bkmodel1.miz
begin
reserve a,b,c,d,e,f for
Real,
g for
positive
Real,
x,y for
Complex,
S,T for
Element of (
REAL 2),
u,v,w for
Element of (
TOP-REAL 3);
theorem ::
BKMODEL1:1
Th01: for P1,P2,P3 be
Element of (
ProjectiveSpace (
TOP-REAL 3)) st u is non
zero & v is non
zero & w is non
zero & P1
= (
Dir u) & P2
= (
Dir v) & P3
= (
Dir w) holds ((P1,P2,P3)
are_collinear iff
|{u, v, w}|
=
0 )
proof
let P1,P2,P3 be
Element of (
ProjectiveSpace (
TOP-REAL 3));
assume that
A1: u is non
zero and
A2: v is non
zero and
A3: w is non
zero and
A4: P1
= (
Dir u) and
A5: P2
= (
Dir v) and
A6: P3
= (
Dir w);
hereby
assume (P1,P2,P3)
are_collinear ;
then
consider u9,v9,w9 be
Element of (
TOP-REAL 3) such that
A7: P1
= (
Dir u9) and
A8: P2
= (
Dir v9) and
A9: P3
= (
Dir w9) & not u9 is
zero & not v9 is
zero & not w9 is
zero & (u9,v9,w9)
are_LinDep by
ANPROJ_2: 23;
[(
Dir u9), (
Dir v9), (
Dir w9)]
in the
Collinearity of (
ProjectiveSpace (
TOP-REAL 3)) by
A9,
ANPROJ_1: 25;
then (u,v,w)
are_LinDep by
A7,
A8,
A9,
A1,
A2,
A3,
A4,
A5,
A6,
ANPROJ_1: 25;
hence
|{u, v, w}|
=
0 by
ANPROJ_8: 43;
end;
thus thesis by
A1,
A2,
A3,
A4,
A5,
A6,
ANPROJ_2: 23,
ANPROJ_8: 43;
end;
Lem01: a
<>
0 & b
<>
0 & (a
* d)
= (b
* c) implies ex e st e
= (d
/ b) & e
= (c
/ a) & c
= (e
* a) & d
= (e
* b)
proof
assume that
A1: a
<>
0 and
A2: b
<>
0 and
A3: (a
* d)
= (b
* c);
A4: c
= ((a
* d)
/ b) by
A2,
A3,
XCMPLX_1: 89
.= ((d
/ b)
* a) by
XCMPLX_1: 74;
A5: d
= ((b
* c)
/ a) by
A1,
A3,
XCMPLX_1: 89
.= ((c
/ a)
* b) by
XCMPLX_1: 74;
(d
/ b)
= (((d
/ b)
* a)
/ a) by
A1,
XCMPLX_1: 89
.= ((b
* c)
/ (b
* a)) by
A3,
XCMPLX_1: 83
.= ((b
/ b)
/ (a
/ c)) by
XCMPLX_1: 84
.= (1
/ (a
/ c)) by
A2,
XCMPLX_1: 60
.= (c
/ a) by
XCMPLX_1: 57;
hence thesis by
A4,
A5;
end;
Lem02: a
<>
0 & b
=
0 & (a
* d)
= (b
* c) implies ex e st c
= (e
* a) & d
= (e
* b)
proof
assume that
A1: a
<>
0 and
A2: b
=
0 and
A3: (a
* d)
= (b
* c);
A4: c
= ((c
/ a)
* a) by
A1,
XCMPLX_1: 87;
((c
/ a)
* b)
= d by
A1,
A2,
A3;
hence thesis by
A4;
end;
theorem ::
BKMODEL1:2
(a
<>
0 or b
<>
0 ) & (a
* d)
= (b
* c) implies ex e st c
= (e
* a) & d
= (e
* b)
proof
assume that
A1: a
<>
0 or b
<>
0 and
A2: (a
* d)
= (b
* c);
per cases ;
suppose
A3: a
<>
0 ;
per cases ;
suppose b
=
0 ;
hence thesis by
A1,
A2,
Lem02;
end;
suppose b
<>
0 ;
then ex e st e
= (d
/ b) & e
= (c
/ a) & c
= (e
* a) & d
= (e
* b) by
A2,
A3,
Lem01;
hence thesis;
end;
end;
suppose a
=
0 ;
then ex e st d
= (e
* b) & c
= (e
* a) by
A1,
A2,
Lem02;
hence thesis;
end;
end;
theorem ::
BKMODEL1:3
((a
^2 )
+ (b
^2 ))
= 1 & (((c
* a)
^2 )
+ ((c
* b)
^2 ))
= 1 implies c
= 1 or c
= (
- 1)
proof
assume that
A1: ((a
^2 )
+ (b
^2 ))
= 1 and
A2: (((c
* a)
^2 )
+ ((c
* b)
^2 ))
= 1;
1
= ((c
* c)
* ((a
^2 )
+ (b
* b))) by
A2
.= (c
^2 ) by
A1;
hence thesis by
SQUARE_1: 41;
end;
theorem ::
BKMODEL1:4
((a
* u)
+ ((
- a)
* u))
= (
0. (
TOP-REAL 3))
proof
(a
* u)
=
|[(a
* (u
`1 )), (a
* (u
`2 )), (a
* (u
`3 ))]| by
EUCLID_5: 7;
then ((a
* u)
+ ((
- a)
* u))
= (
|[(a
* (u
`1 )), (a
* (u
`2 )), (a
* (u
`3 ))]|
+
|[((
- a)
* (u
`1 )), ((
- a)
* (u
`2 )), ((
- a)
* (u
`3 ))]|) by
EUCLID_5: 7
.=
|[((a
* (u
`1 ))
+ ((
- a)
* (u
`1 ))), ((a
* (u
`2 ))
+ ((
- a)
* (u
`2 ))), ((a
* (u
`3 ))
+ ((
- a)
* (u
`3 )))]| by
EUCLID_5: 6
.=
|[
0 ,
0 ,
0 ]|;
hence thesis by
EUCLID_5: 4;
end;
theorem ::
BKMODEL1:5
0
<= a & c
<
0 & (
delta (a,b,c))
=
0 implies a
=
0
proof
assume that
A1:
0
<= a and
A2: c
<
0 and
A3: (
delta (a,b,c))
=
0 ;
A4: ((b
^2 )
- ((4
* a)
* c))
=
0 by
A3,
QUIN_1:def 1;
0
<= (b
^2 )
proof
per cases ;
suppose b
=
0 ;
hence thesis;
end;
suppose
0
<> b;
hence thesis by
SQUARE_1: 12;
end;
end;
hence thesis by
A1,
A2,
A4;
end;
theorem ::
BKMODEL1:6
(
Sum (
sqr (T
- S)))
= (
Sum (
sqr (S
- T)))
proof
(
Sum (
sqr (T
- S)))
= (
|.(T
- S).|
^2 ) by
TOPREAL9: 5
.= (
|.(S
- T).|
^2 ) by
EUCLID: 18;
hence thesis by
TOPREAL9: 5;
end;
theorem ::
BKMODEL1:7
((a
^2 )
+ (b
^2 ))
= 1 & ((c
^2 )
+ (d
^2 ))
= 1 & ((c
* a)
+ (d
* b))
= 1 implies (b
* c)
= (a
* d)
proof
assume that
A1: ((a
^2 )
+ (b
^2 ))
= 1 and
A2: ((c
^2 )
+ (d
^2 ))
= 1 and
A3: ((c
* a)
+ (d
* b))
= 1;
((c
^2 )
+ (d
^2 ))
= (((c
* a)
+ (d
* b))
^2 ) by
A3,
A2
.= ((((c
^2 )
* (a
^2 ))
+ ((2
* (c
* a))
* (d
* b)))
+ ((d
^2 )
* (b
^2 )));
then ((((1
- (a
^2 ))
* (c
^2 ))
+ ((1
- (b
^2 ))
* (d
^2 )))
- ((2
* (c
* a))
* (d
* b)))
=
0 ;
then ((((b
* c)
^2 )
+ ((a
^2 )
* (d
^2 )))
- ((2
* (c
* a))
* (d
* b)))
=
0 by
A1,
SQUARE_1: 9;
then (((b
* c)
- (a
* d))
^2 )
=
0 ;
then ((b
* c)
- (a
* d))
=
0 ;
hence thesis;
end;
theorem ::
BKMODEL1:8
((a
^2 )
+ (b
^2 ))
= 1 & a
=
0 implies b
= 1 or b
= (
- 1)
proof
assume that
A1: ((a
^2 )
+ (b
^2 ))
= 1 and
A2: a
=
0 ;
(b
^2 )
= (1
^2 ) by
A1,
A2;
hence thesis by
SQUARE_1: 40;
end;
Lem03: (1
+ (a
^2 ))
<>
0
proof
assume
A1: (1
+ (a
^2 ))
=
0 ;
then (a
^2 )
= (
- 1);
then a
=
0 by
SQUARE_1: 12;
hence contradiction by
A1;
end;
theorem ::
BKMODEL1:9
Th07:
0
<= (a
^2 )
proof
per cases ;
suppose a
=
0 ;
hence thesis;
end;
suppose a
<>
0 ;
hence thesis by
SQUARE_1: 12;
end;
end;
Lem04: (a
^2 )
= (1
/ b) implies a
= (1
/ (
sqrt b)) or a
= ((
- 1)
/ (
sqrt b))
proof
assume
A1: (a
^2 )
= (1
/ b);
reconsider ib = (1
/ b) as
Real;
A2:
0
<= b by
A1,
Th07;
0
<= ib by
A1,
Th07;
then ib
= ((
sqrt (1
/ b))
^2 ) by
SQUARE_1:def 2;
then
A3: a
= (
sqrt (1
/ b)) or a
= (
- (
sqrt (1
/ b))) by
A1,
SQUARE_1: 40;
(
- ((
sqrt 1)
/ (
sqrt b)))
= ((
- 1)
/ (
sqrt b)) by
XCMPLX_1: 187,
SQUARE_1: 18;
hence thesis by
A3,
A2,
SQUARE_1: 30,
SQUARE_1: 18;
end;
theorem ::
BKMODEL1:10
(((a
* b)
^2 )
+ (b
^2 ))
= 1 implies b
= (1
/ (
sqrt (1
+ (a
^2 )))) or b
= ((
- 1)
/ (
sqrt (1
+ (a
^2 ))))
proof
assume
a1: (((a
* b)
^2 )
+ (b
^2 ))
= 1;
(b
^2 )
= ((((a
^2 )
+ 1)
* (b
^2 ))
/ ((a
^2 )
+ 1)) by
XCMPLX_1: 89,
Lem03
.= (1
/ ((a
^2 )
+ 1)) by
a1;
hence thesis by
Lem04;
end;
Lem05: for z be non
zero
Complex holds (((1
/ z)
^2 )
* (z
^2 ))
= 1
proof
let z be non
zero
Complex;
(((1
/ z)
^2 )
* (z
^2 ))
= (((1
/ z)
* ((1
/ z)
* z))
* z)
.= (((1
/ z)
* 1)
* z) by
XCMPLX_1: 106
.= 1 by
XCMPLX_1: 106;
hence thesis;
end;
theorem ::
BKMODEL1:11
a
<>
0 & (b
^2 )
= (1
+ (a
* a)) implies ((((a
* (1
/ b))
* a)
* ((
- 1)
/ b))
+ ((1
/ b)
* ((
- 1)
/ b)))
= (
- 1)
proof
assume that
A1: a
<>
0 and
A2: (b
^2 )
= (1
+ (a
* a));
A3: b
<>
0
proof
assume b
=
0 ;
then (a
^2 )
= (
- 1) by
A2;
hence contradiction by
A1,
SQUARE_1: 12;
end;
((((a
* (1
/ b))
* a)
* ((
- 1)
/ b))
+ ((1
/ b)
* ((
- 1)
/ b)))
= (((1
/ b)
* (((
- 1)
* 1)
/ b))
* ((a
* a)
+ 1))
.= (((1
/ b)
* ((
- 1)
* (1
/ b)))
* ((a
* a)
+ 1)) by
XCMPLX_1: 74
.= ((
- 1)
* (((1
/ b)
^2 )
* (b
^2 ))) by
A2
.= ((
- 1)
* 1) by
A3,
Lem05;
hence thesis;
end;
theorem ::
BKMODEL1:12
((a
^2 )
* (1
/ (b
^2 )))
= ((a
/ b)
^2 )
proof
((a
^2 )
* (1
/ (b
^2 )))
= ((a
* a)
* ((1
/ b)
* (1
/ b))) by
XCMPLX_1: 102
.= ((a
* (a
* (1
/ b)))
* (1
/ b))
.= ((a
* ((a
* 1)
/ b))
* (1
/ b)) by
XCMPLX_1: 74
.= ((a
/ b)
* (a
* (1
/ b)))
.= ((a
/ b)
* ((a
* 1)
/ b)) by
XCMPLX_1: 74
.= ((a
/ b)
^2 );
hence thesis;
end;
theorem ::
BKMODEL1:13
Th11: ((a
^2 )
+ (b
^2 ))
= 1 iff
|[a, b]|
in (
circle (
0 ,
0 ,1))
proof
hereby
assume
A1: ((a
^2 )
+ (b
^2 ))
= 1;
reconsider p =
|[a, b]| as
Point of (
TOP-REAL 2);
|.(p
-
|[
0 ,
0 ]|).|
= 1
proof
(
|.(p
-
|[
0 ,
0 ]|).|
^2 )
= (
|.
|[(a
-
0 ), (b
-
0 )]|.|
^2 ) by
EUCLID: 62
.= 1 by
A1,
TOPGEN_5: 9;
hence thesis by
SQUARE_1: 41;
end;
hence
|[a, b]|
in (
circle (
0 ,
0 ,1));
end;
assume
A2:
|[a, b]|
in (
circle (
0 ,
0 ,1));
thus ((a
^2 )
+ (b
^2 ))
= (
|.
|[(a
-
0 ), (b
-
0 )]|.|
^2 ) by
TOPGEN_5: 9
.= (
|.(
|[a, b]|
-
|[
0 ,
0 ]|).|
^2 ) by
EUCLID: 62
.= (1
^2 ) by
A2,
TOPREAL9: 43
.= 1;
end;
theorem ::
BKMODEL1:14
Th12: ((a
^2 )
+ (b
^2 ))
= (g
^2 ) iff
|[a, b]|
in (
circle (
0 ,
0 ,g))
proof
hereby
assume
A1: ((a
^2 )
+ (b
^2 ))
= (g
^2 );
reconsider p =
|[a, b]| as
Point of (
TOP-REAL 2);
|.(p
-
|[
0 ,
0 ]|).|
= g
proof
A2: (
|.(p
-
|[
0 ,
0 ]|).|
^2 )
= (
|.
|[(a
-
0 ), (b
-
0 )]|.|
^2 ) by
EUCLID: 62
.= (g
^2 ) by
A1,
TOPGEN_5: 9;
(
- g)
<
0 ;
hence thesis by
A2,
SQUARE_1: 40;
end;
hence
|[a, b]|
in (
circle (
0 ,
0 ,g));
end;
assume
A3:
|[a, b]|
in (
circle (
0 ,
0 ,g));
thus ((a
^2 )
+ (b
^2 ))
= (
|.
|[(a
-
0 ), (b
-
0 )]|.|
^2 ) by
TOPGEN_5: 9
.= (
|.(
|[a, b]|
-
|[
0 ,
0 ]|).|
^2 ) by
EUCLID: 62
.= (g
^2 ) by
A3,
TOPREAL9: 43;
end;
Lem06: (((a
* b)
^2 )
+ ((a
* c)
^2 ))
= ((a
^2 )
* ((b
^2 )
+ (c
^2 )));
theorem ::
BKMODEL1:15
Th13: a
<>
0 & (
- 1)
< a
< 1 & b
= ((2
+ (
sqrt (
delta ((a
* a),(
- 2),1))))
/ ((2
* a)
* a)) implies ((((((1
+ (a
* a))
* b)
* b)
- (2
* b))
+ 1)
- (b
* b))
=
0
proof
assume that
A1: a
<>
0 and
A2: (
- 1)
< a
< 1 and
A3: b
= ((2
+ (
sqrt (
delta ((a
* a),(
- 2),1))))
/ ((2
* a)
* a));
set x1 = (((
- (
- 2))
- (
sqrt (
delta ((a
* a),(
- 2),1))))
/ (2
* (a
* a))), x2 = (((
- (
- 2))
+ (
sqrt (
delta ((a
* a),(
- 2),1))))
/ (2
* (a
* a)));
A4:
0
<= (1
- (a
^2 ))
proof
((a
^2 )
* (1
^2 ))
<= 1 by
A2,
SQUARE_1: 53;
then (a
^2 )
< 1 by
A2,
SQUARE_1: 41,
XXREAL_0: 1;
then ((a
^2 )
- (a
^2 ))
< (1
- (a
^2 )) by
XREAL_1: 9;
hence thesis;
end;
(
delta ((a
* a),(
- 2),1))
>=
0
proof
(
delta ((a
* a),(
- 2),1))
= (((
- 2)
^2 )
- ((4
* (a
* a))
* 1)) by
QUIN_1:def 1
.= (4
* (1
- (a
^2 )));
hence thesis by
A4;
end;
then ((((a
* a)
* (b
^2 ))
+ ((
- 2)
* b))
+ 1)
= (((a
* a)
* (b
- x1))
* (x2
- x2)) by
A3,
A1,
QUIN_1: 16
.=
0 ;
hence thesis;
end;
Lem07: (
- 1)
< a
< 1 implies ex b st ((((((1
+ (a
* a))
* b)
* b)
- (2
* b))
+ 1)
- (b
* b))
=
0
proof
assume
A1: (
- 1)
< a
< 1;
per cases ;
suppose
A2: a
=
0 ;
set b = (1
/ 2);
take b;
thus thesis by
A2;
end;
suppose
A3: a
<>
0 ;
take b = ((2
+ (
sqrt (
delta ((a
* a),(
- 2),1))))
/ ((2
* a)
* a));
thus thesis by
A1,
A3,
Th13;
end;
end;
theorem ::
BKMODEL1:16
((a
^2 )
+ (b
^2 ))
= 1 & (
- 1)
< c
< 1 implies ex d, e, f st e
= (((d
* c)
* a)
+ ((1
- d)
* (
- b))) & f
= (((d
* c)
* b)
+ ((1
- d)
* a)) & ((e
^2 )
+ (f
^2 ))
= (d
^2 )
proof
assume that
A1: ((a
^2 )
+ (b
^2 ))
= 1 and
A2: (
- 1)
< c
< 1;
consider d be
Real such that
A3: ((((((1
+ (c
* c))
* d)
* d)
- (2
* d))
+ 1)
- (d
* d))
=
0 by
A2,
Lem07;
reconsider e = (((d
* c)
* a)
+ ((1
- d)
* (
- b))), f = (((d
* c)
* b)
+ ((1
- d)
* a)) as
Real;
((e
^2 )
+ (f
^2 ))
= ((((d
* c)
^2 )
* ((a
^2 )
+ (b
^2 )))
+ ((((1
- d)
* b)
^2 )
+ (((1
- d)
* a)
^2 )))
.= ((((d
* c)
^2 )
* 1)
+ (((1
- d)
^2 )
* 1)) by
A1,
Lem06
.= (d
^2 ) by
A3;
hence thesis;
end;
theorem ::
BKMODEL1:17
((a
^2 )
+ (b
^2 ))
< 1 & ((c
^2 )
+ (d
^2 ))
= 1 implies ((((a
+ c)
/ 2)
^2 )
+ (((b
+ d)
/ 2)
^2 ))
< 1
proof
assume that
A1: ((a
^2 )
+ (b
^2 ))
< 1 and
A2: ((c
^2 )
+ (d
^2 ))
= 1;
reconsider u =
|[a, b]|, v =
|[c, d]| as
Element of (
TOP-REAL 2);
A4:
|.
|(u, v)|.|
<= (
|.u.|
*
|.v.|) by
EUCLID_2: 51;
A5: (
|.u.|
^2 )
< 1 & (
|.v.|
^2 )
= 1 by
A1,
A2,
TOPGEN_5: 9;
A6:
|(u, v)|
= (((u
`1 )
* (v
`1 ))
+ ((u
`2 )
* (v
`2 ))) by
EUCLID_3: 41
.= ((a
* (v
`1 ))
+ ((u
`2 )
* (v
`2 ))) by
EUCLID: 52
.= ((a
* (v
`1 ))
+ (b
* (v
`2 ))) by
EUCLID: 52
.= ((a
* c)
+ (b
* (v
`2 ))) by
EUCLID: 52
.= ((a
* c)
+ (b
* d)) by
EUCLID: 52;
((
|.u.|
^2 )
* (
|.v.|
^2 ))
< (1
* 1) by
A5;
then ((
|.u.|
*
|.v.|)
^2 )
< 1;
then (
|.u.|
*
|.v.|)
< 1 by
SQUARE_1: 52;
then
A7:
|.
|(u, v)|.|
< 1 by
XXREAL_0: 2,
A4;
|(u, v)|
<=
|.
|(u, v)|.| by
COMPLEX1: 76;
then ((a
* c)
+ (b
* d))
< 1 by
A6,
A7,
XXREAL_0: 2;
then (2
* ((a
* c)
+ (b
* d)))
< (2
* 1) by
XREAL_1: 68;
then ((((2
* a)
* c)
+ ((2
* b)
* d))
+ ((a
^2 )
+ (b
^2 )))
< (2
+ 1) by
A1,
XREAL_1: 8;
then (((((2
* a)
* c)
+ ((2
* b)
* d))
+ ((a
^2 )
+ (b
^2 )))
+ 1)
< ((2
+ 1)
+ 1) by
XREAL_1: 8;
then ((((((2
* a)
* c)
+ ((2
* b)
* d))
+ ((a
^2 )
+ (b
^2 )))
+ 1)
/ 4)
< (4
/ 4) by
XREAL_1: 74;
hence thesis by
A2;
end;
Lem08:
0
<= a & c
<=
0 implies
0
<= (
delta (a,b,c))
proof
assume that
A1:
0
<= a and
A2: c
<=
0 ;
A3: (
delta (a,b,c))
= ((b
^2 )
- ((4
* a)
* c)) by
QUIN_1:def 1;
0
<= (b
* b)
proof
per cases ;
suppose b
=
0 ;
hence thesis;
end;
suppose b
<>
0 ;
then
0
< (b
^2 ) by
SQUARE_1: 12;
hence thesis;
end;
end;
hence thesis by
A1,
A2,
A3;
end;
theorem ::
BKMODEL1:18
(
|.S.|
^2 )
<= 1 implies
0
<= (
delta ((
Sum (
sqr (T
- S))),b,((
Sum (
sqr S))
- 1)))
proof
assume (
|.S.|
^2 )
<= 1;
then ((
|.S.|
^2 )
- 1)
<= ((
|.S.|
^2 )
- (
|.S.|
^2 )) by
XREAL_1: 10;
then
A1: ((
Sum (
sqr S))
- 1)
<=
0 by
TOPREAL9: 5;
0
<= (
|.(T
- S).|
^2 );
then
0
<= (
Sum (
sqr (T
- S))) by
TOPREAL9: 5;
hence thesis by
A1,
Lem08;
end;
theorem ::
BKMODEL1:19
((a
^2 )
+ (b
^2 )) is
negative implies a
=
0 & b
=
0
proof
assume
A1: ((a
^2 )
+ (b
^2 )) is
negative;
0
<= (a
* a) &
0
<= (b
* b) by
XREAL_1: 63;
hence thesis by
A1;
end;
theorem ::
BKMODEL1:20
u
=
|[a, b, 1]| & v
=
|[c, d, 1]| & w
=
|[((a
+ c)
/ 2), ((b
+ d)
/ 2), 1]| implies
|{u, v, w}|
=
0
proof
assume that
A1: u
=
|[a, b, 1]| and
A2: v
=
|[c, d, 1]| and
A3: w
=
|[((a
+ c)
/ 2), ((b
+ d)
/ 2), 1]|;
A4: (u
`1 )
= a & (u
`2 )
= b & (u
`3 )
= 1 & (v
`1 )
= c & (v
`2 )
= d & (v
`3 )
= 1 & (w
`1 )
= ((a
+ c)
/ 2) & (w
`2 )
= ((b
+ d)
/ 2) & (w
`3 )
= 1 by
A1,
A2,
A3,
EUCLID_5: 2;
|{u, v, w}|
= ((((((((u
`1 )
* (v
`2 ))
* (w
`3 ))
- (((u
`3 )
* (v
`2 ))
* (w
`1 )))
- (((u
`1 )
* (v
`3 ))
* (w
`2 )))
+ (((u
`2 )
* (v
`3 ))
* (w
`1 )))
- (((u
`2 )
* (v
`1 ))
* (w
`3 )))
+ (((u
`3 )
* (v
`1 ))
* (w
`2 ))) by
ANPROJ_8: 27
.= (((((((a
* d)
* 1)
- ((1
* d)
* ((a
+ c)
/ 2)))
- (((a
* 1)
* (b
+ d))
/ 2))
+ (((b
* 1)
* (a
+ c))
/ 2))
- ((b
* c)
* 1))
+ (((1
* c)
* (b
+ d))
/ 2)) by
A4;
hence thesis;
end;
theorem ::
BKMODEL1:21
Th19: (a
*
|(u, v)|)
=
|((a
* u), v)| & (a
*
|(u, v)|)
=
|(u, (a
* v))|
proof
A1: (a
* (u
`1 ))
= (a
* (u
. 1)) by
EUCLID_5:def 1
.= ((a
* u)
. 1) by
RVSUM_1: 44
.= ((a
* u)
`1 ) by
EUCLID_5:def 1;
A2: (a
* (u
`2 ))
= (a
* (u
. 2)) by
EUCLID_5:def 2
.= ((a
* u)
. 2) by
RVSUM_1: 44
.= ((a
* u)
`2 ) by
EUCLID_5:def 2;
A3: (a
* (u
`3 ))
= (a
* (u
. 3)) by
EUCLID_5:def 3
.= ((a
* u)
. 3) by
RVSUM_1: 44
.= ((a
* u)
`3 ) by
EUCLID_5:def 3;
thus (a
*
|(u, v)|)
= (a
* ((((u
`1 )
* (v
`1 ))
+ ((u
`2 )
* (v
`2 )))
+ ((u
`3 )
* (v
`3 )))) by
EUCLID_5: 29
.= (((((a
* u)
`1 )
* (v
`1 ))
+ (((a
* u)
`2 )
* (v
`2 )))
+ (((a
* u)
`3 )
* (v
`3 ))) by
A1,
A2,
A3
.=
|((a
* u), v)| by
EUCLID_5: 29;
A4: (a
* (v
`1 ))
= (a
* (v
. 1)) by
EUCLID_5:def 1
.= ((a
* v)
. 1) by
RVSUM_1: 44
.= ((a
* v)
`1 ) by
EUCLID_5:def 1;
A5: (a
* (v
`2 ))
= (a
* (v
. 2)) by
EUCLID_5:def 2
.= ((a
* v)
. 2) by
RVSUM_1: 44
.= ((a
* v)
`2 ) by
EUCLID_5:def 2;
A6: (a
* (v
`3 ))
= (a
* (v
. 3)) by
EUCLID_5:def 3
.= ((a
* v)
. 3) by
RVSUM_1: 44
.= ((a
* v)
`3 ) by
EUCLID_5:def 3;
thus (a
*
|(u, v)|)
= (a
* ((((u
`1 )
* (v
`1 ))
+ ((u
`2 )
* (v
`2 )))
+ ((u
`3 )
* (v
`3 )))) by
EUCLID_5: 29
.= ((((u
`1 )
* ((a
* v)
`1 ))
+ ((u
`2 )
* ((a
* v)
`2 )))
+ ((u
`3 )
* ((a
* v)
`3 ))) by
A4,
A5,
A6
.=
|(u, (a
* v))| by
EUCLID_5: 29;
end;
reserve a,b,c for
Element of
F_Real ,
M,N for
Matrix of 3,
F_Real ;
theorem ::
BKMODEL1:22
M
= (
symmetric_3 (
0 ,
0 ,
0 ,
0 ,
0 ,
0 )) implies (
Det M)
= (
0.
F_Real )
proof
assume
A1: M
= (
symmetric_3 (
0 ,
0 ,
0 ,
0 ,
0 ,
0 ));
reconsider z =
0 as
Element of
F_Real ;
M
=
<*
<*z, z, z*>,
<*z, z, z*>,
<*z, z, z*>*> by
A1,
PASCAL:def 3;
then (
Det M)
= (((((((z
* z)
* z)
- ((z
* z)
* z))
- ((z
* z)
* z))
+ ((z
* z)
* z))
- ((z
* z)
* z))
+ ((z
* z)
* z)) by
MATRIX_9: 46;
hence thesis;
end;
Lem09: for a11,a12,a13,a21,a22,a23,a31,a32,a33,b11,b12,b13,b21,b22,b23,b31,b32,b33 be
Element of
F_Real holds for A,B be
Matrix of 3,
F_Real st A
=
<*
<*a11, a12, a13*>,
<*a21, a22, a23*>,
<*a31, a32, a33*>*> & B
=
<*
<*b11, b12, b13*>,
<*b21, b22, b23*>,
<*b31, b32, b33*>*> holds ((A
* B)
* (1,1))
= (((a11
* b11)
+ (a12
* b21))
+ (a13
* b31)) & ((A
* B)
* (1,2))
= (((a11
* b12)
+ (a12
* b22))
+ (a13
* b32)) & ((A
* B)
* (1,3))
= (((a11
* b13)
+ (a12
* b23))
+ (a13
* b33)) & ((A
* B)
* (2,1))
= (((a21
* b11)
+ (a22
* b21))
+ (a23
* b31)) & ((A
* B)
* (2,2))
= (((a21
* b12)
+ (a22
* b22))
+ (a23
* b32)) & ((A
* B)
* (2,3))
= (((a21
* b13)
+ (a22
* b23))
+ (a23
* b33)) & ((A
* B)
* (3,1))
= (((a31
* b11)
+ (a32
* b21))
+ (a33
* b31)) & ((A
* B)
* (3,2))
= (((a31
* b12)
+ (a32
* b22))
+ (a33
* b32)) & ((A
* B)
* (3,3))
= (((a31
* b13)
+ (a32
* b23))
+ (a33
* b33))
proof
let a11,a12,a13,a21,a22,a23,a31,a32,a33,b11,b12,b13,b21,b22,b23,b31,b32,b33 be
Element of
F_Real ;
let A,B be
Matrix of 3,
F_Real ;
assume that
A1: A
=
<*
<*a11, a12, a13*>,
<*a21, a22, a23*>,
<*a31, a32, a33*>*> and
A2: B
=
<*
<*b11, b12, b13*>,
<*b21, b22, b23*>,
<*b31, b32, b33*>*>;
A3: (A
* B)
=
<*
<*(((a11
* b11)
+ (a12
* b21))
+ (a13
* b31)), (((a11
* b12)
+ (a12
* b22))
+ (a13
* b32)), (((a11
* b13)
+ (a12
* b23))
+ (a13
* b33))*>,
<*(((a21
* b11)
+ (a22
* b21))
+ (a23
* b31)), (((a21
* b12)
+ (a22
* b22))
+ (a23
* b32)), (((a21
* b13)
+ (a22
* b23))
+ (a23
* b33))*>,
<*(((a31
* b11)
+ (a32
* b21))
+ (a33
* b31)), (((a31
* b12)
+ (a32
* b22))
+ (a33
* b32)), (((a31
* b13)
+ (a32
* b23))
+ (a33
* b33))*>*> by
A1,
A2,
ANPROJ_9: 6;
reconsider C = (A
* B) as
Matrix of 3,
F_Real ;
C
=
<*
<*(C
* (1,1)), (C
* (1,2)), (C
* (1,3))*>,
<*(C
* (2,1)), (C
* (2,2)), (C
* (2,3))*>,
<*(C
* (3,1)), (C
* (3,2)), (C
* (3,3))*>*> by
MATRIXR2: 37;
hence thesis by
A3,
PASCAL: 2;
end;
theorem ::
BKMODEL1:23
N
=
<*
<*a,
0 ,
0 *>,
<*
0 , b,
0 *>,
<*
0 ,
0 , c*>*> implies (((M
@ )
* (N
* M))
* (1,1))
= ((((a
* (M
* (1,1)))
* (M
* (1,1)))
+ ((b
* (M
* (2,1)))
* (M
* (2,1))))
+ ((c
* (M
* (3,1)))
* (M
* (3,1)))) & (((M
@ )
* (N
* M))
* (1,2))
= ((((a
* (M
* (1,1)))
* (M
* (1,2)))
+ ((b
* (M
* (2,1)))
* (M
* (2,2))))
+ ((c
* (M
* (3,1)))
* (M
* (3,2)))) & (((M
@ )
* (N
* M))
* (1,3))
= ((((a
* (M
* (1,1)))
* (M
* (1,3)))
+ ((b
* (M
* (2,1)))
* (M
* (2,3))))
+ ((c
* (M
* (3,1)))
* (M
* (3,3)))) & (((M
@ )
* (N
* M))
* (2,1))
= ((((a
* (M
* (1,2)))
* (M
* (1,1)))
+ ((b
* (M
* (2,2)))
* (M
* (2,1))))
+ ((c
* (M
* (3,2)))
* (M
* (3,1)))) & (((M
@ )
* (N
* M))
* (2,2))
= ((((a
* (M
* (1,2)))
* (M
* (1,2)))
+ ((b
* (M
* (2,2)))
* (M
* (2,2))))
+ ((c
* (M
* (3,2)))
* (M
* (3,2)))) & (((M
@ )
* (N
* M))
* (2,3))
= ((((a
* (M
* (1,2)))
* (M
* (1,3)))
+ ((b
* (M
* (2,2)))
* (M
* (2,3))))
+ ((c
* (M
* (3,2)))
* (M
* (3,3)))) & (((M
@ )
* (N
* M))
* (3,1))
= ((((a
* (M
* (1,3)))
* (M
* (1,1)))
+ ((b
* (M
* (2,3)))
* (M
* (2,1))))
+ ((c
* (M
* (3,3)))
* (M
* (3,1)))) & (((M
@ )
* (N
* M))
* (3,2))
= ((((a
* (M
* (1,3)))
* (M
* (1,2)))
+ ((b
* (M
* (2,3)))
* (M
* (2,2))))
+ ((c
* (M
* (3,3)))
* (M
* (3,2)))) & (((M
@ )
* (N
* M))
* (3,3))
= ((((a
* (M
* (1,3)))
* (M
* (1,3)))
+ ((b
* (M
* (2,3)))
* (M
* (2,3))))
+ ((c
* (M
* (3,3)))
* (M
* (3,3))))
proof
assume
A1: N
=
<*
<*a,
0 ,
0 *>,
<*
0 , b,
0 *>,
<*
0 ,
0 , c*>*>;
reconsider a11 = a, a12 =
0 , a13 =
0 , a21 =
0 , a22 = b, a23 =
0 , a31 =
0 , a32 =
0 , a33 = c, b11 = (M
* (1,1)), b12 = (M
* (1,2)), b13 = (M
* (1,3)), b21 = (M
* (2,1)), b22 = (M
* (2,2)), b23 = (M
* (2,3)), b31 = (M
* (3,1)), b32 = (M
* (3,2)), b33 = (M
* (3,3)) as
Element of
F_Real ;
A2: M
=
<*
<*b11, b12, b13*>,
<*b21, b22, b23*>,
<*b31, b32, b33*>*> by
MATRIXR2: 37;
then
A3: ((N
* M)
* (1,1))
= (((a11
* b11)
+ (a12
* b21))
+ (a13
* b31)) & ((N
* M)
* (1,2))
= (((a11
* b12)
+ (a12
* b22))
+ (a13
* b32)) & ((N
* M)
* (1,3))
= (((a11
* b13)
+ (a12
* b23))
+ (a13
* b33)) & ((N
* M)
* (2,1))
= (((a21
* b11)
+ (a22
* b21))
+ (a23
* b31)) & ((N
* M)
* (2,2))
= (((a21
* b12)
+ (a22
* b22))
+ (a23
* b32)) & ((N
* M)
* (2,3))
= (((a21
* b13)
+ (a22
* b23))
+ (a23
* b33)) & ((N
* M)
* (3,1))
= (((a31
* b11)
+ (a32
* b21))
+ (a33
* b31)) & ((N
* M)
* (3,2))
= (((a31
* b12)
+ (a32
* b22))
+ (a33
* b32)) & ((N
* M)
* (3,3))
= (((a31
* b13)
+ (a32
* b23))
+ (a33
* b33)) by
A1,
Lem09;
reconsider c11 = (a
* b11), c12 = (a
* b12), c13 = (a
* b13), c21 = (b
* b21), c22 = (b
* b22), c23 = (b
* b23), c31 = (c
* b31), c32 = (c
* b32), c33 = (c
* b33) as
Element of
F_Real ;
A4: (N
* M)
=
<*
<*c11, c12, c13*>,
<*c21, c22, c23*>,
<*c31, c32, c33*>*> by
A3,
MATRIXR2: 37;
(M
@ )
=
<*
<*b11, b21, b31*>,
<*b12, b22, b32*>,
<*b13, b23, b33*>*> by
A2,
ANPROJ_8: 22;
then (((M
@ )
* (N
* M))
* (1,1))
= (((b11
* (a
* b11))
+ (b21
* (b
* b21)))
+ (b31
* (c
* b31))) & (((M
@ )
* (N
* M))
* (1,2))
= (((b11
* (a
* b12))
+ (b21
* (b
* b22)))
+ (b31
* (c
* b32))) & (((M
@ )
* (N
* M))
* (1,3))
= (((b11
* (a
* b13))
+ (b21
* (b
* b23)))
+ (b31
* (c
* b33))) & (((M
@ )
* (N
* M))
* (2,1))
= (((b12
* (a
* b11))
+ (b22
* (b
* b21)))
+ (b32
* (c
* b31))) & (((M
@ )
* (N
* M))
* (2,2))
= (((b12
* (a
* b12))
+ (b22
* (b
* b22)))
+ (b32
* (c
* b32))) & (((M
@ )
* (N
* M))
* (2,3))
= (((b12
* (a
* b13))
+ (b22
* (b
* b23)))
+ (b32
* (c
* b33))) & (((M
@ )
* (N
* M))
* (3,1))
= (((b13
* (a
* b11))
+ (b23
* (b
* b21)))
+ (b33
* (c
* b31))) & (((M
@ )
* (N
* M))
* (3,2))
= (((b13
* (a
* b12))
+ (b23
* (b
* b22)))
+ (b33
* (c
* b32))) & (((M
@ )
* (N
* M))
* (3,3))
= (((b13
* (a
* b13))
+ (b23
* (b
* b23)))
+ (b33
* (c
* b33))) by
A4,
Lem09;
hence thesis;
end;
theorem ::
BKMODEL1:24
for m,n be
Nat holds for M be
Matrix of m,
F_Real holds for N be
Matrix of m, n,
F_Real st m
>
0 holds (M
* N) is
Matrix of m, n,
F_Real
proof
let m,n be
Nat;
let M be
Matrix of m,
F_Real ;
let N be
Matrix of m, n,
F_Real ;
assume
A1: m
>
0 ;
(
len N)
= m & (
width N)
= n by
A1,
MATRIX_0: 23;
then (
width M)
= (
len N) by
A1,
MATRIX_0: 23;
then (
len (M
* N))
= (
len M) & (
width (M
* N))
= (
width N) by
MATRIX_3:def 4;
then (
len (M
* N))
= m & (
width (M
* N))
= n by
A1,
MATRIX_0: 23;
hence thesis by
A1,
MATRIX_0: 20;
end;
reserve D for non
empty
set;
reserve d1,d2,d3 for
Element of D;
reserve A for
Matrix of 1, 3, D;
reserve B for
Matrix of 3, 1, D;
theorem ::
BKMODEL1:25
for M be
Matrix of 1, D holds (M
@ )
= M
proof
let M be
Matrix of 1, D;
A1: M
=
<*
<*(M
* (1,1))*>*> by
MATRIX13: 20;
(
Indices M)
=
[:
{1},
{1}:] by
MATRIX_0: 24,
FINSEQ_1: 2;
then
[1, 1]
in (
Indices M) by
ZFMISC_1: 28;
then ((M
@ )
* (1,1))
= (M
* (1,1)) by
MATRIX_0:def 6;
hence thesis by
A1,
MATRIX13: 20;
end;
theorem ::
BKMODEL1:26
Th23: (A
@ ) is 3, 1
-size
proof
(
width A)
= 3 & (
len A)
= 1 by
MATRIX_0: 23;
then
A1: (
len (A
@ ))
= 3 & (
width (A
@ ))
= 1 by
MATRIX_0: 29;
then
consider s1 be
FinSequence such that
A2: s1
in (
rng (A
@ )) and
A3: (
len s1)
= 1 by
MATRIX_0:def 3;
consider n0 be
Nat such that
A4: for x be
object st x
in (
rng (A
@ )) holds ex s be
FinSequence st s
= x & (
len s)
= n0 by
MATRIX_0:def 1;
consider s be
FinSequence such that
A5: s
= s1 and
A6: (
len s)
= n0 by
A2,
A4;
for p be
FinSequence of D st p
in (
rng (A
@ )) holds (
len p)
= 1
proof
let p be
FinSequence of D;
assume
A7: p
in (
rng (A
@ ));
consider s be
FinSequence such that
A8: s
= p and
A9: (
len s)
= n0 by
A7,
A4;
thus thesis by
A3,
A5,
A6,
A8,
A9;
end;
hence thesis by
A1,
MATRIX_0:def 2;
end;
theorem ::
BKMODEL1:27
Th24:
<*
<*d1, d2, d3*>*> is
Matrix of 1, 3, D
proof
A1:
<*d1, d2, d3*> is
FinSequence of D by
FINSEQ_2: 14;
(
len
<*d1, d2, d3*>)
= 3 by
FINSEQ_1: 45;
hence thesis by
A1,
MATRIX_0: 11;
end;
theorem ::
BKMODEL1:28
Th25:
<*
<*d1*>,
<*d2*>,
<*d3*>*> is
Matrix of 3, 1, D
proof
reconsider p =
<*d1*>, q =
<*d2*>, r =
<*d3*> as
FinSequence of D;
(
len p)
= 1 & (
len q)
= 1 & (
len r)
= 1 by
FINSEQ_1: 40;
hence thesis by
MATRIXR2: 34;
end;
theorem ::
BKMODEL1:29
Th26: A
=
<*
<*(A
* (1,1)), (A
* (1,2)), (A
* (1,3))*>*>
proof
reconsider B =
<*
<*(A
* (1,1)), (A
* (1,2)), (A
* (1,3))*>*> as
Matrix of 1, 3, D by
Th24;
A1: (
len A)
= 1 & (
width A)
= 3 by
MATRIX_0: 23;
A2: for i,j be
Nat st
[i, j]
in (
Indices A) holds (A
* (i,j))
= (B
* (i,j))
proof
let i,j be
Nat;
A3: (
Indices B)
=
[:(
Seg 1), (
Seg 3):] by
MATRIX_0: 23;
A4: (
Indices A)
=
[:(
Seg 1), (
Seg 3):] by
MATRIX_0: 23;
assume
A5:
[i, j]
in (
Indices A);
then i
in
{1} by
A4,
ZFMISC_1: 87,
FINSEQ_1: 2;
then
A6: i
= 1 by
TARSKI:def 1;
j
in
{1, 2, 3} by
A4,
A5,
ZFMISC_1: 87,
FINSEQ_3: 1;
per cases by
A6,
ENUMSET1:def 1;
suppose
A7:
[i, j]
=
[1, 1];
then
consider p be
FinSequence of D such that
A8: p
= (B
. 1) and
A9: (B
* (1,1))
= (p
. 1) by
A3,
A4,
A5,
MATRIX_0:def 5;
A10: (B
. 1)
=
<*(A
* (1,1)), (A
* (1,2)), (A
* (1,3))*> by
FINSEQ_1: 40;
i
= 1 & j
= 1 by
A7,
XTUPLE_0: 1;
hence thesis by
A10,
A8,
A9,
FINSEQ_1: 45;
end;
suppose
A11:
[i, j]
=
[1, 2];
then
consider p be
FinSequence of D such that
A12: p
= (B
. 1) and
A13: (B
* (1,2))
= (p
. 2) by
A3,
A4,
A5,
MATRIX_0:def 5;
A14: (B
. 1)
=
<*(A
* (1,1)), (A
* (1,2)), (A
* (1,3))*> by
FINSEQ_1: 40;
i
= 1 & j
= 2 by
A11,
XTUPLE_0: 1;
hence thesis by
A14,
A12,
A13,
FINSEQ_1: 45;
end;
suppose
A15:
[i, j]
=
[1, 3];
then
consider p be
FinSequence of D such that
A16: p
= (B
. 1) and
A17: (B
* (1,3))
= (p
. 3) by
A3,
A4,
A5,
MATRIX_0:def 5;
A18: (B
. 1)
=
<*(A
* (1,1)), (A
* (1,2)), (A
* (1,3))*> by
FINSEQ_1: 40;
i
= 1 & j
= 3 by
A15,
XTUPLE_0: 1;
hence thesis by
A18,
A16,
A17,
FINSEQ_1: 45;
end;
end;
(
len B)
= 1 & (
width B)
= 3 by
MATRIX_0: 23;
hence thesis by
A1,
A2,
MATRIX_0: 21;
end;
theorem ::
BKMODEL1:30
Th27: B
=
<*
<*(B
* (1,1))*>,
<*(B
* (2,1))*>,
<*(B
* (3,1))*>*>
proof
reconsider C =
<*
<*(B
* (1,1))*>,
<*(B
* (2,1))*>,
<*(B
* (3,1))*>*> as
Matrix of 3, 1, D by
Th25;
A1: (
len B)
= 3 & (
width B)
= 1 by
MATRIX_0: 23;
A2: for i,j be
Nat st
[i, j]
in (
Indices B) holds (B
* (i,j))
= (C
* (i,j))
proof
let i,j be
Nat;
A3: (
Indices C)
=
[:(
Seg 3), (
Seg 1):] by
MATRIX_0: 23;
A4: (
Indices B)
=
[:(
Seg 3), (
Seg 1):] by
MATRIX_0: 23;
assume
A5:
[i, j]
in (
Indices B);
then i
in (
Seg 3) & j
in (
Seg 1) by
A4,
ZFMISC_1: 87;
then (i
= 1 or i
= 2 or i
= 3) & j
= 1 by
FINSEQ_1: 2,
FINSEQ_3: 1,
ENUMSET1:def 1,
TARSKI:def 1;
per cases ;
suppose
A6:
[i, j]
=
[1, 1];
then
consider p be
FinSequence of D such that
A7: p
= (C
. 1) and
A8: (C
* (1,1))
= (p
. 1) by
A3,
A4,
A5,
MATRIX_0:def 5;
A9: (C
. 1)
=
<*(B
* (1,1))*> by
FINSEQ_1: 45;
i
= 1 & j
= 1 by
A6,
XTUPLE_0: 1;
hence thesis by
A9,
A7,
A8,
FINSEQ_1: 40;
end;
suppose
A10:
[i, j]
=
[2, 1];
then
consider p be
FinSequence of D such that
A11: p
= (C
. 2) and
A12: (C
* (2,1))
= (p
. 1) by
A3,
A4,
A5,
MATRIX_0:def 5;
A13: (C
. 2)
=
<*(B
* (2,1))*> by
FINSEQ_1: 45;
i
= 2 & j
= 1 by
A10,
XTUPLE_0: 1;
hence thesis by
A13,
A11,
A12,
FINSEQ_1: 40;
end;
suppose
A14:
[i, j]
=
[3, 1];
then
consider p be
FinSequence of D such that
A15: p
= (C
. 3) and
A16: (C
* (3,1))
= (p
. 1) by
A3,
A4,
A5,
MATRIX_0:def 5;
A17: (C
. 3)
=
<*(B
* (3,1))*> by
FINSEQ_1: 45;
i
= 3 & j
= 1 by
A14,
XTUPLE_0: 1;
hence thesis by
A17,
A15,
A16,
FINSEQ_1: 40;
end;
end;
(
len C)
= 3 & (
width C)
= 1 by
MATRIX_0: 23;
hence thesis by
A1,
A2,
MATRIX_0: 21;
end;
theorem ::
BKMODEL1:31
(A
@ )
=
<*
<*(A
* (1,1))*>,
<*(A
* (1,2))*>,
<*(A
* (1,3))*>*>
proof
A1: (A
@ ) is
Matrix of 3, 1, D by
Th23;
[1, 1]
in (
Indices A) &
[1, 2]
in (
Indices A) &
[1, 3]
in (
Indices A) by
MATRIX_0: 31;
then ((A
@ )
* (1,1))
= (A
* (1,1)) & ((A
@ )
* (2,1))
= (A
* (1,2)) & ((A
@ )
* (3,1))
= (A
* (1,3)) by
MATRIX_0:def 6;
hence thesis by
A1,
Th27;
end;
theorem ::
BKMODEL1:32
ex d1, d2, d3 st A
=
<*
<*d1, d2, d3*>*>
proof
A
=
<*
<*(A
* (1,1)), (A
* (1,2)), (A
* (1,3))*>*> by
Th26;
hence thesis;
end;
theorem ::
BKMODEL1:33
for p be
FinSequence of (1
-tuples_on
REAL ) st (
len p)
= 3 holds (
ColVec2Mx (
M2F p))
= p
proof
let p be
FinSequence of (1
-tuples_on
REAL );
assume
A1: (
len p)
= 3;
then
A2: (
M2F p)
=
<*((p
. 1)
. 1), ((p
. 2)
. 1), ((p
. 3)
. 1)*> by
ANPROJ_8:def 2;
then
A3: (
len (
M2F p))
= 3 by
FINSEQ_1: 45;
A4: (
len (
M2F p))
>
0 by
A2,
FINSEQ_1: 45;
then
A5: (
len (
ColVec2Mx (
M2F p)))
= (
len (
M2F p)) by
MATRIXR1:def 9
.= 3 by
A2,
FINSEQ_1: 45;
(
width (
ColVec2Mx (
M2F p)))
= 1 & (
ColVec2Mx (
M2F p)) is
Matrix of
REAL by
A4,
MATRIXR1:def 9;
then
A6: (
ColVec2Mx (
M2F p)) is
Matrix of 3, 1,
F_Real by
A5,
MATRIX_0: 20;
set A = (
ColVec2Mx (
M2F p));
A
=
<*
<*(A
* (1,1))*>,
<*(A
* (2,1))*>,
<*(A
* (3,1))*>*> by
A6,
Th27;
then
A7: (A
. 1)
=
<*(A
* (1,1))*> & (A
. 2)
=
<*(A
* (2,1))*> & (A
. 3)
=
<*(A
* (3,1))*> by
FINSEQ_1: 45;
(
dom (
M2F p))
= (
Seg 3) by
A3,
FINSEQ_1:def 3;
then 1
in (
dom (
M2F p)) & 2
in (
dom (
M2F p)) & 3
in (
dom (
M2F p)) by
FINSEQ_1: 1;
then (A
. 1)
=
<*((
M2F p)
. 1)*> & (A
. 2)
=
<*((
M2F p)
. 2)*> & (A
. 3)
=
<*((
M2F p)
. 3)*> by
A4,
MATRIXR1:def 9;
then A
=
<*
<*((
M2F p)
. 1)*>,
<*((
M2F p)
. 2)*>,
<*((
M2F p)
. 3)*>*> by
A6,
Th27,
A7
.= (
F2M (
M2F p)) by
A3,
ANPROJ_8:def 1
.= p by
A1,
ANPROJ_8: 85;
hence thesis;
end;
theorem ::
BKMODEL1:34
Th30: for M be
Matrix of 3,
F_Real holds for MR be
Matrix of 3,
REAL holds for v be
Element of (
TOP-REAL 3) holds for uf be
FinSequence of
F_Real holds for ufr be
FinSequence of
REAL holds for p be
FinSequence of (1
-tuples_on
REAL ) st p
= (M
* uf) & v
= (
M2F p) & (
len uf)
= 3 & uf
= ufr & MR
= M holds v
= (MR
* ufr)
proof
let M be
Matrix of 3,
F_Real ;
let MR be
Matrix of 3,
REAL ;
let v be
Element of (
TOP-REAL 3);
let uf be
FinSequence of
F_Real ;
let ufr be
FinSequence of
REAL ;
let p be
FinSequence of (1
-tuples_on
REAL );
assume that
A1: p
= (M
* uf) and
A2: v
= (
M2F p) and
A3: (
len uf)
= 3 and
A4: uf
= ufr and
A5: MR
= M;
consider a,b,c,d,e,f,g,h,i be
Element of
F_Real such that
A6: M
=
<*
<*a, b, c*>,
<*d, e, f*>,
<*g, h, i*>*> by
PASCAL: 3;
uf is
Element of (
REAL 3) by
A3,
EUCLID_8: 2;
then uf
in (
REAL 3);
then uf
in (
TOP-REAL 3) by
EUCLID: 22;
then
consider t1,t2,t3 be
Real such that
A7: uf
=
<*t1, t2, t3*> by
EUCLID_5: 1;
reconsider x = t1, y = t2, z = t3 as
Element of
F_Real by
XREAL_0:def 1;
v
=
<*(((a
* x)
+ (b
* y))
+ (c
* z)), (((d
* x)
+ (e
* y))
+ (f
* z)), (((g
* x)
+ (h
* y))
+ (i
* z))*> by
PASCAL: 8,
A1,
A2,
A6,
A7;
hence thesis by
A7,
A4,
A5,
A6,
PASCAL: 9;
end;
theorem ::
BKMODEL1:35
Th31: for N be
Matrix of 3,
REAL holds for uf be
FinSequence of
REAL st uf
= (
0. (
TOP-REAL 3)) holds (N
* uf)
= (
0. (
TOP-REAL 3))
proof
let N be
Matrix of 3,
REAL ;
let uf be
FinSequence of
REAL ;
assume
A1: uf
= (
0. (
TOP-REAL 3));
reconsider M = N as
Matrix of 3,
F_Real ;
consider n1,n2,n3,n4,n5,n6,n7,n8,n9 be
Element of
F_Real such that
A2: M
=
<*
<*n1, n2, n3*>,
<*n4, n5, n6*>,
<*n7, n8, n9*>*> by
PASCAL: 3;
reconsider r1 = n1, r2 = n2, r3 = n3, r4 = n4, r5 = n5, r6 = n6, r7 = n7, r8 = n8, r9 = n9 as
Element of
REAL ;
reconsider z = (
0. (
TOP-REAL 3)) as
Element of (
TOP-REAL 3);
reconsider p =
<*
0 ,
0 ,
0 *> as
FinSequence of
REAL by
EUCLID: 24,
EUCLID_5: 4;
reconsider z1 = (z
`1 ), z2 = (z
`2 ), z3 = (z
`3 ) as
Element of
REAL by
XREAL_0:def 1;
z
=
<*
0 ,
0 ,
0 *> & z
=
<*z1, z2, z3*> by
EUCLID_5: 3,
EUCLID_5: 4;
then
A3: z1
=
0 & z2
=
0 & z3
=
0 by
FINSEQ_1: 78;
|[(z
`1 ), (z
`2 ), (z
`3 )]|
= p by
EUCLID_5: 3,
EUCLID_5: 4;
then (N
* uf)
=
<*(((r1
* z1)
+ (r2
* z2))
+ (r3
* z3)), (((r4
* z1)
+ (r5
* z2))
+ (r6
* z3)), (((r7
* z1)
+ (r8
* z2))
+ (r9
* z3))*> by
A2,
A1,
EUCLID_5: 4,
PASCAL: 9
.= (
0. (
TOP-REAL 3)) by
A3,
EUCLID_5: 4;
hence thesis;
end;
theorem ::
BKMODEL1:36
Th32: for N be
Matrix of 3,
REAL holds for uf be
FinSequence of
REAL holds for u be
Element of (
TOP-REAL 3) st N is
invertible & u
= uf & u is non
zero holds (N
* uf)
<> (
0. (
TOP-REAL 3))
proof
let N be
Matrix of 3,
REAL ;
let uf be
FinSequence of
REAL ;
let u be
Element of (
TOP-REAL 3);
assume
A1: N is
invertible & u
= uf & u is non
zero;
then (
dom uf)
= (
Seg 3) by
FINSEQ_1: 89;
then
A2: (
len uf)
= 3 by
FINSEQ_1:def 3;
assume
A3: (N
* uf)
= (
0. (
TOP-REAL 3));
A4: ((
Inv N)
* N)
= (
1_Rmatrix 3) & ((
Inv N)
* N)
= (
1_Rmatrix 3) by
A1,
MATRIXR2:def 6;
(
width N)
= 3 & (
len N)
= 3 & (
width (
Inv N))
= 3 by
MATRIX_0: 24;
then ((
Inv N)
* (N
* uf))
= (((
Inv N)
* N)
* uf) by
A2,
MATRIXR2: 59
.= uf by
A4,
A2,
MATRIXR2: 86;
hence contradiction by
A3,
A1,
Th31;
end;
theorem ::
BKMODEL1:37
for N be
invertible
Matrix of 3,
F_Real holds for NR be
Matrix of 3,
REAL holds for P,Q be
Element of (
ProjectiveSpace (
TOP-REAL 3)) holds for u,v be non
zero
Element of (
TOP-REAL 3) holds for vfr,ufr be
FinSequence of
REAL st P
= (
Dir u) & Q
= (
Dir v) & u
= ufr & v
= vfr & N
= NR & (NR
* ufr)
= vfr holds ((
homography N)
. P)
= Q
proof
let N be
invertible
Matrix of 3,
F_Real ;
let NR be
Matrix of 3,
REAL ;
let P,Q be
Element of (
ProjectiveSpace (
TOP-REAL 3));
let u,v be non
zero
Element of (
TOP-REAL 3);
let vfr,ufr be
FinSequence of
REAL ;
assume
A1: P
= (
Dir u) & Q
= (
Dir v) & u
= ufr & v
= vfr & N
= NR & (NR
* ufr)
= vfr;
consider u1,v1 be
Element of (
TOP-REAL 3), u1f be
FinSequence of
F_Real , p1 be
FinSequence of (1
-tuples_on
REAL ) such that
A2: P
= (
Dir u1) & not u1 is
zero & u1
= u1f & p1
= (N
* u1f) & v1
= (
M2F p1) & not v1 is
zero & ((
homography N)
. P)
= (
Dir v1) by
ANPROJ_8:def 4;
reconsider u1fr = u1f as
FinSequence of
REAL ;
u1
in (
TOP-REAL 3);
then u1
in (
REAL 3) by
EUCLID: 22;
then
A3: (
len u1fr)
= 3 by
A2,
EUCLID_8: 50;
then
A4: v1
= (NR
* u1fr) by
A1,
A2,
Th30;
are_Prop (u,u1) by
A1,
A2,
ANPROJ_1: 22;
then
consider a be
Real such that
A5: a
<>
0 and
A6: u
= (a
* u1) by
ANPROJ_1: 1;
A7: (
width NR)
= 3 by
MATRIX_0: 23;
A8: (
width NR)
= (
len u1fr) & (
len u1fr)
>
0 by
A3,
MATRIX_0: 23;
A9: (
len NR)
= 3 by
MATRIX_0: 24;
u
in (
TOP-REAL 3);
then u
in (
REAL 3) by
EUCLID: 22;
then (
width NR)
= (
len ufr) & (
len ufr)
>
0 by
A7,
A1,
EUCLID_8: 50;
then (
len (NR
* ufr))
= 3 & (
len (NR
* u1fr))
= 3 by
A9,
A3,
MATRIX_0: 23,
MATRIXR1: 61;
then (NR
* ufr) is
Element of (
REAL 3) & (NR
* u1fr) is
Element of (
REAL 3) by
EUCLID_8: 2;
then
reconsider w1 = (NR
* ufr), w2 = (NR
* u1fr) as
Element of (
TOP-REAL 3) by
EUCLID: 22;
w1
= (a
* w2) by
A8,
A1,
A2,
A6,
MATRIXR1: 59;
then
are_Prop (w1,w2) by
A5,
ANPROJ_1: 1;
hence thesis by
A1,
A2,
A4,
ANPROJ_1: 22;
end;
theorem ::
BKMODEL1:38
Th33: for N be
invertible
Matrix of 3,
F_Real holds for NR be
Matrix of 3,
REAL holds for P,Q be
Element of (
ProjectiveSpace (
TOP-REAL 3)) holds for u,v be non
zero
Element of (
TOP-REAL 3) holds for vfr,ufr be
FinSequence of
REAL holds for a be non
zero
Real st P
= (
Dir u) & Q
= (
Dir v) & u
= ufr & v
= vfr & N
= NR & (NR
* ufr)
= (a
* vfr) holds ((
homography N)
. P)
= Q
proof
let N be
invertible
Matrix of 3,
F_Real ;
let NR be
Matrix of 3,
REAL ;
let P,Q be
Element of (
ProjectiveSpace (
TOP-REAL 3));
let u,v be non
zero
Element of (
TOP-REAL 3);
let vfr,ufr be
FinSequence of
REAL ;
let a be non
zero
Real;
assume
A1: P
= (
Dir u) & Q
= (
Dir v) & u
= ufr & v
= vfr & N
= NR & (NR
* ufr)
= (a
* vfr);
A2: NR is
invertible by
A1,
ANPROJ_8: 18;
consider u1,v1 be
Element of (
TOP-REAL 3), u1f be
FinSequence of
F_Real , p1 be
FinSequence of (1
-tuples_on
REAL ) such that
A3: P
= (
Dir u1) & not u1 is
zero & u1
= u1f & p1
= (N
* u1f) & v1
= (
M2F p1) & not v1 is
zero & ((
homography N)
. P)
= (
Dir v1) by
ANPROJ_8:def 4;
reconsider u1fr = u1f as
FinSequence of
REAL ;
u1
in (
TOP-REAL 3);
then
A4: u1
in (
REAL 3) by
EUCLID: 22;
then
A5: (
len u1fr)
= 3 by
A3,
EUCLID_8: 50;
then
A6: v1
= (NR
* u1fr) by
A1,
A3,
Th30;
are_Prop (u,u1) by
A1,
A3,
ANPROJ_1: 22;
then
consider b be
Real such that
A7: b
<>
0 and
A8: u
= (b
* u1) by
ANPROJ_1: 1;
A9: (
width NR)
= 3 by
MATRIX_0: 23;
then
A10: (
width NR)
= (
len u1fr) & (
len u1fr)
>
0 by
A4,
A3,
EUCLID_8: 50;
A11: (
len NR)
= 3 by
MATRIX_0: 24;
u
in (
TOP-REAL 3);
then u
in (
REAL 3) by
EUCLID: 22;
then (
len ufr)
= 3 by
A1,
EUCLID_8: 50;
then (
len (NR
* ufr))
= 3 & (
len (NR
* u1fr))
= 3 by
MATRIX_0: 23,
A11,
A10,
MATRIXR1: 61;
then (NR
* ufr) is
Element of (
REAL 3) & (NR
* u1fr) is
Element of (
REAL 3) by
EUCLID_8: 2;
then
reconsider w1 = (NR
* ufr), w2 = (NR
* u1fr) as
Element of (
TOP-REAL 3) by
EUCLID: 22;
A12: not w1 is
zero & not w2 is
zero by
A1,
A3,
A2,
Th32;
w1
= (b
* w2) by
A1,
A3,
A8,
A9,
A5,
MATRIXR1: 59;
then
are_Prop (w1,w2) by
A7,
ANPROJ_1: 1;
then
A13: (
Dir w1)
= (
Dir w2) by
A12,
ANPROJ_1: 22;
v
in (
TOP-REAL 3);
then v
in (
REAL 3) by
EUCLID: 22;
then (
len vfr)
= 3 by
A1,
EUCLID_8: 50;
then (
len (a
* vfr))
= 3 by
RVSUM_1: 117;
then (a
* vfr) is
Element of (
REAL 3) by
EUCLID_8: 2;
then
reconsider avfr = (a
* vfr) as
Element of (
TOP-REAL 3) by
EUCLID: 22;
now
thus not avfr is
zero
proof
assume avfr is
zero;
then (a
* v)
=
|[
0 ,
0 ,
0 ]| by
A1,
EUCLID_5: 4;
then
|[(a
* (v
`1 )), (a
* (v
`2 )), (a
* (v
`3 ))]|
=
|[
0 ,
0 ,
0 ]| by
EUCLID_5: 7;
then (v
`1 )
=
0 & (v
`2 )
=
0 & (v
`3 )
=
0 by
FINSEQ_1: 78;
hence contradiction by
EUCLID_5: 3,
EUCLID_5: 4;
end;
thus not v is
zero;
a
<>
0 & (a
* v)
= avfr by
A1;
hence
are_Prop (avfr,v) by
ANPROJ_1: 1;
end;
hence thesis by
A1,
A3,
A6,
A13,
ANPROJ_1: 22;
end;
theorem ::
BKMODEL1:39
Th34: for p be
FinSequence of
REAL holds for M be
Matrix of 3,
REAL st (
len p)
= 3 holds
|((a
* p), (M
* (b
* p)))|
= ((a
* b)
*
|(p, (M
* p))|)
proof
let p be
FinSequence of
REAL ;
let M be
Matrix of 3,
REAL ;
assume
A1: (
len p)
= 3;
A2: (
width M)
= 3 & (
len M)
= 3 by
MATRIX_0: 23;
A3: (
len (b
* p))
= 3 by
A1,
RVSUM_1: 117;
A4: p is
Element of (
REAL 3) by
A1,
EUCLID_8: 2;
A5: (p
* M)
= (
Line (((
LineVec2Mx p)
* M),1)) by
MATRIXR1:def 12;
A6: (
width (
MXR2MXF (
LineVec2Mx p)))
= (
width (
LineVec2Mx p)) by
MATRIXR1:def 1
.= (
len p) by
MATRIXR1:def 10
.= (
len (
MXR2MXF M)) by
A1,
MATRIX_0: 23;
((
LineVec2Mx p)
* M)
= (
MXF2MXR ((
MXR2MXF (
LineVec2Mx p))
* (
MXR2MXF M))) by
MATRIXR1:def 6
.= ((
MXR2MXF (
LineVec2Mx p))
* (
MXR2MXF M)) by
MATRIXR1:def 2;
then (
width ((
LineVec2Mx p)
* M))
= (
width (
MXR2MXF M)) by
A6,
MATRIX_3:def 4
.= (
width M) by
MATRIXR1:def 1;
then (
len (
Line (((
LineVec2Mx p)
* M),1)))
= (
width M) by
MATRIX_0:def 7;
then
A7: (p
* M) is
Element of (
REAL 3) by
A5,
MATRIX_0: 23,
EUCLID_8: 2;
(
len (b
* p))
>
0 by
A1,
RVSUM_1: 117;
then
A8: (
len (
ColVec2Mx (b
* p)))
= (
len (b
* p)) by
MATRIXR1:def 9
.= 3 by
A1,
RVSUM_1: 117;
A9: (
width (
MXR2MXF M))
= 3 by
MATRIX_0: 23
.= (
len (
MXR2MXF (
ColVec2Mx (b
* p)))) by
A8,
MATRIXR1:def 1;
(
len (M
* (b
* p)))
= (
len (
Col ((M
* (
ColVec2Mx (b
* p))),1))) by
MATRIXR1:def 11
.= (
len (M
* (
ColVec2Mx (b
* p)))) by
MATRIX_0:def 8
.= (
len (
MXF2MXR ((
MXR2MXF M)
* (
MXR2MXF (
ColVec2Mx (b
* p)))))) by
MATRIXR1:def 6
.= (
len ((
MXR2MXF M)
* (
MXR2MXF (
ColVec2Mx (b
* p))))) by
MATRIXR1:def 2
.= (
len (
MXR2MXF M)) by
A9,
MATRIX_3:def 4
.= 3 by
MATRIX_0: 23;
then (M
* (b
* p)) is
Element of (
REAL 3) by
EUCLID_8: 2;
then
|((a
* p), (M
* (b
* p)))|
= (a
*
|((M
* (b
* p)), p)|) by
A4,
EUCLID_4: 21
.= (a
*
|((p
* M), (b
* p))|) by
MATRPROB: 47,
A2,
A3,
A1
.= (a
* (b
*
|(p, (p
* M))|)) by
EUCLID_4: 21,
A4,
A7
.= ((a
* b)
*
|((p
* M), p)|)
.= ((a
* b)
*
|((M
* p), p)|) by
A2,
A1,
MATRPROB: 47;
hence thesis;
end;
theorem ::
BKMODEL1:40
Th35: for p be
FinSequence of
REAL holds for M be
Matrix of 3,
REAL st (
len p)
= 3 holds (
SumAll (
QuadraticForm ((a
* p),M,(b
* p))))
= ((a
* b)
* (
SumAll (
QuadraticForm (p,M,p))))
proof
let p be
FinSequence of
REAL ;
let M be
Matrix of 3,
REAL ;
assume
A1: (
len p)
= 3;
A2: (
len M)
= 3 & (
width M)
= 3 by
MATRIX_0: 23;
then
A3: (
len (a
* p))
= (
len M) by
A1,
RVSUM_1: 117;
(
len (b
* p))
= (
width M) & (
len (b
* p))
>
0 by
A1,
A2,
RVSUM_1: 117;
then
A4: (
SumAll (
QuadraticForm ((a
* p),M,(b
* p))))
=
|((a
* p), (M
* (b
* p)))| by
A3,
MATRPROB: 44;
(
len p)
= (
len M) & (
len p)
= (
width M) & (
len p)
>
0 by
A1,
MATRIX_0: 23;
then (
SumAll (
QuadraticForm (p,M,p)))
=
|(p, (M
* p))| by
MATRPROB: 44;
hence thesis by
A4,
A1,
Th34;
end;
theorem ::
BKMODEL1:41
Th36: for a,b be
Real holds
|[a, b, 1]| is non
zero by
EUCLID_5: 4,
FINSEQ_1: 78;
theorem ::
BKMODEL1:42
for P be
Element of (
TOP-REAL 2), Q be
Element of (
TOP-REAL 2), r be
Real holds P
in (
Sphere (Q,r)) iff P
in (
circle ((Q
. 1),(Q
. 2),r))
proof
let P be
Element of (
TOP-REAL 2), Q be
Element of (
TOP-REAL 2), r be
Real;
hereby
assume P
in (
Sphere (Q,r));
then P
in (
Sphere (
|[(Q
`1 ), (Q
`2 )]|,r)) by
EUCLID: 53;
then P
in (
Sphere (
|[(Q
. 1), (Q
`2 )]|,r)) by
EUCLID:def 9;
then P
in (
Sphere (
|[(Q
. 1), (Q
. 2)]|,r)) by
EUCLID:def 10;
hence P
in (
circle ((Q
. 1),(Q
. 2),r)) by
TOPREAL9: 52;
end;
assume P
in (
circle ((Q
. 1),(Q
. 2),r));
then P
in (
Sphere (
|[(Q
. 1), (Q
. 2)]|,r)) by
TOPREAL9: 52;
then P
in (
Sphere (
|[(Q
`1 ), (Q
. 2)]|,r)) by
EUCLID:def 9;
then P
in (
Sphere (
|[(Q
`1 ), (Q
`2 )]|,r)) by
EUCLID:def 10;
hence thesis by
EUCLID: 53;
end;
reserve u,v for non
zero
Element of (
TOP-REAL 3);
theorem ::
BKMODEL1:43
Th37: (
Dir u)
= (
Dir v) & (u
. 3)
= (v
. 3) & (v
. 3)
<>
0 implies u
= v
proof
assume that
A1: (
Dir u)
= (
Dir v) and
A2: (u
. 3)
= (v
. 3) and
A3: (v
. 3)
<>
0 ;
are_Prop (u,v) by
A1,
ANPROJ_1: 22;
then
consider a be
Real such that a
<>
0 and
A4: u
= (a
* v) by
ANPROJ_1: 1;
reconsider b = (1
- a), c = (v
. 3) as
Real;
A5:
|[(u
`1 ), (u
`2 ), (u
`3 )]|
= (a
* v) by
A4,
EUCLID_5: 3
.=
|[(a
* (v
`1 )), (a
* (v
`2 )), (a
* (v
`3 ))]| by
EUCLID_5: 7;
(v
. 3)
= (u
`3 ) by
A2,
EUCLID_5:def 3
.= (a
* (v
`3 )) by
A5,
FINSEQ_1: 78
.= (a
* (v
. 3)) by
EUCLID_5:def 3;
then ((1
- a)
* (v
. 3))
=
0 & c
= (v
. 3);
then b
=
0 by
A3;
then u
=
|[(1
* (v
`1 )), (1
* (v
`2 )), (1
* (v
`3 ))]| by
A4,
EUCLID_5: 7
.= v by
EUCLID_5: 3;
hence thesis;
end;
definition
::
BKMODEL1:def1
func
Dir101 ->
Point of (
ProjectiveSpace (
TOP-REAL 3)) equals (
Dir
|[1,
0 , 1]|);
coherence
proof
reconsider u =
|[1,
0 , 1]| as
Element of (
TOP-REAL 3);
not u is
zero by
EUCLID_5: 4,
FINSEQ_1: 78;
hence thesis by
ANPROJ_1: 26;
end;
end
definition
::
BKMODEL1:def2
func
Dirm101 ->
Point of (
ProjectiveSpace (
TOP-REAL 3)) equals (
Dir
|[(
- 1),
0 , 1]|);
coherence
proof
reconsider u =
|[(
- 1),
0 , 1]| as
Element of (
TOP-REAL 3);
not u is
zero by
EUCLID_5: 4,
FINSEQ_1: 78;
hence thesis by
ANPROJ_1: 26;
end;
end
definition
::
BKMODEL1:def3
func
Dir011 ->
Point of (
ProjectiveSpace (
TOP-REAL 3)) equals (
Dir
|[
0 , 1, 1]|);
coherence
proof
reconsider u =
|[
0 , 1, 1]| as
Element of (
TOP-REAL 3);
not u is
zero by
EUCLID_5: 4,
FINSEQ_1: 78;
hence thesis by
ANPROJ_1: 26;
end;
end
theorem ::
BKMODEL1:44
not (
Dir101 ,
Dirm101 ,
Dir011 )
are_collinear & not (
Dir101 ,
Dirm101 ,
Dir010 )
are_collinear & not (
Dir101 ,
Dir011 ,
Dir010 )
are_collinear & not (
Dirm101 ,
Dir011 ,
Dir010 )
are_collinear
proof
thus not (
Dir101 ,
Dirm101 ,
Dir011 )
are_collinear
proof
assume
A1: (
Dir101 ,
Dirm101 ,
Dir011 )
are_collinear ;
set p =
|[1,
0 , 1]|, q =
|[(
- 1),
0 , 1]|, r =
|[
0 , 1, 1]|;
A2: (p
`1 )
= 1 & (p
`2 )
=
0 & (p
`3 )
= 1 & (q
`1 )
= (
- 1) & (q
`2 )
=
0 & (q
`3 )
= 1 & (r
`1 )
=
0 & (r
`2 )
= 1 & (r
`3 )
= 1 by
EUCLID_5: 2;
p is non
zero & q is non
zero & r is non
zero by
EUCLID_5: 4,
FINSEQ_1: 78;
then
0
=
|{p, q, r}| by
A1,
Th01
.= (((((((1
*
0 )
* 1)
- ((1
*
0 )
*
0 ))
- ((1
* 1)
* 1))
+ ((
0
* 1)
*
0 ))
- ((
0
* (
- 1))
* 1))
+ ((1
* (
- 1))
* 1)) by
A2,
ANPROJ_8: 27
.= (
- 2);
hence contradiction;
end;
thus not (
Dir101 ,
Dirm101 ,
Dir010 )
are_collinear
proof
assume
A3: (
Dir101 ,
Dirm101 ,
Dir010 )
are_collinear ;
set p =
|[1,
0 , 1]|, q =
|[(
- 1),
0 , 1]|, r =
|[
0 , 1,
0 ]|;
A4: (p
`1 )
= 1 & (p
`2 )
=
0 & (p
`3 )
= 1 & (q
`1 )
= (
- 1) & (q
`2 )
=
0 & (q
`3 )
= 1 & (r
`1 )
=
0 & (r
`2 )
= 1 & (r
`3 )
=
0 by
EUCLID_5: 2;
p is non
zero & q is non
zero & r is non
zero by
EUCLID_5: 4,
FINSEQ_1: 78;
then
0
=
|{p, q, r}| by
A3,
ANPROJ_9:def 6,
Th01
.= (((((((1
*
0 )
*
0 )
- ((1
*
0 )
*
0 ))
- ((1
* 1)
* 1))
+ ((
0
* 1)
*
0 ))
- ((
0
* (
- 1))
*
0 ))
+ ((1
* (
- 1))
* 1)) by
A4,
ANPROJ_8: 27
.= (
- 2);
hence contradiction;
end;
thus not (
Dir101 ,
Dir011 ,
Dir010 )
are_collinear
proof
assume
A5: (
Dir101 ,
Dir011 ,
Dir010 )
are_collinear ;
set p =
|[1,
0 , 1]|, q =
|[
0 , 1, 1]|, r =
|[
0 , 1,
0 ]|;
A6: (p
`1 )
= 1 & (p
`2 )
=
0 & (p
`3 )
= 1 & (q
`1 )
=
0 & (q
`2 )
= 1 & (q
`3 )
= 1 & (r
`1 )
=
0 & (r
`2 )
= 1 & (r
`3 )
=
0 by
EUCLID_5: 2;
p is non
zero & q is non
zero & r is non
zero by
EUCLID_5: 4,
FINSEQ_1: 78;
then
0
=
|{p, q, r}| by
A5,
ANPROJ_9:def 6,
Th01
.= ((((((((p
`1 )
* (q
`2 ))
* (r
`3 ))
- (((p
`3 )
* (q
`2 ))
* (r
`1 )))
- (((p
`1 )
* (q
`3 ))
* (r
`2 )))
+ (((p
`2 )
* (q
`3 ))
* (r
`1 )))
- (((p
`2 )
* (q
`1 ))
* (r
`3 )))
+ (((p
`3 )
* (q
`1 ))
* (r
`2 ))) by
ANPROJ_8: 27
.= (
- 1) by
A6;
hence contradiction;
end;
thus not (
Dirm101 ,
Dir011 ,
Dir010 )
are_collinear
proof
assume
A7: (
Dirm101 ,
Dir011 ,
Dir010 )
are_collinear ;
set p =
|[(
- 1),
0 , 1]|, q =
|[
0 , 1, 1]|, r =
|[
0 , 1,
0 ]|;
A8: (p
`1 )
= (
- 1) & (p
`2 )
=
0 & (p
`3 )
= 1 & (q
`1 )
=
0 & (q
`2 )
= 1 & (q
`3 )
= 1 & (r
`1 )
=
0 & (r
`2 )
= 1 & (r
`3 )
=
0 by
EUCLID_5: 2;
p is non
zero & q is non
zero & r is non
zero by
EUCLID_5: 4,
FINSEQ_1: 78;
then
0
=
|{p, q, r}| by
A7,
ANPROJ_9:def 6,
Th01
.= ((((((((p
`1 )
* (q
`2 ))
* (r
`3 ))
- (((p
`3 )
* (q
`2 ))
* (r
`1 )))
- (((p
`1 )
* (q
`3 ))
* (r
`2 )))
+ (((p
`2 )
* (q
`3 ))
* (r
`1 )))
- (((p
`2 )
* (q
`1 ))
* (r
`3 )))
+ (((p
`3 )
* (q
`1 ))
* (r
`2 ))) by
ANPROJ_8: 27
.= 1 by
A8;
hence contradiction;
end;
end;
theorem ::
BKMODEL1:45
(
symmetric_3 (1,1,1,
0 ,
0 ,
0 ))
= (
1. (
F_Real ,3)) by
PASCAL:def 3,
ANPROJ_9: 1;
theorem ::
BKMODEL1:46
Th39: for r,a,b,c,d,e,f,g,h,i be
Element of
F_Real holds for M be
Matrix of 3,
F_Real st M
=
<*
<*a, b, c*>,
<*d, e, f*>,
<*g, h, i*>*> holds (r
* M)
=
<*
<*(r
* a), (r
* b), (r
* c)*>,
<*(r
* d), (r
* e), (r
* f)*>,
<*(r
* g), (r
* h), (r
* i)*>*>
proof
let r,a,b,c,d,e,f,g,h,i be
Element of
F_Real ;
let M be
Matrix of 3,
F_Real ;
assume
A1: M
=
<*
<*a, b, c*>,
<*d, e, f*>,
<*g, h, i*>*>;
(
len M)
= 3 & (
width M)
= 3 by
MATRIX_0: 23;
then (
len (r
* M))
= 3 & (
width (r
* M))
= 3 by
MATRIX_3:def 5;
then
A2: (r
* M) is
Matrix of 3, 3,
F_Real by
MATRIX_0: 20;
A3: (
Indices M)
=
[:(
Seg 3), (
Seg 3):] by
MATRIX_0: 23;
reconsider b11 = ((r
* M)
* (1,1)), b12 = ((r
* M)
* (1,2)), b13 = ((r
* M)
* (1,3)), b21 = ((r
* M)
* (2,1)), b22 = ((r
* M)
* (2,2)), b23 = ((r
* M)
* (2,3)), b31 = ((r
* M)
* (3,1)), b32 = ((r
* M)
* (3,2)), b33 = ((r
* M)
* (3,3)) as
Element of
F_Real ;
M
=
<*
<*(M
* (1,1)), (M
* (1,2)), (M
* (1,3))*>,
<*(M
* (2,1)), (M
* (2,2)), (M
* (2,3))*>,
<*(M
* (3,1)), (M
* (3,2)), (M
* (3,3))*>*> by
MATRIXR2: 37;
then
A4: a
= (M
* (1,1)) & b
= (M
* (1,2)) & c
= (M
* (1,3)) & d
= (M
* (2,1)) & e
= (M
* (2,2)) & f
= (M
* (2,3)) & g
= (M
* (3,1)) & h
= (M
* (3,2)) & i
= (M
* (3,3)) by
A1,
PASCAL: 2;
b11
= (r
* (M
* (1,1))) & b12
= (r
* (M
* (1,2))) & b13
= (r
* (M
* (1,3))) & b21
= (r
* (M
* (2,1))) & b22
= (r
* (M
* (2,2))) & b23
= (r
* (M
* (2,3))) & b31
= (r
* (M
* (3,1))) & b32
= (r
* (M
* (3,2))) & b33
= (r
* (M
* (3,3))) by
A3,
ANPROJ_8: 1,
MATRIX_3:def 5;
hence thesis by
A4,
A2,
MATRIXR2: 37;
end;
theorem ::
BKMODEL1:47
Th40: for a be
Real holds for ra2 be
Element of
F_Real st ra2
= (a
* a) holds ((
symmetric_3 (a,a,(
- a),
0 ,
0 ,
0 ))
* (
symmetric_3 (a,a,(
- a),
0 ,
0 ,
0 )))
= (ra2
* (
1. (
F_Real ,3)))
proof
let a be
Real;
let ra2 be
Element of
F_Real ;
assume
A1: ra2
= (a
* a);
reconsider zone = 1, z1 =
0 , z2 = a, z3 = (
- a) as
Element of
F_Real by
XREAL_0:def 1;
(
symmetric_3 (a,a,(
- a),
0 ,
0 ,
0 ))
=
<*
<*z2, z1, z1*>,
<*z1, z2, z1*>,
<*z1, z1, z3*>*> by
PASCAL:def 3;
then ((
symmetric_3 (a,a,(
- a),
0 ,
0 ,
0 ))
* (
symmetric_3 (a,a,(
- a),
0 ,
0 ,
0 )))
=
<*
<*(((z2
* z2)
+ (z1
* z1))
+ (z1
* z1)), (((z2
* z1)
+ (z1
* z2))
+ (z1
* z1)), (((z2
* z1)
+ (z1
* z1))
+ (z1
* z3))*>,
<*(((z1
* z2)
+ (z2
* z1))
+ (z1
* z1)), (((z1
* z1)
+ (z2
* z2))
+ (z1
* z1)), (((z1
* z1)
+ (z2
* z1))
+ (z1
* z3))*>,
<*(((z1
* z2)
+ (z1
* z1))
+ (z3
* z1)), (((z1
* z1)
+ (z1
* z2))
+ (z3
* z1)), (((z1
* z1)
+ (z1
* z1))
+ (z3
* z3))*>*> by
ANPROJ_9: 6
.=
<*
<*(ra2
* zone), (ra2
* z1), (ra2
* z1)*>,
<*(ra2
* z1), (ra2
* zone), (ra2
* z1)*>,
<*(ra2
* z1), (ra2
* z1), (ra2
* zone)*>*> by
A1
.= (ra2
* (
1. (
F_Real ,3))) by
Th39,
ANPROJ_9: 1;
hence thesis;
end;
theorem ::
BKMODEL1:48
Th41: for a be non
zero
Real holds ((
symmetric_3 (a,a,(
- a),
0 ,
0 ,
0 ))
* (
symmetric_3 ((1
/ a),(1
/ a),(
- (1
/ a)),
0 ,
0 ,
0 )))
= (
1. (
F_Real ,3))
proof
let a be non
zero
Real;
reconsider z1 =
0 , z2 = a, z3 = (
- a) as
Element of
F_Real by
XREAL_0:def 1;
A1: (
symmetric_3 (a,a,(
- a),
0 ,
0 ,
0 ))
=
<*
<*z2, z1, z1*>,
<*z1, z2, z1*>,
<*z1, z1, z3*>*> by
PASCAL:def 3;
A2: (z2
* (1
/ z2))
= 1 & (z3
* (1
/ z3))
= 1 by
XCMPLX_1: 106;
reconsider y1 = z1, y2 = (1
/ z2), y3 = (1
/ z3) as
Element of
F_Real by
XREAL_0:def 1;
A3: (
symmetric_3 (y2,y2,y3,y1,y1,y1))
=
<*
<*(1
/ z2), z1, z1*>,
<*z1, (1
/ z2), z1*>,
<*z1, z1, (1
/ z3)*>*> by
PASCAL:def 3;
((
symmetric_3 (a,a,(
- a),
0 ,
0 ,
0 ))
* (
symmetric_3 ((1
/ a),(1
/ a),(
- (1
/ a)),
0 ,
0 ,
0 )))
= ((
symmetric_3 (z2,z2,z3,z1,z1,z1))
* (
symmetric_3 (y2,y2,y3,y1,y1,y1))) by
XCMPLX_1: 188
.=
<*
<*(((z2
* y2)
+ (z1
* y1))
+ (z1
* y1)), (((z2
* y1)
+ (z1
* y2))
+ (z1
* y1)), (((z2
* y1)
+ (z1
* y1))
+ (z1
* y3))*>,
<*(((z1
* y2)
+ (z2
* y1))
+ (z1
* y1)), (((z1
* y1)
+ (z2
* y2))
+ (z1
* y1)), (((z1
* y1)
+ (z2
* y1))
+ (z1
* y3))*>,
<*(((z1
* y2)
+ (z1
* y1))
+ (z3
* y1)), (((z1
* y1)
+ (z1
* y2))
+ (z3
* y1)), (((z1
* y1)
+ (z1
* y1))
+ (z3
* y3))*>*> by
A1,
A3,
ANPROJ_9: 6
.=
<*
<*1,
0 ,
0 *>,
<*
0 , 1,
0 *>,
<*
0 ,
0 , 1*>*> by
A2;
hence thesis by
ANPROJ_9: 1;
end;
theorem ::
BKMODEL1:49
Th42: for a be non
zero
Real holds ((
symmetric_3 ((1
/ a),(1
/ a),(
- (1
/ a)),
0 ,
0 ,
0 ))
* (
symmetric_3 (a,a,(
- a),
0 ,
0 ,
0 )))
= (
1. (
F_Real ,3))
proof
let a be non
zero
Real;
reconsider b = (1
/ a) as non
zero
Real;
(1
/ b)
= a by
XCMPLX_1: 56;
hence thesis by
Th41;
end;
theorem ::
BKMODEL1:50
Th43: ((
symmetric_3 (1,1,(
- 1),
0 ,
0 ,
0 ))
* (
symmetric_3 (1,1,(
- 1),
0 ,
0 ,
0 )))
= (
1. (
F_Real ,3))
proof
reconsider a = 1 as non
zero
Real;
(
- (1
/ a))
= (
- 1);
hence thesis by
Th41;
end;
theorem ::
BKMODEL1:51
for a be non
zero
Real holds for N be
Matrix of 3,
F_Real st N
= (
symmetric_3 (a,a,(
- a),
0 ,
0 ,
0 )) holds N is
invertible
proof
let a be non
zero
Real;
let N be
Matrix of 3,
F_Real ;
assume
A1: N
= (
symmetric_3 (a,a,(
- a),
0 ,
0 ,
0 ));
((
symmetric_3 (a,a,(
- a),
0 ,
0 ,
0 ))
* (
symmetric_3 ((1
/ a),(1
/ a),(
- (1
/ a)),
0 ,
0 ,
0 )))
= (
1. (
F_Real ,3)) & ((
symmetric_3 ((1
/ a),(1
/ a),(
- (1
/ a)),
0 ,
0 ,
0 ))
* (
symmetric_3 (a,a,(
- a),
0 ,
0 ,
0 )))
= (
1. (
F_Real ,3)) by
Th41,
Th42;
hence thesis by
A1,
MATRIX_6:def 2,
MATRIX_6:def 3;
end;
theorem ::
BKMODEL1:52
Th44: (
symmetric_3 (1,1,(
- 1),
0 ,
0 ,
0 )) is
invertible
Matrix of 3,
F_Real & ((
symmetric_3 (1,1,(
- 1),
0 ,
0 ,
0 ))
~ )
= (
symmetric_3 (1,1,(
- 1),
0 ,
0 ,
0 ))
proof
A1: (
symmetric_3 (1,1,(
- 1),
0 ,
0 ,
0 ))
is_reverse_of (
symmetric_3 (1,1,(
- 1),
0 ,
0 ,
0 )) by
Th43,
MATRIX_6:def 2;
thus (
symmetric_3 (1,1,(
- 1),
0 ,
0 ,
0 )) is
invertible
Matrix of 3,
F_Real by
Th43,
MATRIX_6:def 2,
MATRIX_6:def 3;
hence ((
symmetric_3 (1,1,(
- 1),
0 ,
0 ,
0 ))
~ )
= (
symmetric_3 (1,1,(
- 1),
0 ,
0 ,
0 )) by
A1,
MATRIX_6:def 4;
end;
theorem ::
BKMODEL1:53
for N be
invertible
Matrix of 3,
F_Real holds for N1 be
Matrix of 3,
F_Real holds for M,NR be
Matrix of 3,
REAL st M
= (
symmetric_3 (1,1,(
- 1),
0 ,
0 ,
0 )) & N1
= M & NR
= (
MXF2MXR (N
~ )) holds (((N
@ )
* N1)
* N)
= (((
MXF2MXR ((
MXR2MXF (NR
@ ))
~ ))
* M)
* (
MXF2MXR ((
MXR2MXF NR)
~ )))
proof
let N be
invertible
Matrix of 3,
F_Real ;
let N1 be
Matrix of 3,
F_Real ;
let M,NR be
Matrix of 3,
REAL ;
assume that
A1: M
= (
symmetric_3 (1,1,(
- 1),
0 ,
0 ,
0 )) and
A2: N1
= M and
A3: NR
= (
MXF2MXR (N
~ ));
reconsider b = (
- 1) as
Element of
F_Real by
XREAL_0:def 1;
A4: b is non
zero;
reconsider a = 1 as
Element of
F_Real ;
a is non
zero;
then
reconsider a = 1, b = (
- 1) as non
zero
Element of
F_Real by
A4;
reconsider N1 as
invertible
Matrix of 3,
F_Real by
A1,
A2,
Th44;
reconsider M1 = (((N
@ )
* N1)
* N) as
invertible
Matrix of 3,
F_Real ;
reconsider N2 = N1 as
Matrix of 3,
REAL ;
A6: (
MXF2MXR ((
MXR2MXF NR)
~ ))
= ((
MXR2MXF NR)
~ ) by
MATRIXR1:def 2
.= ((N
~ )
~ ) by
A3,
ANPROJ_8: 16
.= N by
MATRIX_6: 16;
A7: (
MXF2MXR ((
MXR2MXF (NR
@ ))
~ ))
= (N
@ )
proof
A8: (
MXF2MXR ((
MXR2MXF (NR
@ ))
~ ))
= ((
MXR2MXF (NR
@ ))
~ ) by
MATRIXR1:def 2;
(
MXR2MXF (NR
@ ))
= (NR
@ ) by
MATRIXR1:def 1;
then (
MXF2MXR ((
MXR2MXF (NR
@ ))
~ ))
= (((N
~ )
@ )
~ ) by
A8,
A3,
MATRIXR1:def 2
.= (((N
@ )
~ )
~ ) by
MATRIX_6: 13;
hence thesis by
MATRIX_6: 16;
end;
((N
@ )
* N1)
= ((
MXF2MXR ((
MXR2MXF (NR
@ ))
~ ))
* N2) by
A7,
ANPROJ_8: 17;
hence thesis by
A2,
A6,
ANPROJ_8: 17;
end;
theorem ::
BKMODEL1:54
Th46: for n be
Nat holds for a be
Element of
F_Real holds for ra be
Real holds for A be
Matrix of n,
F_Real holds for rA be
Matrix of n,
REAL st a
= ra & A
= rA holds (a
* A)
= (ra
* rA)
proof
let n be
Nat;
let a be
Element of
F_Real ;
let ra be
Real;
let A be
Matrix of n,
F_Real ;
let rA be
Matrix of n,
REAL ;
assume that
A1: a
= ra and
A2: A
= rA;
(ra
* rA)
= (
MXF2MXR (a
* (
MXR2MXF rA))) by
A1,
MATRIXR1:def 7
.= (
MXF2MXR (a
* A)) by
A2,
MATRIXR1:def 1;
hence thesis by
MATRIXR1:def 2;
end;
theorem ::
BKMODEL1:55
Th47: for n be
Nat holds for a be
Element of
F_Real holds for A,B be
Matrix of n,
F_Real st n
>
0 holds ((a
* A)
* B)
= (a
* (A
* B))
proof
let n be
Nat;
let a be
Element of
F_Real ;
let A,B be
Matrix of n,
F_Real ;
assume
A1: n
>
0 ;
A2: (
width A)
= n & (
len A)
= n & (
width B)
= n & (
len B)
= n by
MATRIX_0: 24;
reconsider ra = a as
Real;
reconsider rA = A, rB = B as
Matrix of n,
REAL ;
A3: (rA
* rB)
= (A
* B) by
ANPROJ_8: 17;
(a
* A)
= (ra
* rA) by
Th46;
then ((a
* A)
* B)
= ((ra
* rA)
* rB) by
ANPROJ_8: 17
.= (ra
* (rA
* rB)) by
A2,
A1,
MATRIXR1: 41
.= (a
* (A
* B)) by
A3,
Th46;
hence thesis;
end;
theorem ::
BKMODEL1:56
Th48: (
symmetric_3 (a,a,(
- a),
0 ,
0 ,
0 ))
= (a
* (
symmetric_3 (1,1,(
- 1),
0 ,
0 ,
0 )))
proof
reconsider z0 =
0 , z1 = 1, z2 = (
- 1) as
Element of
F_Real by
XREAL_0:def 1;
(
symmetric_3 (1,1,(
- 1),
0 ,
0 ,
0 ))
=
<*
<*z1, z0, z0*>,
<*z0, z1, z0*>,
<*z0, z0, z2*>*> by
PASCAL:def 3;
then (a
* (
symmetric_3 (1,1,(
- 1),
0 ,
0 ,
0 )))
=
<*
<*(a
* z1), (a
* z0), (a
* z0)*>,
<*(a
* z0), (a
* z1), (a
* z0)*>,
<*(a
* z0), (a
* z0), (a
* z2)*>*> by
Th39;
hence thesis by
PASCAL:def 3;
end;
theorem ::
BKMODEL1:57
Th49: M
= (
symmetric_3 (a,a,(
- a),
0 ,
0 ,
0 )) implies ((M
* M)
* M)
= (((a
* a)
* a)
* (
symmetric_3 (1,1,(
- 1),
0 ,
0 ,
0 )))
proof
assume
A1: M
= (
symmetric_3 (a,a,(
- a),
0 ,
0 ,
0 ));
reconsider ra2 = (a
* a) as
Element of
F_Real ;
((M
* M)
* M)
= ((ra2
* (
1. (
F_Real ,3)))
* M) by
A1,
Th40
.= (ra2
* ((
1. (
F_Real ,3))
* M)) by
Th47
.= (ra2
* M) by
MATRIX_3: 18
.= (ra2
* (a
* (
symmetric_3 (1,1,(
- 1),
0 ,
0 ,
0 )))) by
A1,
Th48
.= (((a
* a)
* a)
* (
symmetric_3 (1,1,(
- 1),
0 ,
0 ,
0 ))) by
MATRIX_5: 11;
hence thesis;
end;
theorem ::
BKMODEL1:58
Th50: for n be
Nat holds for a be
Real holds for M be
Matrix of n,
REAL holds for x be
FinSequence of
REAL st n
>
0 & (
len x)
= n holds (M
* (a
* x))
= ((a
* M)
* x)
proof
let n be
Nat;
let a be
Real;
let M be
Matrix of n,
REAL ;
let x be
FinSequence of
REAL ;
assume that
A1: n
>
0 and
A2: (
len x)
= n;
(
width M)
= n & (
len M)
= n by
MATRIX_0: 24;
then
A3: (
width M)
= (
len (
ColVec2Mx x)) & (
len M)
>
0 & (
len (
ColVec2Mx x))
>
0 & (
width (
ColVec2Mx x))
>
0 by
A1,
A2,
MATRIXR1:def 9;
((a
* M)
* x)
= (
Col (((a
* M)
* (
ColVec2Mx x)),1)) by
MATRIXR1:def 11
.= (
Col ((a
* (M
* (
ColVec2Mx x))),1)) by
A3,
MATRIXR1: 41
.= (
Col ((M
* (a
* (
ColVec2Mx x))),1)) by
A3,
MATRIXR1: 40
.= (
Col ((M
* (
ColVec2Mx (a
* x))),1)) by
A1,
A2,
MATRIXR1: 47
.= (M
* (a
* x)) by
MATRIXR1:def 11;
hence thesis;
end;
theorem ::
BKMODEL1:59
Th51: for n be
Nat holds for a be
Real holds for M be
Matrix of n,
REAL holds for x be
FinSequence of
REAL st n
>
0 & (
len x)
= n holds (a
* (M
* x))
= ((a
* M)
* x)
proof
let n be
Nat;
let a be
Real;
let M be
Matrix of n,
REAL ;
let x be
FinSequence of
REAL ;
assume that
A1: n
>
0 and
A2: (
len x)
= n;
(
width M)
= n by
MATRIX_0: 24;
then (M
* (a
* x))
= (a
* (M
* x)) by
A1,
A2,
MATRIXR1: 59;
hence thesis by
A1,
A2,
Th50;
end;
theorem ::
BKMODEL1:60
Th52: for n be
Nat holds for N be
Matrix of n,
REAL st N is
invertible holds (N
@ ) is
invertible & (
Inv (N
@ ))
= ((
Inv N)
@ )
proof
let n be
Nat;
let N be
Matrix of n,
REAL ;
assume
A1: N is
invertible;
then ((N
* (
Inv N))
@ )
= ((
1_Rmatrix n)
@ ) by
MATRIXR2:def 6
.= (
1_Rmatrix n) by
MATRIXR2: 64;
then
A2: (((
Inv N)
@ )
* (N
@ ))
= (
1_Rmatrix n) by
MATRIXR2: 30;
(((
Inv N)
* N)
@ )
= ((
1_Rmatrix n)
@ ) by
A1,
MATRIXR2:def 6
.= (
1_Rmatrix n) by
MATRIXR2: 64;
then
A3: ((N
@ )
* ((
Inv N)
@ ))
= (
1_Rmatrix n) by
MATRIXR2: 30;
then (N
@ ) is
invertible by
A2,
MATRIXR2:def 5;
hence thesis by
A2,
A3,
MATRIXR2:def 6;
end;
theorem ::
BKMODEL1:61
Th53: for ra be non
zero
Real holds for N,O,M be
Matrix of 3, 3,
REAL st N is
invertible & M
= (ra
* O) & M
= (((N
@ )
* O)
* N) holds ((((
Inv N)
@ )
* O)
* (
Inv N))
= ((1
/ ra)
* O)
proof
let ra be non
zero
Real;
let N,O,M be
Matrix of 3, 3,
REAL ;
assume that
A1: N is
invertible and
A3: M
= (ra
* O) and
A4: M
= (((N
@ )
* O)
* N);
reconsider NI = (
Inv N), NIT = ((
Inv N)
@ ) as
Matrix of 3, 3,
REAL ;
A5: ((
Inv N)
@ )
= (
Inv (N
@ )) & (N
@ ) is
invertible by
A1,
Th52;
A6: (
len NI)
= 3 & (
width NI)
= 3 & (
width (O
* N))
= 3 & (
len (O
* N))
= 3 by
MATRIX_0: 24;
reconsider ira = (1
/ ra) as
Real;
reconsider NTON = (((N
@ )
* O)
* N) as
Matrix of
REAL ;
A7: (
len NTON)
= 3 by
MATRIX_0: 24;
A8: (
width (NI
@ ))
= 3 by
MATRIX_0: 24;
O
= (1
* O) by
MATRIXR1: 32
.= (((1
/ ra)
* ra)
* O) by
XCMPLX_1: 87
.= (ira
* (((N
@ )
* O)
* N)) by
A3,
A4,
MATRIXR2: 11;
then (((NI
@ )
* O)
* NI)
= ((ira
* ((NI
@ )
* (((N
@ )
* O)
* N)))
* NI) by
A8,
A7,
MATRIXR1: 40
.= ((ira
* (NIT
* ((N
@ )
* (O
* N))))
* NI) by
MATRIXR2: 27
.= ((ira
* ((NIT
* (N
@ ))
* (O
* N)))
* NI) by
MATRIXR2: 27
.= ((ira
* ((
1_Rmatrix 3)
* (O
* N)))
* NI) by
A5,
MATRIXR2:def 6
.= ((ira
* (O
* N))
* NI) by
MATRIXR2: 70
.= (ira
* ((O
* N)
* NI)) by
A6,
MATRIXR1: 41
.= (ira
* (O
* (N
* NI))) by
MATRIXR2: 27
.= (ira
* (O
* (
1_Rmatrix 3))) by
A1,
MATRIXR2:def 6
.= (ira
* O) by
MATRIXR2: 71;
hence thesis;
end;
theorem ::
BKMODEL1:62
Th54: for ra be
Real holds for M,N be
Matrix of 3,
F_Real holds for MR,NR be
Matrix of 3,
REAL st MR
= M & NR
= N & N is
symmetric & MR
= (ra
* NR) holds M is
symmetric
proof
let ra be
Real;
let M,N be
Matrix of 3,
F_Real ;
let MR,NR be
Matrix of 3,
REAL ;
assume that
A1: MR
= M & NR
= N and
A2: N is
symmetric and
A3: MR
= (ra
* NR);
(
width NR)
>
0 by
MATRIX_0: 23;
then (M
@ )
= (ra
* (NR
@ )) by
A1,
A3,
MATRIXR1: 30
.= M by
A1,
A2,
A3,
MATRIX_6:def 5;
hence thesis by
MATRIX_6:def 5;
end;
theorem ::
BKMODEL1:63
Th55: for ra be
Real holds for O,M be
Matrix of 3,
REAL st O
= (
symmetric_3 (1,1,(
- 1),
0 ,
0 ,
0 )) & M
= (ra
* O) holds (O
* M)
= (ra
* (
1_Rmatrix 3)) & (M
* O)
= (ra
* (
1_Rmatrix 3))
proof
let ra be
Real;
let O,M be
Matrix of 3,
REAL ;
assume that
A1: O
= (
symmetric_3 (1,1,(
- 1),
0 ,
0 ,
0 )) and
A2: M
= (ra
* O);
(
1_Rmatrix 3)
= (
MXF2MXR (
1. (
F_Real ,3))) by
MATRIXR2:def 2;
then
A3: (
MXR2MXF (
1_Rmatrix 3))
= (
1. (
F_Real ,3)) by
ANPROJ_8: 16;
A4: (O
* O)
= ((
symmetric_3 (1,1,(
- 1),
0 ,
0 ,
0 ))
* (
symmetric_3 (1,1,(
- 1),
0 ,
0 ,
0 ))) by
A1,
ANPROJ_8: 17
.= (
1_Rmatrix 3) by
Th43,
A3,
MATRIXR1:def 1;
(
len O)
= 3 & (
width O)
= 3 by
MATRIX_0: 23;
hence thesis by
A4,
A2,
MATRIXR1: 40,
MATRIXR1: 41;
end;
theorem ::
BKMODEL1:64
for ra be
Real holds for O,M be
Matrix of 3,
REAL st O
= (
symmetric_3 (1,1,(
- 1),
0 ,
0 ,
0 )) & M
= (ra
* O) holds (((((M
@ )
* O)
@ )
* O)
* ((M
@ )
* O))
= ((ra
^2 )
* O)
proof
let ra be
Real;
let O,M be
Matrix of 3,
REAL ;
assume that
A1: O
= (
symmetric_3 (1,1,(
- 1),
0 ,
0 ,
0 )) and
A2: M
= (ra
* O);
reconsider O1 = O as
Matrix of 3,
F_Real ;
A3: (O
@ )
= O by
A1,
PASCAL: 12,
MATRIX_6:def 5;
reconsider MR = M as
Matrix of 3,
F_Real ;
A4: MR is
symmetric by
Th54,
A2,
A1,
PASCAL: 12;
A5: (((ra
* (
1_Rmatrix 3))
* O)
* (ra
* (
1_Rmatrix 3)))
= ((ra
^2 )
* O)
proof
reconsider z1 = 1, z2 = (
- 1), z3 =
0 as
Element of
F_Real by
XREAL_0:def 1;
A6: O
=
<*
<*z1, z3, z3*>,
<*z3, z1, z3*>,
<*z3, z3, z2*>*> by
A1,
PASCAL:def 3;
reconsider ea = ra as
Element of
F_Real by
XREAL_0:def 1;
A7: (ra
* (
1_Rmatrix 3))
= (
MXF2MXR (ea
* (
MXR2MXF (
1_Rmatrix 3)))) by
MATRIXR1:def 7
.= (
MXF2MXR (ea
* (
MXR2MXF (
MXF2MXR (
1. (
F_Real ,3)))))) by
MATRIXR2:def 2
.= (
MXF2MXR (ea
* (
1. (
F_Real ,3)))) by
ANPROJ_8: 16
.= (ea
* (
1. (
F_Real ,3))) by
MATRIXR1:def 2
.=
<*
<*(ea
* z1), (ea
* z3), (ea
* z3)*>,
<*(ea
* z3), (ea
* z1), (ea
* z3)*>,
<*(ea
* z3), (ea
* z3), (ea
* z1)*>*> by
ANPROJ_9: 1,
Th39
.=
<*
<*ea, z3, z3*>,
<*z3, ea, z3*>,
<*z3, z3, ea*>*>;
then
reconsider RA1R = (ra
* (
1_Rmatrix 3)) as
Matrix of 3,
F_Real by
ANPROJ_8: 19;
reconsider ea2 = (ra
* ra) as
Element of
F_Real by
XREAL_0:def 1;
reconsider z4 = (ea
* z2) as
Element of
F_Real ;
A8: (RA1R
* O1)
=
<*
<*(((ea
* z1)
+ (z3
* z3))
+ (z3
* z3)), (((ea
* z3)
+ (z3
* z1))
+ (z3
* z3)), (((ea
* z3)
+ (z3
* z3))
+ (z3
* z2))*>,
<*(((z3
* z1)
+ (ea
* z3))
+ (z3
* z3)), (((z3
* z3)
+ (ea
* z1))
+ (z3
* z3)), (((z3
* z3)
+ (ea
* z3))
+ (z3
* z2))*>,
<*(((z3
* z1)
+ (z3
* z3))
+ (ea
* z3)), (((z3
* z3)
+ (z3
* z1))
+ (ea
* z3)), (((z3
* z3)
+ (z3
* z3))
+ (ea
* z2))*>*> by
A7,
A6,
ANPROJ_9: 6
.=
<*
<*ea, z3, z3*>,
<*z3, ea, z3*>,
<*z3, z3, z4*>*>;
A9: ((RA1R
* O1)
* RA1R)
=
<*
<*(((ea
* ea)
+ (z3
* z3))
+ (z3
* z3)), (((ea
* z3)
+ (z3
* ea))
+ (z3
* z3)), (((ea
* z3)
+ (z3
* z3))
+ (z3
* ea))*>,
<*(((z3
* ea)
+ (ea
* z3))
+ (z3
* z3)), (((z3
* z3)
+ (ea
* ea))
+ (z3
* z3)), (((z3
* z3)
+ (ea
* z3))
+ (z3
* ea))*>,
<*(((z3
* ea)
+ (z3
* z3))
+ (z4
* z3)), (((z3
* z3)
+ (z3
* ea))
+ (z4
* z3)), (((z3
* z3)
+ (z3
* z3))
+ (z4
* ea))*>*> by
A8,
A7,
ANPROJ_9: 6
.=
<*
<*(ea
* ea), z3, z3*>,
<*z3, (ea
* ea), z3*>,
<*z3, z3, (z4
* ea)*>*>;
A10: ((ra
* (
1_Rmatrix 3))
* O)
= (RA1R
* O1) by
ANPROJ_8: 17;
((ra
^2 )
* O)
= (
MXF2MXR (ea2
* (
MXR2MXF O))) by
MATRIXR1:def 7
.= (ea2
* (
MXR2MXF O)) by
MATRIXR1:def 2
.=
<*
<*(ea2
* z1), (ea2
* z3), (ea2
* z3)*>,
<*(ea2
* z3), (ea2
* z1), (ea2
* z3)*>,
<*(ea2
* z3), (ea2
* z3), (ea2
* z2)*>*> by
A6,
Th39,
MATRIXR1:def 1;
hence thesis by
A10,
A9,
ANPROJ_8: 17;
end;
(((((M
@ )
* O)
@ )
* O)
* ((M
@ )
* O))
= ((((M
* O)
@ )
* O)
* ((M
@ )
* O)) by
A4,
MATRIX_6:def 5
.= ((((M
* O)
@ )
* O)
* (M
* O)) by
A4,
MATRIX_6:def 5
.= ((((O
@ )
* (M
@ ))
* O)
* (M
* O)) by
MATRIXR2: 30
.= (((O
* M)
* O)
* (M
* O)) by
A3,
A4,
MATRIX_6:def 5
.= (((ra
* (
1_Rmatrix 3))
* O)
* (M
* O)) by
A1,
A2,
Th55
.= ((ra
^2 )
* O) by
A1,
A2,
A5,
Th55;
hence thesis;
end;
theorem ::
BKMODEL1:65
for O,N be
Matrix of 3,
REAL holds (((((N
@ )
* O)
@ )
* O)
* ((N
@ )
* O))
= (((O
@ )
* ((N
* O)
* (N
@ )))
* O)
proof
let O,N be
Matrix of 3,
REAL ;
(((((N
@ )
* O)
@ )
* O)
* ((N
@ )
* O))
= ((((O
@ )
* ((N
@ )
@ ))
* O)
* ((N
@ )
* O)) by
MATRIXR2: 30
.= ((((O
@ )
* N)
* O)
* ((N
@ )
* O)) by
MATRIXR2: 29
.= (((O
@ )
* (N
* O))
* ((N
@ )
* O)) by
MATRIXR2: 27
.= ((O
@ )
* ((N
* O)
* ((N
@ )
* O))) by
MATRIXR2: 27
.= ((O
@ )
* (((N
* O)
* (N
@ ))
* O)) by
MATRIXR2: 27;
hence thesis by
MATRIXR2: 27;
end;
theorem ::
BKMODEL1:66
for NR,MR be
Matrix of 3,
REAL holds for p1,p2,p3 be
FinSequence of
REAL st p1
=
<*1,
0 ,
0 *> & p2
=
<*
0 , 1,
0 *> & p3
=
<*
0 ,
0 , 1*> & (NR
* p1)
= (MR
* p1) & (NR
* p2)
= (MR
* p2) & (NR
* p3)
= (MR
* p3) holds NR
= MR
proof
let NR,MR be
Matrix of 3,
REAL ;
let p1,p2,p3 be
FinSequence of
REAL ;
assume that
A1: p1
=
<*1,
0 ,
0 *> & p2
=
<*
0 , 1,
0 *> & p3
=
<*
0 ,
0 , 1*> and
A2: (NR
* p1)
= (MR
* p1) and
A3: (NR
* p2)
= (MR
* p2) and
A4: (NR
* p3)
= (MR
* p3);
reconsider N = NR, M = MR as
Matrix of 3,
F_Real ;
consider n11,n12,n13,n21,n22,n23,n31,n32,n33 be
Element of
F_Real such that
A5: N
=
<*
<*n11, n12, n13*>,
<*n21, n22, n23*>,
<*n31, n32, n33*>*> by
PASCAL: 3;
consider m11,m12,m13,m21,m22,m23,m31,m32,m33 be
Element of
F_Real such that
A6: M
=
<*
<*m11, m12, m13*>,
<*m21, m22, m23*>,
<*m31, m32, m33*>*> by
PASCAL: 3;
reconsider rn11 = n11, rn12 = n12, rn13 = n13, rn21 = n21, rn22 = n22, rn23 = n23, rn31 = n31, rn32 = n32, rn33 = n33 as
Element of
REAL ;
reconsider rm11 = m11, rm12 = m12, rm13 = m13, rm21 = m21, rm22 = m22, rm23 = m23, rm31 = m31, rm32 = m32, rm33 = m33 as
Element of
REAL ;
A7:
|[1,
0 ,
0 ]|
in (
TOP-REAL 3);
then
reconsider q1 =
<*1,
0 ,
0 *> as
FinSequence of
REAL by
EUCLID: 24;
reconsider z1 = (q1
. 1), z2 = (q1
. 2), z3 = (q1
. 3) as
Element of
REAL by
XREAL_0:def 1;
A8: z1
= 1 & z2
=
0 & z3
=
0 by
FINSEQ_1: 45;
q1
in (
REAL 3) by
A7,
EUCLID: 22;
then
A9: (
len q1)
= 3 by
EUCLID_8: 50;
then NR
=
<*
<*rn11, rn12, rn13*>,
<*rn21, rn22, rn23*>,
<*rn31, rn32, rn33*>*> & q1
=
<*z1, z2, z3*> by
FINSEQ_1: 45,
A5;
then
A10: (NR
* q1)
=
<*(((rn11
* z1)
+ (rn12
* z2))
+ (rn13
* z3)), (((rn21
* z1)
+ (rn22
* z2))
+ (rn23
* z3)), (((rn31
* z1)
+ (rn32
* z2))
+ (rn33
* z3))*> by
PASCAL: 9
.=
<*rn11, rn21, rn31*> by
A8;
MR
=
<*
<*rm11, rm12, rm13*>,
<*rm21, rm22, rm23*>,
<*rm31, rm32, rm33*>*> & q1
=
<*z1, z2, z3*> by
A9,
FINSEQ_1: 45,
A6;
then (MR
* q1)
=
<*(((rm11
* z1)
+ (rm12
* z2))
+ (rm13
* z3)), (((rm21
* z1)
+ (rm22
* z2))
+ (rm23
* z3)), (((rm31
* z1)
+ (rm32
* z2))
+ (rm33
* z3))*> by
PASCAL: 9
.=
<*rm11, rm21, rm31*> by
A8;
then
A11: rn11
= rm11 & rn21
= rm21 & rn31
= rm31 by
A10,
A2,
A1,
FINSEQ_1: 78;
A12:
|[
0 , 1,
0 ]|
in (
TOP-REAL 3);
then
reconsider q1 =
<*
0 , 1,
0 *> as
FinSequence of
REAL by
EUCLID: 24;
reconsider z1 = (q1
. 1), z2 = (q1
. 2), z3 = (q1
. 3) as
Element of
REAL by
XREAL_0:def 1;
A13: z1
=
0 & z2
= 1 & z3
=
0 by
FINSEQ_1: 45;
q1
in (
REAL 3) by
A12,
EUCLID: 22;
then
A14: (
len q1)
= 3 by
EUCLID_8: 50;
then NR
=
<*
<*rn11, rn12, rn13*>,
<*rn21, rn22, rn23*>,
<*rn31, rn32, rn33*>*> & q1
=
<*z1, z2, z3*> by
FINSEQ_1: 45,
A5;
then
A15: (NR
* q1)
=
<*(((rn11
* z1)
+ (rn12
* z2))
+ (rn13
* z3)), (((rn21
* z1)
+ (rn22
* z2))
+ (rn23
* z3)), (((rn31
* z1)
+ (rn32
* z2))
+ (rn33
* z3))*> by
PASCAL: 9
.=
<*rn12, rn22, rn32*> by
A13;
MR
=
<*
<*rm11, rm12, rm13*>,
<*rm21, rm22, rm23*>,
<*rm31, rm32, rm33*>*> & q1
=
<*z1, z2, z3*> by
A14,
FINSEQ_1: 45,
A6;
then (MR
* q1)
=
<*(((rm11
* z1)
+ (rm12
* z2))
+ (rm13
* z3)), (((rm21
* z1)
+ (rm22
* z2))
+ (rm23
* z3)), (((rm31
* z1)
+ (rm32
* z2))
+ (rm33
* z3))*> by
PASCAL: 9
.=
<*rm12, rm22, rm32*> by
A13;
then
A16: rn12
= rm12 & rn22
= rm22 & rn32
= rm32 by
A15,
A3,
A1,
FINSEQ_1: 78;
A17:
|[
0 ,
0 , 1]|
in (
TOP-REAL 3);
then
reconsider q1 =
<*
0 ,
0 , 1*> as
FinSequence of
REAL by
EUCLID: 24;
reconsider z1 = (q1
. 1), z2 = (q1
. 2), z3 = (q1
. 3) as
Element of
REAL by
XREAL_0:def 1;
A18: z1
=
0 & z2
=
0 & z3
= 1 by
FINSEQ_1: 45;
q1
in (
REAL 3) by
A17,
EUCLID: 22;
then
A19: (
len q1)
= 3 by
EUCLID_8: 50;
then NR
=
<*
<*rn11, rn12, rn13*>,
<*rn21, rn22, rn23*>,
<*rn31, rn32, rn33*>*> & q1
=
<*z1, z2, z3*> by
FINSEQ_1: 45,
A5;
then
A20: (NR
* q1)
=
<*(((rn11
* z1)
+ (rn12
* z2))
+ (rn13
* z3)), (((rn21
* z1)
+ (rn22
* z2))
+ (rn23
* z3)), (((rn31
* z1)
+ (rn32
* z2))
+ (rn33
* z3))*> by
PASCAL: 9
.=
<*rn13, rn23, rn33*> by
A18;
MR
=
<*
<*rm11, rm12, rm13*>,
<*rm21, rm22, rm23*>,
<*rm31, rm32, rm33*>*> & q1
=
<*z1, z2, z3*> by
A19,
FINSEQ_1: 45,
A6;
then (MR
* q1)
=
<*(((rm11
* z1)
+ (rm12
* z2))
+ (rm13
* z3)), (((rm21
* z1)
+ (rm22
* z2))
+ (rm23
* z3)), (((rm31
* z1)
+ (rm32
* z2))
+ (rm33
* z3))*> by
PASCAL: 9
.=
<*rm13, rm23, rm33*> by
A18;
then rn13
= rm13 & rn23
= rm23 & rn33
= rm33 by
A20,
A4,
A1,
FINSEQ_1: 78;
hence thesis by
A11,
A16,
A5,
A6;
end;
theorem ::
BKMODEL1:67
Th56: for a be non
zero
Real holds for u be
Element of (
TOP-REAL 3) st (a
* u)
= (
0. (
TOP-REAL 3)) holds u is
zero
proof
let a be non
zero
Real;
let u be
Element of (
TOP-REAL 3);
assume (a
* u)
= (
0. (
TOP-REAL 3));
then
|[(a
* (u
`1 )), (a
* (u
`2 )), (a
* (u
`3 ))]|
=
|[
0 ,
0 ,
0 ]| by
EUCLID_5: 4,
EUCLID_5: 7;
then (u
`1 )
=
0 & (u
`2 )
=
0 & (u
`3 )
=
0 by
FINSEQ_1: 78;
hence thesis by
EUCLID_5: 3,
EUCLID_5: 4;
end;
theorem ::
BKMODEL1:68
Th57: for u,v be non
zero
Element of (
TOP-REAL 3) holds for a,b be
Real st (a
<>
0 or b
<>
0 ) & ((a
* u)
+ (b
* v))
= (
0. (
TOP-REAL 3)) holds
are_Prop (u,v)
proof
let u,v be non
zero
Element of (
TOP-REAL 3);
let a,b be
Real;
assume that
A1: a
<>
0 or b
<>
0 and
A2: ((a
* u)
+ (b
* v))
= (
0. (
TOP-REAL 3));
reconsider n = 3 as
Nat;
reconsider au = (a
* u), bv = (b
* v) as
Element of (
TOP-REAL 3);
consider c be
Real such that
A3: c
<>
0 and
A4: au
= (c
* bv) by
A2,
ANPROJ_1: 1,
ANPROJ_1: 13;
A5: a
<>
0 & b
<>
0
proof
assume a
=
0 or b
=
0 ;
per cases ;
suppose
A6: a
=
0 ;
u
in (
TOP-REAL 3);
then u
in (
REAL 3) by
EUCLID: 22;
then
A7: (
0
* u)
= (
0* n) by
EUCLID_4: 3;
bv
in (
TOP-REAL 3);
then bv
in (
REAL 3) by
EUCLID: 22;
then ((
0* n)
+ bv)
= bv by
EUCLID_4: 1;
hence contradiction by
A1,
A6,
A2,
A7,
Th56;
end;
suppose
A8: b
=
0 ;
v
in (
TOP-REAL 3);
then v
in (
REAL 3) by
EUCLID: 22;
then
A9: (
0
* v)
= (
0* n) by
EUCLID_4: 3;
au
in (
TOP-REAL 3);
then au
in (
REAL 3) by
EUCLID: 22;
then (au
+ (
0* n))
= au by
EUCLID_4: 1;
hence contradiction by
A1,
A8,
A2,
A9,
Th56;
end;
end;
u
= (1
* u) by
RVSUM_1: 52
.= (((1
/ a)
* a)
* u) by
A5,
XCMPLX_1: 106
.= ((1
/ a)
* (c
* (b
* v))) by
A4,
RVSUM_1: 49
.= (((1
/ a)
* c)
* (b
* v)) by
RVSUM_1: 49
.= ((((1
/ a)
* c)
* b)
* v) by
RVSUM_1: 49;
hence thesis by
A3,
A5,
ANPROJ_1: 1;
end;
theorem ::
BKMODEL1:69
for N be
invertible
Matrix of 3,
F_Real holds for P,Q,R be
Point of (
ProjectiveSpace (
TOP-REAL 3)) st P
<> Q & ((
homography N)
. P)
= Q & ((
homography N)
. Q)
= P & (P,Q,R)
are_collinear holds ((
homography N)
. ((
homography N)
. R))
= R
proof
let N be
invertible
Matrix of 3,
F_Real ;
let P,Q,R be
Point of (
ProjectiveSpace (
TOP-REAL 3));
assume that
A1: P
<> Q and
A2: ((
homography N)
. P)
= Q and
A3: ((
homography N)
. Q)
= P and
A4: (P,Q,R)
are_collinear ;
reconsider NR = (
MXF2MXR N) as
Matrix of 3,
REAL by
MATRIXR1:def 2;
consider u1,v1 be
Element of (
TOP-REAL 3), u1f be
FinSequence of
F_Real , p1 be
FinSequence of (1
-tuples_on
REAL ) such that
A5: P
= (
Dir u1) & not u1 is
zero & u1
= u1f & p1
= (N
* u1f) & v1
= (
M2F p1) & not v1 is
zero & ((
homography N)
. P)
= (
Dir v1) by
ANPROJ_8:def 4;
consider u2,v2 be
Element of (
TOP-REAL 3), u2f be
FinSequence of
F_Real , p2 be
FinSequence of (1
-tuples_on
REAL ) such that
A6: Q
= (
Dir u2) & not u2 is
zero & u2
= u2f & p2
= (N
* u2f) & v2
= (
M2F p2) & not v2 is
zero & ((
homography N)
. Q)
= (
Dir v2) by
ANPROJ_8:def 4;
reconsider u1fr = u1f, u2fr = u2f as
FinSequence of
REAL ;
u1
in (
TOP-REAL 3) & u2
in (
TOP-REAL 3);
then
A7: u1
in (
REAL 3) & u2
in (
REAL 3) by
EUCLID: 22;
then
A8: (
len u1)
= 3 & (
len u2)
= 3 by
EUCLID_8: 50;
consider u3 be
Element of (
TOP-REAL 3) such that
A9: not u3 is
zero and
A10: R
= (
Dir u3) by
ANPROJ_1: 26;
reconsider uf3r = u3 as
FinSequence of
REAL by
EUCLID: 24;
A11:
are_Prop (v2,u1) &
are_Prop (v1,u2) by
A2,
A3,
A5,
A6,
ANPROJ_1: 22;
then
consider l1 be
Real such that
A12: l1
<>
0 and
A13: v2
= (l1
* u1) by
ANPROJ_1: 1;
consider l2 be
Real such that
A14: l2
<>
0 and
A15: v1
= (l2
* u2) by
A11,
ANPROJ_1: 1;
A16: (
width NR)
= 3 & (
len NR)
= 3 & (
len u2fr)
= 3 & (
len u1fr)
= 3 by
A7,
EUCLID_8: 50,
A5,
A6,
MATRIX_0: 24;
A17: (
width NR)
= (
len u2fr) & (
len u2fr)
>
0 & (
width NR)
= (
len u1fr) & (
len u1fr)
>
0 by
A8,
A5,
A6,
MATRIX_0: 24;
reconsider l = (l1
* l2) as non
zero
Real by
A12,
A14;
A18: ((NR
* NR)
* u1fr)
= (NR
* (NR
* u1fr)) by
A16,
MATRIXR2: 59
.= (NR
* (l2
* u2fr)) by
A5,
A6,
A8,
MATRIXR1:def 2,
Th30,
A15
.= (l2
* (NR
* u2fr)) by
A17,
MATRIXR2: 53
.= (l2
* (l1
* u1fr)) by
A5,
A6,
A8,
MATRIXR1:def 2,
Th30,
A13
.= (l
* u1fr) by
RVSUM_1: 49;
A19: ((NR
* NR)
* u2fr)
= (NR
* (NR
* u2fr)) by
A16,
MATRIXR2: 59
.= (NR
* (l1
* u1fr)) by
A5,
A6,
A8,
MATRIXR1:def 2,
Th30,
A13
.= (l1
* (NR
* u1fr)) by
A17,
MATRIXR2: 53
.= (l1
* (l2
* u2fr)) by
A5,
A6,
A8,
MATRIXR1:def 2,
Th30,
A15
.= (l
* u2fr) by
RVSUM_1: 49;
|{u1, u2, u3}|
=
0 by
A4,
A5,
A6,
A9,
A10,
Th01;
then
consider a,b,c be
Real such that
A20: (((a
* u1)
+ (b
* u2))
+ (c
* u3))
= (
0. (
TOP-REAL 3)) & ((a
<>
0 ) or (b
<>
0 ) or (c
<>
0 )) by
ANPROJ_8: 42;
A21: c
<>
0
proof
assume
A22: c
=
0 ;
reconsider bu2 = (b
* u2) as
Element of (
REAL 3) by
EUCLID: 22;
reconsider n = 3 as
Nat;
u3
in (
TOP-REAL 3);
then u3
in (
REAL 3) by
EUCLID: 22;
then (bu2
+ (
0
* u3))
= (bu2
+ (
0* n)) by
EUCLID_4: 3
.= bu2 by
EUCLID_4: 1;
then ((a
* u1)
+ (b
* u2))
= (
0. (
TOP-REAL 3)) by
A20,
A22,
RVSUM_1: 15;
then
are_Prop (u1,u2) by
A20,
A22,
A5,
A6,
Th57;
hence contradiction by
A1,
A5,
A6,
ANPROJ_1: 22;
end;
A23: (((a
* u1)
+ (b
* u2))
+ (c
* u3))
= (((c
* u3)
+ (a
* u1))
+ (b
* u2)) by
RVSUM_1: 15;
reconsider d = ((
- a)
/ c), e = ((
- b)
/ c) as
Real;
A24: u3
= ((d
* u1)
+ (e
* u2)) by
A23,
A20,
A21,
ANPROJ_8: 12;
reconsider u4fr = ((d
* u1)
+ (e
* u2)) as
FinSequence of
REAL ;
reconsider NRNR = (NR
* NR) as
Matrix of 3,
REAL ;
u3
in (
TOP-REAL 3);
then u3
in (
REAL 3) by
EUCLID: 22;
then
A25: (
len u4fr)
= (
width NR) & (
width NR)
= (
len NR) & (
len u4fr)
>
0 & (
len NR)
>
0 by
A16,
A24,
EUCLID_8: 50;
A26: (
len u1fr)
= 3 & (
len u2fr)
= 3 & (
width NR)
= 3 & (
len NR)
= 3 by
A5,
A6,
A7,
EUCLID_8: 50,
MATRIX_0: 24;
(
len (d
* u1fr))
= 3 & (
len (e
* u2fr))
= 3 by
RVSUM_1: 117,
A5,
A6,
A8;
then
A27: (
len (d
* u1fr))
= (
len (e
* u2fr)) & (
width NR)
= (
len (d
* u1fr)) & (
len (d
* u1fr))
>
0 & (
len NR)
>
0 by
MATRIX_0: 24;
(
len (NR
* u1fr))
= 3 & (
len (NR
* u2fr))
= 3 by
A26,
MATRIXR1: 61;
then
A28: (
len (d
* (NR
* u1fr)))
= 3 & (
len (e
* (NR
* u2fr)))
= 3 & (
width NR)
= 3 & (
len NR)
= 3 by
MATRIX_0: 24,
RVSUM_1: 117;
A29: (
width NR)
= (
len (NR
* u1fr)) & (
len (NR
* u1fr))
>
0 by
A26,
MATRIXR1: 61;
A30: (
width NR)
= (
len (NR
* u2fr)) & (
len (NR
* u2fr))
>
0 by
A26,
MATRIXR1: 61;
A31: ((NR
* NR)
* uf3r)
= ((NR
* NR)
* u4fr) by
A23,
A20,
A21,
ANPROJ_8: 12
.= (NR
* (NR
* ((d
* u1fr)
+ (e
* u2fr)))) by
A5,
A6,
A25,
MATRIXR2: 59
.= (NR
* ((NR
* (d
* u1fr))
+ (NR
* (e
* u2fr)))) by
MATRIXR1: 57,
A27
.= (NR
* ((d
* (NR
* u1fr))
+ (NR
* (e
* u2fr)))) by
MATRIXR1: 59,
A26
.= (NR
* ((d
* (NR
* u1fr))
+ (e
* (NR
* u2fr)))) by
MATRIXR1: 59,
A26
.= ((NR
* (d
* (NR
* u1fr)))
+ (NR
* (e
* (NR
* u2fr)))) by
MATRIXR1: 57,
A28
.= ((d
* (NR
* (NR
* u1fr)))
+ (NR
* (e
* (NR
* u2fr)))) by
MATRIXR1: 59,
A29
.= ((d
* (NR
* (NR
* u1fr)))
+ (e
* (NR
* (NR
* u2fr)))) by
MATRIXR1: 59,
A30
.= ((d
* ((NR
* NR)
* u1fr))
+ (e
* (NR
* (NR
* u2fr)))) by
A16,
MATRIXR2: 59
.= ((d
* (l
* u1fr))
+ (e
* ((NR
* NR)
* u2fr))) by
A18,
A16,
MATRIXR2: 59
.= (((d
* l)
* u1fr)
+ (e
* (l
* u2fr))) by
A19,
RVSUM_1: 49
.= (((d
* l)
* u1fr)
+ ((e
* l)
* u2fr)) by
RVSUM_1: 49
.= ((l
* (d
* u1fr))
+ ((l
* e)
* u2fr)) by
RVSUM_1: 49
.= ((l
* (d
* u1fr))
+ (l
* (e
* u2fr))) by
RVSUM_1: 49
.= (l
* ((d
* u1)
+ (e
* u2))) by
A5,
A6,
RVSUM_1: 51
.= (l
* uf3r) by
A23,
A20,
A21,
ANPROJ_8: 12;
N
= NR by
MATRIXR1:def 2;
then ((
homography (N
* N))
. R)
= R by
A31,
A9,
A10,
Th33,
ANPROJ_8: 17;
hence thesis by
ANPROJ_9: 13;
end;
theorem ::
BKMODEL1:70
for n be
Nat holds for u,v be
Element of (
TOP-REAL n) holds for a,b be
Real st (((1
- a)
* u)
+ (a
* v))
= (((1
- b)
* v)
+ (b
* u)) holds ((1
- (a
+ b))
* u)
= ((1
- (a
+ b))
* v)
proof
let n be
Nat;
let u,v be
Element of (
TOP-REAL n);
let a,b be
Real;
assume
A1: (((1
- a)
* u)
+ (a
* v))
= (((1
- b)
* v)
+ (b
* u));
reconsider ru = u, rv = v as
Element of (
REAL n) by
EUCLID: 22;
A2: ((((1
- a)
* ru)
+ (a
* rv))
- (a
* rv))
= ((1
- a)
* ru)
proof
((1
- a)
* ru)
in (
REAL n) & (a
* rv)
in (
REAL n);
then
reconsider t1 = ((1
- a)
* u), t2 = (a
* v) as
Element of (n
-tuples_on
REAL ) by
EUCLID:def 1;
((((1
- a)
* ru)
+ (a
* rv))
- (a
* rv))
= ((t1
+ t2)
- t2)
.= t1 by
RVSUM_1: 42;
hence thesis;
end;
A3: (((((1
- b)
* rv)
- (a
* rv))
+ (b
* ru))
- (b
* ru))
= (((1
- b)
* rv)
- (a
* rv))
proof
reconsider t1 = (((1
- b)
* rv)
- (a
* rv)), t2 = (b
* ru) as
Element of (n
-tuples_on
REAL ) by
EUCLID:def 1;
(((((1
- b)
* rv)
- (a
* rv))
+ (b
* ru))
- (b
* ru))
= ((t1
+ t2)
- t2)
.= t1 by
RVSUM_1: 42;
hence thesis;
end;
((1
- a)
* ru)
= ((((1
- b)
* rv)
+ (b
* ru))
+ (
- (a
* rv))) by
A1,
A2,
RVSUM_1: 31
.= ((((1
- b)
* rv)
+ (
- (a
* rv)))
+ (b
* ru)) by
RVSUM_1: 15;
then (((1
- a)
* ru)
- (b
* ru))
= (((1
- b)
* rv)
- (a
* rv)) by
A3,
RVSUM_1: 31;
then (((1
- a)
* ru)
+ (
- (b
* ru)))
= (((1
- b)
* rv)
- (a
* rv)) by
RVSUM_1: 31
.= (((1
- b)
* rv)
+ (
- (a
* rv))) by
RVSUM_1: 31;
then (((1
- a)
* ru)
+ ((
- 1)
* (b
* ru)))
= (((1
- b)
* rv)
+ (
- (a
* rv))) by
RVSUM_1: 54;
then (((1
- a)
* ru)
+ (((
- 1)
* b)
* ru))
= (((1
- b)
* rv)
+ (
- (a
* rv))) by
RVSUM_1: 49;
then (((1
- a)
+ ((
- 1)
* b))
* ru)
= (((1
- b)
* rv)
+ (
- (a
* rv))) by
RVSUM_1: 50;
then (((1
- a)
- b)
* ru)
= (((1
- b)
* rv)
+ ((
- 1)
* (a
* rv))) by
RVSUM_1: 54
.= (((1
- b)
* rv)
+ (((
- 1)
* a)
* rv)) by
RVSUM_1: 49
.= (((1
- b)
+ ((
- 1)
* a))
* rv) by
RVSUM_1: 50;
hence thesis;
end;
theorem ::
BKMODEL1:71
(
ProjectiveSpace (
TOP-REAL 3)) is
proper by
ANPROJ_8: 57;
definition
::
BKMODEL1:def4
func
real_projective_plane -> non
empty
proper
CollProjectivePlane equals (
ProjectiveSpace (
TOP-REAL 3));
coherence by
ANPROJ_8: 57;
end
reserve P,Q,R for
POINT of (
IncProjSp_of
real_projective_plane ),
L for
LINE of (
IncProjSp_of
real_projective_plane ),
p,q,r for
Point of
real_projective_plane ;
theorem ::
BKMODEL1:72
for L be
Element of (
ProjectiveLines
real_projective_plane ) holds ex p, q st p
<> q & L
= (
Line (p,q))
proof
let L be
Element of (
ProjectiveLines
real_projective_plane );
L
in (
ProjectiveLines
real_projective_plane );
then L
in { B where B be
Subset of
real_projective_plane : B is
LINE of
real_projective_plane } by
INCPROJ:def 1;
then ex B be
Subset of
real_projective_plane st L
= B & B is
LINE of
real_projective_plane ;
hence thesis by
COLLSP:def 7;
end;
theorem ::
BKMODEL1:73
Th60: ex p, q st p
<> q & L
= (
Line (p,q))
proof
L
in the
Lines of (
IncProjSp_of
real_projective_plane );
then L
in (
ProjectiveLines
real_projective_plane ) by
INCPROJ: 2;
then L
in { B where B be
Subset of
real_projective_plane : B is
LINE of
real_projective_plane } by
INCPROJ:def 1;
then ex B be
Subset of
real_projective_plane st L
= B & B is
LINE of
real_projective_plane ;
hence thesis by
COLLSP:def 7;
end;
theorem ::
BKMODEL1:74
Th61: R
= r & L
= (
Line (p,q)) implies (R
on L iff (p,q,r)
are_collinear )
proof
assume
A1: R
= r & L
= (
Line (p,q));
hereby
assume R
on L;
then
[R, L]
in the
Inc of (
IncProjSp_of
real_projective_plane ) by
INCSP_1:def 1;
then
[R, L]
in (
Proj_Inc
real_projective_plane ) by
INCPROJ: 2;
then R
in the
carrier of
real_projective_plane & L
in (
ProjectiveLines
real_projective_plane ) & ex Y be
set st L
= Y & R
in Y by
INCPROJ:def 2;
hence (p,q,r)
are_collinear by
A1,
COLLSP: 11;
end;
assume
A2: (p,q,r)
are_collinear ;
now
R is
Point of
real_projective_plane by
INCPROJ: 3;
hence R
in the
carrier of
real_projective_plane ;
L is
Element of (
ProjectiveLines
real_projective_plane ) by
INCPROJ: 1,
INCPROJ: 4;
hence L
in (
ProjectiveLines
real_projective_plane );
thus ex Y be
set st L
= Y & R
in Y by
A2,
A1,
COLLSP: 11;
end;
then
[R, L]
in (
Proj_Inc
real_projective_plane ) by
INCPROJ:def 2;
then
[R, L]
in the
Inc of (
IncProjSp_of
real_projective_plane ) by
INCPROJ: 2;
hence R
on L by
INCSP_1:def 1;
end;
theorem ::
BKMODEL1:75
Th62: (
IncProjSp_of
real_projective_plane ) is
IncProjectivePlane
proof
(
IncProjSp_of
real_projective_plane ) is
2-dimensional
proof
for M,N be
LINE of (
IncProjSp_of
real_projective_plane ) holds ex q be
POINT of (
IncProjSp_of
real_projective_plane ) st q
on M & q
on N
proof
let M,N be
LINE of (
IncProjSp_of
real_projective_plane );
consider p1,q1 be
Point of
real_projective_plane such that p1
<> q1 and
A1: M
= (
Line (p1,q1)) by
Th60;
consider p2,q2 be
Point of
real_projective_plane such that p2
<> q2 and
A2: N
= (
Line (p2,q2)) by
Th60;
consider q be
Element of
real_projective_plane such that
A3: (p1,q1,q)
are_collinear and
A4: (p2,q2,q)
are_collinear by
ANPROJ_2:def 14;
reconsider Q = q as
POINT of (
IncProjSp_of
real_projective_plane ) by
INCPROJ: 3;
take Q;
thus thesis by
A1,
A2,
A3,
A4,
Th61;
end;
hence thesis by
INCPROJ:def 9;
end;
hence thesis;
end;
theorem ::
BKMODEL1:76
for L1,L2 be
LINE of
real_projective_plane holds L1
meets L2
proof
let L1,L2 be
LINE of
real_projective_plane ;
reconsider LI1 = L1, LI2 = L2 as
LINE of (
IncProjSp_of
real_projective_plane ) by
INCPROJ: 4;
consider R be
POINT of (
IncProjSp_of
real_projective_plane ) such that
A1: R
on LI1 and
A2: R
on LI2 by
Th62,
INCPROJ:def 9;
reconsider S = R as
Element of
real_projective_plane by
INCPROJ: 3;
S
in LI1 & S
in LI2 by
A1,
A2,
INCPROJ: 5;
hence thesis by
XBOOLE_0:def 4;
end;
reserve u,v,w for non
zero
Element of (
TOP-REAL 3);
theorem ::
BKMODEL1:77
p
= (
Dir u) & q
= (
Dir v) & R
= (
Dir w) & L
= (
Line (p,q)) implies (R
on L iff
|{u, v, w}|
=
0 )
proof
assume that
A1: p
= (
Dir u) and
A2: q
= (
Dir v) and
A3: R
= (
Dir w) and
A4: L
= (
Line (p,q));
reconsider r = (
Dir w) as
Point of
real_projective_plane by
ANPROJ_1: 26;
hereby
assume R
on L;
then (p,q,r)
are_collinear by
A3,
A4,
Th61;
then
consider u1,v1,w1 be
Element of (
TOP-REAL 3) such that
A5: p
= (
Dir u1) and
A6: q
= (
Dir v1) and
A7: r
= (
Dir w1) and
A8: u1 is non
zero & v1 is non
zero & w1 is non
zero and
A9: u1
= v1 or u1
= w1 or v1
= w1 or
{u1, v1, w1} is
linearly-dependent by
ANPROJ_8: 10;
(u1,v1,w1)
are_LinDep by
A9,
ANPROJ_8: 9;
then
|{u1, v1, w1}|
=
0 by
ANPROJ_8: 43;
then
|{u, v1, w1}|
=
0 by
A1,
A5,
A8,
ANPROJ_8: 58;
then
|{u, v, w1}|
=
0 by
A2,
A6,
A8,
ANPROJ_8: 59;
hence
|{u, v, w}|
=
0 by
A8,
A7,
ANPROJ_8: 60;
end;
assume
|{u, v, w}|
=
0 ;
then u
= v or u
= w or v
= w or
{u, v, w} is
linearly-dependent by
ANPROJ_8: 9,
ANPROJ_8: 43;
then (p,q,r)
are_collinear by
A1,
A2,
ANPROJ_8: 10;
hence R
on L by
A3,
A4,
Th61;
end;
theorem ::
BKMODEL1:78
Th64: for p,q be
Element of (
ProjectiveSpace (
TOP-REAL 3)) st p
<> q & p
= (
Dir u) & q
= (
Dir v) holds (u
<X> v) is non
zero
proof
let p,q be
Element of (
ProjectiveSpace (
TOP-REAL 3));
assume that
A1: p
<> q & p
= (
Dir u) & q
= (
Dir v);
assume (u
<X> v) is
zero;
then
are_Prop (u,v) by
ANPROJ_8: 51;
hence contradiction by
A1,
ANPROJ_1: 22;
end;
definition
let p,q be
Point of
real_projective_plane ;
assume
A1: p
<> q;
::
BKMODEL1:def5
func
L2P (p,q) ->
Point of
real_projective_plane means
:
Def01: ex u,v be non
zero
Element of (
TOP-REAL 3) st p
= (
Dir u) & q
= (
Dir v) & it
= (
Dir (u
<X> v));
existence
proof
consider u be
Element of (
TOP-REAL 3) such that
A2: not u is
zero & p
= (
Dir u) by
ANPROJ_1: 26;
consider v be
Element of (
TOP-REAL 3) such that
A3: not v is
zero & q
= (
Dir v) by
ANPROJ_1: 26;
reconsider u, v as non
zero
Element of (
TOP-REAL 3) by
A2,
A3;
(u
<X> v) is non
zero by
A1,
A2,
A3,
Th64;
then (
Dir (u
<X> v)) is
Element of (
ProjectiveSpace (
TOP-REAL 3)) by
ANPROJ_1: 26;
hence thesis by
A2,
A3;
end;
uniqueness
proof
let P1,P2 be
Point of
real_projective_plane such that
A4: ex u,v be non
zero
Element of (
TOP-REAL 3) st p
= (
Dir u) & q
= (
Dir v) & P1
= (
Dir (u
<X> v)) and
A5: ex u,v be non
zero
Element of (
TOP-REAL 3) st p
= (
Dir u) & q
= (
Dir v) & P2
= (
Dir (u
<X> v));
consider u1,v1 be non
zero
Element of (
TOP-REAL 3) such that
A6: p
= (
Dir u1) & q
= (
Dir v1) & P1
= (
Dir (u1
<X> v1)) by
A4;
consider u2,v2 be non
zero
Element of (
TOP-REAL 3) such that
A7: p
= (
Dir u2) & q
= (
Dir v2) & P2
= (
Dir (u2
<X> v2)) by
A5;
A8: (u1
<X> v1) is non
zero & (u2
<X> v2) is non
zero by
A1,
A6,
A7,
Th64;
A9:
are_Prop (u1,u2) &
are_Prop (v1,v2) by
A6,
A7,
ANPROJ_1: 22;
then
consider a be
Real such that
A10: a
<>
0 & u1
= (a
* u2) by
ANPROJ_1: 1;
consider b be
Real such that
A11: b
<>
0 & v1
= (b
* v2) by
A9,
ANPROJ_1: 1;
(u1
<X> v1)
= ((b
* (a
* u2))
<X> v2) by
A10,
A11,
EUCLID_5: 16
.= (((a
* b)
* u2)
<X> v2) by
RVSUM_1: 49
.= ((a
* b)
* (u2
<X> v2)) by
EUCLID_5: 16;
then
are_Prop ((u1
<X> v1),(u2
<X> v2)) by
A10,
A11,
ANPROJ_1: 1;
hence P1
= P2 by
A6,
A7,
A8,
ANPROJ_1: 22;
end;
end
theorem ::
BKMODEL1:79
for p,q be
Point of
real_projective_plane st p
<> q holds (
L2P (q,p))
= (
L2P (p,q)) & p
<> (
L2P (p,q))
proof
let p,q be
Point of
real_projective_plane ;
assume
A1: p
<> q;
then
consider u1,v1 be non
zero
Element of (
TOP-REAL 3) such that
A2: p
= (
Dir u1) and
A3: q
= (
Dir v1) and
A4: (
L2P (p,q))
= (
Dir (u1
<X> v1)) by
Def01;
consider u2,v2 be non
zero
Element of (
TOP-REAL 3) such that
A5: q
= (
Dir u2) and
A6: p
= (
Dir v2) and
A7: (
L2P (q,p))
= (
Dir (u2
<X> v2)) by
A1,
Def01;
are_Prop (u1,v2) by
A2,
A6,
ANPROJ_1: 22;
then
consider a be
Real such that
A8: a
<>
0 and
A9: u1
= (a
* v2) by
ANPROJ_1: 1;
are_Prop (u2,v1) by
A3,
A5,
ANPROJ_1: 22;
then
consider b be
Real such that
A10: b
<>
0 and
A11: v1
= (b
* u2) by
ANPROJ_1: 1;
((a
* v2)
<X> (b
* u2))
= ((
- (a
* b))
* (u2
<X> v2))
proof
reconsider p1 = (a
* v2), p2 = (b
* u2) as
Element of (
TOP-REAL 3);
A12: (p1
`1 )
= ((a
* v2)
. 1) by
EUCLID_5:def 1
.= (a
* (v2
. 1)) by
RVSUM_1: 44;
A13: (p1
`2 )
= ((a
* v2)
. 2) by
EUCLID_5:def 2
.= (a
* (v2
. 2)) by
RVSUM_1: 44;
A14: (p1
`3 )
= ((a
* v2)
. 3) by
EUCLID_5:def 3
.= (a
* (v2
. 3)) by
RVSUM_1: 44;
A15: (p2
`1 )
= ((b
* u2)
. 1) by
EUCLID_5:def 1
.= (b
* (u2
. 1)) by
RVSUM_1: 44;
A16: (p2
`2 )
= ((b
* u2)
. 2) by
EUCLID_5:def 2
.= (b
* (u2
. 2)) by
RVSUM_1: 44;
A17: (p2
`3 )
= ((b
* u2)
. 3) by
EUCLID_5:def 3
.= (b
* (u2
. 3)) by
RVSUM_1: 44;
A18: ((a
* v2)
<X> (b
* u2))
=
|[(((a
* (v2
. 2))
* (b
* (u2
. 3)))
- ((a
* (v2
. 3))
* (b
* (u2
. 2)))), (((a
* (v2
. 3))
* (b
* (u2
. 1)))
- ((a
* (v2
. 1))
* (b
* (u2
. 3)))), (((a
* (v2
. 1))
* (b
* (u2
. 2)))
- ((a
* (v2
. 2))
* (b
* (u2
. 1))))]| by
A12,
A13,
A14,
A15,
A16,
A17,
EUCLID_5:def 4;
(u2
`1 )
= (u2
. 1) & (u2
`2 )
= (u2
. 2) & (u2
`3 )
= (u2
. 3) & (v2
`1 )
= (v2
. 1) & (v2
`2 )
= (v2
. 2) & (v2
`3 )
= (v2
. 3) by
EUCLID_5:def 1,
EUCLID_5:def 2,
EUCLID_5:def 3;
then ((
- (a
* b))
* (u2
<X> v2))
= ((
- (a
* b))
*
|[(((u2
. 2)
* (v2
. 3))
- ((u2
. 3)
* (v2
. 2))), (((u2
. 3)
* (v2
. 1))
- ((u2
. 1)
* (v2
. 3))), (((u2
. 1)
* (v2
. 2))
- ((u2
. 2)
* (v2
. 1)))]|) by
EUCLID_5:def 4
.=
|[((
- (a
* b))
* (((u2
. 2)
* (v2
. 3))
- ((u2
. 3)
* (v2
. 2)))), ((
- (a
* b))
* (((u2
. 3)
* (v2
. 1))
- ((u2
. 1)
* (v2
. 3)))), ((
- (a
* b))
* (((u2
. 1)
* (v2
. 2))
- ((u2
. 2)
* (v2
. 1))))]| by
EUCLID_5: 8;
hence thesis by
A18;
end;
then
A19:
are_Prop ((u1
<X> v1),(u2
<X> v2)) by
A8,
A10,
A9,
A11,
ANPROJ_1: 1;
A20: (u1
<X> v1) is non
zero
proof
assume (u1
<X> v1) is
zero;
then
are_Prop (u1,v1) by
ANPROJ_8: 51;
hence contradiction by
A1,
A2,
A3,
ANPROJ_1: 22;
end;
(u2
<X> v2) is non
zero
proof
assume (u2
<X> v2) is
zero;
then
are_Prop (u2,v2) by
ANPROJ_8: 51;
hence contradiction by
A1,
A5,
A6,
ANPROJ_1: 22;
end;
hence (
L2P (q,p))
= (
L2P (p,q)) by
A19,
A20,
A4,
A7,
ANPROJ_1: 22;
thus p
<> (
L2P (p,q))
proof
assume p
= (
L2P (p,q));
then
are_Prop (u1,(u1
<X> v1)) by
A2,
A4,
A20,
ANPROJ_1: 22;
then
consider a be
Real such that a
<>
0 and
A21: u1
= (a
* (u1
<X> v1)) by
ANPROJ_1: 1;
|(u1, (a
* (u1
<X> v1)))|
= (a
*
|(u1, (u1
<X> v1))|) by
Th19
.= (a
*
0 ) by
ANPROJ_8: 44
.=
0 ;
then u1
= (
0. (
TOP-REAL 3)) by
A21,
EUCLID_2: 43;
hence contradiction;
end;
end;
theorem ::
BKMODEL1:80
for N be
invertible
Matrix of 3,
F_Real holds (
dom (
homography N))
= (
ProjectivePoints (
TOP-REAL 3))
proof
let N be
invertible
Matrix of 3,
F_Real ;
(
dom (
homography N))
= the
carrier of (
ProjectiveSpace (
TOP-REAL 3)) by
FUNCT_2:def 1;
hence thesis by
ANPROJ_1: 23;
end;
begin
definition
let a,b,c,d,e,f be
Real;
::
BKMODEL1:def6
func
negative_conic (a,b,c,d,e,f) ->
Subset of (
ProjectiveSpace (
TOP-REAL 3)) equals { P where P be
Point of (
ProjectiveSpace (
TOP-REAL 3)) : for u be
Element of (
TOP-REAL 3) st u is non
zero & P
= (
Dir u) holds (
qfconic (a,b,c,d,e,f,u)) is
negative };
coherence
proof
set C = { P where P be
Point of (
ProjectiveSpace (
TOP-REAL 3)) : for u be
Element of (
TOP-REAL 3) st u is non
zero & P
= (
Dir u) holds (
qfconic (a,b,c,d,e,f,u)) is
negative };
C
c= the
carrier of (
ProjectiveSpace (
TOP-REAL 3))
proof
let x be
object;
assume x
in C;
then ex P be
Point of (
ProjectiveSpace (
TOP-REAL 3)) st x
= P & for u be
Element of (
TOP-REAL 3) st u is non
zero & P
= (
Dir u) holds (
qfconic (a,b,c,d,e,f,u)) is
negative;
hence thesis;
end;
hence thesis;
end;
end
theorem ::
BKMODEL1:81
for a,b,c,d,e,f be
Real holds for u1,u2 be non
zero
Element of (
TOP-REAL 3) st (
Dir u1)
= (
Dir u2) & (
qfconic (a,b,c,d,e,f,u1)) is
negative holds (
qfconic (a,b,c,d,e,f,u2)) is
negative
proof
let a,b,c,d,e,f be
Real;
let u1,u2 be non
zero
Element of (
TOP-REAL 3);
assume that
A1: (
Dir u1)
= (
Dir u2) and
A2: (
qfconic (a,b,c,d,e,f,u1)) is
negative;
are_Prop (u2,u1) by
A1,
ANPROJ_1: 22;
then
consider g be
Real such that
A3: g
<>
0 and
A4: u2
= (g
* u1) by
ANPROJ_1: 1;
A5: (u2
. 1)
= (g
* (u1
. 1)) & (u2
. 2)
= (g
* (u1
. 2)) & (u2
. 3)
= (g
* (u1
. 3)) by
A4,
RVSUM_1: 44;
0
< (g
^2 ) by
A3,
SQUARE_1: 12;
then
reconsider g2 = (g
* g) as
positive
Real;
(
qfconic (a,b,c,d,e,f,u2))
= (((((((a
* (u2
. 1))
* (u2
. 1))
+ ((b
* (u2
. 2))
* (u2
. 2)))
+ ((c
* (u2
. 3))
* (u2
. 3)))
+ ((d
* (u2
. 1))
* (u2
. 2)))
+ ((e
* (u2
. 1))
* (u2
. 3)))
+ ((f
* (u2
. 2))
* (u2
. 3))) by
PASCAL:def 1
.= (g2
* (((((((a
* (u1
. 1))
* (u1
. 1))
+ ((b
* (u1
. 2))
* (u1
. 2)))
+ ((c
* (u1
. 3))
* (u1
. 3)))
+ ((d
* (u1
. 1))
* (u1
. 2)))
+ ((e
* (u1
. 1))
* (u1
. 3)))
+ ((f
* (u1
. 2))
* (u1
. 3)))) by
A5
.= (g2
* (
qfconic (a,b,c,d,e,f,u1))) by
PASCAL:def 1;
hence thesis by
A2;
end;
definition
::
BKMODEL1:def7
func
absolute -> non
empty
Subset of (
ProjectiveSpace (
TOP-REAL 3)) equals (
conic (1,1,(
- 1),
0 ,
0 ,
0 ));
coherence
proof
Dir101
in (
conic (1,1,(
- 1),
0 ,
0 ,
0 ))
proof
Dir101
in { P where P be
Point of (
ProjectiveSpace (
TOP-REAL 3)) : for u be
Element of (
TOP-REAL 3) st u is non
zero & P
= (
Dir u) holds (
qfconic (1,1,(
- 1),
0 ,
0 ,
0 ,u))
=
0 }
proof
now
let u be
Element of (
TOP-REAL 3);
assume
A1: u is non
zero &
Dir101
= (
Dir u);
|[1,
0 , 1]| is non
zero by
EUCLID_5: 4,
FINSEQ_1: 78;
then
are_Prop (u,
|[1,
0 , 1]|) by
A1,
ANPROJ_1: 22;
then
consider a be
Real such that a
<>
0 and
A2: u
= (a
*
|[1,
0 , 1]|) by
ANPROJ_1: 1;
u
=
|[(a
* 1), (a
*
0 ), (a
* 1)]| by
A2,
EUCLID_5: 8
.=
|[a,
0 , a]|;
then (u
`1 )
= a & (u
`2 )
=
0 & (u
`3 )
= a by
EUCLID_5: 2;
then
A3: (u
. 1)
= a & (u
. 2)
=
0 & (u
. 3)
= a by
EUCLID_5:def 1,
EUCLID_5:def 2,
EUCLID_5:def 3;
thus (
qfconic (1,1,(
- 1),
0 ,
0 ,
0 ,u))
= (((((((1
* (u
. 1))
* (u
. 1))
+ ((1
* (u
. 2))
* (u
. 2)))
+ (((
- 1)
* (u
. 3))
* (u
. 3)))
+ ((
0
* (u
. 1))
* (u
. 2)))
+ ((
0
* (u
. 1))
* (u
. 3)))
+ ((
0
* (u
. 2))
* (u
. 3))) by
PASCAL:def 1
.=
0 by
A3;
end;
hence thesis;
end;
hence thesis by
PASCAL:def 2;
end;
hence thesis;
end;
end
theorem ::
BKMODEL1:82
Th66: for O be
Matrix of 3,
REAL holds for P be
Element of (
ProjectiveSpace (
TOP-REAL 3)) holds for p be
FinSequence of
REAL st O
= (
symmetric_3 (1,1,(
- 1),
0 ,
0 ,
0 )) & P
= (
Dir u) & u
= p holds P
in
absolute iff (
SumAll (
QuadraticForm (p,O,p)))
=
0
proof
let O be
Matrix of 3,
REAL ;
let P be
Element of (
ProjectiveSpace (
TOP-REAL 3));
let p be
FinSequence of
REAL ;
assume
A1: O
= (
symmetric_3 (1,1,(
- 1),
0 ,
0 ,
0 )) & P
= (
Dir u) & u
= p;
hereby
assume P
in
absolute ;
then P
in { P where P be
Point of (
ProjectiveSpace (
TOP-REAL 3)) : for u be
Element of (
TOP-REAL 3) st u is non
zero & P
= (
Dir u) holds (
qfconic (1,1,(
- 1),
0 ,
0 ,
0 ,u))
=
0 } by
PASCAL:def 2;
then
consider Q be
Point of (
ProjectiveSpace (
TOP-REAL 3)) such that
A2: P
= Q and
A3: for u be
Element of (
TOP-REAL 3) st u is non
zero & Q
= (
Dir u) holds (
qfconic (1,1,(
- 1),
0 ,
0 ,
0 ,u))
=
0 ;
consider u1 be
Element of (
TOP-REAL 3) such that
A4: u1 is non
zero and
A5: Q
= (
Dir u1) by
ANPROJ_1: 26;
reconsider p1 = u1 as
FinSequence of
REAL by
EUCLID: 24;
A6: (
SumAll (
QuadraticForm (p1,O,p1)))
= (
qfconic (1,1,(
- 1),(2
*
0 ),(2
*
0 ),(2
*
0 ),u1)) by
A1,
PASCAL: 13
.=
0 by
A3,
A4,
A5;
are_Prop (u1,u) by
A2,
A5,
A1,
A4,
ANPROJ_1: 22;
then
consider a be
Real such that
A7: a
<>
0 and
A8: u1
= (a
* u) by
ANPROJ_1: 1;
reconsider fa = a as
Element of
F_Real by
XREAL_0:def 1;
u is
Element of (
REAL 3) by
EUCLID: 22;
then (
len p)
= 3 by
A1,
EUCLID_8: 50;
then (
SumAll (
QuadraticForm (p1,O,p1)))
= ((fa
* fa)
* (
SumAll (
QuadraticForm (p,O,p)))) by
A1,
A8,
Th35;
hence (
SumAll (
QuadraticForm (p,O,p)))
=
0 by
A7,
A6;
end;
assume (
SumAll (
QuadraticForm (p,O,p)))
=
0 ;
then
0
= (
qfconic (1,1,(
- 1),(2
*
0 ),(2
*
0 ),(2
*
0 ),u)) by
A1,
PASCAL: 13
.= (
qfconic (1,1,(
- 1),
0 ,
0 ,
0 ,u));
then for u be
Element of (
TOP-REAL 3) st u is non
zero & P
= (
Dir u) holds (
qfconic (1,1,(
- 1),
0 ,
0 ,
0 ,u))
=
0 by
A1,
PASCAL: 10;
then P
in { P where P be
Point of (
ProjectiveSpace (
TOP-REAL 3)) : for u be
Element of (
TOP-REAL 3) st u is non
zero & P
= (
Dir u) holds (
qfconic (1,1,(
- 1),
0 ,
0 ,
0 ,u))
=
0 };
hence P
in
absolute by
PASCAL:def 2;
end;
theorem ::
BKMODEL1:83
Th67: for P be
Element of
absolute st P
= (
Dir u) holds (u
. 3)
<>
0
proof
let P be
Element of
absolute ;
assume
A1: P
= (
Dir u);
P
in (
conic (1,1,(
- 1),
0 ,
0 ,
0 ));
then P
in { P where P be
Point of (
ProjectiveSpace (
TOP-REAL 3)) : for u be
Element of (
TOP-REAL 3) st u is non
zero & P
= (
Dir u) holds (
qfconic (1,1,(
- 1),
0 ,
0 ,
0 ,u))
=
0 } by
PASCAL:def 2;
then
consider Q be
Point of (
ProjectiveSpace (
TOP-REAL 3)) such that
A2: P
= Q and
A3: for u be
Element of (
TOP-REAL 3) st u is non
zero & Q
= (
Dir u) holds (
qfconic (1,1,(
- 1),
0 ,
0 ,
0 ,u))
=
0 ;
A4: (
qfconic (1,1,(
- 1),
0 ,
0 ,
0 ,u))
=
0 by
A1,
A2,
A3;
thus (u
. 3)
<>
0
proof
assume
A5: (u
. 3)
=
0 ;
A6: (((((((1
* (u
. 1))
* (u
. 1))
+ ((1
* (u
. 2))
* (u
. 2)))
+ (((
- 1)
* (u
. 3))
* (u
. 3)))
+ ((
0
* (u
. 1))
* (u
. 2)))
+ ((
0
* (u
. 1))
* (u
. 3)))
+ ((
0
* (u
. 2))
* (u
. 3)))
=
0 by
A4,
PASCAL:def 1;
reconsider u1 = (u
. 1), u2 = (u
. 2) as
Real;
((u1
^2 )
+ (u2
^2 ))
=
0 by
A5,
A6;
then u1
=
0 & u2
=
0 by
COMPLEX1: 1;
then (u
`1 )
=
0 & (u
`2 )
=
0 & (u
`3 )
=
0 by
A5,
EUCLID_5:def 1,
EUCLID_5:def 2,
EUCLID_5:def 3;
hence contradiction by
EUCLID_5: 3,
EUCLID_5: 4;
end;
end;
theorem ::
BKMODEL1:84
Th68: for P be
Element of
absolute st P
= (
Dir u) & (u
. 3)
= 1 holds
|[(u
. 1), (u
. 2)]|
in (
circle (
0 ,
0 ,1))
proof
let P be
Element of
absolute ;
assume that
A1: P
= (
Dir u) and
A2: (u
. 3)
= 1;
P
in (
conic (1,1,(
- 1),
0 ,
0 ,
0 ));
then P
in { P where P be
Point of (
ProjectiveSpace (
TOP-REAL 3)) : for u be
Element of (
TOP-REAL 3) st u is non
zero & P
= (
Dir u) holds (
qfconic (1,1,(
- 1),
0 ,
0 ,
0 ,u))
=
0 } by
PASCAL:def 2;
then
consider Q be
Point of (
ProjectiveSpace (
TOP-REAL 3)) such that
A3: P
= Q and
A4: for u be
Element of (
TOP-REAL 3) st u is non
zero & Q
= (
Dir u) holds (
qfconic (1,1,(
- 1),
0 ,
0 ,
0 ,u))
=
0 ;
(
qfconic (1,1,(
- 1),
0 ,
0 ,
0 ,u))
=
0 by
A1,
A3,
A4;
then
A5: (((((((1
* (u
. 1))
* (u
. 1))
+ ((1
* (u
. 2))
* (u
. 2)))
+ (((
- 1)
* (u
. 3))
* (u
. 3)))
+ ((
0
* (u
. 1))
* (u
. 2)))
+ ((
0
* (u
. 1))
* (u
. 3)))
+ ((
0
* (u
. 2))
* (u
. 3)))
=
0 by
PASCAL:def 1;
reconsider u1 = (u
. 1), u2 = (u
. 2) as
Real;
((u1
^2 )
+ (u2
^2 ))
= 1 by
A2,
A5;
hence thesis by
Th11;
end;
theorem ::
BKMODEL1:85
Th69: for P be
Point of (
ProjectiveSpace (
TOP-REAL 3)) st P
= (
Dir u) & (u
. 3)
= 1 &
|[(u
. 1), (u
. 2)]|
in (
circle (
0 ,
0 ,1)) holds P is
Element of
absolute
proof
let P be
Point of (
ProjectiveSpace (
TOP-REAL 3));
assume that
A1: P
= (
Dir u) and
A2: (u
. 3)
= 1 and
A3:
|[(u
. 1), (u
. 2)]|
in (
circle (
0 ,
0 ,1));
reconsider u1 = (u
. 1), u2 = (u
. 2), u3 = (u
. 3) as
Real;
A4: ((u1
^2 )
+ (u2
^2 ))
= (
|.
|[(u1
-
0 ), (u2
-
0 )]|.|
^2 ) by
TOPGEN_5: 9
.= (
|.(
|[u1, u2]|
-
|[
0 ,
0 ]|).|
^2 ) by
EUCLID: 62
.= (1
^2 ) by
A3,
TOPREAL9: 43
.= 1;
now
let v be
Element of (
TOP-REAL 3);
assume that
A5: v is non
zero and
A6: P
= (
Dir v);
are_Prop (u,v) by
A1,
A5,
A6,
ANPROJ_1: 22;
then
consider a be
Real such that
A7: a
<>
0 and
A8: u
= (a
* v) by
ANPROJ_1: 1;
reconsider v1 = (v
. 1), v2 = (v
. 2), v3 = (v
. 3) as
Real;
u1
= (a
* v1) & u2
= (a
* v2) & u3
= (a
* v3) by
A8,
RVSUM_1: 44;
then
A9: v1
= (u1
/ a) & v2
= (u2
/ a) & v3
= (u3
/ a) by
A7,
XCMPLX_1: 89;
(
qfconic (1,1,(
- 1),
0 ,
0 ,
0 ,v))
= (((((((1
* v1)
* v1)
+ ((1
* v2)
* v2))
+ (((
- 1)
* v3)
* v3))
+ ((
0
* v1)
* v2))
+ ((
0
* v1)
* v3))
+ ((
0
* v2)
* v3)) by
PASCAL:def 1
.= ((((u1
/ a)
* (u1
/ a))
+ ((u2
/ a)
* (u2
/ a)))
- ((u3
/ a)
* (u3
/ a))) by
A9
.= (((((1
/ a)
* u1)
* (u1
/ a))
+ ((u2
/ a)
* (u2
/ a)))
- ((u3
/ a)
* (u3
/ a))) by
XCMPLX_1: 99
.= (((((1
/ a)
* u1)
* ((1
/ a)
* u1))
+ ((u2
/ a)
* (u2
/ a)))
- ((u3
/ a)
* (u3
/ a))) by
XCMPLX_1: 99
.= ((((((1
/ a)
* (1
/ a))
* u1)
* u1)
+ (((1
/ a)
* u2)
* (u2
/ a)))
- ((u3
/ a)
* (u3
/ a))) by
XCMPLX_1: 99
.= ((((((1
/ a)
* (1
/ a))
* u1)
* u1)
+ (((1
/ a)
* u2)
* ((1
/ a)
* u2)))
- ((u3
/ a)
* (u3
/ a))) by
XCMPLX_1: 99
.= ((((((1
/ a)
* (1
/ a))
* u1)
* u1)
+ ((((1
/ a)
* (1
/ a))
* u2)
* u2))
- (((1
/ a)
* u3)
* (u3
/ a))) by
XCMPLX_1: 99
.= ((((((1
/ a)
* (1
/ a))
* u1)
* u1)
+ ((((1
/ a)
* (1
/ a))
* u2)
* u2))
- (((1
/ a)
* u3)
* ((1
/ a)
* u3))) by
XCMPLX_1: 99
.= (((1
/ a)
* (1
/ a))
* (((u1
^2 )
+ (u2
* u2))
- (u3
* u3)))
.=
0 by
A2,
A4;
hence (
qfconic (1,1,(
- 1),
0 ,
0 ,
0 ,v))
=
0 ;
end;
then P
in { P where P be
Point of (
ProjectiveSpace (
TOP-REAL 3)) : for u be
Element of (
TOP-REAL 3) st u is non
zero & P
= (
Dir u) holds (
qfconic (1,1,(
- 1),
0 ,
0 ,
0 ,u))
=
0 };
hence thesis by
PASCAL:def 2;
end;
theorem ::
BKMODEL1:86
for P be
Point of (
ProjectiveSpace (
TOP-REAL 3)) holds for u be non
zero
Element of (
TOP-REAL 3) st P
= (
Dir u) & (u
. 3)
= 1 holds
|[(u
. 1), (u
. 2)]|
in (
circle (
0 ,
0 ,1)) iff P is
Element of
absolute by
Th68,
Th69;
definition
let P be
Element of
absolute ;
::
BKMODEL1:def8
func
absolute_to_REAL2 (P) ->
Element of (
circle (
0 ,
0 ,1)) means ex u be non
zero
Element of (
TOP-REAL 3) st P
= (
Dir u) & (u
. 3)
= 1 & it
=
|[(u
. 1), (u
. 2)]|;
existence
proof
consider u be
Element of (
TOP-REAL 3) such that
A1: u is non
zero and
A2: P
= (
Dir u) by
ANPROJ_1: 26;
(u
. 3)
<>
0 by
A1,
A2,
Th67;
then
A3: (u
`3 )
<>
0 by
EUCLID_5:def 3;
then
reconsider r = (1
/ (u
`3 )) as non
zero
Real;
reconsider v =
|[((u
`1 )
/ (u
`3 )), ((u
`2 )
/ (u
`3 )), 1]| as non
zero
Element of (
TOP-REAL 3) by
Th36;
(r
* u)
= ((1
/ (u
`3 ))
*
|[(u
`1 ), (u
`2 ), (u
`3 )]|) by
EUCLID_5: 3
.=
|[((1
/ (u
`3 ))
* (u
`1 )), ((1
/ (u
`3 ))
* (u
`2 )), ((1
/ (u
`3 ))
* (u
`3 ))]| by
EUCLID_5: 8
.=
|[((u
`1 )
/ (u
`3 )), ((1
/ (u
`3 ))
* (u
`2 )), ((1
/ (u
`3 ))
* (u
`3 ))]| by
XCMPLX_1: 99
.=
|[((u
`1 )
/ (u
`3 )), ((u
`2 )
/ (u
`3 )), ((1
/ (u
`3 ))
* (u
`3 ))]| by
XCMPLX_1: 99
.=
|[((u
`1 )
/ (u
`3 )), ((u
`2 )
/ (u
`3 )), ((u
`3 )
/ (u
`3 ))]| by
XCMPLX_1: 99
.= v by
A3,
XCMPLX_1: 60;
then
are_Prop (u,v) by
ANPROJ_1: 1;
then
A4: P
= (
Dir v) by
A1,
A2,
ANPROJ_1: 22;
A5: (v
. 3)
= (v
`3 ) by
EUCLID_5:def 3
.= 1 by
EUCLID_5: 2;
then
|[(v
. 1), (v
. 2)]|
in (
circle (
0 ,
0 ,1)) by
A4,
Th68;
hence thesis by
A4,
A5;
end;
uniqueness
proof
let u1,u2 be
Element of (
circle (
0 ,
0 ,1)) such that
A6: ex u be non
zero
Element of (
TOP-REAL 3) st P
= (
Dir u) & (u
. 3)
= 1 & u1
=
|[(u
. 1), (u
. 2)]| and
A7: ex v be non
zero
Element of (
TOP-REAL 3) st P
= (
Dir v) & (v
. 3)
= 1 & u2
=
|[(v
. 1), (v
. 2)]|;
consider u be non
zero
Element of (
TOP-REAL 3) such that
A8: P
= (
Dir u) & (u
. 3)
= 1 & u1
=
|[(u
. 1), (u
. 2)]| by
A6;
consider v be non
zero
Element of (
TOP-REAL 3) such that
A9: P
= (
Dir v) & (v
. 3)
= 1 & u2
=
|[(v
. 1), (v
. 2)]| by
A7;
|[(u
`1 ), (u
`2 ), (u
`3 )]|
= u by
EUCLID_5: 3
.= v by
A8,
A9,
Th37
.=
|[(v
`1 ), (v
`2 ), (v
`3 )]| by
EUCLID_5: 3;
then (u
`1 )
= (v
`1 ) & (u
`2 )
= (v
`2 ) & (u
`3 )
= (v
`3 ) by
FINSEQ_1: 78;
then (u
. 1)
= (v
`1 ) & (u
. 2)
= (v
`2 ) by
EUCLID_5:def 1,
EUCLID_5:def 2;
then (u
. 1)
= (v
. 1) & (u
. 2)
= (v
. 2) by
EUCLID_5:def 1,
EUCLID_5:def 2;
hence thesis by
A8,
A9;
end;
end
theorem ::
BKMODEL1:87
the
carrier of (
Tunit_circle 2)
= (
circle (
0 ,
0 ,1))
proof
A1: the
carrier of (
Tunit_circle 2)
c= (
circle (
0 ,
0 ,1))
proof
let u be
object;
assume u
in the
carrier of (
Tunit_circle 2);
then u
in the
carrier of (
Tcircle ((
0. (
TOP-REAL 2)),1)) by
TOPREALB:def 7;
then u
in (
Sphere ((
0. (
TOP-REAL 2)),1)) by
TOPREALB: 9;
hence thesis by
EUCLID: 54,
TOPREAL9: 52;
end;
(
circle (
0 ,
0 ,1))
c= the
carrier of (
Tunit_circle 2)
proof
let u be
object;
assume u
in (
circle (
0 ,
0 ,1));
then u
in (
Sphere ((
0. (
TOP-REAL 2)),1)) by
TOPREAL9: 52,
EUCLID: 54;
then u
in the
carrier of (
Tcircle ((
0. (
TOP-REAL 2)),1)) by
TOPREALB: 9;
hence thesis by
TOPREALB:def 7;
end;
hence thesis by
A1;
end;
definition
let u be non
zero
Element of (
TOP-REAL 2);
assume
A1: u
in (
circle (
0 ,
0 ,1));
::
BKMODEL1:def9
func
REAL2_to_absolute (u) ->
Element of
absolute equals (
Dir
|[(u
. 1), (u
. 2), 1]|);
coherence
proof
|[(u
`1 ), (u
`2 )]|
in (
circle (
0 ,
0 ,1)) by
A1,
EUCLID: 53;
then
A2:
|[(u
. 1), (u
`2 )]|
in (
circle (
0 ,
0 ,1)) by
EUCLID:def 9;
reconsider v =
|[(u
. 1), (u
. 2), 1]| as non
zero
Element of (
TOP-REAL 3) by
Th36;
reconsider P = (
Dir v) as
Element of (
ProjectiveSpace (
TOP-REAL 3)) by
ANPROJ_1: 26;
(v
. 1)
= (v
`1 ) & (v
. 2)
= (v
`2 ) by
EUCLID_5:def 1,
EUCLID_5:def 2;
then (v
. 1)
= (u
. 1) & (v
. 2)
= (u
. 2) by
EUCLID_5: 2;
then
A3:
|[(v
. 1), (v
. 2)]|
in (
circle (
0 ,
0 ,1)) by
A2,
EUCLID:def 10;
(v
. 3)
= (v
`3 ) by
EUCLID_5:def 3
.= 1 by
EUCLID_5: 2;
then P is
Element of
absolute by
A3,
Th69;
hence thesis;
end;
end
theorem ::
BKMODEL1:88
Th70: for u be
Element of (
TOP-REAL 3) st (
qfconic (1,1,(
- 1),
0 ,
0 ,
0 ,u))
=
0 & (u
. 3)
= 1 holds
|[(u
. 1), (u
. 2)]|
in (
Sphere ((
0. (
TOP-REAL 2)),1))
proof
let u be
Element of (
TOP-REAL 3);
assume that
A1: (
qfconic (1,1,(
- 1),
0 ,
0 ,
0 ,u))
=
0 and
A2: (u
. 3)
= 1;
0
= (((((((1
* (u
. 1))
* (u
. 1))
+ ((1
* (u
. 2))
* (u
. 2)))
+ (((
- 1)
* (u
. 3))
* (u
. 3)))
+ ((
0
* (u
. 1))
* (u
. 2)))
+ ((
0
* (u
. 1))
* (u
. 3)))
+ ((
0
* (u
. 2))
* (u
. 3))) by
A1,
PASCAL:def 1
.= ((((u
. 1)
^2 )
+ ((u
. 2)
^2 ))
- 1) by
A2;
then
|[(u
. 1), (u
. 2)]|
in (
circle (
0 ,
0 ,1)) by
Th11;
hence thesis by
EUCLID: 54,
TOPREAL9: 52;
end;
theorem ::
BKMODEL1:89
for P be
Element of
absolute holds ex u st (((u
. 1)
^2 )
+ ((u
. 2)
^2 ))
= 1 & (u
. 3)
= 1 & P
= (
Dir u)
proof
let P be
Element of
absolute ;
consider u be
Element of (
TOP-REAL 3) such that
A1: u is non
zero and
A2: (
Dir u)
= P by
ANPROJ_1: 26;
reconsider v1 = ((u
. 1)
/ (u
. 3)), v2 = ((u
. 2)
/ (u
. 3)) as
Real;
reconsider v =
|[v1, v2, 1]| as
Element of (
TOP-REAL 3);
A3: (v
. 3)
= (v
`3 ) by
EUCLID_5:def 3
.= 1 by
EUCLID_5: 2;
A4: v is non
zero by
EUCLID_5: 4,
FINSEQ_1: 78;
((u
. 3)
* v)
=
|[((u
. 3)
* v1), ((u
. 3)
* v2), ((u
. 3)
* 1)]| by
EUCLID_5: 8
.=
|[(u
. 1), ((u
. 3)
* v2), (u
. 3)]| by
A1,
A2,
Th67,
XCMPLX_1: 87
.=
|[(u
. 1), (u
. 2), (u
. 3)]| by
A1,
A2,
Th67,
XCMPLX_1: 87
.=
|[(u
`1 ), (u
. 2), (u
. 3)]| by
EUCLID_5:def 1
.=
|[(u
`1 ), (u
`2 ), (u
. 3)]| by
EUCLID_5:def 2
.=
|[(u
`1 ), (u
`2 ), (u
`3 )]| by
EUCLID_5:def 3
.= u by
EUCLID_5: 3;
then
are_Prop (u,v) by
A1,
A2,
Th67,
ANPROJ_1: 1;
then
A5: (
Dir v)
= (
Dir u) by
A1,
A4,
ANPROJ_1: 22;
|[(v
. 1), (v
. 2)]|
in (
circle (
0 ,
0 ,1)) by
A2,
A3,
A4,
A5,
Th68;
then (((v
. 1)
^2 )
+ ((v
. 2)
^2 ))
= (1
^2 ) by
Th12
.= 1;
hence thesis by
A2,
A3,
A4,
A5;
end;
theorem ::
BKMODEL1:90
for P be
Element of
absolute holds ex Q be
Element of
absolute st P
<> Q
proof
let P be
Element of
absolute ;
P
in (
conic (1,1,(
- 1),
0 ,
0 ,
0 ));
then P
in { P where P be
Point of (
ProjectiveSpace (
TOP-REAL 3)) : for u be
Element of (
TOP-REAL 3) st u is non
zero & P
= (
Dir u) holds (
qfconic (1,1,(
- 1),
0 ,
0 ,
0 ,u))
=
0 } by
PASCAL:def 2;
then
consider Q be
Point of (
ProjectiveSpace (
TOP-REAL 3)) such that
A1: P
= Q and
A2: for u be
Element of (
TOP-REAL 3) st u is non
zero & Q
= (
Dir u) holds (
qfconic (1,1,(
- 1),
0 ,
0 ,
0 ,u))
=
0 ;
consider u be
Element of (
TOP-REAL 3) such that
A3: u is non
zero and
A4: (
Dir u)
= P by
ANPROJ_1: 26;
A5: (
qfconic (1,1,(
- 1),
0 ,
0 ,
0 ,u))
=
0 by
A1,
A2,
A3,
A4;
A6: (u
. 3)
<>
0 by
A3,
A4,
Th67;
|[(u
. 1), (u
. 2), (
- (u
. 3))]| is non
zero
proof
assume
|[(u
. 1), (u
. 2), (
- (u
. 3))]| is
zero;
then (u
. 3)
=
0 by
EUCLID_5: 4,
FINSEQ_1: 78;
hence contradiction by
A3,
A4,
Th67;
end;
then
reconsider v =
|[(u
. 1), (u
. 2), (
- (u
. 3))]| as non
zero
Element of (
TOP-REAL 3);
reconsider R = (
Dir v) as
Element of (
ProjectiveSpace (
TOP-REAL 3)) by
ANPROJ_1: 26;
take R;
A7: R
<> P
proof
assume R
= P;
then
are_Prop (v,u) by
A3,
A4,
ANPROJ_1: 22;
then
consider a be
Real such that a
<>
0 and
A8: v
= (a
* u) by
ANPROJ_1: 1;
A9: (
- (u
. 3))
= (v
`3 ) by
EUCLID_5: 2
.= ((a
* u)
. 3) by
A8,
EUCLID_5:def 3
.= (a
* (u
. 3)) by
RVSUM_1: 44;
((a
+ 1)
* (u
. 3))
=
0 by
A9;
then (a
+ 1)
=
0 by
A6;
then
A10: a
= (
- 1);
A11: (u
. 1)
= (v
`1 ) by
EUCLID_5: 2
.= ((a
* u)
. 1) by
A8,
EUCLID_5:def 1
.= (a
* (u
. 1)) by
RVSUM_1: 44;
A12: (u
. 2)
= (v
`2 ) by
EUCLID_5: 2
.= ((a
* u)
. 2) by
A8,
EUCLID_5:def 2
.= (a
* (u
. 2)) by
RVSUM_1: 44;
0
= (((((((1
* (u
. 1))
* (u
. 1))
+ ((1
* (u
. 2))
* (u
. 2)))
+ (((
- 1)
* (u
. 3))
* (u
. 3)))
+ ((
0
* (u
. 1))
* (u
. 2)))
+ ((
0
* (u
. 1))
* (u
. 3)))
+ ((
0
* (u
. 2))
* (u
. 3))) by
A5,
PASCAL:def 1
.= ((
- 1)
* ((u
. 3)
^2 )) by
A11,
A10,
A12;
hence contradiction by
A6;
end;
for w be
Element of (
TOP-REAL 3) st w is non
zero & R
= (
Dir w) holds (
qfconic (1,1,(
- 1),
0 ,
0 ,
0 ,w))
=
0
proof
let w be
Element of (
TOP-REAL 3);
assume that
A13: w is non
zero and
A14: R
= (
Dir w);
are_Prop (v,w) by
A13,
A14,
ANPROJ_1: 22;
then
consider b be
Real such that b
<>
0 and
A15: w
= (b
* v) by
ANPROJ_1: 1;
A16: (w
. 1)
= (b
* (v
. 1)) by
A15,
RVSUM_1: 44
.= (b
* (v
`1 )) by
EUCLID_5:def 1
.= (b
* (u
. 1)) by
EUCLID_5: 2;
A17: (w
. 2)
= (b
* (v
. 2)) by
A15,
RVSUM_1: 44
.= (b
* (v
`2 )) by
EUCLID_5:def 2
.= (b
* (u
. 2)) by
EUCLID_5: 2;
A18: (w
. 3)
= (b
* (v
. 3)) by
A15,
RVSUM_1: 44
.= (b
* (v
`3 )) by
EUCLID_5:def 3
.= (b
* (
- (u
. 3))) by
EUCLID_5: 2;
(
qfconic (1,1,(
- 1),
0 ,
0 ,
0 ,w))
= (((((((1
* (w
. 1))
* (w
. 1))
+ ((1
* (w
. 2))
* (w
. 2)))
+ (((
- 1)
* (w
. 3))
* (w
. 3)))
+ ((
0
* (w
. 1))
* (w
. 2)))
+ ((
0
* (w
. 1))
* (w
. 3)))
+ ((
0
* (w
. 2))
* (w
. 3))) by
PASCAL:def 1
.= ((b
* b)
* (((((((1
* (u
. 1))
* (u
. 1))
+ ((1
* (u
. 2))
* (u
. 2)))
+ (((
- 1)
* (u
. 3))
* (u
. 3)))
+ ((
0
* (u
. 1))
* (u
. 2)))
+ ((
0
* (u
. 1))
* (u
. 3)))
+ ((
0
* (u
. 2))
* (u
. 3)))) by
A16,
A17,
A18
.= ((b
* b)
* (
qfconic (1,1,(
- 1),
0 ,
0 ,
0 ,u))) by
PASCAL:def 1
.=
0 by
A5;
hence thesis;
end;
then R
in { P where P be
Point of (
ProjectiveSpace (
TOP-REAL 3)) : for u be
Element of (
TOP-REAL 3) st u is non
zero & P
= (
Dir u) holds (
qfconic (1,1,(
- 1),
0 ,
0 ,
0 ,u))
=
0 };
hence thesis by
A7,
PASCAL:def 2;
end;
theorem ::
BKMODEL1:91
for a,b be
Real st ((a
^2 )
+ (b
^2 ))
= 1 holds
|[(
- b), a,
0 ]| is non
zero
proof
let a,b be
Real;
assume
A1: ((a
^2 )
+ (b
^2 ))
= 1;
assume
|[(
- b), a,
0 ]| is
zero;
then (
- b)
=
0 & a
=
0 by
EUCLID_5: 4,
FINSEQ_1: 78;
hence contradiction by
A1;
end;
theorem ::
BKMODEL1:92
for P,Q,R be
Element of
absolute st (P,Q,R)
are_mutually_distinct holds not (P,Q,R)
are_collinear
proof
let P,Q,R be
Element of
absolute ;
assume
A1: (P,Q,R)
are_mutually_distinct ;
consider up be
Element of (
TOP-REAL 3) such that
A2: up is non
zero and
A3: P
= (
Dir up) by
ANPROJ_1: 26;
consider uq be
Element of (
TOP-REAL 3) such that
A4: uq is non
zero and
A5: Q
= (
Dir uq) by
ANPROJ_1: 26;
consider ur be
Element of (
TOP-REAL 3) such that
A6: ur is non
zero and
A7: R
= (
Dir ur) by
ANPROJ_1: 26;
reconsider up1 = (up
`1 ), up2 = (up
`2 ), up3 = (up
`3 ), uq1 = (uq
`1 ), uq2 = (uq
`2 ), uq3 = (uq
`3 ), ur1 = (ur
`1 ), ur2 = (ur
`2 ), ur3 = (ur
`3 ) as
Real;
(up
. 3)
<>
0 & (uq
. 3)
<>
0 & (ur
. 3)
<>
0 by
A2,
A3,
A4,
A5,
A6,
A7,
Th67;
then
A8: up3
<>
0 & uq3
<>
0 & ur3
<>
0 by
EUCLID_5:def 3;
reconsider vp1 = (up1
/ up3), vp2 = (up2
/ up3), vq1 = (uq1
/ uq3), vq2 = (uq2
/ uq3), vr1 = (ur1
/ ur3), vr2 = (ur2
/ ur3) as
Real;
reconsider vp =
|[vp1, vp2, 1]|, vq =
|[vq1, vq2, 1]|, vr =
|[vr1, vr2, 1]| as non
zero
Element of (
TOP-REAL 3) by
Th36;
A9: (vp
`3 )
= 1 & (vq
`3 )
= 1 & (vr
`3 )
= 1 by
EUCLID_5: 2;
then
A10: (vp
. 3)
= 1 & (vq
. 3)
= 1 & (vr
. 3)
= 1 by
EUCLID_5:def 3;
A11: P
= (
Dir vp) & Q
= (
Dir vq) & R
= (
Dir vr)
proof
thus P
= (
Dir vp)
proof
are_Prop (up,vp)
proof
(up3
* vp)
=
|[(up3
* (up1
/ up3)), (up3
* (up2
/ up3)), (up3
* 1)]| by
EUCLID_5: 8
.=
|[up1, (up3
* (up2
/ up3)), (up3
* 1)]| by
A8,
XCMPLX_1: 87
.=
|[up1, up2, (up3
* 1)]| by
A8,
XCMPLX_1: 87
.= up by
EUCLID_5: 3;
hence thesis by
A8,
ANPROJ_1: 1;
end;
hence thesis by
A2,
A3,
ANPROJ_1: 22;
end;
thus Q
= (
Dir vq)
proof
are_Prop (uq,vq)
proof
(uq3
* vq)
=
|[(uq3
* (uq1
/ uq3)), (uq3
* (uq2
/ uq3)), (uq3
* 1)]| by
EUCLID_5: 8
.=
|[uq1, (uq3
* (uq2
/ uq3)), (uq3
* 1)]| by
A8,
XCMPLX_1: 87
.=
|[uq1, uq2, (uq3
* 1)]| by
A8,
XCMPLX_1: 87
.= uq by
EUCLID_5: 3;
hence thesis by
A8,
ANPROJ_1: 1;
end;
hence thesis by
A4,
A5,
ANPROJ_1: 22;
end;
thus R
= (
Dir vr)
proof
are_Prop (ur,vr)
proof
(ur3
* vr)
=
|[(ur3
* (ur1
/ ur3)), (ur3
* (ur2
/ ur3)), (ur3
* 1)]| by
EUCLID_5: 8
.=
|[ur1, (ur3
* (ur2
/ ur3)), (ur3
* 1)]| by
A8,
XCMPLX_1: 87
.=
|[ur1, ur2, (ur3
* 1)]| by
A8,
XCMPLX_1: 87
.= ur by
EUCLID_5: 3;
hence thesis by
A8,
ANPROJ_1: 1;
end;
hence thesis by
A6,
A7,
ANPROJ_1: 22;
end;
end;
assume (P,Q,R)
are_collinear ;
then
consider tp,tq,tr be
Element of (
TOP-REAL 3) such that
A12: P
= (
Dir tp) & Q
= (
Dir tq) & R
= (
Dir tr) and
A13: not tp is
zero & not tq is
zero & not tr is
zero and
A14: ex a1,b1,c1 be
Real st (((a1
* tp)
+ (b1
* tq))
+ (c1
* tr))
= (
0. (
TOP-REAL 3)) & (a1
<>
0 or b1
<>
0 or c1
<>
0 ) by
ANPROJ_8: 11;
consider a1,b1,c1 be
Real such that
A15: (((a1
* tp)
+ (b1
* tq))
+ (c1
* tr))
= (
0. (
TOP-REAL 3)) and
A16: (a1
<>
0 or b1
<>
0 or c1
<>
0 ) by
A14;
A17:
are_Prop (tp,vp) &
are_Prop (tq,vq) &
are_Prop (tr,vr) by
A12,
A13,
A11,
ANPROJ_1: 22;
consider lp be
Real such that
A18: lp
<>
0 and
A19: tp
= (lp
* vp) by
A17,
ANPROJ_1: 1;
consider lq be
Real such that
A20: lq
<>
0 and
A21: tq
= (lq
* vq) by
A17,
ANPROJ_1: 1;
consider lr be
Real such that
A22: lr
<>
0 and
A23: tr
= (lr
* vr) by
A17,
ANPROJ_1: 1;
reconsider A =
|[(vp
`1 ), (vp
`2 )]|, B =
|[(vq
`1 ), (vq
`2 )]|, C =
|[(vr
`1 ), (vr
`2 )]| as
Element of (
TOP-REAL 2);
A24: (B
. 1)
= (B
`1 ) by
EUCLID:def 9
.= (vq
`1 ) by
EUCLID: 52
.= (vq
. 1) by
EUCLID_5:def 1;
A25: (B
. 2)
= (B
`2 ) by
EUCLID:def 10
.= (vq
`2 ) by
EUCLID: 52
.= (vq
. 2) by
EUCLID_5:def 2;
A26: (C
. 1)
= (C
`1 ) by
EUCLID:def 9
.= (vr
`1 ) by
EUCLID: 52
.= (vr
. 1) by
EUCLID_5:def 1;
A27: (C
. 2)
= (C
`2 ) by
EUCLID:def 10
.= (vr
`2 ) by
EUCLID: 52
.= (vr
. 2) by
EUCLID_5:def 2;
A28: (A
. 1)
= (A
`1 ) by
EUCLID:def 9
.= (vp
`1 ) by
EUCLID: 52
.= (vp
. 1) by
EUCLID_5:def 1;
A29: (A
. 2)
= (A
`2 ) by
EUCLID:def 10
.= (vp
`2 ) by
EUCLID: 52
.= (vp
. 2) by
EUCLID_5:def 2;
A30: A
<> B
proof
assume A
= B;
then
A30BIS: (vp
`1 )
= (vq
`1 ) & (vp
`2 )
= (vq
`2 ) by
FINSEQ_1: 77;
vp
=
|[(vp
`1 ), (vp
`2 ), (vp
`3 )]| by
EUCLID_5: 3
.= vq by
A9,
A30BIS,
EUCLID_5: 3;
hence contradiction by
A11,
A1;
end;
A31: A
<> C
proof
assume A
= C;
then
A31BIS: (vp
`1 )
= (vr
`1 ) & (vp
`2 )
= (vr
`2 ) by
FINSEQ_1: 77;
vp
=
|[(vp
`1 ), (vp
`2 ), (vp
`3 )]| by
EUCLID_5: 3
.= vr by
A9,
A31BIS,
EUCLID_5: 3;
hence contradiction by
A11,
A1;
end;
A32: B
<> C
proof
assume B
= C;
then
A32BIS: (vq
`1 )
= (vr
`1 ) & (vq
`2 )
= (vr
`2 ) by
FINSEQ_1: 77;
vq
=
|[(vq
`1 ), (vq
`2 ), (vq
`3 )]| by
EUCLID_5: 3
.= vr by
A9,
A32BIS,
EUCLID_5: 3;
hence contradiction by
A11,
A1;
end;
A34: A
in (
Sphere ((
0. (
TOP-REAL 2)),1))
proof
A35: (
qfconic (1,1,(
- 1),
0 ,
0 ,
0 ,vp))
=
0
proof
P
in (
conic (1,1,(
- 1),
0 ,
0 ,
0 ));
then P
in { P where P be
Point of (
ProjectiveSpace (
TOP-REAL 3)) : for u be
Element of (
TOP-REAL 3) st u is non
zero & P
= (
Dir u) holds (
qfconic (1,1,(
- 1),
0 ,
0 ,
0 ,u))
=
0 } by
PASCAL:def 2;
then ex PP be
Point of (
ProjectiveSpace (
TOP-REAL 3)) st P
= PP & for u be
Element of (
TOP-REAL 3) st u is non
zero & PP
= (
Dir u) holds (
qfconic (1,1,(
- 1),
0 ,
0 ,
0 ,u))
=
0 ;
hence thesis by
A11;
end;
(vp
. 1)
= (vp
`1 ) & (vp
. 2)
= (vp
`2 ) by
EUCLID_5:def 1,
EUCLID_5:def 2;
hence A
in (
Sphere ((
0. (
TOP-REAL 2)),1)) by
A35,
A10,
Th70;
end;
A36: (
qfconic (1,1,(
- 1),
0 ,
0 ,
0 ,vq))
=
0
proof
Q
in (
conic (1,1,(
- 1),
0 ,
0 ,
0 ));
then Q
in { P where P be
Point of (
ProjectiveSpace (
TOP-REAL 3)) : for u be
Element of (
TOP-REAL 3) st u is non
zero & P
= (
Dir u) holds (
qfconic (1,1,(
- 1),
0 ,
0 ,
0 ,u))
=
0 } by
PASCAL:def 2;
then ex QP be
Point of (
ProjectiveSpace (
TOP-REAL 3)) st Q
= QP & for u be
Element of (
TOP-REAL 3) st u is non
zero & QP
= (
Dir u) holds (
qfconic (1,1,(
- 1),
0 ,
0 ,
0 ,u))
=
0 ;
hence thesis by
A11;
end;
(vq
. 1)
= (vq
`1 ) & (vq
. 2)
= (vq
`2 ) by
EUCLID_5:def 1,
EUCLID_5:def 2;
then
A37: B
in (
Sphere ((
0. (
TOP-REAL 2)),1)) by
A36,
A10,
Th70;
A38: C
in (
Sphere ((
0. (
TOP-REAL 2)),1))
proof
A39: (
qfconic (1,1,(
- 1),
0 ,
0 ,
0 ,vr))
=
0
proof
R
in (
conic (1,1,(
- 1),
0 ,
0 ,
0 ));
then R
in { P where P be
Point of (
ProjectiveSpace (
TOP-REAL 3)) : for u be
Element of (
TOP-REAL 3) st u is non
zero & P
= (
Dir u) holds (
qfconic (1,1,(
- 1),
0 ,
0 ,
0 ,u))
=
0 } by
PASCAL:def 2;
then ex RP be
Point of (
ProjectiveSpace (
TOP-REAL 3)) st R
= RP & for u be
Element of (
TOP-REAL 3) st u is non
zero & RP
= (
Dir u) holds (
qfconic (1,1,(
- 1),
0 ,
0 ,
0 ,u))
=
0 ;
hence thesis by
A11;
end;
(vr
. 1)
= (vr
`1 ) & (vr
. 2)
= (vr
`2 ) by
EUCLID_5:def 1,
EUCLID_5:def 2;
hence C
in (
Sphere ((
0. (
TOP-REAL 2)),1)) by
A39,
A10,
Th70;
end;
A40: ((
halfline (B,C))
/\ (
Sphere ((
0. (
TOP-REAL 2)),1)))
=
{B, C} & ((
halfline (C,B))
/\ (
Sphere ((
0. (
TOP-REAL 2)),1)))
=
{C, B} & ((
halfline (A,C))
/\ (
Sphere ((
0. (
TOP-REAL 2)),1)))
=
{A, C} & ((
halfline (C,A))
/\ (
Sphere ((
0. (
TOP-REAL 2)),1)))
=
{C, A} & ((
halfline (A,B))
/\ (
Sphere ((
0. (
TOP-REAL 2)),1)))
=
{A, B} & ((
halfline (B,A))
/\ (
Sphere ((
0. (
TOP-REAL 2)),1)))
=
{B, A} by
A37,
A38,
A34,
TOPREAL9: 36;
per cases by
A16;
suppose a1
<>
0 ;
then
A41: (lp
* vp)
= ((((
- b1)
/ a1)
* (lq
* vq))
+ (((
- c1)
/ a1)
* (lr
* vr))) by
A19,
A21,
A23,
A15,
ANPROJ_8: 12
.= (((((
- b1)
/ a1)
* lq)
* vq)
+ (((
- c1)
/ a1)
* (lr
* vr))) by
RVSUM_1: 49
.= (((((
- b1)
/ a1)
* lq)
* vq)
+ ((((
- c1)
/ a1)
* lr)
* vr)) by
RVSUM_1: 49;
reconsider m1 = ((1
/ lp)
* (((
- b1)
/ a1)
* lq)), m2 = ((1
/ lp)
* (((
- c1)
/ a1)
* lr)) as
Real;
1
= (lp
/ lp) by
A18,
XCMPLX_1: 60
.= ((1
/ lp)
* lp) by
XCMPLX_1: 99;
then
A42: vp
= (((1
/ lp)
* lp)
* vp) by
RVSUM_1: 52
.= ((1
/ lp)
* (((((
- b1)
/ a1)
* lq)
* vq)
+ ((((
- c1)
/ a1)
* lr)
* vr))) by
A41,
RVSUM_1: 49
.= (((1
/ lp)
* ((((
- b1)
/ a1)
* lq)
* vq))
+ ((1
/ lp)
* ((((
- c1)
/ a1)
* lr)
* vr))) by
RVSUM_1: 51
.= ((((1
/ lp)
* (((
- b1)
/ a1)
* lq))
* vq)
+ ((1
/ lp)
* ((((
- c1)
/ a1)
* lr)
* vr))) by
RVSUM_1: 49
.= ((m1
* vq)
+ (m2
* vr)) by
RVSUM_1: 49;
A43: m1
= (1
- m2)
proof
((m1
* vq)
+ (m2
* vr))
= (
|[(m1
* (vq
`1 )), (m1
* (vq
`2 )), (m1
* (vq
`3 ))]|
+ (m2
* vr)) by
EUCLID_5: 7
.= (
|[(m1
* (vq
`1 )), (m1
* (vq
`2 )), (m1
* (vq
`3 ))]|
+
|[(m2
* (vr
`1 )), (m2
* (vr
`2 )), (m2
* (vr
`3 ))]|) by
EUCLID_5: 7
.=
|[((m1
* (vq
`1 ))
+ (m2
* (vr
`1 ))), ((m1
* (vq
`2 ))
+ (m2
* (vr
`2 ))), ((m1
* (vq
`3 ))
+ (m2
* (vr
`3 )))]| by
EUCLID_5: 6;
then (vp
`3 )
= ((m1
* (vq
`3 ))
+ (m2
* (vr
`3 ))) by
A42,
EUCLID_5: 14;
hence thesis by
A9;
end;
per cases ;
suppose
A44:
0
<= m2;
A45: A
in (
halfline (B,C))
proof
reconsider tu = ((1
- m2)
* vq), tv = (m2
* vr) as
Element of (
TOP-REAL 3);
A46: (((1
- m2)
* vq)
. 1)
= ((1
- m2)
* (vq
. 1)) by
RVSUM_1: 44;
A47: (tu
`1 )
= (tu
. 1) & (tv
`1 )
= (tv
. 1) by
EUCLID_5:def 1;
A48: (A
`1 )
= (vp
`1 ) by
EUCLID: 52
.= (
|[((tu
`1 )
+ (tv
`1 )), ((tu
`2 )
+ (tv
`2 )), ((tu
`3 )
+ (tv
`3 ))]|
`1 ) by
A43,
A42,
EUCLID_5: 5
.= ((tu
. 1)
+ (tv
. 1)) by
A47,
EUCLID_5: 2
.= (((1
- m2)
* (B
. 1))
+ (m2
* (C
. 1))) by
A46,
RVSUM_1: 44,
A24,
A26;
A49: (((1
- m2)
* vq)
. 2)
= ((1
- m2)
* (vq
. 2)) by
RVSUM_1: 44;
A50: (tu
`2 )
= (tu
. 2) & (tv
`2 )
= (tv
. 2) by
EUCLID_5:def 2;
A51: (A
`2 )
= (vp
`2 ) by
EUCLID: 52
.= (
|[((tu
`1 )
+ (tv
`1 )), ((tu
`2 )
+ (tv
`2 )), ((tu
`3 )
+ (tv
`3 ))]|
`2 ) by
A43,
A42,
EUCLID_5: 5
.= ((tu
. 2)
+ (tv
. 2)) by
A50,
EUCLID_5: 2
.= (((1
- m2)
* (B
. 2))
+ (m2
* (C
. 2))) by
A49,
A25,
A27,
RVSUM_1: 44;
A52: B
=
|[(B
`1 ), (B
`2 )]| by
EUCLID: 53
.=
|[(B
`1 ), (B
. 2)]| by
EUCLID:def 10
.=
|[(B
. 1), (B
. 2)]| by
EUCLID:def 9;
A53: C
=
|[(C
`1 ), (C
`2 )]| by
EUCLID: 53
.=
|[(C
`1 ), (C
. 2)]| by
EUCLID:def 10
.=
|[(C
. 1), (C
. 2)]| by
EUCLID:def 9;
A
=
|[(((1
- m2)
* (B
. 1))
+ (m2
* (C
. 1))), (((1
- m2)
* (B
. 2))
+ (m2
* (C
. 2)))]| by
A48,
A51,
EUCLID: 53
.= (
|[((1
- m2)
* (B
. 1)), ((1
- m2)
* (B
. 2))]|
+
|[(m2
* (C
. 1)), (m2
* (C
. 2))]|) by
EUCLID: 56
.= (((1
- m2)
*
|[(B
. 1), (B
. 2)]|)
+
|[(m2
* (C
. 1)), (m2
* (C
. 2))]|) by
EUCLID: 58
.= (((1
- m2)
* B)
+ (m2
* C)) by
A52,
A53,
EUCLID: 58;
hence thesis by
A44,
TOPREAL9: 26;
end;
A
in ((
halfline (B,C))
/\ (
Sphere ((
0. (
TOP-REAL 2)),1))) by
A45,
A34,
XBOOLE_0:def 4;
hence contradiction by
A30,
A31,
A40,
TARSKI:def 2;
end;
suppose
A54: m2
<
0 ;
set m3 = (1
- m2);
A
in (
halfline (C,B))
proof
reconsider tu = ((1
- m3)
* vr), tv = (m3
* vq) as
Element of (
TOP-REAL 3);
A55: (((1
- m3)
* vr)
. 1)
= ((1
- m3)
* (vr
. 1)) by
RVSUM_1: 44;
A56: (tu
`1 )
= (tu
. 1) & (tv
`1 )
= (tv
. 1) by
EUCLID_5:def 1;
A56b: (A
`1 )
= (vp
`1 ) by
EUCLID: 52
.= (
|[((tu
`1 )
+ (tv
`1 )), ((tu
`2 )
+ (tv
`2 )), ((tu
`3 )
+ (tv
`3 ))]|
`1 ) by
A43,
A42,
EUCLID_5: 5
.= ((tu
. 1)
+ (tv
. 1)) by
EUCLID_5: 2,
A56
.= (((1
- m3)
* (C
. 1))
+ (m3
* (B
. 1))) by
A24,
A26,
A55,
RVSUM_1: 44;
A57: (((1
- m3)
* vr)
. 2)
= ((1
- m3)
* (vr
. 2)) by
RVSUM_1: 44;
A58: (tu
`2 )
= (tu
. 2) & (tv
`2 )
= (tv
. 2) by
EUCLID_5:def 2;
A59: (A
`2 )
= (vp
`2 ) by
EUCLID: 52
.= (
|[((tu
`1 )
+ (tv
`1 )), ((tu
`2 )
+ (tv
`2 )), ((tu
`3 )
+ (tv
`3 ))]|
`2 ) by
A43,
A42,
EUCLID_5: 5
.= ((tu
`2 )
+ (tv
`2 )) by
EUCLID_5: 2
.= (((1
- m3)
* (C
. 2))
+ (m3
* (B
. 2))) by
A57,
A58,
RVSUM_1: 44,
A25,
A27;
A60: B
=
|[(B
`1 ), (B
`2 )]| by
EUCLID: 53
.=
|[(B
`1 ), (B
. 2)]| by
EUCLID:def 10
.=
|[(B
. 1), (B
. 2)]| by
EUCLID:def 9;
A61: C
=
|[(C
`1 ), (C
`2 )]| by
EUCLID: 53
.=
|[(C
`1 ), (C
. 2)]| by
EUCLID:def 10
.=
|[(C
. 1), (C
. 2)]| by
EUCLID:def 9;
A
=
|[(((1
- m3)
* (C
. 1))
+ (m3
* (B
. 1))), (((1
- m3)
* (C
. 2))
+ (m3
* (B
. 2)))]| by
A56b,
A59,
EUCLID: 53
.= (
|[((1
- m3)
* (C
. 1)), ((1
- m3)
* (C
. 2))]|
+
|[(m3
* (B
. 1)), (m3
* (B
. 2))]|) by
EUCLID: 56
.= (((1
- m3)
*
|[(C
. 1), (C
. 2)]|)
+
|[(m3
* (B
. 1)), (m3
* (B
. 2))]|) by
EUCLID: 58
.= (((1
- m3)
* C)
+ (m3
* B)) by
A60,
A61,
EUCLID: 58;
hence thesis by
A54,
TOPREAL9: 26;
end;
then A
in
{C, B} by
A40,
A34,
XBOOLE_0:def 4;
hence contradiction by
A30,
A31,
TARSKI:def 2;
end;
end;
suppose
A62: b1
<>
0 ;
(((b1
* tq)
+ (a1
* tp))
+ (c1
* tr))
= (
0. (
TOP-REAL 3)) by
A15;
then
A63: (lq
* vq)
= ((((
- a1)
/ b1)
* (lp
* vp))
+ (((
- c1)
/ b1)
* (lr
* vr))) by
A19,
A21,
A23,
A62,
ANPROJ_8: 12
.= (((((
- a1)
/ b1)
* lp)
* vp)
+ (((
- c1)
/ b1)
* (lr
* vr))) by
RVSUM_1: 49
.= (((((
- a1)
/ b1)
* lp)
* vp)
+ ((((
- c1)
/ b1)
* lr)
* vr)) by
RVSUM_1: 49;
reconsider m1 = ((1
/ lq)
* (((
- a1)
/ b1)
* lp)), m2 = ((1
/ lq)
* (((
- c1)
/ b1)
* lr)) as
Real;
1
= (lq
/ lq) by
A20,
XCMPLX_1: 60
.= ((1
/ lq)
* lq) by
XCMPLX_1: 99;
then
A65: vq
= (((1
/ lq)
* lq)
* vq) by
RVSUM_1: 52
.= ((1
/ lq)
* (((((
- a1)
/ b1)
* lp)
* vp)
+ ((((
- c1)
/ b1)
* lr)
* vr))) by
A63,
RVSUM_1: 49
.= (((1
/ lq)
* ((((
- a1)
/ b1)
* lp)
* vp))
+ ((1
/ lq)
* ((((
- c1)
/ b1)
* lr)
* vr))) by
RVSUM_1: 51
.= ((((1
/ lq)
* (((
- a1)
/ b1)
* lp))
* vp)
+ ((1
/ lq)
* ((((
- c1)
/ b1)
* lr)
* vr))) by
RVSUM_1: 49
.= ((m1
* vp)
+ (m2
* vr)) by
RVSUM_1: 49;
A66: m1
= (1
- m2)
proof
((m1
* vp)
+ (m2
* vr))
= (
|[(m1
* (vp
`1 )), (m1
* (vp
`2 )), (m1
* (vp
`3 ))]|
+ (m2
* vr)) by
EUCLID_5: 7
.= (
|[(m1
* (vp
`1 )), (m1
* (vp
`2 )), (m1
* (vp
`3 ))]|
+
|[(m2
* (vr
`1 )), (m2
* (vr
`2 )), (m2
* (vr
`3 ))]|) by
EUCLID_5: 7
.=
|[((m1
* (vp
`1 ))
+ (m2
* (vr
`1 ))), ((m1
* (vp
`2 ))
+ (m2
* (vr
`2 ))), ((m1
* (vp
`3 ))
+ (m2
* (vr
`3 )))]| by
EUCLID_5: 6;
then 1
= ((m1
* 1)
+ (m2
* 1)) by
A9,
A65,
EUCLID_5: 14;
hence thesis;
end;
per cases ;
suppose
A67:
0
<= m2;
B
in (
halfline (A,C))
proof
reconsider tu = ((1
- m2)
* vp), tv = (m2
* vr) as
Element of (
TOP-REAL 3);
A68: (((1
- m2)
* vp)
. 1)
= ((1
- m2)
* (vp
. 1)) by
RVSUM_1: 44;
A69: (tu
`1 )
= (tu
. 1) & (tv
`1 )
= (tv
. 1) by
EUCLID_5:def 1;
A70: (B
`1 )
= (vq
`1 ) by
EUCLID: 52
.= (
|[((tu
`1 )
+ (tv
`1 )), ((tu
`2 )
+ (tv
`2 )), ((tu
`3 )
+ (tv
`3 ))]|
`1 ) by
A66,
A65,
EUCLID_5: 5
.= ((tu
`1 )
+ (tv
`1 )) by
EUCLID_5: 2
.= (((1
- m2)
* (A
. 1))
+ (m2
* (C
. 1))) by
A26,
A28,
A68,
A69,
RVSUM_1: 44;
A71: (((1
- m2)
* vp)
. 2)
= ((1
- m2)
* (vp
. 2)) by
RVSUM_1: 44;
A72: (tu
`2 )
= (tu
. 2) & (tv
`2 )
= (tv
. 2) by
EUCLID_5:def 2;
A73: (B
`2 )
= (vq
`2 ) by
EUCLID: 52
.= (
|[((tu
`1 )
+ (tv
`1 )), ((tu
`2 )
+ (tv
`2 )), ((tu
`3 )
+ (tv
`3 ))]|
`2 ) by
A66,
A65,
EUCLID_5: 5
.= ((tu
`2 )
+ (tv
`2 )) by
EUCLID_5: 2
.= (((1
- m2)
* (A
. 2))
+ (m2
* (C
. 2))) by
A27,
A29,
A71,
A72,
RVSUM_1: 44;
A74: A
=
|[(A
`1 ), (A
`2 )]| by
EUCLID: 53
.=
|[(A
`1 ), (A
. 2)]| by
EUCLID:def 10
.=
|[(A
. 1), (A
. 2)]| by
EUCLID:def 9;
A75: C
=
|[(C
`1 ), (C
`2 )]| by
EUCLID: 53
.=
|[(C
`1 ), (C
. 2)]| by
EUCLID:def 10
.=
|[(C
. 1), (C
. 2)]| by
EUCLID:def 9;
B
=
|[(((1
- m2)
* (A
. 1))
+ (m2
* (C
. 1))), (((1
- m2)
* (A
. 2))
+ (m2
* (C
. 2)))]| by
A70,
A73,
EUCLID: 53
.= (
|[((1
- m2)
* (A
. 1)), ((1
- m2)
* (A
. 2))]|
+
|[(m2
* (C
. 1)), (m2
* (C
. 2))]|) by
EUCLID: 56
.= (((1
- m2)
*
|[(A
. 1), (A
. 2)]|)
+
|[(m2
* (C
. 1)), (m2
* (C
. 2))]|) by
EUCLID: 58
.= (((1
- m2)
* A)
+ (m2
* C)) by
A74,
A75,
EUCLID: 58;
hence thesis by
A67,
TOPREAL9: 26;
end;
then B
in
{A, C} by
A40,
A37,
XBOOLE_0:def 4;
hence contradiction by
A30,
A32,
TARSKI:def 2;
end;
suppose
A76: m2
<
0 ;
set m3 = (1
- m2);
B
in (
halfline (C,A))
proof
reconsider tu = ((1
- m3)
* vr), tv = (m3
* vp) as
Element of (
TOP-REAL 3);
A77: (((1
- m3)
* vr)
. 1)
= ((1
- m3)
* (vr
. 1)) by
RVSUM_1: 44;
A78: (tu
`1 )
= (tu
. 1) & (tv
`1 )
= (tv
. 1) by
EUCLID_5:def 1;
A79: (B
`1 )
= (vq
`1 ) by
EUCLID: 52
.= (
|[((tu
`1 )
+ (tv
`1 )), ((tu
`2 )
+ (tv
`2 )), ((tu
`3 )
+ (tv
`3 ))]|
`1 ) by
EUCLID_5: 5,
A66,
A65
.= ((tu
`1 )
+ (tv
`1 )) by
EUCLID_5: 2
.= (((1
- m3)
* (C
. 1))
+ (m3
* (A
. 1))) by
A26,
A28,
A77,
A78,
RVSUM_1: 44;
A80: (((1
- m3)
* vr)
. 2)
= ((1
- m3)
* (vr
. 2)) by
RVSUM_1: 44;
A81: (tu
`2 )
= (tu
. 2) & (tv
`2 )
= (tv
. 2) by
EUCLID_5:def 2;
A82: (B
`2 )
= (vq
`2 ) by
EUCLID: 52
.= (
|[((tu
`1 )
+ (tv
`1 )), ((tu
`2 )
+ (tv
`2 )), ((tu
`3 )
+ (tv
`3 ))]|
`2 ) by
A66,
A65,
EUCLID_5: 5
.= ((tu
`2 )
+ (tv
`2 )) by
EUCLID_5: 2
.= (((1
- m3)
* (C
. 2))
+ (m3
* (A
. 2))) by
A27,
A29,
A80,
A81,
RVSUM_1: 44;
A83: A
=
|[(A
`1 ), (A
`2 )]| by
EUCLID: 53
.=
|[(A
`1 ), (A
. 2)]| by
EUCLID:def 10
.=
|[(A
. 1), (A
. 2)]| by
EUCLID:def 9;
A84: C
=
|[(C
`1 ), (C
`2 )]| by
EUCLID: 53
.=
|[(C
`1 ), (C
. 2)]| by
EUCLID:def 10
.=
|[(C
. 1), (C
. 2)]| by
EUCLID:def 9;
B
=
|[(((1
- m3)
* (C
. 1))
+ (m3
* (A
. 1))), (((1
- m3)
* (C
. 2))
+ (m3
* (A
. 2)))]| by
A79,
A82,
EUCLID: 53
.= (
|[((1
- m3)
* (C
. 1)), ((1
- m3)
* (C
. 2))]|
+
|[(m3
* (A
. 1)), (m3
* (A
. 2))]|) by
EUCLID: 56
.= (((1
- m3)
*
|[(C
. 1), (C
. 2)]|)
+
|[(m3
* (A
. 1)), (m3
* (A
. 2))]|) by
EUCLID: 58
.= (((1
- m3)
* C)
+ (m3
* A)) by
A83,
A84,
EUCLID: 58;
hence thesis by
A76,
TOPREAL9: 26;
end;
then B
in
{C, A} by
A40,
A37,
XBOOLE_0:def 4;
hence contradiction by
A30,
A32,
TARSKI:def 2;
end;
end;
suppose
A85: c1
<>
0 ;
(((c1
* tr)
+ (a1
* tp))
+ (b1
* tq))
= (
0. (
TOP-REAL 3)) by
A15,
RVSUM_1: 15;
then
A86: (lr
* vr)
= ((((
- a1)
/ c1)
* (lp
* vp))
+ (((
- b1)
/ c1)
* (lq
* vq))) by
A19,
A21,
A23,
A85,
ANPROJ_8: 12
.= (((((
- a1)
/ c1)
* lp)
* vp)
+ (((
- b1)
/ c1)
* (lq
* vq))) by
RVSUM_1: 49
.= (((((
- a1)
/ c1)
* lp)
* vp)
+ ((((
- b1)
/ c1)
* lq)
* vq)) by
RVSUM_1: 49;
reconsider m1 = ((1
/ lr)
* (((
- a1)
/ c1)
* lp)), m2 = ((1
/ lr)
* (((
- b1)
/ c1)
* lq)) as
Real;
1
= (lr
/ lr) by
A22,
XCMPLX_1: 60
.= ((1
/ lr)
* lr) by
XCMPLX_1: 99;
then
A87: vr
= (((1
/ lr)
* lr)
* vr) by
RVSUM_1: 52
.= ((1
/ lr)
* (((((
- a1)
/ c1)
* lp)
* vp)
+ ((((
- b1)
/ c1)
* lq)
* vq))) by
A86,
RVSUM_1: 49
.= (((1
/ lr)
* ((((
- a1)
/ c1)
* lp)
* vp))
+ ((1
/ lr)
* ((((
- b1)
/ c1)
* lq)
* vq))) by
RVSUM_1: 51
.= ((((1
/ lr)
* (((
- a1)
/ c1)
* lp))
* vp)
+ ((1
/ lr)
* ((((
- b1)
/ c1)
* lq)
* vq))) by
RVSUM_1: 49
.= ((m1
* vp)
+ (m2
* vq)) by
RVSUM_1: 49;
A88: m1
= (1
- m2)
proof
((m1
* vp)
+ (m2
* vq))
= (
|[(m1
* (vp
`1 )), (m1
* (vp
`2 )), (m1
* (vp
`3 ))]|
+ (m2
* vq)) by
EUCLID_5: 7
.= (
|[(m1
* (vp
`1 )), (m1
* (vp
`2 )), (m1
* (vp
`3 ))]|
+
|[(m2
* (vq
`1 )), (m2
* (vq
`2 )), (m2
* (vq
`3 ))]|) by
EUCLID_5: 7
.=
|[((m1
* (vp
`1 ))
+ (m2
* (vq
`1 ))), ((m1
* (vp
`2 ))
+ (m2
* (vq
`2 ))), ((m1
* (vp
`3 ))
+ (m2
* (vq
`3 )))]| by
EUCLID_5: 6;
then 1
= ((m1
* 1)
+ (m2
* 1)) by
A87,
EUCLID_5: 14,
A9;
hence thesis;
end;
per cases ;
suppose
A89:
0
<= m2;
C
in (
halfline (A,B))
proof
reconsider tu = ((1
- m2)
* vp), tv = (m2
* vq) as
Element of (
TOP-REAL 3);
A90: (((1
- m2)
* vp)
. 1)
= ((1
- m2)
* (vp
. 1)) by
RVSUM_1: 44;
A91: (tu
`1 )
= (tu
. 1) & (tv
`1 )
= (tv
. 1) by
EUCLID_5:def 1;
A92: (C
`1 )
= (vr
`1 ) by
EUCLID: 52
.= (
|[((tu
`1 )
+ (tv
`1 )), ((tu
`2 )
+ (tv
`2 )), ((tu
`3 )
+ (tv
`3 ))]|
`1 ) by
A88,
A87,
EUCLID_5: 5
.= ((tu
. 1)
+ (tv
. 1)) by
A91,
EUCLID_5: 2
.= (((1
- m2)
* (A
. 1))
+ (m2
* (B
. 1))) by
A24,
A28,
A90,
RVSUM_1: 44;
A93: (((1
- m2)
* vp)
. 2)
= ((1
- m2)
* (vp
. 2)) by
RVSUM_1: 44;
A94: (tu
`2 )
= (tu
. 2) & (tv
`2 )
= (tv
. 2) by
EUCLID_5:def 2;
A95: (C
`2 )
= (vr
`2 ) by
EUCLID: 52
.= (
|[((tu
`1 )
+ (tv
`1 )), ((tu
`2 )
+ (tv
`2 )), ((tu
`3 )
+ (tv
`3 ))]|
`2 ) by
A88,
A87,
EUCLID_5: 5
.= ((tu
`2 )
+ (tv
`2 )) by
EUCLID_5: 2
.= (((1
- m2)
* (A
. 2))
+ (m2
* (B
. 2))) by
A25,
A29,
A93,
A94,
RVSUM_1: 44;
A96: A
=
|[(A
`1 ), (A
`2 )]| by
EUCLID: 53
.=
|[(A
`1 ), (A
. 2)]| by
EUCLID:def 10
.=
|[(A
. 1), (A
. 2)]| by
EUCLID:def 9;
A97: B
=
|[(B
`1 ), (B
`2 )]| by
EUCLID: 53
.=
|[(B
`1 ), (B
. 2)]| by
EUCLID:def 10
.=
|[(B
. 1), (B
. 2)]| by
EUCLID:def 9;
C
=
|[(C
`1 ), (C
`2 )]| by
EUCLID: 53
.= (
|[((1
- m2)
* (A
. 1)), ((1
- m2)
* (A
. 2))]|
+
|[(m2
* (B
. 1)), (m2
* (B
. 2))]|) by
A92,
A95,
EUCLID: 56
.= (((1
- m2)
*
|[(A
. 1), (A
. 2)]|)
+
|[(m2
* (B
. 1)), (m2
* (B
. 2))]|) by
EUCLID: 58
.= (((1
- m2)
* A)
+ (m2
* B)) by
EUCLID: 58,
A96,
A97;
hence thesis by
A89,
TOPREAL9: 26;
end;
then C
in
{A, B} by
A40,
A38,
XBOOLE_0:def 4;
hence contradiction by
A31,
A32,
TARSKI:def 2;
end;
suppose
A98: m2
<
0 ;
set m3 = (1
- m2);
C
in (
halfline (B,A))
proof
reconsider tu = ((1
- m3)
* vq), tv = (m3
* vp) as
Element of (
TOP-REAL 3);
A99: (((1
- m3)
* vq)
. 1)
= ((1
- m3)
* (vq
. 1)) by
RVSUM_1: 44;
A100: (tu
`1 )
= (tu
. 1) & (tv
`1 )
= (tv
. 1) by
EUCLID_5:def 1;
A101: (C
`1 )
= (vr
`1 ) by
EUCLID: 52
.= (
|[((tu
`1 )
+ (tv
`1 )), ((tu
`2 )
+ (tv
`2 )), ((tu
`3 )
+ (tv
`3 ))]|
`1 ) by
A88,
A87,
EUCLID_5: 5
.= ((tu
. 1)
+ (tv
. 1)) by
A100,
EUCLID_5: 2
.= (((1
- m3)
* (B
. 1))
+ (m3
* (A
. 1))) by
A24,
A28,
A99,
RVSUM_1: 44;
A102: (((1
- m3)
* vq)
. 2)
= ((1
- m3)
* (vq
. 2)) by
RVSUM_1: 44;
A103: (tu
`2 )
= (tu
. 2) & (tv
`2 )
= (tv
. 2) by
EUCLID_5:def 2;
A104: (C
`2 )
= (vr
`2 ) by
EUCLID: 52
.= (
|[((tu
`1 )
+ (tv
`1 )), ((tu
`2 )
+ (tv
`2 )), ((tu
`3 )
+ (tv
`3 ))]|
`2 ) by
A88,
A87,
EUCLID_5: 5
.= ((tu
`2 )
+ (tv
`2 )) by
EUCLID_5: 2
.= (((1
- m3)
* (B
. 2))
+ (m3
* (A
. 2))) by
A25,
A29,
A102,
A103,
RVSUM_1: 44;
A105: A
=
|[(A
`1 ), (A
`2 )]| by
EUCLID: 53
.=
|[(A
`1 ), (A
. 2)]| by
EUCLID:def 10
.=
|[(A
. 1), (A
. 2)]| by
EUCLID:def 9;
A106: B
=
|[(B
`1 ), (B
`2 )]| by
EUCLID: 53
.=
|[(B
`1 ), (B
. 2)]| by
EUCLID:def 10
.=
|[(B
. 1), (B
. 2)]| by
EUCLID:def 9;
C
=
|[(((1
- m3)
* (B
. 1))
+ (m3
* (A
. 1))), (((1
- m3)
* (B
. 2))
+ (m3
* (A
. 2)))]| by
A101,
A104,
EUCLID: 53
.= (
|[((1
- m3)
* (B
. 1)), ((1
- m3)
* (B
. 2))]|
+
|[(m3
* (A
. 1)), (m3
* (A
. 2))]|) by
EUCLID: 56
.= (((1
- m3)
*
|[(B
. 1), (B
. 2)]|)
+
|[(m3
* (A
. 1)), (m3
* (A
. 2))]|) by
EUCLID: 58
.= (((1
- m3)
* B)
+ (m3
* A)) by
A105,
A106,
EUCLID: 58;
hence thesis by
A98,
TOPREAL9: 26;
end;
then C
in
{B, A} by
A40,
A38,
XBOOLE_0:def 4;
hence contradiction by
A31,
A32,
TARSKI:def 2;
end;
end;
end;
theorem ::
BKMODEL1:93
for ra be non
zero
Real holds for O,N,M be
invertible
Matrix of 3,
F_Real st O
= (
symmetric_3 (1,1,(
- 1),
0 ,
0 ,
0 )) & M
= (
symmetric_3 (ra,ra,(
- ra),
0 ,
0 ,
0 )) & M
= (((N
@ )
* O)
* N) & ((
homography M)
.:
absolute )
=
absolute holds ((
homography N)
.:
absolute )
=
absolute
proof
let ra be non
zero
Real;
let O,N,M be
invertible
Matrix of 3,
F_Real ;
assume that
A1: O
= (
symmetric_3 (1,1,(
- 1),
0 ,
0 ,
0 )) and
A2: M
= (
symmetric_3 (ra,ra,(
- ra),
0 ,
0 ,
0 )) and
A4: M
= (((N
@ )
* O)
* N) and
A5: ((
homography M)
.:
absolute )
=
absolute ;
reconsider O1 = O as
Matrix of 3,
REAL ;
A6: (
len O1)
= 3 & (
width O1)
= 3 by
MATRIX_0: 24;
A7: ((
homography N)
.:
absolute )
c=
absolute
proof
let x be
object;
assume x
in ((
homography N)
.:
absolute );
then
consider y be
object such that
A8: y
in (
dom (
homography N)) and
A9: y
in
absolute and
A10: ((
homography N)
. y)
= x by
FUNCT_1:def 6;
A11: (
rng (
homography N))
c= the
carrier of (
ProjectiveSpace (
TOP-REAL 3)) by
RELAT_1:def 19;
reconsider y9 = y as
Element of (
ProjectiveSpace (
TOP-REAL 3)) by
A8;
consider z be
object such that
A12: z
in (
dom (
homography M)) and
A13: z
in
absolute and
A14: ((
homography M)
. z)
= y by
A9,
A5,
FUNCT_1:def 6;
reconsider z9 = z as
Element of (
ProjectiveSpace (
TOP-REAL 3)) by
A12;
A15: x
= ((
homography N)
. ((
homography M)
. z9)) by
A14,
A10
.= ((
homography (N
* M))
. z) by
ANPROJ_9: 13;
reconsider NM = (N
* M) as
invertible
Matrix of 3,
F_Real ;
reconsider NMR = NM as
Matrix of 3,
REAL ;
consider u,v be
Element of (
TOP-REAL 3), uf be
FinSequence of
F_Real , p be
FinSequence of (1
-tuples_on
REAL ) such that
A16: z9
= (
Dir u) & not u is
zero & u
= uf & p
= (NM
* uf) & v
= (
M2F p) & not v is
zero & ((
homography NM)
. z9)
= (
Dir v) by
ANPROJ_8:def 4;
reconsider u1 = u as
FinSequence of
REAL by
EUCLID: 24;
u is
Element of (
REAL 3) by
EUCLID: 22;
then
A17: (
len u1)
= 3 by
EUCLID_8: 50;
reconsider x9 = x as
Element of (
ProjectiveSpace (
TOP-REAL 3)) by
A10,
A11,
A8,
FUNCT_1: 3;
consider u9 be
Element of (
TOP-REAL 3) such that
A18: not u9 is
zero and
A19: x9
= (
Dir u9) by
ANPROJ_1: 26;
reconsider uf9 = u9 as
FinSequence of
REAL by
EUCLID: 24;
u9 is
Element of (
REAL 3) by
EUCLID: 22;
then (
len uf9)
= 3 by
EUCLID_8: 50;
then
A20: (
len uf9)
= (
len O1) & (
len uf9)
= (
width O1) & (
len uf9)
>
0 by
MATRIX_0: 24;
are_Prop (u9,v) by
A19,
A18,
A16,
ANPROJ_1: 22,
A15;
then
consider b be
Real such that b
<>
0 and
A21: u9
= (b
* v) by
ANPROJ_1: 1;
reconsider vf = v as
FinSequence of
REAL by
EUCLID: 24;
A22: v is
Element of (
REAL 3) by
EUCLID: 22;
then
A23: (
len vf)
= 3 by
EUCLID_8: 50;
A24: (
width O1)
= (
len vf) & (
len vf)
>
0 by
A6,
A22,
EUCLID_8: 50;
|(uf9, (O1
* uf9))|
=
0
proof
(
width O1)
= (
len vf) & (
len vf)
>
0 by
A23,
MATRIX_0: 24;
then
A25: (
len (O1
* vf))
= (
len O1) by
MATRIXR1: 61
.= 3 by
MATRIX_0: 24;
then
A26: (
len vf)
= (
len (b
* (O1
* vf))) by
A23,
RVSUM_1: 117;
A27: (
len vf)
= (
len (O1
* vf)) by
A25,
A22,
EUCLID_8: 50;
A28:
|(uf9, (O1
* uf9))|
=
|((b
* vf), (b
* (O1
* vf)))| by
A21,
A24,
MATRIXR1: 59
.= (b
*
|(vf, (b
* (O1
* vf)))|) by
A26,
RVSUM_1: 121
.= (b
* (b
*
|((O1
* vf), vf)|)) by
A27,
RVSUM_1: 121;
|(vf, (O1
* vf))|
=
0
proof
A29: (
len N)
>
0 & (
width N)
>
0 by
MATRIX_0: 24;
A30: ((((N
@ )
* O)
* N)
@ )
= ((N
@ )
* (((N
@ )
* O)
@ )) by
MATRIX14: 30
.= ((N
@ )
* ((O
@ )
* ((N
@ )
@ ))) by
MATRIX14: 30
.= ((N
@ )
* ((O
@ )
* N)) by
A29,
MATRIX_0: 57;
A31: (
len N)
= 3 & (
width N)
= 3 & (
len M)
= 3 & (
width M)
= 3 by
MATRIX_0: 24;
A32: (
len (O
* (N
* M)))
= 3 by
MATRIX_0: 24;
A33: (
len O)
= 3 & (
width O)
= 3 & (
len N)
= 3 by
MATRIX_0: 24;
then
A34: (
width (N
@ ))
= (
len O) & (
width O)
= (
len N) by
MATRIX_0: 24;
A35: (
width M)
= (
len (N
@ )) & (
width (N
@ ))
= (
len (O
* (N
* M))) by
A31,
A32,
MATRIX_0: 29;
A36: (
width (N
@ ))
= (
len O) & (
width O)
= (
len (N
* M)) by
MATRIX_0: 24,
A33;
A37: (
width ((N
@ )
* O))
= (
len N) & (
width N)
= (
len M) by
A31,
MATRIX_0: 24;
A38: (
width M)
= 3 & (
len M)
= 3 by
MATRIX_0: 24;
reconsider ra3 = ((ra
* ra)
* ra) as
Element of
F_Real by
XREAL_0:def 1;
reconsider ea = ra as
Element of
F_Real by
XREAL_0:def 1;
A39: M
= (
symmetric_3 (ea,ea,(
- ea),
0 ,
0 ,
0 )) by
A2;
(O1
* NMR)
= (O
* (N
* M)) by
ANPROJ_8: 17;
then
A40: ((NMR
@ )
* (O1
* NMR))
= (((N
* M)
@ )
* (O
* (N
* M))) by
ANPROJ_8: 17
.= ((((N
@ )
* ((O
@ )
* N))
* (N
@ ))
* (O
* (N
* (((N
@ )
* O)
* N)))) by
A30,
A4,
A31,
MATRIX_3: 22
.= ((((N
@ )
* (O
* N))
* (N
@ ))
* (O
* (N
* (((N
@ )
* O)
* N)))) by
A1,
PASCAL: 12,
MATRIX_6:def 5
.= ((M
* (N
@ ))
* (O
* (N
* (((N
@ )
* O)
* N)))) by
A4,
A34,
MATRIX_3: 33
.= (M
* ((N
@ )
* (O
* (N
* M)))) by
A4,
A35,
MATRIX_3: 33
.= (M
* (((N
@ )
* O)
* (N
* M))) by
A36,
MATRIX_3: 33
.= (M
* ((((N
@ )
* O)
* N)
* M)) by
A37,
MATRIX_3: 33
.= ((M
* M)
* M) by
A4,
A38,
MATRIX_3: 33
.= (((ea
* ea)
* ea)
* (
symmetric_3 (1,1,(
- 1),
0 ,
0 ,
0 ))) by
A39,
Th49
.= (ra3
* O1) by
Th46,
A1;
reconsider ONMRUF9 = (O1
* (NMR
* u1)) as
FinSequence of
REAL ;
A41: u is
Element of (
REAL 3) by
EUCLID: 22;
then
A42: (
len u1)
= 3 by
EUCLID_8: 50;
A43: (
width (NMR
@ ))
= 3 by
MATRIX_0: 24;
A44: (
width NMR)
= 3 & (
len NMR)
= 3 by
MATRIX_0: 24;
A45: (
len u1)
= (
width (O1
* NMR)) & (
len (O1
* NMR))
= (
width (NMR
@ )) & (
len (O1
* NMR))
>
0 & (
len u1)
>
0 by
A42,
A43,
MATRIX_0: 24;
(
len u1)
= (
width NMR) & (
width O1)
= (
len NMR) & (
len u1)
>
0 & (
len NMR)
>
0 by
A41,
EUCLID_8: 50,
A44,
MATRIX_0: 24;
then
A46: ((NMR
@ )
* (O1
* (NMR
* u1)))
= ((NMR
@ )
* ((O1
* NMR)
* u1)) by
MATRIXR2: 59
.= ((ra3
* O1)
* u1) by
A40,
A45,
MATRIXR2: 59;
(
width O1)
= (
len u1) & (
len u1)
>
0 by
A42,
MATRIX_0: 24;
then (
len (O1
* u1))
= (
len O1) by
MATRIXR1: 61
.= 3 by
MATRIX_0: 24;
then
A47: (
len u1)
= (
len (O1
* u1)) by
A41,
EUCLID_8: 50;
A48: (
len O1)
= 3 by
MATRIX_0: 24;
(
width NMR)
= 3 by
MATRIX_0: 24;
then
A49: (
len (NMR
* u1))
= (
len NMR) by
A42,
MATRIXR1: 61
.= 3 by
MATRIX_0: 24;
then
A50: (
width O1)
= (
len (NMR
* u1)) by
MATRIX_0: 24;
A51: (
len ONMRUF9)
= (
len NMR) & (
len u1)
= (
width NMR) & (
len u1)
>
0 & (
len ONMRUF9)
>
0 by
A44,
A41,
EUCLID_8: 50,
A49,
A48,
A50,
MATRIXR1: 61;
consider s1,s2,s3,s4,s5,s6,s7,s8,s9 be
Element of
F_Real such that
A52: NM
=
<*
<*s1, s2, s3*>,
<*s4, s5, s6*>,
<*s7, s8, s9*>*> by
PASCAL: 3;
consider t1,t2,t3 be
Real such that
A53: u
=
<*t1, t2, t3*> by
EUCLID_5: 1;
reconsider et1 = t1, et2 = t2, et3 = t3 as
Element of
F_Real by
XREAL_0:def 1;
A54: vf
=
<*(((s1
* et1)
+ (s2
* et2))
+ (s3
* et3)), (((s4
* et1)
+ (s5
* et2))
+ (s6
* et3)), (((s7
* et1)
+ (s8
* et2))
+ (s9
* et3))*> by
A16,
A52,
A53,
PASCAL: 8;
reconsider rs1 = s1, rs2 = s2, rs3 = s3, rs4 = s4, rs5 = s5, rs6 = s6, rs7 = s7, rs8 = s8, rs9 = s9 as
Element of
REAL ;
reconsider rt1 = t1, rt2 = t2, rt3 = t3 as
Element of
REAL by
XREAL_0:def 1;
(NMR
* u1)
=
<*(((rs1
* rt1)
+ (rs2
* rt2))
+ (rs3
* rt3)), (((rs4
* rt1)
+ (rs5
* rt2))
+ (rs6
* rt3)), (((rs7
* rt1)
+ (rs8
* rt2))
+ (rs9
* rt3))*> by
A53,
A52,
PASCAL: 9;
then
A55:
|(vf, (O1
* vf))|
=
|(u1, ((NMR
@ )
* ONMRUF9))| by
A54,
A51,
MATRPROB: 48
.=
|(u1, (ra3
* (O1
* u1)))| by
A17,
A46,
Th51
.= (ra3
*
|(u1, (O1
* u1))|) by
RVSUM_1: 121,
A47;
A56: (
len u1)
= (
len O1) & (
len u1)
= (
width O1) & (
len u1)
>
0 by
A42,
MATRIX_0: 24;
0
= (
SumAll (
QuadraticForm (u1,O1,u1))) by
A16,
A13,
A1,
Th66
.=
|(u1, (O1
* u1))| by
A56,
MATRPROB: 44;
hence thesis by
A55;
end;
hence thesis by
A28;
end;
then (
SumAll (
QuadraticForm (uf9,O1,uf9)))
=
0 by
A20,
MATRPROB: 44;
hence thesis by
A18,
A19,
A1,
Th66;
end;
absolute
c= ((
homography N)
.:
absolute )
proof
let x be
object;
assume
A57: x
in
absolute ;
then x
in { P where P be
Point of (
ProjectiveSpace (
TOP-REAL 3)) : for u be
Element of (
TOP-REAL 3) st u is non
zero & P
= (
Dir u) holds (
qfconic (1,1,(
- 1),
0 ,
0 ,
0 ,u))
=
0 } by
PASCAL:def 2;
then
consider Q be
Point of (
ProjectiveSpace (
TOP-REAL 3)) such that
A58: x
= Q and for u be
Element of (
TOP-REAL 3) st u is non
zero & Q
= (
Dir u) holds (
qfconic (1,1,(
- 1),
0 ,
0 ,
0 ,u))
=
0 ;
reconsider P = ((
homography (N
~ ))
. Q) as
Element of (
ProjectiveSpace (
TOP-REAL 3));
A59: ((
homography N)
. P)
= x by
A58,
ANPROJ_9: 15;
consider u2,v2 be
Element of (
TOP-REAL 3), uf2 be
FinSequence of
F_Real , p2 be
FinSequence of (1
-tuples_on
REAL ) such that
A60: Q
= (
Dir u2) & not u2 is
zero & u2
= uf2 & p2
= ((N
~ )
* uf2) & v2
= (
M2F p2) & not v2 is
zero & ((
homography (N
~ ))
. Q)
= (
Dir v2) by
ANPROJ_8:def 4;
reconsider vf2 = v2 as
FinSequence of
REAL by
EUCLID: 24;
v2
in (
TOP-REAL 3);
then v2
in (
REAL 3) by
EUCLID: 22;
then (
len vf2)
= 3 by
EUCLID_8: 50;
then
A61: (
len vf2)
= (
len O1) & (
len vf2)
= (
width O1) & (
len vf2)
>
0 by
MATRIX_0: 24;
|(vf2, (O1
* vf2))|
=
0
proof
reconsider uf3 = uf2 as
FinSequence of
REAL ;
A62: (
len O1)
= 3 & (
width O1)
= 3 by
MATRIX_0: 24;
u2
in (
TOP-REAL 3);
then
A63: u2
in (
REAL 3) by
EUCLID: 22;
then
A64: (
len uf2)
= 3 by
A60,
EUCLID_8: 50;
A65: (
len uf3)
= (
len O1) by
A63,
A62,
A60,
EUCLID_8: 50;
A66: (
SumAll (
QuadraticForm (uf3,O1,uf3)))
=
0 by
A1,
A58,
A57,
A60,
Th66;
A67: (
len (O1
* uf3))
= (
len uf3) by
A62,
A65,
MATRIXR1: 61;
reconsider NR = N as
Matrix of 3,
REAL ;
reconsider NI = (N
~ ) as
Matrix of 3, 3,
REAL ;
A68: (N
~ )
is_reverse_of N by
MATRIX_6:def 4;
A69: (NI
* NR)
= ((N
~ )
* N) by
ANPROJ_8: 17
.= (
1. (
F_Real ,3)) by
A68,
MATRIX_6:def 2
.= (
MXF2MXR (
1. (
F_Real ,3))) by
MATRIXR1:def 2
.= (
1_Rmatrix 3) by
MATRIXR2:def 2;
A70: (NR
* NI)
= (N
* (N
~ )) by
ANPROJ_8: 17
.= (
1. (
F_Real ,3)) by
A68,
MATRIX_6:def 2
.= (
MXF2MXR (
1. (
F_Real ,3))) by
MATRIXR1:def 2
.= (
1_Rmatrix 3) by
MATRIXR2:def 2;
then NR is
invertible by
A69,
MATRIXR2:def 5;
then
A71: (
Inv NR)
= NI by
A69,
A70,
MATRIXR2:def 6;
reconsider ea = ra as
Element of
F_Real by
XREAL_0:def 1;
M
= (
symmetric_3 (ea,ea,(
- ea),
0 ,
0 ,
0 )) by
A2;
then
A72: M
= (ea
* O) by
A1,
Th48
.= (ea
* (
MXR2MXF O1)) by
MATRIXR1:def 1
.= (
MXF2MXR (ea
* (
MXR2MXF O1))) by
MATRIXR1:def 2
.= (ra
* O1) by
MATRIXR1:def 7;
((N
@ )
* O)
= ((NR
@ )
* O1) by
ANPROJ_8: 17;
then
A73: M
= (((NR
@ )
* O1)
* NR) by
A4,
ANPROJ_8: 17;
(
width ((NI
@ )
* O1))
= 3 by
MATRIXR2: 4;
then
A75: (
len uf3)
= (
width NI) & (
width ((NI
@ )
* O1))
= (
len NI) & (
len uf3)
>
0 & (
len NI)
>
0 by
A64,
MATRIX_0: 24;
(
width NI)
= (
len uf3) & (
len uf3)
>
0 & (
len NI)
= 3 by
A64,
MATRIX_0: 24;
then
A76: (
len (NI
* uf3))
= 3 & (
width O1)
= 3 & (
len O1)
= 3 & (
width (NI
@ ))
= 3 by
MATRIX_0: 24,
MATRIXR1: 61;
(
width NI)
= (
len uf3) & (
len uf3)
>
0 by
A64,
MATRIX_0: 24;
then (
len (NI
* uf3))
= (
len NI) by
MATRIXR1: 61
.= 3 by
MATRIX_0: 24;
then (
width O1)
= (
len (NI
* uf3)) & (
len (NI
* uf3))
>
0 by
MATRIX_0: 24;
then (
len (O1
* (NI
* uf3)))
= (
len O1) by
MATRIXR1: 61
.= 3 by
MATRIX_0: 24;
then
A77: (
len (O1
* (NI
* uf3)))
= (
len NI) & (
len uf3)
= (
width NI) & (
len uf3)
>
0 & (
len (O1
* (NI
* uf3)))
>
0 by
A64,
MATRIX_0: 24;
vf2
= (NI
* uf3)
proof
consider s1,s2,s3,s4,s5,s6,s7,s8,s9 be
Element of
F_Real such that
A78: (N
~ )
=
<*
<*s1, s2, s3*>,
<*s4, s5, s6*>,
<*s7, s8, s9*>*> by
PASCAL: 3;
consider t1,t2,t3 be
Real such that
A79: u2
=
<*t1, t2, t3*> by
EUCLID_5: 1;
reconsider et1 = t1, et2 = t2, et3 = t3 as
Element of
F_Real by
XREAL_0:def 1;
vf2
=
<*(((s1
* et1)
+ (s2
* et2))
+ (s3
* et3)), (((s4
* et1)
+ (s5
* et2))
+ (s6
* et3)), (((s7
* et1)
+ (s8
* et2))
+ (s9
* et3))*> by
A60,
A78,
A79,
PASCAL: 8;
hence thesis by
A78,
A79,
A60,
PASCAL: 9;
end;
then
|(vf2, (O1
* vf2))|
=
|(uf3, ((NI
@ )
* (O1
* (NI
* uf3))))| by
A77,
MATRPROB: 48
.=
|(uf3, (((NI
@ )
* O1)
* (NI
* uf3)))| by
A76,
MATRIXR2: 59
.=
|(uf3, ((((NI
@ )
* O1)
* NI)
* uf3))| by
A75,
MATRIXR2: 59
.=
|(uf3, (((1
/ ra)
* O1)
* uf3))| by
A73,
A69,
A70,
MATRIXR2:def 5,
A72,
Th53,
A71
.=
|(((1
/ ra)
* (O1
* uf3)), uf3)| by
A64,
Th51
.= ((1
/ ra)
*
|((O1
* uf3), uf3)|) by
A67,
RVSUM_1: 121
.= ((1
/ ra)
*
0 ) by
A66,
A62,
A65,
MATRPROB: 44
.=
0 ;
hence thesis;
end;
then (
SumAll (
QuadraticForm (vf2,O1,vf2)))
=
0 by
A61,
MATRPROB: 44;
then
A80: P
in
absolute by
A1,
A60,
Th66;
(
dom (
homography N))
= the
carrier of (
ProjectiveSpace (
TOP-REAL 3)) by
FUNCT_2:def 1;
hence thesis by
A59,
A80,
FUNCT_1:def 6;
end;
hence thesis by
A7;
end;