integr12.miz
begin
reserve a,b,x,r for
Real;
reserve y for
set;
reserve n for
Element of
NAT ;
reserve A for non
empty
closed_interval
Subset of
REAL ;
reserve f,g,f1,f2,g1,g2 for
PartFunc of
REAL ,
REAL ;
reserve Z for
open
Subset of
REAL ;
theorem ::
INTEGR12:1
Th1: Z
c= (
dom ((f1
+ f2)
^ )) & (for x st x
in Z holds (f1
. x)
= 1) & f2
= (
#Z 2) implies ((f1
+ f2)
^ )
is_differentiable_on Z & for x st x
in Z holds ((((f1
+ f2)
^ )
`| Z)
. x)
= (
- ((2
* x)
/ ((1
+ (x
|^ 2))
^2 )))
proof
assume
A1: Z
c= (
dom ((f1
+ f2)
^ )) & (for x st x
in Z holds (f1
. x)
= 1) & f2
= (
#Z 2);
(
dom ((f1
+ f2)
^ ))
c= (
dom (f1
+ f2)) by
RFUNCT_1: 1;
then
A2: Z
c= (
dom (f1
+ f2)) by
A1;
then
A3: (f1
+ f2)
is_differentiable_on Z & for x st x
in Z holds (((f1
+ f2)
`| Z)
. x)
= (2
* x) by
A1,
SIN_COS9: 101;
A4: for x st x
in Z holds ((f1
+ f2)
. x)
<>
0 by
A1,
RFUNCT_1: 3;
then
A5: ((f1
+ f2)
^ )
is_differentiable_on Z by
A3,
FDIFF_2: 22;
for x st x
in Z holds ((((f1
+ f2)
^ )
`| Z)
. x)
= (
- ((2
* x)
/ ((1
+ (x
|^ 2))
^2 )))
proof
let x;
assume
A6: x
in Z;
then
A7: ((f1
+ f2)
. x)
<>
0 by
A1,
RFUNCT_1: 3;
A8: (f1
+ f2)
is_differentiable_in x by
A3,
A6,
FDIFF_1: 9;
A9: (f2
. x)
= (x
#Z 2) by
A1,
TAYLOR_1:def 1
.= (x
|^ 2) by
PREPOWER: 36;
A10: ((f1
+ f2)
. x)
= ((f1
. x)
+ (f2
. x)) by
A2,
A6,
VALUED_1:def 1
.= (1
+ (x
|^ 2)) by
A1,
A6,
A9;
((((f1
+ f2)
^ )
`| Z)
. x)
= (
diff (((f1
+ f2)
^ ),x)) by
A5,
A6,
FDIFF_1:def 7
.= (
- ((
diff ((f1
+ f2),x))
/ (((f1
+ f2)
. x)
^2 ))) by
A7,
A8,
FDIFF_2: 15
.= (
- ((((f1
+ f2)
`| Z)
. x)
/ (((f1
+ f2)
. x)
^2 ))) by
A3,
A6,
FDIFF_1:def 7
.= (
- ((2
* x)
/ ((1
+ (x
|^ 2))
^2 ))) by
A1,
A2,
A6,
A10,
SIN_COS9: 101;
hence thesis;
end;
hence thesis by
A3,
A4,
FDIFF_2: 22;
end;
theorem ::
INTEGR12:2
A
c= Z & f
= (((g1
+ g2)
^ )
/ f2) & f2
=
arccot & Z
c=
].(
- 1), 1.[ & g2
= (
#Z 2) & (for x st x
in Z holds (g1
. x)
= 1 & (f2
. x)
>
0 ) & Z
= (
dom f) implies (
integral (f,A))
= (((
- (
ln
*
arccot ))
. (
upper_bound A))
- ((
- (
ln
*
arccot ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & f
= (((g1
+ g2)
^ )
/ f2) & f2
=
arccot & Z
c=
].(
- 1), 1.[ & g2
= (
#Z 2) & (for x st x
in Z holds (g1
. x)
= 1 & (f2
. x)
>
0 ) & Z
= (
dom f);
then Z
= ((
dom ((g1
+ g2)
^ ))
/\ ((
dom f2)
\ (f2
"
{
0 }))) by
RFUNCT_1:def 1;
then
A2: Z
c= (
dom ((g1
+ g2)
^ )) & Z
c= ((
dom f2)
\ (f2
"
{
0 })) by
XBOOLE_1: 18;
(
dom ((g1
+ g2)
^ ))
c= (
dom (g1
+ g2)) by
RFUNCT_1: 1;
then
A3: Z
c= (
dom (g1
+ g2)) by
A2;
for x st x
in Z holds (g1
. x)
= 1 by
A1;
then
A4: ((g1
+ g2)
^ )
is_differentiable_on Z by
A1,
A2,
Th1;
A5: f2
is_differentiable_on Z by
A1,
SIN_COS9: 82;
for x st x
in Z holds (f2
. x)
<>
0 by
A1;
then f
is_differentiable_on Z by
A1,
A4,
A5,
FDIFF_2: 21;
then (f
| Z) is
continuous by
FDIFF_1: 25;
then
A6: (f
| A) is
continuous by
A1,
FCONT_1: 16;
A7: Z
c= (
dom (f2
^ )) by
A2,
RFUNCT_1:def 2;
(
dom (f2
^ ))
c= (
dom f2) by
RFUNCT_1: 1;
then
A8: Z
c= (
dom f2) by
A7;
A9: for x st x
in Z holds (f2
. x)
>
0 by
A1;
(
rng (f2
| Z))
c= (
right_open_halfline
0 )
proof
let x be
object;
assume x
in (
rng (f2
| Z));
then
consider y be
object such that
A10: y
in (
dom (f2
| Z)) & x
= ((f2
| Z)
. y) by
FUNCT_1:def 3;
y
in Z by
A10;
then (f2
. y)
>
0 by
A1;
then ((f2
| Z)
. y)
>
0 by
A10,
FUNCT_1: 47;
hence thesis by
A10,
XXREAL_1: 235;
end;
then (f2
.: Z)
c= (
dom
ln ) by
RELAT_1: 115,
TAYLOR_1: 18;
then
A11: Z
c= (
dom (
ln
*
arccot )) by
A1,
A8,
FUNCT_1: 101;
A12: f
is_integrable_on A & (f
| A) is
bounded by
A1,
A6,
INTEGRA5: 10,
INTEGRA5: 11;
A13: (
ln
*
arccot )
is_differentiable_on Z by
A1,
A11,
A9,
SIN_COS9: 90;
Z
c= (
dom (
- (
ln
*
arccot ))) by
A11,
VALUED_1: 8;
then
A14: (
- (
ln
*
arccot ))
is_differentiable_on Z by
A13,
FDIFF_1: 20;
A15: for x st x
in Z holds (((
- (
ln
*
arccot ))
`| Z)
. x)
= (1
/ ((1
+ (x
^2 ))
* (
arccot
. x)))
proof
let x;
assume
A16: x
in Z;
then
A17: (
- 1)
< x & x
< 1 by
A1,
XXREAL_1: 4;
arccot
is_differentiable_on Z by
A1,
SIN_COS9: 82;
then
A18:
arccot
is_differentiable_in x by
A16,
FDIFF_1: 9;
A19: (
arccot
. x)
>
0 by
A1,
A16;
A20: (
ln
*
arccot )
is_differentiable_in x by
A13,
A16,
FDIFF_1: 9;
(((
- (
ln
*
arccot ))
`| Z)
. x)
= (
diff ((
- (
ln
*
arccot )),x)) by
A14,
A16,
FDIFF_1:def 7
.= ((
- 1)
* (
diff ((
ln
*
arccot ),x))) by
A20,
FDIFF_1: 15
.= ((
- 1)
* ((
diff (
arccot ,x))
/ (
arccot
. x))) by
A18,
A19,
TAYLOR_1: 20
.= ((
- 1)
* ((
- (1
/ (1
+ (x
^2 ))))
/ (
arccot
. x))) by
A17,
SIN_COS9: 76
.= ((1
/ (1
+ (x
^2 )))
/ (
arccot
. x))
.= (1
/ ((1
+ (x
^2 ))
* (
arccot
. x))) by
XCMPLX_1: 78;
hence thesis;
end;
A21: for x be
Real st x
in Z holds (f
. x)
= (1
/ ((1
+ (x
^2 ))
* (
arccot
. x)))
proof
let x be
Real;
assume
A22: x
in Z;
then ((((g1
+ g2)
^ )
/ f2)
. x)
= ((((g1
+ g2)
^ )
. x)
/ (f2
. x)) by
A1,
RFUNCT_1:def 1
.= ((((g1
+ g2)
. x)
" )
/ (f2
. x)) by
A2,
A22,
RFUNCT_1:def 2
.= ((((g1
. x)
+ (g2
. x))
" )
/ (f2
. x)) by
A3,
A22,
VALUED_1:def 1
.= (1
/ (((g1
. x)
+ (g2
. x))
* (f2
. x))) by
XCMPLX_1: 221
.= (1
/ ((1
+ ((
#Z 2)
. x))
* (f2
. x))) by
A1,
A22
.= (1
/ ((1
+ (x
#Z 2))
* (f2
. x))) by
TAYLOR_1:def 1
.= (1
/ ((1
+ (x
^2 ))
* (
arccot
. x))) by
A1,
FDIFF_7: 1;
hence thesis by
A1;
end;
A23: for x be
Element of
REAL st x
in (
dom ((
- (
ln
*
arccot ))
`| Z)) holds (((
- (
ln
*
arccot ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
- (
ln
*
arccot ))
`| Z));
then
A24: x
in Z by
A14,
FDIFF_1:def 7;
then (((
- (
ln
*
arccot ))
`| Z)
. x)
= (1
/ ((1
+ (x
^2 ))
* (
arccot
. x))) by
A15
.= (f
. x) by
A21,
A24;
hence thesis;
end;
(
dom ((
- (
ln
*
arccot ))
`| Z))
= (
dom f) by
A1,
A14,
FDIFF_1:def 7;
then ((
- (
ln
*
arccot ))
`| Z)
= f by
A23,
PARTFUN1: 5;
hence thesis by
A1,
A12,
A14,
INTEGRA5: 13;
end;
theorem ::
INTEGR12:3
A
c= Z & (for x st x
in Z holds (
exp_R
. x)
< 1 & (f1
. x)
= 1) & Z
c= (
dom (
arctan
*
exp_R )) & Z
= (
dom f) & f
= (
exp_R
/ (f1
+ (
exp_R
^2 ))) implies (
integral (f,A))
= (((
arctan
*
exp_R )
. (
upper_bound A))
- ((
arctan
*
exp_R )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (
exp_R
. x)
< 1 & (f1
. x)
= 1) & Z
c= (
dom (
arctan
*
exp_R )) & Z
= (
dom f) & f
= (
exp_R
/ (f1
+ (
exp_R
^2 )));
then Z
c= ((
dom
exp_R )
/\ ((
dom (f1
+ (
exp_R
^2 )))
\ ((f1
+ (
exp_R
^2 ))
"
{
0 }))) by
RFUNCT_1:def 1;
then Z
c= (
dom
exp_R ) & Z
c= ((
dom (f1
+ (
exp_R
^2 )))
\ ((f1
+ (
exp_R
^2 ))
"
{
0 })) by
XBOOLE_1: 18;
then
A2: Z
c= (
dom ((f1
+ (
exp_R
^2 ))
^ )) by
RFUNCT_1:def 2;
(
dom ((f1
+ (
exp_R
^2 ))
^ ))
c= (
dom (f1
+ (
exp_R
^2 ))) by
RFUNCT_1: 1;
then
A3: Z
c= (
dom (f1
+ (
exp_R
^2 ))) by
A2;
then
A4: Z
c= ((
dom f1)
/\ (
dom (
exp_R
^2 ))) by
VALUED_1:def 1;
then
A5: Z
c= (
dom f1) & Z
c= (
dom (
exp_R
^2 )) by
XBOOLE_1: 18;
A6: Z
c= (
dom (
exp_R
(#)
exp_R )) by
A4,
XBOOLE_1: 18;
A7:
exp_R
is_differentiable_on Z by
FDIFF_1: 26,
TAYLOR_1: 16;
then
A8: (
exp_R
(#)
exp_R )
is_differentiable_on Z by
A6,
FDIFF_1: 21;
for x st x
in Z holds (f1
. x)
= ((
0
* x)
+ 1) by
A1;
then f1
is_differentiable_on Z by
A5,
FDIFF_1: 23;
then
A9: (f1
+ (
exp_R
^2 ))
is_differentiable_on Z by
A3,
A8,
FDIFF_1: 18;
for x st x
in Z holds ((f1
+ (
exp_R
^2 ))
. x)
<>
0
proof
let x;
assume x
in Z;
then x
in ((
dom
exp_R )
/\ ((
dom (f1
+ (
exp_R
^2 )))
\ ((f1
+ (
exp_R
^2 ))
"
{
0 }))) by
A1,
RFUNCT_1:def 1;
then x
in ((
dom (f1
+ (
exp_R
^2 )))
\ ((f1
+ (
exp_R
^2 ))
"
{
0 })) by
XBOOLE_0:def 4;
then x
in (
dom ((f1
+ (
exp_R
^2 ))
^ )) by
RFUNCT_1:def 2;
hence thesis by
RFUNCT_1: 3;
end;
then f
is_differentiable_on Z by
A1,
A7,
A9,
FDIFF_2: 21;
then (f
| Z) is
continuous by
FDIFF_1: 25;
then (f
| A) is
continuous by
A1,
FCONT_1: 16;
then
A10: f
is_integrable_on A & (f
| A) is
bounded by
A1,
INTEGRA5: 10,
INTEGRA5: 11;
A11: for x st x
in Z holds (
exp_R
. x)
< 1 by
A1;
then
A12: (
arctan
*
exp_R )
is_differentiable_on Z by
A1,
SIN_COS9: 115;
A13: for x st x
in Z holds (f
. x)
= ((
exp_R
. x)
/ (1
+ ((
exp_R
. x)
^2 )))
proof
let x;
assume
A14: x
in Z;
then ((
exp_R
/ (f1
+ (
exp_R
^2 )))
. x)
= ((
exp_R
. x)
* (((f1
+ (
exp_R
^2 ))
. x)
" )) by
A1,
RFUNCT_1:def 1
.= ((
exp_R
. x)
* (((f1
. x)
+ ((
exp_R
^2 )
. x))
" )) by
A14,
A3,
VALUED_1:def 1
.= ((
exp_R
. x)
* (((f1
. x)
+ ((
exp_R
. x)
^2 ))
" )) by
VALUED_1: 11
.= ((
exp_R
. x)
/ (1
+ ((
exp_R
. x)
^2 ))) by
A1,
A14;
hence thesis by
A1;
end;
A15: for x be
Element of
REAL st x
in (
dom ((
arctan
*
exp_R )
`| Z)) holds (((
arctan
*
exp_R )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
arctan
*
exp_R )
`| Z));
then
A16: x
in Z by
A12,
FDIFF_1:def 7;
then (((
arctan
*
exp_R )
`| Z)
. x)
= ((
exp_R
. x)
/ (1
+ ((
exp_R
. x)
^2 ))) by
A1,
A11,
SIN_COS9: 115
.= (f
. x) by
A16,
A13;
hence thesis;
end;
(
dom ((
arctan
*
exp_R )
`| Z))
= (
dom f) by
A1,
A12,
FDIFF_1:def 7;
then ((
arctan
*
exp_R )
`| Z)
= f by
A15,
PARTFUN1: 5;
hence thesis by
A1,
A10,
A12,
INTEGRA5: 13;
end;
theorem ::
INTEGR12:4
A
c= Z & (for x st x
in Z holds (
exp_R
. x)
< 1 & (f1
. x)
= 1) & Z
c= (
dom (
arccot
*
exp_R )) & Z
= (
dom f) & f
= ((
-
exp_R )
/ (f1
+ (
exp_R
^2 ))) implies (
integral (f,A))
= (((
arccot
*
exp_R )
. (
upper_bound A))
- ((
arccot
*
exp_R )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (
exp_R
. x)
< 1 & (f1
. x)
= 1) & Z
c= (
dom (
arccot
*
exp_R )) & Z
= (
dom f) & f
= ((
-
exp_R )
/ (f1
+ (
exp_R
^2 )));
then Z
c= ((
dom (
-
exp_R ))
/\ ((
dom (f1
+ (
exp_R
^2 )))
\ ((f1
+ (
exp_R
^2 ))
"
{
0 }))) by
RFUNCT_1:def 1;
then
A2: Z
c= (
dom (
-
exp_R )) & Z
c= ((
dom (f1
+ (
exp_R
^2 )))
\ ((f1
+ (
exp_R
^2 ))
"
{
0 })) by
XBOOLE_1: 18;
then
A3: Z
c= (
dom ((f1
+ (
exp_R
^2 ))
^ )) by
RFUNCT_1:def 2;
(
dom ((f1
+ (
exp_R
^2 ))
^ ))
c= (
dom (f1
+ (
exp_R
^2 ))) by
RFUNCT_1: 1;
then
A4: Z
c= (
dom (f1
+ (
exp_R
^2 ))) by
A3;
then
A5: Z
c= ((
dom f1)
/\ (
dom (
exp_R
^2 ))) by
VALUED_1:def 1;
then
A6: Z
c= (
dom f1) & Z
c= (
dom (
exp_R
^2 )) by
XBOOLE_1: 18;
A7: Z
c= (
dom (
exp_R
(#)
exp_R )) by
A5,
XBOOLE_1: 18;
A8:
exp_R
is_differentiable_on Z by
FDIFF_1: 26,
TAYLOR_1: 16;
then
A9: ((
- 1)
(#)
exp_R )
is_differentiable_on Z by
A2,
FDIFF_1: 20;
A10: (
exp_R
(#)
exp_R )
is_differentiable_on Z by
A7,
A8,
FDIFF_1: 21;
for x st x
in Z holds (f1
. x)
= ((
0
* x)
+ 1) by
A1;
then f1
is_differentiable_on Z by
A6,
FDIFF_1: 23;
then
A11: (f1
+ (
exp_R
^2 ))
is_differentiable_on Z by
A4,
A10,
FDIFF_1: 18;
for x st x
in Z holds ((f1
+ (
exp_R
^2 ))
. x)
<>
0
proof
let x;
assume x
in Z;
then x
in ((
dom (
-
exp_R ))
/\ ((
dom (f1
+ (
exp_R
^2 )))
\ ((f1
+ (
exp_R
^2 ))
"
{
0 }))) by
A1,
RFUNCT_1:def 1;
then x
in ((
dom (f1
+ (
exp_R
^2 )))
\ ((f1
+ (
exp_R
^2 ))
"
{
0 })) by
XBOOLE_0:def 4;
then x
in (
dom ((f1
+ (
exp_R
^2 ))
^ )) by
RFUNCT_1:def 2;
hence thesis by
RFUNCT_1: 3;
end;
then f
is_differentiable_on Z by
A1,
A9,
A11,
FDIFF_2: 21;
then (f
| Z) is
continuous by
FDIFF_1: 25;
then (f
| A) is
continuous by
A1,
FCONT_1: 16;
then
A12: f
is_integrable_on A & (f
| A) is
bounded by
A1,
INTEGRA5: 10,
INTEGRA5: 11;
A13: for x st x
in Z holds (
exp_R
. x)
< 1 by
A1;
then
A14: (
arccot
*
exp_R )
is_differentiable_on Z by
A1,
SIN_COS9: 116;
A15: for x be
Element of
REAL st x
in Z holds (f
. x)
= (
- ((
exp_R
. x)
/ (1
+ ((
exp_R
. x)
^2 ))))
proof
let x be
Element of
REAL ;
assume
A16: x
in Z;
then (((
-
exp_R )
/ (f1
+ (
exp_R
^2 )))
. x)
= (((
-
exp_R )
. x)
* (((f1
+ (
exp_R
^2 ))
. x)
" )) by
A1,
RFUNCT_1:def 1
.= ((
- (
exp_R
. x))
* (((f1
+ (
exp_R
^2 ))
. x)
" )) by
RFUNCT_1: 58
.= ((
- (
exp_R
. x))
* (((f1
. x)
+ ((
exp_R
^2 )
. x))
" )) by
A16,
A4,
VALUED_1:def 1
.= ((
- (
exp_R
. x))
* (((f1
. x)
+ ((
exp_R
. x)
^2 ))
" )) by
VALUED_1: 11
.= ((
- (
exp_R
. x))
/ (1
+ ((
exp_R
. x)
^2 ))) by
A1,
A16
.= (
- ((
exp_R
. x)
/ (1
+ ((
exp_R
. x)
^2 ))));
hence thesis by
A1;
end;
A17: for x be
Element of
REAL st x
in (
dom ((
arccot
*
exp_R )
`| Z)) holds (((
arccot
*
exp_R )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
arccot
*
exp_R )
`| Z));
then
A18: x
in Z by
A14,
FDIFF_1:def 7;
then (((
arccot
*
exp_R )
`| Z)
. x)
= (
- ((
exp_R
. x)
/ (1
+ ((
exp_R
. x)
^2 )))) by
A1,
A13,
SIN_COS9: 116
.= (f
. x) by
A18,
A15;
hence thesis;
end;
(
dom ((
arccot
*
exp_R )
`| Z))
= (
dom f) by
A1,
A14,
FDIFF_1:def 7;
then ((
arccot
*
exp_R )
`| Z)
= f by
A17,
PARTFUN1: 5;
hence thesis by
A1,
A12,
A14,
INTEGRA5: 13;
end;
theorem ::
INTEGR12:5
A
c= Z & Z
= (
dom f) & f
= ((
exp_R
(#) (
sin
/
cos ))
+ (
exp_R
/ (
cos
^2 ))) implies (
integral (f,A))
= (((
exp_R
(#)
tan )
. (
upper_bound A))
- ((
exp_R
(#)
tan )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & Z
= (
dom f) & f
= ((
exp_R
(#) (
sin
/
cos ))
+ (
exp_R
/ (
cos
^2 )));
then Z
= ((
dom (
exp_R
(#) (
sin
/
cos )))
/\ (
dom (
exp_R
/ (
cos
^2 )))) by
VALUED_1:def 1;
then
A2: Z
c= (
dom (
exp_R
(#) (
sin
/
cos ))) & Z
c= (
dom (
exp_R
/ (
cos
^2 ))) by
XBOOLE_1: 18;
A3: (
dom (
exp_R
(#) (
sin
/
cos )))
c= ((
dom
exp_R )
/\ (
dom (
sin
/
cos ))) by
VALUED_1:def 4;
(
dom (
exp_R
/ (
cos
^2 )))
c= ((
dom
exp_R )
/\ ((
dom (
cos
^2 ))
\ ((
cos
^2 )
"
{
0 }))) by
RFUNCT_1:def 1;
then (
dom (
exp_R
(#) (
sin
/
cos )))
c= (
dom
exp_R ) & (
dom (
exp_R
(#) (
sin
/
cos )))
c= (
dom (
sin
/
cos )) & (
dom (
exp_R
/ (
cos
^2 )))
c= ((
dom (
cos
^2 ))
\ ((
cos
^2 )
"
{
0 })) by
A3,
XBOOLE_1: 18;
then
A4: Z
c= (
dom
exp_R ) & Z
c= (
dom (
sin
/
cos )) & Z
c= ((
dom (
cos
^2 ))
\ ((
cos
^2 )
"
{
0 })) by
A2;
A5:
exp_R
is_differentiable_on Z by
FDIFF_1: 26,
TAYLOR_1: 16;
for x st x
in Z holds (
sin
/
cos )
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
cos
. x)
<>
0 by
A4,
FDIFF_8: 1;
hence thesis by
FDIFF_7: 46;
end;
then (
sin
/
cos )
is_differentiable_on Z by
A4,
FDIFF_1: 9;
then
A6: (
exp_R
(#) (
sin
/
cos ))
is_differentiable_on Z by
A2,
A5,
FDIFF_1: 21;
cos
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 67;
then
A7: (
cos
^2 )
is_differentiable_on Z by
FDIFF_2: 20;
x
in Z implies ((
cos
^2 )
. x)
<>
0
proof
assume x
in Z;
then x
in (
dom (
exp_R
/ (
cos
^2 ))) by
A2;
then x
in ((
dom
exp_R )
/\ ((
dom (
cos
^2 ))
\ ((
cos
^2 )
"
{
0 }))) by
RFUNCT_1:def 1;
then x
in ((
dom (
cos
^2 ))
\ ((
cos
^2 )
"
{
0 })) by
XBOOLE_0:def 4;
then x
in (
dom ((
cos
^2 )
^ )) by
RFUNCT_1:def 2;
hence thesis by
RFUNCT_1: 3;
end;
then (
exp_R
/ (
cos
^2 ))
is_differentiable_on Z by
A5,
A7,
FDIFF_2: 21;
then (f
| Z) is
continuous by
A1,
A6,
FDIFF_1: 18,
FDIFF_1: 25;
then (f
| A) is
continuous by
A1,
FCONT_1: 16;
then
A8: f
is_integrable_on A & (f
| A) is
bounded by
A1,
INTEGRA5: 10,
INTEGRA5: 11;
A9: (
exp_R
(#)
tan )
is_differentiable_on Z by
A2,
FDIFF_8: 30;
A10: for x st x
in Z holds (f
. x)
= ((((
exp_R
. x)
* (
sin
. x))
/ (
cos
. x))
+ ((
exp_R
. x)
/ ((
cos
. x)
^2 )))
proof
let x;
assume
A11: x
in Z;
then (((
exp_R
(#) (
sin
/
cos ))
+ (
exp_R
/ (
cos
^2 )))
. x)
= (((
exp_R
(#) (
sin
/
cos ))
. x)
+ ((
exp_R
/ (
cos
^2 ))
. x)) by
A1,
VALUED_1:def 1
.= (((
exp_R
. x)
* ((
sin
/
cos )
. x))
+ ((
exp_R
/ (
cos
^2 ))
. x)) by
VALUED_1: 5
.= (((
exp_R
. x)
* ((
sin
. x)
* ((
cos
. x)
" )))
+ ((
exp_R
/ (
cos
^2 ))
. x)) by
A4,
A11,
RFUNCT_1:def 1
.= ((((
exp_R
. x)
* (
sin
. x))
/ (
cos
. x))
+ ((
exp_R
. x)
/ ((
cos
^2 )
. x))) by
A2,
A11,
RFUNCT_1:def 1
.= ((((
exp_R
. x)
* (
sin
. x))
/ (
cos
. x))
+ ((
exp_R
. x)
/ ((
cos
. x)
^2 ))) by
VALUED_1: 11;
hence thesis by
A1;
end;
A12: for x be
Element of
REAL st x
in (
dom ((
exp_R
(#)
tan )
`| Z)) holds (((
exp_R
(#)
tan )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
exp_R
(#)
tan )
`| Z));
then
A13: x
in Z by
A9,
FDIFF_1:def 7;
then (((
exp_R
(#)
tan )
`| Z)
. x)
= ((((
exp_R
. x)
* (
sin
. x))
/ (
cos
. x))
+ ((
exp_R
. x)
/ ((
cos
. x)
^2 ))) by
A2,
FDIFF_8: 30
.= (f
. x) by
A13,
A10;
hence thesis;
end;
(
dom ((
exp_R
(#)
tan )
`| Z))
= (
dom f) by
A1,
A9,
FDIFF_1:def 7;
then ((
exp_R
(#)
tan )
`| Z)
= f by
A12,
PARTFUN1: 5;
hence thesis by
A1,
A8,
A2,
FDIFF_8: 30,
INTEGRA5: 13;
end;
theorem ::
INTEGR12:6
A
c= Z & Z
= (
dom f) & f
= ((
exp_R
(#) (
cos
/
sin ))
- (
exp_R
/ (
sin
^2 ))) implies (
integral (f,A))
= (((
exp_R
(#)
cot )
. (
upper_bound A))
- ((
exp_R
(#)
cot )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & Z
= (
dom f) & f
= ((
exp_R
(#) (
cos
/
sin ))
- (
exp_R
/ (
sin
^2 )));
then Z
= ((
dom (
exp_R
(#) (
cos
/
sin )))
/\ (
dom (
exp_R
/ (
sin
^2 )))) by
VALUED_1: 12;
then
A2: Z
c= (
dom (
exp_R
(#) (
cos
/
sin ))) & Z
c= (
dom (
exp_R
/ (
sin
^2 ))) by
XBOOLE_1: 18;
A3: (
dom (
exp_R
(#) (
cos
/
sin )))
c= ((
dom
exp_R )
/\ (
dom (
cos
/
sin ))) by
VALUED_1:def 4;
(
dom (
exp_R
/ (
sin
^2 )))
c= ((
dom
exp_R )
/\ ((
dom (
sin
^2 ))
\ ((
sin
^2 )
"
{
0 }))) by
RFUNCT_1:def 1;
then (
dom (
exp_R
(#) (
cos
/
sin )))
c= (
dom
exp_R ) & (
dom (
exp_R
(#) (
cos
/
sin )))
c= (
dom (
cos
/
sin )) & (
dom (
exp_R
/ (
sin
^2 )))
c= ((
dom (
sin
^2 ))
\ ((
sin
^2 )
"
{
0 })) by
A3,
XBOOLE_1: 18;
then
A4: Z
c= (
dom
exp_R ) & Z
c= (
dom (
cos
/
sin )) & Z
c= ((
dom (
sin
^2 ))
\ ((
sin
^2 )
"
{
0 })) by
A2;
A5:
exp_R
is_differentiable_on Z by
FDIFF_1: 26,
TAYLOR_1: 16;
for x st x
in Z holds (
cos
/
sin )
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
sin
. x)
<>
0 by
A4,
FDIFF_8: 2;
hence thesis by
FDIFF_7: 47;
end;
then (
cos
/
sin )
is_differentiable_on Z by
A4,
FDIFF_1: 9;
then
A6: (
exp_R
(#) (
cos
/
sin ))
is_differentiable_on Z by
A2,
A5,
FDIFF_1: 21;
sin
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 68;
then
A7: (
sin
^2 )
is_differentiable_on Z by
FDIFF_2: 20;
x
in Z implies ((
sin
^2 )
. x)
<>
0
proof
assume x
in Z;
then x
in (
dom (
exp_R
/ (
sin
^2 ))) by
A2;
then x
in ((
dom
exp_R )
/\ ((
dom (
sin
^2 ))
\ ((
sin
^2 )
"
{
0 }))) by
RFUNCT_1:def 1;
then x
in ((
dom (
sin
^2 ))
\ ((
sin
^2 )
"
{
0 })) by
XBOOLE_0:def 4;
then x
in (
dom ((
sin
^2 )
^ )) by
RFUNCT_1:def 2;
hence thesis by
RFUNCT_1: 3;
end;
then (
exp_R
/ (
sin
^2 ))
is_differentiable_on Z by
A5,
A7,
FDIFF_2: 21;
then (f
| Z) is
continuous by
A1,
A6,
FDIFF_1: 19,
FDIFF_1: 25;
then (f
| A) is
continuous by
A1,
FCONT_1: 16;
then
A8: f
is_integrable_on A & (f
| A) is
bounded by
A1,
INTEGRA5: 10,
INTEGRA5: 11;
A9: (
exp_R
(#)
cot )
is_differentiable_on Z by
A2,
FDIFF_8: 31;
A10: for x st x
in Z holds (f
. x)
= ((((
exp_R
. x)
* (
cos
. x))
/ (
sin
. x))
- ((
exp_R
. x)
/ ((
sin
. x)
^2 )))
proof
let x;
assume
A11: x
in Z;
then (((
exp_R
(#) (
cos
/
sin ))
- (
exp_R
/ (
sin
^2 )))
. x)
= (((
exp_R
(#) (
cos
/
sin ))
. x)
- ((
exp_R
/ (
sin
^2 ))
. x)) by
A1,
VALUED_1: 13
.= (((
exp_R
. x)
* ((
cos
/
sin )
. x))
- ((
exp_R
/ (
sin
^2 ))
. x)) by
VALUED_1: 5
.= (((
exp_R
. x)
* ((
cos
. x)
* ((
sin
. x)
" )))
- ((
exp_R
/ (
sin
^2 ))
. x)) by
A4,
A11,
RFUNCT_1:def 1
.= ((((
exp_R
. x)
* (
cos
. x))
/ (
sin
. x))
- ((
exp_R
. x)
/ ((
sin
^2 )
. x))) by
A2,
A11,
RFUNCT_1:def 1
.= ((((
exp_R
. x)
* (
cos
. x))
/ (
sin
. x))
- ((
exp_R
. x)
/ ((
sin
. x)
^2 ))) by
VALUED_1: 11;
hence thesis by
A1;
end;
A12: for x be
Element of
REAL st x
in (
dom ((
exp_R
(#)
cot )
`| Z)) holds (((
exp_R
(#)
cot )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
exp_R
(#)
cot )
`| Z));
then
A13: x
in Z by
A9,
FDIFF_1:def 7;
then (((
exp_R
(#)
cot )
`| Z)
. x)
= ((((
exp_R
. x)
* (
cos
. x))
/ (
sin
. x))
- ((
exp_R
. x)
/ ((
sin
. x)
^2 ))) by
A2,
FDIFF_8: 31
.= (f
. x) by
A13,
A10;
hence thesis;
end;
(
dom ((
exp_R
(#)
cot )
`| Z))
= (
dom f) by
A1,
A9,
FDIFF_1:def 7;
then ((
exp_R
(#)
cot )
`| Z)
= f by
A12,
PARTFUN1: 5;
hence thesis by
A1,
A8,
A2,
FDIFF_8: 31,
INTEGRA5: 13;
end;
theorem ::
INTEGR12:7
A
c= Z & (for x st x
in Z holds (f1
. x)
= 1) & Z
c=
].(
- 1), 1.[ & Z
= (
dom f) & f
= ((
exp_R
(#)
arctan )
+ (
exp_R
/ (f1
+ (
#Z 2)))) implies (
integral (f,A))
= (((
exp_R
(#)
arctan )
. (
upper_bound A))
- ((
exp_R
(#)
arctan )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f1
. x)
= 1) & Z
c=
].(
- 1), 1.[ & Z
= (
dom f) & f
= ((
exp_R
(#)
arctan )
+ (
exp_R
/ (f1
+ (
#Z 2))));
then
A2: Z
= ((
dom (
exp_R
(#)
arctan ))
/\ (
dom (
exp_R
/ (f1
+ (
#Z 2))))) by
VALUED_1:def 1;
A3:
exp_R
is_differentiable_on Z by
FDIFF_1: 26,
TAYLOR_1: 16;
A4: (
exp_R
(#)
arctan )
is_differentiable_on Z by
A1,
SIN_COS9: 123;
A5: Z
c= (
dom (
exp_R
/ (f1
+ (
#Z 2)))) by
A2,
XBOOLE_1: 18;
then
A6: Z
c= (
dom (
exp_R
(#) ((f1
+ (
#Z 2))
^ ))) by
RFUNCT_1: 31;
then Z
c= ((
dom
exp_R )
/\ (
dom ((f1
+ (
#Z 2))
^ ))) by
VALUED_1:def 4;
then
A7: Z
c= (
dom ((f1
+ (
#Z 2))
^ )) by
XBOOLE_1: 18;
(
dom ((f1
+ (
#Z 2))
^ ))
c= (
dom (f1
+ (
#Z 2))) by
RFUNCT_1: 1;
then
A8: Z
c= (
dom (f1
+ (
#Z 2))) by
A7;
((f1
+ (
#Z 2))
^ )
is_differentiable_on Z by
A1,
A7,
Th1;
then (
exp_R
(#) ((f1
+ (
#Z 2))
^ ))
is_differentiable_on Z by
A3,
A6,
FDIFF_1: 21;
then (
exp_R
/ (f1
+ (
#Z 2)))
is_differentiable_on Z by
RFUNCT_1: 31;
then (f
| Z) is
continuous by
A1,
A4,
FDIFF_1: 18,
FDIFF_1: 25;
then (f
| A) is
continuous by
A1,
FCONT_1: 16;
then
A9: f
is_integrable_on A & (f
| A) is
bounded by
A1,
INTEGRA5: 10,
INTEGRA5: 11;
A10: for x st x
in Z holds (f
. x)
= (((
exp_R
. x)
* (
arctan
. x))
+ ((
exp_R
. x)
/ (1
+ (x
^2 ))))
proof
let x;
assume
A11: x
in Z;
then (((
exp_R
(#)
arctan )
+ (
exp_R
/ (f1
+ (
#Z 2))))
. x)
= (((
exp_R
(#)
arctan )
. x)
+ ((
exp_R
/ (f1
+ (
#Z 2)))
. x)) by
A1,
VALUED_1:def 1
.= (((
exp_R
. x)
* (
arctan
. x))
+ ((
exp_R
/ (f1
+ (
#Z 2)))
. x)) by
VALUED_1: 5
.= (((
exp_R
. x)
* (
arctan
. x))
+ ((
exp_R
. x)
/ ((f1
+ (
#Z 2))
. x))) by
A5,
A11,
RFUNCT_1:def 1
.= (((
exp_R
. x)
* (
arctan
. x))
+ ((
exp_R
. x)
/ ((f1
. x)
+ ((
#Z 2)
. x)))) by
A8,
A11,
VALUED_1:def 1
.= (((
exp_R
. x)
* (
arctan
. x))
+ ((
exp_R
. x)
/ ((f1
. x)
+ (x
#Z 2)))) by
TAYLOR_1:def 1
.= (((
exp_R
. x)
* (
arctan
. x))
+ ((
exp_R
. x)
/ ((f1
. x)
+ (x
^2 )))) by
FDIFF_7: 1
.= (((
exp_R
. x)
* (
arctan
. x))
+ ((
exp_R
. x)
/ (1
+ (x
^2 )))) by
A1,
A11;
hence thesis by
A1;
end;
A12: for x be
Element of
REAL st x
in (
dom ((
exp_R
(#)
arctan )
`| Z)) holds (((
exp_R
(#)
arctan )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
exp_R
(#)
arctan )
`| Z));
then
A13: x
in Z by
A4,
FDIFF_1:def 7;
then (((
exp_R
(#)
arctan )
`| Z)
. x)
= (((
exp_R
. x)
* (
arctan
. x))
+ ((
exp_R
. x)
/ (1
+ (x
^2 )))) by
A1,
SIN_COS9: 123
.= (f
. x) by
A13,
A10;
hence thesis;
end;
(
dom ((
exp_R
(#)
arctan )
`| Z))
= (
dom f) by
A1,
A4,
FDIFF_1:def 7;
then ((
exp_R
(#)
arctan )
`| Z)
= f by
A12,
PARTFUN1: 5;
hence thesis by
A1,
A9,
INTEGRA5: 13,
SIN_COS9: 123;
end;
theorem ::
INTEGR12:8
A
c= Z & (for x st x
in Z holds (f1
. x)
= 1) & Z
c=
].(
- 1), 1.[ & Z
= (
dom f) & f
= ((
exp_R
(#)
arccot )
- (
exp_R
/ (f1
+ (
#Z 2)))) implies (
integral (f,A))
= (((
exp_R
(#)
arccot )
. (
upper_bound A))
- ((
exp_R
(#)
arccot )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f1
. x)
= 1) & Z
c=
].(
- 1), 1.[ & Z
= (
dom f) & f
= ((
exp_R
(#)
arccot )
- (
exp_R
/ (f1
+ (
#Z 2))));
then
A2: Z
= ((
dom (
exp_R
(#)
arccot ))
/\ (
dom (
exp_R
/ (f1
+ (
#Z 2))))) by
VALUED_1: 12;
A3:
exp_R
is_differentiable_on Z by
FDIFF_1: 26,
TAYLOR_1: 16;
A4: (
exp_R
(#)
arccot )
is_differentiable_on Z by
A1,
SIN_COS9: 124;
A5: Z
c= (
dom (
exp_R
/ (f1
+ (
#Z 2)))) by
A2,
XBOOLE_1: 18;
then
A6: Z
c= (
dom (
exp_R
(#) ((f1
+ (
#Z 2))
^ ))) by
RFUNCT_1: 31;
then Z
c= ((
dom
exp_R )
/\ (
dom ((f1
+ (
#Z 2))
^ ))) by
VALUED_1:def 4;
then
A7: Z
c= (
dom ((f1
+ (
#Z 2))
^ )) by
XBOOLE_1: 18;
(
dom ((f1
+ (
#Z 2))
^ ))
c= (
dom (f1
+ (
#Z 2))) by
RFUNCT_1: 1;
then
A8: Z
c= (
dom (f1
+ (
#Z 2))) by
A7;
((f1
+ (
#Z 2))
^ )
is_differentiable_on Z by
A1,
A7,
Th1;
then (
exp_R
(#) ((f1
+ (
#Z 2))
^ ))
is_differentiable_on Z by
A3,
A6,
FDIFF_1: 21;
then (
exp_R
/ (f1
+ (
#Z 2)))
is_differentiable_on Z by
RFUNCT_1: 31;
then (f
| Z) is
continuous by
A1,
A4,
FDIFF_1: 19,
FDIFF_1: 25;
then (f
| A) is
continuous by
A1,
FCONT_1: 16;
then
A9: f
is_integrable_on A & (f
| A) is
bounded by
A1,
INTEGRA5: 10,
INTEGRA5: 11;
A10: for x st x
in Z holds (f
. x)
= (((
exp_R
. x)
* (
arccot
. x))
- ((
exp_R
. x)
/ (1
+ (x
^2 ))))
proof
let x;
assume
A11: x
in Z;
then (((
exp_R
(#)
arccot )
- (
exp_R
/ (f1
+ (
#Z 2))))
. x)
= (((
exp_R
(#)
arccot )
. x)
- ((
exp_R
/ (f1
+ (
#Z 2)))
. x)) by
A1,
VALUED_1: 13
.= (((
exp_R
. x)
* (
arccot
. x))
- ((
exp_R
/ (f1
+ (
#Z 2)))
. x)) by
VALUED_1: 5
.= (((
exp_R
. x)
* (
arccot
. x))
- ((
exp_R
. x)
/ ((f1
+ (
#Z 2))
. x))) by
A5,
A11,
RFUNCT_1:def 1
.= (((
exp_R
. x)
* (
arccot
. x))
- ((
exp_R
. x)
/ ((f1
. x)
+ ((
#Z 2)
. x)))) by
A8,
A11,
VALUED_1:def 1
.= (((
exp_R
. x)
* (
arccot
. x))
- ((
exp_R
. x)
/ ((f1
. x)
+ (x
#Z 2)))) by
TAYLOR_1:def 1
.= (((
exp_R
. x)
* (
arccot
. x))
- ((
exp_R
. x)
/ ((f1
. x)
+ (x
^2 )))) by
FDIFF_7: 1
.= (((
exp_R
. x)
* (
arccot
. x))
- ((
exp_R
. x)
/ (1
+ (x
^2 )))) by
A1,
A11;
hence thesis by
A1;
end;
A12: for x be
Element of
REAL st x
in (
dom ((
exp_R
(#)
arccot )
`| Z)) holds (((
exp_R
(#)
arccot )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
exp_R
(#)
arccot )
`| Z));
then
A13: x
in Z by
A4,
FDIFF_1:def 7;
then (((
exp_R
(#)
arccot )
`| Z)
. x)
= (((
exp_R
. x)
* (
arccot
. x))
- ((
exp_R
. x)
/ (1
+ (x
^2 )))) by
A1,
SIN_COS9: 124
.= (f
. x) by
A13,
A10;
hence thesis;
end;
(
dom ((
exp_R
(#)
arccot )
`| Z))
= (
dom f) by
A1,
A4,
FDIFF_1:def 7;
then ((
exp_R
(#)
arccot )
`| Z)
= f by
A12,
PARTFUN1: 5;
hence thesis by
A1,
A9,
INTEGRA5: 13,
SIN_COS9: 124;
end;
theorem ::
INTEGR12:9
A
c= Z & Z
= (
dom f) & f
= ((
exp_R
*
sin )
(#)
cos ) implies (
integral (f,A))
= (((
exp_R
*
sin )
. (
upper_bound A))
- ((
exp_R
*
sin )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & Z
= (
dom f) & f
= ((
exp_R
*
sin )
(#)
cos );
then Z
= ((
dom (
exp_R
*
sin ))
/\ (
dom
cos )) by
VALUED_1:def 4;
then
A2: Z
c= (
dom (
exp_R
*
sin )) by
XBOOLE_1: 18;
then
A3: (
exp_R
*
sin )
is_differentiable_on Z by
FDIFF_7: 37;
cos
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 67;
then (f
| Z) is
continuous by
A1,
A3,
FDIFF_1: 21,
FDIFF_1: 25;
then (f
| A) is
continuous by
A1,
FCONT_1: 16;
then
A4: f
is_integrable_on A & (f
| A) is
bounded by
A1,
INTEGRA5: 10,
INTEGRA5: 11;
A5: for x st x
in Z holds (f
. x)
= ((
exp_R
. (
sin
. x))
* (
cos
. x))
proof
let x;
assume
A6: x
in Z;
then (((
exp_R
*
sin )
(#)
cos )
. x)
= (((
exp_R
*
sin )
. x)
* (
cos
. x)) by
A1,
VALUED_1:def 4
.= ((
exp_R
. (
sin
. x))
* (
cos
. x)) by
A2,
A6,
FUNCT_1: 12;
hence thesis by
A1;
end;
A7: for x be
Element of
REAL st x
in (
dom ((
exp_R
*
sin )
`| Z)) holds (((
exp_R
*
sin )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
exp_R
*
sin )
`| Z));
then
A8: x
in Z by
A3,
FDIFF_1:def 7;
then (((
exp_R
*
sin )
`| Z)
. x)
= ((
exp_R
. (
sin
. x))
* (
cos
. x)) by
A2,
FDIFF_7: 37
.= (f
. x) by
A5,
A8;
hence thesis;
end;
(
dom ((
exp_R
*
sin )
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
exp_R
*
sin )
`| Z)
= f by
A7,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A4,
FDIFF_7: 37,
INTEGRA5: 13;
end;
theorem ::
INTEGR12:10
A
c= Z & Z
= (
dom f) & f
= ((
exp_R
*
cos )
(#)
sin ) implies (
integral (f,A))
= (((
- (
exp_R
*
cos ))
. (
upper_bound A))
- ((
- (
exp_R
*
cos ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & Z
= (
dom f) & f
= ((
exp_R
*
cos )
(#)
sin );
then Z
= ((
dom (
exp_R
*
cos ))
/\ (
dom
sin )) by
VALUED_1:def 4;
then
A2: Z
c= (
dom (
exp_R
*
cos )) by
XBOOLE_1: 18;
then
A3: (
exp_R
*
cos )
is_differentiable_on Z by
FDIFF_7: 36;
sin
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 68;
then (f
| Z) is
continuous by
A1,
A3,
FDIFF_1: 21,
FDIFF_1: 25;
then (f
| A) is
continuous by
A1,
FCONT_1: 16;
then
A4: f
is_integrable_on A & (f
| A) is
bounded by
A1,
INTEGRA5: 10,
INTEGRA5: 11;
A5: Z
c= (
dom (
- (
exp_R
*
cos ))) by
A2,
VALUED_1: 8;
then
A6: ((
- 1)
(#) (
exp_R
*
cos ))
is_differentiable_on Z by
A3,
FDIFF_1: 20;
A7: for x st x
in Z holds (((
- (
exp_R
*
cos ))
`| Z)
. x)
= ((
exp_R
. (
cos
. x))
* (
sin
. x))
proof
let x;
assume
A8: x
in Z;
A9:
cos
is_differentiable_in x by
SIN_COS: 63;
A10:
exp_R
is_differentiable_in (
cos
. x) by
SIN_COS: 65;
A11: (
exp_R
*
cos )
is_differentiable_in x by
A3,
A8,
FDIFF_1: 9;
(((
- (
exp_R
*
cos ))
`| Z)
. x)
= (
diff ((
- (
exp_R
*
cos )),x)) by
A6,
A8,
FDIFF_1:def 7
.= ((
- 1)
* (
diff ((
exp_R
*
cos ),x))) by
A11,
FDIFF_1: 15
.= ((
- 1)
* ((
diff (
exp_R ,(
cos
. x)))
* (
diff (
cos ,x)))) by
A9,
A10,
FDIFF_2: 13
.= ((
- 1)
* ((
diff (
exp_R ,(
cos
. x)))
* (
- (
sin
. x)))) by
SIN_COS: 63
.= ((
- 1)
* ((
exp_R
. (
cos
. x))
* (
- (
sin
. x)))) by
SIN_COS: 65
.= ((
exp_R
. (
cos
. x))
* (
sin
. x));
hence thesis;
end;
A12: for x st x
in Z holds (f
. x)
= ((
exp_R
. (
cos
. x))
* (
sin
. x))
proof
let x;
assume
A13: x
in Z;
then (((
exp_R
*
cos )
(#)
sin )
. x)
= (((
exp_R
*
cos )
. x)
* (
sin
. x)) by
A1,
VALUED_1:def 4
.= ((
exp_R
. (
cos
. x))
* (
sin
. x)) by
A2,
A13,
FUNCT_1: 12;
hence thesis by
A1;
end;
A14: for x be
Element of
REAL st x
in (
dom ((
- (
exp_R
*
cos ))
`| Z)) holds (((
- (
exp_R
*
cos ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
- (
exp_R
*
cos ))
`| Z));
then
A15: x
in Z by
A6,
FDIFF_1:def 7;
then (((
- (
exp_R
*
cos ))
`| Z)
. x)
= ((
exp_R
. (
cos
. x))
* (
sin
. x)) by
A7
.= (f
. x) by
A15,
A12;
hence thesis;
end;
(
dom ((
- (
exp_R
*
cos ))
`| Z))
= (
dom f) by
A1,
A6,
FDIFF_1:def 7;
then ((
- (
exp_R
*
cos ))
`| Z)
= f by
A14,
PARTFUN1: 5;
hence thesis by
A1,
A4,
A3,
A5,
FDIFF_1: 20,
INTEGRA5: 13;
end;
theorem ::
INTEGR12:11
A
c= Z & (for x st x
in Z holds x
>
0 ) & Z
= (
dom f) & f
= ((
cos
*
ln )
(#) ((
id Z)
^ )) implies (
integral (f,A))
= (((
sin
*
ln )
. (
upper_bound A))
- ((
sin
*
ln )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds x
>
0 ) & Z
= (
dom f) & f
= ((
cos
*
ln )
(#) ((
id Z)
^ ));
then
A2: Z
= (
dom ((
cos
*
ln )
/ (
id Z))) by
RFUNCT_1: 31;
Z
= ((
dom (
cos
*
ln ))
/\ (
dom ((
id Z)
^ ))) by
A1,
VALUED_1:def 4;
then
A3: Z
c= (
dom (
cos
*
ln )) by
XBOOLE_1: 18;
for y be
object st y
in Z holds y
in (
dom (
sin
*
ln ))
proof
let y be
object;
assume y
in Z;
then y
in (
dom
ln ) & (
ln
. y)
in (
dom
sin ) by
A3,
FUNCT_1: 11,
SIN_COS: 24;
hence thesis by
FUNCT_1: 11;
end;
then
A4: Z
c= (
dom (
sin
*
ln ));
A5: (
cos
*
ln )
is_differentiable_on Z by
A3,
A1,
FDIFF_7: 33;
not
0
in Z by
A1;
then ((
id Z)
^ )
is_differentiable_on Z by
FDIFF_5: 4;
then (f
| Z) is
continuous by
A1,
A5,
FDIFF_1: 21,
FDIFF_1: 25;
then (f
| A) is
continuous by
A1,
FCONT_1: 16;
then
A6: f
is_integrable_on A & (f
| A) is
bounded by
A1,
INTEGRA5: 10,
INTEGRA5: 11;
A7: (
sin
*
ln )
is_differentiable_on Z by
A4,
A1,
FDIFF_7: 32;
A8: for x st x
in Z holds (f
. x)
= ((
cos
. (
ln
. x))
/ x)
proof
let x;
assume
A9: x
in Z;
(((
cos
*
ln )
(#) ((
id Z)
^ ))
. x)
= (((
cos
*
ln )
/ (
id Z))
. x) by
RFUNCT_1: 31
.= (((
cos
*
ln )
. x)
* (((
id Z)
. x)
" )) by
A2,
A9,
RFUNCT_1:def 1
.= (((
cos
*
ln )
. x)
/ x) by
A9,
FUNCT_1: 18
.= ((
cos
. (
ln
. x))
/ x) by
A3,
A9,
FUNCT_1: 12;
hence thesis by
A1;
end;
A10: for x be
Element of
REAL st x
in (
dom ((
sin
*
ln )
`| Z)) holds (((
sin
*
ln )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
sin
*
ln )
`| Z));
then
A11: x
in Z by
A7,
FDIFF_1:def 7;
then (((
sin
*
ln )
`| Z)
. x)
= ((
cos
. (
ln
. x))
/ x) by
A4,
A1,
FDIFF_7: 32
.= (f
. x) by
A11,
A8;
hence thesis;
end;
(
dom ((
sin
*
ln )
`| Z))
= (
dom f) by
A1,
A7,
FDIFF_1:def 7;
then ((
sin
*
ln )
`| Z)
= f by
A10,
PARTFUN1: 5;
hence thesis by
A6,
A4,
A1,
FDIFF_7: 32,
INTEGRA5: 13;
end;
Lm1: (
right_open_halfline
0 )
= { g where g be
Real :
0
< g } by
XXREAL_1: 230;
theorem ::
INTEGR12:12
A
c= Z & (for x st x
in Z holds x
>
0 ) & Z
= (
dom f) & f
= ((
sin
*
ln )
(#) ((
id Z)
^ )) implies (
integral (f,A))
= (((
- (
cos
*
ln ))
. (
upper_bound A))
- ((
- (
cos
*
ln ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds x
>
0 ) & Z
= (
dom f) & f
= ((
sin
*
ln )
(#) ((
id Z)
^ ));
then
A2: Z
= (
dom ((
sin
*
ln )
/ (
id Z))) by
RFUNCT_1: 31;
Z
= ((
dom (
sin
*
ln ))
/\ (
dom ((
id Z)
^ ))) by
A1,
VALUED_1:def 4;
then
A3: Z
c= (
dom (
sin
*
ln )) by
XBOOLE_1: 18;
for y be
object st y
in Z holds y
in (
dom (
cos
*
ln ))
proof
let y be
object;
assume y
in Z;
then y
in (
dom
ln ) & (
ln
. y)
in (
dom
cos ) by
A3,
FUNCT_1: 11,
SIN_COS: 24;
hence thesis by
FUNCT_1: 11;
end;
then
A4: Z
c= (
dom (
cos
*
ln ));
A5: (
sin
*
ln )
is_differentiable_on Z by
A3,
A1,
FDIFF_7: 32;
not
0
in Z by
A1;
then ((
id Z)
^ )
is_differentiable_on Z by
FDIFF_5: 4;
then (f
| Z) is
continuous by
A1,
A5,
FDIFF_1: 21,
FDIFF_1: 25;
then (f
| A) is
continuous by
A1,
FCONT_1: 16;
then
A6: f
is_integrable_on A & (f
| A) is
bounded by
A1,
INTEGRA5: 10,
INTEGRA5: 11;
A7: (
cos
*
ln )
is_differentiable_on Z by
A4,
A1,
FDIFF_7: 33;
A8: Z
c= (
dom (
- (
cos
*
ln ))) by
A4,
VALUED_1: 8;
then
A9: ((
- 1)
(#) (
cos
*
ln ))
is_differentiable_on Z by
A7,
FDIFF_1: 20;
A10: for x st x
in Z holds (((
- (
cos
*
ln ))
`| Z)
. x)
= ((
sin
. (
ln
. x))
/ x)
proof
let x;
assume
A11: x
in Z;
then x
>
0 by
A1;
then
A12: x
in (
right_open_halfline
0 ) by
Lm1;
A13:
ln
is_differentiable_in x by
A11,
A1,
TAYLOR_1: 18;
A14:
cos
is_differentiable_in (
ln
. x) by
SIN_COS: 63;
A15: (
cos
*
ln )
is_differentiable_in x by
A7,
A11,
FDIFF_1: 9;
(((
- (
cos
*
ln ))
`| Z)
. x)
= (
diff ((
- (
cos
*
ln )),x)) by
A9,
A11,
FDIFF_1:def 7
.= ((
- 1)
* (
diff ((
cos
*
ln ),x))) by
A15,
FDIFF_1: 15
.= ((
- 1)
* ((
diff (
cos ,(
ln
. x)))
* (
diff (
ln ,x)))) by
A13,
A14,
FDIFF_2: 13
.= ((
- 1)
* ((
- (
sin
. (
ln
. x)))
* (
diff (
ln ,x)))) by
SIN_COS: 63
.= ((
- 1)
* ((
- (
sin
. (
ln
. x)))
* (1
/ x))) by
A12,
TAYLOR_1: 18
.= ((
sin
. (
ln
. x))
/ x);
hence thesis;
end;
A16: for x st x
in Z holds (f
. x)
= ((
sin
. (
ln
. x))
/ x)
proof
let x;
assume
A17: x
in Z;
(((
sin
*
ln )
(#) ((
id Z)
^ ))
. x)
= (((
sin
*
ln )
/ (
id Z))
. x) by
RFUNCT_1: 31
.= (((
sin
*
ln )
. x)
* (((
id Z)
. x)
" )) by
A2,
A17,
RFUNCT_1:def 1
.= (((
sin
*
ln )
. x)
/ x) by
A17,
FUNCT_1: 18
.= ((
sin
. (
ln
. x))
/ x) by
A3,
A17,
FUNCT_1: 12;
hence thesis by
A1;
end;
A18: for x be
Element of
REAL st x
in (
dom ((
- (
cos
*
ln ))
`| Z)) holds (((
- (
cos
*
ln ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
- (
cos
*
ln ))
`| Z));
then
A19: x
in Z by
A9,
FDIFF_1:def 7;
then (((
- (
cos
*
ln ))
`| Z)
. x)
= ((
sin
. (
ln
. x))
/ x) by
A10
.= (f
. x) by
A19,
A16;
hence thesis;
end;
(
dom ((
- (
cos
*
ln ))
`| Z))
= (
dom f) by
A1,
A9,
FDIFF_1:def 7;
then ((
- (
cos
*
ln ))
`| Z)
= f by
A18,
PARTFUN1: 5;
hence thesis by
A1,
A6,
A7,
A8,
FDIFF_1: 20,
INTEGRA5: 13;
end;
theorem ::
INTEGR12:13
A
c= Z & Z
= (
dom f) & f
= (
exp_R
(#) (
cos
*
exp_R )) implies (
integral (f,A))
= (((
sin
*
exp_R )
. (
upper_bound A))
- ((
sin
*
exp_R )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & Z
= (
dom f) & f
= (
exp_R
(#) (
cos
*
exp_R ));
then Z
= ((
dom
exp_R )
/\ (
dom (
cos
*
exp_R ))) by
VALUED_1:def 4;
then
A2: Z
c= (
dom
exp_R ) & Z
c= (
dom (
cos
*
exp_R )) by
XBOOLE_1: 18;
for y be
object st y
in Z holds y
in (
dom (
sin
*
exp_R ))
proof
let y be
object;
assume y
in Z;
then y
in (
dom
exp_R ) & (
exp_R
. y)
in (
dom
sin ) by
A2,
SIN_COS: 24,
XREAL_0:def 1;
hence thesis by
FUNCT_1: 11;
end;
then
A3: Z
c= (
dom (
sin
*
exp_R ));
A4: (
cos
*
exp_R )
is_differentiable_on Z by
A2,
FDIFF_7: 35;
exp_R
is_differentiable_on Z by
FDIFF_1: 26,
TAYLOR_1: 16;
then (f
| Z) is
continuous by
A1,
A4,
FDIFF_1: 21,
FDIFF_1: 25;
then (f
| A) is
continuous by
A1,
FCONT_1: 16;
then
A5: f
is_integrable_on A & (f
| A) is
bounded by
A1,
INTEGRA5: 10,
INTEGRA5: 11;
A6: (
sin
*
exp_R )
is_differentiable_on Z by
A3,
FDIFF_7: 34;
A7: for x st x
in Z holds (f
. x)
= ((
exp_R
. x)
* (
cos
. (
exp_R
. x)))
proof
let x;
assume
A8: x
in Z;
then ((
exp_R
(#) (
cos
*
exp_R ))
. x)
= ((
exp_R
. x)
* ((
cos
*
exp_R )
. x)) by
A1,
VALUED_1:def 4
.= ((
exp_R
. x)
* (
cos
. (
exp_R
. x))) by
A2,
A8,
FUNCT_1: 12;
hence thesis by
A1;
end;
A9: for x be
Element of
REAL st x
in (
dom ((
sin
*
exp_R )
`| Z)) holds (((
sin
*
exp_R )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
sin
*
exp_R )
`| Z));
then
A10: x
in Z by
A6,
FDIFF_1:def 7;
then (((
sin
*
exp_R )
`| Z)
. x)
= ((
exp_R
. x)
* (
cos
. (
exp_R
. x))) by
A3,
FDIFF_7: 34
.= (f
. x) by
A10,
A7;
hence thesis;
end;
(
dom ((
sin
*
exp_R )
`| Z))
= (
dom f) by
A1,
A6,
FDIFF_1:def 7;
then ((
sin
*
exp_R )
`| Z)
= f by
A9,
PARTFUN1: 5;
hence thesis by
A1,
A5,
A3,
FDIFF_7: 34,
INTEGRA5: 13;
end;
theorem ::
INTEGR12:14
A
c= Z & Z
= (
dom f) & f
= (
exp_R
(#) (
sin
*
exp_R )) implies (
integral (f,A))
= (((
- (
cos
*
exp_R ))
. (
upper_bound A))
- ((
- (
cos
*
exp_R ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & Z
= (
dom f) & f
= (
exp_R
(#) (
sin
*
exp_R ));
then Z
= ((
dom
exp_R )
/\ (
dom (
sin
*
exp_R ))) by
VALUED_1:def 4;
then
A2: Z
c= (
dom
exp_R ) & Z
c= (
dom (
sin
*
exp_R )) by
XBOOLE_1: 18;
for y be
object st y
in Z holds y
in (
dom (
cos
*
exp_R ))
proof
let y be
object;
assume y
in Z;
then y
in (
dom
exp_R ) & (
exp_R
. y)
in (
dom
cos ) by
A2,
SIN_COS: 24,
XREAL_0:def 1;
hence thesis by
FUNCT_1: 11;
end;
then
A3: Z
c= (
dom (
cos
*
exp_R ));
A4: (
sin
*
exp_R )
is_differentiable_on Z by
A2,
FDIFF_7: 34;
exp_R
is_differentiable_on Z by
FDIFF_1: 26,
TAYLOR_1: 16;
then (f
| Z) is
continuous by
A1,
A4,
FDIFF_1: 21,
FDIFF_1: 25;
then (f
| A) is
continuous by
A1,
FCONT_1: 16;
then
A5: f
is_integrable_on A & (f
| A) is
bounded by
A1,
INTEGRA5: 10,
INTEGRA5: 11;
A6: (
cos
*
exp_R )
is_differentiable_on Z by
A3,
FDIFF_7: 35;
A7: Z
c= (
dom (
- (
cos
*
exp_R ))) by
A3,
VALUED_1: 8;
then
A8: ((
- 1)
(#) (
cos
*
exp_R ))
is_differentiable_on Z by
A6,
FDIFF_1: 20;
A9: for x st x
in Z holds (((
- (
cos
*
exp_R ))
`| Z)
. x)
= ((
exp_R
. x)
* (
sin
. (
exp_R
. x)))
proof
let x;
assume
A10: x
in Z;
A11:
exp_R
is_differentiable_in x by
SIN_COS: 65;
A12:
cos
is_differentiable_in (
exp_R
. x) by
SIN_COS: 63;
A13: (
cos
*
exp_R )
is_differentiable_in x by
A6,
A10,
FDIFF_1: 9;
(((
- (
cos
*
exp_R ))
`| Z)
. x)
= (
diff ((
- (
cos
*
exp_R )),x)) by
A8,
A10,
FDIFF_1:def 7
.= ((
- 1)
* (
diff ((
cos
*
exp_R ),x))) by
A13,
FDIFF_1: 15
.= ((
- 1)
* ((
diff (
cos ,(
exp_R
. x)))
* (
diff (
exp_R ,x)))) by
A11,
A12,
FDIFF_2: 13
.= ((
- 1)
* ((
- (
sin
. (
exp_R
. x)))
* (
diff (
exp_R ,x)))) by
SIN_COS: 63
.= ((
- 1)
* ((
- (
sin
. (
exp_R
. x)))
* (
exp_R
. x))) by
SIN_COS: 65
.= ((
exp_R
. x)
* (
sin
. (
exp_R
. x)));
hence thesis;
end;
A14: for x st x
in Z holds (f
. x)
= ((
exp_R
. x)
* (
sin
. (
exp_R
. x)))
proof
let x;
assume
A15: x
in Z;
then ((
exp_R
(#) (
sin
*
exp_R ))
. x)
= ((
exp_R
. x)
* ((
sin
*
exp_R )
. x)) by
A1,
VALUED_1:def 4
.= ((
exp_R
. x)
* (
sin
. (
exp_R
. x))) by
A2,
A15,
FUNCT_1: 12;
hence thesis by
A1;
end;
A16: for x be
Element of
REAL st x
in (
dom ((
- (
cos
*
exp_R ))
`| Z)) holds (((
- (
cos
*
exp_R ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
- (
cos
*
exp_R ))
`| Z));
then
A17: x
in Z by
A8,
FDIFF_1:def 7;
then (((
- (
cos
*
exp_R ))
`| Z)
. x)
= ((
exp_R
. x)
* (
sin
. (
exp_R
. x))) by
A9
.= (f
. x) by
A17,
A14;
hence thesis;
end;
(
dom ((
- (
cos
*
exp_R ))
`| Z))
= (
dom f) by
A1,
A8,
FDIFF_1:def 7;
then ((
- (
cos
*
exp_R ))
`| Z)
= f by
A16,
PARTFUN1: 5;
hence thesis by
A1,
A5,
A6,
A7,
FDIFF_1: 20,
INTEGRA5: 13;
end;
theorem ::
INTEGR12:15
A
c= Z & Z
c= (
dom (
ln
* (f1
+ f2))) & r
<>
0 & (for x st x
in Z holds (g
. x)
= (x
/ r) & (g
. x)
> (
- 1) & (g
. x)
< 1 & (f1
. x)
= 1) & f2
= ((
#Z 2)
* g) & Z
= (
dom f) & f
= (
arctan
* g) implies (
integral (f,A))
= (((((
id Z)
(#) (
arctan
* g))
- ((r
/ 2)
(#) (
ln
* (f1
+ f2))))
. (
upper_bound A))
- ((((
id Z)
(#) (
arctan
* g))
- ((r
/ 2)
(#) (
ln
* (f1
+ f2))))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & Z
c= (
dom (
ln
* (f1
+ f2))) & r
<>
0 & (for x st x
in Z holds (g
. x)
= (x
/ r) & (g
. x)
> (
- 1) & (g
. x)
< 1 & (f1
. x)
= 1) & f2
= ((
#Z 2)
* g) & Z
= (
dom f) & f
= (
arctan
* g);
Z
c= ((
dom (
id Z))
/\ (
dom f)) by
A1;
then
A2: Z
c= (
dom ((
id Z)
(#) (
arctan
* g))) by
A1,
VALUED_1:def 4;
Z
c= (
dom ((r
/ 2)
(#) (
ln
* (f1
+ f2)))) by
A1,
VALUED_1:def 5;
then Z
c= ((
dom ((
id Z)
(#) (
arctan
* g)))
/\ (
dom ((r
/ 2)
(#) (
ln
* (f1
+ f2))))) by
A2,
XBOOLE_1: 19;
then
A3: Z
c= (
dom (((
id Z)
(#) (
arctan
* g))
- ((r
/ 2)
(#) (
ln
* (f1
+ f2))))) by
VALUED_1: 12;
for x st x
in Z holds (g
. x)
= (((1
/ r)
* x)
+
0 )
proof
let x;
assume x
in Z;
then (g
. x)
= (x
/ r) by
A1;
hence thesis;
end;
then for x st x
in Z holds (g
. x)
= (((1
/ r)
* x)
+
0 ) & (g
. x)
> (
- 1) & (g
. x)
< 1 by
A1;
then f
is_differentiable_on Z by
A1,
SIN_COS9: 87;
then (f
| Z) is
continuous by
FDIFF_1: 25;
then (f
| A) is
continuous by
A1,
FCONT_1: 16;
then
A4: f
is_integrable_on A & (f
| A) is
bounded by
A1,
INTEGRA5: 10,
INTEGRA5: 11;
A5: (for x st x
in Z holds (g
. x)
= (x
/ r) & (g
. x)
> (
- 1) & (g
. x)
< 1) & (for x st x
in Z holds (f1
. x)
= 1) & (for x st x
in Z holds (g
. x)
= (x
/ r)) by
A1;
then
A6: (((
id Z)
(#) (
arctan
* g))
- ((r
/ 2)
(#) (
ln
* (f1
+ f2))))
is_differentiable_on Z by
A1,
A3,
SIN_COS9: 109;
A7: for x st x
in Z holds (f
. x)
= (
arctan
. (x
/ r))
proof
let x;
assume
A8: x
in Z;
then ((
arctan
* g)
. x)
= (
arctan
. (g
. x)) by
A1,
FUNCT_1: 12
.= (
arctan
. (x
/ r)) by
A1,
A8;
hence thesis by
A1;
end;
A9: for x be
Element of
REAL st x
in (
dom ((((
id Z)
(#) (
arctan
* g))
- ((r
/ 2)
(#) (
ln
* (f1
+ f2))))
`| Z)) holds (((((
id Z)
(#) (
arctan
* g))
- ((r
/ 2)
(#) (
ln
* (f1
+ f2))))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((((
id Z)
(#) (
arctan
* g))
- ((r
/ 2)
(#) (
ln
* (f1
+ f2))))
`| Z));
then
A10: x
in Z by
A6,
FDIFF_1:def 7;
then (((((
id Z)
(#) (
arctan
* g))
- ((r
/ 2)
(#) (
ln
* (f1
+ f2))))
`| Z)
. x)
= (
arctan
. (x
/ r)) by
A1,
A3,
A5,
SIN_COS9: 109
.= (f
. x) by
A7,
A10;
hence thesis;
end;
(
dom ((((
id Z)
(#) (
arctan
* g))
- ((r
/ 2)
(#) (
ln
* (f1
+ f2))))
`| Z))
= (
dom f) by
A1,
A6,
FDIFF_1:def 7;
then ((((
id Z)
(#) (
arctan
* g))
- ((r
/ 2)
(#) (
ln
* (f1
+ f2))))
`| Z)
= f by
A9,
PARTFUN1: 5;
hence thesis by
A1,
A4,
A6,
INTEGRA5: 13;
end;
theorem ::
INTEGR12:16
A
c= Z & Z
c= (
dom (
ln
* (f1
+ f2))) & r
<>
0 & (for x st x
in Z holds (g
. x)
= (x
/ r) & (g
. x)
> (
- 1) & (g
. x)
< 1 & (f1
. x)
= 1) & f2
= ((
#Z 2)
* g) & Z
= (
dom f) & f
= (
arccot
* g) implies (
integral (f,A))
= (((((
id Z)
(#) (
arccot
* g))
+ ((r
/ 2)
(#) (
ln
* (f1
+ f2))))
. (
upper_bound A))
- ((((
id Z)
(#) (
arccot
* g))
+ ((r
/ 2)
(#) (
ln
* (f1
+ f2))))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & Z
c= (
dom (
ln
* (f1
+ f2))) & r
<>
0 & (for x st x
in Z holds (g
. x)
= (x
/ r) & (g
. x)
> (
- 1) & (g
. x)
< 1 & (f1
. x)
= 1) & f2
= ((
#Z 2)
* g) & Z
= (
dom f) & f
= (
arccot
* g);
Z
c= ((
dom (
id Z))
/\ (
dom f)) by
A1;
then
A2: Z
c= (
dom ((
id Z)
(#) (
arccot
* g))) by
A1,
VALUED_1:def 4;
Z
c= (
dom ((r
/ 2)
(#) (
ln
* (f1
+ f2)))) by
A1,
VALUED_1:def 5;
then Z
c= ((
dom ((
id Z)
(#) (
arccot
* g)))
/\ (
dom ((r
/ 2)
(#) (
ln
* (f1
+ f2))))) by
A2,
XBOOLE_1: 19;
then
A3: Z
c= (
dom (((
id Z)
(#) (
arccot
* g))
+ ((r
/ 2)
(#) (
ln
* (f1
+ f2))))) by
VALUED_1:def 1;
A4: for x st x
in Z holds (g
. x)
= (x
/ r) & (g
. x)
> (
- 1) & (g
. x)
< 1 by
A1;
for x st x
in Z holds (g
. x)
= (((1
/ r)
* x)
+
0 )
proof
let x;
assume x
in Z;
then (g
. x)
= (x
/ r) by
A1;
hence thesis;
end;
then for x st x
in Z holds (g
. x)
= (((1
/ r)
* x)
+
0 ) & (g
. x)
> (
- 1) & (g
. x)
< 1 by
A1;
then f
is_differentiable_on Z by
A1,
SIN_COS9: 88;
then (f
| Z) is
continuous by
FDIFF_1: 25;
then (f
| A) is
continuous by
A1,
FCONT_1: 16;
then
A5: f
is_integrable_on A & (f
| A) is
bounded by
A1,
INTEGRA5: 10,
INTEGRA5: 11;
A6: (for x st x
in Z holds (f1
. x)
= 1) & (for x st x
in Z holds (g
. x)
= (x
/ r)) by
A1;
then
A7: (((
id Z)
(#) (
arccot
* g))
+ ((r
/ 2)
(#) (
ln
* (f1
+ f2))))
is_differentiable_on Z by
A1,
A3,
A4,
SIN_COS9: 110;
A8: for x st x
in Z holds (f
. x)
= (
arccot
. (x
/ r))
proof
let x;
assume
A9: x
in Z;
then ((
arccot
* g)
. x)
= (
arccot
. (g
. x)) by
A1,
FUNCT_1: 12
.= (
arccot
. (x
/ r)) by
A1,
A9;
hence thesis by
A1;
end;
A10: for x be
Element of
REAL st x
in (
dom ((((
id Z)
(#) (
arccot
* g))
+ ((r
/ 2)
(#) (
ln
* (f1
+ f2))))
`| Z)) holds (((((
id Z)
(#) (
arccot
* g))
+ ((r
/ 2)
(#) (
ln
* (f1
+ f2))))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((((
id Z)
(#) (
arccot
* g))
+ ((r
/ 2)
(#) (
ln
* (f1
+ f2))))
`| Z));
then
A11: x
in Z by
A7,
FDIFF_1:def 7;
then (((((
id Z)
(#) (
arccot
* g))
+ ((r
/ 2)
(#) (
ln
* (f1
+ f2))))
`| Z)
. x)
= (
arccot
. (x
/ r)) by
A1,
A3,
A4,
A6,
SIN_COS9: 110
.= (f
. x) by
A8,
A11;
hence thesis;
end;
(
dom ((((
id Z)
(#) (
arccot
* g))
+ ((r
/ 2)
(#) (
ln
* (f1
+ f2))))
`| Z))
= (
dom f) by
A1,
A7,
FDIFF_1:def 7;
then ((((
id Z)
(#) (
arccot
* g))
+ ((r
/ 2)
(#) (
ln
* (f1
+ f2))))
`| Z)
= f by
A10,
PARTFUN1: 5;
hence thesis by
A1,
A5,
A7,
INTEGRA5: 13;
end;
theorem ::
INTEGR12:17
A
c= Z & f
= ((
arctan
* f1)
+ ((
id Z)
/ (r
(#) (g
+ (f1
^2 ))))) & (for x st x
in Z holds (g
. x)
= 1 & (f1
. x)
= (x
/ r) & (f1
. x)
> (
- 1) & (f1
. x)
< 1) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= ((((
id Z)
(#) (
arctan
* f1))
. (
upper_bound A))
- (((
id Z)
(#) (
arctan
* f1))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & f
= ((
arctan
* f1)
+ ((
id Z)
/ (r
(#) (g
+ (f1
^2 ))))) & (for x st x
in Z holds (g
. x)
= 1 & (f1
. x)
= (x
/ r) & (f1
. x)
> (
- 1) & (f1
. x)
< 1) & Z
= (
dom f) & (f
| A) is
continuous;
then Z
= ((
dom (
arctan
* f1))
/\ (
dom ((
id Z)
/ (r
(#) (g
+ (f1
^2 )))))) by
VALUED_1:def 1;
then
A2: Z
c= (
dom (
arctan
* f1)) & Z
c= (
dom ((
id Z)
/ (r
(#) (g
+ (f1
^2 ))))) by
XBOOLE_1: 18;
Z
c= ((
dom (
id Z))
/\ (
dom (
arctan
* f1))) by
A2,
XBOOLE_1: 19;
then
A3: Z
c= (
dom ((
id Z)
(#) (
arctan
* f1))) by
VALUED_1:def 4;
Z
c= ((
dom (
id Z))
/\ ((
dom (r
(#) (g
+ (f1
^2 ))))
\ ((r
(#) (g
+ (f1
^2 )))
"
{
0 }))) by
A2,
RFUNCT_1:def 1;
then Z
c= ((
dom (r
(#) (g
+ (f1
^2 ))))
\ ((r
(#) (g
+ (f1
^2 )))
"
{
0 })) by
XBOOLE_1: 18;
then
A4: Z
c= (
dom ((r
(#) (g
+ (f1
^2 )))
^ )) by
RFUNCT_1:def 2;
(
dom ((r
(#) (g
+ (f1
^2 )))
^ ))
c= (
dom (r
(#) (g
+ (f1
^2 )))) by
RFUNCT_1: 1;
then Z
c= (
dom (r
(#) (g
+ (f1
^2 )))) by
A4;
then
A5: Z
c= (
dom (g
+ (f1
^2 ))) by
VALUED_1:def 5;
A6: f
is_integrable_on A & (f
| A) is
bounded by
A1,
INTEGRA5: 10,
INTEGRA5: 11;
A7: for x st x
in Z holds (f1
. x)
= (x
/ r) & (f1
. x)
> (
- 1) & (f1
. x)
< 1 by
A1;
then
A8: ((
id Z)
(#) (
arctan
* f1))
is_differentiable_on Z by
A3,
SIN_COS9: 105;
A9: for x st x
in Z holds (f
. x)
= ((
arctan
. (x
/ r))
+ (x
/ (r
* (1
+ ((x
/ r)
^2 )))))
proof
let x;
assume
A10: x
in Z;
then (((
arctan
* f1)
+ ((
id Z)
/ (r
(#) (g
+ (f1
^2 )))))
. x)
= (((
arctan
* f1)
. x)
+ (((
id Z)
/ (r
(#) (g
+ (f1
^2 ))))
. x)) by
A1,
VALUED_1:def 1
.= ((
arctan
. (f1
. x))
+ (((
id Z)
/ (r
(#) (g
+ (f1
^2 ))))
. x)) by
A2,
A10,
FUNCT_1: 12
.= ((
arctan
. (f1
. x))
+ (((
id Z)
. x)
/ ((r
(#) (g
+ (f1
^2 )))
. x))) by
A2,
A10,
RFUNCT_1:def 1
.= ((
arctan
. (f1
. x))
+ (x
/ ((r
(#) (g
+ (f1
^2 )))
. x))) by
A10,
FUNCT_1: 18
.= ((
arctan
. (f1
. x))
+ (x
/ (r
* ((g
+ (f1
^2 ))
. x)))) by
VALUED_1: 6
.= ((
arctan
. (f1
. x))
+ (x
/ (r
* ((g
. x)
+ ((f1
^2 )
. x))))) by
A5,
A10,
VALUED_1:def 1
.= ((
arctan
. (f1
. x))
+ (x
/ (r
* ((g
. x)
+ ((f1
. x)
^2 ))))) by
VALUED_1: 11
.= ((
arctan
. (x
/ r))
+ (x
/ (r
* ((g
. x)
+ ((f1
. x)
^2 ))))) by
A1,
A10
.= ((
arctan
. (x
/ r))
+ (x
/ (r
* (1
+ ((f1
. x)
^2 ))))) by
A1,
A10
.= ((
arctan
. (x
/ r))
+ (x
/ (r
* (1
+ ((x
/ r)
^2 ))))) by
A1,
A10;
hence thesis by
A1;
end;
A11: for x be
Element of
REAL st x
in (
dom (((
id Z)
(#) (
arctan
* f1))
`| Z)) holds ((((
id Z)
(#) (
arctan
* f1))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((
id Z)
(#) (
arctan
* f1))
`| Z));
then
A12: x
in Z by
A8,
FDIFF_1:def 7;
then ((((
id Z)
(#) (
arctan
* f1))
`| Z)
. x)
= ((
arctan
. (x
/ r))
+ (x
/ (r
* (1
+ ((x
/ r)
^2 ))))) by
A3,
A7,
SIN_COS9: 105
.= (f
. x) by
A9,
A12;
hence thesis;
end;
(
dom (((
id Z)
(#) (
arctan
* f1))
`| Z))
= (
dom f) by
A1,
A8,
FDIFF_1:def 7;
then (((
id Z)
(#) (
arctan
* f1))
`| Z)
= f by
A11,
PARTFUN1: 5;
hence thesis by
A1,
A6,
A8,
INTEGRA5: 13;
end;
theorem ::
INTEGR12:18
A
c= Z & f
= ((
arccot
* f1)
- ((
id Z)
/ (r
(#) (g
+ (f1
^2 ))))) & (for x st x
in Z holds (g
. x)
= 1 & (f1
. x)
= (x
/ r) & (f1
. x)
> (
- 1) & (f1
. x)
< 1) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= ((((
id Z)
(#) (
arccot
* f1))
. (
upper_bound A))
- (((
id Z)
(#) (
arccot
* f1))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & f
= ((
arccot
* f1)
- ((
id Z)
/ (r
(#) (g
+ (f1
^2 ))))) & (for x st x
in Z holds (g
. x)
= 1 & (f1
. x)
= (x
/ r) & (f1
. x)
> (
- 1) & (f1
. x)
< 1) & Z
= (
dom f) & (f
| A) is
continuous;
then Z
= ((
dom (
arccot
* f1))
/\ (
dom ((
id Z)
/ (r
(#) (g
+ (f1
^2 )))))) by
VALUED_1: 12;
then
A2: Z
c= (
dom (
arccot
* f1)) & Z
c= (
dom ((
id Z)
/ (r
(#) (g
+ (f1
^2 ))))) by
XBOOLE_1: 18;
Z
c= ((
dom (
id Z))
/\ (
dom (
arccot
* f1))) by
A2,
XBOOLE_1: 19;
then
A3: Z
c= (
dom ((
id Z)
(#) (
arccot
* f1))) by
VALUED_1:def 4;
Z
c= ((
dom (
id Z))
/\ ((
dom (r
(#) (g
+ (f1
^2 ))))
\ ((r
(#) (g
+ (f1
^2 )))
"
{
0 }))) by
A2,
RFUNCT_1:def 1;
then Z
c= ((
dom (r
(#) (g
+ (f1
^2 ))))
\ ((r
(#) (g
+ (f1
^2 )))
"
{
0 })) by
XBOOLE_1: 18;
then
A4: Z
c= (
dom ((r
(#) (g
+ (f1
^2 )))
^ )) by
RFUNCT_1:def 2;
(
dom ((r
(#) (g
+ (f1
^2 )))
^ ))
c= (
dom (r
(#) (g
+ (f1
^2 )))) by
RFUNCT_1: 1;
then Z
c= (
dom (r
(#) (g
+ (f1
^2 )))) by
A4;
then
A5: Z
c= (
dom (g
+ (f1
^2 ))) by
VALUED_1:def 5;
A6: f
is_integrable_on A & (f
| A) is
bounded by
A1,
INTEGRA5: 10,
INTEGRA5: 11;
A7: for x st x
in Z holds (f1
. x)
= (x
/ r) & (f1
. x)
> (
- 1) & (f1
. x)
< 1 by
A1;
then
A8: ((
id Z)
(#) (
arccot
* f1))
is_differentiable_on Z by
A3,
SIN_COS9: 106;
A9: for x st x
in Z holds (f
. x)
= ((
arccot
. (x
/ r))
- (x
/ (r
* (1
+ ((x
/ r)
^2 )))))
proof
let x;
assume
A10: x
in Z;
then (((
arccot
* f1)
- ((
id Z)
/ (r
(#) (g
+ (f1
^2 )))))
. x)
= (((
arccot
* f1)
. x)
- (((
id Z)
/ (r
(#) (g
+ (f1
^2 ))))
. x)) by
A1,
VALUED_1: 13
.= ((
arccot
. (f1
. x))
- (((
id Z)
/ (r
(#) (g
+ (f1
^2 ))))
. x)) by
A2,
A10,
FUNCT_1: 12
.= ((
arccot
. (f1
. x))
- (((
id Z)
. x)
/ ((r
(#) (g
+ (f1
^2 )))
. x))) by
A2,
A10,
RFUNCT_1:def 1
.= ((
arccot
. (f1
. x))
- (x
/ ((r
(#) (g
+ (f1
^2 )))
. x))) by
A10,
FUNCT_1: 18
.= ((
arccot
. (f1
. x))
- (x
/ (r
* ((g
+ (f1
^2 ))
. x)))) by
VALUED_1: 6
.= ((
arccot
. (f1
. x))
- (x
/ (r
* ((g
. x)
+ ((f1
^2 )
. x))))) by
A5,
A10,
VALUED_1:def 1
.= ((
arccot
. (f1
. x))
- (x
/ (r
* ((g
. x)
+ ((f1
. x)
^2 ))))) by
VALUED_1: 11
.= ((
arccot
. (x
/ r))
- (x
/ (r
* ((g
. x)
+ ((f1
. x)
^2 ))))) by
A1,
A10
.= ((
arccot
. (x
/ r))
- (x
/ (r
* (1
+ ((f1
. x)
^2 ))))) by
A1,
A10
.= ((
arccot
. (x
/ r))
- (x
/ (r
* (1
+ ((x
/ r)
^2 ))))) by
A1,
A10;
hence thesis by
A1;
end;
A11: for x be
Element of
REAL st x
in (
dom (((
id Z)
(#) (
arccot
* f1))
`| Z)) holds ((((
id Z)
(#) (
arccot
* f1))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((
id Z)
(#) (
arccot
* f1))
`| Z));
then
A12: x
in Z by
A8,
FDIFF_1:def 7;
then ((((
id Z)
(#) (
arccot
* f1))
`| Z)
. x)
= ((
arccot
. (x
/ r))
- (x
/ (r
* (1
+ ((x
/ r)
^2 ))))) by
A3,
A7,
SIN_COS9: 106
.= (f
. x) by
A9,
A12;
hence thesis;
end;
(
dom (((
id Z)
(#) (
arccot
* f1))
`| Z))
= (
dom f) by
A1,
A8,
FDIFF_1:def 7;
then (((
id Z)
(#) (
arccot
* f1))
`| Z)
= f by
A11,
PARTFUN1: 5;
hence thesis by
A1,
A6,
A8,
INTEGRA5: 13;
end;
theorem ::
INTEGR12:19
A
c= Z & Z
c=
].(
- 1), 1.[ & (for x st x
in Z holds (f1
. x)
= 1) & Z
= (
dom f) & Z
c= (
dom ((
#Z n)
*
arcsin )) & 1
< n & f
= ((n
(#) ((
#Z (n
- 1))
*
arcsin ))
/ ((
#R (1
/ 2))
* (f1
- (
#Z 2)))) implies (
integral (f,A))
= ((((
#Z n)
*
arcsin )
. (
upper_bound A))
- (((
#Z n)
*
arcsin )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & Z
c=
].(
- 1), 1.[ & (for x st x
in Z holds (f1
. x)
= 1) & Z
= (
dom f) & Z
c= (
dom ((
#Z n)
*
arcsin )) & 1
< n & f
= ((n
(#) ((
#Z (n
- 1))
*
arcsin ))
/ ((
#R (1
/ 2))
* (f1
- (
#Z 2))));
then Z
= ((
dom (n
(#) ((
#Z (n
- 1))
*
arcsin )))
/\ ((
dom ((
#R (1
/ 2))
* (f1
- (
#Z 2))))
\ (((
#R (1
/ 2))
* (f1
- (
#Z 2)))
"
{
0 }))) by
RFUNCT_1:def 1;
then
A2: Z
c= (
dom (n
(#) ((
#Z (n
- 1))
*
arcsin ))) & Z
c= ((
dom ((
#R (1
/ 2))
* (f1
- (
#Z 2))))
\ (((
#R (1
/ 2))
* (f1
- (
#Z 2)))
"
{
0 })) by
XBOOLE_1: 18;
then
A3: Z
c= (
dom ((
#Z (n
- 1))
*
arcsin )) by
VALUED_1:def 5;
A4: Z
c= (
dom (((
#R (1
/ 2))
* (f1
- (
#Z 2)))
^ )) by
A2,
RFUNCT_1:def 2;
(
dom (((
#R (1
/ 2))
* (f1
- (
#Z 2)))
^ ))
c= (
dom ((
#R (1
/ 2))
* (f1
- (
#Z 2)))) by
RFUNCT_1: 1;
then
A5: Z
c= (
dom ((
#R (1
/ 2))
* (f1
- (
#Z 2)))) by
A4;
for x st x
in Z holds ((
#Z (n
- 1))
*
arcsin )
is_differentiable_in x
proof
let x;
assume x
in Z;
then
A6:
arcsin
is_differentiable_in x by
A1,
FDIFF_1: 9,
SIN_COS6: 83;
consider m be
Nat such that
A7: n
= (m
+ 1) by
A1,
NAT_1: 6;
thus thesis by
A6,
A7,
TAYLOR_1: 3;
end;
then ((
#Z (n
- 1))
*
arcsin )
is_differentiable_on Z by
A3,
FDIFF_1: 9;
then
A8: (n
(#) ((
#Z (n
- 1))
*
arcsin ))
is_differentiable_on Z by
A2,
FDIFF_1: 20;
set f2 = (
#Z 2);
for x st x
in Z holds ((f1
- (
#Z 2))
. x)
>
0
proof
let x;
assume
A9: x
in Z;
then (
- 1)
< x & x
< 1 by
A1,
XXREAL_1: 4;
then
0
< (1
+ x) &
0
< (1
- x) by
XREAL_1: 50,
XREAL_1: 148;
then
A10:
0
< ((1
+ x)
* (1
- x)) by
XREAL_1: 129;
for x st x
in Z holds x
in (
dom (f1
- f2)) by
A5,
FUNCT_1: 11;
then ((f1
- f2)
. x)
= ((f1
. x)
- (f2
. x)) by
A9,
VALUED_1: 13
.= ((f1
. x)
- (x
#Z (1
+ 1))) by
TAYLOR_1:def 1
.= ((f1
. x)
- ((x
#Z 1)
* (x
#Z 1))) by
TAYLOR_1: 1
.= ((f1
. x)
- (x
* (x
#Z 1))) by
PREPOWER: 35
.= ((f1
. x)
- (x
* x)) by
PREPOWER: 35
.= (1
- (x
* x)) by
A1,
A9;
hence thesis by
A10;
end;
then for x st x
in Z holds (f1
. x)
= 1 & ((f1
- (
#Z 2))
. x)
>
0 by
A1;
then
A11: ((
#R (1
/ 2))
* (f1
- (
#Z 2)))
is_differentiable_on Z by
A5,
FDIFF_7: 22;
x
in Z implies (((
#R (1
/ 2))
* (f1
- (
#Z 2)))
. x)
<>
0 by
A4,
RFUNCT_1: 3;
then f
is_differentiable_on Z by
A1,
A8,
A11,
FDIFF_2: 21;
then (f
| Z) is
continuous by
FDIFF_1: 25;
then (f
| A) is
continuous by
A1,
FCONT_1: 16;
then
A12: f
is_integrable_on A & (f
| A) is
bounded by
A1,
INTEGRA5: 10,
INTEGRA5: 11;
A13: ((
#Z n)
*
arcsin )
is_differentiable_on Z by
A1,
FDIFF_7: 10;
A14: for x st x
in Z holds (f
. x)
= ((n
* ((
arcsin
. x)
#Z (n
- 1)))
/ (
sqrt (1
- (x
^2 ))))
proof
let x;
assume
A15: x
in Z;
then
A16: x
in (
dom (f1
- (
#Z 2))) & ((f1
- (
#Z 2))
. x)
in (
dom (
#R (1
/ 2))) by
A5,
FUNCT_1: 11;
then
A17: ((f1
- (
#Z 2))
. x)
in (
right_open_halfline
0 ) by
TAYLOR_1:def 4;
(
- 1)
< x & x
< 1 by
A1,
A15,
XXREAL_1: 4;
then
0
< (1
+ x) &
0
< (1
- x) by
XREAL_1: 50,
XREAL_1: 148;
then
A18:
0
< ((1
+ x)
* (1
- x)) by
XREAL_1: 129;
(((n
(#) ((
#Z (n
- 1))
*
arcsin ))
/ ((
#R (1
/ 2))
* (f1
- (
#Z 2))))
. x)
= (((n
(#) ((
#Z (n
- 1))
*
arcsin ))
. x)
/ (((
#R (1
/ 2))
* (f1
- (
#Z 2)))
. x)) by
A1,
A15,
RFUNCT_1:def 1
.= ((n
* (((
#Z (n
- 1))
*
arcsin )
. x))
/ (((
#R (1
/ 2))
* (f1
- (
#Z 2)))
. x)) by
VALUED_1: 6
.= ((n
* ((
#Z (n
- 1))
. (
arcsin
. x)))
/ (((
#R (1
/ 2))
* (f1
- (
#Z 2)))
. x)) by
A3,
A15,
FUNCT_1: 12
.= ((n
* ((
arcsin
. x)
#Z (n
- 1)))
/ (((
#R (1
/ 2))
* (f1
- (
#Z 2)))
. x)) by
TAYLOR_1:def 1
.= ((n
* ((
arcsin
. x)
#Z (n
- 1)))
/ ((
#R (1
/ 2))
. ((f1
- (
#Z 2))
. x))) by
A5,
A15,
FUNCT_1: 12
.= ((n
* ((
arcsin
. x)
#Z (n
- 1)))
/ (((f1
- (
#Z 2))
. x)
#R (1
/ 2))) by
A17,
TAYLOR_1:def 4
.= ((n
* ((
arcsin
. x)
#Z (n
- 1)))
/ (((f1
. x)
- ((
#Z 2)
. x))
#R (1
/ 2))) by
A16,
VALUED_1: 13
.= ((n
* ((
arcsin
. x)
#Z (n
- 1)))
/ (((f1
. x)
- (x
#Z 2))
#R (1
/ 2))) by
TAYLOR_1:def 1
.= ((n
* ((
arcsin
. x)
#Z (n
- 1)))
/ (((f1
. x)
- (x
^2 ))
#R (1
/ 2))) by
FDIFF_7: 1
.= ((n
* ((
arcsin
. x)
#Z (n
- 1)))
/ ((1
- (x
^2 ))
#R (1
/ 2))) by
A1,
A15
.= ((n
* ((
arcsin
. x)
#Z (n
- 1)))
/ (
sqrt (1
- (x
^2 )))) by
A18,
FDIFF_7: 2;
hence thesis by
A1;
end;
A19: for x be
Element of
REAL st x
in (
dom (((
#Z n)
*
arcsin )
`| Z)) holds ((((
#Z n)
*
arcsin )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((
#Z n)
*
arcsin )
`| Z));
then
A20: x
in Z by
A13,
FDIFF_1:def 7;
then ((((
#Z n)
*
arcsin )
`| Z)
. x)
= ((n
* ((
arcsin
. x)
#Z (n
- 1)))
/ (
sqrt (1
- (x
^2 )))) by
A1,
FDIFF_7: 10
.= (f
. x) by
A14,
A20;
hence thesis;
end;
(
dom (((
#Z n)
*
arcsin )
`| Z))
= (
dom f) by
A1,
A13,
FDIFF_1:def 7;
then (((
#Z n)
*
arcsin )
`| Z)
= f by
A19,
PARTFUN1: 5;
hence thesis by
A1,
A12,
FDIFF_7: 10,
INTEGRA5: 13;
end;
theorem ::
INTEGR12:20
A
c= Z & Z
c=
].(
- 1), 1.[ & (for x st x
in Z holds (f1
. x)
= 1) & Z
c= (
dom ((
#Z n)
*
arccos )) & Z
= (
dom f) & 1
< n & f
= ((n
(#) ((
#Z (n
- 1))
*
arccos ))
/ ((
#R (1
/ 2))
* (f1
- (
#Z 2)))) implies (
integral (f,A))
= (((
- ((
#Z n)
*
arccos ))
. (
upper_bound A))
- ((
- ((
#Z n)
*
arccos ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & Z
c=
].(
- 1), 1.[ & (for x st x
in Z holds (f1
. x)
= 1) & Z
c= (
dom ((
#Z n)
*
arccos )) & Z
= (
dom f) & 1
< n & f
= ((n
(#) ((
#Z (n
- 1))
*
arccos ))
/ ((
#R (1
/ 2))
* (f1
- (
#Z 2))));
then Z
= ((
dom (n
(#) ((
#Z (n
- 1))
*
arccos )))
/\ ((
dom ((
#R (1
/ 2))
* (f1
- (
#Z 2))))
\ (((
#R (1
/ 2))
* (f1
- (
#Z 2)))
"
{
0 }))) by
RFUNCT_1:def 1;
then
A2: Z
c= (
dom (n
(#) ((
#Z (n
- 1))
*
arccos ))) & Z
c= ((
dom ((
#R (1
/ 2))
* (f1
- (
#Z 2))))
\ (((
#R (1
/ 2))
* (f1
- (
#Z 2)))
"
{
0 })) by
XBOOLE_1: 18;
then
A3: Z
c= (
dom ((
#Z (n
- 1))
*
arccos )) by
VALUED_1:def 5;
A4: Z
c= (
dom (((
#R (1
/ 2))
* (f1
- (
#Z 2)))
^ )) by
A2,
RFUNCT_1:def 2;
(
dom (((
#R (1
/ 2))
* (f1
- (
#Z 2)))
^ ))
c= (
dom ((
#R (1
/ 2))
* (f1
- (
#Z 2)))) by
RFUNCT_1: 1;
then
A5: Z
c= (
dom ((
#R (1
/ 2))
* (f1
- (
#Z 2)))) by
A4;
for x st x
in Z holds ((
#Z (n
- 1))
*
arccos )
is_differentiable_in x
proof
let x;
assume x
in Z;
then
A6:
arccos
is_differentiable_in x by
A1,
FDIFF_1: 9,
SIN_COS6: 106;
consider m be
Nat such that
A7: n
= (m
+ 1) by
A1,
NAT_1: 6;
thus thesis by
A6,
A7,
TAYLOR_1: 3;
end;
then ((
#Z (n
- 1))
*
arccos )
is_differentiable_on Z by
A3,
FDIFF_1: 9;
then
A8: (n
(#) ((
#Z (n
- 1))
*
arccos ))
is_differentiable_on Z by
A2,
FDIFF_1: 20;
set f2 = (
#Z 2);
for x st x
in Z holds ((f1
- (
#Z 2))
. x)
>
0
proof
let x;
assume
A9: x
in Z;
then (
- 1)
< x & x
< 1 by
A1,
XXREAL_1: 4;
then
0
< (1
+ x) &
0
< (1
- x) by
XREAL_1: 50,
XREAL_1: 148;
then
A10:
0
< ((1
+ x)
* (1
- x)) by
XREAL_1: 129;
for x st x
in Z holds x
in (
dom (f1
- f2)) by
A5,
FUNCT_1: 11;
then ((f1
- f2)
. x)
= ((f1
. x)
- (f2
. x)) by
A9,
VALUED_1: 13
.= ((f1
. x)
- (x
#Z (1
+ 1))) by
TAYLOR_1:def 1
.= ((f1
. x)
- ((x
#Z 1)
* (x
#Z 1))) by
TAYLOR_1: 1
.= ((f1
. x)
- (x
* (x
#Z 1))) by
PREPOWER: 35
.= ((f1
. x)
- (x
* x)) by
PREPOWER: 35
.= (1
- (x
* x)) by
A1,
A9;
hence thesis by
A10;
end;
then for x st x
in Z holds (f1
. x)
= 1 & ((f1
- (
#Z 2))
. x)
>
0 by
A1;
then
A11: ((
#R (1
/ 2))
* (f1
- (
#Z 2)))
is_differentiable_on Z by
A5,
FDIFF_7: 22;
x
in Z implies (((
#R (1
/ 2))
* (f1
- (
#Z 2)))
. x)
<>
0 by
A4,
RFUNCT_1: 3;
then f
is_differentiable_on Z by
A1,
A8,
A11,
FDIFF_2: 21;
then (f
| Z) is
continuous by
FDIFF_1: 25;
then (f
| A) is
continuous by
A1,
FCONT_1: 16;
then
A12: f
is_integrable_on A & (f
| A) is
bounded by
A1,
INTEGRA5: 10,
INTEGRA5: 11;
A13: ((
#Z n)
*
arccos )
is_differentiable_on Z by
A1,
FDIFF_7: 11;
A14: Z
c= (
dom (
- ((
#Z n)
*
arccos ))) by
A1,
VALUED_1: 8;
then
A15: ((
- 1)
(#) ((
#Z n)
*
arccos ))
is_differentiable_on Z by
A13,
FDIFF_1: 20;
A16: for x st x
in Z holds (f
. x)
= ((n
* ((
arccos
. x)
#Z (n
- 1)))
/ (
sqrt (1
- (x
^2 ))))
proof
let x;
assume
A17: x
in Z;
then
A18: x
in (
dom (f1
- (
#Z 2))) & ((f1
- (
#Z 2))
. x)
in (
dom (
#R (1
/ 2))) by
A5,
FUNCT_1: 11;
then
A19: ((f1
- (
#Z 2))
. x)
in (
right_open_halfline
0 ) by
TAYLOR_1:def 4;
(
- 1)
< x & x
< 1 by
A1,
A17,
XXREAL_1: 4;
then
0
< (1
+ x) &
0
< (1
- x) by
XREAL_1: 50,
XREAL_1: 148;
then
A20:
0
< ((1
+ x)
* (1
- x)) by
XREAL_1: 129;
(((n
(#) ((
#Z (n
- 1))
*
arccos ))
/ ((
#R (1
/ 2))
* (f1
- (
#Z 2))))
. x)
= (((n
(#) ((
#Z (n
- 1))
*
arccos ))
. x)
/ (((
#R (1
/ 2))
* (f1
- (
#Z 2)))
. x)) by
A1,
A17,
RFUNCT_1:def 1
.= ((n
* (((
#Z (n
- 1))
*
arccos )
. x))
/ (((
#R (1
/ 2))
* (f1
- (
#Z 2)))
. x)) by
VALUED_1: 6
.= ((n
* ((
#Z (n
- 1))
. (
arccos
. x)))
/ (((
#R (1
/ 2))
* (f1
- (
#Z 2)))
. x)) by
A3,
A17,
FUNCT_1: 12
.= ((n
* ((
arccos
. x)
#Z (n
- 1)))
/ (((
#R (1
/ 2))
* (f1
- (
#Z 2)))
. x)) by
TAYLOR_1:def 1
.= ((n
* ((
arccos
. x)
#Z (n
- 1)))
/ ((
#R (1
/ 2))
. ((f1
- (
#Z 2))
. x))) by
A5,
A17,
FUNCT_1: 12
.= ((n
* ((
arccos
. x)
#Z (n
- 1)))
/ (((f1
- (
#Z 2))
. x)
#R (1
/ 2))) by
A19,
TAYLOR_1:def 4
.= ((n
* ((
arccos
. x)
#Z (n
- 1)))
/ (((f1
. x)
- ((
#Z 2)
. x))
#R (1
/ 2))) by
A18,
VALUED_1: 13
.= ((n
* ((
arccos
. x)
#Z (n
- 1)))
/ (((f1
. x)
- (x
#Z 2))
#R (1
/ 2))) by
TAYLOR_1:def 1
.= ((n
* ((
arccos
. x)
#Z (n
- 1)))
/ (((f1
. x)
- (x
^2 ))
#R (1
/ 2))) by
FDIFF_7: 1
.= ((n
* ((
arccos
. x)
#Z (n
- 1)))
/ ((1
- (x
^2 ))
#R (1
/ 2))) by
A1,
A17
.= ((n
* ((
arccos
. x)
#Z (n
- 1)))
/ (
sqrt (1
- (x
^2 )))) by
A20,
FDIFF_7: 2;
hence thesis by
A1;
end;
A21: for x st x
in Z holds (((
- ((
#Z n)
*
arccos ))
`| Z)
. x)
= ((n
* ((
arccos
. x)
#Z (n
- 1)))
/ (
sqrt (1
- (x
^2 ))))
proof
let x;
assume
A22: x
in Z;
then
A23: (
- 1)
< x & x
< 1 by
A1,
XXREAL_1: 4;
A24:
arccos
is_differentiable_in x by
A1,
A22,
FDIFF_1: 9,
SIN_COS6: 106;
A25: ((
#Z n)
*
arccos )
is_differentiable_in x by
A13,
A22,
FDIFF_1: 9;
(((
- ((
#Z n)
*
arccos ))
`| Z)
. x)
= (
diff ((
- ((
#Z n)
*
arccos )),x)) by
A15,
A22,
FDIFF_1:def 7
.= ((
- 1)
* (
diff (((
#Z n)
*
arccos ),x))) by
A25,
FDIFF_1: 15
.= ((
- 1)
* ((n
* ((
arccos
. x)
#Z (n
- 1)))
* (
diff (
arccos ,x)))) by
A24,
TAYLOR_1: 3
.= ((
- 1)
* ((n
* ((
arccos
. x)
#Z (n
- 1)))
* (
- (1
/ (
sqrt (1
- (x
^2 ))))))) by
A23,
SIN_COS6: 106
.= ((n
* ((
arccos
. x)
#Z (n
- 1)))
/ (
sqrt (1
- (x
^2 ))));
hence thesis;
end;
A26: for x be
Element of
REAL st x
in (
dom ((
- ((
#Z n)
*
arccos ))
`| Z)) holds (((
- ((
#Z n)
*
arccos ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
- ((
#Z n)
*
arccos ))
`| Z));
then
A27: x
in Z by
A15,
FDIFF_1:def 7;
then (((
- ((
#Z n)
*
arccos ))
`| Z)
. x)
= ((n
* ((
arccos
. x)
#Z (n
- 1)))
/ (
sqrt (1
- (x
^2 )))) by
A21
.= (f
. x) by
A16,
A27;
hence thesis;
end;
(
dom ((
- ((
#Z n)
*
arccos ))
`| Z))
= (
dom f) by
A1,
A15,
FDIFF_1:def 7;
then ((
- ((
#Z n)
*
arccos ))
`| Z)
= f by
A26,
PARTFUN1: 5;
hence thesis by
A1,
A12,
A13,
A14,
FDIFF_1: 20,
INTEGRA5: 13;
end;
theorem ::
INTEGR12:21
A
c= Z & (for x st x
in Z holds (f1
. x)
= 1) & Z
c=
].(
- 1), 1.[ & Z
= (
dom f) & f
= (
arcsin
+ ((
id Z)
/ ((
#R (1
/ 2))
* (f1
- (
#Z 2))))) implies (
integral (f,A))
= ((((
id Z)
(#)
arcsin )
. (
upper_bound A))
- (((
id Z)
(#)
arcsin )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f1
. x)
= 1) & Z
c=
].(
- 1), 1.[ & Z
= (
dom f) & f
= (
arcsin
+ ((
id Z)
/ ((
#R (1
/ 2))
* (f1
- (
#Z 2)))));
then Z
= ((
dom
arcsin )
/\ (
dom ((
id Z)
/ ((
#R (1
/ 2))
* (f1
- (
#Z 2)))))) by
VALUED_1:def 1;
then
A2: Z
c= (
dom
arcsin ) & Z
c= (
dom ((
id Z)
/ ((
#R (1
/ 2))
* (f1
- (
#Z 2))))) by
XBOOLE_1: 18;
A3: Z
= (
dom (
id Z));
Z
c= ((
dom (
id Z))
/\ (
dom
arcsin )) by
A2,
XBOOLE_1: 19;
then
A4: Z
c= (
dom ((
id Z)
(#)
arcsin )) by
VALUED_1:def 4;
A5:
arcsin
is_differentiable_on Z by
A1,
FDIFF_1: 26,
SIN_COS6: 83;
for x st x
in Z holds ((
id Z)
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 18;
then
A6: (
id Z)
is_differentiable_on Z by
A3,
FDIFF_1: 23;
Z
c= ((
dom (
id Z))
/\ ((
dom ((
#R (1
/ 2))
* (f1
- (
#Z 2))))
\ (((
#R (1
/ 2))
* (f1
- (
#Z 2)))
"
{
0 }))) by
A2,
RFUNCT_1:def 1;
then Z
c= ((
dom ((
#R (1
/ 2))
* (f1
- (
#Z 2))))
\ (((
#R (1
/ 2))
* (f1
- (
#Z 2)))
"
{
0 })) by
XBOOLE_1: 18;
then
A7: Z
c= (
dom (((
#R (1
/ 2))
* (f1
- (
#Z 2)))
^ )) by
RFUNCT_1:def 2;
(
dom (((
#R (1
/ 2))
* (f1
- (
#Z 2)))
^ ))
c= (
dom ((
#R (1
/ 2))
* (f1
- (
#Z 2)))) by
RFUNCT_1: 1;
then
A8: Z
c= (
dom ((
#R (1
/ 2))
* (f1
- (
#Z 2)))) by
A7;
set f2 = (
#Z 2);
for x st x
in Z holds ((f1
- (
#Z 2))
. x)
>
0
proof
let x;
assume
A9: x
in Z;
then (
- 1)
< x & x
< 1 by
A1,
XXREAL_1: 4;
then
0
< (1
+ x) &
0
< (1
- x) by
XREAL_1: 50,
XREAL_1: 148;
then
A10:
0
< ((1
+ x)
* (1
- x)) by
XREAL_1: 129;
for x st x
in Z holds x
in (
dom (f1
- f2)) by
A8,
FUNCT_1: 11;
then ((f1
- f2)
. x)
= ((f1
. x)
- (f2
. x)) by
A9,
VALUED_1: 13
.= ((f1
. x)
- (x
#Z (1
+ 1))) by
TAYLOR_1:def 1
.= ((f1
. x)
- ((x
#Z 1)
* (x
#Z 1))) by
TAYLOR_1: 1
.= ((f1
. x)
- (x
* (x
#Z 1))) by
PREPOWER: 35
.= ((f1
. x)
- (x
* x)) by
PREPOWER: 35
.= (1
- (x
* x)) by
A1,
A9;
hence thesis by
A10;
end;
then for x st x
in Z holds (f1
. x)
= 1 & ((f1
- (
#Z 2))
. x)
>
0 by
A1;
then
A11: ((
#R (1
/ 2))
* (f1
- (
#Z 2)))
is_differentiable_on Z by
A8,
FDIFF_7: 22;
x
in Z implies (((
#R (1
/ 2))
* (f1
- (
#Z 2)))
. x)
<>
0 by
A7,
RFUNCT_1: 3;
then ((
id Z)
/ ((
#R (1
/ 2))
* (f1
- (
#Z 2))))
is_differentiable_on Z by
A6,
A11,
FDIFF_2: 21;
then (f
| Z) is
continuous by
A1,
A5,
FDIFF_1: 18,
FDIFF_1: 25;
then (f
| A) is
continuous by
A1,
FCONT_1: 16;
then
A12: f
is_integrable_on A & (f
| A) is
bounded by
A1,
INTEGRA5: 10,
INTEGRA5: 11;
A13: ((
id Z)
(#)
arcsin )
is_differentiable_on Z by
A1,
A4,
FDIFF_7: 16;
A14: for x st x
in Z holds (f
. x)
= ((
arcsin
. x)
+ (x
/ (
sqrt (1
- (x
^2 )))))
proof
let x;
assume
A15: x
in Z;
then
A16: x
in (
dom (f1
- (
#Z 2))) & ((f1
- (
#Z 2))
. x)
in (
dom (
#R (1
/ 2))) by
A8,
FUNCT_1: 11;
then
A17: ((f1
- (
#Z 2))
. x)
in (
right_open_halfline
0 ) by
TAYLOR_1:def 4;
(
- 1)
< x & x
< 1 by
A1,
A15,
XXREAL_1: 4;
then
0
< (1
+ x) &
0
< (1
- x) by
XREAL_1: 50,
XREAL_1: 148;
then
A18:
0
< ((1
+ x)
* (1
- x)) by
XREAL_1: 129;
((
arcsin
+ ((
id Z)
/ ((
#R (1
/ 2))
* (f1
- (
#Z 2)))))
. x)
= ((
arcsin
. x)
+ (((
id Z)
/ ((
#R (1
/ 2))
* (f1
- (
#Z 2))))
. x)) by
A1,
A15,
VALUED_1:def 1
.= ((
arcsin
. x)
+ (((
id Z)
. x)
/ (((
#R (1
/ 2))
* (f1
- (
#Z 2)))
. x))) by
A2,
A15,
RFUNCT_1:def 1
.= ((
arcsin
. x)
+ (x
/ (((
#R (1
/ 2))
* (f1
- (
#Z 2)))
. x))) by
A15,
FUNCT_1: 18
.= ((
arcsin
. x)
+ (x
/ ((
#R (1
/ 2))
. ((f1
- (
#Z 2))
. x)))) by
A8,
A15,
FUNCT_1: 12
.= ((
arcsin
. x)
+ (x
/ (((f1
- (
#Z 2))
. x)
#R (1
/ 2)))) by
A17,
TAYLOR_1:def 4
.= ((
arcsin
. x)
+ (x
/ (((f1
. x)
- ((
#Z 2)
. x))
#R (1
/ 2)))) by
A16,
VALUED_1: 13
.= ((
arcsin
. x)
+ (x
/ (((f1
. x)
- (x
#Z 2))
#R (1
/ 2)))) by
TAYLOR_1:def 1
.= ((
arcsin
. x)
+ (x
/ (((f1
. x)
- (x
^2 ))
#R (1
/ 2)))) by
FDIFF_7: 1
.= ((
arcsin
. x)
+ (x
/ ((1
- (x
^2 ))
#R (1
/ 2)))) by
A1,
A15
.= ((
arcsin
. x)
+ (x
/ (
sqrt (1
- (x
^2 ))))) by
A18,
FDIFF_7: 2;
hence thesis by
A1;
end;
A19: for x be
Element of
REAL st x
in (
dom (((
id Z)
(#)
arcsin )
`| Z)) holds ((((
id Z)
(#)
arcsin )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((
id Z)
(#)
arcsin )
`| Z));
then
A20: x
in Z by
A13,
FDIFF_1:def 7;
then ((((
id Z)
(#)
arcsin )
`| Z)
. x)
= ((
arcsin
. x)
+ (x
/ (
sqrt (1
- (x
^2 ))))) by
A1,
A4,
FDIFF_7: 16
.= (f
. x) by
A14,
A20;
hence thesis;
end;
(
dom (((
id Z)
(#)
arcsin )
`| Z))
= (
dom f) by
A1,
A13,
FDIFF_1:def 7;
then (((
id Z)
(#)
arcsin )
`| Z)
= f by
A19,
PARTFUN1: 5;
hence thesis by
A1,
A12,
A4,
FDIFF_7: 16,
INTEGRA5: 13;
end;
theorem ::
INTEGR12:22
A
c= Z & (for x st x
in Z holds (f1
. x)
= 1) & Z
c=
].(
- 1), 1.[ & Z
= (
dom f) & f
= (
arccos
- ((
id Z)
/ ((
#R (1
/ 2))
* (f1
- (
#Z 2))))) implies (
integral (f,A))
= ((((
id Z)
(#)
arccos )
. (
upper_bound A))
- (((
id Z)
(#)
arccos )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f1
. x)
= 1) & Z
c=
].(
- 1), 1.[ & Z
= (
dom f) & f
= (
arccos
- ((
id Z)
/ ((
#R (1
/ 2))
* (f1
- (
#Z 2)))));
then Z
= ((
dom
arccos )
/\ (
dom ((
id Z)
/ ((
#R (1
/ 2))
* (f1
- (
#Z 2)))))) by
VALUED_1: 12;
then
A2: Z
c= (
dom
arccos ) & Z
c= (
dom ((
id Z)
/ ((
#R (1
/ 2))
* (f1
- (
#Z 2))))) by
XBOOLE_1: 18;
A3: Z
= (
dom (
id Z));
Z
c= ((
dom (
id Z))
/\ (
dom
arccos )) by
A2,
XBOOLE_1: 19;
then
A4: Z
c= (
dom ((
id Z)
(#)
arccos )) by
VALUED_1:def 4;
A5:
arccos
is_differentiable_on Z by
A1,
FDIFF_1: 26,
SIN_COS6: 106;
for x st x
in Z holds ((
id Z)
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 18;
then
A6: (
id Z)
is_differentiable_on Z by
A3,
FDIFF_1: 23;
Z
c= ((
dom (
id Z))
/\ ((
dom ((
#R (1
/ 2))
* (f1
- (
#Z 2))))
\ (((
#R (1
/ 2))
* (f1
- (
#Z 2)))
"
{
0 }))) by
A2,
RFUNCT_1:def 1;
then Z
c= ((
dom ((
#R (1
/ 2))
* (f1
- (
#Z 2))))
\ (((
#R (1
/ 2))
* (f1
- (
#Z 2)))
"
{
0 })) by
XBOOLE_1: 18;
then
A7: Z
c= (
dom (((
#R (1
/ 2))
* (f1
- (
#Z 2)))
^ )) by
RFUNCT_1:def 2;
(
dom (((
#R (1
/ 2))
* (f1
- (
#Z 2)))
^ ))
c= (
dom ((
#R (1
/ 2))
* (f1
- (
#Z 2)))) by
RFUNCT_1: 1;
then
A8: Z
c= (
dom ((
#R (1
/ 2))
* (f1
- (
#Z 2)))) by
A7;
set f2 = (
#Z 2);
for x st x
in Z holds ((f1
- (
#Z 2))
. x)
>
0
proof
let x;
assume
A9: x
in Z;
then (
- 1)
< x & x
< 1 by
A1,
XXREAL_1: 4;
then
0
< (1
+ x) &
0
< (1
- x) by
XREAL_1: 50,
XREAL_1: 148;
then
A10:
0
< ((1
+ x)
* (1
- x)) by
XREAL_1: 129;
for x st x
in Z holds x
in (
dom (f1
- f2)) by
A8,
FUNCT_1: 11;
then ((f1
- f2)
. x)
= ((f1
. x)
- (f2
. x)) by
A9,
VALUED_1: 13
.= ((f1
. x)
- (x
#Z (1
+ 1))) by
TAYLOR_1:def 1
.= ((f1
. x)
- ((x
#Z 1)
* (x
#Z 1))) by
TAYLOR_1: 1
.= ((f1
. x)
- (x
* (x
#Z 1))) by
PREPOWER: 35
.= ((f1
. x)
- (x
* x)) by
PREPOWER: 35
.= (1
- (x
* x)) by
A1,
A9;
hence thesis by
A10;
end;
then for x st x
in Z holds (f1
. x)
= 1 & ((f1
- (
#Z 2))
. x)
>
0 by
A1;
then
A11: ((
#R (1
/ 2))
* (f1
- (
#Z 2)))
is_differentiable_on Z by
A8,
FDIFF_7: 22;
x
in Z implies (((
#R (1
/ 2))
* (f1
- (
#Z 2)))
. x)
<>
0 by
A7,
RFUNCT_1: 3;
then ((
id Z)
/ ((
#R (1
/ 2))
* (f1
- (
#Z 2))))
is_differentiable_on Z by
A6,
A11,
FDIFF_2: 21;
then (f
| Z) is
continuous by
A1,
A5,
FDIFF_1: 19,
FDIFF_1: 25;
then (f
| A) is
continuous by
A1,
FCONT_1: 16;
then
A12: f
is_integrable_on A & (f
| A) is
bounded by
A1,
INTEGRA5: 10,
INTEGRA5: 11;
A13: ((
id Z)
(#)
arccos )
is_differentiable_on Z by
A1,
A4,
FDIFF_7: 17;
A14: for x st x
in Z holds (f
. x)
= ((
arccos
. x)
- (x
/ (
sqrt (1
- (x
^2 )))))
proof
let x;
assume
A15: x
in Z;
then
A16: x
in (
dom (f1
- (
#Z 2))) & ((f1
- (
#Z 2))
. x)
in (
dom (
#R (1
/ 2))) by
A8,
FUNCT_1: 11;
then
A17: ((f1
- (
#Z 2))
. x)
in (
right_open_halfline
0 ) by
TAYLOR_1:def 4;
(
- 1)
< x & x
< 1 by
A1,
A15,
XXREAL_1: 4;
then
0
< (1
+ x) &
0
< (1
- x) by
XREAL_1: 50,
XREAL_1: 148;
then
A18:
0
< ((1
+ x)
* (1
- x)) by
XREAL_1: 129;
((
arccos
- ((
id Z)
/ ((
#R (1
/ 2))
* (f1
- (
#Z 2)))))
. x)
= ((
arccos
. x)
- (((
id Z)
/ ((
#R (1
/ 2))
* (f1
- (
#Z 2))))
. x)) by
A1,
A15,
VALUED_1: 13
.= ((
arccos
. x)
- (((
id Z)
. x)
/ (((
#R (1
/ 2))
* (f1
- (
#Z 2)))
. x))) by
A2,
A15,
RFUNCT_1:def 1
.= ((
arccos
. x)
- (x
/ (((
#R (1
/ 2))
* (f1
- (
#Z 2)))
. x))) by
A15,
FUNCT_1: 18
.= ((
arccos
. x)
- (x
/ ((
#R (1
/ 2))
. ((f1
- (
#Z 2))
. x)))) by
A8,
A15,
FUNCT_1: 12
.= ((
arccos
. x)
- (x
/ (((f1
- (
#Z 2))
. x)
#R (1
/ 2)))) by
A17,
TAYLOR_1:def 4
.= ((
arccos
. x)
- (x
/ (((f1
. x)
- ((
#Z 2)
. x))
#R (1
/ 2)))) by
A16,
VALUED_1: 13
.= ((
arccos
. x)
- (x
/ (((f1
. x)
- (x
#Z 2))
#R (1
/ 2)))) by
TAYLOR_1:def 1
.= ((
arccos
. x)
- (x
/ (((f1
. x)
- (x
^2 ))
#R (1
/ 2)))) by
FDIFF_7: 1
.= ((
arccos
. x)
- (x
/ ((1
- (x
^2 ))
#R (1
/ 2)))) by
A1,
A15
.= ((
arccos
. x)
- (x
/ (
sqrt (1
- (x
^2 ))))) by
A18,
FDIFF_7: 2;
hence thesis by
A1;
end;
A19: for x be
Element of
REAL st x
in (
dom (((
id Z)
(#)
arccos )
`| Z)) holds ((((
id Z)
(#)
arccos )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((
id Z)
(#)
arccos )
`| Z));
then
A20: x
in Z by
A13,
FDIFF_1:def 7;
then ((((
id Z)
(#)
arccos )
`| Z)
. x)
= ((
arccos
. x)
- (x
/ (
sqrt (1
- (x
^2 ))))) by
A1,
A4,
FDIFF_7: 17
.= (f
. x) by
A14,
A20;
hence thesis;
end;
(
dom (((
id Z)
(#)
arccos )
`| Z))
= (
dom f) by
A1,
A13,
FDIFF_1:def 7;
then (((
id Z)
(#)
arccos )
`| Z)
= f by
A19,
PARTFUN1: 5;
hence thesis by
A1,
A12,
A4,
FDIFF_7: 17,
INTEGRA5: 13;
end;
theorem ::
INTEGR12:23
A
c= Z & Z
c=
].(
- 1), 1.[ & (for x st x
in Z holds (f1
. x)
= ((a
* x)
+ b) & (f2
. x)
= 1) & Z
= (
dom f) & f
= ((a
(#)
arcsin )
+ (f1
/ ((
#R (1
/ 2))
* (f2
- (
#Z 2))))) implies (
integral (f,A))
= (((f1
(#)
arcsin )
. (
upper_bound A))
- ((f1
(#)
arcsin )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & Z
c=
].(
- 1), 1.[ & (for x st x
in Z holds (f1
. x)
= ((a
* x)
+ b) & (f2
. x)
= 1) & Z
= (
dom f) & f
= ((a
(#)
arcsin )
+ (f1
/ ((
#R (1
/ 2))
* (f2
- (
#Z 2)))));
then Z
= ((
dom (a
(#)
arcsin ))
/\ (
dom (f1
/ ((
#R (1
/ 2))
* (f2
- (
#Z 2)))))) by
VALUED_1:def 1;
then
A2: Z
c= (
dom (a
(#)
arcsin )) & Z
c= (
dom (f1
/ ((
#R (1
/ 2))
* (f2
- (
#Z 2))))) by
XBOOLE_1: 18;
then
A3: Z
c= (
dom
arcsin ) by
VALUED_1:def 5;
Z
c= ((
dom f1)
/\ ((
dom ((
#R (1
/ 2))
* (f2
- (
#Z 2))))
\ (((
#R (1
/ 2))
* (f2
- (
#Z 2)))
"
{
0 }))) by
A2,
RFUNCT_1:def 1;
then
A4: Z
c= (
dom f1) & Z
c= ((
dom ((
#R (1
/ 2))
* (f2
- (
#Z 2))))
\ (((
#R (1
/ 2))
* (f2
- (
#Z 2)))
"
{
0 })) by
XBOOLE_1: 18;
then Z
c= ((
dom f1)
/\ (
dom
arcsin )) by
A3,
XBOOLE_1: 19;
then
A5: Z
c= (
dom (f1
(#)
arcsin )) by
VALUED_1:def 4;
A6: Z
c= (
dom (((
#R (1
/ 2))
* (f2
- (
#Z 2)))
^ )) by
A4,
RFUNCT_1:def 2;
(
dom (((
#R (1
/ 2))
* (f2
- (
#Z 2)))
^ ))
c= (
dom ((
#R (1
/ 2))
* (f2
- (
#Z 2)))) by
RFUNCT_1: 1;
then
A7: Z
c= (
dom ((
#R (1
/ 2))
* (f2
- (
#Z 2)))) by
A6;
A8:
arcsin
is_differentiable_on Z by
A1,
FDIFF_1: 26,
SIN_COS6: 83;
then
A9: (a
(#)
arcsin )
is_differentiable_on Z by
A2,
FDIFF_1: 20;
A10: for x st x
in Z holds (f1
. x)
= ((a
* x)
+ b) by
A1;
then
A11: f1
is_differentiable_on Z by
A4,
FDIFF_1: 23;
set f3 = (
#Z 2);
for x st x
in Z holds ((f2
- (
#Z 2))
. x)
>
0
proof
let x;
assume
A12: x
in Z;
then (
- 1)
< x & x
< 1 by
A1,
XXREAL_1: 4;
then
0
< (1
+ x) &
0
< (1
- x) by
XREAL_1: 50,
XREAL_1: 148;
then
A13:
0
< ((1
+ x)
* (1
- x)) by
XREAL_1: 129;
for x st x
in Z holds x
in (
dom (f2
- f3)) by
A7,
FUNCT_1: 11;
then ((f2
- f3)
. x)
= ((f2
. x)
- (f3
. x)) by
A12,
VALUED_1: 13
.= ((f2
. x)
- (x
#Z (1
+ 1))) by
TAYLOR_1:def 1
.= ((f2
. x)
- ((x
#Z 1)
* (x
#Z 1))) by
TAYLOR_1: 1
.= ((f2
. x)
- (x
* (x
#Z 1))) by
PREPOWER: 35
.= ((f2
. x)
- (x
* x)) by
PREPOWER: 35
.= (1
- (x
* x)) by
A1,
A12;
hence thesis by
A13;
end;
then for x st x
in Z holds (f2
. x)
= 1 & ((f2
- (
#Z 2))
. x)
>
0 by
A1;
then
A14: ((
#R (1
/ 2))
* (f2
- (
#Z 2)))
is_differentiable_on Z by
A7,
FDIFF_7: 22;
x
in Z implies (((
#R (1
/ 2))
* (f2
- (
#Z 2)))
. x)
<>
0 by
A6,
RFUNCT_1: 3;
then (f1
/ ((
#R (1
/ 2))
* (f2
- (
#Z 2))))
is_differentiable_on Z by
A11,
A14,
FDIFF_2: 21;
then f
is_differentiable_on Z by
A1,
A9,
FDIFF_1: 18;
then (f
| Z) is
continuous by
FDIFF_1: 25;
then (f
| A) is
continuous by
A1,
FCONT_1: 16;
then
A15: f
is_integrable_on A & (f
| A) is
bounded by
A1,
INTEGRA5: 10,
INTEGRA5: 11;
A16: (f1
(#)
arcsin )
is_differentiable_on Z by
A5,
A8,
A11,
FDIFF_1: 21;
A17: for x st x
in Z holds (f
. x)
= ((a
* (
arcsin
. x))
+ (((a
* x)
+ b)
/ (
sqrt (1
- (x
^2 )))))
proof
let x;
assume
A18: x
in Z;
then
A19: x
in (
dom (f2
- (
#Z 2))) & ((f2
- (
#Z 2))
. x)
in (
dom (
#R (1
/ 2))) by
A7,
FUNCT_1: 11;
then
A20: ((f2
- (
#Z 2))
. x)
in (
right_open_halfline
0 ) by
TAYLOR_1:def 4;
(
- 1)
< x & x
< 1 by
A1,
A18,
XXREAL_1: 4;
then
0
< (1
+ x) &
0
< (1
- x) by
XREAL_1: 50,
XREAL_1: 148;
then
A21:
0
< ((1
+ x)
* (1
- x)) by
XREAL_1: 129;
(((a
(#)
arcsin )
+ (f1
/ ((
#R (1
/ 2))
* (f2
- (
#Z 2)))))
. x)
= (((a
(#)
arcsin )
. x)
+ ((f1
/ ((
#R (1
/ 2))
* (f2
- (
#Z 2))))
. x)) by
A1,
A18,
VALUED_1:def 1
.= ((a
* (
arcsin
. x))
+ ((f1
/ ((
#R (1
/ 2))
* (f2
- (
#Z 2))))
. x)) by
VALUED_1: 6
.= ((a
* (
arcsin
. x))
+ ((f1
. x)
/ (((
#R (1
/ 2))
* (f2
- (
#Z 2)))
. x))) by
A2,
A18,
RFUNCT_1:def 1
.= ((a
* (
arcsin
. x))
+ (((a
* x)
+ b)
/ (((
#R (1
/ 2))
* (f2
- (
#Z 2)))
. x))) by
A1,
A18
.= ((a
* (
arcsin
. x))
+ (((a
* x)
+ b)
/ ((
#R (1
/ 2))
. ((f2
- (
#Z 2))
. x)))) by
A7,
A18,
FUNCT_1: 12
.= ((a
* (
arcsin
. x))
+ (((a
* x)
+ b)
/ (((f2
- (
#Z 2))
. x)
#R (1
/ 2)))) by
A20,
TAYLOR_1:def 4
.= ((a
* (
arcsin
. x))
+ (((a
* x)
+ b)
/ (((f2
. x)
- ((
#Z 2)
. x))
#R (1
/ 2)))) by
A19,
VALUED_1: 13
.= ((a
* (
arcsin
. x))
+ (((a
* x)
+ b)
/ (((f2
. x)
- (x
#Z 2))
#R (1
/ 2)))) by
TAYLOR_1:def 1
.= ((a
* (
arcsin
. x))
+ (((a
* x)
+ b)
/ (((f2
. x)
- (x
^2 ))
#R (1
/ 2)))) by
FDIFF_7: 1
.= ((a
* (
arcsin
. x))
+ (((a
* x)
+ b)
/ ((1
- (x
^2 ))
#R (1
/ 2)))) by
A1,
A18
.= ((a
* (
arcsin
. x))
+ (((a
* x)
+ b)
/ (
sqrt (1
- (x
^2 ))))) by
A21,
FDIFF_7: 2;
hence thesis by
A1;
end;
A22: for x be
Element of
REAL st x
in (
dom ((f1
(#)
arcsin )
`| Z)) holds (((f1
(#)
arcsin )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((f1
(#)
arcsin )
`| Z));
then
A23: x
in Z by
A16,
FDIFF_1:def 7;
then (((f1
(#)
arcsin )
`| Z)
. x)
= ((a
* (
arcsin
. x))
+ (((a
* x)
+ b)
/ (
sqrt (1
- (x
^2 ))))) by
A1,
A10,
A5,
FDIFF_7: 18
.= (f
. x) by
A17,
A23;
hence thesis;
end;
(
dom ((f1
(#)
arcsin )
`| Z))
= (
dom f) by
A1,
A16,
FDIFF_1:def 7;
then ((f1
(#)
arcsin )
`| Z)
= f by
A22,
PARTFUN1: 5;
hence thesis by
A1,
A15,
A16,
INTEGRA5: 13;
end;
theorem ::
INTEGR12:24
A
c= Z & Z
c=
].(
- 1), 1.[ & (for x st x
in Z holds (f1
. x)
= ((a
* x)
+ b) & (f2
. x)
= 1) & Z
= (
dom f) & f
= ((a
(#)
arccos )
- (f1
/ ((
#R (1
/ 2))
* (f2
- (
#Z 2))))) implies (
integral (f,A))
= (((f1
(#)
arccos )
. (
upper_bound A))
- ((f1
(#)
arccos )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & Z
c=
].(
- 1), 1.[ & (for x st x
in Z holds (f1
. x)
= ((a
* x)
+ b) & (f2
. x)
= 1) & Z
= (
dom f) & f
= ((a
(#)
arccos )
- (f1
/ ((
#R (1
/ 2))
* (f2
- (
#Z 2)))));
then Z
= ((
dom (a
(#)
arccos ))
/\ (
dom (f1
/ ((
#R (1
/ 2))
* (f2
- (
#Z 2)))))) by
VALUED_1: 12;
then
A2: Z
c= (
dom (a
(#)
arccos )) & Z
c= (
dom (f1
/ ((
#R (1
/ 2))
* (f2
- (
#Z 2))))) by
XBOOLE_1: 18;
then
A3: Z
c= (
dom
arccos ) by
VALUED_1:def 5;
Z
c= ((
dom f1)
/\ ((
dom ((
#R (1
/ 2))
* (f2
- (
#Z 2))))
\ (((
#R (1
/ 2))
* (f2
- (
#Z 2)))
"
{
0 }))) by
A2,
RFUNCT_1:def 1;
then
A4: Z
c= (
dom f1) & Z
c= ((
dom ((
#R (1
/ 2))
* (f2
- (
#Z 2))))
\ (((
#R (1
/ 2))
* (f2
- (
#Z 2)))
"
{
0 })) by
XBOOLE_1: 18;
then Z
c= ((
dom f1)
/\ (
dom
arccos )) by
A3,
XBOOLE_1: 19;
then
A5: Z
c= (
dom (f1
(#)
arccos )) by
VALUED_1:def 4;
A6: Z
c= (
dom (((
#R (1
/ 2))
* (f2
- (
#Z 2)))
^ )) by
A4,
RFUNCT_1:def 2;
(
dom (((
#R (1
/ 2))
* (f2
- (
#Z 2)))
^ ))
c= (
dom ((
#R (1
/ 2))
* (f2
- (
#Z 2)))) by
RFUNCT_1: 1;
then
A7: Z
c= (
dom ((
#R (1
/ 2))
* (f2
- (
#Z 2)))) by
A6;
A8:
arccos
is_differentiable_on Z by
A1,
FDIFF_1: 26,
SIN_COS6: 106;
then
A9: (a
(#)
arccos )
is_differentiable_on Z by
A2,
FDIFF_1: 20;
A10: for x st x
in Z holds (f1
. x)
= ((a
* x)
+ b) by
A1;
then
A11: f1
is_differentiable_on Z by
A4,
FDIFF_1: 23;
set f3 = (
#Z 2);
for x st x
in Z holds ((f2
- (
#Z 2))
. x)
>
0
proof
let x;
assume
A12: x
in Z;
then (
- 1)
< x & x
< 1 by
A1,
XXREAL_1: 4;
then
0
< (1
+ x) &
0
< (1
- x) by
XREAL_1: 50,
XREAL_1: 148;
then
A13:
0
< ((1
+ x)
* (1
- x)) by
XREAL_1: 129;
for x st x
in Z holds x
in (
dom (f2
- f3)) by
A7,
FUNCT_1: 11;
then ((f2
- f3)
. x)
= ((f2
. x)
- (f3
. x)) by
A12,
VALUED_1: 13
.= ((f2
. x)
- (x
#Z (1
+ 1))) by
TAYLOR_1:def 1
.= ((f2
. x)
- ((x
#Z 1)
* (x
#Z 1))) by
TAYLOR_1: 1
.= ((f2
. x)
- (x
* (x
#Z 1))) by
PREPOWER: 35
.= ((f2
. x)
- (x
* x)) by
PREPOWER: 35
.= (1
- (x
* x)) by
A1,
A12;
hence thesis by
A13;
end;
then for x st x
in Z holds (f2
. x)
= 1 & ((f2
- (
#Z 2))
. x)
>
0 by
A1;
then
A14: ((
#R (1
/ 2))
* (f2
- (
#Z 2)))
is_differentiable_on Z by
A7,
FDIFF_7: 22;
x
in Z implies (((
#R (1
/ 2))
* (f2
- (
#Z 2)))
. x)
<>
0 by
A6,
RFUNCT_1: 3;
then (f1
/ ((
#R (1
/ 2))
* (f2
- (
#Z 2))))
is_differentiable_on Z by
A11,
A14,
FDIFF_2: 21;
then f
is_differentiable_on Z by
A1,
A9,
FDIFF_1: 19;
then (f
| Z) is
continuous by
FDIFF_1: 25;
then (f
| A) is
continuous by
A1,
FCONT_1: 16;
then
A15: f
is_integrable_on A & (f
| A) is
bounded by
A1,
INTEGRA5: 10,
INTEGRA5: 11;
A16: (f1
(#)
arccos )
is_differentiable_on Z by
A5,
A8,
A11,
FDIFF_1: 21;
A17: for x st x
in Z holds (f
. x)
= ((a
* (
arccos
. x))
- (((a
* x)
+ b)
/ (
sqrt (1
- (x
^2 )))))
proof
let x;
assume
A18: x
in Z;
then
A19: x
in (
dom (f2
- (
#Z 2))) & ((f2
- (
#Z 2))
. x)
in (
dom (
#R (1
/ 2))) by
A7,
FUNCT_1: 11;
then
A20: ((f2
- (
#Z 2))
. x)
in (
right_open_halfline
0 ) by
TAYLOR_1:def 4;
(
- 1)
< x & x
< 1 by
A1,
A18,
XXREAL_1: 4;
then
0
< (1
+ x) &
0
< (1
- x) by
XREAL_1: 50,
XREAL_1: 148;
then
A21:
0
< ((1
+ x)
* (1
- x)) by
XREAL_1: 129;
(((a
(#)
arccos )
- (f1
/ ((
#R (1
/ 2))
* (f2
- (
#Z 2)))))
. x)
= (((a
(#)
arccos )
. x)
- ((f1
/ ((
#R (1
/ 2))
* (f2
- (
#Z 2))))
. x)) by
A1,
A18,
VALUED_1: 13
.= ((a
* (
arccos
. x))
- ((f1
/ ((
#R (1
/ 2))
* (f2
- (
#Z 2))))
. x)) by
VALUED_1: 6
.= ((a
* (
arccos
. x))
- ((f1
. x)
/ (((
#R (1
/ 2))
* (f2
- (
#Z 2)))
. x))) by
A2,
A18,
RFUNCT_1:def 1
.= ((a
* (
arccos
. x))
- (((a
* x)
+ b)
/ (((
#R (1
/ 2))
* (f2
- (
#Z 2)))
. x))) by
A1,
A18
.= ((a
* (
arccos
. x))
- (((a
* x)
+ b)
/ ((
#R (1
/ 2))
. ((f2
- (
#Z 2))
. x)))) by
A7,
A18,
FUNCT_1: 12
.= ((a
* (
arccos
. x))
- (((a
* x)
+ b)
/ (((f2
- (
#Z 2))
. x)
#R (1
/ 2)))) by
A20,
TAYLOR_1:def 4
.= ((a
* (
arccos
. x))
- (((a
* x)
+ b)
/ (((f2
. x)
- ((
#Z 2)
. x))
#R (1
/ 2)))) by
A19,
VALUED_1: 13
.= ((a
* (
arccos
. x))
- (((a
* x)
+ b)
/ (((f2
. x)
- (x
#Z 2))
#R (1
/ 2)))) by
TAYLOR_1:def 1
.= ((a
* (
arccos
. x))
- (((a
* x)
+ b)
/ (((f2
. x)
- (x
^2 ))
#R (1
/ 2)))) by
FDIFF_7: 1
.= ((a
* (
arccos
. x))
- (((a
* x)
+ b)
/ ((1
- (x
^2 ))
#R (1
/ 2)))) by
A1,
A18
.= ((a
* (
arccos
. x))
- (((a
* x)
+ b)
/ (
sqrt (1
- (x
^2 ))))) by
A21,
FDIFF_7: 2;
hence thesis by
A1;
end;
A22: for x be
Element of
REAL st x
in (
dom ((f1
(#)
arccos )
`| Z)) holds (((f1
(#)
arccos )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((f1
(#)
arccos )
`| Z));
then
A23: x
in Z by
A16,
FDIFF_1:def 7;
then (((f1
(#)
arccos )
`| Z)
. x)
= ((a
* (
arccos
. x))
- (((a
* x)
+ b)
/ (
sqrt (1
- (x
^2 ))))) by
A1,
A10,
A5,
FDIFF_7: 19
.= (f
. x) by
A17,
A23;
hence thesis;
end;
(
dom ((f1
(#)
arccos )
`| Z))
= (
dom f) by
A1,
A16,
FDIFF_1:def 7;
then ((f1
(#)
arccos )
`| Z)
= f by
A22,
PARTFUN1: 5;
hence thesis by
A1,
A15,
A16,
INTEGRA5: 13;
end;
theorem ::
INTEGR12:25
A
c= Z & (for x st x
in Z holds (g
. x)
= 1 & (f1
. x)
= (x
/ a) & (f1
. x)
> (
- 1) & (f1
. x)
< 1) & Z
= (
dom f) & (f
| A) is
continuous & f
= ((
arcsin
* f1)
+ ((
id Z)
/ (a
(#) ((
#R (1
/ 2))
* (g
- (f1
^2 )))))) implies (
integral (f,A))
= ((((
id Z)
(#) (
arcsin
* f1))
. (
upper_bound A))
- (((
id Z)
(#) (
arcsin
* f1))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (g
. x)
= 1 & (f1
. x)
= (x
/ a) & (f1
. x)
> (
- 1) & (f1
. x)
< 1) & Z
= (
dom f) & (f
| A) is
continuous & f
= ((
arcsin
* f1)
+ ((
id Z)
/ (a
(#) ((
#R (1
/ 2))
* (g
- (f1
^2 ))))));
then Z
= ((
dom (
arcsin
* f1))
/\ (
dom ((
id Z)
/ (a
(#) ((
#R (1
/ 2))
* (g
- (f1
^2 ))))))) by
VALUED_1:def 1;
then
A2: Z
c= (
dom (
arcsin
* f1)) & Z
c= (
dom ((
id Z)
/ (a
(#) ((
#R (1
/ 2))
* (g
- (f1
^2 )))))) by
XBOOLE_1: 18;
Z
c= ((
dom (
id Z))
/\ (
dom (
arcsin
* f1))) by
A2,
XBOOLE_1: 19;
then
A3: Z
c= (
dom ((
id Z)
(#) (
arcsin
* f1))) by
VALUED_1:def 4;
Z
c= ((
dom (
id Z))
/\ ((
dom (a
(#) ((
#R (1
/ 2))
* (g
- (f1
^2 )))))
\ ((a
(#) ((
#R (1
/ 2))
* (g
- (f1
^2 ))))
"
{
0 }))) by
A2,
RFUNCT_1:def 1;
then Z
c= ((
dom (a
(#) ((
#R (1
/ 2))
* (g
- (f1
^2 )))))
\ ((a
(#) ((
#R (1
/ 2))
* (g
- (f1
^2 ))))
"
{
0 })) by
XBOOLE_1: 18;
then
A4: Z
c= (
dom ((a
(#) ((
#R (1
/ 2))
* (g
- (f1
^2 ))))
^ )) by
RFUNCT_1:def 2;
(
dom ((a
(#) ((
#R (1
/ 2))
* (g
- (f1
^2 ))))
^ ))
c= (
dom (a
(#) ((
#R (1
/ 2))
* (g
- (f1
^2 ))))) by
RFUNCT_1: 1;
then Z
c= (
dom (a
(#) ((
#R (1
/ 2))
* (g
- (f1
^2 ))))) by
A4;
then
A5: Z
c= (
dom ((
#R (1
/ 2))
* (g
- (f1
^2 )))) by
VALUED_1:def 5;
A6: f
is_integrable_on A & (f
| A) is
bounded by
A1,
INTEGRA5: 10,
INTEGRA5: 11;
A7: for x st x
in Z holds (f1
. x)
= (x
/ a) & (f1
. x)
> (
- 1) & (f1
. x)
< 1 by
A1;
then
A8: ((
id Z)
(#) (
arcsin
* f1))
is_differentiable_on Z by
A3,
FDIFF_7: 25;
A9: for x st x
in Z holds (f
. x)
= ((
arcsin
. (x
/ a))
+ (x
/ (a
* (
sqrt (1
- ((x
/ a)
^2 ))))))
proof
let x;
assume
A10: x
in Z;
then
A11: x
in (
dom (g
- (f1
^2 ))) & ((g
- (f1
^2 ))
. x)
in (
dom (
#R (1
/ 2))) by
A5,
FUNCT_1: 11;
then
A12: ((g
- (f1
^2 ))
. x)
in (
right_open_halfline
0 ) by
TAYLOR_1:def 4;
(
- 1)
< (f1
. x) & (f1
. x)
< 1 by
A1,
A10;
then
0
< (1
+ (f1
. x)) &
0
< (1
- (f1
. x)) by
XREAL_1: 50,
XREAL_1: 148;
then
A13:
0
< ((1
+ (f1
. x))
* (1
- (f1
. x))) by
XREAL_1: 129;
A14: (f1
. x)
= (x
/ a) by
A1,
A10;
(((
arcsin
* f1)
+ ((
id Z)
/ (a
(#) ((
#R (1
/ 2))
* (g
- (f1
^2 ))))))
. x)
= (((
arcsin
* f1)
. x)
+ (((
id Z)
/ (a
(#) ((
#R (1
/ 2))
* (g
- (f1
^2 )))))
. x)) by
A1,
A10,
VALUED_1:def 1
.= ((
arcsin
. (f1
. x))
+ (((
id Z)
/ (a
(#) ((
#R (1
/ 2))
* (g
- (f1
^2 )))))
. x)) by
A2,
A10,
FUNCT_1: 12
.= ((
arcsin
. (x
/ a))
+ (((
id Z)
/ (a
(#) ((
#R (1
/ 2))
* (g
- (f1
^2 )))))
. x)) by
A1,
A10
.= ((
arcsin
. (x
/ a))
+ (((
id Z)
. x)
/ ((a
(#) ((
#R (1
/ 2))
* (g
- (f1
^2 ))))
. x))) by
A2,
A10,
RFUNCT_1:def 1
.= ((
arcsin
. (x
/ a))
+ (x
/ ((a
(#) ((
#R (1
/ 2))
* (g
- (f1
^2 ))))
. x))) by
A10,
FUNCT_1: 18
.= ((
arcsin
. (x
/ a))
+ (x
/ (a
* (((
#R (1
/ 2))
* (g
- (f1
^2 )))
. x)))) by
VALUED_1: 6
.= ((
arcsin
. (x
/ a))
+ (x
/ (a
* ((
#R (1
/ 2))
. ((g
- (f1
^2 ))
. x))))) by
A5,
A10,
FUNCT_1: 12
.= ((
arcsin
. (x
/ a))
+ (x
/ (a
* (((g
- (f1
^2 ))
. x)
#R (1
/ 2))))) by
A12,
TAYLOR_1:def 4
.= ((
arcsin
. (x
/ a))
+ (x
/ (a
* (((g
. x)
- ((f1
^2 )
. x))
#R (1
/ 2))))) by
A11,
VALUED_1: 13
.= ((
arcsin
. (x
/ a))
+ (x
/ (a
* (((g
. x)
- ((f1
. x)
^2 ))
#R (1
/ 2))))) by
VALUED_1: 11
.= ((
arcsin
. (x
/ a))
+ (x
/ (a
* ((1
- ((f1
. x)
^2 ))
#R (1
/ 2))))) by
A1,
A10
.= ((
arcsin
. (x
/ a))
+ (x
/ (a
* ((1
- ((x
/ a)
^2 ))
#R (1
/ 2))))) by
A1,
A10
.= ((
arcsin
. (x
/ a))
+ (x
/ (a
* (
sqrt (1
- ((x
/ a)
^2 )))))) by
A14,
A13,
FDIFF_7: 2;
hence thesis by
A1;
end;
A15: for x be
Element of
REAL st x
in (
dom (((
id Z)
(#) (
arcsin
* f1))
`| Z)) holds ((((
id Z)
(#) (
arcsin
* f1))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((
id Z)
(#) (
arcsin
* f1))
`| Z));
then
A16: x
in Z by
A8,
FDIFF_1:def 7;
then ((((
id Z)
(#) (
arcsin
* f1))
`| Z)
. x)
= ((
arcsin
. (x
/ a))
+ (x
/ (a
* (
sqrt (1
- ((x
/ a)
^2 )))))) by
A3,
A7,
FDIFF_7: 25
.= (f
. x) by
A9,
A16;
hence thesis;
end;
(
dom (((
id Z)
(#) (
arcsin
* f1))
`| Z))
= (
dom f) by
A1,
A8,
FDIFF_1:def 7;
then (((
id Z)
(#) (
arcsin
* f1))
`| Z)
= f by
A15,
PARTFUN1: 5;
hence thesis by
A1,
A6,
A8,
INTEGRA5: 13;
end;
theorem ::
INTEGR12:26
A
c= Z & (for x st x
in Z holds (g
. x)
= 1 & (f1
. x)
= (x
/ a) & (f1
. x)
> (
- 1) & (f1
. x)
< 1) & Z
= (
dom f) & (f
| A) is
continuous & f
= ((
arccos
* f1)
- ((
id Z)
/ (a
(#) ((
#R (1
/ 2))
* (g
- (f1
^2 )))))) implies (
integral (f,A))
= ((((
id Z)
(#) (
arccos
* f1))
. (
upper_bound A))
- (((
id Z)
(#) (
arccos
* f1))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (g
. x)
= 1 & (f1
. x)
= (x
/ a) & (f1
. x)
> (
- 1) & (f1
. x)
< 1) & Z
= (
dom f) & (f
| A) is
continuous & f
= ((
arccos
* f1)
- ((
id Z)
/ (a
(#) ((
#R (1
/ 2))
* (g
- (f1
^2 ))))));
then Z
= ((
dom (
arccos
* f1))
/\ (
dom ((
id Z)
/ (a
(#) ((
#R (1
/ 2))
* (g
- (f1
^2 ))))))) by
VALUED_1: 12;
then
A2: Z
c= (
dom (
arccos
* f1)) & Z
c= (
dom ((
id Z)
/ (a
(#) ((
#R (1
/ 2))
* (g
- (f1
^2 )))))) by
XBOOLE_1: 18;
Z
c= ((
dom (
id Z))
/\ (
dom (
arccos
* f1))) by
A2,
XBOOLE_1: 19;
then
A3: Z
c= (
dom ((
id Z)
(#) (
arccos
* f1))) by
VALUED_1:def 4;
Z
c= ((
dom (
id Z))
/\ ((
dom (a
(#) ((
#R (1
/ 2))
* (g
- (f1
^2 )))))
\ ((a
(#) ((
#R (1
/ 2))
* (g
- (f1
^2 ))))
"
{
0 }))) by
A2,
RFUNCT_1:def 1;
then Z
c= ((
dom (a
(#) ((
#R (1
/ 2))
* (g
- (f1
^2 )))))
\ ((a
(#) ((
#R (1
/ 2))
* (g
- (f1
^2 ))))
"
{
0 })) by
XBOOLE_1: 18;
then
A4: Z
c= (
dom ((a
(#) ((
#R (1
/ 2))
* (g
- (f1
^2 ))))
^ )) by
RFUNCT_1:def 2;
(
dom ((a
(#) ((
#R (1
/ 2))
* (g
- (f1
^2 ))))
^ ))
c= (
dom (a
(#) ((
#R (1
/ 2))
* (g
- (f1
^2 ))))) by
RFUNCT_1: 1;
then Z
c= (
dom (a
(#) ((
#R (1
/ 2))
* (g
- (f1
^2 ))))) by
A4;
then
A5: Z
c= (
dom ((
#R (1
/ 2))
* (g
- (f1
^2 )))) by
VALUED_1:def 5;
A6: f
is_integrable_on A & (f
| A) is
bounded by
A1,
INTEGRA5: 10,
INTEGRA5: 11;
A7: for x st x
in Z holds (f1
. x)
= (x
/ a) & (f1
. x)
> (
- 1) & (f1
. x)
< 1 by
A1;
then
A8: ((
id Z)
(#) (
arccos
* f1))
is_differentiable_on Z by
A3,
FDIFF_7: 26;
A9: for x st x
in Z holds (f
. x)
= ((
arccos
. (x
/ a))
- (x
/ (a
* (
sqrt (1
- ((x
/ a)
^2 ))))))
proof
let x;
assume
A10: x
in Z;
then
A11: x
in (
dom (g
- (f1
^2 ))) & ((g
- (f1
^2 ))
. x)
in (
dom (
#R (1
/ 2))) by
A5,
FUNCT_1: 11;
then
A12: ((g
- (f1
^2 ))
. x)
in (
right_open_halfline
0 ) by
TAYLOR_1:def 4;
(
- 1)
< (f1
. x) & (f1
. x)
< 1 by
A1,
A10;
then
0
< (1
+ (f1
. x)) &
0
< (1
- (f1
. x)) by
XREAL_1: 50,
XREAL_1: 148;
then
A13:
0
< ((1
+ (f1
. x))
* (1
- (f1
. x))) by
XREAL_1: 129;
A14: (f1
. x)
= (x
/ a) by
A1,
A10;
(((
arccos
* f1)
- ((
id Z)
/ (a
(#) ((
#R (1
/ 2))
* (g
- (f1
^2 ))))))
. x)
= (((
arccos
* f1)
. x)
- (((
id Z)
/ (a
(#) ((
#R (1
/ 2))
* (g
- (f1
^2 )))))
. x)) by
A1,
A10,
VALUED_1: 13
.= ((
arccos
. (f1
. x))
- (((
id Z)
/ (a
(#) ((
#R (1
/ 2))
* (g
- (f1
^2 )))))
. x)) by
A2,
A10,
FUNCT_1: 12
.= ((
arccos
. (x
/ a))
- (((
id Z)
/ (a
(#) ((
#R (1
/ 2))
* (g
- (f1
^2 )))))
. x)) by
A1,
A10
.= ((
arccos
. (x
/ a))
- (((
id Z)
. x)
/ ((a
(#) ((
#R (1
/ 2))
* (g
- (f1
^2 ))))
. x))) by
A2,
A10,
RFUNCT_1:def 1
.= ((
arccos
. (x
/ a))
- (x
/ ((a
(#) ((
#R (1
/ 2))
* (g
- (f1
^2 ))))
. x))) by
A10,
FUNCT_1: 18
.= ((
arccos
. (x
/ a))
- (x
/ (a
* (((
#R (1
/ 2))
* (g
- (f1
^2 )))
. x)))) by
VALUED_1: 6
.= ((
arccos
. (x
/ a))
- (x
/ (a
* ((
#R (1
/ 2))
. ((g
- (f1
^2 ))
. x))))) by
A5,
A10,
FUNCT_1: 12
.= ((
arccos
. (x
/ a))
- (x
/ (a
* (((g
- (f1
^2 ))
. x)
#R (1
/ 2))))) by
A12,
TAYLOR_1:def 4
.= ((
arccos
. (x
/ a))
- (x
/ (a
* (((g
. x)
- ((f1
^2 )
. x))
#R (1
/ 2))))) by
A11,
VALUED_1: 13
.= ((
arccos
. (x
/ a))
- (x
/ (a
* (((g
. x)
- ((f1
. x)
^2 ))
#R (1
/ 2))))) by
VALUED_1: 11
.= ((
arccos
. (x
/ a))
- (x
/ (a
* ((1
- ((f1
. x)
^2 ))
#R (1
/ 2))))) by
A1,
A10
.= ((
arccos
. (x
/ a))
- (x
/ (a
* ((1
- ((x
/ a)
^2 ))
#R (1
/ 2))))) by
A1,
A10
.= ((
arccos
. (x
/ a))
- (x
/ (a
* (
sqrt (1
- ((x
/ a)
^2 )))))) by
A14,
A13,
FDIFF_7: 2;
hence thesis by
A1;
end;
A15: for x be
Element of
REAL st x
in (
dom (((
id Z)
(#) (
arccos
* f1))
`| Z)) holds ((((
id Z)
(#) (
arccos
* f1))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((
id Z)
(#) (
arccos
* f1))
`| Z));
then
A16: x
in Z by
A8,
FDIFF_1:def 7;
then ((((
id Z)
(#) (
arccos
* f1))
`| Z)
. x)
= ((
arccos
. (x
/ a))
- (x
/ (a
* (
sqrt (1
- ((x
/ a)
^2 )))))) by
A3,
A7,
FDIFF_7: 26
.= (f
. x) by
A9,
A16;
hence thesis;
end;
(
dom (((
id Z)
(#) (
arccos
* f1))
`| Z))
= (
dom f) by
A1,
A8,
FDIFF_1:def 7;
then (((
id Z)
(#) (
arccos
* f1))
`| Z)
= f by
A15,
PARTFUN1: 5;
hence thesis by
A1,
A6,
A8,
INTEGRA5: 13;
end;
theorem ::
INTEGR12:27
A
c= Z & f
= ((n
(#) ((
#Z (n
- 1))
*
sin ))
/ ((
#Z (n
+ 1))
*
cos )) & 1
<= n & Z
c= (
dom ((
#Z n)
*
tan )) & Z
= (
dom f) implies (
integral (f,A))
= ((((
#Z n)
*
tan )
. (
upper_bound A))
- (((
#Z n)
*
tan )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & f
= ((n
(#) ((
#Z (n
- 1))
*
sin ))
/ ((
#Z (n
+ 1))
*
cos )) & 1
<= n & Z
c= (
dom ((
#Z n)
*
tan )) & Z
= (
dom f);
then Z
= ((
dom (n
(#) ((
#Z (n
- 1))
*
sin )))
/\ ((
dom ((
#Z (n
+ 1))
*
cos ))
\ (((
#Z (n
+ 1))
*
cos )
"
{
0 }))) by
RFUNCT_1:def 1;
then
A2: Z
c= (
dom (n
(#) ((
#Z (n
- 1))
*
sin ))) & Z
c= ((
dom ((
#Z (n
+ 1))
*
cos ))
\ (((
#Z (n
+ 1))
*
cos )
"
{
0 })) by
XBOOLE_1: 18;
then
A3: Z
c= (
dom (((
#Z (n
+ 1))
*
cos )
^ )) by
RFUNCT_1:def 2;
(
dom (((
#Z (n
+ 1))
*
cos )
^ ))
c= (
dom ((
#Z (n
+ 1))
*
cos )) by
RFUNCT_1: 1;
then
A4: Z
c= (
dom ((
#Z (n
+ 1))
*
cos )) by
A3;
A5: x
in Z implies (((
#Z (n
+ 1))
*
cos )
. x)
<>
0
proof
assume x
in Z;
then x
in ((
dom (n
(#) ((
#Z (n
- 1))
*
sin )))
/\ ((
dom ((
#Z (n
+ 1))
*
cos ))
\ (((
#Z (n
+ 1))
*
cos )
"
{
0 }))) by
A1,
RFUNCT_1:def 1;
then x
in ((
dom ((
#Z (n
+ 1))
*
cos ))
\ (((
#Z (n
+ 1))
*
cos )
"
{
0 })) by
XBOOLE_0:def 4;
then x
in (
dom (((
#Z (n
+ 1))
*
cos )
^ )) by
RFUNCT_1:def 2;
hence thesis by
RFUNCT_1: 3;
end;
A6: Z
c= (
dom ((
#Z (n
- 1))
*
sin )) by
A2,
VALUED_1:def 5;
A7: ((
#Z (n
- 1))
*
sin )
is_differentiable_in x
proof
consider m be
Nat such that
A8: n
= (m
+ 1) by
A1,
NAT_1: 6;
sin
is_differentiable_in x by
SIN_COS: 64;
hence thesis by
A8,
TAYLOR_1: 3;
end;
((
#Z (n
- 1))
*
sin )
is_differentiable_on Z
proof
for x st x
in Z holds ((
#Z (n
- 1))
*
sin )
is_differentiable_in x by
A7;
hence thesis by
A6,
FDIFF_1: 9;
end;
then
A9: (n
(#) ((
#Z (n
- 1))
*
sin ))
is_differentiable_on Z by
A2,
FDIFF_1: 20;
A10: ((
#Z (n
+ 1))
*
cos )
is_differentiable_in x
proof
cos
is_differentiable_in x by
SIN_COS: 63;
hence thesis by
TAYLOR_1: 3;
end;
((
#Z (n
+ 1))
*
cos )
is_differentiable_on Z
proof
for x st x
in Z holds ((
#Z (n
+ 1))
*
cos )
is_differentiable_in x by
A10;
hence thesis by
A4,
FDIFF_1: 9;
end;
then (f
| Z) is
continuous by
A1,
A5,
A9,
FDIFF_1: 25,
FDIFF_2: 21;
then (f
| A) is
continuous by
A1,
FCONT_1: 16;
then
A11: f
is_integrable_on A & (f
| A) is
bounded by
A1,
INTEGRA5: 10,
INTEGRA5: 11;
A12: ((
#Z n)
*
tan )
is_differentiable_on Z by
A1,
FDIFF_8: 20;
A13: for x st x
in Z holds (f
. x)
= ((n
* ((
sin
. x)
#Z (n
- 1)))
/ ((
cos
. x)
#Z (n
+ 1)))
proof
let x;
assume
A14: x
in Z;
then (((n
(#) ((
#Z (n
- 1))
*
sin ))
/ ((
#Z (n
+ 1))
*
cos ))
. x)
= (((n
(#) ((
#Z (n
- 1))
*
sin ))
. x)
/ (((
#Z (n
+ 1))
*
cos )
. x)) by
A1,
RFUNCT_1:def 1
.= ((n
* (((
#Z (n
- 1))
*
sin )
. x))
/ (((
#Z (n
+ 1))
*
cos )
. x)) by
VALUED_1: 6
.= ((n
* ((
#Z (n
- 1))
. (
sin
. x)))
/ (((
#Z (n
+ 1))
*
cos )
. x)) by
A6,
A14,
FUNCT_1: 12
.= ((n
* ((
sin
. x)
#Z (n
- 1)))
/ (((
#Z (n
+ 1))
*
cos )
. x)) by
TAYLOR_1:def 1
.= ((n
* ((
sin
. x)
#Z (n
- 1)))
/ ((
#Z (n
+ 1))
. (
cos
. x))) by
A4,
A14,
FUNCT_1: 12
.= ((n
* ((
sin
. x)
#Z (n
- 1)))
/ ((
cos
. x)
#Z (n
+ 1))) by
TAYLOR_1:def 1;
hence thesis by
A1;
end;
A15: for x be
Element of
REAL st x
in (
dom (((
#Z n)
*
tan )
`| Z)) holds ((((
#Z n)
*
tan )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((
#Z n)
*
tan )
`| Z));
then
A16: x
in Z by
A12,
FDIFF_1:def 7;
then ((((
#Z n)
*
tan )
`| Z)
. x)
= ((n
* ((
sin
. x)
#Z (n
- 1)))
/ ((
cos
. x)
#Z (n
+ 1))) by
A1,
FDIFF_8: 20
.= (f
. x) by
A13,
A16;
hence thesis;
end;
(
dom (((
#Z n)
*
tan )
`| Z))
= (
dom f) by
A1,
A12,
FDIFF_1:def 7;
then (((
#Z n)
*
tan )
`| Z)
= f by
A15,
PARTFUN1: 5;
hence thesis by
A1,
A11,
FDIFF_8: 20,
INTEGRA5: 13;
end;
theorem ::
INTEGR12:28
A
c= Z & f
= ((n
(#) ((
#Z (n
- 1))
*
cos ))
/ ((
#Z (n
+ 1))
*
sin )) & 1
<= n & Z
c= (
dom ((
#Z n)
*
cot )) & Z
= (
dom f) implies (
integral (f,A))
= (((
- ((
#Z n)
*
cot ))
. (
upper_bound A))
- ((
- ((
#Z n)
*
cot ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & f
= ((n
(#) ((
#Z (n
- 1))
*
cos ))
/ ((
#Z (n
+ 1))
*
sin )) & 1
<= n & Z
c= (
dom ((
#Z n)
*
cot )) & Z
= (
dom f);
then Z
= ((
dom (n
(#) ((
#Z (n
- 1))
*
cos )))
/\ ((
dom ((
#Z (n
+ 1))
*
sin ))
\ (((
#Z (n
+ 1))
*
sin )
"
{
0 }))) by
RFUNCT_1:def 1;
then
A2: Z
c= (
dom (n
(#) ((
#Z (n
- 1))
*
cos ))) & Z
c= ((
dom ((
#Z (n
+ 1))
*
sin ))
\ (((
#Z (n
+ 1))
*
sin )
"
{
0 })) by
XBOOLE_1: 18;
then
A3: Z
c= (
dom (((
#Z (n
+ 1))
*
sin )
^ )) by
RFUNCT_1:def 2;
(
dom (((
#Z (n
+ 1))
*
sin )
^ ))
c= (
dom ((
#Z (n
+ 1))
*
sin )) by
RFUNCT_1: 1;
then
A4: Z
c= (
dom ((
#Z (n
+ 1))
*
sin )) by
A3;
A5: x
in Z implies (((
#Z (n
+ 1))
*
sin )
. x)
<>
0
proof
assume x
in Z;
then x
in ((
dom (n
(#) ((
#Z (n
- 1))
*
cos )))
/\ ((
dom ((
#Z (n
+ 1))
*
sin ))
\ (((
#Z (n
+ 1))
*
sin )
"
{
0 }))) by
A1,
RFUNCT_1:def 1;
then x
in ((
dom ((
#Z (n
+ 1))
*
sin ))
\ (((
#Z (n
+ 1))
*
sin )
"
{
0 })) by
XBOOLE_0:def 4;
then x
in (
dom (((
#Z (n
+ 1))
*
sin )
^ )) by
RFUNCT_1:def 2;
hence thesis by
RFUNCT_1: 3;
end;
A6: Z
c= (
dom ((
#Z (n
- 1))
*
cos )) by
A2,
VALUED_1:def 5;
A7: ((
#Z (n
- 1))
*
cos )
is_differentiable_in x
proof
consider m be
Nat such that
A8: n
= (m
+ 1) by
A1,
NAT_1: 6;
cos
is_differentiable_in x by
SIN_COS: 63;
hence thesis by
A8,
TAYLOR_1: 3;
end;
((
#Z (n
- 1))
*
cos )
is_differentiable_on Z
proof
for x st x
in Z holds ((
#Z (n
- 1))
*
cos )
is_differentiable_in x by
A7;
hence thesis by
A6,
FDIFF_1: 9;
end;
then
A9: (n
(#) ((
#Z (n
- 1))
*
cos ))
is_differentiable_on Z by
A2,
FDIFF_1: 20;
A10: ((
#Z (n
+ 1))
*
sin )
is_differentiable_in x
proof
sin
is_differentiable_in x by
SIN_COS: 64;
hence thesis by
TAYLOR_1: 3;
end;
((
#Z (n
+ 1))
*
sin )
is_differentiable_on Z
proof
for x st x
in Z holds ((
#Z (n
+ 1))
*
sin )
is_differentiable_in x by
A10;
hence thesis by
A4,
FDIFF_1: 9;
end;
then (f
| Z) is
continuous by
A1,
A5,
A9,
FDIFF_1: 25,
FDIFF_2: 21;
then (f
| A) is
continuous by
A1,
FCONT_1: 16;
then
A11: f
is_integrable_on A & (f
| A) is
bounded by
A1,
INTEGRA5: 10,
INTEGRA5: 11;
A12: ((
#Z n)
*
cot )
is_differentiable_on Z by
A1,
FDIFF_8: 21;
A13: (
dom ((
#Z n)
*
cot ))
c= (
dom
cot ) by
RELAT_1: 25;
A14: Z
c= (
dom (
- ((
#Z n)
*
cot ))) by
A1,
VALUED_1: 8;
then
A15: ((
- 1)
(#) ((
#Z n)
*
cot ))
is_differentiable_on Z by
A12,
FDIFF_1: 20;
A16: for x st x
in Z holds (
sin
. x)
<>
0
proof
let x;
assume x
in Z;
then x
in (
dom (
cos
/
sin )) by
A1,
FUNCT_1: 11;
hence thesis by
FDIFF_8: 2;
end;
A17: for x st x
in Z holds (((
- ((
#Z n)
*
cot ))
`| Z)
. x)
= ((n
* ((
cos
. x)
#Z (n
- 1)))
/ ((
sin
. x)
#Z (n
+ 1)))
proof
let x;
assume
A18: x
in Z;
then
A19: (
sin
. x)
<>
0 by
A16;
then
A20:
cot
is_differentiable_in x by
FDIFF_7: 47;
consider m be
Nat such that
A21: n
= (m
+ 1) by
A1,
NAT_1: 6;
set m = (n
- 1);
A22: ((
#Z n)
*
cot )
is_differentiable_in x by
A12,
A18,
FDIFF_1: 9;
(((
- ((
#Z n)
*
cot ))
`| Z)
. x)
= (
diff ((
- ((
#Z n)
*
cot )),x)) by
A15,
A18,
FDIFF_1:def 7
.= ((
- 1)
* (
diff (((
#Z n)
*
cot ),x))) by
A22,
FDIFF_1: 15
.= ((
- 1)
* ((n
* ((
cot
. x)
#Z (n
- 1)))
* (
diff (
cot ,x)))) by
A20,
TAYLOR_1: 3
.= ((
- 1)
* ((n
* ((
cot
. x)
#Z (n
- 1)))
* (
- (1
/ ((
sin
. x)
^2 ))))) by
A19,
FDIFF_7: 47
.= ((
- 1)
* (
- ((n
* ((
cot
. x)
#Z (n
- 1)))
/ ((
sin
. x)
^2 ))))
.= ((
- 1)
* (
- ((n
* (((
cos
. x)
#Z m)
/ ((
sin
. x)
#Z m)))
/ ((
sin
. x)
^2 )))) by
A1,
A13,
A18,
A21,
FDIFF_8: 3,
XBOOLE_1: 1
.= ((
- 1)
* (
- (((n
* ((
cos
. x)
#Z (n
- 1)))
/ ((
sin
. x)
#Z (n
- 1)))
/ ((
sin
. x)
^2 ))))
.= ((
- 1)
* (
- ((n
* ((
cos
. x)
#Z (n
- 1)))
/ (((
sin
. x)
#Z (n
- 1))
* ((
sin
. x)
^2 ))))) by
XCMPLX_1: 78
.= ((
- 1)
* (
- ((n
* ((
cos
. x)
#Z (n
- 1)))
/ (((
sin
. x)
#Z (n
- 1))
* ((
sin
. x)
#Z 2))))) by
FDIFF_7: 1
.= ((
- 1)
* (
- ((n
* ((
cos
. x)
#Z (n
- 1)))
/ ((
sin
. x)
#Z ((n
- 1)
+ 2))))) by
A16,
A18,
PREPOWER: 44
.= ((n
* ((
cos
. x)
#Z (n
- 1)))
/ ((
sin
. x)
#Z (n
+ 1)));
hence thesis;
end;
A23: for x st x
in Z holds (f
. x)
= ((n
* ((
cos
. x)
#Z (n
- 1)))
/ ((
sin
. x)
#Z (n
+ 1)))
proof
let x;
assume
A24: x
in Z;
then (((n
(#) ((
#Z (n
- 1))
*
cos ))
/ ((
#Z (n
+ 1))
*
sin ))
. x)
= (((n
(#) ((
#Z (n
- 1))
*
cos ))
. x)
/ (((
#Z (n
+ 1))
*
sin )
. x)) by
A1,
RFUNCT_1:def 1
.= ((n
* (((
#Z (n
- 1))
*
cos )
. x))
/ (((
#Z (n
+ 1))
*
sin )
. x)) by
VALUED_1: 6
.= ((n
* ((
#Z (n
- 1))
. (
cos
. x)))
/ (((
#Z (n
+ 1))
*
sin )
. x)) by
A6,
A24,
FUNCT_1: 12
.= ((n
* ((
cos
. x)
#Z (n
- 1)))
/ (((
#Z (n
+ 1))
*
sin )
. x)) by
TAYLOR_1:def 1
.= ((n
* ((
cos
. x)
#Z (n
- 1)))
/ ((
#Z (n
+ 1))
. (
sin
. x))) by
A4,
A24,
FUNCT_1: 12
.= ((n
* ((
cos
. x)
#Z (n
- 1)))
/ ((
sin
. x)
#Z (n
+ 1))) by
TAYLOR_1:def 1;
hence thesis by
A1;
end;
A25: for x be
Element of
REAL st x
in (
dom ((
- ((
#Z n)
*
cot ))
`| Z)) holds (((
- ((
#Z n)
*
cot ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
- ((
#Z n)
*
cot ))
`| Z));
then
A26: x
in Z by
A15,
FDIFF_1:def 7;
then (((
- ((
#Z n)
*
cot ))
`| Z)
. x)
= ((n
* ((
cos
. x)
#Z (n
- 1)))
/ ((
sin
. x)
#Z (n
+ 1))) by
A17
.= (f
. x) by
A23,
A26;
hence thesis;
end;
(
dom ((
- ((
#Z n)
*
cot ))
`| Z))
= (
dom f) by
A1,
A15,
FDIFF_1:def 7;
then ((
- ((
#Z n)
*
cot ))
`| Z)
= f by
A25,
PARTFUN1: 5;
hence thesis by
A1,
A11,
A12,
A14,
FDIFF_1: 20,
INTEGRA5: 13;
end;
theorem ::
INTEGR12:29
A
c= Z & Z
c= (
dom (
tan
* f1)) & f
= (((
sin
* f1)
^2 )
/ ((
cos
* f1)
^2 )) & (for x st x
in Z holds (f1
. x)
= (a
* x) & a
<>
0 ) & Z
= (
dom f) implies (
integral (f,A))
= (((((1
/ a)
(#) (
tan
* f1))
- (
id Z))
. (
upper_bound A))
- ((((1
/ a)
(#) (
tan
* f1))
- (
id Z))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & Z
c= (
dom (
tan
* f1)) & f
= (((
sin
* f1)
^2 )
/ ((
cos
* f1)
^2 )) & (for x st x
in Z holds (f1
. x)
= (a
* x) & a
<>
0 ) & Z
= (
dom f);
then
A2: Z
c= (
dom ((1
/ a)
(#) (
tan
* f1))) by
VALUED_1:def 5;
Z
c= ((
dom ((1
/ a)
(#) (
tan
* f1)))
/\ (
dom (
id Z))) by
A2,
XBOOLE_1: 19;
then
A3: Z
c= (
dom (((1
/ a)
(#) (
tan
* f1))
- (
id Z))) by
VALUED_1: 12;
A4: for x st x
in Z holds (f1
. x)
= ((a
* x)
+
0 ) by
A1;
Z
= ((
dom ((
sin
* f1)
^2 ))
/\ ((
dom ((
cos
* f1)
^2 ))
\ (((
cos
* f1)
^2 )
"
{
0 }))) by
A1,
RFUNCT_1:def 1;
then
A5: Z
c= (
dom ((
sin
* f1)
^2 )) & Z
c= ((
dom ((
cos
* f1)
^2 ))
\ (((
cos
* f1)
^2 )
"
{
0 })) by
XBOOLE_1: 18;
then
A6: Z
c= (
dom (
sin
* f1)) by
VALUED_1: 11;
A7: Z
c= (
dom (((
cos
* f1)
^2 )
^ )) by
A5,
RFUNCT_1:def 2;
(
dom (((
cos
* f1)
^2 )
^ ))
c= (
dom ((
cos
* f1)
^2 )) by
RFUNCT_1: 1;
then Z
c= (
dom ((
cos
* f1)
^2 )) by
A7;
then
A8: Z
c= (
dom (
cos
* f1)) by
VALUED_1: 11;
A9: (
sin
* f1)
is_differentiable_on Z by
A6,
A4,
FDIFF_4: 37;
A10: (
cos
* f1)
is_differentiable_on Z by
A4,
A8,
FDIFF_4: 38;
A11: ((
sin
* f1)
^2 )
is_differentiable_on Z by
A9,
FDIFF_2: 20;
A12: ((
cos
* f1)
^2 )
is_differentiable_on Z by
A10,
FDIFF_2: 20;
x
in Z implies (((
cos
* f1)
^2 )
. x)
<>
0
proof
assume x
in Z;
then x
in ((
dom ((
sin
* f1)
^2 ))
/\ ((
dom ((
cos
* f1)
^2 ))
\ (((
cos
* f1)
^2 )
"
{
0 }))) by
A1,
RFUNCT_1:def 1;
then x
in ((
dom ((
cos
* f1)
^2 ))
\ (((
cos
* f1)
^2 )
"
{
0 })) by
XBOOLE_0:def 4;
then x
in (
dom (((
cos
* f1)
^2 )
^ )) by
RFUNCT_1:def 2;
hence thesis by
RFUNCT_1: 3;
end;
then f
is_differentiable_on Z by
A1,
A11,
A12,
FDIFF_2: 21;
then (f
| Z) is
continuous by
FDIFF_1: 25;
then (f
| A) is
continuous by
A1,
FCONT_1: 16;
then
A13: f
is_integrable_on A & (f
| A) is
bounded by
A1,
INTEGRA5: 10,
INTEGRA5: 11;
A14: (((1
/ a)
(#) (
tan
* f1))
- (
id Z))
is_differentiable_on Z by
A1,
A3,
FDIFF_8: 26;
A15: for x st x
in Z holds (f
. x)
= (((
sin
. (a
* x))
^2 )
/ ((
cos
. (a
* x))
^2 ))
proof
let x;
assume
A16: x
in Z;
then ((((
sin
* f1)
^2 )
/ ((
cos
* f1)
^2 ))
. x)
= ((((
sin
* f1)
^2 )
. x)
/ (((
cos
* f1)
^2 )
. x)) by
A1,
RFUNCT_1:def 1
.= ((((
sin
* f1)
. x)
^2 )
/ (((
cos
* f1)
^2 )
. x)) by
VALUED_1: 11
.= ((((
sin
* f1)
. x)
^2 )
/ (((
cos
* f1)
. x)
^2 )) by
VALUED_1: 11
.= (((
sin
. (f1
. x))
^2 )
/ (((
cos
* f1)
. x)
^2 )) by
A6,
A16,
FUNCT_1: 12
.= (((
sin
. (f1
. x))
^2 )
/ ((
cos
. (f1
. x))
^2 )) by
A8,
A16,
FUNCT_1: 12
.= (((
sin
. (a
* x))
^2 )
/ ((
cos
. (f1
. x))
^2 )) by
A16,
A1
.= (((
sin
. (a
* x))
^2 )
/ ((
cos
. (a
* x))
^2 )) by
A16,
A1;
hence thesis by
A1;
end;
A17: for x be
Element of
REAL st x
in (
dom ((((1
/ a)
(#) (
tan
* f1))
- (
id Z))
`| Z)) holds (((((1
/ a)
(#) (
tan
* f1))
- (
id Z))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((((1
/ a)
(#) (
tan
* f1))
- (
id Z))
`| Z));
then
A18: x
in Z by
A14,
FDIFF_1:def 7;
then (((((1
/ a)
(#) (
tan
* f1))
- (
id Z))
`| Z)
. x)
= (((
sin
. (a
* x))
^2 )
/ ((
cos
. (a
* x))
^2 )) by
A1,
A3,
FDIFF_8: 26
.= (f
. x) by
A15,
A18;
hence thesis;
end;
(
dom ((((1
/ a)
(#) (
tan
* f1))
- (
id Z))
`| Z))
= (
dom f) by
A1,
A14,
FDIFF_1:def 7;
then ((((1
/ a)
(#) (
tan
* f1))
- (
id Z))
`| Z)
= f by
A17,
PARTFUN1: 5;
hence thesis by
A1,
A13,
A14,
INTEGRA5: 13;
end;
theorem ::
INTEGR12:30
A
c= Z & Z
c= (
dom (
cot
* f1)) & f
= (((
cos
* f1)
^2 )
/ ((
sin
* f1)
^2 )) & (for x st x
in Z holds (f1
. x)
= (a
* x) & a
<>
0 ) & Z
= (
dom f) implies (
integral (f,A))
= (((((
- (1
/ a))
(#) (
cot
* f1))
- (
id Z))
. (
upper_bound A))
- ((((
- (1
/ a))
(#) (
cot
* f1))
- (
id Z))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & Z
c= (
dom (
cot
* f1)) & f
= (((
cos
* f1)
^2 )
/ ((
sin
* f1)
^2 )) & (for x st x
in Z holds (f1
. x)
= (a
* x) & a
<>
0 ) & Z
= (
dom f);
then
A2: Z
c= (
dom ((
- (1
/ a))
(#) (
cot
* f1))) by
VALUED_1:def 5;
Z
c= ((
dom ((
- (1
/ a))
(#) (
cot
* f1)))
/\ (
dom (
id Z))) by
A2,
XBOOLE_1: 19;
then
A3: Z
c= (
dom (((
- (1
/ a))
(#) (
cot
* f1))
- (
id Z))) by
VALUED_1: 12;
A4: for x st x
in Z holds (f1
. x)
= ((a
* x)
+
0 ) by
A1;
Z
= ((
dom ((
cos
* f1)
^2 ))
/\ ((
dom ((
sin
* f1)
^2 ))
\ (((
sin
* f1)
^2 )
"
{
0 }))) by
A1,
RFUNCT_1:def 1;
then
A5: Z
c= (
dom ((
cos
* f1)
^2 )) & Z
c= ((
dom ((
sin
* f1)
^2 ))
\ (((
sin
* f1)
^2 )
"
{
0 })) by
XBOOLE_1: 18;
then
A6: Z
c= (
dom (
cos
* f1)) by
VALUED_1: 11;
A7: Z
c= (
dom (((
sin
* f1)
^2 )
^ )) by
A5,
RFUNCT_1:def 2;
(
dom (((
sin
* f1)
^2 )
^ ))
c= (
dom ((
sin
* f1)
^2 )) by
RFUNCT_1: 1;
then Z
c= (
dom ((
sin
* f1)
^2 )) by
A7;
then
A8: Z
c= (
dom (
sin
* f1)) by
VALUED_1: 11;
then
A9: (
sin
* f1)
is_differentiable_on Z by
A4,
FDIFF_4: 37;
A10: (
cos
* f1)
is_differentiable_on Z by
A4,
A6,
FDIFF_4: 38;
A11: ((
sin
* f1)
^2 )
is_differentiable_on Z by
A9,
FDIFF_2: 20;
A12: ((
cos
* f1)
^2 )
is_differentiable_on Z by
A10,
FDIFF_2: 20;
x
in Z implies (((
sin
* f1)
^2 )
. x)
<>
0
proof
assume x
in Z;
then x
in ((
dom ((
cos
* f1)
^2 ))
/\ ((
dom ((
sin
* f1)
^2 ))
\ (((
sin
* f1)
^2 )
"
{
0 }))) by
A1,
RFUNCT_1:def 1;
then x
in ((
dom ((
sin
* f1)
^2 ))
\ (((
sin
* f1)
^2 )
"
{
0 })) by
XBOOLE_0:def 4;
then x
in (
dom (((
sin
* f1)
^2 )
^ )) by
RFUNCT_1:def 2;
hence thesis by
RFUNCT_1: 3;
end;
then f
is_differentiable_on Z by
A1,
A11,
A12,
FDIFF_2: 21;
then (f
| Z) is
continuous by
FDIFF_1: 25;
then (f
| A) is
continuous by
A1,
FCONT_1: 16;
then
A13: f
is_integrable_on A & (f
| A) is
bounded by
A1,
INTEGRA5: 10,
INTEGRA5: 11;
A14: (((
- (1
/ a))
(#) (
cot
* f1))
- (
id Z))
is_differentiable_on Z by
A1,
A3,
FDIFF_8: 27;
A15: for x st x
in Z holds (f
. x)
= (((
cos
. (a
* x))
^2 )
/ ((
sin
. (a
* x))
^2 ))
proof
let x;
assume
A16: x
in Z;
then ((((
cos
* f1)
^2 )
/ ((
sin
* f1)
^2 ))
. x)
= ((((
cos
* f1)
^2 )
. x)
/ (((
sin
* f1)
^2 )
. x)) by
A1,
RFUNCT_1:def 1
.= ((((
cos
* f1)
. x)
^2 )
/ (((
sin
* f1)
^2 )
. x)) by
VALUED_1: 11
.= ((((
cos
* f1)
. x)
^2 )
/ (((
sin
* f1)
. x)
^2 )) by
VALUED_1: 11
.= (((
cos
. (f1
. x))
^2 )
/ (((
sin
* f1)
. x)
^2 )) by
A6,
A16,
FUNCT_1: 12
.= (((
cos
. (f1
. x))
^2 )
/ ((
sin
. (f1
. x))
^2 )) by
A8,
A16,
FUNCT_1: 12
.= (((
cos
. (a
* x))
^2 )
/ ((
sin
. (f1
. x))
^2 )) by
A16,
A1
.= (((
cos
. (a
* x))
^2 )
/ ((
sin
. (a
* x))
^2 )) by
A16,
A1;
hence thesis by
A1;
end;
A17: for x be
Element of
REAL st x
in (
dom ((((
- (1
/ a))
(#) (
cot
* f1))
- (
id Z))
`| Z)) holds (((((
- (1
/ a))
(#) (
cot
* f1))
- (
id Z))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((((
- (1
/ a))
(#) (
cot
* f1))
- (
id Z))
`| Z));
then
A18: x
in Z by
A14,
FDIFF_1:def 7;
then (((((
- (1
/ a))
(#) (
cot
* f1))
- (
id Z))
`| Z)
. x)
= (((
cos
. (a
* x))
^2 )
/ ((
sin
. (a
* x))
^2 )) by
A1,
A3,
FDIFF_8: 27
.= (f
. x) by
A15,
A18;
hence thesis;
end;
(
dom ((((
- (1
/ a))
(#) (
cot
* f1))
- (
id Z))
`| Z))
= (
dom f) by
A1,
A14,
FDIFF_1:def 7;
then ((((
- (1
/ a))
(#) (
cot
* f1))
- (
id Z))
`| Z)
= f by
A17,
PARTFUN1: 5;
hence thesis by
A1,
A13,
A14,
INTEGRA5: 13;
end;
theorem ::
INTEGR12:31
A
c= Z & (for x st x
in Z holds (f1
. x)
= ((a
* x)
+ b)) & Z
= (
dom f) & f
= ((a
(#) (
sin
/
cos ))
+ (f1
/ (
cos
^2 ))) implies (
integral (f,A))
= (((f1
(#)
tan )
. (
upper_bound A))
- ((f1
(#)
tan )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f1
. x)
= ((a
* x)
+ b)) & Z
= (
dom f) & f
= ((a
(#) (
sin
/
cos ))
+ (f1
/ (
cos
^2 )));
then
A2: Z
= ((
dom (a
(#) (
sin
/
cos )))
/\ (
dom (f1
/ (
cos
^2 )))) by
VALUED_1:def 1;
then
A3: Z
c= (
dom (a
(#) (
sin
/
cos ))) by
XBOOLE_1: 18;
then
A4: Z
c= (
dom (
sin
/
cos )) by
VALUED_1:def 5;
A5: Z
c= (
dom (f1
/ (
cos
^2 ))) by
A2,
XBOOLE_1: 18;
(
dom (f1
/ (
cos
^2 )))
= ((
dom f1)
/\ ((
dom (
cos
^2 ))
\ ((
cos
^2 )
"
{
0 }))) by
RFUNCT_1:def 1;
then
A6: Z
c= (
dom f1) by
A5,
XBOOLE_1: 18;
then Z
c= ((
dom f1)
/\ (
dom
tan )) by
A4,
XBOOLE_1: 19;
then
A7: Z
c= (
dom (f1
(#)
tan )) by
VALUED_1:def 4;
for x st x
in Z holds (
sin
/
cos )
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
cos
. x)
<>
0 by
A4,
FDIFF_8: 1;
hence thesis by
FDIFF_7: 46;
end;
then (
sin
/
cos )
is_differentiable_on Z by
A4,
FDIFF_1: 9;
then
A8: (a
(#) (
sin
/
cos ))
is_differentiable_on Z by
A3,
FDIFF_1: 20;
A9: f1
is_differentiable_on Z by
A1,
A6,
FDIFF_1: 23;
cos
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 67;
then
A10: (
cos
^2 )
is_differentiable_on Z by
FDIFF_2: 20;
x
in Z implies ((
cos
^2 )
. x)
<>
0
proof
assume x
in Z;
then x
in (
dom (f1
/ (
cos
^2 ))) by
A5;
then x
in ((
dom f1)
/\ ((
dom (
cos
^2 ))
\ ((
cos
^2 )
"
{
0 }))) by
RFUNCT_1:def 1;
then x
in ((
dom (
cos
^2 ))
\ ((
cos
^2 )
"
{
0 })) by
XBOOLE_0:def 4;
then x
in (
dom ((
cos
^2 )
^ )) by
RFUNCT_1:def 2;
hence thesis by
RFUNCT_1: 3;
end;
then (f1
/ (
cos
^2 ))
is_differentiable_on Z by
A9,
A10,
FDIFF_2: 21;
then (f
| Z) is
continuous by
A1,
A8,
FDIFF_1: 18,
FDIFF_1: 25;
then (f
| A) is
continuous by
A1,
FCONT_1: 16;
then
A11: f
is_integrable_on A & (f
| A) is
bounded by
A1,
INTEGRA5: 10,
INTEGRA5: 11;
A12: (f1
(#)
tan )
is_differentiable_on Z by
A1,
A7,
FDIFF_8: 28;
A13: for x st x
in Z holds (f
. x)
= (((a
* (
sin
. x))
/ (
cos
. x))
+ (((a
* x)
+ b)
/ ((
cos
. x)
^2 )))
proof
let x;
assume
A14: x
in Z;
then (((a
(#) (
sin
/
cos ))
+ (f1
/ (
cos
^2 )))
. x)
= (((a
(#) (
sin
/
cos ))
. x)
+ ((f1
/ (
cos
^2 ))
. x)) by
A1,
VALUED_1:def 1
.= ((a
* ((
sin
/
cos )
. x))
+ ((f1
/ (
cos
^2 ))
. x)) by
VALUED_1: 6
.= ((a
* ((
sin
. x)
/ (
cos
. x)))
+ ((f1
/ (
cos
^2 ))
. x)) by
A14,
A4,
RFUNCT_1:def 1
.= (((a
* (
sin
. x))
/ (
cos
. x))
+ ((f1
. x)
/ ((
cos
^2 )
. x))) by
A14,
A5,
RFUNCT_1:def 1
.= (((a
* (
sin
. x))
/ (
cos
. x))
+ ((f1
. x)
/ ((
cos
. x)
^2 ))) by
VALUED_1: 11
.= (((a
* (
sin
. x))
/ (
cos
. x))
+ (((a
* x)
+ b)
/ ((
cos
. x)
^2 ))) by
A1,
A14;
hence thesis by
A1;
end;
A15: for x be
Element of
REAL st x
in (
dom ((f1
(#)
tan )
`| Z)) holds (((f1
(#)
tan )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((f1
(#)
tan )
`| Z));
then
A16: x
in Z by
A12,
FDIFF_1:def 7;
then (((f1
(#)
tan )
`| Z)
. x)
= (((a
* (
sin
. x))
/ (
cos
. x))
+ (((a
* x)
+ b)
/ ((
cos
. x)
^2 ))) by
A1,
A7,
FDIFF_8: 28
.= (f
. x) by
A13,
A16;
hence thesis;
end;
(
dom ((f1
(#)
tan )
`| Z))
= (
dom f) by
A1,
A12,
FDIFF_1:def 7;
then ((f1
(#)
tan )
`| Z)
= f by
A15,
PARTFUN1: 5;
hence thesis by
A1,
A11,
A7,
FDIFF_8: 28,
INTEGRA5: 13;
end;
theorem ::
INTEGR12:32
A
c= Z & (for x st x
in Z holds (f1
. x)
= ((a
* x)
+ b)) & Z
= (
dom f) & f
= ((a
(#) (
cos
/
sin ))
- (f1
/ (
sin
^2 ))) implies (
integral (f,A))
= (((f1
(#)
cot )
. (
upper_bound A))
- ((f1
(#)
cot )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f1
. x)
= ((a
* x)
+ b)) & Z
= (
dom f) & f
= ((a
(#) (
cos
/
sin ))
- (f1
/ (
sin
^2 )));
then
A2: Z
= ((
dom (a
(#) (
cos
/
sin )))
/\ (
dom (
- (f1
/ (
sin
^2 ))))) by
VALUED_1:def 1;
then
A3: Z
c= (
dom (a
(#) (
cos
/
sin ))) by
XBOOLE_1: 18;
then
A4: Z
c= (
dom (
cos
/
sin )) by
VALUED_1:def 5;
Z
c= (
dom (
- (f1
/ (
sin
^2 )))) by
A2,
XBOOLE_1: 18;
then
A5: Z
c= (
dom (f1
/ (
sin
^2 ))) by
VALUED_1: 8;
(
dom (f1
/ (
sin
^2 )))
= ((
dom f1)
/\ ((
dom (
sin
^2 ))
\ ((
sin
^2 )
"
{
0 }))) by
RFUNCT_1:def 1;
then
A6: Z
c= (
dom f1) by
A5,
XBOOLE_1: 18;
then Z
c= ((
dom f1)
/\ (
dom
cot )) by
A4,
XBOOLE_1: 19;
then
A7: Z
c= (
dom (f1
(#)
cot )) by
VALUED_1:def 4;
for x st x
in Z holds (
cos
/
sin )
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
sin
. x)
<>
0 by
A4,
FDIFF_8: 2;
hence thesis by
FDIFF_7: 47;
end;
then (
cos
/
sin )
is_differentiable_on Z by
A4,
FDIFF_1: 9;
then
A8: (a
(#) (
cos
/
sin ))
is_differentiable_on Z by
A3,
FDIFF_1: 20;
A9: f1
is_differentiable_on Z by
A1,
A6,
FDIFF_1: 23;
sin
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 68;
then
A10: (
sin
^2 )
is_differentiable_on Z by
FDIFF_2: 20;
x
in Z implies ((
sin
^2 )
. x)
<>
0
proof
assume x
in Z;
then x
in (
dom (f1
/ (
sin
^2 ))) by
A5;
then x
in ((
dom f1)
/\ ((
dom (
sin
^2 ))
\ ((
sin
^2 )
"
{
0 }))) by
RFUNCT_1:def 1;
then x
in ((
dom (
sin
^2 ))
\ ((
sin
^2 )
"
{
0 })) by
XBOOLE_0:def 4;
then x
in (
dom ((
sin
^2 )
^ )) by
RFUNCT_1:def 2;
hence thesis by
RFUNCT_1: 3;
end;
then (f1
/ (
sin
^2 ))
is_differentiable_on Z by
A9,
A10,
FDIFF_2: 21;
then (f
| Z) is
continuous by
A1,
A8,
FDIFF_1: 19,
FDIFF_1: 25;
then (f
| A) is
continuous by
A1,
FCONT_1: 16;
then
A11: f
is_integrable_on A & (f
| A) is
bounded by
A1,
INTEGRA5: 10,
INTEGRA5: 11;
A12: (f1
(#)
cot )
is_differentiable_on Z by
A1,
A7,
FDIFF_8: 29;
A13: for x st x
in Z holds (f
. x)
= (((a
* (
cos
. x))
/ (
sin
. x))
- (((a
* x)
+ b)
/ ((
sin
. x)
^2 )))
proof
let x;
assume
A14: x
in Z;
then (((a
(#) (
cos
/
sin ))
- (f1
/ (
sin
^2 )))
. x)
= (((a
(#) (
cos
/
sin ))
. x)
- ((f1
/ (
sin
^2 ))
. x)) by
A1,
VALUED_1: 13
.= ((a
* ((
cos
/
sin )
. x))
- ((f1
/ (
sin
^2 ))
. x)) by
VALUED_1: 6
.= ((a
* ((
cos
. x)
/ (
sin
. x)))
- ((f1
/ (
sin
^2 ))
. x)) by
A14,
A4,
RFUNCT_1:def 1
.= (((a
* (
cos
. x))
/ (
sin
. x))
- ((f1
. x)
/ ((
sin
^2 )
. x))) by
A14,
A5,
RFUNCT_1:def 1
.= (((a
* (
cos
. x))
/ (
sin
. x))
- ((f1
. x)
/ ((
sin
. x)
^2 ))) by
VALUED_1: 11
.= (((a
* (
cos
. x))
/ (
sin
. x))
- (((a
* x)
+ b)
/ ((
sin
. x)
^2 ))) by
A1,
A14;
hence thesis by
A1;
end;
A15: for x be
Element of
REAL st x
in (
dom ((f1
(#)
cot )
`| Z)) holds (((f1
(#)
cot )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((f1
(#)
cot )
`| Z));
then
A16: x
in Z by
A12,
FDIFF_1:def 7;
then (((f1
(#)
cot )
`| Z)
. x)
= (((a
* (
cos
. x))
/ (
sin
. x))
- (((a
* x)
+ b)
/ ((
sin
. x)
^2 ))) by
A1,
A7,
FDIFF_8: 29
.= (f
. x) by
A13,
A16;
hence thesis;
end;
(
dom ((f1
(#)
cot )
`| Z))
= (
dom f) by
A1,
A12,
FDIFF_1:def 7;
then ((f1
(#)
cot )
`| Z)
= f by
A15,
PARTFUN1: 5;
hence thesis by
A1,
A11,
A7,
FDIFF_8: 29,
INTEGRA5: 13;
end;
theorem ::
INTEGR12:33
A
c= Z & (for x st x
in Z holds (f
. x)
= (((
sin
. x)
^2 )
/ ((
cos
. x)
^2 ))) & Z
c= (
dom (
tan
- (
id Z))) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
tan
- (
id Z))
. (
upper_bound A))
- ((
tan
- (
id Z))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= (((
sin
. x)
^2 )
/ ((
cos
. x)
^2 ))) & Z
c= (
dom (
tan
- (
id Z))) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: (
tan
- (
id Z))
is_differentiable_on Z by
A1,
FDIFF_8: 24;
A4: for x be
Element of
REAL st x
in (
dom ((
tan
- (
id Z))
`| Z)) holds (((
tan
- (
id Z))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
tan
- (
id Z))
`| Z));
then
A5: x
in Z by
A3,
FDIFF_1:def 7;
then (((
tan
- (
id Z))
`| Z)
. x)
= (((
sin
. x)
^2 )
/ ((
cos
. x)
^2 )) by
A1,
FDIFF_8: 24
.= (f
. x) by
A1,
A5;
hence thesis;
end;
(
dom ((
tan
- (
id Z))
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then ((
tan
- (
id Z))
`| Z)
= f by
A4,
PARTFUN1: 5;
hence thesis by
A1,
A2,
FDIFF_8: 24,
INTEGRA5: 13;
end;
theorem ::
INTEGR12:34
A
c= Z & (for x st x
in Z holds (f
. x)
= (((
cos
. x)
^2 )
/ ((
sin
. x)
^2 ))) & Z
c= (
dom ((
-
cot )
- (
id Z))) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= ((((
-
cot )
- (
id Z))
. (
upper_bound A))
- (((
-
cot )
- (
id Z))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= (((
cos
. x)
^2 )
/ ((
sin
. x)
^2 ))) & Z
c= (
dom ((
-
cot )
- (
id Z))) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: ((
-
cot )
- (
id Z))
is_differentiable_on Z by
A1,
FDIFF_8: 25;
A4: for x be
Element of
REAL st x
in (
dom (((
-
cot )
- (
id Z))
`| Z)) holds ((((
-
cot )
- (
id Z))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((
-
cot )
- (
id Z))
`| Z));
then
A5: x
in Z by
A3,
FDIFF_1:def 7;
then ((((
-
cot )
- (
id Z))
`| Z)
. x)
= (((
cos
. x)
^2 )
/ ((
sin
. x)
^2 )) by
A1,
FDIFF_8: 25
.= (f
. x) by
A1,
A5;
hence thesis;
end;
(
dom (((
-
cot )
- (
id Z))
`| Z))
= (
dom f) by
A1,
A3,
FDIFF_1:def 7;
then (((
-
cot )
- (
id Z))
`| Z)
= f by
A4,
PARTFUN1: 5;
hence thesis by
A1,
A2,
FDIFF_8: 25,
INTEGRA5: 13;
end;
theorem ::
INTEGR12:35
A
c= Z & (for x st x
in Z holds (f
. x)
= (1
/ (x
* (1
+ ((
ln
. x)
^2 )))) & (
ln
. x)
> (
- 1) & (
ln
. x)
< 1) & Z
c= (
dom (
arctan
*
ln )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
arctan
*
ln )
. (
upper_bound A))
- ((
arctan
*
ln )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= (1
/ (x
* (1
+ ((
ln
. x)
^2 )))) & (
ln
. x)
> (
- 1) & (
ln
. x)
< 1) & Z
c= (
dom (
arctan
*
ln )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: for x st x
in Z holds (
ln
. x)
> (
- 1) & (
ln
. x)
< 1 by
A1;
then
A4: (
arctan
*
ln )
is_differentiable_on Z by
A1,
SIN_COS9: 117;
A5: for x be
Element of
REAL st x
in (
dom ((
arctan
*
ln )
`| Z)) holds (((
arctan
*
ln )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
arctan
*
ln )
`| Z));
then
A6: x
in Z by
A4,
FDIFF_1:def 7;
then (((
arctan
*
ln )
`| Z)
. x)
= (1
/ (x
* (1
+ ((
ln
. x)
^2 )))) by
A1,
A3,
SIN_COS9: 117
.= (f
. x) by
A1,
A6;
hence thesis;
end;
(
dom ((
arctan
*
ln )
`| Z))
= (
dom f) by
A1,
A4,
FDIFF_1:def 7;
then ((
arctan
*
ln )
`| Z)
= f by
A5,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A4,
INTEGRA5: 13;
end;
theorem ::
INTEGR12:36
A
c= Z & (for x st x
in Z holds (f
. x)
= (
- (1
/ (x
* (1
+ ((
ln
. x)
^2 ))))) & (
ln
. x)
> (
- 1) & (
ln
. x)
< 1) & Z
c= (
dom (
arccot
*
ln )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
arccot
*
ln )
. (
upper_bound A))
- ((
arccot
*
ln )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= (
- (1
/ (x
* (1
+ ((
ln
. x)
^2 ))))) & (
ln
. x)
> (
- 1) & (
ln
. x)
< 1) & Z
c= (
dom (
arccot
*
ln )) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: for x st x
in Z holds (
ln
. x)
> (
- 1) & (
ln
. x)
< 1 by
A1;
then
A4: (
arccot
*
ln )
is_differentiable_on Z by
A1,
SIN_COS9: 118;
A5: for x be
Element of
REAL st x
in (
dom ((
arccot
*
ln )
`| Z)) holds (((
arccot
*
ln )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
arccot
*
ln )
`| Z));
then
A6: x
in Z by
A4,
FDIFF_1:def 7;
then (((
arccot
*
ln )
`| Z)
. x)
= (
- (1
/ (x
* (1
+ ((
ln
. x)
^2 ))))) by
A1,
A3,
SIN_COS9: 118
.= (f
. x) by
A1,
A6;
hence thesis;
end;
(
dom ((
arccot
*
ln )
`| Z))
= (
dom f) by
A1,
A4,
FDIFF_1:def 7;
then ((
arccot
*
ln )
`| Z)
= f by
A5,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A4,
INTEGRA5: 13;
end;
theorem ::
INTEGR12:37
A
c= Z & (for x st x
in Z holds (f
. x)
= (a
/ (
sqrt (1
- (((a
* x)
+ b)
^2 )))) & (f1
. x)
= ((a
* x)
+ b) & (f1
. x)
> (
- 1) & (f1
. x)
< 1) & Z
c= (
dom (
arcsin
* f1)) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
arcsin
* f1)
. (
upper_bound A))
- ((
arcsin
* f1)
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= (a
/ (
sqrt (1
- (((a
* x)
+ b)
^2 )))) & (f1
. x)
= ((a
* x)
+ b) & (f1
. x)
> (
- 1) & (f1
. x)
< 1) & Z
c= (
dom (
arcsin
* f1)) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: for x st x
in Z holds (f1
. x)
= ((a
* x)
+ b) & (f1
. x)
> (
- 1) & (f1
. x)
< 1 by
A1;
then
A4: (
arcsin
* f1)
is_differentiable_on Z by
A1,
FDIFF_7: 14;
A5: for x be
Element of
REAL st x
in (
dom ((
arcsin
* f1)
`| Z)) holds (((
arcsin
* f1)
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
arcsin
* f1)
`| Z));
then
A6: x
in Z by
A4,
FDIFF_1:def 7;
then (((
arcsin
* f1)
`| Z)
. x)
= (a
/ (
sqrt (1
- (((a
* x)
+ b)
^2 )))) by
A1,
A3,
FDIFF_7: 14
.= (f
. x) by
A1,
A6;
hence thesis;
end;
(
dom ((
arcsin
* f1)
`| Z))
= (
dom f) by
A1,
A4,
FDIFF_1:def 7;
then ((
arcsin
* f1)
`| Z)
= f by
A5,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A4,
INTEGRA5: 13;
end;
theorem ::
INTEGR12:38
A
c= Z & (for x st x
in Z holds (f
. x)
= (a
/ (
sqrt (1
- (((a
* x)
+ b)
^2 )))) & (f1
. x)
= ((a
* x)
+ b) & (f1
. x)
> (
- 1) & (f1
. x)
< 1) & Z
c= (
dom (
arccos
* f1)) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
- (
arccos
* f1))
. (
upper_bound A))
- ((
- (
arccos
* f1))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & (for x st x
in Z holds (f
. x)
= (a
/ (
sqrt (1
- (((a
* x)
+ b)
^2 )))) & (f1
. x)
= ((a
* x)
+ b) & (f1
. x)
> (
- 1) & (f1
. x)
< 1) & Z
c= (
dom (
arccos
* f1)) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: for x st x
in Z holds (f1
. x)
= ((a
* x)
+ b) by
A1;
A4: for x st x
in Z holds (f1
. x)
= ((a
* x)
+ b) & (f1
. x)
> (
- 1) & (f1
. x)
< 1 by
A1;
A5: Z
c= (
dom (
- (
arccos
* f1))) by
A1,
VALUED_1: 8;
A6: (
arccos
* f1)
is_differentiable_on Z by
A1,
A4,
FDIFF_7: 15;
then
A7: ((
- 1)
(#) (
arccos
* f1))
is_differentiable_on Z by
A5,
FDIFF_1: 20;
for y be
object st y
in Z holds y
in (
dom f1) by
A1,
FUNCT_1: 11;
then
A8: Z
c= (
dom f1);
then
A9: f1
is_differentiable_on Z & for x st x
in Z holds ((f1
`| Z)
. x)
= a by
A3,
FDIFF_1: 23;
A10: for x st x
in Z holds (((
- (
arccos
* f1))
`| Z)
. x)
= (a
/ (
sqrt (1
- (((a
* x)
+ b)
^2 ))))
proof
let x;
assume
A11: x
in Z;
then
A12: f1
is_differentiable_in x by
A9,
FDIFF_1: 9;
A13: (f1
. x)
> (
- 1) & (f1
. x)
< 1 by
A1,
A11;
A14: (
arccos
* f1)
is_differentiable_in x by
A6,
A11,
FDIFF_1: 9;
(((
- (
arccos
* f1))
`| Z)
. x)
= (
diff ((
- (
arccos
* f1)),x)) by
A7,
A11,
FDIFF_1:def 7
.= ((
- 1)
* (
diff ((
arccos
* f1),x))) by
A14,
FDIFF_1: 15
.= ((
- 1)
* (
- ((
diff (f1,x))
/ (
sqrt (1
- ((f1
. x)
^2 )))))) by
A12,
A13,
FDIFF_7: 7
.= ((
- 1)
* (
- (((f1
`| Z)
. x)
/ (
sqrt (1
- ((f1
. x)
^2 )))))) by
A9,
A11,
FDIFF_1:def 7
.= ((
- 1)
* (
- (a
/ (
sqrt (1
- ((f1
. x)
^2 )))))) by
A3,
A8,
A11,
FDIFF_1: 23
.= (a
/ (
sqrt (1
- (((a
* x)
+ b)
^2 )))) by
A1,
A11;
hence thesis;
end;
A15: for x be
Element of
REAL st x
in (
dom ((
- (
arccos
* f1))
`| Z)) holds (((
- (
arccos
* f1))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
- (
arccos
* f1))
`| Z));
then
A16: x
in Z by
A7,
FDIFF_1:def 7;
then (((
- (
arccos
* f1))
`| Z)
. x)
= (a
/ (
sqrt (1
- (((a
* x)
+ b)
^2 )))) by
A10
.= (f
. x) by
A1,
A16;
hence thesis;
end;
(
dom ((
- (
arccos
* f1))
`| Z))
= (
dom f) by
A1,
A7,
FDIFF_1:def 7;
then ((
- (
arccos
* f1))
`| Z)
= f by
A15,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A7,
INTEGRA5: 13;
end;
theorem ::
INTEGR12:39
A
c= Z & f1
= (g
- f2) & f2
= (
#Z 2) & (for x st x
in Z holds (f
. x)
= (x
* ((1
- (x
#Z 2))
#R (
- (1
/ 2)))) & (g
. x)
= 1 & (f1
. x)
>
0 ) & Z
c= (
dom ((
#R (1
/ 2))
* f1)) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
- ((
#R (1
/ 2))
* f1))
. (
upper_bound A))
- ((
- ((
#R (1
/ 2))
* f1))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & f1
= (g
- f2) & f2
= (
#Z 2) & (for x st x
in Z holds (f
. x)
= (x
* ((1
- (x
#Z 2))
#R (
- (1
/ 2)))) & (g
. x)
= 1 & (f1
. x)
>
0 ) & Z
c= (
dom ((
#R (1
/ 2))
* f1)) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: for x st x
in Z holds (g
. x)
= 1 & (f1
. x)
>
0 by
A1;
A4: Z
c= (
dom (
- ((
#R (1
/ 2))
* f1))) by
A1,
VALUED_1: 8;
for y be
object st y
in Z holds y
in (
dom f1) by
A1,
FUNCT_1: 11;
then
A5: Z
c= (
dom (g
+ ((
- 1)
(#) f2))) by
A1;
A6: ((
#R (1
/ 2))
* f1)
is_differentiable_on Z by
A1,
A3,
FDIFF_7: 22;
then
A7: ((
- 1)
(#) ((
#R (1
/ 2))
* f1))
is_differentiable_on Z by
A4,
FDIFF_1: 20;
A8: f2
= (
#Z 2) & for x st x
in Z holds (g
. x)
= (1
+ (
0
* x)) by
A1;
then
A9: f1
is_differentiable_on Z & for x st x
in Z holds ((f1
`| Z)
. x)
= (
0
+ ((2
* (
- 1))
* x)) by
A1,
A5,
FDIFF_4: 12;
A10: for x st x
in Z holds (((
- ((
#R (1
/ 2))
* f1))
`| Z)
. x)
= (x
* ((1
- (x
#Z 2))
#R (
- (1
/ 2))))
proof
let x;
assume
A11: x
in Z;
then
A12: x
in (
dom (g
- f2)) by
A1,
FUNCT_1: 11;
A13: f1
is_differentiable_in x by
A9,
A11,
FDIFF_1: 9;
A14: ((g
- f2)
. x)
= ((g
. x)
- (f2
. x)) by
A12,
VALUED_1: 13
.= (1
- (f2
. x)) by
A1,
A11
.= (1
- (x
#Z 2)) by
A1,
TAYLOR_1:def 1;
then
A15: (f1
. x)
= (1
- (x
#Z 2)) & (f1
. x)
>
0 by
A1,
A11;
A16: ((
#R (1
/ 2))
* f1)
is_differentiable_in x by
A6,
A11,
FDIFF_1: 9;
(((
- ((
#R (1
/ 2))
* f1))
`| Z)
. x)
= (
diff ((
- ((
#R (1
/ 2))
* f1)),x)) by
A7,
A11,
FDIFF_1:def 7
.= ((
- 1)
* (
diff (((
#R (1
/ 2))
* f1),x))) by
A16,
FDIFF_1: 15
.= ((
- 1)
* (((1
/ 2)
* ((f1
. x)
#R ((1
/ 2)
- 1)))
* (
diff (f1,x)))) by
A13,
A15,
TAYLOR_1: 22
.= ((
- 1)
* (((1
/ 2)
* ((f1
. x)
#R ((1
/ 2)
- 1)))
* ((f1
`| Z)
. x))) by
A9,
A11,
FDIFF_1:def 7
.= ((
- 1)
* (((1
/ 2)
* ((f1
. x)
#R ((1
/ 2)
- 1)))
* (
0
+ ((2
* (
- 1))
* x)))) by
A1,
A5,
A8,
A11,
FDIFF_4: 12
.= (x
* ((1
- (x
#Z 2))
#R (
- (1
/ 2)))) by
A1,
A14;
hence thesis;
end;
A17: for x be
Element of
REAL st x
in (
dom ((
- ((
#R (1
/ 2))
* f1))
`| Z)) holds (((
- ((
#R (1
/ 2))
* f1))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
- ((
#R (1
/ 2))
* f1))
`| Z));
then
A18: x
in Z by
A7,
FDIFF_1:def 7;
then (((
- ((
#R (1
/ 2))
* f1))
`| Z)
. x)
= (x
* ((1
- (x
#Z 2))
#R (
- (1
/ 2)))) by
A10
.= (f
. x) by
A1,
A18;
hence thesis;
end;
(
dom ((
- ((
#R (1
/ 2))
* f1))
`| Z))
= (
dom f) by
A1,
A7,
FDIFF_1:def 7;
then ((
- ((
#R (1
/ 2))
* f1))
`| Z)
= f by
A17,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A7,
INTEGRA5: 13;
end;
theorem ::
INTEGR12:40
A
c= Z & g
= (f1
- f2) & f2
= (
#Z 2) & (for x st x
in Z holds (f
. x)
= (x
* (((a
^2 )
- (x
#Z 2))
#R (
- (1
/ 2)))) & (f1
. x)
= (a
^2 ) & (g
. x)
>
0 ) & Z
c= (
dom ((
#R (1
/ 2))
* g)) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
- ((
#R (1
/ 2))
* g))
. (
upper_bound A))
- ((
- ((
#R (1
/ 2))
* g))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & g
= (f1
- f2) & f2
= (
#Z 2) & (for x st x
in Z holds (f
. x)
= (x
* (((a
^2 )
- (x
#Z 2))
#R (
- (1
/ 2)))) & (f1
. x)
= (a
^2 ) & (g
. x)
>
0 ) & Z
c= (
dom ((
#R (1
/ 2))
* g)) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: f
is_integrable_on A & (f
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11;
A3: for x st x
in Z holds (f1
. x)
= (a
^2 ) & (g
. x)
>
0 by
A1;
A4: Z
c= (
dom (
- ((
#R (1
/ 2))
* g))) by
A1,
VALUED_1: 8;
for y be
object st y
in Z holds y
in (
dom g) by
A1,
FUNCT_1: 11;
then
A5: Z
c= (
dom (f1
+ ((
- 1)
(#) f2))) by
A1;
A6: ((
#R (1
/ 2))
* g)
is_differentiable_on Z by
A1,
A3,
FDIFF_7: 27;
then
A7: ((
- 1)
(#) ((
#R (1
/ 2))
* g))
is_differentiable_on Z by
A4,
FDIFF_1: 20;
A8: f2
= (
#Z 2) & for x st x
in Z holds (f1
. x)
= ((a
^2 )
+ (
0
* x)) by
A1;
then
A9: g
is_differentiable_on Z & for x st x
in Z holds ((g
`| Z)
. x)
= (
0
+ ((2
* (
- 1))
* x)) by
A1,
A5,
FDIFF_4: 12;
A10: for x st x
in Z holds (((
- ((
#R (1
/ 2))
* g))
`| Z)
. x)
= (x
* (((a
^2 )
- (x
#Z 2))
#R (
- (1
/ 2))))
proof
let x;
assume
A11: x
in Z;
then
A12: x
in (
dom (f1
- f2)) by
A1,
FUNCT_1: 11;
A13: g
is_differentiable_in x by
A9,
A11,
FDIFF_1: 9;
A14: ((f1
- f2)
. x)
= ((f1
. x)
- (f2
. x)) by
A12,
VALUED_1: 13
.= ((a
^2 )
- (f2
. x)) by
A1,
A11
.= ((a
^2 )
- (x
#Z 2)) by
A1,
TAYLOR_1:def 1;
then
A15: (g
. x)
= ((a
^2 )
- (x
#Z 2)) & (g
. x)
>
0 by
A1,
A11;
A16: ((
#R (1
/ 2))
* g)
is_differentiable_in x by
A6,
A11,
FDIFF_1: 9;
(((
- ((
#R (1
/ 2))
* g))
`| Z)
. x)
= (
diff ((
- ((
#R (1
/ 2))
* g)),x)) by
A7,
A11,
FDIFF_1:def 7
.= ((
- 1)
* (
diff (((
#R (1
/ 2))
* g),x))) by
A16,
FDIFF_1: 15
.= ((
- 1)
* (((1
/ 2)
* ((g
. x)
#R ((1
/ 2)
- 1)))
* (
diff (g,x)))) by
A13,
A15,
TAYLOR_1: 22
.= ((
- 1)
* (((1
/ 2)
* ((g
. x)
#R ((1
/ 2)
- 1)))
* ((g
`| Z)
. x))) by
A9,
A11,
FDIFF_1:def 7
.= ((
- 1)
* (((1
/ 2)
* ((g
. x)
#R ((1
/ 2)
- 1)))
* (
0
+ ((2
* (
- 1))
* x)))) by
A1,
A5,
A8,
A11,
FDIFF_4: 12
.= (x
* (((a
^2 )
- (x
#Z 2))
#R (
- (1
/ 2)))) by
A1,
A14;
hence thesis;
end;
A17: for x be
Element of
REAL st x
in (
dom ((
- ((
#R (1
/ 2))
* g))
`| Z)) holds (((
- ((
#R (1
/ 2))
* g))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
- ((
#R (1
/ 2))
* g))
`| Z));
then
A18: x
in Z by
A7,
FDIFF_1:def 7;
then (((
- ((
#R (1
/ 2))
* g))
`| Z)
. x)
= (x
* (((a
^2 )
- (x
#Z 2))
#R (
- (1
/ 2)))) by
A10
.= (f
. x) by
A1,
A18;
hence thesis;
end;
(
dom ((
- ((
#R (1
/ 2))
* g))
`| Z))
= (
dom f) by
A1,
A7,
FDIFF_1:def 7;
then ((
- ((
#R (1
/ 2))
* g))
`| Z)
= f by
A17,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A7,
INTEGRA5: 13;
end;
theorem ::
INTEGR12:41
A
c= Z & n
>
0 & (for x st x
in Z holds (f
. x)
= ((
cos
. x)
/ ((
sin
. x)
#Z (n
+ 1))) & (
sin
. x)
<>
0 ) & Z
c= (
dom ((
#Z n)
* (
sin
^ ))) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= ((((
- (1
/ n))
(#) ((
#Z n)
* (
sin
^ )))
. (
upper_bound A))
- (((
- (1
/ n))
(#) ((
#Z n)
* (
sin
^ )))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & n
>
0 & (for x st x
in Z holds (f
. x)
= ((
cos
. x)
/ ((
sin
. x)
#Z (n
+ 1))) & (
sin
. x)
<>
0 ) & Z
c= (
dom ((
#Z n)
* (
sin
^ ))) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: Z
c= (
dom ((
- (1
/ n))
(#) ((
#Z n)
* (
sin
^ )))) by
VALUED_1:def 5;
A3: f
is_integrable_on A & (f
| A) is
bounded by
A1,
INTEGRA5: 10,
INTEGRA5: 11;
A4: for x st x
in Z holds (
sin
. x)
<>
0 by
A1;
then
A5: ((
- (1
/ n))
(#) ((
#Z n)
* (
sin
^ )))
is_differentiable_on Z by
A1,
A2,
FDIFF_7: 30;
A6: for x be
Element of
REAL st x
in (
dom (((
- (1
/ n))
(#) ((
#Z n)
* (
sin
^ )))
`| Z)) holds ((((
- (1
/ n))
(#) ((
#Z n)
* (
sin
^ )))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((
- (1
/ n))
(#) ((
#Z n)
* (
sin
^ )))
`| Z));
then
A7: x
in Z by
A5,
FDIFF_1:def 7;
then ((((
- (1
/ n))
(#) ((
#Z n)
* (
sin
^ )))
`| Z)
. x)
= ((
cos
. x)
/ ((
sin
. x)
#Z (n
+ 1))) by
A1,
A2,
A4,
FDIFF_7: 30
.= (f
. x) by
A1,
A7;
hence thesis;
end;
(
dom (((
- (1
/ n))
(#) ((
#Z n)
* (
sin
^ )))
`| Z))
= (
dom f) by
A1,
A5,
FDIFF_1:def 7;
then (((
- (1
/ n))
(#) ((
#Z n)
* (
sin
^ )))
`| Z)
= f by
A6,
PARTFUN1: 5;
hence thesis by
A1,
A3,
A5,
INTEGRA5: 13;
end;
theorem ::
INTEGR12:42
A
c= Z & n
>
0 & (for x st x
in Z holds (f
. x)
= ((
sin
. x)
/ ((
cos
. x)
#Z (n
+ 1))) & (
cos
. x)
<>
0 ) & Z
c= (
dom ((
#Z n)
* (
cos
^ ))) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= ((((1
/ n)
(#) ((
#Z n)
* (
cos
^ )))
. (
upper_bound A))
- (((1
/ n)
(#) ((
#Z n)
* (
cos
^ )))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & n
>
0 & (for x st x
in Z holds (f
. x)
= ((
sin
. x)
/ ((
cos
. x)
#Z (n
+ 1))) & (
cos
. x)
<>
0 ) & Z
c= (
dom ((
#Z n)
* (
cos
^ ))) & Z
= (
dom f) & (f
| A) is
continuous;
then
A2: Z
c= (
dom ((1
/ n)
(#) ((
#Z n)
* (
cos
^ )))) by
VALUED_1:def 5;
A3: f
is_integrable_on A & (f
| A) is
bounded by
A1,
INTEGRA5: 10,
INTEGRA5: 11;
A4: for x st x
in Z holds (
cos
. x)
<>
0 by
A1;
then
A5: ((1
/ n)
(#) ((
#Z n)
* (
cos
^ )))
is_differentiable_on Z by
A1,
A2,
FDIFF_7: 31;
A6: for x be
Element of
REAL st x
in (
dom (((1
/ n)
(#) ((
#Z n)
* (
cos
^ )))
`| Z)) holds ((((1
/ n)
(#) ((
#Z n)
* (
cos
^ )))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((1
/ n)
(#) ((
#Z n)
* (
cos
^ )))
`| Z));
then
A7: x
in Z by
A5,
FDIFF_1:def 7;
then ((((1
/ n)
(#) ((
#Z n)
* (
cos
^ )))
`| Z)
. x)
= ((
sin
. x)
/ ((
cos
. x)
#Z (n
+ 1))) by
A1,
A2,
A4,
FDIFF_7: 31
.= (f
. x) by
A1,
A7;
hence thesis;
end;
(
dom (((1
/ n)
(#) ((
#Z n)
* (
cos
^ )))
`| Z))
= (
dom f) by
A1,
A5,
FDIFF_1:def 7;
then (((1
/ n)
(#) ((
#Z n)
* (
cos
^ )))
`| Z)
= f by
A6,
PARTFUN1: 5;
hence thesis by
A1,
A3,
A5,
INTEGRA5: 13;
end;
theorem ::
INTEGR12:43
A
c= Z & f
= (((g1
+ g2)
^ )
/ f2) & f2
=
arccot & Z
c=
].(
- 1), 1.[ & g2
= (
#Z 2) & (for x st x
in Z holds (f
. x)
= (1
/ ((1
+ (x
^2 ))
* (
arccot
. x))) & (g1
. x)
= 1 & (f2
. x)
>
0 ) & Z
= (
dom f) implies (
integral (f,A))
= (((
- (
ln
*
arccot ))
. (
upper_bound A))
- ((
- (
ln
*
arccot ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & f
= (((g1
+ g2)
^ )
/ f2) & f2
=
arccot & Z
c=
].(
- 1), 1.[ & g2
= (
#Z 2) & (for x st x
in Z holds (f
. x)
= (1
/ ((1
+ (x
^2 ))
* (
arccot
. x))) & (g1
. x)
= 1 & (f2
. x)
>
0 ) & Z
= (
dom f);
then Z
= ((
dom ((g1
+ g2)
^ ))
/\ ((
dom f2)
\ (f2
"
{
0 }))) by
RFUNCT_1:def 1;
then
A2: Z
c= (
dom ((g1
+ g2)
^ )) & Z
c= ((
dom f2)
\ (f2
"
{
0 })) by
XBOOLE_1: 18;
for x st x
in Z holds (g1
. x)
= 1 by
A1;
then
A3: ((g1
+ g2)
^ )
is_differentiable_on Z by
A1,
A2,
Th1;
A4: f2
is_differentiable_on Z by
A1,
SIN_COS9: 82;
for x st x
in Z holds (f2
. x)
<>
0 by
A1;
then f
is_differentiable_on Z by
A1,
A3,
A4,
FDIFF_2: 21;
then (f
| Z) is
continuous by
FDIFF_1: 25;
then
A5: (f
| A) is
continuous by
A1,
FCONT_1: 16;
A6: Z
c= (
dom (f2
^ )) by
A2,
RFUNCT_1:def 2;
(
dom (f2
^ ))
c= (
dom f2) by
RFUNCT_1: 1;
then
A7: Z
c= (
dom f2) by
A6;
A8: for x st x
in Z holds (f2
. x)
>
0 by
A1;
(
rng (f2
| Z))
c= (
right_open_halfline
0 )
proof
let x be
object;
assume x
in (
rng (f2
| Z));
then
consider y be
object such that
A9: y
in (
dom (f2
| Z)) & x
= ((f2
| Z)
. y) by
FUNCT_1:def 3;
y
in Z by
A9;
then (f2
. y)
>
0 by
A1;
then ((f2
| Z)
. y)
>
0 by
A9,
FUNCT_1: 47;
hence thesis by
A9,
XXREAL_1: 235;
end;
then (f2
.: Z)
c= (
dom
ln ) by
RELAT_1: 115,
TAYLOR_1: 18;
then
A10: Z
c= (
dom (
ln
*
arccot )) by
A1,
A7,
FUNCT_1: 101;
A11: f
is_integrable_on A & (f
| A) is
bounded by
A1,
A5,
INTEGRA5: 10,
INTEGRA5: 11;
A12: (
ln
*
arccot )
is_differentiable_on Z by
A1,
A10,
A8,
SIN_COS9: 90;
Z
c= (
dom (
- (
ln
*
arccot ))) by
A10,
VALUED_1: 8;
then
A13: (
- (
ln
*
arccot ))
is_differentiable_on Z by
A12,
FDIFF_1: 20;
A14: for x st x
in Z holds (((
- (
ln
*
arccot ))
`| Z)
. x)
= (1
/ ((1
+ (x
^2 ))
* (
arccot
. x)))
proof
let x;
assume
A15: x
in Z;
then
A16: (
- 1)
< x & x
< 1 by
A1,
XXREAL_1: 4;
arccot
is_differentiable_on Z by
A1,
SIN_COS9: 82;
then
A17:
arccot
is_differentiable_in x by
A15,
FDIFF_1: 9;
A18: (
arccot
. x)
>
0 by
A1,
A15;
A19: (
ln
*
arccot )
is_differentiable_in x by
A12,
A15,
FDIFF_1: 9;
(((
- (
ln
*
arccot ))
`| Z)
. x)
= (
diff ((
- (
ln
*
arccot )),x)) by
A13,
A15,
FDIFF_1:def 7
.= ((
- 1)
* (
diff ((
ln
*
arccot ),x))) by
A19,
FDIFF_1: 15
.= ((
- 1)
* ((
diff (
arccot ,x))
/ (
arccot
. x))) by
A17,
A18,
TAYLOR_1: 20
.= ((
- 1)
* ((
- (1
/ (1
+ (x
^2 ))))
/ (
arccot
. x))) by
A16,
SIN_COS9: 76
.= ((1
/ (1
+ (x
^2 )))
/ (
arccot
. x))
.= (1
/ ((1
+ (x
^2 ))
* (
arccot
. x))) by
XCMPLX_1: 78;
hence thesis;
end;
A20: for x be
Element of
REAL st x
in (
dom ((
- (
ln
*
arccot ))
`| Z)) holds (((
- (
ln
*
arccot ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
- (
ln
*
arccot ))
`| Z));
then
A21: x
in Z by
A13,
FDIFF_1:def 7;
then (((
- (
ln
*
arccot ))
`| Z)
. x)
= (1
/ ((1
+ (x
^2 ))
* (
arccot
. x))) by
A14
.= (f
. x) by
A1,
A21;
hence thesis;
end;
(
dom ((
- (
ln
*
arccot ))
`| Z))
= (
dom f) by
A1,
A13,
FDIFF_1:def 7;
then ((
- (
ln
*
arccot ))
`| Z)
= f by
A20,
PARTFUN1: 5;
hence thesis by
A1,
A11,
A13,
INTEGRA5: 13;
end;
theorem ::
INTEGR12:44
A
c= Z & Z
c=
].(
- 1), 1.[ & (for x st x
in Z holds (
arcsin
. x)
>
0 & (f1
. x)
= 1) & Z
c= (
dom (
ln
*
arcsin )) & Z
= (
dom f) & f
= ((((
#R (1
/ 2))
* (f1
- (
#Z 2)))
(#)
arcsin )
^ ) implies (
integral (f,A))
= (((
ln
*
arcsin )
. (
upper_bound A))
- ((
ln
*
arcsin )
. (
lower_bound A)))
proof
assume
A1: A
c= Z & Z
c=
].(
- 1), 1.[ & (for x st x
in Z holds (
arcsin
. x)
>
0 & (f1
. x)
= 1) & Z
c= (
dom (
ln
*
arcsin )) & Z
= (
dom f) & f
= ((((
#R (1
/ 2))
* (f1
- (
#Z 2)))
(#)
arcsin )
^ );
set g = (((
#R (1
/ 2))
* (f1
- (
#Z 2)))
(#)
arcsin );
A2: Z
c= (
dom g) by
A1,
RFUNCT_1: 1;
(
dom g)
= ((
dom ((
#R (1
/ 2))
* (f1
- (
#Z 2))))
/\ (
dom
arcsin )) by
VALUED_1:def 4;
then
A3: Z
c= (
dom ((
#R (1
/ 2))
* (f1
- (
#Z 2)))) & Z
c= (
dom
arcsin ) by
A2,
XBOOLE_1: 18;
A4:
arcsin
is_differentiable_on Z by
A1,
FDIFF_1: 26,
SIN_COS6: 83;
set f2 = (
#Z 2);
for x st x
in Z holds ((f1
- (
#Z 2))
. x)
>
0
proof
let x;
assume
A5: x
in Z;
then (
- 1)
< x & x
< 1 by
A1,
XXREAL_1: 4;
then
0
< (1
+ x) &
0
< (1
- x) by
XREAL_1: 50,
XREAL_1: 148;
then
A6:
0
< ((1
+ x)
* (1
- x)) by
XREAL_1: 129;
for x st x
in Z holds x
in (
dom (f1
- f2)) by
A3,
FUNCT_1: 11;
then ((f1
- f2)
. x)
= ((f1
. x)
- (f2
. x)) by
A5,
VALUED_1: 13
.= ((f1
. x)
- (x
#Z (1
+ 1))) by
TAYLOR_1:def 1
.= ((f1
. x)
- ((x
#Z 1)
* (x
#Z 1))) by
TAYLOR_1: 1
.= ((f1
. x)
- (x
* (x
#Z 1))) by
PREPOWER: 35
.= ((f1
. x)
- (x
* x)) by
PREPOWER: 35
.= (1
- (x
* x)) by
A1,
A5;
hence thesis by
A6;
end;
then for x st x
in Z holds (f1
. x)
= 1 & ((f1
- (
#Z 2))
. x)
>
0 by
A1;
then ((
#R (1
/ 2))
* (f1
- (
#Z 2)))
is_differentiable_on Z by
A3,
FDIFF_7: 22;
then
A7: g
is_differentiable_on Z by
A2,
A4,
FDIFF_1: 21;
for x st x
in Z holds (g
. x)
<>
0 by
A1,
RFUNCT_1: 3;
then f
is_differentiable_on Z by
A1,
A7,
FDIFF_2: 22;
then (f
| Z) is
continuous by
FDIFF_1: 25;
then (f
| A) is
continuous by
A1,
FCONT_1: 16;
then
A8: f
is_integrable_on A & (f
| A) is
bounded by
A1,
INTEGRA5: 10,
INTEGRA5: 11;
A9: for x st x
in Z holds (
arcsin
. x)
>
0 by
A1;
then
A10: (
ln
*
arcsin )
is_differentiable_on Z by
A1,
FDIFF_7: 8;
A11: for x st x
in Z holds (f
. x)
= (1
/ ((
sqrt (1
- (x
^2 )))
* (
arcsin
. x)))
proof
let x;
assume
A12: x
in Z;
then
A13: x
in (
dom (f1
- (
#Z 2))) & ((f1
- (
#Z 2))
. x)
in (
dom (
#R (1
/ 2))) by
A3,
FUNCT_1: 11;
then
A14: ((f1
- (
#Z 2))
. x)
in (
right_open_halfline
0 ) by
TAYLOR_1:def 4;
(
- 1)
< x & x
< 1 by
A1,
A12,
XXREAL_1: 4;
then
0
< (1
+ x) &
0
< (1
- x) by
XREAL_1: 50,
XREAL_1: 148;
then
A15:
0
< ((1
+ x)
* (1
- x)) by
XREAL_1: 129;
(((((
#R (1
/ 2))
* (f1
- (
#Z 2)))
(#)
arcsin )
^ )
. x)
= (1
/ ((((
#R (1
/ 2))
* (f1
- (
#Z 2)))
(#)
arcsin )
. x)) by
A1,
A12,
RFUNCT_1:def 2
.= (1
/ ((((
#R (1
/ 2))
* (f1
- (
#Z 2)))
. x)
* (
arcsin
. x))) by
VALUED_1: 5
.= (1
/ (((
#R (1
/ 2))
. ((f1
- (
#Z 2))
. x))
* (
arcsin
. x))) by
A3,
A12,
FUNCT_1: 12
.= (1
/ ((((f1
- (
#Z 2))
. x)
#R (1
/ 2))
* (
arcsin
. x))) by
A14,
TAYLOR_1:def 4
.= (1
/ ((((f1
. x)
- ((
#Z 2)
. x))
#R (1
/ 2))
* (
arcsin
. x))) by
A13,
VALUED_1: 13
.= (1
/ ((((f1
. x)
- (x
#Z 2))
#R (1
/ 2))
* (
arcsin
. x))) by
TAYLOR_1:def 1
.= (1
/ ((((f1
. x)
- (x
^2 ))
#R (1
/ 2))
* (
arcsin
. x))) by
FDIFF_7: 1
.= (1
/ (((1
- (x
^2 ))
#R (1
/ 2))
* (
arcsin
. x))) by
A1,
A12
.= (1
/ ((
sqrt (1
- (x
^2 )))
* (
arcsin
. x))) by
A15,
FDIFF_7: 2;
hence thesis by
A1;
end;
A16: for x be
Element of
REAL st x
in (
dom ((
ln
*
arcsin )
`| Z)) holds (((
ln
*
arcsin )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
ln
*
arcsin )
`| Z));
then
A17: x
in Z by
A10,
FDIFF_1:def 7;
then (((
ln
*
arcsin )
`| Z)
. x)
= (1
/ ((
sqrt (1
- (x
^2 )))
* (
arcsin
. x))) by
A1,
A9,
FDIFF_7: 8
.= (f
. x) by
A11,
A17;
hence thesis;
end;
(
dom ((
ln
*
arcsin )
`| Z))
= (
dom f) by
A1,
A10,
FDIFF_1:def 7;
then ((
ln
*
arcsin )
`| Z)
= f by
A16,
PARTFUN1: 5;
hence thesis by
A1,
A8,
A10,
INTEGRA5: 13;
end;
theorem ::
INTEGR12:45
A
c= Z & Z
c=
].(
- 1), 1.[ & (for x st x
in Z holds (f1
. x)
= 1 & (
arccos
. x)
>
0 ) & Z
c= (
dom (
ln
*
arccos )) & Z
= (
dom f) & f
= ((((
#R (1
/ 2))
* (f1
- (
#Z 2)))
(#)
arccos )
^ ) implies (
integral (f,A))
= (((
- (
ln
*
arccos ))
. (
upper_bound A))
- ((
- (
ln
*
arccos ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z & Z
c=
].(
- 1), 1.[ & (for x st x
in Z holds (f1
. x)
= 1 & (
arccos
. x)
>
0 ) & Z
c= (
dom (
ln
*
arccos )) & Z
= (
dom f) & f
= ((((
#R (1
/ 2))
* (f1
- (
#Z 2)))
(#)
arccos )
^ );
set g = (((
#R (1
/ 2))
* (f1
- (
#Z 2)))
(#)
arccos );
A2: Z
c= (
dom g) by
A1,
RFUNCT_1: 1;
(
dom g)
= ((
dom ((
#R (1
/ 2))
* (f1
- (
#Z 2))))
/\ (
dom
arccos )) by
VALUED_1:def 4;
then
A3: Z
c= (
dom ((
#R (1
/ 2))
* (f1
- (
#Z 2)))) & Z
c= (
dom
arccos ) by
A2,
XBOOLE_1: 18;
A4:
arccos
is_differentiable_on Z by
A1,
FDIFF_1: 26,
SIN_COS6: 106;
set f2 = (
#Z 2);
for x st x
in Z holds ((f1
- (
#Z 2))
. x)
>
0
proof
let x;
assume
A5: x
in Z;
then (
- 1)
< x & x
< 1 by
A1,
XXREAL_1: 4;
then
0
< (1
+ x) &
0
< (1
- x) by
XREAL_1: 50,
XREAL_1: 148;
then
A6:
0
< ((1
+ x)
* (1
- x)) by
XREAL_1: 129;
for x st x
in Z holds x
in (
dom (f1
- f2)) by
A3,
FUNCT_1: 11;
then ((f1
- f2)
. x)
= ((f1
. x)
- (f2
. x)) by
A5,
VALUED_1: 13
.= ((f1
. x)
- (x
#Z (1
+ 1))) by
TAYLOR_1:def 1
.= ((f1
. x)
- ((x
#Z 1)
* (x
#Z 1))) by
TAYLOR_1: 1
.= ((f1
. x)
- (x
* (x
#Z 1))) by
PREPOWER: 35
.= ((f1
. x)
- (x
* x)) by
PREPOWER: 35
.= (1
- (x
* x)) by
A1,
A5;
hence thesis by
A6;
end;
then for x st x
in Z holds (f1
. x)
= 1 & ((f1
- (
#Z 2))
. x)
>
0 by
A1;
then ((
#R (1
/ 2))
* (f1
- (
#Z 2)))
is_differentiable_on Z by
A3,
FDIFF_7: 22;
then
A7: g
is_differentiable_on Z by
A2,
A4,
FDIFF_1: 21;
for x st x
in Z holds (g
. x)
<>
0 by
A1,
RFUNCT_1: 3;
then f
is_differentiable_on Z by
A1,
A7,
FDIFF_2: 22;
then (f
| Z) is
continuous by
FDIFF_1: 25;
then (f
| A) is
continuous by
A1,
FCONT_1: 16;
then
A8: f
is_integrable_on A & (f
| A) is
bounded by
A1,
INTEGRA5: 10,
INTEGRA5: 11;
for x st x
in Z holds (
arccos
. x)
>
0 by
A1;
then
A9: (
ln
*
arccos )
is_differentiable_on Z by
A1,
FDIFF_7: 9;
Z
c= (
dom (
- (
ln
*
arccos ))) by
A1,
VALUED_1: 8;
then
A10: ((
- 1)
(#) (
ln
*
arccos ))
is_differentiable_on Z by
A9,
FDIFF_1: 20;
A11: for x st x
in Z holds (((
- (
ln
*
arccos ))
`| Z)
. x)
= (1
/ ((
sqrt (1
- (x
^2 )))
* (
arccos
. x)))
proof
let x;
assume
A12: x
in Z;
then
A13: (
- 1)
< x & x
< 1 by
A1,
XXREAL_1: 4;
A14:
arccos
is_differentiable_in x by
A1,
A12,
FDIFF_1: 9,
SIN_COS6: 106;
A15: (
arccos
. x)
>
0 by
A1,
A12;
A16: (
ln
*
arccos )
is_differentiable_in x by
A9,
A12,
FDIFF_1: 9;
(((
- (
ln
*
arccos ))
`| Z)
. x)
= (
diff ((
- (
ln
*
arccos )),x)) by
A10,
A12,
FDIFF_1:def 7
.= ((
- 1)
* (
diff ((
ln
*
arccos ),x))) by
A16,
FDIFF_1: 15
.= ((
- 1)
* ((
diff (
arccos ,x))
/ (
arccos
. x))) by
A14,
A15,
TAYLOR_1: 20
.= ((
- 1)
* ((
- (1
/ (
sqrt (1
- (x
^2 )))))
/ (
arccos
. x))) by
A13,
SIN_COS6: 106
.= ((
- 1)
* (
- ((1
/ (
sqrt (1
- (x
^2 ))))
/ (
arccos
. x))))
.= (1
/ ((
sqrt (1
- (x
^2 )))
* (
arccos
. x))) by
XCMPLX_1: 78;
hence thesis;
end;
A17: for x st x
in Z holds (f
. x)
= (1
/ ((
sqrt (1
- (x
^2 )))
* (
arccos
. x)))
proof
let x;
assume
A18: x
in Z;
then
A19: x
in (
dom (f1
- (
#Z 2))) & ((f1
- (
#Z 2))
. x)
in (
dom (
#R (1
/ 2))) by
A3,
FUNCT_1: 11;
then
A20: ((f1
- (
#Z 2))
. x)
in (
right_open_halfline
0 ) by
TAYLOR_1:def 4;
(
- 1)
< x & x
< 1 by
A1,
A18,
XXREAL_1: 4;
then
0
< (1
+ x) &
0
< (1
- x) by
XREAL_1: 50,
XREAL_1: 148;
then
A21:
0
< ((1
+ x)
* (1
- x)) by
XREAL_1: 129;
(((((
#R (1
/ 2))
* (f1
- (
#Z 2)))
(#)
arccos )
^ )
. x)
= (1
/ ((((
#R (1
/ 2))
* (f1
- (
#Z 2)))
(#)
arccos )
. x)) by
A1,
A18,
RFUNCT_1:def 2
.= (1
/ ((((
#R (1
/ 2))
* (f1
- (
#Z 2)))
. x)
* (
arccos
. x))) by
VALUED_1: 5
.= (1
/ (((
#R (1
/ 2))
. ((f1
- (
#Z 2))
. x))
* (
arccos
. x))) by
A3,
A18,
FUNCT_1: 12
.= (1
/ ((((f1
- (
#Z 2))
. x)
#R (1
/ 2))
* (
arccos
. x))) by
A20,
TAYLOR_1:def 4
.= (1
/ ((((f1
. x)
- ((
#Z 2)
. x))
#R (1
/ 2))
* (
arccos
. x))) by
A19,
VALUED_1: 13
.= (1
/ ((((f1
. x)
- (x
#Z 2))
#R (1
/ 2))
* (
arccos
. x))) by
TAYLOR_1:def 1
.= (1
/ ((((f1
. x)
- (x
^2 ))
#R (1
/ 2))
* (
arccos
. x))) by
FDIFF_7: 1
.= (1
/ (((1
- (x
^2 ))
#R (1
/ 2))
* (
arccos
. x))) by
A1,
A18
.= (1
/ ((
sqrt (1
- (x
^2 )))
* (
arccos
. x))) by
A21,
FDIFF_7: 2;
hence thesis by
A1;
end;
A22: for x be
Element of
REAL st x
in (
dom ((
- (
ln
*
arccos ))
`| Z)) holds (((
- (
ln
*
arccos ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
- (
ln
*
arccos ))
`| Z));
then
A23: x
in Z by
A10,
FDIFF_1:def 7;
then (((
- (
ln
*
arccos ))
`| Z)
. x)
= (1
/ ((
sqrt (1
- (x
^2 )))
* (
arccos
. x))) by
A11
.= (f
. x) by
A17,
A23;
hence thesis;
end;
(
dom ((
- (
ln
*
arccos ))
`| Z))
= (
dom f) by
A1,
A10,
FDIFF_1:def 7;
then ((
- (
ln
*
arccos ))
`| Z)
= f by
A22,
PARTFUN1: 5;
hence thesis by
A1,
A8,
A10,
INTEGRA5: 13;
end;