measur12.miz
    
    begin
    
    theorem :: 
    
    MEASUR12:1
    
    
    
    
    
    Th1: for A,B be non 
    empty  
    Interval st A is 
    open_interval & B is 
    open_interval & (A 
    \/ B) is 
    Interval holds (A 
    \/ B) is 
    open_interval & A 
    meets B & (( 
    inf A) 
    < ( 
    sup B) or ( 
    inf B) 
    < ( 
    sup A)) 
    
    proof
    
      let A,B be non
    empty  
    Interval;
    
      assume that
    
      
    
    A1: A is 
    open_interval and 
    
      
    
    A2: B is 
    open_interval and 
    
      
    
    A3: (A 
    \/ B) is 
    Interval;
    
      ex a1,a2 be
    R_eal st A 
    =  
    ].a1, a2.[ by
    A1,
    MEASURE5:def 2;
    
      then
    
      
    
    A4: A 
    =  
    ].(
    inf A), ( 
    sup A).[ by 
    XXREAL_2: 78;
    
      ex b1,b2 be
    R_eal st B 
    =  
    ].b1, b2.[ by
    A2,
    MEASURE5:def 2;
    
      then
    
      
    
    A5: B 
    =  
    ].(
    inf B), ( 
    sup B).[ by 
    XXREAL_2: 78;
    
      
    
      
    
    A6: ( 
    inf (A 
    \/ B)) 
    = ( 
    min (( 
    inf A),( 
    inf B))) by 
    XXREAL_2: 9;
    
      
    
      
    
    A7: ( 
    sup (A 
    \/ B)) 
    = ( 
    max (( 
    sup A),( 
    sup B))) by 
    XXREAL_2: 10;
    
      per cases ;
    
        suppose
    
        
    
    A8: ( 
    inf A) 
    <= ( 
    inf B); 
    
        then
    
        
    
    A9: ( 
    inf (A 
    \/ B)) 
    = ( 
    inf A) by 
    A6,
    XXREAL_0:def 9;
    
        per cases ;
    
          suppose
    
          
    
    A10: ( 
    sup A) 
    <= ( 
    sup B); 
    
          then
    
          
    
    A11: (A 
    \/ B) 
    = ( 
    ].(
    inf A), ( 
    sup B).[ 
    \  
    [.(
    sup A), ( 
    inf B).]) by 
    A4,
    A5,
    A8,
    XXREAL_1: 309;
    
          
    
          
    
    A12: ( 
    sup (A 
    \/ B)) 
    = ( 
    sup B) by 
    A7,
    A10,
    XXREAL_0:def 10;
    
          
    
    A13: 
    
          now
    
            assume (
    sup A) 
    <= ( 
    inf B); 
    
            then
    [.(
    sup A), ( 
    inf B).] is non 
    empty by 
    XXREAL_1: 30;
    
            then
    
            consider x be
    ExtReal such that 
    
            
    
    A14: x 
    in  
    [.(
    sup A), ( 
    inf B).] by 
    MEMBERED: 8;
    
            (
    sup A) 
    <= x & x 
    <= ( 
    inf B) by 
    A14,
    XXREAL_1: 1;
    
            then (
    inf A) 
    < x & x 
    < ( 
    sup B) by 
    A4,
    A5,
    XXREAL_1: 28,
    XXREAL_0: 2;
    
            then x
    in (A 
    \/ B) by 
    A3,
    A9,
    A12,
    XXREAL_2: 83;
    
            hence contradiction by
    A11,
    A14,
    XBOOLE_0:def 5;
    
          end;
    
          then
    [.(
    sup A), ( 
    inf B).] 
    =  
    {} by 
    XXREAL_1: 29;
    
          hence (A
    \/ B) is 
    open_interval by 
    A11,
    MEASURE5:def 2;
    
          
    ].(
    inf B), ( 
    sup A).[ 
    <>  
    {} by 
    A13,
    XXREAL_1: 33;
    
          then
    
          consider y be
    ExtReal such that 
    
          
    
    A15: y 
    in  
    ].(
    inf B), ( 
    sup A).[ by 
    MEMBERED: 8;
    
          (
    inf B) 
    < y 
    < ( 
    sup A) by 
    A15,
    XXREAL_1: 4;
    
          then (
    inf A) 
    < y 
    < ( 
    sup A) & ( 
    inf B) 
    < y 
    < ( 
    sup B) by 
    A8,
    A10,
    XXREAL_0: 2;
    
          then y
    in A & y 
    in B by 
    A4,
    A5,
    XXREAL_1: 4;
    
          hence A
    meets B by 
    XBOOLE_0: 3;
    
          thus (
    inf A) 
    < ( 
    sup B) or ( 
    inf B) 
    < ( 
    sup A) by 
    A13;
    
        end;
    
          suppose (
    sup A) 
    > ( 
    sup B); 
    
          hence thesis by
    A1,
    A4,
    A5,
    A8,
    XXREAL_1: 28,
    XXREAL_1: 46,
    XBOOLE_1: 12,
    XBOOLE_1: 69,
    XXREAL_0: 2;
    
        end;
    
      end;
    
        suppose
    
        
    
    A16: ( 
    inf A) 
    > ( 
    inf B); 
    
        then
    
        
    
    A17: ( 
    inf (A 
    \/ B)) 
    = ( 
    inf B) by 
    A6,
    XXREAL_0:def 9;
    
        per cases ;
    
          suppose (
    sup A) 
    <= ( 
    sup B); 
    
          hence thesis by
    A2,
    A4,
    A5,
    A16,
    XXREAL_1: 28,
    XXREAL_1: 46,
    XBOOLE_1: 12,
    XBOOLE_1: 69,
    XXREAL_0: 2;
    
        end;
    
          suppose
    
          
    
    A18: ( 
    sup A) 
    > ( 
    sup B); 
    
          then
    
          
    
    A19: (A 
    \/ B) 
    = ( 
    ].(
    inf B), ( 
    sup A).[ 
    \  
    [.(
    sup B), ( 
    inf A).]) by 
    A4,
    A5,
    A16,
    XXREAL_1: 309;
    
          
    
          
    
    A20: ( 
    sup (A 
    \/ B)) 
    = ( 
    sup A) by 
    A7,
    A18,
    XXREAL_0:def 10;
    
          
    
    A21: 
    
          now
    
            assume (
    sup B) 
    <= ( 
    inf A); 
    
            then
    [.(
    sup B), ( 
    inf A).] is non 
    empty by 
    XXREAL_1: 30;
    
            then
    
            consider x be
    ExtReal such that 
    
            
    
    A22: x 
    in  
    [.(
    sup B), ( 
    inf A).] by 
    MEMBERED: 8;
    
            (
    sup B) 
    <= x & x 
    <= ( 
    inf A) by 
    A22,
    XXREAL_1: 1;
    
            then (
    inf B) 
    < x & x 
    < ( 
    sup A) by 
    A4,
    A5,
    XXREAL_1: 28,
    XXREAL_0: 2;
    
            then x
    in (A 
    \/ B) by 
    A3,
    A17,
    A20,
    XXREAL_2: 83;
    
            hence contradiction by
    A19,
    A22,
    XBOOLE_0:def 5;
    
          end;
    
          then
    [.(
    sup B), ( 
    inf A).] 
    =  
    {} by 
    XXREAL_1: 29;
    
          hence (A
    \/ B) is 
    open_interval by 
    A19,
    MEASURE5:def 2;
    
          
    ].(
    inf A), ( 
    sup B).[ 
    <>  
    {} by 
    A21,
    XXREAL_1: 33;
    
          then
    
          consider y be
    ExtReal such that 
    
          
    
    A23: y 
    in  
    ].(
    inf A), ( 
    sup B).[ by 
    MEMBERED: 8;
    
          (
    inf A) 
    < y 
    < ( 
    sup B) by 
    A23,
    XXREAL_1: 4;
    
          then (
    inf B) 
    < y 
    < ( 
    sup B) & ( 
    inf A) 
    < y 
    < ( 
    sup A) by 
    A16,
    A18,
    XXREAL_0: 2;
    
          then y
    in A & y 
    in B by 
    A4,
    A5,
    XXREAL_1: 4;
    
          hence A
    meets B by 
    XBOOLE_0: 3;
    
          thus (
    inf A) 
    < ( 
    sup B) or ( 
    inf B) 
    < ( 
    sup A) by 
    A21;
    
        end;
    
      end;
    
    end;
    
    theorem :: 
    
    MEASUR12:2
    
    
    
    
    
    Th2: for A,B be 
    open_interval  
    Subset of 
    REAL st A 
    meets B holds (A 
    \/ B) is 
    open_interval  
    Subset of 
    REAL  
    
    proof
    
      let A,B be
    open_interval  
    Subset of 
    REAL ; 
    
      assume A
    meets B; 
    
      then A
    <>  
    {} & B 
    <>  
    {} & (A 
    \/ B) is 
    interval by 
    XBOOLE_1: 65,
    XXREAL_2: 89;
    
      hence (A
    \/ B) is 
    open_interval  
    Subset of 
    REAL by 
    Th1;
    
    end;
    
    
    
    
    
    Lm1: for A be 
    closed_interval  
    Subset of 
    REAL , B,C be 
    open_interval  
    Subset of 
    REAL st A 
    c= (B 
    \/ C) & A 
    meets B & A 
    meets C holds B 
    meets C 
    
    proof
    
      let A be
    closed_interval  
    Subset of 
    REAL , B,C be 
    open_interval  
    Subset of 
    REAL ; 
    
      assume that
    
      
    
    A1: A 
    c= (B 
    \/ C) and 
    
      
    
    A2: A 
    meets B and 
    
      
    
    A3: A 
    meets C; 
    
      per cases ;
    
        suppose A
    c= B or A 
    c= C; 
    
        then ex x be
    object st x 
    in A & x 
    in (B 
    /\ C) by 
    A2,
    A3,
    XBOOLE_1: 77,
    XBOOLE_0: 3;
    
        hence B
    meets C by 
    XBOOLE_0: 4;
    
      end;
    
        suppose
    
        
    
    A4: not A 
    c= B & not A 
    c= C; 
    
        
    
        
    
    A5: A 
    <>  
    {} & B 
    <>  
    {} & C 
    <>  
    {} by 
    A2,
    A3,
    XBOOLE_1: 65;
    
        then
    
        consider a1,a2 be
    Real such that 
    
        
    
    A6: a1 
    <= a2 & A 
    =  
    [.a1, a2.] by
    MEASURE5: 14;
    
        consider b1,b2 be
    R_eal such that 
    
        
    
    A7: B 
    =  
    ].b1, b2.[ by
    MEASURE5:def 2;
    
        consider c1,c2 be
    R_eal such that 
    
        
    
    A8: C 
    =  
    ].c1, c2.[ by
    MEASURE5:def 2;
    
        
    
        
    
    A9: b1 
    < a2 & a1 
    < b2 by 
    A2,
    A6,
    A7,
    XXREAL_1: 89,
    XXREAL_1: 93;
    
        per cases by
    A4,
    A6,
    A7,
    XXREAL_1: 47;
    
          suppose a1
    <= b1; 
    
          then
    
          
    
    A10: b1 
    in (B 
    \/ C) by 
    A1,
    A6,
    A9,
    XXREAL_1: 1;
    
           not b1
    in B by 
    A7,
    XXREAL_1: 4;
    
          then b1
    in C by 
    A10,
    XBOOLE_0:def 3;
    
          then
    
          
    
    A11: c1 
    < b1 & b1 
    < c2 by 
    A8,
    XXREAL_1: 4;
    
          then
    
          consider x be
    Real such that 
    
          
    
    A12: b1 
    < x & x 
    < c2 by 
    XXREAL_3: 3;
    
          per cases ;
    
            suppose b2
    < c2; 
    
            hence B
    meets C by 
    A5,
    A7,
    A8,
    A11,
    XXREAL_1: 46,
    XBOOLE_1: 69;
    
          end;
    
            suppose c2
    <= b2; 
    
            then x
    < b2 & c1 
    < x by 
    A11,
    A12,
    XXREAL_0: 2;
    
            then x
    in B & x 
    in C by 
    A7,
    A8,
    A12,
    XXREAL_1: 4;
    
            hence B
    meets C by 
    XBOOLE_0: 3;
    
          end;
    
        end;
    
          suppose b2
    <= a2; 
    
          then
    
          
    
    A13: b2 
    in (B 
    \/ C) by 
    A1,
    A6,
    A9,
    XXREAL_1: 1;
    
           not b2
    in B by 
    A7,
    XXREAL_1: 4;
    
          then b2
    in C by 
    A13,
    XBOOLE_0:def 3;
    
          then
    
          
    
    A14: c1 
    < b2 & b2 
    < c2 by 
    A8,
    XXREAL_1: 4;
    
          then
    
          consider x be
    Real such that 
    
          
    
    A15: c1 
    < x & x 
    < b2 by 
    XXREAL_3: 3;
    
          per cases ;
    
            suppose c1
    < b1; 
    
            hence B
    meets C by 
    A5,
    A7,
    A8,
    A14,
    XXREAL_1: 46,
    XBOOLE_1: 69;
    
          end;
    
            suppose b1
    <= c1; 
    
            then b1
    < x & x 
    < c2 by 
    A14,
    A15,
    XXREAL_0: 2;
    
            then x
    in B & x 
    in C by 
    A7,
    A8,
    A15,
    XXREAL_1: 4;
    
            hence B
    meets C by 
    XBOOLE_0: 3;
    
          end;
    
        end;
    
      end;
    
    end;
    
    
    
    
    
    Lm2: for A be 
    open_interval  
    Subset of 
    REAL , B,C be 
    open_interval  
    Subset of 
    REAL st A 
    c= (B 
    \/ C) & A 
    meets B & A 
    meets C holds B 
    meets C 
    
    proof
    
      let A be
    open_interval  
    Subset of 
    REAL , B,C be 
    open_interval  
    Subset of 
    REAL ; 
    
      assume that
    
      
    
    A1: A 
    c= (B 
    \/ C) and 
    
      
    
    A2: A 
    meets B and 
    
      
    
    A3: A 
    meets C; 
    
      per cases ;
    
        suppose A
    c= B or A 
    c= C; 
    
        then ex x be
    object st x 
    in A & x 
    in (B 
    /\ C) by 
    A2,
    A3,
    XBOOLE_1: 77,
    XBOOLE_0: 3;
    
        hence B
    meets C by 
    XBOOLE_0: 4;
    
      end;
    
        suppose
    
        
    
    A4: not A 
    c= B & not A 
    c= C; 
    
        
    
        
    
    A5: A 
    <>  
    {} & B 
    <>  
    {} & C 
    <>  
    {} by 
    A2,
    A3,
    XBOOLE_1: 65;
    
        consider a1,a2 be
    R_eal such that 
    
        
    
    A6: A 
    =  
    ].a1, a2.[ by
    MEASURE5:def 2;
    
        consider b1,b2 be
    R_eal such that 
    
        
    
    A7: B 
    =  
    ].b1, b2.[ by
    MEASURE5:def 2;
    
        consider c1,c2 be
    R_eal such that 
    
        
    
    A8: C 
    =  
    ].c1, c2.[ by
    MEASURE5:def 2;
    
        
    
        
    
    A9: b1 
    < a2 & a1 
    < b2 by 
    A2,
    A6,
    A7,
    XXREAL_1: 275;
    
        per cases by
    A4,
    A6,
    A7,
    XXREAL_1: 46;
    
          suppose a1
    < b1; 
    
          then
    
          
    
    A10: b1 
    in (B 
    \/ C) by 
    A1,
    A6,
    A9,
    XXREAL_1: 4;
    
           not b1
    in B by 
    A7,
    XXREAL_1: 4;
    
          then b1
    in C by 
    A10,
    XBOOLE_0:def 3;
    
          then
    
          
    
    A11: c1 
    < b1 & b1 
    < c2 by 
    A8,
    XXREAL_1: 4;
    
          then
    
          consider x be
    Real such that 
    
          
    
    A12: b1 
    < x & x 
    < c2 by 
    XXREAL_3: 3;
    
          per cases ;
    
            suppose b2
    < c2; 
    
            hence B
    meets C by 
    A5,
    A7,
    A8,
    A11,
    XXREAL_1: 46,
    XBOOLE_1: 69;
    
          end;
    
            suppose c2
    <= b2; 
    
            then x
    < b2 & c1 
    < x by 
    A11,
    A12,
    XXREAL_0: 2;
    
            then x
    in B & x 
    in C by 
    A7,
    A8,
    A12,
    XXREAL_1: 4;
    
            hence B
    meets C by 
    XBOOLE_0: 3;
    
          end;
    
        end;
    
          suppose b2
    < a2; 
    
          then
    
          
    
    A13: b2 
    in (B 
    \/ C) by 
    A1,
    A6,
    A9,
    XXREAL_1: 4;
    
           not b2
    in B by 
    A7,
    XXREAL_1: 4;
    
          then b2
    in C by 
    A13,
    XBOOLE_0:def 3;
    
          then
    
          
    
    A14: c1 
    < b2 & b2 
    < c2 by 
    A8,
    XXREAL_1: 4;
    
          then
    
          consider x be
    Real such that 
    
          
    
    A15: c1 
    < x & x 
    < b2 by 
    XXREAL_3: 3;
    
          per cases ;
    
            suppose c1
    < b1; 
    
            hence B
    meets C by 
    A5,
    A7,
    A8,
    A14,
    XXREAL_1: 46,
    XBOOLE_1: 69;
    
          end;
    
            suppose b1
    <= c1; 
    
            then b1
    < x & x 
    < c2 by 
    A14,
    A15,
    XXREAL_0: 2;
    
            then x
    in B & x 
    in C by 
    A7,
    A8,
    A15,
    XXREAL_1: 4;
    
            hence B
    meets C by 
    XBOOLE_0: 3;
    
          end;
    
        end;
    
      end;
    
    end;
    
    
    
    
    
    Lm3: for A be 
    right_open_interval  
    Subset of 
    REAL , B,C be 
    open_interval  
    Subset of 
    REAL st A 
    c= (B 
    \/ C) & A 
    meets B & A 
    meets C holds B 
    meets C 
    
    proof
    
      let A be
    right_open_interval  
    Subset of 
    REAL , B,C be 
    open_interval  
    Subset of 
    REAL ; 
    
      assume that
    
      
    
    A1: A 
    c= (B 
    \/ C) and 
    
      
    
    A2: A 
    meets B and 
    
      
    
    A3: A 
    meets C; 
    
      per cases ;
    
        suppose A
    c= B or A 
    c= C; 
    
        then ex x be
    object st x 
    in A & x 
    in (B 
    /\ C) by 
    A2,
    A3,
    XBOOLE_1: 77,
    XBOOLE_0: 3;
    
        hence B
    meets C by 
    XBOOLE_0: 4;
    
      end;
    
        suppose
    
        
    
    A4: not A 
    c= B & not A 
    c= C; 
    
        
    
        
    
    A5: A 
    <>  
    {} & B 
    <>  
    {} & C 
    <>  
    {} by 
    A2,
    A3,
    XBOOLE_1: 65;
    
        consider a1 be
    Real, a2 be 
    R_eal such that 
    
        
    
    A6: A 
    =  
    [.a1, a2.[ by
    MEASURE5:def 4;
    
        consider b1,b2 be
    R_eal such that 
    
        
    
    A7: B 
    =  
    ].b1, b2.[ by
    MEASURE5:def 2;
    
        consider c1,c2 be
    R_eal such that 
    
        
    
    A8: C 
    =  
    ].c1, c2.[ by
    MEASURE5:def 2;
    
        
    
        
    
    A9: b1 
    < a2 & a1 
    < b2 by 
    A2,
    A6,
    A7,
    XXREAL_1: 94,
    XXREAL_1: 273;
    
        per cases by
    A4,
    A6,
    A7,
    XXREAL_1: 48;
    
          suppose a1
    <= b1; 
    
          then
    
          
    
    A10: b1 
    in (B 
    \/ C) by 
    A1,
    A6,
    A9,
    XXREAL_1: 3;
    
           not b1
    in B by 
    A7,
    XXREAL_1: 4;
    
          then b1
    in C by 
    A10,
    XBOOLE_0:def 3;
    
          then
    
          
    
    A11: c1 
    < b1 & b1 
    < c2 by 
    A8,
    XXREAL_1: 4;
    
          then
    
          consider x be
    Real such that 
    
          
    
    A12: b1 
    < x & x 
    < c2 by 
    XXREAL_3: 3;
    
          per cases ;
    
            suppose b2
    < c2; 
    
            hence B
    meets C by 
    A5,
    A7,
    A8,
    A11,
    XXREAL_1: 46,
    XBOOLE_1: 69;
    
          end;
    
            suppose c2
    <= b2; 
    
            then x
    < b2 & c1 
    < x by 
    A11,
    A12,
    XXREAL_0: 2;
    
            then x
    in B & x 
    in C by 
    A7,
    A8,
    A12,
    XXREAL_1: 4;
    
            hence B
    meets C by 
    XBOOLE_0: 3;
    
          end;
    
        end;
    
          suppose b2
    < a2; 
    
          then
    
          
    
    A13: b2 
    in (B 
    \/ C) by 
    A1,
    A6,
    A9,
    XXREAL_1: 3;
    
           not b2
    in B by 
    A7,
    XXREAL_1: 4;
    
          then b2
    in C by 
    A13,
    XBOOLE_0:def 3;
    
          then
    
          
    
    A14: c1 
    < b2 & b2 
    < c2 by 
    A8,
    XXREAL_1: 4;
    
          then
    
          consider x be
    Real such that 
    
          
    
    A15: c1 
    < x & x 
    < b2 by 
    XXREAL_3: 3;
    
          per cases ;
    
            suppose c1
    < b1; 
    
            hence B
    meets C by 
    A5,
    A7,
    A8,
    A14,
    XXREAL_1: 46,
    XBOOLE_1: 69;
    
          end;
    
            suppose b1
    <= c1; 
    
            then b1
    < x & x 
    < c2 by 
    A14,
    A15,
    XXREAL_0: 2;
    
            then x
    in B & x 
    in C by 
    A7,
    A8,
    A15,
    XXREAL_1: 4;
    
            hence B
    meets C by 
    XBOOLE_0: 3;
    
          end;
    
        end;
    
      end;
    
    end;
    
    
    
    
    
    Lm4: for A be 
    left_open_interval  
    Subset of 
    REAL , B,C be 
    open_interval  
    Subset of 
    REAL st A 
    c= (B 
    \/ C) & A 
    meets B & A 
    meets C holds B 
    meets C 
    
    proof
    
      let A be
    left_open_interval  
    Subset of 
    REAL , B,C be 
    open_interval  
    Subset of 
    REAL ; 
    
      assume that
    
      
    
    A1: A 
    c= (B 
    \/ C) and 
    
      
    
    A2: A 
    meets B and 
    
      
    
    A3: A 
    meets C; 
    
      per cases ;
    
        suppose A
    c= B or A 
    c= C; 
    
        then ex x be
    object st x 
    in A & x 
    in (B 
    /\ C) by 
    A2,
    A3,
    XBOOLE_1: 77,
    XBOOLE_0: 3;
    
        hence B
    meets C by 
    XBOOLE_0: 4;
    
      end;
    
        suppose
    
        
    
    A4: not A 
    c= B & not A 
    c= C; 
    
        
    
        
    
    A5: A 
    <>  
    {} & B 
    <>  
    {} & C 
    <>  
    {} by 
    A2,
    A3,
    XBOOLE_1: 65;
    
        consider a1 be
    R_eal, a2 be 
    Real such that 
    
        
    
    A6: A 
    =  
    ].a1, a2.] by
    MEASURE5:def 5;
    
        consider b1,b2 be
    R_eal such that 
    
        
    
    A7: B 
    =  
    ].b1, b2.[ by
    MEASURE5:def 2;
    
        consider c1,c2 be
    R_eal such that 
    
        
    
    A8: C 
    =  
    ].c1, c2.[ by
    MEASURE5:def 2;
    
        
    
        
    
    A9: b1 
    < a2 & a1 
    < b2 by 
    A2,
    A6,
    A7,
    XXREAL_1: 91,
    XXREAL_1: 276;
    
        per cases by
    A4,
    A6,
    A7,
    XXREAL_1: 49;
    
          suppose a1
    < b1; 
    
          then
    
          
    
    A10: b1 
    in (B 
    \/ C) by 
    A1,
    A6,
    A9,
    XXREAL_1: 2;
    
           not b1
    in B by 
    A7,
    XXREAL_1: 4;
    
          then b1
    in C by 
    A10,
    XBOOLE_0:def 3;
    
          then
    
          
    
    A11: c1 
    < b1 & b1 
    < c2 by 
    A8,
    XXREAL_1: 4;
    
          then
    
          consider x be
    Real such that 
    
          
    
    A12: b1 
    < x & x 
    < c2 by 
    XXREAL_3: 3;
    
          per cases ;
    
            suppose b2
    < c2; 
    
            hence B
    meets C by 
    A5,
    A7,
    A8,
    A11,
    XXREAL_1: 46,
    XBOOLE_1: 69;
    
          end;
    
            suppose c2
    <= b2; 
    
            then x
    < b2 & c1 
    < x by 
    A11,
    A12,
    XXREAL_0: 2;
    
            then x
    in B & x 
    in C by 
    A7,
    A8,
    A12,
    XXREAL_1: 4;
    
            hence B
    meets C by 
    XBOOLE_0: 3;
    
          end;
    
        end;
    
          suppose b2
    <= a2; 
    
          then
    
          
    
    A13: b2 
    in (B 
    \/ C) by 
    A1,
    A6,
    A9,
    XXREAL_1: 2;
    
           not b2
    in B by 
    A7,
    XXREAL_1: 4;
    
          then b2
    in C by 
    A13,
    XBOOLE_0:def 3;
    
          then
    
          
    
    A14: c1 
    < b2 & b2 
    < c2 by 
    A8,
    XXREAL_1: 4;
    
          then
    
          consider x be
    Real such that 
    
          
    
    A15: c1 
    < x & x 
    < b2 by 
    XXREAL_3: 3;
    
          per cases ;
    
            suppose c1
    < b1; 
    
            hence B
    meets C by 
    A5,
    A7,
    A8,
    A14,
    XXREAL_1: 46,
    XBOOLE_1: 69;
    
          end;
    
            suppose b1
    <= c1; 
    
            then b1
    < x & x 
    < c2 by 
    A14,
    A15,
    XXREAL_0: 2;
    
            then x
    in B & x 
    in C by 
    A7,
    A8,
    A15,
    XXREAL_1: 4;
    
            hence B
    meets C by 
    XBOOLE_0: 3;
    
          end;
    
        end;
    
      end;
    
    end;
    
    theorem :: 
    
    MEASUR12:3
    
    for A be
    Interval, B,C be 
    open_interval  
    Subset of 
    REAL st A 
    c= (B 
    \/ C) & A 
    meets B & A 
    meets C holds B 
    meets C 
    
    proof
    
      let A be
    Interval, B,C be 
    open_interval  
    Subset of 
    REAL ; 
    
      assume
    
      
    
    A1: A 
    c= (B 
    \/ C) & A 
    meets B & A 
    meets C; 
    
      A is
    open_interval or A is 
    closed_interval or A is 
    right_open_interval or A is 
    left_open_interval by 
    MEASURE5: 1;
    
      hence thesis by
    A1,
    Lm1,
    Lm2,
    Lm3,
    Lm4;
    
    end;
    
    theorem :: 
    
    MEASUR12:4
    
    
    
    
    
    Th4: for A,B be non 
    empty  
    set, p,q,r,s be 
    R_eal st A 
    =  
    [.p, q.] & B
    =  
    [.r, s.] & A
    misses B holds q 
    < r or s 
    < p 
    
    proof
    
      let A,B be non
    empty  
    set, p,q,r,s be 
    R_eal;
    
      assume that
    
      
    
    A1: A 
    =  
    [.p, q.] and
    
      
    
    A2: B 
    =  
    [.r, s.] and
    
      
    
    A3: A 
    misses B; 
    
      assume
    
      
    
    A4: q 
    >= r & s 
    >= p; 
    
      per cases by
    A3,
    A1,
    A2,
    XXREAL_1: 34,
    XBOOLE_1: 69;
    
        suppose r
    < p & s 
    <= q; 
    
        then (A
    /\ B) 
    =  
    [.p, s.] by
    A1,
    A2,
    XXREAL_1: 143;
    
        then ex x be
    object st x 
    in (A 
    /\ B) by 
    A4,
    XXREAL_1: 30,
    XBOOLE_0:def 1;
    
        hence contradiction by
    A3,
    XBOOLE_0: 4;
    
      end;
    
        suppose r
    >= p & s 
    > q; 
    
        then (A
    /\ B) 
    =  
    [.r, q.] by
    A1,
    A2,
    XXREAL_1: 143;
    
        then ex x be
    object st x 
    in (A 
    /\ B) by 
    A4,
    XXREAL_1: 30,
    XBOOLE_0:def 1;
    
        hence contradiction by
    A3,
    XBOOLE_0: 4;
    
      end;
    
    end;
    
    theorem :: 
    
    MEASUR12:5
    
    
    
    
    
    Th5: for A,B be non 
    empty  
    set, p,q,r,s be 
    R_eal st A 
    =  
    [.p, q.] & B
    =  
    [.r, s.[ & A
    misses B holds q 
    < r or s 
    <= p 
    
    proof
    
      let A,B be non
    empty  
    set, p,q,r,s be 
    R_eal;
    
      assume that
    
      
    
    A1: A 
    =  
    [.p, q.] and
    
      
    
    A2: B 
    =  
    [.r, s.[ and
    
      
    
    A3: A 
    misses B; 
    
      assume
    
      
    
    A4: q 
    >= r & s 
    > p; 
    
      per cases by
    A3,
    A1,
    A2,
    XXREAL_1: 35,
    XXREAL_1: 43,
    XBOOLE_1: 69;
    
        suppose r
    < p & s 
    <= q; 
    
        then (A
    /\ B) 
    =  
    [.p, s.[ by
    A1,
    A2,
    XXREAL_1: 144;
    
        then ex x be
    object st x 
    in (A 
    /\ B) by 
    A4,
    XXREAL_1: 31,
    XBOOLE_0:def 1;
    
        hence contradiction by
    A3,
    XBOOLE_0: 4;
    
      end;
    
        suppose r
    >= p & s 
    > q; 
    
        then (A
    /\ B) 
    =  
    [.r, q.] by
    A1,
    A2,
    XXREAL_1: 145;
    
        then ex x be
    object st x 
    in (A 
    /\ B) by 
    A4,
    XXREAL_1: 30,
    XBOOLE_0:def 1;
    
        hence contradiction by
    A3,
    XBOOLE_0: 4;
    
      end;
    
    end;
    
    theorem :: 
    
    MEASUR12:6
    
    
    
    
    
    Th6: for A,B be non 
    empty  
    set, p,q,r,s be 
    R_eal st A 
    =  
    [.p, q.] & B
    =  
    ].r, s.] & A
    misses B holds q 
    <= r or s 
    < p 
    
    proof
    
      let A,B be non
    empty  
    set, p,q,r,s be 
    R_eal;
    
      assume that
    
      
    
    A1: A 
    =  
    [.p, q.] and
    
      
    
    A2: B 
    =  
    ].r, s.] and
    
      
    
    A3: A 
    misses B; 
    
      assume
    
      
    
    A4: q 
    > r & s 
    >= p; 
    
      per cases by
    A3,
    A1,
    A2,
    XXREAL_1: 36,
    XXREAL_1: 39,
    XBOOLE_1: 69;
    
        suppose r
    < p & s 
    <= q; 
    
        then (A
    /\ B) 
    =  
    [.p, s.] by
    A1,
    A2,
    XXREAL_1: 146;
    
        then ex x be
    object st x 
    in (A 
    /\ B) by 
    A4,
    XXREAL_1: 30,
    XBOOLE_0:def 1;
    
        hence contradiction by
    A3,
    XBOOLE_0: 4;
    
      end;
    
        suppose r
    >= p & s 
    > q; 
    
        then (A
    /\ B) 
    =  
    ].r, q.] by
    A1,
    A2,
    XXREAL_1: 147;
    
        then ex x be
    object st x 
    in (A 
    /\ B) by 
    A4,
    XXREAL_1: 32,
    XBOOLE_0:def 1;
    
        hence contradiction by
    A3,
    XBOOLE_0: 4;
    
      end;
    
    end;
    
    theorem :: 
    
    MEASUR12:7
    
    
    
    
    
    Th7: for A,B be non 
    empty  
    set, p,q,r,s be 
    R_eal st A 
    =  
    [.p, q.] & B
    =  
    ].r, s.[ & A
    misses B holds q 
    <= r or s 
    <= p 
    
    proof
    
      let A,B be non
    empty  
    set, p,q,r,s be 
    R_eal;
    
      assume that
    
      
    
    A1: A 
    =  
    [.p, q.] and
    
      
    
    A2: B 
    =  
    ].r, s.[ and
    
      
    
    A3: A 
    misses B; 
    
      assume
    
      
    
    A4: q 
    > r & s 
    > p; 
    
      per cases by
    A3,
    A1,
    A2,
    XXREAL_1: 37,
    XXREAL_1: 47,
    XBOOLE_1: 69;
    
        suppose r
    < p & s 
    <= q; 
    
        then (A
    /\ B) 
    =  
    [.p, s.[ by
    A1,
    A2,
    XXREAL_1: 148;
    
        then ex x be
    object st x 
    in (A 
    /\ B) by 
    A4,
    XXREAL_1: 31,
    XBOOLE_0:def 1;
    
        hence contradiction by
    A3,
    XBOOLE_0: 4;
    
      end;
    
        suppose r
    >= p & s 
    > q; 
    
        then (A
    /\ B) 
    =  
    ].r, q.] by
    A1,
    A2,
    XXREAL_1: 149;
    
        then ex x be
    object st x 
    in (A 
    /\ B) by 
    A4,
    XXREAL_1: 32,
    XBOOLE_0:def 1;
    
        hence contradiction by
    A3,
    XBOOLE_0: 4;
    
      end;
    
    end;
    
    theorem :: 
    
    MEASUR12:8
    
    
    
    
    
    Th8: for A,B be non 
    empty  
    set, p,q,r,s be 
    R_eal st A 
    =  
    [.p, q.[ & B
    =  
    [.r, s.[ & A
    misses B holds q 
    <= r or s 
    <= p 
    
    proof
    
      let A,B be non
    empty  
    set, p,q,r,s be 
    R_eal;
    
      assume that
    
      
    
    A1: A 
    =  
    [.p, q.[ and
    
      
    
    A2: B 
    =  
    [.r, s.[ and
    
      
    
    A3: A 
    misses B; 
    
      assume
    
      
    
    A4: q 
    > r & s 
    > p; 
    
      per cases by
    A3,
    A1,
    A2,
    XXREAL_1: 38,
    XBOOLE_1: 69;
    
        suppose r
    < p & s 
    <= q; 
    
        then (A
    /\ B) 
    =  
    [.p, s.[ by
    A1,
    A2,
    XXREAL_1: 150;
    
        then ex x be
    object st x 
    in (A 
    /\ B) by 
    A4,
    XXREAL_1: 31,
    XBOOLE_0:def 1;
    
        hence contradiction by
    A3,
    XBOOLE_0: 4;
    
      end;
    
        suppose r
    >= p & s 
    > q; 
    
        then (A
    /\ B) 
    =  
    [.r, q.[ by
    A1,
    A2,
    XXREAL_1: 151;
    
        then ex x be
    object st x 
    in (A 
    /\ B) by 
    A4,
    XXREAL_1: 31,
    XBOOLE_0:def 1;
    
        hence contradiction by
    A3,
    XBOOLE_0: 4;
    
      end;
    
    end;
    
    theorem :: 
    
    MEASUR12:9
    
    
    
    
    
    Th9: for A,B be non 
    empty  
    set, p,q,r,s be 
    R_eal st A 
    =  
    [.p, q.[ & B
    =  
    ].r, s.] & A
    misses B holds q 
    <= r or s 
    < p 
    
    proof
    
      let A,B be non
    empty  
    set, p,q,r,s be 
    R_eal;
    
      assume that
    
      
    
    A1: A 
    =  
    [.p, q.[ and
    
      
    
    A2: B 
    =  
    ].r, s.] and
    
      
    
    A3: A 
    misses B; 
    
      assume
    
      
    
    A4: q 
    > r & s 
    >= p; 
    
      per cases by
    A3,
    A1,
    A2,
    XXREAL_1: 40,
    XXREAL_1: 44,
    XBOOLE_1: 69;
    
        suppose r
    < p & s 
    < q; 
    
        then (A
    /\ B) 
    =  
    [.p, s.] by
    A1,
    A2,
    XXREAL_1: 152;
    
        then ex x be
    object st x 
    in (A 
    /\ B) by 
    A4,
    XXREAL_1: 30,
    XBOOLE_0:def 1;
    
        hence contradiction by
    A3,
    XBOOLE_0: 4;
    
      end;
    
        suppose r
    >= p & s 
    >= q; 
    
        then (A
    /\ B) 
    =  
    ].r, q.[ by
    A1,
    A2,
    XXREAL_1: 153;
    
        then ex x be
    object st x 
    in (A 
    /\ B) by 
    A4,
    XXREAL_1: 33,
    XBOOLE_0:def 1;
    
        hence contradiction by
    A3,
    XBOOLE_0: 4;
    
      end;
    
    end;
    
    theorem :: 
    
    MEASUR12:10
    
    
    
    
    
    Th10: for A,B be non 
    empty  
    set, p,q,r,s be 
    R_eal st A 
    =  
    [.p, q.[ & B
    =  
    ].r, s.[ & A
    misses B holds q 
    <= r or s 
    <= p 
    
    proof
    
      let A,B be non
    empty  
    set, p,q,r,s be 
    R_eal;
    
      assume that
    
      
    
    A1: A 
    =  
    [.p, q.[ and
    
      
    
    A2: B 
    =  
    ].r, s.[ and
    
      
    
    A3: A 
    misses B; 
    
      assume
    
      
    
    A4: q 
    > r & s 
    > p; 
    
      per cases by
    A3,
    A1,
    A2,
    XXREAL_1: 45,
    XXREAL_1: 48,
    XBOOLE_1: 69;
    
        suppose r
    < p & s 
    < q; 
    
        then (A
    /\ B) 
    =  
    [.p, s.[ by
    A1,
    A2,
    XXREAL_1: 154;
    
        then ex x be
    object st x 
    in (A 
    /\ B) by 
    A4,
    XXREAL_1: 31,
    XBOOLE_0:def 1;
    
        hence contradiction by
    A3,
    XBOOLE_0: 4;
    
      end;
    
        suppose r
    >= p & s 
    >= q; 
    
        then (A
    /\ B) 
    =  
    ].r, q.[ by
    A1,
    A2,
    XXREAL_1: 155;
    
        then ex x be
    object st x 
    in (A 
    /\ B) by 
    A4,
    XXREAL_1: 33,
    XBOOLE_0:def 1;
    
        hence contradiction by
    A3,
    XBOOLE_0: 4;
    
      end;
    
    end;
    
    theorem :: 
    
    MEASUR12:11
    
    
    
    
    
    Th11: for A,B be non 
    empty  
    set, p,q,r,s be 
    R_eal st A 
    =  
    ].p, q.] & B
    =  
    ].r, s.] & A
    misses B holds q 
    <= r or s 
    <= p 
    
    proof
    
      let A,B be non
    empty  
    set, p,q,r,s be 
    R_eal;
    
      assume that
    
      
    
    A1: A 
    =  
    ].p, q.] and
    
      
    
    A2: B 
    =  
    ].r, s.] and
    
      
    
    A3: A 
    misses B; 
    
      assume
    
      
    
    A4: q 
    > r & s 
    > p; 
    
      per cases by
    A3,
    A1,
    A2,
    XXREAL_1: 42,
    XBOOLE_1: 69;
    
        suppose r
    < p & s 
    < q; 
    
        then (A
    /\ B) 
    =  
    ].p, s.] by
    A1,
    A2,
    XXREAL_1: 157;
    
        then ex x be
    object st x 
    in (A 
    /\ B) by 
    A4,
    XXREAL_1: 32,
    XBOOLE_0:def 1;
    
        hence contradiction by
    A3,
    XBOOLE_0: 4;
    
      end;
    
        suppose r
    >= p & s 
    >= q; 
    
        then (A
    /\ B) 
    =  
    ].r, q.] by
    A1,
    A2,
    XXREAL_1: 157;
    
        then ex x be
    object st x 
    in (A 
    /\ B) by 
    A4,
    XXREAL_1: 32,
    XBOOLE_0:def 1;
    
        hence contradiction by
    A3,
    XBOOLE_0: 4;
    
      end;
    
    end;
    
    theorem :: 
    
    MEASUR12:12
    
    
    
    
    
    Th12: for A,B be non 
    empty  
    set, p,q,r,s be 
    R_eal st A 
    =  
    ].p, q.] & B
    =  
    ].r, s.[ & A
    misses B holds q 
    <= r or s 
    <= p 
    
    proof
    
      let A,B be non
    empty  
    set, p,q,r,s be 
    R_eal;
    
      assume that
    
      
    
    A1: A 
    =  
    ].p, q.] and
    
      
    
    A2: B 
    =  
    ].r, s.[ and
    
      
    
    A3: A 
    misses B; 
    
      assume
    
      
    
    A4: q 
    > r & s 
    > p; 
    
      per cases by
    A3,
    A1,
    A2,
    XXREAL_1: 41,
    XXREAL_1: 49,
    XBOOLE_1: 69;
    
        suppose r
    < p & s 
    <= q; 
    
        then (A
    /\ B) 
    =  
    ].p, s.[ by
    A1,
    A2,
    XXREAL_1: 158;
    
        then ex x be
    object st x 
    in (A 
    /\ B) by 
    A4,
    XXREAL_1: 33,
    XBOOLE_0:def 1;
    
        hence contradiction by
    A3,
    XBOOLE_0: 4;
    
      end;
    
        suppose r
    >= p & s 
    > q; 
    
        then (A
    /\ B) 
    =  
    ].r, q.] by
    A1,
    A2,
    XXREAL_1: 159;
    
        then ex x be
    object st x 
    in (A 
    /\ B) by 
    A4,
    XXREAL_1: 32,
    XBOOLE_0:def 1;
    
        hence contradiction by
    A3,
    XBOOLE_0: 4;
    
      end;
    
    end;
    
    theorem :: 
    
    MEASUR12:13
    
    
    
    
    
    Th13: for A,B be non 
    empty  
    set, p,q,r,s be 
    R_eal st A 
    =  
    ].p, q.[ & B
    =  
    ].r, s.[ & A
    misses B holds q 
    <= r or s 
    <= p 
    
    proof
    
      let A,B be non
    empty  
    set, p,q,r,s be 
    R_eal;
    
      assume that
    
      
    
    A1: A 
    =  
    ].p, q.[ and
    
      
    
    A2: B 
    =  
    ].r, s.[ and
    
      
    
    A3: A 
    misses B; 
    
      assume
    
      
    
    A4: q 
    > r & s 
    > p; 
    
      per cases by
    A3,
    A1,
    A2,
    XXREAL_1: 46,
    XBOOLE_1: 69;
    
        suppose r
    <= p & s 
    <= q; 
    
        then (A
    /\ B) 
    =  
    ].p, s.[ by
    A1,
    A2,
    XXREAL_1: 160;
    
        then ex x be
    object st x 
    in (A 
    /\ B) by 
    A4,
    XXREAL_1: 33,
    XBOOLE_0:def 1;
    
        hence contradiction by
    A3,
    XBOOLE_0: 4;
    
      end;
    
        suppose r
    > p & s 
    > q; 
    
        then (A
    /\ B) 
    =  
    ].r, q.[ by
    A1,
    A2,
    XXREAL_1: 160;
    
        then ex x be
    object st x 
    in (A 
    /\ B) by 
    A4,
    XXREAL_1: 33,
    XBOOLE_0:def 1;
    
        hence contradiction by
    A3,
    XBOOLE_0: 4;
    
      end;
    
    end;
    
    theorem :: 
    
    MEASUR12:14
    
    
    
    
    
    Th14: for A,B be non 
    empty  
    Interval, p,q,r,s be 
    R_eal st A 
    =  
    [.p, q.] & B
    =  
    [.r, s.] & A
    misses B holds not (A 
    \/ B) is 
    Interval
    
    proof
    
      let A,B be non
    empty  
    Interval, p,q,r,s be 
    R_eal;
    
      assume that
    
      
    
    A1: A 
    =  
    [.p, q.] and
    
      
    
    A2: B 
    =  
    [.r, s.] and
    
      
    
    A3: A 
    misses B; 
    
      
    
      
    
    A4: p 
    <= q & r 
    <= s by 
    A1,
    A2,
    XXREAL_1: 29;
    
      
    
      
    
    A5: ( 
    inf A) 
    = p & ( 
    sup A) 
    = q & ( 
    inf B) 
    = r & ( 
    sup B) 
    = s by 
    A1,
    A2,
    XXREAL_1: 29,
    MEASURE6: 10,
    MEASURE6: 14;
    
      per cases by
    A1,
    A2,
    A3,
    Th4;
    
        suppose
    
        
    
    A6: q 
    < r; 
    
        then
    
        consider x be
    R_eal such that 
    
        
    
    A7: q 
    < x & x 
    < r & x 
    in  
    REAL by 
    MEASURE5: 2;
    
         not x
    in A & not x 
    in B by 
    A1,
    A2,
    A7,
    XXREAL_1: 1;
    
        then
    
        
    
    A8: not x 
    in (A 
    \/ B) by 
    XBOOLE_0:def 3;
    
        
    
        
    
    A9: ( 
    inf A) 
    < x & x 
    < ( 
    sup B) by 
    A7,
    A4,
    A5,
    XXREAL_0: 2;
    
        now
    
          assume
    
          
    
    A10: (A 
    \/ B) is 
    Interval;
    
          (
    inf (A 
    \/ B)) 
    = ( 
    min (( 
    inf A),( 
    inf B))) & ( 
    sup (A 
    \/ B)) 
    = ( 
    max (( 
    sup A),( 
    sup B))) by 
    XXREAL_2: 9,
    XXREAL_2: 10;
    
          then (
    inf (A 
    \/ B)) 
    = ( 
    inf A) & ( 
    sup (A 
    \/ B)) 
    = ( 
    sup B) by 
    A6,
    A4,
    A5,
    XXREAL_0: 2,
    XXREAL_0:def 9,
    XXREAL_0:def 10;
    
          hence contradiction by
    A8,
    A9,
    A10,
    XXREAL_2: 83;
    
        end;
    
        hence not (A
    \/ B) is 
    Interval;
    
      end;
    
        suppose
    
        
    
    A11: s 
    < p; 
    
        then
    
        consider x be
    R_eal such that 
    
        
    
    A12: s 
    < x & x 
    < p & x 
    in  
    REAL by 
    MEASURE5: 2;
    
         not x
    in A & not x 
    in B by 
    A1,
    A2,
    A12,
    XXREAL_1: 1;
    
        then
    
        
    
    A13: not x 
    in (A 
    \/ B) by 
    XBOOLE_0:def 3;
    
        
    
        
    
    A14: ( 
    inf B) 
    < x & x 
    < ( 
    sup A) by 
    A12,
    A4,
    A5,
    XXREAL_0: 2;
    
        now
    
          assume
    
          
    
    A15: (A 
    \/ B) is 
    Interval;
    
          (
    inf (A 
    \/ B)) 
    = ( 
    min (( 
    inf A),( 
    inf B))) & ( 
    sup (A 
    \/ B)) 
    = ( 
    max (( 
    sup A),( 
    sup B))) by 
    XXREAL_2: 9,
    XXREAL_2: 10;
    
          then (
    inf (A 
    \/ B)) 
    = ( 
    inf B) & ( 
    sup (A 
    \/ B)) 
    = ( 
    sup A) by 
    A11,
    A4,
    A5,
    XXREAL_0: 2,
    XXREAL_0:def 9,
    XXREAL_0:def 10;
    
          hence contradiction by
    A13,
    A14,
    A15,
    XXREAL_2: 83;
    
        end;
    
        hence not (A
    \/ B) is 
    Interval;
    
      end;
    
    end;
    
    theorem :: 
    
    MEASUR12:15
    
    
    
    
    
    Th15: for A,B be non 
    empty  
    Interval, p,q,r,s be 
    R_eal st A 
    =  
    [.p, q.] & B
    =  
    [.r, s.[ & A
    misses B & (A 
    \/ B) is 
    Interval holds p 
    = s & (A 
    \/ B) 
    =  
    [.r, q.]
    
    proof
    
      let A,B be non
    empty  
    Interval, p,q,r,s be 
    R_eal;
    
      assume that
    
      
    
    A1: A 
    =  
    [.p, q.] and
    
      
    
    A2: B 
    =  
    [.r, s.[ and
    
      
    
    A3: A 
    misses B and 
    
      
    
    A4: (A 
    \/ B) is 
    Interval;
    
      
    
      
    
    A5: p 
    <= q & r 
    < s by 
    A1,
    A2,
    XXREAL_1: 27,
    XXREAL_1: 29;
    
      then
    
      
    
    A6: ( 
    inf A) 
    = p & ( 
    sup A) 
    = q & ( 
    inf B) 
    = r & ( 
    sup B) 
    = s by 
    A1,
    A2,
    MEASURE6: 10,
    MEASURE6: 14,
    MEASURE6: 11,
    MEASURE6: 15;
    
      now
    
        assume
    
        
    
    A7: q 
    < r; 
    
        then
    
        consider x be
    R_eal such that 
    
        
    
    A8: q 
    < x & x 
    < r & x 
    in  
    REAL by 
    MEASURE5: 2;
    
         not x
    in A & not x 
    in B by 
    A1,
    A2,
    A8,
    XXREAL_1: 1,
    XXREAL_1: 3;
    
        then
    
        
    
    A9: not x 
    in (A 
    \/ B) by 
    XBOOLE_0:def 3;
    
        (
    inf (A 
    \/ B)) 
    = ( 
    min (( 
    inf A),( 
    inf B))) & ( 
    sup (A 
    \/ B)) 
    = ( 
    max (( 
    sup A),( 
    sup B))) by 
    XXREAL_2: 9,
    XXREAL_2: 10;
    
        then (
    inf (A 
    \/ B)) 
    = ( 
    inf A) & ( 
    sup (A 
    \/ B)) 
    = ( 
    sup B) by 
    A5,
    A6,
    A7,
    XXREAL_0: 2,
    XXREAL_0:def 9,
    XXREAL_0:def 10;
    
        then (
    inf (A 
    \/ B)) 
    < x & x 
    < ( 
    sup (A 
    \/ B)) by 
    A5,
    A6,
    A8,
    XXREAL_0: 2;
    
        hence contradiction by
    A9,
    A4,
    XXREAL_2: 83;
    
      end;
    
      then
    
      
    
    A10: s 
    <= p by 
    A1,
    A2,
    A3,
    Th5;
    
      now
    
        assume
    
        
    
    A11: s 
    < p; 
    
        then
    
        consider x be
    R_eal such that 
    
        
    
    A12: s 
    < x & x 
    < p & x 
    in  
    REAL by 
    MEASURE5: 2;
    
         not x
    in A & not x 
    in B by 
    A1,
    A2,
    A12,
    XXREAL_1: 1,
    XXREAL_1: 3;
    
        then
    
        
    
    A13: not x 
    in (A 
    \/ B) by 
    XBOOLE_0:def 3;
    
        (
    min (( 
    inf A),( 
    inf B))) 
    = ( 
    inf B) & ( 
    max (( 
    sup A),( 
    sup B))) 
    = ( 
    sup A) by 
    A11,
    A6,
    A5,
    XXREAL_0: 2,
    XXREAL_0:def 9,
    XXREAL_0:def 10;
    
        then (
    inf (A 
    \/ B)) 
    = ( 
    inf B) & ( 
    sup (A 
    \/ B)) 
    = ( 
    sup A) by 
    XXREAL_2: 9,
    XXREAL_2: 10;
    
        then (
    inf (A 
    \/ B)) 
    < x & x 
    < ( 
    sup (A 
    \/ B)) by 
    A6,
    A5,
    A12,
    XXREAL_0: 2;
    
        hence contradiction by
    A13,
    A4,
    XXREAL_2: 83;
    
      end;
    
      hence p
    = s by 
    A10,
    XXREAL_0: 1;
    
      hence (A
    \/ B) 
    =  
    [.r, q.] by
    A1,
    A2,
    A5,
    XXREAL_1: 166;
    
    end;
    
    theorem :: 
    
    MEASUR12:16
    
    
    
    
    
    Th16: for A,B be non 
    empty  
    Interval, p,q,r,s be 
    R_eal st A 
    =  
    [.p, q.] & B
    =  
    ].r, s.] & A
    misses B & (A 
    \/ B) is 
    Interval holds q 
    = r & (A 
    \/ B) 
    =  
    [.p, s.]
    
    proof
    
      let A,B be non
    empty  
    Interval, p,q,r,s be 
    R_eal;
    
      assume that
    
      
    
    A1: A 
    =  
    [.p, q.] and
    
      
    
    A2: B 
    =  
    ].r, s.] and
    
      
    
    A3: A 
    misses B and 
    
      
    
    A4: (A 
    \/ B) is 
    Interval;
    
      
    
      
    
    A5: p 
    <= q & r 
    < s by 
    A1,
    A2,
    XXREAL_1: 26,
    XXREAL_1: 29;
    
      then
    
      
    
    A6: ( 
    inf A) 
    = p & ( 
    sup A) 
    = q & ( 
    inf B) 
    = r & ( 
    sup B) 
    = s by 
    A1,
    A2,
    MEASURE6: 10,
    MEASURE6: 14,
    MEASURE6: 9,
    MEASURE6: 13;
    
      now
    
        assume
    
        
    
    A7: s 
    < p; 
    
        then
    
        consider x be
    R_eal such that 
    
        
    
    A8: s 
    < x & x 
    < p & x 
    in  
    REAL by 
    MEASURE5: 2;
    
         not x
    in A & not x 
    in B by 
    A1,
    A2,
    A8,
    XXREAL_1: 1,
    XXREAL_1: 2;
    
        then
    
        
    
    A9: not x 
    in (A 
    \/ B) by 
    XBOOLE_0:def 3;
    
        (
    inf (A 
    \/ B)) 
    = ( 
    min (( 
    inf A),( 
    inf B))) & ( 
    sup (A 
    \/ B)) 
    = ( 
    max (( 
    sup A),( 
    sup B))) by 
    XXREAL_2: 9,
    XXREAL_2: 10;
    
        then (
    inf (A 
    \/ B)) 
    = ( 
    inf B) & ( 
    sup (A 
    \/ B)) 
    = ( 
    sup A) by 
    A5,
    A6,
    A7,
    XXREAL_0: 2,
    XXREAL_0:def 9,
    XXREAL_0:def 10;
    
        then (
    inf (A 
    \/ B)) 
    < x & x 
    < ( 
    sup (A 
    \/ B)) by 
    A5,
    A6,
    A8,
    XXREAL_0: 2;
    
        hence contradiction by
    A9,
    A4,
    XXREAL_2: 83;
    
      end;
    
      then
    
      
    
    A10: q 
    <= r by 
    A1,
    A2,
    A3,
    Th6;
    
      now
    
        assume
    
        
    
    A11: q 
    < r; 
    
        then
    
        consider x be
    R_eal such that 
    
        
    
    A12: q 
    < x & x 
    < r & x 
    in  
    REAL by 
    MEASURE5: 2;
    
         not x
    in A & not x 
    in B by 
    A1,
    A2,
    A12,
    XXREAL_1: 1,
    XXREAL_1: 2;
    
        then
    
        
    
    A13: not x 
    in (A 
    \/ B) by 
    XBOOLE_0:def 3;
    
        (
    min (( 
    inf A),( 
    inf B))) 
    = ( 
    inf A) & ( 
    max (( 
    sup A),( 
    sup B))) 
    = ( 
    sup B) by 
    A11,
    A6,
    A5,
    XXREAL_0: 2,
    XXREAL_0:def 9,
    XXREAL_0:def 10;
    
        then (
    inf (A 
    \/ B)) 
    = ( 
    inf A) & ( 
    sup (A 
    \/ B)) 
    = ( 
    sup B) by 
    XXREAL_2: 9,
    XXREAL_2: 10;
    
        then (
    inf (A 
    \/ B)) 
    < x & x 
    < ( 
    sup (A 
    \/ B)) by 
    A6,
    A5,
    A12,
    XXREAL_0: 2;
    
        hence contradiction by
    A13,
    A4,
    XXREAL_2: 83;
    
      end;
    
      hence q
    = r by 
    A10,
    XXREAL_0: 1;
    
      hence (A
    \/ B) 
    =  
    [.p, s.] by
    A1,
    A2,
    A5,
    XXREAL_1: 167;
    
    end;
    
    theorem :: 
    
    MEASUR12:17
    
    
    
    
    
    Th17: for A,B be non 
    empty  
    Interval, p,q,r,s be 
    R_eal st A 
    =  
    [.p, q.] & B
    =  
    ].r, s.[ & A
    misses B & (A 
    \/ B) is 
    Interval holds (p 
    = s & (A 
    \/ B) 
    =  
    ].r, q.]) or (q
    = r & (A 
    \/ B) 
    =  
    [.p, s.[)
    
    proof
    
      let A,B be non
    empty  
    Interval, p,q,r,s be 
    R_eal;
    
      assume that
    
      
    
    A1: A 
    =  
    [.p, q.] and
    
      
    
    A2: B 
    =  
    ].r, s.[ and
    
      
    
    A3: A 
    misses B and 
    
      
    
    A4: (A 
    \/ B) is 
    Interval;
    
      
    
      
    
    A5: p 
    <= q & r 
    < s by 
    A1,
    A2,
    XXREAL_1: 28,
    XXREAL_1: 29;
    
      then
    
      
    
    A6: ( 
    inf A) 
    = p & ( 
    sup A) 
    = q & ( 
    inf B) 
    = r & ( 
    sup B) 
    = s by 
    A1,
    A2,
    MEASURE6: 10,
    MEASURE6: 14,
    MEASURE6: 8,
    MEASURE6: 12;
    
      
    
    A7: 
    
      now
    
        assume
    
        
    
    A8: q 
    < r; 
    
        then
    
        consider x be
    R_eal such that 
    
        
    
    A9: q 
    < x & x 
    < r & x 
    in  
    REAL by 
    MEASURE5: 2;
    
         not x
    in A & not x 
    in B by 
    A1,
    A2,
    A9,
    XXREAL_1: 1,
    XXREAL_1: 4;
    
        then
    
        
    
    A10: not x 
    in (A 
    \/ B) by 
    XBOOLE_0:def 3;
    
        (
    inf (A 
    \/ B)) 
    = ( 
    min (( 
    inf A),( 
    inf B))) & ( 
    sup (A 
    \/ B)) 
    = ( 
    max (( 
    sup A),( 
    sup B))) by 
    XXREAL_2: 9,
    XXREAL_2: 10;
    
        then (
    inf (A 
    \/ B)) 
    = ( 
    inf A) & ( 
    sup (A 
    \/ B)) 
    = ( 
    sup B) by 
    A5,
    A6,
    A8,
    XXREAL_0: 2,
    XXREAL_0:def 9,
    XXREAL_0:def 10;
    
        then (
    inf (A 
    \/ B)) 
    < x & x 
    < ( 
    sup (A 
    \/ B)) by 
    A5,
    A6,
    A9,
    XXREAL_0: 2;
    
        hence contradiction by
    A10,
    A4,
    XXREAL_2: 83;
    
      end;
    
      
    
    A11: 
    
      now
    
        assume
    
        
    
    A12: s 
    < p; 
    
        then
    
        consider x be
    R_eal such that 
    
        
    
    A13: s 
    < x & x 
    < p & x 
    in  
    REAL by 
    MEASURE5: 2;
    
         not x
    in A & not x 
    in B by 
    A1,
    A2,
    A13,
    XXREAL_1: 1,
    XXREAL_1: 4;
    
        then
    
        
    
    A14: not x 
    in (A 
    \/ B) by 
    XBOOLE_0:def 3;
    
        (
    inf (A 
    \/ B)) 
    = ( 
    min (( 
    inf A),( 
    inf B))) & ( 
    sup (A 
    \/ B)) 
    = ( 
    max (( 
    sup A),( 
    sup B))) by 
    XXREAL_2: 9,
    XXREAL_2: 10;
    
        then (
    inf (A 
    \/ B)) 
    = ( 
    inf B) & ( 
    sup (A 
    \/ B)) 
    = ( 
    sup A) by 
    A5,
    A6,
    A12,
    XXREAL_0: 2,
    XXREAL_0:def 9,
    XXREAL_0:def 10;
    
        then (
    inf (A 
    \/ B)) 
    < x & x 
    < ( 
    sup (A 
    \/ B)) by 
    A5,
    A6,
    A13,
    XXREAL_0: 2;
    
        hence contradiction by
    A14,
    A4,
    XXREAL_2: 83;
    
      end;
    
      
    
      
    
    A15: q 
    <= r or s 
    <= p by 
    A1,
    A2,
    A3,
    Th7;
    
      per cases by
    A15,
    A7,
    A11,
    XXREAL_0: 1;
    
        suppose q
    = r; 
    
        hence thesis by
    A1,
    A2,
    A5,
    XXREAL_1: 169;
    
      end;
    
        suppose
    
        
    
    A16: s 
    = p; 
    
        A
    = ( 
    {p}
    \/  
    ].p, q.]) by
    A1,
    XXREAL_1: 29,
    XXREAL_1: 130;
    
        then (A
    \/ B) 
    = (( 
    ].r, s.[
    \/  
    {p})
    \/  
    ].p, q.]) by
    A2,
    XBOOLE_1: 4;
    
        then (A
    \/ B) 
    = ( 
    ].r, s.]
    \/  
    ].p, q.]) by
    A16,
    A2,
    XXREAL_1: 28,
    XXREAL_1: 132;
    
        hence thesis by
    A5,
    A16,
    XXREAL_1: 170;
    
      end;
    
    end;
    
    theorem :: 
    
    MEASUR12:18
    
    
    
    
    
    Th18: for A,B be non 
    empty  
    Interval, p,q,r,s be 
    R_eal st A 
    =  
    [.p, q.[ & B
    =  
    [.r, s.[ & A
    misses B & (A 
    \/ B) is 
    Interval holds (p 
    = s & (A 
    \/ B) 
    =  
    [.r, q.[) or (q
    = r & (A 
    \/ B) 
    =  
    [.p, s.[)
    
    proof
    
      let A,B be non
    empty  
    Interval, p,q,r,s be 
    R_eal;
    
      assume that
    
      
    
    A1: A 
    =  
    [.p, q.[ and
    
      
    
    A2: B 
    =  
    [.r, s.[ and
    
      
    
    A3: A 
    misses B and 
    
      
    
    A4: (A 
    \/ B) is 
    Interval;
    
      
    
      
    
    A5: p 
    < q & r 
    < s by 
    A1,
    A2,
    XXREAL_1: 27;
    
      then
    
      
    
    A6: ( 
    inf A) 
    = p & ( 
    sup A) 
    = q & ( 
    inf B) 
    = r & ( 
    sup B) 
    = s by 
    A1,
    A2,
    MEASURE6: 11,
    MEASURE6: 15;
    
      
    
    A7: 
    
      now
    
        assume
    
        
    
    A8: q 
    < r; 
    
        then
    
        consider x be
    R_eal such that 
    
        
    
    A9: q 
    < x & x 
    < r & x 
    in  
    REAL by 
    MEASURE5: 2;
    
         not x
    in A & not x 
    in B by 
    A1,
    A2,
    A9,
    XXREAL_1: 3;
    
        then
    
        
    
    A10: not x 
    in (A 
    \/ B) by 
    XBOOLE_0:def 3;
    
        
    
        
    
    A11: ( 
    inf A) 
    < ( 
    inf B) & ( 
    sup A) 
    < ( 
    sup B) by 
    A6,
    A8,
    A1,
    A2,
    XXREAL_1: 27,
    XXREAL_0: 2;
    
        (
    inf (A 
    \/ B)) 
    = ( 
    min (( 
    inf A),( 
    inf B))) & ( 
    sup (A 
    \/ B)) 
    = ( 
    max (( 
    sup A),( 
    sup B))) by 
    XXREAL_2: 9,
    XXREAL_2: 10;
    
        then (
    inf (A 
    \/ B)) 
    = ( 
    inf A) & ( 
    sup (A 
    \/ B)) 
    = ( 
    sup B) by 
    A11,
    XXREAL_0:def 9,
    XXREAL_0:def 10;
    
        then (
    inf (A 
    \/ B)) 
    < x & x 
    < ( 
    sup (A 
    \/ B)) by 
    A6,
    A9,
    A1,
    A2,
    XXREAL_1: 27,
    XXREAL_0: 2;
    
        hence contradiction by
    A10,
    A4,
    XXREAL_2: 83;
    
      end;
    
      
    
    A12: 
    
      now
    
        assume
    
        
    
    A13: s 
    < p; 
    
        then
    
        consider x be
    R_eal such that 
    
        
    
    A14: s 
    < x & x 
    < p & x 
    in  
    REAL by 
    MEASURE5: 2;
    
         not x
    in A & not x 
    in B by 
    A1,
    A2,
    A14,
    XXREAL_1: 3;
    
        then
    
        
    
    A15: not x 
    in (A 
    \/ B) by 
    XBOOLE_0:def 3;
    
        
    
        
    
    A16: ( 
    inf B) 
    < ( 
    inf A) & ( 
    sup B) 
    < ( 
    sup A) by 
    A6,
    A13,
    A1,
    A2,
    XXREAL_1: 27,
    XXREAL_0: 2;
    
        (
    inf (A 
    \/ B)) 
    = ( 
    min (( 
    inf A),( 
    inf B))) & ( 
    sup (A 
    \/ B)) 
    = ( 
    max (( 
    sup A),( 
    sup B))) by 
    XXREAL_2: 9,
    XXREAL_2: 10;
    
        then (
    inf (A 
    \/ B)) 
    = ( 
    inf B) & ( 
    sup (A 
    \/ B)) 
    = ( 
    sup A) by 
    A16,
    XXREAL_0:def 9,
    XXREAL_0:def 10;
    
        then (
    inf (A 
    \/ B)) 
    < x & x 
    < ( 
    sup (A 
    \/ B)) by 
    A6,
    A14,
    A1,
    A2,
    XXREAL_1: 27,
    XXREAL_0: 2;
    
        hence contradiction by
    A15,
    A4,
    XXREAL_2: 83;
    
      end;
    
      q
    <= r or s 
    <= p by 
    A1,
    A2,
    A3,
    Th8;
    
      then q
    = r or s 
    = p by 
    A7,
    A12,
    XXREAL_0: 1;
    
      hence thesis by
    A1,
    A2,
    A5,
    XXREAL_1: 168;
    
    end;
    
    theorem :: 
    
    MEASUR12:19
    
    
    
    
    
    Th19: for A,B be non 
    empty  
    Interval, p,q,r,s be 
    R_eal st A 
    =  
    [.p, q.[ & B
    =  
    ].r, s.] & A
    misses B holds not (A 
    \/ B) is 
    Interval
    
    proof
    
      let A,B be non
    empty  
    Interval, p,q,r,s be 
    R_eal;
    
      assume that
    
      
    
    A1: A 
    =  
    [.p, q.[ and
    
      
    
    A2: B 
    =  
    ].r, s.] and
    
      
    
    A3: A 
    misses B; 
    
      p
    < q & r 
    < s by 
    A1,
    A2,
    XXREAL_1: 26,
    XXREAL_1: 27;
    
      then
    
      
    
    A4: ( 
    inf A) 
    = p & ( 
    sup A) 
    = q & ( 
    inf B) 
    = r & ( 
    sup B) 
    = s by 
    A1,
    A2,
    MEASURE6: 11,
    MEASURE6: 15,
    MEASURE6: 9,
    MEASURE6: 13;
    
      per cases by
    A1,
    A2,
    A3,
    Th9;
    
        suppose
    
        
    
    A5: q 
    <= r; 
    
        then
    
        
    
    A6: ( 
    inf A) 
    < ( 
    inf B) & ( 
    sup A) 
    < ( 
    sup B) by 
    A4,
    A1,
    A2,
    XXREAL_1: 26,
    XXREAL_1: 27,
    XXREAL_0: 2;
    
         not q
    in A & not q 
    in B by 
    A1,
    A2,
    A5,
    XXREAL_1: 2,
    XXREAL_1: 3;
    
        then
    
        
    
    A7: not q 
    in (A 
    \/ B) by 
    XBOOLE_0:def 3;
    
        
    
        
    
    A8: ( 
    inf A) 
    < q & q 
    < ( 
    sup B) by 
    A4,
    A5,
    A1,
    A2,
    XXREAL_1: 26,
    XXREAL_1: 27,
    XXREAL_0: 2;
    
        now
    
          assume
    
          
    
    A9: (A 
    \/ B) is 
    Interval;
    
          (
    inf (A 
    \/ B)) 
    = ( 
    min (( 
    inf A),( 
    inf B))) & ( 
    sup (A 
    \/ B)) 
    = ( 
    max (( 
    sup A),( 
    sup B))) by 
    XXREAL_2: 9,
    XXREAL_2: 10;
    
          then (
    inf (A 
    \/ B)) 
    = ( 
    inf A) & ( 
    sup (A 
    \/ B)) 
    = ( 
    sup B) by 
    A6,
    XXREAL_0:def 9,
    XXREAL_0:def 10;
    
          hence contradiction by
    A7,
    A8,
    A9,
    XXREAL_2: 83;
    
        end;
    
        hence not (A
    \/ B) is 
    Interval;
    
      end;
    
        suppose
    
        
    
    A10: s 
    < p; 
    
        then
    
        
    
    A11: ( 
    inf B) 
    < ( 
    inf A) & ( 
    sup B) 
    < ( 
    sup A) by 
    A4,
    A1,
    A2,
    XXREAL_1: 26,
    XXREAL_1: 27,
    XXREAL_0: 2;
    
        consider x be
    R_eal such that 
    
        
    
    A12: s 
    < x & x 
    < p & x 
    in  
    REAL by 
    A10,
    MEASURE5: 2;
    
         not x
    in A & not x 
    in B by 
    A1,
    A2,
    A12,
    XXREAL_1: 2,
    XXREAL_1: 3;
    
        then
    
        
    
    A13: not x 
    in (A 
    \/ B) by 
    XBOOLE_0:def 3;
    
        
    
        
    
    A14: ( 
    inf B) 
    < x & x 
    < ( 
    sup A) by 
    A12,
    A4,
    A1,
    A2,
    XXREAL_1: 26,
    XXREAL_1: 27,
    XXREAL_0: 2;
    
        now
    
          assume
    
          
    
    A15: (A 
    \/ B) is 
    Interval;
    
          (
    inf (A 
    \/ B)) 
    = ( 
    min (( 
    inf A),( 
    inf B))) & ( 
    sup (A 
    \/ B)) 
    = ( 
    max (( 
    sup A),( 
    sup B))) by 
    XXREAL_2: 9,
    XXREAL_2: 10;
    
          then (
    inf (A 
    \/ B)) 
    = ( 
    inf B) & ( 
    sup (A 
    \/ B)) 
    = ( 
    sup A) by 
    A11,
    XXREAL_0:def 9,
    XXREAL_0:def 10;
    
          hence contradiction by
    A13,
    A14,
    A15,
    XXREAL_2: 83;
    
        end;
    
        hence not (A
    \/ B) is 
    Interval;
    
      end;
    
    end;
    
    theorem :: 
    
    MEASUR12:20
    
    
    
    
    
    Th20: for A,B be non 
    empty  
    Interval, p,q,r,s be 
    R_eal st A 
    =  
    [.p, q.[ & B
    =  
    ].r, s.[ & A
    misses B & (A 
    \/ B) is 
    Interval holds p 
    = s & (A 
    \/ B) 
    =  
    ].r, q.[
    
    proof
    
      let A,B be non
    empty  
    Interval, p,q,r,s be 
    R_eal;
    
      assume that
    
      
    
    A1: A 
    =  
    [.p, q.[ and
    
      
    
    A2: B 
    =  
    ].r, s.[ and
    
      
    
    A3: A 
    misses B and 
    
      
    
    A4: (A 
    \/ B) is 
    Interval;
    
      
    
      
    
    A5: p 
    < q & r 
    < s by 
    A1,
    A2,
    XXREAL_1: 27,
    XXREAL_1: 28;
    
      then
    
      
    
    A6: ( 
    inf A) 
    = p & ( 
    sup A) 
    = q & ( 
    inf B) 
    = r & ( 
    sup B) 
    = s by 
    A1,
    A2,
    MEASURE6: 8,
    MEASURE6: 11,
    MEASURE6: 12,
    MEASURE6: 15;
    
      now
    
        assume
    
        
    
    A7: q 
    <= r; 
    
        then not q
    in A & not q 
    in B by 
    A1,
    A2,
    XXREAL_1: 3,
    XXREAL_1: 4;
    
        then
    
        
    
    A8: not q 
    in (A 
    \/ B) by 
    XBOOLE_0:def 3;
    
        
    
        
    
    A9: ( 
    inf A) 
    < ( 
    inf B) & ( 
    sup A) 
    < ( 
    sup B) by 
    A6,
    A7,
    A1,
    A2,
    XXREAL_1: 27,
    XXREAL_1: 28,
    XXREAL_0: 2;
    
        (
    inf (A 
    \/ B)) 
    = ( 
    min (( 
    inf A),( 
    inf B))) & ( 
    sup (A 
    \/ B)) 
    = ( 
    max (( 
    sup A),( 
    sup B))) by 
    XXREAL_2: 9,
    XXREAL_2: 10;
    
        then (
    inf (A 
    \/ B)) 
    < q & q 
    < ( 
    sup (A 
    \/ B)) by 
    A5,
    A6,
    A9,
    XXREAL_0:def 9,
    XXREAL_0:def 10;
    
        hence contradiction by
    A8,
    A4,
    XXREAL_2: 83;
    
      end;
    
      then
    
      
    
    A10: s 
    <= p by 
    A1,
    A2,
    A3,
    Th10;
    
      now
    
        assume
    
        
    
    A11: s 
    < p; 
    
        then
    
        consider x be
    R_eal such that 
    
        
    
    A12: s 
    < x & x 
    < p & x 
    in  
    REAL by 
    MEASURE5: 2;
    
         not x
    in A & not x 
    in B by 
    A1,
    A2,
    A12,
    XXREAL_1: 3,
    XXREAL_1: 4;
    
        then
    
        
    
    A13: not x 
    in (A 
    \/ B) by 
    XBOOLE_0:def 3;
    
        (
    min (( 
    inf A),( 
    inf B))) 
    = ( 
    inf B) & ( 
    max (( 
    sup A),( 
    sup B))) 
    = ( 
    sup A) by 
    A11,
    A6,
    A5,
    XXREAL_0: 2,
    XXREAL_0:def 9,
    XXREAL_0:def 10;
    
        then (
    inf (A 
    \/ B)) 
    = ( 
    inf B) & ( 
    sup (A 
    \/ B)) 
    = ( 
    sup A) by 
    XXREAL_2: 9,
    XXREAL_2: 10;
    
        then (
    inf (A 
    \/ B)) 
    < x & x 
    < ( 
    sup (A 
    \/ B)) by 
    A6,
    A12,
    A1,
    A2,
    XXREAL_1: 27,
    XXREAL_1: 28,
    XXREAL_0: 2;
    
        hence contradiction by
    A13,
    A4,
    XXREAL_2: 83;
    
      end;
    
      hence p
    = s by 
    A10,
    XXREAL_0: 1;
    
      hence (A
    \/ B) 
    =  
    ].r, q.[ by
    A1,
    A2,
    A5,
    XXREAL_1: 173;
    
    end;
    
    theorem :: 
    
    MEASUR12:21
    
    
    
    
    
    Th21: for A,B be non 
    empty  
    Interval, p,q,r,s be 
    R_eal st A 
    =  
    ].p, q.] & B
    =  
    ].r, s.] & A
    misses B & (A 
    \/ B) is 
    Interval holds (p 
    = s & (A 
    \/ B) 
    =  
    ].r, q.]) or (q
    = r & (A 
    \/ B) 
    =  
    ].p, s.])
    
    proof
    
      let A,B be non
    empty  
    Interval, p,q,r,s be 
    R_eal;
    
      assume that
    
      
    
    A1: A 
    =  
    ].p, q.] and
    
      
    
    A2: B 
    =  
    ].r, s.] and
    
      
    
    A3: A 
    misses B and 
    
      
    
    A4: (A 
    \/ B) is 
    Interval;
    
      
    
      
    
    A5: p 
    < q & r 
    < s by 
    A1,
    A2,
    XXREAL_1: 26;
    
      then
    
      
    
    A6: ( 
    inf A) 
    = p & ( 
    sup A) 
    = q & ( 
    inf B) 
    = r & ( 
    sup B) 
    = s by 
    A1,
    A2,
    MEASURE6: 9,
    MEASURE6: 13;
    
      
    
    A7: 
    
      now
    
        assume
    
        
    
    A8: q 
    < r; 
    
        then
    
        consider x be
    R_eal such that 
    
        
    
    A9: q 
    < x & x 
    < r & x 
    in  
    REAL by 
    MEASURE5: 2;
    
         not x
    in A & not x 
    in B by 
    A1,
    A2,
    A9,
    XXREAL_1: 2;
    
        then
    
        
    
    A10: not x 
    in (A 
    \/ B) by 
    XBOOLE_0:def 3;
    
        (
    inf (A 
    \/ B)) 
    = ( 
    min (( 
    inf A),( 
    inf B))) & ( 
    sup (A 
    \/ B)) 
    = ( 
    max (( 
    sup A),( 
    sup B))) by 
    XXREAL_2: 9,
    XXREAL_2: 10;
    
        then (
    inf (A 
    \/ B)) 
    = ( 
    inf A) & ( 
    sup (A 
    \/ B)) 
    = ( 
    sup B) by 
    A5,
    A6,
    A8,
    XXREAL_0: 2,
    XXREAL_0:def 9,
    XXREAL_0:def 10;
    
        then (
    inf (A 
    \/ B)) 
    < x & x 
    < ( 
    sup (A 
    \/ B)) by 
    A6,
    A9,
    A1,
    A2,
    XXREAL_1: 26,
    XXREAL_0: 2;
    
        hence contradiction by
    A10,
    A4,
    XXREAL_2: 83;
    
      end;
    
      
    
    A11: 
    
      now
    
        assume
    
        
    
    A12: s 
    < p; 
    
        then
    
        consider x be
    R_eal such that 
    
        
    
    A13: s 
    < x & x 
    < p & x 
    in  
    REAL by 
    MEASURE5: 2;
    
         not x
    in A & not x 
    in B by 
    A1,
    A2,
    A13,
    XXREAL_1: 2;
    
        then
    
        
    
    A14: not x 
    in (A 
    \/ B) by 
    XBOOLE_0:def 3;
    
        (
    inf (A 
    \/ B)) 
    = ( 
    min (( 
    inf A),( 
    inf B))) & ( 
    sup (A 
    \/ B)) 
    = ( 
    max (( 
    sup A),( 
    sup B))) by 
    XXREAL_2: 9,
    XXREAL_2: 10;
    
        then (
    inf (A 
    \/ B)) 
    = ( 
    inf B) & ( 
    sup (A 
    \/ B)) 
    = ( 
    sup A) by 
    A5,
    A6,
    A12,
    XXREAL_0: 2,
    XXREAL_0:def 9,
    XXREAL_0:def 10;
    
        then (
    inf (A 
    \/ B)) 
    < x & x 
    < ( 
    sup (A 
    \/ B)) by 
    A6,
    A13,
    A1,
    A2,
    XXREAL_1: 26,
    XXREAL_0: 2;
    
        hence contradiction by
    A14,
    A4,
    XXREAL_2: 83;
    
      end;
    
      q
    <= r or s 
    <= p by 
    A1,
    A2,
    A3,
    Th11;
    
      then q
    = r or s 
    = p by 
    A7,
    A11,
    XXREAL_0: 1;
    
      hence thesis by
    A1,
    A2,
    A5,
    XXREAL_1: 170;
    
    end;
    
    theorem :: 
    
    MEASUR12:22
    
    
    
    
    
    Th22: for A,B be non 
    empty  
    Interval, p,q,r,s be 
    R_eal st A 
    =  
    ].p, q.] & B
    =  
    ].r, s.[ & A
    misses B & (A 
    \/ B) is 
    Interval holds q 
    = r & (A 
    \/ B) 
    =  
    ].p, s.[
    
    proof
    
      let A,B be non
    empty  
    Interval, p,q,r,s be 
    R_eal;
    
      assume that
    
      
    
    A1: A 
    =  
    ].p, q.] and
    
      
    
    A2: B 
    =  
    ].r, s.[ and
    
      
    
    A3: A 
    misses B and 
    
      
    
    A4: (A 
    \/ B) is 
    Interval;
    
      
    
      
    
    A5: p 
    < q & r 
    < s by 
    A1,
    A2,
    XXREAL_1: 26,
    XXREAL_1: 28;
    
      then
    
      
    
    A6: ( 
    inf A) 
    = p & ( 
    sup A) 
    = q & ( 
    inf B) 
    = r & ( 
    sup B) 
    = s by 
    A1,
    A2,
    MEASURE6: 8,
    MEASURE6: 9,
    MEASURE6: 13,
    MEASURE6: 12;
    
      now
    
        assume
    
        
    
    A7: s 
    <= p; 
    
        then not s
    in A & not s 
    in B by 
    A1,
    A2,
    XXREAL_1: 2,
    XXREAL_1: 4;
    
        then
    
        
    
    A8: not s 
    in (A 
    \/ B) by 
    XBOOLE_0:def 3;
    
        
    
        
    
    A9: ( 
    inf B) 
    < ( 
    inf A) & ( 
    sup B) 
    < ( 
    sup A) by 
    A6,
    A7,
    A1,
    A2,
    XXREAL_1: 26,
    XXREAL_1: 28,
    XXREAL_0: 2;
    
        (
    inf (A 
    \/ B)) 
    = ( 
    min (( 
    inf A),( 
    inf B))) & ( 
    sup (A 
    \/ B)) 
    = ( 
    max (( 
    sup A),( 
    sup B))) by 
    XXREAL_2: 9,
    XXREAL_2: 10;
    
        then (
    inf (A 
    \/ B)) 
    < s & s 
    < ( 
    sup (A 
    \/ B)) by 
    A5,
    A6,
    A9,
    XXREAL_0:def 9,
    XXREAL_0:def 10;
    
        hence contradiction by
    A8,
    A4,
    XXREAL_2: 83;
    
      end;
    
      then
    
      
    
    A10: q 
    <= r by 
    A1,
    A2,
    A3,
    Th12;
    
      now
    
        assume
    
        
    
    A11: q 
    < r; 
    
        then
    
        consider x be
    R_eal such that 
    
        
    
    A12: q 
    < x & x 
    < r & x 
    in  
    REAL by 
    MEASURE5: 2;
    
         not x
    in A & not x 
    in B by 
    A1,
    A2,
    A12,
    XXREAL_1: 2,
    XXREAL_1: 4;
    
        then
    
        
    
    A13: not x 
    in (A 
    \/ B) by 
    XBOOLE_0:def 3;
    
        (
    min (( 
    inf A),( 
    inf B))) 
    = ( 
    inf A) & ( 
    max (( 
    sup A),( 
    sup B))) 
    = ( 
    sup B) by 
    A11,
    A6,
    A5,
    XXREAL_0: 2,
    XXREAL_0:def 9,
    XXREAL_0:def 10;
    
        then (
    inf (A 
    \/ B)) 
    = ( 
    inf A) & ( 
    sup (A 
    \/ B)) 
    = ( 
    sup B) by 
    XXREAL_2: 9,
    XXREAL_2: 10;
    
        then (
    inf (A 
    \/ B)) 
    < x & x 
    < ( 
    sup (A 
    \/ B)) by 
    A6,
    A12,
    A1,
    A2,
    XXREAL_1: 26,
    XXREAL_1: 28,
    XXREAL_0: 2;
    
        hence contradiction by
    A13,
    A4,
    XXREAL_2: 83;
    
      end;
    
      hence q
    = r by 
    A10,
    XXREAL_0: 1;
    
      hence (A
    \/ B) 
    =  
    ].p, s.[ by
    A1,
    A2,
    A5,
    XXREAL_1: 171;
    
    end;
    
    theorem :: 
    
    MEASUR12:23
    
    
    
    
    
    Th23: for A,B be non 
    empty  
    Interval, p,q,r,s be 
    R_eal st A 
    =  
    ].p, q.[ & B
    =  
    ].r, s.[ & A
    misses B holds not (A 
    \/ B) is 
    Interval
    
    proof
    
      let A,B be non
    empty  
    Interval, p,q,r,s be 
    R_eal;
    
      assume that
    
      
    
    A1: A 
    =  
    ].p, q.[ and
    
      
    
    A2: B 
    =  
    ].r, s.[ and
    
      
    
    A3: A 
    misses B; 
    
      
    
      
    
    A4: p 
    < q & r 
    < s by 
    A1,
    A2,
    XXREAL_1: 28;
    
      then
    
      
    
    A5: ( 
    inf A) 
    = p & ( 
    sup A) 
    = q & ( 
    inf B) 
    = r & ( 
    sup B) 
    = s by 
    A1,
    A2,
    MEASURE6: 8,
    MEASURE6: 12;
    
      per cases by
    A1,
    A2,
    A3,
    Th13;
    
        suppose
    
        
    
    A6: q 
    <= r; 
    
        then
    
        
    
    A7: ( 
    inf A) 
    < ( 
    inf B) & ( 
    sup A) 
    < ( 
    sup B) by 
    A5,
    A1,
    A2,
    XXREAL_1: 28,
    XXREAL_0: 2;
    
         not q
    in A & not q 
    in B by 
    A1,
    A2,
    A6,
    XXREAL_1: 4;
    
        then
    
        
    
    A8: not q 
    in (A 
    \/ B) by 
    XBOOLE_0:def 3;
    
        now
    
          assume
    
          
    
    A9: (A 
    \/ B) is 
    Interval;
    
          (
    inf (A 
    \/ B)) 
    = ( 
    min (( 
    inf A),( 
    inf B))) & ( 
    sup (A 
    \/ B)) 
    = ( 
    max (( 
    sup A),( 
    sup B))) by 
    XXREAL_2: 9,
    XXREAL_2: 10;
    
          then (
    inf (A 
    \/ B)) 
    = ( 
    inf A) & ( 
    sup (A 
    \/ B)) 
    = ( 
    sup B) by 
    A6,
    A4,
    A5,
    XXREAL_0: 2,
    XXREAL_0:def 9,
    XXREAL_0:def 10;
    
          hence contradiction by
    A8,
    A5,
    A7,
    A4,
    A9,
    XXREAL_2: 83;
    
        end;
    
        hence not (A
    \/ B) is 
    Interval;
    
      end;
    
        suppose
    
        
    
    A10: s 
    <= p; 
    
         not s
    in A & not s 
    in B by 
    A1,
    A2,
    A10,
    XXREAL_1: 4;
    
        then
    
        
    
    A11: not s 
    in (A 
    \/ B) by 
    XBOOLE_0:def 3;
    
        
    
        
    
    A12: ( 
    inf B) 
    < s & s 
    < ( 
    sup A) by 
    A5,
    A10,
    A1,
    A2,
    XXREAL_1: 28,
    XXREAL_0: 2;
    
        now
    
          assume
    
          
    
    A13: (A 
    \/ B) is 
    Interval;
    
          (
    inf (A 
    \/ B)) 
    = ( 
    min (( 
    inf A),( 
    inf B))) & ( 
    sup (A 
    \/ B)) 
    = ( 
    max (( 
    sup A),( 
    sup B))) by 
    XXREAL_2: 9,
    XXREAL_2: 10;
    
          then (
    inf (A 
    \/ B)) 
    = ( 
    inf B) & ( 
    sup (A 
    \/ B)) 
    = ( 
    sup A) by 
    A10,
    A4,
    A5,
    XXREAL_0: 2,
    XXREAL_0:def 9,
    XXREAL_0:def 10;
    
          hence contradiction by
    A11,
    A12,
    A13,
    XXREAL_2: 83;
    
        end;
    
        hence not (A
    \/ B) is 
    Interval;
    
      end;
    
    end;
    
    theorem :: 
    
    MEASUR12:24
    
    
    
    
    
    Th24: for a,b be 
    Real, I be 
    Subset of 
    R^1 st I 
    =  
    [.a, b.] holds I is
    compact
    
    proof
    
      let a,b be
    Real, I be 
    Subset of 
    R^1 ; 
    
      assume
    
      
    
    A1: I 
    =  
    [.a, b.];
    
      per cases ;
    
        suppose
    
        
    
    A2: a 
    <= b; 
    
        then (
    Closed-Interval-TSpace (a,b)) is 
    compact by 
    HEINE: 4;
    
        then
    
        
    
    A3: ( 
    [#] ( 
    Closed-Interval-TSpace (a,b))) is 
    compact by 
    COMPTS_1: 1;
    
        (
    [#] ( 
    Closed-Interval-TSpace (a,b))) 
    = the 
    carrier of ( 
    Closed-Interval-TSpace (a,b)) by 
    STRUCT_0:def 3;
    
        then I
    = ( 
    [#] ( 
    Closed-Interval-TSpace (a,b))) by 
    A1,
    A2,
    TOPMETR: 18;
    
        hence I is
    compact by 
    A3,
    COMPTS_1: 19;
    
      end;
    
        suppose a
    > b; 
    
        then
    [.a, b.]
    =  
    {} by 
    XXREAL_1: 29;
    
        hence I is
    compact by 
    A1;
    
      end;
    
    end;
    
    begin
    
    definition
    
      let f be
    FinSequence of 
    ExtREAL ; 
    
      :: 
    
    MEASUR12:def1
    
      func
    
    max_p f -> 
    Nat means 
    
      :
    
    Def1: (( 
    len f) 
    =  
    0 implies it 
    =  
    0 ) & (( 
    len f) 
    >  
    0 implies it 
    in ( 
    dom f) & (for i be 
    Nat, r1,r2 be 
    ExtReal st i 
    in ( 
    dom f) & r1 
    = (f 
    . i) & r2 
    = (f 
    . it ) holds r1 
    <= r2) & for j be 
    Nat st j 
    in ( 
    dom f) & (f 
    . j) 
    = (f 
    . it ) holds it 
    <= j); 
    
      existence
    
      proof
    
        
    
        
    
    A1: ( 
    dom f) 
    = ( 
    Seg ( 
    len f)) by 
    FINSEQ_1:def 3;
    
        per cases ;
    
          suppose (
    len f) 
    =  
    0 ; 
    
          hence thesis;
    
        end;
    
          suppose
    
          
    
    A2: ( 
    len f) 
    <>  
    0 ; 
    
          defpred
    
    P[
    Nat] means (ex n be
    Nat st ($1 
    <>  
    0 implies n 
    <= $1 & n 
    in ( 
    dom f)) & (for i be 
    Nat, r1,r2 be 
    ExtReal st i 
    <= $1 & i 
    in ( 
    dom f) & r1 
    = (f 
    . i) & r2 
    = (f 
    . n) holds r1 
    <= r2) & (for j be 
    Nat st j 
    <= $1 & j 
    in ( 
    dom f) & (f 
    . j) 
    = (f 
    . n) holds n 
    <= j)); 
    
          
    
          
    
    A3: for k be 
    Nat st 
    P[k] holds
    P[(k
    + 1)] 
    
          proof
    
            let k be
    Nat;
    
            assume
    P[k];
    
            then
    
            consider n1 be
    Nat such that 
    
            
    
    A4: k 
    <>  
    0 implies n1 
    <= k & n1 
    in ( 
    dom f) and 
    
            
    
    A5: for i be 
    Nat, r1,r2 be 
    ExtReal st i 
    <= k & i 
    in ( 
    dom f) & r1 
    = (f 
    . i) & r2 
    = (f 
    . n1) holds r1 
    <= r2 and 
    
            
    
    A6: for j be 
    Nat st j 
    <= k & j 
    in ( 
    dom f) & (f 
    . j) 
    = (f 
    . n1) holds n1 
    <= j; 
    
            per cases ;
    
              suppose
    
              
    
    A7: k 
    =  
    0 ; 
    
              
    
              
    
    A8: ( 
    dom f) 
    = ( 
    Seg ( 
    len f)) by 
    FINSEQ_1:def 3;
    
              
    
              
    
    A9: for i be 
    Nat, r1,r2 be 
    ExtReal st i 
    <= 1 & i 
    in ( 
    dom f) & r1 
    = (f 
    . i) & r2 
    = (f 
    . 1) holds r1 
    <= r2 
    
              proof
    
                let i be
    Nat, r1,r2 be 
    ExtReal;
    
                assume that
    
                
    
    A10: i 
    <= 1 and 
    
                
    
    A11: i 
    in ( 
    dom f) and 
    
                
    
    A12: r1 
    = (f 
    . i) & r2 
    = (f 
    . 1); 
    
                1
    <= i by 
    A11,
    FINSEQ_3: 25;
    
                hence thesis by
    A10,
    A12,
    XXREAL_0: 1;
    
              end;
    
              
    
              
    
    A13: ( 
    len f) 
    >= ( 
    0  
    + 1) by 
    A2,
    NAT_1: 13;
    
              for j be
    Nat st j 
    <= 1 & j 
    in ( 
    dom f) & (f 
    . j) 
    = (f 
    . 1) holds 1 
    <= j by 
    A8,
    FINSEQ_1: 1;
    
              hence thesis by
    A7,
    A13,
    A9,
    A8,
    FINSEQ_1: 1;
    
            end;
    
              suppose
    
              
    
    A14: k 
    <>  
    0 ; 
    
              now
    
                per cases ;
    
                  case
    
                  
    
    A15: (f 
    . n1) 
    >= (f 
    . (k 
    + 1)); 
    
                  
    
                  
    
    A16: for i be 
    Nat, r1,r2 be 
    ExtReal st i 
    <= (k 
    + 1) & i 
    in ( 
    dom f) & r1 
    = (f 
    . i) & r2 
    = (f 
    . n1) holds r1 
    <= r2 
    
                  proof
    
                    let i be
    Nat, r1,r2 be 
    ExtReal;
    
                    assume that
    
                    
    
    A17: i 
    <= (k 
    + 1) and 
    
                    
    
    A18: i 
    in ( 
    dom f) and 
    
                    
    
    A19: r1 
    = (f 
    . i) & r2 
    = (f 
    . n1); 
    
                    per cases ;
    
                      suppose i
    < (k 
    + 1); 
    
                      then i
    <= k by 
    NAT_1: 13;
    
                      hence thesis by
    A5,
    A18,
    A19;
    
                    end;
    
                      suppose i
    >= (k 
    + 1); 
    
                      hence thesis by
    A15,
    A17,
    A19,
    XXREAL_0: 1;
    
                    end;
    
                  end;
    
                  
    
                  
    
    A20: n1 
    <= (k 
    + 1) by 
    A4,
    A14,
    NAT_1: 13;
    
                  
    
                  
    
    A21: for j be 
    Nat st j 
    <= (k 
    + 1) & j 
    in ( 
    dom f) & (f 
    . j) 
    = (f 
    . n1) holds n1 
    <= j 
    
                  proof
    
                    let j be
    Nat;
    
                    assume that
    
                    
    
    A22: j 
    <= (k 
    + 1) and 
    
                    
    
    A23: j 
    in ( 
    dom f) & (f 
    . j) 
    = (f 
    . n1); 
    
                    now
    
                      per cases ;
    
                        case j
    < (k 
    + 1); 
    
                        then j
    <= k by 
    NAT_1: 13;
    
                        hence thesis by
    A6,
    A23;
    
                      end;
    
                        case j
    >= (k 
    + 1); 
    
                        hence thesis by
    A20,
    A22,
    XXREAL_0: 1;
    
                      end;
    
                    end;
    
                    hence thesis;
    
                  end;
    
                  (k
    + 1) 
    <>  
    0 implies n1 
    <= (k 
    + 1) & n1 
    in ( 
    dom f) by 
    A4,
    A14,
    NAT_1: 13;
    
                  hence thesis by
    A16,
    A21;
    
                end;
    
                  case
    
                  
    
    A24: (f 
    . n1) 
    < (f 
    . (k 
    + 1)); 
    
                  now
    
                    per cases ;
    
                      case
    
                      
    
    A25: (k 
    + 1) 
    > ( 
    len f); 
    
                      
    
                      
    
    A26: for j be 
    Nat st j 
    <= (k 
    + 1) & j 
    in ( 
    dom f) & (f 
    . j) 
    = (f 
    . n1) holds n1 
    <= j 
    
                      proof
    
                        let j be
    Nat;
    
                        assume that j
    <= (k 
    + 1) and 
    
                        
    
    A27: j 
    in ( 
    dom f) & (f 
    . j) 
    = (f 
    . n1); 
    
                        per cases ;
    
                          suppose j
    < (k 
    + 1); 
    
                          then j
    <= k by 
    NAT_1: 13;
    
                          hence thesis by
    A6,
    A27;
    
                        end;
    
                          suppose j
    >= (k 
    + 1); 
    
                          then k
    < j by 
    NAT_1: 13;
    
                          hence thesis by
    A4,
    A14,
    XXREAL_0: 2;
    
                        end;
    
                      end;
    
                      
    
                      
    
    A28: k 
    >= ( 
    len f) by 
    A25,
    NAT_1: 13;
    
                      
    
                      
    
    A29: for i be 
    Nat, r1,r2 be 
    ExtReal st i 
    <= (k 
    + 1) & i 
    in ( 
    dom f) & r1 
    = (f 
    . i) & r2 
    = (f 
    . n1) holds r1 
    <= r2 
    
                      proof
    
                        let i be
    Nat, r1,r2 be 
    ExtReal;
    
                        assume that i
    <= (k 
    + 1) and 
    
                        
    
    A30: i 
    in ( 
    dom f) and 
    
                        
    
    A31: r1 
    = (f 
    . i) & r2 
    = (f 
    . n1); 
    
                        i
    <= ( 
    len f) by 
    A1,
    A30,
    FINSEQ_1: 1;
    
                        then i
    <= k by 
    A28,
    XXREAL_0: 2;
    
                        hence thesis by
    A5,
    A30,
    A31;
    
                      end;
    
                      n1
    <= ( 
    len f) by 
    A1,
    A4,
    A14,
    FINSEQ_1: 1;
    
                      hence thesis by
    A29,
    A26,
    A4,
    A14,
    A25,
    XXREAL_0: 2;
    
                    end;
    
                      case
    
                      
    
    A32: (k 
    + 1) 
    <= ( 
    len f); 
    
                      set n2 = (k
    + 1); 
    
                      
    
                      
    
    A33: for i be 
    Nat, r1,r2 be 
    ExtReal st i 
    <= (k 
    + 1) & i 
    in ( 
    dom f) & r1 
    = (f 
    . i) & r2 
    = (f 
    . n2) holds r1 
    <= r2 
    
                      proof
    
                        let i be
    Nat, r1,r2 be 
    ExtReal;
    
                        assume that
    
                        
    
    A34: i 
    <= (k 
    + 1) and 
    
                        
    
    A35: i 
    in ( 
    dom f) and 
    
                        
    
    A36: r1 
    = (f 
    . i) and 
    
                        
    
    A37: r2 
    = (f 
    . n2); 
    
                        per cases ;
    
                          suppose
    
                          
    
    A38: i 
    < (k 
    + 1); 
    
                          reconsider r3 = (f
    . n1) as 
    ExtReal;
    
                          i
    <= k by 
    A38,
    NAT_1: 13;
    
                          then r1
    <= r3 by 
    A5,
    A35,
    A36;
    
                          hence thesis by
    A24,
    A37,
    XXREAL_0: 2;
    
                        end;
    
                          suppose i
    >= (k 
    + 1); 
    
                          hence thesis by
    A34,
    A36,
    A37,
    XXREAL_0: 1;
    
                        end;
    
                      end;
    
                      
    
                      
    
    A39: for j be 
    Nat st j 
    <= (k 
    + 1) & j 
    in ( 
    dom f) & (f 
    . j) 
    = (f 
    . n2) holds n2 
    <= j 
    
                      proof
    
                        let j be
    Nat;
    
                        assume that j
    <= (k 
    + 1) and 
    
                        
    
    A40: j 
    in ( 
    dom f) & (f 
    . j) 
    = (f 
    . n2); 
    
                        per cases ;
    
                          suppose j
    < (k 
    + 1); 
    
                          then j
    <= k by 
    NAT_1: 13;
    
                          hence thesis by
    A5,
    A24,
    A40;
    
                        end;
    
                          suppose j
    >= (k 
    + 1); 
    
                          hence thesis;
    
                        end;
    
                      end;
    
                      1
    <= (1 
    + k) by 
    NAT_1: 12;
    
                      hence thesis by
    A33,
    A39,
    A1,
    A32,
    FINSEQ_1: 1;
    
                    end;
    
                  end;
    
                  hence thesis;
    
                end;
    
              end;
    
              hence thesis;
    
            end;
    
          end;
    
          (for i be
    Nat, r1,r2 be 
    ExtReal st i 
    <=  
    0 & i 
    in ( 
    dom f) & r1 
    = (f 
    . i) & r2 
    = (f 
    . 1) holds r1 
    <= r2) & for j be 
    Nat st j 
    <=  
    0 & j 
    in ( 
    dom f) & (f 
    . j) 
    = (f 
    . 1) holds 1 
    <= j by 
    A1,
    FINSEQ_1: 1;
    
          then
    
          
    
    A41: 
    P[
    0 ]; 
    
          for k be
    Nat holds 
    P[k] from
    NAT_1:sch 2(
    A41,
    A3);
    
          then
    
          consider n1 be
    Nat such that 
    
          
    
    A42: ( 
    len f) 
    <>  
    0 implies n1 
    <= ( 
    len f) & n1 
    in ( 
    dom f) and 
    
          
    
    A43: for i be 
    Nat, r1,r2 be 
    ExtReal st i 
    <= ( 
    len f) & i 
    in ( 
    dom f) & r1 
    = (f 
    . i) & r2 
    = (f 
    . n1) holds r1 
    <= r2 and 
    
          
    
    A44: for j be 
    Nat st j 
    <= ( 
    len f) & j 
    in ( 
    dom f) & (f 
    . j) 
    = (f 
    . n1) holds n1 
    <= j; 
    
          
    
          
    
    A45: for j be 
    Nat st j 
    in ( 
    dom f) & (f 
    . j) 
    = (f 
    . n1) holds n1 
    <= j 
    
          proof
    
            let j be
    Nat;
    
            assume that
    
            
    
    A46: j 
    in ( 
    dom f) and 
    
            
    
    A47: (f 
    . j) 
    = (f 
    . n1); 
    
            j
    <= ( 
    len f) by 
    A46,
    FINSEQ_3: 25;
    
            hence thesis by
    A44,
    A46,
    A47;
    
          end;
    
          for i be
    Nat, r1,r2 be 
    ExtReal st i 
    in ( 
    dom f) & r1 
    = (f 
    . i) & r2 
    = (f 
    . n1) holds r1 
    <= r2 
    
          proof
    
            let i be
    Nat, r1,r2 be 
    ExtReal;
    
            assume that
    
            
    
    A48: i 
    in ( 
    dom f) and 
    
            
    
    A49: r1 
    = (f 
    . i) & r2 
    = (f 
    . n1); 
    
            i
    <= ( 
    len f) by 
    A48,
    FINSEQ_3: 25;
    
            hence thesis by
    A43,
    A48,
    A49;
    
          end;
    
          hence thesis by
    A2,
    A42,
    A45;
    
        end;
    
      end;
    
      uniqueness
    
      proof
    
        thus for m1,m2 be
    Nat st (( 
    len f) 
    =  
    0 implies m1 
    =  
    0 ) & (( 
    len f) 
    >  
    0 implies m1 
    in ( 
    dom f) & (for i be 
    Nat, r1,r2 be 
    ExtReal st i 
    in ( 
    dom f) & r1 
    = (f 
    . i) & r2 
    = (f 
    . m1) holds r1 
    <= r2) & for j be 
    Nat st j 
    in ( 
    dom f) & (f 
    . j) 
    = (f 
    . m1) holds m1 
    <= j) & (( 
    len f) 
    =  
    0 implies m2 
    =  
    0 ) & (( 
    len f) 
    >  
    0 implies m2 
    in ( 
    dom f) & (for i be 
    Nat, r1,r2 be 
    ExtReal st i 
    in ( 
    dom f) & r1 
    = (f 
    . i) & r2 
    = (f 
    . m2) holds r1 
    <= r2) & for j be 
    Nat st j 
    in ( 
    dom f) & (f 
    . j) 
    = (f 
    . m2) holds m2 
    <= j) holds m1 
    = m2 
    
        proof
    
          let m1,m2 be
    Nat;
    
          assume
    
          
    
    A50: (( 
    len f) 
    =  
    0 implies m1 
    =  
    0 ) & (( 
    len f) 
    >  
    0 implies m1 
    in ( 
    dom f) & (for i be 
    Nat, r1,r2 be 
    ExtReal st i 
    in ( 
    dom f) & r1 
    = (f 
    . i) & r2 
    = (f 
    . m1) holds r1 
    <= r2) & for j be 
    Nat st j 
    in ( 
    dom f) & (f 
    . j) 
    = (f 
    . m1) holds m1 
    <= j) & (( 
    len f) 
    =  
    0 implies m2 
    =  
    0 ) & (( 
    len f) 
    >  
    0 implies m2 
    in ( 
    dom f) & (for i be 
    Nat, r1,r2 be 
    ExtReal st i 
    in ( 
    dom f) & r1 
    = (f 
    . i) & r2 
    = (f 
    . m2) holds r1 
    <= r2) & for j be 
    Nat st j 
    in ( 
    dom f) & (f 
    . j) 
    = (f 
    . m2) holds m2 
    <= j); 
    
          then (f
    . m2) 
    <= (f 
    . m1) & (f 
    . m1) 
    <= (f 
    . m2); 
    
          then (f
    . m1) 
    = (f 
    . m2) by 
    XXREAL_0: 1;
    
          then m1
    <= m2 & m2 
    <= m1 by 
    A50;
    
          hence thesis by
    XXREAL_0: 1;
    
        end;
    
      end;
    
    end
    
    definition
    
      let f be
    FinSequence of 
    ExtREAL ; 
    
      :: 
    
    MEASUR12:def2
    
      func
    
    min_p f -> 
    Nat means 
    
      :
    
    Def2: (( 
    len f) 
    =  
    0 implies it 
    =  
    0 ) & (( 
    len f) 
    >  
    0 implies it 
    in ( 
    dom f) & (for i be 
    Nat, r1,r2 be 
    ExtReal st i 
    in ( 
    dom f) & r1 
    = (f 
    . i) & r2 
    = (f 
    . it ) holds r1 
    >= r2) & for j be 
    Nat st j 
    in ( 
    dom f) & (f 
    . j) 
    = (f 
    . it ) holds it 
    <= j); 
    
      existence
    
      proof
    
        
    
        
    
    A1: ( 
    dom f) 
    = ( 
    Seg ( 
    len f)) by 
    FINSEQ_1:def 3;
    
        now
    
          per cases ;
    
            case (
    len f) 
    =  
    0 ; 
    
            hence thesis;
    
          end;
    
            case
    
            
    
    A2: ( 
    len f) 
    <>  
    0 ; 
    
            defpred
    
    P[
    Nat] means (ex n be
    Nat st ($1 
    <>  
    0 implies n 
    <= $1 & n 
    in ( 
    dom f)) & (for i be 
    Nat, r1,r2 be 
    ExtReal st i 
    <= $1 & i 
    in ( 
    dom f) & r1 
    = (f 
    . i) & r2 
    = (f 
    . n) holds r1 
    >= r2) & (for j be 
    Nat st j 
    <= $1 & j 
    in ( 
    dom f) & (f 
    . j) 
    = (f 
    . n) holds n 
    <= j)); 
    
            
    
            
    
    A3: for k be 
    Nat st 
    P[k] holds
    P[(k
    + 1)] 
    
            proof
    
              let k be
    Nat;
    
              assume
    P[k];
    
              then
    
              consider n1 be
    Nat such that 
    
              
    
    A4: k 
    <>  
    0 implies n1 
    <= k & n1 
    in ( 
    dom f) and 
    
              
    
    A5: for i be 
    Nat, r1,r2 be 
    ExtReal st i 
    <= k & i 
    in ( 
    dom f) & r1 
    = (f 
    . i) & r2 
    = (f 
    . n1) holds r1 
    >= r2 and 
    
              
    
    A6: for j be 
    Nat st j 
    <= k & j 
    in ( 
    dom f) & (f 
    . j) 
    = (f 
    . n1) holds n1 
    <= j; 
    
              now
    
                per cases ;
    
                  case
    
                  
    
    A7: k 
    =  
    0 ; 
    
                  
    
                  
    
    A8: ( 
    dom f) 
    = ( 
    Seg ( 
    len f)) by 
    FINSEQ_1:def 3;
    
                  
    
                  
    
    A9: for i be 
    Nat, r1,r2 be 
    ExtReal st i 
    <= 1 & i 
    in ( 
    dom f) & r1 
    = (f 
    . i) & r2 
    = (f 
    . 1) holds r1 
    >= r2 
    
                  proof
    
                    let i be
    Nat, r1,r2 be 
    ExtReal;
    
                    assume that
    
                    
    
    A10: i 
    <= 1 and 
    
                    
    
    A11: i 
    in ( 
    dom f) and 
    
                    
    
    A12: r1 
    = (f 
    . i) & r2 
    = (f 
    . 1); 
    
                    1
    <= i by 
    A11,
    FINSEQ_3: 25;
    
                    hence thesis by
    A10,
    A12,
    XXREAL_0: 1;
    
                  end;
    
                  
    
                  
    
    A13: ( 
    len f) 
    >= ( 
    0  
    + 1) by 
    A2,
    NAT_1: 13;
    
                  for j be
    Nat st j 
    <= 1 & j 
    in ( 
    dom f) & (f 
    . j) 
    = (f 
    . 1) holds 1 
    <= j by 
    A8,
    FINSEQ_1: 1;
    
                  hence thesis by
    A7,
    A13,
    A9,
    A8,
    FINSEQ_1: 1;
    
                end;
    
                  case
    
                  
    
    A14: k 
    <>  
    0 ; 
    
                  now
    
                    per cases ;
    
                      case
    
                      
    
    A15: (f 
    . n1) 
    <= (f 
    . (k 
    + 1)); 
    
                      
    
                      
    
    A16: for i be 
    Nat, r1,r2 be 
    ExtReal st i 
    <= (k 
    + 1) & i 
    in ( 
    dom f) & r1 
    = (f 
    . i) & r2 
    = (f 
    . n1) holds r1 
    >= r2 
    
                      proof
    
                        let i be
    Nat, r1,r2 be 
    ExtReal;
    
                        assume that
    
                        
    
    A17: i 
    <= (k 
    + 1) and 
    
                        
    
    A18: i 
    in ( 
    dom f) and 
    
                        
    
    A19: r1 
    = (f 
    . i) & r2 
    = (f 
    . n1); 
    
                        per cases ;
    
                          suppose i
    < (k 
    + 1); 
    
                          then i
    <= k by 
    NAT_1: 13;
    
                          hence thesis by
    A5,
    A18,
    A19;
    
                        end;
    
                          suppose i
    >= (k 
    + 1); 
    
                          hence thesis by
    A15,
    A17,
    A19,
    XXREAL_0: 1;
    
                        end;
    
                      end;
    
                      
    
                      
    
    A20: n1 
    <= (k 
    + 1) by 
    A4,
    A14,
    NAT_1: 13;
    
                      
    
                      
    
    A21: for j be 
    Nat st j 
    <= (k 
    + 1) & j 
    in ( 
    dom f) & (f 
    . j) 
    = (f 
    . n1) holds n1 
    <= j 
    
                      proof
    
                        let j be
    Nat;
    
                        assume that
    
                        
    
    A22: j 
    <= (k 
    + 1) and 
    
                        
    
    A23: j 
    in ( 
    dom f) & (f 
    . j) 
    = (f 
    . n1); 
    
                        per cases ;
    
                          suppose j
    < (k 
    + 1); 
    
                          then j
    <= k by 
    NAT_1: 13;
    
                          hence thesis by
    A6,
    A23;
    
                        end;
    
                          suppose j
    >= (k 
    + 1); 
    
                          hence thesis by
    A20,
    A22,
    XXREAL_0: 1;
    
                        end;
    
                      end;
    
                      (k
    + 1) 
    <>  
    0 implies n1 
    <= (k 
    + 1) & n1 
    in ( 
    dom f) by 
    A4,
    A14,
    NAT_1: 13;
    
                      hence thesis by
    A16,
    A21;
    
                    end;
    
                      case
    
                      
    
    A24: (f 
    . n1) 
    > (f 
    . (k 
    + 1)); 
    
                      now
    
                        per cases ;
    
                          case
    
                          
    
    A25: (k 
    + 1) 
    > ( 
    len f); 
    
                          
    
                          
    
    A26: for j be 
    Nat st j 
    <= (k 
    + 1) & j 
    in ( 
    dom f) & (f 
    . j) 
    = (f 
    . n1) holds n1 
    <= j 
    
                          proof
    
                            let j be
    Nat;
    
                            assume that j
    <= (k 
    + 1) and 
    
                            
    
    A27: j 
    in ( 
    dom f) & (f 
    . j) 
    = (f 
    . n1); 
    
                            per cases ;
    
                              suppose j
    < (k 
    + 1); 
    
                              then j
    <= k by 
    NAT_1: 13;
    
                              hence thesis by
    A6,
    A27;
    
                            end;
    
                              suppose j
    >= (k 
    + 1); 
    
                              then k
    < j by 
    NAT_1: 13;
    
                              hence thesis by
    A4,
    A14,
    XXREAL_0: 2;
    
                            end;
    
                          end;
    
                          
    
                          
    
    A28: k 
    >= ( 
    len f) by 
    A25,
    NAT_1: 13;
    
                          
    
                          
    
    A29: for i be 
    Nat, r1,r2 be 
    ExtReal st i 
    <= (k 
    + 1) & i 
    in ( 
    dom f) & r1 
    = (f 
    . i) & r2 
    = (f 
    . n1) holds r1 
    >= r2 
    
                          proof
    
                            let i be
    Nat, r1,r2 be 
    ExtReal;
    
                            assume that i
    <= (k 
    + 1) and 
    
                            
    
    A30: i 
    in ( 
    dom f) and 
    
                            
    
    A31: r1 
    = (f 
    . i) & r2 
    = (f 
    . n1); 
    
                            i
    <= ( 
    len f) by 
    A1,
    A30,
    FINSEQ_1: 1;
    
                            then i
    <= k by 
    A28,
    XXREAL_0: 2;
    
                            hence thesis by
    A5,
    A30,
    A31;
    
                          end;
    
                          n1
    <= ( 
    len f) by 
    A1,
    A4,
    A14,
    FINSEQ_1: 1;
    
                          hence thesis by
    A29,
    A26,
    A4,
    A14,
    A25,
    XXREAL_0: 2;
    
                        end;
    
                          case
    
                          
    
    A32: (k 
    + 1) 
    <= ( 
    len f); 
    
                          set n2 = (k
    + 1); 
    
                          
    
                          
    
    A33: for i be 
    Nat, r1,r2 be 
    ExtReal st i 
    <= (k 
    + 1) & i 
    in ( 
    dom f) & r1 
    = (f 
    . i) & r2 
    = (f 
    . n2) holds r1 
    >= r2 
    
                          proof
    
                            let i be
    Nat, r1,r2 be 
    ExtReal;
    
                            assume that
    
                            
    
    A34: i 
    <= (k 
    + 1) and 
    
                            
    
    A35: i 
    in ( 
    dom f) and 
    
                            
    
    A36: r1 
    = (f 
    . i) and 
    
                            
    
    A37: r2 
    = (f 
    . n2); 
    
                            per cases ;
    
                              suppose
    
                              
    
    A38: i 
    < (k 
    + 1); 
    
                              reconsider r3 = (f
    . n1) as 
    ExtReal;
    
                              i
    <= k by 
    A38,
    NAT_1: 13;
    
                              then r1
    >= r3 by 
    A5,
    A35,
    A36;
    
                              hence thesis by
    A24,
    A37,
    XXREAL_0: 2;
    
                            end;
    
                              suppose i
    >= (k 
    + 1); 
    
                              hence thesis by
    A34,
    A36,
    A37,
    XXREAL_0: 1;
    
                            end;
    
                          end;
    
                          
    
                          
    
    A39: for j be 
    Nat st j 
    <= (k 
    + 1) & j 
    in ( 
    dom f) & (f 
    . j) 
    = (f 
    . n2) holds n2 
    <= j 
    
                          proof
    
                            let j be
    Nat;
    
                            assume that j
    <= (k 
    + 1) and 
    
                            
    
    A40: j 
    in ( 
    dom f) & (f 
    . j) 
    = (f 
    . n2); 
    
                            per cases ;
    
                              suppose j
    < (k 
    + 1); 
    
                              then j
    <= k by 
    NAT_1: 13;
    
                              hence thesis by
    A5,
    A24,
    A40;
    
                            end;
    
                              suppose j
    >= (k 
    + 1); 
    
                              hence thesis;
    
                            end;
    
                          end;
    
                          1
    <= (1 
    + k) by 
    NAT_1: 12;
    
                          hence thesis by
    A33,
    A39,
    A1,
    A32,
    FINSEQ_1: 1;
    
                        end;
    
                      end;
    
                      hence thesis;
    
                    end;
    
                  end;
    
                  hence thesis;
    
                end;
    
              end;
    
              hence thesis;
    
            end;
    
            (for i be
    Nat, r1,r2 be 
    ExtReal st i 
    <=  
    0 & i 
    in ( 
    dom f) & r1 
    = (f 
    . i) & r2 
    = (f 
    . 1) holds r1 
    >= r2) & for j be 
    Nat st j 
    <=  
    0 & j 
    in ( 
    dom f) & (f 
    . j) 
    = (f 
    . 1) holds 1 
    <= j by 
    A1,
    FINSEQ_1: 1;
    
            then
    
            
    
    A41: 
    P[
    0 ]; 
    
            for k be
    Nat holds 
    P[k] from
    NAT_1:sch 2(
    A41,
    A3);
    
            then
    
            consider n1 be
    Nat such that 
    
            
    
    A42: ( 
    len f) 
    <>  
    0 implies n1 
    <= ( 
    len f) & n1 
    in ( 
    dom f) and 
    
            
    
    A43: for i be 
    Nat, r1,r2 be 
    ExtReal st i 
    <= ( 
    len f) & i 
    in ( 
    dom f) & r1 
    = (f 
    . i) & r2 
    = (f 
    . n1) holds r1 
    >= r2 and 
    
            
    
    A44: for j be 
    Nat st j 
    <= ( 
    len f) & j 
    in ( 
    dom f) & (f 
    . j) 
    = (f 
    . n1) holds n1 
    <= j; 
    
            
    
            
    
    A45: for j be 
    Nat st j 
    in ( 
    dom f) & (f 
    . j) 
    = (f 
    . n1) holds n1 
    <= j 
    
            proof
    
              let j be
    Nat;
    
              assume that
    
              
    
    A46: j 
    in ( 
    dom f) and 
    
              
    
    A47: (f 
    . j) 
    = (f 
    . n1); 
    
              j
    <= ( 
    len f) by 
    A46,
    FINSEQ_3: 25;
    
              hence thesis by
    A44,
    A46,
    A47;
    
            end;
    
            for i be
    Nat, r1,r2 be 
    ExtReal st i 
    in ( 
    dom f) & r1 
    = (f 
    . i) & r2 
    = (f 
    . n1) holds r1 
    >= r2 
    
            proof
    
              let i be
    Nat, r1,r2 be 
    ExtReal;
    
              assume that
    
              
    
    A48: i 
    in ( 
    dom f) and 
    
              
    
    A49: r1 
    = (f 
    . i) & r2 
    = (f 
    . n1); 
    
              i
    <= ( 
    len f) by 
    A48,
    FINSEQ_3: 25;
    
              hence thesis by
    A43,
    A48,
    A49;
    
            end;
    
            hence thesis by
    A2,
    A42,
    A45;
    
          end;
    
        end;
    
        hence thesis;
    
      end;
    
      uniqueness
    
      proof
    
        thus for m1,m2 be
    Nat st (( 
    len f) 
    =  
    0 implies m1 
    =  
    0 ) & (( 
    len f) 
    >  
    0 implies m1 
    in ( 
    dom f) & (for i be 
    Nat, r1,r2 be 
    ExtReal st i 
    in ( 
    dom f) & r1 
    = (f 
    . i) & r2 
    = (f 
    . m1) holds r1 
    >= r2) & for j be 
    Nat st j 
    in ( 
    dom f) & (f 
    . j) 
    = (f 
    . m1) holds m1 
    <= j) & (( 
    len f) 
    =  
    0 implies m2 
    =  
    0 ) & (( 
    len f) 
    >  
    0 implies m2 
    in ( 
    dom f) & (for i be 
    Nat, r1,r2 be 
    ExtReal st i 
    in ( 
    dom f) & r1 
    = (f 
    . i) & r2 
    = (f 
    . m2) holds r1 
    >= r2) & for j be 
    Nat st j 
    in ( 
    dom f) & (f 
    . j) 
    = (f 
    . m2) holds m2 
    <= j) holds m1 
    = m2 
    
        proof
    
          let m1,m2 be
    Nat;
    
          assume
    
          
    
    A50: (( 
    len f) 
    =  
    0 implies m1 
    =  
    0 ) & (( 
    len f) 
    >  
    0 implies m1 
    in ( 
    dom f) & (for i be 
    Nat, r1,r2 be 
    ExtReal st i 
    in ( 
    dom f) & r1 
    = (f 
    . i) & r2 
    = (f 
    . m1) holds r1 
    >= r2) & for j be 
    Nat st j 
    in ( 
    dom f) & (f 
    . j) 
    = (f 
    . m1) holds m1 
    <= j) & (( 
    len f) 
    =  
    0 implies m2 
    =  
    0 ) & (( 
    len f) 
    >  
    0 implies m2 
    in ( 
    dom f) & (for i be 
    Nat, r1,r2 be 
    ExtReal st i 
    in ( 
    dom f) & r1 
    = (f 
    . i) & r2 
    = (f 
    . m2) holds r1 
    >= r2) & for j be 
    Nat st j 
    in ( 
    dom f) & (f 
    . j) 
    = (f 
    . m2) holds m2 
    <= j); 
    
          then (f
    . m2) 
    >= (f 
    . m1) & (f 
    . m1) 
    >= (f 
    . m2); 
    
          then (f
    . m1) 
    = (f 
    . m2) by 
    XXREAL_0: 1;
    
          then m1
    >= m2 & m2 
    >= m1 by 
    A50;
    
          hence thesis by
    XXREAL_0: 1;
    
        end;
    
      end;
    
    end
    
    definition
    
      let f be
    FinSequence of 
    ExtREAL ; 
    
      :: 
    
    MEASUR12:def3
    
      func
    
    max f -> 
    ExtReal equals (f 
    . ( 
    max_p f)); 
    
      correctness ;
    
      :: 
    
    MEASUR12:def4
    
      func
    
    min f -> 
    ExtReal equals (f 
    . ( 
    min_p f)); 
    
      correctness ;
    
    end
    
    theorem :: 
    
    MEASUR12:25
    
    for f be
    FinSequence of 
    ExtREAL , i be 
    Nat st 1 
    <= i & i 
    <= ( 
    len f) holds (f 
    . i) 
    <= (f 
    . ( 
    max_p f)) & (f 
    . i) 
    <= ( 
    max f) 
    
    proof
    
      let f be
    FinSequence of 
    ExtREAL , i be 
    Nat;
    
      assume
    
      
    
    A1: 1 
    <= i & i 
    <= ( 
    len f); 
    
      then
    
      
    
    A2: i 
    in ( 
    dom f) by 
    FINSEQ_3: 25;
    
      hence (f
    . i) 
    <= (f 
    . ( 
    max_p f)) by 
    A1,
    Def1;
    
      thus thesis by
    A1,
    A2,
    Def1;
    
    end;
    
    theorem :: 
    
    MEASUR12:26
    
    
    
    
    
    Th26: for f be 
    FinSequence of 
    ExtREAL , i be 
    Nat st 1 
    <= i & i 
    <= ( 
    len f) holds (f 
    . i) 
    >= (f 
    . ( 
    min_p f)) & (f 
    . i) 
    >= ( 
    min f) 
    
    proof
    
      let f be
    FinSequence of 
    ExtREAL , i be 
    Nat;
    
      assume
    
      
    
    A1: 1 
    <= i & i 
    <= ( 
    len f); 
    
      then
    
      
    
    A2: i 
    in ( 
    dom f) by 
    FINSEQ_3: 25;
    
      hence (f
    . i) 
    >= (f 
    . ( 
    min_p f)) by 
    A1,
    Def2;
    
      thus thesis by
    A1,
    A2,
    Def2;
    
    end;
    
    theorem :: 
    
    MEASUR12:27
    
    
    
    
    
    Th27: for F be 
    Function, x,y be 
    object st x 
    in ( 
    dom F) & y 
    in ( 
    dom F) holds ( 
    Swap (F,x,y)) 
    = (F 
    * ( 
    Swap (( 
    id ( 
    dom F)),x,y))) 
    
    proof
    
      let F be
    Function, x,y be 
    object;
    
      assume
    
      
    
    A1: x 
    in ( 
    dom F) & y 
    in ( 
    dom F); 
    
      
    
      
    
    A2: ( 
    dom ( 
    Swap (F,x,y))) 
    = ( 
    dom F) & ( 
    dom ( 
    Swap (( 
    id ( 
    dom F)),x,y))) 
    = ( 
    dom ( 
    id ( 
    dom F))) by 
    FUNCT_7: 99;
    
      (
    rng ( 
    Swap (( 
    id ( 
    dom F)),x,y))) 
    = ( 
    rng ( 
    id ( 
    dom F))) by 
    FUNCT_7: 103;
    
      then
    
      
    
    A3: ( 
    dom (F 
    * ( 
    Swap (( 
    id ( 
    dom F)),x,y)))) 
    = ( 
    dom ( 
    Swap (F,x,y))) by 
    A2,
    RELAT_1: 27;
    
      
    
      
    
    A4: ( 
    dom ( 
    id ( 
    dom F))) 
    = ( 
    dom F); 
    
      now
    
        let z be
    object;
    
        assume
    
        
    
    A5: z 
    in ( 
    dom ( 
    Swap (F,x,y))); 
    
        
    
    A6: 
    
        now
    
          assume
    
          
    
    A7: z 
    = x; 
    
          then
    
          
    
    A8: (( 
    Swap (F,x,y)) 
    . z) 
    = (F 
    . y) by 
    A1,
    EXCHSORT: 29;
    
          ((
    Swap (( 
    id ( 
    dom F)),x,y)) 
    . z) 
    = (( 
    id ( 
    dom F)) 
    . y) by 
    A1,
    A4,
    A7,
    EXCHSORT: 29;
    
          then ((
    Swap (( 
    id ( 
    dom F)),x,y)) 
    . z) 
    = y by 
    A1,
    FUNCT_1: 18;
    
          hence ((
    Swap (F,x,y)) 
    . z) 
    = ((F 
    * ( 
    Swap (( 
    id ( 
    dom F)),x,y))) 
    . z) by 
    A1,
    A2,
    A7,
    A8,
    FUNCT_1: 13;
    
        end;
    
        
    
    A9: 
    
        now
    
          assume
    
          
    
    A10: z 
    = y; 
    
          then
    
          
    
    A11: (( 
    Swap (F,x,y)) 
    . z) 
    = (F 
    . x) by 
    A1,
    EXCHSORT: 31;
    
          ((
    Swap (( 
    id ( 
    dom F)),x,y)) 
    . z) 
    = (( 
    id ( 
    dom F)) 
    . x) by 
    A1,
    A4,
    A10,
    EXCHSORT: 31;
    
          then ((
    Swap (( 
    id ( 
    dom F)),x,y)) 
    . z) 
    = x by 
    A1,
    FUNCT_1: 18;
    
          hence ((
    Swap (F,x,y)) 
    . z) 
    = ((F 
    * ( 
    Swap (( 
    id ( 
    dom F)),x,y))) 
    . z) by 
    A1,
    A2,
    A10,
    A11,
    FUNCT_1: 13;
    
        end;
    
        now
    
          assume
    
          
    
    A12: z 
    <> x & z 
    <> y; 
    
          then
    
          
    
    A13: (( 
    Swap (F,x,y)) 
    . z) 
    = (F 
    . z) by 
    EXCHSORT: 33;
    
          ((
    Swap (( 
    id ( 
    dom F)),x,y)) 
    . z) 
    = (( 
    id ( 
    dom F)) 
    . z) by 
    A12,
    EXCHSORT: 33
    
          .= z by
    A2,
    A5,
    FUNCT_1: 18;
    
          hence ((
    Swap (F,x,y)) 
    . z) 
    = ((F 
    * ( 
    Swap (( 
    id ( 
    dom F)),x,y))) 
    . z) by 
    A2,
    A5,
    A13,
    FUNCT_1: 13;
    
        end;
    
        hence ((
    Swap (F,x,y)) 
    . z) 
    = ((F 
    * ( 
    Swap (( 
    id ( 
    dom F)),x,y))) 
    . z) by 
    A6,
    A9;
    
      end;
    
      hence thesis by
    A3,
    FUNCT_1:def 11;
    
    end;
    
    theorem :: 
    
    MEASUR12:28
    
    
    
    
    
    Th28: for F be 
    Function, x,y be 
    object st x 
    in ( 
    dom F) & y 
    in ( 
    dom F) holds (F,( 
    Swap (F,x,y))) 
    are_fiberwise_equipotent  
    
    proof
    
      let F be
    Function, x,y be 
    object;
    
      assume
    
      
    
    A1: x 
    in ( 
    dom F) & y 
    in ( 
    dom F); 
    
      
    
      
    
    A2: ( 
    dom ( 
    Swap (F,x,y))) 
    = ( 
    dom F) by 
    FUNCT_7: 99;
    
      
    
      
    
    A3: ( 
    dom ( 
    Swap (( 
    id ( 
    dom F)),x,y))) 
    = ( 
    dom ( 
    id ( 
    dom F))) by 
    FUNCT_7: 99;
    
      
    
      
    
    A4: ( 
    rng ( 
    Swap (( 
    id ( 
    dom F)),x,y))) 
    = ( 
    rng ( 
    id ( 
    dom F))) by 
    FUNCT_7: 103;
    
      (
    Swap (F,x,y)) 
    = (F 
    * ( 
    Swap (( 
    id ( 
    dom F)),x,y))) by 
    A1,
    Th27;
    
      hence thesis by
    A1,
    A2,
    A3,
    A4,
    CLASSES1: 77;
    
    end;
    
    theorem :: 
    
    MEASUR12:29
    
    
    
    
    
    Th29: for X be 
    set, F be 
    Function, x,y be 
    object st not x 
    in X & not y 
    in X holds (F 
    | X) 
    = (( 
    Swap (F,x,y)) 
    | X) 
    
    proof
    
      let X be
    set, F be 
    Function, x,y be 
    object;
    
      assume
    
      
    
    A1: not x 
    in X & not y 
    in X; 
    
      (
    dom F) 
    = ( 
    dom ( 
    Swap (F,x,y))) by 
    FUNCT_7: 99;
    
      then (
    dom (F 
    | X)) 
    = (( 
    dom ( 
    Swap (F,x,y))) 
    /\ X) by 
    RELAT_1: 61;
    
      then
    
      
    
    A2: ( 
    dom (F 
    | X)) 
    = ( 
    dom (( 
    Swap (F,x,y)) 
    | X)) by 
    RELAT_1: 61;
    
      now
    
        let z be
    object;
    
        assume z
    in ( 
    dom (F 
    | X)); 
    
        then
    
        
    
    A3: z 
    in X by 
    RELAT_1: 57;
    
        then ((
    Swap (F,x,y)) 
    . z) 
    = (F 
    . z) by 
    A1,
    EXCHSORT: 33;
    
        then ((F
    | X) 
    . z) 
    = (( 
    Swap (F,x,y)) 
    . z) by 
    A3,
    FUNCT_1: 49;
    
        hence ((F
    | X) 
    . z) 
    = ((( 
    Swap (F,x,y)) 
    | X) 
    . z) by 
    A3,
    FUNCT_1: 49;
    
      end;
    
      hence thesis by
    A2,
    FUNCT_1: 2;
    
    end;
    
    begin
    
    
    REAL  
    in ( 
    bool  
    REAL ) by 
    ZFMISC_1:def 1;
    
    then
    
    reconsider G0 = (
    NAT  
    -->  
    REAL ) as 
    sequence of ( 
    bool  
    REAL ) by 
    FUNCOP_1: 45;
    
    
    
    
    
    Lm5: ( 
    rng G0) 
    =  
    {
    REAL } by 
    FUNCOP_1: 8;
    
    
    
    
    
    Lm6: for n be 
    Element of 
    NAT holds (G0 
    . n) is 
    Interval;
    
    
    
    
    
    Lm7: 
    REAL is 
    open_interval  
    Subset of 
    REAL  
    
    proof
    
      
    REAL  
    =  
    ].
    -infty , 
    +infty .[ by 
    XXREAL_1: 224;
    
      hence thesis by
    MEASURE5:def 2;
    
    end;
    
    definition
    
      let A be
    Subset of 
    REAL ; 
    
      :: 
    
    MEASUR12:def5
    
      mode
    
    Open_Interval_Covering of A -> 
    Interval_Covering of A means 
    
      :
    
    Def5: for n be 
    Element of 
    NAT holds (it 
    . n) is 
    open_interval;
    
      existence
    
      proof
    
        A
    c= ( 
    union ( 
    rng G0)) by 
    Lm5;
    
        then
    
        reconsider G0 as
    Interval_Covering of A by 
    Lm6,
    MEASURE7:def 2;
    
        take G0;
    
        thus thesis by
    Lm7;
    
      end;
    
    end
    
    
    
    
    
    Lm8: for A be 
    Subset of 
    REAL holds G0 is 
    Open_Interval_Covering of A 
    
    proof
    
      let A be
    Subset of 
    REAL ; 
    
      A
    c= ( 
    union ( 
    rng G0)) by 
    Lm5;
    
      then
    
      reconsider G0 as
    Interval_Covering of A by 
    Lm6,
    MEASURE7:def 2;
    
      for n be
    Element of 
    NAT holds (G0 
    . n) is 
    open_interval by 
    Lm7;
    
      hence thesis by
    Def5;
    
    end;
    
    definition
    
      let A be
    Subset of 
    REAL ; 
    
      let F be
    Open_Interval_Covering of A; 
    
      let n be
    Element of 
    NAT ; 
    
      :: original:
    .
    
      redefine
    
      func F
    
    . n -> 
    open_interval  
    Subset of 
    REAL ; 
    
      correctness by
    Def5;
    
    end
    
    definition
    
      let F be
    sequence of ( 
    bool  
    REAL ); 
    
      :: 
    
    MEASUR12:def6
    
      mode
    
    Open_Interval_Covering of F -> 
    Interval_Covering of F means 
    
      :
    
    Def6: for n be 
    Element of 
    NAT holds (it 
    . n) is 
    Open_Interval_Covering of (F 
    . n); 
    
      existence
    
      proof
    
        reconsider G = G0 as
    Element of ( 
    Funcs ( 
    NAT ,( 
    bool  
    REAL ))) by 
    FUNCT_2: 8;
    
        reconsider H = (
    NAT  
    --> G) as 
    sequence of ( 
    Funcs ( 
    NAT ,( 
    bool  
    REAL ))); 
    
        for n be
    Element of 
    NAT holds (H 
    . n) is 
    Interval_Covering of (F 
    . n) by 
    Lm8;
    
        then
    
        reconsider H as
    Interval_Covering of F by 
    MEASURE7:def 3;
    
        take H;
    
        thus for n be
    Element of 
    NAT holds (H 
    . n) is 
    Open_Interval_Covering of (F 
    . n) by 
    Lm8;
    
      end;
    
    end
    
    definition
    
      let F be
    sequence of ( 
    bool  
    REAL ); 
    
      let H be
    Open_Interval_Covering of F; 
    
      let n be
    Element of 
    NAT ; 
    
      :: original:
    .
    
      redefine
    
      func H
    
    . n -> 
    Open_Interval_Covering of (F 
    . n) ; 
    
      correctness by
    Def6;
    
    end
    
    definition
    
      let A be
    Subset of 
    REAL ; 
    
      defpred
    
    P[
    object] means ex F be
    Open_Interval_Covering of A st $1 
    = ( 
    vol F); 
    
      :: 
    
    MEASUR12:def7
    
      func
    
    Svc2 (A) -> 
    Subset of 
    ExtREAL means 
    
      :
    
    Def7: for x be 
    R_eal holds x 
    in it iff ex F be 
    Open_Interval_Covering of A st x 
    = ( 
    vol F); 
    
      existence
    
      proof
    
        consider D be
    set such that 
    
        
    
    A1: for x be 
    object holds x 
    in D iff x 
    in  
    ExtREAL & 
    P[x] from
    XBOOLE_0:sch 1;
    
        for z be
    object holds z 
    in D implies z 
    in  
    ExtREAL by 
    A1;
    
        then
    
        reconsider D as
    Subset of 
    ExtREAL by 
    TARSKI:def 3;
    
        take D;
    
        thus thesis by
    A1;
    
      end;
    
      uniqueness
    
      proof
    
        let D1,D2 be
    Subset of 
    ExtREAL such that 
    
        
    
    A2: for x be 
    R_eal holds x 
    in D1 iff 
    P[x] and
    
        
    
    A3: for x be 
    R_eal holds x 
    in D2 iff 
    P[x];
    
        thus D1
    = D2 from 
    SUBSET_1:sch 2(
    A2,
    A3);
    
      end;
    
    end
    
    registration
    
      let A be
    Subset of 
    REAL ; 
    
      cluster ( 
    Svc2 A) -> non 
    empty;
    
      coherence
    
      proof
    
        
    REAL  
    c=  
    REAL ; 
    
        then
    
        consider F0 be
    sequence of ( 
    bool  
    REAL ) such that 
    
        
    
    A1: ( 
    rng F0) 
    =  
    {
    REAL , ( 
    {}  
    REAL )} and 
    
        
    
    A2: (F0 
    .  
    0 ) 
    =  
    REAL & for n be 
    Nat st 
    0  
    < n holds (F0 
    . n) 
    = ( 
    {}  
    REAL ) by 
    MEASURE1: 19;
    
        (
    union  
    {
    REAL , 
    {} }) 
    = ( 
    REAL  
    \/  
    {} ) & for n be 
    Element of 
    NAT holds (F0 
    . n) is 
    Interval by 
    A2,
    NAT_1: 3,
    ZFMISC_1: 75;
    
        then
    
        reconsider F0 as
    Interval_Covering of A by 
    A1,
    MEASURE7:def 2;
    
        for n be
    Element of 
    NAT holds (F0 
    . n) is 
    open_interval
    
        proof
    
          let n be
    Element of 
    NAT ; 
    
          per cases ;
    
            suppose n
    =  
    0 ; 
    
            hence (F0
    . n) is 
    open_interval by 
    A2,
    Lm7;
    
          end;
    
            suppose n
    <>  
    0 ; 
    
            hence (F0
    . n) is 
    open_interval by 
    A2;
    
          end;
    
        end;
    
        then
    
        reconsider F0 as
    Open_Interval_Covering of A by 
    Def5;
    
        defpred
    
    P[
    set] means ex F be
    Open_Interval_Covering of A st $1 
    = ( 
    vol F); 
    
        consider D be
    set such that 
    
        
    
    A3: for x be 
    set holds x 
    in D iff x 
    in  
    ExtREAL & 
    P[x] from
    XFAMILY:sch 1;
    
        D
    c=  
    ExtREAL by 
    A3;
    
        then
    
        reconsider D as
    Subset of 
    ExtREAL ; 
    
        (
    vol F0) 
    in D by 
    A3;
    
        then
    
        reconsider D as non
    empty  
    Subset of 
    ExtREAL ; 
    
        for x be
    R_eal holds x 
    in D iff ex F be 
    Open_Interval_Covering of A st x 
    = ( 
    vol F) by 
    A3;
    
        hence thesis by
    Def7;
    
      end;
    
    end
    
    reconsider D = (
    NAT  
    --> ( 
    {}  
    REAL )) as 
    sequence of ( 
    bool  
    REAL ); 
    
    theorem :: 
    
    MEASUR12:30
    
    
    
    
    
    Th30: for A be 
    Subset of 
    REAL holds ( 
    Svc2 A) 
    c= ( 
    Svc A) & ( 
    inf ( 
    Svc A)) 
    <= ( 
    inf ( 
    Svc2 A)) 
    
    proof
    
      let A be
    Subset of 
    REAL ; 
    
      now
    
        let x be
    R_eal;
    
        assume x
    in ( 
    Svc2 A); 
    
        then ex F be
    Open_Interval_Covering of A st x 
    = ( 
    vol F) by 
    Def7;
    
        hence x
    in ( 
    Svc A) by 
    MEASURE7:def 8;
    
      end;
    
      hence (
    Svc2 A) 
    c= ( 
    Svc A); 
    
      hence (
    inf ( 
    Svc A)) 
    <= ( 
    inf ( 
    Svc2 A)) by 
    XXREAL_2: 60;
    
    end;
    
    theorem :: 
    
    MEASUR12:31
    
    
    
    
    
    Th31: for F be 
    sequence of ( 
    bool  
    REAL ), G be 
    Open_Interval_Covering of F, H be 
    sequence of 
    [:
    NAT , 
    NAT :] st ( 
    rng H) 
    =  
    [:
    NAT , 
    NAT :] holds ( 
    On (G,H)) is 
    Open_Interval_Covering of ( 
    union ( 
    rng F)) 
    
    proof
    
      let F be
    sequence of ( 
    bool  
    REAL ), G be 
    Open_Interval_Covering of F, H be 
    sequence of 
    [:
    NAT , 
    NAT :]; 
    
      assume
    
      
    
    A1: ( 
    rng H) 
    =  
    [:
    NAT , 
    NAT :]; 
    
      for n be
    Element of 
    NAT holds (( 
    On (G,H)) 
    . n) is 
    open_interval
    
      proof
    
        let n be
    Element of 
    NAT ; 
    
        ((
    On (G,H)) 
    . n) 
    = ((G 
    . (( 
    pr1 H) 
    . n)) 
    . (( 
    pr2 H) 
    . n)) by 
    A1,
    MEASURE7:def 11;
    
        hence thesis;
    
      end;
    
      hence (
    On (G,H)) is 
    Open_Interval_Covering of ( 
    union ( 
    rng F)) by 
    Def5;
    
    end;
    
    theorem :: 
    
    MEASUR12:32
    
    
    
    
    
    Th32: for A be 
    Subset of 
    REAL , G be 
    sequence of ( 
    bool  
    REAL ) st A 
    c= ( 
    union ( 
    rng G)) & (for n be 
    Element of 
    NAT holds (G 
    . n) is 
    open_interval) holds G is
    Open_Interval_Covering of A 
    
    proof
    
      let A be
    Subset of 
    REAL , G be 
    sequence of ( 
    bool  
    REAL ); 
    
      assume that
    
      
    
    A1: A 
    c= ( 
    union ( 
    rng G)) and 
    
      
    
    A2: for n be 
    Element of 
    NAT holds (G 
    . n) is 
    open_interval;
    
      now
    
        let n be
    Element of 
    NAT ; 
    
        (G
    . n) is 
    open_interval by 
    A2;
    
        hence (G
    . n) is 
    Interval;
    
      end;
    
      then G is
    Interval_Covering of A by 
    A1,
    MEASURE7:def 2;
    
      hence G is
    Open_Interval_Covering of A by 
    A2,
    Def5;
    
    end;
    
    theorem :: 
    
    MEASUR12:33
    
    
    
    
    
    Th33: for F be 
    sequence of ( 
    bool  
    REAL ), G be 
    sequence of ( 
    Funcs ( 
    NAT ,( 
    bool  
    REAL ))) st (for n be 
    Element of 
    NAT holds (G 
    . n) is 
    Open_Interval_Covering of (F 
    . n)) holds G is 
    Open_Interval_Covering of F 
    
    proof
    
      let F be
    sequence of ( 
    bool  
    REAL ), G be 
    sequence of ( 
    Funcs ( 
    NAT ,( 
    bool  
    REAL ))); 
    
      assume
    
      
    
    A1: for n be 
    Element of 
    NAT holds (G 
    . n) is 
    Open_Interval_Covering of (F 
    . n); 
    
      then for n be
    Element of 
    NAT holds (G 
    . n) is 
    Interval_Covering of (F 
    . n); 
    
      then G is
    Interval_Covering of F by 
    MEASURE7:def 3;
    
      hence thesis by
    A1,
    Def6;
    
    end;
    
    theorem :: 
    
    MEASUR12:34
    
    
    
    
    
    Th34: for H be 
    sequence of 
    [:
    NAT , 
    NAT :] st H is 
    one-to-one & ( 
    rng H) 
    =  
    [:
    NAT , 
    NAT :] holds for k be 
    Nat holds ex m be 
    Element of 
    NAT st for F be 
    sequence of ( 
    bool  
    REAL ) holds for G be 
    Open_Interval_Covering of F holds (( 
    Ser (( 
    On (G,H)) 
    vol )) 
    . k) 
    <= (( 
    Ser ( 
    vol G)) 
    . m) 
    
    proof
    
      reconsider y = D as
    Element of ( 
    Funcs ( 
    NAT ,( 
    bool  
    REAL ))) by 
    FUNCT_2: 8;
    
      let H be
    sequence of 
    [:
    NAT , 
    NAT :]; 
    
      assume that
    
      
    
    A1: H is 
    one-to-one and 
    
      
    
    A2: ( 
    rng H) 
    =  
    [:
    NAT , 
    NAT :]; 
    
      defpred
    
    P[
    Nat] means ex m be
    Element of 
    NAT st for F be 
    sequence of ( 
    bool  
    REAL ) holds for G be 
    Open_Interval_Covering of F holds (( 
    Ser (( 
    On (G,H)) 
    vol )) 
    . $1) 
    <= (( 
    Ser ( 
    vol G)) 
    . m); 
    
      
    
      
    
    A3: for k be 
    Nat st 
    P[k] holds
    P[(k
    + 1)] 
    
      proof
    
        let k be
    Nat;
    
        set N0 = { s where s be
    Element of 
    NAT : (( 
    pr1 H) 
    . (k 
    + 1)) 
    = (( 
    pr1 H) 
    . s) }; 
    
        
    
        
    
    A4: N0 
    c=  
    NAT  
    
        proof
    
          let s1 be
    object;
    
          assume s1
    in N0; 
    
          then ex s be
    Element of 
    NAT st s 
    = s1 & (( 
    pr1 H) 
    . (k 
    + 1)) 
    = (( 
    pr1 H) 
    . s); 
    
          hence thesis;
    
        end;
    
        (k
    + 1) 
    in N0; 
    
        then
    
        reconsider N0 as non
    empty  
    Subset of 
    NAT by 
    A4;
    
        given m0 be
    Element of 
    NAT such that 
    
        
    
    A5: for F be 
    sequence of ( 
    bool  
    REAL ) holds for G be 
    Open_Interval_Covering of F holds (( 
    Ser (( 
    On (G,H)) 
    vol )) 
    . k) 
    <= (( 
    Ser ( 
    vol G)) 
    . m0); 
    
        take m = (m0
    + (( 
    pr1 H) 
    . (k 
    + 1))); 
    
        let F be
    sequence of ( 
    bool  
    REAL ); 
    
        let G be
    Open_Interval_Covering of F; 
    
        defpred
    
    QQ1[
    Element of 
    NAT , 
    Function] means (($1
    <> (( 
    pr1 H) 
    . (k 
    + 1)) implies for m be 
    Element of 
    NAT holds ($2 
    . m) 
    = ((G 
    . $1) 
    . m)) & ($1 
    = (( 
    pr1 H) 
    . (k 
    + 1)) implies for m be 
    Element of 
    NAT holds ($2 
    . m) 
    =  
    {} )); 
    
        
    
        
    
    A6: for n be 
    Element of 
    NAT holds ex y be 
    Element of ( 
    Funcs ( 
    NAT ,( 
    bool  
    REAL ))) st 
    QQ1[n, y]
    
        proof
    
          let n be
    Element of 
    NAT ; 
    
          per cases ;
    
            suppose
    
            
    
    A7: n 
    <> (( 
    pr1 H) 
    . (k 
    + 1)); 
    
            reconsider y = (G
    . n) as 
    Element of ( 
    Funcs ( 
    NAT ,( 
    bool  
    REAL ))) by 
    FUNCT_2: 8;
    
            take y;
    
            thus thesis by
    A7;
    
          end;
    
            suppose
    
            
    
    A8: n 
    = (( 
    pr1 H) 
    . (k 
    + 1)); 
    
            take y;
    
            thus thesis by
    A8;
    
          end;
    
        end;
    
        consider G1 be
    sequence of ( 
    Funcs ( 
    NAT ,( 
    bool  
    REAL ))) such that 
    
        
    
    A9: for n be 
    Element of 
    NAT holds 
    QQ1[n, (G1
    . n)] from 
    FUNCT_2:sch 3(
    A6);
    
        
    
        
    
    A10: for n be 
    Element of 
    NAT holds (G1 
    . n) is 
    Open_Interval_Covering of (D 
    . n) 
    
        proof
    
          let n be
    Element of 
    NAT ; 
    
          consider f0 be
    Function such that 
    
          
    
    A11: (G1 
    . n) 
    = f0 and 
    
          
    
    A12: ( 
    dom f0) 
    =  
    NAT & ( 
    rng f0) 
    c= ( 
    bool  
    REAL ) by 
    FUNCT_2:def 2;
    
          reconsider f0 as
    sequence of ( 
    bool  
    REAL ) by 
    A12,
    FUNCT_2: 2;
    
          
    
          
    
    A13: for s be 
    Element of 
    NAT holds (f0 
    . s) is 
    Interval
    
          proof
    
            let s be
    Element of 
    NAT ; 
    
            per cases ;
    
              suppose n
    <> (( 
    pr1 H) 
    . (k 
    + 1)); 
    
              then (f0
    . s) 
    = ((G 
    . n) 
    . s) by 
    A9,
    A11;
    
              hence thesis;
    
            end;
    
              suppose n
    = (( 
    pr1 H) 
    . (k 
    + 1)); 
    
              hence thesis by
    A9,
    A11;
    
            end;
    
          end;
    
          (D
    . n) 
    c= ( 
    union ( 
    rng f0)); 
    
          then
    
          reconsider f0 as
    Interval_Covering of (D 
    . n) by 
    A13,
    MEASURE7:def 2;
    
          for m be
    Element of 
    NAT holds (f0 
    . m) is 
    open_interval
    
          proof
    
            let m be
    Element of 
    NAT ; 
    
            per cases ;
    
              suppose n
    <> (( 
    pr1 H) 
    . (k 
    + 1)); 
    
              then (f0
    . m) 
    = ((G 
    . n) 
    . m) by 
    A9,
    A11;
    
              hence (f0
    . m) is 
    open_interval;
    
            end;
    
              suppose n
    = (( 
    pr1 H) 
    . (k 
    + 1)); 
    
              hence (f0
    . m) is 
    open_interval by 
    A9,
    A11;
    
            end;
    
          end;
    
          then
    
          reconsider f0 as
    Open_Interval_Covering of (D 
    . n) by 
    Def5;
    
          (G1
    . n) 
    = f0 by 
    A11;
    
          hence thesis;
    
        end;
    
        defpred
    
    SSS[
    Element of N0, 
    Element of 
    NAT ] means $2 
    = (( 
    pr2 H) 
    . $1); 
    
        defpred
    
    QQ0[
    Element of 
    NAT , 
    Function] means (($1
    = (( 
    pr1 H) 
    . (k 
    + 1)) implies for m be 
    Element of 
    NAT holds ($2 
    . m) 
    = ((G 
    . $1) 
    . m)) & ($1 
    <> (( 
    pr1 H) 
    . (k 
    + 1)) implies for m be 
    Element of 
    NAT holds ($2 
    . m) 
    =  
    {} )); 
    
        
    
        
    
    A14: for n be 
    Element of 
    NAT holds ex y be 
    Element of ( 
    Funcs ( 
    NAT ,( 
    bool  
    REAL ))) st 
    QQ0[n, y]
    
        proof
    
          let n be
    Element of 
    NAT ; 
    
          per cases ;
    
            suppose
    
            
    
    A15: n 
    = (( 
    pr1 H) 
    . (k 
    + 1)); 
    
            reconsider y = (G
    . n) as 
    Element of ( 
    Funcs ( 
    NAT ,( 
    bool  
    REAL ))) by 
    FUNCT_2: 8;
    
            take y;
    
            thus thesis by
    A15;
    
          end;
    
            suppose
    
            
    
    A16: n 
    <> (( 
    pr1 H) 
    . (k 
    + 1)); 
    
            take y;
    
            thus thesis by
    A16;
    
          end;
    
        end;
    
        consider G0 be
    sequence of ( 
    Funcs ( 
    NAT ,( 
    bool  
    REAL ))) such that 
    
        
    
    A17: for n be 
    Element of 
    NAT holds 
    QQ0[n, (G0
    . n)] from 
    FUNCT_2:sch 3(
    A14);
    
        for n be
    Element of 
    NAT holds (G0 
    . n) is 
    Interval_Covering of (D 
    . n) 
    
        proof
    
          let n be
    Element of 
    NAT ; 
    
          consider f0 be
    Function such that 
    
          
    
    A18: (G0 
    . n) 
    = f0 and 
    
          
    
    A19: ( 
    dom f0) 
    =  
    NAT & ( 
    rng f0) 
    c= ( 
    bool  
    REAL ) by 
    FUNCT_2:def 2;
    
          reconsider f0 as
    sequence of ( 
    bool  
    REAL ) by 
    A19,
    FUNCT_2: 2;
    
          
    
          
    
    A20: for s be 
    Element of 
    NAT holds (f0 
    . s) is 
    Interval
    
          proof
    
            let s be
    Element of 
    NAT ; 
    
            per cases ;
    
              suppose n
    = (( 
    pr1 H) 
    . (k 
    + 1)); 
    
              then (f0
    . s) 
    = ((G 
    . n) 
    . s) by 
    A17,
    A18;
    
              hence thesis;
    
            end;
    
              suppose n
    <> (( 
    pr1 H) 
    . (k 
    + 1)); 
    
              hence thesis by
    A17,
    A18;
    
            end;
    
          end;
    
          (D
    . n) 
    c= ( 
    union ( 
    rng f0)); 
    
          then
    
          reconsider f0 as
    Interval_Covering of (D 
    . n) by 
    A20,
    MEASURE7:def 2;
    
          for s be
    Element of 
    NAT holds (f0 
    . s) is 
    open_interval
    
          proof
    
            let s be
    Element of 
    NAT ; 
    
            per cases ;
    
              suppose n
    = (( 
    pr1 H) 
    . (k 
    + 1)); 
    
              then (f0
    . s) 
    = ((G 
    . n) 
    . s) by 
    A17,
    A18;
    
              hence thesis;
    
            end;
    
              suppose n
    <> (( 
    pr1 H) 
    . (k 
    + 1)); 
    
              hence thesis by
    A17,
    A18;
    
            end;
    
          end;
    
          then
    
          reconsider f0 as
    Open_Interval_Covering of (D 
    . n) by 
    Def5;
    
          (G0
    . n) 
    = f0 by 
    A18;
    
          hence thesis;
    
        end;
    
        then
    
        reconsider G0 as
    Interval_Covering of D by 
    MEASURE7:def 3;
    
        for n be
    Element of 
    NAT holds (G0 
    . n) is 
    Open_Interval_Covering of (D 
    . n) 
    
        proof
    
          let n be
    Element of 
    NAT ; 
    
          per cases ;
    
            suppose
    
            
    
    A21: n 
    = (( 
    pr1 H) 
    . (k 
    + 1)); 
    
            for m be
    Element of 
    NAT holds ((G0 
    . n) 
    . m) is 
    open_interval
    
            proof
    
              let m be
    Element of 
    NAT ; 
    
              ((G0
    . n) 
    . m) 
    = ((G 
    . n) 
    . m) by 
    A21,
    A17;
    
              hence thesis;
    
            end;
    
            hence (G0
    . n) is 
    Open_Interval_Covering of (D 
    . n) by 
    Def5;
    
          end;
    
            suppose n
    <> (( 
    pr1 H) 
    . (k 
    + 1)); 
    
            then for m be
    Element of 
    NAT holds ((G0 
    . n) 
    . m) is 
    open_interval by 
    A17;
    
            hence (G0
    . n) is 
    Open_Interval_Covering of (D 
    . n) by 
    Def5;
    
          end;
    
        end;
    
        then
    
        reconsider G0 as
    Open_Interval_Covering of D by 
    Def6;
    
        set GG0 = (
    On (G0,H)); 
    
        reconsider G1 as
    Open_Interval_Covering of D by 
    A10,
    Th33;
    
        set GG1 = (
    On (G1,H)); 
    
        
    
        
    
    A22: (( 
    Ser (GG0 
    vol )) 
    . (k 
    + 1)) 
    <= ( 
    SUM (GG0 
    vol )) by 
    MEASURE7: 6,
    MEASURE7: 12;
    
        (GG1
    . (k 
    + 1)) 
    = ((G1 
    . (( 
    pr1 H) 
    . (k 
    + 1))) 
    . (( 
    pr2 H) 
    . (k 
    + 1))) by 
    A2,
    MEASURE7:def 11
    
        .=
    {} by 
    A9;
    
        then
    
        
    
    A23: ((GG1 
    vol ) 
    . (k 
    + 1)) 
    =  
    0. by 
    MEASURE7:def 4,
    MEASURE5: 10;
    
        ((
    Ser (GG1 
    vol )) 
    . (k 
    + 1)) 
    = ((( 
    Ser (GG1 
    vol )) 
    . k) 
    + ((GG1 
    vol ) 
    . (k 
    + 1))) by 
    SUPINF_2:def 11;
    
        then
    
        
    
    A24: (( 
    Ser (GG1 
    vol )) 
    . (k 
    + 1)) 
    = (( 
    Ser (GG1 
    vol )) 
    . k) by 
    A23,
    XXREAL_3: 4;
    
        for s be
    Element of 
    NAT holds 
    0.  
    <= (( 
    vol G1) 
    . s) by 
    MEASURE7: 13;
    
        then (
    vol G1) is 
    nonnegative by 
    SUPINF_2: 39;
    
        then
    
        
    
    A25: (( 
    Ser ( 
    vol G1)) 
    . m0) 
    <= (( 
    Ser ( 
    vol G1)) 
    . m) by 
    SUPINF_2: 41;
    
        
    
        
    
    A26: for n be 
    Element of 
    NAT holds ((( 
    On (G,H)) 
    vol ) 
    . n) 
    = (((GG0 
    vol ) 
    . n) 
    + ((GG1 
    vol ) 
    . n)) 
    
        proof
    
          let n be
    Element of 
    NAT ; 
    
          
    
          
    
    A27: ((GG0 
    vol ) 
    . n) 
    = ( 
    diameter (GG0 
    . n)) & ((GG1 
    vol ) 
    . n) 
    = ( 
    diameter (GG1 
    . n)) by 
    MEASURE7:def 4;
    
          (((
    On (G,H)) 
    vol ) 
    . n) 
    = ( 
    diameter (( 
    On (G,H)) 
    . n)) by 
    MEASURE7:def 4;
    
          then
    
          
    
    A28: ((( 
    On (G,H)) 
    vol ) 
    . n) 
    = ( 
    diameter ((G 
    . (( 
    pr1 H) 
    . n)) 
    . (( 
    pr2 H) 
    . n))) by 
    A2,
    MEASURE7:def 11;
    
          per cases ;
    
            suppose
    
            
    
    A29: (( 
    pr1 H) 
    . n) 
    = (( 
    pr1 H) 
    . (k 
    + 1)); 
    
            
    
            
    
    A30: (GG1 
    . n) 
    = ((G1 
    . (( 
    pr1 H) 
    . n)) 
    . (( 
    pr2 H) 
    . n)) by 
    A2,
    MEASURE7:def 11
    
            .=
    {} by 
    A9,
    A29;
    
            (GG0
    . n) 
    = ((G0 
    . (( 
    pr1 H) 
    . n)) 
    . (( 
    pr2 H) 
    . n)) by 
    A2,
    MEASURE7:def 11
    
            .= ((G
    . (( 
    pr1 H) 
    . n)) 
    . (( 
    pr2 H) 
    . n)) by 
    A17,
    A29;
    
            hence thesis by
    A27,
    A28,
    A30,
    MEASURE5: 10,
    XXREAL_3: 4;
    
          end;
    
            suppose
    
            
    
    A31: (( 
    pr1 H) 
    . n) 
    <> (( 
    pr1 H) 
    . (k 
    + 1)); 
    
            
    
            
    
    A32: (GG0 
    . n) 
    = ((G0 
    . (( 
    pr1 H) 
    . n)) 
    . (( 
    pr2 H) 
    . n)) by 
    A2,
    MEASURE7:def 11
    
            .=
    {} by 
    A17,
    A31;
    
            (GG1
    . n) 
    = ((G1 
    . (( 
    pr1 H) 
    . n)) 
    . (( 
    pr2 H) 
    . n)) by 
    A2,
    MEASURE7:def 11
    
            .= ((G
    . (( 
    pr1 H) 
    . n)) 
    . (( 
    pr2 H) 
    . n)) by 
    A9,
    A31;
    
            hence thesis by
    A27,
    A28,
    A32,
    MEASURE5: 10,
    XXREAL_3: 4;
    
          end;
    
        end;
    
        (GG0
    vol ) is 
    nonnegative & (GG1 
    vol ) is 
    nonnegative by 
    MEASURE7: 12;
    
        then
    
        
    
    A33: (( 
    Ser (( 
    On (G,H)) 
    vol )) 
    . (k 
    + 1)) 
    = ((( 
    Ser (GG0 
    vol )) 
    . (k 
    + 1)) 
    + (( 
    Ser (GG1 
    vol )) 
    . (k 
    + 1))) by 
    A26,
    MEASURE7: 3;
    
        for s be
    Element of 
    NAT holds 
    0.  
    <= (( 
    vol G1) 
    . s) by 
    MEASURE7: 13;
    
        then
    
        
    
    A34: ( 
    vol G1) is 
    nonnegative by 
    SUPINF_2: 39;
    
        ((
    Ser (GG1 
    vol )) 
    . k) 
    <= (( 
    Ser ( 
    vol G1)) 
    . m0) by 
    A5;
    
        then
    
        
    
    A35: (( 
    Ser (GG1 
    vol )) 
    . (k 
    + 1)) 
    <= (( 
    Ser ( 
    vol G1)) 
    . m) by 
    A24,
    A25,
    XXREAL_0: 2;
    
        
    
        
    
    A36: for s be 
    Element of N0 holds ex y be 
    Element of 
    NAT st 
    SSS[s, y];
    
        consider SOS be
    Function of N0, 
    NAT such that 
    
        
    
    A37: for s be 
    Element of N0 holds 
    SSS[s, (SOS
    . s)] from 
    FUNCT_2:sch 3(
    A36);
    
        
    
        
    
    A38: for n be 
    Element of 
    NAT holds (( 
    vol G) 
    . n) 
    = ((( 
    vol G0) 
    . n) 
    + (( 
    vol G1) 
    . n)) 
    
        proof
    
          let n be
    Element of 
    NAT ; 
    
          
    
          
    
    A39: ( 
    vol (G 
    . n)) 
    = (( 
    vol (G0 
    . n)) 
    + ( 
    vol (G1 
    . n))) 
    
          proof
    
            per cases ;
    
              suppose
    
              
    
    A40: n 
    = (( 
    pr1 H) 
    . (k 
    + 1)); 
    
              for s be
    Element of 
    NAT holds (((G 
    . n) 
    vol ) 
    . s) 
    <= (((G0 
    . n) 
    vol ) 
    . s) 
    
              proof
    
                let s be
    Element of 
    NAT ; 
    
                (((G0
    . n) 
    vol ) 
    . s) 
    = ( 
    diameter ((G0 
    . n) 
    . s)) by 
    MEASURE7:def 4
    
                .= (
    diameter ((G 
    . n) 
    . s)) by 
    A17,
    A40
    
                .= (((G
    . n) 
    vol ) 
    . s) by 
    MEASURE7:def 4;
    
                hence thesis;
    
              end;
    
              then
    
              
    
    A41: ( 
    SUM ((G 
    . n) 
    vol )) 
    <= ( 
    SUM ((G0 
    . n) 
    vol )) by 
    SUPINF_2: 43;
    
              for s be
    Element of 
    NAT holds (((G1 
    . n) 
    vol ) 
    . s) 
    =  
    0.  
    
              proof
    
                let s be
    Element of 
    NAT ; 
    
                (
    diameter ((G1 
    . n) 
    . s)) 
    =  
    0. by 
    A9,
    A40,
    MEASURE5: 10;
    
                hence thesis by
    MEASURE7:def 4;
    
              end;
    
              then
    
              
    
    A42: ( 
    SUM ((G1 
    . n) 
    vol )) 
    =  
    0. by 
    MEASURE7: 1;
    
              for s be
    Element of 
    NAT holds (((G0 
    . n) 
    vol ) 
    . s) 
    <= (((G 
    . n) 
    vol ) 
    . s) 
    
              proof
    
                let s be
    Element of 
    NAT ; 
    
                (((G0
    . n) 
    vol ) 
    . s) 
    = ( 
    diameter ((G0 
    . n) 
    . s)) by 
    MEASURE7:def 4
    
                .= (
    diameter ((G 
    . n) 
    . s)) by 
    A17,
    A40
    
                .= (((G
    . n) 
    vol ) 
    . s) by 
    MEASURE7:def 4;
    
                hence thesis;
    
              end;
    
              then (
    SUM ((G0 
    . n) 
    vol )) 
    <= ( 
    SUM ((G 
    . n) 
    vol )) by 
    SUPINF_2: 43;
    
              then (
    SUM ((G 
    . n) 
    vol )) 
    = ( 
    SUM ((G0 
    . n) 
    vol )) by 
    A41,
    XXREAL_0: 1;
    
              then (
    vol (G 
    . n)) 
    = ( 
    SUM ((G0 
    . n) 
    vol )) by 
    MEASURE7:def 6;
    
              then (
    vol (G 
    . n)) 
    = ( 
    vol (G0 
    . n)) by 
    MEASURE7:def 6;
    
              then (
    vol (G 
    . n)) 
    = (( 
    vol (G0 
    . n)) 
    + ( 
    SUM ((G1 
    . n) 
    vol ))) by 
    A42,
    XXREAL_3: 4;
    
              hence (
    vol (G 
    . n)) 
    = (( 
    vol (G0 
    . n)) 
    + ( 
    vol (G1 
    . n))) by 
    MEASURE7:def 6;
    
            end;
    
              suppose
    
              
    
    A43: n 
    <> (( 
    pr1 H) 
    . (k 
    + 1)); 
    
              
    
              
    
    A44: for s be 
    Element of 
    NAT holds (((G1 
    . n) 
    vol ) 
    . s) 
    = (((G 
    . n) 
    vol ) 
    . s) 
    
              proof
    
                let s be
    Element of 
    NAT ; 
    
                (((G1
    . n) 
    vol ) 
    . s) 
    = ( 
    diameter ((G1 
    . n) 
    . s)) & (((G 
    . n) 
    vol ) 
    . s) 
    = ( 
    diameter ((G 
    . n) 
    . s)) by 
    MEASURE7:def 4;
    
                hence thesis by
    A9,
    A43;
    
              end;
    
              then for s be
    Element of 
    NAT holds (((G 
    . n) 
    vol ) 
    . s) 
    <= (((G1 
    . n) 
    vol ) 
    . s); 
    
              then
    
              
    
    A45: ( 
    SUM ((G 
    . n) 
    vol )) 
    <= ( 
    SUM ((G1 
    . n) 
    vol )) by 
    SUPINF_2: 43;
    
              for s be
    Element of 
    NAT holds (((G0 
    . n) 
    vol ) 
    . s) 
    =  
    0.  
    
              proof
    
                let s be
    Element of 
    NAT ; 
    
                (
    diameter ((G0 
    . n) 
    . s)) 
    =  
    0. by 
    A17,
    A43,
    MEASURE5: 10;
    
                hence thesis by
    MEASURE7:def 4;
    
              end;
    
              then
    
              
    
    A46: ( 
    SUM ((G0 
    . n) 
    vol )) 
    =  
    0. by 
    MEASURE7: 1;
    
              for s be
    Element of 
    NAT holds (((G1 
    . n) 
    vol ) 
    . s) 
    <= (((G 
    . n) 
    vol ) 
    . s) by 
    A44;
    
              then (
    SUM ((G1 
    . n) 
    vol )) 
    <= ( 
    SUM ((G 
    . n) 
    vol )) by 
    SUPINF_2: 43;
    
              then (
    SUM ((G 
    . n) 
    vol )) 
    = ( 
    SUM ((G1 
    . n) 
    vol )) by 
    A45,
    XXREAL_0: 1;
    
              then (
    vol (G 
    . n)) 
    = ( 
    SUM ((G1 
    . n) 
    vol )) by 
    MEASURE7:def 6;
    
              then (
    vol (G 
    . n)) 
    = ( 
    vol (G1 
    . n)) by 
    MEASURE7:def 6;
    
              then (
    vol (G 
    . n)) 
    = (( 
    SUM ((G0 
    . n) 
    vol )) 
    + ( 
    vol (G1 
    . n))) by 
    A46,
    XXREAL_3: 4;
    
              hence (
    vol (G 
    . n)) 
    = (( 
    vol (G0 
    . n)) 
    + ( 
    vol (G1 
    . n))) by 
    MEASURE7:def 6;
    
            end;
    
          end;
    
          ((
    vol G) 
    . n) 
    = ( 
    vol (G 
    . n)) & (( 
    vol G0) 
    . n) 
    = ( 
    vol (G0 
    . n)) by 
    MEASURE7:def 7;
    
          hence thesis by
    A39,
    MEASURE7:def 7;
    
        end;
    
        for s be
    Element of 
    NAT holds 
    0.  
    <= (( 
    vol G0) 
    . s) by 
    MEASURE7: 13;
    
        then (
    vol G0) is 
    nonnegative by 
    SUPINF_2: 39;
    
        then
    
        
    
    A47: (( 
    vol G0) 
    . (( 
    pr1 H) 
    . (k 
    + 1))) 
    <= (( 
    Ser ( 
    vol G0)) 
    . (( 
    pr1 H) 
    . (k 
    + 1))) & (( 
    Ser ( 
    vol G0)) 
    . (( 
    pr1 H) 
    . (k 
    + 1))) 
    <= (( 
    Ser ( 
    vol G0)) 
    . m) by 
    MEASURE7: 2,
    SUPINF_2: 41;
    
        
    
        
    
    A48: for s be 
    Element of 
    NAT holds (s 
    in N0 implies ((GG0 
    vol ) 
    . s) 
    = ((((G0 
    . (( 
    pr1 H) 
    . (k 
    + 1))) 
    vol ) 
    * SOS) 
    . s)) & ( not s 
    in N0 implies ((GG0 
    vol ) 
    . s) 
    =  
    0. ) 
    
        proof
    
          let s be
    Element of 
    NAT ; 
    
          thus s
    in N0 implies ((GG0 
    vol ) 
    . s) 
    = ((((G0 
    . (( 
    pr1 H) 
    . (k 
    + 1))) 
    vol ) 
    * SOS) 
    . s) 
    
          proof
    
            assume
    
            
    
    A49: s 
    in N0; 
    
            then
    
            
    
    A50: ex s1 be 
    Element of 
    NAT st s1 
    = s & (( 
    pr1 H) 
    . (k 
    + 1)) 
    = (( 
    pr1 H) 
    . s1); 
    
            
    
            
    
    A51: (( 
    pr2 H) 
    . s) 
    = (SOS 
    . s) by 
    A37,
    A49;
    
            ((GG0
    vol ) 
    . s) 
    = ( 
    diameter (GG0 
    . s)) by 
    MEASURE7:def 4
    
            .= (
    diameter ((G0 
    . (( 
    pr1 H) 
    . (k 
    + 1))) 
    . (( 
    pr2 H) 
    . s))) by 
    A2,
    A50,
    MEASURE7:def 11
    
            .= (((G0
    . (( 
    pr1 H) 
    . (k 
    + 1))) 
    vol ) 
    . (SOS 
    . s)) by 
    A51,
    MEASURE7:def 4
    
            .= ((((G0
    . (( 
    pr1 H) 
    . (k 
    + 1))) 
    vol ) 
    * SOS) 
    . s) by 
    A49,
    FUNCT_2: 15;
    
            hence thesis;
    
          end;
    
          assume not s
    in N0; 
    
          then
    
          
    
    A52: not (( 
    pr1 H) 
    . (k 
    + 1)) 
    = (( 
    pr1 H) 
    . s); 
    
          ((GG0
    vol ) 
    . s) 
    = ( 
    diameter (GG0 
    . s)) by 
    MEASURE7:def 4
    
          .= (
    diameter ((G0 
    . (( 
    pr1 H) 
    . s)) 
    . (( 
    pr2 H) 
    . s))) by 
    A2,
    MEASURE7:def 11
    
          .=
    0. by 
    A17,
    A52,
    MEASURE5: 10;
    
          hence thesis;
    
        end;
    
        for s1,s2 be
    object st s1 
    in N0 & s2 
    in N0 & (SOS 
    . s1) 
    = (SOS 
    . s2) holds s1 
    = s2 
    
        proof
    
          let s1,s2 be
    object;
    
          assume that
    
          
    
    A53: s1 
    in N0 & s2 
    in N0 and 
    
          
    
    A54: (SOS 
    . s1) 
    = (SOS 
    . s2); 
    
          reconsider s1, s2 as
    Element of 
    NAT by 
    A53;
    
          
    
          
    
    A55: (ex s11 be 
    Element of 
    NAT st s11 
    = s1 & (( 
    pr1 H) 
    . (k 
    + 1)) 
    = (( 
    pr1 H) 
    . s11)) & ex s22 be 
    Element of 
    NAT st s22 
    = s2 & (( 
    pr1 H) 
    . (k 
    + 1)) 
    = (( 
    pr1 H) 
    . s22) by 
    A53;
    
          
    
          
    
    A56: (H 
    . s1) 
    =  
    [((
    pr1 H) 
    . s1), (( 
    pr2 H) 
    . s1)] & (H 
    . s2) 
    =  
    [((
    pr1 H) 
    . s2), (( 
    pr2 H) 
    . s2)] by 
    FUNCT_2: 119;
    
          (SOS
    . s1) 
    = (( 
    pr2 H) 
    . s1) & (SOS 
    . s2) 
    = (( 
    pr2 H) 
    . s2) by 
    A37,
    A53;
    
          hence thesis by
    A1,
    A54,
    A55,
    A56,
    FUNCT_2: 19;
    
        end;
    
        then SOS is
    one-to-one by 
    FUNCT_2: 19;
    
        then (
    SUM (GG0 
    vol )) 
    <= ( 
    SUM ((G0 
    . (( 
    pr1 H) 
    . (k 
    + 1))) 
    vol )) by 
    A48,
    MEASURE7: 11,
    MEASURE7: 12;
    
        then
    
        
    
    A57: (( 
    Ser (GG0 
    vol )) 
    . (k 
    + 1)) 
    <= ( 
    SUM ((G0 
    . (( 
    pr1 H) 
    . (k 
    + 1))) 
    vol )) by 
    A22,
    XXREAL_0: 2;
    
        (
    SUM ((G0 
    . (( 
    pr1 H) 
    . (k 
    + 1))) 
    vol )) 
    = ( 
    vol (G0 
    . (( 
    pr1 H) 
    . (k 
    + 1)))) by 
    MEASURE7:def 6
    
        .= ((
    vol G0) 
    . (( 
    pr1 H) 
    . (k 
    + 1))) by 
    MEASURE7:def 7;
    
        then (
    SUM ((G0 
    . (( 
    pr1 H) 
    . (k 
    + 1))) 
    vol )) 
    <= (( 
    Ser ( 
    vol G0)) 
    . m) by 
    A47,
    XXREAL_0: 2;
    
        then
    
        
    
    A58: (( 
    Ser (GG0 
    vol )) 
    . (k 
    + 1)) 
    <= (( 
    Ser ( 
    vol G0)) 
    . m) by 
    A57,
    XXREAL_0: 2;
    
        for s be
    Element of 
    NAT holds 
    0.  
    <= (( 
    vol G0) 
    . s) by 
    MEASURE7: 13;
    
        then (
    vol G0) is 
    nonnegative by 
    SUPINF_2: 39;
    
        then ((
    Ser ( 
    vol G)) 
    . m) 
    = ((( 
    Ser ( 
    vol G0)) 
    . m) 
    + (( 
    Ser ( 
    vol G1)) 
    . m)) by 
    A38,
    A34,
    MEASURE7: 3;
    
        hence thesis by
    A58,
    A35,
    A33,
    XXREAL_3: 36;
    
      end;
    
      
    
      
    
    A59: 
    P[
    0 ] 
    
      proof
    
        take m = ((
    pr1 H) 
    .  
    0 ); 
    
        let F be
    sequence of ( 
    bool  
    REAL ); 
    
        let G be
    Open_Interval_Covering of F; 
    
        reconsider GG = (
    On (G,H)) as 
    Open_Interval_Covering of ( 
    union ( 
    rng F)) by 
    A2,
    Th31;
    
        ((GG
    vol ) 
    .  
    0 ) 
    = ( 
    diameter (GG 
    .  
    0 )) & (((G 
    . (( 
    pr1 H) 
    .  
    0 )) 
    vol ) 
    . (( 
    pr2 H) 
    .  
    0 )) 
    = ( 
    diameter ((G 
    . (( 
    pr1 H) 
    .  
    0 )) 
    . (( 
    pr2 H) 
    .  
    0 ))) by 
    MEASURE7:def 4;
    
        then ((GG
    vol ) 
    .  
    0 ) 
    <= (((G 
    . (( 
    pr1 H) 
    .  
    0 )) 
    vol ) 
    . (( 
    pr2 H) 
    .  
    0 )) by 
    A2,
    MEASURE7:def 11;
    
        then ((GG
    vol ) 
    .  
    0 ) 
    <= ( 
    SUM ((G 
    . (( 
    pr1 H) 
    .  
    0 )) 
    vol )) by 
    MEASURE7: 12,
    MEASURE6: 3;
    
        then ((GG
    vol ) 
    .  
    0 ) 
    <= ( 
    vol (G 
    . (( 
    pr1 H) 
    .  
    0 ))) by 
    MEASURE7:def 6;
    
        then
    
        
    
    A60: (( 
    Ser (GG 
    vol )) 
    .  
    0 ) 
    = ((GG 
    vol ) 
    .  
    0 ) & ((GG 
    vol ) 
    .  
    0 ) 
    <= (( 
    vol G) 
    . (( 
    pr1 H) 
    .  
    0 )) by 
    MEASURE7:def 7,
    SUPINF_2:def 11;
    
        for n be
    Element of 
    NAT holds 
    0.  
    <= (( 
    vol G) 
    . n) by 
    MEASURE7: 13;
    
        then (
    vol G) is 
    nonnegative by 
    SUPINF_2: 39;
    
        then ((
    vol G) 
    . m) 
    <= (( 
    Ser ( 
    vol G)) 
    . m) by 
    MEASURE7: 2;
    
        hence thesis by
    A60,
    XXREAL_0: 2;
    
      end;
    
      thus for k be
    Nat holds 
    P[k] from
    NAT_1:sch 2(
    A59,
    A3);
    
    end;
    
    theorem :: 
    
    MEASUR12:35
    
    for F be
    sequence of ( 
    bool  
    REAL ) holds for G be 
    Open_Interval_Covering of F holds ( 
    inf ( 
    Svc2 ( 
    union ( 
    rng F)))) 
    <= ( 
    SUM ( 
    vol G)) 
    
    proof
    
      let F be
    sequence of ( 
    bool  
    REAL ); 
    
      let G be
    Open_Interval_Covering of F; 
    
      consider H be
    sequence of 
    [:
    NAT , 
    NAT :] such that 
    
      
    
    A1: H is 
    one-to-one and ( 
    dom H) 
    =  
    NAT and 
    
      
    
    A2: ( 
    rng H) 
    =  
    [:
    NAT , 
    NAT :] by 
    MEASURE6: 1;
    
      set GG = (
    On (G,H)); 
    
      
    
      
    
    A3: for x be 
    ExtReal st x 
    in ( 
    rng ( 
    Ser (GG 
    vol ))) holds ex y be 
    ExtReal st y 
    in ( 
    rng ( 
    Ser ( 
    vol G))) & x 
    <= y 
    
      proof
    
        let x be
    ExtReal;
    
        assume x
    in ( 
    rng ( 
    Ser (GG 
    vol ))); 
    
        then
    
        consider n be
    object such that 
    
        
    
    A4: n 
    in ( 
    dom ( 
    Ser (GG 
    vol ))) and 
    
        
    
    A5: x 
    = (( 
    Ser (GG 
    vol )) 
    . n) by 
    FUNCT_1:def 3;
    
        reconsider n as
    Element of 
    NAT by 
    A4;
    
        consider m be
    Element of 
    NAT such that 
    
        
    
    A6: for F be 
    sequence of ( 
    bool  
    REAL ) holds for G be 
    Open_Interval_Covering of F holds (( 
    Ser (( 
    On (G,H)) 
    vol )) 
    . n) 
    <= (( 
    Ser ( 
    vol G)) 
    . m) by 
    A1,
    A2,
    Th34;
    
        take ((
    Ser ( 
    vol G)) 
    . m); 
    
        (
    dom ( 
    Ser ( 
    vol G))) 
    =  
    NAT by 
    FUNCT_2:def 1;
    
        hence thesis by
    A5,
    A6,
    FUNCT_1:def 3;
    
      end;
    
      reconsider GG as
    Open_Interval_Covering of ( 
    union ( 
    rng F)) by 
    A2,
    Th31;
    
      set Q = (
    vol GG); 
    
      Q
    in ( 
    Svc2 ( 
    union ( 
    rng F))) by 
    Def7;
    
      then
    
      
    
    A7: ( 
    inf ( 
    Svc2 ( 
    union ( 
    rng F)))) 
    <= Q by 
    XXREAL_2: 3;
    
      (
    SUM (GG 
    vol )) 
    <= ( 
    SUM ( 
    vol G)) by 
    A3,
    XXREAL_2: 63;
    
      then (
    vol GG) 
    <= ( 
    SUM ( 
    vol G)) by 
    MEASURE7:def 6;
    
      hence (
    inf ( 
    Svc2 ( 
    union ( 
    rng F)))) 
    <= ( 
    SUM ( 
    vol G)) by 
    A7,
    XXREAL_0: 2;
    
    end;
    
    definition
    
      let F be non
    empty  
    Subset-Family of 
    REAL ; 
    
      :: original:
    Element
    
      redefine
    
      mode
    
    Element of F -> 
    Subset of 
    REAL ; 
    
      coherence
    
      proof
    
        let x be
    Element of F; 
    
        thus x is
    Subset of 
    REAL ; 
    
      end;
    
    end
    
    
    
    
    
    Lm9: for a1,b1 be 
    Real, a2,b2 be 
    R_eal st a1 
    = a2 & b1 
    = b2 holds (a1 
    - b1) 
    = (a2 
    - b2) 
    
    proof
    
      let a1,b1 be
    Real, a2,b2 be 
    R_eal;
    
      assume
    
      
    
    A1: a1 
    = a2 & b1 
    = b2; 
    
      (a2
    - b2) 
    = (a2 
    + ( 
    - b2)) by 
    XXREAL_3:def 4
    
      .= (a2
    + ( 
    - b1)) by 
    A1,
    XXREAL_3:def 3
    
      .= (a1
    + ( 
    - b1)) by 
    A1,
    XXREAL_3:def 2;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MEASUR12:36
    
    
    
    
    
    Th36: for A be 
    Element of 
    Family_of_Intervals st A is 
    open_interval holds ex F be 
    Open_Interval_Covering of A st (F 
    .  
    0 ) 
    = A & (for n be 
    Nat st n 
    <>  
    0 holds (F 
    . n) 
    =  
    {} ) & ( 
    union ( 
    rng F)) 
    = A & ( 
    SUM (F 
    vol )) 
    = ( 
    diameter A) 
    
    proof
    
      let A be
    Element of 
    Family_of_Intervals ; 
    
      assume
    
      
    
    A1: A is 
    open_interval;
    
      defpred
    
    P[
    Nat, 
    set] means ($1
    =  
    0 implies $2 
    = A) & ($1 
    <>  
    0 implies $2 
    = ( 
    {}  
    REAL )); 
    
      
    
      
    
    A2: for n be 
    Element of 
    NAT holds ex E be 
    Element of ( 
    bool  
    REAL ) st 
    P[n, E]
    
      proof
    
        let n be
    Element of 
    NAT ; 
    
        per cases ;
    
          suppose
    
          
    
    A3: n 
    =  
    0 ; 
    
          take E = A;
    
          thus
    P[n, E] by
    A3;
    
        end;
    
          suppose
    
          
    
    A4: n 
    <>  
    0 ; 
    
          take E = (
    {}  
    REAL ); 
    
          thus
    P[n, E] by
    A4;
    
        end;
    
      end;
    
      consider F be
    Function of 
    NAT , ( 
    bool  
    REAL ) such that 
    
      
    
    A5: for n be 
    Element of 
    NAT holds 
    P[n, (F
    . n)] from 
    FUNCT_2:sch 3(
    A2);
    
      reconsider F as
    sequence of ( 
    bool  
    REAL ); 
    
      
    0  
    in  
    NAT ; 
    
      then
    0  
    in ( 
    dom F) & (F 
    .  
    0 ) 
    = A by 
    A5,
    FUNCT_2:def 1;
    
      then A
    in ( 
    rng F) by 
    FUNCT_1:def 3;
    
      then
    
      
    
    A6: A 
    c= ( 
    union ( 
    rng F)) by 
    ZFMISC_1: 74;
    
      now
    
        let z be
    object;
    
        assume z
    in ( 
    union ( 
    rng F)); 
    
        then
    
        consider Y be
    set such that 
    
        
    
    A7: z 
    in Y & Y 
    in ( 
    rng F) by 
    TARSKI:def 4;
    
        ex n be
    object st n 
    in ( 
    dom F) & Y 
    = (F 
    . n) by 
    A7,
    FUNCT_1:def 3;
    
        hence z
    in A by 
    A7,
    A5;
    
      end;
    
      then
    
      
    
    A8: ( 
    union ( 
    rng F)) 
    c= A; 
    
      
    
      
    
    A9: for n be 
    Element of 
    NAT holds (F 
    . n) is 
    open_interval by 
    A1,
    A5;
    
      reconsider F as
    Open_Interval_Covering of A by 
    A6,
    A9,
    Th32;
    
      take F;
    
      thus (F
    .  
    0 ) 
    = A by 
    A5;
    
      thus for n be
    Nat st n 
    <>  
    0 holds (F 
    . n) 
    =  
    {}  
    
      proof
    
        let n be
    Nat;
    
        assume
    
        
    
    A10: n 
    <>  
    0 ; 
    
        n is
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
        hence (F
    . n) 
    =  
    {} by 
    A5,
    A10;
    
      end;
    
      thus (
    union ( 
    rng F)) 
    = A by 
    A8,
    A6,
    XBOOLE_0:def 10;
    
      for n be
    object holds 
    0  
    <= ((F 
    vol ) 
    . n) 
    
      proof
    
        let n be
    object;
    
        per cases ;
    
          suppose n
    in  
    NAT ; 
    
          then
    
          reconsider n1 = n as
    Element of 
    NAT ; 
    
          ((F
    vol ) 
    . n) 
    = ( 
    diameter (F 
    . n1)) by 
    MEASURE7:def 4;
    
          hence
    0  
    <= ((F 
    vol ) 
    . n) by 
    MEASURE5: 13;
    
        end;
    
          suppose not n
    in  
    NAT ; 
    
          then not n
    in ( 
    dom (F 
    vol )); 
    
          hence
    0  
    <= ((F 
    vol ) 
    . n) by 
    FUNCT_1:def 2;
    
        end;
    
      end;
    
      then
    
      
    
    A11: (F 
    vol ) is 
    nonnegative by 
    SUPINF_2: 51;
    
      defpred
    
    P[
    Nat] means ((
    Partial_Sums (F 
    vol )) 
    . $1) 
    = ( 
    diameter A); 
    
      ((
    Partial_Sums (F 
    vol )) 
    .  
    0 ) 
    = ((F 
    vol ) 
    .  
    0 ) by 
    MESFUNC9:def 1;
    
      then ((
    Partial_Sums (F 
    vol )) 
    .  
    0 ) 
    = ( 
    diameter (F 
    .  
    0 )) by 
    MEASURE7:def 4;
    
      then
    
      
    
    A12: 
    P[
    0 ] by 
    A5;
    
      
    
      
    
    A13: for n be 
    Nat st 
    P[n] holds
    P[(n
    + 1)] 
    
      proof
    
        let n be
    Nat;
    
        assume
    
        
    
    A14: 
    P[n];
    
        
    
        
    
    A15: (( 
    Partial_Sums (F 
    vol )) 
    . (n 
    + 1)) 
    = ((( 
    Partial_Sums (F 
    vol )) 
    . n) 
    + ((F 
    vol ) 
    . (n 
    + 1))) by 
    MESFUNC9:def 1;
    
        ((F
    vol ) 
    . (n 
    + 1)) 
    = ( 
    diameter (F 
    . (n 
    + 1))) by 
    MEASURE7:def 4;
    
        then ((F
    vol ) 
    . (n 
    + 1)) 
    = ( 
    diameter  
    {} ) by 
    A5;
    
        hence
    P[(n
    + 1)] by 
    A14,
    A15,
    XXREAL_3: 4,
    MEASURE5: 10;
    
      end;
    
      
    
      
    
    A16: for n be 
    Nat holds 
    P[n] from
    NAT_1:sch 2(
    A12,
    A13);
    
      thus (
    SUM (F 
    vol )) 
    = ( 
    diameter A) 
    
      proof
    
        (
    SUM (F 
    vol )) 
    = ( 
    Sum (F 
    vol )) by 
    A11,
    MEASURE8: 2;
    
        then
    
        
    
    A17: ( 
    SUM (F 
    vol )) 
    = ( 
    lim ( 
    Partial_Sums (F 
    vol ))) by 
    MESFUNC9:def 3;
    
        per cases ;
    
          suppose
    
          
    
    A18: ( 
    diameter A) 
    =  
    +infty ; 
    
          then for n be
    Element of 
    NAT holds 
    +infty  
    <= (( 
    Partial_Sums (F 
    vol )) 
    . n) by 
    A16;
    
          then (
    Partial_Sums (F 
    vol )) is 
    convergent_to_+infty by 
    RINFSUP2: 32;
    
          hence (
    SUM (F 
    vol )) 
    = ( 
    diameter A) by 
    A17,
    A18,
    MESFUNC5:def 12;
    
        end;
    
          suppose
    
          
    
    A19: ( 
    diameter A) 
    <>  
    +infty ; 
    
          
    0  
    <= ( 
    diameter A) by 
    A1,
    MEASURE5: 13;
    
          then (
    diameter A) 
    in  
    REAL by 
    A19,
    XXREAL_0: 14;
    
          hence (
    SUM (F 
    vol )) 
    = ( 
    diameter A) by 
    A16,
    A17,
    MESFUNC5: 52;
    
        end;
    
      end;
    
    end;
    
    theorem :: 
    
    MEASUR12:37
    
    
    
    
    
    Th37: for A,B be 
    Subset of 
    REAL , F be 
    Interval_Covering of A st B 
    c= A holds F is 
    Interval_Covering of B 
    
    proof
    
      let A,B be
    Subset of 
    REAL , F be 
    Interval_Covering of A; 
    
      assume
    
      
    
    A1: B 
    c= A; 
    
      
    
      
    
    A2: A 
    c= ( 
    union ( 
    rng F)) & for n be 
    Element of 
    NAT holds (F 
    . n) is 
    Interval by 
    MEASURE7:def 2;
    
      then B
    c= ( 
    union ( 
    rng F)) by 
    A1;
    
      hence F is
    Interval_Covering of B by 
    A2,
    MEASURE7:def 2;
    
    end;
    
    theorem :: 
    
    MEASUR12:38
    
    
    
    
    
    Th38: for A,B be 
    Subset of 
    REAL , F be 
    Open_Interval_Covering of A st B 
    c= A holds F is 
    Open_Interval_Covering of B 
    
    proof
    
      let A,B be
    Subset of 
    REAL , F be 
    Open_Interval_Covering of A; 
    
      assume B
    c= A; 
    
      then
    
      
    
    A1: F is 
    Interval_Covering of B by 
    Th37;
    
      for n be
    Element of 
    NAT holds (F 
    . n) is 
    open_interval;
    
      hence F is
    Open_Interval_Covering of B by 
    A1,
    Def5;
    
    end;
    
    theorem :: 
    
    MEASUR12:39
    
    
    
    
    
    Th39: for A,B be 
    Subset of 
    REAL , F be 
    Interval_Covering of A, G be 
    Interval_Covering of B st F 
    = G holds (F 
    vol ) 
    = (G 
    vol ) 
    
    proof
    
      let A,B be
    Subset of 
    REAL , F be 
    Interval_Covering of A, G be 
    Interval_Covering of B; 
    
      assume
    
      
    
    A1: F 
    = G; 
    
      for n be
    Element of 
    NAT holds ((F 
    vol ) 
    . n) 
    = ((G 
    vol ) 
    . n) 
    
      proof
    
        let n be
    Element of 
    NAT ; 
    
        ((F
    vol ) 
    . n) 
    = ( 
    diameter (F 
    . n)) by 
    MEASURE7:def 4;
    
        hence ((F
    vol ) 
    . n) 
    = ((G 
    vol ) 
    . n) by 
    A1,
    MEASURE7:def 4;
    
      end;
    
      hence (F
    vol ) 
    = (G 
    vol ) by 
    FUNCT_2:def 8;
    
    end;
    
    theorem :: 
    
    MEASUR12:40
    
    
    
    
    
    Th40: for F be 
    FinSequence of ( 
    bool  
    REAL ), k be 
    Nat st (for n be 
    Nat st n 
    in ( 
    dom F) holds (F 
    . n) is 
    open_interval  
    Subset of 
    REAL ) & (for n be 
    Nat st 1 
    <= n 
    < ( 
    len F) holds ( 
    union ( 
    rng (F 
    | n))) 
    meets (F 
    . (n 
    + 1))) holds ( 
    union ( 
    rng (F 
    | k))) is 
    open_interval  
    Subset of 
    REAL  
    
    proof
    
      let F be
    FinSequence of ( 
    bool  
    REAL ), k be 
    Nat;
    
      assume that
    
      
    
    A1: for n be 
    Nat st n 
    in ( 
    dom F) holds (F 
    . n) is 
    open_interval  
    Subset of 
    REAL and 
    
      
    
    A2: for n be 
    Nat st 1 
    <= n 
    < ( 
    len F) holds ( 
    union ( 
    rng (F 
    | n))) 
    meets (F 
    . (n 
    + 1)); 
    
      
    
    A3: 
    
      now
    
        let k be
    Nat;
    
        assume k
    =  
    0 ; 
    
        then (
    union ( 
    rng (F 
    | k))) 
    =  
    {} by 
    ZFMISC_1: 2;
    
        hence (
    union ( 
    rng (F 
    | k))) is 
    open_interval  
    Subset of 
    REAL ; 
    
      end;
    
      defpred
    
    P[
    Nat] means (
    union ( 
    rng (F 
    | $1))) is 
    open_interval  
    Subset of 
    REAL ; 
    
      
    
      
    
    A4: 
    P[
    0 ] by 
    A3;
    
      
    
      
    
    A5: for k be 
    Nat st 
    P[k] holds
    P[(k
    + 1)] 
    
      proof
    
        let k be
    Nat;
    
        assume
    
        
    
    A6: 
    P[k];
    
        per cases ;
    
          suppose
    
          
    
    A7: 1 
    <= (k 
    + 1) 
    <= ( 
    len F); 
    
          then
    
          
    
    A8: k 
    < ( 
    len F) by 
    NAT_1: 13;
    
          
    
          
    
    A9: 1 
    <= ( 
    len F) by 
    A7,
    XXREAL_0: 2;
    
          
    
          
    
    A10: (F 
    . (k 
    + 1)) is 
    open_interval  
    Subset of 
    REAL by 
    A1,
    A7,
    FINSEQ_3: 25;
    
          
    
          
    
    A11: F 
    <>  
    {} by 
    A7;
    
          per cases ;
    
            suppose k
    =  
    0 ; 
    
            then (F
    | (k 
    + 1)) 
    =  
    <*(F
    . 1)*> by 
    A11,
    FINSEQ_5: 20;
    
            then (
    rng (F 
    | (k 
    + 1))) 
    =  
    {(F
    . 1)} by 
    FINSEQ_1: 38;
    
            hence (
    union ( 
    rng (F 
    | (k 
    + 1)))) is 
    open_interval  
    Subset of 
    REAL by 
    A1,
    A9,
    FINSEQ_3: 25;
    
          end;
    
            suppose k
    <>  
    0 ; 
    
            then
    
            
    
    A12: 1 
    <= k by 
    NAT_1: 14;
    
            (F
    | (k 
    + 1)) 
    = ((F 
    | k) 
    ^  
    <*(F
    . (k 
    + 1))*>) by 
    A7,
    NAT_1: 13,
    FINSEQ_5: 83;
    
            
    
            then (
    rng (F 
    | (k 
    + 1))) 
    = (( 
    rng (F 
    | k)) 
    \/ ( 
    rng  
    <*(F
    . (k 
    + 1))*>)) by 
    FINSEQ_1: 31
    
            .= ((
    rng (F 
    | k)) 
    \/  
    {(F
    . (k 
    + 1))}) by 
    FINSEQ_1: 38;
    
            then (
    union ( 
    rng (F 
    | (k 
    + 1)))) 
    = (( 
    union ( 
    rng (F 
    | k))) 
    \/ ( 
    union  
    {(F
    . (k 
    + 1))})) by 
    ZFMISC_1: 78;
    
            hence (
    union ( 
    rng (F 
    | (k 
    + 1)))) is 
    open_interval  
    Subset of 
    REAL by 
    A12,
    A2,
    A6,
    A8,
    A10,
    Th2;
    
          end;
    
        end;
    
          suppose (k
    + 1) 
    < 1 or ( 
    len F) 
    < (k 
    + 1); 
    
          then (k
    + 1) 
    =  
    0 or ((F 
    | (k 
    + 1)) 
    = F & ( 
    len F) 
    <= k) by 
    NAT_1: 13,
    NAT_1: 14,
    FINSEQ_1: 58;
    
          hence (
    union ( 
    rng (F 
    | (k 
    + 1)))) is 
    open_interval  
    Subset of 
    REAL by 
    A6,
    FINSEQ_1: 58;
    
        end;
    
      end;
    
      for k be
    Nat holds 
    P[k] from
    NAT_1:sch 2(
    A4,
    A5);
    
      hence (
    union ( 
    rng (F 
    | k))) is 
    open_interval  
    Subset of 
    REAL ; 
    
    end;
    
    theorem :: 
    
    MEASUR12:41
    
    
    
    
    
    Th41: for A be non 
    empty
    closed_interval  
    Subset of 
    REAL , F be 
    FinSequence of ( 
    bool  
    REAL ) st A 
    c= ( 
    union ( 
    rng F)) & (for n be 
    Nat st n 
    in ( 
    dom F) holds A 
    meets (F 
    . n)) & (for n be 
    Nat st n 
    in ( 
    dom F) holds (F 
    . n) is 
    open_interval  
    Subset of 
    REAL ) holds ex G be 
    FinSequence of ( 
    bool  
    REAL ) st (F,G) 
    are_fiberwise_equipotent & (for n be 
    Nat st 1 
    <= n 
    < ( 
    len G) holds ( 
    union ( 
    rng (G 
    | n))) 
    meets (G 
    . (n 
    + 1))) 
    
    proof
    
      let A be non
    empty
    closed_interval  
    Subset of 
    REAL , F be 
    FinSequence of ( 
    bool  
    REAL ); 
    
      assume that
    
      
    
    A1: A 
    c= ( 
    union ( 
    rng F)) and 
    
      
    
    A2: for n be 
    Nat st n 
    in ( 
    dom F) holds A 
    meets (F 
    . n) and 
    
      
    
    A3: for n be 
    Nat st n 
    in ( 
    dom F) holds (F 
    . n) is 
    open_interval  
    Subset of 
    REAL ; 
    
      defpred
    
    P[
    Nat] means $1
    <= ( 
    len F) implies ex G be 
    FinSequence of ( 
    bool  
    REAL ) st (F,G) 
    are_fiberwise_equipotent & (for n be 
    Nat st 1 
    <= n 
    < $1 holds ( 
    union ( 
    rng (G 
    | n))) 
    meets (G 
    . (n 
    + 1))); 
    
      (
    union ( 
    rng F)) 
    <>  
    {} by 
    A1;
    
      then
    
      
    
    A4: F 
    <>  
    {} by 
    ZFMISC_1: 2;
    
      for n be
    Nat st 1 
    <= n 
    < 1 holds ( 
    union ( 
    rng (F 
    | n))) 
    meets (F 
    . (n 
    + 1)); 
    
      then
    
      
    
    A5: 
    P[1];
    
      
    
      
    
    A6: for k be non 
    zero  
    Nat st 
    P[k] holds
    P[(k
    + 1)] 
    
      proof
    
        let k be non
    zero  
    Nat;
    
        assume
    
        
    
    A7: 
    P[k];
    
        assume
    
        
    
    A8: (k 
    + 1) 
    <= ( 
    len F); 
    
        then
    
        
    
    A9: k 
    < ( 
    len F) by 
    NAT_1: 13;
    
        consider G be
    FinSequence of ( 
    bool  
    REAL ) such that 
    
        
    
    A10: (F,G) 
    are_fiberwise_equipotent and 
    
        
    
    A11: for n be 
    Nat st 1 
    <= n 
    < k holds ( 
    union ( 
    rng (G 
    | n))) 
    meets (G 
    . (n 
    + 1)) by 
    A7,
    A8,
    NAT_1: 13;
    
        set G1 = (G
    | k); 
    
        
    
        
    
    A12: ( 
    rng F) 
    = ( 
    rng G) by 
    A10,
    CLASSES1: 75;
    
        
    
        
    
    A13: ( 
    len F) 
    = ( 
    len G) by 
    A10,
    RFINSEQ: 3;
    
        then
    
        
    
    A14: ( 
    len G1) 
    = k by 
    A9,
    FINSEQ_1: 59;
    
        (
    rng G1) 
    = ( 
    rng (G 
    | ( 
    Seg k))) by 
    FINSEQ_1:def 15;
    
        then
    
        
    
    A15: ( 
    rng G1) 
    c= ( 
    rng G) by 
    RELAT_1: 70;
    
        
    
        
    
    A16: for n be 
    Nat st n 
    in ( 
    dom G1) holds (G1 
    . n) is 
    open_interval  
    Subset of 
    REAL  
    
        proof
    
          let n be
    Nat;
    
          assume n
    in ( 
    dom G1); 
    
          then (G1
    . n) 
    in ( 
    rng G) by 
    A15,
    FUNCT_1: 3;
    
          then ex m be
    Element of 
    NAT st m 
    in ( 
    dom F) & (G1 
    . n) 
    = (F 
    . m) by 
    A12,
    PARTFUN1: 3;
    
          hence (G1
    . n) is 
    open_interval  
    Subset of 
    REAL by 
    A3;
    
        end;
    
        
    
        
    
    A17: for n be 
    Nat st 1 
    <= n 
    < ( 
    len G1) holds ( 
    union ( 
    rng (G1 
    | n))) 
    meets (G1 
    . (n 
    + 1)) 
    
        proof
    
          let n be
    Nat;
    
          assume
    
          
    
    A18: 1 
    <= n 
    < ( 
    len G1); 
    
          then (n
    + 1) 
    <= ( 
    len G1) by 
    NAT_1: 13;
    
          then (G1
    . (n 
    + 1)) 
    = (G 
    . (n 
    + 1)) & (G1 
    | n) 
    = (G 
    | n) by 
    A14,
    A18,
    FINSEQ_3: 112,
    FINSEQ_1: 82;
    
          hence (
    union ( 
    rng (G1 
    | n))) 
    meets (G1 
    . (n 
    + 1)) by 
    A11,
    A14,
    A18;
    
        end;
    
        now
    
          assume
    
          
    
    A19: for m be 
    Nat st m 
    > k holds ( 
    union ( 
    rng (G 
    | k))) 
    misses (G 
    . m); 
    
          (
    union ( 
    rng (G1 
    | ( 
    len G1)))) is 
    open_interval  
    Subset of 
    REAL by 
    A16,
    A17,
    Th40;
    
          then (
    union ( 
    rng (G 
    | k))) is 
    open_interval  
    Subset of 
    REAL by 
    FINSEQ_1: 58;
    
          then
    
          consider x,y be
    R_eal such that 
    
          
    
    A20: ( 
    union ( 
    rng (G 
    | k))) 
    =  
    ].x, y.[ by
    MEASURE5:def 2;
    
          consider a1,a2 be
    Real such that 
    
          
    
    A21: a1 
    <= a2 & A 
    =  
    [.a1, a2.] by
    MEASURE5: 14;
    
          
    
          
    
    A22: (G1 
    . 1) 
    = (G 
    . 1) by 
    NAT_1: 14,
    FINSEQ_3: 112;
    
          1
    <= ( 
    len F) by 
    A4,
    FINSEQ_1: 20;
    
          then 1
    in ( 
    dom G) by 
    A13,
    FINSEQ_3: 25;
    
          then ex m be
    Element of 
    NAT st m 
    in ( 
    dom F) & (G1 
    . 1) 
    = (F 
    . m) by 
    A12,
    A22,
    FUNCT_1: 3,
    PARTFUN1: 3;
    
          then
    
          
    
    A23: A 
    meets (G1 
    . 1) by 
    A2;
    
          1
    <= k by 
    NAT_1: 14;
    
          then 1
    in ( 
    dom G1) by 
    A14,
    FINSEQ_3: 25;
    
          then (G1
    . 1) 
    in ( 
    rng G1) by 
    FUNCT_1: 3;
    
          then
    
          
    
    A24: A 
    meets ( 
    union ( 
    rng (G 
    | k))) by 
    A23,
    XBOOLE_1: 63,
    ZFMISC_1: 74;
    
          then
    
          
    
    A25: x 
    < a2 & a1 
    < y by 
    A20,
    A21,
    XXREAL_1: 89,
    XXREAL_1: 93;
    
          
    
          
    
    A26: ( 
    union ( 
    rng (G 
    | k))) 
    <>  
    {} by 
    A24,
    XBOOLE_1: 65;
    
          then
    
          
    
    A27: x 
    < y by 
    A20,
    XXREAL_1: 28;
    
          per cases ;
    
            suppose a1
    <= x; 
    
            then x
    in A by 
    A21,
    A25,
    XXREAL_1: 1;
    
            then
    
            consider P be
    set such that 
    
            
    
    A28: x 
    in P & P 
    in ( 
    rng F) by 
    A1,
    TARSKI:def 4;
    
            consider m be
    Element of 
    NAT such that 
    
            
    
    A29: m 
    in ( 
    dom G) & P 
    = (G 
    . m) by 
    A12,
    A28,
    PARTFUN1: 3;
    
            ex i be
    Element of 
    NAT st i 
    in ( 
    dom F) & P 
    = (F 
    . i) by 
    A28,
    PARTFUN1: 3;
    
            then (G
    . m) is 
    open_interval  
    Subset of 
    REAL by 
    A3,
    A29;
    
            then
    
            consider p,q be
    R_eal such that 
    
            
    
    A30: (G 
    . m) 
    =  
    ].p, q.[ by
    MEASURE5:def 2;
    
            
    
            
    
    A31: p 
    < x & x 
    < q by 
    A28,
    A29,
    A30,
    XXREAL_1: 4;
    
            
    
            
    
    A32: not x 
    in ( 
    union ( 
    rng (G 
    | k))) by 
    A20,
    XXREAL_1: 4;
    
            
    
    A33: 
    
            now
    
              assume
    
              
    
    A34: m 
    <= k; 
    
              then
    
              
    
    A35: (G 
    . m) 
    = (G1 
    . m) by 
    FINSEQ_3: 112;
    
              1
    <= m by 
    A29,
    FINSEQ_3: 25;
    
              then m
    in ( 
    dom G1) by 
    A14,
    A34,
    FINSEQ_3: 25;
    
              then P
    in ( 
    rng G1) by 
    A29,
    A35,
    FUNCT_1: 3;
    
              hence contradiction by
    A28,
    A32,
    TARSKI:def 4;
    
            end;
    
            per cases ;
    
              suppose q
    <= y; 
    
              then (
    max (x,p)) 
    = x & ( 
    min (y,q)) 
    = q by 
    A31,
    XXREAL_0:def 9,
    XXREAL_0:def 10;
    
              then ((
    union ( 
    rng (G 
    | k))) 
    /\ (G 
    . m)) 
    =  
    ].x, q.[ by
    A20,
    A30,
    XXREAL_1: 142;
    
              then ((
    union ( 
    rng (G 
    | k))) 
    /\ (G 
    . m)) 
    <>  
    {} by 
    A31,
    XXREAL_1: 33;
    
              hence contradiction by
    A19,
    A33,
    XBOOLE_0:def 7;
    
            end;
    
              suppose q
    > y; 
    
              then (
    max (x,p)) 
    = x & ( 
    min (y,q)) 
    = y by 
    A31,
    XXREAL_0:def 9,
    XXREAL_0:def 10;
    
              then ((
    union ( 
    rng (G 
    | k))) 
    /\ (G 
    . m)) 
    =  
    ].x, y.[ by
    A20,
    A30,
    XXREAL_1: 142;
    
              hence contradiction by
    A19,
    A20,
    A26,
    A33,
    XBOOLE_0:def 7;
    
            end;
    
          end;
    
            suppose x
    < a1 & y 
    <= a2; 
    
            then y
    in A by 
    A21,
    A25,
    XXREAL_1: 1;
    
            then
    
            consider P be
    set such that 
    
            
    
    A36: y 
    in P & P 
    in ( 
    rng F) by 
    A1,
    TARSKI:def 4;
    
            consider m be
    Element of 
    NAT such that 
    
            
    
    A37: m 
    in ( 
    dom G) & P 
    = (G 
    . m) by 
    A12,
    A36,
    PARTFUN1: 3;
    
            ex i be
    Element of 
    NAT st i 
    in ( 
    dom F) & P 
    = (F 
    . i) by 
    A36,
    PARTFUN1: 3;
    
            then (G
    . m) is 
    open_interval  
    Subset of 
    REAL by 
    A3,
    A37;
    
            then
    
            consider p,q be
    R_eal such that 
    
            
    
    A38: (G 
    . m) 
    =  
    ].p, q.[ by
    MEASURE5:def 2;
    
            
    
            
    
    A39: not y 
    in ( 
    union ( 
    rng (G 
    | k))) by 
    A20,
    XXREAL_1: 4;
    
            
    
    A40: 
    
            now
    
              assume
    
              
    
    A41: m 
    <= k; 
    
              then
    
              
    
    A42: (G 
    . m) 
    = (G1 
    . m) by 
    FINSEQ_3: 112;
    
              1
    <= m by 
    A37,
    FINSEQ_3: 25;
    
              then m
    in ( 
    dom G1) by 
    A14,
    A41,
    FINSEQ_3: 25;
    
              then P
    in ( 
    rng G1) by 
    A37,
    A42,
    FUNCT_1: 3;
    
              hence contradiction by
    A36,
    A39,
    TARSKI:def 4;
    
            end;
    
            
    
            
    
    A43: p 
    < y & y 
    < q by 
    A36,
    A37,
    A38,
    XXREAL_1: 4;
    
            then (
    min (y,q)) 
    = y by 
    XXREAL_0:def 9;
    
            then ((
    union ( 
    rng (G 
    | k))) 
    /\ (G 
    . m)) 
    =  
    ].(
    max (x,p)), y.[ by 
    A20,
    A38,
    XXREAL_1: 142;
    
            then ((
    union ( 
    rng (G 
    | k))) 
    /\ (G 
    . m)) 
    <>  
    {} by 
    A27,
    A43,
    XXREAL_0: 29,
    XXREAL_1: 33;
    
            hence contradiction by
    A19,
    A40,
    XBOOLE_0:def 7;
    
          end;
    
            suppose x
    < a1 & a2 
    < y; 
    
            then
    
            
    
    A44: A 
    c= ( 
    union ( 
    rng (G 
    | k))) by 
    A20,
    A21,
    XXREAL_1: 47;
    
            (k
    + 1) 
    in ( 
    dom G) by 
    A8,
    A13,
    FINSEQ_3: 25,
    NAT_1: 11;
    
            then ex m be
    Element of 
    NAT st m 
    in ( 
    dom F) & (G 
    . (k 
    + 1)) 
    = (F 
    . m) by 
    A12,
    FUNCT_1: 3,
    PARTFUN1: 3;
    
            then A
    meets (G 
    . (k 
    + 1)) by 
    A2;
    
            then
    
            
    
    A45: (( 
    union ( 
    rng (G 
    | k))) 
    /\ (G 
    . (k 
    + 1))) 
    <>  
    {} by 
    A44,
    XBOOLE_1: 65,
    XBOOLE_1: 77;
    
            (k
    + 1) 
    > k by 
    NAT_1: 13;
    
            hence contradiction by
    A19,
    A45,
    XBOOLE_0:def 7;
    
          end;
    
        end;
    
        then
    
        consider M be
    Nat such that 
    
        
    
    A46: M 
    > k & ( 
    union ( 
    rng (G 
    | k))) 
    meets (G 
    . M); 
    
        
    
    A47: 
    
        now
    
          assume not M
    in ( 
    dom G); 
    
          then (G
    . M) 
    =  
    {} by 
    FUNCT_1:def 2;
    
          hence contradiction by
    A46,
    XBOOLE_1: 65;
    
        end;
    
        reconsider H = (
    Swap (G,(k 
    + 1),M)) as 
    FinSequence of ( 
    bool  
    REAL ); 
    
        (k
    + 1) 
    in ( 
    dom G) by 
    A8,
    A13,
    NAT_1: 11,
    FINSEQ_3: 25;
    
        then
    
        
    
    A48: (G,( 
    Swap (G,(k 
    + 1),M))) 
    are_fiberwise_equipotent by 
    A47,
    Th28;
    
        for n be
    Nat st 1 
    <= n 
    < (k 
    + 1) holds ( 
    union ( 
    rng (H 
    | n))) 
    meets (H 
    . (n 
    + 1)) 
    
        proof
    
          let n be
    Nat;
    
          assume
    
          
    
    A49: 1 
    <= n 
    < (k 
    + 1); 
    
          per cases ;
    
            suppose
    
            
    
    A50: n 
    < k; 
    
            then
    
            
    
    A51: (n 
    + 1) 
    <= k by 
    NAT_1: 13;
    
            (n
    + 1) 
    <> (k 
    + 1) & (n 
    + 1) 
    <> M by 
    A46,
    A50,
    NAT_1: 13;
    
            then (H
    . (n 
    + 1)) 
    = (G 
    . (n 
    + 1)) by 
    EXCHSORT: 33;
    
            then
    
            
    
    A52: (H 
    . (n 
    + 1)) 
    = (G1 
    . (n 
    + 1)) by 
    A51,
    FINSEQ_3: 112;
    
            n
    < M by 
    A46,
    A50,
    XXREAL_0: 2;
    
            then not (k
    + 1) 
    in ( 
    Seg n) & not M 
    in ( 
    Seg n) by 
    A49,
    FINSEQ_1: 1;
    
            then (H
    | ( 
    Seg n)) 
    = (G 
    | ( 
    Seg n)) by 
    Th29;
    
            then (H
    | n) 
    = (G 
    | ( 
    Seg n)) by 
    FINSEQ_1:def 15;
    
            then
    
            
    
    A53: (H 
    | n) 
    = (G 
    | n) by 
    FINSEQ_1:def 15;
    
            (G1
    | n) 
    = ((G 
    | k) 
    | n) 
    = (G 
    | n) by 
    A50,
    FINSEQ_1: 82;
    
            hence (
    union ( 
    rng (H 
    | n))) 
    meets (H 
    . (n 
    + 1)) by 
    A14,
    A17,
    A49,
    A50,
    A52,
    A53;
    
          end;
    
            suppose
    
            
    
    A54: n 
    >= k; 
    
            n
    <= k by 
    A49,
    NAT_1: 13;
    
            then
    
            
    
    A55: n 
    = k by 
    A54,
    XXREAL_0: 1;
    
            then not (k
    + 1) 
    in ( 
    Seg n) & not M 
    in ( 
    Seg n) by 
    A46,
    A49,
    FINSEQ_1: 1;
    
            then (H
    | ( 
    Seg n)) 
    = (G 
    | ( 
    Seg n)) by 
    Th29;
    
            then (H
    | n) 
    = (G 
    | ( 
    Seg n)) by 
    FINSEQ_1:def 15;
    
            then
    
            
    
    A56: ( 
    union ( 
    rng (H 
    | n))) 
    meets (G 
    . M) by 
    A46,
    A55,
    FINSEQ_1:def 15;
    
            1
    <= (k 
    + 1) 
    <= ( 
    len G) by 
    A8,
    A10,
    A49,
    RFINSEQ: 3,
    XXREAL_0: 2;
    
            then (k
    + 1) 
    in ( 
    dom G) by 
    FINSEQ_3: 25;
    
            hence (
    union ( 
    rng (H 
    | n))) 
    meets (H 
    . (n 
    + 1)) by 
    A47,
    A55,
    A56,
    EXCHSORT: 29;
    
          end;
    
        end;
    
        hence thesis by
    A10,
    A48,
    CLASSES1: 76;
    
      end;
    
      for k be non
    zero  
    Nat holds 
    P[k] from
    NAT_1:sch 10(
    A5,
    A6);
    
      then
    
      consider G be
    FinSequence of ( 
    bool  
    REAL ) such that 
    
      
    
    A57: (F,G) 
    are_fiberwise_equipotent & (for n be 
    Nat st 1 
    <= n 
    < ( 
    len F) holds ( 
    union ( 
    rng (G 
    | n))) 
    meets (G 
    . (n 
    + 1))) by 
    A4;
    
      (
    len F) 
    = ( 
    len G) by 
    A57,
    RFINSEQ: 3;
    
      hence thesis by
    A57;
    
    end;
    
    begin
    
    theorem :: 
    
    MEASUR12:42
    
    
    
    
    
    Th42: for I be 
    Element of 
    Family_of_Intervals st I is 
    open_interval holds ( 
    OS_Meas  
    . I) 
    <= ( 
    diameter I) 
    
    proof
    
      let I be
    Element of 
    Family_of_Intervals ; 
    
      assume I is
    open_interval;
    
      then
    
      consider F be
    Open_Interval_Covering of I such that 
    
      
    
    A1: (F 
    .  
    0 ) 
    = I & (for n be 
    Nat st n 
    <>  
    0 holds (F 
    . n) 
    =  
    {} ) & ( 
    union ( 
    rng F)) 
    = I & ( 
    SUM (F 
    vol )) 
    = ( 
    diameter I) by 
    Th36;
    
      (
    vol F) 
    = ( 
    diameter I) by 
    A1,
    MEASURE7:def 6;
    
      then
    
      
    
    A2: ( 
    diameter I) 
    in ( 
    Svc2 I) by 
    Def7;
    
      (
    inf ( 
    Svc2 I)) is 
    LowerBound of ( 
    Svc2 I) by 
    XXREAL_2:def 4;
    
      then
    
      
    
    A3: ( 
    inf ( 
    Svc2 I)) 
    <= ( 
    diameter I) by 
    A2,
    XXREAL_2:def 2;
    
      (
    inf ( 
    Svc I)) 
    <= ( 
    inf ( 
    Svc2 I)) by 
    Th30;
    
      then (
    inf ( 
    Svc I)) 
    <= ( 
    diameter I) by 
    A3,
    XXREAL_0: 2;
    
      hence thesis by
    MEASURE7:def 10;
    
    end;
    
    theorem :: 
    
    MEASUR12:43
    
    
    
    
    
    Th43: for I be 
    Element of 
    Family_of_Intervals st I 
    <>  
    {} & I is 
    right_open_interval holds ( 
    OS_Meas  
    . I) 
    <= ( 
    diameter I) 
    
    proof
    
      let I be
    Element of 
    Family_of_Intervals ; 
    
      assume that
    
      
    
    A1: I 
    <>  
    {} and 
    
      
    
    A2: I is 
    right_open_interval;
    
      consider a be
    Real, b be 
    R_eal such that 
    
      
    
    A3: I 
    =  
    [.a, b.[ by
    A2,
    MEASURE5:def 4;
    
      
    
      
    
    A4: a 
    < b by 
    A1,
    A3,
    XXREAL_1: 27;
    
      reconsider a1 = a as
    R_eal by 
    XXREAL_0:def 1;
    
      per cases ;
    
        suppose b
    =  
    +infty ; 
    
        
    
        then (
    diameter I) 
    = ( 
    +infty  
    - a1) by 
    A1,
    A3,
    XXREAL_1: 27,
    MEASURE5: 7
    
        .=
    +infty by 
    XXREAL_3: 13;
    
        hence (
    OS_Meas  
    . I) 
    <= ( 
    diameter I) by 
    XXREAL_0: 3;
    
      end;
    
        suppose
    
        
    
    A5: b 
    <>  
    +infty ; 
    
        
    -infty  
    < a by 
    XXREAL_0: 12,
    XREAL_0:def 1;
    
        then b
    in  
    REAL by 
    A4,
    A5,
    XXREAL_0: 14;
    
        then
    
        reconsider rb = b as
    Real;
    
        
    
        
    
    A6: ( 
    diameter I) 
    = (b 
    - a1) by 
    A1,
    A3,
    XXREAL_1: 27,
    MEASURE5: 7
    
        .= (rb
    - a) by 
    Lm9;
    
        then
    
        reconsider DI = (
    diameter I) as 
    Real;
    
        
    
        
    
    A7: for e be 
    Real st 
    0  
    < e holds ( 
    OS_Meas  
    . I) 
    <= (DI 
    + e) 
    
        proof
    
          let e be
    Real;
    
          assume
    
          
    
    A8: 
    0  
    < e; 
    
          reconsider c = (a
    - e) as 
    R_eal by 
    XXREAL_0:def 1;
    
          reconsider J =
    ].c, b.[ as
    Subset of 
    REAL ; 
    
          
    
          
    
    A9: J 
    in  
    Family_of_Intervals by 
    MEASUR10:def 1;
    
          J is
    open_interval by 
    MEASURE5:def 2;
    
          then
    
          consider F be
    Open_Interval_Covering of J such that 
    
          
    
    A10: (F 
    .  
    0 ) 
    = J & (for n be 
    Nat st n 
    <>  
    0 holds (F 
    . n) 
    =  
    {} ) & ( 
    union ( 
    rng F)) 
    = J & ( 
    SUM (F 
    vol )) 
    = ( 
    diameter J) by 
    A9,
    Th36;
    
          
    
          
    
    A11: c 
    < a by 
    A8,
    XREAL_1: 44;
    
          then
    
          reconsider F1 = F as
    Open_Interval_Covering of I by 
    A3,
    Th38,
    XXREAL_1: 48;
    
          (F
    vol ) 
    = (F1 
    vol ) by 
    Th39;
    
          then (
    vol F1) 
    = ( 
    diameter J) by 
    A10,
    MEASURE7:def 6;
    
          then
    
          
    
    A12: ( 
    diameter J) 
    in ( 
    Svc2 I) by 
    Def7;
    
          (
    inf ( 
    Svc2 I)) is 
    LowerBound of ( 
    Svc2 I) by 
    XXREAL_2:def 4;
    
          then
    
          
    
    A13: ( 
    inf ( 
    Svc2 I)) 
    <= ( 
    diameter J) by 
    A12,
    XXREAL_2:def 2;
    
          (
    inf ( 
    Svc I)) 
    <= ( 
    inf ( 
    Svc2 I)) by 
    Th30;
    
          then
    
          
    
    A14: ( 
    inf ( 
    Svc I)) 
    <= ( 
    diameter J) by 
    A13,
    XXREAL_0: 2;
    
          c
    < b by 
    A1,
    A3,
    XXREAL_1: 27,
    A11,
    XXREAL_0: 2;
    
          then (
    diameter J) 
    = (b 
    - c) by 
    MEASURE5: 5;
    
          then (
    diameter J) 
    = (rb 
    - (a 
    - e)) by 
    Lm9;
    
          hence thesis by
    A6,
    A14,
    MEASURE7:def 10;
    
        end;
    
        then
    
        
    
    A15: ( 
    OS_Meas  
    . I) 
    <= (DI 
    + 1); 
    
        
    
        
    
    A16: 
    0  
    in  
    REAL & (DI 
    + 1) 
    in  
    REAL by 
    XREAL_0:def 1;
    
        
    OS_Meas is 
    nonnegative by 
    MEASURE4:def 1;
    
        then
    0  
    <= ( 
    OS_Meas  
    . I) by 
    SUPINF_2: 51;
    
        then (
    OS_Meas  
    . I) 
    in  
    REAL by 
    A15,
    A16,
    XXREAL_0: 45;
    
        then
    
        reconsider LI = (
    OS_Meas  
    . I) as 
    Real;
    
        for e be
    Real st 
    0  
    < e holds LI 
    <= (DI 
    + e) by 
    A7;
    
        hence (
    OS_Meas  
    . I) 
    <= ( 
    diameter I) by 
    XREAL_1: 41;
    
      end;
    
    end;
    
    
    
    
    
    Lm10: for I be 
    Element of 
    Family_of_Intervals st I 
    <>  
    {} & I is 
    left_open_interval holds ( 
    OS_Meas  
    . I) 
    <= ( 
    diameter I) 
    
    proof
    
      let I be
    Element of 
    Family_of_Intervals ; 
    
      assume that
    
      
    
    A1: I 
    <>  
    {} and 
    
      
    
    A2: I is 
    left_open_interval;
    
      consider a be
    R_eal, b be 
    Real such that 
    
      
    
    A3: I 
    =  
    ].a, b.] by
    A2,
    MEASURE5:def 5;
    
      
    
      
    
    A4: a 
    < b by 
    A1,
    A3,
    XXREAL_1: 26;
    
      
    
      
    
    A5: b 
    <  
    +infty by 
    XXREAL_0: 9,
    XREAL_0:def 1;
    
      reconsider b1 = b as
    R_eal by 
    XXREAL_0:def 1;
    
      per cases ;
    
        suppose a
    =  
    -infty ; 
    
        
    
        then (
    diameter I) 
    = (b1 
    -  
    -infty ) by 
    A1,
    A3,
    XXREAL_1: 26,
    MEASURE5: 8
    
        .=
    +infty by 
    XXREAL_3: 14;
    
        hence (
    OS_Meas  
    . I) 
    <= ( 
    diameter I) by 
    XXREAL_0: 3;
    
      end;
    
        suppose a
    <>  
    -infty ; 
    
        then a
    in  
    REAL by 
    A4,
    A5,
    XXREAL_0: 14;
    
        then
    
        reconsider ra = a as
    Real;
    
        (
    diameter I) 
    = (b1 
    - a) by 
    A1,
    A3,
    XXREAL_1: 26,
    MEASURE5: 8;
    
        then
    
        
    
    A6: ( 
    diameter I) 
    = (b 
    - ra) by 
    Lm9;
    
        then
    
        reconsider DI = (
    diameter I) as 
    Real;
    
        
    
        
    
    A7: for e be 
    Real st 
    0  
    < e holds ( 
    OS_Meas  
    . I) 
    <= (DI 
    + e) 
    
        proof
    
          let e be
    Real;
    
          assume
    0  
    < e; 
    
          then
    
          
    
    A8: b 
    < (b 
    + e) by 
    XREAL_1: 29;
    
          reconsider c = (b
    + e) as 
    R_eal by 
    XXREAL_0:def 1;
    
          reconsider J =
    ].a, c.[ as
    Subset of 
    REAL ; 
    
          
    
          
    
    A9: J 
    in  
    Family_of_Intervals by 
    MEASUR10:def 1;
    
          J is
    open_interval by 
    MEASURE5:def 2;
    
          then
    
          consider F be
    Open_Interval_Covering of J such that 
    
          
    
    A10: (F 
    .  
    0 ) 
    = J & (for n be 
    Nat st n 
    <>  
    0 holds (F 
    . n) 
    =  
    {} ) & ( 
    union ( 
    rng F)) 
    = J & ( 
    SUM (F 
    vol )) 
    = ( 
    diameter J) by 
    A9,
    Th36;
    
          reconsider F1 = F as
    Open_Interval_Covering of I by 
    A3,
    A8,
    Th38,
    XXREAL_1: 49;
    
          (F
    vol ) 
    = (F1 
    vol ) by 
    Th39;
    
          then (
    vol F1) 
    = ( 
    diameter J) by 
    A10,
    MEASURE7:def 6;
    
          then
    
          
    
    A11: ( 
    diameter J) 
    in ( 
    Svc2 I) by 
    Def7;
    
          (
    inf ( 
    Svc2 I)) is 
    LowerBound of ( 
    Svc2 I) by 
    XXREAL_2:def 4;
    
          then
    
          
    
    A12: ( 
    inf ( 
    Svc2 I)) 
    <= ( 
    diameter J) by 
    A11,
    XXREAL_2:def 2;
    
          (
    inf ( 
    Svc I)) 
    <= ( 
    inf ( 
    Svc2 I)) by 
    Th30;
    
          then
    
          
    
    A13: ( 
    inf ( 
    Svc I)) 
    <= ( 
    diameter J) by 
    A12,
    XXREAL_0: 2;
    
          a
    < (b 
    + e) by 
    A1,
    A3,
    A8,
    XXREAL_1: 26,
    XXREAL_0: 2;
    
          then (
    diameter J) 
    = (c 
    - a) by 
    MEASURE5: 5;
    
          then (
    diameter J) 
    = ((b 
    + e) 
    - ra) by 
    Lm9;
    
          hence thesis by
    A6,
    A13,
    MEASURE7:def 10;
    
        end;
    
        then
    
        
    
    A14: ( 
    OS_Meas  
    . I) 
    <= (DI 
    + 1); 
    
        
    
        
    
    A15: 
    0  
    in  
    REAL & (DI 
    + 1) 
    in  
    REAL by 
    XREAL_0:def 1;
    
        
    OS_Meas is 
    nonnegative by 
    MEASURE4:def 1;
    
        then
    0  
    <= ( 
    OS_Meas  
    . I) by 
    SUPINF_2: 51;
    
        then (
    OS_Meas  
    . I) 
    in  
    REAL by 
    A15,
    A14,
    XXREAL_0: 45;
    
        then
    
        reconsider LI = (
    OS_Meas  
    . I) as 
    Real;
    
        for e be
    Real st 
    0  
    < e holds LI 
    <= (DI 
    + e) by 
    A7;
    
        hence (
    OS_Meas  
    . I) 
    <= ( 
    diameter I) by 
    XREAL_1: 41;
    
      end;
    
    end;
    
    
    
    
    
    Lm11: for I be 
    Element of 
    Family_of_Intervals st I 
    <>  
    {} & I is 
    closed_interval holds ( 
    OS_Meas  
    . I) 
    <= ( 
    diameter I) 
    
    proof
    
      let I be
    Element of 
    Family_of_Intervals ; 
    
      assume that
    
      
    
    A1: I 
    <>  
    {} and 
    
      
    
    A2: I is 
    closed_interval;
    
      consider a,b be
    Real such that 
    
      
    
    A3: I 
    =  
    [.a, b.] by
    A2,
    MEASURE5:def 3;
    
      reconsider a1 = a, b1 = b as
    R_eal by 
    XXREAL_0:def 1;
    
      
    
      
    
    A4: ( 
    diameter I) 
    = (b1 
    - a1) by 
    A1,
    A3,
    XXREAL_1: 29,
    MEASURE5: 6;
    
      then
    
      
    
    A5: ( 
    diameter I) 
    = (b 
    - a) by 
    Lm9;
    
      reconsider DI = (
    diameter I) as 
    Real by 
    A4;
    
      
    
      
    
    A6: for e be 
    Real st 
    0  
    < e holds ( 
    OS_Meas  
    . I) 
    <= (DI 
    + e) 
    
      proof
    
        let e be
    Real;
    
        assume
    0  
    < e; 
    
        then
    
        
    
    A7: (a 
    - (e 
    / 2)) 
    < a & b 
    < (b 
    + (e 
    / 2)) by 
    XREAL_1: 29,
    XREAL_1: 44,
    XREAL_1: 215;
    
        reconsider p = (a
    - (e 
    / 2)), q = (b 
    + (e 
    / 2)) as 
    R_eal by 
    XXREAL_0:def 1;
    
        reconsider J =
    ].p, q.[ as
    Subset of 
    REAL ; 
    
        
    
        
    
    A8: J 
    in  
    Family_of_Intervals by 
    MEASUR10:def 1;
    
        J is
    open_interval by 
    MEASURE5:def 2;
    
        then
    
        consider F be
    Open_Interval_Covering of J such that 
    
        
    
    A9: (F 
    .  
    0 ) 
    = J & (for n be 
    Nat st n 
    <>  
    0 holds (F 
    . n) 
    =  
    {} ) & ( 
    union ( 
    rng F)) 
    = J & ( 
    SUM (F 
    vol )) 
    = ( 
    diameter J) by 
    A8,
    Th36;
    
        reconsider F1 = F as
    Open_Interval_Covering of I by 
    A3,
    A7,
    Th38,
    XXREAL_1: 47;
    
        a
    <= b by 
    A1,
    A3,
    XXREAL_1: 29;
    
        then (a
    - (e 
    / 2)) 
    < b by 
    A7,
    XXREAL_0: 2;
    
        then (a
    - (e 
    / 2)) 
    < (b 
    + (e 
    / 2)) by 
    A7,
    XXREAL_0: 2;
    
        then (
    diameter J) 
    = (q 
    - p) by 
    MEASURE5: 5;
    
        then
    
        
    
    A10: ( 
    diameter J) 
    = ((b 
    + (e 
    / 2)) 
    - (a 
    - (e 
    / 2))) by 
    Lm9;
    
        (F
    vol ) 
    = (F1 
    vol ) by 
    Th39;
    
        then (
    vol F1) 
    = ( 
    diameter J) by 
    A9,
    MEASURE7:def 6;
    
        then
    
        
    
    A11: ( 
    diameter J) 
    in ( 
    Svc2 I) by 
    Def7;
    
        (
    inf ( 
    Svc2 I)) is 
    LowerBound of ( 
    Svc2 I) by 
    XXREAL_2:def 4;
    
        then
    
        
    
    A12: ( 
    inf ( 
    Svc2 I)) 
    <= ( 
    diameter J) by 
    A11,
    XXREAL_2:def 2;
    
        (
    inf ( 
    Svc I)) 
    <= ( 
    inf ( 
    Svc2 I)) by 
    Th30;
    
        then (
    inf ( 
    Svc I)) 
    <= ( 
    diameter J) by 
    A12,
    XXREAL_0: 2;
    
        hence thesis by
    A5,
    A10,
    MEASURE7:def 10;
    
      end;
    
      then
    
      
    
    A13: ( 
    OS_Meas  
    . I) 
    <= (DI 
    + 1); 
    
      
    
      
    
    A14: 
    0  
    in  
    REAL & (DI 
    + 1) 
    in  
    REAL by 
    XREAL_0:def 1;
    
      
    OS_Meas is 
    nonnegative by 
    MEASURE4:def 1;
    
      then
    0  
    <= ( 
    OS_Meas  
    . I) by 
    SUPINF_2: 51;
    
      then (
    OS_Meas  
    . I) 
    in  
    REAL by 
    A14,
    A13,
    XXREAL_0: 45;
    
      then
    
      reconsider LI = (
    OS_Meas  
    . I) as 
    Real;
    
      for e be
    Real st 
    0  
    < e holds LI 
    <= (DI 
    + e) by 
    A6;
    
      hence (
    OS_Meas  
    . I) 
    <= ( 
    diameter I) by 
    XREAL_1: 41;
    
    end;
    
    theorem :: 
    
    MEASUR12:44
    
    
    
    
    
    Th44: for I be 
    Element of 
    Family_of_Intervals st I is 
    Interval holds ( 
    OS_Meas  
    . I) 
    <= ( 
    diameter I) 
    
    proof
    
      let I be
    Element of 
    Family_of_Intervals ; 
    
      assume
    
      
    
    A1: I is 
    Interval;
    
      per cases ;
    
        suppose
    
        
    
    A2: I 
    =  
    {} ; 
    
        
    OS_Meas is 
    zeroed by 
    MEASURE4:def 1;
    
        then (
    OS_Meas  
    . I) 
    =  
    0 by 
    A2,
    VALUED_0:def 19;
    
        hence (
    OS_Meas  
    . I) 
    <= ( 
    diameter I) by 
    A2,
    MEASURE5:def 6;
    
      end;
    
        suppose
    
        
    
    A3: I 
    <>  
    {} ; 
    
        I is
    open_interval or I is 
    closed_interval or I is 
    right_open_interval or I is 
    left_open_interval by 
    A1,
    MEASURE5: 1;
    
        hence (
    OS_Meas  
    . I) 
    <= ( 
    diameter I) by 
    A3,
    Th42,
    Th43,
    Lm10,
    Lm11;
    
      end;
    
    end;
    
    
    
    
    
    Lm12: for A,B be 
    Interval st A is 
    open_interval & B is 
    open_interval & (A 
    \/ B) is 
    Interval holds ( 
    diameter (A 
    \/ B)) 
    <= (( 
    diameter A) 
    + ( 
    diameter B)) 
    
    proof
    
      let A,B be
    Interval;
    
      assume that
    
      
    
    A1: A is 
    open_interval and 
    
      
    
    A2: B is 
    open_interval and 
    
      
    
    A3: (A 
    \/ B) is 
    Interval;
    
      per cases ;
    
        suppose A
    =  
    {} or B 
    =  
    {} ; 
    
        hence (
    diameter (A 
    \/ B)) 
    <= (( 
    diameter A) 
    + ( 
    diameter B)) by 
    XXREAL_3: 4,
    MEASURE5: 10;
    
      end;
    
        suppose
    
        
    
    A4: A 
    <>  
    {} & B 
    <>  
    {} ; 
    
        then
    
        
    
    A5: ( 
    diameter (A 
    \/ B)) 
    = (( 
    sup (A 
    \/ B)) 
    - ( 
    inf (A 
    \/ B))) by 
    MEASURE5:def 6;
    
        ex a1,a2 be
    R_eal st A 
    =  
    ].a1, a2.[ by
    A1,
    MEASURE5:def 2;
    
        then
    
        
    
    A6: A 
    =  
    ].(
    inf A), ( 
    sup A).[ by 
    A4,
    XXREAL_2: 78;
    
        ex b1,b2 be
    R_eal st B 
    =  
    ].b1, b2.[ by
    A2,
    MEASURE5:def 2;
    
        then
    
        
    
    A7: B 
    =  
    ].(
    inf B), ( 
    sup B).[ by 
    A4,
    XXREAL_2: 78;
    
        
    
        
    
    A8: ( 
    diameter A) 
    = (( 
    sup A) 
    - ( 
    inf A)) & ( 
    diameter B) 
    = (( 
    sup B) 
    - ( 
    inf B)) by 
    A4,
    MEASURE5:def 6;
    
        
    
        
    
    A9: ( 
    inf (A 
    \/ B)) 
    = ( 
    min (( 
    inf A),( 
    inf B))) & ( 
    sup (A 
    \/ B)) 
    = ( 
    max (( 
    sup A),( 
    sup B))) by 
    XXREAL_2: 9,
    XXREAL_2: 10;
    
        
    
        
    
    A10: ( 
    sup A) 
    <>  
    -infty & ( 
    sup B) 
    <>  
    -infty & ( 
    inf A) 
    <>  
    +infty & ( 
    inf B) 
    <>  
    +infty by 
    A4,
    A6,
    A7,
    XXREAL_1: 28,
    XXREAL_0: 3,
    XXREAL_0: 5;
    
        
    
        
    
    A11: ( 
    diameter A) 
    >=  
    0 & ( 
    diameter B) 
    >=  
    0 & ( 
    diameter (A 
    \/ B)) 
    >=  
    0 by 
    A3,
    MEASURE5: 13;
    
        
    
        
    
    A12: ( 
    sup A) 
    > ( 
    inf B) & ( 
    sup B) 
    > ( 
    inf A) by 
    A1,
    A2,
    A3,
    A4,
    A6,
    A7,
    Th1,
    XXREAL_1: 275;
    
        per cases by
    A1,
    A2,
    A3,
    A4,
    Th1;
    
          suppose
    
          
    
    A13: ( 
    inf A) 
    < ( 
    sup B); 
    
          per cases ;
    
            suppose
    
            
    
    A14: ( 
    inf A) 
    <= ( 
    inf B); 
    
            then
    
            
    
    A15: ( 
    diameter (A 
    \/ B)) 
    = (( 
    sup (A 
    \/ B)) 
    - ( 
    inf A)) by 
    A5,
    A9,
    XXREAL_0:def 9;
    
            per cases ;
    
              suppose (
    sup A) 
    >= ( 
    sup B); 
    
              then (
    sup (A 
    \/ B)) 
    = ( 
    sup A) by 
    A9,
    XXREAL_0:def 10;
    
              hence (
    diameter (A 
    \/ B)) 
    <= (( 
    diameter A) 
    + ( 
    diameter B)) by 
    A8,
    A15,
    MEASURE5: 13,
    XXREAL_3: 39;
    
            end;
    
              suppose
    
              
    
    A16: ( 
    sup A) 
    < ( 
    sup B); 
    
              then
    
              
    
    A17: ( 
    diameter (A 
    \/ B)) 
    = (( 
    sup B) 
    - ( 
    inf A)) by 
    A9,
    A15,
    XXREAL_0:def 10;
    
              per cases ;
    
                suppose (
    sup B) 
    =  
    +infty or ( 
    inf A) 
    =  
    -infty ; 
    
                then (
    diameter (A 
    \/ B)) 
    =  
    +infty & (( 
    diameter B) 
    =  
    +infty or ( 
    diameter A) 
    =  
    +infty ) by 
    A8,
    A10,
    A17,
    XXREAL_3: 13,
    XXREAL_3: 14;
    
                hence (
    diameter (A 
    \/ B)) 
    <= (( 
    diameter A) 
    + ( 
    diameter B)) by 
    MEASURE5: 13,
    XXREAL_3: 39;
    
              end;
    
                suppose
    
                
    
    A18: ( 
    sup B) 
    <>  
    +infty & ( 
    inf A) 
    <>  
    -infty ; 
    
                then
    
                
    
    A19: ( 
    inf B) 
    <>  
    -infty by 
    A14,
    XXREAL_0: 6;
    
                
    
                
    
    A20: ( 
    sup A) 
    <>  
    +infty by 
    A16,
    XXREAL_0: 3;
    
                ((
    sup A) 
    - ( 
    inf B)) 
    >=  
    0 by 
    A12,
    XXREAL_3: 40;
    
                then ((
    sup B) 
    - ( 
    inf A)) 
    <= ((( 
    sup B) 
    - ( 
    inf A)) 
    + (( 
    sup A) 
    - ( 
    inf B))) by 
    XXREAL_3: 39;
    
                then ((
    sup B) 
    - ( 
    inf A)) 
    <= (((( 
    sup B) 
    - ( 
    inf A)) 
    + ( 
    sup A)) 
    - ( 
    inf B)) by 
    A10,
    A19,
    A20,
    XXREAL_3: 30;
    
                then ((
    sup B) 
    - ( 
    inf A)) 
    <= ((( 
    sup B) 
    - (( 
    inf A) 
    - ( 
    sup A))) 
    - ( 
    inf B)) by 
    A18,
    A20,
    XXREAL_3: 32;
    
                then ((
    sup B) 
    - ( 
    inf A)) 
    <= ((( 
    sup B) 
    + ( 
    - (( 
    inf A) 
    - ( 
    sup A)))) 
    - ( 
    inf B)) by 
    XXREAL_3:def 4;
    
                then ((
    sup B) 
    - ( 
    inf A)) 
    <= ((( 
    sup B) 
    + ( 
    diameter A)) 
    - ( 
    inf B)) by 
    A8,
    XXREAL_3: 26;
    
                then ((
    sup B) 
    - ( 
    inf A)) 
    <= (( 
    sup B) 
    + (( 
    diameter A) 
    - ( 
    inf B))) by 
    A10,
    A11,
    XXREAL_3: 30;
    
                then ((
    sup B) 
    - ( 
    inf A)) 
    <= (( 
    sup B) 
    + ( 
    - (( 
    inf B) 
    - ( 
    diameter A)))) by 
    XXREAL_3: 26;
    
                then ((
    sup B) 
    - ( 
    inf A)) 
    <= (( 
    sup B) 
    - (( 
    inf B) 
    - ( 
    diameter A))) by 
    XXREAL_3:def 4;
    
                hence (
    diameter (A 
    \/ B)) 
    <= (( 
    diameter A) 
    + ( 
    diameter B)) by 
    A8,
    A10,
    A11,
    A17,
    XXREAL_3: 32;
    
              end;
    
            end;
    
          end;
    
            suppose
    
            
    
    A21: ( 
    inf A) 
    > ( 
    inf B); 
    
            then
    
            
    
    A22: ( 
    diameter (A 
    \/ B)) 
    = (( 
    sup (A 
    \/ B)) 
    - ( 
    inf B)) by 
    A5,
    A9,
    XXREAL_0:def 9;
    
            per cases ;
    
              suppose
    
              
    
    A23: ( 
    sup A) 
    > ( 
    sup B); 
    
              then
    
              
    
    A24: ( 
    sup B) 
    <>  
    +infty by 
    XXREAL_0: 3;
    
              
    
              
    
    A25: ( 
    sup (A 
    \/ B)) 
    = ( 
    sup A) by 
    A9,
    A23,
    XXREAL_0:def 10;
    
              per cases ;
    
                suppose (
    sup A) 
    =  
    +infty or ( 
    inf B) 
    =  
    -infty ; 
    
                then (
    diameter (A 
    \/ B)) 
    =  
    +infty & (( 
    diameter A) 
    =  
    +infty or ( 
    diameter B) 
    =  
    +infty ) by 
    A8,
    A10,
    A22,
    A25,
    XXREAL_3: 13,
    XXREAL_3: 14;
    
                hence (
    diameter (A 
    \/ B)) 
    <= (( 
    diameter A) 
    + ( 
    diameter B)) by 
    MEASURE5: 13,
    XXREAL_3: 39;
    
              end;
    
                suppose
    
                
    
    A26: ( 
    sup A) 
    <>  
    +infty & ( 
    inf B) 
    <>  
    -infty ; 
    
                
    
                
    
    A27: ( 
    inf A) 
    <>  
    -infty by 
    A21,
    XXREAL_0: 5;
    
                ((
    sup B) 
    - ( 
    inf A)) 
    >=  
    0 by 
    A13,
    XXREAL_3: 40;
    
                then ((
    sup A) 
    - ( 
    inf B)) 
    <= ((( 
    sup A) 
    - ( 
    inf B)) 
    + (( 
    sup B) 
    - ( 
    inf A))) by 
    XXREAL_3: 39;
    
                then ((
    sup A) 
    - ( 
    inf B)) 
    <= (((( 
    sup A) 
    - ( 
    inf B)) 
    + ( 
    sup B)) 
    - ( 
    inf A)) by 
    A10,
    A24,
    A27,
    XXREAL_3: 30;
    
                then ((
    sup A) 
    - ( 
    inf B)) 
    <= ((( 
    sup A) 
    - (( 
    inf B) 
    - ( 
    sup B))) 
    - ( 
    inf A)) by 
    A24,
    A26,
    XXREAL_3: 32;
    
                then ((
    sup A) 
    - ( 
    inf B)) 
    <= ((( 
    sup A) 
    + ( 
    - (( 
    inf B) 
    - ( 
    sup B)))) 
    - ( 
    inf A)) by 
    XXREAL_3:def 4;
    
                then ((
    sup A) 
    - ( 
    inf B)) 
    <= ((( 
    sup A) 
    + ( 
    diameter B)) 
    - ( 
    inf A)) by 
    A8,
    XXREAL_3: 26;
    
                then ((
    sup A) 
    - ( 
    inf B)) 
    <= (( 
    sup A) 
    + (( 
    diameter B) 
    - ( 
    inf A))) by 
    A10,
    A11,
    XXREAL_3: 30;
    
                then ((
    sup A) 
    - ( 
    inf B)) 
    <= (( 
    sup A) 
    + ( 
    - (( 
    inf A) 
    - ( 
    diameter B)))) by 
    XXREAL_3: 26;
    
                then ((
    sup A) 
    - ( 
    inf B)) 
    <= (( 
    sup A) 
    - (( 
    inf A) 
    - ( 
    diameter B))) by 
    XXREAL_3:def 4;
    
                hence (
    diameter (A 
    \/ B)) 
    <= (( 
    diameter A) 
    + ( 
    diameter B)) by 
    A8,
    A10,
    A11,
    A22,
    A25,
    XXREAL_3: 32;
    
              end;
    
            end;
    
              suppose (
    sup A) 
    <= ( 
    sup B); 
    
              then (A
    \/ B) 
    = B by 
    A6,
    A7,
    A21,
    XXREAL_1: 46,
    XBOOLE_1: 12;
    
              hence (
    diameter (A 
    \/ B)) 
    <= (( 
    diameter A) 
    + ( 
    diameter B)) by 
    MEASURE5: 13,
    XXREAL_3: 39;
    
            end;
    
          end;
    
        end;
    
          suppose
    
          
    
    A28: ( 
    inf B) 
    < ( 
    sup A); 
    
          per cases ;
    
            suppose
    
            
    
    A29: ( 
    inf B) 
    <= ( 
    inf A); 
    
            then
    
            
    
    A30: ( 
    diameter (A 
    \/ B)) 
    = (( 
    sup (A 
    \/ B)) 
    - ( 
    inf B)) by 
    A5,
    A9,
    XXREAL_0:def 9;
    
            per cases ;
    
              suppose (
    sup B) 
    >= ( 
    sup A); 
    
              then (
    sup (A 
    \/ B)) 
    = ( 
    sup B) by 
    A9,
    XXREAL_0:def 10;
    
              hence (
    diameter (A 
    \/ B)) 
    <= (( 
    diameter A) 
    + ( 
    diameter B)) by 
    A8,
    A30,
    MEASURE5: 13,
    XXREAL_3: 39;
    
            end;
    
              suppose
    
              
    
    A31: ( 
    sup B) 
    < ( 
    sup A); 
    
              then
    
              
    
    A32: ( 
    diameter (A 
    \/ B)) 
    = (( 
    sup A) 
    - ( 
    inf B)) by 
    A9,
    A30,
    XXREAL_0:def 10;
    
              per cases ;
    
                suppose (
    sup A) 
    =  
    +infty or ( 
    inf B) 
    =  
    -infty ; 
    
                then (
    diameter (A 
    \/ B)) 
    =  
    +infty & (( 
    diameter A) 
    =  
    +infty or ( 
    diameter B) 
    =  
    +infty ) by 
    A8,
    A10,
    A32,
    XXREAL_3: 13,
    XXREAL_3: 14;
    
                hence (
    diameter (A 
    \/ B)) 
    <= (( 
    diameter A) 
    + ( 
    diameter B)) by 
    MEASURE5: 13,
    XXREAL_3: 39;
    
              end;
    
                suppose
    
                
    
    A33: ( 
    sup A) 
    <>  
    +infty & ( 
    inf B) 
    <>  
    -infty ; 
    
                then
    
                
    
    A34: ( 
    inf A) 
    <>  
    -infty by 
    A29,
    XXREAL_0: 6;
    
                
    
                
    
    A35: ( 
    sup B) 
    <>  
    +infty by 
    A31,
    XXREAL_0: 3;
    
                ((
    sup B) 
    - ( 
    inf A)) 
    >=  
    0 by 
    A12,
    XXREAL_3: 40;
    
                then ((
    sup A) 
    - ( 
    inf B)) 
    <= ((( 
    sup A) 
    - ( 
    inf B)) 
    + (( 
    sup B) 
    - ( 
    inf A))) by 
    XXREAL_3: 39;
    
                then ((
    sup A) 
    - ( 
    inf B)) 
    <= (((( 
    sup A) 
    - ( 
    inf B)) 
    + ( 
    sup B)) 
    - ( 
    inf A)) by 
    A10,
    A34,
    A35,
    XXREAL_3: 30;
    
                then ((
    sup A) 
    - ( 
    inf B)) 
    <= ((( 
    sup A) 
    - (( 
    inf B) 
    - ( 
    sup B))) 
    - ( 
    inf A)) by 
    A33,
    A35,
    XXREAL_3: 32;
    
                then ((
    sup A) 
    - ( 
    inf B)) 
    <= ((( 
    sup A) 
    + ( 
    - (( 
    inf B) 
    - ( 
    sup B)))) 
    - ( 
    inf A)) by 
    XXREAL_3:def 4;
    
                then ((
    sup A) 
    - ( 
    inf B)) 
    <= ((( 
    sup A) 
    + ( 
    diameter B)) 
    - ( 
    inf A)) by 
    A8,
    XXREAL_3: 26;
    
                then ((
    sup A) 
    - ( 
    inf B)) 
    <= (( 
    sup A) 
    + (( 
    diameter B) 
    - ( 
    inf A))) by 
    A10,
    A11,
    XXREAL_3: 30;
    
                then ((
    sup A) 
    - ( 
    inf B)) 
    <= (( 
    sup A) 
    + ( 
    - (( 
    inf A) 
    - ( 
    diameter B)))) by 
    XXREAL_3: 26;
    
                then ((
    sup A) 
    - ( 
    inf B)) 
    <= (( 
    sup A) 
    - (( 
    inf A) 
    - ( 
    diameter B))) by 
    XXREAL_3:def 4;
    
                hence (
    diameter (A 
    \/ B)) 
    <= (( 
    diameter A) 
    + ( 
    diameter B)) by 
    A8,
    A10,
    A11,
    A32,
    XXREAL_3: 32;
    
              end;
    
            end;
    
          end;
    
            suppose
    
            
    
    A36: ( 
    inf B) 
    > ( 
    inf A); 
    
            then
    
            
    
    A37: ( 
    diameter (A 
    \/ B)) 
    = (( 
    sup (A 
    \/ B)) 
    - ( 
    inf A)) by 
    A5,
    A9,
    XXREAL_0:def 9;
    
            per cases ;
    
              suppose
    
              
    
    A38: ( 
    sup B) 
    > ( 
    sup A); 
    
              then
    
              
    
    A39: ( 
    sup A) 
    <>  
    +infty by 
    XXREAL_0: 3;
    
              
    
              
    
    A40: ( 
    sup (A 
    \/ B)) 
    = ( 
    sup B) by 
    A9,
    A38,
    XXREAL_0:def 10;
    
              per cases ;
    
                suppose (
    sup B) 
    =  
    +infty or ( 
    inf A) 
    =  
    -infty ; 
    
                then (
    diameter (A 
    \/ B)) 
    =  
    +infty & (( 
    diameter B) 
    =  
    +infty or ( 
    diameter A) 
    =  
    +infty ) by 
    A8,
    A10,
    A37,
    A40,
    XXREAL_3: 13,
    XXREAL_3: 14;
    
                hence (
    diameter (A 
    \/ B)) 
    <= (( 
    diameter A) 
    + ( 
    diameter B)) by 
    MEASURE5: 13,
    XXREAL_3: 39;
    
              end;
    
                suppose
    
                
    
    A41: ( 
    sup B) 
    <>  
    +infty & ( 
    inf A) 
    <>  
    -infty ; 
    
                
    
                
    
    A42: ( 
    inf B) 
    <>  
    -infty by 
    A36,
    XXREAL_0: 5;
    
                ((
    sup A) 
    - ( 
    inf B)) 
    >=  
    0 by 
    A28,
    XXREAL_3: 40;
    
                then ((
    sup B) 
    - ( 
    inf A)) 
    <= ((( 
    sup B) 
    - ( 
    inf A)) 
    + (( 
    sup A) 
    - ( 
    inf B))) by 
    XXREAL_3: 39;
    
                then ((
    sup B) 
    - ( 
    inf A)) 
    <= (((( 
    sup B) 
    - ( 
    inf A)) 
    + ( 
    sup A)) 
    - ( 
    inf B)) by 
    A10,
    A39,
    A42,
    XXREAL_3: 30;
    
                then ((
    sup B) 
    - ( 
    inf A)) 
    <= ((( 
    sup B) 
    - (( 
    inf A) 
    - ( 
    sup A))) 
    - ( 
    inf B)) by 
    A39,
    A41,
    XXREAL_3: 32;
    
                then ((
    sup B) 
    - ( 
    inf A)) 
    <= ((( 
    sup B) 
    + ( 
    - (( 
    inf A) 
    - ( 
    sup A)))) 
    - ( 
    inf B)) by 
    XXREAL_3:def 4;
    
                then ((
    sup B) 
    - ( 
    inf A)) 
    <= ((( 
    sup B) 
    + ( 
    diameter A)) 
    - ( 
    inf B)) by 
    A8,
    XXREAL_3: 26;
    
                then ((
    sup B) 
    - ( 
    inf A)) 
    <= (( 
    sup B) 
    + (( 
    diameter A) 
    - ( 
    inf B))) by 
    A10,
    A11,
    XXREAL_3: 30;
    
                then ((
    sup B) 
    - ( 
    inf A)) 
    <= (( 
    sup B) 
    + ( 
    - (( 
    inf B) 
    - ( 
    diameter A)))) by 
    XXREAL_3: 26;
    
                then ((
    sup B) 
    - ( 
    inf A)) 
    <= (( 
    sup B) 
    - (( 
    inf B) 
    - ( 
    diameter A))) by 
    XXREAL_3:def 4;
    
                hence (
    diameter (A 
    \/ B)) 
    <= (( 
    diameter A) 
    + ( 
    diameter B)) by 
    A8,
    A10,
    A11,
    A37,
    A40,
    XXREAL_3: 32;
    
              end;
    
            end;
    
              suppose (
    sup B) 
    <= ( 
    sup A); 
    
              then (A
    \/ B) 
    = A by 
    A6,
    A7,
    A36,
    XXREAL_1: 46,
    XBOOLE_1: 12;
    
              hence (
    diameter (A 
    \/ B)) 
    <= (( 
    diameter A) 
    + ( 
    diameter B)) by 
    MEASURE5: 13,
    XXREAL_3: 39;
    
            end;
    
          end;
    
        end;
    
      end;
    
    end;
    
    theorem :: 
    
    MEASUR12:45
    
    
    
    
    
    Th45: for A be non 
    empty
    closed_interval  
    Subset of 
    REAL , F be 
    FinSequence of ( 
    bool  
    REAL ), G be 
    FinSequence of 
    ExtREAL st A 
    c= ( 
    union ( 
    rng F)) & ( 
    len F) 
    = ( 
    len G) & (for n be 
    Nat st n 
    in ( 
    dom F) holds (F 
    . n) is 
    open_interval  
    Subset of 
    REAL ) & (for n be 
    Nat st n 
    in ( 
    dom F) holds (G 
    . n) 
    = ( 
    diameter (F 
    . n))) & (for n be 
    Nat st n 
    in ( 
    dom F) holds A 
    meets (F 
    . n)) holds ( 
    diameter A) 
    <= ( 
    Sum G) 
    
    proof
    
      let A be non
    empty
    closed_interval  
    Subset of 
    REAL , F be 
    FinSequence of ( 
    bool  
    REAL ), G be 
    FinSequence of 
    ExtREAL ; 
    
      assume that
    
      
    
    A1: A 
    c= ( 
    union ( 
    rng F)) and 
    
      
    
    A2: ( 
    len F) 
    = ( 
    len G) and 
    
      
    
    A3: for n be 
    Nat st n 
    in ( 
    dom F) holds (F 
    . n) is 
    open_interval  
    Subset of 
    REAL and 
    
      
    
    A4: for n be 
    Nat st n 
    in ( 
    dom F) holds (G 
    . n) 
    = ( 
    diameter (F 
    . n)) and 
    
      
    
    A5: for n be 
    Nat st n 
    in ( 
    dom F) holds A 
    meets (F 
    . n); 
    
      consider F1 be
    FinSequence of ( 
    bool  
    REAL ) such that 
    
      
    
    A6: (F,F1) 
    are_fiberwise_equipotent & (for n be 
    Nat st 1 
    <= n 
    < ( 
    len F1) holds ( 
    union ( 
    rng (F1 
    | n))) 
    meets (F1 
    . (n 
    + 1))) by 
    A1,
    A3,
    A5,
    Th41;
    
      
    
      
    
    A7: ( 
    dom F) 
    = ( 
    dom F1) by 
    A6,
    RFINSEQ: 3;
    
      then
    
      consider P be
    Permutation of ( 
    dom F) such that 
    
      
    
    A8: F 
    = (F1 
    * P) by 
    A6,
    CLASSES1: 80;
    
      (
    union ( 
    rng F)) 
    <>  
    {} by 
    A1;
    
      then
    
      
    
    A9: ( 
    dom F) 
    <>  
    {} by 
    RELAT_1: 42,
    ZFMISC_1: 2;
    
      
    
      
    
    A10: ( 
    dom F) 
    = ( 
    dom G) by 
    A2,
    FINSEQ_3: 29;
    
      then
    
      
    
    A11: ( 
    dom P) 
    = ( 
    dom G) & ( 
    rng P) 
    = ( 
    dom G) by 
    A9,
    FUNCT_2:def 1,
    FUNCT_2:def 3;
    
      (
    dom (P 
    " )) 
    = ( 
    rng P) & ( 
    rng (P 
    " )) 
    = ( 
    dom P) by 
    FUNCT_1: 33;
    
      then
    
      
    
    A12: ( 
    dom (G 
    * (P 
    " ))) 
    = ( 
    dom G) by 
    A11,
    RELAT_1: 27;
    
      then
    
      
    
    A13: (G,(G 
    * (P 
    " ))) 
    are_fiberwise_equipotent by 
    A10,
    CLASSES1: 80;
    
      reconsider G1 = (G
    * (P 
    " )) as 
    FinSequence of 
    ExtREAL by 
    A10,
    FINSEQ_2: 47;
    
      
    
    A14: 
    
      now
    
        let r be
    ExtReal;
    
        assume r
    in ( 
    rng G); 
    
        then
    
        consider n be
    Element of 
    NAT such that 
    
        
    
    A15: n 
    in ( 
    dom G) & r 
    = (G 
    . n) by 
    PARTFUN1: 3;
    
        r
    = ( 
    diameter (F 
    . n)) & (F 
    . n) is 
    Interval by 
    A3,
    A4,
    A10,
    A15;
    
        hence r
    <>  
    -infty by 
    MEASURE5: 13;
    
      end;
    
      then
    
      
    
    A16: ( 
    Sum G1) 
    = ( 
    Sum G) by 
    A10,
    EXTREAL1: 11;
    
      
    
      
    
    A17: for n be 
    Nat st n 
    in ( 
    dom F1) holds (G1 
    . n) 
    = ( 
    diameter (F1 
    . n)) 
    
      proof
    
        let n be
    Nat;
    
        assume
    
        
    
    A18: n 
    in ( 
    dom F1); 
    
        then
    
        
    
    A19: (G1 
    . n) 
    = (G 
    . ((P 
    " ) 
    . n)) by 
    A7,
    A10,
    A12,
    FUNCT_1: 12;
    
        reconsider m = ((P
    " ) 
    . n) as 
    Nat;
    
        
    
        
    
    A20: m 
    in ( 
    dom P) & n 
    = (P 
    . m) by 
    A7,
    A10,
    A11,
    A18,
    FUNCT_1: 32;
    
        then (F1
    . n) 
    = (F 
    . m) by 
    A8,
    FUNCT_1: 12;
    
        hence (G1
    . n) 
    = ( 
    diameter (F1 
    . n)) by 
    A4,
    A19,
    A20;
    
      end;
    
      defpred
    
    P[
    Nat] means $1
    in ( 
    dom F1) implies ( 
    diameter ( 
    union ( 
    rng (F1 
    | $1)))) 
    <= ( 
    Sum (G1 
    | $1)); 
    
      
    
      
    
    A21: F1 
    <>  
    {} & G1 
    <>  
    {} by 
    A2,
    A7,
    A9,
    A12,
    FINSEQ_3: 29;
    
      
    
    A22: 
    
      now
    
        let n be
    Nat;
    
        assume n
    in ( 
    dom F1); 
    
        then ex m be
    set st m 
    in ( 
    dom F) & (F1 
    . n) 
    = (F 
    . m) by 
    A6,
    A7,
    RFINSEQ: 30;
    
        hence (F1
    . n) is 
    open_interval  
    Subset of 
    REAL by 
    A3;
    
      end;
    
      
    
      
    
    A23: 
    P[
    0 ] by 
    FINSEQ_3: 24;
    
      
    
      
    
    A24: for k be 
    Nat st 
    P[k] holds
    P[(k
    + 1)] 
    
      proof
    
        let k be
    Nat;
    
        assume
    
        
    
    A25: 
    P[k];
    
        assume
    
        
    
    A26: (k 
    + 1) 
    in ( 
    dom F1); 
    
        then
    
        
    
    A27: 1 
    <= (k 
    + 1) 
    <= ( 
    len F1) by 
    FINSEQ_3: 25;
    
        per cases ;
    
          suppose
    
          
    
    A28: k 
    =  
    0 ; 
    
          then
    
          
    
    A29: (F1 
    | (k 
    + 1)) 
    =  
    <*(F1
    . 1)*> & (G1 
    | (k 
    + 1)) 
    =  
    <*(G1
    . 1)*> by 
    A21,
    FINSEQ_5: 20;
    
          then
    
          
    
    A30: ( 
    rng (F1 
    | (k 
    + 1))) 
    =  
    {(F1
    . 1)} by 
    FINSEQ_1: 38;
    
          (
    Sum (G1 
    | (k 
    + 1))) 
    = (G1 
    . 1) by 
    A29,
    EXTREAL1: 8;
    
          hence (
    diameter ( 
    union ( 
    rng (F1 
    | (k 
    + 1))))) 
    <= ( 
    Sum (G1 
    | (k 
    + 1))) by 
    A17,
    A26,
    A28,
    A30;
    
        end;
    
          suppose k
    <>  
    0 ; 
    
          then
    
          
    
    A31: 1 
    <= k by 
    NAT_1: 14;
    
          
    
          
    
    A32: k 
    < ( 
    len F1) by 
    A27,
    NAT_1: 13;
    
          then
    
          
    
    A33: (( 
    diameter ( 
    union ( 
    rng (F1 
    | k)))) 
    + ( 
    diameter (F1 
    . (k 
    + 1)))) 
    <= (( 
    Sum (G1 
    | k)) 
    + ( 
    diameter (F1 
    . (k 
    + 1)))) by 
    A25,
    A31,
    FINSEQ_3: 25,
    XXREAL_3: 35;
    
          
    {(G1
    . (k 
    + 1))} 
    c= ( 
    rng G1) by 
    A7,
    A10,
    A12,
    A26,
    FUNCT_1: 3,
    ZFMISC_1: 31;
    
          then
    
          
    
    A34: ( 
    rng  
    <*(G1
    . (k 
    + 1))*>) 
    c= ( 
    rng G1) by 
    FINSEQ_1: 38;
    
          
    
          
    
    A35: ( 
    rng G) 
    = ( 
    rng G1) by 
    A13,
    CLASSES1: 75;
    
          then (
    rng (G1 
    | k)) 
    c= ( 
    rng G) by 
    FINSEQ_5: 19;
    
          then
    
          
    
    A36: not 
    -infty  
    in ( 
    rng (G1 
    | k)) & not 
    -infty  
    in ( 
    rng  
    <*(G1
    . (k 
    + 1))*>) by 
    A14,
    A34,
    A35;
    
          (
    len F1) 
    = ( 
    len G1) by 
    A7,
    A10,
    A12,
    FINSEQ_3: 29;
    
          then (G1
    | (k 
    + 1)) 
    = ((G1 
    | k) 
    ^  
    <*(G1
    . (k 
    + 1))*>) by 
    A27,
    NAT_1: 13,
    FINSEQ_5: 83;
    
          
    
          then (
    Sum (G1 
    | (k 
    + 1))) 
    = (( 
    Sum (G1 
    | k)) 
    + ( 
    Sum  
    <*(G1
    . (k 
    + 1))*>)) by 
    A36,
    EXTREAL1: 10
    
          .= ((
    Sum (G1 
    | k)) 
    + (G1 
    . (k 
    + 1))) by 
    EXTREAL1: 8;
    
          then
    
          
    
    A37: (( 
    Sum (G1 
    | k)) 
    + ( 
    diameter (F1 
    . (k 
    + 1)))) 
    = ( 
    Sum (G1 
    | (k 
    + 1))) by 
    A17,
    A26;
    
          
    
          
    
    A38: (F1 
    . (k 
    + 1)) is 
    open_interval  
    Subset of 
    REAL by 
    A22,
    A26;
    
          
    
          
    
    A39: ( 
    union ( 
    rng (F1 
    | k))) is 
    open_interval  
    Subset of 
    REAL by 
    A6,
    A22,
    Th40;
    
          then
    
          
    
    A40: (( 
    union ( 
    rng (F1 
    | k))) 
    \/ (F1 
    . (k 
    + 1))) is 
    interval by 
    A6,
    A31,
    A32,
    A38,
    XXREAL_2: 89;
    
          (F1
    | (k 
    + 1)) 
    = ((F1 
    | k) 
    ^  
    <*(F1
    . (k 
    + 1))*>) by 
    A27,
    NAT_1: 13,
    FINSEQ_5: 83;
    
          
    
          then (
    rng (F1 
    | (k 
    + 1))) 
    = (( 
    rng (F1 
    | k)) 
    \/ ( 
    rng  
    <*(F1
    . (k 
    + 1))*>)) by 
    FINSEQ_1: 31
    
          .= ((
    rng (F1 
    | k)) 
    \/  
    {(F1
    . (k 
    + 1))}) by 
    FINSEQ_1: 38;
    
          then (
    union ( 
    rng (F1 
    | (k 
    + 1)))) 
    = (( 
    union ( 
    rng (F1 
    | k))) 
    \/ ( 
    union  
    {(F1
    . (k 
    + 1))})) by 
    ZFMISC_1: 78;
    
          then (
    diameter ( 
    union ( 
    rng (F1 
    | (k 
    + 1))))) 
    <= (( 
    diameter ( 
    union ( 
    rng (F1 
    | k)))) 
    + ( 
    diameter (F1 
    . (k 
    + 1)))) by 
    A38,
    A39,
    A40,
    Lm12;
    
          hence (
    diameter ( 
    union ( 
    rng (F1 
    | (k 
    + 1))))) 
    <= ( 
    Sum (G1 
    | (k 
    + 1))) by 
    A33,
    A37,
    XXREAL_0: 2;
    
        end;
    
      end;
    
      
    
      
    
    A41: for k be 
    Nat holds 
    P[k] from
    NAT_1:sch 2(
    A23,
    A24);
    
      
    
      
    
    A42: ( 
    len F1) 
    = ( 
    len G1) by 
    A7,
    A10,
    A12,
    FINSEQ_3: 29;
    
      1
    <= ( 
    len F1) by 
    A21,
    FINSEQ_1: 20;
    
      then (
    diameter ( 
    union ( 
    rng (F1 
    | ( 
    len F1))))) 
    <= ( 
    Sum (G1 
    | ( 
    len F1))) by 
    A41,
    FINSEQ_3: 25;
    
      then (
    diameter ( 
    union ( 
    rng F1))) 
    <= ( 
    Sum (G1 
    | ( 
    len G1))) by 
    A42,
    FINSEQ_1: 58;
    
      then
    
      
    
    A43: ( 
    diameter ( 
    union ( 
    rng F1))) 
    <= ( 
    Sum G1) by 
    FINSEQ_1: 58;
    
      (
    union ( 
    rng (F1 
    | ( 
    len F1)))) is 
    open_interval  
    Subset of 
    REAL by 
    A6,
    A22,
    Th40;
    
      then
    
      
    
    A44: ( 
    union ( 
    rng F1)) is 
    open_interval  
    Subset of 
    REAL by 
    FINSEQ_1: 58;
    
      (
    union ( 
    rng F1)) 
    = ( 
    union ( 
    rng F)) by 
    A6,
    CLASSES1: 75;
    
      then (
    diameter A) 
    <= ( 
    diameter ( 
    union ( 
    rng F1))) by 
    A1,
    A44,
    MEASURE5: 12;
    
      hence thesis by
    A16,
    A43,
    XXREAL_0: 2;
    
    end;
    
    theorem :: 
    
    MEASUR12:46
    
    
    
    
    
    Th46: for X be non 
    empty  
    set, f be 
    sequence of X, i,j be 
    Nat holds ex g be 
    sequence of X st (for n be 
    Nat st n 
    <> i & n 
    <> j holds (f 
    . n) 
    = (g 
    . n)) & (f 
    . i) 
    = (g 
    . j) & (f 
    . j) 
    = (g 
    . i) 
    
    proof
    
      let X be non
    empty  
    set, f be 
    sequence of X, i,j be 
    Nat;
    
      defpred
    
    P[
    object, 
    object] means ($1
    <> i & $1 
    <> j implies $2 
    = (f 
    . $1)) & ($1 
    = i implies $2 
    = (f 
    . j)) & ($1 
    = j implies $2 
    = (f 
    . i)); 
    
      
    
      
    
    A1: for n be 
    Element of 
    NAT holds ex x be 
    Element of X st 
    P[n, x]
    
      proof
    
        let n be
    Element of 
    NAT ; 
    
        per cases ;
    
          suppose
    
          
    
    A2: n 
    <> i & n 
    <> j; 
    
          reconsider x = (f
    . n) as 
    Element of X; 
    
          take x;
    
          thus
    P[n, x] by
    A2;
    
        end;
    
          suppose
    
          
    
    A3: n 
    = i; 
    
          reconsider x = (f
    . j) as 
    Element of X; 
    
          take x;
    
          thus
    P[n, x] by
    A3;
    
        end;
    
          suppose
    
          
    
    A4: n 
    = j; 
    
          reconsider x = (f
    . i) as 
    Element of X; 
    
          take x;
    
          thus
    P[n, x] by
    A4;
    
        end;
    
      end;
    
      consider g be
    Function of 
    NAT , X such that 
    
      
    
    A5: for n be 
    Element of 
    NAT holds 
    P[n, (g
    . n)] from 
    FUNCT_2:sch 3(
    A1);
    
      take g;
    
      
    
      
    
    A6: i is 
    Element of 
    NAT & j is 
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
      hereby
    
        let n be
    Nat;
    
        assume
    
        
    
    A7: n 
    <> i & n 
    <> j; 
    
        n is
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
        hence (f
    . n) 
    = (g 
    . n) by 
    A5,
    A7;
    
      end;
    
      thus (f
    . i) 
    = (g 
    . j) & (f 
    . j) 
    = (g 
    . i) by 
    A5,
    A6;
    
    end;
    
    theorem :: 
    
    MEASUR12:47
    
    for f,g be
    sequence of 
    ExtREAL st f is 
    nonnegative & (ex N be 
    Nat st (( 
    Ser f) 
    . N) 
    <= (( 
    Ser g) 
    . N) & (for n be 
    Nat st n 
    > N holds (f 
    . n) 
    <= (g 
    . n))) holds ( 
    SUM f) 
    <= ( 
    SUM g) 
    
    proof
    
      let f,g be
    sequence of 
    ExtREAL ; 
    
      assume that
    
      
    
    A1: f is 
    nonnegative and 
    
      
    
    A2: ex N be 
    Nat st (( 
    Ser f) 
    . N) 
    <= (( 
    Ser g) 
    . N) & (for n be 
    Nat st n 
    > N holds (f 
    . n) 
    <= (g 
    . n)); 
    
      consider N be
    Nat such that 
    
      
    
    A3: (( 
    Ser f) 
    . N) 
    <= (( 
    Ser g) 
    . N) and 
    
      
    
    A4: for n be 
    Nat st n 
    > N holds (f 
    . n) 
    <= (g 
    . n) by 
    A2;
    
      defpred
    
    P[
    Nat] means ((
    Ser f) 
    . (N 
    + $1)) 
    <= (( 
    Ser g) 
    . (N 
    + $1)); 
    
      
    
      
    
    A5: 
    P[
    0 ] by 
    A3;
    
      
    
      
    
    A6: for k be 
    Nat st 
    P[k] holds
    P[(k
    + 1)] 
    
      proof
    
        let k be
    Nat;
    
        assume
    
        
    
    A7: 
    P[k];
    
        
    
        
    
    A8: (( 
    Ser f) 
    . ((N 
    + k) 
    + 1)) 
    = ((( 
    Ser f) 
    . (N 
    + k)) 
    + (f 
    . ((N 
    + k) 
    + 1))) & (( 
    Ser g) 
    . ((N 
    + k) 
    + 1)) 
    = ((( 
    Ser g) 
    . (N 
    + k)) 
    + (g 
    . ((N 
    + k) 
    + 1))) by 
    SUPINF_2:def 11;
    
        N
    < ((N 
    + k) 
    + 1) by 
    NAT_1: 11,
    NAT_1: 13;
    
        then (f
    . ((N 
    + k) 
    + 1)) 
    <= (g 
    . ((N 
    + k) 
    + 1)) by 
    A4;
    
        hence
    P[(k
    + 1)] by 
    A7,
    A8,
    XXREAL_3: 36;
    
      end;
    
      
    
      
    
    A9: for m be 
    Nat holds 
    P[m] from
    NAT_1:sch 2(
    A5,
    A6);
    
      for x be
    ExtReal st x 
    in ( 
    rng ( 
    Ser f)) holds ex y be 
    ExtReal st y 
    in ( 
    rng ( 
    Ser g)) & x 
    <= y 
    
      proof
    
        let x be
    ExtReal;
    
        assume x
    in ( 
    rng ( 
    Ser f)); 
    
        then
    
        consider n be
    Element of 
    NAT such that 
    
        
    
    A10: x 
    = (( 
    Ser f) 
    . n) by 
    FUNCT_2: 113;
    
        per cases ;
    
          suppose n
    < N; 
    
          then
    
          reconsider m = (N
    - n) as 
    Nat by 
    NAT_1: 21;
    
          N
    = (n 
    + m); 
    
          then ((
    Ser f) 
    . n) 
    <= (( 
    Ser f) 
    . N) by 
    A1,
    SUPINF_2: 41;
    
          then
    
          
    
    A11: x 
    <= (( 
    Ser g) 
    . N) by 
    A3,
    A10,
    XXREAL_0: 2;
    
          (
    dom ( 
    Ser g)) 
    =  
    NAT by 
    FUNCT_2:def 1;
    
          then N
    in ( 
    dom ( 
    Ser g)) by 
    ORDINAL1:def 12;
    
          hence thesis by
    A11,
    FUNCT_1: 3;
    
        end;
    
          suppose n
    >= N; 
    
          then
    
          reconsider m = (n
    - N) as 
    Nat by 
    NAT_1: 21;
    
          
    
          
    
    A12: x 
    <= (( 
    Ser g) 
    . (N 
    + m)) by 
    A9,
    A10;
    
          (
    dom ( 
    Ser g)) 
    =  
    NAT by 
    FUNCT_2:def 1;
    
          hence thesis by
    A12,
    FUNCT_1: 3;
    
        end;
    
      end;
    
      hence (
    SUM f) 
    <= ( 
    SUM g) by 
    XXREAL_2: 63;
    
    end;
    
    theorem :: 
    
    MEASUR12:48
    
    
    
    
    
    Th48: for f,g be 
    sequence of 
    ExtREAL , j,k be 
    Nat st k 
    < j & (for n be 
    Nat st n 
    < j holds (f 
    . n) 
    = (g 
    . n)) holds (( 
    Ser f) 
    . k) 
    = (( 
    Ser g) 
    . k) 
    
    proof
    
      let f,g be
    sequence of 
    ExtREAL , j,k be 
    Nat;
    
      assume that
    
      
    
    A1: k 
    < j and 
    
      
    
    A2: for n be 
    Nat st n 
    < j holds (f 
    . n) 
    = (g 
    . n); 
    
      defpred
    
    P[
    Nat] means $1
    <= k implies (( 
    Ser f) 
    . $1) 
    = (( 
    Ser g) 
    . $1); 
    
      now
    
        assume
    0  
    <= k; 
    
        (f
    .  
    0 ) 
    = (g 
    .  
    0 ) by 
    A1,
    A2;
    
        then ((
    Ser f) 
    .  
    0 ) 
    = (g 
    .  
    0 ) by 
    SUPINF_2:def 11;
    
        hence ((
    Ser f) 
    .  
    0 ) 
    = (( 
    Ser g) 
    .  
    0 ) by 
    SUPINF_2:def 11;
    
      end;
    
      then
    
      
    
    A3: 
    P[
    0 ]; 
    
      
    
      
    
    A4: for m be 
    Nat st 
    P[m] holds
    P[(m
    + 1)] 
    
      proof
    
        let m be
    Nat;
    
        assume
    
        
    
    A5: 
    P[m];
    
        assume
    
        
    
    A6: (m 
    + 1) 
    <= k; 
    
        then
    
        
    
    A7: (m 
    + 1) 
    < j by 
    A1,
    XXREAL_0: 2;
    
        ((
    Ser f) 
    . (m 
    + 1)) 
    = ((( 
    Ser f) 
    . m) 
    + (f 
    . (m 
    + 1))) by 
    SUPINF_2:def 11;
    
        then ((
    Ser f) 
    . (m 
    + 1)) 
    = ((( 
    Ser g) 
    . m) 
    + (g 
    . (m 
    + 1))) by 
    A2,
    A5,
    A6,
    A7,
    NAT_1: 13;
    
        hence ((
    Ser f) 
    . (m 
    + 1)) 
    = (( 
    Ser g) 
    . (m 
    + 1)) by 
    SUPINF_2:def 11;
    
      end;
    
      for m be
    Nat holds 
    P[m] from
    NAT_1:sch 2(
    A3,
    A4);
    
      hence ((
    Ser f) 
    . k) 
    = (( 
    Ser g) 
    . k); 
    
    end;
    
    theorem :: 
    
    MEASUR12:49
    
    
    
    
    
    Th49: for f,g be 
    sequence of 
    ExtREAL , i,j be 
    Nat st f is 
    nonnegative & i 
    >= j & (for n be 
    Nat st n 
    <> i & n 
    <> j holds (f 
    . n) 
    = (g 
    . n)) & (f 
    . i) 
    = (g 
    . j) & (f 
    . j) 
    = (g 
    . i) holds (( 
    Ser f) 
    . i) 
    = (( 
    Ser g) 
    . i) 
    
    proof
    
      let f,g be
    sequence of 
    ExtREAL , i,j be 
    Nat;
    
      assume that
    
      
    
    A1: f is 
    nonnegative and 
    
      
    
    A2: i 
    >= j and 
    
      
    
    A3: for n be 
    Nat st n 
    <> i & n 
    <> j holds (f 
    . n) 
    = (g 
    . n) and 
    
      
    
    A4: (f 
    . i) 
    = (g 
    . j) and 
    
      
    
    A5: (f 
    . j) 
    = (g 
    . i); 
    
      
    
      
    
    A6: for k be 
    Element of 
    NAT holds 
    0  
    <= (g 
    . k) 
    
      proof
    
        let k be
    Element of 
    NAT ; 
    
        per cases ;
    
          suppose k
    = i or k 
    = j; 
    
          hence
    0  
    <= (g 
    . k) by 
    A1,
    A4,
    A5,
    SUPINF_2: 51;
    
        end;
    
          suppose k
    <> i & k 
    <> j; 
    
          then (g
    . k) 
    = (f 
    . k) by 
    A3;
    
          hence
    0  
    <= (g 
    . k) by 
    A1,
    SUPINF_2: 51;
    
        end;
    
      end;
    
      then
    
      
    
    A7: g is 
    nonnegative by 
    SUPINF_2: 39;
    
      per cases ;
    
        suppose
    
        
    
    A8: j 
    =  
    0 ; 
    
        defpred
    
    P1[
    Nat] means $1
    < i implies ((( 
    Ser f) 
    . $1) 
    + (f 
    . i)) 
    = ((( 
    Ser g) 
    . $1) 
    + (g 
    . i)); 
    
        now
    
          assume
    0  
    < i; 
    
          (f
    . i) 
    = (( 
    Ser g) 
    .  
    0 ) & (( 
    Ser f) 
    .  
    0 ) 
    = (g 
    . i) by 
    A4,
    A5,
    A8,
    SUPINF_2:def 11;
    
          hence (((
    Ser f) 
    .  
    0 ) 
    + (f 
    . i)) 
    = ((( 
    Ser g) 
    .  
    0 ) 
    + (g 
    . i)); 
    
        end;
    
        then
    
        
    
    A9: 
    P1[
    0 ]; 
    
        
    
        
    
    A10: for m be 
    Nat st 
    P1[m] holds
    P1[(m
    + 1)] 
    
        proof
    
          let m be
    Nat;
    
          assume
    
          
    
    A11: 
    P1[m];
    
          assume
    
          
    
    A12: (m 
    + 1) 
    < i; 
    
          
    
          
    
    A13: 
    0  
    <= (f 
    . m) & 
    0  
    <= (f 
    . (m 
    + 1)) & 
    0  
    <= (f 
    . i) by 
    A1,
    SUPINF_2: 51;
    
          then
    
          
    
    A14: 
    0  
    <= (( 
    Ser f) 
    . m) by 
    A1,
    MEASURE7: 2;
    
          
    
          
    
    A15: 
    0  
    <= (g 
    . m) & 
    0  
    <= (g 
    . (m 
    + 1)) & 
    0  
    <= (g 
    . i) by 
    A6,
    SUPINF_2: 39,
    SUPINF_2: 51;
    
          then
    
          
    
    A16: 
    0  
    <= (( 
    Ser g) 
    . m) by 
    A7,
    MEASURE7: 2;
    
          
    
          
    
    A17: (f 
    . (m 
    + 1)) 
    = (g 
    . (m 
    + 1)) by 
    A3,
    A8,
    A12;
    
          then
    
          
    
    A18: (( 
    Ser f) 
    . (m 
    + 1)) 
    = ((g 
    . (m 
    + 1)) 
    + (( 
    Ser f) 
    . m)) & (( 
    Ser g) 
    . (m 
    + 1)) 
    = ((f 
    . (m 
    + 1)) 
    + (( 
    Ser g) 
    . m)) by 
    SUPINF_2:def 11;
    
          then (((
    Ser f) 
    . (m 
    + 1)) 
    + (f 
    . i)) 
    = ((g 
    . (m 
    + 1)) 
    + ((( 
    Ser f) 
    . m) 
    + (f 
    . i))) by 
    A13,
    A14,
    A15,
    XXREAL_3: 44;
    
          hence (((
    Ser f) 
    . (m 
    + 1)) 
    + (f 
    . i)) 
    = ((( 
    Ser g) 
    . (m 
    + 1)) 
    + (g 
    . i)) by 
    A11,
    A12,
    A15,
    A16,
    A17,
    A18,
    XXREAL_3: 44,
    NAT_1: 13;
    
        end;
    
        
    
        
    
    A19: for m be 
    Nat holds 
    P1[m] from
    NAT_1:sch 2(
    A9,
    A10);
    
        per cases ;
    
          suppose
    
          
    
    A20: i 
    =  
    0 ; 
    
          then ((
    Ser f) 
    . i) 
    = (f 
    .  
    0 ) & (( 
    Ser g) 
    . i) 
    = (g 
    .  
    0 ) by 
    SUPINF_2:def 11;
    
          hence ((
    Ser f) 
    . i) 
    = (( 
    Ser g) 
    . i) by 
    A4,
    A8,
    A20;
    
        end;
    
          suppose i
    <>  
    0 ; 
    
          then
    
          reconsider m = (i
    - 1) as 
    Nat by 
    NAT_1: 20;
    
          
    
          
    
    A21: i 
    = (m 
    + 1); 
    
          then m
    < i by 
    NAT_1: 13;
    
          then (((
    Ser f) 
    . m) 
    + (f 
    . i)) 
    = ((( 
    Ser g) 
    . m) 
    + (g 
    . i)) by 
    A19;
    
          then ((
    Ser f) 
    . i) 
    = ((( 
    Ser g) 
    . m) 
    + (g 
    . i)) by 
    A21,
    SUPINF_2:def 11;
    
          hence ((
    Ser f) 
    . i) 
    = (( 
    Ser g) 
    . i) by 
    A21,
    SUPINF_2:def 11;
    
        end;
    
      end;
    
        suppose
    
        
    
    A22: j 
    <>  
    0 ; 
    
        then
    
        reconsider m = (j
    - 1) as 
    Nat by 
    NAT_1: 20;
    
        
    
        
    
    A23: j 
    = (m 
    + 1); 
    
        then
    
        
    
    A24: m 
    < j by 
    NAT_1: 13;
    
        for n be
    Nat st n 
    < j holds (f 
    . n) 
    = (g 
    . n) by 
    A2,
    A3;
    
        then
    
        
    
    A25: (( 
    Ser f) 
    . m) 
    = (( 
    Ser g) 
    . m) by 
    A24,
    Th48;
    
        per cases ;
    
          suppose
    
          
    
    A26: j 
    = i; 
    
          then ((
    Ser f) 
    . i) 
    = ((( 
    Ser g) 
    . m) 
    + (g 
    . i)) by 
    A4,
    A23,
    A25,
    SUPINF_2:def 11;
    
          hence ((
    Ser f) 
    . i) 
    = (( 
    Ser g) 
    . i) by 
    A23,
    A26,
    SUPINF_2:def 11;
    
        end;
    
          suppose j
    <> i; 
    
          then
    
          
    
    A27: j 
    < i by 
    A2,
    XXREAL_0: 1;
    
          defpred
    
    P2[
    Nat] means j
    <= $1 
    < i implies ((( 
    Ser f) 
    . $1) 
    + (f 
    . i)) 
    = ((( 
    Ser g) 
    . $1) 
    + (g 
    . i)); 
    
          
    
          
    
    A28: 
    P2[
    0 ] by 
    A22;
    
          
    
          
    
    A29: for k be 
    Nat st 
    P2[k] holds
    P2[(k
    + 1)] 
    
          proof
    
            let k be
    Nat;
    
            assume
    
            
    
    A30: 
    P2[k];
    
            assume
    
            
    
    A31: j 
    <= (k 
    + 1) 
    < i; 
    
            per cases ;
    
              suppose
    
              
    
    A32: j 
    = (k 
    + 1); 
    
              
    
              
    
    A33: 
    0  
    <= (f 
    . i) & 
    0  
    <= (g 
    . i) & 
    0  
    <= (g 
    . k) by 
    A1,
    A6,
    SUPINF_2: 39,
    SUPINF_2: 51;
    
              then
    
              
    
    A34: 
    0  
    <= (( 
    Ser g) 
    . k) by 
    A7,
    MEASURE7: 2;
    
              (((
    Ser f) 
    . (k 
    + 1)) 
    + (f 
    . i)) 
    = (((( 
    Ser f) 
    . k) 
    + (f 
    . (k 
    + 1))) 
    + (f 
    . i)) by 
    SUPINF_2:def 11;
    
              then (((
    Ser f) 
    . (k 
    + 1)) 
    + (f 
    . i)) 
    = (((( 
    Ser g) 
    . k) 
    + (f 
    . i)) 
    + (g 
    . i)) by 
    A5,
    A25,
    A32,
    A33,
    A34,
    XXREAL_3: 44;
    
              hence (((
    Ser f) 
    . (k 
    + 1)) 
    + (f 
    . i)) 
    = ((( 
    Ser g) 
    . (k 
    + 1)) 
    + (g 
    . i)) by 
    A4,
    A32,
    SUPINF_2:def 11;
    
            end;
    
              suppose j
    <> (k 
    + 1); 
    
              then
    
              
    
    A35: j 
    < (k 
    + 1) by 
    A31,
    XXREAL_0: 1;
    
              
    
              
    
    A36: 
    0  
    <= (f 
    . (k 
    + 1)) & 
    0  
    <= (f 
    . i) & 
    0  
    <= (f 
    . k) by 
    A1,
    SUPINF_2: 51;
    
              then
    
              
    
    A37: 
    0  
    <= (( 
    Ser f) 
    . k) by 
    A1,
    MEASURE7: 2;
    
              
    
              
    
    A38: 
    0  
    <= (g 
    . (k 
    + 1)) & 
    0  
    <= (g 
    . i) & 
    0  
    <= (g 
    . k) by 
    A6,
    SUPINF_2: 39,
    SUPINF_2: 51;
    
              then
    
              
    
    A39: 
    0  
    <= (( 
    Ser g) 
    . k) by 
    A7,
    MEASURE7: 2;
    
              ((
    Ser f) 
    . (k 
    + 1)) 
    = ((f 
    . (k 
    + 1)) 
    + (( 
    Ser f) 
    . k)) by 
    SUPINF_2:def 11;
    
              then (((
    Ser f) 
    . (k 
    + 1)) 
    + (f 
    . i)) 
    = ((f 
    . (k 
    + 1)) 
    + ((( 
    Ser f) 
    . k) 
    + (f 
    . i))) by 
    A36,
    A37,
    XXREAL_3: 44;
    
              then (((
    Ser f) 
    . (k 
    + 1)) 
    + (f 
    . i)) 
    = ((g 
    . (k 
    + 1)) 
    + ((( 
    Ser g) 
    . k) 
    + (g 
    . i))) by 
    A3,
    A30,
    A31,
    A35,
    NAT_1: 13;
    
              then (((
    Ser f) 
    . (k 
    + 1)) 
    + (f 
    . i)) 
    = (((g 
    . (k 
    + 1)) 
    + (( 
    Ser g) 
    . k)) 
    + (g 
    . i)) by 
    A38,
    A39,
    XXREAL_3: 44;
    
              hence (((
    Ser f) 
    . (k 
    + 1)) 
    + (f 
    . i)) 
    = ((( 
    Ser g) 
    . (k 
    + 1)) 
    + (g 
    . i)) by 
    SUPINF_2:def 11;
    
            end;
    
          end;
    
          
    
          
    
    A40: for k be 
    Nat holds 
    P2[k] from
    NAT_1:sch 2(
    A28,
    A29);
    
          reconsider k = (i
    - 1) as 
    Nat by 
    A27,
    NAT_1: 20;
    
          
    
          
    
    A41: i 
    = (k 
    + 1); 
    
          then j
    <= k 
    < i by 
    A27,
    NAT_1: 13;
    
          then (((
    Ser f) 
    . k) 
    + (f 
    . i)) 
    = ((( 
    Ser g) 
    . k) 
    + (g 
    . i)) by 
    A40;
    
          then ((
    Ser f) 
    . i) 
    = ((( 
    Ser g) 
    . k) 
    + (g 
    . i)) by 
    A41,
    SUPINF_2:def 11;
    
          hence ((
    Ser f) 
    . i) 
    = (( 
    Ser g) 
    . i) by 
    A41,
    SUPINF_2:def 11;
    
        end;
    
      end;
    
    end;
    
    theorem :: 
    
    MEASUR12:50
    
    
    
    
    
    Th50: for f,g be 
    sequence of 
    ExtREAL , i,j be 
    Nat st f is 
    nonnegative & (f 
    . i) 
    = (g 
    . j) & (f 
    . j) 
    = (g 
    . i) & (for n be 
    Nat st n 
    <> i & n 
    <> j holds (f 
    . n) 
    = (g 
    . n)) holds for n be 
    Nat st n 
    >= i & n 
    >= j holds (( 
    Ser f) 
    . n) 
    = (( 
    Ser g) 
    . n) 
    
    proof
    
      let f,g be
    sequence of 
    ExtREAL , i,j be 
    Nat;
    
      assume that
    
      
    
    A1: f is 
    nonnegative and 
    
      
    
    A2: (f 
    . i) 
    = (g 
    . j) and 
    
      
    
    A3: (f 
    . j) 
    = (g 
    . i) and 
    
      
    
    A4: for n be 
    Nat st n 
    <> i & n 
    <> j holds (f 
    . n) 
    = (g 
    . n); 
    
      let n be
    Nat;
    
      assume
    
      
    
    A5: n 
    >= i & n 
    >= j; 
    
      defpred
    
    P[
    Nat] means $1
    >= i & $1 
    >= j implies (( 
    Ser f) 
    . $1) 
    = (( 
    Ser g) 
    . $1); 
    
      now
    
        assume
    0  
    >= i & 
    0  
    >= j; 
    
        then i
    =  
    0 & j 
    =  
    0 ; 
    
        then ((
    Ser f) 
    .  
    0 ) 
    = (g 
    .  
    0 ) by 
    A2,
    SUPINF_2:def 11;
    
        hence ((
    Ser f) 
    .  
    0 ) 
    = (( 
    Ser g) 
    .  
    0 ) by 
    SUPINF_2:def 11;
    
      end;
    
      then
    
      
    
    A6: 
    P[
    0 ]; 
    
      
    
      
    
    A7: for k be 
    Nat st 
    P[k] holds
    P[(k
    + 1)] 
    
      proof
    
        let k be
    Nat;
    
        assume
    
        
    
    A8: 
    P[k];
    
        now
    
          assume
    
          
    
    A9: (k 
    + 1) 
    >= i & (k 
    + 1) 
    >= j; 
    
          per cases ;
    
            suppose k
    < i & k 
    < j; 
    
            then (k
    + 1) 
    <= i & (k 
    + 1) 
    <= j by 
    NAT_1: 13;
    
            then (k
    + 1) 
    = i & (k 
    + 1) 
    = j by 
    A9,
    XXREAL_0: 1;
    
            hence ((
    Ser f) 
    . (k 
    + 1)) 
    = (( 
    Ser g) 
    . (k 
    + 1)) by 
    A1,
    A3,
    A4,
    Th49;
    
          end;
    
            suppose
    
            
    
    A10: k 
    >= i & k 
    < j; 
    
            then (k
    + 1) 
    <= j by 
    NAT_1: 13;
    
            then
    
            
    
    A11: (k 
    + 1) 
    = j by 
    A9,
    XXREAL_0: 1;
    
            for n be
    Nat st n 
    <> j & n 
    <> i holds (f 
    . n) 
    = (g 
    . n) by 
    A4;
    
            hence ((
    Ser f) 
    . (k 
    + 1)) 
    = (( 
    Ser g) 
    . (k 
    + 1)) by 
    A1,
    A2,
    A3,
    A11,
    A10,
    NAT_1: 12,
    Th49;
    
          end;
    
            suppose
    
            
    
    A12: k 
    < i & k 
    >= j; 
    
            then (k
    + 1) 
    <= i by 
    NAT_1: 13;
    
            then (k
    + 1) 
    = i by 
    A9,
    XXREAL_0: 1;
    
            hence ((
    Ser f) 
    . (k 
    + 1)) 
    = (( 
    Ser g) 
    . (k 
    + 1)) by 
    A1,
    A2,
    A3,
    A4,
    A12,
    NAT_1: 12,
    Th49;
    
          end;
    
            suppose
    
            
    
    A13: k 
    >= i & k 
    >= j; 
    
            then
    
            
    
    A14: (k 
    + 1) 
    > i & (k 
    + 1) 
    > j by 
    NAT_1: 13;
    
            ((
    Ser f) 
    . (k 
    + 1)) 
    = ((( 
    Ser f) 
    . k) 
    + (f 
    . (k 
    + 1))) by 
    SUPINF_2:def 11
    
            .= (((
    Ser g) 
    . k) 
    + (g 
    . (k 
    + 1))) by 
    A4,
    A8,
    A13,
    A14;
    
            hence ((
    Ser f) 
    . (k 
    + 1)) 
    = (( 
    Ser g) 
    . (k 
    + 1)) by 
    SUPINF_2:def 11;
    
          end;
    
        end;
    
        hence
    P[(k
    + 1)]; 
    
      end;
    
      for k be
    Nat holds 
    P[k] from
    NAT_1:sch 2(
    A6,
    A7);
    
      hence ((
    Ser f) 
    . n) 
    = (( 
    Ser g) 
    . n) by 
    A5;
    
    end;
    
    
    
    
    
    Lm13: for f,g be 
    sequence of 
    ExtREAL , i,j be 
    Nat st f is 
    nonnegative & i 
    >= j & (for n be 
    Nat st n 
    <> i & n 
    <> j holds (f 
    . n) 
    = (g 
    . n)) & (f 
    . i) 
    = (g 
    . j) & (f 
    . j) 
    = (g 
    . i) holds ( 
    SUM f) 
    <= ( 
    SUM g) 
    
    proof
    
      let f,g be
    sequence of 
    ExtREAL , i,j be 
    Nat;
    
      assume that
    
      
    
    A1: f is 
    nonnegative and 
    
      
    
    A2: i 
    >= j and 
    
      
    
    A3: for n be 
    Nat st n 
    <> i & n 
    <> j holds (f 
    . n) 
    = (g 
    . n) and 
    
      
    
    A4: (f 
    . i) 
    = (g 
    . j) and 
    
      
    
    A5: (f 
    . j) 
    = (g 
    . i); 
    
      
    
      
    
    A6: ( 
    dom ( 
    Ser g)) 
    =  
    NAT by 
    FUNCT_2:def 1;
    
      for x be
    ExtReal st x 
    in ( 
    rng ( 
    Ser f)) holds ex y be 
    ExtReal st y 
    in ( 
    rng ( 
    Ser g)) & x 
    <= y 
    
      proof
    
        let x be
    ExtReal;
    
        assume x
    in ( 
    rng ( 
    Ser f)); 
    
        then
    
        consider n be
    Element of 
    NAT such that 
    
        
    
    A7: x 
    = (( 
    Ser f) 
    . n) by 
    FUNCT_2: 113;
    
        per cases ;
    
          suppose n
    <= i; 
    
          then x
    <= (( 
    Ser f) 
    . i) by 
    A1,
    A7,
    MEASURE7: 8;
    
          then
    
          
    
    A8: x 
    <= (( 
    Ser g) 
    . i) by 
    A1,
    A2,
    A3,
    A4,
    A5,
    Th49;
    
          i
    in ( 
    dom ( 
    Ser g)) by 
    A6,
    ORDINAL1:def 12;
    
          hence ex y be
    ExtReal st y 
    in ( 
    rng ( 
    Ser g)) & x 
    <= y by 
    A8,
    FUNCT_1: 3;
    
        end;
    
          suppose
    
          
    
    A9: n 
    > i; 
    
          then n
    >= j by 
    A2,
    XXREAL_0: 2;
    
          then ((
    Ser f) 
    . n) 
    = (( 
    Ser g) 
    . n) by 
    A1,
    A3,
    A4,
    A5,
    A9,
    Th50;
    
          hence ex y be
    ExtReal st y 
    in ( 
    rng ( 
    Ser g)) & x 
    <= y by 
    A6,
    A7,
    FUNCT_1: 3;
    
        end;
    
      end;
    
      hence (
    SUM f) 
    <= ( 
    SUM g) by 
    XXREAL_2: 63;
    
    end;
    
    theorem :: 
    
    MEASUR12:51
    
    
    
    
    
    Th51: for f,g be 
    sequence of 
    ExtREAL , i,j be 
    Nat st f is 
    nonnegative & i 
    >= j & (for n be 
    Nat st n 
    <> i & n 
    <> j holds (f 
    . n) 
    = (g 
    . n)) & (f 
    . i) 
    = (g 
    . j) & (f 
    . j) 
    = (g 
    . i) holds ( 
    SUM f) 
    = ( 
    SUM g) 
    
    proof
    
      let f,g be
    sequence of 
    ExtREAL , i,j be 
    Nat;
    
      assume that
    
      
    
    A1: f is 
    nonnegative and 
    
      
    
    A2: i 
    >= j and 
    
      
    
    A3: for n be 
    Nat st n 
    <> i & n 
    <> j holds (f 
    . n) 
    = (g 
    . n) and 
    
      
    
    A4: (f 
    . i) 
    = (g 
    . j) and 
    
      
    
    A5: (f 
    . j) 
    = (g 
    . i); 
    
      
    
      
    
    A6: ( 
    SUM f) 
    <= ( 
    SUM g) by 
    A1,
    A2,
    A3,
    A4,
    A5,
    Lm13;
    
      for k be
    Element of 
    NAT holds 
    0  
    <= (g 
    . k) 
    
      proof
    
        let k be
    Element of 
    NAT ; 
    
        per cases ;
    
          suppose k
    = i or k 
    = j; 
    
          hence
    0  
    <= (g 
    . k) by 
    A1,
    A4,
    A5,
    SUPINF_2: 51;
    
        end;
    
          suppose k
    <> i & k 
    <> j; 
    
          then (g
    . k) 
    = (f 
    . k) by 
    A3;
    
          hence
    0  
    <= (g 
    . k) by 
    A1,
    SUPINF_2: 51;
    
        end;
    
      end;
    
      then g is
    nonnegative by 
    SUPINF_2: 39;
    
      then (
    SUM g) 
    <= ( 
    SUM f) by 
    A2,
    A3,
    A4,
    A5,
    Lm13;
    
      hence (
    SUM f) 
    = ( 
    SUM g) by 
    A6,
    XXREAL_0: 1;
    
    end;
    
    theorem :: 
    
    MEASUR12:52
    
    
    
    
    
    Th52: for A be 
    Subset of 
    REAL , F1,F2 be 
    Interval_Covering of A, n,m be 
    Nat st (for k be 
    Nat st k 
    <> n & k 
    <> m holds (F1 
    . k) 
    = (F2 
    . k)) & (F1 
    . n) 
    = (F2 
    . m) & (F1 
    . m) 
    = (F2 
    . n) holds ( 
    vol F1) 
    = ( 
    vol F2) 
    
    proof
    
      let A be
    Subset of 
    REAL , F1,F2 be 
    Interval_Covering of A, n,m be 
    Nat;
    
      assume that
    
      
    
    A1: for k be 
    Nat st k 
    <> n & k 
    <> m holds (F1 
    . k) 
    = (F2 
    . k) and 
    
      
    
    A2: (F1 
    . n) 
    = (F2 
    . m) and 
    
      
    
    A3: (F1 
    . m) 
    = (F2 
    . n); 
    
      
    
      
    
    A4: n is 
    Element of 
    NAT & m is 
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
      then ((F1
    vol ) 
    . n) 
    = ( 
    diameter (F1 
    . n)) & ((F1 
    vol ) 
    . m) 
    = ( 
    diameter (F1 
    . m)) by 
    MEASURE7:def 4;
    
      then
    
      
    
    A5: ((F1 
    vol ) 
    . n) 
    = ((F2 
    vol ) 
    . m) & ((F1 
    vol ) 
    . m) 
    = ((F2 
    vol ) 
    . n) by 
    A2,
    A3,
    A4,
    MEASURE7:def 4;
    
      
    
      
    
    A6: for k be 
    Nat st k 
    <> n & k 
    <> m holds ((F1 
    vol ) 
    . k) 
    = ((F2 
    vol ) 
    . k) 
    
      proof
    
        let k be
    Nat;
    
        
    
        
    
    A7: k is 
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
        assume k
    <> n & k 
    <> m; 
    
        then (F1
    . k) 
    = (F2 
    . k) by 
    A1;
    
        then ((F1
    vol ) 
    . k) 
    = ( 
    diameter (F2 
    . k)) by 
    A7,
    MEASURE7:def 4;
    
        hence ((F1
    vol ) 
    . k) 
    = ((F2 
    vol ) 
    . k) by 
    A7,
    MEASURE7:def 4;
    
      end;
    
      then
    
      
    
    A8: for k be 
    Nat st k 
    <> m & k 
    <> n holds ((F2 
    vol ) 
    . k) 
    = ((F1 
    vol ) 
    . k); 
    
      n
    >= m or m 
    > n; 
    
      then (
    SUM (F1 
    vol )) 
    = ( 
    SUM (F2 
    vol )) by 
    A5,
    A6,
    A8,
    Th51,
    MEASURE7: 12;
    
      then (
    vol F1) 
    = ( 
    SUM (F2 
    vol )) by 
    MEASURE7:def 6;
    
      hence (
    vol F1) 
    = ( 
    vol F2) by 
    MEASURE7:def 6;
    
    end;
    
    theorem :: 
    
    MEASUR12:53
    
    for A be
    Subset of 
    REAL , F1,F2 be 
    Interval_Covering of A, n,m be 
    Nat st (for k be 
    Nat st k 
    <> n & k 
    <> m holds (F1 
    . k) 
    = (F2 
    . k)) & (F1 
    . n) 
    = (F2 
    . m) & (F1 
    . m) 
    = (F2 
    . n) holds for k be 
    Nat st k 
    >= n & k 
    >= m holds (( 
    Ser (F1 
    vol )) 
    . k) 
    = (( 
    Ser (F2 
    vol )) 
    . k) 
    
    proof
    
      let A be
    Subset of 
    REAL , F1,F2 be 
    Interval_Covering of A, n,m be 
    Nat;
    
      assume that
    
      
    
    A1: for k be 
    Nat st k 
    <> n & k 
    <> m holds (F1 
    . k) 
    = (F2 
    . k) and 
    
      
    
    A2: (F1 
    . n) 
    = (F2 
    . m) and 
    
      
    
    A3: (F1 
    . m) 
    = (F2 
    . n); 
    
      let k be
    Nat;
    
      assume that
    
      
    
    A4: k 
    >= n and 
    
      
    
    A5: k 
    >= m; 
    
      
    
      
    
    A6: n is 
    Element of 
    NAT & m is 
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
      then ((F1
    vol ) 
    . n) 
    = ( 
    diameter (F1 
    . n)) & ((F1 
    vol ) 
    . m) 
    = ( 
    diameter (F1 
    . m)) by 
    MEASURE7:def 4;
    
      then
    
      
    
    A7: ((F1 
    vol ) 
    . n) 
    = ((F2 
    vol ) 
    . m) & ((F1 
    vol ) 
    . m) 
    = ((F2 
    vol ) 
    . n) by 
    A2,
    A3,
    A6,
    MEASURE7:def 4;
    
      for k be
    Nat st k 
    <> n & k 
    <> m holds ((F1 
    vol ) 
    . k) 
    = ((F2 
    vol ) 
    . k) 
    
      proof
    
        let k be
    Nat;
    
        
    
        
    
    A8: k is 
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
        assume k
    <> n & k 
    <> m; 
    
        then (F1
    . k) 
    = (F2 
    . k) by 
    A1;
    
        then ((F1
    vol ) 
    . k) 
    = ( 
    diameter (F2 
    . k)) by 
    A8,
    MEASURE7:def 4;
    
        hence ((F1
    vol ) 
    . k) 
    = ((F2 
    vol ) 
    . k) by 
    A8,
    MEASURE7:def 4;
    
      end;
    
      hence ((
    Ser (F1 
    vol )) 
    . k) 
    = (( 
    Ser (F2 
    vol )) 
    . k) by 
    A4,
    A5,
    A7,
    Th50,
    MEASURE7: 12;
    
    end;
    
    theorem :: 
    
    MEASUR12:54
    
    for X be non
    empty  
    set, seq be 
    sequence of X, f be 
    FinSequence of X st ( 
    rng f) 
    c= ( 
    rng seq) holds ex N be 
    Nat st ( 
    rng f) 
    c= ( 
    rng (seq 
    | ( 
    Segm N))) 
    
    proof
    
      let X be non
    empty  
    set, seq be 
    sequence of X, f be 
    FinSequence of X; 
    
      assume
    
      
    
    A1: ( 
    rng f) 
    c= ( 
    rng seq); 
    
      defpred
    
    P[
    Nat] means for F be
    FinSequence of X st ( 
    len F) 
    = $1 & ( 
    rng F) 
    c= ( 
    rng seq) holds ex N be 
    Nat st ( 
    rng F) 
    c= ( 
    rng (seq 
    | ( 
    Segm N))); 
    
      now
    
        let F be
    FinSequence of X; 
    
        assume (
    len F) 
    =  
    0 & ( 
    rng F) 
    c= ( 
    rng seq); 
    
        then F
    =  
    {} ; 
    
        then (
    rng F) 
    c= ( 
    rng (seq 
    | ( 
    Segm  
    0 ))); 
    
        hence ex N be
    Nat st ( 
    rng F) 
    c= ( 
    rng (seq 
    | ( 
    Segm N))); 
    
      end;
    
      then
    
      
    
    A2: 
    P[
    0 ]; 
    
      
    
      
    
    A3: for k be 
    Nat st 
    P[k] holds
    P[(k
    + 1)] 
    
      proof
    
        let k be
    Nat;
    
        assume
    
        
    
    A4: 
    P[k];
    
        now
    
          let F be
    FinSequence of X; 
    
          assume that
    
          
    
    A5: ( 
    len F) 
    = (k 
    + 1) and 
    
          
    
    A6: ( 
    rng F) 
    c= ( 
    rng seq); 
    
          reconsider F1 = (F
    | k) as 
    FinSequence of X; 
    
          k
    <= ( 
    len F) by 
    A5,
    NAT_1: 13;
    
          then
    
          
    
    A7: ( 
    len F1) 
    = k by 
    FINSEQ_1: 59;
    
          
    
          
    
    A8: F1 
    = (F 
    | ( 
    Seg k)) by 
    FINSEQ_1:def 15;
    
          (
    rng (F 
    | ( 
    Seg k))) 
    c= ( 
    rng F) by 
    RELAT_1: 70;
    
          then (
    rng F1) 
    c= ( 
    rng seq) by 
    A6,
    A8;
    
          then
    
          consider N1 be
    Nat such that 
    
          
    
    A9: ( 
    rng F1) 
    c= ( 
    rng (seq 
    | ( 
    Segm N1))) by 
    A4,
    A7;
    
          1
    <= (k 
    + 1) by 
    NAT_1: 11;
    
          then (k
    + 1) 
    in ( 
    dom F) by 
    A5,
    FINSEQ_3: 25;
    
          then (F
    . (k 
    + 1)) 
    in ( 
    rng F) by 
    FUNCT_1: 3;
    
          then
    
          consider m be
    Element of 
    NAT such that 
    
          
    
    A10: (F 
    . (k 
    + 1)) 
    = (seq 
    . m) by 
    A6,
    FUNCT_2: 113;
    
          reconsider m as
    Nat;
    
          F
    = (F1 
    ^  
    <*(F
    . (k 
    + 1))*>) by 
    A5,
    A8,
    FINSEQ_3: 55;
    
          then (
    rng F) 
    = (( 
    rng F1) 
    \/ ( 
    rng  
    <*(F
    . (k 
    + 1))*>)) by 
    FINSEQ_1: 31;
    
          then
    
          
    
    A11: ( 
    rng F) 
    = (( 
    rng F1) 
    \/  
    {(F
    . (k 
    + 1))}) by 
    FINSEQ_1: 38;
    
          
    
          
    
    A12: ( 
    dom seq) 
    =  
    NAT by 
    FUNCT_2:def 1;
    
          per cases ;
    
            suppose
    
            
    
    A13: m 
    < N1; 
    
            then m
    in ( 
    Segm N1) by 
    NAT_1: 44;
    
            then m
    in (( 
    dom seq) 
    /\ ( 
    Segm N1)) by 
    A12,
    XBOOLE_0:def 4;
    
            then m
    in ( 
    dom (seq 
    | ( 
    Segm N1))) by 
    RELAT_1: 61;
    
            then ((seq
    | ( 
    Segm N1)) 
    . m) 
    in ( 
    rng (seq 
    | ( 
    Segm N1))) by 
    FUNCT_1: 3;
    
            then (F
    . (k 
    + 1)) 
    in ( 
    rng (seq 
    | ( 
    Segm N1))) by 
    A10,
    A13,
    FUNCT_1: 49,
    NAT_1: 44;
    
            then
    {(F
    . (k 
    + 1))} 
    c= ( 
    rng (seq 
    | ( 
    Segm N1))) by 
    TARSKI:def 1;
    
            hence ex N be
    Nat st ( 
    rng F) 
    c= ( 
    rng (seq 
    | ( 
    Segm N))) by 
    A9,
    A11,
    XBOOLE_1: 8;
    
          end;
    
            suppose m
    >= N1; 
    
            then (m
    + 1) 
    > N1 by 
    NAT_1: 13;
    
            then (seq
    | ( 
    Segm N1)) 
    c= (seq 
    | ( 
    Segm (m 
    + 1))) by 
    RELAT_1: 75,
    NAT_1: 39;
    
            then (
    rng (seq 
    | ( 
    Segm N1))) 
    c= ( 
    rng (seq 
    | ( 
    Segm (m 
    + 1)))) by 
    RELAT_1: 11;
    
            then
    
            
    
    A14: ( 
    rng F1) 
    c= ( 
    rng (seq 
    | ( 
    Segm (m 
    + 1)))) by 
    A9;
    
            
    
            
    
    A15: m 
    < (m 
    + 1) by 
    NAT_1: 13;
    
            then m
    in ( 
    Segm (m 
    + 1)) by 
    NAT_1: 44;
    
            then m
    in (( 
    dom seq) 
    /\ ( 
    Segm (m 
    + 1))) by 
    A12,
    XBOOLE_0:def 4;
    
            then m
    in ( 
    dom (seq 
    | ( 
    Segm (m 
    + 1)))) by 
    RELAT_1: 61;
    
            then (((seq
    | ( 
    Segm (m 
    + 1))) 
    . m) 
    in ( 
    rng (seq 
    | ( 
    Segm (m 
    + 1))))) by 
    FUNCT_1: 3;
    
            then (F
    . (k 
    + 1)) 
    in ( 
    rng (seq 
    | ( 
    Segm (m 
    + 1)))) by 
    A10,
    A15,
    NAT_1: 44,
    FUNCT_1: 49;
    
            then
    {(F
    . (k 
    + 1))} 
    c= ( 
    rng (seq 
    | ( 
    Segm (m 
    + 1)))) by 
    TARSKI:def 1;
    
            hence ex N be
    Nat st ( 
    rng F) 
    c= ( 
    rng (seq 
    | ( 
    Segm N))) by 
    A11,
    A14,
    XBOOLE_1: 8;
    
          end;
    
        end;
    
        hence
    P[(k
    + 1)]; 
    
      end;
    
      for k be
    Nat holds 
    P[k] from
    NAT_1:sch 2(
    A2,
    A3);
    
      then
    P[(
    len f)]; 
    
      hence ex N be
    Nat st ( 
    rng f) 
    c= ( 
    rng (seq 
    | ( 
    Segm N))) by 
    A1;
    
    end;
    
    theorem :: 
    
    MEASUR12:55
    
    
    
    
    
    Th55: for A be non 
    empty  
    Subset of 
    REAL , F be 
    Interval_Covering of A, G be 
    one-to-one  
    FinSequence of ( 
    bool  
    REAL ) st ( 
    rng G) 
    c= ( 
    rng F) holds ex F1 be 
    Interval_Covering of A st (for n be 
    Nat st n 
    in ( 
    dom G) holds (G 
    . n) 
    = (F1 
    . n)) & ( 
    vol F1) 
    = ( 
    vol F) 
    
    proof
    
      let A be non
    empty  
    Subset of 
    REAL , F be 
    Interval_Covering of A, G be 
    one-to-one  
    FinSequence of ( 
    bool  
    REAL ); 
    
      assume that
    
      
    
    A1: ( 
    rng G) 
    c= ( 
    rng F); 
    
      defpred
    
    P[
    Nat] means ex F0 be
    Interval_Covering of A st (for n be 
    Nat st n 
    in ( 
    dom (G 
    | $1)) holds ((G 
    | $1) 
    . n) 
    = (F0 
    . n)) & (F0,F) 
    are_fiberwise_equipotent & ( 
    vol F0) 
    = ( 
    vol F); 
    
      
    
      
    
    A2: 
    P[
    0 ] 
    
      proof
    
        take F;
    
        thus thesis;
    
      end;
    
      
    
      
    
    A3: for k be 
    Nat st 
    P[k] holds
    P[(k
    + 1)] 
    
      proof
    
        let k be
    Nat;
    
        assume
    P[k];
    
        then
    
        consider F0 be
    Interval_Covering of A such that 
    
        
    
    A4: for n be 
    Nat st n 
    in ( 
    dom (G 
    | k)) holds ((G 
    | k) 
    . n) 
    = (F0 
    . n) and 
    
        
    
    A5: (F0,F) 
    are_fiberwise_equipotent and 
    
        
    
    A6: ( 
    vol F0) 
    = ( 
    vol F); 
    
        
    
        
    
    A7: ( 
    dom F0) 
    =  
    NAT by 
    FUNCT_2:def 1;
    
        per cases ;
    
          suppose
    
          
    
    A8: ( 
    len G) 
    <= k; 
    
          then (
    len G) 
    < (k 
    + 1) by 
    NAT_1: 13;
    
          then (G
    | k) 
    = G & (G 
    | (k 
    + 1)) 
    = G by 
    A8,
    FINSEQ_1: 58;
    
          hence
    P[(k
    + 1)] by 
    A4,
    A5,
    A6;
    
        end;
    
          suppose
    
          
    
    A9: ( 
    len G) 
    > k; 
    
          then
    
          
    
    A10: ( 
    len G) 
    >= (k 
    + 1) by 
    NAT_1: 13;
    
          then
    
          
    
    A11: ( 
    len (G 
    | (k 
    + 1))) 
    = (k 
    + 1) by 
    FINSEQ_1: 59;
    
          
    
          
    
    A12: (k 
    + 1) 
    in ( 
    dom G) by 
    A10,
    FINSEQ_3: 25,
    NAT_1: 11;
    
          (G
    . (k 
    + 1)) 
    = ((G 
    | ( 
    Seg (k 
    + 1))) 
    . (k 
    + 1)) by 
    FUNCT_1: 49,
    FINSEQ_1: 4;
    
          then
    
          
    
    A13: (G 
    . (k 
    + 1)) 
    = ((G 
    | (k 
    + 1)) 
    . (k 
    + 1)) by 
    FINSEQ_1:def 15;
    
          then
    
          
    
    A14: ((G 
    | (k 
    + 1)) 
    . (k 
    + 1)) 
    in ( 
    rng F) by 
    A1,
    A12,
    FUNCT_1: 3;
    
          (
    rng F) 
    = ( 
    rng F0) by 
    A5,
    CLASSES1: 75;
    
          then
    
          consider M0 be
    Element of 
    NAT such that 
    
          
    
    A15: ((G 
    | (k 
    + 1)) 
    . (k 
    + 1)) 
    = (F0 
    . M0) by 
    A14,
    FUNCT_2: 113;
    
          
    
    A16: 
    
          now
    
            assume
    
            
    
    A17: 1 
    <= M0 
    <= k; 
    
            then M0
    <= ( 
    len G) by 
    A9,
    XXREAL_0: 2;
    
            then
    
            
    
    A18: M0 
    in ( 
    dom G) by 
    A17,
    FINSEQ_3: 25;
    
            then M0
    in ( 
    dom (G 
    | ( 
    Seg k))) by 
    A17,
    FINSEQ_1: 1,
    RELAT_1: 57;
    
            then M0
    in ( 
    dom (G 
    | k)) by 
    FINSEQ_1:def 15;
    
            then ((G
    | k) 
    . M0) 
    = (F0 
    . M0) by 
    A4;
    
            then (G
    . M0) 
    = (F0 
    . M0) by 
    A17,
    FINSEQ_3: 112;
    
            then M0
    = (k 
    + 1) by 
    A12,
    A13,
    A15,
    A18,
    FUNCT_1:def 4;
    
            hence contradiction by
    A17,
    NAT_1: 13;
    
          end;
    
          per cases by
    A16,
    NAT_1: 13,
    NAT_1: 14;
    
            suppose
    
            
    
    A19: M0 
    =  
    0 ; 
    
            consider F1 be
    sequence of ( 
    bool  
    REAL ) such that 
    
            
    
    A20: (for n be 
    Nat st n 
    <>  
    0 & n 
    <> (k 
    + 1) holds (F0 
    . n) 
    = (F1 
    . n)) & (F0 
    .  
    0 ) 
    = (F1 
    . (k 
    + 1)) & (F0 
    . (k 
    + 1)) 
    = (F1 
    .  
    0 ) by 
    Th46;
    
            
    
            
    
    A21: ( 
    dom F1) 
    =  
    NAT by 
    FUNCT_2:def 1;
    
            
    
            
    
    A22: for n be 
    Nat st n 
    in ( 
    dom (G 
    | (k 
    + 1))) holds ((G 
    | (k 
    + 1)) 
    . n) 
    = (F1 
    . n) 
    
            proof
    
              let n be
    Nat;
    
              assume n
    in ( 
    dom (G 
    | (k 
    + 1))); 
    
              then
    
              
    
    A23: 1 
    <= n 
    <= (k 
    + 1) by 
    A11,
    FINSEQ_3: 25;
    
              per cases ;
    
                suppose n
    = (k 
    + 1); 
    
                hence ((G
    | (k 
    + 1)) 
    . n) 
    = (F1 
    . n) by 
    A15,
    A19,
    A20;
    
              end;
    
                suppose
    
                
    
    A24: n 
    <> (k 
    + 1); 
    
                then
    
                
    
    A25: (F0 
    . n) 
    = (F1 
    . n) by 
    A20,
    A23;
    
                n
    < (k 
    + 1) by 
    A23,
    A24,
    XXREAL_0: 1;
    
                then
    
                
    
    A26: n 
    <= k by 
    NAT_1: 13;
    
                n
    <= ( 
    len G) by 
    A10,
    A23,
    XXREAL_0: 2;
    
                then n
    in ( 
    dom G) by 
    A23,
    FINSEQ_3: 25;
    
                then n
    in ( 
    dom (G 
    | ( 
    Seg k))) by 
    A23,
    A26,
    FINSEQ_1: 1,
    RELAT_1: 57;
    
                then
    
                
    
    A27: n 
    in ( 
    dom (G 
    | k)) by 
    FINSEQ_1:def 15;
    
                ((G
    | (k 
    + 1)) 
    . n) 
    = (G 
    . n) by 
    A23,
    FINSEQ_3: 112;
    
                then ((G
    | (k 
    + 1)) 
    . n) 
    = ((G 
    | k) 
    . n) by 
    A26,
    FINSEQ_3: 112;
    
                hence ((G
    | (k 
    + 1)) 
    . n) 
    = (F1 
    . n) by 
    A4,
    A25,
    A27;
    
              end;
    
            end;
    
            for n be
    set st n 
    <>  
    0 & n 
    <> (k 
    + 1) & n 
    in ( 
    dom F0) holds (F0 
    . n) 
    = (F1 
    . n) by 
    A20;
    
            then
    
            
    
    A28: (F0,F1) 
    are_fiberwise_equipotent by 
    A7,
    A20,
    A21,
    RFINSEQ: 28;
    
            then (
    rng F1) 
    = ( 
    rng F) by 
    A5,
    CLASSES1: 75,
    CLASSES1: 76;
    
            then
    
            
    
    A29: A 
    c= ( 
    union ( 
    rng F1)) by 
    MEASURE7:def 2;
    
            for n be
    Element of 
    NAT holds (F1 
    . n) is 
    Interval
    
            proof
    
              let n be
    Element of 
    NAT ; 
    
              per cases ;
    
                suppose n
    <>  
    0 & n 
    <> (k 
    + 1); 
    
                then (F1
    . n) 
    = (F0 
    . n) by 
    A20;
    
                hence (F1
    . n) is 
    Interval;
    
              end;
    
                suppose n
    =  
    0 or n 
    = (k 
    + 1); 
    
                hence (F1
    . n) is 
    Interval by 
    A20;
    
              end;
    
            end;
    
            then
    
            reconsider F1 as
    Interval_Covering of A by 
    A29,
    MEASURE7:def 2;
    
            (
    vol F1) 
    = ( 
    vol F) by 
    A6,
    A20,
    Th52;
    
            hence
    P[(k
    + 1)] by 
    A5,
    A22,
    A28,
    CLASSES1: 76;
    
          end;
    
            suppose
    
            
    
    A30: (k 
    + 1) 
    <= M0; 
    
            consider F1 be
    sequence of ( 
    bool  
    REAL ) such that 
    
            
    
    A31: (for n be 
    Nat st n 
    <> M0 & n 
    <> (k 
    + 1) holds (F0 
    . n) 
    = (F1 
    . n)) & (F0 
    . M0) 
    = (F1 
    . (k 
    + 1)) & (F0 
    . (k 
    + 1)) 
    = (F1 
    . M0) by 
    Th46;
    
            
    
            
    
    A32: ( 
    dom F1) 
    =  
    NAT by 
    FUNCT_2:def 1;
    
            
    
            
    
    A33: for n be 
    Nat st n 
    in ( 
    dom (G 
    | (k 
    + 1))) holds ((G 
    | (k 
    + 1)) 
    . n) 
    = (F1 
    . n) 
    
            proof
    
              let n be
    Nat;
    
              assume n
    in ( 
    dom (G 
    | (k 
    + 1))); 
    
              then
    
              
    
    A34: 1 
    <= n 
    <= (k 
    + 1) by 
    A11,
    FINSEQ_3: 25;
    
              per cases ;
    
                suppose n
    = (k 
    + 1); 
    
                hence ((G
    | (k 
    + 1)) 
    . n) 
    = (F1 
    . n) by 
    A15,
    A31;
    
              end;
    
                suppose
    
                
    
    A35: n 
    <> (k 
    + 1); 
    
                then n
    < (k 
    + 1) by 
    A34,
    XXREAL_0: 1;
    
                then
    
                
    
    A36: (F0 
    . n) 
    = (F1 
    . n) by 
    A30,
    A31;
    
                n
    < (k 
    + 1) by 
    A34,
    A35,
    XXREAL_0: 1;
    
                then
    
                
    
    A37: n 
    <= k by 
    NAT_1: 13;
    
                n
    <= ( 
    len G) by 
    A10,
    A34,
    XXREAL_0: 2;
    
                then n
    in ( 
    dom G) by 
    A34,
    FINSEQ_3: 25;
    
                then n
    in ( 
    dom (G 
    | ( 
    Seg k))) by 
    A34,
    A37,
    FINSEQ_1: 1,
    RELAT_1: 57;
    
                then
    
                
    
    A38: n 
    in ( 
    dom (G 
    | k)) by 
    FINSEQ_1:def 15;
    
                ((G
    | (k 
    + 1)) 
    . n) 
    = (G 
    . n) by 
    A34,
    FINSEQ_3: 112;
    
                then ((G
    | (k 
    + 1)) 
    . n) 
    = ((G 
    | k) 
    . n) by 
    A37,
    FINSEQ_3: 112;
    
                hence ((G
    | (k 
    + 1)) 
    . n) 
    = (F1 
    . n) by 
    A4,
    A36,
    A38;
    
              end;
    
            end;
    
            for n be
    set st n 
    <> M0 & n 
    <> (k 
    + 1) & n 
    in ( 
    dom F0) holds (F0 
    . n) 
    = (F1 
    . n) by 
    A31;
    
            then
    
            
    
    A39: (F0,F1) 
    are_fiberwise_equipotent by 
    A7,
    A31,
    A32,
    RFINSEQ: 28;
    
            then (
    rng F1) 
    = ( 
    rng F) by 
    A5,
    CLASSES1: 75,
    CLASSES1: 76;
    
            then
    
            
    
    A40: A 
    c= ( 
    union ( 
    rng F1)) by 
    MEASURE7:def 2;
    
            for n be
    Element of 
    NAT holds (F1 
    . n) is 
    Interval
    
            proof
    
              let n be
    Element of 
    NAT ; 
    
              per cases ;
    
                suppose n
    <> M0 & n 
    <> (k 
    + 1); 
    
                then (F1
    . n) 
    = (F0 
    . n) by 
    A31;
    
                hence (F1
    . n) is 
    Interval;
    
              end;
    
                suppose n
    = M0 or n 
    = (k 
    + 1); 
    
                hence (F1
    . n) is 
    Interval by 
    A31;
    
              end;
    
            end;
    
            then
    
            reconsider F1 as
    Interval_Covering of A by 
    A40,
    MEASURE7:def 2;
    
            (
    vol F1) 
    = ( 
    vol F) by 
    A6,
    A31,
    Th52;
    
            hence
    P[(k
    + 1)] by 
    A5,
    A33,
    A39,
    CLASSES1: 76;
    
          end;
    
        end;
    
      end;
    
      for k be
    Nat holds 
    P[k] from
    NAT_1:sch 2(
    A2,
    A3);
    
      then
    
      
    
    A41: 
    P[(
    len G)]; 
    
      (G
    | ( 
    len G)) 
    = G by 
    FINSEQ_1: 58;
    
      hence thesis by
    A41;
    
    end;
    
    theorem :: 
    
    MEASUR12:56
    
    
    
    
    
    Th56: for A be non 
    empty  
    Subset of 
    REAL , F be 
    Interval_Covering of A, G be 
    one-to-one  
    FinSequence of ( 
    bool  
    REAL ), H be 
    FinSequence of 
    ExtREAL st ( 
    rng G) 
    c= ( 
    rng F) & ( 
    dom G) 
    = ( 
    dom H) & (for n be 
    Nat holds (H 
    . n) 
    = ( 
    diameter (G 
    . n))) holds ( 
    Sum H) 
    <= ( 
    vol F) 
    
    proof
    
      let A be non
    empty  
    Subset of 
    REAL , F be 
    Interval_Covering of A, G be 
    one-to-one  
    FinSequence of ( 
    bool  
    REAL ), H be 
    FinSequence of 
    ExtREAL ; 
    
      assume that
    
      
    
    A1: ( 
    rng G) 
    c= ( 
    rng F) and 
    
      
    
    A2: ( 
    dom G) 
    = ( 
    dom H) and 
    
      
    
    A3: for n be 
    Nat holds (H 
    . n) 
    = ( 
    diameter (G 
    . n)); 
    
      consider F1 be
    Interval_Covering of A such that 
    
      
    
    A4: (for n be 
    Nat st n 
    in ( 
    dom G) holds (G 
    . n) 
    = (F1 
    . n)) & ( 
    vol F1) 
    = ( 
    vol F) by 
    A1,
    Th55;
    
      consider S be
    sequence of 
    ExtREAL such that 
    
      
    
    A5: ( 
    Sum H) 
    = (S 
    . ( 
    len H)) & (S 
    .  
    0 ) 
    =  
    0 & for n be 
    Nat st n 
    < ( 
    len H) holds (S 
    . (n 
    + 1)) 
    = ((S 
    . n) 
    + (H 
    . (n 
    + 1))) by 
    EXTREAL1:def 2;
    
      defpred
    
    P[
    Nat] means $1
    <= ( 
    len H) implies (S 
    . $1) 
    <= (( 
    Ser (F1 
    vol )) 
    . $1); 
    
      (F1
    vol ) is 
    nonnegative by 
    MEASURE7: 12;
    
      then
    
      
    
    A6: 
    P[
    0 ] by 
    A5,
    SUPINF_2: 40;
    
      
    
      
    
    A7: for n be 
    Nat st 
    P[n] holds
    P[(n
    + 1)] 
    
      proof
    
        let n be
    Nat;
    
        assume
    
        
    
    A8: 
    P[n];
    
        assume
    
        
    
    A9: (n 
    + 1) 
    <= ( 
    len H); 
    
        then
    
        
    
    A10: (n 
    + 1) 
    in ( 
    dom G) by 
    A2,
    FINSEQ_3: 25,
    NAT_1: 11;
    
        (S
    . (n 
    + 1)) 
    = ((S 
    . n) 
    + (H 
    . (n 
    + 1))) by 
    A5,
    A9,
    NAT_1: 13;
    
        then (S
    . (n 
    + 1)) 
    = ((S 
    . n) 
    + ( 
    diameter (G 
    . (n 
    + 1)))) by 
    A3;
    
        then (S
    . (n 
    + 1)) 
    = ((S 
    . n) 
    + ( 
    diameter (F1 
    . (n 
    + 1)))) by 
    A4,
    A10;
    
        then
    
        
    
    A11: (S 
    . (n 
    + 1)) 
    = ((S 
    . n) 
    + ((F1 
    vol ) 
    . (n 
    + 1))) by 
    MEASURE7:def 4;
    
        ((S
    . n) 
    + ((F1 
    vol ) 
    . (n 
    + 1))) 
    <= ((( 
    Ser (F1 
    vol )) 
    . n) 
    + ((F1 
    vol ) 
    . (n 
    + 1))) by 
    A8,
    A9,
    NAT_1: 13,
    XXREAL_3: 35;
    
        hence (S
    . (n 
    + 1)) 
    <= (( 
    Ser (F1 
    vol )) 
    . (n 
    + 1)) by 
    A11,
    SUPINF_2:def 11;
    
      end;
    
      for n be
    Nat holds 
    P[n] from
    NAT_1:sch 2(
    A6,
    A7);
    
      then
    
      
    
    A12: ( 
    Sum H) 
    <= (( 
    Ser (F1 
    vol )) 
    . ( 
    len H)) by 
    A5;
    
      ((
    Ser (F1 
    vol )) 
    . ( 
    len H)) 
    <= ( 
    SUM (F1 
    vol )) by 
    MEASURE7: 6,
    MEASURE7: 12;
    
      then (
    Sum H) 
    <= ( 
    SUM (F1 
    vol )) by 
    A12,
    XXREAL_0: 2;
    
      hence (
    Sum H) 
    <= ( 
    vol F) by 
    A4,
    MEASURE7:def 6;
    
    end;
    
    
    
    
    
    Lm14: for I be 
    Element of 
    Family_of_Intervals st I is non 
    empty
    closed_interval holds ( 
    diameter I) 
    <= ( 
    OS_Meas  
    . I) 
    
    proof
    
      let I be
    Element of 
    Family_of_Intervals ; 
    
      assume
    
      
    
    A1: I is non 
    empty
    closed_interval;
    
      then
    
      consider a,b be
    Real such that 
    
      
    
    A2: I 
    =  
    [.a, b.] by
    MEASURE5:def 3;
    
      reconsider a1 = a, b1 = b as
    R_eal by 
    XXREAL_0:def 1;
    
      
    
      
    
    A3: ( 
    diameter I) 
    = (b1 
    - a1) by 
    A1,
    A2,
    XXREAL_1: 29,
    MEASURE5: 6;
    
      then
    
      
    
    A4: ( 
    diameter I) 
    <  
    +infty by 
    XXREAL_0: 4;
    
      
    
      
    
    A5: ( 
    OS_Meas  
    . I) 
    <= ( 
    diameter I) by 
    A1,
    Th44;
    
      
    OS_Meas is 
    nonnegative by 
    MEASURE4:def 1;
    
      then
    -infty  
    <  
    0 & 
    0  
    <= ( 
    OS_Meas  
    . I) by 
    SUPINF_2: 51;
    
      then
    
      
    
    A6: ( 
    OS_Meas  
    . I) 
    in  
    REAL by 
    A4,
    A5,
    XXREAL_0: 14;
    
      then
    
      reconsider DI = (
    diameter I), LI = ( 
    OS_Meas  
    . I) as 
    Real by 
    A3;
    
      
    
      
    
    A7: ( 
    inf ( 
    Svc I)) 
    in  
    REAL by 
    A6,
    MEASURE7:def 10;
    
      (
    Svc2 I) 
    c= ( 
    Svc I) by 
    Th30;
    
      then
    
      
    
    A8: ( 
    Svc I) is non 
    empty  
    Subset of 
    ExtREAL ; 
    
      for e be
    Real st 
    0  
    < e holds DI 
    <= (LI 
    + e) 
    
      proof
    
        let e be
    Real;
    
        assume
    
        
    
    A9: 
    0  
    < e; 
    
        consider x be
    ExtReal such that 
    
        
    
    A10: x 
    in ( 
    Svc I) & x 
    < (( 
    inf ( 
    Svc I)) 
    + (e 
    / 2)) by 
    A7,
    A8,
    MEASURE6: 5,
    A9,
    XREAL_1: 215;
    
        consider F be
    Interval_Covering of I such that 
    
        
    
    A11: x 
    = ( 
    vol F) by 
    A10,
    MEASURE7:def 8;
    
        defpred
    
    P2[
    Element of 
    NAT , 
    object] means ((F
    . $1) 
    =  
    {
    +infty } or (F 
    . $1) 
    =  
    {
    -infty } implies $2 
    =  
    {} ) & ( not ((F 
    . $1) 
    =  
    {
    +infty } or (F 
    . $1) 
    =  
    {
    -infty }) implies $2 
    = (F 
    . $1)); 
    
        
    
        
    
    A12: for n be 
    Element of 
    NAT holds ex A be 
    Element of ( 
    bool  
    REAL ) st 
    P2[n, A]
    
        proof
    
          let n be
    Element of 
    NAT ; 
    
          per cases ;
    
            suppose
    
            
    
    A13: (F 
    . n) 
    =  
    {
    +infty } or (F 
    . n) 
    =  
    {
    -infty }; 
    
            
    {}  
    c=  
    REAL ; 
    
            then
    
            reconsider A =
    {} as 
    Element of ( 
    bool  
    REAL ); 
    
            take A;
    
            thus thesis by
    A13;
    
          end;
    
            suppose
    
            
    
    A14: not ((F 
    . n) 
    =  
    {
    +infty } or (F 
    . n) 
    =  
    {
    -infty }); 
    
            take A = (F
    . n); 
    
            thus thesis by
    A14;
    
          end;
    
        end;
    
        consider F2 be
    Function of 
    NAT , ( 
    bool  
    REAL ) such that 
    
        
    
    A15: for n be 
    Element of 
    NAT holds 
    P2[n, (F2
    . n)] from 
    FUNCT_2:sch 3(
    A12);
    
        reconsider F2 as
    sequence of ( 
    bool  
    REAL ); 
    
        now
    
          let x be
    object;
    
          assume
    
          
    
    A16: x 
    in I; 
    
          then
    
          reconsider x1 = x as
    Real;
    
          I
    c= ( 
    union ( 
    rng F)) by 
    MEASURE7:def 2;
    
          then
    
          consider A be
    set such that 
    
          
    
    A17: x 
    in A & A 
    in ( 
    rng F) by 
    A16,
    TARSKI:def 4;
    
          consider n be
    Element of 
    NAT such that 
    
          
    
    A18: A 
    = (F 
    . n) by 
    A17,
    FUNCT_2: 113;
    
          
    
          
    
    A19: ( 
    dom F2) 
    =  
    NAT by 
    FUNCT_2:def 1;
    
          (F
    . n) 
    <>  
    {
    +infty } & (F 
    . n) 
    <>  
    {
    -infty } by 
    A17,
    A18,
    TARSKI:def 1;
    
          then x
    in (F2 
    . n) & (F2 
    . n) 
    in ( 
    rng F2) by 
    A15,
    A17,
    A18,
    A19,
    FUNCT_1: 3;
    
          hence x
    in ( 
    union ( 
    rng F2)) by 
    TARSKI:def 4;
    
        end;
    
        then
    
        
    
    A20: I 
    c= ( 
    union ( 
    rng F2)); 
    
        now
    
          let n be
    Element of 
    NAT ; 
    
          per cases ;
    
            suppose (F
    . n) 
    =  
    {
    +infty } or (F 
    . n) 
    =  
    {
    -infty }; 
    
            hence (F2
    . n) is 
    Interval by 
    A15;
    
          end;
    
            suppose not ((F
    . n) 
    =  
    {
    +infty } or (F 
    . n) 
    =  
    {
    -infty }); 
    
            hence (F2
    . n) is 
    Interval by 
    A15;
    
          end;
    
        end;
    
        then
    
        reconsider F2 as
    Interval_Covering of I by 
    A20,
    MEASURE7:def 2;
    
        
    
        
    
    A21: for n be 
    Element of 
    NAT holds ((F 
    vol ) 
    . n) 
    = ((F2 
    vol ) 
    . n) 
    
        proof
    
          let n be
    Element of 
    NAT ; 
    
          per cases ;
    
            suppose
    
            
    
    A22: (F 
    . n) 
    =  
    {
    +infty } or (F 
    . n) 
    =  
    {
    -infty }; 
    
            then (
    diameter (F 
    . n)) 
    = (( 
    sup (F 
    . n)) 
    - ( 
    inf (F 
    . n))) by 
    MEASURE5:def 6;
    
            then
    
            
    
    A23: ( 
    diameter (F 
    . n)) 
    = (( 
    sup (F 
    . n)) 
    + ( 
    - ( 
    inf (F 
    . n)))) by 
    XXREAL_3:def 4;
    
            (F
    . n) 
    =  
    [.
    +infty , 
    +infty .] or (F 
    . n) 
    =  
    [.
    -infty , 
    -infty .] by 
    A22,
    XXREAL_1: 17;
    
            then ((
    sup (F 
    . n)) 
    =  
    +infty & ( 
    inf (F 
    . n)) 
    =  
    +infty ) or (( 
    sup (F 
    . n)) 
    =  
    -infty & ( 
    inf (F 
    . n)) 
    =  
    -infty ) by 
    XXREAL_2: 25,
    XXREAL_2: 29;
    
            then
    
            
    
    A24: ((F 
    vol ) 
    . n) 
    =  
    0 by 
    A23,
    XXREAL_3: 6,
    MEASURE7:def 4;
    
            (F2
    . n) 
    =  
    {} by 
    A22,
    A15;
    
            then (
    diameter (F2 
    . n)) 
    =  
    0 by 
    MEASURE5:def 6;
    
            hence ((F
    vol ) 
    . n) 
    = ((F2 
    vol ) 
    . n) by 
    A24,
    MEASURE7:def 4;
    
          end;
    
            suppose not ((F
    . n) 
    =  
    {
    +infty } or (F 
    . n) 
    =  
    {
    -infty }); 
    
            then (F2
    . n) 
    = (F 
    . n) by 
    A15;
    
            then ((F2
    vol ) 
    . n) 
    = ( 
    diameter (F 
    . n)) by 
    MEASURE7:def 4;
    
            hence ((F
    vol ) 
    . n) 
    = ((F2 
    vol ) 
    . n) by 
    MEASURE7:def 4;
    
          end;
    
        end;
    
        then (F
    vol ) 
    = (F2 
    vol ) by 
    FUNCT_2:def 8;
    
        then (
    vol F2) 
    = ( 
    SUM (F 
    vol )) by 
    MEASURE7:def 6;
    
        then
    
        
    
    A25: x 
    = ( 
    vol F2) by 
    A11,
    MEASURE7:def 6;
    
        
    
    A26: 
    
        now
    
          assume ex n be
    Nat st ( 
    diameter (F2 
    . n)) 
    =  
    +infty ; 
    
          then
    
          consider N be
    Nat such that 
    
          
    
    A27: ( 
    diameter (F2 
    . N)) 
    =  
    +infty ; 
    
          
    
          
    
    A28: N is 
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
          then ((F2
    vol ) 
    . N) 
    =  
    +infty by 
    A27,
    MEASURE7:def 4;
    
          then (
    SUM (F2 
    vol )) 
    =  
    +infty by 
    A28,
    SUPINF_2: 45,
    MEASURE7: 12;
    
          then (
    vol F2) 
    =  
    +infty by 
    MEASURE7:def 6;
    
          hence contradiction by
    A10,
    A25,
    XXREAL_0: 3;
    
        end;
    
        
    
        
    
    A29: for n be 
    Element of 
    NAT holds (F2 
    . n) 
    <>  
    {
    +infty } & (F2 
    . n) 
    <>  
    {
    -infty } 
    
        proof
    
          let n be
    Element of 
    NAT ; 
    
          now
    
            assume
    
            
    
    A30: (F2 
    . n) 
    =  
    {
    +infty } or (F2 
    . n) 
    =  
    {
    -infty }; 
    
            per cases ;
    
              suppose (F
    . n) 
    =  
    {
    +infty } or (F 
    . n) 
    =  
    {
    -infty }; 
    
              hence contradiction by
    A30,
    A15;
    
            end;
    
              suppose not ((F
    . n) 
    =  
    {
    +infty } or (F 
    . n) 
    =  
    {
    -infty }); 
    
              hence contradiction by
    A15,
    A30;
    
            end;
    
          end;
    
          hence thesis;
    
        end;
    
        defpred
    
    P3[
    Element of 
    NAT , 
    object] means ((F2
    . $1) 
    <>  
    {} implies $2 
    =  
    ].((
    inf (F2 
    . $1)) 
    - (e 
    / (2 
    |^ ($1 
    + 3)))), (( 
    sup (F2 
    . $1)) 
    + (e 
    / (2 
    |^ ($1 
    + 3)))).[) & ((F2 
    . $1) 
    =  
    {} implies $2 
    =  
    ].(
    - (e 
    / (2 
    |^ ($1 
    + 3)))), (e 
    / (2 
    |^ ($1 
    + 3))).[); 
    
        
    
        
    
    A31: for n be 
    Element of 
    NAT holds ex A be 
    Element of ( 
    bool  
    REAL ) st 
    P3[n, A]
    
        proof
    
          let n be
    Element of 
    NAT ; 
    
          per cases ;
    
            suppose
    
            
    
    A32: (F2 
    . n) 
    <>  
    {} ; 
    
            reconsider A =
    ].((
    inf (F2 
    . n)) 
    - (e 
    / (2 
    |^ (n 
    + 3)))), (( 
    sup (F2 
    . n)) 
    + (e 
    / (2 
    |^ (n 
    + 3)))).[ as 
    Subset of 
    REAL ; 
    
            take A;
    
            thus thesis by
    A32;
    
          end;
    
            suppose
    
            
    
    A33: (F2 
    . n) 
    =  
    {} ; 
    
            reconsider A =
    ].(
    - (e 
    / (2 
    |^ (n 
    + 3)))), (e 
    / (2 
    |^ (n 
    + 3))).[ as 
    Subset of 
    REAL ; 
    
            take A;
    
            thus thesis by
    A33;
    
          end;
    
        end;
    
        consider FF be
    Function of 
    NAT , ( 
    bool  
    REAL ) such that 
    
        
    
    A34: for n be 
    Element of 
    NAT holds 
    P3[n, (FF
    . n)] from 
    FUNCT_2:sch 3(
    A31);
    
        
    
        
    
    A35: for n be 
    Element of 
    NAT holds (F2 
    . n) 
    c= (FF 
    . n) 
    
        proof
    
          let n be
    Element of 
    NAT ; 
    
          now
    
            let x be
    ExtReal;
    
            assume
    
            
    
    A36: x 
    in (F2 
    . n); 
    
            then
    
            
    
    A37: ( 
    diameter (F2 
    . n)) 
    = (( 
    sup (F2 
    . n)) 
    - ( 
    inf (F2 
    . n))) by 
    MEASURE5:def 6;
    
            
    
    A38: 
    
            now
    
              assume
    
              
    
    A39: ( 
    inf (F2 
    . n)) 
    =  
    -infty ; 
    
              (
    sup (F2 
    . n)) 
    <>  
    -infty by 
    A39,
    XXREAL_2: 70,
    A29;
    
              hence contradiction by
    A26,
    A37,
    A39,
    XXREAL_3: 14;
    
            end;
    
            
    
    A40: 
    
            now
    
              assume
    
              
    
    A41: ( 
    sup (F2 
    . n)) 
    =  
    +infty ; 
    
              (
    inf (F2 
    . n)) 
    <>  
    +infty by 
    A41,
    XXREAL_2: 70,
    A29;
    
              then (
    diameter (F2 
    . n)) 
    =  
    +infty by 
    A37,
    A41,
    XXREAL_3: 13;
    
              hence contradiction by
    A26;
    
            end;
    
            reconsider ee = (e
    / (2 
    |^ (n 
    + 3))) as 
    R_eal by 
    XXREAL_0:def 1;
    
            
    
            
    
    A42: (2 
    |^ (n 
    + 3)) 
    >  
    0 by 
    NEWTON: 83;
    
            per cases by
    MEASURE5: 1;
    
              suppose (F2
    . n) is 
    open_interval;
    
              then
    
              consider p,q be
    R_eal such that 
    
              
    
    A43: (F2 
    . n) 
    =  
    ].p, q.[ by
    MEASURE5:def 2;
    
              (F2
    . n) 
    =  
    ].(
    inf (F2 
    . n)), ( 
    sup (F2 
    . n)).[ by 
    A36,
    A43,
    XXREAL_2: 78;
    
              then
    
              
    
    A44: ( 
    inf (F2 
    . n)) 
    < x & x 
    < ( 
    sup (F2 
    . n)) by 
    A36,
    XXREAL_1: 4;
    
              then (
    inf (F2 
    . n)) 
    <>  
    +infty & ( 
    sup (F2 
    . n)) 
    <>  
    -infty by 
    XXREAL_0: 3,
    XXREAL_0: 5;
    
              then (
    inf (F2 
    . n)) 
    in  
    REAL & ( 
    sup (F2 
    . n)) 
    in  
    REAL by 
    A38,
    A40,
    XXREAL_0: 14;
    
              then
    
              reconsider p1 = (
    inf (F2 
    . n)), q1 = ( 
    sup (F2 
    . n)) as 
    Real;
    
              (p1
    - (e 
    / (2 
    |^ (n 
    + 3)))) 
    < p1 & q1 
    < (q1 
    + (e 
    / (2 
    |^ (n 
    + 3)))) by 
    A42,
    A9,
    XREAL_1: 139,
    XREAL_1: 29,
    XREAL_1: 44;
    
              then ((
    inf (F2 
    . n)) 
    - ee) 
    < ( 
    inf (F2 
    . n)) & ( 
    sup (F2 
    . n)) 
    < (( 
    sup (F2 
    . n)) 
    + ee) by 
    Lm9,
    XXREAL_3:def 2;
    
              then ((
    inf (F2 
    . n)) 
    - (e 
    / (2 
    |^ (n 
    + 3)))) 
    < x & x 
    < (( 
    sup (F2 
    . n)) 
    + (e 
    / (2 
    |^ (n 
    + 3)))) by 
    A44,
    XXREAL_0: 2;
    
              then x
    in  
    ].((
    inf (F2 
    . n)) 
    - (e 
    / (2 
    |^ (n 
    + 3)))), (( 
    sup (F2 
    . n)) 
    + (e 
    / (2 
    |^ (n 
    + 3)))).[ by 
    XXREAL_1: 4;
    
              hence x
    in (FF 
    . n) by 
    A34,
    A36;
    
            end;
    
              suppose (F2
    . n) is 
    left_open_interval;
    
              then
    
              consider p be
    R_eal, q be 
    Real such that 
    
              
    
    A45: (F2 
    . n) 
    =  
    ].p, q.] by
    MEASURE5:def 5;
    
              p
    < x & x 
    <= q by 
    A36,
    A45,
    XXREAL_1: 2;
    
              then p
    < q by 
    XXREAL_0: 2;
    
              then (F2
    . n) is 
    right_end by 
    A45,
    XXREAL_2: 35;
    
              then (F2
    . n) 
    =  
    ].(
    inf (F2 
    . n)), ( 
    sup (F2 
    . n)).] by 
    A45,
    XXREAL_2: 76;
    
              then
    
              
    
    A46: ( 
    inf (F2 
    . n)) 
    < x & x 
    <= ( 
    sup (F2 
    . n)) by 
    A36,
    XXREAL_1: 2;
    
              then (
    inf (F2 
    . n)) 
    < ( 
    sup (F2 
    . n)) by 
    XXREAL_0: 2;
    
              then (
    inf (F2 
    . n)) 
    <>  
    +infty & ( 
    sup (F2 
    . n)) 
    <>  
    -infty by 
    XXREAL_0: 3,
    XXREAL_0: 5;
    
              then (
    inf (F2 
    . n)) 
    in  
    REAL & ( 
    sup (F2 
    . n)) 
    in  
    REAL by 
    A38,
    A40,
    XXREAL_0: 14;
    
              then
    
              reconsider p1 = (
    inf (F2 
    . n)), q1 = ( 
    sup (F2 
    . n)) as 
    Real;
    
              (p1
    - (e 
    / (2 
    |^ (n 
    + 3)))) 
    < p1 & q1 
    < (q1 
    + (e 
    / (2 
    |^ (n 
    + 3)))) by 
    A42,
    A9,
    XREAL_1: 139,
    XREAL_1: 29,
    XREAL_1: 44;
    
              then ((
    inf (F2 
    . n)) 
    - ee) 
    < ( 
    inf (F2 
    . n)) & ( 
    sup (F2 
    . n)) 
    < (( 
    sup (F2 
    . n)) 
    + ee) by 
    Lm9,
    XXREAL_3:def 2;
    
              then ((
    inf (F2 
    . n)) 
    - (e 
    / (2 
    |^ (n 
    + 3)))) 
    < x & x 
    < (( 
    sup (F2 
    . n)) 
    + (e 
    / (2 
    |^ (n 
    + 3)))) by 
    A46,
    XXREAL_0: 2;
    
              then x
    in  
    ].((
    inf (F2 
    . n)) 
    - (e 
    / (2 
    |^ (n 
    + 3)))), (( 
    sup (F2 
    . n)) 
    + (e 
    / (2 
    |^ (n 
    + 3)))).[ by 
    XXREAL_1: 4;
    
              hence x
    in (FF 
    . n) by 
    A34,
    A36;
    
            end;
    
              suppose (F2
    . n) is 
    right_open_interval;
    
              then
    
              consider p be
    Real, q be 
    R_eal such that 
    
              
    
    A47: (F2 
    . n) 
    =  
    [.p, q.[ by
    MEASURE5:def 4;
    
              p
    <= x & x 
    < q by 
    A36,
    A47,
    XXREAL_1: 3;
    
              then p
    < q by 
    XXREAL_0: 2;
    
              then (F2
    . n) is 
    left_end by 
    A47,
    XXREAL_2: 34;
    
              then (F2
    . n) 
    =  
    [.(
    inf (F2 
    . n)), ( 
    sup (F2 
    . n)).[ by 
    A47,
    XXREAL_2: 77;
    
              then
    
              
    
    A48: ( 
    inf (F2 
    . n)) 
    <= x & x 
    < ( 
    sup (F2 
    . n)) by 
    A36,
    XXREAL_1: 3;
    
              then (
    inf (F2 
    . n)) 
    < ( 
    sup (F2 
    . n)) by 
    XXREAL_0: 2;
    
              then (
    inf (F2 
    . n)) 
    <>  
    +infty & ( 
    sup (F2 
    . n)) 
    <>  
    -infty by 
    XXREAL_0: 3,
    XXREAL_0: 5;
    
              then (
    inf (F2 
    . n)) 
    in  
    REAL & ( 
    sup (F2 
    . n)) 
    in  
    REAL by 
    A38,
    A40,
    XXREAL_0: 14;
    
              then
    
              reconsider p1 = (
    inf (F2 
    . n)), q1 = ( 
    sup (F2 
    . n)) as 
    Real;
    
              (p1
    - (e 
    / (2 
    |^ (n 
    + 3)))) 
    < p1 & q1 
    < (q1 
    + (e 
    / (2 
    |^ (n 
    + 3)))) by 
    A42,
    A9,
    XREAL_1: 139,
    XREAL_1: 29,
    XREAL_1: 44;
    
              then ((
    inf (F2 
    . n)) 
    - ee) 
    < ( 
    inf (F2 
    . n)) & ( 
    sup (F2 
    . n)) 
    < (( 
    sup (F2 
    . n)) 
    + ee) by 
    Lm9,
    XXREAL_3:def 2;
    
              then ((
    inf (F2 
    . n)) 
    - (e 
    / (2 
    |^ (n 
    + 3)))) 
    < x & x 
    < (( 
    sup (F2 
    . n)) 
    + (e 
    / (2 
    |^ (n 
    + 3)))) by 
    A48,
    XXREAL_0: 2;
    
              then x
    in  
    ].((
    inf (F2 
    . n)) 
    - (e 
    / (2 
    |^ (n 
    + 3)))), (( 
    sup (F2 
    . n)) 
    + (e 
    / (2 
    |^ (n 
    + 3)))).[ by 
    XXREAL_1: 4;
    
              hence x
    in (FF 
    . n) by 
    A34,
    A36;
    
            end;
    
              suppose (F2
    . n) is 
    closed_interval;
    
              then
    
              consider p,q be
    Real such that 
    
              
    
    A49: (F2 
    . n) 
    =  
    [.p, q.] by
    MEASURE5:def 3;
    
              p
    <= x & x 
    <= q by 
    A36,
    A49,
    XXREAL_1: 1;
    
              then p
    <= q by 
    XXREAL_0: 2;
    
              then (F2
    . n) is 
    left_end
    right_end by 
    A49,
    XXREAL_2: 33;
    
              then (F2
    . n) 
    =  
    [.(
    inf (F2 
    . n)), ( 
    sup (F2 
    . n)).] by 
    XXREAL_2: 75;
    
              then
    
              
    
    A50: ( 
    inf (F2 
    . n)) 
    <= x & x 
    <= ( 
    sup (F2 
    . n)) by 
    A36,
    XXREAL_1: 1;
    
              then (
    inf (F2 
    . n)) 
    <>  
    +infty & ( 
    sup (F2 
    . n)) 
    <>  
    -infty by 
    A38,
    A40,
    XXREAL_0: 2,
    XXREAL_0: 4,
    XXREAL_0: 6;
    
              then (
    inf (F2 
    . n)) 
    in  
    REAL & ( 
    sup (F2 
    . n)) 
    in  
    REAL by 
    A38,
    A40,
    XXREAL_0: 14;
    
              then
    
              reconsider p1 = (
    inf (F2 
    . n)), q1 = ( 
    sup (F2 
    . n)) as 
    Real;
    
              (p1
    - (e 
    / (2 
    |^ (n 
    + 3)))) 
    < p1 & q1 
    < (q1 
    + (e 
    / (2 
    |^ (n 
    + 3)))) by 
    A42,
    A9,
    XREAL_1: 139,
    XREAL_1: 29,
    XREAL_1: 44;
    
              then ((
    inf (F2 
    . n)) 
    - ee) 
    < ( 
    inf (F2 
    . n)) & ( 
    sup (F2 
    . n)) 
    < (( 
    sup (F2 
    . n)) 
    + ee) by 
    Lm9,
    XXREAL_3:def 2;
    
              then ((
    inf (F2 
    . n)) 
    - (e 
    / (2 
    |^ (n 
    + 3)))) 
    < x & x 
    < (( 
    sup (F2 
    . n)) 
    + (e 
    / (2 
    |^ (n 
    + 3)))) by 
    A50,
    XXREAL_0: 2;
    
              then x
    in  
    ].((
    inf (F2 
    . n)) 
    - (e 
    / (2 
    |^ (n 
    + 3)))), (( 
    sup (F2 
    . n)) 
    + (e 
    / (2 
    |^ (n 
    + 3)))).[ by 
    XXREAL_1: 4;
    
              hence x
    in (FF 
    . n) by 
    A34,
    A36;
    
            end;
    
          end;
    
          hence (F2
    . n) 
    c= (FF 
    . n); 
    
        end;
    
        now
    
          let x be
    object;
    
          assume
    
          
    
    A51: x 
    in I; 
    
          then
    
          reconsider x1 = x as
    ExtReal;
    
          I
    c= ( 
    union ( 
    rng F2)) by 
    MEASURE7:def 2;
    
          then
    
          consider A be
    set such that 
    
          
    
    A52: x 
    in A & A 
    in ( 
    rng F2) by 
    A51,
    TARSKI:def 4;
    
          consider n be
    Element of 
    NAT such that 
    
          
    
    A53: A 
    = (F2 
    . n) by 
    A52,
    FUNCT_2: 113;
    
          
    
          
    
    A54: (F2 
    . n) 
    c= (FF 
    . n) by 
    A35;
    
          (
    dom FF) 
    =  
    NAT by 
    FUNCT_2:def 1;
    
          then (FF
    . n) 
    in ( 
    rng FF) by 
    FUNCT_1: 3;
    
          hence x
    in ( 
    union ( 
    rng FF)) by 
    A52,
    A53,
    A54,
    TARSKI:def 4;
    
        end;
    
        then
    
        
    
    A55: I 
    c= ( 
    union ( 
    rng FF)); 
    
        
    
        
    
    A56: for n be 
    Element of 
    NAT holds (FF 
    . n) is 
    open_interval
    
        proof
    
          let n be
    Element of 
    NAT ; 
    
          per cases ;
    
            suppose
    
            
    
    A57: (F2 
    . n) 
    <>  
    {} ; 
    
            reconsider e1 = (e
    / (2 
    |^ (n 
    + 3))) as 
    R_eal by 
    XXREAL_0:def 1;
    
            (FF
    . n) 
    =  
    ].((
    inf (F2 
    . n)) 
    - e1), (( 
    sup (F2 
    . n)) 
    + e1).[ by 
    A57,
    A34;
    
            hence (FF
    . n) is 
    open_interval by 
    MEASURE5:def 2;
    
          end;
    
            suppose (F2
    . n) 
    =  
    {} ; 
    
            then
    
            
    
    A58: (FF 
    . n) 
    =  
    ].(
    - (e 
    / (2 
    |^ (n 
    + 3)))), (e 
    / (2 
    |^ (n 
    + 3))).[ by 
    A34;
    
            reconsider e1 = (e
    / (2 
    |^ (n 
    + 3))) as 
    R_eal by 
    XXREAL_0:def 1;
    
            (FF
    . n) 
    =  
    ].(
    - e1), e1.[ by 
    A58,
    XXREAL_3:def 3;
    
            hence (FF
    . n) is 
    open_interval by 
    MEASURE5:def 2;
    
          end;
    
        end;
    
        for n be
    Element of 
    NAT holds (FF 
    . n) is 
    Interval
    
        proof
    
          let n be
    Element of 
    NAT ; 
    
          (FF
    . n) is 
    open_interval by 
    A56;
    
          hence (FF
    . n) is 
    Interval;
    
        end;
    
        then
    
        reconsider FF as
    Interval_Covering of I by 
    A55,
    MEASURE7:def 2;
    
        reconsider FF as
    Open_Interval_Covering of I by 
    A56,
    Def5;
    
        deffunc
    
    F(
    Nat) = ((e
    / 2) 
    / (2 
    |^ ($1 
    + 1))); 
    
        consider S be
    Real_Sequence such that 
    
        
    
    A59: for n be 
    Nat holds (S 
    . n) 
    =  
    F(n) from
    SEQ_1:sch 1;
    
        (
    rng S) 
    c=  
    ExtREAL by 
    NUMBERS: 31;
    
        then
    
        reconsider SS = S as
    ExtREAL_sequence by 
    FUNCT_2: 6;
    
        (S
    .  
    0 ) 
    = ((e 
    / 2) 
    / (2 
    |^ ( 
    0  
    + 1))) by 
    A59;
    
        then
    
        
    
    A60: (S 
    .  
    0 ) 
    = ((e 
    / 2) 
    / 2) by 
    NEWTON: 5;
    
        
    
        
    
    A61: 
    |.(1
    / 2).| 
    < 1 by 
    LIOUVIL1: 7;
    
        
    
        
    
    A62: for n be 
    Nat holds (S 
    . (n 
    + 1)) 
    = ((1 
    / 2) 
    * (S 
    . n)) 
    
        proof
    
          let n be
    Nat;
    
          
    
          
    
    A63: (S 
    . (n 
    + 1)) 
    = ((e 
    / 2) 
    / (2 
    |^ ((n 
    + 1) 
    + 1))) & (S 
    . n) 
    = ((e 
    / 2) 
    / (2 
    |^ (n 
    + 1))) by 
    A59;
    
          then (S
    . (n 
    + 1)) 
    = ((e 
    / 2) 
    / ((2 
    |^ (n 
    + 1)) 
    * (2 
    |^ 1))) by 
    NEWTON: 8;
    
          then (S
    . (n 
    + 1)) 
    = ((e 
    / 2) 
    / ((2 
    |^ (n 
    + 1)) 
    * 2)) by 
    NEWTON: 5;
    
          then (S
    . (n 
    + 1)) 
    = (((e 
    / 2) 
    / (2 
    |^ (n 
    + 1))) 
    / 2) by 
    XCMPLX_1: 78;
    
          hence thesis by
    A63;
    
        end;
    
        
    
        
    
    A64: S is 
    summable & ( 
    Sum S) 
    = ((S 
    .  
    0 ) 
    / (1 
    - (1 
    / 2))) by 
    A61,
    A62,
    SERIES_1: 25;
    
        
    
        
    
    A65: ( 
    Partial_Sums S) is 
    convergent by 
    A61,
    A62,
    SERIES_1: 25,
    SERIES_1:def 2;
    
        (
    Partial_Sums S) 
    = ( 
    Partial_Sums SS) 
    
        proof
    
          (
    rng ( 
    Partial_Sums S)) 
    c=  
    ExtREAL by 
    NUMBERS: 31;
    
          then
    
          
    
    A66: ( 
    Partial_Sums S) is 
    ExtREAL_sequence by 
    FUNCT_2: 6;
    
          defpred
    
    P[
    Nat] means ((
    Partial_Sums S) 
    . $1) 
    = (( 
    Partial_Sums SS) 
    . $1); 
    
          ((
    Partial_Sums S) 
    .  
    0 ) 
    = (SS 
    .  
    0 ) by 
    SERIES_1:def 1;
    
          then
    
          
    
    A67: 
    P[
    0 ] by 
    MESFUNC9:def 1;
    
          
    
          
    
    A68: for n be 
    Nat st 
    P[n] holds
    P[(n
    + 1)] 
    
          proof
    
            let n be
    Nat;
    
            assume
    
            
    
    A69: 
    P[n];
    
            ((
    Partial_Sums S) 
    . (n 
    + 1)) 
    = ((( 
    Partial_Sums S) 
    . n) 
    + (S 
    . (n 
    + 1))) by 
    SERIES_1:def 1;
    
            then ((
    Partial_Sums S) 
    . (n 
    + 1)) 
    = ((( 
    Partial_Sums SS) 
    . n) 
    + (SS 
    . (n 
    + 1))) by 
    A69,
    XXREAL_3:def 2;
    
            hence
    P[(n
    + 1)] by 
    MESFUNC9:def 1;
    
          end;
    
          for n be
    Nat holds 
    P[n] from
    NAT_1:sch 2(
    A67,
    A68);
    
          then for n be
    Element of 
    NAT holds (( 
    Partial_Sums S) 
    . n) 
    = (( 
    Partial_Sums SS) 
    . n); 
    
          hence thesis by
    A66,
    FUNCT_2:def 8;
    
        end;
    
        then (
    lim ( 
    Partial_Sums SS)) 
    = ( 
    lim ( 
    Partial_Sums S)) by 
    A65,
    RINFSUP2: 14;
    
        then (
    Sum SS) 
    = ( 
    lim ( 
    Partial_Sums S)) by 
    MESFUNC9:def 3;
    
        then
    
        
    
    A70: ( 
    Sum SS) 
    = ( 
    Sum S) by 
    SERIES_1:def 3;
    
        for n be
    object st n 
    in ( 
    dom SS) holds (SS 
    . n) 
    >=  
    0  
    
        proof
    
          let n be
    object;
    
          assume n
    in ( 
    dom SS); 
    
          then
    
          reconsider n1 = n as
    Nat;
    
          (SS
    . n) 
    = ((e 
    / 2) 
    / (2 
    |^ (n1 
    + 1))) by 
    A59;
    
          hence (SS
    . n) 
    >=  
    0 by 
    A9;
    
        end;
    
        then
    
        
    
    A71: (F2 
    vol ) is 
    nonnegative & SS is 
    nonnegative by 
    MEASURE7: 12,
    SUPINF_2: 52;
    
        then
    
        
    
    A72: ( 
    SUM SS) 
    = (e 
    / 2) by 
    A64,
    A60,
    A70,
    MEASURE8: 2;
    
        for n be
    Nat holds ((FF 
    vol ) 
    . n) 
    = (((F2 
    vol ) 
    . n) 
    + (SS 
    . n)) 
    
        proof
    
          let n be
    Nat;
    
          
    
          
    
    A73: n is 
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
          then
    
          
    
    A74: ((FF 
    vol ) 
    . n) 
    = ( 
    diameter (FF 
    . n)) by 
    MEASURE7:def 4;
    
          reconsider e1 = (e
    / (2 
    |^ (n 
    + 3))) as 
    R_eal by 
    XXREAL_0:def 1;
    
          
    
          
    
    A75: ( 
    - e1) 
    = ( 
    - (e 
    / (2 
    |^ (n 
    + 3)))) by 
    XXREAL_3:def 3;
    
          
    
          
    
    A76: (2 
    |^ (n 
    + 3)) 
    >  
    0 by 
    NEWTON: 83;
    
          then
    
          
    
    A77: (e 
    / (2 
    |^ (n 
    + 3))) 
    >  
    0 by 
    A9,
    XREAL_1: 139;
    
          per cases ;
    
            suppose
    
            
    
    A78: (F2 
    . n) 
    =  
    {} ; 
    
            then (FF
    . n) 
    =  
    ].(
    - e1), e1.[ by 
    A75,
    A73,
    A34;
    
            then ((FF
    vol ) 
    . n) 
    = (e1 
    - ( 
    - e1)) by 
    A74,
    A77,
    MEASURE5: 5;
    
            then ((FF
    vol ) 
    . n) 
    = ((e 
    / (2 
    |^ (n 
    + 3))) 
    - ( 
    - (e 
    / (2 
    |^ (n 
    + 3))))) by 
    A75,
    Lm9;
    
            then ((FF
    vol ) 
    . n) 
    = (2 
    * (e 
    / (2 
    |^ ((n 
    + 2) 
    + 1)))); 
    
            then ((FF
    vol ) 
    . n) 
    = (2 
    * (e 
    / ((2 
    |^ (n 
    + 2)) 
    * 2))) by 
    NEWTON: 6;
    
            then
    
            
    
    A79: ((FF 
    vol ) 
    . n) 
    = (2 
    * ((e 
    / (2 
    |^ (n 
    + 2))) 
    / 2)) by 
    XCMPLX_1: 78;
    
            (
    diameter (F2 
    . n)) 
    =  
    0 by 
    A78,
    MEASURE5:def 6;
    
            then
    
            
    
    A80: ((F2 
    vol ) 
    . n) 
    =  
    0 by 
    A73,
    MEASURE7:def 4;
    
            (SS
    . n) 
    = ((e 
    / 2) 
    / (2 
    |^ (n 
    + 1))) by 
    A59;
    
            then (SS
    . n) 
    = (e 
    / (2 
    * (2 
    |^ (n 
    + 1)))) by 
    XCMPLX_1: 78;
    
            then (SS
    . n) 
    = (e 
    / (2 
    |^ ((n 
    + 1) 
    + 1))) by 
    NEWTON: 6;
    
            hence ((FF
    vol ) 
    . n) 
    = (((F2 
    vol ) 
    . n) 
    + (SS 
    . n)) by 
    A79,
    A80,
    XXREAL_3: 4;
    
          end;
    
            suppose
    
            
    
    A81: (F2 
    . n) 
    <>  
    {} ; 
    
            then
    
            
    
    A82: (FF 
    . n) 
    =  
    ].((
    inf (F2 
    . n)) 
    - e1), (( 
    sup (F2 
    . n)) 
    + e1).[ by 
    A73,
    A34;
    
            
    
            
    
    A83: ( 
    inf (F2 
    . n)) 
    <= ( 
    sup (F2 
    . n)) by 
    A81,
    XXREAL_2: 40;
    
            
    
            
    
    A84: ( 
    diameter (F2 
    . n)) 
    = (( 
    sup (F2 
    . n)) 
    - ( 
    inf (F2 
    . n))) by 
    A81,
    MEASURE5:def 6;
    
            
    
    A85: 
    
            now
    
              assume (
    sup (F2 
    . n)) 
    =  
    +infty & ( 
    inf (F2 
    . n)) 
    <>  
    +infty ; 
    
              then (
    diameter (F2 
    . n)) 
    =  
    +infty by 
    A84,
    XXREAL_3: 13;
    
              hence contradiction by
    A26;
    
            end;
    
            
    
    A86: 
    
            now
    
              assume
    
              
    
    A87: ( 
    inf (F2 
    . n)) 
    =  
    +infty ; 
    
              then (
    sup (F2 
    . n)) 
    =  
    +infty by 
    A81,
    XXREAL_2: 40,
    XXREAL_0: 4;
    
              hence contradiction by
    A29,
    A73,
    A87,
    XXREAL_2: 70;
    
            end;
    
            now
    
              assume
    
              
    
    A88: ( 
    sup (F2 
    . n)) 
    =  
    -infty ; 
    
              then (
    inf (F2 
    . n)) 
    =  
    -infty by 
    A81,
    XXREAL_2: 40,
    XXREAL_0: 6;
    
              hence contradiction by
    A29,
    A73,
    A88,
    XXREAL_2: 70;
    
            end;
    
            then (
    inf (F2 
    . n)) 
    <>  
    -infty by 
    A84,
    XXREAL_3: 14,
    A26;
    
            then
    -infty  
    < ( 
    inf (F2 
    . n)) & ( 
    sup (F2 
    . n)) 
    <  
    +infty by 
    A85,
    A86,
    XXREAL_0: 4,
    XXREAL_0: 6;
    
            then (
    inf (F2 
    . n)) 
    in  
    REAL & ( 
    sup (F2 
    . n)) 
    in  
    REAL by 
    A83,
    XXREAL_0: 14;
    
            then
    
            reconsider iF = (
    inf (F2 
    . n)), sF = ( 
    sup (F2 
    . n)) as 
    Real;
    
            
    
            
    
    A89: (( 
    inf (F2 
    . n)) 
    - e1) 
    = (iF 
    - (e 
    / (2 
    |^ (n 
    + 3)))) & (( 
    sup (F2 
    . n)) 
    + e1) 
    = (sF 
    + (e 
    / (2 
    |^ (n 
    + 3)))) by 
    Lm9,
    XXREAL_3:def 2;
    
            
    
            
    
    A90: (iF 
    - (e 
    / (2 
    |^ (n 
    + 3)))) 
    < iF & sF 
    < (sF 
    + (e 
    / (2 
    |^ (n 
    + 3)))) by 
    A76,
    A9,
    XREAL_1: 139,
    XREAL_1: 29,
    XREAL_1: 44;
    
            then (iF
    - (e 
    / (2 
    |^ (n 
    + 3)))) 
    < sF by 
    A83,
    XXREAL_0: 2;
    
            then ((
    inf (F2 
    . n)) 
    - e1) 
    < (( 
    sup (F2 
    . n)) 
    + e1) by 
    A89,
    A90,
    XXREAL_0: 2;
    
            then (
    diameter (FF 
    . n)) 
    = ((( 
    sup (F2 
    . n)) 
    + e1) 
    - (( 
    inf (F2 
    . n)) 
    - e1)) by 
    A82,
    MEASURE5: 5;
    
            then (
    diameter (FF 
    . n)) 
    = ((sF 
    + (e 
    / (2 
    |^ (n 
    + 3)))) 
    - (iF 
    - (e 
    / (2 
    |^ (n 
    + 3))))) by 
    A89,
    Lm9;
    
            then (
    diameter (FF 
    . n)) 
    = ((sF 
    - iF) 
    + (2 
    * (e 
    / (2 
    |^ ((n 
    + 2) 
    + 1))))); 
    
            then (
    diameter (FF 
    . n)) 
    = ((sF 
    - iF) 
    + (2 
    * (e 
    / ((2 
    |^ (n 
    + 2)) 
    * 2)))) by 
    NEWTON: 6;
    
            then (
    diameter (FF 
    . n)) 
    = ((sF 
    - iF) 
    + (2 
    * ((e 
    / (2 
    |^ (n 
    + 2))) 
    / 2))) by 
    XCMPLX_1: 78;
    
            then
    
            
    
    A91: ((FF 
    vol ) 
    . n) 
    = ((sF 
    - iF) 
    + (e 
    / (2 
    |^ (n 
    + 2)))) by 
    A73,
    MEASURE7:def 4;
    
            (SS
    . n) 
    = ((e 
    / 2) 
    / (2 
    |^ (n 
    + 1))) by 
    A59;
    
            then (SS
    . n) 
    = (e 
    / (2 
    * (2 
    |^ (n 
    + 1)))) by 
    XCMPLX_1: 78;
    
            then
    
            
    
    A92: (SS 
    . n) 
    = (e 
    / (2 
    |^ ((n 
    + 1) 
    + 1))) by 
    NEWTON: 6;
    
            (
    diameter (F2 
    . n)) 
    = (sF 
    - iF) by 
    A84,
    Lm9;
    
            then ((F2
    vol ) 
    . n) 
    = (sF 
    - iF) by 
    A73,
    MEASURE7:def 4;
    
            hence ((FF
    vol ) 
    . n) 
    = (((F2 
    vol ) 
    . n) 
    + (SS 
    . n)) by 
    A92,
    A91,
    XXREAL_3:def 2;
    
          end;
    
        end;
    
        then
    
        
    
    A93: ( 
    SUM (FF 
    vol )) 
    = (( 
    SUM (F2 
    vol )) 
    + ( 
    SUM SS)) by 
    A71,
    MEASURE8: 3;
    
        (
    SUM (F 
    vol )) 
    = ( 
    vol F) & ( 
    SUM (FF 
    vol )) 
    = ( 
    vol FF) by 
    MEASURE7:def 6;
    
        then
    
        
    
    A94: ( 
    vol FF) 
    = (x 
    + (e 
    / 2)) by 
    A21,
    A11,
    A93,
    A72,
    FUNCT_2:def 8;
    
        reconsider I1 = I as
    Subset of 
    R^1 by 
    TOPMETR: 17;
    
        
    
        
    
    A95: I1 is 
    compact by 
    A2,
    Th24;
    
        reconsider F1 = (
    rng FF) as 
    Subset-Family of 
    R^1 by 
    TOPMETR: 17;
    
        I1
    c= ( 
    union ( 
    rng FF)) by 
    MEASURE7:def 2;
    
        then
    
        consider F2 be
    Subset-Family of 
    R^1 such that 
    
        
    
    A96: F2 
    c= F1 & F2 is 
    Cover of I1 & for C be 
    set st C 
    in F2 holds C 
    meets I1 by 
    SETFAM_1:def 11,
    BORSUK_1: 22;
    
        for P be
    Subset of 
    R^1 st P 
    in F1 holds P is 
    open
    
        proof
    
          let P be
    Subset of 
    R^1 ; 
    
          assume P
    in F1; 
    
          then
    
          consider n be
    Element of 
    NAT such that 
    
          
    
    A97: P 
    = (FF 
    . n) by 
    FUNCT_2: 113;
    
          ex p,q be
    R_eal st P 
    =  
    ].p, q.[ by
    A97,
    MEASURE5:def 2;
    
          hence P is
    open by 
    BORSUK_5: 40;
    
        end;
    
        then for P be
    Subset of 
    R^1 st P 
    in F2 holds P is 
    open by 
    A96;
    
        then
    
        consider G1 be
    Subset-Family of 
    R^1 such that 
    
        
    
    A98: G1 
    c= F2 & G1 is 
    Cover of I1 & G1 is 
    finite by 
    A95,
    A96,
    COMPTS_1:def 4,
    TOPS_2:def 1;
    
        reconsider G1 as
    finite  
    set by 
    A98;
    
        now
    
          let A be
    set;
    
          assume A
    in ( 
    rng ( 
    canFS G1)); 
    
          then A
    in F1 by 
    A96,
    A98;
    
          hence A
    in ( 
    bool  
    REAL ); 
    
        end;
    
        then (
    rng ( 
    canFS G1)) 
    c= ( 
    bool  
    REAL ); 
    
        then
    
        reconsider GG = (
    canFS G1) as 
    FinSequence of ( 
    bool  
    REAL ) by 
    FINSEQ_1:def 4;
    
        I
    c= ( 
    union G1) by 
    A98,
    SETFAM_1:def 11;
    
        then I
    c= ( 
    Union GG) by 
    ZFMISC_1: 2,
    SRINGS_3: 2;
    
        then
    
        
    
    A99: I 
    c= ( 
    union ( 
    rng GG)) by 
    CARD_3:def 4;
    
        deffunc
    
    F(
    Nat) = (
    diameter (GG 
    . $1)); 
    
        consider G2 be
    FinSequence of 
    ExtREAL such that 
    
        
    
    A100: ( 
    len G2) 
    = ( 
    len GG) & for n be 
    Nat st n 
    in ( 
    dom G2) holds (G2 
    . n) 
    =  
    F(n) from
    FINSEQ_2:sch 1;
    
        
    
        
    
    A101: ( 
    dom GG) 
    = ( 
    dom G2) by 
    A100,
    FINSEQ_3: 29;
    
        
    
    A102: 
    
        now
    
          let n be
    Nat;
    
          per cases ;
    
            suppose n
    in ( 
    dom GG); 
    
            hence (G2
    . n) 
    = ( 
    diameter (GG 
    . n)) by 
    A100,
    A101;
    
          end;
    
            suppose
    
            
    
    A103: not n 
    in ( 
    dom GG); 
    
            then (G2
    . n) 
    =  
    0 by 
    A101,
    FUNCT_1:def 2;
    
            hence (G2
    . n) 
    = ( 
    diameter (GG 
    . n)) by 
    A103,
    FUNCT_1:def 2,
    MEASURE5: 10;
    
          end;
    
        end;
    
        
    
        
    
    A104: for n be 
    Nat st n 
    in ( 
    dom GG) holds I 
    meets (GG 
    . n) 
    
        proof
    
          let n be
    Nat;
    
          assume n
    in ( 
    dom GG); 
    
          then (GG
    . n) 
    in ( 
    rng ( 
    canFS G1)) by 
    FUNCT_1: 3;
    
          hence thesis by
    A96,
    A98;
    
        end;
    
        for n be
    Nat st n 
    in ( 
    dom GG) holds (GG 
    . n) is 
    open_interval  
    Subset of 
    REAL  
    
        proof
    
          let n be
    Nat;
    
          assume n
    in ( 
    dom GG); 
    
          then (GG
    . n) 
    in ( 
    rng ( 
    canFS G1)) by 
    FUNCT_1: 3;
    
          then (GG
    . n) 
    in G1; 
    
          then ex k be
    Element of 
    NAT st (GG 
    . n) 
    = (FF 
    . k) by 
    A96,
    A98,
    FUNCT_2: 113;
    
          hence (GG
    . n) is 
    open_interval  
    Subset of 
    REAL ; 
    
        end;
    
        then
    
        
    
    A105: DI 
    <= ( 
    Sum G2) by 
    A1,
    A99,
    A100,
    A101,
    A104,
    Th45;
    
        (
    rng ( 
    canFS G1)) 
    c= ( 
    rng FF) by 
    A96,
    A98;
    
        then (
    Sum G2) 
    <= (x 
    + (e 
    / 2)) by 
    A94,
    A1,
    A101,
    A102,
    Th56;
    
        then
    
        
    
    A106: DI 
    <= (x 
    + (e 
    / 2)) by 
    A105,
    XXREAL_0: 2;
    
        reconsider e2 = (e
    / 2) as 
    ExtReal;
    
        
    
        
    
    A107: (e 
    / 2) 
    in  
    REAL by 
    XREAL_0:def 1;
    
        
    
        
    
    A108: ((( 
    inf ( 
    Svc I)) 
    + (e 
    / 2)) 
    + (e 
    / 2)) 
    = (( 
    inf ( 
    Svc I)) 
    + (e2 
    + e2)) by 
    XXREAL_3: 29
    
        .= ((
    inf ( 
    Svc I)) 
    + ((e 
    / 2) 
    + (e 
    / 2))) by 
    XXREAL_3:def 2;
    
        (x
    + (e 
    / 2)) 
    < ((( 
    inf ( 
    Svc I)) 
    + (e 
    / 2)) 
    + (e 
    / 2)) by 
    A107,
    A10,
    XXREAL_3: 43;
    
        then DI
    < (( 
    inf ( 
    Svc I)) 
    + ((e 
    / 2) 
    + (e 
    / 2))) by 
    A108,
    A106,
    XXREAL_0: 2;
    
        then DI
    < (( 
    OS_Meas  
    . I) 
    + e) by 
    MEASURE7:def 10;
    
        hence DI
    <= (LI 
    + e) by 
    XXREAL_3:def 2;
    
      end;
    
      hence thesis by
    XREAL_1: 41;
    
    end;
    
    
    
    
    
    Lm15: for I be 
    Element of 
    Family_of_Intervals st I is non 
    empty
    open_interval & ( 
    diameter I) 
    <  
    +infty holds ( 
    diameter I) 
    <= ( 
    OS_Meas  
    . I) 
    
    proof
    
      let I be
    Element of 
    Family_of_Intervals ; 
    
      assume that
    
      
    
    A1: I is non 
    empty
    open_interval and 
    
      
    
    A2: ( 
    diameter I) 
    <  
    +infty ; 
    
      
    0  
    <= ( 
    diameter I) by 
    A1,
    MEASURE5: 13;
    
      then (
    diameter I) 
    in  
    REAL by 
    A2,
    XXREAL_0: 14;
    
      then
    
      reconsider DI = (
    diameter I) as 
    Real;
    
      
    
      
    
    A3: ( 
    OS_Meas  
    . I) 
    <= ( 
    diameter I) by 
    A1,
    Th44;
    
      
    OS_Meas is 
    nonnegative by 
    MEASURE4:def 1;
    
      then
    -infty  
    <  
    0 & 
    0  
    <= ( 
    OS_Meas  
    . I) by 
    SUPINF_2: 51;
    
      then (
    OS_Meas  
    . I) 
    in  
    REAL by 
    A2,
    A3,
    XXREAL_0: 14;
    
      then
    
      reconsider LI = (
    OS_Meas  
    . I) as 
    Real;
    
      consider a1,a2 be
    R_eal such that 
    
      
    
    A4: I 
    =  
    ].a1, a2.[ by
    A1,
    MEASURE5:def 2;
    
      
    
      
    
    A5: a2 
    <>  
    -infty & a1 
    <>  
    +infty by 
    A1,
    A4,
    XXREAL_1: 28,
    XXREAL_0: 3,
    XXREAL_0: 5;
    
      then
    
      
    
    A6: ( 
    - a1) 
    <>  
    -infty by 
    XXREAL_3: 23;
    
      
    
    A7: 
    
      now
    
        assume a1
    =  
    -infty ; 
    
        then (
    diameter I) 
    = (a2 
    -  
    -infty ) by 
    A1,
    A4,
    XXREAL_1: 28,
    MEASURE5: 5;
    
        then (
    diameter I) 
    = (a2 
    +  
    +infty ) by 
    XXREAL_3: 5,
    XXREAL_3:def 4;
    
        hence contradiction by
    A2,
    A5,
    XXREAL_3:def 2;
    
      end;
    
      
    
    A8: 
    
      now
    
        assume a2
    =  
    +infty ; 
    
        then (
    diameter I) 
    = ( 
    +infty  
    - a1) by 
    A1,
    A4,
    XXREAL_1: 28,
    MEASURE5: 5;
    
        then (
    diameter I) 
    = ( 
    +infty  
    + ( 
    - a1)) by 
    XXREAL_3:def 4;
    
        hence contradiction by
    A2,
    A6,
    XXREAL_3:def 2;
    
      end;
    
      a1
    <>  
    +infty & a2 
    <>  
    -infty by 
    A1,
    A4,
    XXREAL_1: 28,
    XXREAL_0: 3,
    XXREAL_0: 5;
    
      then a1
    in  
    REAL & a2 
    in  
    REAL by 
    A7,
    A8,
    XXREAL_0: 14;
    
      then
    
      reconsider r1 = a1, r2 = a2 as
    Real;
    
      DI
    = (a2 
    - a1) by 
    A1,
    A4,
    XXREAL_1: 28,
    MEASURE5: 5;
    
      then
    
      
    
    A9: DI 
    = (r2 
    - r1) by 
    Lm9;
    
      then
    0  
    < DI by 
    A1,
    A4,
    XXREAL_1: 28,
    XREAL_1: 50;
    
      then
    
      
    
    A10: (DI 
    / 2) 
    < DI & 
    0  
    < (DI 
    / 2) by 
    XREAL_1: 215,
    XREAL_1: 216;
    
      for e be
    Real st 
    0  
    < e holds DI 
    <= (LI 
    + e) 
    
      proof
    
        let e be
    Real;
    
        assume
    
        
    
    A11: 
    0  
    < e; 
    
        set e1 = (
    min ((DI 
    / 2),e)); 
    
        e1
    >  
    0 by 
    A10,
    A11,
    XXREAL_0: 21;
    
        then
    
        
    
    A12: r1 
    < (r1 
    + (e1 
    / 2)) & (r2 
    - (e1 
    / 2)) 
    < r2 by 
    XREAL_1: 29,
    XREAL_1: 44,
    XREAL_1: 215;
    
        e1
    <= (DI 
    / 2) & e1 
    <= e by 
    XXREAL_0: 17;
    
        then
    
        
    
    A13: e1 
    < DI by 
    A10,
    XXREAL_0: 2;
    
        
    
        
    
    A14: ((r2 
    - (e1 
    / 2)) 
    - (r1 
    + (e1 
    / 2))) 
    = (DI 
    - e1) by 
    A9;
    
        then ((r2
    - (e1 
    / 2)) 
    - (r1 
    + (e1 
    / 2))) 
    >  
    0 by 
    A13,
    XREAL_1: 50;
    
        then
    
        
    
    A15: (r1 
    + (e1 
    / 2)) 
    < (r2 
    - (e1 
    / 2)) by 
    XREAL_1: 47;
    
        set J =
    [.(r1
    + (e1 
    / 2)), (r2 
    - (e1 
    / 2)).]; 
    
        reconsider J as non
    empty
    closed_interval  
    Subset of 
    REAL by 
    A15,
    MEASURE5: 14;
    
        reconsider j1 = (r1
    + (e1 
    / 2)), j2 = (r2 
    - (e1 
    / 2)) as 
    R_eal by 
    XXREAL_0:def 1;
    
        
    
        
    
    A16: ( 
    diameter J) 
    = (j2 
    - j1) by 
    A15,
    MEASURE5: 6;
    
        then
    
        reconsider DJ = (
    diameter J) as 
    Real;
    
        (
    diameter J) 
    = (DI 
    - e1) by 
    A14,
    A16,
    Lm9;
    
        then DI
    = (DJ 
    + e1); 
    
        then
    
        
    
    A17: DI 
    <= (DJ 
    + e) by 
    XXREAL_0: 17,
    XREAL_1: 6;
    
        J
    in the set of all I where I be 
    Interval;
    
        then
    
        
    
    A18: ( 
    diameter J) 
    <= ( 
    OS_Meas  
    . J) by 
    Lm14,
    MEASUR10:def 1;
    
        J
    c= I by 
    A4,
    A12,
    XXREAL_1: 47;
    
        then (
    OS_Meas  
    . J) 
    <= LI by 
    MEASURE4:def 1;
    
        then DJ
    <= LI by 
    A18,
    XXREAL_0: 2;
    
        then (DJ
    + e) 
    <= (LI 
    + e) by 
    XREAL_1: 6;
    
        hence DI
    <= (LI 
    + e) by 
    A17,
    XXREAL_0: 2;
    
      end;
    
      hence (
    diameter I) 
    <= ( 
    OS_Meas  
    . I) by 
    XREAL_1: 41;
    
    end;
    
    
    
    
    
    Lm16: for I be 
    Element of 
    Family_of_Intervals st I is non 
    empty
    left_open_interval & ( 
    diameter I) 
    <  
    +infty holds ( 
    diameter I) 
    <= ( 
    OS_Meas  
    . I) 
    
    proof
    
      let I be
    Element of 
    Family_of_Intervals ; 
    
      assume that
    
      
    
    A1: I is non 
    empty
    left_open_interval and 
    
      
    
    A2: ( 
    diameter I) 
    <  
    +infty ; 
    
      
    0  
    <= ( 
    diameter I) by 
    A1,
    MEASURE5: 13;
    
      then (
    diameter I) 
    in  
    REAL by 
    A2,
    XXREAL_0: 14;
    
      then
    
      reconsider DI = (
    diameter I) as 
    Real;
    
      
    
      
    
    A3: ( 
    OS_Meas  
    . I) 
    <= ( 
    diameter I) by 
    A1,
    Th44;
    
      
    OS_Meas is 
    nonnegative by 
    MEASURE4:def 1;
    
      then
    -infty  
    <  
    0 & 
    0  
    <= ( 
    OS_Meas  
    . I) by 
    SUPINF_2: 51;
    
      then (
    OS_Meas  
    . I) 
    in  
    REAL by 
    A2,
    A3,
    XXREAL_0: 14;
    
      then
    
      reconsider LI = (
    OS_Meas  
    . I) as 
    Real;
    
      consider a1 be
    R_eal, r2 be 
    Real such that 
    
      
    
    A4: I 
    =  
    ].a1, r2.] by
    A1,
    MEASURE5:def 5;
    
      reconsider a2 = r2 as
    R_eal by 
    XXREAL_0:def 1;
    
      
    
    A5: 
    
      now
    
        assume a1
    =  
    -infty ; 
    
        then (
    diameter I) 
    = (a2 
    -  
    -infty ) by 
    A1,
    A4,
    XXREAL_1: 26,
    MEASURE5: 8;
    
        then (
    diameter I) 
    = (r2 
    +  
    +infty ) by 
    XXREAL_3: 5,
    XXREAL_3:def 4;
    
        hence contradiction by
    A2,
    XXREAL_3:def 2;
    
      end;
    
      a1
    <>  
    +infty by 
    A1,
    A4,
    XXREAL_1: 26,
    XXREAL_0: 3;
    
      then a1
    in  
    REAL by 
    A5,
    XXREAL_0: 14;
    
      then
    
      reconsider r1 = a1 as
    Real;
    
      DI
    = (a2 
    - a1) by 
    A1,
    A4,
    XXREAL_1: 26,
    MEASURE5: 8;
    
      then
    
      
    
    A6: DI 
    = (r2 
    - r1) by 
    Lm9;
    
      then
    0  
    < DI by 
    A1,
    A4,
    XXREAL_1: 26,
    XREAL_1: 50;
    
      then
    
      
    
    A7: (DI 
    / 2) 
    < DI & 
    0  
    < (DI 
    / 2) by 
    XREAL_1: 215,
    XREAL_1: 216;
    
      for e be
    Real st 
    0  
    < e holds DI 
    <= (LI 
    + e) 
    
      proof
    
        let e be
    Real;
    
        assume
    
        
    
    A8: 
    0  
    < e; 
    
        set e1 = (
    min ((DI 
    / 2),e)); 
    
        e1
    >  
    0 by 
    A7,
    A8,
    XXREAL_0: 21;
    
        then
    
        
    
    A9: r1 
    < (r1 
    + (e1 
    / 2)) & (r2 
    - (e1 
    / 2)) 
    < r2 by 
    XREAL_1: 29,
    XREAL_1: 44,
    XREAL_1: 215;
    
        e1
    <= (DI 
    / 2) & e1 
    <= e by 
    XXREAL_0: 17;
    
        then
    
        
    
    A10: e1 
    < DI by 
    A7,
    XXREAL_0: 2;
    
        set J =
    [.(r1
    + (e1 
    / 2)), (r2 
    - (e1 
    / 2)).]; 
    
        ((r2
    - (e1 
    / 2)) 
    - (r1 
    + (e1 
    / 2))) 
    = (DI 
    - e1) by 
    A6;
    
        then ((r2
    - (e1 
    / 2)) 
    - (r1 
    + (e1 
    / 2))) 
    >  
    0 by 
    A10,
    XREAL_1: 50;
    
        then
    
        
    
    A11: (r1 
    + (e1 
    / 2)) 
    < (r2 
    - (e1 
    / 2)) by 
    XREAL_1: 47;
    
        then
    
        reconsider J as non
    empty
    closed_interval  
    Subset of 
    REAL by 
    MEASURE5: 14;
    
        reconsider j1 = (r1
    + (e1 
    / 2)), j2 = (r2 
    - (e1 
    / 2)) as 
    R_eal by 
    XXREAL_0:def 1;
    
        
    
        
    
    A12: ( 
    diameter J) 
    = (j2 
    - j1) by 
    A11,
    MEASURE5: 6;
    
        then
    
        reconsider DJ = (
    diameter J) as 
    Real;
    
        (
    diameter J) 
    = ((r2 
    - (e1 
    / 2)) 
    - (r1 
    + (e1 
    / 2))) by 
    A12,
    Lm9;
    
        then DI
    = (DJ 
    + e1) by 
    A6;
    
        then
    
        
    
    A13: DI 
    <= (DJ 
    + e) by 
    XXREAL_0: 17,
    XREAL_1: 6;
    
        J
    in the set of all I where I be 
    Interval;
    
        then
    
        
    
    A14: ( 
    diameter J) 
    <= ( 
    OS_Meas  
    . J) by 
    Lm14,
    MEASUR10:def 1;
    
        J
    c= I by 
    A4,
    A9,
    XXREAL_1: 39;
    
        then (
    OS_Meas  
    . J) 
    <= LI by 
    MEASURE4:def 1;
    
        then DJ
    <= LI by 
    A14,
    XXREAL_0: 2;
    
        then (DJ
    + e) 
    <= (LI 
    + e) by 
    XREAL_1: 6;
    
        hence DI
    <= (LI 
    + e) by 
    A13,
    XXREAL_0: 2;
    
      end;
    
      hence (
    diameter I) 
    <= ( 
    OS_Meas  
    . I) by 
    XREAL_1: 41;
    
    end;
    
    
    
    
    
    Lm17: for I be 
    Element of 
    Family_of_Intervals st I is non 
    empty
    right_open_interval & ( 
    diameter I) 
    <  
    +infty holds ( 
    diameter I) 
    <= ( 
    OS_Meas  
    . I) 
    
    proof
    
      let I be
    Element of 
    Family_of_Intervals ; 
    
      assume that
    
      
    
    A1: I is non 
    empty
    right_open_interval and 
    
      
    
    A2: ( 
    diameter I) 
    <  
    +infty ; 
    
      
    0  
    <= ( 
    diameter I) by 
    A1,
    MEASURE5: 13;
    
      then (
    diameter I) 
    in  
    REAL by 
    A2,
    XXREAL_0: 14;
    
      then
    
      reconsider DI = (
    diameter I) as 
    Real;
    
      
    
      
    
    A3: ( 
    OS_Meas  
    . I) 
    <= ( 
    diameter I) by 
    A1,
    Th44;
    
      
    OS_Meas is 
    nonnegative by 
    MEASURE4:def 1;
    
      then
    -infty  
    <  
    0 & 
    0  
    <= ( 
    OS_Meas  
    . I) by 
    SUPINF_2: 51;
    
      then (
    OS_Meas  
    . I) 
    in  
    REAL by 
    A2,
    A3,
    XXREAL_0: 14;
    
      then
    
      reconsider LI = (
    OS_Meas  
    . I) as 
    Real;
    
      consider r1 be
    Real, a2 be 
    R_eal such that 
    
      
    
    A4: I 
    =  
    [.r1, a2.[ by
    A1,
    MEASURE5:def 4;
    
      reconsider a1 = r1 as
    R_eal by 
    XXREAL_0:def 1;
    
      
    
    A5: 
    
      now
    
        assume a2
    =  
    +infty ; 
    
        then (
    diameter I) 
    = ( 
    +infty  
    - a1) by 
    A1,
    A4,
    XXREAL_1: 27,
    MEASURE5: 7;
    
        then (
    diameter I) 
    = ( 
    +infty  
    + ( 
    - a1)) by 
    XXREAL_3:def 4;
    
        hence contradiction by
    A2,
    XXREAL_3:def 2;
    
      end;
    
      a2
    <>  
    -infty by 
    A1,
    A4,
    XXREAL_1: 27,
    XXREAL_0: 5;
    
      then a2
    in  
    REAL by 
    A5,
    XXREAL_0: 14;
    
      then
    
      reconsider r2 = a2 as
    Real;
    
      DI
    = (a2 
    - a1) by 
    A1,
    A4,
    XXREAL_1: 27,
    MEASURE5: 7;
    
      then
    
      
    
    A6: DI 
    = (r2 
    - r1) by 
    Lm9;
    
      then
    0  
    < DI by 
    A1,
    A4,
    XXREAL_1: 27,
    XREAL_1: 50;
    
      then
    
      
    
    A7: (DI 
    / 2) 
    < DI & 
    0  
    < (DI 
    / 2) by 
    XREAL_1: 215,
    XREAL_1: 216;
    
      for e be
    Real st 
    0  
    < e holds DI 
    <= (LI 
    + e) 
    
      proof
    
        let e be
    Real;
    
        assume
    
        
    
    A8: 
    0  
    < e; 
    
        set e1 = (
    min ((DI 
    / 2),e)); 
    
        
    
        
    
    A9: e1 
    >  
    0 by 
    A7,
    A8,
    XXREAL_0: 21;
    
        e1
    <= (DI 
    / 2) & e1 
    <= e by 
    XXREAL_0: 17;
    
        then
    
        
    
    A10: e1 
    < DI by 
    A7,
    XXREAL_0: 2;
    
        set J =
    [.(r1
    + (e1 
    / 2)), (r2 
    - (e1 
    / 2)).]; 
    
        ((r2
    - (e1 
    / 2)) 
    - (r1 
    + (e1 
    / 2))) 
    = (DI 
    - e1) by 
    A6;
    
        then ((r2
    - (e1 
    / 2)) 
    - (r1 
    + (e1 
    / 2))) 
    >  
    0 by 
    A10,
    XREAL_1: 50;
    
        then
    
        
    
    A11: (r1 
    + (e1 
    / 2)) 
    < (r2 
    - (e1 
    / 2)) by 
    XREAL_1: 47;
    
        then
    
        reconsider J as non
    empty
    closed_interval  
    Subset of 
    REAL by 
    MEASURE5: 14;
    
        reconsider j1 = (r1
    + (e1 
    / 2)), j2 = (r2 
    - (e1 
    / 2)) as 
    R_eal by 
    XXREAL_0:def 1;
    
        
    
        
    
    A12: ( 
    diameter J) 
    = (j2 
    - j1) by 
    A11,
    MEASURE5: 6;
    
        then
    
        reconsider DJ = (
    diameter J) as 
    Real;
    
        (
    diameter J) 
    = ((r2 
    - (e1 
    / 2)) 
    - (r1 
    + (e1 
    / 2))) by 
    A12,
    Lm9;
    
        then DI
    = (DJ 
    + e1) by 
    A6;
    
        then
    
        
    
    A13: DI 
    <= (DJ 
    + e) by 
    XXREAL_0: 17,
    XREAL_1: 6;
    
        J
    in the set of all I where I be 
    Interval;
    
        then
    
        
    
    A14: ( 
    diameter J) 
    <= ( 
    OS_Meas  
    . J) by 
    Lm14,
    MEASUR10:def 1;
    
        r1
    < (r1 
    + (e1 
    / 2)) & (r2 
    - (e1 
    / 2)) 
    < r2 by 
    A9,
    XREAL_1: 29,
    XREAL_1: 44,
    XREAL_1: 215;
    
        then J
    c= I by 
    A4,
    XXREAL_1: 43;
    
        then (
    OS_Meas  
    . J) 
    <= LI by 
    MEASURE4:def 1;
    
        then DJ
    <= LI by 
    A14,
    XXREAL_0: 2;
    
        then (DJ
    + e) 
    <= (LI 
    + e) by 
    XREAL_1: 6;
    
        hence DI
    <= (LI 
    + e) by 
    A13,
    XXREAL_0: 2;
    
      end;
    
      hence (
    diameter I) 
    <= ( 
    OS_Meas  
    . I) by 
    XREAL_1: 41;
    
    end;
    
    
    
    
    
    Lm18: for a,b be 
    Real st a 
    <= b holds ( 
    diameter  
    [.a, b.])
    = (b 
    - a) 
    
    proof
    
      let a,b be
    Real;
    
      reconsider a1 = a, b1 = b as
    R_eal by 
    XXREAL_0:def 1;
    
      assume a
    <= b; 
    
      then (
    diameter  
    [.a, b.])
    = (b1 
    - a1) by 
    MEASURE5: 6;
    
      hence thesis by
    Lm9;
    
    end;
    
    
    
    
    
    Lm19: for I be 
    Element of 
    Family_of_Intervals st ( 
    diameter I) 
    =  
    +infty holds ( 
    sup I) 
    =  
    +infty or ( 
    inf I) 
    =  
    -infty  
    
    proof
    
      let I be
    Element of 
    Family_of_Intervals ; 
    
      assume
    
      
    
    A1: ( 
    diameter I) 
    =  
    +infty ; 
    
      now
    
        assume (
    sup I) 
    <>  
    +infty & ( 
    inf I) 
    <>  
    -infty ; 
    
        then ((
    sup I) 
    - ( 
    inf I)) 
    <>  
    +infty by 
    XXREAL_3: 18;
    
        hence contradiction by
    A1,
    MEASURE5:def 6;
    
      end;
    
      hence thesis;
    
    end;
    
    
    
    
    
    Lm20: for I be non 
    empty
    closed_interval  
    Subset of 
    REAL holds ( 
    diameter I) 
    = ( 
    OS_Meas  
    . I) 
    
    proof
    
      let I be non
    empty
    closed_interval  
    Subset of 
    REAL ; 
    
      I
    in the set of all I where I be 
    Interval;
    
      then (
    OS_Meas  
    . I) 
    <= ( 
    diameter I) & ( 
    diameter I) 
    <= ( 
    OS_Meas  
    . I) by 
    Th44,
    Lm14,
    MEASUR10:def 1;
    
      hence (
    diameter I) 
    = ( 
    OS_Meas  
    . I) by 
    XXREAL_0: 1;
    
    end;
    
    
    
    
    
    Lm21: for I be 
    Element of 
    Family_of_Intervals st ( 
    diameter I) 
    =  
    +infty holds ( 
    diameter I) 
    <= ( 
    OS_Meas  
    . I) 
    
    proof
    
      let I be
    Element of 
    Family_of_Intervals ; 
    
      assume
    
      
    
    A1: ( 
    diameter I) 
    =  
    +infty ; 
    
      
    
    A2: 
    
      now
    
        assume (
    inf I) 
    = ( 
    sup I); 
    
        then (
    diameter I) 
    = (( 
    sup I) 
    - ( 
    sup I)) by 
    A1,
    MEASURE5:def 6;
    
        then (
    diameter I) 
    = (( 
    sup I) 
    + ( 
    - ( 
    sup I))) by 
    XXREAL_3:def 4;
    
        hence contradiction by
    A1,
    XXREAL_3: 7;
    
      end;
    
      I
    in the set of all I where I be 
    Interval by 
    MEASUR10:def 1;
    
      then
    
      
    
    A3: ex L be 
    Interval st I 
    = L; 
    
      
    
      
    
    A4: for R be 
    Real holds R 
    <= ( 
    OS_Meas  
    . I) 
    
      proof
    
        let R be
    Real;
    
        per cases ;
    
          suppose
    
          
    
    A5: R 
    <=  
    0 ; 
    
          
    OS_Meas is 
    nonnegative by 
    MEASURE4:def 1;
    
          hence R
    <= ( 
    OS_Meas  
    . I) by 
    A5,
    SUPINF_2: 51;
    
        end;
    
          suppose
    
          
    
    A6: R 
    >  
    0 ; 
    
          ex J be non
    empty
    closed_interval  
    Subset of 
    REAL st R 
    = ( 
    OS_Meas  
    . J) & J 
    c= I 
    
          proof
    
            per cases by
    A1,
    Lm19;
    
              suppose
    
              
    
    A7: ( 
    sup I) 
    =  
    +infty & ( 
    inf I) 
    =  
    -infty ; 
    
              reconsider J =
    [.
    0 , R.] as non 
    empty
    closed_interval  
    Subset of 
    REAL by 
    A6,
    MEASURE5: 14;
    
              take J;
    
              
    
    A8: 
    
              now
    
                let r be
    Real;
    
                assume r
    in J; 
    
                (
    inf I) 
    < r & r 
    < ( 
    sup I) by 
    A7,
    XXREAL_0: 4,
    XXREAL_0: 6;
    
                hence r
    in I by 
    A3,
    XXREAL_2: 83;
    
              end;
    
              (
    diameter J) 
    = (R 
    -  
    0 ) by 
    A6,
    Lm18;
    
              hence thesis by
    A8,
    Lm20;
    
            end;
    
              suppose
    
              
    
    A9: ( 
    sup I) 
    =  
    +infty & ( 
    inf I) 
    <>  
    -infty ; 
    
              then (
    inf I) 
    in  
    REAL by 
    A2,
    XXREAL_0: 14;
    
              then
    
              reconsider r = (
    inf I) as 
    Real;
    
              
    
              
    
    A10: r 
    < (r 
    + 1) & (r 
    + 1) 
    < ((r 
    + 1) 
    + R) by 
    A6,
    XREAL_1: 29;
    
              then
    
              reconsider J =
    [.(r
    + 1), ((r 
    + 1) 
    + R).] as non 
    empty
    closed_interval  
    Subset of 
    REAL by 
    MEASURE5: 14;
    
              take J;
    
              
    
    A11: 
    
              now
    
                let p be
    Real;
    
                assume p
    in J; 
    
                then (r
    + 1) 
    <= p 
    <= ((r 
    + 1) 
    + R) by 
    XXREAL_1: 1;
    
                then (
    inf I) 
    < p & p 
    < ( 
    sup I) by 
    A9,
    A10,
    XXREAL_0: 2,
    XXREAL_0: 4;
    
                hence p
    in I by 
    A3,
    XXREAL_2: 83;
    
              end;
    
              (
    diameter J) 
    = (((r 
    + 1) 
    + R) 
    - (r 
    + 1)) by 
    A10,
    Lm18;
    
              hence thesis by
    A11,
    Lm20;
    
            end;
    
              suppose
    
              
    
    A12: ( 
    sup I) 
    <>  
    +infty & ( 
    inf I) 
    =  
    -infty ; 
    
              then (
    sup I) 
    in  
    REAL by 
    A2,
    XXREAL_0: 14;
    
              then
    
              reconsider r = (
    sup I) as 
    Real;
    
              
    
              
    
    A13: ((r 
    - 1) 
    - R) 
    < (r 
    - 1) 
    < r by 
    A6,
    XREAL_1: 44;
    
              then
    
              reconsider J =
    [.((r
    - 1) 
    - R), (r 
    - 1).] as non 
    empty
    closed_interval  
    Subset of 
    REAL by 
    MEASURE5: 14;
    
              take J;
    
              
    
    A14: 
    
              now
    
                let p be
    Real;
    
                assume p
    in J; 
    
                then ((r
    - 1) 
    - R) 
    <= p 
    <= (r 
    - 1) by 
    XXREAL_1: 1;
    
                then (
    inf I) 
    < p & p 
    < ( 
    sup I) by 
    A12,
    A13,
    XXREAL_0: 2,
    XXREAL_0: 6;
    
                hence p
    in I by 
    A3,
    XXREAL_2: 83;
    
              end;
    
              (
    diameter J) 
    = ((r 
    - 1) 
    - ((r 
    - 1) 
    - R)) by 
    A13,
    Lm18
    
              .= R;
    
              hence thesis by
    A14,
    Lm20;
    
            end;
    
          end;
    
          hence R
    <= ( 
    OS_Meas  
    . I) by 
    MEASURE4:def 1;
    
        end;
    
      end;
    
      now
    
        assume
    
        
    
    A15: ( 
    OS_Meas  
    . I) 
    <>  
    +infty ; 
    
        
    OS_Meas is 
    nonnegative by 
    MEASURE4:def 1;
    
        then (
    OS_Meas  
    . I) 
    >=  
    0 by 
    SUPINF_2: 51;
    
        then (
    OS_Meas  
    . I) 
    in  
    REAL by 
    A15,
    XXREAL_0: 14;
    
        then
    
        reconsider R0 = (
    OS_Meas  
    . I) as 
    Real;
    
        R0
    < (R0 
    + 1) by 
    XREAL_1: 29;
    
        hence contradiction by
    A4;
    
      end;
    
      hence (
    diameter I) 
    <= ( 
    OS_Meas  
    . I) by 
    A1;
    
    end;
    
    
    
    
    
    Lm22: for I be 
    Interval holds ( 
    diameter I) 
    <= ( 
    OS_Meas  
    . I) 
    
    proof
    
      let I be
    Interval;
    
      
    
      
    
    A1: I 
    in the set of all I where I be 
    Interval;
    
      per cases ;
    
        suppose
    
        
    
    A2: I 
    =  
    {} ; 
    
        
    OS_Meas is 
    zeroed by 
    MEASURE4:def 1;
    
        then (
    OS_Meas  
    . I) 
    =  
    0 by 
    A2,
    VALUED_0:def 19;
    
        hence (
    diameter I) 
    <= ( 
    OS_Meas  
    . I) by 
    A2,
    MEASURE5:def 6;
    
      end;
    
        suppose I
    <>  
    {} & ( 
    diameter I) 
    =  
    +infty ; 
    
        hence (
    diameter I) 
    <= ( 
    OS_Meas  
    . I) by 
    A1,
    Lm21,
    MEASUR10:def 1;
    
      end;
    
        suppose
    
        
    
    A3: I 
    <>  
    {} & ( 
    diameter I) 
    <>  
    +infty ; 
    
        I is
    open_interval or I is 
    closed_interval or I is 
    right_open_interval or I is 
    left_open_interval by 
    MEASURE5: 1;
    
        hence (
    diameter I) 
    <= ( 
    OS_Meas  
    . I) by 
    A1,
    A3,
    Lm15,
    Lm16,
    Lm17,
    Lm20,
    XXREAL_0: 4,
    MEASUR10:def 1;
    
      end;
    
    end;
    
    theorem :: 
    
    MEASUR12:57
    
    
    
    
    
    Th57: for I be 
    Interval holds ( 
    diameter I) 
    = ( 
    OS_Meas  
    . I) 
    
    proof
    
      let I be
    Interval;
    
      I
    in the set of all I where I be 
    Interval;
    
      then (
    OS_Meas  
    . I) 
    <= ( 
    diameter I) & ( 
    diameter I) 
    <= ( 
    OS_Meas  
    . I) by 
    Th44,
    Lm22,
    MEASUR10:def 1;
    
      hence thesis by
    XXREAL_0: 1;
    
    end;
    
    begin
    
    definition
    
      let F be
    FinSequence of 
    Family_of_Intervals ; 
    
      let n be
    Nat;
    
      :: original:
    .
    
      redefine
    
      func F
    
    . n -> 
    interval  
    Subset of 
    REAL ; 
    
      correctness
    
      proof
    
        per cases ;
    
          suppose n
    in ( 
    dom F); 
    
          then (F
    . n) 
    in  
    Family_of_Intervals by 
    PARTFUN1: 4;
    
          then ex I be
    Interval st (F 
    . n) 
    = I by 
    MEASUR10:def 1;
    
          hence (F
    . n) is 
    interval  
    Subset of 
    REAL ; 
    
        end;
    
          suppose not n
    in ( 
    dom F); 
    
          then (F
    . n) 
    =  
    {} & 
    {}  
    c=  
    REAL by 
    FUNCT_1:def 2;
    
          hence (F
    . n) is 
    interval  
    Subset of 
    REAL ; 
    
        end;
    
      end;
    
    end
    
    definition
    
      :: 
    
    MEASUR12:def8
    
      func
    
    pre-Meas -> 
    nonnegative
    zeroed  
    Function of 
    Family_of_Intervals , 
    ExtREAL equals ( 
    OS_Meas  
    |  
    Family_of_Intervals ); 
    
      correctness
    
      proof
    
        set IT = (
    OS_Meas  
    |  
    Family_of_Intervals ); 
    
        
    
        
    
    A1: 
    OS_Meas is 
    nonnegative
    zeroed by 
    MEASURE4:def 1;
    
        reconsider IT as
    Function of 
    Family_of_Intervals , 
    ExtREAL by 
    FUNCT_2: 32;
    
        
    
        
    
    A2: ( 
    dom IT) 
    =  
    Family_of_Intervals by 
    FUNCT_2:def 1;
    
        
    
    A3: 
    
        now
    
          let x be
    Element of 
    Family_of_Intervals ; 
    
          (IT
    . x) 
    = ( 
    OS_Meas  
    . x) by 
    A2,
    FUNCT_1: 47;
    
          hence (IT
    . x) 
    >=  
    0 by 
    A1,
    MEASURE1:def 2;
    
        end;
    
        (IT
    .  
    {} ) 
    = ( 
    OS_Meas  
    .  
    {} ) by 
    A2,
    SETFAM_1:def 8,
    FUNCT_1: 47;
    
        then (IT
    .  
    {} ) 
    =  
    0 by 
    A1,
    VALUED_0:def 19;
    
        hence thesis by
    A3,
    VALUED_0:def 19,
    MEASURE1:def 2;
    
      end;
    
    end
    
    theorem :: 
    
    MEASUR12:58
    
    
    
    
    
    Th58: for I be 
    Element of 
    Family_of_Intervals holds ( 
    pre-Meas  
    . I) 
    = ( 
    diameter I) 
    
    proof
    
      let I be
    Element of 
    Family_of_Intervals ; 
    
      I
    in the set of all J where J be 
    Interval by 
    MEASUR10:def 1;
    
      then
    
      
    
    A1: ex J be 
    Interval st I 
    = J; 
    
      (
    pre-Meas  
    . I) 
    = ( 
    OS_Meas  
    . I) by 
    FUNCT_1: 49;
    
      hence (
    pre-Meas  
    . I) 
    = ( 
    diameter I) by 
    A1,
    Th57;
    
    end;
    
    theorem :: 
    
    MEASUR12:59
    
    
    
    
    
    Th59: for I be 
    Interval holds ( 
    pre-Meas  
    . I) 
    = ( 
    diameter I) 
    
    proof
    
      let I be
    Interval;
    
      I
    in the set of all J where J be 
    Interval;
    
      hence thesis by
    Th58,
    MEASUR10:def 1;
    
    end;
    
    theorem :: 
    
    MEASUR12:60
    
    
    
    
    
    Th60: for A,B be 
    Element of 
    Family_of_Intervals st A 
    misses B & (A 
    \/ B) is 
    Interval holds ( 
    pre-Meas  
    . (A 
    \/ B)) 
    = (( 
    pre-Meas  
    . A) 
    + ( 
    pre-Meas  
    . B)) 
    
    proof
    
      let A,B be
    Element of 
    Family_of_Intervals ; 
    
      assume that
    
      
    
    A1: A 
    misses B and 
    
      
    
    A2: (A 
    \/ B) is 
    Interval;
    
      A
    in the set of all I where I be 
    Interval by 
    MEASUR10:def 1;
    
      then
    
      
    
    A3: ex I be 
    Interval st A 
    = I; 
    
      B
    in the set of all I where I be 
    Interval by 
    MEASUR10:def 1;
    
      then
    
      
    
    A4: ex I be 
    Interval st B 
    = I; 
    
      per cases ;
    
        suppose
    
        
    
    A5: A 
    =  
    {} ; 
    
        then (
    pre-Meas  
    . A) 
    =  
    0 by 
    Th58,
    MEASURE5: 10;
    
        hence (
    pre-Meas  
    . (A 
    \/ B)) 
    = (( 
    pre-Meas  
    . A) 
    + ( 
    pre-Meas  
    . B)) by 
    A5,
    XXREAL_3: 4;
    
      end;
    
        suppose
    
        
    
    A6: B 
    =  
    {} ; 
    
        then (
    pre-Meas  
    . B) 
    =  
    0 by 
    Th58,
    MEASURE5: 10;
    
        hence (
    pre-Meas  
    . (A 
    \/ B)) 
    = (( 
    pre-Meas  
    . A) 
    + ( 
    pre-Meas  
    . B)) by 
    A6,
    XXREAL_3: 4;
    
      end;
    
        suppose
    
        
    
    A7: A 
    <>  
    {} & B 
    <>  
    {} ; 
    
        per cases by
    A3,
    MEASURE5: 1;
    
          suppose A is
    closed_interval;
    
          then
    
          
    
    A8: A 
    =  
    [.(
    inf A), ( 
    sup A).] by 
    A7,
    MEASURE6: 17;
    
          (
    inf A) 
    <= ( 
    sup A) by 
    A7,
    A8,
    XXREAL_1: 29;
    
          then
    
          
    
    A9: A is 
    left_end
    right_end by 
    A8,
    XXREAL_2: 33;
    
          
    
    A10: 
    
          now
    
            assume B is
    closed_interval;
    
            then B
    =  
    [.(
    inf B), ( 
    sup B).] by 
    A7,
    MEASURE6: 17;
    
            hence contradiction by
    A1,
    A2,
    A7,
    A8,
    Th14;
    
          end;
    
          per cases by
    A4,
    A10,
    MEASURE5: 1;
    
            suppose B is
    right_open_interval;
    
            then B
    =  
    [.(
    inf B), ( 
    sup B).[ by 
    A7,
    MEASURE6: 18;
    
            then
    
            
    
    A11: ( 
    inf A) 
    = ( 
    sup B) & (A 
    \/ B) 
    =  
    [.(
    inf B), ( 
    sup A).] by 
    A1,
    A2,
    A7,
    A8,
    Th15;
    
            then
    
            
    
    A12: ( 
    sup (A 
    \/ B)) 
    = ( 
    sup A) & ( 
    inf (A 
    \/ B)) 
    = ( 
    inf B) by 
    A7,
    XXREAL_1: 29,
    MEASURE6: 10,
    MEASURE6: 14;
    
            (
    pre-Meas  
    . (A 
    \/ B)) 
    = ( 
    diameter (A 
    \/ B)) by 
    A2,
    Th59;
    
            then
    
            
    
    A13: ( 
    pre-Meas  
    . (A 
    \/ B)) 
    = (( 
    sup A) 
    - ( 
    inf B)) by 
    A7,
    A12,
    MEASURE5:def 6;
    
            (
    pre-Meas  
    . A) 
    = ( 
    diameter A) & ( 
    pre-Meas  
    . B) 
    = ( 
    diameter B) by 
    Th58;
    
            then (
    pre-Meas  
    . A) 
    = (( 
    sup A) 
    - ( 
    inf A)) & ( 
    pre-Meas  
    . B) 
    = (( 
    sup B) 
    - ( 
    inf B)) by 
    A7,
    MEASURE5:def 6;
    
            hence (
    pre-Meas  
    . (A 
    \/ B)) 
    = (( 
    pre-Meas  
    . A) 
    + ( 
    pre-Meas  
    . B)) by 
    A13,
    A9,
    A11,
    XXREAL_3: 34;
    
          end;
    
            suppose B is
    left_open_interval;
    
            then B
    =  
    ].(
    inf B), ( 
    sup B).] by 
    A7,
    MEASURE6: 19;
    
            then
    
            
    
    A14: ( 
    sup A) 
    = ( 
    inf B) & (A 
    \/ B) 
    =  
    [.(
    inf A), ( 
    sup B).] by 
    A1,
    A2,
    A7,
    A8,
    Th16;
    
            then
    
            
    
    A15: ( 
    sup (A 
    \/ B)) 
    = ( 
    sup B) & ( 
    inf (A 
    \/ B)) 
    = ( 
    inf A) by 
    A7,
    XXREAL_1: 29,
    MEASURE6: 10,
    MEASURE6: 14;
    
            (
    pre-Meas  
    . (A 
    \/ B)) 
    = ( 
    diameter (A 
    \/ B)) by 
    A2,
    Th59;
    
            then
    
            
    
    A16: ( 
    pre-Meas  
    . (A 
    \/ B)) 
    = (( 
    sup B) 
    - ( 
    inf A)) by 
    A7,
    A15,
    MEASURE5:def 6;
    
            (
    pre-Meas  
    . A) 
    = ( 
    diameter A) & ( 
    pre-Meas  
    . B) 
    = ( 
    diameter B) by 
    Th58;
    
            then (
    pre-Meas  
    . A) 
    = (( 
    sup A) 
    - ( 
    inf A)) & ( 
    pre-Meas  
    . B) 
    = (( 
    sup B) 
    - ( 
    inf B)) by 
    A7,
    MEASURE5:def 6;
    
            hence (
    pre-Meas  
    . (A 
    \/ B)) 
    = (( 
    pre-Meas  
    . A) 
    + ( 
    pre-Meas  
    . B)) by 
    A16,
    A9,
    A14,
    XXREAL_3: 34;
    
          end;
    
            suppose B is
    open_interval;
    
            then
    
            
    
    A17: B 
    =  
    ].(
    inf B), ( 
    sup B).[ by 
    A7,
    MEASURE6: 16;
    
            per cases by
    A1,
    A2,
    A7,
    A8,
    A17,
    Th17;
    
              suppose
    
              
    
    A18: ( 
    inf A) 
    = ( 
    sup B) & (A 
    \/ B) 
    =  
    ].(
    inf B), ( 
    sup A).]; 
    
              then (
    inf B) 
    <= ( 
    sup A) by 
    A7,
    XXREAL_1: 26;
    
              then
    
              
    
    A19: ( 
    sup (A 
    \/ B)) 
    = ( 
    sup A) & ( 
    inf (A 
    \/ B)) 
    = ( 
    inf B) by 
    A18,
    A7,
    MEASURE6: 9,
    MEASURE6: 13;
    
              (
    pre-Meas  
    . (A 
    \/ B)) 
    = ( 
    diameter (A 
    \/ B)) by 
    A2,
    Th59;
    
              then
    
              
    
    A20: ( 
    pre-Meas  
    . (A 
    \/ B)) 
    = (( 
    sup A) 
    - ( 
    inf B)) by 
    A7,
    A19,
    MEASURE5:def 6;
    
              (
    pre-Meas  
    . A) 
    = ( 
    diameter A) & ( 
    pre-Meas  
    . B) 
    = ( 
    diameter B) by 
    Th58;
    
              then (
    pre-Meas  
    . A) 
    = (( 
    sup A) 
    - ( 
    inf A)) & ( 
    pre-Meas  
    . B) 
    = (( 
    sup B) 
    - ( 
    inf B)) by 
    A7,
    MEASURE5:def 6;
    
              hence (
    pre-Meas  
    . (A 
    \/ B)) 
    = (( 
    pre-Meas  
    . A) 
    + ( 
    pre-Meas  
    . B)) by 
    A20,
    A9,
    A18,
    XXREAL_3: 34;
    
            end;
    
              suppose
    
              
    
    A21: ( 
    inf B) 
    = ( 
    sup A) & (A 
    \/ B) 
    =  
    [.(
    inf A), ( 
    sup B).[; 
    
              then (
    inf A) 
    <= ( 
    sup B) by 
    A7,
    XXREAL_1: 27;
    
              then
    
              
    
    A22: ( 
    sup (A 
    \/ B)) 
    = ( 
    sup B) & ( 
    inf (A 
    \/ B)) 
    = ( 
    inf A) by 
    A21,
    A7,
    MEASURE6: 11,
    MEASURE6: 15;
    
              (
    pre-Meas  
    . (A 
    \/ B)) 
    = ( 
    diameter (A 
    \/ B)) by 
    A2,
    Th59;
    
              then
    
              
    
    A23: ( 
    pre-Meas  
    . (A 
    \/ B)) 
    = (( 
    sup B) 
    - ( 
    inf A)) by 
    A7,
    A22,
    MEASURE5:def 6;
    
              (
    pre-Meas  
    . A) 
    = ( 
    diameter A) & ( 
    pre-Meas  
    . B) 
    = ( 
    diameter B) by 
    Th58;
    
              then (
    pre-Meas  
    . A) 
    = (( 
    sup A) 
    - ( 
    inf A)) & ( 
    pre-Meas  
    . B) 
    = (( 
    sup B) 
    - ( 
    inf B)) by 
    A7,
    MEASURE5:def 6;
    
              hence (
    pre-Meas  
    . (A 
    \/ B)) 
    = (( 
    pre-Meas  
    . A) 
    + ( 
    pre-Meas  
    . B)) by 
    A23,
    A9,
    A21,
    XXREAL_3: 34;
    
            end;
    
          end;
    
        end;
    
          suppose A is
    right_open_interval;
    
          then
    
          
    
    A24: A 
    =  
    [.(
    inf A), ( 
    sup A).[ by 
    A7,
    MEASURE6: 18;
    
          
    
          
    
    A25: A is 
    left_end by 
    A7,
    A24,
    XXREAL_1: 27,
    XXREAL_2: 34;
    
          
    
    A26: 
    
          now
    
            assume B is
    left_open_interval;
    
            then B
    =  
    ].(
    inf B), ( 
    sup B).] by 
    A7,
    MEASURE6: 19;
    
            hence contradiction by
    A1,
    A2,
    A7,
    A24,
    Th19;
    
          end;
    
          per cases by
    A4,
    A26,
    MEASURE5: 1;
    
            suppose B is
    closed_interval;
    
            then
    
            
    
    A27: B 
    =  
    [.(
    inf B), ( 
    sup B).] by 
    A7,
    MEASURE6: 17;
    
            then
    
            
    
    A28: ( 
    inf B) 
    = ( 
    sup A) & (A 
    \/ B) 
    =  
    [.(
    inf A), ( 
    sup B).] by 
    A1,
    A2,
    A7,
    A24,
    Th15;
    
            (
    inf B) 
    <= ( 
    sup B) by 
    A7,
    A27,
    XXREAL_1: 29;
    
            then
    
            
    
    A29: B is 
    left_end
    right_end by 
    A27,
    XXREAL_2: 33;
    
            
    
            
    
    A30: ( 
    sup (A 
    \/ B)) 
    = ( 
    sup B) & ( 
    inf (A 
    \/ B)) 
    = ( 
    inf A) by 
    A28,
    A7,
    XXREAL_1: 29,
    MEASURE6: 10,
    MEASURE6: 14;
    
            (
    pre-Meas  
    . (A 
    \/ B)) 
    = ( 
    diameter (A 
    \/ B)) by 
    A2,
    Th59;
    
            then
    
            
    
    A31: ( 
    pre-Meas  
    . (A 
    \/ B)) 
    = (( 
    sup B) 
    - ( 
    inf A)) by 
    A7,
    A30,
    MEASURE5:def 6;
    
            (
    pre-Meas  
    . A) 
    = ( 
    diameter A) & ( 
    pre-Meas  
    . B) 
    = ( 
    diameter B) by 
    Th58;
    
            then (
    pre-Meas  
    . A) 
    = (( 
    sup A) 
    - ( 
    inf A)) & ( 
    pre-Meas  
    . B) 
    = (( 
    sup B) 
    - ( 
    inf B)) by 
    A7,
    MEASURE5:def 6;
    
            hence (
    pre-Meas  
    . (A 
    \/ B)) 
    = (( 
    pre-Meas  
    . A) 
    + ( 
    pre-Meas  
    . B)) by 
    A31,
    A29,
    A28,
    XXREAL_3: 34;
    
          end;
    
            suppose B is
    right_open_interval;
    
            then
    
            
    
    A32: B 
    =  
    [.(
    inf B), ( 
    sup B).[ by 
    A7,
    MEASURE6: 18;
    
            per cases by
    A1,
    A2,
    A7,
    A24,
    A32,
    Th18;
    
              suppose
    
              
    
    A33: ( 
    inf A) 
    = ( 
    sup B) & (A 
    \/ B) 
    =  
    [.(
    inf B), ( 
    sup A).[; 
    
              then (
    inf B) 
    <= ( 
    sup A) by 
    A7,
    XXREAL_1: 27;
    
              then
    
              
    
    A34: ( 
    sup (A 
    \/ B)) 
    = ( 
    sup A) & ( 
    inf (A 
    \/ B)) 
    = ( 
    inf B) by 
    A33,
    A7,
    MEASURE6: 11,
    MEASURE6: 15;
    
              (
    pre-Meas  
    . (A 
    \/ B)) 
    = ( 
    diameter (A 
    \/ B)) by 
    A2,
    Th59;
    
              then
    
              
    
    A35: ( 
    pre-Meas  
    . (A 
    \/ B)) 
    = (( 
    sup A) 
    - ( 
    inf B)) by 
    A7,
    A34,
    MEASURE5:def 6;
    
              (
    pre-Meas  
    . A) 
    = ( 
    diameter A) & ( 
    pre-Meas  
    . B) 
    = ( 
    diameter B) by 
    Th58;
    
              then (
    pre-Meas  
    . A) 
    = (( 
    sup A) 
    - ( 
    inf A)) & ( 
    pre-Meas  
    . B) 
    = (( 
    sup B) 
    - ( 
    inf B)) by 
    A7,
    MEASURE5:def 6;
    
              hence (
    pre-Meas  
    . (A 
    \/ B)) 
    = (( 
    pre-Meas  
    . A) 
    + ( 
    pre-Meas  
    . B)) by 
    A35,
    A25,
    A33,
    XXREAL_3: 34;
    
            end;
    
              suppose
    
              
    
    A36: ( 
    inf B) 
    = ( 
    sup A) & (A 
    \/ B) 
    =  
    [.(
    inf A), ( 
    sup B).[; 
    
              
    
              
    
    A37: B is 
    left_end by 
    A7,
    A32,
    XXREAL_1: 27,
    XXREAL_2: 34;
    
              (
    inf A) 
    <= ( 
    sup B) by 
    A36,
    A7,
    XXREAL_1: 27;
    
              then
    
              
    
    A38: ( 
    sup (A 
    \/ B)) 
    = ( 
    sup B) & ( 
    inf (A 
    \/ B)) 
    = ( 
    inf A) by 
    A36,
    A7,
    MEASURE6: 11,
    MEASURE6: 15;
    
              (
    pre-Meas  
    . (A 
    \/ B)) 
    = ( 
    diameter (A 
    \/ B)) by 
    A2,
    Th59;
    
              then
    
              
    
    A39: ( 
    pre-Meas  
    . (A 
    \/ B)) 
    = (( 
    sup B) 
    - ( 
    inf A)) by 
    A7,
    A38,
    MEASURE5:def 6;
    
              (
    pre-Meas  
    . A) 
    = ( 
    diameter A) & ( 
    pre-Meas  
    . B) 
    = ( 
    diameter B) by 
    Th58;
    
              then (
    pre-Meas  
    . A) 
    = (( 
    sup A) 
    - ( 
    inf A)) & ( 
    pre-Meas  
    . B) 
    = (( 
    sup B) 
    - ( 
    inf B)) by 
    A7,
    MEASURE5:def 6;
    
              hence (
    pre-Meas  
    . (A 
    \/ B)) 
    = (( 
    pre-Meas  
    . A) 
    + ( 
    pre-Meas  
    . B)) by 
    A39,
    A37,
    A36,
    XXREAL_3: 34;
    
            end;
    
          end;
    
            suppose B is
    open_interval;
    
            then B
    =  
    ].(
    inf B), ( 
    sup B).[ by 
    A7,
    MEASURE6: 16;
    
            then
    
            
    
    A40: ( 
    sup B) 
    = ( 
    inf A) & (A 
    \/ B) 
    =  
    ].(
    inf B), ( 
    sup A).[ by 
    A1,
    A2,
    A7,
    A24,
    Th20;
    
            then (
    inf B) 
    <= ( 
    sup A) by 
    A7,
    XXREAL_1: 28;
    
            then
    
            
    
    A41: ( 
    sup (A 
    \/ B)) 
    = ( 
    sup A) & ( 
    inf (A 
    \/ B)) 
    = ( 
    inf B) by 
    A40,
    A7,
    MEASURE6: 8,
    MEASURE6: 12;
    
            (
    pre-Meas  
    . (A 
    \/ B)) 
    = ( 
    diameter (A 
    \/ B)) by 
    A2,
    Th59;
    
            then
    
            
    
    A42: ( 
    pre-Meas  
    . (A 
    \/ B)) 
    = (( 
    sup A) 
    - ( 
    inf B)) by 
    A7,
    A41,
    MEASURE5:def 6;
    
            (
    pre-Meas  
    . A) 
    = ( 
    diameter A) & ( 
    pre-Meas  
    . B) 
    = ( 
    diameter B) by 
    Th58;
    
            then (
    pre-Meas  
    . A) 
    = (( 
    sup A) 
    - ( 
    inf A)) & ( 
    pre-Meas  
    . B) 
    = (( 
    sup B) 
    - ( 
    inf B)) by 
    A7,
    MEASURE5:def 6;
    
            hence (
    pre-Meas  
    . (A 
    \/ B)) 
    = (( 
    pre-Meas  
    . A) 
    + ( 
    pre-Meas  
    . B)) by 
    A42,
    A25,
    A40,
    XXREAL_3: 34;
    
          end;
    
        end;
    
          suppose A is
    left_open_interval;
    
          then
    
          
    
    A43: A 
    =  
    ].(
    inf A), ( 
    sup A).] by 
    A7,
    MEASURE6: 19;
    
          
    
          
    
    A44: A is 
    right_end by 
    A7,
    A43,
    XXREAL_1: 26,
    XXREAL_2: 35;
    
          
    
    A45: 
    
          now
    
            assume B is
    right_open_interval;
    
            then B
    =  
    [.(
    inf B), ( 
    sup B).[ by 
    A7,
    MEASURE6: 18;
    
            hence contradiction by
    A1,
    A2,
    A7,
    A43,
    Th19;
    
          end;
    
          per cases by
    A4,
    A45,
    MEASURE5: 1;
    
            suppose B is
    closed_interval;
    
            then
    
            
    
    A46: B 
    =  
    [.(
    inf B), ( 
    sup B).] by 
    A7,
    MEASURE6: 17;
    
            (
    inf B) 
    <= ( 
    sup B) by 
    A7,
    A46,
    XXREAL_1: 29;
    
            then
    
            
    
    A47: B is 
    left_end
    right_end by 
    A46,
    XXREAL_2: 33;
    
            
    
            
    
    A48: ( 
    inf A) 
    = ( 
    sup B) & (A 
    \/ B) 
    =  
    [.(
    inf B), ( 
    sup A).] by 
    A1,
    A2,
    A7,
    A43,
    A46,
    Th16;
    
            then
    
            
    
    A49: ( 
    sup (A 
    \/ B)) 
    = ( 
    sup A) & ( 
    inf (A 
    \/ B)) 
    = ( 
    inf B) by 
    A7,
    XXREAL_1: 29,
    MEASURE6: 10,
    MEASURE6: 14;
    
            (
    pre-Meas  
    . (A 
    \/ B)) 
    = ( 
    diameter (A 
    \/ B)) by 
    A2,
    Th59;
    
            then
    
            
    
    A50: ( 
    pre-Meas  
    . (A 
    \/ B)) 
    = (( 
    sup A) 
    - ( 
    inf B)) by 
    A7,
    A49,
    MEASURE5:def 6;
    
            (
    pre-Meas  
    . A) 
    = ( 
    diameter A) & ( 
    pre-Meas  
    . B) 
    = ( 
    diameter B) by 
    Th58;
    
            then (
    pre-Meas  
    . A) 
    = (( 
    sup A) 
    - ( 
    inf A)) & ( 
    pre-Meas  
    . B) 
    = (( 
    sup B) 
    - ( 
    inf B)) by 
    A7,
    MEASURE5:def 6;
    
            hence (
    pre-Meas  
    . (A 
    \/ B)) 
    = (( 
    pre-Meas  
    . A) 
    + ( 
    pre-Meas  
    . B)) by 
    A50,
    A47,
    A48,
    XXREAL_3: 34;
    
          end;
    
            suppose B is
    left_open_interval;
    
            then
    
            
    
    A51: B 
    =  
    ].(
    inf B), ( 
    sup B).] by 
    A7,
    MEASURE6: 19;
    
            
    
            
    
    A52: B is 
    right_end by 
    A7,
    A51,
    XXREAL_1: 26,
    XXREAL_2: 35;
    
            per cases by
    A1,
    A2,
    A7,
    A43,
    A51,
    Th21;
    
              suppose
    
              
    
    A53: ( 
    inf A) 
    = ( 
    sup B) & (A 
    \/ B) 
    =  
    ].(
    inf B), ( 
    sup A).]; 
    
              then (
    inf B) 
    <= ( 
    sup A) by 
    A7,
    XXREAL_1: 26;
    
              then
    
              
    
    A54: ( 
    sup (A 
    \/ B)) 
    = ( 
    sup A) & ( 
    inf (A 
    \/ B)) 
    = ( 
    inf B) by 
    A53,
    A7,
    MEASURE6: 9,
    MEASURE6: 13;
    
              (
    pre-Meas  
    . (A 
    \/ B)) 
    = ( 
    diameter (A 
    \/ B)) by 
    A2,
    Th59;
    
              then
    
              
    
    A55: ( 
    pre-Meas  
    . (A 
    \/ B)) 
    = (( 
    sup A) 
    - ( 
    inf B)) by 
    A7,
    A54,
    MEASURE5:def 6;
    
              (
    pre-Meas  
    . A) 
    = ( 
    diameter A) & ( 
    pre-Meas  
    . B) 
    = ( 
    diameter B) by 
    Th58;
    
              then (
    pre-Meas  
    . A) 
    = (( 
    sup A) 
    - ( 
    inf A)) & ( 
    pre-Meas  
    . B) 
    = (( 
    sup B) 
    - ( 
    inf B)) by 
    A7,
    MEASURE5:def 6;
    
              hence (
    pre-Meas  
    . (A 
    \/ B)) 
    = (( 
    pre-Meas  
    . A) 
    + ( 
    pre-Meas  
    . B)) by 
    A55,
    A52,
    A53,
    XXREAL_3: 34;
    
            end;
    
              suppose
    
              
    
    A56: ( 
    inf B) 
    = ( 
    sup A) & (A 
    \/ B) 
    =  
    ].(
    inf A), ( 
    sup B).]; 
    
              then (
    inf A) 
    <= ( 
    sup B) by 
    A7,
    XXREAL_1: 26;
    
              then
    
              
    
    A57: ( 
    sup (A 
    \/ B)) 
    = ( 
    sup B) & ( 
    inf (A 
    \/ B)) 
    = ( 
    inf A) by 
    A56,
    A7,
    MEASURE6: 9,
    MEASURE6: 13;
    
              (
    pre-Meas  
    . (A 
    \/ B)) 
    = ( 
    diameter (A 
    \/ B)) by 
    A2,
    Th59;
    
              then
    
              
    
    A58: ( 
    pre-Meas  
    . (A 
    \/ B)) 
    = (( 
    sup B) 
    - ( 
    inf A)) by 
    A7,
    A57,
    MEASURE5:def 6;
    
              (
    pre-Meas  
    . A) 
    = ( 
    diameter A) & ( 
    pre-Meas  
    . B) 
    = ( 
    diameter B) by 
    Th58;
    
              then (
    pre-Meas  
    . A) 
    = (( 
    sup A) 
    - ( 
    inf A)) & ( 
    pre-Meas  
    . B) 
    = (( 
    sup B) 
    - ( 
    inf B)) by 
    A7,
    MEASURE5:def 6;
    
              hence (
    pre-Meas  
    . (A 
    \/ B)) 
    = (( 
    pre-Meas  
    . A) 
    + ( 
    pre-Meas  
    . B)) by 
    A58,
    A44,
    A56,
    XXREAL_3: 34;
    
            end;
    
          end;
    
            suppose B is
    open_interval;
    
            then
    
            
    
    A59: B 
    =  
    ].(
    inf B), ( 
    sup B).[ by 
    A7,
    MEASURE6: 16;
    
            then
    
            
    
    A60: ( 
    inf B) 
    = ( 
    sup A) & (A 
    \/ B) 
    =  
    ].(
    inf A), ( 
    sup B).[ by 
    A1,
    A2,
    A7,
    A43,
    Th22;
    
            then (
    inf A) 
    <= ( 
    sup B) by 
    A7,
    XXREAL_1: 28;
    
            then
    
            
    
    A61: ( 
    sup (A 
    \/ B)) 
    = ( 
    sup B) & ( 
    inf (A 
    \/ B)) 
    = ( 
    inf A) by 
    A60,
    A7,
    MEASURE6: 8,
    MEASURE6: 12;
    
            (
    pre-Meas  
    . (A 
    \/ B)) 
    = ( 
    diameter (A 
    \/ B)) by 
    A2,
    Th59;
    
            then
    
            
    
    A62: ( 
    pre-Meas  
    . (A 
    \/ B)) 
    = (( 
    sup B) 
    - ( 
    inf A)) by 
    A7,
    A61,
    MEASURE5:def 6;
    
            (
    pre-Meas  
    . A) 
    = ( 
    diameter A) & ( 
    pre-Meas  
    . B) 
    = ( 
    diameter B) by 
    Th58;
    
            then (
    pre-Meas  
    . A) 
    = (( 
    sup A) 
    - ( 
    inf A)) & ( 
    pre-Meas  
    . B) 
    = (( 
    sup B) 
    - ( 
    inf B)) by 
    A7,
    MEASURE5:def 6;
    
            hence (
    pre-Meas  
    . (A 
    \/ B)) 
    = (( 
    pre-Meas  
    . A) 
    + ( 
    pre-Meas  
    . B)) by 
    A62,
    A44,
    A60,
    XXREAL_3: 34;
    
          end;
    
        end;
    
          suppose A is
    open_interval;
    
          then
    
          
    
    A63: A 
    =  
    ].(
    inf A), ( 
    sup A).[ by 
    A7,
    MEASURE6: 16;
    
          
    
    A64: 
    
          now
    
            assume B is
    open_interval;
    
            then B
    =  
    ].(
    inf B), ( 
    sup B).[ by 
    A7,
    MEASURE6: 16;
    
            hence contradiction by
    A1,
    A2,
    A7,
    A63,
    Th23;
    
          end;
    
          per cases by
    A4,
    A64,
    MEASURE5: 1;
    
            suppose B is
    closed_interval;
    
            then
    
            
    
    A65: B 
    =  
    [.(
    inf B), ( 
    sup B).] by 
    A7,
    MEASURE6: 17;
    
            (
    inf B) 
    <= ( 
    sup B) by 
    A7,
    A65,
    XXREAL_1: 29;
    
            then
    
            
    
    A66: B is 
    left_end
    right_end by 
    A65,
    XXREAL_2: 33;
    
            per cases by
    A1,
    A2,
    A7,
    A63,
    A65,
    Th17;
    
              suppose
    
              
    
    A67: ( 
    inf A) 
    = ( 
    sup B) & (A 
    \/ B) 
    =  
    [.(
    inf B), ( 
    sup A).[; 
    
              then (
    inf B) 
    <= ( 
    sup A) by 
    A7,
    XXREAL_1: 27;
    
              then
    
              
    
    A68: ( 
    sup (A 
    \/ B)) 
    = ( 
    sup A) & ( 
    inf (A 
    \/ B)) 
    = ( 
    inf B) by 
    A67,
    A7,
    MEASURE6: 11,
    MEASURE6: 15;
    
              (
    pre-Meas  
    . (A 
    \/ B)) 
    = ( 
    diameter (A 
    \/ B)) by 
    A2,
    Th59;
    
              then
    
              
    
    A69: ( 
    pre-Meas  
    . (A 
    \/ B)) 
    = (( 
    sup A) 
    - ( 
    inf B)) by 
    A7,
    A68,
    MEASURE5:def 6;
    
              (
    pre-Meas  
    . A) 
    = ( 
    diameter A) & ( 
    pre-Meas  
    . B) 
    = ( 
    diameter B) by 
    Th58;
    
              then (
    pre-Meas  
    . A) 
    = (( 
    sup A) 
    - ( 
    inf A)) & ( 
    pre-Meas  
    . B) 
    = (( 
    sup B) 
    - ( 
    inf B)) by 
    A7,
    MEASURE5:def 6;
    
              hence (
    pre-Meas  
    . (A 
    \/ B)) 
    = (( 
    pre-Meas  
    . A) 
    + ( 
    pre-Meas  
    . B)) by 
    A69,
    A67,
    A66,
    XXREAL_3: 34;
    
            end;
    
              suppose
    
              
    
    A70: ( 
    inf B) 
    = ( 
    sup A) & (A 
    \/ B) 
    =  
    ].(
    inf A), ( 
    sup B).]; 
    
              then (
    inf A) 
    <= ( 
    sup B) by 
    A7,
    XXREAL_1: 26;
    
              then
    
              
    
    A71: ( 
    sup (A 
    \/ B)) 
    = ( 
    sup B) & ( 
    inf (A 
    \/ B)) 
    = ( 
    inf A) by 
    A70,
    A7,
    MEASURE6: 9,
    MEASURE6: 13;
    
              (
    pre-Meas  
    . (A 
    \/ B)) 
    = ( 
    diameter (A 
    \/ B)) by 
    A2,
    Th59;
    
              then
    
              
    
    A72: ( 
    pre-Meas  
    . (A 
    \/ B)) 
    = (( 
    sup B) 
    - ( 
    inf A)) by 
    A7,
    A71,
    MEASURE5:def 6;
    
              (
    pre-Meas  
    . A) 
    = ( 
    diameter A) & ( 
    pre-Meas  
    . B) 
    = ( 
    diameter B) by 
    Th58;
    
              then (
    pre-Meas  
    . A) 
    = (( 
    sup A) 
    - ( 
    inf A)) & ( 
    pre-Meas  
    . B) 
    = (( 
    sup B) 
    - ( 
    inf B)) by 
    A7,
    MEASURE5:def 6;
    
              hence (
    pre-Meas  
    . (A 
    \/ B)) 
    = (( 
    pre-Meas  
    . A) 
    + ( 
    pre-Meas  
    . B)) by 
    A72,
    A70,
    A66,
    XXREAL_3: 34;
    
            end;
    
          end;
    
            suppose B is
    left_open_interval;
    
            then
    
            
    
    A73: B 
    =  
    ].(
    inf B), ( 
    sup B).] by 
    A7,
    MEASURE6: 19;
    
            
    
            
    
    A74: ( 
    sup B) 
    = ( 
    inf A) & (A 
    \/ B) 
    =  
    ].(
    inf B), ( 
    sup A).[ by 
    A1,
    A2,
    A7,
    A63,
    A73,
    Th22;
    
            then (
    inf B) 
    <= ( 
    sup A) by 
    A7,
    XXREAL_1: 28;
    
            then
    
            
    
    A75: ( 
    sup (A 
    \/ B)) 
    = ( 
    sup A) & ( 
    inf (A 
    \/ B)) 
    = ( 
    inf B) by 
    A74,
    A7,
    MEASURE6: 8,
    MEASURE6: 12;
    
            
    
            
    
    A76: B is 
    right_end by 
    A7,
    A73,
    XXREAL_1: 26,
    XXREAL_2: 35;
    
            (
    pre-Meas  
    . (A 
    \/ B)) 
    = ( 
    diameter (A 
    \/ B)) by 
    A2,
    Th59;
    
            then
    
            
    
    A77: ( 
    pre-Meas  
    . (A 
    \/ B)) 
    = (( 
    sup A) 
    - ( 
    inf B)) by 
    A7,
    A75,
    MEASURE5:def 6;
    
            (
    pre-Meas  
    . A) 
    = ( 
    diameter A) & ( 
    pre-Meas  
    . B) 
    = ( 
    diameter B) by 
    Th58;
    
            then (
    pre-Meas  
    . A) 
    = (( 
    sup A) 
    - ( 
    inf A)) & ( 
    pre-Meas  
    . B) 
    = (( 
    sup B) 
    - ( 
    inf B)) by 
    A7,
    MEASURE5:def 6;
    
            hence (
    pre-Meas  
    . (A 
    \/ B)) 
    = (( 
    pre-Meas  
    . A) 
    + ( 
    pre-Meas  
    . B)) by 
    A77,
    A74,
    A76,
    XXREAL_3: 34;
    
          end;
    
            suppose B is
    right_open_interval;
    
            then
    
            
    
    A78: B 
    =  
    [.(
    inf B), ( 
    sup B).[ by 
    A7,
    MEASURE6: 18;
    
            then
    
            
    
    A79: ( 
    sup A) 
    = ( 
    inf B) & (A 
    \/ B) 
    =  
    ].(
    inf A), ( 
    sup B).[ by 
    A1,
    A2,
    A7,
    A63,
    Th20;
    
            then (
    inf A) 
    <= ( 
    sup B) by 
    A7,
    XXREAL_1: 28;
    
            then
    
            
    
    A80: ( 
    sup (A 
    \/ B)) 
    = ( 
    sup B) & ( 
    inf (A 
    \/ B)) 
    = ( 
    inf A) by 
    A79,
    A7,
    MEASURE6: 8,
    MEASURE6: 12;
    
            
    
            
    
    A81: B is 
    left_end by 
    A7,
    A78,
    XXREAL_1: 27,
    XXREAL_2: 34;
    
            (
    pre-Meas  
    . (A 
    \/ B)) 
    = ( 
    diameter (A 
    \/ B)) by 
    A2,
    Th59;
    
            then
    
            
    
    A82: ( 
    pre-Meas  
    . (A 
    \/ B)) 
    = (( 
    sup B) 
    - ( 
    inf A)) by 
    A7,
    A80,
    MEASURE5:def 6;
    
            (
    pre-Meas  
    . A) 
    = ( 
    diameter A) & ( 
    pre-Meas  
    . B) 
    = ( 
    diameter B) by 
    Th58;
    
            then (
    pre-Meas  
    . A) 
    = (( 
    sup A) 
    - ( 
    inf A)) & ( 
    pre-Meas  
    . B) 
    = (( 
    sup B) 
    - ( 
    inf B)) by 
    A7,
    MEASURE5:def 6;
    
            hence (
    pre-Meas  
    . (A 
    \/ B)) 
    = (( 
    pre-Meas  
    . A) 
    + ( 
    pre-Meas  
    . B)) by 
    A82,
    A79,
    A81,
    XXREAL_3: 34;
    
          end;
    
        end;
    
      end;
    
    end;
    
    theorem :: 
    
    MEASUR12:61
    
    
    
    
    
    Th61: for F be non 
    empty
    disjoint_valued  
    FinSequence of 
    Family_of_Intervals st ( 
    Union F) is 
    Interval holds ex n be 
    Nat st n 
    in ( 
    dom F) & (( 
    Union F) 
    \ (F 
    . n)) is 
    Interval
    
    proof
    
      let F be non
    empty
    disjoint_valued  
    FinSequence of 
    Family_of_Intervals ; 
    
      assume
    
      
    
    A1: ( 
    Union F) is 
    Interval;
    
      then
    
      reconsider UF = (
    Union F) as 
    Interval;
    
      
    
      
    
    A2: ( 
    Union F) 
    = ( 
    union ( 
    rng F)) by 
    CARD_3:def 4;
    
      per cases by
    A1,
    MEASURE5: 1;
    
        suppose
    
        
    
    A3: ( 
    Union F) 
    =  
    {} ; 
    
        
    
        
    
    A4: ( 
    rng F) 
    <>  
    {} ; 
    
        ((
    Union F) 
    \ (F 
    . 1)) 
    =  
    {} & 
    {}  
    c=  
    REAL by 
    A3;
    
        hence ex n be
    Nat st n 
    in ( 
    dom F) & (( 
    Union F) 
    \ (F 
    . n)) is 
    Interval by 
    A4,
    FINSEQ_3: 32;
    
      end;
    
        suppose
    
        
    
    A5: ( 
    Union F) is non 
    empty
    closed_interval  
    Subset of 
    REAL ; 
    
        then
    
        
    
    A6: ( 
    Union F) 
    =  
    [.(
    inf UF), ( 
    sup UF).] by 
    MEASURE6: 17;
    
        then (
    inf UF) 
    <= ( 
    sup UF) by 
    A5,
    XXREAL_1: 29;
    
        then (
    inf UF) 
    in ( 
    Union F) by 
    A6,
    XXREAL_1: 1;
    
        then
    
        consider A be
    set such that 
    
        
    
    A7: ( 
    inf UF) 
    in A & A 
    in ( 
    rng F) by 
    A2,
    TARSKI:def 4;
    
        consider n be
    Element of 
    NAT such that 
    
        
    
    A8: n 
    in ( 
    dom F) & A 
    = (F 
    . n) by 
    A7,
    PARTFUN1: 3;
    
        
    
        
    
    A9: ( 
    inf UF) 
    <= ( 
    inf (F 
    . n)) & ( 
    sup (F 
    . n)) 
    <= ( 
    sup UF) by 
    A2,
    A7,
    A8,
    ZFMISC_1: 74,
    XXREAL_2: 59,
    XXREAL_2: 60;
    
        (
    inf (F 
    . n)) is 
    LowerBound of (F 
    . n) by 
    XXREAL_2:def 4;
    
        then (
    inf (F 
    . n)) 
    <= ( 
    inf UF) by 
    A7,
    A8,
    XXREAL_2:def 2;
    
        then
    
        
    
    A10: ( 
    inf UF) 
    = ( 
    inf (F 
    . n)) by 
    A9,
    XXREAL_0: 1;
    
        then
    
        
    
    A11: (F 
    . n) is 
    left_end by 
    A7,
    A8,
    XXREAL_2:def 5;
    
        per cases ;
    
          suppose (F
    . n) is 
    right_end;
    
          then (F
    . n) 
    =  
    [.(
    inf (F 
    . n)), ( 
    sup (F 
    . n)).] by 
    A11,
    XXREAL_2: 75;
    
          then ((
    Union F) 
    \ (F 
    . n)) 
    =  
    ].(
    sup (F 
    . n)), ( 
    sup UF).] by 
    A6,
    A7,
    A8,
    XXREAL_2: 40,
    A10,
    XXREAL_1: 182;
    
          then (UF
    \ (F 
    . n)) is 
    interval  
    Subset of 
    REAL ; 
    
          hence ex n be
    Nat st n 
    in ( 
    dom F) & (( 
    Union F) 
    \ (F 
    . n)) is 
    Interval by 
    A8;
    
        end;
    
          suppose (F
    . n) is non 
    right_end;
    
          then (F
    . n) 
    =  
    [.(
    inf (F 
    . n)), ( 
    sup (F 
    . n)).[ by 
    A11,
    XXREAL_2: 77;
    
          then ((
    Union F) 
    \ (F 
    . n)) 
    =  
    [.(
    sup (F 
    . n)), ( 
    sup UF).] by 
    A6,
    A10,
    A7,
    A8,
    XXREAL_1: 27,
    XXREAL_1: 184;
    
          then (UF
    \ (F 
    . n)) is 
    interval  
    Subset of 
    REAL ; 
    
          hence ex n be
    Nat st n 
    in ( 
    dom F) & (( 
    Union F) 
    \ (F 
    . n)) is 
    Interval by 
    A8;
    
        end;
    
      end;
    
        suppose
    
        
    
    A12: ( 
    Union F) is non 
    empty
    left_open_interval  
    Subset of 
    REAL ; 
    
        then
    
        
    
    A13: ( 
    Union F) 
    =  
    ].(
    inf UF), ( 
    sup UF).] by 
    MEASURE6: 19;
    
        then (
    sup UF) 
    in ( 
    Union F) by 
    A12,
    XXREAL_1: 26,
    XXREAL_1: 2;
    
        then
    
        consider A be
    set such that 
    
        
    
    A14: ( 
    sup UF) 
    in A & A 
    in ( 
    rng F) by 
    A2,
    TARSKI:def 4;
    
        consider n be
    Element of 
    NAT such that 
    
        
    
    A15: n 
    in ( 
    dom F) & A 
    = (F 
    . n) by 
    A14,
    PARTFUN1: 3;
    
        
    
        
    
    A16: ( 
    inf UF) 
    <= ( 
    inf (F 
    . n)) & ( 
    sup (F 
    . n)) 
    <= ( 
    sup UF) by 
    A2,
    A14,
    A15,
    ZFMISC_1: 74,
    XXREAL_2: 59,
    XXREAL_2: 60;
    
        (
    sup (F 
    . n)) is 
    UpperBound of (F 
    . n) by 
    XXREAL_2:def 3;
    
        then (
    sup (F 
    . n)) 
    >= ( 
    sup UF) by 
    A14,
    A15,
    XXREAL_2:def 1;
    
        then
    
        
    
    A17: ( 
    sup UF) 
    = ( 
    sup (F 
    . n)) by 
    A16,
    XXREAL_0: 1;
    
        then
    
        
    
    A18: (F 
    . n) is 
    right_end by 
    A14,
    A15,
    XXREAL_2:def 6;
    
        per cases ;
    
          suppose (F
    . n) is 
    left_end;
    
          then (F
    . n) 
    =  
    [.(
    inf (F 
    . n)), ( 
    sup (F 
    . n)).] by 
    A18,
    XXREAL_2: 75;
    
          then ((
    Union F) 
    \ (F 
    . n)) 
    =  
    ].(
    inf UF), ( 
    inf (F 
    . n)).[ by 
    A13,
    A14,
    A15,
    XXREAL_2: 40,
    A17,
    XXREAL_1: 191;
    
          hence ex n be
    Nat st n 
    in ( 
    dom F) & (( 
    Union F) 
    \ (F 
    . n)) is 
    Interval by 
    A15;
    
        end;
    
          suppose (F
    . n) is non 
    left_end;
    
          then (F
    . n) 
    =  
    ].(
    inf (F 
    . n)), ( 
    sup (F 
    . n)).] by 
    A18,
    XXREAL_2: 76;
    
          then ((
    Union F) 
    \ (F 
    . n)) 
    =  
    ].(
    inf UF), ( 
    inf (F 
    . n)).] by 
    A13,
    A17,
    A14,
    A15,
    XXREAL_1: 26,
    XXREAL_1: 193;
    
          then (UF
    \ (F 
    . n)) is 
    interval  
    Subset of 
    REAL ; 
    
          hence ex n be
    Nat st n 
    in ( 
    dom F) & (( 
    Union F) 
    \ (F 
    . n)) is 
    Interval by 
    A15;
    
        end;
    
      end;
    
        suppose
    
        
    
    A19: ( 
    Union F) is non 
    empty
    right_open_interval  
    Subset of 
    REAL ; 
    
        then
    
        
    
    A20: ( 
    Union F) 
    =  
    [.(
    inf UF), ( 
    sup UF).[ by 
    MEASURE6: 18;
    
        then (
    inf UF) 
    in ( 
    Union F) by 
    A19,
    XXREAL_1: 27,
    XXREAL_1: 3;
    
        then
    
        consider A be
    set such that 
    
        
    
    A21: ( 
    inf UF) 
    in A & A 
    in ( 
    rng F) by 
    A2,
    TARSKI:def 4;
    
        consider n be
    Element of 
    NAT such that 
    
        
    
    A22: n 
    in ( 
    dom F) & A 
    = (F 
    . n) by 
    A21,
    PARTFUN1: 3;
    
        
    
        
    
    A23: ( 
    inf UF) 
    <= ( 
    inf (F 
    . n)) & ( 
    sup (F 
    . n)) 
    <= ( 
    sup UF) by 
    A2,
    A21,
    A22,
    ZFMISC_1: 74,
    XXREAL_2: 59,
    XXREAL_2: 60;
    
        (
    inf (F 
    . n)) is 
    LowerBound of (F 
    . n) by 
    XXREAL_2:def 4;
    
        then (
    inf (F 
    . n)) 
    <= ( 
    inf UF) by 
    A21,
    A22,
    XXREAL_2:def 2;
    
        then
    
        
    
    A24: ( 
    inf UF) 
    = ( 
    inf (F 
    . n)) by 
    A23,
    XXREAL_0: 1;
    
        then
    
        
    
    A25: (F 
    . n) is 
    left_end by 
    A21,
    A22,
    XXREAL_2:def 5;
    
        per cases ;
    
          suppose (F
    . n) is 
    right_end;
    
          then (F
    . n) 
    =  
    [.(
    inf (F 
    . n)), ( 
    sup (F 
    . n)).] by 
    A25,
    XXREAL_2: 75;
    
          then ((
    Union F) 
    \ (F 
    . n)) 
    =  
    ].(
    sup (F 
    . n)), ( 
    sup UF).[ by 
    A20,
    A21,
    A22,
    XXREAL_2: 40,
    A24,
    XXREAL_1: 183;
    
          hence ex n be
    Nat st n 
    in ( 
    dom F) & (( 
    Union F) 
    \ (F 
    . n)) is 
    Interval by 
    A22;
    
        end;
    
          suppose (F
    . n) is non 
    right_end;
    
          then (F
    . n) 
    =  
    [.(
    inf (F 
    . n)), ( 
    sup (F 
    . n)).[ by 
    A25,
    XXREAL_2: 77;
    
          then ((
    Union F) 
    \ (F 
    . n)) 
    =  
    [.(
    sup (F 
    . n)), ( 
    sup UF).[ by 
    A20,
    A24,
    A21,
    A22,
    XXREAL_1: 27,
    XXREAL_1: 185;
    
          then (UF
    \ (F 
    . n)) is 
    interval  
    Subset of 
    REAL ; 
    
          hence ex n be
    Nat st n 
    in ( 
    dom F) & (( 
    Union F) 
    \ (F 
    . n)) is 
    Interval by 
    A22;
    
        end;
    
      end;
    
        suppose
    
        
    
    A26: ( 
    Union F) is non 
    empty
    open_interval  
    Subset of 
    REAL ; 
    
        then
    
        
    
    A27: ( 
    Union F) 
    =  
    ].(
    inf UF), ( 
    sup UF).[ by 
    MEASURE6: 16;
    
        deffunc
    
    F(
    Nat) = (
    inf (F 
    . $1)); 
    
        consider G be
    FinSequence of 
    ExtREAL such that 
    
        
    
    A28: ( 
    len G) 
    = ( 
    len F) & for n be 
    Nat st n 
    in ( 
    dom G) holds (G 
    . n) 
    =  
    F(n) from
    FINSEQ_2:sch 1;
    
        
    
        
    
    A29: ( 
    min_p G) 
    in ( 
    dom G) by 
    A28,
    Def2;
    
        
    
        
    
    A30: for n be 
    Nat st n 
    in ( 
    dom F) holds ( 
    inf (F 
    . ( 
    min_p G))) 
    <= ( 
    inf (F 
    . n)) 
    
        proof
    
          let n be
    Nat;
    
          assume
    
          
    
    A31: n 
    in ( 
    dom F); 
    
          then 1
    <= n & n 
    <= ( 
    len G) by 
    A28,
    FINSEQ_3: 25;
    
          then
    
          
    
    A32: (G 
    . ( 
    min_p G)) 
    <= (G 
    . n) & ( 
    min G) 
    <= (G 
    . n) by 
    Th26;
    
          (
    min_p G) 
    in ( 
    dom G) by 
    A28,
    Def2;
    
          then
    
          
    
    A33: (G 
    . ( 
    min_p G)) 
    = ( 
    inf (F 
    . ( 
    min_p G))) by 
    A28;
    
          n
    in ( 
    dom G) by 
    A28,
    A31,
    FINSEQ_3: 29;
    
          hence thesis by
    A32,
    A33,
    A28;
    
        end;
    
        
    
        
    
    A34: ( 
    min_p G) 
    in ( 
    dom F) by 
    A29,
    A28,
    FINSEQ_3: 29;
    
        then (F
    . ( 
    min_p G)) 
    c= UF by 
    A2,
    ZFMISC_1: 74,
    FUNCT_1: 3;
    
        then
    
        
    
    A35: ( 
    inf UF) 
    <= ( 
    inf (F 
    . ( 
    min_p G))) & ( 
    sup (F 
    . ( 
    min_p G))) 
    <= ( 
    sup UF) by 
    XXREAL_2: 59,
    XXREAL_2: 60;
    
        
    
    A36: 
    
        now
    
          assume
    
          
    
    A37: ( 
    inf (F 
    . ( 
    min_p G))) 
    =  
    +infty ; 
    
          
    
          
    
    A38: for n be 
    Nat st n 
    in ( 
    dom F) holds (F 
    . n) 
    =  
    {
    +infty } or (F 
    . n) 
    =  
    {}  
    
          proof
    
            let n be
    Nat;
    
            assume n
    in ( 
    dom F); 
    
            then (
    inf (F 
    . n)) 
    =  
    +infty by 
    A30,
    A37,
    XXREAL_0: 4;
    
            then
    +infty is 
    LowerBound of (F 
    . n) by 
    XXREAL_2:def 4;
    
            hence thesis by
    ZFMISC_1: 33,
    XXREAL_2: 52;
    
          end;
    
          per cases ;
    
            suppose ex n be
    Nat st n 
    in ( 
    dom F) & (F 
    . n) 
    =  
    {
    +infty }; 
    
            then
    
            consider n be
    Nat such that 
    
            
    
    A39: n 
    in ( 
    dom F) & (F 
    . n) 
    =  
    {
    +infty }; 
    
            
    {
    +infty } 
    c= UF by 
    A2,
    A39,
    FUNCT_1: 3,
    ZFMISC_1: 74;
    
            then
    +infty  
    in UF by 
    ZFMISC_1: 31;
    
            hence contradiction;
    
          end;
    
            suppose
    
            
    
    A40: for n be 
    Nat st n 
    in ( 
    dom F) holds (F 
    . n) 
    <>  
    {
    +infty }; 
    
            then
    
            
    
    A41: for n be 
    Nat st n 
    in ( 
    dom F) holds (F 
    . n) 
    =  
    {} by 
    A38;
    
            for x be
    object holds x 
    in ( 
    rng F) iff x 
    =  
    {}  
    
            proof
    
              let x be
    object;
    
              hereby
    
                assume x
    in ( 
    rng F); 
    
                then ex n be
    Element of 
    NAT st n 
    in ( 
    dom F) & x 
    = (F 
    . n) by 
    PARTFUN1: 3;
    
                hence x
    =  
    {} by 
    A40,
    A38;
    
              end;
    
              assume
    
              
    
    A42: x 
    =  
    {} ; 
    
              (
    rng F) 
    <>  
    {} ; 
    
              then 1
    in ( 
    dom F) & (F 
    . 1) 
    = x by 
    A41,
    A42,
    FINSEQ_3: 32;
    
              hence x
    in ( 
    rng F) by 
    FUNCT_1: 3;
    
            end;
    
            then (
    rng F) 
    =  
    {
    {} } by 
    TARSKI:def 1;
    
            hence contradiction by
    A26,
    A2;
    
          end;
    
        end;
    
        then
    
        
    
    A43: ( 
    inf (F 
    . ( 
    min_p G))) 
    <= ( 
    sup (F 
    . ( 
    min_p G))) by 
    XXREAL_2: 38,
    XXREAL_2: 40;
    
        
    
        
    
    A44: ( 
    rng F) 
    c= ( 
    bool  
    REAL ) by 
    XBOOLE_1: 1;
    
        now
    
          assume (
    inf UF) 
    < ( 
    inf (F 
    . ( 
    min_p G))); 
    
          then
    
          consider x be
    R_eal such that 
    
          
    
    A45: ( 
    inf UF) 
    < x & x 
    < ( 
    inf (F 
    . ( 
    min_p G))) & x 
    in  
    REAL by 
    MEASURE5: 2;
    
          x
    < ( 
    sup (F 
    . ( 
    min_p G))) by 
    A45,
    A43,
    XXREAL_0: 2;
    
          then x
    < ( 
    sup UF) by 
    A35,
    XXREAL_0: 2;
    
          then x
    in UF by 
    A45,
    XXREAL_2: 83;
    
          then
    
          consider A be
    set such that 
    
          
    
    A46: x 
    in A & A 
    in ( 
    rng F) by 
    A2,
    TARSKI:def 4;
    
          reconsider A as non
    empty  
    Subset of 
    REAL by 
    A46,
    A44;
    
          consider n be
    Element of 
    NAT such that 
    
          
    
    A47: n 
    in ( 
    dom F) & A 
    = (F 
    . n) by 
    A46,
    PARTFUN1: 3;
    
          (
    inf (F 
    . ( 
    min_p G))) 
    <= ( 
    inf A) by 
    A30,
    A47;
    
          then x
    < ( 
    inf A) by 
    A45,
    XXREAL_0: 2;
    
          hence contradiction by
    A46,
    XXREAL_2: 3;
    
        end;
    
        then
    
        
    
    A48: ( 
    inf UF) 
    = ( 
    inf (F 
    . ( 
    min_p G))) by 
    A35,
    XXREAL_0: 1;
    
        now
    
          assume
    
          
    
    A49: ( 
    inf (F 
    . ( 
    min_p G))) 
    in (F 
    . ( 
    min_p G)); 
    
          (F
    . ( 
    min_p G)) 
    in ( 
    rng F) by 
    A34,
    FUNCT_1: 3;
    
          then (
    inf UF) 
    in UF by 
    A2,
    A48,
    A49,
    TARSKI:def 4;
    
          hence contradiction by
    A27,
    XXREAL_1: 4;
    
        end;
    
        then
    
        
    
    A50: not (F 
    . ( 
    min_p G)) is 
    left_end by 
    XXREAL_2:def 5;
    
        per cases ;
    
          suppose (F
    . ( 
    min_p G)) is 
    right_end;
    
          then (F
    . ( 
    min_p G)) 
    =  
    ].(
    inf (F 
    . ( 
    min_p G))), ( 
    sup (F 
    . ( 
    min_p G))).] by 
    A50,
    XXREAL_2: 76;
    
          then ((
    Union F) 
    \ (F 
    . ( 
    min_p G))) 
    =  
    ].(
    sup (F 
    . ( 
    min_p G))), ( 
    sup UF).[ by 
    A27,
    A48,
    A36,
    XXREAL_2: 38,
    XXREAL_1: 26,
    XXREAL_1: 187;
    
          hence ex n be
    Nat st n 
    in ( 
    dom F) & (( 
    Union F) 
    \ (F 
    . n)) is 
    Interval by 
    A34;
    
        end;
    
          suppose (F
    . ( 
    min_p G)) is non 
    right_end;
    
          then (F
    . ( 
    min_p G)) 
    =  
    ].(
    inf (F 
    . ( 
    min_p G))), ( 
    sup (F 
    . ( 
    min_p G))).[ by 
    A50,
    A36,
    XXREAL_2: 38,
    XXREAL_2: 78;
    
          then ((
    Union F) 
    \ (F 
    . ( 
    min_p G))) 
    =  
    [.(
    sup (F 
    . ( 
    min_p G))), ( 
    sup UF).[ by 
    A27,
    A48,
    A36,
    XXREAL_2: 38,
    XXREAL_1: 28,
    XXREAL_1: 189;
    
          then (UF
    \ (F 
    . ( 
    min_p G))) is 
    interval  
    Subset of 
    REAL ; 
    
          hence ex n be
    Nat st n 
    in ( 
    dom F) & (( 
    Union F) 
    \ (F 
    . n)) is 
    Interval by 
    A34;
    
        end;
    
      end;
    
    end;
    
    theorem :: 
    
    MEASUR12:62
    
    
    
    
    
    Th62: for A be 
    Interval holds ( 
    pre-Meas  
    *  
    <*A*>)
    =  
    <*(
    pre-Meas  
    . A)*> 
    
    proof
    
      let A be
    Interval;
    
      
    
      
    
    A1: A 
    in  
    Family_of_Intervals by 
    MEASUR10:def 1;
    
      (
    rng  
    <*A*>)
    =  
    {A} by
    FINSEQ_1: 38;
    
      then
    
      reconsider FA =
    <*A*> as
    FinSequence of 
    Family_of_Intervals by 
    A1,
    ZFMISC_1: 31,
    FINSEQ_1:def 4;
    
      (
    dom  
    pre-Meas ) 
    =  
    Family_of_Intervals & ( 
    rng FA) 
    c=  
    Family_of_Intervals by 
    FUNCT_2:def 1;
    
      then (
    dom ( 
    pre-Meas  
    * FA)) 
    = ( 
    dom FA) by 
    RELAT_1: 27;
    
      then
    
      
    
    A2: ( 
    dom ( 
    pre-Meas  
    * FA)) 
    = ( 
    Seg 1) by 
    FINSEQ_1: 38;
    
      then
    
      
    
    A3: ( 
    dom ( 
    pre-Meas  
    * FA)) 
    = ( 
    dom  
    <*(
    pre-Meas  
    . A)*>) by 
    FINSEQ_1: 38;
    
      for n be
    Nat st n 
    in ( 
    dom ( 
    pre-Meas  
    * FA)) holds (( 
    pre-Meas  
    * FA) 
    . n) 
    = ( 
    <*(
    pre-Meas  
    . A)*> 
    . n) 
    
      proof
    
        let n be
    Nat;
    
        assume
    
        
    
    A4: n 
    in ( 
    dom ( 
    pre-Meas  
    * FA)); 
    
        then
    
        
    
    A5: n 
    = 1 by 
    A2,
    FINSEQ_1: 2,
    TARSKI:def 1;
    
        
    
        then ((
    pre-Meas  
    * FA) 
    . n) 
    = ( 
    pre-Meas  
    . (FA 
    . 1)) by 
    A4,
    FUNCT_1: 12
    
        .= (
    pre-Meas  
    . A) by 
    FINSEQ_1: 40;
    
        hence thesis by
    A5,
    FINSEQ_1: 40;
    
      end;
    
      hence (
    pre-Meas  
    *  
    <*A*>)
    =  
    <*(
    pre-Meas  
    . A)*> by 
    A3,
    FINSEQ_1: 13;
    
    end;
    
    theorem :: 
    
    MEASUR12:63
    
    
    
    
    
    Th63: for F be 
    disjoint_valued  
    FinSequence of 
    Family_of_Intervals st ( 
    Union F) 
    in  
    Family_of_Intervals holds ex G be 
    disjoint_valued  
    FinSequence of 
    Family_of_Intervals st (F,G) 
    are_fiberwise_equipotent & for n be 
    Nat st n 
    in ( 
    dom G) holds ( 
    Union (G 
    | n)) 
    in  
    Family_of_Intervals & ( 
    pre-Meas  
    . ( 
    Union (G 
    | n))) 
    = ( 
    Sum ( 
    pre-Meas  
    * (G 
    | n))) 
    
    proof
    
      let F be
    disjoint_valued  
    FinSequence of 
    Family_of_Intervals ; 
    
      assume
    
      
    
    A1: ( 
    Union F) 
    in  
    Family_of_Intervals ; 
    
      defpred
    
    P[
    Nat] means for H be
    disjoint_valued  
    FinSequence of 
    Family_of_Intervals st ( 
    len H) 
    = $1 & ( 
    Union H) 
    in  
    Family_of_Intervals holds ex G be 
    disjoint_valued  
    FinSequence of 
    Family_of_Intervals st (H,G) 
    are_fiberwise_equipotent & for n be 
    Nat st n 
    in ( 
    dom G) holds ( 
    Union (G 
    | n)) 
    in  
    Family_of_Intervals & ( 
    pre-Meas  
    . ( 
    Union (G 
    | n))) 
    = ( 
    Sum ( 
    pre-Meas  
    * (G 
    | n))); 
    
      now
    
        let H be
    disjoint_valued  
    FinSequence of 
    Family_of_Intervals ; 
    
        assume that
    
        
    
    A2: ( 
    len H) 
    =  
    0 and ( 
    Union H) 
    in  
    Family_of_Intervals ; 
    
        
    
        
    
    A3: H 
    =  
    {} by 
    A2;
    
        take G = H;
    
        thus (H,G)
    are_fiberwise_equipotent ; 
    
        thus for n be
    Nat st n 
    in ( 
    dom G) holds ( 
    Union (G 
    | n)) 
    in  
    Family_of_Intervals & ( 
    pre-Meas  
    . ( 
    Union (G 
    | n))) 
    = ( 
    Sum ( 
    pre-Meas  
    * (G 
    | n))) by 
    A3;
    
      end;
    
      then
    
      
    
    A4: 
    P[
    0 ]; 
    
      
    
      
    
    A5: for k be 
    Nat st 
    P[k] holds
    P[(k
    + 1)] 
    
      proof
    
        let k be
    Nat;
    
        assume
    
        
    
    A6: 
    P[k];
    
        hereby
    
          let H be
    disjoint_valued  
    FinSequence of 
    Family_of_Intervals ; 
    
          assume that
    
          
    
    A7: ( 
    len H) 
    = (k 
    + 1) and 
    
          
    
    A8: ( 
    Union H) 
    in  
    Family_of_Intervals ; 
    
          
    
          
    
    A9: H 
    <>  
    {} by 
    A7;
    
          ex I be
    Interval st ( 
    Union H) 
    = I by 
    A8,
    MEASUR10:def 1;
    
          then
    
          consider N be
    Nat such that 
    
          
    
    A10: N 
    in ( 
    dom H) & (( 
    Union H) 
    \ (H 
    . N)) is 
    Interval by 
    A9,
    Th61;
    
          1
    <= ( 
    len H) by 
    A7,
    NAT_1: 11;
    
          then
    
          
    
    A11: ( 
    len H) 
    in ( 
    dom H) by 
    FINSEQ_3: 25;
    
          reconsider H1 = ((
    Swap (H,N,( 
    len H))) 
    | ( 
    Seg k)) as 
    FinSequence of 
    Family_of_Intervals by 
    FINSEQ_1: 18;
    
          
    
          
    
    A12: (H,( 
    Swap (H,N,( 
    len H)))) 
    are_fiberwise_equipotent by 
    A10,
    A11,
    Th28;
    
          then
    
          
    
    A13: ( 
    len ( 
    Swap (H,N,( 
    len H)))) 
    = (k 
    + 1) by 
    A7,
    RFINSEQ: 3;
    
          then (
    len (( 
    Swap (H,N,( 
    len H))) 
    | k)) 
    = k by 
    NAT_1: 11,
    FINSEQ_1: 59;
    
          then
    
          
    
    A14: ( 
    len H1) 
    = k by 
    FINSEQ_1:def 15;
    
          for n,m be
    object st n 
    <> m holds (H1 
    . n) 
    misses (H1 
    . m) 
    
          proof
    
            let n,m be
    object;
    
            assume
    
            
    
    A15: n 
    <> m; 
    
            per cases ;
    
              suppose
    
              
    
    A16: n 
    in ( 
    dom H1) & m 
    in ( 
    dom H1); 
    
              then
    
              reconsider n1 = n, m1 = m as
    Element of 
    NAT ; 
    
              
    
              
    
    A17: 1 
    <= n1 
    <= k & 1 
    <= m1 
    <= k by 
    A16,
    A14,
    FINSEQ_3: 25;
    
              then
    
              
    
    A18: n1 
    <> ( 
    len H) & m1 
    <> ( 
    len H) by 
    A7,
    NAT_1: 13;
    
              k
    <= (k 
    + 1) by 
    NAT_1: 11;
    
              then 1
    <= n1 
    <= ( 
    len H) & 1 
    <= m1 
    <= ( 
    len H) by 
    A7,
    A17,
    XXREAL_0: 2;
    
              then
    
              
    
    A19: n1 
    in ( 
    dom H) & m1 
    in ( 
    dom H) by 
    FINSEQ_3: 25;
    
              per cases ;
    
                suppose n1
    = N; 
    
                then ((
    Swap (H,N,( 
    len H))) 
    . n1) 
    = (H 
    . ( 
    len H)) & (( 
    Swap (H,N,( 
    len H))) 
    . m1) 
    = (H 
    . m1) by 
    A15,
    A19,
    A18,
    A11,
    EXCHSORT: 29,
    EXCHSORT: 33;
    
                then (H1
    . n1) 
    = (H 
    . ( 
    len H)) & (H1 
    . m1) 
    = (H 
    . m1) by 
    A17,
    FINSEQ_1: 1,
    FUNCT_1: 49;
    
                hence (H1
    . n) 
    misses (H1 
    . m) by 
    A18,
    PROB_2:def 2;
    
              end;
    
                suppose m1
    = N; 
    
                then ((
    Swap (H,N,( 
    len H))) 
    . m1) 
    = (H 
    . ( 
    len H)) & (( 
    Swap (H,N,( 
    len H))) 
    . n1) 
    = (H 
    . n1) by 
    A15,
    A19,
    A18,
    A11,
    EXCHSORT: 29,
    EXCHSORT: 33;
    
                then (H1
    . m1) 
    = (H 
    . ( 
    len H)) & (H1 
    . n1) 
    = (H 
    . n1) by 
    A17,
    FINSEQ_1: 1,
    FUNCT_1: 49;
    
                hence (H1
    . n) 
    misses (H1 
    . m) by 
    A18,
    PROB_2:def 2;
    
              end;
    
                suppose n1
    <> N & m1 
    <> N; 
    
                then ((
    Swap (H,N,( 
    len H))) 
    . n1) 
    = (H 
    . n1) & (( 
    Swap (H,N,( 
    len H))) 
    . m1) 
    = (H 
    . m1) by 
    A18,
    EXCHSORT: 33;
    
                then (H1
    . n1) 
    = (H 
    . n1) & (H1 
    . m1) 
    = (H 
    . m1) by 
    A17,
    FINSEQ_1: 1,
    FUNCT_1: 49;
    
                hence (H1
    . n) 
    misses (H1 
    . m) by 
    A15,
    PROB_2:def 2;
    
              end;
    
            end;
    
              suppose not n
    in ( 
    dom H1) or not m 
    in ( 
    dom H1); 
    
              then (H1
    . n) 
    =  
    {} or (H1 
    . m) 
    =  
    {} by 
    FUNCT_1:def 2;
    
              hence (H1
    . n) 
    misses (H1 
    . m) by 
    XBOOLE_1: 65;
    
            end;
    
          end;
    
          then
    
          reconsider H1 as
    disjoint_valued  
    FinSequence of 
    Family_of_Intervals by 
    PROB_2:def 2;
    
          
    
          
    
    A20: ( 
    Swap (H,N,( 
    len H))) 
    = (H1 
    ^  
    <*((
    Swap (H,N,( 
    len H))) 
    . ( 
    len H))*>) by 
    A13,
    A7,
    FINSEQ_3: 55;
    
          then (
    rng ( 
    Swap (H,N,( 
    len H)))) 
    = (( 
    rng H1) 
    \/ ( 
    rng  
    <*((
    Swap (H,N,( 
    len H))) 
    . ( 
    len H))*>)) by 
    FINSEQ_1: 31;
    
          then (
    rng ( 
    Swap (H,N,( 
    len H)))) 
    = (( 
    rng H1) 
    \/  
    {((
    Swap (H,N,( 
    len H))) 
    . ( 
    len H))}) by 
    FINSEQ_1: 38;
    
          then (
    union ( 
    rng ( 
    Swap (H,N,( 
    len H))))) 
    = (( 
    union ( 
    rng H1)) 
    \/ ( 
    union  
    {((
    Swap (H,N,( 
    len H))) 
    . ( 
    len H))})) by 
    ZFMISC_1: 78;
    
          then
    
          
    
    A21: ( 
    union ( 
    rng H)) 
    = (( 
    union ( 
    rng H1)) 
    \/ (( 
    Swap (H,N,( 
    len H))) 
    . ( 
    len H))) by 
    A10,
    A11,
    Th28,
    CLASSES1: 75;
    
          
    
          
    
    A22: (( 
    Swap (H,N,( 
    len H))) 
    . ( 
    len H)) 
    = (H 
    . N) by 
    A10,
    A11,
    EXCHSORT: 31;
    
          
    
          
    
    A23: for A be 
    set st A 
    in ( 
    rng H1) holds A 
    misses (( 
    Swap (H,N,( 
    len H))) 
    . ( 
    len H)) 
    
          proof
    
            let A be
    set;
    
            assume A
    in ( 
    rng H1); 
    
            then
    
            consider n be
    Element of 
    NAT such that 
    
            
    
    A24: n 
    in ( 
    dom H1) & A 
    = (H1 
    . n) by 
    PARTFUN1: 3;
    
            
    
            
    
    A25: 1 
    <= n 
    <= k by 
    A14,
    A24,
    FINSEQ_3: 25;
    
            then
    
            
    
    A26: A 
    = (( 
    Swap (H,N,( 
    len H))) 
    . n) by 
    A24,
    FUNCT_1: 49,
    FINSEQ_1: 1;
    
            
    
            
    
    A27: n 
    <> ( 
    len H) by 
    A7,
    A25,
    NAT_1: 13;
    
            n
    <= ( 
    len H) by 
    A7,
    A25,
    NAT_1: 13;
    
            then
    
            
    
    A28: n 
    in ( 
    dom H) by 
    A25,
    FINSEQ_3: 25;
    
            per cases ;
    
              suppose
    
              
    
    A29: n 
    = N; 
    
              then A
    = (H 
    . ( 
    len H)) by 
    A11,
    A26,
    A28,
    EXCHSORT: 29;
    
              hence A
    misses (( 
    Swap (H,N,( 
    len H))) 
    . ( 
    len H)) by 
    A22,
    A27,
    A29,
    PROB_2:def 2;
    
            end;
    
              suppose
    
              
    
    A30: n 
    <> N; 
    
              then A
    = (H 
    . n) by 
    A26,
    A27,
    EXCHSORT: 33;
    
              hence A
    misses (( 
    Swap (H,N,( 
    len H))) 
    . ( 
    len H)) by 
    A22,
    A30,
    PROB_2:def 2;
    
            end;
    
          end;
    
          then
    
          
    
    A31: ( 
    union ( 
    rng H1)) 
    misses (( 
    Swap (H,N,( 
    len H))) 
    . ( 
    len H)) by 
    ZFMISC_1: 80;
    
          (
    union ( 
    rng H1)) 
    = (( 
    union ( 
    rng H)) 
    \ (( 
    Swap (H,N,( 
    len H))) 
    . ( 
    len H))) by 
    A23,
    A21,
    ZFMISC_1: 80,
    XBOOLE_1: 88;
    
          then (
    Union H1) 
    = (( 
    union ( 
    rng H)) 
    \ (H 
    . N)) by 
    A22,
    CARD_3:def 4;
    
          then (
    Union H1) is 
    Interval by 
    A10,
    CARD_3:def 4;
    
          then (
    Union H1) 
    in the set of all I where I be 
    Interval;
    
          then
    
          consider G1 be
    disjoint_valued  
    FinSequence of 
    Family_of_Intervals such that 
    
          
    
    A32: (H1,G1) 
    are_fiberwise_equipotent and 
    
          
    
    A33: for n be 
    Nat st n 
    in ( 
    dom G1) holds ( 
    Union (G1 
    | n)) 
    in  
    Family_of_Intervals & ( 
    pre-Meas  
    . ( 
    Union (G1 
    | n))) 
    = ( 
    Sum ( 
    pre-Meas  
    * (G1 
    | n))) by 
    A6,
    A14,
    MEASUR10:def 1;
    
          set G = (G1
    ^  
    <*(H
    . N)*>); 
    
          
    
          
    
    A34: (H 
    . N) 
    in ( 
    rng H) by 
    A10,
    FUNCT_1: 3;
    
          then
    {(H
    . N)} 
    c=  
    Family_of_Intervals by 
    ZFMISC_1: 31;
    
          then (
    rng  
    <*(H
    . N)*>) 
    c=  
    Family_of_Intervals by 
    FINSEQ_1: 38;
    
          then
    
          
    
    A35: 
    <*(H
    . N)*> is 
    disjoint_valued  
    FinSequence of 
    Family_of_Intervals by 
    FINSEQ_1:def 4;
    
          
    
          
    
    A36: ( 
    union ( 
    rng G1)) 
    misses (H 
    . N) by 
    A31,
    A22,
    A32,
    CLASSES1: 75;
    
          for A be
    set st A 
    in ( 
    rng  
    <*(H
    . N)*>) holds A 
    misses ( 
    union ( 
    rng G1)) 
    
          proof
    
            let A be
    set;
    
            assume A
    in ( 
    rng  
    <*(H
    . N)*>); 
    
            then A
    in  
    {(H
    . N)} by 
    FINSEQ_1: 38;
    
            then A
    = (H 
    . N) by 
    TARSKI:def 1;
    
            hence thesis by
    A36;
    
          end;
    
          then (
    union ( 
    rng G1)) 
    misses ( 
    union ( 
    rng  
    <*(H
    . N)*>)) by 
    ZFMISC_1: 80;
    
          then
    
          reconsider G as
    disjoint_valued  
    FinSequence of 
    Family_of_Intervals by 
    A35,
    FINSEQ_1: 75,
    MEASURE9: 45;
    
          take G;
    
          
    
          
    
    A37: (( 
    Swap (H,N,( 
    len H))),G) 
    are_fiberwise_equipotent by 
    A32,
    A20,
    A22,
    RFINSEQ: 1;
    
          hence
    
          
    
    A38: (H,G) 
    are_fiberwise_equipotent by 
    A12,
    CLASSES1: 76;
    
          thus for n be
    Nat st n 
    in ( 
    dom G) holds ( 
    Union (G 
    | n)) 
    in  
    Family_of_Intervals & ( 
    pre-Meas  
    . ( 
    Union (G 
    | n))) 
    = ( 
    Sum ( 
    pre-Meas  
    * (G 
    | n))) 
    
          proof
    
            let n be
    Nat;
    
            assume n
    in ( 
    dom G); 
    
            then
    
            
    
    A39: 1 
    <= n 
    <= ( 
    len G) by 
    FINSEQ_3: 25;
    
            
    
            
    
    A40: ( 
    len G) 
    = ( 
    len H) & ( 
    len G1) 
    = ( 
    len H1) by 
    A38,
    A32,
    RFINSEQ: 3;
    
            then (
    dom G1) 
    = ( 
    Seg k) by 
    A14,
    FINSEQ_1:def 3;
    
            then G1
    = (G 
    | ( 
    Seg k)) by 
    FINSEQ_1: 21;
    
            then
    
            
    
    A41: G1 
    = (G 
    | k) by 
    FINSEQ_1:def 15;
    
            per cases ;
    
              suppose
    
              
    
    A42: n 
    <= k; 
    
              then
    
              
    
    A43: n 
    in ( 
    dom G1) by 
    A39,
    A40,
    A14,
    FINSEQ_3: 25;
    
              
    
              
    
    A44: (G 
    | n) 
    = (G1 
    | n) by 
    A41,
    A42,
    FINSEQ_5: 77;
    
              (
    Union (G 
    | n)) 
    = ( 
    Union (G1 
    | n)) by 
    A41,
    A42,
    FINSEQ_5: 77;
    
              hence (
    Union (G 
    | n)) 
    in  
    Family_of_Intervals by 
    A43,
    A33;
    
              thus (
    pre-Meas  
    . ( 
    Union (G 
    | n))) 
    = ( 
    Sum ( 
    pre-Meas  
    * (G 
    | n))) by 
    A44,
    A43,
    A33;
    
            end;
    
              suppose n
    > k; 
    
              then
    
              
    
    A45: n 
    >= (k 
    + 1) by 
    NAT_1: 13;
    
              then
    
              
    
    A46: (G 
    | n) 
    = G by 
    A40,
    A7,
    FINSEQ_1: 58;
    
              then (
    rng (G 
    | n)) 
    = ( 
    rng H) by 
    A37,
    A12,
    CLASSES1: 76,
    CLASSES1: 75;
    
              then (
    Union (G 
    | n)) 
    = ( 
    union ( 
    rng H)) by 
    CARD_3:def 4;
    
              hence (
    Union (G 
    | n)) 
    in  
    Family_of_Intervals by 
    A8,
    CARD_3:def 4;
    
              
    
              
    
    A47: ( 
    Union G1) is 
    Interval
    
              proof
    
                per cases ;
    
                  suppose k
    =  
    0 ; 
    
                  then G1
    =  
    {} by 
    A40;
    
                  then (
    union ( 
    rng G1)) 
    =  
    {} by 
    ZFMISC_1: 2;
    
                  then (
    Union G1) 
    =  
    {} & 
    {}  
    c=  
    REAL by 
    CARD_3:def 4;
    
                  hence (
    Union G1) is 
    Interval;
    
                end;
    
                  suppose k
    <>  
    0 ; 
    
                  then k
    >= 1 by 
    NAT_1: 14;
    
                  then k
    in ( 
    dom G1) by 
    A14,
    A40,
    FINSEQ_3: 25;
    
                  then (
    Union (G1 
    | k)) 
    in the set of all I where I be 
    Interval by 
    A33,
    MEASUR10:def 1;
    
                  then ex I be
    Interval st ( 
    Union (G1 
    | k)) 
    = I; 
    
                  hence (
    Union G1) is 
    Interval by 
    A14,
    A40,
    FINSEQ_1: 58;
    
                end;
    
              end;
    
              then
    
              
    
    A48: ( 
    Union G1) 
    in the set of all I where I be 
    Interval;
    
              
    
              
    
    A49: ( 
    rng  
    <*(H
    . N)*>) 
    =  
    {(H
    . N)} by 
    FINSEQ_1: 38;
    
              then
    
              reconsider HN =
    <*(H
    . N)*> as 
    FinSequence of 
    Family_of_Intervals by 
    A34,
    ZFMISC_1: 31,
    FINSEQ_1:def 4;
    
              
    
              
    
    A50: ( 
    Union G1) 
    misses (H 
    . N) by 
    A36,
    CARD_3:def 4;
    
              (
    rng (G 
    | n)) 
    = (( 
    rng G1) 
    \/ ( 
    rng  
    <*(H
    . N)*>)) by 
    A46,
    FINSEQ_1: 31;
    
              then (
    union ( 
    rng (G 
    | n))) 
    = (( 
    union ( 
    rng G1)) 
    \/ ( 
    union ( 
    rng  
    <*(H
    . N)*>))) by 
    ZFMISC_1: 78;
    
              
    
              then
    
              
    
    A51: ( 
    Union (G 
    | n)) 
    = (( 
    union ( 
    rng G1)) 
    \/ ( 
    union ( 
    rng  
    <*(H
    . N)*>))) by 
    CARD_3:def 4
    
              .= ((
    Union G1) 
    \/ ( 
    union  
    {(H
    . N)})) by 
    A49,
    CARD_3:def 4;
    
              (
    rng G) 
    = ( 
    rng H) by 
    A37,
    A12,
    CLASSES1: 76,
    CLASSES1: 75;
    
              then (
    Union G) 
    = ( 
    union ( 
    rng H)) by 
    CARD_3:def 4;
    
              then (
    Union G) 
    = ( 
    Union H) by 
    CARD_3:def 4;
    
              then ex I be
    Interval st ( 
    Union G) 
    = I by 
    A8,
    MEASUR10:def 1;
    
              then
    
              
    
    A52: (( 
    Union G1) 
    \/ (H 
    . N)) is 
    Interval by 
    A51,
    A45,
    A40,
    A7,
    FINSEQ_1: 58;
    
              
    
              
    
    A53: ( 
    pre-Meas  
    . ( 
    Union G1)) 
    = ( 
    Sum ( 
    pre-Meas  
    * G1)) 
    
              proof
    
                per cases ;
    
                  suppose k
    =  
    0 ; 
    
                  then
    
                  
    
    A54: G1 
    =  
    {} by 
    A40;
    
                  then (
    union ( 
    rng G1)) 
    =  
    {} by 
    ZFMISC_1: 2;
    
                  then (
    Union G1) 
    =  
    {} by 
    CARD_3:def 4;
    
                  then (
    pre-Meas  
    . ( 
    Union G1)) 
    = ( 
    diameter  
    {} ) by 
    A47,
    Th59;
    
                  then (
    pre-Meas  
    . ( 
    Union G1)) 
    =  
    0 by 
    MEASURE5:def 6;
    
                  hence (
    pre-Meas  
    . ( 
    Union G1)) 
    = ( 
    Sum ( 
    pre-Meas  
    * G1)) by 
    A54,
    EXTREAL1: 7;
    
                end;
    
                  suppose k
    <>  
    0 ; 
    
                  then k
    >= 1 by 
    NAT_1: 14;
    
                  then
    
                  
    
    A55: k 
    in ( 
    dom G1) by 
    A14,
    A40,
    FINSEQ_3: 25;
    
                  (G1
    | k) 
    = G1 by 
    A14,
    A40,
    FINSEQ_1: 58;
    
                  hence (
    pre-Meas  
    . ( 
    Union G1)) 
    = ( 
    Sum ( 
    pre-Meas  
    * G1)) by 
    A55,
    A33;
    
                end;
    
              end;
    
              
    
              
    
    A56: ( 
    pre-Meas  
    * HN) 
    =  
    <*(
    pre-Meas  
    . (H 
    . N))*> by 
    Th62;
    
              reconsider LG1 = (
    pre-Meas  
    * G1) as 
    FinSequence of 
    ExtREAL ; 
    
              reconsider LHN = (
    pre-Meas  
    * HN) as 
    FinSequence of 
    ExtREAL ; 
    
              (
    dom  
    pre-Meas ) 
    =  
    Family_of_Intervals by 
    FUNCT_2:def 1;
    
              then (
    rng G1) 
    c= ( 
    dom  
    pre-Meas ) & ( 
    rng HN) 
    c= ( 
    dom  
    pre-Meas ); 
    
              then
    
              
    
    A57: ( 
    pre-Meas  
    * G) 
    = (( 
    pre-Meas  
    * G1) 
    ^  
    <*(
    pre-Meas  
    . (H 
    . N))*>) by 
    A56,
    MATRIX15: 5;
    
              (
    pre-Meas  
    . ( 
    Union (G 
    | n))) 
    = (( 
    pre-Meas  
    . ( 
    Union G1)) 
    + ( 
    pre-Meas  
    . (H 
    . N))) by 
    A48,
    MEASUR10:def 1,
    A34,
    A50,
    A52,
    A51,
    Th60
    
              .= (
    Sum ( 
    pre-Meas  
    * G)) by 
    A57,
    A53,
    MEASURE9: 21;
    
              hence (
    pre-Meas  
    . ( 
    Union (G 
    | n))) 
    = ( 
    Sum ( 
    pre-Meas  
    * (G 
    | n))) by 
    A45,
    A40,
    A7,
    FINSEQ_1: 58;
    
            end;
    
          end;
    
        end;
    
      end;
    
      for k be
    Nat holds 
    P[k] from
    NAT_1:sch 2(
    A4,
    A5);
    
      then
    P[(
    len F)]; 
    
      hence ex G be
    disjoint_valued  
    FinSequence of 
    Family_of_Intervals st (F,G) 
    are_fiberwise_equipotent & for n be 
    Nat st n 
    in ( 
    dom G) holds ( 
    Union (G 
    | n)) 
    in  
    Family_of_Intervals & ( 
    pre-Meas  
    . ( 
    Union (G 
    | n))) 
    = ( 
    Sum ( 
    pre-Meas  
    * (G 
    | n))) by 
    A1;
    
    end;
    
    theorem :: 
    
    MEASUR12:64
    
    
    
    
    
    Th64: for F,G be 
    FinSequence of 
    ExtREAL holds (F is 
    without-infty & G is 
    without-infty implies (F 
    ^ G) is 
    without-infty) & (F is
    without+infty & G is 
    without+infty implies (F 
    ^ G) is 
    without+infty)
    
    proof
    
      let F,G be
    FinSequence of 
    ExtREAL ; 
    
      hereby
    
        assume F is
    without-infty & G is 
    without-infty;
    
        then
    
        
    
    A1: not 
    -infty  
    in ( 
    rng F) & not 
    -infty  
    in ( 
    rng G) by 
    MESFUNC5:def 3;
    
        (
    rng (F 
    ^ G)) 
    = (( 
    rng F) 
    \/ ( 
    rng G)) by 
    FINSEQ_1: 31;
    
        then not
    -infty  
    in ( 
    rng (F 
    ^ G)) by 
    A1,
    XBOOLE_0:def 3;
    
        hence (F
    ^ G) is 
    without-infty by 
    MESFUNC5:def 3;
    
      end;
    
      assume F is
    without+infty & G is 
    without+infty;
    
      then
    
      
    
    A2: not 
    +infty  
    in ( 
    rng F) & not 
    +infty  
    in ( 
    rng G) by 
    MESFUNC5:def 4;
    
      (
    rng (F 
    ^ G)) 
    = (( 
    rng F) 
    \/ ( 
    rng G)) by 
    FINSEQ_1: 31;
    
      then not
    +infty  
    in ( 
    rng (F 
    ^ G)) by 
    A2,
    XBOOLE_0:def 3;
    
      hence (F
    ^ G) is 
    without+infty by 
    MESFUNC5:def 4;
    
    end;
    
    theorem :: 
    
    MEASUR12:65
    
    
    
    
    
    Th65: for F be 
    FinSequence of 
    ExtREAL , k be 
    Nat holds (F is 
    without-infty implies (F 
    /^ k) is 
    without-infty) & (F is
    without+infty implies (F 
    /^ k) is 
    without+infty)
    
    proof
    
      let F be
    FinSequence of 
    ExtREAL , k be 
    Nat;
    
      hereby
    
        assume F is
    without-infty;
    
        then
    
        
    
    A1: not 
    -infty  
    in ( 
    rng F) by 
    MESFUNC5:def 3;
    
        (
    rng (F 
    /^ k)) 
    c= ( 
    rng F) by 
    FINSEQ_5: 33;
    
        hence (F
    /^ k) is 
    without-infty by 
    A1,
    MESFUNC5:def 3;
    
      end;
    
      assume F is
    without+infty;
    
      then
    
      
    
    A2: not 
    +infty  
    in ( 
    rng F) by 
    MESFUNC5:def 4;
    
      (
    rng (F 
    /^ k)) 
    c= ( 
    rng F) by 
    FINSEQ_5: 33;
    
      hence (F
    /^ k) is 
    without+infty by 
    A2,
    MESFUNC5:def 4;
    
    end;
    
    theorem :: 
    
    MEASUR12:66
    
    
    
    
    
    Th66: for F be 
    FinSequence of 
    ExtREAL holds (F is 
    without-infty implies ( 
    Sum F) 
    <>  
    -infty ) & (F is 
    without+infty implies ( 
    Sum F) 
    <>  
    +infty ) 
    
    proof
    
      let F be
    FinSequence of 
    ExtREAL ; 
    
      hereby
    
        assume F is
    without-infty;
    
        then
    
        
    
    A1: not 
    -infty  
    in ( 
    rng F) by 
    MESFUNC5:def 3;
    
        consider S be
    sequence of 
    ExtREAL such that 
    
        
    
    A2: ( 
    Sum F) 
    = (S 
    . ( 
    len F)) & (S 
    .  
    0 ) 
    =  
    0 & for n be 
    Nat st n 
    < ( 
    len F) holds (S 
    . (n 
    + 1)) 
    = ((S 
    . n) 
    + (F 
    . (n 
    + 1))) by 
    EXTREAL1:def 2;
    
        defpred
    
    P[
    Nat] means $1
    <= ( 
    len F) implies (S 
    . $1) 
    <>  
    -infty ; 
    
        
    
        
    
    A3: 
    P[
    0 ] by 
    A2;
    
        
    
        
    
    A4: for n be 
    Nat st 
    P[n] holds
    P[(n
    + 1)] 
    
        proof
    
          let n be
    Nat;
    
          assume
    
          
    
    A5: 
    P[n];
    
          assume
    
          
    
    A6: (n 
    + 1) 
    <= ( 
    len F); 
    
          then
    
          
    
    A7: (S 
    . (n 
    + 1)) 
    = ((S 
    . n) 
    + (F 
    . (n 
    + 1))) by 
    A2,
    NAT_1: 13;
    
          (n
    + 1) 
    in ( 
    dom F) by 
    A6,
    NAT_1: 11,
    FINSEQ_3: 25;
    
          then (F
    . (n 
    + 1)) 
    in ( 
    rng F) by 
    FUNCT_1: 3;
    
          hence (S
    . (n 
    + 1)) 
    <>  
    -infty by 
    A1,
    A5,
    NAT_1: 13,
    A6,
    A7,
    XXREAL_3: 17;
    
        end;
    
        for n be
    Nat holds 
    P[n] from
    NAT_1:sch 2(
    A3,
    A4);
    
        hence (
    Sum F) 
    <>  
    -infty by 
    A2;
    
      end;
    
      assume F is
    without+infty;
    
      then
    
      
    
    A8: not 
    +infty  
    in ( 
    rng F) by 
    MESFUNC5:def 4;
    
      consider S be
    sequence of 
    ExtREAL such that 
    
      
    
    A9: ( 
    Sum F) 
    = (S 
    . ( 
    len F)) & (S 
    .  
    0 ) 
    =  
    0 & for n be 
    Nat st n 
    < ( 
    len F) holds (S 
    . (n 
    + 1)) 
    = ((S 
    . n) 
    + (F 
    . (n 
    + 1))) by 
    EXTREAL1:def 2;
    
      defpred
    
    P[
    Nat] means $1
    <= ( 
    len F) implies (S 
    . $1) 
    <>  
    +infty ; 
    
      
    
      
    
    A10: 
    P[
    0 ] by 
    A9;
    
      
    
      
    
    A11: for n be 
    Nat st 
    P[n] holds
    P[(n
    + 1)] 
    
      proof
    
        let n be
    Nat;
    
        assume
    
        
    
    A12: 
    P[n];
    
        assume
    
        
    
    A13: (n 
    + 1) 
    <= ( 
    len F); 
    
        then
    
        
    
    A14: (S 
    . (n 
    + 1)) 
    = ((S 
    . n) 
    + (F 
    . (n 
    + 1))) by 
    A9,
    NAT_1: 13;
    
        (n
    + 1) 
    in ( 
    dom F) by 
    A13,
    NAT_1: 11,
    FINSEQ_3: 25;
    
        then (F
    . (n 
    + 1)) 
    in ( 
    rng F) by 
    FUNCT_1: 3;
    
        hence (S
    . (n 
    + 1)) 
    <>  
    +infty by 
    A8,
    A12,
    NAT_1: 13,
    A13,
    A14,
    XXREAL_3: 16;
    
      end;
    
      for n be
    Nat holds 
    P[n] from
    NAT_1:sch 2(
    A10,
    A11);
    
      hence (
    Sum F) 
    <>  
    +infty by 
    A9;
    
    end;
    
    theorem :: 
    
    MEASUR12:67
    
    
    
    
    
    Th67: for R1,R2 be 
    without-infty  
    FinSequence of 
    ExtREAL st (R1,R2) 
    are_fiberwise_equipotent holds ( 
    Sum R1) 
    = ( 
    Sum R2) 
    
    proof
    
      let R1,R2 be
    without-infty  
    FinSequence of 
    ExtREAL ; 
    
      defpred
    
    P[
    Nat] means for f,g be
    without-infty  
    FinSequence of 
    ExtREAL st (f,g) 
    are_fiberwise_equipotent & ( 
    len f) 
    = $1 holds ( 
    Sum f) 
    = ( 
    Sum g); 
    
      assume
    
      
    
    A1: (R1,R2) 
    are_fiberwise_equipotent ; 
    
      
    
      
    
    A2: ( 
    len R1) 
    = ( 
    len R1); 
    
      
    
      
    
    A3: for n be 
    Nat st 
    P[n] holds
    P[(n
    + 1)] 
    
      proof
    
        let n be
    Nat;
    
        assume
    
        
    
    A4: 
    P[n];
    
        let f,g be
    without-infty  
    FinSequence of 
    ExtREAL ; 
    
        assume that
    
        
    
    A5: (f,g) 
    are_fiberwise_equipotent and 
    
        
    
    A6: ( 
    len f) 
    = (n 
    + 1); 
    
        set a = (f
    . (n 
    + 1)); 
    
        
    
        
    
    A7: ( 
    rng f) 
    = ( 
    rng g) by 
    A5,
    CLASSES1: 75;
    
        (
    0 qua 
    Nat
    + 1) 
    <= (n 
    + 1) by 
    NAT_1: 13;
    
        then (n
    + 1) 
    in ( 
    dom f) by 
    A6,
    FINSEQ_3: 25;
    
        then
    
        
    
    A8: a 
    in ( 
    rng g) by 
    A7,
    FUNCT_1:def 3;
    
        then
    
        consider m be
    Nat such that 
    
        
    
    A9: m 
    in ( 
    dom g) and 
    
        
    
    A10: (g 
    . m) 
    = a by 
    FINSEQ_2: 10;
    
        set gg = (g
    /^ m), gm = (g 
    | m); 
    
        m
    <= ( 
    len g) by 
    A9,
    FINSEQ_3: 25;
    
        then
    
        
    
    A11: ( 
    len gm) 
    = m by 
    FINSEQ_1: 59;
    
        
    
        
    
    A12: 1 
    <= m by 
    A9,
    FINSEQ_3: 25;
    
        (
    max ( 
    0 ,(m 
    - 1))) 
    = (m 
    - 1) by 
    A9,
    FINSEQ_3: 25,
    FINSEQ_2: 4;
    
        then
    
        reconsider m1 = (m
    - 1) as 
    Element of 
    NAT by 
    FINSEQ_2: 5;
    
        
    
        
    
    A13: m 
    = (m1 
    + 1); 
    
        then
    
        
    
    A14: ( 
    Seg m1) 
    c= ( 
    Seg m) by 
    FINSEQ_1: 5,
    NAT_1: 11;
    
        m
    in ( 
    Seg m) by 
    A12,
    FINSEQ_1: 1;
    
        then (gm
    . m) 
    = a by 
    A9,
    A10,
    RFINSEQ: 6;
    
        then
    
        
    
    A15: gm 
    = ((gm 
    | m1) 
    ^  
    <*a*>) by
    A11,
    A13,
    RFINSEQ: 7;
    
        set fn = (f
    | n); 
    
        
    
        
    
    A16: g 
    = ((g 
    | m) 
    ^ (g 
    /^ m)); 
    
        
    
        
    
    A17: (gm 
    | m1) 
    = (gm 
    | ( 
    Seg m1)) by 
    FINSEQ_1:def 15
    
        .= ((g
    | ( 
    Seg m)) 
    | ( 
    Seg m1)) by 
    FINSEQ_1:def 15
    
        .= (g
    | (( 
    Seg m) 
    /\ ( 
    Seg m1))) by 
    RELAT_1: 71
    
        .= (g
    | ( 
    Seg m1)) by 
    A14,
    XBOOLE_1: 28
    
        .= (g
    | m1) by 
    FINSEQ_1:def 15;
    
        
    
        
    
    A18: f 
    = (fn 
    ^  
    <*a*>) by
    A6,
    RFINSEQ: 7;
    
        
    
        
    
    A19: fn is 
    without-infty & (g 
    | m1) is 
    without-infty & gg is 
    without-infty & gm is 
    without-infty & (g 
    /^ m) is 
    without-infty by 
    MEASURE9: 36,
    Th65;
    
        then
    
        
    
    A20: ((g 
    | m1) 
    ^ gg) is 
    without-infty & ((g 
    | m1) 
    ^ (g 
    /^ m)) is 
    without-infty by 
    Th64;
    
        a
    <>  
    -infty by 
    A8,
    MESFUNC5:def 3;
    
        then not
    -infty  
    in  
    {a} by
    TARSKI:def 1;
    
        then
    
        
    
    A21: not 
    -infty  
    in ( 
    rng  
    <*a*>) by
    FINSEQ_1: 38;
    
        then
    
        
    
    A22: 
    <*a*> is
    without-infty  
    FinSequence of 
    ExtREAL by 
    MESFUNC5:def 3;
    
        
    
        
    
    A23: not 
    -infty  
    in ( 
    rng fn) & not 
    -infty  
    in ( 
    rng ((g 
    | m1) 
    ^ gg)) & not 
    -infty  
    in ( 
    rng (g 
    | m1)) & not 
    -infty  
    in ( 
    rng gg) & not 
    -infty  
    in ( 
    rng gm) by 
    A19,
    A20,
    MESFUNC5:def 3;
    
        
    
        
    
    A24: ( 
    Sum (g 
    | m1)) 
    <>  
    -infty & ( 
    Sum  
    <*a*>)
    <>  
    -infty & ( 
    Sum gg) 
    <>  
    -infty by 
    A22,
    Th66,
    MEASURE9: 36,
    Th65;
    
        
    
    A25: 
    
        now
    
          let x be
    object;
    
          (
    card ( 
    Coim (f,x))) 
    = ( 
    card ( 
    Coim (g,x))) by 
    A5,
    CLASSES1:def 10;
    
          then (
    card (f 
    "  
    {x}))
    = ( 
    card ( 
    Coim (g,x))) by 
    RELAT_1:def 17;
    
          then (
    card (f 
    "  
    {x}))
    = ( 
    card (g 
    "  
    {x})) by
    RELAT_1:def 17;
    
          
    
          then ((
    card (fn 
    "  
    {x}))
    + ( 
    card ( 
    <*a*>
    "  
    {x})))
    = ( 
    card ((((g 
    | m1) 
    ^  
    <*a*>)
    ^ (g 
    /^ m)) 
    "  
    {x})) by
    A15,
    A17,
    A18,
    FINSEQ_3: 57
    
          .= ((
    card (((g 
    | m1) 
    ^  
    <*a*>)
    "  
    {x}))
    + ( 
    card ((g 
    /^ m) 
    "  
    {x}))) by
    FINSEQ_3: 57
    
          .= (((
    card ((g 
    | m1) 
    "  
    {x}))
    + ( 
    card ( 
    <*a*>
    "  
    {x})))
    + ( 
    card ((g 
    /^ m) 
    "  
    {x}))) by
    FINSEQ_3: 57
    
          .= (((
    card ((g 
    | m1) 
    "  
    {x}))
    + ( 
    card ((g 
    /^ m) 
    "  
    {x})))
    + ( 
    card ( 
    <*a*>
    "  
    {x})))
    
          .= ((
    card (((g 
    | m1) 
    ^ (g 
    /^ m)) 
    "  
    {x}))
    + ( 
    card ( 
    <*a*>
    "  
    {x}))) by
    FINSEQ_3: 57
    
          .= ((
    card ( 
    Coim (((g 
    | m1) 
    ^ (g 
    /^ m)),x))) 
    + ( 
    card ( 
    <*a*>
    "  
    {x}))) by
    RELAT_1:def 17;
    
          hence (
    card ( 
    Coim (fn,x))) 
    = ( 
    card ( 
    Coim (((g 
    | m1) 
    ^ (g 
    /^ m)),x))) by 
    RELAT_1:def 17;
    
        end;
    
        (
    len fn) 
    = n by 
    A6,
    FINSEQ_1: 59,
    NAT_1: 11;
    
        then (
    Sum fn) 
    = ( 
    Sum ((g 
    | m1) 
    ^ gg)) by 
    A4,
    A19,
    A20,
    A25,
    CLASSES1:def 10;
    
        
    
        hence (
    Sum f) 
    = (( 
    Sum ((g 
    | m1) 
    ^ gg)) 
    + ( 
    Sum  
    <*a*>)) by
    A18,
    A23,
    A21,
    EXTREAL1: 10
    
        .= (((
    Sum (g 
    | m1)) 
    + ( 
    Sum gg)) 
    + ( 
    Sum  
    <*a*>)) by
    A23,
    EXTREAL1: 10
    
        .= (((
    Sum (g 
    | m1)) 
    + ( 
    Sum  
    <*a*>))
    + ( 
    Sum gg)) by 
    A24,
    XXREAL_3: 29
    
        .= ((
    Sum gm) 
    + ( 
    Sum gg)) by 
    A15,
    A17,
    A23,
    A21,
    EXTREAL1: 10
    
        .= (
    Sum g) by 
    A16,
    A23,
    EXTREAL1: 10;
    
      end;
    
      
    
      
    
    A26: 
    P[
    0 ] 
    
      proof
    
        let f,g be
    without-infty  
    FinSequence of 
    ExtREAL ; 
    
        assume (f,g)
    are_fiberwise_equipotent & ( 
    len f) 
    =  
    0 ; 
    
        then
    
        
    
    A27: ( 
    len g) 
    =  
    0 & f 
    = ( 
    <*>  
    ExtREAL ) by 
    RFINSEQ: 3;
    
        then g
    = ( 
    <*>  
    ExtREAL ); 
    
        hence thesis by
    A27;
    
      end;
    
      for n be
    Nat holds 
    P[n] from
    NAT_1:sch 2(
    A26,
    A3);
    
      hence thesis by
    A1,
    A2;
    
    end;
    
    theorem :: 
    
    MEASUR12:68
    
    
    
    
    
    Th68: for F be 
    disjoint_valued  
    FinSequence of 
    Family_of_Intervals st ( 
    Union F) 
    in  
    Family_of_Intervals holds ( 
    pre-Meas  
    . ( 
    Union F)) 
    = ( 
    Sum ( 
    pre-Meas  
    * F)) 
    
    proof
    
      let F be
    disjoint_valued  
    FinSequence of 
    Family_of_Intervals ; 
    
      assume (
    Union F) 
    in  
    Family_of_Intervals ; 
    
      then
    
      consider G be
    disjoint_valued  
    FinSequence of 
    Family_of_Intervals such that 
    
      
    
    A1: (F,G) 
    are_fiberwise_equipotent and 
    
      
    
    A2: for n be 
    Nat st n 
    in ( 
    dom G) holds ( 
    Union (G 
    | n)) 
    in  
    Family_of_Intervals & ( 
    pre-Meas  
    . ( 
    Union (G 
    | n))) 
    = ( 
    Sum ( 
    pre-Meas  
    * (G 
    | n))) by 
    Th63;
    
      per cases ;
    
        suppose
    
        
    
    A3: F 
    =  
    {} ; 
    
        then (
    union ( 
    rng F)) 
    =  
    {} by 
    ZFMISC_1: 2;
    
        then (
    Union F) 
    =  
    {} & 
    {}  
    c=  
    REAL by 
    CARD_3:def 4;
    
        
    
        then (
    pre-Meas  
    . ( 
    Union F)) 
    = ( 
    diameter  
    {} ) by 
    Th59
    
        .=
    0 by 
    MEASURE5:def 6;
    
        hence (
    pre-Meas  
    . ( 
    Union F)) 
    = ( 
    Sum ( 
    pre-Meas  
    * F)) by 
    A3,
    EXTREAL1: 7;
    
      end;
    
        suppose F
    <>  
    {} ; 
    
        then
    
        
    
    A4: 1 
    <= ( 
    len F) by 
    FINSEQ_1: 20;
    
        
    
        
    
    A5: ( 
    len F) 
    = ( 
    len G) & ( 
    dom F) 
    = ( 
    dom G) by 
    A1,
    RFINSEQ: 3;
    
        (
    rng F) 
    = ( 
    rng G) by 
    A1,
    CLASSES1: 75;
    
        then (
    Union F) 
    = ( 
    union ( 
    rng G)) by 
    CARD_3:def 4;
    
        then
    
        
    
    A6: ( 
    Union F) 
    = ( 
    Union G) by 
    CARD_3:def 4;
    
        
    
        
    
    A7: (G 
    | ( 
    len F)) 
    = G by 
    A5,
    FINSEQ_1: 58;
    
        (
    len F) 
    in ( 
    dom G) by 
    A4,
    A5,
    FINSEQ_3: 25;
    
        then
    
        
    
    A8: ( 
    pre-Meas  
    . ( 
    Union G)) 
    = ( 
    Sum ( 
    pre-Meas  
    * G)) by 
    A7,
    A2;
    
        
    
        
    
    A9: ( 
    pre-Meas  
    * G) is 
    nonnegative & ( 
    pre-Meas  
    * F) is 
    nonnegative by 
    MEASURE9: 47;
    
        
    
        
    
    A10: ( 
    dom  
    pre-Meas ) 
    =  
    Family_of_Intervals by 
    FUNCT_2:def 1;
    
        (
    rng G) 
    c=  
    Family_of_Intervals & ( 
    rng F) 
    c=  
    Family_of_Intervals ; 
    
        hence (
    pre-Meas  
    . ( 
    Union F)) 
    = ( 
    Sum ( 
    pre-Meas  
    * F)) by 
    A6,
    A8,
    A9,
    Th67,
    A1,
    A5,
    A10,
    CLASSES1: 83;
    
      end;
    
    end;
    
    theorem :: 
    
    MEASUR12:69
    
    
    
    
    
    Th69: for K be 
    disjoint_valued  
    Function of 
    NAT , 
    Family_of_Intervals st ( 
    Union K) 
    in  
    Family_of_Intervals holds ( 
    pre-Meas  
    . ( 
    Union K)) 
    <= ( 
    SUM ( 
    pre-Meas  
    * K)) 
    
    proof
    
      let K be
    disjoint_valued  
    Function of 
    NAT , 
    Family_of_Intervals ; 
    
      assume
    
      
    
    A1: ( 
    Union K) 
    in  
    Family_of_Intervals ; 
    
      reconsider F = K as
    sequence of ( 
    bool  
    REAL ) by 
    FUNCT_2: 7;
    
      (
    pre-Meas  
    . ( 
    Union K)) 
    = ( 
    OS_Meas  
    . ( 
    Union F)) by 
    A1,
    FUNCT_1: 49
    
      .= (
    OS_Meas  
    . ( 
    union ( 
    rng F))) by 
    CARD_3:def 4;
    
      then
    
      
    
    A2: ( 
    pre-Meas  
    . ( 
    Union K)) 
    <= ( 
    SUM ( 
    OS_Meas  
    * F)) by 
    MEASURE4:def 1;
    
      for n be
    Element of 
    NAT holds (( 
    OS_Meas  
    * F) 
    . n) 
    = (( 
    pre-Meas  
    * K) 
    . n) 
    
      proof
    
        let n be
    Element of 
    NAT ; 
    
        reconsider A = (F
    . n) as 
    Subset of 
    REAL ; 
    
        
    
        
    
    A3: ( 
    dom F) 
    =  
    NAT & ( 
    dom K) 
    =  
    NAT by 
    FUNCT_2:def 1;
    
        
    
        then ((
    pre-Meas  
    * K) 
    . n) 
    = ( 
    pre-Meas  
    . (K 
    . n)) by 
    FUNCT_1: 13
    
        .= (
    OS_Meas  
    . (K 
    . n)) by 
    FUNCT_1: 49;
    
        hence thesis by
    A3,
    FUNCT_1: 13;
    
      end;
    
      hence (
    pre-Meas  
    . ( 
    Union K)) 
    <= ( 
    SUM ( 
    pre-Meas  
    * K)) by 
    A2,
    FUNCT_2:def 8;
    
    end;
    
    definition
    
      :: original:
    pre-Meas
    
      redefine
    
      func
    
    pre-Meas -> 
    pre-Measure of 
    Family_of_Intervals ; 
    
      correctness by
    Th68,
    Th69,
    MEASURE9:def 7;
    
    end
    
    definition
    
      :: 
    
    MEASUR12:def9
    
      func
    
    J-Meas -> 
    Measure of ( 
    Field_generated_by  
    Family_of_Intervals ) means 
    
      :
    
    Def9: for A be 
    set st A 
    in ( 
    Field_generated_by  
    Family_of_Intervals ) holds for F be 
    disjoint_valued  
    FinSequence of 
    Family_of_Intervals st A 
    = ( 
    Union F) holds (it 
    . A) 
    = ( 
    Sum ( 
    pre-Meas  
    * F)); 
    
      existence by
    MEASURE9: 55;
    
      uniqueness
    
      proof
    
        let f1,f2 be
    Measure of ( 
    Field_generated_by  
    Family_of_Intervals ); 
    
        assume that
    
        
    
    A1: for A be 
    set st A 
    in ( 
    Field_generated_by  
    Family_of_Intervals ) holds for F be 
    disjoint_valued  
    FinSequence of 
    Family_of_Intervals st A 
    = ( 
    Union F) holds (f1 
    . A) 
    = ( 
    Sum ( 
    pre-Meas  
    * F)) and 
    
        
    
    A2: for A be 
    set st A 
    in ( 
    Field_generated_by  
    Family_of_Intervals ) holds for F be 
    disjoint_valued  
    FinSequence of 
    Family_of_Intervals st A 
    = ( 
    Union F) holds (f2 
    . A) 
    = ( 
    Sum ( 
    pre-Meas  
    * F)); 
    
        for A be
    Element of ( 
    Field_generated_by  
    Family_of_Intervals ) holds (f1 
    . A) 
    = (f2 
    . A) 
    
        proof
    
          let A be
    Element of ( 
    Field_generated_by  
    Family_of_Intervals ); 
    
          A
    in ( 
    Field_generated_by  
    Family_of_Intervals ); 
    
          then A
    in ( 
    DisUnion  
    Family_of_Intervals ) by 
    SRINGS_3: 22;
    
          then A
    in { A where A be 
    Subset of 
    REAL : ex F be 
    disjoint_valued  
    FinSequence of 
    Family_of_Intervals st A 
    = ( 
    Union F) } by 
    SRINGS_3:def 3;
    
          then ex E be
    Subset of 
    REAL st A 
    = E & ex F be 
    disjoint_valued  
    FinSequence of 
    Family_of_Intervals st E 
    = ( 
    Union F); 
    
          then
    
          consider F be
    disjoint_valued  
    FinSequence of 
    Family_of_Intervals such that 
    
          
    
    A3: A 
    = ( 
    Union F); 
    
          (f1
    . A) 
    = ( 
    Sum ( 
    pre-Meas  
    * F)) by 
    A1,
    A3;
    
          hence (f1
    . A) 
    = (f2 
    . A) by 
    A2,
    A3;
    
        end;
    
        hence f1
    = f2 by 
    FUNCT_2:def 8;
    
      end;
    
    end
    
    
    
    
    
    Lm23: for A be 
    set st A 
    in ( 
    Field_generated_by  
    Family_of_Intervals ) holds for F be 
    disjoint_valued  
    FinSequence of 
    Family_of_Intervals st A 
    = ( 
    Union F) holds ( 
    J-Meas  
    . A) 
    = ( 
    Sum ( 
    pre-Meas  
    * F)) by 
    Def9;
    
    definition
    
      :: original:
    J-Meas
    
      redefine
    
      func
    
    J-Meas -> 
    induced_Measure of 
    Family_of_Intervals , 
    pre-Meas ; 
    
      correctness by
    Lm23,
    MEASURE9:def 8;
    
    end
    
    registration
    
      cluster 
    J-Meas -> 
    completely-additive;
    
      coherence by
    MEASURE9: 60;
    
    end
    
    definition
    
      :: 
    
    MEASUR12:def10
    
      func
    
    B-Meas -> 
    sigma_Measure of 
    Borel_Sets equals (( 
    sigma_Meas ( 
    C_Meas  
    J-Meas )) 
    |  
    Borel_Sets ); 
    
      correctness by
    MEASURE9: 61,
    MEASUR10: 6;
    
    end
    
    theorem :: 
    
    MEASUR12:70
    
    
    
    
    
    Th71: for A be 
    Interval holds ( 
    J-Meas  
    . A) 
    = ( 
    diameter A) 
    
    proof
    
      let A be
    Interval;
    
      
    
      
    
    A1: A 
    in  
    Family_of_Intervals by 
    MEASUR10:def 1;
    
      
    
      
    
    A2: 
    Family_of_Intervals  
    c= ( 
    Field_generated_by  
    Family_of_Intervals ) by 
    SRINGS_3: 21;
    
      reconsider F =
    <*A*> as
    disjoint_valued  
    FinSequence of 
    Family_of_Intervals by 
    A1,
    FINSEQ_1: 74;
    
      (
    rng F) 
    =  
    {A} by
    FINSEQ_1: 38;
    
      then (
    union ( 
    rng F)) 
    = A; 
    
      then A
    = ( 
    Union F) by 
    CARD_3:def 4;
    
      then (
    J-Meas  
    . A) 
    = ( 
    Sum ( 
    pre-Meas  
    * F)) by 
    A2,
    A1,
    Def9;
    
      then (
    J-Meas  
    . A) 
    = ( 
    Sum  
    <*(
    pre-Meas  
    . A)*>) by 
    Th62;
    
      then (
    J-Meas  
    . A) 
    = ( 
    pre-Meas  
    . A) by 
    EXTREAL1: 8;
    
      hence (
    J-Meas  
    . A) 
    = ( 
    diameter A) by 
    Th59;
    
    end;
    
    theorem :: 
    
    MEASUR12:71
    
    
    
    
    
    Th72: for A be 
    Interval holds ( 
    B-Meas  
    . A) 
    = ( 
    diameter A) 
    
    proof
    
      let A be
    Interval;
    
      
    
      
    
    A1: A 
    in  
    Family_of_Intervals by 
    MEASUR10:def 1;
    
      
    
      
    
    A2: 
    Family_of_Intervals  
    c= ( 
    Field_generated_by  
    Family_of_Intervals ) by 
    SRINGS_3: 21;
    
      
    
      
    
    A3: ( 
    Field_generated_by  
    Family_of_Intervals ) 
    c=  
    Borel_Sets by 
    PROB_1:def 9,
    MEASUR10: 6;
    
      
    
      
    
    A4: ( 
    Field_generated_by  
    Family_of_Intervals ) 
    c= ( 
    sigma_Field ( 
    C_Meas  
    J-Meas )) by 
    MEASURE8: 20;
    
      (
    B-Meas  
    . A) 
    = (( 
    sigma_Meas ( 
    C_Meas  
    J-Meas )) 
    . A) by 
    A3,
    A2,
    A1,
    FUNCT_1: 49
    
      .= ((
    C_Meas  
    J-Meas ) 
    . A) by 
    A4,
    A2,
    A1,
    MEASURE4:def 3
    
      .= (
    J-Meas  
    . A) by 
    A2,
    A1,
    MEASURE8: 18;
    
      hence (
    B-Meas  
    . A) 
    = ( 
    diameter A) by 
    Th71;
    
    end;
    
    theorem :: 
    
    MEASUR12:72
    
    
    
    
    
    Th73: for A be 
    Interval holds A 
    in  
    Borel_Sets  
    
    proof
    
      let A be
    Interval;
    
      
    
      
    
    A1: A 
    in  
    Family_of_Intervals by 
    MEASUR10:def 1;
    
      
    
      
    
    A2: 
    Family_of_Intervals  
    c= ( 
    Field_generated_by  
    Family_of_Intervals ) by 
    SRINGS_3: 21;
    
      (
    Field_generated_by  
    Family_of_Intervals ) 
    c= ( 
    sigma ( 
    Field_generated_by  
    Family_of_Intervals )) by 
    PROB_1:def 9;
    
      hence thesis by
    A2,
    A1,
    MEASUR10: 6;
    
    end;
    
    definition
    
      :: 
    
    MEASUR12:def11
    
      func
    
    L-Field -> 
    SigmaField of 
    REAL equals ( 
    COM ( 
    Borel_Sets , 
    B-Meas )); 
    
      correctness ;
    
    end
    
    definition
    
      :: 
    
    MEASUR12:def12
    
      func
    
    L-Meas -> 
    sigma_Measure of 
    L-Field equals ( 
    COM  
    B-Meas ); 
    
      correctness ;
    
    end
    
    registration
    
      cluster 
    L-Meas -> 
    complete;
    
      correctness
    
      proof
    
        
    B-Meas is 
    induced_sigma_Measure of 
    Family_of_Intervals , 
    J-Meas by 
    MEASURE9:def 9,
    MEASUR10: 6;
    
        hence thesis by
    MEASUR10: 3,
    MEASUR10: 6;
    
      end;
    
    end
    
    theorem :: 
    
    MEASUR12:73
    
    
    
    
    
    Th75: 
    {} is 
    thin of 
    B-Meas  
    
    proof
    
      set A =
    [.1, 1.];
    
      
    {}  
    c=  
    REAL ; 
    
      then
    
      reconsider E =
    {} as 
    Subset of 
    REAL ; 
    
      
    
      
    
    A1: A 
    in  
    Family_of_Intervals by 
    MEASUR10:def 1;
    
      
    
      
    
    A2: 
    Family_of_Intervals  
    c= ( 
    Field_generated_by  
    Family_of_Intervals ) by 
    SRINGS_3: 21;
    
      
    
      
    
    A3: ( 
    Field_generated_by  
    Family_of_Intervals ) 
    c=  
    Borel_Sets by 
    PROB_1:def 9,
    MEASUR10: 6;
    
      
    
      
    
    A4: E 
    c= A; 
    
      reconsider a = 1 as
    R_eal by 
    XXREAL_0:def 1;
    
      (
    B-Meas  
    . A) 
    = ( 
    diameter A) by 
    Th72
    
      .= (a
    - a) by 
    MEASURE5: 6
    
      .= (1
    - 1) by 
    Lm9
    
      .=
    0 ; 
    
      hence
    {} is 
    thin of 
    B-Meas by 
    A3,
    A2,
    A1,
    A4,
    MEASURE3:def 2;
    
    end;
    
    theorem :: 
    
    MEASUR12:74
    
    for a be
    Real holds 
    {a} is
    thin of 
    B-Meas  
    
    proof
    
      let a be
    Real;
    
      set A =
    [.a, a.];
    
      reconsider E =
    {a} as
    Subset of 
    REAL ; 
    
      
    
      
    
    A1: A 
    in  
    Family_of_Intervals by 
    MEASUR10:def 1;
    
      
    
      
    
    A2: 
    Family_of_Intervals  
    c= ( 
    Field_generated_by  
    Family_of_Intervals ) by 
    SRINGS_3: 21;
    
      
    
      
    
    A3: ( 
    Field_generated_by  
    Family_of_Intervals ) 
    c=  
    Borel_Sets by 
    PROB_1:def 9,
    MEASUR10: 6;
    
      
    
      
    
    A4: E 
    c= A by 
    XXREAL_1: 17;
    
      reconsider a1 = a as
    R_eal by 
    XXREAL_0:def 1;
    
      (
    B-Meas  
    . A) 
    = ( 
    diameter A) by 
    Th72
    
      .= (a1
    - a1) by 
    MEASURE5: 6
    
      .= (a
    - a) by 
    Lm9
    
      .=
    0 ; 
    
      hence
    {a} is
    thin of 
    B-Meas by 
    A3,
    A2,
    A1,
    A4,
    MEASURE3:def 2;
    
    end;
    
    theorem :: 
    
    MEASUR12:75
    
    
    Borel_Sets  
    c=  
    L-Field  
    
    proof
    
      now
    
        let A be
    set;
    
        assume
    
        
    
    A1: A 
    in  
    Borel_Sets ; 
    
        set B = A;
    
        A
    = (B 
    \/  
    {} ); 
    
        hence A
    in ( 
    COM ( 
    Borel_Sets , 
    B-Meas )) by 
    A1,
    Th75,
    MEASURE3:def 3;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MEASUR12:76
    
    for A be
    Interval holds ( 
    L-Meas  
    . A) 
    = ( 
    diameter A) 
    
    proof
    
      let A be
    Interval;
    
      (A
    \/  
    {} ) 
    = A; 
    
      then (
    L-Meas  
    . A) 
    = ( 
    B-Meas  
    . A) by 
    Th73,
    Th75,
    MEASURE3:def 5;
    
      hence thesis by
    Th72;
    
    end;