hfdiff_1.miz
begin
reserve x,r,a,x0,p for
Real;
reserve n,i,m for
Element of
NAT ;
reserve Z for
open
Subset of
REAL ;
reserve f,f1,f2 for
PartFunc of
REAL ,
REAL ;
reserve k for
Nat;
theorem ::
HFDIFF_1:1
Th1: for f be
Function of
REAL ,
REAL holds (
dom (f
| Z))
= Z
proof
let f be
Function of
REAL ,
REAL ;
A1: (
dom f)
=
REAL by
FUNCT_2:def 1;
thus (
dom (f
| Z))
= ((
dom f)
/\ Z) by
RELAT_1: 61
.= Z by
A1,
XBOOLE_1: 28;
end;
theorem ::
HFDIFF_1:2
Th2: ((
- f1)
(#) (
- f2))
= (f1
(#) f2)
proof
(
dom (
- f1))
= (
dom f1) & (
dom (
- f2))
= (
dom f2) by
VALUED_1:def 5;
then
A1: (
dom ((
- f1)
(#) (
- f2)))
= ((
dom f1)
/\ (
dom f2)) by
VALUED_1:def 4
.= (
dom (f1
(#) f2)) by
VALUED_1:def 4;
for x be
Element of
REAL st x
in (
dom (f1
(#) f2)) holds (((
- f1)
(#) (
- f2))
. x)
= ((f1
(#) f2)
. x)
proof
let x be
Element of
REAL ;
assume
A2: x
in (
dom (f1
(#) f2));
(
dom (f1
(#) f2))
= ((
dom f2)
/\ (
dom f1)) by
VALUED_1:def 4;
then (
dom (f2
(#) f1))
c= (
dom f2) by
XBOOLE_1: 17;
then x
in (
dom f2) by
A2;
then
A3: x
in (
dom ((
- 1)
(#) f2)) by
VALUED_1:def 5;
((
dom f1)
/\ (
dom f2))
c= (
dom f1) by
XBOOLE_1: 17;
then (
dom (f1
(#) f2))
c= (
dom f1) by
VALUED_1:def 4;
then x
in (
dom f1) by
A2;
then
A4: x
in (
dom ((
- 1)
(#) f1)) by
VALUED_1:def 5;
(((
- f1)
(#) (
- f2))
. x)
= (((
- f1)
. x)
* ((
- f2)
. x)) by
A1,
A2,
VALUED_1:def 4
.= (((
- 1)
* (f1
. x))
* (((
- 1)
(#) f2)
. x)) by
A4,
VALUED_1:def 5
.= (((
- 1)
* (f1
. x))
* ((
- 1)
* (f2
. x))) by
A3,
VALUED_1:def 5
.= ((f1
. x)
* (f2
. x));
hence thesis by
A2,
VALUED_1:def 4;
end;
hence thesis by
A1,
PARTFUN1: 5;
end;
theorem ::
HFDIFF_1:3
Th3: n
>= 1 implies (
dom ((
#Z n)
^ ))
= (
REAL
\
{
0 }) & ((
#Z n)
"
{
0 })
=
{
0 }
proof
assume
A1: n
>= 1;
A2: ((
#Z n)
"
{
0 })
=
{
0 }
proof
thus ((
#Z n)
"
{
0 })
c=
{
0 }
proof
let x be
object;
assume
A3: x
in ((
#Z n)
"
{
0 });
then
reconsider x as
Element of
REAL ;
((
#Z n)
. x)
in
{
0 } by
A3,
FUNCT_1:def 7;
then ((
#Z n)
. x)
=
0 by
TARSKI:def 1;
then (x
#Z n)
=
0 by
TAYLOR_1:def 1;
then (x
|^ n)
=
0 by
PREPOWER: 36;
then x
=
0 by
PREPOWER: 5;
hence thesis by
TARSKI:def 1;
end;
let x be
object;
A4:
0
in
{
0 } by
TARSKI:def 1;
assume x
in
{
0 };
then
A5: x
=
0 by
TARSKI:def 1;
{(
In (
0 ,
REAL ))}
c=
REAL by
ZFMISC_1: 31;
then
A6:
{
0 }
c= (
dom (
#Z n)) by
FUNCT_2:def 1;
((
#Z n)
.
0 )
= (
0
#Z n) by
TAYLOR_1:def 1
.= (
0
|^ n) by
PREPOWER: 36
.=
0 by
A1,
NEWTON: 11;
hence thesis by
A5,
A6,
A4,
FUNCT_1:def 7;
end;
then (
dom ((
#Z n)
^ ))
= ((
dom (
#Z n))
\
{
0 }) by
RFUNCT_1:def 2
.= (
REAL
\
{
0 }) by
FUNCT_2:def 1;
hence thesis by
A2;
end;
theorem ::
HFDIFF_1:4
((r
* p)
(#) ((
#Z n)
^ ))
= (r
(#) (p
(#) ((
#Z n)
^ )))
proof
A1: (
dom ((r
* p)
(#) ((
#Z n)
^ )))
= (
dom ((
#Z n)
^ )) by
VALUED_1:def 5
.= (
dom (p
(#) ((
#Z n)
^ ))) by
VALUED_1:def 5
.= (
dom (r
(#) (p
(#) ((
#Z n)
^ )))) by
VALUED_1:def 5;
now
let c be
object;
assume
A2: c
in (
dom ((r
* p)
(#) ((
#Z n)
^ )));
then
A3: c
in (
dom (p
(#) ((
#Z n)
^ ))) by
A1,
VALUED_1:def 5;
thus (((r
* p)
(#) ((
#Z n)
^ ))
. c)
= ((r
* p)
* (((
#Z n)
^ )
. c)) by
A2,
VALUED_1:def 5
.= (r
* (p
* (((
#Z n)
^ )
. c)))
.= (r
* ((p
(#) ((
#Z n)
^ ))
. c)) by
A3,
VALUED_1:def 5
.= ((r
(#) (p
(#) ((
#Z n)
^ )))
. c) by
A1,
A2,
VALUED_1:def 5;
end;
hence thesis by
A1,
FUNCT_1: 2;
end;
theorem ::
HFDIFF_1:5
Th5: for n,m be
Real holds ((n
(#) f1)
+ (m
(#) f1))
= ((n
+ m)
(#) f1)
proof
let n,m be
Real;
A1: (
dom ((n
(#) f1)
+ (m
(#) f1)))
= ((
dom (n
(#) f1))
/\ (
dom (m
(#) f1))) by
VALUED_1:def 1
.= ((
dom f1)
/\ (
dom (m
(#) f1))) by
VALUED_1:def 5
.= ((
dom f1)
/\ (
dom f1)) by
VALUED_1:def 5
.= (
dom f1);
A2: for x be
Element of
REAL st x
in (
dom f1) holds (((n
(#) f1)
+ (m
(#) f1))
. x)
= (((n
+ m)
(#) f1)
. x)
proof
let x be
Element of
REAL ;
assume
A3: x
in (
dom f1);
then
A4: x
in (
dom (n
(#) f1)) by
VALUED_1:def 5;
x
in (
dom ((n
+ m)
(#) f1)) by
A3,
VALUED_1:def 5;
then
A5: (((n
+ m)
(#) f1)
. x)
= ((n
+ m)
* (f1
. x)) by
VALUED_1:def 5
.= ((n
* (f1
. x))
+ (m
* (f1
. x)));
A6: x
in (
dom (m
(#) f1)) by
A3,
VALUED_1:def 5;
(((n
(#) f1)
+ (m
(#) f1))
. x)
= (((n
(#) f1)
. x)
+ ((m
(#) f1)
. x)) by
A1,
A3,
VALUED_1:def 1
.= ((n
* (f1
. x))
+ ((m
(#) f1)
. x)) by
A4,
VALUED_1:def 5
.= ((n
* (f1
. x))
+ (m
* (f1
. x))) by
A6,
VALUED_1:def 5;
hence thesis by
A5;
end;
(
dom ((n
(#) f1)
+ (m
(#) f1)))
= (
dom ((n
+ m)
(#) f1)) by
A1,
VALUED_1:def 5;
hence thesis by
A1,
A2,
PARTFUN1: 5;
end;
theorem ::
HFDIFF_1:6
Th6: (f
| Z)
is_differentiable_on Z implies f
is_differentiable_on Z
proof
A1: (
dom (f
| Z))
c= (
dom f) by
RELAT_1: 60;
assume
A2: (f
| Z)
is_differentiable_on Z;
then
A3: for x st x
in Z holds (f
| Z)
is_differentiable_in x by
FDIFF_1: 9;
Z
c= (
dom (f
| Z)) by
A2,
FDIFF_1: 9;
then Z
c= (
dom f) by
A1;
hence thesis by
A3,
FDIFF_1:def 6;
end;
theorem ::
HFDIFF_1:7
Th7: n
>= 1 & f1
is_differentiable_on (n,Z) implies f1
is_differentiable_on Z
proof
assume that
A1: n
>= 1 and
A2: f1
is_differentiable_on (n,Z);
(1
- 1)
<= (n
- 1) by
A1,
XREAL_1: 9;
then ((
diff (f1,Z))
.
0 )
is_differentiable_on Z by
A2;
then (f1
| Z)
is_differentiable_on Z by
TAYLOR_1:def 5;
hence thesis by
Th6;
end;
theorem ::
HFDIFF_1:8
Th8: (
#Z n)
is_differentiable_on
REAL
proof
A1: (
dom (
#Z n))
=
REAL by
FUNCT_2:def 1;
for x st x
in
REAL holds ((
#Z n)
|
REAL )
is_differentiable_in x
proof
let x;
assume x
in
REAL ;
(
#Z n)
is_differentiable_in x by
TAYLOR_1: 2;
hence thesis by
A1,
RELAT_1: 68;
end;
hence thesis by
A1,
FDIFF_1:def 6;
end;
theorem ::
HFDIFF_1:9
x
in Z implies (((
diff (
sin ,Z))
. 2)
. x)
= (
- (
sin
. x))
proof
assume
A1: x
in Z;
A2:
cos
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 67;
A3:
sin
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 68;
(((
diff (
sin ,Z))
. (2
* 1))
. x)
= (((
diff (
sin ,Z))
. (1
+ 1))
. x)
.= ((((
diff (
sin ,Z))
. (1
+
0 ))
`| Z)
. x) by
TAYLOR_1:def 5
.= (((((
diff (
sin ,Z))
.
0 )
`| Z)
`| Z)
. x) by
TAYLOR_1:def 5
.= ((((
sin
| Z)
`| Z)
`| Z)
. x) by
TAYLOR_1:def 5
.= (((
sin
`| Z)
`| Z)
. x) by
A3,
FDIFF_2: 16
.= (((
cos
| Z)
`| Z)
. x) by
TAYLOR_2: 17
.= ((
cos
`| Z)
. x) by
A2,
FDIFF_2: 16
.= (
diff (
cos ,x)) by
A1,
A2,
FDIFF_1:def 7
.= (
- (
sin
. x)) by
SIN_COS: 63;
hence thesis;
end;
theorem ::
HFDIFF_1:10
x
in Z implies (((
diff (
sin ,Z))
. 3)
. x)
= ((
-
cos )
. x)
proof
assume x
in Z;
then
A1: x
in (
dom (
cos
| Z)) by
TAYLOR_2: 17;
(
dom ((
-
cos )
| Z))
= ((
dom (
-
cos ))
/\ Z) by
RELAT_1: 61
.= ((
dom
cos )
/\ Z) by
VALUED_1: 8
.= (
dom (
cos
| Z)) by
RELAT_1: 61
.= (
dom (
- (
cos
| Z))) by
VALUED_1: 8;
then
A2: x
in (
dom ((
-
cos )
| Z)) by
A1,
VALUED_1: 8;
(((
diff (
sin ,Z))
. 3)
. x)
= (((
diff (
sin ,Z))
. ((2
* 1)
+ 1))
. x)
.= ((((
- 1)
|^ 1)
(#) (
cos
| Z))
. x) by
TAYLOR_2: 19
.= (((
- 1)
(#) (
cos
| Z))
. x)
.= (((
-
cos )
| Z)
. x) by
RFUNCT_1: 49
.= ((
-
cos )
. x) by
A2,
FUNCT_1: 47;
hence thesis;
end;
theorem ::
HFDIFF_1:11
Th11: x
in Z implies (((
diff (
sin ,Z))
. n)
. x)
= (
sin
. (x
+ ((n
*
PI )
/ 2)))
proof
assume
A1: x
in Z;
(
dom (((
- 1)
(#)
cos )
| Z))
= ((
dom ((
- 1)
(#)
cos ))
/\ Z) by
RELAT_1: 61
.= ((
dom
cos )
/\ Z) by
VALUED_1:def 5
.= Z by
SIN_COS: 24,
XBOOLE_1: 28;
then
A2: Z
c= (
dom ((
- 1)
(#)
cos )) by
RELAT_1: 60;
(
dom (((
- 1)
(#)
sin )
| Z))
= ((
dom ((
- 1)
(#)
sin ))
/\ Z) by
RELAT_1: 61
.= ((
dom
sin )
/\ Z) by
VALUED_1:def 5
.= Z by
SIN_COS: 24,
XBOOLE_1: 28;
then
A3: Z
c= (
dom ((
- 1)
(#)
sin )) by
RELAT_1: 60;
A4:
sin
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 68;
then
A5: ((
- 1)
(#)
sin )
is_differentiable_on Z by
FDIFF_2: 19;
A6:
cos
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 67;
then
A7: ((
- 1)
(#)
cos )
is_differentiable_on Z by
FDIFF_2: 19;
per cases ;
suppose n
>
0 ;
then
0
< (
0
+ n);
then 1
<= n by
NAT_1: 19;
then
reconsider i = (n
- 1) as
Element of
NAT by
INT_1: 5;
now
per cases ;
suppose i is
even;
then
consider j be
Nat such that
A8: i
= (2
* j) by
ABIAN:def 2;
per cases ;
suppose j is
even;
then
consider m be
Nat such that
A9: j
= (2
* m) by
ABIAN:def 2;
(((
diff (
sin ,Z))
. (i
+ 1))
. x)
= ((((
diff (
sin ,Z))
. (2
* j))
`| Z)
. x) by
A8,
TAYLOR_1:def 5
.= (((((
- 1)
|^ j)
(#) (
sin
| Z))
`| Z)
. x) by
TAYLOR_2: 19
.= ((((1
|^ (2
* m))
(#) (
sin
| Z))
`| Z)
. x) by
A9,
WSIERP_1: 2
.= (((1
(#) (
sin
| Z))
`| Z)
. x)
.= (((
sin
| Z)
`| Z)
. x) by
RFUNCT_1: 21
.= ((
sin
`| Z)
. x) by
A4,
FDIFF_2: 16
.= (
diff (
sin ,x)) by
A1,
A4,
FDIFF_1:def 7
.= (
cos
. x) by
SIN_COS: 64
.= (
cos
. (x
+ ((2
*
PI )
* m))) by
SIN_COS2: 11
.= (
sin
. ((x
+ ((i
/ 2)
*
PI ))
+ (
PI
/ 2))) by
A8,
A9,
SIN_COS: 78
.= (
sin
. (x
+ ((n
*
PI )
/ 2)));
hence thesis;
end;
suppose j is
odd;
then
consider s be
Nat such that
A10: j
= ((2
* s)
+ 1) by
ABIAN: 9;
(((
diff (
sin ,Z))
. (i
+ 1))
. x)
= ((((
diff (
sin ,Z))
. (2
* j))
`| Z)
. x) by
A8,
TAYLOR_1:def 5
.= (((((
- 1)
|^ ((2
* s)
+ 1))
(#) (
sin
| Z))
`| Z)
. x) by
A10,
TAYLOR_2: 19
.= ((((((
- 1)
|^ (2
* s))
* (
- 1))
(#) (
sin
| Z))
`| Z)
. x) by
NEWTON: 6
.= (((((1
|^ (2
* s))
* (
- 1))
(#) (
sin
| Z))
`| Z)
. x) by
WSIERP_1: 2
.= ((((1
* (
- 1))
(#) (
sin
| Z))
`| Z)
. x)
.= ((((
-
sin )
| Z)
`| Z)
. x) by
RFUNCT_1: 49
.= ((((
- 1)
(#)
sin )
`| Z)
. x) by
A5,
FDIFF_2: 16
.= ((
- 1)
* (
diff (
sin ,x))) by
A1,
A3,
A4,
FDIFF_1: 20
.= ((
- 1)
* (
cos
. x)) by
SIN_COS: 64
.= (
- (
cos
. x))
.= (
cos
. (x
+
PI )) by
SIN_COS: 78
.= (
cos
. ((x
+
PI )
+ ((2
*
PI )
* s))) by
SIN_COS2: 11
.= (
sin
. ((x
+ ((i
/ 2)
*
PI ))
+ (
PI
/ 2))) by
A8,
A10,
SIN_COS: 78
.= (
sin
. (x
+ ((n
*
PI )
/ 2)));
hence thesis;
end;
end;
suppose i is
odd;
then
consider j be
Nat such that
A11: i
= ((2
* j)
+ 1) by
ABIAN: 9;
per cases ;
suppose j is
even;
then
consider m be
Nat such that
A12: j
= (2
* m) by
ABIAN:def 2;
(((
diff (
sin ,Z))
. (i
+ 1))
. x)
= ((((
diff (
sin ,Z))
. ((2
* j)
+ 1))
`| Z)
. x) by
A11,
TAYLOR_1:def 5
.= (((((
- 1)
|^ (2
* m))
(#) (
cos
| Z))
`| Z)
. x) by
A12,
TAYLOR_2: 19
.= ((((1
|^ (2
* m))
(#) (
cos
| Z))
`| Z)
. x) by
WSIERP_1: 2
.= (((1
(#) (
cos
| Z))
`| Z)
. x)
.= (((
cos
| Z)
`| Z)
. x) by
RFUNCT_1: 21
.= ((
cos
`| Z)
. x) by
A6,
FDIFF_2: 16
.= (
diff (
cos ,x)) by
A1,
A6,
FDIFF_1:def 7
.= (
- (
sin
. x)) by
SIN_COS: 63
.= (
sin
. (x
+
PI )) by
SIN_COS: 78
.= (
sin
. ((x
+
PI )
+ ((2
*
PI )
* m))) by
SIN_COS2: 10
.= (
sin
. ((x
+ (((i
- 1)
/ 2)
*
PI ))
+
PI )) by
A11,
A12
.= (
sin
. (x
+ ((n
*
PI )
/ 2)));
hence thesis;
end;
suppose j is
odd;
then
consider s be
Nat such that
A13: j
= ((2
* s)
+ 1) by
ABIAN: 9;
(((
diff (
sin ,Z))
. (i
+ 1))
. x)
= ((((
diff (
sin ,Z))
. ((2
* j)
+ 1))
`| Z)
. x) by
A11,
TAYLOR_1:def 5
.= (((((
- 1)
|^ j)
(#) (
cos
| Z))
`| Z)
. x) by
TAYLOR_2: 19
.= ((((((
- 1)
|^ (2
* s))
* (
- 1))
(#) (
cos
| Z))
`| Z)
. x) by
A13,
NEWTON: 6
.= (((((1
|^ (2
* s))
* (
- 1))
(#) (
cos
| Z))
`| Z)
. x) by
WSIERP_1: 2
.= ((((1
* (
- 1))
(#) (
cos
| Z))
`| Z)
. x)
.= ((((
-
cos )
| Z)
`| Z)
. x) by
RFUNCT_1: 49
.= ((((
- 1)
(#)
cos )
`| Z)
. x) by
A7,
FDIFF_2: 16
.= ((
- 1)
* (
diff (
cos ,x))) by
A1,
A2,
A6,
FDIFF_1: 20
.= ((
- 1)
* (
- (
sin
. x))) by
SIN_COS: 63
.= (
sin
. (x
+ ((2
*
PI )
* s))) by
SIN_COS2: 10
.= (
sin
. ((x
+ (((i
- 3)
/ 2)
*
PI ))
+ (2
*
PI ))) by
A11,
A13,
SIN_COS: 78
.= (
sin
. (x
+ ((n
*
PI )
/ 2)));
hence thesis;
end;
end;
end;
hence thesis;
end;
suppose
A14: n
=
0 ;
then (((
diff (
sin ,Z))
. n)
. x)
= ((
sin
| Z)
. x) by
TAYLOR_1:def 5
.= (
sin
. (x
+ ((n
*
PI )
/ 2))) by
A1,
A14,
FUNCT_1: 49;
hence thesis;
end;
end;
theorem ::
HFDIFF_1:12
x
in Z implies (((
diff (
cos ,Z))
. 2)
. x)
= (
- (
cos
. x))
proof
assume
A1: x
in Z;
A2:
cos
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 67;
(
dom (((
- 1)
(#)
sin )
| Z))
= ((
dom ((
- 1)
(#)
sin ))
/\ Z) by
RELAT_1: 61
.= ((
dom
sin )
/\ Z) by
VALUED_1:def 5
.= Z by
SIN_COS: 24,
XBOOLE_1: 28;
then
A3: Z
c= (
dom ((
- 1)
(#)
sin )) by
RELAT_1: 60;
A4:
sin
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 68;
then
A5: ((
- 1)
(#)
sin )
is_differentiable_on Z by
FDIFF_2: 19;
(((
diff (
cos ,Z))
. 2)
. x)
= (((
diff (
cos ,Z))
. (1
+ 1))
. x)
.= ((((
diff (
cos ,Z))
. (1
+
0 ))
`| Z)
. x) by
TAYLOR_1:def 5
.= (((((
diff (
cos ,Z))
.
0 )
`| Z)
`| Z)
. x) by
TAYLOR_1:def 5
.= ((((
cos
| Z)
`| Z)
`| Z)
. x) by
TAYLOR_1:def 5
.= (((
cos
`| Z)
`| Z)
. x) by
A2,
FDIFF_2: 16
.= ((((
-
sin )
| Z)
`| Z)
. x) by
TAYLOR_2: 17
.= ((((
- 1)
(#)
sin )
`| Z)
. x) by
A5,
FDIFF_2: 16
.= ((
- 1)
* (
diff (
sin ,x))) by
A1,
A4,
A3,
FDIFF_1: 20
.= ((
- 1)
* (
cos
. x)) by
SIN_COS: 64
.= (
- (
cos
. x));
hence thesis;
end;
theorem ::
HFDIFF_1:13
x
in Z implies (((
diff (
cos ,Z))
. 3)
. x)
= (
sin
. x)
proof
assume x
in Z;
then
A1: x
in (
dom (
sin
| Z)) by
TAYLOR_2: 17;
(((
diff (
cos ,Z))
. 3)
. x)
= (((
diff (
cos ,Z))
. ((2
* 1)
+ 1))
. x)
.= ((((
- 1)
|^ (1
+ 1))
(#) (
sin
| Z))
. x) by
TAYLOR_2: 19
.= (((1
|^ 2)
(#) (
sin
| Z))
. x) by
WSIERP_1: 1
.= (((1
* 1)
(#) (
sin
| Z))
. x)
.= ((
sin
| Z)
. x) by
RFUNCT_1: 21
.= (
sin
. x) by
A1,
FUNCT_1: 47;
hence thesis;
end;
theorem ::
HFDIFF_1:14
Th14: x
in Z implies (((
diff (
cos ,Z))
. n)
. x)
= (
cos
. (x
+ ((n
*
PI )
/ 2)))
proof
assume
A1: x
in Z;
(
dom (((
- 1)
(#)
sin )
| Z))
= ((
dom ((
- 1)
(#)
sin ))
/\ Z) by
RELAT_1: 61
.= ((
dom
sin )
/\ Z) by
VALUED_1:def 5
.= Z by
SIN_COS: 24,
XBOOLE_1: 28;
then
A2: Z
c= (
dom ((
- 1)
(#)
sin )) by
RELAT_1: 60;
(
dom (((
- 1)
(#)
cos )
| Z))
= ((
dom ((
- 1)
(#)
cos ))
/\ Z) by
RELAT_1: 61
.= ((
dom
cos )
/\ Z) by
VALUED_1:def 5
.= Z by
SIN_COS: 24,
XBOOLE_1: 28;
then
A3: Z
c= (
dom ((
- 1)
(#)
cos )) by
RELAT_1: 60;
A4:
cos
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 67;
then
A5: ((
- 1)
(#)
cos )
is_differentiable_on Z by
FDIFF_2: 19;
A6:
sin
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 68;
then
A7: ((
- 1)
(#)
sin )
is_differentiable_on Z by
FDIFF_2: 19;
per cases ;
suppose n
>
0 ;
then
0
< (
0
+ n);
then 1
<= n by
NAT_1: 19;
then
reconsider i = (n
- 1) as
Element of
NAT by
INT_1: 5;
now
per cases ;
suppose i is
even;
then
consider j be
Nat such that
A8: i
= (2
* j) by
ABIAN:def 2;
per cases ;
suppose j is
even;
then
consider m be
Nat such that
A9: j
= (2
* m) by
ABIAN:def 2;
(((
diff (
cos ,Z))
. (i
+ 1))
. x)
= ((((
diff (
cos ,Z))
. (2
* j))
`| Z)
. x) by
A8,
TAYLOR_1:def 5
.= (((((
- 1)
|^ (2
* m))
(#) (
cos
| Z))
`| Z)
. x) by
A9,
TAYLOR_2: 19
.= ((((1
|^ (2
* m))
(#) (
cos
| Z))
`| Z)
. x) by
WSIERP_1: 2
.= (((1
(#) (
cos
| Z))
`| Z)
. x)
.= (((
cos
| Z)
`| Z)
. x) by
RFUNCT_1: 21
.= ((
cos
`| Z)
. x) by
A4,
FDIFF_2: 16
.= (
diff (
cos ,x)) by
A1,
A4,
FDIFF_1:def 7
.= (
- (
sin
. x)) by
SIN_COS: 63
.= (
cos
. (x
+ (
PI
/ 2))) by
SIN_COS: 78
.= (
cos
. ((x
+ (
PI
/ 2))
+ ((2
*
PI )
* m))) by
SIN_COS2: 11
.= (
cos
. ((x
+ (
PI
/ 2))
+ ((i
/ 2)
*
PI ))) by
A8,
A9
.= (
cos
. (x
+ ((n
*
PI )
/ 2)));
hence thesis;
end;
suppose j is
odd;
then
consider s be
Nat such that
A10: j
= ((2
* s)
+ 1) by
ABIAN: 9;
(((
diff (
cos ,Z))
. (i
+ 1))
. x)
= ((((
diff (
cos ,Z))
. (2
* j))
`| Z)
. x) by
A8,
TAYLOR_1:def 5
.= (((((
- 1)
|^ ((2
* s)
+ 1))
(#) (
cos
| Z))
`| Z)
. x) by
A10,
TAYLOR_2: 19
.= ((((((
- 1)
|^ (2
* s))
* (
- 1))
(#) (
cos
| Z))
`| Z)
. x) by
NEWTON: 6
.= (((((1
|^ (2
* s))
* (
- 1))
(#) (
cos
| Z))
`| Z)
. x) by
WSIERP_1: 2
.= ((((1
* (
- 1))
(#) (
cos
| Z))
`| Z)
. x)
.= ((((
-
cos )
| Z)
`| Z)
. x) by
RFUNCT_1: 49
.= ((((
- 1)
(#)
cos )
`| Z)
. x) by
A5,
FDIFF_2: 16
.= ((
- 1)
* (
diff (
cos ,x))) by
A1,
A3,
A4,
FDIFF_1: 20
.= ((
- 1)
* (
- (
sin
. x))) by
SIN_COS: 63
.= (
sin
. (x
+ ((2
*
PI )
* s))) by
SIN_COS2: 10
.= (
sin
. ((x
+ (((i
/ 2)
- 1)
*
PI ))
+ (2
*
PI ))) by
A8,
A10,
SIN_COS: 78
.= (
cos
. ((
PI
/ 2)
- (x
+ (((i
/ 2)
+ 1)
*
PI )))) by
SIN_COS: 78
.= (
cos
. (
- ((
PI
/ 2)
- (x
+ (((i
/ 2)
+ 1)
*
PI ))))) by
SIN_COS: 30
.= (
cos
. (x
+ ((n
*
PI )
/ 2)));
hence thesis;
end;
end;
suppose i is
odd;
then
consider j be
Nat such that
A11: i
= ((2
* j)
+ 1) by
ABIAN: 9;
per cases ;
suppose j is
even;
then
consider m be
Nat such that
A12: j
= (2
* m) by
ABIAN:def 2;
(((
diff (
cos ,Z))
. (i
+ 1))
. x)
= ((((
diff (
cos ,Z))
. ((2
* j)
+ 1))
`| Z)
. x) by
A11,
TAYLOR_1:def 5
.= (((((
- 1)
|^ ((2
* m)
+ 1))
(#) (
sin
| Z))
`| Z)
. x) by
A12,
TAYLOR_2: 19
.= ((((((
- 1)
|^ (2
* m))
* (
- 1))
(#) (
sin
| Z))
`| Z)
. x) by
NEWTON: 6
.= (((((1
|^ (2
* m))
* (
- 1))
(#) (
sin
| Z))
`| Z)
. x) by
WSIERP_1: 2
.= ((((1
* (
- 1))
(#) (
sin
| Z))
`| Z)
. x)
.= ((((
-
sin )
| Z)
`| Z)
. x) by
RFUNCT_1: 49
.= ((((
- 1)
(#)
sin )
`| Z)
. x) by
A7,
FDIFF_2: 16
.= ((
- 1)
* (
diff (
sin ,x))) by
A1,
A2,
A6,
FDIFF_1: 20
.= ((
- 1)
* (
cos
. x)) by
SIN_COS: 64
.= (
- (
cos
. x))
.= (
cos
. (x
+
PI )) by
SIN_COS: 78
.= (
cos
. ((x
+
PI )
+ ((2
*
PI )
* m))) by
SIN_COS2: 11
.= (
cos
. (x
+ (((i
+ 1)
*
PI )
/ 2))) by
A11,
A12
.= (
cos
. (x
+ ((n
*
PI )
/ 2)));
hence thesis;
end;
suppose j is
odd;
then
consider s be
Nat such that
A13: j
= ((2
* s)
+ 1) by
ABIAN: 9;
(((
diff (
cos ,Z))
. (i
+ 1))
. x)
= ((((
diff (
cos ,Z))
. ((2
* j)
+ 1))
`| Z)
. x) by
A11,
TAYLOR_1:def 5
.= (((((
- 1)
|^ (j
+ 1))
(#) (
sin
| Z))
`| Z)
. x) by
TAYLOR_2: 19
.= ((((1
|^ (2
* (s
+ 1)))
(#) (
sin
| Z))
`| Z)
. x) by
A13,
WSIERP_1: 2
.= (((1
(#) (
sin
| Z))
`| Z)
. x)
.= (((
sin
| Z)
`| Z)
. x) by
RFUNCT_1: 21
.= ((
sin
`| Z)
. x) by
A6,
FDIFF_2: 16
.= (
diff (
sin ,x)) by
A1,
A6,
FDIFF_1:def 7
.= (
cos
. x) by
SIN_COS: 64
.= (
cos
. (x
+ ((2
*
PI )
* s))) by
SIN_COS2: 11
.= (
cos
. ((x
+ ((((i
- 1)
/ 2)
- 1)
*
PI ))
+ (2
*
PI ))) by
A11,
A13,
SIN_COS: 78
.= (
cos
. (x
+ ((n
*
PI )
/ 2)));
hence thesis;
end;
end;
end;
hence thesis;
end;
suppose
A14: n
=
0 ;
then (((
diff (
cos ,Z))
. n)
. x)
= ((
cos
| Z)
. x) by
TAYLOR_1:def 5
.= (
cos
. (x
+ ((n
*
PI )
/ 2))) by
A1,
A14,
FUNCT_1: 49;
hence thesis;
end;
end;
theorem ::
HFDIFF_1:15
Th15: f1
is_differentiable_on (n,Z) & f2
is_differentiable_on (n,Z) implies ((
diff ((f1
+ f2),Z))
. n)
= (((
diff (f1,Z))
. n)
+ ((
diff (f2,Z))
. n))
proof
defpred
P[
Nat] means f1
is_differentiable_on ($1,Z) & f2
is_differentiable_on ($1,Z) implies ((
diff ((f1
+ f2),Z))
. $1)
= (((
diff (f1,Z))
. $1)
+ ((
diff (f2,Z))
. $1));
A1: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat such that
A2:
P[k];
assume
A3: f1
is_differentiable_on ((k
+ 1),Z) & f2
is_differentiable_on ((k
+ 1),Z);
A4: ((
diff (f1,Z))
. k)
is_differentiable_on Z & ((
diff (f2,Z))
. k)
is_differentiable_on Z by
A3;
k
< (k
+ 1) by
NAT_1: 19;
then ((
diff ((f1
+ f2),Z))
. (k
+ 1))
= ((((
diff (f1,Z))
. k)
+ ((
diff (f2,Z))
. k))
`| Z) by
A2,
A3,
TAYLOR_1: 23,
TAYLOR_1:def 5
.= ((((
diff (f1,Z))
. k)
`| Z)
+ (((
diff (f2,Z))
. k)
`| Z)) by
A4,
FDIFF_2: 17
.= (((
diff (f1,Z))
. (k
+ 1))
+ (((
diff (f2,Z))
. k)
`| Z)) by
TAYLOR_1:def 5
.= (((
diff (f1,Z))
. (k
+ 1))
+ ((
diff (f2,Z))
. (k
+ 1))) by
TAYLOR_1:def 5;
hence thesis;
end;
A5:
P[
0 ]
proof
assume that f1
is_differentiable_on (
0 ,Z) and f2
is_differentiable_on (
0 ,Z);
((
diff ((f1
+ f2),Z))
.
0 )
= ((f1
+ f2)
| Z) by
TAYLOR_1:def 5
.= ((f1
| Z)
+ (f2
| Z)) by
RFUNCT_1: 44
.= (((
diff (f1,Z))
.
0 )
+ (f2
| Z)) by
TAYLOR_1:def 5
.= (((
diff (f1,Z))
.
0 )
+ ((
diff (f2,Z))
.
0 )) by
TAYLOR_1:def 5;
hence thesis;
end;
for k be
Nat holds
P[k] from
NAT_1:sch 2(
A5,
A1);
hence thesis;
end;
theorem ::
HFDIFF_1:16
Th16: f1
is_differentiable_on (n,Z) & f2
is_differentiable_on (n,Z) implies ((
diff ((f1
- f2),Z))
. n)
= (((
diff (f1,Z))
. n)
- ((
diff (f2,Z))
. n))
proof
defpred
P[
Nat] means f1
is_differentiable_on ($1,Z) & f2
is_differentiable_on ($1,Z) implies ((
diff ((f1
- f2),Z))
. $1)
= (((
diff (f1,Z))
. $1)
- ((
diff (f2,Z))
. $1));
A1: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat such that
A2:
P[k];
assume
A3: f1
is_differentiable_on ((k
+ 1),Z) & f2
is_differentiable_on ((k
+ 1),Z);
A4: ((
diff (f1,Z))
. k)
is_differentiable_on Z & ((
diff (f2,Z))
. k)
is_differentiable_on Z by
A3;
k
< (k
+ 1) by
NAT_1: 19;
then ((
diff ((f1
- f2),Z))
. (k
+ 1))
= ((((
diff (f1,Z))
. k)
- ((
diff (f2,Z))
. k))
`| Z) by
A2,
A3,
TAYLOR_1: 23,
TAYLOR_1:def 5
.= ((((
diff (f1,Z))
. k)
`| Z)
- (((
diff (f2,Z))
. k)
`| Z)) by
A4,
FDIFF_2: 18
.= (((
diff (f1,Z))
. (k
+ 1))
- (((
diff (f2,Z))
. k)
`| Z)) by
TAYLOR_1:def 5
.= (((
diff (f1,Z))
. (k
+ 1))
- ((
diff (f2,Z))
. (k
+ 1))) by
TAYLOR_1:def 5;
hence thesis;
end;
A5:
P[
0 ]
proof
assume that f1
is_differentiable_on (
0 ,Z) and f2
is_differentiable_on (
0 ,Z);
((
diff ((f1
- f2),Z))
.
0 )
= ((f1
- f2)
| Z) by
TAYLOR_1:def 5
.= ((f1
| Z)
- (f2
| Z)) by
RFUNCT_1: 47
.= (((
diff (f1,Z))
.
0 )
- (f2
| Z)) by
TAYLOR_1:def 5
.= (((
diff (f1,Z))
.
0 )
- ((
diff (f2,Z))
.
0 )) by
TAYLOR_1:def 5;
hence thesis;
end;
for k be
Nat holds
P[k] from
NAT_1:sch 2(
A5,
A1);
hence thesis;
end;
theorem ::
HFDIFF_1:17
Th17: f1
is_differentiable_on (n,Z) & f2
is_differentiable_on (n,Z) & i
<= n implies ((
diff ((f1
+ f2),Z))
. i)
= (((
diff (f1,Z))
. i)
+ ((
diff (f2,Z))
. i))
proof
assume
A1: f1
is_differentiable_on (n,Z) & f2
is_differentiable_on (n,Z);
assume i
<= n;
then f1
is_differentiable_on (i,Z) & f2
is_differentiable_on (i,Z) by
A1,
TAYLOR_1: 23;
hence thesis by
Th15;
end;
theorem ::
HFDIFF_1:18
Th18: f1
is_differentiable_on (n,Z) & f2
is_differentiable_on (n,Z) & i
<= n implies ((
diff ((f1
- f2),Z))
. i)
= (((
diff (f1,Z))
. i)
- ((
diff (f2,Z))
. i))
proof
assume
A1: f1
is_differentiable_on (n,Z) & f2
is_differentiable_on (n,Z);
assume i
<= n;
then f1
is_differentiable_on (i,Z) & f2
is_differentiable_on (i,Z) by
A1,
TAYLOR_1: 23;
hence thesis by
Th16;
end;
theorem ::
HFDIFF_1:19
f1
is_differentiable_on (n,Z) & f2
is_differentiable_on (n,Z) implies (f1
+ f2)
is_differentiable_on (n,Z)
proof
assume that
A1: f1
is_differentiable_on (n,Z) and
A2: f2
is_differentiable_on (n,Z);
now
let i be
Nat such that
A3: i
<= (n
- 1);
A4: i
in
NAT by
ORDINAL1:def 12;
A5: ((
diff (f2,Z))
. i)
is_differentiable_on Z by
A2,
A3;
then
A6: Z
c= (
dom ((
diff (f2,Z))
. i)) by
FDIFF_1:def 6;
i
<= n by
A3,
WSIERP_1: 18;
then
A7: ((
diff ((f1
+ f2),Z))
. i)
= (((
diff (f1,Z))
. i)
+ ((
diff (f2,Z))
. i)) by
A1,
A2,
Th17,
A4;
A8: ((
diff (f1,Z))
. i)
is_differentiable_on Z by
A1,
A3;
then Z
c= (
dom ((
diff (f1,Z))
. i)) by
FDIFF_1:def 6;
then Z
c= ((
dom ((
diff (f1,Z))
. i))
/\ (
dom ((
diff (f2,Z))
. i))) by
A6,
XBOOLE_1: 19;
then Z
c= (
dom (((
diff (f1,Z))
. i)
+ ((
diff (f2,Z))
. i))) by
VALUED_1:def 1;
hence ((
diff ((f1
+ f2),Z))
. i)
is_differentiable_on Z by
A8,
A5,
A7,
FDIFF_1: 18;
end;
hence thesis;
end;
theorem ::
HFDIFF_1:20
f1
is_differentiable_on (n,Z) & f2
is_differentiable_on (n,Z) implies (f1
- f2)
is_differentiable_on (n,Z)
proof
assume that
A1: f1
is_differentiable_on (n,Z) and
A2: f2
is_differentiable_on (n,Z);
now
let i be
Nat such that
A3: i
<= (n
- 1);
A4: i
in
NAT by
ORDINAL1:def 12;
A5: ((
diff (f2,Z))
. i)
is_differentiable_on Z by
A2,
A3;
then
A6: Z
c= (
dom ((
diff (f2,Z))
. i)) by
FDIFF_1:def 6;
i
<= n by
A3,
WSIERP_1: 18;
then
A7: ((
diff ((f1
- f2),Z))
. i)
= (((
diff (f1,Z))
. i)
- ((
diff (f2,Z))
. i)) by
A1,
A2,
Th18,
A4;
A8: ((
diff (f1,Z))
. i)
is_differentiable_on Z by
A1,
A3;
then Z
c= (
dom ((
diff (f1,Z))
. i)) by
FDIFF_1:def 6;
then Z
c= ((
dom ((
diff (f1,Z))
. i))
/\ (
dom ((
diff (f2,Z))
. i))) by
A6,
XBOOLE_1: 19;
then Z
c= (
dom (((
diff (f1,Z))
. i)
- ((
diff (f2,Z))
. i))) by
VALUED_1: 12;
hence ((
diff ((f1
- f2),Z))
. i)
is_differentiable_on Z by
A8,
A5,
A7,
FDIFF_1: 19;
end;
hence thesis;
end;
theorem ::
HFDIFF_1:21
Th21: f
is_differentiable_on (n,Z) implies ((
diff ((r
(#) f),Z))
. n)
= (r
(#) ((
diff (f,Z))
. n))
proof
defpred
P[
Nat] means f
is_differentiable_on ($1,Z) implies ((
diff ((r
(#) f),Z))
. $1)
= (r
(#) ((
diff (f,Z))
. $1));
A1: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume
A2:
P[k];
assume
A3: f
is_differentiable_on ((k
+ 1),Z);
A4: ((
diff (f,Z))
. k)
is_differentiable_on Z by
A3;
k
< (k
+ 1) by
NAT_1: 19;
then ((
diff ((r
(#) f),Z))
. (k
+ 1))
= ((r
(#) ((
diff (f,Z))
. k))
`| Z) by
A2,
A3,
TAYLOR_1: 23,
TAYLOR_1:def 5
.= (r
(#) (((
diff (f,Z))
. k)
`| Z)) by
A4,
FDIFF_2: 19
.= (r
(#) ((
diff (f,Z))
. (k
+ 1))) by
TAYLOR_1:def 5;
hence thesis;
end;
A5:
P[
0 ]
proof
assume f
is_differentiable_on (
0 ,Z);
((
diff ((r
(#) f),Z))
.
0 )
= ((r
(#) f)
| Z) by
TAYLOR_1:def 5
.= (r
(#) (f
| Z)) by
RFUNCT_1: 49
.= (r
(#) ((
diff (f,Z))
.
0 )) by
TAYLOR_1:def 5;
hence thesis;
end;
for k be
Nat holds
P[k] from
NAT_1:sch 2(
A5,
A1);
hence thesis;
end;
theorem ::
HFDIFF_1:22
Th22: f
is_differentiable_on (n,Z) implies (r
(#) f)
is_differentiable_on (n,Z)
proof
assume
A1: f
is_differentiable_on (n,Z);
now
let i be
Nat such that
A2: i
<= (n
- 1);
A3: i
in
NAT by
ORDINAL1:def 12;
((
diff (f,Z))
. i)
is_differentiable_on Z by
A1,
A2;
then
A4: (r
(#) ((
diff (f,Z))
. i))
is_differentiable_on Z by
FDIFF_2: 19;
i
<= n by
A2,
WSIERP_1: 18;
hence ((
diff ((r
(#) f),Z))
. i)
is_differentiable_on Z by
A1,
A4,
Th21,
TAYLOR_1: 23,
A3;
end;
hence thesis;
end;
theorem ::
HFDIFF_1:23
f
is_differentiable_on Z implies ((
diff (f,Z))
. 1)
= (f
`| Z)
proof
assume
A1: f
is_differentiable_on Z;
then
A2: (
dom (f
`| Z))
= Z by
FDIFF_1:def 7;
A3: for x be
Element of
REAL st x
in Z holds (((
diff (f,Z))
. 1)
. x)
= ((f
`| Z)
. x)
proof
let x be
Element of
REAL ;
assume x
in Z;
(((
diff (f,Z))
. 1)
. x)
= (((
diff (f,Z))
. (1
+
0 ))
. x)
.= ((((
diff (f,Z))
.
0 )
`| Z)
. x) by
TAYLOR_1:def 5
.= (((f
| Z)
`| Z)
. x) by
TAYLOR_1:def 5
.= ((f
`| Z)
. x) by
A1,
FDIFF_2: 16;
hence thesis;
end;
(
dom ((
diff (f,Z))
. 1))
= (
dom ((
diff (f,Z))
. (1
+
0 )))
.= (
dom (((
diff (f,Z))
.
0 )
`| Z)) by
TAYLOR_1:def 5
.= (
dom ((f
| Z)
`| Z)) by
TAYLOR_1:def 5
.= (
dom (f
`| Z)) by
A1,
FDIFF_2: 16
.= Z by
A1,
FDIFF_1:def 7;
hence thesis by
A2,
A3,
PARTFUN1: 5;
end;
theorem ::
HFDIFF_1:24
n
>= 1 & f1
is_differentiable_on (n,Z) implies ((
diff (f1,Z))
. 1)
= (f1
`| Z)
proof
assume n
>= 1 & f1
is_differentiable_on (n,Z);
then
A1: f1
is_differentiable_on Z by
Th7;
((
diff (f1,Z))
. 1)
= ((
diff (f1,Z))
. (1
+
0 ))
.= (((
diff (f1,Z))
.
0 )
`| Z) by
TAYLOR_1:def 5
.= ((f1
| Z)
`| Z) by
TAYLOR_1:def 5
.= (f1
`| Z) by
A1,
FDIFF_2: 16;
hence thesis;
end;
theorem ::
HFDIFF_1:25
x
in Z implies (((
diff ((r
(#)
sin ),Z))
. n)
. x)
= (r
* (
sin
. (x
+ ((n
*
PI )
/ 2))))
proof
assume
A1: x
in Z;
A2:
sin
is_differentiable_on (n,Z) by
TAYLOR_2: 21;
per cases ;
suppose n
>
0 ;
then
0
< (
0
+ n);
then 1
<= n by
NAT_1: 19;
then
reconsider i = (n
- 1) as
Element of
NAT by
INT_1: 5;
A3: ((
diff (
sin ,Z))
. i)
is_differentiable_on Z by
A2;
(
dom ((
diff (
sin ,Z))
. n))
= (
dom ((
diff (
sin ,Z))
. (i
+ 1)))
.= (
dom (((
diff (
sin ,Z))
. i)
`| Z)) by
TAYLOR_1:def 5
.= Z by
A3,
FDIFF_1:def 7;
then
A4: x
in (
dom (r
(#) ((
diff (
sin ,Z))
. n))) by
A1,
VALUED_1:def 5;
(((
diff ((r
(#)
sin ),Z))
. n)
. x)
= ((r
(#) ((
diff (
sin ,Z))
. n))
. x) by
A2,
Th21
.= (r
* (((
diff (
sin ,Z))
. n)
. x)) by
A4,
VALUED_1:def 5
.= (r
* (
sin
. (x
+ ((n
*
PI )
/ 2)))) by
A1,
Th11;
hence thesis;
end;
suppose
A5: n
=
0 ;
A6: (
dom (r
(#) (
sin
| Z)))
= (
dom (
sin
| Z)) by
VALUED_1:def 5
.= Z by
Th1;
(((
diff ((r
(#)
sin ),Z))
. n)
. x)
= ((r
(#) ((
diff (
sin ,Z))
.
0 ))
. x) by
A2,
A5,
Th21
.= ((r
(#) (
sin
| Z))
. x) by
TAYLOR_1:def 5
.= (r
* ((
sin
| Z)
. x)) by
A1,
A6,
VALUED_1:def 5
.= (r
* (
sin
. (x
+ ((n
*
PI )
/ 2)))) by
A1,
A5,
FUNCT_1: 49;
hence thesis;
end;
end;
theorem ::
HFDIFF_1:26
x
in Z implies (((
diff ((r
(#)
cos ),Z))
. n)
. x)
= (r
* (
cos
. (x
+ ((n
*
PI )
/ 2))))
proof
assume
A1: x
in Z;
A2:
cos
is_differentiable_on (n,Z) by
TAYLOR_2: 21;
per cases ;
suppose n
>
0 ;
then
0
< (
0
+ n);
then 1
<= n by
NAT_1: 19;
then
reconsider i = (n
- 1) as
Element of
NAT by
INT_1: 5;
A3: ((
diff (
cos ,Z))
. i)
is_differentiable_on Z by
A2;
(
dom ((
diff (
cos ,Z))
. n))
= (
dom ((
diff (
cos ,Z))
. (i
+ 1)))
.= (
dom (((
diff (
cos ,Z))
. i)
`| Z)) by
TAYLOR_1:def 5
.= Z by
A3,
FDIFF_1:def 7;
then
A4: x
in (
dom (r
(#) ((
diff (
cos ,Z))
. n))) by
A1,
VALUED_1:def 5;
(((
diff ((r
(#)
cos ),Z))
. n)
. x)
= ((r
(#) ((
diff (
cos ,Z))
. n))
. x) by
A2,
Th21
.= (r
* (((
diff (
cos ,Z))
. n)
. x)) by
A4,
VALUED_1:def 5
.= (r
* (
cos
. (x
+ ((n
*
PI )
/ 2)))) by
A1,
Th14;
hence thesis;
end;
suppose
A5: n
=
0 ;
A6: (
dom (r
(#) (
cos
| Z)))
= (
dom (
cos
| Z)) by
VALUED_1:def 5
.= Z by
Th1;
(((
diff ((r
(#)
cos ),Z))
. n)
. x)
= ((r
(#) ((
diff (
cos ,Z))
.
0 ))
. x) by
A2,
A5,
Th21
.= ((r
(#) (
cos
| Z))
. x) by
TAYLOR_1:def 5
.= (r
* ((
cos
| Z)
. x)) by
A1,
A6,
VALUED_1:def 5
.= (r
* (
cos
. (x
+ ((n
*
PI )
/ 2)))) by
A1,
A5,
FUNCT_1: 49;
hence thesis;
end;
end;
theorem ::
HFDIFF_1:27
x
in Z implies (((
diff ((r
(#)
exp_R ),Z))
. n)
. x)
= (r
* (
exp_R
. x))
proof
assume
A1: x
in Z;
A2:
exp_R
is_differentiable_on (n,Z) by
TAYLOR_2: 10;
per cases ;
suppose n
>
0 ;
then
0
< (
0
+ n);
then 1
<= n by
NAT_1: 19;
then
reconsider i = (n
- 1) as
Element of
NAT by
INT_1: 5;
A3: ((
diff (
exp_R ,Z))
. i)
is_differentiable_on Z by
A2;
(
dom ((
diff (
exp_R ,Z))
. n))
= (
dom ((
diff (
exp_R ,Z))
. (i
+ 1)))
.= (
dom (((
diff (
exp_R ,Z))
. i)
`| Z)) by
TAYLOR_1:def 5
.= Z by
A3,
FDIFF_1:def 7;
then
A4: x
in (
dom (r
(#) ((
diff (
exp_R ,Z))
. n))) by
A1,
VALUED_1:def 5;
(((
diff ((r
(#)
exp_R ),Z))
. n)
. x)
= ((r
(#) ((
diff (
exp_R ,Z))
. n))
. x) by
Th21,
TAYLOR_2: 10
.= (r
* (((
diff (
exp_R ,Z))
. n)
. x)) by
A4,
VALUED_1:def 5
.= (r
* (
exp_R
. x)) by
A1,
TAYLOR_2: 7;
hence thesis;
end;
suppose
A5: n
=
0 ;
A6: (
dom (r
(#) (
exp_R
| Z)))
= (
dom (
exp_R
| Z)) by
VALUED_1:def 5
.= Z by
Th1;
(((
diff ((r
(#)
exp_R ),Z))
. n)
. x)
= ((r
(#) ((
diff (
exp_R ,Z))
.
0 ))
. x) by
A5,
Th21,
TAYLOR_2: 10
.= ((r
(#) (
exp_R
| Z))
. x) by
TAYLOR_1:def 5
.= (r
* ((
exp_R
| Z)
. x)) by
A1,
A6,
VALUED_1:def 5
.= (r
* (
exp_R
. x)) by
A1,
FUNCT_1: 49;
hence thesis;
end;
end;
theorem ::
HFDIFF_1:28
Th28: ((
#Z n)
`| Z)
= ((n
(#) (
#Z (n
- 1)))
| Z)
proof
(
dom (n
(#) (
#Z (n
- 1))))
= (
dom (
#Z (n
- 1))) by
VALUED_1:def 5;
then
A1: (
dom (n
(#) (
#Z (n
- 1))))
=
REAL by
FUNCT_2:def 1;
then (n
(#) (
#Z (n
- 1))) is
Function of
REAL ,
REAL by
FUNCT_2: 67;
then
A2: (
dom ((n
(#) (
#Z (n
- 1)))
| Z))
= Z by
Th1;
A3: (
#Z n)
is_differentiable_on Z by
Th8,
FDIFF_1: 26;
A4: for x be
Element of
REAL st x
in Z holds (((
#Z n)
`| Z)
. x)
= (((n
(#) (
#Z (n
- 1)))
| Z)
. x)
proof
let x be
Element of
REAL such that
A5: x
in Z;
(((
#Z n)
`| Z)
. x)
= (
diff ((
#Z n),x)) by
A3,
A5,
FDIFF_1:def 7
.= (n
* (x
#Z (n
- 1))) by
TAYLOR_1: 2
.= (n
* ((
#Z (n
- 1))
. x)) by
TAYLOR_1:def 1
.= ((n
(#) (
#Z (n
- 1)))
. x) by
A1,
VALUED_1:def 5
.= (((n
(#) (
#Z (n
- 1)))
| Z)
. x) by
A2,
A5,
FUNCT_1: 47;
hence thesis;
end;
(
dom ((
#Z n)
`| Z))
= Z by
A3,
FDIFF_1:def 7;
hence thesis by
A2,
A4,
PARTFUN1: 5;
end;
theorem ::
HFDIFF_1:29
Th29: x
<>
0 implies ((
#Z n)
^ )
is_differentiable_in x & (
diff (((
#Z n)
^ ),x))
= (
- ((n
* (x
#Z (n
- 1)))
/ ((x
#Z n)
^2 )))
proof
A1: ((
#Z n)
. x)
= (x
#Z n) & (x
#Z n)
= (x
|^ n) by
PREPOWER: 36,
TAYLOR_1:def 1;
assume x
<>
0 ;
then
A2: ((
#Z n)
. x)
<>
0 by
A1,
PREPOWER: 5;
A3: (
#Z n)
is_differentiable_in x by
TAYLOR_1: 2;
then (
diff (((
#Z n)
^ ),x))
= (
- ((
diff ((
#Z n),x))
/ (((
#Z n)
. x)
^2 ))) by
A2,
FDIFF_2: 15
.= (
- ((n
* (x
#Z (n
- 1)))
/ (((
#Z n)
. x)
^2 ))) by
TAYLOR_1: 2
.= (
- ((n
* (x
#Z (n
- 1)))
/ ((x
#Z n)
^2 ))) by
TAYLOR_1:def 1;
hence thesis by
A2,
A3,
FDIFF_2: 15;
end;
theorem ::
HFDIFF_1:30
Th30: n
>= 1 implies ((
diff ((
#Z n),Z))
. 2)
= (((n
* (n
- 1))
(#) (
#Z (n
- 2)))
| Z)
proof
assume n
>= 1;
then
reconsider m = (n
- 1) as
Element of
NAT by
INT_1: 5;
A1: (
#Z n)
is_differentiable_on Z by
Th8,
FDIFF_1: 26;
A2: (
#Z m)
is_differentiable_on Z by
Th8,
FDIFF_1: 26;
then
A3: ((m
+ 1)
(#) (
#Z m))
is_differentiable_on Z by
FDIFF_2: 19;
((
diff ((
#Z n),Z))
. 2)
= ((
diff ((
#Z n),Z))
. (1
+ 1))
.= (((
diff ((
#Z n),Z))
. (1
+
0 ))
`| Z) by
TAYLOR_1:def 5
.= ((((
diff ((
#Z n),Z))
.
0 )
`| Z)
`| Z) by
TAYLOR_1:def 5
.= ((((
#Z n)
| Z)
`| Z)
`| Z) by
TAYLOR_1:def 5
.= (((
#Z n)
`| Z)
`| Z) by
A1,
FDIFF_2: 16
.= ((((m
+ 1)
(#) (
#Z ((m
+ 1)
- 1)))
| Z)
`| Z) by
Th28
.= (((m
+ 1)
(#) (
#Z m))
`| Z) by
A3,
FDIFF_2: 16
.= ((m
+ 1)
(#) ((
#Z m)
`| Z)) by
A2,
FDIFF_2: 19
.= ((m
+ 1)
(#) ((m
(#) (
#Z (m
- 1)))
| Z)) by
Th28
.= (((m
+ 1)
(#) (m
(#) (
#Z (m
- 1))))
| Z) by
RFUNCT_1: 49
.= (((n
* (n
- 1))
(#) (
#Z (n
- 2)))
| Z) by
RFUNCT_1: 17;
hence thesis;
end;
theorem ::
HFDIFF_1:31
n
>= 2 implies ((
diff ((
#Z n),Z))
. 3)
= ((((n
* (n
- 1))
* (n
- 2))
(#) (
#Z (n
- 3)))
| Z)
proof
assume
A1: 2
<= n;
then
A2: (2
+ (
- 1))
<= (n
+
0 ) by
XREAL_1: 7;
reconsider m = (n
- 2) as
Element of
NAT by
A1,
INT_1: 5;
A3: (
#Z m)
is_differentiable_on Z by
Th8,
FDIFF_1: 26;
then
A4: (((m
+ 2)
* (m
+ 1))
(#) (
#Z m))
is_differentiable_on Z by
FDIFF_2: 19;
((
diff ((
#Z n),Z))
. 3)
= ((
diff ((
#Z n),Z))
. (2
+ 1))
.= (((
diff ((
#Z n),Z))
. 2)
`| Z) by
TAYLOR_1:def 5
.= ((((n
* (n
- 1))
(#) (
#Z (n
- 2)))
| Z)
`| Z) by
A2,
Th30
.= ((((m
+ 2)
* (m
+ 1))
(#) (
#Z m))
`| Z) by
A4,
FDIFF_2: 16
.= (((m
+ 2)
* (m
+ 1))
(#) ((
#Z m)
`| Z)) by
A3,
FDIFF_2: 19
.= (((m
+ 2)
* (m
+ 1))
(#) ((m
(#) (
#Z (m
- 1)))
| Z)) by
Th28
.= (((n
* (n
- 1))
(#) ((n
- 2)
(#) (
#Z (n
- 3))))
| Z) by
RFUNCT_1: 49
.= ((((n
* (n
- 1))
* (n
- 2))
(#) (
#Z (n
- 3)))
| Z) by
RFUNCT_1: 17;
hence thesis;
end;
Lm1: n
> 1 implies (((m
! )
/ (n
! ))
* n)
= ((m
! )
/ ((n
-' 1)
! ))
proof
assume
A1: n
> 1;
then (n
- 1)
= (n
-' 1) by
XREAL_1: 233;
then n
= ((n
-' 1)
+ 1);
then (((m
! )
/ (n
! ))
* n)
= (((m
! )
/ (((n
-' 1)
! )
* n))
* n) by
NEWTON: 15
.= ((m
! )
/ ((n
-' 1)
! )) by
A1,
XCMPLX_1: 92;
hence thesis;
end;
theorem ::
HFDIFF_1:32
Th32: n
> m implies ((
diff ((
#Z n),Z))
. m)
= ((((n
choose m)
* (m
! ))
(#) (
#Z (n
- m)))
| Z)
proof
defpred
P[
Nat] means n
> $1 implies ((
diff ((
#Z n),Z))
. $1)
= ((((n
choose $1)
* ($1
! ))
(#) (
#Z (n
- $1)))
| Z);
A1: for k st
P[k] holds
P[(k
+ 1)]
proof
let k such that
A2:
P[k];
assume
A3: n
> (k
+ 1);
then
A4: (n
- k)
> ((k
+ 1)
- k) by
XREAL_1: 9;
A5: ((k
+ 1)
+ (
- 1))
<= (n
+
0 ) by
A3,
XREAL_1: 7;
then
reconsider l = (n
- k) as
Element of
NAT by
INT_1: 5;
l
>= ((k
+ 1)
- k) by
A3,
XREAL_1: 9;
then
A6: ((k
+ 1)
! )
>
0 & (l
-' 1)
= ((n
- k)
- 1) by
XREAL_1: 233;
reconsider s = (n
- (k
+ 1)) as
Element of
NAT by
A3,
INT_1: 5;
A7: (
#Z l)
is_differentiable_on Z by
Th8,
FDIFF_1: 26;
then
A8: (((n
choose k)
* (k
! ))
(#) (
#Z l))
is_differentiable_on Z by
FDIFF_2: 19;
(
0
+ k)
< (1
+ k) by
XREAL_1: 6;
then ((
diff ((
#Z n),Z))
. (k
+ 1))
= (((((n
choose k)
* (k
! ))
(#) (
#Z l))
| Z)
`| Z) by
A2,
A3,
TAYLOR_1:def 5,
XXREAL_0: 2
.= ((((n
choose k)
* (k
! ))
(#) (
#Z l))
`| Z) by
A8,
FDIFF_2: 16
.= (((n
choose k)
* (k
! ))
(#) ((
#Z l)
`| Z)) by
A7,
FDIFF_2: 19
.= (((n
choose k)
* (k
! ))
(#) ((l
(#) (
#Z (l
- 1)))
| Z)) by
Th28
.= ((((n
choose k)
* (k
! ))
(#) (l
(#) (
#Z (l
- 1))))
| Z) by
RFUNCT_1: 49
.= (((((n
choose k)
* (k
! ))
* l)
(#) (
#Z (l
- 1)))
| Z) by
RFUNCT_1: 17
.= ((((((n
! )
/ ((k
! )
* (l
! )))
* (k
! ))
* (n
- k))
(#) (
#Z (l
- 1)))
| Z) by
A5,
NEWTON:def 3
.= (((((n
! )
/ (l
! ))
* l)
(#) (
#Z (l
- 1)))
| Z) by
XCMPLX_1: 92
.= ((((n
! )
/ ((l
-' 1)
! ))
(#) (
#Z (l
- 1)))
| Z) by
A4,
Lm1
.= (((((n
! )
/ ((s
! )
* ((k
+ 1)
! )))
* ((k
+ 1)
! ))
(#) (
#Z ((n
- k)
- 1)))
| Z) by
A6,
XCMPLX_1: 92
.= ((((n
choose (k
+ 1))
* ((k
+ 1)
! ))
(#) (
#Z (n
- (k
+ 1))))
| Z) by
A3,
NEWTON:def 3;
hence thesis;
end;
A9:
P[
0 ]
proof
assume n
>
0 ;
((
diff ((
#Z n),Z))
.
0 )
= ((
#Z n)
| Z) by
TAYLOR_1:def 5
.= (((1
* 1)
(#) (
#Z n))
| Z) by
RFUNCT_1: 21
.= ((((n
choose
0 )
* (
0
! ))
(#) (
#Z (n
-
0 )))
| Z) by
NEWTON: 12,
NEWTON: 19;
hence thesis;
end;
for k holds
P[k] from
NAT_1:sch 2(
A9,
A1);
hence thesis;
end;
theorem ::
HFDIFF_1:33
f
is_differentiable_on (n,Z) implies ((
diff ((
- f),Z))
. n)
= (
- ((
diff (f,Z))
. n)) & (
- f)
is_differentiable_on (n,Z) by
Th21,
Th22;
theorem ::
HFDIFF_1:34
x0
in Z implies ((
Taylor (
sin ,Z,x0,x))
. n)
= (((
sin
. (x0
+ ((n
*
PI )
/ 2)))
* ((x
- x0)
|^ n))
/ (n
! )) & ((
Taylor (
cos ,Z,x0,x))
. n)
= (((
cos
. (x0
+ ((n
*
PI )
/ 2)))
* ((x
- x0)
|^ n))
/ (n
! ))
proof
assume
A1: x0
in Z;
A2: ((
Taylor (
cos ,Z,x0,x))
. n)
= (((((
diff (
cos ,Z))
. n)
. x0)
* ((x
- x0)
|^ n))
/ (n
! )) by
TAYLOR_1:def 7
.= (((
cos
. (x0
+ ((n
*
PI )
/ 2)))
* ((x
- x0)
|^ n))
/ (n
! )) by
A1,
Th14;
((
Taylor (
sin ,Z,x0,x))
. n)
= (((((
diff (
sin ,Z))
. n)
. x0)
* ((x
- x0)
|^ n))
/ (n
! )) by
TAYLOR_1:def 7
.= (((
sin
. (x0
+ ((n
*
PI )
/ 2)))
* ((x
- x0)
|^ n))
/ (n
! )) by
A1,
Th11;
hence thesis by
A2;
end;
theorem ::
HFDIFF_1:35
r
>
0 implies ((
Maclaurin (
sin ,
].(
- r), r.[,x))
. n)
= (((
sin
. ((n
*
PI )
/ 2))
* (x
|^ n))
/ (n
! )) & ((
Maclaurin (
cos ,
].(
- r), r.[,x))
. n)
= (((
cos
. ((n
*
PI )
/ 2))
* (x
|^ n))
/ (n
! ))
proof
A1:
|.(
0
-
0 ).|
=
0 by
ABSVALUE: 2;
assume r
>
0 ;
then
A2:
0
in
].(
0
- r), (
0
+ r).[ by
A1,
RCOMP_1: 1;
A3: ((
Maclaurin (
cos ,
].(
- r), r.[,x))
. n)
= ((
Taylor (
cos ,
].(
- r), r.[,
0 ,x))
. n) by
TAYLOR_2:def 1
.= (((((
diff (
cos ,
].(
- r), r.[))
. n)
.
0 )
* ((x
-
0 )
|^ n))
/ (n
! )) by
TAYLOR_1:def 7
.= (((
cos
. (
0
+ ((n
*
PI )
/ 2)))
* (x
|^ n))
/ (n
! )) by
A2,
Th14;
((
Maclaurin (
sin ,
].(
- r), r.[,x))
. n)
= ((
Taylor (
sin ,
].(
- r), r.[,
0 ,x))
. n) by
TAYLOR_2:def 1
.= (((((
diff (
sin ,
].(
- r), r.[))
. n)
.
0 )
* ((x
-
0 )
|^ n))
/ (n
! )) by
TAYLOR_1:def 7
.= (((
sin
. (
0
+ ((n
*
PI )
/ 2)))
* (x
|^ n))
/ (n
! )) by
A2,
Th11;
hence thesis by
A3;
end;
theorem ::
HFDIFF_1:36
Th36: n
> m & x
in Z implies (((
diff ((
#Z n),Z))
. m)
. x)
= (((n
choose m)
* (m
! ))
* (x
#Z (n
- m)))
proof
assume that
A1: n
> m and
A2: x
in Z;
(
dom (
#Z (n
- m)))
=
REAL by
FUNCT_2:def 1;
then
A3: (
dom (((n
choose m)
* (m
! ))
(#) (
#Z (n
- m))))
=
REAL by
VALUED_1:def 5;
then
A4: (
dom ((((n
choose m)
* (m
! ))
(#) (
#Z (n
- m)))
| Z))
= (
REAL
/\ Z) by
RELAT_1: 61
.= Z by
XBOOLE_1: 28;
reconsider xx = x as
Element of
REAL by
XREAL_0:def 1;
(((
diff ((
#Z n),Z))
. m)
. x)
= (((((n
choose m)
* (m
! ))
(#) (
#Z (n
- m)))
| Z)
. x) by
A1,
Th32
.= ((((n
choose m)
* (m
! ))
(#) (
#Z (n
- m)))
. x) by
A2,
A4,
FUNCT_1: 47
.= (((n
choose m)
* (m
! ))
* ((
#Z (n
- m))
. xx)) by
A3,
VALUED_1:def 5
.= (((n
choose m)
* (m
! ))
* (x
#Z (n
- m))) by
TAYLOR_1:def 1;
hence thesis;
end;
theorem ::
HFDIFF_1:37
Th37: x
in Z implies (((
diff ((
#Z m),Z))
. m)
. x)
= (m
! )
proof
assume
A1: x
in Z;
per cases ;
suppose m
>
0 ;
then
0
< (
0
+ m);
then 1
<= m by
NAT_1: 19;
then
reconsider n = (m
- 1) as
Element of
NAT by
INT_1: 5;
A2: (
0
+ n)
< (n
+ 1) by
XREAL_1: 6;
A3: (
#Z 1)
is_differentiable_on Z by
Th8,
FDIFF_1: 26;
then
A4: (((n
+ 1)
! )
(#) (
#Z 1))
is_differentiable_on Z by
FDIFF_2: 19;
Z
c= (
dom (
#Z 1)) by
A3,
FDIFF_1:def 6;
then
A5: Z
c= (
dom (((n
+ 1)
! )
(#) (
#Z 1))) by
VALUED_1:def 5;
(((
diff ((
#Z m),Z))
. m)
. x)
= ((((
diff ((
#Z (n
+ 1)),Z))
. n)
`| Z)
. x) by
TAYLOR_1:def 5
.= (((((((n
+ 1)
choose n)
* (n
! ))
(#) (
#Z ((n
+ 1)
- n)))
| Z)
`| Z)
. x) by
A2,
Th32
.= ((((((((n
+ 1)
! )
/ ((n
! )
* 1))
* (n
! ))
(#) (
#Z ((n
+ 1)
- n)))
| Z)
`| Z)
. x) by
A2,
NEWTON: 13,
NEWTON:def 3
.= (((((((n
+ 1)
! )
/ 1)
(#) (
#Z 1))
| Z)
`| Z)
. x) by
XCMPLX_1: 92
.= (((((n
+ 1)
! )
(#) (
#Z 1))
`| Z)
. x) by
A4,
FDIFF_2: 16
.= (((n
+ 1)
! )
* (
diff ((
#Z 1),x))) by
A1,
A3,
A5,
FDIFF_1: 20
.= (((n
+ 1)
! )
* (1
* (x
#Z (1
- 1)))) by
TAYLOR_1: 2
.= (((n
+ 1)
! )
* 1) by
PREPOWER: 34
.= (m
! );
hence thesis;
end;
suppose
A6: m
=
0 ;
then (((
diff ((
#Z m),Z))
. m)
. x)
= (((
#Z
0 )
| Z)
. x) by
TAYLOR_1:def 5
.= ((
#Z
0 )
. x) by
A1,
FUNCT_1: 49
.= (x
#Z
0 ) by
TAYLOR_1:def 1
.= (m
! ) by
A6,
NEWTON: 12,
PREPOWER: 34;
hence thesis;
end;
end;
theorem ::
HFDIFF_1:38
Th38: (
#Z n)
is_differentiable_on (n,Z)
proof
let i be
Nat;
assume
A1: i
<= (n
- 1);
reconsider i as
Element of
NAT by
ORDINAL1:def 12;
((
- 1)
+ n)
< (
0
+ n) by
XREAL_1: 6;
then
A2: i
< n by
A1,
XXREAL_0: 2;
A3: for x be
Real st x
in Z holds (((
diff ((
#Z n),Z))
. i)
| Z)
is_differentiable_in x
proof
(i
+
0 )
<= ((n
- 1)
+ 1) by
A1,
XREAL_1: 8;
then
reconsider m = (n
- i) as
Element of
NAT by
INT_1: 5;
A4: (
#Z m)
is_differentiable_on Z by
Th8,
FDIFF_1: 26;
let x be
Real;
assume x
in Z;
then
A5: ((
#Z m)
| Z)
is_differentiable_in x by
A4,
FDIFF_1:def 6;
(((
diff ((
#Z n),Z))
. i)
| Z)
= (((((n
choose i)
* (i
! ))
(#) (
#Z m))
| Z)
| Z) by
A2,
Th32
.= ((((n
choose i)
* (i
! ))
(#) (
#Z m))
| Z) by
FUNCT_1: 51
.= (((n
choose i)
* (i
! ))
(#) ((
#Z m)
| Z)) by
RFUNCT_1: 49;
hence thesis by
A5,
FDIFF_1: 15;
end;
(
dom (
#Z (n
- i)))
=
REAL by
FUNCT_2:def 1;
then
A6: (
dom (((n
choose i)
* (i
! ))
(#) (
#Z (n
- i))))
=
REAL by
VALUED_1:def 5;
(
dom ((
diff ((
#Z n),Z))
. i))
= (
dom ((((n
choose i)
* (i
! ))
(#) (
#Z (n
- i)))
| Z)) by
A2,
Th32
.= (
REAL
/\ Z) by
A6,
RELAT_1: 61
.= Z by
XBOOLE_1: 28;
hence thesis by
A3,
FDIFF_1:def 6;
end;
theorem ::
HFDIFF_1:39
x
in Z & n
> m implies (((
diff ((a
(#) (
#Z n)),Z))
. m)
. x)
= (((a
* (n
choose m))
* (m
! ))
* (x
#Z (n
- m)))
proof
assume that
A1: x
in Z and
A2: n
> m;
(
dom (
#Z (n
- m)))
=
REAL by
FUNCT_2:def 1;
then
A3: (
dom (((n
choose m)
* (m
! ))
(#) (
#Z (n
- m))))
=
REAL by
VALUED_1:def 5;
A4: (
dom ((
diff ((
#Z n),Z))
. m))
= (
dom ((((n
choose m)
* (m
! ))
(#) (
#Z (n
- m)))
| Z)) by
A2,
Th32
.= (
REAL
/\ Z) by
A3,
RELAT_1: 61
.= Z by
XBOOLE_1: 28;
A5: (
dom (a
(#) ((
diff ((
#Z n),Z))
. m)))
= (
dom ((
diff ((
#Z n),Z))
. m)) by
VALUED_1:def 5;
(
#Z n)
is_differentiable_on (m,Z) by
A2,
Th38,
TAYLOR_1: 23;
then (((
diff ((a
(#) (
#Z n)),Z))
. m)
. x)
= ((a
(#) ((
diff ((
#Z n),Z))
. m))
. x) by
Th21
.= (a
* (((
diff ((
#Z n),Z))
. m)
. x)) by
A1,
A4,
A5,
VALUED_1:def 5
.= (a
* (((n
choose m)
* (m
! ))
* (x
#Z (n
- m)))) by
A1,
A2,
Th36;
hence thesis;
end;
theorem ::
HFDIFF_1:40
x
in Z implies (((
diff ((a
(#) (
#Z n)),Z))
. n)
. x)
= (a
* (n
! ))
proof
assume
A1: x
in Z;
reconsider xx = x as
Element of
REAL by
XREAL_0:def 1;
per cases ;
suppose n
>
0 ;
then
0
< (
0
+ n);
then 1
<= n by
NAT_1: 19;
then
reconsider m = (n
- 1) as
Element of
NAT by
INT_1: 5;
A2: (
dom (a
(#) ((
diff ((
#Z n),Z))
. n)))
= (
dom ((
diff ((
#Z n),Z))
. n)) by
VALUED_1:def 5;
(
#Z n)
is_differentiable_on (n,Z) by
Th38;
then
A3: ((
diff ((
#Z n),Z))
. m)
is_differentiable_on Z;
A4: (
dom ((
diff ((
#Z n),Z))
. n))
= (
dom ((
diff ((
#Z n),Z))
. (m
+ 1)))
.= (
dom (((
diff ((
#Z n),Z))
. m)
`| Z)) by
TAYLOR_1:def 5
.= Z by
A3,
FDIFF_1:def 7;
(((
diff ((a
(#) (
#Z n)),Z))
. n)
. x)
= ((a
(#) ((
diff ((
#Z n),Z))
. n))
. x) by
Th21,
Th38
.= (a
* (((
diff ((
#Z n),Z))
. n)
. x)) by
A1,
A4,
A2,
VALUED_1:def 5
.= (a
* (n
! )) by
A1,
Th37;
hence thesis;
end;
suppose
A5: n
=
0 ;
(
dom (
#Z
0 ))
=
REAL by
FUNCT_2:def 1;
then
A6: (
dom (a
(#) (
#Z
0 )))
=
REAL by
VALUED_1:def 5;
(((
diff ((a
(#) (
#Z n)),Z))
. n)
. x)
= ((a
(#) ((
diff ((
#Z
0 ),Z))
.
0 ))
. x) by
A5,
Th21,
Th38
.= ((a
(#) ((
#Z
0 )
| Z))
. x) by
TAYLOR_1:def 5
.= (((a
(#) (
#Z
0 ))
| Z)
. x) by
RFUNCT_1: 49
.= ((a
(#) (
#Z
0 ))
. x) by
A1,
FUNCT_1: 49
.= (a
* ((
#Z
0 )
. xx)) by
A6,
VALUED_1:def 5
.= (a
* (x
#Z
0 )) by
TAYLOR_1:def 1
.= (a
* (n
! )) by
A5,
NEWTON: 12,
PREPOWER: 34;
hence thesis;
end;
end;
theorem ::
HFDIFF_1:41
Th41: x0
in Z & n
> m implies ((
Taylor ((
#Z n),Z,x0,x))
. m)
= (((n
choose m)
* (x0
#Z (n
- m)))
* ((x
- x0)
|^ m)) & ((
Taylor ((
#Z n),Z,x0,x))
. n)
= ((x
- x0)
|^ n)
proof
assume that
A1: x0
in Z and
A2: n
> m;
A3: ((
Taylor ((
#Z n),Z,x0,x))
. n)
= (((((
diff ((
#Z n),Z))
. n)
. x0)
* ((x
- x0)
|^ n))
/ (n
! )) by
TAYLOR_1:def 7
.= ((((x
- x0)
|^ n)
* (n
! ))
/ (n
! )) by
A1,
Th37
.= ((x
- x0)
|^ n) by
XCMPLX_1: 89;
((
Taylor ((
#Z n),Z,x0,x))
. m)
= (((((
diff ((
#Z n),Z))
. m)
. x0)
* ((x
- x0)
|^ m))
/ (m
! )) by
TAYLOR_1:def 7
.= (((((n
choose m)
* (m
! ))
* (x0
#Z (n
- m)))
* ((x
- x0)
|^ m))
/ (m
! )) by
A1,
A2,
Th36
.= ((((n
choose m)
* ((x0
#Z (n
- m))
* ((x
- x0)
|^ m)))
* (m
! ))
/ (m
! ))
.= (((n
choose m)
* (x0
#Z (n
- m)))
* ((x
- x0)
|^ m)) by
XCMPLX_1: 89;
hence thesis by
A3;
end;
theorem ::
HFDIFF_1:42
for n,m be
Element of
NAT , r,x be
Element of
REAL st n
> m & r
>
0 holds ((
Maclaurin ((
#Z n),
].(
- r), r.[,x))
. m)
=
0 & ((
Maclaurin ((
#Z n),
].(
- r), r.[,x))
. n)
= (x
|^ n)
proof
let n,m be
Element of
NAT ;
let r,x be
Element of
REAL ;
assume that
A1: n
> m and
A2: r
>
0 ;
|.(
0
-
0 ).|
=
0 by
ABSVALUE: 2;
then
A3:
0
in
].(
0
- r), (
0
+ r).[ by
A2,
RCOMP_1: 1;
reconsider s = (n
- m) as
Element of
NAT by
A1,
INT_1: 5;
A4: (n
- m)
> (m
- m) by
A1,
XREAL_1: 9;
A5: ((
Maclaurin ((
#Z n),
].(
- r), r.[,x))
. n)
= ((
Taylor ((
#Z n),
].(
- r), r.[,
0 ,x))
. n) by
TAYLOR_2:def 1
.= ((x
-
0 )
|^ n) by
A1,
A3,
Th41
.= (x
|^ n);
((
Maclaurin ((
#Z n),
].(
- r), r.[,x))
. m)
= ((
Taylor ((
#Z n),
].(
- r), r.[,
0 ,x))
. m) by
TAYLOR_2:def 1
.= (((n
choose m)
* (
0
#Z (n
- m)))
* ((x
-
0 )
|^ m)) by
A1,
A3,
Th41
.= (((n
choose m)
* (
0
|^ s))
* (x
|^ m)) by
PREPOWER: 36
.= (((n
choose m)
*
0 )
* (x
|^ m)) by
A4,
NEWTON: 84
.=
0 ;
hence thesis by
A5;
end;
theorem ::
HFDIFF_1:43
Th43: not
0
in Z implies ((
#Z n)
^ )
is_differentiable_on Z
proof
assume
A1: not
0
in Z;
A2: for x0 st x0
in Z holds ((
#Z n)
. x0)
<>
0
proof
let x0;
A3: ((
#Z n)
. x0)
= (x0
#Z n) by
TAYLOR_1:def 1;
assume x0
in Z;
hence thesis by
A1,
A3,
PREPOWER: 38;
end;
(
#Z n)
is_differentiable_on Z by
Th8,
FDIFF_1: 26;
hence thesis by
A2,
FDIFF_2: 22;
end;
theorem ::
HFDIFF_1:44
not
0
in Z & x0
in Z implies ((((
#Z n)
^ )
`| Z)
. x0)
= (
- (n
/ ((
#Z (n
+ 1))
. x0)))
proof
assume that
A1: not
0
in Z and
A2: x0
in Z;
A3: ((
#Z n)
^ )
is_differentiable_on Z by
A1,
Th43;
per cases ;
suppose n
>
0 ;
then
0
< (
0
+ n);
then n
>= 1 by
NAT_1: 19;
then
reconsider i = (n
- 1) as
Element of
NAT by
INT_1: 5;
(x0
#Z i)
<>
0 by
A1,
A2,
PREPOWER: 38;
then
A4: (x0
|^ i)
<>
0 by
PREPOWER: 36;
((((
#Z n)
^ )
`| Z)
. x0)
= (
diff (((
#Z n)
^ ),x0)) by
A2,
A3,
FDIFF_1:def 7
.= (
- ((n
* (x0
#Z i))
/ ((x0
#Z n)
^2 ))) by
A1,
A2,
Th29
.= (
- ((n
* (x0
#Z i))
/ ((x0
|^ n)
^2 ))) by
PREPOWER: 36
.= (
- ((n
* (x0
|^ i))
/ ((x0
|^ n)
^2 ))) by
PREPOWER: 36
.= (
- ((n
* (x0
|^ i))
/ ((x0
|^ (i
+ 1))
* ((x0
|^ 1)
* (x0
|^ i))))) by
NEWTON: 8
.= (
- ((n
* (x0
|^ i))
/ (((x0
|^ (i
+ 1))
* (x0
|^ 1))
* (x0
|^ i))))
.= (
- ((n
* (x0
|^ i))
/ ((x0
|^ ((i
+ 1)
+ 1))
* (x0
|^ i)))) by
NEWTON: 8
.= (
- (n
/ (x0
|^ (i
+ 2)))) by
A4,
XCMPLX_1: 91
.= (
- (n
/ (x0
#Z (i
+ 2)))) by
PREPOWER: 36
.= (
- (n
/ ((
#Z (n
+ 1))
. x0))) by
TAYLOR_1:def 1;
hence thesis;
end;
suppose
A5: n
=
0 ;
((((
#Z n)
^ )
`| Z)
. x0)
= (
diff (((
#Z n)
^ ),x0)) by
A2,
A3,
FDIFF_1:def 7
.= (
- ((
0
* (x0
#Z (n
- 1)))
/ ((x0
#Z n)
^2 ))) by
A1,
A2,
A5,
Th29
.= (
- (n
/ ((
#Z (n
+ 1))
. x0))) by
A5;
hence thesis;
end;
end;
Lm2: (
#Z 1)
= (
id
REAL )
proof
for x be
Element of
REAL holds ((
#Z 1)
. x)
= ((
id
REAL )
. x)
proof
let x be
Element of
REAL ;
((
#Z 1)
. x)
= (x
#Z 1) by
TAYLOR_1:def 1
.= x by
PREPOWER: 35
.= ((
id
REAL )
. x);
hence thesis;
end;
hence thesis by
FUNCT_2: 63;
end;
theorem ::
HFDIFF_1:45
Th45: x
<>
0 implies ((
id
REAL )
^ )
is_differentiable_in x & (
diff (((
id
REAL )
^ ),x))
= (
- (1
/ (x
^2 )))
proof
set f = (
id
REAL );
assume
A1: x
<>
0 ;
reconsider xx = x as
Element of
REAL by
XREAL_0:def 1;
(f
. x)
= (x
#Z 1) & (x
#Z 1)
= (x
|^ 1) by
Lm2,
PREPOWER: 36,
TAYLOR_1:def 1;
then
A2: (f
. x)
<>
0 by
A1;
A3: f
is_differentiable_in x by
Lm2,
TAYLOR_1: 2;
then (
diff ((f
^ ),x))
= (
- ((
diff (f,x))
/ ((f
. x)
^2 ))) by
A2,
FDIFF_2: 15
.= (
- ((1
* (x
#Z (1
- 1)))
/ ((f
. xx)
^2 ))) by
Lm2,
TAYLOR_1: 2
.= (
- ((1
* (x
#Z
0 ))
/ (x
^2 )))
.= (
- (1
/ (x
^2 ))) by
PREPOWER: 34;
hence thesis by
A2,
A3,
FDIFF_2: 15;
end;
theorem ::
HFDIFF_1:46
not
0
in Z implies (((
id
REAL )
^ )
`| Z)
= (((
- 1)
(#) ((
#Z 2)
^ ))
| Z)
proof
assume
A1: not
0
in Z;
then ((
id
REAL )
^ )
is_differentiable_on Z by
Lm2,
Th43;
then
A2: (
dom (((
id
REAL )
^ )
`| Z))
= Z by
FDIFF_1:def 7;
A3: (
dom ((
#Z 2)
^ ))
= (
REAL
\
{
0 }) by
Th3;
then
A4: Z
c= (
dom ((
#Z 2)
^ )) by
A1,
ZFMISC_1: 34;
A5: for x0 be
Element of
REAL st x0
in Z holds ((((
id
REAL )
^ )
`| Z)
. x0)
= ((((
- 1)
(#) ((
#Z 2)
^ ))
| Z)
. x0)
proof
A6: (
dom ((
- 1)
(#) ((
#Z 2)
^ )))
= (
dom ((
#Z (1
+ 1))
^ )) by
VALUED_1:def 5;
let x0 be
Element of
REAL ;
assume
A7: x0
in Z;
((
id
REAL )
^ )
is_differentiable_on Z by
A1,
Lm2,
Th43;
then ((((
id
REAL )
^ )
`| Z)
. x0)
= (
diff (((
id
REAL )
^ ),x0)) by
A7,
FDIFF_1:def 7
.= (
- (1
/ (x0
^2 ))) by
A1,
A7,
Th45
.= (
- (1
/ (x0
|^ (1
+ 1)))) by
NEWTON: 81
.= (
- (1
/ (x0
#Z 2))) by
PREPOWER: 36
.= (
- (1
/ ((
#Z 2)
. x0))) by
TAYLOR_1:def 1
.= (
- (1
* (((
#Z 2)
. x0)
" ))) by
XCMPLX_0:def 9
.= (
- (1
* (((
#Z 2)
^ )
. x0))) by
A4,
A7,
RFUNCT_1:def 2
.= ((
- 1)
* (((
#Z 2)
^ )
. x0))
.= (((
- 1)
(#) ((
#Z 2)
^ ))
. x0) by
A4,
A7,
A6,
VALUED_1:def 5
.= ((((
- 1)
(#) ((
#Z 2)
^ ))
| Z)
. x0) by
A7,
FUNCT_1: 49;
hence thesis;
end;
(
dom (((
- 1)
(#) ((
#Z (1
+ 1))
^ ))
| Z))
= ((
dom ((
- 1)
(#) ((
#Z 2)
^ )))
/\ Z) by
RELAT_1: 61
.= ((
dom ((
#Z 2)
^ ))
/\ Z) by
VALUED_1:def 5
.= Z by
A1,
A3,
XBOOLE_1: 28,
ZFMISC_1: 34;
hence thesis by
A2,
A5,
PARTFUN1: 5;
end;
theorem ::
HFDIFF_1:47
Th47: x
<>
0 implies ((
#Z 2)
^ )
is_differentiable_in x & (
diff (((
#Z 2)
^ ),x))
= (
- ((2
* x)
/ ((x
#Z 2)
^2 )))
proof
A1: ((
#Z 2)
. x)
= (x
#Z 2) & (x
#Z 2)
= (x
|^ 2) by
PREPOWER: 36,
TAYLOR_1:def 1;
assume x
<>
0 ;
then
A2: ((
#Z 2)
. x)
<>
0 by
A1,
PREPOWER: 5;
A3: (
#Z 2)
is_differentiable_in x by
TAYLOR_1: 2;
then (
diff (((
#Z 2)
^ ),x))
= (
- ((
diff ((
#Z 2),x))
/ (((
#Z 2)
. x)
^2 ))) by
A2,
FDIFF_2: 15
.= (
- ((2
* (x
#Z (2
- 1)))
/ (((
#Z 2)
. x)
^2 ))) by
TAYLOR_1: 2
.= (
- ((2
* (x
#Z 1))
/ ((x
#Z 2)
^2 ))) by
TAYLOR_1:def 1
.= (
- ((2
* x)
/ ((x
#Z 2)
^2 ))) by
PREPOWER: 35;
hence thesis by
A2,
A3,
FDIFF_2: 15;
end;
theorem ::
HFDIFF_1:48
not
0
in Z implies (((
#Z 2)
^ )
`| Z)
= (((
- 2)
(#) ((
#Z 3)
^ ))
| Z)
proof
assume
A1: not
0
in Z;
then ((
#Z 2)
^ )
is_differentiable_on Z by
Th43;
then
A2: (
dom (((
#Z 2)
^ )
`| Z))
= Z by
FDIFF_1:def 7;
Z
c= (
REAL
\
{
0 }) by
A1,
ZFMISC_1: 34;
then
A3: Z
c= (
dom ((
#Z 3)
^ )) by
Th3;
A4: for x0 be
Element of
REAL st x0
in Z holds ((((
#Z 2)
^ )
`| Z)
. x0)
= ((((
- 2)
(#) ((
#Z 3)
^ ))
| Z)
. x0)
proof
reconsider i = (2
- 1) as
Element of
NAT ;
let x0 be
Element of
REAL ;
A5: (
dom ((
- 2)
(#) ((
#Z 3)
^ )))
= (
dom ((
#Z 3)
^ )) by
VALUED_1:def 5;
assume
A6: x0
in Z;
then (x0
#Z i)
<>
0 by
A1,
PREPOWER: 38;
then
A7: (x0
|^ i)
<>
0 by
PREPOWER: 36;
((
#Z 2)
^ )
is_differentiable_on Z by
A1,
Th43;
then ((((
#Z 2)
^ )
`| Z)
. x0)
= (
diff (((
#Z 2)
^ ),x0)) by
A6,
FDIFF_1:def 7
.= (
- ((2
* x0)
/ ((x0
#Z 2)
^2 ))) by
A1,
A6,
Th47
.= (
- ((2
* (x0
#Z 1))
/ ((x0
#Z 2)
^2 ))) by
PREPOWER: 35
.= (
- ((2
* (x0
#Z 1))
/ ((x0
|^ 2)
^2 ))) by
PREPOWER: 36
.= (
- ((2
* (x0
|^ 1))
/ ((x0
|^ 2)
* (x0
|^ (1
+ 1))))) by
PREPOWER: 36
.= (
- ((2
* (x0
|^ 1))
/ ((x0
|^ 2)
* ((x0
|^ 1)
* (x0
|^ 1))))) by
NEWTON: 8
.= (
- ((2
* (x0
|^ 1))
/ (((x0
|^ 2)
* (x0
|^ 1))
* (x0
|^ 1))))
.= (
- ((2
* (x0
|^ 1))
/ ((x0
|^ (2
+ 1))
* (x0
|^ 1)))) by
NEWTON: 8
.= (
- (2
/ (x0
|^ (1
+ 2)))) by
A7,
XCMPLX_1: 91
.= (
- (2
/ (x0
#Z 3))) by
PREPOWER: 36
.= (
- (2
/ ((
#Z 3)
. x0))) by
TAYLOR_1:def 1
.= (
- (2
* (((
#Z 3)
. x0)
" ))) by
XCMPLX_0:def 9
.= (
- (2
* (((
#Z 3)
^ )
. x0))) by
A3,
A6,
RFUNCT_1:def 2
.= ((
- 2)
* (((
#Z 3)
^ )
. x0))
.= (((
- 2)
(#) ((
#Z 3)
^ ))
. x0) by
A3,
A6,
A5,
VALUED_1:def 5
.= ((((
- 2)
(#) ((
#Z 3)
^ ))
| Z)
. x0) by
A6,
FUNCT_1: 49;
hence thesis;
end;
(
dom (((
- 2)
(#) ((
#Z 3)
^ ))
| Z))
= ((
dom ((
- 2)
(#) ((
#Z 3)
^ )))
/\ Z) by
RELAT_1: 61
.= ((
dom ((
#Z 3)
^ ))
/\ Z) by
VALUED_1:def 5
.= Z by
A3,
XBOOLE_1: 28;
hence thesis by
A2,
A4,
PARTFUN1: 5;
end;
theorem ::
HFDIFF_1:49
Th49: not
0
in Z & n
>= 1 implies (((
#Z n)
^ )
`| Z)
= (((
- n)
(#) ((
#Z (n
+ 1))
^ ))
| Z)
proof
assume that
A1: not
0
in Z and
A2: n
>= 1;
(n
+ 1)
>= (1
+
0 ) & Z
c= (
REAL
\
{
0 }) by
A1,
XREAL_1: 7,
ZFMISC_1: 34;
then
A3: Z
c= (
dom ((
#Z (n
+ 1))
^ )) by
Th3;
A4: for x0 be
Element of
REAL st x0
in Z holds ((((
#Z n)
^ )
`| Z)
. x0)
= ((((
- n)
(#) ((
#Z (n
+ 1))
^ ))
| Z)
. x0)
proof
(n
+ 1)
>= (1
+
0 ) & Z
c= (
REAL
\
{
0 }) by
A1,
XREAL_1: 7,
ZFMISC_1: 34;
then
A5: Z
c= (
dom ((
#Z (n
+ 1))
^ )) by
Th3;
reconsider i = (n
- 1) as
Element of
NAT by
A2,
INT_1: 5;
let x0 be
Element of
REAL ;
A6: (
dom ((
- n)
(#) ((
#Z (n
+ 1))
^ )))
= (
dom ((
#Z (n
+ 1))
^ )) by
VALUED_1:def 5;
assume
A7: x0
in Z;
then (x0
#Z i)
<>
0 by
A1,
PREPOWER: 38;
then
A8: (x0
|^ i)
<>
0 by
PREPOWER: 36;
((
#Z n)
^ )
is_differentiable_on Z by
A1,
Th43;
then ((((
#Z n)
^ )
`| Z)
. x0)
= (
diff (((
#Z n)
^ ),x0)) by
A7,
FDIFF_1:def 7
.= (
- ((n
* (x0
#Z (n
- 1)))
/ ((x0
#Z n)
^2 ))) by
A1,
A7,
Th29
.= (
- ((n
* (x0
#Z i))
/ ((x0
|^ n)
^2 ))) by
PREPOWER: 36
.= (
- ((n
* (x0
|^ i))
/ ((x0
|^ n)
^2 ))) by
PREPOWER: 36
.= (
- ((n
* (x0
|^ i))
/ ((x0
|^ (i
+ 1))
* ((x0
|^ 1)
* (x0
|^ i))))) by
NEWTON: 8
.= (
- ((n
* (x0
|^ i))
/ (((x0
|^ (i
+ 1))
* (x0
|^ 1))
* (x0
|^ i))))
.= (
- ((n
* (x0
|^ i))
/ ((x0
|^ ((i
+ 1)
+ 1))
* (x0
|^ i)))) by
NEWTON: 8
.= (
- (n
/ (x0
|^ (i
+ 2)))) by
A8,
XCMPLX_1: 91
.= (
- (n
/ (x0
#Z (i
+ 2)))) by
PREPOWER: 36
.= (
- (n
/ ((
#Z (i
+ 2))
. x0))) by
TAYLOR_1:def 1
.= (
- (n
* (((
#Z (n
+ 1))
. x0)
" ))) by
XCMPLX_0:def 9
.= (
- (n
* (((
#Z (n
+ 1))
^ )
. x0))) by
A7,
A5,
RFUNCT_1:def 2
.= ((
- n)
* (((
#Z (n
+ 1))
^ )
. x0))
.= (((
- n)
(#) ((
#Z (n
+ 1))
^ ))
. x0) by
A7,
A6,
A5,
VALUED_1:def 5
.= ((((
- n)
(#) ((
#Z (n
+ 1))
^ ))
| Z)
. x0) by
A7,
FUNCT_1: 49;
hence thesis;
end;
((
#Z n)
^ )
is_differentiable_on Z by
A1,
Th43;
then
A9: (
dom (((
#Z n)
^ )
`| Z))
= Z by
FDIFF_1:def 7;
(
dom (((
- n)
(#) ((
#Z (n
+ 1))
^ ))
| Z))
= ((
dom ((
- n)
(#) ((
#Z (n
+ 1))
^ )))
/\ Z) by
RELAT_1: 61
.= ((
dom ((
#Z (n
+ 1))
^ ))
/\ Z) by
VALUED_1:def 5
.= Z by
A3,
XBOOLE_1: 28;
hence thesis by
A9,
A4,
PARTFUN1: 5;
end;
theorem ::
HFDIFF_1:50
Th50: f1
is_differentiable_on (2,Z) & f2
is_differentiable_on (2,Z) implies ((
diff ((f1
(#) f2),Z))
. 2)
= (((((
diff (f1,Z))
. 2)
(#) f2)
+ (2
(#) ((f1
`| Z)
(#) (f2
`| Z))))
+ (f1
(#) ((
diff (f2,Z))
. 2)))
proof
assume that
A1: f1
is_differentiable_on (2,Z) and
A2: f2
is_differentiable_on (2,Z);
((
diff (f1,Z))
.
0 )
is_differentiable_on Z by
A1;
then (f1
| Z)
is_differentiable_on Z by
TAYLOR_1:def 5;
then
A3: f1
is_differentiable_on Z by
Th6;
A4: ((
diff (f1,Z))
. 2)
= ((
diff (f1,Z))
. (1
+ 1))
.= (((
diff (f1,Z))
. (1
+
0 ))
`| Z) by
TAYLOR_1:def 5
.= ((((
diff (f1,Z))
.
0 )
`| Z)
`| Z) by
TAYLOR_1:def 5
.= (((f1
| Z)
`| Z)
`| Z) by
TAYLOR_1:def 5
.= ((f1
`| Z)
`| Z) by
A3,
FDIFF_2: 16;
((
diff (f2,Z))
.
0 )
is_differentiable_on Z by
A2;
then (f2
| Z)
is_differentiable_on Z by
TAYLOR_1:def 5;
then
A5: f2
is_differentiable_on Z by
Th6;
then
A6: (f1
(#) f2)
is_differentiable_on Z by
A3,
FDIFF_2: 20;
((
diff (f2,Z))
. 1)
= ((
diff (f2,Z))
. (1
+
0 ))
.= (((
diff (f2,Z))
.
0 )
`| Z) by
TAYLOR_1:def 5
.= ((f2
| Z)
`| Z) by
TAYLOR_1:def 5
.= (f2
`| Z) by
A5,
FDIFF_2: 16;
then
A7: (f2
`| Z)
is_differentiable_on Z by
A2;
then
A8: (f1
(#) (f2
`| Z))
is_differentiable_on Z by
A3,
FDIFF_2: 20;
((
diff (f1,Z))
. 1)
= ((
diff (f1,Z))
. (1
+
0 ))
.= (((
diff (f1,Z))
.
0 )
`| Z) by
TAYLOR_1:def 5
.= ((f1
| Z)
`| Z) by
TAYLOR_1:def 5
.= (f1
`| Z) by
A3,
FDIFF_2: 16;
then
A9: (f1
`| Z)
is_differentiable_on Z by
A1;
then
A10: ((f1
`| Z)
(#) f2)
is_differentiable_on Z by
A5,
FDIFF_2: 20;
A11: ((
diff (f2,Z))
. 2)
= ((
diff (f2,Z))
. (1
+ 1))
.= (((
diff (f2,Z))
. (1
+
0 ))
`| Z) by
TAYLOR_1:def 5
.= ((((
diff (f2,Z))
.
0 )
`| Z)
`| Z) by
TAYLOR_1:def 5
.= (((f2
| Z)
`| Z)
`| Z) by
TAYLOR_1:def 5
.= ((f2
`| Z)
`| Z) by
A5,
FDIFF_2: 16;
((
diff ((f1
(#) f2),Z))
. 2)
= ((
diff ((f1
(#) f2),Z))
. (1
+ 1))
.= (((
diff ((f1
(#) f2),Z))
. (1
+
0 ))
`| Z) by
TAYLOR_1:def 5
.= ((((
diff ((f1
(#) f2),Z))
.
0 )
`| Z)
`| Z) by
TAYLOR_1:def 5
.= ((((f1
(#) f2)
| Z)
`| Z)
`| Z) by
TAYLOR_1:def 5
.= (((f1
(#) f2)
`| Z)
`| Z) by
A6,
FDIFF_2: 16
.= ((((f1
`| Z)
(#) f2)
+ (f1
(#) (f2
`| Z)))
`| Z) by
A3,
A5,
FDIFF_2: 20
.= ((((f1
`| Z)
(#) f2)
`| Z)
+ ((f1
(#) (f2
`| Z))
`| Z)) by
A10,
A8,
FDIFF_2: 17
.= (((((f1
`| Z)
`| Z)
(#) f2)
+ ((f1
`| Z)
(#) (f2
`| Z)))
+ ((f1
(#) (f2
`| Z))
`| Z)) by
A5,
A9,
FDIFF_2: 20
.= (((((
diff (f1,Z))
. 2)
(#) f2)
+ ((f1
`| Z)
(#) (f2
`| Z)))
+ (((f1
`| Z)
(#) (f2
`| Z))
+ (f1
(#) ((
diff (f2,Z))
. 2)))) by
A3,
A7,
A4,
A11,
FDIFF_2: 20
.= ((((((
diff (f1,Z))
. 2)
(#) f2)
+ ((f1
`| Z)
(#) (f2
`| Z)))
+ ((f1
`| Z)
(#) (f2
`| Z)))
+ (f1
(#) ((
diff (f2,Z))
. 2))) by
RFUNCT_1: 8
.= (((((
diff (f1,Z))
. 2)
(#) f2)
+ (((f1
`| Z)
(#) (f2
`| Z))
+ ((f1
`| Z)
(#) (f2
`| Z))))
+ (f1
(#) ((
diff (f2,Z))
. 2))) by
RFUNCT_1: 8
.= (((((
diff (f1,Z))
. 2)
(#) f2)
+ ((1
(#) ((f1
`| Z)
(#) (f2
`| Z)))
+ ((f1
`| Z)
(#) (f2
`| Z))))
+ (f1
(#) ((
diff (f2,Z))
. 2))) by
RFUNCT_1: 21
.= (((((
diff (f1,Z))
. 2)
(#) f2)
+ ((1
(#) ((f1
`| Z)
(#) (f2
`| Z)))
+ (1
(#) ((f1
`| Z)
(#) (f2
`| Z)))))
+ (f1
(#) ((
diff (f2,Z))
. 2))) by
RFUNCT_1: 21
.= (((((
diff (f1,Z))
. 2)
(#) f2)
+ ((1
+ 1)
(#) ((f1
`| Z)
(#) (f2
`| Z))))
+ (f1
(#) ((
diff (f2,Z))
. 2))) by
Th5
.= (((((
diff (f1,Z))
. 2)
(#) f2)
+ (2
(#) ((f1
`| Z)
(#) (f2
`| Z))))
+ (f1
(#) ((
diff (f2,Z))
. 2)));
hence thesis;
end;
theorem ::
HFDIFF_1:51
Z
c= (
dom
ln ) & Z
c= (
dom ((
id
REAL )
^ )) implies (
ln
`| Z)
= (((
id
REAL )
^ )
| Z)
proof
assume that
A1: Z
c= (
dom
ln ) and
A2: Z
c= (
dom ((
id
REAL )
^ ));
A3: (
dom (((
id
REAL )
^ )
| Z))
= ((
dom ((
id
REAL )
^ ))
/\ Z) by
RELAT_1: 61
.= Z by
A2,
XBOOLE_1: 28;
A4: for x0 be
Element of
REAL st x0
in (
dom (((
id
REAL )
^ )
| Z)) holds ((
ln
`| Z)
. x0)
= ((((
id
REAL )
^ )
| Z)
. x0)
proof
let x0 be
Element of
REAL ;
assume
A5: x0
in (
dom (((
id
REAL )
^ )
| Z));
ln
is_differentiable_on Z by
A1,
FDIFF_1: 26,
TAYLOR_1: 18;
then ((
ln
`| Z)
. x0)
= (
diff (
ln ,x0)) by
A3,
A5,
FDIFF_1:def 7
.= (1
/ x0) by
A1,
A3,
A5,
TAYLOR_1: 18
.= (1
/ ((
id
REAL )
. x0))
.= (1
* (((
id
REAL )
. x0)
" )) by
XCMPLX_0:def 9
.= (1
* (((
id
REAL )
^ )
. x0)) by
A2,
A3,
A5,
RFUNCT_1:def 2
.= ((((
id
REAL )
^ )
| Z)
. x0) by
A3,
A5,
FUNCT_1: 49;
hence thesis;
end;
ln
is_differentiable_on Z by
A1,
FDIFF_1: 26,
TAYLOR_1: 18;
then (
dom (((
id
REAL )
^ )
| Z))
= (
dom (
ln
`| Z)) by
A3,
FDIFF_1:def 7;
hence thesis by
A4,
PARTFUN1: 5;
end;
theorem ::
HFDIFF_1:52
n
>= 1 & x0
in Z & not
0
in Z implies (((
diff (((
#Z n)
^ ),Z))
. 2)
. x0)
= ((n
* (n
+ 1))
* (((
#Z (n
+ 2))
^ )
. x0))
proof
assume that
A1: n
>= 1 and
A2: x0
in Z and
A3: not
0
in Z;
A4: Z
c= (
REAL
\
{
0 }) by
A3,
ZFMISC_1: 34;
((n
+ 1)
+ 1)
>= (1
+
0 ) by
XREAL_1: 7;
then
A5: Z
c= (
dom ((
#Z (n
+ 2))
^ )) by
A4,
Th3;
A6: (
dom ((
- (n
+ 1))
(#) (((
#Z (n
+ 2))
^ )
| Z)))
= (
dom (((
#Z (n
+ 2))
^ )
| Z)) by
VALUED_1:def 5
.= ((
dom ((
#Z (n
+ 2))
^ ))
/\ Z) by
RELAT_1: 61
.= Z by
A5,
XBOOLE_1: 28;
A7: ((
#Z n)
^ )
is_differentiable_on Z by
A3,
Th43;
A8: (n
+ 1)
>= (1
+
0 ) by
XREAL_1: 7;
reconsider m = (
- n) as
Element of
REAL by
XREAL_0:def 1;
A9: ((
#Z (n
+ 1))
^ )
is_differentiable_on Z by
A3,
Th43;
then
A10: (m
(#) ((
#Z (n
+ 1))
^ ))
is_differentiable_on Z by
FDIFF_2: 19;
(
dom (m
(#) ((
#Z (n
+ 1))
^ )))
= (
dom ((
#Z (n
+ 1))
^ )) by
VALUED_1:def 5;
then
A11: Z
c= (
dom ((
- n)
(#) ((
#Z (n
+ 1))
^ ))) by
A8,
A4,
Th3;
(((
diff (((
#Z n)
^ ),Z))
. 2)
. x0)
= (((
diff (((
#Z n)
^ ),Z))
. (1
+ 1))
. x0)
.= ((((
diff (((
#Z n)
^ ),Z))
. (1
+
0 ))
`| Z)
. x0) by
TAYLOR_1:def 5
.= (((((
diff (((
#Z n)
^ ),Z))
.
0 )
`| Z)
`| Z)
. x0) by
TAYLOR_1:def 5
.= ((((((
#Z n)
^ )
| Z)
`| Z)
`| Z)
. x0) by
TAYLOR_1:def 5
.= (((((
#Z n)
^ )
`| Z)
`| Z)
. x0) by
A7,
FDIFF_2: 16
.= ((((m
(#) ((
#Z (n
+ 1))
^ ))
| Z)
`| Z)
. x0) by
A1,
A3,
Th49
.= (((m
(#) ((
#Z (n
+ 1))
^ ))
`| Z)
. x0) by
A10,
FDIFF_2: 16
.= (m
* (
diff (((
#Z (n
+ 1))
^ ),x0))) by
A2,
A9,
A11,
FDIFF_1: 20
.= (m
* ((((
#Z (n
+ 1))
^ )
`| Z)
. x0)) by
A2,
A9,
FDIFF_1:def 7
.= (m
* ((((
- (n
+ 1))
(#) ((
#Z ((n
+ 1)
+ 1))
^ ))
| Z)
. x0)) by
A3,
A8,
Th49
.= (m
* (((
- (n
+ 1))
(#) (((
#Z (n
+ 2))
^ )
| Z))
. x0)) by
RFUNCT_1: 49
.= (m
* ((
- (n
+ 1))
* ((((
#Z (n
+ 2))
^ )
| Z)
. x0))) by
A2,
A6,
VALUED_1:def 5
.= ((n
* (n
+ 1))
* ((((
#Z (n
+ 2))
^ )
| Z)
. x0))
.= ((n
* (n
+ 1))
* (((
#Z (n
+ 2))
^ )
. x0)) by
A2,
FUNCT_1: 49;
hence thesis;
end;
theorem ::
HFDIFF_1:53
((
diff ((
sin
^2 ),Z))
. 2)
= ((2
(#) ((
cos
^2 )
| Z))
+ ((
- 2)
(#) ((
sin
^2 )
| Z)))
proof
sin
is_differentiable_on (2,Z) by
TAYLOR_2: 21;
then ((
diff ((
sin
^2 ),Z))
. 2)
= (((((
diff (
sin ,Z))
. (2
* 1))
(#)
sin )
+ (2
(#) ((
sin
`| Z)
(#) (
sin
`| Z))))
+ (
sin
(#) ((
diff (
sin ,Z))
. (2
* 1)))) by
Th50
.= ((((((
- 1)
|^ 1)
(#) (
sin
| Z))
(#)
sin )
+ (2
(#) ((
sin
`| Z)
(#) (
sin
`| Z))))
+ (
sin
(#) ((
diff (
sin ,Z))
. (2
* 1)))) by
TAYLOR_2: 19
.= ((((((
- 1)
|^ 1)
(#) (
sin
| Z))
(#)
sin )
+ (2
(#) ((
sin
`| Z)
(#) (
sin
`| Z))))
+ (
sin
(#) (((
- 1)
|^ 1)
(#) (
sin
| Z)))) by
TAYLOR_2: 19
.= ((((((
- 1)
|^ 1)
(#) (
sin
| Z))
(#)
sin )
+ (2
(#) ((
sin
`| Z)
(#) (
sin
`| Z))))
+ (
sin
(#) ((
- 1)
(#) (
sin
| Z))))
.= (((((
- 1)
(#) (
sin
| Z))
(#)
sin )
+ (2
(#) ((
sin
`| Z)
(#) (
sin
`| Z))))
+ (
sin
(#) ((
- 1)
(#) (
sin
| Z))))
.= ((2
(#) ((
sin
`| Z)
(#) (
sin
`| Z)))
+ ((
sin
(#) ((
- 1)
(#) (
sin
| Z)))
+ (
sin
(#) ((
- 1)
(#) (
sin
| Z))))) by
RFUNCT_1: 8
.= ((2
(#) ((
sin
`| Z)
(#) (
sin
`| Z)))
+ ((1
(#) (
sin
(#) ((
- 1)
(#) (
sin
| Z))))
+ (
sin
(#) ((
- 1)
(#) (
sin
| Z))))) by
RFUNCT_1: 21
.= ((2
(#) ((
sin
`| Z)
(#) (
sin
`| Z)))
+ ((1
(#) (
sin
(#) ((
- 1)
(#) (
sin
| Z))))
+ (1
(#) (
sin
(#) ((
- 1)
(#) (
sin
| Z)))))) by
RFUNCT_1: 21
.= ((2
(#) ((
sin
`| Z)
(#) (
sin
`| Z)))
+ ((1
+ 1)
(#) (
sin
(#) ((
- 1)
(#) (
sin
| Z))))) by
Th5
.= ((2
(#) ((
cos
| Z)
(#) (
sin
`| Z)))
+ (2
(#) (
sin
(#) ((
- 1)
(#) (
sin
| Z))))) by
TAYLOR_2: 17
.= ((2
(#) ((
cos
| Z)
(#) (
cos
| Z)))
+ (2
(#) (
sin
(#) ((
- 1)
(#) (
sin
| Z))))) by
TAYLOR_2: 17
.= ((2
(#) ((
cos
(#)
cos )
| Z))
+ (2
(#) (((
- 1)
(#) (
sin
| Z))
(#)
sin ))) by
RFUNCT_1: 45
.= ((2
(#) ((
cos
(#)
cos )
| Z))
+ (2
(#) ((
- 1)
(#) ((
sin
| Z)
(#)
sin )))) by
RFUNCT_1: 12
.= ((2
(#) ((
cos
(#)
cos )
| Z))
+ (2
(#) ((
- 1)
(#) ((
sin
(#)
sin )
| Z)))) by
RFUNCT_1: 45
.= ((2
(#) ((
cos
(#)
cos )
| Z))
+ ((2
* (
- 1))
(#) ((
sin
(#)
sin )
| Z))) by
RFUNCT_1: 17
.= ((2
(#) ((
cos
(#)
cos )
| Z))
+ ((
- 2)
(#) ((
sin
(#)
sin )
| Z)))
.= ((2
(#) ((
cos
^2 )
| Z))
+ ((
- 2)
(#) ((
sin
^2 )
| Z)));
hence thesis;
end;
theorem ::
HFDIFF_1:54
((
diff ((
cos
^2 ),Z))
. 2)
= ((2
(#) ((
sin
^2 )
| Z))
+ ((
- 2)
(#) ((
cos
^2 )
| Z)))
proof
cos
is_differentiable_on (2,Z) by
TAYLOR_2: 21;
then ((
diff ((
cos
^2 ),Z))
. 2)
= (((((
diff (
cos ,Z))
. (2
* 1))
(#)
cos )
+ (2
(#) ((
cos
`| Z)
(#) (
cos
`| Z))))
+ (
cos
(#) ((
diff (
cos ,Z))
. (2
* 1)))) by
Th50
.= ((((((
- 1)
|^ 1)
(#) (
cos
| Z))
(#)
cos )
+ (2
(#) ((
cos
`| Z)
(#) (
cos
`| Z))))
+ (
cos
(#) ((
diff (
cos ,Z))
. (2
* 1)))) by
TAYLOR_2: 19
.= ((((((
- 1)
|^ 1)
(#) (
cos
| Z))
(#)
cos )
+ (2
(#) ((
cos
`| Z)
(#) (
cos
`| Z))))
+ (
cos
(#) (((
- 1)
|^ 1)
(#) (
cos
| Z)))) by
TAYLOR_2: 19
.= ((((((
- 1)
|^ 1)
(#) (
cos
| Z))
(#)
cos )
+ (2
(#) ((
cos
`| Z)
(#) (
cos
`| Z))))
+ (
cos
(#) ((
- 1)
(#) (
cos
| Z))))
.= (((((
- 1)
(#) (
cos
| Z))
(#)
cos )
+ (2
(#) ((
cos
`| Z)
(#) (
cos
`| Z))))
+ (
cos
(#) ((
- 1)
(#) (
cos
| Z))))
.= ((2
(#) ((
cos
`| Z)
(#) (
cos
`| Z)))
+ ((
cos
(#) ((
- 1)
(#) (
cos
| Z)))
+ (
cos
(#) ((
- 1)
(#) (
cos
| Z))))) by
RFUNCT_1: 8
.= ((2
(#) ((
cos
`| Z)
(#) (
cos
`| Z)))
+ ((1
(#) (
cos
(#) ((
- 1)
(#) (
cos
| Z))))
+ (
cos
(#) ((
- 1)
(#) (
cos
| Z))))) by
RFUNCT_1: 21
.= ((2
(#) ((
cos
`| Z)
(#) (
cos
`| Z)))
+ ((1
(#) (
cos
(#) ((
- 1)
(#) (
cos
| Z))))
+ (1
(#) (
cos
(#) ((
- 1)
(#) (
cos
| Z)))))) by
RFUNCT_1: 21
.= ((2
(#) ((
cos
`| Z)
(#) (
cos
`| Z)))
+ ((1
+ 1)
(#) (
cos
(#) ((
- 1)
(#) (
cos
| Z))))) by
Th5
.= ((2
(#) (((
-
sin )
| Z)
(#) (
cos
`| Z)))
+ (2
(#) (
cos
(#) ((
- 1)
(#) (
cos
| Z))))) by
TAYLOR_2: 17
.= ((2
(#) (((
-
sin )
| Z)
(#) ((
-
sin )
| Z)))
+ (2
(#) (
cos
(#) ((
- 1)
(#) (
cos
| Z))))) by
TAYLOR_2: 17
.= ((2
(#) (((
-
sin )
(#) (
-
sin ))
| Z))
+ (2
(#) (((
- 1)
(#) (
cos
| Z))
(#)
cos ))) by
RFUNCT_1: 45
.= ((2
(#) (((
-
sin )
(#) (
-
sin ))
| Z))
+ (2
(#) ((
- 1)
(#) ((
cos
| Z)
(#)
cos )))) by
RFUNCT_1: 12
.= ((2
(#) (((
-
sin )
(#) (
-
sin ))
| Z))
+ ((2
* (
- 1))
(#) ((
cos
| Z)
(#)
cos ))) by
RFUNCT_1: 17
.= ((2
(#) (((
-
sin )
(#) (
-
sin ))
| Z))
+ ((
- 2)
(#) ((
cos
(#)
cos )
| Z))) by
RFUNCT_1: 45
.= ((2
(#) ((
sin
(#)
sin )
| Z))
+ ((
- 2)
(#) ((
cos
(#)
cos )
| Z))) by
Th2;
hence thesis;
end;
theorem ::
HFDIFF_1:55
((
diff ((
sin
(#)
cos ),Z))
. 2)
= (4
(#) (((
-
sin )
(#)
cos )
| Z))
proof
cos
is_differentiable_on (2,Z) &
sin
is_differentiable_on (2,Z) by
TAYLOR_2: 21;
then ((
diff ((
sin
(#)
cos ),Z))
. 2)
= (((((
diff (
sin ,Z))
. (2
* 1))
(#)
cos )
+ (2
(#) ((
sin
`| Z)
(#) (
cos
`| Z))))
+ (
sin
(#) ((
diff (
cos ,Z))
. (2
* 1)))) by
Th50
.= ((((((
- 1)
|^ 1)
(#) (
sin
| Z))
(#)
cos )
+ (2
(#) ((
sin
`| Z)
(#) (
cos
`| Z))))
+ (
sin
(#) ((
diff (
cos ,Z))
. (2
* 1)))) by
TAYLOR_2: 19
.= ((((((
- 1)
|^ 1)
(#) (
sin
| Z))
(#)
cos )
+ (2
(#) ((
sin
`| Z)
(#) (
cos
`| Z))))
+ (
sin
(#) (((
- 1)
|^ 1)
(#) (
cos
| Z)))) by
TAYLOR_2: 19
.= (((((
- 1)
(#) (
sin
| Z))
(#)
cos )
+ (2
(#) ((
sin
`| Z)
(#) (
cos
`| Z))))
+ (
sin
(#) (((
- 1)
|^ 1)
(#) (
cos
| Z))))
.= (((((
- 1)
(#) (
sin
| Z))
(#)
cos )
+ (2
(#) ((
sin
`| Z)
(#) (
cos
`| Z))))
+ (
sin
(#) ((
- 1)
(#) (
cos
| Z))))
.= (((((
- 1)
(#) (
sin
| Z))
(#)
cos )
+ (2
(#) ((
cos
| Z)
(#) (
cos
`| Z))))
+ (
sin
(#) ((
- 1)
(#) (
cos
| Z)))) by
TAYLOR_2: 17
.= (((((
- 1)
(#) (
sin
| Z))
(#)
cos )
+ (2
(#) ((
cos
| Z)
(#) ((
-
sin )
| Z))))
+ (
sin
(#) ((
- 1)
(#) (
cos
| Z)))) by
TAYLOR_2: 17
.= ((((((
- 1)
(#)
sin )
| Z)
(#)
cos )
+ (2
(#) ((
cos
| Z)
(#) ((
-
sin )
| Z))))
+ (
sin
(#) ((
- 1)
(#) (
cos
| Z)))) by
RFUNCT_1: 49
.= ((((((
- 1)
(#)
sin )
| Z)
(#)
cos )
+ (2
(#) ((
cos
| Z)
(#) ((
-
sin )
| Z))))
+ (
sin
(#) (((
- 1)
(#)
cos )
| Z))) by
RFUNCT_1: 49
.= (((((
-
sin )
(#)
cos )
| Z)
+ (2
(#) ((
cos
| Z)
(#) ((
-
sin )
| Z))))
+ (
sin
(#) ((
-
cos )
| Z))) by
RFUNCT_1: 45
.= (((((
-
sin )
(#)
cos )
| Z)
+ (2
(#) ((
cos
| Z)
(#) ((
-
sin )
| Z))))
+ ((
sin
(#) (
-
cos ))
| Z)) by
RFUNCT_1: 45
.= (((((
-
sin )
(#)
cos )
| Z)
+ (2
(#) (((
-
sin )
(#)
cos )
| Z)))
+ ((
sin
(#) (
-
cos ))
| Z)) by
RFUNCT_1: 45
.= (((((
-
sin )
(#)
cos )
| Z)
+ (2
(#) (((
-
sin )
(#)
cos )
| Z)))
+ (((
- 1)
(#) (
sin
(#)
cos ))
| Z)) by
RFUNCT_1: 13
.= (((((
-
sin )
(#)
cos )
| Z)
+ (2
(#) (((
-
sin )
(#)
cos )
| Z)))
+ ((((
- 1)
(#)
sin )
(#)
cos )
| Z)) by
RFUNCT_1: 12
.= (((1
(#) (((
-
sin )
(#)
cos )
| Z))
+ (2
(#) (((
-
sin )
(#)
cos )
| Z)))
+ (((
-
sin )
(#)
cos )
| Z)) by
RFUNCT_1: 21
.= (((1
(#) (((
-
sin )
(#)
cos )
| Z))
+ (2
(#) (((
-
sin )
(#)
cos )
| Z)))
+ (1
(#) (((
-
sin )
(#)
cos )
| Z))) by
RFUNCT_1: 21
.= (((1
+ 2)
(#) (((
-
sin )
(#)
cos )
| Z))
+ (1
(#) (((
-
sin )
(#)
cos )
| Z))) by
Th5
.= ((3
+ 1)
(#) (((
-
sin )
(#)
cos )
| Z)) by
Th5
.= (4
(#) (((
-
sin )
(#)
cos )
| Z));
hence thesis;
end;
theorem ::
HFDIFF_1:56
Th56: Z
c= (
dom
tan ) implies
tan
is_differentiable_on Z & (
tan
`| Z)
= (((
cos
^ )
^2 )
| Z)
proof
set f1 = (
cos
^ );
assume
A1: Z
c= (
dom
tan );
A2: ((
dom
sin )
/\ (
dom f1))
c= (
dom f1) by
XBOOLE_1: 17;
A3: (
dom
tan )
= (
dom (
sin
(#) f1)) by
RFUNCT_1: 31,
SIN_COS:def 26
.= ((
dom
sin )
/\ (
dom f1)) by
VALUED_1:def 4;
then
A4: Z
c= (
dom f1) by
A1,
A2;
A5: (
dom ((
cos
^ )
(#) (
cos
^ )))
= ((
dom (
cos
^ ))
/\ (
dom (
cos
^ ))) by
VALUED_1:def 4
.= (
dom (
cos
^ ));
then
A6: (
dom (((
cos
^ )
(#) (
cos
^ ))
| Z))
= ((
dom (
cos
^ ))
/\ Z) by
RELAT_1: 61
.= Z by
A1,
A3,
A2,
XBOOLE_1: 1,
XBOOLE_1: 28;
A7: for x st x
in Z holds
tan
is_differentiable_in x
proof
let x;
assume x
in Z;
then
A8: (
cos
. x)
<>
0 by
A1,
FDIFF_8: 1;
sin
is_differentiable_in x &
cos
is_differentiable_in x by
SIN_COS: 63,
SIN_COS: 64;
hence thesis by
A8,
FDIFF_2: 14,
SIN_COS:def 26;
end;
then
A9:
tan
is_differentiable_on Z by
A1,
FDIFF_1: 9;
A10: for x be
Element of
REAL st x
in (
dom (
tan
`| Z)) holds ((
tan
`| Z)
. x)
= ((((
cos
^ )
(#) (
cos
^ ))
| Z)
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (
tan
`| Z));
then
A11: x
in Z by
A9,
FDIFF_1:def 7;
then
A12: (
cos
. x)
<>
0 by
A1,
FDIFF_8: 1;
((
tan
`| Z)
. x)
= (
diff ((
sin
/
cos ),x)) by
A9,
A11,
FDIFF_1:def 7,
SIN_COS:def 26
.= (1
/ ((
cos
. x)
^2 )) by
A12,
FDIFF_7: 46
.= ((1
/ (
cos
. x))
* (1
/ (
cos
. x))) by
XCMPLX_1: 102
.= ((1
* ((
cos
. x)
" ))
* (1
/ (
cos
. x))) by
XCMPLX_0:def 9
.= (((
cos
^ )
. x)
* (1
/ (
cos
. x))) by
A4,
A11,
RFUNCT_1:def 2
.= (((
cos
^ )
. x)
* (1
* ((
cos
. x)
" ))) by
XCMPLX_0:def 9
.= (((
cos
^ )
. x)
* (f1
. x)) by
A4,
A11,
RFUNCT_1:def 2
.= (((
cos
^ )
(#) f1)
. x) by
A4,
A5,
A11,
VALUED_1:def 4
.= (((f1
(#) f1)
| Z)
. x) by
A11,
FUNCT_1: 49;
hence thesis;
end;
(
dom (
tan
`| Z))
= Z by
A9,
FDIFF_1:def 7;
hence thesis by
A1,
A7,
A6,
A10,
FDIFF_1: 9,
PARTFUN1: 5;
end;
theorem ::
HFDIFF_1:57
Th57: Z
c= (
dom
tan ) implies (
cos
^ )
is_differentiable_on Z & ((
cos
^ )
`| Z)
= (((
cos
^ )
(#)
tan )
| Z)
proof
A1: ((
dom
sin )
/\ (
dom (
cos
^ )))
c= (
dom (
cos
^ )) by
XBOOLE_1: 17;
assume
A2: Z
c= (
dom
tan );
then
A3: for x st x
in Z holds (
cos
. x)
<>
0 by
FDIFF_8: 1;
then (
cos
^ )
is_differentiable_on Z by
FDIFF_4: 39;
then
A4: (
dom ((
cos
^ )
`| Z))
= Z by
FDIFF_1:def 7;
(
dom
tan )
= (
dom (
sin
(#) (
cos
^ ))) by
RFUNCT_1: 31,
SIN_COS:def 26
.= ((
dom
sin )
/\ (
dom (
cos
^ ))) by
VALUED_1:def 4;
then
A5: Z
c= (
dom (
cos
^ )) by
A2,
A1;
A6: for x be
Element of
REAL st x
in Z holds (((
cos
^ )
`| Z)
. x)
= ((((
cos
^ )
(#)
tan )
| Z)
. x)
proof
let x be
Element of
REAL ;
A7: (
dom ((
cos
^ )
(#)
sin ))
= (
dom
tan ) by
RFUNCT_1: 31,
SIN_COS:def 26;
then (
dom (((
cos
^ )
(#)
sin )
(#) (
cos
^ )))
= ((
dom
tan )
/\ (
dom (
cos
^ ))) by
VALUED_1:def 4;
then
A8: Z
c= (
dom (((
cos
^ )
(#)
sin )
(#) (
cos
^ ))) by
A2,
A5,
XBOOLE_1: 19;
assume
A9: x
in Z;
then (((
cos
^ )
`| Z)
. x)
= ((
sin
. x)
/ ((
cos
. x)
^2 )) by
A3,
FDIFF_4: 39
.= ((1
/ (
cos
. x))
* ((
sin
. x)
/ (
cos
. x))) by
XCMPLX_1: 103
.= (((1
/ (
cos
. x))
* (
sin
. x))
* (1
/ (
cos
. x))) by
XCMPLX_1: 99
.= (((1
/ (
cos
. x))
* (
sin
. x))
* (1
* ((
cos
. x)
" ))) by
XCMPLX_0:def 9
.= (((1
* ((
cos
. x)
" ))
* (
sin
. x))
* (1
* ((
cos
. x)
" ))) by
XCMPLX_0:def 9
.= ((((
cos
^ )
. x)
* (
sin
. x))
* (1
* ((
cos
. x)
" ))) by
A5,
A9,
RFUNCT_1:def 2
.= ((((
cos
^ )
. x)
* (
sin
. x))
* ((
cos
^ )
. x)) by
A5,
A9,
RFUNCT_1:def 2
.= ((((
cos
^ )
(#)
sin )
. x)
* ((
cos
^ )
. x)) by
A2,
A9,
A7,
VALUED_1:def 4
.= ((((
cos
^ )
(#)
sin )
(#) (
cos
^ ))
. x) by
A9,
A8,
VALUED_1:def 4
.= (((((
cos
^ )
(#)
sin )
(#) (
cos
^ ))
| Z)
. x) by
A9,
FUNCT_1: 49
.= ((((
cos
^ )
(#)
tan )
| Z)
. x) by
RFUNCT_1: 31,
SIN_COS:def 26;
hence thesis;
end;
(
dom (((
cos
^ )
(#)
tan )
| Z))
= ((
dom ((
cos
^ )
(#)
tan ))
/\ Z) by
RELAT_1: 61
.= (((
dom (
cos
^ ))
/\ (
dom
tan ))
/\ Z) by
VALUED_1:def 4
.= Z by
A2,
A5,
XBOOLE_1: 19,
XBOOLE_1: 28;
hence thesis by
A3,
A4,
A6,
FDIFF_4: 39,
PARTFUN1: 5;
end;
theorem ::
HFDIFF_1:58
Z
c= (
dom
tan ) implies ((
diff (
tan ,Z))
. 2)
= (2
(#) (((
tan
(#) (
cos
^ ))
(#) (
cos
^ ))
| Z))
proof
assume
A1: Z
c= (
dom
tan );
then
A2:
tan
is_differentiable_on Z by
Th56;
A3: (
cos
^ )
is_differentiable_on Z by
A1,
Th57;
then
A4: ((
cos
^ )
(#) (
cos
^ ))
is_differentiable_on Z by
FDIFF_2: 20;
((
diff (
tan ,Z))
. 2)
= ((
diff (
tan ,Z))
. (1
+ 1))
.= (((
diff (
tan ,Z))
. (1
+
0 ))
`| Z) by
TAYLOR_1:def 5
.= ((((
diff (
tan ,Z))
.
0 )
`| Z)
`| Z) by
TAYLOR_1:def 5
.= (((
tan
| Z)
`| Z)
`| Z) by
TAYLOR_1:def 5
.= ((
tan
`| Z)
`| Z) by
A2,
FDIFF_2: 16
.= ((((
cos
^ )
^2 )
| Z)
`| Z) by
A1,
Th56
.= (((
cos
^ )
(#) (
cos
^ ))
`| Z) by
A4,
FDIFF_2: 16
.= ((((
cos
^ )
`| Z)
(#) (
cos
^ ))
+ (((
cos
^ )
`| Z)
(#) (
cos
^ ))) by
A3,
FDIFF_2: 20
.= ((1
(#) (((
cos
^ )
`| Z)
(#) (
cos
^ )))
+ (((
cos
^ )
`| Z)
(#) (
cos
^ ))) by
RFUNCT_1: 21
.= ((1
(#) (((
cos
^ )
`| Z)
(#) (
cos
^ )))
+ (1
(#) (((
cos
^ )
`| Z)
(#) (
cos
^ )))) by
RFUNCT_1: 21
.= ((1
+ 1)
(#) (((
cos
^ )
`| Z)
(#) (
cos
^ ))) by
Th5
.= (2
(#) ((((
cos
^ )
(#)
tan )
| Z)
(#) (
cos
^ ))) by
A1,
Th57
.= (2
(#) (((
tan
(#) (
cos
^ ))
(#) (
cos
^ ))
| Z)) by
RFUNCT_1: 45;
hence thesis;
end;
theorem ::
HFDIFF_1:59
Th59: Z
c= (
dom
cot ) implies
cot
is_differentiable_on Z & (
cot
`| Z)
= (((
- 1)
(#) ((
sin
^ )
^2 ))
| Z)
proof
A1: ((
dom
cos )
/\ (
dom (
sin
^ )))
c= (
dom (
sin
^ )) by
XBOOLE_1: 17;
assume
A2: Z
c= (
dom
cot );
A3: for x st x
in Z holds
cot
is_differentiable_in x
proof
let x;
assume x
in Z;
then
A4: (
sin
. x)
<>
0 by
A2,
FDIFF_8: 2;
sin
is_differentiable_in x &
cos
is_differentiable_in x by
SIN_COS: 63,
SIN_COS: 64;
hence thesis by
A4,
FDIFF_2: 14,
SIN_COS:def 27;
end;
then
A5:
cot
is_differentiable_on Z by
A2,
FDIFF_1: 9;
A6: (
dom
cot )
= (
dom (
cos
(#) (
sin
^ ))) by
RFUNCT_1: 31,
SIN_COS:def 27
.= ((
dom
cos )
/\ (
dom (
sin
^ ))) by
VALUED_1:def 4;
then
A7: Z
c= (
dom (
sin
^ )) by
A2,
A1;
A8: for x be
Element of
REAL st x
in (
dom (
cot
`| Z)) holds ((
cot
`| Z)
. x)
= ((((
- 1)
(#) ((
sin
^ )
(#) (
sin
^ )))
| Z)
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (
cot
`| Z));
then
A9: x
in Z by
A5,
FDIFF_1:def 7;
then
A10: (
sin
. x)
<>
0 by
A2,
FDIFF_8: 2;
(
dom ((
sin
^ )
(#) (
sin
^ )))
= ((
dom (
sin
^ ))
/\ (
dom (
sin
^ ))) by
VALUED_1:def 4
.= (
dom (
sin
^ ));
then
A11: Z
c= (
dom ((
sin
^ )
(#) (
sin
^ ))) by
A2,
A6,
A1;
then x
in (
dom ((
sin
^ )
(#) (
sin
^ ))) by
A9;
then
A12: x
in (
dom ((
- 1)
(#) ((
sin
^ )
(#) (
sin
^ )))) by
VALUED_1:def 5;
((
cot
`| Z)
. x)
= (
diff ((
cos
/
sin ),x)) by
A5,
A9,
FDIFF_1:def 7,
SIN_COS:def 27
.= (
- (1
/ ((
sin
. x)
^2 ))) by
A10,
FDIFF_7: 47
.= ((
- 1)
* (1
/ ((
sin
. x)
* (
sin
. x))))
.= ((
- 1)
* ((1
/ (
sin
. x))
* (1
/ (
sin
. x)))) by
XCMPLX_1: 102
.= ((
- 1)
* ((1
* ((
sin
. x)
" ))
* (1
/ (
sin
. x)))) by
XCMPLX_0:def 9
.= ((
- 1)
* (((
sin
^ )
. x)
* (1
/ (
sin
. x)))) by
A7,
A9,
RFUNCT_1:def 2
.= ((
- 1)
* (((
sin
^ )
. x)
* (1
* ((
sin
. x)
" )))) by
XCMPLX_0:def 9
.= ((
- 1)
* (((
sin
^ )
. x)
* ((
sin
^ )
. x))) by
A7,
A9,
RFUNCT_1:def 2
.= ((
- 1)
* (((
sin
^ )
(#) (
sin
^ ))
. x)) by
A9,
A11,
VALUED_1:def 4
.= (((
- 1)
(#) ((
sin
^ )
(#) (
sin
^ )))
. x) by
A12,
VALUED_1:def 5
.= ((((
- 1)
(#) ((
sin
^ )
(#) (
sin
^ )))
| Z)
. x) by
A9,
FUNCT_1: 49;
hence thesis;
end;
A13: (
dom (((
- 1)
(#) ((
sin
^ )
(#) (
sin
^ )))
| Z))
= ((
dom ((
- 1)
(#) ((
sin
^ )
^2 )))
/\ Z) by
RELAT_1: 61
.= ((
dom ((
sin
^ )
^2 ))
/\ Z) by
VALUED_1:def 5
.= (((
dom (
sin
^ ))
/\ (
dom (
sin
^ )))
/\ Z) by
VALUED_1:def 4
.= Z by
A2,
A6,
A1,
XBOOLE_1: 1,
XBOOLE_1: 28;
(
dom (
cot
`| Z))
= Z by
A5,
FDIFF_1:def 7;
hence thesis by
A2,
A3,
A13,
A8,
FDIFF_1: 9,
PARTFUN1: 5;
end;
theorem ::
HFDIFF_1:60
Th60: Z
c= (
dom
cot ) implies (
sin
^ )
is_differentiable_on Z & ((
sin
^ )
`| Z)
= ((
- ((
sin
^ )
(#)
cot ))
| Z)
proof
A1: (
dom
cot )
= (
dom (
cos
(#) (
sin
^ ))) by
RFUNCT_1: 31,
SIN_COS:def 27
.= ((
dom
cos )
/\ (
dom (
sin
^ ))) by
VALUED_1:def 4;
assume
A2: Z
c= (
dom
cot );
((
dom
cos )
/\ (
dom (
sin
^ )))
c= (
dom (
sin
^ )) by
XBOOLE_1: 17;
then
A3: Z
c= (
dom (
sin
^ )) by
A2,
A1;
A4: for x st x
in Z holds (
sin
. x)
<>
0 by
A2,
FDIFF_8: 2;
then
A5: (
sin
^ )
is_differentiable_on Z by
FDIFF_4: 40;
A6: for x be
Element of
REAL st x
in (
dom ((
sin
^ )
`| Z)) holds (((
sin
^ )
`| Z)
. x)
= (((
- ((
sin
^ )
(#)
cot ))
| Z)
. x)
proof
let x be
Element of
REAL ;
A7: (
dom ((
- 1)
(#) ((
sin
^ )
(#)
cot )))
= (
dom ((
sin
^ )
(#) (
cos
/
sin ))) by
SIN_COS:def 27,
VALUED_1:def 5
.= (
dom ((
sin
^ )
(#) (
cos
(#) (
sin
^ )))) by
RFUNCT_1: 31;
A8: Z
c= (
dom (
cos
(#) (
sin
^ ))) by
A2,
A1,
VALUED_1:def 4;
(
dom ((
sin
^ )
(#) (
cos
(#) (
sin
^ ))))
= ((
dom (
sin
^ ))
/\ (
dom (
cos
(#) (
sin
^ )))) by
VALUED_1:def 4;
then
A9: Z
c= (
dom ((
sin
^ )
(#) (
cos
(#) (
sin
^ )))) by
A3,
A8,
XBOOLE_1: 19;
assume x
in (
dom ((
sin
^ )
`| Z));
then
A10: x
in Z by
A5,
FDIFF_1:def 7;
then (((
sin
^ )
`| Z)
. x)
= (
- ((
cos
. x)
/ ((
sin
. x)
^2 ))) by
A4,
FDIFF_4: 40
.= (
- ((1
* (
cos
. x))
/ ((
sin
. x)
* (
sin
. x))))
.= (
- ((1
/ (
sin
. x))
* ((
cos
. x)
/ (
sin
. x)))) by
XCMPLX_1: 76
.= (
- ((1
/ (
sin
. x))
* ((
cos
. x)
* (1
/ (
sin
. x))))) by
XCMPLX_1: 99
.= (
- ((1
* ((
sin
. x)
" ))
* ((
cos
. x)
* (1
/ (
sin
. x))))) by
XCMPLX_0:def 9
.= (
- (((
sin
. x)
" )
* ((
cos
. x)
* (1
* ((
sin
. x)
" ))))) by
XCMPLX_0:def 9
.= (
- (((
sin
^ )
. x)
* ((
cos
. x)
* ((
sin
. x)
" )))) by
A3,
A10,
RFUNCT_1:def 2
.= (
- (((
sin
^ )
. x)
* ((
cos
. x)
* ((
sin
^ )
. x)))) by
A3,
A10,
RFUNCT_1:def 2
.= (
- (((
sin
^ )
. x)
* ((
cos
(#) (
sin
^ ))
. x))) by
A10,
A8,
VALUED_1:def 4
.= (
- (((
sin
^ )
(#) (
cos
(#) (
sin
^ )))
. x)) by
A10,
A9,
VALUED_1:def 4
.= (
- (((
sin
^ )
(#)
cot )
. x)) by
RFUNCT_1: 31,
SIN_COS:def 27
.= ((
- 1)
* (((
sin
^ )
(#)
cot )
. x))
.= (((
- 1)
(#) ((
sin
^ )
(#)
cot ))
. x) by
A10,
A9,
A7,
VALUED_1:def 5
.= (((
- ((
sin
^ )
(#)
cot ))
| Z)
. x) by
A10,
FUNCT_1: 49;
hence thesis;
end;
A11: (
dom ((
- ((
sin
^ )
(#)
cot ))
| Z))
= ((
dom ((
- 1)
(#) ((
sin
^ )
(#)
cot )))
/\ Z) by
RELAT_1: 61
.= ((
dom ((
sin
^ )
(#)
cot ))
/\ Z) by
VALUED_1:def 5
.= (((
dom (
sin
^ ))
/\ (
dom
cot ))
/\ Z) by
VALUED_1:def 4
.= Z by
A2,
A3,
XBOOLE_1: 19,
XBOOLE_1: 28;
(
dom ((
sin
^ )
`| Z))
= Z by
A5,
FDIFF_1:def 7;
hence thesis by
A4,
A11,
A6,
FDIFF_4: 40,
PARTFUN1: 5;
end;
theorem ::
HFDIFF_1:61
Z
c= (
dom
cot ) implies ((
diff (
cot ,Z))
. 2)
= (2
(#) (((
cot
(#) (
sin
^ ))
(#) (
sin
^ ))
| Z))
proof
assume
A1: Z
c= (
dom
cot );
then
A2:
cot
is_differentiable_on Z by
Th59;
A3: (
sin
^ )
is_differentiable_on Z by
A1,
Th60;
then
A4: ((
sin
^ )
(#) (
sin
^ ))
is_differentiable_on Z by
FDIFF_2: 20;
then
A5: ((
- 1)
(#) ((
sin
^ )
(#) (
sin
^ )))
is_differentiable_on Z by
FDIFF_2: 19;
((
diff (
cot ,Z))
. 2)
= ((
diff (
cot ,Z))
. (1
+ 1))
.= (((
diff (
cot ,Z))
. (1
+
0 ))
`| Z) by
TAYLOR_1:def 5
.= ((((
diff (
cot ,Z))
.
0 )
`| Z)
`| Z) by
TAYLOR_1:def 5
.= (((
cot
| Z)
`| Z)
`| Z) by
TAYLOR_1:def 5
.= ((
cot
`| Z)
`| Z) by
A2,
FDIFF_2: 16
.= ((((
- 1)
(#) ((
sin
^ )
(#) (
sin
^ )))
| Z)
`| Z) by
A1,
Th59
.= (((
- 1)
(#) ((
sin
^ )
(#) (
sin
^ )))
`| Z) by
A5,
FDIFF_2: 16
.= ((
- 1)
(#) (((
sin
^ )
(#) (
sin
^ ))
`| Z)) by
A4,
FDIFF_2: 19
.= ((
- 1)
(#) ((((
sin
^ )
`| Z)
(#) (
sin
^ ))
+ (((
sin
^ )
`| Z)
(#) (
sin
^ )))) by
A3,
FDIFF_2: 20
.= ((
- 1)
(#) ((1
(#) (((
sin
^ )
`| Z)
(#) (
sin
^ )))
+ (((
sin
^ )
`| Z)
(#) (
sin
^ )))) by
RFUNCT_1: 21
.= ((
- 1)
(#) ((1
(#) (((
sin
^ )
`| Z)
(#) (
sin
^ )))
+ (1
(#) (((
sin
^ )
`| Z)
(#) (
sin
^ ))))) by
RFUNCT_1: 21
.= ((
- 1)
(#) ((1
+ 1)
(#) (((
sin
^ )
`| Z)
(#) (
sin
^ )))) by
Th5
.= ((
- 1)
(#) (2
(#) (((
- ((
sin
^ )
(#)
cot ))
| Z)
(#) (
sin
^ )))) by
A1,
Th60
.= (((
- 1)
* 2)
(#) (((
- ((
sin
^ )
(#)
cot ))
| Z)
(#) (
sin
^ ))) by
RFUNCT_1: 17
.= (((
- 1)
* 2)
(#) (((
- ((
sin
^ )
(#)
cot ))
(#) (
sin
^ ))
| Z)) by
RFUNCT_1: 45
.= ((((
- 1)
* 2)
(#) ((
- ((
sin
^ )
(#)
cot ))
(#) (
sin
^ )))
| Z) by
RFUNCT_1: 49
.= ((((
- 2)
(#) (
- ((
sin
^ )
(#)
cot )))
(#) (
sin
^ ))
| Z) by
RFUNCT_1: 12
.= (((((
- 2)
* (
- 1))
(#) ((
sin
^ )
(#)
cot ))
(#) (
sin
^ ))
| Z) by
RFUNCT_1: 17
.= ((2
(#) (((
sin
^ )
(#)
cot )
(#) (
sin
^ )))
| Z) by
RFUNCT_1: 12
.= (2
(#) (((
cot
(#) (
sin
^ ))
(#) (
sin
^ ))
| Z)) by
RFUNCT_1: 49;
hence thesis;
end;
theorem ::
HFDIFF_1:62
((
diff ((
exp_R
(#)
sin ),Z))
. 2)
= (2
(#) ((
exp_R
(#)
cos )
| Z))
proof
A1:
sin
is_differentiable_on (2,Z) &
exp_R
is_differentiable_on (2,Z) by
TAYLOR_2: 10,
TAYLOR_2: 21;
A2: (
dom (2
(#) ((
exp_R
(#)
cos )
| Z)))
= (
dom ((
exp_R
(#)
cos )
| Z)) by
VALUED_1:def 5
.= ((
dom (
exp_R
(#)
cos ))
/\ Z) by
RELAT_1: 61
.= ((
REAL
/\
REAL )
/\ Z) by
SIN_COS: 24,
SIN_COS: 47,
VALUED_1:def 4
.= Z by
XBOOLE_1: 28;
A3:
exp_R
is_differentiable_on Z by
FDIFF_1: 26,
TAYLOR_1: 16;
cos
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 67;
then (
cos
| Z)
is_differentiable_on Z by
FDIFF_2: 16;
then
A4: (
exp_R
(#) (
cos
| Z))
is_differentiable_on Z by
A3,
FDIFF_2: 20;
A5:
sin
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 68;
then
A6: (
exp_R
(#)
sin )
is_differentiable_on Z by
A3,
FDIFF_2: 20;
(
exp_R
| Z)
is_differentiable_on Z by
A3,
FDIFF_2: 16;
then ((
exp_R
| Z)
(#)
sin )
is_differentiable_on Z by
A5,
FDIFF_2: 20;
then
A7: (((
exp_R
| Z)
(#)
sin )
+ (
exp_R
(#) (
cos
| Z)))
is_differentiable_on Z by
A4,
FDIFF_2: 17;
A8: (
dom ((
diff ((
exp_R
(#)
sin ),Z))
. 2))
= (
dom ((
diff ((
exp_R
(#)
sin ),Z))
. (1
+ 1)))
.= (
dom (((
diff ((
exp_R
(#)
sin ),Z))
. (1
+
0 ))
`| Z)) by
TAYLOR_1:def 5
.= (
dom ((((
diff ((
exp_R
(#)
sin ),Z))
.
0 )
`| Z)
`| Z)) by
TAYLOR_1:def 5
.= (
dom ((((
exp_R
(#)
sin )
| Z)
`| Z)
`| Z)) by
TAYLOR_1:def 5
.= (
dom (((
exp_R
(#)
sin )
`| Z)
`| Z)) by
A6,
FDIFF_2: 16
.= (
dom ((((
exp_R
`| Z)
(#)
sin )
+ (
exp_R
(#) (
sin
`| Z)))
`| Z)) by
A3,
A5,
FDIFF_2: 20
.= (
dom ((((
exp_R
| Z)
(#)
sin )
+ (
exp_R
(#) (
sin
`| Z)))
`| Z)) by
TAYLOR_2: 5
.= (
dom ((((
exp_R
| Z)
(#)
sin )
+ (
exp_R
(#) (
cos
| Z)))
`| Z)) by
TAYLOR_2: 17
.= Z by
A7,
FDIFF_1:def 7;
A9: (
dom (
0
(#) ((
exp_R
(#)
sin )
| Z)))
= (
dom ((
exp_R
(#)
sin )
| Z)) by
VALUED_1:def 5
.= ((
dom (
exp_R
(#)
sin ))
/\ Z) by
RELAT_1: 61
.= ((
REAL
/\
REAL )
/\ Z) by
SIN_COS: 24,
SIN_COS: 47,
VALUED_1:def 4
.= Z by
XBOOLE_1: 28;
then
A10: (
dom ((
0
(#) ((
exp_R
(#)
sin )
| Z))
+ (2
(#) ((
exp_R
(#)
cos )
| Z))))
= (Z
/\ Z) by
A2,
VALUED_1:def 1
.= Z;
for x be
Element of
REAL st x
in (
dom ((
diff ((
exp_R
(#)
sin ),Z))
. 2)) holds (((
diff ((
exp_R
(#)
sin ),Z))
. 2)
. x)
= ((2
(#) ((
exp_R
(#)
cos )
| Z))
. x)
proof
let x be
Element of
REAL ;
assume
A11: x
in (
dom ((
diff ((
exp_R
(#)
sin ),Z))
. 2));
(((
diff ((
exp_R
(#)
sin ),Z))
. 2)
. x)
= ((((((
diff (
exp_R ,Z))
. 2)
(#)
sin )
+ (2
(#) ((
exp_R
`| Z)
(#) (
sin
`| Z))))
+ (
exp_R
(#) ((
diff (
sin ,Z))
. 2)))
. x) by
A1,
Th50
.= (((((
exp_R
| Z)
(#)
sin )
+ (2
(#) ((
exp_R
`| Z)
(#) (
sin
`| Z))))
+ (
exp_R
(#) ((
diff (
sin ,Z))
. 2)))
. x) by
TAYLOR_2: 6
.= (((((
exp_R
| Z)
(#)
sin )
+ (2
(#) ((
exp_R
| Z)
(#) (
sin
`| Z))))
+ (
exp_R
(#) ((
diff (
sin ,Z))
. 2)))
. x) by
TAYLOR_2: 5
.= (((((
exp_R
| Z)
(#)
sin )
+ (2
(#) ((
exp_R
| Z)
(#) (
cos
| Z))))
+ (
exp_R
(#) ((
diff (
sin ,Z))
. (2
* 1))))
. x) by
TAYLOR_2: 17
.= (((((
exp_R
| Z)
(#)
sin )
+ (2
(#) ((
exp_R
| Z)
(#) (
cos
| Z))))
+ (
exp_R
(#) (((
- 1)
|^ 1)
(#) (
sin
| Z))))
. x) by
TAYLOR_2: 19
.= (((((
exp_R
| Z)
(#)
sin )
+ (2
(#) ((
exp_R
| Z)
(#) (
cos
| Z))))
+ (
exp_R
(#) ((
- 1)
(#) (
sin
| Z))))
. x)
.= (((((
exp_R
(#)
sin )
| Z)
+ (2
(#) ((
exp_R
| Z)
(#) (
cos
| Z))))
+ (
exp_R
(#) ((
- 1)
(#) (
sin
| Z))))
. x) by
RFUNCT_1: 45
.= (((((
exp_R
(#)
sin )
| Z)
+ (2
(#) ((
exp_R
(#)
cos )
| Z)))
+ (
exp_R
(#) ((
- 1)
(#) (
sin
| Z))))
. x) by
RFUNCT_1: 45
.= (((((
exp_R
(#)
sin )
| Z)
+ (
exp_R
(#) ((
- 1)
(#) (
sin
| Z))))
+ (2
(#) ((
exp_R
(#)
cos )
| Z)))
. x) by
RFUNCT_1: 8
.= (((((
exp_R
(#)
sin )
| Z)
+ ((
- 1)
(#) (
exp_R
(#) (
sin
| Z))))
+ (2
(#) ((
exp_R
(#)
cos )
| Z)))
. x) by
RFUNCT_1: 13
.= (((((
exp_R
(#)
sin )
| Z)
+ ((
- 1)
(#) ((
exp_R
(#)
sin )
| Z)))
+ (2
(#) ((
exp_R
(#)
cos )
| Z)))
. x) by
RFUNCT_1: 45
.= ((((1
(#) ((
exp_R
(#)
sin )
| Z))
+ ((
- 1)
(#) ((
exp_R
(#)
sin )
| Z)))
+ (2
(#) ((
exp_R
(#)
cos )
| Z)))
. x) by
RFUNCT_1: 21
.= ((((1
+ (
- 1))
(#) ((
exp_R
(#)
sin )
| Z))
+ (2
(#) ((
exp_R
(#)
cos )
| Z)))
. x) by
Th5
.= (((
0
(#) ((
exp_R
(#)
sin )
| Z))
. x)
+ ((2
(#) ((
exp_R
(#)
cos )
| Z))
. x)) by
A10,
A8,
A11,
VALUED_1:def 1
.= ((
0
* (((
exp_R
(#)
sin )
| Z)
. x))
+ ((2
(#) ((
exp_R
(#)
cos )
| Z))
. x)) by
A9,
A8,
A11,
VALUED_1:def 5
.= ((2
(#) ((
exp_R
(#)
cos )
| Z))
. x);
hence thesis;
end;
hence thesis by
A2,
A8,
PARTFUN1: 5;
end;
theorem ::
HFDIFF_1:63
((
diff ((
exp_R
(#)
cos ),Z))
. 2)
= (2
(#) ((
exp_R
(#) (
-
sin ))
| Z))
proof
A1:
cos
is_differentiable_on (2,Z) &
exp_R
is_differentiable_on (2,Z) by
TAYLOR_2: 10,
TAYLOR_2: 21;
A2: (
dom (2
(#) ((
exp_R
(#) (
-
sin ))
| Z)))
= (
dom ((
exp_R
(#) (
-
sin ))
| Z)) by
VALUED_1:def 5
.= ((
dom (
exp_R
(#) (
-
sin )))
/\ Z) by
RELAT_1: 61
.= (((
dom
exp_R )
/\ (
dom (
-
sin )))
/\ Z) by
VALUED_1:def 4
.= ((
REAL
/\
REAL )
/\ Z) by
SIN_COS: 24,
SIN_COS: 47,
VALUED_1:def 5
.= Z by
XBOOLE_1: 28;
A3:
exp_R
is_differentiable_on Z by
FDIFF_1: 26,
TAYLOR_1: 16;
sin
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 68;
then (
sin
| Z)
is_differentiable_on Z by
FDIFF_2: 16;
then ((
- 1)
(#) (
sin
| Z))
is_differentiable_on Z by
FDIFF_2: 19;
then
A4: (
exp_R
(#) ((
- 1)
(#) (
sin
| Z)))
is_differentiable_on Z by
A3,
FDIFF_2: 20;
A5:
cos
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 67;
then
A6: (
exp_R
(#)
cos )
is_differentiable_on Z by
A3,
FDIFF_2: 20;
(
exp_R
| Z)
is_differentiable_on Z by
A3,
FDIFF_2: 16;
then ((
exp_R
| Z)
(#)
cos )
is_differentiable_on Z by
A5,
FDIFF_2: 20;
then
A7: (((
exp_R
| Z)
(#)
cos )
+ (
exp_R
(#) ((
- 1)
(#) (
sin
| Z))))
is_differentiable_on Z by
A4,
FDIFF_2: 17;
A8: (
dom ((
diff ((
exp_R
(#)
cos ),Z))
. 2))
= (
dom ((
diff ((
exp_R
(#)
cos ),Z))
. (1
+ 1)))
.= (
dom (((
diff ((
exp_R
(#)
cos ),Z))
. (1
+
0 ))
`| Z)) by
TAYLOR_1:def 5
.= (
dom ((((
diff ((
exp_R
(#)
cos ),Z))
.
0 )
`| Z)
`| Z)) by
TAYLOR_1:def 5
.= (
dom ((((
exp_R
(#)
cos )
| Z)
`| Z)
`| Z)) by
TAYLOR_1:def 5
.= (
dom (((
exp_R
(#)
cos )
`| Z)
`| Z)) by
A6,
FDIFF_2: 16
.= (
dom ((((
exp_R
`| Z)
(#)
cos )
+ (
exp_R
(#) (
cos
`| Z)))
`| Z)) by
A3,
A5,
FDIFF_2: 20
.= (
dom ((((
exp_R
| Z)
(#)
cos )
+ (
exp_R
(#) (
cos
`| Z)))
`| Z)) by
TAYLOR_2: 5
.= (
dom ((((
exp_R
| Z)
(#)
cos )
+ (
exp_R
(#) ((
-
sin )
| Z)))
`| Z)) by
TAYLOR_2: 17
.= (
dom ((((
exp_R
| Z)
(#)
cos )
+ (
exp_R
(#) ((
- 1)
(#) (
sin
| Z))))
`| Z)) by
RFUNCT_1: 49
.= Z by
A7,
FDIFF_1:def 7;
A9: (
dom (
0
(#) ((
exp_R
(#)
cos )
| Z)))
= (
dom ((
exp_R
(#)
cos )
| Z)) by
VALUED_1:def 5
.= ((
dom (
exp_R
(#)
cos ))
/\ Z) by
RELAT_1: 61
.= ((
REAL
/\
REAL )
/\ Z) by
SIN_COS: 24,
SIN_COS: 47,
VALUED_1:def 4
.= Z by
XBOOLE_1: 28;
then
A10: (
dom ((
0
(#) ((
exp_R
(#)
cos )
| Z))
+ (2
(#) ((
exp_R
(#) (
-
sin ))
| Z))))
= (Z
/\ Z) by
A2,
VALUED_1:def 1
.= Z;
for x be
Element of
REAL st x
in (
dom ((
diff ((
exp_R
(#)
cos ),Z))
. 2)) holds (((
diff ((
exp_R
(#)
cos ),Z))
. 2)
. x)
= ((2
(#) ((
exp_R
(#) (
-
sin ))
| Z))
. x)
proof
let x be
Element of
REAL ;
assume
A11: x
in (
dom ((
diff ((
exp_R
(#)
cos ),Z))
. 2));
(((
diff ((
exp_R
(#)
cos ),Z))
. 2)
. x)
= ((((((
diff (
exp_R ,Z))
. 2)
(#)
cos )
+ (2
(#) ((
exp_R
`| Z)
(#) (
cos
`| Z))))
+ (
exp_R
(#) ((
diff (
cos ,Z))
. 2)))
. x) by
A1,
Th50
.= (((((
exp_R
| Z)
(#)
cos )
+ (2
(#) ((
exp_R
`| Z)
(#) (
cos
`| Z))))
+ (
exp_R
(#) ((
diff (
cos ,Z))
. 2)))
. x) by
TAYLOR_2: 6
.= (((((
exp_R
| Z)
(#)
cos )
+ (2
(#) ((
exp_R
| Z)
(#) (
cos
`| Z))))
+ (
exp_R
(#) ((
diff (
cos ,Z))
. 2)))
. x) by
TAYLOR_2: 5
.= (((((
exp_R
| Z)
(#)
cos )
+ (2
(#) ((
exp_R
| Z)
(#) ((
-
sin )
| Z))))
+ (
exp_R
(#) ((
diff (
cos ,Z))
. (2
* 1))))
. x) by
TAYLOR_2: 17
.= (((((
exp_R
| Z)
(#)
cos )
+ (2
(#) ((
exp_R
| Z)
(#) (
- (
sin
| Z)))))
+ (
exp_R
(#) ((
diff (
cos ,Z))
. (2
* 1))))
. x) by
RFUNCT_1: 46
.= (((((
exp_R
| Z)
(#)
cos )
+ (2
(#) ((
exp_R
| Z)
(#) (
- (
sin
| Z)))))
+ (
exp_R
(#) (((
- 1)
|^ 1)
(#) (
cos
| Z))))
. x) by
TAYLOR_2: 19
.= (((((
exp_R
| Z)
(#)
cos )
+ (2
(#) ((
exp_R
| Z)
(#) (
- (
sin
| Z)))))
+ (
exp_R
(#) ((
- 1)
(#) (
cos
| Z))))
. x)
.= (((((
exp_R
(#)
cos )
| Z)
+ (2
(#) ((
exp_R
| Z)
(#) (
- (
sin
| Z)))))
+ (
exp_R
(#) ((
- 1)
(#) (
cos
| Z))))
. x) by
RFUNCT_1: 45
.= (((((
exp_R
(#)
cos )
| Z)
+ (2
(#) ((
exp_R
| Z)
(#) ((
-
sin )
| Z))))
+ (
exp_R
(#) ((
- 1)
(#) (
cos
| Z))))
. x) by
RFUNCT_1: 46
.= (((((
exp_R
(#)
cos )
| Z)
+ (2
(#) ((
exp_R
(#) (
-
sin ))
| Z)))
+ (
exp_R
(#) ((
- 1)
(#) (
cos
| Z))))
. x) by
RFUNCT_1: 45
.= (((((
exp_R
(#)
cos )
| Z)
+ (
exp_R
(#) ((
- 1)
(#) (
cos
| Z))))
+ (2
(#) ((
exp_R
(#) (
-
sin ))
| Z)))
. x) by
RFUNCT_1: 8
.= (((((
exp_R
(#)
cos )
| Z)
+ ((
- 1)
(#) (
exp_R
(#) (
cos
| Z))))
+ (2
(#) ((
exp_R
(#) (
-
sin ))
| Z)))
. x) by
RFUNCT_1: 13
.= (((((
exp_R
(#)
cos )
| Z)
+ ((
- 1)
(#) ((
exp_R
(#)
cos )
| Z)))
+ (2
(#) ((
exp_R
(#) (
-
sin ))
| Z)))
. x) by
RFUNCT_1: 45
.= ((((1
(#) ((
exp_R
(#)
cos )
| Z))
+ ((
- 1)
(#) ((
exp_R
(#)
cos )
| Z)))
+ (2
(#) ((
exp_R
(#) (
-
sin ))
| Z)))
. x) by
RFUNCT_1: 21
.= ((((1
+ (
- 1))
(#) ((
exp_R
(#)
cos )
| Z))
+ (2
(#) ((
exp_R
(#) (
-
sin ))
| Z)))
. x) by
Th5
.= (((
0
(#) ((
exp_R
(#)
cos )
| Z))
. x)
+ ((2
(#) ((
exp_R
(#) (
-
sin ))
| Z))
. x)) by
A10,
A8,
A11,
VALUED_1:def 1
.= ((
0
* (((
exp_R
(#)
cos )
| Z)
. x))
+ ((2
(#) ((
exp_R
(#) (
-
sin ))
| Z))
. x)) by
A9,
A8,
A11,
VALUED_1:def 5
.= ((2
(#) ((
exp_R
(#) (
-
sin ))
| Z))
. x);
hence thesis;
end;
hence thesis by
A2,
A8,
PARTFUN1: 5;
end;
Lm3: f
is_differentiable_on Z implies ((f
`| Z)
`| Z)
= ((
diff (f,Z))
. 2)
proof
assume f
is_differentiable_on Z;
then ((f
`| Z)
`| Z)
= (((f
| Z)
`| Z)
`| Z) by
FDIFF_2: 16
.= ((((
diff (f,Z))
.
0 )
`| Z)
`| Z) by
TAYLOR_1:def 5
.= (((
diff (f,Z))
. (
0
+ 1))
`| Z) by
TAYLOR_1:def 5
.= ((
diff (f,Z))
. (1
+ 1)) by
TAYLOR_1:def 5;
hence thesis;
end;
theorem ::
HFDIFF_1:64
Th64: f1
is_differentiable_on (3,Z) & f2
is_differentiable_on (3,Z) implies ((
diff ((f1
(#) f2),Z))
. 3)
= (((((
diff (f1,Z))
. 3)
(#) f2)
+ ((3
(#) (((
diff (f1,Z))
. 2)
(#) (f2
`| Z)))
+ (3
(#) ((f1
`| Z)
(#) ((
diff (f2,Z))
. 2)))))
+ (f1
(#) ((
diff (f2,Z))
. 3)))
proof
assume that
A1: f1
is_differentiable_on (3,Z) and
A2: f2
is_differentiable_on (3,Z);
A3: f2
is_differentiable_on Z by
A2,
Th7;
set g2 = ((
diff (f2,Z))
. 2);
set g1 = ((
diff (f1,Z))
. 2);
((
diff (f2,Z))
. 1)
= ((
diff (f2,Z))
. (1
+
0 ))
.= (((
diff (f2,Z))
.
0 )
`| Z) by
TAYLOR_1:def 5
.= ((f2
| Z)
`| Z) by
TAYLOR_1:def 5
.= (f2
`| Z) by
A3,
FDIFF_2: 16;
then
A4: (f2
`| Z)
is_differentiable_on Z by
A2;
A5: f1
is_differentiable_on (2,Z) & f2
is_differentiable_on (2,Z) by
A1,
A2,
TAYLOR_1: 23;
A6: f1
is_differentiable_on Z by
A1,
Th7;
A7: ((
diff (f1,Z))
. 2)
is_differentiable_on Z by
A1;
then
A8: (((
diff (f1,Z))
. 2)
(#) f2)
is_differentiable_on Z by
A3,
FDIFF_2: 20;
((
diff (f1,Z))
. 1)
= ((
diff (f1,Z))
. (1
+
0 ))
.= (((
diff (f1,Z))
.
0 )
`| Z) by
TAYLOR_1:def 5
.= ((f1
| Z)
`| Z) by
TAYLOR_1:def 5
.= (f1
`| Z) by
A6,
FDIFF_2: 16;
then
A9: (f1
`| Z)
is_differentiable_on Z by
A1;
then
A10: ((f1
`| Z)
(#) (f2
`| Z))
is_differentiable_on Z by
A4,
FDIFF_2: 20;
then
A11: (2
(#) ((f1
`| Z)
(#) (f2
`| Z)))
is_differentiable_on Z by
FDIFF_2: 19;
then
A12: ((((
diff (f1,Z))
. 2)
(#) f2)
+ (2
(#) ((f1
`| Z)
(#) (f2
`| Z))))
is_differentiable_on Z by
A8,
FDIFF_2: 17;
A13: ((
diff (f2,Z))
. 2)
is_differentiable_on Z by
A2;
then
A14: (f1
(#) ((
diff (f2,Z))
. 2))
is_differentiable_on Z by
A6,
FDIFF_2: 20;
((
diff ((f1
(#) f2),Z))
. 3)
= ((
diff ((f1
(#) f2),Z))
. (2
+ 1))
.= (((
diff ((f1
(#) f2),Z))
. 2)
`| Z) by
TAYLOR_1:def 5
.= ((((((
diff (f1,Z))
. 2)
(#) f2)
+ (2
(#) ((f1
`| Z)
(#) (f2
`| Z))))
+ (f1
(#) ((
diff (f2,Z))
. 2)))
`| Z) by
A5,
Th50
.= ((((((
diff (f1,Z))
. 2)
(#) f2)
+ (2
(#) ((f1
`| Z)
(#) (f2
`| Z))))
`| Z)
+ ((f1
(#) ((
diff (f2,Z))
. 2))
`| Z)) by
A14,
A12,
FDIFF_2: 17
.= ((((((
diff (f1,Z))
. 2)
(#) f2)
`| Z)
+ ((2
(#) ((f1
`| Z)
(#) (f2
`| Z)))
`| Z))
+ ((f1
(#) ((
diff (f2,Z))
. 2))
`| Z)) by
A8,
A11,
FDIFF_2: 17
.= ((((((
diff (f1,Z))
. 2)
(#) f2)
`| Z)
+ (2
(#) (((f1
`| Z)
(#) (f2
`| Z))
`| Z)))
+ ((f1
(#) ((
diff (f2,Z))
. 2))
`| Z)) by
A10,
FDIFF_2: 19
.= (((((((
diff (f1,Z))
. 2)
`| Z)
(#) f2)
+ (((
diff (f1,Z))
. 2)
(#) (f2
`| Z)))
+ (2
(#) (((f1
`| Z)
(#) (f2
`| Z))
`| Z)))
+ ((f1
(#) ((
diff (f2,Z))
. 2))
`| Z)) by
A3,
A7,
FDIFF_2: 20
.= (((((((
diff (f1,Z))
. 2)
`| Z)
(#) f2)
+ (((
diff (f1,Z))
. 2)
(#) (f2
`| Z)))
+ (2
(#) (((f1
`| Z)
(#) (f2
`| Z))
`| Z)))
+ (((f1
`| Z)
(#) ((
diff (f2,Z))
. 2))
+ (f1
(#) (((
diff (f2,Z))
. 2)
`| Z)))) by
A6,
A13,
FDIFF_2: 20
.= ((((((
diff (f1,Z))
. (2
+ 1))
(#) f2)
+ (((
diff (f1,Z))
. 2)
(#) (f2
`| Z)))
+ (2
(#) (((f1
`| Z)
(#) (f2
`| Z))
`| Z)))
+ (((f1
`| Z)
(#) ((
diff (f2,Z))
. 2))
+ (f1
(#) (((
diff (f2,Z))
. 2)
`| Z)))) by
TAYLOR_1:def 5
.= ((((((
diff (f1,Z))
. 3)
(#) f2)
+ (((
diff (f1,Z))
. 2)
(#) (f2
`| Z)))
+ (2
(#) (((f1
`| Z)
(#) (f2
`| Z))
`| Z)))
+ (((f1
`| Z)
(#) ((
diff (f2,Z))
. 2))
+ (f1
(#) ((
diff (f2,Z))
. (2
+ 1))))) by
TAYLOR_1:def 5
.= ((((((
diff (f1,Z))
. 3)
(#) f2)
+ (((
diff (f1,Z))
. 2)
(#) (f2
`| Z)))
+ (2
(#) ((((f1
`| Z)
`| Z)
(#) (f2
`| Z))
+ ((f1
`| Z)
(#) ((f2
`| Z)
`| Z)))))
+ (((f1
`| Z)
(#) ((
diff (f2,Z))
. 2))
+ (f1
(#) ((
diff (f2,Z))
. 3)))) by
A9,
A4,
FDIFF_2: 20
.= ((((((
diff (f1,Z))
. 3)
(#) f2)
+ (((
diff (f1,Z))
. 2)
(#) (f2
`| Z)))
+ (2
(#) ((((
diff (f1,Z))
. 2)
(#) (f2
`| Z))
+ ((f1
`| Z)
(#) ((f2
`| Z)
`| Z)))))
+ (((f1
`| Z)
(#) ((
diff (f2,Z))
. 2))
+ (f1
(#) ((
diff (f2,Z))
. 3)))) by
A1,
Lm3,
Th7
.= ((((((
diff (f1,Z))
. 3)
(#) f2)
+ (((
diff (f1,Z))
. 2)
(#) (f2
`| Z)))
+ (2
(#) ((((
diff (f1,Z))
. 2)
(#) (f2
`| Z))
+ ((f1
`| Z)
(#) ((
diff (f2,Z))
. 2)))))
+ (((f1
`| Z)
(#) ((
diff (f2,Z))
. 2))
+ (f1
(#) ((
diff (f2,Z))
. 3)))) by
A2,
Lm3,
Th7
.= ((((((
diff (f1,Z))
. 3)
(#) f2)
+ ((1
(#) ((
diff (f1,Z))
. 2))
(#) (f2
`| Z)))
+ (2
(#) ((((
diff (f1,Z))
. 2)
(#) (f2
`| Z))
+ ((f1
`| Z)
(#) ((
diff (f2,Z))
. 2)))))
+ (((f1
`| Z)
(#) ((
diff (f2,Z))
. 2))
+ (f1
(#) ((
diff (f2,Z))
. 3)))) by
RFUNCT_1: 21
.= ((((((
diff (f1,Z))
. 3)
(#) f2)
+ ((1
(#) ((
diff (f1,Z))
. 2))
(#) (f2
`| Z)))
+ ((2
(#) (((
diff (f1,Z))
. 2)
(#) (f2
`| Z)))
+ (2
(#) ((f1
`| Z)
(#) ((
diff (f2,Z))
. 2)))))
+ (((f1
`| Z)
(#) ((
diff (f2,Z))
. 2))
+ (f1
(#) ((
diff (f2,Z))
. 3)))) by
RFUNCT_1: 16
.= (((((
diff (f1,Z))
. 3)
(#) f2)
+ (((1
(#) ((
diff (f1,Z))
. 2))
(#) (f2
`| Z))
+ ((2
(#) (((
diff (f1,Z))
. 2)
(#) (f2
`| Z)))
+ (2
(#) ((f1
`| Z)
(#) ((
diff (f2,Z))
. 2))))))
+ (((f1
`| Z)
(#) ((
diff (f2,Z))
. 2))
+ (f1
(#) ((
diff (f2,Z))
. 3)))) by
RFUNCT_1: 8
.= (((((
diff (f1,Z))
. 3)
(#) f2)
+ ((((1
(#) ((
diff (f1,Z))
. 2))
(#) (f2
`| Z))
+ (2
(#) (((
diff (f1,Z))
. 2)
(#) (f2
`| Z))))
+ (2
(#) ((f1
`| Z)
(#) ((
diff (f2,Z))
. 2)))))
+ (((f1
`| Z)
(#) ((
diff (f2,Z))
. 2))
+ (f1
(#) ((
diff (f2,Z))
. 3)))) by
RFUNCT_1: 8
.= (((((
diff (f1,Z))
. 3)
(#) f2)
+ (((1
(#) (g1
(#) (f2
`| Z)))
+ (2
(#) (g1
(#) (f2
`| Z))))
+ (2
(#) ((f1
`| Z)
(#) g2))))
+ (((f1
`| Z)
(#) g2)
+ (f1
(#) ((
diff (f2,Z))
. 3)))) by
RFUNCT_1: 12
.= (((((
diff (f1,Z))
. 3)
(#) f2)
+ (((1
+ 2)
(#) (g1
(#) (f2
`| Z)))
+ (2
(#) ((f1
`| Z)
(#) g2))))
+ (((f1
`| Z)
(#) g2)
+ (f1
(#) ((
diff (f2,Z))
. 3)))) by
Th5
.= ((((
diff (f1,Z))
. 3)
(#) f2)
+ (((3
(#) (g1
(#) (f2
`| Z)))
+ (2
(#) ((f1
`| Z)
(#) g2)))
+ (((f1
`| Z)
(#) g2)
+ (f1
(#) ((
diff (f2,Z))
. 3))))) by
RFUNCT_1: 8
.= ((((
diff (f1,Z))
. 3)
(#) f2)
+ ((3
(#) (g1
(#) (f2
`| Z)))
+ ((2
(#) ((f1
`| Z)
(#) g2))
+ (((f1
`| Z)
(#) g2)
+ (f1
(#) ((
diff (f2,Z))
. 3)))))) by
RFUNCT_1: 8
.= ((((
diff (f1,Z))
. 3)
(#) f2)
+ ((3
(#) (g1
(#) (f2
`| Z)))
+ (((2
(#) ((f1
`| Z)
(#) g2))
+ ((f1
`| Z)
(#) g2))
+ (f1
(#) ((
diff (f2,Z))
. 3))))) by
RFUNCT_1: 8
.= ((((
diff (f1,Z))
. 3)
(#) f2)
+ ((3
(#) (g1
(#) (f2
`| Z)))
+ (((2
(#) ((f1
`| Z)
(#) g2))
+ (1
(#) ((f1
`| Z)
(#) g2)))
+ (f1
(#) ((
diff (f2,Z))
. 3))))) by
RFUNCT_1: 21
.= ((((
diff (f1,Z))
. 3)
(#) f2)
+ ((3
(#) (g1
(#) (f2
`| Z)))
+ (((2
+ 1)
(#) ((f1
`| Z)
(#) g2))
+ (f1
(#) ((
diff (f2,Z))
. 3))))) by
Th5
.= ((((
diff (f1,Z))
. 3)
(#) f2)
+ (((3
(#) (g1
(#) (f2
`| Z)))
+ (3
(#) ((f1
`| Z)
(#) g2)))
+ (f1
(#) ((
diff (f2,Z))
. 3)))) by
RFUNCT_1: 8
.= (((((
diff (f1,Z))
. 3)
(#) f2)
+ ((3
(#) (g1
(#) (f2
`| Z)))
+ (3
(#) ((f1
`| Z)
(#) g2))))
+ (f1
(#) ((
diff (f2,Z))
. 3))) by
RFUNCT_1: 8;
hence thesis;
end;
theorem ::
HFDIFF_1:65
((
diff ((
sin
^2 ),Z))
. 3)
= ((
- 8)
(#) ((
cos
(#)
sin )
| Z))
proof
sin
is_differentiable_on (3,Z) by
TAYLOR_2: 21;
then ((
diff ((
sin
(#)
sin ),Z))
. 3)
= (((((
diff (
sin ,Z))
. ((2
* 1)
+ 1))
(#)
sin )
+ ((3
(#) (((
diff (
sin ,Z))
. (2
* 1))
(#) (
sin
`| Z)))
+ (3
(#) ((
sin
`| Z)
(#) ((
diff (
sin ,Z))
. (2
* 1))))))
+ (
sin
(#) ((
diff (
sin ,Z))
. ((2
* 1)
+ 1)))) by
Th64
.= ((((((
- 1)
|^ 1)
(#) (
cos
| Z))
(#)
sin )
+ ((3
(#) (((
diff (
sin ,Z))
. (2
* 1))
(#) (
sin
`| Z)))
+ (3
(#) ((
sin
`| Z)
(#) ((
diff (
sin ,Z))
. (2
* 1))))))
+ (
sin
(#) ((
diff (
sin ,Z))
. ((2
* 1)
+ 1)))) by
TAYLOR_2: 19
.= ((((((
- 1)
|^ 1)
(#) (
cos
| Z))
(#)
sin )
+ ((3
(#) (((
diff (
sin ,Z))
. (2
* 1))
(#) (
sin
`| Z)))
+ (3
(#) ((
sin
`| Z)
(#) ((
diff (
sin ,Z))
. (2
* 1))))))
+ (
sin
(#) (((
- 1)
|^ 1)
(#) (
cos
| Z)))) by
TAYLOR_2: 19
.= ((((((
- 1)
|^ 1)
(#) (
cos
| Z))
(#)
sin )
+ ((3
(#) ((((
- 1)
|^ 1)
(#) (
sin
| Z))
(#) (
sin
`| Z)))
+ (3
(#) ((
sin
`| Z)
(#) ((
diff (
sin ,Z))
. (2
* 1))))))
+ (
sin
(#) (((
- 1)
|^ 1)
(#) (
cos
| Z)))) by
TAYLOR_2: 19
.= ((((((
- 1)
|^ 1)
(#) (
cos
| Z))
(#)
sin )
+ ((3
(#) ((((
- 1)
|^ 1)
(#) (
sin
| Z))
(#) (
sin
`| Z)))
+ (3
(#) ((
sin
`| Z)
(#) (((
- 1)
|^ 1)
(#) (
sin
| Z))))))
+ (
sin
(#) (((
- 1)
|^ 1)
(#) (
cos
| Z)))) by
TAYLOR_2: 19
.= (((((
- 1)
(#) (
cos
| Z))
(#)
sin )
+ ((3
(#) ((((
- 1)
|^ 1)
(#) (
sin
| Z))
(#) (
sin
`| Z)))
+ (3
(#) ((
sin
`| Z)
(#) (((
- 1)
|^ 1)
(#) (
sin
| Z))))))
+ (
sin
(#) (((
- 1)
|^ 1)
(#) (
cos
| Z))))
.= (((((
- 1)
(#) (
cos
| Z))
(#)
sin )
+ ((3
(#) (((
- 1)
(#) (
sin
| Z))
(#) (
sin
`| Z)))
+ (3
(#) ((
sin
`| Z)
(#) (((
- 1)
|^ 1)
(#) (
sin
| Z))))))
+ (
sin
(#) (((
- 1)
|^ 1)
(#) (
cos
| Z))))
.= (((((
- 1)
(#) (
cos
| Z))
(#)
sin )
+ ((3
(#) (((
- 1)
(#) (
sin
| Z))
(#) (
sin
`| Z)))
+ (3
(#) ((
sin
`| Z)
(#) ((
- 1)
(#) (
sin
| Z))))))
+ (
sin
(#) (((
- 1)
|^ 1)
(#) (
cos
| Z))))
.= (((((
- 1)
(#) (
cos
| Z))
(#)
sin )
+ ((3
(#) (((
- 1)
(#) (
sin
| Z))
(#) (
sin
`| Z)))
+ (3
(#) ((
sin
`| Z)
(#) ((
- 1)
(#) (
sin
| Z))))))
+ (
sin
(#) ((
- 1)
(#) (
cos
| Z))))
.= (((((
- 1)
(#) (
cos
| Z))
(#)
sin )
+ ((3
(#) (((
- 1)
(#) (
sin
| Z))
(#) (
cos
| Z)))
+ (3
(#) ((
sin
`| Z)
(#) ((
- 1)
(#) (
sin
| Z))))))
+ (
sin
(#) ((
- 1)
(#) (
cos
| Z)))) by
TAYLOR_2: 17
.= (((((
- 1)
(#) (
cos
| Z))
(#)
sin )
+ ((3
(#) (((
- 1)
(#) (
sin
| Z))
(#) (
cos
| Z)))
+ (3
(#) ((
cos
| Z)
(#) ((
- 1)
(#) (
sin
| Z))))))
+ (
sin
(#) ((
- 1)
(#) (
cos
| Z)))) by
TAYLOR_2: 17
.= (((((
- 1)
(#) (
cos
| Z))
(#)
sin )
+ ((3
+ 3)
(#) ((
cos
| Z)
(#) ((
- 1)
(#) (
sin
| Z)))))
+ (
sin
(#) ((
- 1)
(#) (
cos
| Z)))) by
Th5
.= ((6
(#) ((
cos
| Z)
(#) ((
- 1)
(#) (
sin
| Z))))
+ ((((
- 1)
(#) (
cos
| Z))
(#)
sin )
+ (((
- 1)
(#) (
cos
| Z))
(#)
sin ))) by
RFUNCT_1: 8
.= ((6
(#) ((
cos
| Z)
(#) ((
- 1)
(#) (
sin
| Z))))
+ ((1
(#) (((
- 1)
(#) (
cos
| Z))
(#)
sin ))
+ (((
- 1)
(#) (
cos
| Z))
(#)
sin ))) by
RFUNCT_1: 21
.= ((6
(#) ((
cos
| Z)
(#) ((
- 1)
(#) (
sin
| Z))))
+ ((1
(#) (((
- 1)
(#) (
cos
| Z))
(#)
sin ))
+ (1
(#) (((
- 1)
(#) (
cos
| Z))
(#)
sin )))) by
RFUNCT_1: 21
.= ((6
(#) ((
cos
| Z)
(#) ((
- 1)
(#) (
sin
| Z))))
+ ((1
+ 1)
(#) (((
- 1)
(#) (
cos
| Z))
(#)
sin ))) by
Th5
.= ((6
(#) ((
- 1)
(#) ((
cos
| Z)
(#) (
sin
| Z))))
+ (2
(#) (((
- 1)
(#) (
cos
| Z))
(#)
sin ))) by
RFUNCT_1: 13
.= ((6
(#) ((
- 1)
(#) ((
cos
(#)
sin )
| Z)))
+ (2
(#) (((
- 1)
(#) (
cos
| Z))
(#)
sin ))) by
RFUNCT_1: 45
.= ((6
(#) ((
- 1)
(#) ((
cos
(#)
sin )
| Z)))
+ (2
(#) ((
- 1)
(#) ((
cos
| Z)
(#)
sin )))) by
RFUNCT_1: 12
.= ((6
(#) ((
- 1)
(#) ((
cos
(#)
sin )
| Z)))
+ (2
(#) ((
- 1)
(#) ((
cos
(#)
sin )
| Z)))) by
RFUNCT_1: 45
.= ((6
+ 2)
(#) ((
- 1)
(#) ((
cos
(#)
sin )
| Z))) by
Th5
.= ((8
* (
- 1))
(#) ((
cos
(#)
sin )
| Z)) by
RFUNCT_1: 17
.= ((
- 8)
(#) ((
cos
(#)
sin )
| Z));
hence thesis;
end;
theorem ::
HFDIFF_1:66
f
is_differentiable_on (2,Z) implies ((
diff ((f
^2 ),Z))
. 2)
= ((2
(#) (f
(#) ((
diff (f,Z))
. 2)))
+ (2
(#) ((f
`| Z)
^2 )))
proof
assume f
is_differentiable_on (2,Z);
then ((
diff ((f
^2 ),Z))
. 2)
= ((((
diff (f,Z))
. 2)
(#) f)
+ ((2
(#) ((f
`| Z)
(#) (f
`| Z)))
+ (f
(#) ((
diff (f,Z))
. 2)))) by
Th50
.= (((((
diff (f,Z))
. 2)
(#) f)
+ (f
(#) ((
diff (f,Z))
. 2)))
+ (2
(#) ((f
`| Z)
(#) (f
`| Z)))) by
RFUNCT_1: 8
.= (((1
(#) (f
(#) ((
diff (f,Z))
. 2)))
+ (f
(#) ((
diff (f,Z))
. 2)))
+ (2
(#) ((f
`| Z)
(#) (f
`| Z)))) by
RFUNCT_1: 21
.= (((1
(#) (f
(#) ((
diff (f,Z))
. 2)))
+ (1
(#) (f
(#) ((
diff (f,Z))
. 2))))
+ (2
(#) ((f
`| Z)
(#) (f
`| Z)))) by
RFUNCT_1: 21
.= (((1
+ 1)
(#) (f
(#) ((
diff (f,Z))
. 2)))
+ (2
(#) ((f
`| Z)
(#) (f
`| Z)))) by
Th5
.= ((2
(#) (f
(#) ((
diff (f,Z))
. 2)))
+ (2
(#) ((f
`| Z)
(#) (f
`| Z))))
.= ((2
(#) (f
(#) ((
diff (f,Z))
. 2)))
+ (2
(#) ((f
`| Z)
^2 )));
hence thesis;
end;
Lm4: (f
/ f)
= (((
dom f)
\ (f
"
{
0 }))
--> 1)
proof
A1: (
dom (f
/ f))
= ((
dom f)
/\ ((
dom f)
\ (f
"
{
0 }))) by
RFUNCT_1:def 1
.= ((
dom f)
\ (f
"
{
0 })) by
XBOOLE_1: 28,
XBOOLE_1: 36;
for c be
object st c
in (
dom (f
/ f)) holds ((f
/ f)
. c)
= 1
proof
let c be
object;
reconsider cc = c as
set by
TARSKI: 1;
assume
A2: c
in (
dom (f
/ f));
then c
in (
dom f) & not c
in (f
"
{
0 }) by
A1,
XBOOLE_0:def 5;
then not (f
. c)
in
{
0 } by
FUNCT_1:def 7;
then
A3: (f
. c)
<>
0 by
TARSKI:def 1;
((f
/ f)
. c)
= ((f
. cc)
* ((f
. cc)
" )) by
A2,
RFUNCT_1:def 1;
hence thesis by
A3,
XCMPLX_0:def 7;
end;
hence thesis by
A1,
FUNCOP_1: 11;
end;
Lm5: ((f
(#) (f
(#) f))
"
{
0 })
= (f
"
{
0 })
proof
thus ((f
(#) (f
(#) f))
"
{
0 })
c= (f
"
{
0 })
proof
let x be
object;
assume
A1: x
in ((f
(#) (f
(#) f))
"
{
0 });
then ((f
(#) (f
(#) f))
. x)
in
{
0 } by
FUNCT_1:def 7;
then ((f
(#) (f
(#) f))
. x)
=
0 by
TARSKI:def 1;
then ((f
. x)
* ((f
(#) f)
. x))
=
0 by
VALUED_1: 5;
then (((f
. x)
* (f
. x))
* (f
. x))
=
0 by
VALUED_1: 5;
then (f
. x)
=
0 or ((f
. x)
* (f
. x))
=
0 by
XCMPLX_1: 6;
then (f
. x)
=
0 or (f
. x)
=
0 or (f
. x)
=
0 by
XCMPLX_1: 6;
then
A2: (f
. x)
in
{
0 } by
TARSKI:def 1;
x
in (
dom (f
(#) (f
(#) f))) by
A1,
FUNCT_1:def 7;
then x
in ((
dom f)
/\ (
dom (f
(#) f))) by
VALUED_1:def 4;
then x
in (
dom f) by
XBOOLE_0:def 4;
hence thesis by
A2,
FUNCT_1:def 7;
end;
let x be
object;
assume
A3: x
in (f
"
{
0 });
then (f
. x)
in
{
0 } by
FUNCT_1:def 7;
then
A4: (f
. x)
=
0 by
TARSKI:def 1;
x
in ((
dom f)
/\ (
dom f)) by
A3,
FUNCT_1:def 7;
then x
in ((
dom (f
(#) f))
/\ (
dom f)) by
VALUED_1:def 4;
then
A5: x
in (
dom (f
(#) (f
(#) f))) by
VALUED_1:def 4;
((f
(#) (f
(#) f))
. x)
= ((f
. x)
* ((f
(#) f)
. x)) by
VALUED_1: 5
.= ((f
. x)
* (f
. x)) by
A4
.=
0 by
A4;
then ((f
(#) (f
(#) f))
. x)
in
{
0 } by
TARSKI:def 1;
hence thesis by
A5,
FUNCT_1:def 7;
end;
theorem ::
HFDIFF_1:67
f
is_differentiable_on (2,Z) & (for x0 st x0
in Z holds (f
. x0)
<>
0 ) implies ((
diff ((f
^ ),Z))
. 2)
= ((((2
(#) (f
`| Z))
(#) (f
`| Z))
- (((
diff (f,Z))
. 2)
(#) f))
/ (f
(#) (f
(#) f)))
proof
assume that
A1: f
is_differentiable_on (2,Z) and
A2: for x0 st x0
in Z holds (f
. x0)
<>
0 ;
A3: f
is_differentiable_on Z by
A1,
Th7;
then
A4: (f
^ )
is_differentiable_on Z by
A2,
FDIFF_2: 22;
A5: Z
c= (
dom f) by
A3,
FDIFF_1:def 6;
A6: for x0 st x0
in Z holds ((f
(#) f)
. x0)
<>
0
proof
let x0;
assume
A7: x0
in Z;
then
A8: (f
. x0)
<>
0 by
A2;
(
dom (f
(#) f))
= ((
dom f)
/\ (
dom f)) by
VALUED_1:def 4
.= (
dom f);
then ((f
(#) f)
. x0)
= ((f
. x0)
* (f
. x0)) by
A5,
A7,
VALUED_1:def 4;
hence thesis by
A8,
XCMPLX_1: 6;
end;
((
diff (f,Z))
. 1)
= ((
diff (f,Z))
. (1
+
0 ))
.= (((
diff (f,Z))
.
0 )
`| Z) by
TAYLOR_1:def 5
.= ((f
| Z)
`| Z) by
TAYLOR_1:def 5
.= (f
`| Z) by
A3,
FDIFF_2: 16;
then
A9: (f
`| Z)
is_differentiable_on Z by
A1;
then ((f
| Z)
`| Z)
is_differentiable_on Z by
A3,
FDIFF_2: 16;
then
A10: (((
diff (f,Z))
.
0 )
`| Z)
is_differentiable_on Z by
TAYLOR_1:def 5;
A11: (f
(#) f)
is_differentiable_on Z by
A3,
FDIFF_2: 20;
then
A12: ((f
`| Z)
/ (f
(#) f))
is_differentiable_on Z by
A9,
A6,
FDIFF_2: 21;
((
diff ((f
^ ),Z))
. 2)
= ((
diff ((f
^ ),Z))
. (1
+ 1))
.= (((
diff ((f
^ ),Z))
. (1
+
0 ))
`| Z) by
TAYLOR_1:def 5
.= ((((
diff ((f
^ ),Z))
.
0 )
`| Z)
`| Z) by
TAYLOR_1:def 5
.= ((((f
^ )
| Z)
`| Z)
`| Z) by
TAYLOR_1:def 5
.= (((f
^ )
`| Z)
`| Z) by
A4,
FDIFF_2: 16
.= ((
- ((f
`| Z)
/ (f
(#) f)))
`| Z) by
A2,
A3,
FDIFF_2: 22
.= ((
- 1)
(#) (((f
`| Z)
/ (f
(#) f))
`| Z)) by
A12,
FDIFF_2: 19
.= ((
- 1)
(#) (((((f
`| Z)
`| Z)
(#) (f
(#) f))
- (((f
(#) f)
`| Z)
(#) (f
`| Z)))
/ ((f
(#) f)
(#) (f
(#) f)))) by
A9,
A11,
A6,
FDIFF_2: 21
.= ((
- 1)
(#) (((((
diff (f,Z))
. 2)
(#) (f
(#) f))
- (((f
(#) f)
`| Z)
(#) (f
`| Z)))
/ ((f
(#) f)
(#) (f
(#) f)))) by
A1,
Lm3,
Th7
.= ((
- 1)
(#) (((((
diff (f,Z))
. 2)
(#) (f
(#) f))
- ((((f
`| Z)
(#) f)
+ (f
(#) (f
`| Z)))
(#) (f
`| Z)))
/ ((f
(#) f)
(#) (f
(#) f)))) by
A3,
FDIFF_2: 20
.= ((
- 1)
(#) (((((
diff (f,Z))
. 2)
(#) (f
^2 ))
- ((f
(#) ((f
`| Z)
+ (f
`| Z)))
(#) (f
`| Z)))
/ ((f
(#) f)
(#) (f
(#) f)))) by
RFUNCT_1: 11
.= ((
- 1)
(#) (((((
diff (f,Z))
. 2)
(#) (f
^2 ))
- ((f
(#) ((1
(#) (f
`| Z))
+ (f
`| Z)))
(#) (f
`| Z)))
/ ((f
(#) f)
(#) (f
(#) f)))) by
RFUNCT_1: 21
.= ((
- 1)
(#) (((((
diff (f,Z))
. 2)
(#) (f
^2 ))
- ((f
(#) ((1
(#) (f
`| Z))
+ (1
(#) (f
`| Z))))
(#) (f
`| Z)))
/ ((f
(#) f)
(#) (f
(#) f)))) by
RFUNCT_1: 21
.= ((
- 1)
(#) (((((
diff (f,Z))
. 2)
(#) (f
^2 ))
- ((f
(#) ((1
+ 1)
(#) (f
`| Z)))
(#) (f
`| Z)))
/ ((f
(#) f)
(#) (f
(#) f)))) by
Th5
.= ((
- 1)
(#) (((f
(#) (((
diff (f,Z))
. 2)
(#) f))
- ((f
(#) (2
(#) (f
`| Z)))
(#) (f
`| Z)))
/ ((f
(#) f)
(#) (f
(#) f)))) by
RFUNCT_1: 9
.= (((
- 1)
(#) ((f
(#) (((
diff (f,Z))
. 2)
(#) f))
- ((f
(#) (2
(#) (f
`| Z)))
(#) (f
`| Z))))
/ ((f
(#) f)
(#) (f
(#) f))) by
RFUNCT_1: 32
.= ((((f
(#) (2
(#) (f
`| Z)))
(#) (f
`| Z))
- (f
(#) (((
diff (f,Z))
. 2)
(#) f)))
/ ((f
(#) f)
(#) (f
(#) f))) by
RFUNCT_1: 19
.= (((f
(#) ((2
(#) (f
`| Z))
(#) (f
`| Z)))
- (f
(#) (((
diff (f,Z))
. 2)
(#) f)))
/ ((f
(#) f)
(#) (f
(#) f))) by
RFUNCT_1: 9
.= ((f
(#) (((2
(#) (f
`| Z))
(#) (f
`| Z))
- (((
diff (f,Z))
. 2)
(#) f)))
/ ((f
(#) f)
(#) (f
(#) f))) by
RFUNCT_1: 15
.= ((f
(#) (((2
(#) (f
`| Z))
(#) (f
`| Z))
- (((
diff (f,Z))
. 2)
(#) f)))
/ (f
(#) (f
(#) (f
(#) f)))) by
RFUNCT_1: 9
.= ((f
/ f)
(#) ((((2
(#) (f
`| Z))
(#) (f
`| Z))
- (((
diff (f,Z))
. 2)
(#) f))
/ (f
(#) (f
(#) f)))) by
RFUNCT_1: 34;
then
A13: ((
diff ((f
^ ),Z))
. 2)
= ((f
/ f)
(#) ((((2
(#) (f
`| Z))
(#) (f
`| Z))
- (((
diff (f,Z))
. 2)
(#) f))
/ (f
(#) (f
(#) f))))
.= ((((
dom f)
\ (f
"
{
0 }))
--> 1)
(#) ((((2
(#) (f
`| Z))
(#) (f
`| Z))
- (((
diff (f,Z))
. 2)
(#) f))
/ (f
(#) (f
(#) f)))) by
Lm4;
A14: (
dom ((
diff (f,Z))
. (1
+ 1)))
= (
dom (((
diff (f,Z))
. (
0
+ 1))
`| Z)) by
TAYLOR_1:def 5
.= (
dom ((((
diff (f,Z))
.
0 )
`| Z)
`| Z)) by
TAYLOR_1:def 5
.= Z by
A10,
FDIFF_1:def 7;
A15: (
dom (((
diff (f,Z))
. 2)
(#) f))
= ((
dom ((
diff (f,Z))
. 2))
/\ (
dom f)) by
VALUED_1:def 4
.= (Z
/\ (
dom f)) by
A14;
A16: (
dom ((2
(#) (f
`| Z))
(#) (f
`| Z)))
= (
dom (2
(#) ((f
`| Z)
(#) (f
`| Z)))) by
RFUNCT_1: 13
.= (
dom ((f
`| Z)
(#) (f
`| Z))) by
VALUED_1:def 5
.= ((
dom (f
`| Z))
/\ (
dom (f
`| Z))) by
VALUED_1:def 4
.= (
dom (f
`| Z))
.= Z by
A3,
FDIFF_1:def 7;
set g1 = ((((2
(#) (f
`| Z))
(#) (f
`| Z))
- (((
diff (f,Z))
. 2)
(#) f))
/ (f
(#) (f
(#) f)));
set g2 = ((f
/ f)
(#) ((((2
(#) (f
`| Z))
(#) (f
`| Z))
- (((
diff (f,Z))
. 2)
(#) f))
/ (f
(#) (f
(#) f))));
A17: (
dom (f
(#) (f
(#) f)))
= ((
dom f)
/\ (
dom (f
(#) f))) by
VALUED_1:def 4
.= ((
dom f)
/\ ((
dom f)
/\ (
dom f))) by
VALUED_1:def 4
.= ((
dom f)
/\ (
dom f))
.= (
dom f);
A18: (f
/ f)
= (((
dom f)
\ (f
"
{
0 }))
--> 1) by
Lm4;
then
A19: (
dom (f
/ f))
= ((
dom f)
\ (f
"
{
0 })) by
FUNCOP_1: 13;
A20: (
dom g2)
= ((
dom (f
/ f))
/\ (
dom g1)) by
VALUED_1:def 4;
then
A21: (
dom g2)
c= (
dom (f
/ f)) by
XBOOLE_1: 17;
A22: for x be
Element of
REAL st x
in (
dom g2) holds (g2
. x)
= (g1
. x)
proof
let x be
Element of
REAL ;
assume
A23: x
in (
dom g2);
(g2
. x)
= (((f
/ f)
(#) g1)
. x)
.= (((f
/ f)
. x)
* (g1
. x)) by
A23,
VALUED_1:def 4
.= (1
* (g1
. x)) by
A18,
A19,
A21,
A23,
FUNCOP_1: 7
.= (g1
. x);
hence thesis;
end;
(
dom ((((2
(#) (f
`| Z))
(#) (f
`| Z))
- (((
diff (f,Z))
. 2)
(#) f))
/ (f
(#) (f
(#) f))))
= ((
dom (((2
(#) (f
`| Z))
(#) (f
`| Z))
- (((
diff (f,Z))
. 2)
(#) f)))
/\ ((
dom (f
(#) (f
(#) f)))
\ ((f
(#) (f
(#) f))
"
{
0 }))) by
RFUNCT_1:def 1
.= (((
dom ((2
(#) (f
`| Z))
(#) (f
`| Z)))
/\ (
dom (((
diff (f,Z))
. 2)
(#) f)))
/\ ((
dom (f
(#) (f
(#) f)))
\ ((f
(#) (f
(#) f))
"
{
0 }))) by
VALUED_1: 12
.= ((Z
/\ (
dom (((
diff (f,Z))
. 2)
(#) f)))
/\ ((
dom (f
(#) (f
(#) f)))
\ ((f
(#) (f
(#) f))
"
{
0 }))) by
A16
.= ((Z
/\ (Z
/\ (
dom f)))
/\ ((
dom (f
(#) (f
(#) f)))
\ ((f
(#) (f
(#) f))
"
{
0 }))) by
A15
.= (((Z
/\ Z)
/\ (
dom f))
/\ ((
dom (f
(#) (f
(#) f)))
\ ((f
(#) (f
(#) f))
"
{
0 }))) by
XBOOLE_1: 16
.= ((Z
/\ (
dom f))
/\ ((
dom (f
(#) (f
(#) f)))
\ ((f
(#) (f
(#) f))
"
{
0 })))
.= ((Z
/\ (
dom f))
/\ ((
dom f)
\ ((f
(#) (f
(#) f))
"
{
0 }))) by
A17
.= (((Z
/\ (
dom f))
/\ (
dom f))
\ ((f
(#) (f
(#) f))
"
{
0 })) by
XBOOLE_1: 49
.= ((Z
/\ ((
dom f)
/\ (
dom f)))
\ ((f
(#) (f
(#) f))
"
{
0 })) by
XBOOLE_1: 16
.= ((Z
/\ (
dom f))
\ ((f
(#) (f
(#) f))
"
{
0 }))
.= (Z
\ ((f
(#) (f
(#) f))
"
{
0 })) by
A5,
XBOOLE_1: 28
.= (Z
\ (f
"
{
0 })) by
Lm5;
then (
dom g2)
= (
dom g1) by
A5,
A19,
A20,
XBOOLE_1: 28,
XBOOLE_1: 33;
hence thesis by
A18,
A13,
A22,
PARTFUN1: 5;
end;
theorem ::
HFDIFF_1:68
((
diff ((
exp_R
(#)
sin ),Z))
. 3)
= ((2
(#) (
exp_R
(#) ((
-
sin )
+
cos )))
| Z)
proof
sin
is_differentiable_on (3,Z) &
exp_R
is_differentiable_on (3,Z) by
TAYLOR_2: 10,
TAYLOR_2: 21;
then ((
diff ((
exp_R
(#)
sin ),Z))
. 3)
= (((((
diff (
exp_R ,Z))
. 3)
(#)
sin )
+ ((3
(#) (((
diff (
exp_R ,Z))
. 2)
(#) (
sin
`| Z)))
+ (3
(#) ((
exp_R
`| Z)
(#) ((
diff (
sin ,Z))
. 2)))))
+ (
exp_R
(#) ((
diff (
sin ,Z))
. 3))) by
Th64
.= ((((
exp_R
| Z)
(#)
sin )
+ ((3
(#) (((
diff (
exp_R ,Z))
. 2)
(#) (
sin
`| Z)))
+ (3
(#) ((
exp_R
`| Z)
(#) ((
diff (
sin ,Z))
. 2)))))
+ (
exp_R
(#) ((
diff (
sin ,Z))
. 3))) by
TAYLOR_2: 6
.= ((((
exp_R
| Z)
(#)
sin )
+ ((3
(#) ((
exp_R
| Z)
(#) (
sin
`| Z)))
+ (3
(#) ((
exp_R
`| Z)
(#) ((
diff (
sin ,Z))
. 2)))))
+ (
exp_R
(#) ((
diff (
sin ,Z))
. 3))) by
TAYLOR_2: 6
.= ((((
exp_R
| Z)
(#)
sin )
+ ((3
(#) ((
exp_R
| Z)
(#) (
sin
`| Z)))
+ (3
(#) ((
exp_R
| Z)
(#) ((
diff (
sin ,Z))
. 2)))))
+ (
exp_R
(#) ((
diff (
sin ,Z))
. 3))) by
TAYLOR_2: 5
.= ((((
exp_R
| Z)
(#)
sin )
+ ((3
(#) ((
exp_R
| Z)
(#) (
cos
| Z)))
+ (3
(#) ((
exp_R
| Z)
(#) ((
diff (
sin ,Z))
. (2
* 1))))))
+ (
exp_R
(#) ((
diff (
sin ,Z))
. ((2
* 1)
+ 1)))) by
TAYLOR_2: 17
.= ((((
exp_R
| Z)
(#)
sin )
+ ((3
(#) ((
exp_R
| Z)
(#) (
cos
| Z)))
+ (3
(#) ((
exp_R
| Z)
(#) (((
- 1)
|^ 1)
(#) (
sin
| Z))))))
+ (
exp_R
(#) ((
diff (
sin ,Z))
. ((2
* 1)
+ 1)))) by
TAYLOR_2: 19
.= ((((
exp_R
| Z)
(#)
sin )
+ ((3
(#) ((
exp_R
| Z)
(#) (
cos
| Z)))
+ (3
(#) ((
exp_R
| Z)
(#) (((
- 1)
|^ 1)
(#) (
sin
| Z))))))
+ (
exp_R
(#) (((
- 1)
|^ 1)
(#) (
cos
| Z)))) by
TAYLOR_2: 19
.= ((((
exp_R
| Z)
(#)
sin )
+ ((3
(#) ((
exp_R
| Z)
(#) (
cos
| Z)))
+ (3
(#) ((
exp_R
| Z)
(#) ((
- 1)
(#) (
sin
| Z))))))
+ (
exp_R
(#) (((
- 1)
|^ 1)
(#) (
cos
| Z))))
.= ((((
exp_R
| Z)
(#)
sin )
+ ((3
(#) ((
exp_R
| Z)
(#) (
cos
| Z)))
+ (3
(#) ((
exp_R
| Z)
(#) ((
- 1)
(#) (
sin
| Z))))))
+ (
exp_R
(#) ((
- 1)
(#) (
cos
| Z))))
.= ((((
exp_R
(#)
sin )
| Z)
+ ((3
(#) ((
exp_R
| Z)
(#) (
cos
| Z)))
+ (3
(#) ((
exp_R
| Z)
(#) ((
- 1)
(#) (
sin
| Z))))))
+ (
exp_R
(#) ((
- 1)
(#) (
cos
| Z)))) by
RFUNCT_1: 45
.= ((((
exp_R
(#)
sin )
| Z)
+ ((3
(#) ((
exp_R
(#)
cos )
| Z))
+ (3
(#) ((
exp_R
| Z)
(#) ((
- 1)
(#) (
sin
| Z))))))
+ (
exp_R
(#) ((
- 1)
(#) (
cos
| Z)))) by
RFUNCT_1: 45
.= ((((
exp_R
(#)
sin )
| Z)
+ ((3
(#) ((
exp_R
(#)
cos )
| Z))
+ (3
(#) ((
- 1)
(#) ((
exp_R
| Z)
(#) (
sin
| Z))))))
+ (
exp_R
(#) ((
- 1)
(#) (
cos
| Z)))) by
RFUNCT_1: 13
.= ((((
exp_R
(#)
sin )
| Z)
+ ((3
(#) ((
exp_R
(#)
cos )
| Z))
+ ((3
* (
- 1))
(#) ((
exp_R
| Z)
(#) (
sin
| Z)))))
+ (
exp_R
(#) ((
- 1)
(#) (
cos
| Z)))) by
RFUNCT_1: 17
.= ((((
exp_R
(#)
sin )
| Z)
+ ((3
(#) ((
exp_R
(#)
cos )
| Z))
+ ((
- 3)
(#) ((
exp_R
(#)
sin )
| Z))))
+ (
exp_R
(#) ((
- 1)
(#) (
cos
| Z)))) by
RFUNCT_1: 45
.= ((((
exp_R
(#)
sin )
| Z)
+ ((3
(#) ((
exp_R
(#)
cos )
| Z))
+ ((
- 3)
(#) ((
exp_R
(#)
sin )
| Z))))
+ ((
- 1)
(#) (
exp_R
(#) (
cos
| Z)))) by
RFUNCT_1: 13
.= ((((
exp_R
(#)
sin )
| Z)
+ ((3
(#) ((
exp_R
(#)
cos )
| Z))
+ ((
- 3)
(#) ((
exp_R
(#)
sin )
| Z))))
+ ((
- 1)
(#) ((
exp_R
(#)
cos )
| Z))) by
RFUNCT_1: 45
.= (((((
exp_R
(#)
sin )
| Z)
+ (3
(#) ((
exp_R
(#)
cos )
| Z)))
+ ((
- 3)
(#) ((
exp_R
(#)
sin )
| Z)))
+ ((
- 1)
(#) ((
exp_R
(#)
cos )
| Z))) by
RFUNCT_1: 8
.= ((((3
(#) ((
exp_R
(#)
cos )
| Z))
+ (1
(#) ((
exp_R
(#)
sin )
| Z)))
+ ((
- 3)
(#) ((
exp_R
(#)
sin )
| Z)))
+ ((
- 1)
(#) ((
exp_R
(#)
cos )
| Z))) by
RFUNCT_1: 21
.= (((3
(#) ((
exp_R
(#)
cos )
| Z))
+ ((1
(#) ((
exp_R
(#)
sin )
| Z))
+ ((
- 3)
(#) ((
exp_R
(#)
sin )
| Z))))
+ ((
- 1)
(#) ((
exp_R
(#)
cos )
| Z))) by
RFUNCT_1: 8
.= (((3
(#) ((
exp_R
(#)
cos )
| Z))
+ ((1
+ (
- 3))
(#) ((
exp_R
(#)
sin )
| Z)))
+ ((
- 1)
(#) ((
exp_R
(#)
cos )
| Z))) by
Th5
.= (((
- 2)
(#) ((
exp_R
(#)
sin )
| Z))
+ ((3
(#) ((
exp_R
(#)
cos )
| Z))
+ ((
- 1)
(#) ((
exp_R
(#)
cos )
| Z)))) by
RFUNCT_1: 8
.= (((
- 2)
(#) ((
exp_R
(#)
sin )
| Z))
+ ((3
+ (
- 1))
(#) ((
exp_R
(#)
cos )
| Z))) by
Th5
.= ((((
- 2)
(#) (
exp_R
(#)
sin ))
| Z)
+ (2
(#) ((
exp_R
(#)
cos )
| Z))) by
RFUNCT_1: 49
.= ((((
- 2)
(#) (
exp_R
(#)
sin ))
| Z)
+ ((2
(#) (
exp_R
(#)
cos ))
| Z)) by
RFUNCT_1: 49
.= ((((2
* (
- 1))
(#) (
exp_R
(#)
sin ))
+ (2
(#) (
exp_R
(#)
cos )))
| Z) by
RFUNCT_1: 44
.= (((2
(#) ((
- 1)
(#) (
exp_R
(#)
sin )))
+ (2
(#) (
exp_R
(#)
cos )))
| Z) by
RFUNCT_1: 17
.= ((2
(#) (((
- 1)
(#) (
exp_R
(#)
sin ))
+ (
exp_R
(#)
cos )))
| Z) by
RFUNCT_1: 16
.= ((2
(#) ((
exp_R
(#) ((
- 1)
(#)
sin ))
+ (
exp_R
(#)
cos )))
| Z) by
RFUNCT_1: 13
.= ((2
(#) (
exp_R
(#) ((
-
sin )
+
cos )))
| Z) by
RFUNCT_1: 11;
hence thesis;
end;