integr14.miz
begin
reserve a,x for
Real;
reserve n for
Nat;
reserve A for non
empty
closed_interval
Subset of
REAL ;
reserve f,f1 for
PartFunc of
REAL ,
REAL ;
reserve Z for
open
Subset of
REAL ;
Lm1:
0
in Z implies ((
id Z)
"
{
0 })
=
{
0 }
proof
assume
A1:
0
in Z;
thus ((
id Z)
"
{
0 })
c=
{
0 }
proof
let x be
object;
assume
A2: x
in ((
id Z)
"
{
0 });
then x
in (
dom (
id Z)) by
FUNCT_1:def 7;
then
A3: x
in Z;
((
id Z)
. x)
in
{
0 } by
A2,
FUNCT_1:def 7;
hence thesis by
A3,
FUNCT_1: 18;
end;
let x be
object;
assume x
in
{
0 };
then
A4: x
=
0 by
TARSKI:def 1;
then ((
id Z)
. x)
=
0 by
A1,
FUNCT_1: 18;
then
A5: ((
id Z)
. x)
in
{
0 } by
TARSKI:def 1;
x
in (
dom (
id Z)) by
A1,
A4;
hence thesis by
A5,
FUNCT_1:def 7;
end;
theorem ::
INTEGR14:1
Th1: Z
c= (
dom (
sec
* ((
id Z)
^ ))) implies (
- (
sec
* ((
id Z)
^ )))
is_differentiable_on Z & for x st x
in Z holds (((
- (
sec
* ((
id Z)
^ )))
`| Z)
. x)
= ((
sin
. (1
/ x))
/ ((x
^2 )
* ((
cos
. (1
/ x))
^2 )))
proof
assume
A1: Z
c= (
dom (
sec
* ((
id Z)
^ )));
then
A2: Z
c= (
dom (
- (
sec
* ((
id Z)
^ )))) by
VALUED_1:def 5;
A3: Z
c= (
dom ((
id Z)
^ )) by
A1,
FUNCT_1: 101;
A4: not
0
in Z
proof
assume
A5:
0
in Z;
(
dom ((
id Z)
^ ))
= ((
dom (
id Z))
\ ((
id Z)
"
{
0 })) by
RFUNCT_1:def 2
.= ((
dom (
id Z))
\
{
0 }) by
Lm1,
A5;
then not
0
in
{
0 } by
A5,
A3,
XBOOLE_0:def 5;
hence thesis by
TARSKI:def 1;
end;
then
A6: (
sec
* ((
id Z)
^ ))
is_differentiable_on Z by
A1,
FDIFF_9: 8;
then
A7: ((
- 1)
(#) (
sec
* ((
id Z)
^ )))
is_differentiable_on Z by
A2,
FDIFF_1: 20;
for x st x
in Z holds (((
- (
sec
* ((
id Z)
^ )))
`| Z)
. x)
= ((
sin
. (1
/ x))
/ ((x
^2 )
* ((
cos
. (1
/ x))
^2 )))
proof
let x;
assume
A8: x
in Z;
(((
- (
sec
* ((
id Z)
^ )))
`| Z)
. x)
= (((
- 1)
(#) ((
sec
* ((
id Z)
^ ))
`| Z))
. x) by
A6,
FDIFF_2: 19
.= ((
- 1)
* (((
sec
* ((
id Z)
^ ))
`| Z)
. x)) by
VALUED_1: 6
.= ((
- 1)
* (
- ((
sin
. (1
/ x))
/ ((x
^2 )
* ((
cos
. (1
/ x))
^2 ))))) by
A1,
A4,
A8,
FDIFF_9: 8
.= ((
sin
. (1
/ x))
/ ((x
^2 )
* ((
cos
. (1
/ x))
^2 )));
hence thesis;
end;
hence thesis by
A7;
end;
theorem ::
INTEGR14:2
Th2: Z
c= (
dom (
cosec
*
exp_R )) implies (
- (
cosec
*
exp_R ))
is_differentiable_on Z & for x st x
in Z holds (((
- (
cosec
*
exp_R ))
`| Z)
. x)
= (((
exp_R
. x)
* (
cos
. (
exp_R
. x)))
/ ((
sin
. (
exp_R
. x))
^2 ))
proof
assume
A1: Z
c= (
dom (
cosec
*
exp_R ));
then
A2: Z
c= (
dom (
- (
cosec
*
exp_R ))) by
VALUED_1: 8;
A3: (
cosec
*
exp_R )
is_differentiable_on Z by
A1,
FDIFF_9: 13;
then
A4: ((
- 1)
(#) (
cosec
*
exp_R ))
is_differentiable_on Z by
A2,
FDIFF_1: 20;
for x st x
in Z holds (((
- (
cosec
*
exp_R ))
`| Z)
. x)
= (((
exp_R
. x)
* (
cos
. (
exp_R
. x)))
/ ((
sin
. (
exp_R
. x))
^2 ))
proof
let x;
assume
A5: x
in Z;
(((
- (
cosec
*
exp_R ))
`| Z)
. x)
= (((
- 1)
(#) ((
cosec
*
exp_R )
`| Z))
. x) by
A3,
FDIFF_2: 19
.= ((
- 1)
* (((
cosec
*
exp_R )
`| Z)
. x)) by
VALUED_1: 6
.= ((
- 1)
* (
- (((
exp_R
. x)
* (
cos
. (
exp_R
. x)))
/ ((
sin
. (
exp_R
. x))
^2 )))) by
A1,
A5,
FDIFF_9: 13
.= (((
exp_R
. x)
* (
cos
. (
exp_R
. x)))
/ ((
sin
. (
exp_R
. x))
^2 ));
hence thesis;
end;
hence thesis by
A4;
end;
theorem ::
INTEGR14:3
Th3: Z
c= (
dom (
cosec
*
ln )) implies (
- (
cosec
*
ln ))
is_differentiable_on Z & for x st x
in Z holds (((
- (
cosec
*
ln ))
`| Z)
. x)
= ((
cos
. (
ln
. x))
/ (x
* ((
sin
. (
ln
. x))
^2 )))
proof
assume
A1: Z
c= (
dom (
cosec
*
ln ));
then
A2: Z
c= (
dom (
- (
cosec
*
ln ))) by
VALUED_1: 8;
A3: (
cosec
*
ln )
is_differentiable_on Z by
A1,
FDIFF_9: 15;
then
A4: ((
- 1)
(#) (
cosec
*
ln ))
is_differentiable_on Z by
A2,
FDIFF_1: 20;
for x st x
in Z holds (((
- (
cosec
*
ln ))
`| Z)
. x)
= ((
cos
. (
ln
. x))
/ (x
* ((
sin
. (
ln
. x))
^2 )))
proof
let x;
assume
A5: x
in Z;
(((
- (
cosec
*
ln ))
`| Z)
. x)
= (((
- 1)
(#) ((
cosec
*
ln )
`| Z))
. x) by
A3,
FDIFF_2: 19
.= ((
- 1)
* (((
cosec
*
ln )
`| Z)
. x)) by
VALUED_1: 6
.= ((
- 1)
* (
- ((
cos
. (
ln
. x))
/ (x
* ((
sin
. (
ln
. x))
^2 ))))) by
A1,
A5,
FDIFF_9: 15
.= ((
cos
. (
ln
. x))
/ (x
* ((
sin
. (
ln
. x))
^2 )));
hence thesis;
end;
hence thesis by
A4;
end;
theorem ::
INTEGR14:4
Th4: Z
c= (
dom (
exp_R
*
cosec )) implies (
- (
exp_R
*
cosec ))
is_differentiable_on Z & for x st x
in Z holds (((
- (
exp_R
*
cosec ))
`| Z)
. x)
= (((
exp_R
. (
cosec
. x))
* (
cos
. x))
/ ((
sin
. x)
^2 ))
proof
assume
A1: Z
c= (
dom (
exp_R
*
cosec ));
then
A2: Z
c= (
dom (
- (
exp_R
*
cosec ))) by
VALUED_1: 8;
A3: (
exp_R
*
cosec )
is_differentiable_on Z by
A1,
FDIFF_9: 17;
then
A4: ((
- 1)
(#) (
exp_R
*
cosec ))
is_differentiable_on Z by
A2,
FDIFF_1: 20;
for x st x
in Z holds (((
- (
exp_R
*
cosec ))
`| Z)
. x)
= (((
exp_R
. (
cosec
. x))
* (
cos
. x))
/ ((
sin
. x)
^2 ))
proof
let x;
assume
A5: x
in Z;
(((
- (
exp_R
*
cosec ))
`| Z)
. x)
= (((
- 1)
(#) ((
exp_R
*
cosec )
`| Z))
. x) by
A3,
FDIFF_2: 19
.= ((
- 1)
* (((
exp_R
*
cosec )
`| Z)
. x)) by
VALUED_1: 6
.= ((
- 1)
* (
- (((
exp_R
. (
cosec
. x))
* (
cos
. x))
/ ((
sin
. x)
^2 )))) by
A1,
A5,
FDIFF_9: 17
.= (((
exp_R
. (
cosec
. x))
* (
cos
. x))
/ ((
sin
. x)
^2 ));
hence thesis;
end;
hence thesis by
A4;
end;
theorem ::
INTEGR14:5
Th5: Z
c= (
dom (
ln
*
cosec )) implies (
- (
ln
*
cosec ))
is_differentiable_on Z & for x st x
in Z holds (((
- (
ln
*
cosec ))
`| Z)
. x)
= (
cot
. x)
proof
assume
A1: Z
c= (
dom (
ln
*
cosec ));
then
A2: Z
c= (
dom (
- (
ln
*
cosec ))) by
VALUED_1: 8;
A3: (
ln
*
cosec )
is_differentiable_on Z by
A1,
FDIFF_9: 19;
then
A4: ((
- 1)
(#) (
ln
*
cosec ))
is_differentiable_on Z by
A2,
FDIFF_1: 20;
A5: for x st x
in Z holds (
sin
. x)
<>
0
proof
let x;
assume x
in Z;
then x
in (
dom
cosec ) by
A1,
FUNCT_1: 11;
hence thesis by
RFUNCT_1: 3;
end;
for x st x
in Z holds (((
- (
ln
*
cosec ))
`| Z)
. x)
= (
cot
. x)
proof
let x;
assume
A6: x
in Z;
(((
- (
ln
*
cosec ))
`| Z)
. x)
= (((
- 1)
(#) ((
ln
*
cosec )
`| Z))
. x) by
A3,
FDIFF_2: 19
.= ((
- 1)
* (((
ln
*
cosec )
`| Z)
. x)) by
VALUED_1: 6
.= ((
- 1)
* (
- ((
cos
. x)
/ (
sin
. x)))) by
A1,
A6,
FDIFF_9: 19
.= (
cot x)
.= (
cot
. x) by
A5,
A6,
SIN_COS9: 16;
hence thesis;
end;
hence thesis by
A4;
end;
theorem ::
INTEGR14:6
Th6: Z
c= (
dom ((
#Z n)
*
cosec )) & 1
<= n implies (
- ((
#Z n)
*
cosec ))
is_differentiable_on Z & for x st x
in Z holds (((
- ((
#Z n)
*
cosec ))
`| Z)
. x)
= ((n
* (
cos
. x))
/ ((
sin
. x)
#Z (n
+ 1)))
proof
assume
A1: Z
c= (
dom ((
#Z n)
*
cosec )) & 1
<= n;
then
A2: Z
c= (
dom (
- ((
#Z n)
*
cosec ))) & 1
<= n by
VALUED_1: 8;
A3: ((
#Z n)
*
cosec )
is_differentiable_on Z by
A1,
FDIFF_9: 21;
then
A4: ((
- 1)
(#) ((
#Z n)
*
cosec ))
is_differentiable_on Z by
A2,
FDIFF_1: 20;
for x st x
in Z holds (((
- ((
#Z n)
*
cosec ))
`| Z)
. x)
= ((n
* (
cos
. x))
/ ((
sin
. x)
#Z (n
+ 1)))
proof
let x;
assume
A5: x
in Z;
(((
- ((
#Z n)
*
cosec ))
`| Z)
. x)
= (((
- 1)
(#) (((
#Z n)
*
cosec )
`| Z))
. x) by
A3,
FDIFF_2: 19
.= ((
- 1)
* ((((
#Z n)
*
cosec )
`| Z)
. x)) by
VALUED_1: 6
.= ((
- 1)
* (
- ((n
* (
cos
. x))
/ ((
sin
. x)
#Z (n
+ 1))))) by
A1,
A5,
FDIFF_9: 21
.= ((n
* (
cos
. x))
/ ((
sin
. x)
#Z (n
+ 1)));
hence thesis;
end;
hence thesis by
A4;
end;
theorem ::
INTEGR14:7
Th7: Z
c= (
dom (((
id Z)
^ )
(#)
sec )) implies (
- (((
id Z)
^ )
(#)
sec ))
is_differentiable_on Z & for x st x
in Z holds (((
- (((
id Z)
^ )
(#)
sec ))
`| Z)
. x)
= (((1
/ (
cos
. x))
/ (x
^2 ))
- (((
sin
. x)
/ x)
/ ((
cos
. x)
^2 )))
proof
assume
A1: Z
c= (
dom (((
id Z)
^ )
(#)
sec ));
then
A2: Z
c= (
dom (
- (((
id Z)
^ )
(#)
sec ))) by
VALUED_1: 8;
Z
c= ((
dom ((
id Z)
^ ))
/\ (
dom
sec )) by
A1,
VALUED_1:def 4;
then
A3: Z
c= (
dom ((
id Z)
^ )) by
XBOOLE_1: 18;
A4: not
0
in Z
proof
assume
A5:
0
in Z;
(
dom ((
id Z)
^ ))
= ((
dom (
id Z))
\ ((
id Z)
"
{
0 })) by
RFUNCT_1:def 2
.= ((
dom (
id Z))
\
{
0 }) by
Lm1,
A5;
then not
0
in
{
0 } by
A5,
A3,
XBOOLE_0:def 5;
hence thesis by
TARSKI:def 1;
end;
then
A6: (((
id Z)
^ )
(#)
sec )
is_differentiable_on Z by
A1,
FDIFF_9: 32;
then
A7: ((
- 1)
(#) (((
id Z)
^ )
(#)
sec ))
is_differentiable_on Z by
A2,
FDIFF_1: 20;
for x st x
in Z holds (((
- (((
id Z)
^ )
(#)
sec ))
`| Z)
. x)
= (((1
/ (
cos
. x))
/ (x
^2 ))
- (((
sin
. x)
/ x)
/ ((
cos
. x)
^2 )))
proof
let x;
assume
A8: x
in Z;
(((
- (((
id Z)
^ )
(#)
sec ))
`| Z)
. x)
= (((
- 1)
(#) ((((
id Z)
^ )
(#)
sec )
`| Z))
. x) by
A6,
FDIFF_2: 19
.= ((
- 1)
* (((((
id Z)
^ )
(#)
sec )
`| Z)
. x)) by
VALUED_1: 6
.= ((
- 1)
* ((
- ((1
/ (
cos
. x))
/ (x
^2 )))
+ (((
sin
. x)
/ x)
/ ((
cos
. x)
^2 )))) by
A1,
A4,
A8,
FDIFF_9: 32
.= (((1
/ (
cos
. x))
/ (x
^2 ))
- (((
sin
. x)
/ x)
/ ((
cos
. x)
^2 )));
hence thesis;
end;
hence thesis by
A7;
end;
theorem ::
INTEGR14:8
Th8: Z
c= (
dom (((
id Z)
^ )
(#)
cosec )) implies (
- (((
id Z)
^ )
(#)
cosec ))
is_differentiable_on Z & for x st x
in Z holds (((
- (((
id Z)
^ )
(#)
cosec ))
`| Z)
. x)
= (((1
/ (
sin
. x))
/ (x
^2 ))
+ (((
cos
. x)
/ x)
/ ((
sin
. x)
^2 )))
proof
assume
A1: Z
c= (
dom (((
id Z)
^ )
(#)
cosec ));
then
A2: Z
c= (
dom (
- (((
id Z)
^ )
(#)
cosec ))) by
VALUED_1: 8;
Z
c= ((
dom ((
id Z)
^ ))
/\ (
dom
cosec )) by
A1,
VALUED_1:def 4;
then
A3: Z
c= (
dom ((
id Z)
^ )) by
XBOOLE_1: 18;
A4: not
0
in Z
proof
assume
A5:
0
in Z;
(
dom ((
id Z)
^ ))
= ((
dom (
id Z))
\ ((
id Z)
"
{
0 })) by
RFUNCT_1:def 2
.= ((
dom (
id Z))
\
{
0 }) by
Lm1,
A5;
then not
0
in
{
0 } by
A5,
A3,
XBOOLE_0:def 5;
hence thesis by
TARSKI:def 1;
end;
then
A6: (((
id Z)
^ )
(#)
cosec )
is_differentiable_on Z by
A1,
FDIFF_9: 33;
then
A7: ((
- 1)
(#) (((
id Z)
^ )
(#)
cosec ))
is_differentiable_on Z by
A2,
FDIFF_1: 20;
for x st x
in Z holds (((
- (((
id Z)
^ )
(#)
cosec ))
`| Z)
. x)
= (((1
/ (
sin
. x))
/ (x
^2 ))
+ (((
cos
. x)
/ x)
/ ((
sin
. x)
^2 )))
proof
let x;
assume
A8: x
in Z;
(((
- (((
id Z)
^ )
(#)
cosec ))
`| Z)
. x)
= (((
- 1)
(#) ((((
id Z)
^ )
(#)
cosec )
`| Z))
. x) by
A6,
FDIFF_2: 19
.= ((
- 1)
* (((((
id Z)
^ )
(#)
cosec )
`| Z)
. x)) by
VALUED_1: 6
.= ((
- 1)
* ((
- ((1
/ (
sin
. x))
/ (x
^2 )))
- (((
cos
. x)
/ x)
/ ((
sin
. x)
^2 )))) by
A1,
A4,
A8,
FDIFF_9: 33
.= (((1
/ (
sin
. x))
/ (x
^2 ))
+ (((
cos
. x)
/ x)
/ ((
sin
. x)
^2 )));
hence thesis;
end;
hence thesis by
A7;
end;
theorem ::
INTEGR14:9
Th9: Z
c= (
dom (
cosec
*
sin )) implies (
- (
cosec
*
sin ))
is_differentiable_on Z & for x st x
in Z holds (((
- (
cosec
*
sin ))
`| Z)
. x)
= (((
cos
. x)
* (
cos
. (
sin
. x)))
/ ((
sin
. (
sin
. x))
^2 ))
proof
assume
A1: Z
c= (
dom (
cosec
*
sin ));
then
A2: Z
c= (
dom (
- (
cosec
*
sin ))) by
VALUED_1: 8;
A3: (
cosec
*
sin )
is_differentiable_on Z by
A1,
FDIFF_9: 36;
then
A4: ((
- 1)
(#) (
cosec
*
sin ))
is_differentiable_on Z by
A2,
FDIFF_1: 20;
for x st x
in Z holds (((
- (
cosec
*
sin ))
`| Z)
. x)
= (((
cos
. x)
* (
cos
. (
sin
. x)))
/ ((
sin
. (
sin
. x))
^2 ))
proof
let x;
assume
A5: x
in Z;
(((
- (
cosec
*
sin ))
`| Z)
. x)
= (((
- 1)
(#) ((
cosec
*
sin )
`| Z))
. x) by
A3,
FDIFF_2: 19
.= ((
- 1)
* (((
cosec
*
sin )
`| Z)
. x)) by
VALUED_1: 6
.= ((
- 1)
* (
- (((
cos
. x)
* (
cos
. (
sin
. x)))
/ ((
sin
. (
sin
. x))
^2 )))) by
A1,
A5,
FDIFF_9: 36
.= (((
cos
. x)
* (
cos
. (
sin
. x)))
/ ((
sin
. (
sin
. x))
^2 ));
hence thesis;
end;
hence thesis by
A4;
end;
theorem ::
INTEGR14:10
Th10: Z
c= (
dom (
sec
*
cot )) implies (
- (
sec
*
cot ))
is_differentiable_on Z & for x st x
in Z holds (((
- (
sec
*
cot ))
`| Z)
. x)
= (((
sin
. (
cot
. x))
/ ((
sin
. x)
^2 ))
/ ((
cos
. (
cot
. x))
^2 ))
proof
assume
A1: Z
c= (
dom (
sec
*
cot ));
then
A2: Z
c= (
dom (
- (
sec
*
cot ))) by
VALUED_1: 8;
A3: (
sec
*
cot )
is_differentiable_on Z by
A1,
FDIFF_9: 39;
then
A4: ((
- 1)
(#) (
sec
*
cot ))
is_differentiable_on Z by
A2,
FDIFF_1: 20;
for x st x
in Z holds (((
- (
sec
*
cot ))
`| Z)
. x)
= (((
sin
. (
cot
. x))
/ ((
sin
. x)
^2 ))
/ ((
cos
. (
cot
. x))
^2 ))
proof
let x;
assume
A5: x
in Z;
(((
- (
sec
*
cot ))
`| Z)
. x)
= (((
- 1)
(#) ((
sec
*
cot )
`| Z))
. x) by
A3,
FDIFF_2: 19
.= ((
- 1)
* (((
sec
*
cot )
`| Z)
. x)) by
VALUED_1: 6
.= ((
- 1)
* (
- (((
sin
. (
cot
. x))
/ ((
sin
. x)
^2 ))
/ ((
cos
. (
cot
. x))
^2 )))) by
A1,
A5,
FDIFF_9: 39
.= (((
sin
. (
cot
. x))
/ ((
sin
. x)
^2 ))
/ ((
cos
. (
cot
. x))
^2 ));
hence thesis;
end;
hence thesis by
A4;
end;
theorem ::
INTEGR14:11
Th11: Z
c= (
dom (
cosec
*
tan )) implies (
- (
cosec
*
tan ))
is_differentiable_on Z & for x st x
in Z holds (((
- (
cosec
*
tan ))
`| Z)
. x)
= (((
cos
. (
tan
. x))
/ ((
cos
. x)
^2 ))
/ ((
sin
. (
tan
. x))
^2 ))
proof
assume
A1: Z
c= (
dom (
cosec
*
tan ));
then
A2: Z
c= (
dom (
- (
cosec
*
tan ))) by
VALUED_1: 8;
A3: (
cosec
*
tan )
is_differentiable_on Z by
A1,
FDIFF_9: 40;
(
dom (
cosec
*
tan ))
c= (
dom
tan ) by
RELAT_1: 25;
then
A4: Z
c= (
dom
tan ) by
A1;
A5: ((
- 1)
(#) (
cosec
*
tan ))
is_differentiable_on Z by
A2,
A3,
FDIFF_1: 20;
A6: for x st x
in Z holds (
sin
. (
tan
. x))
<>
0
proof
let x;
assume x
in Z;
then (
tan
. x)
in (
dom
cosec ) by
A1,
FUNCT_1: 11;
hence thesis by
RFUNCT_1: 3;
end;
for x st x
in Z holds (((
- (
cosec
*
tan ))
`| Z)
. x)
= (((
cos
. (
tan
. x))
/ ((
cos
. x)
^2 ))
/ ((
sin
. (
tan
. x))
^2 ))
proof
let x;
assume
A7: x
in Z;
then
A8: (
cos
. x)
<>
0 by
A4,
FDIFF_8: 1;
then
A9:
tan
is_differentiable_in x by
FDIFF_7: 46;
A10: (
sin
. (
tan
. x))
<>
0 by
A6,
A7;
then
A11:
cosec
is_differentiable_in (
tan
. x) by
FDIFF_9: 2;
A12: (
cosec
*
tan )
is_differentiable_in x by
A3,
A7,
FDIFF_1: 9;
(((
- (
cosec
*
tan ))
`| Z)
. x)
= (
diff ((
- (
cosec
*
tan )),x)) by
A5,
A7,
FDIFF_1:def 7
.= ((
- 1)
* (
diff ((
cosec
*
tan ),x))) by
A12,
FDIFF_1: 15
.= ((
- 1)
* ((
diff (
cosec ,(
tan
. x)))
* (
diff (
tan ,x)))) by
A9,
A11,
FDIFF_2: 13
.= ((
- 1)
* ((
- ((
cos
. (
tan
. x))
/ ((
sin
. (
tan
. x))
^2 )))
* (
diff (
tan ,x)))) by
A10,
FDIFF_9: 2
.= ((
- 1)
* ((1
/ ((
cos
. x)
^2 ))
* (
- ((
cos
. (
tan
. x))
/ ((
sin
. (
tan
. x))
^2 ))))) by
A8,
FDIFF_7: 46
.= (((
cos
. (
tan
. x))
/ ((
cos
. x)
^2 ))
/ ((
sin
. (
tan
. x))
^2 ));
hence thesis;
end;
hence thesis by
A5;
end;
theorem ::
INTEGR14:12
Th12: Z
c= (
dom (
cot
(#)
sec )) implies (
- (
cot
(#)
sec ))
is_differentiable_on Z & for x st x
in Z holds (((
- (
cot
(#)
sec ))
`| Z)
. x)
= (((1
/ ((
sin
. x)
^2 ))
/ (
cos
. x))
- (((
cot
. x)
* (
sin
. x))
/ ((
cos
. x)
^2 )))
proof
assume
A1: Z
c= (
dom (
cot
(#)
sec ));
then
A2: Z
c= (
dom (
- (
cot
(#)
sec ))) by
VALUED_1: 8;
A3: (
cot
(#)
sec )
is_differentiable_on Z by
A1,
FDIFF_9: 43;
then
A4: ((
- 1)
(#) (
cot
(#)
sec ))
is_differentiable_on Z by
A2,
FDIFF_1: 20;
for x st x
in Z holds (((
- (
cot
(#)
sec ))
`| Z)
. x)
= (((1
/ ((
sin
. x)
^2 ))
/ (
cos
. x))
- (((
cot
. x)
* (
sin
. x))
/ ((
cos
. x)
^2 )))
proof
let x;
assume
A5: x
in Z;
(((
- (
cot
(#)
sec ))
`| Z)
. x)
= (((
- 1)
(#) ((
cot
(#)
sec )
`| Z))
. x) by
A3,
FDIFF_2: 19
.= ((
- 1)
* (((
cot
(#)
sec )
`| Z)
. x)) by
VALUED_1: 6
.= ((
- 1)
* ((
- ((1
/ ((
sin
. x)
^2 ))
/ (
cos
. x)))
+ (((
cot
. x)
* (
sin
. x))
/ ((
cos
. x)
^2 )))) by
A1,
A5,
FDIFF_9: 43
.= (((1
/ ((
sin
. x)
^2 ))
/ (
cos
. x))
- (((
cot
. x)
* (
sin
. x))
/ ((
cos
. x)
^2 )));
hence thesis;
end;
hence thesis by
A4;
end;
theorem ::
INTEGR14:13
Th13: Z
c= (
dom (
cot
(#)
cosec )) implies (
- (
cot
(#)
cosec ))
is_differentiable_on Z & for x st x
in Z holds (((
- (
cot
(#)
cosec ))
`| Z)
. x)
= (((1
/ ((
sin
. x)
^2 ))
/ (
sin
. x))
+ (((
cot
. x)
* (
cos
. x))
/ ((
sin
. x)
^2 )))
proof
assume
A1: Z
c= (
dom (
cot
(#)
cosec ));
then
A2: Z
c= (
dom (
- (
cot
(#)
cosec ))) by
VALUED_1: 8;
A3: (
cot
(#)
cosec )
is_differentiable_on Z by
A1,
FDIFF_9: 45;
then
A4: ((
- 1)
(#) (
cot
(#)
cosec ))
is_differentiable_on Z by
A2,
FDIFF_1: 20;
for x st x
in Z holds (((
- (
cot
(#)
cosec ))
`| Z)
. x)
= (((1
/ ((
sin
. x)
^2 ))
/ (
sin
. x))
+ (((
cot
. x)
* (
cos
. x))
/ ((
sin
. x)
^2 )))
proof
let x;
assume
A5: x
in Z;
(((
- (
cot
(#)
cosec ))
`| Z)
. x)
= (((
- 1)
(#) ((
cot
(#)
cosec )
`| Z))
. x) by
A3,
FDIFF_2: 19
.= ((
- 1)
* (((
cot
(#)
cosec )
`| Z)
. x)) by
VALUED_1: 6
.= ((
- 1)
* ((
- ((1
/ ((
sin
. x)
^2 ))
/ (
sin
. x)))
- (((
cot
. x)
* (
cos
. x))
/ ((
sin
. x)
^2 )))) by
A1,
A5,
FDIFF_9: 45
.= (((1
/ ((
sin
. x)
^2 ))
/ (
sin
. x))
+ (((
cot
. x)
* (
cos
. x))
/ ((
sin
. x)
^2 )));
hence thesis;
end;
hence thesis by
A4;
end;
theorem ::
INTEGR14:14
Th14: Z
c= (
dom (
cos
(#)
cot )) implies (
- (
cos
(#)
cot ))
is_differentiable_on Z & for x st x
in Z holds (((
- (
cos
(#)
cot ))
`| Z)
. x)
= ((
cos
. x)
+ ((
cos
. x)
/ ((
sin
. x)
^2 )))
proof
assume
A1: Z
c= (
dom (
cos
(#)
cot ));
then
A2: Z
c= (
dom (
- (
cos
(#)
cot ))) by
VALUED_1: 8;
A3: (
cos
(#)
cot )
is_differentiable_on Z by
A1,
FDIFF_10: 11;
then
A4: ((
- 1)
(#) (
cos
(#)
cot ))
is_differentiable_on Z by
A2,
FDIFF_1: 20;
for x st x
in Z holds (((
- (
cos
(#)
cot ))
`| Z)
. x)
= ((
cos
. x)
+ ((
cos
. x)
/ ((
sin
. x)
^2 )))
proof
let x;
assume
A5: x
in Z;
(((
- (
cos
(#)
cot ))
`| Z)
. x)
= (((
- 1)
(#) ((
cos
(#)
cot )
`| Z))
. x) by
A3,
FDIFF_2: 19
.= ((
- 1)
* (((
cos
(#)
cot )
`| Z)
. x)) by
VALUED_1: 6
.= ((
- 1)
* ((
- (
cos
. x))
- ((
cos
. x)
/ ((
sin
. x)
^2 )))) by
A1,
A5,
FDIFF_10: 11
.= ((
cos
. x)
+ ((
cos
. x)
/ ((
sin
. x)
^2 )));
hence thesis;
end;
hence thesis by
A4;
end;
begin
theorem ::
INTEGR14:15
A
c= Z & (for x st x
in Z holds (f
. x)
= ((
sin
. (1
/ x))
/ ((x
^2 )
* ((
cos
. (1
/ x))
^2 )))) & Z
c= (
dom (
sec
* ((
id Z)
^ ))) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
- (
sec
* ((
id Z)
^ )))
. (
upper_bound A))
- ((
- (
sec
* ((
id Z)
^ )))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= ((
sin
. (1
/ x))
/ ((x
^2 )
* ((
cos
. (1
/ x))
^2 )))) & Z
c= (
dom (
sec
* ((
id Z)
^ ))) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
- (
sec
* ((
id Z)
^ )))
is_differentiable_on Z by
A1,
Th1;
A4: for x be
Element of
REAL st x
in (
dom ((
- (
sec
* ((
id Z)
^ )))
`| Z)) holds (((
- (
sec
* ((
id Z)
^ )))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
- (
sec
* ((
id Z)
^ )))
`| Z));
then
A5: x
in Z by
A3,
FDIFF_1:def 7;
then (((
- (
sec
* ((
id Z)
^ )))
`| Z)
. x)
= ((
sin
. (1
/ x))
/ ((x
^2 )
* ((
cos
. (1
/ x))
^2 ))) by
A1,
Th1
.= (f
. x) by
A1,
A5;
hence thesis;
end;
(
dom ((
- (
sec
* ((
id Z)
^ )))
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
- (
sec
* ((
id Z)
^ )))
`| Z)
= f by
A4,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:16
A
c= Z & (for x st x
in Z holds (f
. x)
= ((
cos
. (1
/ x))
/ ((x
^2 )
* ((
sin
. (1
/ x))
^2 )))) & Z
c= (
dom (
cosec
* ((
id Z)
^ ))) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
cosec
* ((
id Z)
^ ))
. (
upper_bound A))
- ((
cosec
* ((
id Z)
^ ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= ((
cos
. (1
/ x))
/ ((x
^2 )
* ((
sin
. (1
/ x))
^2 )))) & Z
c= (
dom (
cosec
* ((
id Z)
^ ))) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: Z
c= (
dom ((
id Z)
^ )) by
A1,
FUNCT_1: 101;
A4: not
0
in Z
proof
assume
A5:
0
in Z;
(
dom ((
id Z)
^ ))
= ((
dom (
id Z))
\ ((
id Z)
"
{
0 })) by
RFUNCT_1:def 2
.= ((
dom (
id Z))
\
{
0 }) by
Lm1,
A5;
then not
0
in
{
0 } by
A5,
A3,
XBOOLE_0:def 5;
hence thesis by
TARSKI:def 1;
end;
then
A6: (
cosec
* ((
id Z)
^ ))
is_differentiable_on Z by
A1,
FDIFF_9: 9;
A7: for x be
Element of
REAL st x
in (
dom ((
cosec
* ((
id Z)
^ ))
`| Z)) holds (((
cosec
* ((
id Z)
^ ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
cosec
* ((
id Z)
^ ))
`| Z));
then
A8: x
in Z by
A6,
FDIFF_1:def 7;
then (((
cosec
* ((
id Z)
^ ))
`| Z)
. x)
= ((
cos
. (1
/ x))
/ ((x
^2 )
* ((
sin
. (1
/ x))
^2 ))) by
A1,
A4,
FDIFF_9: 9
.= (f
. x) by
A1,
A8;
hence thesis;
end;
(
dom ((
cosec
* ((
id Z)
^ ))
`| Z))
= (
dom f) by
A1,
A6,
FDIFF_1:def 7;
then ((
cosec
* ((
id Z)
^ ))
`| Z)
= f by
A7,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A6,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:17
A
c= Z & (for x st x
in Z holds (f
. x)
= (((
exp_R
. x)
* (
sin
. (
exp_R
. x)))
/ ((
cos
. (
exp_R
. x))
^2 ))) & Z
c= (
dom (
sec
*
exp_R )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
sec
*
exp_R )
. (
upper_bound A))
- ((
sec
*
exp_R )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= (((
exp_R
. x)
* (
sin
. (
exp_R
. x)))
/ ((
cos
. (
exp_R
. x))
^2 ))) & Z
c= (
dom (
sec
*
exp_R )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
sec
*
exp_R )
is_differentiable_on Z by
A1,
FDIFF_9: 12;
A4: for x be
Element of
REAL st x
in (
dom ((
sec
*
exp_R )
`| Z)) holds (((
sec
*
exp_R )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
sec
*
exp_R )
`| Z));
then
A5: x
in Z by
A3,
FDIFF_1:def 7;
then (((
sec
*
exp_R )
`| Z)
. x)
= (((
exp_R
. x)
* (
sin
. (
exp_R
. x)))
/ ((
cos
. (
exp_R
. x))
^2 )) by
A1,
FDIFF_9: 12
.= (f
. x) by
A1,
A5;
hence thesis;
end;
(
dom ((
sec
*
exp_R )
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
sec
*
exp_R )
`| Z)
= f by
A4,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:18
A
c= Z & (for x st x
in Z holds (f
. x)
= (((
exp_R
. x)
* (
cos
. (
exp_R
. x)))
/ ((
sin
. (
exp_R
. x))
^2 ))) & Z
c= (
dom (
cosec
*
exp_R )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
- (
cosec
*
exp_R ))
. (
upper_bound A))
- ((
- (
cosec
*
exp_R ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= (((
exp_R
. x)
* (
cos
. (
exp_R
. x)))
/ ((
sin
. (
exp_R
. x))
^2 ))) & Z
c= (
dom (
cosec
*
exp_R )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
- (
cosec
*
exp_R ))
is_differentiable_on Z by
A1,
Th2;
A4: for x be
Element of
REAL st x
in (
dom ((
- (
cosec
*
exp_R ))
`| Z)) holds (((
- (
cosec
*
exp_R ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
- (
cosec
*
exp_R ))
`| Z));
then
A5: x
in Z by
A3,
FDIFF_1:def 7;
then (((
- (
cosec
*
exp_R ))
`| Z)
. x)
= (((
exp_R
. x)
* (
cos
. (
exp_R
. x)))
/ ((
sin
. (
exp_R
. x))
^2 )) by
A1,
Th2
.= (f
. x) by
A1,
A5;
hence thesis;
end;
(
dom ((
- (
cosec
*
exp_R ))
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
- (
cosec
*
exp_R ))
`| Z)
= f by
A4,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:19
A
c= Z & (for x st x
in Z holds (f
. x)
= ((
sin
. (
ln
. x))
/ (x
* ((
cos
. (
ln
. x))
^2 )))) & Z
c= (
dom (
sec
*
ln )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
sec
*
ln )
. (
upper_bound A))
- ((
sec
*
ln )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= ((
sin
. (
ln
. x))
/ (x
* ((
cos
. (
ln
. x))
^2 )))) & Z
c= (
dom (
sec
*
ln )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
sec
*
ln )
is_differentiable_on Z by
A1,
FDIFF_9: 14;
A4: for x be
Element of
REAL st x
in (
dom ((
sec
*
ln )
`| Z)) holds (((
sec
*
ln )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
sec
*
ln )
`| Z));
then
A5: x
in Z by
A3,
FDIFF_1:def 7;
then (((
sec
*
ln )
`| Z)
. x)
= ((
sin
. (
ln
. x))
/ (x
* ((
cos
. (
ln
. x))
^2 ))) by
A1,
FDIFF_9: 14
.= (f
. x) by
A1,
A5;
hence thesis;
end;
(
dom ((
sec
*
ln )
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
sec
*
ln )
`| Z)
= f by
A4,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:20
A
c= Z & (for x st x
in Z holds (f
. x)
= ((
cos
. (
ln
. x))
/ (x
* ((
sin
. (
ln
. x))
^2 )))) & Z
c= (
dom (
cosec
*
ln )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
- (
cosec
*
ln ))
. (
upper_bound A))
- ((
- (
cosec
*
ln ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= ((
cos
. (
ln
. x))
/ (x
* ((
sin
. (
ln
. x))
^2 )))) & Z
c= (
dom (
cosec
*
ln )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
- (
cosec
*
ln ))
is_differentiable_on Z by
A1,
Th3;
A4: for x be
Element of
REAL st x
in (
dom ((
- (
cosec
*
ln ))
`| Z)) holds (((
- (
cosec
*
ln ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
- (
cosec
*
ln ))
`| Z));
then
A5: x
in Z by
A3,
FDIFF_1:def 7;
then (((
- (
cosec
*
ln ))
`| Z)
. x)
= ((
cos
. (
ln
. x))
/ (x
* ((
sin
. (
ln
. x))
^2 ))) by
A1,
Th3
.= (f
. x) by
A1,
A5;
hence thesis;
end;
(
dom ((
- (
cosec
*
ln ))
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
- (
cosec
*
ln ))
`| Z)
= f by
A4,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:21
A
c= Z & f
= ((
exp_R
*
sec )
(#) (
sin
/ (
cos
^2 ))) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
exp_R
*
sec )
. (
upper_bound A))
- ((
exp_R
*
sec )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & f
= ((
exp_R
*
sec )
(#) (
sin
/ (
cos
^2 ))) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
Z
= ((
dom (
exp_R
*
sec ))
/\ (
dom (
sin
/ (
cos
^2 )))) by
A1,
VALUED_1:def 4;
then
A3: Z
c= (
dom (
exp_R
*
sec )) & Z
c= (
dom (
sin
/ (
cos
^2 ))) by
XBOOLE_1: 18;
then
A4: (
exp_R
*
sec )
is_differentiable_on Z by
FDIFF_9: 16;
A5: for x st x
in Z holds (f
. x)
= (((
exp_R
. (
sec
. x))
* (
sin
. x))
/ ((
cos
. x)
^2 ))
proof
let x;
assume
A6: x
in Z;
(((
exp_R
*
sec )
(#) (
sin
/ (
cos
^2 )))
. x)
= (((
exp_R
*
sec )
. x)
* ((
sin
/ (
cos
^2 ))
. x)) by
VALUED_1: 5
.= ((
exp_R
. (
sec
. x))
* ((
sin
/ (
cos
^2 ))
. x)) by
A6,
A3,
FUNCT_1: 12
.= ((
exp_R
. (
sec
. x))
* ((
sin
. x)
/ ((
cos
^2 )
. x))) by
A3,
A6,
RFUNCT_1:def 1
.= ((
exp_R
. (
sec
. x))
* ((
sin
. x)
/ ((
cos
. x)
^2 ))) by
VALUED_1: 11
.= (((
exp_R
. (
sec
. x))
* (
sin
. x))
/ ((
cos
. x)
^2 ));
hence thesis by
A1;
end;
A7: for x be
Element of
REAL st x
in (
dom ((
exp_R
*
sec )
`| Z)) holds (((
exp_R
*
sec )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
exp_R
*
sec )
`| Z));
then
A8: x
in Z by
A4,
FDIFF_1:def 7;
then (((
exp_R
*
sec )
`| Z)
. x)
= (((
exp_R
. (
sec
. x))
* (
sin
. x))
/ ((
cos
. x)
^2 )) by
A3,
FDIFF_9: 16
.= (f
. x) by
A5,
A8;
hence thesis;
end;
(
dom ((
exp_R
*
sec )
`| Z))
= (
dom f) by
A1,
A4,
FDIFF_1:def 7;
then ((
exp_R
*
sec )
`| Z)
= f by
A7,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A4,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:22
A
c= Z & f
= ((
exp_R
*
cosec )
(#) (
cos
/ (
sin
^2 ))) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
- (
exp_R
*
cosec ))
. (
upper_bound A))
- ((
- (
exp_R
*
cosec ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & f
= ((
exp_R
*
cosec )
(#) (
cos
/ (
sin
^2 ))) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
Z
= ((
dom (
exp_R
*
cosec ))
/\ (
dom (
cos
/ (
sin
^2 )))) by
A1,
VALUED_1:def 4;
then
A3: Z
c= (
dom (
exp_R
*
cosec )) & Z
c= (
dom (
cos
/ (
sin
^2 ))) by
XBOOLE_1: 18;
then
A4: (
- (
exp_R
*
cosec ))
is_differentiable_on Z by
Th4;
A5: for x st x
in Z holds (f
. x)
= (((
exp_R
. (
cosec
. x))
* (
cos
. x))
/ ((
sin
. x)
^2 ))
proof
let x;
assume
A6: x
in Z;
(((
exp_R
*
cosec )
(#) (
cos
/ (
sin
^2 )))
. x)
= (((
exp_R
*
cosec )
. x)
* ((
cos
/ (
sin
^2 ))
. x)) by
VALUED_1: 5
.= ((
exp_R
. (
cosec
. x))
* ((
cos
/ (
sin
^2 ))
. x)) by
A6,
A3,
FUNCT_1: 12
.= ((
exp_R
. (
cosec
. x))
* ((
cos
. x)
/ ((
sin
^2 )
. x))) by
A3,
A6,
RFUNCT_1:def 1
.= ((
exp_R
. (
cosec
. x))
* ((
cos
. x)
/ ((
sin
. x)
^2 ))) by
VALUED_1: 11
.= (((
exp_R
. (
cosec
. x))
* (
cos
. x))
/ ((
sin
. x)
^2 ));
hence thesis by
A1;
end;
A7: for x be
Element of
REAL st x
in (
dom ((
- (
exp_R
*
cosec ))
`| Z)) holds (((
- (
exp_R
*
cosec ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
- (
exp_R
*
cosec ))
`| Z));
then
A8: x
in Z by
A4,
FDIFF_1:def 7;
then (((
- (
exp_R
*
cosec ))
`| Z)
. x)
= (((
exp_R
. (
cosec
. x))
* (
cos
. x))
/ ((
sin
. x)
^2 )) by
A3,
Th4
.= (f
. x) by
A5,
A8;
hence thesis;
end;
(
dom ((
- (
exp_R
*
cosec ))
`| Z))
= (
dom f) by
A1,
A4,
FDIFF_1:def 7;
then ((
- (
exp_R
*
cosec ))
`| Z)
= f by
A7,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A4,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:23
A
c= Z & Z
c= (
dom (
ln
*
sec )) & Z
= (
dom
tan ) & (
tan
| A) is
continuous implies (
integral (
tan ,A))
= (((
ln
*
sec )
. (
upper_bound A))
- ((
ln
*
sec )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & Z
c= (
dom (
ln
*
sec )) & Z
= (
dom
tan ) & (
tan
| A) is
continuous;
then
A2:
tan
is_integrable_on A & (
tan
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
ln
*
sec )
is_differentiable_on Z by
A1,
FDIFF_9: 18;
A4: for x st x
in Z holds (
cos
. x)
<>
0
proof
let x;
assume x
in Z;
then x
in (
dom
sec ) by
A1,
FUNCT_1: 11;
hence thesis by
RFUNCT_1: 3;
end;
A5: for x be
Element of
REAL st x
in (
dom ((
ln
*
sec )
`| Z)) holds (((
ln
*
sec )
`| Z)
. x)
= (
tan
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
ln
*
sec )
`| Z));
then
A6: x
in Z by
A3,
FDIFF_1:def 7;
then
A7: (
cos
. x)
<>
0 by
A4;
(((
ln
*
sec )
`| Z)
. x)
= (
tan x) by
A1,
A6,
FDIFF_9: 18
.= (
tan
. x) by
A7,
SIN_COS9: 15;
hence thesis;
end;
(
dom ((
ln
*
sec )
`| Z))
= (
dom
tan ) by
A1,
A3,
FDIFF_1:def 7;
then ((
ln
*
sec )
`| Z)
=
tan by
A5,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:24
A
c= Z & Z
c= (
dom (
ln
*
cosec )) & Z
= (
dom
cot ) & ((
-
cot )
| A) is
continuous implies (
integral ((
-
cot ),A))
= (((
ln
*
cosec )
. (
upper_bound A))
- ((
ln
*
cosec )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & Z
c= (
dom (
ln
*
cosec )) & Z
= (
dom
cot ) & ((
-
cot )
| A) is
continuous;
then
A2: Z
= (
dom (
-
cot )) by
VALUED_1: 8;
then
A3: (
-
cot )
is_integrable_on A & ((
-
cot )
| A) is
bounded by
A1,
INTEGRA5: 10,
INTEGRA5: 11;
A4: (
ln
*
cosec )
is_differentiable_on Z by
A1,
FDIFF_9: 19;
A5: for x st x
in Z holds (
sin
. x)
<>
0
proof
let x;
assume x
in Z;
then x
in (
dom
cosec ) by
A1,
FUNCT_1: 11;
hence thesis by
RFUNCT_1: 3;
end;
A6: for x be
Element of
REAL st x
in (
dom ((
ln
*
cosec )
`| Z)) holds (((
ln
*
cosec )
`| Z)
. x)
= ((
-
cot )
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
ln
*
cosec )
`| Z));
then
A7: x
in Z by
A4,
FDIFF_1:def 7;
then
A8: (
sin
. x)
<>
0 by
A5;
(((
ln
*
cosec )
`| Z)
. x)
= (
- (
cot x)) by
A1,
A7,
FDIFF_9: 19
.= (
- (
cot
. x)) by
A8,
SIN_COS9: 16
.= ((
-
cot )
. x) by
VALUED_1: 8;
hence thesis;
end;
(
dom ((
ln
*
cosec )
`| Z))
= (
dom (
-
cot )) by
A2,
A4,
FDIFF_1:def 7;
then ((
ln
*
cosec )
`| Z)
= (
-
cot ) by
A6,
PARTFUN1: 5;
hence thesis by
A1,
A3,
A4,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:25
A
c= Z & Z
c= (
dom (
ln
*
cosec )) & Z
= (
dom
cot ) & (
cot
| A) is
continuous implies (
integral (
cot ,A))
= (((
- (
ln
*
cosec ))
. (
upper_bound A))
- ((
- (
ln
*
cosec ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & Z
c= (
dom (
ln
*
cosec )) & Z
= (
dom
cot ) & (
cot
| A) is
continuous;
then
A2:
cot
is_integrable_on A & (
cot
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
- (
ln
*
cosec ))
is_differentiable_on Z by
A1,
Th5;
A4: for x be
Element of
REAL st x
in (
dom ((
- (
ln
*
cosec ))
`| Z)) holds (((
- (
ln
*
cosec ))
`| Z)
. x)
= (
cot
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
- (
ln
*
cosec ))
`| Z));
then x
in Z by
A3,
FDIFF_1:def 7;
then (((
- (
ln
*
cosec ))
`| Z)
. x)
= (
cot
. x) by
A1,
Th5;
hence thesis;
end;
(
dom ((
- (
ln
*
cosec ))
`| Z))
= (
dom
cot ) by
A1,
A3,
FDIFF_1:def 7;
then ((
- (
ln
*
cosec ))
`| Z)
=
cot by
A4,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:26
A
c= Z & (for x st x
in Z holds (f
. x)
= ((n
* (
sin
. x))
/ ((
cos
. x)
#Z (n
+ 1)))) & Z
c= (
dom ((
#Z n)
*
sec )) & 1
<= n & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= ((((
#Z n)
*
sec )
. (
upper_bound A))
- (((
#Z n)
*
sec )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= ((n
* (
sin
. x))
/ ((
cos
. x)
#Z (n
+ 1)))) & Z
c= (
dom ((
#Z n)
*
sec )) & 1
<= n & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: ((
#Z n)
*
sec )
is_differentiable_on Z by
A1,
FDIFF_9: 20;
A4: for x be
Element of
REAL st x
in (
dom (((
#Z n)
*
sec )
`| Z)) holds ((((
#Z n)
*
sec )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((
#Z n)
*
sec )
`| Z));
then
A5: x
in Z by
A3,
FDIFF_1:def 7;
then ((((
#Z n)
*
sec )
`| Z)
. x)
= ((n
* (
sin
. x))
/ ((
cos
. x)
#Z (n
+ 1))) by
A1,
FDIFF_9: 20
.= (f
. x) by
A1,
A5;
hence thesis;
end;
(
dom (((
#Z n)
*
sec )
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then (((
#Z n)
*
sec )
`| Z)
= f by
A4,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:27
A
c= Z & (for x st x
in Z holds (f
. x)
= ((n
* (
cos
. x))
/ ((
sin
. x)
#Z (n
+ 1)))) & Z
c= (
dom ((
#Z n)
*
cosec )) & 1
<= n & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
- ((
#Z n)
*
cosec ))
. (
upper_bound A))
- ((
- ((
#Z n)
*
cosec ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= ((n
* (
cos
. x))
/ ((
sin
. x)
#Z (n
+ 1)))) & Z
c= (
dom ((
#Z n)
*
cosec )) & 1
<= n & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
- ((
#Z n)
*
cosec ))
is_differentiable_on Z by
A1,
Th6;
A4: for x be
Element of
REAL st x
in (
dom ((
- ((
#Z n)
*
cosec ))
`| Z)) holds (((
- ((
#Z n)
*
cosec ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
- ((
#Z n)
*
cosec ))
`| Z));
then
A5: x
in Z by
A3,
FDIFF_1:def 7;
then (((
- ((
#Z n)
*
cosec ))
`| Z)
. x)
= ((n
* (
cos
. x))
/ ((
sin
. x)
#Z (n
+ 1))) by
A1,
Th6
.= (f
. x) by
A1,
A5;
hence thesis;
end;
(
dom ((
- ((
#Z n)
*
cosec ))
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
- ((
#Z n)
*
cosec ))
`| Z)
= f by
A4,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:28
A
c= Z & (for x st x
in Z holds (f
. x)
= (((
exp_R
. x)
/ (
cos
. x))
+ (((
exp_R
. x)
* (
sin
. x))
/ ((
cos
. x)
^2 )))) & Z
c= (
dom (
exp_R
(#)
sec )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
exp_R
(#)
sec )
. (
upper_bound A))
- ((
exp_R
(#)
sec )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= (((
exp_R
. x)
/ (
cos
. x))
+ (((
exp_R
. x)
* (
sin
. x))
/ ((
cos
. x)
^2 )))) & Z
c= (
dom (
exp_R
(#)
sec )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
exp_R
(#)
sec )
is_differentiable_on Z by
A1,
FDIFF_9: 24;
A4: for x be
Element of
REAL st x
in (
dom ((
exp_R
(#)
sec )
`| Z)) holds (((
exp_R
(#)
sec )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
exp_R
(#)
sec )
`| Z));
then
A5: x
in Z by
A3,
FDIFF_1:def 7;
then (((
exp_R
(#)
sec )
`| Z)
. x)
= (((
exp_R
. x)
/ (
cos
. x))
+ (((
exp_R
. x)
* (
sin
. x))
/ ((
cos
. x)
^2 ))) by
A1,
FDIFF_9: 24
.= (f
. x) by
A1,
A5;
hence thesis;
end;
(
dom ((
exp_R
(#)
sec )
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
exp_R
(#)
sec )
`| Z)
= f by
A4,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:29
A
c= Z & (for x st x
in Z holds (f
. x)
= (((
exp_R
. x)
/ (
sin
. x))
- (((
exp_R
. x)
* (
cos
. x))
/ ((
sin
. x)
^2 )))) & Z
c= (
dom (
exp_R
(#)
cosec )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
exp_R
(#)
cosec )
. (
upper_bound A))
- ((
exp_R
(#)
cosec )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= (((
exp_R
. x)
/ (
sin
. x))
- (((
exp_R
. x)
* (
cos
. x))
/ ((
sin
. x)
^2 )))) & Z
c= (
dom (
exp_R
(#)
cosec )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
exp_R
(#)
cosec )
is_differentiable_on Z by
A1,
FDIFF_9: 25;
A4: for x be
Element of
REAL st x
in (
dom ((
exp_R
(#)
cosec )
`| Z)) holds (((
exp_R
(#)
cosec )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
exp_R
(#)
cosec )
`| Z));
then
A5: x
in Z by
A3,
FDIFF_1:def 7;
then (((
exp_R
(#)
cosec )
`| Z)
. x)
= (((
exp_R
. x)
/ (
sin
. x))
- (((
exp_R
. x)
* (
cos
. x))
/ ((
sin
. x)
^2 ))) by
A1,
FDIFF_9: 25
.= (f
. x) by
A1,
A5;
hence thesis;
end;
(
dom ((
exp_R
(#)
cosec )
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
exp_R
(#)
cosec )
`| Z)
= f by
A4,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:30
A
c= Z & (for x st x
in Z holds (f
. x)
= (((
sin
. (a
* x))
- ((
cos
. (a
* x))
^2 ))
/ ((
cos
. (a
* x))
^2 ))) & (Z
c= (
dom (((1
/ a)
(#) (
sec
* f1))
- (
id Z))) & for x st x
in Z holds (f1
. x)
= (a
* x) & a
<>
0 ) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((((1
/ a)
(#) (
sec
* f1))
- (
id Z))
. (
upper_bound A))
- ((((1
/ a)
(#) (
sec
* f1))
- (
id Z))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= (((
sin
. (a
* x))
- ((
cos
. (a
* x))
^2 ))
/ ((
cos
. (a
* x))
^2 ))) & (Z
c= (
dom (((1
/ a)
(#) (
sec
* f1))
- (
id Z))) & for x st x
in Z holds (f1
. x)
= (a
* x) & a
<>
0 ) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (((1
/ a)
(#) (
sec
* f1))
- (
id Z))
is_differentiable_on Z by
A1,
FDIFF_9: 26;
A4: for x be
Element of
REAL st x
in (
dom ((((1
/ a)
(#) (
sec
* f1))
- (
id Z))
`| Z)) holds (((((1
/ a)
(#) (
sec
* f1))
- (
id Z))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((((1
/ a)
(#) (
sec
* f1))
- (
id Z))
`| Z));
then
A5: x
in Z by
A3,
FDIFF_1:def 7;
then (((((1
/ a)
(#) (
sec
* f1))
- (
id Z))
`| Z)
. x)
= (((
sin
. (a
* x))
- ((
cos
. (a
* x))
^2 ))
/ ((
cos
. (a
* x))
^2 )) by
A1,
FDIFF_9: 26
.= (f
. x) by
A1,
A5;
hence thesis;
end;
(
dom ((((1
/ a)
(#) (
sec
* f1))
- (
id Z))
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((((1
/ a)
(#) (
sec
* f1))
- (
id Z))
`| Z)
= f by
A4,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:31
A
c= Z & (for x st x
in Z holds (f
. x)
= (((
cos
. (a
* x))
- ((
sin
. (a
* x))
^2 ))
/ ((
sin
. (a
* x))
^2 ))) & (Z
c= (
dom (((
- (1
/ a))
(#) (
cosec
* f1))
- (
id Z))) & for x st x
in Z holds (f1
. x)
= (a
* x) & a
<>
0 ) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((((
- (1
/ a))
(#) (
cosec
* f1))
- (
id Z))
. (
upper_bound A))
- ((((
- (1
/ a))
(#) (
cosec
* f1))
- (
id Z))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= (((
cos
. (a
* x))
- ((
sin
. (a
* x))
^2 ))
/ ((
sin
. (a
* x))
^2 ))) & (Z
c= (
dom (((
- (1
/ a))
(#) (
cosec
* f1))
- (
id Z))) & for x st x
in Z holds (f1
. x)
= (a
* x) & a
<>
0 ) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (((
- (1
/ a))
(#) (
cosec
* f1))
- (
id Z))
is_differentiable_on Z by
A1,
FDIFF_9: 27;
A4: for x be
Element of
REAL st x
in (
dom ((((
- (1
/ a))
(#) (
cosec
* f1))
- (
id Z))
`| Z)) holds (((((
- (1
/ a))
(#) (
cosec
* f1))
- (
id Z))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((((
- (1
/ a))
(#) (
cosec
* f1))
- (
id Z))
`| Z));
then
A5: x
in Z by
A3,
FDIFF_1:def 7;
then (((((
- (1
/ a))
(#) (
cosec
* f1))
- (
id Z))
`| Z)
. x)
= (((
cos
. (a
* x))
- ((
sin
. (a
* x))
^2 ))
/ ((
sin
. (a
* x))
^2 )) by
A1,
FDIFF_9: 27
.= (f
. x) by
A1,
A5;
hence thesis;
end;
(
dom ((((
- (1
/ a))
(#) (
cosec
* f1))
- (
id Z))
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((((
- (1
/ a))
(#) (
cosec
* f1))
- (
id Z))
`| Z)
= f by
A4,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:32
A
c= Z & (for x st x
in Z holds (f
. x)
= (((1
/ (
cos
. x))
/ x)
+ (((
ln
. x)
* (
sin
. x))
/ ((
cos
. x)
^2 )))) & Z
c= (
dom (
ln
(#)
sec )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
ln
(#)
sec )
. (
upper_bound A))
- ((
ln
(#)
sec )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= (((1
/ (
cos
. x))
/ x)
+ (((
ln
. x)
* (
sin
. x))
/ ((
cos
. x)
^2 )))) & Z
c= (
dom (
ln
(#)
sec )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
ln
(#)
sec )
is_differentiable_on Z by
A1,
FDIFF_9: 30;
A4: for x be
Element of
REAL st x
in (
dom ((
ln
(#)
sec )
`| Z)) holds (((
ln
(#)
sec )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
ln
(#)
sec )
`| Z));
then
A5: x
in Z by
A3,
FDIFF_1:def 7;
then (((
ln
(#)
sec )
`| Z)
. x)
= (((1
/ (
cos
. x))
/ x)
+ (((
ln
. x)
* (
sin
. x))
/ ((
cos
. x)
^2 ))) by
A1,
FDIFF_9: 30
.= (f
. x) by
A1,
A5;
hence thesis;
end;
(
dom ((
ln
(#)
sec )
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
ln
(#)
sec )
`| Z)
= f by
A4,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:33
A
c= Z & (for x st x
in Z holds (f
. x)
= (((1
/ (
sin
. x))
/ x)
- (((
ln
. x)
* (
cos
. x))
/ ((
sin
. x)
^2 )))) & Z
c= (
dom (
ln
(#)
cosec )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
ln
(#)
cosec )
. (
upper_bound A))
- ((
ln
(#)
cosec )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= (((1
/ (
sin
. x))
/ x)
- (((
ln
. x)
* (
cos
. x))
/ ((
sin
. x)
^2 )))) & Z
c= (
dom (
ln
(#)
cosec )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
ln
(#)
cosec )
is_differentiable_on Z by
A1,
FDIFF_9: 31;
A4: for x be
Element of
REAL st x
in (
dom ((
ln
(#)
cosec )
`| Z)) holds (((
ln
(#)
cosec )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
ln
(#)
cosec )
`| Z));
then
A5: x
in Z by
A3,
FDIFF_1:def 7;
then (((
ln
(#)
cosec )
`| Z)
. x)
= (((1
/ (
sin
. x))
/ x)
- (((
ln
. x)
* (
cos
. x))
/ ((
sin
. x)
^2 ))) by
A1,
FDIFF_9: 31
.= (f
. x) by
A1,
A5;
hence thesis;
end;
(
dom ((
ln
(#)
cosec )
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
ln
(#)
cosec )
`| Z)
= f by
A4,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:34
A
c= Z & (for x st x
in Z holds (f
. x)
= (((1
/ (
cos
. x))
/ (x
^2 ))
- (((
sin
. x)
/ x)
/ ((
cos
. x)
^2 )))) & Z
c= (
dom (((
id Z)
^ )
(#)
sec )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
- (((
id Z)
^ )
(#)
sec ))
. (
upper_bound A))
- ((
- (((
id Z)
^ )
(#)
sec ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= (((1
/ (
cos
. x))
/ (x
^2 ))
- (((
sin
. x)
/ x)
/ ((
cos
. x)
^2 )))) & Z
c= (
dom (((
id Z)
^ )
(#)
sec )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
- (((
id Z)
^ )
(#)
sec ))
is_differentiable_on Z by
A1,
Th7;
A4: for x be
Element of
REAL st x
in (
dom ((
- (((
id Z)
^ )
(#)
sec ))
`| Z)) holds (((
- (((
id Z)
^ )
(#)
sec ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
- (((
id Z)
^ )
(#)
sec ))
`| Z));
then
A5: x
in Z by
A3,
FDIFF_1:def 7;
then (((
- (((
id Z)
^ )
(#)
sec ))
`| Z)
. x)
= (((1
/ (
cos
. x))
/ (x
^2 ))
- (((
sin
. x)
/ x)
/ ((
cos
. x)
^2 ))) by
A1,
Th7
.= (f
. x) by
A1,
A5;
hence thesis;
end;
(
dom ((
- (((
id Z)
^ )
(#)
sec ))
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
- (((
id Z)
^ )
(#)
sec ))
`| Z)
= f by
A4,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:35
A
c= Z & (for x st x
in Z holds (f
. x)
= (((1
/ (
sin
. x))
/ (x
^2 ))
+ (((
cos
. x)
/ x)
/ ((
sin
. x)
^2 )))) & Z
c= (
dom (((
id Z)
^ )
(#)
cosec )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
- (((
id Z)
^ )
(#)
cosec ))
. (
upper_bound A))
- ((
- (((
id Z)
^ )
(#)
cosec ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= (((1
/ (
sin
. x))
/ (x
^2 ))
+ (((
cos
. x)
/ x)
/ ((
sin
. x)
^2 )))) & Z
c= (
dom (((
id Z)
^ )
(#)
cosec )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
- (((
id Z)
^ )
(#)
cosec ))
is_differentiable_on Z by
A1,
Th8;
A4: for x be
Element of
REAL st x
in (
dom ((
- (((
id Z)
^ )
(#)
cosec ))
`| Z)) holds (((
- (((
id Z)
^ )
(#)
cosec ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
- (((
id Z)
^ )
(#)
cosec ))
`| Z));
then
A5: x
in Z by
A3,
FDIFF_1:def 7;
then (((
- (((
id Z)
^ )
(#)
cosec ))
`| Z)
. x)
= (((1
/ (
sin
. x))
/ (x
^2 ))
+ (((
cos
. x)
/ x)
/ ((
sin
. x)
^2 ))) by
A1,
Th8
.= (f
. x) by
A1,
A5;
hence thesis;
end;
(
dom ((
- (((
id Z)
^ )
(#)
cosec ))
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
- (((
id Z)
^ )
(#)
cosec ))
`| Z)
= f by
A4,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:36
A
c= Z & (for x st x
in Z holds (f
. x)
= (((
cos
. x)
* (
sin
. (
sin
. x)))
/ ((
cos
. (
sin
. x))
^2 ))) & Z
c= (
dom (
sec
*
sin )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
sec
*
sin )
. (
upper_bound A))
- ((
sec
*
sin )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= (((
cos
. x)
* (
sin
. (
sin
. x)))
/ ((
cos
. (
sin
. x))
^2 ))) & Z
c= (
dom (
sec
*
sin )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
sec
*
sin )
is_differentiable_on Z by
A1,
FDIFF_9: 34;
A4: for x be
Element of
REAL st x
in (
dom ((
sec
*
sin )
`| Z)) holds (((
sec
*
sin )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
sec
*
sin )
`| Z));
then
A5: x
in Z by
A3,
FDIFF_1:def 7;
then (((
sec
*
sin )
`| Z)
. x)
= (((
cos
. x)
* (
sin
. (
sin
. x)))
/ ((
cos
. (
sin
. x))
^2 )) by
A1,
FDIFF_9: 34
.= (f
. x) by
A1,
A5;
hence thesis;
end;
(
dom ((
sec
*
sin )
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
sec
*
sin )
`| Z)
= f by
A4,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:37
A
c= Z & (for x st x
in Z holds (f
. x)
= (((
sin
. x)
* (
sin
. (
cos
. x)))
/ ((
cos
. (
cos
. x))
^2 ))) & Z
c= (
dom (
sec
*
cos )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
- (
sec
*
cos ))
. (
upper_bound A))
- ((
- (
sec
*
cos ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= (((
sin
. x)
* (
sin
. (
cos
. x)))
/ ((
cos
. (
cos
. x))
^2 ))) & Z
c= (
dom (
sec
*
cos )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: Z
c= (
dom (
- (
sec
*
cos ))) by
A1,
VALUED_1: 8;
A4: (
sec
*
cos )
is_differentiable_on Z by
A1,
FDIFF_9: 35;
then
A5: ((
- 1)
(#) (
sec
*
cos ))
is_differentiable_on Z by
A3,
FDIFF_1: 20;
A6: for x st x
in Z holds (((
- (
sec
*
cos ))
`| Z)
. x)
= (((
sin
. x)
* (
sin
. (
cos
. x)))
/ ((
cos
. (
cos
. x))
^2 ))
proof
let x;
assume
A7: x
in Z;
(((
- (
sec
*
cos ))
`| Z)
. x)
= (((
- 1)
(#) ((
sec
*
cos )
`| Z))
. x) by
A4,
FDIFF_2: 19
.= ((
- 1)
* (((
sec
*
cos )
`| Z)
. x)) by
VALUED_1: 6
.= ((
- 1)
* (
- (((
sin
. x)
* (
sin
. (
cos
. x)))
/ ((
cos
. (
cos
. x))
^2 )))) by
A1,
A7,
FDIFF_9: 35
.= (((
sin
. x)
* (
sin
. (
cos
. x)))
/ ((
cos
. (
cos
. x))
^2 ));
hence thesis;
end;
A8: for x be
Element of
REAL st x
in (
dom ((
- (
sec
*
cos ))
`| Z)) holds (((
- (
sec
*
cos ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
- (
sec
*
cos ))
`| Z));
then
A9: x
in Z by
A5,
FDIFF_1:def 7;
then (((
- (
sec
*
cos ))
`| Z)
. x)
= (((
sin
. x)
* (
sin
. (
cos
. x)))
/ ((
cos
. (
cos
. x))
^2 )) by
A6
.= (f
. x) by
A1,
A9;
hence thesis;
end;
(
dom ((
- (
sec
*
cos ))
`| Z))
= (
dom f) by
A1,
A5,
FDIFF_1:def 7;
then ((
- (
sec
*
cos ))
`| Z)
= f by
A8,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A5,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:38
A
c= Z & (for x st x
in Z holds (f
. x)
= (((
cos
. x)
* (
cos
. (
sin
. x)))
/ ((
sin
. (
sin
. x))
^2 ))) & Z
c= (
dom (
cosec
*
sin )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
- (
cosec
*
sin ))
. (
upper_bound A))
- ((
- (
cosec
*
sin ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= (((
cos
. x)
* (
cos
. (
sin
. x)))
/ ((
sin
. (
sin
. x))
^2 ))) & Z
c= (
dom (
cosec
*
sin )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
- (
cosec
*
sin ))
is_differentiable_on Z by
A1,
Th9;
A4: for x be
Element of
REAL st x
in (
dom ((
- (
cosec
*
sin ))
`| Z)) holds (((
- (
cosec
*
sin ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
- (
cosec
*
sin ))
`| Z));
then
A5: x
in Z by
A3,
FDIFF_1:def 7;
then (((
- (
cosec
*
sin ))
`| Z)
. x)
= (((
cos
. x)
* (
cos
. (
sin
. x)))
/ ((
sin
. (
sin
. x))
^2 )) by
A1,
Th9
.= (f
. x) by
A1,
A5;
hence thesis;
end;
(
dom ((
- (
cosec
*
sin ))
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
- (
cosec
*
sin ))
`| Z)
= f by
A4,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:39
A
c= Z & (for x st x
in Z holds (f
. x)
= (((
sin
. x)
* (
cos
. (
cos
. x)))
/ ((
sin
. (
cos
. x))
^2 ))) & Z
c= (
dom (
cosec
*
cos )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
cosec
*
cos )
. (
upper_bound A))
- ((
cosec
*
cos )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= (((
sin
. x)
* (
cos
. (
cos
. x)))
/ ((
sin
. (
cos
. x))
^2 ))) & Z
c= (
dom (
cosec
*
cos )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
cosec
*
cos )
is_differentiable_on Z by
A1,
FDIFF_9: 37;
A4: for x be
Element of
REAL st x
in (
dom ((
cosec
*
cos )
`| Z)) holds (((
cosec
*
cos )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
cosec
*
cos )
`| Z));
then
A5: x
in Z by
A3,
FDIFF_1:def 7;
then (((
cosec
*
cos )
`| Z)
. x)
= (((
sin
. x)
* (
cos
. (
cos
. x)))
/ ((
sin
. (
cos
. x))
^2 )) by
A1,
FDIFF_9: 37
.= (f
. x) by
A1,
A5;
hence thesis;
end;
(
dom ((
cosec
*
cos )
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
cosec
*
cos )
`| Z)
= f by
A4,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:40
A
c= Z & (for x st x
in Z holds (f
. x)
= (((
sin
. (
tan
. x))
/ ((
cos
. x)
^2 ))
/ ((
cos
. (
tan
. x))
^2 ))) & Z
c= (
dom (
sec
*
tan )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
sec
*
tan )
. (
upper_bound A))
- ((
sec
*
tan )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= (((
sin
. (
tan
. x))
/ ((
cos
. x)
^2 ))
/ ((
cos
. (
tan
. x))
^2 ))) & Z
c= (
dom (
sec
*
tan )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
sec
*
tan )
is_differentiable_on Z by
A1,
FDIFF_9: 38;
A4: for x be
Element of
REAL st x
in (
dom ((
sec
*
tan )
`| Z)) holds (((
sec
*
tan )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
sec
*
tan )
`| Z));
then
A5: x
in Z by
A3,
FDIFF_1:def 7;
then (((
sec
*
tan )
`| Z)
. x)
= (((
sin
. (
tan
. x))
/ ((
cos
. x)
^2 ))
/ ((
cos
. (
tan
. x))
^2 )) by
A1,
FDIFF_9: 38
.= (f
. x) by
A1,
A5;
hence thesis;
end;
(
dom ((
sec
*
tan )
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
sec
*
tan )
`| Z)
= f by
A4,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:41
A
c= Z & (for x st x
in Z holds (f
. x)
= (((
sin
. (
cot
. x))
/ ((
sin
. x)
^2 ))
/ ((
cos
. (
cot
. x))
^2 ))) & Z
c= (
dom (
sec
*
cot )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
- (
sec
*
cot ))
. (
upper_bound A))
- ((
- (
sec
*
cot ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= (((
sin
. (
cot
. x))
/ ((
sin
. x)
^2 ))
/ ((
cos
. (
cot
. x))
^2 ))) & Z
c= (
dom (
sec
*
cot )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
- (
sec
*
cot ))
is_differentiable_on Z by
A1,
Th10;
A4: for x be
Element of
REAL st x
in (
dom ((
- (
sec
*
cot ))
`| Z)) holds (((
- (
sec
*
cot ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
- (
sec
*
cot ))
`| Z));
then
A5: x
in Z by
A3,
FDIFF_1:def 7;
then (((
- (
sec
*
cot ))
`| Z)
. x)
= (((
sin
. (
cot
. x))
/ ((
sin
. x)
^2 ))
/ ((
cos
. (
cot
. x))
^2 )) by
A1,
Th10
.= (f
. x) by
A1,
A5;
hence thesis;
end;
(
dom ((
- (
sec
*
cot ))
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
- (
sec
*
cot ))
`| Z)
= f by
A4,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:42
A
c= Z & (for x st x
in Z holds (f
. x)
= (((
cos
. (
tan
. x))
/ ((
cos
. x)
^2 ))
/ ((
sin
. (
tan
. x))
^2 ))) & Z
c= (
dom (
cosec
*
tan )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
- (
cosec
*
tan ))
. (
upper_bound A))
- ((
- (
cosec
*
tan ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= (((
cos
. (
tan
. x))
/ ((
cos
. x)
^2 ))
/ ((
sin
. (
tan
. x))
^2 ))) & Z
c= (
dom (
cosec
*
tan )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
- (
cosec
*
tan ))
is_differentiable_on Z by
A1,
Th11;
A4: for x be
Element of
REAL st x
in (
dom ((
- (
cosec
*
tan ))
`| Z)) holds (((
- (
cosec
*
tan ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
- (
cosec
*
tan ))
`| Z));
then
A5: x
in Z by
A3,
FDIFF_1:def 7;
then (((
- (
cosec
*
tan ))
`| Z)
. x)
= (((
cos
. (
tan
. x))
/ ((
cos
. x)
^2 ))
/ ((
sin
. (
tan
. x))
^2 )) by
A1,
Th11
.= (f
. x) by
A1,
A5;
hence thesis;
end;
(
dom ((
- (
cosec
*
tan ))
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
- (
cosec
*
tan ))
`| Z)
= f by
A4,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:43
A
c= Z & (for x st x
in Z holds (f
. x)
= (((
cos
. (
cot
. x))
/ ((
sin
. x)
^2 ))
/ ((
sin
. (
cot
. x))
^2 ))) & Z
c= (
dom (
cosec
*
cot )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
cosec
*
cot )
. (
upper_bound A))
- ((
cosec
*
cot )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= (((
cos
. (
cot
. x))
/ ((
sin
. x)
^2 ))
/ ((
sin
. (
cot
. x))
^2 ))) & Z
c= (
dom (
cosec
*
cot )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
cosec
*
cot )
is_differentiable_on Z by
A1,
FDIFF_9: 41;
A4: for x be
Element of
REAL st x
in (
dom ((
cosec
*
cot )
`| Z)) holds (((
cosec
*
cot )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
cosec
*
cot )
`| Z));
then
A5: x
in Z by
A3,
FDIFF_1:def 7;
then (((
cosec
*
cot )
`| Z)
. x)
= (((
cos
. (
cot
. x))
/ ((
sin
. x)
^2 ))
/ ((
sin
. (
cot
. x))
^2 )) by
A1,
FDIFF_9: 41
.= (f
. x) by
A1,
A5;
hence thesis;
end;
(
dom ((
cosec
*
cot )
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
cosec
*
cot )
`| Z)
= f by
A4,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:44
A
c= Z & (for x st x
in Z holds (f
. x)
= (((1
/ ((
cos
. x)
^2 ))
/ (
cos
. x))
+ (((
tan
. x)
* (
sin
. x))
/ ((
cos
. x)
^2 )))) & Z
c= (
dom (
tan
(#)
sec )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
tan
(#)
sec )
. (
upper_bound A))
- ((
tan
(#)
sec )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= (((1
/ ((
cos
. x)
^2 ))
/ (
cos
. x))
+ (((
tan
. x)
* (
sin
. x))
/ ((
cos
. x)
^2 )))) & Z
c= (
dom (
tan
(#)
sec )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
tan
(#)
sec )
is_differentiable_on Z by
A1,
FDIFF_9: 42;
A4: for x be
Element of
REAL st x
in (
dom ((
tan
(#)
sec )
`| Z)) holds (((
tan
(#)
sec )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
tan
(#)
sec )
`| Z));
then
A5: x
in Z by
A3,
FDIFF_1:def 7;
then (((
tan
(#)
sec )
`| Z)
. x)
= (((1
/ ((
cos
. x)
^2 ))
/ (
cos
. x))
+ (((
tan
. x)
* (
sin
. x))
/ ((
cos
. x)
^2 ))) by
A1,
FDIFF_9: 42
.= (f
. x) by
A1,
A5;
hence thesis;
end;
(
dom ((
tan
(#)
sec )
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
tan
(#)
sec )
`| Z)
= f by
A4,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:45
A
c= Z & (for x st x
in Z holds (f
. x)
= (((1
/ ((
sin
. x)
^2 ))
/ (
cos
. x))
- (((
cot
. x)
* (
sin
. x))
/ ((
cos
. x)
^2 )))) & Z
c= (
dom (
cot
(#)
sec )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
- (
cot
(#)
sec ))
. (
upper_bound A))
- ((
- (
cot
(#)
sec ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= (((1
/ ((
sin
. x)
^2 ))
/ (
cos
. x))
- (((
cot
. x)
* (
sin
. x))
/ ((
cos
. x)
^2 )))) & Z
c= (
dom (
cot
(#)
sec )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
- (
cot
(#)
sec ))
is_differentiable_on Z by
A1,
Th12;
A4: for x be
Element of
REAL st x
in (
dom ((
- (
cot
(#)
sec ))
`| Z)) holds (((
- (
cot
(#)
sec ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
- (
cot
(#)
sec ))
`| Z));
then
A5: x
in Z by
A3,
FDIFF_1:def 7;
then (((
- (
cot
(#)
sec ))
`| Z)
. x)
= (((1
/ ((
sin
. x)
^2 ))
/ (
cos
. x))
- (((
cot
. x)
* (
sin
. x))
/ ((
cos
. x)
^2 ))) by
A1,
Th12
.= (f
. x) by
A1,
A5;
hence thesis;
end;
(
dom ((
- (
cot
(#)
sec ))
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
- (
cot
(#)
sec ))
`| Z)
= f by
A4,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:46
A
c= Z & (for x st x
in Z holds (f
. x)
= (((1
/ ((
cos
. x)
^2 ))
/ (
sin
. x))
- (((
tan
. x)
* (
cos
. x))
/ ((
sin
. x)
^2 )))) & Z
c= (
dom (
tan
(#)
cosec )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
tan
(#)
cosec )
. (
upper_bound A))
- ((
tan
(#)
cosec )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= (((1
/ ((
cos
. x)
^2 ))
/ (
sin
. x))
- (((
tan
. x)
* (
cos
. x))
/ ((
sin
. x)
^2 )))) & Z
c= (
dom (
tan
(#)
cosec )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
tan
(#)
cosec )
is_differentiable_on Z by
A1,
FDIFF_9: 44;
A4: for x be
Element of
REAL st x
in (
dom ((
tan
(#)
cosec )
`| Z)) holds (((
tan
(#)
cosec )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
tan
(#)
cosec )
`| Z));
then
A5: x
in Z by
A3,
FDIFF_1:def 7;
then (((
tan
(#)
cosec )
`| Z)
. x)
= (((1
/ ((
cos
. x)
^2 ))
/ (
sin
. x))
- (((
tan
. x)
* (
cos
. x))
/ ((
sin
. x)
^2 ))) by
A1,
FDIFF_9: 44
.= (f
. x) by
A1,
A5;
hence thesis;
end;
(
dom ((
tan
(#)
cosec )
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
tan
(#)
cosec )
`| Z)
= f by
A4,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:47
A
c= Z & (for x st x
in Z holds (f
. x)
= (((1
/ ((
sin
. x)
^2 ))
/ (
sin
. x))
+ (((
cot
. x)
* (
cos
. x))
/ ((
sin
. x)
^2 )))) & Z
c= (
dom (
cot
(#)
cosec )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
- (
cot
(#)
cosec ))
. (
upper_bound A))
- ((
- (
cot
(#)
cosec ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= (((1
/ ((
sin
. x)
^2 ))
/ (
sin
. x))
+ (((
cot
. x)
* (
cos
. x))
/ ((
sin
. x)
^2 )))) & Z
c= (
dom (
cot
(#)
cosec )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
- (
cot
(#)
cosec ))
is_differentiable_on Z by
A1,
Th13;
A4: for x be
Element of
REAL st x
in (
dom ((
- (
cot
(#)
cosec ))
`| Z)) holds (((
- (
cot
(#)
cosec ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
- (
cot
(#)
cosec ))
`| Z));
then
A5: x
in Z by
A3,
FDIFF_1:def 7;
then (((
- (
cot
(#)
cosec ))
`| Z)
. x)
= (((1
/ ((
sin
. x)
^2 ))
/ (
sin
. x))
+ (((
cot
. x)
* (
cos
. x))
/ ((
sin
. x)
^2 ))) by
A1,
Th13
.= (f
. x) by
A1,
A5;
hence thesis;
end;
(
dom ((
- (
cot
(#)
cosec ))
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
- (
cot
(#)
cosec ))
`| Z)
= f by
A4,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:48
A
c= Z & (for x st x
in Z holds (f
. x)
= ((1
/ ((
cos
. (
cot
. x))
^2 ))
* (1
/ ((
sin
. x)
^2 )))) & Z
c= (
dom (
tan
*
cot )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
- (
tan
*
cot ))
. (
upper_bound A))
- ((
- (
tan
*
cot ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= ((1
/ ((
cos
. (
cot
. x))
^2 ))
* (1
/ ((
sin
. x)
^2 )))) & Z
c= (
dom (
tan
*
cot )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: Z
c= (
dom (
- (
tan
*
cot ))) by
A1,
VALUED_1: 8;
A4: (
tan
*
cot )
is_differentiable_on Z by
A1,
FDIFF_10: 1;
then
A5: ((
- 1)
(#) (
tan
*
cot ))
is_differentiable_on Z by
A3,
FDIFF_1: 20;
A6: for x st x
in Z holds (((
- (
tan
*
cot ))
`| Z)
. x)
= ((1
/ ((
cos
. (
cot
. x))
^2 ))
* (1
/ ((
sin
. x)
^2 )))
proof
let x;
assume
A7: x
in Z;
(((
- (
tan
*
cot ))
`| Z)
. x)
= (((
- 1)
(#) ((
tan
*
cot )
`| Z))
. x) by
A4,
FDIFF_2: 19
.= ((
- 1)
* (((
tan
*
cot )
`| Z)
. x)) by
VALUED_1: 6
.= ((
- 1)
* ((1
/ ((
cos
. (
cot
. x))
^2 ))
* (
- (1
/ ((
sin
. x)
^2 ))))) by
A1,
A7,
FDIFF_10: 1
.= ((1
/ ((
cos
. (
cot
. x))
^2 ))
* (1
/ ((
sin
. x)
^2 )));
hence thesis;
end;
A8: for x be
Element of
REAL st x
in (
dom ((
- (
tan
*
cot ))
`| Z)) holds (((
- (
tan
*
cot ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
- (
tan
*
cot ))
`| Z));
then
A9: x
in Z by
A5,
FDIFF_1:def 7;
then (((
- (
tan
*
cot ))
`| Z)
. x)
= ((1
/ ((
cos
. (
cot
. x))
^2 ))
* (1
/ ((
sin
. x)
^2 ))) by
A6
.= (f
. x) by
A1,
A9;
hence thesis;
end;
(
dom ((
- (
tan
*
cot ))
`| Z))
= (
dom f) by
A1,
A5,
FDIFF_1:def 7;
then ((
- (
tan
*
cot ))
`| Z)
= f by
A8,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A5,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:49
A
c= Z & (for x st x
in Z holds (f
. x)
= ((1
/ ((
cos
. (
tan
. x))
^2 ))
* (1
/ ((
cos
. x)
^2 )))) & Z
c= (
dom (
tan
*
tan )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
tan
*
tan )
. (
upper_bound A))
- ((
tan
*
tan )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= ((1
/ ((
cos
. (
tan
. x))
^2 ))
* (1
/ ((
cos
. x)
^2 )))) & Z
c= (
dom (
tan
*
tan )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
tan
*
tan )
is_differentiable_on Z by
A1,
FDIFF_10: 2;
A4: for x be
Element of
REAL st x
in (
dom ((
tan
*
tan )
`| Z)) holds (((
tan
*
tan )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
tan
*
tan )
`| Z));
then
A5: x
in Z by
A3,
FDIFF_1:def 7;
then (((
tan
*
tan )
`| Z)
. x)
= ((1
/ ((
cos
. (
tan
. x))
^2 ))
* (1
/ ((
cos
. x)
^2 ))) by
A1,
FDIFF_10: 2
.= (f
. x) by
A1,
A5;
hence thesis;
end;
(
dom ((
tan
*
tan )
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
tan
*
tan )
`| Z)
= f by
A4,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:50
A
c= Z & (for x st x
in Z holds (f
. x)
= ((1
/ ((
sin
. (
cot
. x))
^2 ))
* (1
/ ((
sin
. x)
^2 )))) & Z
c= (
dom (
cot
*
cot )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
cot
*
cot )
. (
upper_bound A))
- ((
cot
*
cot )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= ((1
/ ((
sin
. (
cot
. x))
^2 ))
* (1
/ ((
sin
. x)
^2 )))) & Z
c= (
dom (
cot
*
cot )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
cot
*
cot )
is_differentiable_on Z by
A1,
FDIFF_10: 3;
A4: for x be
Element of
REAL st x
in (
dom ((
cot
*
cot )
`| Z)) holds (((
cot
*
cot )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
cot
*
cot )
`| Z));
then
A5: x
in Z by
A3,
FDIFF_1:def 7;
then (((
cot
*
cot )
`| Z)
. x)
= ((1
/ ((
sin
. (
cot
. x))
^2 ))
* (1
/ ((
sin
. x)
^2 ))) by
A1,
FDIFF_10: 3
.= (f
. x) by
A1,
A5;
hence thesis;
end;
(
dom ((
cot
*
cot )
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
cot
*
cot )
`| Z)
= f by
A4,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:51
A
c= Z & (for x st x
in Z holds (f
. x)
= ((1
/ ((
sin
. (
tan
. x))
^2 ))
* (1
/ ((
cos
. x)
^2 )))) & Z
c= (
dom (
cot
*
tan )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
- (
cot
*
tan ))
. (
upper_bound A))
- ((
- (
cot
*
tan ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= ((1
/ ((
sin
. (
tan
. x))
^2 ))
* (1
/ ((
cos
. x)
^2 )))) & Z
c= (
dom (
cot
*
tan )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: Z
c= (
dom (
- (
cot
*
tan ))) by
A1,
VALUED_1: 8;
A4: (
cot
*
tan )
is_differentiable_on Z by
A1,
FDIFF_10: 4;
then
A5: ((
- 1)
(#) (
cot
*
tan ))
is_differentiable_on Z by
A3,
FDIFF_1: 20;
A6: for x st x
in Z holds (((
- (
cot
*
tan ))
`| Z)
. x)
= ((1
/ ((
sin
. (
tan
. x))
^2 ))
* (1
/ ((
cos
. x)
^2 )))
proof
let x;
assume
A7: x
in Z;
(((
- (
cot
*
tan ))
`| Z)
. x)
= (((
- 1)
(#) ((
cot
*
tan )
`| Z))
. x) by
A4,
FDIFF_2: 19
.= ((
- 1)
* (((
cot
*
tan )
`| Z)
. x)) by
VALUED_1: 6
.= ((
- 1)
* ((
- (1
/ ((
sin
. (
tan
. x))
^2 )))
* (1
/ ((
cos
. x)
^2 )))) by
A1,
A7,
FDIFF_10: 4
.= ((1
/ ((
sin
. (
tan
. x))
^2 ))
* (1
/ ((
cos
. x)
^2 )));
hence thesis;
end;
A8: for x be
Element of
REAL st x
in (
dom ((
- (
cot
*
tan ))
`| Z)) holds (((
- (
cot
*
tan ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
- (
cot
*
tan ))
`| Z));
then
A9: x
in Z by
A5,
FDIFF_1:def 7;
then (((
- (
cot
*
tan ))
`| Z)
. x)
= ((1
/ ((
sin
. (
tan
. x))
^2 ))
* (1
/ ((
cos
. x)
^2 ))) by
A6
.= (f
. x) by
A1,
A9;
hence thesis;
end;
(
dom ((
- (
cot
*
tan ))
`| Z))
= (
dom f) by
A1,
A5,
FDIFF_1:def 7;
then ((
- (
cot
*
tan ))
`| Z)
= f by
A8,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A5,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:52
A
c= Z & (for x st x
in Z holds (f
. x)
= ((1
/ ((
cos
. x)
^2 ))
+ (1
/ ((
sin
. x)
^2 )))) & Z
c= (
dom (
tan
-
cot )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
tan
-
cot )
. (
upper_bound A))
- ((
tan
-
cot )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= ((1
/ ((
cos
. x)
^2 ))
+ (1
/ ((
sin
. x)
^2 )))) & Z
c= (
dom (
tan
-
cot )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
tan
-
cot )
is_differentiable_on Z by
A1,
FDIFF_10: 5;
A4: for x be
Element of
REAL st x
in (
dom ((
tan
-
cot )
`| Z)) holds (((
tan
-
cot )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
tan
-
cot )
`| Z));
then
A5: x
in Z by
A3,
FDIFF_1:def 7;
then (((
tan
-
cot )
`| Z)
. x)
= ((1
/ ((
cos
. x)
^2 ))
+ (1
/ ((
sin
. x)
^2 ))) by
A1,
FDIFF_10: 5
.= (f
. x) by
A1,
A5;
hence thesis;
end;
(
dom ((
tan
-
cot )
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
tan
-
cot )
`| Z)
= f by
A4,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:53
A
c= Z & (for x st x
in Z holds (f
. x)
= ((1
/ ((
cos
. x)
^2 ))
- (1
/ ((
sin
. x)
^2 )))) & Z
c= (
dom (
tan
+
cot )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
tan
+
cot )
. (
upper_bound A))
- ((
tan
+
cot )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= ((1
/ ((
cos
. x)
^2 ))
- (1
/ ((
sin
. x)
^2 )))) & Z
c= (
dom (
tan
+
cot )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
tan
+
cot )
is_differentiable_on Z by
A1,
FDIFF_10: 6;
A4: for x be
Element of
REAL st x
in (
dom ((
tan
+
cot )
`| Z)) holds (((
tan
+
cot )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
tan
+
cot )
`| Z));
then
A5: x
in Z by
A3,
FDIFF_1:def 7;
then (((
tan
+
cot )
`| Z)
. x)
= ((1
/ ((
cos
. x)
^2 ))
- (1
/ ((
sin
. x)
^2 ))) by
A1,
FDIFF_10: 6
.= (f
. x) by
A1,
A5;
hence thesis;
end;
(
dom ((
tan
+
cot )
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
tan
+
cot )
`| Z)
= f by
A4,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:54
A
c= Z & (for x st x
in Z holds (f
. x)
= ((
cos
. (
sin
. x))
* (
cos
. x))) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
sin
*
sin )
. (
upper_bound A))
- ((
sin
*
sin )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= ((
cos
. (
sin
. x))
* (
cos
. x))) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
sin
*
sin )
is_differentiable_on Z by
FDIFF_10: 7;
A4: for x be
Element of
REAL st x
in (
dom ((
sin
*
sin )
`| Z)) holds (((
sin
*
sin )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
sin
*
sin )
`| Z));
then
A5: x
in Z by
A3,
FDIFF_1:def 7;
then (((
sin
*
sin )
`| Z)
. x)
= ((
cos
. (
sin
. x))
* (
cos
. x)) by
FDIFF_10: 7
.= (f
. x) by
A1,
A5;
hence thesis;
end;
(
dom ((
sin
*
sin )
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
sin
*
sin )
`| Z)
= f by
A4,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:55
A
c= Z & (for x st x
in Z holds (f
. x)
= ((
cos
. (
cos
. x))
* (
sin
. x))) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
- (
sin
*
cos ))
. (
upper_bound A))
- ((
- (
sin
*
cos ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= ((
cos
. (
cos
. x))
* (
sin
. x))) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
(
dom
cos )
=
REAL & (
rng
cos )
c= (
dom
cos ) & (
dom
sin )
= (
dom
cos ) by
SIN_COS: 24;
then (
dom (
sin
*
cos ))
=
REAL by
RELAT_1: 27;
then
A3: (
dom (
- (
sin
*
cos )))
=
REAL by
VALUED_1: 8;
A4: (
sin
*
cos )
is_differentiable_on Z by
FDIFF_10: 8;
then
A5: ((
- 1)
(#) (
sin
*
cos ))
is_differentiable_on Z by
A3,
FDIFF_1: 20;
A6: for x st x
in Z holds (((
- (
sin
*
cos ))
`| Z)
. x)
= ((
cos
. (
cos
. x))
* (
sin
. x))
proof
let x;
assume
A7: x
in Z;
(((
- (
sin
*
cos ))
`| Z)
. x)
= (((
- 1)
(#) ((
sin
*
cos )
`| Z))
. x) by
A4,
FDIFF_2: 19
.= ((
- 1)
* (((
sin
*
cos )
`| Z)
. x)) by
VALUED_1: 6
.= ((
- 1)
* (
- ((
cos
. (
cos
. x))
* (
sin
. x)))) by
A7,
FDIFF_10: 8
.= ((
cos
. (
cos
. x))
* (
sin
. x));
hence thesis;
end;
A8: for x be
Element of
REAL st x
in (
dom ((
- (
sin
*
cos ))
`| Z)) holds (((
- (
sin
*
cos ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
- (
sin
*
cos ))
`| Z));
then
A9: x
in Z by
A5,
FDIFF_1:def 7;
then (((
- (
sin
*
cos ))
`| Z)
. x)
= ((
cos
. (
cos
. x))
* (
sin
. x)) by
A6
.= (f
. x) by
A1,
A9;
hence thesis;
end;
(
dom ((
- (
sin
*
cos ))
`| Z))
= (
dom f) by
A1,
A5,
FDIFF_1:def 7;
then ((
- (
sin
*
cos ))
`| Z)
= f by
A8,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A5,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:56
A
c= Z & (for x st x
in Z holds (f
. x)
= ((
sin
. (
sin
. x))
* (
cos
. x))) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
- (
cos
*
sin ))
. (
upper_bound A))
- ((
- (
cos
*
sin ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= ((
sin
. (
sin
. x))
* (
cos
. x))) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
dom
sin )
=
REAL by
SIN_COS: 24;
(
rng
sin )
c= (
dom
sin ) & (
dom
sin )
= (
dom
cos ) by
SIN_COS: 24;
then (
dom (
cos
*
sin ))
=
REAL by
A3,
RELAT_1: 27;
then
A4: (
dom (
- (
cos
*
sin )))
=
REAL by
VALUED_1: 8;
A5: (
cos
*
sin )
is_differentiable_on Z by
FDIFF_10: 9;
then
A6: ((
- 1)
(#) (
cos
*
sin ))
is_differentiable_on Z by
A4,
FDIFF_1: 20;
A7: for x st x
in Z holds (((
- (
cos
*
sin ))
`| Z)
. x)
= ((
sin
. (
sin
. x))
* (
cos
. x))
proof
let x;
assume
A8: x
in Z;
(((
- (
cos
*
sin ))
`| Z)
. x)
= (((
- 1)
(#) ((
cos
*
sin )
`| Z))
. x) by
A5,
FDIFF_2: 19
.= ((
- 1)
* (((
cos
*
sin )
`| Z)
. x)) by
VALUED_1: 6
.= ((
- 1)
* (
- ((
sin
. (
sin
. x))
* (
cos
. x)))) by
A8,
FDIFF_10: 9
.= ((
sin
. (
sin
. x))
* (
cos
. x));
hence thesis;
end;
A9: for x be
Element of
REAL st x
in (
dom ((
- (
cos
*
sin ))
`| Z)) holds (((
- (
cos
*
sin ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
- (
cos
*
sin ))
`| Z));
then
A10: x
in Z by
A6,
FDIFF_1:def 7;
then (((
- (
cos
*
sin ))
`| Z)
. x)
= ((
sin
. (
sin
. x))
* (
cos
. x)) by
A7
.= (f
. x) by
A1,
A10;
hence thesis;
end;
(
dom ((
- (
cos
*
sin ))
`| Z))
= (
dom f) by
A1,
A6,
FDIFF_1:def 7;
then ((
- (
cos
*
sin ))
`| Z)
= f by
A9,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A6,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:57
A
c= Z & (for x st x
in Z holds (f
. x)
= ((
sin
. (
cos
. x))
* (
sin
. x))) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
cos
*
cos )
. (
upper_bound A))
- ((
cos
*
cos )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= ((
sin
. (
cos
. x))
* (
sin
. x))) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
cos
*
cos )
is_differentiable_on Z by
FDIFF_10: 10;
A4: for x be
Element of
REAL st x
in (
dom ((
cos
*
cos )
`| Z)) holds (((
cos
*
cos )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
cos
*
cos )
`| Z));
then
A5: x
in Z by
A3,
FDIFF_1:def 7;
then (((
cos
*
cos )
`| Z)
. x)
= ((
sin
. (
cos
. x))
* (
sin
. x)) by
FDIFF_10: 10
.= (f
. x) by
A1,
A5;
hence thesis;
end;
(
dom ((
cos
*
cos )
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
cos
*
cos )
`| Z)
= f by
A4,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:58
A
c= Z & (for x st x
in Z holds (f
. x)
= ((
cos
. x)
+ ((
cos
. x)
/ ((
sin
. x)
^2 )))) & Z
c= (
dom (
cos
(#)
cot )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
- (
cos
(#)
cot ))
. (
upper_bound A))
- ((
- (
cos
(#)
cot ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= ((
cos
. x)
+ ((
cos
. x)
/ ((
sin
. x)
^2 )))) & Z
c= (
dom (
cos
(#)
cot )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
- (
cos
(#)
cot ))
is_differentiable_on Z by
A1,
Th14;
A4: for x be
Element of
REAL st x
in (
dom ((
- (
cos
(#)
cot ))
`| Z)) holds (((
- (
cos
(#)
cot ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
- (
cos
(#)
cot ))
`| Z));
then
A5: x
in Z by
A3,
FDIFF_1:def 7;
then (((
- (
cos
(#)
cot ))
`| Z)
. x)
= ((
cos
. x)
+ ((
cos
. x)
/ ((
sin
. x)
^2 ))) by
A1,
Th14
.= (f
. x) by
A1,
A5;
hence thesis;
end;
(
dom ((
- (
cos
(#)
cot ))
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
- (
cos
(#)
cot ))
`| Z)
= f by
A4,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13;
end;
theorem ::
INTEGR14:59
A
c= Z & (for x st x
in Z holds (f
. x)
= ((
sin
. x)
+ ((
sin
. x)
/ ((
cos
. x)
^2 )))) & Z
c= (
dom (
sin
(#)
tan )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
sin
(#)
tan )
. (
upper_bound A))
- ((
sin
(#)
tan )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= ((
sin
. x)
+ ((
sin
. x)
/ ((
cos
. x)
^2 )))) & Z
c= (
dom (
sin
(#)
tan )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
sin
(#)
tan )
is_differentiable_on Z by
A1,
FDIFF_10: 12;
A4: for x be
Element of
REAL st x
in (
dom ((
sin
(#)
tan )
`| Z)) holds (((
sin
(#)
tan )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
sin
(#)
tan )
`| Z));
then
A5: x
in Z by
A3,
FDIFF_1:def 7;
then (((
sin
(#)
tan )
`| Z)
. x)
= ((
sin
. x)
+ ((
sin
. x)
/ ((
cos
. x)
^2 ))) by
A1,
FDIFF_10: 12
.= (f
. x) by
A1,
A5;
hence thesis;
end;
(
dom ((
sin
(#)
tan )
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
sin
(#)
tan )
`| Z)
= f by
A4,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
INTEGRA5: 13;
end;