integr13.miz
    
    begin
    
    reserve a,x for
    Real;
    
    reserve n for
    Element of 
    NAT ; 
    
    reserve A for non
    empty
    closed_interval  
    Subset of 
    REAL ; 
    
    reserve f,h,f1,f2 for
    PartFunc of 
    REAL , 
    REAL ; 
    
    reserve Z for
    open  
    Subset of 
    REAL ; 
    
    
    
    
    
    Lm1: 
    0  
    in Z implies (( 
    id Z) 
    "  
    {
    0 }) 
    =  
    {
    0 } 
    
    proof
    
      assume
    
      
    
    A1: 
    0  
    in Z; 
    
      thus ((
    id Z) 
    "  
    {
    0 }) 
    c=  
    {
    0 } 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A2: x 
    in (( 
    id Z) 
    "  
    {
    0 }); 
    
        then x
    in ( 
    dom ( 
    id Z)) by 
    FUNCT_1:def 7;
    
        then
    
        
    
    A3: x 
    in Z; 
    
        ((
    id Z) 
    . x) 
    in  
    {
    0 } by 
    A2,
    FUNCT_1:def 7;
    
        hence thesis by
    A3,
    FUNCT_1: 18;
    
      end;
    
      let x be
    object;
    
      assume x
    in  
    {
    0 }; 
    
      then
    
      
    
    A4: x 
    =  
    0 by 
    TARSKI:def 1;
    
      then ((
    id Z) 
    . x) 
    =  
    0 by 
    A1,
    FUNCT_1: 18;
    
      then
    
      
    
    A5: (( 
    id Z) 
    . x) 
    in  
    {
    0 } by 
    TARSKI:def 1;
    
      x
    in ( 
    dom ( 
    id Z)) by 
    A1,
    A4;
    
      hence thesis by
    A5,
    FUNCT_1:def 7;
    
    end;
    
    
    
    
    
    Lm2: ( 
    right_open_halfline  
    0 ) 
    = { g where g be 
    Real : 
    0  
    < g } by 
    XXREAL_1: 230;
    
    theorem :: 
    
    INTEGR13:1
    
    A
    c= Z & f 
    = (( 
    sin  
    (#)  
    cos ) 
    ^ ) & Z 
    c= ( 
    dom ( 
    ln  
    *  
    tan )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = ((( 
    ln  
    *  
    tan ) 
    . ( 
    upper_bound A)) 
    - (( 
    ln  
    *  
    tan ) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & f 
    = (( 
    sin  
    (#)  
    cos ) 
    ^ ) & Z 
    c= ( 
    dom ( 
    ln  
    *  
    tan )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      
    
      
    
    A3: ( 
    ln  
    *  
    tan ) 
    is_differentiable_on Z by 
    A1,
    FDIFF_8: 18;
    
      
    
      
    
    A4: for x st x 
    in Z holds (f 
    . x) 
    = (1 
    / (( 
    sin  
    . x) 
    * ( 
    cos  
    . x))) 
    
      proof
    
        let x;
    
        assume x
    in Z; 
    
        
    
        then (((
    sin  
    (#)  
    cos ) 
    ^ ) 
    . x) 
    = (1 
    / (( 
    sin  
    (#)  
    cos ) 
    . x)) by 
    A1,
    RFUNCT_1:def 2
    
        .= (1
    / (( 
    sin  
    . x) 
    * ( 
    cos  
    . x))) by 
    VALUED_1: 5;
    
        hence thesis by
    A1;
    
      end;
    
      
    
      
    
    A5: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (( 
    ln  
    *  
    tan ) 
    `| Z)) holds ((( 
    ln  
    *  
    tan ) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (( 
    ln  
    *  
    tan ) 
    `| Z)); 
    
        then
    
        
    
    A6: x 
    in Z by 
    A3,
    FDIFF_1:def 7;
    
        
    
        then (((
    ln  
    *  
    tan ) 
    `| Z) 
    . x) 
    = (1 
    / (( 
    sin  
    . x) 
    * ( 
    cos  
    . x))) by 
    A1,
    FDIFF_8: 18
    
        .= (f
    . x) by 
    A4,
    A6;
    
        hence thesis;
    
      end;
    
      (
    dom (( 
    ln  
    *  
    tan ) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A3,
    FDIFF_1:def 7;
    
      then ((
    ln  
    *  
    tan ) 
    `| Z) 
    = f by 
    A5,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    FDIFF_8: 18,
    INTEGRA5: 13;
    
    end;
    
    theorem :: 
    
    INTEGR13:2
    
    A
    c= Z & f 
    = ( 
    - (( 
    sin  
    (#)  
    cos ) 
    ^ )) & Z 
    c= ( 
    dom ( 
    ln  
    *  
    cot )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = ((( 
    ln  
    *  
    cot ) 
    . ( 
    upper_bound A)) 
    - (( 
    ln  
    *  
    cot ) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & f 
    = ( 
    - (( 
    sin  
    (#)  
    cos ) 
    ^ )) & Z 
    c= ( 
    dom ( 
    ln  
    *  
    cot )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      
    
      
    
    A3: ( 
    ln  
    *  
    cot ) 
    is_differentiable_on Z by 
    A1,
    FDIFF_8: 19;
    
      
    
      
    
    A4: Z 
    = ( 
    dom (( 
    sin  
    (#)  
    cos ) 
    ^ )) by 
    A1,
    VALUED_1: 8;
    
      
    
      
    
    A5: for x st x 
    in Z holds (f 
    . x) 
    = ( 
    - (1 
    / (( 
    sin  
    . x) 
    * ( 
    cos  
    . x)))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A6: x 
    in Z; 
    
        ((
    - (( 
    sin  
    (#)  
    cos ) 
    ^ )) 
    . x) 
    = ( 
    - ((( 
    sin  
    (#)  
    cos ) 
    ^ ) 
    . x)) by 
    VALUED_1: 8
    
        .= (
    - (1 
    / (( 
    sin  
    (#)  
    cos ) 
    . x))) by 
    A4,
    A6,
    RFUNCT_1:def 2
    
        .= (
    - (1 
    / (( 
    sin  
    . x) 
    * ( 
    cos  
    . x)))) by 
    VALUED_1: 5;
    
        hence thesis by
    A1;
    
      end;
    
      
    
      
    
    A7: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (( 
    ln  
    *  
    cot ) 
    `| Z)) holds ((( 
    ln  
    *  
    cot ) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (( 
    ln  
    *  
    cot ) 
    `| Z)); 
    
        then
    
        
    
    A8: x 
    in Z by 
    A3,
    FDIFF_1:def 7;
    
        
    
        then (((
    ln  
    *  
    cot ) 
    `| Z) 
    . x) 
    = ( 
    - (1 
    / (( 
    sin  
    . x) 
    * ( 
    cos  
    . x)))) by 
    A1,
    FDIFF_8: 19
    
        .= (f
    . x) by 
    A5,
    A8;
    
        hence thesis;
    
      end;
    
      (
    dom (( 
    ln  
    *  
    cot ) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A3,
    FDIFF_1:def 7;
    
      then ((
    ln  
    *  
    cot ) 
    `| Z) 
    = f by 
    A7,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    FDIFF_8: 19,
    INTEGRA5: 13;
    
    end;
    
    theorem :: 
    
    INTEGR13:3
    
    A
    c= Z & f 
    = (2 
    (#) ( 
    exp_R  
    (#)  
    sin )) & Z 
    c= ( 
    dom ( 
    exp_R  
    (#) ( 
    sin  
    -  
    cos ))) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = ((( 
    exp_R  
    (#) ( 
    sin  
    -  
    cos )) 
    . ( 
    upper_bound A)) 
    - (( 
    exp_R  
    (#) ( 
    sin  
    -  
    cos )) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & f 
    = (2 
    (#) ( 
    exp_R  
    (#)  
    sin )) & Z 
    c= ( 
    dom ( 
    exp_R  
    (#) ( 
    sin  
    -  
    cos ))) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      
    
      
    
    A3: ( 
    exp_R  
    (#) ( 
    sin  
    -  
    cos )) 
    is_differentiable_on Z by 
    A1,
    FDIFF_7: 40;
    
      
    
      
    
    A4: for x st x 
    in Z holds (f 
    . x) 
    = ((2 
    * ( 
    exp_R  
    . x)) 
    * ( 
    sin  
    . x)) 
    
      proof
    
        let x;
    
        assume x
    in Z; 
    
        ((2
    (#) ( 
    exp_R  
    (#)  
    sin )) 
    . x) 
    = (2 
    * (( 
    exp_R  
    (#)  
    sin ) 
    . x)) by 
    VALUED_1: 6
    
        .= (2
    * (( 
    exp_R  
    . x) 
    * ( 
    sin  
    . x))) by 
    VALUED_1: 5;
    
        hence thesis by
    A1;
    
      end;
    
      
    
      
    
    A5: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (( 
    exp_R  
    (#) ( 
    sin  
    -  
    cos )) 
    `| Z)) holds ((( 
    exp_R  
    (#) ( 
    sin  
    -  
    cos )) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (( 
    exp_R  
    (#) ( 
    sin  
    -  
    cos )) 
    `| Z)); 
    
        then
    
        
    
    A6: x 
    in Z by 
    A3,
    FDIFF_1:def 7;
    
        
    
        then (((
    exp_R  
    (#) ( 
    sin  
    -  
    cos )) 
    `| Z) 
    . x) 
    = ((2 
    * ( 
    exp_R  
    . x)) 
    * ( 
    sin  
    . x)) by 
    A1,
    FDIFF_7: 40
    
        .= (f
    . x) by 
    A4,
    A6;
    
        hence thesis;
    
      end;
    
      (
    dom (( 
    exp_R  
    (#) ( 
    sin  
    -  
    cos )) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A3,
    FDIFF_1:def 7;
    
      then ((
    exp_R  
    (#) ( 
    sin  
    -  
    cos )) 
    `| Z) 
    = f by 
    A5,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    FDIFF_7: 40,
    INTEGRA5: 13;
    
    end;
    
    theorem :: 
    
    INTEGR13:4
    
    A
    c= Z & f 
    = (2 
    (#) ( 
    exp_R  
    (#)  
    cos )) & Z 
    c= ( 
    dom ( 
    exp_R  
    (#) ( 
    sin  
    +  
    cos ))) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = ((( 
    exp_R  
    (#) ( 
    sin  
    +  
    cos )) 
    . ( 
    upper_bound A)) 
    - (( 
    exp_R  
    (#) ( 
    sin  
    +  
    cos )) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & f 
    = (2 
    (#) ( 
    exp_R  
    (#)  
    cos )) & Z 
    c= ( 
    dom ( 
    exp_R  
    (#) ( 
    sin  
    +  
    cos ))) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      
    
      
    
    A3: ( 
    exp_R  
    (#) ( 
    sin  
    +  
    cos )) 
    is_differentiable_on Z by 
    A1,
    FDIFF_7: 41;
    
      
    
      
    
    A4: for x st x 
    in Z holds (f 
    . x) 
    = ((2 
    * ( 
    exp_R  
    . x)) 
    * ( 
    cos  
    . x)) 
    
      proof
    
        let x;
    
        assume x
    in Z; 
    
        ((2
    (#) ( 
    exp_R  
    (#)  
    cos )) 
    . x) 
    = (2 
    * (( 
    exp_R  
    (#)  
    cos ) 
    . x)) by 
    VALUED_1: 6
    
        .= (2
    * (( 
    exp_R  
    . x) 
    * ( 
    cos  
    . x))) by 
    VALUED_1: 5;
    
        hence thesis by
    A1;
    
      end;
    
      
    
      
    
    A5: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (( 
    exp_R  
    (#) ( 
    sin  
    +  
    cos )) 
    `| Z)) holds ((( 
    exp_R  
    (#) ( 
    sin  
    +  
    cos )) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (( 
    exp_R  
    (#) ( 
    sin  
    +  
    cos )) 
    `| Z)); 
    
        then
    
        
    
    A6: x 
    in Z by 
    A3,
    FDIFF_1:def 7;
    
        
    
        then (((
    exp_R  
    (#) ( 
    sin  
    +  
    cos )) 
    `| Z) 
    . x) 
    = ((2 
    * ( 
    exp_R  
    . x)) 
    * ( 
    cos  
    . x)) by 
    A1,
    FDIFF_7: 41
    
        .= (f
    . x) by 
    A6,
    A4;
    
        hence thesis;
    
      end;
    
      (
    dom (( 
    exp_R  
    (#) ( 
    sin  
    +  
    cos )) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A3,
    FDIFF_1:def 7;
    
      then ((
    exp_R  
    (#) ( 
    sin  
    +  
    cos )) 
    `| Z) 
    = f by 
    A5,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    FDIFF_7: 41,
    INTEGRA5: 13;
    
    end;
    
    theorem :: 
    
    INTEGR13:5
    
    A
    c= Z & Z 
    = ( 
    dom ( 
    cos  
    -  
    sin )) & (( 
    cos  
    -  
    sin ) 
    | A) is 
    continuous implies ( 
    integral (( 
    cos  
    -  
    sin ),A)) 
    = ((( 
    sin  
    +  
    cos ) 
    . ( 
    upper_bound A)) 
    - (( 
    sin  
    +  
    cos ) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & Z 
    = ( 
    dom ( 
    cos  
    -  
    sin )) & (( 
    cos  
    -  
    sin ) 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: ( 
    cos  
    -  
    sin ) 
    is_integrable_on A & (( 
    cos  
    -  
    sin ) 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      Z
    = (( 
    dom  
    cos ) 
    /\ ( 
    dom  
    sin )) by 
    A1,
    VALUED_1: 12;
    
      then
    
      
    
    A3: Z 
    c= ( 
    dom ( 
    sin  
    +  
    cos )) by 
    VALUED_1:def 1;
    
      then
    
      
    
    A4: ( 
    sin  
    +  
    cos ) 
    is_differentiable_on Z by 
    FDIFF_7: 38;
    
      
    
      
    
    A5: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (( 
    sin  
    +  
    cos ) 
    `| Z)) holds ((( 
    sin  
    +  
    cos ) 
    `| Z) 
    . x) 
    = (( 
    cos  
    -  
    sin ) 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (( 
    sin  
    +  
    cos ) 
    `| Z)); 
    
        then
    
        
    
    A6: x 
    in Z by 
    A4,
    FDIFF_1:def 7;
    
        
    
        then (((
    sin  
    +  
    cos ) 
    `| Z) 
    . x) 
    = (( 
    cos  
    . x) 
    - ( 
    sin  
    . x)) by 
    A3,
    FDIFF_7: 38
    
        .= ((
    cos  
    -  
    sin ) 
    . x) by 
    A1,
    A6,
    VALUED_1: 13;
    
        hence thesis;
    
      end;
    
      (
    dom (( 
    sin  
    +  
    cos ) 
    `| Z)) 
    = ( 
    dom ( 
    cos  
    -  
    sin )) by 
    A1,
    A4,
    FDIFF_1:def 7;
    
      then ((
    sin  
    +  
    cos ) 
    `| Z) 
    = ( 
    cos  
    -  
    sin ) by 
    A5,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    A3,
    FDIFF_7: 38,
    INTEGRA5: 13;
    
    end;
    
    theorem :: 
    
    INTEGR13:6
    
    A
    c= Z & Z 
    = ( 
    dom ( 
    cos  
    +  
    sin )) & (( 
    cos  
    +  
    sin ) 
    | A) is 
    continuous implies ( 
    integral (( 
    cos  
    +  
    sin ),A)) 
    = ((( 
    sin  
    -  
    cos ) 
    . ( 
    upper_bound A)) 
    - (( 
    sin  
    -  
    cos ) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & Z 
    = ( 
    dom ( 
    cos  
    +  
    sin )) & (( 
    cos  
    +  
    sin ) 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: ( 
    cos  
    +  
    sin ) 
    is_integrable_on A & (( 
    cos  
    +  
    sin ) 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      Z
    = (( 
    dom  
    cos ) 
    /\ ( 
    dom  
    sin )) by 
    A1,
    VALUED_1:def 1;
    
      then
    
      
    
    A3: Z 
    c= ( 
    dom ( 
    sin  
    -  
    cos )) by 
    VALUED_1: 12;
    
      then
    
      
    
    A4: ( 
    sin  
    -  
    cos ) 
    is_differentiable_on Z by 
    FDIFF_7: 39;
    
      
    
      
    
    A5: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (( 
    sin  
    -  
    cos ) 
    `| Z)) holds ((( 
    sin  
    -  
    cos ) 
    `| Z) 
    . x) 
    = (( 
    cos  
    +  
    sin ) 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (( 
    sin  
    -  
    cos ) 
    `| Z)); 
    
        then
    
        
    
    A6: x 
    in Z by 
    A4,
    FDIFF_1:def 7;
    
        
    
        then (((
    sin  
    -  
    cos ) 
    `| Z) 
    . x) 
    = (( 
    cos  
    . x) 
    + ( 
    sin  
    . x)) by 
    A3,
    FDIFF_7: 39
    
        .= ((
    cos  
    +  
    sin ) 
    . x) by 
    A1,
    A6,
    VALUED_1:def 1;
    
        hence thesis;
    
      end;
    
      (
    dom (( 
    sin  
    -  
    cos ) 
    `| Z)) 
    = ( 
    dom ( 
    cos  
    +  
    sin )) by 
    A1,
    A4,
    FDIFF_1:def 7;
    
      then ((
    sin  
    -  
    cos ) 
    `| Z) 
    = ( 
    cos  
    +  
    sin ) by 
    A5,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    A3,
    FDIFF_7: 39,
    INTEGRA5: 13;
    
    end;
    
    theorem :: 
    
    INTEGR13:7
    
    
    
    
    
    Th7: Z 
    c= ( 
    dom (( 
    - (1 
    / 2)) 
    (#) (( 
    sin  
    +  
    cos ) 
    /  
    exp_R ))) implies (( 
    - (1 
    / 2)) 
    (#) (( 
    sin  
    +  
    cos ) 
    /  
    exp_R )) 
    is_differentiable_on Z & for x st x 
    in Z holds (((( 
    - (1 
    / 2)) 
    (#) (( 
    sin  
    +  
    cos ) 
    /  
    exp_R )) 
    `| Z) 
    . x) 
    = (( 
    sin  
    . x) 
    / ( 
    exp_R  
    . x)) 
    
    proof
    
      assume
    
      
    
    A1: Z 
    c= ( 
    dom (( 
    - (1 
    / 2)) 
    (#) (( 
    sin  
    +  
    cos ) 
    /  
    exp_R ))); 
    
      then
    
      
    
    A2: Z 
    c= ( 
    dom (( 
    sin  
    +  
    cos ) 
    /  
    exp_R )) by 
    VALUED_1:def 5;
    
      then Z
    c= (( 
    dom ( 
    sin  
    +  
    cos )) 
    /\ (( 
    dom  
    exp_R ) 
    \ ( 
    exp_R  
    "  
    {
    0 }))) by 
    RFUNCT_1:def 1;
    
      then
    
      
    
    A3: Z 
    c= ( 
    dom ( 
    sin  
    +  
    cos )) by 
    XBOOLE_1: 18;
    
      then
    
      
    
    A4: ( 
    sin  
    +  
    cos ) 
    is_differentiable_on Z & for x st x 
    in Z holds ((( 
    sin  
    +  
    cos ) 
    `| Z) 
    . x) 
    = (( 
    cos  
    . x) 
    - ( 
    sin  
    . x)) by 
    FDIFF_7: 38;
    
      
    
      
    
    A5: (( 
    sin  
    +  
    cos ) 
    /  
    exp_R ) 
    is_differentiable_on Z by 
    A2,
    FDIFF_7: 42;
    
      then
    
      
    
    A6: (( 
    - (1 
    / 2)) 
    (#) (( 
    sin  
    +  
    cos ) 
    /  
    exp_R )) 
    is_differentiable_on Z by 
    FDIFF_2: 19;
    
      for x st x
    in Z holds (((( 
    - (1 
    / 2)) 
    (#) (( 
    sin  
    +  
    cos ) 
    /  
    exp_R )) 
    `| Z) 
    . x) 
    = (( 
    sin  
    . x) 
    / ( 
    exp_R  
    . x)) 
    
      proof
    
        let x;
    
        
    
        
    
    A7: x 
    in  
    REAL by 
    XREAL_0:def 1;
    
        assume
    
        
    
    A8: x 
    in Z; 
    
        
    
        
    
    A9: 
    exp_R  
    is_differentiable_in x by 
    SIN_COS: 65;
    
        
    
        
    
    A10: ( 
    sin  
    +  
    cos ) 
    is_differentiable_in x by 
    A4,
    A8,
    FDIFF_1: 9;
    
        
    
        
    
    A11: (( 
    sin  
    +  
    cos ) 
    . x) 
    = (( 
    sin  
    . x) 
    + ( 
    cos  
    . x)) by 
    VALUED_1: 1,
    A7;
    
        
    
        
    
    A12: ( 
    exp_R  
    . x) 
    <>  
    0 by 
    SIN_COS: 54;
    
        ((((
    - (1 
    / 2)) 
    (#) (( 
    sin  
    +  
    cos ) 
    /  
    exp_R )) 
    `| Z) 
    . x) 
    = (( 
    - (1 
    / 2)) 
    * ( 
    diff ((( 
    sin  
    +  
    cos ) 
    /  
    exp_R ),x))) by 
    A1,
    A5,
    A8,
    FDIFF_1: 20
    
        .= ((
    - (1 
    / 2)) 
    * (((( 
    diff (( 
    sin  
    +  
    cos ),x)) 
    * ( 
    exp_R  
    . x)) 
    - (( 
    diff ( 
    exp_R ,x)) 
    * (( 
    sin  
    +  
    cos ) 
    . x))) 
    / (( 
    exp_R  
    . x) 
    ^2 ))) by 
    A9,
    A10,
    A12,
    FDIFF_2: 14
    
        .= ((
    - (1 
    / 2)) 
    * (((((( 
    sin  
    +  
    cos ) 
    `| Z) 
    . x) 
    * ( 
    exp_R  
    . x)) 
    - (( 
    diff ( 
    exp_R ,x)) 
    * (( 
    sin  
    +  
    cos ) 
    . x))) 
    / (( 
    exp_R  
    . x) 
    ^2 ))) by 
    A4,
    A8,
    FDIFF_1:def 7
    
        .= ((
    - (1 
    / 2)) 
    * ((((( 
    cos  
    . x) 
    - ( 
    sin  
    . x)) 
    * ( 
    exp_R  
    . x)) 
    - (( 
    diff ( 
    exp_R ,x)) 
    * (( 
    sin  
    +  
    cos ) 
    . x))) 
    / (( 
    exp_R  
    . x) 
    ^2 ))) by 
    A3,
    A8,
    FDIFF_7: 38
    
        .= ((
    - (1 
    / 2)) 
    * ((((( 
    cos  
    . x) 
    - ( 
    sin  
    . x)) 
    * ( 
    exp_R  
    . x)) 
    - (( 
    exp_R  
    . x) 
    * (( 
    sin  
    . x) 
    + ( 
    cos  
    . x)))) 
    / (( 
    exp_R  
    . x) 
    ^2 ))) by 
    A11,
    SIN_COS: 65
    
        .= ((
    - (1 
    / 2)) 
    * (( 
    - (2 
    * ( 
    sin  
    . x))) 
    * (( 
    exp_R  
    . x) 
    / (( 
    exp_R  
    . x) 
    * ( 
    exp_R  
    . x))))) 
    
        .= ((
    - (1 
    / 2)) 
    * (( 
    - (2 
    * ( 
    sin  
    . x))) 
    * ((( 
    exp_R  
    . x) 
    / ( 
    exp_R  
    . x)) 
    / ( 
    exp_R  
    . x)))) by 
    XCMPLX_1: 78
    
        .= ((
    - (1 
    / 2)) 
    * (( 
    - (2 
    * ( 
    sin  
    . x))) 
    * (1 
    / ( 
    exp_R  
    . x)))) by 
    A12,
    XCMPLX_1: 60
    
        .= ((
    sin  
    . x) 
    / ( 
    exp_R  
    . x)); 
    
        hence thesis;
    
      end;
    
      hence thesis by
    A6;
    
    end;
    
    theorem :: 
    
    INTEGR13:8
    
    A
    c= Z & f 
    = ( 
    sin  
    /  
    exp_R ) & Z 
    c= ( 
    dom (( 
    - (1 
    / 2)) 
    (#) (( 
    sin  
    +  
    cos ) 
    /  
    exp_R ))) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = (((( 
    - (1 
    / 2)) 
    (#) (( 
    sin  
    +  
    cos ) 
    /  
    exp_R )) 
    . ( 
    upper_bound A)) 
    - ((( 
    - (1 
    / 2)) 
    (#) (( 
    sin  
    +  
    cos ) 
    /  
    exp_R )) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & f 
    = ( 
    sin  
    /  
    exp_R ) & Z 
    c= ( 
    dom (( 
    - (1 
    / 2)) 
    (#) (( 
    sin  
    +  
    cos ) 
    /  
    exp_R ))) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      
    
      
    
    A3: (( 
    - (1 
    / 2)) 
    (#) (( 
    sin  
    +  
    cos ) 
    /  
    exp_R )) 
    is_differentiable_on Z by 
    A1,
    Th7;
    
      
    
      
    
    A4: for x st x 
    in Z holds (f 
    . x) 
    = (( 
    sin  
    . x) 
    / ( 
    exp_R  
    . x)) by 
    A1,
    RFUNCT_1:def 1;
    
      
    
      
    
    A5: for x be 
    Element of 
    REAL st x 
    in ( 
    dom ((( 
    - (1 
    / 2)) 
    (#) (( 
    sin  
    +  
    cos ) 
    /  
    exp_R )) 
    `| Z)) holds (((( 
    - (1 
    / 2)) 
    (#) (( 
    sin  
    +  
    cos ) 
    /  
    exp_R )) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom ((( 
    - (1 
    / 2)) 
    (#) (( 
    sin  
    +  
    cos ) 
    /  
    exp_R )) 
    `| Z)); 
    
        then
    
        
    
    A6: x 
    in Z by 
    A3,
    FDIFF_1:def 7;
    
        
    
        then ((((
    - (1 
    / 2)) 
    (#) (( 
    sin  
    +  
    cos ) 
    /  
    exp_R )) 
    `| Z) 
    . x) 
    = (( 
    sin  
    . x) 
    / ( 
    exp_R  
    . x)) by 
    A1,
    Th7
    
        .= (f
    . x) by 
    A6,
    A4;
    
        hence thesis;
    
      end;
    
      (
    dom ((( 
    - (1 
    / 2)) 
    (#) (( 
    sin  
    +  
    cos ) 
    /  
    exp_R )) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A3,
    FDIFF_1:def 7;
    
      then (((
    - (1 
    / 2)) 
    (#) (( 
    sin  
    +  
    cos ) 
    /  
    exp_R )) 
    `| Z) 
    = f by 
    A5,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    Th7,
    INTEGRA5: 13;
    
    end;
    
    theorem :: 
    
    INTEGR13:9
    
    
    
    
    
    Th9: Z 
    c= ( 
    dom ((1 
    / 2) 
    (#) (( 
    sin  
    -  
    cos ) 
    /  
    exp_R ))) implies ((1 
    / 2) 
    (#) (( 
    sin  
    -  
    cos ) 
    /  
    exp_R )) 
    is_differentiable_on Z & for x st x 
    in Z holds ((((1 
    / 2) 
    (#) (( 
    sin  
    -  
    cos ) 
    /  
    exp_R )) 
    `| Z) 
    . x) 
    = (( 
    cos  
    . x) 
    / ( 
    exp_R  
    . x)) 
    
    proof
    
      assume
    
      
    
    A1: Z 
    c= ( 
    dom ((1 
    / 2) 
    (#) (( 
    sin  
    -  
    cos ) 
    /  
    exp_R ))); 
    
      then
    
      
    
    A2: Z 
    c= ( 
    dom (( 
    sin  
    -  
    cos ) 
    /  
    exp_R )) by 
    VALUED_1:def 5;
    
      then Z
    c= (( 
    dom ( 
    sin  
    -  
    cos )) 
    /\ (( 
    dom  
    exp_R ) 
    \ ( 
    exp_R  
    "  
    {
    0 }))) by 
    RFUNCT_1:def 1;
    
      then
    
      
    
    A3: Z 
    c= ( 
    dom ( 
    sin  
    -  
    cos )) by 
    XBOOLE_1: 18;
    
      then
    
      
    
    A4: ( 
    sin  
    -  
    cos ) 
    is_differentiable_on Z & for x st x 
    in Z holds ((( 
    sin  
    -  
    cos ) 
    `| Z) 
    . x) 
    = (( 
    cos  
    . x) 
    + ( 
    sin  
    . x)) by 
    FDIFF_7: 39;
    
      
    
      
    
    A5: (( 
    sin  
    -  
    cos ) 
    /  
    exp_R ) 
    is_differentiable_on Z by 
    A2,
    FDIFF_7: 43;
    
      then
    
      
    
    A6: ((1 
    / 2) 
    (#) (( 
    sin  
    -  
    cos ) 
    /  
    exp_R )) 
    is_differentiable_on Z by 
    FDIFF_2: 19;
    
      for x st x
    in Z holds ((((1 
    / 2) 
    (#) (( 
    sin  
    -  
    cos ) 
    /  
    exp_R )) 
    `| Z) 
    . x) 
    = (( 
    cos  
    . x) 
    / ( 
    exp_R  
    . x)) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A7: x 
    in Z; 
    
        
    
        
    
    A8: 
    exp_R  
    is_differentiable_in x by 
    SIN_COS: 65;
    
        
    
        
    
    A9: ( 
    sin  
    -  
    cos ) 
    is_differentiable_in x by 
    A4,
    A7,
    FDIFF_1: 9;
    
        
    
        
    
    A10: (( 
    sin  
    -  
    cos ) 
    . x) 
    = (( 
    sin  
    . x) 
    - ( 
    cos  
    . x)) by 
    A3,
    A7,
    VALUED_1: 13;
    
        
    
        
    
    A11: ( 
    exp_R  
    . x) 
    <>  
    0 by 
    SIN_COS: 54;
    
        ((((1
    / 2) 
    (#) (( 
    sin  
    -  
    cos ) 
    /  
    exp_R )) 
    `| Z) 
    . x) 
    = ((1 
    / 2) 
    * ( 
    diff ((( 
    sin  
    -  
    cos ) 
    /  
    exp_R ),x))) by 
    A1,
    A5,
    A7,
    FDIFF_1: 20
    
        .= ((1
    / 2) 
    * (((( 
    diff (( 
    sin  
    -  
    cos ),x)) 
    * ( 
    exp_R  
    . x)) 
    - (( 
    diff ( 
    exp_R ,x)) 
    * (( 
    sin  
    -  
    cos ) 
    . x))) 
    / (( 
    exp_R  
    . x) 
    ^2 ))) by 
    A8,
    A9,
    A11,
    FDIFF_2: 14
    
        .= ((1
    / 2) 
    * (((((( 
    sin  
    -  
    cos ) 
    `| Z) 
    . x) 
    * ( 
    exp_R  
    . x)) 
    - (( 
    diff ( 
    exp_R ,x)) 
    * (( 
    sin  
    -  
    cos ) 
    . x))) 
    / (( 
    exp_R  
    . x) 
    ^2 ))) by 
    A4,
    A7,
    FDIFF_1:def 7
    
        .= ((1
    / 2) 
    * ((((( 
    cos  
    . x) 
    + ( 
    sin  
    . x)) 
    * ( 
    exp_R  
    . x)) 
    - (( 
    diff ( 
    exp_R ,x)) 
    * (( 
    sin  
    -  
    cos ) 
    . x))) 
    / (( 
    exp_R  
    . x) 
    ^2 ))) by 
    A3,
    A7,
    FDIFF_7: 39
    
        .= ((1
    / 2) 
    * ((((( 
    cos  
    . x) 
    + ( 
    sin  
    . x)) 
    * ( 
    exp_R  
    . x)) 
    - (( 
    exp_R  
    . x) 
    * (( 
    sin  
    . x) 
    - ( 
    cos  
    . x)))) 
    / (( 
    exp_R  
    . x) 
    ^2 ))) by 
    A10,
    SIN_COS: 65
    
        .= ((1
    / 2) 
    * ((2 
    * ( 
    cos  
    . x)) 
    * (( 
    exp_R  
    . x) 
    / (( 
    exp_R  
    . x) 
    * ( 
    exp_R  
    . x))))) 
    
        .= ((1
    / 2) 
    * ((2 
    * ( 
    cos  
    . x)) 
    * ((( 
    exp_R  
    . x) 
    / ( 
    exp_R  
    . x)) 
    / ( 
    exp_R  
    . x)))) by 
    XCMPLX_1: 78
    
        .= ((1
    / 2) 
    * ((2 
    * ( 
    cos  
    . x)) 
    * (1 
    / ( 
    exp_R  
    . x)))) by 
    A11,
    XCMPLX_1: 60
    
        .= ((
    cos  
    . x) 
    / ( 
    exp_R  
    . x)); 
    
        hence thesis;
    
      end;
    
      hence thesis by
    A6;
    
    end;
    
    theorem :: 
    
    INTEGR13:10
    
    A
    c= Z & f 
    = ( 
    cos  
    /  
    exp_R ) & Z 
    c= ( 
    dom ((1 
    / 2) 
    (#) (( 
    sin  
    -  
    cos ) 
    /  
    exp_R ))) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = ((((1 
    / 2) 
    (#) (( 
    sin  
    -  
    cos ) 
    /  
    exp_R )) 
    . ( 
    upper_bound A)) 
    - (((1 
    / 2) 
    (#) (( 
    sin  
    -  
    cos ) 
    /  
    exp_R )) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & f 
    = ( 
    cos  
    /  
    exp_R ) & Z 
    c= ( 
    dom ((1 
    / 2) 
    (#) (( 
    sin  
    -  
    cos ) 
    /  
    exp_R ))) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      
    
      
    
    A3: ((1 
    / 2) 
    (#) (( 
    sin  
    -  
    cos ) 
    /  
    exp_R )) 
    is_differentiable_on Z by 
    A1,
    Th9;
    
      
    
      
    
    A4: for x st x 
    in Z holds (f 
    . x) 
    = (( 
    cos  
    . x) 
    / ( 
    exp_R  
    . x)) by 
    A1,
    RFUNCT_1:def 1;
    
      
    
      
    
    A5: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (((1 
    / 2) 
    (#) (( 
    sin  
    -  
    cos ) 
    /  
    exp_R )) 
    `| Z)) holds ((((1 
    / 2) 
    (#) (( 
    sin  
    -  
    cos ) 
    /  
    exp_R )) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (((1 
    / 2) 
    (#) (( 
    sin  
    -  
    cos ) 
    /  
    exp_R )) 
    `| Z)); 
    
        then
    
        
    
    A6: x 
    in Z by 
    A3,
    FDIFF_1:def 7;
    
        
    
        then ((((1
    / 2) 
    (#) (( 
    sin  
    -  
    cos ) 
    /  
    exp_R )) 
    `| Z) 
    . x) 
    = (( 
    cos  
    . x) 
    / ( 
    exp_R  
    . x)) by 
    A1,
    Th9
    
        .= (f
    . x) by 
    A4,
    A6;
    
        hence thesis;
    
      end;
    
      (
    dom (((1 
    / 2) 
    (#) (( 
    sin  
    -  
    cos ) 
    /  
    exp_R )) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A3,
    FDIFF_1:def 7;
    
      then (((1
    / 2) 
    (#) (( 
    sin  
    -  
    cos ) 
    /  
    exp_R )) 
    `| Z) 
    = f by 
    A5,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    Th9,
    INTEGRA5: 13;
    
    end;
    
    theorem :: 
    
    INTEGR13:11
    
    A
    c= Z & f 
    = ( 
    exp_R  
    (#) ( 
    sin  
    +  
    cos )) & Z 
    c= ( 
    dom ( 
    exp_R  
    (#)  
    sin )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = ((( 
    exp_R  
    (#)  
    sin ) 
    . ( 
    upper_bound A)) 
    - (( 
    exp_R  
    (#)  
    sin ) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & f 
    = ( 
    exp_R  
    (#) ( 
    sin  
    +  
    cos )) & Z 
    c= ( 
    dom ( 
    exp_R  
    (#)  
    sin )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      
    
      
    
    A3: ( 
    exp_R  
    (#)  
    sin ) 
    is_differentiable_on Z by 
    A1,
    FDIFF_7: 44;
    
      (
    dom f) 
    = (( 
    dom  
    exp_R ) 
    /\ ( 
    dom ( 
    sin  
    +  
    cos ))) by 
    A1,
    VALUED_1:def 4;
    
      then
    
      
    
    A4: Z 
    c= ( 
    dom ( 
    sin  
    +  
    cos )) by 
    A1,
    XBOOLE_1: 18;
    
      
    
      
    
    A5: for x st x 
    in Z holds (f 
    . x) 
    = (( 
    exp_R  
    . x) 
    * (( 
    sin  
    . x) 
    + ( 
    cos  
    . x))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A6: x 
    in Z; 
    
        ((
    exp_R  
    (#) ( 
    sin  
    +  
    cos )) 
    . x) 
    = (( 
    exp_R  
    . x) 
    * (( 
    sin  
    +  
    cos ) 
    . x)) by 
    VALUED_1: 5
    
        .= ((
    exp_R  
    . x) 
    * (( 
    sin  
    . x) 
    + ( 
    cos  
    . x))) by 
    A4,
    A6,
    VALUED_1:def 1;
    
        hence thesis by
    A1;
    
      end;
    
      
    
      
    
    A7: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (( 
    exp_R  
    (#)  
    sin ) 
    `| Z)) holds ((( 
    exp_R  
    (#)  
    sin ) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (( 
    exp_R  
    (#)  
    sin ) 
    `| Z)); 
    
        then
    
        
    
    A8: x 
    in Z by 
    A3,
    FDIFF_1:def 7;
    
        
    
        then (((
    exp_R  
    (#)  
    sin ) 
    `| Z) 
    . x) 
    = (( 
    exp_R  
    . x) 
    * (( 
    sin  
    . x) 
    + ( 
    cos  
    . x))) by 
    A1,
    FDIFF_7: 44
    
        .= (f
    . x) by 
    A5,
    A8;
    
        hence thesis;
    
      end;
    
      (
    dom (( 
    exp_R  
    (#)  
    sin ) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A3,
    FDIFF_1:def 7;
    
      then ((
    exp_R  
    (#)  
    sin ) 
    `| Z) 
    = f by 
    A7,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    FDIFF_7: 44,
    INTEGRA5: 13;
    
    end;
    
    theorem :: 
    
    INTEGR13:12
    
    A
    c= Z & f 
    = ( 
    exp_R  
    (#) ( 
    cos  
    -  
    sin )) & Z 
    c= ( 
    dom ( 
    exp_R  
    (#)  
    cos )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = ((( 
    exp_R  
    (#)  
    cos ) 
    . ( 
    upper_bound A)) 
    - (( 
    exp_R  
    (#)  
    cos ) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & f 
    = ( 
    exp_R  
    (#) ( 
    cos  
    -  
    sin )) & Z 
    c= ( 
    dom ( 
    exp_R  
    (#)  
    cos )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      
    
      
    
    A3: ( 
    exp_R  
    (#)  
    cos ) 
    is_differentiable_on Z by 
    A1,
    FDIFF_7: 45;
    
      (
    dom f) 
    = (( 
    dom  
    exp_R ) 
    /\ ( 
    dom ( 
    cos  
    -  
    sin ))) by 
    A1,
    VALUED_1:def 4;
    
      then
    
      
    
    A4: Z 
    c= ( 
    dom ( 
    cos  
    -  
    sin )) by 
    A1,
    XBOOLE_1: 18;
    
      
    
      
    
    A5: for x st x 
    in Z holds (f 
    . x) 
    = (( 
    exp_R  
    . x) 
    * (( 
    cos  
    . x) 
    - ( 
    sin  
    . x))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A6: x 
    in Z; 
    
        ((
    exp_R  
    (#) ( 
    cos  
    -  
    sin )) 
    . x) 
    = (( 
    exp_R  
    . x) 
    * (( 
    cos  
    -  
    sin ) 
    . x)) by 
    VALUED_1: 5
    
        .= ((
    exp_R  
    . x) 
    * (( 
    cos  
    . x) 
    - ( 
    sin  
    . x))) by 
    A4,
    A6,
    VALUED_1: 13;
    
        hence thesis by
    A1;
    
      end;
    
      
    
      
    
    A7: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (( 
    exp_R  
    (#)  
    cos ) 
    `| Z)) holds ((( 
    exp_R  
    (#)  
    cos ) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (( 
    exp_R  
    (#)  
    cos ) 
    `| Z)); 
    
        then
    
        
    
    A8: x 
    in Z by 
    A3,
    FDIFF_1:def 7;
    
        
    
        then (((
    exp_R  
    (#)  
    cos ) 
    `| Z) 
    . x) 
    = (( 
    exp_R  
    . x) 
    * (( 
    cos  
    . x) 
    - ( 
    sin  
    . x))) by 
    A1,
    FDIFF_7: 45
    
        .= (f
    . x) by 
    A5,
    A8;
    
        hence thesis;
    
      end;
    
      (
    dom (( 
    exp_R  
    (#)  
    cos ) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A3,
    FDIFF_1:def 7;
    
      then ((
    exp_R  
    (#)  
    cos ) 
    `| Z) 
    = f by 
    A7,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    FDIFF_7: 45,
    INTEGRA5: 13;
    
    end;
    
    theorem :: 
    
    INTEGR13:13
    
    A
    c= Z & f1 
    = ( 
    #Z 2) & f 
    = (( 
    - (( 
    sin  
    /  
    cos ) 
    / f1)) 
    + ((( 
    id Z) 
    ^ ) 
    / ( 
    cos  
    ^2 ))) & Z 
    c= ( 
    dom ((( 
    id Z) 
    ^ ) 
    (#)  
    tan )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = ((((( 
    id Z) 
    ^ ) 
    (#)  
    tan ) 
    . ( 
    upper_bound A)) 
    - (((( 
    id Z) 
    ^ ) 
    (#)  
    tan ) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & f1 
    = ( 
    #Z 2) & f 
    = (( 
    - (( 
    sin  
    /  
    cos ) 
    / f1)) 
    + ((( 
    id Z) 
    ^ ) 
    / ( 
    cos  
    ^2 ))) & Z 
    c= ( 
    dom ((( 
    id Z) 
    ^ ) 
    (#)  
    tan )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      set g = (
    id Z); 
    
      Z
    c= (( 
    dom (g 
    ^ )) 
    /\ ( 
    dom  
    tan )) by 
    A1,
    VALUED_1:def 4;
    
      then
    
      
    
    A3: Z 
    c= ( 
    dom (g 
    ^ )) by 
    XBOOLE_1: 18;
    
      
    
      
    
    A4: not 
    0  
    in Z 
    
      proof
    
        assume
    
        
    
    A5: 
    0  
    in Z; 
    
        (
    dom (( 
    id Z) 
    ^ )) 
    = (( 
    dom ( 
    id Z)) 
    \ (( 
    id Z) 
    "  
    {
    0 })) by 
    RFUNCT_1:def 2
    
        .= ((
    dom ( 
    id Z)) 
    \  
    {
    0 }) by 
    Lm1,
    A5;
    
        then not
    0  
    in  
    {
    0 } by 
    A5,
    A3,
    XBOOLE_0:def 5;
    
        hence thesis by
    TARSKI:def 1;
    
      end;
    
      then
    
      
    
    A6: ((( 
    id Z) 
    ^ ) 
    (#)  
    tan ) 
    is_differentiable_on Z by 
    A1,
    FDIFF_8: 34;
    
      (
    dom f) 
    = (( 
    dom ( 
    - (( 
    sin  
    /  
    cos ) 
    / f1))) 
    /\ ( 
    dom ((( 
    id Z) 
    ^ ) 
    / ( 
    cos  
    ^2 )))) by 
    A1,
    VALUED_1:def 1;
    
      then (
    dom f) 
    c= ( 
    dom ( 
    - (( 
    sin  
    /  
    cos ) 
    / f1))) & ( 
    dom f) 
    c= ( 
    dom ((( 
    id Z) 
    ^ ) 
    / ( 
    cos  
    ^2 ))) by 
    XBOOLE_1: 18;
    
      then
    
      
    
    A7: Z 
    c= ( 
    dom (( 
    sin  
    /  
    cos ) 
    / f1)) & Z 
    c= ( 
    dom ((( 
    id Z) 
    ^ ) 
    / ( 
    cos  
    ^2 ))) by 
    A1,
    VALUED_1: 8;
    
      (
    dom (( 
    sin  
    /  
    cos ) 
    / f1)) 
    = (( 
    dom ( 
    sin  
    /  
    cos )) 
    /\ (( 
    dom f1) 
    \ (f1 
    "  
    {
    0 }))) by 
    RFUNCT_1:def 1;
    
      then
    
      
    
    A8: Z 
    c= ( 
    dom ( 
    sin  
    /  
    cos )) by 
    A7,
    XBOOLE_1: 18;
    
      (
    dom ((( 
    id Z) 
    ^ ) 
    / ( 
    cos  
    ^2 ))) 
    c= (( 
    dom (( 
    id Z) 
    ^ )) 
    /\ (( 
    dom ( 
    cos  
    ^2 )) 
    \ (( 
    cos  
    ^2 ) 
    "  
    {
    0 }))) by 
    RFUNCT_1:def 1;
    
      then (
    dom ((( 
    id Z) 
    ^ ) 
    / ( 
    cos  
    ^2 ))) 
    c= ( 
    dom (( 
    id Z) 
    ^ )) & ( 
    dom ((( 
    id Z) 
    ^ ) 
    / ( 
    cos  
    ^2 ))) 
    c= (( 
    dom ( 
    cos  
    ^2 )) 
    \ (( 
    cos  
    ^2 ) 
    "  
    {
    0 })) by 
    XBOOLE_1: 18;
    
      then
    
      
    
    A9: Z 
    c= ( 
    dom (( 
    id Z) 
    ^ )) & Z 
    c= (( 
    dom ( 
    cos  
    ^2 )) 
    \ (( 
    cos  
    ^2 ) 
    "  
    {
    0 })) by 
    A7;
    
      
    
      
    
    A10: for x st x 
    in Z holds (f 
    . x) 
    = (( 
    - ((( 
    sin  
    . x) 
    / ( 
    cos  
    . x)) 
    / (x 
    ^2 ))) 
    + ((1 
    / x) 
    / (( 
    cos  
    . x) 
    ^2 ))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A11: x 
    in Z; 
    
        
    
        then (((
    - (( 
    sin  
    /  
    cos ) 
    / f1)) 
    + ((( 
    id Z) 
    ^ ) 
    / ( 
    cos  
    ^2 ))) 
    . x) 
    = ((( 
    - (( 
    sin  
    /  
    cos ) 
    / f1)) 
    . x) 
    + (((( 
    id Z) 
    ^ ) 
    / ( 
    cos  
    ^2 )) 
    . x)) by 
    A1,
    VALUED_1:def 1
    
        .= ((
    - ((( 
    sin  
    /  
    cos ) 
    / f1) 
    . x)) 
    + (((( 
    id Z) 
    ^ ) 
    / ( 
    cos  
    ^2 )) 
    . x)) by 
    VALUED_1: 8
    
        .= ((
    - ((( 
    sin  
    /  
    cos ) 
    . x) 
    / (f1 
    . x))) 
    + (((( 
    id Z) 
    ^ ) 
    / ( 
    cos  
    ^2 )) 
    . x)) by 
    A11,
    A7,
    RFUNCT_1:def 1
    
        .= ((
    - ((( 
    sin  
    . x) 
    * (( 
    cos  
    . x) 
    " )) 
    / (f1 
    . x))) 
    + (((( 
    id Z) 
    ^ ) 
    / ( 
    cos  
    ^2 )) 
    . x)) by 
    A8,
    A11,
    RFUNCT_1:def 1
    
        .= ((
    - ((( 
    sin  
    . x) 
    / ( 
    cos  
    . x)) 
    / (f1 
    . x))) 
    + (((( 
    id Z) 
    ^ ) 
    . x) 
    / (( 
    cos  
    ^2 ) 
    . x))) by 
    A7,
    A11,
    RFUNCT_1:def 1
    
        .= ((
    - ((( 
    sin  
    . x) 
    / ( 
    cos  
    . x)) 
    / (f1 
    . x))) 
    + (((( 
    id Z) 
    . x) 
    " ) 
    / (( 
    cos  
    ^2 ) 
    . x))) by 
    A9,
    A11,
    RFUNCT_1:def 2
    
        .= ((
    - ((( 
    sin  
    . x) 
    / ( 
    cos  
    . x)) 
    / (f1 
    . x))) 
    + ((1 
    / x) 
    / (( 
    cos  
    ^2 ) 
    . x))) by 
    A11,
    FUNCT_1: 18
    
        .= ((
    - ((( 
    sin  
    . x) 
    / ( 
    cos  
    . x)) 
    / (f1 
    . x))) 
    + ((1 
    / x) 
    / (( 
    cos  
    . x) 
    ^2 ))) by 
    VALUED_1: 11
    
        .= ((
    - ((( 
    sin  
    . x) 
    / ( 
    cos  
    . x)) 
    / (x 
    #Z 2))) 
    + ((1 
    / x) 
    / (( 
    cos  
    . x) 
    ^2 ))) by 
    A1,
    TAYLOR_1:def 1
    
        .= ((
    - ((( 
    sin  
    . x) 
    / ( 
    cos  
    . x)) 
    / (x 
    ^2 ))) 
    + ((1 
    / x) 
    / (( 
    cos  
    . x) 
    ^2 ))) by 
    FDIFF_7: 1;
    
        hence thesis by
    A1;
    
      end;
    
      
    
      
    
    A12: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (((( 
    id Z) 
    ^ ) 
    (#)  
    tan ) 
    `| Z)) holds ((((( 
    id Z) 
    ^ ) 
    (#)  
    tan ) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (((( 
    id Z) 
    ^ ) 
    (#)  
    tan ) 
    `| Z)); 
    
        then
    
        
    
    A13: x 
    in Z by 
    A6,
    FDIFF_1:def 7;
    
        
    
        then (((((
    id Z) 
    ^ ) 
    (#)  
    tan ) 
    `| Z) 
    . x) 
    = (( 
    - ((( 
    sin  
    . x) 
    / ( 
    cos  
    . x)) 
    / (x 
    ^2 ))) 
    + ((1 
    / x) 
    / (( 
    cos  
    . x) 
    ^2 ))) by 
    A4,
    A1,
    FDIFF_8: 34
    
        .= (f
    . x) by 
    A13,
    A10;
    
        hence thesis;
    
      end;
    
      (
    dom (((( 
    id Z) 
    ^ ) 
    (#)  
    tan ) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A6,
    FDIFF_1:def 7;
    
      then ((((
    id Z) 
    ^ ) 
    (#)  
    tan ) 
    `| Z) 
    = f by 
    A12,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    A6,
    INTEGRA5: 13;
    
    end;
    
    theorem :: 
    
    INTEGR13:14
    
    A
    c= Z & f 
    = (( 
    - (( 
    cos  
    /  
    sin ) 
    / f1)) 
    - ((( 
    id Z) 
    ^ ) 
    / ( 
    sin  
    ^2 ))) & f1 
    = ( 
    #Z 2) & Z 
    c= ( 
    dom ((( 
    id Z) 
    ^ ) 
    (#)  
    cot )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = ((((( 
    id Z) 
    ^ ) 
    (#)  
    cot ) 
    . ( 
    upper_bound A)) 
    - (((( 
    id Z) 
    ^ ) 
    (#)  
    cot ) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & f 
    = (( 
    - (( 
    cos  
    /  
    sin ) 
    / f1)) 
    - ((( 
    id Z) 
    ^ ) 
    / ( 
    sin  
    ^2 ))) & f1 
    = ( 
    #Z 2) & Z 
    c= ( 
    dom ((( 
    id Z) 
    ^ ) 
    (#)  
    cot )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      set g = (
    id Z); 
    
      Z
    c= ( 
    dom ((g 
    ^ ) 
    (#)  
    cot )) by 
    A1;
    
      then Z
    c= (( 
    dom (g 
    ^ )) 
    /\ ( 
    dom  
    cot )) by 
    VALUED_1:def 4;
    
      then
    
      
    
    A3: Z 
    c= ( 
    dom (g 
    ^ )) by 
    XBOOLE_1: 18;
    
      
    
      
    
    A4: not 
    0  
    in Z 
    
      proof
    
        assume
    
        
    
    A5: 
    0  
    in Z; 
    
        (
    dom (( 
    id Z) 
    ^ )) 
    = (( 
    dom ( 
    id Z)) 
    \ (( 
    id Z) 
    "  
    {
    0 })) by 
    RFUNCT_1:def 2
    
        .= ((
    dom ( 
    id Z)) 
    \  
    {
    0 }) by 
    Lm1,
    A5;
    
        then not
    0  
    in  
    {
    0 } by 
    A5,
    A3,
    XBOOLE_0:def 5;
    
        hence thesis by
    TARSKI:def 1;
    
      end;
    
      then
    
      
    
    A6: ((( 
    id Z) 
    ^ ) 
    (#)  
    cot ) 
    is_differentiable_on Z by 
    A1,
    FDIFF_8: 35;
    
      (
    dom f) 
    = (( 
    dom ( 
    - (( 
    cos  
    /  
    sin ) 
    / f1))) 
    /\ ( 
    dom ((( 
    id Z) 
    ^ ) 
    / ( 
    sin  
    ^2 )))) by 
    A1,
    VALUED_1: 12;
    
      then
    
      
    
    A7: ( 
    dom f) 
    c= ( 
    dom ( 
    - (( 
    cos  
    /  
    sin ) 
    / f1))) & ( 
    dom f) 
    c= ( 
    dom ((( 
    id Z) 
    ^ ) 
    / ( 
    sin  
    ^2 ))) by 
    XBOOLE_1: 18;
    
      then (
    dom f) 
    c= ( 
    dom (( 
    cos  
    /  
    sin ) 
    / f1)) by 
    VALUED_1: 8;
    
      then
    
      
    
    A8: Z 
    c= ( 
    dom (( 
    cos  
    /  
    sin ) 
    / f1)) & Z 
    c= ( 
    dom ((( 
    id Z) 
    ^ ) 
    / ( 
    sin  
    ^2 ))) by 
    A1,
    A7;
    
      (
    dom (( 
    cos  
    /  
    sin ) 
    / f1)) 
    = (( 
    dom ( 
    cos  
    /  
    sin )) 
    /\ (( 
    dom f1) 
    \ (f1 
    "  
    {
    0 }))) by 
    RFUNCT_1:def 1;
    
      then
    
      
    
    A9: Z 
    c= ( 
    dom ( 
    cos  
    /  
    sin )) by 
    A8,
    XBOOLE_1: 18;
    
      (
    dom ((( 
    id Z) 
    ^ ) 
    / ( 
    sin  
    ^2 ))) 
    c= (( 
    dom (( 
    id Z) 
    ^ )) 
    /\ (( 
    dom ( 
    sin  
    ^2 )) 
    \ (( 
    sin  
    ^2 ) 
    "  
    {
    0 }))) by 
    RFUNCT_1:def 1;
    
      then (
    dom ((( 
    id Z) 
    ^ ) 
    / ( 
    sin  
    ^2 ))) 
    c= ( 
    dom (( 
    id Z) 
    ^ )) & ( 
    dom ((( 
    id Z) 
    ^ ) 
    / ( 
    sin  
    ^2 ))) 
    c= (( 
    dom ( 
    sin  
    ^2 )) 
    \ (( 
    sin  
    ^2 ) 
    "  
    {
    0 })) by 
    XBOOLE_1: 18;
    
      then
    
      
    
    A10: Z 
    c= ( 
    dom (( 
    id Z) 
    ^ )) & Z 
    c= (( 
    dom ( 
    sin  
    ^2 )) 
    \ (( 
    sin  
    ^2 ) 
    "  
    {
    0 })) by 
    A8;
    
      
    
      
    
    A11: for x st x 
    in Z holds (f 
    . x) 
    = (( 
    - ((( 
    cos  
    . x) 
    / ( 
    sin  
    . x)) 
    / (x 
    ^2 ))) 
    - ((1 
    / x) 
    / (( 
    sin  
    . x) 
    ^2 ))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A12: x 
    in Z; 
    
        
    
        then (((
    - (( 
    cos  
    /  
    sin ) 
    / f1)) 
    - ((( 
    id Z) 
    ^ ) 
    / ( 
    sin  
    ^2 ))) 
    . x) 
    = ((( 
    - (( 
    cos  
    /  
    sin ) 
    / f1)) 
    . x) 
    - (((( 
    id Z) 
    ^ ) 
    / ( 
    sin  
    ^2 )) 
    . x)) by 
    A1,
    VALUED_1: 13
    
        .= ((
    - ((( 
    cos  
    /  
    sin ) 
    / f1) 
    . x)) 
    - (((( 
    id Z) 
    ^ ) 
    / ( 
    sin  
    ^2 )) 
    . x)) by 
    VALUED_1: 8
    
        .= ((
    - ((( 
    cos  
    /  
    sin ) 
    . x) 
    / (f1 
    . x))) 
    - (((( 
    id Z) 
    ^ ) 
    / ( 
    sin  
    ^2 )) 
    . x)) by 
    A12,
    A8,
    RFUNCT_1:def 1
    
        .= ((
    - ((( 
    cos  
    . x) 
    / ( 
    sin  
    . x)) 
    / (f1 
    . x))) 
    - (((( 
    id Z) 
    ^ ) 
    / ( 
    sin  
    ^2 )) 
    . x)) by 
    A9,
    A12,
    RFUNCT_1:def 1
    
        .= ((
    - ((( 
    cos  
    . x) 
    / ( 
    sin  
    . x)) 
    / (f1 
    . x))) 
    - (((( 
    id Z) 
    ^ ) 
    . x) 
    / (( 
    sin  
    ^2 ) 
    . x))) by 
    A8,
    A12,
    RFUNCT_1:def 1
    
        .= ((
    - ((( 
    cos  
    . x) 
    / ( 
    sin  
    . x)) 
    / (f1 
    . x))) 
    - (((( 
    id Z) 
    . x) 
    " ) 
    / (( 
    sin  
    ^2 ) 
    . x))) by 
    A10,
    A12,
    RFUNCT_1:def 2
    
        .= ((
    - ((( 
    cos  
    . x) 
    / ( 
    sin  
    . x)) 
    / (f1 
    . x))) 
    - ((1 
    / x) 
    / (( 
    sin  
    ^2 ) 
    . x))) by 
    A12,
    FUNCT_1: 18
    
        .= ((
    - ((( 
    cos  
    . x) 
    / ( 
    sin  
    . x)) 
    / (f1 
    . x))) 
    - ((1 
    / x) 
    / (( 
    sin  
    . x) 
    ^2 ))) by 
    VALUED_1: 11
    
        .= ((
    - ((( 
    cos  
    . x) 
    / ( 
    sin  
    . x)) 
    / (x 
    #Z 2))) 
    - ((1 
    / x) 
    / (( 
    sin  
    . x) 
    ^2 ))) by 
    A1,
    TAYLOR_1:def 1
    
        .= ((
    - ((( 
    cos  
    . x) 
    / ( 
    sin  
    . x)) 
    / (x 
    ^2 ))) 
    - ((1 
    / x) 
    / (( 
    sin  
    . x) 
    ^2 ))) by 
    FDIFF_7: 1;
    
        hence thesis by
    A1;
    
      end;
    
      
    
      
    
    A13: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (((( 
    id Z) 
    ^ ) 
    (#)  
    cot ) 
    `| Z)) holds ((((( 
    id Z) 
    ^ ) 
    (#)  
    cot ) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (((( 
    id Z) 
    ^ ) 
    (#)  
    cot ) 
    `| Z)); 
    
        then
    
        
    
    A14: x 
    in Z by 
    A6,
    FDIFF_1:def 7;
    
        
    
        then (((((
    id Z) 
    ^ ) 
    (#)  
    cot ) 
    `| Z) 
    . x) 
    = (( 
    - ((( 
    cos  
    . x) 
    / ( 
    sin  
    . x)) 
    / (x 
    ^2 ))) 
    - ((1 
    / x) 
    / (( 
    sin  
    . x) 
    ^2 ))) by 
    A1,
    A4,
    FDIFF_8: 35
    
        .= (f
    . x) by 
    A11,
    A14;
    
        hence thesis;
    
      end;
    
      (
    dom (((( 
    id Z) 
    ^ ) 
    (#)  
    cot ) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A6,
    FDIFF_1:def 7;
    
      then ((((
    id Z) 
    ^ ) 
    (#)  
    cot ) 
    `| Z) 
    = f by 
    A13,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    A6,
    INTEGRA5: 13;
    
    end;
    
    theorem :: 
    
    INTEGR13:15
    
    A
    c= Z & f 
    = ((( 
    sin  
    /  
    cos ) 
    / ( 
    id Z)) 
    + ( 
    ln  
    / ( 
    cos  
    ^2 ))) & Z 
    c= ( 
    dom ( 
    ln  
    (#)  
    tan )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = ((( 
    ln  
    (#)  
    tan ) 
    . ( 
    upper_bound A)) 
    - (( 
    ln  
    (#)  
    tan ) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & f 
    = ((( 
    sin  
    /  
    cos ) 
    / ( 
    id Z)) 
    + ( 
    ln  
    / ( 
    cos  
    ^2 ))) & Z 
    c= ( 
    dom ( 
    ln  
    (#)  
    tan )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      
    
      
    
    A3: ( 
    ln  
    (#)  
    tan ) 
    is_differentiable_on Z by 
    A1,
    FDIFF_8: 32;
    
      Z
    = (( 
    dom (( 
    sin  
    /  
    cos ) 
    / ( 
    id Z))) 
    /\ ( 
    dom ( 
    ln  
    / ( 
    cos  
    ^2 )))) by 
    A1,
    VALUED_1:def 1;
    
      then
    
      
    
    A4: Z 
    c= ( 
    dom (( 
    sin  
    /  
    cos ) 
    / ( 
    id Z))) & Z 
    c= ( 
    dom ( 
    ln  
    / ( 
    cos  
    ^2 ))) by 
    XBOOLE_1: 18;
    
      (
    dom (( 
    sin  
    /  
    cos ) 
    / ( 
    id Z))) 
    c= (( 
    dom ( 
    sin  
    /  
    cos )) 
    /\ (( 
    dom ( 
    id Z)) 
    \ (( 
    id Z) 
    "  
    {
    0 }))) by 
    RFUNCT_1:def 1;
    
      then (
    dom (( 
    sin  
    /  
    cos ) 
    / ( 
    id Z))) 
    c= ( 
    dom ( 
    sin  
    /  
    cos )) by 
    XBOOLE_1: 18;
    
      then
    
      
    
    A5: Z 
    c= ( 
    dom ( 
    sin  
    /  
    cos )) by 
    A4;
    
      
    
      
    
    A6: for x st x 
    in Z holds (f 
    . x) 
    = (((( 
    sin  
    . x) 
    / ( 
    cos  
    . x)) 
    / x) 
    + (( 
    ln  
    . x) 
    / (( 
    cos  
    . x) 
    ^2 ))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A7: x 
    in Z; 
    
        
    
        then ((((
    sin  
    /  
    cos ) 
    / ( 
    id Z)) 
    + ( 
    ln  
    / ( 
    cos  
    ^2 ))) 
    . x) 
    = (((( 
    sin  
    /  
    cos ) 
    / ( 
    id Z)) 
    . x) 
    + (( 
    ln  
    / ( 
    cos  
    ^2 )) 
    . x)) by 
    A1,
    VALUED_1:def 1
    
        .= ((((
    sin  
    /  
    cos ) 
    . x) 
    / (( 
    id Z) 
    . x)) 
    + (( 
    ln  
    / ( 
    cos  
    ^2 )) 
    . x)) by 
    A7,
    A4,
    RFUNCT_1:def 1
    
        .= ((((
    sin  
    . x) 
    / ( 
    cos  
    . x)) 
    / (( 
    id Z) 
    . x)) 
    + (( 
    ln  
    / ( 
    cos  
    ^2 )) 
    . x)) by 
    A5,
    A7,
    RFUNCT_1:def 1
    
        .= ((((
    sin  
    . x) 
    / ( 
    cos  
    . x)) 
    / x) 
    + (( 
    ln  
    / ( 
    cos  
    ^2 )) 
    . x)) by 
    A7,
    FUNCT_1: 18
    
        .= ((((
    sin  
    . x) 
    / ( 
    cos  
    . x)) 
    / x) 
    + (( 
    ln  
    . x) 
    / (( 
    cos  
    ^2 ) 
    . x))) by 
    A7,
    A4,
    RFUNCT_1:def 1
    
        .= ((((
    sin  
    . x) 
    / ( 
    cos  
    . x)) 
    / x) 
    + (( 
    ln  
    . x) 
    / (( 
    cos  
    . x) 
    ^2 ))) by 
    VALUED_1: 11;
    
        hence thesis by
    A1;
    
      end;
    
      
    
      
    
    A8: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (( 
    ln  
    (#)  
    tan ) 
    `| Z)) holds ((( 
    ln  
    (#)  
    tan ) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (( 
    ln  
    (#)  
    tan ) 
    `| Z)); 
    
        then
    
        
    
    A9: x 
    in Z by 
    A3,
    FDIFF_1:def 7;
    
        
    
        then (((
    ln  
    (#)  
    tan ) 
    `| Z) 
    . x) 
    = (((( 
    sin  
    . x) 
    / ( 
    cos  
    . x)) 
    / x) 
    + (( 
    ln  
    . x) 
    / (( 
    cos  
    . x) 
    ^2 ))) by 
    A1,
    FDIFF_8: 32
    
        .= (f
    . x) by 
    A9,
    A6;
    
        hence thesis;
    
      end;
    
      (
    dom (( 
    ln  
    (#)  
    tan ) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A3,
    FDIFF_1:def 7;
    
      then ((
    ln  
    (#)  
    tan ) 
    `| Z) 
    = f by 
    A8,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    FDIFF_8: 32,
    INTEGRA5: 13;
    
    end;
    
    theorem :: 
    
    INTEGR13:16
    
    A
    c= Z & f 
    = ((( 
    cos  
    /  
    sin ) 
    / ( 
    id Z)) 
    - ( 
    ln  
    / ( 
    sin  
    ^2 ))) & Z 
    c= ( 
    dom ( 
    ln  
    (#)  
    cot )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = ((( 
    ln  
    (#)  
    cot ) 
    . ( 
    upper_bound A)) 
    - (( 
    ln  
    (#)  
    cot ) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & f 
    = ((( 
    cos  
    /  
    sin ) 
    / ( 
    id Z)) 
    - ( 
    ln  
    / ( 
    sin  
    ^2 ))) & Z 
    c= ( 
    dom ( 
    ln  
    (#)  
    cot )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      
    
      
    
    A3: ( 
    ln  
    (#)  
    cot ) 
    is_differentiable_on Z by 
    A1,
    FDIFF_8: 33;
    
      Z
    = (( 
    dom (( 
    cos  
    /  
    sin ) 
    / ( 
    id Z))) 
    /\ ( 
    dom ( 
    ln  
    / ( 
    sin  
    ^2 )))) by 
    A1,
    VALUED_1: 12;
    
      then
    
      
    
    A4: Z 
    c= ( 
    dom (( 
    cos  
    /  
    sin ) 
    / ( 
    id Z))) & Z 
    c= ( 
    dom ( 
    ln  
    / ( 
    sin  
    ^2 ))) by 
    XBOOLE_1: 18;
    
      (
    dom (( 
    cos  
    /  
    sin ) 
    / ( 
    id Z))) 
    c= (( 
    dom ( 
    cos  
    /  
    sin )) 
    /\ (( 
    dom ( 
    id Z)) 
    \ (( 
    id Z) 
    "  
    {
    0 }))) by 
    RFUNCT_1:def 1;
    
      then (
    dom (( 
    cos  
    /  
    sin ) 
    / ( 
    id Z))) 
    c= ( 
    dom ( 
    cos  
    /  
    sin )) by 
    XBOOLE_1: 18;
    
      then
    
      
    
    A5: Z 
    c= ( 
    dom ( 
    cos  
    /  
    sin )) by 
    A4;
    
      
    
      
    
    A6: for x st x 
    in Z holds (f 
    . x) 
    = (((( 
    cos  
    . x) 
    / ( 
    sin  
    . x)) 
    / x) 
    - (( 
    ln  
    . x) 
    / (( 
    sin  
    . x) 
    ^2 ))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A7: x 
    in Z; 
    
        
    
        then ((((
    cos  
    /  
    sin ) 
    / ( 
    id Z)) 
    - ( 
    ln  
    / ( 
    sin  
    ^2 ))) 
    . x) 
    = (((( 
    cos  
    /  
    sin ) 
    / ( 
    id Z)) 
    . x) 
    - (( 
    ln  
    / ( 
    sin  
    ^2 )) 
    . x)) by 
    A1,
    VALUED_1: 13
    
        .= ((((
    cos  
    /  
    sin ) 
    . x) 
    / (( 
    id Z) 
    . x)) 
    - (( 
    ln  
    / ( 
    sin  
    ^2 )) 
    . x)) by 
    A7,
    A4,
    RFUNCT_1:def 1
    
        .= ((((
    cos  
    . x) 
    / ( 
    sin  
    . x)) 
    / (( 
    id Z) 
    . x)) 
    - (( 
    ln  
    / ( 
    sin  
    ^2 )) 
    . x)) by 
    A5,
    A7,
    RFUNCT_1:def 1
    
        .= ((((
    cos  
    . x) 
    / ( 
    sin  
    . x)) 
    / x) 
    - (( 
    ln  
    / ( 
    sin  
    ^2 )) 
    . x)) by 
    A7,
    FUNCT_1: 18
    
        .= ((((
    cos  
    . x) 
    / ( 
    sin  
    . x)) 
    / x) 
    - (( 
    ln  
    . x) 
    / (( 
    sin  
    ^2 ) 
    . x))) by 
    A7,
    A4,
    RFUNCT_1:def 1
    
        .= ((((
    cos  
    . x) 
    / ( 
    sin  
    . x)) 
    / x) 
    - (( 
    ln  
    . x) 
    / (( 
    sin  
    . x) 
    ^2 ))) by 
    VALUED_1: 11;
    
        hence thesis by
    A1;
    
      end;
    
      
    
      
    
    A8: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (( 
    ln  
    (#)  
    cot ) 
    `| Z)) holds ((( 
    ln  
    (#)  
    cot ) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (( 
    ln  
    (#)  
    cot ) 
    `| Z)); 
    
        then
    
        
    
    A9: x 
    in Z by 
    A3,
    FDIFF_1:def 7;
    
        
    
        then (((
    ln  
    (#)  
    cot ) 
    `| Z) 
    . x) 
    = (((( 
    cos  
    . x) 
    / ( 
    sin  
    . x)) 
    / x) 
    - (( 
    ln  
    . x) 
    / (( 
    sin  
    . x) 
    ^2 ))) by 
    A1,
    FDIFF_8: 33
    
        .= (f
    . x) by 
    A9,
    A6;
    
        hence thesis;
    
      end;
    
      (
    dom (( 
    ln  
    (#)  
    cot ) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A3,
    FDIFF_1:def 7;
    
      then ((
    ln  
    (#)  
    cot ) 
    `| Z) 
    = f by 
    A8,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    FDIFF_8: 33,
    INTEGRA5: 13;
    
    end;
    
    theorem :: 
    
    INTEGR13:17
    
    A
    c= Z & f 
    = (( 
    tan  
    / ( 
    id Z)) 
    + ( 
    ln  
    / ( 
    cos  
    ^2 ))) & Z 
    c= ( 
    dom ( 
    ln  
    (#)  
    tan )) & Z 
    c= ( 
    dom  
    tan ) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = ((( 
    ln  
    (#)  
    tan ) 
    . ( 
    upper_bound A)) 
    - (( 
    ln  
    (#)  
    tan ) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & f 
    = (( 
    tan  
    / ( 
    id Z)) 
    + ( 
    ln  
    / ( 
    cos  
    ^2 ))) & Z 
    c= ( 
    dom ( 
    ln  
    (#)  
    tan )) & Z 
    c= ( 
    dom  
    tan ) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      
    
      
    
    A3: ( 
    ln  
    (#)  
    tan ) 
    is_differentiable_on Z by 
    A1,
    FDIFF_8: 32;
    
      Z
    = (( 
    dom ( 
    tan  
    / ( 
    id Z))) 
    /\ ( 
    dom ( 
    ln  
    / ( 
    cos  
    ^2 )))) by 
    A1,
    VALUED_1:def 1;
    
      then
    
      
    
    A4: Z 
    c= ( 
    dom ( 
    tan  
    / ( 
    id Z))) & Z 
    c= ( 
    dom ( 
    ln  
    / ( 
    cos  
    ^2 ))) by 
    XBOOLE_1: 18;
    
      
    
      
    
    A5: for x st x 
    in Z holds (f 
    . x) 
    = ((( 
    tan  
    . x) 
    / x) 
    + (( 
    ln  
    . x) 
    / (( 
    cos  
    . x) 
    ^2 ))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A6: x 
    in Z; 
    
        
    
        then (((
    tan  
    / ( 
    id Z)) 
    + ( 
    ln  
    / ( 
    cos  
    ^2 ))) 
    . x) 
    = ((( 
    tan  
    / ( 
    id Z)) 
    . x) 
    + (( 
    ln  
    / ( 
    cos  
    ^2 )) 
    . x)) by 
    A1,
    VALUED_1:def 1
    
        .= (((
    tan  
    . x) 
    / (( 
    id Z) 
    . x)) 
    + (( 
    ln  
    / ( 
    cos  
    ^2 )) 
    . x)) by 
    A6,
    A4,
    RFUNCT_1:def 1
    
        .= (((
    tan  
    . x) 
    / x) 
    + (( 
    ln  
    / ( 
    cos  
    ^2 )) 
    . x)) by 
    A6,
    FUNCT_1: 18
    
        .= (((
    tan  
    . x) 
    / x) 
    + (( 
    ln  
    . x) 
    / (( 
    cos  
    ^2 ) 
    . x))) by 
    A6,
    A4,
    RFUNCT_1:def 1
    
        .= (((
    tan  
    . x) 
    / x) 
    + (( 
    ln  
    . x) 
    / (( 
    cos  
    . x) 
    ^2 ))) by 
    VALUED_1: 11;
    
        hence thesis by
    A1;
    
      end;
    
      
    
      
    
    A7: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (( 
    ln  
    (#)  
    tan ) 
    `| Z)) holds ((( 
    ln  
    (#)  
    tan ) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (( 
    ln  
    (#)  
    tan ) 
    `| Z)); 
    
        then
    
        
    
    A8: x 
    in Z by 
    A3,
    FDIFF_1:def 7;
    
        
    
        then (((
    ln  
    (#)  
    tan ) 
    `| Z) 
    . x) 
    = ((( 
    tan x) 
    / x) 
    + (( 
    ln  
    . x) 
    / (( 
    cos  
    . x) 
    ^2 ))) by 
    A1,
    FDIFF_8: 32
    
        .= (((
    tan  
    . x) 
    / x) 
    + (( 
    ln  
    . x) 
    / (( 
    cos  
    . x) 
    ^2 ))) by 
    A1,
    A8,
    FDIFF_8: 1,
    SIN_COS9: 15
    
        .= (f
    . x) by 
    A8,
    A5;
    
        hence thesis;
    
      end;
    
      (
    dom (( 
    ln  
    (#)  
    tan ) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A3,
    FDIFF_1:def 7;
    
      then ((
    ln  
    (#)  
    tan ) 
    `| Z) 
    = f by 
    A7,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    FDIFF_8: 32,
    INTEGRA5: 13;
    
    end;
    
    theorem :: 
    
    INTEGR13:18
    
    A
    c= Z & f 
    = (( 
    cot  
    / ( 
    id Z)) 
    - ( 
    ln  
    / ( 
    sin  
    ^2 ))) & Z 
    c= ( 
    dom ( 
    ln  
    (#)  
    cot )) & Z 
    c= ( 
    dom  
    cot ) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = ((( 
    ln  
    (#)  
    cot ) 
    . ( 
    upper_bound A)) 
    - (( 
    ln  
    (#)  
    cot ) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & f 
    = (( 
    cot  
    / ( 
    id Z)) 
    - ( 
    ln  
    / ( 
    sin  
    ^2 ))) & Z 
    c= ( 
    dom ( 
    ln  
    (#)  
    cot )) & Z 
    c= ( 
    dom  
    cot ) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      
    
      
    
    A3: ( 
    ln  
    (#)  
    cot ) 
    is_differentiable_on Z by 
    A1,
    FDIFF_8: 33;
    
      Z
    = (( 
    dom ( 
    cot  
    / ( 
    id Z))) 
    /\ ( 
    dom ( 
    ln  
    / ( 
    sin  
    ^2 )))) by 
    A1,
    VALUED_1: 12;
    
      then
    
      
    
    A4: Z 
    c= ( 
    dom ( 
    cot  
    / ( 
    id Z))) & Z 
    c= ( 
    dom ( 
    ln  
    / ( 
    sin  
    ^2 ))) by 
    XBOOLE_1: 18;
    
      
    
      
    
    A5: for x st x 
    in Z holds (f 
    . x) 
    = ((( 
    cot  
    . x) 
    / x) 
    - (( 
    ln  
    . x) 
    / (( 
    sin  
    . x) 
    ^2 ))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A6: x 
    in Z; 
    
        
    
        then (((
    cot  
    / ( 
    id Z)) 
    - ( 
    ln  
    / ( 
    sin  
    ^2 ))) 
    . x) 
    = ((( 
    cot  
    / ( 
    id Z)) 
    . x) 
    - (( 
    ln  
    / ( 
    sin  
    ^2 )) 
    . x)) by 
    A1,
    VALUED_1: 13
    
        .= (((
    cot  
    . x) 
    / (( 
    id Z) 
    . x)) 
    - (( 
    ln  
    / ( 
    sin  
    ^2 )) 
    . x)) by 
    A6,
    A4,
    RFUNCT_1:def 1
    
        .= (((
    cot  
    . x) 
    / x) 
    - (( 
    ln  
    / ( 
    sin  
    ^2 )) 
    . x)) by 
    A6,
    FUNCT_1: 18
    
        .= (((
    cot  
    . x) 
    / x) 
    - (( 
    ln  
    . x) 
    / (( 
    sin  
    ^2 ) 
    . x))) by 
    A6,
    A4,
    RFUNCT_1:def 1
    
        .= (((
    cot  
    . x) 
    / x) 
    - (( 
    ln  
    . x) 
    / (( 
    sin  
    . x) 
    ^2 ))) by 
    VALUED_1: 11;
    
        hence thesis by
    A1;
    
      end;
    
      
    
      
    
    A7: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (( 
    ln  
    (#)  
    cot ) 
    `| Z)) holds ((( 
    ln  
    (#)  
    cot ) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (( 
    ln  
    (#)  
    cot ) 
    `| Z)); 
    
        then
    
        
    
    A8: x 
    in Z by 
    A3,
    FDIFF_1:def 7;
    
        
    
        then (((
    ln  
    (#)  
    cot ) 
    `| Z) 
    . x) 
    = ((( 
    cot x) 
    / x) 
    - (( 
    ln  
    . x) 
    / (( 
    sin  
    . x) 
    ^2 ))) by 
    A1,
    FDIFF_8: 33
    
        .= (((
    cot  
    . x) 
    / x) 
    - (( 
    ln  
    . x) 
    / (( 
    sin  
    . x) 
    ^2 ))) by 
    A1,
    A8,
    FDIFF_8: 2,
    SIN_COS9: 16
    
        .= (f
    . x) by 
    A5,
    A8;
    
        hence thesis;
    
      end;
    
      (
    dom (( 
    ln  
    (#)  
    cot ) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A3,
    FDIFF_1:def 7;
    
      then ((
    ln  
    (#)  
    cot ) 
    `| Z) 
    = f by 
    A7,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    FDIFF_8: 33,
    INTEGRA5: 13;
    
    end;
    
    theorem :: 
    
    INTEGR13:19
    
    A
    c= Z & (for x st x 
    in Z holds (f1 
    . x) 
    = 1) & f 
    = (( 
    arctan  
    / ( 
    id Z)) 
    + ( 
    ln  
    / (f1 
    + ( 
    #Z 2)))) & Z 
    c=  
    ].(
    - 1), 1.[ & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = ((( 
    ln  
    (#)  
    arctan ) 
    . ( 
    upper_bound A)) 
    - (( 
    ln  
    (#)  
    arctan ) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & (for x st x 
    in Z holds (f1 
    . x) 
    = 1) & f 
    = (( 
    arctan  
    / ( 
    id Z)) 
    + ( 
    ln  
    / (f1 
    + ( 
    #Z 2)))) & Z 
    c=  
    ].(
    - 1), 1.[ & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      Z
    = (( 
    dom ( 
    arctan  
    / ( 
    id Z))) 
    /\ ( 
    dom ( 
    ln  
    / (f1 
    + ( 
    #Z 2))))) by 
    A1,
    VALUED_1:def 1;
    
      then
    
      
    
    A3: Z 
    c= ( 
    dom ( 
    arctan  
    / ( 
    id Z))) & Z 
    c= ( 
    dom ( 
    ln  
    / (f1 
    + ( 
    #Z 2)))) by 
    XBOOLE_1: 18;
    
      then Z
    c= (( 
    dom  
    arctan ) 
    /\ (( 
    dom ( 
    id Z)) 
    \ (( 
    id Z) 
    "  
    {
    0 }))) by 
    RFUNCT_1:def 1;
    
      then
    
      
    
    A4: Z 
    c= ( 
    dom  
    arctan ) by 
    XBOOLE_1: 18;
    
      Z
    c= (( 
    dom  
    ln ) 
    /\ (( 
    dom (f1 
    + ( 
    #Z 2))) 
    \ ((f1 
    + ( 
    #Z 2)) 
    "  
    {
    0 }))) by 
    A3,
    RFUNCT_1:def 1;
    
      then
    
      
    
    A5: Z 
    c= ( 
    dom  
    ln ) & Z 
    c= (( 
    dom (f1 
    + ( 
    #Z 2))) 
    \ ((f1 
    + ( 
    #Z 2)) 
    "  
    {
    0 })) by 
    XBOOLE_1: 18;
    
      then Z
    c= (( 
    dom  
    arctan ) 
    /\ ( 
    dom  
    ln )) by 
    A4,
    XBOOLE_1: 19;
    
      then
    
      
    
    A6: Z 
    c= ( 
    dom ( 
    ln  
    (#)  
    arctan )) by 
    VALUED_1:def 4;
    
      then
    
      
    
    A7: ( 
    ln  
    (#)  
    arctan ) 
    is_differentiable_on Z by 
    A1,
    SIN_COS9: 127;
    
      
    
      
    
    A8: Z 
    c= ( 
    dom ((f1 
    + ( 
    #Z 2)) 
    ^ )) by 
    A5,
    RFUNCT_1:def 2;
    
      (
    dom ((f1 
    + ( 
    #Z 2)) 
    ^ )) 
    c= ( 
    dom (f1 
    + ( 
    #Z 2))) by 
    RFUNCT_1: 1;
    
      then
    
      
    
    A9: Z 
    c= ( 
    dom (f1 
    + ( 
    #Z 2))) by 
    A8;
    
      
    
      
    
    A10: for x st x 
    in Z holds (f 
    . x) 
    = ((( 
    arctan  
    . x) 
    / x) 
    + (( 
    ln  
    . x) 
    / (1 
    + (x 
    ^2 )))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A11: x 
    in Z; 
    
        
    
        then (((
    arctan  
    / ( 
    id Z)) 
    + ( 
    ln  
    / (f1 
    + ( 
    #Z 2)))) 
    . x) 
    = ((( 
    arctan  
    / ( 
    id Z)) 
    . x) 
    + (( 
    ln  
    / (f1 
    + ( 
    #Z 2))) 
    . x)) by 
    A1,
    VALUED_1:def 1
    
        .= (((
    arctan  
    . x) 
    * ((( 
    id Z) 
    . x) 
    " )) 
    + (( 
    ln  
    / (f1 
    + ( 
    #Z 2))) 
    . x)) by 
    A3,
    A11,
    RFUNCT_1:def 1
    
        .= (((
    arctan  
    . x) 
    * ((( 
    id Z) 
    . x) 
    " )) 
    + (( 
    ln  
    . x) 
    * (((f1 
    + ( 
    #Z 2)) 
    . x) 
    " ))) by 
    A3,
    A11,
    RFUNCT_1:def 1
    
        .= (((
    arctan  
    . x) 
    / x) 
    + (( 
    ln  
    . x) 
    / ((f1 
    + ( 
    #Z 2)) 
    . x))) by 
    A11,
    FUNCT_1: 18
    
        .= (((
    arctan  
    . x) 
    / x) 
    + (( 
    ln  
    . x) 
    / ((f1 
    . x) 
    + (( 
    #Z 2) 
    . x)))) by 
    A9,
    A11,
    VALUED_1:def 1
    
        .= (((
    arctan  
    . x) 
    / x) 
    + (( 
    ln  
    . x) 
    / (1 
    + (( 
    #Z 2) 
    . x)))) by 
    A1,
    A11
    
        .= (((
    arctan  
    . x) 
    / x) 
    + (( 
    ln  
    . x) 
    / (1 
    + (x 
    #Z 2)))) by 
    TAYLOR_1:def 1
    
        .= (((
    arctan  
    . x) 
    / x) 
    + (( 
    ln  
    . x) 
    / (1 
    + (x 
    ^2 )))) by 
    FDIFF_7: 1;
    
        hence thesis by
    A1;
    
      end;
    
      
    
      
    
    A12: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (( 
    ln  
    (#)  
    arctan ) 
    `| Z)) holds ((( 
    ln  
    (#)  
    arctan ) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (( 
    ln  
    (#)  
    arctan ) 
    `| Z)); 
    
        then
    
        
    
    A13: x 
    in Z by 
    A7,
    FDIFF_1:def 7;
    
        
    
        then (((
    ln  
    (#)  
    arctan ) 
    `| Z) 
    . x) 
    = ((( 
    arctan  
    . x) 
    / x) 
    + (( 
    ln  
    . x) 
    / (1 
    + (x 
    ^2 )))) by 
    A1,
    A6,
    SIN_COS9: 127
    
        .= (f
    . x) by 
    A13,
    A10;
    
        hence thesis;
    
      end;
    
      (
    dom (( 
    ln  
    (#)  
    arctan ) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A7,
    FDIFF_1:def 7;
    
      then ((
    ln  
    (#)  
    arctan ) 
    `| Z) 
    = f by 
    A12,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    A6,
    INTEGRA5: 13,
    SIN_COS9: 127;
    
    end;
    
    theorem :: 
    
    INTEGR13:20
    
    A
    c= Z & (for x st x 
    in Z holds (f1 
    . x) 
    = 1) & f 
    = (( 
    arccot  
    / ( 
    id Z)) 
    - ( 
    ln  
    / (f1 
    + ( 
    #Z 2)))) & Z 
    c=  
    ].(
    - 1), 1.[ & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = ((( 
    ln  
    (#)  
    arccot ) 
    . ( 
    upper_bound A)) 
    - (( 
    ln  
    (#)  
    arccot ) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & (for x st x 
    in Z holds (f1 
    . x) 
    = 1) & f 
    = (( 
    arccot  
    / ( 
    id Z)) 
    - ( 
    ln  
    / (f1 
    + ( 
    #Z 2)))) & Z 
    c=  
    ].(
    - 1), 1.[ & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      Z
    = (( 
    dom ( 
    arccot  
    / ( 
    id Z))) 
    /\ ( 
    dom ( 
    ln  
    / (f1 
    + ( 
    #Z 2))))) by 
    A1,
    VALUED_1: 12;
    
      then
    
      
    
    A3: Z 
    c= ( 
    dom ( 
    arccot  
    / ( 
    id Z))) & Z 
    c= ( 
    dom ( 
    ln  
    / (f1 
    + ( 
    #Z 2)))) by 
    XBOOLE_1: 18;
    
      then Z
    c= (( 
    dom  
    arccot ) 
    /\ (( 
    dom ( 
    id Z)) 
    \ (( 
    id Z) 
    "  
    {
    0 }))) by 
    RFUNCT_1:def 1;
    
      then
    
      
    
    A4: Z 
    c= ( 
    dom  
    arccot ) by 
    XBOOLE_1: 18;
    
      Z
    c= (( 
    dom  
    ln ) 
    /\ (( 
    dom (f1 
    + ( 
    #Z 2))) 
    \ ((f1 
    + ( 
    #Z 2)) 
    "  
    {
    0 }))) by 
    A3,
    RFUNCT_1:def 1;
    
      then
    
      
    
    A5: Z 
    c= ( 
    dom  
    ln ) & Z 
    c= (( 
    dom (f1 
    + ( 
    #Z 2))) 
    \ ((f1 
    + ( 
    #Z 2)) 
    "  
    {
    0 })) by 
    XBOOLE_1: 18;
    
      then Z
    c= (( 
    dom  
    arccot ) 
    /\ ( 
    dom  
    ln )) by 
    A4,
    XBOOLE_1: 19;
    
      then
    
      
    
    A6: Z 
    c= ( 
    dom ( 
    ln  
    (#)  
    arccot )) by 
    VALUED_1:def 4;
    
      then
    
      
    
    A7: ( 
    ln  
    (#)  
    arccot ) 
    is_differentiable_on Z by 
    A1,
    SIN_COS9: 128;
    
      
    
      
    
    A8: Z 
    c= ( 
    dom ((f1 
    + ( 
    #Z 2)) 
    ^ )) by 
    A5,
    RFUNCT_1:def 2;
    
      (
    dom ((f1 
    + ( 
    #Z 2)) 
    ^ )) 
    c= ( 
    dom (f1 
    + ( 
    #Z 2))) by 
    RFUNCT_1: 1;
    
      then
    
      
    
    A9: Z 
    c= ( 
    dom (f1 
    + ( 
    #Z 2))) by 
    A8;
    
      
    
      
    
    A10: for x st x 
    in Z holds (f 
    . x) 
    = ((( 
    arccot  
    . x) 
    / x) 
    - (( 
    ln  
    . x) 
    / (1 
    + (x 
    ^2 )))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A11: x 
    in Z; 
    
        
    
        then (((
    arccot  
    / ( 
    id Z)) 
    - ( 
    ln  
    / (f1 
    + ( 
    #Z 2)))) 
    . x) 
    = ((( 
    arccot  
    / ( 
    id Z)) 
    . x) 
    - (( 
    ln  
    / (f1 
    + ( 
    #Z 2))) 
    . x)) by 
    A1,
    VALUED_1: 13
    
        .= (((
    arccot  
    . x) 
    * ((( 
    id Z) 
    . x) 
    " )) 
    - (( 
    ln  
    / (f1 
    + ( 
    #Z 2))) 
    . x)) by 
    A3,
    A11,
    RFUNCT_1:def 1
    
        .= (((
    arccot  
    . x) 
    * ((( 
    id Z) 
    . x) 
    " )) 
    - (( 
    ln  
    . x) 
    * (((f1 
    + ( 
    #Z 2)) 
    . x) 
    " ))) by 
    A3,
    A11,
    RFUNCT_1:def 1
    
        .= (((
    arccot  
    . x) 
    / x) 
    - (( 
    ln  
    . x) 
    / ((f1 
    + ( 
    #Z 2)) 
    . x))) by 
    A11,
    FUNCT_1: 18
    
        .= (((
    arccot  
    . x) 
    / x) 
    - (( 
    ln  
    . x) 
    / ((f1 
    . x) 
    + (( 
    #Z 2) 
    . x)))) by 
    A9,
    A11,
    VALUED_1:def 1
    
        .= (((
    arccot  
    . x) 
    / x) 
    - (( 
    ln  
    . x) 
    / (1 
    + (( 
    #Z 2) 
    . x)))) by 
    A1,
    A11
    
        .= (((
    arccot  
    . x) 
    / x) 
    - (( 
    ln  
    . x) 
    / (1 
    + (x 
    #Z 2)))) by 
    TAYLOR_1:def 1
    
        .= (((
    arccot  
    . x) 
    / x) 
    - (( 
    ln  
    . x) 
    / (1 
    + (x 
    ^2 )))) by 
    FDIFF_7: 1;
    
        hence thesis by
    A1;
    
      end;
    
      
    
      
    
    A12: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (( 
    ln  
    (#)  
    arccot ) 
    `| Z)) holds ((( 
    ln  
    (#)  
    arccot ) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (( 
    ln  
    (#)  
    arccot ) 
    `| Z)); 
    
        then
    
        
    
    A13: x 
    in Z by 
    A7,
    FDIFF_1:def 7;
    
        
    
        then (((
    ln  
    (#)  
    arccot ) 
    `| Z) 
    . x) 
    = ((( 
    arccot  
    . x) 
    / x) 
    - (( 
    ln  
    . x) 
    / (1 
    + (x 
    ^2 )))) by 
    A1,
    A6,
    SIN_COS9: 128
    
        .= (f
    . x) by 
    A10,
    A13;
    
        hence thesis;
    
      end;
    
      (
    dom (( 
    ln  
    (#)  
    arccot ) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A7,
    FDIFF_1:def 7;
    
      then ((
    ln  
    (#)  
    arccot ) 
    `| Z) 
    = f by 
    A12,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    A6,
    INTEGRA5: 13,
    SIN_COS9: 128;
    
    end;
    
    theorem :: 
    
    INTEGR13:21
    
    A
    c= Z & f 
    = (( 
    exp_R  
    *  
    tan ) 
    / ( 
    cos  
    ^2 )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = ((( 
    exp_R  
    *  
    tan ) 
    . ( 
    upper_bound A)) 
    - (( 
    exp_R  
    *  
    tan ) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & f 
    = (( 
    exp_R  
    *  
    tan ) 
    / ( 
    cos  
    ^2 )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      Z
    = (( 
    dom ( 
    exp_R  
    *  
    tan )) 
    /\ (( 
    dom ( 
    cos  
    ^2 )) 
    \ (( 
    cos  
    ^2 ) 
    "  
    {
    0 }))) by 
    A1,
    RFUNCT_1:def 1;
    
      then
    
      
    
    A3: Z 
    c= ( 
    dom ( 
    exp_R  
    *  
    tan )) by 
    XBOOLE_1: 18;
    
      then
    
      
    
    A4: ( 
    exp_R  
    *  
    tan ) 
    is_differentiable_on Z by 
    FDIFF_8: 16;
    
      
    
      
    
    A5: for x st x 
    in Z holds (f 
    . x) 
    = (( 
    exp_R  
    . ( 
    tan  
    . x)) 
    / (( 
    cos  
    . x) 
    ^2 )) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A6: x 
    in Z; 
    
        
    
        then (((
    exp_R  
    *  
    tan ) 
    / ( 
    cos  
    ^2 )) 
    . x) 
    = ((( 
    exp_R  
    *  
    tan ) 
    . x) 
    / (( 
    cos  
    ^2 ) 
    . x)) by 
    A1,
    RFUNCT_1:def 1
    
        .= ((
    exp_R  
    . ( 
    tan  
    . x)) 
    / (( 
    cos  
    ^2 ) 
    . x)) by 
    A3,
    A6,
    FUNCT_1: 12
    
        .= ((
    exp_R  
    . ( 
    tan  
    . x)) 
    / (( 
    cos  
    . x) 
    ^2 )) by 
    VALUED_1: 11;
    
        hence thesis by
    A1;
    
      end;
    
      
    
      
    
    A7: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (( 
    exp_R  
    *  
    tan ) 
    `| Z)) holds ((( 
    exp_R  
    *  
    tan ) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (( 
    exp_R  
    *  
    tan ) 
    `| Z)); 
    
        then
    
        
    
    A8: x 
    in Z by 
    A4,
    FDIFF_1:def 7;
    
        
    
        then (((
    exp_R  
    *  
    tan ) 
    `| Z) 
    . x) 
    = (( 
    exp_R  
    . ( 
    tan  
    . x)) 
    / (( 
    cos  
    . x) 
    ^2 )) by 
    A3,
    FDIFF_8: 16
    
        .= (f
    . x) by 
    A5,
    A8;
    
        hence thesis;
    
      end;
    
      (
    dom (( 
    exp_R  
    *  
    tan ) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A4,
    FDIFF_1:def 7;
    
      then ((
    exp_R  
    *  
    tan ) 
    `| Z) 
    = f by 
    A7,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    A3,
    FDIFF_8: 16,
    INTEGRA5: 13;
    
    end;
    
    theorem :: 
    
    INTEGR13:22
    
    A
    c= Z & f 
    = ( 
    - (( 
    exp_R  
    *  
    cot ) 
    / ( 
    sin  
    ^2 ))) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = ((( 
    exp_R  
    *  
    cot ) 
    . ( 
    upper_bound A)) 
    - (( 
    exp_R  
    *  
    cot ) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & f 
    = ( 
    - (( 
    exp_R  
    *  
    cot ) 
    / ( 
    sin  
    ^2 ))) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      
    
      
    
    A3: Z 
    = ( 
    dom (( 
    exp_R  
    *  
    cot ) 
    / ( 
    sin  
    ^2 ))) by 
    A1,
    VALUED_1: 8;
    
      then Z
    c= (( 
    dom ( 
    exp_R  
    *  
    cot )) 
    /\ (( 
    dom ( 
    sin  
    ^2 )) 
    \ (( 
    sin  
    ^2 ) 
    "  
    {
    0 }))) by 
    RFUNCT_1:def 1;
    
      then
    
      
    
    A4: Z 
    c= ( 
    dom ( 
    exp_R  
    *  
    cot )) by 
    XBOOLE_1: 18;
    
      then
    
      
    
    A5: ( 
    exp_R  
    *  
    cot ) 
    is_differentiable_on Z by 
    FDIFF_8: 17;
    
      
    
      
    
    A6: for x st x 
    in Z holds (f 
    . x) 
    = ( 
    - (( 
    exp_R  
    . ( 
    cot  
    . x)) 
    / (( 
    sin  
    . x) 
    ^2 ))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A7: x 
    in Z; 
    
        ((
    - (( 
    exp_R  
    *  
    cot ) 
    / ( 
    sin  
    ^2 ))) 
    . x) 
    = ( 
    - ((( 
    exp_R  
    *  
    cot ) 
    / ( 
    sin  
    ^2 )) 
    . x)) by 
    VALUED_1: 8
    
        .= (
    - ((( 
    exp_R  
    *  
    cot ) 
    . x) 
    / (( 
    sin  
    ^2 ) 
    . x))) by 
    A7,
    A3,
    RFUNCT_1:def 1
    
        .= (
    - (( 
    exp_R  
    . ( 
    cot  
    . x)) 
    / (( 
    sin  
    ^2 ) 
    . x))) by 
    A4,
    A7,
    FUNCT_1: 12
    
        .= (
    - (( 
    exp_R  
    . ( 
    cot  
    . x)) 
    / (( 
    sin  
    . x) 
    ^2 ))) by 
    VALUED_1: 11;
    
        hence thesis by
    A1;
    
      end;
    
      
    
      
    
    A8: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (( 
    exp_R  
    *  
    cot ) 
    `| Z)) holds ((( 
    exp_R  
    *  
    cot ) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (( 
    exp_R  
    *  
    cot ) 
    `| Z)); 
    
        then
    
        
    
    A9: x 
    in Z by 
    A5,
    FDIFF_1:def 7;
    
        
    
        then (((
    exp_R  
    *  
    cot ) 
    `| Z) 
    . x) 
    = ( 
    - (( 
    exp_R  
    . ( 
    cot  
    . x)) 
    / (( 
    sin  
    . x) 
    ^2 ))) by 
    A4,
    FDIFF_8: 17
    
        .= (f
    . x) by 
    A6,
    A9;
    
        hence thesis;
    
      end;
    
      (
    dom (( 
    exp_R  
    *  
    cot ) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A5,
    FDIFF_1:def 7;
    
      then ((
    exp_R  
    *  
    cot ) 
    `| Z) 
    = f by 
    A8,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    A4,
    FDIFF_8: 17,
    INTEGRA5: 13;
    
    end;
    
    theorem :: 
    
    INTEGR13:23
    
    
    
    
    
    Th23: Z 
    c= ( 
    dom ( 
    exp_R  
    *  
    cot )) implies ( 
    - ( 
    exp_R  
    *  
    cot )) 
    is_differentiable_on Z & for x st x 
    in Z holds ((( 
    - ( 
    exp_R  
    *  
    cot )) 
    `| Z) 
    . x) 
    = (( 
    exp_R  
    . ( 
    cot  
    . x)) 
    / (( 
    sin  
    . x) 
    ^2 )) 
    
    proof
    
      assume
    
      
    
    A1: Z 
    c= ( 
    dom ( 
    exp_R  
    *  
    cot )); 
    
      then
    
      
    
    A2: Z 
    c= ( 
    dom ( 
    - ( 
    exp_R  
    *  
    cot ))) by 
    VALUED_1: 8;
    
      
    
      
    
    A3: for x st x 
    in Z holds ( 
    sin  
    . x) 
    <>  
    0  
    
      proof
    
        let x;
    
        assume x
    in Z; 
    
        then x
    in ( 
    dom ( 
    cos  
    /  
    sin )) by 
    A1,
    FUNCT_1: 11;
    
        hence thesis by
    FDIFF_8: 2;
    
      end;
    
      
    
      
    
    A4: ( 
    exp_R  
    *  
    cot ) 
    is_differentiable_on Z by 
    A1,
    FDIFF_8: 17;
    
      then
    
      
    
    A5: (( 
    - 1) 
    (#) ( 
    exp_R  
    *  
    cot )) 
    is_differentiable_on Z by 
    A2,
    FDIFF_1: 20;
    
      for x st x
    in Z holds ((( 
    - ( 
    exp_R  
    *  
    cot )) 
    `| Z) 
    . x) 
    = (( 
    exp_R  
    . ( 
    cot  
    . x)) 
    / (( 
    sin  
    . x) 
    ^2 )) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A6: x 
    in Z; 
    
        then
    
        
    
    A7: ( 
    sin  
    . x) 
    <>  
    0 by 
    A3;
    
        then
    
        
    
    A8: 
    cot  
    is_differentiable_in x by 
    FDIFF_7: 47;
    
        
    
        
    
    A9: 
    exp_R  
    is_differentiable_in ( 
    cot  
    . x) by 
    SIN_COS: 65;
    
        
    
        
    
    A10: ( 
    exp_R  
    *  
    cot ) 
    is_differentiable_in x by 
    A4,
    A6,
    FDIFF_1: 9;
    
        (((
    - ( 
    exp_R  
    *  
    cot )) 
    `| Z) 
    . x) 
    = ( 
    diff (( 
    - ( 
    exp_R  
    *  
    cot )),x)) by 
    A5,
    A6,
    FDIFF_1:def 7
    
        .= ((
    - 1) 
    * ( 
    diff (( 
    exp_R  
    *  
    cot ),x))) by 
    A10,
    FDIFF_1: 15
    
        .= ((
    - 1) 
    * (( 
    diff ( 
    exp_R ,( 
    cot  
    . x))) 
    * ( 
    diff ( 
    cot ,x)))) by 
    A8,
    A9,
    FDIFF_2: 13
    
        .= ((
    - 1) 
    * (( 
    diff ( 
    exp_R ,( 
    cot  
    . x))) 
    * ( 
    - (1 
    / (( 
    sin  
    . x) 
    ^2 ))))) by 
    A7,
    FDIFF_7: 47
    
        .= ((
    - 1) 
    * (( 
    exp_R  
    . ( 
    cot  
    . x)) 
    * ( 
    - (1 
    / (( 
    sin  
    . x) 
    ^2 ))))) by 
    SIN_COS: 65
    
        .= ((
    exp_R  
    . ( 
    cot  
    . x)) 
    / (( 
    sin  
    . x) 
    ^2 )); 
    
        hence thesis;
    
      end;
    
      hence thesis by
    A2,
    A4,
    FDIFF_1: 20;
    
    end;
    
    theorem :: 
    
    INTEGR13:24
    
    A
    c= Z & f 
    = (( 
    exp_R  
    *  
    cot ) 
    / ( 
    sin  
    ^2 )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = ((( 
    - ( 
    exp_R  
    *  
    cot )) 
    . ( 
    upper_bound A)) 
    - (( 
    - ( 
    exp_R  
    *  
    cot )) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & f 
    = (( 
    exp_R  
    *  
    cot ) 
    / ( 
    sin  
    ^2 )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      Z
    = (( 
    dom ( 
    exp_R  
    *  
    cot )) 
    /\ (( 
    dom ( 
    sin  
    ^2 )) 
    \ (( 
    sin  
    ^2 ) 
    "  
    {
    0 }))) by 
    A1,
    RFUNCT_1:def 1;
    
      then
    
      
    
    A3: Z 
    c= ( 
    dom ( 
    exp_R  
    *  
    cot )) by 
    XBOOLE_1: 18;
    
      then
    
      
    
    A4: ( 
    - ( 
    exp_R  
    *  
    cot )) 
    is_differentiable_on Z by 
    Th23;
    
      
    
      
    
    A5: for x st x 
    in Z holds (f 
    . x) 
    = (( 
    exp_R  
    . ( 
    cot  
    . x)) 
    / (( 
    sin  
    . x) 
    ^2 )) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A6: x 
    in Z; 
    
        
    
        then (((
    exp_R  
    *  
    cot ) 
    / ( 
    sin  
    ^2 )) 
    . x) 
    = ((( 
    exp_R  
    *  
    cot ) 
    . x) 
    / (( 
    sin  
    ^2 ) 
    . x)) by 
    A1,
    RFUNCT_1:def 1
    
        .= ((
    exp_R  
    . ( 
    cot  
    . x)) 
    / (( 
    sin  
    ^2 ) 
    . x)) by 
    A3,
    A6,
    FUNCT_1: 12
    
        .= ((
    exp_R  
    . ( 
    cot  
    . x)) 
    / (( 
    sin  
    . x) 
    ^2 )) by 
    VALUED_1: 11;
    
        hence thesis by
    A1;
    
      end;
    
      
    
      
    
    A7: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (( 
    - ( 
    exp_R  
    *  
    cot )) 
    `| Z)) holds ((( 
    - ( 
    exp_R  
    *  
    cot )) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (( 
    - ( 
    exp_R  
    *  
    cot )) 
    `| Z)); 
    
        then
    
        
    
    A8: x 
    in Z by 
    A4,
    FDIFF_1:def 7;
    
        
    
        then (((
    - ( 
    exp_R  
    *  
    cot )) 
    `| Z) 
    . x) 
    = (( 
    exp_R  
    . ( 
    cot  
    . x)) 
    / (( 
    sin  
    . x) 
    ^2 )) by 
    Th23,
    A3
    
        .= (f
    . x) by 
    A5,
    A8;
    
        hence thesis;
    
      end;
    
      (
    dom (( 
    - ( 
    exp_R  
    *  
    cot )) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A4,
    FDIFF_1:def 7;
    
      then ((
    - ( 
    exp_R  
    *  
    cot )) 
    `| Z) 
    = f by 
    A7,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    Th23,
    A3,
    INTEGRA5: 13;
    
    end;
    
    theorem :: 
    
    INTEGR13:25
    
    A
    c= Z & f 
    = ((( 
    id Z) 
    (#) (( 
    cos  
    *  
    ln ) 
    ^2 )) 
    ^ ) & Z 
    c= ( 
    dom ( 
    tan  
    *  
    ln )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = ((( 
    tan  
    *  
    ln ) 
    . ( 
    upper_bound A)) 
    - (( 
    tan  
    *  
    ln ) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & f 
    = ((( 
    id Z) 
    (#) (( 
    cos  
    *  
    ln ) 
    ^2 )) 
    ^ ) & Z 
    c= ( 
    dom ( 
    tan  
    *  
    ln )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      
    
      
    
    A3: ( 
    tan  
    *  
    ln ) 
    is_differentiable_on Z by 
    A1,
    FDIFF_8: 14;
    
      Z
    c= ( 
    dom (( 
    id Z) 
    (#) (( 
    cos  
    *  
    ln ) 
    ^2 ))) by 
    A1,
    RFUNCT_1: 1;
    
      then Z
    c= (( 
    dom ( 
    id Z)) 
    /\ ( 
    dom (( 
    cos  
    *  
    ln ) 
    ^2 ))) by 
    VALUED_1:def 4;
    
      then Z
    c= ( 
    dom (( 
    cos  
    *  
    ln ) 
    ^2 )) by 
    XBOOLE_1: 18;
    
      then
    
      
    
    A4: Z 
    c= ( 
    dom ( 
    cos  
    *  
    ln )) by 
    VALUED_1: 11;
    
      
    
      
    
    A5: for x st x 
    in Z holds (f 
    . x) 
    = (1 
    / (x 
    * (( 
    cos  
    . ( 
    ln  
    . x)) 
    ^2 ))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A6: x 
    in Z; 
    
        
    
        then ((((
    id Z) 
    (#) (( 
    cos  
    *  
    ln ) 
    ^2 )) 
    ^ ) 
    . x) 
    = (1 
    / ((( 
    id Z) 
    (#) (( 
    cos  
    *  
    ln ) 
    ^2 )) 
    . x)) by 
    A1,
    RFUNCT_1:def 2
    
        .= (1
    / ((( 
    id Z) 
    . x) 
    * ((( 
    cos  
    *  
    ln ) 
    ^2 ) 
    . x))) by 
    VALUED_1: 5
    
        .= (1
    / (x 
    * ((( 
    cos  
    *  
    ln ) 
    ^2 ) 
    . x))) by 
    A6,
    FUNCT_1: 18
    
        .= (1
    / (x 
    * ((( 
    cos  
    *  
    ln ) 
    . x) 
    ^2 ))) by 
    VALUED_1: 11
    
        .= (1
    / (x 
    * (( 
    cos  
    . ( 
    ln  
    . x)) 
    ^2 ))) by 
    A4,
    A6,
    FUNCT_1: 12;
    
        hence thesis by
    A1;
    
      end;
    
      
    
      
    
    A7: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (( 
    tan  
    *  
    ln ) 
    `| Z)) holds ((( 
    tan  
    *  
    ln ) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (( 
    tan  
    *  
    ln ) 
    `| Z)); 
    
        then
    
        
    
    A8: x 
    in Z by 
    A3,
    FDIFF_1:def 7;
    
        
    
        then (((
    tan  
    *  
    ln ) 
    `| Z) 
    . x) 
    = (1 
    / (x 
    * (( 
    cos  
    . ( 
    ln  
    . x)) 
    ^2 ))) by 
    A1,
    FDIFF_8: 14
    
        .= (f
    . x) by 
    A5,
    A8;
    
        hence thesis;
    
      end;
    
      (
    dom (( 
    tan  
    *  
    ln ) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A3,
    FDIFF_1:def 7;
    
      then ((
    tan  
    *  
    ln ) 
    `| Z) 
    = f by 
    A7,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    FDIFF_8: 14,
    INTEGRA5: 13;
    
    end;
    
    theorem :: 
    
    INTEGR13:26
    
    A
    c= Z & f 
    = ( 
    - ((( 
    id Z) 
    (#) (( 
    sin  
    *  
    ln ) 
    ^2 )) 
    ^ )) & Z 
    c= ( 
    dom ( 
    cot  
    *  
    ln )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = ((( 
    cot  
    *  
    ln ) 
    . ( 
    upper_bound A)) 
    - (( 
    cot  
    *  
    ln ) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & f 
    = ( 
    - ((( 
    id Z) 
    (#) (( 
    sin  
    *  
    ln ) 
    ^2 )) 
    ^ )) & Z 
    c= ( 
    dom ( 
    cot  
    *  
    ln )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      
    
      
    
    A3: ( 
    cot  
    *  
    ln ) 
    is_differentiable_on Z by 
    A1,
    FDIFF_8: 15;
    
      
    
      
    
    A4: Z 
    = ( 
    dom ((( 
    id Z) 
    (#) (( 
    sin  
    *  
    ln ) 
    ^2 )) 
    ^ )) by 
    A1,
    VALUED_1: 8;
    
      then Z
    c= ( 
    dom (( 
    id Z) 
    (#) (( 
    sin  
    *  
    ln ) 
    ^2 ))) by 
    RFUNCT_1: 1;
    
      then Z
    c= (( 
    dom ( 
    id Z)) 
    /\ ( 
    dom (( 
    sin  
    *  
    ln ) 
    ^2 ))) by 
    VALUED_1:def 4;
    
      then Z
    c= ( 
    dom (( 
    sin  
    *  
    ln ) 
    ^2 )) by 
    XBOOLE_1: 18;
    
      then
    
      
    
    A5: Z 
    c= ( 
    dom ( 
    sin  
    *  
    ln )) by 
    VALUED_1: 11;
    
      
    
      
    
    A6: for x st x 
    in Z holds (f 
    . x) 
    = ( 
    - (1 
    / (x 
    * (( 
    sin  
    . ( 
    ln  
    . x)) 
    ^2 )))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A7: x 
    in Z; 
    
        ((
    - ((( 
    id Z) 
    (#) (( 
    sin  
    *  
    ln ) 
    ^2 )) 
    ^ )) 
    . x) 
    = ( 
    - (((( 
    id Z) 
    (#) (( 
    sin  
    *  
    ln ) 
    ^2 )) 
    ^ ) 
    . x)) by 
    VALUED_1: 8
    
        .= (
    - (1 
    / ((( 
    id Z) 
    (#) (( 
    sin  
    *  
    ln ) 
    ^2 )) 
    . x))) by 
    A4,
    A7,
    RFUNCT_1:def 2
    
        .= (
    - (1 
    / ((( 
    id Z) 
    . x) 
    * ((( 
    sin  
    *  
    ln ) 
    ^2 ) 
    . x)))) by 
    VALUED_1: 5
    
        .= (
    - (1 
    / (x 
    * ((( 
    sin  
    *  
    ln ) 
    ^2 ) 
    . x)))) by 
    A7,
    FUNCT_1: 18
    
        .= (
    - (1 
    / (x 
    * ((( 
    sin  
    *  
    ln ) 
    . x) 
    ^2 )))) by 
    VALUED_1: 11
    
        .= (
    - (1 
    / (x 
    * (( 
    sin  
    . ( 
    ln  
    . x)) 
    ^2 )))) by 
    A5,
    A7,
    FUNCT_1: 12;
    
        hence thesis by
    A1;
    
      end;
    
      
    
      
    
    A8: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (( 
    cot  
    *  
    ln ) 
    `| Z)) holds ((( 
    cot  
    *  
    ln ) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (( 
    cot  
    *  
    ln ) 
    `| Z)); 
    
        then
    
        
    
    A9: x 
    in Z by 
    A3,
    FDIFF_1:def 7;
    
        
    
        then (((
    cot  
    *  
    ln ) 
    `| Z) 
    . x) 
    = ( 
    - (1 
    / (x 
    * (( 
    sin  
    . ( 
    ln  
    . x)) 
    ^2 )))) by 
    A1,
    FDIFF_8: 15
    
        .= (f
    . x) by 
    A6,
    A9;
    
        hence thesis;
    
      end;
    
      (
    dom (( 
    cot  
    *  
    ln ) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A3,
    FDIFF_1:def 7;
    
      then ((
    cot  
    *  
    ln ) 
    `| Z) 
    = f by 
    A8,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    FDIFF_8: 15,
    INTEGRA5: 13;
    
    end;
    
    theorem :: 
    
    INTEGR13:27
    
    
    
    
    
    Th27: Z 
    c= ( 
    dom ( 
    cot  
    *  
    ln )) implies ( 
    - ( 
    cot  
    *  
    ln )) 
    is_differentiable_on Z & for x st x 
    in Z holds ((( 
    - ( 
    cot  
    *  
    ln )) 
    `| Z) 
    . x) 
    = (1 
    / (x 
    * (( 
    sin  
    . ( 
    ln  
    . x)) 
    ^2 ))) 
    
    proof
    
      assume
    
      
    
    A1: Z 
    c= ( 
    dom ( 
    cot  
    *  
    ln )); 
    
      then
    
      
    
    A2: Z 
    c= ( 
    dom ( 
    - ( 
    cot  
    *  
    ln ))) by 
    VALUED_1: 8;
    
      (
    dom ( 
    cot  
    *  
    ln )) 
    c= ( 
    dom  
    ln ) by 
    RELAT_1: 25;
    
      then
    
      
    
    A3: Z 
    c= ( 
    dom  
    ln ) by 
    A1;
    
      
    
      
    
    A4: for x st x 
    in Z holds x 
    >  
    0  
    
      proof
    
        let x;
    
        assume x
    in Z; 
    
        then x
    in ( 
    right_open_halfline  
    0 ) by 
    A3,
    TAYLOR_1: 18;
    
        then ex g be
    Real st x 
    = g & 
    0  
    < g by 
    Lm2;
    
        hence thesis;
    
      end;
    
      
    
      
    
    A5: for x st x 
    in Z holds ( 
    sin  
    . ( 
    ln  
    . x)) 
    <>  
    0  
    
      proof
    
        let x;
    
        assume x
    in Z; 
    
        then (
    ln  
    . x) 
    in ( 
    dom ( 
    cos  
    /  
    sin )) by 
    A1,
    FUNCT_1: 11;
    
        hence thesis by
    FDIFF_8: 2;
    
      end;
    
      
    
      
    
    A6: for x st x 
    in Z holds ( 
    diff ( 
    ln ,x)) 
    = (1 
    / x) 
    
      proof
    
        let x;
    
        assume x
    in Z; 
    
        then x
    >  
    0 by 
    A4;
    
        then x
    in ( 
    right_open_halfline  
    0 ) by 
    Lm2;
    
        hence thesis by
    TAYLOR_1: 18;
    
      end;
    
      
    
      
    
    A7: ( 
    cot  
    *  
    ln ) 
    is_differentiable_on Z by 
    A1,
    FDIFF_8: 15;
    
      then
    
      
    
    A8: (( 
    - 1) 
    (#) ( 
    cot  
    *  
    ln )) 
    is_differentiable_on Z by 
    A2,
    FDIFF_1: 20;
    
      for x st x
    in Z holds ((( 
    - ( 
    cot  
    *  
    ln )) 
    `| Z) 
    . x) 
    = (1 
    / (x 
    * (( 
    sin  
    . ( 
    ln  
    . x)) 
    ^2 ))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A9: x 
    in Z; 
    
        then
    
        
    
    A10: 
    ln  
    is_differentiable_in x by 
    A4,
    TAYLOR_1: 18;
    
        
    
        
    
    A11: x 
    >  
    0 & ( 
    sin  
    . ( 
    ln  
    . x)) 
    <>  
    0 by 
    A4,
    A5,
    A9;
    
        then
    
        
    
    A12: 
    cot  
    is_differentiable_in ( 
    ln  
    . x) by 
    FDIFF_7: 47;
    
        
    
        
    
    A13: ( 
    cot  
    *  
    ln ) 
    is_differentiable_in x by 
    A7,
    A9,
    FDIFF_1: 9;
    
        (((
    - ( 
    cot  
    *  
    ln )) 
    `| Z) 
    . x) 
    = ( 
    diff (( 
    - ( 
    cot  
    *  
    ln )),x)) by 
    A8,
    A9,
    FDIFF_1:def 7
    
        .= ((
    - 1) 
    * ( 
    diff (( 
    cot  
    *  
    ln ),x))) by 
    A13,
    FDIFF_1: 15
    
        .= ((
    - 1) 
    * (( 
    diff ( 
    cot ,( 
    ln  
    . x))) 
    * ( 
    diff ( 
    ln ,x)))) by 
    A10,
    A12,
    FDIFF_2: 13
    
        .= ((
    - 1) 
    * (( 
    - (1 
    / (( 
    sin  
    . ( 
    ln  
    . x)) 
    ^2 ))) 
    * ( 
    diff ( 
    ln ,x)))) by 
    A11,
    FDIFF_7: 47
    
        .= ((
    - 1) 
    * ( 
    - (( 
    diff ( 
    ln ,x)) 
    / (( 
    sin  
    . ( 
    ln  
    . x)) 
    ^2 )))) 
    
        .= ((
    - 1) 
    * ( 
    - ((1 
    / x) 
    / (( 
    sin  
    . ( 
    ln  
    . x)) 
    ^2 )))) by 
    A6,
    A9
    
        .= (1
    / (x 
    * (( 
    sin  
    . ( 
    ln  
    . x)) 
    ^2 ))) by 
    XCMPLX_1: 78;
    
        hence thesis;
    
      end;
    
      hence thesis by
    A2,
    A7,
    FDIFF_1: 20;
    
    end;
    
    theorem :: 
    
    INTEGR13:28
    
    A
    c= Z & f 
    = ((( 
    id Z) 
    (#) (( 
    sin  
    *  
    ln ) 
    ^2 )) 
    ^ ) & Z 
    c= ( 
    dom ( 
    cot  
    *  
    ln )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = ((( 
    - ( 
    cot  
    *  
    ln )) 
    . ( 
    upper_bound A)) 
    - (( 
    - ( 
    cot  
    *  
    ln )) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & f 
    = ((( 
    id Z) 
    (#) (( 
    sin  
    *  
    ln ) 
    ^2 )) 
    ^ ) & Z 
    c= ( 
    dom ( 
    cot  
    *  
    ln )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      
    
      
    
    A3: ( 
    - ( 
    cot  
    *  
    ln )) 
    is_differentiable_on Z by 
    A1,
    Th27;
    
      Z
    c= ( 
    dom (( 
    id Z) 
    (#) (( 
    sin  
    *  
    ln ) 
    ^2 ))) by 
    A1,
    RFUNCT_1: 1;
    
      then Z
    c= (( 
    dom ( 
    id Z)) 
    /\ ( 
    dom (( 
    sin  
    *  
    ln ) 
    ^2 ))) by 
    VALUED_1:def 4;
    
      then Z
    c= ( 
    dom (( 
    sin  
    *  
    ln ) 
    ^2 )) by 
    XBOOLE_1: 18;
    
      then
    
      
    
    A4: Z 
    c= ( 
    dom ( 
    sin  
    *  
    ln )) by 
    VALUED_1: 11;
    
      
    
      
    
    A5: for x st x 
    in Z holds (f 
    . x) 
    = (1 
    / (x 
    * (( 
    sin  
    . ( 
    ln  
    . x)) 
    ^2 ))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A6: x 
    in Z; 
    
        
    
        then ((((
    id Z) 
    (#) (( 
    sin  
    *  
    ln ) 
    ^2 )) 
    ^ ) 
    . x) 
    = (1 
    / ((( 
    id Z) 
    (#) (( 
    sin  
    *  
    ln ) 
    ^2 )) 
    . x)) by 
    A1,
    RFUNCT_1:def 2
    
        .= (1
    / ((( 
    id Z) 
    . x) 
    * ((( 
    sin  
    *  
    ln ) 
    ^2 ) 
    . x))) by 
    VALUED_1: 5
    
        .= (1
    / (x 
    * ((( 
    sin  
    *  
    ln ) 
    ^2 ) 
    . x))) by 
    A6,
    FUNCT_1: 18
    
        .= (1
    / (x 
    * ((( 
    sin  
    *  
    ln ) 
    . x) 
    ^2 ))) by 
    VALUED_1: 11
    
        .= (1
    / (x 
    * (( 
    sin  
    . ( 
    ln  
    . x)) 
    ^2 ))) by 
    A4,
    A6,
    FUNCT_1: 12;
    
        hence thesis by
    A1;
    
      end;
    
      
    
      
    
    A7: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (( 
    - ( 
    cot  
    *  
    ln )) 
    `| Z)) holds ((( 
    - ( 
    cot  
    *  
    ln )) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (( 
    - ( 
    cot  
    *  
    ln )) 
    `| Z)); 
    
        then
    
        
    
    A8: x 
    in Z by 
    A3,
    FDIFF_1:def 7;
    
        
    
        then (((
    - ( 
    cot  
    *  
    ln )) 
    `| Z) 
    . x) 
    = (1 
    / (x 
    * (( 
    sin  
    . ( 
    ln  
    . x)) 
    ^2 ))) by 
    A1,
    Th27
    
        .= (f
    . x) by 
    A5,
    A8;
    
        hence thesis;
    
      end;
    
      (
    dom (( 
    - ( 
    cot  
    *  
    ln )) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A3,
    FDIFF_1:def 7;
    
      then ((
    - ( 
    cot  
    *  
    ln )) 
    `| Z) 
    = f by 
    A7,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    Th27,
    INTEGRA5: 13;
    
    end;
    
    theorem :: 
    
    INTEGR13:29
    
    A
    c= Z & f 
    = ( 
    exp_R  
    / (( 
    cos  
    *  
    exp_R ) 
    ^2 )) & Z 
    c= ( 
    dom ( 
    tan  
    *  
    exp_R )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = ((( 
    tan  
    *  
    exp_R ) 
    . ( 
    upper_bound A)) 
    - (( 
    tan  
    *  
    exp_R ) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & f 
    = ( 
    exp_R  
    / (( 
    cos  
    *  
    exp_R ) 
    ^2 )) & Z 
    c= ( 
    dom ( 
    tan  
    *  
    exp_R )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      
    
      
    
    A3: ( 
    tan  
    *  
    exp_R ) 
    is_differentiable_on Z by 
    A1,
    FDIFF_8: 12;
    
      Z
    = (( 
    dom  
    exp_R ) 
    /\ (( 
    dom (( 
    cos  
    *  
    exp_R ) 
    ^2 )) 
    \ ((( 
    cos  
    *  
    exp_R ) 
    ^2 ) 
    "  
    {
    0 }))) by 
    A1,
    RFUNCT_1:def 1;
    
      then Z
    c= (( 
    dom (( 
    cos  
    *  
    exp_R ) 
    ^2 )) 
    \ ((( 
    cos  
    *  
    exp_R ) 
    ^2 ) 
    "  
    {
    0 })) by 
    XBOOLE_1: 18;
    
      then
    
      
    
    A4: Z 
    c= ( 
    dom ((( 
    cos  
    *  
    exp_R ) 
    ^2 ) 
    ^ )) by 
    RFUNCT_1:def 2;
    
      (
    dom ((( 
    cos  
    *  
    exp_R ) 
    ^2 ) 
    ^ )) 
    c= ( 
    dom (( 
    cos  
    *  
    exp_R ) 
    ^2 )) by 
    RFUNCT_1: 1;
    
      then Z
    c= ( 
    dom (( 
    cos  
    *  
    exp_R ) 
    ^2 )) by 
    A4;
    
      then
    
      
    
    A5: Z 
    c= ( 
    dom ( 
    cos  
    *  
    exp_R )) by 
    VALUED_1: 11;
    
      
    
      
    
    A6: for x st x 
    in Z holds (f 
    . x) 
    = (( 
    exp_R  
    . x) 
    / (( 
    cos  
    . ( 
    exp_R  
    . x)) 
    ^2 )) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A7: x 
    in Z; 
    
        
    
        then ((
    exp_R  
    / (( 
    cos  
    *  
    exp_R ) 
    ^2 )) 
    . x) 
    = (( 
    exp_R  
    . x) 
    / ((( 
    cos  
    *  
    exp_R ) 
    ^2 ) 
    . x)) by 
    A1,
    RFUNCT_1:def 1
    
        .= ((
    exp_R  
    . x) 
    / ((( 
    cos  
    *  
    exp_R ) 
    . x) 
    ^2 )) by 
    VALUED_1: 11
    
        .= ((
    exp_R  
    . x) 
    / (( 
    cos  
    . ( 
    exp_R  
    . x)) 
    ^2 )) by 
    A5,
    A7,
    FUNCT_1: 12;
    
        hence thesis by
    A1;
    
      end;
    
      
    
      
    
    A8: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (( 
    tan  
    *  
    exp_R ) 
    `| Z)) holds ((( 
    tan  
    *  
    exp_R ) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (( 
    tan  
    *  
    exp_R ) 
    `| Z)); 
    
        then
    
        
    
    A9: x 
    in Z by 
    A3,
    FDIFF_1:def 7;
    
        
    
        then (((
    tan  
    *  
    exp_R ) 
    `| Z) 
    . x) 
    = (( 
    exp_R  
    . x) 
    / (( 
    cos  
    . ( 
    exp_R  
    . x)) 
    ^2 )) by 
    A1,
    FDIFF_8: 12
    
        .= (f
    . x) by 
    A6,
    A9;
    
        hence thesis;
    
      end;
    
      (
    dom (( 
    tan  
    *  
    exp_R ) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A3,
    FDIFF_1:def 7;
    
      then ((
    tan  
    *  
    exp_R ) 
    `| Z) 
    = f by 
    A8,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    FDIFF_8: 12,
    INTEGRA5: 13;
    
    end;
    
    theorem :: 
    
    INTEGR13:30
    
    A
    c= Z & f 
    = ( 
    - ( 
    exp_R  
    / (( 
    sin  
    *  
    exp_R ) 
    ^2 ))) & Z 
    c= ( 
    dom ( 
    cot  
    *  
    exp_R )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = ((( 
    cot  
    *  
    exp_R ) 
    . ( 
    upper_bound A)) 
    - (( 
    cot  
    *  
    exp_R ) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & f 
    = ( 
    - ( 
    exp_R  
    / (( 
    sin  
    *  
    exp_R ) 
    ^2 ))) & Z 
    c= ( 
    dom ( 
    cot  
    *  
    exp_R )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      
    
      
    
    A3: ( 
    cot  
    *  
    exp_R ) 
    is_differentiable_on Z by 
    A1,
    FDIFF_8: 13;
    
      
    
      
    
    A4: Z 
    = ( 
    dom ( 
    exp_R  
    / (( 
    sin  
    *  
    exp_R ) 
    ^2 ))) by 
    A1,
    VALUED_1: 8;
    
      then Z
    c= (( 
    dom  
    exp_R ) 
    /\ (( 
    dom (( 
    sin  
    *  
    exp_R ) 
    ^2 )) 
    \ ((( 
    sin  
    *  
    exp_R ) 
    ^2 ) 
    "  
    {
    0 }))) by 
    RFUNCT_1:def 1;
    
      then Z
    c= (( 
    dom (( 
    sin  
    *  
    exp_R ) 
    ^2 )) 
    \ ((( 
    sin  
    *  
    exp_R ) 
    ^2 ) 
    "  
    {
    0 })) by 
    XBOOLE_1: 18;
    
      then
    
      
    
    A5: Z 
    c= ( 
    dom ((( 
    sin  
    *  
    exp_R ) 
    ^2 ) 
    ^ )) by 
    RFUNCT_1:def 2;
    
      (
    dom ((( 
    sin  
    *  
    exp_R ) 
    ^2 ) 
    ^ )) 
    c= ( 
    dom (( 
    sin  
    *  
    exp_R ) 
    ^2 )) by 
    RFUNCT_1: 1;
    
      then Z
    c= ( 
    dom (( 
    sin  
    *  
    exp_R ) 
    ^2 )) by 
    A5;
    
      then
    
      
    
    A6: Z 
    c= ( 
    dom ( 
    sin  
    *  
    exp_R )) by 
    VALUED_1: 11;
    
      
    
      
    
    A7: for x st x 
    in Z holds (f 
    . x) 
    = ( 
    - (( 
    exp_R  
    . x) 
    / (( 
    sin  
    . ( 
    exp_R  
    . x)) 
    ^2 ))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A8: x 
    in Z; 
    
        ((
    - ( 
    exp_R  
    / (( 
    sin  
    *  
    exp_R ) 
    ^2 ))) 
    . x) 
    = ( 
    - (( 
    exp_R  
    / (( 
    sin  
    *  
    exp_R ) 
    ^2 )) 
    . x)) by 
    VALUED_1: 8
    
        .= (
    - (( 
    exp_R  
    . x) 
    / ((( 
    sin  
    *  
    exp_R ) 
    ^2 ) 
    . x))) by 
    A4,
    A8,
    RFUNCT_1:def 1
    
        .= (
    - (( 
    exp_R  
    . x) 
    / ((( 
    sin  
    *  
    exp_R ) 
    . x) 
    ^2 ))) by 
    VALUED_1: 11
    
        .= (
    - (( 
    exp_R  
    . x) 
    / (( 
    sin  
    . ( 
    exp_R  
    . x)) 
    ^2 ))) by 
    A6,
    A8,
    FUNCT_1: 12;
    
        hence thesis by
    A1;
    
      end;
    
      
    
      
    
    A9: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (( 
    cot  
    *  
    exp_R ) 
    `| Z)) holds ((( 
    cot  
    *  
    exp_R ) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (( 
    cot  
    *  
    exp_R ) 
    `| Z)); 
    
        then
    
        
    
    A10: x 
    in Z by 
    A3,
    FDIFF_1:def 7;
    
        
    
        then (((
    cot  
    *  
    exp_R ) 
    `| Z) 
    . x) 
    = ( 
    - (( 
    exp_R  
    . x) 
    / (( 
    sin  
    . ( 
    exp_R  
    . x)) 
    ^2 ))) by 
    A1,
    FDIFF_8: 13
    
        .= (f
    . x) by 
    A7,
    A10;
    
        hence thesis;
    
      end;
    
      (
    dom (( 
    cot  
    *  
    exp_R ) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A3,
    FDIFF_1:def 7;
    
      then ((
    cot  
    *  
    exp_R ) 
    `| Z) 
    = f by 
    A9,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    FDIFF_8: 13,
    INTEGRA5: 13;
    
    end;
    
    theorem :: 
    
    INTEGR13:31
    
    
    
    
    
    Th31: Z 
    c= ( 
    dom ( 
    cot  
    *  
    exp_R )) implies ( 
    - ( 
    cot  
    *  
    exp_R )) 
    is_differentiable_on Z & for x st x 
    in Z holds ((( 
    - ( 
    cot  
    *  
    exp_R )) 
    `| Z) 
    . x) 
    = (( 
    exp_R  
    . x) 
    / (( 
    sin  
    . ( 
    exp_R  
    . x)) 
    ^2 )) 
    
    proof
    
      assume
    
      
    
    A1: Z 
    c= ( 
    dom ( 
    cot  
    *  
    exp_R )); 
    
      then
    
      
    
    A2: Z 
    c= ( 
    dom ( 
    - ( 
    cot  
    *  
    exp_R ))) by 
    VALUED_1: 8;
    
      
    
      
    
    A3: ( 
    cot  
    *  
    exp_R ) 
    is_differentiable_on Z by 
    A1,
    FDIFF_8: 13;
    
      then
    
      
    
    A4: (( 
    - 1) 
    (#) ( 
    cot  
    *  
    exp_R )) 
    is_differentiable_on Z by 
    A2,
    FDIFF_1: 20;
    
      
    
      
    
    A5: for x st x 
    in Z holds ( 
    sin  
    . ( 
    exp_R  
    . x)) 
    <>  
    0  
    
      proof
    
        let x;
    
        assume x
    in Z; 
    
        then (
    exp_R  
    . x) 
    in ( 
    dom ( 
    cos  
    /  
    sin )) by 
    A1,
    FUNCT_1: 11;
    
        hence thesis by
    FDIFF_8: 2;
    
      end;
    
      for x st x
    in Z holds ((( 
    - ( 
    cot  
    *  
    exp_R )) 
    `| Z) 
    . x) 
    = (( 
    exp_R  
    . x) 
    / (( 
    sin  
    . ( 
    exp_R  
    . x)) 
    ^2 )) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A6: x 
    in Z; 
    
        
    
        
    
    A7: 
    exp_R  
    is_differentiable_in x by 
    SIN_COS: 65;
    
        
    
        
    
    A8: ( 
    sin  
    . ( 
    exp_R  
    . x)) 
    <>  
    0 by 
    A5,
    A6;
    
        then
    
        
    
    A9: 
    cot  
    is_differentiable_in ( 
    exp_R  
    . x) by 
    FDIFF_7: 47;
    
        
    
        
    
    A10: ( 
    cot  
    *  
    exp_R ) 
    is_differentiable_in x by 
    A3,
    A6,
    FDIFF_1: 9;
    
        (((
    - ( 
    cot  
    *  
    exp_R )) 
    `| Z) 
    . x) 
    = ( 
    diff (( 
    - ( 
    cot  
    *  
    exp_R )),x)) by 
    A4,
    A6,
    FDIFF_1:def 7
    
        .= ((
    - 1) 
    * ( 
    diff (( 
    cot  
    *  
    exp_R ),x))) by 
    A10,
    FDIFF_1: 15
    
        .= ((
    - 1) 
    * (( 
    diff ( 
    cot ,( 
    exp_R  
    . x))) 
    * ( 
    diff ( 
    exp_R ,x)))) by 
    A7,
    A9,
    FDIFF_2: 13
    
        .= ((
    - 1) 
    * (( 
    - (1 
    / (( 
    sin  
    . ( 
    exp_R  
    . x)) 
    ^2 ))) 
    * ( 
    diff ( 
    exp_R ,x)))) by 
    A8,
    FDIFF_7: 47
    
        .= ((
    - 1) 
    * ( 
    - (( 
    diff ( 
    exp_R ,x)) 
    / (( 
    sin  
    . ( 
    exp_R  
    . x)) 
    ^2 )))) 
    
        .= ((
    exp_R  
    . x) 
    / (( 
    sin  
    . ( 
    exp_R  
    . x)) 
    ^2 )) by 
    SIN_COS: 65;
    
        hence thesis;
    
      end;
    
      hence thesis by
    A4;
    
    end;
    
    theorem :: 
    
    INTEGR13:32
    
    A
    c= Z & f 
    = ( 
    exp_R  
    / (( 
    sin  
    *  
    exp_R ) 
    ^2 )) & Z 
    c= ( 
    dom ( 
    cot  
    *  
    exp_R )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = ((( 
    - ( 
    cot  
    *  
    exp_R )) 
    . ( 
    upper_bound A)) 
    - (( 
    - ( 
    cot  
    *  
    exp_R )) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & f 
    = ( 
    exp_R  
    / (( 
    sin  
    *  
    exp_R ) 
    ^2 )) & Z 
    c= ( 
    dom ( 
    cot  
    *  
    exp_R )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      
    
      
    
    A3: ( 
    - ( 
    cot  
    *  
    exp_R )) 
    is_differentiable_on Z by 
    A1,
    Th31;
    
      Z
    c= (( 
    dom  
    exp_R ) 
    /\ (( 
    dom (( 
    sin  
    *  
    exp_R ) 
    ^2 )) 
    \ ((( 
    sin  
    *  
    exp_R ) 
    ^2 ) 
    "  
    {
    0 }))) by 
    A1,
    RFUNCT_1:def 1;
    
      then Z
    c= (( 
    dom (( 
    sin  
    *  
    exp_R ) 
    ^2 )) 
    \ ((( 
    sin  
    *  
    exp_R ) 
    ^2 ) 
    "  
    {
    0 })) by 
    XBOOLE_1: 18;
    
      then
    
      
    
    A4: Z 
    c= ( 
    dom ((( 
    sin  
    *  
    exp_R ) 
    ^2 ) 
    ^ )) by 
    RFUNCT_1:def 2;
    
      (
    dom ((( 
    sin  
    *  
    exp_R ) 
    ^2 ) 
    ^ )) 
    c= ( 
    dom (( 
    sin  
    *  
    exp_R ) 
    ^2 )) by 
    RFUNCT_1: 1;
    
      then Z
    c= ( 
    dom (( 
    sin  
    *  
    exp_R ) 
    ^2 )) by 
    A4;
    
      then
    
      
    
    A5: Z 
    c= ( 
    dom ( 
    sin  
    *  
    exp_R )) by 
    VALUED_1: 11;
    
      
    
      
    
    A6: for x st x 
    in Z holds (f 
    . x) 
    = (( 
    exp_R  
    . x) 
    / (( 
    sin  
    . ( 
    exp_R  
    . x)) 
    ^2 )) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A7: x 
    in Z; 
    
        
    
        then ((
    exp_R  
    / (( 
    sin  
    *  
    exp_R ) 
    ^2 )) 
    . x) 
    = (( 
    exp_R  
    . x) 
    / ((( 
    sin  
    *  
    exp_R ) 
    ^2 ) 
    . x)) by 
    A1,
    RFUNCT_1:def 1
    
        .= ((
    exp_R  
    . x) 
    / ((( 
    sin  
    *  
    exp_R ) 
    . x) 
    ^2 )) by 
    VALUED_1: 11
    
        .= ((
    exp_R  
    . x) 
    / (( 
    sin  
    . ( 
    exp_R  
    . x)) 
    ^2 )) by 
    A5,
    A7,
    FUNCT_1: 12;
    
        hence thesis by
    A1;
    
      end;
    
      
    
      
    
    A8: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (( 
    - ( 
    cot  
    *  
    exp_R )) 
    `| Z)) holds ((( 
    - ( 
    cot  
    *  
    exp_R )) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (( 
    - ( 
    cot  
    *  
    exp_R )) 
    `| Z)); 
    
        then
    
        
    
    A9: x 
    in Z by 
    A3,
    FDIFF_1:def 7;
    
        
    
        then (((
    - ( 
    cot  
    *  
    exp_R )) 
    `| Z) 
    . x) 
    = (( 
    exp_R  
    . x) 
    / (( 
    sin  
    . ( 
    exp_R  
    . x)) 
    ^2 )) by 
    A1,
    Th31
    
        .= (f
    . x) by 
    A6,
    A9;
    
        hence thesis;
    
      end;
    
      (
    dom (( 
    - ( 
    cot  
    *  
    exp_R )) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A3,
    FDIFF_1:def 7;
    
      then ((
    - ( 
    cot  
    *  
    exp_R )) 
    `| Z) 
    = f by 
    A8,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    Th31,
    INTEGRA5: 13;
    
    end;
    
    theorem :: 
    
    INTEGR13:33
    
    A
    c= Z & (for x st x 
    in Z holds (f 
    . x) 
    = ( 
    - (1 
    / ((x 
    ^2 ) 
    * (( 
    cos  
    . (1 
    / x)) 
    ^2 ))))) & Z 
    c= ( 
    dom ( 
    tan  
    * (( 
    id Z) 
    ^ ))) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = ((( 
    tan  
    * (( 
    id Z) 
    ^ )) 
    . ( 
    upper_bound A)) 
    - (( 
    tan  
    * (( 
    id Z) 
    ^ )) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & (for x st x 
    in Z holds (f 
    . x) 
    = ( 
    - (1 
    / ((x 
    ^2 ) 
    * (( 
    cos  
    . (1 
    / x)) 
    ^2 ))))) & Z 
    c= ( 
    dom ( 
    tan  
    * (( 
    id Z) 
    ^ ))) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      
    
      
    
    A3: Z 
    c= ( 
    dom (( 
    id Z) 
    ^ )) by 
    A1,
    FUNCT_1: 101;
    
      
    
      
    
    A4: not 
    0  
    in Z 
    
      proof
    
        assume
    
        
    
    A5: 
    0  
    in Z; 
    
        (
    dom (( 
    id Z) 
    ^ )) 
    = (( 
    dom ( 
    id Z)) 
    \ (( 
    id Z) 
    "  
    {
    0 })) by 
    RFUNCT_1:def 2
    
        .= ((
    dom ( 
    id Z)) 
    \  
    {
    0 }) by 
    Lm1,
    A5;
    
        then not
    0  
    in  
    {
    0 } by 
    A5,
    A3,
    XBOOLE_0:def 5;
    
        hence thesis by
    TARSKI:def 1;
    
      end;
    
      then
    
      
    
    A6: ( 
    tan  
    * (( 
    id Z) 
    ^ )) 
    is_differentiable_on Z by 
    A1,
    FDIFF_8: 8;
    
      
    
      
    
    A7: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (( 
    tan  
    * (( 
    id Z) 
    ^ )) 
    `| Z)) holds ((( 
    tan  
    * (( 
    id Z) 
    ^ )) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (( 
    tan  
    * (( 
    id Z) 
    ^ )) 
    `| Z)); 
    
        then
    
        
    
    A8: x 
    in Z by 
    A6,
    FDIFF_1:def 7;
    
        
    
        then (((
    tan  
    * (( 
    id Z) 
    ^ )) 
    `| Z) 
    . x) 
    = ( 
    - (1 
    / ((x 
    ^2 ) 
    * (( 
    cos  
    . (1 
    / x)) 
    ^2 )))) by 
    A1,
    A4,
    FDIFF_8: 8
    
        .= (f
    . x) by 
    A1,
    A8;
    
        hence thesis;
    
      end;
    
      (
    dom (( 
    tan  
    * (( 
    id Z) 
    ^ )) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A6,
    FDIFF_1:def 7;
    
      then ((
    tan  
    * (( 
    id Z) 
    ^ )) 
    `| Z) 
    = f by 
    A7,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    A6,
    INTEGRA5: 13;
    
    end;
    
    theorem :: 
    
    INTEGR13:34
    
    
    
    
    
    Th34: Z 
    c= ( 
    dom ( 
    tan  
    * (( 
    id Z) 
    ^ ))) implies ( 
    - ( 
    tan  
    * (( 
    id Z) 
    ^ ))) 
    is_differentiable_on Z & for x st x 
    in Z holds ((( 
    - ( 
    tan  
    * (( 
    id Z) 
    ^ ))) 
    `| Z) 
    . x) 
    = (1 
    / ((x 
    ^2 ) 
    * (( 
    cos  
    . (1 
    / x)) 
    ^2 ))) 
    
    proof
    
      set f = (
    id Z); 
    
      assume
    
      
    
    A1: Z 
    c= ( 
    dom ( 
    tan  
    * (( 
    id Z) 
    ^ ))); 
    
      (
    dom ( 
    tan  
    * (f 
    ^ ))) 
    c= ( 
    dom (f 
    ^ )) by 
    RELAT_1: 25;
    
      then
    
      
    
    A2: Z 
    c= ( 
    dom (f 
    ^ )) by 
    A1;
    
      
    
      
    
    A3: not 
    0  
    in Z 
    
      proof
    
        assume
    
        
    
    A4: 
    0  
    in Z; 
    
        (
    dom (( 
    id Z) 
    ^ )) 
    = (( 
    dom ( 
    id Z)) 
    \ (( 
    id Z) 
    "  
    {
    0 })) by 
    RFUNCT_1:def 2
    
        .= ((
    dom ( 
    id Z)) 
    \  
    {
    0 }) by 
    Lm1,
    A4;
    
        then not
    0  
    in  
    {
    0 } by 
    A4,
    A2,
    XBOOLE_0:def 5;
    
        hence thesis by
    TARSKI:def 1;
    
      end;
    
      
    
      
    
    A5: Z 
    c= ( 
    dom ( 
    - ( 
    tan  
    * (( 
    id Z) 
    ^ )))) by 
    A1,
    VALUED_1: 8;
    
      
    
      
    
    A6: ( 
    tan  
    * (( 
    id Z) 
    ^ )) 
    is_differentiable_on Z by 
    A1,
    A3,
    FDIFF_8: 8;
    
      then
    
      
    
    A7: (( 
    - 1) 
    (#) ( 
    tan  
    * (( 
    id Z) 
    ^ ))) 
    is_differentiable_on Z by 
    A5,
    FDIFF_1: 20;
    
      
    
      
    
    A8: (f 
    ^ ) 
    is_differentiable_on Z & for x st x 
    in Z holds (((f 
    ^ ) 
    `| Z) 
    . x) 
    = ( 
    - (1 
    / (x 
    ^2 ))) by 
    A3,
    FDIFF_5: 4;
    
      
    
      
    
    A9: for x st x 
    in Z holds ( 
    cos  
    . ((f 
    ^ ) 
    . x)) 
    <>  
    0  
    
      proof
    
        let x;
    
        assume x
    in Z; 
    
        then ((f
    ^ ) 
    . x) 
    in ( 
    dom ( 
    sin  
    /  
    cos )) by 
    A1,
    FUNCT_1: 11;
    
        hence thesis by
    FDIFF_8: 1;
    
      end;
    
      for x st x
    in Z holds ((( 
    - ( 
    tan  
    * (f 
    ^ ))) 
    `| Z) 
    . x) 
    = (1 
    / ((x 
    ^2 ) 
    * (( 
    cos  
    . (1 
    / x)) 
    ^2 ))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A10: x 
    in Z; 
    
        then
    
        
    
    A11: (f 
    ^ ) 
    is_differentiable_in x by 
    A8,
    FDIFF_1: 9;
    
        
    
        
    
    A12: ( 
    cos  
    . ((f 
    ^ ) 
    . x)) 
    <>  
    0 by 
    A9,
    A10;
    
        then
    
        
    
    A13: 
    tan  
    is_differentiable_in ((f 
    ^ ) 
    . x) by 
    FDIFF_7: 46;
    
        
    
        
    
    A14: ( 
    tan  
    * (f 
    ^ )) 
    is_differentiable_in x by 
    A6,
    A10,
    FDIFF_1: 9;
    
        (((
    - ( 
    tan  
    * (f 
    ^ ))) 
    `| Z) 
    . x) 
    = ( 
    diff (( 
    - ( 
    tan  
    * (f 
    ^ ))),x)) by 
    A7,
    A10,
    FDIFF_1:def 7
    
        .= ((
    - 1) 
    * ( 
    diff (( 
    tan  
    * (f 
    ^ )),x))) by 
    A14,
    FDIFF_1: 15
    
        .= ((
    - 1) 
    * (( 
    diff ( 
    tan ,((f 
    ^ ) 
    . x))) 
    * ( 
    diff ((f 
    ^ ),x)))) by 
    A11,
    A13,
    FDIFF_2: 13
    
        .= ((
    - 1) 
    * ((1 
    / (( 
    cos  
    . ((f 
    ^ ) 
    . x)) 
    ^2 )) 
    * ( 
    diff ((f 
    ^ ),x)))) by 
    A12,
    FDIFF_7: 46
    
        .= ((
    - 1) 
    * (( 
    diff ((f 
    ^ ),x)) 
    / (( 
    cos  
    . ((f 
    . x) 
    " )) 
    ^2 ))) by 
    A2,
    A10,
    RFUNCT_1:def 2
    
        .= ((
    - 1) 
    * (( 
    diff ((f 
    ^ ),x)) 
    / (( 
    cos  
    . (1 
    * (x 
    " ))) 
    ^2 ))) by 
    A10,
    FUNCT_1: 18
    
        .= ((
    - 1) 
    * ((((f 
    ^ ) 
    `| Z) 
    . x) 
    / (( 
    cos  
    . (1 
    * (x 
    " ))) 
    ^2 ))) by 
    A8,
    A10,
    FDIFF_1:def 7
    
        .= ((
    - 1) 
    * (( 
    - (1 
    / (x 
    ^2 ))) 
    / (( 
    cos  
    . (1 
    * (x 
    " ))) 
    ^2 ))) by 
    A10,
    A3,
    FDIFF_5: 4
    
        .= ((
    - 1) 
    * ((( 
    - 1) 
    / (x 
    ^2 )) 
    / (( 
    cos  
    . (1 
    / x)) 
    ^2 ))) 
    
        .= ((
    - 1) 
    * (( 
    - 1) 
    / ((x 
    ^2 ) 
    * (( 
    cos  
    . (1 
    / x)) 
    ^2 )))) by 
    XCMPLX_1: 78
    
        .= (1
    / ((x 
    ^2 ) 
    * (( 
    cos  
    . (1 
    / x)) 
    ^2 ))); 
    
        hence thesis;
    
      end;
    
      hence thesis by
    A7;
    
    end;
    
    theorem :: 
    
    INTEGR13:35
    
    A
    c= Z & (for x st x 
    in Z holds (f 
    . x) 
    = (1 
    / ((x 
    ^2 ) 
    * (( 
    cos  
    . (1 
    / x)) 
    ^2 )))) & Z 
    c= ( 
    dom ( 
    tan  
    * (( 
    id Z) 
    ^ ))) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = ((( 
    - ( 
    tan  
    * (( 
    id Z) 
    ^ ))) 
    . ( 
    upper_bound A)) 
    - (( 
    - ( 
    tan  
    * (( 
    id Z) 
    ^ ))) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & (for x st x 
    in Z holds (f 
    . x) 
    = (1 
    / ((x 
    ^2 ) 
    * (( 
    cos  
    . (1 
    / x)) 
    ^2 )))) & Z 
    c= ( 
    dom ( 
    tan  
    * (( 
    id Z) 
    ^ ))) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      
    
      
    
    A3: ( 
    - ( 
    tan  
    * (( 
    id Z) 
    ^ ))) 
    is_differentiable_on Z by 
    A1,
    Th34;
    
      
    
      
    
    A4: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (( 
    - ( 
    tan  
    * (( 
    id Z) 
    ^ ))) 
    `| Z)) holds ((( 
    - ( 
    tan  
    * (( 
    id Z) 
    ^ ))) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (( 
    - ( 
    tan  
    * (( 
    id Z) 
    ^ ))) 
    `| Z)); 
    
        then
    
        
    
    A5: x 
    in Z by 
    A3,
    FDIFF_1:def 7;
    
        
    
        then (((
    - ( 
    tan  
    * (( 
    id Z) 
    ^ ))) 
    `| Z) 
    . x) 
    = (1 
    / ((x 
    ^2 ) 
    * (( 
    cos  
    . (1 
    / x)) 
    ^2 ))) by 
    A1,
    Th34
    
        .= (f
    . x) by 
    A1,
    A5;
    
        hence thesis;
    
      end;
    
      (
    dom (( 
    - ( 
    tan  
    * (( 
    id Z) 
    ^ ))) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A3,
    FDIFF_1:def 7;
    
      then ((
    - ( 
    tan  
    * (( 
    id Z) 
    ^ ))) 
    `| Z) 
    = f by 
    A4,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    A3,
    INTEGRA5: 13;
    
    end;
    
    theorem :: 
    
    INTEGR13:36
    
    A
    c= Z & (for x st x 
    in Z holds (f 
    . x) 
    = (1 
    / ((x 
    ^2 ) 
    * (( 
    sin  
    . (1 
    / x)) 
    ^2 )))) & Z 
    c= ( 
    dom ( 
    cot  
    * (( 
    id Z) 
    ^ ))) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = ((( 
    cot  
    * (( 
    id Z) 
    ^ )) 
    . ( 
    upper_bound A)) 
    - (( 
    cot  
    * (( 
    id Z) 
    ^ )) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & (for x st x 
    in Z holds (f 
    . x) 
    = (1 
    / ((x 
    ^2 ) 
    * (( 
    sin  
    . (1 
    / x)) 
    ^2 )))) & Z 
    c= ( 
    dom ( 
    cot  
    * (( 
    id Z) 
    ^ ))) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      
    
      
    
    A3: Z 
    c= ( 
    dom (( 
    id Z) 
    ^ )) by 
    A1,
    FUNCT_1: 101;
    
      
    
      
    
    A4: not 
    0  
    in Z 
    
      proof
    
        assume
    
        
    
    A5: 
    0  
    in Z; 
    
        (
    dom (( 
    id Z) 
    ^ )) 
    = (( 
    dom ( 
    id Z)) 
    \ (( 
    id Z) 
    "  
    {
    0 })) by 
    RFUNCT_1:def 2
    
        .= ((
    dom ( 
    id Z)) 
    \  
    {
    0 }) by 
    Lm1,
    A5;
    
        then not
    0  
    in  
    {
    0 } by 
    A5,
    A3,
    XBOOLE_0:def 5;
    
        hence thesis by
    TARSKI:def 1;
    
      end;
    
      then
    
      
    
    A6: ( 
    cot  
    * (( 
    id Z) 
    ^ )) 
    is_differentiable_on Z by 
    A1,
    FDIFF_8: 9;
    
      
    
      
    
    A7: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (( 
    cot  
    * (( 
    id Z) 
    ^ )) 
    `| Z)) holds ((( 
    cot  
    * (( 
    id Z) 
    ^ )) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (( 
    cot  
    * (( 
    id Z) 
    ^ )) 
    `| Z)); 
    
        then
    
        
    
    A8: x 
    in Z by 
    A6,
    FDIFF_1:def 7;
    
        
    
        then (((
    cot  
    * (( 
    id Z) 
    ^ )) 
    `| Z) 
    . x) 
    = (1 
    / ((x 
    ^2 ) 
    * (( 
    sin  
    . (1 
    / x)) 
    ^2 ))) by 
    A1,
    A4,
    FDIFF_8: 9
    
        .= (f
    . x) by 
    A1,
    A8;
    
        hence thesis;
    
      end;
    
      (
    dom (( 
    cot  
    * (( 
    id Z) 
    ^ )) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A6,
    FDIFF_1:def 7;
    
      then ((
    cot  
    * (( 
    id Z) 
    ^ )) 
    `| Z) 
    = f by 
    A7,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    A6,
    INTEGRA5: 13;
    
    end;
    
    theorem :: 
    
    INTEGR13:37
    
    A
    c= Z & (for x st x 
    in Z holds (f1 
    . x) 
    = 1 & ( 
    arctan  
    . x) 
    >  
    0 ) & f 
    = (((f1 
    + ( 
    #Z 2)) 
    (#)  
    arctan ) 
    ^ ) & Z 
    c=  
    ].(
    - 1), 1.[ & Z 
    c= ( 
    dom ( 
    ln  
    *  
    arctan )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = ((( 
    ln  
    *  
    arctan ) 
    . ( 
    upper_bound A)) 
    - (( 
    ln  
    *  
    arctan ) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & (for x st x 
    in Z holds (f1 
    . x) 
    = 1 & ( 
    arctan  
    . x) 
    >  
    0 ) & f 
    = (((f1 
    + ( 
    #Z 2)) 
    (#)  
    arctan ) 
    ^ ) & Z 
    c=  
    ].(
    - 1), 1.[ & Z 
    c= ( 
    dom ( 
    ln  
    *  
    arctan )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      
    
      
    
    A3: for x st x 
    in Z holds ( 
    arctan  
    . x) 
    >  
    0 by 
    A1;
    
      then
    
      
    
    A4: ( 
    ln  
    *  
    arctan ) 
    is_differentiable_on Z by 
    A1,
    SIN_COS9: 89;
    
      Z
    c= ( 
    dom ((f1 
    + ( 
    #Z 2)) 
    (#)  
    arctan )) by 
    A1,
    RFUNCT_1: 1;
    
      then Z
    c= (( 
    dom (f1 
    + ( 
    #Z 2))) 
    /\ ( 
    dom  
    arctan )) by 
    VALUED_1:def 4;
    
      then
    
      
    
    A5: Z 
    c= ( 
    dom (f1 
    + ( 
    #Z 2))) by 
    XBOOLE_1: 18;
    
      
    
      
    
    A6: for x st x 
    in Z holds (f 
    . x) 
    = (1 
    / ((1 
    + (x 
    ^2 )) 
    * ( 
    arctan  
    . x))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A7: x 
    in Z; 
    
        
    
        then ((((f1
    + ( 
    #Z 2)) 
    (#)  
    arctan ) 
    ^ ) 
    . x) 
    = (1 
    / (((f1 
    + ( 
    #Z 2)) 
    (#)  
    arctan ) 
    . x)) by 
    A1,
    RFUNCT_1:def 2
    
        .= (1
    / (((f1 
    + ( 
    #Z 2)) 
    . x) 
    * ( 
    arctan  
    . x))) by 
    VALUED_1: 5
    
        .= (1
    / (((f1 
    . x) 
    + (( 
    #Z 2) 
    . x)) 
    * ( 
    arctan  
    . x))) by 
    A5,
    A7,
    VALUED_1:def 1
    
        .= (1
    / (((f1 
    . x) 
    + (x 
    #Z 2)) 
    * ( 
    arctan  
    . x))) by 
    TAYLOR_1:def 1
    
        .= (1
    / ((1 
    + (x 
    #Z 2)) 
    * ( 
    arctan  
    . x))) by 
    A1,
    A7
    
        .= (1
    / ((1 
    + (x 
    ^2 )) 
    * ( 
    arctan  
    . x))) by 
    FDIFF_7: 1;
    
        hence thesis by
    A1;
    
      end;
    
      
    
      
    
    A8: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (( 
    ln  
    *  
    arctan ) 
    `| Z)) holds ((( 
    ln  
    *  
    arctan ) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (( 
    ln  
    *  
    arctan ) 
    `| Z)); 
    
        then
    
        
    
    A9: x 
    in Z by 
    A4,
    FDIFF_1:def 7;
    
        
    
        then (((
    ln  
    *  
    arctan ) 
    `| Z) 
    . x) 
    = (1 
    / ((1 
    + (x 
    ^2 )) 
    * ( 
    arctan  
    . x))) by 
    A1,
    A3,
    SIN_COS9: 89
    
        .= (f
    . x) by 
    A6,
    A9;
    
        hence thesis;
    
      end;
    
      (
    dom (( 
    ln  
    *  
    arctan ) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A4,
    FDIFF_1:def 7;
    
      then ((
    ln  
    *  
    arctan ) 
    `| Z) 
    = f by 
    A8,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    A4,
    INTEGRA5: 13;
    
    end;
    
    theorem :: 
    
    INTEGR13:38
    
    A
    c= Z & f 
    = (n 
    (#) ((( 
    #Z (n 
    - 1)) 
    *  
    arctan ) 
    / (f1 
    + ( 
    #Z 2)))) & (for x st x 
    in Z holds (f1 
    . x) 
    = 1) & Z 
    c=  
    ].(
    - 1), 1.[ & Z 
    c= ( 
    dom (( 
    #Z n) 
    *  
    arctan )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = (((( 
    #Z n) 
    *  
    arctan ) 
    . ( 
    upper_bound A)) 
    - ((( 
    #Z n) 
    *  
    arctan ) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & f 
    = (n 
    (#) ((( 
    #Z (n 
    - 1)) 
    *  
    arctan ) 
    / (f1 
    + ( 
    #Z 2)))) & (for x st x 
    in Z holds (f1 
    . x) 
    = 1) & Z 
    c=  
    ].(
    - 1), 1.[ & Z 
    c= ( 
    dom (( 
    #Z n) 
    *  
    arctan )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      
    
      
    
    A3: (( 
    #Z n) 
    *  
    arctan ) 
    is_differentiable_on Z by 
    A1,
    SIN_COS9: 91;
    
      
    
      
    
    A4: Z 
    = ( 
    dom ((( 
    #Z (n 
    - 1)) 
    *  
    arctan ) 
    / (f1 
    + ( 
    #Z 2)))) by 
    A1,
    VALUED_1:def 5;
    
      then Z
    c= (( 
    dom (( 
    #Z (n 
    - 1)) 
    *  
    arctan )) 
    /\ (( 
    dom (f1 
    + ( 
    #Z 2))) 
    \ ((f1 
    + ( 
    #Z 2)) 
    "  
    {
    0 }))) by 
    RFUNCT_1:def 1;
    
      then
    
      
    
    A5: Z 
    c= ( 
    dom (( 
    #Z (n 
    - 1)) 
    *  
    arctan )) & Z 
    c= (( 
    dom (f1 
    + ( 
    #Z 2))) 
    \ ((f1 
    + ( 
    #Z 2)) 
    "  
    {
    0 })) by 
    XBOOLE_1: 18;
    
      then
    
      
    
    A6: Z 
    c= ( 
    dom ((f1 
    + ( 
    #Z 2)) 
    ^ )) by 
    RFUNCT_1:def 2;
    
      (
    dom ((f1 
    + ( 
    #Z 2)) 
    ^ )) 
    c= ( 
    dom (f1 
    + ( 
    #Z 2))) by 
    RFUNCT_1: 1;
    
      then
    
      
    
    A7: Z 
    c= ( 
    dom (f1 
    + ( 
    #Z 2))) by 
    A6;
    
      
    
      
    
    A8: for x st x 
    in Z holds (f 
    . x) 
    = ((n 
    * (( 
    arctan  
    . x) 
    #Z (n 
    - 1))) 
    / (1 
    + (x 
    ^2 ))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A9: x 
    in Z; 
    
        ((n
    (#) ((( 
    #Z (n 
    - 1)) 
    *  
    arctan ) 
    / (f1 
    + ( 
    #Z 2)))) 
    . x) 
    = (n 
    * (((( 
    #Z (n 
    - 1)) 
    *  
    arctan ) 
    / (f1 
    + ( 
    #Z 2))) 
    . x)) by 
    VALUED_1: 6
    
        .= (n
    * (((( 
    #Z (n 
    - 1)) 
    *  
    arctan ) 
    . x) 
    * (((f1 
    + ( 
    #Z 2)) 
    . x) 
    " ))) by 
    A4,
    A9,
    RFUNCT_1:def 1
    
        .= ((n
    * ((( 
    #Z (n 
    - 1)) 
    *  
    arctan ) 
    . x)) 
    / ((f1 
    + ( 
    #Z 2)) 
    . x)) 
    
        .= ((n
    * (( 
    #Z (n 
    - 1)) 
    . ( 
    arctan  
    . x))) 
    / ((f1 
    + ( 
    #Z 2)) 
    . x)) by 
    A5,
    A9,
    FUNCT_1: 12
    
        .= ((n
    * (( 
    arctan  
    . x) 
    #Z (n 
    - 1))) 
    / ((f1 
    + ( 
    #Z 2)) 
    . x)) by 
    TAYLOR_1:def 1
    
        .= ((n
    * (( 
    arctan  
    . x) 
    #Z (n 
    - 1))) 
    / ((f1 
    . x) 
    + (( 
    #Z 2) 
    . x))) by 
    A7,
    A9,
    VALUED_1:def 1
    
        .= ((n
    * (( 
    arctan  
    . x) 
    #Z (n 
    - 1))) 
    / (1 
    + (( 
    #Z 2) 
    . x))) by 
    A1,
    A9
    
        .= ((n
    * (( 
    arctan  
    . x) 
    #Z (n 
    - 1))) 
    / (1 
    + (x 
    #Z 2))) by 
    TAYLOR_1:def 1
    
        .= ((n
    * (( 
    arctan  
    . x) 
    #Z (n 
    - 1))) 
    / (1 
    + (x 
    ^2 ))) by 
    FDIFF_7: 1;
    
        hence thesis by
    A1;
    
      end;
    
      
    
      
    
    A10: for x be 
    Element of 
    REAL st x 
    in ( 
    dom ((( 
    #Z n) 
    *  
    arctan ) 
    `| Z)) holds (((( 
    #Z n) 
    *  
    arctan ) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom ((( 
    #Z n) 
    *  
    arctan ) 
    `| Z)); 
    
        then
    
        
    
    A11: x 
    in Z by 
    A3,
    FDIFF_1:def 7;
    
        
    
        then ((((
    #Z n) 
    *  
    arctan ) 
    `| Z) 
    . x) 
    = ((n 
    * (( 
    arctan  
    . x) 
    #Z (n 
    - 1))) 
    / (1 
    + (x 
    ^2 ))) by 
    A1,
    SIN_COS9: 91
    
        .= (f
    . x) by 
    A8,
    A11;
    
        hence thesis;
    
      end;
    
      (
    dom ((( 
    #Z n) 
    *  
    arctan ) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A3,
    FDIFF_1:def 7;
    
      then (((
    #Z n) 
    *  
    arctan ) 
    `| Z) 
    = f by 
    A10,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    INTEGRA5: 13,
    SIN_COS9: 91;
    
    end;
    
    theorem :: 
    
    INTEGR13:39
    
    A
    c= Z & (for x st x 
    in Z holds (f1 
    . x) 
    = 1) & f 
    = ( 
    - (n 
    (#) ((( 
    #Z (n 
    - 1)) 
    *  
    arccot ) 
    / (f1 
    + ( 
    #Z 2))))) & Z 
    c=  
    ].(
    - 1), 1.[ & Z 
    c= ( 
    dom (( 
    #Z n) 
    *  
    arccot )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = (((( 
    #Z n) 
    *  
    arccot ) 
    . ( 
    upper_bound A)) 
    - ((( 
    #Z n) 
    *  
    arccot ) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & (for x st x 
    in Z holds (f1 
    . x) 
    = 1) & f 
    = ( 
    - (n 
    (#) ((( 
    #Z (n 
    - 1)) 
    *  
    arccot ) 
    / (f1 
    + ( 
    #Z 2))))) & Z 
    c=  
    ].(
    - 1), 1.[ & Z 
    c= ( 
    dom (( 
    #Z n) 
    *  
    arccot )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      
    
      
    
    A3: (( 
    #Z n) 
    *  
    arccot ) 
    is_differentiable_on Z by 
    A1,
    SIN_COS9: 92;
    
      Z
    = ( 
    dom (n 
    (#) ((( 
    #Z (n 
    - 1)) 
    *  
    arccot ) 
    / (f1 
    + ( 
    #Z 2))))) by 
    A1,
    VALUED_1: 8;
    
      then
    
      
    
    A4: Z 
    = ( 
    dom ((( 
    #Z (n 
    - 1)) 
    *  
    arccot ) 
    / (f1 
    + ( 
    #Z 2)))) by 
    VALUED_1:def 5;
    
      then Z
    c= (( 
    dom (( 
    #Z (n 
    - 1)) 
    *  
    arccot )) 
    /\ (( 
    dom (f1 
    + ( 
    #Z 2))) 
    \ ((f1 
    + ( 
    #Z 2)) 
    "  
    {
    0 }))) by 
    RFUNCT_1:def 1;
    
      then
    
      
    
    A5: Z 
    c= ( 
    dom (( 
    #Z (n 
    - 1)) 
    *  
    arccot )) & Z 
    c= (( 
    dom (f1 
    + ( 
    #Z 2))) 
    \ ((f1 
    + ( 
    #Z 2)) 
    "  
    {
    0 })) by 
    XBOOLE_1: 18;
    
      then
    
      
    
    A6: Z 
    c= ( 
    dom ((f1 
    + ( 
    #Z 2)) 
    ^ )) by 
    RFUNCT_1:def 2;
    
      (
    dom ((f1 
    + ( 
    #Z 2)) 
    ^ )) 
    c= ( 
    dom (f1 
    + ( 
    #Z 2))) by 
    RFUNCT_1: 1;
    
      then
    
      
    
    A7: Z 
    c= ( 
    dom (f1 
    + ( 
    #Z 2))) by 
    A6;
    
      
    
      
    
    A8: for x st x 
    in Z holds (f 
    . x) 
    = ( 
    - ((n 
    * (( 
    arccot  
    . x) 
    #Z (n 
    - 1))) 
    / (1 
    + (x 
    ^2 )))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A9: x 
    in Z; 
    
        ((
    - (n 
    (#) ((( 
    #Z (n 
    - 1)) 
    *  
    arccot ) 
    / (f1 
    + ( 
    #Z 2))))) 
    . x) 
    = ( 
    - ((n 
    (#) ((( 
    #Z (n 
    - 1)) 
    *  
    arccot ) 
    / (f1 
    + ( 
    #Z 2)))) 
    . x)) by 
    VALUED_1: 8
    
        .= (
    - (n 
    * (((( 
    #Z (n 
    - 1)) 
    *  
    arccot ) 
    / (f1 
    + ( 
    #Z 2))) 
    . x))) by 
    VALUED_1: 6
    
        .= (
    - (n 
    * (((( 
    #Z (n 
    - 1)) 
    *  
    arccot ) 
    . x) 
    * (((f1 
    + ( 
    #Z 2)) 
    . x) 
    " )))) by 
    A4,
    A9,
    RFUNCT_1:def 1
    
        .= (
    - ((n 
    * ((( 
    #Z (n 
    - 1)) 
    *  
    arccot ) 
    . x)) 
    / ((f1 
    + ( 
    #Z 2)) 
    . x))) 
    
        .= (
    - ((n 
    * (( 
    #Z (n 
    - 1)) 
    . ( 
    arccot  
    . x))) 
    / ((f1 
    + ( 
    #Z 2)) 
    . x))) by 
    A5,
    A9,
    FUNCT_1: 12
    
        .= (
    - ((n 
    * (( 
    arccot  
    . x) 
    #Z (n 
    - 1))) 
    / ((f1 
    + ( 
    #Z 2)) 
    . x))) by 
    TAYLOR_1:def 1
    
        .= (
    - ((n 
    * (( 
    arccot  
    . x) 
    #Z (n 
    - 1))) 
    / ((f1 
    . x) 
    + (( 
    #Z 2) 
    . x)))) by 
    A7,
    A9,
    VALUED_1:def 1
    
        .= (
    - ((n 
    * (( 
    arccot  
    . x) 
    #Z (n 
    - 1))) 
    / (1 
    + (( 
    #Z 2) 
    . x)))) by 
    A1,
    A9
    
        .= (
    - ((n 
    * (( 
    arccot  
    . x) 
    #Z (n 
    - 1))) 
    / (1 
    + (x 
    #Z 2)))) by 
    TAYLOR_1:def 1
    
        .= (
    - ((n 
    * (( 
    arccot  
    . x) 
    #Z (n 
    - 1))) 
    / (1 
    + (x 
    ^2 )))) by 
    FDIFF_7: 1;
    
        hence thesis by
    A1;
    
      end;
    
      
    
      
    
    A10: for x be 
    Element of 
    REAL st x 
    in ( 
    dom ((( 
    #Z n) 
    *  
    arccot ) 
    `| Z)) holds (((( 
    #Z n) 
    *  
    arccot ) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom ((( 
    #Z n) 
    *  
    arccot ) 
    `| Z)); 
    
        then
    
        
    
    A11: x 
    in Z by 
    A3,
    FDIFF_1:def 7;
    
        
    
        then ((((
    #Z n) 
    *  
    arccot ) 
    `| Z) 
    . x) 
    = ( 
    - ((n 
    * (( 
    arccot  
    . x) 
    #Z (n 
    - 1))) 
    / (1 
    + (x 
    ^2 )))) by 
    A1,
    SIN_COS9: 92
    
        .= (f
    . x) by 
    A11,
    A8;
    
        hence thesis;
    
      end;
    
      (
    dom ((( 
    #Z n) 
    *  
    arccot ) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A3,
    FDIFF_1:def 7;
    
      then (((
    #Z n) 
    *  
    arccot ) 
    `| Z) 
    = f by 
    A10,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    INTEGRA5: 13,
    SIN_COS9: 92;
    
    end;
    
    theorem :: 
    
    INTEGR13:40
    
    
    
    
    
    Th40: Z 
    c= ( 
    dom (( 
    #Z n) 
    *  
    arccot )) & Z 
    c=  
    ].(
    - 1), 1.[ implies ( 
    - (( 
    #Z n) 
    *  
    arccot )) 
    is_differentiable_on Z & for x st x 
    in Z holds ((( 
    - (( 
    #Z n) 
    *  
    arccot )) 
    `| Z) 
    . x) 
    = ((n 
    * (( 
    arccot  
    . x) 
    #Z (n 
    - 1))) 
    / (1 
    + (x 
    ^2 ))) 
    
    proof
    
      assume
    
      
    
    A1: Z 
    c= ( 
    dom (( 
    #Z n) 
    *  
    arccot )) & Z 
    c=  
    ].(
    - 1), 1.[; 
    
      then
    
      
    
    A2: Z 
    c= ( 
    dom ( 
    - (( 
    #Z n) 
    *  
    arccot ))) by 
    VALUED_1: 8;
    
      
    
      
    
    A3: (( 
    #Z n) 
    *  
    arccot ) 
    is_differentiable_on Z by 
    A1,
    SIN_COS9: 92;
    
      then
    
      
    
    A4: (( 
    - 1) 
    (#) (( 
    #Z n) 
    *  
    arccot )) 
    is_differentiable_on Z by 
    A2,
    FDIFF_1: 20;
    
      for x st x
    in Z holds ((( 
    - (( 
    #Z n) 
    *  
    arccot )) 
    `| Z) 
    . x) 
    = ((n 
    * (( 
    arccot  
    . x) 
    #Z (n 
    - 1))) 
    / (1 
    + (x 
    ^2 ))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A5: x 
    in Z; 
    
        then
    
        
    
    A6: ( 
    - 1) 
    < x & x 
    < 1 by 
    A1,
    XXREAL_1: 4;
    
        
    arccot  
    is_differentiable_on Z by 
    A1,
    SIN_COS9: 82;
    
        then
    
        
    
    A7: 
    arccot  
    is_differentiable_in x by 
    A5,
    FDIFF_1: 9;
    
        
    
        
    
    A8: (( 
    #Z n) 
    *  
    arccot ) 
    is_differentiable_in x by 
    A3,
    A5,
    FDIFF_1: 9;
    
        (((
    - (( 
    #Z n) 
    *  
    arccot )) 
    `| Z) 
    . x) 
    = ( 
    diff (( 
    - (( 
    #Z n) 
    *  
    arccot )),x)) by 
    A4,
    A5,
    FDIFF_1:def 7
    
        .= ((
    - 1) 
    * ( 
    diff ((( 
    #Z n) 
    *  
    arccot ),x))) by 
    A8,
    FDIFF_1: 15
    
        .= ((
    - 1) 
    * ((n 
    * (( 
    arccot  
    . x) 
    #Z (n 
    - 1))) 
    * ( 
    diff ( 
    arccot ,x)))) by 
    A7,
    TAYLOR_1: 3
    
        .= ((
    - 1) 
    * ((n 
    * (( 
    arccot  
    . x) 
    #Z (n 
    - 1))) 
    * ( 
    - (1 
    / (1 
    + (x 
    ^2 )))))) by 
    A6,
    SIN_COS9: 76
    
        .= ((n
    * (( 
    arccot  
    . x) 
    #Z (n 
    - 1))) 
    / (1 
    + (x 
    ^2 ))); 
    
        hence thesis;
    
      end;
    
      hence thesis by
    A2,
    A3,
    FDIFF_1: 20;
    
    end;
    
    theorem :: 
    
    INTEGR13:41
    
    A
    c= Z & (for x st x 
    in Z holds (f1 
    . x) 
    = 1) & f 
    = (n 
    (#) ((( 
    #Z (n 
    - 1)) 
    *  
    arccot ) 
    / (f1 
    + ( 
    #Z 2)))) & Z 
    c=  
    ].(
    - 1), 1.[ & Z 
    c= ( 
    dom (( 
    #Z n) 
    *  
    arccot )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = ((( 
    - (( 
    #Z n) 
    *  
    arccot )) 
    . ( 
    upper_bound A)) 
    - (( 
    - (( 
    #Z n) 
    *  
    arccot )) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & (for x st x 
    in Z holds (f1 
    . x) 
    = 1) & f 
    = (n 
    (#) ((( 
    #Z (n 
    - 1)) 
    *  
    arccot ) 
    / (f1 
    + ( 
    #Z 2)))) & Z 
    c=  
    ].(
    - 1), 1.[ & Z 
    c= ( 
    dom (( 
    #Z n) 
    *  
    arccot )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      
    
      
    
    A3: ( 
    - (( 
    #Z n) 
    *  
    arccot )) 
    is_differentiable_on Z by 
    A1,
    Th40;
    
      
    
      
    
    A4: Z 
    = ( 
    dom ((( 
    #Z (n 
    - 1)) 
    *  
    arccot ) 
    / (f1 
    + ( 
    #Z 2)))) by 
    A1,
    VALUED_1:def 5;
    
      then Z
    c= (( 
    dom (( 
    #Z (n 
    - 1)) 
    *  
    arccot )) 
    /\ (( 
    dom (f1 
    + ( 
    #Z 2))) 
    \ ((f1 
    + ( 
    #Z 2)) 
    "  
    {
    0 }))) by 
    RFUNCT_1:def 1;
    
      then
    
      
    
    A5: Z 
    c= ( 
    dom (( 
    #Z (n 
    - 1)) 
    *  
    arccot )) & Z 
    c= (( 
    dom (f1 
    + ( 
    #Z 2))) 
    \ ((f1 
    + ( 
    #Z 2)) 
    "  
    {
    0 })) by 
    XBOOLE_1: 18;
    
      then
    
      
    
    A6: Z 
    c= ( 
    dom ((f1 
    + ( 
    #Z 2)) 
    ^ )) by 
    RFUNCT_1:def 2;
    
      (
    dom ((f1 
    + ( 
    #Z 2)) 
    ^ )) 
    c= ( 
    dom (f1 
    + ( 
    #Z 2))) by 
    RFUNCT_1: 1;
    
      then
    
      
    
    A7: Z 
    c= ( 
    dom (f1 
    + ( 
    #Z 2))) by 
    A6;
    
      
    
      
    
    A8: for x st x 
    in Z holds (f 
    . x) 
    = ((n 
    * (( 
    arccot  
    . x) 
    #Z (n 
    - 1))) 
    / (1 
    + (x 
    ^2 ))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A9: x 
    in Z; 
    
        ((n
    (#) ((( 
    #Z (n 
    - 1)) 
    *  
    arccot ) 
    / (f1 
    + ( 
    #Z 2)))) 
    . x) 
    = (n 
    * (((( 
    #Z (n 
    - 1)) 
    *  
    arccot ) 
    / (f1 
    + ( 
    #Z 2))) 
    . x)) by 
    VALUED_1: 6
    
        .= (n
    * (((( 
    #Z (n 
    - 1)) 
    *  
    arccot ) 
    . x) 
    * (((f1 
    + ( 
    #Z 2)) 
    . x) 
    " ))) by 
    A4,
    A9,
    RFUNCT_1:def 1
    
        .= ((n
    * ((( 
    #Z (n 
    - 1)) 
    *  
    arccot ) 
    . x)) 
    / ((f1 
    + ( 
    #Z 2)) 
    . x)) 
    
        .= ((n
    * (( 
    #Z (n 
    - 1)) 
    . ( 
    arccot  
    . x))) 
    / ((f1 
    + ( 
    #Z 2)) 
    . x)) by 
    A5,
    A9,
    FUNCT_1: 12
    
        .= ((n
    * (( 
    arccot  
    . x) 
    #Z (n 
    - 1))) 
    / ((f1 
    + ( 
    #Z 2)) 
    . x)) by 
    TAYLOR_1:def 1
    
        .= ((n
    * (( 
    arccot  
    . x) 
    #Z (n 
    - 1))) 
    / ((f1 
    . x) 
    + (( 
    #Z 2) 
    . x))) by 
    A7,
    A9,
    VALUED_1:def 1
    
        .= ((n
    * (( 
    arccot  
    . x) 
    #Z (n 
    - 1))) 
    / (1 
    + (( 
    #Z 2) 
    . x))) by 
    A1,
    A9
    
        .= ((n
    * (( 
    arccot  
    . x) 
    #Z (n 
    - 1))) 
    / (1 
    + (x 
    #Z 2))) by 
    TAYLOR_1:def 1
    
        .= ((n
    * (( 
    arccot  
    . x) 
    #Z (n 
    - 1))) 
    / (1 
    + (x 
    ^2 ))) by 
    FDIFF_7: 1;
    
        hence thesis by
    A1;
    
      end;
    
      
    
      
    
    A10: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (( 
    - (( 
    #Z n) 
    *  
    arccot )) 
    `| Z)) holds ((( 
    - (( 
    #Z n) 
    *  
    arccot )) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (( 
    - (( 
    #Z n) 
    *  
    arccot )) 
    `| Z)); 
    
        then
    
        
    
    A11: x 
    in Z by 
    A3,
    FDIFF_1:def 7;
    
        
    
        then (((
    - (( 
    #Z n) 
    *  
    arccot )) 
    `| Z) 
    . x) 
    = ((n 
    * (( 
    arccot  
    . x) 
    #Z (n 
    - 1))) 
    / (1 
    + (x 
    ^2 ))) by 
    A1,
    Th40
    
        .= (f
    . x) by 
    A11,
    A8;
    
        hence thesis;
    
      end;
    
      (
    dom (( 
    - (( 
    #Z n) 
    *  
    arccot )) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A3,
    FDIFF_1:def 7;
    
      then ((
    - (( 
    #Z n) 
    *  
    arccot )) 
    `| Z) 
    = f by 
    A10,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    Th40,
    INTEGRA5: 13;
    
    end;
    
    theorem :: 
    
    INTEGR13:42
    
    A
    c= Z & (for x st x 
    in Z holds (f1 
    . x) 
    = 1) & f 
    = ( 
    arctan  
    / (f1 
    + ( 
    #Z 2))) & Z 
    c=  
    ].(
    - 1), 1.[ & Z 
    c= ( 
    dom (( 
    #Z 2) 
    *  
    arctan )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = ((((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arctan )) 
    . ( 
    upper_bound A)) 
    - (((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arctan )) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & (for x st x 
    in Z holds (f1 
    . x) 
    = 1) & f 
    = ( 
    arctan  
    / (f1 
    + ( 
    #Z 2))) & Z 
    c=  
    ].(
    - 1), 1.[ & Z 
    c= ( 
    dom (( 
    #Z 2) 
    *  
    arctan )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: Z 
    c= ( 
    dom ((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arctan ))) by 
    VALUED_1:def 5;
    
      
    
      
    
    A3: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    A1,
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      
    
      
    
    A4: ((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arctan )) 
    is_differentiable_on Z by 
    A1,
    A2,
    SIN_COS9: 93;
    
      Z
    c= (( 
    dom  
    arctan ) 
    /\ (( 
    dom (f1 
    + ( 
    #Z 2))) 
    \ ((f1 
    + ( 
    #Z 2)) 
    "  
    {
    0 }))) by 
    A1,
    RFUNCT_1:def 1;
    
      then Z
    c= (( 
    dom (f1 
    + ( 
    #Z 2))) 
    \ ((f1 
    + ( 
    #Z 2)) 
    "  
    {
    0 })) by 
    XBOOLE_1: 18;
    
      then
    
      
    
    A5: Z 
    c= ( 
    dom ((f1 
    + ( 
    #Z 2)) 
    ^ )) by 
    RFUNCT_1:def 2;
    
      (
    dom ((f1 
    + ( 
    #Z 2)) 
    ^ )) 
    c= ( 
    dom (f1 
    + ( 
    #Z 2))) by 
    RFUNCT_1: 1;
    
      then
    
      
    
    A6: Z 
    c= ( 
    dom (f1 
    + ( 
    #Z 2))) by 
    A5;
    
      
    
      
    
    A7: for x st x 
    in Z holds (f 
    . x) 
    = (( 
    arctan  
    . x) 
    / (1 
    + (x 
    ^2 ))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A8: x 
    in Z; 
    
        
    
        then ((
    arctan  
    / (f1 
    + ( 
    #Z 2))) 
    . x) 
    = (( 
    arctan  
    . x) 
    / ((f1 
    + ( 
    #Z 2)) 
    . x)) by 
    A1,
    RFUNCT_1:def 1
    
        .= ((
    arctan  
    . x) 
    / ((f1 
    . x) 
    + (( 
    #Z 2) 
    . x))) by 
    A6,
    A8,
    VALUED_1:def 1
    
        .= ((
    arctan  
    . x) 
    / ((f1 
    . x) 
    + (x 
    #Z 2))) by 
    TAYLOR_1:def 1
    
        .= ((
    arctan  
    . x) 
    / (1 
    + (x 
    #Z 2))) by 
    A1,
    A8
    
        .= ((
    arctan  
    . x) 
    / (1 
    + (x 
    ^2 ))) by 
    FDIFF_7: 1;
    
        hence thesis by
    A1;
    
      end;
    
      
    
      
    
    A9: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arctan )) 
    `| Z)) holds ((((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arctan )) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arctan )) 
    `| Z)); 
    
        then
    
        
    
    A10: x 
    in Z by 
    A4,
    FDIFF_1:def 7;
    
        
    
        then ((((1
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arctan )) 
    `| Z) 
    . x) 
    = (( 
    arctan  
    . x) 
    / (1 
    + (x 
    ^2 ))) by 
    A1,
    A2,
    SIN_COS9: 93
    
        .= (f
    . x) by 
    A7,
    A10;
    
        hence thesis;
    
      end;
    
      (
    dom (((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arctan )) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A4,
    FDIFF_1:def 7;
    
      then (((1
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arctan )) 
    `| Z) 
    = f by 
    A9,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    A3,
    INTEGRA5: 13,
    SIN_COS9: 93;
    
    end;
    
    theorem :: 
    
    INTEGR13:43
    
    A
    c= Z & (for x st x 
    in Z holds (f1 
    . x) 
    = 1) & f 
    = ( 
    - ( 
    arccot  
    / (f1 
    + ( 
    #Z 2)))) & Z 
    c=  
    ].(
    - 1), 1.[ & Z 
    c= ( 
    dom (( 
    #Z 2) 
    *  
    arccot )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = ((((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arccot )) 
    . ( 
    upper_bound A)) 
    - (((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arccot )) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & (for x st x 
    in Z holds (f1 
    . x) 
    = 1) & f 
    = ( 
    - ( 
    arccot  
    / (f1 
    + ( 
    #Z 2)))) & Z 
    c=  
    ].(
    - 1), 1.[ & Z 
    c= ( 
    dom (( 
    #Z 2) 
    *  
    arccot )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: Z 
    c= ( 
    dom ((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arccot ))) by 
    VALUED_1:def 5;
    
      
    
      
    
    A3: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    A1,
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      
    
      
    
    A4: ((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arccot )) 
    is_differentiable_on Z by 
    A1,
    A2,
    SIN_COS9: 94;
    
      
    
      
    
    A5: Z 
    = ( 
    dom ( 
    arccot  
    / (f1 
    + ( 
    #Z 2)))) by 
    A1,
    VALUED_1: 8;
    
      then Z
    c= (( 
    dom  
    arccot ) 
    /\ (( 
    dom (f1 
    + ( 
    #Z 2))) 
    \ ((f1 
    + ( 
    #Z 2)) 
    "  
    {
    0 }))) by 
    RFUNCT_1:def 1;
    
      then Z
    c= (( 
    dom (f1 
    + ( 
    #Z 2))) 
    \ ((f1 
    + ( 
    #Z 2)) 
    "  
    {
    0 })) by 
    XBOOLE_1: 18;
    
      then
    
      
    
    A6: Z 
    c= ( 
    dom ((f1 
    + ( 
    #Z 2)) 
    ^ )) by 
    RFUNCT_1:def 2;
    
      (
    dom ((f1 
    + ( 
    #Z 2)) 
    ^ )) 
    c= ( 
    dom (f1 
    + ( 
    #Z 2))) by 
    RFUNCT_1: 1;
    
      then
    
      
    
    A7: Z 
    c= ( 
    dom (f1 
    + ( 
    #Z 2))) by 
    A6;
    
      
    
      
    
    A8: for x st x 
    in Z holds (f 
    . x) 
    = ( 
    - (( 
    arccot  
    . x) 
    / (1 
    + (x 
    ^2 )))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A9: x 
    in Z; 
    
        ((
    - ( 
    arccot  
    / (f1 
    + ( 
    #Z 2)))) 
    . x) 
    = ( 
    - (( 
    arccot  
    / (f1 
    + ( 
    #Z 2))) 
    . x)) by 
    VALUED_1: 8
    
        .= (
    - (( 
    arccot  
    . x) 
    / ((f1 
    + ( 
    #Z 2)) 
    . x))) by 
    A5,
    A9,
    RFUNCT_1:def 1
    
        .= (
    - (( 
    arccot  
    . x) 
    / ((f1 
    . x) 
    + (( 
    #Z 2) 
    . x)))) by 
    A7,
    A9,
    VALUED_1:def 1
    
        .= (
    - (( 
    arccot  
    . x) 
    / ((f1 
    . x) 
    + (x 
    #Z 2)))) by 
    TAYLOR_1:def 1
    
        .= (
    - (( 
    arccot  
    . x) 
    / (1 
    + (x 
    #Z 2)))) by 
    A1,
    A9
    
        .= (
    - (( 
    arccot  
    . x) 
    / (1 
    + (x 
    ^2 )))) by 
    FDIFF_7: 1;
    
        hence thesis by
    A1;
    
      end;
    
      
    
      
    
    A10: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arccot )) 
    `| Z)) holds ((((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arccot )) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arccot )) 
    `| Z)); 
    
        then
    
        
    
    A11: x 
    in Z by 
    A4,
    FDIFF_1:def 7;
    
        
    
        then ((((1
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arccot )) 
    `| Z) 
    . x) 
    = ( 
    - (( 
    arccot  
    . x) 
    / (1 
    + (x 
    ^2 )))) by 
    A1,
    A2,
    SIN_COS9: 94
    
        .= (f
    . x) by 
    A8,
    A11;
    
        hence thesis;
    
      end;
    
      (
    dom (((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arccot )) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A4,
    FDIFF_1:def 7;
    
      then (((1
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arccot )) 
    `| Z) 
    = f by 
    A10,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    A3,
    INTEGRA5: 13,
    SIN_COS9: 94;
    
    end;
    
    theorem :: 
    
    INTEGR13:44
    
    
    
    
    
    Th44: Z 
    c= ( 
    dom (( 
    #Z 2) 
    *  
    arccot )) & Z 
    c=  
    ].(
    - 1), 1.[ implies ( 
    - ((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arccot ))) 
    is_differentiable_on Z & for x st x 
    in Z holds ((( 
    - ((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arccot ))) 
    `| Z) 
    . x) 
    = (( 
    arccot  
    . x) 
    / (1 
    + (x 
    ^2 ))) 
    
    proof
    
      assume
    
      
    
    A1: Z 
    c= ( 
    dom (( 
    #Z 2) 
    *  
    arccot )) & Z 
    c=  
    ].(
    - 1), 1.[; 
    
      then
    
      
    
    A2: Z 
    c= ( 
    dom ((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arccot ))) by 
    VALUED_1:def 5;
    
      then
    
      
    
    A3: Z 
    c= ( 
    dom ( 
    - ((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arccot )))) by 
    VALUED_1: 8;
    
      
    
      
    
    A4: ((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arccot )) 
    is_differentiable_on Z by 
    A2,
    A1,
    SIN_COS9: 94;
    
      then
    
      
    
    A5: (( 
    - 1) 
    (#) ((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arccot ))) 
    is_differentiable_on Z by 
    A3,
    FDIFF_1: 20;
    
      
    
      
    
    A6: (( 
    #Z 2) 
    *  
    arccot ) 
    is_differentiable_on Z & for x st x 
    in Z holds (((( 
    #Z 2) 
    *  
    arccot ) 
    `| Z) 
    . x) 
    = ( 
    - ((2 
    * (( 
    arccot  
    . x) 
    #Z (2 
    - 1))) 
    / (1 
    + (x 
    ^2 )))) by 
    A1,
    SIN_COS9: 92;
    
      for x st x
    in Z holds ((( 
    - ((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arccot ))) 
    `| Z) 
    . x) 
    = (( 
    arccot  
    . x) 
    / (1 
    + (x 
    ^2 ))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A7: x 
    in Z; 
    
        then
    
        
    
    A8: ((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arccot )) 
    is_differentiable_in x by 
    A4,
    FDIFF_1: 9;
    
        
    
        
    
    A9: (( 
    #Z 2) 
    *  
    arccot ) 
    is_differentiable_in x by 
    A6,
    A7,
    FDIFF_1: 9;
    
        (((
    - ((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arccot ))) 
    `| Z) 
    . x) 
    = ( 
    diff (( 
    - ((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arccot ))),x)) by 
    A5,
    A7,
    FDIFF_1:def 7
    
        .= ((
    - 1) 
    * ( 
    diff (((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arccot )),x))) by 
    A8,
    FDIFF_1: 15
    
        .= ((
    - 1) 
    * ((1 
    / 2) 
    * ( 
    diff ((( 
    #Z 2) 
    *  
    arccot ),x)))) by 
    A9,
    FDIFF_1: 15
    
        .= ((
    - 1) 
    * ((1 
    / 2) 
    * (((( 
    #Z 2) 
    *  
    arccot ) 
    `| Z) 
    . x))) by 
    A6,
    A7,
    FDIFF_1:def 7
    
        .= ((
    - 1) 
    * ((1 
    / 2) 
    * ( 
    - ((2 
    * (( 
    arccot  
    . x) 
    #Z (2 
    - 1))) 
    / (1 
    + (x 
    ^2 )))))) by 
    A1,
    A7,
    SIN_COS9: 92
    
        .= ((
    - 1) 
    * ( 
    - ((1 
    / 2) 
    * ((2 
    * (( 
    arccot  
    . x) 
    #Z 1)) 
    / (1 
    + (x 
    ^2 )))))) 
    
        .= ((
    - 1) 
    * ( 
    - ((1 
    / 2) 
    * ((2 
    * ( 
    arccot  
    . x)) 
    / (1 
    + (x 
    ^2 )))))) by 
    PREPOWER: 35
    
        .= ((
    arccot  
    . x) 
    / (1 
    + (x 
    ^2 ))); 
    
        hence thesis;
    
      end;
    
      hence thesis by
    A3,
    A4,
    FDIFF_1: 20;
    
    end;
    
    theorem :: 
    
    INTEGR13:45
    
    A
    c= Z & (for x st x 
    in Z holds (f1 
    . x) 
    = 1) & f 
    = ( 
    arccot  
    / (f1 
    + ( 
    #Z 2))) & Z 
    c=  
    ].(
    - 1), 1.[ & Z 
    c= ( 
    dom (( 
    #Z 2) 
    *  
    arccot )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = ((( 
    - ((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arccot ))) 
    . ( 
    upper_bound A)) 
    - (( 
    - ((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arccot ))) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & (for x st x 
    in Z holds (f1 
    . x) 
    = 1) & f 
    = ( 
    arccot  
    / (f1 
    + ( 
    #Z 2))) & Z 
    c=  
    ].(
    - 1), 1.[ & Z 
    c= ( 
    dom (( 
    #Z 2) 
    *  
    arccot )) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      
    
      
    
    A3: ( 
    - ((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arccot ))) 
    is_differentiable_on Z by 
    A1,
    Th44;
    
      Z
    c= (( 
    dom  
    arccot ) 
    /\ (( 
    dom (f1 
    + ( 
    #Z 2))) 
    \ ((f1 
    + ( 
    #Z 2)) 
    "  
    {
    0 }))) by 
    A1,
    RFUNCT_1:def 1;
    
      then Z
    c= (( 
    dom (f1 
    + ( 
    #Z 2))) 
    \ ((f1 
    + ( 
    #Z 2)) 
    "  
    {
    0 })) by 
    XBOOLE_1: 18;
    
      then
    
      
    
    A4: Z 
    c= ( 
    dom ((f1 
    + ( 
    #Z 2)) 
    ^ )) by 
    RFUNCT_1:def 2;
    
      (
    dom ((f1 
    + ( 
    #Z 2)) 
    ^ )) 
    c= ( 
    dom (f1 
    + ( 
    #Z 2))) by 
    RFUNCT_1: 1;
    
      then
    
      
    
    A5: Z 
    c= ( 
    dom (f1 
    + ( 
    #Z 2))) by 
    A4;
    
      
    
      
    
    A6: for x st x 
    in Z holds (f 
    . x) 
    = (( 
    arccot  
    . x) 
    / (1 
    + (x 
    ^2 ))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A7: x 
    in Z; 
    
        
    
        then ((
    arccot  
    / (f1 
    + ( 
    #Z 2))) 
    . x) 
    = (( 
    arccot  
    . x) 
    / ((f1 
    + ( 
    #Z 2)) 
    . x)) by 
    A1,
    RFUNCT_1:def 1
    
        .= ((
    arccot  
    . x) 
    / ((f1 
    . x) 
    + (( 
    #Z 2) 
    . x))) by 
    A5,
    A7,
    VALUED_1:def 1
    
        .= ((
    arccot  
    . x) 
    / ((f1 
    . x) 
    + (x 
    #Z 2))) by 
    TAYLOR_1:def 1
    
        .= ((
    arccot  
    . x) 
    / (1 
    + (x 
    #Z 2))) by 
    A1,
    A7
    
        .= ((
    arccot  
    . x) 
    / (1 
    + (x 
    ^2 ))) by 
    FDIFF_7: 1;
    
        hence thesis by
    A1;
    
      end;
    
      
    
      
    
    A8: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (( 
    - ((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arccot ))) 
    `| Z)) holds ((( 
    - ((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arccot ))) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (( 
    - ((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arccot ))) 
    `| Z)); 
    
        then
    
        
    
    A9: x 
    in Z by 
    A3,
    FDIFF_1:def 7;
    
        
    
        then (((
    - ((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arccot ))) 
    `| Z) 
    . x) 
    = (( 
    arccot  
    . x) 
    / (1 
    + (x 
    ^2 ))) by 
    A1,
    Th44
    
        .= (f
    . x) by 
    A6,
    A9;
    
        hence thesis;
    
      end;
    
      (
    dom (( 
    - ((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arccot ))) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A3,
    FDIFF_1:def 7;
    
      then ((
    - ((1 
    / 2) 
    (#) (( 
    #Z 2) 
    *  
    arccot ))) 
    `| Z) 
    = f by 
    A8,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    Th44,
    INTEGRA5: 13;
    
    end;
    
    theorem :: 
    
    INTEGR13:46
    
    A
    c= Z & (for x st x 
    in Z holds (f1 
    . x) 
    = 1) & f 
    = ( 
    arctan  
    + (( 
    id Z) 
    / (f1 
    + ( 
    #Z 2)))) & Z 
    c=  
    ].(
    - 1), 1.[ & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = (((( 
    id Z) 
    (#)  
    arctan ) 
    . ( 
    upper_bound A)) 
    - ((( 
    id Z) 
    (#)  
    arctan ) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & (for x st x 
    in Z holds (f1 
    . x) 
    = 1) & f 
    = ( 
    arctan  
    + (( 
    id Z) 
    / (f1 
    + ( 
    #Z 2)))) & Z 
    c=  
    ].(
    - 1), 1.[ & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      Z
    = (( 
    dom  
    arctan ) 
    /\ ( 
    dom (( 
    id Z) 
    / (f1 
    + ( 
    #Z 2))))) by 
    A1,
    VALUED_1:def 1;
    
      then
    
      
    
    A3: Z 
    c= ( 
    dom  
    arctan ) & Z 
    c= ( 
    dom (( 
    id Z) 
    / (f1 
    + ( 
    #Z 2)))) by 
    XBOOLE_1: 18;
    
      then Z
    c= (( 
    dom ( 
    id Z)) 
    /\ (( 
    dom (f1 
    + ( 
    #Z 2))) 
    \ ((f1 
    + ( 
    #Z 2)) 
    "  
    {
    0 }))) by 
    RFUNCT_1:def 1;
    
      then
    
      
    
    A4: Z 
    c= (( 
    dom (f1 
    + ( 
    #Z 2))) 
    \ ((f1 
    + ( 
    #Z 2)) 
    "  
    {
    0 })) by 
    XBOOLE_1: 18;
    
      
    
      
    
    A5: (( 
    id Z) 
    (#)  
    arctan ) 
    is_differentiable_on Z by 
    A1,
    SIN_COS9: 95;
    
      
    
      
    
    A6: Z 
    c= ( 
    dom ((f1 
    + ( 
    #Z 2)) 
    ^ )) by 
    A4,
    RFUNCT_1:def 2;
    
      (
    dom ((f1 
    + ( 
    #Z 2)) 
    ^ )) 
    c= ( 
    dom (f1 
    + ( 
    #Z 2))) by 
    RFUNCT_1: 1;
    
      then
    
      
    
    A7: Z 
    c= ( 
    dom (f1 
    + ( 
    #Z 2))) by 
    A6;
    
      
    
      
    
    A8: for x st x 
    in Z holds (f 
    . x) 
    = (( 
    arctan  
    . x) 
    + (x 
    / (1 
    + (x 
    ^2 )))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A9: x 
    in Z; 
    
        
    
        then ((
    arctan  
    + (( 
    id Z) 
    / (f1 
    + ( 
    #Z 2)))) 
    . x) 
    = (( 
    arctan  
    . x) 
    + ((( 
    id Z) 
    / (f1 
    + ( 
    #Z 2))) 
    . x)) by 
    A1,
    VALUED_1:def 1
    
        .= ((
    arctan  
    . x) 
    + ((( 
    id Z) 
    . x) 
    / ((f1 
    + ( 
    #Z 2)) 
    . x))) by 
    A3,
    A9,
    RFUNCT_1:def 1
    
        .= ((
    arctan  
    . x) 
    + (x 
    / ((f1 
    + ( 
    #Z 2)) 
    . x))) by 
    A9,
    FUNCT_1: 18
    
        .= ((
    arctan  
    . x) 
    + (x 
    / ((f1 
    . x) 
    + (( 
    #Z 2) 
    . x)))) by 
    A7,
    A9,
    VALUED_1:def 1
    
        .= ((
    arctan  
    . x) 
    + (x 
    / (1 
    + (( 
    #Z 2) 
    . x)))) by 
    A1,
    A9
    
        .= ((
    arctan  
    . x) 
    + (x 
    / (1 
    + (x 
    #Z 2)))) by 
    TAYLOR_1:def 1
    
        .= ((
    arctan  
    . x) 
    + (x 
    / (1 
    + (x 
    ^2 )))) by 
    FDIFF_7: 1;
    
        hence thesis by
    A1;
    
      end;
    
      
    
      
    
    A10: for x be 
    Element of 
    REAL st x 
    in ( 
    dom ((( 
    id Z) 
    (#)  
    arctan ) 
    `| Z)) holds (((( 
    id Z) 
    (#)  
    arctan ) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom ((( 
    id Z) 
    (#)  
    arctan ) 
    `| Z)); 
    
        then
    
        
    
    A11: x 
    in Z by 
    A5,
    FDIFF_1:def 7;
    
        
    
        then ((((
    id Z) 
    (#)  
    arctan ) 
    `| Z) 
    . x) 
    = (( 
    arctan  
    . x) 
    + (x 
    / (1 
    + (x 
    ^2 )))) by 
    A1,
    SIN_COS9: 95
    
        .= (f
    . x) by 
    A8,
    A11;
    
        hence thesis;
    
      end;
    
      (
    dom ((( 
    id Z) 
    (#)  
    arctan ) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A5,
    FDIFF_1:def 7;
    
      then (((
    id Z) 
    (#)  
    arctan ) 
    `| Z) 
    = f by 
    A10,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    INTEGRA5: 13,
    SIN_COS9: 95;
    
    end;
    
    theorem :: 
    
    INTEGR13:47
    
    A
    c= Z & (for x st x 
    in Z holds (f1 
    . x) 
    = 1) & f 
    = ( 
    arccot  
    - (( 
    id Z) 
    / (f1 
    + ( 
    #Z 2)))) & Z 
    c=  
    ].(
    - 1), 1.[ & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = (((( 
    id Z) 
    (#)  
    arccot ) 
    . ( 
    upper_bound A)) 
    - ((( 
    id Z) 
    (#)  
    arccot ) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & (for x st x 
    in Z holds (f1 
    . x) 
    = 1) & f 
    = ( 
    arccot  
    - (( 
    id Z) 
    / (f1 
    + ( 
    #Z 2)))) & Z 
    c=  
    ].(
    - 1), 1.[ & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      Z
    = (( 
    dom  
    arccot ) 
    /\ ( 
    dom (( 
    id Z) 
    / (f1 
    + ( 
    #Z 2))))) by 
    A1,
    VALUED_1: 12;
    
      then
    
      
    
    A3: Z 
    c= ( 
    dom  
    arccot ) & Z 
    c= ( 
    dom (( 
    id Z) 
    / (f1 
    + ( 
    #Z 2)))) by 
    XBOOLE_1: 18;
    
      then Z
    c= (( 
    dom ( 
    id Z)) 
    /\ (( 
    dom (f1 
    + ( 
    #Z 2))) 
    \ ((f1 
    + ( 
    #Z 2)) 
    "  
    {
    0 }))) by 
    RFUNCT_1:def 1;
    
      then
    
      
    
    A4: Z 
    c= (( 
    dom (f1 
    + ( 
    #Z 2))) 
    \ ((f1 
    + ( 
    #Z 2)) 
    "  
    {
    0 })) by 
    XBOOLE_1: 18;
    
      
    
      
    
    A5: (( 
    id Z) 
    (#)  
    arccot ) 
    is_differentiable_on Z by 
    A1,
    SIN_COS9: 96;
    
      
    
      
    
    A6: Z 
    c= ( 
    dom ((f1 
    + ( 
    #Z 2)) 
    ^ )) by 
    A4,
    RFUNCT_1:def 2;
    
      (
    dom ((f1 
    + ( 
    #Z 2)) 
    ^ )) 
    c= ( 
    dom (f1 
    + ( 
    #Z 2))) by 
    RFUNCT_1: 1;
    
      then
    
      
    
    A7: Z 
    c= ( 
    dom (f1 
    + ( 
    #Z 2))) by 
    A6;
    
      
    
      
    
    A8: for x st x 
    in Z holds (f 
    . x) 
    = (( 
    arccot  
    . x) 
    - (x 
    / (1 
    + (x 
    ^2 )))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A9: x 
    in Z; 
    
        
    
        then ((
    arccot  
    - (( 
    id Z) 
    / (f1 
    + ( 
    #Z 2)))) 
    . x) 
    = (( 
    arccot  
    . x) 
    - ((( 
    id Z) 
    / (f1 
    + ( 
    #Z 2))) 
    . x)) by 
    A1,
    VALUED_1: 13
    
        .= ((
    arccot  
    . x) 
    - ((( 
    id Z) 
    . x) 
    / ((f1 
    + ( 
    #Z 2)) 
    . x))) by 
    A3,
    A9,
    RFUNCT_1:def 1
    
        .= ((
    arccot  
    . x) 
    - (x 
    / ((f1 
    + ( 
    #Z 2)) 
    . x))) by 
    A9,
    FUNCT_1: 18
    
        .= ((
    arccot  
    . x) 
    - (x 
    / ((f1 
    . x) 
    + (( 
    #Z 2) 
    . x)))) by 
    A7,
    A9,
    VALUED_1:def 1
    
        .= ((
    arccot  
    . x) 
    - (x 
    / (1 
    + (( 
    #Z 2) 
    . x)))) by 
    A1,
    A9
    
        .= ((
    arccot  
    . x) 
    - (x 
    / (1 
    + (x 
    #Z 2)))) by 
    TAYLOR_1:def 1
    
        .= ((
    arccot  
    . x) 
    - (x 
    / (1 
    + (x 
    ^2 )))) by 
    FDIFF_7: 1;
    
        hence thesis by
    A1;
    
      end;
    
      
    
      
    
    A10: for x be 
    Element of 
    REAL st x 
    in ( 
    dom ((( 
    id Z) 
    (#)  
    arccot ) 
    `| Z)) holds (((( 
    id Z) 
    (#)  
    arccot ) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom ((( 
    id Z) 
    (#)  
    arccot ) 
    `| Z)); 
    
        then
    
        
    
    A11: x 
    in Z by 
    A5,
    FDIFF_1:def 7;
    
        
    
        then ((((
    id Z) 
    (#)  
    arccot ) 
    `| Z) 
    . x) 
    = (( 
    arccot  
    . x) 
    - (x 
    / (1 
    + (x 
    ^2 )))) by 
    A1,
    SIN_COS9: 96
    
        .= (f
    . x) by 
    A11,
    A8;
    
        hence thesis;
    
      end;
    
      (
    dom ((( 
    id Z) 
    (#)  
    arccot ) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A5,
    FDIFF_1:def 7;
    
      then (((
    id Z) 
    (#)  
    arccot ) 
    `| Z) 
    = f by 
    A10,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    INTEGRA5: 13,
    SIN_COS9: 96;
    
    end;
    
    theorem :: 
    
    INTEGR13:48
    
    A
    c= Z & Z 
    c=  
    ].(
    - 1), 1.[ & f 
    = (( 
    exp_R  
    *  
    arctan ) 
    / (f1 
    + ( 
    #Z 2))) & (for x st x 
    in Z holds (f1 
    . x) 
    = 1) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = ((( 
    exp_R  
    *  
    arctan ) 
    . ( 
    upper_bound A)) 
    - (( 
    exp_R  
    *  
    arctan ) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & Z 
    c=  
    ].(
    - 1), 1.[ & f 
    = (( 
    exp_R  
    *  
    arctan ) 
    / (f1 
    + ( 
    #Z 2))) & (for x st x 
    in Z holds (f1 
    . x) 
    = 1) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      Z
    = (( 
    dom ( 
    exp_R  
    *  
    arctan )) 
    /\ (( 
    dom (f1 
    + ( 
    #Z 2))) 
    \ ((f1 
    + ( 
    #Z 2)) 
    "  
    {
    0 }))) by 
    A1,
    RFUNCT_1:def 1;
    
      then
    
      
    
    A3: Z 
    c= ( 
    dom ( 
    exp_R  
    *  
    arctan )) & Z 
    c= (( 
    dom (f1 
    + ( 
    #Z 2))) 
    \ ((f1 
    + ( 
    #Z 2)) 
    "  
    {
    0 })) by 
    XBOOLE_1: 18;
    
      then
    
      
    
    A4: Z 
    c= ( 
    dom ((f1 
    + ( 
    #Z 2)) 
    ^ )) by 
    RFUNCT_1:def 2;
    
      (
    dom ((f1 
    + ( 
    #Z 2)) 
    ^ )) 
    c= ( 
    dom (f1 
    + ( 
    #Z 2))) by 
    RFUNCT_1: 1;
    
      then
    
      
    
    A5: Z 
    c= ( 
    dom (f1 
    + ( 
    #Z 2))) by 
    A4;
    
      
    
      
    
    A6: ( 
    exp_R  
    *  
    arctan ) 
    is_differentiable_on Z by 
    A1,
    A3,
    SIN_COS9: 119;
    
      
    
      
    
    A7: for x st x 
    in Z holds (f 
    . x) 
    = (( 
    exp_R  
    . ( 
    arctan  
    . x)) 
    / (1 
    + (x 
    ^2 ))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A8: x 
    in Z; 
    
        
    
        then (((
    exp_R  
    *  
    arctan ) 
    / (f1 
    + ( 
    #Z 2))) 
    . x) 
    = ((( 
    exp_R  
    *  
    arctan ) 
    . x) 
    / ((f1 
    + ( 
    #Z 2)) 
    . x)) by 
    A1,
    RFUNCT_1:def 1
    
        .= ((
    exp_R  
    . ( 
    arctan  
    . x)) 
    / ((f1 
    + ( 
    #Z 2)) 
    . x)) by 
    A3,
    A8,
    FUNCT_1: 12
    
        .= ((
    exp_R  
    . ( 
    arctan  
    . x)) 
    / ((f1 
    . x) 
    + (( 
    #Z 2) 
    . x))) by 
    A5,
    A8,
    VALUED_1:def 1
    
        .= ((
    exp_R  
    . ( 
    arctan  
    . x)) 
    / (1 
    + (( 
    #Z 2) 
    . x))) by 
    A1,
    A8
    
        .= ((
    exp_R  
    . ( 
    arctan  
    . x)) 
    / (1 
    + (x 
    #Z 2))) by 
    TAYLOR_1:def 1
    
        .= ((
    exp_R  
    . ( 
    arctan  
    . x)) 
    / (1 
    + (x 
    ^2 ))) by 
    FDIFF_7: 1;
    
        hence thesis by
    A1;
    
      end;
    
      
    
      
    
    A9: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (( 
    exp_R  
    *  
    arctan ) 
    `| Z)) holds ((( 
    exp_R  
    *  
    arctan ) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (( 
    exp_R  
    *  
    arctan ) 
    `| Z)); 
    
        then
    
        
    
    A10: x 
    in Z by 
    A6,
    FDIFF_1:def 7;
    
        
    
        then (((
    exp_R  
    *  
    arctan ) 
    `| Z) 
    . x) 
    = (( 
    exp_R  
    . ( 
    arctan  
    . x)) 
    / (1 
    + (x 
    ^2 ))) by 
    A1,
    A3,
    SIN_COS9: 119
    
        .= (f
    . x) by 
    A10,
    A7;
    
        hence thesis;
    
      end;
    
      (
    dom (( 
    exp_R  
    *  
    arctan ) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A6,
    FDIFF_1:def 7;
    
      then ((
    exp_R  
    *  
    arctan ) 
    `| Z) 
    = f by 
    A9,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    A3,
    INTEGRA5: 13,
    SIN_COS9: 119;
    
    end;
    
    theorem :: 
    
    INTEGR13:49
    
    A
    c= Z & Z 
    c=  
    ].(
    - 1), 1.[ & f 
    = ( 
    - (( 
    exp_R  
    *  
    arccot ) 
    / (f1 
    + ( 
    #Z 2)))) & (for x st x 
    in Z holds (f1 
    . x) 
    = 1) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = ((( 
    exp_R  
    *  
    arccot ) 
    . ( 
    upper_bound A)) 
    - (( 
    exp_R  
    *  
    arccot ) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & Z 
    c=  
    ].(
    - 1), 1.[ & f 
    = ( 
    - (( 
    exp_R  
    *  
    arccot ) 
    / (f1 
    + ( 
    #Z 2)))) & (for x st x 
    in Z holds (f1 
    . x) 
    = 1) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      
    
      
    
    A3: Z 
    = ( 
    dom (( 
    exp_R  
    *  
    arccot ) 
    / (f1 
    + ( 
    #Z 2)))) by 
    A1,
    VALUED_1: 8;
    
      then Z
    = (( 
    dom ( 
    exp_R  
    *  
    arccot )) 
    /\ (( 
    dom (f1 
    + ( 
    #Z 2))) 
    \ ((f1 
    + ( 
    #Z 2)) 
    "  
    {
    0 }))) by 
    RFUNCT_1:def 1;
    
      then
    
      
    
    A4: Z 
    c= ( 
    dom ( 
    exp_R  
    *  
    arccot )) & Z 
    c= (( 
    dom (f1 
    + ( 
    #Z 2))) 
    \ ((f1 
    + ( 
    #Z 2)) 
    "  
    {
    0 })) by 
    XBOOLE_1: 18;
    
      then
    
      
    
    A5: Z 
    c= ( 
    dom ((f1 
    + ( 
    #Z 2)) 
    ^ )) by 
    RFUNCT_1:def 2;
    
      (
    dom ((f1 
    + ( 
    #Z 2)) 
    ^ )) 
    c= ( 
    dom (f1 
    + ( 
    #Z 2))) by 
    RFUNCT_1: 1;
    
      then
    
      
    
    A6: Z 
    c= ( 
    dom (f1 
    + ( 
    #Z 2))) by 
    A5;
    
      
    
      
    
    A7: ( 
    exp_R  
    *  
    arccot ) 
    is_differentiable_on Z by 
    A1,
    A4,
    SIN_COS9: 120;
    
      
    
      
    
    A8: for x st x 
    in Z holds (f 
    . x) 
    = ( 
    - (( 
    exp_R  
    . ( 
    arccot  
    . x)) 
    / (1 
    + (x 
    ^2 )))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A9: x 
    in Z; 
    
        ((
    - (( 
    exp_R  
    *  
    arccot ) 
    / (f1 
    + ( 
    #Z 2)))) 
    . x) 
    = ( 
    - ((( 
    exp_R  
    *  
    arccot ) 
    / (f1 
    + ( 
    #Z 2))) 
    . x)) by 
    VALUED_1: 8
    
        .= (
    - ((( 
    exp_R  
    *  
    arccot ) 
    . x) 
    / ((f1 
    + ( 
    #Z 2)) 
    . x))) by 
    A9,
    A3,
    RFUNCT_1:def 1
    
        .= (
    - (( 
    exp_R  
    . ( 
    arccot  
    . x)) 
    / ((f1 
    + ( 
    #Z 2)) 
    . x))) by 
    A4,
    A9,
    FUNCT_1: 12
    
        .= (
    - (( 
    exp_R  
    . ( 
    arccot  
    . x)) 
    / ((f1 
    . x) 
    + (( 
    #Z 2) 
    . x)))) by 
    A6,
    A9,
    VALUED_1:def 1
    
        .= (
    - (( 
    exp_R  
    . ( 
    arccot  
    . x)) 
    / (1 
    + (( 
    #Z 2) 
    . x)))) by 
    A1,
    A9
    
        .= (
    - (( 
    exp_R  
    . ( 
    arccot  
    . x)) 
    / (1 
    + (x 
    #Z 2)))) by 
    TAYLOR_1:def 1
    
        .= (
    - (( 
    exp_R  
    . ( 
    arccot  
    . x)) 
    / (1 
    + (x 
    ^2 )))) by 
    FDIFF_7: 1;
    
        hence thesis by
    A1;
    
      end;
    
      
    
      
    
    A10: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (( 
    exp_R  
    *  
    arccot ) 
    `| Z)) holds ((( 
    exp_R  
    *  
    arccot ) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (( 
    exp_R  
    *  
    arccot ) 
    `| Z)); 
    
        then
    
        
    
    A11: x 
    in Z by 
    A7,
    FDIFF_1:def 7;
    
        
    
        then (((
    exp_R  
    *  
    arccot ) 
    `| Z) 
    . x) 
    = ( 
    - (( 
    exp_R  
    . ( 
    arccot  
    . x)) 
    / (1 
    + (x 
    ^2 )))) by 
    A1,
    A4,
    SIN_COS9: 120
    
        .= (f
    . x) by 
    A11,
    A8;
    
        hence thesis;
    
      end;
    
      (
    dom (( 
    exp_R  
    *  
    arccot ) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A7,
    FDIFF_1:def 7;
    
      then ((
    exp_R  
    *  
    arccot ) 
    `| Z) 
    = f by 
    A10,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    A4,
    INTEGRA5: 13,
    SIN_COS9: 120;
    
    end;
    
    theorem :: 
    
    INTEGR13:50
    
    
    
    
    
    Th50: Z 
    c= ( 
    dom ( 
    exp_R  
    *  
    arccot )) & Z 
    c=  
    ].(
    - 1), 1.[ implies ( 
    - ( 
    exp_R  
    *  
    arccot )) 
    is_differentiable_on Z & for x st x 
    in Z holds ((( 
    - ( 
    exp_R  
    *  
    arccot )) 
    `| Z) 
    . x) 
    = (( 
    exp_R  
    . ( 
    arccot  
    . x)) 
    / (1 
    + (x 
    ^2 ))) 
    
    proof
    
      assume
    
      
    
    A1: Z 
    c= ( 
    dom ( 
    exp_R  
    *  
    arccot )) & Z 
    c=  
    ].(
    - 1), 1.[; 
    
      then
    
      
    
    A2: Z 
    c= ( 
    dom ( 
    - ( 
    exp_R  
    *  
    arccot ))) by 
    VALUED_1: 8;
    
      
    
      
    
    A3: ( 
    exp_R  
    *  
    arccot ) 
    is_differentiable_on Z by 
    A1,
    SIN_COS9: 120;
    
      then
    
      
    
    A4: (( 
    - 1) 
    (#) ( 
    exp_R  
    *  
    arccot )) 
    is_differentiable_on Z by 
    A2,
    FDIFF_1: 20;
    
      for x st x
    in Z holds ((( 
    - ( 
    exp_R  
    *  
    arccot )) 
    `| Z) 
    . x) 
    = (( 
    exp_R  
    . ( 
    arccot  
    . x)) 
    / (1 
    + (x 
    ^2 ))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A5: x 
    in Z; 
    
        
    
        
    
    A6: 
    arccot  
    is_differentiable_on Z by 
    A1,
    SIN_COS9: 82;
    
        then
    
        
    
    A7: 
    arccot  
    is_differentiable_in x by 
    A5,
    FDIFF_1: 9;
    
        
    
        
    
    A8: 
    exp_R  
    is_differentiable_in ( 
    arccot  
    . x) by 
    SIN_COS: 65;
    
        
    
        
    
    A9: ( 
    exp_R  
    *  
    arccot ) 
    is_differentiable_in x by 
    A3,
    A5,
    FDIFF_1: 9;
    
        (((
    - ( 
    exp_R  
    *  
    arccot )) 
    `| Z) 
    . x) 
    = ( 
    diff (( 
    - ( 
    exp_R  
    *  
    arccot )),x)) by 
    A4,
    A5,
    FDIFF_1:def 7
    
        .= ((
    - 1) 
    * ( 
    diff (( 
    exp_R  
    *  
    arccot ),x))) by 
    A9,
    FDIFF_1: 15
    
        .= ((
    - 1) 
    * (( 
    diff ( 
    exp_R ,( 
    arccot  
    . x))) 
    * ( 
    diff ( 
    arccot ,x)))) by 
    A7,
    A8,
    FDIFF_2: 13
    
        .= ((
    - 1) 
    * (( 
    diff ( 
    exp_R ,( 
    arccot  
    . x))) 
    * (( 
    arccot  
    `| Z) 
    . x))) by 
    A5,
    A6,
    FDIFF_1:def 7
    
        .= ((
    - 1) 
    * (( 
    diff ( 
    exp_R ,( 
    arccot  
    . x))) 
    * ( 
    - (1 
    / (1 
    + (x 
    ^2 )))))) by 
    A5,
    A1,
    SIN_COS9: 82
    
        .= ((
    - 1) 
    * ( 
    - (( 
    diff ( 
    exp_R ,( 
    arccot  
    . x))) 
    * (1 
    / (1 
    + (x 
    ^2 )))))) 
    
        .= ((
    exp_R  
    . ( 
    arccot  
    . x)) 
    / (1 
    + (x 
    ^2 ))) by 
    SIN_COS: 65;
    
        hence thesis;
    
      end;
    
      hence thesis by
    A2,
    A3,
    FDIFF_1: 20;
    
    end;
    
    theorem :: 
    
    INTEGR13:51
    
    A
    c= Z & Z 
    c=  
    ].(
    - 1), 1.[ & f 
    = (( 
    exp_R  
    *  
    arccot ) 
    / (f1 
    + ( 
    #Z 2))) & (for x st x 
    in Z holds (f1 
    . x) 
    = 1) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = ((( 
    - ( 
    exp_R  
    *  
    arccot )) 
    . ( 
    upper_bound A)) 
    - (( 
    - ( 
    exp_R  
    *  
    arccot )) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & Z 
    c=  
    ].(
    - 1), 1.[ & f 
    = (( 
    exp_R  
    *  
    arccot ) 
    / (f1 
    + ( 
    #Z 2))) & (for x st x 
    in Z holds (f1 
    . x) 
    = 1) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      Z
    = (( 
    dom ( 
    exp_R  
    *  
    arccot )) 
    /\ (( 
    dom (f1 
    + ( 
    #Z 2))) 
    \ ((f1 
    + ( 
    #Z 2)) 
    "  
    {
    0 }))) by 
    A1,
    RFUNCT_1:def 1;
    
      then
    
      
    
    A3: Z 
    c= ( 
    dom ( 
    exp_R  
    *  
    arccot )) & Z 
    c= (( 
    dom (f1 
    + ( 
    #Z 2))) 
    \ ((f1 
    + ( 
    #Z 2)) 
    "  
    {
    0 })) by 
    XBOOLE_1: 18;
    
      then
    
      
    
    A4: Z 
    c= ( 
    dom ((f1 
    + ( 
    #Z 2)) 
    ^ )) by 
    RFUNCT_1:def 2;
    
      (
    dom ((f1 
    + ( 
    #Z 2)) 
    ^ )) 
    c= ( 
    dom (f1 
    + ( 
    #Z 2))) by 
    RFUNCT_1: 1;
    
      then
    
      
    
    A5: Z 
    c= ( 
    dom (f1 
    + ( 
    #Z 2))) by 
    A4;
    
      
    
      
    
    A6: ( 
    - ( 
    exp_R  
    *  
    arccot )) 
    is_differentiable_on Z by 
    A1,
    A3,
    Th50;
    
      
    
      
    
    A7: for x st x 
    in Z holds (f 
    . x) 
    = (( 
    exp_R  
    . ( 
    arccot  
    . x)) 
    / (1 
    + (x 
    ^2 ))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A8: x 
    in Z; 
    
        
    
        then (((
    exp_R  
    *  
    arccot ) 
    / (f1 
    + ( 
    #Z 2))) 
    . x) 
    = ((( 
    exp_R  
    *  
    arccot ) 
    . x) 
    / ((f1 
    + ( 
    #Z 2)) 
    . x)) by 
    A1,
    RFUNCT_1:def 1
    
        .= ((
    exp_R  
    . ( 
    arccot  
    . x)) 
    / ((f1 
    + ( 
    #Z 2)) 
    . x)) by 
    A3,
    A8,
    FUNCT_1: 12
    
        .= ((
    exp_R  
    . ( 
    arccot  
    . x)) 
    / ((f1 
    . x) 
    + (( 
    #Z 2) 
    . x))) by 
    A5,
    A8,
    VALUED_1:def 1
    
        .= ((
    exp_R  
    . ( 
    arccot  
    . x)) 
    / (1 
    + (( 
    #Z 2) 
    . x))) by 
    A1,
    A8
    
        .= ((
    exp_R  
    . ( 
    arccot  
    . x)) 
    / (1 
    + (x 
    #Z 2))) by 
    TAYLOR_1:def 1
    
        .= ((
    exp_R  
    . ( 
    arccot  
    . x)) 
    / (1 
    + (x 
    ^2 ))) by 
    FDIFF_7: 1;
    
        hence thesis by
    A1;
    
      end;
    
      
    
      
    
    A9: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (( 
    - ( 
    exp_R  
    *  
    arccot )) 
    `| Z)) holds ((( 
    - ( 
    exp_R  
    *  
    arccot )) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (( 
    - ( 
    exp_R  
    *  
    arccot )) 
    `| Z)); 
    
        then
    
        
    
    A10: x 
    in Z by 
    A6,
    FDIFF_1:def 7;
    
        
    
        then (((
    - ( 
    exp_R  
    *  
    arccot )) 
    `| Z) 
    . x) 
    = (( 
    exp_R  
    . ( 
    arccot  
    . x)) 
    / (1 
    + (x 
    ^2 ))) by 
    A1,
    A3,
    Th50
    
        .= (f
    . x) by 
    A7,
    A10;
    
        hence thesis;
    
      end;
    
      (
    dom (( 
    - ( 
    exp_R  
    *  
    arccot )) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A6,
    FDIFF_1:def 7;
    
      then ((
    - ( 
    exp_R  
    *  
    arccot )) 
    `| Z) 
    = f by 
    A9,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    A3,
    Th50,
    INTEGRA5: 13;
    
    end;
    
    theorem :: 
    
    INTEGR13:52
    
    A
    c= Z & Z 
    c= ( 
    dom ( 
    ln  
    * (f1 
    + f2))) & f 
    = (( 
    id Z) 
    / (f1 
    + f2)) & f2 
    = ( 
    #Z 2) & (for x st x 
    in Z holds (f1 
    . x) 
    = 1) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = ((((1 
    / 2) 
    (#) ( 
    ln  
    * (f1 
    + f2))) 
    . ( 
    upper_bound A)) 
    - (((1 
    / 2) 
    (#) ( 
    ln  
    * (f1 
    + f2))) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & Z 
    c= ( 
    dom ( 
    ln  
    * (f1 
    + f2))) & f 
    = (( 
    id Z) 
    / (f1 
    + f2)) & f2 
    = ( 
    #Z 2) & (for x st x 
    in Z holds (f1 
    . x) 
    = 1) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      
    
      
    
    A3: Z 
    c= ( 
    dom ((1 
    / 2) 
    (#) ( 
    ln  
    * (f1 
    + f2)))) by 
    A1,
    VALUED_1:def 5;
    
      Z
    c= (( 
    dom ( 
    id Z)) 
    /\ (( 
    dom (f1 
    + f2)) 
    \ ((f1 
    + f2) 
    "  
    {
    0 }))) by 
    A1,
    RFUNCT_1:def 1;
    
      then Z
    c= (( 
    dom (f1 
    + f2)) 
    \ ((f1 
    + f2) 
    "  
    {
    0 })) by 
    XBOOLE_1: 18;
    
      then
    
      
    
    A4: Z 
    c= ( 
    dom ((f1 
    + f2) 
    ^ )) by 
    RFUNCT_1:def 2;
    
      (
    dom ((f1 
    + f2) 
    ^ )) 
    c= ( 
    dom (f1 
    + f2)) by 
    RFUNCT_1: 1;
    
      then
    
      
    
    A5: Z 
    c= ( 
    dom (f1 
    + f2)) by 
    A4;
    
      
    
      
    
    A6: ((1 
    / 2) 
    (#) ( 
    ln  
    * (f1 
    + f2))) 
    is_differentiable_on Z by 
    A1,
    A3,
    SIN_COS9: 102;
    
      
    
      
    
    A7: for x st x 
    in Z holds (f 
    . x) 
    = (x 
    / (1 
    + (x 
    ^2 ))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A8: x 
    in Z; 
    
        
    
        then (((
    id Z) 
    / (f1 
    + f2)) 
    . x) 
    = ((( 
    id Z) 
    . x) 
    / ((f1 
    + f2) 
    . x)) by 
    A1,
    RFUNCT_1:def 1
    
        .= (x
    / ((f1 
    + f2) 
    . x)) by 
    A8,
    FUNCT_1: 18
    
        .= (x
    / ((f1 
    . x) 
    + (f2 
    . x))) by 
    A5,
    A8,
    VALUED_1:def 1
    
        .= (x
    / (1 
    + (( 
    #Z 2) 
    . x))) by 
    A1,
    A8
    
        .= (x
    / (1 
    + (x 
    #Z 2))) by 
    TAYLOR_1:def 1
    
        .= (x
    / (1 
    + (x 
    ^2 ))) by 
    FDIFF_7: 1;
    
        hence thesis by
    A1;
    
      end;
    
      
    
      
    
    A9: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (((1 
    / 2) 
    (#) ( 
    ln  
    * (f1 
    + f2))) 
    `| Z)) holds ((((1 
    / 2) 
    (#) ( 
    ln  
    * (f1 
    + f2))) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (((1 
    / 2) 
    (#) ( 
    ln  
    * (f1 
    + f2))) 
    `| Z)); 
    
        then
    
        
    
    A10: x 
    in Z by 
    A6,
    FDIFF_1:def 7;
    
        
    
        then ((((1
    / 2) 
    (#) ( 
    ln  
    * (f1 
    + f2))) 
    `| Z) 
    . x) 
    = (x 
    / (1 
    + (x 
    ^2 ))) by 
    A1,
    A3,
    SIN_COS9: 102
    
        .= (f
    . x) by 
    A10,
    A7;
    
        hence thesis;
    
      end;
    
      (
    dom (((1 
    / 2) 
    (#) ( 
    ln  
    * (f1 
    + f2))) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A6,
    FDIFF_1:def 7;
    
      then (((1
    / 2) 
    (#) ( 
    ln  
    * (f1 
    + f2))) 
    `| Z) 
    = f by 
    A9,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    A6,
    INTEGRA5: 13;
    
    end;
    
    theorem :: 
    
    INTEGR13:53
    
    A
    c= Z & Z 
    c= ( 
    dom ( 
    ln  
    * (f1 
    + f2))) & f 
    = (( 
    id Z) 
    / (a 
    (#) (f1 
    + f2))) & (for x st x 
    in Z holds (h 
    . x) 
    = (x 
    / a) & (f1 
    . x) 
    = 1) & a 
    <>  
    0 & f2 
    = (( 
    #Z 2) 
    * h) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = ((((a 
    / 2) 
    (#) ( 
    ln  
    * (f1 
    + f2))) 
    . ( 
    upper_bound A)) 
    - (((a 
    / 2) 
    (#) ( 
    ln  
    * (f1 
    + f2))) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & Z 
    c= ( 
    dom ( 
    ln  
    * (f1 
    + f2))) & f 
    = (( 
    id Z) 
    / (a 
    (#) (f1 
    + f2))) & (for x st x 
    in Z holds (h 
    . x) 
    = (x 
    / a) & (f1 
    . x) 
    = 1) & a 
    <>  
    0 & f2 
    = (( 
    #Z 2) 
    * h) & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      
    
      
    
    A3: Z 
    c= ( 
    dom ((a 
    / 2) 
    (#) ( 
    ln  
    * (f1 
    + f2)))) by 
    A1,
    VALUED_1:def 5;
    
      
    
      
    
    A4: for x st x 
    in Z holds (f1 
    . x) 
    = 1 by 
    A1;
    
      
    
      
    
    A5: for x st x 
    in Z holds (h 
    . x) 
    = (x 
    / a) by 
    A1;
    
      then
    
      
    
    A6: ((a 
    / 2) 
    (#) ( 
    ln  
    * (f1 
    + f2))) 
    is_differentiable_on Z by 
    A1,
    A3,
    A4,
    SIN_COS9: 108;
    
      
    
      
    
    A7: for x st x 
    in Z holds (f 
    . x) 
    = (x 
    / (a 
    * (1 
    + ((x 
    / a) 
    ^2 )))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A8: x 
    in Z; 
    
        then
    
        
    
    A9: x 
    in ( 
    dom (f1 
    + f2)) by 
    A1,
    FUNCT_1: 11;
    
        (
    dom (f1 
    + f2)) 
    = (( 
    dom f1) 
    /\ ( 
    dom f2)) by 
    VALUED_1:def 1;
    
        then (
    dom (f1 
    + f2)) 
    c= ( 
    dom f2) by 
    XBOOLE_1: 18;
    
        then
    
        
    
    A10: x 
    in ( 
    dom f2) by 
    A9;
    
        (((
    id Z) 
    / (a 
    (#) (f1 
    + f2))) 
    . x) 
    = ((( 
    id Z) 
    . x) 
    / ((a 
    (#) (f1 
    + f2)) 
    . x)) by 
    A1,
    A8,
    RFUNCT_1:def 1
    
        .= (x
    / ((a 
    (#) (f1 
    + f2)) 
    . x)) by 
    A8,
    FUNCT_1: 18
    
        .= (x
    / (a 
    * ((f1 
    + f2) 
    . x))) by 
    VALUED_1: 6
    
        .= (x
    / (a 
    * ((f1 
    . x) 
    + (f2 
    . x)))) by 
    A9,
    VALUED_1:def 1
    
        .= (x
    / (a 
    * (1 
    + (f2 
    . x)))) by 
    A4,
    A8
    
        .= (x
    / (a 
    * (1 
    + (( 
    #Z 2) 
    . (h 
    . x))))) by 
    A1,
    A10,
    FUNCT_1: 12
    
        .= (x
    / (a 
    * (1 
    + ((h 
    . x) 
    #Z 2)))) by 
    TAYLOR_1:def 1
    
        .= (x
    / (a 
    * (1 
    + ((h 
    . x) 
    ^2 )))) by 
    FDIFF_7: 1
    
        .= (x
    / (a 
    * (1 
    + ((x 
    / a) 
    ^2 )))) by 
    A5,
    A8;
    
        hence thesis by
    A1;
    
      end;
    
      
    
      
    
    A11: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (((a 
    / 2) 
    (#) ( 
    ln  
    * (f1 
    + f2))) 
    `| Z)) holds ((((a 
    / 2) 
    (#) ( 
    ln  
    * (f1 
    + f2))) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (((a 
    / 2) 
    (#) ( 
    ln  
    * (f1 
    + f2))) 
    `| Z)); 
    
        then
    
        
    
    A12: x 
    in Z by 
    A6,
    FDIFF_1:def 7;
    
        
    
        then ((((a
    / 2) 
    (#) ( 
    ln  
    * (f1 
    + f2))) 
    `| Z) 
    . x) 
    = (x 
    / (a 
    * (1 
    + ((x 
    / a) 
    ^2 )))) by 
    A1,
    A3,
    A4,
    A5,
    SIN_COS9: 108
    
        .= (f
    . x) by 
    A7,
    A12;
    
        hence thesis;
    
      end;
    
      (
    dom (((a 
    / 2) 
    (#) ( 
    ln  
    * (f1 
    + f2))) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A6,
    FDIFF_1:def 7;
    
      then (((a
    / 2) 
    (#) ( 
    ln  
    * (f1 
    + f2))) 
    `| Z) 
    = f by 
    A11,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    A6,
    INTEGRA5: 13;
    
    end;
    
    theorem :: 
    
    INTEGR13:54
    
    
    
    
    
    Th54: Z 
    c= ( 
    dom ((( 
    id Z) 
    ^ ) 
    (#)  
    arctan )) & Z 
    c=  
    ].(
    - 1), 1.[ implies ( 
    - ((( 
    id Z) 
    ^ ) 
    (#)  
    arctan )) 
    is_differentiable_on Z & for x st x 
    in Z holds ((( 
    - ((( 
    id Z) 
    ^ ) 
    (#)  
    arctan )) 
    `| Z) 
    . x) 
    = ((( 
    arctan  
    . x) 
    / (x 
    ^2 )) 
    - (1 
    / (x 
    * (1 
    + (x 
    ^2 ))))) 
    
    proof
    
      set f = (
    id Z); 
    
      assume that
    
      
    
    A1: Z 
    c= ( 
    dom ((f 
    ^ ) 
    (#)  
    arctan )) and 
    
      
    
    A2: Z 
    c=  
    ].(
    - 1), 1.[; 
    
      
    
      
    
    A3: Z 
    c= ( 
    dom ( 
    - ((f 
    ^ ) 
    (#)  
    arctan ))) by 
    A1,
    VALUED_1: 8;
    
      
    
      
    
    A4: for x st x 
    in Z holds (f 
    . x) 
    = x by 
    FUNCT_1: 18;
    
      Z
    c= (( 
    dom (f 
    ^ )) 
    /\ ( 
    dom  
    arctan )) by 
    A1,
    VALUED_1:def 4;
    
      then
    
      
    
    A5: Z 
    c= ( 
    dom (f 
    ^ )) by 
    XBOOLE_1: 18;
    
      
    
      
    
    A6: not 
    0  
    in Z 
    
      proof
    
        assume
    
        
    
    A7: 
    0  
    in Z; 
    
        (
    dom (( 
    id Z) 
    ^ )) 
    = (( 
    dom ( 
    id Z)) 
    \ (( 
    id Z) 
    "  
    {
    0 })) by 
    RFUNCT_1:def 2
    
        .= ((
    dom ( 
    id Z)) 
    \  
    {
    0 }) by 
    Lm1,
    A7;
    
        then not
    0  
    in  
    {
    0 } by 
    A7,
    A5,
    XBOOLE_0:def 5;
    
        hence thesis by
    TARSKI:def 1;
    
      end;
    
      then
    
      
    
    A8: (f 
    ^ ) 
    is_differentiable_on Z & for x st x 
    in Z holds (((f 
    ^ ) 
    `| Z) 
    . x) 
    = ( 
    - (1 
    / (x 
    ^2 ))) by 
    FDIFF_5: 4;
    
      
    
      
    
    A9: 
    arctan  
    is_differentiable_on Z by 
    A2,
    SIN_COS9: 81;
    
      
    
      
    
    A10: ((f 
    ^ ) 
    (#)  
    arctan ) 
    is_differentiable_on Z by 
    A1,
    A2,
    A6,
    SIN_COS9: 129;
    
      then
    
      
    
    A11: (( 
    - 1) 
    (#) ((f 
    ^ ) 
    (#)  
    arctan )) 
    is_differentiable_on Z by 
    A3,
    FDIFF_1: 20;
    
      for x st x
    in Z holds ((( 
    - ((f 
    ^ ) 
    (#)  
    arctan )) 
    `| Z) 
    . x) 
    = ((( 
    arctan  
    . x) 
    / (x 
    ^2 )) 
    - (1 
    / (x 
    * (1 
    + (x 
    ^2 ))))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A12: x 
    in Z; 
    
        then
    
        
    
    A13: ((f 
    ^ ) 
    (#)  
    arctan ) 
    is_differentiable_in x by 
    A10,
    FDIFF_1: 9;
    
        
    
        
    
    A14: (f 
    ^ ) 
    is_differentiable_in x by 
    A8,
    A12,
    FDIFF_1: 9;
    
        
    
        
    
    A15: 
    arctan  
    is_differentiable_in x by 
    A9,
    A12,
    FDIFF_1: 9;
    
        (((
    - ((f 
    ^ ) 
    (#)  
    arctan )) 
    `| Z) 
    . x) 
    = ( 
    diff (( 
    - ((f 
    ^ ) 
    (#)  
    arctan )),x)) by 
    A11,
    A12,
    FDIFF_1:def 7
    
        .= ((
    - 1) 
    * ( 
    diff (((f 
    ^ ) 
    (#)  
    arctan ),x))) by 
    A13,
    FDIFF_1: 15
    
        .= ((
    - 1) 
    * ((( 
    arctan  
    . x) 
    * ( 
    diff ((f 
    ^ ),x))) 
    + (((f 
    ^ ) 
    . x) 
    * ( 
    diff ( 
    arctan ,x))))) by 
    A14,
    A15,
    FDIFF_1: 16
    
        .= ((
    - 1) 
    * ((( 
    arctan  
    . x) 
    * (((f 
    ^ ) 
    `| Z) 
    . x)) 
    + (((f 
    ^ ) 
    . x) 
    * ( 
    diff ( 
    arctan ,x))))) by 
    A8,
    A12,
    FDIFF_1:def 7
    
        .= ((
    - 1) 
    * ((( 
    arctan  
    . x) 
    * ( 
    - (1 
    / (x 
    ^2 )))) 
    + (((f 
    ^ ) 
    . x) 
    * ( 
    diff ( 
    arctan ,x))))) by 
    A6,
    A12,
    FDIFF_5: 4
    
        .= ((
    - 1) 
    * (( 
    - (( 
    arctan  
    . x) 
    * (1 
    / (x 
    ^2 )))) 
    + (((f 
    ^ ) 
    . x) 
    * (( 
    arctan  
    `| Z) 
    . x)))) by 
    A9,
    A12,
    FDIFF_1:def 7
    
        .= ((
    - 1) 
    * (( 
    - ((( 
    arctan  
    . x) 
    * 1) 
    / (x 
    ^2 ))) 
    + (((f 
    ^ ) 
    . x) 
    * (1 
    / (1 
    + (x 
    ^2 )))))) by 
    A2,
    A12,
    SIN_COS9: 81
    
        .= ((
    - 1) 
    * (( 
    - (( 
    arctan  
    . x) 
    / (x 
    ^2 ))) 
    + (((f 
    . x) 
    " ) 
    * (1 
    / (1 
    + (x 
    ^2 )))))) by 
    A5,
    A12,
    RFUNCT_1:def 2
    
        .= ((
    - 1) 
    * (( 
    - (( 
    arctan  
    . x) 
    / (x 
    ^2 ))) 
    + ((1 
    / x) 
    * (1 
    / (1 
    + (x 
    ^2 )))))) by 
    A4,
    A12
    
        .= ((
    - 1) 
    * (( 
    - (( 
    arctan  
    . x) 
    / (x 
    ^2 ))) 
    + ((1 
    * 1) 
    / (x 
    * (1 
    + (x 
    ^2 )))))) by 
    XCMPLX_1: 76
    
        .= (((
    arctan  
    . x) 
    / (x 
    ^2 )) 
    - (1 
    / (x 
    * (1 
    + (x 
    ^2 ))))); 
    
        hence thesis;
    
      end;
    
      hence thesis by
    A3,
    A10,
    FDIFF_1: 20;
    
    end;
    
    theorem :: 
    
    INTEGR13:55
    
    
    
    
    
    Th55: Z 
    c= ( 
    dom ((( 
    id Z) 
    ^ ) 
    (#)  
    arccot )) & Z 
    c=  
    ].(
    - 1), 1.[ implies ( 
    - ((( 
    id Z) 
    ^ ) 
    (#)  
    arccot )) 
    is_differentiable_on Z & for x st x 
    in Z holds ((( 
    - ((( 
    id Z) 
    ^ ) 
    (#)  
    arccot )) 
    `| Z) 
    . x) 
    = ((( 
    arccot  
    . x) 
    / (x 
    ^2 )) 
    + (1 
    / (x 
    * (1 
    + (x 
    ^2 ))))) 
    
    proof
    
      set f = (
    id Z); 
    
      assume that
    
      
    
    A1: Z 
    c= ( 
    dom ((f 
    ^ ) 
    (#)  
    arccot )) and 
    
      
    
    A2: Z 
    c=  
    ].(
    - 1), 1.[; 
    
      
    
      
    
    A3: Z 
    c= ( 
    dom ( 
    - ((f 
    ^ ) 
    (#)  
    arccot ))) by 
    A1,
    VALUED_1: 8;
    
      
    
      
    
    A4: for x st x 
    in Z holds (f 
    . x) 
    = x by 
    FUNCT_1: 18;
    
      Z
    c= (( 
    dom (f 
    ^ )) 
    /\ ( 
    dom  
    arccot )) by 
    A1,
    VALUED_1:def 4;
    
      then
    
      
    
    A5: Z 
    c= ( 
    dom (f 
    ^ )) by 
    XBOOLE_1: 18;
    
      
    
      
    
    A6: not 
    0  
    in Z 
    
      proof
    
        assume
    
        
    
    A7: 
    0  
    in Z; 
    
        (
    dom (( 
    id Z) 
    ^ )) 
    = (( 
    dom ( 
    id Z)) 
    \ (( 
    id Z) 
    "  
    {
    0 })) by 
    RFUNCT_1:def 2
    
        .= ((
    dom ( 
    id Z)) 
    \  
    {
    0 }) by 
    Lm1,
    A7;
    
        then not
    0  
    in  
    {
    0 } by 
    A7,
    A5,
    XBOOLE_0:def 5;
    
        hence thesis by
    TARSKI:def 1;
    
      end;
    
      then
    
      
    
    A8: (f 
    ^ ) 
    is_differentiable_on Z & for x st x 
    in Z holds (((f 
    ^ ) 
    `| Z) 
    . x) 
    = ( 
    - (1 
    / (x 
    ^2 ))) by 
    FDIFF_5: 4;
    
      
    
      
    
    A9: 
    arccot  
    is_differentiable_on Z by 
    A2,
    SIN_COS9: 82;
    
      
    
      
    
    A10: ((f 
    ^ ) 
    (#)  
    arccot ) 
    is_differentiable_on Z by 
    A6,
    A1,
    A2,
    SIN_COS9: 130;
    
      then
    
      
    
    A11: (( 
    - 1) 
    (#) ((f 
    ^ ) 
    (#)  
    arccot )) 
    is_differentiable_on Z by 
    A3,
    FDIFF_1: 20;
    
      for x st x
    in Z holds ((( 
    - ((f 
    ^ ) 
    (#)  
    arccot )) 
    `| Z) 
    . x) 
    = ((( 
    arccot  
    . x) 
    / (x 
    ^2 )) 
    + (1 
    / (x 
    * (1 
    + (x 
    ^2 ))))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A12: x 
    in Z; 
    
        then
    
        
    
    A13: ((f 
    ^ ) 
    (#)  
    arccot ) 
    is_differentiable_in x by 
    A10,
    FDIFF_1: 9;
    
        
    
        
    
    A14: (f 
    ^ ) 
    is_differentiable_in x by 
    A8,
    A12,
    FDIFF_1: 9;
    
        
    
        
    
    A15: 
    arccot  
    is_differentiable_in x by 
    A9,
    A12,
    FDIFF_1: 9;
    
        (((
    - ((f 
    ^ ) 
    (#)  
    arccot )) 
    `| Z) 
    . x) 
    = ( 
    diff (( 
    - ((f 
    ^ ) 
    (#)  
    arccot )),x)) by 
    A11,
    A12,
    FDIFF_1:def 7
    
        .= ((
    - 1) 
    * ( 
    diff (((f 
    ^ ) 
    (#)  
    arccot ),x))) by 
    A13,
    FDIFF_1: 15
    
        .= ((
    - 1) 
    * ((( 
    arccot  
    . x) 
    * ( 
    diff ((f 
    ^ ),x))) 
    + (((f 
    ^ ) 
    . x) 
    * ( 
    diff ( 
    arccot ,x))))) by 
    A14,
    A15,
    FDIFF_1: 16
    
        .= ((
    - 1) 
    * ((( 
    arccot  
    . x) 
    * (((f 
    ^ ) 
    `| Z) 
    . x)) 
    + (((f 
    ^ ) 
    . x) 
    * ( 
    diff ( 
    arccot ,x))))) by 
    A8,
    A12,
    FDIFF_1:def 7
    
        .= ((
    - 1) 
    * ((( 
    arccot  
    . x) 
    * ( 
    - (1 
    / (x 
    ^2 )))) 
    + (((f 
    ^ ) 
    . x) 
    * ( 
    diff ( 
    arccot ,x))))) by 
    A12,
    A6,
    FDIFF_5: 4
    
        .= ((
    - 1) 
    * (( 
    - (( 
    arccot  
    . x) 
    * (1 
    / (x 
    ^2 )))) 
    + (((f 
    ^ ) 
    . x) 
    * (( 
    arccot  
    `| Z) 
    . x)))) by 
    A9,
    A12,
    FDIFF_1:def 7
    
        .= ((
    - 1) 
    * (( 
    - (( 
    arccot  
    . x) 
    * (1 
    / (x 
    ^2 )))) 
    + (((f 
    ^ ) 
    . x) 
    * ( 
    - (1 
    / (1 
    + (x 
    ^2 ))))))) by 
    A2,
    A12,
    SIN_COS9: 82
    
        .= ((
    - 1) 
    * (( 
    - ((( 
    arccot  
    . x) 
    * 1) 
    / (x 
    ^2 ))) 
    - (((f 
    ^ ) 
    . x) 
    * (1 
    / (1 
    + (x 
    ^2 )))))) 
    
        .= ((
    - 1) 
    * (( 
    - (( 
    arccot  
    . x) 
    / (x 
    ^2 ))) 
    - (((f 
    . x) 
    " ) 
    * (1 
    / (1 
    + (x 
    ^2 )))))) by 
    A5,
    A12,
    RFUNCT_1:def 2
    
        .= ((
    - 1) 
    * (( 
    - (( 
    arccot  
    . x) 
    / (x 
    ^2 ))) 
    - ((1 
    / x) 
    * (1 
    / (1 
    + (x 
    ^2 )))))) by 
    A4,
    A12
    
        .= ((
    - 1) 
    * (( 
    - (( 
    arccot  
    . x) 
    / (x 
    ^2 ))) 
    - ((1 
    * 1) 
    / (x 
    * (1 
    + (x 
    ^2 )))))) by 
    XCMPLX_1: 76
    
        .= (((
    arccot  
    . x) 
    / (x 
    ^2 )) 
    + (1 
    / (x 
    * (1 
    + (x 
    ^2 ))))); 
    
        hence thesis;
    
      end;
    
      hence thesis by
    A11;
    
    end;
    
    theorem :: 
    
    INTEGR13:56
    
    A
    c= Z & (for x st x 
    in Z holds (f1 
    . x) 
    = 1) & f 
    = (( 
    arctan  
    / ( 
    #Z 2)) 
    - ((( 
    id Z) 
    (#) (f1 
    + ( 
    #Z 2))) 
    ^ )) & Z 
    c= ( 
    dom ((( 
    id Z) 
    ^ ) 
    (#)  
    arctan )) & Z 
    c=  
    ].(
    - 1), 1.[ & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = ((( 
    - ((( 
    id Z) 
    ^ ) 
    (#)  
    arctan )) 
    . ( 
    upper_bound A)) 
    - (( 
    - ((( 
    id Z) 
    ^ ) 
    (#)  
    arctan )) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & (for x st x 
    in Z holds (f1 
    . x) 
    = 1) & f 
    = (( 
    arctan  
    / ( 
    #Z 2)) 
    - ((( 
    id Z) 
    (#) (f1 
    + ( 
    #Z 2))) 
    ^ )) & Z 
    c= ( 
    dom ((( 
    id Z) 
    ^ ) 
    (#)  
    arctan )) & Z 
    c=  
    ].(
    - 1), 1.[ & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      
    
      
    
    A3: ( 
    - ((( 
    id Z) 
    ^ ) 
    (#)  
    arctan )) 
    is_differentiable_on Z by 
    A1,
    Th54;
    
      
    
      
    
    A4: Z 
    = (( 
    dom ( 
    arctan  
    / ( 
    #Z 2))) 
    /\ ( 
    dom ((( 
    id Z) 
    (#) (f1 
    + ( 
    #Z 2))) 
    ^ ))) by 
    A1,
    VALUED_1: 12;
    
      then
    
      
    
    A5: Z 
    c= ( 
    dom ( 
    arctan  
    / ( 
    #Z 2))) by 
    XBOOLE_1: 18;
    
      
    
      
    
    A6: Z 
    c= ( 
    dom ((( 
    id Z) 
    (#) (f1 
    + ( 
    #Z 2))) 
    ^ )) by 
    A4,
    XBOOLE_1: 18;
    
      (
    dom ((( 
    id Z) 
    (#) (f1 
    + ( 
    #Z 2))) 
    ^ )) 
    c= ( 
    dom (( 
    id Z) 
    (#) (f1 
    + ( 
    #Z 2)))) by 
    RFUNCT_1: 1;
    
      then Z
    c= ( 
    dom (( 
    id Z) 
    (#) (f1 
    + ( 
    #Z 2)))) by 
    A6;
    
      then Z
    c= (( 
    dom ( 
    id Z)) 
    /\ ( 
    dom (f1 
    + ( 
    #Z 2)))) by 
    VALUED_1:def 4;
    
      then
    
      
    
    A7: Z 
    c= ( 
    dom (f1 
    + ( 
    #Z 2))) by 
    XBOOLE_1: 18;
    
      
    
      
    
    A8: for x st x 
    in Z holds (f 
    . x) 
    = ((( 
    arctan  
    . x) 
    / (x 
    ^2 )) 
    - (1 
    / (x 
    * (1 
    + (x 
    ^2 ))))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A9: x 
    in Z; 
    
        then
    
        
    
    A10: x 
    in ( 
    dom ((( 
    id Z) 
    (#) (f1 
    + ( 
    #Z 2))) 
    ^ )) by 
    A6;
    
        (((
    arctan  
    / ( 
    #Z 2)) 
    - ((( 
    id Z) 
    (#) (f1 
    + ( 
    #Z 2))) 
    ^ )) 
    . x) 
    = ((( 
    arctan  
    / ( 
    #Z 2)) 
    . x) 
    - (((( 
    id Z) 
    (#) (f1 
    + ( 
    #Z 2))) 
    ^ ) 
    . x)) by 
    A1,
    A9,
    VALUED_1: 13
    
        .= (((
    arctan  
    / ( 
    #Z 2)) 
    . x) 
    - (1 
    / ((( 
    id Z) 
    (#) (f1 
    + ( 
    #Z 2))) 
    . x))) by 
    A10,
    RFUNCT_1:def 2
    
        .= (((
    arctan  
    / ( 
    #Z 2)) 
    . x) 
    - (1 
    / ((( 
    id Z) 
    . x) 
    * ((f1 
    + ( 
    #Z 2)) 
    . x)))) by 
    VALUED_1: 5
    
        .= (((
    arctan  
    / ( 
    #Z 2)) 
    . x) 
    - (1 
    / ((( 
    id Z) 
    . x) 
    * ((f1 
    . x) 
    + (( 
    #Z 2) 
    . x))))) by 
    A7,
    A9,
    VALUED_1:def 1
    
        .= (((
    arctan  
    / ( 
    #Z 2)) 
    . x) 
    - (1 
    / (x 
    * ((f1 
    . x) 
    + (( 
    #Z 2) 
    . x))))) by 
    A9,
    FUNCT_1: 18
    
        .= (((
    arctan  
    / ( 
    #Z 2)) 
    . x) 
    - (1 
    / (x 
    * (1 
    + (( 
    #Z 2) 
    . x))))) by 
    A1,
    A9
    
        .= (((
    arctan  
    . x) 
    / (( 
    #Z 2) 
    . x)) 
    - (1 
    / (x 
    * (1 
    + (( 
    #Z 2) 
    . x))))) by 
    A9,
    A5,
    RFUNCT_1:def 1
    
        .= (((
    arctan  
    . x) 
    / (x 
    #Z 2)) 
    - (1 
    / (x 
    * (1 
    + (( 
    #Z 2) 
    . x))))) by 
    TAYLOR_1:def 1
    
        .= (((
    arctan  
    . x) 
    / (x 
    #Z 2)) 
    - (1 
    / (x 
    * (1 
    + (x 
    #Z 2))))) by 
    TAYLOR_1:def 1
    
        .= (((
    arctan  
    . x) 
    / (x 
    ^2 )) 
    - (1 
    / (x 
    * (1 
    + (x 
    #Z 2))))) by 
    FDIFF_7: 1
    
        .= (((
    arctan  
    . x) 
    / (x 
    ^2 )) 
    - (1 
    / (x 
    * (1 
    + (x 
    ^2 ))))) by 
    FDIFF_7: 1;
    
        hence thesis by
    A1;
    
      end;
    
      
    
      
    
    A11: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (( 
    - ((( 
    id Z) 
    ^ ) 
    (#)  
    arctan )) 
    `| Z)) holds ((( 
    - ((( 
    id Z) 
    ^ ) 
    (#)  
    arctan )) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (( 
    - ((( 
    id Z) 
    ^ ) 
    (#)  
    arctan )) 
    `| Z)); 
    
        then
    
        
    
    A12: x 
    in Z by 
    A3,
    FDIFF_1:def 7;
    
        
    
        then (((
    - ((( 
    id Z) 
    ^ ) 
    (#)  
    arctan )) 
    `| Z) 
    . x) 
    = ((( 
    arctan  
    . x) 
    / (x 
    ^2 )) 
    - (1 
    / (x 
    * (1 
    + (x 
    ^2 ))))) by 
    A1,
    Th54
    
        .= (f
    . x) by 
    A8,
    A12;
    
        hence thesis;
    
      end;
    
      (
    dom (( 
    - ((( 
    id Z) 
    ^ ) 
    (#)  
    arctan )) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A3,
    FDIFF_1:def 7;
    
      then ((
    - ((( 
    id Z) 
    ^ ) 
    (#)  
    arctan )) 
    `| Z) 
    = f by 
    A11,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    A3,
    INTEGRA5: 13;
    
    end;
    
    theorem :: 
    
    INTEGR13:57
    
    A
    c= Z & (for x st x 
    in Z holds (f1 
    . x) 
    = 1) & f 
    = (( 
    arccot  
    / ( 
    #Z 2)) 
    + ((( 
    id Z) 
    (#) (f1 
    + ( 
    #Z 2))) 
    ^ )) & Z 
    c= ( 
    dom ((( 
    id Z) 
    ^ ) 
    (#)  
    arccot )) & Z 
    c=  
    ].(
    - 1), 1.[ & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous implies ( 
    integral (f,A)) 
    = ((( 
    - ((( 
    id Z) 
    ^ ) 
    (#)  
    arccot )) 
    . ( 
    upper_bound A)) 
    - (( 
    - ((( 
    id Z) 
    ^ ) 
    (#)  
    arccot )) 
    . ( 
    lower_bound A))) 
    
    proof
    
      assume
    
      
    
    A1: A 
    c= Z & (for x st x 
    in Z holds (f1 
    . x) 
    = 1) & f 
    = (( 
    arccot  
    / ( 
    #Z 2)) 
    + ((( 
    id Z) 
    (#) (f1 
    + ( 
    #Z 2))) 
    ^ )) & Z 
    c= ( 
    dom ((( 
    id Z) 
    ^ ) 
    (#)  
    arccot )) & Z 
    c=  
    ].(
    - 1), 1.[ & Z 
    = ( 
    dom f) & (f 
    | A) is 
    continuous;
    
      then
    
      
    
    A2: f 
    is_integrable_on A & (f 
    | A) is 
    bounded by 
    INTEGRA5: 10,
    INTEGRA5: 11;
    
      
    
      
    
    A3: ( 
    - ((( 
    id Z) 
    ^ ) 
    (#)  
    arccot )) 
    is_differentiable_on Z by 
    A1,
    Th55;
    
      
    
      
    
    A4: Z 
    = (( 
    dom ( 
    arccot  
    / ( 
    #Z 2))) 
    /\ ( 
    dom ((( 
    id Z) 
    (#) (f1 
    + ( 
    #Z 2))) 
    ^ ))) by 
    A1,
    VALUED_1:def 1;
    
      then
    
      
    
    A5: Z 
    c= ( 
    dom ( 
    arccot  
    / ( 
    #Z 2))) by 
    XBOOLE_1: 18;
    
      
    
      
    
    A6: Z 
    c= ( 
    dom ((( 
    id Z) 
    (#) (f1 
    + ( 
    #Z 2))) 
    ^ )) by 
    A4,
    XBOOLE_1: 18;
    
      (
    dom ((( 
    id Z) 
    (#) (f1 
    + ( 
    #Z 2))) 
    ^ )) 
    c= ( 
    dom (( 
    id Z) 
    (#) (f1 
    + ( 
    #Z 2)))) by 
    RFUNCT_1: 1;
    
      then Z
    c= ( 
    dom (( 
    id Z) 
    (#) (f1 
    + ( 
    #Z 2)))) by 
    A6;
    
      then Z
    c= (( 
    dom ( 
    id Z)) 
    /\ ( 
    dom (f1 
    + ( 
    #Z 2)))) by 
    VALUED_1:def 4;
    
      then
    
      
    
    A7: Z 
    c= ( 
    dom (f1 
    + ( 
    #Z 2))) by 
    XBOOLE_1: 18;
    
      
    
      
    
    A8: for x st x 
    in Z holds (f 
    . x) 
    = ((( 
    arccot  
    . x) 
    / (x 
    ^2 )) 
    + (1 
    / (x 
    * (1 
    + (x 
    ^2 ))))) 
    
      proof
    
        let x;
    
        assume
    
        
    
    A9: x 
    in Z; 
    
        then
    
        
    
    A10: x 
    in ( 
    dom ((( 
    id Z) 
    (#) (f1 
    + ( 
    #Z 2))) 
    ^ )) by 
    A6;
    
        (((
    arccot  
    / ( 
    #Z 2)) 
    + ((( 
    id Z) 
    (#) (f1 
    + ( 
    #Z 2))) 
    ^ )) 
    . x) 
    = ((( 
    arccot  
    / ( 
    #Z 2)) 
    . x) 
    + (((( 
    id Z) 
    (#) (f1 
    + ( 
    #Z 2))) 
    ^ ) 
    . x)) by 
    A1,
    A9,
    VALUED_1:def 1
    
        .= (((
    arccot  
    / ( 
    #Z 2)) 
    . x) 
    + (1 
    / ((( 
    id Z) 
    (#) (f1 
    + ( 
    #Z 2))) 
    . x))) by 
    A10,
    RFUNCT_1:def 2
    
        .= (((
    arccot  
    / ( 
    #Z 2)) 
    . x) 
    + (1 
    / ((( 
    id Z) 
    . x) 
    * ((f1 
    + ( 
    #Z 2)) 
    . x)))) by 
    VALUED_1: 5
    
        .= (((
    arccot  
    / ( 
    #Z 2)) 
    . x) 
    + (1 
    / ((( 
    id Z) 
    . x) 
    * ((f1 
    . x) 
    + (( 
    #Z 2) 
    . x))))) by 
    A7,
    A9,
    VALUED_1:def 1
    
        .= (((
    arccot  
    / ( 
    #Z 2)) 
    . x) 
    + (1 
    / (x 
    * ((f1 
    . x) 
    + (( 
    #Z 2) 
    . x))))) by 
    A9,
    FUNCT_1: 18
    
        .= (((
    arccot  
    / ( 
    #Z 2)) 
    . x) 
    + (1 
    / (x 
    * (1 
    + (( 
    #Z 2) 
    . x))))) by 
    A1,
    A9
    
        .= (((
    arccot  
    . x) 
    / (( 
    #Z 2) 
    . x)) 
    + (1 
    / (x 
    * (1 
    + (( 
    #Z 2) 
    . x))))) by 
    A9,
    A5,
    RFUNCT_1:def 1
    
        .= (((
    arccot  
    . x) 
    / (x 
    #Z 2)) 
    + (1 
    / (x 
    * (1 
    + (( 
    #Z 2) 
    . x))))) by 
    TAYLOR_1:def 1
    
        .= (((
    arccot  
    . x) 
    / (x 
    #Z 2)) 
    + (1 
    / (x 
    * (1 
    + (x 
    #Z 2))))) by 
    TAYLOR_1:def 1
    
        .= (((
    arccot  
    . x) 
    / (x 
    ^2 )) 
    + (1 
    / (x 
    * (1 
    + (x 
    #Z 2))))) by 
    FDIFF_7: 1
    
        .= (((
    arccot  
    . x) 
    / (x 
    ^2 )) 
    + (1 
    / (x 
    * (1 
    + (x 
    ^2 ))))) by 
    FDIFF_7: 1;
    
        hence thesis by
    A1;
    
      end;
    
      
    
      
    
    A11: for x be 
    Element of 
    REAL st x 
    in ( 
    dom (( 
    - ((( 
    id Z) 
    ^ ) 
    (#)  
    arccot )) 
    `| Z)) holds ((( 
    - ((( 
    id Z) 
    ^ ) 
    (#)  
    arccot )) 
    `| Z) 
    . x) 
    = (f 
    . x) 
    
      proof
    
        let x be
    Element of 
    REAL ; 
    
        assume x
    in ( 
    dom (( 
    - ((( 
    id Z) 
    ^ ) 
    (#)  
    arccot )) 
    `| Z)); 
    
        then
    
        
    
    A12: x 
    in Z by 
    A3,
    FDIFF_1:def 7;
    
        
    
        then (((
    - ((( 
    id Z) 
    ^ ) 
    (#)  
    arccot )) 
    `| Z) 
    . x) 
    = ((( 
    arccot  
    . x) 
    / (x 
    ^2 )) 
    + (1 
    / (x 
    * (1 
    + (x 
    ^2 ))))) by 
    A1,
    Th55
    
        .= (f
    . x) by 
    A12,
    A8;
    
        hence thesis;
    
      end;
    
      (
    dom (( 
    - ((( 
    id Z) 
    ^ ) 
    (#)  
    arccot )) 
    `| Z)) 
    = ( 
    dom f) by 
    A1,
    A3,
    FDIFF_1:def 7;
    
      then ((
    - ((( 
    id Z) 
    ^ ) 
    (#)  
    arccot )) 
    `| Z) 
    = f by 
    A11,
    PARTFUN1: 5;
    
      hence thesis by
    A1,
    A2,
    Th55,
    INTEGRA5: 13;
    
    end;