integr1c.miz
begin
reserve n,n1,m for
Element of
NAT ;
reserve r,t,x1 for
Real;
reserve h for
0
-convergent
non-zero
Real_Sequence;
reserve c1 for
constant
Real_Sequence;
reserve p1 for
Real;
definition
::
INTEGR1C:def1
func
R2-to-C ->
Function of
[:
REAL ,
REAL :],
COMPLEX means
:
Def1: for p be
Element of
[:
REAL ,
REAL :], a,b be
Element of
REAL st a
= (p
`1 ) & b
= (p
`2 ) holds (it
.
[a, b])
= (a
+ (b
*
<i> ));
existence
proof
deffunc
F(
Real,
Real) = ($1
+ ($2
*
<i> ));
A1: for x be
Element of
REAL , y be
Element of
REAL holds
F(x,y)
in
COMPLEX by
XCMPLX_0:def 2;
consider f be
Function of
[:
REAL ,
REAL :],
COMPLEX such that
A2: for x,y be
Element of
REAL holds (f
. (x,y))
=
F(x,y) from
FUNCT_7:sch 1(
A1);
deffunc
G(
Element of
[:
REAL ,
REAL :]) = (f
. (($1
`1 ),($1
`2 )));
A3:
now
let p be
Element of
[:
REAL ,
REAL :];
(p
`1 ) is
Element of
REAL & (p
`2 ) is
Element of
REAL by
MCART_1: 10;
then
consider a,b be
Element of
REAL such that
A4: a
= (p
`1 ) & b
= (p
`2 );
G(p)
= (a
+ (b
*
<i> )) by
A2,
A4;
hence
G(p)
in
COMPLEX by
XCMPLX_0:def 2;
end;
consider g be
Function of
[:
REAL ,
REAL :],
COMPLEX such that
A5: for p be
Element of
[:
REAL ,
REAL :] holds (g
. p)
=
G(p) from
FUNCT_2:sch 8(
A3);
take g;
for p be
Element of
[:
REAL ,
REAL :], a,b be
Element of
REAL st a
= (p
`1 ) & b
= (p
`2 ) holds (g
.
[a, b])
= (a
+ (b
*
<i> ))
proof
let p be
Element of
[:
REAL ,
REAL :], a,b be
Element of
REAL such that
A6: a
= (p
`1 ) & b
= (p
`2 );
A8:
[a, b] is
Element of
[:
REAL ,
REAL :] by
ZFMISC_1:def 2;
A9: (
[a, b]
`1 )
= (p
`1 ) by
A6;
(
[a, b]
`2 )
= (p
`2 ) by
A6;
then (g
.
[a, b])
= (f
. (a,b)) by
A5,
A8,
A9
.= (a
+ (b
*
<i> )) by
A2;
hence thesis;
end;
hence thesis;
end;
uniqueness
proof
let f,g be
Function of
[:
REAL ,
REAL :],
COMPLEX ;
assume
A10: for p be
Element of
[:
REAL ,
REAL :], a,b be
Element of
REAL st a
= (p
`1 ) & b
= (p
`2 ) holds (f
.
[a, b])
= (a
+ (b
*
<i> ));
assume
A11: for p be
Element of
[:
REAL ,
REAL :], a,b be
Element of
REAL st a
= (p
`1 ) & b
= (p
`2 ) holds (g
.
[a, b])
= (a
+ (b
*
<i> ));
for p0 be
object st p0
in
[:
REAL ,
REAL :] holds (f
. p0)
= (g
. p0)
proof
let p0 be
object;
assume
A12: p0
in
[:
REAL ,
REAL :];
then
consider x0,y0 be
object such that
A13: x0
in
REAL & y0
in
REAL & p0
=
[x0, y0] by
ZFMISC_1:def 2;
reconsider a = x0, b = y0 as
Element of
REAL by
A13;
A14: (p0
`1 )
= a by
A13;
A15: (p0
`2 )
= b by
A13;
then (f
. p0)
= (a
+ (b
*
<i> )) by
A12,
A10,
A14,
A13
.= (g
. p0) by
A13,
A12,
A11,
A14,
A15;
hence thesis;
end;
hence f
= g by
FUNCT_2: 12;
end;
end
definition
let a,b be
Real;
let x,y be
PartFunc of
REAL ,
REAL , Z be
Subset of
REAL ;
let f be
PartFunc of
COMPLEX ,
COMPLEX ;
::
INTEGR1C:def2
func
integral (f,x,y,a,b,Z) ->
Complex means
:
Def2: ex u0,v0 be
PartFunc of
REAL ,
REAL st u0
= (((
Re f)
*
R2-to-C )
*
<:x, y:>) & v0
= (((
Im f)
*
R2-to-C )
*
<:x, y:>) & it
= ((
integral (((u0
(#) (x
`| Z))
- (v0
(#) (y
`| Z))),a,b))
+ ((
integral (((v0
(#) (x
`| Z))
+ (u0
(#) (y
`| Z))),a,b))
*
<i> ));
existence
proof
A1: (
dom
<:x, y:>)
= ((
dom x)
/\ (
dom y)) by
FUNCT_3:def 7;
(
rng
<:x, y:>)
c=
[:(
rng x), (
rng y):] by
FUNCT_3: 51;
then (
rng
<:x, y:>)
c=
[:
REAL ,
REAL :] by
XBOOLE_1: 1;
then
reconsider xy =
<:x, y:> as
PartFunc of
REAL ,
[:
REAL ,
REAL :] by
A1,
RELSET_1: 4;
(((
Re f)
*
R2-to-C )
* xy) is
PartFunc of
REAL ,
REAL ;
then
reconsider u0 = (((
Re f)
*
R2-to-C )
*
<:x, y:>) as
PartFunc of
REAL ,
REAL ;
(((
Im f)
*
R2-to-C )
* xy) is
PartFunc of
REAL ,
REAL ;
then
reconsider v0 = (((
Im f)
*
R2-to-C )
*
<:x, y:>) as
PartFunc of
REAL ,
REAL ;
((
integral (((u0
(#) (x
`| Z))
- (v0
(#) (y
`| Z))),a,b))
+ ((
integral (((v0
(#) (x
`| Z))
+ (u0
(#) (y
`| Z))),a,b))
*
<i> )) is
Complex;
hence thesis;
end;
uniqueness ;
end
definition
let C be
PartFunc of
REAL ,
COMPLEX ;
::
INTEGR1C:def3
attr C is
C1-curve-like means
:
Def3: ex a,b be
Real, x,y be
PartFunc of
REAL ,
REAL , Z be
Subset of
REAL st a
<= b &
[.a, b.]
= (
dom C) &
[.a, b.]
c= (
dom x) &
[.a, b.]
c= (
dom y) & Z is
open &
[.a, b.]
c= Z & x
is_differentiable_on Z & y
is_differentiable_on Z & (x
`| Z) is
continuous & (y
`| Z) is
continuous & C
= ((x
+ (
<i>
(#) y))
|
[.a, b.]);
end
registration
cluster
C1-curve-like for
PartFunc of
REAL ,
COMPLEX ;
existence
proof
set a = 1, b = 2;
set x =
cos , y =
sin ;
set Z =
].(
- 5), 5.[;
consider C be
PartFunc of
REAL ,
COMPLEX such that
A1: C
= ((x
+ (
<i>
(#) y))
|
[.a, b.]);
take C;
A2: (
dom (x
+ (
<i>
(#) y)))
=
REAL by
FUNCT_2:def 1;
(
dom C)
= ((
dom (x
+ (
<i>
(#) y)))
/\
[.a, b.]) by
A1,
RELAT_1: 61;
then
A3:
[.a, b.]
= (
dom C) by
A2,
XBOOLE_1: 28;
A4: Z is
open by
RCOMP_1: 7;
A5:
[.a, b.]
c= Z by
XXREAL_1: 47;
A6: x
is_differentiable_on Z by
A4,
FDIFF_1: 26,
SIN_COS: 67;
A7: y
is_differentiable_on Z by
A4,
FDIFF_1: 26,
SIN_COS: 68;
sin
= (
sin
|
REAL );
then (
sin
| Z) is
continuous by
FCONT_1: 16;
then ((
-
sin )
| Z) is
continuous by
FCONT_1: 21,
SIN_COS: 24;
then
A8: (
- (
sin
| Z)) is
continuous by
RFUNCT_1: 46;
A9: (
dom (
- (
sin
| Z)))
= (
dom ((
-
sin )
| Z)) by
RFUNCT_1: 46
.= ((
dom (
-
sin ))
/\ Z) by
RELAT_1: 61
.= (
REAL
/\ Z) by
SIN_COS: 24,
VALUED_1: 8
.= Z by
XBOOLE_1: 28;
for x1 st x1
in Z holds ((
- (
sin
| Z))
. x1)
= (
diff (x,x1))
proof
let x1 such that
A10: x1
in Z;
reconsider x1 as
Element of
REAL by
XREAL_0:def 1;
A11: ((
- (
sin
| Z))
. x1)
= (((
-
sin )
| Z)
. x1) by
RFUNCT_1: 46
.= ((
-
sin )
. x1) by
A10,
FUNCT_1: 49
.= (
- (
sin
. x1)) by
RFUNCT_1: 58
.= (
- ((
sin
| Z)
. x1)) by
A10,
FUNCT_1: 49;
(
diff (x,x1))
= (
- (
sin
. x1)) by
SIN_COS: 67
.= ((
- (
sin
| Z))
. x1) by
A11,
A10,
FUNCT_1: 49;
hence thesis;
end;
then
A12: (x
`| Z) is
continuous by
A6,
A8,
A9,
FDIFF_1:def 7;
cos
= (
cos
|
REAL );
then
A13: (
cos
| Z) is
continuous by
FCONT_1: 16;
A14: (
dom (
cos
| Z))
= ((
dom
cos )
/\ Z) by
RELAT_1: 61
.= Z by
SIN_COS: 24,
XBOOLE_1: 28;
for x1 st x1
in Z holds ((
cos
| Z)
. x1)
= (
diff (y,x1))
proof
let x1 such that
A15: x1
in Z;
(
diff (y,x1))
= (
cos
. x1) by
SIN_COS: 68
.= ((
cos
| Z)
. x1) by
A15,
FUNCT_1: 49;
hence thesis;
end;
then (y
`| Z) is
continuous by
A7,
A13,
A14,
FDIFF_1:def 7;
hence thesis by
A1,
A3,
A4,
A5,
A6,
A7,
A12,
SIN_COS: 24;
end;
end
definition
mode
C1-curve is
C1-curve-like
PartFunc of
REAL ,
COMPLEX ;
end
Lm1: for a,b be
Real, x,y be
PartFunc of
REAL ,
REAL , Z1,Z2 be
Subset of
REAL , f be
PartFunc of
COMPLEX ,
COMPLEX st a
<= b &
[.a, b.]
c= (
dom x) &
[.a, b.]
c= (
dom y) & Z1 is
open & Z2 is
open &
[.a, b.]
c= Z1 & Z1
c= Z2 & x
is_differentiable_on Z2 & y
is_differentiable_on Z2 & (
rng ((x
+ (
<i>
(#) y))
|
[.a, b.]))
c= (
dom f) holds (
integral (f,x,y,a,b,Z1))
= (
integral (f,x,y,a,b,Z2))
proof
let a,b be
Real, x,y be
PartFunc of
REAL ,
REAL , Z1,Z2 be
Subset of
REAL , f be
PartFunc of
COMPLEX ,
COMPLEX ;
assume
A1: a
<= b &
[.a, b.]
c= (
dom x) &
[.a, b.]
c= (
dom y) & Z1 is
open & Z2 is
open &
[.a, b.]
c= Z1 & Z1
c= Z2 & x
is_differentiable_on Z2 & y
is_differentiable_on Z2 & (
rng ((x
+ (
<i>
(#) y))
|
[.a, b.]))
c= (
dom f);
then
A2: x
is_differentiable_on Z1 & y
is_differentiable_on Z1 by
FDIFF_1: 26;
consider u01,v01 be
PartFunc of
REAL ,
REAL such that
A3: u01
= (((
Re f)
*
R2-to-C )
*
<:x, y:>) & v01
= (((
Im f)
*
R2-to-C )
*
<:x, y:>) & (
integral (f,x,y,a,b,Z1))
= ((
integral (((u01
(#) (x
`| Z1))
- (v01
(#) (y
`| Z1))),a,b))
+ ((
integral (((v01
(#) (x
`| Z1))
+ (u01
(#) (y
`| Z1))),a,b))
*
<i> )) by
Def2;
consider u02,v02 be
PartFunc of
REAL ,
REAL such that
A4: u02
= (((
Re f)
*
R2-to-C )
*
<:x, y:>) & v02
= (((
Im f)
*
R2-to-C )
*
<:x, y:>) & (
integral (f,x,y,a,b,Z2))
= ((
integral (((u02
(#) (x
`| Z2))
- (v02
(#) (y
`| Z2))),a,b))
+ ((
integral (((v02
(#) (x
`| Z2))
+ (u02
(#) (y
`| Z2))),a,b))
*
<i> )) by
Def2;
reconsider AB =
[.a, b.] as non
empty
closed_interval
Subset of
REAL by
A1,
MEASURE5: 14;
A5: (((u01
(#) (x
`| Z1))
- (v01
(#) (y
`| Z1)))
| AB)
= (((u02
(#) (x
`| Z2))
- (v02
(#) (y
`| Z2)))
| AB)
proof
(
dom ((u01
(#) (x
`| Z1))
- (v01
(#) (y
`| Z1))))
= ((
dom (u01
(#) (x
`| Z1)))
/\ (
dom (v01
(#) (y
`| Z1)))) by
VALUED_1: 12
.= (((
dom u01)
/\ (
dom (x
`| Z1)))
/\ (
dom (v01
(#) (y
`| Z1)))) by
VALUED_1:def 4
.= (((
dom u01)
/\ (
dom (x
`| Z1)))
/\ ((
dom v01)
/\ (
dom (y
`| Z1)))) by
VALUED_1:def 4;
then
A6: (
dom ((u01
(#) (x
`| Z1))
- (v01
(#) (y
`| Z1))))
= (((
dom u01)
/\ Z1)
/\ ((
dom v01)
/\ (
dom (y
`| Z1)))) by
A2,
FDIFF_1:def 7
.= (((
dom u01)
/\ Z1)
/\ ((
dom v01)
/\ Z1)) by
A2,
FDIFF_1:def 7
.= ((
dom u01)
/\ (Z1
/\ ((
dom v01)
/\ Z1))) by
XBOOLE_1: 16
.= ((
dom u01)
/\ ((Z1
/\ Z1)
/\ (
dom v01))) by
XBOOLE_1: 16
.= (((
dom u01)
/\ (
dom v01))
/\ Z1) by
XBOOLE_1: 16;
(
dom ((u02
(#) (x
`| Z2))
- (v02
(#) (y
`| Z2))))
= ((
dom (u02
(#) (x
`| Z2)))
/\ (
dom (v02
(#) (y
`| Z2)))) by
VALUED_1: 12
.= (((
dom u02)
/\ (
dom (x
`| Z2)))
/\ (
dom (v02
(#) (y
`| Z2)))) by
VALUED_1:def 4
.= (((
dom u02)
/\ (
dom (x
`| Z2)))
/\ ((
dom v02)
/\ (
dom (y
`| Z2)))) by
VALUED_1:def 4;
then
A7: (
dom ((u02
(#) (x
`| Z2))
- (v02
(#) (y
`| Z2))))
= (((
dom u02)
/\ Z2)
/\ ((
dom v02)
/\ (
dom (y
`| Z2)))) by
A1,
FDIFF_1:def 7
.= (((
dom u02)
/\ Z2)
/\ ((
dom v02)
/\ Z2)) by
A1,
FDIFF_1:def 7
.= ((
dom u02)
/\ (Z2
/\ ((
dom v02)
/\ Z2))) by
XBOOLE_1: 16
.= ((
dom u02)
/\ ((Z2
/\ Z2)
/\ (
dom v02))) by
XBOOLE_1: 16
.= (((
dom u01)
/\ (
dom v01))
/\ Z2) by
A3,
A4,
XBOOLE_1: 16;
A8: (
dom (((u01
(#) (x
`| Z1))
- (v01
(#) (y
`| Z1)))
| AB))
= ((
dom ((u01
(#) (x
`| Z1))
- (v01
(#) (y
`| Z1))))
/\ AB) by
RELAT_1: 61
.= (((
dom u01)
/\ (
dom v01))
/\ (Z1
/\ AB)) by
A6,
XBOOLE_1: 16
.= (((
dom u01)
/\ (
dom v01))
/\ AB) by
A1,
XBOOLE_1: 28;
A9: (
dom (((u02
(#) (x
`| Z2))
- (v02
(#) (y
`| Z2)))
| AB))
= ((
dom ((u02
(#) (x
`| Z2))
- (v02
(#) (y
`| Z2))))
/\ AB) by
RELAT_1: 61
.= (((
dom u01)
/\ (
dom v01))
/\ (Z2
/\ AB)) by
A7,
XBOOLE_1: 16
.= (((
dom u01)
/\ (
dom v01))
/\ AB) by
A1,
XBOOLE_1: 1,
XBOOLE_1: 28;
for x0 be
object st x0
in (
dom (((u01
(#) (x
`| Z1))
- (v01
(#) (y
`| Z1)))
| AB)) holds ((((u01
(#) (x
`| Z1))
- (v01
(#) (y
`| Z1)))
| AB)
. x0)
= ((((u02
(#) (x
`| Z2))
- (v02
(#) (y
`| Z2)))
| AB)
. x0)
proof
let x0 be
object such that
A10: x0
in (
dom (((u01
(#) (x
`| Z1))
- (v01
(#) (y
`| Z1)))
| AB));
x0
in ((
dom ((u01
(#) (x
`| Z1))
- (v01
(#) (y
`| Z1))))
/\ AB) by
A10,
RELAT_1: 61;
then
A11: x0
in (
dom ((u01
(#) (x
`| Z1))
- (v01
(#) (y
`| Z1)))) by
XBOOLE_0:def 4;
then x0
in ((
dom (u01
(#) (x
`| Z1)))
/\ (
dom (v01
(#) (y
`| Z1)))) by
VALUED_1: 12;
then
A12: x0
in (
dom (u01
(#) (x
`| Z1))) & x0
in (
dom (v01
(#) (y
`| Z1))) by
XBOOLE_0:def 4;
then x0
in ((
dom u01)
/\ (
dom (x
`| Z1))) & x0
in ((
dom v01)
/\ (
dom (y
`| Z1))) by
VALUED_1:def 4;
then x0
in (
dom u01) & x0
in (
dom (x
`| Z1)) & x0
in (
dom v01) & x0
in (
dom (y
`| Z1)) by
XBOOLE_0:def 4;
then
A13: x0
in Z1 by
A2,
FDIFF_1:def 7;
reconsider x0 as
Real by
A11;
A14: ((((u01
(#) (x
`| Z1))
- (v01
(#) (y
`| Z1)))
| AB)
. x0)
= (((u01
(#) (x
`| Z1))
- (v01
(#) (y
`| Z1)))
. x0) by
A10,
FUNCT_1: 47
.= (((u01
(#) (x
`| Z1))
. x0)
- ((v01
(#) (y
`| Z1))
. x0)) by
A11,
VALUED_1: 13
.= (((u01
. x0)
* ((x
`| Z1)
. x0))
- ((v01
(#) (y
`| Z1))
. x0)) by
A12,
VALUED_1:def 4
.= (((u01
. x0)
* ((x
`| Z1)
. x0))
- ((v01
. x0)
* ((y
`| Z1)
. x0))) by
A12,
VALUED_1:def 4
.= (((u01
. x0)
* (
diff (x,x0)))
- ((v01
. x0)
* ((y
`| Z1)
. x0))) by
A2,
A13,
FDIFF_1:def 7;
x0
in ((
dom ((u02
(#) (x
`| Z2))
- (v02
(#) (y
`| Z2))))
/\ AB) by
A8,
A9,
A10,
RELAT_1: 61;
then
A15: x0
in (
dom ((u02
(#) (x
`| Z2))
- (v02
(#) (y
`| Z2)))) by
XBOOLE_0:def 4;
then x0
in ((
dom (u02
(#) (x
`| Z2)))
/\ (
dom (v02
(#) (y
`| Z2)))) by
VALUED_1: 12;
then
A16: x0
in (
dom (u02
(#) (x
`| Z2))) & x0
in (
dom (v02
(#) (y
`| Z2))) by
XBOOLE_0:def 4;
then x0
in ((
dom u02)
/\ (
dom (x
`| Z2))) & x0
in ((
dom v02)
/\ (
dom (y
`| Z2))) by
VALUED_1:def 4;
then x0
in (
dom u02) & x0
in (
dom (x
`| Z2)) & x0
in (
dom v02) & x0
in (
dom (y
`| Z2)) by
XBOOLE_0:def 4;
then
A17: x0
in Z2 by
A1,
FDIFF_1:def 7;
((((u02
(#) (x
`| Z2))
- (v02
(#) (y
`| Z2)))
| AB)
. x0)
= (((u02
(#) (x
`| Z2))
- (v02
(#) (y
`| Z2)))
. x0) by
A8,
A9,
A10,
FUNCT_1: 47
.= (((u02
(#) (x
`| Z2))
. x0)
- ((v02
(#) (y
`| Z2))
. x0)) by
A15,
VALUED_1: 13
.= (((u02
. x0)
* ((x
`| Z2)
. x0))
- ((v02
(#) (y
`| Z2))
. x0)) by
A16,
VALUED_1:def 4
.= (((u02
. x0)
* ((x
`| Z2)
. x0))
- ((v02
. x0)
* ((y
`| Z2)
. x0))) by
A16,
VALUED_1:def 4
.= (((u02
. x0)
* (
diff (x,x0)))
- ((v02
. x0)
* ((y
`| Z2)
. x0))) by
A1,
A17,
FDIFF_1:def 7;
then ((((u02
(#) (x
`| Z2))
- (v02
(#) (y
`| Z2)))
| AB)
. x0)
= (((u01
. x0)
* (
diff (x,x0)))
- ((v01
. x0)
* (
diff (y,x0)))) by
A1,
A3,
A4,
A17,
FDIFF_1:def 7;
hence thesis by
A2,
A13,
A14,
FDIFF_1:def 7;
end;
hence thesis by
A8,
A9,
FUNCT_1:def 11;
end;
A18: (
integral (((u01
(#) (x
`| Z1))
- (v01
(#) (y
`| Z1))),a,b))
= (
integral (((u01
(#) (x
`| Z1))
- (v01
(#) (y
`| Z1))),AB)) by
INTEGRA5: 19
.= (
integral (((u02
(#) (x
`| Z2))
- (v02
(#) (y
`| Z2))),AB)) by
A5
.= (
integral (((u02
(#) (x
`| Z2))
- (v02
(#) (y
`| Z2))),a,b)) by
INTEGRA5: 19;
A19: (((v01
(#) (x
`| Z1))
+ (u01
(#) (y
`| Z1)))
| AB)
= (((v02
(#) (x
`| Z2))
+ (u02
(#) (y
`| Z2)))
| AB)
proof
(
dom ((v01
(#) (x
`| Z1))
+ (u01
(#) (y
`| Z1))))
= ((
dom (v01
(#) (x
`| Z1)))
/\ (
dom (u01
(#) (y
`| Z1)))) by
VALUED_1:def 1
.= (((
dom v01)
/\ (
dom (x
`| Z1)))
/\ (
dom (u01
(#) (y
`| Z1)))) by
VALUED_1:def 4
.= (((
dom v01)
/\ (
dom (x
`| Z1)))
/\ ((
dom u01)
/\ (
dom (y
`| Z1)))) by
VALUED_1:def 4;
then
A20: (
dom ((v01
(#) (x
`| Z1))
+ (u01
(#) (y
`| Z1))))
= (((
dom v01)
/\ Z1)
/\ ((
dom u01)
/\ (
dom (y
`| Z1)))) by
A2,
FDIFF_1:def 7
.= (((
dom v01)
/\ Z1)
/\ ((
dom u01)
/\ Z1)) by
A2,
FDIFF_1:def 7
.= ((
dom v01)
/\ (Z1
/\ ((
dom u01)
/\ Z1))) by
XBOOLE_1: 16
.= ((
dom v01)
/\ ((Z1
/\ Z1)
/\ (
dom u01))) by
XBOOLE_1: 16
.= (((
dom v01)
/\ (
dom u01))
/\ Z1) by
XBOOLE_1: 16;
(
dom ((v02
(#) (x
`| Z2))
+ (u02
(#) (y
`| Z2))))
= ((
dom (v02
(#) (x
`| Z2)))
/\ (
dom (u02
(#) (y
`| Z2)))) by
VALUED_1:def 1
.= (((
dom v02)
/\ (
dom (x
`| Z2)))
/\ (
dom (u02
(#) (y
`| Z2)))) by
VALUED_1:def 4
.= (((
dom v02)
/\ (
dom (x
`| Z2)))
/\ ((
dom u02)
/\ (
dom (y
`| Z2)))) by
VALUED_1:def 4;
then
A21: (
dom ((v02
(#) (x
`| Z2))
+ (u02
(#) (y
`| Z2))))
= (((
dom v02)
/\ Z2)
/\ ((
dom u02)
/\ (
dom (y
`| Z2)))) by
A1,
FDIFF_1:def 7
.= (((
dom v02)
/\ Z2)
/\ ((
dom u02)
/\ Z2)) by
A1,
FDIFF_1:def 7
.= ((
dom v02)
/\ (Z2
/\ ((
dom u02)
/\ Z2))) by
XBOOLE_1: 16
.= ((
dom v02)
/\ ((Z2
/\ Z2)
/\ (
dom u02))) by
XBOOLE_1: 16
.= (((
dom v01)
/\ (
dom u01))
/\ Z2) by
A3,
A4,
XBOOLE_1: 16;
A22: (
dom (((v01
(#) (x
`| Z1))
+ (u01
(#) (y
`| Z1)))
| AB))
= ((
dom ((v01
(#) (x
`| Z1))
+ (u01
(#) (y
`| Z1))))
/\ AB) by
RELAT_1: 61
.= (((
dom v01)
/\ (
dom u01))
/\ (Z1
/\ AB)) by
A20,
XBOOLE_1: 16
.= (((
dom v01)
/\ (
dom u01))
/\ AB) by
A1,
XBOOLE_1: 28;
A23: (
dom (((v02
(#) (x
`| Z2))
+ (u02
(#) (y
`| Z2)))
| AB))
= ((
dom ((v02
(#) (x
`| Z2))
+ (u02
(#) (y
`| Z2))))
/\ AB) by
RELAT_1: 61
.= (((
dom v01)
/\ (
dom u01))
/\ (Z2
/\ AB)) by
A21,
XBOOLE_1: 16
.= (((
dom v01)
/\ (
dom u01))
/\ AB) by
A1,
XBOOLE_1: 1,
XBOOLE_1: 28;
for x0 be
object st x0
in (
dom (((v01
(#) (x
`| Z1))
+ (u01
(#) (y
`| Z1)))
| AB)) holds ((((v01
(#) (x
`| Z1))
+ (u01
(#) (y
`| Z1)))
| AB)
. x0)
= ((((v02
(#) (x
`| Z2))
+ (u02
(#) (y
`| Z2)))
| AB)
. x0)
proof
let x0 be
object such that
A24: x0
in (
dom (((v01
(#) (x
`| Z1))
+ (u01
(#) (y
`| Z1)))
| AB));
x0
in ((
dom ((v01
(#) (x
`| Z1))
+ (u01
(#) (y
`| Z1))))
/\ AB) by
A24,
RELAT_1: 61;
then
A25: x0
in (
dom ((v01
(#) (x
`| Z1))
+ (u01
(#) (y
`| Z1)))) by
XBOOLE_0:def 4;
then x0
in ((
dom (v01
(#) (x
`| Z1)))
/\ (
dom (u01
(#) (y
`| Z1)))) by
VALUED_1:def 1;
then
A26: x0
in (
dom (v01
(#) (x
`| Z1))) & x0
in (
dom (u01
(#) (y
`| Z1))) by
XBOOLE_0:def 4;
then
A27: x0
in ((
dom v01)
/\ (
dom (x
`| Z1))) & x0
in ((
dom u01)
/\ (
dom (y
`| Z1))) by
VALUED_1:def 4;
then x0
in (
dom v01) & x0
in (
dom (x
`| Z1)) & x0
in (
dom u01) & x0
in (
dom (y
`| Z1)) by
XBOOLE_0:def 4;
then
A28: x0
in Z1 by
A2,
FDIFF_1:def 7;
reconsider x0 as
Real by
A27;
((((v01
(#) (x
`| Z1))
+ (u01
(#) (y
`| Z1)))
| AB)
. x0)
= (((v01
(#) (x
`| Z1))
+ (u01
(#) (y
`| Z1)))
. x0) by
A24,
FUNCT_1: 47
.= (((v01
(#) (x
`| Z1))
. x0)
+ ((u01
(#) (y
`| Z1))
. x0)) by
A25,
VALUED_1:def 1
.= (((v01
. x0)
* ((x
`| Z1)
. x0))
+ ((u01
(#) (y
`| Z1))
. x0)) by
A26,
VALUED_1:def 4
.= (((v01
. x0)
* ((x
`| Z1)
. x0))
+ ((u01
. x0)
* ((y
`| Z1)
. x0))) by
A26,
VALUED_1:def 4
.= (((v01
. x0)
* (
diff (x,x0)))
+ ((u01
. x0)
* ((y
`| Z1)
. x0))) by
A2,
A28,
FDIFF_1:def 7;
then
A29: ((((v01
(#) (x
`| Z1))
+ (u01
(#) (y
`| Z1)))
| AB)
. x0)
= (((v01
. x0)
* (
diff (x,x0)))
+ ((u01
. x0)
* (
diff (y,x0)))) by
A2,
A28,
FDIFF_1:def 7;
x0
in ((
dom ((v02
(#) (x
`| Z2))
+ (u02
(#) (y
`| Z2))))
/\ AB) by
A22,
A23,
A24,
RELAT_1: 61;
then
A30: x0
in (
dom ((v02
(#) (x
`| Z2))
+ (u02
(#) (y
`| Z2)))) by
XBOOLE_0:def 4;
then x0
in ((
dom (v02
(#) (x
`| Z2)))
/\ (
dom (u02
(#) (y
`| Z2)))) by
VALUED_1:def 1;
then
A31: x0
in (
dom (v02
(#) (x
`| Z2))) & x0
in (
dom (u02
(#) (y
`| Z2))) by
XBOOLE_0:def 4;
then x0
in ((
dom v02)
/\ (
dom (x
`| Z2))) & x0
in ((
dom u02)
/\ (
dom (y
`| Z2))) by
VALUED_1:def 4;
then x0
in (
dom v02) & x0
in (
dom (x
`| Z2)) & x0
in (
dom u02) & x0
in (
dom (y
`| Z2)) by
XBOOLE_0:def 4;
then
A32: x0
in Z2 by
A1,
FDIFF_1:def 7;
((((v02
(#) (x
`| Z2))
+ (u02
(#) (y
`| Z2)))
| AB)
. x0)
= (((v02
(#) (x
`| Z2))
+ (u02
(#) (y
`| Z2)))
. x0) by
A22,
A23,
A24,
FUNCT_1: 47
.= (((v02
(#) (x
`| Z2))
. x0)
+ ((u02
(#) (y
`| Z2))
. x0)) by
A30,
VALUED_1:def 1
.= (((v02
. x0)
* ((x
`| Z2)
. x0))
+ ((u02
(#) (y
`| Z2))
. x0)) by
A31,
VALUED_1:def 4
.= (((v02
. x0)
* ((x
`| Z2)
. x0))
+ ((u02
. x0)
* ((y
`| Z2)
. x0))) by
A31,
VALUED_1:def 4
.= (((v02
. x0)
* (
diff (x,x0)))
+ ((u02
. x0)
* ((y
`| Z2)
. x0))) by
A1,
A32,
FDIFF_1:def 7;
hence thesis by
A1,
A3,
A4,
A29,
A32,
FDIFF_1:def 7;
end;
hence thesis by
A22,
A23,
FUNCT_1:def 11;
end;
(
integral (((v01
(#) (x
`| Z1))
+ (u01
(#) (y
`| Z1))),a,b))
= (
integral (((v01
(#) (x
`| Z1))
+ (u01
(#) (y
`| Z1))),AB)) by
INTEGRA5: 19
.= (
integral (((v02
(#) (x
`| Z2))
+ (u02
(#) (y
`| Z2))),AB)) by
A19
.= (
integral (((v02
(#) (x
`| Z2))
+ (u02
(#) (y
`| Z2))),a,b)) by
INTEGRA5: 19;
hence thesis by
A3,
A4,
A18;
end;
Lm2: for a,b be
Real, x1,y1,x2,y2 be
PartFunc of
REAL ,
REAL , Z be
Subset of
REAL , f be
PartFunc of
COMPLEX ,
COMPLEX st a
<= b &
[.a, b.]
c= (
dom x1) &
[.a, b.]
c= (
dom y1) &
[.a, b.]
c= (
dom x2) &
[.a, b.]
c= (
dom y2) & (x1
|
[.a, b.])
= (x2
|
[.a, b.]) & (y1
|
[.a, b.])
= (y2
|
[.a, b.]) & Z is
open &
[.a, b.]
c= Z & x1
is_differentiable_on Z & y1
is_differentiable_on Z & (
rng ((x1
+ (
<i>
(#) y1))
|
[.a, b.]))
c= (
dom f) & x2
is_differentiable_on Z & y2
is_differentiable_on Z & (
rng ((x2
+ (
<i>
(#) y2))
|
[.a, b.]))
c= (
dom f) holds (
integral (f,x1,y1,a,b,Z))
= (
integral (f,x2,y2,a,b,Z))
proof
let a,b be
Real, x1,y1,x2,y2 be
PartFunc of
REAL ,
REAL , Z be
Subset of
REAL , f be
PartFunc of
COMPLEX ,
COMPLEX ;
assume
A1: a
<= b &
[.a, b.]
c= (
dom x1) &
[.a, b.]
c= (
dom y1) &
[.a, b.]
c= (
dom x2) &
[.a, b.]
c= (
dom y2) & (x1
|
[.a, b.])
= (x2
|
[.a, b.]) & (y1
|
[.a, b.])
= (y2
|
[.a, b.]) & Z is
open &
[.a, b.]
c= Z & x1
is_differentiable_on Z & y1
is_differentiable_on Z & (
rng ((x1
+ (
<i>
(#) y1))
|
[.a, b.]))
c= (
dom f) & x2
is_differentiable_on Z & y2
is_differentiable_on Z & (
rng ((x2
+ (
<i>
(#) y2))
|
[.a, b.]))
c= (
dom f);
consider u01,v01 be
PartFunc of
REAL ,
REAL such that
A2: u01
= (((
Re f)
*
R2-to-C )
*
<:x1, y1:>) & v01
= (((
Im f)
*
R2-to-C )
*
<:x1, y1:>) & (
integral (f,x1,y1,a,b,Z))
= ((
integral (((u01
(#) (x1
`| Z))
- (v01
(#) (y1
`| Z))),a,b))
+ ((
integral (((v01
(#) (x1
`| Z))
+ (u01
(#) (y1
`| Z))),a,b))
*
<i> )) by
Def2;
consider u02,v02 be
PartFunc of
REAL ,
REAL such that
A3: u02
= (((
Re f)
*
R2-to-C )
*
<:x2, y2:>) & v02
= (((
Im f)
*
R2-to-C )
*
<:x2, y2:>) & (
integral (f,x2,y2,a,b,Z))
= ((
integral (((u02
(#) (x2
`| Z))
- (v02
(#) (y2
`| Z))),a,b))
+ ((
integral (((v02
(#) (x2
`| Z))
+ (u02
(#) (y2
`| Z))),a,b))
*
<i> )) by
Def2;
reconsider AB =
[.a, b.] as non
empty
closed_interval
Subset of
REAL by
A1,
MEASURE5: 14;
A4:
now
assume
A5: not (a
= b or a
< b);
then
0
< (b
- a) or
0
< (a
- b) by
XREAL_1: 55;
then a
< (a
+ (b
- a)) or
0
< (a
- b) by
XREAL_1: 29;
then a
< b or b
< (b
+ (a
- b)) by
XREAL_1: 29;
hence contradiction by
A5,
A1;
end;
per cases by
A4;
suppose
A6: a
< b;
A7: (u01
| AB)
= (u02
| AB)
proof
A8: (
dom (u01
| AB))
= (
dom (u02
| AB))
proof
A9: for x0 be
object st x0
in (
dom (u01
| AB)) holds x0
in (
dom (u02
| AB))
proof
let x0 be
object such that
A10: x0
in (
dom (u01
| AB));
x0
in ((
dom u01)
/\ AB) by
A10,
RELAT_1: 61;
then
A11: x0
in (
dom u01) & x0
in AB by
XBOOLE_0:def 4;
then x0
in (
dom
<:x1, y1:>) & (
<:x1, y1:>
. x0)
in (
dom ((
Re f)
*
R2-to-C )) & x0
in AB by
A2,
FUNCT_1: 11;
then x0
in AB &
[(x1
. x0), (y1
. x0)]
in (
dom ((
Re f)
*
R2-to-C )) by
FUNCT_3:def 7;
then x0
in AB &
[((x1
| AB)
. x0), (y1
. x0)]
in (
dom ((
Re f)
*
R2-to-C )) by
FUNCT_1: 49;
then x0
in AB &
[((x2
| AB)
. x0), ((y2
| AB)
. x0)]
in (
dom ((
Re f)
*
R2-to-C )) by
A1,
FUNCT_1: 49;
then x0
in AB &
[((x2
| AB)
. x0), (y2
. x0)]
in (
dom ((
Re f)
*
R2-to-C )) by
FUNCT_1: 49;
then
A12: x0
in AB &
[(x2
. x0), (y2
. x0)]
in (
dom ((
Re f)
*
R2-to-C )) by
FUNCT_1: 49;
x0
in ((
dom x2)
/\ (
dom y2)) by
A1,
A11,
XBOOLE_0:def 4;
then x0
in (
dom
<:x2, y2:>) by
FUNCT_3:def 7;
then x0
in AB & x0
in (
dom
<:x2, y2:>) & (
<:x2, y2:>
. x0)
in (
dom ((
Re f)
*
R2-to-C )) by
A12,
FUNCT_3:def 7;
then x0
in AB & x0
in (
dom u02) by
A3,
FUNCT_1: 11;
then x0
in ((
dom u02)
/\ AB) by
XBOOLE_0:def 4;
hence thesis by
RELAT_1: 61;
end;
for x0 be
object st x0
in (
dom (u02
| AB)) holds x0
in (
dom (u01
| AB))
proof
let x0 be
object such that
A13: x0
in (
dom (u02
| AB));
x0
in ((
dom u02)
/\ AB) by
A13,
RELAT_1: 61;
then
A14: x0
in (
dom u02) & x0
in AB by
XBOOLE_0:def 4;
then x0
in (
dom
<:x2, y2:>) & (
<:x2, y2:>
. x0)
in (
dom ((
Re f)
*
R2-to-C )) & x0
in AB by
A3,
FUNCT_1: 11;
then x0
in AB &
[(x2
. x0), (y2
. x0)]
in (
dom ((
Re f)
*
R2-to-C )) by
FUNCT_3:def 7;
then x0
in AB &
[((x2
| AB)
. x0), (y2
. x0)]
in (
dom ((
Re f)
*
R2-to-C )) by
FUNCT_1: 49;
then x0
in AB &
[((x1
| AB)
. x0), ((y1
| AB)
. x0)]
in (
dom ((
Re f)
*
R2-to-C )) by
A1,
FUNCT_1: 49;
then x0
in AB &
[((x1
| AB)
. x0), (y1
. x0)]
in (
dom ((
Re f)
*
R2-to-C )) by
FUNCT_1: 49;
then
A15: x0
in AB &
[(x1
. x0), (y1
. x0)]
in (
dom ((
Re f)
*
R2-to-C )) by
FUNCT_1: 49;
x0
in ((
dom x1)
/\ (
dom y1)) by
A1,
A14,
XBOOLE_0:def 4;
then x0
in (
dom
<:x1, y1:>) by
FUNCT_3:def 7;
then x0
in AB & x0
in (
dom
<:x1, y1:>) & (
<:x1, y1:>
. x0)
in (
dom ((
Re f)
*
R2-to-C )) by
A15,
FUNCT_3:def 7;
then x0
in AB & x0
in (
dom u01) by
A2,
FUNCT_1: 11;
then x0
in ((
dom u01)
/\ AB) by
XBOOLE_0:def 4;
hence thesis by
RELAT_1: 61;
end;
hence thesis by
A9,
TARSKI: 2;
end;
for x0 be
object st x0
in (
dom (u01
| AB)) holds ((u01
| AB)
. x0)
= ((u02
| AB)
. x0)
proof
let x0 be
object such that
A16: x0
in (
dom (u01
| AB));
x0
in ((
dom u01)
/\ AB) by
A16,
RELAT_1: 61;
then
A17: x0
in AB & x0
in (
dom u01) by
XBOOLE_0:def 4;
then
reconsider x0 as
Real;
A18: AB
c= ((
dom x1)
/\ (
dom y1)) by
A1,
XBOOLE_1: 19;
then x0
in ((
dom x1)
/\ (
dom y1)) by
A17;
then x0
in (
dom
<:x1, y1:>) by
FUNCT_3:def 7;
then
A19: (u01
. x0)
= (((
Re f)
*
R2-to-C )
. (
<:x1, y1:>
. x0)) by
A2,
FUNCT_1: 13;
A20: AB
c= ((
dom x2)
/\ (
dom y2)) by
A1,
XBOOLE_1: 19;
then x0
in ((
dom x2)
/\ (
dom y2)) by
A17;
then x0
in (
dom
<:x2, y2:>) by
FUNCT_3:def 7;
then (u02
. x0)
= (((
Re f)
*
R2-to-C )
. (
<:x2, y2:>
. x0)) by
A3,
FUNCT_1: 13;
then
A21: (u02
. x0)
= (((
Re f)
*
R2-to-C )
.
[(x2
. x0), (y2
. x0)]) by
A17,
A20,
FUNCT_3: 48;
A22: (x1
. x0)
= ((x1
|
[.a, b.])
. x0) by
A17,
FUNCT_1: 49
.= (x2
. x0) by
A17,
A1,
FUNCT_1: 49;
A23: (y1
. x0)
= ((y1
|
[.a, b.])
. x0) by
A17,
FUNCT_1: 49
.= (y2
. x0) by
A17,
A1,
FUNCT_1: 49;
(u01
. x0)
= ((u01
| AB)
. x0) & (u02
. x0)
= ((u02
| AB)
. x0) by
A17,
FUNCT_1: 49;
hence thesis by
A17,
A18,
A19,
A21,
A22,
A23,
FUNCT_3: 48;
end;
hence thesis by
A8,
FUNCT_1:def 11;
end;
A24: ((x1
`| Z)
| AB)
= ((x2
`| Z)
| AB)
proof
A25: (
dom ((x1
`| Z)
| AB))
= ((
dom (x1
`| Z))
/\ AB) by
RELAT_1: 61
.= (Z
/\ AB) by
A1,
FDIFF_1:def 7
.= AB by
A1,
XBOOLE_1: 28;
A26: (
dom ((x2
`| Z)
| AB))
= ((
dom (x2
`| Z))
/\ AB) by
RELAT_1: 61
.= (Z
/\ AB) by
A1,
FDIFF_1:def 7
.= AB by
A1,
XBOOLE_1: 28;
for x0 be
object st x0
in (
dom ((x1
`| Z)
| AB)) holds (((x1
`| Z)
| AB)
. x0)
= (((x2
`| Z)
| AB)
. x0)
proof
let x0 be
object such that
A27: x0
in (
dom ((x1
`| Z)
| AB));
x0
in (
dom (x1
`| Z)) by
A27,
RELAT_1: 57;
then
reconsider x0 as
Real;
A28: (((x2
`| Z)
| AB)
. x0)
= ((x2
`| Z)
. x0) by
A27,
FUNCT_1: 49;
A29: ((x1
`| Z)
. x0)
= (
diff (x1,x0)) by
A1,
A25,
A27,
FDIFF_1:def 7;
A30: ((x2
`| Z)
. x0)
= (
diff (x2,x0)) by
A1,
A25,
A27,
FDIFF_1:def 7;
A31:
now
assume
A32: not (x0
in
].a, b.[ or x0
= a or x0
= b);
x0
in { r where r be
Real : a
<= r & r
<= b } by
A25,
A27,
RCOMP_1:def 1;
then
A33: ex r be
Real st r
= x0 & a
<= r & r
<= b;
A34:
now
assume
A35: not (a
= x0 or a
< x0);
then
0
< (x0
- a) or
0
< (a
- x0) by
XREAL_1: 55;
then a
< (a
+ (x0
- a)) or
0
< (a
- x0) by
XREAL_1: 29;
then a
< x0 or x0
< (x0
+ (a
- x0)) by
XREAL_1: 29;
hence contradiction by
A33,
A35;
end;
A36:
now
assume
A37: not (x0
= b or x0
< b);
then
0
< (x0
- b) or
0
< (b
- x0) by
XREAL_1: 55;
then b
< (b
+ (x0
- b)) or
0
< (b
- x0) by
XREAL_1: 29;
then b
< x0 or x0
< (x0
+ (b
- x0)) by
XREAL_1: 29;
hence contradiction by
A33,
A37;
end;
not (x0
in { q where q be
Real : a
< q & q
< b }) by
A32,
RCOMP_1:def 2;
hence contradiction by
A32,
A34,
A36;
end;
(
diff (x1,x0))
= (
diff (x2,x0))
proof
per cases by
A31;
suppose
A38: x0
= a;
then x0
in { r where r be
Real : a
<= r & r
<= b } by
A1;
then
A39: x0
in
[.a, b.] by
RCOMP_1:def 1;
then
A40: x1
is_differentiable_in x0 by
A1,
FDIFF_1: 9;
then
A41: x1
is_right_differentiable_in x0 & (
diff (x1,x0))
= (
Rdiff (x1,x0)) by
FDIFF_3: 22;
x2
is_differentiable_in x0 by
A1,
A39,
FDIFF_1: 9;
then
A42: x2
is_right_differentiable_in x0 & (
diff (x2,x0))
= (
Rdiff (x2,x0)) by
FDIFF_3: 22;
then
A43: (x1
- x2)
is_right_differentiable_in x0 by
A41,
FDIFF_3: 17;
(
Rdiff (x1,x0))
= (
Rdiff (x2,x0))
proof
A44: ((
Rdiff (x1,x0))
- (
Rdiff (x2,x0)))
= (
Rdiff ((x1
- x2),x0)) by
A41,
A42,
FDIFF_3: 17;
for h, c1 st (
rng c1)
=
{x0} & (
rng (h
+ c1))
c= (
dom (x1
- x2)) & (for n be
Nat holds (h
. n)
>
0 ) holds (
lim ((h
" )
(#) (((x1
- x2)
/* (h
+ c1))
- ((x1
- x2)
/* c1))))
=
0
proof
let h, c1 such that
A45: (
rng c1)
=
{x0} & (
rng (h
+ c1))
c= (
dom (x1
- x2)) & (for n be
Nat holds (h
. n)
>
0 );
A46: h is
convergent & (
lim h)
=
0 ;
A47:
0
< (b
- x0) by
A6,
A38,
XREAL_1: 50;
then
consider n be
Nat such that
A48: for m be
Nat st n
<= m holds
|.((h
. m)
-
0 ).|
< ((b
- x0)
/ 2) by
A46,
SEQ_2:def 7;
A49: for p1 st
0
< p1 holds ex n1 be
Nat st for m be
Nat st n1
<= m holds
|.((((h
" )
(#) (((x1
- x2)
/* (h
+ c1))
- ((x1
- x2)
/* c1)))
. m)
-
0 ).|
< p1
proof
let p1 such that
A50:
0
< p1;
take n;
for m be
Nat st n
<= m holds (((h
" )
(#) (((x1
- x2)
/* (h
+ c1))
- ((x1
- x2)
/* c1)))
. m)
=
0
proof
let m be
Nat such that
A51: n
<= m;
A52: m
in
NAT by
ORDINAL1:def 12;
A53:
|.((h
. m)
-
0 ).|
< ((b
- x0)
/ 2) by
A48,
A51;
A54:
0
< (h
. m) by
A45;
then
A55: (h
. m)
< ((b
- x0)
/ 2) by
A53,
ABSVALUE:def 1;
A56: (a
+
0 )
<= (x0
+ (h
. m)) by
A38,
A54,
XREAL_1: 7;
(x0
+ (h
. m))
<= (x0
+ ((b
- x0)
/ 2)) by
A55,
XREAL_1: 7;
then
A57: ((x0
+ (h
. m))
+
0 )
<= ((b
- ((b
- x0)
/ 2))
+ ((b
- x0)
/ 2)) by
A47,
XREAL_1: 7;
A58:
[.a, b.]
c= ((
dom x1)
/\ (
dom x2)) by
A1,
XBOOLE_1: 19;
then x0
in ((
dom x1)
/\ (
dom x2)) by
A39;
then
A59: x0
in (
dom (x1
- x2)) by
VALUED_1: 12;
A60:
[.a, b.]
c= (
dom (x1
- x2)) by
A58,
VALUED_1: 12;
(x0
+ (h
. m))
in { r where r be
Real : a
<= r & r
<= b } by
A56,
A57;
then
A61: (x0
+ (h
. m))
in
[.a, b.] by
RCOMP_1:def 1;
A62: x0
in (
rng c1) by
A45,
TARSKI:def 1;
A63: (
lim c1)
= (c1
. m) by
SEQ_4: 26;
A64: ((h
+ c1)
. m)
= ((h
. m)
+ (c1
. m)) by
SEQ_1: 7
.= ((h
. m)
+ x0) by
A62,
A63,
SEQ_4: 25;
A65: (
rng c1)
c= (
dom (x1
- x2)) by
A45,
A59,
TARSKI:def 1;
A66: (((h
" )
(#) (((x1
- x2)
/* (h
+ c1))
- ((x1
- x2)
/* c1)))
. m)
= (((h
" )
. m)
* ((((x1
- x2)
/* (h
+ c1))
- ((x1
- x2)
/* c1))
. m)) by
SEQ_1: 8
.= (((h
" )
. m)
* ((((x1
- x2)
/* (h
+ c1))
. m)
- (((x1
- x2)
/* c1)
. m))) by
RFUNCT_2: 1
.= (((h
" )
. m)
* (((x1
- x2)
. ((h
+ c1)
. m))
- (((x1
- x2)
/* c1)
. m))) by
A45,
FUNCT_2: 108,
A52
.= (((h
" )
. m)
* (((x1
- x2)
. ((h
+ c1)
. m))
- ((x1
- x2)
. (c1
. m)))) by
A65,
FUNCT_2: 108,
A52
.= (((h
" )
. m)
* (((x1
- x2)
. ((h
. m)
+ x0))
- ((x1
- x2)
. x0))) by
A62,
A63,
A64,
SEQ_4: 25;
A67: ((x1
- x2)
. ((h
. m)
+ x0))
= ((x1
. ((h
. m)
+ x0))
- (x2
. ((h
. m)
+ x0))) by
A60,
A61,
VALUED_1: 13
.= (((x1
|
[.a, b.])
. ((h
. m)
+ x0))
- (x2
. ((h
. m)
+ x0))) by
A61,
FUNCT_1: 49
.= (((x1
|
[.a, b.])
. ((h
. m)
+ x0))
- ((x2
|
[.a, b.])
. ((h
. m)
+ x0))) by
A61,
FUNCT_1: 49
.=
0 by
A1;
((x1
- x2)
. x0)
= ((x1
. x0)
- (x2
. x0)) by
A59,
VALUED_1: 13
.= (((x1
|
[.a, b.])
. x0)
- (x2
. x0)) by
A39,
FUNCT_1: 49
.= (((x1
|
[.a, b.])
. x0)
- ((x2
|
[.a, b.])
. x0)) by
A39,
FUNCT_1: 49
.=
0 by
A1;
hence thesis by
A66,
A67;
end;
hence thesis by
A50,
COMPLEX1: 44;
end;
then ((h
" )
(#) (((x1
- x2)
/* (h
+ c1))
- ((x1
- x2)
/* c1))) is
convergent by
SEQ_2:def 6;
hence thesis by
A49,
SEQ_2:def 7;
end;
then ((
Rdiff (x1,x0))
- (
Rdiff (x2,x0)))
=
0 by
A43,
A44,
FDIFF_3:def 6;
hence thesis;
end;
hence thesis by
A40,
A42,
FDIFF_3: 22;
end;
suppose
A68: x0
in
].a, b.[;
A69:
].a, b.[ is
open by
RCOMP_1: 7;
A70:
].a, b.[
c=
[.a, b.]
proof
for x0 be
object st x0
in
].a, b.[ holds x0
in
[.a, b.]
proof
let x0 be
object such that
A71: x0
in
].a, b.[;
x0
in { r where r be
Real : a
< r & r
< b } by
A71,
RCOMP_1:def 2;
then
A72: ex r st r
= x0 & a
< r & r
< b;
then
reconsider x0 as
Real;
x0
in { r where r be
Real : a
<= r & r
<= b } by
A72;
hence thesis by
RCOMP_1:def 1;
end;
hence thesis;
end;
then
A73: x1
is_differentiable_on
].a, b.[ by
A1,
A69,
FDIFF_1: 26,
XBOOLE_1: 1;
then
A74: (x1
|
].a, b.[)
is_differentiable_on
].a, b.[ & ((x1
|
].a, b.[)
`|
].a, b.[)
= (x1
`|
].a, b.[) by
A69,
FDIFF_2: 16;
A75: ((x1
`|
].a, b.[)
. x0)
= (
diff (x1,x0)) by
A68,
A73,
FDIFF_1:def 7;
A76: x2
is_differentiable_on
].a, b.[ by
A69,
A70,
A1,
FDIFF_1: 26,
XBOOLE_1: 1;
then
A77: (x2
|
].a, b.[)
is_differentiable_on
].a, b.[ & ((x2
|
].a, b.[)
`|
].a, b.[)
= (x2
`|
].a, b.[) by
A69,
FDIFF_2: 16;
A78: ((x2
`|
].a, b.[)
. x0)
= (
diff (x2,x0)) by
A68,
A76,
FDIFF_1:def 7;
A79: (
dom (x1
|
].a, b.[))
= ((
dom x1)
/\
].a, b.[) by
RELAT_1: 61
.=
].a, b.[ by
A1,
A70,
XBOOLE_1: 1,
XBOOLE_1: 28
.= ((
dom x2)
/\
].a, b.[) by
A1,
A70,
XBOOLE_1: 1,
XBOOLE_1: 28
.= (
dom (x2
|
].a, b.[)) by
RELAT_1: 61;
for x0 be
object st x0
in (
dom (x1
|
].a, b.[)) holds ((x1
|
].a, b.[)
. x0)
= ((x2
|
].a, b.[)
. x0)
proof
let x0 be
object such that
A80: x0
in (
dom (x1
|
].a, b.[));
A81: (
dom (x1
|
].a, b.[))
= ((
dom x1)
/\
].a, b.[) by
RELAT_1: 61
.=
].a, b.[ by
A1,
A70,
XBOOLE_1: 1,
XBOOLE_1: 28;
then ((x1
|
].a, b.[)
. x0)
= (x1
. x0) by
A80,
FUNCT_1: 49
.= ((x1
|
[.a, b.])
. x0) by
A70,
A80,
A81,
FUNCT_1: 49
.= (x2
. x0) by
A70,
A80,
A81,
A1,
FUNCT_1: 49
.= ((x2
|
].a, b.[)
. x0) by
A80,
A81,
FUNCT_1: 49;
hence thesis;
end;
hence thesis by
A74,
A75,
A77,
A78,
A79,
FUNCT_1: 2;
end;
suppose
A82: x0
= b;
then x0
in { r where r be
Real : a
<= r & r
<= b } by
A1;
then
A83: x0
in
[.a, b.] by
RCOMP_1:def 1;
then
A84: x1
is_differentiable_in x0 by
A1,
FDIFF_1: 9;
then
A85: x1
is_left_differentiable_in x0 & (
diff (x1,x0))
= (
Ldiff (x1,x0)) by
FDIFF_3: 22;
x2
is_differentiable_in x0 by
A1,
A83,
FDIFF_1: 9;
then
A86: x2
is_left_differentiable_in x0 & (
diff (x2,x0))
= (
Ldiff (x2,x0)) by
FDIFF_3: 22;
then
A87: (x1
- x2)
is_left_differentiable_in x0 by
A85,
FDIFF_3: 11;
(
Ldiff (x1,x0))
= (
Ldiff (x2,x0))
proof
A88: ((
Ldiff (x1,x0))
- (
Ldiff (x2,x0)))
= (
Ldiff ((x1
- x2),x0)) by
A85,
A86,
FDIFF_3: 11;
for h, c1 st (
rng c1)
=
{x0} & (
rng (h
+ c1))
c= (
dom (x1
- x2)) & (for n be
Nat holds (h
. n)
<
0 ) holds (
lim ((h
" )
(#) (((x1
- x2)
/* (h
+ c1))
- ((x1
- x2)
/* c1))))
=
0
proof
let h, c1 such that
A89: (
rng c1)
=
{x0} & (
rng (h
+ c1))
c= (
dom (x1
- x2)) & (for n be
Nat holds (h
. n)
<
0 );
A90: h is
convergent & (
lim h)
=
0 ;
A91:
0
< (b
- a) by
A6,
XREAL_1: 50;
then
consider n be
Nat such that
A92: for m be
Nat st n
<= m holds
|.((h
. m)
-
0 ).|
< ((x0
- a)
/ 2) by
A82,
A90,
SEQ_2:def 7;
A93: for p1 st
0
< p1 holds ex n1 be
Nat st for m be
Nat st n1
<= m holds
|.((((h
" )
(#) (((x1
- x2)
/* (h
+ c1))
- ((x1
- x2)
/* c1)))
. m)
-
0 ).|
< p1
proof
let p1 such that
A94:
0
< p1;
take n;
for m be
Nat st n
<= m holds (((h
" )
(#) (((x1
- x2)
/* (h
+ c1))
- ((x1
- x2)
/* c1)))
. m)
=
0
proof
let m be
Nat such that
A95: n
<= m;
A96: m
in
NAT by
ORDINAL1:def 12;
A97:
|.((h
. m)
-
0 ).|
< ((x0
- a)
/ 2) by
A92,
A95;
A98: (h
. m)
<
0 by
A89;
then
A99: (
- (h
. m))
< ((x0
- a)
/ 2) by
A97,
ABSVALUE:def 1;
A100: (x0
+ (h
. m))
<= (b
+
0 ) by
A82,
A98,
XREAL_1: 7;
(x0
- ((x0
- a)
/ 2))
<= (x0
- (
- (h
. m))) by
A99,
XREAL_1: 13;
then
A101: ((a
+ ((x0
- a)
/ 2))
- ((x0
- a)
/ 2))
<= ((x0
+ (h
. m))
-
0 ) by
A82,
A91,
XREAL_1: 13;
A102:
[.a, b.]
c= ((
dom x1)
/\ (
dom x2)) by
A1,
XBOOLE_1: 19;
then x0
in ((
dom x1)
/\ (
dom x2)) by
A83;
then
A103: x0
in (
dom (x1
- x2)) by
VALUED_1: 12;
A104:
[.a, b.]
c= (
dom (x1
- x2)) by
A102,
VALUED_1: 12;
(x0
+ (h
. m))
in { r where r be
Real : a
<= r & r
<= b } by
A100,
A101;
then
A105: (x0
+ (h
. m))
in
[.a, b.] by
RCOMP_1:def 1;
x0
in (
rng c1) by
A89,
TARSKI:def 1;
then
A106: (
lim c1)
= x0 by
SEQ_4: 25;
A107: ((h
+ c1)
. m)
= ((h
. m)
+ (c1
. m)) by
SEQ_1: 7
.= ((h
. m)
+ x0) by
A106,
SEQ_4: 26;
A108: (
rng c1)
c= (
dom (x1
- x2)) by
A89,
A103,
TARSKI:def 1;
A109: (((h
" )
(#) (((x1
- x2)
/* (h
+ c1))
- ((x1
- x2)
/* c1)))
. m)
= (((h
" )
. m)
* ((((x1
- x2)
/* (h
+ c1))
- ((x1
- x2)
/* c1))
. m)) by
SEQ_1: 8
.= (((h
" )
. m)
* ((((x1
- x2)
/* (h
+ c1))
. m)
- (((x1
- x2)
/* c1)
. m))) by
RFUNCT_2: 1
.= (((h
" )
. m)
* (((x1
- x2)
. ((h
+ c1)
. m))
- (((x1
- x2)
/* c1)
. m))) by
A89,
FUNCT_2: 108,
A96
.= (((h
" )
. m)
* (((x1
- x2)
. ((h
+ c1)
. m))
- ((x1
- x2)
. (c1
. m)))) by
A108,
FUNCT_2: 108,
A96
.= (((h
" )
. m)
* (((x1
- x2)
. ((h
. m)
+ x0))
- ((x1
- x2)
. x0))) by
A106,
A107,
SEQ_4: 26;
A110: ((x1
- x2)
. ((h
. m)
+ x0))
= ((x1
. ((h
. m)
+ x0))
- (x2
. ((h
. m)
+ x0))) by
A104,
A105,
VALUED_1: 13
.= (((x1
|
[.a, b.])
. ((h
. m)
+ x0))
- (x2
. ((h
. m)
+ x0))) by
A105,
FUNCT_1: 49
.= (((x1
|
[.a, b.])
. ((h
. m)
+ x0))
- ((x2
|
[.a, b.])
. ((h
. m)
+ x0))) by
A105,
FUNCT_1: 49
.=
0 by
A1;
((x1
- x2)
. x0)
= ((x1
. x0)
- (x2
. x0)) by
A103,
VALUED_1: 13
.= (((x1
|
[.a, b.])
. x0)
- (x2
. x0)) by
A83,
FUNCT_1: 49
.= (((x1
|
[.a, b.])
. x0)
- ((x2
|
[.a, b.])
. x0)) by
A83,
FUNCT_1: 49
.=
0 by
A1;
hence thesis by
A109,
A110;
end;
hence thesis by
A94,
COMPLEX1: 44;
end;
then ((h
" )
(#) (((x1
- x2)
/* (h
+ c1))
- ((x1
- x2)
/* c1))) is
convergent by
SEQ_2:def 6;
hence thesis by
A93,
SEQ_2:def 7;
end;
then (
Ldiff ((x1
- x2),x0))
=
0 by
A87,
FDIFF_3:def 5;
hence thesis by
A88;
end;
hence thesis by
A84,
A86,
FDIFF_3: 22;
end;
end;
hence thesis by
A27,
A28,
A29,
A30,
FUNCT_1: 49;
end;
hence thesis by
A25,
A26,
FUNCT_1:def 11;
end;
A111: (v01
| AB)
= (v02
| AB)
proof
A112: (
dom (v01
| AB))
= (
dom (v02
| AB))
proof
A113: for x0 be
object st x0
in (
dom (v01
| AB)) holds x0
in (
dom (v02
| AB))
proof
let x0 be
object such that
A114: x0
in (
dom (v01
| AB));
x0
in ((
dom v01)
/\ AB) by
A114,
RELAT_1: 61;
then
A115: x0
in (
dom v01) & x0
in AB by
XBOOLE_0:def 4;
then x0
in (
dom
<:x1, y1:>) & (
<:x1, y1:>
. x0)
in (
dom ((
Im f)
*
R2-to-C )) & x0
in AB by
A2,
FUNCT_1: 11;
then x0
in AB &
[(x1
. x0), (y1
. x0)]
in (
dom ((
Im f)
*
R2-to-C )) by
FUNCT_3:def 7;
then x0
in AB &
[((x1
| AB)
. x0), (y1
. x0)]
in (
dom ((
Im f)
*
R2-to-C )) by
FUNCT_1: 49;
then x0
in AB &
[((x2
| AB)
. x0), ((y2
| AB)
. x0)]
in (
dom ((
Im f)
*
R2-to-C )) by
A1,
FUNCT_1: 49;
then x0
in AB &
[((x2
| AB)
. x0), (y2
. x0)]
in (
dom ((
Im f)
*
R2-to-C )) by
FUNCT_1: 49;
then
A116: x0
in AB &
[(x2
. x0), (y2
. x0)]
in (
dom ((
Im f)
*
R2-to-C )) by
FUNCT_1: 49;
x0
in ((
dom x2)
/\ (
dom y2)) by
A1,
A115,
XBOOLE_0:def 4;
then x0
in (
dom
<:x2, y2:>) by
FUNCT_3:def 7;
then x0
in AB & x0
in (
dom
<:x2, y2:>) & (
<:x2, y2:>
. x0)
in (
dom ((
Im f)
*
R2-to-C )) by
A116,
FUNCT_3:def 7;
then x0
in AB & x0
in (
dom v02) by
A3,
FUNCT_1: 11;
then x0
in ((
dom v02)
/\ AB) by
XBOOLE_0:def 4;
hence thesis by
RELAT_1: 61;
end;
for x0 be
object st x0
in (
dom (v02
| AB)) holds x0
in (
dom (v01
| AB))
proof
let x0 be
object such that
A117: x0
in (
dom (v02
| AB));
x0
in ((
dom v02)
/\ AB) by
A117,
RELAT_1: 61;
then
A118: x0
in (
dom v02) & x0
in AB by
XBOOLE_0:def 4;
then x0
in (
dom
<:x2, y2:>) & (
<:x2, y2:>
. x0)
in (
dom ((
Im f)
*
R2-to-C )) & x0
in AB by
A3,
FUNCT_1: 11;
then x0
in AB &
[(x2
. x0), (y2
. x0)]
in (
dom ((
Im f)
*
R2-to-C )) by
FUNCT_3:def 7;
then x0
in AB &
[((x2
| AB)
. x0), (y2
. x0)]
in (
dom ((
Im f)
*
R2-to-C )) by
FUNCT_1: 49;
then x0
in AB &
[((x1
| AB)
. x0), ((y1
| AB)
. x0)]
in (
dom ((
Im f)
*
R2-to-C )) by
A1,
FUNCT_1: 49;
then x0
in AB &
[((x1
| AB)
. x0), (y1
. x0)]
in (
dom ((
Im f)
*
R2-to-C )) by
FUNCT_1: 49;
then
A119: x0
in AB &
[(x1
. x0), (y1
. x0)]
in (
dom ((
Im f)
*
R2-to-C )) by
FUNCT_1: 49;
x0
in ((
dom x1)
/\ (
dom y1)) by
A1,
A118,
XBOOLE_0:def 4;
then x0
in (
dom
<:x1, y1:>) by
FUNCT_3:def 7;
then x0
in AB & x0
in (
dom
<:x1, y1:>) & (
<:x1, y1:>
. x0)
in (
dom ((
Im f)
*
R2-to-C )) by
A119,
FUNCT_3:def 7;
then x0
in AB & x0
in (
dom v01) by
A2,
FUNCT_1: 11;
then x0
in ((
dom v01)
/\ AB) by
XBOOLE_0:def 4;
hence thesis by
RELAT_1: 61;
end;
hence thesis by
A113,
TARSKI: 2;
end;
for x0 be
object st x0
in (
dom (v01
| AB)) holds ((v01
| AB)
. x0)
= ((v02
| AB)
. x0)
proof
let x0 be
object such that
A120: x0
in (
dom (v01
| AB));
x0
in ((
dom v01)
/\ AB) by
A120,
RELAT_1: 61;
then
A121: x0
in AB & x0
in (
dom v01) by
XBOOLE_0:def 4;
then
reconsider x0 as
Real;
A122: AB
c= ((
dom x1)
/\ (
dom y1)) by
A1,
XBOOLE_1: 19;
then x0
in ((
dom x1)
/\ (
dom y1)) by
A121;
then x0
in (
dom
<:x1, y1:>) by
FUNCT_3:def 7;
then
A123: (v01
. x0)
= (((
Im f)
*
R2-to-C )
. (
<:x1, y1:>
. x0)) by
A2,
FUNCT_1: 13;
A124: AB
c= ((
dom x2)
/\ (
dom y2)) by
A1,
XBOOLE_1: 19;
then x0
in ((
dom x2)
/\ (
dom y2)) by
A121;
then x0
in (
dom
<:x2, y2:>) by
FUNCT_3:def 7;
then (v02
. x0)
= (((
Im f)
*
R2-to-C )
. (
<:x2, y2:>
. x0)) by
A3,
FUNCT_1: 13;
then
A125: (v02
. x0)
= (((
Im f)
*
R2-to-C )
.
[(x2
. x0), (y2
. x0)]) by
A121,
A124,
FUNCT_3: 48;
A126: (x1
. x0)
= ((x1
|
[.a, b.])
. x0) by
A121,
FUNCT_1: 49
.= (x2
. x0) by
A121,
A1,
FUNCT_1: 49;
A127: (y1
. x0)
= ((y1
|
[.a, b.])
. x0) by
A121,
FUNCT_1: 49
.= (y2
. x0) by
A121,
A1,
FUNCT_1: 49;
(v01
. x0)
= ((v01
| AB)
. x0) & (v02
. x0)
= ((v02
| AB)
. x0) by
A121,
FUNCT_1: 49;
hence thesis by
A126,
A127,
A123,
A121,
A122,
A125,
FUNCT_3: 48;
end;
hence thesis by
A112,
FUNCT_1:def 11;
end;
A128: ((y1
`| Z)
| AB)
= ((y2
`| Z)
| AB)
proof
A129: (
dom ((y1
`| Z)
| AB))
= ((
dom (y1
`| Z))
/\ AB) by
RELAT_1: 61
.= (Z
/\ AB) by
A1,
FDIFF_1:def 7
.= AB by
A1,
XBOOLE_1: 28;
A130: (
dom ((y2
`| Z)
| AB))
= ((
dom (y2
`| Z))
/\ AB) by
RELAT_1: 61
.= (Z
/\ AB) by
A1,
FDIFF_1:def 7
.= AB by
A1,
XBOOLE_1: 28;
for x0 be
object st x0
in (
dom ((y1
`| Z)
| AB)) holds (((y1
`| Z)
| AB)
. x0)
= (((y2
`| Z)
| AB)
. x0)
proof
let x0 be
object such that
A131: x0
in (
dom ((y1
`| Z)
| AB));
x0
in (
dom (y1
`| Z)) by
A131,
RELAT_1: 57;
then
reconsider x0 as
Real;
A132: (((y2
`| Z)
| AB)
. x0)
= ((y2
`| Z)
. x0) by
A131,
FUNCT_1: 49;
A133: ((y1
`| Z)
. x0)
= (
diff (y1,x0)) by
A1,
A131,
A129,
FDIFF_1:def 7;
A134: ((y2
`| Z)
. x0)
= (
diff (y2,x0)) by
A1,
A131,
A129,
FDIFF_1:def 7;
A135:
now
assume
A136: not (x0
in
].a, b.[ or x0
= a or x0
= b);
x0
in { r where r be
Real : a
<= r & r
<= b } by
A129,
A131,
RCOMP_1:def 1;
then
A137: ex r be
Real st r
= x0 & a
<= r & r
<= b;
A138:
now
assume
A139: not (a
= x0 or a
< x0);
then
0
< (x0
- a) or
0
< (a
- x0) by
XREAL_1: 55;
then a
< (a
+ (x0
- a)) or
0
< (a
- x0) by
XREAL_1: 29;
then a
< x0 or x0
< (x0
+ (a
- x0)) by
XREAL_1: 29;
hence contradiction by
A137,
A139;
end;
A140:
now
assume
A141: not (x0
= b or x0
< b);
then
0
< (x0
- b) or
0
< (b
- x0) by
XREAL_1: 55;
then b
< (b
+ (x0
- b)) or
0
< (b
- x0) by
XREAL_1: 29;
then b
< x0 or x0
< (x0
+ (b
- x0)) by
XREAL_1: 29;
hence contradiction by
A137,
A141;
end;
not (x0
in { q where q be
Real : a
< q & q
< b }) by
A136,
RCOMP_1:def 2;
hence contradiction by
A136,
A138,
A140;
end;
(
diff (y1,x0))
= (
diff (y2,x0))
proof
per cases by
A135;
suppose
A142: x0
= a;
then x0
in { r where r be
Real : a
<= r & r
<= b } by
A1;
then
A143: x0
in
[.a, b.] by
RCOMP_1:def 1;
then
A144: y1
is_differentiable_in x0 by
A1,
FDIFF_1: 9;
then
A145: y1
is_right_differentiable_in x0 & (
diff (y1,x0))
= (
Rdiff (y1,x0)) by
FDIFF_3: 22;
y2
is_differentiable_in x0 by
A1,
A143,
FDIFF_1: 9;
then
A146: y2
is_right_differentiable_in x0 & (
diff (y2,x0))
= (
Rdiff (y2,x0)) by
FDIFF_3: 22;
then
A147: (y1
- y2)
is_right_differentiable_in x0 by
A145,
FDIFF_3: 17;
(
Rdiff (y1,x0))
= (
Rdiff (y2,x0))
proof
A148: ((
Rdiff (y1,x0))
- (
Rdiff (y2,x0)))
= (
Rdiff ((y1
- y2),x0)) by
A145,
A146,
FDIFF_3: 17;
for h, c1 st (
rng c1)
=
{x0} & (
rng (h
+ c1))
c= (
dom (y1
- y2)) & (for n be
Nat holds (h
. n)
>
0 ) holds (
lim ((h
" )
(#) (((y1
- y2)
/* (h
+ c1))
- ((y1
- y2)
/* c1))))
=
0
proof
let h, c1 such that
A149: (
rng c1)
=
{x0} & (
rng (h
+ c1))
c= (
dom (y1
- y2)) & (for n be
Nat holds (h
. n)
>
0 );
A150: h is
convergent & (
lim h)
=
0 ;
A151:
0
< (b
- x0) by
A6,
A142,
XREAL_1: 50;
then
consider n be
Nat such that
A152: for m be
Nat st n
<= m holds
|.((h
. m)
-
0 ).|
< ((b
- x0)
/ 2) by
A150,
SEQ_2:def 7;
A153: for p1 st
0
< p1 holds ex n1 be
Nat st for m be
Nat st n1
<= m holds
|.((((h
" )
(#) (((y1
- y2)
/* (h
+ c1))
- ((y1
- y2)
/* c1)))
. m)
-
0 ).|
< p1
proof
let p1 such that
A154:
0
< p1;
take n;
for m be
Nat st n
<= m holds (((h
" )
(#) (((y1
- y2)
/* (h
+ c1))
- ((y1
- y2)
/* c1)))
. m)
=
0
proof
let m be
Nat such that
A155: n
<= m;
A156:
|.((h
. m)
-
0 ).|
< ((b
- x0)
/ 2) by
A152,
A155;
A157: m
in
NAT by
ORDINAL1:def 12;
A158:
0
< (h
. m) by
A149;
then
A159: (h
. m)
< ((b
- x0)
/ 2) by
A156,
ABSVALUE:def 1;
A160: (a
+
0 )
<= (x0
+ (h
. m)) by
A142,
A158,
XREAL_1: 7;
(x0
+ (h
. m))
<= (x0
+ ((b
- x0)
/ 2)) by
A159,
XREAL_1: 7;
then
A161: ((x0
+ (h
. m))
+
0 )
<= ((b
- ((b
- x0)
/ 2))
+ ((b
- x0)
/ 2)) by
A151,
XREAL_1: 7;
A162:
[.a, b.]
c= ((
dom y1)
/\ (
dom y2)) by
A1,
XBOOLE_1: 19;
then x0
in ((
dom y1)
/\ (
dom y2)) by
A143;
then
A163: x0
in (
dom (y1
- y2)) by
VALUED_1: 12;
A164:
[.a, b.]
c= (
dom (y1
- y2)) by
A162,
VALUED_1: 12;
(x0
+ (h
. m))
in { r where r be
Real : a
<= r & r
<= b } by
A160,
A161;
then
A165: (x0
+ (h
. m))
in
[.a, b.] by
RCOMP_1:def 1;
A166: x0
in (
rng c1) by
A149,
TARSKI:def 1;
A167: (
lim c1)
= (c1
. m) by
SEQ_4: 26;
A168: ((h
+ c1)
. m)
= ((h
. m)
+ (c1
. m)) by
SEQ_1: 7
.= ((h
. m)
+ x0) by
A167,
A166,
SEQ_4: 25;
A169: (
rng c1)
c= (
dom (y1
- y2)) by
A163,
A149,
TARSKI:def 1;
A170: (((h
" )
(#) (((y1
- y2)
/* (h
+ c1))
- ((y1
- y2)
/* c1)))
. m)
= (((h
" )
. m)
* ((((y1
- y2)
/* (h
+ c1))
- ((y1
- y2)
/* c1))
. m)) by
SEQ_1: 8
.= (((h
" )
. m)
* ((((y1
- y2)
/* (h
+ c1))
. m)
- (((y1
- y2)
/* c1)
. m))) by
RFUNCT_2: 1
.= (((h
" )
. m)
* (((y1
- y2)
. ((h
+ c1)
. m))
- (((y1
- y2)
/* c1)
. m))) by
A149,
FUNCT_2: 108,
A157
.= (((h
" )
. m)
* (((y1
- y2)
. ((h
+ c1)
. m))
- ((y1
- y2)
. (c1
. m)))) by
A169,
FUNCT_2: 108,
A157
.= (((h
" )
. m)
* (((y1
- y2)
. ((h
. m)
+ x0))
- ((y1
- y2)
. x0))) by
A166,
A167,
A168,
SEQ_4: 25;
A171: ((y1
- y2)
. ((h
. m)
+ x0))
= ((y1
. ((h
. m)
+ x0))
- (y2
. ((h
. m)
+ x0))) by
A164,
A165,
VALUED_1: 13
.= (((y1
|
[.a, b.])
. ((h
. m)
+ x0))
- (y2
. ((h
. m)
+ x0))) by
A165,
FUNCT_1: 49
.= (((y1
|
[.a, b.])
. ((h
. m)
+ x0))
- ((y2
|
[.a, b.])
. ((h
. m)
+ x0))) by
A165,
FUNCT_1: 49
.=
0 by
A1;
((y1
- y2)
. x0)
= ((y1
. x0)
- (y2
. x0)) by
A163,
VALUED_1: 13
.= (((y1
|
[.a, b.])
. x0)
- (y2
. x0)) by
A143,
FUNCT_1: 49
.= (((y1
|
[.a, b.])
. x0)
- ((y2
|
[.a, b.])
. x0)) by
A143,
FUNCT_1: 49
.=
0 by
A1;
hence thesis by
A170,
A171;
end;
hence thesis by
A154,
COMPLEX1: 44;
end;
then ((h
" )
(#) (((y1
- y2)
/* (h
+ c1))
- ((y1
- y2)
/* c1))) is
convergent by
SEQ_2:def 6;
hence thesis by
A153,
SEQ_2:def 7;
end;
then ((
Rdiff (y1,x0))
- (
Rdiff (y2,x0)))
=
0 by
A147,
A148,
FDIFF_3:def 6;
hence thesis;
end;
hence thesis by
A144,
A146,
FDIFF_3: 22;
end;
suppose
A172: x0
in
].a, b.[;
A173:
].a, b.[ is
open by
RCOMP_1: 7;
A174:
].a, b.[
c=
[.a, b.]
proof
for x0 be
object st x0
in
].a, b.[ holds x0
in
[.a, b.]
proof
let x0 be
object such that
A175: x0
in
].a, b.[;
x0
in { r where r be
Real : a
< r & r
< b } by
A175,
RCOMP_1:def 2;
then
A176: ex r st r
= x0 & a
< r & r
< b;
then
reconsider x0 as
Real;
x0
in { r where r be
Real : a
<= r & r
<= b } by
A176;
hence thesis by
RCOMP_1:def 1;
end;
hence thesis;
end;
then
A177: y1
is_differentiable_on
].a, b.[ by
A1,
A173,
FDIFF_1: 26,
XBOOLE_1: 1;
then
A178: (y1
|
].a, b.[)
is_differentiable_on
].a, b.[ & ((y1
|
].a, b.[)
`|
].a, b.[)
= (y1
`|
].a, b.[) by
A173,
FDIFF_2: 16;
A179: ((y1
`|
].a, b.[)
. x0)
= (
diff (y1,x0)) by
A172,
A177,
FDIFF_1:def 7;
A180: y2
is_differentiable_on
].a, b.[ by
A1,
A173,
A174,
FDIFF_1: 26,
XBOOLE_1: 1;
then
A181: (y2
|
].a, b.[)
is_differentiable_on
].a, b.[ & ((y2
|
].a, b.[)
`|
].a, b.[)
= (y2
`|
].a, b.[) by
A173,
FDIFF_2: 16;
A182: ((y2
`|
].a, b.[)
. x0)
= (
diff (y2,x0)) by
A172,
A180,
FDIFF_1:def 7;
A183: (
dom (y1
|
].a, b.[))
= ((
dom y1)
/\
].a, b.[) by
RELAT_1: 61
.=
].a, b.[ by
A1,
A174,
XBOOLE_1: 1,
XBOOLE_1: 28
.= ((
dom y2)
/\
].a, b.[) by
A1,
A174,
XBOOLE_1: 1,
XBOOLE_1: 28
.= (
dom (y2
|
].a, b.[)) by
RELAT_1: 61;
for x0 be
object st x0
in (
dom (y1
|
].a, b.[)) holds ((y1
|
].a, b.[)
. x0)
= ((y2
|
].a, b.[)
. x0)
proof
let x0 be
object such that
A184: x0
in (
dom (y1
|
].a, b.[));
A185: (
dom (y1
|
].a, b.[))
= ((
dom y1)
/\
].a, b.[) by
RELAT_1: 61
.=
].a, b.[ by
A1,
A174,
XBOOLE_1: 1,
XBOOLE_1: 28;
then ((y1
|
].a, b.[)
. x0)
= (y1
. x0) by
A184,
FUNCT_1: 49
.= ((y1
|
[.a, b.])
. x0) by
A174,
A184,
A185,
FUNCT_1: 49
.= (y2
. x0) by
A174,
A184,
A185,
A1,
FUNCT_1: 49
.= ((y2
|
].a, b.[)
. x0) by
A184,
A185,
FUNCT_1: 49;
hence thesis;
end;
hence thesis by
A178,
A179,
A181,
A182,
A183,
FUNCT_1: 2;
end;
suppose
A186: x0
= b;
then x0
in { r where r be
Real : a
<= r & r
<= b } by
A1;
then
A187: x0
in
[.a, b.] by
RCOMP_1:def 1;
then
A188: y1
is_differentiable_in x0 by
A1,
FDIFF_1: 9;
then
A189: y1
is_left_differentiable_in x0 & (
diff (y1,x0))
= (
Ldiff (y1,x0)) by
FDIFF_3: 22;
y2
is_differentiable_in x0 by
A1,
A187,
FDIFF_1: 9;
then
A190: y2
is_left_differentiable_in x0 & (
diff (y2,x0))
= (
Ldiff (y2,x0)) by
FDIFF_3: 22;
then
A191: (y1
- y2)
is_left_differentiable_in x0 by
A189,
FDIFF_3: 11;
(
Ldiff (y1,x0))
= (
Ldiff (y2,x0))
proof
A192: ((
Ldiff (y1,x0))
- (
Ldiff (y2,x0)))
= (
Ldiff ((y1
- y2),x0)) by
A189,
A190,
FDIFF_3: 11;
for h, c1 st (
rng c1)
=
{x0} & (
rng (h
+ c1))
c= (
dom (y1
- y2)) & (for n be
Nat holds (h
. n)
<
0 ) holds (
lim ((h
" )
(#) (((y1
- y2)
/* (h
+ c1))
- ((y1
- y2)
/* c1))))
=
0
proof
let h, c1 such that
A193: (
rng c1)
=
{x0} & (
rng (h
+ c1))
c= (
dom (y1
- y2)) & (for n be
Nat holds (h
. n)
<
0 );
A194: h is
convergent & (
lim h)
=
0 ;
A195:
0
< (b
- a) by
A6,
XREAL_1: 50;
then
consider n be
Nat such that
A196: for m be
Nat st n
<= m holds
|.((h
. m)
-
0 ).|
< ((x0
- a)
/ 2) by
A186,
A194,
SEQ_2:def 7;
A197: for p1 st
0
< p1 holds ex n1 be
Nat st for m be
Nat st n1
<= m holds
|.((((h
" )
(#) (((y1
- y2)
/* (h
+ c1))
- ((y1
- y2)
/* c1)))
. m)
-
0 ).|
< p1
proof
let p1 such that
A198:
0
< p1;
take n;
for m be
Nat st n
<= m holds (((h
" )
(#) (((y1
- y2)
/* (h
+ c1))
- ((y1
- y2)
/* c1)))
. m)
=
0
proof
let m be
Nat such that
A199: n
<= m;
A200:
|.((h
. m)
-
0 ).|
< ((x0
- a)
/ 2) by
A196,
A199;
A201: m
in
NAT by
ORDINAL1:def 12;
A202: (h
. m)
<
0 by
A193;
then
A203: (
- (h
. m))
< ((x0
- a)
/ 2) by
A200,
ABSVALUE:def 1;
A204: (x0
+ (h
. m))
<= (b
+
0 ) by
A186,
A202,
XREAL_1: 7;
(x0
- ((x0
- a)
/ 2))
<= (x0
- (
- (h
. m))) by
A203,
XREAL_1: 13;
then
A205: ((a
+ ((x0
- a)
/ 2))
- ((x0
- a)
/ 2))
<= ((x0
+ (h
. m))
-
0 ) by
A186,
A195,
XREAL_1: 13;
A206:
[.a, b.]
c= ((
dom y1)
/\ (
dom y2)) by
A1,
XBOOLE_1: 19;
then x0
in ((
dom y1)
/\ (
dom y2)) by
A187;
then
A207: x0
in (
dom (y1
- y2)) by
VALUED_1: 12;
A208:
[.a, b.]
c= (
dom (y1
- y2)) by
A206,
VALUED_1: 12;
(x0
+ (h
. m))
in { r where r be
Real : a
<= r & r
<= b } by
A204,
A205;
then
A209: (x0
+ (h
. m))
in
[.a, b.] by
RCOMP_1:def 1;
x0
in (
rng c1) by
A193,
TARSKI:def 1;
then
A210: (
lim c1)
= x0 by
SEQ_4: 25;
A211: ((h
+ c1)
. m)
= ((h
. m)
+ (c1
. m)) by
SEQ_1: 7
.= ((h
. m)
+ x0) by
A210,
SEQ_4: 26;
A212: (
rng c1)
c= (
dom (y1
- y2)) by
A193,
A207,
TARSKI:def 1;
A213: (((h
" )
(#) (((y1
- y2)
/* (h
+ c1))
- ((y1
- y2)
/* c1)))
. m)
= (((h
" )
. m)
* ((((y1
- y2)
/* (h
+ c1))
- ((y1
- y2)
/* c1))
. m)) by
SEQ_1: 8
.= (((h
" )
. m)
* ((((y1
- y2)
/* (h
+ c1))
. m)
- (((y1
- y2)
/* c1)
. m))) by
RFUNCT_2: 1
.= (((h
" )
. m)
* (((y1
- y2)
. ((h
+ c1)
. m))
- (((y1
- y2)
/* c1)
. m))) by
A193,
FUNCT_2: 108,
A201
.= (((h
" )
. m)
* (((y1
- y2)
. ((h
+ c1)
. m))
- ((y1
- y2)
. (c1
. m)))) by
A212,
FUNCT_2: 108,
A201
.= (((h
" )
. m)
* (((y1
- y2)
. ((h
. m)
+ x0))
- ((y1
- y2)
. x0))) by
A210,
A211,
SEQ_4: 26;
A214: ((y1
- y2)
. ((h
. m)
+ x0))
= ((y1
. ((h
. m)
+ x0))
- (y2
. ((h
. m)
+ x0))) by
A208,
A209,
VALUED_1: 13
.= (((y1
|
[.a, b.])
. ((h
. m)
+ x0))
- (y2
. ((h
. m)
+ x0))) by
A209,
FUNCT_1: 49
.= (((y1
|
[.a, b.])
. ((h
. m)
+ x0))
- ((y2
|
[.a, b.])
. ((h
. m)
+ x0))) by
A209,
FUNCT_1: 49
.=
0 by
A1;
((y1
- y2)
. x0)
= ((y1
. x0)
- (y2
. x0)) by
A207,
VALUED_1: 13
.= (((y1
|
[.a, b.])
. x0)
- (y2
. x0)) by
A187,
FUNCT_1: 49
.= (((y1
|
[.a, b.])
. x0)
- ((y2
|
[.a, b.])
. x0)) by
A187,
FUNCT_1: 49
.=
0 by
A1;
hence thesis by
A213,
A214;
end;
hence thesis by
A198,
COMPLEX1: 44;
end;
then ((h
" )
(#) (((y1
- y2)
/* (h
+ c1))
- ((y1
- y2)
/* c1))) is
convergent by
SEQ_2:def 6;
hence thesis by
A197,
SEQ_2:def 7;
end;
then (
Ldiff ((y1
- y2),x0))
=
0 by
A191,
FDIFF_3:def 5;
hence thesis by
A192;
end;
hence thesis by
A188,
A190,
FDIFF_3: 22;
end;
end;
hence thesis by
A131,
A132,
A133,
A134,
FUNCT_1: 49;
end;
hence thesis by
A129,
A130,
FUNCT_1:def 11;
end;
A215: (((u01
(#) (x1
`| Z))
- (v01
(#) (y1
`| Z)))
| AB)
= (((u02
(#) (x2
`| Z))
- (v02
(#) (y2
`| Z)))
| AB)
proof
A216: (x1
`| Z) is
PartFunc of
REAL ,
COMPLEX & (y1
`| Z) is
PartFunc of
REAL ,
COMPLEX by
NUMBERS: 11,
RELSET_1: 7;
A217: u01 is
PartFunc of
REAL ,
COMPLEX & v01 is
PartFunc of
REAL ,
COMPLEX by
NUMBERS: 11,
RELSET_1: 7;
(u01
(#) (x1
`| Z)) is
PartFunc of
REAL ,
COMPLEX & (v01
(#) (y1
`| Z)) is
PartFunc of
REAL ,
COMPLEX by
NUMBERS: 11,
RELSET_1: 7;
then
A218: (((u01
(#) (x1
`| Z))
- (v01
(#) (y1
`| Z)))
| AB)
= (((u01
(#) (x1
`| Z))
| AB)
- ((v01
(#) (y1
`| Z))
| AB)) by
CFUNCT_1: 55
.= (((u01
| AB)
(#) ((x1
`| Z)
| AB))
- ((v01
(#) (y1
`| Z))
| AB)) by
A216,
A217,
CFUNCT_1: 53
.= (((u01
| AB)
(#) ((x1
`| Z)
| AB))
- ((v01
| AB)
(#) ((y1
`| Z)
| AB))) by
A216,
A217,
CFUNCT_1: 53;
A219: (x2
`| Z) is
PartFunc of
REAL ,
COMPLEX & (y2
`| Z) is
PartFunc of
REAL ,
COMPLEX by
NUMBERS: 11,
RELSET_1: 7;
A220: u02 is
PartFunc of
REAL ,
COMPLEX & v02 is
PartFunc of
REAL ,
COMPLEX by
NUMBERS: 11,
RELSET_1: 7;
(u02
(#) (x2
`| Z)) is
PartFunc of
REAL ,
COMPLEX & (v02
(#) (y2
`| Z)) is
PartFunc of
REAL ,
COMPLEX by
NUMBERS: 11,
RELSET_1: 7;
then (((u02
(#) (x2
`| Z))
- (v02
(#) (y2
`| Z)))
| AB)
= (((u02
(#) (x2
`| Z))
| AB)
- ((v02
(#) (y2
`| Z))
| AB)) by
CFUNCT_1: 55
.= (((u02
| AB)
(#) ((x2
`| Z)
| AB))
- ((v02
(#) (y2
`| Z))
| AB)) by
A219,
A220,
CFUNCT_1: 53
.= (((u02
| AB)
(#) ((x2
`| Z)
| AB))
- ((v02
| AB)
(#) ((y2
`| Z)
| AB))) by
A219,
A220,
CFUNCT_1: 53;
hence thesis by
A7,
A24,
A111,
A128,
A218;
end;
A221: (
integral (((u01
(#) (x1
`| Z))
- (v01
(#) (y1
`| Z))),a,b))
= (
integral (((u01
(#) (x1
`| Z))
- (v01
(#) (y1
`| Z))),AB)) by
INTEGRA5: 19
.= (
integral (((u02
(#) (x2
`| Z))
- (v02
(#) (y2
`| Z))),AB)) by
A215
.= (
integral (((u02
(#) (x2
`| Z))
- (v02
(#) (y2
`| Z))),a,b)) by
INTEGRA5: 19;
A222: (((v01
(#) (x1
`| Z))
+ (u01
(#) (y1
`| Z)))
| AB)
= (((v02
(#) (x2
`| Z))
+ (u02
(#) (y2
`| Z)))
| AB)
proof
A223: (x1
`| Z) is
PartFunc of
REAL ,
COMPLEX & (y1
`| Z) is
PartFunc of
REAL ,
COMPLEX by
NUMBERS: 11,
RELSET_1: 7;
A224: v01 is
PartFunc of
REAL ,
COMPLEX & u01 is
PartFunc of
REAL ,
COMPLEX by
NUMBERS: 11,
RELSET_1: 7;
(v01
(#) (x1
`| Z)) is
PartFunc of
REAL ,
COMPLEX & (u01
(#) (y1
`| Z)) is
PartFunc of
REAL ,
COMPLEX by
NUMBERS: 11,
RELSET_1: 7;
then
A225: (((v01
(#) (x1
`| Z))
+ (u01
(#) (y1
`| Z)))
| AB)
= (((v01
(#) (x1
`| Z))
| AB)
+ ((u01
(#) (y1
`| Z))
| AB)) by
CFUNCT_1: 52
.= (((v01
| AB)
(#) ((x1
`| Z)
| AB))
+ ((u01
(#) (y1
`| Z))
| AB)) by
A223,
A224,
CFUNCT_1: 53
.= (((v01
| AB)
(#) ((x1
`| Z)
| AB))
+ ((u01
| AB)
(#) ((y1
`| Z)
| AB))) by
A223,
A224,
CFUNCT_1: 53;
A226: (x2
`| Z) is
PartFunc of
REAL ,
COMPLEX & (y2
`| Z) is
PartFunc of
REAL ,
COMPLEX by
NUMBERS: 11,
RELSET_1: 7;
A227: v02 is
PartFunc of
REAL ,
COMPLEX & u02 is
PartFunc of
REAL ,
COMPLEX by
NUMBERS: 11,
RELSET_1: 7;
(v02
(#) (x2
`| Z)) is
PartFunc of
REAL ,
COMPLEX & (u02
(#) (y2
`| Z)) is
PartFunc of
REAL ,
COMPLEX by
NUMBERS: 11,
RELSET_1: 7;
then (((v02
(#) (x2
`| Z))
+ (u02
(#) (y2
`| Z)))
| AB)
= (((v02
(#) (x2
`| Z))
| AB)
+ ((u02
(#) (y2
`| Z))
| AB)) by
CFUNCT_1: 52
.= (((v02
| AB)
(#) ((x2
`| Z)
| AB))
+ ((u02
(#) (y2
`| Z))
| AB)) by
A226,
A227,
CFUNCT_1: 53
.= (((v02
| AB)
(#) ((x2
`| Z)
| AB))
+ ((u02
| AB)
(#) ((y2
`| Z)
| AB))) by
A226,
A227,
CFUNCT_1: 53;
hence thesis by
A7,
A24,
A111,
A128,
A225;
end;
(
integral (((v01
(#) (x1
`| Z))
+ (u01
(#) (y1
`| Z))),a,b))
= (
integral (((v01
(#) (x1
`| Z))
+ (u01
(#) (y1
`| Z))),AB)) by
INTEGRA5: 19
.= (
integral (((v02
(#) (x2
`| Z))
+ (u02
(#) (y2
`| Z))),AB)) by
A222
.= (
integral (((v02
(#) (x2
`| Z))
+ (u02
(#) (y2
`| Z))),a,b)) by
INTEGRA5: 19;
hence thesis by
A2,
A3,
A221;
end;
suppose
A228: a
= b;
then
reconsider BA =
[.b, a.] as non
empty
closed_interval
Subset of
REAL by
MEASURE5: 14;
A229: (
integral (((u01
(#) (x1
`| Z))
- (v01
(#) (y1
`| Z))),a,b))
= (
integral (((u01
(#) (x1
`| Z))
- (v01
(#) (y1
`| Z))),BA)) by
A228,
INTEGRA5: 19;
A230: (
- (
integral (((u01
(#) (x1
`| Z))
- (v01
(#) (y1
`| Z))),BA)))
= (
integral (((u01
(#) (x1
`| Z))
- (v01
(#) (y1
`| Z))),a,b)) by
INTEGRA5: 20;
A231: (
integral (((v01
(#) (x1
`| Z))
+ (u01
(#) (y1
`| Z))),a,b))
= (
integral (((v01
(#) (x1
`| Z))
+ (u01
(#) (y1
`| Z))),BA)) by
A228,
INTEGRA5: 19;
A232: (
- (
integral (((v01
(#) (x1
`| Z))
+ (u01
(#) (y1
`| Z))),BA)))
= (
integral (((v01
(#) (x1
`| Z))
+ (u01
(#) (y1
`| Z))),a,b)) by
INTEGRA5: 20;
(
integral (((u02
(#) (x2
`| Z))
- (v02
(#) (y2
`| Z))),a,b))
= (
integral (((u02
(#) (x2
`| Z))
- (v02
(#) (y2
`| Z))),BA)) by
A228,
INTEGRA5: 19;
then
A233: (
integral (((u02
(#) (x2
`| Z))
- (v02
(#) (y2
`| Z))),a,b))
= (
- (
integral (((u02
(#) (x2
`| Z))
- (v02
(#) (y2
`| Z))),a,b))) by
INTEGRA5: 20;
(
integral (((v02
(#) (x2
`| Z))
+ (u02
(#) (y2
`| Z))),a,b))
= (
integral (((v02
(#) (x2
`| Z))
+ (u02
(#) (y2
`| Z))),AB)) by
INTEGRA5: 19;
then (
integral (((v02
(#) (x2
`| Z))
+ (u02
(#) (y2
`| Z))),a,b))
= (
- (
integral (((v02
(#) (x2
`| Z))
+ (u02
(#) (y2
`| Z))),a,b))) by
A228,
INTEGRA5: 20;
hence thesis by
A2,
A3,
A229,
A230,
A231,
A232,
A233;
end;
end;
definition
let f be
PartFunc of
COMPLEX ,
COMPLEX ;
let C be
C1-curve;
assume
A1: (
rng C)
c= (
dom f);
::
INTEGR1C:def4
func
integral (f,C) ->
Complex means
:
Def4: ex a,b be
Real, x,y be
PartFunc of
REAL ,
REAL , Z be
Subset of
REAL st a
<= b &
[.a, b.]
= (
dom C) &
[.a, b.]
c= (
dom x) &
[.a, b.]
c= (
dom y) & Z is
open &
[.a, b.]
c= Z & x
is_differentiable_on Z & y
is_differentiable_on Z & (x
`| Z) is
continuous & (y
`| Z) is
continuous & C
= ((x
+ (
<i>
(#) y))
|
[.a, b.]) & it
= (
integral (f,x,y,a,b,Z));
existence
proof
consider a,b be
Real, x,y be
PartFunc of
REAL ,
REAL , Z be
Subset of
REAL such that
A2: a
<= b &
[.a, b.]
= (
dom C) &
[.a, b.]
c= (
dom x) &
[.a, b.]
c= (
dom y) & Z is
open &
[.a, b.]
c= Z & x
is_differentiable_on Z & y
is_differentiable_on Z & (x
`| Z) is
continuous & (y
`| Z) is
continuous & C
= ((x
+ (
<i>
(#) y))
|
[.a, b.]) by
Def3;
reconsider a, b as
Real;
take (
integral (f,x,y,a,b,Z));
thus thesis by
A2;
end;
uniqueness
proof
let s1,s2 be
Complex;
assume
A3: ex a,b be
Real, x,y be
PartFunc of
REAL ,
REAL , Z be
Subset of
REAL st a
<= b &
[.a, b.]
= (
dom C) &
[.a, b.]
c= (
dom x) &
[.a, b.]
c= (
dom y) & Z is
open &
[.a, b.]
c= Z & x
is_differentiable_on Z & y
is_differentiable_on Z & (x
`| Z) is
continuous & (y
`| Z) is
continuous & C
= ((x
+ (
<i>
(#) y))
|
[.a, b.]) & s1
= (
integral (f,x,y,a,b,Z));
assume
A4: ex a,b be
Real, x,y be
PartFunc of
REAL ,
REAL , Z be
Subset of
REAL st a
<= b &
[.a, b.]
= (
dom C) &
[.a, b.]
c= (
dom x) &
[.a, b.]
c= (
dom y) & Z is
open &
[.a, b.]
c= Z & x
is_differentiable_on Z & y
is_differentiable_on Z & (x
`| Z) is
continuous & (y
`| Z) is
continuous & C
= ((x
+ (
<i>
(#) y))
|
[.a, b.]) & s2
= (
integral (f,x,y,a,b,Z));
consider a1,b1 be
Real, x1,y1 be
PartFunc of
REAL ,
REAL , Z1 be
Subset of
REAL such that
A5: a1
<= b1 &
[.a1, b1.]
= (
dom C) &
[.a1, b1.]
c= (
dom x1) &
[.a1, b1.]
c= (
dom y1) & Z1 is
open &
[.a1, b1.]
c= Z1 & x1
is_differentiable_on Z1 & y1
is_differentiable_on Z1 & (x1
`| Z1) is
continuous & (y1
`| Z1) is
continuous & C
= ((x1
+ (
<i>
(#) y1))
|
[.a1, b1.]) & s1
= (
integral (f,x1,y1,a1,b1,Z1)) by
A3;
consider a2,b2 be
Real, x2,y2 be
PartFunc of
REAL ,
REAL , Z2 be
Subset of
REAL such that
A6: a2
<= b2 &
[.a2, b2.]
= (
dom C) &
[.a2, b2.]
c= (
dom x2) &
[.a2, b2.]
c= (
dom y2) & Z2 is
open &
[.a2, b2.]
c= Z2 & x2
is_differentiable_on Z2 & y2
is_differentiable_on Z2 & (x2
`| Z2) is
continuous & (y2
`| Z2) is
continuous & C
= ((x2
+ (
<i>
(#) y2))
|
[.a2, b2.]) & s2
= (
integral (f,x2,y2,a2,b2,Z2)) by
A4;
(
dom C) is non
empty
closed_interval
Subset of
REAL by
A5,
MEASURE5: 14;
then
A7: a1
= a2 & b1
= b2 by
A6,
A5,
INTEGRA1: 5;
reconsider Z3 = (Z1
/\ Z2) as
Subset of
REAL ;
reconsider ZZ1 = Z1, ZZ2 = Z2 as
Subset of
R^1 by
TOPMETR: 17;
ZZ1 is
open & ZZ2 is
open by
A5,
A6,
BORSUK_5: 39;
then (ZZ1
/\ ZZ2) is
open by
TOPS_1: 11;
then
A8: Z3 is
open by
BORSUK_5: 39;
A9: (x1
|
[.a1, b1.])
= (x2
|
[.a2, b2.])
proof
for x0 be
set st x0
in
[.a1, b1.] holds (x1
. x0)
= (x2
. x0)
proof
let x0 be
set such that
A10: x0
in
[.a1, b1.];
A11: (
dom (
<i>
(#) y1))
= (
dom y1) by
VALUED_1:def 5;
(
dom (x1
+ (
<i>
(#) y1)))
= ((
dom x1)
/\ (
dom (
<i>
(#) y1))) by
VALUED_1:def 1;
then
A12:
[.a1, b1.]
c= (
dom (x1
+ (
<i>
(#) y1))) by
A5,
A11,
XBOOLE_1: 19;
A13: (((x1
+ (
<i>
(#) y1))
|
[.a1, b1.])
. x0)
= ((x1
+ (
<i>
(#) y1))
. x0) by
A10,
FUNCT_1: 49
.= ((x1
. x0)
+ ((
<i>
(#) y1)
. x0)) by
A10,
A12,
VALUED_1:def 1
.= ((x1
. x0)
+ (
<i>
* (y1
. x0))) by
VALUED_1: 6;
A14: (
dom (
<i>
(#) y2))
= (
dom y2) by
VALUED_1:def 5;
(
dom (x2
+ (
<i>
(#) y2)))
= ((
dom x2)
/\ (
dom (
<i>
(#) y2))) by
VALUED_1:def 1;
then
A15:
[.a2, b2.]
c= (
dom (x2
+ (
<i>
(#) y2))) by
A6,
A14,
XBOOLE_1: 19;
(((x2
+ (
<i>
(#) y2))
|
[.a2, b2.])
. x0)
= ((x2
+ (
<i>
(#) y2))
. x0) by
A6,
A5,
A10,
FUNCT_1: 49
.= ((x2
. x0)
+ ((
<i>
(#) y2)
. x0)) by
A6,
A5,
A10,
A15,
VALUED_1:def 1
.= ((x2
. x0)
+ (
<i>
* (y2
. x0))) by
VALUED_1: 6;
hence thesis by
A6,
A5,
A13,
COMPLEX1: 77;
end;
hence thesis by
A5,
A6,
FUNCT_1: 95;
end;
A16: (y1
|
[.a1, b1.])
= (y2
|
[.a2, b2.])
proof
for x0 be
set st x0
in
[.a1, b1.] holds (y1
. x0)
= (y2
. x0)
proof
let x0 be
set such that
A17: x0
in
[.a1, b1.];
A18: (
dom (
<i>
(#) y1))
= (
dom y1) by
VALUED_1:def 5;
(
dom (x1
+ (
<i>
(#) y1)))
= ((
dom x1)
/\ (
dom (
<i>
(#) y1))) by
VALUED_1:def 1;
then
A19:
[.a1, b1.]
c= (
dom (x1
+ (
<i>
(#) y1))) by
A5,
A18,
XBOOLE_1: 19;
A20: (((x1
+ (
<i>
(#) y1))
|
[.a1, b1.])
. x0)
= ((x1
+ (
<i>
(#) y1))
. x0) by
A17,
FUNCT_1: 49
.= ((x1
. x0)
+ ((
<i>
(#) y1)
. x0)) by
A17,
A19,
VALUED_1:def 1
.= ((x1
. x0)
+ (
<i>
* (y1
. x0))) by
VALUED_1: 6;
A21: (
dom (
<i>
(#) y2))
= (
dom y2) by
VALUED_1:def 5;
(
dom (x2
+ (
<i>
(#) y2)))
= ((
dom x2)
/\ (
dom (
<i>
(#) y2))) by
VALUED_1:def 1;
then
A22:
[.a2, b2.]
c= (
dom (x2
+ (
<i>
(#) y2))) by
A6,
A21,
XBOOLE_1: 19;
(((x2
+ (
<i>
(#) y2))
|
[.a2, b2.])
. x0)
= ((x2
+ (
<i>
(#) y2))
. x0) by
A5,
A6,
A17,
FUNCT_1: 49
.= ((x2
. x0)
+ ((
<i>
(#) y2)
. x0)) by
A5,
A6,
A17,
A22,
VALUED_1:def 1
.= ((x2
. x0)
+ (
<i>
* (y2
. x0))) by
VALUED_1: 6;
hence thesis by
A6,
A5,
A20,
COMPLEX1: 77;
end;
hence thesis by
A5,
A6,
FUNCT_1: 95;
end;
A23:
[.a1, b1.]
c= Z3 by
A5,
A6,
XBOOLE_1: 19;
A24: x1
is_differentiable_on Z3 & y1
is_differentiable_on Z3 by
A5,
A8,
FDIFF_1: 26,
XBOOLE_1: 17;
A25: x2
is_differentiable_on Z3 & y2
is_differentiable_on Z3 by
A6,
A8,
FDIFF_1: 26,
XBOOLE_1: 17;
thus s1
= (
integral (f,x1,y1,a1,b1,Z3)) by
A1,
A5,
A8,
A23,
Lm1,
XBOOLE_1: 17
.= (
integral (f,x2,y2,a2,b2,Z3)) by
A1,
A5,
A6,
A7,
A8,
A9,
A16,
A24,
A25,
Lm2,
XBOOLE_1: 19
.= s2 by
A1,
A6,
A5,
A8,
A23,
Lm1,
XBOOLE_1: 17;
end;
end
definition
let f be
PartFunc of
COMPLEX ,
COMPLEX ;
let C be
C1-curve;
::
INTEGR1C:def5
pred f
is_integrable_on C means for a,b be
Real, x,y be
PartFunc of
REAL ,
REAL , Z be
Subset of
REAL , u0,v0 be
PartFunc of
REAL ,
REAL st (a
<= b &
[.a, b.]
= (
dom C) &
[.a, b.]
c= (
dom x) &
[.a, b.]
c= (
dom y) & Z is
open &
[.a, b.]
c= Z & x
is_differentiable_on Z & y
is_differentiable_on Z & (x
`| Z) is
continuous & (y
`| Z) is
continuous & C
= ((x
+ (
<i>
(#) y))
|
[.a, b.])) holds ((u0
(#) (x
`| Z))
- (v0
(#) (y
`| Z)))
is_integrable_on
['a, b'] & ((v0
(#) (x
`| Z))
+ (u0
(#) (y
`| Z)))
is_integrable_on
['a, b'];
end
definition
let f be
PartFunc of
COMPLEX ,
COMPLEX ;
let C be
C1-curve;
::
INTEGR1C:def6
pred f
is_bounded_on C means for a,b be
Real, x,y be
PartFunc of
REAL ,
REAL , Z be
Subset of
REAL , u0,v0 be
PartFunc of
REAL ,
REAL st (a
<= b &
[.a, b.]
= (
dom C) &
[.a, b.]
c= (
dom x) &
[.a, b.]
c= (
dom y) & Z is
open &
[.a, b.]
c= Z & x
is_differentiable_on Z & y
is_differentiable_on Z & (x
`| Z) is
continuous & (y
`| Z) is
continuous & C
= ((x
+ (
<i>
(#) y))
|
[.a, b.])) holds (((u0
(#) (x
`| Z))
- (v0
(#) (y
`| Z)))
|
['a, b']) is
bounded & (((v0
(#) (x
`| Z))
+ (u0
(#) (y
`| Z)))
|
['a, b']) is
bounded;
end
begin
theorem ::
INTEGR1C:1
for f,g be
PartFunc of
COMPLEX ,
COMPLEX , C be
C1-curve st (
rng C)
c= (
dom f) & (
rng C)
c= (
dom g) & f
is_integrable_on C & g
is_integrable_on C & f
is_bounded_on C & g
is_bounded_on C holds (
integral ((f
+ g),C))
= ((
integral (f,C))
+ (
integral (g,C)))
proof
let f,g be
PartFunc of
COMPLEX ,
COMPLEX , C be
C1-curve such that
A1: (
rng C)
c= (
dom f) & (
rng C)
c= (
dom g) & f
is_integrable_on C & g
is_integrable_on C & f
is_bounded_on C & g
is_bounded_on C;
consider a,b be
Real, x,y be
PartFunc of
REAL ,
REAL , Z be
Subset of
REAL such that
A2: a
<= b &
[.a, b.]
= (
dom C) &
[.a, b.]
c= (
dom x) &
[.a, b.]
c= (
dom y) & Z is
open &
[.a, b.]
c= Z & x
is_differentiable_on Z & y
is_differentiable_on Z & (x
`| Z) is
continuous & (y
`| Z) is
continuous & C
= ((x
+ (
<i>
(#) y))
|
[.a, b.]) by
Def3;
reconsider a, b as
Real;
consider uf0,vf0 be
PartFunc of
REAL ,
REAL such that
A3: uf0
= (((
Re f)
*
R2-to-C )
*
<:x, y:>) & vf0
= (((
Im f)
*
R2-to-C )
*
<:x, y:>) & (
integral (f,x,y,a,b,Z))
= ((
integral (((uf0
(#) (x
`| Z))
- (vf0
(#) (y
`| Z))),a,b))
+ ((
integral (((vf0
(#) (x
`| Z))
+ (uf0
(#) (y
`| Z))),a,b))
*
<i> )) by
Def2;
consider ug0,vg0 be
PartFunc of
REAL ,
REAL such that
A4: ug0
= (((
Re g)
*
R2-to-C )
*
<:x, y:>) & vg0
= (((
Im g)
*
R2-to-C )
*
<:x, y:>) & (
integral (g,x,y,a,b,Z))
= ((
integral (((ug0
(#) (x
`| Z))
- (vg0
(#) (y
`| Z))),a,b))
+ ((
integral (((vg0
(#) (x
`| Z))
+ (ug0
(#) (y
`| Z))),a,b))
*
<i> )) by
Def2;
A5: (
integral (f,C))
= (
integral (f,x,y,a,b,Z)) & (
integral (g,C))
= (
integral (g,x,y,a,b,Z)) by
A1,
A2,
Def4;
A6: (
dom (f
+ g))
= ((
dom f)
/\ (
dom g)) by
VALUED_1:def 1;
A7: (
rng C)
c= ((
dom f)
/\ (
dom g)) by
A1,
XBOOLE_1: 19;
consider u0,v0 be
PartFunc of
REAL ,
REAL such that
A8: u0
= (((
Re (f
+ g))
*
R2-to-C )
*
<:x, y:>) & v0
= (((
Im (f
+ g))
*
R2-to-C )
*
<:x, y:>) & (
integral ((f
+ g),x,y,a,b,Z))
= ((
integral (((u0
(#) (x
`| Z))
- (v0
(#) (y
`| Z))),a,b))
+ ((
integral (((v0
(#) (x
`| Z))
+ (u0
(#) (y
`| Z))),a,b))
*
<i> )) by
Def2;
A9: (u0
(#) (x
`| Z))
= ((uf0
(#) (x
`| Z))
+ (ug0
(#) (x
`| Z)))
proof
A10: (
dom ((uf0
(#) (x
`| Z))
+ (ug0
(#) (x
`| Z))))
= ((
dom (uf0
(#) (x
`| Z)))
/\ (
dom (ug0
(#) (x
`| Z)))) by
VALUED_1:def 1
.= (((
dom uf0)
/\ (
dom (x
`| Z)))
/\ (
dom (ug0
(#) (x
`| Z)))) by
VALUED_1:def 4
.= (((
dom uf0)
/\ (
dom (x
`| Z)))
/\ ((
dom ug0)
/\ (
dom (x
`| Z)))) by
VALUED_1:def 4
.= ((
dom uf0)
/\ ((
dom (x
`| Z))
/\ ((
dom ug0)
/\ (
dom (x
`| Z))))) by
XBOOLE_1: 16
.= ((
dom uf0)
/\ (((
dom (x
`| Z))
/\ (
dom (x
`| Z)))
/\ (
dom ug0))) by
XBOOLE_1: 16
.= (((
dom uf0)
/\ (
dom ug0))
/\ (
dom (x
`| Z))) by
XBOOLE_1: 16;
A11: (
dom (u0
(#) (x
`| Z)))
= ((
dom u0)
/\ (
dom (x
`| Z))) by
VALUED_1:def 4;
A12: (
dom u0)
= ((
dom uf0)
/\ (
dom ug0))
proof
A13: for x0 be
object st x0
in (
dom u0) holds x0
in ((
dom uf0)
/\ (
dom ug0))
proof
let x0 be
object such that
A14: x0
in (
dom u0);
A15: x0
in (
dom
<:x, y:>) & (
<:x, y:>
. x0)
in (
dom ((
Re (f
+ g))
*
R2-to-C )) by
A14,
A8,
FUNCT_1: 11;
set R2 = (
<:x, y:>
. x0);
A16: R2
in (
dom
R2-to-C ) & (
R2-to-C
. R2)
in (
dom (
Re (f
+ g))) by
A15,
FUNCT_1: 11;
then (
R2-to-C
. R2)
in (
dom ((
Re f)
+ (
Re g))) by
MESFUN6C: 5;
then (
R2-to-C
. R2)
in ((
dom (
Re f))
/\ (
dom (
Re g))) by
VALUED_1:def 1;
then (
R2-to-C
. R2)
in (
dom (
Re f)) & (
R2-to-C
. R2)
in (
dom (
Re g)) by
XBOOLE_0:def 4;
then R2
in (
dom ((
Re f)
*
R2-to-C )) & R2
in (
dom ((
Re g)
*
R2-to-C )) by
A16,
FUNCT_1: 11;
then x0
in (
dom uf0) & x0
in (
dom ug0) by
A3,
A4,
A15,
FUNCT_1: 11;
hence thesis by
XBOOLE_0:def 4;
end;
for x0 be
object st x0
in ((
dom uf0)
/\ (
dom ug0)) holds x0
in (
dom u0)
proof
let x0 be
object such that
A17: x0
in ((
dom uf0)
/\ (
dom ug0));
A18: x0
in (
dom uf0) & x0
in (
dom ug0) by
A17,
XBOOLE_0:def 4;
then
A19: x0
in (
dom
<:x, y:>) & (
<:x, y:>
. x0)
in (
dom ((
Re f)
*
R2-to-C )) by
A3,
FUNCT_1: 11;
A20: x0
in (
dom
<:x, y:>) & (
<:x, y:>
. x0)
in (
dom ((
Re g)
*
R2-to-C )) by
A18,
A4,
FUNCT_1: 11;
set R2 = (
<:x, y:>
. x0);
A21: R2
in (
dom
R2-to-C ) & (
R2-to-C
. R2)
in (
dom (
Re f)) by
A19,
FUNCT_1: 11;
R2
in (
dom
R2-to-C ) & (
R2-to-C
. R2)
in (
dom (
Re g)) by
A20,
FUNCT_1: 11;
then (
R2-to-C
. R2)
in ((
dom (
Re f))
/\ (
dom (
Re g))) by
A21,
XBOOLE_0:def 4;
then (
R2-to-C
. R2)
in (
dom ((
Re f)
+ (
Re g))) by
VALUED_1:def 1;
then (
R2-to-C
. R2)
in (
dom (
Re (f
+ g))) by
MESFUN6C: 5;
then R2
in (
dom ((
Re (f
+ g))
*
R2-to-C )) by
A21,
FUNCT_1: 11;
hence thesis by
A8,
A19,
FUNCT_1: 11;
end;
hence thesis by
A13,
TARSKI: 2;
end;
for x0 be
object st x0
in (
dom (u0
(#) (x
`| Z))) holds ((u0
(#) (x
`| Z))
. x0)
= (((uf0
(#) (x
`| Z))
+ (ug0
(#) (x
`| Z)))
. x0)
proof
let x0 be
object such that
A22: x0
in (
dom (u0
(#) (x
`| Z)));
x0
in ((
dom u0)
/\ (
dom (x
`| Z))) by
A22,
VALUED_1:def 4;
then
A23: x0
in (
dom u0) & x0
in (
dom (x
`| Z)) by
XBOOLE_0:def 4;
then
A24: x0
in (
dom
<:x, y:>) & (
<:x, y:>
. x0)
in (
dom ((
Re (f
+ g))
*
R2-to-C )) by
A8,
FUNCT_1: 11;
set R2 = (
<:x, y:>
. x0);
A25: R2
in (
dom
R2-to-C ) & (
R2-to-C
. R2)
in (
dom (
Re (f
+ g))) by
A24,
FUNCT_1: 11;
set c0 = (
R2-to-C
. R2);
A26: (u0
. x0)
= (((
Re (f
+ g))
*
R2-to-C )
. R2) by
A8,
A23,
FUNCT_1: 12
.= ((
Re (f
+ g))
. c0) by
A24,
FUNCT_1: 12
.= (((
Re f)
+ (
Re g))
. c0) by
MESFUN6C: 5;
A27: c0
in (
dom ((
Re f)
+ (
Re g))) by
A25,
MESFUN6C: 5;
A28: x0
in (
dom uf0) & x0
in (
dom ug0) by
A12,
A23,
XBOOLE_0:def 4;
then
A29: x0
in (
dom
<:x, y:>) & R2
in (
dom ((
Re f)
*
R2-to-C )) by
A3,
FUNCT_1: 11;
A30: (uf0
. x0)
= (((
Re f)
*
R2-to-C )
. R2) by
A3,
A28,
FUNCT_1: 12
.= ((
Re f)
. c0) by
A29,
FUNCT_1: 12;
A31: x0
in (
dom
<:x, y:>) & R2
in (
dom ((
Re g)
*
R2-to-C )) by
A4,
A28,
FUNCT_1: 11;
A32: (ug0
. x0)
= (((
Re g)
*
R2-to-C )
. R2) by
A4,
A28,
FUNCT_1: 12
.= ((
Re g)
. c0) by
A31,
FUNCT_1: 12;
x0
in ((
dom (uf0
(#) (x
`| Z)))
/\ (
dom (ug0
(#) (x
`| Z)))) by
A10,
A11,
A12,
A22,
VALUED_1:def 1;
then
A33: x0
in (
dom (uf0
(#) (x
`| Z))) & x0
in (
dom (ug0
(#) (x
`| Z))) by
XBOOLE_0:def 4;
then
A34: ((uf0
(#) (x
`| Z))
. x0)
= (((
Re f)
. c0)
* ((x
`| Z)
. x0)) by
A30,
VALUED_1:def 4;
A35: ((ug0
(#) (x
`| Z))
. x0)
= (((
Re g)
. c0)
* ((x
`| Z)
. x0)) by
A32,
A33,
VALUED_1:def 4;
((u0
(#) (x
`| Z))
. x0)
= ((u0
. x0)
* ((x
`| Z)
. x0)) by
A22,
VALUED_1:def 4
.= ((((
Re f)
. c0)
+ ((
Re g)
. c0))
* ((x
`| Z)
. x0)) by
A26,
A27,
VALUED_1:def 1
.= (((uf0
(#) (x
`| Z))
. x0)
+ ((ug0
(#) (x
`| Z))
. x0)) by
A35,
A34
.= (((uf0
(#) (x
`| Z))
+ (ug0
(#) (x
`| Z)))
. x0) by
A10,
A11,
A12,
A22,
VALUED_1:def 1;
hence thesis;
end;
hence thesis by
A10,
A11,
A12,
FUNCT_1: 2;
end;
A36: (v0
(#) (x
`| Z))
= ((vf0
(#) (x
`| Z))
+ (vg0
(#) (x
`| Z)))
proof
A37: (
dom ((vf0
(#) (x
`| Z))
+ (vg0
(#) (x
`| Z))))
= ((
dom (vf0
(#) (x
`| Z)))
/\ (
dom (vg0
(#) (x
`| Z)))) by
VALUED_1:def 1
.= (((
dom vf0)
/\ (
dom (x
`| Z)))
/\ (
dom (vg0
(#) (x
`| Z)))) by
VALUED_1:def 4
.= (((
dom vf0)
/\ (
dom (x
`| Z)))
/\ ((
dom vg0)
/\ (
dom (x
`| Z)))) by
VALUED_1:def 4
.= ((
dom vf0)
/\ ((
dom (x
`| Z))
/\ ((
dom vg0)
/\ (
dom (x
`| Z))))) by
XBOOLE_1: 16
.= ((
dom vf0)
/\ (((
dom (x
`| Z))
/\ (
dom (x
`| Z)))
/\ (
dom vg0))) by
XBOOLE_1: 16
.= (((
dom vf0)
/\ (
dom vg0))
/\ (
dom (x
`| Z))) by
XBOOLE_1: 16;
A38: (
dom (v0
(#) (x
`| Z)))
= ((
dom v0)
/\ (
dom (x
`| Z))) by
VALUED_1:def 4;
A39: (
dom v0)
= ((
dom vf0)
/\ (
dom vg0))
proof
A40: for x0 be
object st x0
in (
dom v0) holds x0
in ((
dom vf0)
/\ (
dom vg0))
proof
let x0 be
object such that
A41: x0
in (
dom v0);
A42: x0
in (
dom
<:x, y:>) & (
<:x, y:>
. x0)
in (
dom ((
Im (f
+ g))
*
R2-to-C )) by
A41,
A8,
FUNCT_1: 11;
set R2 = (
<:x, y:>
. x0);
A43: R2
in (
dom
R2-to-C ) & (
R2-to-C
. R2)
in (
dom (
Im (f
+ g))) by
A42,
FUNCT_1: 11;
then (
R2-to-C
. R2)
in (
dom ((
Im f)
+ (
Im g))) by
MESFUN6C: 5;
then (
R2-to-C
. R2)
in ((
dom (
Im f))
/\ (
dom (
Im g))) by
VALUED_1:def 1;
then (
R2-to-C
. R2)
in (
dom (
Im f)) & (
R2-to-C
. R2)
in (
dom (
Im g)) by
XBOOLE_0:def 4;
then R2
in (
dom ((
Im f)
*
R2-to-C )) & R2
in (
dom ((
Im g)
*
R2-to-C )) by
A43,
FUNCT_1: 11;
then x0
in (
dom vf0) & x0
in (
dom vg0) by
A3,
A4,
A42,
FUNCT_1: 11;
hence thesis by
XBOOLE_0:def 4;
end;
for x0 be
object st x0
in ((
dom vf0)
/\ (
dom vg0)) holds x0
in (
dom v0)
proof
let x0 be
object such that
A44: x0
in ((
dom vf0)
/\ (
dom vg0));
A45: x0
in (
dom vf0) & x0
in (
dom vg0) by
A44,
XBOOLE_0:def 4;
then
A46: x0
in (
dom
<:x, y:>) & (
<:x, y:>
. x0)
in (
dom ((
Im f)
*
R2-to-C )) by
A3,
FUNCT_1: 11;
A47: x0
in (
dom
<:x, y:>) & (
<:x, y:>
. x0)
in (
dom ((
Im g)
*
R2-to-C )) by
A45,
A4,
FUNCT_1: 11;
set R2 = (
<:x, y:>
. x0);
A48: R2
in (
dom
R2-to-C ) & (
R2-to-C
. R2)
in (
dom (
Im f)) by
A46,
FUNCT_1: 11;
R2
in (
dom
R2-to-C ) & (
R2-to-C
. R2)
in (
dom (
Im g)) by
A47,
FUNCT_1: 11;
then (
R2-to-C
. R2)
in ((
dom (
Im f))
/\ (
dom (
Im g))) by
A48,
XBOOLE_0:def 4;
then (
R2-to-C
. R2)
in (
dom ((
Im f)
+ (
Im g))) by
VALUED_1:def 1;
then (
R2-to-C
. R2)
in (
dom (
Im (f
+ g))) by
MESFUN6C: 5;
then R2
in (
dom ((
Im (f
+ g))
*
R2-to-C )) by
A48,
FUNCT_1: 11;
hence thesis by
A8,
A46,
FUNCT_1: 11;
end;
hence thesis by
A40,
TARSKI: 2;
end;
for x0 be
object st x0
in (
dom (v0
(#) (x
`| Z))) holds ((v0
(#) (x
`| Z))
. x0)
= (((vf0
(#) (x
`| Z))
+ (vg0
(#) (x
`| Z)))
. x0)
proof
let x0 be
object such that
A49: x0
in (
dom (v0
(#) (x
`| Z)));
x0
in ((
dom v0)
/\ (
dom (x
`| Z))) by
A49,
VALUED_1:def 4;
then
A50: x0
in (
dom v0) & x0
in (
dom (x
`| Z)) by
XBOOLE_0:def 4;
then
A51: x0
in (
dom
<:x, y:>) & (
<:x, y:>
. x0)
in (
dom ((
Im (f
+ g))
*
R2-to-C )) by
A8,
FUNCT_1: 11;
set R2 = (
<:x, y:>
. x0);
A52: R2
in (
dom
R2-to-C ) & (
R2-to-C
. R2)
in (
dom (
Im (f
+ g))) by
A51,
FUNCT_1: 11;
set c0 = (
R2-to-C
. R2);
A53: (v0
. x0)
= (((
Im (f
+ g))
*
R2-to-C )
. R2) by
A8,
A50,
FUNCT_1: 12
.= ((
Im (f
+ g))
. c0) by
A51,
FUNCT_1: 12
.= (((
Im f)
+ (
Im g))
. c0) by
MESFUN6C: 5;
A54: c0
in (
dom ((
Im f)
+ (
Im g))) by
A52,
MESFUN6C: 5;
A55: x0
in (
dom vf0) & x0
in (
dom vg0) by
A39,
A50,
XBOOLE_0:def 4;
then
A56: x0
in (
dom
<:x, y:>) & R2
in (
dom ((
Im f)
*
R2-to-C )) by
A3,
FUNCT_1: 11;
A57: (vf0
. x0)
= (((
Im f)
*
R2-to-C )
. R2) by
A3,
A55,
FUNCT_1: 12
.= ((
Im f)
. c0) by
A56,
FUNCT_1: 12;
A58: x0
in (
dom
<:x, y:>) & R2
in (
dom ((
Im g)
*
R2-to-C )) by
A4,
A55,
FUNCT_1: 11;
A59: (vg0
. x0)
= (((
Im g)
*
R2-to-C )
. R2) by
A4,
A55,
FUNCT_1: 12
.= ((
Im g)
. c0) by
A58,
FUNCT_1: 12;
x0
in ((
dom (vf0
(#) (x
`| Z)))
/\ (
dom (vg0
(#) (x
`| Z)))) by
A37,
A38,
A39,
A49,
VALUED_1:def 1;
then
A60: x0
in (
dom (vf0
(#) (x
`| Z))) & x0
in (
dom (vg0
(#) (x
`| Z))) by
XBOOLE_0:def 4;
then
A61: ((vf0
(#) (x
`| Z))
. x0)
= (((
Im f)
. c0)
* ((x
`| Z)
. x0)) by
A57,
VALUED_1:def 4;
A62: ((vg0
(#) (x
`| Z))
. x0)
= (((
Im g)
. c0)
* ((x
`| Z)
. x0)) by
A59,
A60,
VALUED_1:def 4;
((v0
(#) (x
`| Z))
. x0)
= ((v0
. x0)
* ((x
`| Z)
. x0)) by
A49,
VALUED_1:def 4
.= ((((
Im f)
. c0)
+ ((
Im g)
. c0))
* ((x
`| Z)
. x0)) by
A53,
A54,
VALUED_1:def 1
.= (((vf0
(#) (x
`| Z))
. x0)
+ ((vg0
(#) (x
`| Z))
. x0)) by
A62,
A61
.= (((vf0
(#) (x
`| Z))
+ (vg0
(#) (x
`| Z)))
. x0) by
A37,
A38,
A39,
A49,
VALUED_1:def 1;
hence thesis;
end;
hence thesis by
A37,
A38,
A39,
FUNCT_1: 2;
end;
A63: (u0
(#) (y
`| Z))
= ((uf0
(#) (y
`| Z))
+ (ug0
(#) (y
`| Z)))
proof
A64: (
dom ((uf0
(#) (y
`| Z))
+ (ug0
(#) (y
`| Z))))
= ((
dom (uf0
(#) (y
`| Z)))
/\ (
dom (ug0
(#) (y
`| Z)))) by
VALUED_1:def 1
.= (((
dom uf0)
/\ (
dom (y
`| Z)))
/\ (
dom (ug0
(#) (y
`| Z)))) by
VALUED_1:def 4
.= (((
dom uf0)
/\ (
dom (y
`| Z)))
/\ ((
dom ug0)
/\ (
dom (y
`| Z)))) by
VALUED_1:def 4
.= ((
dom uf0)
/\ ((
dom (y
`| Z))
/\ ((
dom ug0)
/\ (
dom (y
`| Z))))) by
XBOOLE_1: 16
.= ((
dom uf0)
/\ (((
dom (y
`| Z))
/\ (
dom (y
`| Z)))
/\ (
dom ug0))) by
XBOOLE_1: 16
.= (((
dom uf0)
/\ (
dom ug0))
/\ (
dom (y
`| Z))) by
XBOOLE_1: 16;
A65: (
dom (u0
(#) (y
`| Z)))
= ((
dom u0)
/\ (
dom (y
`| Z))) by
VALUED_1:def 4;
A66: (
dom u0)
= ((
dom uf0)
/\ (
dom ug0))
proof
A67: for x0 be
object st x0
in (
dom u0) holds x0
in ((
dom uf0)
/\ (
dom ug0))
proof
let x0 be
object such that
A68: x0
in (
dom u0);
A69: x0
in (
dom
<:x, y:>) & (
<:x, y:>
. x0)
in (
dom ((
Re (f
+ g))
*
R2-to-C )) by
A68,
A8,
FUNCT_1: 11;
set R2 = (
<:x, y:>
. x0);
A70: R2
in (
dom
R2-to-C ) & (
R2-to-C
. R2)
in (
dom (
Re (f
+ g))) by
A69,
FUNCT_1: 11;
then (
R2-to-C
. R2)
in (
dom ((
Re f)
+ (
Re g))) by
MESFUN6C: 5;
then (
R2-to-C
. R2)
in ((
dom (
Re f))
/\ (
dom (
Re g))) by
VALUED_1:def 1;
then (
R2-to-C
. R2)
in (
dom (
Re f)) & (
R2-to-C
. R2)
in (
dom (
Re g)) by
XBOOLE_0:def 4;
then R2
in (
dom ((
Re f)
*
R2-to-C )) & R2
in (
dom ((
Re g)
*
R2-to-C )) by
A70,
FUNCT_1: 11;
then x0
in (
dom uf0) & x0
in (
dom ug0) by
A3,
A4,
A69,
FUNCT_1: 11;
hence thesis by
XBOOLE_0:def 4;
end;
for x0 be
object st x0
in ((
dom uf0)
/\ (
dom ug0)) holds x0
in (
dom u0)
proof
let x0 be
object such that
A71: x0
in ((
dom uf0)
/\ (
dom ug0));
A72: x0
in (
dom uf0) & x0
in (
dom ug0) by
A71,
XBOOLE_0:def 4;
then
A73: x0
in (
dom
<:x, y:>) & (
<:x, y:>
. x0)
in (
dom ((
Re f)
*
R2-to-C )) by
A3,
FUNCT_1: 11;
A74: x0
in (
dom
<:x, y:>) & (
<:x, y:>
. x0)
in (
dom ((
Re g)
*
R2-to-C )) by
A72,
A4,
FUNCT_1: 11;
set R2 = (
<:x, y:>
. x0);
A75: R2
in (
dom
R2-to-C ) & (
R2-to-C
. R2)
in (
dom (
Re f)) by
A73,
FUNCT_1: 11;
R2
in (
dom
R2-to-C ) & (
R2-to-C
. R2)
in (
dom (
Re g)) by
A74,
FUNCT_1: 11;
then (
R2-to-C
. R2)
in ((
dom (
Re f))
/\ (
dom (
Re g))) by
A75,
XBOOLE_0:def 4;
then (
R2-to-C
. R2)
in (
dom ((
Re f)
+ (
Re g))) by
VALUED_1:def 1;
then (
R2-to-C
. R2)
in (
dom (
Re (f
+ g))) by
MESFUN6C: 5;
then R2
in (
dom ((
Re (f
+ g))
*
R2-to-C )) by
A75,
FUNCT_1: 11;
hence thesis by
A8,
A73,
FUNCT_1: 11;
end;
hence thesis by
A67,
TARSKI: 2;
end;
for x0 be
object st x0
in (
dom (u0
(#) (y
`| Z))) holds ((u0
(#) (y
`| Z))
. x0)
= (((uf0
(#) (y
`| Z))
+ (ug0
(#) (y
`| Z)))
. x0)
proof
let x0 be
object such that
A76: x0
in (
dom (u0
(#) (y
`| Z)));
x0
in ((
dom u0)
/\ (
dom (y
`| Z))) by
A76,
VALUED_1:def 4;
then
A77: x0
in (
dom u0) & x0
in (
dom (y
`| Z)) by
XBOOLE_0:def 4;
then
A78: x0
in (
dom
<:x, y:>) & (
<:x, y:>
. x0)
in (
dom ((
Re (f
+ g))
*
R2-to-C )) by
A8,
FUNCT_1: 11;
set R2 = (
<:x, y:>
. x0);
A79: R2
in (
dom
R2-to-C ) & (
R2-to-C
. R2)
in (
dom (
Re (f
+ g))) by
A78,
FUNCT_1: 11;
set c0 = (
R2-to-C
. R2);
A80: (u0
. x0)
= (((
Re (f
+ g))
*
R2-to-C )
. R2) by
A8,
A77,
FUNCT_1: 12
.= ((
Re (f
+ g))
. c0) by
A78,
FUNCT_1: 12
.= (((
Re f)
+ (
Re g))
. c0) by
MESFUN6C: 5;
A81: c0
in (
dom ((
Re f)
+ (
Re g))) by
A79,
MESFUN6C: 5;
A82: x0
in (
dom uf0) & x0
in (
dom ug0) by
A66,
A77,
XBOOLE_0:def 4;
then
A83: x0
in (
dom
<:x, y:>) & R2
in (
dom ((
Re f)
*
R2-to-C )) by
A3,
FUNCT_1: 11;
A84: (uf0
. x0)
= (((
Re f)
*
R2-to-C )
. R2) by
A3,
A82,
FUNCT_1: 12
.= ((
Re f)
. c0) by
A83,
FUNCT_1: 12;
A85: x0
in (
dom
<:x, y:>) & R2
in (
dom ((
Re g)
*
R2-to-C )) by
A4,
A82,
FUNCT_1: 11;
A86: (ug0
. x0)
= (((
Re g)
*
R2-to-C )
. R2) by
A4,
A82,
FUNCT_1: 12
.= ((
Re g)
. c0) by
A85,
FUNCT_1: 12;
x0
in ((
dom (uf0
(#) (y
`| Z)))
/\ (
dom (ug0
(#) (y
`| Z)))) by
A64,
A65,
A66,
A76,
VALUED_1:def 1;
then
A87: x0
in (
dom (uf0
(#) (y
`| Z))) & x0
in (
dom (ug0
(#) (y
`| Z))) by
XBOOLE_0:def 4;
then
A88: ((uf0
(#) (y
`| Z))
. x0)
= (((
Re f)
. c0)
* ((y
`| Z)
. x0)) by
A84,
VALUED_1:def 4;
A89: ((ug0
(#) (y
`| Z))
. x0)
= (((
Re g)
. c0)
* ((y
`| Z)
. x0)) by
A86,
A87,
VALUED_1:def 4;
((u0
(#) (y
`| Z))
. x0)
= ((u0
. x0)
* ((y
`| Z)
. x0)) by
A76,
VALUED_1:def 4
.= ((((
Re f)
. c0)
+ ((
Re g)
. c0))
* ((y
`| Z)
. x0)) by
A80,
A81,
VALUED_1:def 1
.= (((uf0
(#) (y
`| Z))
. x0)
+ ((ug0
(#) (y
`| Z))
. x0)) by
A89,
A88
.= (((uf0
(#) (y
`| Z))
+ (ug0
(#) (y
`| Z)))
. x0) by
A64,
A65,
A66,
A76,
VALUED_1:def 1;
hence thesis;
end;
hence thesis by
A64,
A65,
A66,
FUNCT_1: 2;
end;
A90: (v0
(#) (y
`| Z))
= ((vf0
(#) (y
`| Z))
+ (vg0
(#) (y
`| Z)))
proof
A91: (
dom ((vf0
(#) (y
`| Z))
+ (vg0
(#) (y
`| Z))))
= ((
dom (vf0
(#) (y
`| Z)))
/\ (
dom (vg0
(#) (y
`| Z)))) by
VALUED_1:def 1
.= (((
dom vf0)
/\ (
dom (y
`| Z)))
/\ (
dom (vg0
(#) (y
`| Z)))) by
VALUED_1:def 4
.= (((
dom vf0)
/\ (
dom (y
`| Z)))
/\ ((
dom vg0)
/\ (
dom (y
`| Z)))) by
VALUED_1:def 4
.= ((
dom vf0)
/\ ((
dom (y
`| Z))
/\ ((
dom vg0)
/\ (
dom (y
`| Z))))) by
XBOOLE_1: 16
.= ((
dom vf0)
/\ (((
dom (y
`| Z))
/\ (
dom (y
`| Z)))
/\ (
dom vg0))) by
XBOOLE_1: 16
.= (((
dom vf0)
/\ (
dom vg0))
/\ (
dom (y
`| Z))) by
XBOOLE_1: 16;
A92: (
dom (v0
(#) (y
`| Z)))
= ((
dom v0)
/\ (
dom (y
`| Z))) by
VALUED_1:def 4;
A93: (
dom v0)
= ((
dom vf0)
/\ (
dom vg0))
proof
A94: for x0 be
object st x0
in (
dom v0) holds x0
in ((
dom vf0)
/\ (
dom vg0))
proof
let x0 be
object such that
A95: x0
in (
dom v0);
A96: x0
in (
dom
<:x, y:>) & (
<:x, y:>
. x0)
in (
dom ((
Im (f
+ g))
*
R2-to-C )) by
A8,
A95,
FUNCT_1: 11;
set R2 = (
<:x, y:>
. x0);
A97: R2
in (
dom
R2-to-C ) & (
R2-to-C
. R2)
in (
dom (
Im (f
+ g))) by
A96,
FUNCT_1: 11;
then (
R2-to-C
. R2)
in (
dom ((
Im f)
+ (
Im g))) by
MESFUN6C: 5;
then (
R2-to-C
. R2)
in ((
dom (
Im f))
/\ (
dom (
Im g))) by
VALUED_1:def 1;
then (
R2-to-C
. R2)
in (
dom (
Im f)) & (
R2-to-C
. R2)
in (
dom (
Im g)) by
XBOOLE_0:def 4;
then R2
in (
dom ((
Im f)
*
R2-to-C )) & R2
in (
dom ((
Im g)
*
R2-to-C )) by
A97,
FUNCT_1: 11;
then x0
in (
dom vf0) & x0
in (
dom vg0) by
A3,
A4,
A96,
FUNCT_1: 11;
hence thesis by
XBOOLE_0:def 4;
end;
for x0 be
object st x0
in ((
dom vf0)
/\ (
dom vg0)) holds x0
in (
dom v0)
proof
let x0 be
object such that
A98: x0
in ((
dom vf0)
/\ (
dom vg0));
A99: x0
in (
dom vf0) & x0
in (
dom vg0) by
A98,
XBOOLE_0:def 4;
then
A100: x0
in (
dom
<:x, y:>) & (
<:x, y:>
. x0)
in (
dom ((
Im f)
*
R2-to-C )) by
A3,
FUNCT_1: 11;
A101: x0
in (
dom
<:x, y:>) & (
<:x, y:>
. x0)
in (
dom ((
Im g)
*
R2-to-C )) by
A99,
A4,
FUNCT_1: 11;
set R2 = (
<:x, y:>
. x0);
A102: R2
in (
dom
R2-to-C ) & (
R2-to-C
. R2)
in (
dom (
Im f)) by
A100,
FUNCT_1: 11;
R2
in (
dom
R2-to-C ) & (
R2-to-C
. R2)
in (
dom (
Im g)) by
A101,
FUNCT_1: 11;
then (
R2-to-C
. R2)
in ((
dom (
Im f))
/\ (
dom (
Im g))) by
A102,
XBOOLE_0:def 4;
then (
R2-to-C
. R2)
in (
dom ((
Im f)
+ (
Im g))) by
VALUED_1:def 1;
then (
R2-to-C
. R2)
in (
dom (
Im (f
+ g))) by
MESFUN6C: 5;
then R2
in (
dom ((
Im (f
+ g))
*
R2-to-C )) by
A102,
FUNCT_1: 11;
hence thesis by
A8,
A100,
FUNCT_1: 11;
end;
hence thesis by
A94,
TARSKI: 2;
end;
for x0 be
object st x0
in (
dom (v0
(#) (y
`| Z))) holds ((v0
(#) (y
`| Z))
. x0)
= (((vf0
(#) (y
`| Z))
+ (vg0
(#) (y
`| Z)))
. x0)
proof
let x0 be
object such that
A103: x0
in (
dom (v0
(#) (y
`| Z)));
x0
in ((
dom v0)
/\ (
dom (y
`| Z))) by
A103,
VALUED_1:def 4;
then
A104: x0
in (
dom v0) & x0
in (
dom (y
`| Z)) by
XBOOLE_0:def 4;
then
A105: x0
in (
dom
<:x, y:>) & (
<:x, y:>
. x0)
in (
dom ((
Im (f
+ g))
*
R2-to-C )) by
A8,
FUNCT_1: 11;
set R2 = (
<:x, y:>
. x0);
A106: R2
in (
dom
R2-to-C ) & (
R2-to-C
. R2)
in (
dom (
Im (f
+ g))) by
A105,
FUNCT_1: 11;
set c0 = (
R2-to-C
. R2);
A107: (v0
. x0)
= (((
Im (f
+ g))
*
R2-to-C )
. R2) by
A8,
A104,
FUNCT_1: 12
.= ((
Im (f
+ g))
. c0) by
A105,
FUNCT_1: 12
.= (((
Im f)
+ (
Im g))
. c0) by
MESFUN6C: 5;
A108: c0
in (
dom ((
Im f)
+ (
Im g))) by
A106,
MESFUN6C: 5;
A109: x0
in (
dom vf0) & x0
in (
dom vg0) by
A93,
A104,
XBOOLE_0:def 4;
then
A110: x0
in (
dom
<:x, y:>) & R2
in (
dom ((
Im f)
*
R2-to-C )) by
A3,
FUNCT_1: 11;
A111: (vf0
. x0)
= (((
Im f)
*
R2-to-C )
. R2) by
A3,
A109,
FUNCT_1: 12
.= ((
Im f)
. c0) by
A110,
FUNCT_1: 12;
A112: x0
in (
dom
<:x, y:>) & R2
in (
dom ((
Im g)
*
R2-to-C )) by
A4,
A109,
FUNCT_1: 11;
A113: (vg0
. x0)
= (((
Im g)
*
R2-to-C )
. R2) by
A4,
A109,
FUNCT_1: 12
.= ((
Im g)
. c0) by
A112,
FUNCT_1: 12;
x0
in ((
dom (vf0
(#) (y
`| Z)))
/\ (
dom (vg0
(#) (y
`| Z)))) by
A91,
A92,
A93,
A103,
VALUED_1:def 1;
then
A114: x0
in (
dom (vf0
(#) (y
`| Z))) & x0
in (
dom (vg0
(#) (y
`| Z))) by
XBOOLE_0:def 4;
then
A115: ((vf0
(#) (y
`| Z))
. x0)
= (((
Im f)
. c0)
* ((y
`| Z)
. x0)) by
A111,
VALUED_1:def 4;
A116: ((vg0
(#) (y
`| Z))
. x0)
= (((
Im g)
. c0)
* ((y
`| Z)
. x0)) by
A113,
A114,
VALUED_1:def 4;
((v0
(#) (y
`| Z))
. x0)
= ((v0
. x0)
* ((y
`| Z)
. x0)) by
A103,
VALUED_1:def 4
.= ((((
Im f)
. c0)
+ ((
Im g)
. c0))
* ((y
`| Z)
. x0)) by
A107,
A108,
VALUED_1:def 1
.= (((vf0
(#) (y
`| Z))
. x0)
+ ((vg0
(#) (y
`| Z))
. x0)) by
A116,
A115
.= (((vf0
(#) (y
`| Z))
+ (vg0
(#) (y
`| Z)))
. x0) by
A91,
A92,
A93,
A103,
VALUED_1:def 1;
hence thesis;
end;
hence thesis by
A91,
A92,
A93,
FUNCT_1: 2;
end;
A117:
[.a, b.]
c= (
dom uf0)
proof
let x0 be
object such that
A118: x0
in
[.a, b.];
A119: (C
. x0)
in (
rng C) by
A2,
A118,
FUNCT_1: 3;
A120: x0
in (
dom x) & x0
in (
dom y) by
A2,
A118;
A121: x0
in ((
dom x)
/\ (
dom y)) by
A118,
A2,
XBOOLE_0:def 4;
then
A122: x0
in (
dom
<:x, y:>) by
FUNCT_3:def 7;
set R2 = (
<:x, y:>
. x0);
reconsider xx0 = (x
. x0), yx0 = (y
. x0) as
Element of
REAL by
XREAL_0:def 1;
R2
=
[xx0, yx0] by
A121,
FUNCT_3: 48;
then R2
in
[:
REAL ,
REAL :] by
ZFMISC_1:def 2;
then
A123: R2
in (
dom
R2-to-C ) by
FUNCT_2:def 1;
x0
in (
dom (
<i>
(#) y)) by
A120,
VALUED_1:def 5;
then x0
in ((
dom x)
/\ (
dom (
<i>
(#) y))) by
A2,
A118,
XBOOLE_0:def 4;
then
A124: x0
in (
dom (x
+ (
<i>
(#) y))) by
VALUED_1:def 1;
A125:
[xx0, yx0]
in
[:
REAL ,
REAL :] by
ZFMISC_1:def 2;
A126: (x
. x0)
= (
[(x
. x0), (y
. x0)]
`1 ) & (y
. x0)
= (
[(x
. x0), (y
. x0)]
`2 );
(C
. x0)
= ((x
+ (
<i>
(#) y))
. x0) by
A118,
A2,
FUNCT_1: 49
.= ((x
. x0)
+ ((
<i>
(#) y)
. x0)) by
A124,
VALUED_1:def 1
.= ((x
. x0)
+ (
<i>
* (y
. x0))) by
VALUED_1: 6
.= (
R2-to-C
.
[xx0, yx0]) by
A125,
A126,
Def1
.= (
R2-to-C
. R2) by
A121,
FUNCT_3: 48;
then (
R2-to-C
. R2)
in (
dom f) by
A1,
A119;
then (
R2-to-C
. R2)
in (
dom (
Re f)) by
COMSEQ_3:def 3;
then R2
in (
dom ((
Re f)
*
R2-to-C )) by
A123,
FUNCT_1: 11;
hence thesis by
A3,
A122,
FUNCT_1: 11;
end;
A127:
[.a, b.]
c= (
dom vf0)
proof
let x0 be
object such that
A128: x0
in
[.a, b.];
A129: (C
. x0)
in (
rng C) by
A2,
A128,
FUNCT_1: 3;
A130: x0
in (
dom x) & x0
in (
dom y) by
A2,
A128;
A131: x0
in ((
dom x)
/\ (
dom y)) by
A2,
A128,
XBOOLE_0:def 4;
then
A132: x0
in (
dom
<:x, y:>) by
FUNCT_3:def 7;
set R2 = (
<:x, y:>
. x0);
reconsider xx0 = (x
. x0), yx0 = (y
. x0) as
Element of
REAL by
XREAL_0:def 1;
R2
=
[xx0, yx0] by
A131,
FUNCT_3: 48;
then R2
in
[:
REAL ,
REAL :] by
ZFMISC_1:def 2;
then
A133: R2
in (
dom
R2-to-C ) by
FUNCT_2:def 1;
x0
in (
dom (
<i>
(#) y)) by
A130,
VALUED_1:def 5;
then x0
in ((
dom x)
/\ (
dom (
<i>
(#) y))) by
A2,
A128,
XBOOLE_0:def 4;
then
A134: x0
in (
dom (x
+ (
<i>
(#) y))) by
VALUED_1:def 1;
A135:
[xx0, yx0]
in
[:
REAL ,
REAL :] by
ZFMISC_1:def 2;
A136: (x
. x0)
= (
[(x
. x0), (y
. x0)]
`1 ) & (y
. x0)
= (
[(x
. x0), (y
. x0)]
`2 );
(C
. x0)
= ((x
+ (
<i>
(#) y))
. x0) by
A128,
A2,
FUNCT_1: 49
.= ((x
. x0)
+ ((
<i>
(#) y)
. x0)) by
A134,
VALUED_1:def 1
.= ((x
. x0)
+ (
<i>
* (y
. x0))) by
VALUED_1: 6
.= (
R2-to-C
.
[xx0, yx0]) by
A135,
A136,
Def1
.= (
R2-to-C
. R2) by
A131,
FUNCT_3: 48;
then (
R2-to-C
. R2)
in (
dom f) by
A1,
A129;
then (
R2-to-C
. R2)
in (
dom (
Im f)) by
COMSEQ_3:def 4;
then R2
in (
dom ((
Im f)
*
R2-to-C )) by
A133,
FUNCT_1: 11;
hence thesis by
A3,
A132,
FUNCT_1: 11;
end;
A137:
[.a, b.]
c= (
dom ug0)
proof
let x0 be
object such that
A138: x0
in
[.a, b.];
A139: (C
. x0)
in (
rng C) by
A138,
A2,
FUNCT_1: 3;
A140: x0
in (
dom x) & x0
in (
dom y) by
A2,
A138;
A141: x0
in ((
dom x)
/\ (
dom y)) by
A2,
A138,
XBOOLE_0:def 4;
then
A142: x0
in (
dom
<:x, y:>) by
FUNCT_3:def 7;
set R2 = (
<:x, y:>
. x0);
reconsider xx0 = (x
. x0), yx0 = (y
. x0) as
Element of
REAL by
XREAL_0:def 1;
R2
=
[xx0, yx0] by
A141,
FUNCT_3: 48;
then R2
in
[:
REAL ,
REAL :] by
ZFMISC_1:def 2;
then
A143: R2
in (
dom
R2-to-C ) by
FUNCT_2:def 1;
x0
in (
dom (
<i>
(#) y)) by
A140,
VALUED_1:def 5;
then x0
in ((
dom x)
/\ (
dom (
<i>
(#) y))) by
A2,
A138,
XBOOLE_0:def 4;
then
A144: x0
in (
dom (x
+ (
<i>
(#) y))) by
VALUED_1:def 1;
A145:
[xx0, yx0]
in
[:
REAL ,
REAL :] by
ZFMISC_1:def 2;
A146: (x
. x0)
= (
[(x
. x0), (y
. x0)]
`1 ) & (y
. x0)
= (
[(x
. x0), (y
. x0)]
`2 );
(C
. x0)
= ((x
+ (
<i>
(#) y))
. x0) by
A138,
A2,
FUNCT_1: 49
.= ((x
. x0)
+ ((
<i>
(#) y)
. x0)) by
A144,
VALUED_1:def 1
.= ((x
. x0)
+ (
<i>
* (y
. x0))) by
VALUED_1: 6
.= (
R2-to-C
.
[xx0, yx0]) by
A145,
A146,
Def1
.= (
R2-to-C
. R2) by
A141,
FUNCT_3: 48;
then (
R2-to-C
. R2)
in (
dom g) by
A1,
A139;
then (
R2-to-C
. R2)
in (
dom (
Re g)) by
COMSEQ_3:def 3;
then R2
in (
dom ((
Re g)
*
R2-to-C )) by
A143,
FUNCT_1: 11;
hence thesis by
A4,
A142,
FUNCT_1: 11;
end;
A147:
[.a, b.]
c= (
dom vg0)
proof
let x0 be
object such that
A148: x0
in
[.a, b.];
A149: (C
. x0)
in (
rng C) by
A2,
A148,
FUNCT_1: 3;
A150: x0
in (
dom x) & x0
in (
dom y) by
A2,
A148;
A151: x0
in ((
dom x)
/\ (
dom y)) by
A148,
A2,
XBOOLE_0:def 4;
then
A152: x0
in (
dom
<:x, y:>) by
FUNCT_3:def 7;
set R2 = (
<:x, y:>
. x0);
reconsider xx0 = (x
. x0), yx0 = (y
. x0) as
Element of
REAL by
XREAL_0:def 1;
R2
=
[xx0, yx0] by
A151,
FUNCT_3: 48;
then R2
in
[:
REAL ,
REAL :] by
ZFMISC_1:def 2;
then
A153: R2
in (
dom
R2-to-C ) by
FUNCT_2:def 1;
x0
in (
dom (
<i>
(#) y)) by
A150,
VALUED_1:def 5;
then x0
in ((
dom x)
/\ (
dom (
<i>
(#) y))) by
A2,
A148,
XBOOLE_0:def 4;
then
A154: x0
in (
dom (x
+ (
<i>
(#) y))) by
VALUED_1:def 1;
A155:
[xx0, yx0]
in
[:
REAL ,
REAL :] by
ZFMISC_1:def 2;
A156: (x
. x0)
= (
[(x
. x0), (y
. x0)]
`1 ) & (y
. x0)
= (
[(x
. x0), (y
. x0)]
`2 );
(C
. x0)
= ((x
+ (
<i>
(#) y))
. x0) by
A148,
A2,
FUNCT_1: 49
.= ((x
. x0)
+ ((
<i>
(#) y)
. x0)) by
A154,
VALUED_1:def 1
.= ((x
. x0)
+ (
<i>
* (y
. x0))) by
VALUED_1: 6
.= (
R2-to-C
.
[xx0, yx0]) by
A155,
A156,
Def1
.= (
R2-to-C
. R2) by
A151,
FUNCT_3: 48;
then (
R2-to-C
. R2)
in (
dom g) by
A1,
A149;
then (
R2-to-C
. R2)
in (
dom (
Im g)) by
COMSEQ_3:def 4;
then R2
in (
dom ((
Im g)
*
R2-to-C )) by
A153,
FUNCT_1: 11;
hence thesis by
A4,
A152,
FUNCT_1: 11;
end;
A157:
['a, b']
c= (
dom ((uf0
(#) (x
`| Z))
- (vf0
(#) (y
`| Z))))
proof
A158:
['a, b']
=
[.a, b.] by
A2,
INTEGRA5:def 3;
A159: (
dom ((uf0
(#) (x
`| Z))
- (vf0
(#) (y
`| Z))))
= ((
dom (uf0
(#) (x
`| Z)))
/\ (
dom (vf0
(#) (y
`| Z)))) by
VALUED_1: 12
.= (((
dom uf0)
/\ (
dom (x
`| Z)))
/\ (
dom (vf0
(#) (y
`| Z)))) by
VALUED_1:def 4
.= (((
dom uf0)
/\ (
dom (x
`| Z)))
/\ ((
dom vf0)
/\ (
dom (y
`| Z)))) by
VALUED_1:def 4
.= ((
dom uf0)
/\ ((
dom (x
`| Z))
/\ ((
dom vf0)
/\ (
dom (y
`| Z))))) by
XBOOLE_1: 16
.= ((
dom uf0)
/\ (Z
/\ ((
dom (y
`| Z))
/\ (
dom vf0)))) by
A2,
FDIFF_1:def 7
.= ((
dom uf0)
/\ (Z
/\ (Z
/\ (
dom vf0)))) by
A2,
FDIFF_1:def 7
.= ((
dom uf0)
/\ ((Z
/\ Z)
/\ (
dom vf0))) by
XBOOLE_1: 16
.= (((
dom uf0)
/\ (
dom vf0))
/\ Z) by
XBOOLE_1: 16;
[.a, b.]
c= ((
dom uf0)
/\ (
dom vf0)) by
A117,
A127,
XBOOLE_1: 19;
hence thesis by
A2,
A158,
A159,
XBOOLE_1: 19;
end;
A160:
['a, b']
c= (
dom ((ug0
(#) (x
`| Z))
- (vg0
(#) (y
`| Z))))
proof
A161:
['a, b']
=
[.a, b.] by
A2,
INTEGRA5:def 3;
A162: (
dom ((ug0
(#) (x
`| Z))
- (vg0
(#) (y
`| Z))))
= ((
dom (ug0
(#) (x
`| Z)))
/\ (
dom (vg0
(#) (y
`| Z)))) by
VALUED_1: 12
.= (((
dom ug0)
/\ (
dom (x
`| Z)))
/\ (
dom (vg0
(#) (y
`| Z)))) by
VALUED_1:def 4
.= (((
dom ug0)
/\ (
dom (x
`| Z)))
/\ ((
dom vg0)
/\ (
dom (y
`| Z)))) by
VALUED_1:def 4
.= ((
dom ug0)
/\ ((
dom (x
`| Z))
/\ ((
dom vg0)
/\ (
dom (y
`| Z))))) by
XBOOLE_1: 16
.= ((
dom ug0)
/\ (Z
/\ ((
dom (y
`| Z))
/\ (
dom vg0)))) by
A2,
FDIFF_1:def 7
.= ((
dom ug0)
/\ (Z
/\ (Z
/\ (
dom vg0)))) by
A2,
FDIFF_1:def 7
.= ((
dom ug0)
/\ ((Z
/\ Z)
/\ (
dom vg0))) by
XBOOLE_1: 16
.= (((
dom ug0)
/\ (
dom vg0))
/\ Z) by
XBOOLE_1: 16;
[.a, b.]
c= ((
dom ug0)
/\ (
dom vg0)) by
A137,
A147,
XBOOLE_1: 19;
hence thesis by
A2,
A161,
A162,
XBOOLE_1: 19;
end;
A163:
['a, b']
c= (
dom ((vf0
(#) (x
`| Z))
+ (uf0
(#) (y
`| Z))))
proof
A164:
['a, b']
=
[.a, b.] by
A2,
INTEGRA5:def 3;
A165: (
dom ((vf0
(#) (x
`| Z))
+ (uf0
(#) (y
`| Z))))
= ((
dom (vf0
(#) (x
`| Z)))
/\ (
dom (uf0
(#) (y
`| Z)))) by
VALUED_1:def 1
.= (((
dom vf0)
/\ (
dom (x
`| Z)))
/\ (
dom (uf0
(#) (y
`| Z)))) by
VALUED_1:def 4
.= (((
dom vf0)
/\ (
dom (x
`| Z)))
/\ ((
dom uf0)
/\ (
dom (y
`| Z)))) by
VALUED_1:def 4
.= ((
dom vf0)
/\ ((
dom (x
`| Z))
/\ ((
dom uf0)
/\ (
dom (y
`| Z))))) by
XBOOLE_1: 16
.= ((
dom vf0)
/\ (Z
/\ ((
dom (y
`| Z))
/\ (
dom uf0)))) by
A2,
FDIFF_1:def 7
.= ((
dom vf0)
/\ (Z
/\ (Z
/\ (
dom uf0)))) by
A2,
FDIFF_1:def 7
.= ((
dom vf0)
/\ ((Z
/\ Z)
/\ (
dom uf0))) by
XBOOLE_1: 16
.= (((
dom vf0)
/\ (
dom uf0))
/\ Z) by
XBOOLE_1: 16;
[.a, b.]
c= ((
dom vf0)
/\ (
dom uf0)) by
A117,
A127,
XBOOLE_1: 19;
hence thesis by
A2,
A164,
A165,
XBOOLE_1: 19;
end;
A166:
['a, b']
c= (
dom ((vg0
(#) (x
`| Z))
+ (ug0
(#) (y
`| Z))))
proof
A167:
['a, b']
=
[.a, b.] by
A2,
INTEGRA5:def 3;
A168: (
dom ((vg0
(#) (x
`| Z))
+ (ug0
(#) (y
`| Z))))
= ((
dom (vg0
(#) (x
`| Z)))
/\ (
dom (ug0
(#) (y
`| Z)))) by
VALUED_1:def 1
.= (((
dom vg0)
/\ (
dom (x
`| Z)))
/\ (
dom (ug0
(#) (y
`| Z)))) by
VALUED_1:def 4
.= (((
dom vg0)
/\ (
dom (x
`| Z)))
/\ ((
dom ug0)
/\ (
dom (y
`| Z)))) by
VALUED_1:def 4
.= ((
dom vg0)
/\ ((
dom (x
`| Z))
/\ ((
dom ug0)
/\ (
dom (y
`| Z))))) by
XBOOLE_1: 16
.= ((
dom vg0)
/\ (Z
/\ ((
dom (y
`| Z))
/\ (
dom ug0)))) by
A2,
FDIFF_1:def 7
.= ((
dom vg0)
/\ (Z
/\ (Z
/\ (
dom ug0)))) by
A2,
FDIFF_1:def 7
.= ((
dom vg0)
/\ ((Z
/\ Z)
/\ (
dom ug0))) by
XBOOLE_1: 16
.= (((
dom vg0)
/\ (
dom ug0))
/\ Z) by
XBOOLE_1: 16;
[.a, b.]
c= ((
dom ug0)
/\ (
dom vg0)) by
A137,
A147,
XBOOLE_1: 19;
hence thesis by
A2,
A167,
A168,
XBOOLE_1: 19;
end;
reconsider a, b as
Real;
A169: ((uf0
(#) (x
`| Z))
- (vf0
(#) (y
`| Z)))
is_integrable_on
['a, b'] by
A1,
A2;
A170: ((ug0
(#) (x
`| Z))
- (vg0
(#) (y
`| Z)))
is_integrable_on
['a, b'] by
A1,
A2;
A171: ((vf0
(#) (x
`| Z))
+ (uf0
(#) (y
`| Z)))
is_integrable_on
['a, b'] by
A1,
A2;
A172: ((vg0
(#) (x
`| Z))
+ (ug0
(#) (y
`| Z)))
is_integrable_on
['a, b'] by
A1,
A2;
A173: (((uf0
(#) (x
`| Z))
- (vf0
(#) (y
`| Z)))
|
['a, b']) is
bounded by
A1,
A2;
A174: (((ug0
(#) (x
`| Z))
- (vg0
(#) (y
`| Z)))
|
['a, b']) is
bounded by
A1,
A2;
A175: (((vf0
(#) (x
`| Z))
+ (uf0
(#) (y
`| Z)))
|
['a, b']) is
bounded by
A1,
A2;
A176: (((vg0
(#) (x
`| Z))
+ (ug0
(#) (y
`| Z)))
|
['a, b']) is
bounded by
A1,
A2;
(
integral ((f
+ g),C))
= ((
integral ((((uf0
(#) (x
`| Z))
+ (ug0
(#) (x
`| Z)))
- ((vf0
(#) (y
`| Z))
+ (vg0
(#) (y
`| Z)))),a,b))
+ ((
integral ((((vf0
(#) (x
`| Z))
+ (vg0
(#) (x
`| Z)))
+ ((uf0
(#) (y
`| Z))
+ (ug0
(#) (y
`| Z)))),a,b))
*
<i> )) by
A36,
A63,
A9,
A90,
A8,
A2,
A6,
A7,
Def4
.= ((
integral (((((uf0
(#) (x
`| Z))
+ (ug0
(#) (x
`| Z)))
- (vf0
(#) (y
`| Z)))
- (vg0
(#) (y
`| Z))),a,b))
+ ((
integral ((((vf0
(#) (x
`| Z))
+ (vg0
(#) (x
`| Z)))
+ ((uf0
(#) (y
`| Z))
+ (ug0
(#) (y
`| Z)))),a,b))
*
<i> )) by
RFUNCT_1: 20
.= ((
integral (((((uf0
(#) (x
`| Z))
+ (ug0
(#) (x
`| Z)))
- (vf0
(#) (y
`| Z)))
- (vg0
(#) (y
`| Z))),a,b))
+ ((
integral (((((vf0
(#) (x
`| Z))
+ (vg0
(#) (x
`| Z)))
+ (uf0
(#) (y
`| Z)))
+ (ug0
(#) (y
`| Z))),a,b))
*
<i> )) by
RFUNCT_1: 8
.= ((
integral (((((uf0
(#) (x
`| Z))
- (vf0
(#) (y
`| Z)))
+ (ug0
(#) (x
`| Z)))
- (vg0
(#) (y
`| Z))),a,b))
+ ((
integral (((((vf0
(#) (x
`| Z))
+ (vg0
(#) (x
`| Z)))
+ (uf0
(#) (y
`| Z)))
+ (ug0
(#) (y
`| Z))),a,b))
*
<i> )) by
RFUNCT_1: 8
.= ((
integral (((((uf0
(#) (x
`| Z))
- (vf0
(#) (y
`| Z)))
+ (ug0
(#) (x
`| Z)))
- (vg0
(#) (y
`| Z))),a,b))
+ ((
integral (((((vf0
(#) (x
`| Z))
+ (uf0
(#) (y
`| Z)))
+ (vg0
(#) (x
`| Z)))
+ (ug0
(#) (y
`| Z))),a,b))
*
<i> )) by
RFUNCT_1: 8
.= ((
integral ((((uf0
(#) (x
`| Z))
- (vf0
(#) (y
`| Z)))
+ ((ug0
(#) (x
`| Z))
- (vg0
(#) (y
`| Z)))),a,b))
+ ((
integral (((((vf0
(#) (x
`| Z))
+ (uf0
(#) (y
`| Z)))
+ (vg0
(#) (x
`| Z)))
+ (ug0
(#) (y
`| Z))),a,b))
*
<i> )) by
RFUNCT_1: 8
.= ((
integral ((((uf0
(#) (x
`| Z))
- (vf0
(#) (y
`| Z)))
+ ((ug0
(#) (x
`| Z))
- (vg0
(#) (y
`| Z)))),a,b))
+ ((
integral ((((vf0
(#) (x
`| Z))
+ (uf0
(#) (y
`| Z)))
+ ((vg0
(#) (x
`| Z))
+ (ug0
(#) (y
`| Z)))),a,b))
*
<i> )) by
RFUNCT_1: 8
.= (((
integral (((uf0
(#) (x
`| Z))
- (vf0
(#) (y
`| Z))),a,b))
+ (
integral (((ug0
(#) (x
`| Z))
- (vg0
(#) (y
`| Z))),a,b)))
+ ((
integral ((((vf0
(#) (x
`| Z))
+ (uf0
(#) (y
`| Z)))
+ ((vg0
(#) (x
`| Z))
+ (ug0
(#) (y
`| Z)))),a,b))
*
<i> )) by
A2,
A157,
A160,
A169,
A170,
A173,
A174,
INTEGRA6: 12
.= (((
integral (((uf0
(#) (x
`| Z))
- (vf0
(#) (y
`| Z))),a,b))
+ (
integral (((ug0
(#) (x
`| Z))
- (vg0
(#) (y
`| Z))),a,b)))
+ (((
integral (((vf0
(#) (x
`| Z))
+ (uf0
(#) (y
`| Z))),a,b))
+ (
integral (((vg0
(#) (x
`| Z))
+ (ug0
(#) (y
`| Z))),a,b)))
*
<i> )) by
A2,
A163,
A166,
A171,
A172,
A175,
A176,
INTEGRA6: 12
.= ((
integral (f,C))
+ (
integral (g,C))) by
A4,
A5,
A3;
hence thesis;
end;
theorem ::
INTEGR1C:2
for f be
PartFunc of
COMPLEX ,
COMPLEX , C be
C1-curve st (
rng C)
c= (
dom f) & f
is_integrable_on C & f
is_bounded_on C holds for r be
Real holds (
integral ((r
(#) f),C))
= (r
* (
integral (f,C)))
proof
let f be
PartFunc of
COMPLEX ,
COMPLEX , C be
C1-curve such that
A1: (
rng C)
c= (
dom f) & f
is_integrable_on C & f
is_bounded_on C;
let r be
Real;
consider a,b be
Real, x,y be
PartFunc of
REAL ,
REAL , Z be
Subset of
REAL such that
A2: a
<= b &
[.a, b.]
= (
dom C) &
[.a, b.]
c= (
dom x) &
[.a, b.]
c= (
dom y) & Z is
open &
[.a, b.]
c= Z & x
is_differentiable_on Z & y
is_differentiable_on Z & (x
`| Z) is
continuous & (y
`| Z) is
continuous & C
= ((x
+ (
<i>
(#) y))
|
[.a, b.]) by
Def3;
reconsider a, b as
Real;
consider uf0,vf0 be
PartFunc of
REAL ,
REAL such that
A3: uf0
= (((
Re f)
*
R2-to-C )
*
<:x, y:>) & vf0
= (((
Im f)
*
R2-to-C )
*
<:x, y:>) & (
integral (f,x,y,a,b,Z))
= ((
integral (((uf0
(#) (x
`| Z))
- (vf0
(#) (y
`| Z))),a,b))
+ ((
integral (((vf0
(#) (x
`| Z))
+ (uf0
(#) (y
`| Z))),a,b))
*
<i> )) by
Def2;
A4: (
dom (r
(#) f))
= (
dom f) by
VALUED_1:def 5;
consider u0,v0 be
PartFunc of
REAL ,
REAL such that
A5: u0
= (((
Re (r
(#) f))
*
R2-to-C )
*
<:x, y:>) & v0
= (((
Im (r
(#) f))
*
R2-to-C )
*
<:x, y:>) & (
integral ((r
(#) f),x,y,a,b,Z))
= ((
integral (((u0
(#) (x
`| Z))
- (v0
(#) (y
`| Z))),a,b))
+ ((
integral (((v0
(#) (x
`| Z))
+ (u0
(#) (y
`| Z))),a,b))
*
<i> )) by
Def2;
A6: (
dom u0)
= (
dom uf0)
proof
A7: for x0 be
object st x0
in (
dom u0) holds x0
in (
dom uf0)
proof
let x0 be
object such that
A8: x0
in (
dom u0);
A9: x0
in (
dom
<:x, y:>) & (
<:x, y:>
. x0)
in (
dom ((
Re (r
(#) f))
*
R2-to-C )) by
A5,
A8,
FUNCT_1: 11;
set R2 = (
<:x, y:>
. x0);
A10: R2
in (
dom
R2-to-C ) & (
R2-to-C
. R2)
in (
dom (
Re (r
(#) f))) by
A9,
FUNCT_1: 11;
then (
R2-to-C
. R2)
in (
dom (r
(#) (
Re f))) by
MESFUN6C: 2;
then (
R2-to-C
. R2)
in (
dom (
Re f)) by
VALUED_1:def 5;
then R2
in (
dom ((
Re f)
*
R2-to-C )) by
A10,
FUNCT_1: 11;
hence thesis by
A3,
A9,
FUNCT_1: 11;
end;
for x0 be
object st x0
in (
dom uf0) holds x0
in (
dom u0)
proof
let x0 be
object such that
A11: x0
in (
dom uf0);
A12: x0
in (
dom
<:x, y:>) & (
<:x, y:>
. x0)
in (
dom ((
Re f)
*
R2-to-C )) by
A3,
A11,
FUNCT_1: 11;
set R2 = (
<:x, y:>
. x0);
A13: R2
in (
dom
R2-to-C ) & (
R2-to-C
. R2)
in (
dom (
Re f)) by
A12,
FUNCT_1: 11;
then (
R2-to-C
. R2)
in (
dom (r
(#) (
Re f))) by
VALUED_1:def 5;
then (
R2-to-C
. R2)
in (
dom (
Re (r
(#) f))) by
MESFUN6C: 2;
then R2
in (
dom ((
Re (r
(#) f))
*
R2-to-C )) by
A13,
FUNCT_1: 11;
hence thesis by
A5,
A12,
FUNCT_1: 11;
end;
hence thesis by
A7,
TARSKI: 2;
end;
A14: (
dom v0)
= (
dom vf0)
proof
A15: for x0 be
object st x0
in (
dom v0) holds x0
in (
dom vf0)
proof
let x0 be
object such that
A16: x0
in (
dom v0);
A17: x0
in (
dom
<:x, y:>) & (
<:x, y:>
. x0)
in (
dom ((
Im (r
(#) f))
*
R2-to-C )) by
A16,
A5,
FUNCT_1: 11;
set R2 = (
<:x, y:>
. x0);
A18: R2
in (
dom
R2-to-C ) & (
R2-to-C
. R2)
in (
dom (
Im (r
(#) f))) by
A17,
FUNCT_1: 11;
then (
R2-to-C
. R2)
in (
dom (r
(#) (
Im f))) by
MESFUN6C: 2;
then (
R2-to-C
. R2)
in (
dom (
Im f)) by
VALUED_1:def 5;
then R2
in (
dom ((
Im f)
*
R2-to-C )) by
A18,
FUNCT_1: 11;
hence thesis by
A3,
A17,
FUNCT_1: 11;
end;
for x0 be
object st x0
in (
dom vf0) holds x0
in (
dom v0)
proof
let x0 be
object such that
A19: x0
in (
dom vf0);
A20: x0
in (
dom
<:x, y:>) & (
<:x, y:>
. x0)
in (
dom ((
Im f)
*
R2-to-C )) by
A19,
A3,
FUNCT_1: 11;
set R2 = (
<:x, y:>
. x0);
A21: R2
in (
dom
R2-to-C ) & (
R2-to-C
. R2)
in (
dom (
Im f)) by
A20,
FUNCT_1: 11;
then (
R2-to-C
. R2)
in (
dom (r
(#) (
Im f))) by
VALUED_1:def 5;
then (
R2-to-C
. R2)
in (
dom (
Im (r
(#) f))) by
MESFUN6C: 2;
then R2
in (
dom ((
Im (r
(#) f))
*
R2-to-C )) by
A21,
FUNCT_1: 11;
hence thesis by
A5,
A20,
FUNCT_1: 11;
end;
hence thesis by
A15,
TARSKI: 2;
end;
A22: (u0
(#) (x
`| Z))
= (r
(#) (uf0
(#) (x
`| Z)))
proof
A23: (
dom (r
(#) (uf0
(#) (x
`| Z))))
= (
dom (uf0
(#) (r
(#) (x
`| Z)))) by
RFUNCT_1: 13
.= ((
dom uf0)
/\ (
dom (r
(#) (x
`| Z)))) by
VALUED_1:def 4
.= ((
dom uf0)
/\ (
dom (x
`| Z))) by
VALUED_1:def 5;
A24: (
dom (u0
(#) (x
`| Z)))
= ((
dom u0)
/\ (
dom (x
`| Z))) by
VALUED_1:def 4;
A25: (
dom (u0
(#) (x
`| Z)))
= (
dom (r
(#) (uf0
(#) (x
`| Z)))) by
A6,
A23,
VALUED_1:def 4;
for x0 be
object st x0
in (
dom (u0
(#) (x
`| Z))) holds ((u0
(#) (x
`| Z))
. x0)
= ((r
(#) (uf0
(#) (x
`| Z)))
. x0)
proof
let x0 be
object such that
A26: x0
in (
dom (u0
(#) (x
`| Z)));
A27: x0
in ((
dom u0)
/\ (
dom (x
`| Z))) by
A26,
VALUED_1:def 4;
then
A28: x0
in (
dom u0) & x0
in (
dom (x
`| Z)) by
XBOOLE_0:def 4;
then
A29: x0
in (
dom
<:x, y:>) & (
<:x, y:>
. x0)
in (
dom ((
Re (r
(#) f))
*
R2-to-C )) by
A5,
FUNCT_1: 11;
set R2 = (
<:x, y:>
. x0);
set c0 = (
R2-to-C
. R2);
A30: (u0
. x0)
= (((
Re (r
(#) f))
*
R2-to-C )
. R2) by
A5,
A28,
FUNCT_1: 12
.= ((
Re (r
(#) f))
. c0) by
A29,
FUNCT_1: 12
.= ((r
(#) (
Re f))
. c0) by
MESFUN6C: 2;
x0
in (
dom uf0) by
A6,
A27,
XBOOLE_0:def 4;
then
A31: x0
in (
dom
<:x, y:>) & R2
in (
dom ((
Re f)
*
R2-to-C )) by
A3,
FUNCT_1: 11;
A32: (uf0
. x0)
= (((
Re f)
*
R2-to-C )
. R2) by
A3,
A6,
A28,
FUNCT_1: 12
.= ((
Re f)
. c0) by
A31,
FUNCT_1: 12;
A33: x0
in (
dom (uf0
(#) (r
(#) (x
`| Z)))) by
A26,
A25,
RFUNCT_1: 13;
then x0
in ((
dom uf0)
/\ (
dom (r
(#) (x
`| Z)))) by
VALUED_1:def 4;
then
A34: x0
in (
dom (r
(#) (x
`| Z))) by
XBOOLE_0:def 4;
((u0
(#) (x
`| Z))
. x0)
= ((u0
. x0)
* ((x
`| Z)
. x0)) by
A26,
VALUED_1:def 4
.= ((r
* ((
Re f)
. c0))
* ((x
`| Z)
. x0)) by
A30,
VALUED_1: 6
.= ((uf0
. x0)
* (r
* ((x
`| Z)
. x0))) by
A32
.= ((uf0
. x0)
* ((r
(#) (x
`| Z))
. x0)) by
A34,
VALUED_1:def 5
.= ((uf0
(#) (r
(#) (x
`| Z)))
. x0) by
A33,
VALUED_1:def 4
.= ((r
(#) (uf0
(#) (x
`| Z)))
. x0) by
RFUNCT_1: 13;
hence thesis;
end;
hence thesis by
A6,
A23,
A24,
FUNCT_1: 2;
end;
A35: (v0
(#) (x
`| Z))
= (r
(#) (vf0
(#) (x
`| Z)))
proof
A36: (
dom (r
(#) (vf0
(#) (x
`| Z))))
= (
dom (vf0
(#) (r
(#) (x
`| Z)))) by
RFUNCT_1: 13
.= ((
dom vf0)
/\ (
dom (r
(#) (x
`| Z)))) by
VALUED_1:def 4
.= ((
dom vf0)
/\ (
dom (x
`| Z))) by
VALUED_1:def 5;
A37: (
dom (v0
(#) (x
`| Z)))
= ((
dom v0)
/\ (
dom (x
`| Z))) by
VALUED_1:def 4;
A38: (
dom (v0
(#) (x
`| Z)))
= (
dom (r
(#) (vf0
(#) (x
`| Z)))) by
A14,
A36,
VALUED_1:def 4;
for x0 be
object st x0
in (
dom (v0
(#) (x
`| Z))) holds ((v0
(#) (x
`| Z))
. x0)
= ((r
(#) (vf0
(#) (x
`| Z)))
. x0)
proof
let x0 be
object such that
A39: x0
in (
dom (v0
(#) (x
`| Z)));
A40: x0
in ((
dom v0)
/\ (
dom (x
`| Z))) by
A39,
VALUED_1:def 4;
then
A41: x0
in (
dom v0) & x0
in (
dom (x
`| Z)) by
XBOOLE_0:def 4;
then
A42: x0
in (
dom
<:x, y:>) & (
<:x, y:>
. x0)
in (
dom ((
Im (r
(#) f))
*
R2-to-C )) by
A5,
FUNCT_1: 11;
set R2 = (
<:x, y:>
. x0);
set c0 = (
R2-to-C
. R2);
A43: (v0
. x0)
= (((
Im (r
(#) f))
*
R2-to-C )
. R2) by
A5,
A41,
FUNCT_1: 12
.= ((
Im (r
(#) f))
. c0) by
A42,
FUNCT_1: 12
.= ((r
(#) (
Im f))
. c0) by
MESFUN6C: 2;
x0
in (
dom vf0) by
A14,
A40,
XBOOLE_0:def 4;
then
A44: x0
in (
dom
<:x, y:>) & R2
in (
dom ((
Im f)
*
R2-to-C )) by
A3,
FUNCT_1: 11;
A45: (vf0
. x0)
= (((
Im f)
*
R2-to-C )
. R2) by
A3,
A14,
A41,
FUNCT_1: 12
.= ((
Im f)
. c0) by
A44,
FUNCT_1: 12;
A46: x0
in (
dom (vf0
(#) (r
(#) (x
`| Z)))) by
A38,
A39,
RFUNCT_1: 13;
then x0
in ((
dom vf0)
/\ (
dom (r
(#) (x
`| Z)))) by
VALUED_1:def 4;
then
A47: x0
in (
dom (r
(#) (x
`| Z))) by
XBOOLE_0:def 4;
((v0
(#) (x
`| Z))
. x0)
= ((v0
. x0)
* ((x
`| Z)
. x0)) by
A39,
VALUED_1:def 4
.= ((r
* ((
Im f)
. c0))
* ((x
`| Z)
. x0)) by
A43,
VALUED_1: 6
.= ((vf0
. x0)
* (r
* ((x
`| Z)
. x0))) by
A45
.= ((vf0
. x0)
* ((r
(#) (x
`| Z))
. x0)) by
A47,
VALUED_1:def 5
.= ((vf0
(#) (r
(#) (x
`| Z)))
. x0) by
A46,
VALUED_1:def 4
.= ((r
(#) (vf0
(#) (x
`| Z)))
. x0) by
RFUNCT_1: 13;
hence thesis;
end;
hence thesis by
A14,
A36,
A37,
FUNCT_1: 2;
end;
A48: (u0
(#) (y
`| Z))
= (r
(#) (uf0
(#) (y
`| Z)))
proof
A49: (
dom (r
(#) (uf0
(#) (y
`| Z))))
= (
dom (uf0
(#) (r
(#) (y
`| Z)))) by
RFUNCT_1: 13
.= ((
dom uf0)
/\ (
dom (r
(#) (y
`| Z)))) by
VALUED_1:def 4
.= ((
dom uf0)
/\ (
dom (y
`| Z))) by
VALUED_1:def 5;
A50: (
dom (u0
(#) (y
`| Z)))
= ((
dom u0)
/\ (
dom (y
`| Z))) by
VALUED_1:def 4;
A51: (
dom (u0
(#) (y
`| Z)))
= (
dom (r
(#) (uf0
(#) (y
`| Z)))) by
A6,
A49,
VALUED_1:def 4;
for x0 be
object st x0
in (
dom (u0
(#) (y
`| Z))) holds ((u0
(#) (y
`| Z))
. x0)
= ((r
(#) (uf0
(#) (y
`| Z)))
. x0)
proof
let x0 be
object such that
A52: x0
in (
dom (u0
(#) (y
`| Z)));
A53: x0
in ((
dom u0)
/\ (
dom (y
`| Z))) by
A52,
VALUED_1:def 4;
then
A54: x0
in (
dom u0) & x0
in (
dom (y
`| Z)) by
XBOOLE_0:def 4;
then
A55: x0
in (
dom
<:x, y:>) & (
<:x, y:>
. x0)
in (
dom ((
Re (r
(#) f))
*
R2-to-C )) by
A5,
FUNCT_1: 11;
set R2 = (
<:x, y:>
. x0);
set c0 = (
R2-to-C
. R2);
A56: (u0
. x0)
= (((
Re (r
(#) f))
*
R2-to-C )
. R2) by
A5,
A54,
FUNCT_1: 12
.= ((
Re (r
(#) f))
. c0) by
A55,
FUNCT_1: 12
.= ((r
(#) (
Re f))
. c0) by
MESFUN6C: 2;
x0
in (
dom uf0) by
A6,
A53,
XBOOLE_0:def 4;
then
A57: x0
in (
dom
<:x, y:>) & R2
in (
dom ((
Re f)
*
R2-to-C )) by
A3,
FUNCT_1: 11;
A58: (uf0
. x0)
= (((
Re f)
*
R2-to-C )
. R2) by
A3,
A6,
A54,
FUNCT_1: 12
.= ((
Re f)
. c0) by
A57,
FUNCT_1: 12;
A59: x0
in (
dom (uf0
(#) (r
(#) (y
`| Z)))) by
A51,
A52,
RFUNCT_1: 13;
then x0
in ((
dom uf0)
/\ (
dom (r
(#) (y
`| Z)))) by
VALUED_1:def 4;
then
A60: x0
in (
dom (r
(#) (y
`| Z))) by
XBOOLE_0:def 4;
((u0
(#) (y
`| Z))
. x0)
= ((u0
. x0)
* ((y
`| Z)
. x0)) by
A52,
VALUED_1:def 4
.= ((r
* ((
Re f)
. c0))
* ((y
`| Z)
. x0)) by
A56,
VALUED_1: 6
.= ((uf0
. x0)
* (r
* ((y
`| Z)
. x0))) by
A58
.= ((uf0
. x0)
* ((r
(#) (y
`| Z))
. x0)) by
A60,
VALUED_1:def 5
.= ((uf0
(#) (r
(#) (y
`| Z)))
. x0) by
A59,
VALUED_1:def 4
.= ((r
(#) (uf0
(#) (y
`| Z)))
. x0) by
RFUNCT_1: 13;
hence thesis;
end;
hence thesis by
A6,
A49,
A50,
FUNCT_1: 2;
end;
A61: (v0
(#) (y
`| Z))
= (r
(#) (vf0
(#) (y
`| Z)))
proof
A62: (
dom (r
(#) (vf0
(#) (y
`| Z))))
= (
dom (vf0
(#) (r
(#) (y
`| Z)))) by
RFUNCT_1: 13
.= ((
dom vf0)
/\ (
dom (r
(#) (y
`| Z)))) by
VALUED_1:def 4
.= ((
dom vf0)
/\ (
dom (y
`| Z))) by
VALUED_1:def 5;
A63: (
dom (v0
(#) (y
`| Z)))
= ((
dom v0)
/\ (
dom (y
`| Z))) by
VALUED_1:def 4;
A64: (
dom (v0
(#) (y
`| Z)))
= (
dom (r
(#) (vf0
(#) (y
`| Z)))) by
A14,
A62,
VALUED_1:def 4;
for x0 be
object st x0
in (
dom (v0
(#) (y
`| Z))) holds ((v0
(#) (y
`| Z))
. x0)
= ((r
(#) (vf0
(#) (y
`| Z)))
. x0)
proof
let x0 be
object such that
A65: x0
in (
dom (v0
(#) (y
`| Z)));
A66: x0
in ((
dom v0)
/\ (
dom (y
`| Z))) by
A65,
VALUED_1:def 4;
then
A67: x0
in (
dom v0) & x0
in (
dom (y
`| Z)) by
XBOOLE_0:def 4;
then
A68: x0
in (
dom
<:x, y:>) & (
<:x, y:>
. x0)
in (
dom ((
Im (r
(#) f))
*
R2-to-C )) by
A5,
FUNCT_1: 11;
set R2 = (
<:x, y:>
. x0);
set c0 = (
R2-to-C
. R2);
A69: (v0
. x0)
= (((
Im (r
(#) f))
*
R2-to-C )
. R2) by
A5,
A67,
FUNCT_1: 12
.= ((
Im (r
(#) f))
. c0) by
A68,
FUNCT_1: 12
.= ((r
(#) (
Im f))
. c0) by
MESFUN6C: 2;
x0
in (
dom vf0) by
A14,
A66,
XBOOLE_0:def 4;
then
A70: x0
in (
dom
<:x, y:>) & R2
in (
dom ((
Im f)
*
R2-to-C )) by
A3,
FUNCT_1: 11;
A71: (vf0
. x0)
= (((
Im f)
*
R2-to-C )
. R2) by
A3,
A14,
A67,
FUNCT_1: 12
.= ((
Im f)
. c0) by
A70,
FUNCT_1: 12;
A72: x0
in (
dom (vf0
(#) (r
(#) (y
`| Z)))) by
A64,
A65,
RFUNCT_1: 13;
then x0
in ((
dom vf0)
/\ (
dom (r
(#) (y
`| Z)))) by
VALUED_1:def 4;
then
A73: x0
in (
dom (r
(#) (y
`| Z))) by
XBOOLE_0:def 4;
((v0
(#) (y
`| Z))
. x0)
= ((v0
. x0)
* ((y
`| Z)
. x0)) by
A65,
VALUED_1:def 4
.= ((r
* ((
Im f)
. c0))
* ((y
`| Z)
. x0)) by
A69,
VALUED_1: 6
.= ((vf0
. x0)
* (r
* ((y
`| Z)
. x0))) by
A71
.= ((vf0
. x0)
* ((r
(#) (y
`| Z))
. x0)) by
A73,
VALUED_1:def 5
.= ((vf0
(#) (r
(#) (y
`| Z)))
. x0) by
A72,
VALUED_1:def 4
.= ((r
(#) (vf0
(#) (y
`| Z)))
. x0) by
RFUNCT_1: 13;
hence thesis;
end;
hence thesis by
A14,
A62,
A63,
FUNCT_1: 2;
end;
A74:
[.a, b.]
c= (
dom uf0)
proof
let x0 be
object such that
A75: x0
in
[.a, b.];
A76: (C
. x0)
in (
rng C) by
A2,
A75,
FUNCT_1: 3;
A77: x0
in (
dom x) & x0
in (
dom y) by
A2,
A75;
A78: x0
in ((
dom x)
/\ (
dom y)) by
A2,
A75,
XBOOLE_0:def 4;
then
A79: x0
in (
dom
<:x, y:>) by
FUNCT_3:def 7;
set R2 = (
<:x, y:>
. x0);
reconsider xx0 = (x
. x0), yx0 = (y
. x0) as
Element of
REAL by
XREAL_0:def 1;
R2
=
[xx0, yx0] by
A78,
FUNCT_3: 48;
then R2
in
[:
REAL ,
REAL :] by
ZFMISC_1:def 2;
then
A80: R2
in (
dom
R2-to-C ) by
FUNCT_2:def 1;
x0
in (
dom (
<i>
(#) y)) by
A77,
VALUED_1:def 5;
then x0
in ((
dom x)
/\ (
dom (
<i>
(#) y))) by
A2,
A75,
XBOOLE_0:def 4;
then
A81: x0
in (
dom (x
+ (
<i>
(#) y))) by
VALUED_1:def 1;
A82:
[xx0, yx0]
in
[:
REAL ,
REAL :] by
ZFMISC_1:def 2;
A83: (x
. x0)
= (
[(x
. x0), (y
. x0)]
`1 ) & (y
. x0)
= (
[(x
. x0), (y
. x0)]
`2 );
(C
. x0)
= ((x
+ (
<i>
(#) y))
. x0) by
A75,
A2,
FUNCT_1: 49
.= ((x
. x0)
+ ((
<i>
(#) y)
. x0)) by
A81,
VALUED_1:def 1
.= ((x
. x0)
+ (
<i>
* (y
. x0))) by
VALUED_1: 6
.= (
R2-to-C
.
[xx0, yx0]) by
A82,
A83,
Def1
.= (
R2-to-C
. R2) by
A78,
FUNCT_3: 48;
then (
R2-to-C
. R2)
in (
dom f) by
A1,
A76;
then (
R2-to-C
. R2)
in (
dom (
Re f)) by
COMSEQ_3:def 3;
then R2
in (
dom ((
Re f)
*
R2-to-C )) by
A80,
FUNCT_1: 11;
hence thesis by
A3,
A79,
FUNCT_1: 11;
end;
A84:
[.a, b.]
c= (
dom vf0)
proof
let x0 be
object such that
A85: x0
in
[.a, b.];
A86: (C
. x0)
in (
rng C) by
A2,
A85,
FUNCT_1: 3;
A87: x0
in (
dom x) & x0
in (
dom y) by
A2,
A85;
A88: x0
in ((
dom x)
/\ (
dom y)) by
A2,
A85,
XBOOLE_0:def 4;
then
A89: x0
in (
dom
<:x, y:>) by
FUNCT_3:def 7;
set R2 = (
<:x, y:>
. x0);
reconsider xx0 = (x
. x0), yx0 = (y
. x0) as
Element of
REAL by
XREAL_0:def 1;
R2
=
[xx0, yx0] by
A88,
FUNCT_3: 48;
then R2
in
[:
REAL ,
REAL :] by
ZFMISC_1:def 2;
then
A90: R2
in (
dom
R2-to-C ) by
FUNCT_2:def 1;
x0
in (
dom (
<i>
(#) y)) by
A87,
VALUED_1:def 5;
then x0
in ((
dom x)
/\ (
dom (
<i>
(#) y))) by
A2,
A85,
XBOOLE_0:def 4;
then
A91: x0
in (
dom (x
+ (
<i>
(#) y))) by
VALUED_1:def 1;
A92:
[xx0, yx0]
in
[:
REAL ,
REAL :] by
ZFMISC_1:def 2;
A93: (x
. x0)
= (
[(x
. x0), (y
. x0)]
`1 ) & (y
. x0)
= (
[(x
. x0), (y
. x0)]
`2 );
(C
. x0)
= ((x
+ (
<i>
(#) y))
. x0) by
A85,
A2,
FUNCT_1: 49
.= ((x
. x0)
+ ((
<i>
(#) y)
. x0)) by
A91,
VALUED_1:def 1
.= ((x
. x0)
+ (
<i>
* (y
. x0))) by
VALUED_1: 6
.= (
R2-to-C
.
[xx0, yx0]) by
A92,
A93,
Def1
.= (
R2-to-C
. R2) by
A88,
FUNCT_3: 48;
then (
R2-to-C
. R2)
in (
dom f) by
A1,
A86;
then (
R2-to-C
. R2)
in (
dom (
Im f)) by
COMSEQ_3:def 4;
then R2
in (
dom ((
Im f)
*
R2-to-C )) by
A90,
FUNCT_1: 11;
hence thesis by
A3,
A89,
FUNCT_1: 11;
end;
A94:
['a, b']
c= (
dom ((uf0
(#) (x
`| Z))
- (vf0
(#) (y
`| Z))))
proof
A95:
['a, b']
=
[.a, b.] by
A2,
INTEGRA5:def 3;
A96: (
dom ((uf0
(#) (x
`| Z))
- (vf0
(#) (y
`| Z))))
= ((
dom (uf0
(#) (x
`| Z)))
/\ (
dom (vf0
(#) (y
`| Z)))) by
VALUED_1: 12
.= (((
dom uf0)
/\ (
dom (x
`| Z)))
/\ (
dom (vf0
(#) (y
`| Z)))) by
VALUED_1:def 4
.= (((
dom uf0)
/\ (
dom (x
`| Z)))
/\ ((
dom vf0)
/\ (
dom (y
`| Z)))) by
VALUED_1:def 4
.= ((
dom uf0)
/\ ((
dom (x
`| Z))
/\ ((
dom vf0)
/\ (
dom (y
`| Z))))) by
XBOOLE_1: 16
.= ((
dom uf0)
/\ (Z
/\ ((
dom (y
`| Z))
/\ (
dom vf0)))) by
A2,
FDIFF_1:def 7
.= ((
dom uf0)
/\ (Z
/\ (Z
/\ (
dom vf0)))) by
A2,
FDIFF_1:def 7
.= ((
dom uf0)
/\ ((Z
/\ Z)
/\ (
dom vf0))) by
XBOOLE_1: 16
.= (((
dom uf0)
/\ (
dom vf0))
/\ Z) by
XBOOLE_1: 16;
[.a, b.]
c= ((
dom uf0)
/\ (
dom vf0)) by
A74,
A84,
XBOOLE_1: 19;
hence thesis by
A2,
A95,
A96,
XBOOLE_1: 19;
end;
A97:
['a, b']
c= (
dom ((vf0
(#) (x
`| Z))
+ (uf0
(#) (y
`| Z))))
proof
A98:
['a, b']
=
[.a, b.] by
A2,
INTEGRA5:def 3;
A99: (
dom ((vf0
(#) (x
`| Z))
+ (uf0
(#) (y
`| Z))))
= ((
dom (vf0
(#) (x
`| Z)))
/\ (
dom (uf0
(#) (y
`| Z)))) by
VALUED_1:def 1
.= (((
dom vf0)
/\ (
dom (x
`| Z)))
/\ (
dom (uf0
(#) (y
`| Z)))) by
VALUED_1:def 4
.= (((
dom vf0)
/\ (
dom (x
`| Z)))
/\ ((
dom uf0)
/\ (
dom (y
`| Z)))) by
VALUED_1:def 4
.= ((
dom vf0)
/\ ((
dom (x
`| Z))
/\ ((
dom uf0)
/\ (
dom (y
`| Z))))) by
XBOOLE_1: 16
.= ((
dom vf0)
/\ (Z
/\ ((
dom (y
`| Z))
/\ (
dom uf0)))) by
A2,
FDIFF_1:def 7
.= ((
dom vf0)
/\ (Z
/\ (Z
/\ (
dom uf0)))) by
A2,
FDIFF_1:def 7
.= ((
dom vf0)
/\ ((Z
/\ Z)
/\ (
dom uf0))) by
XBOOLE_1: 16
.= (((
dom vf0)
/\ (
dom uf0))
/\ Z) by
XBOOLE_1: 16;
[.a, b.]
c= ((
dom vf0)
/\ (
dom uf0)) by
A74,
A84,
XBOOLE_1: 19;
hence thesis by
A2,
A98,
A99,
XBOOLE_1: 19;
end;
reconsider a, b as
Real;
A100: ((uf0
(#) (x
`| Z))
- (vf0
(#) (y
`| Z)))
is_integrable_on
['a, b'] by
A1,
A2;
A101: ((vf0
(#) (x
`| Z))
+ (uf0
(#) (y
`| Z)))
is_integrable_on
['a, b'] by
A1,
A2;
A102: (((uf0
(#) (x
`| Z))
- (vf0
(#) (y
`| Z)))
|
['a, b']) is
bounded by
A1,
A2;
A103: (((vf0
(#) (x
`| Z))
+ (uf0
(#) (y
`| Z)))
|
['a, b']) is
bounded by
A1,
A2;
(
integral ((r
(#) f),C))
= ((
integral (((r
(#) (uf0
(#) (x
`| Z)))
- (r
(#) (vf0
(#) (y
`| Z)))),a,b))
+ ((
integral (((r
(#) (vf0
(#) (x
`| Z)))
+ (r
(#) (uf0
(#) (y
`| Z)))),a,b))
*
<i> )) by
A35,
A61,
A48,
A22,
A5,
A1,
A2,
A4,
Def4
.= ((
integral ((r
(#) ((uf0
(#) (x
`| Z))
- (vf0
(#) (y
`| Z)))),a,b))
+ ((
integral (((r
(#) (vf0
(#) (x
`| Z)))
+ (r
(#) (uf0
(#) (y
`| Z)))),a,b))
*
<i> )) by
RFUNCT_1: 18
.= ((
integral ((r
(#) ((uf0
(#) (x
`| Z))
- (vf0
(#) (y
`| Z)))),a,b))
+ ((
integral ((r
(#) ((vf0
(#) (x
`| Z))
+ (uf0
(#) (y
`| Z)))),a,b))
*
<i> )) by
RFUNCT_1: 16
.= ((r
* (
integral (((uf0
(#) (x
`| Z))
- (vf0
(#) (y
`| Z))),a,b)))
+ ((
integral ((r
(#) ((vf0
(#) (x
`| Z))
+ (uf0
(#) (y
`| Z)))),a,b))
*
<i> )) by
A2,
A94,
A100,
A102,
INTEGRA6: 10
.= ((r
* (
integral (((uf0
(#) (x
`| Z))
- (vf0
(#) (y
`| Z))),a,b)))
+ ((r
* (
integral (((vf0
(#) (x
`| Z))
+ (uf0
(#) (y
`| Z))),a,b)))
*
<i> )) by
A2,
A97,
A101,
A103,
INTEGRA6: 10
.= (r
* ((
integral (((uf0
(#) (x
`| Z))
- (vf0
(#) (y
`| Z))),a,b))
+ ((
integral (((vf0
(#) (x
`| Z))
+ (uf0
(#) (y
`| Z))),a,b))
*
<i> )))
.= (r
* (
integral (f,C))) by
A1,
A2,
A3,
Def4;
hence thesis;
end;
begin
theorem ::
INTEGR1C:3
for f be
PartFunc of
COMPLEX ,
COMPLEX , C,C1,C2 be
C1-curve, a,b,d be
Real st (
rng C)
c= (
dom f) & f
is_integrable_on C & f
is_bounded_on C & a
<= b & (
dom C)
=
[.a, b.] & d
in
[.a, b.] & (
dom C1)
=
[.a, d.] & (
dom C2)
=
[.d, b.] & (for t st t
in (
dom C1) holds (C
. t)
= (C1
. t)) & (for t st t
in (
dom C2) holds (C
. t)
= (C2
. t)) holds (
integral (f,C))
= ((
integral (f,C1))
+ (
integral (f,C2)))
proof
let f be
PartFunc of
COMPLEX ,
COMPLEX , C,C1,C2 be
C1-curve, a,b,d be
Real such that
A1: (
rng C)
c= (
dom f) & f
is_integrable_on C & f
is_bounded_on C & a
<= b & (
dom C)
=
[.a, b.] & d
in
[.a, b.] & (
dom C1)
=
[.a, d.] & (
dom C2)
=
[.d, b.] & (for t st t
in (
dom C1) holds (C
. t)
= (C1
. t)) & (for t st t
in (
dom C2) holds (C
. t)
= (C2
. t));
A2: a
<= d & d
<= b by
A1,
XXREAL_1: 1;
consider a0,b0 be
Real, x,y be
PartFunc of
REAL ,
REAL , Z be
Subset of
REAL such that
A3: a0
<= b0 &
[.a0, b0.]
= (
dom C) &
[.a0, b0.]
c= (
dom x) &
[.a0, b0.]
c= (
dom y) & Z is
open &
[.a0, b0.]
c= Z & x
is_differentiable_on Z & y
is_differentiable_on Z & (x
`| Z) is
continuous & (y
`| Z) is
continuous & C
= ((x
+ (
<i>
(#) y))
|
[.a0, b0.]) by
Def3;
A4: a0
= a & b0
= b
proof
thus a0
= (
inf
[.a0, b0.]) by
A3,
XXREAL_2: 25
.= a by
A1,
A3,
XXREAL_2: 25;
thus b0
= (
sup
[.a0, b0.]) by
A3,
XXREAL_2: 29
.= b by
A1,
A3,
XXREAL_2: 29;
end;
consider u0,v0 be
PartFunc of
REAL ,
REAL such that
A5: u0
= (((
Re f)
*
R2-to-C )
*
<:x, y:>) & v0
= (((
Im f)
*
R2-to-C )
*
<:x, y:>) & (
integral (f,x,y,a,b,Z))
= ((
integral (((u0
(#) (x
`| Z))
- (v0
(#) (y
`| Z))),a,b))
+ ((
integral (((v0
(#) (x
`| Z))
+ (u0
(#) (y
`| Z))),a,b))
*
<i> )) by
Def2;
consider a1,b1 be
Real, x1,y1 be
PartFunc of
REAL ,
REAL , Z1 be
Subset of
REAL such that
A6: a1
<= b1 &
[.a1, b1.]
= (
dom C1) &
[.a1, b1.]
c= (
dom x1) &
[.a1, b1.]
c= (
dom y1) & Z1 is
open &
[.a1, b1.]
c= Z1 & x1
is_differentiable_on Z1 & y1
is_differentiable_on Z1 & (x1
`| Z1) is
continuous & (y1
`| Z1) is
continuous & C1
= ((x1
+ (
<i>
(#) y1))
|
[.a1, b1.]) by
Def3;
A7: a1
= a & b1
= d
proof
thus a1
= (
inf
[.a1, b1.]) by
A6,
XXREAL_2: 25
.= a by
A2,
A1,
A6,
XXREAL_2: 25;
thus b1
= (
sup
[.a1, b1.]) by
A6,
XXREAL_2: 29
.= d by
A2,
A1,
A6,
XXREAL_2: 29;
end;
A8: (
rng C1)
c= (
dom f)
proof
A9:
[.a, d.]
c=
[.a, b.] by
A2,
XXREAL_1: 34;
for y0 be
object st y0
in (
rng C1) holds y0
in (
rng C)
proof
let y0 be
object such that
A10: y0
in (
rng C1);
consider x0 be
object such that
A11: x0
in (
dom C1) & y0
= (C1
. x0) by
A10,
FUNCT_1:def 3;
(C1
. x0)
= (C
. x0) by
A1,
A11;
hence thesis by
A1,
A9,
A11,
FUNCT_1: 3;
end;
then (
rng C1)
c= (
rng C);
hence thesis by
A1;
end;
consider a2,b2 be
Real, x2,y2 be
PartFunc of
REAL ,
REAL , Z2 be
Subset of
REAL such that
A12: a2
<= b2 &
[.a2, b2.]
= (
dom C2) &
[.a2, b2.]
c= (
dom x2) &
[.a2, b2.]
c= (
dom y2) & Z2 is
open &
[.a2, b2.]
c= Z2 & x2
is_differentiable_on Z2 & y2
is_differentiable_on Z2 & (x2
`| Z2) is
continuous & (y2
`| Z2) is
continuous & C2
= ((x2
+ (
<i>
(#) y2))
|
[.a2, b2.]) by
Def3;
A13: a2
= d & b2
= b
proof
thus a2
= (
inf
[.a2, b2.]) by
A12,
XXREAL_2: 25
.= d by
A2,
A1,
A12,
XXREAL_2: 25;
thus b2
= (
sup
[.a2, b2.]) by
A12,
XXREAL_2: 29
.= b by
A2,
A1,
A12,
XXREAL_2: 29;
end;
(
rng C2)
c= (
dom f)
proof
A14:
[.d, b.]
c=
[.a, b.] by
A2,
XXREAL_1: 34;
for y0 be
object st y0
in (
rng C2) holds y0
in (
rng C)
proof
let y0 be
object such that
A15: y0
in (
rng C2);
consider x0 be
object such that
A16: x0
in (
dom C2) & y0
= (C2
. x0) by
A15,
FUNCT_1:def 3;
(C2
. x0)
= (C
. x0) by
A1,
A16;
hence thesis by
A1,
A14,
A16,
FUNCT_1: 3;
end;
then (
rng C2)
c= (
rng C);
hence thesis by
A1;
end;
then
A17: (
integral (f,C2))
= (
integral (f,x2,y2,d,b,Z2)) by
A12,
A13,
Def4;
A18:
['a, b']
=
[.a, b.] by
A1,
INTEGRA5:def 3;
A19:
['a, b']
c= (
dom u0)
proof
for x0 be
object st x0
in
[.a, b.] holds x0
in (
dom u0)
proof
let x0 be
object such that
A20: x0
in
[.a, b.];
A21: (C
. x0)
in (
rng C) by
A3,
A4,
A20,
FUNCT_1: 3;
A22: x0
in (
dom x) & x0
in (
dom y) by
A3,
A4,
A20;
A23: x0
in ((
dom x)
/\ (
dom y)) by
A3,
A4,
A20,
XBOOLE_0:def 4;
then
A24: x0
in (
dom
<:x, y:>) by
FUNCT_3:def 7;
set R2 = (
<:x, y:>
. x0);
reconsider xx0 = (x
. x0), yx0 = (y
. x0) as
Element of
REAL by
XREAL_0:def 1;
R2
=
[xx0, yx0] by
A23,
FUNCT_3: 48;
then R2
in
[:
REAL ,
REAL :] by
ZFMISC_1:def 2;
then
A25: R2
in (
dom
R2-to-C ) by
FUNCT_2:def 1;
x0
in (
dom (
<i>
(#) y)) by
A22,
VALUED_1:def 5;
then x0
in ((
dom x)
/\ (
dom (
<i>
(#) y))) by
A3,
A4,
A20,
XBOOLE_0:def 4;
then
A26: x0
in (
dom (x
+ (
<i>
(#) y))) by
VALUED_1:def 1;
A27:
[xx0, yx0]
in
[:
REAL ,
REAL :] by
ZFMISC_1:def 2;
A28: (x
. x0)
= (
[(x
. x0), (y
. x0)]
`1 ) & (y
. x0)
= (
[(x
. x0), (y
. x0)]
`2 );
(C
. x0)
= ((x
+ (
<i>
(#) y))
. x0) by
A20,
A3,
A4,
FUNCT_1: 49
.= ((x
. x0)
+ ((
<i>
(#) y)
. x0)) by
A26,
VALUED_1:def 1
.= ((x
. x0)
+ (
<i>
* (y
. x0))) by
VALUED_1: 6
.= (
R2-to-C
.
[xx0, yx0]) by
A27,
A28,
Def1
.= (
R2-to-C
. R2) by
A23,
FUNCT_3: 48;
then (
R2-to-C
. R2)
in (
dom f) by
A1,
A21;
then (
R2-to-C
. R2)
in (
dom (
Re f)) by
COMSEQ_3:def 3;
then R2
in (
dom ((
Re f)
*
R2-to-C )) by
A25,
FUNCT_1: 11;
hence thesis by
A5,
A24,
FUNCT_1: 11;
end;
hence thesis by
A18;
end;
A29:
['a, b']
c= (
dom v0)
proof
for x0 be
object st x0
in
[.a, b.] holds x0
in (
dom v0)
proof
let x0 be
object such that
A30: x0
in
[.a, b.];
A31: (C
. x0)
in (
rng C) by
A3,
A4,
A30,
FUNCT_1: 3;
A32: x0
in (
dom x) & x0
in (
dom y) by
A3,
A4,
A30;
A33: x0
in ((
dom x)
/\ (
dom y)) by
A3,
A4,
A30,
XBOOLE_0:def 4;
then
A34: x0
in (
dom
<:x, y:>) by
FUNCT_3:def 7;
set R2 = (
<:x, y:>
. x0);
reconsider xx0 = (x
. x0), yx0 = (y
. x0) as
Element of
REAL by
XREAL_0:def 1;
R2
=
[xx0, yx0] by
A33,
FUNCT_3: 48;
then R2
in
[:
REAL ,
REAL :] by
ZFMISC_1:def 2;
then
A35: R2
in (
dom
R2-to-C ) by
FUNCT_2:def 1;
x0
in (
dom (
<i>
(#) y)) by
A32,
VALUED_1:def 5;
then x0
in ((
dom x)
/\ (
dom (
<i>
(#) y))) by
A3,
A4,
A30,
XBOOLE_0:def 4;
then
A36: x0
in (
dom (x
+ (
<i>
(#) y))) by
VALUED_1:def 1;
A37:
[xx0, yx0]
in
[:
REAL ,
REAL :] by
ZFMISC_1:def 2;
A38: (x
. x0)
= (
[(x
. x0), (y
. x0)]
`1 ) & (y
. x0)
= (
[(x
. x0), (y
. x0)]
`2 );
(C
. x0)
= ((x
+ (
<i>
(#) y))
. x0) by
A30,
A3,
A4,
FUNCT_1: 49
.= ((x
. x0)
+ ((
<i>
(#) y)
. x0)) by
A36,
VALUED_1:def 1
.= ((x
. x0)
+ (
<i>
* (y
. x0))) by
VALUED_1: 6
.= (
R2-to-C
.
[xx0, yx0]) by
A37,
A38,
Def1
.= (
R2-to-C
. R2) by
A33,
FUNCT_3: 48;
then (
R2-to-C
. R2)
in (
dom f) by
A1,
A31;
then (
R2-to-C
. R2)
in (
dom (
Im f)) by
COMSEQ_3:def 4;
then R2
in (
dom ((
Im f)
*
R2-to-C )) by
A35,
FUNCT_1: 11;
hence thesis by
A5,
A34,
FUNCT_1: 11;
end;
hence thesis by
A18;
end;
A39: ((u0
(#) (x
`| Z))
- (v0
(#) (y
`| Z)))
is_integrable_on
['a, b'] & ((v0
(#) (x
`| Z))
+ (u0
(#) (y
`| Z)))
is_integrable_on
['a, b'] by
A1,
A3;
A40: (((u0
(#) (x
`| Z))
- (v0
(#) (y
`| Z)))
|
['a, b']) is
bounded & (((v0
(#) (x
`| Z))
+ (u0
(#) (y
`| Z)))
|
['a, b']) is
bounded by
A1,
A3;
A41:
['a, b']
c= (
dom ((u0
(#) (x
`| Z))
- (v0
(#) (y
`| Z))))
proof
A42: (
dom ((u0
(#) (x
`| Z))
- (v0
(#) (y
`| Z))))
= ((
dom (u0
(#) (x
`| Z)))
/\ (
dom (v0
(#) (y
`| Z)))) by
VALUED_1: 12
.= (((
dom u0)
/\ (
dom (x
`| Z)))
/\ (
dom (v0
(#) (y
`| Z)))) by
VALUED_1:def 4
.= (((
dom u0)
/\ (
dom (x
`| Z)))
/\ ((
dom v0)
/\ (
dom (y
`| Z)))) by
VALUED_1:def 4
.= (((
dom u0)
/\ Z)
/\ ((
dom v0)
/\ (
dom (y
`| Z)))) by
A3,
FDIFF_1:def 7
.= (((
dom u0)
/\ Z)
/\ ((
dom v0)
/\ Z)) by
A3,
FDIFF_1:def 7
.= ((
dom u0)
/\ (Z
/\ ((
dom v0)
/\ Z))) by
XBOOLE_1: 16
.= ((
dom u0)
/\ ((Z
/\ Z)
/\ (
dom v0))) by
XBOOLE_1: 16
.= (((
dom u0)
/\ (
dom v0))
/\ Z) by
XBOOLE_1: 16;
A43:
['a, b']
c= ((
dom u0)
/\ (
dom v0)) by
A19,
A29,
XBOOLE_1: 19;
['a, b']
c= Z by
A1,
A3,
INTEGRA5:def 3;
hence thesis by
A42,
A43,
XBOOLE_1: 19;
end;
A44:
['a, b']
c= (
dom ((v0
(#) (x
`| Z))
+ (u0
(#) (y
`| Z))))
proof
A45: (
dom ((v0
(#) (x
`| Z))
+ (u0
(#) (y
`| Z))))
= ((
dom (v0
(#) (x
`| Z)))
/\ (
dom (u0
(#) (y
`| Z)))) by
VALUED_1:def 1
.= (((
dom v0)
/\ (
dom (x
`| Z)))
/\ (
dom (u0
(#) (y
`| Z)))) by
VALUED_1:def 4
.= (((
dom v0)
/\ (
dom (x
`| Z)))
/\ ((
dom u0)
/\ (
dom (y
`| Z)))) by
VALUED_1:def 4
.= (((
dom v0)
/\ Z)
/\ ((
dom u0)
/\ (
dom (y
`| Z)))) by
A3,
FDIFF_1:def 7
.= (((
dom v0)
/\ Z)
/\ ((
dom u0)
/\ Z)) by
A3,
FDIFF_1:def 7
.= ((
dom v0)
/\ (Z
/\ ((
dom u0)
/\ Z))) by
XBOOLE_1: 16
.= ((
dom v0)
/\ ((Z
/\ Z)
/\ (
dom u0))) by
XBOOLE_1: 16
.= (((
dom v0)
/\ (
dom u0))
/\ Z) by
XBOOLE_1: 16;
A46:
['a, b']
c= ((
dom v0)
/\ (
dom u0)) by
A19,
A29,
XBOOLE_1: 19;
['a, b']
c= Z by
A1,
A3,
INTEGRA5:def 3;
hence thesis by
A45,
A46,
XBOOLE_1: 19;
end;
A47: ((
integral (((u0
(#) (x
`| Z))
- (v0
(#) (y
`| Z))),a,d))
+ ((
integral (((v0
(#) (x
`| Z))
+ (u0
(#) (y
`| Z))),a,d))
*
<i> ))
= (
integral (f,x,y,a,d,Z)) by
Def2,
A5;
A48: ((
integral (((u0
(#) (x
`| Z))
- (v0
(#) (y
`| Z))),d,b))
+ ((
integral (((v0
(#) (x
`| Z))
+ (u0
(#) (y
`| Z))),d,b))
*
<i> ))
= (
integral (f,x,y,d,b,Z)) by
Def2,
A5;
A49: (
integral (f,x,y,a,d,Z))
= (
integral (f,x1,y1,a,d,Z1))
proof
reconsider Z3 = (Z
/\ Z1) as
Subset of
REAL ;
reconsider ZZ = Z, ZZ1 = Z1 as
Subset of
R^1 by
TOPMETR: 17;
ZZ is
open & ZZ1 is
open by
A3,
A6,
BORSUK_5: 39;
then (ZZ
/\ ZZ1) is
open by
TOPS_1: 11;
then
A50: Z3 is
open by
BORSUK_5: 39;
A51:
[.a, d.]
c=
[.a, b.] by
A2,
XXREAL_1: 34;
then
A52:
[.a, d.]
c= (
dom x) &
[.a, d.]
c= (
dom y) by
A3,
A4;
A53: (x
|
[.a, d.])
= (x1
|
[.a, d.])
proof
A54: (
dom (x
|
[.a, d.]))
= ((
dom x)
/\
[.a, d.]) by
RELAT_1: 61
.=
[.a, d.] by
A3,
A4,
A51,
XBOOLE_1: 1,
XBOOLE_1: 28
.= ((
dom x1)
/\
[.a, d.]) by
A6,
A7,
XBOOLE_1: 28
.= (
dom (x1
|
[.a, d.])) by
RELAT_1: 61;
for x0 be
object st x0
in (
dom (x
|
[.a, d.])) holds ((x
|
[.a, d.])
. x0)
= ((x1
|
[.a, d.])
. x0)
proof
let x0 be
object such that
A55: x0
in (
dom (x
|
[.a, d.]));
A56: (
dom (x
|
[.a, d.]))
= ((
dom x)
/\
[.a, d.]) by
RELAT_1: 61
.=
[.a, d.] by
A51,
A3,
A4,
XBOOLE_1: 1,
XBOOLE_1: 28;
[.a, d.]
c= ((
dom x1)
/\ (
dom y1)) by
A6,
A7,
XBOOLE_1: 19;
then x0
in ((
dom x1)
/\ (
dom y1)) by
A55,
A56;
then x0
in ((
dom x1)
/\ (
dom (
<i>
(#) y1))) by
VALUED_1:def 5;
then
A57: x0
in (
dom (x1
+ (
<i>
(#) y1))) by
VALUED_1:def 1;
[.a, d.]
c= ((
dom x)
/\ (
dom y)) by
A52,
XBOOLE_1: 19;
then x0
in ((
dom x)
/\ (
dom y)) by
A55,
A56;
then x0
in ((
dom x)
/\ (
dom (
<i>
(#) y))) by
VALUED_1:def 5;
then
A58: x0
in (
dom (x
+ (
<i>
(#) y))) by
VALUED_1:def 1;
reconsider t = x0 as
Element of
REAL by
A55;
A59: (C
. t)
= (C1
. t) by
A1,
A55,
A56;
A60: (C
. t)
= ((x
+ (
<i>
(#) y))
. t) by
A3,
A4,
A51,
A55,
A56,
FUNCT_1: 49;
A61: (C1
. t)
= ((x1
+ (
<i>
(#) y1))
. t) by
A6,
A7,
A55,
A56,
FUNCT_1: 49;
A62: ((x1
+ (
<i>
(#) y1))
. t)
= ((x1
. t)
+ ((
<i>
(#) y1)
. t)) by
A57,
VALUED_1:def 1
.= ((x1
. t)
+ (
<i>
* (y1
. t))) by
VALUED_1: 6;
A63: ((x
+ (
<i>
(#) y))
. t)
= ((x
. t)
+ ((
<i>
(#) y)
. t)) by
A58,
VALUED_1:def 1
.= ((x
. t)
+ (
<i>
* (y
. t))) by
VALUED_1: 6;
thus ((x
|
[.a, d.])
. x0)
= (x
. x0) by
A55,
FUNCT_1: 47
.= (x1
. x0) by
A59,
A60,
A61,
A62,
A63,
COMPLEX1: 77
.= ((x1
|
[.a, d.])
. x0) by
A56,
A55,
FUNCT_1: 49;
end;
hence thesis by
A54,
FUNCT_1: 2;
end;
A64: (y
|
[.a, d.])
= (y1
|
[.a, d.])
proof
A65: (
dom (y
|
[.a, d.]))
= ((
dom y)
/\
[.a, d.]) by
RELAT_1: 61
.=
[.a, d.] by
A3,
A4,
A51,
XBOOLE_1: 1,
XBOOLE_1: 28
.= ((
dom y1)
/\
[.a, d.]) by
A6,
A7,
XBOOLE_1: 28
.= (
dom (y1
|
[.a, d.])) by
RELAT_1: 61;
for x0 be
object st x0
in (
dom (y
|
[.a, d.])) holds ((y
|
[.a, d.])
. x0)
= ((y1
|
[.a, d.])
. x0)
proof
let x0 be
object such that
A66: x0
in (
dom (y
|
[.a, d.]));
A67: (
dom (y
|
[.a, d.]))
= ((
dom y)
/\
[.a, d.]) by
RELAT_1: 61
.=
[.a, d.] by
A3,
A4,
A51,
XBOOLE_1: 1,
XBOOLE_1: 28;
[.a, d.]
c= ((
dom x1)
/\ (
dom y1)) by
A6,
A7,
XBOOLE_1: 19;
then x0
in ((
dom x1)
/\ (
dom y1)) by
A66,
A67;
then x0
in ((
dom x1)
/\ (
dom (
<i>
(#) y1))) by
VALUED_1:def 5;
then
A68: x0
in (
dom (x1
+ (
<i>
(#) y1))) by
VALUED_1:def 1;
[.a, d.]
c= ((
dom x)
/\ (
dom y)) by
A52,
XBOOLE_1: 19;
then x0
in ((
dom x)
/\ (
dom y)) by
A66,
A67;
then x0
in ((
dom x)
/\ (
dom (
<i>
(#) y))) by
VALUED_1:def 5;
then
A69: x0
in (
dom (x
+ (
<i>
(#) y))) by
VALUED_1:def 1;
reconsider t = x0 as
Element of
REAL by
A66;
A70: (C
. t)
= (C1
. t) by
A1,
A66,
A67;
A71: (C
. t)
= ((x
+ (
<i>
(#) y))
. t) by
A3,
A4,
A51,
A66,
A67,
FUNCT_1: 49;
A72: (C1
. t)
= ((x1
+ (
<i>
(#) y1))
. t) by
A6,
A7,
A66,
A67,
FUNCT_1: 49;
A73: ((x1
+ (
<i>
(#) y1))
. t)
= ((x1
. t)
+ ((
<i>
(#) y1)
. t)) by
A68,
VALUED_1:def 1
.= ((x1
. t)
+ (
<i>
* (y1
. t))) by
VALUED_1: 6;
A74: ((x
+ (
<i>
(#) y))
. t)
= ((x
. t)
+ ((
<i>
(#) y)
. t)) by
A69,
VALUED_1:def 1
.= ((x
. t)
+ (
<i>
* (y
. t))) by
VALUED_1: 6;
thus ((y
|
[.a, d.])
. x0)
= (y
. x0) by
A66,
FUNCT_1: 47
.= (y1
. x0) by
A70,
A71,
A72,
A73,
A74,
COMPLEX1: 77
.= ((y1
|
[.a, d.])
. x0) by
A67,
A66,
FUNCT_1: 49;
end;
hence thesis by
A65,
FUNCT_1: 2;
end;
A75:
[.a, d.]
c= Z by
A3,
A4,
A51;
then
A76:
[.a, d.]
c= Z3 by
A6,
A7,
XBOOLE_1: 19;
A77: (
rng ((x
+ (
<i>
(#) y))
|
[.a, d.]))
c= (
dom f)
proof
let y0 be
object such that
A78: y0
in (
rng ((x
+ (
<i>
(#) y))
|
[.a, d.]));
consider x0 be
object such that
A79: x0
in (
dom ((x
+ (
<i>
(#) y))
|
[.a, d.])) & y0
= (((x
+ (
<i>
(#) y))
|
[.a, d.])
. x0) by
A78,
FUNCT_1:def 3;
A80: x0
in ((
dom (x
+ (
<i>
(#) y)))
/\
[.a, d.]) by
A79,
RELAT_1: 61;
((
dom (x
+ (
<i>
(#) y)))
/\
[.a, d.])
c= ((
dom (x
+ (
<i>
(#) y)))
/\
[.a, b.]) by
A2,
XBOOLE_1: 26,
XXREAL_1: 34;
then x0
in ((
dom (x
+ (
<i>
(#) y)))
/\
[.a, b.]) by
A80;
then
A81: x0
in (
dom ((x
+ (
<i>
(#) y))
|
[.a, b.])) by
RELAT_1: 61;
then
A82: (((x
+ (
<i>
(#) y))
|
[.a, b.])
. x0)
in (
rng ((x
+ (
<i>
(#) y))
|
[.a, b.])) by
FUNCT_1: 3;
(((x
+ (
<i>
(#) y))
|
[.a, d.])
. x0)
= ((x
+ (
<i>
(#) y))
. x0) by
A79,
FUNCT_1: 47
.= (((x
+ (
<i>
(#) y))
|
[.a, b.])
. x0) by
A81,
FUNCT_1: 47;
hence thesis by
A1,
A3,
A79,
A82;
end;
A83: (
rng ((x1
+ (
<i>
(#) y1))
|
[.a, d.]))
c= (
dom f)
proof
let y0 be
object such that
A84: y0
in (
rng ((x1
+ (
<i>
(#) y1))
|
[.a, d.]));
consider x0 be
object such that
A85: x0
in (
dom ((x1
+ (
<i>
(#) y1))
|
[.a, d.])) & y0
= (((x1
+ (
<i>
(#) y1))
|
[.a, d.])
. x0) by
A84,
FUNCT_1:def 3;
x0
in ((
dom (x1
+ (
<i>
(#) y1)))
/\
[.a, d.]) by
A85,
RELAT_1: 61;
then
A86: x0
in
[.a, d.] by
XBOOLE_0:def 4;
then x0
in
[.a, b.] by
A51;
then x0
in ((
dom x)
/\ (
dom y)) by
A3,
A4,
XBOOLE_0:def 4;
then x0
in (((
dom x)
/\ (
dom y))
/\
[.a, b.]) by
A51,
A86,
XBOOLE_0:def 4;
then x0
in (((
dom x)
/\ (
dom (
<i>
(#) y)))
/\
[.a, b.]) by
VALUED_1:def 5;
then x0
in ((
dom (x
+ (
<i>
(#) y)))
/\
[.a, b.]) by
VALUED_1:def 1;
then x0
in (
dom ((x
+ (
<i>
(#) y))
|
[.a, b.])) by
RELAT_1: 61;
then
A87: (((x
+ (
<i>
(#) y))
|
[.a, b.])
. x0)
in (
rng ((x
+ (
<i>
(#) y))
|
[.a, b.])) by
FUNCT_1: 3;
reconsider t = x0 as
Element of
REAL by
A85;
A88: (C
. t)
= ((x
+ (
<i>
(#) y))
. t) by
A3,
A4,
A51,
A86,
FUNCT_1: 49;
A89: (C1
. t)
= ((x1
+ (
<i>
(#) y1))
. t) by
A6,
A7,
A86,
FUNCT_1: 49;
(((x1
+ (
<i>
(#) y1))
|
[.a, d.])
. x0)
= ((x1
+ (
<i>
(#) y1))
. x0) by
A85,
FUNCT_1: 47
.= ((x
+ (
<i>
(#) y))
. x0) by
A1,
A86,
A88,
A89
.= (((x
+ (
<i>
(#) y))
|
[.a, b.])
. x0) by
A51,
A86,
FUNCT_1: 49;
hence thesis by
A1,
A3,
A85,
A87;
end;
A90: x
is_differentiable_on Z3 & y
is_differentiable_on Z3 by
A3,
A50,
FDIFF_1: 26,
XBOOLE_1: 17;
A91: x1
is_differentiable_on Z3 & y1
is_differentiable_on Z3 by
A6,
A50,
FDIFF_1: 26,
XBOOLE_1: 17;
A92:
[.a, d.]
c= (
dom x) &
[.a, d.]
c= (
dom y) by
A3,
A4,
A51;
hence (
integral (f,x,y,a,d,Z))
= (
integral (f,x,y,a,d,Z3)) by
A3,
A6,
A7,
A50,
A77,
A76,
Lm1,
XBOOLE_1: 17
.= (
integral (f,x1,y1,a,d,Z3)) by
A6,
A7,
A50,
A53,
A64,
A75,
A77,
A83,
A90,
A91,
A92,
Lm2,
XBOOLE_1: 19
.= (
integral (f,x1,y1,a,d,Z1)) by
A6,
A7,
A50,
A76,
A83,
Lm1,
XBOOLE_1: 17;
end;
A93: (
integral (f,x,y,d,b,Z))
= (
integral (f,x2,y2,d,b,Z2))
proof
reconsider Z3 = (Z
/\ Z2) as
Subset of
REAL ;
reconsider ZZ = Z, ZZ1 = Z2 as
Subset of
R^1 by
TOPMETR: 17;
ZZ is
open & ZZ1 is
open by
A3,
A12,
BORSUK_5: 39;
then (ZZ
/\ ZZ1) is
open by
TOPS_1: 11;
then
A94: Z3 is
open by
BORSUK_5: 39;
A95:
[.d, b.]
c=
[.a, b.] by
A2,
XXREAL_1: 34;
then
A96:
[.d, b.]
c= (
dom x) &
[.d, b.]
c= (
dom y) by
A3,
A4;
A97: (x
|
[.d, b.])
= (x2
|
[.d, b.])
proof
A98: (
dom (x
|
[.d, b.]))
= ((
dom x)
/\
[.d, b.]) by
RELAT_1: 61
.=
[.d, b.] by
A3,
A4,
A95,
XBOOLE_1: 1,
XBOOLE_1: 28
.= ((
dom x2)
/\
[.d, b.]) by
A12,
A13,
XBOOLE_1: 28
.= (
dom (x2
|
[.d, b.])) by
RELAT_1: 61;
for x0 be
object st x0
in (
dom (x
|
[.d, b.])) holds ((x
|
[.d, b.])
. x0)
= ((x2
|
[.d, b.])
. x0)
proof
let x0 be
object such that
A99: x0
in (
dom (x
|
[.d, b.]));
A100: (
dom (x
|
[.d, b.]))
= ((
dom x)
/\
[.d, b.]) by
RELAT_1: 61
.=
[.d, b.] by
A3,
A4,
A95,
XBOOLE_1: 1,
XBOOLE_1: 28;
[.d, b.]
c= ((
dom x2)
/\ (
dom y2)) by
A12,
A13,
XBOOLE_1: 19;
then x0
in ((
dom x2)
/\ (
dom y2)) by
A99,
A100;
then x0
in ((
dom x2)
/\ (
dom (
<i>
(#) y2))) by
VALUED_1:def 5;
then
A101: x0
in (
dom (x2
+ (
<i>
(#) y2))) by
VALUED_1:def 1;
[.d, b.]
c= ((
dom x)
/\ (
dom y)) by
A96,
XBOOLE_1: 19;
then x0
in ((
dom x)
/\ (
dom y)) by
A99,
A100;
then x0
in ((
dom x)
/\ (
dom (
<i>
(#) y))) by
VALUED_1:def 5;
then
A102: x0
in (
dom (x
+ (
<i>
(#) y))) by
VALUED_1:def 1;
reconsider t = x0 as
Element of
REAL by
A99;
A103: (C
. t)
= (C2
. t) by
A1,
A99,
A100;
A104: (C
. t)
= ((x
+ (
<i>
(#) y))
. t) by
A3,
A4,
A95,
A99,
A100,
FUNCT_1: 49;
A105: (C2
. t)
= ((x2
+ (
<i>
(#) y2))
. t) by
A12,
A13,
A99,
A100,
FUNCT_1: 49;
A106: ((x2
+ (
<i>
(#) y2))
. t)
= ((x2
. t)
+ ((
<i>
(#) y2)
. t)) by
A101,
VALUED_1:def 1
.= ((x2
. t)
+ (
<i>
* (y2
. t))) by
VALUED_1: 6;
A107: ((x
+ (
<i>
(#) y))
. t)
= ((x
. t)
+ ((
<i>
(#) y)
. t)) by
A102,
VALUED_1:def 1
.= ((x
. t)
+ (
<i>
* (y
. t))) by
VALUED_1: 6;
thus ((x
|
[.d, b.])
. x0)
= (x
. x0) by
A99,
FUNCT_1: 47
.= (x2
. x0) by
A103,
A104,
A105,
A106,
A107,
COMPLEX1: 77
.= ((x2
|
[.d, b.])
. x0) by
A99,
A100,
FUNCT_1: 49;
end;
hence thesis by
A98,
FUNCT_1: 2;
end;
A108: (y
|
[.d, b.])
= (y2
|
[.d, b.])
proof
A109: (
dom (y
|
[.d, b.]))
= ((
dom y)
/\
[.d, b.]) by
RELAT_1: 61
.=
[.d, b.] by
A3,
A4,
A95,
XBOOLE_1: 1,
XBOOLE_1: 28
.= ((
dom y2)
/\
[.d, b.]) by
A12,
A13,
XBOOLE_1: 28
.= (
dom (y2
|
[.d, b.])) by
RELAT_1: 61;
for x0 be
object st x0
in (
dom (y
|
[.d, b.])) holds ((y
|
[.d, b.])
. x0)
= ((y2
|
[.d, b.])
. x0)
proof
let x0 be
object such that
A110: x0
in (
dom (y
|
[.d, b.]));
A111: (
dom (y
|
[.d, b.]))
= ((
dom y)
/\
[.d, b.]) by
RELAT_1: 61
.=
[.d, b.] by
A3,
A4,
A95,
XBOOLE_1: 1,
XBOOLE_1: 28;
[.d, b.]
c= ((
dom x2)
/\ (
dom y2)) by
A12,
A13,
XBOOLE_1: 19;
then x0
in ((
dom x2)
/\ (
dom y2)) by
A110,
A111;
then x0
in ((
dom x2)
/\ (
dom (
<i>
(#) y2))) by
VALUED_1:def 5;
then
A112: x0
in (
dom (x2
+ (
<i>
(#) y2))) by
VALUED_1:def 1;
[.d, b.]
c= ((
dom x)
/\ (
dom y)) by
A96,
XBOOLE_1: 19;
then x0
in ((
dom x)
/\ (
dom y)) by
A110,
A111;
then x0
in ((
dom x)
/\ (
dom (
<i>
(#) y))) by
VALUED_1:def 5;
then
A113: x0
in (
dom (x
+ (
<i>
(#) y))) by
VALUED_1:def 1;
reconsider t = x0 as
Element of
REAL by
A110;
A114: (C
. t)
= (C2
. t) by
A1,
A110,
A111;
A115: (C
. t)
= ((x
+ (
<i>
(#) y))
. t) by
A3,
A4,
A95,
A110,
A111,
FUNCT_1: 49;
A116: (C2
. t)
= ((x2
+ (
<i>
(#) y2))
. t) by
A12,
A13,
A110,
A111,
FUNCT_1: 49;
A117: ((x2
+ (
<i>
(#) y2))
. t)
= ((x2
. t)
+ ((
<i>
(#) y2)
. t)) by
A112,
VALUED_1:def 1
.= ((x2
. t)
+ (
<i>
* (y2
. t))) by
VALUED_1: 6;
A118: ((x
+ (
<i>
(#) y))
. t)
= ((x
. t)
+ ((
<i>
(#) y)
. t)) by
A113,
VALUED_1:def 1
.= ((x
. t)
+ (
<i>
* (y
. t))) by
VALUED_1: 6;
thus ((y
|
[.d, b.])
. x0)
= (y
. x0) by
A110,
FUNCT_1: 47
.= (y2
. x0) by
A114,
A115,
A116,
A117,
A118,
COMPLEX1: 77
.= ((y2
|
[.d, b.])
. x0) by
A111,
A110,
FUNCT_1: 49;
end;
hence thesis by
A109,
FUNCT_1: 2;
end;
A119:
[.d, b.]
c= Z by
A3,
A4,
A95;
then
A120:
[.d, b.]
c= Z3 by
A12,
A13,
XBOOLE_1: 19;
A121: (
rng ((x
+ (
<i>
(#) y))
|
[.d, b.]))
c= (
dom f)
proof
let y0 be
object such that
A122: y0
in (
rng ((x
+ (
<i>
(#) y))
|
[.d, b.]));
consider x0 be
object such that
A123: x0
in (
dom ((x
+ (
<i>
(#) y))
|
[.d, b.])) & y0
= (((x
+ (
<i>
(#) y))
|
[.d, b.])
. x0) by
A122,
FUNCT_1:def 3;
A124: x0
in ((
dom (x
+ (
<i>
(#) y)))
/\
[.d, b.]) by
A123,
RELAT_1: 61;
((
dom (x
+ (
<i>
(#) y)))
/\
[.d, b.])
c= ((
dom (x
+ (
<i>
(#) y)))
/\
[.a, b.]) by
A2,
XBOOLE_1: 26,
XXREAL_1: 34;
then x0
in ((
dom (x
+ (
<i>
(#) y)))
/\
[.a, b.]) by
A124;
then
A125: x0
in (
dom ((x
+ (
<i>
(#) y))
|
[.a, b.])) by
RELAT_1: 61;
then
A126: (((x
+ (
<i>
(#) y))
|
[.a, b.])
. x0)
in (
rng ((x
+ (
<i>
(#) y))
|
[.a, b.])) by
FUNCT_1: 3;
(((x
+ (
<i>
(#) y))
|
[.d, b.])
. x0)
= ((x
+ (
<i>
(#) y))
. x0) by
A123,
FUNCT_1: 47
.= (((x
+ (
<i>
(#) y))
|
[.a, b.])
. x0) by
A125,
FUNCT_1: 47;
hence thesis by
A1,
A3,
A123,
A126;
end;
A127: (
rng ((x2
+ (
<i>
(#) y2))
|
[.d, b.]))
c= (
dom f)
proof
let y0 be
object such that
A128: y0
in (
rng ((x2
+ (
<i>
(#) y2))
|
[.d, b.]));
consider x0 be
object such that
A129: x0
in (
dom ((x2
+ (
<i>
(#) y2))
|
[.d, b.])) & y0
= (((x2
+ (
<i>
(#) y2))
|
[.d, b.])
. x0) by
A128,
FUNCT_1:def 3;
x0
in ((
dom (x2
+ (
<i>
(#) y2)))
/\
[.d, b.]) by
A129,
RELAT_1: 61;
then
A130: x0
in
[.d, b.] by
XBOOLE_0:def 4;
then x0
in
[.a, b.] by
A95;
then x0
in ((
dom x)
/\ (
dom y)) by
A3,
A4,
XBOOLE_0:def 4;
then x0
in (((
dom x)
/\ (
dom y))
/\
[.a, b.]) by
A95,
A130,
XBOOLE_0:def 4;
then x0
in (((
dom x)
/\ (
dom (
<i>
(#) y)))
/\
[.a, b.]) by
VALUED_1:def 5;
then x0
in ((
dom (x
+ (
<i>
(#) y)))
/\
[.a, b.]) by
VALUED_1:def 1;
then x0
in (
dom ((x
+ (
<i>
(#) y))
|
[.a, b.])) by
RELAT_1: 61;
then
A131: (((x
+ (
<i>
(#) y))
|
[.a, b.])
. x0)
in (
rng ((x
+ (
<i>
(#) y))
|
[.a, b.])) by
FUNCT_1: 3;
reconsider t = x0 as
Element of
REAL by
A129;
A132: (C
. t)
= ((x
+ (
<i>
(#) y))
. t) by
A3,
A4,
A95,
A130,
FUNCT_1: 49;
A133: (C2
. t)
= ((x2
+ (
<i>
(#) y2))
. t) by
A12,
A13,
A130,
FUNCT_1: 49;
(((x2
+ (
<i>
(#) y2))
|
[.d, b.])
. x0)
= ((x2
+ (
<i>
(#) y2))
. x0) by
A129,
FUNCT_1: 47
.= ((x
+ (
<i>
(#) y))
. x0) by
A1,
A130,
A132,
A133
.= (((x
+ (
<i>
(#) y))
|
[.a, b.])
. x0) by
A95,
A130,
FUNCT_1: 49;
hence thesis by
A1,
A3,
A129,
A131;
end;
A134: x
is_differentiable_on Z3 & y
is_differentiable_on Z3 by
A3,
A94,
FDIFF_1: 26,
XBOOLE_1: 17;
A135: x2
is_differentiable_on Z3 & y2
is_differentiable_on Z3 by
A12,
A94,
FDIFF_1: 26,
XBOOLE_1: 17;
A136:
[.d, b.]
c= (
dom x) &
[.d, b.]
c= (
dom y) by
A3,
A4,
A95;
hence (
integral (f,x,y,d,b,Z))
= (
integral (f,x,y,d,b,Z3)) by
A3,
A12,
A13,
A94,
A120,
A121,
Lm1,
XBOOLE_1: 17
.= (
integral (f,x2,y2,d,b,Z3)) by
Lm2,
A12,
A13,
A94,
A97,
A108,
A119,
A121,
A127,
A134,
A135,
A136,
XBOOLE_1: 19
.= (
integral (f,x2,y2,d,b,Z2)) by
A12,
A13,
A94,
A120,
A127,
Lm1,
XBOOLE_1: 17;
end;
thus (
integral (f,C))
= ((
integral (((u0
(#) (x
`| Z))
- (v0
(#) (y
`| Z))),a,b))
+ ((
integral (((v0
(#) (x
`| Z))
+ (u0
(#) (y
`| Z))),a,b))
*
<i> )) by
A1,
A3,
A5,
Def4
.= (((
integral (((u0
(#) (x
`| Z))
- (v0
(#) (y
`| Z))),a,d))
+ (
integral (((u0
(#) (x
`| Z))
- (v0
(#) (y
`| Z))),d,b)))
+ ((
integral (((v0
(#) (x
`| Z))
+ (u0
(#) (y
`| Z))),a,b))
*
<i> )) by
A1,
A18,
A39,
A40,
A41,
INTEGRA6: 17
.= (((
integral (((u0
(#) (x
`| Z))
- (v0
(#) (y
`| Z))),a,d))
+ (
integral (((u0
(#) (x
`| Z))
- (v0
(#) (y
`| Z))),d,b)))
+ (((
integral (((v0
(#) (x
`| Z))
+ (u0
(#) (y
`| Z))),a,d))
+ (
integral (((v0
(#) (x
`| Z))
+ (u0
(#) (y
`| Z))),d,b)))
*
<i> )) by
A1,
A18,
A39,
A40,
A44,
INTEGRA6: 17
.= ((
integral (f,x1,y1,a,d,Z1))
+ (
integral (f,x,y,d,b,Z))) by
A49,
A48,
A47
.= ((
integral (f,C1))
+ (
integral (f,C2))) by
A6,
A7,
A8,
A17,
Def4,
A93;
end;