integr13.miz
begin
reserve a,x for
Real;
reserve n for
Element of
NAT ;
reserve A for non
empty
closed_interval
Subset of
REAL ;
reserve f,h,f1,f2 for
PartFunc of
REAL ,
REAL ;
reserve Z for
open
Subset of
REAL ;
Lm1:
0
in Z implies ((
id Z)
"
{
0 })
=
{
0 }
proof
assume
A1:
0
in Z;
thus ((
id Z)
"
{
0 })
c=
{
0 }
proof
let x be
object;
assume
A2: x
in ((
id Z)
"
{
0 });
then x
in (
dom (
id Z)) by
FUNCT_1:def 7;
then
A3: x
in Z;
((
id Z)
. x)
in
{
0 } by
A2,
FUNCT_1:def 7;
hence thesis by
A3,
FUNCT_1: 18;
end;
let x be
object;
assume x
in
{
0 };
then
A4: x
=
0 by
TARSKI:def 1;
then ((
id Z)
. x)
=
0 by
A1,
FUNCT_1: 18;
then
A5: ((
id Z)
. x)
in
{
0 } by
TARSKI:def 1;
x
in (
dom (
id Z)) by
A1,
A4;
hence thesis by
A5,
FUNCT_1:def 7;
end;
Lm2: (
right_open_halfline
0 )
= { g where g be
Real :
0
< g } by
XXREAL_1: 230;
theorem ::
INTEGR13:1
A
c= Z & f
= ((
sin
(#)
cos )
^ ) & Z
c= (
dom (
ln
*
tan )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
ln
*
tan )
. (
upper_bound A))
- ((
ln
*
tan )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & f
= ((
sin
(#)
cos )
^ ) & Z
c= (
dom (
ln
*
tan )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
ln
*
tan )
is_differentiable_on Z by
A1,
FDIFF_8: 18;
A4: for x st x
in Z holds (f
. x)
= (1
/ ((
sin
. x)
* (
cos
. x)))
proof
let x;
assume x
in Z;
then (((
sin
(#)
cos )
^ )
. x)
= (1
/ ((
sin
(#)
cos )
. x)) by
A1,
RFUNCT_1:def 2
.= (1
/ ((
sin
. x)
* (
cos
. x))) by
VALUED_1: 5;
hence thesis by
A1;
end;
A5: for x be
Element of
REAL st x
in (
dom ((
ln
*
tan )
`| Z)) holds (((
ln
*
tan )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
ln
*
tan )
`| Z));
then
A6: x
in Z by
A3,
FDIFF_1:def 7;
then (((
ln
*
tan )
`| Z)
. x)
= (1
/ ((
sin
. x)
* (
cos
. x))) by
A1,
FDIFF_8: 18
.= (f
. x) by
A4,
A6;
hence thesis;
end;
(
dom ((
ln
*
tan )
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
ln
*
tan )
`| Z)
= f by
A5,
PARTFUN1: 5;
hence thesis by
A1,
A2,
FDIFF_8: 18,
INTEGRA5: 13;
end;
theorem ::
INTEGR13:2
A
c= Z & f
= (
- ((
sin
(#)
cos )
^ )) & Z
c= (
dom (
ln
*
cot )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
ln
*
cot )
. (
upper_bound A))
- ((
ln
*
cot )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & f
= (
- ((
sin
(#)
cos )
^ )) & Z
c= (
dom (
ln
*
cot )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
ln
*
cot )
is_differentiable_on Z by
A1,
FDIFF_8: 19;
A4: Z
= (
dom ((
sin
(#)
cos )
^ )) by
A1,
VALUED_1: 8;
A5: for x st x
in Z holds (f
. x)
= (
- (1
/ ((
sin
. x)
* (
cos
. x))))
proof
let x;
assume
A6: x
in Z;
((
- ((
sin
(#)
cos )
^ ))
. x)
= (
- (((
sin
(#)
cos )
^ )
. x)) by
VALUED_1: 8
.= (
- (1
/ ((
sin
(#)
cos )
. x))) by
A4,
A6,
RFUNCT_1:def 2
.= (
- (1
/ ((
sin
. x)
* (
cos
. x)))) by
VALUED_1: 5;
hence thesis by
A1;
end;
A7: for x be
Element of
REAL st x
in (
dom ((
ln
*
cot )
`| Z)) holds (((
ln
*
cot )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
ln
*
cot )
`| Z));
then
A8: x
in Z by
A3,
FDIFF_1:def 7;
then (((
ln
*
cot )
`| Z)
. x)
= (
- (1
/ ((
sin
. x)
* (
cos
. x)))) by
A1,
FDIFF_8: 19
.= (f
. x) by
A5,
A8;
hence thesis;
end;
(
dom ((
ln
*
cot )
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
ln
*
cot )
`| Z)
= f by
A7,
PARTFUN1: 5;
hence thesis by
A1,
A2,
FDIFF_8: 19,
INTEGRA5: 13;
end;
theorem ::
INTEGR13:3
A
c= Z & f
= (2
(#) (
exp_R
(#)
sin )) & Z
c= (
dom (
exp_R
(#) (
sin
-
cos ))) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
exp_R
(#) (
sin
-
cos ))
. (
upper_bound A))
- ((
exp_R
(#) (
sin
-
cos ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & f
= (2
(#) (
exp_R
(#)
sin )) & Z
c= (
dom (
exp_R
(#) (
sin
-
cos ))) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
exp_R
(#) (
sin
-
cos ))
is_differentiable_on Z by
A1,
FDIFF_7: 40;
A4: for x st x
in Z holds (f
. x)
= ((2
* (
exp_R
. x))
* (
sin
. x))
proof
let x;
assume x
in Z;
((2
(#) (
exp_R
(#)
sin ))
. x)
= (2
* ((
exp_R
(#)
sin )
. x)) by
VALUED_1: 6
.= (2
* ((
exp_R
. x)
* (
sin
. x))) by
VALUED_1: 5;
hence thesis by
A1;
end;
A5: for x be
Element of
REAL st x
in (
dom ((
exp_R
(#) (
sin
-
cos ))
`| Z)) holds (((
exp_R
(#) (
sin
-
cos ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
exp_R
(#) (
sin
-
cos ))
`| Z));
then
A6: x
in Z by
A3,
FDIFF_1:def 7;
then (((
exp_R
(#) (
sin
-
cos ))
`| Z)
. x)
= ((2
* (
exp_R
. x))
* (
sin
. x)) by
A1,
FDIFF_7: 40
.= (f
. x) by
A4,
A6;
hence thesis;
end;
(
dom ((
exp_R
(#) (
sin
-
cos ))
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
exp_R
(#) (
sin
-
cos ))
`| Z)
= f by
A5,
PARTFUN1: 5;
hence thesis by
A1,
A2,
FDIFF_7: 40,
INTEGRA5: 13;
end;
theorem ::
INTEGR13:4
A
c= Z & f
= (2
(#) (
exp_R
(#)
cos )) & Z
c= (
dom (
exp_R
(#) (
sin
+
cos ))) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
exp_R
(#) (
sin
+
cos ))
. (
upper_bound A))
- ((
exp_R
(#) (
sin
+
cos ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & f
= (2
(#) (
exp_R
(#)
cos )) & Z
c= (
dom (
exp_R
(#) (
sin
+
cos ))) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
exp_R
(#) (
sin
+
cos ))
is_differentiable_on Z by
A1,
FDIFF_7: 41;
A4: for x st x
in Z holds (f
. x)
= ((2
* (
exp_R
. x))
* (
cos
. x))
proof
let x;
assume x
in Z;
((2
(#) (
exp_R
(#)
cos ))
. x)
= (2
* ((
exp_R
(#)
cos )
. x)) by
VALUED_1: 6
.= (2
* ((
exp_R
. x)
* (
cos
. x))) by
VALUED_1: 5;
hence thesis by
A1;
end;
A5: for x be
Element of
REAL st x
in (
dom ((
exp_R
(#) (
sin
+
cos ))
`| Z)) holds (((
exp_R
(#) (
sin
+
cos ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
exp_R
(#) (
sin
+
cos ))
`| Z));
then
A6: x
in Z by
A3,
FDIFF_1:def 7;
then (((
exp_R
(#) (
sin
+
cos ))
`| Z)
. x)
= ((2
* (
exp_R
. x))
* (
cos
. x)) by
A1,
FDIFF_7: 41
.= (f
. x) by
A6,
A4;
hence thesis;
end;
(
dom ((
exp_R
(#) (
sin
+
cos ))
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
exp_R
(#) (
sin
+
cos ))
`| Z)
= f by
A5,
PARTFUN1: 5;
hence thesis by
A1,
A2,
FDIFF_7: 41,
INTEGRA5: 13;
end;
theorem ::
INTEGR13:5
A
c= Z & Z
= (
dom (
cos
-
sin )) & ((
cos
-
sin )
| A) is
continuous implies (
integral ((
cos
-
sin ),A))
= (((
sin
+
cos )
. (
upper_bound A))
- ((
sin
+
cos )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & Z
= (
dom (
cos
-
sin )) & ((
cos
-
sin )
| A) is
continuous;
then
A2: (
cos
-
sin )
is_integrable_on A & ((
cos
-
sin )
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
Z
= ((
dom
cos )
/\ (
dom
sin )) by
A1,
VALUED_1: 12;
then
A3: Z
c= (
dom (
sin
+
cos )) by
VALUED_1:def 1;
then
A4: (
sin
+
cos )
is_differentiable_on Z by
FDIFF_7: 38;
A5: for x be
Element of
REAL st x
in (
dom ((
sin
+
cos )
`| Z)) holds (((
sin
+
cos )
`| Z)
. x)
= ((
cos
-
sin )
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
sin
+
cos )
`| Z));
then
A6: x
in Z by
A4,
FDIFF_1:def 7;
then (((
sin
+
cos )
`| Z)
. x)
= ((
cos
. x)
- (
sin
. x)) by
A3,
FDIFF_7: 38
.= ((
cos
-
sin )
. x) by
A1,
A6,
VALUED_1: 13;
hence thesis;
end;
(
dom ((
sin
+
cos )
`| Z))
= (
dom (
cos
-
sin )) by
A1,
A4,
FDIFF_1:def 7;
then ((
sin
+
cos )
`| Z)
= (
cos
-
sin ) by
A5,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
FDIFF_7: 38,
INTEGRA5: 13;
end;
theorem ::
INTEGR13:6
A
c= Z & Z
= (
dom (
cos
+
sin )) & ((
cos
+
sin )
| A) is
continuous implies (
integral ((
cos
+
sin ),A))
= (((
sin
-
cos )
. (
upper_bound A))
- ((
sin
-
cos )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & Z
= (
dom (
cos
+
sin )) & ((
cos
+
sin )
| A) is
continuous;
then
A2: (
cos
+
sin )
is_integrable_on A & ((
cos
+
sin )
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
Z
= ((
dom
cos )
/\ (
dom
sin )) by
A1,
VALUED_1:def 1;
then
A3: Z
c= (
dom (
sin
-
cos )) by
VALUED_1: 12;
then
A4: (
sin
-
cos )
is_differentiable_on Z by
FDIFF_7: 39;
A5: for x be
Element of
REAL st x
in (
dom ((
sin
-
cos )
`| Z)) holds (((
sin
-
cos )
`| Z)
. x)
= ((
cos
+
sin )
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
sin
-
cos )
`| Z));
then
A6: x
in Z by
A4,
FDIFF_1:def 7;
then (((
sin
-
cos )
`| Z)
. x)
= ((
cos
. x)
+ (
sin
. x)) by
A3,
FDIFF_7: 39
.= ((
cos
+
sin )
. x) by
A1,
A6,
VALUED_1:def 1;
hence thesis;
end;
(
dom ((
sin
-
cos )
`| Z))
= (
dom (
cos
+
sin )) by
A1,
A4,
FDIFF_1:def 7;
then ((
sin
-
cos )
`| Z)
= (
cos
+
sin ) by
A5,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
FDIFF_7: 39,
INTEGRA5: 13;
end;
theorem ::
INTEGR13:7
Th7: Z
c= (
dom ((
- (1
/ 2))
(#) ((
sin
+
cos )
/
exp_R ))) implies ((
- (1
/ 2))
(#) ((
sin
+
cos )
/
exp_R ))
is_differentiable_on Z & for x st x
in Z holds ((((
- (1
/ 2))
(#) ((
sin
+
cos )
/
exp_R ))
`| Z)
. x)
= ((
sin
. x)
/ (
exp_R
. x))
proof
assume
A1: Z
c= (
dom ((
- (1
/ 2))
(#) ((
sin
+
cos )
/
exp_R )));
then
A2: Z
c= (
dom ((
sin
+
cos )
/
exp_R )) by
VALUED_1:def 5;
then Z
c= ((
dom (
sin
+
cos ))
/\ ((
dom
exp_R )
\ (
exp_R
"
{
0 }))) by
RFUNCT_1:def 1;
then
A3: Z
c= (
dom (
sin
+
cos )) by
XBOOLE_1: 18;
then
A4: (
sin
+
cos )
is_differentiable_on Z & for x st x
in Z holds (((
sin
+
cos )
`| Z)
. x)
= ((
cos
. x)
- (
sin
. x)) by
FDIFF_7: 38;
A5: ((
sin
+
cos )
/
exp_R )
is_differentiable_on Z by
A2,
FDIFF_7: 42;
then
A6: ((
- (1
/ 2))
(#) ((
sin
+
cos )
/
exp_R ))
is_differentiable_on Z by
FDIFF_2: 19;
for x st x
in Z holds ((((
- (1
/ 2))
(#) ((
sin
+
cos )
/
exp_R ))
`| Z)
. x)
= ((
sin
. x)
/ (
exp_R
. x))
proof
let x;
A7: x
in
REAL by
XREAL_0:def 1;
assume
A8: x
in Z;
A9:
exp_R
is_differentiable_in x by
SIN_COS: 65;
A10: (
sin
+
cos )
is_differentiable_in x by
A4,
A8,
FDIFF_1: 9;
A11: ((
sin
+
cos )
. x)
= ((
sin
. x)
+ (
cos
. x)) by
VALUED_1: 1,
A7;
A12: (
exp_R
. x)
<>
0 by
SIN_COS: 54;
((((
- (1
/ 2))
(#) ((
sin
+
cos )
/
exp_R ))
`| Z)
. x)
= ((
- (1
/ 2))
* (
diff (((
sin
+
cos )
/
exp_R ),x))) by
A1,
A5,
A8,
FDIFF_1: 20
.= ((
- (1
/ 2))
* ((((
diff ((
sin
+
cos ),x))
* (
exp_R
. x))
- ((
diff (
exp_R ,x))
* ((
sin
+
cos )
. x)))
/ ((
exp_R
. x)
^2 ))) by
A9,
A10,
A12,
FDIFF_2: 14
.= ((
- (1
/ 2))
* ((((((
sin
+
cos )
`| Z)
. x)
* (
exp_R
. x))
- ((
diff (
exp_R ,x))
* ((
sin
+
cos )
. x)))
/ ((
exp_R
. x)
^2 ))) by
A4,
A8,
FDIFF_1:def 7
.= ((
- (1
/ 2))
* (((((
cos
. x)
- (
sin
. x))
* (
exp_R
. x))
- ((
diff (
exp_R ,x))
* ((
sin
+
cos )
. x)))
/ ((
exp_R
. x)
^2 ))) by
A3,
A8,
FDIFF_7: 38
.= ((
- (1
/ 2))
* (((((
cos
. x)
- (
sin
. x))
* (
exp_R
. x))
- ((
exp_R
. x)
* ((
sin
. x)
+ (
cos
. x))))
/ ((
exp_R
. x)
^2 ))) by
A11,
SIN_COS: 65
.= ((
- (1
/ 2))
* ((
- (2
* (
sin
. x)))
* ((
exp_R
. x)
/ ((
exp_R
. x)
* (
exp_R
. x)))))
.= ((
- (1
/ 2))
* ((
- (2
* (
sin
. x)))
* (((
exp_R
. x)
/ (
exp_R
. x))
/ (
exp_R
. x)))) by
XCMPLX_1: 78
.= ((
- (1
/ 2))
* ((
- (2
* (
sin
. x)))
* (1
/ (
exp_R
. x)))) by
A12,
XCMPLX_1: 60
.= ((
sin
. x)
/ (
exp_R
. x));
hence thesis;
end;
hence thesis by
A6;
end;
theorem ::
INTEGR13:8
A
c= Z & f
= (
sin
/
exp_R ) & Z
c= (
dom ((
- (1
/ 2))
(#) ((
sin
+
cos )
/
exp_R ))) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= ((((
- (1
/ 2))
(#) ((
sin
+
cos )
/
exp_R ))
. (
upper_bound A))
- (((
- (1
/ 2))
(#) ((
sin
+
cos )
/
exp_R ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & f
= (
sin
/
exp_R ) & Z
c= (
dom ((
- (1
/ 2))
(#) ((
sin
+
cos )
/
exp_R ))) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: ((
- (1
/ 2))
(#) ((
sin
+
cos )
/
exp_R ))
is_differentiable_on Z by
A1,
Th7;
A4: for x st x
in Z holds (f
. x)
= ((
sin
. x)
/ (
exp_R
. x)) by
A1,
RFUNCT_1:def 1;
A5: for x be
Element of
REAL st x
in (
dom (((
- (1
/ 2))
(#) ((
sin
+
cos )
/
exp_R ))
`| Z)) holds ((((
- (1
/ 2))
(#) ((
sin
+
cos )
/
exp_R ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((
- (1
/ 2))
(#) ((
sin
+
cos )
/
exp_R ))
`| Z));
then
A6: x
in Z by
A3,
FDIFF_1:def 7;
then ((((
- (1
/ 2))
(#) ((
sin
+
cos )
/
exp_R ))
`| Z)
. x)
= ((
sin
. x)
/ (
exp_R
. x)) by
A1,
Th7
.= (f
. x) by
A6,
A4;
hence thesis;
end;
(
dom (((
- (1
/ 2))
(#) ((
sin
+
cos )
/
exp_R ))
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then (((
- (1
/ 2))
(#) ((
sin
+
cos )
/
exp_R ))
`| Z)
= f by
A5,
PARTFUN1: 5;
hence thesis by
A1,
A2,
Th7,
INTEGRA5: 13;
end;
theorem ::
INTEGR13:9
Th9: Z
c= (
dom ((1
/ 2)
(#) ((
sin
-
cos )
/
exp_R ))) implies ((1
/ 2)
(#) ((
sin
-
cos )
/
exp_R ))
is_differentiable_on Z & for x st x
in Z holds ((((1
/ 2)
(#) ((
sin
-
cos )
/
exp_R ))
`| Z)
. x)
= ((
cos
. x)
/ (
exp_R
. x))
proof
assume
A1: Z
c= (
dom ((1
/ 2)
(#) ((
sin
-
cos )
/
exp_R )));
then
A2: Z
c= (
dom ((
sin
-
cos )
/
exp_R )) by
VALUED_1:def 5;
then Z
c= ((
dom (
sin
-
cos ))
/\ ((
dom
exp_R )
\ (
exp_R
"
{
0 }))) by
RFUNCT_1:def 1;
then
A3: Z
c= (
dom (
sin
-
cos )) by
XBOOLE_1: 18;
then
A4: (
sin
-
cos )
is_differentiable_on Z & for x st x
in Z holds (((
sin
-
cos )
`| Z)
. x)
= ((
cos
. x)
+ (
sin
. x)) by
FDIFF_7: 39;
A5: ((
sin
-
cos )
/
exp_R )
is_differentiable_on Z by
A2,
FDIFF_7: 43;
then
A6: ((1
/ 2)
(#) ((
sin
-
cos )
/
exp_R ))
is_differentiable_on Z by
FDIFF_2: 19;
for x st x
in Z holds ((((1
/ 2)
(#) ((
sin
-
cos )
/
exp_R ))
`| Z)
. x)
= ((
cos
. x)
/ (
exp_R
. x))
proof
let x;
assume
A7: x
in Z;
A8:
exp_R
is_differentiable_in x by
SIN_COS: 65;
A9: (
sin
-
cos )
is_differentiable_in x by
A4,
A7,
FDIFF_1: 9;
A10: ((
sin
-
cos )
. x)
= ((
sin
. x)
- (
cos
. x)) by
A3,
A7,
VALUED_1: 13;
A11: (
exp_R
. x)
<>
0 by
SIN_COS: 54;
((((1
/ 2)
(#) ((
sin
-
cos )
/
exp_R ))
`| Z)
. x)
= ((1
/ 2)
* (
diff (((
sin
-
cos )
/
exp_R ),x))) by
A1,
A5,
A7,
FDIFF_1: 20
.= ((1
/ 2)
* ((((
diff ((
sin
-
cos ),x))
* (
exp_R
. x))
- ((
diff (
exp_R ,x))
* ((
sin
-
cos )
. x)))
/ ((
exp_R
. x)
^2 ))) by
A8,
A9,
A11,
FDIFF_2: 14
.= ((1
/ 2)
* ((((((
sin
-
cos )
`| Z)
. x)
* (
exp_R
. x))
- ((
diff (
exp_R ,x))
* ((
sin
-
cos )
. x)))
/ ((
exp_R
. x)
^2 ))) by
A4,
A7,
FDIFF_1:def 7
.= ((1
/ 2)
* (((((
cos
. x)
+ (
sin
. x))
* (
exp_R
. x))
- ((
diff (
exp_R ,x))
* ((
sin
-
cos )
. x)))
/ ((
exp_R
. x)
^2 ))) by
A3,
A7,
FDIFF_7: 39
.= ((1
/ 2)
* (((((
cos
. x)
+ (
sin
. x))
* (
exp_R
. x))
- ((
exp_R
. x)
* ((
sin
. x)
- (
cos
. x))))
/ ((
exp_R
. x)
^2 ))) by
A10,
SIN_COS: 65
.= ((1
/ 2)
* ((2
* (
cos
. x))
* ((
exp_R
. x)
/ ((
exp_R
. x)
* (
exp_R
. x)))))
.= ((1
/ 2)
* ((2
* (
cos
. x))
* (((
exp_R
. x)
/ (
exp_R
. x))
/ (
exp_R
. x)))) by
XCMPLX_1: 78
.= ((1
/ 2)
* ((2
* (
cos
. x))
* (1
/ (
exp_R
. x)))) by
A11,
XCMPLX_1: 60
.= ((
cos
. x)
/ (
exp_R
. x));
hence thesis;
end;
hence thesis by
A6;
end;
theorem ::
INTEGR13:10
A
c= Z & f
= (
cos
/
exp_R ) & Z
c= (
dom ((1
/ 2)
(#) ((
sin
-
cos )
/
exp_R ))) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= ((((1
/ 2)
(#) ((
sin
-
cos )
/
exp_R ))
. (
upper_bound A))
- (((1
/ 2)
(#) ((
sin
-
cos )
/
exp_R ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & f
= (
cos
/
exp_R ) & Z
c= (
dom ((1
/ 2)
(#) ((
sin
-
cos )
/
exp_R ))) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: ((1
/ 2)
(#) ((
sin
-
cos )
/
exp_R ))
is_differentiable_on Z by
A1,
Th9;
A4: for x st x
in Z holds (f
. x)
= ((
cos
. x)
/ (
exp_R
. x)) by
A1,
RFUNCT_1:def 1;
A5: for x be
Element of
REAL st x
in (
dom (((1
/ 2)
(#) ((
sin
-
cos )
/
exp_R ))
`| Z)) holds ((((1
/ 2)
(#) ((
sin
-
cos )
/
exp_R ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((1
/ 2)
(#) ((
sin
-
cos )
/
exp_R ))
`| Z));
then
A6: x
in Z by
A3,
FDIFF_1:def 7;
then ((((1
/ 2)
(#) ((
sin
-
cos )
/
exp_R ))
`| Z)
. x)
= ((
cos
. x)
/ (
exp_R
. x)) by
A1,
Th9
.= (f
. x) by
A4,
A6;
hence thesis;
end;
(
dom (((1
/ 2)
(#) ((
sin
-
cos )
/
exp_R ))
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then (((1
/ 2)
(#) ((
sin
-
cos )
/
exp_R ))
`| Z)
= f by
A5,
PARTFUN1: 5;
hence thesis by
A1,
A2,
Th9,
INTEGRA5: 13;
end;
theorem ::
INTEGR13:11
A
c= Z & f
= (
exp_R
(#) (
sin
+
cos )) & Z
c= (
dom (
exp_R
(#)
sin )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
exp_R
(#)
sin )
. (
upper_bound A))
- ((
exp_R
(#)
sin )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & f
= (
exp_R
(#) (
sin
+
cos )) & Z
c= (
dom (
exp_R
(#)
sin )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
exp_R
(#)
sin )
is_differentiable_on Z by
A1,
FDIFF_7: 44;
(
dom f)
= ((
dom
exp_R )
/\ (
dom (
sin
+
cos ))) by
A1,
VALUED_1:def 4;
then
A4: Z
c= (
dom (
sin
+
cos )) by
A1,
XBOOLE_1: 18;
A5: for x st x
in Z holds (f
. x)
= ((
exp_R
. x)
* ((
sin
. x)
+ (
cos
. x)))
proof
let x;
assume
A6: x
in Z;
((
exp_R
(#) (
sin
+
cos ))
. x)
= ((
exp_R
. x)
* ((
sin
+
cos )
. x)) by
VALUED_1: 5
.= ((
exp_R
. x)
* ((
sin
. x)
+ (
cos
. x))) by
A4,
A6,
VALUED_1:def 1;
hence thesis by
A1;
end;
A7: for x be
Element of
REAL st x
in (
dom ((
exp_R
(#)
sin )
`| Z)) holds (((
exp_R
(#)
sin )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
exp_R
(#)
sin )
`| Z));
then
A8: x
in Z by
A3,
FDIFF_1:def 7;
then (((
exp_R
(#)
sin )
`| Z)
. x)
= ((
exp_R
. x)
* ((
sin
. x)
+ (
cos
. x))) by
A1,
FDIFF_7: 44
.= (f
. x) by
A5,
A8;
hence thesis;
end;
(
dom ((
exp_R
(#)
sin )
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
exp_R
(#)
sin )
`| Z)
= f by
A7,
PARTFUN1: 5;
hence thesis by
A1,
A2,
FDIFF_7: 44,
INTEGRA5: 13;
end;
theorem ::
INTEGR13:12
A
c= Z & f
= (
exp_R
(#) (
cos
-
sin )) & Z
c= (
dom (
exp_R
(#)
cos )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
exp_R
(#)
cos )
. (
upper_bound A))
- ((
exp_R
(#)
cos )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & f
= (
exp_R
(#) (
cos
-
sin )) & Z
c= (
dom (
exp_R
(#)
cos )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
exp_R
(#)
cos )
is_differentiable_on Z by
A1,
FDIFF_7: 45;
(
dom f)
= ((
dom
exp_R )
/\ (
dom (
cos
-
sin ))) by
A1,
VALUED_1:def 4;
then
A4: Z
c= (
dom (
cos
-
sin )) by
A1,
XBOOLE_1: 18;
A5: for x st x
in Z holds (f
. x)
= ((
exp_R
. x)
* ((
cos
. x)
- (
sin
. x)))
proof
let x;
assume
A6: x
in Z;
((
exp_R
(#) (
cos
-
sin ))
. x)
= ((
exp_R
. x)
* ((
cos
-
sin )
. x)) by
VALUED_1: 5
.= ((
exp_R
. x)
* ((
cos
. x)
- (
sin
. x))) by
A4,
A6,
VALUED_1: 13;
hence thesis by
A1;
end;
A7: for x be
Element of
REAL st x
in (
dom ((
exp_R
(#)
cos )
`| Z)) holds (((
exp_R
(#)
cos )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
exp_R
(#)
cos )
`| Z));
then
A8: x
in Z by
A3,
FDIFF_1:def 7;
then (((
exp_R
(#)
cos )
`| Z)
. x)
= ((
exp_R
. x)
* ((
cos
. x)
- (
sin
. x))) by
A1,
FDIFF_7: 45
.= (f
. x) by
A5,
A8;
hence thesis;
end;
(
dom ((
exp_R
(#)
cos )
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
exp_R
(#)
cos )
`| Z)
= f by
A7,
PARTFUN1: 5;
hence thesis by
A1,
A2,
FDIFF_7: 45,
INTEGRA5: 13;
end;
theorem ::
INTEGR13:13
A
c= Z & f1
= (
#Z 2) & f
= ((
- ((
sin
/
cos )
/ f1))
+ (((
id Z)
^ )
/ (
cos
^2 ))) & Z
c= (
dom (((
id Z)
^ )
(#)
tan )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((((
id Z)
^ )
(#)
tan )
. (
upper_bound A))
- ((((
id Z)
^ )
(#)
tan )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & f1
= (
#Z 2) & f
= ((
- ((
sin
/
cos )
/ f1))
+ (((
id Z)
^ )
/ (
cos
^2 ))) & Z
c= (
dom (((
id Z)
^ )
(#)
tan )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
set g = (
id Z);
Z
c= ((
dom (g
^ ))
/\ (
dom
tan )) by
A1,
VALUED_1:def 4;
then
A3: Z
c= (
dom (g
^ )) by
XBOOLE_1: 18;
A4: not
0
in Z
proof
assume
A5:
0
in Z;
(
dom ((
id Z)
^ ))
= ((
dom (
id Z))
\ ((
id Z)
"
{
0 })) by
RFUNCT_1:def 2
.= ((
dom (
id Z))
\
{
0 }) by
Lm1,
A5;
then not
0
in
{
0 } by
A5,
A3,
XBOOLE_0:def 5;
hence thesis by
TARSKI:def 1;
end;
then
A6: (((
id Z)
^ )
(#)
tan )
is_differentiable_on Z by
A1,
FDIFF_8: 34;
(
dom f)
= ((
dom (
- ((
sin
/
cos )
/ f1)))
/\ (
dom (((
id Z)
^ )
/ (
cos
^2 )))) by
A1,
VALUED_1:def 1;
then (
dom f)
c= (
dom (
- ((
sin
/
cos )
/ f1))) & (
dom f)
c= (
dom (((
id Z)
^ )
/ (
cos
^2 ))) by
XBOOLE_1: 18;
then
A7: Z
c= (
dom ((
sin
/
cos )
/ f1)) & Z
c= (
dom (((
id Z)
^ )
/ (
cos
^2 ))) by
A1,
VALUED_1: 8;
(
dom ((
sin
/
cos )
/ f1))
= ((
dom (
sin
/
cos ))
/\ ((
dom f1)
\ (f1
"
{
0 }))) by
RFUNCT_1:def 1;
then
A8: Z
c= (
dom (
sin
/
cos )) by
A7,
XBOOLE_1: 18;
(
dom (((
id Z)
^ )
/ (
cos
^2 )))
c= ((
dom ((
id Z)
^ ))
/\ ((
dom (
cos
^2 ))
\ ((
cos
^2 )
"
{
0 }))) by
RFUNCT_1:def 1;
then (
dom (((
id Z)
^ )
/ (
cos
^2 )))
c= (
dom ((
id Z)
^ )) & (
dom (((
id Z)
^ )
/ (
cos
^2 )))
c= ((
dom (
cos
^2 ))
\ ((
cos
^2 )
"
{
0 })) by
XBOOLE_1: 18;
then
A9: Z
c= (
dom ((
id Z)
^ )) & Z
c= ((
dom (
cos
^2 ))
\ ((
cos
^2 )
"
{
0 })) by
A7;
A10: for x st x
in Z holds (f
. x)
= ((
- (((
sin
. x)
/ (
cos
. x))
/ (x
^2 )))
+ ((1
/ x)
/ ((
cos
. x)
^2 )))
proof
let x;
assume
A11: x
in Z;
then (((
- ((
sin
/
cos )
/ f1))
+ (((
id Z)
^ )
/ (
cos
^2 )))
. x)
= (((
- ((
sin
/
cos )
/ f1))
. x)
+ ((((
id Z)
^ )
/ (
cos
^2 ))
. x)) by
A1,
VALUED_1:def 1
.= ((
- (((
sin
/
cos )
/ f1)
. x))
+ ((((
id Z)
^ )
/ (
cos
^2 ))
. x)) by
VALUED_1: 8
.= ((
- (((
sin
/
cos )
. x)
/ (f1
. x)))
+ ((((
id Z)
^ )
/ (
cos
^2 ))
. x)) by
A11,
A7,
RFUNCT_1:def 1
.= ((
- (((
sin
. x)
* ((
cos
. x)
" ))
/ (f1
. x)))
+ ((((
id Z)
^ )
/ (
cos
^2 ))
. x)) by
A8,
A11,
RFUNCT_1:def 1
.= ((
- (((
sin
. x)
/ (
cos
. x))
/ (f1
. x)))
+ ((((
id Z)
^ )
. x)
/ ((
cos
^2 )
. x))) by
A7,
A11,
RFUNCT_1:def 1
.= ((
- (((
sin
. x)
/ (
cos
. x))
/ (f1
. x)))
+ ((((
id Z)
. x)
" )
/ ((
cos
^2 )
. x))) by
A9,
A11,
RFUNCT_1:def 2
.= ((
- (((
sin
. x)
/ (
cos
. x))
/ (f1
. x)))
+ ((1
/ x)
/ ((
cos
^2 )
. x))) by
A11,
FUNCT_1: 18
.= ((
- (((
sin
. x)
/ (
cos
. x))
/ (f1
. x)))
+ ((1
/ x)
/ ((
cos
. x)
^2 ))) by
VALUED_1: 11
.= ((
- (((
sin
. x)
/ (
cos
. x))
/ (x
#Z 2)))
+ ((1
/ x)
/ ((
cos
. x)
^2 ))) by
A1,
TAYLOR_1:def 1
.= ((
- (((
sin
. x)
/ (
cos
. x))
/ (x
^2 )))
+ ((1
/ x)
/ ((
cos
. x)
^2 ))) by
FDIFF_7: 1;
hence thesis by
A1;
end;
A12: for x be
Element of
REAL st x
in (
dom ((((
id Z)
^ )
(#)
tan )
`| Z)) holds (((((
id Z)
^ )
(#)
tan )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((((
id Z)
^ )
(#)
tan )
`| Z));
then
A13: x
in Z by
A6,
FDIFF_1:def 7;
then (((((
id Z)
^ )
(#)
tan )
`| Z)
. x)
= ((
- (((
sin
. x)
/ (
cos
. x))
/ (x
^2 )))
+ ((1
/ x)
/ ((
cos
. x)
^2 ))) by
A4,
A1,
FDIFF_8: 34
.= (f
. x) by
A13,
A10;
hence thesis;
end;
(
dom ((((
id Z)
^ )
(#)
tan )
`| Z))
= (
dom f) by
A1,
A6,
FDIFF_1:def 7;
then ((((
id Z)
^ )
(#)
tan )
`| Z)
= f by
A12,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A6,
INTEGRA5: 13;
end;
theorem ::
INTEGR13:14
A
c= Z & f
= ((
- ((
cos
/
sin )
/ f1))
- (((
id Z)
^ )
/ (
sin
^2 ))) & f1
= (
#Z 2) & Z
c= (
dom (((
id Z)
^ )
(#)
cot )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((((
id Z)
^ )
(#)
cot )
. (
upper_bound A))
- ((((
id Z)
^ )
(#)
cot )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & f
= ((
- ((
cos
/
sin )
/ f1))
- (((
id Z)
^ )
/ (
sin
^2 ))) & f1
= (
#Z 2) & Z
c= (
dom (((
id Z)
^ )
(#)
cot )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
set g = (
id Z);
Z
c= (
dom ((g
^ )
(#)
cot )) by
A1;
then Z
c= ((
dom (g
^ ))
/\ (
dom
cot )) by
VALUED_1:def 4;
then
A3: Z
c= (
dom (g
^ )) by
XBOOLE_1: 18;
A4: not
0
in Z
proof
assume
A5:
0
in Z;
(
dom ((
id Z)
^ ))
= ((
dom (
id Z))
\ ((
id Z)
"
{
0 })) by
RFUNCT_1:def 2
.= ((
dom (
id Z))
\
{
0 }) by
Lm1,
A5;
then not
0
in
{
0 } by
A5,
A3,
XBOOLE_0:def 5;
hence thesis by
TARSKI:def 1;
end;
then
A6: (((
id Z)
^ )
(#)
cot )
is_differentiable_on Z by
A1,
FDIFF_8: 35;
(
dom f)
= ((
dom (
- ((
cos
/
sin )
/ f1)))
/\ (
dom (((
id Z)
^ )
/ (
sin
^2 )))) by
A1,
VALUED_1: 12;
then
A7: (
dom f)
c= (
dom (
- ((
cos
/
sin )
/ f1))) & (
dom f)
c= (
dom (((
id Z)
^ )
/ (
sin
^2 ))) by
XBOOLE_1: 18;
then (
dom f)
c= (
dom ((
cos
/
sin )
/ f1)) by
VALUED_1: 8;
then
A8: Z
c= (
dom ((
cos
/
sin )
/ f1)) & Z
c= (
dom (((
id Z)
^ )
/ (
sin
^2 ))) by
A1,
A7;
(
dom ((
cos
/
sin )
/ f1))
= ((
dom (
cos
/
sin ))
/\ ((
dom f1)
\ (f1
"
{
0 }))) by
RFUNCT_1:def 1;
then
A9: Z
c= (
dom (
cos
/
sin )) by
A8,
XBOOLE_1: 18;
(
dom (((
id Z)
^ )
/ (
sin
^2 )))
c= ((
dom ((
id Z)
^ ))
/\ ((
dom (
sin
^2 ))
\ ((
sin
^2 )
"
{
0 }))) by
RFUNCT_1:def 1;
then (
dom (((
id Z)
^ )
/ (
sin
^2 )))
c= (
dom ((
id Z)
^ )) & (
dom (((
id Z)
^ )
/ (
sin
^2 )))
c= ((
dom (
sin
^2 ))
\ ((
sin
^2 )
"
{
0 })) by
XBOOLE_1: 18;
then
A10: Z
c= (
dom ((
id Z)
^ )) & Z
c= ((
dom (
sin
^2 ))
\ ((
sin
^2 )
"
{
0 })) by
A8;
A11: for x st x
in Z holds (f
. x)
= ((
- (((
cos
. x)
/ (
sin
. x))
/ (x
^2 )))
- ((1
/ x)
/ ((
sin
. x)
^2 )))
proof
let x;
assume
A12: x
in Z;
then (((
- ((
cos
/
sin )
/ f1))
- (((
id Z)
^ )
/ (
sin
^2 )))
. x)
= (((
- ((
cos
/
sin )
/ f1))
. x)
- ((((
id Z)
^ )
/ (
sin
^2 ))
. x)) by
A1,
VALUED_1: 13
.= ((
- (((
cos
/
sin )
/ f1)
. x))
- ((((
id Z)
^ )
/ (
sin
^2 ))
. x)) by
VALUED_1: 8
.= ((
- (((
cos
/
sin )
. x)
/ (f1
. x)))
- ((((
id Z)
^ )
/ (
sin
^2 ))
. x)) by
A12,
A8,
RFUNCT_1:def 1
.= ((
- (((
cos
. x)
/ (
sin
. x))
/ (f1
. x)))
- ((((
id Z)
^ )
/ (
sin
^2 ))
. x)) by
A9,
A12,
RFUNCT_1:def 1
.= ((
- (((
cos
. x)
/ (
sin
. x))
/ (f1
. x)))
- ((((
id Z)
^ )
. x)
/ ((
sin
^2 )
. x))) by
A8,
A12,
RFUNCT_1:def 1
.= ((
- (((
cos
. x)
/ (
sin
. x))
/ (f1
. x)))
- ((((
id Z)
. x)
" )
/ ((
sin
^2 )
. x))) by
A10,
A12,
RFUNCT_1:def 2
.= ((
- (((
cos
. x)
/ (
sin
. x))
/ (f1
. x)))
- ((1
/ x)
/ ((
sin
^2 )
. x))) by
A12,
FUNCT_1: 18
.= ((
- (((
cos
. x)
/ (
sin
. x))
/ (f1
. x)))
- ((1
/ x)
/ ((
sin
. x)
^2 ))) by
VALUED_1: 11
.= ((
- (((
cos
. x)
/ (
sin
. x))
/ (x
#Z 2)))
- ((1
/ x)
/ ((
sin
. x)
^2 ))) by
A1,
TAYLOR_1:def 1
.= ((
- (((
cos
. x)
/ (
sin
. x))
/ (x
^2 )))
- ((1
/ x)
/ ((
sin
. x)
^2 ))) by
FDIFF_7: 1;
hence thesis by
A1;
end;
A13: for x be
Element of
REAL st x
in (
dom ((((
id Z)
^ )
(#)
cot )
`| Z)) holds (((((
id Z)
^ )
(#)
cot )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((((
id Z)
^ )
(#)
cot )
`| Z));
then
A14: x
in Z by
A6,
FDIFF_1:def 7;
then (((((
id Z)
^ )
(#)
cot )
`| Z)
. x)
= ((
- (((
cos
. x)
/ (
sin
. x))
/ (x
^2 )))
- ((1
/ x)
/ ((
sin
. x)
^2 ))) by
A1,
A4,
FDIFF_8: 35
.= (f
. x) by
A11,
A14;
hence thesis;
end;
(
dom ((((
id Z)
^ )
(#)
cot )
`| Z))
= (
dom f) by
A1,
A6,
FDIFF_1:def 7;
then ((((
id Z)
^ )
(#)
cot )
`| Z)
= f by
A13,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A6,
INTEGRA5: 13;
end;
theorem ::
INTEGR13:15
A
c= Z & f
= (((
sin
/
cos )
/ (
id Z))
+ (
ln
/ (
cos
^2 ))) & Z
c= (
dom (
ln
(#)
tan )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
ln
(#)
tan )
. (
upper_bound A))
- ((
ln
(#)
tan )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & f
= (((
sin
/
cos )
/ (
id Z))
+ (
ln
/ (
cos
^2 ))) & Z
c= (
dom (
ln
(#)
tan )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
ln
(#)
tan )
is_differentiable_on Z by
A1,
FDIFF_8: 32;
Z
= ((
dom ((
sin
/
cos )
/ (
id Z)))
/\ (
dom (
ln
/ (
cos
^2 )))) by
A1,
VALUED_1:def 1;
then
A4: Z
c= (
dom ((
sin
/
cos )
/ (
id Z))) & Z
c= (
dom (
ln
/ (
cos
^2 ))) by
XBOOLE_1: 18;
(
dom ((
sin
/
cos )
/ (
id Z)))
c= ((
dom (
sin
/
cos ))
/\ ((
dom (
id Z))
\ ((
id Z)
"
{
0 }))) by
RFUNCT_1:def 1;
then (
dom ((
sin
/
cos )
/ (
id Z)))
c= (
dom (
sin
/
cos )) by
XBOOLE_1: 18;
then
A5: Z
c= (
dom (
sin
/
cos )) by
A4;
A6: for x st x
in Z holds (f
. x)
= ((((
sin
. x)
/ (
cos
. x))
/ x)
+ ((
ln
. x)
/ ((
cos
. x)
^2 )))
proof
let x;
assume
A7: x
in Z;
then ((((
sin
/
cos )
/ (
id Z))
+ (
ln
/ (
cos
^2 )))
. x)
= ((((
sin
/
cos )
/ (
id Z))
. x)
+ ((
ln
/ (
cos
^2 ))
. x)) by
A1,
VALUED_1:def 1
.= ((((
sin
/
cos )
. x)
/ ((
id Z)
. x))
+ ((
ln
/ (
cos
^2 ))
. x)) by
A7,
A4,
RFUNCT_1:def 1
.= ((((
sin
. x)
/ (
cos
. x))
/ ((
id Z)
. x))
+ ((
ln
/ (
cos
^2 ))
. x)) by
A5,
A7,
RFUNCT_1:def 1
.= ((((
sin
. x)
/ (
cos
. x))
/ x)
+ ((
ln
/ (
cos
^2 ))
. x)) by
A7,
FUNCT_1: 18
.= ((((
sin
. x)
/ (
cos
. x))
/ x)
+ ((
ln
. x)
/ ((
cos
^2 )
. x))) by
A7,
A4,
RFUNCT_1:def 1
.= ((((
sin
. x)
/ (
cos
. x))
/ x)
+ ((
ln
. x)
/ ((
cos
. x)
^2 ))) by
VALUED_1: 11;
hence thesis by
A1;
end;
A8: for x be
Element of
REAL st x
in (
dom ((
ln
(#)
tan )
`| Z)) holds (((
ln
(#)
tan )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
ln
(#)
tan )
`| Z));
then
A9: x
in Z by
A3,
FDIFF_1:def 7;
then (((
ln
(#)
tan )
`| Z)
. x)
= ((((
sin
. x)
/ (
cos
. x))
/ x)
+ ((
ln
. x)
/ ((
cos
. x)
^2 ))) by
A1,
FDIFF_8: 32
.= (f
. x) by
A9,
A6;
hence thesis;
end;
(
dom ((
ln
(#)
tan )
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
ln
(#)
tan )
`| Z)
= f by
A8,
PARTFUN1: 5;
hence thesis by
A1,
A2,
FDIFF_8: 32,
INTEGRA5: 13;
end;
theorem ::
INTEGR13:16
A
c= Z & f
= (((
cos
/
sin )
/ (
id Z))
- (
ln
/ (
sin
^2 ))) & Z
c= (
dom (
ln
(#)
cot )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
ln
(#)
cot )
. (
upper_bound A))
- ((
ln
(#)
cot )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & f
= (((
cos
/
sin )
/ (
id Z))
- (
ln
/ (
sin
^2 ))) & Z
c= (
dom (
ln
(#)
cot )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
ln
(#)
cot )
is_differentiable_on Z by
A1,
FDIFF_8: 33;
Z
= ((
dom ((
cos
/
sin )
/ (
id Z)))
/\ (
dom (
ln
/ (
sin
^2 )))) by
A1,
VALUED_1: 12;
then
A4: Z
c= (
dom ((
cos
/
sin )
/ (
id Z))) & Z
c= (
dom (
ln
/ (
sin
^2 ))) by
XBOOLE_1: 18;
(
dom ((
cos
/
sin )
/ (
id Z)))
c= ((
dom (
cos
/
sin ))
/\ ((
dom (
id Z))
\ ((
id Z)
"
{
0 }))) by
RFUNCT_1:def 1;
then (
dom ((
cos
/
sin )
/ (
id Z)))
c= (
dom (
cos
/
sin )) by
XBOOLE_1: 18;
then
A5: Z
c= (
dom (
cos
/
sin )) by
A4;
A6: for x st x
in Z holds (f
. x)
= ((((
cos
. x)
/ (
sin
. x))
/ x)
- ((
ln
. x)
/ ((
sin
. x)
^2 )))
proof
let x;
assume
A7: x
in Z;
then ((((
cos
/
sin )
/ (
id Z))
- (
ln
/ (
sin
^2 )))
. x)
= ((((
cos
/
sin )
/ (
id Z))
. x)
- ((
ln
/ (
sin
^2 ))
. x)) by
A1,
VALUED_1: 13
.= ((((
cos
/
sin )
. x)
/ ((
id Z)
. x))
- ((
ln
/ (
sin
^2 ))
. x)) by
A7,
A4,
RFUNCT_1:def 1
.= ((((
cos
. x)
/ (
sin
. x))
/ ((
id Z)
. x))
- ((
ln
/ (
sin
^2 ))
. x)) by
A5,
A7,
RFUNCT_1:def 1
.= ((((
cos
. x)
/ (
sin
. x))
/ x)
- ((
ln
/ (
sin
^2 ))
. x)) by
A7,
FUNCT_1: 18
.= ((((
cos
. x)
/ (
sin
. x))
/ x)
- ((
ln
. x)
/ ((
sin
^2 )
. x))) by
A7,
A4,
RFUNCT_1:def 1
.= ((((
cos
. x)
/ (
sin
. x))
/ x)
- ((
ln
. x)
/ ((
sin
. x)
^2 ))) by
VALUED_1: 11;
hence thesis by
A1;
end;
A8: for x be
Element of
REAL st x
in (
dom ((
ln
(#)
cot )
`| Z)) holds (((
ln
(#)
cot )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
ln
(#)
cot )
`| Z));
then
A9: x
in Z by
A3,
FDIFF_1:def 7;
then (((
ln
(#)
cot )
`| Z)
. x)
= ((((
cos
. x)
/ (
sin
. x))
/ x)
- ((
ln
. x)
/ ((
sin
. x)
^2 ))) by
A1,
FDIFF_8: 33
.= (f
. x) by
A9,
A6;
hence thesis;
end;
(
dom ((
ln
(#)
cot )
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
ln
(#)
cot )
`| Z)
= f by
A8,
PARTFUN1: 5;
hence thesis by
A1,
A2,
FDIFF_8: 33,
INTEGRA5: 13;
end;
theorem ::
INTEGR13:17
A
c= Z & f
= ((
tan
/ (
id Z))
+ (
ln
/ (
cos
^2 ))) & Z
c= (
dom (
ln
(#)
tan )) & Z
c= (
dom
tan ) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
ln
(#)
tan )
. (
upper_bound A))
- ((
ln
(#)
tan )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & f
= ((
tan
/ (
id Z))
+ (
ln
/ (
cos
^2 ))) & Z
c= (
dom (
ln
(#)
tan )) & Z
c= (
dom
tan ) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
ln
(#)
tan )
is_differentiable_on Z by
A1,
FDIFF_8: 32;
Z
= ((
dom (
tan
/ (
id Z)))
/\ (
dom (
ln
/ (
cos
^2 )))) by
A1,
VALUED_1:def 1;
then
A4: Z
c= (
dom (
tan
/ (
id Z))) & Z
c= (
dom (
ln
/ (
cos
^2 ))) by
XBOOLE_1: 18;
A5: for x st x
in Z holds (f
. x)
= (((
tan
. x)
/ x)
+ ((
ln
. x)
/ ((
cos
. x)
^2 )))
proof
let x;
assume
A6: x
in Z;
then (((
tan
/ (
id Z))
+ (
ln
/ (
cos
^2 )))
. x)
= (((
tan
/ (
id Z))
. x)
+ ((
ln
/ (
cos
^2 ))
. x)) by
A1,
VALUED_1:def 1
.= (((
tan
. x)
/ ((
id Z)
. x))
+ ((
ln
/ (
cos
^2 ))
. x)) by
A6,
A4,
RFUNCT_1:def 1
.= (((
tan
. x)
/ x)
+ ((
ln
/ (
cos
^2 ))
. x)) by
A6,
FUNCT_1: 18
.= (((
tan
. x)
/ x)
+ ((
ln
. x)
/ ((
cos
^2 )
. x))) by
A6,
A4,
RFUNCT_1:def 1
.= (((
tan
. x)
/ x)
+ ((
ln
. x)
/ ((
cos
. x)
^2 ))) by
VALUED_1: 11;
hence thesis by
A1;
end;
A7: for x be
Element of
REAL st x
in (
dom ((
ln
(#)
tan )
`| Z)) holds (((
ln
(#)
tan )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
ln
(#)
tan )
`| Z));
then
A8: x
in Z by
A3,
FDIFF_1:def 7;
then (((
ln
(#)
tan )
`| Z)
. x)
= (((
tan x)
/ x)
+ ((
ln
. x)
/ ((
cos
. x)
^2 ))) by
A1,
FDIFF_8: 32
.= (((
tan
. x)
/ x)
+ ((
ln
. x)
/ ((
cos
. x)
^2 ))) by
A1,
A8,
FDIFF_8: 1,
SIN_COS9: 15
.= (f
. x) by
A8,
A5;
hence thesis;
end;
(
dom ((
ln
(#)
tan )
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
ln
(#)
tan )
`| Z)
= f by
A7,
PARTFUN1: 5;
hence thesis by
A1,
A2,
FDIFF_8: 32,
INTEGRA5: 13;
end;
theorem ::
INTEGR13:18
A
c= Z & f
= ((
cot
/ (
id Z))
- (
ln
/ (
sin
^2 ))) & Z
c= (
dom (
ln
(#)
cot )) & Z
c= (
dom
cot ) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
ln
(#)
cot )
. (
upper_bound A))
- ((
ln
(#)
cot )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & f
= ((
cot
/ (
id Z))
- (
ln
/ (
sin
^2 ))) & Z
c= (
dom (
ln
(#)
cot )) & Z
c= (
dom
cot ) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
ln
(#)
cot )
is_differentiable_on Z by
A1,
FDIFF_8: 33;
Z
= ((
dom (
cot
/ (
id Z)))
/\ (
dom (
ln
/ (
sin
^2 )))) by
A1,
VALUED_1: 12;
then
A4: Z
c= (
dom (
cot
/ (
id Z))) & Z
c= (
dom (
ln
/ (
sin
^2 ))) by
XBOOLE_1: 18;
A5: for x st x
in Z holds (f
. x)
= (((
cot
. x)
/ x)
- ((
ln
. x)
/ ((
sin
. x)
^2 )))
proof
let x;
assume
A6: x
in Z;
then (((
cot
/ (
id Z))
- (
ln
/ (
sin
^2 )))
. x)
= (((
cot
/ (
id Z))
. x)
- ((
ln
/ (
sin
^2 ))
. x)) by
A1,
VALUED_1: 13
.= (((
cot
. x)
/ ((
id Z)
. x))
- ((
ln
/ (
sin
^2 ))
. x)) by
A6,
A4,
RFUNCT_1:def 1
.= (((
cot
. x)
/ x)
- ((
ln
/ (
sin
^2 ))
. x)) by
A6,
FUNCT_1: 18
.= (((
cot
. x)
/ x)
- ((
ln
. x)
/ ((
sin
^2 )
. x))) by
A6,
A4,
RFUNCT_1:def 1
.= (((
cot
. x)
/ x)
- ((
ln
. x)
/ ((
sin
. x)
^2 ))) by
VALUED_1: 11;
hence thesis by
A1;
end;
A7: for x be
Element of
REAL st x
in (
dom ((
ln
(#)
cot )
`| Z)) holds (((
ln
(#)
cot )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
ln
(#)
cot )
`| Z));
then
A8: x
in Z by
A3,
FDIFF_1:def 7;
then (((
ln
(#)
cot )
`| Z)
. x)
= (((
cot x)
/ x)
- ((
ln
. x)
/ ((
sin
. x)
^2 ))) by
A1,
FDIFF_8: 33
.= (((
cot
. x)
/ x)
- ((
ln
. x)
/ ((
sin
. x)
^2 ))) by
A1,
A8,
FDIFF_8: 2,
SIN_COS9: 16
.= (f
. x) by
A5,
A8;
hence thesis;
end;
(
dom ((
ln
(#)
cot )
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
ln
(#)
cot )
`| Z)
= f by
A7,
PARTFUN1: 5;
hence thesis by
A1,
A2,
FDIFF_8: 33,
INTEGRA5: 13;
end;
theorem ::
INTEGR13:19
A
c= Z & (for x st x
in Z holds (f1
. x)
= 1) & f
= ((
arctan
/ (
id Z))
+ (
ln
/ (f1
+ (
#Z 2)))) & Z
c=
].(
- 1), 1.[ & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
ln
(#)
arctan )
. (
upper_bound A))
- ((
ln
(#)
arctan )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f1
. x)
= 1) & f
= ((
arctan
/ (
id Z))
+ (
ln
/ (f1
+ (
#Z 2)))) & Z
c=
].(
- 1), 1.[ & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
Z
= ((
dom (
arctan
/ (
id Z)))
/\ (
dom (
ln
/ (f1
+ (
#Z 2))))) by
A1,
VALUED_1:def 1;
then
A3: Z
c= (
dom (
arctan
/ (
id Z))) & Z
c= (
dom (
ln
/ (f1
+ (
#Z 2)))) by
XBOOLE_1: 18;
then Z
c= ((
dom
arctan )
/\ ((
dom (
id Z))
\ ((
id Z)
"
{
0 }))) by
RFUNCT_1:def 1;
then
A4: Z
c= (
dom
arctan ) by
XBOOLE_1: 18;
Z
c= ((
dom
ln )
/\ ((
dom (f1
+ (
#Z 2)))
\ ((f1
+ (
#Z 2))
"
{
0 }))) by
A3,
RFUNCT_1:def 1;
then
A5: Z
c= (
dom
ln ) & Z
c= ((
dom (f1
+ (
#Z 2)))
\ ((f1
+ (
#Z 2))
"
{
0 })) by
XBOOLE_1: 18;
then Z
c= ((
dom
arctan )
/\ (
dom
ln )) by
A4,
XBOOLE_1: 19;
then
A6: Z
c= (
dom (
ln
(#)
arctan )) by
VALUED_1:def 4;
then
A7: (
ln
(#)
arctan )
is_differentiable_on Z by
A1,
SIN_COS9: 127;
A8: Z
c= (
dom ((f1
+ (
#Z 2))
^ )) by
A5,
RFUNCT_1:def 2;
(
dom ((f1
+ (
#Z 2))
^ ))
c= (
dom (f1
+ (
#Z 2))) by
RFUNCT_1: 1;
then
A9: Z
c= (
dom (f1
+ (
#Z 2))) by
A8;
A10: for x st x
in Z holds (f
. x)
= (((
arctan
. x)
/ x)
+ ((
ln
. x)
/ (1
+ (x
^2 ))))
proof
let x;
assume
A11: x
in Z;
then (((
arctan
/ (
id Z))
+ (
ln
/ (f1
+ (
#Z 2))))
. x)
= (((
arctan
/ (
id Z))
. x)
+ ((
ln
/ (f1
+ (
#Z 2)))
. x)) by
A1,
VALUED_1:def 1
.= (((
arctan
. x)
* (((
id Z)
. x)
" ))
+ ((
ln
/ (f1
+ (
#Z 2)))
. x)) by
A3,
A11,
RFUNCT_1:def 1
.= (((
arctan
. x)
* (((
id Z)
. x)
" ))
+ ((
ln
. x)
* (((f1
+ (
#Z 2))
. x)
" ))) by
A3,
A11,
RFUNCT_1:def 1
.= (((
arctan
. x)
/ x)
+ ((
ln
. x)
/ ((f1
+ (
#Z 2))
. x))) by
A11,
FUNCT_1: 18
.= (((
arctan
. x)
/ x)
+ ((
ln
. x)
/ ((f1
. x)
+ ((
#Z 2)
. x)))) by
A9,
A11,
VALUED_1:def 1
.= (((
arctan
. x)
/ x)
+ ((
ln
. x)
/ (1
+ ((
#Z 2)
. x)))) by
A1,
A11
.= (((
arctan
. x)
/ x)
+ ((
ln
. x)
/ (1
+ (x
#Z 2)))) by
TAYLOR_1:def 1
.= (((
arctan
. x)
/ x)
+ ((
ln
. x)
/ (1
+ (x
^2 )))) by
FDIFF_7: 1;
hence thesis by
A1;
end;
A12: for x be
Element of
REAL st x
in (
dom ((
ln
(#)
arctan )
`| Z)) holds (((
ln
(#)
arctan )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
ln
(#)
arctan )
`| Z));
then
A13: x
in Z by
A7,
FDIFF_1:def 7;
then (((
ln
(#)
arctan )
`| Z)
. x)
= (((
arctan
. x)
/ x)
+ ((
ln
. x)
/ (1
+ (x
^2 )))) by
A1,
A6,
SIN_COS9: 127
.= (f
. x) by
A13,
A10;
hence thesis;
end;
(
dom ((
ln
(#)
arctan )
`| Z))
= (
dom f) by
A1,
A7,
FDIFF_1:def 7;
then ((
ln
(#)
arctan )
`| Z)
= f by
A12,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A6,
INTEGRA5: 13,
SIN_COS9: 127;
end;
theorem ::
INTEGR13:20
A
c= Z & (for x st x
in Z holds (f1
. x)
= 1) & f
= ((
arccot
/ (
id Z))
- (
ln
/ (f1
+ (
#Z 2)))) & Z
c=
].(
- 1), 1.[ & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
ln
(#)
arccot )
. (
upper_bound A))
- ((
ln
(#)
arccot )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f1
. x)
= 1) & f
= ((
arccot
/ (
id Z))
- (
ln
/ (f1
+ (
#Z 2)))) & Z
c=
].(
- 1), 1.[ & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
Z
= ((
dom (
arccot
/ (
id Z)))
/\ (
dom (
ln
/ (f1
+ (
#Z 2))))) by
A1,
VALUED_1: 12;
then
A3: Z
c= (
dom (
arccot
/ (
id Z))) & Z
c= (
dom (
ln
/ (f1
+ (
#Z 2)))) by
XBOOLE_1: 18;
then Z
c= ((
dom
arccot )
/\ ((
dom (
id Z))
\ ((
id Z)
"
{
0 }))) by
RFUNCT_1:def 1;
then
A4: Z
c= (
dom
arccot ) by
XBOOLE_1: 18;
Z
c= ((
dom
ln )
/\ ((
dom (f1
+ (
#Z 2)))
\ ((f1
+ (
#Z 2))
"
{
0 }))) by
A3,
RFUNCT_1:def 1;
then
A5: Z
c= (
dom
ln ) & Z
c= ((
dom (f1
+ (
#Z 2)))
\ ((f1
+ (
#Z 2))
"
{
0 })) by
XBOOLE_1: 18;
then Z
c= ((
dom
arccot )
/\ (
dom
ln )) by
A4,
XBOOLE_1: 19;
then
A6: Z
c= (
dom (
ln
(#)
arccot )) by
VALUED_1:def 4;
then
A7: (
ln
(#)
arccot )
is_differentiable_on Z by
A1,
SIN_COS9: 128;
A8: Z
c= (
dom ((f1
+ (
#Z 2))
^ )) by
A5,
RFUNCT_1:def 2;
(
dom ((f1
+ (
#Z 2))
^ ))
c= (
dom (f1
+ (
#Z 2))) by
RFUNCT_1: 1;
then
A9: Z
c= (
dom (f1
+ (
#Z 2))) by
A8;
A10: for x st x
in Z holds (f
. x)
= (((
arccot
. x)
/ x)
- ((
ln
. x)
/ (1
+ (x
^2 ))))
proof
let x;
assume
A11: x
in Z;
then (((
arccot
/ (
id Z))
- (
ln
/ (f1
+ (
#Z 2))))
. x)
= (((
arccot
/ (
id Z))
. x)
- ((
ln
/ (f1
+ (
#Z 2)))
. x)) by
A1,
VALUED_1: 13
.= (((
arccot
. x)
* (((
id Z)
. x)
" ))
- ((
ln
/ (f1
+ (
#Z 2)))
. x)) by
A3,
A11,
RFUNCT_1:def 1
.= (((
arccot
. x)
* (((
id Z)
. x)
" ))
- ((
ln
. x)
* (((f1
+ (
#Z 2))
. x)
" ))) by
A3,
A11,
RFUNCT_1:def 1
.= (((
arccot
. x)
/ x)
- ((
ln
. x)
/ ((f1
+ (
#Z 2))
. x))) by
A11,
FUNCT_1: 18
.= (((
arccot
. x)
/ x)
- ((
ln
. x)
/ ((f1
. x)
+ ((
#Z 2)
. x)))) by
A9,
A11,
VALUED_1:def 1
.= (((
arccot
. x)
/ x)
- ((
ln
. x)
/ (1
+ ((
#Z 2)
. x)))) by
A1,
A11
.= (((
arccot
. x)
/ x)
- ((
ln
. x)
/ (1
+ (x
#Z 2)))) by
TAYLOR_1:def 1
.= (((
arccot
. x)
/ x)
- ((
ln
. x)
/ (1
+ (x
^2 )))) by
FDIFF_7: 1;
hence thesis by
A1;
end;
A12: for x be
Element of
REAL st x
in (
dom ((
ln
(#)
arccot )
`| Z)) holds (((
ln
(#)
arccot )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
ln
(#)
arccot )
`| Z));
then
A13: x
in Z by
A7,
FDIFF_1:def 7;
then (((
ln
(#)
arccot )
`| Z)
. x)
= (((
arccot
. x)
/ x)
- ((
ln
. x)
/ (1
+ (x
^2 )))) by
A1,
A6,
SIN_COS9: 128
.= (f
. x) by
A10,
A13;
hence thesis;
end;
(
dom ((
ln
(#)
arccot )
`| Z))
= (
dom f) by
A1,
A7,
FDIFF_1:def 7;
then ((
ln
(#)
arccot )
`| Z)
= f by
A12,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A6,
INTEGRA5: 13,
SIN_COS9: 128;
end;
theorem ::
INTEGR13:21
A
c= Z & f
= ((
exp_R
*
tan )
/ (
cos
^2 )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
exp_R
*
tan )
. (
upper_bound A))
- ((
exp_R
*
tan )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & f
= ((
exp_R
*
tan )
/ (
cos
^2 )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
Z
= ((
dom (
exp_R
*
tan ))
/\ ((
dom (
cos
^2 ))
\ ((
cos
^2 )
"
{
0 }))) by
A1,
RFUNCT_1:def 1;
then
A3: Z
c= (
dom (
exp_R
*
tan )) by
XBOOLE_1: 18;
then
A4: (
exp_R
*
tan )
is_differentiable_on Z by
FDIFF_8: 16;
A5: for x st x
in Z holds (f
. x)
= ((
exp_R
. (
tan
. x))
/ ((
cos
. x)
^2 ))
proof
let x;
assume
A6: x
in Z;
then (((
exp_R
*
tan )
/ (
cos
^2 ))
. x)
= (((
exp_R
*
tan )
. x)
/ ((
cos
^2 )
. x)) by
A1,
RFUNCT_1:def 1
.= ((
exp_R
. (
tan
. x))
/ ((
cos
^2 )
. x)) by
A3,
A6,
FUNCT_1: 12
.= ((
exp_R
. (
tan
. x))
/ ((
cos
. x)
^2 )) by
VALUED_1: 11;
hence thesis by
A1;
end;
A7: for x be
Element of
REAL st x
in (
dom ((
exp_R
*
tan )
`| Z)) holds (((
exp_R
*
tan )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
exp_R
*
tan )
`| Z));
then
A8: x
in Z by
A4,
FDIFF_1:def 7;
then (((
exp_R
*
tan )
`| Z)
. x)
= ((
exp_R
. (
tan
. x))
/ ((
cos
. x)
^2 )) by
A3,
FDIFF_8: 16
.= (f
. x) by
A5,
A8;
hence thesis;
end;
(
dom ((
exp_R
*
tan )
`| Z))
= (
dom f) by
A1,
A4,
FDIFF_1:def 7;
then ((
exp_R
*
tan )
`| Z)
= f by
A7,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
FDIFF_8: 16,
INTEGRA5: 13;
end;
theorem ::
INTEGR13:22
A
c= Z & f
= (
- ((
exp_R
*
cot )
/ (
sin
^2 ))) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
exp_R
*
cot )
. (
upper_bound A))
- ((
exp_R
*
cot )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & f
= (
- ((
exp_R
*
cot )
/ (
sin
^2 ))) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: Z
= (
dom ((
exp_R
*
cot )
/ (
sin
^2 ))) by
A1,
VALUED_1: 8;
then Z
c= ((
dom (
exp_R
*
cot ))
/\ ((
dom (
sin
^2 ))
\ ((
sin
^2 )
"
{
0 }))) by
RFUNCT_1:def 1;
then
A4: Z
c= (
dom (
exp_R
*
cot )) by
XBOOLE_1: 18;
then
A5: (
exp_R
*
cot )
is_differentiable_on Z by
FDIFF_8: 17;
A6: for x st x
in Z holds (f
. x)
= (
- ((
exp_R
. (
cot
. x))
/ ((
sin
. x)
^2 )))
proof
let x;
assume
A7: x
in Z;
((
- ((
exp_R
*
cot )
/ (
sin
^2 )))
. x)
= (
- (((
exp_R
*
cot )
/ (
sin
^2 ))
. x)) by
VALUED_1: 8
.= (
- (((
exp_R
*
cot )
. x)
/ ((
sin
^2 )
. x))) by
A7,
A3,
RFUNCT_1:def 1
.= (
- ((
exp_R
. (
cot
. x))
/ ((
sin
^2 )
. x))) by
A4,
A7,
FUNCT_1: 12
.= (
- ((
exp_R
. (
cot
. x))
/ ((
sin
. x)
^2 ))) by
VALUED_1: 11;
hence thesis by
A1;
end;
A8: for x be
Element of
REAL st x
in (
dom ((
exp_R
*
cot )
`| Z)) holds (((
exp_R
*
cot )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
exp_R
*
cot )
`| Z));
then
A9: x
in Z by
A5,
FDIFF_1:def 7;
then (((
exp_R
*
cot )
`| Z)
. x)
= (
- ((
exp_R
. (
cot
. x))
/ ((
sin
. x)
^2 ))) by
A4,
FDIFF_8: 17
.= (f
. x) by
A6,
A9;
hence thesis;
end;
(
dom ((
exp_R
*
cot )
`| Z))
= (
dom f) by
A1,
A5,
FDIFF_1:def 7;
then ((
exp_R
*
cot )
`| Z)
= f by
A8,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A4,
FDIFF_8: 17,
INTEGRA5: 13;
end;
theorem ::
INTEGR13:23
Th23: Z
c= (
dom (
exp_R
*
cot )) implies (
- (
exp_R
*
cot ))
is_differentiable_on Z & for x st x
in Z holds (((
- (
exp_R
*
cot ))
`| Z)
. x)
= ((
exp_R
. (
cot
. x))
/ ((
sin
. x)
^2 ))
proof
assume
A1: Z
c= (
dom (
exp_R
*
cot ));
then
A2: Z
c= (
dom (
- (
exp_R
*
cot ))) by
VALUED_1: 8;
A3: for x st x
in Z holds (
sin
. x)
<>
0
proof
let x;
assume x
in Z;
then x
in (
dom (
cos
/
sin )) by
A1,
FUNCT_1: 11;
hence thesis by
FDIFF_8: 2;
end;
A4: (
exp_R
*
cot )
is_differentiable_on Z by
A1,
FDIFF_8: 17;
then
A5: ((
- 1)
(#) (
exp_R
*
cot ))
is_differentiable_on Z by
A2,
FDIFF_1: 20;
for x st x
in Z holds (((
- (
exp_R
*
cot ))
`| Z)
. x)
= ((
exp_R
. (
cot
. x))
/ ((
sin
. x)
^2 ))
proof
let x;
assume
A6: x
in Z;
then
A7: (
sin
. x)
<>
0 by
A3;
then
A8:
cot
is_differentiable_in x by
FDIFF_7: 47;
A9:
exp_R
is_differentiable_in (
cot
. x) by
SIN_COS: 65;
A10: (
exp_R
*
cot )
is_differentiable_in x by
A4,
A6,
FDIFF_1: 9;
(((
- (
exp_R
*
cot ))
`| Z)
. x)
= (
diff ((
- (
exp_R
*
cot )),x)) by
A5,
A6,
FDIFF_1:def 7
.= ((
- 1)
* (
diff ((
exp_R
*
cot ),x))) by
A10,
FDIFF_1: 15
.= ((
- 1)
* ((
diff (
exp_R ,(
cot
. x)))
* (
diff (
cot ,x)))) by
A8,
A9,
FDIFF_2: 13
.= ((
- 1)
* ((
diff (
exp_R ,(
cot
. x)))
* (
- (1
/ ((
sin
. x)
^2 ))))) by
A7,
FDIFF_7: 47
.= ((
- 1)
* ((
exp_R
. (
cot
. x))
* (
- (1
/ ((
sin
. x)
^2 ))))) by
SIN_COS: 65
.= ((
exp_R
. (
cot
. x))
/ ((
sin
. x)
^2 ));
hence thesis;
end;
hence thesis by
A2,
A4,
FDIFF_1: 20;
end;
theorem ::
INTEGR13:24
A
c= Z & f
= ((
exp_R
*
cot )
/ (
sin
^2 )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
- (
exp_R
*
cot ))
. (
upper_bound A))
- ((
- (
exp_R
*
cot ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & f
= ((
exp_R
*
cot )
/ (
sin
^2 )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
Z
= ((
dom (
exp_R
*
cot ))
/\ ((
dom (
sin
^2 ))
\ ((
sin
^2 )
"
{
0 }))) by
A1,
RFUNCT_1:def 1;
then
A3: Z
c= (
dom (
exp_R
*
cot )) by
XBOOLE_1: 18;
then
A4: (
- (
exp_R
*
cot ))
is_differentiable_on Z by
Th23;
A5: for x st x
in Z holds (f
. x)
= ((
exp_R
. (
cot
. x))
/ ((
sin
. x)
^2 ))
proof
let x;
assume
A6: x
in Z;
then (((
exp_R
*
cot )
/ (
sin
^2 ))
. x)
= (((
exp_R
*
cot )
. x)
/ ((
sin
^2 )
. x)) by
A1,
RFUNCT_1:def 1
.= ((
exp_R
. (
cot
. x))
/ ((
sin
^2 )
. x)) by
A3,
A6,
FUNCT_1: 12
.= ((
exp_R
. (
cot
. x))
/ ((
sin
. x)
^2 )) by
VALUED_1: 11;
hence thesis by
A1;
end;
A7: for x be
Element of
REAL st x
in (
dom ((
- (
exp_R
*
cot ))
`| Z)) holds (((
- (
exp_R
*
cot ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
- (
exp_R
*
cot ))
`| Z));
then
A8: x
in Z by
A4,
FDIFF_1:def 7;
then (((
- (
exp_R
*
cot ))
`| Z)
. x)
= ((
exp_R
. (
cot
. x))
/ ((
sin
. x)
^2 )) by
Th23,
A3
.= (f
. x) by
A5,
A8;
hence thesis;
end;
(
dom ((
- (
exp_R
*
cot ))
`| Z))
= (
dom f) by
A1,
A4,
FDIFF_1:def 7;
then ((
- (
exp_R
*
cot ))
`| Z)
= f by
A7,
PARTFUN1: 5;
hence thesis by
A1,
A2,
Th23,
A3,
INTEGRA5: 13;
end;
theorem ::
INTEGR13:25
A
c= Z & f
= (((
id Z)
(#) ((
cos
*
ln )
^2 ))
^ ) & Z
c= (
dom (
tan
*
ln )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
tan
*
ln )
. (
upper_bound A))
- ((
tan
*
ln )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & f
= (((
id Z)
(#) ((
cos
*
ln )
^2 ))
^ ) & Z
c= (
dom (
tan
*
ln )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
tan
*
ln )
is_differentiable_on Z by
A1,
FDIFF_8: 14;
Z
c= (
dom ((
id Z)
(#) ((
cos
*
ln )
^2 ))) by
A1,
RFUNCT_1: 1;
then Z
c= ((
dom (
id Z))
/\ (
dom ((
cos
*
ln )
^2 ))) by
VALUED_1:def 4;
then Z
c= (
dom ((
cos
*
ln )
^2 )) by
XBOOLE_1: 18;
then
A4: Z
c= (
dom (
cos
*
ln )) by
VALUED_1: 11;
A5: for x st x
in Z holds (f
. x)
= (1
/ (x
* ((
cos
. (
ln
. x))
^2 )))
proof
let x;
assume
A6: x
in Z;
then ((((
id Z)
(#) ((
cos
*
ln )
^2 ))
^ )
. x)
= (1
/ (((
id Z)
(#) ((
cos
*
ln )
^2 ))
. x)) by
A1,
RFUNCT_1:def 2
.= (1
/ (((
id Z)
. x)
* (((
cos
*
ln )
^2 )
. x))) by
VALUED_1: 5
.= (1
/ (x
* (((
cos
*
ln )
^2 )
. x))) by
A6,
FUNCT_1: 18
.= (1
/ (x
* (((
cos
*
ln )
. x)
^2 ))) by
VALUED_1: 11
.= (1
/ (x
* ((
cos
. (
ln
. x))
^2 ))) by
A4,
A6,
FUNCT_1: 12;
hence thesis by
A1;
end;
A7: for x be
Element of
REAL st x
in (
dom ((
tan
*
ln )
`| Z)) holds (((
tan
*
ln )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
tan
*
ln )
`| Z));
then
A8: x
in Z by
A3,
FDIFF_1:def 7;
then (((
tan
*
ln )
`| Z)
. x)
= (1
/ (x
* ((
cos
. (
ln
. x))
^2 ))) by
A1,
FDIFF_8: 14
.= (f
. x) by
A5,
A8;
hence thesis;
end;
(
dom ((
tan
*
ln )
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
tan
*
ln )
`| Z)
= f by
A7,
PARTFUN1: 5;
hence thesis by
A1,
A2,
FDIFF_8: 14,
INTEGRA5: 13;
end;
theorem ::
INTEGR13:26
A
c= Z & f
= (
- (((
id Z)
(#) ((
sin
*
ln )
^2 ))
^ )) & Z
c= (
dom (
cot
*
ln )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
cot
*
ln )
. (
upper_bound A))
- ((
cot
*
ln )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & f
= (
- (((
id Z)
(#) ((
sin
*
ln )
^2 ))
^ )) & Z
c= (
dom (
cot
*
ln )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
cot
*
ln )
is_differentiable_on Z by
A1,
FDIFF_8: 15;
A4: Z
= (
dom (((
id Z)
(#) ((
sin
*
ln )
^2 ))
^ )) by
A1,
VALUED_1: 8;
then Z
c= (
dom ((
id Z)
(#) ((
sin
*
ln )
^2 ))) by
RFUNCT_1: 1;
then Z
c= ((
dom (
id Z))
/\ (
dom ((
sin
*
ln )
^2 ))) by
VALUED_1:def 4;
then Z
c= (
dom ((
sin
*
ln )
^2 )) by
XBOOLE_1: 18;
then
A5: Z
c= (
dom (
sin
*
ln )) by
VALUED_1: 11;
A6: for x st x
in Z holds (f
. x)
= (
- (1
/ (x
* ((
sin
. (
ln
. x))
^2 ))))
proof
let x;
assume
A7: x
in Z;
((
- (((
id Z)
(#) ((
sin
*
ln )
^2 ))
^ ))
. x)
= (
- ((((
id Z)
(#) ((
sin
*
ln )
^2 ))
^ )
. x)) by
VALUED_1: 8
.= (
- (1
/ (((
id Z)
(#) ((
sin
*
ln )
^2 ))
. x))) by
A4,
A7,
RFUNCT_1:def 2
.= (
- (1
/ (((
id Z)
. x)
* (((
sin
*
ln )
^2 )
. x)))) by
VALUED_1: 5
.= (
- (1
/ (x
* (((
sin
*
ln )
^2 )
. x)))) by
A7,
FUNCT_1: 18
.= (
- (1
/ (x
* (((
sin
*
ln )
. x)
^2 )))) by
VALUED_1: 11
.= (
- (1
/ (x
* ((
sin
. (
ln
. x))
^2 )))) by
A5,
A7,
FUNCT_1: 12;
hence thesis by
A1;
end;
A8: for x be
Element of
REAL st x
in (
dom ((
cot
*
ln )
`| Z)) holds (((
cot
*
ln )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
cot
*
ln )
`| Z));
then
A9: x
in Z by
A3,
FDIFF_1:def 7;
then (((
cot
*
ln )
`| Z)
. x)
= (
- (1
/ (x
* ((
sin
. (
ln
. x))
^2 )))) by
A1,
FDIFF_8: 15
.= (f
. x) by
A6,
A9;
hence thesis;
end;
(
dom ((
cot
*
ln )
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
cot
*
ln )
`| Z)
= f by
A8,
PARTFUN1: 5;
hence thesis by
A1,
A2,
FDIFF_8: 15,
INTEGRA5: 13;
end;
theorem ::
INTEGR13:27
Th27: Z
c= (
dom (
cot
*
ln )) implies (
- (
cot
*
ln ))
is_differentiable_on Z & for x st x
in Z holds (((
- (
cot
*
ln ))
`| Z)
. x)
= (1
/ (x
* ((
sin
. (
ln
. x))
^2 )))
proof
assume
A1: Z
c= (
dom (
cot
*
ln ));
then
A2: Z
c= (
dom (
- (
cot
*
ln ))) by
VALUED_1: 8;
(
dom (
cot
*
ln ))
c= (
dom
ln ) by
RELAT_1: 25;
then
A3: Z
c= (
dom
ln ) by
A1;
A4: for x st x
in Z holds x
>
0
proof
let x;
assume x
in Z;
then x
in (
right_open_halfline
0 ) by
A3,
TAYLOR_1: 18;
then ex g be
Real st x
= g &
0
< g by
Lm2;
hence thesis;
end;
A5: for x st x
in Z holds (
sin
. (
ln
. x))
<>
0
proof
let x;
assume x
in Z;
then (
ln
. x)
in (
dom (
cos
/
sin )) by
A1,
FUNCT_1: 11;
hence thesis by
FDIFF_8: 2;
end;
A6: for x st x
in Z holds (
diff (
ln ,x))
= (1
/ x)
proof
let x;
assume x
in Z;
then x
>
0 by
A4;
then x
in (
right_open_halfline
0 ) by
Lm2;
hence thesis by
TAYLOR_1: 18;
end;
A7: (
cot
*
ln )
is_differentiable_on Z by
A1,
FDIFF_8: 15;
then
A8: ((
- 1)
(#) (
cot
*
ln ))
is_differentiable_on Z by
A2,
FDIFF_1: 20;
for x st x
in Z holds (((
- (
cot
*
ln ))
`| Z)
. x)
= (1
/ (x
* ((
sin
. (
ln
. x))
^2 )))
proof
let x;
assume
A9: x
in Z;
then
A10:
ln
is_differentiable_in x by
A4,
TAYLOR_1: 18;
A11: x
>
0 & (
sin
. (
ln
. x))
<>
0 by
A4,
A5,
A9;
then
A12:
cot
is_differentiable_in (
ln
. x) by
FDIFF_7: 47;
A13: (
cot
*
ln )
is_differentiable_in x by
A7,
A9,
FDIFF_1: 9;
(((
- (
cot
*
ln ))
`| Z)
. x)
= (
diff ((
- (
cot
*
ln )),x)) by
A8,
A9,
FDIFF_1:def 7
.= ((
- 1)
* (
diff ((
cot
*
ln ),x))) by
A13,
FDIFF_1: 15
.= ((
- 1)
* ((
diff (
cot ,(
ln
. x)))
* (
diff (
ln ,x)))) by
A10,
A12,
FDIFF_2: 13
.= ((
- 1)
* ((
- (1
/ ((
sin
. (
ln
. x))
^2 )))
* (
diff (
ln ,x)))) by
A11,
FDIFF_7: 47
.= ((
- 1)
* (
- ((
diff (
ln ,x))
/ ((
sin
. (
ln
. x))
^2 ))))
.= ((
- 1)
* (
- ((1
/ x)
/ ((
sin
. (
ln
. x))
^2 )))) by
A6,
A9
.= (1
/ (x
* ((
sin
. (
ln
. x))
^2 ))) by
XCMPLX_1: 78;
hence thesis;
end;
hence thesis by
A2,
A7,
FDIFF_1: 20;
end;
theorem ::
INTEGR13:28
A
c= Z & f
= (((
id Z)
(#) ((
sin
*
ln )
^2 ))
^ ) & Z
c= (
dom (
cot
*
ln )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
- (
cot
*
ln ))
. (
upper_bound A))
- ((
- (
cot
*
ln ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & f
= (((
id Z)
(#) ((
sin
*
ln )
^2 ))
^ ) & Z
c= (
dom (
cot
*
ln )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
- (
cot
*
ln ))
is_differentiable_on Z by
A1,
Th27;
Z
c= (
dom ((
id Z)
(#) ((
sin
*
ln )
^2 ))) by
A1,
RFUNCT_1: 1;
then Z
c= ((
dom (
id Z))
/\ (
dom ((
sin
*
ln )
^2 ))) by
VALUED_1:def 4;
then Z
c= (
dom ((
sin
*
ln )
^2 )) by
XBOOLE_1: 18;
then
A4: Z
c= (
dom (
sin
*
ln )) by
VALUED_1: 11;
A5: for x st x
in Z holds (f
. x)
= (1
/ (x
* ((
sin
. (
ln
. x))
^2 )))
proof
let x;
assume
A6: x
in Z;
then ((((
id Z)
(#) ((
sin
*
ln )
^2 ))
^ )
. x)
= (1
/ (((
id Z)
(#) ((
sin
*
ln )
^2 ))
. x)) by
A1,
RFUNCT_1:def 2
.= (1
/ (((
id Z)
. x)
* (((
sin
*
ln )
^2 )
. x))) by
VALUED_1: 5
.= (1
/ (x
* (((
sin
*
ln )
^2 )
. x))) by
A6,
FUNCT_1: 18
.= (1
/ (x
* (((
sin
*
ln )
. x)
^2 ))) by
VALUED_1: 11
.= (1
/ (x
* ((
sin
. (
ln
. x))
^2 ))) by
A4,
A6,
FUNCT_1: 12;
hence thesis by
A1;
end;
A7: for x be
Element of
REAL st x
in (
dom ((
- (
cot
*
ln ))
`| Z)) holds (((
- (
cot
*
ln ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
- (
cot
*
ln ))
`| Z));
then
A8: x
in Z by
A3,
FDIFF_1:def 7;
then (((
- (
cot
*
ln ))
`| Z)
. x)
= (1
/ (x
* ((
sin
. (
ln
. x))
^2 ))) by
A1,
Th27
.= (f
. x) by
A5,
A8;
hence thesis;
end;
(
dom ((
- (
cot
*
ln ))
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
- (
cot
*
ln ))
`| Z)
= f by
A7,
PARTFUN1: 5;
hence thesis by
A1,
A2,
Th27,
INTEGRA5: 13;
end;
theorem ::
INTEGR13:29
A
c= Z & f
= (
exp_R
/ ((
cos
*
exp_R )
^2 )) & Z
c= (
dom (
tan
*
exp_R )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
tan
*
exp_R )
. (
upper_bound A))
- ((
tan
*
exp_R )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & f
= (
exp_R
/ ((
cos
*
exp_R )
^2 )) & Z
c= (
dom (
tan
*
exp_R )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
tan
*
exp_R )
is_differentiable_on Z by
A1,
FDIFF_8: 12;
Z
= ((
dom
exp_R )
/\ ((
dom ((
cos
*
exp_R )
^2 ))
\ (((
cos
*
exp_R )
^2 )
"
{
0 }))) by
A1,
RFUNCT_1:def 1;
then Z
c= ((
dom ((
cos
*
exp_R )
^2 ))
\ (((
cos
*
exp_R )
^2 )
"
{
0 })) by
XBOOLE_1: 18;
then
A4: Z
c= (
dom (((
cos
*
exp_R )
^2 )
^ )) by
RFUNCT_1:def 2;
(
dom (((
cos
*
exp_R )
^2 )
^ ))
c= (
dom ((
cos
*
exp_R )
^2 )) by
RFUNCT_1: 1;
then Z
c= (
dom ((
cos
*
exp_R )
^2 )) by
A4;
then
A5: Z
c= (
dom (
cos
*
exp_R )) by
VALUED_1: 11;
A6: for x st x
in Z holds (f
. x)
= ((
exp_R
. x)
/ ((
cos
. (
exp_R
. x))
^2 ))
proof
let x;
assume
A7: x
in Z;
then ((
exp_R
/ ((
cos
*
exp_R )
^2 ))
. x)
= ((
exp_R
. x)
/ (((
cos
*
exp_R )
^2 )
. x)) by
A1,
RFUNCT_1:def 1
.= ((
exp_R
. x)
/ (((
cos
*
exp_R )
. x)
^2 )) by
VALUED_1: 11
.= ((
exp_R
. x)
/ ((
cos
. (
exp_R
. x))
^2 )) by
A5,
A7,
FUNCT_1: 12;
hence thesis by
A1;
end;
A8: for x be
Element of
REAL st x
in (
dom ((
tan
*
exp_R )
`| Z)) holds (((
tan
*
exp_R )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
tan
*
exp_R )
`| Z));
then
A9: x
in Z by
A3,
FDIFF_1:def 7;
then (((
tan
*
exp_R )
`| Z)
. x)
= ((
exp_R
. x)
/ ((
cos
. (
exp_R
. x))
^2 )) by
A1,
FDIFF_8: 12
.= (f
. x) by
A6,
A9;
hence thesis;
end;
(
dom ((
tan
*
exp_R )
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
tan
*
exp_R )
`| Z)
= f by
A8,
PARTFUN1: 5;
hence thesis by
A1,
A2,
FDIFF_8: 12,
INTEGRA5: 13;
end;
theorem ::
INTEGR13:30
A
c= Z & f
= (
- (
exp_R
/ ((
sin
*
exp_R )
^2 ))) & Z
c= (
dom (
cot
*
exp_R )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
cot
*
exp_R )
. (
upper_bound A))
- ((
cot
*
exp_R )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & f
= (
- (
exp_R
/ ((
sin
*
exp_R )
^2 ))) & Z
c= (
dom (
cot
*
exp_R )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
cot
*
exp_R )
is_differentiable_on Z by
A1,
FDIFF_8: 13;
A4: Z
= (
dom (
exp_R
/ ((
sin
*
exp_R )
^2 ))) by
A1,
VALUED_1: 8;
then Z
c= ((
dom
exp_R )
/\ ((
dom ((
sin
*
exp_R )
^2 ))
\ (((
sin
*
exp_R )
^2 )
"
{
0 }))) by
RFUNCT_1:def 1;
then Z
c= ((
dom ((
sin
*
exp_R )
^2 ))
\ (((
sin
*
exp_R )
^2 )
"
{
0 })) by
XBOOLE_1: 18;
then
A5: Z
c= (
dom (((
sin
*
exp_R )
^2 )
^ )) by
RFUNCT_1:def 2;
(
dom (((
sin
*
exp_R )
^2 )
^ ))
c= (
dom ((
sin
*
exp_R )
^2 )) by
RFUNCT_1: 1;
then Z
c= (
dom ((
sin
*
exp_R )
^2 )) by
A5;
then
A6: Z
c= (
dom (
sin
*
exp_R )) by
VALUED_1: 11;
A7: for x st x
in Z holds (f
. x)
= (
- ((
exp_R
. x)
/ ((
sin
. (
exp_R
. x))
^2 )))
proof
let x;
assume
A8: x
in Z;
((
- (
exp_R
/ ((
sin
*
exp_R )
^2 )))
. x)
= (
- ((
exp_R
/ ((
sin
*
exp_R )
^2 ))
. x)) by
VALUED_1: 8
.= (
- ((
exp_R
. x)
/ (((
sin
*
exp_R )
^2 )
. x))) by
A4,
A8,
RFUNCT_1:def 1
.= (
- ((
exp_R
. x)
/ (((
sin
*
exp_R )
. x)
^2 ))) by
VALUED_1: 11
.= (
- ((
exp_R
. x)
/ ((
sin
. (
exp_R
. x))
^2 ))) by
A6,
A8,
FUNCT_1: 12;
hence thesis by
A1;
end;
A9: for x be
Element of
REAL st x
in (
dom ((
cot
*
exp_R )
`| Z)) holds (((
cot
*
exp_R )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
cot
*
exp_R )
`| Z));
then
A10: x
in Z by
A3,
FDIFF_1:def 7;
then (((
cot
*
exp_R )
`| Z)
. x)
= (
- ((
exp_R
. x)
/ ((
sin
. (
exp_R
. x))
^2 ))) by
A1,
FDIFF_8: 13
.= (f
. x) by
A7,
A10;
hence thesis;
end;
(
dom ((
cot
*
exp_R )
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
cot
*
exp_R )
`| Z)
= f by
A9,
PARTFUN1: 5;
hence thesis by
A1,
A2,
FDIFF_8: 13,
INTEGRA5: 13;
end;
theorem ::
INTEGR13:31
Th31: Z
c= (
dom (
cot
*
exp_R )) implies (
- (
cot
*
exp_R ))
is_differentiable_on Z & for x st x
in Z holds (((
- (
cot
*
exp_R ))
`| Z)
. x)
= ((
exp_R
. x)
/ ((
sin
. (
exp_R
. x))
^2 ))
proof
assume
A1: Z
c= (
dom (
cot
*
exp_R ));
then
A2: Z
c= (
dom (
- (
cot
*
exp_R ))) by
VALUED_1: 8;
A3: (
cot
*
exp_R )
is_differentiable_on Z by
A1,
FDIFF_8: 13;
then
A4: ((
- 1)
(#) (
cot
*
exp_R ))
is_differentiable_on Z by
A2,
FDIFF_1: 20;
A5: for x st x
in Z holds (
sin
. (
exp_R
. x))
<>
0
proof
let x;
assume x
in Z;
then (
exp_R
. x)
in (
dom (
cos
/
sin )) by
A1,
FUNCT_1: 11;
hence thesis by
FDIFF_8: 2;
end;
for x st x
in Z holds (((
- (
cot
*
exp_R ))
`| Z)
. x)
= ((
exp_R
. x)
/ ((
sin
. (
exp_R
. x))
^2 ))
proof
let x;
assume
A6: x
in Z;
A7:
exp_R
is_differentiable_in x by
SIN_COS: 65;
A8: (
sin
. (
exp_R
. x))
<>
0 by
A5,
A6;
then
A9:
cot
is_differentiable_in (
exp_R
. x) by
FDIFF_7: 47;
A10: (
cot
*
exp_R )
is_differentiable_in x by
A3,
A6,
FDIFF_1: 9;
(((
- (
cot
*
exp_R ))
`| Z)
. x)
= (
diff ((
- (
cot
*
exp_R )),x)) by
A4,
A6,
FDIFF_1:def 7
.= ((
- 1)
* (
diff ((
cot
*
exp_R ),x))) by
A10,
FDIFF_1: 15
.= ((
- 1)
* ((
diff (
cot ,(
exp_R
. x)))
* (
diff (
exp_R ,x)))) by
A7,
A9,
FDIFF_2: 13
.= ((
- 1)
* ((
- (1
/ ((
sin
. (
exp_R
. x))
^2 )))
* (
diff (
exp_R ,x)))) by
A8,
FDIFF_7: 47
.= ((
- 1)
* (
- ((
diff (
exp_R ,x))
/ ((
sin
. (
exp_R
. x))
^2 ))))
.= ((
exp_R
. x)
/ ((
sin
. (
exp_R
. x))
^2 )) by
SIN_COS: 65;
hence thesis;
end;
hence thesis by
A4;
end;
theorem ::
INTEGR13:32
A
c= Z & f
= (
exp_R
/ ((
sin
*
exp_R )
^2 )) & Z
c= (
dom (
cot
*
exp_R )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
- (
cot
*
exp_R ))
. (
upper_bound A))
- ((
- (
cot
*
exp_R ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & f
= (
exp_R
/ ((
sin
*
exp_R )
^2 )) & Z
c= (
dom (
cot
*
exp_R )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
- (
cot
*
exp_R ))
is_differentiable_on Z by
A1,
Th31;
Z
c= ((
dom
exp_R )
/\ ((
dom ((
sin
*
exp_R )
^2 ))
\ (((
sin
*
exp_R )
^2 )
"
{
0 }))) by
A1,
RFUNCT_1:def 1;
then Z
c= ((
dom ((
sin
*
exp_R )
^2 ))
\ (((
sin
*
exp_R )
^2 )
"
{
0 })) by
XBOOLE_1: 18;
then
A4: Z
c= (
dom (((
sin
*
exp_R )
^2 )
^ )) by
RFUNCT_1:def 2;
(
dom (((
sin
*
exp_R )
^2 )
^ ))
c= (
dom ((
sin
*
exp_R )
^2 )) by
RFUNCT_1: 1;
then Z
c= (
dom ((
sin
*
exp_R )
^2 )) by
A4;
then
A5: Z
c= (
dom (
sin
*
exp_R )) by
VALUED_1: 11;
A6: for x st x
in Z holds (f
. x)
= ((
exp_R
. x)
/ ((
sin
. (
exp_R
. x))
^2 ))
proof
let x;
assume
A7: x
in Z;
then ((
exp_R
/ ((
sin
*
exp_R )
^2 ))
. x)
= ((
exp_R
. x)
/ (((
sin
*
exp_R )
^2 )
. x)) by
A1,
RFUNCT_1:def 1
.= ((
exp_R
. x)
/ (((
sin
*
exp_R )
. x)
^2 )) by
VALUED_1: 11
.= ((
exp_R
. x)
/ ((
sin
. (
exp_R
. x))
^2 )) by
A5,
A7,
FUNCT_1: 12;
hence thesis by
A1;
end;
A8: for x be
Element of
REAL st x
in (
dom ((
- (
cot
*
exp_R ))
`| Z)) holds (((
- (
cot
*
exp_R ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
- (
cot
*
exp_R ))
`| Z));
then
A9: x
in Z by
A3,
FDIFF_1:def 7;
then (((
- (
cot
*
exp_R ))
`| Z)
. x)
= ((
exp_R
. x)
/ ((
sin
. (
exp_R
. x))
^2 )) by
A1,
Th31
.= (f
. x) by
A6,
A9;
hence thesis;
end;
(
dom ((
- (
cot
*
exp_R ))
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
- (
cot
*
exp_R ))
`| Z)
= f by
A8,
PARTFUN1: 5;
hence thesis by
A1,
A2,
Th31,
INTEGRA5: 13;
end;
theorem ::
INTEGR13:33
A
c= Z & (for x st x
in Z holds (f
. x)
= (
- (1
/ ((x
^2 )
* ((
cos
. (1
/ x))
^2 ))))) & Z
c= (
dom (
tan
* ((
id Z)
^ ))) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
tan
* ((
id Z)
^ ))
. (
upper_bound A))
- ((
tan
* ((
id Z)
^ ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= (
- (1
/ ((x
^2 )
* ((
cos
. (1
/ x))
^2 ))))) & Z
c= (
dom (
tan
* ((
id Z)
^ ))) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: Z
c= (
dom ((
id Z)
^ )) by
A1,
FUNCT_1: 101;
A4: not
0
in Z
proof
assume
A5:
0
in Z;
(
dom ((
id Z)
^ ))
= ((
dom (
id Z))
\ ((
id Z)
"
{
0 })) by
RFUNCT_1:def 2
.= ((
dom (
id Z))
\
{
0 }) by
Lm1,
A5;
then not
0
in
{
0 } by
A5,
A3,
XBOOLE_0:def 5;
hence thesis by
TARSKI:def 1;
end;
then
A6: (
tan
* ((
id Z)
^ ))
is_differentiable_on Z by
A1,
FDIFF_8: 8;
A7: for x be
Element of
REAL st x
in (
dom ((
tan
* ((
id Z)
^ ))
`| Z)) holds (((
tan
* ((
id Z)
^ ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
tan
* ((
id Z)
^ ))
`| Z));
then
A8: x
in Z by
A6,
FDIFF_1:def 7;
then (((
tan
* ((
id Z)
^ ))
`| Z)
. x)
= (
- (1
/ ((x
^2 )
* ((
cos
. (1
/ x))
^2 )))) by
A1,
A4,
FDIFF_8: 8
.= (f
. x) by
A1,
A8;
hence thesis;
end;
(
dom ((
tan
* ((
id Z)
^ ))
`| Z))
= (
dom f) by
A1,
A6,
FDIFF_1:def 7;
then ((
tan
* ((
id Z)
^ ))
`| Z)
= f by
A7,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A6,
INTEGRA5: 13;
end;
theorem ::
INTEGR13:34
Th34: Z
c= (
dom (
tan
* ((
id Z)
^ ))) implies (
- (
tan
* ((
id Z)
^ )))
is_differentiable_on Z & for x st x
in Z holds (((
- (
tan
* ((
id Z)
^ )))
`| Z)
. x)
= (1
/ ((x
^2 )
* ((
cos
. (1
/ x))
^2 )))
proof
set f = (
id Z);
assume
A1: Z
c= (
dom (
tan
* ((
id Z)
^ )));
(
dom (
tan
* (f
^ )))
c= (
dom (f
^ )) by
RELAT_1: 25;
then
A2: Z
c= (
dom (f
^ )) by
A1;
A3: not
0
in Z
proof
assume
A4:
0
in Z;
(
dom ((
id Z)
^ ))
= ((
dom (
id Z))
\ ((
id Z)
"
{
0 })) by
RFUNCT_1:def 2
.= ((
dom (
id Z))
\
{
0 }) by
Lm1,
A4;
then not
0
in
{
0 } by
A4,
A2,
XBOOLE_0:def 5;
hence thesis by
TARSKI:def 1;
end;
A5: Z
c= (
dom (
- (
tan
* ((
id Z)
^ )))) by
A1,
VALUED_1: 8;
A6: (
tan
* ((
id Z)
^ ))
is_differentiable_on Z by
A1,
A3,
FDIFF_8: 8;
then
A7: ((
- 1)
(#) (
tan
* ((
id Z)
^ )))
is_differentiable_on Z by
A5,
FDIFF_1: 20;
A8: (f
^ )
is_differentiable_on Z & for x st x
in Z holds (((f
^ )
`| Z)
. x)
= (
- (1
/ (x
^2 ))) by
A3,
FDIFF_5: 4;
A9: for x st x
in Z holds (
cos
. ((f
^ )
. x))
<>
0
proof
let x;
assume x
in Z;
then ((f
^ )
. x)
in (
dom (
sin
/
cos )) by
A1,
FUNCT_1: 11;
hence thesis by
FDIFF_8: 1;
end;
for x st x
in Z holds (((
- (
tan
* (f
^ )))
`| Z)
. x)
= (1
/ ((x
^2 )
* ((
cos
. (1
/ x))
^2 )))
proof
let x;
assume
A10: x
in Z;
then
A11: (f
^ )
is_differentiable_in x by
A8,
FDIFF_1: 9;
A12: (
cos
. ((f
^ )
. x))
<>
0 by
A9,
A10;
then
A13:
tan
is_differentiable_in ((f
^ )
. x) by
FDIFF_7: 46;
A14: (
tan
* (f
^ ))
is_differentiable_in x by
A6,
A10,
FDIFF_1: 9;
(((
- (
tan
* (f
^ )))
`| Z)
. x)
= (
diff ((
- (
tan
* (f
^ ))),x)) by
A7,
A10,
FDIFF_1:def 7
.= ((
- 1)
* (
diff ((
tan
* (f
^ )),x))) by
A14,
FDIFF_1: 15
.= ((
- 1)
* ((
diff (
tan ,((f
^ )
. x)))
* (
diff ((f
^ ),x)))) by
A11,
A13,
FDIFF_2: 13
.= ((
- 1)
* ((1
/ ((
cos
. ((f
^ )
. x))
^2 ))
* (
diff ((f
^ ),x)))) by
A12,
FDIFF_7: 46
.= ((
- 1)
* ((
diff ((f
^ ),x))
/ ((
cos
. ((f
. x)
" ))
^2 ))) by
A2,
A10,
RFUNCT_1:def 2
.= ((
- 1)
* ((
diff ((f
^ ),x))
/ ((
cos
. (1
* (x
" )))
^2 ))) by
A10,
FUNCT_1: 18
.= ((
- 1)
* ((((f
^ )
`| Z)
. x)
/ ((
cos
. (1
* (x
" )))
^2 ))) by
A8,
A10,
FDIFF_1:def 7
.= ((
- 1)
* ((
- (1
/ (x
^2 )))
/ ((
cos
. (1
* (x
" )))
^2 ))) by
A10,
A3,
FDIFF_5: 4
.= ((
- 1)
* (((
- 1)
/ (x
^2 ))
/ ((
cos
. (1
/ x))
^2 )))
.= ((
- 1)
* ((
- 1)
/ ((x
^2 )
* ((
cos
. (1
/ x))
^2 )))) by
XCMPLX_1: 78
.= (1
/ ((x
^2 )
* ((
cos
. (1
/ x))
^2 )));
hence thesis;
end;
hence thesis by
A7;
end;
theorem ::
INTEGR13:35
A
c= Z & (for x st x
in Z holds (f
. x)
= (1
/ ((x
^2 )
* ((
cos
. (1
/ x))
^2 )))) & Z
c= (
dom (
tan
* ((
id Z)
^ ))) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
- (
tan
* ((
id Z)
^ )))
. (
upper_bound A))
- ((
- (
tan
* ((
id Z)
^ )))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= (1
/ ((x
^2 )
* ((
cos
. (1
/ x))
^2 )))) & Z
c= (
dom (
tan
* ((
id Z)
^ ))) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
- (
tan
* ((
id Z)
^ )))
is_differentiable_on Z by
A1,
Th34;
A4: for x be
Element of
REAL st x
in (
dom ((
- (
tan
* ((
id Z)
^ )))
`| Z)) holds (((
- (
tan
* ((
id Z)
^ )))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
- (
tan
* ((
id Z)
^ )))
`| Z));
then
A5: x
in Z by
A3,
FDIFF_1:def 7;
then (((
- (
tan
* ((
id Z)
^ )))
`| Z)
. x)
= (1
/ ((x
^2 )
* ((
cos
. (1
/ x))
^2 ))) by
A1,
Th34
.= (f
. x) by
A1,
A5;
hence thesis;
end;
(
dom ((
- (
tan
* ((
id Z)
^ )))
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
- (
tan
* ((
id Z)
^ )))
`| Z)
= f by
A4,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13;
end;
theorem ::
INTEGR13:36
A
c= Z & (for x st x
in Z holds (f
. x)
= (1
/ ((x
^2 )
* ((
sin
. (1
/ x))
^2 )))) & Z
c= (
dom (
cot
* ((
id Z)
^ ))) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
cot
* ((
id Z)
^ ))
. (
upper_bound A))
- ((
cot
* ((
id Z)
^ ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= (1
/ ((x
^2 )
* ((
sin
. (1
/ x))
^2 )))) & Z
c= (
dom (
cot
* ((
id Z)
^ ))) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: Z
c= (
dom ((
id Z)
^ )) by
A1,
FUNCT_1: 101;
A4: not
0
in Z
proof
assume
A5:
0
in Z;
(
dom ((
id Z)
^ ))
= ((
dom (
id Z))
\ ((
id Z)
"
{
0 })) by
RFUNCT_1:def 2
.= ((
dom (
id Z))
\
{
0 }) by
Lm1,
A5;
then not
0
in
{
0 } by
A5,
A3,
XBOOLE_0:def 5;
hence thesis by
TARSKI:def 1;
end;
then
A6: (
cot
* ((
id Z)
^ ))
is_differentiable_on Z by
A1,
FDIFF_8: 9;
A7: for x be
Element of
REAL st x
in (
dom ((
cot
* ((
id Z)
^ ))
`| Z)) holds (((
cot
* ((
id Z)
^ ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
cot
* ((
id Z)
^ ))
`| Z));
then
A8: x
in Z by
A6,
FDIFF_1:def 7;
then (((
cot
* ((
id Z)
^ ))
`| Z)
. x)
= (1
/ ((x
^2 )
* ((
sin
. (1
/ x))
^2 ))) by
A1,
A4,
FDIFF_8: 9
.= (f
. x) by
A1,
A8;
hence thesis;
end;
(
dom ((
cot
* ((
id Z)
^ ))
`| Z))
= (
dom f) by
A1,
A6,
FDIFF_1:def 7;
then ((
cot
* ((
id Z)
^ ))
`| Z)
= f by
A7,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A6,
INTEGRA5: 13;
end;
theorem ::
INTEGR13:37
A
c= Z & (for x st x
in Z holds (f1
. x)
= 1 & (
arctan
. x)
>
0 ) & f
= (((f1
+ (
#Z 2))
(#)
arctan )
^ ) & Z
c=
].(
- 1), 1.[ & Z
c= (
dom (
ln
*
arctan )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
ln
*
arctan )
. (
upper_bound A))
- ((
ln
*
arctan )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f1
. x)
= 1 & (
arctan
. x)
>
0 ) & f
= (((f1
+ (
#Z 2))
(#)
arctan )
^ ) & Z
c=
].(
- 1), 1.[ & Z
c= (
dom (
ln
*
arctan )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: for x st x
in Z holds (
arctan
. x)
>
0 by
A1;
then
A4: (
ln
*
arctan )
is_differentiable_on Z by
A1,
SIN_COS9: 89;
Z
c= (
dom ((f1
+ (
#Z 2))
(#)
arctan )) by
A1,
RFUNCT_1: 1;
then Z
c= ((
dom (f1
+ (
#Z 2)))
/\ (
dom
arctan )) by
VALUED_1:def 4;
then
A5: Z
c= (
dom (f1
+ (
#Z 2))) by
XBOOLE_1: 18;
A6: for x st x
in Z holds (f
. x)
= (1
/ ((1
+ (x
^2 ))
* (
arctan
. x)))
proof
let x;
assume
A7: x
in Z;
then ((((f1
+ (
#Z 2))
(#)
arctan )
^ )
. x)
= (1
/ (((f1
+ (
#Z 2))
(#)
arctan )
. x)) by
A1,
RFUNCT_1:def 2
.= (1
/ (((f1
+ (
#Z 2))
. x)
* (
arctan
. x))) by
VALUED_1: 5
.= (1
/ (((f1
. x)
+ ((
#Z 2)
. x))
* (
arctan
. x))) by
A5,
A7,
VALUED_1:def 1
.= (1
/ (((f1
. x)
+ (x
#Z 2))
* (
arctan
. x))) by
TAYLOR_1:def 1
.= (1
/ ((1
+ (x
#Z 2))
* (
arctan
. x))) by
A1,
A7
.= (1
/ ((1
+ (x
^2 ))
* (
arctan
. x))) by
FDIFF_7: 1;
hence thesis by
A1;
end;
A8: for x be
Element of
REAL st x
in (
dom ((
ln
*
arctan )
`| Z)) holds (((
ln
*
arctan )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
ln
*
arctan )
`| Z));
then
A9: x
in Z by
A4,
FDIFF_1:def 7;
then (((
ln
*
arctan )
`| Z)
. x)
= (1
/ ((1
+ (x
^2 ))
* (
arctan
. x))) by
A1,
A3,
SIN_COS9: 89
.= (f
. x) by
A6,
A9;
hence thesis;
end;
(
dom ((
ln
*
arctan )
`| Z))
= (
dom f) by
A1,
A4,
FDIFF_1:def 7;
then ((
ln
*
arctan )
`| Z)
= f by
A8,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A4,
INTEGRA5: 13;
end;
theorem ::
INTEGR13:38
A
c= Z & f
= (n
(#) (((
#Z (n
- 1))
*
arctan )
/ (f1
+ (
#Z 2)))) & (for x st x
in Z holds (f1
. x)
= 1) & Z
c=
].(
- 1), 1.[ & Z
c= (
dom ((
#Z n)
*
arctan )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= ((((
#Z n)
*
arctan )
. (
upper_bound A))
- (((
#Z n)
*
arctan )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & f
= (n
(#) (((
#Z (n
- 1))
*
arctan )
/ (f1
+ (
#Z 2)))) & (for x st x
in Z holds (f1
. x)
= 1) & Z
c=
].(
- 1), 1.[ & Z
c= (
dom ((
#Z n)
*
arctan )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: ((
#Z n)
*
arctan )
is_differentiable_on Z by
A1,
SIN_COS9: 91;
A4: Z
= (
dom (((
#Z (n
- 1))
*
arctan )
/ (f1
+ (
#Z 2)))) by
A1,
VALUED_1:def 5;
then Z
c= ((
dom ((
#Z (n
- 1))
*
arctan ))
/\ ((
dom (f1
+ (
#Z 2)))
\ ((f1
+ (
#Z 2))
"
{
0 }))) by
RFUNCT_1:def 1;
then
A5: Z
c= (
dom ((
#Z (n
- 1))
*
arctan )) & Z
c= ((
dom (f1
+ (
#Z 2)))
\ ((f1
+ (
#Z 2))
"
{
0 })) by
XBOOLE_1: 18;
then
A6: Z
c= (
dom ((f1
+ (
#Z 2))
^ )) by
RFUNCT_1:def 2;
(
dom ((f1
+ (
#Z 2))
^ ))
c= (
dom (f1
+ (
#Z 2))) by
RFUNCT_1: 1;
then
A7: Z
c= (
dom (f1
+ (
#Z 2))) by
A6;
A8: for x st x
in Z holds (f
. x)
= ((n
* ((
arctan
. x)
#Z (n
- 1)))
/ (1
+ (x
^2 )))
proof
let x;
assume
A9: x
in Z;
((n
(#) (((
#Z (n
- 1))
*
arctan )
/ (f1
+ (
#Z 2))))
. x)
= (n
* ((((
#Z (n
- 1))
*
arctan )
/ (f1
+ (
#Z 2)))
. x)) by
VALUED_1: 6
.= (n
* ((((
#Z (n
- 1))
*
arctan )
. x)
* (((f1
+ (
#Z 2))
. x)
" ))) by
A4,
A9,
RFUNCT_1:def 1
.= ((n
* (((
#Z (n
- 1))
*
arctan )
. x))
/ ((f1
+ (
#Z 2))
. x))
.= ((n
* ((
#Z (n
- 1))
. (
arctan
. x)))
/ ((f1
+ (
#Z 2))
. x)) by
A5,
A9,
FUNCT_1: 12
.= ((n
* ((
arctan
. x)
#Z (n
- 1)))
/ ((f1
+ (
#Z 2))
. x)) by
TAYLOR_1:def 1
.= ((n
* ((
arctan
. x)
#Z (n
- 1)))
/ ((f1
. x)
+ ((
#Z 2)
. x))) by
A7,
A9,
VALUED_1:def 1
.= ((n
* ((
arctan
. x)
#Z (n
- 1)))
/ (1
+ ((
#Z 2)
. x))) by
A1,
A9
.= ((n
* ((
arctan
. x)
#Z (n
- 1)))
/ (1
+ (x
#Z 2))) by
TAYLOR_1:def 1
.= ((n
* ((
arctan
. x)
#Z (n
- 1)))
/ (1
+ (x
^2 ))) by
FDIFF_7: 1;
hence thesis by
A1;
end;
A10: for x be
Element of
REAL st x
in (
dom (((
#Z n)
*
arctan )
`| Z)) holds ((((
#Z n)
*
arctan )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((
#Z n)
*
arctan )
`| Z));
then
A11: x
in Z by
A3,
FDIFF_1:def 7;
then ((((
#Z n)
*
arctan )
`| Z)
. x)
= ((n
* ((
arctan
. x)
#Z (n
- 1)))
/ (1
+ (x
^2 ))) by
A1,
SIN_COS9: 91
.= (f
. x) by
A8,
A11;
hence thesis;
end;
(
dom (((
#Z n)
*
arctan )
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then (((
#Z n)
*
arctan )
`| Z)
= f by
A10,
PARTFUN1: 5;
hence thesis by
A1,
A2,
INTEGRA5: 13,
SIN_COS9: 91;
end;
theorem ::
INTEGR13:39
A
c= Z & (for x st x
in Z holds (f1
. x)
= 1) & f
= (
- (n
(#) (((
#Z (n
- 1))
*
arccot )
/ (f1
+ (
#Z 2))))) & Z
c=
].(
- 1), 1.[ & Z
c= (
dom ((
#Z n)
*
arccot )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= ((((
#Z n)
*
arccot )
. (
upper_bound A))
- (((
#Z n)
*
arccot )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f1
. x)
= 1) & f
= (
- (n
(#) (((
#Z (n
- 1))
*
arccot )
/ (f1
+ (
#Z 2))))) & Z
c=
].(
- 1), 1.[ & Z
c= (
dom ((
#Z n)
*
arccot )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: ((
#Z n)
*
arccot )
is_differentiable_on Z by
A1,
SIN_COS9: 92;
Z
= (
dom (n
(#) (((
#Z (n
- 1))
*
arccot )
/ (f1
+ (
#Z 2))))) by
A1,
VALUED_1: 8;
then
A4: Z
= (
dom (((
#Z (n
- 1))
*
arccot )
/ (f1
+ (
#Z 2)))) by
VALUED_1:def 5;
then Z
c= ((
dom ((
#Z (n
- 1))
*
arccot ))
/\ ((
dom (f1
+ (
#Z 2)))
\ ((f1
+ (
#Z 2))
"
{
0 }))) by
RFUNCT_1:def 1;
then
A5: Z
c= (
dom ((
#Z (n
- 1))
*
arccot )) & Z
c= ((
dom (f1
+ (
#Z 2)))
\ ((f1
+ (
#Z 2))
"
{
0 })) by
XBOOLE_1: 18;
then
A6: Z
c= (
dom ((f1
+ (
#Z 2))
^ )) by
RFUNCT_1:def 2;
(
dom ((f1
+ (
#Z 2))
^ ))
c= (
dom (f1
+ (
#Z 2))) by
RFUNCT_1: 1;
then
A7: Z
c= (
dom (f1
+ (
#Z 2))) by
A6;
A8: for x st x
in Z holds (f
. x)
= (
- ((n
* ((
arccot
. x)
#Z (n
- 1)))
/ (1
+ (x
^2 ))))
proof
let x;
assume
A9: x
in Z;
((
- (n
(#) (((
#Z (n
- 1))
*
arccot )
/ (f1
+ (
#Z 2)))))
. x)
= (
- ((n
(#) (((
#Z (n
- 1))
*
arccot )
/ (f1
+ (
#Z 2))))
. x)) by
VALUED_1: 8
.= (
- (n
* ((((
#Z (n
- 1))
*
arccot )
/ (f1
+ (
#Z 2)))
. x))) by
VALUED_1: 6
.= (
- (n
* ((((
#Z (n
- 1))
*
arccot )
. x)
* (((f1
+ (
#Z 2))
. x)
" )))) by
A4,
A9,
RFUNCT_1:def 1
.= (
- ((n
* (((
#Z (n
- 1))
*
arccot )
. x))
/ ((f1
+ (
#Z 2))
. x)))
.= (
- ((n
* ((
#Z (n
- 1))
. (
arccot
. x)))
/ ((f1
+ (
#Z 2))
. x))) by
A5,
A9,
FUNCT_1: 12
.= (
- ((n
* ((
arccot
. x)
#Z (n
- 1)))
/ ((f1
+ (
#Z 2))
. x))) by
TAYLOR_1:def 1
.= (
- ((n
* ((
arccot
. x)
#Z (n
- 1)))
/ ((f1
. x)
+ ((
#Z 2)
. x)))) by
A7,
A9,
VALUED_1:def 1
.= (
- ((n
* ((
arccot
. x)
#Z (n
- 1)))
/ (1
+ ((
#Z 2)
. x)))) by
A1,
A9
.= (
- ((n
* ((
arccot
. x)
#Z (n
- 1)))
/ (1
+ (x
#Z 2)))) by
TAYLOR_1:def 1
.= (
- ((n
* ((
arccot
. x)
#Z (n
- 1)))
/ (1
+ (x
^2 )))) by
FDIFF_7: 1;
hence thesis by
A1;
end;
A10: for x be
Element of
REAL st x
in (
dom (((
#Z n)
*
arccot )
`| Z)) holds ((((
#Z n)
*
arccot )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((
#Z n)
*
arccot )
`| Z));
then
A11: x
in Z by
A3,
FDIFF_1:def 7;
then ((((
#Z n)
*
arccot )
`| Z)
. x)
= (
- ((n
* ((
arccot
. x)
#Z (n
- 1)))
/ (1
+ (x
^2 )))) by
A1,
SIN_COS9: 92
.= (f
. x) by
A11,
A8;
hence thesis;
end;
(
dom (((
#Z n)
*
arccot )
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then (((
#Z n)
*
arccot )
`| Z)
= f by
A10,
PARTFUN1: 5;
hence thesis by
A1,
A2,
INTEGRA5: 13,
SIN_COS9: 92;
end;
theorem ::
INTEGR13:40
Th40: Z
c= (
dom ((
#Z n)
*
arccot )) & Z
c=
].(
- 1), 1.[ implies (
- ((
#Z n)
*
arccot ))
is_differentiable_on Z & for x st x
in Z holds (((
- ((
#Z n)
*
arccot ))
`| Z)
. x)
= ((n
* ((
arccot
. x)
#Z (n
- 1)))
/ (1
+ (x
^2 )))
proof
assume
A1: Z
c= (
dom ((
#Z n)
*
arccot )) & Z
c=
].(
- 1), 1.[;
then
A2: Z
c= (
dom (
- ((
#Z n)
*
arccot ))) by
VALUED_1: 8;
A3: ((
#Z n)
*
arccot )
is_differentiable_on Z by
A1,
SIN_COS9: 92;
then
A4: ((
- 1)
(#) ((
#Z n)
*
arccot ))
is_differentiable_on Z by
A2,
FDIFF_1: 20;
for x st x
in Z holds (((
- ((
#Z n)
*
arccot ))
`| Z)
. x)
= ((n
* ((
arccot
. x)
#Z (n
- 1)))
/ (1
+ (x
^2 )))
proof
let x;
assume
A5: x
in Z;
then
A6: (
- 1)
< x & x
< 1 by
A1,
XXREAL_1: 4;
arccot
is_differentiable_on Z by
A1,
SIN_COS9: 82;
then
A7:
arccot
is_differentiable_in x by
A5,
FDIFF_1: 9;
A8: ((
#Z n)
*
arccot )
is_differentiable_in x by
A3,
A5,
FDIFF_1: 9;
(((
- ((
#Z n)
*
arccot ))
`| Z)
. x)
= (
diff ((
- ((
#Z n)
*
arccot )),x)) by
A4,
A5,
FDIFF_1:def 7
.= ((
- 1)
* (
diff (((
#Z n)
*
arccot ),x))) by
A8,
FDIFF_1: 15
.= ((
- 1)
* ((n
* ((
arccot
. x)
#Z (n
- 1)))
* (
diff (
arccot ,x)))) by
A7,
TAYLOR_1: 3
.= ((
- 1)
* ((n
* ((
arccot
. x)
#Z (n
- 1)))
* (
- (1
/ (1
+ (x
^2 )))))) by
A6,
SIN_COS9: 76
.= ((n
* ((
arccot
. x)
#Z (n
- 1)))
/ (1
+ (x
^2 )));
hence thesis;
end;
hence thesis by
A2,
A3,
FDIFF_1: 20;
end;
theorem ::
INTEGR13:41
A
c= Z & (for x st x
in Z holds (f1
. x)
= 1) & f
= (n
(#) (((
#Z (n
- 1))
*
arccot )
/ (f1
+ (
#Z 2)))) & Z
c=
].(
- 1), 1.[ & Z
c= (
dom ((
#Z n)
*
arccot )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
- ((
#Z n)
*
arccot ))
. (
upper_bound A))
- ((
- ((
#Z n)
*
arccot ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f1
. x)
= 1) & f
= (n
(#) (((
#Z (n
- 1))
*
arccot )
/ (f1
+ (
#Z 2)))) & Z
c=
].(
- 1), 1.[ & Z
c= (
dom ((
#Z n)
*
arccot )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
- ((
#Z n)
*
arccot ))
is_differentiable_on Z by
A1,
Th40;
A4: Z
= (
dom (((
#Z (n
- 1))
*
arccot )
/ (f1
+ (
#Z 2)))) by
A1,
VALUED_1:def 5;
then Z
c= ((
dom ((
#Z (n
- 1))
*
arccot ))
/\ ((
dom (f1
+ (
#Z 2)))
\ ((f1
+ (
#Z 2))
"
{
0 }))) by
RFUNCT_1:def 1;
then
A5: Z
c= (
dom ((
#Z (n
- 1))
*
arccot )) & Z
c= ((
dom (f1
+ (
#Z 2)))
\ ((f1
+ (
#Z 2))
"
{
0 })) by
XBOOLE_1: 18;
then
A6: Z
c= (
dom ((f1
+ (
#Z 2))
^ )) by
RFUNCT_1:def 2;
(
dom ((f1
+ (
#Z 2))
^ ))
c= (
dom (f1
+ (
#Z 2))) by
RFUNCT_1: 1;
then
A7: Z
c= (
dom (f1
+ (
#Z 2))) by
A6;
A8: for x st x
in Z holds (f
. x)
= ((n
* ((
arccot
. x)
#Z (n
- 1)))
/ (1
+ (x
^2 )))
proof
let x;
assume
A9: x
in Z;
((n
(#) (((
#Z (n
- 1))
*
arccot )
/ (f1
+ (
#Z 2))))
. x)
= (n
* ((((
#Z (n
- 1))
*
arccot )
/ (f1
+ (
#Z 2)))
. x)) by
VALUED_1: 6
.= (n
* ((((
#Z (n
- 1))
*
arccot )
. x)
* (((f1
+ (
#Z 2))
. x)
" ))) by
A4,
A9,
RFUNCT_1:def 1
.= ((n
* (((
#Z (n
- 1))
*
arccot )
. x))
/ ((f1
+ (
#Z 2))
. x))
.= ((n
* ((
#Z (n
- 1))
. (
arccot
. x)))
/ ((f1
+ (
#Z 2))
. x)) by
A5,
A9,
FUNCT_1: 12
.= ((n
* ((
arccot
. x)
#Z (n
- 1)))
/ ((f1
+ (
#Z 2))
. x)) by
TAYLOR_1:def 1
.= ((n
* ((
arccot
. x)
#Z (n
- 1)))
/ ((f1
. x)
+ ((
#Z 2)
. x))) by
A7,
A9,
VALUED_1:def 1
.= ((n
* ((
arccot
. x)
#Z (n
- 1)))
/ (1
+ ((
#Z 2)
. x))) by
A1,
A9
.= ((n
* ((
arccot
. x)
#Z (n
- 1)))
/ (1
+ (x
#Z 2))) by
TAYLOR_1:def 1
.= ((n
* ((
arccot
. x)
#Z (n
- 1)))
/ (1
+ (x
^2 ))) by
FDIFF_7: 1;
hence thesis by
A1;
end;
A10: for x be
Element of
REAL st x
in (
dom ((
- ((
#Z n)
*
arccot ))
`| Z)) holds (((
- ((
#Z n)
*
arccot ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
- ((
#Z n)
*
arccot ))
`| Z));
then
A11: x
in Z by
A3,
FDIFF_1:def 7;
then (((
- ((
#Z n)
*
arccot ))
`| Z)
. x)
= ((n
* ((
arccot
. x)
#Z (n
- 1)))
/ (1
+ (x
^2 ))) by
A1,
Th40
.= (f
. x) by
A11,
A8;
hence thesis;
end;
(
dom ((
- ((
#Z n)
*
arccot ))
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
- ((
#Z n)
*
arccot ))
`| Z)
= f by
A10,
PARTFUN1: 5;
hence thesis by
A1,
A2,
Th40,
INTEGRA5: 13;
end;
theorem ::
INTEGR13:42
A
c= Z & (for x st x
in Z holds (f1
. x)
= 1) & f
= (
arctan
/ (f1
+ (
#Z 2))) & Z
c=
].(
- 1), 1.[ & Z
c= (
dom ((
#Z 2)
*
arctan )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= ((((1
/ 2)
(#) ((
#Z 2)
*
arctan ))
. (
upper_bound A))
- (((1
/ 2)
(#) ((
#Z 2)
*
arctan ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f1
. x)
= 1) & f
= (
arctan
/ (f1
+ (
#Z 2))) & Z
c=
].(
- 1), 1.[ & Z
c= (
dom ((
#Z 2)
*
arctan )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: Z
c= (
dom ((1
/ 2)
(#) ((
#Z 2)
*
arctan ))) by
VALUED_1:def 5;
A3: f
is_integrable_on A & (f
| A) is
bounded by
A1,
INTEGRA5: 10,
INTEGRA5: 11;
A4: ((1
/ 2)
(#) ((
#Z 2)
*
arctan ))
is_differentiable_on Z by
A1,
A2,
SIN_COS9: 93;
Z
c= ((
dom
arctan )
/\ ((
dom (f1
+ (
#Z 2)))
\ ((f1
+ (
#Z 2))
"
{
0 }))) by
A1,
RFUNCT_1:def 1;
then Z
c= ((
dom (f1
+ (
#Z 2)))
\ ((f1
+ (
#Z 2))
"
{
0 })) by
XBOOLE_1: 18;
then
A5: Z
c= (
dom ((f1
+ (
#Z 2))
^ )) by
RFUNCT_1:def 2;
(
dom ((f1
+ (
#Z 2))
^ ))
c= (
dom (f1
+ (
#Z 2))) by
RFUNCT_1: 1;
then
A6: Z
c= (
dom (f1
+ (
#Z 2))) by
A5;
A7: for x st x
in Z holds (f
. x)
= ((
arctan
. x)
/ (1
+ (x
^2 )))
proof
let x;
assume
A8: x
in Z;
then ((
arctan
/ (f1
+ (
#Z 2)))
. x)
= ((
arctan
. x)
/ ((f1
+ (
#Z 2))
. x)) by
A1,
RFUNCT_1:def 1
.= ((
arctan
. x)
/ ((f1
. x)
+ ((
#Z 2)
. x))) by
A6,
A8,
VALUED_1:def 1
.= ((
arctan
. x)
/ ((f1
. x)
+ (x
#Z 2))) by
TAYLOR_1:def 1
.= ((
arctan
. x)
/ (1
+ (x
#Z 2))) by
A1,
A8
.= ((
arctan
. x)
/ (1
+ (x
^2 ))) by
FDIFF_7: 1;
hence thesis by
A1;
end;
A9: for x be
Element of
REAL st x
in (
dom (((1
/ 2)
(#) ((
#Z 2)
*
arctan ))
`| Z)) holds ((((1
/ 2)
(#) ((
#Z 2)
*
arctan ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((1
/ 2)
(#) ((
#Z 2)
*
arctan ))
`| Z));
then
A10: x
in Z by
A4,
FDIFF_1:def 7;
then ((((1
/ 2)
(#) ((
#Z 2)
*
arctan ))
`| Z)
. x)
= ((
arctan
. x)
/ (1
+ (x
^2 ))) by
A1,
A2,
SIN_COS9: 93
.= (f
. x) by
A7,
A10;
hence thesis;
end;
(
dom (((1
/ 2)
(#) ((
#Z 2)
*
arctan ))
`| Z))
= (
dom f) by
A1,
A4,
FDIFF_1:def 7;
then (((1
/ 2)
(#) ((
#Z 2)
*
arctan ))
`| Z)
= f by
A9,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13,
SIN_COS9: 93;
end;
theorem ::
INTEGR13:43
A
c= Z & (for x st x
in Z holds (f1
. x)
= 1) & f
= (
- (
arccot
/ (f1
+ (
#Z 2)))) & Z
c=
].(
- 1), 1.[ & Z
c= (
dom ((
#Z 2)
*
arccot )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= ((((1
/ 2)
(#) ((
#Z 2)
*
arccot ))
. (
upper_bound A))
- (((1
/ 2)
(#) ((
#Z 2)
*
arccot ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f1
. x)
= 1) & f
= (
- (
arccot
/ (f1
+ (
#Z 2)))) & Z
c=
].(
- 1), 1.[ & Z
c= (
dom ((
#Z 2)
*
arccot )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: Z
c= (
dom ((1
/ 2)
(#) ((
#Z 2)
*
arccot ))) by
VALUED_1:def 5;
A3: f
is_integrable_on A & (f
| A) is
bounded by
A1,
INTEGRA5: 10,
INTEGRA5: 11;
A4: ((1
/ 2)
(#) ((
#Z 2)
*
arccot ))
is_differentiable_on Z by
A1,
A2,
SIN_COS9: 94;
A5: Z
= (
dom (
arccot
/ (f1
+ (
#Z 2)))) by
A1,
VALUED_1: 8;
then Z
c= ((
dom
arccot )
/\ ((
dom (f1
+ (
#Z 2)))
\ ((f1
+ (
#Z 2))
"
{
0 }))) by
RFUNCT_1:def 1;
then Z
c= ((
dom (f1
+ (
#Z 2)))
\ ((f1
+ (
#Z 2))
"
{
0 })) by
XBOOLE_1: 18;
then
A6: Z
c= (
dom ((f1
+ (
#Z 2))
^ )) by
RFUNCT_1:def 2;
(
dom ((f1
+ (
#Z 2))
^ ))
c= (
dom (f1
+ (
#Z 2))) by
RFUNCT_1: 1;
then
A7: Z
c= (
dom (f1
+ (
#Z 2))) by
A6;
A8: for x st x
in Z holds (f
. x)
= (
- ((
arccot
. x)
/ (1
+ (x
^2 ))))
proof
let x;
assume
A9: x
in Z;
((
- (
arccot
/ (f1
+ (
#Z 2))))
. x)
= (
- ((
arccot
/ (f1
+ (
#Z 2)))
. x)) by
VALUED_1: 8
.= (
- ((
arccot
. x)
/ ((f1
+ (
#Z 2))
. x))) by
A5,
A9,
RFUNCT_1:def 1
.= (
- ((
arccot
. x)
/ ((f1
. x)
+ ((
#Z 2)
. x)))) by
A7,
A9,
VALUED_1:def 1
.= (
- ((
arccot
. x)
/ ((f1
. x)
+ (x
#Z 2)))) by
TAYLOR_1:def 1
.= (
- ((
arccot
. x)
/ (1
+ (x
#Z 2)))) by
A1,
A9
.= (
- ((
arccot
. x)
/ (1
+ (x
^2 )))) by
FDIFF_7: 1;
hence thesis by
A1;
end;
A10: for x be
Element of
REAL st x
in (
dom (((1
/ 2)
(#) ((
#Z 2)
*
arccot ))
`| Z)) holds ((((1
/ 2)
(#) ((
#Z 2)
*
arccot ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((1
/ 2)
(#) ((
#Z 2)
*
arccot ))
`| Z));
then
A11: x
in Z by
A4,
FDIFF_1:def 7;
then ((((1
/ 2)
(#) ((
#Z 2)
*
arccot ))
`| Z)
. x)
= (
- ((
arccot
. x)
/ (1
+ (x
^2 )))) by
A1,
A2,
SIN_COS9: 94
.= (f
. x) by
A8,
A11;
hence thesis;
end;
(
dom (((1
/ 2)
(#) ((
#Z 2)
*
arccot ))
`| Z))
= (
dom f) by
A1,
A4,
FDIFF_1:def 7;
then (((1
/ 2)
(#) ((
#Z 2)
*
arccot ))
`| Z)
= f by
A10,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13,
SIN_COS9: 94;
end;
theorem ::
INTEGR13:44
Th44: Z
c= (
dom ((
#Z 2)
*
arccot )) & Z
c=
].(
- 1), 1.[ implies (
- ((1
/ 2)
(#) ((
#Z 2)
*
arccot )))
is_differentiable_on Z & for x st x
in Z holds (((
- ((1
/ 2)
(#) ((
#Z 2)
*
arccot )))
`| Z)
. x)
= ((
arccot
. x)
/ (1
+ (x
^2 )))
proof
assume
A1: Z
c= (
dom ((
#Z 2)
*
arccot )) & Z
c=
].(
- 1), 1.[;
then
A2: Z
c= (
dom ((1
/ 2)
(#) ((
#Z 2)
*
arccot ))) by
VALUED_1:def 5;
then
A3: Z
c= (
dom (
- ((1
/ 2)
(#) ((
#Z 2)
*
arccot )))) by
VALUED_1: 8;
A4: ((1
/ 2)
(#) ((
#Z 2)
*
arccot ))
is_differentiable_on Z by
A2,
A1,
SIN_COS9: 94;
then
A5: ((
- 1)
(#) ((1
/ 2)
(#) ((
#Z 2)
*
arccot )))
is_differentiable_on Z by
A3,
FDIFF_1: 20;
A6: ((
#Z 2)
*
arccot )
is_differentiable_on Z & for x st x
in Z holds ((((
#Z 2)
*
arccot )
`| Z)
. x)
= (
- ((2
* ((
arccot
. x)
#Z (2
- 1)))
/ (1
+ (x
^2 )))) by
A1,
SIN_COS9: 92;
for x st x
in Z holds (((
- ((1
/ 2)
(#) ((
#Z 2)
*
arccot )))
`| Z)
. x)
= ((
arccot
. x)
/ (1
+ (x
^2 )))
proof
let x;
assume
A7: x
in Z;
then
A8: ((1
/ 2)
(#) ((
#Z 2)
*
arccot ))
is_differentiable_in x by
A4,
FDIFF_1: 9;
A9: ((
#Z 2)
*
arccot )
is_differentiable_in x by
A6,
A7,
FDIFF_1: 9;
(((
- ((1
/ 2)
(#) ((
#Z 2)
*
arccot )))
`| Z)
. x)
= (
diff ((
- ((1
/ 2)
(#) ((
#Z 2)
*
arccot ))),x)) by
A5,
A7,
FDIFF_1:def 7
.= ((
- 1)
* (
diff (((1
/ 2)
(#) ((
#Z 2)
*
arccot )),x))) by
A8,
FDIFF_1: 15
.= ((
- 1)
* ((1
/ 2)
* (
diff (((
#Z 2)
*
arccot ),x)))) by
A9,
FDIFF_1: 15
.= ((
- 1)
* ((1
/ 2)
* ((((
#Z 2)
*
arccot )
`| Z)
. x))) by
A6,
A7,
FDIFF_1:def 7
.= ((
- 1)
* ((1
/ 2)
* (
- ((2
* ((
arccot
. x)
#Z (2
- 1)))
/ (1
+ (x
^2 )))))) by
A1,
A7,
SIN_COS9: 92
.= ((
- 1)
* (
- ((1
/ 2)
* ((2
* ((
arccot
. x)
#Z 1))
/ (1
+ (x
^2 ))))))
.= ((
- 1)
* (
- ((1
/ 2)
* ((2
* (
arccot
. x))
/ (1
+ (x
^2 )))))) by
PREPOWER: 35
.= ((
arccot
. x)
/ (1
+ (x
^2 )));
hence thesis;
end;
hence thesis by
A3,
A4,
FDIFF_1: 20;
end;
theorem ::
INTEGR13:45
A
c= Z & (for x st x
in Z holds (f1
. x)
= 1) & f
= (
arccot
/ (f1
+ (
#Z 2))) & Z
c=
].(
- 1), 1.[ & Z
c= (
dom ((
#Z 2)
*
arccot )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
- ((1
/ 2)
(#) ((
#Z 2)
*
arccot )))
. (
upper_bound A))
- ((
- ((1
/ 2)
(#) ((
#Z 2)
*
arccot )))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f1
. x)
= 1) & f
= (
arccot
/ (f1
+ (
#Z 2))) & Z
c=
].(
- 1), 1.[ & Z
c= (
dom ((
#Z 2)
*
arccot )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
- ((1
/ 2)
(#) ((
#Z 2)
*
arccot )))
is_differentiable_on Z by
A1,
Th44;
Z
c= ((
dom
arccot )
/\ ((
dom (f1
+ (
#Z 2)))
\ ((f1
+ (
#Z 2))
"
{
0 }))) by
A1,
RFUNCT_1:def 1;
then Z
c= ((
dom (f1
+ (
#Z 2)))
\ ((f1
+ (
#Z 2))
"
{
0 })) by
XBOOLE_1: 18;
then
A4: Z
c= (
dom ((f1
+ (
#Z 2))
^ )) by
RFUNCT_1:def 2;
(
dom ((f1
+ (
#Z 2))
^ ))
c= (
dom (f1
+ (
#Z 2))) by
RFUNCT_1: 1;
then
A5: Z
c= (
dom (f1
+ (
#Z 2))) by
A4;
A6: for x st x
in Z holds (f
. x)
= ((
arccot
. x)
/ (1
+ (x
^2 )))
proof
let x;
assume
A7: x
in Z;
then ((
arccot
/ (f1
+ (
#Z 2)))
. x)
= ((
arccot
. x)
/ ((f1
+ (
#Z 2))
. x)) by
A1,
RFUNCT_1:def 1
.= ((
arccot
. x)
/ ((f1
. x)
+ ((
#Z 2)
. x))) by
A5,
A7,
VALUED_1:def 1
.= ((
arccot
. x)
/ ((f1
. x)
+ (x
#Z 2))) by
TAYLOR_1:def 1
.= ((
arccot
. x)
/ (1
+ (x
#Z 2))) by
A1,
A7
.= ((
arccot
. x)
/ (1
+ (x
^2 ))) by
FDIFF_7: 1;
hence thesis by
A1;
end;
A8: for x be
Element of
REAL st x
in (
dom ((
- ((1
/ 2)
(#) ((
#Z 2)
*
arccot )))
`| Z)) holds (((
- ((1
/ 2)
(#) ((
#Z 2)
*
arccot )))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
- ((1
/ 2)
(#) ((
#Z 2)
*
arccot )))
`| Z));
then
A9: x
in Z by
A3,
FDIFF_1:def 7;
then (((
- ((1
/ 2)
(#) ((
#Z 2)
*
arccot )))
`| Z)
. x)
= ((
arccot
. x)
/ (1
+ (x
^2 ))) by
A1,
Th44
.= (f
. x) by
A6,
A9;
hence thesis;
end;
(
dom ((
- ((1
/ 2)
(#) ((
#Z 2)
*
arccot )))
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
- ((1
/ 2)
(#) ((
#Z 2)
*
arccot )))
`| Z)
= f by
A8,
PARTFUN1: 5;
hence thesis by
A1,
A2,
Th44,
INTEGRA5: 13;
end;
theorem ::
INTEGR13:46
A
c= Z & (for x st x
in Z holds (f1
. x)
= 1) & f
= (
arctan
+ ((
id Z)
/ (f1
+ (
#Z 2)))) & Z
c=
].(
- 1), 1.[ & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= ((((
id Z)
(#)
arctan )
. (
upper_bound A))
- (((
id Z)
(#)
arctan )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f1
. x)
= 1) & f
= (
arctan
+ ((
id Z)
/ (f1
+ (
#Z 2)))) & Z
c=
].(
- 1), 1.[ & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
Z
= ((
dom
arctan )
/\ (
dom ((
id Z)
/ (f1
+ (
#Z 2))))) by
A1,
VALUED_1:def 1;
then
A3: Z
c= (
dom
arctan ) & Z
c= (
dom ((
id Z)
/ (f1
+ (
#Z 2)))) by
XBOOLE_1: 18;
then Z
c= ((
dom (
id Z))
/\ ((
dom (f1
+ (
#Z 2)))
\ ((f1
+ (
#Z 2))
"
{
0 }))) by
RFUNCT_1:def 1;
then
A4: Z
c= ((
dom (f1
+ (
#Z 2)))
\ ((f1
+ (
#Z 2))
"
{
0 })) by
XBOOLE_1: 18;
A5: ((
id Z)
(#)
arctan )
is_differentiable_on Z by
A1,
SIN_COS9: 95;
A6: Z
c= (
dom ((f1
+ (
#Z 2))
^ )) by
A4,
RFUNCT_1:def 2;
(
dom ((f1
+ (
#Z 2))
^ ))
c= (
dom (f1
+ (
#Z 2))) by
RFUNCT_1: 1;
then
A7: Z
c= (
dom (f1
+ (
#Z 2))) by
A6;
A8: for x st x
in Z holds (f
. x)
= ((
arctan
. x)
+ (x
/ (1
+ (x
^2 ))))
proof
let x;
assume
A9: x
in Z;
then ((
arctan
+ ((
id Z)
/ (f1
+ (
#Z 2))))
. x)
= ((
arctan
. x)
+ (((
id Z)
/ (f1
+ (
#Z 2)))
. x)) by
A1,
VALUED_1:def 1
.= ((
arctan
. x)
+ (((
id Z)
. x)
/ ((f1
+ (
#Z 2))
. x))) by
A3,
A9,
RFUNCT_1:def 1
.= ((
arctan
. x)
+ (x
/ ((f1
+ (
#Z 2))
. x))) by
A9,
FUNCT_1: 18
.= ((
arctan
. x)
+ (x
/ ((f1
. x)
+ ((
#Z 2)
. x)))) by
A7,
A9,
VALUED_1:def 1
.= ((
arctan
. x)
+ (x
/ (1
+ ((
#Z 2)
. x)))) by
A1,
A9
.= ((
arctan
. x)
+ (x
/ (1
+ (x
#Z 2)))) by
TAYLOR_1:def 1
.= ((
arctan
. x)
+ (x
/ (1
+ (x
^2 )))) by
FDIFF_7: 1;
hence thesis by
A1;
end;
A10: for x be
Element of
REAL st x
in (
dom (((
id Z)
(#)
arctan )
`| Z)) holds ((((
id Z)
(#)
arctan )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((
id Z)
(#)
arctan )
`| Z));
then
A11: x
in Z by
A5,
FDIFF_1:def 7;
then ((((
id Z)
(#)
arctan )
`| Z)
. x)
= ((
arctan
. x)
+ (x
/ (1
+ (x
^2 )))) by
A1,
SIN_COS9: 95
.= (f
. x) by
A8,
A11;
hence thesis;
end;
(
dom (((
id Z)
(#)
arctan )
`| Z))
= (
dom f) by
A1,
A5,
FDIFF_1:def 7;
then (((
id Z)
(#)
arctan )
`| Z)
= f by
A10,
PARTFUN1: 5;
hence thesis by
A1,
A2,
INTEGRA5: 13,
SIN_COS9: 95;
end;
theorem ::
INTEGR13:47
A
c= Z & (for x st x
in Z holds (f1
. x)
= 1) & f
= (
arccot
- ((
id Z)
/ (f1
+ (
#Z 2)))) & Z
c=
].(
- 1), 1.[ & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= ((((
id Z)
(#)
arccot )
. (
upper_bound A))
- (((
id Z)
(#)
arccot )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f1
. x)
= 1) & f
= (
arccot
- ((
id Z)
/ (f1
+ (
#Z 2)))) & Z
c=
].(
- 1), 1.[ & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
Z
= ((
dom
arccot )
/\ (
dom ((
id Z)
/ (f1
+ (
#Z 2))))) by
A1,
VALUED_1: 12;
then
A3: Z
c= (
dom
arccot ) & Z
c= (
dom ((
id Z)
/ (f1
+ (
#Z 2)))) by
XBOOLE_1: 18;
then Z
c= ((
dom (
id Z))
/\ ((
dom (f1
+ (
#Z 2)))
\ ((f1
+ (
#Z 2))
"
{
0 }))) by
RFUNCT_1:def 1;
then
A4: Z
c= ((
dom (f1
+ (
#Z 2)))
\ ((f1
+ (
#Z 2))
"
{
0 })) by
XBOOLE_1: 18;
A5: ((
id Z)
(#)
arccot )
is_differentiable_on Z by
A1,
SIN_COS9: 96;
A6: Z
c= (
dom ((f1
+ (
#Z 2))
^ )) by
A4,
RFUNCT_1:def 2;
(
dom ((f1
+ (
#Z 2))
^ ))
c= (
dom (f1
+ (
#Z 2))) by
RFUNCT_1: 1;
then
A7: Z
c= (
dom (f1
+ (
#Z 2))) by
A6;
A8: for x st x
in Z holds (f
. x)
= ((
arccot
. x)
- (x
/ (1
+ (x
^2 ))))
proof
let x;
assume
A9: x
in Z;
then ((
arccot
- ((
id Z)
/ (f1
+ (
#Z 2))))
. x)
= ((
arccot
. x)
- (((
id Z)
/ (f1
+ (
#Z 2)))
. x)) by
A1,
VALUED_1: 13
.= ((
arccot
. x)
- (((
id Z)
. x)
/ ((f1
+ (
#Z 2))
. x))) by
A3,
A9,
RFUNCT_1:def 1
.= ((
arccot
. x)
- (x
/ ((f1
+ (
#Z 2))
. x))) by
A9,
FUNCT_1: 18
.= ((
arccot
. x)
- (x
/ ((f1
. x)
+ ((
#Z 2)
. x)))) by
A7,
A9,
VALUED_1:def 1
.= ((
arccot
. x)
- (x
/ (1
+ ((
#Z 2)
. x)))) by
A1,
A9
.= ((
arccot
. x)
- (x
/ (1
+ (x
#Z 2)))) by
TAYLOR_1:def 1
.= ((
arccot
. x)
- (x
/ (1
+ (x
^2 )))) by
FDIFF_7: 1;
hence thesis by
A1;
end;
A10: for x be
Element of
REAL st x
in (
dom (((
id Z)
(#)
arccot )
`| Z)) holds ((((
id Z)
(#)
arccot )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((
id Z)
(#)
arccot )
`| Z));
then
A11: x
in Z by
A5,
FDIFF_1:def 7;
then ((((
id Z)
(#)
arccot )
`| Z)
. x)
= ((
arccot
. x)
- (x
/ (1
+ (x
^2 )))) by
A1,
SIN_COS9: 96
.= (f
. x) by
A11,
A8;
hence thesis;
end;
(
dom (((
id Z)
(#)
arccot )
`| Z))
= (
dom f) by
A1,
A5,
FDIFF_1:def 7;
then (((
id Z)
(#)
arccot )
`| Z)
= f by
A10,
PARTFUN1: 5;
hence thesis by
A1,
A2,
INTEGRA5: 13,
SIN_COS9: 96;
end;
theorem ::
INTEGR13:48
A
c= Z & Z
c=
].(
- 1), 1.[ & f
= ((
exp_R
*
arctan )
/ (f1
+ (
#Z 2))) & (for x st x
in Z holds (f1
. x)
= 1) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
exp_R
*
arctan )
. (
upper_bound A))
- ((
exp_R
*
arctan )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & Z
c=
].(
- 1), 1.[ & f
= ((
exp_R
*
arctan )
/ (f1
+ (
#Z 2))) & (for x st x
in Z holds (f1
. x)
= 1) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
Z
= ((
dom (
exp_R
*
arctan ))
/\ ((
dom (f1
+ (
#Z 2)))
\ ((f1
+ (
#Z 2))
"
{
0 }))) by
A1,
RFUNCT_1:def 1;
then
A3: Z
c= (
dom (
exp_R
*
arctan )) & Z
c= ((
dom (f1
+ (
#Z 2)))
\ ((f1
+ (
#Z 2))
"
{
0 })) by
XBOOLE_1: 18;
then
A4: Z
c= (
dom ((f1
+ (
#Z 2))
^ )) by
RFUNCT_1:def 2;
(
dom ((f1
+ (
#Z 2))
^ ))
c= (
dom (f1
+ (
#Z 2))) by
RFUNCT_1: 1;
then
A5: Z
c= (
dom (f1
+ (
#Z 2))) by
A4;
A6: (
exp_R
*
arctan )
is_differentiable_on Z by
A1,
A3,
SIN_COS9: 119;
A7: for x st x
in Z holds (f
. x)
= ((
exp_R
. (
arctan
. x))
/ (1
+ (x
^2 )))
proof
let x;
assume
A8: x
in Z;
then (((
exp_R
*
arctan )
/ (f1
+ (
#Z 2)))
. x)
= (((
exp_R
*
arctan )
. x)
/ ((f1
+ (
#Z 2))
. x)) by
A1,
RFUNCT_1:def 1
.= ((
exp_R
. (
arctan
. x))
/ ((f1
+ (
#Z 2))
. x)) by
A3,
A8,
FUNCT_1: 12
.= ((
exp_R
. (
arctan
. x))
/ ((f1
. x)
+ ((
#Z 2)
. x))) by
A5,
A8,
VALUED_1:def 1
.= ((
exp_R
. (
arctan
. x))
/ (1
+ ((
#Z 2)
. x))) by
A1,
A8
.= ((
exp_R
. (
arctan
. x))
/ (1
+ (x
#Z 2))) by
TAYLOR_1:def 1
.= ((
exp_R
. (
arctan
. x))
/ (1
+ (x
^2 ))) by
FDIFF_7: 1;
hence thesis by
A1;
end;
A9: for x be
Element of
REAL st x
in (
dom ((
exp_R
*
arctan )
`| Z)) holds (((
exp_R
*
arctan )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
exp_R
*
arctan )
`| Z));
then
A10: x
in Z by
A6,
FDIFF_1:def 7;
then (((
exp_R
*
arctan )
`| Z)
. x)
= ((
exp_R
. (
arctan
. x))
/ (1
+ (x
^2 ))) by
A1,
A3,
SIN_COS9: 119
.= (f
. x) by
A10,
A7;
hence thesis;
end;
(
dom ((
exp_R
*
arctan )
`| Z))
= (
dom f) by
A1,
A6,
FDIFF_1:def 7;
then ((
exp_R
*
arctan )
`| Z)
= f by
A9,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13,
SIN_COS9: 119;
end;
theorem ::
INTEGR13:49
A
c= Z & Z
c=
].(
- 1), 1.[ & f
= (
- ((
exp_R
*
arccot )
/ (f1
+ (
#Z 2)))) & (for x st x
in Z holds (f1
. x)
= 1) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
exp_R
*
arccot )
. (
upper_bound A))
- ((
exp_R
*
arccot )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & Z
c=
].(
- 1), 1.[ & f
= (
- ((
exp_R
*
arccot )
/ (f1
+ (
#Z 2)))) & (for x st x
in Z holds (f1
. x)
= 1) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: Z
= (
dom ((
exp_R
*
arccot )
/ (f1
+ (
#Z 2)))) by
A1,
VALUED_1: 8;
then Z
= ((
dom (
exp_R
*
arccot ))
/\ ((
dom (f1
+ (
#Z 2)))
\ ((f1
+ (
#Z 2))
"
{
0 }))) by
RFUNCT_1:def 1;
then
A4: Z
c= (
dom (
exp_R
*
arccot )) & Z
c= ((
dom (f1
+ (
#Z 2)))
\ ((f1
+ (
#Z 2))
"
{
0 })) by
XBOOLE_1: 18;
then
A5: Z
c= (
dom ((f1
+ (
#Z 2))
^ )) by
RFUNCT_1:def 2;
(
dom ((f1
+ (
#Z 2))
^ ))
c= (
dom (f1
+ (
#Z 2))) by
RFUNCT_1: 1;
then
A6: Z
c= (
dom (f1
+ (
#Z 2))) by
A5;
A7: (
exp_R
*
arccot )
is_differentiable_on Z by
A1,
A4,
SIN_COS9: 120;
A8: for x st x
in Z holds (f
. x)
= (
- ((
exp_R
. (
arccot
. x))
/ (1
+ (x
^2 ))))
proof
let x;
assume
A9: x
in Z;
((
- ((
exp_R
*
arccot )
/ (f1
+ (
#Z 2))))
. x)
= (
- (((
exp_R
*
arccot )
/ (f1
+ (
#Z 2)))
. x)) by
VALUED_1: 8
.= (
- (((
exp_R
*
arccot )
. x)
/ ((f1
+ (
#Z 2))
. x))) by
A9,
A3,
RFUNCT_1:def 1
.= (
- ((
exp_R
. (
arccot
. x))
/ ((f1
+ (
#Z 2))
. x))) by
A4,
A9,
FUNCT_1: 12
.= (
- ((
exp_R
. (
arccot
. x))
/ ((f1
. x)
+ ((
#Z 2)
. x)))) by
A6,
A9,
VALUED_1:def 1
.= (
- ((
exp_R
. (
arccot
. x))
/ (1
+ ((
#Z 2)
. x)))) by
A1,
A9
.= (
- ((
exp_R
. (
arccot
. x))
/ (1
+ (x
#Z 2)))) by
TAYLOR_1:def 1
.= (
- ((
exp_R
. (
arccot
. x))
/ (1
+ (x
^2 )))) by
FDIFF_7: 1;
hence thesis by
A1;
end;
A10: for x be
Element of
REAL st x
in (
dom ((
exp_R
*
arccot )
`| Z)) holds (((
exp_R
*
arccot )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
exp_R
*
arccot )
`| Z));
then
A11: x
in Z by
A7,
FDIFF_1:def 7;
then (((
exp_R
*
arccot )
`| Z)
. x)
= (
- ((
exp_R
. (
arccot
. x))
/ (1
+ (x
^2 )))) by
A1,
A4,
SIN_COS9: 120
.= (f
. x) by
A11,
A8;
hence thesis;
end;
(
dom ((
exp_R
*
arccot )
`| Z))
= (
dom f) by
A1,
A7,
FDIFF_1:def 7;
then ((
exp_R
*
arccot )
`| Z)
= f by
A10,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A4,
INTEGRA5: 13,
SIN_COS9: 120;
end;
theorem ::
INTEGR13:50
Th50: Z
c= (
dom (
exp_R
*
arccot )) & Z
c=
].(
- 1), 1.[ implies (
- (
exp_R
*
arccot ))
is_differentiable_on Z & for x st x
in Z holds (((
- (
exp_R
*
arccot ))
`| Z)
. x)
= ((
exp_R
. (
arccot
. x))
/ (1
+ (x
^2 )))
proof
assume
A1: Z
c= (
dom (
exp_R
*
arccot )) & Z
c=
].(
- 1), 1.[;
then
A2: Z
c= (
dom (
- (
exp_R
*
arccot ))) by
VALUED_1: 8;
A3: (
exp_R
*
arccot )
is_differentiable_on Z by
A1,
SIN_COS9: 120;
then
A4: ((
- 1)
(#) (
exp_R
*
arccot ))
is_differentiable_on Z by
A2,
FDIFF_1: 20;
for x st x
in Z holds (((
- (
exp_R
*
arccot ))
`| Z)
. x)
= ((
exp_R
. (
arccot
. x))
/ (1
+ (x
^2 )))
proof
let x;
assume
A5: x
in Z;
A6:
arccot
is_differentiable_on Z by
A1,
SIN_COS9: 82;
then
A7:
arccot
is_differentiable_in x by
A5,
FDIFF_1: 9;
A8:
exp_R
is_differentiable_in (
arccot
. x) by
SIN_COS: 65;
A9: (
exp_R
*
arccot )
is_differentiable_in x by
A3,
A5,
FDIFF_1: 9;
(((
- (
exp_R
*
arccot ))
`| Z)
. x)
= (
diff ((
- (
exp_R
*
arccot )),x)) by
A4,
A5,
FDIFF_1:def 7
.= ((
- 1)
* (
diff ((
exp_R
*
arccot ),x))) by
A9,
FDIFF_1: 15
.= ((
- 1)
* ((
diff (
exp_R ,(
arccot
. x)))
* (
diff (
arccot ,x)))) by
A7,
A8,
FDIFF_2: 13
.= ((
- 1)
* ((
diff (
exp_R ,(
arccot
. x)))
* ((
arccot
`| Z)
. x))) by
A5,
A6,
FDIFF_1:def 7
.= ((
- 1)
* ((
diff (
exp_R ,(
arccot
. x)))
* (
- (1
/ (1
+ (x
^2 )))))) by
A5,
A1,
SIN_COS9: 82
.= ((
- 1)
* (
- ((
diff (
exp_R ,(
arccot
. x)))
* (1
/ (1
+ (x
^2 ))))))
.= ((
exp_R
. (
arccot
. x))
/ (1
+ (x
^2 ))) by
SIN_COS: 65;
hence thesis;
end;
hence thesis by
A2,
A3,
FDIFF_1: 20;
end;
theorem ::
INTEGR13:51
A
c= Z & Z
c=
].(
- 1), 1.[ & f
= ((
exp_R
*
arccot )
/ (f1
+ (
#Z 2))) & (for x st x
in Z holds (f1
. x)
= 1) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
- (
exp_R
*
arccot ))
. (
upper_bound A))
- ((
- (
exp_R
*
arccot ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & Z
c=
].(
- 1), 1.[ & f
= ((
exp_R
*
arccot )
/ (f1
+ (
#Z 2))) & (for x st x
in Z holds (f1
. x)
= 1) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
Z
= ((
dom (
exp_R
*
arccot ))
/\ ((
dom (f1
+ (
#Z 2)))
\ ((f1
+ (
#Z 2))
"
{
0 }))) by
A1,
RFUNCT_1:def 1;
then
A3: Z
c= (
dom (
exp_R
*
arccot )) & Z
c= ((
dom (f1
+ (
#Z 2)))
\ ((f1
+ (
#Z 2))
"
{
0 })) by
XBOOLE_1: 18;
then
A4: Z
c= (
dom ((f1
+ (
#Z 2))
^ )) by
RFUNCT_1:def 2;
(
dom ((f1
+ (
#Z 2))
^ ))
c= (
dom (f1
+ (
#Z 2))) by
RFUNCT_1: 1;
then
A5: Z
c= (
dom (f1
+ (
#Z 2))) by
A4;
A6: (
- (
exp_R
*
arccot ))
is_differentiable_on Z by
A1,
A3,
Th50;
A7: for x st x
in Z holds (f
. x)
= ((
exp_R
. (
arccot
. x))
/ (1
+ (x
^2 )))
proof
let x;
assume
A8: x
in Z;
then (((
exp_R
*
arccot )
/ (f1
+ (
#Z 2)))
. x)
= (((
exp_R
*
arccot )
. x)
/ ((f1
+ (
#Z 2))
. x)) by
A1,
RFUNCT_1:def 1
.= ((
exp_R
. (
arccot
. x))
/ ((f1
+ (
#Z 2))
. x)) by
A3,
A8,
FUNCT_1: 12
.= ((
exp_R
. (
arccot
. x))
/ ((f1
. x)
+ ((
#Z 2)
. x))) by
A5,
A8,
VALUED_1:def 1
.= ((
exp_R
. (
arccot
. x))
/ (1
+ ((
#Z 2)
. x))) by
A1,
A8
.= ((
exp_R
. (
arccot
. x))
/ (1
+ (x
#Z 2))) by
TAYLOR_1:def 1
.= ((
exp_R
. (
arccot
. x))
/ (1
+ (x
^2 ))) by
FDIFF_7: 1;
hence thesis by
A1;
end;
A9: for x be
Element of
REAL st x
in (
dom ((
- (
exp_R
*
arccot ))
`| Z)) holds (((
- (
exp_R
*
arccot ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
- (
exp_R
*
arccot ))
`| Z));
then
A10: x
in Z by
A6,
FDIFF_1:def 7;
then (((
- (
exp_R
*
arccot ))
`| Z)
. x)
= ((
exp_R
. (
arccot
. x))
/ (1
+ (x
^2 ))) by
A1,
A3,
Th50
.= (f
. x) by
A7,
A10;
hence thesis;
end;
(
dom ((
- (
exp_R
*
arccot ))
`| Z))
= (
dom f) by
A1,
A6,
FDIFF_1:def 7;
then ((
- (
exp_R
*
arccot ))
`| Z)
= f by
A9,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
Th50,
INTEGRA5: 13;
end;
theorem ::
INTEGR13:52
A
c= Z & Z
c= (
dom (
ln
* (f1
+ f2))) & f
= ((
id Z)
/ (f1
+ f2)) & f2
= (
#Z 2) & (for x st x
in Z holds (f1
. x)
= 1) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= ((((1
/ 2)
(#) (
ln
* (f1
+ f2)))
. (
upper_bound A))
- (((1
/ 2)
(#) (
ln
* (f1
+ f2)))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & Z
c= (
dom (
ln
* (f1
+ f2))) & f
= ((
id Z)
/ (f1
+ f2)) & f2
= (
#Z 2) & (for x st x
in Z holds (f1
. x)
= 1) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: Z
c= (
dom ((1
/ 2)
(#) (
ln
* (f1
+ f2)))) by
A1,
VALUED_1:def 5;
Z
c= ((
dom (
id Z))
/\ ((
dom (f1
+ f2))
\ ((f1
+ f2)
"
{
0 }))) by
A1,
RFUNCT_1:def 1;
then Z
c= ((
dom (f1
+ f2))
\ ((f1
+ f2)
"
{
0 })) by
XBOOLE_1: 18;
then
A4: Z
c= (
dom ((f1
+ f2)
^ )) by
RFUNCT_1:def 2;
(
dom ((f1
+ f2)
^ ))
c= (
dom (f1
+ f2)) by
RFUNCT_1: 1;
then
A5: Z
c= (
dom (f1
+ f2)) by
A4;
A6: ((1
/ 2)
(#) (
ln
* (f1
+ f2)))
is_differentiable_on Z by
A1,
A3,
SIN_COS9: 102;
A7: for x st x
in Z holds (f
. x)
= (x
/ (1
+ (x
^2 )))
proof
let x;
assume
A8: x
in Z;
then (((
id Z)
/ (f1
+ f2))
. x)
= (((
id Z)
. x)
/ ((f1
+ f2)
. x)) by
A1,
RFUNCT_1:def 1
.= (x
/ ((f1
+ f2)
. x)) by
A8,
FUNCT_1: 18
.= (x
/ ((f1
. x)
+ (f2
. x))) by
A5,
A8,
VALUED_1:def 1
.= (x
/ (1
+ ((
#Z 2)
. x))) by
A1,
A8
.= (x
/ (1
+ (x
#Z 2))) by
TAYLOR_1:def 1
.= (x
/ (1
+ (x
^2 ))) by
FDIFF_7: 1;
hence thesis by
A1;
end;
A9: for x be
Element of
REAL st x
in (
dom (((1
/ 2)
(#) (
ln
* (f1
+ f2)))
`| Z)) holds ((((1
/ 2)
(#) (
ln
* (f1
+ f2)))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((1
/ 2)
(#) (
ln
* (f1
+ f2)))
`| Z));
then
A10: x
in Z by
A6,
FDIFF_1:def 7;
then ((((1
/ 2)
(#) (
ln
* (f1
+ f2)))
`| Z)
. x)
= (x
/ (1
+ (x
^2 ))) by
A1,
A3,
SIN_COS9: 102
.= (f
. x) by
A10,
A7;
hence thesis;
end;
(
dom (((1
/ 2)
(#) (
ln
* (f1
+ f2)))
`| Z))
= (
dom f) by
A1,
A6,
FDIFF_1:def 7;
then (((1
/ 2)
(#) (
ln
* (f1
+ f2)))
`| Z)
= f by
A9,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A6,
INTEGRA5: 13;
end;
theorem ::
INTEGR13:53
A
c= Z & Z
c= (
dom (
ln
* (f1
+ f2))) & f
= ((
id Z)
/ (a
(#) (f1
+ f2))) & (for x st x
in Z holds (h
. x)
= (x
/ a) & (f1
. x)
= 1) & a
<>
0 & f2
= ((
#Z 2)
* h) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= ((((a
/ 2)
(#) (
ln
* (f1
+ f2)))
. (
upper_bound A))
- (((a
/ 2)
(#) (
ln
* (f1
+ f2)))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & Z
c= (
dom (
ln
* (f1
+ f2))) & f
= ((
id Z)
/ (a
(#) (f1
+ f2))) & (for x st x
in Z holds (h
. x)
= (x
/ a) & (f1
. x)
= 1) & a
<>
0 & f2
= ((
#Z 2)
* h) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: Z
c= (
dom ((a
/ 2)
(#) (
ln
* (f1
+ f2)))) by
A1,
VALUED_1:def 5;
A4: for x st x
in Z holds (f1
. x)
= 1 by
A1;
A5: for x st x
in Z holds (h
. x)
= (x
/ a) by
A1;
then
A6: ((a
/ 2)
(#) (
ln
* (f1
+ f2)))
is_differentiable_on Z by
A1,
A3,
A4,
SIN_COS9: 108;
A7: for x st x
in Z holds (f
. x)
= (x
/ (a
* (1
+ ((x
/ a)
^2 ))))
proof
let x;
assume
A8: x
in Z;
then
A9: x
in (
dom (f1
+ f2)) by
A1,
FUNCT_1: 11;
(
dom (f1
+ f2))
= ((
dom f1)
/\ (
dom f2)) by
VALUED_1:def 1;
then (
dom (f1
+ f2))
c= (
dom f2) by
XBOOLE_1: 18;
then
A10: x
in (
dom f2) by
A9;
(((
id Z)
/ (a
(#) (f1
+ f2)))
. x)
= (((
id Z)
. x)
/ ((a
(#) (f1
+ f2))
. x)) by
A1,
A8,
RFUNCT_1:def 1
.= (x
/ ((a
(#) (f1
+ f2))
. x)) by
A8,
FUNCT_1: 18
.= (x
/ (a
* ((f1
+ f2)
. x))) by
VALUED_1: 6
.= (x
/ (a
* ((f1
. x)
+ (f2
. x)))) by
A9,
VALUED_1:def 1
.= (x
/ (a
* (1
+ (f2
. x)))) by
A4,
A8
.= (x
/ (a
* (1
+ ((
#Z 2)
. (h
. x))))) by
A1,
A10,
FUNCT_1: 12
.= (x
/ (a
* (1
+ ((h
. x)
#Z 2)))) by
TAYLOR_1:def 1
.= (x
/ (a
* (1
+ ((h
. x)
^2 )))) by
FDIFF_7: 1
.= (x
/ (a
* (1
+ ((x
/ a)
^2 )))) by
A5,
A8;
hence thesis by
A1;
end;
A11: for x be
Element of
REAL st x
in (
dom (((a
/ 2)
(#) (
ln
* (f1
+ f2)))
`| Z)) holds ((((a
/ 2)
(#) (
ln
* (f1
+ f2)))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((a
/ 2)
(#) (
ln
* (f1
+ f2)))
`| Z));
then
A12: x
in Z by
A6,
FDIFF_1:def 7;
then ((((a
/ 2)
(#) (
ln
* (f1
+ f2)))
`| Z)
. x)
= (x
/ (a
* (1
+ ((x
/ a)
^2 )))) by
A1,
A3,
A4,
A5,
SIN_COS9: 108
.= (f
. x) by
A7,
A12;
hence thesis;
end;
(
dom (((a
/ 2)
(#) (
ln
* (f1
+ f2)))
`| Z))
= (
dom f) by
A1,
A6,
FDIFF_1:def 7;
then (((a
/ 2)
(#) (
ln
* (f1
+ f2)))
`| Z)
= f by
A11,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A6,
INTEGRA5: 13;
end;
theorem ::
INTEGR13:54
Th54: Z
c= (
dom (((
id Z)
^ )
(#)
arctan )) & Z
c=
].(
- 1), 1.[ implies (
- (((
id Z)
^ )
(#)
arctan ))
is_differentiable_on Z & for x st x
in Z holds (((
- (((
id Z)
^ )
(#)
arctan ))
`| Z)
. x)
= (((
arctan
. x)
/ (x
^2 ))
- (1
/ (x
* (1
+ (x
^2 )))))
proof
set f = (
id Z);
assume that
A1: Z
c= (
dom ((f
^ )
(#)
arctan )) and
A2: Z
c=
].(
- 1), 1.[;
A3: Z
c= (
dom (
- ((f
^ )
(#)
arctan ))) by
A1,
VALUED_1: 8;
A4: for x st x
in Z holds (f
. x)
= x by
FUNCT_1: 18;
Z
c= ((
dom (f
^ ))
/\ (
dom
arctan )) by
A1,
VALUED_1:def 4;
then
A5: Z
c= (
dom (f
^ )) by
XBOOLE_1: 18;
A6: not
0
in Z
proof
assume
A7:
0
in Z;
(
dom ((
id Z)
^ ))
= ((
dom (
id Z))
\ ((
id Z)
"
{
0 })) by
RFUNCT_1:def 2
.= ((
dom (
id Z))
\
{
0 }) by
Lm1,
A7;
then not
0
in
{
0 } by
A7,
A5,
XBOOLE_0:def 5;
hence thesis by
TARSKI:def 1;
end;
then
A8: (f
^ )
is_differentiable_on Z & for x st x
in Z holds (((f
^ )
`| Z)
. x)
= (
- (1
/ (x
^2 ))) by
FDIFF_5: 4;
A9:
arctan
is_differentiable_on Z by
A2,
SIN_COS9: 81;
A10: ((f
^ )
(#)
arctan )
is_differentiable_on Z by
A1,
A2,
A6,
SIN_COS9: 129;
then
A11: ((
- 1)
(#) ((f
^ )
(#)
arctan ))
is_differentiable_on Z by
A3,
FDIFF_1: 20;
for x st x
in Z holds (((
- ((f
^ )
(#)
arctan ))
`| Z)
. x)
= (((
arctan
. x)
/ (x
^2 ))
- (1
/ (x
* (1
+ (x
^2 )))))
proof
let x;
assume
A12: x
in Z;
then
A13: ((f
^ )
(#)
arctan )
is_differentiable_in x by
A10,
FDIFF_1: 9;
A14: (f
^ )
is_differentiable_in x by
A8,
A12,
FDIFF_1: 9;
A15:
arctan
is_differentiable_in x by
A9,
A12,
FDIFF_1: 9;
(((
- ((f
^ )
(#)
arctan ))
`| Z)
. x)
= (
diff ((
- ((f
^ )
(#)
arctan )),x)) by
A11,
A12,
FDIFF_1:def 7
.= ((
- 1)
* (
diff (((f
^ )
(#)
arctan ),x))) by
A13,
FDIFF_1: 15
.= ((
- 1)
* (((
arctan
. x)
* (
diff ((f
^ ),x)))
+ (((f
^ )
. x)
* (
diff (
arctan ,x))))) by
A14,
A15,
FDIFF_1: 16
.= ((
- 1)
* (((
arctan
. x)
* (((f
^ )
`| Z)
. x))
+ (((f
^ )
. x)
* (
diff (
arctan ,x))))) by
A8,
A12,
FDIFF_1:def 7
.= ((
- 1)
* (((
arctan
. x)
* (
- (1
/ (x
^2 ))))
+ (((f
^ )
. x)
* (
diff (
arctan ,x))))) by
A6,
A12,
FDIFF_5: 4
.= ((
- 1)
* ((
- ((
arctan
. x)
* (1
/ (x
^2 ))))
+ (((f
^ )
. x)
* ((
arctan
`| Z)
. x)))) by
A9,
A12,
FDIFF_1:def 7
.= ((
- 1)
* ((
- (((
arctan
. x)
* 1)
/ (x
^2 )))
+ (((f
^ )
. x)
* (1
/ (1
+ (x
^2 )))))) by
A2,
A12,
SIN_COS9: 81
.= ((
- 1)
* ((
- ((
arctan
. x)
/ (x
^2 )))
+ (((f
. x)
" )
* (1
/ (1
+ (x
^2 )))))) by
A5,
A12,
RFUNCT_1:def 2
.= ((
- 1)
* ((
- ((
arctan
. x)
/ (x
^2 )))
+ ((1
/ x)
* (1
/ (1
+ (x
^2 )))))) by
A4,
A12
.= ((
- 1)
* ((
- ((
arctan
. x)
/ (x
^2 )))
+ ((1
* 1)
/ (x
* (1
+ (x
^2 )))))) by
XCMPLX_1: 76
.= (((
arctan
. x)
/ (x
^2 ))
- (1
/ (x
* (1
+ (x
^2 )))));
hence thesis;
end;
hence thesis by
A3,
A10,
FDIFF_1: 20;
end;
theorem ::
INTEGR13:55
Th55: Z
c= (
dom (((
id Z)
^ )
(#)
arccot )) & Z
c=
].(
- 1), 1.[ implies (
- (((
id Z)
^ )
(#)
arccot ))
is_differentiable_on Z & for x st x
in Z holds (((
- (((
id Z)
^ )
(#)
arccot ))
`| Z)
. x)
= (((
arccot
. x)
/ (x
^2 ))
+ (1
/ (x
* (1
+ (x
^2 )))))
proof
set f = (
id Z);
assume that
A1: Z
c= (
dom ((f
^ )
(#)
arccot )) and
A2: Z
c=
].(
- 1), 1.[;
A3: Z
c= (
dom (
- ((f
^ )
(#)
arccot ))) by
A1,
VALUED_1: 8;
A4: for x st x
in Z holds (f
. x)
= x by
FUNCT_1: 18;
Z
c= ((
dom (f
^ ))
/\ (
dom
arccot )) by
A1,
VALUED_1:def 4;
then
A5: Z
c= (
dom (f
^ )) by
XBOOLE_1: 18;
A6: not
0
in Z
proof
assume
A7:
0
in Z;
(
dom ((
id Z)
^ ))
= ((
dom (
id Z))
\ ((
id Z)
"
{
0 })) by
RFUNCT_1:def 2
.= ((
dom (
id Z))
\
{
0 }) by
Lm1,
A7;
then not
0
in
{
0 } by
A7,
A5,
XBOOLE_0:def 5;
hence thesis by
TARSKI:def 1;
end;
then
A8: (f
^ )
is_differentiable_on Z & for x st x
in Z holds (((f
^ )
`| Z)
. x)
= (
- (1
/ (x
^2 ))) by
FDIFF_5: 4;
A9:
arccot
is_differentiable_on Z by
A2,
SIN_COS9: 82;
A10: ((f
^ )
(#)
arccot )
is_differentiable_on Z by
A6,
A1,
A2,
SIN_COS9: 130;
then
A11: ((
- 1)
(#) ((f
^ )
(#)
arccot ))
is_differentiable_on Z by
A3,
FDIFF_1: 20;
for x st x
in Z holds (((
- ((f
^ )
(#)
arccot ))
`| Z)
. x)
= (((
arccot
. x)
/ (x
^2 ))
+ (1
/ (x
* (1
+ (x
^2 )))))
proof
let x;
assume
A12: x
in Z;
then
A13: ((f
^ )
(#)
arccot )
is_differentiable_in x by
A10,
FDIFF_1: 9;
A14: (f
^ )
is_differentiable_in x by
A8,
A12,
FDIFF_1: 9;
A15:
arccot
is_differentiable_in x by
A9,
A12,
FDIFF_1: 9;
(((
- ((f
^ )
(#)
arccot ))
`| Z)
. x)
= (
diff ((
- ((f
^ )
(#)
arccot )),x)) by
A11,
A12,
FDIFF_1:def 7
.= ((
- 1)
* (
diff (((f
^ )
(#)
arccot ),x))) by
A13,
FDIFF_1: 15
.= ((
- 1)
* (((
arccot
. x)
* (
diff ((f
^ ),x)))
+ (((f
^ )
. x)
* (
diff (
arccot ,x))))) by
A14,
A15,
FDIFF_1: 16
.= ((
- 1)
* (((
arccot
. x)
* (((f
^ )
`| Z)
. x))
+ (((f
^ )
. x)
* (
diff (
arccot ,x))))) by
A8,
A12,
FDIFF_1:def 7
.= ((
- 1)
* (((
arccot
. x)
* (
- (1
/ (x
^2 ))))
+ (((f
^ )
. x)
* (
diff (
arccot ,x))))) by
A12,
A6,
FDIFF_5: 4
.= ((
- 1)
* ((
- ((
arccot
. x)
* (1
/ (x
^2 ))))
+ (((f
^ )
. x)
* ((
arccot
`| Z)
. x)))) by
A9,
A12,
FDIFF_1:def 7
.= ((
- 1)
* ((
- ((
arccot
. x)
* (1
/ (x
^2 ))))
+ (((f
^ )
. x)
* (
- (1
/ (1
+ (x
^2 ))))))) by
A2,
A12,
SIN_COS9: 82
.= ((
- 1)
* ((
- (((
arccot
. x)
* 1)
/ (x
^2 )))
- (((f
^ )
. x)
* (1
/ (1
+ (x
^2 ))))))
.= ((
- 1)
* ((
- ((
arccot
. x)
/ (x
^2 )))
- (((f
. x)
" )
* (1
/ (1
+ (x
^2 )))))) by
A5,
A12,
RFUNCT_1:def 2
.= ((
- 1)
* ((
- ((
arccot
. x)
/ (x
^2 )))
- ((1
/ x)
* (1
/ (1
+ (x
^2 )))))) by
A4,
A12
.= ((
- 1)
* ((
- ((
arccot
. x)
/ (x
^2 )))
- ((1
* 1)
/ (x
* (1
+ (x
^2 )))))) by
XCMPLX_1: 76
.= (((
arccot
. x)
/ (x
^2 ))
+ (1
/ (x
* (1
+ (x
^2 )))));
hence thesis;
end;
hence thesis by
A11;
end;
theorem ::
INTEGR13:56
A
c= Z & (for x st x
in Z holds (f1
. x)
= 1) & f
= ((
arctan
/ (
#Z 2))
- (((
id Z)
(#) (f1
+ (
#Z 2)))
^ )) & Z
c= (
dom (((
id Z)
^ )
(#)
arctan )) & Z
c=
].(
- 1), 1.[ & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
- (((
id Z)
^ )
(#)
arctan ))
. (
upper_bound A))
- ((
- (((
id Z)
^ )
(#)
arctan ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f1
. x)
= 1) & f
= ((
arctan
/ (
#Z 2))
- (((
id Z)
(#) (f1
+ (
#Z 2)))
^ )) & Z
c= (
dom (((
id Z)
^ )
(#)
arctan )) & Z
c=
].(
- 1), 1.[ & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
- (((
id Z)
^ )
(#)
arctan ))
is_differentiable_on Z by
A1,
Th54;
A4: Z
= ((
dom (
arctan
/ (
#Z 2)))
/\ (
dom (((
id Z)
(#) (f1
+ (
#Z 2)))
^ ))) by
A1,
VALUED_1: 12;
then
A5: Z
c= (
dom (
arctan
/ (
#Z 2))) by
XBOOLE_1: 18;
A6: Z
c= (
dom (((
id Z)
(#) (f1
+ (
#Z 2)))
^ )) by
A4,
XBOOLE_1: 18;
(
dom (((
id Z)
(#) (f1
+ (
#Z 2)))
^ ))
c= (
dom ((
id Z)
(#) (f1
+ (
#Z 2)))) by
RFUNCT_1: 1;
then Z
c= (
dom ((
id Z)
(#) (f1
+ (
#Z 2)))) by
A6;
then Z
c= ((
dom (
id Z))
/\ (
dom (f1
+ (
#Z 2)))) by
VALUED_1:def 4;
then
A7: Z
c= (
dom (f1
+ (
#Z 2))) by
XBOOLE_1: 18;
A8: for x st x
in Z holds (f
. x)
= (((
arctan
. x)
/ (x
^2 ))
- (1
/ (x
* (1
+ (x
^2 )))))
proof
let x;
assume
A9: x
in Z;
then
A10: x
in (
dom (((
id Z)
(#) (f1
+ (
#Z 2)))
^ )) by
A6;
(((
arctan
/ (
#Z 2))
- (((
id Z)
(#) (f1
+ (
#Z 2)))
^ ))
. x)
= (((
arctan
/ (
#Z 2))
. x)
- ((((
id Z)
(#) (f1
+ (
#Z 2)))
^ )
. x)) by
A1,
A9,
VALUED_1: 13
.= (((
arctan
/ (
#Z 2))
. x)
- (1
/ (((
id Z)
(#) (f1
+ (
#Z 2)))
. x))) by
A10,
RFUNCT_1:def 2
.= (((
arctan
/ (
#Z 2))
. x)
- (1
/ (((
id Z)
. x)
* ((f1
+ (
#Z 2))
. x)))) by
VALUED_1: 5
.= (((
arctan
/ (
#Z 2))
. x)
- (1
/ (((
id Z)
. x)
* ((f1
. x)
+ ((
#Z 2)
. x))))) by
A7,
A9,
VALUED_1:def 1
.= (((
arctan
/ (
#Z 2))
. x)
- (1
/ (x
* ((f1
. x)
+ ((
#Z 2)
. x))))) by
A9,
FUNCT_1: 18
.= (((
arctan
/ (
#Z 2))
. x)
- (1
/ (x
* (1
+ ((
#Z 2)
. x))))) by
A1,
A9
.= (((
arctan
. x)
/ ((
#Z 2)
. x))
- (1
/ (x
* (1
+ ((
#Z 2)
. x))))) by
A9,
A5,
RFUNCT_1:def 1
.= (((
arctan
. x)
/ (x
#Z 2))
- (1
/ (x
* (1
+ ((
#Z 2)
. x))))) by
TAYLOR_1:def 1
.= (((
arctan
. x)
/ (x
#Z 2))
- (1
/ (x
* (1
+ (x
#Z 2))))) by
TAYLOR_1:def 1
.= (((
arctan
. x)
/ (x
^2 ))
- (1
/ (x
* (1
+ (x
#Z 2))))) by
FDIFF_7: 1
.= (((
arctan
. x)
/ (x
^2 ))
- (1
/ (x
* (1
+ (x
^2 ))))) by
FDIFF_7: 1;
hence thesis by
A1;
end;
A11: for x be
Element of
REAL st x
in (
dom ((
- (((
id Z)
^ )
(#)
arctan ))
`| Z)) holds (((
- (((
id Z)
^ )
(#)
arctan ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
- (((
id Z)
^ )
(#)
arctan ))
`| Z));
then
A12: x
in Z by
A3,
FDIFF_1:def 7;
then (((
- (((
id Z)
^ )
(#)
arctan ))
`| Z)
. x)
= (((
arctan
. x)
/ (x
^2 ))
- (1
/ (x
* (1
+ (x
^2 ))))) by
A1,
Th54
.= (f
. x) by
A8,
A12;
hence thesis;
end;
(
dom ((
- (((
id Z)
^ )
(#)
arctan ))
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
- (((
id Z)
^ )
(#)
arctan ))
`| Z)
= f by
A11,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13;
end;
theorem ::
INTEGR13:57
A
c= Z & (for x st x
in Z holds (f1
. x)
= 1) & f
= ((
arccot
/ (
#Z 2))
+ (((
id Z)
(#) (f1
+ (
#Z 2)))
^ )) & Z
c= (
dom (((
id Z)
^ )
(#)
arccot )) & Z
c=
].(
- 1), 1.[ & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
- (((
id Z)
^ )
(#)
arccot ))
. (
upper_bound A))
- ((
- (((
id Z)
^ )
(#)
arccot ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f1
. x)
= 1) & f
= ((
arccot
/ (
#Z 2))
+ (((
id Z)
(#) (f1
+ (
#Z 2)))
^ )) & Z
c= (
dom (((
id Z)
^ )
(#)
arccot )) & Z
c=
].(
- 1), 1.[ & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
- (((
id Z)
^ )
(#)
arccot ))
is_differentiable_on Z by
A1,
Th55;
A4: Z
= ((
dom (
arccot
/ (
#Z 2)))
/\ (
dom (((
id Z)
(#) (f1
+ (
#Z 2)))
^ ))) by
A1,
VALUED_1:def 1;
then
A5: Z
c= (
dom (
arccot
/ (
#Z 2))) by
XBOOLE_1: 18;
A6: Z
c= (
dom (((
id Z)
(#) (f1
+ (
#Z 2)))
^ )) by
A4,
XBOOLE_1: 18;
(
dom (((
id Z)
(#) (f1
+ (
#Z 2)))
^ ))
c= (
dom ((
id Z)
(#) (f1
+ (
#Z 2)))) by
RFUNCT_1: 1;
then Z
c= (
dom ((
id Z)
(#) (f1
+ (
#Z 2)))) by
A6;
then Z
c= ((
dom (
id Z))
/\ (
dom (f1
+ (
#Z 2)))) by
VALUED_1:def 4;
then
A7: Z
c= (
dom (f1
+ (
#Z 2))) by
XBOOLE_1: 18;
A8: for x st x
in Z holds (f
. x)
= (((
arccot
. x)
/ (x
^2 ))
+ (1
/ (x
* (1
+ (x
^2 )))))
proof
let x;
assume
A9: x
in Z;
then
A10: x
in (
dom (((
id Z)
(#) (f1
+ (
#Z 2)))
^ )) by
A6;
(((
arccot
/ (
#Z 2))
+ (((
id Z)
(#) (f1
+ (
#Z 2)))
^ ))
. x)
= (((
arccot
/ (
#Z 2))
. x)
+ ((((
id Z)
(#) (f1
+ (
#Z 2)))
^ )
. x)) by
A1,
A9,
VALUED_1:def 1
.= (((
arccot
/ (
#Z 2))
. x)
+ (1
/ (((
id Z)
(#) (f1
+ (
#Z 2)))
. x))) by
A10,
RFUNCT_1:def 2
.= (((
arccot
/ (
#Z 2))
. x)
+ (1
/ (((
id Z)
. x)
* ((f1
+ (
#Z 2))
. x)))) by
VALUED_1: 5
.= (((
arccot
/ (
#Z 2))
. x)
+ (1
/ (((
id Z)
. x)
* ((f1
. x)
+ ((
#Z 2)
. x))))) by
A7,
A9,
VALUED_1:def 1
.= (((
arccot
/ (
#Z 2))
. x)
+ (1
/ (x
* ((f1
. x)
+ ((
#Z 2)
. x))))) by
A9,
FUNCT_1: 18
.= (((
arccot
/ (
#Z 2))
. x)
+ (1
/ (x
* (1
+ ((
#Z 2)
. x))))) by
A1,
A9
.= (((
arccot
. x)
/ ((
#Z 2)
. x))
+ (1
/ (x
* (1
+ ((
#Z 2)
. x))))) by
A9,
A5,
RFUNCT_1:def 1
.= (((
arccot
. x)
/ (x
#Z 2))
+ (1
/ (x
* (1
+ ((
#Z 2)
. x))))) by
TAYLOR_1:def 1
.= (((
arccot
. x)
/ (x
#Z 2))
+ (1
/ (x
* (1
+ (x
#Z 2))))) by
TAYLOR_1:def 1
.= (((
arccot
. x)
/ (x
^2 ))
+ (1
/ (x
* (1
+ (x
#Z 2))))) by
FDIFF_7: 1
.= (((
arccot
. x)
/ (x
^2 ))
+ (1
/ (x
* (1
+ (x
^2 ))))) by
FDIFF_7: 1;
hence thesis by
A1;
end;
A11: for x be
Element of
REAL st x
in (
dom ((
- (((
id Z)
^ )
(#)
arccot ))
`| Z)) holds (((
- (((
id Z)
^ )
(#)
arccot ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
- (((
id Z)
^ )
(#)
arccot ))
`| Z));
then
A12: x
in Z by
A3,
FDIFF_1:def 7;
then (((
- (((
id Z)
^ )
(#)
arccot ))
`| Z)
. x)
= (((
arccot
. x)
/ (x
^2 ))
+ (1
/ (x
* (1
+ (x
^2 ))))) by
A1,
Th55
.= (f
. x) by
A12,
A8;
hence thesis;
end;
(
dom ((
- (((
id Z)
^ )
(#)
arccot ))
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
- (((
id Z)
^ )
(#)
arccot ))
`| Z)
= f by
A11,
PARTFUN1: 5;
hence thesis by
A1,
A2,
Th55,
INTEGRA5: 13;
end;