euclid13.miz
begin
reserve n for
Nat;
reserve i for
Integer;
reserve r,s,t for
Real;
reserve An,Bn,Cn,Dn for
Point of (
TOP-REAL n);
reserve L1,L2 for
Element of (
line_of_REAL n);
reserve A,B,C for
Point of (
TOP-REAL 2);
theorem ::
EUCLID13:1
Th1:
0
< (i
* r)
< r implies i
= 1
proof
assume
A1:
0
< (i
* r)
< r;
assume not i
= 1;
then
0
< (1
- i) or
0
< (i
- 1) by
XREAL_1: 55;
then (
0
+ i)
< ((1
- i)
+ i) or (
0
+ 1)
< ((i
- 1)
+ 1) by
XREAL_1: 8;
per cases ;
suppose i
< 1;
then i
<= (1
- 1) by
INT_1: 52;
hence contradiction by
A1;
end;
suppose i
> 1;
hence contradiction by
A1,
XREAL_1: 155;
end;
end;
theorem ::
EUCLID13:2
Th2: for i be
Integer st ((
- 3)
/ 2)
< i
< (1
/ 2) holds i
=
0 or i
= (
- 1)
proof
let i be
Integer;
assume
A1: ((
- 3)
/ 2)
< i
< (1
/ 2);
assume
A2: not (i
=
0 or i
= (
- 1));
(
- 2)
< i
< 1 by
A1,
XXREAL_0: 2;
then
A3: ((
- 2)
+ 1)
<= i & (i
+ 1)
<= 1 &
0
<= 1 by
INT_1: 7;
then
A4: (
- 1)
<= i & ((i
+ 1)
- 1)
<= (1
- 1) by
XREAL_1: 9;
consider k be
Nat such that
A5: i
= k or i
= (
- k) by
INT_1: 2;
per cases by
A5;
suppose i
= k;
hence contradiction by
A2,
A4;
end;
suppose
A6: i
= (
- k);
then ((
- k)
* (
- 1))
<= ((
- 1)
* (
- 1)) by
A3,
XREAL_1: 65;
then k
=
0 or ... or k
= 1;
hence contradiction by
A6,
A2;
end;
end;
theorem ::
EUCLID13:3
Th3: r is non
zero & s is non
zero & t is non
zero implies ((((
- r)
/ (
- s))
* ((
- t)
/ (
- r)))
* ((
- s)
/ (
- t)))
= 1
proof
assume that
A1: r is non
zero and
A2: s is non
zero and
A3: t is non
zero;
((((
- r)
/ (
- s))
* ((
- t)
/ (
- r)))
* ((
- s)
/ (
- t)))
= (((r
/ s)
* ((
- t)
/ (
- r)))
* ((
- s)
/ (
- t))) by
XCMPLX_1: 191
.= (((r
/ s)
* (t
/ r))
* ((
- s)
/ (
- t))) by
XCMPLX_1: 191
.= (((r
/ s)
* (t
/ r))
* (s
/ t)) by
XCMPLX_1: 191
.= (((((r
/ r)
* s)
/ s)
* t)
/ t)
.= ((((1
* s)
/ s)
* t)
/ t) by
A1,
XCMPLX_1: 60
.= (((1
* 1)
* t)
/ t) by
A2,
XCMPLX_1: 60
.= ((1
* 1)
* 1) by
A3,
XCMPLX_1: 60;
hence thesis;
end;
theorem ::
EUCLID13:4
Th4:
0
< r
< (2
*
PI ) implies (
sin (r
/ 2))
<>
0
proof
assume
A1:
0
< r
< (2
*
PI );
assume
A2: (
sin (r
/ 2))
=
0 ;
consider i0 be
Integer such that
A3: (r
/ 2)
= (
PI
* i0) by
A2,
BORSUK_7: 7;
A4: r
= ((2
* i0)
*
PI ) by
A3;
reconsider p = (2
*
PI ) as
Real;
0
< (i0
* p)
< p by
A1,
A4;
then i0
= 1 by
Th1;
hence thesis by
A1,
A3;
end;
theorem ::
EUCLID13:5
Th5: (
- (2
*
PI ))
< r
<
0 implies (
sin (r
/ 2))
<>
0
proof
assume
A1: (
- (2
*
PI ))
< r
<
0 ;
assume
A2: (
sin (r
/ 2))
=
0 ;
(
0
* (
- 1))
< (r
* (
- 1)) & (r
* (
- 1))
< ((
- (2
*
PI ))
* (
- 1)) by
A1,
XREAL_1: 69;
then
A3: (
sin ((
- r)
/ 2))
<>
0 by
Th4;
reconsider r0 = (r
/ 2) as
Real;
(
sin (
- r0))
= (
- (
sin r0)) by
SIN_COS: 31;
hence contradiction by
A2,
A3;
end;
theorem ::
EUCLID13:6
Th6: (
tan ((2
*
PI )
- r))
= (
- (
tan r))
proof
(
tan ((2
*
PI )
- r))
= ((
- (
sin r))
/ (
cos ((2
*
PI )
- r))) by
EUCLID10: 3
.= (
- ((
sin r)
/ (
cos ((2
*
PI )
- r))))
.= (
- (
tan r)) by
EUCLID10: 4;
hence thesis;
end;
theorem ::
EUCLID13:7
Th7: An
in (
Line (Bn,Cn)) & An
<> Cn implies (
Line (Bn,Cn))
= (
Line (An,Cn))
proof
assume that
A1: An
in (
Line (Bn,Cn)) and
A2: An
<> Cn;
Cn
in (
Line (Bn,Cn)) & An
in (
Line (Bn,Cn)) by
A1,
EUCLID_4: 41;
hence thesis by
A2,
EUCLID_4: 43,
EUCLID_4: 42;
end;
theorem ::
EUCLID13:8
Th8: An
<> Cn & An
in (
Line (Bn,Cn)) implies Bn
in (
Line (An,Cn))
proof
assume that
A1: An
<> Cn and
A2: An
in (
Line (Bn,Cn));
Cn
in (
Line (Bn,Cn)) by
EUCLID_4: 41;
then (
Line (Bn,Cn))
c= (
Line (An,Cn)) by
A1,
A2,
EUCLID_4: 43;
hence thesis by
EUCLID_4: 41;
end;
theorem ::
EUCLID13:9
Th9: An
<> Bn & An
<> Cn &
|((An
- Bn), (An
- Cn))|
=
0 & L1
= (
Line (An,Bn)) & L2
= (
Line (An,Cn)) implies L1
_|_ L2
proof
assume that
A1: An
<> Bn and
A2: An
<> Cn and
A3:
|((An
- Bn), (An
- Cn))|
=
0 and
A4: L1
= (
Line (An,Bn)) and
A5: L2
= (
Line (An,Cn));
reconsider rA = An, rB = Bn, rC = Cn as
Element of (
REAL n) by
EUCLID: 22;
A6: L1
= (
Line (rA,rB)) by
A4,
EUCLID12: 4;
A7: L2
= (
Line (rA,rC)) by
A5,
EUCLID12: 4;
A8: (rA
- rB)
<> (
0* n) by
A1,
EUCLIDLP: 9;
A9: (rA
- rC)
<> (
0* n) by
A2,
EUCLIDLP: 9;
(rA
- rB)
_|_ (rA
- rC) by
A8,
A9,
EUCLIDLP:def 3,
A3,
RVSUM_1:def 17;
hence thesis by
A6,
A7,
EUCLIDLP:def 8;
end;
theorem ::
EUCLID13:10
Bn
<> Cn &
|((Bn
- An), (Bn
- Cn))|
=
0 implies An
<> Cn
proof
assume that
A1: Bn
<> Cn and
A2:
|((Bn
- An), (Bn
- Cn))|
=
0 ;
assume
A3: An
= Cn;
reconsider rB = Bn, rC = Cn as
Element of (
REAL n) by
EUCLID: 22;
(rB
- rC)
= (
0* n) by
A2,
A3,
EUCLID_4: 17;
hence contradiction by
A1,
EUCLIDLP: 9;
end;
theorem ::
EUCLID13:11
Th10:
|((An
- Bn), (An
- Cn))|
=
|((Bn
- An), (Cn
- An))|
proof
A1:
|((An
- Bn), (An
- Cn))|
=
|((
- (An
- Bn)), (
- (An
- Cn)))| by
EUCLID_2: 23;
(
- (An
- Bn))
= (Bn
- An) & (
- (Cn
- An))
= (An
- Cn) by
RVSUM_1: 35;
hence thesis by
A1;
end;
theorem ::
EUCLID13:12
Th11: Bn
<> Cn & r
= (
- ((((
|(Bn, Cn)|
-
|(Cn, Cn)|)
-
|(An, Bn)|)
+
|(An, Cn)|)
/
|((Bn
- Cn), (Bn
- Cn))|)) & Dn
= ((r
* Bn)
+ ((1
- r)
* Cn)) implies
|((Dn
- An), (Dn
- Cn))|
=
0
proof
assume that
A1: Bn
<> Cn and
A2: r
= (
- ((((
|(Bn, Cn)|
-
|(Cn, Cn)|)
-
|(An, Bn)|)
+
|(An, Cn)|)
/
|((Bn
- Cn), (Bn
- Cn))|)) and
A3: Dn
= ((r
* Bn)
+ ((1
- r)
* Cn));
reconsider rA = An, rB = Bn, rC = Cn, rD = Dn as
Element of (
REAL n) by
EUCLID: 22;
reconsider rrB = (r
* rB), rrC = ((1
- r)
* rC) as
Element of (
REAL n);
A4:
|(rrB, rrB)|
= (r
*
|(rB, rrB)|) by
EUCLID_4: 21
.= (r
* (r
*
|(rB, rB)|)) by
EUCLID_4: 22
.= ((r
* r)
*
|(rB, rB)|);
A5:
|(rrB, rrC)|
= (r
*
|(rB, rrC)|) by
EUCLID_4: 21
.= (r
* ((1
- r)
*
|(rB, rC)|)) by
EUCLID_4: 22
.= ((r
* (1
- r))
*
|(rB, rC)|);
A6:
|(rrC, rrC)|
= ((1
- r)
*
|(rC, rrC)|) by
EUCLID_4: 21
.= ((1
- r)
* ((1
- r)
*
|(rC, rC)|)) by
EUCLID_4: 22
.= (((1
- r)
* (1
- r))
*
|(rC, rC)|);
A7:
|(rD, rD)|
= ((
|(rrB, rrB)|
+ (2
*
|(rrB, rrC)|))
+
|(rrC, rrC)|) by
A3,
RVSUM_1: 138
.= ((((r
* r)
*
|(rB, rB)|)
+ (((2
* r)
* (1
- r))
*
|(rB, rC)|))
+ (((1
- r)
* (1
- r))
*
|(rC, rC)|)) by
A4,
A5,
A6;
A8:
|(rD, rC)|
= (
|(rrB, rC)|
+
|(rrC, rC)|) by
A3,
EUCLID_4: 20
.= ((r
*
|(rB, rC)|)
+
|(rrC, rC)|) by
EUCLID_4: 21
.= ((r
*
|(rB, rC)|)
+ ((1
- r)
*
|(rC, rC)|)) by
EUCLID_4: 21;
A9:
|(rA, rD)|
= (
|(rA, rrB)|
+
|(rA, rrC)|) by
A3,
EUCLID_4: 28
.= ((r
*
|(rA, rB)|)
+
|(rA, rrC)|) by
EUCLID_4: 22
.= ((r
*
|(rA, rB)|)
+ ((1
- r)
*
|(rA, rC)|)) by
EUCLID_4: 22;
A10: ((
|(rB, rB)|
- (2
*
|(rB, rC)|))
+
|(rC, rC)|)
=
|((rB
- rC), (rB
- rC))| by
RVSUM_1: 139;
A11: (rB
- rC)
<> (
0* n) by
A1,
EUCLIDLP: 9;
A12: (((((r
*
|((rB
- rC), (rB
- rC))|)
+
|(rB, rC)|)
-
|(rC, rC)|)
-
|(rA, rB)|)
+
|(rA, rC)|)
= (((((
- (((((
|(rB, rC)|
-
|(rC, rC)|)
-
|(rA, rB)|)
+
|(rA, rC)|)
/
|((rB
- rC), (rB
- rC))|)
*
|((rB
- rC), (rB
- rC))|))
+
|(rB, rC)|)
-
|(rC, rC)|)
-
|(rA, rB)|)
+
|(rA, rC)|) by
A2
.= (((((
- (((
|(rB, rC)|
-
|(rC, rC)|)
-
|(rA, rB)|)
+
|(rA, rC)|))
+
|(rB, rC)|)
-
|(rC, rC)|)
-
|(rA, rB)|)
+
|(rA, rC)|) by
A11,
EUCLID_4: 17,
XCMPLX_1: 87
.=
0 ;
|((rD
- rA), (rD
- rC))|
= ((((((((r
* r)
*
|(rB, rB)|)
+ ((2
* r)
*
|(rB, rC)|))
- (((2
* r)
* r)
*
|(rB, rC)|))
+ ((
|(rC, rC)|
- ((2
* r)
*
|(rC, rC)|))
+ ((r
* r)
*
|(rC, rC)|)))
- ((r
*
|(rB, rC)|)
+ ((1
- r)
*
|(rC, rC)|)))
- ((r
*
|(rA, rB)|)
+ ((1
- r)
*
|(rA, rC)|)))
+
|(rA, rC)|) by
A9,
A7,
A8,
RVSUM_1: 137
.= (r
* (((((((r
*
|(rB, rB)|)
+
|(rB, rC)|)
- ((2
* r)
*
|(rB, rC)|))
+ (r
*
|(rC, rC)|))
-
|(rC, rC)|)
-
|(rA, rB)|)
+
|(rA, rC)|))
.=
0 by
A10,
A12;
hence thesis;
end;
theorem ::
EUCLID13:13
Th12: An
<> Bn & Cn
= ((r
* An)
+ ((1
- r)
* Bn)) & Cn
= Bn implies r
=
0
proof
assume that
A1: An
<> Bn and
A2: Cn
= ((r
* An)
+ ((1
- r)
* Bn)) and
A3: Cn
= Bn;
reconsider rA = An, rB = Bn, rC = Cn as
Element of (
REAL n) by
EUCLID: 22;
rC
= ((r
* rA)
+ ((1
* rB)
- (r
* rB))) by
A2,
EUCLIDLP: 11
.= (((r
* rA)
+ (
- (r
* rB)))
+ (1
* rB)) by
RVSUM_1: 15
.= (((r
* rA)
- (r
* rB))
+ (1
* rB));
then ((
0* n)
+ rB)
= (((r
* rA)
- (r
* rB))
+ (1
* rB)) by
A3,
EUCLID_4: 1
.= (((r
* rA)
- (r
* rB))
+ rB) by
EUCLID_4: 3;
then (
0* n)
= ((r
* rA)
- (r
* rB)) by
RVSUM_1: 25;
then (r
* (rA
- rB))
= (
0* n) by
EUCLIDLP: 12;
then r
=
0 or (rA
- rB)
= (
0* n) by
EUCLID_4: 5;
hence thesis by
A1,
EUCLIDLP: 9;
end;
theorem ::
EUCLID13:14
Th13: (((
|(Bn, Cn)|
-
|(Cn, Cn)|)
-
|(An, Bn)|)
+
|(An, Cn)|)
=
|((Cn
- An), (Bn
- Cn))| & (
|((Bn
- Cn), (Bn
- Cn))|
+
|((Cn
- An), (Bn
- Cn))|)
=
|((Bn
- Cn), (Bn
- An))|
proof
reconsider rA = An, rB = Bn, rC = Cn as
Element of (
REAL n) by
EUCLID: 22;
((rB
- rC)
+ (rC
- rA))
= (((rB
- rC)
+ rC)
- rA) by
RVSUM_1: 40
.= (rB
- rA) by
RVSUM_1: 43;
hence thesis by
EUCLID_4: 28,
EUCLID_4: 31;
end;
theorem ::
EUCLID13:15
Th14:
|((An
- Bn), (An
- Cn))|
= (
-
|((An
- Bn), (Cn
- An))|)
proof
reconsider rA = An, rB = Bn, rC = Cn as
Element of (
REAL n) by
EUCLID: 22;
|((rA
- rB), (rA
- rC))|
=
|((rA
- rB), (
- (rC
- rA)))| by
RVSUM_1: 35
.= (
-
|((rA
- rB), (rC
- rA))|) by
EUCLID_4: 24;
hence thesis;
end;
theorem ::
EUCLID13:16
Th15:
|((Bn
- An), (Cn
- An))|
=
|((An
- Bn), (An
- Cn))|
proof
reconsider rA = An, rB = Bn, rC = Cn as
Element of (
REAL n) by
EUCLID: 22;
|((rB
- rA), (rC
- rA))|
=
|((
- (rA
- rB)), (rC
- rA))| by
RVSUM_1: 35
.=
|((
- (rA
- rB)), (
- (rA
- rC)))| by
RVSUM_1: 35
.=
|((rA
- rB), (rA
- rC))| by
EUCLID_4: 25;
hence thesis;
end;
theorem ::
EUCLID13:17
Th16:
|((Bn
- An), (Cn
- An))|
= (
-
|((Bn
- An), (An
- Cn))|)
proof
|((Bn
- An), (Cn
- An))|
=
|((An
- Bn), (An
- Cn))| by
Th15;
hence thesis by
Th14;
end;
theorem ::
EUCLID13:18
Th17: Bn
<> Cn & Cn
<> An & An
<> Bn &
|((Cn
- An), (Bn
- Cn))| is non
zero &
|((Bn
- Cn), (An
- Bn))| is non
zero &
|((Cn
- An), (An
- Bn))| is non
zero & r
= (
- ((((
|(Bn, Cn)|
-
|(Cn, Cn)|)
-
|(An, Bn)|)
+
|(An, Cn)|)
/
|((Bn
- Cn), (Bn
- Cn))|)) & s
= (
- ((((
|(Cn, An)|
-
|(An, An)|)
-
|(Bn, Cn)|)
+
|(Bn, An)|)
/
|((Cn
- An), (Cn
- An))|)) & t
= (
- ((((
|(An, Bn)|
-
|(Bn, Bn)|)
-
|(Cn, An)|)
+
|(Cn, Bn)|)
/
|((An
- Bn), (An
- Bn))|)) implies (((((r
/ (1
- r))
* s)
/ (1
- s))
* t)
/ (1
- t))
= 1
proof
assume that
A1: Bn
<> Cn and
A2: Cn
<> An and
A3: An
<> Bn and
A4:
|((Cn
- An), (Bn
- Cn))| is non
zero &
|((Bn
- Cn), (An
- Bn))| is non
zero &
|((Cn
- An), (An
- Bn))| is non
zero and
A5: r
= (
- ((((
|(Bn, Cn)|
-
|(Cn, Cn)|)
-
|(An, Bn)|)
+
|(An, Cn)|)
/
|((Bn
- Cn), (Bn
- Cn))|)) and
A6: s
= (
- ((((
|(Cn, An)|
-
|(An, An)|)
-
|(Bn, Cn)|)
+
|(Bn, An)|)
/
|((Cn
- An), (Cn
- An))|)) and
A7: t
= (
- ((((
|(An, Bn)|
-
|(Bn, Bn)|)
-
|(Cn, An)|)
+
|(Cn, Bn)|)
/
|((An
- Bn), (An
- Bn))|));
reconsider rA = An, rB = Bn, rC = Cn as
Element of (
REAL n) by
EUCLID: 22;
A8: (rB
- rC)
<> (
0* n) by
A1,
EUCLIDLP: 9;
A9: (rC
- rA)
<> (
0* n) by
A2,
EUCLIDLP: 9;
A10: (rA
- rB)
<> (
0* n) by
A3,
EUCLIDLP: 9;
set rBC =
|((Bn
- Cn), (Bn
- Cn))|, rCA =
|((Cn
- An), (Cn
- An))|, rAB =
|((An
- Bn), (An
- Bn))|, A = An, B = Bn, C = Cn;
A11: (r
* rBC)
= (
- (((((
|(B, C)|
-
|(C, C)|)
-
|(A, B)|)
+
|(A, C)|)
/ rBC)
* rBC)) by
A5
.= (
- (((
|(B, C)|
-
|(C, C)|)
-
|(A, B)|)
+
|(A, C)|)) by
A8,
EUCLID_4: 17,
XCMPLX_1: 87;
(r
/ (1
- r))
= (((r
/ (1
- r))
* rBC)
/ rBC) by
A8,
EUCLID_4: 17,
XCMPLX_1: 89
.= (((r
* rBC)
/ (1
- r))
/ rBC)
.= ((r
* rBC)
/ ((1
- r)
* rBC)) by
XCMPLX_1: 78
.= ((
- (((
|(B, C)|
-
|(C, C)|)
-
|(A, B)|)
+
|(A, C)|))
/ ((((
|((B
- C), (B
- C))|
+
|(B, C)|)
-
|(C, C)|)
-
|(A, B)|)
+
|(A, C)|)) by
A11;
then
A12: (r
/ (1
- r))
= ((
-
|((C
- A), (B
- C))|)
/ (
|((B
- C), (B
- C))|
+ (((
|(B, C)|
-
|(C, C)|)
-
|(A, B)|)
+
|(A, C)|))) by
Th13
.= ((
-
|((C
- A), (B
- C))|)
/ (
|((B
- C), (B
- C))|
+
|((C
- A), (B
- C))|)) by
Th13
.= ((
-
|((C
- A), (B
- C))|)
/
|((B
- C), (B
- A))|) by
Th13;
A13: (s
* rCA)
= (
- (((((
|(C, A)|
-
|(A, A)|)
-
|(B, C)|)
+
|(B, A)|)
/ rCA)
* rCA)) by
A6
.= (
- (((
|(C, A)|
-
|(A, A)|)
-
|(B, C)|)
+
|(B, A)|)) by
A9,
EUCLID_4: 17,
XCMPLX_1: 87;
(s
/ (1
- s))
= (((s
/ (1
- s))
* rCA)
/ rCA) by
A9,
EUCLID_4: 17,
XCMPLX_1: 89
.= (((s
* rCA)
/ (1
- s))
/ rCA)
.= ((s
* rCA)
/ ((1
- s)
* rCA)) by
XCMPLX_1: 78
.= ((
- (((
|(C, A)|
-
|(A, A)|)
-
|(B, C)|)
+
|(B, A)|))
/ (
|((C
- A), (C
- A))|
+ (((
|(C, A)|
-
|(A, A)|)
-
|(B, C)|)
+
|(B, A)|))) by
A13;
then
A14: (s
/ (1
- s))
= ((
-
|((C
- A), (A
- B))|)
/ (
|((C
- A), (C
- A))|
+ (((
|(C, A)|
-
|(A, A)|)
-
|(B, C)|)
+
|(B, A)|))) by
Th13
.= ((
-
|((C
- A), (A
- B))|)
/ (
|((C
- A), (C
- A))|
+
|((C
- A), (A
- B))|)) by
Th13
.= ((
-
|((C
- A), (A
- B))|)
/
|((C
- A), (C
- B))|) by
Th13;
A15: (t
* rAB)
= (
- (((((
|(A, B)|
-
|(B, B)|)
-
|(C, A)|)
+
|(C, B)|)
/ rAB)
* rAB)) by
A7
.= (
- (((
|(A, B)|
-
|(B, B)|)
-
|(C, A)|)
+
|(C, B)|)) by
A10,
EUCLID_4: 17,
XCMPLX_1: 87;
(t
/ (1
- t))
= (((t
/ (1
- t))
* rAB)
/ rAB) by
A10,
EUCLID_4: 17,
XCMPLX_1: 89
.= (((t
* rAB)
/ (1
- t))
/ rAB)
.= ((t
* rAB)
/ ((1
- t)
* rAB)) by
XCMPLX_1: 78
.= ((
- (((
|(A, B)|
-
|(B, B)|)
-
|(C, A)|)
+
|(C, B)|))
/ (
|((A
- B), (A
- B))|
+ (((
|(A, B)|
-
|(B, B)|)
-
|(C, A)|)
+
|(C, B)|))) by
A15;
then
A16: (t
/ (1
- t))
= ((
-
|((A
- B), (B
- C))|)
/ (
|((A
- B), (A
- B))|
+ (((
|(A, B)|
-
|(B, B)|)
-
|(C, A)|)
+
|(C, B)|))) by
Th13
.= ((
-
|((A
- B), (B
- C))|)
/ (
|((A
- B), (A
- B))|
+
|((A
- B), (B
- C))|)) by
Th13
.= ((
-
|((A
- B), (B
- C))|)
/
|((A
- B), (A
- C))|) by
Th13;
(((((r
/ (1
- r))
* s)
/ (1
- s))
* t)
/ (1
- t))
= ((((
-
|((C
- A), (B
- C))|)
/
|((B
- C), (B
- A))|)
* ((
-
|((C
- A), (A
- B))|)
/
|((C
- A), (C
- B))|))
* ((
-
|((A
- B), (B
- C))|)
/
|((A
- B), (A
- C))|)) by
A12,
A14,
A16
.= ((((
-
|((C
- A), (B
- C))|)
/ (
-
|((B
- C), (A
- B))|))
* ((
-
|((C
- A), (A
- B))|)
/
|((C
- A), (C
- B))|))
* ((
-
|((A
- B), (B
- C))|)
/
|((A
- B), (A
- C))|)) by
Th14
.= ((((
-
|((C
- A), (B
- C))|)
/ (
-
|((B
- C), (A
- B))|))
* ((
-
|((C
- A), (A
- B))|)
/ (
-
|((C
- A), (B
- C))|)))
* ((
-
|((A
- B), (B
- C))|)
/
|((A
- B), (A
- C))|)) by
Th14
.= ((((
-
|((C
- A), (B
- C))|)
/ (
-
|((B
- C), (A
- B))|))
* ((
-
|((C
- A), (A
- B))|)
/ (
-
|((C
- A), (B
- C))|)))
* ((
-
|((B
- C), (A
- B))|)
/ (
-
|((C
- A), (A
- B))|))) by
Th14
.= 1 by
A4,
Th3;
hence thesis;
end;
theorem ::
EUCLID13:19
Cn
= ((r
* An)
+ ((1
- r)
* Bn)) & r
= 1 implies Cn
= An
proof
assume that
A1: Cn
= ((r
* An)
+ ((1
- r)
* Bn)) and
A2: r
= 1;
reconsider rA = An, rB = Bn, rC = Cn as
Element of (
REAL n) by
EUCLID: 22;
rC
= (rA
+ (
0
* rB)) by
A1,
A2,
EUCLID_4: 3;
then rC
= (rA
+ (
0* n)) by
EUCLID_4: 3;
hence thesis by
EUCLID_4: 1;
end;
theorem ::
EUCLID13:20
Cn
= ((r
* An)
+ ((1
- r)
* Bn)) & r
=
0 implies Cn
= Bn
proof
assume that
A1: Cn
= ((r
* An)
+ ((1
- r)
* Bn)) and
A2: r
=
0 ;
reconsider rA = An, rB = Bn, rC = Cn as
Element of (
REAL n) by
EUCLID: 22;
rC
= ((
0
* rA)
+ ((1
-
0 )
* rB)) by
A1,
A2;
then rC
= ((
0* n)
+ (1
* rB)) by
EUCLID_4: 3;
then rC
= (1
* rB) by
EUCLID_4: 1;
hence thesis by
EUCLID_4: 3;
end;
theorem ::
EUCLID13:21
Th18:
|((Bn
- Cn), (Bn
- Cn))|
= (
-
|((Cn
- An), (Bn
- Cn))|) implies
|((Bn
- Cn), (An
- Bn))|
=
0
proof
assume
A1:
|((Bn
- Cn), (Bn
- Cn))|
= (
-
|((Cn
- An), (Bn
- Cn))|);
reconsider rA = An, rB = Bn, rC = Cn as
Element of (
REAL n) by
EUCLID: 22;
(
|((rB
- rC), (rB
- rC))|
+
|((rB
- rC), (rC
- rA))|)
=
0 by
A1;
then
|((rB
- rC), ((rB
- rC)
+ (rC
- rA)))|
=
0 by
EUCLID_4: 28;
then
|((rB
- rC), (((rB
- rC)
+ rC)
- rA))|
=
0 by
RVSUM_1: 40;
then
|((Bn
- Cn), (Bn
- An))|
=
0 by
RVSUM_1: 43;
then (
-
|((Bn
- Cn), (An
- Bn))|)
=
0 by
Th14;
hence thesis;
end;
theorem ::
EUCLID13:22
Th19: Bn
<> Cn & r
= (
- ((((
|(Bn, Cn)|
-
|(Cn, Cn)|)
-
|(An, Bn)|)
+
|(An, Cn)|)
/
|((Bn
- Cn), (Bn
- Cn))|)) & r
= 1 implies
|((Bn
- Cn), (An
- Bn))|
=
0
proof
assume that
A1: Bn
<> Cn and
A2: r
= (
- ((((
|(Bn, Cn)|
-
|(Cn, Cn)|)
-
|(An, Bn)|)
+
|(An, Cn)|)
/
|((Bn
- Cn), (Bn
- Cn))|)) and
A3: r
= 1;
set A = An, B = Bn, C = Cn;
reconsider rB = B, rC = C as
Element of (
REAL n) by
EUCLID: 22;
A4: (rB
- rC)
<> (
0* n) by
A1,
EUCLIDLP: 9;
(1
*
|((B
- C), (B
- C))|)
= ((
- (
|((C
- A), (B
- C))|
/
|((B
- C), (B
- C))|))
*
|((B
- C), (B
- C))|) by
A3,
A2,
Th13;
then
|((B
- C), (B
- C))|
= (
- ((
|((C
- A), (B
- C))|
/
|((B
- C), (B
- C))|)
*
|((B
- C), (B
- C))|));
then
|((B
- C), (B
- C))|
= (
-
|((C
- A), (B
- C))|) by
A4,
EUCLID_4: 17,
XCMPLX_1: 87;
hence thesis by
Th18;
end;
theorem ::
EUCLID13:23
A
<> B & A
<> C implies (
|.(A
- B).|
+
|.(A
- C).|)
<>
0
proof
assume A
<> B & A
<> C;
then
|.(A
- B).|
<>
0 &
|.(A
- C).|
<>
0 by
EUCLID_6: 42;
hence thesis;
end;
theorem ::
EUCLID13:24
Th20: (A,B,C)
is_a_triangle implies not A
in (
Line (B,C))
proof
assume
A1: (A,B,C)
is_a_triangle ;
then
A2: (A,B,C)
are_mutually_distinct by
EUCLID_6: 20;
assume A
in (
Line (B,C));
hence thesis by
A1,
A2,
MENELAUS: 13;
end;
theorem ::
EUCLID13:25
A
<> B & B
<> C &
|((B
- A), (B
- C))|
=
0 implies (
angle (A,B,C))
= (
PI
/ 2) or (
angle (A,B,C))
= ((3
/ 2)
*
PI )
proof
assume that
A1: A
<> B and
A2: B
<> C and
A3:
|((B
- A), (B
- C))|
=
0 ;
|((A
- B), (C
- B))|
=
|((
- (A
- B)), (
- (C
- B)))| by
EUCLID_2: 23
.=
|((B
- A), (
- (C
- B)))| by
RVSUM_1: 35
.=
0 by
A3,
RVSUM_1: 35;
hence thesis by
A1,
A2,
EUCLID_3: 45;
end;
theorem ::
EUCLID13:26
Th21: (A,B,C)
is_a_triangle implies (
sin ((
angle (A,B,C))
/ 2))
>
0
proof
assume
A1: (A,B,C)
is_a_triangle ;
0
<= (
angle (A,B,C))
< (2
*
PI ) by
EUCLID11: 2;
then
0
< (
angle (A,B,C))
< (2
*
PI ) by
A1,
EUCLID10: 30;
then (
0
/ 2)
< ((
angle (A,B,C))
/ 2)
< ((2
*
PI )
/ 2) by
XREAL_1: 74;
then ((2
*
PI )
*
0 )
< ((
angle (A,B,C))
/ 2)
< (
PI
+ ((2
*
PI )
*
0 ));
hence thesis by
SIN_COS6: 11;
end;
theorem ::
EUCLID13:27
(
angle (B,A,C))
<> (
angle (C,B,A)) implies (
sin (((
angle (B,A,C))
- (
angle (C,B,A)))
/ 2))
<>
0
proof
assume
A1: (
angle (B,A,C))
<> (
angle (C,B,A));
assume
A2: (
sin (((
angle (B,A,C))
- (
angle (C,B,A)))
/ 2))
=
0 ;
then
consider i0 be
Integer such that
A3: (((
angle (B,A,C))
- (
angle (C,B,A)))
/ 2)
= (
PI
* i0) by
BORSUK_7: 7;
set a = ((
angle (B,A,C))
- (
angle (C,B,A)));
A4:
0
<= (
angle (B,A,C))
< (2
*
PI ) &
0
<= (
angle (C,B,A))
< (2
*
PI ) by
EUCLID11: 2;
A5: (
0
- (2
*
PI ))
< (
0
- (
angle (C,B,A))) by
EUCLID11: 2,
XREAL_1: 10;
per cases ;
suppose i0
=
0 ;
hence contradiction by
A3,
A1;
end;
suppose
A6: i0
<
0 ;
PI
in
].
0 , 4.[ by
SIN_COS:def 28;
then
0
<
PI by
XXREAL_1: 4;
then
A7: a
<
0 by
A3,
A6;
(
- (2
*
PI ))
< a by
A5,
EUCLID11: 2,
XREAL_1: 8;
hence contradiction by
A2,
A7,
Th5;
end;
suppose
A8: i0
>
0 ;
0
< a
< (2
*
PI )
proof
thus
0
< a by
A3,
A8,
COMPTRIG: 5;
((
angle (B,A,C))
- (
angle (C,B,A)))
< ((2
*
PI )
-
0 ) by
A4,
XREAL_1: 14;
hence a
< (2
*
PI );
end;
hence contradiction by
A2,
Th4;
end;
end;
theorem ::
EUCLID13:28
Th22: (A,B,C)
is_a_triangle implies (
sin (
angle (A,B,C)))
<>
0
proof
assume
A1: (A,B,C)
is_a_triangle ;
assume
A2: (
sin (
angle (A,B,C)))
=
0 ;
(
the_area_of_polygon3 (C,B,A))
= (((
|.(C
- B).|
*
|.(A
- B).|)
* (
sin (
angle (A,B,C))))
/ 2) by
EUCLID_6: 5
.=
0 by
A2;
then not (C,B,A)
is_a_triangle by
MENELAUS: 9;
hence thesis by
A1,
MENELAUS: 15;
end;
theorem ::
EUCLID13:29
Th23: (A,C,B)
is_a_triangle & (
angle (A,C,B))
<
PI implies (
angle (A,C,B))
= (
PI
- ((
angle (C,B,A))
+ (
angle (B,A,C))))
proof
assume that
A1: (A,C,B)
is_a_triangle and
A2: (
angle (A,C,B))
<
PI ;
(A,C,B)
are_mutually_distinct by
A1,
EUCLID_6: 20;
then (((
angle (A,C,B))
+ (
angle (C,B,A)))
+ (
angle (B,A,C)))
=
PI by
A2,
EUCLID_3: 47;
hence thesis;
end;
theorem ::
EUCLID13:30
Th24: (A,C,B)
is_a_triangle & (
angle (A,C,B))
<
PI implies ((
angle (B,A,C))
+ (
angle (C,B,A)))
= (
PI
- (
angle (A,C,B)))
proof
assume (A,C,B)
is_a_triangle & (
angle (A,C,B))
<
PI ;
then (
angle (A,C,B))
= (
PI
- ((
angle (C,B,A))
+ (
angle (B,A,C)))) by
Th23;
hence thesis;
end;
theorem ::
EUCLID13:31
Th25: (A,B,C)
is_a_triangle implies ((
angle (B,A,C))
- (
angle (C,B,A)))
<>
PI
proof
assume
A1: (A,B,C)
is_a_triangle ;
then (B,A,C)
is_a_triangle by
MENELAUS: 15;
then
A1A: (B,A,C)
are_mutually_distinct by
EUCLID_6: 20;
assume
A2: ((
angle (B,A,C))
- (
angle (C,B,A)))
=
PI ;
per cases by
EUCLID11: 3;
suppose
A3:
0
<= (
angle (B,A,C))
<
PI ;
((
angle (B,A,C))
-
PI )
= (
angle (C,B,A)) by
A2;
hence contradiction by
A3,
XREAL_1: 49,
EUCLID11: 2;
end;
suppose (
angle (B,A,C))
=
PI ;
then (
angle (C,B,A))
=
0 by
A2;
hence contradiction by
A1,
EUCLID10: 30;
end;
suppose
A4:
PI
< (
angle (B,A,C))
< (2
*
PI );
then ((
angle (B,A,C))
-
PI )
< ((2
*
PI )
-
PI ) by
XREAL_1: 14;
hence contradiction by
A1A,
A2,
A4,
EUCLID11: 8;
end;
end;
theorem ::
EUCLID13:32
Th26: (A,B,C)
is_a_triangle implies ((
angle (B,A,C))
- (
angle (C,B,A)))
<> (
-
PI )
proof
assume
A1: (A,B,C)
is_a_triangle ;
then (B,A,C)
is_a_triangle by
MENELAUS: 15;
then
A2: (B,A,C)
are_mutually_distinct by
EUCLID_6: 20;
assume
A3: ((
angle (B,A,C))
- (
angle (C,B,A)))
= (
-
PI );
per cases by
EUCLID11: 3;
suppose
0
<= (
angle (B,A,C))
<
PI ;
then
A4:
0
< (
angle (B,A,C))
<
PI by
A1,
EUCLID10: 30;
then (
0
+
PI )
< ((
angle (B,A,C))
+
PI ) by
XREAL_1: 8;
hence contradiction by
A3,
A4,
A2,
EUCLID11: 5;
end;
suppose (
angle (B,A,C))
=
PI ;
hence contradiction by
A3,
EUCLID11: 2;
end;
suppose
PI
< (
angle (B,A,C))
< (2
*
PI );
then (
PI
+
PI )
< ((
angle (B,A,C))
+
PI ) by
XREAL_1: 8;
hence contradiction by
A3,
EUCLID11: 2;
end;
end;
theorem ::
EUCLID13:33
Th27: (A,B,C)
is_a_triangle implies ((
- 2)
*
PI )
< ((
angle (B,A,C))
- (
angle (C,B,A)))
< (2
*
PI )
proof
assume
A1: (A,B,C)
is_a_triangle ;
A2:
0
<= (
angle (B,A,C))
< (2
*
PI ) &
0
<= (
angle (C,B,A))
< (2
*
PI ) by
EUCLID11: 2;
then
A3:
0
< (
angle (B,A,C))
< (2
*
PI ) &
0
< (
angle (C,B,A))
< (2
*
PI ) by
A1,
EUCLID10: 30;
(
0
- (2
*
PI ))
< ((
angle (B,A,C))
- (
angle (C,B,A))) by
A3,
XREAL_1: 14;
hence ((
- 2)
*
PI )
< ((
angle (B,A,C))
- (
angle (C,B,A)));
((
angle (B,A,C))
- (
angle (C,B,A)))
< ((2
*
PI )
-
0 ) by
A2,
XREAL_1: 14;
hence thesis;
end;
theorem ::
EUCLID13:34
(A,B,C)
is_a_triangle implies (
-
PI )
< (((
angle (B,A,C))
- (
angle (C,B,A)))
/ 2)
<
PI
proof
assume (A,B,C)
is_a_triangle ;
then ((
- 2)
*
PI )
< ((
angle (B,A,C))
- (
angle (C,B,A)))
< (2
*
PI ) by
Th27;
then (((
- 2)
*
PI )
/ 2)
< (((
angle (B,A,C))
- (
angle (C,B,A)))
/ 2)
< ((2
*
PI )
/ 2) by
XREAL_1: 74;
hence thesis;
end;
theorem ::
EUCLID13:35
Th28: (A,B,C)
is_a_triangle & (
angle (B,A,C))
<
PI implies (
-
PI )
< ((
angle (B,A,C))
- (
angle (C,B,A)))
<
PI
proof
assume that
A1: (A,B,C)
is_a_triangle and
A2: (
angle (B,A,C))
<
PI ;
(B,A,C)
is_a_triangle by
A1,
MENELAUS: 15;
then
A3: (B,A,C)
are_mutually_distinct by
EUCLID_6: 20;
A4:
0
<= (
angle (B,A,C)) & (
angle (B,A,C)) is non
zero by
A1,
EUCLID10: 30,
EUCLID11: 2;
A5:
0
<= (
angle (B,A,C))
<
PI &
0
<= (
angle (C,B,A))
<
PI by
A2,
A4,
A3,
EUCLID11: 5;
A6:
0
< (
angle (B,A,C))
<
PI &
0
< (
angle (C,B,A))
<
PI by
A2,
A4,
A3,
EUCLID11: 5;
(
0
-
PI )
< ((
angle (B,A,C))
- (
angle (C,B,A))) by
A6,
XREAL_1: 14;
hence (
-
PI )
< ((
angle (B,A,C))
- (
angle (C,B,A)));
((
angle (B,A,C))
- (
angle (C,B,A)))
< (
PI
-
0 ) by
A5,
XREAL_1: 14;
hence thesis;
end;
theorem ::
EUCLID13:36
Th29: (A,B,C)
is_a_triangle & (
angle (B,A,C))
<
PI implies (
- (
PI
/ 2))
< (((
angle (B,A,C))
- (
angle (C,B,A)))
/ 2)
< (
PI
/ 2)
proof
assume (A,B,C)
is_a_triangle & (
angle (B,A,C))
<
PI ;
then (
-
PI )
< ((
angle (B,A,C))
- (
angle (C,B,A)))
<
PI by
Th28;
then ((
-
PI )
/ 2)
< (((
angle (B,A,C))
- (
angle (C,B,A)))
/ 2)
< (
PI
/ 2) by
XREAL_1: 74;
hence thesis;
end;
begin
reserve D for
Point of (
TOP-REAL 2);
reserve a,b,c,d for
Real;
definition
let A,B,C be
Point of (
TOP-REAL 2);
assume
A1: B
<> C;
::
EUCLID13:def1
func
the_altitude (A,B,C) ->
Element of (
line_of_REAL 2) means
:
Def1: ex L1,L2 be
Element of (
line_of_REAL 2) st it
= L1 & L2
= (
Line (B,C)) & A
in L1 & L1
_|_ L2;
existence
proof
reconsider rA = A, rB = B, rC = C as
Element of (
REAL 2) by
EUCLID: 22;
reconsider L2 = (
Line (rB,rC)) as
Element of (
line_of_REAL 2) by
EUCLIDLP: 47;
L2 is
being_line by
A1;
then
consider L1 be
Element of (
line_of_REAL 2) such that
A2: rA
in L1 and
A3: L2
_|_ L1 by
EUCLID12: 47;
L2
= (
Line (B,C)) by
EUCLID12: 4;
hence thesis by
A2,
A3;
end;
uniqueness
proof
let L1,L2 be
Element of (
line_of_REAL 2) such that
A4: ex L11,L12 be
Element of (
line_of_REAL 2) st L1
= L11 & L12
= (
Line (B,C)) & A
in L11 & L11
_|_ L12 and
A5: ex L21,L22 be
Element of (
line_of_REAL 2) st L2
= L21 & L22
= (
Line (B,C)) & A
in L21 & L21
_|_ L22;
consider L11,L12 be
Element of (
line_of_REAL 2) such that
A6: L1
= L11 and
A7: L12
= (
Line (B,C)) and
A8: A
in L11 and
A9: L11
_|_ L12 by
A4;
consider L21,L22 be
Element of (
line_of_REAL 2) such that
A10: L2
= L21 and
A11: L22
= (
Line (B,C)) and
A12: A
in L21 and
A13: L21
_|_ L22 by
A5;
not L11
misses L21 by
A8,
A12,
XBOOLE_0:def 4;
hence thesis by
A6,
A10,
EUCLIDLP: 71,
A7,
A11,
EUCLID12: 16,
A9,
A13,
EUCLIDLP: 111;
end;
end
theorem ::
EUCLID13:37
Th30: B
<> C implies A
in (
the_altitude (A,B,C))
proof
assume B
<> C;
then
consider L1,L2 be
Element of (
line_of_REAL 2) such that
A1: (
the_altitude (A,B,C))
= L1 and L2
= (
Line (B,C)) and
A2: A
in L1 and L1
_|_ L2 by
Def1;
thus thesis by
A1,
A2;
end;
theorem ::
EUCLID13:38
Th31: B
<> C implies (
the_altitude (A,B,C)) is
being_line
proof
assume B
<> C;
then
consider L1,L2 be
Element of (
line_of_REAL 2) such that
A1: (
the_altitude (A,B,C))
= L1 and L2
= (
Line (B,C)) and A
in L1 and
A2: L1
_|_ L2 by
Def1;
thus thesis by
A1,
A2,
EUCLIDLP: 67;
end;
theorem ::
EUCLID13:39
Th32: B
<> C implies (
the_altitude (A,B,C))
= (
the_altitude (A,C,B))
proof
assume
A1: B
<> C;
then
consider L11,L12 be
Element of (
line_of_REAL 2) such that
A2: (
the_altitude (A,B,C))
= L11 and
A3: L12
= (
Line (B,C)) and
A4: A
in L11 and
A5: L11
_|_ L12 by
Def1;
consider L21,L22 be
Element of (
line_of_REAL 2) such that
A6: (
the_altitude (A,C,B))
= L21 and
A7: L22
= (
Line (C,B)) and
A8: A
in L21 and
A9: L21
_|_ L22 by
A1,
Def1;
L11
// L21 by
A5,
A9,
A3,
A7,
EUCLID12: 16,
EUCLIDLP: 111;
hence thesis by
A2,
A6,
A4,
A8,
XBOOLE_0: 3,
EUCLIDLP: 71;
end;
theorem ::
EUCLID13:40
B
<> C & D
in (
the_altitude (A,B,C)) implies (
the_altitude (D,B,C))
= (
the_altitude (A,B,C))
proof
assume that
A1: B
<> C and
A2: D
in (
the_altitude (A,B,C));
consider L1,L2 be
Element of (
line_of_REAL 2) such that
A3: (
the_altitude (A,B,C))
= L1 and
A4: L2
= (
Line (B,C)) and A
in L1 and
A5: L1
_|_ L2 by
A1,
Def1;
consider L11,L12 be
Element of (
line_of_REAL 2) such that
A6: (
the_altitude (D,B,C))
= L11 and
A7: L12
= (
Line (B,C)) and
A8: D
in L11 and
A9: L11
_|_ L12 by
A1,
Def1;
L1
// L11 & D
in L1 & D
in L11 by
A2,
A3,
A8,
A4,
A7,
A5,
A9,
EUCLID12: 16,
EUCLIDLP: 111;
hence thesis by
A3,
A6,
EUCLIDLP: 71,
XBOOLE_0: 3;
end;
theorem ::
EUCLID13:41
Th33: B
<> C & D
in (
Line (B,C)) & D
<> C implies (
the_altitude (A,B,C))
= (
the_altitude (A,D,C))
proof
assume that
A1: B
<> C and
A2: D
in (
Line (B,C)) and
A3: D
<> C;
consider L1,L2 be
Element of (
line_of_REAL 2) such that
A4: (
the_altitude (A,B,C))
= L1 and
A5: L2
= (
Line (B,C)) and
A6: A
in L1 and
A7: L1
_|_ L2 by
A1,
Def1;
consider L3,L4 be
Element of (
line_of_REAL 2) such that
A8: (
the_altitude (A,D,C))
= L3 and
A9: L4
= (
Line (D,C)) and
A10: A
in L3 and
A11: L3
_|_ L4 by
A3,
Def1;
A12: L2
= L4 by
A2,
A3,
A5,
A9,
Th7;
L1
meets L3 by
A6,
A10,
XBOOLE_0:def 4;
hence thesis by
A4,
A8,
A7,
A11,
A12,
EUCLIDLP: 111,
EUCLID12: 16,
EUCLIDLP: 71;
end;
definition
let A,B,C be
Point of (
TOP-REAL 2);
assume
A1: B
<> C;
::
EUCLID13:def2
func
the_foot_of_the_altitude (A,B,C) ->
Point of (
TOP-REAL 2) means
:
Def2: ex P be
Point of (
TOP-REAL 2) st it
= P & ((
the_altitude (A,B,C))
/\ (
Line (B,C)))
=
{P};
existence
proof
consider L1,L2 be
Element of (
line_of_REAL 2) such that
A2: (
the_altitude (A,B,C))
= L1 and
A3: L2
= (
Line (B,C)) and A
in L1 and
A4: L1
_|_ L2 by
A1,
Def1;
consider x be
Element of (
REAL 2) such that
A5: (L1
/\ L2)
=
{x} by
A4,
EUCLID12: 43;
reconsider P = x as
Point of (
TOP-REAL 2) by
EUCLID: 22;
take P;
thus thesis by
A2,
A3,
A5;
end;
uniqueness by
ZFMISC_1: 3;
end
theorem ::
EUCLID13:42
Th34: B
<> C implies (
the_foot_of_the_altitude (A,B,C))
= (
the_foot_of_the_altitude (A,C,B))
proof
assume
A1: B
<> C;
consider D be
Point of (
TOP-REAL 2) such that
A2: (
the_foot_of_the_altitude (A,B,C))
= D and
A3: ((
the_altitude (A,B,C))
/\ (
Line (B,C)))
=
{D} by
A1,
Def2;
consider E be
Point of (
TOP-REAL 2) such that
A4: (
the_foot_of_the_altitude (A,C,B))
= E and
A5: ((
the_altitude (A,C,B))
/\ (
Line (C,B)))
=
{E} by
A1,
Def2;
{D}
=
{E} by
A3,
A5,
A1,
Th32;
hence thesis by
A2,
A4,
ZFMISC_1: 3;
end;
theorem ::
EUCLID13:43
Th35: B
<> C implies (
the_foot_of_the_altitude (A,B,C))
in (
Line (B,C)) & (
the_foot_of_the_altitude (A,B,C))
in (
the_altitude (A,B,C))
proof
assume B
<> C;
then
consider P be
Point of (
TOP-REAL 2) such that
A1: P
= (
the_foot_of_the_altitude (A,B,C)) and
A2: ((
the_altitude (A,B,C))
/\ (
Line (B,C)))
=
{P} by
Def2;
P
in
{P} by
TARSKI:def 1;
hence thesis by
A1,
A2,
XBOOLE_0:def 4;
end;
theorem ::
EUCLID13:44
Th36: B
<> C & not A
in (
Line (B,C)) implies (
the_altitude (A,B,C))
= (
Line (A,(
the_foot_of_the_altitude (A,B,C))))
proof
assume that
A1: B
<> C and
A2: not A
in (
Line (B,C));
consider L1,L2 be
Element of (
line_of_REAL 2) such that
A3: (
the_altitude (A,B,C))
= L1 and
A4: L2
= (
Line (B,C)) and
A5: A
in L1 and
A6: L1
_|_ L2 by
A1,
Def1;
consider P be
Point of (
TOP-REAL 2) such that
A7: (
the_foot_of_the_altitude (A,B,C))
= P and
A8: ((
the_altitude (A,B,C))
/\ (
Line (B,C)))
=
{P} by
A1,
Def2;
reconsider rA = A, rP = P as
Element of (
REAL 2) by
EUCLID: 22;
reconsider L3 = (
Line (rA,rP)) as
Element of (
line_of_REAL 2) by
EUCLIDLP: 47;
per cases ;
suppose A
= P;
then A
in ((
the_altitude (A,B,C))
/\ (
Line (B,C))) by
A8,
TARSKI:def 1;
hence thesis by
A2,
XBOOLE_0:def 4;
end;
suppose
A9: A
<> P;
A
in L1 & P
in L1 & L1 is
being_line by
A6,
A3,
A5,
A1,
A7,
Th35,
EUCLIDLP: 67;
then (
Line (A,P))
= L1 by
A9,
EUCLID12: 49;
then A
in L3 & L3
_|_ L2 by
A6,
EUCLID12: 4,
EUCLID_4: 9;
then L3
= (
the_altitude (A,B,C)) & L3
= (
Line (A,P)) by
A1,
A4,
Def1,
EUCLID12: 4;
hence thesis by
A7;
end;
end;
theorem ::
EUCLID13:45
Th37: B
<> C & A
in (
Line (B,C)) implies (
the_foot_of_the_altitude (A,B,C))
= A
proof
assume that
A1: B
<> C and
A2: A
in (
Line (B,C));
consider P be
Point of (
TOP-REAL 2) such that
A3: (
the_foot_of_the_altitude (A,B,C))
= P and
A4: ((
the_altitude (A,B,C))
/\ (
Line (B,C)))
=
{P} by
A1,
Def2;
consider L1,L2 be
Element of (
line_of_REAL 2) such that
A5: (
the_altitude (A,B,C))
= L1 and
A6: L2
= (
Line (B,C)) and
A7: A
in L1 and L1
_|_ L2 by
A1,
Def1;
A
in (L1
/\ L2) by
A6,
A7,
A2,
XBOOLE_0:def 4;
hence thesis by
A3,
A4,
A5,
A6,
TARSKI:def 1;
end;
theorem ::
EUCLID13:46
B
<> C & (
the_foot_of_the_altitude (A,B,C))
= A implies A
in (
Line (B,C)) by
Th35;
theorem ::
EUCLID13:47
Th38ThJ8: B
<> C implies
|((A
- (
the_foot_of_the_altitude (A,B,C))), (B
- C))|
=
0
proof
assume
A1: B
<> C;
consider L1,L2 be
Element of (
line_of_REAL 2) such that
A2: (
the_altitude (A,B,C))
= L1 and
A3: L2
= (
Line (B,C)) & A
in L1 & L1
_|_ L2 by
A1,
Def1;
per cases ;
suppose not A
in (
Line (B,C));
then L1
_|_ L2 & L1
= (
Line (A,(
the_foot_of_the_altitude (A,B,C)))) & L2
= (
Line (B,C)) by
A1,
A2,
A3,
Th36;
hence thesis by
EUCLID12: 48;
end;
suppose A
in (
Line (B,C));
then
A4: (
the_foot_of_the_altitude (A,B,C))
= A by
A1,
Th37;
|((A
- (
the_foot_of_the_altitude (A,B,C))), (B
- C))|
= (
|(A, (B
- C))|
-
|((
the_foot_of_the_altitude (A,B,C)), (B
- C))|) by
EUCLID_2: 27
.=
0 by
A4;
hence thesis;
end;
end;
theorem ::
EUCLID13:48
Th39: B
<> C implies
|((A
- (
the_foot_of_the_altitude (A,B,C))), (B
- (
the_foot_of_the_altitude (A,B,C))))|
=
0
proof
assume
A1: B
<> C;
consider L1,L2 be
Element of (
line_of_REAL 2) such that
A2: (
the_altitude (A,B,C))
= L1 and
A3: L2
= (
Line (B,C)) & A
in L1 & L1
_|_ L2 by
A1,
Def1;
per cases ;
suppose
A4: B
= (
the_foot_of_the_altitude (A,B,C));
|((A
- (
the_foot_of_the_altitude (A,B,C))), (B
- (
the_foot_of_the_altitude (A,B,C))))|
= (
|((A
- (
the_foot_of_the_altitude (A,B,C))), B)|
-
|((A
- (
the_foot_of_the_altitude (A,B,C))), (
the_foot_of_the_altitude (A,B,C)))|) by
EUCLID_2: 27;
hence thesis by
A4;
end;
suppose
A5: B
<> (
the_foot_of_the_altitude (A,B,C));
A6: L2 is
being_line by
A3,
EUCLIDLP: 67;
(
the_foot_of_the_altitude (A,B,C))
in (
Line (B,C)) & B
in (
Line (B,C)) & C
in (
Line (B,C)) by
EUCLID_4: 41,
A1,
Th35;
then
A7: (
Line (B,C))
= (
Line (B,(
the_foot_of_the_altitude (A,B,C)))) by
A6,
A5,
A3,
EUCLID12: 49;
per cases ;
suppose not A
in (
Line (B,C));
then L1
_|_ L2 & L1
= (
Line (A,(
the_foot_of_the_altitude (A,B,C)))) & L2
= (
Line (B,C)) by
A1,
A2,
A3,
Th36;
hence thesis by
A7,
EUCLID12: 48;
end;
suppose A
in (
Line (B,C));
then
A8: A
= (
the_foot_of_the_altitude (A,B,C)) by
A1,
Th37;
|((A
- (
the_foot_of_the_altitude (A,B,C))), (B
- (
the_foot_of_the_altitude (A,B,C))))|
= (
|(A, (B
- (
the_foot_of_the_altitude (A,B,C))))|
-
|((
the_foot_of_the_altitude (A,B,C)), (B
- (
the_foot_of_the_altitude (A,B,C))))|) by
EUCLID_2: 27
.=
0 by
A8;
hence thesis;
end;
end;
end;
theorem ::
EUCLID13:49
Th40: B
<> C implies
|((A
- (
the_foot_of_the_altitude (A,B,C))), (C
- (
the_foot_of_the_altitude (A,B,C))))|
=
0
proof
assume
A1: B
<> C;
then (
the_foot_of_the_altitude (A,C,B))
= (
the_foot_of_the_altitude (A,B,C)) by
Th34;
hence thesis by
A1,
Th39;
end;
theorem ::
EUCLID13:50
Th41: B
<> C & B
= (
the_foot_of_the_altitude (A,B,C)) implies
|((B
- A), (B
- C))|
=
0
proof
assume that
A1: B
<> C and
A2: B
= (
the_foot_of_the_altitude (A,B,C));
set ph = (
the_foot_of_the_altitude (A,B,C));
per cases ;
suppose (A,B,C)
is_a_triangle ;
|((A
- ph), (C
- ph))|
=
0 by
A1,
Th40;
hence thesis by
A2,
Th10;
end;
suppose
A4: not (A,B,C)
is_a_triangle ;
consider P be
Point of (
TOP-REAL 2) such that
A5: (
the_foot_of_the_altitude (A,B,C))
= P and
A6: ((
the_altitude (A,B,C))
/\ (
Line (B,C)))
=
{P} by
A1,
Def2;
consider L1,L2 be
Element of (
line_of_REAL 2) such that
A7: (
the_altitude (A,B,C))
= L1 and L2
= (
Line (B,C)) and
A8: A
in L1 and L1
_|_ L2 by
A1,
Def1;
A
in (
Line (B,C)) & B
in (
Line (B,C)) & A
in (
the_altitude (A,B,C)) & B
in (
the_altitude (A,B,C)) by
A1,
A4,
MENELAUS: 13,
A7,
A8,
Th35,
A2;
then A
in
{(
the_foot_of_the_altitude (A,B,C))} by
A5,
A6,
XBOOLE_0:def 4;
then
A11: A
= B by
A2,
TARSKI:def 1;
|((B
- A), (B
- C))|
= (
|(B, (B
- C))|
-
|(A, (B
- C))|) by
EUCLID_2: 24
.=
0 by
A11;
hence thesis;
end;
end;
theorem ::
EUCLID13:51
Th42: B
<> C & D
in (
Line (B,C)) & D
<> C implies (
the_foot_of_the_altitude (A,B,C))
= (
the_foot_of_the_altitude (A,D,C))
proof
assume that
A1: B
<> C and
A2: D
in (
Line (B,C)) and
A3: D
<> C;
consider P1 be
Point of (
TOP-REAL 2) such that
A4: (
the_foot_of_the_altitude (A,B,C))
= P1 and
A5: ((
the_altitude (A,B,C))
/\ (
Line (B,C)))
=
{P1} by
A1,
Def2;
consider P2 be
Point of (
TOP-REAL 2) such that
A6: (
the_foot_of_the_altitude (A,D,C))
= P2 and
A7: ((
the_altitude (A,D,C))
/\ (
Line (D,C)))
=
{P2} by
A3,
Def2;
(
Line (D,C))
= (
Line (B,C)) by
A2,
A3,
Th7;
then
{P1}
=
{P2} by
A7,
A5,
A1,
A2,
A3,
Th33;
hence thesis by
A4,
A6,
ZFMISC_1: 3;
end;
theorem ::
EUCLID13:52
Th43: B
<> C &
|((B
- A), (B
- C))|
=
0 implies B
= (
the_foot_of_the_altitude (A,B,C))
proof
assume that
A1: B
<> C and
A2:
|((B
- A), (B
- C))|
=
0 ;
set p = (
the_foot_of_the_altitude (A,B,C));
consider P be
Point of (
TOP-REAL 2) such that
A3: p
= P and
A4: ((
the_altitude (A,B,C))
/\ (
Line (B,C)))
=
{P} by
A1,
Def2;
consider L1,L2 be
Element of (
line_of_REAL 2) such that
A5: (
the_altitude (A,B,C))
= L1 and
A6: L2
= (
Line (B,C)) and
A7: A
in L1 and
A8: L1
_|_ L2 by
A1,
Def1;
per cases ;
suppose
A9: A
= p;
A
= B
proof
assume
A10: A
<> B;
reconsider rA = A, rB = B, rC = C as
Element of (
REAL 2) by
EUCLID: 22;
reconsider LBA = (
Line (rB,rA)), LBC = (
Line (rB,rC)) as
Element of (
line_of_REAL 2) by
EUCLIDLP: 47;
A11: (
Line (B,A))
= (
Line (rB,rA)) by
EUCLID12: 4;
then A
in LBA & B
in LBA by
EUCLID_4: 41;
then
A12: L1
meets LBA by
A7,
XBOOLE_0:def 4;
A
<> B & B
<> C &
|((B
- A), (B
- C))|
=
0 & LBA
= (
Line (B,A)) & LBC
= (
Line (B,C)) by
A1,
A2,
A10,
EUCLID12: 4;
then LBA
_|_ LBC & L1
_|_ LBC & LBA
c= (
REAL 2) & L1
c= (
REAL 2) & LBC
c= (
REAL 2) by
A6,
A8,
Th9;
then LBA
= L1 by
EUCLIDLP: 111,
EUCLID12: 16,
A12,
EUCLIDLP: 71;
then B
in L1 & B
in L2 by
A6,
A11,
EUCLID_4: 41;
then B
in
{P} by
A4,
A5,
A6,
XBOOLE_0:def 4;
hence contradiction by
A10,
A9,
A3,
TARSKI:def 1;
end;
hence thesis by
A9;
end;
suppose
A13: A
<> p;
A14: A
<> B
proof
assume A
= B;
then A
in (
Line (B,C)) by
EUCLID_4: 41;
hence contradiction by
A13,
A1,
Th37;
end;
reconsider rA = A, rB = B, rC = C as
Element of (
REAL 2) by
EUCLID: 22;
reconsider LBA = (
Line (rB,rA)), LBC = (
Line (rB,rC)) as
Element of (
line_of_REAL 2) by
EUCLIDLP: 47;
A15: (
Line (B,A))
= (
Line (rB,rA)) by
EUCLID12: 4;
then A
in LBA & B
in LBA by
EUCLID_4: 41;
then
A16: L1
meets LBA by
A7,
XBOOLE_0:def 4;
A
<> B & B
<> C &
|((B
- A), (B
- C))|
=
0 & LBA
= (
Line (B,A)) & LBC
= (
Line (B,C)) by
A1,
A2,
A14,
EUCLID12: 4;
then LBA
_|_ LBC & L1
_|_ LBC & LBA
c= (
REAL 2) & L1
c= (
REAL 2) & LBC
c= (
REAL 2) by
A6,
A8,
Th9;
then LBA
= L1 by
EUCLIDLP: 111,
EUCLID12: 16,
A16,
EUCLIDLP: 71;
then B
in L1 & B
in L2 by
A6,
A15,
EUCLID_4: 41;
then B
in
{P} by
A4,
A5,
A6,
XBOOLE_0:def 4;
hence thesis by
A3,
TARSKI:def 1;
end;
end;
theorem ::
EUCLID13:53
B
<> C & B
<> A & (
angle (A,B,C))
= (
PI
/ 2) implies (
the_foot_of_the_altitude (A,B,C))
= B
proof
assume that
A1: B
<> C and
A2: B
<> A and
A3: (
angle (A,B,C))
= (
PI
/ 2);
|((A
- B), (C
- B))|
=
0 by
A1,
A2,
A3,
EUCLID_3: 45;
then
|((B
- A), (B
- C))|
=
0 by
Th10;
hence thesis by
A1,
Th43;
end;
theorem ::
EUCLID13:54
Th44: (A,B,C)
is_a_triangle implies A
<> (
the_foot_of_the_altitude (A,B,C))
proof
assume
A1: (A,B,C)
is_a_triangle ;
assume
A2: A
= (
the_foot_of_the_altitude (A,B,C));
A3: (A,B,C)
are_mutually_distinct by
A1,
EUCLID_6: 20;
then A
in (
Line (B,C)) by
A2,
Th35;
hence contradiction by
A1,
A3,
MENELAUS: 13;
end;
theorem ::
EUCLID13:55
Th45: (A,B,C)
is_a_triangle &
|((B
- A), (B
- C))|
<>
0 implies ((
the_foot_of_the_altitude (A,B,C)),B,A)
is_a_triangle
proof
assume that
A1: (A,B,C)
is_a_triangle and
A2:
|((B
- A), (B
- C))|
<>
0 ;
A3: (A,B,C)
are_mutually_distinct by
A1,
EUCLID_6: 20;
set p = (
the_foot_of_the_altitude (A,B,C));
consider P be
Point of (
TOP-REAL 2) such that
A4: (
the_foot_of_the_altitude (A,B,C))
= P and
A5: ((
the_altitude (A,B,C))
/\ (
Line (B,C)))
=
{P} by
A3,
Def2;
consider L1,L2 be
Element of (
line_of_REAL 2) such that
A6: (
the_altitude (A,B,C))
= L1 and
A7: L2
= (
Line (B,C)) and
A8: A
in L1 and L1
_|_ L2 by
A3,
Def1;
A9: P
<> B by
A4,
A3,
A2,
Th41;
A10: p
<> A by
A1,
Th44;
A11: (p,B,A)
are_mutually_distinct by
A3,
A2,
Th41,
A1,
Th44;
P
in (
Line (B,C)) by
A4,
A3,
Th35;
then B
in (
Line (B,P)) & C
in (
Line (B,P)) by
A9,
Th8,
EUCLID_4: 41;
then
A12: (
Line (B,P))
c= (
Line (B,C)) by
A3,
EUCLID_4: 43;
A13: (
angle (p,B,A))
<>
PI
proof
assume (
angle (p,B,A))
=
PI ;
then B
in (
LSeg (p,A)) by
EUCLID_6: 11;
then B
in (
Line (P,A)) by
A4,
MENELAUS: 12;
then A
in (
Line (B,P)) by
A3,
A2,
Th41,
A4,
Th8;
then A
in (L1
/\ L2) by
A12,
A8,
A7,
XBOOLE_0:def 4;
hence contradiction by
A5,
A6,
A7,
A4,
A10,
TARSKI:def 1;
end;
A14: (
angle (B,A,p))
<>
PI
proof
assume (
angle (B,A,p))
=
PI ;
then A
in (
LSeg (B,p)) by
EUCLID_6: 11;
then A
in L1 & A
in L2 by
A12,
A8,
A7,
A4,
MENELAUS: 12;
then A
in (L1
/\ L2) by
XBOOLE_0:def 4;
hence contradiction by
A4,
A10,
A5,
A6,
A7,
TARSKI:def 1;
end;
(
angle (A,p,B))
<>
PI
proof
assume (
angle (A,p,B))
=
PI ;
then p
in (
LSeg (A,B)) by
EUCLID_6: 11;
then P
in (
Line (A,B)) by
A4,
MENELAUS: 12;
then A
in (
Line (B,P)) by
A9,
Th8;
then A
in (L1
/\ L2) by
A12,
A8,
A7,
XBOOLE_0:def 4;
then A
= P by
A5,
A6,
A7,
TARSKI:def 1;
hence contradiction by
A4,
A1,
Th44;
end;
hence thesis by
A11,
A13,
A14,
EUCLID_6: 20;
end;
definition
let A,B,C be
Point of (
TOP-REAL 2);
assume B
<> C;
::
EUCLID13:def3
func
the_length_of_the_altitude (A,B,C) ->
Real equals
:
Def3:
|.(A
- (
the_foot_of_the_altitude (A,B,C))).|;
correctness ;
end
theorem ::
EUCLID13:56
Th46: B
<> C implies
0
<= (
the_length_of_the_altitude (A,B,C))
proof
assume B
<> C;
then (
the_length_of_the_altitude (A,B,C))
=
|.(A
- (
the_foot_of_the_altitude (A,B,C))).| by
Def3;
hence thesis;
end;
theorem ::
EUCLID13:57
B
<> C implies (
the_length_of_the_altitude (A,B,C))
= (
the_length_of_the_altitude (A,C,B))
proof
assume
A1: B
<> C;
then (
the_length_of_the_altitude (A,B,C))
=
|.(A
- (
the_foot_of_the_altitude (A,B,C))).| by
Def3
.=
|.(A
- (
the_foot_of_the_altitude (A,C,B))).| by
A1,
Th34
.= (
the_length_of_the_altitude (A,C,B)) by
A1,
Def3;
hence thesis;
end;
theorem ::
EUCLID13:58
Th47: B
<> C &
|((B
- A), (B
- C))|
=
0 implies
|.((
the_foot_of_the_altitude (A,B,C))
- A).|
=
|.(A
- B).|
proof
assume that
A1: B
<> C and
A2:
|((B
- A), (B
- C))|
=
0 ;
|.((
the_foot_of_the_altitude (A,B,C))
- A).|
=
|.(B
- A).| by
A1,
A2,
Th43;
hence thesis by
EUCLID_6: 43;
end;
theorem ::
EUCLID13:59
Th48: B
<> C & r
= (
- ((((
|(B, C)|
-
|(C, C)|)
-
|(A, B)|)
+
|(A, C)|)
/
|((B
- C), (B
- C))|)) & D
= ((r
* B)
+ ((1
- r)
* C)) & D
<> C implies D
= (
the_foot_of_the_altitude (A,B,C))
proof
assume that
A1: B
<> C and
A2: r
= (
- ((((
|(B, C)|
-
|(C, C)|)
-
|(A, B)|)
+
|(A, C)|)
/
|((B
- C), (B
- C))|)) and
A3: D
= ((r
* B)
+ ((1
- r)
* C)) and
A4: D
<> C;
|((D
- A), (D
- C))|
=
0 by
A1,
A2,
A3,
Th11;
then
A5: D
= (
the_foot_of_the_altitude (A,D,C)) by
A4,
Th43;
reconsider rB = B, rC = C as
Element of (
REAL 2) by
EUCLID: 22;
D
in (
Line (B,C))
proof
D
in (
Line (rC,rB)) by
A3;
hence thesis by
EUCLID12: 4;
end;
hence thesis by
A1,
A4,
A5,
Th42;
end;
theorem ::
EUCLID13:60
Th49: B
<> C & r
= (
- ((((
|(B, C)|
-
|(C, C)|)
-
|(A, B)|)
+
|(A, C)|)
/
|((B
- C), (B
- C))|)) & D
= ((r
* B)
+ ((1
- r)
* C)) & D
= C implies C
= (
the_foot_of_the_altitude (A,B,C))
proof
assume that
A1: B
<> C and
A2: r
= (
- ((((
|(B, C)|
-
|(C, C)|)
-
|(A, B)|)
+
|(A, C)|)
/
|((B
- C), (B
- C))|)) and
A3: D
= ((r
* B)
+ ((1
- r)
* C)) and
A4: D
= C;
reconsider rB = B, rC = C as
Element of (
REAL 2) by
EUCLID: 22;
reconsider n = 2 as
Nat;
A5: (rB
- rC)
<> (
0* n) by
A1,
EUCLIDLP: 9;
0
= (
- ((((
|(B, C)|
-
|(C, C)|)
-
|(A, B)|)
+
|(A, C)|)
/
|((B
- C), (B
- C))|)) by
A2,
A1,
A3,
A4,
Th12;
then (
0
*
|((B
- C), (B
- C))|)
= (
- ((
|((C
- A), (B
- C))|
/
|((B
- C), (B
- C))|)
*
|((B
- C), (B
- C))|)) by
Th13;
then
0
= (
-
|((C
- A), (B
- C))|) by
A5,
EUCLID_4: 17,
XCMPLX_1: 87;
then
|((C
- A), (C
- B))|
=
0 by
Th14;
then C
= (
the_foot_of_the_altitude (A,C,B)) by
A1,
Th43;
hence thesis by
A1,
Th34;
end;
theorem ::
EUCLID13:61
Th50: (A,B,C)
is_a_triangle &
|((C
- A), (B
- C))| is non
zero &
|((B
- C), (A
- B))| is non
zero &
|((C
- A), (A
- B))| is non
zero implies ((
Line (A,(
the_foot_of_the_altitude (A,B,C)))),(
Line (C,(
the_foot_of_the_altitude (C,A,B)))),(
Line (B,(
the_foot_of_the_altitude (B,C,A)))))
are_concurrent
proof
assume that
A1: (A,B,C)
is_a_triangle and
A2:
|((C
- A), (B
- C))| is non
zero &
|((B
- C), (A
- B))| is non
zero &
|((C
- A), (A
- B))| is non
zero;
A3: (A,B,C)
are_mutually_distinct by
A1,
EUCLID_6: 20;
set r = (
- ((((
|(B, C)|
-
|(C, C)|)
-
|(A, B)|)
+
|(A, C)|)
/
|((B
- C), (B
- C))|)), s = (
- ((((
|(C, A)|
-
|(A, A)|)
-
|(B, C)|)
+
|(B, A)|)
/
|((C
- A), (C
- A))|)), t = (
- ((((
|(A, B)|
-
|(B, B)|)
-
|(C, A)|)
+
|(C, B)|)
/
|((A
- B), (A
- B))|)), D = ((r
* B)
+ ((1
- r)
* C)), E = ((s
* C)
+ ((1
- s)
* A)), F = ((t
* A)
+ ((1
- t)
* B));
D
<> C & E
<> A & F
<> B
proof
assume not (D
<> C & E
<> A & F
<> B);
then
A4: C
= (
the_foot_of_the_altitude (A,B,C)) or A
= (
the_foot_of_the_altitude (B,C,A)) or B
= (
the_foot_of_the_altitude (C,A,B)) by
A3,
Th49;
|((A
- C), (B
- C))|
= (
-
|((C
- A), (B
- C))|) &
|((B
- A), (C
- A))|
= (
-
|((C
- A), (A
- B))|) &
|((C
- B), (A
- B))|
= (
-
|((B
- C), (A
- B))|) by
Th16;
hence contradiction by
A4,
A2,
A3,
Th38ThJ8;
end;
then
A5: D
= (
the_foot_of_the_altitude (A,B,C)) & E
= (
the_foot_of_the_altitude (B,C,A)) & F
= (
the_foot_of_the_altitude (C,A,B)) by
A3,
Th48;
(((((r
/ (1
- r))
* s)
/ (1
- s))
* t)
/ (1
- t))
= 1 by
A3,
A2,
Th17;
then
A6: (((r
/ (1
- r))
* (t
/ (1
- t)))
* (s
/ (1
- s)))
= 1;
A7: (A,C,B)
is_a_triangle by
A1,
MENELAUS: 15;
r
<> 1 & s
<> 1 & t
<> 1
proof
assume not (r
<> 1 & s
<> 1 & t
<> 1);
then (r
= 1 & B
<> C & r
= (
- ((((
|(B, C)|
-
|(C, C)|)
-
|(A, B)|)
+
|(A, C)|)
/
|((B
- C), (B
- C))|)) & D
= ((r
* B)
+ ((1
- r)
* C))) or (s
= 1 & C
<> A & s
= (
- ((((
|(C, A)|
-
|(A, A)|)
-
|(B, C)|)
+
|(B, A)|)
/
|((C
- A), (C
- A))|)) & E
= ((s
* C)
+ ((1
- s)
* A))) or (t
= 1 & A
<> B & t
= (
- ((((
|(A, B)|
-
|(B, B)|)
-
|(C, A)|)
+
|(C, B)|)
/
|((A
- B), (A
- B))|)) & F
= ((t
* A)
+ ((1
- t)
* B)));
hence contradiction by
A2,
Th19;
end;
hence thesis by
A5,
A6,
A7,
MENELAUS: 22;
end;
theorem ::
EUCLID13:62
Th51: (A,B,C)
is_a_triangle &
|((C
- A), (B
- C))| is
zero implies (
the_foot_of_the_altitude (A,B,C))
= C & (
the_foot_of_the_altitude (B,C,A))
= C
proof
assume that
A1: (A,B,C)
is_a_triangle and
A2:
|((C
- A), (B
- C))| is
zero;
A3: (A,B,C)
are_mutually_distinct by
A1,
EUCLID_6: 20;
A4: (
-
|((C
- A), (B
- C))|)
=
|((C
- B), (C
- A))| by
Th14;
|((C
- A), (C
- B))|
= (
-
|((C
- A), (B
- C))|) by
Th14;
then (
the_foot_of_the_altitude (A,C,B))
= C by
A2,
A3,
Th43;
hence thesis by
A2,
A3,
A4,
Th43,
Th34;
end;
theorem ::
EUCLID13:63
Th52: (A,B,C)
is_a_triangle & C
in (
the_altitude (A,B,C)) & C
in (
the_altitude (B,C,A)) implies ((
the_altitude (A,B,C))
/\ (
the_altitude (B,C,A))) is
being_point
proof
assume that
A1: (A,B,C)
is_a_triangle and
A2: C
in (
the_altitude (A,B,C)) and
A3: C
in (
the_altitude (B,C,A));
A4: (A,B,C)
are_mutually_distinct by
A1,
EUCLID_6: 20;
consider L1,L2 be
Element of (
line_of_REAL 2) such that
A5: (
the_altitude (A,B,C))
= L1 and
A6: L2
= (
Line (B,C)) and A
in L1 and
A7: L1
_|_ L2 by
A4,
Def1;
consider L3,L4 be
Element of (
line_of_REAL 2) such that
A8: (
the_altitude (B,C,A))
= L3 and
A9: L4
= (
Line (C,A)) and B
in L3 and
A10: L3
_|_ L4 by
A4,
Def1;
A11: not L1
// L3
proof
assume
A12: L1
// L3;
L1
<> L3
proof
assume L1
= L3;
then L1
_|_ L2 & L1
_|_ L4 & C
in L1 & C
in L2 & C
in L4 by
A6,
A9,
A7,
A10,
A2,
A5,
EUCLID_4: 41;
then L2
= L4 by
EUCLID12: 16,
EUCLIDLP: 108;
then A
in (
Line (B,C)) by
A6,
A9,
EUCLID_4: 41;
hence contradiction by
A1,
A4,
MENELAUS: 13;
end;
hence contradiction by
XBOOLE_0: 3,
A12,
EUCLIDLP: 71,
A5,
A8,
A2,
A3;
end;
not L1 is
being_point & not L3 is
being_point by
A4,
A5,
A8,
Th31,
EUCLID12: 9;
hence thesis by
A5,
A8,
A11,
EUCLID12: 21;
end;
theorem ::
EUCLID13:64
Th53: (B,C,A)
is_a_triangle & C
in (
the_altitude (B,C,A)) & C
in (
the_altitude (C,A,B)) implies ((
the_altitude (B,C,A))
/\ (
the_altitude (C,A,B))) is
being_point
proof
assume that
A1: (B,C,A)
is_a_triangle and
A2: C
in (
the_altitude (B,C,A)) and
A3: C
in (
the_altitude (C,A,B));
A4: (B,C,A)
are_mutually_distinct by
A1,
EUCLID_6: 20;
consider L1,L2 be
Element of (
line_of_REAL 2) such that
A5: (
the_altitude (B,C,A))
= L1 and
A6: L2
= (
Line (C,A)) and B
in L1 and
A7: L1
_|_ L2 by
A4,
Def1;
consider L3,L4 be
Element of (
line_of_REAL 2) such that
A8: (
the_altitude (C,A,B))
= L3 and
A9: L4
= (
Line (A,B)) and C
in L3 and
A10: L3
_|_ L4 by
A4,
Def1;
A11: not L1
// L3
proof
assume L1
// L3;
then L1
= L3 by
EUCLIDLP: 71,
A2,
A3,
A5,
A8,
XBOOLE_0: 3;
then
A12: L2
// L4 by
A7,
A10,
EUCLIDLP: 111,
EUCLID12: 16;
A
in L2 & A
in L4 by
A6,
A9,
EUCLID_4: 41;
then (
Line (C,A))
= (
Line (A,B)) by
A6,
A9,
XBOOLE_0: 3,
A12,
EUCLIDLP: 71;
then B
in (
Line (C,A)) by
EUCLID_4: 41;
hence contradiction by
A1,
A4,
MENELAUS: 13;
end;
not L1 is
being_point & not L3 is
being_point by
A4,
A5,
A8,
Th31,
EUCLID12: 9;
hence thesis by
A5,
A8,
A11,
EUCLID12: 21;
end;
theorem ::
EUCLID13:65
Th54: (C,A,B)
is_a_triangle & C
in (
the_altitude (C,A,B)) & C
in (
the_altitude (A,B,C)) implies ((
the_altitude (C,A,B))
/\ (
the_altitude (A,B,C))) is
being_point
proof
assume that
A1: (C,A,B)
is_a_triangle and
A2: C
in (
the_altitude (C,A,B)) and
A3: C
in (
the_altitude (A,B,C));
A4: (C,A,B)
are_mutually_distinct by
A1,
EUCLID_6: 20;
consider L1,L2 be
Element of (
line_of_REAL 2) such that
A5: (
the_altitude (C,A,B))
= L1 and
A6: L2
= (
Line (A,B)) and C
in L1 and
A7: L1
_|_ L2 by
A4,
Def1;
consider L3,L4 be
Element of (
line_of_REAL 2) such that
A8: (
the_altitude (A,B,C))
= L3 and
A9: L4
= (
Line (B,C)) and A
in L3 and
A10: L3
_|_ L4 by
A4,
Def1;
A11: not L1
// L3
proof
assume L1
// L3;
then L1
= L3 by
A2,
A3,
A5,
A8,
XBOOLE_0: 3,
EUCLIDLP: 71;
then
A12: L2
// L4 by
A7,
A10,
EUCLIDLP: 111,
EUCLID12: 16;
B
in L2 & B
in L4 by
A6,
A9,
EUCLID_4: 41;
then (
Line (A,B))
= (
Line (B,C)) by
A6,
A9,
XBOOLE_0: 3,
A12,
EUCLIDLP: 71;
then C
in (
Line (A,B)) by
EUCLID_4: 41;
hence contradiction by
A4,
MENELAUS: 13,
A1;
end;
not L1 is
being_point & not L3 is
being_point by
A4,
A5,
A8,
Th31,
EUCLID12: 9;
hence thesis by
A5,
A8,
A11,
EUCLID12: 21;
end;
theorem ::
EUCLID13:66
Th55: (A,B,C)
is_a_triangle &
|((C
- A), (B
- C))|
=
0 implies ((
the_altitude (A,B,C))
/\ (
the_altitude (B,C,A)))
=
{C} & ((
the_altitude (B,C,A))
/\ (
the_altitude (C,A,B)))
=
{C} & ((
the_altitude (C,A,B))
/\ (
the_altitude (A,B,C)))
=
{C}
proof
assume that
A1: (A,B,C)
is_a_triangle and
A2:
|((C
- A), (B
- C))|
=
0 ;
A3: (A,B,C)
are_mutually_distinct by
A1,
EUCLID_6: 20;
(B,C,A)
is_a_triangle by
A1,
MENELAUS: 15;
then
A4: not A
in (
Line (B,C)) & not B
in (
Line (C,A)) by
A1,
Th20;
(
the_foot_of_the_altitude (A,B,C))
= C & (
the_foot_of_the_altitude (B,C,A))
= C by
A1,
A2,
Th51;
then (
the_altitude (A,B,C))
= (
Line (A,C)) & (
the_altitude (B,C,A))
= (
Line (B,C)) by
A3,
A4,
Th36;
then
A5: C
in (
the_altitude (A,B,C)) & C
in (
the_altitude (B,C,A)) by
EUCLID_4: 41;
A6: C
in (
the_altitude (C,A,B)) by
A3,
Th30;
A7: ((
the_altitude (A,B,C))
/\ (
the_altitude (B,C,A)))
=
{C}
proof
C
in ((
the_altitude (A,B,C))
/\ (
the_altitude (B,C,A))) by
A5,
XBOOLE_0:def 4;
hence thesis by
EUCLID12: 22,
A1,
A5,
Th52;
end;
A8: ((
the_altitude (B,C,A))
/\ (
the_altitude (C,A,B)))
=
{C}
proof
(B,C,A)
is_a_triangle by
A1,
MENELAUS: 15;
then
A9: ((
the_altitude (B,C,A))
/\ (
the_altitude (C,A,B))) is
being_point by
A5,
A3,
Th30,
Th53;
C
in ((
the_altitude (B,C,A))
/\ (
the_altitude (C,A,B))) by
A5,
A6,
XBOOLE_0:def 4;
hence thesis by
A9,
EUCLID12: 22;
end;
((
the_altitude (C,A,B))
/\ (
the_altitude (A,B,C)))
=
{C}
proof
(C,A,B)
is_a_triangle by
A1,
MENELAUS: 15;
then
A10: ((
the_altitude (C,A,B))
/\ (
the_altitude (A,B,C))) is
being_point by
A5,
A3,
Th30,
Th54;
C
in ((
the_altitude (C,A,B))
/\ (
the_altitude (A,B,C))) by
A5,
A6,
XBOOLE_0:def 4;
hence thesis by
A10,
EUCLID12: 22;
end;
hence thesis by
A7,
A8;
end;
theorem ::
EUCLID13:67
Th56: (A,B,C)
is_a_triangle implies ex P be
Point of (
TOP-REAL 2) st ((
the_altitude (A,B,C))
/\ (
the_altitude (B,C,A)))
=
{P} & ((
the_altitude (B,C,A))
/\ (
the_altitude (C,A,B)))
=
{P} & ((
the_altitude (C,A,B))
/\ (
the_altitude (A,B,C)))
=
{P}
proof
assume
A1: (A,B,C)
is_a_triangle ;
per cases ;
suppose
A2:
|((C
- A), (B
- C))|
=
0 ;
take C;
thus thesis by
A1,
A2,
Th55;
end;
suppose
A3:
|((B
- C), (A
- B))|
=
0 ;
take B;
(C,A,B)
is_a_triangle by
A1,
MENELAUS: 15;
hence thesis by
A3,
Th55;
end;
suppose
A4:
|((C
- A), (A
- B))|
=
0 ;
take A;
(B,C,A)
is_a_triangle by
A1,
MENELAUS: 15;
hence thesis by
A4,
Th55;
end;
suppose not
|((C
- A), (B
- C))|
=
0 & not
|((B
- C), (A
- B))|
=
0 & not
|((C
- A), (A
- B))|
=
0 ;
then
A5: ((
Line (A,(
the_foot_of_the_altitude (A,B,C)))),(
Line (C,(
the_foot_of_the_altitude (C,A,B)))),(
Line (B,(
the_foot_of_the_altitude (B,C,A)))))
are_concurrent by
A1,
Th50;
A6: (A,B,C)
are_mutually_distinct by
A1,
EUCLID_6: 20;
A7: (B,C,A)
is_a_triangle & (C,A,B)
is_a_triangle by
A1,
MENELAUS: 15;
then not A
in (
Line (B,C)) & not B
in (
Line (C,A)) & not C
in (
Line (A,B)) by
A1,
Th20;
then
A8: (
the_altitude (A,B,C))
= (
Line (A,(
the_foot_of_the_altitude (A,B,C)))) & (
the_altitude (C,A,B))
= (
Line (C,(
the_foot_of_the_altitude (C,A,B)))) & (
the_altitude (B,C,A))
= (
Line (B,(
the_foot_of_the_altitude (B,C,A)))) by
A6,
Th36;
consider L1,L2 be
Element of (
line_of_REAL 2) such that
A9: (
the_altitude (A,B,C))
= L1 and
A10: L2
= (
Line (B,C)) and A
in L1 and
A11: L1
_|_ L2 by
A6,
Def1;
consider L3,L4 be
Element of (
line_of_REAL 2) such that
A12: (
the_altitude (C,A,B))
= L3 and
A13: L4
= (
Line (A,B)) and C
in L3 and
A14: L3
_|_ L4 by
A6,
Def1;
consider L5,L6 be
Element of (
line_of_REAL 2) such that
A15: (
the_altitude (B,C,A))
= L5 and
A16: L6
= (
Line (C,A)) and B
in L5 and
A17: L5
_|_ L6 by
A6,
Def1;
A18: not ((
Line (A,(
the_foot_of_the_altitude (A,B,C))))
is_parallel_to (
Line (C,(
the_foot_of_the_altitude (C,A,B)))))
proof
assume
A19: (
Line (A,(
the_foot_of_the_altitude (A,B,C))))
is_parallel_to (
Line (C,(
the_foot_of_the_altitude (C,A,B))));
L1 is
being_line & L3 is
being_line & (L1,L3)
are_coplane by
A9,
A12,
A6,
Th31,
EUCLID12: 39;
then L1
// L3 by
A19,
A8,
A9,
A12,
EUCLIDLP: 113;
then L1
_|_ L4 by
A14,
EUCLIDLP: 61;
then
A20: L2
// L4 by
A11,
EUCLIDLP: 111,
EUCLID12: 16;
B
in L2 & B
in L4 by
A10,
A13,
EUCLID_4: 41;
then (
Line (A,B))
= (
Line (B,C)) by
A10,
A13,
A20,
XBOOLE_0: 3,
EUCLIDLP: 71;
then C
in (
Line (A,B)) by
EUCLID_4: 41;
hence contradiction by
A7,
A6,
MENELAUS: 13;
end;
consider D such that
A21: D
in (
the_altitude (A,B,C)) and
A22: D
in (
the_altitude (C,A,B)) and
A23: D
in (
the_altitude (B,C,A)) by
A8,
A18,
A5,
MENELAUS:def 1;
A24: D
in (L1
/\ L3) & D
in (L1
/\ L5) & D
in (L3
/\ L5) by
A21,
A22,
A23,
A9,
A12,
A15,
XBOOLE_0:def 4;
A25: L1
meets L3 & L1
meets L5 & L3
meets L5 by
A21,
A22,
A23,
A9,
A12,
A15,
XBOOLE_0:def 4;
L1
<> L3
proof
assume L1
= L3;
then
A26: L2
// L4 by
A14,
A11,
EUCLIDLP: 111,
EUCLID12: 16;
B
in L2 & B
in L4 by
A10,
A13,
EUCLID_4: 41;
then L2
= L4 by
A26,
XBOOLE_0: 3,
EUCLIDLP: 71;
then C
in (
Line (A,B)) by
A10,
A13,
EUCLID_4: 41;
hence contradiction by
A7,
A6,
MENELAUS: 13;
end;
then
A27: not L1
// L3 by
A25,
EUCLIDLP: 71;
not L1 is
being_point & not L3 is
being_point by
A9,
A12,
A6,
Th31,
EUCLID12: 9;
then
A28: (L1
/\ L3)
=
{D} by
A24,
EUCLID12: 22,
A27,
EUCLID12: 21;
L1
<> L5
proof
assume L1
= L5;
then
A29: L2
// L6 by
A17,
A11,
EUCLIDLP: 111,
EUCLID12: 16;
C
in L2 & C
in L6 by
A16,
A10,
EUCLID_4: 41;
then L2
= L6 by
A29,
XBOOLE_0: 3,
EUCLIDLP: 71;
then A
in (
Line (B,C)) by
A16,
A10,
EUCLID_4: 41;
hence contradiction by
A1,
A6,
MENELAUS: 13;
end;
then
A30: not L1
// L5 by
A25,
EUCLIDLP: 71;
not L1 is
being_point & not L5 is
being_point by
A15,
A9,
A6,
Th31,
EUCLID12: 9;
then
A31: (L1
/\ L5)
=
{D} by
A24,
EUCLID12: 22,
A30,
EUCLID12: 21;
L3
<> L5
proof
assume L3
= L5;
then
A32: L4
// L6 by
A17,
A14,
EUCLIDLP: 111,
EUCLID12: 16;
A
in L4 & A
in L6 by
A16,
A13,
EUCLID_4: 41;
then (
Line (A,B))
= (
Line (C,A)) by
A16,
A13,
A32,
XBOOLE_0: 3,
EUCLIDLP: 71;
then C
in (
Line (A,B)) by
EUCLID_4: 41;
hence contradiction by
A7,
A6,
MENELAUS: 13;
end;
then
A33: not L3
// L5 by
A25,
EUCLIDLP: 71;
not L3 is
being_point & not L5 is
being_point by
A15,
A12,
A6,
Th31,
EUCLID12: 9;
then (L3
/\ L5)
=
{D} by
A24,
EUCLID12: 22,
A33,
EUCLID12: 21;
hence thesis by
A28,
A31,
A9,
A12,
A15;
end;
end;
definition
let A,B,C be
Point of (
TOP-REAL 2);
assume
A1: (A,B,C)
is_a_triangle ;
::
EUCLID13:def4
func
the_orthocenter (A,B,C) ->
Point of (
TOP-REAL 2) means ((
the_altitude (A,B,C))
/\ (
the_altitude (B,C,A)))
=
{it } & ((
the_altitude (B,C,A))
/\ (
the_altitude (C,A,B)))
=
{it } & ((
the_altitude (C,A,B))
/\ (
the_altitude (A,B,C)))
=
{it };
existence by
A1,
Th56;
uniqueness by
ZFMISC_1: 3;
end
begin
theorem ::
EUCLID13:68
Th57: B
<> A implies (((
sin (
angle (B,A,C)))
+ (
sin (
angle (C,B,A))))
* (
|.(C
- B).|
-
|.(C
- A).|))
= (((
sin (
angle (B,A,C)))
- (
sin (
angle (C,B,A))))
* (
|.(C
- B).|
+
|.(C
- A).|))
proof
assume B
<> A;
then (
|.(C
- B).|
* (
sin (
angle (C,B,A))))
= (
|.(C
- A).|
* (
sin (
angle (B,A,C)))) by
EUCLID_6: 6;
hence thesis;
end;
theorem ::
EUCLID13:69
Th58: B
<> A implies (((
sin (((
angle (B,A,C))
+ (
angle (C,B,A)))
/ 2))
* (
cos (((
angle (B,A,C))
- (
angle (C,B,A)))
/ 2)))
* (
|.(C
- B).|
-
|.(C
- A).|))
= (((
sin (((
angle (B,A,C))
- (
angle (C,B,A)))
/ 2))
* (
cos (((
angle (B,A,C))
+ (
angle (C,B,A)))
/ 2)))
* (
|.(C
- B).|
+
|.(C
- A).|))
proof
assume B
<> A;
then
A1: (((
sin (
angle (B,A,C)))
+ (
sin (
angle (C,B,A))))
* (
|.(C
- B).|
-
|.(C
- A).|))
= (((
sin (
angle (B,A,C)))
- (
sin (
angle (C,B,A))))
* (
|.(C
- B).|
+
|.(C
- A).|)) by
Th57;
set BAC = (
angle (B,A,C)), CBA = (
angle (C,B,A));
((
sin BAC)
+ (
sin CBA))
= (2
* ((
cos ((BAC
- CBA)
/ 2))
* (
sin ((BAC
+ CBA)
/ 2)))) by
SIN_COS4: 15;
then ((2
* ((
cos ((BAC
- CBA)
/ 2))
* (
sin ((BAC
+ CBA)
/ 2))))
* (
|.(C
- B).|
-
|.(C
- A).|))
= ((2
* ((
cos ((BAC
+ CBA)
/ 2))
* (
sin ((BAC
- CBA)
/ 2))))
* (
|.(C
- B).|
+
|.(C
- A).|)) by
A1,
SIN_COS4: 16;
hence thesis;
end;
theorem ::
EUCLID13:70
Th59: (A,B,C)
is_a_triangle & ((
angle (B,A,C))
- (
angle (C,B,A)))
<>
PI & ((
angle (B,A,C))
- (
angle (C,B,A)))
<> (
-
PI ) implies (
cos (((
angle (B,A,C))
- (
angle (C,B,A)))
/ 2))
<>
0
proof
assume that
A1: (A,B,C)
is_a_triangle and
A2: ((
angle (B,A,C))
- (
angle (C,B,A)))
<>
PI and
A3: ((
angle (B,A,C))
- (
angle (C,B,A)))
<> (
-
PI );
assume
A4: (
cos (((
angle (B,A,C))
- (
angle (C,B,A)))
/ 2))
=
0 ;
consider i0 be
Integer such that
A5: (((
angle (B,A,C))
- (
angle (C,B,A)))
/ 2)
= ((
PI
/ 2)
+ (
PI
* i0)) by
A4,
BORSUK_7: 8;
set a = ((
angle (B,A,C))
- (
angle (C,B,A)));
A6:
0
<= (
angle (B,A,C))
< (2
*
PI ) &
0
<= (
angle (C,B,A))
< (2
*
PI ) by
EUCLID11: 2;
then
A7:
0
< (
angle (B,A,C))
< (2
*
PI ) &
0
< (
angle (C,B,A))
< (2
*
PI ) by
A1,
EUCLID10: 30;
A8: (
0
- (2
*
PI ))
< ((
angle (B,A,C))
- (
angle (C,B,A))) by
A7,
XREAL_1: 14;
((
angle (B,A,C))
- (
angle (C,B,A)))
< ((2
*
PI )
-
0 ) by
A6,
XREAL_1: 14;
then (((
- 2)
*
PI )
/
PI )
< (((1
+ (2
* i0))
*
PI )
/
PI )
< ((2
*
PI )
/
PI ) &
PI
<>
0 by
A8,
A5,
COMPTRIG: 5,
XREAL_1: 74;
then ((
- 2)
* (
PI
/
PI ))
< ((1
+ (2
* i0))
* (
PI
/
PI ))
< (2
* (
PI
/
PI )) & (
PI
/
PI )
= 1 by
XCMPLX_1: 60;
then ((
- 2)
- 1)
< ((1
+ (2
* i0))
- 1)
< (2
- 1) by
XREAL_1: 14;
then ((
- 3)
/ 2)
< ((2
* i0)
/ 2)
< (1
/ 2) by
XREAL_1: 74;
then i0
=
0 or i0
= (
- 1) by
Th2;
hence contradiction by
A5,
A2,
A3;
end;
theorem ::
EUCLID13:71
Th60: (A,C,B)
is_a_triangle & (
angle (A,C,B))
<
PI implies (
tan (((
angle (B,A,C))
- (
angle (C,B,A)))
/ 2))
= ((
cot ((
angle (A,C,B))
/ 2))
* ((
|.(C
- B).|
-
|.(C
- A).|)
/ (
|.(C
- B).|
+
|.(C
- A).|)))
proof
assume that
A1: (A,C,B)
is_a_triangle and
A2: (
angle (A,C,B))
<
PI ;
A3: (A,C,B)
are_mutually_distinct by
A1,
EUCLID_6: 20;
A4: (A,B,C)
is_a_triangle by
A1,
MENELAUS: 15;
then
A5: (((
angle (B,A,C))
- (
angle (C,B,A)))
<>
PI & ((
angle (B,A,C))
- (
angle (C,B,A)))
<> (
-
PI )) by
Th25,
Th26;
set alpha = (((
angle (B,A,C))
- (
angle (C,B,A)))
/ 2), beta = (((
angle (B,A,C))
+ (
angle (C,B,A)))
/ 2);
(
angle (A,C,B))
= (
PI
- ((
angle (C,B,A))
+ (
angle (B,A,C)))) by
A1,
A2,
Th23;
then
A8: beta
= ((
PI
/ 2)
- ((
angle (A,C,B))
/ 2));
set a2 = ((
angle (A,C,B))
/ 2);
A9: (
sin beta)
= (
cos a2) & (
cos beta)
= (
sin a2) by
A8,
SIN_COS: 79;
A10: (
sin a2)
<>
0 by
A1,
Th21;
A11: (
|.(C
- B).|
+
|.(C
- A).|)
<>
0
proof
|.(C
- B).|
<>
0 &
|.(C
- A).|
<>
0 by
A3,
EUCLID_6: 42;
hence thesis;
end;
(((
sin beta)
* (
cos alpha))
* (
|.(C
- B).|
-
|.(C
- A).|))
= (((
sin alpha)
* (
cos beta))
* (
|.(C
- B).|
+
|.(C
- A).|)) by
A3,
Th58;
then ((((
|.(C
- B).|
-
|.(C
- A).|)
* (
cos a2))
* (
cos alpha))
/ (
cos alpha))
= ((((
|.(C
- B).|
+
|.(C
- A).|)
* (
sin a2))
* (
sin alpha))
/ (
cos alpha)) by
A9;
then (((
|.(C
- B).|
-
|.(C
- A).|)
* (
cos a2))
* ((
cos alpha)
/ (
cos alpha)))
= (((
|.(C
- B).|
+
|.(C
- A).|)
* (
sin a2))
* ((
sin alpha)
/ (
cos alpha)));
then (((
|.(C
- B).|
-
|.(C
- A).|)
* (
cos a2))
* 1)
= (((
|.(C
- B).|
+
|.(C
- A).|)
* (
sin a2))
* ((
sin alpha)
/ (
cos alpha))) by
A5,
A4,
Th59,
XCMPLX_1: 60;
then (((
|.(C
- B).|
-
|.(C
- A).|)
* (
cos a2))
/ (
sin a2))
= ((((
|.(C
- B).|
+
|.(C
- A).|)
* (
tan alpha))
* (
sin a2))
/ (
sin a2));
then ((
|.(C
- B).|
-
|.(C
- A).|)
* ((
cos a2)
/ (
sin a2)))
= (((
|.(C
- B).|
+
|.(C
- A).|)
* (
tan alpha))
* ((
sin a2)
/ (
sin a2)))
.= (((
|.(C
- B).|
+
|.(C
- A).|)
* (
tan alpha))
* 1) by
A10,
XCMPLX_1: 60;
then (((
tan alpha)
* (
|.(C
- B).|
+
|.(C
- A).|))
/ (
|.(C
- B).|
+
|.(C
- A).|))
= (((
cot a2)
* (
|.(C
- B).|
-
|.(C
- A).|))
/ (
|.(C
- B).|
+
|.(C
- A).|));
then ((
tan alpha)
* ((
|.(C
- B).|
+
|.(C
- A).|)
/ (
|.(C
- B).|
+
|.(C
- A).|)))
= ((
cot a2)
* ((
|.(C
- B).|
-
|.(C
- A).|)
/ (
|.(C
- B).|
+
|.(C
- A).|)));
then ((
tan alpha)
* 1)
= ((
cot a2)
* ((
|.(C
- B).|
-
|.(C
- A).|)
/ (
|.(C
- B).|
+
|.(C
- A).|))) by
A11,
XCMPLX_1: 60;
hence thesis;
end;
theorem ::
EUCLID13:72
Th61: (A,C,B)
is_a_triangle & (
angle (A,C,B))
<
PI implies (((
angle (B,A,C))
- (
angle (C,B,A)))
/ 2)
= (
arctan ((
cot ((
angle (A,C,B))
/ 2))
* ((
|.(C
- B).|
-
|.(C
- A).|)
/ (
|.(C
- B).|
+
|.(C
- A).|))))
proof
assume that
A1: (A,C,B)
is_a_triangle and
A2: (
angle (A,C,B))
<
PI ;
set r = (((
angle (B,A,C))
- (
angle (C,B,A)))
/ 2);
A3: (
tan r)
= ((
cot ((
angle (A,C,B))
/ 2))
* ((
|.(C
- B).|
-
|.(C
- A).|)
/ (
|.(C
- B).|
+
|.(C
- A).|))) by
A1,
A2,
Th60;
0
<= (
angle (A,C,B)) by
EUCLID11: 2;
then
A4:
0
< (
angle (A,C,B))
<
PI & (A,C,B)
are_mutually_distinct by
A1,
A2,
EUCLID10: 30,
EUCLID_6: 20;
0
< (
angle (B,A,C))
<
PI & (A,B,C)
is_a_triangle by
A4,
EUCLID11: 5,
A1,
MENELAUS: 15;
then (
- (
PI
/ 2))
< r
< (
PI
/ 2) by
Th29;
hence thesis by
A3,
SIN_COS9: 35;
end;
theorem ::
EUCLID13:73
Th62: (A,C,B)
is_a_triangle & (
angle (A,C,B))
<
PI implies ((
angle (B,A,C))
- (
angle (C,B,A)))
= (2
* (
arctan ((
cot ((
angle (A,C,B))
/ 2))
* ((
|.(C
- B).|
-
|.(C
- A).|)
/ (
|.(C
- B).|
+
|.(C
- A).|)))))
proof
assume (A,C,B)
is_a_triangle & (
angle (A,C,B))
<
PI ;
then (((
angle (B,A,C))
- (
angle (C,B,A)))
/ 2)
= (
arctan ((
cot ((
angle (A,C,B))
/ 2))
* ((
|.(C
- B).|
-
|.(C
- A).|)
/ (
|.(C
- B).|
+
|.(C
- A).|)))) by
Th61;
hence thesis;
end;
theorem ::
EUCLID13:74
(A,C,B)
is_a_triangle & (
angle (A,C,B))
<
PI implies (
angle (B,A,C))
= (((
arctan ((
cot ((
angle (A,C,B))
/ 2))
* ((
|.(C
- B).|
-
|.(C
- A).|)
/ (
|.(C
- B).|
+
|.(C
- A).|))))
+ (
PI
/ 2))
- ((
angle (A,C,B))
/ 2)) & (
angle (C,B,A))
= (((
PI
/ 2)
- ((
angle (A,C,B))
/ 2))
- (
arctan ((
cot ((
angle (A,C,B))
/ 2))
* ((
|.(C
- B).|
-
|.(C
- A).|)
/ (
|.(C
- B).|
+
|.(C
- A).|)))))
proof
assume (A,C,B)
is_a_triangle & (
angle (A,C,B))
<
PI ;
then ((
angle (B,A,C))
- (
angle (C,B,A)))
= (2
* (
arctan ((
cot ((
angle (A,C,B))
/ 2))
* ((
|.(C
- B).|
-
|.(C
- A).|)
/ (
|.(C
- B).|
+
|.(C
- A).|))))) & ((
angle (B,A,C))
+ (
angle (C,B,A)))
= (
PI
- (
angle (A,C,B))) by
Th62,
Th24;
hence thesis;
end;
theorem ::
EUCLID13:75
Th63: (A,C,B)
is_a_triangle & (
angle (A,C,B))
<
PI implies
|.(B
- C).|
= ((
|.(A
- B).|
* (
sin (
angle (B,A,C))))
/ (
sin ((
angle (B,A,C))
+ (
angle (C,B,A)))))
proof
assume that
A1: (A,C,B)
is_a_triangle and
A2: (
angle (A,C,B))
<
PI ;
A3: (A,C,B)
are_mutually_distinct by
A1,
EUCLID_6: 20;
A4:
|.(B
- C).|
= ((
|.(A
- B).|
* (
sin (
angle (B,A,C))))
/ (
sin (
angle (A,C,B))))
proof
(
|.(B
- A).|
* (
sin (
angle (B,A,C))))
= (
|.(B
- C).|
* (
sin (
angle (A,C,B)))) by
A3,
EUCLID_6: 6;
then ((
|.(A
- B).|
* (
sin (
angle (B,A,C))))
/ (
sin (
angle (A,C,B))))
= ((
|.(B
- C).|
* (
sin (
angle (A,C,B))))
/ (
sin (
angle (A,C,B)))) by
EUCLID_6: 43
.= (
|.(B
- C).|
* ((
sin (
angle (A,C,B)))
/ (
sin (
angle (A,C,B)))))
.= (
|.(B
- C).|
* 1) by
A1,
Th22,
XCMPLX_1: 60
.=
|.(B
- C).|;
hence thesis;
end;
(
angle (A,C,B))
= (
PI
- ((
angle (C,B,A))
+ (
angle (B,A,C)))) by
A1,
A2,
Th23;
hence thesis by
A4,
EUCLID10: 1;
end;
theorem ::
EUCLID13:76
Th64: (A,C,B)
is_a_triangle & (
angle (A,C,B))
<
PI implies
|.(A
- C).|
= ((
|.(A
- B).|
* (
sin (
angle (C,B,A))))
/ (
sin ((
angle (B,A,C))
+ (
angle (C,B,A)))))
proof
assume that
A1: (A,C,B)
is_a_triangle and
A2: (
angle (A,C,B))
<
PI ;
A3: (A,C,B)
are_mutually_distinct by
A1,
EUCLID_6: 20;
A4:
|.(A
- C).|
= ((
|.(A
- B).|
* (
sin (
angle (C,B,A))))
/ (
sin (
angle (A,C,B))))
proof
((
|.(A
- B).|
* (
sin (
angle (C,B,A))))
/ (
sin (
angle (A,C,B))))
= ((
|.(A
- C).|
* (
sin (
angle (A,C,B))))
/ (
sin (
angle (A,C,B)))) by
A3,
EUCLID_6: 6
.= (
|.(A
- C).|
* ((
sin (
angle (A,C,B)))
/ (
sin (
angle (A,C,B)))))
.= (
|.(A
- C).|
* 1) by
A1,
Th22,
XCMPLX_1: 60
.=
|.(A
- C).|;
hence thesis;
end;
(
angle (A,C,B))
= (
PI
- ((
angle (C,B,A))
+ (
angle (B,A,C))))
proof
(A,C,B)
are_mutually_distinct by
A1,
EUCLID_6: 20;
then (((
angle (A,C,B))
+ (
angle (C,B,A)))
+ (
angle (B,A,C)))
=
PI by
A2,
EUCLID_3: 47;
hence thesis;
end;
hence thesis by
A4,
EUCLID10: 1;
end;
theorem ::
EUCLID13:77
Th65: (A,C,B)
is_a_triangle & (
angle (C,A,B))
= (
PI
/ 2) implies (
the_length_of_the_altitude (C,A,B))
= (
|.(A
- B).|
* (
tan (
angle (A,B,C))))
proof
assume that
A1: (A,C,B)
is_a_triangle and
A2: (
angle (C,A,B))
= (
PI
/ 2);
A3: (A,C,B)
are_mutually_distinct by
A1,
EUCLID_6: 20;
then
|((B
- A), (C
- A))|
=
0 by
A2,
EUCLID_3: 45;
then
A4:
|((A
- B), (A
- C))|
=
0 by
Th10;
((
tan (
angle (A,B,C)))
*
|.(A
- B).|)
= ((
|.(A
- C).|
/
|.(A
- B).|)
*
|.(A
- B).|) by
A1,
A2,
EUCLID10: 35
.=
|.(A
- C).| by
A3,
EUCLID_6: 42,
XCMPLX_1: 87
.=
|.(C
- A).| by
EUCLID_6: 43;
then ((
tan (
angle (A,B,C)))
*
|.(A
- B).|)
=
|.((
the_foot_of_the_altitude (C,A,B))
- C).| by
A4,
A3,
Th47
.=
|.(C
- (
the_foot_of_the_altitude (C,A,B))).| by
EUCLID_6: 43;
hence thesis by
A3,
Def3;
end;
theorem ::
EUCLID13:78
Th66: (A,B,C)
is_a_triangle & (
angle (C,A,B))
= ((3
/ 2)
*
PI ) implies (
the_length_of_the_altitude (C,A,B))
= (
|.(A
- B).|
* (
tan (
angle (C,B,A))))
proof
assume that
A1: (A,B,C)
is_a_triangle and
A2: (
angle (C,A,B))
= ((3
/ 2)
*
PI );
A3: (A,B,C)
are_mutually_distinct by
A1,
EUCLID_6: 20;
then
|((C
- A), (B
- A))|
=
0 by
A2,
EUCLID_3: 45;
then
A4:
|((A
- B), (A
- C))|
=
0 by
Th10;
(
angle (B,A,C))
= ((2
*
PI )
- ((3
/ 2)
*
PI )) by
A1,
A2,
EUCLID10: 31
.= (
PI
/ 2);
then ((
tan (
angle (C,B,A)))
*
|.(A
- B).|)
= ((
|.(A
- C).|
/
|.(A
- B).|)
*
|.(A
- B).|) by
A1,
EUCLID10: 35
.=
|.(A
- C).| by
A3,
EUCLID_6: 42,
XCMPLX_1: 87
.=
|.(C
- A).| by
EUCLID_6: 43;
then (
|.(A
- B).|
* (
tan (
angle (C,B,A))))
=
|.((
the_foot_of_the_altitude (C,A,B))
- C).| by
A4,
A3,
Th47
.=
|.(C
- (
the_foot_of_the_altitude (C,A,B))).| by
EUCLID_6: 43;
hence thesis by
A3,
Def3;
end;
theorem ::
EUCLID13:79
(A,C,B)
is_a_triangle &
|((A
- C), (A
- B))|
=
0 implies (
the_length_of_the_altitude (C,A,B))
= (
|.(A
- B).|
*
|.(
tan (
angle (A,B,C))).|)
proof
assume that
A1: (A,C,B)
is_a_triangle and
A2:
|((A
- C), (A
- B))|
=
0 ;
A3: (A,C,B)
are_mutually_distinct &
|((C
- A), (B
- A))|
=
0 by
A2,
Th10,
A1,
EUCLID_6: 20;
A4:
|.(A
- B).|
<>
0 by
A3,
EUCLID_6: 42;
per cases by
A3,
EUCLID_3: 45;
suppose (
angle (C,A,B))
= (
PI
/ 2);
then
A5: (
the_length_of_the_altitude (C,A,B))
= (
|.(A
- B).|
* (
tan (
angle (A,B,C)))) by
A1,
Th65;
then
0
<= (
tan (
angle (A,B,C))) by
A4,
A3,
Th46;
hence thesis by
A5,
ABSVALUE:def 1;
end;
suppose
A6: (
angle (C,A,B))
= ((3
/ 2)
*
PI );
A7: (A,B,C)
is_a_triangle by
A1,
MENELAUS: 15;
(
tan (
angle (C,B,A)))
= (
tan ((2
*
PI )
- (
angle (A,B,C)))) by
A1,
EUCLID10: 31
.= (
- (
tan (
angle (A,B,C)))) by
Th6;
then
A8: ((
- (
tan (
angle (A,B,C))))
*
|.(A
- B).|)
= (
the_length_of_the_altitude (C,A,B)) by
A7,
A6,
Th66;
then (
tan (
angle (A,B,C)))
<=
0 by
A4,
A3,
Th46;
hence thesis by
A8,
ABSVALUE: 30;
end;
end;
theorem ::
EUCLID13:80
Th67: B
<> C & ((
the_foot_of_the_altitude (A,B,C)),B,A)
is_a_triangle implies (
|.(A
- B).|
* (
sin (
angle (A,B,(
the_foot_of_the_altitude (A,B,C))))))
=
|.((
the_foot_of_the_altitude (A,B,C))
- A).| or (
|.(A
- B).|
* (
- (
sin (
angle (A,B,(
the_foot_of_the_altitude (A,B,C)))))))
=
|.((
the_foot_of_the_altitude (A,B,C))
- A).|
proof
assume that
A1: B
<> C and
A2: ((
the_foot_of_the_altitude (A,B,C)),B,A)
is_a_triangle ;
|((B
- (
the_foot_of_the_altitude (A,B,C))), (A
- (
the_foot_of_the_altitude (A,B,C))))|
=
0 by
A1,
Th39;
hence thesis by
A2,
EUCLID10: 32;
end;
theorem ::
EUCLID13:81
(A,B,C)
is_a_triangle &
|((B
- A), (B
- C))|
<>
0 implies (
|.(A
- B).|
* (
sin (
angle (A,B,(
the_foot_of_the_altitude (A,B,C))))))
=
|.((
the_foot_of_the_altitude (A,B,C))
- A).| or (
|.(A
- B).|
* (
- (
sin (
angle (A,B,(
the_foot_of_the_altitude (A,B,C)))))))
=
|.((
the_foot_of_the_altitude (A,B,C))
- A).|
proof
assume that
A1: (A,B,C)
is_a_triangle and
A2:
|((B
- A), (B
- C))|
<>
0 ;
(A,B,C)
are_mutually_distinct by
A1,
EUCLID_6: 20;
hence thesis by
A1,
A2,
Th67,
Th45;
end;
theorem ::
EUCLID13:82
(A,C,B)
is_a_triangle & (
angle (A,C,B))
<
PI &
|((A
- C), (A
- B))|
<>
0 implies (
the_length_of_the_altitude (C,A,B))
= (
|.(A
- B).|
*
|.(((
sin (
angle (C,B,A)))
/ (
sin ((
angle (B,A,C))
+ (
angle (C,B,A)))))
* (
sin (
angle (C,A,(
the_foot_of_the_altitude (C,A,B)))))).|)
proof
assume that
A1: (A,C,B)
is_a_triangle and
A2: (
angle (A,C,B))
<
PI and
A3:
|((A
- C), (A
- B))|
<>
0 ;
A4:
|.(A
- C).|
= ((
|.(A
- B).|
* (
sin (
angle (C,B,A))))
/ (
sin ((
angle (B,A,C))
+ (
angle (C,B,A))))) by
A1,
A2,
Th64;
A5: (C,A,B)
is_a_triangle & (A,C,B)
are_mutually_distinct by
A1,
EUCLID_6: 20,
MENELAUS: 15;
then
|.((
the_foot_of_the_altitude (C,A,B))
- C).|
= (
|.(C
- A).|
* (
sin (
angle (C,A,(
the_foot_of_the_altitude (C,A,B)))))) or
|.((
the_foot_of_the_altitude (C,A,B))
- C).|
= (
|.(C
- A).|
* (
- (
sin (
angle (C,A,(
the_foot_of_the_altitude (C,A,B))))))) by
A3,
Th45,
Th67;
then
|.((
the_foot_of_the_altitude (C,A,B))
- C).|
= (
|.(A
- C).|
* (
sin (
angle (C,A,(
the_foot_of_the_altitude (C,A,B)))))) or
|.((
the_foot_of_the_altitude (C,A,B))
- C).|
= (
|.(A
- C).|
* (
- (
sin (
angle (C,A,(
the_foot_of_the_altitude (C,A,B))))))) by
EUCLID_6: 43;
per cases by
A4;
suppose
A7:
|.((
the_foot_of_the_altitude (C,A,B))
- C).|
= (
|.(A
- B).|
* (((
sin (
angle (C,B,A)))
/ (
sin ((
angle (B,A,C))
+ (
angle (C,B,A)))))
* (
sin (
angle (C,A,(
the_foot_of_the_altitude (C,A,B)))))));
|.(A
- B).|
<>
0 by
A5,
EUCLID_6: 42;
then
A8:
0
<= (((
sin (
angle (C,B,A)))
/ (
sin ((
angle (B,A,C))
+ (
angle (C,B,A)))))
* (
sin (
angle (C,A,(
the_foot_of_the_altitude (C,A,B)))))) by
A7;
(
the_length_of_the_altitude (C,A,B))
=
|.(C
- (
the_foot_of_the_altitude (C,A,B))).| by
A5,
Def3
.=
|.((
the_foot_of_the_altitude (C,A,B))
- C).| by
EUCLID_6: 43
.= (
|.(A
- B).|
*
|.(((
sin (
angle (C,B,A)))
/ (
sin ((
angle (B,A,C))
+ (
angle (C,B,A)))))
* (
sin (
angle (C,A,(
the_foot_of_the_altitude (C,A,B)))))).|) by
A7,
A8,
ABSVALUE:def 1;
hence thesis;
end;
suppose
A10:
|.((
the_foot_of_the_altitude (C,A,B))
- C).|
= (
|.(A
- B).|
* (
- (((
sin (
angle (C,B,A)))
/ (
sin ((
angle (B,A,C))
+ (
angle (C,B,A)))))
* (
sin (
angle (C,A,(
the_foot_of_the_altitude (C,A,B))))))));
|.(A
- B).|
<>
0 by
A5,
EUCLID_6: 42;
then
A11: (((
sin (
angle (C,B,A)))
/ (
sin ((
angle (B,A,C))
+ (
angle (C,B,A)))))
* (
sin (
angle (C,A,(
the_foot_of_the_altitude (C,A,B))))))
<=
0 by
A10;
(
the_length_of_the_altitude (C,A,B))
=
|.(C
- (
the_foot_of_the_altitude (C,A,B))).| by
A5,
Def3
.=
|.((
the_foot_of_the_altitude (C,A,B))
- C).| by
EUCLID_6: 43
.= (
|.(A
- B).|
*
|.(((
sin (
angle (C,B,A)))
/ (
sin ((
angle (B,A,C))
+ (
angle (C,B,A)))))
* (
sin (
angle (C,A,(
the_foot_of_the_altitude (C,A,B)))))).|) by
A10,
A11,
ABSVALUE: 30;
hence thesis;
end;
end;
theorem ::
EUCLID13:83
0
< (
angle (B,A,D))
<
PI &
0
< (
angle (D,A,C))
<
PI & (D,A,C)
are_mutually_distinct & (B,A,D)
are_mutually_distinct implies ((
angle (A,C,D))
+ (
angle (D,B,A)))
= ((2
*
PI )
- (((
angle (B,A,C))
+ (
angle (A,D,B)))
+ (
angle (C,D,A))))
proof
assume that
A1:
0
< (
angle (B,A,D))
<
PI and
A2:
0
< (
angle (D,A,C))
<
PI and
A3: (D,A,C)
are_mutually_distinct and
A4: (B,A,D)
are_mutually_distinct ;
A5: ((
angle (B,A,D))
+ (
angle (D,A,C)))
= (
angle (B,A,C))
proof
not ((
angle (B,A,D))
+ (
angle (D,A,C)))
= ((
angle (B,A,C))
+ (2
*
PI ))
proof
assume
A6: ((
angle (B,A,D))
+ (
angle (D,A,C)))
= ((
angle (B,A,C))
+ (2
*
PI ));
0
<= (
angle (B,A,C)) by
EUCLID11: 2;
then
A7: (
0
+ (2
*
PI ))
<= ((
angle (B,A,C))
+ (2
*
PI )) by
XREAL_1: 7;
((
angle (B,A,D))
+ (
angle (D,A,C)))
< (
PI
+
PI ) by
A1,
A2,
XREAL_1: 8;
hence contradiction by
A7,
A6;
end;
hence thesis by
EUCLID_6: 4;
end;
A8: (
angle (A,C,D))
= (
PI
- ((
angle (C,D,A))
+ (
angle (D,A,C))))
proof
(((
angle (D,A,C))
+ (
angle (A,C,D)))
+ (
angle (C,D,A)))
=
PI by
A2,
A3,
EUCLID_3: 47;
hence thesis;
end;
(
angle (D,B,A))
= (
PI
- ((
angle (A,D,B))
+ (
angle (B,A,D))))
proof
(((
angle (B,A,D))
+ (
angle (A,D,B)))
+ (
angle (D,B,A)))
=
PI by
A1,
A4,
EUCLID_3: 47;
hence thesis;
end;
hence thesis by
A8,
A5;
end;
theorem ::
EUCLID13:84
Th68: (A,C,B)
is_a_triangle & (
angle (A,C,B))
<
PI & (A,D,B)
is_a_triangle & (
angle (A,D,B))
<
PI & a
= (
angle (C,B,A)) & b
= (
angle (B,A,C)) & c
= (
angle (D,B,A)) & d
= (
angle (C,A,D)) implies (
|.(D
- C).|
^2 )
= ((
|.(A
- B).|
^2 )
* (((((
sin a)
/ (
sin (a
+ b)))
^2 )
+ (((
sin c)
/ (
sin ((b
+ d)
+ c)))
^2 ))
- (((2
* ((
sin a)
/ (
sin (b
+ a))))
* ((
sin c)
/ (
sin ((b
+ d)
+ c))))
* (
cos d))))
proof
assume that
A1: (A,C,B)
is_a_triangle and
A2: (
angle (A,C,B))
<
PI and
A3: (A,D,B)
is_a_triangle and
A4: (
angle (A,D,B))
<
PI and
A5: a
= (
angle (C,B,A)) & b
= (
angle (B,A,C)) & c
= (
angle (D,B,A)) & d
= (
angle (C,A,D));
set e = (b
+ d);
A6: e
= (
angle (B,A,D)) or e
= ((
angle (B,A,D))
+ (2
*
PI )) by
A5,
EUCLID_6: 4;
A7: (
sin (e
+ c))
= (
sin ((
angle (B,A,D))
+ (
angle (D,B,A))))
proof
(
sin (((
angle (B,A,D))
+ c)
+ (2
*
PI )))
= (
sin ((
angle (B,A,D))
+ c)) by
SIN_COS: 79;
hence thesis by
A5,
A6;
end;
A8:
|.(C
- A).|
=
|.(A
- C).| by
EUCLID_6: 43
.= ((
|.(A
- B).|
* (
sin (
angle (C,B,A))))
/ (
sin ((
angle (B,A,C))
+ (
angle (C,B,A))))) by
A1,
A2,
Th64;
then
A9: (
|.(C
- A).|
^2 )
= ((
|.(A
- B).|
* ((
sin (
angle (C,B,A)))
/ (
sin ((
angle (B,A,C))
+ (
angle (C,B,A))))))
^2 )
.= ((
|.(A
- B).|
^2 )
* (((
sin (
angle (C,B,A)))
/ (
sin ((
angle (B,A,C))
+ (
angle (C,B,A)))))
^2 )) by
SQUARE_1: 9;
A10:
|.(D
- A).|
=
|.(A
- D).| by
EUCLID_6: 43
.= ((
|.(A
- B).|
* (
sin (
angle (D,B,A))))
/ (
sin ((
angle (B,A,D))
+ (
angle (D,B,A))))) by
A3,
A4,
Th64;
then
A11: (
|.(D
- A).|
^2 )
= ((
|.(A
- B).|
* ((
sin (
angle (D,B,A)))
/ (
sin ((
angle (B,A,D))
+ (
angle (D,B,A))))))
^2 )
.= ((
|.(A
- B).|
^2 )
* (((
sin (
angle (D,B,A)))
/ (
sin ((
angle (B,A,D))
+ (
angle (D,B,A)))))
^2 )) by
SQUARE_1: 9;
(
|.(D
- C).|
^2 )
= ((((
|.(A
- B).|
^2 )
* (((
sin (
angle (C,B,A)))
/ (
sin ((
angle (B,A,C))
+ (
angle (C,B,A)))))
^2 ))
+ ((
|.(A
- B).|
^2 )
* (((
sin (
angle (D,B,A)))
/ (
sin ((
angle (B,A,D))
+ (
angle (D,B,A)))))
^2 )))
- (((2
* ((
|.(A
- B).|
* (
sin (
angle (C,B,A))))
/ (
sin ((
angle (B,A,C))
+ (
angle (C,B,A))))))
* ((
|.(A
- B).|
* (
sin (
angle (D,B,A))))
/ (
sin ((
angle (B,A,D))
+ (
angle (D,B,A))))))
* (
cos (
angle (C,A,D))))) by
A8,
A9,
A10,
A11,
EUCLID_6: 7
.= ((((
|.(A
- B).|
^2 )
* (((
sin (
angle (C,B,A)))
/ (
sin ((
angle (B,A,C))
+ (
angle (C,B,A)))))
^2 ))
+ ((
|.(A
- B).|
^2 )
* (((
sin (
angle (D,B,A)))
/ (
sin ((
angle (B,A,D))
+ (
angle (D,B,A)))))
^2 )))
- ((((2
* (((
|.(A
- B).|
*
|.(A
- B).|)
* (
sin (
angle (C,B,A))))
/ (
sin ((
angle (B,A,C))
+ (
angle (C,B,A))))))
* (
sin (
angle (D,B,A))))
/ (
sin ((
angle (B,A,D))
+ (
angle (D,B,A)))))
* (
cos (
angle (C,A,D)))))
.= ((((
|.(A
- B).|
^2 )
* (((
sin (
angle (C,B,A)))
/ (
sin ((
angle (B,A,C))
+ (
angle (C,B,A)))))
^2 ))
+ ((
|.(A
- B).|
^2 )
* (((
sin (
angle (D,B,A)))
/ (
sin ((
angle (B,A,D))
+ (
angle (D,B,A)))))
^2 )))
- ((((2
* (((
|.(A
- B).|
^2 )
* (
sin (
angle (C,B,A))))
/ (
sin ((
angle (B,A,C))
+ (
angle (C,B,A))))))
* (
sin (
angle (D,B,A))))
/ (
sin ((
angle (B,A,D))
+ (
angle (D,B,A)))))
* (
cos (
angle (C,A,D))))) by
SQUARE_1:def 1
.= ((
|.(A
- B).|
^2 )
* (((((
sin a)
/ (
sin (a
+ b)))
^2 )
+ (((
sin c)
/ (
sin (e
+ c)))
^2 ))
- (((2
* ((
sin a)
/ (
sin (b
+ a))))
* ((
sin c)
/ (
sin (e
+ c))))
* (
cos d)))) by
A5,
A7;
hence thesis;
end;
theorem ::
EUCLID13:85
Th69: ((
sin (2
* s))
* (
cos d))
= (
cos (2
* t)) implies ((((r
* (
cos s))
^2 )
+ ((r
* (
sin s))
^2 ))
- (((2
* (r
* (
cos s)))
* (r
* (
sin s)))
* (
cos d)))
= ((2
* (r
^2 ))
* ((
sin t)
^2 ))
proof
assume
A1: ((
sin (2
* s))
* (
cos d))
= (
cos (2
* t));
((((r
* (
cos s))
^2 )
+ ((r
* (
sin s))
^2 ))
- (((2
* (r
* (
cos s)))
* (r
* (
sin s)))
* (
cos d)))
= ((((r
* (
cos s))
* (r
* (
cos s)))
+ ((r
* (
sin s))
^2 ))
- (((2
* (r
* (
cos s)))
* (r
* (
sin s)))
* (
cos d))) by
SQUARE_1:def 1
.= ((((r
* (
cos s))
* (r
* (
cos s)))
+ ((r
* (
sin s))
* (r
* (
sin s))))
- (((2
* (r
* (
cos s)))
* (r
* (
sin s)))
* (
cos d))) by
SQUARE_1:def 1
.= (((r
* r)
* (((
cos s)
* (
cos s))
+ ((
sin s)
* (
sin s))))
- (((((r
* 2)
* r)
* (
cos s))
* (
sin s))
* (
cos d)))
.= (((r
* r)
* 1)
- (((((r
* 2)
* r)
* (
cos s))
* (
sin s))
* (
cos d))) by
SIN_COS: 29
.= ((r
^2 )
- (((((r
* r)
* 2)
* (
cos s))
* (
sin s))
* (
cos d))) by
SQUARE_1:def 1
.= ((r
^2 )
- (((((r
^2 )
* 2)
* (
cos s))
* (
sin s))
* (
cos d))) by
SQUARE_1:def 1
.= ((r
^2 )
- (((r
^2 )
* ((2
* (
sin s))
* (
cos s)))
* (
cos d)))
.= ((r
^2 )
- (((r
^2 )
* (
sin (2
* s)))
* (
cos d))) by
SIN_COS5: 5
.= ((r
^2 )
- ((r
^2 )
* (
cos (2
* t)))) by
A1
.= ((r
^2 )
- ((r
^2 )
* (((
cos t)
^2 )
- ((
sin t)
^2 )))) by
SIN_COS5: 7
.= ((r
^2 )
* (1
- (((
cos t)
^2 )
- ((
sin t)
^2 ))))
.= ((r
^2 )
* ((((
cos t)
^2 )
+ ((
sin t)
^2 ))
- (((
cos t)
^2 )
- ((
sin t)
^2 )))) by
SIN_COS: 29
.= ((2
* (r
^2 ))
* ((
sin t)
^2 ));
hence thesis;
end;
theorem ::
EUCLID13:86
for R,theta be
Real st D
<> C &
0
<= R & (A,C,B)
is_a_triangle & (
angle (A,C,B))
<
PI & (A,D,B)
is_a_triangle & (
angle (A,D,B))
<
PI & a
= (
angle (C,B,A)) & b
= (
angle (B,A,C)) & c
= (
angle (D,B,A)) & d
= (
angle (C,A,D)) & (R
* (
cos s))
= ((
sin a)
/ (
sin (a
+ b))) & (R
* (
sin s))
= ((
sin c)
/ (
sin ((b
+ d)
+ c))) &
0
< theta
<
PI & ((
sin (2
* s))
* (
cos d))
= (
cos (2
* theta)) holds
|.(D
- C).|
= (((
|.(A
- B).|
* (
sqrt 2))
* R)
* (
sin theta))
proof
let R,theta be
Real;
assume that
A1: D
<> C and
A2:
0
<= R and
A3: (A,C,B)
is_a_triangle & (
angle (A,C,B))
<
PI & (A,D,B)
is_a_triangle & (
angle (A,D,B))
<
PI & a
= (
angle (C,B,A)) & b
= (
angle (B,A,C)) & c
= (
angle (D,B,A)) & d
= (
angle (C,A,D)) and
A4: (R
* (
cos s))
= ((
sin a)
/ (
sin (a
+ b))) and
A5: (R
* (
sin s))
= ((
sin c)
/ (
sin ((b
+ d)
+ c))) and
A6:
0
< theta
<
PI and
A7: ((
sin (2
* s))
* (
cos d))
= (
cos (2
* theta));
A8: (
|.(D
- C).|
^2 )
= ((
|.(A
- B).|
^2 )
* ((((R
* (
cos s))
^2 )
+ ((R
* (
sin s))
^2 ))
- (((2
* (R
* (
cos s)))
* (R
* (
sin s)))
* (
cos d)))) by
A3,
A4,
A5,
Th68
.= ((
|.(A
- B).|
^2 )
* ((2
* (R
^2 ))
* ((
sin theta)
^2 ))) by
A7,
Th69;
A9:
0
< 2 & (
sqrt (2
* 2))
= 2 by
SQUARE_1: 20;
A10: ((
|.(A
- B).|
^2 )
* ((2
* (R
^2 ))
* ((
sin theta)
^2 )))
= ((
|.(A
- B).|
*
|.(A
- B).|)
* ((2
* (R
^2 ))
* ((
sin theta)
^2 ))) by
SQUARE_1:def 1
.= ((
|.(A
- B).|
*
|.(A
- B).|)
* ((((
sqrt 2)
* (
sqrt 2))
* (R
^2 ))
* ((
sin theta)
^2 ))) by
A9,
SQUARE_1: 29
.= ((
|.(A
- B).|
*
|.(A
- B).|)
* ((((
sqrt 2)
* (
sqrt 2))
* (R
* R))
* ((
sin theta)
^2 ))) by
SQUARE_1:def 1
.= ((
|.(A
- B).|
*
|.(A
- B).|)
* ((((
sqrt 2)
* (
sqrt 2))
* (R
* R))
* ((
sin theta)
* (
sin theta)))) by
SQUARE_1:def 1
.= ((((
|.(A
- B).|
* (
sqrt 2))
* R)
* (
sin theta))
* (((
|.(A
- B).|
* (
sqrt 2))
* R)
* (
sin theta)))
.= ((((
|.(A
- B).|
* (
sqrt 2))
* R)
* (
sin theta))
^2 ) by
SQUARE_1:def 1;
((2
*
PI )
*
0 )
< theta
< (((2
*
PI )
*
0 )
+
PI ) by
A6;
then
A11:
0
< (
sin theta) by
SIN_COS6: 11;
not
|.(D
- C).|
= (
- (((
|.(A
- B).|
* (
sqrt 2))
* R)
* (
sin theta)))
proof
assume
A12:
|.(D
- C).|
= (
- (((
|.(A
- B).|
* (
sqrt 2))
* R)
* (
sin theta)));
0
< (
sqrt 2) by
SQUARE_1: 25;
then
|.(D
- C).|
=
0 by
A12,
A2,
A11;
hence contradiction by
A1,
EUCLID_6: 42;
end;
hence thesis by
A10,
A8,
SQUARE_1: 40;
end;
theorem ::
EUCLID13:87
Th70: (A,C,B)
is_a_triangle & (
angle (A,C,B))
<
PI & (D,A,C)
is_a_triangle & (
angle (A,D,C))
= (
PI
/ 2) implies
|.(D
- C).|
= (((
|.(A
- B).|
* (
sin (
angle (C,B,A))))
/ (
sin ((
angle (B,A,C))
+ (
angle (C,B,A)))))
* (
sin (
angle (C,A,D))))
proof
assume that
A1: (A,C,B)
is_a_triangle and
A2: (
angle (A,C,B))
<
PI and
A3: (D,A,C)
is_a_triangle and
A4: (
angle (A,D,C))
= (
PI
/ 2);
|.(D
- C).|
= (
|.(C
- A).|
* (
sin (
angle (C,A,D)))) by
A3,
A4,
EUCLID10: 34
.= (
|.(A
- C).|
* (
sin (
angle (C,A,D)))) by
EUCLID_6: 43
.= (((
|.(A
- B).|
* (
sin (
angle (C,B,A))))
/ (
sin ((
angle (B,A,C))
+ (
angle (C,B,A)))))
* (
sin (
angle (C,A,D)))) by
A1,
A2,
Th64;
hence thesis;
end;
theorem ::
EUCLID13:88
Th71: (B,C,A)
is_a_triangle & (
angle (B,C,A))
<
PI & (D,C,A)
is_a_triangle & (
angle (C,D,A))
= (
PI
/ 2) implies
|.(D
- C).|
= (((
|.(A
- B).|
* (
sin (
angle (A,B,C))))
/ (
sin ((
angle (A,B,C))
+ (
angle (C,A,B)))))
* (
sin (
angle (D,A,C))))
proof
assume that
A1: (B,C,A)
is_a_triangle and
A2: (
angle (B,C,A))
<
PI and
A3: (D,C,A)
is_a_triangle and
A4: (
angle (C,D,A))
= (
PI
/ 2);
|.(D
- C).|
= (
|.(A
- C).|
* (
sin (
angle (D,A,C)))) by
A3,
A4,
EUCLID10: 34
.= (((
|.(B
- A).|
* (
sin (
angle (A,B,C))))
/ (
sin ((
angle (A,B,C))
+ (
angle (C,A,B)))))
* (
sin (
angle (D,A,C)))) by
A1,
A2,
Th63;
hence thesis by
EUCLID_6: 43;
end;
theorem ::
EUCLID13:89
(A,C,B)
is_a_triangle & (
angle (A,C,B))
<
PI & (D,A,C)
is_a_triangle & (
angle (A,D,C))
= (
PI
/ 2) & A
in (
LSeg (B,D)) & A
<> D implies
|.(D
- C).|
= (((
|.(A
- B).|
* (
sin (
angle (C,B,A))))
/ (
sin ((
angle (C,A,D))
- (
angle (C,B,A)))))
* (
sin (
angle (C,A,D))))
proof
assume that
A1: (A,C,B)
is_a_triangle and
A2: (
angle (A,C,B))
<
PI and
A3: (D,A,C)
is_a_triangle and
A4: (
angle (A,D,C))
= (
PI
/ 2) and
A5: A
in (
LSeg (B,D)) and
A6: A
<> D;
(A,C,B)
are_mutually_distinct by
A1,
EUCLID_6: 20;
then ((
angle (B,A,C))
+ (
angle (C,A,D)))
=
PI or ((
angle (B,A,C))
+ (
angle (C,A,D)))
= (3
*
PI ) by
A5,
A6,
EUCLID_6: 13;
then (
sin ((
angle (B,A,C))
+ (
angle (C,B,A))))
= (
sin (
PI
- ((
angle (C,A,D))
- (
angle (C,B,A))))) or (
sin ((
angle (B,A,C))
+ (
angle (C,B,A))))
= (
sin (((2
*
PI )
* 1)
+ (
PI
- ((
angle (C,A,D))
- (
angle (C,B,A))))));
then (
sin ((
angle (B,A,C))
+ (
angle (C,B,A))))
= (
sin (
PI
- ((
angle (C,A,D))
- (
angle (C,B,A))))) or (
sin ((
angle (B,A,C))
+ (
angle (C,B,A))))
= (
sin (
PI
- ((
angle (C,A,D))
- (
angle (C,B,A))))) by
COMPLEX2: 8;
then (
sin ((
angle (B,A,C))
+ (
angle (C,B,A))))
= (
sin ((
angle (C,A,D))
- (
angle (C,B,A)))) by
EUCLID10: 1;
hence thesis by
A1,
A2,
A3,
A4,
Th70;
end;
theorem ::
EUCLID13:90
(B,C,A)
is_a_triangle & (
angle (B,C,A))
<
PI & (D,C,A)
is_a_triangle & (
angle (C,D,A))
= (
PI
/ 2) & A
in (
LSeg (D,B)) & A
<> D implies
|.(D
- C).|
= (((
|.(A
- B).|
* (
sin (
angle (A,B,C))))
/ (
sin ((
angle (D,A,C))
- (
angle (A,B,C)))))
* (
sin (
angle (D,A,C))))
proof
assume that
A1: (B,C,A)
is_a_triangle and
A2: (
angle (B,C,A))
<
PI and
A3: (D,C,A)
is_a_triangle and
A4: (
angle (C,D,A))
= (
PI
/ 2) and
A5: A
in (
LSeg (D,B)) and
A6: A
<> D;
(B,C,A)
are_mutually_distinct by
A1,
EUCLID_6: 20;
then
A7: ((
angle (D,A,C))
+ (
angle (C,A,B)))
=
PI or ((
angle (D,A,C))
+ (
angle (C,A,B)))
= (3
*
PI ) by
A5,
A6,
EUCLID_6: 13;
(
sin ((
angle (C,A,B))
+ (
angle (A,B,C))))
= (
sin ((
angle (D,A,C))
- (
angle (A,B,C))))
proof
per cases by
A7;
suppose (
angle (C,A,B))
= (
PI
- (
angle (D,A,C)));
then (
sin ((
angle (C,A,B))
+ (
angle (A,B,C))))
= (
sin (
PI
- ((
angle (D,A,C))
- (
angle (A,B,C)))))
.= (
sin ((
angle (D,A,C))
- (
angle (A,B,C)))) by
EUCLID10: 1;
hence thesis;
end;
suppose (
angle (C,A,B))
= ((3
*
PI )
- (
angle (D,A,C)));
then (
sin ((
angle (C,A,B))
+ (
angle (A,B,C))))
= (
sin (((2
*
PI )
* 1)
+ (
PI
- ((
angle (D,A,C))
- (
angle (A,B,C))))))
.= (
sin (
PI
- ((
angle (D,A,C))
- (
angle (A,B,C))))) by
COMPLEX2: 8
.= (
sin ((
angle (D,A,C))
- (
angle (A,B,C)))) by
EUCLID10: 1;
hence thesis;
end;
end;
hence thesis by
A1,
A2,
A3,
A4,
Th71;
end;