cardfin2.miz
begin
reserve x,y for
set;
registration
let c be
Real;
cluster (
exp_R c) ->
positive;
coherence by
SIN_COS: 55;
end
theorem ::
CARDFIN2:1
Th1: (
id
{} ) is
without_fixpoints
proof
assume (
id
{} ) is
with_fixpoint;
then
consider y be
object such that
A1: y
is_a_fixpoint_of (
id
{} ) by
ABIAN:def 5;
y
in (
dom (
id
{} )) by
A1,
ABIAN:def 3;
hence thesis;
end;
theorem ::
CARDFIN2:2
Th2: for c be
Real st c
<
0 holds (
exp_R c)
< 1
proof
let c be
Real;
assume c
<
0 ;
then (
exp_R c)
<= 1 & (
exp_R c)
<> 1 by
SIN_COS: 53,
SIN_COS7: 29;
hence thesis by
XXREAL_0: 1;
end;
begin
definition
let n be
Real;
::
CARDFIN2:def1
func
round n ->
Integer equals
[\(n
+ (1
/ 2))/];
coherence ;
end
theorem ::
CARDFIN2:3
for a be
Integer holds (
round a)
= a
proof
let a be
Integer;
(a
- (1
/ 2))
< (a
-
0 ) by
XREAL_1: 6;
then (a
+
0 qua
Nat)
<= (a
+ (1
/ 2)) & ((a
+ (1
/ 2))
- 1)
< (a
-
0 ) by
XREAL_1: 6;
hence thesis by
INT_1:def 6;
end;
theorem ::
CARDFIN2:4
Th4: for a be
Integer holds for b be
Real st
|.(a
- b).|
< (1
/ 2) holds a
= (
round b)
proof
let a be
Integer;
let b be
Real;
assume
A1:
|.(a
- b).|
< (1
/ 2);
then (a
- b)
< (1
/ 2) by
SEQ_2: 1;
then
A2: ((a
- b)
+ b)
< ((1
/ 2)
+ b) by
XREAL_1: 8;
(
- (1
/ 2))
< (a
- b) by
A1,
SEQ_2: 1;
then (
- (a
- b))
< (
- (
- (1
/ 2))) by
XREAL_1: 24;
then ((b
- a)
+ a)
< ((1
/ 2)
+ a) by
XREAL_1: 8;
then (b
- (1
/ 2))
< ((a
+ (1
/ 2))
- (1
/ 2)) by
XREAL_1: 14;
then ((b
+ (1
/ 2))
- 1)
< a;
hence thesis by
A2,
INT_1:def 6;
end;
begin
theorem ::
CARDFIN2:5
Th5: for n be
Nat holds for a,b be
Real st a
< b holds ex c be
Real st c
in
].a, b.[ & (
exp_R a)
= (((
Partial_Sums (
Taylor (
exp_R ,(
[#]
REAL ),b,a)))
. n)
+ (((
exp_R c)
* ((a
- b)
|^ (n
+ 1)))
/ ((n
+ 1)
! )))
proof
let n be
Nat;
let a,b be
Real;
assume
A1: a
< b;
set f =
exp_R ;
set Z = (
[#]
REAL );
n
in
NAT by
ORDINAL1:def 12;
then
A2:
exp_R
is_differentiable_on (n,Z) by
TAYLOR_2: 10;
((
diff (
exp_R ,Z))
. n)
= (f
| Z) by
TAYLOR_2: 6;
then
A3: (((
diff (
exp_R ,Z))
. n)
|
[.a, b.]) is
continuous;
A4:
exp_R
is_differentiable_on ((n
+ 1),
].a, b.[) by
TAYLOR_2: 10;
consider c be
Real such that
A5: c
in
].a, b.[ and
A6: (
exp_R
. a)
= (((
Partial_Sums (
Taylor (
exp_R ,Z,b,a)))
. n)
+ (((((
diff (
exp_R ,
].a, b.[))
. (n
+ 1))
. c)
* ((a
- b)
|^ (n
+ 1)))
/ ((n
+ 1)
! ))) by
A1,
A2,
A3,
A4,
SIN_COS: 47,
TAYLOR_1: 29;
take c;
thus thesis by
A6,
A5,
TAYLOR_2: 7;
end;
theorem ::
CARDFIN2:6
Th6: for n be
positive
Nat holds for c be
Real st c
<
0 holds
|.(
- ((n
! )
* (((
exp_R c)
* ((
- 1)
|^ (n
+ 1)))
/ ((n
+ 1)
! )))).|
< (1
/ 2)
proof
let n be
positive
Nat;
let c be
Real;
n
>= (
0 qua
Nat
+ 1) by
NAT_1: 13;
then (n
+ 1)
>= (1
+ 1) by
XREAL_1: 6;
then
A1: ((
exp_R c)
/ (n
+ 1))
<= ((
exp_R c)
/ 2) by
XREAL_1: 118;
assume c
<
0 ;
then ((
exp_R c)
/ 2)
< (1
/ 2) by
Th2,
XREAL_1: 74;
then
A2: ((
exp_R c)
/ (n
+ 1))
< (1
/ 2) by
A1,
XXREAL_0: 2;
A3:
|.(((
exp_R c)
* ((
- 1)
|^ n))
/ (n
+ 1)).|
< (1
/ 2)
proof
per cases ;
suppose
A4: n is
even;
A5: ((
- 1)
|^ n)
= ((
- 1)
to_power n)
.= (1
to_power n) by
A4,
POWER: 47
.= 1;
(
- (1
/ 2))
< ((
exp_R c)
/ (n
+ 1));
hence thesis by
A5,
A2,
SEQ_2: 1;
end;
suppose
A6: n is
odd;
A7: ((
- 1)
|^ n)
= ((
- 1)
to_power n)
.= (
- 1) by
A6,
FIB_NUM2: 2;
(
- (1
/ 2))
< (
- ((
exp_R c)
/ (n
+ 1))) by
A2,
XREAL_1: 24;
hence thesis by
A7,
SEQ_2: 1;
end;
end;
(((
exp_R c)
* ((
- 1)
|^ n))
/ (n
+ 1))
= (((
exp_R c)
* ((
- 1)
* (((
- 1)
|^ n)
* (
- 1))))
/ (n
+ 1))
.= (((
exp_R c)
* ((
- 1)
* ((
- 1)
|^ (n
+ 1))))
/ (n
+ 1)) by
NEWTON: 6
.= (
- (((
exp_R c)
* ((
- 1)
|^ (n
+ 1)))
* (1
/ (n
+ 1))))
.= (
- (((
exp_R c)
* ((
- 1)
|^ (n
+ 1)))
* (((n
! )
/ (n
! ))
/ (n
+ 1)))) by
XCMPLX_1: 60
.= (
- (((
exp_R c)
* ((
- 1)
|^ (n
+ 1)))
* ((n
! )
/ ((n
! )
* (n
+ 1))))) by
XCMPLX_1: 78
.= (
- ((((
exp_R c)
* ((
- 1)
|^ (n
+ 1)))
* (n
! ))
/ ((n
+ 1)
* (n
! ))))
.= (
- ((((n
! )
* (
exp_R c))
* ((
- 1)
|^ (n
+ 1)))
/ ((n
+ 1)
! ))) by
NEWTON: 15;
hence
|.(
- ((n
! )
* (((
exp_R c)
* ((
- 1)
|^ (n
+ 1)))
/ ((n
+ 1)
! )))).|
< (1
/ 2) by
A3;
end;
definition
let s be
set;
::
CARDFIN2:def2
func
derangements (s) ->
set equals { f where f be
Permutation of s : f is
without_fixpoints };
coherence ;
end
registration
let s be
finite
set;
cluster (
derangements s) ->
finite;
coherence
proof
A1: (
card { F where F be
Function of s, s : F is
Permutation of s })
= ((
card s)
! ) by
CARD_FIN: 8;
(
derangements s)
c= { F where F be
Function of s, s : F is
Permutation of s }
proof
let x be
object;
assume x
in (
derangements s);
then ex f be
Permutation of s st x
= f & f is
without_fixpoints;
hence thesis;
end;
then (
card (
derangements s))
c= ((
card s)
! ) by
A1,
CARD_1: 11;
hence thesis;
end;
end
theorem ::
CARDFIN2:7
Th7: for s be
finite
set holds (
derangements s)
= { h where h be
Function of s, s : h is
one-to-one & for x st x
in s holds (h
. x)
<> x }
proof
let s be
finite
set;
set xx = { h where h be
Function of s, s : h is
one-to-one & for x st x
in s holds (h
. x)
<> x };
hereby
let x be
object;
assume x
in (
derangements s);
then
consider f be
Permutation of s such that
A1: x
= f & f is
without_fixpoints;
for y be
set holds y
in s implies (f
. y)
<> y by
A1,
ABIAN:def 4,
ABIAN:def 5;
hence x
in xx by
A1;
end;
let x be
object;
assume x
in xx;
then
consider h be
Function of s, s such that
A2: x
= h & h is
one-to-one & for x st x
in s holds (h
. x)
<> x;
(
card s)
= (
card s);
then
A3: h is
onto by
A2,
FINSEQ_4: 63;
now
let y be
object;
assume y
is_a_fixpoint_of h;
then y
in (
dom h) & (h
. y)
= y by
ABIAN:def 3;
hence contradiction by
A2;
end;
then h is
without_fixpoints by
ABIAN:def 5;
hence x
in (
derangements s) by
A3,
A2;
end;
theorem ::
CARDFIN2:8
Th8: for s be non
empty
finite
set holds ex c be
Real st c
in
].(
- 1),
0 .[ & ((
card (
derangements s))
- (((
card s)
! )
/
number_e ))
= (
- (((
card s)
! )
* (((
exp_R c)
* ((
- 1)
|^ ((
card s)
+ 1)))
/ (((
card s)
+ 1)
! ))))
proof
let s be non
empty
finite
set;
set n = (
card s);
consider XF be
XFinSequence of
INT such that
A1: (
Sum XF)
= (
card { h where h be
Function of s, s : h is
one-to-one & for x st x
in s holds (h
. x)
<> x }) and
A2: (
dom XF)
= (n
+ 1) and
A3: for m be
Nat st m
in (
dom XF) holds (XF
. m)
= ((((
- 1)
|^ m)
* (n
! ))
/ (m
! )) by
CARD_FIN: 63;
A4: (
Sum XF)
= (
card (
derangements s)) by
A1,
Th7;
set T = (
Taylor (
exp_R ,(
[#]
REAL ),
0 ,(
- 1)));
consider c be
Real such that
A5: c
in
].(
- 1),
0 .[ & (
exp_R (
- 1))
= (((
Partial_Sums T)
. n)
+ (((
exp_R c)
* (((
- 1)
-
0 )
|^ (n
+ 1)))
/ ((n
+ 1)
! ))) by
Th5;
(
Partial_Sums ((n
! )
(#) T))
= ((n
! )
(#) (
Partial_Sums T)) by
SERIES_1: 9;
then
A6: ((
Partial_Sums ((n
! )
(#) T))
. n)
= ((n
! )
* ((
Partial_Sums T)
. n)) by
SEQ_1: 9;
((
Partial_Sums ((n
! )
(#) T))
. n)
= (
Sum XF)
proof
consider f be
sequence of
INT such that
A7: (f
.
0 )
= (XF
.
0 ) and
A8: for n be
Nat st (n
+ 1)
< (
len XF) holds (f
. (n
+ 1))
= (
addint
. ((f
. n),(XF
. (n
+ 1)))) and
A9: (
addint
"**" XF)
= (f
. ((
len XF)
- 1)) by
A2,
AFINSQ_2:def 8;
A10: (
Sum XF)
= (f
. ((
len XF)
- 1)) by
A9,
AFINSQ_2: 50;
defpred
P[
Nat] means $1
in (
Segm (n
+ 1)) implies ((
Partial_Sums ((n
! )
(#) T))
. $1)
= (f
. $1);
A11:
0
in
REAL by
XREAL_0:def 1;
A12:
P[
0 ]
proof
0
in (
Segm (n
+ 1)) by
NAT_1: 44;
then
A13:
0
in (
dom XF) by
A2;
((
Partial_Sums ((n
! )
(#) T))
.
0 )
= (((n
! )
(#) T)
.
0 ) by
SERIES_1:def 1
.= ((n
! )
* (T
.
0 )) by
SEQ_1: 9
.= ((n
! )
* (((((
diff (
exp_R ,(
[#]
REAL )))
.
0 )
.
0 )
* (((
- 1)
-
0 )
|^
0 ))
/ (
0
! ))) by
TAYLOR_1:def 7
.= ((n
! )
* ((1
* ((
- 1)
|^
0 ))
/ (
0
! ))) by
SIN_COS2: 13,
TAYLOR_2: 7,
A11
.= (((n
! )
* ((
- 1)
|^
0 ))
/ (
0
! ))
.= (f
.
0 ) by
A3,
A13,
A7;
hence thesis;
end;
A14: for j be
Nat st
P[j] holds
P[(j
+ 1)]
proof
let j be
Nat such that
A15:
P[j];
set j1 = (j
+ 1);
assume
A16: (j
+ 1)
in (
Segm (n
+ 1));
then
A17: (j
+ 1)
< (n
+ 1) by
NAT_1: 44;
then
A18: j
< (n
+ 1) by
NAT_1: 13;
(((n
! )
(#) T)
. j1)
= ((n
! )
* (T
. j1)) by
SEQ_1: 9
.= ((n
! )
* (((((
diff (
exp_R ,(
[#]
REAL )))
. j1)
.
0 )
* (((
- 1)
-
0 )
|^ j1))
/ (j1
! ))) by
TAYLOR_1:def 7
.= ((n
! )
* ((1
* ((
- 1)
|^ j1))
/ (j1
! ))) by
SIN_COS2: 13,
TAYLOR_2: 7,
A11
.= (((n
! )
* ((
- 1)
|^ j1))
/ (j1
! ))
.= (XF
. j1) by
A3,
A16,
A2;
hence ((
Partial_Sums ((n
! )
(#) T))
. (j
+ 1))
= ((f
. j)
+ (XF
. j1)) by
A15,
A18,
NAT_1: 44,
SERIES_1:def 1
.= (
addint
. ((f
. j),(XF
. j1))) by
BINOP_2:def 20
.= (f
. j1) by
A8,
A17,
A2;
end;
for j be
Nat holds
P[j] from
NAT_1:sch 2(
A12,
A14);
hence thesis by
A10,
A2,
NAT_1: 45;
end;
then
A19: ((
card (
derangements s))
+ ((n
! )
* (((
exp_R c)
* ((
- 1)
|^ (n
+ 1)))
/ ((n
+ 1)
! ))))
= ((n
! )
* (
exp_R (
- 1))) by
A4,
A5,
A6
.= ((n
! )
* (1
/ (
exp_R 1))) by
TAYLOR_1: 4
.= ((n
! )
/
number_e ) by
IRRAT_1:def 7;
take c;
thus c
in
].(
- 1),
0 .[ by
A5;
thus ((
card (
derangements s))
- (((
card s)
! )
/
number_e ))
= (
- ((n
! )
* (((
exp_R c)
* ((
- 1)
|^ (n
+ 1)))
/ ((n
+ 1)
! )))) by
A19;
end;
theorem ::
CARDFIN2:9
Th9: for s be non
empty
finite
set holds
|.((
card (
derangements s))
- (((
card s)
! )
/
number_e )).|
< (1
/ 2)
proof
let s be non
empty
finite
set;
set n = (
card s);
consider c be
Real such that
A1: c
in
].(
- 1),
0 .[ and
A2: ((
card (
derangements s))
- ((n
! )
/
number_e ))
= (
- ((n
! )
* (((
exp_R c)
* ((
- 1)
|^ (n
+ 1)))
/ ((n
+ 1)
! )))) by
Th8;
c
<
0 by
A1,
XXREAL_1: 4;
hence thesis by
A2,
Th6;
end;
theorem ::
CARDFIN2:10
Th10: for s be non
empty
finite
set holds (
card (
derangements s))
= (
round (((
card s)
! )
/
number_e ))
proof
let s be non
empty
finite
set;
|.((
card (
derangements s))
- (((
card s)
! )
/
number_e )).|
< (1
/ 2) by
Th9;
hence (
card (
derangements s))
= (
round (((
card s)
! )
/
number_e )) by
Th4;
end;
theorem ::
CARDFIN2:11
Th11: (
derangements
{} )
=
{
{} }
proof
hereby
let x be
object;
assume x
in (
derangements
{} );
then ex f be
Permutation of
{} st x
= f & f is
without_fixpoints;
hence x
in
{
{} } by
FUNCT_2: 9,
FUNCT_2: 127;
end;
let x be
object;
assume x
in
{
{} };
then
A1: x
=
{} by
TARSKI:def 1;
(
rng (
id
{} ))
=
{} ;
then (
id
{} ) is
Permutation of
{} by
FUNCT_2: 57;
hence thesis by
A1,
Th1;
end;
theorem ::
CARDFIN2:12
Th12: for x be
object holds (
derangements
{x})
=
{}
proof
let x be
object;
A1: (
card
{x})
= 1 by
CARD_1: 30;
(1
/
number_e )
< (1
/ 2) by
TAYLOR_1: 11,
XREAL_1: 76;
then (
- (1
/ 2))
< (
- (1
/
number_e )) by
XREAL_1: 24;
then
|.(
0 qua
Nat
- (1
/
number_e )).|
< (1
/ 2) by
SEQ_2: 1;
then (
round (1
/
number_e ))
=
0 by
Th4;
then (
card (
derangements
{x}))
=
0 by
Th10,
A1,
NEWTON: 13;
hence thesis;
end;
reconsider j = 1, z =
0 as
Element of
INT by
INT_1:def 2;
deffunc
F(
Nat,
Integer,
Integer) = (
In ((($1
+ 1)
* ($2
+ $3)),
INT ));
definition
::
CARDFIN2:def3
func
der_seq ->
sequence of
INT means
:
Def3: (it
.
0 )
= 1 & (it
. 1)
=
0 & for n be
Nat holds (it
. (n
+ 2))
= ((n
+ 1)
* ((it
. n)
+ (it
. (n
+ 1))));
existence
proof
consider f be
sequence of
INT such that
A1: (f
.
0 )
= j & (f
. 1)
= z & for n be
Nat holds (f
. (n
+ 2))
=
F(n,.,.) from
RECDEF_2:sch 5;
take f;
thus (f
.
0 )
= 1 & (f
. 1)
=
0 by
A1;
let n be
Nat;
(f
. (n
+ 2))
=
F(n,.,.) by
A1;
hence (f
. (n
+ 2))
= ((n
+ 1)
* ((f
. n)
+ (f
. (n
+ 1))));
end;
uniqueness
proof
let f,g be
sequence of
INT ;
assume (f
.
0 )
= 1 & (f
. 1)
=
0 ;
then
A2: (f
.
0 )
= j & (f
. 1)
= z;
assume for n be
Nat holds (f
. (n
+ 2))
= ((n
+ 1)
* ((f
. n)
+ (f
. (n
+ 1))));
then
A3: for n be
Nat holds (f
. (n
+ 2))
=
F(n,.,.);
assume (g
.
0 )
= 1 & (g
. 1)
=
0 ;
then
A4: (g
.
0 )
= j & (g
. 1)
= z;
assume for n be
Nat holds (g
. (n
+ 2))
= ((n
+ 1)
* ((g
. n)
+ (g
. (n
+ 1))));
then
A5: for n be
Nat holds (g
. (n
+ 2))
=
F(n,.,.);
thus f
= g from
RECDEF_2:sch 7(
A2,
A3,
A4,
A5);
end;
end
registration
let c be
Integer;
let F be
XFinSequence of
INT ;
cluster (c
(#) F) ->
finite
INT
-valued
Sequence-like;
coherence ;
end
registration
let c be
Complex;
let F be
empty
Function;
cluster (c
(#) F) ->
empty;
coherence ;
end
theorem ::
CARDFIN2:13
for F be
XFinSequence of
INT holds for c be
Integer holds (c
* (
Sum F))
= ((
Sum ((c
(#) F)
| ((
len F)
-' 1)))
+ (c
* (F
. ((
len F)
-' 1))))
proof
let F be
XFinSequence of
INT ;
let c be
Integer;
per cases ;
suppose (
len F)
=
0 ;
then
A1: F is
empty & (F
. ((
len F)
-' 1))
=
0 by
FUNCT_1:def 2;
then (
Sum F)
=
0 ;
hence thesis by
A1;
end;
suppose (
len F)
>
0 ;
then
A2: (((
len F)
-' 1)
+ 1)
= (
len F) by
NAT_1: 14,
XREAL_1: 235;
A3: (
dom F)
= (
dom (c
(#) F)) by
VALUED_1:def 5;
A4: (c
* (
Sum F))
= (
Sum (c
(#) F)) by
AFINSQ_2: 64;
A5: (
Sum (c
(#) F))
= (
Sum ((c
(#) F)
| (
len F))) by
A3;
((
len F)
-' 1)
in (
Segm (
len F)) by
A2,
NAT_1: 45;
then (
Sum ((c
(#) F)
| (((
len F)
-' 1)
+ 1)))
= ((
Sum ((c
(#) F)
| ((
len F)
-' 1)))
+ ((c
(#) F)
. ((
len F)
-' 1))) by
A3,
AFINSQ_2: 65;
hence thesis by
A4,
A5,
A2,
VALUED_1: 6;
end;
end;
theorem ::
CARDFIN2:14
Th14: for X,N be
XFinSequence of
INT st (
len N)
= ((
len X)
+ 1) holds for c be
Integer st (N
| (
len X))
= (c
(#) X) holds (
Sum N)
= ((c
* (
Sum X))
+ (N
. (
len X)))
proof
let X,N be
XFinSequence of
INT ;
assume
A1: (
len N)
= ((
len X)
+ 1);
let c be
Integer;
assume
A2: (N
| (
len X))
= (c
(#) X);
A3: (
len X)
in (
Segm (
len N)) by
A1,
NAT_1: 45;
thus (
Sum N)
= (
Sum (N
| (
len N)))
.= ((
Sum (N
| (
len X)))
+ (N
. (
len X))) by
A1,
AFINSQ_2: 65,
A3
.= ((c
* (
Sum X))
+ (N
. (
len X))) by
A2,
AFINSQ_2: 64;
end;
theorem ::
CARDFIN2:15
for s be
finite
set holds (
der_seq
. (
card s))
= (
card (
derangements s))
proof
let s be
finite
set;
defpred
P[
finite
set] means for s be
finite
set holds (
card s)
= $1 implies (
der_seq
. $1)
= (
card (
derangements s));
A1:
P[
0 ]
proof
let s be
finite
set;
assume (
card s)
=
0 ;
then
A2: s
=
{} ;
thus (
der_seq
.
0 )
= 1 by
Def3
.= (
card (
derangements s)) by
Th11,
A2,
CARD_1: 30;
end;
A3:
P[1]
proof
let s be
finite
set;
assume (
card s)
= 1;
then
consider x be
object such that
A4: s
=
{x} by
CARD_2: 42;
thus (
der_seq
. 1)
= (
card
{} ) by
Def3
.= (
card (
derangements s)) by
Th12,
A4;
end;
A5: for n be
Nat st
P[n] &
P[(n
+ 1)] holds
P[(n
+ 2)]
proof
let n be
Nat;
assume
A6:
P[n];
assume
A7:
P[(n
+ 1)];
set n1 = (n
+ 1);
A8: (
card n)
= n & (
card n1)
= (n
+ 1);
then
consider XFn be
XFinSequence of
INT such that
A9: (
Sum XFn)
= (
card { h where h be
Function of n, n : h is
one-to-one & for x st x
in n holds (h
. x)
<> x }) and
A10: (
dom XFn)
= (n
+ 1) and
A11: for m be
Nat st m
in (
dom XFn) holds (XFn
. m)
= ((((
- 1)
|^ m)
* (n
! ))
/ (m
! )) by
CARD_FIN: 63;
consider XFn1 be
XFinSequence of
INT such that
A12: (
Sum XFn1)
= (
card { h where h be
Function of n1, n1 : h is
one-to-one & for x st x
in n1 holds (h
. x)
<> x }) and
A13: (
dom XFn1)
= (
Segm ((n
+ 1)
+ 1)) and
A14: for m be
Nat st m
in (
dom XFn1) holds (XFn1
. m)
= ((((
- 1)
|^ m)
* ((n
+ 1)
! ))
/ (m
! )) by
A8,
CARD_FIN: 63;
(
Sum XFn)
= (
card (
derangements n)) by
A9,
Th7;
then
A15: (
der_seq
. n)
= (
Sum XFn) by
A6,
A8;
(
Sum XFn1)
= (
card (
derangements n1)) by
A12,
Th7;
then
A16: (
der_seq
. (n
+ 1))
= (
Sum XFn1) by
A7,
A8;
let sn2 be
finite
set;
assume (
card sn2)
= (n
+ 2);
then
consider XFn2 be
XFinSequence of
INT such that
A17: (
Sum XFn2)
= (
card { h where h be
Function of sn2, sn2 : h is
one-to-one & for x st x
in sn2 holds (h
. x)
<> x }) and
A18: (
dom XFn2)
= (
Segm ((n
+ 2)
+ 1)) and
A19: for m be
Nat st m
in (
dom XFn2) holds (XFn2
. m)
= ((((
- 1)
|^ m)
* ((n
+ 2)
! ))
/ (m
! )) by
CARD_FIN: 63;
A20: (
Sum XFn2)
= (
card (
derangements sn2)) by
A17,
Th7;
A21: (
len XFn1)
= ((
len XFn)
+ 1) by
A10,
A13;
A22: (
len XFn2)
= ((
len XFn1)
+ 1) by
A13,
A18;
(n
+ 1)
< (n
+ 2) by
XREAL_1: 8;
then (
Segm (n
+ 1))
c= (
Segm (n
+ 2)) by
NAT_1: 39;
then
A23: (
len XFn)
c= (
dom XFn1) by
A10,
A13;
A24: (
dom ((n
+ 1)
(#) XFn))
= (
len XFn) by
VALUED_1:def 5;
A25:
now
let x be
object;
assume
A26: x
in (
dom (XFn1
| (
len XFn)));
then
A27: x
in (
dom XFn1) by
RELAT_1: 57;
reconsider m = x as
Element of
NAT by
A26;
A28: m
in (
dom XFn) by
A26,
RELAT_1: 57;
thus ((XFn1
| (
len XFn))
. x)
= (XFn1
. x) by
A26,
FUNCT_1: 47
.= ((((
- 1)
|^ m)
* ((n
+ 1)
! ))
/ (m
! )) by
A27,
A14
.= ((((
- 1)
|^ m)
* ((n
! )
* (n
+ 1)))
/ (m
! )) by
NEWTON: 15
.= ((n
+ 1)
* ((((
- 1)
|^ m)
* (n
! ))
/ (m
! )))
.= ((n
+ 1)
* (XFn
. m)) by
A11,
A28
.= (((n
+ 1)
(#) XFn)
. x) by
VALUED_1: 6;
end;
set a = ((
- 1)
|^ (n
+ 1));
A29: ((
- 1)
* a)
= ((
- 1)
|^ ((n
+ 1)
+ 1)) by
NEWTON: 6;
((n
+ 1)
+
0 qua
Nat)
< ((n
+ 1)
+ 1) by
XREAL_1: 8;
then
A30: (n
+ 1)
in (
dom XFn1) by
A13,
NAT_1: 44;
((n
+ 2)
+
0 qua
Nat)
< ((n
+ 2)
+ 1) by
XREAL_1: 8;
then
A31: (n
+ 2)
in (
dom XFn2) by
A18,
NAT_1: 44;
(XFn1
| (
len XFn))
= ((n
+ 1)
(#) XFn) by
A23,
A24,
A25,
FUNCT_1: 2,
RELAT_1: 62;
then
A32: (
Sum XFn1)
= (((n
+ 1)
* (
Sum XFn))
+ (XFn1
. (
len XFn))) by
Th14,
A21
.= (((n
+ 1)
* (
Sum XFn))
+ ((a
* ((n
+ 1)
! ))
/ ((n
+ 1)
! ))) by
A10,
A14,
A30
.= (((n
+ 1)
* (
Sum XFn))
+ (a
* (((n
+ 1)
! )
/ ((n
+ 1)
! ))))
.= (((n
+ 1)
* (
Sum XFn))
+ (a
* 1)) by
XCMPLX_1: 60;
A33:
now
let x be
object;
assume
A34: x
in (
dom (XFn2
| (
len XFn1)));
then
A35: x
in (
dom XFn2) by
RELAT_1: 57;
reconsider m = x as
Element of
NAT by
A34;
A36: m
in (
dom XFn1) by
A34,
RELAT_1: 57;
thus ((XFn2
| (
len XFn1))
. x)
= (XFn2
. x) by
A34,
FUNCT_1: 47
.= ((((
- 1)
|^ m)
* (((n
+ 1)
+ 1)
! ))
/ (m
! )) by
A35,
A19
.= ((((
- 1)
|^ m)
* (((n
+ 1)
! )
* ((n
+ 1)
+ 1)))
/ (m
! )) by
NEWTON: 15
.= (((n
+ 1)
+ 1)
* ((((
- 1)
|^ m)
* ((n
+ 1)
! ))
/ (m
! )))
.= ((n
+ 2)
* (XFn1
. m)) by
A14,
A36
.= (((n
+ 2)
(#) XFn1)
. x) by
VALUED_1: 6;
end;
(n
+ 2)
< (n
+ 3) by
XREAL_1: 8;
then (
len XFn1)
c= (
dom XFn2) by
A13,
A18,
NAT_1: 39;
then
A37: (
dom (XFn2
| (
len XFn1)))
= (
len XFn1) by
RELAT_1: 62;
(
dom ((n
+ 2)
(#) XFn1))
= (
len XFn1) by
VALUED_1:def 5;
then (
Sum XFn2)
= (((n
+ 2)
* (
Sum XFn1))
+ (XFn2
. (
len XFn1))) by
Th14,
A22,
A37,
A33,
FUNCT_1: 2
.= (((n
+ 2)
* (
Sum XFn1))
+ ((((
- 1)
|^ (n
+ 2))
* ((n
+ 2)
! ))
/ ((n
+ 2)
! ))) by
A19,
A31,
A13
.= (((n
+ 2)
* (
Sum XFn1))
+ ((
- a)
* (((n
+ 2)
! )
/ ((n
+ 2)
! )))) by
A29
.= (((n
+ 2)
* (
Sum XFn1))
+ ((
- a)
* 1)) by
XCMPLX_1: 60
.= ((n
+ 1)
* ((
Sum XFn)
+ (
Sum XFn1))) by
A32;
hence (
der_seq
. (n
+ 2))
= (
card (
derangements sn2)) by
A20,
Def3,
A15,
A16;
end;
for n be
Nat holds
P[n] from
FIB_NUM:sch 1(
A1,
A3,
A5);
hence thesis;
end;
begin
definition
let s,t be
set;
::
CARDFIN2:def4
func
not-one-to-one (s,t) ->
Subset of (
Funcs (s,t)) equals { f where f be
Function of s, t : not f is
one-to-one };
coherence
proof
per cases ;
suppose
A1: t is non
empty;
{ f where f be
Function of s, t : not f is
one-to-one }
c= (
Funcs (s,t))
proof
let x be
object;
assume x
in { f where f be
Function of s, t : not f is
one-to-one };
then ex f be
Function of s, t st x
= f & not f is
one-to-one;
hence thesis by
A1,
FUNCT_2: 8;
end;
hence thesis;
end;
suppose
A2: t is
empty;
{ f where f be
Function of s, t : not f is
one-to-one }
=
{}
proof
assume { f where f be
Function of s, t : not f is
one-to-one }
<>
{} ;
then
consider x be
object such that
A3: x
in { f where f be
Function of s, t : not f is
one-to-one } by
XBOOLE_0:def 1;
ex f be
Function of s, t st x
= f & not f is
one-to-one by
A3;
hence thesis by
A2;
end;
hence thesis by
XBOOLE_1: 2;
end;
end;
end
registration
let s,t be
finite
set;
cluster (
not-one-to-one (s,t)) ->
finite;
coherence ;
end
scheme ::
CARDFIN2:sch1
FraenkelDiff { s,t() ->
set , P[
object] } :
{ f where f be
Function of s(), t() : not P[f] }
= ((
Funcs (s(),t()))
\ { f where f be
Function of s(), t() : P[f] })
provided
A1: t()
=
{} implies s()
=
{} ;
set z1 = { f where f be
Function of s(), t() : not P[f] };
set z2 = { f where f be
Function of s(), t() : P[f] };
set zc = (
Funcs (s(),t()));
thus z1
c= (zc
\ z2)
proof
let x be
object;
assume x
in z1;
then
consider f be
Function of s(), t() such that
A2: x
= f & not P[f];
A3: f
in zc by
A1,
FUNCT_2: 8;
not f
in z2
proof
assume f
in z2;
then ex g be
Function of s(), t() st f
= g & P[g];
hence thesis by
A2;
end;
hence thesis by
A3,
A2,
XBOOLE_0:def 5;
end;
let x be
object;
assume
A4: x
in (zc
\ z2);
then
A5: x is
Function of s(), t() by
FUNCT_2: 66;
not x
in z2 by
A4,
XBOOLE_0:def 5;
then not P[x] by
A5;
hence thesis by
A5;
end;
theorem ::
CARDFIN2:16
Th16: for s,t be
finite
set st (
card s)
<= (
card t) holds (
card (
not-one-to-one (s,t)))
= (((
card t)
|^ (
card s))
- (((
card t)
! )
/ (((
card t)
-' (
card s))
! )))
proof
let s,t be
finite
set such that
A1: (
card s)
<= (
card t);
defpred
P[
Function] means $1 is
one-to-one;
set onetoone = { f where f be
Function of s, t : f is
one-to-one };
A2: t
=
{} implies s
=
{} by
A1;
onetoone
c= (
Funcs (s,t))
proof
let x be
object;
assume x
in onetoone;
then ex f be
Function of s, t st x
= f & f is
one-to-one;
hence thesis by
A2,
FUNCT_2: 8;
end;
then
reconsider onetoone as
Subset of (
Funcs (s,t));
{ f where f be
Function of s, t : not
P[f] }
= ((
Funcs (s,t))
\ { f where f be
Function of s, t :
P[f] }) from
FraenkelDiff(
A2);
then (
card (
not-one-to-one (s,t)))
= ((
card (
Funcs (s,t)))
- (
card onetoone)) by
CARD_2: 44
.= ((
card (
Funcs (s,t)))
- (((
card t)
! )
/ (((
card t)
-' (
card s))
! ))) by
A1,
CARD_FIN: 7
.= (((
card t)
|^ (
card s))
- (((
card t)
! )
/ (((
card t)
-' (
card s))
! ))) by
A2,
CARD_FIN: 4;
hence thesis;
end;
Lm1: (2
* ((365
|^ 23)
- ((365
! )
/ ((365
-' 23)
! ))))
> (365
|^ 23)
proof
A1: ((364
+ 1)
! )
= ((364
! )
* (364
+ 1)) by
NEWTON: 15;
A2: ((363
+ 1)
! )
= ((363
! )
* (363
+ 1)) by
NEWTON: 15;
A3: ((362
+ 1)
! )
= ((362
! )
* (362
+ 1)) by
NEWTON: 15;
A4: ((361
+ 1)
! )
= ((361
! )
* (361
+ 1)) by
NEWTON: 15;
A5: ((360
+ 1)
! )
= ((360
! )
* (360
+ 1)) by
NEWTON: 15;
A6: ((359
+ 1)
! )
= ((359
! )
* (359
+ 1)) by
NEWTON: 15;
A7: ((358
+ 1)
! )
= ((358
! )
* (358
+ 1)) by
NEWTON: 15;
A8: ((357
+ 1)
! )
= ((357
! )
* (357
+ 1)) by
NEWTON: 15;
A9: ((356
+ 1)
! )
= ((356
! )
* (356
+ 1)) by
NEWTON: 15;
A10: ((355
+ 1)
! )
= ((355
! )
* (355
+ 1)) by
NEWTON: 15;
A11: ((354
+ 1)
! )
= ((354
! )
* (354
+ 1)) by
NEWTON: 15;
A12: ((353
+ 1)
! )
= ((353
! )
* (353
+ 1)) by
NEWTON: 15;
A13: ((352
+ 1)
! )
= ((352
! )
* (352
+ 1)) by
NEWTON: 15;
A14: ((351
+ 1)
! )
= ((351
! )
* (351
+ 1)) by
NEWTON: 15;
A15: ((350
+ 1)
! )
= ((350
! )
* (350
+ 1)) by
NEWTON: 15;
A16: ((349
+ 1)
! )
= ((349
! )
* (349
+ 1)) by
NEWTON: 15;
A17: ((348
+ 1)
! )
= ((348
! )
* (348
+ 1)) by
NEWTON: 15;
A18: ((347
+ 1)
! )
= ((347
! )
* (347
+ 1)) by
NEWTON: 15;
A19: ((346
+ 1)
! )
= ((346
! )
* (346
+ 1)) by
NEWTON: 15;
A20: ((345
+ 1)
! )
= ((345
! )
* (345
+ 1)) by
NEWTON: 15;
A21: ((344
+ 1)
! )
= ((344
! )
* (344
+ 1)) by
NEWTON: 15;
A22: ((343
+ 1)
! )
= ((343
! )
* (343
+ 1)) by
NEWTON: 15;
((342
+ 1)
! )
= ((342
! )
* (342
+ 1)) by
NEWTON: 15;
then (365
! )
= ((((((((365
* 364)
* 363)
* 362)
* 361)
* 360)
* ((((((359
* 358)
* 357)
* 356)
* 355)
* 354)
* 353))
* (((((((((352
* 351)
* 350)
* 349)
* 348)
* 347)
* 346)
* 345)
* 344)
* 343))
* (342
! )) by
A1,
A2,
A3,
A4,
A5,
A6,
A7,
A8,
A9,
A10,
A11,
A12,
A13,
A14,
A15,
A16,
A17,
A18,
A19,
A20,
A21,
A22;
then
A23: ((365
! )
/ (342
! ))
= (((((((365
* 364)
* 363)
* 362)
* 361)
* 360)
* ((((((359
* 358)
* 357)
* 356)
* 355)
* 354)
* 353))
* (((((((((352
* 351)
* 350)
* 349)
* 348)
* 347)
* 346)
* 345)
* 344)
* 343)) by
XCMPLX_1: 89;
(365
|^ 1)
= 365;
then
A24: (365
|^ (1
+ 1))
= (365
* 365) by
NEWTON: 6;
then
A25: (365
|^ (2
+ 1))
= ((365
* 365)
* 365) by
NEWTON: 6;
A26: (365
|^ (3
+ 2))
= ((365
|^ 3)
* (365
|^ 2)) by
NEWTON: 8;
A27: (365
|^ (3
+ 3))
= ((365
|^ 3)
* (365
|^ 3)) by
NEWTON: 8;
A28: (365
|^ (6
+ 5))
= ((365
|^ 6)
* (365
|^ 5)) by
NEWTON: 8;
A29: (365
|^ (6
+ 6))
= ((365
|^ 6)
* (365
|^ 6)) by
NEWTON: 8;
(365
|^ (12
+ 11))
= ((365
|^ 12)
* (365
|^ 11)) by
NEWTON: 8;
then
A30: (2
* ((365
|^ 23)
- ((365
! )
/ (342
! ))))
> (365
|^ 23) by
A28,
A23,
A29,
A26,
A24,
A25,
A27;
(365
- 23)
>=
0 ;
hence (2
* ((365
|^ 23)
- ((365
! )
/ ((365
-' 23)
! ))))
> (365
|^ 23) by
A30,
XREAL_0:def 2;
end;
theorem ::
CARDFIN2:17
Th17: for s be
finite
set, t be non
empty
finite
set st (
card s)
= 23 & (
card t)
= 365 holds (2
* (
card (
not-one-to-one (s,t))))
> (
card (
Funcs (s,t)))
proof
let s be
finite
set, t be non
empty
finite
set;
assume
A1: (
card s)
= 23;
assume
A2: (
card t)
= 365;
then (
card (
not-one-to-one (s,t)))
= ((365
|^ 23)
- ((365
! )
/ ((365
-' 23)
! ))) by
Th16,
A1;
hence (2
* (
card (
not-one-to-one (s,t))))
> (
card (
Funcs (s,t))) by
Lm1,
A1,
A2,
CARD_FIN: 4;
end;
theorem ::
CARDFIN2:18
for s,t be non
empty
finite
set st (
card s)
= 23 & (
card t)
= 365 holds (
prob (
not-one-to-one (s,t)))
> (1
/ 2)
proof
let s,t be non
empty
finite
set;
assume
A1: (
card s)
= 23;
assume
A2: (
card t)
= 365;
set E = (
not-one-to-one (s,t));
set comega = (
card (
Funcs (s,t)));
((2
* (
card E))
/ 2)
> (comega
/ 2) by
Th17,
A1,
A2,
XREAL_1: 74;
then ((
card E)
/ comega)
> ((comega
/ 2)
/ comega) by
XREAL_1: 74;
then ((
card E)
/ comega)
> ((comega
/ comega)
/ 2);
then ((
card E)
/ comega)
> (1
/ 2) by
XCMPLX_0:def 7;
hence (
prob E)
> (1
/ 2) by
RPR_1:def 1;
end;