integr16.miz
begin
theorem ::
INTEGR16:1
Th1: for z be
Complex, r be
Real holds (
Re (r
* z))
= (r
* (
Re z)) & (
Im (r
* z))
= (r
* (
Im z))
proof
let z be
Complex, r be
Real;
A2: (
Re r)
= r by
COMPLEX1:def 1;
hence (
Re (r
* z))
= ((r
* (
Re z))
- ((
Im r)
* (
Im z))) by
COMPLEX1: 9
.= ((r
* (
Re z))
- (
0
* (
Im z))) by
COMPLEX1:def 2
.= (r
* (
Re z));
thus (
Im (r
* z))
= ((r
* (
Im z))
+ ((
Re z)
* (
Im r))) by
A2,
COMPLEX1: 9
.= ((r
* (
Im z))
+ (
0
* (
Re z))) by
COMPLEX1:def 2
.= (r
* (
Im z));
end;
Lm1:
now
let f be
FinSequence, g be
Function;
ex n be
Nat st (
dom f)
= (
Seg n) by
FINSEQ_1:def 2;
hence (
dom f)
= (
dom g) implies g is
FinSequence by
FINSEQ_1:def 2;
end;
registration
let S be
FinSequence of
COMPLEX ;
cluster (
Re S) ->
FinSequence-like;
coherence
proof
(
dom (
Re S))
= (
dom S) by
COMSEQ_3:def 3;
hence thesis by
Lm1;
end;
cluster (
Im S) ->
FinSequence-like;
coherence
proof
(
dom (
Im S))
= (
dom S) by
COMSEQ_3:def 4;
hence thesis by
Lm1;
end;
end
definition
let S be
FinSequence of
COMPLEX ;
:: original:
Re
redefine
func
Re S ->
FinSequence of
REAL ;
coherence
proof
(
rng (
Re S))
c=
REAL ;
hence thesis by
FINSEQ_1:def 4;
end;
:: original:
Im
redefine
func
Im S ->
FinSequence of
REAL ;
coherence
proof
(
rng (
Im S))
c=
REAL ;
hence thesis by
FINSEQ_1:def 4;
end;
end
definition
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
Function of A,
COMPLEX ;
let D be
Division of A;
::
INTEGR16:def1
mode
middle_volume of f,D ->
FinSequence of
COMPLEX means
:
Def1: (
len it )
= (
len D) & for i be
Nat st i
in (
dom D) holds ex c be
Element of
COMPLEX st c
in (
rng (f
| (
divset (D,i)))) & (it
. i)
= (c
* (
vol (
divset (D,i))));
correctness
proof
defpred
P1[
Nat,
set] means ex c be
Element of
COMPLEX st c
in (
rng (f
| (
divset (D,$1)))) & $2
= (c
* (
vol (
divset (D,$1))));
A1: (
Seg (
len D))
= (
dom D) by
FINSEQ_1:def 3;
A2: for k be
Nat st k
in (
Seg (
len D)) holds ex x be
Element of
COMPLEX st
P1[k, x]
proof
let k be
Nat;
assume k
in (
Seg (
len D));
then
A3: k
in (
dom D) by
FINSEQ_1:def 3;
(
dom f)
= A by
FUNCT_2:def 1;
then (
dom (f
| (
divset (D,k))))
= (
divset (D,k)) by
A3,
INTEGRA1: 8,
RELAT_1: 62;
then (
rng (f
| (
divset (D,k)))) is non
empty by
RELAT_1: 42;
then
consider c be
object such that
A4: c
in (
rng (f
| (
divset (D,k))));
reconsider c as
Element of
COMPLEX by
A4;
(c
* (
vol (
divset (D,k)))) is
Element of
COMPLEX by
XCMPLX_0:def 2;
hence thesis by
A4;
end;
consider p be
FinSequence of
COMPLEX such that
A5: (
dom p)
= (
Seg (
len D)) & for k be
Nat st k
in (
Seg (
len D)) holds
P1[k, (p
. k)] from
FINSEQ_1:sch 5(
A2);
(
len p)
= (
len D) by
A5,
FINSEQ_1:def 3;
hence thesis by
A5,
A1;
end;
end
definition
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
Function of A,
COMPLEX ;
let D be
Division of A;
let F be
middle_volume of f, D;
::
INTEGR16:def2
func
middle_sum (f,F) ->
Element of
COMPLEX equals (
Sum F);
coherence ;
end
definition
let A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
COMPLEX , T be
DivSequence of A;
::
INTEGR16:def3
mode
middle_volume_Sequence of f,T ->
sequence of (
COMPLEX
* ) means
:
Def3: for k be
Element of
NAT holds (it
. k) is
middle_volume of f, (T
. k);
correctness
proof
defpred
P[
Element of
NAT ,
set] means $2 is
middle_volume of f, (T
. $1);
A1: for x be
Element of
NAT holds ex y be
Element of (
COMPLEX
* ) st
P[x, y]
proof
let x be
Element of
NAT ;
set y = the
middle_volume of f, (T
. x);
reconsider y as
Element of (
COMPLEX
* ) by
FINSEQ_1:def 11;
y is
middle_volume of f, (T
. x);
hence thesis;
end;
ex f be
sequence of (
COMPLEX
* ) st for x be
Element of
NAT holds
P[x, (f
. x)] from
FUNCT_2:sch 3(
A1);
hence thesis;
end;
end
definition
let A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
COMPLEX , T be
DivSequence of A, S be
middle_volume_Sequence of f, T, k be
Element of
NAT ;
:: original:
.
redefine
func S
. k ->
middle_volume of f, (T
. k) ;
coherence by
Def3;
end
definition
let A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
COMPLEX , T be
DivSequence of A, S be
middle_volume_Sequence of f, T;
::
INTEGR16:def4
func
middle_sum (f,S) ->
Complex_Sequence means
:
Def4: for i be
Element of
NAT holds (it
. i)
= (
middle_sum (f,(S
. i)));
existence
proof
deffunc
H1(
Element of
NAT ) = (
middle_sum (f,(S
. $1)));
thus ex IT be
Complex_Sequence st for i be
Element of
NAT holds (IT
. i)
=
H1(i) from
FUNCT_2:sch 4;
end;
uniqueness
proof
let F1,F2 be
Complex_Sequence;
assume that
A1: for i be
Element of
NAT holds (F1
. i)
= (
middle_sum (f,(S
. i))) and
A2: for i be
Element of
NAT holds (F2
. i)
= (
middle_sum (f,(S
. i)));
for i be
Element of
NAT holds (F1
. i)
= (F2
. i)
proof
let i be
Element of
NAT ;
(F1
. i)
= (
middle_sum (f,(S
. i))) by
A1
.= (F2
. i) by
A2;
hence (F1
. i)
= (F2
. i);
end;
hence F1
= F2 by
FUNCT_2: 63;
end;
end
begin
theorem ::
INTEGR16:2
for f be
PartFunc of
REAL ,
COMPLEX , A be
Subset of
REAL holds (
Re (f
| A))
= ((
Re f)
| A)
proof
let f be
PartFunc of
REAL ,
COMPLEX , A be
Subset of
REAL ;
A1:
now
let c be
object;
assume
A2: c
in (
dom ((
Re f)
| A));
then
A3: c
in ((
dom (
Re f))
/\ A) by
RELAT_1: 61;
then
A4: c
in A by
XBOOLE_0:def 4;
A5: c
in (
dom (
Re f)) by
A3,
XBOOLE_0:def 4;
then c
in (
dom f) by
COMSEQ_3:def 3;
then c
in ((
dom f)
/\ A) by
A4,
XBOOLE_0:def 4;
then
A6: c
in (
dom (f
| A)) by
RELAT_1: 61;
then c
in (
dom (
Re (f
| A))) by
COMSEQ_3:def 3;
then ((
Re (f
| A))
. c)
= (
Re ((f
| A)
. c)) by
COMSEQ_3:def 3
.= (
Re (f
. c)) by
A6,
FUNCT_1: 47
.= ((
Re f)
. c) by
A5,
COMSEQ_3:def 3;
hence (((
Re f)
| A)
. c)
= ((
Re (f
| A))
. c) by
A2,
FUNCT_1: 47;
end;
(
dom ((
Re f)
| A))
= ((
dom (
Re f))
/\ A) by
RELAT_1: 61
.= ((
dom f)
/\ A) by
COMSEQ_3:def 3
.= (
dom (f
| A)) by
RELAT_1: 61
.= (
dom (
Re (f
| A))) by
COMSEQ_3:def 3;
hence thesis by
A1,
FUNCT_1: 2;
end;
theorem ::
INTEGR16:3
for f be
PartFunc of
REAL ,
COMPLEX , A be
Subset of
REAL holds (
Im (f
| A))
= ((
Im f)
| A)
proof
let f be
PartFunc of
REAL ,
COMPLEX , A be
Subset of
REAL ;
A1:
now
let c be
object;
assume
A2: c
in (
dom ((
Im f)
| A));
then
A3: c
in ((
dom (
Im f))
/\ A) by
RELAT_1: 61;
then
A4: c
in A by
XBOOLE_0:def 4;
A5: c
in (
dom (
Im f)) by
A3,
XBOOLE_0:def 4;
then c
in (
dom f) by
COMSEQ_3:def 4;
then c
in ((
dom f)
/\ A) by
A4,
XBOOLE_0:def 4;
then
A6: c
in (
dom (f
| A)) by
RELAT_1: 61;
then c
in (
dom (
Im (f
| A))) by
COMSEQ_3:def 4;
then ((
Im (f
| A))
. c)
= (
Im ((f
| A)
. c)) by
COMSEQ_3:def 4
.= (
Im (f
. c)) by
A6,
FUNCT_1: 47
.= ((
Im f)
. c) by
A5,
COMSEQ_3:def 4;
hence (((
Im f)
| A)
. c)
= ((
Im (f
| A))
. c) by
A2,
FUNCT_1: 47;
end;
(
dom ((
Im f)
| A))
= ((
dom (
Im f))
/\ A) by
RELAT_1: 61
.= ((
dom f)
/\ A) by
COMSEQ_3:def 4
.= (
dom (f
| A)) by
RELAT_1: 61
.= (
dom (
Im (f
| A))) by
COMSEQ_3:def 4;
hence thesis by
A1,
FUNCT_1: 2;
end;
registration
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
Function of A,
COMPLEX ;
cluster (
Re f) ->
quasi_total;
correctness
proof
(
dom f)
= A by
FUNCT_2:def 1;
then (
dom (
Re f))
= A by
COMSEQ_3:def 3;
hence thesis by
FUNCT_2:def 1;
end;
cluster (
Im f) ->
quasi_total;
correctness
proof
(
dom f)
= A by
FUNCT_2:def 1;
then (
dom (
Im f))
= A by
COMSEQ_3:def 4;
hence thesis by
FUNCT_2:def 1;
end;
end
theorem ::
INTEGR16:4
Th4: for A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
COMPLEX , D be
Division of A, S be
middle_volume of f, D holds (
Re S) is
middle_volume of (
Re f), D & (
Im S) is
middle_volume of (
Im f), D
proof
let A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
COMPLEX , D be
Division of A, S be
middle_volume of f, D;
A1: (
dom S)
= (
dom (
Re S)) by
COMSEQ_3:def 3;
set RS = (
Re S);
(
len S)
= (
len D) by
Def1;
then
A2: (
dom S)
= (
Seg (
len D)) by
FINSEQ_1:def 3;
then
A3: (
len RS)
= (
len D) by
A1,
FINSEQ_1:def 3;
for i be
Nat st i
in (
dom D) holds ex r be
Element of
REAL st r
in (
rng ((
Re f)
| (
divset (D,i)))) & (RS
. i)
= (r
* (
vol (
divset (D,i))))
proof
let i be
Nat such that
A4: i
in (
dom D);
consider c be
Element of
COMPLEX such that
A5: c
in (
rng (f
| (
divset (D,i)))) & (S
. i)
= (c
* (
vol (
divset (D,i)))) by
A4,
Def1;
A6: i
in (
dom (
Re S)) by
A4,
A1,
A2,
FINSEQ_1:def 3;
set r = (
Re c);
take r;
consider t be
object such that
A7: t
in (
dom (f
| (
divset (D,i)))) and
A8: c
= ((f
| (
divset (D,i)))
. t) by
A5,
FUNCT_1:def 3;
t
in ((
dom f)
/\ (
divset (D,i))) by
A7,
RELAT_1: 61;
then t
in (
dom f) by
XBOOLE_0:def 4;
then
A9: t
in (
dom (
Re f)) by
COMSEQ_3:def 3;
A10: (
dom (f
| (
divset (D,i))))
= ((
dom f)
/\ (
divset (D,i))) by
RELAT_1: 61
.= ((
dom (
Re f))
/\ (
divset (D,i))) by
COMSEQ_3:def 3
.= (
dom ((
Re f)
| (
divset (D,i)))) by
RELAT_1: 61;
r
= (
Re (f
. t)) by
A7,
A8,
FUNCT_1: 47
.= ((
Re f)
. t) by
A9,
COMSEQ_3:def 3
.= (((
Re f)
| (
divset (D,i)))
. t) by
A7,
A10,
FUNCT_1: 47;
hence r
in (
rng ((
Re f)
| (
divset (D,i)))) by
A7,
A10,
FUNCT_1:def 3;
thus (RS
. i)
= (
Re (S
. i)) by
A6,
COMSEQ_3:def 3
.= (r
* (
vol (
divset (D,i)))) by
A5,
Th1;
end;
hence (
Re S) is
middle_volume of (
Re f), D by
A3,
INTEGR15:def 1;
A11: (
dom S)
= (
dom (
Im S)) by
COMSEQ_3:def 4;
set IS = (
Im S);
A12: (
len IS)
= (
len D) by
A2,
A11,
FINSEQ_1:def 3;
for i be
Nat st i
in (
dom D) holds ex r be
Element of
REAL st r
in (
rng ((
Im f)
| (
divset (D,i)))) & (IS
. i)
= (r
* (
vol (
divset (D,i))))
proof
let i be
Nat such that
A13: i
in (
dom D);
consider c be
Element of
COMPLEX such that
A14: c
in (
rng (f
| (
divset (D,i)))) & (S
. i)
= (c
* (
vol (
divset (D,i)))) by
A13,
Def1;
A15: i
in (
dom (
Im S)) by
A13,
A2,
A11,
FINSEQ_1:def 3;
set r = (
Im c);
take r;
consider t be
object such that
A16: t
in (
dom (f
| (
divset (D,i)))) and
A17: c
= ((f
| (
divset (D,i)))
. t) by
A14,
FUNCT_1:def 3;
t
in ((
dom f)
/\ (
divset (D,i))) by
A16,
RELAT_1: 61;
then t
in (
dom f) by
XBOOLE_0:def 4;
then
A18: t
in (
dom (
Im f)) by
COMSEQ_3:def 4;
A19: (
dom (f
| (
divset (D,i))))
= ((
dom f)
/\ (
divset (D,i))) by
RELAT_1: 61
.= ((
dom (
Im f))
/\ (
divset (D,i))) by
COMSEQ_3:def 4
.= (
dom ((
Im f)
| (
divset (D,i)))) by
RELAT_1: 61;
r
= (
Im (f
. t)) by
A16,
A17,
FUNCT_1: 47
.= ((
Im f)
. t) by
A18,
COMSEQ_3:def 4
.= (((
Im f)
| (
divset (D,i)))
. t) by
A16,
A19,
FUNCT_1: 47;
hence r
in (
rng ((
Im f)
| (
divset (D,i)))) by
A16,
A19,
FUNCT_1:def 3;
thus (IS
. i)
= (
Im (S
. i)) by
A15,
COMSEQ_3:def 4
.= (r
* (
vol (
divset (D,i)))) by
A14,
Th1;
end;
hence (
Im S) is
middle_volume of (
Im f), D by
A12,
INTEGR15:def 1;
end;
Lm2: (
Sum (
<*>
COMPLEX ))
=
0 by
BINOP_2: 1,
FINSOP_1: 10;
Lm3: for F be
FinSequence of
COMPLEX , x be
Element of
COMPLEX holds (
Sum (F
^
<*x*>))
= ((
Sum F)
+ x)
proof
let F be
FinSequence of
COMPLEX , x be
Element of
COMPLEX ;
thus (
Sum (F
^
<*x*>))
= (
addcomplex
. ((
addcomplex
$$ F),x)) by
FINSOP_1: 4
.= ((
Sum F)
+ x) by
BINOP_2:def 3;
end;
theorem ::
INTEGR16:5
Th5: for F be
FinSequence of
COMPLEX , x be
Element of
COMPLEX holds (
Re (F
^
<*x*>))
= ((
Re F)
^
<*(
Re x)*>)
proof
let F be
FinSequence of
COMPLEX , x be
Element of
COMPLEX ;
set F1 = (
Re (F
^
<*x*>));
set F2 = ((
Re F)
^
<*(
Re x)*>);
A1: (
dom F)
= (
dom (
Re F)) by
COMSEQ_3:def 3;
A2: (
Seg (
len F))
= (
dom F) by
FINSEQ_1:def 3;
A3: (
len
<*(
Re x)*>)
= 1 by
FINSEQ_1: 39;
A4: (
dom F1)
= (
dom (F
^
<*x*>)) by
COMSEQ_3:def 3
.= (
Seg ((
len F)
+ (
len
<*x*>))) by
FINSEQ_1:def 7
.= (
Seg ((
len (
Re F))
+ (
len
<*x*>))) by
A1,
A2,
FINSEQ_1:def 3
.= (
Seg ((
len (
Re F))
+ (
len
<*(
Re x)*>))) by
A3,
FINSEQ_1: 39
.= (
dom F2) by
FINSEQ_1:def 7;
now
let k be
Nat;
assume
A5: k
in (
dom F1);
then k
in (
dom (F
^
<*x*>)) by
COMSEQ_3:def 3;
then
A6: k
in (
Seg (
len (F
^
<*x*>))) by
FINSEQ_1:def 3;
then k
in (
Seg ((
len F)
+ (
len
<*x*>))) by
FINSEQ_1: 22;
then
A7: 1
<= k & k
<= ((
len F)
+ (
len
<*x*>)) by
FINSEQ_1: 1;
now
per cases ;
suppose
A8: k
= ((
len F)
+ 1);
thus (F1
. k)
= (
Re ((F
^
<*x*>)
. k)) by
A5,
COMSEQ_3:def 3
.= (
Re x) by
A8,
FINSEQ_1: 42
.= (F2
. ((
len (
Re F))
+ 1)) by
FINSEQ_1: 42
.= (F2
. k) by
A8,
A1,
A2,
FINSEQ_1:def 3;
end;
suppose
A9: k
<> ((
len F)
+ 1);
k
<= ((
len F)
+ 1) by
A7,
FINSEQ_1: 39;
then k
< ((
len F)
+ 1) by
A9,
XXREAL_0: 1;
then 1
<= k & k
<= (
len F) by
A6,
FINSEQ_1: 1,
NAT_1: 13;
then k
in (
Seg (
len F));
then
A10: k
in (
dom F) by
FINSEQ_1:def 3;
then
A11: k
in (
dom (
Re F)) by
COMSEQ_3:def 3;
thus (F1
. k)
= (
Re ((F
^
<*x*>)
. k)) by
A5,
COMSEQ_3:def 3
.= (
Re (F
. k)) by
A10,
FINSEQ_1:def 7
.= ((
Re F)
. k) by
A11,
COMSEQ_3:def 3
.= (F2
. k) by
A11,
FINSEQ_1:def 7;
end;
end;
hence (F1
. k)
= (F2
. k);
end;
hence (
Re (F
^
<*x*>))
= ((
Re F)
^
<*(
Re x)*>) by
A4,
FINSEQ_1: 13;
end;
theorem ::
INTEGR16:6
Th6: for F be
FinSequence of
COMPLEX , x be
Element of
COMPLEX holds (
Im (F
^
<*x*>))
= ((
Im F)
^
<*(
Im x)*>)
proof
let F be
FinSequence of
COMPLEX , x be
Element of
COMPLEX ;
set F1 = (
Im (F
^
<*x*>));
set F2 = ((
Im F)
^
<*(
Im x)*>);
A1: (
dom F)
= (
dom (
Im F)) by
COMSEQ_3:def 4;
A2: (
Seg (
len F))
= (
dom F) by
FINSEQ_1:def 3;
A3: (
len
<*(
Im x)*>)
= 1 by
FINSEQ_1: 39;
A4: (
dom F1)
= (
dom (F
^
<*x*>)) by
COMSEQ_3:def 4
.= (
Seg ((
len F)
+ (
len
<*x*>))) by
FINSEQ_1:def 7
.= (
Seg ((
len (
Im F))
+ (
len
<*x*>))) by
A1,
A2,
FINSEQ_1:def 3
.= (
Seg ((
len (
Im F))
+ (
len
<*(
Im x)*>))) by
A3,
FINSEQ_1: 39
.= (
dom F2) by
FINSEQ_1:def 7;
now
let k be
Nat;
assume
A5: k
in (
dom F1);
then k
in (
dom (F
^
<*x*>)) by
COMSEQ_3:def 4;
then
A6: k
in (
Seg (
len (F
^
<*x*>))) by
FINSEQ_1:def 3;
then k
in (
Seg ((
len F)
+ (
len
<*x*>))) by
FINSEQ_1: 22;
then
A7: 1
<= k & k
<= ((
len F)
+ (
len
<*x*>)) by
FINSEQ_1: 1;
now
per cases ;
suppose
A8: k
= ((
len F)
+ 1);
thus (F1
. k)
= (
Im ((F
^
<*x*>)
. k)) by
A5,
COMSEQ_3:def 4
.= (
Im x) by
A8,
FINSEQ_1: 42
.= (F2
. ((
len (
Im F))
+ 1)) by
FINSEQ_1: 42
.= (F2
. k) by
A8,
A1,
A2,
FINSEQ_1:def 3;
end;
suppose
A9: k
<> ((
len F)
+ 1);
k
<= ((
len F)
+ 1) by
A7,
FINSEQ_1: 39;
then k
< ((
len F)
+ 1) by
A9,
XXREAL_0: 1;
then 1
<= k & k
<= (
len F) by
A6,
FINSEQ_1: 1,
NAT_1: 13;
then k
in (
Seg (
len F));
then
A10: k
in (
dom F) by
FINSEQ_1:def 3;
then
A11: k
in (
dom (
Im F)) by
COMSEQ_3:def 4;
thus (F1
. k)
= (
Im ((F
^
<*x*>)
. k)) by
A5,
COMSEQ_3:def 4
.= (
Im (F
. k)) by
A10,
FINSEQ_1:def 7
.= ((
Im F)
. k) by
A11,
COMSEQ_3:def 4
.= (F2
. k) by
A11,
FINSEQ_1:def 7;
end;
end;
hence (F1
. k)
= (F2
. k);
end;
hence (
Im (F
^
<*x*>))
= ((
Im F)
^
<*(
Im x)*>) by
A4,
FINSEQ_1: 13;
end;
theorem ::
INTEGR16:7
Th7: for F be
FinSequence of
COMPLEX , Fr be
FinSequence of
REAL st Fr
= (
Re F) holds (
Sum Fr)
= (
Re (
Sum F))
proof
defpred
P[
Nat] means for F be
FinSequence of
COMPLEX , Fr be
FinSequence of
REAL st (
len F)
= $1 & Fr
= (
Re F) holds (
Sum Fr)
= (
Re (
Sum F));
A1:
P[
0 ]
proof
let F be
FinSequence of
COMPLEX , Fr be
FinSequence of
REAL ;
assume
A2: (
len F)
=
0 & Fr
= (
Re F);
then (
dom Fr)
= (
dom F) by
COMSEQ_3:def 3
.= (
Seg (
len F)) by
FINSEQ_1:def 3;
then
A3: (
len Fr)
=
0 by
A2,
FINSEQ_1:def 3;
thus (
Re (
Sum F))
= (
Re
0 ) by
A2,
Lm2,
FINSEQ_1: 20
.= (
Sum Fr) by
A3,
COMPLEX1: 4,
FINSEQ_1: 20,
RVSUM_1: 72;
end;
A4:
now
let k be
Nat;
assume
A5:
P[k];
now
let F be
FinSequence of
COMPLEX , Fr be
FinSequence of
REAL ;
assume
A6: (
len F)
= (k
+ 1) & Fr
= (
Re F);
reconsider F1 = (F
| k) as
FinSequence of
COMPLEX ;
A7: (
len F1)
= k by
A6,
FINSEQ_1: 59,
NAT_1: 11;
reconsider F1r = (
Re F1) as
FinSequence of
REAL ;
reconsider x = (F
. (k
+ 1)) as
Element of
COMPLEX by
XCMPLX_0:def 2;
A8: F
= (F1
^
<*x*>) by
A6,
FINSEQ_3: 55;
hence (
Re (
Sum F))
= (
Re ((
Sum F1)
+ x)) by
Lm3
.= ((
Re (
Sum F1))
+ (
Re x)) by
COMPLEX1: 8
.= ((
Sum F1r)
+ (
Re x)) by
A5,
A7
.= (
Sum (F1r
^
<*(
Re x)*>)) by
RVSUM_1: 74
.= (
Sum Fr) by
A6,
A8,
Th5;
end;
hence
P[(k
+ 1)];
end;
A9: for k be
Nat holds
P[k] from
NAT_1:sch 2(
A1,
A4);
let F be
FinSequence of
COMPLEX , Fr be
FinSequence of
REAL ;
assume
A10: Fr
= (
Re F);
(
len F) is
Element of
NAT ;
hence (
Sum Fr)
= (
Re (
Sum F)) by
A9,
A10;
end;
theorem ::
INTEGR16:8
Th8: for F be
FinSequence of
COMPLEX , Fi be
FinSequence of
REAL st Fi
= (
Im F) holds (
Sum Fi)
= (
Im (
Sum F))
proof
defpred
P[
Nat] means for F be
FinSequence of
COMPLEX , Fi be
FinSequence of
REAL st (
len F)
= $1 & Fi
= (
Im F) holds (
Sum Fi)
= (
Im (
Sum F));
A1:
P[
0 ]
proof
let F be
FinSequence of
COMPLEX , Fi be
FinSequence of
REAL ;
assume
A2: (
len F)
=
0 & Fi
= (
Im F);
then (
dom Fi)
= (
dom F) by
COMSEQ_3:def 4
.= (
Seg (
len F)) by
FINSEQ_1:def 3;
then
A3: (
len Fi)
=
0 by
A2,
FINSEQ_1:def 3;
thus (
Im (
Sum F))
= (
Im
0 ) by
A2,
Lm2,
FINSEQ_1: 20
.= (
Sum Fi) by
A3,
COMPLEX1: 4,
FINSEQ_1: 20,
RVSUM_1: 72;
end;
A4:
now
let k be
Nat;
assume
A5:
P[k];
now
let F be
FinSequence of
COMPLEX , Fi be
FinSequence of
REAL ;
assume
A6: (
len F)
= (k
+ 1) & Fi
= (
Im F);
reconsider F1 = (F
| k) as
FinSequence of
COMPLEX ;
A7: (
len F1)
= k by
A6,
FINSEQ_1: 59,
NAT_1: 11;
reconsider F1i = (
Im F1) as
FinSequence of
REAL ;
reconsider x = (F
. (k
+ 1)) as
Element of
COMPLEX by
XCMPLX_0:def 2;
A8: F
= (F1
^
<*x*>) by
A6,
FINSEQ_3: 55;
hence (
Im (
Sum F))
= (
Im ((
Sum F1)
+ x)) by
Lm3
.= ((
Im (
Sum F1))
+ (
Im x)) by
COMPLEX1: 8
.= ((
Sum F1i)
+ (
Im x)) by
A5,
A7
.= (
Sum (F1i
^
<*(
Im x)*>)) by
RVSUM_1: 74
.= (
Sum Fi) by
A6,
A8,
Th6;
end;
hence
P[(k
+ 1)];
end;
A9: for k be
Nat holds
P[k] from
NAT_1:sch 2(
A1,
A4);
let F be
FinSequence of
COMPLEX , Fi be
FinSequence of
REAL ;
assume
A10: Fi
= (
Im F);
(
len F) is
Element of
NAT ;
hence (
Sum Fi)
= (
Im (
Sum F)) by
A9,
A10;
end;
theorem ::
INTEGR16:9
for A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
COMPLEX , D be
Division of A, F be
middle_volume of f, D, Fr be
middle_volume of (
Re f), D st Fr
= (
Re F) holds (
Re (
middle_sum (f,F)))
= (
middle_sum ((
Re f),Fr)) by
Th7;
theorem ::
INTEGR16:10
for A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
COMPLEX , D be
Division of A, F be
middle_volume of f, D, Fi be
middle_volume of (
Im f), D st Fi
= (
Im F) holds (
Im (
middle_sum (f,F)))
= (
middle_sum ((
Im f),Fi)) by
Th8;
definition
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
Function of A,
COMPLEX ;
::
INTEGR16:def5
attr f is
integrable means (
Re f) is
integrable & (
Im f) is
integrable;
end
theorem ::
INTEGR16:11
Th11: for f be
PartFunc of
REAL ,
COMPLEX holds f is
bounded iff ((
Re f) is
bounded & (
Im f) is
bounded)
proof
let f be
PartFunc of
REAL ,
COMPLEX ;
thus f is
bounded implies ((
Re f) is
bounded & (
Im f) is
bounded)
proof
assume f is
bounded;
then
consider r be
Real such that
A1: for y be
set st y
in (
dom f) holds
|.(f
. y).|
< r by
COMSEQ_2:def 3;
now
let y be
set;
assume
A2: y
in (
dom (
Re f));
then
A3: y
in (
dom f) by
COMSEQ_3:def 3;
|.(
Re (f
. y)).|
<=
|.(f
. y).| by
COMPLEX1: 79;
then
|.(
Re (f
. y)).|
< r by
A1,
A3,
XXREAL_0: 2;
hence
|.((
Re f)
. y).|
< r by
A2,
COMSEQ_3:def 3;
end;
hence (
Re f) is
bounded by
COMSEQ_2:def 3;
now
let y be
set;
assume
A4: y
in (
dom (
Im f));
then
A5: y
in (
dom f) by
COMSEQ_3:def 4;
|.(
Im (f
. y)).|
<=
|.(f
. y).| by
COMPLEX1: 79;
then
|.(
Im (f
. y)).|
< r by
A1,
A5,
XXREAL_0: 2;
hence
|.((
Im f)
. y).|
< r by
A4,
COMSEQ_3:def 4;
end;
hence (
Im f) is
bounded by
COMSEQ_2:def 3;
end;
thus ((
Re f) is
bounded & (
Im f) is
bounded) implies f is
bounded
proof
assume
A6: (
Re f) is
bounded & (
Im f) is
bounded;
then
consider r1 be
Real such that
A7: for y be
set st y
in (
dom (
Re f)) holds
|.((
Re f)
. y).|
< r1 by
COMSEQ_2:def 3;
consider r2 be
Real such that
A8: for y be
set st y
in (
dom (
Im f)) holds
|.((
Im f)
. y).|
< r2 by
A6,
COMSEQ_2:def 3;
now
let y be
set;
assume
A9: y
in (
dom f);
then
A10: y
in (
dom (
Re f)) by
COMSEQ_3:def 3;
then
|.((
Re f)
. y).|
< r1 by
A7;
then
A11:
|.(
Re (f
. y)).|
< r1 by
A10,
COMSEQ_3:def 3;
A12: y
in (
dom (
Im f)) by
A9,
COMSEQ_3:def 4;
then
|.((
Im f)
. y).|
< r2 by
A8;
then
A13:
|.(
Im (f
. y)).|
< r2 by
A12,
COMSEQ_3:def 4;
A14:
|.(f
. y).|
<= (
|.(
Re (f
. y)).|
+
|.(
Im (f
. y)).|) by
COMPLEX1: 78;
(
|.(
Re (f
. y)).|
+
|.(
Im (f
. y)).|)
< (r1
+ r2) by
A11,
A13,
XREAL_1: 8;
hence
|.(f
. y).|
< (r1
+ r2) by
A14,
XXREAL_0: 2;
end;
hence f is
bounded by
COMSEQ_2:def 3;
end;
end;
theorem ::
INTEGR16:12
for A be non
empty
Subset of
REAL , f be
PartFunc of
REAL ,
COMPLEX , g be
Function of A,
COMPLEX st f
= g holds (
Re f)
= (
Re g) & (
Im f)
= (
Im g);
theorem ::
INTEGR16:13
Th13: for A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
COMPLEX holds f is
bounded iff ((
Re f) is
bounded & (
Im f) is
bounded)
proof
let A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
COMPLEX ;
(
dom f)
= A by
FUNCT_2:def 1;
then
reconsider f0 = f as
PartFunc of
REAL ,
COMPLEX by
RELSET_1: 5;
f0 is
bounded iff (
Re f0) is
bounded & (
Im f0) is
bounded by
Th11;
hence thesis;
end;
definition
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
Function of A,
COMPLEX ;
::
INTEGR16:def6
func
integral (f) ->
Element of
COMPLEX equals ((
integral (
Re f))
+ ((
integral (
Im f))
*
<i> ));
correctness by
XCMPLX_0:def 2;
end
theorem ::
INTEGR16:14
Th14: for A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
COMPLEX , T be
DivSequence of A, S be
middle_volume_Sequence of f, T st f is
bounded & f is
integrable & (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum (f,S)) is
convergent & (
lim (
middle_sum (f,S)))
= (
integral f)
proof
let A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
COMPLEX , T be
DivSequence of A, S be
middle_volume_Sequence of f, T;
assume that
A1: f is
bounded & f is
integrable and
A2: (
delta T) is
convergent & (
lim (
delta T))
=
0 ;
set seq = (
middle_sum (f,S));
set xs = (
integral f);
A3: (
Re f) is
bounded & (
Re f) is
integrable by
A1,
Th13;
A4: (
Im f) is
bounded & (
Im f) is
integrable by
A1,
Th13;
reconsider xseq = seq as
sequence of
COMPLEX ;
ex rseqi be
Real_Sequence st for k be
Nat holds (rseqi
. k)
= (
Re (xseq
. k)) & rseqi is
convergent & (
Re xs)
= (
lim rseqi)
proof
reconsider pjinf = (
Re f) as
Function of A,
REAL ;
defpred
P[
Element of
NAT ,
set] means $2
= (
Re (S
. $1));
A5: for x be
Element of
NAT holds ex y be
Element of (
REAL
* ) st
P[x, y]
proof
let x be
Element of
NAT ;
(
Re (S
. x)) is
Element of (
REAL
* ) by
FINSEQ_1:def 11;
hence thesis;
end;
consider F be
sequence of (
REAL
* ) such that
A6: for x be
Element of
NAT holds
P[x, (F
. x)] from
FUNCT_2:sch 3(
A5);
A7: for x be
Element of
NAT holds (
dom (
Re (S
. x)))
= (
Seg (
len (S
. x)))
proof
let x be
Element of
NAT ;
thus (
dom (
Re (S
. x)))
= (
dom (S
. x)) by
COMSEQ_3:def 3
.= (
Seg (
len (S
. x))) by
FINSEQ_1:def 3;
end;
for k be
Element of
NAT holds (F
. k) is
middle_volume of pjinf, (T
. k)
proof
let k be
Element of
NAT ;
set Tk = (T
. k);
reconsider Fk = (F
. k) as
FinSequence of
REAL ;
A8: (F
. k)
= (
Re (S
. k)) by
A6;
then
A9: (
dom Fk)
= (
Seg (
len (S
. k))) by
A7
.= (
Seg (
len Tk)) by
Def1;
then
A10: (
dom Fk)
= (
dom Tk) by
FINSEQ_1:def 3;
A11:
now
let j be
Nat;
assume
A12: j
in (
dom Tk);
then
consider r be
Element of
COMPLEX such that
A13: r
in (
rng (f
| (
divset ((T
. k),j)))) and
A14: ((S
. k)
. j)
= (r
* (
vol (
divset ((T
. k),j)))) by
Def1;
reconsider v = (
Re r) as
Element of
REAL ;
take v;
consider t be
object such that
A15: t
in (
dom (f
| (
divset ((T
. k),j)))) and
A16: r
= ((f
| (
divset ((T
. k),j)))
. t) by
A13,
FUNCT_1:def 3;
t
in ((
dom f)
/\ (
divset ((T
. k),j))) by
A15,
RELAT_1: 61;
then t
in (
dom f) by
XBOOLE_0:def 4;
then
A17: t
in (
dom (
Re f)) by
COMSEQ_3:def 3;
A18: (
dom (f
| (
divset ((T
. k),j))))
= ((
dom f)
/\ (
divset ((T
. k),j))) by
RELAT_1: 61
.= ((
dom pjinf)
/\ (
divset ((T
. k),j))) by
COMSEQ_3:def 3
.= (
dom (pjinf
| (
divset ((T
. k),j)))) by
RELAT_1: 61;
(
Re r)
= (
Re (f
. t)) by
A15,
A16,
FUNCT_1: 47
.= ((
Re f)
. t) by
A17,
COMSEQ_3:def 3
.= ((pjinf
| (
divset ((T
. k),j)))
. t) by
A15,
A18,
FUNCT_1: 47;
hence v
in (
rng (pjinf
| (
divset ((T
. k),j)))) by
A15,
A18,
FUNCT_1: 3;
thus (Fk
. j)
= (
Re ((S
. k)
. j)) by
A8,
A10,
A12,
COMSEQ_3:def 3
.= (v
* (
vol (
divset ((T
. k),j)))) by
A14,
Th1;
end;
(
len Fk)
= (
len Tk) by
A9,
FINSEQ_1:def 3;
hence thesis by
A11,
INTEGR15:def 1;
end;
then
reconsider pjis = F as
middle_volume_Sequence of pjinf, T by
INTEGR15:def 3;
reconsider rseqi = (
middle_sum (pjinf,pjis)) as
Real_Sequence;
A19: for k be
Nat holds (rseqi
. k)
= (
Re (xseq
. k))
proof
let k be
Nat;
reconsider kk = k as
Element of
NAT by
ORDINAL1:def 12;
A20: (
Re (S
. kk)) is
middle_volume of (
Re f), (T
. kk) by
Th4;
thus (rseqi
. k)
= (
middle_sum (pjinf,(pjis
. kk))) by
INTEGR15:def 4
.= (
Re (
middle_sum (f,(S
. kk)))) by
A6,
A20,
Th7
.= (
Re (xseq
. k)) by
Def4;
end;
take rseqi;
(
lim (
middle_sum (pjinf,pjis)))
= (
integral pjinf) by
A2,
A3,
INTEGR15: 9;
hence thesis by
A2,
A3,
A19,
COMPLEX1: 12,
INTEGR15: 9;
end;
then
consider rseqi be
Real_Sequence such that
A21: for k be
Nat holds (rseqi
. k)
= (
Re (xseq
. k)) & rseqi is
convergent & (
Re xs)
= (
lim rseqi);
ex iseqi be
Real_Sequence st for k be
Nat holds (iseqi
. k)
= (
Im (xseq
. k)) & iseqi is
convergent & (
Im xs)
= (
lim iseqi)
proof
reconsider pjinf = (
Im f) as
Function of A,
REAL ;
defpred
P[
Element of
NAT ,
set] means $2
= (
Im (S
. $1));
A22: for x be
Element of
NAT holds ex y be
Element of (
REAL
* ) st
P[x, y]
proof
let x be
Element of
NAT ;
(
Im (S
. x)) is
Element of (
REAL
* ) by
FINSEQ_1:def 11;
hence thesis;
end;
consider F be
sequence of (
REAL
* ) such that
A23: for x be
Element of
NAT holds
P[x, (F
. x)] from
FUNCT_2:sch 3(
A22);
A24: for x be
Element of
NAT holds (
dom (
Im (S
. x)))
= (
Seg (
len (S
. x)))
proof
let x be
Element of
NAT ;
(
dom (
Im (S
. x)))
= (
dom (S
. x)) by
COMSEQ_3:def 4
.= (
Seg (
len (S
. x))) by
FINSEQ_1:def 3;
hence thesis;
end;
for k be
Element of
NAT holds (F
. k) is
middle_volume of pjinf, (T
. k)
proof
let k be
Element of
NAT ;
reconsider Tk = (T
. k) as
FinSequence;
reconsider Fk = (F
. k) as
FinSequence of
REAL ;
A25: (F
. k)
= (
Im (S
. k)) by
A23;
then
A26: (
dom Fk)
= (
Seg (
len (S
. k))) by
A24
.= (
Seg (
len Tk)) by
Def1;
then
A27: (
dom Fk)
= (
dom Tk) by
FINSEQ_1:def 3;
A28:
now
let j be
Nat;
assume
A29: j
in (
dom Tk);
then
consider r be
Element of
COMPLEX such that
A30: r
in (
rng (f
| (
divset ((T
. k),j)))) and
A31: ((S
. k)
. j)
= (r
* (
vol (
divset ((T
. k),j)))) by
Def1;
reconsider v = (
Im r) as
Element of
REAL ;
take v;
consider t be
object such that
A32: t
in (
dom (f
| (
divset ((T
. k),j)))) and
A33: r
= ((f
| (
divset ((T
. k),j)))
. t) by
A30,
FUNCT_1:def 3;
t
in ((
dom f)
/\ (
divset ((T
. k),j))) by
A32,
RELAT_1: 61;
then t
in (
dom f) by
XBOOLE_0:def 4;
then
A34: t
in (
dom (
Im f)) by
COMSEQ_3:def 4;
A35: (
dom (f
| (
divset ((T
. k),j))))
= ((
dom f)
/\ (
divset ((T
. k),j))) by
RELAT_1: 61
.= ((
dom pjinf)
/\ (
divset ((T
. k),j))) by
COMSEQ_3:def 4
.= (
dom (pjinf
| (
divset ((T
. k),j)))) by
RELAT_1: 61;
(
Im r)
= (
Im (f
. t)) by
A32,
A33,
FUNCT_1: 47
.= ((
Im f)
. t) by
A34,
COMSEQ_3:def 4
.= ((pjinf
| (
divset ((T
. k),j)))
. t) by
A32,
A35,
FUNCT_1: 47;
hence v
in (
rng (pjinf
| (
divset ((T
. k),j)))) by
A32,
A35,
FUNCT_1: 3;
thus (Fk
. j)
= (
Im ((S
. k)
. j)) by
A25,
A27,
A29,
COMSEQ_3:def 4
.= (v
* (
vol (
divset ((T
. k),j)))) by
A31,
Th1;
end;
(
len Fk)
= (
len Tk) by
A26,
FINSEQ_1:def 3;
hence thesis by
A28,
INTEGR15:def 1;
end;
then
reconsider pjis = F as
middle_volume_Sequence of pjinf, T by
INTEGR15:def 3;
reconsider iseqi = (
middle_sum (pjinf,pjis)) as
Real_Sequence;
A36: for k be
Nat holds (iseqi
. k)
= (
Im (xseq
. k))
proof
let k be
Nat;
reconsider kk = k as
Element of
NAT by
ORDINAL1:def 12;
A37: (
Im (S
. kk)) is
middle_volume of (
Im f), (T
. kk) by
Th4;
thus (iseqi
. k)
= (
middle_sum (pjinf,(pjis
. kk))) by
INTEGR15:def 4
.= (
Im (
middle_sum (f,(S
. kk)))) by
A23,
A37,
Th8
.= (
Im (xseq
. k)) by
Def4;
end;
take iseqi;
(
lim (
middle_sum (pjinf,pjis)))
= (
integral pjinf) by
A2,
A4,
INTEGR15: 9;
hence thesis by
A2,
A4,
A36,
COMPLEX1: 12,
INTEGR15: 9;
end;
then
consider iseqi be
Real_Sequence such that
A38: for k be
Nat holds (iseqi
. k)
= (
Im (xseq
. k)) & iseqi is
convergent & (
Im xs)
= (
lim iseqi);
thus (
middle_sum (f,S)) is
convergent by
A21,
A38,
COMSEQ_3: 38;
thus (
lim (
middle_sum (f,S)))
= ((
lim rseqi)
+ ((
lim iseqi)
*
<i> )) by
A21,
A38,
COMSEQ_3: 39
.= (
integral f) by
A21,
A38,
COMPLEX1: 13;
end;
theorem ::
INTEGR16:15
for A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
COMPLEX st f is
bounded holds f is
integrable iff ex I be
Element of
COMPLEX st for T be
DivSequence of A, S be
middle_volume_Sequence of f, T st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum (f,S)) is
convergent & (
lim (
middle_sum (f,S)))
= I
proof
let A be non
empty
closed_interval
Subset of
REAL , f be
Function of A,
COMPLEX ;
assume
A1: f is
bounded;
hereby
reconsider I = (
integral f) as
Element of
COMPLEX ;
assume
A2: f is
integrable;
take I;
thus for T be
DivSequence of A, S be
middle_volume_Sequence of f, T st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum (f,S)) is
convergent & (
lim (
middle_sum (f,S)))
= I by
A1,
A2,
Th14;
end;
now
assume ex I be
Element of
COMPLEX st for T be
DivSequence of A, S be
middle_volume_Sequence of f, T st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum (f,S)) is
convergent & (
lim (
middle_sum (f,S)))
= I;
then
consider I be
Element of
COMPLEX such that
A3: for T be
DivSequence of A, S be
middle_volume_Sequence of f, T st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum (f,S)) is
convergent & (
lim (
middle_sum (f,S)))
= I;
reconsider Ii = (
Re I) as
Element of
REAL ;
reconsider Ic = (
Im I) as
Element of
REAL ;
A4:
now
set x = I;
let T be
DivSequence of A, Si be
middle_volume_Sequence of (
Re f), T;
defpred
P[
Element of
NAT ,
set] means ex H be
FinSequence, z be
FinSequence st H
= (T
. $1) & z
= $2 & (
len z)
= (
len H) & for j be
Element of
NAT st j
in (
dom H) holds ex rji be
Element of
COMPLEX , tji be
Element of
REAL st tji
in (
dom (f
| (
divset ((T
. $1),j)))) & ((Si
. $1)
. j)
= ((
vol (
divset ((T
. $1),j)))
* (((
Re f)
| (
divset ((T
. $1),j)))
. tji)) & rji
= ((f
| (
divset ((T
. $1),j)))
. tji) & (z
. j)
= ((
vol (
divset ((T
. $1),j)))
* rji);
reconsider xs = x as
Element of
COMPLEX ;
A5: for k be
Element of
NAT holds ex y be
Element of (
COMPLEX
* ) st
P[k, y]
proof
let k be
Element of
NAT ;
reconsider Tk = (T
. k) as
FinSequence;
defpred
P1[
Nat,
set] means ex j be
Element of
NAT st $1
= j & ex rji be
Element of
COMPLEX , tji be
Element of
REAL st tji
in (
dom (f
| (
divset ((T
. k),j)))) & ((Si
. k)
. j)
= ((
vol (
divset ((T
. k),j)))
* (((
Re f)
| (
divset ((T
. k),j)))
. tji)) & rji
= ((f
| (
divset ((T
. k),j)))
. tji) & $2
= ((
vol (
divset ((T
. k),j)))
* rji);
A6: for j be
Nat st j
in (
Seg (
len Tk)) holds ex x be
Element of
COMPLEX st
P1[j, x]
proof
let j0 be
Nat;
assume
A7: j0
in (
Seg (
len Tk));
then
reconsider j = j0 as
Element of
NAT ;
j
in (
dom Tk) by
A7,
FINSEQ_1:def 3;
then
consider r be
Element of
REAL such that
A8: r
in (
rng ((
Re f)
| (
divset ((T
. k),j)))) and
A9: ((Si
. k)
. j)
= (r
* (
vol (
divset ((T
. k),j)))) by
INTEGR15:def 1;
consider tji be
object such that
A10: tji
in (
dom ((
Re f)
| (
divset ((T
. k),j)))) and
A11: r
= (((
Re f)
| (
divset ((T
. k),j)))
. tji) by
A8,
FUNCT_1:def 3;
tji
in ((
dom (
Re f))
/\ (
divset ((T
. k),j))) by
A10,
RELAT_1: 61;
then
reconsider tji as
Element of
REAL ;
A12: (
dom (f
| (
divset ((T
. k),j))))
= ((
dom f)
/\ (
divset ((T
. k),j))) by
RELAT_1: 61
.= ((
dom (
Re f))
/\ (
divset ((T
. k),j))) by
COMSEQ_3:def 3
.= (
dom ((
Re f)
| (
divset ((T
. k),j)))) by
RELAT_1: 61;
then ((f
| (
divset ((T
. k),j)))
. tji)
in (
rng (f
| (
divset ((T
. k),j)))) by
A10,
FUNCT_1: 3;
then
reconsider rji = ((f
| (
divset ((T
. k),j)))
. tji) as
Element of
COMPLEX ;
reconsider x = ((
vol (
divset ((T
. k),j)))
* rji) as
Element of
COMPLEX by
XCMPLX_0:def 2;
take x;
thus
P1[j0, x] by
A9,
A10,
A11,
A12;
end;
consider p be
FinSequence of
COMPLEX such that
A13: (
dom p)
= (
Seg (
len Tk)) & for j be
Nat st j
in (
Seg (
len Tk)) holds
P1[j, (p
. j)] from
FINSEQ_1:sch 5(
A6);
reconsider x = p as
Element of (
COMPLEX
* ) by
FINSEQ_1:def 11;
take x;
A14:
now
let jj0 be
Element of
NAT ;
reconsider j0 = jj0 as
Nat;
A15: (
dom Tk)
= (
Seg (
len Tk)) by
FINSEQ_1:def 3;
assume jj0
in (
dom Tk);
then
P1[j0, (p
. j0)] by
A13,
A15;
hence ex rji be
Element of
COMPLEX , tji be
Element of
REAL st tji
in (
dom (f
| (
divset ((T
. k),jj0)))) & ((Si
. k)
. jj0)
= ((
vol (
divset ((T
. k),jj0)))
* (((
Re f)
| (
divset ((T
. k),jj0)))
. tji)) & rji
= ((f
| (
divset ((T
. k),jj0)))
. tji) & (p
. jj0)
= ((
vol (
divset ((T
. k),jj0)))
* rji);
end;
(
len p)
= (
len Tk) by
A13,
FINSEQ_1:def 3;
hence
P[k, x] by
A14;
end;
consider S be
sequence of (
COMPLEX
* ) such that
A16: for x be
Element of
NAT holds
P[x, (S
. x)] from
FUNCT_2:sch 3(
A5);
for k be
Element of
NAT holds (S
. k) is
middle_volume of f, (T
. k)
proof
let k be
Element of
NAT ;
consider H be
FinSequence, z be
FinSequence such that
A17: H
= (T
. k) & z
= (S
. k) & (
len H)
= (
len z) and
A18: for j be
Element of
NAT st j
in (
dom H) holds ex rji be
Element of
COMPLEX , tji be
Element of
REAL st tji
in (
dom (f
| (
divset ((T
. k),j)))) & ((Si
. k)
. j)
= ((
vol (
divset ((T
. k),j)))
* (((
Re f)
| (
divset ((T
. k),j)))
. tji)) & rji
= ((f
| (
divset ((T
. k),j)))
. tji) & (z
. j)
= ((
vol (
divset ((T
. k),j)))
* rji) by
A16;
A19:
now
let x be
Nat;
assume
A20: x
in (
dom H);
then
reconsider j = x as
Element of
NAT ;
consider rji be
Element of
COMPLEX , tji be
Element of
REAL such that
A21: tji
in (
dom (f
| (
divset ((T
. k),j)))) and ((Si
. k)
. j)
= ((
vol (
divset ((T
. k),j)))
* (((
Re f)
| (
divset ((T
. k),j)))
. tji)) and
A22: rji
= ((f
| (
divset ((T
. k),j)))
. tji) and
A23: (z
. j)
= ((
vol (
divset ((T
. k),j)))
* rji) by
A18,
A20;
take rji;
thus rji
in (
rng (f
| (
divset ((T
. k),x)))) by
A21,
A22,
FUNCT_1: 3;
thus (z
. x)
= (rji
* (
vol (
divset ((T
. k),x)))) by
A23;
end;
thus thesis by
A17,
A19,
Def1;
end;
then
reconsider S as
middle_volume_Sequence of f, T by
Def3;
set seq = (
middle_sum (f,S));
reconsider xseq = seq as
sequence of
COMPLEX ;
assume (
delta T) is
convergent & (
lim (
delta T))
=
0 ;
then
A24: seq is
convergent & (
lim seq)
= x by
A3;
reconsider rseqi = (
Re seq) as
Real_Sequence;
A25: for k be
Element of
NAT holds (rseqi
. k)
= (
Re (xseq
. k)) & rseqi is
convergent & (
Re xs)
= (
lim rseqi) by
A24,
COMSEQ_3: 41,
COMSEQ_3:def 5;
for k be
Element of
NAT holds (rseqi
. k)
= ((
middle_sum ((
Re f),Si))
. k)
proof
let k be
Element of
NAT ;
consider H be
FinSequence, z be
FinSequence such that
A26: H
= (T
. k) and
A27: z
= (S
. k) and
A28: (
len H)
= (
len z) and
A29: for j be
Element of
NAT st j
in (
dom H) holds ex rji be
Element of
COMPLEX , tji be
Element of
REAL st tji
in (
dom (f
| (
divset ((T
. k),j)))) & ((Si
. k)
. j)
= ((
vol (
divset ((T
. k),j)))
* (((
Re f)
| (
divset ((T
. k),j)))
. tji)) & rji
= ((f
| (
divset ((T
. k),j)))
. tji) & (z
. j)
= ((
vol (
divset ((T
. k),j)))
* rji) by
A16;
A30: (
dom (
Re (S
. k)))
= (
dom (S
. k)) by
COMSEQ_3:def 3
.= (
Seg (
len H)) by
A27,
A28,
FINSEQ_1:def 3
.= (
Seg (
len (Si
. k))) by
A26,
INTEGR15:def 1
.= (
dom (Si
. k)) by
FINSEQ_1:def 3;
A31: for j be
Nat st j
in (
dom (
Re (S
. k))) holds ((
Re (S
. k))
. j)
= ((Si
. k)
. j)
proof
let j0 be
Nat;
reconsider j = j0 as
Element of
NAT by
ORDINAL1:def 12;
assume
A32: j0
in (
dom (
Re (S
. k)));
then j0
in (
Seg (
len (Si
. k))) by
A30,
FINSEQ_1:def 3;
then j0
in (
Seg (
len H)) by
A26,
INTEGR15:def 1;
then j
in (
dom H) by
FINSEQ_1:def 3;
then
consider rji be
Element of
COMPLEX , tji be
Element of
REAL such that
A33: tji
in (
dom (f
| (
divset ((T
. k),j)))) and
A34: ((Si
. k)
. j)
= ((
vol (
divset ((T
. k),j)))
* (((
Re f)
| (
divset ((T
. k),j)))
. tji)) and
A35: rji
= ((f
| (
divset ((T
. k),j)))
. tji) and
A36: (z
. j)
= ((
vol (
divset ((T
. k),j)))
* rji) by
A29;
A37: (
dom (f
| (
divset ((T
. k),j))))
= ((
dom f)
/\ (
divset ((T
. k),j))) by
RELAT_1: 61
.= ((
dom (
Re f))
/\ (
divset ((T
. k),j))) by
COMSEQ_3:def 3
.= (
dom ((
Re f)
| (
divset ((T
. k),j)))) by
RELAT_1: 61;
then tji
in ((
dom (
Re f))
/\ (
divset ((T
. k),j))) by
A33,
RELAT_1: 61;
then
A38: tji
in (
dom (
Re f)) by
XBOOLE_0:def 4;
A39: (((
Re f)
| (
divset ((T
. k),j)))
. tji)
= ((
Re f)
. tji) by
A33,
A37,
FUNCT_1: 47
.= (
Re (f
. tji)) by
A38,
COMSEQ_3:def 3
.= (
Re rji) by
A33,
A35,
FUNCT_1: 47;
((
Re (S
. k))
. j)
= (
Re ((S
. k)
. j)) by
A32,
COMSEQ_3:def 3
.= ((Si
. k)
. j) by
A34,
A39,
Th1,
A27,
A36;
hence thesis;
end;
A40: for j0 be
object st j0
in (
dom (
Re (S
. k))) holds ((
Re (S
. k))
. j0)
= ((Si
. k)
. j0) by
A31;
thus (rseqi
. k)
= (
Re (xseq
. k)) by
COMSEQ_3:def 5
.= (
Re (
middle_sum (f,(S
. k)))) by
Def4
.= (
middle_sum ((
Re f),(Si
. k))) by
A30,
A40,
Th7,
FUNCT_1: 2
.= ((
middle_sum ((
Re f),Si))
. k) by
INTEGR15:def 4;
end;
hence (
middle_sum ((
Re f),Si)) is
convergent & (
lim (
middle_sum ((
Re f),Si)))
= Ii by
A25,
FUNCT_2: 63;
end;
(
Re f) is
bounded by
A1,
Th13;
then
A41: (
Re f) is
integrable by
A4,
INTEGR15: 10;
A42:
now
set x = I;
let T be
DivSequence of A, Si be
middle_volume_Sequence of (
Im f), T;
defpred
P[
Element of
NAT ,
set] means ex H be
FinSequence, z be
FinSequence st H
= (T
. $1) & z
= $2 & (
len z)
= (
len H) & for j be
Element of
NAT st j
in (
dom H) holds ex rji be
Element of
COMPLEX , tji be
Element of
REAL st tji
in (
dom (f
| (
divset ((T
. $1),j)))) & ((Si
. $1)
. j)
= ((
vol (
divset ((T
. $1),j)))
* (((
Im f)
| (
divset ((T
. $1),j)))
. tji)) & rji
= ((f
| (
divset ((T
. $1),j)))
. tji) & (z
. j)
= ((
vol (
divset ((T
. $1),j)))
* rji);
reconsider xs = x as
Element of
COMPLEX ;
A43: for k be
Element of
NAT holds ex y be
Element of (
COMPLEX
* ) st
P[k, y]
proof
let k be
Element of
NAT ;
reconsider Tk = (T
. k) as
FinSequence;
defpred
P1[
Nat,
set] means ex j be
Element of
NAT st $1
= j & ex rji be
Element of
COMPLEX , tji be
Element of
REAL st tji
in (
dom (f
| (
divset ((T
. k),j)))) & ((Si
. k)
. j)
= ((
vol (
divset ((T
. k),j)))
* (((
Im f)
| (
divset ((T
. k),j)))
. tji)) & rji
= ((f
| (
divset ((T
. k),j)))
. tji) & $2
= ((
vol (
divset ((T
. k),j)))
* rji);
A44: for j be
Nat st j
in (
Seg (
len Tk)) holds ex x be
Element of
COMPLEX st
P1[j, x]
proof
let j0 be
Nat;
assume
A45: j0
in (
Seg (
len Tk));
then
reconsider j = j0 as
Element of
NAT ;
j
in (
dom Tk) by
A45,
FINSEQ_1:def 3;
then
consider r be
Element of
REAL such that
A46: r
in (
rng ((
Im f)
| (
divset ((T
. k),j)))) and
A47: ((Si
. k)
. j)
= (r
* (
vol (
divset ((T
. k),j)))) by
INTEGR15:def 1;
consider tji be
object such that
A48: tji
in (
dom ((
Im f)
| (
divset ((T
. k),j)))) and
A49: r
= (((
Im f)
| (
divset ((T
. k),j)))
. tji) by
A46,
FUNCT_1:def 3;
tji
in ((
dom (
Im f))
/\ (
divset ((T
. k),j))) by
A48,
RELAT_1: 61;
then
reconsider tji as
Element of
REAL ;
A50: (
dom (f
| (
divset ((T
. k),j))))
= ((
dom f)
/\ (
divset ((T
. k),j))) by
RELAT_1: 61
.= ((
dom (
Im f))
/\ (
divset ((T
. k),j))) by
COMSEQ_3:def 4
.= (
dom ((
Im f)
| (
divset ((T
. k),j)))) by
RELAT_1: 61;
then ((f
| (
divset ((T
. k),j)))
. tji)
in (
rng (f
| (
divset ((T
. k),j)))) by
A48,
FUNCT_1: 3;
then
reconsider rji = ((f
| (
divset ((T
. k),j)))
. tji) as
Element of
COMPLEX ;
reconsider x = ((
vol (
divset ((T
. k),j)))
* rji) as
Element of
COMPLEX by
XCMPLX_0:def 2;
take x;
thus
P1[j0, x] by
A47,
A48,
A49,
A50;
end;
consider p be
FinSequence of
COMPLEX such that
A51: (
dom p)
= (
Seg (
len Tk)) & for j be
Nat st j
in (
Seg (
len Tk)) holds
P1[j, (p
. j)] from
FINSEQ_1:sch 5(
A44);
reconsider x = p as
Element of (
COMPLEX
* ) by
FINSEQ_1:def 11;
take x;
A52:
now
let jj0 be
Element of
NAT ;
reconsider j0 = jj0 as
Nat;
A53: (
dom Tk)
= (
Seg (
len Tk)) by
FINSEQ_1:def 3;
assume jj0
in (
dom Tk);
then
P1[j0, (p
. j0)] by
A51,
A53;
hence ex rji be
Element of
COMPLEX , tji be
Element of
REAL st tji
in (
dom (f
| (
divset ((T
. k),jj0)))) & ((Si
. k)
. jj0)
= ((
vol (
divset ((T
. k),jj0)))
* (((
Im f)
| (
divset ((T
. k),jj0)))
. tji)) & rji
= ((f
| (
divset ((T
. k),jj0)))
. tji) & (p
. jj0)
= ((
vol (
divset ((T
. k),jj0)))
* rji);
end;
(
len p)
= (
len Tk) by
A51,
FINSEQ_1:def 3;
hence
P[k, x] by
A52;
end;
consider S be
sequence of (
COMPLEX
* ) such that
A54: for x be
Element of
NAT holds
P[x, (S
. x)] from
FUNCT_2:sch 3(
A43);
for k be
Element of
NAT holds (S
. k) is
middle_volume of f, (T
. k)
proof
let k be
Element of
NAT ;
consider H be
FinSequence, z be
FinSequence such that
A55: H
= (T
. k) & z
= (S
. k) & (
len H)
= (
len z) and
A56: for j be
Element of
NAT st j
in (
dom H) holds ex rji be
Element of
COMPLEX , tji be
Element of
REAL st tji
in (
dom (f
| (
divset ((T
. k),j)))) & ((Si
. k)
. j)
= ((
vol (
divset ((T
. k),j)))
* (((
Im f)
| (
divset ((T
. k),j)))
. tji)) & rji
= ((f
| (
divset ((T
. k),j)))
. tji) & (z
. j)
= ((
vol (
divset ((T
. k),j)))
* rji) by
A54;
A57:
now
let x be
Nat;
assume
A58: x
in (
dom H);
then
reconsider j = x as
Element of
NAT ;
consider rji be
Element of
COMPLEX , tji be
Element of
REAL such that
A59: tji
in (
dom (f
| (
divset ((T
. k),j)))) and ((Si
. k)
. j)
= ((
vol (
divset ((T
. k),j)))
* (((
Im f)
| (
divset ((T
. k),j)))
. tji)) and
A60: rji
= ((f
| (
divset ((T
. k),j)))
. tji) and
A61: (z
. j)
= ((
vol (
divset ((T
. k),j)))
* rji) by
A56,
A58;
take rji;
thus rji
in (
rng (f
| (
divset ((T
. k),x)))) by
A59,
A60,
FUNCT_1: 3;
thus (z
. x)
= (rji
* (
vol (
divset ((T
. k),x)))) by
A61;
end;
thus thesis by
A55,
A57,
Def1;
end;
then
reconsider S as
middle_volume_Sequence of f, T by
Def3;
set seq = (
middle_sum (f,S));
reconsider xseq = seq as
sequence of
COMPLEX ;
assume (
delta T) is
convergent & (
lim (
delta T))
=
0 ;
then
A62: seq is
convergent & (
lim seq)
= x by
A3;
reconsider rseqi = (
Im seq) as
Real_Sequence;
A63: for k be
Element of
NAT holds (rseqi
. k)
= (
Im (xseq
. k)) & rseqi is
convergent & (
Im xs)
= (
lim rseqi) by
A62,
COMSEQ_3: 41,
COMSEQ_3:def 6;
for k be
Element of
NAT holds (rseqi
. k)
= ((
middle_sum ((
Im f),Si))
. k)
proof
let k be
Element of
NAT ;
consider H be
FinSequence, z be
FinSequence such that
A64: H
= (T
. k) and
A65: z
= (S
. k) and
A66: (
len H)
= (
len z) and
A67: for j be
Element of
NAT st j
in (
dom H) holds ex rji be
Element of
COMPLEX , tji be
Element of
REAL st tji
in (
dom (f
| (
divset ((T
. k),j)))) & ((Si
. k)
. j)
= ((
vol (
divset ((T
. k),j)))
* (((
Im f)
| (
divset ((T
. k),j)))
. tji)) & rji
= ((f
| (
divset ((T
. k),j)))
. tji) & (z
. j)
= ((
vol (
divset ((T
. k),j)))
* rji) by
A54;
A68: (
dom (
Im (S
. k)))
= (
dom (S
. k)) by
COMSEQ_3:def 4
.= (
Seg (
len H)) by
A65,
A66,
FINSEQ_1:def 3
.= (
Seg (
len (Si
. k))) by
A64,
INTEGR15:def 1
.= (
dom (Si
. k)) by
FINSEQ_1:def 3;
A69: for j be
Nat st j
in (
dom (
Im (S
. k))) holds ((
Im (S
. k))
. j)
= ((Si
. k)
. j)
proof
let j0 be
Nat;
reconsider j = j0 as
Element of
NAT by
ORDINAL1:def 12;
assume
A70: j0
in (
dom (
Im (S
. k)));
then j0
in (
Seg (
len (Si
. k))) by
A68,
FINSEQ_1:def 3;
then j0
in (
Seg (
len H)) by
A64,
INTEGR15:def 1;
then j
in (
dom H) by
FINSEQ_1:def 3;
then
consider rji be
Element of
COMPLEX , tji be
Element of
REAL such that
A71: tji
in (
dom (f
| (
divset ((T
. k),j)))) and
A72: ((Si
. k)
. j)
= ((
vol (
divset ((T
. k),j)))
* (((
Im f)
| (
divset ((T
. k),j)))
. tji)) and
A73: rji
= ((f
| (
divset ((T
. k),j)))
. tji) and
A74: (z
. j)
= ((
vol (
divset ((T
. k),j)))
* rji) by
A67;
A75: (
dom (f
| (
divset ((T
. k),j))))
= ((
dom f)
/\ (
divset ((T
. k),j))) by
RELAT_1: 61
.= ((
dom (
Im f))
/\ (
divset ((T
. k),j))) by
COMSEQ_3:def 4
.= (
dom ((
Im f)
| (
divset ((T
. k),j)))) by
RELAT_1: 61;
then tji
in ((
dom (
Im f))
/\ (
divset ((T
. k),j))) by
A71,
RELAT_1: 61;
then
A76: tji
in (
dom (
Im f)) by
XBOOLE_0:def 4;
A77: (((
Im f)
| (
divset ((T
. k),j)))
. tji)
= ((
Im f)
. tji) by
A71,
A75,
FUNCT_1: 47
.= (
Im (f
. tji)) by
A76,
COMSEQ_3:def 4
.= (
Im rji) by
A71,
A73,
FUNCT_1: 47;
((
Im (S
. k))
. j)
= (
Im ((S
. k)
. j)) by
A70,
COMSEQ_3:def 4
.= ((Si
. k)
. j) by
A72,
A77,
A65,
A74,
Th1;
hence thesis;
end;
A78: for j0 be
object st j0
in (
dom (
Im (S
. k))) holds ((
Im (S
. k))
. j0)
= ((Si
. k)
. j0) by
A69;
thus (rseqi
. k)
= (
Im (xseq
. k)) by
COMSEQ_3:def 6
.= (
Im (
middle_sum (f,(S
. k)))) by
Def4
.= (
middle_sum ((
Im f),(Si
. k))) by
A78,
A68,
Th8,
FUNCT_1: 2
.= ((
middle_sum ((
Im f),Si))
. k) by
INTEGR15:def 4;
end;
hence (
middle_sum ((
Im f),Si)) is
convergent & (
lim (
middle_sum ((
Im f),Si)))
= Ic by
A63,
FUNCT_2: 63;
end;
(
Im f) is
bounded by
A1,
Th13;
then (
Im f) is
integrable by
A42,
INTEGR15: 10;
hence f is
integrable by
A41;
end;
hence thesis;
end;
definition
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
PartFunc of
REAL ,
COMPLEX ;
::
INTEGR16:def7
pred f
is_integrable_on A means (
Re f)
is_integrable_on A & (
Im f)
is_integrable_on A;
end
definition
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
PartFunc of
REAL ,
COMPLEX ;
::
INTEGR16:def8
func
integral (f,A) ->
Element of
COMPLEX equals ((
integral ((
Re f),A))
+ ((
integral ((
Im f),A))
*
<i> ));
correctness by
XCMPLX_0:def 2;
end
Lm4: for f be
PartFunc of
REAL ,
COMPLEX , A be
Subset of
REAL holds (
Re (f
| A))
= ((
Re f)
| A) & (
Im (f
| A))
= ((
Im f)
| A)
proof
let f be
PartFunc of
REAL ,
COMPLEX , A be
Subset of
REAL ;
(
dom ((
Re f)
| A))
= ((
dom (
Re f))
/\ A) by
RELAT_1: 61
.= ((
dom f)
/\ A) by
COMSEQ_3:def 3;
then
A1: (
dom ((
Re f)
| A))
= (
dom (f
| A)) by
RELAT_1: 61
.= (
dom (
Re (f
| A))) by
COMSEQ_3:def 3;
now
let x be
object;
assume
A2: x
in (
dom ((
Re f)
| A));
then
A3: x
in ((
dom (
Re f))
/\ A) by
RELAT_1: 61;
then
A4: x
in (
dom (
Re f)) by
XBOOLE_0:def 4;
A5: x
in A by
A3,
XBOOLE_0:def 4;
thus ((
Re (f
| A))
. x)
= (
Re ((f
| A)
. x)) by
A1,
A2,
COMSEQ_3:def 3
.= (
Re (f
. x)) by
A5,
FUNCT_1: 49
.= ((
Re f)
. x) by
A4,
COMSEQ_3:def 3
.= (((
Re f)
| A)
. x) by
A5,
FUNCT_1: 49;
end;
hence ((
Re f)
| A)
= (
Re (f
| A)) by
A1,
FUNCT_1: 2;
(
dom ((
Im f)
| A))
= ((
dom (
Im f))
/\ A) by
RELAT_1: 61
.= ((
dom f)
/\ A) by
COMSEQ_3:def 4;
then
A6: (
dom ((
Im f)
| A))
= (
dom (f
| A)) by
RELAT_1: 61
.= (
dom (
Im (f
| A))) by
COMSEQ_3:def 4;
now
let x be
object;
assume
A7: x
in (
dom ((
Im f)
| A));
then
A8: x
in ((
dom (
Im f))
/\ A) by
RELAT_1: 61;
then
A9: x
in (
dom (
Im f)) by
XBOOLE_0:def 4;
A10: x
in A by
A8,
XBOOLE_0:def 4;
thus ((
Im (f
| A))
. x)
= (
Im ((f
| A)
. x)) by
A6,
A7,
COMSEQ_3:def 4
.= (
Im (f
. x)) by
A10,
FUNCT_1: 49
.= ((
Im f)
. x) by
A9,
COMSEQ_3:def 4
.= (((
Im f)
| A)
. x) by
A10,
FUNCT_1: 49;
end;
hence thesis by
A6,
FUNCT_1: 2;
end;
theorem ::
INTEGR16:16
for A be non
empty
closed_interval
Subset of
REAL , f be
PartFunc of
REAL ,
COMPLEX , g be
Function of A,
COMPLEX st (f
| A)
= g holds f
is_integrable_on A iff g is
integrable
proof
let A be non
empty
closed_interval
Subset of
REAL , f be
PartFunc of
REAL ,
COMPLEX , g be
Function of A,
COMPLEX ;
assume
A1: (f
| A)
= g;
thus f
is_integrable_on A implies g is
integrable
proof
assume
A2: f
is_integrable_on A;
(
Re g) is
integrable & (
Im g) is
integrable
proof
A3: A
= (
dom g) by
FUNCT_2:def 1
.= ((
dom f)
/\ A) by
A1,
RELAT_1: 61;
then A
= ((
dom (
Re f))
/\ A) by
COMSEQ_3:def 3;
then ((
Re f)
|| A) is
total by
INTEGRA5: 6,
XBOOLE_1: 17;
then
reconsider F = ((
Re f)
| A) as
Function of A,
REAL ;
A4: (
Re f)
is_integrable_on A by
A2;
(
dom g)
= A by
FUNCT_2:def 1;
then
reconsider g0 = g as
PartFunc of
REAL ,
COMPLEX by
RELSET_1: 5;
(
Re g)
= (
Re g0)
.= F by
A1,
Lm4;
hence (
Re g) is
integrable by
A4;
A
= ((
dom (
Im f))
/\ A) by
A3,
COMSEQ_3:def 4;
then ((
Im f)
|| A) is
total by
INTEGRA5: 6,
XBOOLE_1: 17;
then
reconsider G = ((
Im f)
| A) as
Function of A,
REAL ;
A5: (
Im f)
is_integrable_on A by
A2;
(
Im g)
= (
Im g0)
.= G by
A1,
Lm4;
hence (
Im g) is
integrable by
A5;
end;
hence thesis;
end;
assume
A6: g is
integrable;
(
Re f)
is_integrable_on A & (
Im f)
is_integrable_on A by
A1,
Lm4,
A6;
hence thesis;
end;
theorem ::
INTEGR16:17
for A be non
empty
closed_interval
Subset of
REAL , f be
PartFunc of
REAL ,
COMPLEX , g be
Function of A,
COMPLEX st (f
| A)
= g holds (
integral (f,A))
= (
integral g)
proof
let A be non
empty
closed_interval
Subset of
REAL , f be
PartFunc of
REAL ,
COMPLEX , g be
Function of A,
COMPLEX ;
assume
A1: (f
| A)
= g;
A2: A
= (
dom g) by
FUNCT_2:def 1
.= ((
dom f)
/\ A) by
A1,
RELAT_1: 61;
then A
= ((
dom (
Re f))
/\ A) by
COMSEQ_3:def 3;
then ((
Re f)
|| A) is
total by
INTEGRA5: 6,
XBOOLE_1: 17;
then
reconsider F = ((
Re f)
| A) as
Function of A,
REAL ;
(
dom g)
= A by
FUNCT_2:def 1;
then
reconsider g0 = g as
PartFunc of
REAL ,
COMPLEX by
RELSET_1: 5;
A3: (
Re g)
= (
Re g0)
.= F by
A1,
Lm4;
A
= ((
dom (
Im f))
/\ A) by
A2,
COMSEQ_3:def 4;
then ((
Im f)
|| A) is
total by
INTEGRA5: 6,
XBOOLE_1: 17;
then
reconsider G = ((
Im f)
| A) as
Function of A,
REAL ;
(
Im g)
= (
Im g0)
.= G by
A1,
Lm4;
hence (
integral (f,A))
= (
integral g) by
A3;
end;
definition
let a,b be
Real;
let f be
PartFunc of
REAL ,
COMPLEX ;
::
INTEGR16:def9
func
integral (f,a,b) ->
Element of
COMPLEX equals ((
integral ((
Re f),a,b))
+ ((
integral ((
Im f),a,b))
*
<i> ));
correctness by
XCMPLX_0:def 2;
end
begin
theorem ::
INTEGR16:18
Th18: for c be
Complex, f be
PartFunc of
REAL ,
COMPLEX holds (
Re (c
(#) f))
= (((
Re c)
(#) (
Re f))
- ((
Im c)
(#) (
Im f))) & (
Im (c
(#) f))
= (((
Re c)
(#) (
Im f))
+ ((
Im c)
(#) (
Re f)))
proof
let c be
Complex, f be
PartFunc of
REAL ,
COMPLEX ;
A1: (
dom (
Re (c
(#) f)))
= (
dom (c
(#) f)) by
COMSEQ_3:def 3
.= (
dom f) by
VALUED_1:def 5;
A2: (
dom (
Im (c
(#) f)))
= (
dom (c
(#) f)) by
COMSEQ_3:def 4
.= (
dom f) by
VALUED_1:def 5;
A3: (
dom ((
Re c)
(#) (
Re f)))
= (
dom (
Re f)) by
VALUED_1:def 5
.= (
dom f) by
COMSEQ_3:def 3;
A4: (
dom ((
Im c)
(#) (
Im f)))
= (
dom (
Im f)) by
VALUED_1:def 5
.= (
dom f) by
COMSEQ_3:def 4;
A5: (
dom ((
Im c)
(#) (
Re f)))
= (
dom (
Re f)) by
VALUED_1:def 5
.= (
dom f) by
COMSEQ_3:def 3;
A6: (
dom ((
Re c)
(#) (
Im f)))
= (
dom (
Im f)) by
VALUED_1:def 5
.= (
dom f) by
COMSEQ_3:def 4;
A7: (
dom (
Re (c
(#) f)))
= ((
dom f)
/\ (
dom f)) by
A1
.= (
dom (((
Re c)
(#) (
Re f))
- ((
Im c)
(#) (
Im f)))) by
A3,
A4,
VALUED_1: 12;
A8: (
dom (
Im (c
(#) f)))
= ((
dom f)
/\ (
dom f)) by
A2
.= (
dom (((
Re c)
(#) (
Im f))
+ ((
Im c)
(#) (
Re f)))) by
A5,
A6,
VALUED_1:def 1;
now
let x be
object;
assume
A9: x
in (
dom (
Re (c
(#) f)));
then
A10: x
in (
dom (
Re f)) & x
in (
dom (
Im f)) by
A1,
COMSEQ_3:def 3,
COMSEQ_3:def 4;
thus ((
Re (c
(#) f))
. x)
= (
Re ((c
(#) f)
. x)) by
A9,
COMSEQ_3:def 3
.= (
Re (c
* (f
. x))) by
VALUED_1: 6
.= (((
Re c)
* (
Re (f
. x)))
- ((
Im c)
* (
Im (f
. x)))) by
COMPLEX1: 9
.= (((
Re c)
* ((
Re f)
. x))
- ((
Im c)
* (
Im (f
. x)))) by
A10,
COMSEQ_3:def 3
.= (((
Re c)
* ((
Re f)
. x))
- ((
Im c)
* ((
Im f)
. x))) by
A10,
COMSEQ_3:def 4
.= ((((
Re c)
(#) (
Re f))
. x)
- ((
Im c)
* ((
Im f)
. x))) by
VALUED_1: 6
.= ((((
Re c)
(#) (
Re f))
. x)
- (((
Im c)
(#) (
Im f))
. x)) by
VALUED_1: 6
.= ((((
Re c)
(#) (
Re f))
- ((
Im c)
(#) (
Im f)))
. x) by
A9,
A7,
VALUED_1: 13;
end;
hence (
Re (c
(#) f))
= (((
Re c)
(#) (
Re f))
- ((
Im c)
(#) (
Im f))) by
A7,
FUNCT_1: 2;
now
let x be
object;
assume
A11: x
in (
dom (
Im (c
(#) f)));
then
A12: x
in (
dom (
Re f)) & x
in (
dom (
Im f)) by
A2,
COMSEQ_3:def 3,
COMSEQ_3:def 4;
thus ((
Im (c
(#) f))
. x)
= (
Im ((c
(#) f)
. x)) by
A11,
COMSEQ_3:def 4
.= (
Im (c
* (f
. x))) by
VALUED_1: 6
.= (((
Re c)
* (
Im (f
. x)))
+ ((
Im c)
* (
Re (f
. x)))) by
COMPLEX1: 9
.= (((
Re c)
* ((
Im f)
. x))
+ ((
Im c)
* (
Re (f
. x)))) by
A12,
COMSEQ_3:def 4
.= (((
Re c)
* ((
Im f)
. x))
+ ((
Im c)
* ((
Re f)
. x))) by
A12,
COMSEQ_3:def 3
.= ((((
Re c)
(#) (
Im f))
. x)
+ ((
Im c)
* ((
Re f)
. x))) by
VALUED_1: 6
.= ((((
Re c)
(#) (
Im f))
. x)
+ (((
Im c)
(#) (
Re f))
. x)) by
VALUED_1: 6
.= ((((
Re c)
(#) (
Im f))
+ ((
Im c)
(#) (
Re f)))
. x) by
A11,
A8,
VALUED_1:def 1;
end;
hence (
Im (c
(#) f))
= (((
Re c)
(#) (
Im f))
+ ((
Im c)
(#) (
Re f))) by
A8,
FUNCT_1: 2;
end;
theorem ::
INTEGR16:19
for A be non
empty
closed_interval
Subset of
REAL , f1,f2 be
PartFunc of
REAL ,
COMPLEX st f1
is_integrable_on A & f2
is_integrable_on A & A
c= (
dom f1) & A
c= (
dom f2) & (f1
| A) is
bounded & (f2
| A) is
bounded holds (f1
+ f2)
is_integrable_on A & (f1
- f2)
is_integrable_on A & (
integral ((f1
+ f2),A))
= ((
integral (f1,A))
+ (
integral (f2,A))) & (
integral ((f1
- f2),A))
= ((
integral (f1,A))
- (
integral (f2,A)))
proof
let A be non
empty
closed_interval
Subset of
REAL ;
let f1,f2 be
PartFunc of
REAL ,
COMPLEX ;
assume that
A1: f1
is_integrable_on A & f2
is_integrable_on A and
A2: A
c= (
dom f1) & A
c= (
dom f2) and
A3: (f1
| A) is
bounded and
A4: (f2
| A) is
bounded;
A5: ((
Re f1)
+ (
Re f2))
is_integrable_on A & ((
Im f1)
+ (
Im f2))
is_integrable_on A & (
integral (((
Re f1)
+ (
Re f2)),A))
= ((
integral ((
Re f1),A))
+ (
integral ((
Re f2),A))) & (
integral (((
Im f1)
+ (
Im f2)),A))
= ((
integral ((
Im f1),A))
+ (
integral ((
Im f2),A))) & ((
Re f1)
- (
Re f2))
is_integrable_on A & ((
Im f1)
- (
Im f2))
is_integrable_on A & (
integral (((
Re f1)
- (
Re f2)),A))
= ((
integral ((
Re f1),A))
- (
integral ((
Re f2),A))) & (
integral (((
Im f1)
- (
Im f2)),A))
= ((
integral ((
Im f1),A))
- (
integral ((
Im f2),A)))
proof
A6: A
c= (
dom (
Re f1)) & A
c= (
dom (
Re f2)) & A
c= (
dom (
Im f1)) & A
c= (
dom (
Im f2)) by
A2,
COMSEQ_3:def 3,
COMSEQ_3:def 4;
(
Re (f2
| A)) is
bounded & (
Im (f2
| A)) is
bounded by
A4,
Th11;
then
A7: ((
Re f2)
| A) is
bounded & ((
Im f2)
| A) is
bounded by
Lm4;
(
Re (f1
| A)) is
bounded & (
Im (f1
| A)) is
bounded by
A3,
Th11;
then
A8: ((
Re f1)
| A) is
bounded & ((
Im f1)
| A) is
bounded by
Lm4;
A9: (
Re f1)
is_integrable_on A & (
Im f1)
is_integrable_on A & (
Re f2)
is_integrable_on A & (
Im f2)
is_integrable_on A by
A1;
hence ((
Re f1)
+ (
Re f2))
is_integrable_on A & ((
Im f1)
+ (
Im f2))
is_integrable_on A & (
integral (((
Re f1)
+ (
Re f2)),A))
= ((
integral ((
Re f1),A))
+ (
integral ((
Re f2),A))) & (
integral (((
Im f1)
+ (
Im f2)),A))
= ((
integral ((
Im f1),A))
+ (
integral ((
Im f2),A))) by
A6,
A7,
A8,
INTEGRA6: 11;
thus ((
Re f1)
- (
Re f2))
is_integrable_on A & ((
Im f1)
- (
Im f2))
is_integrable_on A & (
integral (((
Re f1)
- (
Re f2)),A))
= ((
integral ((
Re f1),A))
- (
integral ((
Re f2),A))) & (
integral (((
Im f1)
- (
Im f2)),A))
= ((
integral ((
Im f1),A))
- (
integral ((
Im f2),A))) by
A6,
A7,
A8,
A9,
INTEGRA6: 11;
end;
then (
Re (f1
+ f2))
is_integrable_on A & (
Im (f1
+ f2))
is_integrable_on A & (
Re (f1
- f2))
is_integrable_on A & (
Im (f1
- f2))
is_integrable_on A by
MESFUN6C: 5,
MESFUN6C: 6;
hence (f1
+ f2)
is_integrable_on A & (f1
- f2)
is_integrable_on A;
((
Re (
integral (f1,A)))
+ (
Re (
integral (f2,A))))
= ((
integral ((
Re f1),A))
+ (
integral ((
Re f2),A))) & ((
Im (
integral (f1,A)))
+ (
Im (
integral (f2,A))))
= ((
integral ((
Im f1),A))
+ (
integral ((
Im f2),A))) & ((
Re (
integral (f1,A)))
- (
Re (
integral (f2,A))))
= ((
integral ((
Re f1),A))
- (
integral ((
Re f2),A))) & ((
Im (
integral (f1,A)))
- (
Im (
integral (f2,A))))
= ((
integral ((
Im f1),A))
- (
integral ((
Im f2),A)))
proof
(
Re (
integral (f1,A)))
= (
integral ((
Re f1),A)) & (
Im (
integral (f1,A)))
= (
integral ((
Im f1),A)) & (
Re (
integral (f2,A)))
= (
integral ((
Re f2),A)) & (
Im (
integral (f2,A)))
= (
integral ((
Im f2),A)) by
COMPLEX1: 12;
hence thesis;
end;
then ((
Re (
integral (f1,A)))
+ (
Re (
integral (f2,A))))
= (
integral ((
Re (f1
+ f2)),A)) & ((
Im (
integral (f1,A)))
+ (
Im (
integral (f2,A))))
= (
integral ((
Im (f1
+ f2)),A)) & ((
Re (
integral (f1,A)))
- (
Re (
integral (f2,A))))
= (
integral ((
Re (f1
- f2)),A)) & ((
Im (
integral (f1,A)))
- (
Im (
integral (f2,A))))
= (
integral ((
Im (f1
- f2)),A)) by
A5,
MESFUN6C: 5,
MESFUN6C: 6;
then
A10: (
Re (
integral ((f1
+ f2),A)))
= ((
Re (
integral (f1,A)))
+ (
Re (
integral (f2,A)))) & (
Im (
integral ((f1
+ f2),A)))
= ((
Im (
integral (f1,A)))
+ (
Im (
integral (f2,A)))) & (
Re (
integral ((f1
- f2),A)))
= ((
Re (
integral (f1,A)))
- (
Re (
integral (f2,A)))) & (
Im (
integral ((f1
- f2),A)))
= ((
Im (
integral (f1,A)))
- (
Im (
integral (f2,A)))) by
COMPLEX1: 12;
then (
Re (
integral ((f1
+ f2),A)))
= (
Re ((
integral (f1,A))
+ (
integral (f2,A)))) & (
Im (
integral ((f1
+ f2),A)))
= (
Im ((
integral (f1,A))
+ (
integral (f2,A)))) by
COMPLEX1: 8;
hence (
integral ((f1
+ f2),A))
= ((
integral (f1,A))
+ (
integral (f2,A)));
(
Re (
integral ((f1
- f2),A)))
= (
Re ((
integral (f1,A))
- (
integral (f2,A)))) & (
Im (
integral ((f1
- f2),A)))
= (
Im ((
integral (f1,A))
- (
integral (f2,A)))) by
A10,
COMPLEX1: 19;
hence (
integral ((f1
- f2),A))
= ((
integral (f1,A))
- (
integral (f2,A)));
end;
theorem ::
INTEGR16:20
for r be
Real holds for A be non
empty
closed_interval
Subset of
REAL holds for f be
PartFunc of
REAL ,
COMPLEX st A
c= (
dom f) & f
is_integrable_on A & (f
| A) is
bounded holds (r
(#) f)
is_integrable_on A & (
integral ((r
(#) f),A))
= (r
* (
integral (f,A)))
proof
let r be
Real;
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
PartFunc of
REAL ,
COMPLEX ;
assume that
A1: A
c= (
dom f) and
A2: f
is_integrable_on A and
A3: (f
| A) is
bounded;
A4: (
Re f)
is_integrable_on A & (
Im f)
is_integrable_on A by
A2;
A5: (
integral ((r
(#) (
Re f)),A))
= (r
* (
integral ((
Re f),A))) & (
integral ((r
(#) (
Im f)),A))
= (r
* (
integral ((
Im f),A)))
proof
(
Re (f
| A)) is
bounded & (
Im (f
| A)) is
bounded by
A3,
Th11;
then
A6: ((
Re f)
| A) is
bounded & ((
Im f)
| A) is
bounded by
Lm4;
A7: A
c= (
dom (
Re f)) & A
c= (
dom (
Im f)) by
A1,
COMSEQ_3:def 3,
COMSEQ_3:def 4;
hence (
integral ((r
(#) (
Re f)),A))
= (r
* (
integral ((
Re f),A))) by
A4,
A6,
INTEGRA6: 9;
thus (
integral ((r
(#) (
Im f)),A))
= (r
* (
integral ((
Im f),A))) by
A4,
A6,
A7,
INTEGRA6: 9;
end;
A8: (
Re (
integral ((r
(#) f),A)))
= (r
* (
Re (
integral (f,A)))) & (
Im (
integral ((r
(#) f),A)))
= (r
* (
Im (
integral (f,A))))
proof
(
Re (
integral ((r
(#) f),A)))
= (
integral ((
Re (r
(#) f)),A)) & (r
* (
Re (
integral (f,A))))
= (r
* (
integral ((
Re f),A))) & (
Im (
integral ((r
(#) f),A)))
= (
integral ((
Im (r
(#) f)),A)) & (r
* (
Im (
integral (f,A))))
= (r
* (
integral ((
Im f),A))) by
COMPLEX1: 12;
hence thesis by
A5,
MESFUN6C: 2;
end;
(
Re (r
(#) f))
is_integrable_on A & (
Im (r
(#) f))
is_integrable_on A
proof
((
Re f)
| A)
= (
Re (f
| A)) & ((
Im f)
| A)
= (
Im (f
| A)) by
Lm4;
then
A9: ((
Re f)
| A) is
bounded & ((
Im f)
| A) is
bounded by
A3,
Th11;
A10: A
c= (
dom (
Re f)) & A
c= (
dom (
Im f)) by
A1,
COMSEQ_3:def 3,
COMSEQ_3:def 4;
(
Re f)
is_integrable_on A & (
Im f)
is_integrable_on A by
A2;
then (r
(#) (
Re f))
is_integrable_on A & (r
(#) (
Im f))
is_integrable_on A by
A9,
A10,
INTEGRA6: 9;
hence thesis by
MESFUN6C: 2;
end;
hence (r
(#) f)
is_integrable_on A;
(
Re (
integral ((r
(#) f),A)))
= (
Re (r
* (
integral (f,A)))) & (
Im (
integral ((r
(#) f),A)))
= (
Im (r
* (
integral (f,A)))) by
A8,
Th1;
hence thesis;
end;
theorem ::
INTEGR16:21
for c be
Complex, A be non
empty
closed_interval
Subset of
REAL , f be
PartFunc of
REAL ,
COMPLEX st A
c= (
dom f) & f
is_integrable_on A & (f
| A) is
bounded holds (c
(#) f)
is_integrable_on A & (
integral ((c
(#) f),A))
= (c
* (
integral (f,A)))
proof
let c be
Complex;
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
PartFunc of
REAL ,
COMPLEX ;
assume that
A1: A
c= (
dom f) and
A2: f
is_integrable_on A and
A3: (f
| A) is
bounded;
A4: (
Re (c
* (
integral (f,A))))
= (((
Re c)
* (
integral ((
Re f),A)))
- ((
Im c)
* (
integral ((
Im f),A)))) & (
Im (c
* (
integral (f,A))))
= (((
Re c)
* (
integral ((
Im f),A)))
+ ((
Im c)
* (
integral ((
Re f),A))))
proof
A5: (
Re (
integral (f,A)))
= (
integral ((
Re f),A)) by
COMPLEX1: 12;
A6: (
Im (
integral (f,A)))
= (
integral ((
Im f),A)) by
COMPLEX1: 12;
hence (
Re (c
* (
integral (f,A))))
= (((
Re c)
* (
integral ((
Re f),A)))
- ((
Im c)
* (
integral ((
Im f),A)))) by
A5,
COMPLEX1: 9;
thus (
Im (c
* (
integral (f,A))))
= (((
Re c)
* (
integral ((
Im f),A)))
+ ((
Im c)
* (
integral ((
Re f),A)))) by
A5,
A6,
COMPLEX1: 9;
end;
((
Re f)
| A)
= (
Re (f
| A)) & ((
Im f)
| A)
= (
Im (f
| A)) by
Lm4;
then
A7: ((
Re f)
| A) is
bounded & ((
Im f)
| A) is
bounded by
A3,
Th11;
A8: A
c= (
dom (
Re f)) & A
c= (
dom (
Im f)) by
A1,
COMSEQ_3:def 3,
COMSEQ_3:def 4;
A9: (
Re f)
is_integrable_on A & (
Im f)
is_integrable_on A by
A2;
then
A10: ((
Re c)
(#) (
Re f))
is_integrable_on A & ((
Re c)
(#) (
Im f))
is_integrable_on A & ((
Im c)
(#) (
Re f))
is_integrable_on A & ((
Im c)
(#) (
Im f))
is_integrable_on A by
A7,
A8,
INTEGRA6: 9;
A11: (
Re (c
(#) f))
= (((
Re c)
(#) (
Re f))
- ((
Im c)
(#) (
Im f))) & (
Im (c
(#) f))
= (((
Re c)
(#) (
Im f))
+ ((
Im c)
(#) (
Re f))) by
Th18;
A12: (((
Re c)
(#) (
Re f))
| A) is
bounded & (((
Re c)
(#) (
Im f))
| A) is
bounded & (((
Im c)
(#) (
Re f))
| A) is
bounded & (((
Im c)
(#) (
Im f))
| A) is
bounded by
A7,
RFUNCT_1: 80;
(
dom (
Re f))
= (
dom f) & (
dom (
Im f))
= (
dom f) by
COMSEQ_3:def 3,
COMSEQ_3:def 4;
then
A13: A
c= (
dom ((
Re c)
(#) (
Re f))) & A
c= (
dom ((
Re c)
(#) (
Im f))) & A
c= (
dom ((
Im c)
(#) (
Re f))) & A
c= (
dom ((
Im c)
(#) (
Im f))) by
A1,
VALUED_1:def 5;
then
A14: (
Re (c
(#) f))
is_integrable_on A by
A10,
A11,
A12,
INTEGRA6: 11;
(
Im (c
(#) f))
is_integrable_on A by
A10,
A11,
A12,
A13,
INTEGRA6: 11;
hence (c
(#) f)
is_integrable_on A by
A14;
A15: (
Re (
integral ((c
(#) f),A)))
= (
integral ((
Re (c
(#) f)),A)) by
COMPLEX1: 12
.= ((
integral (((
Re c)
(#) (
Re f)),A))
- (
integral (((
Im c)
(#) (
Im f)),A))) by
A10,
A11,
A12,
A13,
INTEGRA6: 11
.= (((
Re c)
* (
integral ((
Re f),A)))
- (
integral (((
Im c)
(#) (
Im f)),A))) by
A9,
A7,
A8,
INTEGRA6: 9
.= (
Re (c
* (
integral (f,A)))) by
A4,
A9,
A7,
A8,
INTEGRA6: 9;
(
Im (
integral ((c
(#) f),A)))
= (
integral ((
Im (c
(#) f)),A)) by
COMPLEX1: 12
.= ((
integral (((
Re c)
(#) (
Im f)),A))
+ (
integral (((
Im c)
(#) (
Re f)),A))) by
A10,
A11,
A12,
A13,
INTEGRA6: 11
.= (((
Re c)
* (
integral ((
Im f),A)))
+ (
integral (((
Im c)
(#) (
Re f)),A))) by
A9,
A7,
A8,
INTEGRA6: 9
.= (
Im (c
* (
integral (f,A)))) by
A4,
A9,
A7,
A8,
INTEGRA6: 9;
hence thesis by
A15;
end;
theorem ::
INTEGR16:22
for f be
PartFunc of
REAL ,
COMPLEX , A be non
empty
closed_interval
Subset of
REAL , a,b be
Real st A
=
[.a, b.] holds (
integral (f,A))
= (
integral (f,a,b))
proof
let f be
PartFunc of
REAL ,
COMPLEX , A be non
empty
closed_interval
Subset of
REAL , a,b be
Real;
assume
A1: A
=
[.a, b.];
(
Re (
integral (f,A)))
= (
integral ((
Re f),A)) & (
Im (
integral (f,A)))
= (
integral ((
Im f),A)) & (
Re (
integral (f,a,b)))
= (
integral ((
Re f),a,b)) & (
Im (
integral (f,a,b)))
= (
integral ((
Im f),a,b)) by
COMPLEX1: 12;
then (
Re (
integral (f,A)))
= (
Re (
integral (f,a,b))) & (
Im (
integral (f,A)))
= (
Im (
integral (f,a,b))) by
A1,
INTEGRA5: 19;
hence (
integral (f,A))
= (
integral (f,a,b));
end;
theorem ::
INTEGR16:23
for f be
PartFunc of
REAL ,
COMPLEX , A be non
empty
closed_interval
Subset of
REAL , a,b be
Real st A
=
[.b, a.] holds (
- (
integral (f,A)))
= (
integral (f,a,b))
proof
let f be
PartFunc of
REAL ,
COMPLEX , A be non
empty
closed_interval
Subset of
REAL , a,b be
Real;
assume
A1: A
=
[.b, a.];
A2: (
Re (
integral (f,a,b)))
= (
integral ((
Re f),a,b)) & (
Im (
integral (f,a,b)))
= (
integral ((
Im f),a,b)) by
COMPLEX1: 12;
A3: (
Re (
- (
integral (f,A))))
= (
- (
Re (
integral (f,A)))) by
COMPLEX1: 17
.= (
- (
integral ((
Re f),A))) by
COMPLEX1: 12;
A4: (
Im (
- (
integral (f,A))))
= (
- (
Im (
integral (f,A)))) by
COMPLEX1: 17
.= (
- (
integral ((
Im f),A))) by
COMPLEX1: 12;
A5: (
Re (
- (
integral (f,A))))
= (
Re (
integral (f,a,b))) by
A3,
A1,
A2,
INTEGRA5: 20;
(
Im (
- (
integral (f,A))))
= (
Im (
integral (f,a,b))) by
A4,
A1,
A2,
INTEGRA5: 20;
hence thesis by
A5;
end;