: (p
`1 )
= a and
A3: c
<= (p
`2 ) and
A4: (p
`2 )
<= d;
A5: (d
- c)
>
0 by
A1,
XREAL_1: 50;
reconsider w = (((p
`2 )
- c)
/ (d
- c)) as
Real;
A6: (((1
- w)
*
|[a, c]|)
+ (w
*
|[a, d]|))
= (
|[((1
- w)
* a), ((1
- w)
* c)]|
+ (w
*
|[a, d]|)) by
EUCLID: 58
.= (
|[((1
- w)
* a), ((1
- w)
* c)]|
+
|[(w
* a), (w
* d)]|) by
EUCLID: 58
.=
|[(((1
- w)
* a)
+ (w
* a)), (((1
- w)
* c)
+ (w
* d))]| by
EUCLID: 56
.=
|[a, (c
+ (w
* (d
- c)))]|
.=
|[a, (c
+ ((p
`2 )
- c))]| by
A5,
XCMPLX_1: 87
.= p by
A2,
EUCLID: 53;
A7: ((p
`2 )
- c)
>=
0 by
A3,
XREAL_1: 48;
((p
`2 )
- c)
<= (d
- c) by
A4,
XREAL_1: 9;
then w
<= ((d
- c)
/ (d
- c)) by
A5,
XREAL_1: 72;
then w
<= 1 by
A5,
XCMPLX_1: 60;
hence thesis by
A5,
A6,
A7;
end;
theorem ::
JGRAPH_6:3
Th3: for a,b,d be
Real, p be
Point of (
TOP-REAL 2) st a
<= b & p
in (
LSeg (
|[a, d]|,
|[b, d]|)) holds (p
`2 )
= d & a
<= (p
`1 ) & (p
`1 )
<= b
proof
let a,b,d be
Real, p be
Point of (
TOP-REAL 2);
assume that
A1: a
<= b and
A2: p
in (
LSeg (
|[a, d]|,
|[b, d]|));
thus (p
`2 )
= d by
A2,
TOPREAL3: 12;
A3: (
|[a, d]|
`1 )
= a by
EUCLID: 52;
(
|[b, d]|
`1 )
= b by
EUCLID: 52;
hence thesis by
A1,
A2,
A3,
TOPREAL1: 3;
end;
theorem ::
JGRAPH_6:4
Th4: for a,b be
Real, B be
Subset of
I[01] st B
=
[.a, b.] holds B is
closed
proof
let a,b be
Real, B be
Subset of
I[01] ;
assume
A1: B
=
[.a, b.];
reconsider B2 = B as
Subset of
R^1 by
BORSUK_1: 40,
TOPMETR: 17,
XBOOLE_1: 1;
A2: B2 is
closed by
A1,
TREAL_1: 1;
reconsider I1 =
[.
0 , 1.] as
Subset of
R^1 by
TOPMETR: 17;
A3: (
[#] (
R^1
| I1))
= the
carrier of
I[01] by
BORSUK_1: 40,
PRE_TOPC:def 5;
A4:
I[01]
= (
R^1
| I1) by
TOPMETR: 19,
TOPMETR: 20;
B
= (B2
/\ (
[#] (
R^1
| I1))) by
A3,
XBOOLE_1: 28;
hence thesis by
A2,
A4,
PRE_TOPC: 13;
end;
theorem ::
JGRAPH_6:5
Th5: for X be
TopStruct, Y,Z be non
empty
TopStruct, f be
Function of X, Y, g be
Function of X, Z holds (
dom f)
= (
dom g) & (
dom f)
= the
carrier of X & (
dom f)
= (
[#] X)
proof
let X be
TopStruct, Y,Z be non
empty
TopStruct, f be
Function of X, Y, g be
Function of X, Z;
(
dom f)
= the
carrier of X by
FUNCT_2:def 1;
hence thesis by
FUNCT_2:def 1;
end;
theorem ::
JGRAPH_6:6
Th6: for X be non
empty
TopSpace, B be non
empty
Subset of X holds ex f be
Function of (X
| B), X st (for p be
Point of (X
| B) holds (f
. p)
= p) & f is
continuous
proof
let X be non
empty
TopSpace, B be non
empty
Subset of X;
defpred
P[
set,
set] means (for p be
Point of (X
| B) holds $2
= $1);
A1: (
[#] (X
| B))
= B by
PRE_TOPC:def 5;
A2: for x be
Element of (X
| B) holds ex y be
Element of X st
P[x, y]
proof
let x be
Element of (X
| B);
x
in B by
A1;
then
reconsider px = x as
Point of X;
set y0 = px;
P[x, y0];
hence thesis;
end;
ex g be
Function of the
carrier of (X
| B), the
carrier of X st for x be
Element of (X
| B) holds
P[x, (g
. x)] from
FUNCT_2:sch 3(
A2);
then
consider g be
Function of the
carrier of (X
| B), the
carrier of X such that
A3: for x be
Element of (X
| B) holds
P[x, (g
. x)];
A4: for p be
Point of (X
| B) holds (g
. p)
= p by
A3;
A5: for r0 be
Point of (X
| B), V be
Subset of X st (g
. r0)
in V & V is
open holds ex W be
Subset of (X
| B) st r0
in W & W is
open & (g
.: W)
c= V
proof
let r0 be
Point of (X
| B), V be
Subset of X;
assume that
A6: (g
. r0)
in V and
A7: V is
open;
reconsider W2 = (V
/\ (
[#] (X
| B))) as
Subset of (X
| B);
(g
. r0)
= r0 by
A3;
then
A8: r0
in W2 by
A6,
XBOOLE_0:def 4;
A9: W2 is
open by
A7,
TOPS_2: 24;
(g
.: W2)
c= V
proof
let y be
object;
assume y
in (g
.: W2);
then
consider x be
object such that
A10: x
in (
dom g) and
A11: x
in W2 and
A12: y
= (g
. x) by
FUNCT_1:def 6;
reconsider px = x as
Point of (X
| B) by
A10;
(g
. px)
= px by
A3;
hence thesis by
A11,
A12,
XBOOLE_0:def 4;
end;
hence thesis by
A8,
A9;
end;
reconsider g1 = g as
Function of (X
| B), X;
g1 is
continuous by
A5,
JGRAPH_2: 10;
hence thesis by
A4;
end;
theorem ::
JGRAPH_6:7
Th7: for X be non
empty
TopSpace, f1 be
Function of X,
R^1 , a be
Real st f1 is
continuous holds ex g be
Function of X,
R^1 st (for p be
Point of X, r1 be
Real st (f1
. p)
= r1 holds (g
. p)
= (r1
- a)) & g is
continuous
proof
let X be non
empty
TopSpace, f1 be
Function of X,
R^1 , a be
Real;
assume f1 is
continuous;
then
consider g1 be
Function of X,
R^1 such that
A1: for p be
Point of X, r1 be
Real st (f1
. p)
= r1 holds (g1
. p)
= (r1
+ (
- a)) and
A2: g1 is
continuous by
JGRAPH_2: 24;
for p be
Point of X, r1 be
Real st (f1
. p)
= r1 holds (g1
. p)
= (r1
- a)
proof
let p be
Point of X, r1 be
Real;
assume (f1
. p)
= r1;
then (g1
. p)
= (r1
+ (
- a)) by
A1;
hence thesis;
end;
hence thesis by
A2;
end;
theorem ::
JGRAPH_6:8
Th8: for X be non
empty
TopSpace, f1 be
Function of X,
R^1 , a be
Real st f1 is
continuous holds ex g be
Function of X,
R^1 st (for p be
Point of X, r1 be
Real st (f1
. p)
= r1 holds (g
. p)
= (a
- r1)) & g is
continuous
proof
let X be non
empty
TopSpace, f1 be
Function of X,
R^1 , a be
Real;
assume f1 is
continuous;
then
consider g1 be
Function of X,
R^1 such that
A1: for p be
Point of X, r1 be
Real st (f1
. p)
= r1 holds (g1
. p)
= (r1
- a) and
A2: g1 is
continuous by
Th7;
consider g2 be
Function of X,
R^1 such that
A3: for p be
Point of X, r1 be
Real st (g1
. p)
= r1 holds (g2
. p)
= (
- r1) and
A4: g2 is
continuous by
A2,
JGRAPH_4: 8;
for p be
Point of X, r1 be
Real st (f1
. p)
= r1 holds (g2
. p)
= (a
- r1)
proof
let p be
Point of X, r1 be
Real;
assume (f1
. p)
= r1;
then (g1
. p)
= (r1
- a) by
A1;
then (g2
. p)
= (
- (r1
- a)) by
A3
.= (a
- r1);
hence thesis;
end;
hence thesis by
A4;
end;
theorem ::
JGRAPH_6:9
Th9: for X be non
empty
TopSpace, n be
Nat, p be
Point of (
TOP-REAL n), f be
Function of X,
R^1 st f is
continuous holds ex g be
Function of X, (
TOP-REAL n) st (for r be
Point of X holds (g
. r)
= ((f
. r)
* p)) & g is
continuous
proof
let X be non
empty
TopSpace, n be
Nat, p be
Point of (
TOP-REAL n), f be
Function of X,
R^1 ;
assume
A1: f is
continuous;
defpred
P[
set,
set] means $2
= ((f
. $1)
* p);
A2: for x be
Element of X holds ex y be
Element of (
TOP-REAL n) st
P[x, y];
ex g be
Function of the
carrier of X, the
carrier of (
TOP-REAL n) st for x be
Element of X holds
P[x, (g
. x)] from
FUNCT_2:sch 3(
A2);
then
consider g be
Function of the
carrier of X, the
carrier of (
TOP-REAL n) such that
A3: for x be
Element of X holds
P[x, (g
. x)];
reconsider g as
Function of X, (
TOP-REAL n);
for r0 be
Point of X, V be
Subset of (
TOP-REAL n) st (g
. r0)
in V & V is
open holds ex W be
Subset of X st r0
in W & W is
open & (g
.: W)
c= V
proof
let r0 be
Point of X, V be
Subset of (
TOP-REAL n);
assume that
A4: (g
. r0)
in V and
A5: V is
open;
A6: (g
. r0)
in (
Int V) by
A4,
A5,
TOPS_1: 23;
reconsider u = (g
. r0) as
Point of (
Euclid n) by
TOPREAL3: 8;
consider s be
Real such that
A7: s
>
0 and
A8: (
Ball (u,s))
c= V by
A6,
GOBOARD6: 5;
now
per cases ;
case
A9: p
<> (
0. (
TOP-REAL n));
then
A10:
|.p.|
<>
0 by
TOPRNS_1: 24;
set r2 = (s
/
|.p.|);
reconsider G1 =
].((f
. r0)
- r2), ((f
. r0)
+ r2).[ as
Subset of
R^1 by
TOPMETR: 17;
A11: (f
. r0)
< ((f
. r0)
+ r2) by
A7,
A10,
XREAL_1: 29,
XREAL_1: 139;
then ((f
. r0)
- r2)
< (f
. r0) by
XREAL_1: 19;
then
A12: (f
. r0)
in G1 by
A11,
XXREAL_1: 4;
G1 is
open by
JORDAN6: 35;
then
consider W2 be
Subset of X such that
A13: r0
in W2 and
A14: W2 is
open and
A15: (f
.: W2)
c= G1 by
A1,
A12,
JGRAPH_2: 10;
(g
.: W2)
c= V
proof
let y be
object;
assume y
in (g
.: W2);
then
consider r be
object such that
A16: r
in (
dom g) and
A17: r
in W2 and
A18: y
= (g
. r) by
FUNCT_1:def 6;
reconsider r as
Point of X by
A16;
(
dom f)
= the
carrier of X by
FUNCT_2:def 1;
then (f
. r)
in (f
.: W2) by
A17,
FUNCT_1:def 6;
then
A19:
|.((f
. r)
- (f
. r0)).|
< r2 by
A15,
RCOMP_1: 1;
reconsider t = (f
. r), t0 = (f
. r0) as
Real;
A20:
|.(t0
- t).|
=
|.(t
- t0).| by
UNIFORM1: 11;
reconsider v = (g
. r) as
Point of (
Euclid n) by
TOPREAL3: 8;
(g
. r0)
= ((f
. r0)
* p) by
A3;
then
A21:
|.((g
. r0)
- (g
. r)).|
=
|.(((f
. r0)
* p)
- ((f
. r)
* p)).| by
A3
.=
|.(((f
. r0)
- (f
. r))
* p).| by
RLVECT_1: 35
.= (
|.(t0
- t).|
*
|.p.|) by
TOPRNS_1: 7;
(
|.((f
. r)
- (f
. r0)).|
*
|.p.|)
< (r2
*
|.p.|) by
A10,
A19,
XREAL_1: 68;
then
|.((g
. r0)
- (g
. r)).|
< s by
A9,
A20,
A21,
TOPRNS_1: 24,
XCMPLX_1: 87;
then (
dist (u,v))
< s by
JGRAPH_1: 28;
then (g
. r)
in (
Ball (u,s)) by
METRIC_1: 11;
hence thesis by
A8,
A18;
end;
hence thesis by
A13,
A14;
end;
case
A22: p
= (
0. (
TOP-REAL n));
A23: for r be
Point of X holds (g
. r)
= (
0. (
TOP-REAL n))
proof
let r be
Point of X;
thus (g
. r)
= ((f
. r)
* p) by
A3
.= (
0. (
TOP-REAL n)) by
A22,
RLVECT_1: 10;
end;
then
A24: (
0. (
TOP-REAL n))
in V by
A4;
set W2 = (
[#] X);
(g
.: W2)
c= V
proof
let y be
object;
assume y
in (g
.: W2);
then ex x be
object st (x
in (
dom g)) & (x
in W2) & (y
= (g
. x)) by
FUNCT_1:def 6;
hence thesis by
A23,
A24;
end;
hence thesis;
end;
end;
hence thesis;
end;
then g is
continuous by
JGRAPH_2: 10;
hence thesis by
A3;
end;
theorem ::
JGRAPH_6:10
Th10: (
Sq_Circ
.
|[(
- 1),
0 ]|)
=
|[(
- 1),
0 ]|
proof
set p =
|[(
- 1),
0 ]|;
A1: (p
`1 )
= (
- 1) by
EUCLID: 52;
A2: (p
`2 )
=
0 by
EUCLID: 52;
A3: p
<> (
0. (
TOP-REAL 2)) by
A1,
EUCLID: 52,
EUCLID: 54;
(p
`2 )
<= (
- (p
`1 )) by
A1,
EUCLID: 52;
then (
Sq_Circ
. p)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))]| by
A1,
A2,
A3,
JGRAPH_3:def 1;
hence thesis by
A2,
EUCLID: 52,
SQUARE_1: 18;
end;
theorem ::
JGRAPH_6:11
for P be
compact non
empty
Subset of (
TOP-REAL 2) st P
= { p where p be
Point of (
TOP-REAL 2) :
|.p.|
= 1 } holds (
Sq_Circ
.
|[(
- 1),
0 ]|)
= (
W-min P) by
Th10,
JGRAPH_5: 29;
theorem ::
JGRAPH_6:12
Th12: for X be non
empty
TopSpace, n be
Nat, g1,g2 be
Function of X, (
TOP-REAL n) st g1 is
continuous & g2 is
continuous holds ex g be
Function of X, (
TOP-REAL n) st (for r be
Point of X holds (g
. r)
= ((g1
. r)
+ (g2
. r))) & g is
continuous
proof
let X be non
empty
TopSpace, n be
Nat, g1,g2 be
Function of X, (
TOP-REAL n);
assume that
A1: g1 is
continuous and
A2: g2 is
continuous;
defpred
P[
set,
set] means (for r1,r2 be
Element of (
TOP-REAL n) st (g1
. $1)
= r1 & (g2
. $1)
= r2 holds $2
= (r1
+ r2));
A3: for x be
Element of X holds ex y be
Element of (
TOP-REAL n) st
P[x, y]
proof
let x be
Element of X;
set rr1 = (g1
. x);
set rr2 = (g2
. x);
set r3 = (rr1
+ rr2);
for s1,s2 be
Point of (
TOP-REAL n) st (g1
. x)
= s1 & (g2
. x)
= s2 holds r3
= (s1
+ s2);
hence thesis;
end;
ex f be
Function of the
carrier of X, the
carrier of (
TOP-REAL n) st for x be
Element of X holds
P[x, (f
. x)] from
FUNCT_2:sch 3(
A3);
then
consider f be
Function of the
carrier of X, the
carrier of (
TOP-REAL n) such that
A4: for x be
Element of X holds for r1,r2 be
Element of (
TOP-REAL n) st (g1
. x)
= r1 & (g2
. x)
= r2 holds (f
. x)
= (r1
+ r2);
reconsider g0 = f as
Function of X, (
TOP-REAL n);
A5: for r be
Point of X holds (g0
. r)
= ((g1
. r)
+ (g2
. r)) by
A4;
for p be
Point of X, V be
Subset of (
TOP-REAL n) st (g0
. p)
in V & V is
open holds ex W be
Subset of X st p
in W & W is
open & (g0
.: W)
c= V
proof
let p be
Point of X, V be
Subset of (
TOP-REAL n);
assume that
A6: (g0
. p)
in V and
A7: V is
open;
A8: (g0
. p)
in (
Int V) by
A6,
A7,
TOPS_1: 23;
reconsider r = (g0
. p) as
Point of (
Euclid n) by
TOPREAL3: 8;
consider r0 be
Real such that
A9: r0
>
0 and
A10: (
Ball (r,r0))
c= V by
A8,
GOBOARD6: 5;
reconsider r01 = (g1
. p) as
Point of (
Euclid n) by
TOPREAL3: 8;
reconsider G1 = (
Ball (r01,(r0
/ 2))) as
Subset of (
TOP-REAL n) by
TOPREAL3: 8;
reconsider r02 = (g2
. p) as
Point of (
Euclid n) by
TOPREAL3: 8;
reconsider G2 = (
Ball (r02,(r0
/ 2))) as
Subset of (
TOP-REAL n) by
TOPREAL3: 8;
A11: (g1
. p)
in G1 by
A9,
GOBOARD6: 1,
XREAL_1: 215;
A12: the TopStruct of (
TOP-REAL n)
= (
TopSpaceMetr (
Euclid n)) by
EUCLID:def 8;
then
reconsider GG1 = G1, GG2 = G2 as
Subset of (
TopSpaceMetr (
Euclid n));
GG1 is
open by
TOPMETR: 14;
then G1 is
open by
A12,
PRE_TOPC: 30;
then
consider W1 be
Subset of X such that
A13: p
in W1 and
A14: W1 is
open and
A15: (g1
.: W1)
c= G1 by
A1,
A11,
JGRAPH_2: 10;
A16: (g2
. p)
in G2 by
A9,
GOBOARD6: 1,
XREAL_1: 215;
GG2 is
open by
TOPMETR: 14;
then G2 is
open by
A12,
PRE_TOPC: 30;
then
consider W2 be
Subset of X such that
A17: p
in W2 and
A18: W2 is
open and
A19: (g2
.: W2)
c= G2 by
A2,
A16,
JGRAPH_2: 10;
set W = (W1
/\ W2);
A20: p
in W by
A13,
A17,
XBOOLE_0:def 4;
(g0
.: W)
c= (
Ball (r,r0))
proof
let x be
object;
assume x
in (g0
.: W);
then
consider z be
object such that
A21: z
in (
dom g0) and
A22: z
in W and
A23: (g0
. z)
= x by
FUNCT_1:def 6;
A24: z
in W1 by
A22,
XBOOLE_0:def 4;
reconsider pz = z as
Point of X by
A21;
(
dom g1)
= the
carrier of X by
FUNCT_2:def 1;
then
A25: (g1
. pz)
in (g1
.: W1) by
A24,
FUNCT_1:def 6;
reconsider aa1 = (g1
. pz) as
Point of (
TOP-REAL n);
reconsider bb1 = aa1 as
Point of (
Euclid n) by
TOPREAL3: 8;
(
dist (r01,bb1))
< (r0
/ 2) by
A15,
A25,
METRIC_1: 11;
then
A26:
|.((g1
. p)
- (g1
. pz)).|
< (r0
/ 2) by
JGRAPH_1: 28;
A27: z
in W2 by
A22,
XBOOLE_0:def 4;
(
dom g2)
= the
carrier of X by
FUNCT_2:def 1;
then
A28: (g2
. pz)
in (g2
.: W2) by
A27,
FUNCT_1:def 6;
reconsider aa2 = (g2
. pz) as
Point of (
TOP-REAL n);
reconsider bb2 = aa2 as
Point of (
Euclid n) by
TOPREAL3: 8;
(
dist (r02,bb2))
< (r0
/ 2) by
A19,
A28,
METRIC_1: 11;
then
A29:
|.((g2
. p)
- (g2
. pz)).|
< (r0
/ 2) by
JGRAPH_1: 28;
A30: (aa1
+ aa2)
= x by
A4,
A23;
reconsider bb0 = (aa1
+ aa2) as
Point of (
Euclid n) by
TOPREAL3: 8;
A31: (g0
. pz)
= ((g1
. pz)
+ (g2
. pz)) by
A4;
(((g1
. p)
+ (g2
. p))
- ((g1
. pz)
+ (g2
. pz)))
= ((((g1
. p)
+ (g2
. p))
- (g1
. pz))
- (g2
. pz)) by
RLVECT_1: 27
.= ((((g1
. p)
+ (g2
. p))
+ (
- (g1
. pz)))
- (g2
. pz))
.= ((((g1
. p)
+ (g2
. p))
+ (
- (g1
. pz)))
+ (
- (g2
. pz)))
.= ((((g1
. p)
+ (
- (g1
. pz)))
+ (g2
. p))
+ (
- (g2
. pz))) by
RLVECT_1:def 3
.= (((g1
. p)
+ (
- (g1
. pz)))
+ ((g2
. p)
+ (
- (g2
. pz)))) by
RLVECT_1:def 3
.= (((g1
. p)
- (g1
. pz))
+ ((g2
. p)
+ (
- (g2
. pz))))
.= (((g1
. p)
- (g1
. pz))
+ ((g2
. p)
- (g2
. pz)));
then
A32:
|.(((g1
. p)
+ (g2
. p))
- ((g1
. pz)
+ (g2
. pz))).|
<= (
|.((g1
. p)
- (g1
. pz)).|
+
|.((g2
. p)
- (g2
. pz)).|) by
TOPRNS_1: 29;
(
|.((g1
. p)
- (g1
. pz)).|
+
|.((g2
. p)
- (g2
. pz)).|)
< ((r0
/ 2)
+ (r0
/ 2)) by
A26,
A29,
XREAL_1: 8;
then
|.(((g1
. p)
+ (g2
. p))
- ((g1
. pz)
+ (g2
. pz))).|
< r0 by
A32,
XXREAL_0: 2;
then
|.((g0
. p)
- (g0
. pz)).|
< r0 by
A4,
A31;
then (
dist (r,bb0))
< r0 by
A23,
A30,
JGRAPH_1: 28;
hence thesis by
A30,
METRIC_1: 11;
end;
hence thesis by
A10,
A14,
A18,
A20,
XBOOLE_1: 1;
end;
then g0 is
continuous by
JGRAPH_2: 10;
hence thesis by
A5;
end;
theorem ::
JGRAPH_6:13
Th13: for X be non
empty
TopSpace, n be
Nat, p1,p2 be
Point of (
TOP-REAL n), f1,f2 be
Function of X,
R^1 st f1 is
continuous & f2 is
continuous holds ex g be
Function of X, (
TOP-REAL n) st (for r be
Point of X holds (g
. r)
= (((f1
. r)
* p1)
+ ((f2
. r)
* p2))) & g is
continuous
proof
let X be non
empty
TopSpace, n be
Nat, p1,p2 be
Point of (
TOP-REAL n), f1,f2 be
Function of X,
R^1 ;
assume that
A1: f1 is
continuous and
A2: f2 is
continuous;
consider g1 be
Function of X, (
TOP-REAL n) such that
A3: for r be
Point of X holds (g1
. r)
= ((f1
. r)
* p1) and
A4: g1 is
continuous by
A1,
Th9;
consider g2 be
Function of X, (
TOP-REAL n) such that
A5: for r be
Point of X holds (g2
. r)
= ((f2
. r)
* p2) and
A6: g2 is
continuous by
A2,
Th9;
consider g be
Function of X, (
TOP-REAL n) such that
A7: for r be
Point of X holds (g
. r)
= ((g1
. r)
+ (g2
. r)) and
A8: g is
continuous by
A4,
A6,
Th12;
for r be
Point of X holds (g
. r)
= (((f1
. r)
* p1)
+ ((f2
. r)
* p2))
proof
let r be
Point of X;
(g
. r)
= ((g1
. r)
+ (g2
. r)) by
A7;
then (g
. r)
= ((g1
. r)
+ ((f2
. r)
* p2)) by
A5;
hence thesis by
A3;
end;
hence thesis by
A8;
end;
begin
Lm4: (
|[(
- 1),
0 ]|
`1 )
= (
- 1) by
EUCLID: 52;
Lm5: (
|[(
- 1),
0 ]|
`2 )
=
0 by
EUCLID: 52;
Lm6: (
|[1,
0 ]|
`1 )
= 1 by
EUCLID: 52;
Lm7: (
|[1,
0 ]|
`2 )
=
0 by
EUCLID: 52;
Lm8: (
|[
0 , (
- 1)]|
`1 )
=
0 by
EUCLID: 52;
Lm9: (
|[
0 , (
- 1)]|
`2 )
= (
- 1) by
EUCLID: 52;
Lm10: (
|[
0 , 1]|
`1 )
=
0 by
EUCLID: 52;
Lm11: (
|[
0 , 1]|
`2 )
= 1 by
EUCLID: 52;
Lm12:
now
thus
|.
|[(
- 1),
0 ]|.|
= (
sqrt (((
- 1)
^2 )
+ (
0
^2 ))) by
Lm4,
Lm5,
JGRAPH_3: 1
.= 1 by
SQUARE_1: 18;
thus
|.
|[1,
0 ]|.|
= (
sqrt ((1
^2 )
+ (
0
^2 ))) by
Lm6,
Lm7,
JGRAPH_3: 1
.= 1 by
SQUARE_1: 18;
thus
|.
|[
0 , (
- 1)]|.|
= (
sqrt ((
0
^2 )
+ ((
- 1)
^2 ))) by
Lm8,
Lm9,
JGRAPH_3: 1
.= 1 by
SQUARE_1: 18;
thus
|.
|[
0 , 1]|.|
= (
sqrt ((
0
^2 )
+ (1
^2 ))) by
Lm10,
Lm11,
JGRAPH_3: 1
.= 1 by
SQUARE_1: 18;
end;
Lm13:
0
in
[.
0 , 1.] by
XXREAL_1: 1;
Lm14: 1
in
[.
0 , 1.] by
XXREAL_1: 1;
reserve p,p1,p2,p3,q,q1,q2 for
Point of (
TOP-REAL 2),
i for
Nat,
lambda for
Real;
theorem ::
JGRAPH_6:14
Th14: for f,g be
Function of
I[01] , (
TOP-REAL 2), C0,KXP,KXN,KYP,KYN be
Subset of (
TOP-REAL 2), O,I be
Point of
I[01] st O
=
0 & I
= 1 & f is
continuous
one-to-one & g is
continuous
one-to-one & C0
= { p :
|.p.|
<= 1 } & KXP
= { q1 where q1 be
Point of (
TOP-REAL 2) :
|.q1.|
= 1 & (q1
`2 )
<= (q1
`1 ) & (q1
`2 )
>= (
- (q1
`1 )) } & KXN
= { q2 where q2 be
Point of (
TOP-REAL 2) :
|.q2.|
= 1 & (q2
`2 )
>= (q2
`1 ) & (q2
`2 )
<= (
- (q2
`1 )) } & KYP
= { q3 where q3 be
Point of (
TOP-REAL 2) :
|.q3.|
= 1 & (q3
`2 )
>= (q3
`1 ) & (q3
`2 )
>= (
- (q3
`1 )) } & KYN
= { q4 where q4 be
Point of (
TOP-REAL 2) :
|.q4.|
= 1 & (q4
`2 )
<= (q4
`1 ) & (q4
`2 )
<= (
- (q4
`1 )) } & (f
. O)
in KXP & (f
. I)
in KXN & (g
. O)
in KYP & (g
. I)
in KYN & (
rng f)
c= C0 & (
rng g)
c= C0 holds (
rng f)
meets (
rng g)
proof
let f,g be
Function of
I[01] , (
TOP-REAL 2), C0,KXP,KXN,KYP,KYN be
Subset of (
TOP-REAL 2), O,I be
Point of
I[01] ;
assume
A1: O
=
0 & I
= 1 & f is
continuous & f is
one-to-one & g is
continuous & g is
one-to-one & C0
= { p :
|.p.|
<= 1 } & KXP
= { q1 where q1 be
Point of (
TOP-REAL 2) :
|.q1.|
= 1 & (q1
`2 )
<= (q1
`1 ) & (q1
`2 )
>= (
- (q1
`1 )) } & KXN
= { q2 where q2 be
Point of (
TOP-REAL 2) :
|.q2.|
= 1 & (q2
`2 )
>= (q2
`1 ) & (q2
`2 )
<= (
- (q2
`1 )) } & KYP
= { q3 where q3 be
Point of (
TOP-REAL 2) :
|.q3.|
= 1 & (q3
`2 )
>= (q3
`1 ) & (q3
`2 )
>= (
- (q3
`1 )) } & KYN
= { q4 where q4 be
Point of (
TOP-REAL 2) :
|.q4.|
= 1 & (q4
`2 )
<= (q4
`1 ) & (q4
`2 )
<= (
- (q4
`1 )) } & (f
. O)
in KXP & (f
. I)
in KXN & (g
. O)
in KYP & (g
. I)
in KYN & (
rng f)
c= C0 & (
rng g)
c= C0;
then ex f2 be
Function of
I[01] , (
TOP-REAL 2) st ((f2
.
0 )
= (f
. 1)) & ((f2
. 1)
= (f
.
0 )) & ((
rng f2)
= (
rng f)) & (f2 is
continuous) & (f2 is
one-to-one) by
JGRAPH_5: 12;
hence thesis by
A1,
JGRAPH_5: 13;
end;
theorem ::
JGRAPH_6:15
Th15: for f,g be
Function of
I[01] , (
TOP-REAL 2), C0,KXP,KXN,KYP,KYN be
Subset of (
TOP-REAL 2), O,I be
Point of
I[01] st O
=
0 & I
= 1 & f is
continuous & f is
one-to-one & g is
continuous & g is
one-to-one & C0
= { p :
|.p.|
<= 1 } & KXP
= { q1 where q1 be
Point of (
TOP-REAL 2) :
|.q1.|
= 1 & (q1
`2 )
<= (q1
`1 ) & (q1
`2 )
>= (
- (q1
`1 )) } & KXN
= { q2 where q2 be
Point of (
TOP-REAL 2) :
|.q2.|
= 1 & (q2
`2 )
>= (q2
`1 ) & (q2
`2 )
<= (
- (q2
`1 )) } & KYP
= { q3 where q3 be
Point of (
TOP-REAL 2) :
|.q3.|
= 1 & (q3
`2 )
>= (q3
`1 ) & (q3
`2 )
>= (
- (q3
`1 )) } & KYN
= { q4 where q4 be
Point of (
TOP-REAL 2) :
|.q4.|
= 1 & (q4
`2 )
<= (q4
`1 ) & (q4
`2 )
<= (
- (q4
`1 )) } & (f
. O)
in KXP & (f
. I)
in KXN & (g
. O)
in KYN & (g
. I)
in KYP & (
rng f)
c= C0 & (
rng g)
c= C0 holds (
rng f)
meets (
rng g)
proof
let f,g be
Function of
I[01] , (
TOP-REAL 2), C0,KXP,KXN,KYP,KYN be
Subset of (
TOP-REAL 2), O,I be
Point of
I[01] ;
assume
A1: O
=
0 & I
= 1 & f is
continuous & f is
one-to-one & g is
continuous & g is
one-to-one & C0
= { p :
|.p.|
<= 1 } & KXP
= { q1 where q1 be
Point of (
TOP-REAL 2) :
|.q1.|
= 1 & (q1
`2 )
<= (q1
`1 ) & (q1
`2 )
>= (
- (q1
`1 )) } & KXN
= { q2 where q2 be
Point of (
TOP-REAL 2) :
|.q2.|
= 1 & (q2
`2 )
>= (q2
`1 ) & (q2
`2 )
<= (
- (q2
`1 )) } & KYP
= { q3 where q3 be
Point of (
TOP-REAL 2) :
|.q3.|
= 1 & (q3
`2 )
>= (q3
`1 ) & (q3
`2 )
>= (
- (q3
`1 )) } & KYN
= { q4 where q4 be
Point of (
TOP-REAL 2) :
|.q4.|
= 1 & (q4
`2 )
<= (q4
`1 ) & (q4
`2 )
<= (
- (q4
`1 )) } & (f
. O)
in KXP & (f
. I)
in KXN & (g
. O)
in KYN & (g
. I)
in KYP & (
rng f)
c= C0 & (
rng g)
c= C0;
then ex g2 be
Function of
I[01] , (
TOP-REAL 2) st ((g2
.
0 )
= (g
. 1)) & ((g2
. 1)
= (g
.
0 )) & ((
rng g2)
= (
rng g)) & (g2 is
continuous) & (g2 is
one-to-one) by
JGRAPH_5: 12;
hence thesis by
A1,
Th14;
end;
theorem ::
JGRAPH_6:16
Th16: for p1,p2,p3,p4 be
Point of (
TOP-REAL 2), P be
compact non
empty
Subset of (
TOP-REAL 2), C0 be
Subset of (
TOP-REAL 2) st P
= { p where p be
Point of (
TOP-REAL 2) :
|.p.|
= 1 } &
LE (p1,p2,P) &
LE (p2,p3,P) &
LE (p3,p4,P) holds for f,g be
Function of
I[01] , (
TOP-REAL 2) st f is
continuous
one-to-one & g is
continuous
one-to-one & C0
= { p8 where p8 be
Point of (
TOP-REAL 2) :
|.p8.|
<= 1 } & (f
.
0 )
= p3 & (f
. 1)
= p1 & (g
.
0 )
= p2 & (g
. 1)
= p4 & (
rng f)
c= C0 & (
rng g)
c= C0 holds (
rng f)
meets (
rng g)
proof
let p1,p2,p3,p4 be
Point of (
TOP-REAL 2), P be
compact non
empty
Subset of (
TOP-REAL 2), C0 be
Subset of (
TOP-REAL 2);
assume that
A1: P
= { p where p be
Point of (
TOP-REAL 2) :
|.p.|
= 1 } and
A2:
LE (p1,p2,P) and
A3:
LE (p2,p3,P) and
A4:
LE (p3,p4,P);
let f,g be
Function of
I[01] , (
TOP-REAL 2);
assume that
A5: f is
continuous
one-to-one and
A6: g is
continuous
one-to-one and
A7: C0
= { p8 where p8 be
Point of (
TOP-REAL 2) :
|.p8.|
<= 1 } and
A8: (f
.
0 )
= p3 and
A9: (f
. 1)
= p1 and
A10: (g
.
0 )
= p2 and
A11: (g
. 1)
= p4 and
A12: (
rng f)
c= C0 and
A13: (
rng g)
c= C0;
A14: (
dom f)
= the
carrier of
I[01] by
FUNCT_2:def 1;
A15: (
dom g)
= the
carrier of
I[01] by
FUNCT_2:def 1;
per cases ;
suppose
A16: not (p1
<> p2 & p2
<> p3 & p3
<> p4);
now
per cases by
A16;
case
A17: p1
= p2;
A18: p1
in (
rng f) by
A9,
A14,
Lm14,
BORSUK_1: 40,
FUNCT_1:def 3;
p2
in (
rng g) by
A10,
A15,
Lm13,
BORSUK_1: 40,
FUNCT_1:def 3;
hence (
rng f)
meets (
rng g) by
A17,
A18,
XBOOLE_0: 3;
end;
case
A19: p2
= p3;
A20: p3
in (
rng f) by
A8,
A14,
Lm13,
BORSUK_1: 40,
FUNCT_1:def 3;
p2
in (
rng g) by
A10,
A15,
Lm13,
BORSUK_1: 40,
FUNCT_1:def 3;
hence (
rng f)
meets (
rng g) by
A19,
A20,
XBOOLE_0: 3;
end;
case
A21: p3
= p4;
A22: p3
in (
rng f) by
A8,
A14,
Lm13,
BORSUK_1: 40,
FUNCT_1:def 3;
p4
in (
rng g) by
A11,
A15,
Lm14,
BORSUK_1: 40,
FUNCT_1:def 3;
hence (
rng f)
meets (
rng g) by
A21,
A22,
XBOOLE_0: 3;
end;
end;
hence thesis;
end;
suppose p1
<> p2 & p2
<> p3 & p3
<> p4;
then
consider h be
Function of (
TOP-REAL 2), (
TOP-REAL 2) such that
A23: h is
being_homeomorphism and
A24: for q be
Point of (
TOP-REAL 2) holds
|.(h
. q).|
=
|.q.| and
A25:
|[(
- 1),
0 ]|
= (h
. p1) and
A26:
|[
0 , 1]|
= (h
. p2) and
A27:
|[1,
0 ]|
= (h
. p3) and
A28:
|[
0 , (
- 1)]|
= (h
. p4) by
A1,
A2,
A3,
A4,
JGRAPH_5: 67;
A29: h is
one-to-one by
A23,
TOPS_2:def 5;
reconsider f2 = (h
* f) as
Function of
I[01] , (
TOP-REAL 2);
reconsider g2 = (h
* g) as
Function of
I[01] , (
TOP-REAL 2);
A30: (
dom f2)
= the
carrier of
I[01] by
FUNCT_2:def 1;
A31: (
dom g2)
= the
carrier of
I[01] by
FUNCT_2:def 1;
A32: (f2
. 1)
=
|[(
- 1),
0 ]| by
A9,
A25,
A30,
Lm14,
BORSUK_1: 40,
FUNCT_1: 12;
A33: (g2
. 1)
=
|[
0 , (
- 1)]| by
A11,
A28,
A31,
Lm14,
BORSUK_1: 40,
FUNCT_1: 12;
A34: (f2
.
0 )
=
|[1,
0 ]| by
A8,
A27,
A30,
Lm13,
BORSUK_1: 40,
FUNCT_1: 12;
A35: (g2
.
0 )
=
|[
0 , 1]| by
A10,
A26,
A31,
Lm13,
BORSUK_1: 40,
FUNCT_1: 12;
A36: f2 is
continuous
one-to-one by
A5,
A23,
JGRAPH_5: 5,
JGRAPH_5: 6;
A37: g2 is
continuous
one-to-one by
A6,
A23,
JGRAPH_5: 5,
JGRAPH_5: 6;
A38: (
rng f2)
c= C0
proof
let y be
object;
assume y
in (
rng f2);
then
consider x be
object such that
A39: x
in (
dom f2) and
A40: y
= (f2
. x) by
FUNCT_1:def 3;
A41: (f2
. x)
= (h
. (f
. x)) by
A39,
FUNCT_1: 12;
A42: (f
. x)
in (
rng f) by
A14,
A39,
FUNCT_1:def 3;
then
A43: (f
. x)
in C0 by
A12;
reconsider qf = (f
. x) as
Point of (
TOP-REAL 2) by
A42;
A44: ex q5 be
Point of (
TOP-REAL 2) st (q5
= (f
. x)) & (
|.q5.|
<= 1) by
A7,
A43;
|.(h
. qf).|
=
|.qf.| by
A24;
hence thesis by
A7,
A40,
A41,
A44;
end;
A45: (
rng g2)
c= C0
proof
let y be
object;
assume y
in (
rng g2);
then
consider x be
object such that
A46: x
in (
dom g2) and
A47: y
= (g2
. x) by
FUNCT_1:def 3;
A48: (g2
. x)
= (h
. (g
. x)) by
A46,
FUNCT_1: 12;
A49: (g
. x)
in (
rng g) by
A15,
A46,
FUNCT_1:def 3;
then
A50: (g
. x)
in C0 by
A13;
reconsider qg = (g
. x) as
Point of (
TOP-REAL 2) by
A49;
A51: ex q5 be
Point of (
TOP-REAL 2) st (q5
= (g
. x)) & (
|.q5.|
<= 1) by
A7,
A50;
|.(h
. qg).|
=
|.qg.| by
A24;
hence thesis by
A7,
A47,
A48,
A51;
end;
defpred
Q[
Point of (
TOP-REAL 2)] means
|.$1.|
= 1 & ($1
`2 )
<= ($1
`1 ) & ($1
`2 )
>= (
- ($1
`1 ));
{ q1 where q1 be
Point of (
TOP-REAL 2) :
Q[q1] } is
Subset of (
TOP-REAL 2) from
JGRAPH_2:sch 1;
then
reconsider KXP = { q1 where q1 be
Point of (
TOP-REAL 2) :
|.q1.|
= 1 & (q1
`2 )
<= (q1
`1 ) & (q1
`2 )
>= (
- (q1
`1 )) } as
Subset of (
TOP-REAL 2);
defpred
Q[
Point of (
TOP-REAL 2)] means
|.$1.|
= 1 & ($1
`2 )
>= ($1
`1 ) & ($1
`2 )
<= (
- ($1
`1 ));
{ q2 where q2 be
Point of (
TOP-REAL 2) :
Q[q2] } is
Subset of (
TOP-REAL 2) from
JGRAPH_2:sch 1;
then
reconsider KXN = { q2 where q2 be
Point of (
TOP-REAL 2) :
|.q2.|
= 1 & (q2
`2 )
>= (q2
`1 ) & (q2
`2 )
<= (
- (q2
`1 )) } as
Subset of (
TOP-REAL 2);
defpred
Q[
Point of (
TOP-REAL 2)] means
|.$1.|
= 1 & ($1
`2 )
>= ($1
`1 ) & ($1
`2 )
>= (
- ($1
`1 ));
{ q3 where q3 be
Point of (
TOP-REAL 2) :
Q[q3] } is
Subset of (
TOP-REAL 2) from
JGRAPH_2:sch 1;
then
reconsider KYP = { q3 where q3 be
Point of (
TOP-REAL 2) :
|.q3.|
= 1 & (q3
`2 )
>= (q3
`1 ) & (q3
`2 )
>= (
- (q3
`1 )) } as
Subset of (
TOP-REAL 2);
defpred
Q[
Point of (
TOP-REAL 2)] means
|.$1.|
= 1 & ($1
`2 )
<= ($1
`1 ) & ($1
`2 )
<= (
- ($1
`1 ));
{ q4 where q4 be
Point of (
TOP-REAL 2) :
Q[q4] } is
Subset of (
TOP-REAL 2) from
JGRAPH_2:sch 1;
then
reconsider KYN = { q4 where q4 be
Point of (
TOP-REAL 2) :
|.q4.|
= 1 & (q4
`2 )
<= (q4
`1 ) & (q4
`2 )
<= (
- (q4
`1 )) } as
Subset of (
TOP-REAL 2);
reconsider O =
0 , I = 1 as
Point of
I[01] by
BORSUK_1: 40,
XXREAL_1: 1;
(
- (
|[(
- 1),
0 ]|
`1 ))
= 1 by
Lm4;
then
A52: (f2
. I)
in KXN by
A32,
Lm5,
Lm12;
A53: (f2
. O)
in KXP by
A34,
Lm6,
Lm7,
Lm12;
(
- (
|[
0 , (
- 1)]|
`1 ))
=
0 by
Lm8;
then
A54: (g2
. I)
in KYN by
A33,
Lm9,
Lm12;
(
- (
|[
0 , 1]|
`1 ))
=
0 by
Lm10;
then (g2
. O)
in KYP by
A35,
Lm11,
Lm12;
then (
rng f2)
meets (
rng g2) by
A7,
A36,
A37,
A38,
A45,
A52,
A53,
A54,
Th14;
then
consider x2 be
object such that
A55: x2
in (
rng f2) and
A56: x2
in (
rng g2) by
XBOOLE_0: 3;
consider z2 be
object such that
A57: z2
in (
dom f2) and
A58: x2
= (f2
. z2) by
A55,
FUNCT_1:def 3;
consider z3 be
object such that
A59: z3
in (
dom g2) and
A60: x2
= (g2
. z3) by
A56,
FUNCT_1:def 3;
A61: (
dom h)
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
A62: (g
. z3)
in (
rng g) by
A15,
A59,
FUNCT_1:def 3;
A63: (f
. z2)
in (
rng f) by
A14,
A57,
FUNCT_1:def 3;
reconsider h1 = h as
Function;
A64: ((h1
" )
. x2)
= ((h1
" )
. (h
. (f
. z2))) by
A57,
A58,
FUNCT_1: 12
.= (f
. z2) by
A29,
A61,
A63,
FUNCT_1: 34;
A65: ((h1
" )
. x2)
= ((h1
" )
. (h
. (g
. z3))) by
A59,
A60,
FUNCT_1: 12
.= (g
. z3) by
A29,
A61,
A62,
FUNCT_1: 34;
A66: ((h1
" )
. x2)
in (
rng f) by
A14,
A57,
A64,
FUNCT_1:def 3;
((h1
" )
. x2)
in (
rng g) by
A15,
A59,
A65,
FUNCT_1:def 3;
hence thesis by
A66,
XBOOLE_0: 3;
end;
end;
theorem ::
JGRAPH_6:17
Th17: for p1,p2,p3,p4 be
Point of (
TOP-REAL 2), P be
compact non
empty
Subset of (
TOP-REAL 2), C0 be
Subset of (
TOP-REAL 2) st P
= { p where p be
Point of (
TOP-REAL 2) :
|.p.|
= 1 } &
LE (p1,p2,P) &
LE (p2,p3,P) &
LE (p3,p4,P) holds for f,g be
Function of
I[01] , (
TOP-REAL 2) st f is
continuous
one-to-one & g is
continuous
one-to-one & C0
= { p8 where p8 be
Point of (
TOP-REAL 2) :
|.p8.|
<= 1 } & (f
.
0 )
= p3 & (f
. 1)
= p1 & (g
.
0 )
= p4 & (g
. 1)
= p2 & (
rng f)
c= C0 & (
rng g)
c= C0 holds (
rng f)
meets (
rng g)
proof
let p1,p2,p3,p4 be
Point of (
TOP-REAL 2), P be
compact non
empty
Subset of (
TOP-REAL 2), C0 be
Subset of (
TOP-REAL 2);
assume that
A1: P
= { p where p be
Point of (
TOP-REAL 2) :
|.p.|
= 1 } and
A2:
LE (p1,p2,P) and
A3:
LE (p2,p3,P) and
A4:
LE (p3,p4,P);
let f,g be
Function of
I[01] , (
TOP-REAL 2);
assume that
A5: f is
continuous
one-to-one and
A6: g is
continuous
one-to-one and
A7: C0
= { p8 where p8 be
Point of (
TOP-REAL 2) :
|.p8.|
<= 1 } and
A8: (f
.
0 )
= p3 and
A9: (f
. 1)
= p1 and
A10: (g
.
0 )
= p4 and
A11: (g
. 1)
= p2 and
A12: (
rng f)
c= C0 and
A13: (
rng g)
c= C0;
A14: (
dom f)
= the
carrier of
I[01] by
FUNCT_2:def 1;
A15: (
dom g)
= the
carrier of
I[01] by
FUNCT_2:def 1;
per cases ;
suppose
A16: not (p1
<> p2 & p2
<> p3 & p3
<> p4);
now
per cases by
A16;
case
A17: p1
= p2;
A18: p1
in (
rng f) by
A9,
A14,
Lm14,
BORSUK_1: 40,
FUNCT_1:def 3;
p2
in (
rng g) by
A11,
A15,
Lm14,
BORSUK_1: 40,
FUNCT_1:def 3;
hence (
rng f)
meets (
rng g) by
A17,
A18,
XBOOLE_0: 3;
end;
case
A19: p2
= p3;
A20: p3
in (
rng f) by
A8,
A14,
Lm13,
BORSUK_1: 40,
FUNCT_1:def 3;
p2
in (
rng g) by
A11,
A15,
Lm14,
BORSUK_1: 40,
FUNCT_1:def 3;
hence (
rng f)
meets (
rng g) by
A19,
A20,
XBOOLE_0: 3;
end;
case
A21: p3
= p4;
A22: p3
in (
rng f) by
A8,
A14,
Lm13,
BORSUK_1: 40,
FUNCT_1:def 3;
p4
in (
rng g) by
A10,
A15,
Lm13,
BORSUK_1: 40,
FUNCT_1:def 3;
hence (
rng f)
meets (
rng g) by
A21,
A22,
XBOOLE_0: 3;
end;
end;
hence thesis;
end;
suppose p1
<> p2 & p2
<> p3 & p3
<> p4;
then
consider h be
Function of (
TOP-REAL 2), (
TOP-REAL 2) such that
A23: h is
being_homeomorphism and
A24: for q be
Point of (
TOP-REAL 2) holds
|.(h
. q).|
=
|.q.| and
A25:
|[(
- 1),
0 ]|
= (h
. p1) and
A26:
|[
0 , 1]|
= (h
. p2) and
A27:
|[1,
0 ]|
= (h
. p3) and
A28:
|[
0 , (
- 1)]|
= (h
. p4) by
A1,
A2,
A3,
A4,
JGRAPH_5: 67;
A29: h is
one-to-one by
A23,
TOPS_2:def 5;
reconsider f2 = (h
* f) as
Function of
I[01] , (
TOP-REAL 2);
reconsider g2 = (h
* g) as
Function of
I[01] , (
TOP-REAL 2);
A30: (
dom f2)
= the
carrier of
I[01] by
FUNCT_2:def 1;
A31: (
dom g2)
= the
carrier of
I[01] by
FUNCT_2:def 1;
A32: (f2
. 1)
=
|[(
- 1),
0 ]| by
A9,
A25,
A30,
Lm14,
BORSUK_1: 40,
FUNCT_1: 12;
A33: (g2
. 1)
=
|[
0 , 1]| by
A11,
A26,
A31,
Lm14,
BORSUK_1: 40,
FUNCT_1: 12;
A34: (f2
.
0 )
=
|[1,
0 ]| by
A8,
A27,
A30,
Lm13,
BORSUK_1: 40,
FUNCT_1: 12;
A35: (g2
.
0 )
=
|[
0 , (
- 1)]| by
A10,
A28,
A31,
Lm13,
BORSUK_1: 40,
FUNCT_1: 12;
A36: f2 is
continuous
one-to-one by
A5,
A23,
JGRAPH_5: 5,
JGRAPH_5: 6;
A37: g2 is
continuous
one-to-one by
A6,
A23,
JGRAPH_5: 5,
JGRAPH_5: 6;
A38: (
rng f2)
c= C0
proof
let y be
object;
assume y
in (
rng f2);
then
consider x be
object such that
A39: x
in (
dom f2) and
A40: y
= (f2
. x) by
FUNCT_1:def 3;
A41: (f2
. x)
= (h
. (f
. x)) by
A39,
FUNCT_1: 12;
A42: (f
. x)
in (
rng f) by
A14,
A39,
FUNCT_1:def 3;
then
A43: (f
. x)
in C0 by
A12;
reconsider qf = (f
. x) as
Point of (
TOP-REAL 2) by
A42;
A44: ex q5 be
Point of (
TOP-REAL 2) st (q5
= (f
. x)) & (
|.q5.|
<= 1) by
A7,
A43;
|.(h
. qf).|
=
|.qf.| by
A24;
hence thesis by
A7,
A40,
A41,
A44;
end;
A45: (
rng g2)
c= C0
proof
let y be
object;
assume y
in (
rng g2);
then
consider x be
object such that
A46: x
in (
dom g2) and
A47: y
= (g2
. x) by
FUNCT_1:def 3;
A48: (g2
. x)
= (h
. (g
. x)) by
A46,
FUNCT_1: 12;
A49: (g
. x)
in (
rng g) by
A15,
A46,
FUNCT_1:def 3;
then
A50: (g
. x)
in C0 by
A13;
reconsider qg = (g
. x) as
Point of (
TOP-REAL 2) by
A49;
A51: ex q5 be
Point of (
TOP-REAL 2) st (q5
= (g
. x)) & (
|.q5.|
<= 1) by
A7,
A50;
|.(h
. qg).|
=
|.qg.| by
A24;
hence thesis by
A7,
A47,
A48,
A51;
end;
defpred
P[
Point of (
TOP-REAL 2)] means
|.$1.|
= 1 & ($1
`2 )
<= ($1
`1 ) & ($1
`2 )
>= (
- ($1
`1 ));
{ q1 where q1 be
Point of (
TOP-REAL 2) :
P[q1] } is
Subset of (
TOP-REAL 2) from
JGRAPH_2:sch 1;
then
reconsider KXP = { q1 where q1 be
Point of (
TOP-REAL 2) :
|.q1.|
= 1 & (q1
`2 )
<= (q1
`1 ) & (q1
`2 )
>= (
- (q1
`1 )) } as
Subset of (
TOP-REAL 2);
defpred
P[
Point of (
TOP-REAL 2)] means
|.$1.|
= 1 & ($1
`2 )
>= ($1
`1 ) & ($1
`2 )
<= (
- ($1
`1 ));
{ q2 where q2 be
Point of (
TOP-REAL 2) :
P[q2] } is
Subset of (
TOP-REAL 2) from
JGRAPH_2:sch 1;
then
reconsider KXN = { q2 where q2 be
Point of (
TOP-REAL 2) :
|.q2.|
= 1 & (q2
`2 )
>= (q2
`1 ) & (q2
`2 )
<= (
- (q2
`1 )) } as
Subset of (
TOP-REAL 2);
defpred
P[
Point of (
TOP-REAL 2)] means
|.$1.|
= 1 & ($1
`2 )
>= ($1
`1 ) & ($1
`2 )
>= (
- ($1
`1 ));
{ q3 where q3 be
Point of (
TOP-REAL 2) :
P[q3] } is
Subset of (
TOP-REAL 2) from
JGRAPH_2:sch 1;
then
reconsider KYP = { q3 where q3 be
Point of (
TOP-REAL 2) :
|.q3.|
= 1 & (q3
`2 )
>= (q3
`1 ) & (q3
`2 )
>= (
- (q3
`1 )) } as
Subset of (
TOP-REAL 2);
defpred
P[
Point of (
TOP-REAL 2)] means
|.$1.|
= 1 & ($1
`2 )
<= ($1
`1 ) & ($1
`2 )
<= (
- ($1
`1 ));
{ q4 where q4 be
Point of (
TOP-REAL 2) :
P[q4] } is
Subset of (
TOP-REAL 2) from
JGRAPH_2:sch 1;
then
reconsider KYN = { q4 where q4 be
Point of (
TOP-REAL 2) :
|.q4.|
= 1 & (q4
`2 )
<= (q4
`1 ) & (q4
`2 )
<= (
- (q4
`1 )) } as
Subset of (
TOP-REAL 2);
reconsider O =
0 , I = 1 as
Point of
I[01] by
BORSUK_1: 40,
XXREAL_1: 1;
(
- (
|[(
- 1),
0 ]|
`1 ))
= 1 by
Lm4;
then
A52: (f2
. I)
in KXN by
A32,
Lm5,
Lm12;
A53: (f2
. O)
in KXP by
A34,
Lm6,
Lm7,
Lm12;
(
- (
|[
0 , (
- 1)]|
`1 ))
=
0 by
Lm8;
then
A54: (g2
. I)
in KYP by
A33,
Lm10,
Lm11,
Lm12;
(
- (
|[
0 , 1]|
`1 ))
=
0 by
Lm10;
then (g2
. O)
in KYN by
A35,
Lm8,
Lm9,
Lm12;
then (
rng f2)
meets (
rng g2) by
A7,
A36,
A37,
A38,
A45,
A52,
A53,
A54,
Th15;
then
consider x2 be
object such that
A55: x2
in (
rng f2) and
A56: x2
in (
rng g2) by
XBOOLE_0: 3;
consider z2 be
object such that
A57: z2
in (
dom f2) and
A58: x2
= (f2
. z2) by
A55,
FUNCT_1:def 3;
consider z3 be
object such that
A59: z3
in (
dom g2) and
A60: x2
= (g2
. z3) by
A56,
FUNCT_1:def 3;
A61: (
dom h)
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
A62: (g
. z3)
in (
rng g) by
A15,
A59,
FUNCT_1:def 3;
A63: (f
. z2)
in (
rng f) by
A14,
A57,
FUNCT_1:def 3;
reconsider h1 = h as
Function;
A64: ((h1
" )
. x2)
= ((h1
" )
. (h
. (f
. z2))) by
A57,
A58,
FUNCT_1: 12
.= (f
. z2) by
A29,
A61,
A63,
FUNCT_1: 34;
A65: ((h1
" )
. x2)
= ((h1
" )
. (h
. (g
. z3))) by
A59,
A60,
FUNCT_1: 12
.= (g
. z3) by
A29,
A61,
A62,
FUNCT_1: 34;
A66: ((h1
" )
. x2)
in (
rng f) by
A14,
A57,
A64,
FUNCT_1:def 3;
((h1
" )
. x2)
in (
rng g) by
A15,
A59,
A65,
FUNCT_1:def 3;
hence thesis by
A66,
XBOOLE_0: 3;
end;
end;
theorem ::
JGRAPH_6:18
Th18: for p1,p2,p3,p4 be
Point of (
TOP-REAL 2), P be
compact non
empty
Subset of (
TOP-REAL 2), C0 be
Subset of (
TOP-REAL 2) st P
= { p where p be
Point of (
TOP-REAL 2) :
|.p.|
= 1 } & (p1,p2,p3,p4)
are_in_this_order_on P holds for f,g be
Function of
I[01] , (
TOP-REAL 2) st f is
continuous
one-to-one & g is
continuous
one-to-one & C0
= { p8 where p8 be
Point of (
TOP-REAL 2) :
|.p8.|
<= 1 } & (f
.
0 )
= p1 & (f
. 1)
= p3 & (g
.
0 )
= p2 & (g
. 1)
= p4 & (
rng f)
c= C0 & (
rng g)
c= C0 holds (
rng f)
meets (
rng g)
proof
let p1,p2,p3,p4 be
Point of (
TOP-REAL 2), P be
compact non
empty
Subset of (
TOP-REAL 2), C0 be
Subset of (
TOP-REAL 2);
assume that
A1: P
= { p where p be
Point of (
TOP-REAL 2) :
|.p.|
= 1 } and
A2: (p1,p2,p3,p4)
are_in_this_order_on P;
per cases by
A2,
JORDAN17:def 1;
suppose
LE (p1,p2,P) &
LE (p2,p3,P) &
LE (p3,p4,P);
hence thesis by
A1,
JGRAPH_5: 68;
end;
suppose
LE (p2,p3,P) &
LE (p3,p4,P) &
LE (p4,p1,P);
hence thesis by
A1,
JGRAPH_5: 69;
end;
suppose
LE (p3,p4,P) &
LE (p4,p1,P) &
LE (p1,p2,P);
hence thesis by
A1,
Th17;
end;
suppose
LE (p4,p1,P) &
LE (p1,p2,P) &
LE (p2,p3,P);
hence thesis by
A1,
Th16;
end;
end;
begin
notation
let a,b,c,d be
Real;
synonym
rectangle (a,b,c,d) for
[.a,b,c,d.];
end
Lm15: for a,b,c,d be
Real st a
<= b & c
<= d holds (
rectangle (a,b,c,d))
= { p : (p
`1 )
= a & c
<= (p
`2 ) & (p
`2 )
<= d or (p
`2 )
= d & a
<= (p
`1 ) & (p
`1 )
<= b or (p
`1 )
= b & c
<= (p
`2 ) & (p
`2 )
<= d or (p
`2 )
= c & a
<= (p
`1 ) & (p
`1 )
<= b }
proof
let a,b,c,d be
Real;
set X = { p : (p
`1 )
= a & c
<= (p
`2 ) & (p
`2 )
<= d or (p
`2 )
= d & a
<= (p
`1 ) & (p
`1 )
<= b or (p
`1 )
= b & c
<= (p
`2 ) & (p
`2 )
<= d or (p
`2 )
= c & a
<= (p
`1 ) & (p
`1 )
<= b };
assume that
A1: a
<= b and
A2: c
<= d;
A3: (
rectangle (a,b,c,d))
= { p2 : (p2
`1 )
= a & (p2
`2 )
<= d & (p2
`2 )
>= c or (p2
`1 )
<= b & (p2
`1 )
>= a & (p2
`2 )
= d or (p2
`1 )
<= b & (p2
`1 )
>= a & (p2
`2 )
= c or (p2
`1 )
= b & (p2
`2 )
<= d & (p2
`2 )
>= c } by
A1,
A2,
SPPOL_2: 54;
hereby
let x be
object;
assume x
in (
rectangle (a,b,c,d));
then ex p2 st x
= p2 & ((p2
`1 )
= a & (p2
`2 )
<= d & (p2
`2 )
>= c or (p2
`1 )
<= b & (p2
`1 )
>= a & (p2
`2 )
= d or (p2
`1 )
<= b & (p2
`1 )
>= a & (p2
`2 )
= c or (p2
`1 )
= b & (p2
`2 )
<= d & (p2
`2 )
>= c) by
A3;
hence x
in X;
end;
let x be
object;
assume x
in X;
then ex p st x
= p & ((p
`1 )
= a & c
<= (p
`2 ) & (p
`2 )
<= d or (p
`2 )
= d & a
<= (p
`1 ) & (p
`1 )
<= b or (p
`1 )
= b & c
<= (p
`2 ) & (p
`2 )
<= d or (p
`2 )
= c & a
<= (p
`1 ) & (p
`1 )
<= b);
hence thesis by
A3;
end;
theorem ::
JGRAPH_6:19
Th19: for a,b,c,d be
Real, p be
Point of (
TOP-REAL 2) st a
<= b & c
<= d & p
in (
rectangle (a,b,c,d)) holds a
<= (p
`1 ) & (p
`1 )
<= b & c
<= (p
`2 ) & (p
`2 )
<= d
proof
let a,b,c,d be
Real, p be
Point of (
TOP-REAL 2);
assume that
A1: a
<= b and
A2: c
<= d and
A3: p
in (
rectangle (a,b,c,d));
p
in { p2 : (p2
`1 )
= a & (p2
`2 )
<= d & (p2
`2 )
>= c or (p2
`1 )
<= b & (p2
`1 )
>= a & (p2
`2 )
= d or (p2
`1 )
<= b & (p2
`1 )
>= a & (p2
`2 )
= c or (p2
`1 )
= b & (p2
`2 )
<= d & (p2
`2 )
>= c } by
A1,
A2,
A3,
SPPOL_2: 54;
then
A4: ex p2 st (p2
= p) & ((p2
`1 )
= a & (p2
`2 )
<= d & (p2
`2 )
>= c or (p2
`1 )
<= b & (p2
`1 )
>= a & (p2
`2 )
= d or (p2
`1 )
<= b & (p2
`1 )
>= a & (p2
`2 )
= c or (p2
`1 )
= b & (p2
`2 )
<= d & (p2
`2 )
>= c);
per cases by
A4;
suppose (p
`1 )
= a & c
<= (p
`2 ) & (p
`2 )
<= d;
hence thesis by
A1;
end;
suppose (p
`2 )
= d & a
<= (p
`1 ) & (p
`1 )
<= b;
hence thesis by
A2;
end;
suppose (p
`1 )
= b & c
<= (p
`2 ) & (p
`2 )
<= d;
hence thesis by
A1;
end;
suppose (p
`2 )
= c & a
<= (p
`1 ) & (p
`1 )
<= b;
hence thesis by
A2;
end;
end;
definition
let a,b,c,d be
Real;
::
JGRAPH_6:def1
func
inside_of_rectangle (a,b,c,d) ->
Subset of (
TOP-REAL 2) equals { p : a
< (p
`1 ) & (p
`1 )
< b & c
< (p
`2 ) & (p
`2 )
< d };
coherence
proof
defpred
P[
Point of (
TOP-REAL 2)] means a
< ($1
`1 ) & ($1
`1 )
< b & c
< ($1
`2 ) & ($1
`2 )
< d;
{ p :
P[p] }
c= the
carrier of (
TOP-REAL 2) from
FRAENKEL:sch 10;
hence thesis;
end;
end
definition
let a,b,c,d be
Real;
::
JGRAPH_6:def2
func
closed_inside_of_rectangle (a,b,c,d) ->
Subset of (
TOP-REAL 2) equals { p : a
<= (p
`1 ) & (p
`1 )
<= b & c
<= (p
`2 ) & (p
`2 )
<= d };
coherence
proof
defpred
P[
Point of (
TOP-REAL 2)] means a
<= ($1
`1 ) & ($1
`1 )
<= b & c
<= ($1
`2 ) & ($1
`2 )
<= d;
{ p :
P[p] }
c= the
carrier of (
TOP-REAL 2) from
FRAENKEL:sch 10;
hence thesis;
end;
end
definition
let a,b,c,d be
Real;
::
JGRAPH_6:def3
func
outside_of_rectangle (a,b,c,d) ->
Subset of (
TOP-REAL 2) equals { p : not (a
<= (p
`1 ) & (p
`1 )
<= b & c
<= (p
`2 ) & (p
`2 )
<= d) };
coherence
proof
defpred
P[
Point of (
TOP-REAL 2)] means not (a
<= ($1
`1 ) & ($1
`1 )
<= b & c
<= ($1
`2 ) & ($1
`2 )
<= d);
{ p :
P[p] }
c= the
carrier of (
TOP-REAL 2) from
FRAENKEL:sch 10;
hence thesis;
end;
end
definition
let a,b,c,d be
Real;
::
JGRAPH_6:def4
func
closed_outside_of_rectangle (a,b,c,d) ->
Subset of (
TOP-REAL 2) equals { p : not (a
< (p
`1 ) & (p
`1 )
< b & c
< (p
`2 ) & (p
`2 )
< d) };
coherence
proof
defpred
P[
Point of (
TOP-REAL 2)] means not (a
< ($1
`1 ) & ($1
`1 )
< b & c
< ($1
`2 ) & ($1
`2 )
< d);
{ p :
P[p] }
c= the
carrier of (
TOP-REAL 2) from
FRAENKEL:sch 10;
hence thesis;
end;
end
theorem ::
JGRAPH_6:20
Th20: for a,b,r be
Real, Kb,Cb be
Subset of (
TOP-REAL 2) st r
>=
0 & Kb
= { q :
|.q.|
= 1 } & Cb
= { p2 where p2 be
Point of (
TOP-REAL 2) :
|.(p2
-
|[a, b]|).|
= r } holds ((
AffineMap (r,a,r,b))
.: Kb)
= Cb
proof
let a,b,r be
Real, Kb,Cb be
Subset of (
TOP-REAL 2);
assume
A1: r
>=
0 & Kb
= { q :
|.q.|
= 1 } & Cb
= { p2 where p2 be
Point of (
TOP-REAL 2) :
|.(p2
-
|[a, b]|).|
= r };
reconsider rr = r as
Real;
A2: ((
AffineMap (r,a,r,b))
.: Kb)
c= Cb
proof
let y be
object;
assume y
in ((
AffineMap (r,a,r,b))
.: Kb);
then
consider x be
object such that x
in (
dom (
AffineMap (r,a,r,b))) and
A3: x
in Kb and
A4: y
= ((
AffineMap (r,a,r,b))
. x) by
FUNCT_1:def 6;
consider p be
Point of (
TOP-REAL 2) such that
A5: x
= p and
A6:
|.p.|
= 1 by
A1,
A3;
A7: ((
AffineMap (r,a,r,b))
. p)
=
|[((r
* (p
`1 ))
+ a), ((r
* (p
`2 ))
+ b)]| by
JGRAPH_2:def 2;
then
reconsider q = y as
Point of (
TOP-REAL 2) by
A4,
A5;
A8: (q
-
|[a, b]|)
=
|[(((r
* (p
`1 ))
+ a)
- a), (((r
* (p
`2 ))
+ b)
- b)]| by
A4,
A5,
A7,
EUCLID: 62
.= (r
*
|[(p
`1 ), (p
`2 )]|) by
EUCLID: 58
.= (r
* p) by
EUCLID: 53;
|.(r
* p).|
= (
|.rr.|
*
|.p.|) by
TOPRNS_1: 7
.= r by
A1,
A6,
ABSVALUE:def 1;
hence thesis by
A1,
A8;
end;
Cb
c= ((
AffineMap (r,a,r,b))
.: Kb)
proof
let y be
object;
assume y
in Cb;
then
consider p2 be
Point of (
TOP-REAL 2) such that
A9: y
= p2 and
A10:
|.(p2
-
|[a, b]|).|
= r by
A1;
now
per cases by
A1;
case
A11: r
>
0 ;
set p1 = ((1
/ r)
* (p2
-
|[a, b]|));
|.p1.|
= (
|.(1
/ rr).|
*
|.(p2
-
|[a, b]|).|) by
TOPRNS_1: 7
.= ((1
/ r)
* r) by
A10,
ABSVALUE:def 1
.= 1 by
A11,
XCMPLX_1: 87;
then
A12: p1
in Kb by
A1;
A13: p1
=
|[((1
/ r)
* ((p2
-
|[a, b]|)
`1 )), ((1
/ r)
* ((p2
-
|[a, b]|)
`2 ))]| by
EUCLID: 57;
then
A14: (p1
`1 )
= ((1
/ r)
* ((p2
-
|[a, b]|)
`1 )) by
EUCLID: 52;
A15: (p1
`2 )
= ((1
/ r)
* ((p2
-
|[a, b]|)
`2 )) by
A13,
EUCLID: 52;
A16: (r
* (p1
`1 ))
= ((r
* (1
/ r))
* ((p2
-
|[a, b]|)
`1 )) by
A14
.= (1
* ((p2
-
|[a, b]|)
`1 )) by
A11,
XCMPLX_1: 87
.= ((p2
`1 )
- (
|[a, b]|
`1 )) by
TOPREAL3: 3
.= ((p2
`1 )
- a) by
EUCLID: 52;
A17: (r
* (p1
`2 ))
= ((r
* (1
/ r))
* ((p2
-
|[a, b]|)
`2 )) by
A15
.= (1
* ((p2
-
|[a, b]|)
`2 )) by
A11,
XCMPLX_1: 87
.= ((p2
`2 )
- (
|[a, b]|
`2 )) by
TOPREAL3: 3
.= ((p2
`2 )
- b) by
EUCLID: 52;
A18: ((
AffineMap (r,a,r,b))
. p1)
=
|[((r
* (p1
`1 ))
+ a), ((r
* (p1
`2 ))
+ b)]| by
JGRAPH_2:def 2
.= p2 by
A16,
A17,
EUCLID: 53;
(
dom (
AffineMap (r,a,r,b)))
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
hence thesis by
A9,
A12,
A18,
FUNCT_1:def 6;
end;
case
A19: r
=
0 ;
set p1 =
|[1,
0 ]|;
A20: (p1
`1 )
= 1 by
EUCLID: 52;
(p1
`2 )
=
0 by
EUCLID: 52;
then
|.p1.|
= (
sqrt ((1
^2 )
+ (
0
^2 ))) by
A20,
JGRAPH_3: 1
.= 1 by
SQUARE_1: 22;
then
A21: p1
in Kb by
A1;
A22: ((
AffineMap (r,a,r,b))
. p1)
=
|[((
0
* (p1
`1 ))
+ a), ((
0
* (p1
`2 ))
+ b)]| by
A19,
JGRAPH_2:def 2
.= p2 by
A10,
A19,
TOPRNS_1: 28;
(
dom (
AffineMap (r,a,r,b)))
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
hence thesis by
A9,
A21,
A22,
FUNCT_1:def 6;
end;
end;
hence thesis;
end;
hence thesis by
A2;
end;
theorem ::
JGRAPH_6:21
Th21: for P,Q be
Subset of (
TOP-REAL 2) st (ex f be
Function of ((
TOP-REAL 2)
| P), ((
TOP-REAL 2)
| Q) st f is
being_homeomorphism) & P is
being_simple_closed_curve holds Q is
being_simple_closed_curve
proof
let P,Q be
Subset of (
TOP-REAL 2);
assume that
A1: ex f be
Function of ((
TOP-REAL 2)
| P), ((
TOP-REAL 2)
| Q) st f is
being_homeomorphism and
A2: P is
being_simple_closed_curve;
consider f be
Function of ((
TOP-REAL 2)
| P), ((
TOP-REAL 2)
| Q) such that
A3: f is
being_homeomorphism by
A1;
consider g be
Function of ((
TOP-REAL 2)
|
R^2-unit_square ), ((
TOP-REAL 2)
| P) such that
A4: g is
being_homeomorphism by
A2,
TOPREAL2:def 1;
A5: (
|[1,
0 ]|
`1 )
= 1 by
EUCLID: 52;
(
|[1,
0 ]|
`2 )
=
0 by
EUCLID: 52;
then
A6:
|[1,
0 ]|
in
R^2-unit_square by
A5,
TOPREAL1: 14;
A7: (
dom g)
= (
[#] ((
TOP-REAL 2)
|
R^2-unit_square )) by
A4,
TOPS_2:def 5;
A8: (
rng g)
= (
[#] ((
TOP-REAL 2)
| P)) by
A4,
TOPS_2:def 5;
(
dom g)
=
R^2-unit_square by
A7,
PRE_TOPC:def 5;
then
A9: (g
.
|[1,
0 ]|)
in (
rng g) by
A6,
FUNCT_1: 3;
then
A10: (g
.
|[1,
0 ]|)
in P by
A8,
PRE_TOPC:def 5;
reconsider P1 = P as non
empty
Subset of (
TOP-REAL 2) by
A9;
(
dom f)
= (
[#] ((
TOP-REAL 2)
| P)) by
A3,
TOPS_2:def 5;
then (
dom f)
= P by
PRE_TOPC:def 5;
then (f
. (g
.
|[1,
0 ]|))
in (
rng f) by
A10,
FUNCT_1: 3;
then
reconsider Q1 = Q as non
empty
Subset of (
TOP-REAL 2);
reconsider f1 = f as
Function of ((
TOP-REAL 2)
| P1), ((
TOP-REAL 2)
| Q1);
reconsider g1 = g as
Function of ((
TOP-REAL 2)
|
R^2-unit_square ), ((
TOP-REAL 2)
| P1);
reconsider h = (f1
* g1) as
Function of ((
TOP-REAL 2)
|
R^2-unit_square ), ((
TOP-REAL 2)
| Q1);
h is
being_homeomorphism by
A3,
A4,
TOPS_2: 57;
hence thesis by
TOPREAL2:def 1;
end;
theorem ::
JGRAPH_6:22
Th22: for P be
Subset of (
TOP-REAL 2) st P is
being_simple_closed_curve holds P is
compact;
theorem ::
JGRAPH_6:23
Th23: for a,b,r be
Real, Cb be
Subset of (
TOP-REAL 2) st r
>
0 & Cb
= { p where p be
Point of (
TOP-REAL 2) :
|.(p
-
|[a, b]|).|
= r } holds Cb is
being_simple_closed_curve
proof
let a,b,r be
Real, Cb be
Subset of (
TOP-REAL 2);
assume that
A1: r
>
0 and
A2: Cb
= { p where p be
Point of (
TOP-REAL 2) :
|.(p
-
|[a, b]|).|
= r };
A3: (
|[r,
0 ]|
`1 )
= r by
EUCLID: 52;
A4: (
|[r,
0 ]|
`2 )
=
0 by
EUCLID: 52;
|.(
|[(r
+ a), b]|
-
|[a, b]|).|
=
|.(
|[(r
+ a), (
0
+ b)]|
-
|[a, b]|).|
.=
|.((
|[r,
0 ]|
+
|[a, b]|)
-
|[a, b]|).| by
EUCLID: 56
.=
|.(
|[r,
0 ]|
+ (
|[a, b]|
-
|[a, b]|)).| by
RLVECT_1:def 3
.=
|.(
|[r,
0 ]|
+ (
0. (
TOP-REAL 2))).| by
RLVECT_1: 5
.=
|.
|[r,
0 ]|.| by
RLVECT_1: 4
.= (
sqrt ((r
^2 )
+ (
0
^2 ))) by
A3,
A4,
JGRAPH_3: 1
.= r by
A1,
SQUARE_1: 22;
then
|[(r
+ a), b]|
in Cb by
A2;
then
reconsider Cbb = Cb as non
empty
Subset of (
TOP-REAL 2);
set v =
|[1,
0 ]|;
A5: (v
`1 )
= 1 by
EUCLID: 52;
(v
`2 )
=
0 by
EUCLID: 52;
then
|.v.|
= (
sqrt ((1
^2 )
+ (
0
^2 ))) by
A5,
JGRAPH_3: 1
.= 1 by
SQUARE_1: 22;
then
A6:
|[1,
0 ]|
in { q :
|.q.|
= 1 };
defpred
P[
Point of (
TOP-REAL 2)] means
|.$1.|
= 1;
{ q where q be
Element of (
TOP-REAL 2) :
P[q] } is
Subset of (
TOP-REAL 2) from
DOMAIN_1:sch 7;
then
reconsider Kb = { q :
|.q.|
= 1 } as non
empty
Subset of (
TOP-REAL 2) by
A6;
A7: the
carrier of ((
TOP-REAL 2)
| Kb)
= Kb by
PRE_TOPC: 8;
set SC = (
AffineMap (r,a,r,b));
A8: SC is
one-to-one by
A1,
JGRAPH_2: 44;
A9: (
dom SC)
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
A10: (
dom (SC
| Kb))
= ((
dom SC)
/\ Kb) by
RELAT_1: 61
.= the
carrier of ((
TOP-REAL 2)
| Kb) by
A7,
A9,
XBOOLE_1: 28;
A11: (
rng (SC
| Kb))
c= ((SC
| Kb)
.: the
carrier of ((
TOP-REAL 2)
| Kb))
proof
let u be
object;
assume u
in (
rng (SC
| Kb));
then ex z be
object st (z
in (
dom (SC
| Kb))) & (u
= ((SC
| Kb)
. z)) by
FUNCT_1:def 3;
hence thesis by
A10,
FUNCT_1:def 6;
end;
((SC
| Kb)
.: the
carrier of ((
TOP-REAL 2)
| Kb))
= (SC
.: Kb) by
A7,
RELAT_1: 129
.= Cb by
A1,
A2,
Th20
.= the
carrier of ((
TOP-REAL 2)
| Cbb) by
PRE_TOPC: 8;
then
reconsider f0 = (SC
| Kb) as
Function of ((
TOP-REAL 2)
| Kb), ((
TOP-REAL 2)
| Cbb) by
A10,
A11,
FUNCT_2: 2;
(
rng (SC
| Kb))
c= the
carrier of (
TOP-REAL 2);
then
reconsider f00 = f0 as
Function of ((
TOP-REAL 2)
| Kb), (
TOP-REAL 2) by
A10,
FUNCT_2: 2;
A12: (
rng f0)
= ((SC
| Kb)
.: the
carrier of ((
TOP-REAL 2)
| Kb)) by
RELSET_1: 22
.= (SC
.: Kb) by
A7,
RELAT_1: 129
.= Cb by
A1,
A2,
Th20;
A13: f0 is
one-to-one by
A8,
FUNCT_1: 52;
Kb is
compact by
Th22,
JGRAPH_3: 26;
then ex f1 be
Function of ((
TOP-REAL 2)
| Kb), ((
TOP-REAL 2)
| Cbb) st f00
= f1 & f1 is
being_homeomorphism by
A12,
A13,
JGRAPH_1: 46,
TOPMETR: 7;
hence thesis by
Th21,
JGRAPH_3: 26;
end;
definition
let a,b,r be
Real;
::
JGRAPH_6:def5
func
circle (a,b,r) ->
Subset of (
TOP-REAL 2) equals { p where p be
Point of (
TOP-REAL 2) :
|.(p
-
|[a, b]|).|
= r };
coherence
proof
defpred
P[
Point of (
TOP-REAL 2)] means
|.($1
-
|[a, b]|).|
= r;
{ p where p be
Point of (
TOP-REAL 2) :
P[p] }
c= the
carrier of (
TOP-REAL 2) from
FRAENKEL:sch 10;
hence thesis;
end;
end
registration
let a,b,r be
Real;
cluster (
circle (a,b,r)) ->
compact;
coherence
proof
set Cb = (
circle (a,b,r));
per cases ;
suppose
A1: r
<
0 ;
Cb
=
{}
proof
hereby
let x be
object;
assume x
in Cb;
then ex p be
Point of (
TOP-REAL 2) st x
= p &
|.(p
-
|[a, b]|).|
= r;
hence x
in
{} by
A1;
end;
thus thesis;
end;
hence thesis;
end;
suppose r
>
0 ;
hence thesis by
Th22,
Th23;
end;
suppose
A2: r
=
0 ;
Cb
=
{
|[a, b]|}
proof
hereby
let x be
object;
assume x
in Cb;
then
consider p be
Point of (
TOP-REAL 2) such that
A3: x
= p and
A4:
|.(p
-
|[a, b]|).|
= r;
p
=
|[a, b]| by
A2,
A4,
TOPRNS_1: 28;
hence x
in
{
|[a, b]|} by
A3,
TARSKI:def 1;
end;
let x be
object;
assume x
in
{
|[a, b]|};
then
A5: x
=
|[a, b]| by
TARSKI:def 1;
|.(
|[a, b]|
-
|[a, b]|).|
=
0 by
TOPRNS_1: 28;
hence thesis by
A2,
A5;
end;
hence thesis;
end;
end;
end
registration
let a,b be
Real;
let r be non
negative
Real;
cluster (
circle (a,b,r)) -> non
empty;
coherence
proof
set Cb = (
circle (a,b,r));
A1: (
|[r,
0 ]|
`1 )
= r by
EUCLID: 52;
A2: (
|[r,
0 ]|
`2 )
=
0 by
EUCLID: 52;
|.(
|[(r
+ a), b]|
-
|[a, b]|).|
=
|.(
|[(r
+ a), (
0
+ b)]|
-
|[a, b]|).|
.=
|.((
|[r,
0 ]|
+
|[a, b]|)
-
|[a, b]|).| by
EUCLID: 56
.=
|.(
|[r,
0 ]|
+ (
|[a, b]|
-
|[a, b]|)).| by
RLVECT_1:def 3
.=
|.(
|[r,
0 ]|
+ (
0. (
TOP-REAL 2))).| by
RLVECT_1: 5
.=
|.
|[r,
0 ]|.| by
RLVECT_1: 4
.= (
sqrt ((r
^2 )
+ (
0
^2 ))) by
A1,
A2,
JGRAPH_3: 1
.= r by
SQUARE_1: 22;
then
|[(r
+ a), b]|
in Cb;
hence thesis;
end;
end
definition
let a,b,r be
Real;
::
JGRAPH_6:def6
func
inside_of_circle (a,b,r) ->
Subset of (
TOP-REAL 2) equals { p where p be
Point of (
TOP-REAL 2) :
|.(p
-
|[a, b]|).|
< r };
coherence
proof
defpred
P[
Point of (
TOP-REAL 2)] means
|.($1
-
|[a, b]|).|
< r;
{ p where p be
Point of (
TOP-REAL 2) :
P[p] }
c= the
carrier of (
TOP-REAL 2) from
FRAENKEL:sch 10;
hence thesis;
end;
end
definition
let a,b,r be
Real;
::
JGRAPH_6:def7
func
closed_inside_of_circle (a,b,r) ->
Subset of (
TOP-REAL 2) equals { p where p be
Point of (
TOP-REAL 2) :
|.(p
-
|[a, b]|).|
<= r };
coherence
proof
defpred
P[
Point of (
TOP-REAL 2)] means
|.($1
-
|[a, b]|).|
<= r;
{ p where p be
Point of (
TOP-REAL 2) :
P[p] }
c= the
carrier of (
TOP-REAL 2) from
FRAENKEL:sch 10;
hence thesis;
end;
end
definition
let a,b,r be
Real;
::
JGRAPH_6:def8
func
outside_of_circle (a,b,r) ->
Subset of (
TOP-REAL 2) equals { p where p be
Point of (
TOP-REAL 2) :
|.(p
-
|[a, b]|).|
> r };
coherence
proof
defpred
P[
Point of (
TOP-REAL 2)] means
|.($1
-
|[a, b]|).|
> r;
{ p where p be
Point of (
TOP-REAL 2) :
P[p] }
c= the
carrier of (
TOP-REAL 2) from
FRAENKEL:sch 10;
hence thesis;
end;
end
definition
let a,b,r be
Real;
::
JGRAPH_6:def9
func
closed_outside_of_circle (a,b,r) ->
Subset of (
TOP-REAL 2) equals { p where p be
Point of (
TOP-REAL 2) :
|.(p
-
|[a, b]|).|
>= r };
coherence
proof
defpred
P[
Point of (
TOP-REAL 2)] means
|.($1
-
|[a, b]|).|
>= r;
{ p where p be
Point of (
TOP-REAL 2) :
P[p] }
c= the
carrier of (
TOP-REAL 2) from
FRAENKEL:sch 10;
hence thesis;
end;
end
theorem ::
JGRAPH_6:24
Th24: for r be
Real holds (
inside_of_circle (
0 ,
0 ,r))
= { p :
|.p.|
< r } & (r
>
0 implies (
circle (
0 ,
0 ,r))
= { p2 :
|.p2.|
= r }) & (
outside_of_circle (
0 ,
0 ,r))
= { p3 :
|.p3.|
> r } & (
closed_inside_of_circle (
0 ,
0 ,r))
= { q :
|.q.|
<= r } & (
closed_outside_of_circle (
0 ,
0 ,r))
= { q2 :
|.q2.|
>= r }
proof
let r be
Real;
defpred
P[
Point of (
TOP-REAL 2)] means
|.($1
-
|[
0 ,
0 ]|).|
< r;
defpred
Q[
Point of (
TOP-REAL 2)] means
|.$1.|
< r;
deffunc
F(
set) = $1;
A1: for p holds
P[p] iff
Q[p] by
EUCLID: 54,
RLVECT_1: 13;
(
inside_of_circle (
0 ,
0 ,r))
= {
F(p) where p be
Point of (
TOP-REAL 2) :
P[p] }
.= {
F(p2) where p2 be
Point of (
TOP-REAL 2) :
Q[p2] } from
FRAENKEL:sch 3(
A1);
hence (
inside_of_circle (
0 ,
0 ,r))
= { p :
|.p.|
< r };
defpred
P[
Point of (
TOP-REAL 2)] means
|.($1
-
|[
0 ,
0 ]|).|
= r;
defpred
Q[
Point of (
TOP-REAL 2)] means
|.$1.|
= r;
A2: for p holds
P[p] iff
Q[p] by
EUCLID: 54,
RLVECT_1: 13;
hereby
assume r
>
0 ;
(
circle (
0 ,
0 ,r))
= {
F(p) :
P[p] }
.= {
F(p2) where p2 be
Point of (
TOP-REAL 2) :
Q[p2] } from
FRAENKEL:sch 3(
A2);
hence (
circle (
0 ,
0 ,r))
= { p2 :
|.p2.|
= r };
end;
defpred
P[
Point of (
TOP-REAL 2)] means
|.($1
-
|[
0 ,
0 ]|).|
> r;
defpred
Q[
Point of (
TOP-REAL 2)] means
|.$1.|
> r;
A3: for p holds
P[p] iff
Q[p] by
EUCLID: 54,
RLVECT_1: 13;
(
outside_of_circle (
0 ,
0 ,r))
= {
F(p) :
P[p] }
.= {
F(p2) where p2 be
Point of (
TOP-REAL 2) :
Q[p2] } from
FRAENKEL:sch 3(
A3);
hence (
outside_of_circle (
0 ,
0 ,r))
= { p3 :
|.p3.|
> r };
defpred
P[
Point of (
TOP-REAL 2)] means
|.($1
-
|[
0 ,
0 ]|).|
<= r;
defpred
Q[
Point of (
TOP-REAL 2)] means
|.$1.|
<= r;
A4: for p holds
P[p] iff
Q[p] by
EUCLID: 54,
RLVECT_1: 13;
(
closed_inside_of_circle (
0 ,
0 ,r))
= {
F(p) :
P[p] }
.= {
F(p2) where p2 be
Point of (
TOP-REAL 2) :
Q[p2] } from
FRAENKEL:sch 3(
A4);
hence (
closed_inside_of_circle (
0 ,
0 ,r))
= { p :
|.p.|
<= r };
defpred
P[
Point of (
TOP-REAL 2)] means
|.($1
-
|[
0 ,
0 ]|).|
>= r;
defpred
Q[
Point of (
TOP-REAL 2)] means
|.$1.|
>= r;
A5: for p holds
P[p] iff
Q[p] by
EUCLID: 54,
RLVECT_1: 13;
(
closed_outside_of_circle (
0 ,
0 ,r))
= {
F(p) :
P[p] }
.= {
F(p2) where p2 be
Point of (
TOP-REAL 2) :
Q[p2] } from
FRAENKEL:sch 3(
A5);
hence thesis;
end;
theorem ::
JGRAPH_6:25
Th25: for Kb,Cb be
Subset of (
TOP-REAL 2) st Kb
= { p : (
- 1)
< (p
`1 ) & (p
`1 )
< 1 & (
- 1)
< (p
`2 ) & (p
`2 )
< 1 } & Cb
= { p2 where p2 be
Point of (
TOP-REAL 2) :
|.p2.|
< 1 } holds (
Sq_Circ
.: Kb)
= Cb
proof
let Kb,Cb be
Subset of (
TOP-REAL 2);
assume
A1: Kb
= { p : (
- 1)
< (p
`1 ) & (p
`1 )
< 1 & (
- 1)
< (p
`2 ) & (p
`2 )
< 1 } & Cb
= { p2 where p2 be
Point of (
TOP-REAL 2) :
|.p2.|
< 1 };
thus (
Sq_Circ
.: Kb)
c= Cb
proof
let y be
object;
assume y
in (
Sq_Circ
.: Kb);
then
consider x be
object such that x
in (
dom
Sq_Circ ) and
A2: x
in Kb and
A3: y
= (
Sq_Circ
. x) by
FUNCT_1:def 6;
consider q be
Point of (
TOP-REAL 2) such that
A4: q
= x and
A5: (
- 1)
< (q
`1 ) and
A6: (q
`1 )
< 1 and
A7: (
- 1)
< (q
`2 ) and
A8: (q
`2 )
< 1 by
A1,
A2;
now
per cases ;
case
A9: q
= (
0. (
TOP-REAL 2));
then
A10: (
Sq_Circ
. q)
= q by
JGRAPH_3:def 1;
|.q.|
=
0 by
A9,
TOPRNS_1: 23;
hence ex p2 be
Point of (
TOP-REAL 2) st p2
= y &
|.p2.|
< 1 by
A3,
A4,
A10;
end;
case
A11: q
<> (
0. (
TOP-REAL 2)) & ((q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 )));
then
A12: (
Sq_Circ
. q)
=
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]| by
JGRAPH_3:def 1;
A13: (
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|
`1 )
= ((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
A14: (
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|
`2 )
= ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
A15: (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))
>
0 by
XREAL_1: 34,
XREAL_1: 63;
A16:
now
assume
A17: (q
`1 )
=
0 ;
then (q
`2 )
=
0 by
A11;
hence contradiction by
A11,
A17,
EUCLID: 53,
EUCLID: 54;
end;
then
A18: ((q
`1 )
^2 )
>
0 by
SQUARE_1: 12;
((q
`1 )
^2 )
< (1
^2 ) by
A5,
A6,
SQUARE_1: 50;
then
A19: (
sqrt ((q
`1 )
^2 ))
< 1 by
A18,
SQUARE_1: 18,
SQUARE_1: 27;
(
|.
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|.|
^2 )
= ((((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
^2 )
+ (((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
^2 )) by
A13,
A14,
JGRAPH_3: 1
.= ((((q
`1 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 ))
+ (((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
^2 )) by
XCMPLX_1: 76
.= ((((q
`1 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 ))
+ (((q
`2 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 ))) by
XCMPLX_1: 76
.= ((((q
`1 )
^2 )
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
+ (((q
`2 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 ))) by
A15,
SQUARE_1:def 2
.= ((((q
`1 )
^2 )
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
+ (((q
`2 )
^2 )
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A15,
SQUARE_1:def 2
.= ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))) by
XCMPLX_1: 62
.= ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ (1
+ (((q
`2 )
^2 )
/ ((q
`1 )
^2 )))) by
XCMPLX_1: 76
.= ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ ((((q
`1 )
^2 )
/ ((q
`1 )
^2 ))
+ (((q
`2 )
^2 )
/ ((q
`1 )
^2 )))) by
A18,
XCMPLX_1: 60
.= ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ ((q
`1 )
^2 ))) by
XCMPLX_1: 62
.= (((q
`1 )
^2 )
* ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ (((q
`1 )
^2 )
+ ((q
`2 )
^2 )))) by
XCMPLX_1: 81
.= (((q
`1 )
^2 )
* 1) by
A16,
COMPLEX1: 1,
XCMPLX_1: 60
.= ((q
`1 )
^2 );
then
|.
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|.|
< 1 by
A19,
SQUARE_1: 22;
hence ex p2 be
Point of (
TOP-REAL 2) st p2
= y &
|.p2.|
< 1 by
A3,
A4,
A12;
end;
case
A20: q
<> (
0. (
TOP-REAL 2)) & not ((q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 )));
then
A21: (
Sq_Circ
. q)
=
|[((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]| by
JGRAPH_3:def 1;
A22: (
|[((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]|
`1 )
= ((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
EUCLID: 52;
A23: (
|[((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]|
`2 )
= ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
EUCLID: 52;
A24: (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))
>
0 by
XREAL_1: 34,
XREAL_1: 63;
A25: (q
`2 )
<>
0 by
A20;
then
A26: ((q
`2 )
^2 )
>
0 by
SQUARE_1: 12;
((q
`2 )
^2 )
< (1
^2 ) by
A7,
A8,
SQUARE_1: 50;
then
A27: (
sqrt ((q
`2 )
^2 ))
< 1 by
A26,
SQUARE_1: 18,
SQUARE_1: 27;
(
|.
|[((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]|.|
^2 )
= ((((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
^2 )
+ (((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
^2 )) by
A22,
A23,
JGRAPH_3: 1
.= ((((q
`1 )
^2 )
/ ((
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
^2 ))
+ (((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
^2 )) by
XCMPLX_1: 76
.= ((((q
`1 )
^2 )
/ ((
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
^2 ))
+ (((q
`2 )
^2 )
/ ((
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
^2 ))) by
XCMPLX_1: 76
.= ((((q
`1 )
^2 )
/ (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
+ (((q
`2 )
^2 )
/ ((
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
^2 ))) by
A24,
SQUARE_1:def 2
.= ((((q
`1 )
^2 )
/ (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
+ (((q
`2 )
^2 )
/ (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
A24,
SQUARE_1:def 2
.= ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))) by
XCMPLX_1: 62
.= ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ (1
+ (((q
`1 )
^2 )
/ ((q
`2 )
^2 )))) by
XCMPLX_1: 76
.= ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ ((((q
`1 )
^2 )
/ ((q
`2 )
^2 ))
+ (((q
`2 )
^2 )
/ ((q
`2 )
^2 )))) by
A26,
XCMPLX_1: 60
.= ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ ((q
`2 )
^2 ))) by
XCMPLX_1: 62
.= (((q
`2 )
^2 )
* ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ (((q
`1 )
^2 )
+ ((q
`2 )
^2 )))) by
XCMPLX_1: 81
.= (((q
`2 )
^2 )
* 1) by
A25,
COMPLEX1: 1,
XCMPLX_1: 60
.= ((q
`2 )
^2 );
then
|.
|[((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]|.|
< 1 by
A27,
SQUARE_1: 22;
hence ex p2 be
Point of (
TOP-REAL 2) st p2
= y &
|.p2.|
< 1 by
A3,
A4,
A21;
end;
end;
hence thesis by
A1;
end;
let y be
object;
assume y
in Cb;
then
consider p2 be
Point of (
TOP-REAL 2) such that
A28: p2
= y and
A29:
|.p2.|
< 1 by
A1;
set q = p2;
now
per cases ;
case
A30: q
= (
0. (
TOP-REAL 2));
then
A31: (q
`1 )
=
0 by
EUCLID: 52,
EUCLID: 54;
(q
`2 )
=
0 by
A30,
EUCLID: 52,
EUCLID: 54;
then
A32: y
in Kb by
A1,
A28,
A31;
A33: ((
Sq_Circ
" )
. y)
= y by
A28,
A30,
JGRAPH_3: 28;
A34: (
dom
Sq_Circ )
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
y
= (
Sq_Circ
. y) by
A28,
A33,
FUNCT_1: 35,
JGRAPH_3: 43;
hence ex x be
set st x
in (
dom
Sq_Circ ) & x
in Kb & y
= (
Sq_Circ
. x) by
A32,
A34;
end;
case
A35: q
<> (
0. (
TOP-REAL 2)) & ((q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 )));
set px =
|[((q
`1 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|;
A36: (px
`1 )
= ((q
`1 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
A37: (px
`2 )
= ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
(1
+ (((q
`2 )
/ (q
`1 ))
^2 ))
>
0 by
XREAL_1: 34,
XREAL_1: 63;
then
A38: (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
>
0 by
SQUARE_1: 25;
A39: (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))
>
0 by
XREAL_1: 34,
XREAL_1: 63;
A40: ((px
`2 )
/ (px
`1 ))
= ((q
`2 )
/ (q
`1 )) by
A36,
A37,
A38,
XCMPLX_1: 91;
A41: (q
`1 )
= (((q
`1 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A38,
XCMPLX_1: 89
.= ((px
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
A42: (q
`2 )
= (((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A38,
XCMPLX_1: 89
.= ((px
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
A43: (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1;
A44: (
|.q.|
^2 )
< (1
^2 ) by
A29,
SQUARE_1: 16;
A45:
now
assume that
A46: (px
`1 )
=
0 and
A47: (px
`2 )
=
0 ;
A48: ((q
`1 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
=
0 by
A46,
EUCLID: 52;
A49: ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
=
0 by
A47,
EUCLID: 52;
A50: (q
`1 )
=
0 by
A38,
A48,
XCMPLX_1: 6;
(q
`2 )
=
0 by
A38,
A49,
XCMPLX_1: 6;
hence contradiction by
A35,
A50,
EUCLID: 53,
EUCLID: 54;
end;
(q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
<= ((
- (q
`1 ))
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A35,
A38,
XREAL_1: 64;
then
A51: (q
`2 )
<= (q
`1 ) & ((
- (q
`1 ))
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
<= ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) or (px
`2 )
>= (px
`1 ) & (px
`2 )
<= (
- (px
`1 )) by
A36,
A37,
A38,
XREAL_1: 64;
then (px
`2 )
<= (px
`1 ) & (
- (px
`1 ))
<= (px
`2 ) or (px
`2 )
>= (px
`1 ) & (px
`2 )
<= (
- (px
`1 )) by
A36,
A37,
A38,
XREAL_1: 64;
then
A52: (
Sq_Circ
. px)
=
|[((px
`1 )
/ (
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))), ((px
`2 )
/ (
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))]| by
A45,
JGRAPH_2: 3,
JGRAPH_3:def 1;
(px
`2 )
<= (px
`1 ) & (
- (
- (px
`1 )))
>= (
- (px
`2 )) or (px
`2 )
>= (px
`1 ) & (px
`2 )
<= (
- (px
`1 )) by
A36,
A37,
A38,
A51,
XREAL_1: 24,
XREAL_1: 64;
then
A53: (px
`2 )
<= (px
`1 ) & (px
`1 )
>= (
- (px
`2 )) or (px
`2 )
>= (px
`1 ) & (
- (px
`2 ))
>= (
- (
- (px
`1 ))) by
XREAL_1: 24;
A54: ((px
`1 )
/ (
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))
= (q
`1 ) by
A36,
A38,
A40,
XCMPLX_1: 89;
A55: ((px
`2 )
/ (
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))
= (q
`2 ) by
A37,
A38,
A40,
XCMPLX_1: 89;
A56: (
dom
Sq_Circ )
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
not (px
`1 )
=
0 by
A36,
A37,
A38,
A45,
A51,
XREAL_1: 64;
then
A57: ((px
`1 )
^2 )
>
0 by
SQUARE_1: 12;
A58: ((px
`2 )
^2 )
>=
0 by
XREAL_1: 63;
((((px
`1 )
^2 )
/ ((
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
^2 ))
+ (((px
`2 )
/ (
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))
^2 ))
< 1 by
A40,
A41,
A42,
A43,
A44,
XCMPLX_1: 76;
then ((((px
`1 )
^2 )
/ ((
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
^2 ))
+ (((px
`2 )
^2 )
/ ((
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
^2 )))
< 1 by
XCMPLX_1: 76;
then ((((px
`1 )
^2 )
/ (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
+ (((px
`2 )
^2 )
/ ((
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
^2 )))
< 1 by
A39,
SQUARE_1:def 2;
then ((((px
`1 )
^2 )
/ (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
+ (((px
`2 )
^2 )
/ (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))
< 1 by
A39,
SQUARE_1:def 2;
then (((((px
`1 )
^2 )
/ (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
+ (((px
`2 )
^2 )
/ (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
< (1
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))) by
A39,
XREAL_1: 68;
then (((((px
`1 )
^2 )
/ (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
+ ((((px
`2 )
^2 )
/ (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))
< (1
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 )));
then (((px
`1 )
^2 )
+ ((((px
`2 )
^2 )
/ (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))
< (1
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))) by
A39,
XCMPLX_1: 87;
then
A59: (((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
< (1
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))) by
A39,
XCMPLX_1: 87;
(1
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
= (1
+ (((px
`2 )
^2 )
/ ((px
`1 )
^2 ))) by
XCMPLX_1: 76;
then ((((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
- 1)
< ((1
+ (((px
`2 )
^2 )
/ ((px
`1 )
^2 )))
- 1) by
A59,
XREAL_1: 9;
then (((((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
- 1)
* ((px
`1 )
^2 ))
< ((((px
`2 )
^2 )
/ ((px
`1 )
^2 ))
* ((px
`1 )
^2 )) by
A57,
XREAL_1: 68;
then
A60: ((((px
`1 )
^2 )
+ (((px
`2 )
^2 )
- 1))
* ((px
`1 )
^2 ))
< ((px
`2 )
^2 ) by
A57,
XCMPLX_1: 87;
(((((px
`1 )
^2 )
* ((px
`1 )
^2 ))
+ ((((px
`1 )
^2 )
* ((px
`2 )
^2 ))
- (((px
`1 )
^2 )
* 1)))
- ((px
`2 )
^2 ))
= ((((px
`1 )
^2 )
- 1)
* (((px
`1 )
^2 )
+ ((px
`2 )
^2 )));
then (((px
`1 )
^2 )
- 1)
<
0 or (((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
<
0 by
A60,
XREAL_1: 49;
then
A61: ((((px
`1 )
^2 )
- 1)
+ 1)
< (
0
+ 1) by
A58,
XREAL_1: 6;
then
A62: (px
`1 )
< (1
^2 ) by
SQUARE_1: 48;
A63: (px
`1 )
> (
- (1
^2 )) by
A61,
SQUARE_1: 48;
(px
`2 )
< 1 & 1
> (
- (px
`2 )) or (px
`2 )
>= (px
`1 ) & (
- (px
`2 ))
>= (px
`1 ) by
A53,
A62,
XXREAL_0: 2;
then (px
`2 )
< 1 & (
- 1)
< (
- (
- (px
`2 ))) or (px
`2 )
> (
- 1) & (
- (px
`2 ))
> (
- 1) by
A63,
XREAL_1: 24,
XXREAL_0: 2;
then (px
`2 )
< 1 & (
- 1)
< (px
`2 ) or (px
`2 )
> (
- 1) & (
- (
- (px
`2 )))
< (
- (
- 1)) by
XREAL_1: 24;
then px
in Kb by
A1,
A62,
A63;
hence ex x be
set st x
in (
dom
Sq_Circ ) & x
in Kb & y
= (
Sq_Circ
. x) by
A28,
A52,
A54,
A55,
A56,
EUCLID: 53;
end;
case
A64: q
<> (
0. (
TOP-REAL 2)) & not ((q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 )));
set px =
|[((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]|;
A65: (q
`1 )
<= (q
`2 ) & (
- (q
`2 ))
<= (q
`1 ) or (q
`1 )
>= (q
`2 ) & (q
`1 )
<= (
- (q
`2 )) by
A64,
JGRAPH_2: 13;
A66: (px
`2 )
= ((q
`2 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
EUCLID: 52;
A67: (px
`1 )
= ((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
EUCLID: 52;
(1
+ (((q
`1 )
/ (q
`2 ))
^2 ))
>
0 by
XREAL_1: 34,
XREAL_1: 63;
then
A68: (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
>
0 by
SQUARE_1: 25;
A69: (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))
>
0 by
XREAL_1: 34,
XREAL_1: 63;
A70: ((px
`1 )
/ (px
`2 ))
= ((q
`1 )
/ (q
`2 )) by
A66,
A67,
A68,
XCMPLX_1: 91;
A71: (q
`2 )
= (((q
`2 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
A68,
XCMPLX_1: 89
.= ((px
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
EUCLID: 52;
A72: (q
`1 )
= (((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
A68,
XCMPLX_1: 89
.= ((px
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
EUCLID: 52;
A73: (
|.q.|
^2 )
= (((q
`2 )
^2 )
+ ((q
`1 )
^2 )) by
JGRAPH_3: 1;
A74: (
|.q.|
^2 )
< (1
^2 ) by
A29,
SQUARE_1: 16;
A75:
now
assume that
A76: (px
`2 )
=
0 and
A77: (px
`1 )
=
0 ;
A78: ((q
`2 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
=
0 by
A76,
EUCLID: 52;
((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
=
0 by
A77,
EUCLID: 52;
then (q
`1 )
=
0 by
A68,
XCMPLX_1: 6;
hence contradiction by
A64,
A68,
A78,
XCMPLX_1: 6;
end;
(q
`1 )
<= (q
`2 ) & (
- (q
`2 ))
<= (q
`1 ) or (q
`1 )
>= (q
`2 ) & ((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
<= ((
- (q
`2 ))
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
A65,
A68,
XREAL_1: 64;
then
A79: (q
`1 )
<= (q
`2 ) & ((
- (q
`2 ))
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
<= ((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) or (px
`1 )
>= (px
`2 ) & (px
`1 )
<= (
- (px
`2 )) by
A66,
A67,
A68,
XREAL_1: 64;
then (px
`1 )
<= (px
`2 ) & (
- (px
`2 ))
<= (px
`1 ) or (px
`1 )
>= (px
`2 ) & (px
`1 )
<= (
- (px
`2 )) by
A66,
A67,
A68,
XREAL_1: 64;
then
A80: (
Sq_Circ
. px)
=
|[((px
`1 )
/ (
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))), ((px
`2 )
/ (
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))]| by
A75,
JGRAPH_2: 3,
JGRAPH_3: 4;
(px
`1 )
<= (px
`2 ) & (
- (
- (px
`2 )))
>= (
- (px
`1 )) or (px
`1 )
>= (px
`2 ) & (px
`1 )
<= (
- (px
`2 )) by
A66,
A67,
A68,
A79,
XREAL_1: 24,
XREAL_1: 64;
then
A81: (px
`1 )
<= (px
`2 ) & (px
`2 )
>= (
- (px
`1 )) or (px
`1 )
>= (px
`2 ) & (
- (px
`1 ))
>= (
- (
- (px
`2 ))) by
XREAL_1: 24;
A82: ((px
`2 )
/ (
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))
= (q
`2 ) by
A66,
A68,
A70,
XCMPLX_1: 89;
A83: ((px
`1 )
/ (
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))
= (q
`1 ) by
A67,
A68,
A70,
XCMPLX_1: 89;
A84: (
dom
Sq_Circ )
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
not (px
`2 )
=
0 by
A66,
A67,
A68,
A75,
A79,
XREAL_1: 64;
then
A85: ((px
`2 )
^2 )
>
0 by
SQUARE_1: 12;
A86: ((px
`1 )
^2 )
>=
0 by
XREAL_1: 63;
((((px
`2 )
^2 )
/ ((
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
^2 ))
+ (((px
`1 )
/ (
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))
^2 ))
< 1 by
A70,
A71,
A72,
A73,
A74,
XCMPLX_1: 76;
then ((((px
`2 )
^2 )
/ ((
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
^2 ))
+ (((px
`1 )
^2 )
/ ((
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
^2 )))
< 1 by
XCMPLX_1: 76;
then ((((px
`2 )
^2 )
/ (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
+ (((px
`1 )
^2 )
/ ((
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
^2 )))
< 1 by
A69,
SQUARE_1:def 2;
then ((((px
`2 )
^2 )
/ (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
+ (((px
`1 )
^2 )
/ (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))
< 1 by
A69,
SQUARE_1:def 2;
then (((((px
`2 )
^2 )
/ (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
+ (((px
`1 )
^2 )
/ (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
< (1
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))) by
A69,
XREAL_1: 68;
then (((((px
`2 )
^2 )
/ (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
+ ((((px
`1 )
^2 )
/ (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))
< (1
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 )));
then (((px
`2 )
^2 )
+ ((((px
`1 )
^2 )
/ (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))
< (1
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))) by
A69,
XCMPLX_1: 87;
then
A87: (((px
`2 )
^2 )
+ ((px
`1 )
^2 ))
< (1
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))) by
A69,
XCMPLX_1: 87;
(1
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
= (1
+ (((px
`1 )
^2 )
/ ((px
`2 )
^2 ))) by
XCMPLX_1: 76;
then ((((px
`2 )
^2 )
+ ((px
`1 )
^2 ))
- 1)
< ((1
+ (((px
`1 )
^2 )
/ ((px
`2 )
^2 )))
- 1) by
A87,
XREAL_1: 9;
then (((((px
`2 )
^2 )
+ ((px
`1 )
^2 ))
- 1)
* ((px
`2 )
^2 ))
< ((((px
`1 )
^2 )
/ ((px
`2 )
^2 ))
* ((px
`2 )
^2 )) by
A85,
XREAL_1: 68;
then
A88: ((((px
`2 )
^2 )
+ (((px
`1 )
^2 )
- 1))
* ((px
`2 )
^2 ))
< ((px
`1 )
^2 ) by
A85,
XCMPLX_1: 87;
(((((px
`2 )
^2 )
* ((px
`2 )
^2 ))
+ ((((px
`2 )
^2 )
* ((px
`1 )
^2 ))
- (((px
`2 )
^2 )
* 1)))
- ((px
`1 )
^2 ))
= ((((px
`2 )
^2 )
- 1)
* (((px
`2 )
^2 )
+ ((px
`1 )
^2 )));
then (((px
`2 )
^2 )
- 1)
<
0 or (((px
`2 )
^2 )
+ ((px
`1 )
^2 ))
<
0 by
A88,
XREAL_1: 49;
then
A89: ((((px
`2 )
^2 )
- 1)
+ 1)
< (
0
+ 1) by
A86,
XREAL_1: 6;
then
A90: (px
`2 )
< (1
^2 ) by
SQUARE_1: 48;
A91: (px
`2 )
> (
- (1
^2 )) by
A89,
SQUARE_1: 48;
(px
`1 )
< 1 & 1
> (
- (px
`1 )) or (px
`1 )
>= (px
`2 ) & (
- (px
`1 ))
>= (px
`2 ) by
A81,
A90,
XXREAL_0: 2;
then (px
`1 )
< 1 & (
- 1)
< (
- (
- (px
`1 ))) or (px
`1 )
> (
- 1) & (
- (px
`1 ))
> (
- 1) by
A91,
XREAL_1: 24,
XXREAL_0: 2;
then (px
`1 )
< 1 & (
- 1)
< (px
`1 ) or (px
`1 )
> (
- 1) & (
- (
- (px
`1 )))
< (
- (
- 1)) by
XREAL_1: 24;
then px
in Kb by
A1,
A90,
A91;
hence ex x be
set st x
in (
dom
Sq_Circ ) & x
in Kb & y
= (
Sq_Circ
. x) by
A28,
A80,
A82,
A83,
A84,
EUCLID: 53;
end;
end;
hence thesis by
FUNCT_1:def 6;
end;
theorem ::
JGRAPH_6:26
Th26: for Kb,Cb be
Subset of (
TOP-REAL 2) st Kb
= { p : not ((
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1) } & Cb
= { p2 where p2 be
Point of (
TOP-REAL 2) :
|.p2.|
> 1 } holds (
Sq_Circ
.: Kb)
= Cb
proof
let Kb,Cb be
Subset of (
TOP-REAL 2);
assume
A1: Kb
= { p : not ((
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1) } & Cb
= { p2 where p2 be
Point of (
TOP-REAL 2) :
|.p2.|
> 1 };
thus (
Sq_Circ
.: Kb)
c= Cb
proof
let y be
object;
assume y
in (
Sq_Circ
.: Kb);
then
consider x be
object such that x
in (
dom
Sq_Circ ) and
A2: x
in Kb and
A3: y
= (
Sq_Circ
. x) by
FUNCT_1:def 6;
consider q be
Point of (
TOP-REAL 2) such that
A4: q
= x and
A5: not ((
- 1)
<= (q
`1 ) & (q
`1 )
<= 1 & (
- 1)
<= (q
`2 ) & (q
`2 )
<= 1) by
A1,
A2;
now
per cases ;
case q
= (
0. (
TOP-REAL 2));
hence contradiction by
A5,
EUCLID: 52,
EUCLID: 54;
end;
case
A6: q
<> (
0. (
TOP-REAL 2)) & ((q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 )));
then
A7: (
Sq_Circ
. q)
=
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]| by
JGRAPH_3:def 1;
A8: not ((
- 1)
<= (q
`2 ) & (q
`2 )
<= 1) implies (
- 1)
> (q
`1 ) or (q
`1 )
> 1
proof
assume
A9: not ((
- 1)
<= (q
`2 ) & (q
`2 )
<= 1);
now
per cases by
A9;
case
A10: (
- 1)
> (q
`2 );
then (
- (q
`1 ))
< (
- 1) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 )) by
A6,
XXREAL_0: 2;
hence thesis by
A10,
XREAL_1: 24,
XXREAL_0: 2;
end;
case (q
`2 )
> 1;
then 1
< (q
`1 ) or 1
< (
- (q
`1 )) by
A6,
XXREAL_0: 2;
then 1
< (q
`1 ) or (
- (
- (q
`1 )))
< (
- 1) by
XREAL_1: 24;
hence thesis;
end;
end;
hence thesis;
end;
A11: (
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|
`1 )
= ((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
A12: (
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|
`2 )
= ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
A13: (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))
>
0 by
XREAL_1: 34,
XREAL_1: 63;
A14:
now
assume
A15: (q
`1 )
=
0 ;
then (q
`2 )
=
0 by
A6;
hence contradiction by
A6,
A15,
EUCLID: 53,
EUCLID: 54;
end;
then
A16: ((q
`1 )
^2 )
>
0 by
SQUARE_1: 12;
((q
`1 )
^2 )
> (1
^2 ) by
A5,
A8,
SQUARE_1: 47;
then
A17: (
sqrt ((q
`1 )
^2 ))
> 1 by
SQUARE_1: 18,
SQUARE_1: 27;
(
|.
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|.|
^2 )
= ((((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
^2 )
+ (((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
^2 )) by
A11,
A12,
JGRAPH_3: 1
.= ((((q
`1 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 ))
+ (((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
^2 )) by
XCMPLX_1: 76
.= ((((q
`1 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 ))
+ (((q
`2 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 ))) by
XCMPLX_1: 76
.= ((((q
`1 )
^2 )
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
+ (((q
`2 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 ))) by
A13,
SQUARE_1:def 2
.= ((((q
`1 )
^2 )
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
+ (((q
`2 )
^2 )
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A13,
SQUARE_1:def 2
.= ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))) by
XCMPLX_1: 62
.= ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ (1
+ (((q
`2 )
^2 )
/ ((q
`1 )
^2 )))) by
XCMPLX_1: 76
.= ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ ((((q
`1 )
^2 )
/ ((q
`1 )
^2 ))
+ (((q
`2 )
^2 )
/ ((q
`1 )
^2 )))) by
A16,
XCMPLX_1: 60
.= ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ ((q
`1 )
^2 ))) by
XCMPLX_1: 62
.= (((q
`1 )
^2 )
* ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ (((q
`1 )
^2 )
+ ((q
`2 )
^2 )))) by
XCMPLX_1: 81
.= (((q
`1 )
^2 )
* 1) by
A14,
COMPLEX1: 1,
XCMPLX_1: 60
.= ((q
`1 )
^2 );
then
|.
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|.|
> 1 by
A17,
SQUARE_1: 22;
hence ex p2 be
Point of (
TOP-REAL 2) st p2
= y &
|.p2.|
> 1 by
A3,
A4,
A7;
end;
case
A18: q
<> (
0. (
TOP-REAL 2)) & not ((q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 )));
then
A19: (
Sq_Circ
. q)
=
|[((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]| by
JGRAPH_3:def 1;
A20: (
|[((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]|
`1 )
= ((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
EUCLID: 52;
A21: (
|[((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]|
`2 )
= ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
EUCLID: 52;
A22: (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))
>
0 by
XREAL_1: 34,
XREAL_1: 63;
A23: (q
`2 )
<>
0 by
A18;
then
A24: ((q
`2 )
^2 )
>
0 by
SQUARE_1: 12;
not ((
- 1)
<= (q
`1 ) & (q
`1 )
<= 1) implies (
- 1)
> (q
`2 ) or (q
`2 )
> 1
proof
assume
A25: not ((
- 1)
<= (q
`1 ) & (q
`1 )
<= 1);
now
per cases by
A25;
case
A26: (
- 1)
> (q
`1 );
then (q
`2 )
< (
- 1) or (q
`1 )
< (q
`2 ) & (
- (q
`2 ))
< (
- (
- (q
`1 ))) by
A18,
XREAL_1: 24,
XXREAL_0: 2;
then (
- (q
`2 ))
< (
- 1) or (
- 1)
> (q
`2 ) by
A26,
XXREAL_0: 2;
hence thesis by
XREAL_1: 24;
end;
case
A27: (q
`1 )
> 1;
(
- (
- (q
`1 )))
< (
- (q
`2 )) & (q
`2 )
< (q
`1 ) or (q
`2 )
> (q
`1 ) & (q
`2 )
> (
- (q
`1 )) by
A18,
XREAL_1: 24;
then 1
< (
- (q
`2 )) or (q
`2 )
> (q
`1 ) & (q
`2 )
> (
- (q
`1 )) by
A27,
XXREAL_0: 2;
then (
- 1)
> (
- (
- (q
`2 ))) or 1
< (q
`2 ) by
A27,
XREAL_1: 24,
XXREAL_0: 2;
hence thesis;
end;
end;
hence thesis;
end;
then ((q
`2 )
^2 )
> (1
^2 ) by
A5,
SQUARE_1: 47;
then
A28: (
sqrt ((q
`2 )
^2 ))
> 1 by
SQUARE_1: 18,
SQUARE_1: 27;
(
|.
|[((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]|.|
^2 )
= ((((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
^2 )
+ (((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
^2 )) by
A20,
A21,
JGRAPH_3: 1
.= ((((q
`1 )
^2 )
/ ((
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
^2 ))
+ (((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
^2 )) by
XCMPLX_1: 76
.= ((((q
`1 )
^2 )
/ ((
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
^2 ))
+ (((q
`2 )
^2 )
/ ((
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
^2 ))) by
XCMPLX_1: 76
.= ((((q
`1 )
^2 )
/ (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
+ (((q
`2 )
^2 )
/ ((
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
^2 ))) by
A22,
SQUARE_1:def 2
.= ((((q
`1 )
^2 )
/ (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
+ (((q
`2 )
^2 )
/ (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
A22,
SQUARE_1:def 2
.= ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))) by
XCMPLX_1: 62
.= ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ (1
+ (((q
`1 )
^2 )
/ ((q
`2 )
^2 )))) by
XCMPLX_1: 76
.= ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ ((((q
`1 )
^2 )
/ ((q
`2 )
^2 ))
+ (((q
`2 )
^2 )
/ ((q
`2 )
^2 )))) by
A24,
XCMPLX_1: 60
.= ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ ((q
`2 )
^2 ))) by
XCMPLX_1: 62
.= (((q
`2 )
^2 )
* ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ (((q
`1 )
^2 )
+ ((q
`2 )
^2 )))) by
XCMPLX_1: 81
.= (((q
`2 )
^2 )
* 1) by
A23,
COMPLEX1: 1,
XCMPLX_1: 60
.= ((q
`2 )
^2 );
then
|.
|[((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]|.|
> 1 by
A28,
SQUARE_1: 22;
hence ex p2 be
Point of (
TOP-REAL 2) st p2
= y &
|.p2.|
> 1 by
A3,
A4,
A19;
end;
end;
hence thesis by
A1;
end;
let y be
object;
assume y
in Cb;
then
consider p2 be
Point of (
TOP-REAL 2) such that
A29: p2
= y and
A30:
|.p2.|
> 1 by
A1;
set q = p2;
now
per cases ;
case q
= (
0. (
TOP-REAL 2));
hence contradiction by
A30,
TOPRNS_1: 23;
end;
case
A31: q
<> (
0. (
TOP-REAL 2)) & ((q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 )));
set px =
|[((q
`1 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|;
A32: (px
`1 )
= ((q
`1 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
A33: (px
`2 )
= ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
(1
+ (((q
`2 )
/ (q
`1 ))
^2 ))
>
0 by
XREAL_1: 34,
XREAL_1: 63;
then
A34: (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
>
0 by
SQUARE_1: 25;
A35: (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))
>
0 by
XREAL_1: 34,
XREAL_1: 63;
A36: ((px
`2 )
/ (px
`1 ))
= ((q
`2 )
/ (q
`1 )) by
A32,
A33,
A34,
XCMPLX_1: 91;
A37: (q
`1 )
= (((q
`1 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A34,
XCMPLX_1: 89
.= ((px
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
A38: (q
`2 )
= (((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A34,
XCMPLX_1: 89
.= ((px
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
A39: (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1;
A40: (
|.q.|
^2 )
> (1
^2 ) by
A30,
SQUARE_1: 16;
A41:
now
assume that
A42: (px
`1 )
=
0 and
A43: (px
`2 )
=
0 ;
A44: ((q
`1 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
=
0 by
A42,
EUCLID: 52;
A45: ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
=
0 by
A43,
EUCLID: 52;
A46: (q
`1 )
=
0 by
A34,
A44,
XCMPLX_1: 6;
(q
`2 )
=
0 by
A34,
A45,
XCMPLX_1: 6;
hence contradiction by
A31,
A46,
EUCLID: 53,
EUCLID: 54;
end;
(q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
<= ((
- (q
`1 ))
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A31,
A34,
XREAL_1: 64;
then
A47: (q
`2 )
<= (q
`1 ) & ((
- (q
`1 ))
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
<= ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) or (px
`2 )
>= (px
`1 ) & (px
`2 )
<= (
- (px
`1 )) by
A32,
A33,
A34,
XREAL_1: 64;
then (px
`2 )
<= (px
`1 ) & (
- (px
`1 ))
<= (px
`2 ) or (px
`2 )
>= (px
`1 ) & (px
`2 )
<= (
- (px
`1 )) by
A32,
A33,
A34,
XREAL_1: 64;
then
A48: (
Sq_Circ
. px)
=
|[((px
`1 )
/ (
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))), ((px
`2 )
/ (
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))]| by
A41,
JGRAPH_2: 3,
JGRAPH_3:def 1;
A49: ((px
`1 )
/ (
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))
= (q
`1 ) by
A32,
A34,
A36,
XCMPLX_1: 89;
A50: ((px
`2 )
/ (
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))
= (q
`2 ) by
A33,
A34,
A36,
XCMPLX_1: 89;
A51: (
dom
Sq_Circ )
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
not (px
`1 )
=
0 by
A32,
A33,
A34,
A41,
A47,
XREAL_1: 64;
then
A52: ((px
`1 )
^2 )
>
0 by
SQUARE_1: 12;
A53: ((px
`2 )
^2 )
>=
0 by
XREAL_1: 63;
((((px
`1 )
^2 )
/ ((
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
^2 ))
+ (((px
`2 )
/ (
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))
^2 ))
> 1 by
A36,
A37,
A38,
A39,
A40,
XCMPLX_1: 76;
then ((((px
`1 )
^2 )
/ ((
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
^2 ))
+ (((px
`2 )
^2 )
/ ((
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
^2 )))
> 1 by
XCMPLX_1: 76;
then ((((px
`1 )
^2 )
/ (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
+ (((px
`2 )
^2 )
/ ((
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
^2 )))
> 1 by
A35,
SQUARE_1:def 2;
then ((((px
`1 )
^2 )
/ (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
+ (((px
`2 )
^2 )
/ (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))
> 1 by
A35,
SQUARE_1:def 2;
then (((((px
`1 )
^2 )
/ (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
+ (((px
`2 )
^2 )
/ (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
> (1
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))) by
A35,
XREAL_1: 68;
then (((((px
`1 )
^2 )
/ (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
+ ((((px
`2 )
^2 )
/ (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))
> (1
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 )));
then (((px
`1 )
^2 )
+ ((((px
`2 )
^2 )
/ (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))
> (1
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))) by
A35,
XCMPLX_1: 87;
then
A54: (((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
> (1
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))) by
A35,
XCMPLX_1: 87;
(1
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
= (1
+ (((px
`2 )
^2 )
/ ((px
`1 )
^2 ))) by
XCMPLX_1: 76;
then ((((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
- 1)
> ((1
+ (((px
`2 )
^2 )
/ ((px
`1 )
^2 )))
- 1) by
A54,
XREAL_1: 9;
then (((((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
- 1)
* ((px
`1 )
^2 ))
> ((((px
`2 )
^2 )
/ ((px
`1 )
^2 ))
* ((px
`1 )
^2 )) by
A52,
XREAL_1: 68;
then
A55: ((((px
`1 )
^2 )
+ (((px
`2 )
^2 )
- 1))
* ((px
`1 )
^2 ))
> ((px
`2 )
^2 ) by
A52,
XCMPLX_1: 87;
(((((px
`1 )
^2 )
* ((px
`1 )
^2 ))
+ ((((px
`1 )
^2 )
* ((px
`2 )
^2 ))
- (((px
`1 )
^2 )
* 1)))
- ((px
`2 )
^2 ))
= ((((px
`1 )
^2 )
- 1)
* (((px
`1 )
^2 )
+ ((px
`2 )
^2 )));
then (((px
`1 )
^2 )
- 1)
>
0 or (((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
<
0 by
A55,
XREAL_1: 50;
then ((((px
`1 )
^2 )
- 1)
+ 1)
> (
0
+ 1) by
A52,
A53,
XREAL_1: 6;
then (px
`1 )
> (1
^2 ) or (px
`1 )
< (
- 1) by
SQUARE_1: 49;
then px
in Kb by
A1;
hence ex x be
set st x
in (
dom
Sq_Circ ) & x
in Kb & y
= (
Sq_Circ
. x) by
A29,
A48,
A49,
A50,
A51,
EUCLID: 53;
end;
case
A56: q
<> (
0. (
TOP-REAL 2)) & not ((q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 )));
set px =
|[((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]|;
A57: (q
`1 )
<= (q
`2 ) & (
- (q
`2 ))
<= (q
`1 ) or (q
`1 )
>= (q
`2 ) & (q
`1 )
<= (
- (q
`2 )) by
A56,
JGRAPH_2: 13;
A58: (px
`2 )
= ((q
`2 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
EUCLID: 52;
A59: (px
`1 )
= ((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
EUCLID: 52;
(1
+ (((q
`1 )
/ (q
`2 ))
^2 ))
>
0 by
XREAL_1: 34,
XREAL_1: 63;
then
A60: (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
>
0 by
SQUARE_1: 25;
A61: (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))
>
0 by
XREAL_1: 34,
XREAL_1: 63;
A62: ((px
`1 )
/ (px
`2 ))
= ((q
`1 )
/ (q
`2 )) by
A58,
A59,
A60,
XCMPLX_1: 91;
A63: (q
`2 )
= (((q
`2 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
A60,
XCMPLX_1: 89
.= ((px
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
EUCLID: 52;
A64: (q
`1 )
= (((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
A60,
XCMPLX_1: 89
.= ((px
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
EUCLID: 52;
A65: (
|.q.|
^2 )
= (((q
`2 )
^2 )
+ ((q
`1 )
^2 )) by
JGRAPH_3: 1;
A66: (
|.q.|
^2 )
> (1
^2 ) by
A30,
SQUARE_1: 16;
A67:
now
assume that
A68: (px
`2 )
=
0 and
A69: (px
`1 )
=
0 ;
A70: ((q
`2 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
=
0 by
A68,
EUCLID: 52;
((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
=
0 by
A69,
EUCLID: 52;
then (q
`1 )
=
0 by
A60,
XCMPLX_1: 6;
hence contradiction by
A56,
A60,
A70,
XCMPLX_1: 6;
end;
(q
`1 )
<= (q
`2 ) & (
- (q
`2 ))
<= (q
`1 ) or (q
`1 )
>= (q
`2 ) & ((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
<= ((
- (q
`2 ))
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
A57,
A60,
XREAL_1: 64;
then
A71: (q
`1 )
<= (q
`2 ) & ((
- (q
`2 ))
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
<= ((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) or (px
`1 )
>= (px
`2 ) & (px
`1 )
<= (
- (px
`2 )) by
A58,
A59,
A60,
XREAL_1: 64;
then (px
`1 )
<= (px
`2 ) & (
- (px
`2 ))
<= (px
`1 ) or (px
`1 )
>= (px
`2 ) & (px
`1 )
<= (
- (px
`2 )) by
A58,
A59,
A60,
XREAL_1: 64;
then
A72: (
Sq_Circ
. px)
=
|[((px
`1 )
/ (
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))), ((px
`2 )
/ (
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))]| by
A67,
JGRAPH_2: 3,
JGRAPH_3: 4;
A73: ((px
`2 )
/ (
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))
= (q
`2 ) by
A58,
A60,
A62,
XCMPLX_1: 89;
A74: ((px
`1 )
/ (
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))
= (q
`1 ) by
A59,
A60,
A62,
XCMPLX_1: 89;
A75: (
dom
Sq_Circ )
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
not (px
`2 )
=
0 by
A58,
A59,
A60,
A67,
A71,
XREAL_1: 64;
then
A76: ((px
`2 )
^2 )
>
0 by
SQUARE_1: 12;
A77: ((px
`1 )
^2 )
>=
0 by
XREAL_1: 63;
((((px
`2 )
^2 )
/ ((
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
^2 ))
+ (((px
`1 )
/ (
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))
^2 ))
> 1 by
A62,
A63,
A64,
A65,
A66,
XCMPLX_1: 76;
then ((((px
`2 )
^2 )
/ ((
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
^2 ))
+ (((px
`1 )
^2 )
/ ((
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
^2 )))
> 1 by
XCMPLX_1: 76;
then ((((px
`2 )
^2 )
/ (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
+ (((px
`1 )
^2 )
/ ((
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
^2 )))
> 1 by
A61,
SQUARE_1:def 2;
then ((((px
`2 )
^2 )
/ (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
+ (((px
`1 )
^2 )
/ (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))
> 1 by
A61,
SQUARE_1:def 2;
then (((((px
`2 )
^2 )
/ (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
+ (((px
`1 )
^2 )
/ (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
> (1
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))) by
A61,
XREAL_1: 68;
then (((((px
`2 )
^2 )
/ (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
+ ((((px
`1 )
^2 )
/ (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))
> (1
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 )));
then (((px
`2 )
^2 )
+ ((((px
`1 )
^2 )
/ (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))
> (1
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))) by
A61,
XCMPLX_1: 87;
then
A78: (((px
`2 )
^2 )
+ ((px
`1 )
^2 ))
> (1
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))) by
A61,
XCMPLX_1: 87;
(1
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
= (1
+ (((px
`1 )
^2 )
/ ((px
`2 )
^2 ))) by
XCMPLX_1: 76;
then ((((px
`2 )
^2 )
+ ((px
`1 )
^2 ))
- 1)
> ((1
+ (((px
`1 )
^2 )
/ ((px
`2 )
^2 )))
- 1) by
A78,
XREAL_1: 9;
then (((((px
`2 )
^2 )
+ ((px
`1 )
^2 ))
- 1)
* ((px
`2 )
^2 ))
> ((((px
`1 )
^2 )
/ ((px
`2 )
^2 ))
* ((px
`2 )
^2 )) by
A76,
XREAL_1: 68;
then
A79: ((((px
`2 )
^2 )
+ (((px
`1 )
^2 )
- 1))
* ((px
`2 )
^2 ))
> ((px
`1 )
^2 ) by
A76,
XCMPLX_1: 87;
(((((px
`2 )
^2 )
* ((px
`2 )
^2 ))
+ ((((px
`2 )
^2 )
* ((px
`1 )
^2 ))
- (((px
`2 )
^2 )
* 1)))
- ((px
`1 )
^2 ))
= ((((px
`2 )
^2 )
- 1)
* (((px
`2 )
^2 )
+ ((px
`1 )
^2 )));
then (((px
`2 )
^2 )
- 1)
>
0 or (((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
<
0 by
A79,
XREAL_1: 50;
then ((((px
`2 )
^2 )
- 1)
+ 1)
> (
0
+ 1) by
A76,
A77,
XREAL_1: 6;
then (px
`2 )
> (1
^2 ) or (px
`2 )
< (
- 1) by
SQUARE_1: 49;
then px
in Kb by
A1;
hence ex x be
set st x
in (
dom
Sq_Circ ) & x
in Kb & y
= (
Sq_Circ
. x) by
A29,
A72,
A73,
A74,
A75,
EUCLID: 53;
end;
end;
hence thesis by
FUNCT_1:def 6;
end;
theorem ::
JGRAPH_6:27
Th27: for Kb,Cb be
Subset of (
TOP-REAL 2) st Kb
= { p : (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 } & Cb
= { p2 where p2 be
Point of (
TOP-REAL 2) :
|.p2.|
<= 1 } holds (
Sq_Circ
.: Kb)
= Cb
proof
let Kb,Cb be
Subset of (
TOP-REAL 2);
assume
A1: Kb
= { p : (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 } & Cb
= { p2 where p2 be
Point of (
TOP-REAL 2) :
|.p2.|
<= 1 };
thus (
Sq_Circ
.: Kb)
c= Cb
proof
let y be
object;
assume y
in (
Sq_Circ
.: Kb);
then
consider x be
object such that x
in (
dom
Sq_Circ ) and
A2: x
in Kb and
A3: y
= (
Sq_Circ
. x) by
FUNCT_1:def 6;
consider q be
Point of (
TOP-REAL 2) such that
A4: q
= x and
A5: (
- 1)
<= (q
`1 ) and
A6: (q
`1 )
<= 1 and
A7: (
- 1)
<= (q
`2 ) and
A8: (q
`2 )
<= 1 by
A1,
A2;
now
per cases ;
case
A9: q
= (
0. (
TOP-REAL 2));
then
A10: (
Sq_Circ
. q)
= q by
JGRAPH_3:def 1;
|.q.|
=
0 by
A9,
TOPRNS_1: 23;
hence ex p2 be
Point of (
TOP-REAL 2) st p2
= y &
|.p2.|
<= 1 by
A3,
A4,
A10;
end;
case
A11: q
<> (
0. (
TOP-REAL 2)) & ((q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 )));
then
A12: (
Sq_Circ
. q)
=
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]| by
JGRAPH_3:def 1;
A13: (
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|
`1 )
= ((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
A14: (
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|
`2 )
= ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
A15: (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))
>
0 by
XREAL_1: 34,
XREAL_1: 63;
A16:
now
assume
A17: (q
`1 )
=
0 ;
then (q
`2 )
=
0 by
A11;
hence contradiction by
A11,
A17,
EUCLID: 53,
EUCLID: 54;
end;
then
A18: ((q
`1 )
^2 )
>
0 by
SQUARE_1: 12;
((q
`1 )
^2 )
<= (1
^2 ) by
A5,
A6,
SQUARE_1: 49;
then
A19: (
sqrt ((q
`1 )
^2 ))
<= 1 by
A18,
SQUARE_1: 18,
SQUARE_1: 26;
(
|.
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|.|
^2 )
= ((((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
^2 )
+ (((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
^2 )) by
A13,
A14,
JGRAPH_3: 1
.= ((((q
`1 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 ))
+ (((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
^2 )) by
XCMPLX_1: 76
.= ((((q
`1 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 ))
+ (((q
`2 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 ))) by
XCMPLX_1: 76
.= ((((q
`1 )
^2 )
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
+ (((q
`2 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 ))) by
A15,
SQUARE_1:def 2
.= ((((q
`1 )
^2 )
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
+ (((q
`2 )
^2 )
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A15,
SQUARE_1:def 2
.= ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))) by
XCMPLX_1: 62
.= ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ (1
+ (((q
`2 )
^2 )
/ ((q
`1 )
^2 )))) by
XCMPLX_1: 76
.= ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ ((((q
`1 )
^2 )
/ ((q
`1 )
^2 ))
+ (((q
`2 )
^2 )
/ ((q
`1 )
^2 )))) by
A18,
XCMPLX_1: 60
.= ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ ((q
`1 )
^2 ))) by
XCMPLX_1: 62
.= (((q
`1 )
^2 )
* ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ (((q
`1 )
^2 )
+ ((q
`2 )
^2 )))) by
XCMPLX_1: 81
.= (((q
`1 )
^2 )
* 1) by
A16,
COMPLEX1: 1,
XCMPLX_1: 60
.= ((q
`1 )
^2 );
then
|.
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|.|
<= 1 by
A19,
SQUARE_1: 22;
hence ex p2 be
Point of (
TOP-REAL 2) st p2
= y &
|.p2.|
<= 1 by
A3,
A4,
A12;
end;
case
A20: q
<> (
0. (
TOP-REAL 2)) & not ((q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 )));
then
A21: (
Sq_Circ
. q)
=
|[((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]| by
JGRAPH_3:def 1;
A22: (
|[((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]|
`1 )
= ((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
EUCLID: 52;
A23: (
|[((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]|
`2 )
= ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
EUCLID: 52;
A24: (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))
>
0 by
XREAL_1: 34,
XREAL_1: 63;
A25: (q
`2 )
<>
0 by
A20;
then
A26: ((q
`2 )
^2 )
>
0 by
SQUARE_1: 12;
((q
`2 )
^2 )
<= (1
^2 ) by
A7,
A8,
SQUARE_1: 49;
then
A27: (
sqrt ((q
`2 )
^2 ))
<= 1 by
A26,
SQUARE_1: 18,
SQUARE_1: 26;
(
|.
|[((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]|.|
^2 )
= ((((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
^2 )
+ (((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
^2 )) by
A22,
A23,
JGRAPH_3: 1
.= ((((q
`1 )
^2 )
/ ((
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
^2 ))
+ (((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
^2 )) by
XCMPLX_1: 76
.= ((((q
`1 )
^2 )
/ ((
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
^2 ))
+ (((q
`2 )
^2 )
/ ((
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
^2 ))) by
XCMPLX_1: 76
.= ((((q
`1 )
^2 )
/ (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
+ (((q
`2 )
^2 )
/ ((
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
^2 ))) by
A24,
SQUARE_1:def 2
.= ((((q
`1 )
^2 )
/ (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
+ (((q
`2 )
^2 )
/ (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
A24,
SQUARE_1:def 2
.= ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))) by
XCMPLX_1: 62
.= ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ (1
+ (((q
`1 )
^2 )
/ ((q
`2 )
^2 )))) by
XCMPLX_1: 76
.= ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ ((((q
`1 )
^2 )
/ ((q
`2 )
^2 ))
+ (((q
`2 )
^2 )
/ ((q
`2 )
^2 )))) by
A26,
XCMPLX_1: 60
.= ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ ((q
`2 )
^2 ))) by
XCMPLX_1: 62
.= (((q
`2 )
^2 )
* ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ (((q
`1 )
^2 )
+ ((q
`2 )
^2 )))) by
XCMPLX_1: 81
.= (((q
`2 )
^2 )
* 1) by
A25,
COMPLEX1: 1,
XCMPLX_1: 60
.= ((q
`2 )
^2 );
then
|.
|[((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]|.|
<= 1 by
A27,
SQUARE_1: 22;
hence ex p2 be
Point of (
TOP-REAL 2) st p2
= y &
|.p2.|
<= 1 by
A3,
A4,
A21;
end;
end;
hence thesis by
A1;
end;
let y be
object;
assume y
in Cb;
then
consider p2 be
Point of (
TOP-REAL 2) such that
A28: p2
= y and
A29:
|.p2.|
<= 1 by
A1;
set q = p2;
now
per cases ;
case
A30: q
= (
0. (
TOP-REAL 2));
then
A31: (q
`1 )
=
0 by
EUCLID: 52,
EUCLID: 54;
(q
`2 )
=
0 by
A30,
EUCLID: 52,
EUCLID: 54;
then
A32: y
in Kb by
A1,
A28,
A31;
A33: ((
Sq_Circ
" )
. y)
= y by
A28,
A30,
JGRAPH_3: 28;
A34: (
dom
Sq_Circ )
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
y
= (
Sq_Circ
. y) by
A28,
A33,
FUNCT_1: 35,
JGRAPH_3: 43;
hence ex x be
set st x
in (
dom
Sq_Circ ) & x
in Kb & y
= (
Sq_Circ
. x) by
A32,
A34;
end;
case
A35: q
<> (
0. (
TOP-REAL 2)) & ((q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 )));
set px =
|[((q
`1 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|;
A36: (px
`1 )
= ((q
`1 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
A37: (px
`2 )
= ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
(1
+ (((q
`2 )
/ (q
`1 ))
^2 ))
>
0 by
XREAL_1: 34,
XREAL_1: 63;
then
A38: (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
>
0 by
SQUARE_1: 25;
A39: (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))
>
0 by
XREAL_1: 34,
XREAL_1: 63;
A40: ((px
`2 )
/ (px
`1 ))
= ((q
`2 )
/ (q
`1 )) by
A36,
A37,
A38,
XCMPLX_1: 91;
A41: (q
`1 )
= (((q
`1 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A38,
XCMPLX_1: 89
.= ((px
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
A42: (q
`2 )
= (((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A38,
XCMPLX_1: 89
.= ((px
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
A43: (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1;
A44: (
|.q.|
^2 )
<= (1
^2 ) by
A29,
SQUARE_1: 15;
A45:
now
assume that
A46: (px
`1 )
=
0 and
A47: (px
`2 )
=
0 ;
A48: ((q
`1 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
=
0 by
A46,
EUCLID: 52;
A49: ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
=
0 by
A47,
EUCLID: 52;
A50: (q
`1 )
=
0 by
A38,
A48,
XCMPLX_1: 6;
(q
`2 )
=
0 by
A38,
A49,
XCMPLX_1: 6;
hence contradiction by
A35,
A50,
EUCLID: 53,
EUCLID: 54;
end;
(q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
<= ((
- (q
`1 ))
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A35,
A38,
XREAL_1: 64;
then
A51: (q
`2 )
<= (q
`1 ) & ((
- (q
`1 ))
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
<= ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) or (px
`2 )
>= (px
`1 ) & (px
`2 )
<= (
- (px
`1 )) by
A36,
A37,
A38,
XREAL_1: 64;
then (px
`2 )
<= (px
`1 ) & (
- (px
`1 ))
<= (px
`2 ) or (px
`2 )
>= (px
`1 ) & (px
`2 )
<= (
- (px
`1 )) by
A36,
A37,
A38,
XREAL_1: 64;
then
A52: (
Sq_Circ
. px)
=
|[((px
`1 )
/ (
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))), ((px
`2 )
/ (
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))]| by
A45,
JGRAPH_2: 3,
JGRAPH_3:def 1;
(px
`2 )
<= (px
`1 ) & (
- (
- (px
`1 )))
>= (
- (px
`2 )) or (px
`2 )
>= (px
`1 ) & (px
`2 )
<= (
- (px
`1 )) by
A36,
A37,
A38,
A51,
XREAL_1: 24,
XREAL_1: 64;
then
A53: (px
`2 )
<= (px
`1 ) & (px
`1 )
>= (
- (px
`2 )) or (px
`2 )
>= (px
`1 ) & (
- (px
`2 ))
>= (
- (
- (px
`1 ))) by
XREAL_1: 24;
A54: ((px
`1 )
/ (
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))
= (q
`1 ) by
A36,
A38,
A40,
XCMPLX_1: 89;
A55: ((px
`2 )
/ (
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))
= (q
`2 ) by
A37,
A38,
A40,
XCMPLX_1: 89;
A56: (
dom
Sq_Circ )
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
not (px
`1 )
=
0 by
A36,
A37,
A38,
A45,
A51,
XREAL_1: 64;
then
A57: ((px
`1 )
^2 )
>
0 by
SQUARE_1: 12;
A58: ((px
`2 )
^2 )
>=
0 by
XREAL_1: 63;
((((px
`1 )
^2 )
/ ((
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
^2 ))
+ (((px
`2 )
/ (
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))
^2 ))
<= 1 by
A40,
A41,
A42,
A43,
A44,
XCMPLX_1: 76;
then ((((px
`1 )
^2 )
/ ((
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
^2 ))
+ (((px
`2 )
^2 )
/ ((
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
^2 )))
<= 1 by
XCMPLX_1: 76;
then ((((px
`1 )
^2 )
/ (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
+ (((px
`2 )
^2 )
/ ((
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
^2 )))
<= 1 by
A39,
SQUARE_1:def 2;
then ((((px
`1 )
^2 )
/ (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
+ (((px
`2 )
^2 )
/ (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))
<= 1 by
A39,
SQUARE_1:def 2;
then (((((px
`1 )
^2 )
/ (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
+ (((px
`2 )
^2 )
/ (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
<= (1
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))) by
A39,
XREAL_1: 64;
then (((((px
`1 )
^2 )
/ (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
+ ((((px
`2 )
^2 )
/ (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))
<= (1
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 )));
then (((px
`1 )
^2 )
+ ((((px
`2 )
^2 )
/ (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))
<= (1
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))) by
A39,
XCMPLX_1: 87;
then
A59: (((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
<= (1
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))) by
A39,
XCMPLX_1: 87;
(1
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
= (1
+ (((px
`2 )
^2 )
/ ((px
`1 )
^2 ))) by
XCMPLX_1: 76;
then ((((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
- 1)
<= ((1
+ (((px
`2 )
^2 )
/ ((px
`1 )
^2 )))
- 1) by
A59,
XREAL_1: 9;
then (((((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
- 1)
* ((px
`1 )
^2 ))
<= ((((px
`2 )
^2 )
/ ((px
`1 )
^2 ))
* ((px
`1 )
^2 )) by
A57,
XREAL_1: 64;
then ((((px
`1 )
^2 )
+ (((px
`2 )
^2 )
- 1))
* ((px
`1 )
^2 ))
<= ((px
`2 )
^2 ) by
A57,
XCMPLX_1: 87;
then
A60: (((((px
`1 )
^2 )
* ((px
`1 )
^2 ))
+ (((px
`1 )
^2 )
* (((px
`2 )
^2 )
- 1)))
- ((px
`2 )
^2 ))
<=
0 by
XREAL_1: 47;
(((((px
`1 )
^2 )
* ((px
`1 )
^2 ))
+ ((((px
`1 )
^2 )
* ((px
`2 )
^2 ))
- (((px
`1 )
^2 )
* 1)))
- ((px
`2 )
^2 ))
= ((((px
`1 )
^2 )
- 1)
* (((px
`1 )
^2 )
+ ((px
`2 )
^2 )));
then (((px
`1 )
^2 )
- 1)
<=
0 & (((px
`1 )
^2 )
- 1)
>=
0 or (((px
`1 )
^2 )
- 1)
<=
0 & (((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
>=
0 or (((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
<=
0 & (((px
`1 )
^2 )
- 1)
>=
0 or (((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
<=
0 & (((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
>=
0 by
A60,
XREAL_1: 129,
XREAL_1: 130;
then
A61: ((((px
`1 )
^2 )
- 1)
+ 1)
<= (
0
+ 1) by
A58,
XREAL_1: 7;
then
A62: (px
`1 )
<= (1
^2 ) by
SQUARE_1: 47;
A63: (px
`1 )
>= (
- (1
^2 )) by
A61,
SQUARE_1: 47;
then (px
`2 )
<= 1 & 1
>= (
- (px
`2 )) or (px
`2 )
>= (
- 1) & (
- (px
`2 ))
>= (px
`1 ) by
A53,
A62,
XXREAL_0: 2;
then (px
`2 )
<= 1 & (
- 1)
<= (
- (
- (px
`2 ))) or (px
`2 )
>= (
- 1) & (
- (px
`2 ))
>= (
- 1) by
A63,
XREAL_1: 24,
XXREAL_0: 2;
then (px
`2 )
<= 1 & (
- 1)
<= (px
`2 ) or (px
`2 )
>= (
- 1) & (
- (
- (px
`2 )))
<= (
- (
- 1)) by
XREAL_1: 24;
then px
in Kb by
A1,
A62,
A63;
hence ex x be
set st x
in (
dom
Sq_Circ ) & x
in Kb & y
= (
Sq_Circ
. x) by
A28,
A52,
A54,
A55,
A56,
EUCLID: 53;
end;
case
A64: q
<> (
0. (
TOP-REAL 2)) & not ((q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 )));
set px =
|[((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]|;
A65: (q
`1 )
<= (q
`2 ) & (
- (q
`2 ))
<= (q
`1 ) or (q
`1 )
>= (q
`2 ) & (q
`1 )
<= (
- (q
`2 )) by
A64,
JGRAPH_2: 13;
A66: (px
`2 )
= ((q
`2 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
EUCLID: 52;
A67: (px
`1 )
= ((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
EUCLID: 52;
(1
+ (((q
`1 )
/ (q
`2 ))
^2 ))
>
0 by
XREAL_1: 34,
XREAL_1: 63;
then
A68: (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
>
0 by
SQUARE_1: 25;
A69: (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))
>
0 by
XREAL_1: 34,
XREAL_1: 63;
A70: ((px
`1 )
/ (px
`2 ))
= ((q
`1 )
/ (q
`2 )) by
A66,
A67,
A68,
XCMPLX_1: 91;
A71: (q
`2 )
= (((q
`2 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
A68,
XCMPLX_1: 89
.= ((px
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
EUCLID: 52;
A72: (q
`1 )
= (((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
A68,
XCMPLX_1: 89
.= ((px
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
EUCLID: 52;
A73: (
|.q.|
^2 )
= (((q
`2 )
^2 )
+ ((q
`1 )
^2 )) by
JGRAPH_3: 1;
A74: (
|.q.|
^2 )
<= (1
^2 ) by
A29,
SQUARE_1: 15;
A75:
now
assume that
A76: (px
`2 )
=
0 and
A77: (px
`1 )
=
0 ;
A78: ((q
`2 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
=
0 by
A76,
EUCLID: 52;
((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
=
0 by
A77,
EUCLID: 52;
then (q
`1 )
=
0 by
A68,
XCMPLX_1: 6;
hence contradiction by
A64,
A68,
A78,
XCMPLX_1: 6;
end;
(q
`1 )
<= (q
`2 ) & (
- (q
`2 ))
<= (q
`1 ) or (q
`1 )
>= (q
`2 ) & ((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
<= ((
- (q
`2 ))
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
A65,
A68,
XREAL_1: 64;
then
A79: (q
`1 )
<= (q
`2 ) & ((
- (q
`2 ))
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
<= ((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) or (px
`1 )
>= (px
`2 ) & (px
`1 )
<= (
- (px
`2 )) by
A66,
A67,
A68,
XREAL_1: 64;
then (px
`1 )
<= (px
`2 ) & (
- (px
`2 ))
<= (px
`1 ) or (px
`1 )
>= (px
`2 ) & (px
`1 )
<= (
- (px
`2 )) by
A66,
A67,
A68,
XREAL_1: 64;
then
A80: (
Sq_Circ
. px)
=
|[((px
`1 )
/ (
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))), ((px
`2 )
/ (
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))]| by
A75,
JGRAPH_2: 3,
JGRAPH_3: 4;
(px
`1 )
<= (px
`2 ) & (
- (
- (px
`2 )))
>= (
- (px
`1 )) or (px
`1 )
>= (px
`2 ) & (px
`1 )
<= (
- (px
`2 )) by
A66,
A67,
A68,
A79,
XREAL_1: 24,
XREAL_1: 64;
then
A81: (px
`1 )
<= (px
`2 ) & (px
`2 )
>= (
- (px
`1 )) or (px
`1 )
>= (px
`2 ) & (
- (px
`1 ))
>= (
- (
- (px
`2 ))) by
XREAL_1: 24;
A82: ((px
`2 )
/ (
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))
= (q
`2 ) by
A66,
A68,
A70,
XCMPLX_1: 89;
A83: ((px
`1 )
/ (
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))
= (q
`1 ) by
A67,
A68,
A70,
XCMPLX_1: 89;
A84: (
dom
Sq_Circ )
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
not (px
`2 )
=
0 by
A66,
A67,
A68,
A75,
A79,
XREAL_1: 64;
then
A85: ((px
`2 )
^2 )
>
0 by
SQUARE_1: 12;
A86: ((px
`1 )
^2 )
>=
0 by
XREAL_1: 63;
((((px
`2 )
^2 )
/ ((
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
^2 ))
+ (((px
`1 )
/ (
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))
^2 ))
<= 1 by
A70,
A71,
A72,
A73,
A74,
XCMPLX_1: 76;
then ((((px
`2 )
^2 )
/ ((
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
^2 ))
+ (((px
`1 )
^2 )
/ ((
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
^2 )))
<= 1 by
XCMPLX_1: 76;
then ((((px
`2 )
^2 )
/ (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
+ (((px
`1 )
^2 )
/ ((
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
^2 )))
<= 1 by
A69,
SQUARE_1:def 2;
then ((((px
`2 )
^2 )
/ (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
+ (((px
`1 )
^2 )
/ (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))
<= 1 by
A69,
SQUARE_1:def 2;
then (((((px
`2 )
^2 )
/ (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
+ (((px
`1 )
^2 )
/ (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
<= (1
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))) by
A69,
XREAL_1: 64;
then (((((px
`2 )
^2 )
/ (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
+ ((((px
`1 )
^2 )
/ (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))
<= (1
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 )));
then (((px
`2 )
^2 )
+ ((((px
`1 )
^2 )
/ (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))
<= (1
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))) by
A69,
XCMPLX_1: 87;
then
A87: (((px
`2 )
^2 )
+ ((px
`1 )
^2 ))
<= (1
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))) by
A69,
XCMPLX_1: 87;
(1
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
= (1
+ (((px
`1 )
^2 )
/ ((px
`2 )
^2 ))) by
XCMPLX_1: 76;
then ((((px
`2 )
^2 )
+ ((px
`1 )
^2 ))
- 1)
<= ((1
+ (((px
`1 )
^2 )
/ ((px
`2 )
^2 )))
- 1) by
A87,
XREAL_1: 9;
then (((((px
`2 )
^2 )
+ ((px
`1 )
^2 ))
- 1)
* ((px
`2 )
^2 ))
<= ((((px
`1 )
^2 )
/ ((px
`2 )
^2 ))
* ((px
`2 )
^2 )) by
A85,
XREAL_1: 64;
then ((((px
`2 )
^2 )
+ (((px
`1 )
^2 )
- 1))
* ((px
`2 )
^2 ))
<= ((px
`1 )
^2 ) by
A85,
XCMPLX_1: 87;
then
A88: (((((px
`2 )
^2 )
* ((px
`2 )
^2 ))
+ (((px
`2 )
^2 )
* (((px
`1 )
^2 )
- 1)))
- ((px
`1 )
^2 ))
<=
0 by
XREAL_1: 47;
(((((px
`2 )
^2 )
* ((px
`2 )
^2 ))
+ ((((px
`2 )
^2 )
* ((px
`1 )
^2 ))
- (((px
`2 )
^2 )
* 1)))
- ((px
`1 )
^2 ))
= ((((px
`2 )
^2 )
- 1)
* (((px
`2 )
^2 )
+ ((px
`1 )
^2 )));
then (((px
`2 )
^2 )
- 1)
<=
0 or (((px
`2 )
^2 )
+ ((px
`1 )
^2 ))
<=
0 by
A88,
XREAL_1: 129;
then
A89: ((((px
`2 )
^2 )
- 1)
+ 1)
<= (
0
+ 1) by
A86,
XREAL_1: 7;
then
A90: (px
`2 )
<= (1
^2 ) by
SQUARE_1: 47;
A91: (px
`2 )
>= (
- (1
^2 )) by
A89,
SQUARE_1: 47;
then (px
`1 )
<= 1 & 1
>= (
- (px
`1 )) or (px
`1 )
>= (
- 1) & (
- (px
`1 ))
>= (px
`2 ) by
A81,
A90,
XXREAL_0: 2;
then (px
`1 )
<= 1 & (
- 1)
<= (
- (
- (px
`1 ))) or (px
`1 )
>= (
- 1) & (
- (px
`1 ))
>= (
- 1) by
A91,
XREAL_1: 24,
XXREAL_0: 2;
then (px
`1 )
<= 1 & (
- 1)
<= (px
`1 ) or (px
`1 )
>= (
- 1) & (
- (
- (px
`1 )))
<= (
- (
- 1)) by
XREAL_1: 24;
then px
in Kb by
A1,
A90,
A91;
hence ex x be
set st x
in (
dom
Sq_Circ ) & x
in Kb & y
= (
Sq_Circ
. x) by
A28,
A80,
A82,
A83,
A84,
EUCLID: 53;
end;
end;
hence thesis by
FUNCT_1:def 6;
end;
theorem ::
JGRAPH_6:28
Th28: for Kb,Cb be
Subset of (
TOP-REAL 2) st Kb
= { p : not ((
- 1)
< (p
`1 ) & (p
`1 )
< 1 & (
- 1)
< (p
`2 ) & (p
`2 )
< 1) } & Cb
= { p2 where p2 be
Point of (
TOP-REAL 2) :
|.p2.|
>= 1 } holds (
Sq_Circ
.: Kb)
= Cb
proof
let Kb,Cb be
Subset of (
TOP-REAL 2);
assume
A1: Kb
= { p : not ((
- 1)
< (p
`1 ) & (p
`1 )
< 1 & (
- 1)
< (p
`2 ) & (p
`2 )
< 1) } & Cb
= { p2 where p2 be
Point of (
TOP-REAL 2) :
|.p2.|
>= 1 };
thus (
Sq_Circ
.: Kb)
c= Cb
proof
let y be
object;
assume y
in (
Sq_Circ
.: Kb);
then
consider x be
object such that x
in (
dom
Sq_Circ ) and
A2: x
in Kb and
A3: y
= (
Sq_Circ
. x) by
FUNCT_1:def 6;
consider q be
Point of (
TOP-REAL 2) such that
A4: q
= x and
A5: not ((
- 1)
< (q
`1 ) & (q
`1 )
< 1 & (
- 1)
< (q
`2 ) & (q
`2 )
< 1) by
A1,
A2;
now
per cases ;
case
A6: q
= (
0. (
TOP-REAL 2));
then
A7: (q
`1 )
=
0 by
EUCLID: 52,
EUCLID: 54;
(q
`2 )
=
0 by
A6,
EUCLID: 52,
EUCLID: 54;
hence contradiction by
A5,
A7;
end;
case
A8: q
<> (
0. (
TOP-REAL 2)) & ((q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 )));
then
A9: (
Sq_Circ
. q)
=
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]| by
JGRAPH_3:def 1;
A10: not ((
- 1)
< (q
`2 ) & (q
`2 )
< 1) implies (
- 1)
>= (q
`1 ) or (q
`1 )
>= 1
proof
assume
A11: not ((
- 1)
< (q
`2 ) & (q
`2 )
< 1);
now
per cases by
A11;
case
A12: (
- 1)
>= (q
`2 );
then (
- (q
`1 ))
<= (
- 1) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 )) by
A8,
XXREAL_0: 2;
hence thesis by
A12,
XREAL_1: 24,
XXREAL_0: 2;
end;
case (q
`2 )
>= 1;
then 1
<= (q
`1 ) or 1
<= (
- (q
`1 )) by
A8,
XXREAL_0: 2;
then 1
<= (q
`1 ) or (
- (
- (q
`1 )))
<= (
- 1) by
XREAL_1: 24;
hence thesis;
end;
end;
hence thesis;
end;
A13: (
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|
`1 )
= ((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
A14: (
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|
`2 )
= ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
A15: (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))
>
0 by
XREAL_1: 34,
XREAL_1: 63;
A16:
now
assume
A17: (q
`1 )
=
0 ;
then (q
`2 )
=
0 by
A8;
hence contradiction by
A8,
A17,
EUCLID: 53,
EUCLID: 54;
end;
then
A18: ((q
`1 )
^2 )
>
0 by
SQUARE_1: 12;
((q
`1 )
^2 )
>= (1
^2 ) by
A5,
A10,
SQUARE_1: 48;
then
A19: (
sqrt ((q
`1 )
^2 ))
>= 1 by
SQUARE_1: 18,
SQUARE_1: 26;
(
|.
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|.|
^2 )
= ((((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
^2 )
+ (((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
^2 )) by
A13,
A14,
JGRAPH_3: 1
.= ((((q
`1 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 ))
+ (((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
^2 )) by
XCMPLX_1: 76
.= ((((q
`1 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 ))
+ (((q
`2 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 ))) by
XCMPLX_1: 76
.= ((((q
`1 )
^2 )
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
+ (((q
`2 )
^2 )
/ ((
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
^2 ))) by
A15,
SQUARE_1:def 2
.= ((((q
`1 )
^2 )
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
+ (((q
`2 )
^2 )
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A15,
SQUARE_1:def 2
.= ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))) by
XCMPLX_1: 62
.= ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ (1
+ (((q
`2 )
^2 )
/ ((q
`1 )
^2 )))) by
XCMPLX_1: 76
.= ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ ((((q
`1 )
^2 )
/ ((q
`1 )
^2 ))
+ (((q
`2 )
^2 )
/ ((q
`1 )
^2 )))) by
A18,
XCMPLX_1: 60
.= ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ ((q
`1 )
^2 ))) by
XCMPLX_1: 62
.= (((q
`1 )
^2 )
* ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ (((q
`1 )
^2 )
+ ((q
`2 )
^2 )))) by
XCMPLX_1: 81
.= (((q
`1 )
^2 )
* 1) by
A16,
COMPLEX1: 1,
XCMPLX_1: 60
.= ((q
`1 )
^2 );
then
|.
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|.|
>= 1 by
A19,
SQUARE_1: 22;
hence ex p2 be
Point of (
TOP-REAL 2) st p2
= y &
|.p2.|
>= 1 by
A3,
A4,
A9;
end;
case
A20: q
<> (
0. (
TOP-REAL 2)) & not ((q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 )));
then
A21: (
Sq_Circ
. q)
=
|[((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]| by
JGRAPH_3:def 1;
A22: (
|[((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]|
`1 )
= ((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
EUCLID: 52;
A23: (
|[((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]|
`2 )
= ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
EUCLID: 52;
A24: (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))
>
0 by
XREAL_1: 34,
XREAL_1: 63;
A25: (q
`2 )
<>
0 by
A20;
then
A26: ((q
`2 )
^2 )
>
0 by
SQUARE_1: 12;
not ((
- 1)
< (q
`1 ) & (q
`1 )
< 1) implies (
- 1)
>= (q
`2 ) or (q
`2 )
>= 1
proof
assume
A27: not ((
- 1)
< (q
`1 ) & (q
`1 )
< 1);
now
per cases by
A27;
case
A28: (
- 1)
>= (q
`1 );
then (q
`2 )
<= (
- 1) or (q
`1 )
< (q
`2 ) & (
- (q
`2 ))
<= (
- (
- (q
`1 ))) by
A20,
XREAL_1: 24,
XXREAL_0: 2;
then (
- (q
`2 ))
<= (
- 1) or (
- 1)
>= (q
`2 ) by
A28,
XXREAL_0: 2;
hence thesis by
XREAL_1: 24;
end;
case
A29: (q
`1 )
>= 1;
(
- (
- (q
`1 )))
<= (
- (q
`2 )) & (q
`2 )
<= (q
`1 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
>= (
- (q
`1 )) by
A20,
XREAL_1: 24;
then 1
<= (
- (q
`2 )) or (q
`2 )
>= (q
`1 ) & (q
`2 )
>= (
- (q
`1 )) by
A29,
XXREAL_0: 2;
then (
- 1)
>= (
- (
- (q
`2 ))) or 1
<= (q
`2 ) by
A29,
XREAL_1: 24,
XXREAL_0: 2;
hence thesis;
end;
end;
hence thesis;
end;
then ((q
`2 )
^2 )
>= (1
^2 ) by
A5,
SQUARE_1: 48;
then
A30: (
sqrt ((q
`2 )
^2 ))
>= 1 by
SQUARE_1: 18,
SQUARE_1: 26;
(
|.
|[((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]|.|
^2 )
= ((((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
^2 )
+ (((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
^2 )) by
A22,
A23,
JGRAPH_3: 1
.= ((((q
`1 )
^2 )
/ ((
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
^2 ))
+ (((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
^2 )) by
XCMPLX_1: 76
.= ((((q
`1 )
^2 )
/ ((
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
^2 ))
+ (((q
`2 )
^2 )
/ ((
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
^2 ))) by
XCMPLX_1: 76
.= ((((q
`1 )
^2 )
/ (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
+ (((q
`2 )
^2 )
/ ((
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
^2 ))) by
A24,
SQUARE_1:def 2
.= ((((q
`1 )
^2 )
/ (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
+ (((q
`2 )
^2 )
/ (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
A24,
SQUARE_1:def 2
.= ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))) by
XCMPLX_1: 62
.= ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ (1
+ (((q
`1 )
^2 )
/ ((q
`2 )
^2 )))) by
XCMPLX_1: 76
.= ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ ((((q
`1 )
^2 )
/ ((q
`2 )
^2 ))
+ (((q
`2 )
^2 )
/ ((q
`2 )
^2 )))) by
A26,
XCMPLX_1: 60
.= ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ ((q
`2 )
^2 ))) by
XCMPLX_1: 62
.= (((q
`2 )
^2 )
* ((((q
`1 )
^2 )
+ ((q
`2 )
^2 ))
/ (((q
`1 )
^2 )
+ ((q
`2 )
^2 )))) by
XCMPLX_1: 81
.= (((q
`2 )
^2 )
* 1) by
A25,
COMPLEX1: 1,
XCMPLX_1: 60
.= ((q
`2 )
^2 );
then
|.
|[((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]|.|
>= 1 by
A30,
SQUARE_1: 22;
hence ex p2 be
Point of (
TOP-REAL 2) st p2
= y &
|.p2.|
>= 1 by
A3,
A4,
A21;
end;
end;
hence thesis by
A1;
end;
let y be
object;
assume y
in Cb;
then
consider p2 be
Point of (
TOP-REAL 2) such that
A31: p2
= y and
A32:
|.p2.|
>= 1 by
A1;
set q = p2;
now
per cases ;
case q
= (
0. (
TOP-REAL 2));
hence contradiction by
A32,
TOPRNS_1: 23;
end;
case
A33: q
<> (
0. (
TOP-REAL 2)) & ((q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 )));
set px =
|[((q
`1 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]|;
A34: (px
`1 )
= ((q
`1 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
A35: (px
`2 )
= ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
(1
+ (((q
`2 )
/ (q
`1 ))
^2 ))
>
0 by
XREAL_1: 34,
XREAL_1: 63;
then
A36: (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
>
0 by
SQUARE_1: 25;
A37: (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))
>
0 by
XREAL_1: 34,
XREAL_1: 63;
A38: ((px
`2 )
/ (px
`1 ))
= ((q
`2 )
/ (q
`1 )) by
A34,
A35,
A36,
XCMPLX_1: 91;
A39: (q
`1 )
= (((q
`1 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A36,
XCMPLX_1: 89
.= ((px
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
A40: (q
`2 )
= (((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A36,
XCMPLX_1: 89
.= ((px
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
EUCLID: 52;
A41: (
|.q.|
^2 )
= (((q
`1 )
^2 )
+ ((q
`2 )
^2 )) by
JGRAPH_3: 1;
A42: (
|.q.|
^2 )
>= (1
^2 ) by
A32,
SQUARE_1: 15;
A43:
now
assume that
A44: (px
`1 )
=
0 and
A45: (px
`2 )
=
0 ;
A46: ((q
`1 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
=
0 by
A44,
EUCLID: 52;
A47: ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
=
0 by
A45,
EUCLID: 52;
A48: (q
`1 )
=
0 by
A36,
A46,
XCMPLX_1: 6;
(q
`2 )
=
0 by
A36,
A47,
XCMPLX_1: 6;
hence contradiction by
A33,
A48,
EUCLID: 53,
EUCLID: 54;
end;
(q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
<= ((
- (q
`1 ))
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) by
A33,
A36,
XREAL_1: 64;
then
A49: (q
`2 )
<= (q
`1 ) & ((
- (q
`1 ))
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))
<= ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))) or (px
`2 )
>= (px
`1 ) & (px
`2 )
<= (
- (px
`1 )) by
A34,
A35,
A36,
XREAL_1: 64;
then (px
`2 )
<= (px
`1 ) & (
- (px
`1 ))
<= (px
`2 ) or (px
`2 )
>= (px
`1 ) & (px
`2 )
<= (
- (px
`1 )) by
A34,
A35,
A36,
XREAL_1: 64;
then
A50: (
Sq_Circ
. px)
=
|[((px
`1 )
/ (
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))), ((px
`2 )
/ (
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))]| by
A43,
JGRAPH_2: 3,
JGRAPH_3:def 1;
A51: ((px
`1 )
/ (
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))
= (q
`1 ) by
A34,
A36,
A38,
XCMPLX_1: 89;
A52: ((px
`2 )
/ (
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))
= (q
`2 ) by
A35,
A36,
A38,
XCMPLX_1: 89;
A53: (
dom
Sq_Circ )
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
not (px
`1 )
=
0 by
A34,
A35,
A36,
A43,
A49,
XREAL_1: 64;
then
A54: ((px
`1 )
^2 )
>
0 by
SQUARE_1: 12;
then
A55: (((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
>
0 by
XREAL_1: 34,
XREAL_1: 63;
((((px
`1 )
^2 )
/ ((
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
^2 ))
+ (((px
`2 )
/ (
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))
^2 ))
>= 1 by
A38,
A39,
A40,
A41,
A42,
XCMPLX_1: 76;
then ((((px
`1 )
^2 )
/ ((
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
^2 ))
+ (((px
`2 )
^2 )
/ ((
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
^2 )))
>= 1 by
XCMPLX_1: 76;
then ((((px
`1 )
^2 )
/ (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
+ (((px
`2 )
^2 )
/ ((
sqrt (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
^2 )))
>= 1 by
A37,
SQUARE_1:def 2;
then ((((px
`1 )
^2 )
/ (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
+ (((px
`2 )
^2 )
/ (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))
>= 1 by
A37,
SQUARE_1:def 2;
then (((((px
`1 )
^2 )
/ (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
+ (((px
`2 )
^2 )
/ (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
>= (1
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))) by
A37,
XREAL_1: 64;
then (((((px
`1 )
^2 )
/ (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
+ ((((px
`2 )
^2 )
/ (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))
>= (1
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 )));
then (((px
`1 )
^2 )
+ ((((px
`2 )
^2 )
/ (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))))
>= (1
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))) by
A37,
XCMPLX_1: 87;
then
A56: (((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
>= (1
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 ))) by
A37,
XCMPLX_1: 87;
(1
* (1
+ (((px
`2 )
/ (px
`1 ))
^2 )))
= (1
+ (((px
`2 )
^2 )
/ ((px
`1 )
^2 ))) by
XCMPLX_1: 76;
then ((((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
- 1)
>= ((1
+ (((px
`2 )
^2 )
/ ((px
`1 )
^2 )))
- 1) by
A56,
XREAL_1: 9;
then (((((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
- 1)
* ((px
`1 )
^2 ))
>= ((((px
`2 )
^2 )
/ ((px
`1 )
^2 ))
* ((px
`1 )
^2 )) by
A54,
XREAL_1: 64;
then ((((px
`1 )
^2 )
+ (((px
`2 )
^2 )
- 1))
* ((px
`1 )
^2 ))
>= ((px
`2 )
^2 ) by
A54,
XCMPLX_1: 87;
then
A57: (((((px
`1 )
^2 )
* ((px
`1 )
^2 ))
+ (((px
`1 )
^2 )
* (((px
`2 )
^2 )
- 1)))
- ((px
`2 )
^2 ))
>=
0 by
XREAL_1: 48;
(((((px
`1 )
^2 )
* ((px
`1 )
^2 ))
+ ((((px
`1 )
^2 )
* ((px
`2 )
^2 ))
- (((px
`1 )
^2 )
* 1)))
- ((px
`2 )
^2 ))
= ((((px
`1 )
^2 )
- 1)
* (((px
`1 )
^2 )
+ ((px
`2 )
^2 )));
then (((px
`1 )
^2 )
- 1)
>=
0 by
A55,
A57,
XREAL_1: 132;
then ((((px
`1 )
^2 )
- 1)
+ 1)
>= (
0
+ 1) by
XREAL_1: 7;
then (px
`1 )
>= (1
^2 ) or (px
`1 )
<= (
- 1) by
SQUARE_1: 50;
then px
in Kb by
A1;
hence ex x be
set st x
in (
dom
Sq_Circ ) & x
in Kb & y
= (
Sq_Circ
. x) by
A31,
A50,
A51,
A52,
A53,
EUCLID: 53;
end;
case
A58: q
<> (
0. (
TOP-REAL 2)) & not ((q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 )));
set px =
|[((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]|;
A59: (q
`1 )
<= (q
`2 ) & (
- (q
`2 ))
<= (q
`1 ) or (q
`1 )
>= (q
`2 ) & (q
`1 )
<= (
- (q
`2 )) by
A58,
JGRAPH_2: 13;
A60: (px
`2 )
= ((q
`2 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
EUCLID: 52;
A61: (px
`1 )
= ((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
EUCLID: 52;
(1
+ (((q
`1 )
/ (q
`2 ))
^2 ))
>
0 by
XREAL_1: 34,
XREAL_1: 63;
then
A62: (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
>
0 by
SQUARE_1: 25;
A63: (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))
>
0 by
XREAL_1: 34,
XREAL_1: 63;
A64: ((px
`1 )
/ (px
`2 ))
= ((q
`1 )
/ (q
`2 )) by
A60,
A61,
A62,
XCMPLX_1: 91;
A65: (q
`2 )
= (((q
`2 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
A62,
XCMPLX_1: 89
.= ((px
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
EUCLID: 52;
A66: (q
`1 )
= (((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
A62,
XCMPLX_1: 89
.= ((px
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
EUCLID: 52;
A67: (
|.q.|
^2 )
= (((q
`2 )
^2 )
+ ((q
`1 )
^2 )) by
JGRAPH_3: 1;
A68: (
|.q.|
^2 )
>= (1
^2 ) by
A32,
SQUARE_1: 15;
A69:
now
assume that
A70: (px
`2 )
=
0 and
A71: (px
`1 )
=
0 ;
A72: ((q
`2 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
=
0 by
A70,
EUCLID: 52;
((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
=
0 by
A71,
EUCLID: 52;
then (q
`1 )
=
0 by
A62,
XCMPLX_1: 6;
hence contradiction by
A58,
A62,
A72,
XCMPLX_1: 6;
end;
(q
`1 )
<= (q
`2 ) & (
- (q
`2 ))
<= (q
`1 ) or (q
`1 )
>= (q
`2 ) & ((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
<= ((
- (q
`2 ))
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) by
A59,
A62,
XREAL_1: 64;
then
A73: (q
`1 )
<= (q
`2 ) & ((
- (q
`2 ))
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))
<= ((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))) or (px
`1 )
>= (px
`2 ) & (px
`1 )
<= (
- (px
`2 )) by
A60,
A61,
A62,
XREAL_1: 64;
then (px
`1 )
<= (px
`2 ) & (
- (px
`2 ))
<= (px
`1 ) or (px
`1 )
>= (px
`2 ) & (px
`1 )
<= (
- (px
`2 )) by
A60,
A61,
A62,
XREAL_1: 64;
then
A74: (
Sq_Circ
. px)
=
|[((px
`1 )
/ (
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))), ((px
`2 )
/ (
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))]| by
A69,
JGRAPH_2: 3,
JGRAPH_3: 4;
A75: ((px
`2 )
/ (
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))
= (q
`2 ) by
A60,
A62,
A64,
XCMPLX_1: 89;
A76: ((px
`1 )
/ (
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))
= (q
`1 ) by
A61,
A62,
A64,
XCMPLX_1: 89;
A77: (
dom
Sq_Circ )
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
not (px
`2 )
=
0 by
A60,
A61,
A62,
A69,
A73,
XREAL_1: 64;
then
A78: ((px
`2 )
^2 )
>
0 by
SQUARE_1: 12;
A79: ((px
`1 )
^2 )
>=
0 by
XREAL_1: 63;
((((px
`2 )
^2 )
/ ((
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
^2 ))
+ (((px
`1 )
/ (
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))
^2 ))
>= 1 by
A64,
A65,
A66,
A67,
A68,
XCMPLX_1: 76;
then ((((px
`2 )
^2 )
/ ((
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
^2 ))
+ (((px
`1 )
^2 )
/ ((
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
^2 )))
>= 1 by
XCMPLX_1: 76;
then ((((px
`2 )
^2 )
/ (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
+ (((px
`1 )
^2 )
/ ((
sqrt (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
^2 )))
>= 1 by
A63,
SQUARE_1:def 2;
then ((((px
`2 )
^2 )
/ (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
+ (((px
`1 )
^2 )
/ (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))
>= 1 by
A63,
SQUARE_1:def 2;
then (((((px
`2 )
^2 )
/ (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
+ (((px
`1 )
^2 )
/ (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
>= (1
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))) by
A63,
XREAL_1: 64;
then (((((px
`2 )
^2 )
/ (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
+ ((((px
`1 )
^2 )
/ (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))
>= (1
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 )));
then (((px
`2 )
^2 )
+ ((((px
`1 )
^2 )
/ (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))))
>= (1
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))) by
A63,
XCMPLX_1: 87;
then
A80: (((px
`2 )
^2 )
+ ((px
`1 )
^2 ))
>= (1
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 ))) by
A63,
XCMPLX_1: 87;
(1
* (1
+ (((px
`1 )
/ (px
`2 ))
^2 )))
= (1
+ (((px
`1 )
^2 )
/ ((px
`2 )
^2 ))) by
XCMPLX_1: 76;
then ((((px
`2 )
^2 )
+ ((px
`1 )
^2 ))
- 1)
>= ((1
+ (((px
`1 )
^2 )
/ ((px
`2 )
^2 )))
- 1) by
A80,
XREAL_1: 9;
then (((((px
`2 )
^2 )
+ ((px
`1 )
^2 ))
- 1)
* ((px
`2 )
^2 ))
>= ((((px
`1 )
^2 )
/ ((px
`2 )
^2 ))
* ((px
`2 )
^2 )) by
A78,
XREAL_1: 64;
then ((((px
`2 )
^2 )
+ (((px
`1 )
^2 )
- 1))
* ((px
`2 )
^2 ))
>= ((px
`1 )
^2 ) by
A78,
XCMPLX_1: 87;
then
A81: (((((px
`2 )
^2 )
* ((px
`2 )
^2 ))
+ (((px
`2 )
^2 )
* (((px
`1 )
^2 )
- 1)))
- ((px
`1 )
^2 ))
>=
0 by
XREAL_1: 48;
(((((px
`2 )
^2 )
* ((px
`2 )
^2 ))
+ ((((px
`2 )
^2 )
* ((px
`1 )
^2 ))
- (((px
`2 )
^2 )
* 1)))
- ((px
`1 )
^2 ))
= ((((px
`2 )
^2 )
- 1)
* (((px
`2 )
^2 )
+ ((px
`1 )
^2 )));
then (((px
`2 )
^2 )
- 1)
>=
0 & (((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
>=
0 or (((px
`2 )
^2 )
- 1)
<=
0 & (((px
`1 )
^2 )
+ ((px
`2 )
^2 ))
<=
0 by
A81,
XREAL_1: 132;
then ((((px
`2 )
^2 )
- 1)
+ 1)
>= (
0
+ 1) by
A78,
A79,
XREAL_1: 7;
then (px
`2 )
>= (1
^2 ) or (px
`2 )
<= (
- 1) by
SQUARE_1: 50;
then px
in Kb by
A1;
hence ex x be
set st x
in (
dom
Sq_Circ ) & x
in Kb & y
= (
Sq_Circ
. x) by
A31,
A74,
A75,
A76,
A77,
EUCLID: 53;
end;
end;
hence thesis by
FUNCT_1:def 6;
end;
theorem ::
JGRAPH_6:29
for P0,P1,P01,P11,K0,K1,K01,K11 be
Subset of (
TOP-REAL 2), P be non
empty
compact
Subset of (
TOP-REAL 2), f be
Function of (
TOP-REAL 2), (
TOP-REAL 2) st P
= (
circle (
0 ,
0 ,1)) & P0
= (
inside_of_circle (
0 ,
0 ,1)) & P1
= (
outside_of_circle (
0 ,
0 ,1)) & P01
= (
closed_inside_of_circle (
0 ,
0 ,1)) & P11
= (
closed_outside_of_circle (
0 ,
0 ,1)) & K0
= (
inside_of_rectangle ((
- 1),1,(
- 1),1)) & K1
= (
outside_of_rectangle ((
- 1),1,(
- 1),1)) & K01
= (
closed_inside_of_rectangle ((
- 1),1,(
- 1),1)) & K11
= (
closed_outside_of_rectangle ((
- 1),1,(
- 1),1)) & f
=
Sq_Circ holds (f
.: (
rectangle ((
- 1),1,(
- 1),1)))
= P & ((f
" )
.: P)
= (
rectangle ((
- 1),1,(
- 1),1)) & (f
.: K0)
= P0 & ((f
" )
.: P0)
= K0 & (f
.: K1)
= P1 & ((f
" )
.: P1)
= K1 & (f
.: K01)
= P01 & (f
.: K11)
= P11 & ((f
" )
.: P01)
= K01 & ((f
" )
.: P11)
= K11
proof
let P0,P1,P01,P11,K0,K1,K01,K11 be
Subset of (
TOP-REAL 2), P be non
empty
compact
Subset of (
TOP-REAL 2), f be
Function of (
TOP-REAL 2), (
TOP-REAL 2);
assume that
A1: P
= (
circle (
0 ,
0 ,1)) and
A2: P0
= (
inside_of_circle (
0 ,
0 ,1)) and
A3: P1
= (
outside_of_circle (
0 ,
0 ,1)) and
A4: P01
= (
closed_inside_of_circle (
0 ,
0 ,1)) and
A5: P11
= (
closed_outside_of_circle (
0 ,
0 ,1)) and
A6: K0
= (
inside_of_rectangle ((
- 1),1,(
- 1),1)) and
A7: K1
= (
outside_of_rectangle ((
- 1),1,(
- 1),1)) and
A8: K01
= (
closed_inside_of_rectangle ((
- 1),1,(
- 1),1)) and
A9: K11
= (
closed_outside_of_rectangle ((
- 1),1,(
- 1),1)) and
A10: f
=
Sq_Circ ;
set K = (
rectangle ((
- 1),1,(
- 1),1));
A11: P0
= { p :
|.p.|
< 1 } by
A2,
Th24;
A12: P01
= { p :
|.p.|
<= 1 } by
A4,
Th24;
A13: P1
= { p :
|.p.|
> 1 } by
A3,
Th24;
A14: P11
= { p :
|.p.|
>= 1 } by
A5,
Th24;
defpred
P[
Point of (
TOP-REAL 2)] means ($1
`1 )
= (
- 1) & ($1
`2 )
<= 1 & ($1
`2 )
>= (
- 1) or ($1
`1 )
<= 1 & ($1
`1 )
>= (
- 1) & ($1
`2 )
= 1 or ($1
`1 )
<= 1 & ($1
`1 )
>= (
- 1) & ($1
`2 )
= (
- 1) or ($1
`1 )
= 1 & ($1
`2 )
<= 1 & ($1
`2 )
>= (
- 1);
defpred
Q[
Point of (
TOP-REAL 2)] means (
- 1)
= ($1
`1 ) & (
- 1)
<= ($1
`2 ) & ($1
`2 )
<= 1 or ($1
`1 )
= 1 & (
- 1)
<= ($1
`2 ) & ($1
`2 )
<= 1 or (
- 1)
= ($1
`2 ) & (
- 1)
<= ($1
`1 ) & ($1
`1 )
<= 1 or 1
= ($1
`2 ) & (
- 1)
<= ($1
`1 ) & ($1
`1 )
<= 1;
deffunc
F(
set) = $1;
A15: for p be
Element of (
TOP-REAL 2) holds
P[p] iff
Q[p];
A16: K
= {
F(p) :
P[p] } by
SPPOL_2: 54
.= {
F(q) :
Q[q] } from
FRAENKEL:sch 3(
A15);
defpred
Q[
Point of (
TOP-REAL 2)] means
|.$1.|
= 1;
defpred
P[
Point of (
TOP-REAL 2)] means
|.($1
-
|[
0 ,
0 ]|).|
= 1;
A17: for p holds
P[p] iff
Q[p] by
EUCLID: 54,
RLVECT_1: 13;
P
= {
F(p) :
P[p] } by
A1
.= {
F(p2) where p2 be
Point of (
TOP-REAL 2) :
Q[p2] } from
FRAENKEL:sch 3(
A17);
then
A18: (f
.: K)
= P by
A10,
A16,
JGRAPH_3: 23;
A19: (
dom f)
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
A20: (f
.: K0)
= P0 by
A6,
A10,
A11,
Th25;
(f
.: K1)
= P1 by
A7,
A10,
A13,
Th26;
hence (f
.: K)
= P & ((f
" )
.: P)
= K & (f
.: K0)
= P0 & ((f
" )
.: P0)
= K0 & (f
.: K1)
= P1 & ((f
" )
.: P1)
= K1 by
A10,
A18,
A19,
A20,
FUNCT_1: 107;
A21: (f
.: K01)
= P01 by
A8,
A10,
A12,
Th27;
(f
.: K11)
= P11 by
A9,
A10,
A14,
Th28;
hence thesis by
A10,
A19,
A21,
FUNCT_1: 107;
end;
begin
theorem ::
JGRAPH_6:30
Th30: for a,b,c,d be
Real st a
<= b & c
<= d holds (
LSeg (
|[a, c]|,
|[a, d]|))
= { p1 : (p1
`1 )
= a & (p1
`2 )
<= d & (p1
`2 )
>= c } & (
LSeg (
|[a, d]|,
|[b, d]|))
= { p2 : (p2
`1 )
<= b & (p2
`1 )
>= a & (p2
`2 )
= d } & (
LSeg (
|[a, c]|,
|[b, c]|))
= { q1 : (q1
`1 )
<= b & (q1
`1 )
>= a & (q1
`2 )
= c } & (
LSeg (
|[b, c]|,
|[b, d]|))
= { q2 : (q2
`1 )
= b & (q2
`2 )
<= d & (q2
`2 )
>= c }
proof
let a,b,c,d be
Real;
assume that
A1: a
<= b and
A2: c
<= d;
set L1 = { p : (p
`1 )
= a & (p
`2 )
<= d & (p
`2 )
>= c }, L2 = { p : (p
`1 )
<= b & (p
`1 )
>= a & (p
`2 )
= d }, L3 = { p : (p
`1 )
<= b & (p
`1 )
>= a & (p
`2 )
= c }, L4 = { p : (p
`1 )
= b & (p
`2 )
<= d & (p
`2 )
>= c };
set p0 =
|[a, c]|, p01 =
|[a, d]|, p10 =
|[b, c]|, p1 =
|[b, d]|;
A3: (p01
`1 )
= a by
EUCLID: 52;
A4: (p01
`2 )
= d by
EUCLID: 52;
A5: (p10
`1 )
= b by
EUCLID: 52;
A6: (p10
`2 )
= c by
EUCLID: 52;
A7: L1
c= (
LSeg (p0,p01))
proof
let a2 be
object;
assume a2
in L1;
then
consider p such that
A8: a2
= p and
A9: (p
`1 )
= a and
A10: (p
`2 )
<= d and
A11: (p
`2 )
>= c;
now
per cases ;
case
A12: d
<> c;
reconsider lambda = (((p
`2 )
- c)
/ (d
- c)) as
Real;
d
>= c by
A10,
A11,
XXREAL_0: 2;
then d
> c by
A12,
XXREAL_0: 1;
then
A13: (d
- c)
>
0 by
XREAL_1: 50;
A14: ((p
`2 )
- c)
>=
0 by
A11,
XREAL_1: 48;
(d
- c)
>= ((p
`2 )
- c) by
A10,
XREAL_1: 9;
then ((d
- c)
/ (d
- c))
>= (((p
`2 )
- c)
/ (d
- c)) by
A13,
XREAL_1: 72;
then
A15: 1
>= lambda by
A13,
XCMPLX_1: 60;
A16: (((1
- lambda)
* c)
+ (lambda
* d))
= (((((d
- c)
/ (d
- c))
- (((p
`2 )
- c)
/ (d
- c)))
* c)
+ ((((p
`2 )
- c)
/ (d
- c))
* d)) by
A13,
XCMPLX_1: 60
.= (((((d
- c)
- ((p
`2 )
- c))
/ (d
- c))
* c)
+ ((((p
`2 )
- c)
/ (d
- c))
* d)) by
XCMPLX_1: 120
.= ((c
* ((d
- (p
`2 ))
/ (d
- c)))
+ ((d
* ((p
`2 )
- c))
/ (d
- c))) by
XCMPLX_1: 74
.= (((c
* (d
- (p
`2 )))
/ (d
- c))
+ ((d
* ((p
`2 )
- c))
/ (d
- c))) by
XCMPLX_1: 74
.= ((((c
* d)
- (c
* (p
`2 )))
+ ((d
* (p
`2 ))
- (d
* c)))
/ (d
- c)) by
XCMPLX_1: 62
.= (((d
- c)
* (p
`2 ))
/ (d
- c))
.= ((p
`2 )
* ((d
- c)
/ (d
- c))) by
XCMPLX_1: 74
.= ((p
`2 )
* 1) by
A13,
XCMPLX_1: 60
.= (p
`2 );
(((1
- lambda)
* p0)
+ (lambda
* p01))
= (
|[((1
- lambda)
* a), ((1
- lambda)
* c)]|
+ (lambda
*
|[a, d]|)) by
EUCLID: 58
.= (
|[((1
- lambda)
* a), ((1
- lambda)
* c)]|
+
|[(lambda
* a), (lambda
* d)]|) by
EUCLID: 58
.=
|[(((1
- lambda)
* a)
+ (lambda
* a)), (((1
- lambda)
* c)
+ (lambda
* d))]| by
EUCLID: 56
.= p by
A9,
A16,
EUCLID: 53;
hence thesis by
A8,
A13,
A14,
A15;
end;
case d
= c;
then
A17: (p
`2 )
= c by
A10,
A11,
XXREAL_0: 1;
reconsider lambda =
0 as
Real;
(((1
- lambda)
* p0)
+ (lambda
* p01))
= (
|[((1
- lambda)
* a), ((1
- lambda)
* c)]|
+ (lambda
*
|[a, d]|)) by
EUCLID: 58
.= (
|[((1
- lambda)
* a), ((1
- lambda)
* c)]|
+
|[(lambda
* a), (lambda
* d)]|) by
EUCLID: 58
.=
|[(((1
- lambda)
* a)
+ (lambda
* a)), (((1
- lambda)
* c)
+ (lambda
* d))]| by
EUCLID: 56
.= p by
A9,
A17,
EUCLID: 53;
hence thesis by
A8;
end;
end;
hence thesis;
end;
(
LSeg (p0,p01))
c= L1
proof
let a2 be
object;
assume a2
in (
LSeg (p0,p01));
then
consider lambda such that
A18: a2
= (((1
- lambda)
* p0)
+ (lambda
* p01)) and
A19:
0
<= lambda and
A20: lambda
<= 1;
set q = (((1
- lambda)
* p0)
+ (lambda
* p01));
A21: (q
`1 )
= ((((1
- lambda)
* p0)
`1 )
+ ((lambda
* p01)
`1 )) by
TOPREAL3: 2
.= (((1
- lambda)
* (p0
`1 ))
+ ((lambda
* p01)
`1 )) by
TOPREAL3: 4
.= (((1
- lambda)
* (p0
`1 ))
+ (lambda
* (p01
`1 ))) by
TOPREAL3: 4
.= (((1
- lambda)
* a)
+ (lambda
* a)) by
A3,
EUCLID: 52
.= a;
A22: (q
`2 )
= ((((1
- lambda)
* p0)
`2 )
+ ((lambda
* p01)
`2 )) by
TOPREAL3: 2
.= (((1
- lambda)
* (p0
`2 ))
+ ((lambda
* p01)
`2 )) by
TOPREAL3: 4
.= (((1
- lambda)
* (p0
`2 ))
+ (lambda
* (p01
`2 ))) by
TOPREAL3: 4
.= (((1
- lambda)
* c)
+ (lambda
* d)) by
A4,
EUCLID: 52;
then
A23: (q
`2 )
<= d by
A2,
A20,
XREAL_1: 172;
(q
`2 )
>= c by
A2,
A19,
A20,
A22,
XREAL_1: 173;
hence thesis by
A18,
A21,
A23;
end;
hence L1
= (
LSeg (p0,p01)) by
A7;
A24: L2
c= (
LSeg (p01,p1))
proof
let a2 be
object;
assume a2
in L2;
then
consider p such that
A25: a2
= p and
A26: (p
`1 )
<= b and
A27: (p
`1 )
>= a and
A28: (p
`2 )
= d;
now
per cases ;
case
A29: b
<> a;
reconsider lambda = (((p
`1 )
- a)
/ (b
- a)) as
Real;
b
>= a by
A26,
A27,
XXREAL_0: 2;
then b
> a by
A29,
XXREAL_0: 1;
then
A30: (b
- a)
>
0 by
XREAL_1: 50;
A31: ((p
`1 )
- a)
>=
0 by
A27,
XREAL_1: 48;
(b
- a)
>= ((p
`1 )
- a) by
A26,
XREAL_1: 9;
then ((b
- a)
/ (b
- a))
>= (((p
`1 )
- a)
/ (b
- a)) by
A30,
XREAL_1: 72;
then
A32: 1
>= lambda by
A30,
XCMPLX_1: 60;
A33: (((1
- lambda)
* a)
+ (lambda
* b))
= (((((b
- a)
/ (b
- a))
- (((p
`1 )
- a)
/ (b
- a)))
* a)
+ ((((p
`1 )
- a)
/ (b
- a))
* b)) by
A30,
XCMPLX_1: 60
.= (((((b
- a)
- ((p
`1 )
- a))
/ (b
- a))
* a)
+ ((((p
`1 )
- a)
/ (b
- a))
* b)) by
XCMPLX_1: 120
.= ((a
* ((b
- (p
`1 ))
/ (b
- a)))
+ ((b
* ((p
`1 )
- a))
/ (b
- a))) by
XCMPLX_1: 74
.= (((a
* (b
- (p
`1 )))
/ (b
- a))
+ ((b
* ((p
`1 )
- a))
/ (b
- a))) by
XCMPLX_1: 74
.= ((((a
* b)
- (a
* (p
`1 )))
+ ((b
* (p
`1 ))
- (b
* a)))
/ (b
- a)) by
XCMPLX_1: 62
.= (((b
- a)
* (p
`1 ))
/ (b
- a))
.= ((p
`1 )
* ((b
- a)
/ (b
- a))) by
XCMPLX_1: 74
.= ((p
`1 )
* 1) by
A30,
XCMPLX_1: 60
.= (p
`1 );
(((1
- lambda)
* p01)
+ (lambda
* p1))
= (
|[((1
- lambda)
* a), ((1
- lambda)
* d)]|
+ (lambda
*
|[b, d]|)) by
EUCLID: 58
.= (
|[((1
- lambda)
* a), ((1
- lambda)
* d)]|
+
|[(lambda
* b), (lambda
* d)]|) by
EUCLID: 58
.=
|[(((1
- lambda)
* a)
+ (lambda
* b)), (((1
- lambda)
* d)
+ (lambda
* d))]| by
EUCLID: 56
.= p by
A28,
A33,
EUCLID: 53;
hence thesis by
A25,
A30,
A31,
A32;
end;
case b
= a;
then
A34: (p
`1 )
= a by
A26,
A27,
XXREAL_0: 1;
reconsider lambda =
0 as
Real;
(((1
- lambda)
* p01)
+ (lambda
* p1))
= (
|[((1
- lambda)
* a), ((1
- lambda)
* d)]|
+ (lambda
*
|[b, d]|)) by
EUCLID: 58
.= (
|[((1
- lambda)
* a), ((1
- lambda)
* d)]|
+
|[(lambda
* b), (lambda
* d)]|) by
EUCLID: 58
.=
|[(((1
- lambda)
* a)
+ (lambda
* b)), (((1
- lambda)
* d)
+ (lambda
* d))]| by
EUCLID: 56
.= p by
A28,
A34,
EUCLID: 53;
hence thesis by
A25;
end;
end;
hence thesis;
end;
(
LSeg (p01,p1))
c= L2
proof
let a2 be
object;
assume a2
in (
LSeg (p01,p1));
then
consider lambda such that
A35: a2
= (((1
- lambda)
* p01)
+ (lambda
* p1)) and
A36:
0
<= lambda and
A37: lambda
<= 1;
set q = (((1
- lambda)
* p01)
+ (lambda
* p1));
A38: (q
`2 )
= ((((1
- lambda)
* p01)
`2 )
+ ((lambda
* p1)
`2 )) by
TOPREAL3: 2
.= (((1
- lambda)
* (p01
`2 ))
+ ((lambda
* p1)
`2 )) by
TOPREAL3: 4
.= (((1
- lambda)
* (p01
`2 ))
+ (lambda
* (p1
`2 ))) by
TOPREAL3: 4
.= (((1
- lambda)
* d)
+ (lambda
* d)) by
A4,
EUCLID: 52
.= d;
A39: (q
`1 )
= ((((1
- lambda)
* p01)
`1 )
+ ((lambda
* p1)
`1 )) by
TOPREAL3: 2
.= (((1
- lambda)
* (p01
`1 ))
+ ((lambda
* p1)
`1 )) by
TOPREAL3: 4
.= (((1
- lambda)
* (p01
`1 ))
+ (lambda
* (p1
`1 ))) by
TOPREAL3: 4
.= (((1
- lambda)
* a)
+ (lambda
* b)) by
A3,
EUCLID: 52;
then
A40: (q
`1 )
<= b by
A1,
A37,
XREAL_1: 172;
(q
`1 )
>= a by
A1,
A36,
A37,
A39,
XREAL_1: 173;
hence thesis by
A35,
A38,
A40;
end;
hence L2
= (
LSeg (p01,p1)) by
A24;
A41: L3
c= (
LSeg (p0,p10))
proof
let a2 be
object;
assume a2
in L3;
then
consider p such that
A42: a2
= p and
A43: (p
`1 )
<= b and
A44: (p
`1 )
>= a and
A45: (p
`2 )
= c;
now
per cases ;
case
A46: b
<> a;
reconsider lambda = (((p
`1 )
- a)
/ (b
- a)) as
Real;
b
>= a by
A43,
A44,
XXREAL_0: 2;
then b
> a by
A46,
XXREAL_0: 1;
then
A47: (b
- a)
>
0 by
XREAL_1: 50;
A48: ((p
`1 )
- a)
>=
0 by
A44,
XREAL_1: 48;
(b
- a)
>= ((p
`1 )
- a) by
A43,
XREAL_1: 9;
then ((b
- a)
/ (b
- a))
>= (((p
`1 )
- a)
/ (b
- a)) by
A47,
XREAL_1: 72;
then
A49: 1
>= lambda by
A47,
XCMPLX_1: 60;
A50: (((1
- lambda)
* a)
+ (lambda
* b))
= (((((b
- a)
/ (b
- a))
- (((p
`1 )
- a)
/ (b
- a)))
* a)
+ ((((p
`1 )
- a)
/ (b
- a))
* b)) by
A47,
XCMPLX_1: 60
.= (((((b
- a)
- ((p
`1 )
- a))
/ (b
- a))
* a)
+ ((((p
`1 )
- a)
/ (b
- a))
* b)) by
XCMPLX_1: 120
.= ((a
* ((b
- (p
`1 ))
/ (b
- a)))
+ ((b
* ((p
`1 )
- a))
/ (b
- a))) by
XCMPLX_1: 74
.= (((a
* (b
- (p
`1 )))
/ (b
- a))
+ ((b
* ((p
`1 )
- a))
/ (b
- a))) by
XCMPLX_1: 74
.= ((((a
* b)
- (a
* (p
`1 )))
+ ((b
* (p
`1 ))
- (b
* a)))
/ (b
- a)) by
XCMPLX_1: 62
.= (((b
- a)
* (p
`1 ))
/ (b
- a))
.= ((p
`1 )
* ((b
- a)
/ (b
- a))) by
XCMPLX_1: 74
.= ((p
`1 )
* 1) by
A47,
XCMPLX_1: 60
.= (p
`1 );
(((1
- lambda)
* p0)
+ (lambda
* p10))
= (
|[((1
- lambda)
* a), ((1
- lambda)
* c)]|
+ (lambda
*
|[b, c]|)) by
EUCLID: 58
.= (
|[((1
- lambda)
* a), ((1
- lambda)
* c)]|
+
|[(lambda
* b), (lambda
* c)]|) by
EUCLID: 58
.=
|[(((1
- lambda)
* a)
+ (lambda
* b)), (((1
- lambda)
* c)
+ (lambda
* c))]| by
EUCLID: 56
.= p by
A45,
A50,
EUCLID: 53;
hence thesis by
A42,
A47,
A48,
A49;
end;
case b
= a;
then
A51: (p
`1 )
= a by
A43,
A44,
XXREAL_0: 1;
reconsider lambda =
0 as
Real;
(((1
- lambda)
* p0)
+ (lambda
* p10))
= (
|[((1
- lambda)
* a), ((1
- lambda)
* c)]|
+ (lambda
*
|[b, c]|)) by
EUCLID: 58
.= (
|[((1
- lambda)
* a), ((1
- lambda)
* c)]|
+
|[(lambda
* b), (lambda
* c)]|) by
EUCLID: 58
.=
|[(((1
- lambda)
* a)
+ (lambda
* b)), (((1
- lambda)
* c)
+ (lambda
* c))]| by
EUCLID: 56
.= p by
A45,
A51,
EUCLID: 53;
hence thesis by
A42;
end;
end;
hence thesis;
end;
(
LSeg (p0,p10))
c= L3
proof
let a2 be
object;
assume a2
in (
LSeg (p0,p10));
then
consider lambda such that
A52: a2
= (((1
- lambda)
* p0)
+ (lambda
* p10)) and
A53:
0
<= lambda and
A54: lambda
<= 1;
set q = (((1
- lambda)
* p0)
+ (lambda
* p10));
A55: (q
`2 )
= ((((1
- lambda)
* p0)
`2 )
+ ((lambda
* p10)
`2 )) by
TOPREAL3: 2
.= (((1
- lambda)
* (p0
`2 ))
+ ((lambda
* p10)
`2 )) by
TOPREAL3: 4
.= (((1
- lambda)
* (p0
`2 ))
+ (lambda
* (p10
`2 ))) by
TOPREAL3: 4
.= (((1
- lambda)
* c)
+ (lambda
* c)) by
A6,
EUCLID: 52
.= c;
A56: (q
`1 )
= ((((1
- lambda)
* p0)
`1 )
+ ((lambda
* p10)
`1 )) by
TOPREAL3: 2
.= (((1
- lambda)
* (p0
`1 ))
+ ((lambda
* p10)
`1 )) by
TOPREAL3: 4
.= (((1
- lambda)
* (p0
`1 ))
+ (lambda
* (p10
`1 ))) by
TOPREAL3: 4
.= (((1
- lambda)
* a)
+ (lambda
* b)) by
A5,
EUCLID: 52;
then
A57: (q
`1 )
<= b by
A1,
A54,
XREAL_1: 172;
(q
`1 )
>= a by
A1,
A53,
A54,
A56,
XREAL_1: 173;
hence thesis by
A52,
A55,
A57;
end;
hence L3
= (
LSeg (p0,p10)) by
A41;
A58: L4
c= (
LSeg (p10,p1))
proof
let a2 be
object;
assume a2
in L4;
then
consider p such that
A59: a2
= p and
A60: (p
`1 )
= b and
A61: (p
`2 )
<= d and
A62: (p
`2 )
>= c;
now
per cases ;
case
A63: d
<> c;
reconsider lambda = (((p
`2 )
- c)
/ (d
- c)) as
Real;
d
>= c by
A61,
A62,
XXREAL_0: 2;
then d
> c by
A63,
XXREAL_0: 1;
then
A64: (d
- c)
>
0 by
XREAL_1: 50;
A65: ((p
`2 )
- c)
>=
0 by
A62,
XREAL_1: 48;
(d
- c)
>= ((p
`2 )
- c) by
A61,
XREAL_1: 9;
then ((d
- c)
/ (d
- c))
>= (((p
`2 )
- c)
/ (d
- c)) by
A64,
XREAL_1: 72;
then
A66: 1
>= lambda by
A64,
XCMPLX_1: 60;
A67: (((1
- lambda)
* c)
+ (lambda
* d))
= (((((d
- c)
/ (d
- c))
- (((p
`2 )
- c)
/ (d
- c)))
* c)
+ ((((p
`2 )
- c)
/ (d
- c))
* d)) by
A64,
XCMPLX_1: 60
.= (((((d
- c)
- ((p
`2 )
- c))
/ (d
- c))
* c)
+ ((((p
`2 )
- c)
/ (d
- c))
* d)) by
XCMPLX_1: 120
.= ((c
* ((d
- (p
`2 ))
/ (d
- c)))
+ ((d
* ((p
`2 )
- c))
/ (d
- c))) by
XCMPLX_1: 74
.= (((c
* (d
- (p
`2 )))
/ (d
- c))
+ ((d
* ((p
`2 )
- c))
/ (d
- c))) by
XCMPLX_1: 74
.= ((((c
* d)
- (c
* (p
`2 )))
+ ((d
* (p
`2 ))
- (d
* c)))
/ (d
- c)) by
XCMPLX_1: 62
.= (((d
- c)
* (p
`2 ))
/ (d
- c))
.= ((p
`2 )
* ((d
- c)
/ (d
- c))) by
XCMPLX_1: 74
.= ((p
`2 )
* 1) by
A64,
XCMPLX_1: 60
.= (p
`2 );
(((1
- lambda)
* p10)
+ (lambda
* p1))
= (
|[((1
- lambda)
* b), ((1
- lambda)
* c)]|
+ (lambda
*
|[b, d]|)) by
EUCLID: 58
.= (
|[((1
- lambda)
* b), ((1
- lambda)
* c)]|
+
|[(lambda
* b), (lambda
* d)]|) by
EUCLID: 58
.=
|[(((1
- lambda)
* b)
+ (lambda
* b)), (((1
- lambda)
* c)
+ (lambda
* d))]| by
EUCLID: 56
.= p by
A60,
A67,
EUCLID: 53;
hence thesis by
A59,
A64,
A65,
A66;
end;
case d
= c;
then
A68: (p
`2 )
= c by
A61,
A62,
XXREAL_0: 1;
reconsider lambda =
0 as
Real;
(((1
- lambda)
* p10)
+ (lambda
* p1))
= (
|[((1
- lambda)
* b), ((1
- lambda)
* c)]|
+ (lambda
*
|[b, d]|)) by
EUCLID: 58
.= (
|[((1
- lambda)
* b), ((1
- lambda)
* c)]|
+
|[(lambda
* b), (lambda
* d)]|) by
EUCLID: 58
.=
|[(((1
- lambda)
* b)
+ (lambda
* b)), (((1
- lambda)
* c)
+ (lambda
* d))]| by
EUCLID: 56
.= p by
A60,
A68,
EUCLID: 53;
hence thesis by
A59;
end;
end;
hence thesis;
end;
(
LSeg (p10,p1))
c= L4
proof
let a2 be
object;
assume a2
in (
LSeg (p10,p1));
then
consider lambda such that
A69: a2
= (((1
- lambda)
* p10)
+ (lambda
* p1)) and
A70:
0
<= lambda and
A71: lambda
<= 1;
set q = (((1
- lambda)
* p10)
+ (lambda
* p1));
A72: (q
`1 )
= ((((1
- lambda)
* p10)
`1 )
+ ((lambda
* p1)
`1 )) by
TOPREAL3: 2
.= (((1
- lambda)
* (p10
`1 ))
+ ((lambda
* p1)
`1 )) by
TOPREAL3: 4
.= (((1
- lambda)
* (p10
`1 ))
+ (lambda
* (p1
`1 ))) by
TOPREAL3: 4
.= (((1
- lambda)
* b)
+ (lambda
* b)) by
A5,
EUCLID: 52
.= b;
A73: (q
`2 )
= ((((1
- lambda)
* p10)
`2 )
+ ((lambda
* p1)
`2 )) by
TOPREAL3: 2
.= (((1
- lambda)
* (p10
`2 ))
+ ((lambda
* p1)
`2 )) by
TOPREAL3: 4
.= (((1
- lambda)
* (p10
`2 ))
+ (lambda
* (p1
`2 ))) by
TOPREAL3: 4
.= (((1
- lambda)
* c)
+ (lambda
* d)) by
A6,
EUCLID: 52;
then
A74: (q
`2 )
<= d by
A2,
A71,
XREAL_1: 172;
(q
`2 )
>= c by
A2,
A70,
A71,
A73,
XREAL_1: 173;
hence thesis by
A69,
A72,
A74;
end;
hence L4
= (
LSeg (p10,p1)) by
A58;
end;
theorem ::
JGRAPH_6:31
Th31: for a,b,c,d be
Real st a
<= b & c
<= d holds ((
LSeg (
|[a, c]|,
|[a, d]|))
/\ (
LSeg (
|[a, c]|,
|[b, c]|)))
=
{
|[a, c]|}
proof
let a,b,c,d be
Real;
assume that
A1: a
<= b and
A2: c
<= d;
for ax be
object holds ax
in ((
LSeg (
|[a, c]|,
|[a, d]|))
/\ (
LSeg (
|[a, c]|,
|[b, c]|))) iff ax
=
|[a, c]|
proof
let ax be
object;
thus ax
in ((
LSeg (
|[a, c]|,
|[a, d]|))
/\ (
LSeg (
|[a, c]|,
|[b, c]|))) implies ax
=
|[a, c]|
proof
assume
A3: ax
in ((
LSeg (
|[a, c]|,
|[a, d]|))
/\ (
LSeg (
|[a, c]|,
|[b, c]|)));
then
A4: ax
in (
LSeg (
|[a, c]|,
|[a, d]|)) by
XBOOLE_0:def 4;
ax
in (
LSeg (
|[a, c]|,
|[b, c]|)) by
A3,
XBOOLE_0:def 4;
then ax
in { p2 : (p2
`1 )
<= b & (p2
`1 )
>= a & (p2
`2 )
= c } by
A1,
Th30;
then
A5: ex p2 st p2
= ax & (p2
`1 )
<= b & (p2
`1 )
>= a & (p2
`2 )
= c;
ax
in { p2 : (p2
`1 )
= a & (p2
`2 )
<= d & (p2
`2 )
>= c } by
A2,
A4,
Th30;
then ex p st p
= ax & (p
`1 )
= a & (p
`2 )
<= d & (p
`2 )
>= c;
hence thesis by
A5,
EUCLID: 53;
end;
assume
A6: ax
=
|[a, c]|;
then
A7: ax
in (
LSeg (
|[a, c]|,
|[a, d]|)) by
RLTOPSP1: 68;
ax
in (
LSeg (
|[a, c]|,
|[b, c]|)) by
A6,
RLTOPSP1: 68;
hence thesis by
A7,
XBOOLE_0:def 4;
end;
hence thesis by
TARSKI:def 1;
end;
theorem ::
JGRAPH_6:32
Th32: for a,b,c,d be
Real st a
<= b & c
<= d holds ((
LSeg (
|[a, c]|,
|[b, c]|))
/\ (
LSeg (
|[b, c]|,
|[b, d]|)))
=
{
|[b, c]|}
proof
let a,b,c,d be
Real;
assume that
A1: a
<= b and
A2: c
<= d;
for ax be
object holds ax
in ((
LSeg (
|[a, c]|,
|[b, c]|))
/\ (
LSeg (
|[b, c]|,
|[b, d]|))) iff ax
=
|[b, c]|
proof
let ax be
object;
thus ax
in ((
LSeg (
|[a, c]|,
|[b, c]|))
/\ (
LSeg (
|[b, c]|,
|[b, d]|))) implies ax
=
|[b, c]|
proof
assume
A3: ax
in ((
LSeg (
|[a, c]|,
|[b, c]|))
/\ (
LSeg (
|[b, c]|,
|[b, d]|)));
then
A4: ax
in (
LSeg (
|[a, c]|,
|[b, c]|)) by
XBOOLE_0:def 4;
A5: ax
in (
LSeg (
|[b, c]|,
|[b, d]|)) by
A3,
XBOOLE_0:def 4;
ax
in { q1 : (q1
`1 )
<= b & (q1
`1 )
>= a & (q1
`2 )
= c } by
A1,
A4,
Th30;
then
A6: ex p2 st p2
= ax & (p2
`1 )
<= b & (p2
`1 )
>= a & (p2
`2 )
= c;
ax
in { q2 : (q2
`1 )
= b & (q2
`2 )
<= d & (q2
`2 )
>= c } by
A2,
A5,
Th30;
then ex p st p
= ax & (p
`1 )
= b & (p
`2 )
<= d & (p
`2 )
>= c;
hence thesis by
A6,
EUCLID: 53;
end;
assume
A7: ax
=
|[b, c]|;
then
A8: ax
in (
LSeg (
|[a, c]|,
|[b, c]|)) by
RLTOPSP1: 68;
ax
in (
LSeg (
|[b, c]|,
|[b, d]|)) by
A7,
RLTOPSP1: 68;
hence thesis by
A8,
XBOOLE_0:def 4;
end;
hence thesis by
TARSKI:def 1;
end;
theorem ::
JGRAPH_6:33
Th33: for a,b,c,d be
Real st a
<= b & c
<= d holds ((
LSeg (
|[a, d]|,
|[b, d]|))
/\ (
LSeg (
|[b, c]|,
|[b, d]|)))
=
{
|[b, d]|}
proof
let a,b,c,d be
Real;
assume that
A1: a
<= b and
A2: c
<= d;
for ax be
object holds ax
in ((
LSeg (
|[a, d]|,
|[b, d]|))
/\ (
LSeg (
|[b, c]|,
|[b, d]|))) iff ax
=
|[b, d]|
proof
let ax be
object;
thus ax
in ((
LSeg (
|[a, d]|,
|[b, d]|))
/\ (
LSeg (
|[b, c]|,
|[b, d]|))) implies ax
=
|[b, d]|
proof
assume
A3: ax
in ((
LSeg (
|[a, d]|,
|[b, d]|))
/\ (
LSeg (
|[b, c]|,
|[b, d]|)));
then
A4: ax
in (
LSeg (
|[b, c]|,
|[b, d]|)) by
XBOOLE_0:def 4;
ax
in (
LSeg (
|[a, d]|,
|[b, d]|)) by
A3,
XBOOLE_0:def 4;
then ax
in { p : (p
`1 )
<= b & (p
`1 )
>= a & (p
`2 )
= d } by
A1,
Th30;
then
A5: ex p st p
= ax & (p
`1 )
<= b & (p
`1 )
>= a & (p
`2 )
= d;
ax
in { p : (p
`1 )
= b & (p
`2 )
<= d & (p
`2 )
>= c } by
A2,
A4,
Th30;
then ex p2 st p2
= ax & (p2
`1 )
= b & (p2
`2 )
<= d & (p2
`2 )
>= c;
hence thesis by
A5,
EUCLID: 53;
end;
assume
A6: ax
=
|[b, d]|;
then
A7: ax
in (
LSeg (
|[a, d]|,
|[b, d]|)) by
RLTOPSP1: 68;
ax
in (
LSeg (
|[b, c]|,
|[b, d]|)) by
A6,
RLTOPSP1: 68;
hence thesis by
A7,
XBOOLE_0:def 4;
end;
hence thesis by
TARSKI:def 1;
end;
theorem ::
JGRAPH_6:34
Th34: for a,b,c,d be
Real st a
<= b & c
<= d holds ((
LSeg (
|[a, c]|,
|[a, d]|))
/\ (
LSeg (
|[a, d]|,
|[b, d]|)))
=
{
|[a, d]|}
proof
let a,b,c,d be
Real;
assume that
A1: a
<= b and
A2: c
<= d;
for ax be
object holds ax
in ((
LSeg (
|[a, c]|,
|[a, d]|))
/\ (
LSeg (
|[a, d]|,
|[b, d]|))) iff ax
=
|[a, d]|
proof
let ax be
object;
thus ax
in ((
LSeg (
|[a, c]|,
|[a, d]|))
/\ (
LSeg (
|[a, d]|,
|[b, d]|))) implies ax
=
|[a, d]|
proof
assume
A3: ax
in ((
LSeg (
|[a, c]|,
|[a, d]|))
/\ (
LSeg (
|[a, d]|,
|[b, d]|)));
then
A4: ax
in (
LSeg (
|[a, c]|,
|[a, d]|)) by
XBOOLE_0:def 4;
ax
in (
LSeg (
|[a, d]|,
|[b, d]|)) by
A3,
XBOOLE_0:def 4;
then ax
in { p2 : (p2
`1 )
<= b & (p2
`1 )
>= a & (p2
`2 )
= d } by
A1,
Th30;
then
A5: ex p2 st p2
= ax & (p2
`1 )
<= b & (p2
`1 )
>= a & (p2
`2 )
= d;
ax
in { p2 : (p2
`1 )
= a & (p2
`2 )
<= d & (p2
`2 )
>= c } by
A2,
A4,
Th30;
then ex p st p
= ax & (p
`1 )
= a & (p
`2 )
<= d & (p
`2 )
>= c;
hence thesis by
A5,
EUCLID: 53;
end;
assume
A6: ax
=
|[a, d]|;
then
A7: ax
in (
LSeg (
|[a, c]|,
|[a, d]|)) by
RLTOPSP1: 68;
ax
in (
LSeg (
|[a, d]|,
|[b, d]|)) by
A6,
RLTOPSP1: 68;
hence thesis by
A7,
XBOOLE_0:def 4;
end;
hence thesis by
TARSKI:def 1;
end;
theorem ::
JGRAPH_6:35
Th35: { q : (
- 1)
= (q
`1 ) & (
- 1)
<= (q
`2 ) & (q
`2 )
<= 1 or (q
`1 )
= 1 & (
- 1)
<= (q
`2 ) & (q
`2 )
<= 1 or (
- 1)
= (q
`2 ) & (
- 1)
<= (q
`1 ) & (q
`1 )
<= 1 or 1
= (q
`2 ) & (
- 1)
<= (q
`1 ) & (q
`1 )
<= 1 }
= { p : (p
`1 )
= (
- 1) & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (p
`2 )
= 1 & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 or (p
`1 )
= 1 & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (p
`2 )
= (
- 1) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 }
proof
thus { q : (
- 1)
= (q
`1 ) & (
- 1)
<= (q
`2 ) & (q
`2 )
<= 1 or (q
`1 )
= 1 & (
- 1)
<= (q
`2 ) & (q
`2 )
<= 1 or (
- 1)
= (q
`2 ) & (
- 1)
<= (q
`1 ) & (q
`1 )
<= 1 or 1
= (q
`2 ) & (
- 1)
<= (q
`1 ) & (q
`1 )
<= 1 }
c= { p : (p
`1 )
= (
- 1) & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (p
`2 )
= 1 & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 or (p
`1 )
= 1 & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (p
`2 )
= (
- 1) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 }
proof
let x be
object;
assume x
in { q : (
- 1)
= (q
`1 ) & (
- 1)
<= (q
`2 ) & (q
`2 )
<= 1 or (q
`1 )
= 1 & (
- 1)
<= (q
`2 ) & (q
`2 )
<= 1 or (
- 1)
= (q
`2 ) & (
- 1)
<= (q
`1 ) & (q
`1 )
<= 1 or 1
= (q
`2 ) & (
- 1)
<= (q
`1 ) & (q
`1 )
<= 1 };
then ex q st (x
= q) & ((
- 1)
= (q
`1 ) & (
- 1)
<= (q
`2 ) & (q
`2 )
<= 1 or (q
`1 )
= 1 & (
- 1)
<= (q
`2 ) & (q
`2 )
<= 1 or (
- 1)
= (q
`2 ) & (
- 1)
<= (q
`1 ) & (q
`1 )
<= 1 or 1
= (q
`2 ) & (
- 1)
<= (q
`1 ) & (q
`1 )
<= 1);
hence thesis;
end;
thus { p : (p
`1 )
= (
- 1) & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (p
`2 )
= 1 & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 or (p
`1 )
= 1 & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (p
`2 )
= (
- 1) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 }
c= { q : (
- 1)
= (q
`1 ) & (
- 1)
<= (q
`2 ) & (q
`2 )
<= 1 or (q
`1 )
= 1 & (
- 1)
<= (q
`2 ) & (q
`2 )
<= 1 or (
- 1)
= (q
`2 ) & (
- 1)
<= (q
`1 ) & (q
`1 )
<= 1 or 1
= (q
`2 ) & (
- 1)
<= (q
`1 ) & (q
`1 )
<= 1 }
proof
let x be
object;
assume x
in { p : (p
`1 )
= (
- 1) & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (p
`2 )
= 1 & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 or (p
`1 )
= 1 & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (p
`2 )
= (
- 1) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 };
then ex p st (p
= x) & ((p
`1 )
= (
- 1) & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (p
`2 )
= 1 & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 or (p
`1 )
= 1 & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (p
`2 )
= (
- 1) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1);
hence thesis;
end;
end;
theorem ::
JGRAPH_6:36
Th36: for a,b,c,d be
Real st a
<= b & c
<= d holds (
W-bound (
rectangle (a,b,c,d)))
= a
proof
let a,b,c,d be
Real;
assume that
A1: a
<= b and
A2: c
<= d;
set X = (
rectangle (a,b,c,d));
reconsider Z = ((
proj1
| X)
.: the
carrier of ((
TOP-REAL 2)
| X)) as
Subset of
REAL ;
A3: X
= the
carrier of ((
TOP-REAL 2)
| X) by
PRE_TOPC: 8;
A4: for p be
Real st p
in Z holds p
>= a
proof
let p be
Real;
assume p
in Z;
then
consider p0 be
object such that
A5: p0
in the
carrier of ((
TOP-REAL 2)
| X) and p0
in the
carrier of ((
TOP-REAL 2)
| X) and
A6: p
= ((
proj1
| X)
. p0) by
FUNCT_2: 64;
reconsider p0 as
Point of (
TOP-REAL 2) by
A3,
A5;
X
= { q : (q
`1 )
= a & (q
`2 )
<= d & (q
`2 )
>= c or (q
`1 )
<= b & (q
`1 )
>= a & (q
`2 )
= d or (q
`1 )
<= b & (q
`1 )
>= a & (q
`2 )
= c or (q
`1 )
= b & (q
`2 )
<= d & (q
`2 )
>= c } by
A1,
A2,
SPPOL_2: 54;
then ex q be
Point of (
TOP-REAL 2) st p0
= q & ((q
`1 )
= a & (q
`2 )
<= d & (q
`2 )
>= c or (q
`1 )
<= b & (q
`1 )
>= a & (q
`2 )
= d or (q
`1 )
<= b & (q
`1 )
>= a & (q
`2 )
= c or (q
`1 )
= b & (q
`2 )
<= d & (q
`2 )
>= c) by
A3,
A5;
hence thesis by
A1,
A3,
A5,
A6,
PSCOMP_1: 22;
end;
A7: for q be
Real st for p be
Real st p
in Z holds p
>= q holds a
>= q
proof
let q be
Real such that
A8: for p be
Real st p
in Z holds p
>= q;
|[a, c]|
in (
LSeg (
|[a, c]|,
|[b, c]|)) by
RLTOPSP1: 68;
then
A9:
|[a, c]|
in ((
LSeg (
|[a, c]|,
|[b, c]|))
\/ (
LSeg (
|[b, c]|,
|[b, d]|))) by
XBOOLE_0:def 3;
X
= (((
LSeg (
|[a, c]|,
|[a, d]|))
\/ (
LSeg (
|[a, d]|,
|[b, d]|)))
\/ ((
LSeg (
|[a, c]|,
|[b, c]|))
\/ (
LSeg (
|[b, c]|,
|[b, d]|)))) by
SPPOL_2:def 3;
then
A10:
|[a, c]|
in X by
A9,
XBOOLE_0:def 3;
then ((
proj1
| X)
.
|[a, c]|)
= (
|[a, c]|
`1 ) by
PSCOMP_1: 22
.= a by
EUCLID: 52;
hence thesis by
A3,
A8,
A10,
FUNCT_2: 35;
end;
thus (
W-bound X)
= (
lower_bound (
proj1
| X)) by
PSCOMP_1:def 7
.= (
lower_bound Z) by
PSCOMP_1:def 1
.= a by
A4,
A7,
SEQ_4: 44;
end;
theorem ::
JGRAPH_6:37
Th37: for a,b,c,d be
Real st a
<= b & c
<= d holds (
N-bound (
rectangle (a,b,c,d)))
= d
proof
let a,b,c,d be
Real;
assume that
A1: a
<= b and
A2: c
<= d;
set X = (
rectangle (a,b,c,d));
reconsider Z = ((
proj2
| X)
.: the
carrier of ((
TOP-REAL 2)
| X)) as
Subset of
REAL ;
A3: X
= the
carrier of ((
TOP-REAL 2)
| X) by
PRE_TOPC: 8;
A4: for p be
Real st p
in Z holds p
<= d
proof
let p be
Real;
assume p
in Z;
then
consider p0 be
object such that
A5: p0
in the
carrier of ((
TOP-REAL 2)
| X) and p0
in the
carrier of ((
TOP-REAL 2)
| X) and
A6: p
= ((
proj2
| X)
. p0) by
FUNCT_2: 64;
reconsider p0 as
Point of (
TOP-REAL 2) by
A3,
A5;
X
= { q : (q
`1 )
= a & (q
`2 )
<= d & (q
`2 )
>= c or (q
`1 )
<= b & (q
`1 )
>= a & (q
`2 )
= d or (q
`1 )
<= b & (q
`1 )
>= a & (q
`2 )
= c or (q
`1 )
= b & (q
`2 )
<= d & (q
`2 )
>= c } by
A1,
A2,
SPPOL_2: 54;
then ex q be
Point of (
TOP-REAL 2) st p0
= q & ((q
`1 )
= a & (q
`2 )
<= d & (q
`2 )
>= c or (q
`1 )
<= b & (q
`1 )
>= a & (q
`2 )
= d or (q
`1 )
<= b & (q
`1 )
>= a & (q
`2 )
= c or (q
`1 )
= b & (q
`2 )
<= d & (q
`2 )
>= c) by
A3,
A5;
hence thesis by
A2,
A3,
A5,
A6,
PSCOMP_1: 23;
end;
A7: for q be
Real st for p be
Real st p
in Z holds p
<= q holds d
<= q
proof
let q be
Real such that
A8: for p be
Real st p
in Z holds p
<= q;
|[b, d]|
in (
LSeg (
|[b, c]|,
|[b, d]|)) by
RLTOPSP1: 68;
then
A9:
|[b, d]|
in ((
LSeg (
|[a, c]|,
|[b, c]|))
\/ (
LSeg (
|[b, c]|,
|[b, d]|))) by
XBOOLE_0:def 3;
X
= (((
LSeg (
|[a, c]|,
|[a, d]|))
\/ (
LSeg (
|[a, d]|,
|[b, d]|)))
\/ ((
LSeg (
|[a, c]|,
|[b, c]|))
\/ (
LSeg (
|[b, c]|,
|[b, d]|)))) by
SPPOL_2:def 3;
then
A10:
|[b, d]|
in X by
A9,
XBOOLE_0:def 3;
then ((
proj2
| X)
.
|[b, d]|)
= (
|[b, d]|
`2 ) by
PSCOMP_1: 23
.= d by
EUCLID: 52;
hence thesis by
A3,
A8,
A10,
FUNCT_2: 35;
end;
thus (
N-bound X)
= (
upper_bound (
proj2
| X)) by
PSCOMP_1:def 8
.= (
upper_bound Z) by
PSCOMP_1:def 2
.= d by
A4,
A7,
SEQ_4: 46;
end;
theorem ::
JGRAPH_6:38
Th38: for a,b,c,d be
Real st a
<= b & c
<= d holds (
E-bound (
rectangle (a,b,c,d)))
= b
proof
let a,b,c,d be
Real;
assume that
A1: a
<= b and
A2: c
<= d;
set X = (
rectangle (a,b,c,d));
reconsider Z = ((
proj1
| X)
.: the
carrier of ((
TOP-REAL 2)
| X)) as
Subset of
REAL ;
A3: X
= the
carrier of ((
TOP-REAL 2)
| X) by
PRE_TOPC: 8;
A4: for p be
Real st p
in Z holds p
<= b
proof
let p be
Real;
assume p
in Z;
then
consider p0 be
object such that
A5: p0
in the
carrier of ((
TOP-REAL 2)
| X) and p0
in the
carrier of ((
TOP-REAL 2)
| X) and
A6: p
= ((
proj1
| X)
. p0) by
FUNCT_2: 64;
reconsider p0 as
Point of (
TOP-REAL 2) by
A3,
A5;
X
= { q : (q
`1 )
= a & (q
`2 )
<= d & (q
`2 )
>= c or (q
`1 )
<= b & (q
`1 )
>= a & (q
`2 )
= d or (q
`1 )
<= b & (q
`1 )
>= a & (q
`2 )
= c or (q
`1 )
= b & (q
`2 )
<= d & (q
`2 )
>= c } by
A1,
A2,
SPPOL_2: 54;
then ex q be
Point of (
TOP-REAL 2) st p0
= q & ((q
`1 )
= a & (q
`2 )
<= d & (q
`2 )
>= c or (q
`1 )
<= b & (q
`1 )
>= a & (q
`2 )
= d or (q
`1 )
<= b & (q
`1 )
>= a & (q
`2 )
= c or (q
`1 )
= b & (q
`2 )
<= d & (q
`2 )
>= c) by
A3,
A5;
hence thesis by
A1,
A3,
A5,
A6,
PSCOMP_1: 22;
end;
A7: for q be
Real st for p be
Real st p
in Z holds p
<= q holds b
<= q
proof
let q be
Real such that
A8: for p be
Real st p
in Z holds p
<= q;
|[b, d]|
in (
LSeg (
|[b, c]|,
|[b, d]|)) by
RLTOPSP1: 68;
then
A9:
|[b, d]|
in ((
LSeg (
|[a, c]|,
|[b, c]|))
\/ (
LSeg (
|[b, c]|,
|[b, d]|))) by
XBOOLE_0:def 3;
X
= (((
LSeg (
|[a, c]|,
|[a, d]|))
\/ (
LSeg (
|[a, d]|,
|[b, d]|)))
\/ ((
LSeg (
|[a, c]|,
|[b, c]|))
\/ (
LSeg (
|[b, c]|,
|[b, d]|)))) by
SPPOL_2:def 3;
then
A10:
|[b, d]|
in X by
A9,
XBOOLE_0:def 3;
then ((
proj1
| X)
.
|[b, d]|)
= (
|[b, d]|
`1 ) by
PSCOMP_1: 22
.= b by
EUCLID: 52;
hence thesis by
A3,
A8,
A10,
FUNCT_2: 35;
end;
thus (
E-bound X)
= (
upper_bound (
proj1
| X)) by
PSCOMP_1:def 9
.= (
upper_bound Z) by
PSCOMP_1:def 2
.= b by
A4,
A7,
SEQ_4: 46;
end;
theorem ::
JGRAPH_6:39
Th39: for a,b,c,d be
Real st a
<= b & c
<= d holds (
S-bound (
rectangle (a,b,c,d)))
= c
proof
let a,b,c,d be
Real;
assume that
A1: a
<= b and
A2: c
<= d;
set X = (
rectangle (a,b,c,d));
reconsider Z = ((
proj2
| X)
.: the
carrier of ((
TOP-REAL 2)
| X)) as
Subset of
REAL ;
A3: X
= the
carrier of ((
TOP-REAL 2)
| X) by
PRE_TOPC: 8;
A4: for p be
Real st p
in Z holds p
>= c
proof
let p be
Real;
assume p
in Z;
then
consider p0 be
object such that
A5: p0
in the
carrier of ((
TOP-REAL 2)
| X) and p0
in the
carrier of ((
TOP-REAL 2)
| X) and
A6: p
= ((
proj2
| X)
. p0) by
FUNCT_2: 64;
reconsider p0 as
Point of (
TOP-REAL 2) by
A3,
A5;
X
= { q : (q
`1 )
= a & (q
`2 )
<= d & (q
`2 )
>= c or (q
`1 )
<= b & (q
`1 )
>= a & (q
`2 )
= d or (q
`1 )
<= b & (q
`1 )
>= a & (q
`2 )
= c or (q
`1 )
= b & (q
`2 )
<= d & (q
`2 )
>= c } by
A1,
A2,
SPPOL_2: 54;
then ex q be
Point of (
TOP-REAL 2) st p0
= q & ((q
`1 )
= a & (q
`2 )
<= d & (q
`2 )
>= c or (q
`1 )
<= b & (q
`1 )
>= a & (q
`2 )
= d or (q
`1 )
<= b & (q
`1 )
>= a & (q
`2 )
= c or (q
`1 )
= b & (q
`2 )
<= d & (q
`2 )
>= c) by
A3,
A5;
hence thesis by
A2,
A3,
A5,
A6,
PSCOMP_1: 23;
end;
A7: for q be
Real st for p be
Real st p
in Z holds p
>= q holds c
>= q
proof
let q be
Real such that
A8: for p be
Real st p
in Z holds p
>= q;
|[b, c]|
in (
LSeg (
|[b, c]|,
|[b, d]|)) by
RLTOPSP1: 68;
then
A9:
|[b, c]|
in ((
LSeg (
|[a, c]|,
|[b, c]|))
\/ (
LSeg (
|[b, c]|,
|[b, d]|))) by
XBOOLE_0:def 3;
X
= (((
LSeg (
|[a, c]|,
|[a, d]|))
\/ (
LSeg (
|[a, d]|,
|[b, d]|)))
\/ ((
LSeg (
|[a, c]|,
|[b, c]|))
\/ (
LSeg (
|[b, c]|,
|[b, d]|)))) by
SPPOL_2:def 3;
then
A10:
|[b, c]|
in X by
A9,
XBOOLE_0:def 3;
then ((
proj2
| X)
.
|[b, c]|)
= (
|[b, c]|
`2 ) by
PSCOMP_1: 23
.= c by
EUCLID: 52;
hence thesis by
A3,
A8,
A10,
FUNCT_2: 35;
end;
thus (
S-bound X)
= (
lower_bound (
proj2
| X)) by
PSCOMP_1:def 10
.= (
lower_bound Z) by
PSCOMP_1:def 1
.= c by
A4,
A7,
SEQ_4: 44;
end;
theorem ::
JGRAPH_6:40
Th40: for a,b,c,d be
Real st a
<= b & c
<= d holds (
NW-corner (
rectangle (a,b,c,d)))
=
|[a, d]|
proof
let a,b,c,d be
Real;
assume that
A1: a
<= b and
A2: c
<= d;
set K = (
rectangle (a,b,c,d));
A3: (
NW-corner K)
=
|[(
W-bound K), (
N-bound K)]| by
PSCOMP_1:def 12;
(
W-bound K)
= a by
A1,
A2,
Th36;
hence thesis by
A1,
A2,
A3,
Th37;
end;
theorem ::
JGRAPH_6:41
Th41: for a,b,c,d be
Real st a
<= b & c
<= d holds (
NE-corner (
rectangle (a,b,c,d)))
=
|[b, d]|
proof
let a,b,c,d be
Real;
set K = (
rectangle (a,b,c,d));
assume that
A1: a
<= b and
A2: c
<= d;
A3: (
NE-corner K)
=
|[(
E-bound K), (
N-bound K)]| by
PSCOMP_1:def 13;
(
E-bound K)
= b by
A1,
A2,
Th38;
hence thesis by
A1,
A2,
A3,
Th37;
end;
theorem ::
JGRAPH_6:42
for a,b,c,d be
Real st a
<= b & c
<= d holds (
SW-corner (
rectangle (a,b,c,d)))
=
|[a, c]|
proof
let a,b,c,d be
Real;
set K = (
rectangle (a,b,c,d));
assume that
A1: a
<= b and
A2: c
<= d;
A3: (
SW-corner K)
=
|[(
W-bound K), (
S-bound K)]| by
PSCOMP_1:def 11;
(
W-bound K)
= a by
A1,
A2,
Th36;
hence thesis by
A1,
A2,
A3,
Th39;
end;
theorem ::
JGRAPH_6:43
for a,b,c,d be
Real st a
<= b & c
<= d holds (
SE-corner (
rectangle (a,b,c,d)))
=
|[b, c]|
proof
let a,b,c,d be
Real;
set K = (
rectangle (a,b,c,d));
assume that
A1: a
<= b and
A2: c
<= d;
A3: (
SE-corner K)
=
|[(
E-bound K), (
S-bound K)]| by
PSCOMP_1:def 14;
(
E-bound K)
= b by
A1,
A2,
Th38;
hence thesis by
A1,
A2,
A3,
Th39;
end;
theorem ::
JGRAPH_6:44
Th44: for a,b,c,d be
Real st a
<= b & c
<= d holds (
W-most (
rectangle (a,b,c,d)))
= (
LSeg (
|[a, c]|,
|[a, d]|))
proof
let a,b,c,d be
Real;
set K = (
rectangle (a,b,c,d));
assume that
A1: a
<= b and
A2: c
<= d;
K
= (((
LSeg (
|[a, c]|,
|[a, d]|))
\/ (
LSeg (
|[a, d]|,
|[b, d]|)))
\/ ((
LSeg (
|[a, c]|,
|[b, c]|))
\/ (
LSeg (
|[b, c]|,
|[b, d]|)))) by
SPPOL_2:def 3;
then
A3: ((
LSeg (
|[a, c]|,
|[a, d]|))
\/ (
LSeg (
|[a, d]|,
|[b, d]|)))
c= K by
XBOOLE_1: 7;
A4: (
LSeg (
|[a, c]|,
|[a, d]|))
c= ((
LSeg (
|[a, c]|,
|[a, d]|))
\/ (
LSeg (
|[a, d]|,
|[b, d]|))) by
XBOOLE_1: 7;
A5: (
SW-corner K)
=
|[(
W-bound K), (
S-bound K)]| by
PSCOMP_1:def 11;
A6: (
NW-corner K)
=
|[a, d]| by
A1,
A2,
Th40;
A7: (
W-bound K)
= a by
A1,
A2,
Th36;
A8: (
S-bound K)
= c by
A1,
A2,
Th39;
thus (
W-most K)
= ((
LSeg ((
SW-corner K),(
NW-corner K)))
/\ K) by
PSCOMP_1:def 15
.= (
LSeg (
|[a, c]|,
|[a, d]|)) by
A3,
A4,
A5,
A6,
A7,
A8,
XBOOLE_1: 1,
XBOOLE_1: 28;
end;
theorem ::
JGRAPH_6:45
Th45: for a,b,c,d be
Real st a
<= b & c
<= d holds (
E-most (
rectangle (a,b,c,d)))
= (
LSeg (
|[b, c]|,
|[b, d]|))
proof
let a,b,c,d be
Real;
set K = (
rectangle (a,b,c,d));
assume that
A1: a
<= b and
A2: c
<= d;
K
= (((
LSeg (
|[a, c]|,
|[a, d]|))
\/ (
LSeg (
|[a, d]|,
|[b, d]|)))
\/ ((
LSeg (
|[a, c]|,
|[b, c]|))
\/ (
LSeg (
|[b, c]|,
|[b, d]|)))) by
SPPOL_2:def 3;
then
A3: ((
LSeg (
|[a, c]|,
|[b, c]|))
\/ (
LSeg (
|[b, c]|,
|[b, d]|)))
c= K by
XBOOLE_1: 7;
A4: (
LSeg (
|[b, c]|,
|[b, d]|))
c= ((
LSeg (
|[a, c]|,
|[b, c]|))
\/ (
LSeg (
|[b, c]|,
|[b, d]|))) by
XBOOLE_1: 7;
A5: (
SE-corner K)
=
|[(
E-bound K), (
S-bound K)]| by
PSCOMP_1:def 14;
A6: (
NE-corner K)
=
|[b, d]| by
A1,
A2,
Th41;
A7: (
E-bound K)
= b by
A1,
A2,
Th38;
A8: (
S-bound K)
= c by
A1,
A2,
Th39;
thus (
E-most K)
= ((
LSeg ((
SE-corner K),(
NE-corner K)))
/\ K) by
PSCOMP_1:def 17
.= (
LSeg (
|[b, c]|,
|[b, d]|)) by
A3,
A4,
A5,
A6,
A7,
A8,
XBOOLE_1: 1,
XBOOLE_1: 28;
end;
theorem ::
JGRAPH_6:46
Th46: for a,b,c,d be
Real st a
<= b & c
<= d holds (
W-min (
rectangle (a,b,c,d)))
=
|[a, c]| & (
E-max (
rectangle (a,b,c,d)))
=
|[b, d]|
proof
let a,b,c,d be
Real;
set K = (
rectangle (a,b,c,d));
assume that
A1: a
<= b and
A2: c
<= d;
A3: (
lower_bound (
proj2
| (
LSeg (
|[a, c]|,
|[a, d]|))))
= c
proof
set X = (
LSeg (
|[a, c]|,
|[a, d]|));
reconsider Z = ((
proj2
| X)
.: the
carrier of ((
TOP-REAL 2)
| X)) as
Subset of
REAL ;
A4: X
= the
carrier of ((
TOP-REAL 2)
| X) by
PRE_TOPC: 8;
A5: for p be
Real st p
in Z holds p
>= c
proof
let p be
Real;
assume p
in Z;
then
consider p0 be
object such that
A6: p0
in the
carrier of ((
TOP-REAL 2)
| X) and p0
in the
carrier of ((
TOP-REAL 2)
| X) and
A7: p
= ((
proj2
| X)
. p0) by
FUNCT_2: 64;
reconsider p0 as
Point of (
TOP-REAL 2) by
A4,
A6;
A8: (
|[a, c]|
`2 )
= c by
EUCLID: 52;
(
|[a, d]|
`2 )
= d by
EUCLID: 52;
then (p0
`2 )
>= c by
A2,
A4,
A6,
A8,
TOPREAL1: 4;
hence thesis by
A4,
A6,
A7,
PSCOMP_1: 23;
end;
A9: for q be
Real st for p be
Real st p
in Z holds p
>= q holds c
>= q
proof
let q be
Real such that
A10: for p be
Real st p
in Z holds p
>= q;
A11:
|[a, c]|
in X by
RLTOPSP1: 68;
((
proj2
| X)
.
|[a, c]|)
= (
|[a, c]|
`2 ) by
PSCOMP_1: 23,
RLTOPSP1: 68
.= c by
EUCLID: 52;
hence thesis by
A4,
A10,
A11,
FUNCT_2: 35;
end;
thus (
lower_bound (
proj2
| X))
= (
lower_bound Z) by
PSCOMP_1:def 1
.= c by
A5,
A9,
SEQ_4: 44;
end;
A12: (
W-most K)
= (
LSeg (
|[a, c]|,
|[a, d]|)) by
A1,
A2,
Th44;
A13: (
W-bound K)
= a by
A1,
A2,
Th36;
A14: (
upper_bound (
proj2
| (
LSeg (
|[b, c]|,
|[b, d]|))))
= d
proof
set X = (
LSeg (
|[b, c]|,
|[b, d]|));
reconsider Z = ((
proj2
| X)
.: the
carrier of ((
TOP-REAL 2)
| X)) as
Subset of
REAL ;
A15: X
= the
carrier of ((
TOP-REAL 2)
| X) by
PRE_TOPC: 8;
A16: for p be
Real st p
in Z holds p
<= d
proof
let p be
Real;
assume p
in Z;
then
consider p0 be
object such that
A17: p0
in the
carrier of ((
TOP-REAL 2)
| X) and p0
in the
carrier of ((
TOP-REAL 2)
| X) and
A18: p
= ((
proj2
| X)
. p0) by
FUNCT_2: 64;
reconsider p0 as
Point of (
TOP-REAL 2) by
A15,
A17;
A19: (
|[b, c]|
`2 )
= c by
EUCLID: 52;
(
|[b, d]|
`2 )
= d by
EUCLID: 52;
then (p0
`2 )
<= d by
A2,
A15,
A17,
A19,
TOPREAL1: 4;
hence thesis by
A15,
A17,
A18,
PSCOMP_1: 23;
end;
A20: for q be
Real st for p be
Real st p
in Z holds p
<= q holds d
<= q
proof
let q be
Real such that
A21: for p be
Real st p
in Z holds p
<= q;
A22:
|[b, d]|
in X by
RLTOPSP1: 68;
((
proj2
| X)
.
|[b, d]|)
= (
|[b, d]|
`2 ) by
PSCOMP_1: 23,
RLTOPSP1: 68
.= d by
EUCLID: 52;
hence thesis by
A15,
A21,
A22,
FUNCT_2: 35;
end;
thus (
upper_bound (
proj2
| X))
= (
upper_bound Z) by
PSCOMP_1:def 2
.= d by
A16,
A20,
SEQ_4: 46;
end;
A23: (
E-most K)
= (
LSeg (
|[b, c]|,
|[b, d]|)) by
A1,
A2,
Th45;
(
E-bound K)
= b by
A1,
A2,
Th38;
hence thesis by
A3,
A12,
A13,
A14,
A23,
PSCOMP_1:def 19,
PSCOMP_1:def 23;
end;
theorem ::
JGRAPH_6:47
Th47: for a,b,c,d be
Real st a
< b & c
< d holds ((
LSeg (
|[a, c]|,
|[a, d]|))
\/ (
LSeg (
|[a, d]|,
|[b, d]|)))
is_an_arc_of ((
W-min (
rectangle (a,b,c,d))),(
E-max (
rectangle (a,b,c,d)))) & ((
LSeg (
|[a, c]|,
|[b, c]|))
\/ (
LSeg (
|[b, c]|,
|[b, d]|)))
is_an_arc_of ((
E-max (
rectangle (a,b,c,d))),(
W-min (
rectangle (a,b,c,d))))
proof
let a,b,c,d be
Real;
set K = (
rectangle (a,b,c,d));
assume that
A1: a
< b and
A2: c
< d;
A3: (
W-min K)
=
|[a, c]| by
A1,
A2,
Th46;
A4: (
E-max K)
=
|[b, d]| by
A1,
A2,
Th46;
(
|[a, c]|
`2 )
= c by
EUCLID: 52;
then
A5:
|[a, c]|
<>
|[a, d]| by
A2,
EUCLID: 52;
set p1 =
|[a, c]|, p2 =
|[a, d]|, q1 =
|[b, d]|;
A6: ((
LSeg (p1,p2))
/\ (
LSeg (p2,q1)))
=
{p2} by
A1,
A2,
Th34;
(
|[a, c]|
`1 )
= a by
EUCLID: 52;
then
A7:
|[a, c]|
<>
|[b, c]| by
A1,
EUCLID: 52;
set q2 =
|[b, c]|;
((
LSeg (q1,q2))
/\ (
LSeg (q2,p1)))
=
{q2} by
A1,
A2,
Th32;
hence thesis by
A3,
A4,
A5,
A6,
A7,
TOPREAL1: 12;
end;
theorem ::
JGRAPH_6:48
Th48: for a,b,c,d be
Real, f1,f2 be
FinSequence of (
TOP-REAL 2), p0,p1,p01,p10 be
Point of (
TOP-REAL 2) st a
< b & c
< d & p0
=
|[a, c]| & p1
=
|[b, d]| & p01
=
|[a, d]| & p10
=
|[b, c]| & f1
=
<*p0, p01, p1*> & f2
=
<*p0, p10, p1*> holds f1 is
being_S-Seq & (
L~ f1)
= ((
LSeg (p0,p01))
\/ (
LSeg (p01,p1))) & f2 is
being_S-Seq & (
L~ f2)
= ((
LSeg (p0,p10))
\/ (
LSeg (p10,p1))) & (
rectangle (a,b,c,d))
= ((
L~ f1)
\/ (
L~ f2)) & ((
L~ f1)
/\ (
L~ f2))
=
{p0, p1} & (f1
/. 1)
= p0 & (f1
/. (
len f1))
= p1 & (f2
/. 1)
= p0 & (f2
/. (
len f2))
= p1
proof
let a,b,c,d be
Real, f1,f2 be
FinSequence of (
TOP-REAL 2), p0,p1,p01,p10 be
Point of (
TOP-REAL 2);
assume that
A1: a
< b and
A2: c
< d and
A3: p0
=
|[a, c]| and
A4: p1
=
|[b, d]| and
A5: p01
=
|[a, d]| and
A6: p10
=
|[b, c]| and
A7: f1
=
<*p0, p01, p1*> and
A8: f2
=
<*p0, p10, p1*>;
set P = (
rectangle (a,b,c,d));
set L1 = { p : (p
`1 )
= a & (p
`2 )
<= d & (p
`2 )
>= c };
set L2 = { p : (p
`1 )
<= b & (p
`1 )
>= a & (p
`2 )
= d };
set L3 = { p : (p
`1 )
<= b & (p
`1 )
>= a & (p
`2 )
= c };
set L4 = { p : (p
`1 )
= b & (p
`2 )
<= d & (p
`2 )
>= c };
A9: (p1
`1 )
= b by
A4,
EUCLID: 52;
A10: (p1
`2 )
= d by
A4,
EUCLID: 52;
A11: (p10
`1 )
= b by
A6,
EUCLID: 52;
A12: (p10
`2 )
= c by
A6,
EUCLID: 52;
A13: (p0
`1 )
= a by
A3,
EUCLID: 52;
A14: (p0
`2 )
= c by
A3,
EUCLID: 52;
A15: (
len f1)
= (1
+ 2) by
A7,
FINSEQ_1: 45;
A16: (f1
/. 1)
= p0 by
A7,
FINSEQ_4: 18;
A17: (f1
/. 2)
= p01 by
A7,
FINSEQ_4: 18;
A18: (f1
/. 3)
= p1 by
A7,
FINSEQ_4: 18;
thus f1 is
being_S-Seq
proof
A19: p0
<> p01 by
A2,
A5,
A14,
EUCLID: 52;
p01
<> p1 by
A1,
A5,
A9,
EUCLID: 52;
hence f1 is
one-to-one by
A1,
A7,
A9,
A13,
A19,
FINSEQ_3: 95;
thus (
len f1)
>= 2 by
A15;
thus f1 is
unfolded
proof
let i be
Nat;
assume that
A20: 1
<= i and
A21: (i
+ 2)
<= (
len f1);
i
<= 1 by
A15,
A21,
XREAL_1: 6;
then
A22: i
= 1 by
A20,
XXREAL_0: 1;
reconsider n2 = (1
+ 1) as
Nat;
n2
in (
Seg (
len f1)) by
A15,
FINSEQ_1: 1;
then
A23: (
LSeg (f1,1))
= (
LSeg (p0,p01)) by
A15,
A16,
A17,
TOPREAL1:def 3;
A24: (
LSeg (f1,n2))
= (
LSeg (p01,p1)) by
A15,
A17,
A18,
TOPREAL1:def 3;
for x be
object holds x
in ((
LSeg (p0,p01))
/\ (
LSeg (p01,p1))) iff x
= p01
proof
let x be
object;
thus x
in ((
LSeg (p0,p01))
/\ (
LSeg (p01,p1))) implies x
= p01
proof
assume
A25: x
in ((
LSeg (p0,p01))
/\ (
LSeg (p01,p1)));
then
A26: x
in (
LSeg (p0,p01)) by
XBOOLE_0:def 4;
A27: x
in (
LSeg (p01,p1)) by
A25,
XBOOLE_0:def 4;
A28: x
in { p : (p
`1 )
= a & (p
`2 )
<= d & (p
`2 )
>= c } by
A2,
A3,
A5,
A26,
Th30;
A29: x
in { p2 : (p2
`1 )
<= b & (p2
`1 )
>= a & (p2
`2 )
= d } by
A1,
A4,
A5,
A27,
Th30;
A30: ex p st p
= x & (p
`1 )
= a & (p
`2 )
<= d & (p
`2 )
>= c by
A28;
ex p2 st p2
= x & (p2
`1 )
<= b & (p2
`1 )
>= a & (p2
`2 )
= d by
A29;
hence thesis by
A5,
A30,
EUCLID: 53;
end;
assume
A31: x
= p01;
then
A32: x
in (
LSeg (p0,p01)) by
RLTOPSP1: 68;
x
in (
LSeg (p01,p1)) by
A31,
RLTOPSP1: 68;
hence thesis by
A32,
XBOOLE_0:def 4;
end;
hence thesis by
A17,
A22,
A23,
A24,
TARSKI:def 1;
end;
thus f1 is
s.n.c.
proof
let i,j be
Nat such that
A33: (i
+ 1)
< j;
now
per cases ;
suppose 1
<= i;
then
A34: (1
+ 1)
<= (i
+ 1) by
XREAL_1: 6;
now
per cases ;
case 1
<= j & (j
+ 1)
<= (
len f1);
then j
<= 2 by
A15,
XREAL_1: 6;
hence contradiction by
A33,
A34,
XXREAL_0: 2;
end;
case not (1
<= j & (j
+ 1)
<= (
len f1));
then (
LSeg (f1,j))
=
{} by
TOPREAL1:def 3;
hence ((
LSeg (f1,i))
/\ (
LSeg (f1,j)))
=
{} ;
end;
end;
hence ((
LSeg (f1,i))
/\ (
LSeg (f1,j)))
=
{} ;
end;
suppose not (1
<= i & (i
+ 1)
<= (
len f1));
then (
LSeg (f1,i))
=
{} by
TOPREAL1:def 3;
hence ((
LSeg (f1,i))
/\ (
LSeg (f1,j)))
=
{} ;
end;
end;
hence ((
LSeg (f1,i))
/\ (
LSeg (f1,j)))
=
{} ;
end;
let i be
Nat;
assume that
A35: 1
<= i and
A36: (i
+ 1)
<= (
len f1);
A37: i
<= (1
+ 1) by
A15,
A36,
XREAL_1: 6;
now
per cases by
A35,
A37,
NAT_1: 9;
suppose
A38: i
= 1;
then ((f1
/. i)
`1 )
= (p0
`1 ) by
A7,
FINSEQ_4: 18
.= a by
A3,
EUCLID: 52
.= ((f1
/. (i
+ 1))
`1 ) by
A5,
A17,
A38,
EUCLID: 52;
hence thesis;
end;
suppose
A39: i
= 2;
then ((f1
/. i)
`2 )
= (p01
`2 ) by
A7,
FINSEQ_4: 18
.= d by
A5,
EUCLID: 52
.= ((f1
/. (i
+ 1))
`2 ) by
A4,
A18,
A39,
EUCLID: 52;
hence thesis;
end;
end;
hence thesis;
end;
A40: (1
+ 1)
in (
Seg (
len f1)) by
A15,
FINSEQ_1: 1;
A41: (1
+ 1)
<= (
len f1) by
A15;
(
LSeg (p0,p01))
= (
LSeg (f1,1)) by
A15,
A16,
A17,
A40,
TOPREAL1:def 3;
then
A42: (
LSeg (p0,p01))
in { (
LSeg (f1,i)) : 1
<= i & (i
+ 1)
<= (
len f1) } by
A41;
(
LSeg (p01,p1))
= (
LSeg (f1,2)) by
A15,
A17,
A18,
TOPREAL1:def 3;
then (
LSeg (p01,p1))
in { (
LSeg (f1,i)) : 1
<= i & (i
+ 1)
<= (
len f1) } by
A15;
then
A43:
{(
LSeg (p0,p01)), (
LSeg (p01,p1))}
c= { (
LSeg (f1,i)) : 1
<= i & (i
+ 1)
<= (
len f1) } by
A42,
ZFMISC_1: 32;
{ (
LSeg (f1,i)) : 1
<= i & (i
+ 1)
<= (
len f1) }
c=
{(
LSeg (p0,p01)), (
LSeg (p01,p1))}
proof
let a be
object;
assume a
in { (
LSeg (f1,i)) : 1
<= i & (i
+ 1)
<= (
len f1) };
then
consider i such that
A44: a
= (
LSeg (f1,i)) and
A45: 1
<= i and
A46: (i
+ 1)
<= (
len f1);
(i
+ 1)
<= (2
+ 1) by
A7,
A46,
FINSEQ_1: 45;
then i
<= (1
+ 1) by
XREAL_1: 6;
then i
= 1 or i
= 2 by
A45,
NAT_1: 9;
then a
= (
LSeg (p0,p01)) or a
= (
LSeg (p01,p1)) by
A16,
A17,
A18,
A44,
A46,
TOPREAL1:def 3;
hence thesis by
TARSKI:def 2;
end;
then (
L~ f1)
= (
union
{(
LSeg (p0,p01)), (
LSeg (p01,p1))}) by
A43,
XBOOLE_0:def 10;
hence
A47: (
L~ f1)
= ((
LSeg (p0,p01))
\/ (
LSeg (p01,p1))) by
ZFMISC_1: 75;
then
A48: (
L~ f1)
= (L1
\/ (
LSeg (p01,p1))) by
A2,
A3,
A5,
Th30
.= (L1
\/ L2) by
A1,
A4,
A5,
Th30;
A49: (
len f2)
= (1
+ 2) by
A8,
FINSEQ_1: 45;
A50: (f2
/. 1)
= p0 by
A8,
FINSEQ_4: 18;
A51: (f2
/. 2)
= p10 by
A8,
FINSEQ_4: 18;
A52: (f2
/. 3)
= p1 by
A8,
FINSEQ_4: 18;
thus f2 is
being_S-Seq
proof
thus f2 is
one-to-one by
A1,
A2,
A8,
A9,
A10,
A11,
A12,
A13,
FINSEQ_3: 95;
thus (
len f2)
>= 2 by
A49;
thus f2 is
unfolded
proof
let i be
Nat;
assume that
A53: 1
<= i and
A54: (i
+ 2)
<= (
len f2);
i
<= 1 by
A49,
A54,
XREAL_1: 6;
then
A55: i
= 1 by
A53,
XXREAL_0: 1;
(1
+ 1)
in (
Seg (
len f2)) by
A49,
FINSEQ_1: 1;
then
A56: (
LSeg (f2,1))
= (
LSeg (p0,p10)) by
A49,
A50,
A51,
TOPREAL1:def 3;
A57: (
LSeg (f2,(1
+ 1)))
= (
LSeg (p10,p1)) by
A49,
A51,
A52,
TOPREAL1:def 3;
for x be
object holds x
in ((
LSeg (p0,p10))
/\ (
LSeg (p10,p1))) iff x
= p10
proof
let x be
object;
thus x
in ((
LSeg (p0,p10))
/\ (
LSeg (p10,p1))) implies x
= p10
proof
assume
A58: x
in ((
LSeg (p0,p10))
/\ (
LSeg (p10,p1)));
then
A59: x
in (
LSeg (p0,p10)) by
XBOOLE_0:def 4;
A60: x
in (
LSeg (p10,p1)) by
A58,
XBOOLE_0:def 4;
A61: x
in { p : (p
`1 )
<= b & (p
`1 )
>= a & (p
`2 )
= c } by
A1,
A3,
A6,
A59,
Th30;
A62: x
in { p2 : (p2
`1 )
= b & (p2
`2 )
<= d & (p2
`2 )
>= c } by
A2,
A4,
A6,
A60,
Th30;
A63: ex p st p
= x & (p
`1 )
<= b & (p
`1 )
>= a & (p
`2 )
= c by
A61;
ex p2 st p2
= x & (p2
`1 )
= b & (p2
`2 )
<= d & (p2
`2 )
>= c by
A62;
hence thesis by
A6,
A63,
EUCLID: 53;
end;
assume
A64: x
= p10;
then
A65: x
in (
LSeg (p0,p10)) by
RLTOPSP1: 68;
x
in (
LSeg (p10,p1)) by
A64,
RLTOPSP1: 68;
hence thesis by
A65,
XBOOLE_0:def 4;
end;
hence thesis by
A51,
A55,
A56,
A57,
TARSKI:def 1;
end;
thus f2 is
s.n.c.
proof
let i,j be
Nat such that
A66: (i
+ 1)
< j;
now
per cases ;
suppose 1
<= i;
then
A67: (1
+ 1)
<= (i
+ 1) by
XREAL_1: 6;
now
per cases ;
case 1
<= j & (j
+ 1)
<= (
len f2);
then j
<= 2 by
A49,
XREAL_1: 6;
hence contradiction by
A66,
A67,
XXREAL_0: 2;
end;
case not (1
<= j & (j
+ 1)
<= (
len f2));
then (
LSeg (f2,j))
=
{} by
TOPREAL1:def 3;
hence ((
LSeg (f2,i))
/\ (
LSeg (f2,j)))
=
{} ;
end;
end;
hence ((
LSeg (f2,i))
/\ (
LSeg (f2,j)))
=
{} ;
end;
suppose not (1
<= i & (i
+ 1)
<= (
len f2));
then (
LSeg (f2,i))
=
{} by
TOPREAL1:def 3;
hence ((
LSeg (f2,i))
/\ (
LSeg (f2,j)))
=
{} ;
end;
end;
hence ((
LSeg (f2,i))
/\ (
LSeg (f2,j)))
=
{} ;
end;
let i be
Nat;
assume that
A68: 1
<= i and
A69: (i
+ 1)
<= (
len f2);
A70: i
<= (1
+ 1) by
A49,
A69,
XREAL_1: 6;
per cases by
A68,
A70,
NAT_1: 9;
suppose
A71: i
= 1;
then ((f2
/. i)
`2 )
= (p0
`2 ) by
A8,
FINSEQ_4: 18
.= c by
A3,
EUCLID: 52
.= ((f2
/. (i
+ 1))
`2 ) by
A6,
A51,
A71,
EUCLID: 52;
hence thesis;
end;
suppose
A72: i
= 2;
then ((f2
/. i)
`1 )
= (p10
`1 ) by
A8,
FINSEQ_4: 18
.= b by
A6,
EUCLID: 52
.= ((f2
/. (i
+ 1))
`1 ) by
A4,
A52,
A72,
EUCLID: 52;
hence thesis;
end;
end;
A73: (1
+ 1)
in (
Seg (
len f2)) by
A49,
FINSEQ_1: 1;
A74: (1
+ 1)
<= (
len f2) by
A49;
(
LSeg (p0,p10))
= (
LSeg (f2,1)) by
A49,
A50,
A51,
A73,
TOPREAL1:def 3;
then
A75: (
LSeg (p0,p10))
in { (
LSeg (f2,i)) : 1
<= i & (i
+ 1)
<= (
len f2) } by
A74;
(
LSeg (p10,p1))
= (
LSeg (f2,2)) by
A49,
A51,
A52,
TOPREAL1:def 3;
then (
LSeg (p10,p1))
in { (
LSeg (f2,i)) : 1
<= i & (i
+ 1)
<= (
len f2) } by
A49;
then
A76:
{(
LSeg (p0,p10)), (
LSeg (p10,p1))}
c= { (
LSeg (f2,i)) : 1
<= i & (i
+ 1)
<= (
len f2) } by
A75,
ZFMISC_1: 32;
{ (
LSeg (f2,i)) : 1
<= i & (i
+ 1)
<= (
len f2) }
c=
{(
LSeg (p0,p10)), (
LSeg (p10,p1))}
proof
let ax be
object;
assume ax
in { (
LSeg (f2,i)) : 1
<= i & (i
+ 1)
<= (
len f2) };
then
consider i such that
A77: ax
= (
LSeg (f2,i)) and
A78: 1
<= i and
A79: (i
+ 1)
<= (
len f2);
(i
+ 1)
<= (2
+ 1) by
A8,
A79,
FINSEQ_1: 45;
then i
<= (1
+ 1) by
XREAL_1: 6;
then i
= 1 or i
= 2 by
A78,
NAT_1: 9;
then ax
= (
LSeg (p0,p10)) or ax
= (
LSeg (p10,p1)) by
A50,
A51,
A52,
A77,
A79,
TOPREAL1:def 3;
hence thesis by
TARSKI:def 2;
end;
then
A80: (
L~ f2)
= (
union
{(
LSeg (p0,p10)), (
LSeg (p10,p1))}) by
A76,
XBOOLE_0:def 10;
hence (
L~ f2)
= ((
LSeg (p0,p10))
\/ (
LSeg (p10,p1))) by
ZFMISC_1: 75;
(
L~ f2)
= ((
LSeg (p0,p10))
\/ (
LSeg (p10,p1))) by
A80,
ZFMISC_1: 75;
then
A81: (
L~ f2)
= (L3
\/ (
LSeg (p10,p1))) by
A1,
A3,
A6,
Th30
.= (L3
\/ L4) by
A2,
A4,
A6,
Th30;
P
= (((
LSeg (p0,p01))
\/ (
LSeg (p01,p1)))
\/ ((
LSeg (p0,p10))
\/ (
LSeg (p10,p1)))) by
A3,
A4,
A5,
A6,
SPPOL_2:def 3;
hence P
= ((
L~ f1)
\/ (
L~ f2)) by
A47,
A80,
ZFMISC_1: 75;
now
assume L2
meets L3;
then
consider x be
object such that
A82: x
in L2 and
A83: x
in L3 by
XBOOLE_0: 3;
A84: ex p st p
= x & (p
`1 )
<= b & (p
`1 )
>= a & (p
`2 )
= d by
A82;
ex p2 st p2
= x & (p2
`1 )
<= b & (p2
`1 )
>= a & (p2
`2 )
= c by
A83;
hence contradiction by
A2,
A84;
end;
then
A85: (L2
/\ L3)
=
{} ;
A86: (
LSeg (
|[a, c]|,
|[a, d]|))
= { p3 : (p3
`1 )
= a & (p3
`2 )
<= d & (p3
`2 )
>= c } by
A2,
Th30;
A87: (
LSeg (
|[a, d]|,
|[b, d]|))
= { p2 : (p2
`1 )
<= b & (p2
`1 )
>= a & (p2
`2 )
= d } by
A1,
Th30;
A88: (
LSeg (
|[a, c]|,
|[b, c]|))
= { q1 : (q1
`1 )
<= b & (q1
`1 )
>= a & (q1
`2 )
= c } by
A1,
Th30;
A89: (
LSeg (
|[b, c]|,
|[b, d]|))
= { q2 : (q2
`1 )
= b & (q2
`2 )
<= d & (q2
`2 )
>= c } by
A2,
Th30;
A90: ((
LSeg (
|[a, c]|,
|[a, d]|))
/\ (
LSeg (
|[a, c]|,
|[b, c]|)))
=
{
|[a, c]|} by
A1,
A2,
Th31;
A91: ((
LSeg (
|[a, d]|,
|[b, d]|))
/\ (
LSeg (
|[b, c]|,
|[b, d]|)))
=
{
|[b, d]|} by
A1,
A2,
Th33;
now
assume L1
meets L4;
then
consider x be
object such that
A92: x
in L1 and
A93: x
in L4 by
XBOOLE_0: 3;
A94: ex p st p
= x & (p
`1 )
= a & (p
`2 )
<= d & (p
`2 )
>= c by
A92;
ex p2 st p2
= x & (p2
`1 )
= b & (p2
`2 )
<= d & (p2
`2 )
>= c by
A93;
hence contradiction by
A1,
A94;
end;
then
A95: (L1
/\ L4)
=
{} ;
thus ((
L~ f1)
/\ (
L~ f2))
= (((L1
\/ L2)
/\ L3)
\/ ((L1
\/ L2)
/\ L4)) by
A48,
A81,
XBOOLE_1: 23
.= (((L1
/\ L3)
\/ (L2
/\ L3))
\/ ((L1
\/ L2)
/\ L4)) by
XBOOLE_1: 23
.= ((L1
/\ L3)
\/ ((L1
/\ L4)
\/ (L2
/\ L4))) by
A85,
XBOOLE_1: 23
.=
{p0, p1} by
A3,
A4,
A86,
A87,
A88,
A89,
A90,
A91,
A95,
ENUMSET1: 1;
thus thesis by
A7,
A8,
A15,
A49,
FINSEQ_4: 18;
end;
theorem ::
JGRAPH_6:49
Th49: for P1,P2 be
Subset of (
TOP-REAL 2), a,b,c,d be
Real, f1,f2 be
FinSequence of (
TOP-REAL 2), p1,p2 be
Point of (
TOP-REAL 2) st a
< b & c
< d & p1
=
|[a, c]| & p2
=
|[b, d]| & f1
=
<*
|[a, c]|,
|[a, d]|,
|[b, d]|*> & f2
=
<*
|[a, c]|,
|[b, c]|,
|[b, d]|*> & P1
= (
L~ f1) & P2
= (
L~ f2) holds P1
is_an_arc_of (p1,p2) & P2
is_an_arc_of (p1,p2) & P1 is non
empty & P2 is non
empty & (
rectangle (a,b,c,d))
= (P1
\/ P2) & (P1
/\ P2)
=
{p1, p2}
proof
let P1,P2 be
Subset of (
TOP-REAL 2), a,b,c,d be
Real, f1,f2 be
FinSequence of (
TOP-REAL 2), p1,p2 be
Point of (
TOP-REAL 2);
assume that
A1: a
< b and
A2: c
< d and
A3: p1
=
|[a, c]| and
A4: p2
=
|[b, d]| and
A5: f1
=
<*
|[a, c]|,
|[a, d]|,
|[b, d]|*> and
A6: f2
=
<*
|[a, c]|,
|[b, c]|,
|[b, d]|*> and
A7: P1
= (
L~ f1) and
A8: P2
= (
L~ f2);
(
|[a, c]|
`2 )
= c by
EUCLID: 52;
then
A9:
|[a, c]|
<>
|[a, d]| or
|[a, d]|
<>
|[b, d]| by
A2,
EUCLID: 52;
A10: P1
= ((
LSeg (
|[a, c]|,
|[a, d]|))
\/ (
LSeg (
|[a, d]|,
|[b, d]|))) by
A1,
A2,
A5,
A6,
A7,
Th48;
A11: ((
LSeg (
|[a, c]|,
|[a, d]|))
/\ (
LSeg (
|[a, d]|,
|[b, d]|)))
=
{
|[a, d]|} by
A1,
A2,
Th34;
(
|[b, c]|
`2 )
= c by
EUCLID: 52;
then
A12:
|[a, c]|
<>
|[b, c]| or
|[b, c]|
<>
|[b, d]| by
A2,
EUCLID: 52;
A13: P2
= ((
LSeg (
|[a, c]|,
|[b, c]|))
\/ (
LSeg (
|[b, c]|,
|[b, d]|))) by
A1,
A2,
A5,
A6,
A8,
Th48;
((
LSeg (
|[a, c]|,
|[b, c]|))
/\ (
LSeg (
|[b, c]|,
|[b, d]|)))
=
{
|[b, c]|} by
A1,
A2,
Th32;
hence thesis by
A1,
A2,
A3,
A4,
A5,
A6,
A7,
A8,
A9,
A10,
A11,
A12,
A13,
Th48,
TOPREAL1: 12;
end;
theorem ::
JGRAPH_6:50
Th50: for a,b,c,d be
Real st a
< b & c
< d holds (
rectangle (a,b,c,d)) is
being_simple_closed_curve
proof
let a,b,c,d be
Real;
assume that
A1: a
< b and
A2: c
< d;
set P = (
rectangle (a,b,c,d));
set p1 =
|[a, c]|, p2 =
|[b, d]|;
reconsider f1 =
<*
|[a, c]|,
|[a, d]|,
|[b, d]|*> as
FinSequence of (
TOP-REAL 2);
reconsider f2 =
<*
|[a, c]|,
|[b, c]|,
|[b, d]|*> as
FinSequence of (
TOP-REAL 2);
set P1 = (
L~ f1), P2 = (
L~ f2);
A3: a
< b & c
< d & P
= { p : (p
`1 )
= a & c
<= (p
`2 ) & (p
`2 )
<= d or (p
`2 )
= d & a
<= (p
`1 ) & (p
`1 )
<= b or (p
`1 )
= b & c
<= (p
`2 ) & (p
`2 )
<= d or (p
`2 )
= c & a
<= (p
`1 ) & (p
`1 )
<= b } & p1
=
|[a, c]| & p2
=
|[b, d]| & f1
=
<*
|[a, c]|,
|[a, d]|,
|[b, d]|*> & f2
=
<*
|[a, c]|,
|[b, c]|,
|[b, d]|*> & P1
= (
L~ f1) & P2
= (
L~ f2) implies P1
is_an_arc_of (p1,p2) & P2
is_an_arc_of (p1,p2) & P1 is non
empty & P2 is non
empty & P
= (P1
\/ P2) & (P1
/\ P2)
=
{p1, p2} by
Th49;
(
|[a, c]|
`1 )
= a by
EUCLID: 52;
then
A4: p1
<> p2 by
A1,
EUCLID: 52;
p1
in (P1
/\ P2) by
A1,
A2,
A3,
Lm15,
TARSKI:def 2;
then p1
in P1 by
XBOOLE_0:def 4;
then
A5: p1
in P by
A1,
A2,
A3,
Lm15,
XBOOLE_0:def 3;
p2
in (P1
/\ P2) by
A1,
A2,
A3,
Lm15,
TARSKI:def 2;
then p2
in P1 by
XBOOLE_0:def 4;
then p2
in P by
A1,
A2,
A3,
Lm15,
XBOOLE_0:def 3;
hence thesis by
A1,
A2,
A3,
A4,
A5,
Lm15,
TOPREAL2: 6;
end;
theorem ::
JGRAPH_6:51
Th51: for a,b,c,d be
Real st a
< b & c
< d holds (
Upper_Arc (
rectangle (a,b,c,d)))
= ((
LSeg (
|[a, c]|,
|[a, d]|))
\/ (
LSeg (
|[a, d]|,
|[b, d]|)))
proof
let a,b,c,d be
Real;
set K = (
rectangle (a,b,c,d));
assume that
A1: a
< b and
A2: c
< d;
A3: K is
being_simple_closed_curve by
A1,
A2,
Th50;
set P = K;
A4: (
W-min K)
=
|[a, c]| by
A1,
A2,
Th46;
A5: (
E-max K)
=
|[b, d]| by
A1,
A2,
Th46;
reconsider U = ((
LSeg (
|[a, c]|,
|[a, d]|))
\/ (
LSeg (
|[a, d]|,
|[b, d]|))) as non
empty
Subset of (
TOP-REAL 2);
A6: U
is_an_arc_of ((
W-min P),(
E-max P)) by
A1,
A2,
Th47;
reconsider P3 = ((
LSeg (
|[a, c]|,
|[b, c]|))
\/ (
LSeg (
|[b, c]|,
|[b, d]|))) as non
empty
Subset of (
TOP-REAL 2);
A7: P3
is_an_arc_of ((
E-max P),(
W-min P)) by
A1,
A2,
Th47;
reconsider f1 =
<*
|[a, c]|,
|[a, d]|,
|[b, d]|*>, f2 =
<*
|[a, c]|,
|[b, c]|,
|[b, d]|*> as
FinSequence of (
TOP-REAL 2);
set p0 =
|[a, c]|, p01 =
|[a, d]|, p10 =
|[b, c]|, p1 =
|[b, d]|;
A8: a
< b & c
< d & p0
=
|[a, c]| & p1
=
|[b, d]| & p01
=
|[a, d]| & p10
=
|[b, c]| & f1
=
<*p0, p01, p1*> & f2
=
<*p0, p10, p1*> implies f1 is
being_S-Seq & (
L~ f1)
= ((
LSeg (p0,p01))
\/ (
LSeg (p01,p1))) & f2 is
being_S-Seq & (
L~ f2)
= ((
LSeg (p0,p10))
\/ (
LSeg (p10,p1))) & K
= ((
L~ f1)
\/ (
L~ f2)) & ((
L~ f1)
/\ (
L~ f2))
=
{p0, p1} & (f1
/. 1)
= p0 & (f1
/. (
len f1))
= p1 & (f2
/. 1)
= p0 & (f2
/. (
len f2))
= p1 by
Th48;
A9: (
Vertical_Line (((
W-bound P)
+ (
E-bound P))
/ 2))
= (
Vertical_Line ((a
+ (
E-bound P))
/ 2)) by
A1,
A2,
Th36
.= (
Vertical_Line ((a
+ b)
/ 2)) by
A1,
A2,
Th38;
set Q = (
Vertical_Line (((
W-bound P)
+ (
E-bound P))
/ 2));
reconsider a2 = a, b2 = b, c2 = c, d2 = d as
Real;
A10: (U
/\ (
Vertical_Line (((
W-bound P)
+ (
E-bound P))
/ 2)))
=
{
|[((a
+ b)
/ 2), d]|}
proof
thus (U
/\ (
Vertical_Line (((
W-bound P)
+ (
E-bound P))
/ 2)))
c=
{
|[((a
+ b)
/ 2), d]|}
proof
let x be
object;
assume
A11: x
in (U
/\ (
Vertical_Line (((
W-bound P)
+ (
E-bound P))
/ 2)));
then
A12: x
in U by
XBOOLE_0:def 4;
x
in (
Vertical_Line (((
W-bound P)
+ (
E-bound P))
/ 2)) by
A11,
XBOOLE_0:def 4;
then x
in { p where p be
Point of (
TOP-REAL 2) : (p
`1 )
= ((a
+ b)
/ 2) } by
A9,
JORDAN6:def 6;
then
consider p such that
A13: x
= p and
A14: (p
`1 )
= ((a
+ b)
/ 2);
now
assume p
in (
LSeg (
|[a, c]|,
|[a, d]|));
then (p
`1 )
= a by
TOPREAL3: 11;
hence contradiction by
A1,
A14;
end;
then p
in (
LSeg (
|[a2, d2]|,
|[b2, d2]|)) by
A12,
A13,
XBOOLE_0:def 3;
then (p
`2 )
= d by
TOPREAL3: 12;
then x
=
|[((a
+ b)
/ 2), d]| by
A13,
A14,
EUCLID: 53;
hence thesis by
TARSKI:def 1;
end;
let x be
object;
assume x
in
{
|[((a
+ b)
/ 2), d]|};
then
A15: x
=
|[((a
+ b)
/ 2), d]| by
TARSKI:def 1;
(
|[((a
+ b)
/ 2), d]|
`1 )
= ((a
+ b)
/ 2) by
EUCLID: 52;
then x
in { p where p be
Point of (
TOP-REAL 2) : (p
`1 )
= ((a
+ b)
/ 2) } by
A15;
then
A16: x
in (
Vertical_Line (((
W-bound P)
+ (
E-bound P))
/ 2)) by
A9,
JORDAN6:def 6;
A17: (
|[b, d]|
`1 )
= b by
EUCLID: 52;
A18: (
|[b, d]|
`2 )
= d by
EUCLID: 52;
A19: (
|[a, d]|
`1 )
= a by
EUCLID: 52;
(
|[a, d]|
`2 )
= d by
EUCLID: 52;
then x
in (
LSeg (
|[b, d]|,
|[a, d]|)) by
A1,
A15,
A17,
A18,
A19,
TOPREAL3: 13;
then x
in U by
XBOOLE_0:def 3;
hence thesis by
A16,
XBOOLE_0:def 4;
end;
then
|[((a
+ b)
/ 2), d]|
in (U
/\ Q) by
TARSKI:def 1;
then U
meets Q;
then (
First_Point (U,(
W-min P),(
E-max P),(
Vertical_Line (((
W-bound P)
+ (
E-bound P))
/ 2))))
in
{
|[((a
+ b)
/ 2), d]|} by
A6,
A10,
JORDAN5C:def 1;
then (
First_Point (U,(
W-min P),(
E-max P),(
Vertical_Line (((
W-bound P)
+ (
E-bound P))
/ 2))))
=
|[((a
+ b)
/ 2), d]| by
TARSKI:def 1;
then
A20: ((
First_Point (U,(
W-min P),(
E-max P),(
Vertical_Line (((
W-bound P)
+ (
E-bound P))
/ 2))))
`2 )
= d by
EUCLID: 52;
A21: (P3
/\ (
Vertical_Line (((
W-bound P)
+ (
E-bound P))
/ 2)))
=
{
|[((a
+ b)
/ 2), c]|}
proof
thus (P3
/\ (
Vertical_Line (((
W-bound P)
+ (
E-bound P))
/ 2)))
c=
{
|[((a
+ b)
/ 2), c]|}
proof
let x be
object;
assume
A22: x
in (P3
/\ (
Vertical_Line (((
W-bound P)
+ (
E-bound P))
/ 2)));
then
A23: x
in P3 by
XBOOLE_0:def 4;
x
in (
Vertical_Line (((
W-bound P)
+ (
E-bound P))
/ 2)) by
A22,
XBOOLE_0:def 4;
then x
in { p where p be
Point of (
TOP-REAL 2) : (p
`1 )
= ((a
+ b)
/ 2) } by
A9,
JORDAN6:def 6;
then
consider p such that
A24: x
= p and
A25: (p
`1 )
= ((a
+ b)
/ 2);
now
assume p
in (
LSeg (
|[b, c]|,
|[b, d]|));
then (p
`1 )
= b by
TOPREAL3: 11;
hence contradiction by
A1,
A25;
end;
then p
in (
LSeg (
|[a2, c2]|,
|[b2, c2]|)) by
A23,
A24,
XBOOLE_0:def 3;
then (p
`2 )
= c by
TOPREAL3: 12;
then x
=
|[((a
+ b)
/ 2), c]| by
A24,
A25,
EUCLID: 53;
hence thesis by
TARSKI:def 1;
end;
let x be
object;
assume x
in
{
|[((a
+ b)
/ 2), c]|};
then
A26: x
=
|[((a
+ b)
/ 2), c]| by
TARSKI:def 1;
(
|[((a
+ b)
/ 2), c]|
`1 )
= ((a
+ b)
/ 2) by
EUCLID: 52;
then x
in { p where p be
Point of (
TOP-REAL 2) : (p
`1 )
= ((a
+ b)
/ 2) } by
A26;
then
A27: x
in (
Vertical_Line (((
W-bound P)
+ (
E-bound P))
/ 2)) by
A9,
JORDAN6:def 6;
A28: (
|[b, c]|
`1 )
= b by
EUCLID: 52;
A29: (
|[b, c]|
`2 )
= c by
EUCLID: 52;
A30: (
|[a, c]|
`1 )
= a by
EUCLID: 52;
(
|[a, c]|
`2 )
= c by
EUCLID: 52;
then
|[((b
+ a)
/ 2), c]|
in (
LSeg (
|[a, c]|,
|[b, c]|)) by
A1,
A28,
A29,
A30,
TOPREAL3: 13;
then x
in P3 by
A26,
XBOOLE_0:def 3;
hence thesis by
A27,
XBOOLE_0:def 4;
end;
then
|[((a
+ b)
/ 2), c]|
in (P3
/\ Q) by
TARSKI:def 1;
then P3
meets Q;
then (
Last_Point (P3,(
E-max P),(
W-min P),(
Vertical_Line (((
W-bound P)
+ (
E-bound P))
/ 2))))
in
{
|[((a
+ b)
/ 2), c]|} by
A7,
A21,
JORDAN5C:def 2;
then (
Last_Point (P3,(
E-max P),(
W-min P),(
Vertical_Line (((
W-bound P)
+ (
E-bound P))
/ 2))))
=
|[((a
+ b)
/ 2), c]| by
TARSKI:def 1;
then ((
Last_Point (P3,(
E-max P),(
W-min P),(
Vertical_Line (((
W-bound P)
+ (
E-bound P))
/ 2))))
`2 )
= c by
EUCLID: 52;
hence thesis by
A1,
A2,
A3,
A4,
A5,
A6,
A7,
A8,
A20,
JORDAN6:def 8;
end;
theorem ::
JGRAPH_6:52
Th52: for a,b,c,d be
Real st a
< b & c
< d holds (
Lower_Arc (
rectangle (a,b,c,d)))
= ((
LSeg (
|[a, c]|,
|[b, c]|))
\/ (
LSeg (
|[b, c]|,
|[b, d]|)))
proof
let a,b,c,d be
Real;
set K = (
rectangle (a,b,c,d));
assume that
A1: a
< b and
A2: c
< d;
A3: K is
being_simple_closed_curve by
A1,
A2,
Th50;
set P = K;
A4: (
W-min K)
=
|[a, c]| by
A1,
A2,
Th46;
A5: (
E-max K)
=
|[b, d]| by
A1,
A2,
Th46;
reconsider U = ((
LSeg (
|[a, c]|,
|[a, d]|))
\/ (
LSeg (
|[a, d]|,
|[b, d]|))) as non
empty
Subset of (
TOP-REAL 2);
A6: U
is_an_arc_of ((
W-min P),(
E-max P)) by
A1,
A2,
Th47;
reconsider P3 = ((
LSeg (
|[a, c]|,
|[b, c]|))
\/ (
LSeg (
|[b, c]|,
|[b, d]|))) as non
empty
Subset of (
TOP-REAL 2);
A7: P3
is_an_arc_of ((
E-max P),(
W-min P)) by
A1,
A2,
Th47;
reconsider f1 =
<*
|[a, c]|,
|[a, d]|,
|[b, d]|*>, f2 =
<*
|[a, c]|,
|[b, c]|,
|[b, d]|*> as
FinSequence of (
TOP-REAL 2);
set p0 =
|[a, c]|, p01 =
|[a, d]|, p10 =
|[b, c]|, p1 =
|[b, d]|;
A8: a
< b & c
< d & p0
=
|[a, c]| & p1
=
|[b, d]| & p01
=
|[a, d]| & p10
=
|[b, c]| & f1
=
<*p0, p01, p1*> & f2
=
<*p0, p10, p1*> implies f1 is
being_S-Seq & (
L~ f1)
= ((
LSeg (p0,p01))
\/ (
LSeg (p01,p1))) & f2 is
being_S-Seq & (
L~ f2)
= ((
LSeg (p0,p10))
\/ (
LSeg (p10,p1))) & K
= ((
L~ f1)
\/ (
L~ f2)) & ((
L~ f1)
/\ (
L~ f2))
=
{p0, p1} & (f1
/. 1)
= p0 & (f1
/. (
len f1))
= p1 & (f2
/. 1)
= p0 & (f2
/. (
len f2))
= p1 by
Th48;
A9: (
Vertical_Line (((
W-bound P)
+ (
E-bound P))
/ 2))
= (
Vertical_Line ((a
+ (
E-bound P))
/ 2)) by
A1,
A2,
Th36
.= (
Vertical_Line ((a
+ b)
/ 2)) by
A1,
A2,
Th38;
set Q = (
Vertical_Line (((
W-bound P)
+ (
E-bound P))
/ 2));
reconsider a2 = a, b2 = b, c2 = c, d2 = d as
Real;
A10: (U
/\ (
Vertical_Line (((
W-bound P)
+ (
E-bound P))
/ 2)))
=
{
|[((a
+ b)
/ 2), d]|}
proof
thus (U
/\ (
Vertical_Line (((
W-bound P)
+ (
E-bound P))
/ 2)))
c=
{
|[((a
+ b)
/ 2), d]|}
proof
let x be
object;
assume
A11: x
in (U
/\ (
Vertical_Line (((
W-bound P)
+ (
E-bound P))
/ 2)));
then
A12: x
in U by
XBOOLE_0:def 4;
x
in (
Vertical_Line (((
W-bound P)
+ (
E-bound P))
/ 2)) by
A11,
XBOOLE_0:def 4;
then x
in { p where p be
Point of (
TOP-REAL 2) : (p
`1 )
= ((a
+ b)
/ 2) } by
A9,
JORDAN6:def 6;
then
consider p such that
A13: x
= p and
A14: (p
`1 )
= ((a
+ b)
/ 2);
now
assume p
in (
LSeg (
|[a, c]|,
|[a, d]|));
then (p
`1 )
= a by
TOPREAL3: 11;
hence contradiction by
A1,
A14;
end;
then p
in (
LSeg (
|[a2, d2]|,
|[b2, d2]|)) by
A12,
A13,
XBOOLE_0:def 3;
then (p
`2 )
= d by
TOPREAL3: 12;
then x
=
|[((a
+ b)
/ 2), d]| by
A13,
A14,
EUCLID: 53;
hence thesis by
TARSKI:def 1;
end;
let x be
object;
assume x
in
{
|[((a
+ b)
/ 2), d]|};
then
A15: x
=
|[((a
+ b)
/ 2), d]| by
TARSKI:def 1;
(
|[((a
+ b)
/ 2), d]|
`1 )
= ((a
+ b)
/ 2) by
EUCLID: 52;
then x
in { p where p be
Point of (
TOP-REAL 2) : (p
`1 )
= ((a
+ b)
/ 2) } by
A15;
then
A16: x
in (
Vertical_Line (((
W-bound P)
+ (
E-bound P))
/ 2)) by
A9,
JORDAN6:def 6;
A17: (
|[b, d]|
`1 )
= b by
EUCLID: 52;
A18: (
|[b, d]|
`2 )
= d by
EUCLID: 52;
A19: (
|[a, d]|
`1 )
= a by
EUCLID: 52;
(
|[a, d]|
`2 )
= d by
EUCLID: 52;
then x
in (
LSeg (
|[b, d]|,
|[a, d]|)) by
A1,
A15,
A17,
A18,
A19,
TOPREAL3: 13;
then x
in U by
XBOOLE_0:def 3;
hence thesis by
A16,
XBOOLE_0:def 4;
end;
then
|[((a
+ b)
/ 2), d]|
in (U
/\ Q) by
TARSKI:def 1;
then U
meets Q;
then (
First_Point (U,(
W-min P),(
E-max P),(
Vertical_Line (((
W-bound P)
+ (
E-bound P))
/ 2))))
in
{
|[((a
+ b)
/ 2), d]|} by
A6,
A10,
JORDAN5C:def 1;
then (
First_Point (U,(
W-min P),(
E-max P),(
Vertical_Line (((
W-bound P)
+ (
E-bound P))
/ 2))))
=
|[((a
+ b)
/ 2), d]| by
TARSKI:def 1;
then
A20: ((
First_Point (U,(
W-min P),(
E-max P),(
Vertical_Line (((
W-bound P)
+ (
E-bound P))
/ 2))))
`2 )
= d by
EUCLID: 52;
A21: (P3
/\ (
Vertical_Line (((
W-bound P)
+ (
E-bound P))
/ 2)))
=
{
|[((a
+ b)
/ 2), c]|}
proof
thus (P3
/\ (
Vertical_Line (((
W-bound P)
+ (
E-bound P))
/ 2)))
c=
{
|[((a
+ b)
/ 2), c]|}
proof
let x be
object;
assume
A22: x
in (P3
/\ (
Vertical_Line (((
W-bound P)
+ (
E-bound P))
/ 2)));
then
A23: x
in P3 by
XBOOLE_0:def 4;
x
in (
Vertical_Line (((
W-bound P)
+ (
E-bound P))
/ 2)) by
A22,
XBOOLE_0:def 4;
then x
in { p where p be
Point of (
TOP-REAL 2) : (p
`1 )
= ((a
+ b)
/ 2) } by
A9,
JORDAN6:def 6;
then
consider p such that
A24: x
= p and
A25: (p
`1 )
= ((a
+ b)
/ 2);
now
assume p
in (
LSeg (
|[b, c]|,
|[b, d]|));
then (p
`1 )
= b by
TOPREAL3: 11;
hence contradiction by
A1,
A25;
end;
then p
in (
LSeg (
|[a2, c2]|,
|[b2, c2]|)) by
A23,
A24,
XBOOLE_0:def 3;
then (p
`2 )
= c by
TOPREAL3: 12;
then x
=
|[((a
+ b)
/ 2), c]| by
A24,
A25,
EUCLID: 53;
hence thesis by
TARSKI:def 1;
end;
let x be
object;
assume x
in
{
|[((a
+ b)
/ 2), c]|};
then
A26: x
=
|[((a
+ b)
/ 2), c]| by
TARSKI:def 1;
(
|[((a
+ b)
/ 2), c]|
`1 )
= ((a
+ b)
/ 2) by
EUCLID: 52;
then x
in { p where p be
Point of (
TOP-REAL 2) : (p
`1 )
= ((a
+ b)
/ 2) } by
A26;
then
A27: x
in (
Vertical_Line (((
W-bound P)
+ (
E-bound P))
/ 2)) by
A9,
JORDAN6:def 6;
A28: (
|[b, c]|
`1 )
= b by
EUCLID: 52;
A29: (
|[b, c]|
`2 )
= c by
EUCLID: 52;
A30: (
|[a, c]|
`1 )
= a by
EUCLID: 52;
(
|[a, c]|
`2 )
= c by
EUCLID: 52;
then
|[((a
+ b)
/ 2), c]|
in (
LSeg (
|[a, c]|,
|[b, c]|)) by
A1,
A28,
A29,
A30,
TOPREAL3: 13;
then x
in P3 by
A26,
XBOOLE_0:def 3;
hence thesis by
A27,
XBOOLE_0:def 4;
end;
then
|[((a
+ b)
/ 2), c]|
in (P3
/\ Q) by
TARSKI:def 1;
then P3
meets Q;
then (
Last_Point (P3,(
E-max P),(
W-min P),(
Vertical_Line (((
W-bound P)
+ (
E-bound P))
/ 2))))
in
{
|[((a
+ b)
/ 2), c]|} by
A7,
A21,
JORDAN5C:def 2;
then (
Last_Point (P3,(
E-max P),(
W-min P),(
Vertical_Line (((
W-bound P)
+ (
E-bound P))
/ 2))))
=
|[((a
+ b)
/ 2), c]| by
TARSKI:def 1;
then
A31: ((
Last_Point (P3,(
E-max P),(
W-min P),(
Vertical_Line (((
W-bound P)
+ (
E-bound P))
/ 2))))
`2 )
= c by
EUCLID: 52;
A32: P3
is_an_arc_of ((
E-max P),(
W-min P)) by
A1,
A2,
Th47;
A33: ((
Upper_Arc P)
/\ P3)
=
{(
W-min P), (
E-max P)} by
A1,
A2,
A4,
A5,
A8,
Th51;
A34: ((
Upper_Arc P)
\/ P3)
= P by
A1,
A2,
A8,
Th51;
((
First_Point ((
Upper_Arc P),(
W-min P),(
E-max P),(
Vertical_Line (((
W-bound P)
+ (
E-bound P))
/ 2))))
`2 )
> ((
Last_Point (P3,(
E-max P),(
W-min P),(
Vertical_Line (((
W-bound P)
+ (
E-bound P))
/ 2))))
`2 ) by
A1,
A2,
A20,
A31,
Th51;
hence thesis by
A3,
A32,
A33,
A34,
JORDAN6:def 9;
end;
theorem ::
JGRAPH_6:53
Th53: for a,b,c,d be
Real st a
< b & c
< d holds ex f be
Function of
I[01] , ((
TOP-REAL 2)
| (
Upper_Arc (
rectangle (a,b,c,d)))) st f is
being_homeomorphism & (f
.
0 )
= (
W-min (
rectangle (a,b,c,d))) & (f
. 1)
= (
E-max (
rectangle (a,b,c,d))) & (
rng f)
= (
Upper_Arc (
rectangle (a,b,c,d))) & (for r be
Real st r
in
[.
0 , (1
/ 2).] holds (f
. r)
= (((1
- (2
* r))
*
|[a, c]|)
+ ((2
* r)
*
|[a, d]|))) & (for r be
Real st r
in
[.(1
/ 2), 1.] holds (f
. r)
= (((1
- ((2
* r)
- 1))
*
|[a, d]|)
+ (((2
* r)
- 1)
*
|[b, d]|))) & (for p be
Point of (
TOP-REAL 2) st p
in (
LSeg (
|[a, c]|,
|[a, d]|)) holds
0
<= ((((p
`2 )
- c)
/ (d
- c))
/ 2) & ((((p
`2 )
- c)
/ (d
- c))
/ 2)
<= 1 & (f
. ((((p
`2 )
- c)
/ (d
- c))
/ 2))
= p) & for p be
Point of (
TOP-REAL 2) st p
in (
LSeg (
|[a, d]|,
|[b, d]|)) holds
0
<= (((((p
`1 )
- a)
/ (b
- a))
/ 2)
+ (1
/ 2)) & (((((p
`1 )
- a)
/ (b
- a))
/ 2)
+ (1
/ 2))
<= 1 & (f
. (((((p
`1 )
- a)
/ (b
- a))
/ 2)
+ (1
/ 2)))
= p
proof
let a,b,c,d be
Real;
set K = (
rectangle (a,b,c,d));
assume that
A1: a
< b and
A2: c
< d;
defpred
P[
object,
object] means for r be
Real st $1
= r holds (r
in
[.
0 , (1
/ 2).] implies $2
= (((1
- (2
* r))
*
|[a, c]|)
+ ((2
* r)
*
|[a, d]|))) & (r
in
[.(1
/ 2), 1.] implies $2
= (((1
- ((2
* r)
- 1))
*
|[a, d]|)
+ (((2
* r)
- 1)
*
|[b, d]|)));
A3:
[.
0 , 1.]
= (
[.
0 , (1
/ 2).]
\/
[.(1
/ 2), 1.]) by
XXREAL_1: 165;
A4: for x be
object st x
in
[.
0 , 1.] holds ex y be
object st
P[x, y]
proof
let x be
object;
assume
A5: x
in
[.
0 , 1.];
now
per cases by
A3,
A5,
XBOOLE_0:def 3;
case
A6: x
in
[.
0 , (1
/ 2).];
then
reconsider r = x as
Real;
A7: r
<= (1
/ 2) by
A6,
XXREAL_1: 1;
set y0 = (((1
- (2
* r))
*
|[a, c]|)
+ ((2
* r)
*
|[a, d]|));
r
in
[.(1
/ 2), 1.] implies y0
= (((1
- ((2
* r)
- 1))
*
|[a, d]|)
+ (((2
* r)
- 1)
*
|[b, d]|))
proof
assume r
in
[.(1
/ 2), 1.];
then (1
/ 2)
<= r by
XXREAL_1: 1;
then
A8: r
= (1
/ 2) by
A7,
XXREAL_0: 1;
then
A9: y0
= ((
0
*
|[a, c]|)
+
|[a, d]|) by
RLVECT_1:def 8
.= ((
0. (
TOP-REAL 2))
+
|[a, d]|) by
RLVECT_1: 10
.=
|[a, d]| by
RLVECT_1: 4;
(((1
- ((2
* r)
- 1))
*
|[a, d]|)
+ (((2
* r)
- 1)
*
|[b, d]|))
= ((1
*
|[a, d]|)
+ (
0. (
TOP-REAL 2))) by
A8,
RLVECT_1: 10
.= (
|[a, d]|
+ (
0. (
TOP-REAL 2))) by
RLVECT_1:def 8
.=
|[a, d]| by
RLVECT_1: 4;
hence thesis by
A9;
end;
then for r2 be
Real st x
= r2 holds (r2
in
[.
0 , (1
/ 2).] implies y0
= (((1
- (2
* r2))
*
|[a, c]|)
+ ((2
* r2)
*
|[a, d]|))) & (r2
in
[.(1
/ 2), 1.] implies y0
= (((1
- ((2
* r2)
- 1))
*
|[a, d]|)
+ (((2
* r2)
- 1)
*
|[b, d]|)));
hence thesis;
end;
case
A10: x
in
[.(1
/ 2), 1.];
then
reconsider r = x as
Real;
A11: (1
/ 2)
<= r by
A10,
XXREAL_1: 1;
set y0 = (((1
- ((2
* r)
- 1))
*
|[a, d]|)
+ (((2
* r)
- 1)
*
|[b, d]|));
r
in
[.
0 , (1
/ 2).] implies y0
= (((1
- (2
* r))
*
|[a, c]|)
+ ((2
* r)
*
|[a, d]|))
proof
assume r
in
[.
0 , (1
/ 2).];
then r
<= (1
/ 2) by
XXREAL_1: 1;
then
A12: r
= (1
/ 2) by
A11,
XXREAL_0: 1;
then
A13: y0
= (
|[a, d]|
+ (
0
*
|[b, d]|)) by
RLVECT_1:def 8
.= (
|[a, d]|
+ (
0. (
TOP-REAL 2))) by
RLVECT_1: 10
.=
|[a, d]| by
RLVECT_1: 4;
(((1
- (2
* r))
*
|[a, c]|)
+ ((2
* r)
*
|[a, d]|))
= ((
0. (
TOP-REAL 2))
+ (1
*
|[a, d]|)) by
A12,
RLVECT_1: 10
.= ((
0. (
TOP-REAL 2))
+
|[a, d]|) by
RLVECT_1:def 8
.=
|[a, d]| by
RLVECT_1: 4;
hence thesis by
A13;
end;
then for r2 be
Real st x
= r2 holds (r2
in
[.
0 , (1
/ 2).] implies y0
= (((1
- (2
* r2))
*
|[a, c]|)
+ ((2
* r2)
*
|[a, d]|))) & (r2
in
[.(1
/ 2), 1.] implies y0
= (((1
- ((2
* r2)
- 1))
*
|[a, d]|)
+ (((2
* r2)
- 1)
*
|[b, d]|)));
hence thesis;
end;
end;
hence thesis;
end;
ex f2 be
Function st (
dom f2)
=
[.
0 , 1.] & for x be
object st x
in
[.
0 , 1.] holds
P[x, (f2
. x)] from
CLASSES1:sch 1(
A4);
then
consider f2 be
Function such that
A14: (
dom f2)
=
[.
0 , 1.] and
A15: for x be
object st x
in
[.
0 , 1.] holds
P[x, (f2
. x)];
(
rng f2)
c= the
carrier of ((
TOP-REAL 2)
| (
Upper_Arc K))
proof
let y be
object;
assume y
in (
rng f2);
then
consider x be
object such that
A16: x
in (
dom f2) and
A17: y
= (f2
. x) by
FUNCT_1:def 3;
now
per cases by
A3,
A14,
A16,
XBOOLE_0:def 3;
case
A18: x
in
[.
0 , (1
/ 2).];
then
reconsider r = x as
Real;
A19:
0
<= r by
A18,
XXREAL_1: 1;
r
<= (1
/ 2) by
A18,
XXREAL_1: 1;
then
A20: (r
* 2)
<= ((1
/ 2)
* 2) by
XREAL_1: 64;
(f2
. x)
= (((1
- (2
* r))
*
|[a, c]|)
+ ((2
* r)
*
|[a, d]|)) by
A14,
A15,
A16,
A18;
then
A21: y
in { (((1
- lambda)
*
|[a, c]|)
+ (lambda
*
|[a, d]|)) where lambda be
Real :
0
<= lambda & lambda
<= 1 } by
A17,
A19,
A20;
(
Upper_Arc K)
= ((
LSeg (
|[a, c]|,
|[a, d]|))
\/ (
LSeg (
|[a, d]|,
|[b, d]|))) by
A1,
A2,
Th51;
then y
in (
Upper_Arc K) by
A21,
XBOOLE_0:def 3;
hence thesis by
PRE_TOPC: 8;
end;
case
A22: x
in
[.(1
/ 2), 1.];
then
reconsider r = x as
Real;
A23: (1
/ 2)
<= r by
A22,
XXREAL_1: 1;
A24: r
<= 1 by
A22,
XXREAL_1: 1;
(r
* 2)
>= ((1
/ 2)
* 2) by
A23,
XREAL_1: 64;
then
A25: ((2
* r)
- 1)
>=
0 by
XREAL_1: 48;
(2
* 1)
>= (2
* r) by
A24,
XREAL_1: 64;
then
A26: ((1
+ 1)
- 1)
>= ((2
* r)
- 1) by
XREAL_1: 9;
(f2
. x)
= (((1
- ((2
* r)
- 1))
*
|[a, d]|)
+ (((2
* r)
- 1)
*
|[b, d]|)) by
A14,
A15,
A16,
A22;
then
A27: y
in { (((1
- lambda)
*
|[a, d]|)
+ (lambda
*
|[b, d]|)) where lambda be
Real :
0
<= lambda & lambda
<= 1 } by
A17,
A25,
A26;
(
Upper_Arc K)
= ((
LSeg (
|[a, c]|,
|[a, d]|))
\/ (
LSeg (
|[a, d]|,
|[b, d]|))) by
A1,
A2,
Th51;
then y
in (
Upper_Arc K) by
A27,
XBOOLE_0:def 3;
hence thesis by
PRE_TOPC: 8;
end;
end;
hence thesis;
end;
then
reconsider f3 = f2 as
Function of
I[01] , ((
TOP-REAL 2)
| (
Upper_Arc K)) by
A14,
BORSUK_1: 40,
FUNCT_2: 2;
A28:
0
in
[.
0 , 1.] by
XXREAL_1: 1;
0
in
[.
0 , (1
/ 2).] by
XXREAL_1: 1;
then
A29: (f3
.
0 )
= (((1
- (2
*
0 ))
*
|[a, c]|)
+ ((2
*
0 )
*
|[a, d]|)) by
A15,
A28
.= ((1
*
|[a, c]|)
+ (
0. (
TOP-REAL 2))) by
RLVECT_1: 10
.= (
|[a, c]|
+ (
0. (
TOP-REAL 2))) by
RLVECT_1:def 8
.=
|[a, c]| by
RLVECT_1: 4
.= (
W-min K) by
A1,
A2,
Th46;
A30: 1
in
[.
0 , 1.] by
XXREAL_1: 1;
1
in
[.(1
/ 2), 1.] by
XXREAL_1: 1;
then
A31: (f3
. 1)
= (((1
- ((2
* 1)
- 1))
*
|[a, d]|)
+ (((2
* 1)
- 1)
*
|[b, d]|)) by
A15,
A30
.= ((
0
*
|[a, d]|)
+
|[b, d]|) by
RLVECT_1:def 8
.= ((
0. (
TOP-REAL 2))
+
|[b, d]|) by
RLVECT_1: 10
.=
|[b, d]| by
RLVECT_1: 4
.= (
E-max K) by
A1,
A2,
Th46;
A32: for r be
Real st r
in
[.
0 , (1
/ 2).] holds (f3
. r)
= (((1
- (2
* r))
*
|[a, c]|)
+ ((2
* r)
*
|[a, d]|))
proof
let r be
Real;
assume
A33: r
in
[.
0 , (1
/ 2).];
then
A34:
0
<= r by
XXREAL_1: 1;
r
<= (1
/ 2) by
A33,
XXREAL_1: 1;
then r
<= 1 by
XXREAL_0: 2;
then r
in
[.
0 , 1.] by
A34,
XXREAL_1: 1;
hence thesis by
A15,
A33;
end;
A35: for r be
Real st r
in
[.(1
/ 2), 1.] holds (f3
. r)
= (((1
- ((2
* r)
- 1))
*
|[a, d]|)
+ (((2
* r)
- 1)
*
|[b, d]|))
proof
let r be
Real;
assume
A36: r
in
[.(1
/ 2), 1.];
then
A37: (1
/ 2)
<= r by
XXREAL_1: 1;
r
<= 1 by
A36,
XXREAL_1: 1;
then r
in
[.
0 , 1.] by
A37,
XXREAL_1: 1;
hence thesis by
A15,
A36;
end;
A38: for p be
Point of (
TOP-REAL 2) st p
in (
LSeg (
|[a, c]|,
|[a, d]|)) holds
0
<= ((((p
`2 )
- c)
/ (d
- c))
/ 2) & ((((p
`2 )
- c)
/ (d
- c))
/ 2)
<= 1 & (f3
. ((((p
`2 )
- c)
/ (d
- c))
/ 2))
= p
proof
let p be
Point of (
TOP-REAL 2);
assume
A39: p
in (
LSeg (
|[a, c]|,
|[a, d]|));
A40: (
|[a, c]|
`2 )
= c by
EUCLID: 52;
A41: (
|[a, d]|
`2 )
= d by
EUCLID: 52;
then
A42: c
<= (p
`2 ) by
A2,
A39,
A40,
TOPREAL1: 4;
A43: (p
`2 )
<= d by
A2,
A39,
A40,
A41,
TOPREAL1: 4;
A44: (d
- c)
>
0 by
A2,
XREAL_1: 50;
A45: ((p
`2 )
- c)
>=
0 by
A42,
XREAL_1: 48;
A46: (d
- c)
>
0 by
A2,
XREAL_1: 50;
((p
`2 )
- c)
<= (d
- c) by
A43,
XREAL_1: 9;
then (((p
`2 )
- c)
/ (d
- c))
<= ((d
- c)
/ (d
- c)) by
A46,
XREAL_1: 72;
then (((p
`2 )
- c)
/ (d
- c))
<= 1 by
A46,
XCMPLX_1: 60;
then
A47: ((((p
`2 )
- c)
/ (d
- c))
/ 2)
<= (1
/ 2) by
XREAL_1: 72;
set r = ((((p
`2 )
- c)
/ (d
- c))
/ 2);
r
in
[.
0 , (1
/ 2).] by
A44,
A45,
A47,
XXREAL_1: 1;
then (f3
. ((((p
`2 )
- c)
/ (d
- c))
/ 2))
= (((1
- (2
* r))
*
|[a, c]|)
+ ((2
* r)
*
|[a, d]|)) by
A32
.= (
|[((1
- (2
* r))
* a), ((1
- (2
* r))
* c)]|
+ ((2
* r)
*
|[a, d]|)) by
EUCLID: 58
.= (
|[((1
- (2
* r))
* a), ((1
- (2
* r))
* c)]|
+
|[((2
* r)
* a), ((2
* r)
* d)]|) by
EUCLID: 58
.=
|[(((1
* a)
- ((2
* r)
* a))
+ ((2
* r)
* a)), (((1
- (2
* r))
* c)
+ ((2
* r)
* d))]| by
EUCLID: 56
.=
|[a, ((1
* c)
+ ((((p
`2 )
- c)
/ (d
- c))
* (d
- c)))]|
.=
|[a, ((1
* c)
+ ((p
`2 )
- c))]| by
A46,
XCMPLX_1: 87
.=
|[(p
`1 ), (p
`2 )]| by
A39,
TOPREAL3: 11
.= p by
EUCLID: 53;
hence thesis by
A44,
A45,
A47,
XXREAL_0: 2;
end;
A48: for p be
Point of (
TOP-REAL 2) st p
in (
LSeg (
|[a, d]|,
|[b, d]|)) holds
0
<= (((((p
`1 )
- a)
/ (b
- a))
/ 2)
+ (1
/ 2)) & (((((p
`1 )
- a)
/ (b
- a))
/ 2)
+ (1
/ 2))
<= 1 & (f3
. (((((p
`1 )
- a)
/ (b
- a))
/ 2)
+ (1
/ 2)))
= p
proof
let p be
Point of (
TOP-REAL 2);
assume
A49: p
in (
LSeg (
|[a, d]|,
|[b, d]|));
A50: (
|[a, d]|
`1 )
= a by
EUCLID: 52;
A51: (
|[b, d]|
`1 )
= b by
EUCLID: 52;
then
A52: a
<= (p
`1 ) by
A1,
A49,
A50,
TOPREAL1: 3;
A53: (p
`1 )
<= b by
A1,
A49,
A50,
A51,
TOPREAL1: 3;
A54: (b
- a)
>
0 by
A1,
XREAL_1: 50;
A55: ((p
`1 )
- a)
>=
0 by
A52,
XREAL_1: 48;
then
A56: (((((p
`1 )
- a)
/ (b
- a))
/ 2)
+ (1
/ 2))
>= (
0
+ (1
/ 2)) by
A54,
XREAL_1: 7;
A57: (b
- a)
>
0 by
A1,
XREAL_1: 50;
((p
`1 )
- a)
<= (b
- a) by
A53,
XREAL_1: 9;
then (((p
`1 )
- a)
/ (b
- a))
<= ((b
- a)
/ (b
- a)) by
A57,
XREAL_1: 72;
then (((p
`1 )
- a)
/ (b
- a))
<= 1 by
A57,
XCMPLX_1: 60;
then ((((p
`1 )
- a)
/ (b
- a))
/ 2)
<= (1
/ 2) by
XREAL_1: 72;
then
A58: (((((p
`1 )
- a)
/ (b
- a))
/ 2)
+ (1
/ 2))
<= ((1
/ 2)
+ (1
/ 2)) by
XREAL_1: 7;
set r = (((((p
`1 )
- a)
/ (b
- a))
/ 2)
+ (1
/ 2));
r
in
[.(1
/ 2), 1.] by
A56,
A58,
XXREAL_1: 1;
then (f3
. (((((p
`1 )
- a)
/ (b
- a))
/ 2)
+ (1
/ 2)))
= (((1
- ((2
* r)
- 1))
*
|[a, d]|)
+ (((2
* r)
- 1)
*
|[b, d]|)) by
A35
.= (
|[((1
- ((2
* r)
- 1))
* a), ((1
- ((2
* r)
- 1))
* d)]|
+ (((2
* r)
- 1)
*
|[b, d]|)) by
EUCLID: 58
.= (
|[((1
- ((2
* r)
- 1))
* a), ((1
- ((2
* r)
- 1))
* d)]|
+
|[(((2
* r)
- 1)
* b), (((2
* r)
- 1)
* d)]|) by
EUCLID: 58
.=
|[(((1
- ((2
* r)
- 1))
* a)
+ (((2
* r)
- 1)
* b)), (((1
* d)
- (((2
* r)
- 1)
* d))
+ (((2
* r)
- 1)
* d))]| by
EUCLID: 56
.=
|[((1
* a)
+ ((((p
`1 )
- a)
/ (b
- a))
* (b
- a))), d]|
.=
|[((1
* a)
+ ((p
`1 )
- a)), d]| by
A57,
XCMPLX_1: 87
.=
|[(p
`1 ), (p
`2 )]| by
A49,
TOPREAL3: 12
.= p by
EUCLID: 53;
hence thesis by
A54,
A55,
A58;
end;
reconsider B00 =
[.
0 , 1.] as
Subset of
R^1 by
TOPMETR: 17;
reconsider B01 = B00 as non
empty
Subset of
R^1 by
XXREAL_1: 1;
I[01]
= (
R^1
| B01) by
TOPMETR: 19,
TOPMETR: 20;
then
consider h1 be
Function of
I[01] ,
R^1 such that
A59: for p be
Point of
I[01] holds (h1
. p)
= p and
A60: h1 is
continuous by
Th6;
consider h2 be
Function of
I[01] ,
R^1 such that
A61: for p be
Point of
I[01] , r1 be
Real st (h1
. p)
= r1 holds (h2
. p)
= (2
* r1) and
A62: h2 is
continuous by
A60,
JGRAPH_2: 23;
consider h5 be
Function of
I[01] ,
R^1 such that
A63: for p be
Point of
I[01] , r1 be
Real st (h2
. p)
= r1 holds (h5
. p)
= (1
- r1) and
A64: h5 is
continuous by
A62,
Th8;
consider h3 be
Function of
I[01] ,
R^1 such that
A65: for p be
Point of
I[01] , r1 be
Real st (h2
. p)
= r1 holds (h3
. p)
= (r1
- 1) and
A66: h3 is
continuous by
A62,
Th7;
consider h4 be
Function of
I[01] ,
R^1 such that
A67: for p be
Point of
I[01] , r1 be
Real st (h3
. p)
= r1 holds (h4
. p)
= (1
- r1) and
A68: h4 is
continuous by
A66,
Th8;
consider g1 be
Function of
I[01] , (
TOP-REAL 2) such that
A69: for r be
Point of
I[01] holds (g1
. r)
= (((h5
. r)
*
|[a, c]|)
+ ((h2
. r)
*
|[a, d]|)) and
A70: g1 is
continuous by
A62,
A64,
Th13;
A71: for r be
Point of
I[01] , s be
Real st r
= s holds (g1
. r)
= (((1
- (2
* s))
*
|[a, c]|)
+ ((2
* s)
*
|[a, d]|))
proof
let r be
Point of
I[01] , s be
Real;
assume
A72: r
= s;
(g1
. r)
= (((h5
. r)
*
|[a, c]|)
+ ((h2
. r)
*
|[a, d]|)) by
A69
.= (((1
- (2
* (h1
. r)))
*
|[a, c]|)
+ ((h2
. r)
*
|[a, d]|)) by
A61,
A63
.= (((1
- (2
* (h1
. r)))
*
|[a, c]|)
+ ((2
* (h1
. r))
*
|[a, d]|)) by
A61
.= (((1
- (2
* s))
*
|[a, c]|)
+ ((2
* (h1
. r))
*
|[a, d]|)) by
A59,
A72
.= (((1
- (2
* s))
*
|[a, c]|)
+ ((2
* s)
*
|[a, d]|)) by
A59,
A72;
hence thesis;
end;
consider g2 be
Function of
I[01] , (
TOP-REAL 2) such that
A73: for r be
Point of
I[01] holds (g2
. r)
= (((h4
. r)
*
|[a, d]|)
+ ((h3
. r)
*
|[b, d]|)) and
A74: g2 is
continuous by
A66,
A68,
Th13;
A75: for r be
Point of
I[01] , s be
Real st r
= s holds (g2
. r)
= (((1
- ((2
* s)
- 1))
*
|[a, d]|)
+ (((2
* s)
- 1)
*
|[b, d]|))
proof
let r be
Point of
I[01] , s be
Real;
assume
A76: r
= s;
(g2
. r)
= (((h4
. r)
*
|[a, d]|)
+ ((h3
. r)
*
|[b, d]|)) by
A73
.= (((1
- ((h2
. r)
- 1))
*
|[a, d]|)
+ ((h3
. r)
*
|[b, d]|)) by
A65,
A67
.= (((1
- ((h2
. r)
- 1))
*
|[a, d]|)
+ (((h2
. r)
- 1)
*
|[b, d]|)) by
A65
.= (((1
- ((2
* (h1
. r))
- 1))
*
|[a, d]|)
+ (((h2
. r)
- 1)
*
|[b, d]|)) by
A61
.= (((1
- ((2
* (h1
. r))
- 1))
*
|[a, d]|)
+ (((2
* (h1
. r))
- 1)
*
|[b, d]|)) by
A61
.= (((1
- ((2
* s)
- 1))
*
|[a, d]|)
+ (((2
* (h1
. r))
- 1)
*
|[b, d]|)) by
A59,
A76
.= (((1
- ((2
* s)
- 1))
*
|[a, d]|)
+ (((2
* s)
- 1)
*
|[b, d]|)) by
A59,
A76;
hence thesis;
end;
reconsider B11 =
[.
0 , (1
/ 2).] as non
empty
Subset of
I[01] by
A3,
BORSUK_1: 40,
XBOOLE_1: 7,
XXREAL_1: 1;
A77: (
dom (g1
| B11))
= ((
dom g1)
/\ B11) by
RELAT_1: 61
.= (the
carrier of
I[01]
/\ B11) by
FUNCT_2:def 1
.= B11 by
XBOOLE_1: 28
.= the
carrier of (
I[01]
| B11) by
PRE_TOPC: 8;
(
rng (g1
| B11))
c= the
carrier of (
TOP-REAL 2);
then
reconsider g11 = (g1
| B11) as
Function of (
I[01]
| B11), (
TOP-REAL 2) by
A77,
FUNCT_2: 2;
A78: (
TOP-REAL 2) is
SubSpace of (
TOP-REAL 2) by
TSEP_1: 2;
then
A79: g11 is
continuous by
A70,
BORSUK_4: 44;
reconsider B22 =
[.(1
/ 2), 1.] as non
empty
Subset of
I[01] by
A3,
BORSUK_1: 40,
XBOOLE_1: 7,
XXREAL_1: 1;
A80: (
dom (g2
| B22))
= ((
dom g2)
/\ B22) by
RELAT_1: 61
.= (the
carrier of
I[01]
/\ B22) by
FUNCT_2:def 1
.= B22 by
XBOOLE_1: 28
.= the
carrier of (
I[01]
| B22) by
PRE_TOPC: 8;
(
rng (g2
| B22))
c= the
carrier of (
TOP-REAL 2);
then
reconsider g22 = (g2
| B22) as
Function of (
I[01]
| B22), (
TOP-REAL 2) by
A80,
FUNCT_2: 2;
A81: g22 is
continuous by
A74,
A78,
BORSUK_4: 44;
A82: B11
= (
[#] (
I[01]
| B11)) by
PRE_TOPC:def 5;
A83: B22
= (
[#] (
I[01]
| B22)) by
PRE_TOPC:def 5;
A84: B11 is
closed by
Th4;
A85: B22 is
closed by
Th4;
A86: ((
[#] (
I[01]
| B11))
\/ (
[#] (
I[01]
| B22)))
= (
[#]
I[01] ) by
A82,
A83,
BORSUK_1: 40,
XXREAL_1: 165;
for p be
object st p
in ((
[#] (
I[01]
| B11))
/\ (
[#] (
I[01]
| B22))) holds (g11
. p)
= (g22
. p)
proof
let p be
object;
assume
A87: p
in ((
[#] (
I[01]
| B11))
/\ (
[#] (
I[01]
| B22)));
then
A88: p
in (
[#] (
I[01]
| B11)) by
XBOOLE_0:def 4;
A89: p
in (
[#] (
I[01]
| B22)) by
A87;
A90: p
in B11 by
A88,
PRE_TOPC:def 5;
A91: p
in B22 by
A89,
PRE_TOPC:def 5;
reconsider rp = p as
Real by
A90;
A92: rp
<= (1
/ 2) by
A90,
XXREAL_1: 1;
rp
>= (1
/ 2) by
A91,
XXREAL_1: 1;
then rp
= (1
/ 2) by
A92,
XXREAL_0: 1;
then
A93: (2
* rp)
= 1;
thus (g11
. p)
= (g1
. p) by
A90,
FUNCT_1: 49
.= (((1
- 1)
*
|[a, c]|)
+ (1
*
|[a, d]|)) by
A71,
A90,
A93
.= ((
0. (
TOP-REAL 2))
+ (1
*
|[a, d]|)) by
RLVECT_1: 10
.= (((1
-
0 )
*
|[a, d]|)
+ ((1
- 1)
*
|[b, d]|)) by
RLVECT_1: 10
.= (g2
. p) by
A75,
A90,
A93
.= (g22
. p) by
A91,
FUNCT_1: 49;
end;
then
consider h be
Function of
I[01] , (
TOP-REAL 2) such that
A94: h
= (g11
+* g22) and
A95: h is
continuous by
A79,
A81,
A82,
A83,
A84,
A85,
A86,
JGRAPH_2: 1;
A96: (
dom f3)
= (
dom h) by
Th5;
A97: (
dom f3)
= the
carrier of
I[01] by
Th5;
for x be
object st x
in (
dom f2) holds (f3
. x)
= (h
. x)
proof
let x be
object;
assume
A98: x
in (
dom f2);
then
reconsider rx = x as
Real by
A97;
A99:
0
<= rx by
A96,
A98,
BORSUK_1: 40,
XXREAL_1: 1;
A100: rx
<= 1 by
A96,
A98,
BORSUK_1: 40,
XXREAL_1: 1;
now
per cases ;
case
A101: rx
< (1
/ 2);
then
A102: rx
in
[.
0 , (1
/ 2).] by
A99,
XXREAL_1: 1;
not rx
in (
dom g22) by
A83,
A101,
XXREAL_1: 1;
then (h
. rx)
= (g11
. rx) by
A94,
FUNCT_4: 11
.= (g1
. rx) by
A102,
FUNCT_1: 49
.= (((1
- (2
* rx))
*
|[a, c]|)
+ ((2
* rx)
*
|[a, d]|)) by
A71,
A96,
A98
.= (f3
. rx) by
A32,
A102;
hence thesis;
end;
case rx
>= (1
/ 2);
then
A103: rx
in
[.(1
/ 2), 1.] by
A100,
XXREAL_1: 1;
then rx
in (
[#] (
I[01]
| B22)) by
PRE_TOPC:def 5;
then (h
. rx)
= (g22
. rx) by
A80,
A94,
FUNCT_4: 13
.= (g2
. rx) by
A103,
FUNCT_1: 49
.= (((1
- ((2
* rx)
- 1))
*
|[a, d]|)
+ (((2
* rx)
- 1)
*
|[b, d]|)) by
A75,
A96,
A98
.= (f3
. rx) by
A35,
A103;
hence thesis;
end;
end;
hence thesis;
end;
then
A104: f2
= h by
A96,
FUNCT_1: 2;
for x1,x2 be
object st x1
in (
dom f3) & x2
in (
dom f3) & (f3
. x1)
= (f3
. x2) holds x1
= x2
proof
let x1,x2 be
object;
assume that
A105: x1
in (
dom f3) and
A106: x2
in (
dom f3) and
A107: (f3
. x1)
= (f3
. x2);
reconsider r1 = x1 as
Real by
A105;
reconsider r2 = x2 as
Real by
A106;
A108: ((
LSeg (
|[a, c]|,
|[a, d]|))
/\ (
LSeg (
|[a, d]|,
|[b, d]|)))
=
{
|[a, d]|} by
A1,
A2,
Th34;
now
per cases by
A3,
A14,
A105,
A106,
XBOOLE_0:def 3;
case
A109: x1
in
[.
0 , (1
/ 2).] & x2
in
[.
0 , (1
/ 2).];
then (f3
. r1)
= (((1
- (2
* r1))
*
|[a, c]|)
+ ((2
* r1)
*
|[a, d]|)) by
A32;
then (((1
- (2
* r2))
*
|[a, c]|)
+ ((2
* r2)
*
|[a, d]|))
= (((1
- (2
* r1))
*
|[a, c]|)
+ ((2
* r1)
*
|[a, d]|)) by
A32,
A107,
A109;
then ((((1
- (2
* r2))
*
|[a, c]|)
+ ((2
* r2)
*
|[a, d]|))
- ((2
* r1)
*
|[a, d]|))
= ((1
- (2
* r1))
*
|[a, c]|) by
RLVECT_4: 1;
then (((1
- (2
* r2))
*
|[a, c]|)
+ (((2
* r2)
*
|[a, d]|)
- ((2
* r1)
*
|[a, d]|)))
= ((1
- (2
* r1))
*
|[a, c]|) by
RLVECT_1:def 3;
then (((1
- (2
* r2))
*
|[a, c]|)
+ (((2
* r2)
- (2
* r1))
*
|[a, d]|))
= ((1
- (2
* r1))
*
|[a, c]|) by
RLVECT_1: 35;
then ((((2
* r2)
- (2
* r1))
*
|[a, d]|)
+ (((1
- (2
* r2))
*
|[a, c]|)
- ((1
- (2
* r1))
*
|[a, c]|)))
= (((1
- (2
* r1))
*
|[a, c]|)
- ((1
- (2
* r1))
*
|[a, c]|)) by
RLVECT_1:def 3;
then ((((2
* r2)
- (2
* r1))
*
|[a, d]|)
+ (((1
- (2
* r2))
*
|[a, c]|)
- ((1
- (2
* r1))
*
|[a, c]|)))
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 5;
then ((((2
* r2)
- (2
* r1))
*
|[a, d]|)
+ (((1
- (2
* r2))
- (1
- (2
* r1)))
*
|[a, c]|))
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 35;
then ((((2
* r2)
- (2
* r1))
*
|[a, d]|)
+ ((
- ((2
* r2)
- (2
* r1)))
*
|[a, c]|))
= (
0. (
TOP-REAL 2));
then ((((2
* r2)
- (2
* r1))
*
|[a, d]|)
+ (
- (((2
* r2)
- (2
* r1))
*
|[a, c]|)))
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 79;
then ((((2
* r2)
- (2
* r1))
*
|[a, d]|)
- (((2
* r2)
- (2
* r1))
*
|[a, c]|))
= (
0. (
TOP-REAL 2));
then (((2
* r2)
- (2
* r1))
* (
|[a, d]|
-
|[a, c]|))
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 34;
then ((2
* r2)
- (2
* r1))
=
0 or (
|[a, d]|
-
|[a, c]|)
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 11;
then ((2
* r2)
- (2
* r1))
=
0 or
|[a, d]|
=
|[a, c]| by
RLVECT_1: 21;
then ((2
* r2)
- (2
* r1))
=
0 or d
= (
|[a, c]|
`2 ) by
EUCLID: 52;
hence thesis by
A2,
EUCLID: 52;
end;
case
A110: x1
in
[.
0 , (1
/ 2).] & x2
in
[.(1
/ 2), 1.];
then
A111: (f3
. r1)
= (((1
- (2
* r1))
*
|[a, c]|)
+ ((2
* r1)
*
|[a, d]|)) by
A32;
A112:
0
<= r1 by
A110,
XXREAL_1: 1;
r1
<= (1
/ 2) by
A110,
XXREAL_1: 1;
then (r1
* 2)
<= ((1
/ 2)
* 2) by
XREAL_1: 64;
then
A113: (f3
. r1)
in (
LSeg (
|[a, c]|,
|[a, d]|)) by
A111,
A112;
A114: (f3
. r2)
= (((1
- ((2
* r2)
- 1))
*
|[a, d]|)
+ (((2
* r2)
- 1)
*
|[b, d]|)) by
A35,
A110;
A115: (1
/ 2)
<= r2 by
A110,
XXREAL_1: 1;
A116: r2
<= 1 by
A110,
XXREAL_1: 1;
(r2
* 2)
>= ((1
/ 2)
* 2) by
A115,
XREAL_1: 64;
then
A117: ((2
* r2)
- 1)
>=
0 by
XREAL_1: 48;
(2
* 1)
>= (2
* r2) by
A116,
XREAL_1: 64;
then ((1
+ 1)
- 1)
>= ((2
* r2)
- 1) by
XREAL_1: 9;
then (f3
. r2)
in { (((1
- lambda)
*
|[a, d]|)
+ (lambda
*
|[b, d]|)) where lambda be
Real :
0
<= lambda & lambda
<= 1 } by
A114,
A117;
then (f3
. r1)
in ((
LSeg (
|[a, c]|,
|[a, d]|))
/\ (
LSeg (
|[a, d]|,
|[b, d]|))) by
A107,
A113,
XBOOLE_0:def 4;
then
A118: (f3
. r1)
=
|[a, d]| by
A108,
TARSKI:def 1;
then ((((1
- (2
* r1))
*
|[a, c]|)
+ ((2
* r1)
*
|[a, d]|))
+ (
-
|[a, d]|))
= (
0. (
TOP-REAL 2)) by
A111,
RLVECT_1: 5;
then ((((1
- (2
* r1))
*
|[a, c]|)
+ ((2
* r1)
*
|[a, d]|))
+ ((
- 1)
*
|[a, d]|))
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 16;
then (((1
- (2
* r1))
*
|[a, c]|)
+ (((2
* r1)
*
|[a, d]|)
+ ((
- 1)
*
|[a, d]|)))
= (
0. (
TOP-REAL 2)) by
RLVECT_1:def 3;
then (((1
- (2
* r1))
*
|[a, c]|)
+ (((2
* r1)
+ (
- 1))
*
|[a, d]|))
= (
0. (
TOP-REAL 2)) by
RLVECT_1:def 6;
then (((1
- (2
* r1))
*
|[a, c]|)
+ ((
- (1
- (2
* r1)))
*
|[a, d]|))
= (
0. (
TOP-REAL 2));
then (((1
- (2
* r1))
*
|[a, c]|)
+ (
- ((1
- (2
* r1))
*
|[a, d]|)))
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 79;
then (((1
- (2
* r1))
*
|[a, c]|)
- ((1
- (2
* r1))
*
|[a, d]|))
= (
0. (
TOP-REAL 2));
then ((1
- (2
* r1))
* (
|[a, c]|
-
|[a, d]|))
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 34;
then (1
- (2
* r1))
=
0 or (
|[a, c]|
-
|[a, d]|)
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 11;
then (1
- (2
* r1))
=
0 or
|[a, c]|
=
|[a, d]| by
RLVECT_1: 21;
then
A119: (1
- (2
* r1))
=
0 or c
= (
|[a, d]|
`2 ) by
EUCLID: 52;
((((1
- ((2
* r2)
- 1))
*
|[a, d]|)
+ (((2
* r2)
- 1)
*
|[b, d]|))
+ (
-
|[a, d]|))
= (
0. (
TOP-REAL 2)) by
A107,
A114,
A118,
RLVECT_1: 5;
then ((((1
- ((2
* r2)
- 1))
*
|[a, d]|)
+ (((2
* r2)
- 1)
*
|[b, d]|))
+ ((
- 1)
*
|[a, d]|))
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 16;
then ((((2
* r2)
- 1)
*
|[b, d]|)
+ (((1
- ((2
* r2)
- 1))
*
|[a, d]|)
+ ((
- 1)
*
|[a, d]|)))
= (
0. (
TOP-REAL 2)) by
RLVECT_1:def 3;
then ((((2
* r2)
- 1)
*
|[b, d]|)
+ (((1
- ((2
* r2)
- 1))
+ (
- 1))
*
|[a, d]|))
= (
0. (
TOP-REAL 2)) by
RLVECT_1:def 6;
then ((((2
* r2)
- 1)
*
|[b, d]|)
+ ((
- ((2
* r2)
- 1))
*
|[a, d]|))
= (
0. (
TOP-REAL 2));
then ((((2
* r2)
- 1)
*
|[b, d]|)
+ (
- (((2
* r2)
- 1)
*
|[a, d]|)))
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 79;
then ((((2
* r2)
- 1)
*
|[b, d]|)
- (((2
* r2)
- 1)
*
|[a, d]|))
= (
0. (
TOP-REAL 2));
then (((2
* r2)
- 1)
* (
|[b, d]|
-
|[a, d]|))
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 34;
then ((2
* r2)
- 1)
=
0 or (
|[b, d]|
-
|[a, d]|)
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 11;
then ((2
* r2)
- 1)
=
0 or
|[b, d]|
=
|[a, d]| by
RLVECT_1: 21;
then ((2
* r2)
- 1)
=
0 or b
= (
|[a, d]|
`1 ) by
EUCLID: 52;
hence thesis by
A1,
A2,
A119,
EUCLID: 52;
end;
case
A120: x1
in
[.(1
/ 2), 1.] & x2
in
[.
0 , (1
/ 2).];
then
A121: (f3
. r2)
= (((1
- (2
* r2))
*
|[a, c]|)
+ ((2
* r2)
*
|[a, d]|)) by
A32;
A122:
0
<= r2 by
A120,
XXREAL_1: 1;
r2
<= (1
/ 2) by
A120,
XXREAL_1: 1;
then (r2
* 2)
<= ((1
/ 2)
* 2) by
XREAL_1: 64;
then
A123: (f3
. r2)
in (
LSeg (
|[a, c]|,
|[a, d]|)) by
A121,
A122;
A124: (f3
. r1)
= (((1
- ((2
* r1)
- 1))
*
|[a, d]|)
+ (((2
* r1)
- 1)
*
|[b, d]|)) by
A35,
A120;
A125: (1
/ 2)
<= r1 by
A120,
XXREAL_1: 1;
A126: r1
<= 1 by
A120,
XXREAL_1: 1;
(r1
* 2)
>= ((1
/ 2)
* 2) by
A125,
XREAL_1: 64;
then
A127: ((2
* r1)
- 1)
>=
0 by
XREAL_1: 48;
(2
* 1)
>= (2
* r1) by
A126,
XREAL_1: 64;
then ((1
+ 1)
- 1)
>= ((2
* r1)
- 1) by
XREAL_1: 9;
then (f3
. r1)
in { (((1
- lambda)
*
|[a, d]|)
+ (lambda
*
|[b, d]|)) where lambda be
Real :
0
<= lambda & lambda
<= 1 } by
A124,
A127;
then (f3
. r2)
in ((
LSeg (
|[a, c]|,
|[a, d]|))
/\ (
LSeg (
|[a, d]|,
|[b, d]|))) by
A107,
A123,
XBOOLE_0:def 4;
then
A128: (f3
. r2)
=
|[a, d]| by
A108,
TARSKI:def 1;
then ((((1
- (2
* r2))
*
|[a, c]|)
+ ((2
* r2)
*
|[a, d]|))
+ (
-
|[a, d]|))
= (
0. (
TOP-REAL 2)) by
A121,
RLVECT_1: 5;
then ((((1
- (2
* r2))
*
|[a, c]|)
+ ((2
* r2)
*
|[a, d]|))
+ ((
- 1)
*
|[a, d]|))
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 16;
then (((1
- (2
* r2))
*
|[a, c]|)
+ (((2
* r2)
*
|[a, d]|)
+ ((
- 1)
*
|[a, d]|)))
= (
0. (
TOP-REAL 2)) by
RLVECT_1:def 3;
then (((1
- (2
* r2))
*
|[a, c]|)
+ (((2
* r2)
+ (
- 1))
*
|[a, d]|))
= (
0. (
TOP-REAL 2)) by
RLVECT_1:def 6;
then (((1
- (2
* r2))
*
|[a, c]|)
+ ((
- (1
- (2
* r2)))
*
|[a, d]|))
= (
0. (
TOP-REAL 2));
then (((1
- (2
* r2))
*
|[a, c]|)
+ (
- ((1
- (2
* r2))
*
|[a, d]|)))
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 79;
then (((1
- (2
* r2))
*
|[a, c]|)
- ((1
- (2
* r2))
*
|[a, d]|))
= (
0. (
TOP-REAL 2));
then ((1
- (2
* r2))
* (
|[a, c]|
-
|[a, d]|))
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 34;
then (1
- (2
* r2))
=
0 or (
|[a, c]|
-
|[a, d]|)
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 11;
then (1
- (2
* r2))
=
0 or
|[a, c]|
=
|[a, d]| by
RLVECT_1: 21;
then
A129: (1
- (2
* r2))
=
0 or c
= (
|[a, d]|
`2 ) by
EUCLID: 52;
((((1
- ((2
* r1)
- 1))
*
|[a, d]|)
+ (((2
* r1)
- 1)
*
|[b, d]|))
+ (
-
|[a, d]|))
= (
0. (
TOP-REAL 2)) by
A107,
A124,
A128,
RLVECT_1: 5;
then ((((1
- ((2
* r1)
- 1))
*
|[a, d]|)
+ (((2
* r1)
- 1)
*
|[b, d]|))
+ ((
- 1)
*
|[a, d]|))
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 16;
then ((((2
* r1)
- 1)
*
|[b, d]|)
+ (((1
- ((2
* r1)
- 1))
*
|[a, d]|)
+ ((
- 1)
*
|[a, d]|)))
= (
0. (
TOP-REAL 2)) by
RLVECT_1:def 3;
then ((((2
* r1)
- 1)
*
|[b, d]|)
+ (((
- 1)
+ (1
- ((2
* r1)
- 1)))
*
|[a, d]|))
= (
0. (
TOP-REAL 2)) by
RLVECT_1:def 6;
then ((((2
* r1)
- 1)
*
|[b, d]|)
+ ((
- ((2
* r1)
- 1))
*
|[a, d]|))
= (
0. (
TOP-REAL 2));
then ((((2
* r1)
- 1)
*
|[b, d]|)
+ (
- (((2
* r1)
- 1)
*
|[a, d]|)))
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 79;
then ((((2
* r1)
- 1)
*
|[b, d]|)
- (((2
* r1)
- 1)
*
|[a, d]|))
= (
0. (
TOP-REAL 2));
then (((2
* r1)
- 1)
* (
|[b, d]|
-
|[a, d]|))
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 34;
then ((2
* r1)
- 1)
=
0 or (
|[b, d]|
-
|[a, d]|)
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 11;
then ((2
* r1)
- 1)
=
0 or
|[b, d]|
=
|[a, d]| by
RLVECT_1: 21;
then ((2
* r1)
- 1)
=
0 or b
= (
|[a, d]|
`1 ) by
EUCLID: 52;
hence thesis by
A1,
A2,
A129,
EUCLID: 52;
end;
case
A130: x1
in
[.(1
/ 2), 1.] & x2
in
[.(1
/ 2), 1.];
then (f3
. r1)
= (((1
- ((2
* r1)
- 1))
*
|[a, d]|)
+ (((2
* r1)
- 1)
*
|[b, d]|)) by
A35;
then (((1
- ((2
* r2)
- 1))
*
|[a, d]|)
+ (((2
* r2)
- 1)
*
|[b, d]|))
= (((1
- ((2
* r1)
- 1))
*
|[a, d]|)
+ (((2
* r1)
- 1)
*
|[b, d]|)) by
A35,
A107,
A130;
then ((((1
- ((2
* r2)
- 1))
*
|[a, d]|)
+ (((2
* r2)
- 1)
*
|[b, d]|))
- (((2
* r1)
- 1)
*
|[b, d]|))
= ((1
- ((2
* r1)
- 1))
*
|[a, d]|) by
RLVECT_4: 1;
then (((1
- ((2
* r2)
- 1))
*
|[a, d]|)
+ ((((2
* r2)
- 1)
*
|[b, d]|)
- (((2
* r1)
- 1)
*
|[b, d]|)))
= ((1
- ((2
* r1)
- 1))
*
|[a, d]|) by
RLVECT_1:def 3;
then (((1
- ((2
* r2)
- 1))
*
|[a, d]|)
+ ((((2
* r2)
- 1)
- ((2
* r1)
- 1))
*
|[b, d]|))
= ((1
- ((2
* r1)
- 1))
*
|[a, d]|) by
RLVECT_1: 35;
then (((((2
* r2)
- 1)
- ((2
* r1)
- 1))
*
|[b, d]|)
+ (((1
- ((2
* r2)
- 1))
*
|[a, d]|)
- ((1
- ((2
* r1)
- 1))
*
|[a, d]|)))
= (((1
- ((2
* r1)
- 1))
*
|[a, d]|)
- ((1
- ((2
* r1)
- 1))
*
|[a, d]|)) by
RLVECT_1:def 3;
then (((((2
* r2)
- 1)
- ((2
* r1)
- 1))
*
|[b, d]|)
+ (((1
- ((2
* r2)
- 1))
*
|[a, d]|)
- ((1
- ((2
* r1)
- 1))
*
|[a, d]|)))
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 5;
then (((((2
* r2)
- 1)
- ((2
* r1)
- 1))
*
|[b, d]|)
+ (((1
- ((2
* r2)
- 1))
- (1
- ((2
* r1)
- 1)))
*
|[a, d]|))
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 35;
then (((((2
* r2)
- 1)
- ((2
* r1)
- 1))
*
|[b, d]|)
+ ((
- (((2
* r2)
- 1)
- ((2
* r1)
- 1)))
*
|[a, d]|))
= (
0. (
TOP-REAL 2));
then (((((2
* r2)
- 1)
- ((2
* r1)
- 1))
*
|[b, d]|)
+ (
- ((((2
* r2)
- 1)
- ((2
* r1)
- 1))
*
|[a, d]|)))
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 79;
then (((((2
* r2)
- 1)
- ((2
* r1)
- 1))
*
|[b, d]|)
- ((((2
* r2)
- 1)
- ((2
* r1)
- 1))
*
|[a, d]|))
= (
0. (
TOP-REAL 2));
then ((((2
* r2)
- 1)
- ((2
* r1)
- 1))
* (
|[b, d]|
-
|[a, d]|))
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 34;
then (((2
* r2)
- 1)
- ((2
* r1)
- 1))
=
0 or (
|[b, d]|
-
|[a, d]|)
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 11;
then (((2
* r2)
- 1)
- ((2
* r1)
- 1))
=
0 or
|[b, d]|
=
|[a, d]| by
RLVECT_1: 21;
then (((2
* r2)
- 1)
- ((2
* r1)
- 1))
=
0 or b
= (
|[a, d]|
`1 ) by
EUCLID: 52;
hence thesis by
A1,
EUCLID: 52;
end;
end;
hence thesis;
end;
then
A131: f3 is
one-to-one by
FUNCT_1:def 4;
(
[#] ((
TOP-REAL 2)
| (
Upper_Arc K)))
c= (
rng f3)
proof
let y be
object;
assume y
in (
[#] ((
TOP-REAL 2)
| (
Upper_Arc K)));
then
A132: y
in (
Upper_Arc K) by
PRE_TOPC:def 5;
then
reconsider q = y as
Point of (
TOP-REAL 2);
A133: (
Upper_Arc K)
= ((
LSeg (
|[a, c]|,
|[a, d]|))
\/ (
LSeg (
|[a, d]|,
|[b, d]|))) by
A1,
A2,
Th51;
now
per cases by
A132,
A133,
XBOOLE_0:def 3;
case
A134: q
in (
LSeg (
|[a, c]|,
|[a, d]|));
then
A135:
0
<= ((((q
`2 )
- c)
/ (d
- c))
/ 2) by
A38;
A136: ((((q
`2 )
- c)
/ (d
- c))
/ 2)
<= 1 by
A38,
A134;
A137: (f3
. ((((q
`2 )
- c)
/ (d
- c))
/ 2))
= q by
A38,
A134;
((((q
`2 )
- c)
/ (d
- c))
/ 2)
in
[.
0 , 1.] by
A135,
A136,
XXREAL_1: 1;
hence thesis by
A14,
A137,
FUNCT_1:def 3;
end;
case
A138: q
in (
LSeg (
|[a, d]|,
|[b, d]|));
then
A139:
0
<= (((((q
`1 )
- a)
/ (b
- a))
/ 2)
+ (1
/ 2)) by
A48;
A140: (((((q
`1 )
- a)
/ (b
- a))
/ 2)
+ (1
/ 2))
<= 1 by
A48,
A138;
A141: (f3
. (((((q
`1 )
- a)
/ (b
- a))
/ 2)
+ (1
/ 2)))
= q by
A48,
A138;
(((((q
`1 )
- a)
/ (b
- a))
/ 2)
+ (1
/ 2))
in
[.
0 , 1.] by
A139,
A140,
XXREAL_1: 1;
hence thesis by
A14,
A141,
FUNCT_1:def 3;
end;
end;
hence thesis;
end;
then
A142: (
rng f3)
= (
[#] ((
TOP-REAL 2)
| (
Upper_Arc K)));
I[01] is
compact by
HEINE: 4,
TOPMETR: 20;
then
A143: f3 is
being_homeomorphism by
A95,
A104,
A131,
A142,
COMPTS_1: 17,
JGRAPH_1: 45;
(
rng f3)
= (
Upper_Arc K) by
A142,
PRE_TOPC:def 5;
hence thesis by
A29,
A31,
A32,
A35,
A38,
A48,
A143;
end;
theorem ::
JGRAPH_6:54
Th54: for a,b,c,d be
Real st a
< b & c
< d holds ex f be
Function of
I[01] , ((
TOP-REAL 2)
| (
Lower_Arc (
rectangle (a,b,c,d)))) st f is
being_homeomorphism & (f
.
0 )
= (
E-max (
rectangle (a,b,c,d))) & (f
. 1)
= (
W-min (
rectangle (a,b,c,d))) & (
rng f)
= (
Lower_Arc (
rectangle (a,b,c,d))) & (for r be
Real st r
in
[.
0 , (1
/ 2).] holds (f
. r)
= (((1
- (2
* r))
*
|[b, d]|)
+ ((2
* r)
*
|[b, c]|))) & (for r be
Real st r
in
[.(1
/ 2), 1.] holds (f
. r)
= (((1
- ((2
* r)
- 1))
*
|[b, c]|)
+ (((2
* r)
- 1)
*
|[a, c]|))) & (for p be
Point of (
TOP-REAL 2) st p
in (
LSeg (
|[b, d]|,
|[b, c]|)) holds
0
<= ((((p
`2 )
- d)
/ (c
- d))
/ 2) & ((((p
`2 )
- d)
/ (c
- d))
/ 2)
<= 1 & (f
. ((((p
`2 )
- d)
/ (c
- d))
/ 2))
= p) & for p be
Point of (
TOP-REAL 2) st p
in (
LSeg (
|[b, c]|,
|[a, c]|)) holds
0
<= (((((p
`1 )
- b)
/ (a
- b))
/ 2)
+ (1
/ 2)) & (((((p
`1 )
- b)
/ (a
- b))
/ 2)
+ (1
/ 2))
<= 1 & (f
. (((((p
`1 )
- b)
/ (a
- b))
/ 2)
+ (1
/ 2)))
= p
proof
let a,b,c,d be
Real;
set K = (
rectangle (a,b,c,d));
assume that
A1: a
< b and
A2: c
< d;
defpred
P[
object,
object] means for r be
Real st $1
= r holds (r
in
[.
0 , (1
/ 2).] implies $2
= (((1
- (2
* r))
*
|[b, d]|)
+ ((2
* r)
*
|[b, c]|))) & (r
in
[.(1
/ 2), 1.] implies $2
= (((1
- ((2
* r)
- 1))
*
|[b, c]|)
+ (((2
* r)
- 1)
*
|[a, c]|)));
A3:
[.
0 , 1.]
= (
[.
0 , (1
/ 2).]
\/
[.(1
/ 2), 1.]) by
XXREAL_1: 165;
A4: for x be
object st x
in
[.
0 , 1.] holds ex y be
object st
P[x, y]
proof
let x be
object;
assume
A5: x
in
[.
0 , 1.];
now
per cases by
A3,
A5,
XBOOLE_0:def 3;
case
A6: x
in
[.
0 , (1
/ 2).];
then
reconsider r = x as
Real;
A7: r
<= (1
/ 2) by
A6,
XXREAL_1: 1;
set y0 = (((1
- (2
* r))
*
|[b, d]|)
+ ((2
* r)
*
|[b, c]|));
r
in
[.(1
/ 2), 1.] implies y0
= (((1
- ((2
* r)
- 1))
*
|[b, c]|)
+ (((2
* r)
- 1)
*
|[a, c]|))
proof
assume r
in
[.(1
/ 2), 1.];
then (1
/ 2)
<= r by
XXREAL_1: 1;
then
A8: r
= (1
/ 2) by
A7,
XXREAL_0: 1;
then
A9: y0
= ((
0
*
|[b, d]|)
+
|[b, c]|) by
RLVECT_1:def 8
.= ((
0. (
TOP-REAL 2))
+
|[b, c]|) by
RLVECT_1: 10
.=
|[b, c]| by
RLVECT_1: 4;
(((1
- ((2
* r)
- 1))
*
|[b, c]|)
+ (((2
* r)
- 1)
*
|[a, c]|))
= ((1
*
|[b, c]|)
+ (
0. (
TOP-REAL 2))) by
A8,
RLVECT_1: 10
.= (
|[b, c]|
+ (
0. (
TOP-REAL 2))) by
RLVECT_1:def 8
.=
|[b, c]| by
RLVECT_1: 4;
hence thesis by
A9;
end;
then for r2 be
Real st x
= r2 holds (r2
in
[.
0 , (1
/ 2).] implies y0
= (((1
- (2
* r2))
*
|[b, d]|)
+ ((2
* r2)
*
|[b, c]|))) & (r2
in
[.(1
/ 2), 1.] implies y0
= (((1
- ((2
* r2)
- 1))
*
|[b, c]|)
+ (((2
* r2)
- 1)
*
|[a, c]|)));
hence thesis;
end;
case
A10: x
in
[.(1
/ 2), 1.];
then
reconsider r = x as
Real;
A11: (1
/ 2)
<= r by
A10,
XXREAL_1: 1;
set y0 = (((1
- ((2
* r)
- 1))
*
|[b, c]|)
+ (((2
* r)
- 1)
*
|[a, c]|));
r
in
[.
0 , (1
/ 2).] implies y0
= (((1
- (2
* r))
*
|[b, d]|)
+ ((2
* r)
*
|[b, c]|))
proof
assume r
in
[.
0 , (1
/ 2).];
then r
<= (1
/ 2) by
XXREAL_1: 1;
then
A12: r
= (1
/ 2) by
A11,
XXREAL_0: 1;
then
A13: y0
= (
|[b, c]|
+ (
0
*
|[a, c]|)) by
RLVECT_1:def 8
.= (
|[b, c]|
+ (
0. (
TOP-REAL 2))) by
RLVECT_1: 10
.=
|[b, c]| by
RLVECT_1: 4;
(((1
- (2
* r))
*
|[b, d]|)
+ ((2
* r)
*
|[b, c]|))
= ((
0. (
TOP-REAL 2))
+ (1
*
|[b, c]|)) by
A12,
RLVECT_1: 10
.= ((
0. (
TOP-REAL 2))
+
|[b, c]|) by
RLVECT_1:def 8
.=
|[b, c]| by
RLVECT_1: 4;
hence thesis by
A13;
end;
then for r2 be
Real st x
= r2 holds (r2
in
[.
0 , (1
/ 2).] implies y0
= (((1
- (2
* r2))
*
|[b, d]|)
+ ((2
* r2)
*
|[b, c]|))) & (r2
in
[.(1
/ 2), 1.] implies y0
= (((1
- ((2
* r2)
- 1))
*
|[b, c]|)
+ (((2
* r2)
- 1)
*
|[a, c]|)));
hence thesis;
end;
end;
hence thesis;
end;
ex f2 be
Function st (
dom f2)
=
[.
0 , 1.] & for x be
object st x
in
[.
0 , 1.] holds
P[x, (f2
. x)] from
CLASSES1:sch 1(
A4);
then
consider f2 be
Function such that
A14: (
dom f2)
=
[.
0 , 1.] and
A15: for x be
object st x
in
[.
0 , 1.] holds
P[x, (f2
. x)];
(
rng f2)
c= the
carrier of ((
TOP-REAL 2)
| (
Lower_Arc K))
proof
let y be
object;
assume y
in (
rng f2);
then
consider x be
object such that
A16: x
in (
dom f2) and
A17: y
= (f2
. x) by
FUNCT_1:def 3;
now
per cases by
A3,
A14,
A16,
XBOOLE_0:def 3;
case
A18: x
in
[.
0 , (1
/ 2).];
then
reconsider r = x as
Real;
A19:
0
<= r by
A18,
XXREAL_1: 1;
r
<= (1
/ 2) by
A18,
XXREAL_1: 1;
then
A20: (r
* 2)
<= ((1
/ 2)
* 2) by
XREAL_1: 64;
(f2
. x)
= (((1
- (2
* r))
*
|[b, d]|)
+ ((2
* r)
*
|[b, c]|)) by
A14,
A15,
A16,
A18;
then
A21: y
in (
LSeg (
|[b, d]|,
|[b, c]|)) by
A17,
A19,
A20;
(
Lower_Arc K)
= ((
LSeg (
|[a, c]|,
|[b, c]|))
\/ (
LSeg (
|[b, c]|,
|[b, d]|))) by
A1,
A2,
Th52;
then y
in (
Lower_Arc K) by
A21,
XBOOLE_0:def 3;
hence thesis by
PRE_TOPC: 8;
end;
case
A22: x
in
[.(1
/ 2), 1.];
then
reconsider r = x as
Real;
A23: (1
/ 2)
<= r by
A22,
XXREAL_1: 1;
A24: r
<= 1 by
A22,
XXREAL_1: 1;
(r
* 2)
>= ((1
/ 2)
* 2) by
A23,
XREAL_1: 64;
then
A25: ((2
* r)
- 1)
>=
0 by
XREAL_1: 48;
(2
* 1)
>= (2
* r) by
A24,
XREAL_1: 64;
then
A26: ((1
+ 1)
- 1)
>= ((2
* r)
- 1) by
XREAL_1: 9;
(f2
. x)
= (((1
- ((2
* r)
- 1))
*
|[b, c]|)
+ (((2
* r)
- 1)
*
|[a, c]|)) by
A14,
A15,
A16,
A22;
then
A27: y
in (
LSeg (
|[b, c]|,
|[a, c]|)) by
A17,
A25,
A26;
(
Lower_Arc K)
= ((
LSeg (
|[a, c]|,
|[b, c]|))
\/ (
LSeg (
|[b, c]|,
|[b, d]|))) by
A1,
A2,
Th52;
then y
in (
Lower_Arc K) by
A27,
XBOOLE_0:def 3;
hence thesis by
PRE_TOPC: 8;
end;
end;
hence thesis;
end;
then
reconsider f3 = f2 as
Function of
I[01] , ((
TOP-REAL 2)
| (
Lower_Arc K)) by
A14,
BORSUK_1: 40,
FUNCT_2: 2;
A28:
0
in
[.
0 , 1.] by
XXREAL_1: 1;
0
in
[.
0 , (1
/ 2).] by
XXREAL_1: 1;
then
A29: (f3
.
0 )
= (((1
- (2
*
0 ))
*
|[b, d]|)
+ ((2
*
0 )
*
|[b, c]|)) by
A15,
A28
.= ((1
*
|[b, d]|)
+ (
0. (
TOP-REAL 2))) by
RLVECT_1: 10
.= (
|[b, d]|
+ (
0. (
TOP-REAL 2))) by
RLVECT_1:def 8
.=
|[b, d]| by
RLVECT_1: 4
.= (
E-max K) by
A1,
A2,
Th46;
A30: 1
in
[.
0 , 1.] by
XXREAL_1: 1;
1
in
[.(1
/ 2), 1.] by
XXREAL_1: 1;
then
A31: (f3
. 1)
= (((1
- ((2
* 1)
- 1))
*
|[b, c]|)
+ (((2
* 1)
- 1)
*
|[a, c]|)) by
A15,
A30
.= ((
0
*
|[b, c]|)
+
|[a, c]|) by
RLVECT_1:def 8
.= ((
0. (
TOP-REAL 2))
+
|[a, c]|) by
RLVECT_1: 10
.=
|[a, c]| by
RLVECT_1: 4
.= (
W-min K) by
A1,
A2,
Th46;
A32: for r be
Real st r
in
[.
0 , (1
/ 2).] holds (f3
. r)
= (((1
- (2
* r))
*
|[b, d]|)
+ ((2
* r)
*
|[b, c]|))
proof
let r be
Real;
assume
A33: r
in
[.
0 , (1
/ 2).];
then
A34:
0
<= r by
XXREAL_1: 1;
r
<= (1
/ 2) by
A33,
XXREAL_1: 1;
then r
<= 1 by
XXREAL_0: 2;
then r
in
[.
0 , 1.] by
A34,
XXREAL_1: 1;
hence thesis by
A15,
A33;
end;
A35: for r be
Real st r
in
[.(1
/ 2), 1.] holds (f3
. r)
= (((1
- ((2
* r)
- 1))
*
|[b, c]|)
+ (((2
* r)
- 1)
*
|[a, c]|))
proof
let r be
Real;
assume
A36: r
in
[.(1
/ 2), 1.];
then
A37: (1
/ 2)
<= r by
XXREAL_1: 1;
r
<= 1 by
A36,
XXREAL_1: 1;
then r
in
[.
0 , 1.] by
A37,
XXREAL_1: 1;
hence thesis by
A15,
A36;
end;
A38: for p be
Point of (
TOP-REAL 2) st p
in (
LSeg (
|[b, d]|,
|[b, c]|)) holds
0
<= ((((p
`2 )
- d)
/ (c
- d))
/ 2) & ((((p
`2 )
- d)
/ (c
- d))
/ 2)
<= 1 & (f3
. ((((p
`2 )
- d)
/ (c
- d))
/ 2))
= p
proof
let p be
Point of (
TOP-REAL 2);
assume
A39: p
in (
LSeg (
|[b, d]|,
|[b, c]|));
A40: (
|[b, d]|
`2 )
= d by
EUCLID: 52;
A41: (
|[b, c]|
`2 )
= c by
EUCLID: 52;
then
A42: c
<= (p
`2 ) by
A2,
A39,
A40,
TOPREAL1: 4;
A43: (p
`2 )
<= d by
A2,
A39,
A40,
A41,
TOPREAL1: 4;
(d
- c)
>
0 by
A2,
XREAL_1: 50;
then
A44: (
- (d
- c))
< (
-
0 ) by
XREAL_1: 24;
(d
- (p
`2 ))
>=
0 by
A43,
XREAL_1: 48;
then
A45: (
- (d
- (p
`2 )))
<= (
-
0 );
((p
`2 )
- d)
>= (c
- d) by
A42,
XREAL_1: 9;
then (((p
`2 )
- d)
/ (c
- d))
<= ((c
- d)
/ (c
- d)) by
A44,
XREAL_1: 73;
then (((p
`2 )
- d)
/ (c
- d))
<= 1 by
A44,
XCMPLX_1: 60;
then
A46: ((((p
`2 )
- d)
/ (c
- d))
/ 2)
<= (1
/ 2) by
XREAL_1: 72;
set r = ((((p
`2 )
- d)
/ (c
- d))
/ 2);
r
in
[.
0 , (1
/ 2).] by
A44,
A45,
A46,
XXREAL_1: 1;
then (f3
. ((((p
`2 )
- d)
/ (c
- d))
/ 2))
= (((1
- (2
* r))
*
|[b, d]|)
+ ((2
* r)
*
|[b, c]|)) by
A32
.= (
|[((1
- (2
* r))
* b), ((1
- (2
* r))
* d)]|
+ ((2
* r)
*
|[b, c]|)) by
EUCLID: 58
.= (
|[((1
- (2
* r))
* b), ((1
- (2
* r))
* d)]|
+
|[((2
* r)
* b), ((2
* r)
* c)]|) by
EUCLID: 58
.=
|[(((1
* b)
- ((2
* r)
* b))
+ ((2
* r)
* b)), (((1
- (2
* r))
* d)
+ ((2
* r)
* c))]| by
EUCLID: 56
.=
|[b, ((1
* d)
+ ((((p
`2 )
- d)
/ (c
- d))
* (c
- d)))]|
.=
|[b, ((1
* d)
+ ((p
`2 )
- d))]| by
A44,
XCMPLX_1: 87
.=
|[(p
`1 ), (p
`2 )]| by
A39,
TOPREAL3: 11
.= p by
EUCLID: 53;
hence thesis by
A44,
A45,
A46,
XXREAL_0: 2;
end;
A47: for p be
Point of (
TOP-REAL 2) st p
in (
LSeg (
|[b, c]|,
|[a, c]|)) holds
0
<= (((((p
`1 )
- b)
/ (a
- b))
/ 2)
+ (1
/ 2)) & (((((p
`1 )
- b)
/ (a
- b))
/ 2)
+ (1
/ 2))
<= 1 & (f3
. (((((p
`1 )
- b)
/ (a
- b))
/ 2)
+ (1
/ 2)))
= p
proof
let p be
Point of (
TOP-REAL 2);
assume
A48: p
in (
LSeg (
|[b, c]|,
|[a, c]|));
A49: (
|[b, c]|
`1 )
= b by
EUCLID: 52;
A50: (
|[a, c]|
`1 )
= a by
EUCLID: 52;
then
A51: a
<= (p
`1 ) by
A1,
A48,
A49,
TOPREAL1: 3;
A52: (p
`1 )
<= b by
A1,
A48,
A49,
A50,
TOPREAL1: 3;
(b
- a)
>
0 by
A1,
XREAL_1: 50;
then
A53: (
- (b
- a))
< (
-
0 ) by
XREAL_1: 24;
(b
- (p
`1 ))
>=
0 by
A52,
XREAL_1: 48;
then
A54: (
- (b
- (p
`1 )))
<= (
-
0 );
then
A55: (((((p
`1 )
- b)
/ (a
- b))
/ 2)
+ (1
/ 2))
>= (
0
+ (1
/ 2)) by
A53,
XREAL_1: 7;
((p
`1 )
- b)
>= (a
- b) by
A51,
XREAL_1: 9;
then (((p
`1 )
- b)
/ (a
- b))
<= ((a
- b)
/ (a
- b)) by
A53,
XREAL_1: 73;
then (((p
`1 )
- b)
/ (a
- b))
<= 1 by
A53,
XCMPLX_1: 60;
then ((((p
`1 )
- b)
/ (a
- b))
/ 2)
<= (1
/ 2) by
XREAL_1: 72;
then
A56: (((((p
`1 )
- b)
/ (a
- b))
/ 2)
+ (1
/ 2))
<= ((1
/ 2)
+ (1
/ 2)) by
XREAL_1: 7;
set r = (((((p
`1 )
- b)
/ (a
- b))
/ 2)
+ (1
/ 2));
r
in
[.(1
/ 2), 1.] by
A55,
A56,
XXREAL_1: 1;
then (f3
. (((((p
`1 )
- b)
/ (a
- b))
/ 2)
+ (1
/ 2)))
= (((1
- ((2
* r)
- 1))
*
|[b, c]|)
+ (((2
* r)
- 1)
*
|[a, c]|)) by
A35
.= (
|[((1
- ((2
* r)
- 1))
* b), ((1
- ((2
* r)
- 1))
* c)]|
+ (((2
* r)
- 1)
*
|[a, c]|)) by
EUCLID: 58
.= (
|[((1
- ((2
* r)
- 1))
* b), ((1
- ((2
* r)
- 1))
* c)]|
+
|[(((2
* r)
- 1)
* a), (((2
* r)
- 1)
* c)]|) by
EUCLID: 58
.=
|[(((1
- ((2
* r)
- 1))
* b)
+ (((2
* r)
- 1)
* a)), (((1
* c)
- (((2
* r)
- 1)
* c))
+ (((2
* r)
- 1)
* c))]| by
EUCLID: 56
.=
|[((1
* b)
+ ((((p
`1 )
- b)
/ (a
- b))
* (a
- b))), c]|
.=
|[((1
* b)
+ ((p
`1 )
- b)), c]| by
A53,
XCMPLX_1: 87
.=
|[(p
`1 ), (p
`2 )]| by
A48,
TOPREAL3: 12
.= p by
EUCLID: 53;
hence thesis by
A53,
A54,
A56;
end;
reconsider B00 =
[.
0 , 1.] as
Subset of
R^1 by
TOPMETR: 17;
reconsider B01 = B00 as non
empty
Subset of
R^1 by
XXREAL_1: 1;
I[01]
= (
R^1
| B01) by
TOPMETR: 19,
TOPMETR: 20;
then
consider h1 be
Function of
I[01] ,
R^1 such that
A57: for p be
Point of
I[01] holds (h1
. p)
= p and
A58: h1 is
continuous by
Th6;
consider h2 be
Function of
I[01] ,
R^1 such that
A59: for p be
Point of
I[01] , r1 be
Real st (h1
. p)
= r1 holds (h2
. p)
= (2
* r1) and
A60: h2 is
continuous by
A58,
JGRAPH_2: 23;
consider h5 be
Function of
I[01] ,
R^1 such that
A61: for p be
Point of
I[01] , r1 be
Real st (h2
. p)
= r1 holds (h5
. p)
= (1
- r1) and
A62: h5 is
continuous by
A60,
Th8;
consider h3 be
Function of
I[01] ,
R^1 such that
A63: for p be
Point of
I[01] , r1 be
Real st (h2
. p)
= r1 holds (h3
. p)
= (r1
- 1) and
A64: h3 is
continuous by
A60,
Th7;
consider h4 be
Function of
I[01] ,
R^1 such that
A65: for p be
Point of
I[01] , r1 be
Real st (h3
. p)
= r1 holds (h4
. p)
= (1
- r1) and
A66: h4 is
continuous by
A64,
Th8;
consider g1 be
Function of
I[01] , (
TOP-REAL 2) such that
A67: for r be
Point of
I[01] holds (g1
. r)
= (((h5
. r)
*
|[b, d]|)
+ ((h2
. r)
*
|[b, c]|)) and
A68: g1 is
continuous by
A60,
A62,
Th13;
A69: for r be
Point of
I[01] , s be
Real st r
= s holds (g1
. r)
= (((1
- (2
* s))
*
|[b, d]|)
+ ((2
* s)
*
|[b, c]|))
proof
let r be
Point of
I[01] , s be
Real;
assume
A70: r
= s;
(g1
. r)
= (((h5
. r)
*
|[b, d]|)
+ ((h2
. r)
*
|[b, c]|)) by
A67
.= (((1
- (2
* (h1
. r)))
*
|[b, d]|)
+ ((h2
. r)
*
|[b, c]|)) by
A59,
A61
.= (((1
- (2
* (h1
. r)))
*
|[b, d]|)
+ ((2
* (h1
. r))
*
|[b, c]|)) by
A59
.= (((1
- (2
* s))
*
|[b, d]|)
+ ((2
* (h1
. r))
*
|[b, c]|)) by
A57,
A70
.= (((1
- (2
* s))
*
|[b, d]|)
+ ((2
* s)
*
|[b, c]|)) by
A57,
A70;
hence thesis;
end;
consider g2 be
Function of
I[01] , (
TOP-REAL 2) such that
A71: for r be
Point of
I[01] holds (g2
. r)
= (((h4
. r)
*
|[b, c]|)
+ ((h3
. r)
*
|[a, c]|)) and
A72: g2 is
continuous by
A64,
A66,
Th13;
A73: for r be
Point of
I[01] , s be
Real st r
= s holds (g2
. r)
= (((1
- ((2
* s)
- 1))
*
|[b, c]|)
+ (((2
* s)
- 1)
*
|[a, c]|))
proof
let r be
Point of
I[01] , s be
Real;
assume
A74: r
= s;
(g2
. r)
= (((h4
. r)
*
|[b, c]|)
+ ((h3
. r)
*
|[a, c]|)) by
A71
.= (((1
- ((h2
. r)
- 1))
*
|[b, c]|)
+ ((h3
. r)
*
|[a, c]|)) by
A63,
A65
.= (((1
- ((h2
. r)
- 1))
*
|[b, c]|)
+ (((h2
. r)
- 1)
*
|[a, c]|)) by
A63
.= (((1
- ((2
* (h1
. r))
- 1))
*
|[b, c]|)
+ (((h2
. r)
- 1)
*
|[a, c]|)) by
A59
.= (((1
- ((2
* (h1
. r))
- 1))
*
|[b, c]|)
+ (((2
* (h1
. r))
- 1)
*
|[a, c]|)) by
A59
.= (((1
- ((2
* s)
- 1))
*
|[b, c]|)
+ (((2
* (h1
. r))
- 1)
*
|[a, c]|)) by
A57,
A74
.= (((1
- ((2
* s)
- 1))
*
|[b, c]|)
+ (((2
* s)
- 1)
*
|[a, c]|)) by
A57,
A74;
hence thesis;
end;
reconsider B11 =
[.
0 , (1
/ 2).] as non
empty
Subset of
I[01] by
A3,
BORSUK_1: 40,
XBOOLE_1: 7,
XXREAL_1: 1;
A75: (
dom (g1
| B11))
= ((
dom g1)
/\ B11) by
RELAT_1: 61
.= (the
carrier of
I[01]
/\ B11) by
FUNCT_2:def 1
.= B11 by
XBOOLE_1: 28
.= the
carrier of (
I[01]
| B11) by
PRE_TOPC: 8;
(
rng (g1
| B11))
c= the
carrier of (
TOP-REAL 2);
then
reconsider g11 = (g1
| B11) as
Function of (
I[01]
| B11), (
TOP-REAL 2) by
A75,
FUNCT_2: 2;
A76: (
TOP-REAL 2) is
SubSpace of (
TOP-REAL 2) by
TSEP_1: 2;
then
A77: g11 is
continuous by
A68,
BORSUK_4: 44;
reconsider B22 =
[.(1
/ 2), 1.] as non
empty
Subset of
I[01] by
A3,
BORSUK_1: 40,
XBOOLE_1: 7,
XXREAL_1: 1;
A78: (
dom (g2
| B22))
= ((
dom g2)
/\ B22) by
RELAT_1: 61
.= (the
carrier of
I[01]
/\ B22) by
FUNCT_2:def 1
.= B22 by
XBOOLE_1: 28
.= the
carrier of (
I[01]
| B22) by
PRE_TOPC: 8;
(
rng (g2
| B22))
c= the
carrier of (
TOP-REAL 2);
then
reconsider g22 = (g2
| B22) as
Function of (
I[01]
| B22), (
TOP-REAL 2) by
A78,
FUNCT_2: 2;
A79: g22 is
continuous by
A72,
A76,
BORSUK_4: 44;
A80: B11
= (
[#] (
I[01]
| B11)) by
PRE_TOPC:def 5;
A81: B22
= (
[#] (
I[01]
| B22)) by
PRE_TOPC:def 5;
A82: B11 is
closed by
Th4;
A83: B22 is
closed by
Th4;
A84: ((
[#] (
I[01]
| B11))
\/ (
[#] (
I[01]
| B22)))
= (
[#]
I[01] ) by
A80,
A81,
BORSUK_1: 40,
XXREAL_1: 165;
for p be
object st p
in ((
[#] (
I[01]
| B11))
/\ (
[#] (
I[01]
| B22))) holds (g11
. p)
= (g22
. p)
proof
let p be
object;
assume
A85: p
in ((
[#] (
I[01]
| B11))
/\ (
[#] (
I[01]
| B22)));
then
A86: p
in (
[#] (
I[01]
| B11)) by
XBOOLE_0:def 4;
A87: p
in (
[#] (
I[01]
| B22)) by
A85;
A88: p
in B11 by
A86,
PRE_TOPC:def 5;
A89: p
in B22 by
A87,
PRE_TOPC:def 5;
reconsider rp = p as
Real by
A88;
A90: rp
<= (1
/ 2) by
A88,
XXREAL_1: 1;
rp
>= (1
/ 2) by
A89,
XXREAL_1: 1;
then rp
= (1
/ 2) by
A90,
XXREAL_0: 1;
then
A91: (2
* rp)
= 1;
thus (g11
. p)
= (g1
. p) by
A88,
FUNCT_1: 49
.= (((1
- 1)
*
|[b, d]|)
+ (1
*
|[b, c]|)) by
A69,
A88,
A91
.= ((
0. (
TOP-REAL 2))
+ (1
*
|[b, c]|)) by
RLVECT_1: 10
.= (((1
-
0 )
*
|[b, c]|)
+ ((1
- 1)
*
|[a, c]|)) by
RLVECT_1: 10
.= (g2
. p) by
A73,
A88,
A91
.= (g22
. p) by
A89,
FUNCT_1: 49;
end;
then
consider h be
Function of
I[01] , (
TOP-REAL 2) such that
A92: h
= (g11
+* g22) and
A93: h is
continuous by
A77,
A79,
A80,
A81,
A82,
A83,
A84,
JGRAPH_2: 1;
A94: (
dom f3)
= (
dom h) by
Th5;
A95: (
dom f3)
= the
carrier of
I[01] by
Th5;
for x be
object st x
in (
dom f2) holds (f3
. x)
= (h
. x)
proof
let x be
object;
assume
A96: x
in (
dom f2);
then
reconsider rx = x as
Real by
A95;
A97:
0
<= rx by
A94,
A96,
BORSUK_1: 40,
XXREAL_1: 1;
A98: rx
<= 1 by
A94,
A96,
BORSUK_1: 40,
XXREAL_1: 1;
per cases ;
suppose
A99: rx
< (1
/ 2);
then
A100: rx
in
[.
0 , (1
/ 2).] by
A97,
XXREAL_1: 1;
not rx
in (
dom g22) by
A81,
A99,
XXREAL_1: 1;
then (h
. rx)
= (g11
. rx) by
A92,
FUNCT_4: 11
.= (g1
. rx) by
A100,
FUNCT_1: 49
.= (((1
- (2
* rx))
*
|[b, d]|)
+ ((2
* rx)
*
|[b, c]|)) by
A69,
A94,
A96
.= (f3
. rx) by
A32,
A100;
hence thesis;
end;
suppose rx
>= (1
/ 2);
then
A101: rx
in
[.(1
/ 2), 1.] by
A98,
XXREAL_1: 1;
then rx
in (
[#] (
I[01]
| B22)) by
PRE_TOPC:def 5;
then (h
. rx)
= (g22
. rx) by
A78,
A92,
FUNCT_4: 13
.= (g2
. rx) by
A101,
FUNCT_1: 49
.= (((1
- ((2
* rx)
- 1))
*
|[b, c]|)
+ (((2
* rx)
- 1)
*
|[a, c]|)) by
A73,
A94,
A96
.= (f3
. rx) by
A35,
A101;
hence thesis;
end;
end;
then
A102: f2
= h by
A94,
FUNCT_1: 2;
for x1,x2 be
object st x1
in (
dom f3) & x2
in (
dom f3) & (f3
. x1)
= (f3
. x2) holds x1
= x2
proof
let x1,x2 be
object;
assume that
A103: x1
in (
dom f3) and
A104: x2
in (
dom f3) and
A105: (f3
. x1)
= (f3
. x2);
reconsider r1 = x1 as
Real by
A103;
reconsider r2 = x2 as
Real by
A104;
A106: ((
LSeg (
|[b, d]|,
|[b, c]|))
/\ (
LSeg (
|[b, c]|,
|[a, c]|)))
=
{
|[b, c]|} by
A1,
A2,
Th32;
now
per cases by
A3,
A14,
A103,
A104,
XBOOLE_0:def 3;
case
A107: x1
in
[.
0 , (1
/ 2).] & x2
in
[.
0 , (1
/ 2).];
then (f3
. r1)
= (((1
- (2
* r1))
*
|[b, d]|)
+ ((2
* r1)
*
|[b, c]|)) by
A32;
then (((1
- (2
* r2))
*
|[b, d]|)
+ ((2
* r2)
*
|[b, c]|))
= (((1
- (2
* r1))
*
|[b, d]|)
+ ((2
* r1)
*
|[b, c]|)) by
A32,
A105,
A107;
then ((((1
- (2
* r2))
*
|[b, d]|)
+ ((2
* r2)
*
|[b, c]|))
- ((2
* r1)
*
|[b, c]|))
= ((1
- (2
* r1))
*
|[b, d]|) by
RLVECT_4: 1;
then (((1
- (2
* r2))
*
|[b, d]|)
+ (((2
* r2)
*
|[b, c]|)
- ((2
* r1)
*
|[b, c]|)))
= ((1
- (2
* r1))
*
|[b, d]|) by
RLVECT_1:def 3;
then (((1
- (2
* r2))
*
|[b, d]|)
+ (((2
* r2)
- (2
* r1))
*
|[b, c]|))
= ((1
- (2
* r1))
*
|[b, d]|) by
RLVECT_1: 35;
then ((((2
* r2)
- (2
* r1))
*
|[b, c]|)
+ (((1
- (2
* r2))
*
|[b, d]|)
- ((1
- (2
* r1))
*
|[b, d]|)))
= (((1
- (2
* r1))
*
|[b, d]|)
- ((1
- (2
* r1))
*
|[b, d]|)) by
RLVECT_1:def 3;
then ((((2
* r2)
- (2
* r1))
*
|[b, c]|)
+ (((1
- (2
* r2))
*
|[b, d]|)
- ((1
- (2
* r1))
*
|[b, d]|)))
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 5;
then ((((2
* r2)
- (2
* r1))
*
|[b, c]|)
+ (((1
- (2
* r2))
- (1
- (2
* r1)))
*
|[b, d]|))
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 35;
then ((((2
* r2)
- (2
* r1))
*
|[b, c]|)
+ ((
- ((2
* r2)
- (2
* r1)))
*
|[b, d]|))
= (
0. (
TOP-REAL 2));
then ((((2
* r2)
- (2
* r1))
*
|[b, c]|)
+ (
- (((2
* r2)
- (2
* r1))
*
|[b, d]|)))
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 79;
then ((((2
* r2)
- (2
* r1))
*
|[b, c]|)
- (((2
* r2)
- (2
* r1))
*
|[b, d]|))
= (
0. (
TOP-REAL 2));
then (((2
* r2)
- (2
* r1))
* (
|[b, c]|
-
|[b, d]|))
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 34;
then ((2
* r2)
- (2
* r1))
=
0 or (
|[b, c]|
-
|[b, d]|)
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 11;
then ((2
* r2)
- (2
* r1))
=
0 or
|[b, c]|
=
|[b, d]| by
RLVECT_1: 21;
then ((2
* r2)
- (2
* r1))
=
0 or d
= (
|[b, c]|
`2 ) by
EUCLID: 52;
hence thesis by
A2,
EUCLID: 52;
end;
case
A108: x1
in
[.
0 , (1
/ 2).] & x2
in
[.(1
/ 2), 1.];
then
A109: (f3
. r1)
= (((1
- (2
* r1))
*
|[b, d]|)
+ ((2
* r1)
*
|[b, c]|)) by
A32;
A110:
0
<= r1 by
A108,
XXREAL_1: 1;
r1
<= (1
/ 2) by
A108,
XXREAL_1: 1;
then (r1
* 2)
<= ((1
/ 2)
* 2) by
XREAL_1: 64;
then
A111: (f3
. r1)
in (
LSeg (
|[b, d]|,
|[b, c]|)) by
A109,
A110;
A112: (f3
. r2)
= (((1
- ((2
* r2)
- 1))
*
|[b, c]|)
+ (((2
* r2)
- 1)
*
|[a, c]|)) by
A35,
A108;
A113: (1
/ 2)
<= r2 by
A108,
XXREAL_1: 1;
A114: r2
<= 1 by
A108,
XXREAL_1: 1;
(r2
* 2)
>= ((1
/ 2)
* 2) by
A113,
XREAL_1: 64;
then
A115: ((2
* r2)
- 1)
>=
0 by
XREAL_1: 48;
(2
* 1)
>= (2
* r2) by
A114,
XREAL_1: 64;
then ((1
+ 1)
- 1)
>= ((2
* r2)
- 1) by
XREAL_1: 9;
then (f3
. r2)
in { (((1
- lambda)
*
|[b, c]|)
+ (lambda
*
|[a, c]|)) where lambda be
Real :
0
<= lambda & lambda
<= 1 } by
A112,
A115;
then (f3
. r1)
in ((
LSeg (
|[b, d]|,
|[b, c]|))
/\ (
LSeg (
|[b, c]|,
|[a, c]|))) by
A105,
A111,
XBOOLE_0:def 4;
then
A116: (f3
. r1)
=
|[b, c]| by
A106,
TARSKI:def 1;
then ((((1
- (2
* r1))
*
|[b, d]|)
+ ((2
* r1)
*
|[b, c]|))
+ (
-
|[b, c]|))
= (
0. (
TOP-REAL 2)) by
A109,
RLVECT_1: 5;
then ((((1
- (2
* r1))
*
|[b, d]|)
+ ((2
* r1)
*
|[b, c]|))
+ ((
- 1)
*
|[b, c]|))
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 16;
then (((1
- (2
* r1))
*
|[b, d]|)
+ (((2
* r1)
*
|[b, c]|)
+ ((
- 1)
*
|[b, c]|)))
= (
0. (
TOP-REAL 2)) by
RLVECT_1:def 3;
then (((1
- (2
* r1))
*
|[b, d]|)
+ (((2
* r1)
+ (
- 1))
*
|[b, c]|))
= (
0. (
TOP-REAL 2)) by
RLVECT_1:def 6;
then (((1
- (2
* r1))
*
|[b, d]|)
+ ((
- (1
- (2
* r1)))
*
|[b, c]|))
= (
0. (
TOP-REAL 2));
then (((1
- (2
* r1))
*
|[b, d]|)
+ (
- ((1
- (2
* r1))
*
|[b, c]|)))
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 79;
then (((1
- (2
* r1))
*
|[b, d]|)
- ((1
- (2
* r1))
*
|[b, c]|))
= (
0. (
TOP-REAL 2));
then ((1
- (2
* r1))
* (
|[b, d]|
-
|[b, c]|))
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 34;
then (1
- (2
* r1))
=
0 or (
|[b, d]|
-
|[b, c]|)
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 11;
then (1
- (2
* r1))
=
0 or
|[b, d]|
=
|[b, c]| by
RLVECT_1: 21;
then
A117: (1
- (2
* r1))
=
0 or d
= (
|[b, c]|
`2 ) by
EUCLID: 52;
((((1
- ((2
* r2)
- 1))
*
|[b, c]|)
+ (((2
* r2)
- 1)
*
|[a, c]|))
+ (
-
|[b, c]|))
= (
0. (
TOP-REAL 2)) by
A105,
A112,
A116,
RLVECT_1: 5;
then ((((1
- ((2
* r2)
- 1))
*
|[b, c]|)
+ (((2
* r2)
- 1)
*
|[a, c]|))
+ ((
- 1)
*
|[b, c]|))
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 16;
then ((((2
* r2)
- 1)
*
|[a, c]|)
+ (((1
- ((2
* r2)
- 1))
*
|[b, c]|)
+ ((
- 1)
*
|[b, c]|)))
= (
0. (
TOP-REAL 2)) by
RLVECT_1:def 3;
then ((((2
* r2)
- 1)
*
|[a, c]|)
+ (((1
- ((2
* r2)
- 1))
+ (
- 1))
*
|[b, c]|))
= (
0. (
TOP-REAL 2)) by
RLVECT_1:def 6;
then ((((2
* r2)
- 1)
*
|[a, c]|)
+ ((
- ((2
* r2)
- 1))
*
|[b, c]|))
= (
0. (
TOP-REAL 2));
then ((((2
* r2)
- 1)
*
|[a, c]|)
+ (
- (((2
* r2)
- 1)
*
|[b, c]|)))
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 79;
then ((((2
* r2)
- 1)
*
|[a, c]|)
- (((2
* r2)
- 1)
*
|[b, c]|))
= (
0. (
TOP-REAL 2));
then (((2
* r2)
- 1)
* (
|[a, c]|
-
|[b, c]|))
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 34;
then ((2
* r2)
- 1)
=
0 or (
|[a, c]|
-
|[b, c]|)
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 11;
then ((2
* r2)
- 1)
=
0 or
|[a, c]|
=
|[b, c]| by
RLVECT_1: 21;
then ((2
* r2)
- 1)
=
0 or a
= (
|[b, c]|
`1 ) by
EUCLID: 52;
hence thesis by
A1,
A2,
A117,
EUCLID: 52;
end;
case
A118: x1
in
[.(1
/ 2), 1.] & x2
in
[.
0 , (1
/ 2).];
then
A119: (f3
. r2)
= (((1
- (2
* r2))
*
|[b, d]|)
+ ((2
* r2)
*
|[b, c]|)) by
A32;
A120:
0
<= r2 by
A118,
XXREAL_1: 1;
r2
<= (1
/ 2) by
A118,
XXREAL_1: 1;
then (r2
* 2)
<= ((1
/ 2)
* 2) by
XREAL_1: 64;
then
A121: (f3
. r2)
in (
LSeg (
|[b, d]|,
|[b, c]|)) by
A119,
A120;
A122: (f3
. r1)
= (((1
- ((2
* r1)
- 1))
*
|[b, c]|)
+ (((2
* r1)
- 1)
*
|[a, c]|)) by
A35,
A118;
A123: (1
/ 2)
<= r1 by
A118,
XXREAL_1: 1;
A124: r1
<= 1 by
A118,
XXREAL_1: 1;
(r1
* 2)
>= ((1
/ 2)
* 2) by
A123,
XREAL_1: 64;
then
A125: ((2
* r1)
- 1)
>=
0 by
XREAL_1: 48;
(2
* 1)
>= (2
* r1) by
A124,
XREAL_1: 64;
then ((1
+ 1)
- 1)
>= ((2
* r1)
- 1) by
XREAL_1: 9;
then (f3
. r1)
in { (((1
- lambda)
*
|[b, c]|)
+ (lambda
*
|[a, c]|)) where lambda be
Real :
0
<= lambda & lambda
<= 1 } by
A122,
A125;
then (f3
. r2)
in ((
LSeg (
|[b, d]|,
|[b, c]|))
/\ (
LSeg (
|[b, c]|,
|[a, c]|))) by
A105,
A121,
XBOOLE_0:def 4;
then
A126: (f3
. r2)
=
|[b, c]| by
A106,
TARSKI:def 1;
then ((((1
- (2
* r2))
*
|[b, d]|)
+ ((2
* r2)
*
|[b, c]|))
+ (
-
|[b, c]|))
= (
0. (
TOP-REAL 2)) by
A119,
RLVECT_1: 5;
then ((((1
- (2
* r2))
*
|[b, d]|)
+ ((2
* r2)
*
|[b, c]|))
+ ((
- 1)
*
|[b, c]|))
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 16;
then (((1
- (2
* r2))
*
|[b, d]|)
+ (((2
* r2)
*
|[b, c]|)
+ ((
- 1)
*
|[b, c]|)))
= (
0. (
TOP-REAL 2)) by
RLVECT_1:def 3;
then (((1
- (2
* r2))
*
|[b, d]|)
+ (((2
* r2)
+ (
- 1))
*
|[b, c]|))
= (
0. (
TOP-REAL 2)) by
RLVECT_1:def 6;
then (((1
- (2
* r2))
*
|[b, d]|)
+ ((
- (1
- (2
* r2)))
*
|[b, c]|))
= (
0. (
TOP-REAL 2));
then (((1
- (2
* r2))
*
|[b, d]|)
+ (
- ((1
- (2
* r2))
*
|[b, c]|)))
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 79;
then (((1
- (2
* r2))
*
|[b, d]|)
- ((1
- (2
* r2))
*
|[b, c]|))
= (
0. (
TOP-REAL 2));
then ((1
- (2
* r2))
* (
|[b, d]|
-
|[b, c]|))
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 34;
then (1
- (2
* r2))
=
0 or (
|[b, d]|
-
|[b, c]|)
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 11;
then (1
- (2
* r2))
=
0 or
|[b, d]|
=
|[b, c]| by
RLVECT_1: 21;
then
A127: (1
- (2
* r2))
=
0 or d
= (
|[b, c]|
`2 ) by
EUCLID: 52;
((((1
- ((2
* r1)
- 1))
*
|[b, c]|)
+ (((2
* r1)
- 1)
*
|[a, c]|))
+ (
-
|[b, c]|))
= (
0. (
TOP-REAL 2)) by
A105,
A122,
A126,
RLVECT_1: 5;
then ((((1
- ((2
* r1)
- 1))
*
|[b, c]|)
+ (((2
* r1)
- 1)
*
|[a, c]|))
+ ((
- 1)
*
|[b, c]|))
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 16;
then ((((2
* r1)
- 1)
*
|[a, c]|)
+ (((1
- ((2
* r1)
- 1))
*
|[b, c]|)
+ ((
- 1)
*
|[b, c]|)))
= (
0. (
TOP-REAL 2)) by
RLVECT_1:def 3;
then ((((2
* r1)
- 1)
*
|[a, c]|)
+ (((1
- ((2
* r1)
- 1))
+ (
- 1))
*
|[b, c]|))
= (
0. (
TOP-REAL 2)) by
RLVECT_1:def 6;
then ((((2
* r1)
- 1)
*
|[a, c]|)
+ ((
- ((2
* r1)
- 1))
*
|[b, c]|))
= (
0. (
TOP-REAL 2));
then ((((2
* r1)
- 1)
*
|[a, c]|)
+ (
- (((2
* r1)
- 1)
*
|[b, c]|)))
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 79;
then ((((2
* r1)
- 1)
*
|[a, c]|)
- (((2
* r1)
- 1)
*
|[b, c]|))
= (
0. (
TOP-REAL 2));
then (((2
* r1)
- 1)
* (
|[a, c]|
-
|[b, c]|))
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 34;
then ((2
* r1)
- 1)
=
0 or (
|[a, c]|
-
|[b, c]|)
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 11;
then ((2
* r1)
- 1)
=
0 or
|[a, c]|
=
|[b, c]| by
RLVECT_1: 21;
then ((2
* r1)
- 1)
=
0 or a
= (
|[b, c]|
`1 ) by
EUCLID: 52;
hence thesis by
A1,
A2,
A127,
EUCLID: 52;
end;
case
A128: x1
in
[.(1
/ 2), 1.] & x2
in
[.(1
/ 2), 1.];
then (f3
. r1)
= (((1
- ((2
* r1)
- 1))
*
|[b, c]|)
+ (((2
* r1)
- 1)
*
|[a, c]|)) by
A35;
then (((1
- ((2
* r2)
- 1))
*
|[b, c]|)
+ (((2
* r2)
- 1)
*
|[a, c]|))
= (((1
- ((2
* r1)
- 1))
*
|[b, c]|)
+ (((2
* r1)
- 1)
*
|[a, c]|)) by
A35,
A105,
A128;
then ((((1
- ((2
* r2)
- 1))
*
|[b, c]|)
+ (((2
* r2)
- 1)
*
|[a, c]|))
- (((2
* r1)
- 1)
*
|[a, c]|))
= ((1
- ((2
* r1)
- 1))
*
|[b, c]|) by
RLVECT_4: 1;
then (((1
- ((2
* r2)
- 1))
*
|[b, c]|)
+ ((((2
* r2)
- 1)
*
|[a, c]|)
- (((2
* r1)
- 1)
*
|[a, c]|)))
= ((1
- ((2
* r1)
- 1))
*
|[b, c]|) by
RLVECT_1:def 3;
then (((1
- ((2
* r2)
- 1))
*
|[b, c]|)
+ ((((2
* r2)
- 1)
- ((2
* r1)
- 1))
*
|[a, c]|))
= ((1
- ((2
* r1)
- 1))
*
|[b, c]|) by
RLVECT_1: 35;
then (((((2
* r2)
- 1)
- ((2
* r1)
- 1))
*
|[a, c]|)
+ (((1
- ((2
* r2)
- 1))
*
|[b, c]|)
- ((1
- ((2
* r1)
- 1))
*
|[b, c]|)))
= (((1
- ((2
* r1)
- 1))
*
|[b, c]|)
- ((1
- ((2
* r1)
- 1))
*
|[b, c]|)) by
RLVECT_1:def 3;
then (((((2
* r2)
- 1)
- ((2
* r1)
- 1))
*
|[a, c]|)
+ (((1
- ((2
* r2)
- 1))
*
|[b, c]|)
- ((1
- ((2
* r1)
- 1))
*
|[b, c]|)))
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 5;
then (((((2
* r2)
- 1)
- ((2
* r1)
- 1))
*
|[a, c]|)
+ (((1
- ((2
* r2)
- 1))
- (1
- ((2
* r1)
- 1)))
*
|[b, c]|))
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 35;
then (((((2
* r2)
- 1)
- ((2
* r1)
- 1))
*
|[a, c]|)
+ ((
- (((2
* r2)
- 1)
- ((2
* r1)
- 1)))
*
|[b, c]|))
= (
0. (
TOP-REAL 2));
then (((((2
* r2)
- 1)
- ((2
* r1)
- 1))
*
|[a, c]|)
+ (
- ((((2
* r2)
- 1)
- ((2
* r1)
- 1))
*
|[b, c]|)))
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 79;
then (((((2
* r2)
- 1)
- ((2
* r1)
- 1))
*
|[a, c]|)
- ((((2
* r2)
- 1)
- ((2
* r1)
- 1))
*
|[b, c]|))
= (
0. (
TOP-REAL 2));
then ((((2
* r2)
- 1)
- ((2
* r1)
- 1))
* (
|[a, c]|
-
|[b, c]|))
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 34;
then (((2
* r2)
- 1)
- ((2
* r1)
- 1))
=
0 or (
|[a, c]|
-
|[b, c]|)
= (
0. (
TOP-REAL 2)) by
RLVECT_1: 11;
then (((2
* r2)
- 1)
- ((2
* r1)
- 1))
=
0 or
|[a, c]|
=
|[b, c]| by
RLVECT_1: 21;
then (((2
* r2)
- 1)
- ((2
* r1)
- 1))
=
0 or a
= (
|[b, c]|
`1 ) by
EUCLID: 52;
hence thesis by
A1,
EUCLID: 52;
end;
end;
hence thesis;
end;
then
A129: f3 is
one-to-one by
FUNCT_1:def 4;
(
[#] ((
TOP-REAL 2)
| (
Lower_Arc K)))
c= (
rng f3)
proof
let y be
object;
assume y
in (
[#] ((
TOP-REAL 2)
| (
Lower_Arc K)));
then
A130: y
in (
Lower_Arc K) by
PRE_TOPC:def 5;
then
reconsider q = y as
Point of (
TOP-REAL 2);
A131: (
Lower_Arc K)
= ((
LSeg (
|[b, d]|,
|[b, c]|))
\/ (
LSeg (
|[b, c]|,
|[a, c]|))) by
A1,
A2,
Th52;
now
per cases by
A130,
A131,
XBOOLE_0:def 3;
case
A132: q
in (
LSeg (
|[b, d]|,
|[b, c]|));
then
A133:
0
<= ((((q
`2 )
- d)
/ (c
- d))
/ 2) by
A38;
A134: ((((q
`2 )
- d)
/ (c
- d))
/ 2)
<= 1 by
A38,
A132;
A135: (f3
. ((((q
`2 )
- d)
/ (c
- d))
/ 2))
= q by
A38,
A132;
((((q
`2 )
- d)
/ (c
- d))
/ 2)
in
[.
0 , 1.] by
A133,
A134,
XXREAL_1: 1;
hence thesis by
A14,
A135,
FUNCT_1:def 3;
end;
case
A136: q
in (
LSeg (
|[b, c]|,
|[a, c]|));
then
A137:
0
<= (((((q
`1 )
- b)
/ (a
- b))
/ 2)
+ (1
/ 2)) by
A47;
A138: (((((q
`1 )
- b)
/ (a
- b))
/ 2)
+ (1
/ 2))
<= 1 by
A47,
A136;
A139: (f3
. (((((q
`1 )
- b)
/ (a
- b))
/ 2)
+ (1
/ 2)))
= q by
A47,
A136;
(((((q
`1 )
- b)
/ (a
- b))
/ 2)
+ (1
/ 2))
in
[.
0 , 1.] by
A137,
A138,
XXREAL_1: 1;
hence thesis by
A14,
A139,
FUNCT_1:def 3;
end;
end;
hence thesis;
end;
then
A140: (
rng f3)
= (
[#] ((
TOP-REAL 2)
| (
Lower_Arc K)));
I[01] is
compact by
HEINE: 4,
TOPMETR: 20;
then
A141: f3 is
being_homeomorphism by
A93,
A102,
A129,
A140,
COMPTS_1: 17,
JGRAPH_1: 45;
(
rng f3)
= (
Lower_Arc K) by
A140,
PRE_TOPC:def 5;
hence thesis by
A29,
A31,
A32,
A35,
A38,
A47,
A141;
end;
theorem ::
JGRAPH_6:55
Th55: for a,b,c,d be
Real, p1,p2 be
Point of (
TOP-REAL 2) st a
< b & c
< d & p1
in (
LSeg (
|[a, c]|,
|[a, d]|)) & p2
in (
LSeg (
|[a, c]|,
|[a, d]|)) holds
LE (p1,p2,(
rectangle (a,b,c,d))) iff (p1
`2 )
<= (p2
`2 )
proof
let a,b,c,d be
Real, p1,p2 be
Point of (
TOP-REAL 2);
set K = (
rectangle (a,b,c,d));
assume that
A1: a
< b and
A2: c
< d and
A3: p1
in (
LSeg (
|[a, c]|,
|[a, d]|)) and
A4: p2
in (
LSeg (
|[a, c]|,
|[a, d]|));
A5: K is
being_simple_closed_curve by
A1,
A2,
Th50;
A6: (p1
`1 )
= a by
A2,
A3,
Th1;
A7: c
<= (p1
`2 ) by
A2,
A3,
Th1;
A8: (p2
`1 )
= a by
A2,
A4,
Th1;
A9: (
E-max K)
=
|[b, d]| by
A1,
A2,
Th46;
A10: (
Upper_Arc K)
= ((
LSeg (
|[a, c]|,
|[a, d]|))
\/ (
LSeg (
|[a, d]|,
|[b, d]|))) by
A1,
A2,
Th51;
then
A11: (
LSeg (
|[a, c]|,
|[a, d]|))
c= (
Upper_Arc K) by
XBOOLE_1: 7;
A12: ((
Upper_Arc K)
/\ (
Lower_Arc K))
=
{(
W-min K), (
E-max K)} by
A5,
JORDAN6:def 9;
A13:
now
assume p2
in (
Lower_Arc K);
then
A14: p2
in ((
Upper_Arc K)
/\ (
Lower_Arc K)) by
A4,
A11,
XBOOLE_0:def 4;
now
assume p2
= (
E-max K);
then (p2
`1 )
= b by
A9,
EUCLID: 52;
hence contradiction by
A1,
A4,
TOPREAL3: 11;
end;
hence p2
= (
W-min K) by
A12,
A14,
TARSKI:def 2;
end;
thus
LE (p1,p2,K) implies (p1
`2 )
<= (p2
`2 )
proof
assume
LE (p1,p2,K);
then
A15: p1
in (
Upper_Arc K) & p2
in (
Lower_Arc K) & not p2
= (
W-min K) or p1
in (
Upper_Arc K) & p2
in (
Upper_Arc K) &
LE (p1,p2,(
Upper_Arc K),(
W-min K),(
E-max K)) or p1
in (
Lower_Arc K) & p2
in (
Lower_Arc K) & not p2
= (
W-min K) &
LE (p1,p2,(
Lower_Arc K),(
E-max K),(
W-min K)) by
JORDAN6:def 10;
consider f be
Function of
I[01] , ((
TOP-REAL 2)
| (
Upper_Arc K)) such that
A16: f is
being_homeomorphism and
A17: (f
.
0 )
= (
W-min K) and
A18: (f
. 1)
= (
E-max K) and (
rng f)
= (
Upper_Arc K) and for r be
Real st r
in
[.
0 , (1
/ 2).] holds (f
. r)
= (((1
- (2
* r))
*
|[a, c]|)
+ ((2
* r)
*
|[a, d]|)) and for r be
Real st r
in
[.(1
/ 2), 1.] holds (f
. r)
= (((1
- ((2
* r)
- 1))
*
|[a, d]|)
+ (((2
* r)
- 1)
*
|[b, d]|)) and
A19: for p be
Point of (
TOP-REAL 2) st p
in (
LSeg (
|[a, c]|,
|[a, d]|)) holds
0
<= ((((p
`2 )
- c)
/ (d
- c))
/ 2) & ((((p
`2 )
- c)
/ (d
- c))
/ 2)
<= 1 & (f
. ((((p
`2 )
- c)
/ (d
- c))
/ 2))
= p and for p be
Point of (
TOP-REAL 2) st p
in (
LSeg (
|[a, d]|,
|[b, d]|)) holds
0
<= (((((p
`1 )
- a)
/ (b
- a))
/ 2)
+ (1
/ 2)) & (((((p
`1 )
- a)
/ (b
- a))
/ 2)
+ (1
/ 2))
<= 1 & (f
. (((((p
`1 )
- a)
/ (b
- a))
/ 2)
+ (1
/ 2)))
= p by
A1,
A2,
Th53;
reconsider s1 = ((((p1
`2 )
- c)
/ (d
- c))
/ 2), s2 = ((((p2
`2 )
- c)
/ (d
- c))
/ 2) as
Real;
A20: (f
. s1)
= p1 by
A3,
A19;
A21: (f
. s2)
= p2 by
A4,
A19;
A22: (d
- c)
>
0 by
A2,
XREAL_1: 50;
A23: s1
<= 1 by
A3,
A19;
A24:
0
<= s2 by
A4,
A19;
s2
<= 1 by
A4,
A19;
then s1
<= s2 by
A13,
A15,
A16,
A17,
A18,
A20,
A21,
A23,
A24,
JORDAN5C:def 3;
then (((((p1
`2 )
- c)
/ (d
- c))
/ 2)
* 2)
<= (((((p2
`2 )
- c)
/ (d
- c))
/ 2)
* 2) by
XREAL_1: 64;
then ((((p1
`2 )
- c)
/ (d
- c))
* (d
- c))
<= ((((p2
`2 )
- c)
/ (d
- c))
* (d
- c)) by
A22,
XREAL_1: 64;
then ((p1
`2 )
- c)
<= ((((p2
`2 )
- c)
/ (d
- c))
* (d
- c)) by
A22,
XCMPLX_1: 87;
then ((p1
`2 )
- c)
<= ((p2
`2 )
- c) by
A22,
XCMPLX_1: 87;
then (((p1
`2 )
- c)
+ c)
<= (((p2
`2 )
- c)
+ c) by
XREAL_1: 7;
hence thesis;
end;
thus (p1
`2 )
<= (p2
`2 ) implies
LE (p1,p2,K)
proof
assume
A25: (p1
`2 )
<= (p2
`2 );
for g be
Function of
I[01] , ((
TOP-REAL 2)
| (
Upper_Arc K)), s1,s2 be
Real st g is
being_homeomorphism & (g
.
0 )
= (
W-min K) & (g
. 1)
= (
E-max K) & (g
. s1)
= p1 &
0
<= s1 & s1
<= 1 & (g
. s2)
= p2 &
0
<= s2 & s2
<= 1 holds s1
<= s2
proof
let g be
Function of
I[01] , ((
TOP-REAL 2)
| (
Upper_Arc K)), s1,s2 be
Real;
assume that
A26: g is
being_homeomorphism and
A27: (g
.
0 )
= (
W-min K) and (g
. 1)
= (
E-max K) and
A28: (g
. s1)
= p1 and
A29:
0
<= s1 and
A30: s1
<= 1 and
A31: (g
. s2)
= p2 and
A32:
0
<= s2 and
A33: s2
<= 1;
A34: (
dom g)
= the
carrier of
I[01] by
FUNCT_2:def 1;
A35: g is
one-to-one by
A26,
TOPS_2:def 5;
A36: the
carrier of ((
TOP-REAL 2)
| (
Upper_Arc K))
= (
Upper_Arc K) by
PRE_TOPC: 8;
then
reconsider g1 = g as
Function of
I[01] , (
TOP-REAL 2) by
FUNCT_2: 7;
g is
continuous by
A26,
TOPS_2:def 5;
then
A37: g1 is
continuous by
PRE_TOPC: 26;
reconsider h1 =
proj1 as
Function of (
TOP-REAL 2),
R^1 by
TOPMETR: 17;
reconsider h2 =
proj2 as
Function of (
TOP-REAL 2),
R^1 by
TOPMETR: 17;
reconsider hh1 = h1 as
Function of the TopStruct of (
TOP-REAL 2),
R^1 ;
reconsider hh2 = h2 as
Function of the TopStruct of (
TOP-REAL 2),
R^1 ;
A38: the TopStruct of (
TOP-REAL 2)
= ( the TopStruct of (
TOP-REAL 2)
| (
[#] the TopStruct of (
TOP-REAL 2))) by
TSEP_1: 3
.= the TopStruct of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) by
PRE_TOPC: 36
.= ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2)));
then (for p be
Point of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) holds (hh1
. p)
= (
proj1
. p)) implies hh1 is
continuous by
JGRAPH_2: 29;
then
A39: (for p be
Point of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) holds (hh1
. p)
= (
proj1
. p)) implies h1 is
continuous by
PRE_TOPC: 32;
(for p be
Point of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) holds (hh2
. p)
= (
proj2
. p)) implies hh2 is
continuous by
A38,
JGRAPH_2: 30;
then (for p be
Point of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) holds (hh2
. p)
= (
proj2
. p)) implies h2 is
continuous by
PRE_TOPC: 32;
then
consider h be
Function of (
TOP-REAL 2),
R^1 such that
A40: for p be
Point of (
TOP-REAL 2), r1,r2 be
Real st (hh1
. p)
= r1 & (hh2
. p)
= r2 holds (h
. p)
= (r1
+ r2) and
A41: h is
continuous by
A39,
JGRAPH_2: 19;
reconsider k = (h
* g1) as
Function of
I[01] ,
R^1 ;
A42: (
W-min K)
=
|[a, c]| by
A1,
A2,
Th46;
now
assume
A43: s1
> s2;
A44: (
dom g)
=
[.
0 , 1.] by
BORSUK_1: 40,
FUNCT_2:def 1;
0
in
[.
0 , 1.] by
XXREAL_1: 1;
then
A45: (k
.
0 )
= (h
. (
W-min K)) by
A27,
A44,
FUNCT_1: 13
.= ((h1
. (
W-min K))
+ (h2
. (
W-min K))) by
A40
.= (((
W-min K)
`1 )
+ (
proj2
. (
W-min K))) by
PSCOMP_1:def 5
.= (((
W-min K)
`1 )
+ ((
W-min K)
`2 )) by
PSCOMP_1:def 6
.= (a
+ ((
W-min K)
`2 )) by
A42,
EUCLID: 52
.= (a
+ c) by
A42,
EUCLID: 52;
s1
in
[.
0 , 1.] by
A29,
A30,
XXREAL_1: 1;
then
A46: (k
. s1)
= (h
. p1) by
A28,
A44,
FUNCT_1: 13
.= ((h1
. p1)
+ (h2
. p1)) by
A40
.= ((p1
`1 )
+ (
proj2
. p1)) by
PSCOMP_1:def 5
.= (a
+ (p1
`2 )) by
A6,
PSCOMP_1:def 6;
A47: s2
in
[.
0 , 1.] by
A32,
A33,
XXREAL_1: 1;
then
A48: (k
. s2)
= (h
. p2) by
A31,
A44,
FUNCT_1: 13
.= ((h1
. p2)
+ (h2
. p2)) by
A40
.= ((p2
`1 )
+ (
proj2
. p2)) by
PSCOMP_1:def 5
.= (a
+ (p2
`2 )) by
A8,
PSCOMP_1:def 6;
A49: (k
.
0 )
<= (k
. s1) by
A7,
A45,
A46,
XREAL_1: 7;
A50: (k
. s1)
<= (k
. s2) by
A25,
A46,
A48,
XREAL_1: 7;
A51:
0
in
[.
0 , 1.] by
XXREAL_1: 1;
then
A52:
[.
0 , s2.]
c=
[.
0 , 1.] by
A47,
XXREAL_2:def 12;
reconsider B =
[.
0 , s2.] as
Subset of
I[01] by
A47,
A51,
BORSUK_1: 40,
XXREAL_2:def 12;
A53: B is
connected by
A32,
A47,
A51,
BORSUK_1: 40,
BORSUK_4: 24;
A54:
0
in B by
A32,
XXREAL_1: 1;
A55: s2
in B by
A32,
XXREAL_1: 1;
consider xc be
Point of
I[01] such that
A56: xc
in B and
A57: (k
. xc)
= (k
. s1) by
A37,
A41,
A49,
A50,
A53,
A54,
A55,
TOPREAL5: 5;
reconsider rxc = xc as
Real;
A58: for x1,x2 be
set st x1
in (
dom k) & x2
in (
dom k) & (k
. x1)
= (k
. x2) holds x1
= x2
proof
let x1,x2 be
set;
assume that
A59: x1
in (
dom k) and
A60: x2
in (
dom k) and
A61: (k
. x1)
= (k
. x2);
reconsider r1 = x1 as
Point of
I[01] by
A59;
reconsider r2 = x2 as
Point of
I[01] by
A60;
A62: (k
. x1)
= (h
. (g1
. x1)) by
A59,
FUNCT_1: 12
.= ((h1
. (g1
. r1))
+ (h2
. (g1
. r1))) by
A40
.= (((g1
. r1)
`1 )
+ (
proj2
. (g1
. r1))) by
PSCOMP_1:def 5
.= (((g1
. r1)
`1 )
+ ((g1
. r1)
`2 )) by
PSCOMP_1:def 6;
A63: (k
. x2)
= (h
. (g1
. x2)) by
A60,
FUNCT_1: 12
.= ((h1
. (g1
. r2))
+ (h2
. (g1
. r2))) by
A40
.= (((g1
. r2)
`1 )
+ (
proj2
. (g1
. r2))) by
PSCOMP_1:def 5
.= (((g1
. r2)
`1 )
+ ((g1
. r2)
`2 )) by
PSCOMP_1:def 6;
A64: (g
. r1)
in (
Upper_Arc K) by
A36;
A65: (g
. r2)
in (
Upper_Arc K) by
A36;
reconsider gr1 = (g
. r1) as
Point of (
TOP-REAL 2) by
A64;
reconsider gr2 = (g
. r2) as
Point of (
TOP-REAL 2) by
A65;
now
per cases by
A10,
A36,
XBOOLE_0:def 3;
case
A66: (g
. r1)
in (
LSeg (
|[a, c]|,
|[a, d]|)) & (g
. r2)
in (
LSeg (
|[a, c]|,
|[a, d]|));
then
A67: (gr1
`1 )
= a by
A2,
Th1;
(gr2
`1 )
= a by
A2,
A66,
Th1;
then
|[(gr1
`1 ), (gr1
`2 )]|
= (g
. r2) by
A61,
A62,
A63,
A67,
EUCLID: 53;
then (g
. r1)
= (g
. r2) by
EUCLID: 53;
hence thesis by
A34,
A35,
FUNCT_1:def 4;
end;
case
A68: (g
. r1)
in (
LSeg (
|[a, c]|,
|[a, d]|)) & (g
. r2)
in (
LSeg (
|[a, d]|,
|[b, d]|));
then
A69: (gr1
`1 )
= a by
A2,
Th1;
A70: (gr1
`2 )
<= d by
A2,
A68,
Th1;
A71: (gr2
`2 )
= d by
A1,
A68,
Th3;
A72: a
<= (gr2
`1 ) by
A1,
A68,
Th3;
A73: (a
+ (gr1
`2 ))
= ((gr2
`1 )
+ d) by
A1,
A61,
A62,
A63,
A68,
A69,
Th3;
A74:
now
assume a
<> (gr2
`1 );
then a
< (gr2
`1 ) by
A72,
XXREAL_0: 1;
hence contradiction by
A70,
A73,
XREAL_1: 8;
end;
now
assume (gr1
`2 )
<> d;
then d
> (gr1
`2 ) by
A70,
XXREAL_0: 1;
hence contradiction by
A61,
A62,
A63,
A69,
A71,
A72,
XREAL_1: 8;
end;
then
|[(gr1
`1 ), (gr1
`2 )]|
= (g
. r2) by
A69,
A71,
A74,
EUCLID: 53;
then (g
. r1)
= (g
. r2) by
EUCLID: 53;
hence thesis by
A34,
A35,
FUNCT_1:def 4;
end;
case
A75: (g
. r1)
in (
LSeg (
|[a, d]|,
|[b, d]|)) & (g
. r2)
in (
LSeg (
|[a, c]|,
|[a, d]|));
then
A76: (gr2
`1 )
= a by
A2,
Th1;
A77: (gr2
`2 )
<= d by
A2,
A75,
Th1;
A78: (gr1
`2 )
= d by
A1,
A75,
Th3;
A79: a
<= (gr1
`1 ) by
A1,
A75,
Th3;
A80: (a
+ (gr2
`2 ))
= ((gr1
`1 )
+ d) by
A1,
A61,
A62,
A63,
A75,
A76,
Th3;
A81:
now
assume a
<> (gr1
`1 );
then a
< (gr1
`1 ) by
A79,
XXREAL_0: 1;
hence contradiction by
A77,
A80,
XREAL_1: 8;
end;
now
assume (gr2
`2 )
<> d;
then d
> (gr2
`2 ) by
A77,
XXREAL_0: 1;
hence contradiction by
A61,
A62,
A63,
A76,
A78,
A79,
XREAL_1: 8;
end;
then
|[(gr2
`1 ), (gr2
`2 )]|
= (g
. r1) by
A76,
A78,
A81,
EUCLID: 53;
then (g
. r1)
= (g
. r2) by
EUCLID: 53;
hence thesis by
A34,
A35,
FUNCT_1:def 4;
end;
case
A82: (g
. r1)
in (
LSeg (
|[a, d]|,
|[b, d]|)) & (g
. r2)
in (
LSeg (
|[a, d]|,
|[b, d]|));
then
A83: (gr1
`2 )
= d by
A1,
Th3;
(gr2
`2 )
= d by
A1,
A82,
Th3;
then
|[(gr1
`1 ), (gr1
`2 )]|
= (g
. r2) by
A61,
A62,
A63,
A83,
EUCLID: 53;
then (g
. r1)
= (g
. r2) by
EUCLID: 53;
hence thesis by
A34,
A35,
FUNCT_1:def 4;
end;
end;
hence thesis;
end;
A84: (
dom k)
=
[.
0 , 1.] by
BORSUK_1: 40,
FUNCT_2:def 1;
then s1
in (
dom k) by
A29,
A30,
XXREAL_1: 1;
then rxc
= s1 by
A52,
A56,
A57,
A58,
A84;
hence contradiction by
A43,
A56,
XXREAL_1: 1;
end;
hence thesis;
end;
then
LE (p1,p2,(
Upper_Arc K),(
W-min K),(
E-max K)) by
A3,
A4,
A11,
JORDAN5C:def 3;
hence thesis by
A3,
A4,
A11,
JORDAN6:def 10;
end;
end;
theorem ::
JGRAPH_6:56
Th56: for a,b,c,d be
Real, p1,p2 be
Point of (
TOP-REAL 2) st a
< b & c
< d & p1
in (
LSeg (
|[a, d]|,
|[b, d]|)) & p2
in (
LSeg (
|[a, d]|,
|[b, d]|)) holds
LE (p1,p2,(
rectangle (a,b,c,d))) iff (p1
`1 )
<= (p2
`1 )
proof
let a,b,c,d be
Real, p1,p2 be
Point of (
TOP-REAL 2);
set K = (
rectangle (a,b,c,d));
assume that
A1: a
< b and
A2: c
< d and
A3: p1
in (
LSeg (
|[a, d]|,
|[b, d]|)) and
A4: p2
in (
LSeg (
|[a, d]|,
|[b, d]|));
A5: K is
being_simple_closed_curve by
A1,
A2,
Th50;
A6: (p1
`2 )
= d by
A1,
A3,
Th3;
A7: a
<= (p1
`1 ) by
A1,
A3,
Th3;
A8: (p1
`1 )
<= b by
A1,
A3,
Th3;
A9: (p2
`2 )
= d by
A1,
A4,
Th3;
A10: (
W-min K)
=
|[a, c]| by
A1,
A2,
Th46;
A11: (
E-max K)
=
|[b, d]| by
A1,
A2,
Th46;
A12: (
Upper_Arc K)
= ((
LSeg (
|[a, c]|,
|[a, d]|))
\/ (
LSeg (
|[a, d]|,
|[b, d]|))) by
A1,
A2,
Th51;
then
A13: (
LSeg (
|[a, d]|,
|[b, d]|))
c= (
Upper_Arc K) by
XBOOLE_1: 7;
A14: ((
Upper_Arc K)
/\ (
Lower_Arc K))
=
{(
W-min K), (
E-max K)} by
A5,
JORDAN6:def 9;
A15:
now
assume p2
in (
Lower_Arc K);
then
A16: p2
in ((
Upper_Arc K)
/\ (
Lower_Arc K)) by
A4,
A13,
XBOOLE_0:def 4;
now
assume p2
= (
W-min K);
then (p2
`2 )
= c by
A10,
EUCLID: 52;
hence contradiction by
A2,
A4,
TOPREAL3: 12;
end;
hence p2
= (
E-max K) by
A14,
A16,
TARSKI:def 2;
end;
thus
LE (p1,p2,K) implies (p1
`1 )
<= (p2
`1 )
proof
assume
LE (p1,p2,K);
then
A17: p1
in (
Upper_Arc K) & p2
in (
Lower_Arc K) & not p2
= (
W-min K) or p1
in (
Upper_Arc K) & p2
in (
Upper_Arc K) &
LE (p1,p2,(
Upper_Arc K),(
W-min K),(
E-max K)) or p1
in (
Lower_Arc K) & p2
in (
Lower_Arc K) & not p2
= (
W-min K) &
LE (p1,p2,(
Lower_Arc K),(
E-max K),(
W-min K)) by
JORDAN6:def 10;
now
per cases ;
case p2
= (
E-max K);
hence thesis by
A8,
A11,
EUCLID: 52;
end;
case
A18: p2
<> (
E-max K);
consider f be
Function of
I[01] , ((
TOP-REAL 2)
| (
Upper_Arc K)) such that
A19: f is
being_homeomorphism and
A20: (f
.
0 )
= (
W-min K) and
A21: (f
. 1)
= (
E-max K) and (
rng f)
= (
Upper_Arc K) and for r be
Real st r
in
[.
0 , (1
/ 2).] holds (f
. r)
= (((1
- (2
* r))
*
|[a, c]|)
+ ((2
* r)
*
|[a, d]|)) and for r be
Real st r
in
[.(1
/ 2), 1.] holds (f
. r)
= (((1
- ((2
* r)
- 1))
*
|[a, d]|)
+ (((2
* r)
- 1)
*
|[b, d]|)) and for p be
Point of (
TOP-REAL 2) st p
in (
LSeg (
|[a, c]|,
|[a, d]|)) holds
0
<= ((((p
`2 )
- c)
/ (d
- c))
/ 2) & ((((p
`2 )
- c)
/ (d
- c))
/ 2)
<= 1 & (f
. ((((p
`2 )
- c)
/ (d
- c))
/ 2))
= p and
A22: for p be
Point of (
TOP-REAL 2) st p
in (
LSeg (
|[a, d]|,
|[b, d]|)) holds
0
<= (((((p
`1 )
- a)
/ (b
- a))
/ 2)
+ (1
/ 2)) & (((((p
`1 )
- a)
/ (b
- a))
/ 2)
+ (1
/ 2))
<= 1 & (f
. (((((p
`1 )
- a)
/ (b
- a))
/ 2)
+ (1
/ 2)))
= p by
A1,
A2,
Th53;
reconsider s1 = (((((p1
`1 )
- a)
/ (b
- a))
/ 2)
+ (1
/ 2)), s2 = (((((p2
`1 )
- a)
/ (b
- a))
/ 2)
+ (1
/ 2)) as
Real;
A23: (f
. s1)
= p1 by
A3,
A22;
A24: (f
. s2)
= p2 by
A4,
A22;
A25: (b
- a)
>
0 by
A1,
XREAL_1: 50;
A26: s1
<= 1 by
A3,
A22;
A27:
0
<= s2 by
A4,
A22;
s2
<= 1 by
A4,
A22;
then s1
<= s2 by
A15,
A17,
A18,
A19,
A20,
A21,
A23,
A24,
A26,
A27,
JORDAN5C:def 3;
then ((((p1
`1 )
- a)
/ (b
- a))
/ 2)
<= ((((p2
`1 )
- a)
/ (b
- a))
/ 2) by
XREAL_1: 6;
then (((((p1
`1 )
- a)
/ (b
- a))
/ 2)
* 2)
<= (((((p2
`1 )
- a)
/ (b
- a))
/ 2)
* 2) by
XREAL_1: 64;
then ((((p1
`1 )
- a)
/ (b
- a))
* (b
- a))
<= ((((p2
`1 )
- a)
/ (b
- a))
* (b
- a)) by
A25,
XREAL_1: 64;
then ((p1
`1 )
- a)
<= ((((p2
`1 )
- a)
/ (b
- a))
* (b
- a)) by
A25,
XCMPLX_1: 87;
then ((p1
`1 )
- a)
<= ((p2
`1 )
- a) by
A25,
XCMPLX_1: 87;
then (((p1
`1 )
- a)
+ a)
<= (((p2
`1 )
- a)
+ a) by
XREAL_1: 7;
hence thesis;
end;
end;
hence thesis;
end;
thus (p1
`1 )
<= (p2
`1 ) implies
LE (p1,p2,K)
proof
assume
A28: (p1
`1 )
<= (p2
`1 );
for g be
Function of
I[01] , ((
TOP-REAL 2)
| (
Upper_Arc K)), s1,s2 be
Real st g is
being_homeomorphism & (g
.
0 )
= (
W-min K) & (g
. 1)
= (
E-max K) & (g
. s1)
= p1 &
0
<= s1 & s1
<= 1 & (g
. s2)
= p2 &
0
<= s2 & s2
<= 1 holds s1
<= s2
proof
let g be
Function of
I[01] , ((
TOP-REAL 2)
| (
Upper_Arc K)), s1,s2 be
Real;
assume that
A29: g is
being_homeomorphism and
A30: (g
.
0 )
= (
W-min K) and (g
. 1)
= (
E-max K) and
A31: (g
. s1)
= p1 and
A32:
0
<= s1 and
A33: s1
<= 1 and
A34: (g
. s2)
= p2 and
A35:
0
<= s2 and
A36: s2
<= 1;
A37: (
dom g)
= the
carrier of
I[01] by
FUNCT_2:def 1;
A38: g is
one-to-one by
A29,
TOPS_2:def 5;
A39: the
carrier of ((
TOP-REAL 2)
| (
Upper_Arc K))
= (
Upper_Arc K) by
PRE_TOPC: 8;
then
reconsider g1 = g as
Function of
I[01] , (
TOP-REAL 2) by
FUNCT_2: 7;
g is
continuous by
A29,
TOPS_2:def 5;
then
A40: g1 is
continuous by
PRE_TOPC: 26;
reconsider h1 =
proj1 as
Function of (
TOP-REAL 2),
R^1 by
TOPMETR: 17;
reconsider h2 =
proj2 as
Function of (
TOP-REAL 2),
R^1 by
TOPMETR: 17;
reconsider hh1 = h1 as
Function of the TopStruct of (
TOP-REAL 2),
R^1 ;
reconsider hh2 = h2 as
Function of the TopStruct of (
TOP-REAL 2),
R^1 ;
A41: the TopStruct of (
TOP-REAL 2)
= ( the TopStruct of (
TOP-REAL 2)
| (
[#] the TopStruct of (
TOP-REAL 2))) by
TSEP_1: 3
.= the TopStruct of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) by
PRE_TOPC: 36
.= ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2)));
then (for p be
Point of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) holds (hh1
. p)
= (
proj1
. p)) implies hh1 is
continuous by
JGRAPH_2: 29;
then
A42: (for p be
Point of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) holds (hh1
. p)
= (
proj1
. p)) implies h1 is
continuous by
PRE_TOPC: 32;
(for p be
Point of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) holds (hh2
. p)
= (
proj2
. p)) implies hh2 is
continuous by
A41,
JGRAPH_2: 30;
then (for p be
Point of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) holds (hh2
. p)
= (
proj2
. p)) implies h2 is
continuous by
PRE_TOPC: 32;
then
consider h be
Function of (
TOP-REAL 2),
R^1 such that
A43: for p be
Point of (
TOP-REAL 2), r1,r2 be
Real st (h1
. p)
= r1 & (h2
. p)
= r2 holds (h
. p)
= (r1
+ r2) and
A44: h is
continuous by
A42,
JGRAPH_2: 19;
reconsider k = (h
* g1) as
Function of
I[01] ,
R^1 ;
A45: (
W-min K)
=
|[a, c]| by
A1,
A2,
Th46;
now
assume
A46: s1
> s2;
A47: (
dom g)
=
[.
0 , 1.] by
BORSUK_1: 40,
FUNCT_2:def 1;
0
in
[.
0 , 1.] by
XXREAL_1: 1;
then
A48: (k
.
0 )
= (h
. (
W-min K)) by
A30,
A47,
FUNCT_1: 13
.= ((h1
. (
W-min K))
+ (h2
. (
W-min K))) by
A43
.= (((
W-min K)
`1 )
+ (
proj2
. (
W-min K))) by
PSCOMP_1:def 5
.= (((
W-min K)
`1 )
+ ((
W-min K)
`2 )) by
PSCOMP_1:def 6
.= (((
W-min K)
`1 )
+ c) by
A45,
EUCLID: 52
.= (a
+ c) by
A45,
EUCLID: 52;
s1
in
[.
0 , 1.] by
A32,
A33,
XXREAL_1: 1;
then
A49: (k
. s1)
= (h
. p1) by
A31,
A47,
FUNCT_1: 13
.= ((h1
. p1)
+ (h2
. p1)) by
A43
.= ((p1
`1 )
+ (
proj2
. p1)) by
PSCOMP_1:def 5
.= ((p1
`1 )
+ d) by
A6,
PSCOMP_1:def 6;
A50: s2
in
[.
0 , 1.] by
A35,
A36,
XXREAL_1: 1;
then
A51: (k
. s2)
= (h
. p2) by
A34,
A47,
FUNCT_1: 13
.= ((h1
. p2)
+ (h2
. p2)) by
A43
.= ((p2
`1 )
+ (
proj2
. p2)) by
PSCOMP_1:def 5
.= ((p2
`1 )
+ d) by
A9,
PSCOMP_1:def 6;
A52: (k
.
0 )
<= (k
. s1) by
A2,
A7,
A48,
A49,
XREAL_1: 7;
A53: (k
. s1)
<= (k
. s2) by
A28,
A49,
A51,
XREAL_1: 7;
A54:
0
in
[.
0 , 1.] by
XXREAL_1: 1;
then
A55:
[.
0 , s2.]
c=
[.
0 , 1.] by
A50,
XXREAL_2:def 12;
reconsider B =
[.
0 , s2.] as
Subset of
I[01] by
A50,
A54,
BORSUK_1: 40,
XXREAL_2:def 12;
A56: B is
connected by
A35,
A50,
A54,
BORSUK_1: 40,
BORSUK_4: 24;
A57:
0
in B by
A35,
XXREAL_1: 1;
A58: s2
in B by
A35,
XXREAL_1: 1;
consider xc be
Point of
I[01] such that
A59: xc
in B and
A60: (k
. xc)
= (k
. s1) by
A40,
A44,
A52,
A53,
A56,
A57,
A58,
TOPREAL5: 5;
reconsider rxc = xc as
Real;
A61: for x1,x2 be
set st x1
in (
dom k) & x2
in (
dom k) & (k
. x1)
= (k
. x2) holds x1
= x2
proof
let x1,x2 be
set;
assume that
A62: x1
in (
dom k) and
A63: x2
in (
dom k) and
A64: (k
. x1)
= (k
. x2);
reconsider r1 = x1 as
Point of
I[01] by
A62;
reconsider r2 = x2 as
Point of
I[01] by
A63;
A65: (k
. x1)
= (h
. (g1
. x1)) by
A62,
FUNCT_1: 12
.= ((h1
. (g1
. r1))
+ (h2
. (g1
. r1))) by
A43
.= (((g1
. r1)
`1 )
+ (
proj2
. (g1
. r1))) by
PSCOMP_1:def 5
.= (((g1
. r1)
`1 )
+ ((g1
. r1)
`2 )) by
PSCOMP_1:def 6;
A66: (k
. x2)
= (h
. (g1
. x2)) by
A63,
FUNCT_1: 12
.= ((h1
. (g1
. r2))
+ (h2
. (g1
. r2))) by
A43
.= (((g1
. r2)
`1 )
+ (
proj2
. (g1
. r2))) by
PSCOMP_1:def 5
.= (((g1
. r2)
`1 )
+ ((g1
. r2)
`2 )) by
PSCOMP_1:def 6;
A67: (g
. r1)
in (
Upper_Arc K) by
A39;
A68: (g
. r2)
in (
Upper_Arc K) by
A39;
reconsider gr1 = (g
. r1) as
Point of (
TOP-REAL 2) by
A67;
reconsider gr2 = (g
. r2) as
Point of (
TOP-REAL 2) by
A68;
now
per cases by
A12,
A39,
XBOOLE_0:def 3;
case
A69: (g
. r1)
in (
LSeg (
|[a, c]|,
|[a, d]|)) & (g
. r2)
in (
LSeg (
|[a, c]|,
|[a, d]|));
then
A70: (gr1
`1 )
= a by
A2,
Th1;
(gr2
`1 )
= a by
A2,
A69,
Th1;
then
|[(gr1
`1 ), (gr1
`2 )]|
= (g
. r2) by
A64,
A65,
A66,
A70,
EUCLID: 53;
then (g
. r1)
= (g
. r2) by
EUCLID: 53;
hence thesis by
A37,
A38,
FUNCT_1:def 4;
end;
case
A71: (g
. r1)
in (
LSeg (
|[a, c]|,
|[a, d]|)) & (g
. r2)
in (
LSeg (
|[a, d]|,
|[b, d]|));
then
A72: (gr1
`1 )
= a by
A2,
Th1;
A73: (gr1
`2 )
<= d by
A2,
A71,
Th1;
A74: (gr2
`2 )
= d by
A1,
A71,
Th3;
A75: a
<= (gr2
`1 ) by
A1,
A71,
Th3;
A76: (a
+ (gr1
`2 ))
= ((gr2
`1 )
+ d) by
A1,
A64,
A65,
A66,
A71,
A72,
Th3;
A77:
now
assume a
<> (gr2
`1 );
then a
< (gr2
`1 ) by
A75,
XXREAL_0: 1;
hence contradiction by
A73,
A76,
XREAL_1: 8;
end;
now
assume (gr1
`2 )
<> d;
then d
> (gr1
`2 ) by
A73,
XXREAL_0: 1;
hence contradiction by
A64,
A65,
A66,
A72,
A74,
A75,
XREAL_1: 8;
end;
then
|[(gr1
`1 ), (gr1
`2 )]|
= (g
. r2) by
A72,
A74,
A77,
EUCLID: 53;
then (g
. r1)
= (g
. r2) by
EUCLID: 53;
hence thesis by
A37,
A38,
FUNCT_1:def 4;
end;
case
A78: (g
. r1)
in (
LSeg (
|[a, d]|,
|[b, d]|)) & (g
. r2)
in (
LSeg (
|[a, c]|,
|[a, d]|));
then
A79: (gr2
`1 )
= a by
A2,
Th1;
A80: (gr2
`2 )
<= d by
A2,
A78,
Th1;
A81: (gr1
`2 )
= d by
A1,
A78,
Th3;
A82: a
<= (gr1
`1 ) by
A1,
A78,
Th3;
A83: (a
+ (gr2
`2 ))
= ((gr1
`1 )
+ d) by
A1,
A64,
A65,
A66,
A78,
A79,
Th3;
A84:
now
assume a
<> (gr1
`1 );
then a
< (gr1
`1 ) by
A82,
XXREAL_0: 1;
hence contradiction by
A80,
A83,
XREAL_1: 8;
end;
now
assume (gr2
`2 )
<> d;
then d
> (gr2
`2 ) by
A80,
XXREAL_0: 1;
hence contradiction by
A64,
A65,
A66,
A79,
A81,
A82,
XREAL_1: 8;
end;
then
|[(gr2
`1 ), (gr2
`2 )]|
= (g
. r1) by
A79,
A81,
A84,
EUCLID: 53;
then (g
. r1)
= (g
. r2) by
EUCLID: 53;
hence thesis by
A37,
A38,
FUNCT_1:def 4;
end;
case
A85: (g
. r1)
in (
LSeg (
|[a, d]|,
|[b, d]|)) & (g
. r2)
in (
LSeg (
|[a, d]|,
|[b, d]|));
then
A86: (gr1
`2 )
= d by
A1,
Th3;
(gr2
`2 )
= d by
A1,
A85,
Th3;
then
|[(gr1
`1 ), (gr1
`2 )]|
= (g
. r2) by
A64,
A65,
A66,
A86,
EUCLID: 53;
then (g
. r1)
= (g
. r2) by
EUCLID: 53;
hence thesis by
A37,
A38,
FUNCT_1:def 4;
end;
end;
hence thesis;
end;
A87: (
dom k)
=
[.
0 , 1.] by
BORSUK_1: 40,
FUNCT_2:def 1;
then s1
in (
dom k) by
A32,
A33,
XXREAL_1: 1;
then rxc
= s1 by
A55,
A59,
A60,
A61,
A87;
hence contradiction by
A46,
A59,
XXREAL_1: 1;
end;
hence thesis;
end;
then
LE (p1,p2,(
Upper_Arc K),(
W-min K),(
E-max K)) by
A3,
A4,
A13,
JORDAN5C:def 3;
hence thesis by
A3,
A4,
A13,
JORDAN6:def 10;
end;
end;
theorem ::
JGRAPH_6:57
Th57: for a,b,c,d be
Real, p1,p2 be
Point of (
TOP-REAL 2) st a
< b & c
< d & p1
in (
LSeg (
|[b, c]|,
|[b, d]|)) & p2
in (
LSeg (
|[b, c]|,
|[b, d]|)) holds
LE (p1,p2,(
rectangle (a,b,c,d))) iff (p1
`2 )
>= (p2
`2 )
proof
let a,b,c,d be
Real, p1,p2 be
Point of (
TOP-REAL 2);
set K = (
rectangle (a,b,c,d));
assume that
A1: a
< b and
A2: c
< d and
A3: p1
in (
LSeg (
|[b, c]|,
|[b, d]|)) and
A4: p2
in (
LSeg (
|[b, c]|,
|[b, d]|));
A5: K is
being_simple_closed_curve by
A1,
A2,
Th50;
A6: (p1
`1 )
= b by
A2,
A3,
Th1;
A7: (p1
`2 )
<= d by
A2,
A3,
Th1;
A8: (p2
`1 )
= b by
A2,
A4,
Th1;
A9: (p2
`2 )
<= d by
A2,
A4,
Th1;
A10: (
W-min K)
=
|[a, c]| by
A1,
A2,
Th46;
A11: (
E-max K)
=
|[b, d]| by
A1,
A2,
Th46;
A12: (
Lower_Arc K)
= ((
LSeg (
|[b, d]|,
|[b, c]|))
\/ (
LSeg (
|[b, c]|,
|[a, c]|))) by
A1,
A2,
Th52;
then
A13: (
LSeg (
|[b, d]|,
|[b, c]|))
c= (
Lower_Arc K) by
XBOOLE_1: 7;
A14: ((
Upper_Arc K)
/\ (
Lower_Arc K))
=
{(
W-min K), (
E-max K)} by
A5,
JORDAN6:def 9;
A15:
now
assume p1
in (
Upper_Arc K);
then
A16: p1
in ((
Upper_Arc K)
/\ (
Lower_Arc K)) by
A3,
A13,
XBOOLE_0:def 4;
now
assume p1
= (
W-min K);
then (p1
`1 )
= a by
A10,
EUCLID: 52;
hence contradiction by
A1,
A3,
TOPREAL3: 11;
end;
hence p1
= (
E-max K) by
A14,
A16,
TARSKI:def 2;
end;
thus
LE (p1,p2,K) implies (p1
`2 )
>= (p2
`2 )
proof
assume
LE (p1,p2,K);
then
A17: p1
in (
Upper_Arc K) & p2
in (
Lower_Arc K) & not p2
= (
W-min K) or p1
in (
Upper_Arc K) & p2
in (
Upper_Arc K) &
LE (p1,p2,(
Upper_Arc K),(
W-min K),(
E-max K)) or p1
in (
Lower_Arc K) & p2
in (
Lower_Arc K) & not p2
= (
W-min K) &
LE (p1,p2,(
Lower_Arc K),(
E-max K),(
W-min K)) by
JORDAN6:def 10;
now
per cases ;
case p1
= (
E-max K);
hence thesis by
A9,
A11,
EUCLID: 52;
end;
case
A18: p1
<> (
E-max K);
consider f be
Function of
I[01] , ((
TOP-REAL 2)
| (
Lower_Arc K)) such that
A19: f is
being_homeomorphism and
A20: (f
.
0 )
= (
E-max K) and
A21: (f
. 1)
= (
W-min K) and (
rng f)
= (
Lower_Arc K) and for r be
Real st r
in
[.
0 , (1
/ 2).] holds (f
. r)
= (((1
- (2
* r))
*
|[b, d]|)
+ ((2
* r)
*
|[b, c]|)) and for r be
Real st r
in
[.(1
/ 2), 1.] holds (f
. r)
= (((1
- ((2
* r)
- 1))
*
|[b, c]|)
+ (((2
* r)
- 1)
*
|[a, c]|)) and
A22: for p be
Point of (
TOP-REAL 2) st p
in (
LSeg (
|[b, d]|,
|[b, c]|)) holds
0
<= ((((p
`2 )
- d)
/ (c
- d))
/ 2) & ((((p
`2 )
- d)
/ (c
- d))
/ 2)
<= 1 & (f
. ((((p
`2 )
- d)
/ (c
- d))
/ 2))
= p and for p be
Point of (
TOP-REAL 2) st p
in (
LSeg (
|[b, c]|,
|[a, c]|)) holds
0
<= (((((p
`1 )
- b)
/ (a
- b))
/ 2)
+ (1
/ 2)) & (((((p
`1 )
- b)
/ (a
- b))
/ 2)
+ (1
/ 2))
<= 1 & (f
. (((((p
`1 )
- b)
/ (a
- b))
/ 2)
+ (1
/ 2)))
= p by
A1,
A2,
Th54;
reconsider s1 = ((((p1
`2 )
- d)
/ (c
- d))
/ 2), s2 = ((((p2
`2 )
- d)
/ (c
- d))
/ 2) as
Real;
A23: (f
. s1)
= p1 by
A3,
A22;
A24: (f
. s2)
= p2 by
A4,
A22;
(d
- c)
>
0 by
A2,
XREAL_1: 50;
then
A25: (
- (d
- c))
< (
-
0 ) by
XREAL_1: 24;
A26: s1
<= 1 by
A3,
A22;
A27:
0
<= s2 by
A4,
A22;
s2
<= 1 by
A4,
A22;
then s1
<= s2 by
A15,
A17,
A18,
A19,
A20,
A21,
A23,
A24,
A26,
A27,
JORDAN5C:def 3;
then (((((p1
`2 )
- d)
/ (c
- d))
/ 2)
* 2)
<= (((((p2
`2 )
- d)
/ (c
- d))
/ 2)
* 2) by
XREAL_1: 64;
then ((((p1
`2 )
- d)
/ (c
- d))
* (c
- d))
>= ((((p2
`2 )
- d)
/ (c
- d))
* (c
- d)) by
A25,
XREAL_1: 65;
then ((p1
`2 )
- d)
>= ((((p2
`2 )
- d)
/ (c
- d))
* (c
- d)) by
A25,
XCMPLX_1: 87;
then ((p1
`2 )
- d)
>= ((p2
`2 )
- d) by
A25,
XCMPLX_1: 87;
then (((p1
`2 )
- d)
+ d)
>= (((p2
`2 )
- d)
+ d) by
XREAL_1: 7;
hence thesis;
end;
end;
hence thesis;
end;
thus (p1
`2 )
>= (p2
`2 ) implies
LE (p1,p2,K)
proof
assume
A28: (p1
`2 )
>= (p2
`2 );
now
per cases ;
case p2
= (
W-min K);
then p2
=
|[a, c]| by
A1,
A2,
Th46;
hence contradiction by
A1,
A8,
EUCLID: 52;
end;
case
A29: p2
<> (
W-min K);
for g be
Function of
I[01] , ((
TOP-REAL 2)
| (
Lower_Arc K)), s1,s2 be
Real st g is
being_homeomorphism & (g
.
0 )
= (
E-max K) & (g
. 1)
= (
W-min K) & (g
. s1)
= p1 &
0
<= s1 & s1
<= 1 & (g
. s2)
= p2 &
0
<= s2 & s2
<= 1 holds s1
<= s2
proof
let g be
Function of
I[01] , ((
TOP-REAL 2)
| (
Lower_Arc K)), s1,s2 be
Real;
assume that
A30: g is
being_homeomorphism and
A31: (g
.
0 )
= (
E-max K) and (g
. 1)
= (
W-min K) and
A32: (g
. s1)
= p1 and
A33:
0
<= s1 and
A34: s1
<= 1 and
A35: (g
. s2)
= p2 and
A36:
0
<= s2 and
A37: s2
<= 1;
A38: (
dom g)
= the
carrier of
I[01] by
FUNCT_2:def 1;
A39: g is
one-to-one by
A30,
TOPS_2:def 5;
A40: the
carrier of ((
TOP-REAL 2)
| (
Lower_Arc K))
= (
Lower_Arc K) by
PRE_TOPC: 8;
then
reconsider g1 = g as
Function of
I[01] , (
TOP-REAL 2) by
FUNCT_2: 7;
g is
continuous by
A30,
TOPS_2:def 5;
then
A41: g1 is
continuous by
PRE_TOPC: 26;
reconsider h1 =
proj1 as
Function of (
TOP-REAL 2),
R^1 by
TOPMETR: 17;
reconsider h2 =
proj2 as
Function of (
TOP-REAL 2),
R^1 by
TOPMETR: 17;
reconsider hh1 = h1 as
Function of the TopStruct of (
TOP-REAL 2),
R^1 ;
reconsider hh2 = h2 as
Function of the TopStruct of (
TOP-REAL 2),
R^1 ;
A42: the TopStruct of (
TOP-REAL 2)
= ( the TopStruct of (
TOP-REAL 2)
| (
[#] the TopStruct of (
TOP-REAL 2))) by
TSEP_1: 3
.= the TopStruct of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) by
PRE_TOPC: 36
.= ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2)));
then (for p be
Point of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) holds (hh1
. p)
= (
proj1
. p)) implies hh1 is
continuous by
JGRAPH_2: 29;
then
A43: (for p be
Point of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) holds (hh1
. p)
= (
proj1
. p)) implies h1 is
continuous by
PRE_TOPC: 32;
(for p be
Point of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) holds (hh2
. p)
= (
proj2
. p)) implies hh2 is
continuous by
A42,
JGRAPH_2: 30;
then (for p be
Point of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) holds (hh2
. p)
= (
proj2
. p)) implies h2 is
continuous by
PRE_TOPC: 32;
then
consider h be
Function of (
TOP-REAL 2),
R^1 such that
A44: for p be
Point of (
TOP-REAL 2), r1,r2 be
Real st (h1
. p)
= r1 & (h2
. p)
= r2 holds (h
. p)
= (r1
+ r2) and
A45: h is
continuous by
A43,
JGRAPH_2: 19;
reconsider k = (h
* g1) as
Function of
I[01] ,
R^1 ;
A46: (
E-max K)
=
|[b, d]| by
A1,
A2,
Th46;
now
assume
A47: s1
> s2;
A48: (
dom g)
=
[.
0 , 1.] by
BORSUK_1: 40,
FUNCT_2:def 1;
0
in
[.
0 , 1.] by
XXREAL_1: 1;
then
A49: (k
.
0 )
= (h
. (
E-max K)) by
A31,
A48,
FUNCT_1: 13
.= ((h1
. (
E-max K))
+ (h2
. (
E-max K))) by
A44
.= (((
E-max K)
`1 )
+ (
proj2
. (
E-max K))) by
PSCOMP_1:def 5
.= (((
E-max K)
`1 )
+ ((
E-max K)
`2 )) by
PSCOMP_1:def 6
.= (b
+ ((
E-max K)
`2 )) by
A46,
EUCLID: 52
.= (b
+ d) by
A46,
EUCLID: 52;
s1
in
[.
0 , 1.] by
A33,
A34,
XXREAL_1: 1;
then
A50: (k
. s1)
= (h
. p1) by
A32,
A48,
FUNCT_1: 13
.= ((h1
. p1)
+ (h2
. p1)) by
A44
.= ((p1
`1 )
+ (
proj2
. p1)) by
PSCOMP_1:def 5
.= (b
+ (p1
`2 )) by
A6,
PSCOMP_1:def 6;
A51: s2
in
[.
0 , 1.] by
A36,
A37,
XXREAL_1: 1;
then
A52: (k
. s2)
= (h
. p2) by
A35,
A48,
FUNCT_1: 13
.= ((
proj1
. p2)
+ (
proj2
. p2)) by
A44
.= ((p2
`1 )
+ (
proj2
. p2)) by
PSCOMP_1:def 5
.= (b
+ (p2
`2 )) by
A8,
PSCOMP_1:def 6;
A53: (k
.
0 )
>= (k
. s1) by
A7,
A49,
A50,
XREAL_1: 7;
A54: (k
. s1)
>= (k
. s2) by
A28,
A50,
A52,
XREAL_1: 7;
A55:
0
in
[.
0 , 1.] by
XXREAL_1: 1;
then
A56:
[.
0 , s2.]
c=
[.
0 , 1.] by
A51,
XXREAL_2:def 12;
reconsider B =
[.
0 , s2.] as
Subset of
I[01] by
A51,
A55,
BORSUK_1: 40,
XXREAL_2:def 12;
A57: B is
connected by
A36,
A51,
A55,
BORSUK_1: 40,
BORSUK_4: 24;
A58:
0
in B by
A36,
XXREAL_1: 1;
A59: s2
in B by
A36,
XXREAL_1: 1;
consider xc be
Point of
I[01] such that
A60: xc
in B and
A61: (k
. xc)
= (k
. s1) by
A41,
A45,
A53,
A54,
A57,
A58,
A59,
TOPREAL5: 5;
reconsider rxc = xc as
Real;
A62: for x1,x2 be
set st x1
in (
dom k) & x2
in (
dom k) & (k
. x1)
= (k
. x2) holds x1
= x2
proof
let x1,x2 be
set;
assume that
A63: x1
in (
dom k) and
A64: x2
in (
dom k) and
A65: (k
. x1)
= (k
. x2);
reconsider r1 = x1 as
Point of
I[01] by
A63;
reconsider r2 = x2 as
Point of
I[01] by
A64;
A66: (k
. x1)
= (h
. (g1
. x1)) by
A63,
FUNCT_1: 12
.= ((h1
. (g1
. r1))
+ (h2
. (g1
. r1))) by
A44
.= (((g1
. r1)
`1 )
+ (
proj2
. (g1
. r1))) by
PSCOMP_1:def 5
.= (((g1
. r1)
`1 )
+ ((g1
. r1)
`2 )) by
PSCOMP_1:def 6;
A67: (k
. x2)
= (h
. (g1
. x2)) by
A64,
FUNCT_1: 12
.= ((h1
. (g1
. r2))
+ (h2
. (g1
. r2))) by
A44
.= (((g1
. r2)
`1 )
+ (
proj2
. (g1
. r2))) by
PSCOMP_1:def 5
.= (((g1
. r2)
`1 )
+ ((g1
. r2)
`2 )) by
PSCOMP_1:def 6;
A68: (g
. r1)
in (
Lower_Arc K) by
A40;
A69: (g
. r2)
in (
Lower_Arc K) by
A40;
reconsider gr1 = (g
. r1) as
Point of (
TOP-REAL 2) by
A68;
reconsider gr2 = (g
. r2) as
Point of (
TOP-REAL 2) by
A69;
now
per cases by
A12,
A40,
XBOOLE_0:def 3;
case
A70: (g
. r1)
in (
LSeg (
|[b, c]|,
|[b, d]|)) & (g
. r2)
in (
LSeg (
|[b, c]|,
|[b, d]|));
then
A71: (gr1
`1 )
= b by
A2,
Th1;
(gr2
`1 )
= b by
A2,
A70,
Th1;
then
|[(gr1
`1 ), (gr1
`2 )]|
= (g
. r2) by
A65,
A66,
A67,
A71,
EUCLID: 53;
then (g
. r1)
= (g
. r2) by
EUCLID: 53;
hence thesis by
A38,
A39,
FUNCT_1:def 4;
end;
case
A72: (g
. r1)
in (
LSeg (
|[b, c]|,
|[b, d]|)) & (g
. r2)
in (
LSeg (
|[b, c]|,
|[a, c]|));
then
A73: (gr1
`1 )
= b by
A2,
Th1;
A74: c
<= (gr1
`2 ) by
A2,
A72,
Th1;
A75: (gr2
`2 )
= c by
A1,
A72,
Th3;
A76: (gr2
`1 )
<= b by
A1,
A72,
Th3;
A77: (b
+ (gr1
`2 ))
= ((gr2
`1 )
+ c) by
A1,
A65,
A66,
A67,
A72,
A73,
Th3;
A78:
now
assume b
<> (gr2
`1 );
then b
> (gr2
`1 ) by
A76,
XXREAL_0: 1;
hence contradiction by
A74,
A77,
XREAL_1: 8;
end;
now
assume (gr1
`2 )
<> c;
then c
< (gr1
`2 ) by
A74,
XXREAL_0: 1;
hence contradiction by
A65,
A66,
A67,
A73,
A75,
A76,
XREAL_1: 8;
end;
then
|[(gr1
`1 ), (gr1
`2 )]|
= (g
. r2) by
A73,
A75,
A78,
EUCLID: 53;
then (g
. r1)
= (g
. r2) by
EUCLID: 53;
hence thesis by
A38,
A39,
FUNCT_1:def 4;
end;
case
A79: (g
. r1)
in (
LSeg (
|[b, c]|,
|[a, c]|)) & (g
. r2)
in (
LSeg (
|[b, c]|,
|[b, d]|));
then
A80: (gr2
`1 )
= b by
A2,
Th1;
A81: c
<= (gr2
`2 ) by
A2,
A79,
Th1;
A82: (gr1
`2 )
= c by
A1,
A79,
Th3;
A83: (gr1
`1 )
<= b by
A1,
A79,
Th3;
A84: (b
+ (gr2
`2 ))
= ((gr1
`1 )
+ c) by
A1,
A65,
A66,
A67,
A79,
A80,
Th3;
A85:
now
assume b
<> (gr1
`1 );
then b
> (gr1
`1 ) by
A83,
XXREAL_0: 1;
hence contradiction by
A81,
A84,
XREAL_1: 8;
end;
now
assume (gr2
`2 )
<> c;
then c
< (gr2
`2 ) by
A81,
XXREAL_0: 1;
hence contradiction by
A65,
A66,
A67,
A80,
A82,
A83,
XREAL_1: 8;
end;
then
|[(gr2
`1 ), (gr2
`2 )]|
= (g
. r1) by
A80,
A82,
A85,
EUCLID: 53;
then (g
. r1)
= (g
. r2) by
EUCLID: 53;
hence thesis by
A38,
A39,
FUNCT_1:def 4;
end;
case
A86: (g
. r1)
in (
LSeg (
|[b, c]|,
|[a, c]|)) & (g
. r2)
in (
LSeg (
|[b, c]|,
|[a, c]|));
then
A87: (gr1
`2 )
= c by
A1,
Th3;
(gr2
`2 )
= c by
A1,
A86,
Th3;
then
|[(gr1
`1 ), (gr1
`2 )]|
= (g
. r2) by
A65,
A66,
A67,
A87,
EUCLID: 53;
then (g
. r1)
= (g
. r2) by
EUCLID: 53;
hence thesis by
A38,
A39,
FUNCT_1:def 4;
end;
end;
hence thesis;
end;
A88: (
dom k)
=
[.
0 , 1.] by
BORSUK_1: 40,
FUNCT_2:def 1;
then s1
in (
dom k) by
A33,
A34,
XXREAL_1: 1;
then rxc
= s1 by
A56,
A60,
A61,
A62,
A88;
hence contradiction by
A47,
A60,
XXREAL_1: 1;
end;
hence thesis;
end;
then
LE (p1,p2,(
Lower_Arc K),(
E-max K),(
W-min K)) by
A3,
A4,
A13,
JORDAN5C:def 3;
hence thesis by
A3,
A4,
A13,
A29,
JORDAN6:def 10;
end;
end;
hence thesis;
end;
end;
theorem ::
JGRAPH_6:58
Th58: for a,b,c,d be
Real, p1,p2 be
Point of (
TOP-REAL 2) st a
< b & c
< d & p1
in (
LSeg (
|[a, c]|,
|[b, c]|)) & p2
in (
LSeg (
|[a, c]|,
|[b, c]|)) holds
LE (p1,p2,(
rectangle (a,b,c,d))) & p1
<> (
W-min (
rectangle (a,b,c,d))) iff (p1
`1 )
>= (p2
`1 ) & p2
<> (
W-min (
rectangle (a,b,c,d)))
proof
let a,b,c,d be
Real, p1,p2 be
Point of (
TOP-REAL 2);
set K = (
rectangle (a,b,c,d));
assume that
A1: a
< b and
A2: c
< d and
A3: p1
in (
LSeg (
|[a, c]|,
|[b, c]|)) and
A4: p2
in (
LSeg (
|[a, c]|,
|[b, c]|));
A5: K is
being_simple_closed_curve by
A1,
A2,
Th50;
A6: (p1
`2 )
= c by
A1,
A3,
Th3;
A7: (p1
`1 )
<= b by
A1,
A3,
Th3;
A8: (p2
`2 )
= c by
A1,
A4,
Th3;
A9: a
<= (p2
`1 ) by
A1,
A4,
Th3;
A10: (
W-min K)
=
|[a, c]| by
A1,
A2,
Th46;
A11: (
E-max K)
=
|[b, d]| by
A1,
A2,
Th46;
A12: (
Lower_Arc K)
= ((
LSeg (
|[b, d]|,
|[b, c]|))
\/ (
LSeg (
|[b, c]|,
|[a, c]|))) by
A1,
A2,
Th52;
then
A13: (
LSeg (
|[b, c]|,
|[a, c]|))
c= (
Lower_Arc K) by
XBOOLE_1: 7;
then
A14: p1
in (
Lower_Arc K) by
A3;
A15: (
Lower_Arc K)
c= K by
A5,
JORDAN6: 61;
A16: ((
Upper_Arc K)
/\ (
Lower_Arc K))
=
{(
W-min K), (
E-max K)} by
A5,
JORDAN6:def 9;
A17:
now
assume p1
in (
Upper_Arc K);
then p1
in ((
Upper_Arc K)
/\ (
Lower_Arc K)) by
A3,
A13,
XBOOLE_0:def 4;
then p1
= (
W-min K) or p1
= (
E-max K) by
A16,
TARSKI:def 2;
hence p1
= (
W-min K) by
A2,
A6,
A11,
EUCLID: 52;
end;
thus
LE (p1,p2,K) & p1
<> (
W-min K) implies (p1
`1 )
>= (p2
`1 ) & p2
<> (
W-min K)
proof
assume that
A18:
LE (p1,p2,K) and
A19: p1
<> (
W-min K);
A20: p1
in (
Upper_Arc K) & p2
in (
Lower_Arc K) & not p2
= (
W-min K) or p1
in (
Upper_Arc K) & p2
in (
Upper_Arc K) &
LE (p1,p2,(
Upper_Arc K),(
W-min K),(
E-max K)) or p1
in (
Lower_Arc K) & p2
in (
Lower_Arc K) & not p2
= (
W-min K) &
LE (p1,p2,(
Lower_Arc K),(
E-max K),(
W-min K)) by
A18,
JORDAN6:def 10;
consider f be
Function of
I[01] , ((
TOP-REAL 2)
| (
Lower_Arc K)) such that
A21: f is
being_homeomorphism and
A22: (f
.
0 )
= (
E-max K) and
A23: (f
. 1)
= (
W-min K) and (
rng f)
= (
Lower_Arc K) and for r be
Real st r
in
[.
0 , (1
/ 2).] holds (f
. r)
= (((1
- (2
* r))
*
|[b, d]|)
+ ((2
* r)
*
|[b, c]|)) and for r be
Real st r
in
[.(1
/ 2), 1.] holds (f
. r)
= (((1
- ((2
* r)
- 1))
*
|[b, c]|)
+ (((2
* r)
- 1)
*
|[a, c]|)) and for p be
Point of (
TOP-REAL 2) st p
in (
LSeg (
|[b, d]|,
|[b, c]|)) holds
0
<= ((((p
`2 )
- d)
/ (c
- d))
/ 2) & ((((p
`2 )
- d)
/ (c
- d))
/ 2)
<= 1 & (f
. ((((p
`2 )
- d)
/ (c
- d))
/ 2))
= p and
A24: for p be
Point of (
TOP-REAL 2) st p
in (
LSeg (
|[b, c]|,
|[a, c]|)) holds
0
<= (((((p
`1 )
- b)
/ (a
- b))
/ 2)
+ (1
/ 2)) & (((((p
`1 )
- b)
/ (a
- b))
/ 2)
+ (1
/ 2))
<= 1 & (f
. (((((p
`1 )
- b)
/ (a
- b))
/ 2)
+ (1
/ 2)))
= p by
A1,
A2,
Th54;
reconsider s1 = (((((p1
`1 )
- b)
/ (a
- b))
/ 2)
+ (1
/ 2)), s2 = (((((p2
`1 )
- b)
/ (a
- b))
/ 2)
+ (1
/ 2)) as
Real;
A25: (f
. s1)
= p1 by
A3,
A24;
A26: (f
. s2)
= p2 by
A4,
A24;
(b
- a)
>
0 by
A1,
XREAL_1: 50;
then
A27: (
- (b
- a))
< (
-
0 ) by
XREAL_1: 24;
A28: s1
<= 1 by
A3,
A24;
A29:
0
<= s2 by
A4,
A24;
s2
<= 1 by
A4,
A24;
then s1
<= s2 by
A17,
A19,
A20,
A21,
A22,
A23,
A25,
A26,
A28,
A29,
JORDAN5C:def 3;
then ((((p1
`1 )
- b)
/ (a
- b))
/ 2)
<= ((((p2
`1 )
- b)
/ (a
- b))
/ 2) by
XREAL_1: 6;
then (((((p1
`1 )
- b)
/ (a
- b))
/ 2)
* 2)
<= (((((p2
`1 )
- b)
/ (a
- b))
/ 2)
* 2) by
XREAL_1: 64;
then ((((p1
`1 )
- b)
/ (a
- b))
* (a
- b))
>= ((((p2
`1 )
- b)
/ (a
- b))
* (a
- b)) by
A27,
XREAL_1: 65;
then ((p1
`1 )
- b)
>= ((((p2
`1 )
- b)
/ (a
- b))
* (a
- b)) by
A27,
XCMPLX_1: 87;
then ((p1
`1 )
- b)
>= ((p2
`1 )
- b) by
A27,
XCMPLX_1: 87;
then (((p1
`1 )
- b)
+ b)
>= (((p2
`1 )
- b)
+ b) by
XREAL_1: 7;
hence (p1
`1 )
>= (p2
`1 );
now
assume
A30: p2
= (
W-min K);
then
LE (p2,p1,K) by
A5,
A14,
A15,
JORDAN7: 3;
hence contradiction by
A1,
A2,
A18,
A19,
A30,
Th50,
JORDAN6: 57;
end;
hence thesis;
end;
thus (p1
`1 )
>= (p2
`1 ) & p2
<> (
W-min K) implies
LE (p1,p2,K) & p1
<> (
W-min K)
proof
assume that
A31: (p1
`1 )
>= (p2
`1 ) and
A32: p2
<> (
W-min K);
A33: for g be
Function of
I[01] , ((
TOP-REAL 2)
| (
Lower_Arc K)), s1,s2 be
Real st g is
being_homeomorphism & (g
.
0 )
= (
E-max K) & (g
. 1)
= (
W-min K) & (g
. s1)
= p1 &
0
<= s1 & s1
<= 1 & (g
. s2)
= p2 &
0
<= s2 & s2
<= 1 holds s1
<= s2
proof
let g be
Function of
I[01] , ((
TOP-REAL 2)
| (
Lower_Arc K)), s1,s2 be
Real;
assume that
A34: g is
being_homeomorphism and
A35: (g
.
0 )
= (
E-max K) and (g
. 1)
= (
W-min K) and
A36: (g
. s1)
= p1 and
A37:
0
<= s1 and
A38: s1
<= 1 and
A39: (g
. s2)
= p2 and
A40:
0
<= s2 and
A41: s2
<= 1;
A42: (
dom g)
= the
carrier of
I[01] by
FUNCT_2:def 1;
A43: g is
one-to-one by
A34,
TOPS_2:def 5;
A44: the
carrier of ((
TOP-REAL 2)
| (
Lower_Arc K))
= (
Lower_Arc K) by
PRE_TOPC: 8;
then
reconsider g1 = g as
Function of
I[01] , (
TOP-REAL 2) by
FUNCT_2: 7;
g is
continuous by
A34,
TOPS_2:def 5;
then
A45: g1 is
continuous by
PRE_TOPC: 26;
reconsider h1 =
proj1 as
Function of (
TOP-REAL 2),
R^1 by
TOPMETR: 17;
reconsider h2 =
proj2 as
Function of (
TOP-REAL 2),
R^1 by
TOPMETR: 17;
reconsider hh1 = h1 as
Function of the TopStruct of (
TOP-REAL 2),
R^1 ;
reconsider hh2 = h2 as
Function of the TopStruct of (
TOP-REAL 2),
R^1 ;
A46: the TopStruct of (
TOP-REAL 2)
= ( the TopStruct of (
TOP-REAL 2)
| (
[#] the TopStruct of (
TOP-REAL 2))) by
TSEP_1: 3
.= the TopStruct of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) by
PRE_TOPC: 36
.= ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2)));
then (for p be
Point of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) holds (hh1
. p)
= (
proj1
. p)) implies hh1 is
continuous by
JGRAPH_2: 29;
then
A47: (for p be
Point of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) holds (hh1
. p)
= (
proj1
. p)) implies h1 is
continuous by
PRE_TOPC: 32;
(for p be
Point of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) holds (hh2
. p)
= (
proj2
. p)) implies hh2 is
continuous by
A46,
JGRAPH_2: 30;
then (for p be
Point of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) holds (hh2
. p)
= (
proj2
. p)) implies h2 is
continuous by
PRE_TOPC: 32;
then
consider h be
Function of (
TOP-REAL 2),
R^1 such that
A48: for p be
Point of (
TOP-REAL 2), r1,r2 be
Real st (h1
. p)
= r1 & (h2
. p)
= r2 holds (h
. p)
= (r1
+ r2) and
A49: h is
continuous by
A47,
JGRAPH_2: 19;
reconsider k = (h
* g1) as
Function of
I[01] ,
R^1 ;
A50: (
E-max K)
=
|[b, d]| by
A1,
A2,
Th46;
now
assume
A51: s1
> s2;
A52: (
dom g)
=
[.
0 , 1.] by
BORSUK_1: 40,
FUNCT_2:def 1;
0
in
[.
0 , 1.] by
XXREAL_1: 1;
then
A53: (k
.
0 )
= (h
. (
E-max K)) by
A35,
A52,
FUNCT_1: 13
.= ((h1
. (
E-max K))
+ (h2
. (
E-max K))) by
A48
.= (((
E-max K)
`1 )
+ (
proj2
. (
E-max K))) by
PSCOMP_1:def 5
.= (((
E-max K)
`1 )
+ ((
E-max K)
`2 )) by
PSCOMP_1:def 6
.= (((
E-max K)
`1 )
+ d) by
A50,
EUCLID: 52
.= (b
+ d) by
A50,
EUCLID: 52;
s1
in
[.
0 , 1.] by
A37,
A38,
XXREAL_1: 1;
then
A54: (k
. s1)
= (h
. p1) by
A36,
A52,
FUNCT_1: 13
.= ((
proj1
. p1)
+ (
proj2
. p1)) by
A48
.= ((p1
`1 )
+ (
proj2
. p1)) by
PSCOMP_1:def 5
.= ((p1
`1 )
+ c) by
A6,
PSCOMP_1:def 6;
A55: s2
in
[.
0 , 1.] by
A40,
A41,
XXREAL_1: 1;
then
A56: (k
. s2)
= (h
. p2) by
A39,
A52,
FUNCT_1: 13
.= ((h1
. p2)
+ (h2
. p2)) by
A48
.= ((p2
`1 )
+ (
proj2
. p2)) by
PSCOMP_1:def 5
.= ((p2
`1 )
+ c) by
A8,
PSCOMP_1:def 6;
A57: (k
.
0 )
>= (k
. s1) by
A2,
A7,
A53,
A54,
XREAL_1: 7;
A58: (k
. s1)
>= (k
. s2) by
A31,
A54,
A56,
XREAL_1: 7;
A59:
0
in
[.
0 , 1.] by
XXREAL_1: 1;
then
A60:
[.
0 , s2.]
c=
[.
0 , 1.] by
A55,
XXREAL_2:def 12;
reconsider B =
[.
0 , s2.] as
Subset of
I[01] by
A55,
A59,
BORSUK_1: 40,
XXREAL_2:def 12;
A61: B is
connected by
A40,
A55,
A59,
BORSUK_1: 40,
BORSUK_4: 24;
A62:
0
in B by
A40,
XXREAL_1: 1;
A63: s2
in B by
A40,
XXREAL_1: 1;
consider xc be
Point of
I[01] such that
A64: xc
in B and
A65: (k
. xc)
= (k
. s1) by
A45,
A49,
A57,
A58,
A61,
A62,
A63,
TOPREAL5: 5;
reconsider rxc = xc as
Real;
A66: for x1,x2 be
set st x1
in (
dom k) & x2
in (
dom k) & (k
. x1)
= (k
. x2) holds x1
= x2
proof
let x1,x2 be
set;
assume that
A67: x1
in (
dom k) and
A68: x2
in (
dom k) and
A69: (k
. x1)
= (k
. x2);
reconsider r1 = x1 as
Point of
I[01] by
A67;
reconsider r2 = x2 as
Point of
I[01] by
A68;
A70: (k
. x1)
= (h
. (g1
. x1)) by
A67,
FUNCT_1: 12
.= ((h1
. (g1
. r1))
+ (h2
. (g1
. r1))) by
A48
.= (((g1
. r1)
`1 )
+ (
proj2
. (g1
. r1))) by
PSCOMP_1:def 5
.= (((g1
. r1)
`1 )
+ ((g1
. r1)
`2 )) by
PSCOMP_1:def 6;
A71: (k
. x2)
= (h
. (g1
. x2)) by
A68,
FUNCT_1: 12
.= ((h1
. (g1
. r2))
+ (h2
. (g1
. r2))) by
A48
.= (((g1
. r2)
`1 )
+ (
proj2
. (g1
. r2))) by
PSCOMP_1:def 5
.= (((g1
. r2)
`1 )
+ ((g1
. r2)
`2 )) by
PSCOMP_1:def 6;
A72: (g
. r1)
in (
Lower_Arc K) by
A44;
A73: (g
. r2)
in (
Lower_Arc K) by
A44;
reconsider gr1 = (g
. r1) as
Point of (
TOP-REAL 2) by
A72;
reconsider gr2 = (g
. r2) as
Point of (
TOP-REAL 2) by
A73;
now
per cases by
A12,
A44,
XBOOLE_0:def 3;
case
A74: (g
. r1)
in (
LSeg (
|[b, d]|,
|[b, c]|)) & (g
. r2)
in (
LSeg (
|[b, d]|,
|[b, c]|));
then
A75: (gr1
`1 )
= b by
A2,
Th1;
(gr2
`1 )
= b by
A2,
A74,
Th1;
then
|[(gr1
`1 ), (gr1
`2 )]|
= (g
. r2) by
A69,
A70,
A71,
A75,
EUCLID: 53;
then (g
. r1)
= (g
. r2) by
EUCLID: 53;
hence thesis by
A42,
A43,
FUNCT_1:def 4;
end;
case
A76: (g
. r1)
in (
LSeg (
|[b, d]|,
|[b, c]|)) & (g
. r2)
in (
LSeg (
|[b, c]|,
|[a, c]|));
then
A77: (gr1
`1 )
= b by
A2,
Th1;
A78: c
<= (gr1
`2 ) by
A2,
A76,
Th1;
A79: (gr2
`2 )
= c by
A1,
A76,
Th3;
A80: (gr2
`1 )
<= b by
A1,
A76,
Th3;
A81: (b
+ (gr1
`2 ))
= ((gr2
`1 )
+ c) by
A1,
A69,
A70,
A71,
A76,
A77,
Th3;
A82:
now
assume b
<> (gr2
`1 );
then b
> (gr2
`1 ) by
A80,
XXREAL_0: 1;
hence contradiction by
A78,
A81,
XREAL_1: 8;
end;
now
assume (gr1
`2 )
<> c;
then c
< (gr1
`2 ) by
A78,
XXREAL_0: 1;
hence contradiction by
A69,
A70,
A71,
A77,
A79,
A80,
XREAL_1: 8;
end;
then
|[(gr1
`1 ), (gr1
`2 )]|
= (g
. r2) by
A77,
A79,
A82,
EUCLID: 53;
then (g
. r1)
= (g
. r2) by
EUCLID: 53;
hence thesis by
A42,
A43,
FUNCT_1:def 4;
end;
case
A83: (g
. r1)
in (
LSeg (
|[b, c]|,
|[a, c]|)) & (g
. r2)
in (
LSeg (
|[b, d]|,
|[b, c]|));
then
A84: (gr2
`1 )
= b by
A2,
Th1;
A85: c
<= (gr2
`2 ) by
A2,
A83,
Th1;
A86: (gr1
`2 )
= c by
A1,
A83,
Th3;
A87: (gr1
`1 )
<= b by
A1,
A83,
Th3;
A88: (b
+ (gr2
`2 ))
= ((gr1
`1 )
+ c) by
A1,
A69,
A70,
A71,
A83,
A84,
Th3;
A89:
now
assume b
<> (gr1
`1 );
then b
> (gr1
`1 ) by
A87,
XXREAL_0: 1;
hence contradiction by
A85,
A88,
XREAL_1: 8;
end;
now
assume (gr2
`2 )
<> c;
then c
< (gr2
`2 ) by
A85,
XXREAL_0: 1;
hence contradiction by
A69,
A70,
A71,
A84,
A86,
A87,
XREAL_1: 8;
end;
then
|[(gr2
`1 ), (gr2
`2 )]|
= (g
. r1) by
A84,
A86,
A89,
EUCLID: 53;
then (g
. r1)
= (g
. r2) by
EUCLID: 53;
hence thesis by
A42,
A43,
FUNCT_1:def 4;
end;
case
A90: (g
. r1)
in (
LSeg (
|[b, c]|,
|[a, c]|)) & (g
. r2)
in (
LSeg (
|[b, c]|,
|[a, c]|));
then
A91: (gr1
`2 )
= c by
A1,
Th3;
(gr2
`2 )
= c by
A1,
A90,
Th3;
then
|[(gr1
`1 ), (gr1
`2 )]|
= (g
. r2) by
A69,
A70,
A71,
A91,
EUCLID: 53;
then (g
. r1)
= (g
. r2) by
EUCLID: 53;
hence thesis by
A42,
A43,
FUNCT_1:def 4;
end;
end;
hence thesis;
end;
A92: (
dom k)
=
[.
0 , 1.] by
BORSUK_1: 40,
FUNCT_2:def 1;
then s1
in (
dom k) by
A37,
A38,
XXREAL_1: 1;
then rxc
= s1 by
A60,
A64,
A65,
A66,
A92;
hence contradiction by
A51,
A64,
XXREAL_1: 1;
end;
hence thesis;
end;
A93:
now
assume
A94: p1
= (
W-min K);
then (p1
`1 )
= a by
A10,
EUCLID: 52;
then (p1
`1 )
= (p2
`1 ) by
A9,
A31,
XXREAL_0: 1;
then
|[(p1
`1 ), (p1
`2 )]|
= p2 by
A6,
A8,
EUCLID: 53;
hence contradiction by
A32,
A94,
EUCLID: 53;
end;
LE (p1,p2,(
Lower_Arc K),(
E-max K),(
W-min K)) by
A3,
A4,
A13,
A33,
JORDAN5C:def 3;
hence
LE (p1,p2,K) by
A3,
A4,
A13,
A32,
JORDAN6:def 10;
thus thesis by
A93;
end;
end;
theorem ::
JGRAPH_6:59
Th59: for a,b,c,d be
Real, p1,p2 be
Point of (
TOP-REAL 2) st a
< b & c
< d & p1
in (
LSeg (
|[a, c]|,
|[a, d]|)) holds
LE (p1,p2,(
rectangle (a,b,c,d))) iff p2
in (
LSeg (
|[a, c]|,
|[a, d]|)) & (p1
`2 )
<= (p2
`2 ) or p2
in (
LSeg (
|[a, d]|,
|[b, d]|)) or p2
in (
LSeg (
|[b, d]|,
|[b, c]|)) or p2
in (
LSeg (
|[b, c]|,
|[a, c]|)) & p2
<> (
W-min (
rectangle (a,b,c,d)))
proof
let a,b,c,d be
Real, p1,p2 be
Point of (
TOP-REAL 2);
set K = (
rectangle (a,b,c,d));
assume that
A1: a
< b and
A2: c
< d and
A3: p1
in (
LSeg (
|[a, c]|,
|[a, d]|));
A4: K is
being_simple_closed_curve by
A1,
A2,
Th50;
(
Upper_Arc K)
= ((
LSeg (
|[a, c]|,
|[a, d]|))
\/ (
LSeg (
|[a, d]|,
|[b, d]|))) by
A1,
A2,
Th51;
then
A5: (
LSeg (
|[a, c]|,
|[a, d]|))
c= (
Upper_Arc K) by
XBOOLE_1: 7;
A6: (p1
`1 )
= a by
A2,
A3,
Th1;
A7: c
<= (p1
`2 ) by
A2,
A3,
Th1;
A8: (p1
`2 )
<= d by
A2,
A3,
Th1;
thus
LE (p1,p2,K) implies p2
in (
LSeg (
|[a, c]|,
|[a, d]|)) & (p1
`2 )
<= (p2
`2 ) or p2
in (
LSeg (
|[a, d]|,
|[b, d]|)) or p2
in (
LSeg (
|[b, d]|,
|[b, c]|)) or p2
in (
LSeg (
|[b, c]|,
|[a, c]|)) & p2
<> (
W-min K)
proof
assume
A9:
LE (p1,p2,K);
then
A10: p1
in K by
A4,
JORDAN7: 5;
A11: p2
in K by
A4,
A9,
JORDAN7: 5;
K
= (((
LSeg (
|[a, c]|,
|[a, d]|))
\/ (
LSeg (
|[a, d]|,
|[b, d]|)))
\/ ((
LSeg (
|[a, c]|,
|[b, c]|))
\/ (
LSeg (
|[b, c]|,
|[b, d]|)))) by
SPPOL_2:def 3
.= ((((
LSeg (
|[a, c]|,
|[a, d]|))
\/ (
LSeg (
|[a, d]|,
|[b, d]|)))
\/ (
LSeg (
|[b, d]|,
|[b, c]|)))
\/ (
LSeg (
|[b, c]|,
|[a, c]|))) by
XBOOLE_1: 4;
then p2
in (((
LSeg (
|[a, c]|,
|[a, d]|))
\/ (
LSeg (
|[a, d]|,
|[b, d]|)))
\/ (
LSeg (
|[b, d]|,
|[b, c]|))) or p2
in (
LSeg (
|[b, c]|,
|[a, c]|)) by
A11,
XBOOLE_0:def 3;
then
A12: p2
in ((
LSeg (
|[a, c]|,
|[a, d]|))
\/ (
LSeg (
|[a, d]|,
|[b, d]|))) or p2
in (
LSeg (
|[b, d]|,
|[b, c]|)) or p2
in (
LSeg (
|[b, c]|,
|[a, c]|)) by
XBOOLE_0:def 3;
now
per cases by
A12,
XBOOLE_0:def 3;
case p2
in (
LSeg (
|[a, c]|,
|[a, d]|));
hence thesis by
A1,
A2,
A3,
A9,
Th55;
end;
case p2
in (
LSeg (
|[a, d]|,
|[b, d]|));
hence thesis;
end;
case p2
in (
LSeg (
|[b, d]|,
|[b, c]|));
hence thesis;
end;
case
A13: p2
in (
LSeg (
|[b, c]|,
|[a, c]|));
now
per cases ;
case p2
= (
W-min K);
then
LE (p2,p1,K) by
A4,
A10,
JORDAN7: 3;
hence thesis by
A1,
A2,
A3,
A9,
Th50,
JORDAN6: 57;
end;
case p2
<> (
W-min K);
hence thesis by
A13;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
A14: (
W-min K)
=
|[a, c]| by
A1,
A2,
Th46;
thus p2
in (
LSeg (
|[a, c]|,
|[a, d]|)) & (p1
`2 )
<= (p2
`2 ) or p2
in (
LSeg (
|[a, d]|,
|[b, d]|)) or p2
in (
LSeg (
|[b, d]|,
|[b, c]|)) or p2
in (
LSeg (
|[b, c]|,
|[a, c]|)) & p2
<> (
W-min K) implies
LE (p1,p2,K)
proof
assume that
A15: p2
in (
LSeg (
|[a, c]|,
|[a, d]|)) & (p1
`2 )
<= (p2
`2 ) or p2
in (
LSeg (
|[a, d]|,
|[b, d]|)) or p2
in (
LSeg (
|[b, d]|,
|[b, c]|)) or p2
in (
LSeg (
|[b, c]|,
|[a, c]|)) & p2
<> (
W-min K);
now
per cases by
A15;
case p2
in (
LSeg (
|[a, c]|,
|[a, d]|)) & (p1
`2 )
<= (p2
`2 );
hence thesis by
A1,
A2,
A3,
Th55;
end;
case
A16: p2
in (
LSeg (
|[a, d]|,
|[b, d]|));
then
A17: (p2
`2 )
= d by
A1,
Th3;
A18: a
<= (p2
`1 ) by
A1,
A16,
Th3;
A19: (
Upper_Arc K)
= ((
LSeg (
|[a, c]|,
|[a, d]|))
\/ (
LSeg (
|[a, d]|,
|[b, d]|))) by
A1,
A2,
Th51;
then
A20: p2
in (
Upper_Arc K) by
A16,
XBOOLE_0:def 3;
A21: p1
in (
Upper_Arc K) by
A3,
A19,
XBOOLE_0:def 3;
for g be
Function of
I[01] , ((
TOP-REAL 2)
| (
Upper_Arc K)), s1,s2 be
Real st g is
being_homeomorphism & (g
.
0 )
= (
W-min K) & (g
. 1)
= (
E-max K) & (g
. s1)
= p1 &
0
<= s1 & s1
<= 1 & (g
. s2)
= p2 &
0
<= s2 & s2
<= 1 holds s1
<= s2
proof
let g be
Function of
I[01] , ((
TOP-REAL 2)
| (
Upper_Arc K)), s1,s2 be
Real;
assume that
A22: g is
being_homeomorphism and
A23: (g
.
0 )
= (
W-min K) and (g
. 1)
= (
E-max K) and
A24: (g
. s1)
= p1 and
A25:
0
<= s1 and
A26: s1
<= 1 and
A27: (g
. s2)
= p2 and
A28:
0
<= s2 and
A29: s2
<= 1;
A30: (
dom g)
= the
carrier of
I[01] by
FUNCT_2:def 1;
A31: g is
one-to-one by
A22,
TOPS_2:def 5;
A32: the
carrier of ((
TOP-REAL 2)
| (
Upper_Arc K))
= (
Upper_Arc K) by
PRE_TOPC: 8;
then
reconsider g1 = g as
Function of
I[01] , (
TOP-REAL 2) by
FUNCT_2: 7;
g is
continuous by
A22,
TOPS_2:def 5;
then
A33: g1 is
continuous by
PRE_TOPC: 26;
reconsider h1 =
proj1 as
Function of (
TOP-REAL 2),
R^1 by
TOPMETR: 17;
reconsider h2 =
proj2 as
Function of (
TOP-REAL 2),
R^1 by
TOPMETR: 17;
reconsider hh1 = h1 as
Function of the TopStruct of (
TOP-REAL 2),
R^1 ;
reconsider hh2 = h2 as
Function of the TopStruct of (
TOP-REAL 2),
R^1 ;
A34: the TopStruct of (
TOP-REAL 2)
= ( the TopStruct of (
TOP-REAL 2)
| (
[#] the TopStruct of (
TOP-REAL 2))) by
TSEP_1: 3
.= the TopStruct of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) by
PRE_TOPC: 36
.= ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2)));
then (for p be
Point of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) holds (hh1
. p)
= (
proj1
. p)) implies hh1 is
continuous by
JGRAPH_2: 29;
then
A35: h1 is
continuous by
PRE_TOPC: 32;
(for p be
Point of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) holds (hh2
. p)
= (
proj2
. p)) implies hh2 is
continuous by
A34,
JGRAPH_2: 30;
then (for p be
Point of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) holds (hh2
. p)
= (
proj2
. p)) implies h2 is
continuous by
PRE_TOPC: 32;
then
consider h be
Function of (
TOP-REAL 2),
R^1 such that
A36: for p be
Point of (
TOP-REAL 2), r1,r2 be
Real st (h1
. p)
= r1 & (h2
. p)
= r2 holds (h
. p)
= (r1
+ r2) and
A37: h is
continuous by
A35,
JGRAPH_2: 19;
reconsider k = (h
* g1) as
Function of
I[01] ,
R^1 ;
A38: (
W-min K)
=
|[a, c]| by
A1,
A2,
Th46;
now
assume
A39: s1
> s2;
A40: (
dom g)
=
[.
0 , 1.] by
BORSUK_1: 40,
FUNCT_2:def 1;
0
in
[.
0 , 1.] by
XXREAL_1: 1;
then
A41: (k
.
0 )
= (h
. (
W-min K)) by
A23,
A40,
FUNCT_1: 13
.= ((h1
. (
W-min K))
+ (h2
. (
W-min K))) by
A36
.= (((
W-min K)
`1 )
+ (
proj2
. (
W-min K))) by
PSCOMP_1:def 5
.= (((
W-min K)
`1 )
+ ((
W-min K)
`2 )) by
PSCOMP_1:def 6
.= (((
W-min K)
`1 )
+ c) by
A38,
EUCLID: 52
.= (a
+ c) by
A38,
EUCLID: 52;
s1
in
[.
0 , 1.] by
A25,
A26,
XXREAL_1: 1;
then
A42: (k
. s1)
= (h
. p1) by
A24,
A40,
FUNCT_1: 13
.= ((
proj1
. p1)
+ (
proj2
. p1)) by
A36
.= ((p1
`1 )
+ (
proj2
. p1)) by
PSCOMP_1:def 5
.= (a
+ (p1
`2 )) by
A6,
PSCOMP_1:def 6;
A43: s2
in
[.
0 , 1.] by
A28,
A29,
XXREAL_1: 1;
then
A44: (k
. s2)
= (h
. p2) by
A27,
A40,
FUNCT_1: 13
.= ((
proj1
. p2)
+ (
proj2
. p2)) by
A36
.= ((p2
`1 )
+ (
proj2
. p2)) by
PSCOMP_1:def 5
.= ((p2
`1 )
+ d) by
A17,
PSCOMP_1:def 6;
A45: (k
.
0 )
<= (k
. s1) by
A7,
A41,
A42,
XREAL_1: 7;
A46: (k
. s1)
<= (k
. s2) by
A8,
A18,
A42,
A44,
XREAL_1: 7;
A47:
0
in
[.
0 , 1.] by
XXREAL_1: 1;
then
A48:
[.
0 , s2.]
c=
[.
0 , 1.] by
A43,
XXREAL_2:def 12;
reconsider B =
[.
0 , s2.] as
Subset of
I[01] by
A43,
A47,
BORSUK_1: 40,
XXREAL_2:def 12;
A49: B is
connected by
A28,
A43,
A47,
BORSUK_1: 40,
BORSUK_4: 24;
A50:
0
in B by
A28,
XXREAL_1: 1;
A51: s2
in B by
A28,
XXREAL_1: 1;
consider xc be
Point of
I[01] such that
A52: xc
in B and
A53: (k
. xc)
= (k
. s1) by
A33,
A37,
A45,
A46,
A49,
A50,
A51,
TOPREAL5: 5;
reconsider rxc = xc as
Real;
A54: for x1,x2 be
set st x1
in (
dom k) & x2
in (
dom k) & (k
. x1)
= (k
. x2) holds x1
= x2
proof
let x1,x2 be
set;
assume that
A55: x1
in (
dom k) and
A56: x2
in (
dom k) and
A57: (k
. x1)
= (k
. x2);
reconsider r1 = x1 as
Point of
I[01] by
A55;
reconsider r2 = x2 as
Point of
I[01] by
A56;
A58: (k
. x1)
= (h
. (g1
. x1)) by
A55,
FUNCT_1: 12
.= ((h1
. (g1
. r1))
+ (h2
. (g1
. r1))) by
A36
.= (((g1
. r1)
`1 )
+ (
proj2
. (g1
. r1))) by
PSCOMP_1:def 5
.= (((g1
. r1)
`1 )
+ ((g1
. r1)
`2 )) by
PSCOMP_1:def 6;
A59: (k
. x2)
= (h
. (g1
. x2)) by
A56,
FUNCT_1: 12
.= ((h1
. (g1
. r2))
+ (h2
. (g1
. r2))) by
A36
.= (((g1
. r2)
`1 )
+ (
proj2
. (g1
. r2))) by
PSCOMP_1:def 5
.= (((g1
. r2)
`1 )
+ ((g1
. r2)
`2 )) by
PSCOMP_1:def 6;
A60: (g
. r1)
in (
Upper_Arc K) by
A32;
A61: (g
. r2)
in (
Upper_Arc K) by
A32;
reconsider gr1 = (g
. r1) as
Point of (
TOP-REAL 2) by
A60;
reconsider gr2 = (g
. r2) as
Point of (
TOP-REAL 2) by
A61;
now
per cases by
A19,
A32,
XBOOLE_0:def 3;
case
A62: (g
. r1)
in (
LSeg (
|[a, c]|,
|[a, d]|)) & (g
. r2)
in (
LSeg (
|[a, c]|,
|[a, d]|));
then
A63: (gr1
`1 )
= a by
A2,
Th1;
(gr2
`1 )
= a by
A2,
A62,
Th1;
then
|[(gr1
`1 ), (gr1
`2 )]|
= (g
. r2) by
A57,
A58,
A59,
A63,
EUCLID: 53;
then (g
. r1)
= (g
. r2) by
EUCLID: 53;
hence thesis by
A30,
A31,
FUNCT_1:def 4;
end;
case
A64: (g
. r1)
in (
LSeg (
|[a, c]|,
|[a, d]|)) & (g
. r2)
in (
LSeg (
|[a, d]|,
|[b, d]|));
then
A65: (gr1
`1 )
= a by
A2,
Th1;
A66: (gr1
`2 )
<= d by
A2,
A64,
Th1;
A67: (gr2
`2 )
= d by
A1,
A64,
Th3;
A68: a
<= (gr2
`1 ) by
A1,
A64,
Th3;
A69: (a
+ (gr1
`2 ))
= ((gr2
`1 )
+ d) by
A1,
A57,
A58,
A59,
A64,
A65,
Th3;
A70:
now
assume a
<> (gr2
`1 );
then a
< (gr2
`1 ) by
A68,
XXREAL_0: 1;
hence contradiction by
A66,
A69,
XREAL_1: 8;
end;
now
assume (gr1
`2 )
<> d;
then d
> (gr1
`2 ) by
A66,
XXREAL_0: 1;
hence contradiction by
A57,
A58,
A59,
A65,
A67,
A68,
XREAL_1: 8;
end;
then
|[(gr1
`1 ), (gr1
`2 )]|
= (g
. r2) by
A65,
A67,
A70,
EUCLID: 53;
then (g
. r1)
= (g
. r2) by
EUCLID: 53;
hence thesis by
A30,
A31,
FUNCT_1:def 4;
end;
case
A71: (g
. r1)
in (
LSeg (
|[a, d]|,
|[b, d]|)) & (g
. r2)
in (
LSeg (
|[a, c]|,
|[a, d]|));
then
A72: (gr2
`1 )
= a by
A2,
Th1;
A73: (gr2
`2 )
<= d by
A2,
A71,
Th1;
A74: (gr1
`2 )
= d by
A1,
A71,
Th3;
A75: a
<= (gr1
`1 ) by
A1,
A71,
Th3;
A76: (a
+ (gr2
`2 ))
= ((gr1
`1 )
+ d) by
A1,
A57,
A58,
A59,
A71,
A72,
Th3;
A77:
now
assume a
<> (gr1
`1 );
then a
< (gr1
`1 ) by
A75,
XXREAL_0: 1;
hence contradiction by
A73,
A76,
XREAL_1: 8;
end;
now
assume (gr2
`2 )
<> d;
then d
> (gr2
`2 ) by
A73,
XXREAL_0: 1;
hence contradiction by
A57,
A58,
A59,
A72,
A74,
A75,
XREAL_1: 8;
end;
then
|[(gr2
`1 ), (gr2
`2 )]|
= (g
. r1) by
A72,
A74,
A77,
EUCLID: 53;
then (g
. r1)
= (g
. r2) by
EUCLID: 53;
hence thesis by
A30,
A31,
FUNCT_1:def 4;
end;
case
A78: (g
. r1)
in (
LSeg (
|[a, d]|,
|[b, d]|)) & (g
. r2)
in (
LSeg (
|[a, d]|,
|[b, d]|));
then
A79: (gr1
`2 )
= d by
A1,
Th3;
(gr2
`2 )
= d by
A1,
A78,
Th3;
then
|[(gr1
`1 ), (gr1
`2 )]|
= (g
. r2) by
A57,
A58,
A59,
A79,
EUCLID: 53;
then (g
. r1)
= (g
. r2) by
EUCLID: 53;
hence thesis by
A30,
A31,
FUNCT_1:def 4;
end;
end;
hence thesis;
end;
A80: (
dom k)
=
[.
0 , 1.] by
BORSUK_1: 40,
FUNCT_2:def 1;
then s1
in (
dom k) by
A25,
A26,
XXREAL_1: 1;
then rxc
= s1 by
A48,
A52,
A53,
A54,
A80;
hence contradiction by
A39,
A52,
XXREAL_1: 1;
end;
hence thesis;
end;
then
LE (p1,p2,(
Upper_Arc K),(
W-min K),(
E-max K)) by
A20,
A21,
JORDAN5C:def 3;
hence thesis by
A20,
A21,
JORDAN6:def 10;
end;
case
A81: p2
in (
LSeg (
|[b, d]|,
|[b, c]|));
then
A82: (p2
`1 )
= b by
TOPREAL3: 11;
(
Lower_Arc K)
= ((
LSeg (
|[b, d]|,
|[b, c]|))
\/ (
LSeg (
|[b, c]|,
|[a, c]|))) by
A1,
A2,
Th52;
then
A83: (
LSeg (
|[b, d]|,
|[b, c]|))
c= (
Lower_Arc K) by
XBOOLE_1: 7;
p2
<> (
W-min K) by
A1,
A14,
A82,
EUCLID: 52;
hence thesis by
A3,
A5,
A81,
A83,
JORDAN6:def 10;
end;
case
A84: p2
in (
LSeg (
|[b, c]|,
|[a, c]|)) & p2
<> (
W-min K);
(
Lower_Arc K)
= ((
LSeg (
|[b, d]|,
|[b, c]|))
\/ (
LSeg (
|[b, c]|,
|[a, c]|))) by
A1,
A2,
Th52;
then (
LSeg (
|[b, c]|,
|[a, c]|))
c= (
Lower_Arc K) by
XBOOLE_1: 7;
hence thesis by
A3,
A5,
A84,
JORDAN6:def 10;
end;
end;
hence thesis;
end;
end;
theorem ::
JGRAPH_6:60
Th60: for a,b,c,d be
Real, p1,p2 be
Point of (
TOP-REAL 2) st a
< b & c
< d & p1
in (
LSeg (
|[a, d]|,
|[b, d]|)) holds
LE (p1,p2,(
rectangle (a,b,c,d))) iff p2
in (
LSeg (
|[a, d]|,
|[b, d]|)) & (p1
`1 )
<= (p2
`1 ) or p2
in (
LSeg (
|[b, d]|,
|[b, c]|)) or p2
in (
LSeg (
|[b, c]|,
|[a, c]|)) & p2
<> (
W-min (
rectangle (a,b,c,d)))
proof
let a,b,c,d be
Real, p1,p2 be
Point of (
TOP-REAL 2);
set K = (
rectangle (a,b,c,d));
assume that
A1: a
< b and
A2: c
< d and
A3: p1
in (
LSeg (
|[a, d]|,
|[b, d]|));
A4: K is
being_simple_closed_curve by
A1,
A2,
Th50;
(
Upper_Arc K)
= ((
LSeg (
|[a, c]|,
|[a, d]|))
\/ (
LSeg (
|[a, d]|,
|[b, d]|))) by
A1,
A2,
Th51;
then
A5: (
LSeg (
|[a, d]|,
|[b, d]|))
c= (
Upper_Arc K) by
XBOOLE_1: 7;
A6: (p1
`2 )
= d by
A1,
A3,
Th3;
A7: a
<= (p1
`1 ) by
A1,
A3,
Th3;
thus
LE (p1,p2,K) implies p2
in (
LSeg (
|[a, d]|,
|[b, d]|)) & (p1
`1 )
<= (p2
`1 ) or p2
in (
LSeg (
|[b, d]|,
|[b, c]|)) or p2
in (
LSeg (
|[b, c]|,
|[a, c]|)) & p2
<> (
W-min K)
proof
assume
A8:
LE (p1,p2,K);
then
A9: p1
in K by
A4,
JORDAN7: 5;
A10: p2
in K by
A4,
A8,
JORDAN7: 5;
K
= (((
LSeg (
|[a, c]|,
|[a, d]|))
\/ (
LSeg (
|[a, d]|,
|[b, d]|)))
\/ ((
LSeg (
|[a, c]|,
|[b, c]|))
\/ (
LSeg (
|[b, c]|,
|[b, d]|)))) by
SPPOL_2:def 3
.= ((((
LSeg (
|[a, c]|,
|[a, d]|))
\/ (
LSeg (
|[a, d]|,
|[b, d]|)))
\/ (
LSeg (
|[b, d]|,
|[b, c]|)))
\/ (
LSeg (
|[b, c]|,
|[a, c]|))) by
XBOOLE_1: 4;
then p2
in (((
LSeg (
|[a, c]|,
|[a, d]|))
\/ (
LSeg (
|[a, d]|,
|[b, d]|)))
\/ (
LSeg (
|[b, d]|,
|[b, c]|))) or p2
in (
LSeg (
|[b, c]|,
|[a, c]|)) by
A10,
XBOOLE_0:def 3;
then
A11: p2
in ((
LSeg (
|[a, c]|,
|[a, d]|))
\/ (
LSeg (
|[a, d]|,
|[b, d]|))) or p2
in (
LSeg (
|[b, d]|,
|[b, c]|)) or p2
in (
LSeg (
|[b, c]|,
|[a, c]|)) by
XBOOLE_0:def 3;
now
per cases by
A11,
XBOOLE_0:def 3;
case p2
in (
LSeg (
|[a, c]|,
|[a, d]|));
then
LE (p2,p1,K) by
A1,
A2,
A3,
Th59;
hence thesis by
A1,
A2,
A3,
A8,
Th50,
JORDAN6: 57;
end;
case p2
in (
LSeg (
|[a, d]|,
|[b, d]|));
hence thesis by
A1,
A2,
A3,
A8,
Th56;
end;
case p2
in (
LSeg (
|[b, d]|,
|[b, c]|));
hence thesis;
end;
case
A12: p2
in (
LSeg (
|[b, c]|,
|[a, c]|));
now
per cases ;
case p2
= (
W-min K);
then
LE (p2,p1,K) by
A4,
A9,
JORDAN7: 3;
hence thesis by
A1,
A2,
A3,
A8,
Th50,
JORDAN6: 57;
end;
case p2
<> (
W-min K);
hence thesis by
A12;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
A13: (
W-min K)
=
|[a, c]| by
A1,
A2,
Th46;
thus p2
in (
LSeg (
|[a, d]|,
|[b, d]|)) & (p1
`1 )
<= (p2
`1 ) or p2
in (
LSeg (
|[b, d]|,
|[b, c]|)) or p2
in (
LSeg (
|[b, c]|,
|[a, c]|)) & p2
<> (
W-min K) implies
LE (p1,p2,K)
proof
assume that
A14: p2
in (
LSeg (
|[a, d]|,
|[b, d]|)) & (p1
`1 )
<= (p2
`1 ) or p2
in (
LSeg (
|[b, d]|,
|[b, c]|)) or p2
in (
LSeg (
|[b, c]|,
|[a, c]|)) & p2
<> (
W-min K);
now
per cases by
A14;
case
A15: p2
in (
LSeg (
|[a, d]|,
|[b, d]|)) & (p1
`1 )
<= (p2
`1 );
then
A16: (p2
`2 )
= d by
A1,
Th3;
A17: (
Upper_Arc K)
= ((
LSeg (
|[a, c]|,
|[a, d]|))
\/ (
LSeg (
|[a, d]|,
|[b, d]|))) by
A1,
A2,
Th51;
then
A18: p2
in (
Upper_Arc K) by
A15,
XBOOLE_0:def 3;
A19: p1
in (
Upper_Arc K) by
A3,
A17,
XBOOLE_0:def 3;
for g be
Function of
I[01] , ((
TOP-REAL 2)
| (
Upper_Arc K)), s1,s2 be
Real st g is
being_homeomorphism & (g
.
0 )
= (
W-min K) & (g
. 1)
= (
E-max K) & (g
. s1)
= p1 &
0
<= s1 & s1
<= 1 & (g
. s2)
= p2 &
0
<= s2 & s2
<= 1 holds s1
<= s2
proof
let g be
Function of
I[01] , ((
TOP-REAL 2)
| (
Upper_Arc K)), s1,s2 be
Real;
assume that
A20: g is
being_homeomorphism and
A21: (g
.
0 )
= (
W-min K) and (g
. 1)
= (
E-max K) and
A22: (g
. s1)
= p1 and
A23:
0
<= s1 and
A24: s1
<= 1 and
A25: (g
. s2)
= p2 and
A26:
0
<= s2 and
A27: s2
<= 1;
A28: (
dom g)
= the
carrier of
I[01] by
FUNCT_2:def 1;
A29: g is
one-to-one by
A20,
TOPS_2:def 5;
A30: the
carrier of ((
TOP-REAL 2)
| (
Upper_Arc K))
= (
Upper_Arc K) by
PRE_TOPC: 8;
then
reconsider g1 = g as
Function of
I[01] , (
TOP-REAL 2) by
FUNCT_2: 7;
g is
continuous by
A20,
TOPS_2:def 5;
then
A31: g1 is
continuous by
PRE_TOPC: 26;
reconsider h1 =
proj1 as
Function of (
TOP-REAL 2),
R^1 by
TOPMETR: 17;
reconsider h2 =
proj2 as
Function of (
TOP-REAL 2),
R^1 by
TOPMETR: 17;
reconsider hh1 = h1 as
Function of the TopStruct of (
TOP-REAL 2),
R^1 ;
reconsider hh2 = h2 as
Function of the TopStruct of (
TOP-REAL 2),
R^1 ;
A32: the TopStruct of (
TOP-REAL 2)
= ( the TopStruct of (
TOP-REAL 2)
| (
[#] the TopStruct of (
TOP-REAL 2))) by
TSEP_1: 3
.= the TopStruct of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) by
PRE_TOPC: 36
.= ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2)));
then (for p be
Point of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) holds (hh1
. p)
= (
proj1
. p)) implies hh1 is
continuous by
JGRAPH_2: 29;
then
A33: (for p be
Point of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) holds (hh1
. p)
= (
proj1
. p)) implies h1 is
continuous by
PRE_TOPC: 32;
(for p be
Point of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) holds (hh2
. p)
= (
proj2
. p)) implies hh2 is
continuous by
A32,
JGRAPH_2: 30;
then (for p be
Point of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) holds (hh2
. p)
= (
proj2
. p)) implies h2 is
continuous by
PRE_TOPC: 32;
then
consider h be
Function of (
TOP-REAL 2),
R^1 such that
A34: for p be
Point of (
TOP-REAL 2), r1,r2 be
Real st (h1
. p)
= r1 & (h2
. p)
= r2 holds (h
. p)
= (r1
+ r2) and
A35: h is
continuous by
A33,
JGRAPH_2: 19;
reconsider k = (h
* g1) as
Function of
I[01] ,
R^1 ;
A36: (
W-min K)
=
|[a, c]| by
A1,
A2,
Th46;
now
assume
A37: s1
> s2;
A38: (
dom g)
=
[.
0 , 1.] by
BORSUK_1: 40,
FUNCT_2:def 1;
0
in
[.
0 , 1.] by
XXREAL_1: 1;
then
A39: (k
.
0 )
= (h
. (
W-min K)) by
A21,
A38,
FUNCT_1: 13
.= ((h1
. (
W-min K))
+ (h2
. (
W-min K))) by
A34
.= (((
W-min K)
`1 )
+ (
proj2
. (
W-min K))) by
PSCOMP_1:def 5
.= (((
W-min K)
`1 )
+ ((
W-min K)
`2 )) by
PSCOMP_1:def 6
.= (((
W-min K)
`1 )
+ c) by
A36,
EUCLID: 52
.= (a
+ c) by
A36,
EUCLID: 52;
s1
in
[.
0 , 1.] by
A23,
A24,
XXREAL_1: 1;
then
A40: (k
. s1)
= (h
. p1) by
A22,
A38,
FUNCT_1: 13
.= ((
proj1
. p1)
+ (
proj2
. p1)) by
A34
.= ((p1
`1 )
+ (
proj2
. p1)) by
PSCOMP_1:def 5
.= ((p1
`1 )
+ d) by
A6,
PSCOMP_1:def 6;
A41: s2
in
[.
0 , 1.] by
A26,
A27,
XXREAL_1: 1;
then
A42: (k
. s2)
= (h
. p2) by
A25,
A38,
FUNCT_1: 13
.= ((
proj1
. p2)
+ (
proj2
. p2)) by
A34
.= ((p2
`1 )
+ (
proj2
. p2)) by
PSCOMP_1:def 5
.= ((p2
`1 )
+ d) by
A16,
PSCOMP_1:def 6;
A43: (k
.
0 )
<= (k
. s1) by
A2,
A7,
A39,
A40,
XREAL_1: 7;
A44: (k
. s1)
<= (k
. s2) by
A15,
A40,
A42,
XREAL_1: 7;
A45:
0
in
[.
0 , 1.] by
XXREAL_1: 1;
then
A46:
[.
0 , s2.]
c=
[.
0 , 1.] by
A41,
XXREAL_2:def 12;
reconsider B =
[.
0 , s2.] as
Subset of
I[01] by
A41,
A45,
BORSUK_1: 40,
XXREAL_2:def 12;
A47: B is
connected by
A26,
A41,
A45,
BORSUK_1: 40,
BORSUK_4: 24;
A48:
0
in B by
A26,
XXREAL_1: 1;
A49: s2
in B by
A26,
XXREAL_1: 1;
consider xc be
Point of
I[01] such that
A50: xc
in B and
A51: (k
. xc)
= (k
. s1) by
A31,
A35,
A43,
A44,
A47,
A48,
A49,
TOPREAL5: 5;
reconsider rxc = xc as
Real;
A52: for x1,x2 be
set st x1
in (
dom k) & x2
in (
dom k) & (k
. x1)
= (k
. x2) holds x1
= x2
proof
let x1,x2 be
set;
assume that
A53: x1
in (
dom k) and
A54: x2
in (
dom k) and
A55: (k
. x1)
= (k
. x2);
reconsider r1 = x1 as
Point of
I[01] by
A53;
reconsider r2 = x2 as
Point of
I[01] by
A54;
A56: (k
. x1)
= (h
. (g1
. x1)) by
A53,
FUNCT_1: 12
.= ((h1
. (g1
. r1))
+ (h2
. (g1
. r1))) by
A34
.= (((g1
. r1)
`1 )
+ (
proj2
. (g1
. r1))) by
PSCOMP_1:def 5
.= (((g1
. r1)
`1 )
+ ((g1
. r1)
`2 )) by
PSCOMP_1:def 6;
A57: (k
. x2)
= (h
. (g1
. x2)) by
A54,
FUNCT_1: 12
.= ((h1
. (g1
. r2))
+ (h2
. (g1
. r2))) by
A34
.= (((g1
. r2)
`1 )
+ (
proj2
. (g1
. r2))) by
PSCOMP_1:def 5
.= (((g1
. r2)
`1 )
+ ((g1
. r2)
`2 )) by
PSCOMP_1:def 6;
A58: (g
. r1)
in (
Upper_Arc K) by
A30;
A59: (g
. r2)
in (
Upper_Arc K) by
A30;
reconsider gr1 = (g
. r1) as
Point of (
TOP-REAL 2) by
A58;
reconsider gr2 = (g
. r2) as
Point of (
TOP-REAL 2) by
A59;
now
per cases by
A17,
A30,
XBOOLE_0:def 3;
case
A60: (g
. r1)
in (
LSeg (
|[a, c]|,
|[a, d]|)) & (g
. r2)
in (
LSeg (
|[a, c]|,
|[a, d]|));
then
A61: (gr1
`1 )
= a by
A2,
Th1;
(gr2
`1 )
= a by
A2,
A60,
Th1;
then
|[(gr1
`1 ), (gr1
`2 )]|
= (g
. r2) by
A55,
A56,
A57,
A61,
EUCLID: 53;
then (g
. r1)
= (g
. r2) by
EUCLID: 53;
hence thesis by
A28,
A29,
FUNCT_1:def 4;
end;
case
A62: (g
. r1)
in (
LSeg (
|[a, c]|,
|[a, d]|)) & (g
. r2)
in (
LSeg (
|[a, d]|,
|[b, d]|));
then
A63: (gr1
`1 )
= a by
A2,
Th1;
A64: (gr1
`2 )
<= d by
A2,
A62,
Th1;
A65: (gr2
`2 )
= d by
A1,
A62,
Th3;
A66: a
<= (gr2
`1 ) by
A1,
A62,
Th3;
A67: (a
+ (gr1
`2 ))
= ((gr2
`1 )
+ d) by
A1,
A55,
A56,
A57,
A62,
A63,
Th3;
A68:
now
assume a
<> (gr2
`1 );
then a
< (gr2
`1 ) by
A66,
XXREAL_0: 1;
hence contradiction by
A64,
A67,
XREAL_1: 8;
end;
now
assume (gr1
`2 )
<> d;
then d
> (gr1
`2 ) by
A64,
XXREAL_0: 1;
hence contradiction by
A55,
A56,
A57,
A63,
A65,
A66,
XREAL_1: 8;
end;
then
|[(gr1
`1 ), (gr1
`2 )]|
= (g
. r2) by
A63,
A65,
A68,
EUCLID: 53;
then (g
. r1)
= (g
. r2) by
EUCLID: 53;
hence thesis by
A28,
A29,
FUNCT_1:def 4;
end;
case
A69: (g
. r1)
in (
LSeg (
|[a, d]|,
|[b, d]|)) & (g
. r2)
in (
LSeg (
|[a, c]|,
|[a, d]|));
then
A70: (gr2
`1 )
= a by
A2,
Th1;
A71: (gr2
`2 )
<= d by
A2,
A69,
Th1;
A72: (gr1
`2 )
= d by
A1,
A69,
Th3;
A73: a
<= (gr1
`1 ) by
A1,
A69,
Th3;
A74: (a
+ (gr2
`2 ))
= ((gr1
`1 )
+ d) by
A1,
A55,
A56,
A57,
A69,
A70,
Th3;
A75:
now
assume a
<> (gr1
`1 );
then a
< (gr1
`1 ) by
A73,
XXREAL_0: 1;
hence contradiction by
A71,
A74,
XREAL_1: 8;
end;
now
assume (gr2
`2 )
<> d;
then d
> (gr2
`2 ) by
A71,
XXREAL_0: 1;
hence contradiction by
A55,
A56,
A57,
A70,
A72,
A73,
XREAL_1: 8;
end;
then
|[(gr2
`1 ), (gr2
`2 )]|
= (g
. r1) by
A70,
A72,
A75,
EUCLID: 53;
then (g
. r1)
= (g
. r2) by
EUCLID: 53;
hence thesis by
A28,
A29,
FUNCT_1:def 4;
end;
case
A76: (g
. r1)
in (
LSeg (
|[a, d]|,
|[b, d]|)) & (g
. r2)
in (
LSeg (
|[a, d]|,
|[b, d]|));
then
A77: (gr1
`2 )
= d by
A1,
Th3;
(gr2
`2 )
= d by
A1,
A76,
Th3;
then
|[(gr1
`1 ), (gr1
`2 )]|
= (g
. r2) by
A55,
A56,
A57,
A77,
EUCLID: 53;
then (g
. r1)
= (g
. r2) by
EUCLID: 53;
hence thesis by
A28,
A29,
FUNCT_1:def 4;
end;
end;
hence thesis;
end;
A78: (
dom k)
=
[.
0 , 1.] by
BORSUK_1: 40,
FUNCT_2:def 1;
then s1
in (
dom k) by
A23,
A24,
XXREAL_1: 1;
then rxc
= s1 by
A46,
A50,
A51,
A52,
A78;
hence contradiction by
A37,
A50,
XXREAL_1: 1;
end;
hence thesis;
end;
then
LE (p1,p2,(
Upper_Arc K),(
W-min K),(
E-max K)) by
A18,
A19,
JORDAN5C:def 3;
hence thesis by
A18,
A19,
JORDAN6:def 10;
end;
case
A79: p2
in (
LSeg (
|[b, d]|,
|[b, c]|));
then
A80: (p2
`1 )
= b by
TOPREAL3: 11;
(
Lower_Arc K)
= ((
LSeg (
|[b, d]|,
|[b, c]|))
\/ (
LSeg (
|[b, c]|,
|[a, c]|))) by
A1,
A2,
Th52;
then
A81: (
LSeg (
|[b, d]|,
|[b, c]|))
c= (
Lower_Arc K) by
XBOOLE_1: 7;
p2
<> (
W-min K) by
A1,
A13,
A80,
EUCLID: 52;
hence thesis by
A3,
A5,
A79,
A81,
JORDAN6:def 10;
end;
case
A82: p2
in (
LSeg (
|[b, c]|,
|[a, c]|)) & p2
<> (
W-min K);
(
Lower_Arc K)
= ((
LSeg (
|[b, d]|,
|[b, c]|))
\/ (
LSeg (
|[b, c]|,
|[a, c]|))) by
A1,
A2,
Th52;
then (
LSeg (
|[b, c]|,
|[a, c]|))
c= (
Lower_Arc K) by
XBOOLE_1: 7;
hence thesis by
A3,
A5,
A82,
JORDAN6:def 10;
end;
end;
hence thesis;
end;
end;
theorem ::
JGRAPH_6:61
Th61: for a,b,c,d be
Real, p1,p2 be
Point of (
TOP-REAL 2) st a
< b & c
< d & p1
in (
LSeg (
|[b, d]|,
|[b, c]|)) holds
LE (p1,p2,(
rectangle (a,b,c,d))) iff p2
in (
LSeg (
|[b, d]|,
|[b, c]|)) & (p1
`2 )
>= (p2
`2 ) or p2
in (
LSeg (
|[b, c]|,
|[a, c]|)) & p2
<> (
W-min (
rectangle (a,b,c,d)))
proof
let a,b,c,d be
Real, p1,p2 be
Point of (
TOP-REAL 2);
set K = (
rectangle (a,b,c,d));
assume that
A1: a
< b and
A2: c
< d and
A3: p1
in (
LSeg (
|[b, d]|,
|[b, c]|));
A4: K is
being_simple_closed_curve by
A1,
A2,
Th50;
A5: (p1
`1 )
= b by
A2,
A3,
Th1;
A6: c
<= (p1
`2 ) by
A2,
A3,
Th1;
A7: (p1
`2 )
<= d by
A2,
A3,
Th1;
thus
LE (p1,p2,K) implies p2
in (
LSeg (
|[b, d]|,
|[b, c]|)) & (p1
`2 )
>= (p2
`2 ) or p2
in (
LSeg (
|[b, c]|,
|[a, c]|)) & p2
<> (
W-min K)
proof
assume
A8:
LE (p1,p2,K);
then
A9: p1
in K by
A4,
JORDAN7: 5;
A10: p2
in K by
A4,
A8,
JORDAN7: 5;
K
= (((
LSeg (
|[a, c]|,
|[a, d]|))
\/ (
LSeg (
|[a, d]|,
|[b, d]|)))
\/ ((
LSeg (
|[a, c]|,
|[b, c]|))
\/ (
LSeg (
|[b, c]|,
|[b, d]|)))) by
SPPOL_2:def 3
.= ((((
LSeg (
|[a, c]|,
|[a, d]|))
\/ (
LSeg (
|[a, d]|,
|[b, d]|)))
\/ (
LSeg (
|[b, d]|,
|[b, c]|)))
\/ (
LSeg (
|[b, c]|,
|[a, c]|))) by
XBOOLE_1: 4;
then p2
in (((
LSeg (
|[a, c]|,
|[a, d]|))
\/ (
LSeg (
|[a, d]|,
|[b, d]|)))
\/ (
LSeg (
|[b, d]|,
|[b, c]|))) or p2
in (
LSeg (
|[b, c]|,
|[a, c]|)) by
A10,
XBOOLE_0:def 3;
then
A11: p2
in ((
LSeg (
|[a, c]|,
|[a, d]|))
\/ (
LSeg (
|[a, d]|,
|[b, d]|))) or p2
in (
LSeg (
|[b, d]|,
|[b, c]|)) or p2
in (
LSeg (
|[b, c]|,
|[a, c]|)) by
XBOOLE_0:def 3;
now
per cases by
A11,
XBOOLE_0:def 3;
case p2
in (
LSeg (
|[a, c]|,
|[a, d]|));
then
LE (p2,p1,K) by
A1,
A2,
A3,
Th59;
hence thesis by
A1,
A2,
A3,
A8,
Th50,
JORDAN6: 57;
end;
case p2
in (
LSeg (
|[a, d]|,
|[b, d]|));
then
LE (p2,p1,K) by
A1,
A2,
A3,
Th60;
hence thesis by
A1,
A2,
A3,
A8,
Th50,
JORDAN6: 57;
end;
case p2
in (
LSeg (
|[b, d]|,
|[b, c]|));
hence thesis by
A1,
A2,
A3,
A8,
Th57;
end;
case
A12: p2
in (
LSeg (
|[b, c]|,
|[a, c]|));
now
per cases ;
case p2
= (
W-min K);
then
LE (p2,p1,K) by
A4,
A9,
JORDAN7: 3;
hence thesis by
A1,
A2,
A3,
A8,
Th50,
JORDAN6: 57;
end;
case p2
<> (
W-min K);
hence thesis by
A12;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
thus p2
in (
LSeg (
|[b, d]|,
|[b, c]|)) & (p1
`2 )
>= (p2
`2 ) or p2
in (
LSeg (
|[b, c]|,
|[a, c]|)) & p2
<> (
W-min K) implies
LE (p1,p2,K)
proof
assume that
A13: p2
in (
LSeg (
|[b, d]|,
|[b, c]|)) & (p1
`2 )
>= (p2
`2 ) or p2
in (
LSeg (
|[b, c]|,
|[a, c]|)) & p2
<> (
W-min K);
now
per cases by
A13;
case
A14: p2
in (
LSeg (
|[b, d]|,
|[b, c]|)) & (p1
`2 )
>= (p2
`2 );
then
A15: (p2
`1 )
= b by
A2,
Th1;
(
W-min K)
=
|[a, c]| by
A1,
A2,
Th46;
then
A16: p2
<> (
W-min K) by
A1,
A15,
EUCLID: 52;
A17: (
Lower_Arc K)
= ((
LSeg (
|[b, d]|,
|[b, c]|))
\/ (
LSeg (
|[b, c]|,
|[a, c]|))) by
A1,
A2,
Th52;
then
A18: p2
in (
Lower_Arc K) by
A14,
XBOOLE_0:def 3;
A19: p1
in (
Lower_Arc K) by
A3,
A17,
XBOOLE_0:def 3;
for g be
Function of
I[01] , ((
TOP-REAL 2)
| (
Lower_Arc K)), s1,s2 be
Real st g is
being_homeomorphism & (g
.
0 )
= (
E-max K) & (g
. 1)
= (
W-min K) & (g
. s1)
= p1 &
0
<= s1 & s1
<= 1 & (g
. s2)
= p2 &
0
<= s2 & s2
<= 1 holds s1
<= s2
proof
let g be
Function of
I[01] , ((
TOP-REAL 2)
| (
Lower_Arc K)), s1,s2 be
Real;
assume that
A20: g is
being_homeomorphism and
A21: (g
.
0 )
= (
E-max K) and (g
. 1)
= (
W-min K) and
A22: (g
. s1)
= p1 and
A23:
0
<= s1 and
A24: s1
<= 1 and
A25: (g
. s2)
= p2 and
A26:
0
<= s2 and
A27: s2
<= 1;
A28: (
dom g)
= the
carrier of
I[01] by
FUNCT_2:def 1;
A29: g is
one-to-one by
A20,
TOPS_2:def 5;
A30: the
carrier of ((
TOP-REAL 2)
| (
Lower_Arc K))
= (
Lower_Arc K) by
PRE_TOPC: 8;
then
reconsider g1 = g as
Function of
I[01] , (
TOP-REAL 2) by
FUNCT_2: 7;
g is
continuous by
A20,
TOPS_2:def 5;
then
A31: g1 is
continuous by
PRE_TOPC: 26;
reconsider h1 =
proj1 as
Function of (
TOP-REAL 2),
R^1 by
TOPMETR: 17;
reconsider h2 =
proj2 as
Function of (
TOP-REAL 2),
R^1 by
TOPMETR: 17;
reconsider hh1 = h1 as
Function of the TopStruct of (
TOP-REAL 2),
R^1 ;
reconsider hh2 = h2 as
Function of the TopStruct of (
TOP-REAL 2),
R^1 ;
A32: the TopStruct of (
TOP-REAL 2)
= ( the TopStruct of (
TOP-REAL 2)
| (
[#] the TopStruct of (
TOP-REAL 2))) by
TSEP_1: 3
.= the TopStruct of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) by
PRE_TOPC: 36
.= ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2)));
then (for p be
Point of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) holds (hh1
. p)
= (
proj1
. p)) implies hh1 is
continuous by
JGRAPH_2: 29;
then
A33: (for p be
Point of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) holds (hh1
. p)
= (
proj1
. p)) implies h1 is
continuous by
PRE_TOPC: 32;
(for p be
Point of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) holds (hh2
. p)
= (
proj2
. p)) implies hh2 is
continuous by
A32,
JGRAPH_2: 30;
then (for p be
Point of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) holds (hh2
. p)
= (
proj2
. p)) implies h2 is
continuous by
PRE_TOPC: 32;
then
consider h be
Function of (
TOP-REAL 2),
R^1 such that
A34: for p be
Point of (
TOP-REAL 2), r1,r2 be
Real st (h1
. p)
= r1 & (h2
. p)
= r2 holds (h
. p)
= (r1
+ r2) and
A35: h is
continuous by
A33,
JGRAPH_2: 19;
reconsider k = (h
* g1) as
Function of
I[01] ,
R^1 ;
A36: (
E-max K)
=
|[b, d]| by
A1,
A2,
Th46;
now
assume
A37: s1
> s2;
A38: (
dom g)
=
[.
0 , 1.] by
BORSUK_1: 40,
FUNCT_2:def 1;
0
in
[.
0 , 1.] by
XXREAL_1: 1;
then
A39: (k
.
0 )
= (h
. (
E-max K)) by
A21,
A38,
FUNCT_1: 13
.= ((h1
. (
E-max K))
+ (h2
. (
E-max K))) by
A34
.= (((
E-max K)
`1 )
+ (
proj2
. (
E-max K))) by
PSCOMP_1:def 5
.= (((
E-max K)
`1 )
+ ((
E-max K)
`2 )) by
PSCOMP_1:def 6
.= (((
E-max K)
`1 )
+ d) by
A36,
EUCLID: 52
.= (b
+ d) by
A36,
EUCLID: 52;
s1
in
[.
0 , 1.] by
A23,
A24,
XXREAL_1: 1;
then
A40: (k
. s1)
= (h
. p1) by
A22,
A38,
FUNCT_1: 13
.= ((
proj1
. p1)
+ (
proj2
. p1)) by
A34
.= ((p1
`1 )
+ (
proj2
. p1)) by
PSCOMP_1:def 5
.= (b
+ (p1
`2 )) by
A5,
PSCOMP_1:def 6;
A41: s2
in
[.
0 , 1.] by
A26,
A27,
XXREAL_1: 1;
then
A42: (k
. s2)
= (h
. p2) by
A25,
A38,
FUNCT_1: 13
.= ((
proj1
. p2)
+ (
proj2
. p2)) by
A34
.= ((p2
`1 )
+ (
proj2
. p2)) by
PSCOMP_1:def 5
.= (b
+ (p2
`2 )) by
A15,
PSCOMP_1:def 6;
A43: (k
.
0 )
>= (k
. s1) by
A7,
A39,
A40,
XREAL_1: 7;
A44: (k
. s1)
>= (k
. s2) by
A14,
A40,
A42,
XREAL_1: 7;
A45:
0
in
[.
0 , 1.] by
XXREAL_1: 1;
then
A46:
[.
0 , s2.]
c=
[.
0 , 1.] by
A41,
XXREAL_2:def 12;
reconsider B =
[.
0 , s2.] as
Subset of
I[01] by
A41,
A45,
BORSUK_1: 40,
XXREAL_2:def 12;
A47: B is
connected by
A26,
A41,
A45,
BORSUK_1: 40,
BORSUK_4: 24;
A48:
0
in B by
A26,
XXREAL_1: 1;
A49: s2
in B by
A26,
XXREAL_1: 1;
consider xc be
Point of
I[01] such that
A50: xc
in B and
A51: (k
. xc)
= (k
. s1) by
A31,
A35,
A43,
A44,
A47,
A48,
A49,
TOPREAL5: 5;
reconsider rxc = xc as
Real;
A52: for x1,x2 be
set st x1
in (
dom k) & x2
in (
dom k) & (k
. x1)
= (k
. x2) holds x1
= x2
proof
let x1,x2 be
set;
assume that
A53: x1
in (
dom k) and
A54: x2
in (
dom k) and
A55: (k
. x1)
= (k
. x2);
reconsider r1 = x1 as
Point of
I[01] by
A53;
reconsider r2 = x2 as
Point of
I[01] by
A54;
A56: (k
. x1)
= (h
. (g1
. x1)) by
A53,
FUNCT_1: 12
.= ((h1
. (g1
. r1))
+ (h2
. (g1
. r1))) by
A34
.= (((g1
. r1)
`1 )
+ (
proj2
. (g1
. r1))) by
PSCOMP_1:def 5
.= (((g1
. r1)
`1 )
+ ((g1
. r1)
`2 )) by
PSCOMP_1:def 6;
A57: (k
. x2)
= (h
. (g1
. x2)) by
A54,
FUNCT_1: 12
.= ((h1
. (g1
. r2))
+ (h2
. (g1
. r2))) by
A34
.= (((g1
. r2)
`1 )
+ (
proj2
. (g1
. r2))) by
PSCOMP_1:def 5
.= (((g1
. r2)
`1 )
+ ((g1
. r2)
`2 )) by
PSCOMP_1:def 6;
A58: (g
. r1)
in (
Lower_Arc K) by
A30;
A59: (g
. r2)
in (
Lower_Arc K) by
A30;
reconsider gr1 = (g
. r1) as
Point of (
TOP-REAL 2) by
A58;
reconsider gr2 = (g
. r2) as
Point of (
TOP-REAL 2) by
A59;
now
per cases by
A17,
A30,
XBOOLE_0:def 3;
case
A60: (g
. r1)
in (
LSeg (
|[b, d]|,
|[b, c]|)) & (g
. r2)
in (
LSeg (
|[b, d]|,
|[b, c]|));
then
A61: (gr1
`1 )
= b by
A2,
Th1;
(gr2
`1 )
= b by
A2,
A60,
Th1;
then
|[(gr1
`1 ), (gr1
`2 )]|
= (g
. r2) by
A55,
A56,
A57,
A61,
EUCLID: 53;
then (g
. r1)
= (g
. r2) by
EUCLID: 53;
hence thesis by
A28,
A29,
FUNCT_1:def 4;
end;
case
A62: (g
. r1)
in (
LSeg (
|[b, d]|,
|[b, c]|)) & (g
. r2)
in (
LSeg (
|[b, c]|,
|[a, c]|));
then
A63: (gr1
`1 )
= b by
A2,
Th1;
A64: c
<= (gr1
`2 ) by
A2,
A62,
Th1;
A65: (gr2
`2 )
= c by
A1,
A62,
Th3;
A66: (gr2
`1 )
<= b by
A1,
A62,
Th3;
A67: (b
+ (gr1
`2 ))
= ((gr2
`1 )
+ c) by
A2,
A55,
A56,
A57,
A62,
A65,
Th1;
A68:
now
assume b
<> (gr2
`1 );
then b
> (gr2
`1 ) by
A66,
XXREAL_0: 1;
hence contradiction by
A55,
A56,
A57,
A63,
A64,
A65,
XREAL_1: 8;
end;
now
assume (gr1
`2 )
<> c;
then c
< (gr1
`2 ) by
A64,
XXREAL_0: 1;
hence contradiction by
A66,
A67,
XREAL_1: 8;
end;
then
|[(gr1
`1 ), (gr1
`2 )]|
= (g
. r2) by
A63,
A65,
A68,
EUCLID: 53;
then (g
. r1)
= (g
. r2) by
EUCLID: 53;
hence thesis by
A28,
A29,
FUNCT_1:def 4;
end;
case
A69: (g
. r1)
in (
LSeg (
|[b, c]|,
|[a, c]|)) & (g
. r2)
in (
LSeg (
|[b, d]|,
|[b, c]|));
then
A70: (gr2
`1 )
= b by
A2,
Th1;
A71: c
<= (gr2
`2 ) by
A2,
A69,
Th1;
A72: (gr1
`2 )
= c by
A1,
A69,
Th3;
A73: (gr1
`1 )
<= b by
A1,
A69,
Th3;
A74: (b
+ (gr2
`2 ))
= ((gr1
`1 )
+ c) by
A1,
A55,
A56,
A57,
A69,
A70,
Th3;
A75:
now
assume b
<> (gr1
`1 );
then b
> (gr1
`1 ) by
A73,
XXREAL_0: 1;
hence contradiction by
A71,
A74,
XREAL_1: 8;
end;
now
assume (gr2
`2 )
<> c;
then c
< (gr2
`2 ) by
A71,
XXREAL_0: 1;
hence contradiction by
A55,
A56,
A57,
A70,
A72,
A73,
XREAL_1: 8;
end;
then
|[(gr2
`1 ), (gr2
`2 )]|
= (g
. r1) by
A70,
A72,
A75,
EUCLID: 53;
then (g
. r1)
= (g
. r2) by
EUCLID: 53;
hence thesis by
A28,
A29,
FUNCT_1:def 4;
end;
case
A76: (g
. r1)
in (
LSeg (
|[b, c]|,
|[a, c]|)) & (g
. r2)
in (
LSeg (
|[b, c]|,
|[a, c]|));
then
A77: (gr1
`2 )
= c by
A1,
Th3;
(gr2
`2 )
= c by
A1,
A76,
Th3;
then
|[(gr1
`1 ), (gr1
`2 )]|
= (g
. r2) by
A55,
A56,
A57,
A77,
EUCLID: 53;
then (g
. r1)
= (g
. r2) by
EUCLID: 53;
hence thesis by
A28,
A29,
FUNCT_1:def 4;
end;
end;
hence thesis;
end;
A78: (
dom k)
=
[.
0 , 1.] by
BORSUK_1: 40,
FUNCT_2:def 1;
then s1
in (
dom k) by
A23,
A24,
XXREAL_1: 1;
then rxc
= s1 by
A46,
A50,
A51,
A52,
A78;
hence contradiction by
A37,
A50,
XXREAL_1: 1;
end;
hence thesis;
end;
then
LE (p1,p2,(
Lower_Arc K),(
E-max K),(
W-min K)) by
A18,
A19,
JORDAN5C:def 3;
hence thesis by
A16,
A18,
A19,
JORDAN6:def 10;
end;
case
A79: p2
in (
LSeg (
|[b, c]|,
|[a, c]|)) & p2
<> (
W-min K);
then
A80: (p2
`2 )
= c by
A1,
Th3;
A81: (p2
`1 )
<= b by
A1,
A79,
Th3;
A82: (
Lower_Arc K)
= ((
LSeg (
|[b, d]|,
|[b, c]|))
\/ (
LSeg (
|[b, c]|,
|[a, c]|))) by
A1,
A2,
Th52;
then
A83: p2
in (
Lower_Arc K) by
A79,
XBOOLE_0:def 3;
A84: p1
in (
Lower_Arc K) by
A3,
A82,
XBOOLE_0:def 3;
for g be
Function of
I[01] , ((
TOP-REAL 2)
| (
Lower_Arc K)), s1,s2 be
Real st g is
being_homeomorphism & (g
.
0 )
= (
E-max K) & (g
. 1)
= (
W-min K) & (g
. s1)
= p1 &
0
<= s1 & s1
<= 1 & (g
. s2)
= p2 &
0
<= s2 & s2
<= 1 holds s1
<= s2
proof
let g be
Function of
I[01] , ((
TOP-REAL 2)
| (
Lower_Arc K)), s1,s2 be
Real;
assume that
A85: g is
being_homeomorphism and
A86: (g
.
0 )
= (
E-max K) and (g
. 1)
= (
W-min K) and
A87: (g
. s1)
= p1 and
A88:
0
<= s1 and
A89: s1
<= 1 and
A90: (g
. s2)
= p2 and
A91:
0
<= s2 and
A92: s2
<= 1;
A93: (
dom g)
= the
carrier of
I[01] by
FUNCT_2:def 1;
A94: g is
one-to-one by
A85,
TOPS_2:def 5;
A95: the
carrier of ((
TOP-REAL 2)
| (
Lower_Arc K))
= (
Lower_Arc K) by
PRE_TOPC: 8;
then
reconsider g1 = g as
Function of
I[01] , (
TOP-REAL 2) by
FUNCT_2: 7;
g is
continuous by
A85,
TOPS_2:def 5;
then
A96: g1 is
continuous by
PRE_TOPC: 26;
reconsider h1 =
proj1 as
Function of (
TOP-REAL 2),
R^1 by
TOPMETR: 17;
reconsider h2 =
proj2 as
Function of (
TOP-REAL 2),
R^1 by
TOPMETR: 17;
reconsider hh1 = h1 as
Function of the TopStruct of (
TOP-REAL 2),
R^1 ;
reconsider hh2 = h2 as
Function of the TopStruct of (
TOP-REAL 2),
R^1 ;
A97: the TopStruct of (
TOP-REAL 2)
= ( the TopStruct of (
TOP-REAL 2)
| (
[#] the TopStruct of (
TOP-REAL 2))) by
TSEP_1: 3
.= the TopStruct of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) by
PRE_TOPC: 36
.= ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2)));
then (for p be
Point of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) holds (hh1
. p)
= (
proj1
. p)) implies hh1 is
continuous by
JGRAPH_2: 29;
then
A98: (for p be
Point of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) holds (hh1
. p)
= (
proj1
. p)) implies h1 is
continuous by
PRE_TOPC: 32;
(for p be
Point of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) holds (hh2
. p)
= (
proj2
. p)) implies hh2 is
continuous by
A97,
JGRAPH_2: 30;
then (for p be
Point of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) holds (hh2
. p)
= (
proj2
. p)) implies h2 is
continuous by
PRE_TOPC: 32;
then
consider h be
Function of (
TOP-REAL 2),
R^1 such that
A99: for p be
Point of (
TOP-REAL 2), r1,r2 be
Real st (h1
. p)
= r1 & (h2
. p)
= r2 holds (h
. p)
= (r1
+ r2) and
A100: h is
continuous by
A98,
JGRAPH_2: 19;
reconsider k = (h
* g1) as
Function of
I[01] ,
R^1 ;
A101: (
E-max K)
=
|[b, d]| by
A1,
A2,
Th46;
now
assume
A102: s1
> s2;
A103: (
dom g)
=
[.
0 , 1.] by
BORSUK_1: 40,
FUNCT_2:def 1;
0
in
[.
0 , 1.] by
XXREAL_1: 1;
then
A104: (k
.
0 )
= (h
. (
E-max K)) by
A86,
A103,
FUNCT_1: 13
.= ((h1
. (
E-max K))
+ (h2
. (
E-max K))) by
A99
.= (((
E-max K)
`1 )
+ (
proj2
. (
E-max K))) by
PSCOMP_1:def 5
.= (((
E-max K)
`1 )
+ ((
E-max K)
`2 )) by
PSCOMP_1:def 6
.= (((
E-max K)
`1 )
+ d) by
A101,
EUCLID: 52
.= (b
+ d) by
A101,
EUCLID: 52;
s1
in
[.
0 , 1.] by
A88,
A89,
XXREAL_1: 1;
then
A105: (k
. s1)
= (h
. p1) by
A87,
A103,
FUNCT_1: 13
.= ((
proj1
. p1)
+ (
proj2
. p1)) by
A99
.= ((p1
`1 )
+ (
proj2
. p1)) by
PSCOMP_1:def 5
.= (b
+ (p1
`2 )) by
A5,
PSCOMP_1:def 6;
A106: s2
in
[.
0 , 1.] by
A91,
A92,
XXREAL_1: 1;
then
A107: (k
. s2)
= (h
. p2) by
A90,
A103,
FUNCT_1: 13
.= ((
proj1
. p2)
+ (
proj2
. p2)) by
A99
.= ((p2
`1 )
+ (
proj2
. p2)) by
PSCOMP_1:def 5
.= ((p2
`1 )
+ c) by
A80,
PSCOMP_1:def 6;
A108: (k
.
0 )
>= (k
. s1) by
A7,
A104,
A105,
XREAL_1: 7;
A109: (k
. s1)
>= (k
. s2) by
A6,
A81,
A105,
A107,
XREAL_1: 7;
A110:
0
in
[.
0 , 1.] by
XXREAL_1: 1;
then
A111:
[.
0 , s2.]
c=
[.
0 , 1.] by
A106,
XXREAL_2:def 12;
reconsider B =
[.
0 , s2.] as
Subset of
I[01] by
A106,
A110,
BORSUK_1: 40,
XXREAL_2:def 12;
A112: B is
connected by
A91,
A106,
A110,
BORSUK_1: 40,
BORSUK_4: 24;
A113:
0
in B by
A91,
XXREAL_1: 1;
A114: s2
in B by
A91,
XXREAL_1: 1;
consider xc be
Point of
I[01] such that
A115: xc
in B and
A116: (k
. xc)
= (k
. s1) by
A96,
A100,
A108,
A109,
A112,
A113,
A114,
TOPREAL5: 5;
reconsider rxc = xc as
Real;
A117: for x1,x2 be
set st x1
in (
dom k) & x2
in (
dom k) & (k
. x1)
= (k
. x2) holds x1
= x2
proof
let x1,x2 be
set;
assume that
A118: x1
in (
dom k) and
A119: x2
in (
dom k) and
A120: (k
. x1)
= (k
. x2);
reconsider r1 = x1 as
Point of
I[01] by
A118;
reconsider r2 = x2 as
Point of
I[01] by
A119;
A121: (k
. x1)
= (h
. (g1
. x1)) by
A118,
FUNCT_1: 12
.= ((h1
. (g1
. r1))
+ (h2
. (g1
. r1))) by
A99
.= (((g1
. r1)
`1 )
+ (
proj2
. (g1
. r1))) by
PSCOMP_1:def 5
.= (((g1
. r1)
`1 )
+ ((g1
. r1)
`2 )) by
PSCOMP_1:def 6;
A122: (k
. x2)
= (h
. (g1
. x2)) by
A119,
FUNCT_1: 12
.= ((h1
. (g1
. r2))
+ (h2
. (g1
. r2))) by
A99
.= (((g1
. r2)
`1 )
+ (
proj2
. (g1
. r2))) by
PSCOMP_1:def 5
.= (((g1
. r2)
`1 )
+ ((g1
. r2)
`2 )) by
PSCOMP_1:def 6;
A123: (g
. r1)
in (
Lower_Arc K) by
A95;
A124: (g
. r2)
in (
Lower_Arc K) by
A95;
reconsider gr1 = (g
. r1) as
Point of (
TOP-REAL 2) by
A123;
reconsider gr2 = (g
. r2) as
Point of (
TOP-REAL 2) by
A124;
now
per cases by
A82,
A95,
XBOOLE_0:def 3;
case
A125: (g
. r1)
in (
LSeg (
|[b, d]|,
|[b, c]|)) & (g
. r2)
in (
LSeg (
|[b, d]|,
|[b, c]|));
then
A126: (gr1
`1 )
= b by
A2,
Th1;
(gr2
`1 )
= b by
A2,
A125,
Th1;
then
|[(gr1
`1 ), (gr1
`2 )]|
= (g
. r2) by
A120,
A121,
A122,
A126,
EUCLID: 53;
then (g
. r1)
= (g
. r2) by
EUCLID: 53;
hence thesis by
A93,
A94,
FUNCT_1:def 4;
end;
case
A127: (g
. r1)
in (
LSeg (
|[b, d]|,
|[b, c]|)) & (g
. r2)
in (
LSeg (
|[b, c]|,
|[a, c]|));
then
A128: (gr1
`1 )
= b by
A2,
Th1;
A129: c
<= (gr1
`2 ) by
A2,
A127,
Th1;
A130: (gr2
`2 )
= c by
A1,
A127,
Th3;
A131: (gr2
`1 )
<= b by
A1,
A127,
Th3;
A132: (b
+ (gr1
`2 ))
= ((gr2
`1 )
+ c) by
A2,
A120,
A121,
A122,
A127,
A130,
Th1;
A133:
now
assume b
<> (gr2
`1 );
then b
> (gr2
`1 ) by
A131,
XXREAL_0: 1;
hence contradiction by
A120,
A121,
A122,
A128,
A129,
A130,
XREAL_1: 8;
end;
now
assume (gr1
`2 )
<> c;
then c
< (gr1
`2 ) by
A129,
XXREAL_0: 1;
hence contradiction by
A131,
A132,
XREAL_1: 8;
end;
then
|[(gr1
`1 ), (gr1
`2 )]|
= (g
. r2) by
A128,
A130,
A133,
EUCLID: 53;
then (g
. r1)
= (g
. r2) by
EUCLID: 53;
hence thesis by
A93,
A94,
FUNCT_1:def 4;
end;
case
A134: (g
. r1)
in (
LSeg (
|[b, c]|,
|[a, c]|)) & (g
. r2)
in (
LSeg (
|[b, d]|,
|[b, c]|));
then
A135: (gr2
`1 )
= b by
A2,
Th1;
A136: c
<= (gr2
`2 ) by
A2,
A134,
Th1;
A137: (gr1
`2 )
= c by
A1,
A134,
Th3;
A138: (gr1
`1 )
<= b by
A1,
A134,
Th3;
A139: (b
+ (gr2
`2 ))
= ((gr1
`1 )
+ c) by
A1,
A120,
A121,
A122,
A134,
A135,
Th3;
A140:
now
assume b
<> (gr1
`1 );
then b
> (gr1
`1 ) by
A138,
XXREAL_0: 1;
hence contradiction by
A136,
A139,
XREAL_1: 8;
end;
now
assume (gr2
`2 )
<> c;
then c
< (gr2
`2 ) by
A136,
XXREAL_0: 1;
hence contradiction by
A120,
A121,
A122,
A135,
A137,
A138,
XREAL_1: 8;
end;
then
|[(gr2
`1 ), (gr2
`2 )]|
= (g
. r1) by
A135,
A137,
A140,
EUCLID: 53;
then (g
. r1)
= (g
. r2) by
EUCLID: 53;
hence thesis by
A93,
A94,
FUNCT_1:def 4;
end;
case
A141: (g
. r1)
in (
LSeg (
|[b, c]|,
|[a, c]|)) & (g
. r2)
in (
LSeg (
|[b, c]|,
|[a, c]|));
then
A142: (gr1
`2 )
= c by
A1,
Th3;
(gr2
`2 )
= c by
A1,
A141,
Th3;
then
|[(gr1
`1 ), (gr1
`2 )]|
= (g
. r2) by
A120,
A121,
A122,
A142,
EUCLID: 53;
then (g
. r1)
= (g
. r2) by
EUCLID: 53;
hence thesis by
A93,
A94,
FUNCT_1:def 4;
end;
end;
hence thesis;
end;
A143: (
dom k)
=
[.
0 , 1.] by
BORSUK_1: 40,
FUNCT_2:def 1;
then s1
in (
dom k) by
A88,
A89,
XXREAL_1: 1;
then rxc
= s1 by
A111,
A115,
A116,
A117,
A143;
hence contradiction by
A102,
A115,
XXREAL_1: 1;
end;
hence thesis;
end;
then
LE (p1,p2,(
Lower_Arc K),(
E-max K),(
W-min K)) by
A83,
A84,
JORDAN5C:def 3;
hence thesis by
A79,
A83,
A84,
JORDAN6:def 10;
end;
end;
hence thesis;
end;
end;
theorem ::
JGRAPH_6:62
Th62: for a,b,c,d be
Real, p1,p2 be
Point of (
TOP-REAL 2) st a
< b & c
< d & p1
in (
LSeg (
|[b, c]|,
|[a, c]|)) & p1
<> (
W-min (
rectangle (a,b,c,d))) holds
LE (p1,p2,(
rectangle (a,b,c,d))) iff p2
in (
LSeg (
|[b, c]|,
|[a, c]|)) & (p1
`1 )
>= (p2
`1 ) & p2
<> (
W-min (
rectangle (a,b,c,d)))
proof
let a,b,c,d be
Real, p1,p2 be
Point of (
TOP-REAL 2);
set K = (
rectangle (a,b,c,d));
assume that
A1: a
< b and
A2: c
< d and
A3: p1
in (
LSeg (
|[b, c]|,
|[a, c]|)) and
A4: p1
<> (
W-min K);
A5: K is
being_simple_closed_curve by
A1,
A2,
Th50;
A6: (p1
`2 )
= c by
A1,
A3,
Th3;
A7: (p1
`1 )
<= b by
A1,
A3,
Th3;
thus
LE (p1,p2,K) implies p2
in (
LSeg (
|[b, c]|,
|[a, c]|)) & (p1
`1 )
>= (p2
`1 ) & p2
<> (
W-min K)
proof
assume
A8:
LE (p1,p2,K);
then
A9: p2
in K by
A5,
JORDAN7: 5;
K
= (((
LSeg (
|[a, c]|,
|[a, d]|))
\/ (
LSeg (
|[a, d]|,
|[b, d]|)))
\/ ((
LSeg (
|[a, c]|,
|[b, c]|))
\/ (
LSeg (
|[b, c]|,
|[b, d]|)))) by
SPPOL_2:def 3
.= ((((
LSeg (
|[a, c]|,
|[a, d]|))
\/ (
LSeg (
|[a, d]|,
|[b, d]|)))
\/ (
LSeg (
|[b, d]|,
|[b, c]|)))
\/ (
LSeg (
|[b, c]|,
|[a, c]|))) by
XBOOLE_1: 4;
then p2
in (((
LSeg (
|[a, c]|,
|[a, d]|))
\/ (
LSeg (
|[a, d]|,
|[b, d]|)))
\/ (
LSeg (
|[b, d]|,
|[b, c]|))) or p2
in (
LSeg (
|[b, c]|,
|[a, c]|)) by
A9,
XBOOLE_0:def 3;
then
A10: p2
in ((
LSeg (
|[a, c]|,
|[a, d]|))
\/ (
LSeg (
|[a, d]|,
|[b, d]|))) or p2
in (
LSeg (
|[b, d]|,
|[b, c]|)) or p2
in (
LSeg (
|[b, c]|,
|[a, c]|)) by
XBOOLE_0:def 3;
now
per cases by
A10,
XBOOLE_0:def 3;
case p2
in (
LSeg (
|[a, c]|,
|[a, d]|));
then
LE (p2,p1,K) by
A1,
A2,
A3,
A4,
Th59;
hence thesis by
A1,
A2,
A3,
A4,
A8,
Th50,
JORDAN6: 57;
end;
case p2
in (
LSeg (
|[a, d]|,
|[b, d]|));
then
LE (p2,p1,K) by
A1,
A2,
A3,
A4,
Th60;
hence thesis by
A1,
A2,
A3,
A4,
A8,
Th50,
JORDAN6: 57;
end;
case p2
in (
LSeg (
|[b, d]|,
|[b, c]|));
then
LE (p2,p1,K) by
A1,
A2,
A3,
A4,
Th61;
hence thesis by
A1,
A2,
A3,
A4,
A8,
Th50,
JORDAN6: 57;
end;
case p2
in (
LSeg (
|[b, c]|,
|[a, c]|));
hence thesis by
A1,
A2,
A3,
A4,
A8,
Th58;
end;
end;
hence thesis;
end;
thus p2
in (
LSeg (
|[b, c]|,
|[a, c]|)) & (p1
`1 )
>= (p2
`1 ) & p2
<> (
W-min K) implies
LE (p1,p2,K)
proof
assume that
A11: p2
in (
LSeg (
|[b, c]|,
|[a, c]|)) and
A12: (p1
`1 )
>= (p2
`1 ) and
A13: p2
<> (
W-min K);
now
per cases by
A11,
A12;
case
A14: p2
in (
LSeg (
|[b, c]|,
|[a, c]|)) & (p1
`1 )
>= (p2
`1 );
then
A15: (p2
`2 )
= c by
A1,
Th3;
A16: (
Lower_Arc K)
= ((
LSeg (
|[b, d]|,
|[b, c]|))
\/ (
LSeg (
|[b, c]|,
|[a, c]|))) by
A1,
A2,
Th52;
then
A17: p2
in (
Lower_Arc K) by
A14,
XBOOLE_0:def 3;
A18: p1
in (
Lower_Arc K) by
A3,
A16,
XBOOLE_0:def 3;
for g be
Function of
I[01] , ((
TOP-REAL 2)
| (
Lower_Arc K)), s1,s2 be
Real st g is
being_homeomorphism & (g
.
0 )
= (
E-max K) & (g
. 1)
= (
W-min K) & (g
. s1)
= p1 &
0
<= s1 & s1
<= 1 & (g
. s2)
= p2 &
0
<= s2 & s2
<= 1 holds s1
<= s2
proof
let g be
Function of
I[01] , ((
TOP-REAL 2)
| (
Lower_Arc K)), s1,s2 be
Real;
assume that
A19: g is
being_homeomorphism and
A20: (g
.
0 )
= (
E-max K) and (g
. 1)
= (
W-min K) and
A21: (g
. s1)
= p1 and
A22:
0
<= s1 and
A23: s1
<= 1 and
A24: (g
. s2)
= p2 and
A25:
0
<= s2 and
A26: s2
<= 1;
A27: (
dom g)
= the
carrier of
I[01] by
FUNCT_2:def 1;
A28: g is
one-to-one by
A19,
TOPS_2:def 5;
A29: the
carrier of ((
TOP-REAL 2)
| (
Lower_Arc K))
= (
Lower_Arc K) by
PRE_TOPC: 8;
then
reconsider g1 = g as
Function of
I[01] , (
TOP-REAL 2) by
FUNCT_2: 7;
g is
continuous by
A19,
TOPS_2:def 5;
then
A30: g1 is
continuous by
PRE_TOPC: 26;
reconsider h1 =
proj1 as
Function of (
TOP-REAL 2),
R^1 by
TOPMETR: 17;
reconsider h2 =
proj2 as
Function of (
TOP-REAL 2),
R^1 by
TOPMETR: 17;
reconsider hh1 = h1 as
Function of the TopStruct of (
TOP-REAL 2),
R^1 ;
reconsider hh2 = h2 as
Function of the TopStruct of (
TOP-REAL 2),
R^1 ;
A31: the TopStruct of (
TOP-REAL 2)
= ( the TopStruct of (
TOP-REAL 2)
| (
[#] the TopStruct of (
TOP-REAL 2))) by
TSEP_1: 3
.= the TopStruct of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) by
PRE_TOPC: 36
.= ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2)));
then (for p be
Point of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) holds (hh1
. p)
= (
proj1
. p)) implies hh1 is
continuous by
JGRAPH_2: 29;
then
A32: (for p be
Point of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) holds (hh1
. p)
= (
proj1
. p)) implies h1 is
continuous by
PRE_TOPC: 32;
(for p be
Point of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) holds (hh2
. p)
= (
proj2
. p)) implies hh2 is
continuous by
A31,
JGRAPH_2: 30;
then (for p be
Point of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) holds (hh2
. p)
= (
proj2
. p)) implies h2 is
continuous by
PRE_TOPC: 32;
then
consider h be
Function of (
TOP-REAL 2),
R^1 such that
A33: for p be
Point of (
TOP-REAL 2), r1,r2 be
Real st (h1
. p)
= r1 & (h2
. p)
= r2 holds (h
. p)
= (r1
+ r2) and
A34: h is
continuous by
A32,
JGRAPH_2: 19;
reconsider k = (h
* g1) as
Function of
I[01] ,
R^1 ;
A35: (
E-max K)
=
|[b, d]| by
A1,
A2,
Th46;
now
assume
A36: s1
> s2;
A37: (
dom g)
=
[.
0 , 1.] by
BORSUK_1: 40,
FUNCT_2:def 1;
0
in
[.
0 , 1.] by
XXREAL_1: 1;
then
A38: (k
.
0 )
= (h
. (
E-max K)) by
A20,
A37,
FUNCT_1: 13
.= ((h1
. (
E-max K))
+ (h2
. (
E-max K))) by
A33
.= (((
E-max K)
`1 )
+ (
proj2
. (
E-max K))) by
PSCOMP_1:def 5
.= (((
E-max K)
`1 )
+ ((
E-max K)
`2 )) by
PSCOMP_1:def 6
.= (((
E-max K)
`1 )
+ d) by
A35,
EUCLID: 52
.= (b
+ d) by
A35,
EUCLID: 52;
s1
in
[.
0 , 1.] by
A22,
A23,
XXREAL_1: 1;
then
A39: (k
. s1)
= (h
. p1) by
A21,
A37,
FUNCT_1: 13
.= ((
proj1
. p1)
+ (
proj2
. p1)) by
A33
.= ((p1
`1 )
+ (
proj2
. p1)) by
PSCOMP_1:def 5
.= ((p1
`1 )
+ c) by
A6,
PSCOMP_1:def 6;
A40: s2
in
[.
0 , 1.] by
A25,
A26,
XXREAL_1: 1;
then
A41: (k
. s2)
= (h
. p2) by
A24,
A37,
FUNCT_1: 13
.= ((
proj1
. p2)
+ (
proj2
. p2)) by
A33
.= ((p2
`1 )
+ (
proj2
. p2)) by
PSCOMP_1:def 5
.= ((p2
`1 )
+ c) by
A15,
PSCOMP_1:def 6;
A42: (k
.
0 )
>= (k
. s1) by
A2,
A7,
A38,
A39,
XREAL_1: 7;
A43: (k
. s1)
>= (k
. s2) by
A14,
A39,
A41,
XREAL_1: 7;
A44:
0
in
[.
0 , 1.] by
XXREAL_1: 1;
then
A45:
[.
0 , s2.]
c=
[.
0 , 1.] by
A40,
XXREAL_2:def 12;
reconsider B =
[.
0 , s2.] as
Subset of
I[01] by
A40,
A44,
BORSUK_1: 40,
XXREAL_2:def 12;
A46: B is
connected by
A25,
A40,
A44,
BORSUK_1: 40,
BORSUK_4: 24;
A47:
0
in B by
A25,
XXREAL_1: 1;
A48: s2
in B by
A25,
XXREAL_1: 1;
consider xc be
Point of
I[01] such that
A49: xc
in B and
A50: (k
. xc)
= (k
. s1) by
A30,
A34,
A42,
A43,
A46,
A47,
A48,
TOPREAL5: 5;
reconsider rxc = xc as
Real;
A51: for x1,x2 be
set st x1
in (
dom k) & x2
in (
dom k) & (k
. x1)
= (k
. x2) holds x1
= x2
proof
let x1,x2 be
set;
assume that
A52: x1
in (
dom k) and
A53: x2
in (
dom k) and
A54: (k
. x1)
= (k
. x2);
reconsider r1 = x1 as
Point of
I[01] by
A52;
reconsider r2 = x2 as
Point of
I[01] by
A53;
A55: (k
. x1)
= (h
. (g1
. x1)) by
A52,
FUNCT_1: 12
.= ((h1
. (g1
. r1))
+ (h2
. (g1
. r1))) by
A33
.= (((g1
. r1)
`1 )
+ (
proj2
. (g1
. r1))) by
PSCOMP_1:def 5
.= (((g1
. r1)
`1 )
+ ((g1
. r1)
`2 )) by
PSCOMP_1:def 6;
A56: (k
. x2)
= (h
. (g1
. x2)) by
A53,
FUNCT_1: 12
.= ((h1
. (g1
. r2))
+ (h2
. (g1
. r2))) by
A33
.= (((g1
. r2)
`1 )
+ (
proj2
. (g1
. r2))) by
PSCOMP_1:def 5
.= (((g1
. r2)
`1 )
+ ((g1
. r2)
`2 )) by
PSCOMP_1:def 6;
A57: (g
. r1)
in (
Lower_Arc K) by
A29;
A58: (g
. r2)
in (
Lower_Arc K) by
A29;
reconsider gr1 = (g
. r1) as
Point of (
TOP-REAL 2) by
A57;
reconsider gr2 = (g
. r2) as
Point of (
TOP-REAL 2) by
A58;
now
per cases by
A16,
A29,
XBOOLE_0:def 3;
case
A59: (g
. r1)
in (
LSeg (
|[b, d]|,
|[b, c]|)) & (g
. r2)
in (
LSeg (
|[b, d]|,
|[b, c]|));
then
A60: (gr1
`1 )
= b by
A2,
Th1;
(gr2
`1 )
= b by
A2,
A59,
Th1;
then
|[(gr1
`1 ), (gr1
`2 )]|
= (g
. r2) by
A54,
A55,
A56,
A60,
EUCLID: 53;
then (g
. r1)
= (g
. r2) by
EUCLID: 53;
hence thesis by
A27,
A28,
FUNCT_1:def 4;
end;
case
A61: (g
. r1)
in (
LSeg (
|[b, d]|,
|[b, c]|)) & (g
. r2)
in (
LSeg (
|[b, c]|,
|[a, c]|));
then
A62: (gr1
`1 )
= b by
A2,
Th1;
A63: c
<= (gr1
`2 ) by
A2,
A61,
Th1;
A64: (gr2
`2 )
= c by
A1,
A61,
Th3;
A65: (gr2
`1 )
<= b by
A1,
A61,
Th3;
A66: (b
+ (gr1
`2 ))
= ((gr2
`1 )
+ c) by
A2,
A54,
A55,
A56,
A61,
A64,
Th1;
A67:
now
assume b
<> (gr2
`1 );
then b
> (gr2
`1 ) by
A65,
XXREAL_0: 1;
hence contradiction by
A54,
A55,
A56,
A62,
A63,
A64,
XREAL_1: 8;
end;
now
assume (gr1
`2 )
<> c;
then c
< (gr1
`2 ) by
A63,
XXREAL_0: 1;
hence contradiction by
A65,
A66,
XREAL_1: 8;
end;
then
|[(gr1
`1 ), (gr1
`2 )]|
= (g
. r2) by
A62,
A64,
A67,
EUCLID: 53;
then (g
. r1)
= (g
. r2) by
EUCLID: 53;
hence thesis by
A27,
A28,
FUNCT_1:def 4;
end;
case
A68: (g
. r1)
in (
LSeg (
|[b, c]|,
|[a, c]|)) & (g
. r2)
in (
LSeg (
|[b, d]|,
|[b, c]|));
then
A69: (gr2
`1 )
= b by
A2,
Th1;
A70: c
<= (gr2
`2 ) by
A2,
A68,
Th1;
A71: (gr1
`2 )
= c by
A1,
A68,
Th3;
A72: (gr1
`1 )
<= b by
A1,
A68,
Th3;
A73: (b
+ (gr2
`2 ))
= ((gr1
`1 )
+ c) by
A1,
A54,
A55,
A56,
A68,
A69,
Th3;
A74:
now
assume b
<> (gr1
`1 );
then b
> (gr1
`1 ) by
A72,
XXREAL_0: 1;
hence contradiction by
A70,
A73,
XREAL_1: 8;
end;
now
assume (gr2
`2 )
<> c;
then c
< (gr2
`2 ) by
A70,
XXREAL_0: 1;
hence contradiction by
A54,
A55,
A56,
A69,
A71,
A72,
XREAL_1: 8;
end;
then
|[(gr2
`1 ), (gr2
`2 )]|
= (g
. r1) by
A69,
A71,
A74,
EUCLID: 53;
then (g
. r1)
= (g
. r2) by
EUCLID: 53;
hence thesis by
A27,
A28,
FUNCT_1:def 4;
end;
case
A75: (g
. r1)
in (
LSeg (
|[b, c]|,
|[a, c]|)) & (g
. r2)
in (
LSeg (
|[b, c]|,
|[a, c]|));
then
A76: (gr1
`2 )
= c by
A1,
Th3;
(gr2
`2 )
= c by
A1,
A75,
Th3;
then
|[(gr1
`1 ), (gr1
`2 )]|
= (g
. r2) by
A54,
A55,
A56,
A76,
EUCLID: 53;
then (g
. r1)
= (g
. r2) by
EUCLID: 53;
hence thesis by
A27,
A28,
FUNCT_1:def 4;
end;
end;
hence thesis;
end;
A77: (
dom k)
=
[.
0 , 1.] by
BORSUK_1: 40,
FUNCT_2:def 1;
then s1
in (
dom k) by
A22,
A23,
XXREAL_1: 1;
then rxc
= s1 by
A45,
A49,
A50,
A51,
A77;
hence contradiction by
A36,
A49,
XXREAL_1: 1;
end;
hence thesis;
end;
then
LE (p1,p2,(
Lower_Arc K),(
E-max K),(
W-min K)) by
A17,
A18,
JORDAN5C:def 3;
hence thesis by
A13,
A17,
A18,
JORDAN6:def 10;
end;
case
A78: p2
in (
LSeg (
|[b, c]|,
|[a, c]|)) & p2
<> (
W-min K);
then
A79: (p2
`2 )
= c by
A1,
Th3;
A80: (
Lower_Arc K)
= ((
LSeg (
|[b, d]|,
|[b, c]|))
\/ (
LSeg (
|[b, c]|,
|[a, c]|))) by
A1,
A2,
Th52;
then
A81: p2
in (
Lower_Arc K) by
A78,
XBOOLE_0:def 3;
A82: p1
in (
Lower_Arc K) by
A3,
A80,
XBOOLE_0:def 3;
for g be
Function of
I[01] , ((
TOP-REAL 2)
| (
Lower_Arc K)), s1,s2 be
Real st g is
being_homeomorphism & (g
.
0 )
= (
E-max K) & (g
. 1)
= (
W-min K) & (g
. s1)
= p1 &
0
<= s1 & s1
<= 1 & (g
. s2)
= p2 &
0
<= s2 & s2
<= 1 holds s1
<= s2
proof
let g be
Function of
I[01] , ((
TOP-REAL 2)
| (
Lower_Arc K)), s1,s2 be
Real;
assume that
A83: g is
being_homeomorphism and
A84: (g
.
0 )
= (
E-max K) and (g
. 1)
= (
W-min K) and
A85: (g
. s1)
= p1 and
A86:
0
<= s1 and
A87: s1
<= 1 and
A88: (g
. s2)
= p2 and
A89:
0
<= s2 and
A90: s2
<= 1;
A91: (
dom g)
= the
carrier of
I[01] by
FUNCT_2:def 1;
A92: g is
one-to-one by
A83,
TOPS_2:def 5;
A93: the
carrier of ((
TOP-REAL 2)
| (
Lower_Arc K))
= (
Lower_Arc K) by
PRE_TOPC: 8;
then
reconsider g1 = g as
Function of
I[01] , (
TOP-REAL 2) by
FUNCT_2: 7;
g is
continuous by
A83,
TOPS_2:def 5;
then
A94: g1 is
continuous by
PRE_TOPC: 26;
reconsider h1 =
proj1 as
Function of (
TOP-REAL 2),
R^1 by
TOPMETR: 17;
reconsider h2 =
proj2 as
Function of (
TOP-REAL 2),
R^1 by
TOPMETR: 17;
reconsider hh1 = h1 as
Function of the TopStruct of (
TOP-REAL 2),
R^1 ;
reconsider hh2 = h2 as
Function of the TopStruct of (
TOP-REAL 2),
R^1 ;
A95: the TopStruct of (
TOP-REAL 2)
= ( the TopStruct of (
TOP-REAL 2)
| (
[#] the TopStruct of (
TOP-REAL 2))) by
TSEP_1: 3
.= the TopStruct of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) by
PRE_TOPC: 36
.= ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2)));
then (for p be
Point of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) holds (hh1
. p)
= (
proj1
. p)) implies hh1 is
continuous by
JGRAPH_2: 29;
then
A96: (for p be
Point of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) holds (hh1
. p)
= (
proj1
. p)) implies h1 is
continuous by
PRE_TOPC: 32;
(for p be
Point of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) holds (hh2
. p)
= (
proj2
. p)) implies hh2 is
continuous by
A95,
JGRAPH_2: 30;
then (for p be
Point of ((
TOP-REAL 2)
| (
[#] (
TOP-REAL 2))) holds (hh2
. p)
= (
proj2
. p)) implies h2 is
continuous by
PRE_TOPC: 32;
then
consider h be
Function of (
TOP-REAL 2),
R^1 such that
A97: for p be
Point of (
TOP-REAL 2), r1,r2 be
Real st (h1
. p)
= r1 & (h2
. p)
= r2 holds (h
. p)
= (r1
+ r2) and
A98: h is
continuous by
A96,
JGRAPH_2: 19;
reconsider k = (h
* g1) as
Function of
I[01] ,
R^1 ;
A99: (
E-max K)
=
|[b, d]| by
A1,
A2,
Th46;
now
assume
A100: s1
> s2;
A101: (
dom g)
=
[.
0 , 1.] by
BORSUK_1: 40,
FUNCT_2:def 1;
0
in
[.
0 , 1.] by
XXREAL_1: 1;
then
A102: (k
.
0 )
= (h
. (
E-max K)) by
A84,
A101,
FUNCT_1: 13
.= ((h1
. (
E-max K))
+ (h2
. (
E-max K))) by
A97
.= (((
E-max K)
`1 )
+ (
proj2
. (
E-max K))) by
PSCOMP_1:def 5
.= (((
E-max K)
`1 )
+ ((
E-max K)
`2 )) by
PSCOMP_1:def 6
.= (((
E-max K)
`1 )
+ d) by
A99,
EUCLID: 52
.= (b
+ d) by
A99,
EUCLID: 52;
s1
in
[.
0 , 1.] by
A86,
A87,
XXREAL_1: 1;
then
A103: (k
. s1)
= (h
. p1) by
A85,
A101,
FUNCT_1: 13
.= ((
proj1
. p1)
+ (
proj2
. p1)) by
A97
.= ((p1
`1 )
+ (
proj2
. p1)) by
PSCOMP_1:def 5
.= ((p1
`1 )
+ c) by
A6,
PSCOMP_1:def 6;
A104: s2
in
[.
0 , 1.] by
A89,
A90,
XXREAL_1: 1;
then
A105: (k
. s2)
= (h
. p2) by
A88,
A101,
FUNCT_1: 13
.= ((
proj1
. p2)
+ (
proj2
. p2)) by
A97
.= ((p2
`1 )
+ (
proj2
. p2)) by
PSCOMP_1:def 5
.= ((p2
`1 )
+ c) by
A79,
PSCOMP_1:def 6;
A106: (k
.
0 )
>= (k
. s1) by
A2,
A7,
A102,
A103,
XREAL_1: 7;
A107: (k
. s1)
>= (k
. s2) by
A12,
A103,
A105,
XREAL_1: 7;
A108:
0
in
[.
0 , 1.] by
XXREAL_1: 1;
then
A109:
[.
0 , s2.]
c=
[.
0 , 1.] by
A104,
XXREAL_2:def 12;
reconsider B =
[.
0 , s2.] as
Subset of
I[01] by
A104,
A108,
BORSUK_1: 40,
XXREAL_2:def 12;
A110: B is
connected by
A89,
A104,
A108,
BORSUK_1: 40,
BORSUK_4: 24;
A111:
0
in B by
A89,
XXREAL_1: 1;
A112: s2
in B by
A89,
XXREAL_1: 1;
consider xc be
Point of
I[01] such that
A113: xc
in B and
A114: (k
. xc)
= (k
. s1) by
A94,
A98,
A106,
A107,
A110,
A111,
A112,
TOPREAL5: 5;
reconsider rxc = xc as
Real;
A115: for x1,x2 be
set st x1
in (
dom k) & x2
in (
dom k) & (k
. x1)
= (k
. x2) holds x1
= x2
proof
let x1,x2 be
set;
assume that
A116: x1
in (
dom k) and
A117: x2
in (
dom k) and
A118: (k
. x1)
= (k
. x2);
reconsider r1 = x1 as
Point of
I[01] by
A116;
reconsider r2 = x2 as
Point of
I[01] by
A117;
A119: (k
. x1)
= (h
. (g1
. x1)) by
A116,
FUNCT_1: 12
.= ((h1
. (g1
. r1))
+ (h2
. (g1
. r1))) by
A97
.= (((g1
. r1)
`1 )
+ (
proj2
. (g1
. r1))) by
PSCOMP_1:def 5
.= (((g1
. r1)
`1 )
+ ((g1
. r1)
`2 )) by
PSCOMP_1:def 6;
A120: (k
. x2)
= (h
. (g1
. x2)) by
A117,
FUNCT_1: 12
.= ((h1
. (g1
. r2))
+ (h2
. (g1
. r2))) by
A97
.= (((g1
. r2)
`1 )
+ (
proj2
. (g1
. r2))) by
PSCOMP_1:def 5
.= (((g1
. r2)
`1 )
+ ((g1
. r2)
`2 )) by
PSCOMP_1:def 6;
A121: (g
. r1)
in (
Lower_Arc K) by
A93;
A122: (g
. r2)
in (
Lower_Arc K) by
A93;
reconsider gr1 = (g
. r1) as
Point of (
TOP-REAL 2) by
A121;
reconsider gr2 = (g
. r2) as
Point of (
TOP-REAL 2) by
A122;
now
per cases by
A80,
A93,
XBOOLE_0:def 3;
case
A123: (g
. r1)
in (
LSeg (
|[b, d]|,
|[b, c]|)) & (g
. r2)
in (
LSeg (
|[b, d]|,
|[b, c]|));
then
A124: (gr1
`1 )
= b by
A2,
Th1;
(gr2
`1 )
= b by
A2,
A123,
Th1;
then
|[(gr1
`1 ), (gr1
`2 )]|
= (g
. r2) by
A118,
A119,
A120,
A124,
EUCLID: 53;
then (g
. r1)
= (g
. r2) by
EUCLID: 53;
hence thesis by
A91,
A92,
FUNCT_1:def 4;
end;
case
A125: (g
. r1)
in (
LSeg (
|[b, d]|,
|[b, c]|)) & (g
. r2)
in (
LSeg (
|[b, c]|,
|[a, c]|));
then
A126: (gr1
`1 )
= b by
A2,
Th1;
A127: c
<= (gr1
`2 ) by
A2,
A125,
Th1;
A128: (gr2
`2 )
= c by
A1,
A125,
Th3;
A129: (gr2
`1 )
<= b by
A1,
A125,
Th3;
A130: (b
+ (gr1
`2 ))
= ((gr2
`1 )
+ c) by
A2,
A118,
A119,
A120,
A125,
A128,
Th1;
A131:
now
assume b
<> (gr2
`1 );
then b
> (gr2
`1 ) by
A129,
XXREAL_0: 1;
hence contradiction by
A118,
A119,
A120,
A126,
A127,
A128,
XREAL_1: 8;
end;
now
assume (gr1
`2 )
<> c;
then c
< (gr1
`2 ) by
A127,
XXREAL_0: 1;
hence contradiction by
A129,
A130,
XREAL_1: 8;
end;
then
|[(gr1
`1 ), (gr1
`2 )]|
= (g
. r2) by
A126,
A128,
A131,
EUCLID: 53;
then (g
. r1)
= (g
. r2) by
EUCLID: 53;
hence thesis by
A91,
A92,
FUNCT_1:def 4;
end;
case
A132: (g
. r1)
in (
LSeg (
|[b, c]|,
|[a, c]|)) & (g
. r2)
in (
LSeg (
|[b, d]|,
|[b, c]|));
then
A133: (gr2
`1 )
= b by
A2,
Th1;
A134: c
<= (gr2
`2 ) by
A2,
A132,
Th1;
A135: (gr1
`2 )
= c by
A1,
A132,
Th3;
A136: (gr1
`1 )
<= b by
A1,
A132,
Th3;
A137: (b
+ (gr2
`2 ))
= ((gr1
`1 )
+ c) by
A1,
A118,
A119,
A120,
A132,
A133,
Th3;
A138:
now
assume b
<> (gr1
`1 );
then b
> (gr1
`1 ) by
A136,
XXREAL_0: 1;
hence contradiction by
A134,
A137,
XREAL_1: 8;
end;
now
assume (gr2
`2 )
<> c;
then c
< (gr2
`2 ) by
A134,
XXREAL_0: 1;
hence contradiction by
A118,
A119,
A120,
A133,
A135,
A136,
XREAL_1: 8;
end;
then
|[(gr2
`1 ), (gr2
`2 )]|
= (g
. r1) by
A133,
A135,
A138,
EUCLID: 53;
then (g
. r1)
= (g
. r2) by
EUCLID: 53;
hence thesis by
A91,
A92,
FUNCT_1:def 4;
end;
case
A139: (g
. r1)
in (
LSeg (
|[b, c]|,
|[a, c]|)) & (g
. r2)
in (
LSeg (
|[b, c]|,
|[a, c]|));
then
A140: (gr1
`2 )
= c by
A1,
Th3;
(gr2
`2 )
= c by
A1,
A139,
Th3;
then
|[(gr1
`1 ), (gr1
`2 )]|
= (g
. r2) by
A118,
A119,
A120,
A140,
EUCLID: 53;
then (g
. r1)
= (g
. r2) by
EUCLID: 53;
hence thesis by
A91,
A92,
FUNCT_1:def 4;
end;
end;
hence thesis;
end;
A141: (
dom k)
=
[.
0 , 1.] by
BORSUK_1: 40,
FUNCT_2:def 1;
then s1
in (
dom k) by
A86,
A87,
XXREAL_1: 1;
then rxc
= s1 by
A109,
A113,
A114,
A115,
A141;
hence contradiction by
A100,
A113,
XXREAL_1: 1;
end;
hence thesis;
end;
then
LE (p1,p2,(
Lower_Arc K),(
E-max K),(
W-min K)) by
A81,
A82,
JORDAN5C:def 3;
hence thesis by
A78,
A81,
A82,
JORDAN6:def 10;
end;
end;
hence thesis;
end;
end;
theorem ::
JGRAPH_6:63
Th63: for x be
set, a,b,c,d be
Real st x
in (
rectangle (a,b,c,d)) & a
< b & c
< d holds x
in (
LSeg (
|[a, c]|,
|[a, d]|)) or x
in (
LSeg (
|[a, d]|,
|[b, d]|)) or x
in (
LSeg (
|[b, d]|,
|[b, c]|)) or x
in (
LSeg (
|[b, c]|,
|[a, c]|))
proof
let x be
set, a,b,c,d be
Real;
assume that
A1: x
in (
rectangle (a,b,c,d)) and
A2: a
< b and
A3: c
< d;
x
in { q : (q
`1 )
= a & (q
`2 )
<= d & (q
`2 )
>= c or (q
`1 )
<= b & (q
`1 )
>= a & (q
`2 )
= d or (q
`1 )
<= b & (q
`1 )
>= a & (q
`2 )
= c or (q
`1 )
= b & (q
`2 )
<= d & (q
`2 )
>= c } by
A1,
A2,
A3,
SPPOL_2: 54;
then
consider p such that
A4: p
= x and
A5: (p
`1 )
= a & (p
`2 )
<= d & (p
`2 )
>= c or (p
`1 )
<= b & (p
`1 )
>= a & (p
`2 )
= d or (p
`1 )
<= b & (p
`1 )
>= a & (p
`2 )
= c or (p
`1 )
= b & (p
`2 )
<= d & (p
`2 )
>= c;
now
per cases by
A5;
case
A6: (p
`1 )
= a & c
<= (p
`2 ) & (p
`2 )
<= d;
A7: (d
- c)
>
0 by
A3,
XREAL_1: 50;
A8: ((p
`2 )
- c)
>=
0 by
A6,
XREAL_1: 48;
A9: (d
- (p
`2 ))
>=
0 by
A6,
XREAL_1: 48;
reconsider r = (((p
`2 )
- c)
/ (d
- c)) as
Real;
A10: (1
- r)
= (((d
- c)
/ (d
- c))
- (((p
`2 )
- c)
/ (d
- c))) by
A7,
XCMPLX_1: 60
.= (((d
- c)
- ((p
`2 )
- c))
/ (d
- c)) by
XCMPLX_1: 120
.= ((d
- (p
`2 ))
/ (d
- c));
then
A11: ((1
- r)
+ r)
>= (
0
+ r) by
A7,
A9,
XREAL_1: 7;
A12: ((((1
- r)
*
|[a, c]|)
+ (r
*
|[a, d]|))
`1 )
= ((((1
- r)
*
|[a, c]|)
`1 )
+ ((r
*
|[a, d]|)
`1 )) by
TOPREAL3: 2
.= (((1
- r)
* (
|[a, c]|
`1 ))
+ ((r
*
|[a, d]|)
`1 )) by
TOPREAL3: 4
.= (((1
- r)
* a)
+ ((r
*
|[a, d]|)
`1 )) by
EUCLID: 52
.= (((1
- r)
* a)
+ (r
* (
|[a, d]|
`1 ))) by
TOPREAL3: 4
.= (((1
- r)
* a)
+ (r
* a)) by
EUCLID: 52
.= (p
`1 ) by
A6;
((((1
- r)
*
|[a, c]|)
+ (r
*
|[a, d]|))
`2 )
= ((((1
- r)
*
|[a, c]|)
`2 )
+ ((r
*
|[a, d]|)
`2 )) by
TOPREAL3: 2
.= (((1
- r)
* (
|[a, c]|
`2 ))
+ ((r
*
|[a, d]|)
`2 )) by
TOPREAL3: 4
.= (((1
- r)
* c)
+ ((r
*
|[a, d]|)
`2 )) by
EUCLID: 52
.= (((1
- r)
* c)
+ (r
* (
|[a, d]|
`2 ))) by
TOPREAL3: 4
.= ((((d
- (p
`2 ))
/ (d
- c))
* c)
+ ((((p
`2 )
- c)
/ (d
- c))
* d)) by
A10,
EUCLID: 52
.= ((((d
- (p
`2 ))
* ((d
- c)
" ))
* c)
+ ((((p
`2 )
- c)
/ (d
- c))
* d)) by
XCMPLX_0:def 9
.= ((((d
- c)
" )
* ((d
- (p
`2 ))
* c))
+ ((((d
- c)
" )
* ((p
`2 )
- c))
* d)) by
XCMPLX_0:def 9
.= ((((d
- c)
" )
* (d
- c))
* (p
`2 ))
.= (1
* (p
`2 )) by
A7,
XCMPLX_0:def 7
.= (p
`2 );
then p
=
|[((((1
- r)
*
|[a, c]|)
+ (r
*
|[a, d]|))
`1 ), ((((1
- r)
*
|[a, c]|)
+ (r
*
|[a, d]|))
`2 )]| by
A12,
EUCLID: 53
.= (((1
- r)
*
|[a, c]|)
+ (r
*
|[a, d]|)) by
EUCLID: 53;
hence thesis by
A4,
A7,
A8,
A11;
end;
case
A13: (p
`2 )
= d & a
<= (p
`1 ) & (p
`1 )
<= b;
A14: (b
- a)
>
0 by
A2,
XREAL_1: 50;
A15: ((p
`1 )
- a)
>=
0 by
A13,
XREAL_1: 48;
A16: (b
- (p
`1 ))
>=
0 by
A13,
XREAL_1: 48;
reconsider r = (((p
`1 )
- a)
/ (b
- a)) as
Real;
A17: (1
- r)
= (((b
- a)
/ (b
- a))
- (((p
`1 )
- a)
/ (b
- a))) by
A14,
XCMPLX_1: 60
.= (((b
- a)
- ((p
`1 )
- a))
/ (b
- a)) by
XCMPLX_1: 120
.= ((b
- (p
`1 ))
/ (b
- a));
then
A18: ((1
- r)
+ r)
>= (
0
+ r) by
A14,
A16,
XREAL_1: 7;
A19: ((((1
- r)
*
|[a, d]|)
+ (r
*
|[b, d]|))
`1 )
= ((((1
- r)
*
|[a, d]|)
`1 )
+ ((r
*
|[b, d]|)
`1 )) by
TOPREAL3: 2
.= (((1
- r)
* (
|[a, d]|
`1 ))
+ ((r
*
|[b, d]|)
`1 )) by
TOPREAL3: 4
.= (((1
- r)
* a)
+ ((r
*
|[b, d]|)
`1 )) by
EUCLID: 52
.= (((1
- r)
* a)
+ (r
* (
|[b, d]|
`1 ))) by
TOPREAL3: 4
.= ((((b
- (p
`1 ))
/ (b
- a))
* a)
+ ((((p
`1 )
- a)
/ (b
- a))
* b)) by
A17,
EUCLID: 52
.= ((((b
- (p
`1 ))
* ((b
- a)
" ))
* a)
+ ((((p
`1 )
- a)
/ (b
- a))
* b)) by
XCMPLX_0:def 9
.= ((((b
- a)
" )
* ((b
- (p
`1 ))
* a))
+ ((((b
- a)
" )
* ((p
`1 )
- a))
* b)) by
XCMPLX_0:def 9
.= ((((b
- a)
" )
* (b
- a))
* (p
`1 ))
.= (1
* (p
`1 )) by
A14,
XCMPLX_0:def 7
.= (p
`1 );
((((1
- r)
*
|[a, d]|)
+ (r
*
|[b, d]|))
`2 )
= ((((1
- r)
*
|[a, d]|)
`2 )
+ ((r
*
|[b, d]|)
`2 )) by
TOPREAL3: 2
.= (((1
- r)
* (
|[a, d]|
`2 ))
+ ((r
*
|[b, d]|)
`2 )) by
TOPREAL3: 4
.= (((1
- r)
* d)
+ ((r
*
|[b, d]|)
`2 )) by
EUCLID: 52
.= (((1
- r)
* d)
+ (r
* (
|[b, d]|
`2 ))) by
TOPREAL3: 4
.= (((1
- r)
* d)
+ (r
* d)) by
EUCLID: 52
.= (p
`2 ) by
A13;
then p
=
|[((((1
- r)
*
|[a, d]|)
+ (r
*
|[b, d]|))
`1 ), ((((1
- r)
*
|[a, d]|)
+ (r
*
|[b, d]|))
`2 )]| by
A19,
EUCLID: 53
.= (((1
- r)
*
|[a, d]|)
+ (r
*
|[b, d]|)) by
EUCLID: 53;
hence thesis by
A4,
A14,
A15,
A18;
end;
case
A20: (p
`1 )
= b & c
<= (p
`2 ) & (p
`2 )
<= d;
A21: (d
- c)
>
0 by
A3,
XREAL_1: 50;
A22: ((p
`2 )
- c)
>=
0 by
A20,
XREAL_1: 48;
A23: (d
- (p
`2 ))
>=
0 by
A20,
XREAL_1: 48;
reconsider r = ((d
- (p
`2 ))
/ (d
- c)) as
Real;
A24: (1
- r)
= (((d
- c)
/ (d
- c))
- ((d
- (p
`2 ))
/ (d
- c))) by
A21,
XCMPLX_1: 60
.= (((d
- c)
- (d
- (p
`2 )))
/ (d
- c)) by
XCMPLX_1: 120
.= (((p
`2 )
- c)
/ (d
- c));
then
A25: ((1
- r)
+ r)
>= (
0
+ r) by
A21,
A22,
XREAL_1: 7;
A26: ((((1
- r)
*
|[b, d]|)
+ (r
*
|[b, c]|))
`1 )
= ((((1
- r)
*
|[b, d]|)
`1 )
+ ((r
*
|[b, c]|)
`1 )) by
TOPREAL3: 2
.= (((1
- r)
* (
|[b, d]|
`1 ))
+ ((r
*
|[b, c]|)
`1 )) by
TOPREAL3: 4
.= (((1
- r)
* b)
+ ((r
*
|[b, c]|)
`1 )) by
EUCLID: 52
.= (((1
- r)
* b)
+ (r
* (
|[b, c]|
`1 ))) by
TOPREAL3: 4
.= (((1
- r)
* b)
+ (r
* b)) by
EUCLID: 52
.= (p
`1 ) by
A20;
((((1
- r)
*
|[b, d]|)
+ (r
*
|[b, c]|))
`2 )
= ((((1
- r)
*
|[b, d]|)
`2 )
+ ((r
*
|[b, c]|)
`2 )) by
TOPREAL3: 2
.= (((1
- r)
* (
|[b, d]|
`2 ))
+ ((r
*
|[b, c]|)
`2 )) by
TOPREAL3: 4
.= (((1
- r)
* d)
+ ((r
*
|[b, c]|)
`2 )) by
EUCLID: 52
.= (((1
- r)
* d)
+ (r
* (
|[b, c]|
`2 ))) by
TOPREAL3: 4
.= (((((p
`2 )
- c)
/ (d
- c))
* d)
+ (((d
- (p
`2 ))
/ (d
- c))
* c)) by
A24,
EUCLID: 52
.= (((((p
`2 )
- c)
* ((d
- c)
" ))
* d)
+ (((d
- (p
`2 ))
/ (d
- c))
* c)) by
XCMPLX_0:def 9
.= ((((d
- c)
" )
* (((p
`2 )
- c)
* d))
+ ((((d
- c)
" )
* (d
- (p
`2 )))
* c)) by
XCMPLX_0:def 9
.= ((((d
- c)
" )
* (d
- c))
* (p
`2 ))
.= (1
* (p
`2 )) by
A21,
XCMPLX_0:def 7
.= (p
`2 );
then p
=
|[((((1
- r)
*
|[b, d]|)
+ (r
*
|[b, c]|))
`1 ), ((((1
- r)
*
|[b, d]|)
+ (r
*
|[b, c]|))
`2 )]| by
A26,
EUCLID: 53
.= (((1
- r)
*
|[b, d]|)
+ (r
*
|[b, c]|)) by
EUCLID: 53;
hence thesis by
A4,
A21,
A23,
A25;
end;
case
A27: (p
`2 )
= c & a
<= (p
`1 ) & (p
`1 )
<= b;
A28: (b
- a)
>
0 by
A2,
XREAL_1: 50;
A29: ((p
`1 )
- a)
>=
0 by
A27,
XREAL_1: 48;
A30: (b
- (p
`1 ))
>=
0 by
A27,
XREAL_1: 48;
reconsider r = ((b
- (p
`1 ))
/ (b
- a)) as
Real;
A31: (1
- r)
= (((b
- a)
/ (b
- a))
- ((b
- (p
`1 ))
/ (b
- a))) by
A28,
XCMPLX_1: 60
.= (((b
- a)
- (b
- (p
`1 )))
/ (b
- a)) by
XCMPLX_1: 120
.= (((p
`1 )
- a)
/ (b
- a));
then
A32: ((1
- r)
+ r)
>= (
0
+ r) by
A28,
A29,
XREAL_1: 7;
A33: ((((1
- r)
*
|[b, c]|)
+ (r
*
|[a, c]|))
`1 )
= ((((1
- r)
*
|[b, c]|)
`1 )
+ ((r
*
|[a, c]|)
`1 )) by
TOPREAL3: 2
.= (((1
- r)
* (
|[b, c]|
`1 ))
+ ((r
*
|[a, c]|)
`1 )) by
TOPREAL3: 4
.= (((1
- r)
* b)
+ ((r
*
|[a, c]|)
`1 )) by
EUCLID: 52
.= (((1
- r)
* b)
+ (r
* (
|[a, c]|
`1 ))) by
TOPREAL3: 4
.= (((((p
`1 )
- a)
/ (b
- a))
* b)
+ (((b
- (p
`1 ))
/ (b
- a))
* a)) by
A31,
EUCLID: 52
.= (((((p
`1 )
- a)
* ((b
- a)
" ))
* b)
+ (((b
- (p
`1 ))
/ (b
- a))
* a)) by
XCMPLX_0:def 9
.= ((((b
- a)
" )
* (((p
`1 )
- a)
* b))
+ ((((b
- a)
" )
* (b
- (p
`1 )))
* a)) by
XCMPLX_0:def 9
.= ((((b
- a)
" )
* (b
- a))
* (p
`1 ))
.= (1
* (p
`1 )) by
A28,
XCMPLX_0:def 7
.= (p
`1 );
((((1
- r)
*
|[b, c]|)
+ (r
*
|[a, c]|))
`2 )
= ((((1
- r)
*
|[b, c]|)
`2 )
+ ((r
*
|[a, c]|)
`2 )) by
TOPREAL3: 2
.= (((1
- r)
* (
|[b, c]|
`2 ))
+ ((r
*
|[a, c]|)
`2 )) by
TOPREAL3: 4
.= (((1
- r)
* c)
+ ((r
*
|[a, c]|)
`2 )) by
EUCLID: 52
.= (((1
- r)
* c)
+ (r
* (
|[a, c]|
`2 ))) by
TOPREAL3: 4
.= (((1
- r)
* c)
+ (r
* c)) by
EUCLID: 52
.= (p
`2 ) by
A27;
then p
=
|[((((1
- r)
*
|[b, c]|)
+ (r
*
|[a, c]|))
`1 ), ((((1
- r)
*
|[b, c]|)
+ (r
*
|[a, c]|))
`2 )]| by
A33,
EUCLID: 53
.= (((1
- r)
*
|[b, c]|)
+ (r
*
|[a, c]|)) by
EUCLID: 53;
hence thesis by
A4,
A28,
A30,
A32;
end;
end;
hence thesis;
end;
begin
theorem ::
JGRAPH_6:64
Th64: for p1,p2 be
Point of (
TOP-REAL 2) st
LE (p1,p2,(
rectangle ((
- 1),1,(
- 1),1))) & p1
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)) holds p2
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)) & (p2
`2 )
>= (p1
`2 ) or p2
in (
LSeg (
|[(
- 1), 1]|,
|[1, 1]|)) or p2
in (
LSeg (
|[1, 1]|,
|[1, (
- 1)]|)) or p2
in (
LSeg (
|[1, (
- 1)]|,
|[(
- 1), (
- 1)]|)) & p2
<>
|[(
- 1), (
- 1)]|
proof
let p1,p2 be
Point of (
TOP-REAL 2);
set K = (
rectangle ((
- 1),1,(
- 1),1));
assume that
A1:
LE (p1,p2,K) and
A2: p1
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|));
p2
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)) & (p1
`2 )
<= (p2
`2 ) or p2
in (
LSeg (
|[(
- 1), 1]|,
|[1, 1]|)) or p2
in (
LSeg (
|[1, 1]|,
|[1, (
- 1)]|)) or p2
in (
LSeg (
|[1, (
- 1)]|,
|[(
- 1), (
- 1)]|)) & p2
<> (
W-min K) by
A1,
A2,
Th59;
hence thesis by
Th46;
end;
theorem ::
JGRAPH_6:65
Th65: for p1,p2 be
Point of (
TOP-REAL 2), P be non
empty
compact
Subset of (
TOP-REAL 2), f be
Function of (
TOP-REAL 2), (
TOP-REAL 2) st P
= (
circle (
0 ,
0 ,1)) & f
=
Sq_Circ & p1
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)) & (p1
`2 )
>=
0 &
LE (p1,p2,(
rectangle ((
- 1),1,(
- 1),1))) holds
LE ((f
. p1),(f
. p2),P)
proof
let p1,p2 be
Point of (
TOP-REAL 2), P be non
empty
compact
Subset of (
TOP-REAL 2), f be
Function of (
TOP-REAL 2), (
TOP-REAL 2);
set K = (
rectangle ((
- 1),1,(
- 1),1));
assume that
A1: P
= (
circle (
0 ,
0 ,1)) and
A2: f
=
Sq_Circ and
A3: p1
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)) and
A4: (p1
`2 )
>=
0 and
A5:
LE (p1,p2,K);
A6: K is
being_simple_closed_curve by
Th50;
A7: P
= { p :
|.p.|
= 1 } by
A1,
Th24;
A8: (p1
`1 )
= (
- 1) by
A3,
Th1;
A9: (p1
`2 )
<= 1 by
A3,
Th1;
A10: p1
in K by
A5,
A6,
JORDAN7: 5;
A11: p2
in K by
A5,
A6,
JORDAN7: 5;
A12: (f
.: K)
= P by
A2,
A7,
Lm15,
Th35,
JGRAPH_3: 23;
A13: (
dom f)
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
then
A14: (f
. p1)
in P by
A10,
A12,
FUNCT_1:def 6;
A15: (f
. p2)
in P by
A11,
A12,
A13,
FUNCT_1:def 6;
A16: (p1
`1 )
= (
- 1) by
A3,
Th1;
A17: ((p1
`2 )
^2 )
>=
0 by
XREAL_1: 63;
then
A18: (
sqrt (1
+ ((p1
`2 )
^2 )))
>
0 by
SQUARE_1: 25;
A19: (p1
`2 )
<= (
- (p1
`1 )) by
A3,
A8,
Th1;
p1
<> (
0. (
TOP-REAL 2)) by
A8,
EUCLID: 52,
EUCLID: 54;
then
A20: (f
. p1)
=
|[((p1
`1 )
/ (
sqrt (1
+ (((p1
`2 )
/ (p1
`1 ))
^2 )))), ((p1
`2 )
/ (
sqrt (1
+ (((p1
`2 )
/ (p1
`1 ))
^2 ))))]| by
A2,
A4,
A16,
A19,
JGRAPH_3:def 1;
then
A21: ((f
. p1)
`1 )
= ((p1
`1 )
/ (
sqrt (1
+ (((p1
`2 )
/ (
- 1))
^2 )))) by
A16,
EUCLID: 52
.= ((p1
`1 )
/ (
sqrt (1
+ ((p1
`2 )
^2 ))));
A22: ((f
. p1)
`2 )
= ((p1
`2 )
/ (
sqrt (1
+ (((p1
`2 )
/ (
- 1))
^2 )))) by
A16,
A20,
EUCLID: 52
.= ((p1
`2 )
/ (
sqrt (1
+ ((p1
`2 )
^2 ))));
A23: ((f
. p1)
`1 )
<
0 by
A16,
A17,
A21,
SQUARE_1: 25,
XREAL_1: 141;
A24: ((f
. p1)
`2 )
>=
0 by
A4,
A18,
A22;
(f
. p1)
in { p9 where p9 be
Point of (
TOP-REAL 2) : p9
in P & (p9
`2 )
>=
0 } by
A4,
A14,
A18,
A22;
then
A25: (f
. p1)
in (
Upper_Arc P) by
A7,
JGRAPH_5: 34;
now
per cases by
A3,
A5,
Th64;
case
A26: p2
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)) & (p2
`2 )
>= (p1
`2 );
A27: ((p2
`2 )
^2 )
>=
0 by
XREAL_1: 63;
then
A28: (
sqrt (1
+ ((p2
`2 )
^2 )))
>
0 by
SQUARE_1: 25;
A29: (p2
`1 )
= (
- 1) by
A26,
Th1;
A30: (
- 1)
<= (p2
`2 ) by
A26,
Th1;
A31: (p2
`2 )
<= (
- (p2
`1 )) by
A26,
A29,
Th1;
p2
<> (
0. (
TOP-REAL 2)) by
A29,
EUCLID: 52,
EUCLID: 54;
then
A32: (f
. p2)
=
|[((p2
`1 )
/ (
sqrt (1
+ (((p2
`2 )
/ (p2
`1 ))
^2 )))), ((p2
`2 )
/ (
sqrt (1
+ (((p2
`2 )
/ (p2
`1 ))
^2 ))))]| by
A2,
A29,
A30,
A31,
JGRAPH_3:def 1;
then
A33: ((f
. p2)
`1 )
= ((p2
`1 )
/ (
sqrt (1
+ (((p2
`2 )
/ (
- 1))
^2 )))) by
A29,
EUCLID: 52
.= ((p2
`1 )
/ (
sqrt (1
+ ((p2
`2 )
^2 ))));
A34: ((f
. p2)
`2 )
= ((p2
`2 )
/ (
sqrt (1
+ (((p2
`2 )
/ (
- 1))
^2 )))) by
A29,
A32,
EUCLID: 52
.= ((p2
`2 )
/ (
sqrt (1
+ ((p2
`2 )
^2 ))));
A35: ((f
. p2)
`1 )
<
0 by
A27,
A29,
A33,
SQUARE_1: 25,
XREAL_1: 141;
((p1
`2 )
* (
sqrt (1
+ ((p2
`2 )
^2 ))))
<= ((p2
`2 )
* (
sqrt (1
+ ((p1
`2 )
^2 )))) by
A4,
A26,
Lm3;
then (((p1
`2 )
* (
sqrt (1
+ ((p2
`2 )
^2 ))))
/ (
sqrt (1
+ ((p2
`2 )
^2 ))))
<= (((p2
`2 )
* (
sqrt (1
+ ((p1
`2 )
^2 ))))
/ (
sqrt (1
+ ((p2
`2 )
^2 )))) by
A28,
XREAL_1: 72;
then (p1
`2 )
<= (((p2
`2 )
* (
sqrt (1
+ ((p1
`2 )
^2 ))))
/ (
sqrt (1
+ ((p2
`2 )
^2 )))) by
A28,
XCMPLX_1: 89;
then ((p1
`2 )
/ (
sqrt (1
+ ((p1
`2 )
^2 ))))
<= ((((p2
`2 )
* (
sqrt (1
+ ((p1
`2 )
^2 ))))
/ (
sqrt (1
+ ((p2
`2 )
^2 ))))
/ (
sqrt (1
+ ((p1
`2 )
^2 )))) by
A18,
XREAL_1: 72;
then ((p1
`2 )
/ (
sqrt (1
+ ((p1
`2 )
^2 ))))
<= ((((p2
`2 )
* (
sqrt (1
+ ((p1
`2 )
^2 ))))
/ (
sqrt (1
+ ((p1
`2 )
^2 ))))
/ (
sqrt (1
+ ((p2
`2 )
^2 )))) by
XCMPLX_1: 48;
then ((f
. p1)
`2 )
<= ((f
. p2)
`2 ) by
A18,
A22,
A34,
XCMPLX_1: 89;
hence thesis by
A7,
A14,
A15,
A23,
A24,
A35,
JGRAPH_5: 53;
end;
case
A36: p2
in (
LSeg (
|[(
- 1), 1]|,
|[1, 1]|));
then
A37: (p2
`2 )
= 1 by
Th3;
A38: (
- 1)
<= (p2
`1 ) by
A36,
Th3;
A39: (p2
`1 )
<= 1 by
A36,
Th3;
((p2
`1 )
^2 )
>=
0 by
XREAL_1: 63;
then
A40: (
sqrt (1
+ ((p2
`1 )
^2 )))
>
0 by
SQUARE_1: 25;
p2
<> (
0. (
TOP-REAL 2)) by
A37,
EUCLID: 52,
EUCLID: 54;
then
A41: (f
. p2)
=
|[((p2
`1 )
/ (
sqrt (1
+ (((p2
`1 )
/ (p2
`2 ))
^2 )))), ((p2
`2 )
/ (
sqrt (1
+ (((p2
`1 )
/ (p2
`2 ))
^2 ))))]| by
A2,
A37,
A38,
A39,
JGRAPH_3: 4;
then
A42: ((f
. p2)
`1 )
= ((p2
`1 )
/ (
sqrt (1
+ ((p2
`1 )
^2 )))) by
A37,
EUCLID: 52;
A43: ((f
. p2)
`2 )
>=
0 by
A37,
A40,
A41,
EUCLID: 52;
(
- (
sqrt (1
+ ((p2
`1 )
^2 ))))
<= ((p2
`1 )
* (
sqrt (1
+ ((p1
`2 )
^2 )))) by
A4,
A9,
A38,
A39,
SQUARE_1: 55;
then (((p1
`1 )
* (
sqrt (1
+ ((p2
`1 )
^2 ))))
/ (
sqrt (1
+ ((p2
`1 )
^2 ))))
<= (((p2
`1 )
* (
sqrt (1
+ ((p1
`2 )
^2 ))))
/ (
sqrt (1
+ ((p2
`1 )
^2 )))) by
A8,
A40,
XREAL_1: 72;
then (p1
`1 )
<= (((p2
`1 )
* (
sqrt (1
+ ((p1
`2 )
^2 ))))
/ (
sqrt (1
+ ((p2
`1 )
^2 )))) by
A40,
XCMPLX_1: 89;
then ((p1
`1 )
/ (
sqrt (1
+ ((p1
`2 )
^2 ))))
<= ((((p2
`1 )
* (
sqrt (1
+ ((p1
`2 )
^2 ))))
/ (
sqrt (1
+ ((p2
`1 )
^2 ))))
/ (
sqrt (1
+ ((p1
`2 )
^2 )))) by
A18,
XREAL_1: 72;
then ((p1
`1 )
/ (
sqrt (1
+ ((p1
`2 )
^2 ))))
<= ((((p2
`1 )
* (
sqrt (1
+ ((p1
`2 )
^2 ))))
/ (
sqrt (1
+ ((p1
`2 )
^2 ))))
/ (
sqrt (1
+ ((p2
`1 )
^2 )))) by
XCMPLX_1: 48;
then ((f
. p1)
`1 )
<= ((f
. p2)
`1 ) by
A18,
A21,
A42,
XCMPLX_1: 89;
hence thesis by
A4,
A7,
A14,
A15,
A18,
A22,
A43,
JGRAPH_5: 54;
end;
case
A44: p2
in (
LSeg (
|[1, 1]|,
|[1, (
- 1)]|));
then
A45: (p2
`1 )
= 1 by
Th1;
A46: (
- 1)
<= (p2
`2 ) by
A44,
Th1;
A47: (p2
`2 )
<= 1 by
A44,
Th1;
((p2
`2 )
^2 )
>=
0 by
XREAL_1: 63;
then
A48: (
sqrt (1
+ ((p2
`2 )
^2 )))
>
0 by
SQUARE_1: 25;
p2
<> (
0. (
TOP-REAL 2)) by
A45,
EUCLID: 52,
EUCLID: 54;
then (f
. p2)
=
|[((p2
`1 )
/ (
sqrt (1
+ (((p2
`2 )
/ (p2
`1 ))
^2 )))), ((p2
`2 )
/ (
sqrt (1
+ (((p2
`2 )
/ (p2
`1 ))
^2 ))))]| by
A2,
A45,
A46,
A47,
JGRAPH_3:def 1;
then
A49: ((f
. p2)
`1 )
= ((p2
`1 )
/ (
sqrt (1
+ ((p2
`2 )
^2 )))) by
A45,
EUCLID: 52;
((p1
`1 )
/ (
sqrt (1
+ ((p1
`2 )
^2 ))))
<= ((((p2
`1 )
* (
sqrt (1
+ ((p1
`2 )
^2 ))))
/ (
sqrt (1
+ ((p2
`2 )
^2 ))))
/ (
sqrt (1
+ ((p1
`2 )
^2 )))) by
A8,
A18,
A45,
A48,
XREAL_1: 72;
then ((p1
`1 )
/ (
sqrt (1
+ ((p1
`2 )
^2 ))))
<= ((((p2
`1 )
* (
sqrt (1
+ ((p1
`2 )
^2 ))))
/ (
sqrt (1
+ ((p1
`2 )
^2 ))))
/ (
sqrt (1
+ ((p2
`2 )
^2 )))) by
XCMPLX_1: 48;
then
A50: ((f
. p1)
`1 )
<= ((f
. p2)
`1 ) by
A18,
A21,
A49,
XCMPLX_1: 89;
now
per cases ;
case ((f
. p2)
`2 )
>=
0 ;
hence thesis by
A4,
A7,
A14,
A15,
A18,
A22,
A50,
JGRAPH_5: 54;
end;
case
A51: ((f
. p2)
`2 )
<
0 ;
then (f
. p2)
in { p9 where p9 be
Point of (
TOP-REAL 2) : p9
in P & (p9
`2 )
<=
0 } by
A15;
then
A52: (f
. p2)
in (
Lower_Arc P) by
A7,
JGRAPH_5: 35;
(
W-min P)
=
|[(
- 1),
0 ]| by
A7,
JGRAPH_5: 29;
then (f
. p2)
<> (
W-min P) by
A51,
EUCLID: 52;
hence thesis by
A25,
A52,
JORDAN6:def 10;
end;
end;
hence thesis;
end;
case
A53: p2
in (
LSeg (
|[1, (
- 1)]|,
|[(
- 1), (
- 1)]|)) & p2
<>
|[(
- 1), (
- 1)]|;
then
A54: (p2
`2 )
= (
- 1) by
Th3;
A55: (
- 1)
<= (p2
`1 ) by
A53,
Th3;
A56: ((p2
`1 )
^2 )
>=
0 by
XREAL_1: 63;
A57: (p2
`1 )
<= (
- (p2
`2 )) by
A53,
A54,
Th3;
p2
<> (
0. (
TOP-REAL 2)) by
A54,
EUCLID: 52,
EUCLID: 54;
then (f
. p2)
=
|[((p2
`1 )
/ (
sqrt (1
+ (((p2
`1 )
/ (p2
`2 ))
^2 )))), ((p2
`2 )
/ (
sqrt (1
+ (((p2
`1 )
/ (p2
`2 ))
^2 ))))]| by
A2,
A54,
A55,
A57,
JGRAPH_3: 4;
then ((f
. p2)
`2 )
= ((p2
`2 )
/ (
sqrt (1
+ (((p2
`1 )
/ (
- 1))
^2 )))) by
A54,
EUCLID: 52
.= ((p2
`2 )
/ (
sqrt (1
+ ((p2
`1 )
^2 ))));
then
A58: ((f
. p2)
`2 )
<
0 by
A54,
A56,
SQUARE_1: 25,
XREAL_1: 141;
then (f
. p2)
in { p9 where p9 be
Point of (
TOP-REAL 2) : p9
in P & (p9
`2 )
<=
0 } by
A15;
then
A59: (f
. p2)
in (
Lower_Arc P) by
A7,
JGRAPH_5: 35;
(
W-min P)
=
|[(
- 1),
0 ]| by
A7,
JGRAPH_5: 29;
then (f
. p2)
<> (
W-min P) by
A58,
EUCLID: 52;
hence thesis by
A25,
A59,
JORDAN6:def 10;
end;
end;
hence thesis;
end;
theorem ::
JGRAPH_6:66
Th66: for p1,p2,p3 be
Point of (
TOP-REAL 2), P be non
empty
compact
Subset of (
TOP-REAL 2), f be
Function of (
TOP-REAL 2), (
TOP-REAL 2) st P
= (
circle (
0 ,
0 ,1)) & f
=
Sq_Circ & p1
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)) & (p1
`2 )
>=
0 &
LE (p1,p2,(
rectangle ((
- 1),1,(
- 1),1))) &
LE (p2,p3,(
rectangle ((
- 1),1,(
- 1),1))) holds
LE ((f
. p2),(f
. p3),P)
proof
let p1,p2,p3 be
Point of (
TOP-REAL 2), P be non
empty
compact
Subset of (
TOP-REAL 2), f be
Function of (
TOP-REAL 2), (
TOP-REAL 2);
set K = (
rectangle ((
- 1),1,(
- 1),1));
assume that
A1: P
= (
circle (
0 ,
0 ,1)) and
A2: f
=
Sq_Circ and
A3: p1
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)) and
A4: (p1
`2 )
>=
0 and
A5:
LE (p1,p2,K) and
A6:
LE (p2,p3,K);
A7: K is
being_simple_closed_curve by
Th50;
A8: P
= { p :
|.p.|
= 1 } by
A1,
Th24;
A9: p3
in K by
A6,
A7,
JORDAN7: 5;
A10: p2
in K by
A5,
A7,
JORDAN7: 5;
A11: (f
.: K)
= P by
A2,
A8,
Lm15,
Th35,
JGRAPH_3: 23;
A12: (
dom f)
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
then
A13: (f
. p2)
in P by
A10,
A11,
FUNCT_1:def 6;
A14: (f
. p3)
in P by
A9,
A11,
A12,
FUNCT_1:def 6;
now
per cases by
A3,
A5,
Th64;
case p2
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)) & (p2
`2 )
>= (p1
`2 );
hence thesis by
A1,
A2,
A4,
A6,
Th65;
end;
case
A15: p2
in (
LSeg (
|[(
- 1), 1]|,
|[1, 1]|));
then
A16: (p2
`2 )
= 1 by
Th3;
A17: (
- 1)
<= (p2
`1 ) by
A15,
Th3;
A18: (p2
`1 )
<= 1 by
A15,
Th3;
((p2
`1 )
^2 )
>=
0 by
XREAL_1: 63;
then
A19: (
sqrt (1
+ ((p2
`1 )
^2 )))
>
0 by
SQUARE_1: 25;
p2
<> (
0. (
TOP-REAL 2)) by
A16,
EUCLID: 52,
EUCLID: 54;
then
A20: (f
. p2)
=
|[((p2
`1 )
/ (
sqrt (1
+ (((p2
`1 )
/ (p2
`2 ))
^2 )))), ((p2
`2 )
/ (
sqrt (1
+ (((p2
`1 )
/ (p2
`2 ))
^2 ))))]| by
A2,
A16,
A17,
A18,
JGRAPH_3: 4;
then
A21: ((f
. p2)
`1 )
= ((p2
`1 )
/ (
sqrt (1
+ ((p2
`1 )
^2 )))) by
A16,
EUCLID: 52;
A22: ((f
. p2)
`2 )
>=
0 by
A16,
A19,
A20,
EUCLID: 52;
then (f
. p2)
in { p9 where p9 be
Point of (
TOP-REAL 2) : p9
in P & (p9
`2 )
>=
0 } by
A13;
then
A23: (f
. p2)
in (
Upper_Arc P) by
A8,
JGRAPH_5: 34;
now
per cases by
A6,
A15,
Th60;
case
A24: p3
in (
LSeg (
|[(
- 1), 1]|,
|[1, 1]|)) & (p2
`1 )
<= (p3
`1 );
then
A25: (p3
`2 )
= 1 by
Th3;
A26: (
- 1)
<= (p3
`1 ) by
A24,
Th3;
A27: (p3
`1 )
<= 1 by
A24,
Th3;
((p3
`1 )
^2 )
>=
0 by
XREAL_1: 63;
then
A28: (
sqrt (1
+ ((p3
`1 )
^2 )))
>
0 by
SQUARE_1: 25;
p3
<> (
0. (
TOP-REAL 2)) by
A25,
EUCLID: 52,
EUCLID: 54;
then
A29: (f
. p3)
=
|[((p3
`1 )
/ (
sqrt (1
+ (((p3
`1 )
/ (p3
`2 ))
^2 )))), ((p3
`2 )
/ (
sqrt (1
+ (((p3
`1 )
/ (p3
`2 ))
^2 ))))]| by
A2,
A25,
A26,
A27,
JGRAPH_3: 4;
then
A30: ((f
. p3)
`1 )
= ((p3
`1 )
/ (
sqrt (1
+ ((p3
`1 )
^2 )))) by
A25,
EUCLID: 52;
A31: ((f
. p3)
`2 )
>=
0 by
A25,
A28,
A29,
EUCLID: 52;
((p2
`1 )
* (
sqrt (1
+ ((p3
`1 )
^2 ))))
<= ((p3
`1 )
* (
sqrt (1
+ ((p2
`1 )
^2 )))) by
A24,
SQUARE_1: 57;
then (((p2
`1 )
* (
sqrt (1
+ ((p3
`1 )
^2 ))))
/ (
sqrt (1
+ ((p3
`1 )
^2 ))))
<= (((p3
`1 )
* (
sqrt (1
+ ((p2
`1 )
^2 ))))
/ (
sqrt (1
+ ((p3
`1 )
^2 )))) by
A28,
XREAL_1: 72;
then (p2
`1 )
<= (((p3
`1 )
* (
sqrt (1
+ ((p2
`1 )
^2 ))))
/ (
sqrt (1
+ ((p3
`1 )
^2 )))) by
A28,
XCMPLX_1: 89;
then ((p2
`1 )
/ (
sqrt (1
+ ((p2
`1 )
^2 ))))
<= ((((p3
`1 )
* (
sqrt (1
+ ((p2
`1 )
^2 ))))
/ (
sqrt (1
+ ((p3
`1 )
^2 ))))
/ (
sqrt (1
+ ((p2
`1 )
^2 )))) by
A19,
XREAL_1: 72;
then ((p2
`1 )
/ (
sqrt (1
+ ((p2
`1 )
^2 ))))
<= ((((p3
`1 )
* (
sqrt (1
+ ((p2
`1 )
^2 ))))
/ (
sqrt (1
+ ((p2
`1 )
^2 ))))
/ (
sqrt (1
+ ((p3
`1 )
^2 )))) by
XCMPLX_1: 48;
then ((f
. p2)
`1 )
<= ((f
. p3)
`1 ) by
A19,
A21,
A30,
XCMPLX_1: 89;
hence thesis by
A8,
A13,
A14,
A22,
A31,
JGRAPH_5: 54;
end;
case
A32: p3
in (
LSeg (
|[1, 1]|,
|[1, (
- 1)]|));
then
A33: (p3
`1 )
= 1 by
Th1;
A34: (
- 1)
<= (p3
`2 ) by
A32,
Th1;
A35: (p3
`2 )
<= 1 by
A32,
Th1;
((p3
`2 )
^2 )
>=
0 by
XREAL_1: 63;
then
A36: (
sqrt (1
+ ((p3
`2 )
^2 )))
>
0 by
SQUARE_1: 25;
p3
<> (
0. (
TOP-REAL 2)) by
A33,
EUCLID: 52,
EUCLID: 54;
then (f
. p3)
=
|[((p3
`1 )
/ (
sqrt (1
+ (((p3
`2 )
/ (p3
`1 ))
^2 )))), ((p3
`2 )
/ (
sqrt (1
+ (((p3
`2 )
/ (p3
`1 ))
^2 ))))]| by
A2,
A33,
A34,
A35,
JGRAPH_3:def 1;
then
A37: ((f
. p3)
`1 )
= ((p3
`1 )
/ (
sqrt (1
+ ((p3
`2 )
^2 )))) by
A33,
EUCLID: 52;
A38: (
- 1)
<= (
- (p2
`1 )) by
A18,
XREAL_1: 24;
A39: (
- (
- 1))
>= (
- (p2
`1 )) by
A17,
XREAL_1: 24;
((p2
`1 )
^2 )
= ((
- (p2
`1 ))
^2 );
then ((
- (
- (p2
`1 )))
* (
sqrt (1
+ ((p3
`2 )
^2 ))))
<= (
sqrt (1
+ ((p2
`1 )
^2 ))) by
A34,
A35,
A38,
A39,
SQUARE_1: 55;
then (((p2
`1 )
* (
sqrt (1
+ ((p3
`2 )
^2 ))))
/ (
sqrt (1
+ ((p3
`2 )
^2 ))))
<= (((p3
`1 )
* (
sqrt (1
+ ((p2
`1 )
^2 ))))
/ (
sqrt (1
+ ((p3
`2 )
^2 )))) by
A33,
A36,
XREAL_1: 72;
then (p2
`1 )
<= (((p3
`1 )
* (
sqrt (1
+ ((p2
`1 )
^2 ))))
/ (
sqrt (1
+ ((p3
`2 )
^2 )))) by
A36,
XCMPLX_1: 89;
then ((p2
`1 )
/ (
sqrt (1
+ ((p2
`1 )
^2 ))))
<= ((((p3
`1 )
* (
sqrt (1
+ ((p2
`1 )
^2 ))))
/ (
sqrt (1
+ ((p3
`2 )
^2 ))))
/ (
sqrt (1
+ ((p2
`1 )
^2 )))) by
A19,
XREAL_1: 72;
then ((p2
`1 )
/ (
sqrt (1
+ ((p2
`1 )
^2 ))))
<= ((((p3
`1 )
* (
sqrt (1
+ ((p2
`1 )
^2 ))))
/ (
sqrt (1
+ ((p2
`1 )
^2 ))))
/ (
sqrt (1
+ ((p3
`2 )
^2 )))) by
XCMPLX_1: 48;
then
A40: ((f
. p2)
`1 )
<= ((f
. p3)
`1 ) by
A19,
A21,
A37,
XCMPLX_1: 89;
now
per cases ;
case ((f
. p3)
`2 )
>=
0 ;
hence thesis by
A8,
A13,
A14,
A22,
A40,
JGRAPH_5: 54;
end;
case
A41: ((f
. p3)
`2 )
<
0 ;
then (f
. p3)
in { p9 where p9 be
Point of (
TOP-REAL 2) : p9
in P & (p9
`2 )
<=
0 } by
A14;
then
A42: (f
. p3)
in (
Lower_Arc P) by
A8,
JGRAPH_5: 35;
(
W-min P)
=
|[(
- 1),
0 ]| by
A8,
JGRAPH_5: 29;
then (f
. p3)
<> (
W-min P) by
A41,
EUCLID: 52;
hence thesis by
A23,
A42,
JORDAN6:def 10;
end;
end;
hence thesis;
end;
case
A43: p3
in (
LSeg (
|[1, (
- 1)]|,
|[(
- 1), (
- 1)]|)) & p3
<> (
W-min K);
then
A44: (p3
`2 )
= (
- 1) by
Th3;
A45: (
- 1)
<= (p3
`1 ) by
A43,
Th3;
A46: ((p3
`1 )
^2 )
>=
0 by
XREAL_1: 63;
A47: (
- (p3
`2 ))
>= (p3
`1 ) by
A43,
A44,
Th3;
p3
<> (
0. (
TOP-REAL 2)) by
A44,
EUCLID: 52,
EUCLID: 54;
then (f
. p3)
=
|[((p3
`1 )
/ (
sqrt (1
+ (((p3
`1 )
/ (p3
`2 ))
^2 )))), ((p3
`2 )
/ (
sqrt (1
+ (((p3
`1 )
/ (p3
`2 ))
^2 ))))]| by
A2,
A44,
A45,
A47,
JGRAPH_3: 4;
then ((f
. p3)
`2 )
= ((p3
`2 )
/ (
sqrt (1
+ (((p3
`1 )
/ (
- 1))
^2 )))) by
A44,
EUCLID: 52
.= ((p3
`2 )
/ (
sqrt (1
+ ((p3
`1 )
^2 ))));
then
A48: ((f
. p3)
`2 )
<
0 by
A44,
A46,
SQUARE_1: 25,
XREAL_1: 141;
then (f
. p3)
in { p9 where p9 be
Point of (
TOP-REAL 2) : p9
in P & (p9
`2 )
<=
0 } by
A14;
then
A49: (f
. p3)
in (
Lower_Arc P) by
A8,
JGRAPH_5: 35;
(
W-min P)
=
|[(
- 1),
0 ]| by
A8,
JGRAPH_5: 29;
then (f
. p3)
<> (
W-min P) by
A48,
EUCLID: 52;
hence thesis by
A23,
A49,
JORDAN6:def 10;
end;
end;
hence thesis;
end;
case
A50: p2
in (
LSeg (
|[1, 1]|,
|[1, (
- 1)]|));
then
A51: (p2
`1 )
= 1 by
Th1;
A52: (
- 1)
<= (p2
`2 ) by
A50,
Th1;
A53: (p2
`2 )
<= 1 by
A50,
Th1;
((p2
`2 )
^2 )
>=
0 by
XREAL_1: 63;
then
A54: (
sqrt (1
+ ((p2
`2 )
^2 )))
>
0 by
SQUARE_1: 25;
p2
<> (
0. (
TOP-REAL 2)) by
A51,
EUCLID: 52,
EUCLID: 54;
then
A55: (f
. p2)
=
|[((p2
`1 )
/ (
sqrt (1
+ (((p2
`2 )
/ (p2
`1 ))
^2 )))), ((p2
`2 )
/ (
sqrt (1
+ (((p2
`2 )
/ (p2
`1 ))
^2 ))))]| by
A2,
A51,
A52,
A53,
JGRAPH_3:def 1;
then
A56: ((f
. p2)
`1 )
= ((p2
`1 )
/ (
sqrt (1
+ ((p2
`2 )
^2 )))) by
A51,
EUCLID: 52;
A57: ((f
. p2)
`2 )
= ((p2
`2 )
/ (
sqrt (1
+ ((p2
`2 )
^2 )))) by
A51,
A55,
EUCLID: 52;
now
per cases by
A6,
A50,
Th61;
case
A58: p3
in (
LSeg (
|[1, 1]|,
|[1, (
- 1)]|)) & (p2
`2 )
>= (p3
`2 );
then
A59: (p3
`1 )
= 1 by
Th1;
A60: (
- 1)
<= (p3
`2 ) by
A58,
Th1;
A61: (p3
`2 )
<= 1 by
A58,
Th1;
((p3
`2 )
^2 )
>=
0 by
XREAL_1: 63;
then
A62: (
sqrt (1
+ ((p3
`2 )
^2 )))
>
0 by
SQUARE_1: 25;
p3
<> (
0. (
TOP-REAL 2)) by
A59,
EUCLID: 52,
EUCLID: 54;
then
A63: (f
. p3)
=
|[((p3
`1 )
/ (
sqrt (1
+ (((p3
`2 )
/ (p3
`1 ))
^2 )))), ((p3
`2 )
/ (
sqrt (1
+ (((p3
`2 )
/ (p3
`1 ))
^2 ))))]| by
A2,
A59,
A60,
A61,
JGRAPH_3:def 1;
then
A64: ((f
. p3)
`2 )
= ((p3
`2 )
/ (
sqrt (1
+ ((p3
`2 )
^2 )))) by
A59,
EUCLID: 52;
A65: ((f
. p3)
`1 )
>=
0 by
A59,
A62,
A63,
EUCLID: 52;
((p2
`2 )
* (
sqrt (1
+ ((p3
`2 )
^2 ))))
>= ((p3
`2 )
* (
sqrt (1
+ ((p2
`2 )
^2 )))) by
A58,
SQUARE_1: 57;
then (((p2
`2 )
* (
sqrt (1
+ ((p3
`2 )
^2 ))))
/ (
sqrt (1
+ ((p3
`2 )
^2 ))))
>= (((p3
`2 )
* (
sqrt (1
+ ((p2
`2 )
^2 ))))
/ (
sqrt (1
+ ((p3
`2 )
^2 )))) by
A62,
XREAL_1: 72;
then (p2
`2 )
>= (((p3
`2 )
* (
sqrt (1
+ ((p2
`2 )
^2 ))))
/ (
sqrt (1
+ ((p3
`2 )
^2 )))) by
A62,
XCMPLX_1: 89;
then ((p2
`2 )
/ (
sqrt (1
+ ((p2
`2 )
^2 ))))
>= ((((p3
`2 )
* (
sqrt (1
+ ((p2
`2 )
^2 ))))
/ (
sqrt (1
+ ((p3
`2 )
^2 ))))
/ (
sqrt (1
+ ((p2
`2 )
^2 )))) by
A54,
XREAL_1: 72;
then ((p2
`2 )
/ (
sqrt (1
+ ((p2
`2 )
^2 ))))
>= ((((p3
`2 )
* (
sqrt (1
+ ((p2
`2 )
^2 ))))
/ (
sqrt (1
+ ((p2
`2 )
^2 ))))
/ (
sqrt (1
+ ((p3
`2 )
^2 )))) by
XCMPLX_1: 48;
then ((p2
`2 )
/ (
sqrt (1
+ ((p2
`2 )
^2 ))))
>= ((p3
`2 )
/ (
sqrt (1
+ ((p3
`2 )
^2 )))) by
A54,
XCMPLX_1: 89;
hence thesis by
A8,
A13,
A14,
A51,
A54,
A56,
A57,
A64,
A65,
JGRAPH_5: 55;
end;
case
A66: p3
in (
LSeg (
|[1, (
- 1)]|,
|[(
- 1), (
- 1)]|)) & p3
<> (
W-min K);
then
A67: (p3
`2 )
= (
- 1) by
Th3;
A68: (
- 1)
<= (p3
`1 ) by
A66,
Th3;
A69: (p3
`1 )
<= 1 by
A66,
Th3;
A70: ((p3
`1 )
^2 )
>=
0 by
XREAL_1: 63;
then
A71: (
sqrt (1
+ ((p3
`1 )
^2 )))
>
0 by
SQUARE_1: 25;
A72: (
- (p3
`2 ))
>= (p3
`1 ) by
A66,
A67,
Th3;
p3
<> (
0. (
TOP-REAL 2)) by
A67,
EUCLID: 52,
EUCLID: 54;
then
A73: (f
. p3)
=
|[((p3
`1 )
/ (
sqrt (1
+ (((p3
`1 )
/ (p3
`2 ))
^2 )))), ((p3
`2 )
/ (
sqrt (1
+ (((p3
`1 )
/ (p3
`2 ))
^2 ))))]| by
A2,
A67,
A68,
A72,
JGRAPH_3: 4;
then
A74: ((f
. p3)
`1 )
= ((p3
`1 )
/ (
sqrt (1
+ (((p3
`1 )
/ (
- 1))
^2 )))) by
A67,
EUCLID: 52
.= ((p3
`1 )
/ (
sqrt (1
+ ((p3
`1 )
^2 ))));
A75: ((f
. p3)
`2 )
= ((p3
`2 )
/ (
sqrt (1
+ (((p3
`1 )
/ (
- 1))
^2 )))) by
A67,
A73,
EUCLID: 52
.= ((p3
`2 )
/ (
sqrt (1
+ ((p3
`1 )
^2 ))));
then
A76: ((f
. p3)
`2 )
<
0 by
A67,
A70,
SQUARE_1: 25,
XREAL_1: 141;
(f
. p3)
in { p9 where p9 be
Point of (
TOP-REAL 2) : p9
in P & (p9
`2 )
<=
0 } by
A14,
A67,
A71,
A75;
then
A77: (f
. p3)
in (
Lower_Arc P) by
A8,
JGRAPH_5: 35;
(
W-min P)
=
|[(
- 1),
0 ]| by
A8,
JGRAPH_5: 29;
then
A78: (f
. p3)
<> (
W-min P) by
A76,
EUCLID: 52;
now
per cases ;
case ((f
. p2)
`2 )
>=
0 ;
then (f
. p2)
in { p9 where p9 be
Point of (
TOP-REAL 2) : p9
in P & (p9
`2 )
>=
0 } by
A13;
then (f
. p2)
in (
Upper_Arc P) by
A8,
JGRAPH_5: 34;
hence thesis by
A77,
A78,
JORDAN6:def 10;
end;
case
A79: ((f
. p2)
`2 )
<
0 ;
(((p2
`1 )
* (
sqrt (1
+ ((p3
`1 )
^2 ))))
/ (
sqrt (1
+ ((p3
`1 )
^2 ))))
>= (((p3
`1 )
* (
sqrt (1
+ ((p2
`2 )
^2 ))))
/ (
sqrt (1
+ ((p3
`1 )
^2 )))) by
A51,
A52,
A53,
A68,
A69,
A71,
SQUARE_1: 56,
XREAL_1: 72;
then (p2
`1 )
>= (((p3
`1 )
* (
sqrt (1
+ ((p2
`2 )
^2 ))))
/ (
sqrt (1
+ ((p3
`1 )
^2 )))) by
A71,
XCMPLX_1: 89;
then ((p2
`1 )
/ (
sqrt (1
+ ((p2
`2 )
^2 ))))
>= ((((p3
`1 )
* (
sqrt (1
+ ((p2
`2 )
^2 ))))
/ (
sqrt (1
+ ((p3
`1 )
^2 ))))
/ (
sqrt (1
+ ((p2
`2 )
^2 )))) by
A54,
XREAL_1: 72;
then ((p2
`1 )
/ (
sqrt (1
+ ((p2
`2 )
^2 ))))
>= ((((p3
`1 )
* (
sqrt (1
+ ((p2
`2 )
^2 ))))
/ (
sqrt (1
+ ((p2
`2 )
^2 ))))
/ (
sqrt (1
+ ((p3
`1 )
^2 )))) by
XCMPLX_1: 48;
then ((p2
`1 )
/ (
sqrt (1
+ ((p2
`2 )
^2 ))))
>= ((p3
`1 )
/ (
sqrt (1
+ ((p3
`1 )
^2 )))) by
A54,
XCMPLX_1: 89;
hence thesis by
A8,
A13,
A14,
A56,
A67,
A71,
A74,
A75,
A78,
A79,
JGRAPH_5: 56;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
case
A80: p2
in (
LSeg (
|[1, (
- 1)]|,
|[(
- 1), (
- 1)]|)) & p2
<>
|[(
- 1), (
- 1)]|;
then
A81: (p2
`2 )
= (
- 1) by
Th3;
A82: (
- 1)
<= (p2
`1 ) by
A80,
Th3;
((p2
`1 )
^2 )
>=
0 by
XREAL_1: 63;
then
A83: (
sqrt (1
+ ((p2
`1 )
^2 )))
>
0 by
SQUARE_1: 25;
A84: (
- (p2
`2 ))
>= (p2
`1 ) by
A80,
A81,
Th3;
p2
<> (
0. (
TOP-REAL 2)) by
A81,
EUCLID: 52,
EUCLID: 54;
then
A85: (f
. p2)
=
|[((p2
`1 )
/ (
sqrt (1
+ (((p2
`1 )
/ (p2
`2 ))
^2 )))), ((p2
`2 )
/ (
sqrt (1
+ (((p2
`1 )
/ (p2
`2 ))
^2 ))))]| by
A2,
A81,
A82,
A84,
JGRAPH_3: 4;
then
A86: ((f
. p2)
`1 )
= ((p2
`1 )
/ (
sqrt (1
+ (((p2
`1 )
/ (
- 1))
^2 )))) by
A81,
EUCLID: 52
.= ((p2
`1 )
/ (
sqrt (1
+ ((p2
`1 )
^2 ))));
A87: ((f
. p2)
`2 )
= ((p2
`2 )
/ (
sqrt (1
+ (((p2
`1 )
/ (
- 1))
^2 )))) by
A81,
A85,
EUCLID: 52
.= ((p2
`2 )
/ (
sqrt (1
+ ((p2
`1 )
^2 ))));
A88: (
W-min K)
=
|[(
- 1), (
- 1)]| by
Th46;
then
A89: p3
in (
LSeg (
|[1, (
- 1)]|,
|[(
- 1), (
- 1)]|)) by
A6,
A80,
Th62;
A90: (p2
`1 )
>= (p3
`1 ) by
A6,
A80,
A88,
Th62;
A91: (p3
`2 )
= (
- 1) by
A89,
Th3;
A92: (
- 1)
<= (p3
`1 ) by
A89,
Th3;
A93: ((p3
`1 )
^2 )
>=
0 by
XREAL_1: 63;
then
A94: (
sqrt (1
+ ((p3
`1 )
^2 )))
>
0 by
SQUARE_1: 25;
A95: (
- (p3
`2 ))
>= (p3
`1 ) by
A89,
A91,
Th3;
p3
<> (
0. (
TOP-REAL 2)) by
A91,
EUCLID: 52,
EUCLID: 54;
then
A96: (f
. p3)
=
|[((p3
`1 )
/ (
sqrt (1
+ (((p3
`1 )
/ (p3
`2 ))
^2 )))), ((p3
`2 )
/ (
sqrt (1
+ (((p3
`1 )
/ (p3
`2 ))
^2 ))))]| by
A2,
A91,
A92,
A95,
JGRAPH_3: 4;
then
A97: ((f
. p3)
`1 )
= ((p3
`1 )
/ (
sqrt (1
+ (((p3
`1 )
/ (
- 1))
^2 )))) by
A91,
EUCLID: 52
.= ((p3
`1 )
/ (
sqrt (1
+ ((p3
`1 )
^2 ))));
((f
. p3)
`2 )
= ((p3
`2 )
/ (
sqrt (1
+ (((p3
`1 )
/ (
- 1))
^2 )))) by
A91,
A96,
EUCLID: 52
.= ((p3
`2 )
/ (
sqrt (1
+ ((p3
`1 )
^2 ))));
then
A98: ((f
. p3)
`2 )
<
0 by
A91,
A93,
SQUARE_1: 25,
XREAL_1: 141;
(
W-min P)
=
|[(
- 1),
0 ]| by
A8,
JGRAPH_5: 29;
then
A99: (f
. p3)
<> (
W-min P) by
A98,
EUCLID: 52;
((p2
`1 )
* (
sqrt (1
+ ((p3
`1 )
^2 ))))
>= ((p3
`1 )
* (
sqrt (1
+ ((p2
`1 )
^2 )))) by
A90,
SQUARE_1: 57;
then (((p2
`1 )
* (
sqrt (1
+ ((p3
`1 )
^2 ))))
/ (
sqrt (1
+ ((p3
`1 )
^2 ))))
>= (((p3
`1 )
* (
sqrt (1
+ ((p2
`1 )
^2 ))))
/ (
sqrt (1
+ ((p3
`1 )
^2 )))) by
A94,
XREAL_1: 72;
then (p2
`1 )
>= (((p3
`1 )
* (
sqrt (1
+ ((p2
`1 )
^2 ))))
/ (
sqrt (1
+ ((p3
`1 )
^2 )))) by
A94,
XCMPLX_1: 89;
then ((p2
`1 )
/ (
sqrt (1
+ ((p2
`1 )
^2 ))))
>= ((((p3
`1 )
* (
sqrt (1
+ ((p2
`1 )
^2 ))))
/ (
sqrt (1
+ ((p3
`1 )
^2 ))))
/ (
sqrt (1
+ ((p2
`1 )
^2 )))) by
A83,
XREAL_1: 72;
then ((p2
`1 )
/ (
sqrt (1
+ ((p2
`1 )
^2 ))))
>= ((((p3
`1 )
* (
sqrt (1
+ ((p2
`1 )
^2 ))))
/ (
sqrt (1
+ ((p2
`1 )
^2 ))))
/ (
sqrt (1
+ ((p3
`1 )
^2 )))) by
XCMPLX_1: 48;
then ((p2
`1 )
/ (
sqrt (1
+ ((p2
`1 )
^2 ))))
>= ((p3
`1 )
/ (
sqrt (1
+ ((p3
`1 )
^2 )))) by
A83,
XCMPLX_1: 89;
hence thesis by
A8,
A13,
A14,
A81,
A83,
A86,
A87,
A97,
A98,
A99,
JGRAPH_5: 56;
end;
end;
hence thesis;
end;
theorem ::
JGRAPH_6:67
Th67: for p be
Point of (
TOP-REAL 2), f be
Function of (
TOP-REAL 2), (
TOP-REAL 2) st f
=
Sq_Circ & (p
`1 )
= (
- 1) & (p
`2 )
<
0 holds ((f
. p)
`1 )
<
0 & ((f
. p)
`2 )
<
0
proof
let p be
Point of (
TOP-REAL 2), f be
Function of (
TOP-REAL 2), (
TOP-REAL 2);
assume that
A1: f
=
Sq_Circ and
A2: (p
`1 )
= (
- 1) and
A3: (p
`2 )
<
0 ;
now
per cases ;
case p
= (
0. (
TOP-REAL 2));
hence contradiction by
A2,
EUCLID: 52,
EUCLID: 54;
end;
case
A4: p
<> (
0. (
TOP-REAL 2));
now
per cases ;
case (p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ));
then
A5: (f
. p)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))]| by
A1,
A4,
JGRAPH_3:def 1;
then
A6: ((f
. p)
`1 )
= ((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))) by
EUCLID: 52;
((f
. p)
`2 )
= ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))) by
A5,
EUCLID: 52;
hence thesis by
A2,
A3,
A6,
SQUARE_1: 25,
XREAL_1: 141;
end;
case not ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 )));
then
A7: (f
. p)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]| by
A1,
A4,
JGRAPH_3:def 1;
then
A8: ((f
. p)
`1 )
= ((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))) by
EUCLID: 52;
((f
. p)
`2 )
= ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))) by
A7,
EUCLID: 52;
hence thesis by
A2,
A3,
A8,
SQUARE_1: 25,
XREAL_1: 141;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
theorem ::
JGRAPH_6:68
Th68: for p be
Point of (
TOP-REAL 2), P be non
empty
compact
Subset of (
TOP-REAL 2), f be
Function of (
TOP-REAL 2), (
TOP-REAL 2) st f
=
Sq_Circ holds ((f
. p)
`1 )
>=
0 iff (p
`1 )
>=
0
proof
let p be
Point of (
TOP-REAL 2), P be non
empty
compact
Subset of (
TOP-REAL 2), f be
Function of (
TOP-REAL 2), (
TOP-REAL 2);
assume that
A1: f
=
Sq_Circ ;
thus ((f
. p)
`1 )
>=
0 implies (p
`1 )
>=
0
proof
assume
A2: ((f
. p)
`1 )
>=
0 ;
reconsider g = (
Sq_Circ
" ) as
Function of (
TOP-REAL 2), (
TOP-REAL 2) by
JGRAPH_3: 29;
A3: (
dom f)
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
set q = (f
. p);
now
per cases ;
case q
= (
0. (
TOP-REAL 2));
hence ((g
. q)
`1 )
>=
0 by
A2,
JGRAPH_3: 28;
end;
case
A4: q
<> (
0. (
TOP-REAL 2));
now
per cases ;
case (q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 ));
then
A5: (g
. q)
=
|[((q
`1 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]| by
A4,
JGRAPH_3: 28;
(((q
`2 )
/ (q
`1 ))
^2 )
>=
0 by
XREAL_1: 63;
then (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
>
0 by
SQUARE_1: 25;
hence ((g
. q)
`1 )
>=
0 by
A2,
A5,
EUCLID: 52;
end;
case not ((q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 )));
then
A6: (g
. q)
=
|[((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]| by
JGRAPH_3: 28;
(((q
`1 )
/ (q
`2 ))
^2 )
>=
0 by
XREAL_1: 63;
then (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
>
0 by
SQUARE_1: 25;
hence ((g
. q)
`1 )
>=
0 by
A2,
A6,
EUCLID: 52;
end;
end;
hence ((g
. q)
`1 )
>=
0 ;
end;
end;
hence thesis by
A1,
A3,
FUNCT_1: 34;
end;
thus (p
`1 )
>=
0 implies ((f
. p)
`1 )
>=
0
proof
assume
A7: (p
`1 )
>=
0 ;
now
per cases ;
case p
= (
0. (
TOP-REAL 2));
hence thesis by
A1,
A7,
JGRAPH_3:def 1;
end;
case
A8: p
<> (
0. (
TOP-REAL 2));
now
per cases ;
case (p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ));
then
A9: (f
. p)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))]| by
A1,
A8,
JGRAPH_3:def 1;
(((p
`2 )
/ (p
`1 ))
^2 )
>=
0 by
XREAL_1: 63;
then (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))
>
0 by
SQUARE_1: 25;
hence thesis by
A7,
A9,
EUCLID: 52;
end;
case not ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 )));
then
A10: (f
. p)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]| by
A1,
A8,
JGRAPH_3:def 1;
(((p
`1 )
/ (p
`2 ))
^2 )
>=
0 by
XREAL_1: 63;
then (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))
>
0 by
SQUARE_1: 25;
hence thesis by
A7,
A10,
EUCLID: 52;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
end;
theorem ::
JGRAPH_6:69
Th69: for p be
Point of (
TOP-REAL 2), P be non
empty
compact
Subset of (
TOP-REAL 2), f be
Function of (
TOP-REAL 2), (
TOP-REAL 2) st f
=
Sq_Circ holds ((f
. p)
`2 )
>=
0 iff (p
`2 )
>=
0
proof
let p be
Point of (
TOP-REAL 2), P be non
empty
compact
Subset of (
TOP-REAL 2), f be
Function of (
TOP-REAL 2), (
TOP-REAL 2);
assume
A1: f
=
Sq_Circ ;
thus ((f
. p)
`2 )
>=
0 implies (p
`2 )
>=
0
proof
assume
A2: ((f
. p)
`2 )
>=
0 ;
reconsider g = (
Sq_Circ
" ) as
Function of (
TOP-REAL 2), (
TOP-REAL 2) by
JGRAPH_3: 29;
A3: (
dom f)
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
set q = (f
. p);
now
per cases ;
case q
= (
0. (
TOP-REAL 2));
hence ((g
. q)
`2 )
>=
0 by
A2,
JGRAPH_3: 28;
end;
case
A4: q
<> (
0. (
TOP-REAL 2));
now
per cases ;
case (q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 ));
then
A5: (g
. q)
=
|[((q
`1 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
* (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]| by
A4,
JGRAPH_3: 28;
(((q
`2 )
/ (q
`1 ))
^2 )
>=
0 by
XREAL_1: 63;
then (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))
>
0 by
SQUARE_1: 25;
hence ((g
. q)
`2 )
>=
0 by
A2,
A5,
EUCLID: 52;
end;
case not ((q
`2 )
<= (q
`1 ) & (
- (q
`1 ))
<= (q
`2 ) or (q
`2 )
>= (q
`1 ) & (q
`2 )
<= (
- (q
`1 )));
then
A6: (g
. q)
=
|[((q
`1 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
* (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]| by
JGRAPH_3: 28;
(((q
`1 )
/ (q
`2 ))
^2 )
>=
0 by
XREAL_1: 63;
then (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))
>
0 by
SQUARE_1: 25;
hence ((g
. q)
`2 )
>=
0 by
A2,
A6,
EUCLID: 52;
end;
end;
hence ((g
. q)
`2 )
>=
0 ;
end;
end;
hence thesis by
A1,
A3,
FUNCT_1: 34;
end;
thus (p
`2 )
>=
0 implies ((f
. p)
`2 )
>=
0
proof
assume
A7: (p
`2 )
>=
0 ;
now
per cases ;
case p
= (
0. (
TOP-REAL 2));
hence thesis by
A1,
A7,
JGRAPH_3:def 1;
end;
case
A8: p
<> (
0. (
TOP-REAL 2));
now
per cases ;
case (p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 ));
then
A9: (f
. p)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))]| by
A1,
A8,
JGRAPH_3:def 1;
(((p
`2 )
/ (p
`1 ))
^2 )
>=
0 by
XREAL_1: 63;
then (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))
>
0 by
SQUARE_1: 25;
hence thesis by
A7,
A9,
EUCLID: 52;
end;
case not ((p
`2 )
<= (p
`1 ) & (
- (p
`1 ))
<= (p
`2 ) or (p
`2 )
>= (p
`1 ) & (p
`2 )
<= (
- (p
`1 )));
then
A10: (f
. p)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 ))))]| by
A1,
A8,
JGRAPH_3:def 1;
(((p
`1 )
/ (p
`2 ))
^2 )
>=
0 by
XREAL_1: 63;
then (
sqrt (1
+ (((p
`1 )
/ (p
`2 ))
^2 )))
>
0 by
SQUARE_1: 25;
hence thesis by
A7,
A10,
EUCLID: 52;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
end;
theorem ::
JGRAPH_6:70
Th70: for p,q be
Point of (
TOP-REAL 2), f be
Function of (
TOP-REAL 2), (
TOP-REAL 2) st f
=
Sq_Circ & p
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)) & q
in (
LSeg (
|[1, (
- 1)]|,
|[(
- 1), (
- 1)]|)) holds ((f
. p)
`1 )
<= ((f
. q)
`1 )
proof
let p,q be
Point of (
TOP-REAL 2), f be
Function of (
TOP-REAL 2), (
TOP-REAL 2);
assume that
A1: f
=
Sq_Circ and
A2: p
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)) and
A3: q
in (
LSeg (
|[1, (
- 1)]|,
|[(
- 1), (
- 1)]|));
A4: (p
`1 )
= (
- 1) by
A2,
Th1;
A5: (
- 1)
<= (p
`2 ) by
A2,
Th1;
A6: (p
`2 )
<= 1 by
A2,
Th1;
A7: (q
`2 )
= (
- 1) by
A3,
Th3;
A8: (
- 1)
<= (q
`1 ) by
A3,
Th3;
A9: (q
`1 )
<= 1 by
A3,
Th3;
A10: p
<> (
0. (
TOP-REAL 2)) by
A4,
EUCLID: 52,
EUCLID: 54;
A11: q
<> (
0. (
TOP-REAL 2)) by
A7,
EUCLID: 52,
EUCLID: 54;
(p
`2 )
<= (
- (p
`1 )) by
A2,
A4,
Th1;
then (f
. p)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))]| by
A1,
A4,
A5,
A10,
JGRAPH_3:def 1;
then
A12: ((f
. p)
`1 )
= ((
- 1)
/ (
sqrt (1
+ (((p
`2 )
/ (
- 1))
^2 )))) by
A4,
EUCLID: 52
.= ((
- 1)
/ (
sqrt (1
+ ((p
`2 )
^2 ))));
((p
`2 )
^2 )
>=
0 by
XREAL_1: 63;
then
A13: (
sqrt (1
+ ((p
`2 )
^2 )))
>
0 by
SQUARE_1: 25;
((q
`1 )
^2 )
>=
0 by
XREAL_1: 63;
then
A14: (
sqrt (1
+ ((q
`1 )
^2 )))
>
0 by
SQUARE_1: 25;
(q
`1 )
<= (
- (q
`2 )) by
A3,
A7,
Th3;
then (f
. q)
=
|[((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`1 )
/ (q
`2 ))
^2 ))))]| by
A1,
A7,
A8,
A11,
JGRAPH_3: 4;
then
A15: ((f
. q)
`1 )
= ((q
`1 )
/ (
sqrt (1
+ (((q
`1 )
/ (
- 1))
^2 )))) by
A7,
EUCLID: 52
.= ((q
`1 )
/ (
sqrt (1
+ ((q
`1 )
^2 ))));
(
- (
sqrt (1
+ ((q
`1 )
^2 ))))
<= ((q
`1 )
* (
sqrt (1
+ ((p
`2 )
^2 )))) by
A5,
A6,
A8,
A9,
SQUARE_1: 55;
then (((
- 1)
* (
sqrt (1
+ ((q
`1 )
^2 ))))
/ (
sqrt (1
+ ((q
`1 )
^2 ))))
<= (((q
`1 )
* (
sqrt (1
+ ((p
`2 )
^2 ))))
/ (
sqrt (1
+ ((q
`1 )
^2 )))) by
A14,
XREAL_1: 72;
then (
- 1)
<= (((q
`1 )
* (
sqrt (1
+ ((p
`2 )
^2 ))))
/ (
sqrt (1
+ ((q
`1 )
^2 )))) by
A14,
XCMPLX_1: 89;
then (
- 1)
<= (((q
`1 )
/ (
sqrt (1
+ ((q
`1 )
^2 ))))
* (
sqrt (1
+ ((p
`2 )
^2 )))) by
XCMPLX_1: 74;
then ((
- 1)
/ (
sqrt (1
+ ((p
`2 )
^2 ))))
<= ((((q
`1 )
/ (
sqrt (1
+ ((q
`1 )
^2 ))))
* (
sqrt (1
+ ((p
`2 )
^2 ))))
/ (
sqrt (1
+ ((p
`2 )
^2 )))) by
A13,
XREAL_1: 72;
hence thesis by
A12,
A13,
A15,
XCMPLX_1: 89;
end;
theorem ::
JGRAPH_6:71
Th71: for p,q be
Point of (
TOP-REAL 2), f be
Function of (
TOP-REAL 2), (
TOP-REAL 2) st f
=
Sq_Circ & p
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)) & q
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)) & (p
`2 )
>= (q
`2 ) & (p
`2 )
<
0 holds ((f
. p)
`2 )
>= ((f
. q)
`2 )
proof
let p,q be
Point of (
TOP-REAL 2), f be
Function of (
TOP-REAL 2), (
TOP-REAL 2);
assume that
A1: f
=
Sq_Circ and
A2: p
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)) and
A3: q
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)) and
A4: (p
`2 )
>= (q
`2 ) and
A5: (p
`2 )
<
0 ;
A6: (p
`1 )
= (
- 1) by
A2,
Th1;
A7: (
- 1)
<= (p
`2 ) by
A2,
Th1;
((p
`2 )
^2 )
>=
0 by
XREAL_1: 63;
then
A8: (
sqrt (1
+ ((p
`2 )
^2 )))
>
0 by
SQUARE_1: 25;
((q
`2 )
^2 )
>=
0 by
XREAL_1: 63;
then
A9: (
sqrt (1
+ ((q
`2 )
^2 )))
>
0 by
SQUARE_1: 25;
A10: (p
`2 )
<= (
- (p
`1 )) by
A5,
A6;
p
<> (
0. (
TOP-REAL 2)) by
A5,
EUCLID: 52,
EUCLID: 54;
then (f
. p)
=
|[((p
`1 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 )))), ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (p
`1 ))
^2 ))))]| by
A1,
A6,
A7,
A10,
JGRAPH_3:def 1;
then
A11: ((f
. p)
`2 )
= ((p
`2 )
/ (
sqrt (1
+ (((p
`2 )
/ (
- 1))
^2 )))) by
A6,
EUCLID: 52
.= ((p
`2 )
/ (
sqrt (1
+ ((p
`2 )
^2 ))));
A12: (q
`1 )
= (
- 1) by
A3,
Th1;
A13: (
- 1)
<= (q
`2 ) by
A3,
Th1;
A14: (q
`2 )
<= (
- (q
`1 )) by
A4,
A5,
A12;
q
<> (
0. (
TOP-REAL 2)) by
A4,
A5,
EUCLID: 52,
EUCLID: 54;
then (f
. q)
=
|[((q
`1 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 )))), ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (q
`1 ))
^2 ))))]| by
A1,
A12,
A13,
A14,
JGRAPH_3:def 1;
then
A15: ((f
. q)
`2 )
= ((q
`2 )
/ (
sqrt (1
+ (((q
`2 )
/ (
- 1))
^2 )))) by
A12,
EUCLID: 52
.= ((q
`2 )
/ (
sqrt (1
+ ((q
`2 )
^2 ))));
((p
`2 )
* (
sqrt (1
+ ((q
`2 )
^2 ))))
>= ((q
`2 )
* (
sqrt (1
+ ((p
`2 )
^2 )))) by
A4,
A5,
Lm2;
then (((p
`2 )
* (
sqrt (1
+ ((q
`2 )
^2 ))))
/ (
sqrt (1
+ ((q
`2 )
^2 ))))
>= (((q
`2 )
* (
sqrt (1
+ ((p
`2 )
^2 ))))
/ (
sqrt (1
+ ((q
`2 )
^2 )))) by
A9,
XREAL_1: 72;
then (p
`2 )
>= (((q
`2 )
* (
sqrt (1
+ ((p
`2 )
^2 ))))
/ (
sqrt (1
+ ((q
`2 )
^2 )))) by
A9,
XCMPLX_1: 89;
then ((p
`2 )
/ (
sqrt (1
+ ((p
`2 )
^2 ))))
>= ((((q
`2 )
* (
sqrt (1
+ ((p
`2 )
^2 ))))
/ (
sqrt (1
+ ((q
`2 )
^2 ))))
/ (
sqrt (1
+ ((p
`2 )
^2 )))) by
A8,
XREAL_1: 72;
then ((p
`2 )
/ (
sqrt (1
+ ((p
`2 )
^2 ))))
>= ((((q
`2 )
* (
sqrt (1
+ ((p
`2 )
^2 ))))
/ (
sqrt (1
+ ((p
`2 )
^2 ))))
/ (
sqrt (1
+ ((q
`2 )
^2 )))) by
XCMPLX_1: 48;
hence thesis by
A8,
A11,
A15,
XCMPLX_1: 89;
end;
theorem ::
JGRAPH_6:72
Th72: for p1,p2,p3,p4 be
Point of (
TOP-REAL 2), P be non
empty
compact
Subset of (
TOP-REAL 2), f be
Function of (
TOP-REAL 2), (
TOP-REAL 2) st P
= (
circle (
0 ,
0 ,1)) & f
=
Sq_Circ holds
LE (p1,p2,(
rectangle ((
- 1),1,(
- 1),1))) &
LE (p2,p3,(
rectangle ((
- 1),1,(
- 1),1))) &
LE (p3,p4,(
rectangle ((
- 1),1,(
- 1),1))) implies ((f
. p1),(f
. p2),(f
. p3),(f
. p4))
are_in_this_order_on P
proof
let p1,p2,p3,p4 be
Point of (
TOP-REAL 2), P be non
empty
compact
Subset of (
TOP-REAL 2), f be
Function of (
TOP-REAL 2), (
TOP-REAL 2);
set K = (
rectangle ((
- 1),1,(
- 1),1));
assume that
A1: P
= (
circle (
0 ,
0 ,1)) and
A2: f
=
Sq_Circ ;
A3: K is
being_simple_closed_curve by
Th50;
A4: K
= { p : (p
`1 )
= (
- 1) & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (p
`2 )
= 1 & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 or (p
`1 )
= 1 & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (p
`2 )
= (
- 1) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 } by
Lm15;
A5: P
= { p :
|.p.|
= 1 } by
A1,
Th24;
thus
LE (p1,p2,K) &
LE (p2,p3,K) &
LE (p3,p4,K) implies ((f
. p1),(f
. p2),(f
. p3),(f
. p4))
are_in_this_order_on P
proof
assume that
A6:
LE (p1,p2,K) and
A7:
LE (p2,p3,K) and
A8:
LE (p3,p4,K);
A9: p1
in K by
A3,
A6,
JORDAN7: 5;
A10: p2
in K by
A3,
A6,
JORDAN7: 5;
A11: p3
in K by
A3,
A7,
JORDAN7: 5;
A12: p4
in K by
A3,
A8,
JORDAN7: 5;
then
A13: ex q8 be
Point of (
TOP-REAL 2) st (q8
= p4) & ((q8
`1 )
= (
- 1) & (
- 1)
<= (q8
`2 ) & (q8
`2 )
<= 1 or (q8
`2 )
= 1 & (
- 1)
<= (q8
`1 ) & (q8
`1 )
<= 1 or (q8
`1 )
= 1 & (
- 1)
<= (q8
`2 ) & (q8
`2 )
<= 1 or (q8
`2 )
= (
- 1) & (
- 1)
<= (q8
`1 ) & (q8
`1 )
<= 1) by
A4;
A14:
LE (p1,p3,K) by
A6,
A7,
Th50,
JORDAN6: 58;
A15:
LE (p2,p4,K) by
A7,
A8,
Th50,
JORDAN6: 58;
A16: (
W-min K)
=
|[(
- 1), (
- 1)]| by
Th46;
A17: (
|[(
- 1),
0 ]|
`2 )
=
0 by
EUCLID: 52;
A18: ((1
/ 2)
* (
|[(
- 1), (
- 1)]|
+
|[(
- 1), 1]|))
= (((1
/ 2)
*
|[(
- 1), (
- 1)]|)
+ ((1
/ 2)
*
|[(
- 1), 1]|)) by
RLVECT_1:def 5
.= (
|[((1
/ 2)
* (
- 1)), ((1
/ 2)
* (
- 1))]|
+ ((1
/ 2)
*
|[(
- 1), 1]|)) by
EUCLID: 58
.= (
|[((1
/ 2)
* (
- 1)), ((1
/ 2)
* (
- 1))]|
+
|[((1
/ 2)
* (
- 1)), ((1
/ 2)
* 1)]|) by
EUCLID: 58
.=
|[(((1
/ 2)
* (
- 1))
+ ((1
/ 2)
* (
- 1))), (((1
/ 2)
* (
- 1))
+ ((1
/ 2)
* 1))]| by
EUCLID: 56
.=
|[(
- 1),
0 ]|;
then
A19:
|[(
- 1),
0 ]|
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)) by
RLTOPSP1: 69;
now
per cases by
A9,
A16,
Th63,
RLTOPSP1: 68;
case
A20: p1
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|));
then
A21: (p1
`1 )
= (
- 1) by
Th1;
then
A22: ((f
. p1)
`1 )
<
0 by
A2,
Th68;
A23: (f
.: K)
= P by
A2,
A5,
Lm15,
Th35,
JGRAPH_3: 23;
A24: (
dom f)
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
then
A25: (f
. p1)
in P by
A9,
A23,
FUNCT_1:def 6;
now
per cases ;
case
A26: (p1
`2 )
>=
0 ;
then
A27:
LE ((f
. p1),(f
. p2),P) by
A1,
A2,
A6,
A20,
Th65;
A28:
LE ((f
. p2),(f
. p3),P) by
A1,
A2,
A6,
A7,
A20,
A26,
Th66;
LE ((f
. p3),(f
. p4),P) by
A1,
A2,
A8,
A14,
A20,
A26,
Th66;
hence thesis by
A27,
A28,
JORDAN17:def 1;
end;
case
A29: (p1
`2 )
<
0 ;
now
per cases ;
case
A30: (p2
`2 )
<
0 & p2
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|));
then
A31: (p2
`1 )
= (
- 1) by
Th1;
A32: (f
. p2)
in P by
A10,
A23,
A24,
FUNCT_1:def 6;
A33: (p1
`2 )
<= (p2
`2 ) by
A6,
A20,
A30,
Th55;
now
per cases ;
case
A34: (p3
`2 )
<
0 & p3
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|));
then
A35: (p3
`1 )
= (
- 1) by
Th1;
A36: (f
. p3)
in P by
A11,
A23,
A24,
FUNCT_1:def 6;
A37: (p2
`2 )
<= (p3
`2 ) by
A7,
A30,
A34,
Th55;
now
per cases ;
case
A38: (p4
`2 )
<
0 & p4
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|));
then
A39: (p4
`1 )
= (
- 1) by
Th1;
A40: ((f
. p2)
`1 )
<
0 by
A2,
A30,
A31,
Th67;
A41: ((f
. p2)
`2 )
<
0 by
A2,
A30,
A31,
Th67;
A42: ((f
. p3)
`1 )
<
0 by
A2,
A34,
A35,
Th67;
A43: ((f
. p3)
`2 )
<
0 by
A2,
A34,
A35,
Th67;
A44: ((f
. p4)
`1 )
<
0 by
A2,
A38,
A39,
Th67;
A45: ((f
. p4)
`2 )
<
0 by
A2,
A38,
A39,
Th67;
((f
. p1)
`2 )
<= ((f
. p2)
`2 ) by
A2,
A20,
A30,
A33,
Th71;
then
A46:
LE ((f
. p1),(f
. p2),P) by
A5,
A22,
A25,
A32,
A40,
A41,
JGRAPH_5: 51;
((f
. p2)
`2 )
<= ((f
. p3)
`2 ) by
A2,
A30,
A34,
A37,
Th71;
then
A47:
LE ((f
. p2),(f
. p3),P) by
A5,
A32,
A36,
A40,
A42,
A43,
JGRAPH_5: 51;
A48: (f
. p4)
in P by
A12,
A23,
A24,
FUNCT_1:def 6;
(p3
`2 )
<= (p4
`2 ) by
A8,
A34,
A38,
Th55;
then ((f
. p3)
`2 )
<= ((f
. p4)
`2 ) by
A2,
A34,
A38,
Th71;
then
LE ((f
. p3),(f
. p4),P) by
A5,
A36,
A42,
A44,
A45,
A48,
JGRAPH_5: 51;
hence thesis by
A46,
A47,
JORDAN17:def 1;
end;
case
A49: not ((p4
`2 )
<
0 & p4
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)));
A50:
now
per cases by
A12,
Th63;
case p4
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|));
hence p4
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)) & (
|[(
- 1),
0 ]|
`2 )
<= (p4
`2 ) or p4
in (
LSeg (
|[(
- 1), 1]|,
|[1, 1]|)) or p4
in (
LSeg (
|[1, 1]|,
|[1, (
- 1)]|)) or p4
in (
LSeg (
|[1, (
- 1)]|,
|[(
- 1), (
- 1)]|)) & p4
<> (
W-min K) by
A49,
EUCLID: 52;
end;
case p4
in (
LSeg (
|[(
- 1), 1]|,
|[1, 1]|));
hence p4
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)) & (
|[(
- 1),
0 ]|
`2 )
<= (p4
`2 ) or p4
in (
LSeg (
|[(
- 1), 1]|,
|[1, 1]|)) or p4
in (
LSeg (
|[1, 1]|,
|[1, (
- 1)]|)) or p4
in (
LSeg (
|[1, (
- 1)]|,
|[(
- 1), (
- 1)]|)) & p4
<> (
W-min K);
end;
case p4
in (
LSeg (
|[1, 1]|,
|[1, (
- 1)]|));
hence p4
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)) & (
|[(
- 1),
0 ]|
`2 )
<= (p4
`2 ) or p4
in (
LSeg (
|[(
- 1), 1]|,
|[1, 1]|)) or p4
in (
LSeg (
|[1, 1]|,
|[1, (
- 1)]|)) or p4
in (
LSeg (
|[1, (
- 1)]|,
|[(
- 1), (
- 1)]|)) & p4
<> (
W-min K);
end;
case
A51: p4
in (
LSeg (
|[1, (
- 1)]|,
|[(
- 1), (
- 1)]|));
A52: (
W-min K)
=
|[(
- 1), (
- 1)]| by
Th46;
now
assume
A53: p4
= (
W-min K);
then (p4
`2 )
= (
- 1) by
A52,
EUCLID: 52;
hence contradiction by
A49,
A52,
A53,
RLTOPSP1: 68;
end;
hence p4
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)) & (
|[(
- 1),
0 ]|
`2 )
<= (p4
`2 ) or p4
in (
LSeg (
|[(
- 1), 1]|,
|[1, 1]|)) or p4
in (
LSeg (
|[1, 1]|,
|[1, (
- 1)]|)) or p4
in (
LSeg (
|[1, (
- 1)]|,
|[(
- 1), (
- 1)]|)) & p4
<> (
W-min K) by
A51;
end;
end;
A54: ((f
. p2)
`1 )
<
0 by
A2,
A30,
A31,
Th67;
A55: ((f
. p2)
`2 )
<
0 by
A2,
A30,
A31,
Th67;
A56: ((f
. p3)
`1 )
<
0 by
A2,
A34,
A35,
Th67;
A57: ((f
. p3)
`2 )
<
0 by
A2,
A34,
A35,
Th67;
((f
. p1)
`2 )
<= ((f
. p2)
`2 ) by
A2,
A20,
A30,
A33,
Th71;
then
A58:
LE ((f
. p1),(f
. p2),P) by
A5,
A22,
A25,
A32,
A54,
A55,
JGRAPH_5: 51;
((f
. p2)
`2 )
<= ((f
. p3)
`2 ) by
A2,
A30,
A34,
A37,
Th71;
then
A59:
LE ((f
. p2),(f
. p3),P) by
A5,
A32,
A36,
A54,
A56,
A57,
JGRAPH_5: 51;
A60:
now
per cases ;
case
A61: (p4
`1 )
= (
- 1) & (p4
`2 )
<
0 & (p1
`2 )
<= (p4
`2 );
now
per cases by
A50;
case p4
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)) & (
|[(
- 1),
0 ]|
`2 )
<= (p4
`2 );
hence contradiction by
A61,
EUCLID: 52;
end;
case p4
in (
LSeg (
|[(
- 1), 1]|,
|[1, 1]|));
hence contradiction by
A61,
Th3;
end;
case p4
in (
LSeg (
|[1, 1]|,
|[1, (
- 1)]|));
hence contradiction by
A61,
Th1;
end;
case
A62: p4
in (
LSeg (
|[1, (
- 1)]|,
|[(
- 1), (
- 1)]|)) & p4
<> (
W-min K);
then
A63: (p4
`2 )
= (
- 1) by
Th3;
A64: (
W-min K)
=
|[(
- 1), (
- 1)]| by
Th46;
then
A65: ((
W-min K)
`1 )
= (
- 1) by
EUCLID: 52;
((
W-min K)
`2 )
= (
- 1) by
A64,
EUCLID: 52;
hence contradiction by
A61,
A62,
A63,
A65,
TOPREAL3: 6;
end;
end;
hence contradiction;
end;
case
A66: not ((p4
`1 )
= (
- 1) & (p4
`2 )
<
0 & (p1
`2 )
<= (p4
`2 ));
A67: p4
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)) or p4
in (
LSeg (
|[(
- 1), 1]|,
|[1, 1]|)) or p4
in (
LSeg (
|[1, 1]|,
|[1, (
- 1)]|)) or p4
in (
LSeg (
|[1, (
- 1)]|,
|[(
- 1), (
- 1)]|)) by
A12,
Th63;
now
per cases by
A66;
case
A68: (p4
`1 )
<> (
- 1);
A69: (f
.: K)
= P by
A2,
A5,
Lm15,
Th35,
JGRAPH_3: 23;
A70: (
dom f)
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
A71: ((f
. p1)
`2 )
<=
0 by
A2,
A21,
A29,
Th67;
A72: (
Upper_Arc P)
= { p where p be
Point of (
TOP-REAL 2) : p
in P & (p
`2 )
>=
0 } by
A5,
JGRAPH_5: 34;
A73: (f
. p1)
in P by
A9,
A69,
A70,
FUNCT_1:def 6;
(
Lower_Arc P)
= { p where p be
Point of (
TOP-REAL 2) : p
in P & (p
`2 )
<=
0 } by
A5,
JGRAPH_5: 35;
then
A74: (f
. p1)
in (
Lower_Arc P) by
A71,
A73;
A75: (f
.
|[(
- 1),
0 ]|)
= (
W-min P) by
A2,
A5,
Th10,
JGRAPH_5: 29;
A76:
now
assume (f
. p1)
= (
W-min P);
then p1
=
|[(
- 1),
0 ]| by
A2,
A70,
A75,
FUNCT_1:def 4;
hence contradiction by
A29,
EUCLID: 52;
end;
now
per cases by
A67,
A68,
Th1;
case p4
in (
LSeg (
|[(
- 1), 1]|,
|[1, 1]|));
then
A77: (p4
`2 )
= 1 by
Th3;
A78: (f
. p4)
in P by
A12,
A69,
A70,
FUNCT_1:def 6;
((f
. p4)
`2 )
>=
0 by
A2,
A77,
Th69;
then (f
. p4)
in (
Upper_Arc P) by
A72,
A78;
hence
LE ((f
. p4),(f
. p1),P) by
A74,
A76,
JORDAN6:def 10;
end;
case p4
in (
LSeg (
|[1, 1]|,
|[1, (
- 1)]|));
then
A79: (p4
`1 )
= 1 by
Th1;
A80: (f
.: K)
= P by
A2,
A5,
Lm15,
Th35,
JGRAPH_3: 23;
A81: (
dom f)
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
then
A82: (f
. p4)
in P by
A12,
A80,
FUNCT_1:def 6;
A83: (f
. p1)
in P by
A9,
A80,
A81,
FUNCT_1:def 6;
A84: ((f
. p1)
`1 )
<
0 by
A2,
A21,
A29,
Th67;
A85: ((f
. p1)
`2 )
<=
0 by
A2,
A21,
A29,
Th67;
A86: (f
.
|[(
- 1),
0 ]|)
= (
W-min P) by
A2,
A5,
Th10,
JGRAPH_5: 29;
A87:
now
assume (f
. p1)
= (
W-min P);
then p1
=
|[(
- 1),
0 ]| by
A2,
A81,
A86,
FUNCT_1:def 4;
hence contradiction by
A29,
EUCLID: 52;
end;
A88: ((f
. p4)
`1 )
>=
0 by
A2,
A79,
Th68;
now
per cases ;
case
A89: ((f
. p4)
`2 )
>=
0 ;
A90: ((f
. p1)
`2 )
<=
0 by
A2,
A21,
A29,
Th67;
A91: (
Upper_Arc P)
= { p where p be
Point of (
TOP-REAL 2) : p
in P & (p
`2 )
>=
0 } by
A5,
JGRAPH_5: 34;
A92: (f
.
|[(
- 1),
0 ]|)
= (
W-min P) by
A2,
A5,
Th10,
JGRAPH_5: 29;
A93:
now
assume (f
. p1)
= (
W-min P);
then p1
=
|[(
- 1),
0 ]| by
A2,
A81,
A92,
FUNCT_1:def 4;
hence contradiction by
A29,
EUCLID: 52;
end;
A94: (f
. p4)
in (
Upper_Arc P) by
A82,
A89,
A91;
(
Lower_Arc P)
= { p where p be
Point of (
TOP-REAL 2) : p
in P & (p
`2 )
<=
0 } by
A5,
JGRAPH_5: 35;
then (f
. p1)
in (
Lower_Arc P) by
A83,
A90;
hence
LE ((f
. p4),(f
. p1),P) by
A93,
A94,
JORDAN6:def 10;
end;
case ((f
. p4)
`2 )
<
0 ;
hence
LE ((f
. p4),(f
. p1),P) by
A5,
A82,
A83,
A84,
A85,
A87,
A88,
JGRAPH_5: 56;
end;
end;
hence
LE ((f
. p4),(f
. p1),P);
end;
case
A95: p4
in (
LSeg (
|[1, (
- 1)]|,
|[(
- 1), (
- 1)]|));
then (p4
`2 )
= (
- 1) by
Th3;
then
A96: ((f
. p4)
`2 )
<
0 by
A2,
Th69;
A97: (f
. p4)
in P by
A12,
A69,
A70,
FUNCT_1:def 6;
A98: ((f
. p1)
`2 )
<=
0 by
A2,
A21,
A29,
Th67;
((f
. p4)
`1 )
>= ((f
. p1)
`1 ) by
A2,
A20,
A95,
Th70;
hence
LE ((f
. p4),(f
. p1),P) by
A5,
A73,
A76,
A96,
A97,
A98,
JGRAPH_5: 56;
end;
end;
hence
LE ((f
. p4),(f
. p1),P);
end;
case
A99: (p4
`1 )
= (
- 1) & (p4
`2 )
>=
0 ;
A100: (f
.: K)
= P by
A2,
A5,
Lm15,
Th35,
JGRAPH_3: 23;
A101: (
dom f)
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
then
A102: (f
. p4)
in P by
A12,
A100,
FUNCT_1:def 6;
A103: (f
. p1)
in P by
A9,
A100,
A101,
FUNCT_1:def 6;
A104: ((f
. p4)
`2 )
>=
0 by
A2,
A99,
Th69;
A105: ((f
. p1)
`2 )
<=
0 by
A2,
A21,
A29,
Th67;
A106: (
Upper_Arc P)
= { p where p be
Point of (
TOP-REAL 2) : p
in P & (p
`2 )
>=
0 } by
A5,
JGRAPH_5: 34;
A107: (f
.
|[(
- 1),
0 ]|)
= (
W-min P) by
A2,
A5,
Th10,
JGRAPH_5: 29;
A108:
now
assume (f
. p1)
= (
W-min P);
then p1
=
|[(
- 1),
0 ]| by
A2,
A101,
A107,
FUNCT_1:def 4;
hence contradiction by
A29,
EUCLID: 52;
end;
A109: (f
. p4)
in (
Upper_Arc P) by
A102,
A104,
A106;
(
Lower_Arc P)
= { p where p be
Point of (
TOP-REAL 2) : p
in P & (p
`2 )
<=
0 } by
A5,
JGRAPH_5: 35;
then (f
. p1)
in (
Lower_Arc P) by
A103,
A105;
hence
LE ((f
. p4),(f
. p1),P) by
A108,
A109,
JORDAN6:def 10;
end;
case
A110: (p4
`1 )
= (
- 1) & (p4
`2 )
<
0 & (p1
`2 )
> (p4
`2 );
then
A111: p4
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)) by
A13,
Th2;
A112: (f
.: K)
= P by
A2,
A5,
Lm15,
Th35,
JGRAPH_3: 23;
A113: (
dom f)
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
then
A114: (f
. p4)
in P by
A12,
A112,
FUNCT_1:def 6;
A115: (f
. p1)
in P by
A9,
A112,
A113,
FUNCT_1:def 6;
A116: ((f
. p1)
`1 )
<
0 by
A2,
A21,
A29,
Th67;
A117: ((f
. p1)
`2 )
<
0 by
A2,
A21,
A29,
Th67;
A118: ((f
. p4)
`2 )
<= ((f
. p1)
`2 ) by
A2,
A20,
A29,
A110,
A111,
Th71;
((f
. p4)
`1 )
<
0 by
A2,
A110,
Th68;
hence
LE ((f
. p4),(f
. p1),P) by
A5,
A114,
A115,
A116,
A117,
A118,
JGRAPH_5: 51;
end;
end;
hence
LE ((f
. p4),(f
. p1),P);
end;
end;
A119: K
= { p : (p
`1 )
= (
- 1) & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (p
`2 )
= 1 & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 or (p
`1 )
= 1 & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (p
`2 )
= (
- 1) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 } by
Lm15;
thus K
= { p : (p
`1 )
= (
- 1) & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (p
`1 )
= 1 & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (
- 1)
= (p
`2 ) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 or 1
= (p
`2 ) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 }
proof
thus K
c= { p : (p
`1 )
= (
- 1) & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (p
`1 )
= 1 & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (
- 1)
= (p
`2 ) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 or 1
= (p
`2 ) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 }
proof
let x be
object;
assume x
in K;
then ex p st (p
= x) & ((p
`1 )
= (
- 1) & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (p
`2 )
= 1 & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 or (p
`1 )
= 1 & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (p
`2 )
= (
- 1) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1) by
A119;
hence thesis;
end;
thus { p : (p
`1 )
= (
- 1) & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (p
`1 )
= 1 & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (
- 1)
= (p
`2 ) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 or 1
= (p
`2 ) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 }
c= K
proof
let x be
object;
assume x
in { p : (p
`1 )
= (
- 1) & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (p
`1 )
= 1 & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (
- 1)
= (p
`2 ) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 or 1
= (p
`2 ) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 };
then ex p st (p
= x) & ((p
`1 )
= (
- 1) & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (p
`1 )
= 1 & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (
- 1)
= (p
`2 ) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 or 1
= (p
`2 ) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1);
hence thesis by
A119;
end;
end;
thus thesis by
A58,
A59,
A60,
JORDAN17:def 1;
end;
end;
hence thesis;
end;
case
A120: not ((p3
`2 )
<
0 & p3
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)));
A121:
now
per cases by
A11,
Th63;
case p3
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|));
hence p3
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)) & (
|[(
- 1),
0 ]|
`2 )
<= (p3
`2 ) or p3
in (
LSeg (
|[(
- 1), 1]|,
|[1, 1]|)) or p3
in (
LSeg (
|[1, 1]|,
|[1, (
- 1)]|)) or p3
in (
LSeg (
|[1, (
- 1)]|,
|[(
- 1), (
- 1)]|)) & p3
<> (
W-min K) by
A120,
EUCLID: 52;
end;
case p3
in (
LSeg (
|[(
- 1), 1]|,
|[1, 1]|));
hence p3
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)) & (
|[(
- 1),
0 ]|
`2 )
<= (p3
`2 ) or p3
in (
LSeg (
|[(
- 1), 1]|,
|[1, 1]|)) or p3
in (
LSeg (
|[1, 1]|,
|[1, (
- 1)]|)) or p3
in (
LSeg (
|[1, (
- 1)]|,
|[(
- 1), (
- 1)]|)) & p3
<> (
W-min K);
end;
case p3
in (
LSeg (
|[1, 1]|,
|[1, (
- 1)]|));
hence p3
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)) & (
|[(
- 1),
0 ]|
`2 )
<= (p3
`2 ) or p3
in (
LSeg (
|[(
- 1), 1]|,
|[1, 1]|)) or p3
in (
LSeg (
|[1, 1]|,
|[1, (
- 1)]|)) or p3
in (
LSeg (
|[1, (
- 1)]|,
|[(
- 1), (
- 1)]|)) & p3
<> (
W-min K);
end;
case
A122: p3
in (
LSeg (
|[1, (
- 1)]|,
|[(
- 1), (
- 1)]|));
A123: (
W-min K)
=
|[(
- 1), (
- 1)]| by
Th46;
now
assume
A124: p3
= (
W-min K);
then (p3
`2 )
= (
- 1) by
A123,
EUCLID: 52;
hence contradiction by
A120,
A123,
A124,
RLTOPSP1: 68;
end;
hence p3
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)) & (
|[(
- 1),
0 ]|
`2 )
<= (p3
`2 ) or p3
in (
LSeg (
|[(
- 1), 1]|,
|[1, 1]|)) or p3
in (
LSeg (
|[1, 1]|,
|[1, (
- 1)]|)) or p3
in (
LSeg (
|[1, (
- 1)]|,
|[(
- 1), (
- 1)]|)) & p3
<> (
W-min K) by
A122;
end;
end;
then
A125:
LE (
|[(
- 1),
0 ]|,p3,K) by
A19,
Th59;
A126: ((f
. p2)
`1 )
<
0 by
A2,
A30,
A31,
Th67;
A127: ((f
. p2)
`2 )
<
0 by
A2,
A30,
A31,
Th67;
((f
. p1)
`2 )
<= ((f
. p2)
`2 ) by
A2,
A20,
A30,
A33,
Th71;
then
A128:
LE ((f
. p1),(f
. p2),P) by
A5,
A22,
A25,
A32,
A126,
A127,
JGRAPH_5: 51;
A129:
LE ((f
. p3),(f
. p4),P) by
A1,
A2,
A8,
A17,
A18,
A125,
Th66,
RLTOPSP1: 69;
A130:
now
per cases ;
case
A131: (p4
`1 )
= (
- 1) & (p4
`2 )
<
0 & (p1
`2 )
<= (p4
`2 );
A132: (
|[(
- 1), (
- 1)]|
`1 )
= (
- 1) by
EUCLID: 52;
A133: (
|[(
- 1), (
- 1)]|
`2 )
= (
- 1) by
EUCLID: 52;
A134: (
|[(
- 1), 1]|
`1 )
= (
- 1) by
EUCLID: 52;
A135: (
|[(
- 1), 1]|
`2 )
= 1 by
EUCLID: 52;
(
- 1)
<= (p4
`2 ) by
A12,
Th19;
then
A136: p4
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)) by
A131,
A132,
A133,
A134,
A135,
GOBOARD7: 7;
now
per cases by
A121;
case
A137: p3
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)) & (
|[(
- 1),
0 ]|
`2 )
<= (p3
`2 );
then
0
<= (p3
`2 ) by
EUCLID: 52;
hence contradiction by
A8,
A131,
A136,
A137,
Th55;
end;
case
A138: p3
in (
LSeg (
|[(
- 1), 1]|,
|[1, 1]|));
then
LE (p4,p3,K) by
A136,
Th59;
then p3
= p4 by
A8,
Th50,
JORDAN6: 57;
hence contradiction by
A131,
A138,
Th3;
end;
case
A139: p3
in (
LSeg (
|[1, 1]|,
|[1, (
- 1)]|));
then
LE (p4,p3,K) by
A136,
Th59;
then p3
= p4 by
A8,
Th50,
JORDAN6: 57;
hence contradiction by
A131,
A139,
Th1;
end;
case
A140: p3
in (
LSeg (
|[1, (
- 1)]|,
|[(
- 1), (
- 1)]|)) & p3
<> (
W-min K);
then
LE (p4,p3,K) by
A136,
Th59;
then
A141: p3
= p4 by
A8,
Th50,
JORDAN6: 57;
A142: (p3
`2 )
= (
- 1) by
A140,
Th3;
A143: (
W-min K)
=
|[(
- 1), (
- 1)]| by
Th46;
then
A144: ((
W-min K)
`1 )
= (
- 1) by
EUCLID: 52;
((
W-min K)
`2 )
= (
- 1) by
A143,
EUCLID: 52;
hence contradiction by
A131,
A140,
A141,
A142,
A144,
TOPREAL3: 6;
end;
end;
hence contradiction;
end;
case
A145: not ((p4
`1 )
= (
- 1) & (p4
`2 )
<
0 & (p1
`2 )
<= (p4
`2 ));
A146: p4
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)) or p4
in (
LSeg (
|[(
- 1), 1]|,
|[1, 1]|)) or p4
in (
LSeg (
|[1, 1]|,
|[1, (
- 1)]|)) or p4
in (
LSeg (
|[1, (
- 1)]|,
|[(
- 1), (
- 1)]|)) by
A12,
Th63;
now
per cases by
A145;
case
A147: (p4
`1 )
<> (
- 1);
A148: (f
.: K)
= P by
A2,
A5,
Lm15,
Th35,
JGRAPH_3: 23;
A149: (
dom f)
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
A150: ((f
. p1)
`2 )
<=
0 by
A2,
A21,
A29,
Th67;
A151: (
Upper_Arc P)
= { p where p be
Point of (
TOP-REAL 2) : p
in P & (p
`2 )
>=
0 } by
A5,
JGRAPH_5: 34;
A152: (f
. p1)
in P by
A9,
A148,
A149,
FUNCT_1:def 6;
(
Lower_Arc P)
= { p where p be
Point of (
TOP-REAL 2) : p
in P & (p
`2 )
<=
0 } by
A5,
JGRAPH_5: 35;
then
A153: (f
. p1)
in (
Lower_Arc P) by
A150,
A152;
A154: (f
.
|[(
- 1),
0 ]|)
= (
W-min P) by
A2,
A5,
Th10,
JGRAPH_5: 29;
A155:
now
assume (f
. p1)
= (
W-min P);
then p1
=
|[(
- 1),
0 ]| by
A2,
A149,
A154,
FUNCT_1:def 4;
hence contradiction by
A29,
EUCLID: 52;
end;
now
per cases by
A146,
A147,
Th1;
case p4
in (
LSeg (
|[(
- 1), 1]|,
|[1, 1]|));
then
A156: (p4
`2 )
= 1 by
Th3;
A157: (f
. p4)
in P by
A12,
A148,
A149,
FUNCT_1:def 6;
((f
. p4)
`2 )
>=
0 by
A2,
A156,
Th69;
then (f
. p4)
in (
Upper_Arc P) by
A151,
A157;
hence
LE ((f
. p4),(f
. p1),P) by
A153,
A155,
JORDAN6:def 10;
end;
case p4
in (
LSeg (
|[1, 1]|,
|[1, (
- 1)]|));
then
A158: (p4
`1 )
= 1 by
Th1;
A159: (f
.: K)
= P by
A2,
A5,
Lm15,
Th35,
JGRAPH_3: 23;
A160: (
dom f)
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
then
A161: (f
. p4)
in P by
A12,
A159,
FUNCT_1:def 6;
A162: (f
. p1)
in P by
A9,
A159,
A160,
FUNCT_1:def 6;
A163: ((f
. p1)
`1 )
<
0 by
A2,
A21,
A29,
Th67;
A164: ((f
. p1)
`2 )
<=
0 by
A2,
A21,
A29,
Th67;
A165: (f
.
|[(
- 1),
0 ]|)
= (
W-min P) by
A2,
A5,
Th10,
JGRAPH_5: 29;
A166:
now
assume (f
. p1)
= (
W-min P);
then p1
=
|[(
- 1),
0 ]| by
A2,
A160,
A165,
FUNCT_1:def 4;
hence contradiction by
A29,
EUCLID: 52;
end;
A167: ((f
. p4)
`1 )
>=
0 by
A2,
A158,
Th68;
now
per cases ;
case
A168: ((f
. p4)
`2 )
>=
0 ;
A169: ((f
. p1)
`2 )
<=
0 by
A2,
A21,
A29,
Th67;
A170: (
Upper_Arc P)
= { p where p be
Point of (
TOP-REAL 2) : p
in P & (p
`2 )
>=
0 } by
A5,
JGRAPH_5: 34;
A171: (f
.
|[(
- 1),
0 ]|)
= (
W-min P) by
A2,
A5,
Th10,
JGRAPH_5: 29;
A172:
now
assume (f
. p1)
= (
W-min P);
then p1
=
|[(
- 1),
0 ]| by
A2,
A160,
A171,
FUNCT_1:def 4;
hence contradiction by
A29,
EUCLID: 52;
end;
A173: (f
. p4)
in (
Upper_Arc P) by
A161,
A168,
A170;
(
Lower_Arc P)
= { p where p be
Point of (
TOP-REAL 2) : p
in P & (p
`2 )
<=
0 } by
A5,
JGRAPH_5: 35;
then (f
. p1)
in (
Lower_Arc P) by
A162,
A169;
hence
LE ((f
. p4),(f
. p1),P) by
A172,
A173,
JORDAN6:def 10;
end;
case ((f
. p4)
`2 )
<
0 ;
hence
LE ((f
. p4),(f
. p1),P) by
A5,
A161,
A162,
A163,
A164,
A166,
A167,
JGRAPH_5: 56;
end;
end;
hence
LE ((f
. p4),(f
. p1),P);
end;
case
A174: p4
in (
LSeg (
|[1, (
- 1)]|,
|[(
- 1), (
- 1)]|));
then (p4
`2 )
= (
- 1) by
Th3;
then
A175: ((f
. p4)
`2 )
<
0 by
A2,
Th69;
A176: (f
. p4)
in P by
A12,
A148,
A149,
FUNCT_1:def 6;
A177: ((f
. p1)
`2 )
<=
0 by
A2,
A21,
A29,
Th67;
((f
. p4)
`1 )
>= ((f
. p1)
`1 ) by
A2,
A20,
A174,
Th70;
hence
LE ((f
. p4),(f
. p1),P) by
A5,
A152,
A155,
A175,
A176,
A177,
JGRAPH_5: 56;
end;
end;
hence
LE ((f
. p4),(f
. p1),P);
end;
case
A178: (p4
`1 )
= (
- 1) & (p4
`2 )
>=
0 ;
A179: (f
.: K)
= P by
A2,
A5,
Lm15,
Th35,
JGRAPH_3: 23;
A180: (
dom f)
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
then
A181: (f
. p4)
in P by
A12,
A179,
FUNCT_1:def 6;
A182: (f
. p1)
in P by
A9,
A179,
A180,
FUNCT_1:def 6;
A183: ((f
. p4)
`2 )
>=
0 by
A2,
A178,
Th69;
A184: ((f
. p1)
`2 )
<=
0 by
A2,
A21,
A29,
Th67;
A185: (
Upper_Arc P)
= { p where p be
Point of (
TOP-REAL 2) : p
in P & (p
`2 )
>=
0 } by
A5,
JGRAPH_5: 34;
A186: (f
.
|[(
- 1),
0 ]|)
= (
W-min P) by
A2,
A5,
Th10,
JGRAPH_5: 29;
A187:
now
assume (f
. p1)
= (
W-min P);
then p1
=
|[(
- 1),
0 ]| by
A2,
A180,
A186,
FUNCT_1:def 4;
hence contradiction by
A29,
EUCLID: 52;
end;
A188: (f
. p4)
in (
Upper_Arc P) by
A181,
A183,
A185;
(
Lower_Arc P)
= { p where p be
Point of (
TOP-REAL 2) : p
in P & (p
`2 )
<=
0 } by
A5,
JGRAPH_5: 35;
then (f
. p1)
in (
Lower_Arc P) by
A182,
A184;
hence
LE ((f
. p4),(f
. p1),P) by
A187,
A188,
JORDAN6:def 10;
end;
case
A189: (p4
`1 )
= (
- 1) & (p4
`2 )
<
0 & (p1
`2 )
> (p4
`2 );
then
A190: p4
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)) by
A13,
Th2;
A191: (f
.: K)
= P by
A2,
A5,
Lm15,
Th35,
JGRAPH_3: 23;
A192: (
dom f)
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
then
A193: (f
. p4)
in P by
A12,
A191,
FUNCT_1:def 6;
A194: (f
. p1)
in P by
A9,
A191,
A192,
FUNCT_1:def 6;
A195: ((f
. p1)
`1 )
<
0 by
A2,
A21,
A29,
Th67;
A196: ((f
. p1)
`2 )
<
0 by
A2,
A21,
A29,
Th67;
A197: ((f
. p4)
`2 )
<= ((f
. p1)
`2 ) by
A2,
A20,
A29,
A189,
A190,
Th71;
((f
. p4)
`1 )
<
0 by
A2,
A189,
Th68;
hence
LE ((f
. p4),(f
. p1),P) by
A5,
A193,
A194,
A195,
A196,
A197,
JGRAPH_5: 51;
end;
end;
hence
LE ((f
. p4),(f
. p1),P);
end;
end;
A198: K
= { p : (p
`1 )
= (
- 1) & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (p
`2 )
= 1 & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 or (p
`1 )
= 1 & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (p
`2 )
= (
- 1) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 } by
Lm15;
thus K
= { p : (p
`1 )
= (
- 1) & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (p
`1 )
= 1 & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (
- 1)
= (p
`2 ) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 or 1
= (p
`2 ) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 }
proof
thus K
c= { p : (p
`1 )
= (
- 1) & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (p
`1 )
= 1 & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (
- 1)
= (p
`2 ) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 or 1
= (p
`2 ) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 }
proof
let x be
object;
assume x
in K;
then ex p st (p
= x) & ((p
`1 )
= (
- 1) & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (p
`2 )
= 1 & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 or (p
`1 )
= 1 & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (p
`2 )
= (
- 1) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1) by
A198;
hence thesis;
end;
thus { p : (p
`1 )
= (
- 1) & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (p
`1 )
= 1 & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (
- 1)
= (p
`2 ) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 or 1
= (p
`2 ) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 }
c= K
proof
let x be
object;
assume x
in { p : (p
`1 )
= (
- 1) & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (p
`1 )
= 1 & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (
- 1)
= (p
`2 ) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 or 1
= (p
`2 ) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 };
then ex p st (p
= x) & ((p
`1 )
= (
- 1) & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (p
`1 )
= 1 & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (
- 1)
= (p
`2 ) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 or 1
= (p
`2 ) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1);
hence thesis by
A198;
end;
end;
thus thesis by
A128,
A129,
A130,
JORDAN17:def 1;
end;
end;
hence thesis;
end;
case
A199: not ((p2
`2 )
<
0 & p2
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)));
A200:
now
per cases by
A10,
Th63;
case p2
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|));
hence p2
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)) & (
|[(
- 1),
0 ]|
`2 )
<= (p2
`2 ) or p2
in (
LSeg (
|[(
- 1), 1]|,
|[1, 1]|)) or p2
in (
LSeg (
|[1, 1]|,
|[1, (
- 1)]|)) or p2
in (
LSeg (
|[1, (
- 1)]|,
|[(
- 1), (
- 1)]|)) & p2
<> (
W-min K) by
A199,
EUCLID: 52;
end;
case p2
in (
LSeg (
|[(
- 1), 1]|,
|[1, 1]|));
hence p2
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)) & (
|[(
- 1),
0 ]|
`2 )
<= (p2
`2 ) or p2
in (
LSeg (
|[(
- 1), 1]|,
|[1, 1]|)) or p2
in (
LSeg (
|[1, 1]|,
|[1, (
- 1)]|)) or p2
in (
LSeg (
|[1, (
- 1)]|,
|[(
- 1), (
- 1)]|)) & p2
<> (
W-min K);
end;
case p2
in (
LSeg (
|[1, 1]|,
|[1, (
- 1)]|));
hence p2
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)) & (
|[(
- 1),
0 ]|
`2 )
<= (p2
`2 ) or p2
in (
LSeg (
|[(
- 1), 1]|,
|[1, 1]|)) or p2
in (
LSeg (
|[1, 1]|,
|[1, (
- 1)]|)) or p2
in (
LSeg (
|[1, (
- 1)]|,
|[(
- 1), (
- 1)]|)) & p2
<> (
W-min K);
end;
case
A201: p2
in (
LSeg (
|[1, (
- 1)]|,
|[(
- 1), (
- 1)]|));
A202: (
W-min K)
=
|[(
- 1), (
- 1)]| by
Th46;
now
assume
A203: p2
= (
W-min K);
then (p2
`2 )
= (
- 1) by
A202,
EUCLID: 52;
hence contradiction by
A199,
A202,
A203,
RLTOPSP1: 68;
end;
hence p2
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)) & (
|[(
- 1),
0 ]|
`2 )
<= (p2
`2 ) or p2
in (
LSeg (
|[(
- 1), 1]|,
|[1, 1]|)) or p2
in (
LSeg (
|[1, 1]|,
|[1, (
- 1)]|)) or p2
in (
LSeg (
|[1, (
- 1)]|,
|[(
- 1), (
- 1)]|)) & p2
<> (
W-min K) by
A201;
end;
end;
then
A204:
LE (
|[(
- 1),
0 ]|,p2,K) by
A19,
Th59;
then
A205:
LE ((f
. p2),(f
. p3),P) by
A1,
A2,
A7,
A17,
A18,
Th66,
RLTOPSP1: 69;
LE (
|[(
- 1),
0 ]|,p3,K) by
A7,
A204,
Th50,
JORDAN6: 58;
then
A206:
LE ((f
. p3),(f
. p4),P) by
A1,
A2,
A8,
A17,
A18,
Th66,
RLTOPSP1: 69;
A207:
now
per cases ;
case
A208: (p4
`1 )
= (
- 1) & (p4
`2 )
<
0 & (p1
`2 )
<= (p4
`2 );
A209: (
|[(
- 1), (
- 1)]|
`1 )
= (
- 1) by
EUCLID: 52;
A210: (
|[(
- 1), (
- 1)]|
`2 )
= (
- 1) by
EUCLID: 52;
A211: (
|[(
- 1), 1]|
`1 )
= (
- 1) by
EUCLID: 52;
A212: (
|[(
- 1), 1]|
`2 )
= 1 by
EUCLID: 52;
(
- 1)
<= (p4
`2 ) by
A12,
Th19;
then
A213: p4
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)) by
A208,
A209,
A210,
A211,
A212,
GOBOARD7: 7;
now
per cases by
A200;
case
A214: p2
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)) & (
|[(
- 1),
0 ]|
`2 )
<= (p2
`2 );
then
0
<= (p2
`2 ) by
EUCLID: 52;
hence contradiction by
A15,
A208,
A213,
A214,
Th55;
end;
case
A215: p2
in (
LSeg (
|[(
- 1), 1]|,
|[1, 1]|));
then
LE (p4,p2,K) by
A213,
Th59;
then p2
= p4 by
A15,
Th50,
JORDAN6: 57;
hence contradiction by
A208,
A215,
Th3;
end;
case
A216: p2
in (
LSeg (
|[1, 1]|,
|[1, (
- 1)]|));
then
LE (p4,p2,K) by
A213,
Th59;
then p2
= p4 by
A15,
Th50,
JORDAN6: 57;
hence contradiction by
A208,
A216,
Th1;
end;
case
A217: p2
in (
LSeg (
|[1, (
- 1)]|,
|[(
- 1), (
- 1)]|)) & p2
<> (
W-min K);
then
LE (p4,p2,K) by
A213,
Th59;
then
A218: p2
= p4 by
A15,
Th50,
JORDAN6: 57;
A219: (p2
`2 )
= (
- 1) by
A217,
Th3;
A220: (
W-min K)
=
|[(
- 1), (
- 1)]| by
Th46;
then
A221: ((
W-min K)
`1 )
= (
- 1) by
EUCLID: 52;
((
W-min K)
`2 )
= (
- 1) by
A220,
EUCLID: 52;
hence contradiction by
A208,
A217,
A218,
A219,
A221,
TOPREAL3: 6;
end;
end;
hence contradiction;
end;
case
A222: not ((p4
`1 )
= (
- 1) & (p4
`2 )
<
0 & (p1
`2 )
<= (p4
`2 ));
A223: p4
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)) or p4
in (
LSeg (
|[(
- 1), 1]|,
|[1, 1]|)) or p4
in (
LSeg (
|[1, 1]|,
|[1, (
- 1)]|)) or p4
in (
LSeg (
|[1, (
- 1)]|,
|[(
- 1), (
- 1)]|)) by
A12,
Th63;
now
per cases by
A222;
case
A224: (p4
`1 )
<> (
- 1);
A225: (f
.: K)
= P by
A2,
A5,
Lm15,
Th35,
JGRAPH_3: 23;
A226: (
dom f)
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
A227: ((f
. p1)
`2 )
<=
0 by
A2,
A21,
A29,
Th67;
A228: (
Upper_Arc P)
= { p where p be
Point of (
TOP-REAL 2) : p
in P & (p
`2 )
>=
0 } by
A5,
JGRAPH_5: 34;
A229: (f
. p1)
in P by
A9,
A225,
A226,
FUNCT_1:def 6;
(
Lower_Arc P)
= { p where p be
Point of (
TOP-REAL 2) : p
in P & (p
`2 )
<=
0 } by
A5,
JGRAPH_5: 35;
then
A230: (f
. p1)
in (
Lower_Arc P) by
A227,
A229;
A231: (f
.
|[(
- 1),
0 ]|)
= (
W-min P) by
A2,
A5,
Th10,
JGRAPH_5: 29;
A232:
now
assume (f
. p1)
= (
W-min P);
then p1
=
|[(
- 1),
0 ]| by
A2,
A226,
A231,
FUNCT_1:def 4;
hence contradiction by
A29,
EUCLID: 52;
end;
now
per cases by
A223,
A224,
Th1;
case p4
in (
LSeg (
|[(
- 1), 1]|,
|[1, 1]|));
then
A233: (p4
`2 )
= 1 by
Th3;
A234: (f
. p4)
in P by
A12,
A225,
A226,
FUNCT_1:def 6;
((f
. p4)
`2 )
>=
0 by
A2,
A233,
Th69;
then (f
. p4)
in (
Upper_Arc P) by
A228,
A234;
hence
LE ((f
. p4),(f
. p1),P) by
A230,
A232,
JORDAN6:def 10;
end;
case p4
in (
LSeg (
|[1, 1]|,
|[1, (
- 1)]|));
then
A235: (p4
`1 )
= 1 by
Th1;
A236: (f
.: K)
= P by
A2,
A5,
Lm15,
Th35,
JGRAPH_3: 23;
A237: (
dom f)
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
then
A238: (f
. p4)
in P by
A12,
A236,
FUNCT_1:def 6;
A239: (f
. p1)
in P by
A9,
A236,
A237,
FUNCT_1:def 6;
A240: ((f
. p1)
`1 )
<
0 by
A2,
A21,
A29,
Th67;
A241: ((f
. p1)
`2 )
<=
0 by
A2,
A21,
A29,
Th67;
A242: (f
.
|[(
- 1),
0 ]|)
= (
W-min P) by
A2,
A5,
Th10,
JGRAPH_5: 29;
A243:
now
assume (f
. p1)
= (
W-min P);
then p1
=
|[(
- 1),
0 ]| by
A2,
A237,
A242,
FUNCT_1:def 4;
hence contradiction by
A29,
EUCLID: 52;
end;
A244: ((f
. p4)
`1 )
>=
0 by
A2,
A235,
Th68;
now
per cases ;
case
A245: ((f
. p4)
`2 )
>=
0 ;
A246: ((f
. p1)
`2 )
<=
0 by
A2,
A21,
A29,
Th67;
A247: (
Upper_Arc P)
= { p where p be
Point of (
TOP-REAL 2) : p
in P & (p
`2 )
>=
0 } by
A5,
JGRAPH_5: 34;
A248: (f
.
|[(
- 1),
0 ]|)
= (
W-min P) by
A2,
A5,
Th10,
JGRAPH_5: 29;
A249:
now
assume (f
. p1)
= (
W-min P);
then p1
=
|[(
- 1),
0 ]| by
A2,
A237,
A248,
FUNCT_1:def 4;
hence contradiction by
A29,
EUCLID: 52;
end;
A250: (f
. p4)
in (
Upper_Arc P) by
A238,
A245,
A247;
(
Lower_Arc P)
= { p where p be
Point of (
TOP-REAL 2) : p
in P & (p
`2 )
<=
0 } by
A5,
JGRAPH_5: 35;
then (f
. p1)
in (
Lower_Arc P) by
A239,
A246;
hence
LE ((f
. p4),(f
. p1),P) by
A249,
A250,
JORDAN6:def 10;
end;
case ((f
. p4)
`2 )
<
0 ;
hence
LE ((f
. p4),(f
. p1),P) by
A5,
A238,
A239,
A240,
A241,
A243,
A244,
JGRAPH_5: 56;
end;
end;
hence
LE ((f
. p4),(f
. p1),P);
end;
case
A251: p4
in (
LSeg (
|[1, (
- 1)]|,
|[(
- 1), (
- 1)]|));
then (p4
`2 )
= (
- 1) by
Th3;
then
A252: ((f
. p4)
`2 )
<
0 by
A2,
Th69;
A253: (f
. p4)
in P by
A12,
A225,
A226,
FUNCT_1:def 6;
A254: ((f
. p1)
`2 )
<=
0 by
A2,
A21,
A29,
Th67;
((f
. p4)
`1 )
>= ((f
. p1)
`1 ) by
A2,
A20,
A251,
Th70;
hence
LE ((f
. p4),(f
. p1),P) by
A5,
A229,
A232,
A252,
A253,
A254,
JGRAPH_5: 56;
end;
end;
hence
LE ((f
. p4),(f
. p1),P);
end;
case
A255: (p4
`1 )
= (
- 1) & (p4
`2 )
>=
0 ;
A256: (f
.: K)
= P by
A2,
A5,
Lm15,
Th35,
JGRAPH_3: 23;
A257: (
dom f)
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
then
A258: (f
. p4)
in P by
A12,
A256,
FUNCT_1:def 6;
A259: (f
. p1)
in P by
A9,
A256,
A257,
FUNCT_1:def 6;
A260: ((f
. p4)
`2 )
>=
0 by
A2,
A255,
Th69;
A261: ((f
. p1)
`2 )
<=
0 by
A2,
A21,
A29,
Th67;
A262: (
Upper_Arc P)
= { p where p be
Point of (
TOP-REAL 2) : p
in P & (p
`2 )
>=
0 } by
A5,
JGRAPH_5: 34;
A263: (f
.
|[(
- 1),
0 ]|)
= (
W-min P) by
A2,
A5,
Th10,
JGRAPH_5: 29;
A264:
now
assume (f
. p1)
= (
W-min P);
then p1
=
|[(
- 1),
0 ]| by
A2,
A257,
A263,
FUNCT_1:def 4;
hence contradiction by
A29,
EUCLID: 52;
end;
A265: (f
. p4)
in (
Upper_Arc P) by
A258,
A260,
A262;
(
Lower_Arc P)
= { p where p be
Point of (
TOP-REAL 2) : p
in P & (p
`2 )
<=
0 } by
A5,
JGRAPH_5: 35;
then (f
. p1)
in (
Lower_Arc P) by
A259,
A261;
hence
LE ((f
. p4),(f
. p1),P) by
A264,
A265,
JORDAN6:def 10;
end;
case
A266: (p4
`1 )
= (
- 1) & (p4
`2 )
<
0 & (p1
`2 )
> (p4
`2 );
then
A267: p4
in (
LSeg (
|[(
- 1), (
- 1)]|,
|[(
- 1), 1]|)) by
A13,
Th2;
A268: (f
.: K)
= P by
A2,
A5,
Lm15,
Th35,
JGRAPH_3: 23;
A269: (
dom f)
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
then
A270: (f
. p4)
in P by
A12,
A268,
FUNCT_1:def 6;
A271: (f
. p1)
in P by
A9,
A268,
A269,
FUNCT_1:def 6;
A272: ((f
. p1)
`1 )
<
0 by
A2,
A21,
A29,
Th67;
A273: ((f
. p1)
`2 )
<
0 by
A2,
A21,
A29,
Th67;
A274: ((f
. p4)
`2 )
<= ((f
. p1)
`2 ) by
A2,
A20,
A29,
A266,
A267,
Th71;
((f
. p4)
`1 )
<
0 by
A2,
A266,
Th68;
hence
LE ((f
. p4),(f
. p1),P) by
A5,
A270,
A271,
A272,
A273,
A274,
JGRAPH_5: 51;
end;
end;
hence
LE ((f
. p4),(f
. p1),P);
end;
end;
A275: K
= { p : (p
`1 )
= (
- 1) & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (p
`2 )
= 1 & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 or (p
`1 )
= 1 & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (p
`2 )
= (
- 1) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 } by
Lm15;
thus K
= { p : (p
`1 )
= (
- 1) & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (p
`1 )
= 1 & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (
- 1)
= (p
`2 ) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 or 1
= (p
`2 ) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 }
proof
thus K
c= { p : (p
`1 )
= (
- 1) & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (p
`1 )
= 1 & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (
- 1)
= (p
`2 ) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 or 1
= (p
`2 ) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 }
proof
let x be
object;
assume x
in K;
then ex p st (p
= x) & ((p
`1 )
= (
- 1) & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (p
`2 )
= 1 & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 or (p
`1 )
= 1 & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (p
`2 )
= (
- 1) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1) by
A275;
hence thesis;
end;
thus { p : (p
`1 )
= (
- 1) & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (p
`1 )
= 1 & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (
- 1)
= (p
`2 ) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 or 1
= (p
`2 ) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 }
c= K
proof
let x be
object;
assume x
in { p : (p
`1 )
= (
- 1) & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (p
`1 )
= 1 & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (
- 1)
= (p
`2 ) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 or 1
= (p
`2 ) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 };
then ex p st (p
= x) & ((p
`1 )
= (
- 1) & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (p
`1 )
= 1 & (
- 1)
<= (p
`2 ) & (p
`2 )
<= 1 or (
- 1)
= (p
`2 ) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1 or 1
= (p
`2 ) & (
- 1)
<= (p
`1 ) & (p
`1 )
<= 1);
hence thesis by
A275;
end;
end;
thus thesis by
A205,
A206,
A207,
JORDAN17:def 1;
end;
end;
hence thesis;
end;
end;
hence thesis;
end;
case
A276: p1
in (
LSeg (
|[(
- 1), 1]|,
|[1, 1]|));
A277:
|[(
- 1), 1]|
in (
LSeg (
|[(
- 1), 1]|,
|[1, 1]|)) by
RLTOPSP1: 68;
A278: (
|[(
- 1), 1]|
`1 )
= (
- 1) by
EUCLID: 52;
A279: (
|[(
- 1), 1]|
`2 )
= 1 by
EUCLID: 52;
(
- 1)
<= (p1
`1 ) by
A276,
Th3;
then
A280:
LE (
|[(
- 1), 1]|,p1,K) by
A276,
A277,
A278,
Th60;
then
A281:
LE ((f
. p1),(f
. p2),P) by
A1,
A2,
A6,
A279,
Th66,
RLTOPSP1: 68;
A282:
LE (
|[(
- 1), 1]|,p2,K) by
A6,
A280,
Th50,
JORDAN6: 58;
then
A283:
LE ((f
. p2),(f
. p3),P) by
A1,
A2,
A7,
A279,
Th66,
RLTOPSP1: 68;
LE (
|[(
- 1), 1]|,p3,K) by
A7,
A282,
Th50,
JORDAN6: 58;
then
LE ((f
. p3),(f
. p4),P) by
A1,
A2,
A8,
A279,
Th66,
RLTOPSP1: 68;
hence thesis by
A281,
A283,
JORDAN17:def 1;
end;
case
A284: p1
in (
LSeg (
|[1, 1]|,
|[1, (
- 1)]|));
A285:
|[(
- 1), 1]|
in (
LSeg (
|[(
- 1), 1]|,
|[1, 1]|)) by
RLTOPSP1: 68;
A286: (
|[(
- 1), 1]|
`1 )
= (
- 1) by
EUCLID: 52;
A287: (
|[(
- 1), 1]|
`2 )
= 1 by
EUCLID: 52;
A288:
|[1, 1]|
in (
LSeg (
|[1, 1]|,
|[1, (
- 1)]|)) by
RLTOPSP1: 68;
A289:
|[1, 1]|
in (
LSeg (
|[(
- 1), 1]|,
|[1, 1]|)) by
RLTOPSP1: 68;
A290: (
|[1, 1]|
`1 )
= 1 by
EUCLID: 52;
A291: (
|[1, 1]|
`2 )
= 1 by
EUCLID: 52;
A292:
LE (
|[(
- 1), 1]|,
|[1, 1]|,K) by
A285,
A286,
A289,
A290,
Th60;
(p1
`2 )
<= 1 by
A284,
Th1;
then
LE (
|[1, 1]|,p1,K) by
A284,
A288,
A291,
Th61;
then
A293:
LE (
|[(
- 1), 1]|,p1,K) by
A292,
Th50,
JORDAN6: 58;
then
A294:
LE ((f
. p1),(f
. p2),P) by
A1,
A2,
A6,
A287,
Th66,
RLTOPSP1: 68;
A295:
LE (
|[(
- 1), 1]|,p2,K) by
A6,
A293,
Th50,
JORDAN6: 58;
then
A296:
LE ((f
. p2),(f
. p3),P) by
A1,
A2,
A7,
A287,
Th66,
RLTOPSP1: 68;
LE (
|[(
- 1), 1]|,p3,K) by
A7,
A295,
Th50,
JORDAN6: 58;
then
LE ((f
. p3),(f
. p4),P) by
A1,
A2,
A8,
A287,
Th66,
RLTOPSP1: 68;
hence thesis by
A294,
A296,
JORDAN17:def 1;
end;
case
A297: p1
in (
LSeg (
|[1, (
- 1)]|,
|[(
- 1), (
- 1)]|)) & p1
<> (
W-min K);
A298:
|[(
- 1), 1]|
in (
LSeg (
|[(
- 1), 1]|,
|[1, 1]|)) by
RLTOPSP1: 68;
A299: (
|[(
- 1), 1]|
`1 )
= (
- 1) by
EUCLID: 52;
A300: (
|[(
- 1), 1]|
`2 )
= 1 by
EUCLID: 52;
A301:
|[1, 1]|
in (
LSeg (
|[(
- 1), 1]|,
|[1, 1]|)) by
RLTOPSP1: 68;
(
|[1, 1]|
`1 )
= 1 by
EUCLID: 52;
then
A302:
LE (
|[(
- 1), 1]|,
|[1, 1]|,K) by
A298,
A299,
A301,
Th60;
A303:
|[1, (
- 1)]|
in (
LSeg (
|[1, 1]|,
|[1, (
- 1)]|)) by
RLTOPSP1: 68;
A304:
|[1, (
- 1)]|
in (
LSeg (
|[1, (
- 1)]|,
|[(
- 1), (
- 1)]|)) by
RLTOPSP1: 68;
A305: (
|[1, (
- 1)]|
`1 )
= 1 by
EUCLID: 52;
LE (
|[1, 1]|,
|[1, (
- 1)]|,K) by
A301,
A303,
Th60;
then
A306:
LE (
|[(
- 1), 1]|,
|[1, (
- 1)]|,K) by
A302,
Th50,
JORDAN6: 58;
(
W-min K)
=
|[(
- 1), (
- 1)]| by
Th46;
then
A307: ((
W-min K)
`1 )
= (
- 1) by
EUCLID: 52;
(p1
`1 )
<= 1 by
A297,
Th3;
then
LE (
|[1, (
- 1)]|,p1,K) by
A297,
A304,
A305,
A307,
Th62;
then
A308:
LE (
|[(
- 1), 1]|,p1,K) by
A306,
Th50,
JORDAN6: 58;
then
A309:
LE ((f
. p1),(f
. p2),P) by
A1,
A2,
A6,
A300,
Th66,
RLTOPSP1: 68;
A310:
LE (
|[(
- 1), 1]|,p2,K) by
A6,
A308,
Th50,
JORDAN6: 58;
then
A311:
LE ((f
. p2),(f
. p3),P) by
A1,
A2,
A7,
A300,
Th66,
RLTOPSP1: 68;
LE (
|[(
- 1), 1]|,p3,K) by
A7,
A310,
Th50,
JORDAN6: 58;
then
LE ((f
. p3),(f
. p4),P) by
A1,
A2,
A8,
A300,
Th66,
RLTOPSP1: 68;
hence thesis by
A309,
A311,
JORDAN17:def 1;
end;
end;
hence thesis;
end;
end;
theorem ::
JGRAPH_6:73
Th73: for p1,p2 be
Point of (
TOP-REAL 2), P be non
empty
compact
Subset of (
TOP-REAL 2) st P is
being_simple_closed_curve & p1
in P & p2
in P & not
LE (p1,p2,P) holds
LE (p2,p1,P)
proof
let p1,p2 be
Point of (
TOP-REAL 2), P be non
empty
compact
Subset of (
TOP-REAL 2);
assume that
A1: P is
being_simple_closed_curve and
A2: p1
in P and
A3: p2
in P and
A4: not
LE (p1,p2,P);
A5: P
= ((
Upper_Arc P)
\/ (
Lower_Arc P)) by
A1,
JORDAN6:def 9;
A6: not p1
= (
W-min P) by
A1,
A3,
A4,
JORDAN7: 3;
per cases by
A2,
A3,
A5,
XBOOLE_0:def 3;
suppose
A7: p1
in (
Upper_Arc P) & p2
in (
Upper_Arc P);
A8: (
Upper_Arc P)
is_an_arc_of ((
W-min P),(
E-max P)) by
A1,
JORDAN6:def 8;
set q1 = (
W-min P), q2 = (
E-max P);
set Q = (
Upper_Arc P);
now
per cases ;
case
A9: p1
<> p2;
now
per cases by
A7,
A8,
A9,
JORDAN5C: 14;
case
LE (p1,p2,Q,q1,q2) & not
LE (p2,p1,Q,q1,q2);
hence contradiction by
A4,
A7,
JORDAN6:def 10;
end;
case
LE (p2,p1,Q,q1,q2) & not
LE (p1,p2,Q,q1,q2);
hence thesis by
A7,
JORDAN6:def 10;
end;
end;
hence thesis;
end;
case p1
= p2;
hence thesis by
A1,
A2,
JORDAN6: 56;
end;
end;
hence thesis;
end;
suppose
A10: p1
in (
Upper_Arc P) & p2
in (
Lower_Arc P);
now
per cases ;
case p2
= (
W-min P);
hence thesis by
A1,
A2,
JORDAN7: 3;
end;
case p2
<> (
W-min P);
hence contradiction by
A4,
A10,
JORDAN6:def 10;
end;
end;
hence thesis;
end;
suppose p1
in (
Lower_Arc P) & p2
in (
Upper_Arc P);
hence thesis by
A6,
JORDAN6:def 10;
end;
suppose
A11: p1
in (
Lower_Arc P) & p2
in (
Lower_Arc P);
A12: (
Lower_Arc P)
is_an_arc_of ((
E-max P),(
W-min P)) by
A1,
JORDAN6: 50;
set q2 = (
W-min P), q1 = (
E-max P);
set Q = (
Lower_Arc P);
now
per cases ;
case
A13: p1
<> p2;
now
per cases by
A11,
A12,
A13,
JORDAN5C: 14;
case
A14:
LE (p1,p2,Q,q1,q2) & not
LE (p2,p1,Q,q1,q2);
now
per cases ;
case p2
= (
W-min P);
hence thesis by
A1,
A2,
JORDAN7: 3;
end;
case p2
<> (
W-min P);
hence contradiction by
A4,
A11,
A14,
JORDAN6:def 10;
end;
end;
hence thesis;
end;
case
LE (p2,p1,Q,q1,q2) & not
LE (p1,p2,Q,q1,q2);
hence thesis by
A6,
A11,
JORDAN6:def 10;
end;
end;
hence thesis;
end;
case p1
= p2;
hence thesis by
A1,
A2,
JORDAN6: 56;
end;
end;
hence thesis;
end;
end;
theorem ::
JGRAPH_6:74
for p1,p2,p3 be
Point of (
TOP-REAL 2), P be non
empty
compact
Subset of (
TOP-REAL 2) st P is
being_simple_closed_curve & p1
in P & p2
in P & p3
in P holds
LE (p1,p2,P) &
LE (p2,p3,P) or
LE (p1,p3,P) &
LE (p3,p2,P) or
LE (p2,p1,P) &
LE (p1,p3,P) or
LE (p2,p3,P) &
LE (p3,p1,P) or
LE (p3,p1,P) &
LE (p1,p2,P) or
LE (p3,p2,P) &
LE (p2,p1,P) by
Th73;
theorem ::
JGRAPH_6:75
for p1,p2,p3 be
Point of (
TOP-REAL 2), P be non
empty
compact
Subset of (
TOP-REAL 2) st P is
being_simple_closed_curve & p1
in P & p2
in P & p3
in P &
LE (p2,p3,P) holds
LE (p1,p2,P) or
LE (p2,p1,P) &
LE (p1,p3,P) or
LE (p3,p1,P) by
Th73;
theorem ::
JGRAPH_6:76
for p1,p2,p3,p4 be
Point of (
TOP-REAL 2), P be non
empty
compact
Subset of (
TOP-REAL 2) st P is
being_simple_closed_curve & p1
in P & p2
in P & p3
in P & p4
in P &
LE (p2,p3,P) &
LE (p3,p4,P) holds
LE (p1,p2,P) or
LE (p2,p1,P) &
LE (p1,p3,P) or
LE (p3,p1,P) &
LE (p1,p4,P) or
LE (p4,p1,P) by
Th73;
theorem ::
JGRAPH_6:77
Th77: for p1,p2,p3,p4 be
Point of (
TOP-REAL 2), P be non
empty
compact
Subset of (
TOP-REAL 2), f be
Function of (
TOP-REAL 2), (
TOP-REAL 2) st P
= (
circle (
0 ,
0 ,1)) & f
=
Sq_Circ &
LE ((f
. p1),(f
. p2),P) &
LE ((f
. p2),(f
. p3),P) &
LE ((f
. p3),(f
. p4),P) holds (p1,p2,p3,p4)
are_in_this_order_on (
rectangle ((
- 1),1,(
- 1),1))
proof
let p1,p2,p3,p4 be
Point of (
TOP-REAL 2), P be non
empty
compact
Subset of (
TOP-REAL 2), f be
Function of (
TOP-REAL 2), (
TOP-REAL 2);
set K = (
rectangle ((
- 1),1,(
- 1),1));
assume that
A1: P
= (
circle (
0 ,
0 ,1)) and
A2: f
=
Sq_Circ and
A3:
LE ((f
. p1),(f
. p2),P) and
A4:
LE ((f
. p2),(f
. p3),P) and
A5:
LE ((f
. p3),(f
. p4),P);
A6: K is
being_simple_closed_curve by
Th50;
A7: P
= { p :
|.p.|
= 1 } by
A1,
Th24;
then
A8:
LE ((f
. p1),(f
. p3),P) by
A3,
A4,
JGRAPH_3: 26,
JORDAN6: 58;
A9:
LE ((f
. p2),(f
. p4),P) by
A4,
A5,
A7,
JGRAPH_3: 26,
JORDAN6: 58;
A10: (f
.: K)
= P by
A2,
A7,
Lm15,
Th35,
JGRAPH_3: 23;
A11: (
dom f)
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
A12: P
= { p :
|.p.|
= 1 } by
A1,
Th24;
then
A13: P is
being_simple_closed_curve by
JGRAPH_3: 26;
then (f
. p1)
in P by
A3,
JORDAN7: 5;
then ex x1 be
object st (x1
in (
dom f)) & (x1
in K) & ((f
. p1)
= (f
. x1)) by
A10,
FUNCT_1:def 6;
then
A14: p1
in K by
A2,
A11,
FUNCT_1:def 4;
(f
. p2)
in P by
A3,
A13,
JORDAN7: 5;
then ex x2 be
object st (x2
in (
dom f)) & (x2
in K) & ((f
. p2)
= (f
. x2)) by
A10,
FUNCT_1:def 6;
then
A15: p2
in K by
A2,
A11,
FUNCT_1:def 4;
(f
. p3)
in P by
A4,
A13,
JORDAN7: 5;
then ex x3 be
object st (x3
in (
dom f)) & (x3
in K) & ((f
. p3)
= (f
. x3)) by
A10,
FUNCT_1:def 6;
then
A16: p3
in K by
A2,
A11,
FUNCT_1:def 4;
(f
. p4)
in P by
A5,
A13,
JORDAN7: 5;
then ex x4 be
object st (x4
in (
dom f)) & (x4
in K) & ((f
. p4)
= (f
. x4)) by
A10,
FUNCT_1:def 6;
then
A17: p4
in K by
A2,
A11,
FUNCT_1:def 4;
now
assume
A18: not (p1,p2,p3,p4)
are_in_this_order_on K;
A19:
now
assume
A20: (p1,p2,p4,p3)
are_in_this_order_on K;
now
per cases by
A20,
JORDAN17:def 1;
case
A21:
LE (p1,p2,K) &
LE (p2,p4,K) &
LE (p4,p3,K);
then ((f
. p1),(f
. p2),(f
. p4),(f
. p3))
are_in_this_order_on P by
A1,
A2,
Th72;
then
LE ((f
. p1),(f
. p2),P) &
LE ((f
. p2),(f
. p4),P) &
LE ((f
. p4),(f
. p3),P) or
LE ((f
. p2),(f
. p4),P) &
LE ((f
. p4),(f
. p3),P) &
LE ((f
. p3),(f
. p1),P) or
LE ((f
. p4),(f
. p3),P) &
LE ((f
. p3),(f
. p1),P) &
LE ((f
. p1),(f
. p2),P) or
LE ((f
. p3),(f
. p1),P) &
LE ((f
. p1),(f
. p2),P) &
LE ((f
. p2),(f
. p4),P) by
JORDAN17:def 1;
then (f
. p3)
= (f
. p4) or (f
. p3)
= (f
. p1) by
A5,
A8,
A12,
JGRAPH_3: 26,
JORDAN6: 57;
then
A22: p3
= p4 or p3
= p1 by
A2,
A11,
FUNCT_1:def 4;
LE (p1,p4,K) by
A21,
Th50,
JORDAN6: 58;
then p1
= p4 by
A18,
A20,
A21,
A22,
Th50,
JORDAN6: 57;
hence contradiction by
A18,
A20,
A22;
end;
case
A23:
LE (p2,p4,K) &
LE (p4,p3,K) &
LE (p3,p1,K);
then ((f
. p2),(f
. p4),(f
. p3),(f
. p1))
are_in_this_order_on P by
A1,
A2,
Th72;
then
LE ((f
. p2),(f
. p4),P) &
LE ((f
. p4),(f
. p3),P) &
LE ((f
. p3),(f
. p1),P) or
LE ((f
. p4),(f
. p3),P) &
LE ((f
. p3),(f
. p1),P) &
LE ((f
. p1),(f
. p2),P) or
LE ((f
. p3),(f
. p1),P) &
LE ((f
. p1),(f
. p2),P) &
LE ((f
. p2),(f
. p4),P) or
LE ((f
. p1),(f
. p2),P) &
LE ((f
. p2),(f
. p4),P) &
LE ((f
. p4),(f
. p3),P) by
JORDAN17:def 1;
then (f
. p3)
= (f
. p4) or
LE ((f
. p3),(f
. p2),P) by
A5,
A13,
JORDAN6: 57,
JORDAN6: 58;
then (f
. p3)
= (f
. p4) or (f
. p3)
= (f
. p2) by
A4,
A12,
JGRAPH_3: 26,
JORDAN6: 57;
then
A24: p3
= p4 or p3
= p2 by
A2,
A11,
FUNCT_1:def 4;
then p4
= p2 by
A18,
A20,
A23,
Th50,
JORDAN6: 57;
hence contradiction by
A18,
A20,
A24;
end;
case
A25:
LE (p4,p3,K) &
LE (p3,p1,K) &
LE (p1,p2,K);
then ((f
. p4),(f
. p3),(f
. p1),(f
. p2))
are_in_this_order_on P by
A1,
A2,
Th72;
then
LE ((f
. p4),(f
. p3),P) &
LE ((f
. p3),(f
. p1),P) &
LE ((f
. p1),(f
. p2),P) or
LE ((f
. p3),(f
. p1),P) &
LE ((f
. p1),(f
. p2),P) &
LE ((f
. p2),(f
. p4),P) or
LE ((f
. p1),(f
. p2),P) &
LE ((f
. p2),(f
. p4),P) &
LE ((f
. p4),(f
. p3),P) or
LE ((f
. p2),(f
. p4),P) &
LE ((f
. p4),(f
. p3),P) &
LE ((f
. p3),(f
. p1),P) by
JORDAN17:def 1;
then (f
. p3)
= (f
. p4) or
LE ((f
. p3),(f
. p2),P) by
A5,
A13,
JORDAN6: 57,
JORDAN6: 58;
then (f
. p3)
= (f
. p4) or (f
. p3)
= (f
. p2) by
A4,
A12,
JGRAPH_3: 26,
JORDAN6: 57;
then
A26: p3
= p4 or p3
= p2 by
A2,
A11,
FUNCT_1:def 4;
then p3
= p1 by
A18,
A20,
A25,
Th50,
JORDAN6: 57;
hence contradiction by
A6,
A18,
A20,
A26,
JORDAN17: 12;
end;
case
A27:
LE (p3,p1,K) &
LE (p1,p2,K) &
LE (p2,p4,K);
then ((f
. p3),(f
. p1),(f
. p2),(f
. p4))
are_in_this_order_on P by
A1,
A2,
Th72;
then
LE ((f
. p4),(f
. p3),P) &
LE ((f
. p3),(f
. p1),P) &
LE ((f
. p1),(f
. p2),P) or
LE ((f
. p3),(f
. p1),P) &
LE ((f
. p1),(f
. p2),P) &
LE ((f
. p2),(f
. p4),P) or
LE ((f
. p1),(f
. p2),P) &
LE ((f
. p2),(f
. p4),P) &
LE ((f
. p4),(f
. p3),P) or
LE ((f
. p2),(f
. p4),P) &
LE ((f
. p4),(f
. p3),P) &
LE ((f
. p3),(f
. p1),P) by
JORDAN17:def 1;
then (f
. p3)
= (f
. p4) or
LE ((f
. p3),(f
. p2),P) by
A5,
A13,
JORDAN6: 57,
JORDAN6: 58;
then (f
. p3)
= (f
. p4) or (f
. p3)
= (f
. p2) by
A4,
A12,
JGRAPH_3: 26,
JORDAN6: 57;
then
A28: p3
= p4 or p3
= p2 by
A2,
A11,
FUNCT_1:def 4;
then p3
= p1 by
A18,
A20,
A27,
Th50,
JORDAN6: 57;
hence contradiction by
A6,
A18,
A20,
A28,
JORDAN17: 12;
end;
end;
hence contradiction;
end;
A29:
now
assume
A30: (p1,p3,p4,p2)
are_in_this_order_on K;
now
per cases by
A30,
JORDAN17:def 1;
case
LE (p1,p3,K) &
LE (p3,p4,K) &
LE (p4,p2,K);
then ((f
. p1),(f
. p3),(f
. p4),(f
. p2))
are_in_this_order_on P by
A1,
A2,
Th72;
then
LE ((f
. p1),(f
. p3),P) &
LE ((f
. p3),(f
. p4),P) &
LE ((f
. p4),(f
. p2),P) or
LE ((f
. p3),(f
. p4),P) &
LE ((f
. p4),(f
. p2),P) &
LE ((f
. p2),(f
. p1),P) or
LE ((f
. p4),(f
. p2),P) &
LE ((f
. p2),(f
. p1),P) &
LE ((f
. p1),(f
. p3),P) or
LE ((f
. p2),(f
. p1),P) &
LE ((f
. p1),(f
. p3),P) &
LE ((f
. p3),(f
. p4),P) by
JORDAN17:def 1;
then (f
. p4)
= (f
. p2) or (f
. p2)
= (f
. p1) by
A3,
A9,
A12,
JGRAPH_3: 26,
JORDAN6: 57;
then
A31: p4
= p2 or p2
= p1 by
A2,
A11,
FUNCT_1:def 4;
then (f
. p3)
= (f
. p2) or (f
. p4)
= (f
. p1) by
A4,
A5,
A6,
A12,
A18,
A30,
JGRAPH_3: 26,
JORDAN17: 12,
JORDAN6: 57;
then p3
= p2 or p4
= p1 by
A2,
A11,
FUNCT_1:def 4;
hence contradiction by
A6,
A18,
A30,
A31,
JORDAN17: 12;
end;
case
LE (p3,p4,K) &
LE (p4,p2,K) &
LE (p2,p1,K);
then ((f
. p3),(f
. p4),(f
. p2),(f
. p1))
are_in_this_order_on P by
A1,
A2,
Th72;
then
A32:
LE ((f
. p1),(f
. p3),P) &
LE ((f
. p3),(f
. p4),P) &
LE ((f
. p4),(f
. p2),P) or
LE ((f
. p3),(f
. p4),P) &
LE ((f
. p4),(f
. p2),P) &
LE ((f
. p2),(f
. p1),P) or
LE ((f
. p4),(f
. p2),P) &
LE ((f
. p2),(f
. p1),P) &
LE ((f
. p1),(f
. p3),P) or
LE ((f
. p2),(f
. p1),P) &
LE ((f
. p1),(f
. p3),P) &
LE ((f
. p3),(f
. p4),P) by
JORDAN17:def 1;
then (f
. p4)
= (f
. p2) or (f
. p2)
= (f
. p1) by
A3,
A9,
A12,
JGRAPH_3: 26,
JORDAN6: 57;
then
A33: p4
= p2 or p2
= p1 by
A2,
A11,
FUNCT_1:def 4;
(f
. p2)
= (f
. p1) or
LE ((f
. p3),(f
. p2),P) by
A3,
A13,
A32,
JORDAN6: 57,
JORDAN6: 58;
then (f
. p2)
= (f
. p1) or (f
. p3)
= (f
. p2) by
A4,
A12,
JGRAPH_3: 26,
JORDAN6: 57;
then p2
= p1 or p3
= p2 by
A2,
A11,
FUNCT_1:def 4;
hence contradiction by
A6,
A18,
A30,
A33,
JORDAN17: 12;
end;
case
LE (p4,p2,K) &
LE (p2,p1,K) &
LE (p1,p3,K);
then ((f
. p4),(f
. p2),(f
. p1),(f
. p3))
are_in_this_order_on P by
A1,
A2,
Th72;
then
A34:
LE ((f
. p1),(f
. p3),P) &
LE ((f
. p3),(f
. p4),P) &
LE ((f
. p4),(f
. p2),P) or
LE ((f
. p3),(f
. p4),P) &
LE ((f
. p4),(f
. p2),P) &
LE ((f
. p2),(f
. p1),P) or
LE ((f
. p4),(f
. p2),P) &
LE ((f
. p2),(f
. p1),P) &
LE ((f
. p1),(f
. p3),P) or
LE ((f
. p2),(f
. p1),P) &
LE ((f
. p1),(f
. p3),P) &
LE ((f
. p3),(f
. p4),P) by
JORDAN17:def 1;
then (f
. p4)
= (f
. p2) or (f
. p2)
= (f
. p1) by
A3,
A9,
A12,
JGRAPH_3: 26,
JORDAN6: 57;
then
A35: p4
= p2 or p2
= p1 by
A2,
A11,
FUNCT_1:def 4;
(f
. p2)
= (f
. p1) or
LE ((f
. p3),(f
. p2),P) by
A3,
A13,
A34,
JORDAN6: 57,
JORDAN6: 58;
then (f
. p2)
= (f
. p1) or (f
. p3)
= (f
. p2) by
A4,
A12,
JGRAPH_3: 26,
JORDAN6: 57;
then p2
= p1 or p3
= p2 by
A2,
A11,
FUNCT_1:def 4;
hence contradiction by
A6,
A18,
A30,
A35,
JORDAN17: 12;
end;
case
A36:
LE (p2,p1,K) &
LE (p1,p3,K) &
LE (p3,p4,K);
then ((f
. p2),(f
. p1),(f
. p3),(f
. p4))
are_in_this_order_on P by
A1,
A2,
Th72;
then
LE ((f
. p1),(f
. p3),P) &
LE ((f
. p3),(f
. p4),P) &
LE ((f
. p4),(f
. p2),P) or
LE ((f
. p3),(f
. p4),P) &
LE ((f
. p4),(f
. p2),P) &
LE ((f
. p2),(f
. p1),P) or
LE ((f
. p4),(f
. p2),P) &
LE ((f
. p2),(f
. p1),P) &
LE ((f
. p1),(f
. p3),P) or
LE ((f
. p2),(f
. p1),P) &
LE ((f
. p1),(f
. p3),P) &
LE ((f
. p3),(f
. p4),P) by
JORDAN17:def 1;
then (f
. p4)
= (f
. p2) or (f
. p2)
= (f
. p1) by
A3,
A9,
A12,
JGRAPH_3: 26,
JORDAN6: 57;
then
A37: p4
= p2 or p2
= p1 by
A2,
A11,
FUNCT_1:def 4;
LE (p2,p3,K) by
A36,
Th50,
JORDAN6: 58;
then p2
= p3 by
A6,
A18,
A30,
A36,
A37,
JORDAN17: 12,
JORDAN6: 57;
hence contradiction by
A6,
A18,
A30,
A37,
JORDAN17: 12;
end;
end;
hence contradiction;
end;
now
per cases by
A6,
A14,
A15,
A16,
A17,
A18,
JORDAN17: 27;
case (p1,p2,p4,p3)
are_in_this_order_on K;
hence contradiction by
A19;
end;
case
A38: (p1,p3,p2,p4)
are_in_this_order_on K;
now
per cases by
A38,
JORDAN17:def 1;
case
A39:
LE (p1,p3,K) &
LE (p3,p2,K) &
LE (p2,p4,K);
then ((f
. p1),(f
. p3),(f
. p2),(f
. p4))
are_in_this_order_on P by
A1,
A2,
Th72;
then
LE ((f
. p1),(f
. p3),P) &
LE ((f
. p3),(f
. p2),P) &
LE ((f
. p2),(f
. p4),P) or
LE ((f
. p3),(f
. p2),P) &
LE ((f
. p2),(f
. p4),P) &
LE ((f
. p4),(f
. p1),P) or
LE ((f
. p2),(f
. p4),P) &
LE ((f
. p4),(f
. p1),P) &
LE ((f
. p1),(f
. p3),P) or
LE ((f
. p4),(f
. p1),P) &
LE ((f
. p1),(f
. p3),P) &
LE ((f
. p3),(f
. p2),P) by
JORDAN17:def 1;
then (f
. p3)
= (f
. p2) or
LE ((f
. p2),(f
. p1),P) by
A4,
A13,
JORDAN6: 57,
JORDAN6: 58;
then (f
. p3)
= (f
. p2) or (f
. p2)
= (f
. p1) by
A3,
A12,
JGRAPH_3: 26,
JORDAN6: 57;
then
A40: p3
= p2 or p2
= p1 by
A2,
A11,
FUNCT_1:def 4;
then p3
= p1 by
A18,
A38,
A39,
Th50,
JORDAN6: 57;
hence contradiction by
A18,
A38,
A40;
end;
case
A41:
LE (p3,p2,K) &
LE (p2,p4,K) &
LE (p4,p1,K);
then ((f
. p3),(f
. p2),(f
. p4),(f
. p1))
are_in_this_order_on P by
A1,
A2,
Th72;
then
LE ((f
. p1),(f
. p3),P) &
LE ((f
. p3),(f
. p2),P) &
LE ((f
. p2),(f
. p4),P) or
LE ((f
. p3),(f
. p2),P) &
LE ((f
. p2),(f
. p4),P) &
LE ((f
. p4),(f
. p1),P) or
LE ((f
. p2),(f
. p4),P) &
LE ((f
. p4),(f
. p1),P) &
LE ((f
. p1),(f
. p3),P) or
LE ((f
. p4),(f
. p1),P) &
LE ((f
. p1),(f
. p3),P) &
LE ((f
. p3),(f
. p2),P) by
JORDAN17:def 1;
then (f
. p3)
= (f
. p2) or
LE ((f
. p2),(f
. p1),P) by
A4,
A13,
JORDAN6: 57,
JORDAN6: 58;
then (f
. p3)
= (f
. p2) or (f
. p2)
= (f
. p1) by
A3,
A12,
JGRAPH_3: 26,
JORDAN6: 57;
then
A42: p3
= p2 or p2
= p1 by
A2,
A11,
FUNCT_1:def 4;
then p4
= p1 by
A18,
A38,
A41,
Th50,
JORDAN6: 57;
hence contradiction by
A6,
A18,
A38,
A42,
JORDAN17: 12;
end;
case
A43:
LE (p2,p4,K) &
LE (p4,p1,K) &
LE (p1,p3,K);
then ((f
. p2),(f
. p4),(f
. p1),(f
. p3))
are_in_this_order_on P by
A1,
A2,
Th72;
then
LE ((f
. p1),(f
. p3),P) &
LE ((f
. p3),(f
. p2),P) &
LE ((f
. p2),(f
. p4),P) or
LE ((f
. p3),(f
. p2),P) &
LE ((f
. p2),(f
. p4),P) &
LE ((f
. p4),(f
. p1),P) or
LE ((f
. p2),(f
. p4),P) &
LE ((f
. p4),(f
. p1),P) &
LE ((f
. p1),(f
. p3),P) or
LE ((f
. p4),(f
. p1),P) &
LE ((f
. p1),(f
. p3),P) &
LE ((f
. p3),(f
. p2),P) by
JORDAN17:def 1;
then (f
. p3)
= (f
. p2) or
LE ((f
. p2),(f
. p1),P) by
A4,
A13,
JORDAN6: 57,
JORDAN6: 58;
then (f
. p3)
= (f
. p2) or (f
. p2)
= (f
. p1) by
A3,
A12,
JGRAPH_3: 26,
JORDAN6: 57;
then
A44: p3
= p2 or p2
= p1 by
A2,
A11,
FUNCT_1:def 4;
then p4
= p1 by
A18,
A38,
A43,
Th50,
JORDAN6: 57;
hence contradiction by
A6,
A18,
A38,
A44,
JORDAN17: 12;
end;
case
A45:
LE (p4,p1,K) &
LE (p1,p3,K) &
LE (p3,p2,K);
then ((f
. p4),(f
. p1),(f
. p3),(f
. p2))
are_in_this_order_on P by
A1,
A2,
Th72;
then
LE ((f
. p1),(f
. p3),P) &
LE ((f
. p3),(f
. p2),P) &
LE ((f
. p2),(f
. p4),P) or
LE ((f
. p3),(f
. p2),P) &
LE ((f
. p2),(f
. p4),P) &
LE ((f
. p4),(f
. p1),P) or
LE ((f
. p2),(f
. p4),P) &
LE ((f
. p4),(f
. p1),P) &
LE ((f
. p1),(f
. p3),P) or
LE ((f
. p4),(f
. p1),P) &
LE ((f
. p1),(f
. p3),P) &
LE ((f
. p3),(f
. p2),P) by
JORDAN17:def 1;
then (f
. p3)
= (f
. p2) or
LE ((f
. p2),(f
. p1),P) by
A4,
A13,
JORDAN6: 57,
JORDAN6: 58;
then (f
. p3)
= (f
. p2) or (f
. p2)
= (f
. p1) by
A3,
A12,
JGRAPH_3: 26,
JORDAN6: 57;
then
A46: p3
= p2 or p2
= p1 by
A2,
A11,
FUNCT_1:def 4;
then p3
= p1 by
A18,
A38,
A45,
Th50,
JORDAN6: 57;
hence contradiction by
A18,
A38,
A46;
end;
end;
hence contradiction;
end;
case (p1,p3,p4,p2)
are_in_this_order_on K;
hence contradiction by
A29;
end;
case
A47: (p1,p4,p2,p3)
are_in_this_order_on K;
now
per cases by
A47,
JORDAN17:def 1;
case
A48:
LE (p1,p4,K) &
LE (p4,p2,K) &
LE (p2,p3,K);
then ((f
. p1),(f
. p4),(f
. p2),(f
. p3))
are_in_this_order_on P by
A1,
A2,
Th72;
then
A49:
LE ((f
. p1),(f
. p4),P) &
LE ((f
. p4),(f
. p2),P) &
LE ((f
. p2),(f
. p3),P) or
LE ((f
. p4),(f
. p2),P) &
LE ((f
. p2),(f
. p3),P) &
LE ((f
. p3),(f
. p1),P) or
LE ((f
. p2),(f
. p3),P) &
LE ((f
. p3),(f
. p1),P) &
LE ((f
. p1),(f
. p4),P) or
LE ((f
. p3),(f
. p1),P) &
LE ((f
. p1),(f
. p4),P) &
LE ((f
. p4),(f
. p2),P) by
JORDAN17:def 1;
then (f
. p4)
= (f
. p2) or
LE ((f
. p2),(f
. p1),P) by
A9,
A13,
JORDAN6: 57,
JORDAN6: 58;
then (f
. p4)
= (f
. p2) or (f
. p2)
= (f
. p1) by
A3,
A12,
JGRAPH_3: 26,
JORDAN6: 57;
then
A50: p4
= p2 or p2
= p1 by
A2,
A11,
FUNCT_1:def 4;
then
A51: p4
= p2 by
A48,
Th50,
JORDAN6: 57;
(f
. p3)
= (f
. p1) or
LE ((f
. p4),(f
. p3),P) by
A8,
A13,
A49,
JORDAN6: 57,
JORDAN6: 58;
then (f
. p3)
= (f
. p1) or (f
. p4)
= (f
. p3) by
A5,
A12,
JGRAPH_3: 26,
JORDAN6: 57;
then
A52: p3
= p1 or p4
= p3 by
A2,
A11,
FUNCT_1:def 4;
then p1
= p2 by
A18,
A47,
A48,
A50,
Th50,
JORDAN6: 57;
hence contradiction by
A18,
A47,
A51,
A52;
end;
case
A53:
LE (p4,p2,K) &
LE (p2,p3,K) &
LE (p3,p1,K);
then ((f
. p4),(f
. p2),(f
. p3),(f
. p1))
are_in_this_order_on P by
A1,
A2,
Th72;
then
A54:
LE ((f
. p1),(f
. p4),P) &
LE ((f
. p4),(f
. p2),P) &
LE ((f
. p2),(f
. p3),P) or
LE ((f
. p4),(f
. p2),P) &
LE ((f
. p2),(f
. p3),P) &
LE ((f
. p3),(f
. p1),P) or
LE ((f
. p2),(f
. p3),P) &
LE ((f
. p3),(f
. p1),P) &
LE ((f
. p1),(f
. p4),P) or
LE ((f
. p3),(f
. p1),P) &
LE ((f
. p1),(f
. p4),P) &
LE ((f
. p4),(f
. p2),P) by
JORDAN17:def 1;
then (f
. p4)
= (f
. p2) or
LE ((f
. p2),(f
. p1),P) by
A9,
A13,
JORDAN6: 57,
JORDAN6: 58;
then (f
. p4)
= (f
. p2) or (f
. p2)
= (f
. p1) by
A3,
A12,
JGRAPH_3: 26,
JORDAN6: 57;
then p4
= p2 or p2
= p1 by
A2,
A11,
FUNCT_1:def 4;
then
A55: p4
= p2 or p2
= p1 & p3
= p1 by
A53,
Th50,
JORDAN6: 57;
(f
. p3)
= (f
. p1) or
LE ((f
. p4),(f
. p3),P) by
A8,
A13,
A54,
JORDAN6: 57,
JORDAN6: 58;
then (f
. p3)
= (f
. p1) or (f
. p4)
= (f
. p3) by
A5,
A12,
JGRAPH_3: 26,
JORDAN6: 57;
then p3
= p1 or p4
= p3 by
A2,
A11,
FUNCT_1:def 4;
hence contradiction by
A6,
A29,
A47,
A55,
JORDAN17: 12;
end;
case
A56:
LE (p2,p3,K) &
LE (p3,p1,K) &
LE (p1,p4,K);
then ((f
. p2),(f
. p3),(f
. p1),(f
. p4))
are_in_this_order_on P by
A1,
A2,
Th72;
then
A57:
LE ((f
. p1),(f
. p4),P) &
LE ((f
. p4),(f
. p2),P) &
LE ((f
. p2),(f
. p3),P) or
LE ((f
. p4),(f
. p2),P) &
LE ((f
. p2),(f
. p3),P) &
LE ((f
. p3),(f
. p1),P) or
LE ((f
. p2),(f
. p3),P) &
LE ((f
. p3),(f
. p1),P) &
LE ((f
. p1),(f
. p4),P) or
LE ((f
. p3),(f
. p1),P) &
LE ((f
. p1),(f
. p4),P) &
LE ((f
. p4),(f
. p2),P) by
JORDAN17:def 1;
then (f
. p4)
= (f
. p2) or
LE ((f
. p2),(f
. p1),P) by
A9,
A13,
JORDAN6: 57,
JORDAN6: 58;
then (f
. p4)
= (f
. p2) or (f
. p2)
= (f
. p1) by
A3,
A12,
JGRAPH_3: 26,
JORDAN6: 57;
then p4
= p2 or p2
= p1 by
A2,
A11,
FUNCT_1:def 4;
then
A58: p4
= p2 or p2
= p1 & p3
= p1 by
A56,
Th50,
JORDAN6: 57;
(f
. p3)
= (f
. p1) or
LE ((f
. p4),(f
. p3),P) by
A8,
A13,
A57,
JORDAN6: 57,
JORDAN6: 58;
then (f
. p3)
= (f
. p1) or (f
. p4)
= (f
. p3) by
A5,
A12,
JGRAPH_3: 26,
JORDAN6: 57;
then p3
= p1 or p4
= p3 by
A2,
A11,
FUNCT_1:def 4;
hence contradiction by
A6,
A29,
A47,
A58,
JORDAN17: 12;
end;
case
A59:
LE (p3,p1,K) &
LE (p1,p4,K) &
LE (p4,p2,K);
then ((f
. p3),(f
. p1),(f
. p4),(f
. p2))
are_in_this_order_on P by
A1,
A2,
Th72;
then
A60:
LE ((f
. p1),(f
. p4),P) &
LE ((f
. p4),(f
. p2),P) &
LE ((f
. p2),(f
. p3),P) or
LE ((f
. p4),(f
. p2),P) &
LE ((f
. p2),(f
. p3),P) &
LE ((f
. p3),(f
. p1),P) or
LE ((f
. p2),(f
. p3),P) &
LE ((f
. p3),(f
. p1),P) &
LE ((f
. p1),(f
. p4),P) or
LE ((f
. p3),(f
. p1),P) &
LE ((f
. p1),(f
. p4),P) &
LE ((f
. p4),(f
. p2),P) by
JORDAN17:def 1;
then (f
. p4)
= (f
. p2) or
LE ((f
. p2),(f
. p1),P) by
A9,
A13,
JORDAN6: 57,
JORDAN6: 58;
then (f
. p4)
= (f
. p2) or (f
. p2)
= (f
. p1) by
A3,
A12,
JGRAPH_3: 26,
JORDAN6: 57;
then p4
= p2 or p2
= p1 by
A2,
A11,
FUNCT_1:def 4;
then
A61: p4
= p2 by
A59,
Th50,
JORDAN6: 57;
(f
. p3)
= (f
. p1) or
LE ((f
. p4),(f
. p3),P) by
A8,
A13,
A60,
JORDAN6: 57,
JORDAN6: 58;
then (f
. p3)
= (f
. p1) or (f
. p4)
= (f
. p3) by
A5,
A12,
JGRAPH_3: 26,
JORDAN6: 57;
then p3
= p1 or p4
= p3 by
A2,
A11,
FUNCT_1:def 4;
hence contradiction by
A6,
A29,
A47,
A61,
JORDAN17: 12;
end;
end;
hence contradiction;
end;
case
A62: (p1,p4,p3,p2)
are_in_this_order_on K;
now
per cases by
A62,
JORDAN17:def 1;
case
A63:
LE (p1,p4,K) &
LE (p4,p3,K) &
LE (p3,p2,K);
then ((f
. p1),(f
. p4),(f
. p3),(f
. p2))
are_in_this_order_on P by
A1,
A2,
Th72;
then
A64:
LE ((f
. p1),(f
. p4),P) &
LE ((f
. p4),(f
. p3),P) &
LE ((f
. p3),(f
. p2),P) or
LE ((f
. p4),(f
. p3),P) &
LE ((f
. p3),(f
. p2),P) &
LE ((f
. p2),(f
. p1),P) or
LE ((f
. p3),(f
. p2),P) &
LE ((f
. p2),(f
. p1),P) &
LE ((f
. p1),(f
. p4),P) or
LE ((f
. p2),(f
. p1),P) &
LE ((f
. p1),(f
. p4),P) &
LE ((f
. p4),(f
. p3),P) by
JORDAN17:def 1;
then (f
. p3)
= (f
. p2) or (f
. p2)
= (f
. p1) by
A3,
A4,
A12,
JGRAPH_3: 26,
JORDAN6: 57;
then
A65: p3
= p2 or p2
= p1 by
A2,
A11,
FUNCT_1:def 4;
LE (p1,p3,K) by
A63,
Th50,
JORDAN6: 58;
then
A66: p3
= p2 by
A63,
A65,
Th50,
JORDAN6: 57;
(f
. p4)
= (f
. p3) or (f
. p2)
= (f
. p1) by
A3,
A5,
A12,
A64,
JGRAPH_3: 26,
JORDAN6: 57;
then p4
= p3 or p2
= p1 by
A2,
A11,
FUNCT_1:def 4;
then p4
= p3 or (p2,p3,p4,p1)
are_in_this_order_on K by
A6,
A62,
A66,
JORDAN17: 12;
hence contradiction by
A6,
A18,
A62,
A65,
JORDAN17: 12;
end;
case
LE (p4,p3,K) &
LE (p3,p2,K) &
LE (p2,p1,K);
then ((f
. p4),(f
. p3),(f
. p2),(f
. p1))
are_in_this_order_on P by
A1,
A2,
Th72;
then
A67:
LE ((f
. p1),(f
. p4),P) &
LE ((f
. p4),(f
. p3),P) &
LE ((f
. p3),(f
. p2),P) or
LE ((f
. p4),(f
. p3),P) &
LE ((f
. p3),(f
. p2),P) &
LE ((f
. p2),(f
. p1),P) or
LE ((f
. p3),(f
. p2),P) &
LE ((f
. p2),(f
. p1),P) &
LE ((f
. p1),(f
. p4),P) or
LE ((f
. p2),(f
. p1),P) &
LE ((f
. p1),(f
. p4),P) &
LE ((f
. p4),(f
. p3),P) by
JORDAN17:def 1;
then (f
. p3)
= (f
. p2) or (f
. p2)
= (f
. p1) by
A3,
A4,
A12,
JGRAPH_3: 26,
JORDAN6: 57;
then
A68: p3
= p2 or p2
= p1 by
A2,
A11,
FUNCT_1:def 4;
(f
. p4)
= (f
. p3) or (f
. p2)
= (f
. p1) by
A3,
A5,
A12,
A67,
JGRAPH_3: 26,
JORDAN6: 57;
then p4
= p3 or p2
= p1 by
A2,
A11,
FUNCT_1:def 4;
hence contradiction by
A6,
A19,
A62,
A68,
JORDAN17: 12;
end;
case
LE (p3,p2,K) &
LE (p2,p1,K) &
LE (p1,p4,K);
then ((f
. p3),(f
. p2),(f
. p1),(f
. p4))
are_in_this_order_on P by
A1,
A2,
Th72;
then
LE ((f
. p1),(f
. p4),P) &
LE ((f
. p4),(f
. p3),P) &
LE ((f
. p3),(f
. p2),P) or
LE ((f
. p4),(f
. p3),P) &
LE ((f
. p3),(f
. p2),P) &
LE ((f
. p2),(f
. p1),P) or
LE ((f
. p3),(f
. p2),P) &
LE ((f
. p2),(f
. p1),P) &
LE ((f
. p1),(f
. p4),P) or
LE ((f
. p2),(f
. p1),P) &
LE ((f
. p1),(f
. p4),P) &
LE ((f
. p4),(f
. p3),P) by
JORDAN17:def 1;
then (f
. p4)
= (f
. p3) or (f
. p2)
= (f
. p1) by
A3,
A5,
A12,
JGRAPH_3: 26,
JORDAN6: 57;
then p4
= p3 or p2
= p1 by
A2,
A11,
FUNCT_1:def 4;
hence contradiction by
A6,
A19,
A29,
A62,
JORDAN17: 12;
end;
case
A69:
LE (p2,p1,K) &
LE (p1,p4,K) &
LE (p4,p3,K);
then ((f
. p2),(f
. p1),(f
. p4),(f
. p3))
are_in_this_order_on P by
A1,
A2,
Th72;
then
A70:
LE ((f
. p1),(f
. p4),P) &
LE ((f
. p4),(f
. p3),P) &
LE ((f
. p3),(f
. p2),P) or
LE ((f
. p4),(f
. p3),P) &
LE ((f
. p3),(f
. p2),P) &
LE ((f
. p2),(f
. p1),P) or
LE ((f
. p3),(f
. p2),P) &
LE ((f
. p2),(f
. p1),P) &
LE ((f
. p1),(f
. p4),P) or
LE ((f
. p2),(f
. p1),P) &
LE ((f
. p1),(f
. p4),P) &
LE ((f
. p4),(f
. p3),P) by
JORDAN17:def 1;
then (f
. p3)
= (f
. p2) or (f
. p2)
= (f
. p1) by
A3,
A4,
A12,
JGRAPH_3: 26,
JORDAN6: 57;
then
A71: p3
= p2 or p2
= p1 by
A2,
A11,
FUNCT_1:def 4;
LE (p1,p3,K) by
A69,
Th50,
JORDAN6: 58;
then
A72: p1
= p2 by
A69,
A71,
Th50,
JORDAN6: 57;
(f
. p4)
= (f
. p3) or (f
. p2)
= (f
. p3) by
A4,
A5,
A12,
A70,
JGRAPH_3: 26,
JORDAN6: 57;
then p4
= p3 or p2
= p3 by
A2,
A11,
FUNCT_1:def 4;
hence contradiction by
A6,
A29,
A62,
A72,
JORDAN17: 12;
end;
end;
hence contradiction;
end;
end;
hence contradiction;
end;
hence thesis;
end;
theorem ::
JGRAPH_6:78
Th78: for p1,p2,p3,p4 be
Point of (
TOP-REAL 2), P be non
empty
compact
Subset of (
TOP-REAL 2), f be
Function of (
TOP-REAL 2), (
TOP-REAL 2) st P
= (
circle (
0 ,
0 ,1)) & f
=
Sq_Circ holds (p1,p2,p3,p4)
are_in_this_order_on (
rectangle ((
- 1),1,(
- 1),1)) iff ((f
. p1),(f
. p2),(f
. p3),(f
. p4))
are_in_this_order_on P
proof
let p1,p2,p3,p4 be
Point of (
TOP-REAL 2), P be non
empty
compact
Subset of (
TOP-REAL 2), f be
Function of (
TOP-REAL 2), (
TOP-REAL 2);
set K = (
rectangle ((
- 1),1,(
- 1),1));
assume that
A1: P
= (
circle (
0 ,
0 ,1)) and
A2: f
=
Sq_Circ ;
A3: K is
being_simple_closed_curve by
Th50;
(
circle (
0 ,
0 ,1))
= { p5 where p5 be
Point of (
TOP-REAL 2) :
|.p5.|
= 1 } by
Th24;
then
A4: P is
being_simple_closed_curve by
A1,
JGRAPH_3: 26;
thus (p1,p2,p3,p4)
are_in_this_order_on K implies ((f
. p1),(f
. p2),(f
. p3),(f
. p4))
are_in_this_order_on P
proof
assume
A5: (p1,p2,p3,p4)
are_in_this_order_on K;
now
per cases by
A5,
JORDAN17:def 1;
case
LE (p1,p2,K) &
LE (p2,p3,K) &
LE (p3,p4,K);
hence thesis by
A1,
A2,
Th72;
end;
case
LE (p2,p3,K) &
LE (p3,p4,K) &
LE (p4,p1,K);
hence thesis by
A1,
A2,
A4,
Th72,
JORDAN17: 12;
end;
case
LE (p3,p4,K) &
LE (p4,p1,K) &
LE (p1,p2,K);
hence thesis by
A1,
A2,
A4,
Th72,
JORDAN17: 11;
end;
case
LE (p4,p1,K) &
LE (p1,p2,K) &
LE (p2,p3,K);
hence thesis by
A1,
A2,
A4,
Th72,
JORDAN17: 10;
end;
end;
hence thesis;
end;
thus ((f
. p1),(f
. p2),(f
. p3),(f
. p4))
are_in_this_order_on P implies (p1,p2,p3,p4)
are_in_this_order_on K
proof
assume
A6: ((f
. p1),(f
. p2),(f
. p3),(f
. p4))
are_in_this_order_on P;
now
per cases by
A6,
JORDAN17:def 1;
case
LE ((f
. p1),(f
. p2),P) &
LE ((f
. p2),(f
. p3),P) &
LE ((f
. p3),(f
. p4),P);
hence thesis by
A1,
A2,
Th77;
end;
case
LE ((f
. p2),(f
. p3),P) &
LE ((f
. p3),(f
. p4),P) &
LE ((f
. p4),(f
. p1),P);
then (p2,p3,p4,p1)
are_in_this_order_on K by
A1,
A2,
Th77;
hence thesis by
A3,
JORDAN17: 12;
end;
case
LE ((f
. p3),(f
. p4),P) &
LE ((f
. p4),(f
. p1),P) &
LE ((f
. p1),(f
. p2),P);
then (p3,p4,p1,p2)
are_in_this_order_on K by
A1,
A2,
Th77;
hence thesis by
A3,
JORDAN17: 11;
end;
case
LE ((f
. p4),(f
. p1),P) &
LE ((f
. p1),(f
. p2),P) &
LE ((f
. p2),(f
. p3),P);
then (p4,p1,p2,p3)
are_in_this_order_on K by
A1,
A2,
Th77;
hence thesis by
A3,
JORDAN17: 10;
end;
end;
hence thesis;
end;
end;
theorem ::
JGRAPH_6:79
for p1,p2,p3,p4 be
Point of (
TOP-REAL 2) st (p1,p2,p3,p4)
are_in_this_order_on (
rectangle ((
- 1),1,(
- 1),1)) holds for f,g be
Function of
I[01] , (
TOP-REAL 2) st f is
continuous
one-to-one & g is
continuous
one-to-one & (f
.
0 )
= p1 & (f
. 1)
= p3 & (g
.
0 )
= p2 & (g
. 1)
= p4 & (
rng f)
c= (
closed_inside_of_rectangle ((
- 1),1,(
- 1),1)) & (
rng g)
c= (
closed_inside_of_rectangle ((
- 1),1,(
- 1),1)) holds (
rng f)
meets (
rng g)
proof
let p1,p2,p3,p4 be
Point of (
TOP-REAL 2);
set K = (
rectangle ((
- 1),1,(
- 1),1)), K0 = (
closed_inside_of_rectangle ((
- 1),1,(
- 1),1));
assume
A1: (p1,p2,p3,p4)
are_in_this_order_on K;
reconsider j = 1 as non
negative
Real;
reconsider P = (
circle (
0 ,
0 ,j)) as non
empty
compact
Subset of (
TOP-REAL 2);
A2: P
= { p6 where p6 be
Point of (
TOP-REAL 2) :
|.p6.|
= 1 } by
Th24;
thus for f,g be
Function of
I[01] , (
TOP-REAL 2) st f is
continuous
one-to-one & g is
continuous
one-to-one & (f
.
0 )
= p1 & (f
. 1)
= p3 & (g
.
0 )
= p2 & (g
. 1)
= p4 & (
rng f)
c= K0 & (
rng g)
c= K0 holds (
rng f)
meets (
rng g)
proof
let f,g be
Function of
I[01] , (
TOP-REAL 2);
assume that
A3: f is
continuous
one-to-one and
A4: g is
continuous
one-to-one and
A5: (f
.
0 )
= p1 and
A6: (f
. 1)
= p3 and
A7: (g
.
0 )
= p2 and
A8: (g
. 1)
= p4 and
A9: (
rng f)
c= K0 and
A10: (
rng g)
c= K0;
reconsider s =
Sq_Circ as
Function of (
TOP-REAL 2), (
TOP-REAL 2);
A11: (
dom s)
= the
carrier of (
TOP-REAL 2) by
FUNCT_2:def 1;
reconsider f1 = (s
* f) as
Function of
I[01] , (
TOP-REAL 2);
reconsider g1 = (s
* g) as
Function of
I[01] , (
TOP-REAL 2);
s is
being_homeomorphism by
JGRAPH_3: 43;
then
A12: s is
continuous by
TOPS_2:def 5;
A13: (
dom f)
=
[.
0 , 1.] by
BORSUK_1: 40,
FUNCT_2:def 1;
then
0
in (
dom f) by
XXREAL_1: 1;
then
A14: (f1
.
0 )
= (
Sq_Circ
. p1) by
A5,
FUNCT_1: 13;
1
in (
dom f) by
A13,
XXREAL_1: 1;
then
A15: (f1
. 1)
= (
Sq_Circ
. p3) by
A6,
FUNCT_1: 13;
A16: (
dom g)
=
[.
0 , 1.] by
BORSUK_1: 40,
FUNCT_2:def 1;
then
0
in (
dom g) by
XXREAL_1: 1;
then
A17: (g1
.
0 )
= (
Sq_Circ
. p2) by
A7,
FUNCT_1: 13;
1
in (
dom g) by
A16,
XXREAL_1: 1;
then
A18: (g1
. 1)
= (
Sq_Circ
. p4) by
A8,
FUNCT_1: 13;
defpred
P[
Point of (
TOP-REAL 2)] means
|.$1.|
<= 1;
{ p8 where p8 be
Point of (
TOP-REAL 2) :
P[p8] } is
Subset of (
TOP-REAL 2) from
DOMAIN_1:sch 7;
then
reconsider C0 = { p8 where p8 be
Point of (
TOP-REAL 2) :
|.p8.|
<= 1 } as
Subset of (
TOP-REAL 2);
A19: (s
.: K0)
= C0 by
Th27;
A20: (
rng f1)
c= C0
proof
let y be
object;
assume y
in (
rng f1);
then
consider x be
object such that
A21: x
in (
dom f1) and
A22: y
= (f1
. x) by
FUNCT_1:def 3;
A23: x
in (
dom f) by
A21,
FUNCT_1: 11;
A24: (f
. x)
in (
dom s) by
A21,
FUNCT_1: 11;
(f
. x)
in (
rng f) by
A23,
FUNCT_1: 3;
then (s
. (f
. x))
in (s
.: K0) by
A9,
A24,
FUNCT_1:def 6;
hence thesis by
A19,
A21,
A22,
FUNCT_1: 12;
end;
A25: (
rng g1)
c= C0
proof
let y be
object;
assume y
in (
rng g1);
then
consider x be
object such that
A26: x
in (
dom g1) and
A27: y
= (g1
. x) by
FUNCT_1:def 3;
A28: x
in (
dom g) by
A26,
FUNCT_1: 11;
A29: (g
. x)
in (
dom s) by
A26,
FUNCT_1: 11;
(g
. x)
in (
rng g) by
A28,
FUNCT_1: 3;
then (s
. (g
. x))
in (s
.: K0) by
A10,
A29,
FUNCT_1:def 6;
hence thesis by
A19,
A26,
A27,
FUNCT_1: 12;
end;
reconsider q1 = (s
. p1), q2 = (s
. p2), q3 = (s
. p3), q4 = (s
. p4) as
Point of (
TOP-REAL 2);
(q1,q2,q3,q4)
are_in_this_order_on P by
A1,
Th78;
then (
rng f1)
meets (
rng g1) by
A2,
A3,
A4,
A12,
A14,
A15,
A17,
A18,
A20,
A25,
Th18;
then
consider y be
object such that
A30: y
in (
rng f1) and
A31: y
in (
rng g1) by
XBOOLE_0: 3;
consider x1 be
object such that
A32: x1
in (
dom f1) and
A33: y
= (f1
. x1) by
A30,
FUNCT_1:def 3;
consider x2 be
object such that
A34: x2
in (
dom g1) and
A35: y
= (g1
. x2) by
A31,
FUNCT_1:def 3;
(
dom f1)
c= (
dom f) by
RELAT_1: 25;
then
A36: (f
. x1)
in (
rng f) by
A32,
FUNCT_1: 3;
(
dom g1)
c= (
dom g) by
RELAT_1: 25;
then
A37: (g
. x2)
in (
rng g) by
A34,
FUNCT_1: 3;
y
= (
Sq_Circ
. (f
. x1)) by
A32,
A33,
FUNCT_1: 12;
then
A38: ((
Sq_Circ
" )
. y)
= (f
. x1) by
A11,
A36,
FUNCT_1: 32;
x1
in (
dom f) by
A32,
FUNCT_1: 11;
then
A39: (f
. x1)
in (
rng f) by
FUNCT_1:def 3;
y
= (
Sq_Circ
. (g
. x2)) by
A34,
A35,
FUNCT_1: 12;
then
A40: ((
Sq_Circ
" )
. y)
= (g
. x2) by
A11,
A37,
FUNCT_1: 32;
x2
in (
dom g) by
A34,
FUNCT_1: 11;
then (g
. x2)
in (
rng g) by
FUNCT_1:def 3;
hence thesis by
A38,
A39,
A40,
XBOOLE_0: 3;
end;
end;