integra8.miz
begin
reserve f,f1,f2,g for
PartFunc of
REAL ,
REAL ;
reserve A for non
empty
closed_interval
Subset of
REAL ;
reserve p,r,x,x0 for
Real;
reserve n for
Element of
NAT ;
reserve Z for
open
Subset of
REAL ;
Lm1: (
sin (
PI
/ 4))
>
0
proof
(
PI
/ 4)
< (
PI
/ 1) by
XREAL_1: 76;
then
A1: (
PI
/ 4)
< (
PI
+ ((2
*
PI )
*
0 ));
(
0
/ 4)
< (
PI
/ 4) by
XREAL_1: 74;
hence thesis by
A1,
SIN_COS6: 11;
end;
Lm2: (
sin (
- (
PI
/ 4)))
<
0
proof
(
0
/ 4)
< (
PI
/ 4) by
XREAL_1: 74;
then
A1: ((
PI
/ 4)
* (
- 1))
< (
0
* (
- 1)) by
XREAL_1: 69;
(
PI
/ 4)
< (
PI
/ 1) by
XREAL_1: 76;
then
A2: (
PI
* (
- 1))
< ((
PI
/ 4)
* (
- 1)) by
XREAL_1: 69;
(
PI
+ ((2
*
PI )
* (
- 1)))
< r & r
< ((2
*
PI )
+ ((2
*
PI )
* (
- 1))) implies (
sin r)
<
0 by
SIN_COS6: 12;
hence thesis by
A1,
A2;
end;
theorem ::
INTEGRA8:1
Th1: (
sin (x
+ ((2
* n)
*
PI )))
= (
sin x)
proof
(
sin
. x)
= (
sin
. (((2
*
PI )
* n)
+ x)) by
SIN_COS2: 10;
hence thesis;
end;
theorem ::
INTEGRA8:2
Th2: (
sin (x
+ (((2
* n)
+ 1)
*
PI )))
= (
- (
sin x))
proof
defpred
X[
Nat] means (
sin (x
+ (((2
* $1)
+ 1)
*
PI )))
= (
- (
sin x));
A1: for n be
Nat st
X[n] holds
X[(n
+ 1)]
proof
let n be
Nat;
assume
A2: (
sin (x
+ (((2
* n)
+ 1)
*
PI )))
= (
- (
sin x));
(
sin (x
+ (((2
* (n
+ 1))
+ 1)
*
PI )))
= (
sin ((x
+ (((2
* n)
+ 1)
*
PI ))
+ (2
*
PI )))
.= (((
sin (x
+ (((2
* n)
+ 1)
*
PI )))
* (
cos (2
*
PI )))
+ ((
cos (x
+ (((2
* n)
+ 1)
*
PI )))
* (
sin (2
*
PI )))) by
SIN_COS: 75
.= (
- (
sin x)) by
A2,
SIN_COS: 77;
hence thesis;
end;
A3:
X[
0 ] by
SIN_COS: 79;
for n be
Nat holds
X[n] from
NAT_1:sch 2(
A3,
A1);
hence thesis;
end;
theorem ::
INTEGRA8:3
Th3: (
cos (x
+ ((2
* n)
*
PI )))
= (
cos x)
proof
(
cos
. x)
= (
cos
. (x
+ ((2
*
PI )
* n))) by
SIN_COS6: 10;
hence thesis;
end;
theorem ::
INTEGRA8:4
Th4: (
cos (x
+ (((2
* n)
+ 1)
*
PI )))
= (
- (
cos x))
proof
defpred
X[
Nat] means (
cos (x
+ (((2
* $1)
+ 1)
*
PI )))
= (
- (
cos x));
A1: for n be
Nat st
X[n] holds
X[(n
+ 1)]
proof
let n be
Nat;
assume
A2: (
cos (x
+ (((2
* n)
+ 1)
*
PI )))
= (
- (
cos x));
(
cos (x
+ (((2
* (n
+ 1))
+ 1)
*
PI )))
= (
cos ((x
+ (((2
* n)
+ 1)
*
PI ))
+ (2
*
PI )))
.= (((
cos (x
+ (((2
* n)
+ 1)
*
PI )))
* (
cos (2
*
PI )))
- ((
sin (x
+ (((2
* n)
+ 1)
*
PI )))
* (
sin (2
*
PI )))) by
SIN_COS: 75
.= (
- (
cos x)) by
A2,
SIN_COS: 77;
hence thesis;
end;
A3:
X[
0 ] by
SIN_COS: 79;
for n be
Nat holds
X[n] from
NAT_1:sch 2(
A3,
A1);
hence thesis;
end;
theorem ::
INTEGRA8:5
Th5: (
sin (x
/ 2))
>=
0 implies (
sin (x
/ 2))
= (
sqrt ((1
- (
cos x))
/ 2))
proof
assume
A1: (
sin (x
/ 2))
>=
0 ;
(
sqrt ((1
- (
cos x))
/ 2))
= (
sqrt ((1
- (
cos (2
* (x
/ 2))))
/ 2))
.= (
sqrt ((1
- (1
- (2
* ((
sin (x
/ 2))
^2 ))))
/ 2)) by
SIN_COS5: 7
.=
|.(
sin (x
/ 2)).| by
COMPLEX1: 72
.= (
sin (x
/ 2)) by
A1,
ABSVALUE:def 1;
hence thesis;
end;
theorem ::
INTEGRA8:6
Th6: (
sin (x
/ 2))
<
0 implies (
sin (x
/ 2))
= (
- (
sqrt ((1
- (
cos x))
/ 2)))
proof
assume
A1: (
sin (x
/ 2))
<
0 ;
(
sqrt ((1
- (
cos x))
/ 2))
= (
sqrt ((1
- (
cos (2
* (x
/ 2))))
/ 2))
.= (
sqrt ((1
- (1
- (2
* ((
sin (x
/ 2))
^2 ))))
/ 2)) by
SIN_COS5: 7
.=
|.(
sin (x
/ 2)).| by
COMPLEX1: 72
.= (
- (
sin (x
/ 2))) by
A1,
ABSVALUE:def 1;
hence thesis;
end;
theorem ::
INTEGRA8:7
Th7: (
sin (
PI
/ 4))
= ((
sqrt 2)
/ 2)
proof
A1: (
sqrt 2)
>
0 by
SQUARE_1: 25;
(
sin ((
PI
/ 2)
/ 2))
= (
sqrt ((1
- (
cos (
PI
/ 2)))
/ 2)) by
Lm1,
Th5;
then (
sin (
PI
/ 4))
= (1
/ (
sqrt 2)) by
SIN_COS: 77,
SQUARE_1: 18,
SQUARE_1: 30
.= (((
sqrt 2)
* 1)
/ ((
sqrt 2)
* (
sqrt 2))) by
A1,
XCMPLX_1: 91
.= (((
sqrt 2)
* 1)
/ ((
sqrt 2)
^2 ));
hence thesis by
SQUARE_1:def 2;
end;
theorem ::
INTEGRA8:8
Th8: (
sin (
- (
PI
/ 4)))
= (
- ((
sqrt 2)
/ 2))
proof
A1: (
cos (
- (
PI
/ 2)))
= (
sin ((
PI
/ 2)
- (
- (
PI
/ 2)))) by
SIN_COS: 79
.=
0 by
SIN_COS: 77;
A2: (
sqrt 2)
>
0 by
SQUARE_1: 25;
(
sin ((
- (
PI
/ 2))
/ 2))
= (
- (
sqrt ((1
- (
cos (
- (
PI
/ 2))))
/ 2))) by
Lm2,
Th6;
then (
sin (
- (
PI
/ 4)))
= (
- (1
/ (
sqrt 2))) by
A1,
SQUARE_1: 18,
SQUARE_1: 30
.= (
- (((
sqrt 2)
* 1)
/ ((
sqrt 2)
* (
sqrt 2)))) by
A2,
XCMPLX_1: 91
.= (
- (((
sqrt 2)
* 1)
/ ((
sqrt 2)
^2 )));
hence thesis by
SQUARE_1:def 2;
end;
theorem ::
INTEGRA8:9
Th9:
[.(
- ((
sqrt 2)
/ 2)), ((
sqrt 2)
/ 2).]
c=
].(
- 1), 1.[
proof
A1: (
sqrt 2)
>
0 by
SQUARE_1: 25;
(
sqrt 2)
< (
sqrt 4) by
SQUARE_1: 27;
then
A2: ((
sqrt 2)
/ 2)
< (2
/ 2) by
SQUARE_1: 20,
XREAL_1: 74;
then (((
sqrt 2)
/ 2)
* (
- 1))
> (1
* (
- 1)) by
XREAL_1: 69;
then
A3: (
- ((
sqrt 2)
/ 2))
in
].(
- 1), 1.[ by
A1,
XXREAL_1: 4;
((
sqrt 2)
/ 2)
>
0 by
A1,
XREAL_1: 139;
then ((
sqrt 2)
/ 2)
in
].(
- 1), 1.[ by
A2,
XXREAL_1: 4;
hence thesis by
A3,
XXREAL_2:def 12;
end;
theorem ::
INTEGRA8:10
Th10: (
arcsin ((
sqrt 2)
/ 2))
= (
PI
/ 4)
proof
(
PI
/ 4)
< (
PI
/ 2) by
XREAL_1: 76;
hence thesis by
Th7,
SIN_COS6: 69;
end;
theorem ::
INTEGRA8:11
Th11: (
arcsin (
- ((
sqrt 2)
/ 2)))
= (
- (
PI
/ 4))
proof
(
PI
/ 4)
< (
PI
/ 2) by
XREAL_1: 76;
then ((
PI
/ 4)
* (
- 1))
> ((
PI
/ 2)
* (
- 1)) by
XREAL_1: 69;
hence thesis by
Th8,
SIN_COS6: 69;
end;
theorem ::
INTEGRA8:12
Th12: (
cos (x
/ 2))
>=
0 implies (
cos (x
/ 2))
= (
sqrt ((1
+ (
cos x))
/ 2))
proof
assume
A1: (
cos (x
/ 2))
>=
0 ;
(
sqrt ((1
+ (
cos x))
/ 2))
= (
sqrt ((1
+ (
cos (2
* (x
/ 2))))
/ 2))
.= (
sqrt ((1
+ ((2
* ((
cos (x
/ 2))
^2 ))
- 1))
/ 2)) by
SIN_COS5: 7
.=
|.(
cos (x
/ 2)).| by
COMPLEX1: 72
.= (
cos (x
/ 2)) by
A1,
ABSVALUE:def 1;
hence thesis;
end;
Lm3: (
cos (
PI
/ 4))
>
0
proof
(
0
/ 2)
< (
PI
/ 2) by
XREAL_1: 74;
then ((
PI
/ 2)
* (
- 1))
< (
0
* (
- 1)) by
XREAL_1: 69;
then
A1: ((
- (
PI
/ 2))
+ ((2
*
PI )
*
0 ))
< (
PI
/ 4);
(
PI
/ 4)
< ((
PI
/ 2)
+ ((2
*
PI )
*
0 )) by
XREAL_1: 76;
hence thesis by
A1,
SIN_COS6: 13;
end;
theorem ::
INTEGRA8:13
Th13: (
cos (
PI
/ 4))
= ((
sqrt 2)
/ 2)
proof
A1: (
sqrt 2)
>
0 by
SQUARE_1: 25;
(
cos ((
PI
/ 2)
/ 2))
= (
sqrt ((1
+ (
cos (
PI
/ 2)))
/ 2)) by
Lm3,
Th12
.= (1
/ (
sqrt 2)) by
SIN_COS: 77,
SQUARE_1: 18,
SQUARE_1: 30
.= (((
sqrt 2)
* 1)
/ ((
sqrt 2)
* (
sqrt 2))) by
A1,
XCMPLX_1: 91
.= (((
sqrt 2)
* 1)
/ ((
sqrt 2)
^2 ));
hence thesis by
SQUARE_1:def 2;
end;
theorem ::
INTEGRA8:14
Th14: (
cos ((3
*
PI )
/ 4))
= (
- ((
sqrt 2)
/ 2))
proof
(
cos ((3
*
PI )
/ 4))
= (
cos ((
PI
/ 2)
+ (
PI
/ 4)))
.= (
- ((
sqrt 2)
/ 2)) by
Th7,
SIN_COS: 79;
hence thesis;
end;
theorem ::
INTEGRA8:15
Th15: (
arccos ((
sqrt 2)
/ 2))
= (
PI
/ 4)
proof
(
PI
/ 4)
< (
PI
/ 1) by
XREAL_1: 76;
hence thesis by
Th13,
SIN_COS6: 92;
end;
theorem ::
INTEGRA8:16
Th16: (
arccos (
- ((
sqrt 2)
/ 2)))
= ((3
*
PI )
/ 4)
proof
((3
/ 4)
*
PI )
< (1
*
PI ) by
XREAL_1: 68;
hence thesis by
Th14,
SIN_COS6: 92;
end;
theorem ::
INTEGRA8:17
Th17: (
sinh
. 1)
= (((
number_e
^2 )
- 1)
/ (2
*
number_e ))
proof
(
sinh
. 1)
= ((
number_e
- (
exp_R (
- 1)))
/ 2) by
IRRAT_1:def 7,
SIN_COS2:def 1
.= (((
number_e
/ 1)
- (1
/
number_e ))
/ 2) by
IRRAT_1:def 7,
TAYLOR_1: 4
.= ((((
number_e
*
number_e )
/ (1
*
number_e ))
- (1
/
number_e ))
/ 2) by
TAYLOR_1: 11,
XCMPLX_1: 91
.= ((((
number_e
^2 )
/
number_e )
- (1
/
number_e ))
/ 2)
.= ((((
number_e
^2 )
- 1)
/
number_e )
/ 2) by
XCMPLX_1: 120
.= (((
number_e
^2 )
- 1)
/ (2
*
number_e )) by
XCMPLX_1: 78;
hence thesis;
end;
theorem ::
INTEGRA8:18
Th18: (
cosh
.
0 )
= 1
proof
(
cosh
.
0 )
= (((
exp_R
.
0 )
+ (
exp_R
. (
-
0 )))
/ 2) by
SIN_COS2:def 3
.= 1 by
SIN_COS: 51;
hence thesis;
end;
theorem ::
INTEGRA8:19
Th19: (
cosh
. 1)
= (((
number_e
^2 )
+ 1)
/ (2
*
number_e ))
proof
(
cosh
. 1)
= ((
number_e
+ (
exp_R (
- 1)))
/ 2) by
IRRAT_1:def 7,
SIN_COS2:def 3
.= (((
number_e
/ 1)
+ (1
/
number_e ))
/ 2) by
IRRAT_1:def 7,
TAYLOR_1: 4
.= ((((
number_e
*
number_e )
/ (1
*
number_e ))
+ (1
/
number_e ))
/ 2) by
TAYLOR_1: 11,
XCMPLX_1: 91
.= ((((
number_e
^2 )
/
number_e )
+ (1
/
number_e ))
/ 2)
.= ((((
number_e
^2 )
+ 1)
/
number_e )
/ 2) by
XCMPLX_1: 62
.= (((
number_e
^2 )
+ 1)
/ (2
*
number_e )) by
XCMPLX_1: 78;
hence thesis;
end;
Lm4: ((
- f1)
(#) (
- f2))
= (f1
(#) f2)
proof
((
- f1)
(#) (
- f2))
= ((
- 1)
(#) (f1
(#) (
- f2))) by
RFUNCT_1: 12
.= (f1
(#) (
- (
- f2))) by
RFUNCT_1: 13;
hence thesis;
end;
theorem ::
INTEGRA8:20
Th20: for L1 be
LinearFunc holds (
- L1) is
LinearFunc
proof
let L1 be
LinearFunc;
consider g1 be
Real such that
A1: for p holds (L1
. p)
= (g1
* p) by
FDIFF_1:def 3;
A2: L1 is
total by
FDIFF_1:def 3;
now
let p;
reconsider pp = p as
Element of
REAL by
XREAL_0:def 1;
thus ((
- L1)
. p)
= (
- (L1
. pp)) by
A2,
RFUNCT_1: 58
.= (
- (g1
* p)) by
A1
.= ((
- g1)
* p);
end;
hence thesis by
A2,
FDIFF_1:def 3;
end;
theorem ::
INTEGRA8:21
Th21: for R1 be
RestFunc holds (
- R1) is
RestFunc
proof
let R1 be
RestFunc;
A1: R1 is
total by
FDIFF_1:def 2;
then
A2: (
dom R1)
=
REAL by
PARTFUN1:def 2;
A3: for h be
0
-convergent
non-zero
Real_Sequence holds (
- (R1
/* h))
= ((
- R1)
/* h)
proof
let h be
0
-convergent
non-zero
Real_Sequence;
(
rng h)
c= (
dom R1) by
A2,
VALUED_0:def 3;
hence thesis by
RFUNCT_2: 10;
end;
now
let h be
0
-convergent
non-zero
Real_Sequence;
A4: ((h
" )
(#) (R1
/* h)) is
convergent by
FDIFF_1:def 2;
A5: ((h
" )
(#) ((
- R1)
/* h))
= ((h
" )
(#) (
- (R1
/* h))) by
A3
.= (
- ((h
" )
(#) (R1
/* h))) by
SEQ_1: 19;
hence ((h
" )
(#) ((
- R1)
/* h)) is
convergent by
A4,
SEQ_2: 9;
A6: (
lim ((h
" )
(#) (R1
/* h)))
=
0 by
FDIFF_1:def 2;
thus (
lim ((h
" )
(#) ((
- R1)
/* h)))
= (
- (
lim ((h
" )
(#) (R1
/* h)))) by
A4,
A5,
SEQ_2: 10
.=
0 by
A6;
end;
hence thesis by
A1,
FDIFF_1:def 2;
end;
reconsider jj = 1 as
Element of
REAL by
XREAL_0:def 1;
theorem ::
INTEGRA8:22
Th22: for f1, x0 st f1
is_differentiable_in x0 holds (
- f1)
is_differentiable_in x0 & (
diff ((
- f1),x0))
= (
- (
diff (f1,x0)))
proof
let f1, x0;
assume
A1: f1
is_differentiable_in x0;
then
consider N1 be
Neighbourhood of x0 such that
A2: N1
c= (
dom f1) and
A3: ex L be
LinearFunc, R be
RestFunc st for x st x
in N1 holds ((f1
. x)
- (f1
. x0))
= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
FDIFF_1:def 4;
consider L1 be
LinearFunc, R1 be
RestFunc such that
A4: for x st x
in N1 holds ((f1
. x)
- (f1
. x0))
= ((L1
. (x
- x0))
+ (R1
. (x
- x0))) by
A3;
reconsider R = (
- R1) as
RestFunc by
Th21;
reconsider L = (
- L1) as
LinearFunc by
Th20;
A5: L1 is
total by
FDIFF_1:def 3;
consider N be
Neighbourhood of x0 such that
A6: N
c= N1;
A7: R1 is
total by
FDIFF_1:def 2;
A8:
now
let x;
assume
A9: x
in N;
reconsider xx = x, xx0 = x0 as
Element of
REAL by
XREAL_0:def 1;
thus (((
- f1)
. x)
- ((
- f1)
. x0))
= ((
- (f1
. x))
- ((
- f1)
. x0)) by
VALUED_1: 8
.= ((
- (f1
. x))
- (
- (f1
. x0))) by
VALUED_1: 8
.= (
- ((f1
. x)
- (f1
. x0)))
.= (
- ((L1
. (x
- x0))
+ (R1
. (x
- x0)))) by
A4,
A6,
A9
.= ((
- (L1
. (x
- x0)))
+ (
- (R1
. (x
- x0))))
.= ((L
. (xx
- xx0))
+ (
- (R1
. (x
- x0)))) by
A5,
RFUNCT_1: 58
.= ((L
. (x
- x0))
+ (R
. (x
- x0))) by
A7,
RFUNCT_1: 58;
end;
N
c= (
dom f1) by
A2,
A6,
XBOOLE_1: 1;
then
A10: N
c= (
dom (
- f1)) by
VALUED_1: 8;
hence (
- f1)
is_differentiable_in x0 by
A8,
FDIFF_1:def 4;
hence (
diff ((
- f1),x0))
= (L
. 1) by
A10,
A8,
FDIFF_1:def 5
.= (
- (L1
. jj)) by
A5,
RFUNCT_1: 58
.= (
- (
diff (f1,x0))) by
A1,
A2,
A4,
FDIFF_1:def 5;
end;
theorem ::
INTEGRA8:23
Th23: for f1, Z st Z
c= (
dom (
- f1)) & f1
is_differentiable_on Z holds (
- f1)
is_differentiable_on Z & for x st x
in Z holds (((
- f1)
`| Z)
. x)
= (
- (
diff (f1,x)))
proof
let f1, Z;
assume that
A1: Z
c= (
dom (
- f1)) and
A2: f1
is_differentiable_on Z;
now
let x0;
assume x0
in Z;
then f1
is_differentiable_in x0 by
A2,
FDIFF_1: 9;
hence (
- f1)
is_differentiable_in x0 by
Th22;
end;
hence
A3: (
- f1)
is_differentiable_on Z by
A1,
FDIFF_1: 9;
now
let x;
assume
A4: x
in Z;
then
A5: f1
is_differentiable_in x by
A2,
FDIFF_1: 9;
thus (((
- f1)
`| Z)
. x)
= (
diff ((
- f1),x)) by
A3,
A4,
FDIFF_1:def 7
.= (
- (
diff (f1,x))) by
A5,
Th22;
end;
hence thesis;
end;
theorem ::
INTEGRA8:24
(
-
sin )
is_differentiable_on
REAL
proof
(
dom (
-
sin ))
= (
[#]
REAL ) by
FUNCT_2:def 1;
hence thesis by
Th23,
SIN_COS: 68;
end;
theorem ::
INTEGRA8:25
Th25: (
-
cos )
is_differentiable_in x & (
diff ((
-
cos ),x))
= (
sin
. x)
proof
A1:
cos
is_differentiable_in x by
SIN_COS: 63;
then (
diff ((
-
cos ),x))
= (
- (
diff (
cos ,x))) by
Th22
.= (
- (
- (
sin
. x))) by
SIN_COS: 63;
hence thesis by
A1,
Th22;
end;
theorem ::
INTEGRA8:26
Th26: (
-
cos )
is_differentiable_on
REAL & for x st x
in
REAL holds (
diff ((
-
cos ),x))
= (
sin
. x)
proof
(
dom (
-
cos ))
= (
[#]
REAL ) by
FUNCT_2:def 1;
hence thesis by
Th23,
Th25,
SIN_COS: 67;
end;
theorem ::
INTEGRA8:27
Th27: (
sin
`|
REAL )
=
cos
proof
for x st x
in
REAL holds (
diff (
sin ,x))
= (
cos
. x) by
SIN_COS: 68;
hence thesis by
FDIFF_1:def 7,
SIN_COS: 24,
SIN_COS: 68;
end;
theorem ::
INTEGRA8:28
Th28: (
cos
`|
REAL )
= (
-
sin )
proof
A1: for x be
Element of
REAL st x
in (
dom (
cos
`|
REAL )) holds ((
cos
`|
REAL )
. x)
= ((
-
sin )
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (
cos
`|
REAL ));
((
cos
`|
REAL )
. x)
= (
diff (
cos ,x)) by
FDIFF_1:def 7,
SIN_COS: 67
.= (
- (
sin
. x)) by
SIN_COS: 63;
hence thesis by
VALUED_1: 8;
end;
(
dom (
-
sin ))
=
REAL by
FUNCT_2:def 1;
then (
dom (
cos
`|
REAL ))
= (
dom (
-
sin )) by
FDIFF_1:def 7,
SIN_COS: 67;
hence thesis by
A1,
PARTFUN1: 5;
end;
theorem ::
INTEGRA8:29
Th29: ((
-
cos )
`|
REAL )
=
sin by
Th26,
FDIFF_1:def 7,
SIN_COS: 24;
theorem ::
INTEGRA8:30
Th30: (
sinh
`|
REAL )
=
cosh
proof
for x st x
in
REAL holds (
diff (
sinh ,x))
= (
cosh
. x) by
SIN_COS2: 34;
hence thesis by
FDIFF_1:def 7,
SIN_COS2: 30,
SIN_COS2: 34;
end;
theorem ::
INTEGRA8:31
Th31: (
cosh
`|
REAL )
=
sinh
proof
for x st x
in
REAL holds (
diff (
cosh ,x))
= (
sinh
. x) by
SIN_COS2: 35;
hence thesis by
FDIFF_1:def 7,
SIN_COS2: 30,
SIN_COS2: 35;
end;
theorem ::
INTEGRA8:32
Th32: (
exp_R
`|
REAL )
=
exp_R
proof
for x st x
in
REAL holds (
diff (
exp_R ,x))
= (
exp_R
. x) by
SIN_COS: 66;
hence thesis by
FDIFF_1:def 7,
SIN_COS: 47,
SIN_COS: 66;
end;
theorem ::
INTEGRA8:33
Th33: Z
c= (
dom
tan ) implies
tan
is_differentiable_on Z & for x st x
in Z holds ((
tan
`| Z)
. x)
= (1
/ ((
cos
. x)
^2 ))
proof
assume that
A1: Z
c= (
dom
tan );
A2: for x st x
in Z holds
tan
is_differentiable_in x
proof
let x;
assume x
in Z;
then x
in (
dom
tan ) by
A1;
then
A3: (
cos
. x)
<>
0 by
FDIFF_8: 1;
sin
is_differentiable_in x &
cos
is_differentiable_in x by
SIN_COS: 63,
SIN_COS: 64;
hence thesis by
A3,
FDIFF_2: 14;
end;
then
A4:
tan
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds ((
tan
`| Z)
. x)
= (1
/ ((
cos
. x)
^2 ))
proof
let x;
A5:
sin
is_differentiable_in x &
cos
is_differentiable_in x by
SIN_COS: 63,
SIN_COS: 64;
assume
A6: x
in Z;
then x
in (
dom
tan ) by
A1;
then (
cos
. x)
<>
0 by
FDIFF_8: 1;
then (
diff (
tan ,x))
= ((((
diff (
sin ,x))
* (
cos
. x))
- ((
diff (
cos ,x))
* (
sin
. x)))
/ ((
cos
. x)
^2 )) by
A5,
FDIFF_2: 14
.= ((((
cos
. x)
* (
cos
. x))
- ((
diff (
cos ,x))
* (
sin
. x)))
/ ((
cos
. x)
^2 )) by
SIN_COS: 64
.= ((((
cos
. x)
* (
cos
. x))
- ((
- (
sin
. x))
* (
sin
. x)))
/ ((
cos
. x)
^2 )) by
SIN_COS: 63
.= ((((
cos
. x)
* (
cos
. x))
+ ((
sin
. x)
* (
sin
. x)))
/ ((
cos
. x)
^2 ))
.= (1
/ ((
cos
. x)
^2 )) by
SIN_COS: 28;
hence thesis by
A4,
A6,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A2,
FDIFF_1: 9;
end;
theorem ::
INTEGRA8:34
Th34: Z
c= (
dom
cot ) implies
cot
is_differentiable_on Z & for x st x
in Z holds ((
cot
`| Z)
. x)
= (
- (1
/ ((
sin
. x)
^2 )))
proof
assume that
A1: Z
c= (
dom
cot );
A2: for x st x
in Z holds
cot
is_differentiable_in x
proof
let x;
assume x
in Z;
then x
in (
dom
cot ) by
A1;
then
A3: (
sin
. x)
<>
0 by
FDIFF_8: 2;
sin
is_differentiable_in x &
cos
is_differentiable_in x by
SIN_COS: 63,
SIN_COS: 64;
hence thesis by
A3,
FDIFF_2: 14;
end;
then
A4:
cot
is_differentiable_on Z by
A1,
FDIFF_1: 9;
for x st x
in Z holds ((
cot
`| Z)
. x)
= (
- (1
/ ((
sin
. x)
^2 )))
proof
let x;
A5:
sin
is_differentiable_in x &
cos
is_differentiable_in x by
SIN_COS: 63,
SIN_COS: 64;
assume
A6: x
in Z;
then x
in (
dom
cot ) by
A1;
then (
sin
. x)
<>
0 by
FDIFF_8: 2;
then (
diff (
cot ,x))
= ((((
diff (
cos ,x))
* (
sin
. x))
- ((
diff (
sin ,x))
* (
cos
. x)))
/ ((
sin
. x)
^2 )) by
A5,
FDIFF_2: 14
.= ((((
- (
sin
. x))
* (
sin
. x))
- ((
diff (
sin ,x))
* (
cos
. x)))
/ ((
sin
. x)
^2 )) by
SIN_COS: 63
.= (((
- ((
sin
. x)
* (
sin
. x)))
- ((
cos
. x)
* (
cos
. x)))
/ ((
sin
. x)
^2 )) by
SIN_COS: 64
.= ((
- (((
sin
. x)
* (
sin
. x))
+ ((
cos
. x)
* (
cos
. x))))
/ ((
sin
. x)
^2 ))
.= ((
- (((
sin
. x)
* (
sin
. x))
+ ((
cos
. x)
^2 )))
/ ((
sin
. x)
^2 ))
.= ((
- (((
sin
. x)
^2 )
+ ((
cos
. x)
^2 )))
/ ((
sin
. x)
^2 ))
.= (
- ((((
cos
. x)
^2 )
+ ((
sin
. x)
^2 ))
/ ((
sin
. x)
^2 ))) by
XCMPLX_1: 187
.= (
- (1
/ ((
sin
. x)
^2 ))) by
SIN_COS: 28;
hence thesis by
A4,
A6,
FDIFF_1:def 7;
end;
hence thesis by
A1,
A2,
FDIFF_1: 9;
end;
theorem ::
INTEGRA8:35
for r be
Real holds (
rng (
REAL
--> r))
c=
REAL
proof
let r be
Real;
(
rng (
REAL
--> r))
c=
{r} by
FUNCOP_1: 13;
hence thesis by
XBOOLE_1: 1;
end;
definition
let r be
Real;
::
INTEGRA8:def1
func
Cst (r) ->
Function of
REAL ,
REAL equals (
REAL
--> r);
coherence
proof
reconsider r as
Element of
REAL by
XREAL_0:def 1;
(
REAL
--> r) is
Function of
REAL ,
REAL ;
hence thesis;
end;
end
theorem ::
INTEGRA8:36
Th36: for a,b be
Real, A be non
empty
closed_interval
Subset of
REAL holds (
chi (A,A))
= ((
Cst 1)
| A)
proof
let a,b be
Real, A be non
empty
closed_interval
Subset of
REAL ;
(
dom ((
Cst 1)
| A))
= A & for x be
object st x
in A holds (x
in A implies (((
Cst 1)
| A)
. x)
= 1) & ( not x
in A implies (((
Cst 1)
| A)
. x)
=
0 )
proof
A1: (
dom (
Cst 1))
=
REAL & (
dom ((
Cst 1)
| A))
= ((
dom (
Cst 1))
/\ A) by
FUNCOP_1: 13,
RELAT_1: 61;
hence (
dom ((
Cst 1)
| A))
= A by
XBOOLE_1: 28;
let x be
object;
assume
A2: x
in A;
then x
in (
dom ((
Cst 1)
| A)) by
A1,
XBOOLE_0:def 4;
then (((
Cst 1)
| A)
. x)
= ((
REAL
--> 1)
. x) by
FUNCT_1: 47
.= 1 by
A2,
FUNCOP_1: 7;
hence thesis by
A2;
end;
hence thesis by
FUNCT_3:def 3;
end;
theorem ::
INTEGRA8:37
Th37: for a,b be
Real, A be non
empty
closed_interval
Subset of
REAL st A
=
[.a, b.] holds (
upper_bound A)
= b & (
lower_bound A)
= a
proof
let a,b be
Real, A be non
empty
closed_interval
Subset of
REAL ;
A1: A
=
[.(
lower_bound A), (
upper_bound A).] by
INTEGRA1: 4;
assume A
=
[.a, b.];
hence thesis by
A1,
INTEGRA1: 5;
end;
begin
theorem ::
INTEGRA8:38
for a,b be
Real st a
<= b holds (
integral ((
Cst 1),a,b))
= (b
- a)
proof
let a,b be
Real;
assume a
<= b;
then
[.a, b.]
=
['a, b'] by
INTEGRA5:def 3;
then
reconsider A =
[.a, b.] as non
empty
closed_interval
Subset of
REAL ;
(
upper_bound A)
= b & (
lower_bound A)
= a by
Th37;
then
A1: (
vol A)
= (b
- a) by
INTEGRA1:def 5;
(
integral ((
Cst 1),a,b))
= (
integral ((
Cst 1),A)) & ((
Cst 1)
|| A)
= (
chi (A,A)) by
Th36,
INTEGRA5: 19;
hence thesis by
A1,
INTEGRA4: 2;
end;
Lm5: (
dom
sin )
=
REAL by
FUNCT_2:def 1;
Lm6: (
dom
cos )
=
REAL by
FUNCT_2:def 1;
Lm7: (
dom (
-
sin ))
=
REAL by
FUNCT_2:def 1;
Lm8: (
dom
exp_R )
=
REAL by
FUNCT_2:def 1;
Lm9: (
dom
sinh )
=
REAL by
FUNCT_2:def 1;
Lm10: (
dom
cosh )
=
REAL by
FUNCT_2:def 1;
Lm11:
cos
is_integrable_on A & (
cos
| A) is
bounded
proof
(
cos
| A) is
continuous;
hence thesis by
Lm6,
INTEGRA5: 10,
INTEGRA5: 11;
end;
theorem ::
INTEGRA8:39
Th39: (
integral (
cos ,A))
= ((
sin
. (
upper_bound A))
- (
sin
. (
lower_bound A)))
proof
A1: for x be
Element of
REAL st x
in (
dom (
sin
`|
REAL )) holds ((
sin
`|
REAL )
. x)
= (
cos
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (
sin
`|
REAL ));
((
sin
`|
REAL )
. x)
= (
diff (
sin ,x)) by
FDIFF_1:def 7,
SIN_COS: 68;
hence thesis by
SIN_COS: 64;
end;
A2:
cos
is_integrable_on A & (
cos
| A) is
bounded by
Lm11;
(
dom (
sin
`|
REAL ))
= (
dom
cos ) by
FDIFF_1:def 7,
SIN_COS: 24,
SIN_COS: 68;
then (
sin
`|
REAL )
=
cos by
A1,
PARTFUN1: 5;
hence thesis by
A2,
INTEGRA5: 13,
SIN_COS: 68;
end;
theorem ::
INTEGRA8:40
A
=
[.
0 , (
PI
/ 2).] implies (
integral (
cos ,A))
= 1
proof
assume A
=
[.
0 , (
PI
/ 2).];
then (
upper_bound A)
= (
PI
/ 2) & (
lower_bound A)
=
0 by
Th37;
then (
integral (
cos ,A))
= (1
- (
sin
.
0 )) by
Th39,
SIN_COS: 77
.= (1
- (
cos
. ((
PI
/ 2)
-
0 ))) by
SIN_COS: 78
.= (1
-
0 ) by
SIN_COS: 77;
hence thesis;
end;
theorem ::
INTEGRA8:41
A
=
[.
0 ,
PI .] implies (
integral (
cos ,A))
=
0
proof
assume A
=
[.
0 ,
PI .];
then (
upper_bound A)
=
PI & (
lower_bound A)
=
0 by
Th37;
then (
integral (
cos ,A))
= (
0
- (
sin
.
0 )) by
Th39,
SIN_COS: 76
.= (
0
- (
sin
. (
0
+ (2
*
PI )))) by
SIN_COS: 78
.= (
0
-
0 ) by
SIN_COS: 76;
hence thesis;
end;
theorem ::
INTEGRA8:42
A
=
[.
0 , ((
PI
* 3)
/ 2).] implies (
integral (
cos ,A))
= (
- 1)
proof
assume A
=
[.
0 , ((
PI
* 3)
/ 2).];
then (
upper_bound A)
= ((
PI
* 3)
/ 2) & (
lower_bound A)
=
0 by
Th37;
then (
integral (
cos ,A))
= ((
- 1)
- (
sin
.
0 )) by
Th39,
SIN_COS: 76
.= ((
- 1)
- (
sin
. (
0
+ (2
*
PI )))) by
SIN_COS: 78
.= ((
- 1)
-
0 ) by
SIN_COS: 76;
hence thesis;
end;
theorem ::
INTEGRA8:43
A
=
[.
0 , (
PI
* 2).] implies (
integral (
cos ,A))
=
0
proof
assume A
=
[.
0 , (
PI
* 2).];
then (
upper_bound A)
= (
PI
* 2) & (
lower_bound A)
=
0 by
Th37;
then (
integral (
cos ,A))
= (
0
- (
sin
.
0 )) by
Th39,
SIN_COS: 76
.= (
0
- (
sin
. (
0
+ (2
*
PI )))) by
SIN_COS: 78
.= (
0
-
0 ) by
SIN_COS: 76;
hence thesis;
end;
theorem ::
INTEGRA8:44
A
=
[.((2
* n)
*
PI ), (((2
* n)
+ 1)
*
PI ).] implies (
integral (
cos ,A))
=
0
proof
assume A
=
[.((2
* n)
*
PI ), (((2
* n)
+ 1)
*
PI ).];
then (
upper_bound A)
= (((2
* n)
+ 1)
*
PI ) & (
lower_bound A)
= ((2
* n)
*
PI ) by
Th37;
then (
integral (
cos ,A))
= ((
sin (
0
+ (((2
* n)
+ 1)
*
PI )))
- (
sin (
0
+ ((2
* n)
*
PI )))) by
Th39
.= ((
- (
sin
0 ))
- (
sin (
0
+ ((2
* n)
*
PI )))) by
Th2
.= ((
- (
sin
0 ))
- (
sin
0 )) by
Th1
.= ((
- (
sin (
0
+ (2
*
PI ))))
- (
sin
0 )) by
SIN_COS: 79
.= (
0
-
0 ) by
SIN_COS: 77,
SIN_COS: 79;
hence thesis;
end;
theorem ::
INTEGRA8:45
A
=
[.(x
+ ((2
* n)
*
PI )), (x
+ (((2
* n)
+ 1)
*
PI )).] implies (
integral (
cos ,A))
= (
- (2
* (
sin x)))
proof
assume A
=
[.(x
+ ((2
* n)
*
PI )), (x
+ (((2
* n)
+ 1)
*
PI )).];
then (
upper_bound A)
= (x
+ (((2
* n)
+ 1)
*
PI )) & (
lower_bound A)
= (x
+ ((2
* n)
*
PI )) by
Th37;
then (
integral (
cos ,A))
= ((
sin (x
+ (((2
* n)
+ 1)
*
PI )))
- (
sin (x
+ ((2
* n)
*
PI )))) by
Th39
.= ((
- (
sin x))
- (
sin (x
+ ((2
* n)
*
PI )))) by
Th2
.= ((
- (
sin x))
- (
sin x)) by
Th1
.= (
- (2
* (
sin x)));
hence thesis;
end;
Lm12: (
-
sin )
is_integrable_on A & ((
-
sin )
| A) is
bounded
proof
((
-
sin )
| A) is
continuous;
hence thesis by
Lm7,
INTEGRA5: 10,
INTEGRA5: 11;
end;
theorem ::
INTEGRA8:46
Th46: (
integral ((
-
sin ),A))
= ((
cos
. (
upper_bound A))
- (
cos
. (
lower_bound A)))
proof
A1: for x be
Element of
REAL st x
in (
dom (
cos
`|
REAL )) holds ((
cos
`|
REAL )
. x)
= ((
-
sin )
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (
cos
`|
REAL ));
((
cos
`|
REAL )
. x)
= (
diff (
cos ,x)) by
FDIFF_1:def 7,
SIN_COS: 67
.= (
- (
sin
. x)) by
SIN_COS: 63;
hence thesis by
VALUED_1: 8;
end;
A2: (
-
sin )
is_integrable_on A & ((
-
sin )
| A) is
bounded by
Lm12;
(
dom (
-
sin ))
=
REAL by
FUNCT_2:def 1;
then (
dom (
cos
`|
REAL ))
= (
dom (
-
sin )) by
FDIFF_1:def 7,
SIN_COS: 67;
then (
cos
`|
REAL )
= (
-
sin ) by
A1,
PARTFUN1: 5;
hence thesis by
A2,
INTEGRA5: 13,
SIN_COS: 67;
end;
theorem ::
INTEGRA8:47
A
=
[.
0 , (
PI
/ 2).] implies (
integral ((
-
sin ),A))
= (
- 1)
proof
assume A
=
[.
0 , (
PI
/ 2).];
then (
upper_bound A)
= (
PI
/ 2) & (
lower_bound A)
=
0 by
Th37;
then (
integral ((
-
sin ),A))
= (
0
- (
cos
.
0 )) by
Th46,
SIN_COS: 76
.= (
0
- (
sin
. ((
PI
/ 2)
-
0 ))) by
SIN_COS: 78
.= (
0
- 1) by
SIN_COS: 76;
hence thesis;
end;
theorem ::
INTEGRA8:48
A
=
[.
0 ,
PI .] implies (
integral ((
-
sin ),A))
= (
- 2)
proof
assume A
=
[.
0 ,
PI .];
then (
upper_bound A)
=
PI & (
lower_bound A)
=
0 by
Th37;
then (
integral ((
-
sin ),A))
= ((
- 1)
- (
cos
.
0 )) by
Th46,
SIN_COS: 76
.= ((
- 1)
- (
sin
. ((
PI
/ 2)
-
0 ))) by
SIN_COS: 78
.= ((
- 1)
- 1) by
SIN_COS: 76;
hence thesis;
end;
theorem ::
INTEGRA8:49
A
=
[.
0 , ((
PI
* 3)
/ 2).] implies (
integral ((
-
sin ),A))
= (
- 1)
proof
assume A
=
[.
0 , ((
PI
* 3)
/ 2).];
then (
upper_bound A)
= ((
PI
* 3)
/ 2) & (
lower_bound A)
=
0 by
Th37;
then (
integral ((
-
sin ),A))
= (
0
- (
cos
.
0 )) by
Th46,
SIN_COS: 76
.= (
0
- (
sin
. ((
PI
/ 2)
-
0 ))) by
SIN_COS: 78
.= (
0
- 1) by
SIN_COS: 76;
hence thesis;
end;
theorem ::
INTEGRA8:50
A
=
[.
0 , (
PI
* 2).] implies (
integral ((
-
sin ),A))
=
0
proof
assume A
=
[.
0 , (
PI
* 2).];
then (
upper_bound A)
= (
PI
* 2) & (
lower_bound A)
=
0 by
Th37;
then (
integral ((
-
sin ),A))
= (1
- (
cos
.
0 )) by
Th46,
SIN_COS: 76
.= (1
- (
sin
. ((
PI
/ 2)
-
0 ))) by
SIN_COS: 78
.= (1
- 1) by
SIN_COS: 76;
hence thesis;
end;
theorem ::
INTEGRA8:51
A
=
[.((2
* n)
*
PI ), (((2
* n)
+ 1)
*
PI ).] implies (
integral ((
-
sin ),A))
= (
- 2)
proof
assume A
=
[.((2
* n)
*
PI ), (((2
* n)
+ 1)
*
PI ).];
then (
upper_bound A)
= (((2
* n)
+ 1)
*
PI ) & (
lower_bound A)
= ((2
* n)
*
PI ) by
Th37;
then (
integral ((
-
sin ),A))
= ((
cos (
0
+ (((2
* n)
+ 1)
*
PI )))
- (
cos (
0
+ ((2
* n)
*
PI )))) by
Th46
.= ((
- (
cos
0 ))
- (
cos (
0
+ ((2
* n)
*
PI )))) by
Th4
.= ((
- (
cos
0 ))
- (
cos
0 )) by
Th3
.= ((
- (
cos (
0
+ (2
*
PI ))))
- (
cos
0 )) by
SIN_COS: 79
.= ((
- 1)
- 1) by
SIN_COS: 77,
SIN_COS: 79;
hence thesis;
end;
theorem ::
INTEGRA8:52
A
=
[.(x
+ ((2
* n)
*
PI )), (x
+ (((2
* n)
+ 1)
*
PI )).] implies (
integral ((
-
sin ),A))
= (
- (2
* (
cos x)))
proof
assume A
=
[.(x
+ ((2
* n)
*
PI )), (x
+ (((2
* n)
+ 1)
*
PI )).];
then (
upper_bound A)
= (x
+ (((2
* n)
+ 1)
*
PI )) & (
lower_bound A)
= (x
+ ((2
* n)
*
PI )) by
Th37;
then (
integral ((
-
sin ),A))
= ((
cos (x
+ (((2
* n)
+ 1)
*
PI )))
- (
cos (x
+ ((2
* n)
*
PI )))) by
Th46
.= ((
- (
cos x))
- (
cos (x
+ ((2
* n)
*
PI )))) by
Th4
.= ((
- (
cos x))
- (
cos x)) by
Th3
.= (
- (2
* (
cos x)));
hence thesis;
end;
Lm13:
exp_R
is_integrable_on A & (
exp_R
| A) is
bounded
proof
(
exp_R
| A) is
continuous;
hence thesis by
Lm8,
INTEGRA5: 10,
INTEGRA5: 11;
end;
theorem ::
INTEGRA8:53
Th53: (
integral (
exp_R ,A))
= ((
exp_R
. (
upper_bound A))
- (
exp_R
. (
lower_bound A)))
proof
A1: for x be
Element of
REAL st x
in (
dom (
exp_R
`|
REAL )) holds ((
exp_R
`|
REAL )
. x)
= (
exp_R
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (
exp_R
`|
REAL ));
((
exp_R
`|
REAL )
. x)
= (
diff (
exp_R ,x)) by
FDIFF_1:def 7,
SIN_COS: 66;
hence thesis by
SIN_COS: 65;
end;
A2:
exp_R
is_integrable_on A & (
exp_R
| A) is
bounded by
Lm13;
(
dom (
exp_R
`|
REAL ))
= (
dom
exp_R ) by
FDIFF_1:def 7,
SIN_COS: 47,
SIN_COS: 66;
then (
exp_R
`|
REAL )
=
exp_R by
A1,
PARTFUN1: 5;
hence thesis by
A2,
INTEGRA5: 13,
SIN_COS: 66;
end;
reconsider jj = 1 as
Real;
theorem ::
INTEGRA8:54
A
=
[.
0 , 1.] implies (
integral (
exp_R ,A))
= (
number_e
- 1)
proof
assume A
=
[.
0 , 1.];
then A
=
[.
0 , jj.];
then (
upper_bound A)
= 1 & (
lower_bound A)
=
0 by
Th37;
hence thesis by
Th53,
IRRAT_1:def 7,
SIN_COS: 51;
end;
Lm14: (
sinh
| A) is
continuous
proof
(
sinh
|
REAL ) is
continuous by
FDIFF_1: 25,
SIN_COS2: 34;
hence thesis by
FCONT_1: 16;
end;
Lm15:
sinh
is_integrable_on A & (
sinh
| A) is
bounded by
Lm14,
Lm9,
INTEGRA5: 10,
INTEGRA5: 11;
theorem ::
INTEGRA8:55
Th55: (
integral (
sinh ,A))
= ((
cosh
. (
upper_bound A))
- (
cosh
. (
lower_bound A)))
proof
A1: for x be
Element of
REAL st x
in (
dom (
cosh
`|
REAL )) holds ((
cosh
`|
REAL )
. x)
= (
sinh
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (
cosh
`|
REAL ));
((
cosh
`|
REAL )
. x)
= (
diff (
cosh ,x)) by
FDIFF_1:def 7,
SIN_COS2: 35;
hence thesis by
SIN_COS2: 35;
end;
A2:
sinh
is_integrable_on A & (
sinh
| A) is
bounded by
Lm15;
(
dom (
cosh
`|
REAL ))
= (
dom
sinh ) by
FDIFF_1:def 7,
SIN_COS2: 30,
SIN_COS2: 35;
then (
cosh
`|
REAL )
=
sinh by
A1,
PARTFUN1: 5;
hence thesis by
A2,
INTEGRA5: 13,
SIN_COS2: 35;
end;
theorem ::
INTEGRA8:56
A
=
[.
0 , 1.] implies (
integral (
sinh ,A))
= (((
number_e
- 1)
^2 )
/ (2
*
number_e ))
proof
(
exp_R 1)
>
0 by
SIN_COS: 55;
then
A1: (2
*
number_e )
>
0 by
IRRAT_1:def 7,
XREAL_1: 129;
assume A
=
[.
0 , 1.];
then A
=
[.
0 , jj.];
then (
upper_bound A)
= 1 & (
lower_bound A)
=
0 by
Th37;
then (
integral (
sinh ,A))
= ((((
number_e
^2 )
+ 1)
/ (2
*
number_e ))
- 1) by
Th18,
Th19,
Th55
.= ((((
number_e
^2 )
+ 1)
/ (2
*
number_e ))
- ((2
*
number_e )
/ (2
*
number_e ))) by
A1,
XCMPLX_1: 60
.= ((((
number_e
^2 )
+ 1)
- (2
*
number_e ))
/ (2
*
number_e )) by
XCMPLX_1: 120
.= ((((
number_e
^2 )
- ((2
*
number_e )
* 1))
+ (1
^2 ))
/ (2
*
number_e ))
.= (((
number_e
- 1)
^2 )
/ (2
*
number_e ));
hence thesis;
end;
Lm16: (
cosh
| A) is
continuous
proof
(
cosh
|
REAL ) is
continuous by
FDIFF_1: 25,
SIN_COS2: 35;
hence thesis by
FCONT_1: 16;
end;
Lm17:
cosh
is_integrable_on A & (
cosh
| A) is
bounded by
Lm16,
Lm10,
INTEGRA5: 10,
INTEGRA5: 11;
theorem ::
INTEGRA8:57
Th57: (
integral (
cosh ,A))
= ((
sinh
. (
upper_bound A))
- (
sinh
. (
lower_bound A)))
proof
A1: for x be
Element of
REAL st x
in (
dom (
sinh
`|
REAL )) holds ((
sinh
`|
REAL )
. x)
= (
cosh
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (
sinh
`|
REAL ));
((
sinh
`|
REAL )
. x)
= (
diff (
sinh ,x)) by
FDIFF_1:def 7,
SIN_COS2: 34;
hence thesis by
SIN_COS2: 34;
end;
A2:
cosh
is_integrable_on A & (
cosh
| A) is
bounded by
Lm17;
(
dom (
sinh
`|
REAL ))
= (
dom
cosh ) by
FDIFF_1:def 7,
SIN_COS2: 30,
SIN_COS2: 34;
then (
sinh
`|
REAL )
=
cosh by
A1,
PARTFUN1: 5;
hence thesis by
A2,
INTEGRA5: 13,
SIN_COS2: 34;
end;
theorem ::
INTEGRA8:58
A
=
[.
0 , 1.] implies (
integral (
cosh ,A))
= (((
number_e
^2 )
- 1)
/ (2
*
number_e ))
proof
assume A
=
[.
0 , 1.];
then A
=
[.
0 , jj.];
then (
upper_bound A)
= 1 & (
lower_bound A)
=
0 by
Th37;
then (
integral (
cosh ,A))
= ((
sinh
. 1)
-
0 ) by
Th57,
SIN_COS2: 16
.= (((
number_e
^2 )
- 1)
/ (2
*
number_e )) by
Th17;
hence thesis;
end;
theorem ::
INTEGRA8:59
A
c= Z & (
dom
tan )
= Z & (
dom
tan )
= (
dom f2) & (for x st x
in Z holds (f2
. x)
= (1
/ ((
cos
. x)
^2 )) & (
cos
. x)
<>
0 ) & (f2
| A) is
continuous implies (
integral (f2,A))
= ((
tan
. (
upper_bound A))
- (
tan
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: (
dom
tan )
= Z and
A3: (
dom
tan )
= (
dom f2) and
A4: for x st x
in Z holds (f2
. x)
= (1
/ ((
cos
. x)
^2 )) & (
cos
. x)
<>
0 and
A5: (f2
| A) is
continuous;
A6: f2
is_integrable_on A by
A1,
A2,
A3,
A5,
INTEGRA5: 11;
A7:
tan
is_differentiable_on Z by
A2,
Th33;
A8: for x be
Element of
REAL st x
in (
dom (
tan
`| Z)) holds ((
tan
`| Z)
. x)
= (f2
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (
tan
`| Z));
then
A9: x
in Z by
A7,
FDIFF_1:def 7;
then ((
tan
`| Z)
. x)
= (1
/ ((
cos
. x)
^2 )) by
A2,
Th33
.= (f2
. x) by
A4,
A9;
hence thesis;
end;
(
dom (
tan
`| Z))
= (
dom f2) by
A2,
A3,
A7,
FDIFF_1:def 7;
then (
tan
`| Z)
= f2 by
A8,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
A5,
A6,
A7,
INTEGRA5: 10,
INTEGRA5: 13;
end;
theorem ::
INTEGRA8:60
A
c= Z & (
dom
cot )
= Z & (
dom
cot )
= (
dom f2) & (for x st x
in Z holds (f2
. x)
= (
- (1
/ ((
sin
. x)
^2 ))) & (
sin
. x)
<>
0 ) & (f2
| A) is
continuous implies (
integral (f2,A))
= ((
cot
. (
upper_bound A))
- (
cot
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: (
dom
cot )
= Z and
A3: (
dom
cot )
= (
dom f2) and
A4: for x st x
in Z holds (f2
. x)
= (
- (1
/ ((
sin
. x)
^2 ))) & (
sin
. x)
<>
0 and
A5: (f2
| A) is
continuous;
A6: f2
is_integrable_on A by
A1,
A2,
A3,
A5,
INTEGRA5: 11;
A7:
cot
is_differentiable_on Z by
A2,
Th34;
A8: for x be
Element of
REAL st x
in (
dom (
cot
`| Z)) holds ((
cot
`| Z)
. x)
= (f2
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (
cot
`| Z));
then
A9: x
in Z by
A7,
FDIFF_1:def 7;
then ((
cot
`| Z)
. x)
= (
- (1
/ ((
sin
. x)
^2 ))) by
A2,
Th34
.= (f2
. x) by
A4,
A9;
hence thesis;
end;
(
dom (
cot
`| Z))
= (
dom f2) by
A2,
A3,
A7,
FDIFF_1:def 7;
then (
cot
`| Z)
= f2 by
A8,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
A5,
A6,
A7,
INTEGRA5: 10,
INTEGRA5: 13;
end;
theorem ::
INTEGRA8:61
(
dom
tanh )
= (
dom f2) & (for x st x
in
REAL holds (f2
. x)
= (1
/ ((
cosh
. x)
^2 ))) & (f2
| A) is
continuous implies (
integral (f2,A))
= ((
tanh
. (
upper_bound A))
- (
tanh
. (
lower_bound A)))
proof
assume that
A1: (
dom
tanh )
= (
dom f2) and
A2: for x st x
in
REAL holds (f2
. x)
= (1
/ ((
cosh
. x)
^2 )) and
A3: (f2
| A) is
continuous;
A4: for x be
Element of
REAL st x
in (
dom (
tanh
`|
REAL )) holds ((
tanh
`|
REAL )
. x)
= (f2
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (
tanh
`|
REAL ));
((
tanh
`|
REAL )
. x)
= (
diff (
tanh ,x)) by
FDIFF_1:def 7,
SIN_COS2: 36
.= (1
/ ((
cosh
. x)
^2 )) by
SIN_COS2: 33
.= (f2
. x) by
A2;
hence thesis;
end;
(
dom (
tanh
`|
REAL ))
= (
dom f2) by
A1,
FDIFF_1:def 7,
SIN_COS2: 30,
SIN_COS2: 36;
then
A5: (
tanh
`|
REAL )
= f2 by
A4,
PARTFUN1: 5;
A6: (
dom
tanh )
=
REAL by
FUNCT_2:def 1;
then f2
is_integrable_on A by
A1,
A3,
INTEGRA5: 11;
hence thesis by
A1,
A3,
A6,
A5,
INTEGRA5: 10,
INTEGRA5: 13,
SIN_COS2: 36;
end;
Lm18: (
dom (
arcsin
`|
].(
- 1), 1.[))
=
].(
- 1), 1.[ by
FDIFF_1:def 7,
SIN_COS6: 83;
theorem ::
INTEGRA8:62
Th62: A
c=
].(
- 1), 1.[ & (
dom (
arcsin
`|
].(
- 1), 1.[))
= (
dom f2) & (for x holds x
in
].(
- 1), 1.[ & (f2
. x)
= (1
/ (
sqrt (1
- (x
^2 ))))) & (f2
| A) is
continuous implies (
integral (f2,A))
= ((
arcsin
. (
upper_bound A))
- (
arcsin
. (
lower_bound A)))
proof
assume that
A1: A
c=
].(
- 1), 1.[ and
A2: (
dom (
arcsin
`|
].(
- 1), 1.[))
= (
dom f2) and
A3: for x holds x
in
].(
- 1), 1.[ & (f2
. x)
= (1
/ (
sqrt (1
- (x
^2 )))) and
A4: (f2
| A) is
continuous;
for x be
Element of
REAL st x
in (
dom (
arcsin
`|
].(
- 1), 1.[)) holds ((
arcsin
`|
].(
- 1), 1.[)
. x)
= (f2
. x)
proof
let x be
Element of
REAL ;
assume
A5: x
in (
dom (
arcsin
`|
].(
- 1), 1.[));
then
A6: (
- 1)
< x & x
< 1 by
Lm18,
XXREAL_1: 4;
((
arcsin
`|
].(
- 1), 1.[)
. x)
= (
diff (
arcsin ,x)) by
A5,
Lm18,
FDIFF_1:def 7,
SIN_COS6: 83
.= (1
/ (
sqrt (1
- (x
^2 )))) by
A6,
SIN_COS6: 83
.= (f2
. x) by
A3;
hence thesis;
end;
then
A7: (
arcsin
`|
].(
- 1), 1.[)
= f2 by
A2,
PARTFUN1: 5;
A
c= (
dom f2) & f2
is_integrable_on A by
A1,
A2,
A4,
Lm18,
INTEGRA5: 11;
hence thesis by
A1,
A4,
A7,
INTEGRA5: 10,
INTEGRA5: 13,
SIN_COS6: 83;
end;
theorem ::
INTEGRA8:63
Th63: A
c=
].(
- 1), 1.[ & (
dom (
arccos
`|
].(
- 1), 1.[))
= (
dom f2) & (for x holds x
in
].(
- 1), 1.[ & (f2
. x)
= (
- (1
/ (
sqrt (1
- (x
^2 )))))) & (f2
| A) is
continuous implies (
integral (f2,A))
= ((
arccos
. (
upper_bound A))
- (
arccos
. (
lower_bound A)))
proof
assume that
A1: A
c=
].(
- 1), 1.[ and
A2: (
dom (
arccos
`|
].(
- 1), 1.[))
= (
dom f2) and
A3: for x holds x
in
].(
- 1), 1.[ & (f2
. x)
= (
- (1
/ (
sqrt (1
- (x
^2 ))))) and
A4: (f2
| A) is
continuous;
A5: A
c= (
dom f2) by
A1,
A2,
FDIFF_1:def 7,
SIN_COS6: 106;
A6: (
dom (
arccos
`|
].(
- 1), 1.[))
=
].(
- 1), 1.[ by
FDIFF_1:def 7,
SIN_COS6: 106;
for x be
Element of
REAL st x
in (
dom (
arccos
`|
].(
- 1), 1.[)) holds ((
arccos
`|
].(
- 1), 1.[)
. x)
= (f2
. x)
proof
let x be
Element of
REAL ;
assume
A7: x
in (
dom (
arccos
`|
].(
- 1), 1.[));
then
A8: (
- 1)
< x & x
< 1 by
A6,
XXREAL_1: 4;
((
arccos
`|
].(
- 1), 1.[)
. x)
= (
diff (
arccos ,x)) by
A6,
A7,
FDIFF_1:def 7,
SIN_COS6: 106
.= (
- (1
/ (
sqrt (1
- (x
^2 ))))) by
A8,
SIN_COS6: 106
.= (f2
. x) by
A3;
hence thesis;
end;
then
A9: (
arccos
`|
].(
- 1), 1.[)
= f2 by
A2,
PARTFUN1: 5;
f2
is_integrable_on A by
A6,
A1,
A2,
A4,
INTEGRA5: 11;
hence thesis by
A1,
A4,
A5,
A9,
INTEGRA5: 10,
INTEGRA5: 13,
SIN_COS6: 106;
end;
theorem ::
INTEGRA8:64
A
=
[.(
- ((
sqrt 2)
/ 2)), ((
sqrt 2)
/ 2).] & (
dom (
arcsin
`|
].(
- 1), 1.[))
= (
dom f2) & (for x holds x
in
].(
- 1), 1.[ & (f2
. x)
= (1
/ (
sqrt (1
- (x
^2 ))))) & (f2
| A) is
continuous implies (
integral (f2,A))
= (
PI
/ 2)
proof
assume that
A1: A
=
[.(
- ((
sqrt 2)
/ 2)), ((
sqrt 2)
/ 2).] and
A2: ((
dom (
arcsin
`|
].(
- 1), 1.[))
= (
dom f2) & for x holds x
in
].(
- 1), 1.[ & (f2
. x)
= (1
/ (
sqrt (1
- (x
^2 ))))) & (f2
| A) is
continuous;
(
upper_bound A)
= ((
sqrt 2)
/ 2) & (
lower_bound A)
= (
- ((
sqrt 2)
/ 2)) by
A1,
Th37;
then (
integral (f2,A))
= ((
arcsin
. ((
sqrt 2)
/ 2))
- (
arcsin
. (
- ((
sqrt 2)
/ 2)))) by
A1,
A2,
Th9,
Th62
.= ((
arcsin ((
sqrt 2)
/ 2))
- (
arcsin
. (
- ((
sqrt 2)
/ 2)))) by
SIN_COS6:def 2
.= ((
arcsin ((
sqrt 2)
/ 2))
- (
arcsin (
- ((
sqrt 2)
/ 2)))) by
SIN_COS6:def 2
.= ((2
*
PI )
/ 4) by
Th10,
Th11;
hence thesis;
end;
theorem ::
INTEGRA8:65
A
=
[.(
- ((
sqrt 2)
/ 2)), ((
sqrt 2)
/ 2).] & (
dom (
arccos
`|
].(
- 1), 1.[))
= (
dom f2) & (for x holds x
in
].(
- 1), 1.[ & (f2
. x)
= (
- (1
/ (
sqrt (1
- (x
^2 )))))) & (f2
| A) is
continuous implies (
integral (f2,A))
= (
- (
PI
/ 2))
proof
assume that
A1: A
=
[.(
- ((
sqrt 2)
/ 2)), ((
sqrt 2)
/ 2).] and
A2: ((
dom (
arccos
`|
].(
- 1), 1.[))
= (
dom f2) & for x holds x
in
].(
- 1), 1.[ & (f2
. x)
= (
- (1
/ (
sqrt (1
- (x
^2 )))))) & (f2
| A) is
continuous;
(
upper_bound A)
= ((
sqrt 2)
/ 2) & (
lower_bound A)
= (
- ((
sqrt 2)
/ 2)) by
A1,
Th37;
then (
integral (f2,A))
= ((
arccos
. ((
sqrt 2)
/ 2))
- (
arccos
. (
- ((
sqrt 2)
/ 2)))) by
A1,
A2,
Th9,
Th63
.= ((
arccos ((
sqrt 2)
/ 2))
- (
arccos
. (
- ((
sqrt 2)
/ 2)))) by
SIN_COS6:def 4
.= ((
arccos ((
sqrt 2)
/ 2))
- (
arccos (
- ((
sqrt 2)
/ 2)))) by
SIN_COS6:def 4
.= ((
- (2
*
PI ))
/ 4) by
Th15,
Th16;
hence thesis;
end;
theorem ::
INTEGRA8:66
Th66: f
is_differentiable_on Z & g
is_differentiable_on Z & A
c= Z & (f
`| Z)
is_integrable_on A & ((f
`| Z)
| A) is
bounded & (g
`| Z)
is_integrable_on A & ((g
`| Z)
| A) is
bounded implies (
integral (((f
`| Z)
+ (g
`| Z)),A))
= ((((f
. (
upper_bound A))
- (f
. (
lower_bound A)))
+ (g
. (
upper_bound A)))
- (g
. (
lower_bound A)))
proof
assume that
A1: f
is_differentiable_on Z and
A2: g
is_differentiable_on Z and
A3: A
c= Z and
A4: (f
`| Z)
is_integrable_on A and
A5: ((f
`| Z)
| A) is
bounded and
A6: (g
`| Z)
is_integrable_on A and
A7: ((g
`| Z)
| A) is
bounded;
A8: ((f
`| Z)
|| A) is
integrable & ((g
`| Z)
|| A) is
integrable by
A4,
A6;
A
c= (
dom (g
`| Z)) by
A2,
A3,
FDIFF_1:def 7;
then
A9: ((g
`| Z)
|| A) is
Function of A,
REAL by
FUNCT_2: 68,
INTEGRA5: 6;
A
c= (
dom (f
`| Z)) by
A1,
A3,
FDIFF_1:def 7;
then
A10: ((f
`| Z)
|| A) is
Function of A,
REAL by
FUNCT_2: 68,
INTEGRA5: 6;
A11: (((f
`| Z)
|| A)
| A) is
bounded & (((g
`| Z)
|| A)
| A) is
bounded by
A5,
A7,
INTEGRA5: 9;
(
integral (((f
`| Z)
+ (g
`| Z)),A))
= (
integral (((f
`| Z)
|| A)
+ ((g
`| Z)
|| A))) by
INTEGRA5: 5
.= ((
integral ((f
`| Z),A))
+ (
integral ((g
`| Z),A))) by
A8,
A10,
A9,
A11,
INTEGRA1: 57
.= (((f
. (
upper_bound A))
- (f
. (
lower_bound A)))
+ (
integral ((g
`| Z),A))) by
A1,
A3,
A4,
A5,
INTEGRA5: 13
.= (((f
. (
upper_bound A))
- (f
. (
lower_bound A)))
+ ((g
. (
upper_bound A))
- (g
. (
lower_bound A)))) by
A2,
A3,
A6,
A7,
INTEGRA5: 13;
hence thesis;
end;
theorem ::
INTEGRA8:67
Th67: f
is_differentiable_on Z & g
is_differentiable_on Z & A
c= Z & (f
`| Z)
is_integrable_on A & ((f
`| Z)
| A) is
bounded & (g
`| Z)
is_integrable_on A & ((g
`| Z)
| A) is
bounded implies (
integral (((f
`| Z)
- (g
`| Z)),A))
= (((f
. (
upper_bound A))
- (f
. (
lower_bound A)))
- ((g
. (
upper_bound A))
- (g
. (
lower_bound A))))
proof
assume that
A1: f
is_differentiable_on Z and
A2: g
is_differentiable_on Z and
A3: A
c= Z and
A4: (f
`| Z)
is_integrable_on A and
A5: ((f
`| Z)
| A) is
bounded and
A6: (g
`| Z)
is_integrable_on A and
A7: ((g
`| Z)
| A) is
bounded;
A8: ((f
`| Z)
|| A) is
integrable & ((g
`| Z)
|| A) is
integrable by
A4,
A6;
A
c= (
dom (g
`| Z)) by
A2,
A3,
FDIFF_1:def 7;
then
A9: ((g
`| Z)
|| A) is
Function of A,
REAL by
FUNCT_2: 68,
INTEGRA5: 6;
A
c= (
dom (f
`| Z)) by
A1,
A3,
FDIFF_1:def 7;
then
A10: ((f
`| Z)
|| A) is
Function of A,
REAL by
FUNCT_2: 68,
INTEGRA5: 6;
A11: (((f
`| Z)
|| A)
| A) is
bounded & (((g
`| Z)
|| A)
| A) is
bounded by
A5,
A7,
INTEGRA5: 9;
(
integral (((f
`| Z)
- (g
`| Z)),A))
= (
integral (((f
`| Z)
|| A)
- ((g
`| Z)
|| A))) by
RFUNCT_1: 47
.= ((
integral ((f
`| Z),A))
- (
integral ((g
`| Z)
|| A))) by
A8,
A10,
A9,
A11,
INTEGRA2: 33
.= (((f
. (
upper_bound A))
- (f
. (
lower_bound A)))
- (
integral ((g
`| Z),A))) by
A1,
A3,
A4,
A5,
INTEGRA5: 13
.= (((f
. (
upper_bound A))
- (f
. (
lower_bound A)))
- ((g
. (
upper_bound A))
- (g
. (
lower_bound A)))) by
A2,
A3,
A6,
A7,
INTEGRA5: 13;
hence thesis;
end;
theorem ::
INTEGRA8:68
Th68: f
is_differentiable_on Z & A
c= Z & (f
`| Z)
is_integrable_on A & ((f
`| Z)
| A) is
bounded implies (
integral ((r
(#) (f
`| Z)),A))
= ((r
* (f
. (
upper_bound A)))
- (r
* (f
. (
lower_bound A))))
proof
assume that
A1: f
is_differentiable_on Z & A
c= Z and
A2: (f
`| Z)
is_integrable_on A & ((f
`| Z)
| A) is
bounded;
A3: ((f
`| Z)
|| A) is
integrable & (((f
`| Z)
|| A)
| A) is
bounded by
A2,
INTEGRA5: 9;
A
c= (
dom (f
`| Z)) by
A1,
FDIFF_1:def 7;
then
A4: ((f
`| Z)
|| A) is
Function of A,
REAL by
FUNCT_2: 68,
INTEGRA5: 6;
(
integral ((r
(#) (f
`| Z)),A))
= (
integral (r
(#) ((f
`| Z)
|| A))) by
RFUNCT_1: 49
.= (r
* (
integral ((f
`| Z),A))) by
A4,
A3,
INTEGRA2: 31
.= (r
* ((f
. (
upper_bound A))
- (f
. (
lower_bound A)))) by
A1,
A2,
INTEGRA5: 13;
hence thesis;
end;
Lm19:
sin
is_integrable_on A & (
sin
| A) is
bounded
proof
(
sin
| A) is
continuous;
hence thesis by
Lm5,
INTEGRA5: 10,
INTEGRA5: 11;
end;
theorem ::
INTEGRA8:69
Th69: (
integral ((
sin
+
cos ),A))
= (((((
-
cos )
. (
upper_bound A))
- ((
-
cos )
. (
lower_bound A)))
+ (
sin
. (
upper_bound A)))
- (
sin
. (
lower_bound A)))
proof
A1: (
[#]
REAL ) is
open
Subset of
REAL ;
A2:
sin
is_integrable_on A & (
sin
| A) is
bounded by
Lm19;
cos
is_integrable_on A & (
cos
| A) is
bounded by
Lm11;
hence thesis by
A2,
A1,
Th26,
Th27,
Th29,
Th66,
SIN_COS: 68;
end;
theorem ::
INTEGRA8:70
A
=
[.
0 , (
PI
/ 2).] implies (
integral ((
sin
+
cos ),A))
= 2
proof
assume A
=
[.
0 , (
PI
/ 2).];
then (
upper_bound A)
= (
PI
/ 2) & (
lower_bound A)
=
0 by
Th37;
then (
integral ((
sin
+
cos ),A))
= (((((
-
cos )
. (
PI
/ 2))
- ((
-
cos )
.
0 ))
+ (
sin
. (
PI
/ 2)))
- (
sin
.
0 )) by
Th69
.= ((((
- (
cos
. (
PI
/ 2)))
- ((
-
cos )
.
0 ))
+ (
sin
. (
PI
/ 2)))
- (
sin
.
0 )) by
VALUED_1: 8
.= ((((
-
0 )
- (
- (
cos
.
0 )))
+ 1)
- (
sin
.
0 )) by
SIN_COS: 76,
VALUED_1: 8
.= (((
- (
- (
cos
.
0 )))
+ 1)
- (
sin
. (
0
+ (2
*
PI )))) by
SIN_COS: 78
.= (((
- (
- (
cos
. (
0
+ (2
*
PI )))))
+ 1)
-
0 ) by
SIN_COS: 76,
SIN_COS: 78
.= 2 by
SIN_COS: 76;
hence thesis;
end;
theorem ::
INTEGRA8:71
A
=
[.
0 ,
PI .] implies (
integral ((
sin
+
cos ),A))
= 2
proof
assume A
=
[.
0 ,
PI .];
then (
upper_bound A)
=
PI & (
lower_bound A)
=
0 by
Th37;
then (
integral ((
sin
+
cos ),A))
= (((((
-
cos )
.
PI )
- ((
-
cos )
.
0 ))
+ (
sin
.
PI ))
- (
sin
.
0 )) by
Th69
.= ((((
- (
cos
.
PI ))
- ((
-
cos )
.
0 ))
+ (
sin
.
PI ))
- (
sin
.
0 )) by
VALUED_1: 8
.= ((((
- (
cos
.
PI ))
- (
- (
cos
.
0 )))
+ (
sin
.
PI ))
- (
sin
.
0 )) by
VALUED_1: 8
.= (((
- (
- (
cos
.
0 )))
+ 1)
- (
sin
. (
0
+ (2
*
PI )))) by
SIN_COS: 76,
SIN_COS: 78
.= (((
- (
- (
cos
. (
0
+ (2
*
PI )))))
+ 1)
-
0 ) by
SIN_COS: 76,
SIN_COS: 78
.= 2 by
SIN_COS: 76;
hence thesis;
end;
theorem ::
INTEGRA8:72
A
=
[.
0 , ((
PI
* 3)
/ 2).] implies (
integral ((
sin
+
cos ),A))
=
0
proof
assume A
=
[.
0 , ((
PI
* 3)
/ 2).];
then (
upper_bound A)
= ((
PI
* 3)
/ 2) & (
lower_bound A)
=
0 by
Th37;
then (
integral ((
sin
+
cos ),A))
= (((((
-
cos )
. ((
PI
* 3)
/ 2))
- ((
-
cos )
.
0 ))
+ (
sin
. ((
PI
* 3)
/ 2)))
- (
sin
.
0 )) by
Th69
.= ((((
- (
cos
. ((
PI
* 3)
/ 2)))
- ((
-
cos )
.
0 ))
+ (
sin
. ((
PI
* 3)
/ 2)))
- (
sin
.
0 )) by
VALUED_1: 8
.= ((((
- (
cos
. ((
PI
* 3)
/ 2)))
- (
- (
cos
.
0 )))
+ (
sin
. ((
PI
* 3)
/ 2)))
- (
sin
.
0 )) by
VALUED_1: 8
.= ((((
- (
cos
. ((
PI
* 3)
/ 2)))
- (
- (
cos
. (
0
+ (2
*
PI )))))
+ (
sin
. ((
PI
* 3)
/ 2)))
- (
sin
.
0 )) by
SIN_COS: 78
.= ((((
-
0 )
+ 1)
+ (
- 1))
-
0 ) by
SIN_COS: 76,
SIN_COS: 78;
hence thesis;
end;
theorem ::
INTEGRA8:73
A
=
[.
0 , (
PI
* 2).] implies (
integral ((
sin
+
cos ),A))
=
0
proof
assume A
=
[.
0 , (
PI
* 2).];
then (
upper_bound A)
= (
PI
* 2) & (
lower_bound A)
=
0 by
Th37;
then (
integral ((
sin
+
cos ),A))
= (((((
-
cos )
. (
PI
* 2))
- ((
-
cos )
.
0 ))
+ (
sin
. (
PI
* 2)))
- (
sin
.
0 )) by
Th69
.= ((((
- (
cos
. (
PI
* 2)))
- ((
-
cos )
.
0 ))
+ (
sin
. (
PI
* 2)))
- (
sin
.
0 )) by
VALUED_1: 8
.= ((((
- (
cos
. (
PI
* 2)))
- (
- (
cos
.
0 )))
+ (
sin
. (
PI
* 2)))
- (
sin
.
0 )) by
VALUED_1: 8
.= ((((
- (
cos
. (
PI
* 2)))
- (
- (
cos
. (
0
+ (2
*
PI )))))
+ (
sin
. (
PI
* 2)))
- (
sin
.
0 )) by
SIN_COS: 78
.= ((((
- 1)
+ 1)
+
0 )
-
0 ) by
SIN_COS: 76,
SIN_COS: 78;
hence thesis;
end;
theorem ::
INTEGRA8:74
A
=
[.((2
* n)
*
PI ), (((2
* n)
+ 1)
*
PI ).] implies (
integral ((
sin
+
cos ),A))
= 2
proof
assume A
=
[.((2
* n)
*
PI ), (((2
* n)
+ 1)
*
PI ).];
then (
upper_bound A)
= (((2
* n)
+ 1)
*
PI ) & (
lower_bound A)
= ((2
* n)
*
PI ) by
Th37;
then (
integral ((
sin
+
cos ),A))
= (((((
-
cos )
. (((2
* n)
+ 1)
*
PI ))
- ((
-
cos )
. ((2
* n)
*
PI )))
+ (
sin
. (((2
* n)
+ 1)
*
PI )))
- (
sin
. ((2
* n)
*
PI ))) by
Th69
.= ((((
- (
cos
. (((2
* n)
+ 1)
*
PI )))
- ((
-
cos )
. ((2
* n)
*
PI )))
+ (
sin
. (((2
* n)
+ 1)
*
PI )))
- (
sin
. ((2
* n)
*
PI ))) by
VALUED_1: 8
.= ((((
- (
cos
. (((2
* n)
+ 1)
*
PI )))
- (
- (
cos (
0
+ ((2
* n)
*
PI )))))
+ (
sin
. (((2
* n)
+ 1)
*
PI )))
- (
sin
. (
0
+ ((2
* n)
*
PI )))) by
VALUED_1: 8
.= ((((
- (
cos
. (((2
* n)
+ 1)
*
PI )))
- (
- (
cos
0 )))
+ (
sin
. (((2
* n)
+ 1)
*
PI )))
- (
sin
. (
0
+ ((2
* n)
*
PI )))) by
Th3
.= ((((
- (
cos
. (((2
* n)
+ 1)
*
PI )))
+ (
cos
0 ))
+ (
sin
. (((2
* n)
+ 1)
*
PI )))
- (
sin
. (
0
+ ((2
* n)
*
PI ))))
.= ((((
- (
cos
. (((2
* n)
+ 1)
*
PI )))
+ (
cos (
0
+ (2
*
PI ))))
+ (
sin
. (((2
* n)
+ 1)
*
PI )))
- (
sin
. (
0
+ ((2
* n)
*
PI )))) by
SIN_COS: 79
.= ((((
- (
cos
. (((2
* n)
+ 1)
*
PI )))
+ 1)
+ (
sin
. (((2
* n)
+ 1)
*
PI )))
- (
sin (
0
+ ((2
* n)
*
PI )))) by
SIN_COS: 77
.= ((((
- (
cos
. (((2
* n)
+ 1)
*
PI )))
+ 1)
+ (
sin
. (((2
* n)
+ 1)
*
PI )))
- (
sin
0 )) by
Th1
.= ((((
- (
cos
. (((2
* n)
+ 1)
*
PI )))
+ 1)
+ (
sin
. (((2
* n)
+ 1)
*
PI )))
- (
sin (
0
+ (2
*
PI )))) by
SIN_COS: 79
.= (((
- (
cos (
0
+ (((2
* n)
+ 1)
*
PI ))))
+ 1)
+ (
sin (
0
+ (((2
* n)
+ 1)
*
PI )))) by
SIN_COS: 77
.= (((
- (
cos (
0
+ (((2
* n)
+ 1)
*
PI ))))
+ 1)
+ (
- (
sin
0 ))) by
Th2
.= (((
- (
- (
cos
0 )))
+ 1)
+ (
- (
sin
0 ))) by
Th4
.= (((
cos
0 )
+ 1)
- (
sin
0 ))
.= (((
cos (
0
+ (2
*
PI )))
+ 1)
- (
sin
0 )) by
SIN_COS: 79
.= (((
cos (
0
+ (2
*
PI )))
+ 1)
- (
sin (
0
+ (2
*
PI )))) by
SIN_COS: 79
.= 2 by
SIN_COS: 77;
hence thesis;
end;
theorem ::
INTEGRA8:75
A
=
[.(x
+ ((2
* n)
*
PI )), (x
+ (((2
* n)
+ 1)
*
PI )).] implies (
integral ((
sin
+
cos ),A))
= ((2
* (
cos x))
- (2
* (
sin x)))
proof
assume A
=
[.(x
+ ((2
* n)
*
PI )), (x
+ (((2
* n)
+ 1)
*
PI )).];
then (
upper_bound A)
= (x
+ (((2
* n)
+ 1)
*
PI )) & (
lower_bound A)
= (x
+ ((2
* n)
*
PI )) by
Th37;
then (
integral ((
sin
+
cos ),A))
= (((((
-
cos )
. (x
+ (((2
* n)
+ 1)
*
PI )))
- ((
-
cos )
. (x
+ ((2
* n)
*
PI ))))
+ (
sin
. (x
+ (((2
* n)
+ 1)
*
PI ))))
- (
sin
. (x
+ ((2
* n)
*
PI )))) by
Th69
.= ((((
- (
cos
. (x
+ (((2
* n)
+ 1)
*
PI ))))
- ((
-
cos )
. (x
+ ((2
* n)
*
PI ))))
+ (
sin
. (x
+ (((2
* n)
+ 1)
*
PI ))))
- (
sin
. (x
+ ((2
* n)
*
PI )))) by
VALUED_1: 8
.= ((((
- (
cos (x
+ (((2
* n)
+ 1)
*
PI ))))
- (
- (
cos (x
+ ((2
* n)
*
PI )))))
+ (
sin (x
+ (((2
* n)
+ 1)
*
PI ))))
- (
sin (x
+ ((2
* n)
*
PI )))) by
VALUED_1: 8
.= ((((
- (
- (
cos x)))
- (
- (
cos (x
+ ((2
* n)
*
PI )))))
+ (
sin (x
+ (((2
* n)
+ 1)
*
PI ))))
- (
sin (x
+ ((2
* n)
*
PI )))) by
Th4
.= ((((
- (
- (
cos x)))
- (
- (
cos x)))
+ (
sin (x
+ (((2
* n)
+ 1)
*
PI ))))
- (
sin (x
+ ((2
* n)
*
PI )))) by
Th3
.= ((((
- (
- (
cos x)))
- (
- (
cos x)))
+ (
- (
sin x)))
- (
sin (x
+ ((2
* n)
*
PI )))) by
Th2
.= ((((
cos x)
+ (
cos x))
- (
sin x))
- (
sin x)) by
Th1
.= ((2
* (
cos x))
- (2
* (
sin x)));
hence thesis;
end;
theorem ::
INTEGRA8:76
Th76: (
integral ((
sinh
+
cosh ),A))
= ((((
cosh
. (
upper_bound A))
- (
cosh
. (
lower_bound A)))
+ (
sinh
. (
upper_bound A)))
- (
sinh
. (
lower_bound A)))
proof
A1: (
[#]
REAL ) is
open
Subset of
REAL ;
(
cosh
| A) is
continuous by
Lm16;
then
A2:
cosh
is_integrable_on A by
Lm10,
INTEGRA5: 11;
(
sinh
| A) is
continuous by
Lm14;
then
A3:
sinh
is_integrable_on A by
Lm9,
INTEGRA5: 11;
(
cosh
| A) is
bounded & (
sinh
| A) is
bounded by
Lm9,
Lm10,
Lm14,
Lm16,
INTEGRA5: 10;
hence thesis by
A2,
A3,
A1,
Th30,
Th31,
Th66,
SIN_COS2: 34,
SIN_COS2: 35;
end;
theorem ::
INTEGRA8:77
A
=
[.
0 , 1.] implies (
integral ((
sinh
+
cosh ),A))
= (
number_e
- 1)
proof
A1:
number_e
>
0 by
IRRAT_1:def 7,
SIN_COS: 55;
assume A
=
[.
0 , 1.];
then (
upper_bound A)
= 1 & (
lower_bound A)
=
0 by
Th37;
then (
integral ((
sinh
+
cosh ),A))
= ((((
cosh
. 1)
- (
cosh
.
0 ))
+ (
sinh
. 1))
- (
sinh
.
0 )) by
Th76
.= (((((
number_e
^2 )
+ 1)
/ (2
*
number_e ))
+ (((
number_e
^2 )
- 1)
/ (2
*
number_e )))
- 1) by
Th17,
Th18,
Th19,
SIN_COS2: 16
.= (((((
number_e
^2 )
+ 1)
+ ((
number_e
^2 )
- 1))
/ (2
*
number_e ))
- 1) by
XCMPLX_1: 62
.= (((2
* (
number_e
^2 ))
/ (2
*
number_e ))
- 1)
.= (((
number_e
^2 )
/
number_e )
- 1) by
XCMPLX_1: 91
.= (((
number_e
*
number_e )
/
number_e )
- 1)
.= (
number_e
- 1) by
A1,
XCMPLX_1: 89;
hence thesis;
end;
theorem ::
INTEGRA8:78
Th78: (
integral ((
sin
-
cos ),A))
= ((((
-
cos )
. (
upper_bound A))
- ((
-
cos )
. (
lower_bound A)))
- ((
sin
. (
upper_bound A))
- (
sin
. (
lower_bound A))))
proof
A1: (
[#]
REAL ) is
open
Subset of
REAL ;
A2:
sin
is_integrable_on A & (
sin
| A) is
bounded by
Lm19;
cos
is_integrable_on A & (
cos
| A) is
bounded by
Lm11;
hence thesis by
A2,
A1,
Th26,
Th27,
Th29,
Th67,
SIN_COS: 68;
end;
theorem ::
INTEGRA8:79
A
=
[.
0 , (
PI
/ 2).] implies (
integral ((
sin
-
cos ),A))
=
0
proof
assume A
=
[.
0 , (
PI
/ 2).];
then (
upper_bound A)
= (
PI
/ 2) & (
lower_bound A)
=
0 by
Th37;
then (
integral ((
sin
-
cos ),A))
= ((((
-
cos )
. (
PI
/ 2))
- ((
-
cos )
.
0 ))
- ((
sin
. (
PI
/ 2))
- (
sin
.
0 ))) by
Th78
.= (((
- (
cos
. (
PI
/ 2)))
- ((
-
cos )
.
0 ))
- ((
sin
. (
PI
/ 2))
- (
sin
.
0 ))) by
VALUED_1: 8
.= (((
-
0 )
- (
- (
cos
.
0 )))
- (1
- (
sin
.
0 ))) by
SIN_COS: 76,
VALUED_1: 8
.= ((
- (
- (
cos
.
0 )))
- (1
- (
sin
. (
0
+ (2
*
PI ))))) by
SIN_COS: 78
.= ((
- (
- (
cos
. (
0
+ (2
*
PI )))))
- (1
-
0 )) by
SIN_COS: 76,
SIN_COS: 78
.=
0 by
SIN_COS: 76;
hence thesis;
end;
theorem ::
INTEGRA8:80
A
=
[.
0 ,
PI .] implies (
integral ((
sin
-
cos ),A))
= 2
proof
assume A
=
[.
0 ,
PI .];
then (
upper_bound A)
=
PI & (
lower_bound A)
=
0 by
Th37;
then (
integral ((
sin
-
cos ),A))
= ((((
-
cos )
.
PI )
- ((
-
cos )
.
0 ))
- ((
sin
.
PI )
- (
sin
.
0 ))) by
Th78
.= (((
- (
cos
.
PI ))
- ((
-
cos )
.
0 ))
- ((
sin
.
PI )
- (
sin
.
0 ))) by
VALUED_1: 8
.= (((
- (
cos
.
PI ))
- (
- (
cos
.
0 )))
- ((
sin
.
PI )
- (
sin
.
0 ))) by
VALUED_1: 8
.= (((
- (
- (
cos
.
0 )))
+ 1)
- ((
sin
. (
0
+ (2
*
PI )))
-
0 )) by
SIN_COS: 76,
SIN_COS: 78
.= (((
- (
- (
cos
. (
0
+ (2
*
PI )))))
+ 1)
-
0 ) by
SIN_COS: 76,
SIN_COS: 78
.= 2 by
SIN_COS: 76;
hence thesis;
end;
theorem ::
INTEGRA8:81
A
=
[.
0 , ((
PI
* 3)
/ 2).] implies (
integral ((
sin
-
cos ),A))
= 2
proof
assume A
=
[.
0 , ((
PI
* 3)
/ 2).];
then (
upper_bound A)
= ((
PI
* 3)
/ 2) & (
lower_bound A)
=
0 by
Th37;
then (
integral ((
sin
-
cos ),A))
= ((((
-
cos )
. ((
PI
* 3)
/ 2))
- ((
-
cos )
.
0 ))
- ((
sin
. ((
PI
* 3)
/ 2))
- (
sin
.
0 ))) by
Th78
.= (((
- (
cos
. ((
PI
* 3)
/ 2)))
- ((
-
cos )
.
0 ))
- ((
sin
. ((
PI
* 3)
/ 2))
- (
sin
.
0 ))) by
VALUED_1: 8
.= (((
- (
cos
. ((
PI
* 3)
/ 2)))
- (
- (
cos
.
0 )))
- ((
sin
. ((
PI
* 3)
/ 2))
- (
sin
.
0 ))) by
VALUED_1: 8
.= (((
- (
cos
. ((
PI
* 3)
/ 2)))
- (
- (
cos
. (
0
+ (2
*
PI )))))
- ((
sin
. ((
PI
* 3)
/ 2))
- (
sin
.
0 ))) by
SIN_COS: 78
.= (((
-
0 )
+ 1)
- ((
- 1)
-
0 )) by
SIN_COS: 76,
SIN_COS: 78;
hence thesis;
end;
theorem ::
INTEGRA8:82
A
=
[.
0 , (
PI
* 2).] implies (
integral ((
sin
-
cos ),A))
=
0
proof
assume A
=
[.
0 , (
PI
* 2).];
then (
upper_bound A)
= (
PI
* 2) & (
lower_bound A)
=
0 by
Th37;
then (
integral ((
sin
-
cos ),A))
= ((((
-
cos )
. (
PI
* 2))
- ((
-
cos )
.
0 ))
- ((
sin
. (
PI
* 2))
- (
sin
.
0 ))) by
Th78
.= (((
- (
cos
. (
PI
* 2)))
- ((
-
cos )
.
0 ))
- ((
sin
. (
PI
* 2))
- (
sin
.
0 ))) by
VALUED_1: 8
.= (((
- (
cos
. (
PI
* 2)))
- (
- (
cos
.
0 )))
- ((
sin
. (
PI
* 2))
- (
sin
.
0 ))) by
VALUED_1: 8
.= (((
- (
cos
. (
PI
* 2)))
- (
- (
cos
. (
0
+ (2
*
PI )))))
- ((
sin
. (
PI
* 2))
- (
sin
.
0 ))) by
SIN_COS: 78
.= (((
- 1)
+ 1)
- (
0
-
0 )) by
SIN_COS: 76,
SIN_COS: 78;
hence thesis;
end;
theorem ::
INTEGRA8:83
A
=
[.((2
* n)
*
PI ), (((2
* n)
+ 1)
*
PI ).] implies (
integral ((
sin
-
cos ),A))
= 2
proof
assume A
=
[.((2
* n)
*
PI ), (((2
* n)
+ 1)
*
PI ).];
then (
upper_bound A)
= (((2
* n)
+ 1)
*
PI ) & (
lower_bound A)
= ((2
* n)
*
PI ) by
Th37;
then (
integral ((
sin
-
cos ),A))
= ((((
-
cos )
. (((2
* n)
+ 1)
*
PI ))
- ((
-
cos )
. ((2
* n)
*
PI )))
- ((
sin
. (((2
* n)
+ 1)
*
PI ))
- (
sin
. ((2
* n)
*
PI )))) by
Th78
.= (((
- (
cos
. (((2
* n)
+ 1)
*
PI )))
- ((
-
cos )
. ((2
* n)
*
PI )))
- ((
sin
. (((2
* n)
+ 1)
*
PI ))
- (
sin
. ((2
* n)
*
PI )))) by
VALUED_1: 8
.= (((
- (
cos
. (((2
* n)
+ 1)
*
PI )))
- (
- (
cos (
0
+ ((2
* n)
*
PI )))))
- ((
sin
. (((2
* n)
+ 1)
*
PI ))
- (
sin
. (
0
+ ((2
* n)
*
PI ))))) by
VALUED_1: 8
.= (((
- (
cos
. (((2
* n)
+ 1)
*
PI )))
- (
- (
cos
0 )))
- ((
sin
. (((2
* n)
+ 1)
*
PI ))
- (
sin
. (
0
+ ((2
* n)
*
PI ))))) by
Th3
.= (((
- (
cos
. (((2
* n)
+ 1)
*
PI )))
+ (
cos
0 ))
- ((
sin
. (((2
* n)
+ 1)
*
PI ))
- (
sin
. (
0
+ ((2
* n)
*
PI )))))
.= (((
- (
cos
. (((2
* n)
+ 1)
*
PI )))
+ (
cos (
0
+ (2
*
PI ))))
- ((
sin
. (((2
* n)
+ 1)
*
PI ))
- (
sin
. (
0
+ ((2
* n)
*
PI ))))) by
SIN_COS: 79
.= (((
- (
cos
. (((2
* n)
+ 1)
*
PI )))
+ 1)
- ((
sin
. (((2
* n)
+ 1)
*
PI ))
- (
sin (
0
+ ((2
* n)
*
PI ))))) by
SIN_COS: 77
.= (((
- (
cos
. (((2
* n)
+ 1)
*
PI )))
+ 1)
- ((
sin
. (((2
* n)
+ 1)
*
PI ))
- (
sin
0 ))) by
Th1
.= (((
- (
cos
. (((2
* n)
+ 1)
*
PI )))
+ 1)
- ((
sin
. (((2
* n)
+ 1)
*
PI ))
- (
sin (
0
+ (2
*
PI ))))) by
SIN_COS: 79
.= (((
- (
cos (
0
+ (((2
* n)
+ 1)
*
PI ))))
+ 1)
- (
sin (
0
+ (((2
* n)
+ 1)
*
PI )))) by
SIN_COS: 77
.= (((
- (
cos (
0
+ (((2
* n)
+ 1)
*
PI ))))
+ 1)
- (
- (
sin
0 ))) by
Th2
.= (((
- (
- (
cos
0 )))
+ 1)
- (
- (
sin
0 ))) by
Th4
.= (((
cos
0 )
+ 1)
+ (
sin
0 ))
.= (((
cos (
0
+ (2
*
PI )))
+ 1)
+ (
sin
0 )) by
SIN_COS: 79
.= (((
cos (
0
+ (2
*
PI )))
+ 1)
+ (
sin (
0
+ (2
*
PI )))) by
SIN_COS: 79
.= 2 by
SIN_COS: 77;
hence thesis;
end;
theorem ::
INTEGRA8:84
A
=
[.(x
+ ((2
* n)
*
PI )), (x
+ (((2
* n)
+ 1)
*
PI )).] implies (
integral ((
sin
-
cos ),A))
= ((2
* (
cos x))
+ (2
* (
sin x)))
proof
assume A
=
[.(x
+ ((2
* n)
*
PI )), (x
+ (((2
* n)
+ 1)
*
PI )).];
then (
upper_bound A)
= (x
+ (((2
* n)
+ 1)
*
PI )) & (
lower_bound A)
= (x
+ ((2
* n)
*
PI )) by
Th37;
then (
integral ((
sin
-
cos ),A))
= ((((
-
cos )
. (x
+ (((2
* n)
+ 1)
*
PI )))
- ((
-
cos )
. (x
+ ((2
* n)
*
PI ))))
- ((
sin
. (x
+ (((2
* n)
+ 1)
*
PI )))
- (
sin
. (x
+ ((2
* n)
*
PI ))))) by
Th78
.= (((
- (
cos
. (x
+ (((2
* n)
+ 1)
*
PI ))))
- ((
-
cos )
. (x
+ ((2
* n)
*
PI ))))
- ((
sin
. (x
+ (((2
* n)
+ 1)
*
PI )))
- (
sin
. (x
+ ((2
* n)
*
PI ))))) by
VALUED_1: 8
.= (((
- (
cos (x
+ (((2
* n)
+ 1)
*
PI ))))
- (
- (
cos (x
+ ((2
* n)
*
PI )))))
- ((
sin (x
+ (((2
* n)
+ 1)
*
PI )))
- (
sin (x
+ ((2
* n)
*
PI ))))) by
VALUED_1: 8
.= (((
- (
- (
cos x)))
- (
- (
cos (x
+ ((2
* n)
*
PI )))))
- ((
sin (x
+ (((2
* n)
+ 1)
*
PI )))
- (
sin (x
+ ((2
* n)
*
PI ))))) by
Th4
.= (((
- (
- (
cos x)))
- (
- (
cos x)))
- ((
sin (x
+ (((2
* n)
+ 1)
*
PI )))
- (
sin (x
+ ((2
* n)
*
PI ))))) by
Th3
.= (((
- (
- (
cos x)))
- (
- (
cos x)))
- ((
- (
sin x))
- (
sin (x
+ ((2
* n)
*
PI ))))) by
Th2
.= (((
cos x)
+ (
cos x))
- ((
- (
sin x))
- (
sin x))) by
Th1
.= ((2
* (
cos x))
+ (2
* (
sin x)));
hence thesis;
end;
theorem ::
INTEGRA8:85
(
integral ((r
(#)
sin ),A))
= ((r
* ((
-
cos )
. (
upper_bound A)))
- (r
* ((
-
cos )
. (
lower_bound A))))
proof
(
sin
| A) is
bounded & (
[#]
REAL ) is
open
Subset of
REAL by
Lm5,
INTEGRA5: 10;
hence thesis by
Lm5,
Th26,
Th29,
Th68,
INTEGRA5: 11;
end;
theorem ::
INTEGRA8:86
(
integral ((r
(#)
cos ),A))
= ((r
* (
sin
. (
upper_bound A)))
- (r
* (
sin
. (
lower_bound A))))
proof
A1: (
[#]
REAL ) is
open
Subset of
REAL ;
cos
is_integrable_on A & (
cos
| A) is
bounded by
Lm11;
hence thesis by
A1,
Th27,
Th68,
SIN_COS: 68;
end;
theorem ::
INTEGRA8:87
(
integral ((r
(#)
sinh ),A))
= ((r
* (
cosh
. (
upper_bound A)))
- (r
* (
cosh
. (
lower_bound A))))
proof
A1: (
[#]
REAL ) is
open
Subset of
REAL ;
(
sinh
| A) is
continuous & (
sinh
| A) is
bounded by
Lm9,
Lm14,
INTEGRA5: 10;
hence thesis by
A1,
Lm9,
Th31,
Th68,
INTEGRA5: 11,
SIN_COS2: 35;
end;
theorem ::
INTEGRA8:88
(
integral ((r
(#)
cosh ),A))
= ((r
* (
sinh
. (
upper_bound A)))
- (r
* (
sinh
. (
lower_bound A))))
proof
A1: (
[#]
REAL ) is
open
Subset of
REAL ;
(
cosh
| A) is
continuous & (
cosh
| A) is
bounded by
Lm10,
Lm16,
INTEGRA5: 10;
hence thesis by
A1,
Lm10,
Th30,
Th68,
INTEGRA5: 11,
SIN_COS2: 34;
end;
theorem ::
INTEGRA8:89
(
integral ((r
(#)
exp_R ),A))
= ((r
* (
exp_R
. (
upper_bound A)))
- (r
* (
exp_R
. (
lower_bound A))))
proof
(
exp_R
| A) is
bounded & (
[#]
REAL ) is
open
Subset of
REAL by
Lm8,
INTEGRA5: 10;
hence thesis by
Lm8,
Th32,
Th68,
INTEGRA5: 11,
SIN_COS: 66;
end;
theorem ::
INTEGRA8:90
Th90: (
integral ((
sin
(#)
cos ),A))
= ((1
/ 2)
* (((
cos
. (
lower_bound A))
* (
cos
. (
lower_bound A)))
- ((
cos
. (
upper_bound A))
* (
cos
. (
upper_bound A)))))
proof
A1: (
[#]
REAL ) is
open
Subset of
REAL ;
(
sin
| A) is
continuous;
then
A2: ((
-
cos )
`|
REAL )
is_integrable_on A by
Lm5,
Th29,
INTEGRA5: 11;
((
-
sin )
| A) is
continuous;
then
A3: (
cos
`|
REAL )
is_integrable_on A by
Lm7,
Th28,
INTEGRA5: 11;
(((
-
cos )
`|
REAL )
| A) is
bounded & ((
cos
`|
REAL )
| A) is
bounded by
Lm5,
Lm7,
Th28,
Th29,
INTEGRA5: 10;
then (
integral ((
sin
(#)
cos ),A))
= (((((
-
cos )
. (
upper_bound A))
* (
cos
. (
upper_bound A)))
- (((
-
cos )
. (
lower_bound A))
* (
cos
. (
lower_bound A))))
- (
integral (((
-
cos )
(#) (
-
sin )),A))) by
A2,
A3,
A1,
Th26,
Th28,
Th29,
INTEGRA5: 21,
SIN_COS: 67
.= (((((
-
cos )
. (
upper_bound A))
* (
cos
. (
upper_bound A)))
- (((
-
cos )
. (
lower_bound A))
* (
cos
. (
lower_bound A))))
- (
integral ((
sin
(#)
cos ),A))) by
Lm4
.= ((((
- (
cos
. (
upper_bound A)))
* (
cos
. (
upper_bound A)))
- (((
-
cos )
. (
lower_bound A))
* (
cos
. (
lower_bound A))))
- (
integral ((
sin
(#)
cos ),A))) by
VALUED_1: 8
.= ((((
- (
cos
. (
upper_bound A)))
* (
cos
. (
upper_bound A)))
- ((
- (
cos
. (
lower_bound A)))
* (
cos
. (
lower_bound A))))
- (
integral ((
sin
(#)
cos ),A))) by
VALUED_1: 8
.= ((((
cos
. (
lower_bound A))
* (
cos
. (
lower_bound A)))
- ((
cos
. (
upper_bound A))
* (
cos
. (
upper_bound A))))
- (
integral ((
sin
(#)
cos ),A)));
hence thesis;
end;
theorem ::
INTEGRA8:91
A
=
[.
0 , (
PI
/ 2).] implies (
integral ((
sin
(#)
cos ),A))
= (1
/ 2)
proof
assume A
=
[.
0 , (
PI
/ 2).];
then (
upper_bound A)
= (
PI
/ 2) & (
lower_bound A)
=
0 by
Th37;
then (
integral ((
sin
(#)
cos ),A))
= ((1
/ 2)
* (((
cos
.
0 )
* (
cos
.
0 ))
- ((
cos
. (
PI
/ 2))
* (
cos
. (
PI
/ 2))))) by
Th90
.= ((1
/ 2)
* (((
cos
. (
0
+ (2
*
PI )))
* (
cos
.
0 ))
- ((
cos
. (
PI
/ 2))
* (
cos
. (
PI
/ 2))))) by
SIN_COS: 78
.= ((1
/ 2)
* ((1
* 1)
- (
0
*
0 ))) by
SIN_COS: 76,
SIN_COS: 78;
hence thesis;
end;
theorem ::
INTEGRA8:92
A
=
[.
0 ,
PI .] implies (
integral ((
sin
(#)
cos ),A))
=
0
proof
assume A
=
[.
0 ,
PI .];
then (
upper_bound A)
=
PI & (
lower_bound A)
=
0 by
Th37;
then (
integral ((
sin
(#)
cos ),A))
= ((1
/ 2)
* (((
cos
.
0 )
* (
cos
.
0 ))
- ((
cos
.
PI )
* (
cos
.
PI )))) by
Th90
.= ((1
/ 2)
* (((
cos
. (
0
+ (2
*
PI )))
* (
cos
.
0 ))
- ((
cos
.
PI )
* (
cos
.
PI )))) by
SIN_COS: 78
.= ((1
/ 2)
* ((1
* 1)
- ((
- 1)
* (
- 1)))) by
SIN_COS: 76,
SIN_COS: 78;
hence thesis;
end;
theorem ::
INTEGRA8:93
A
=
[.
0 , (
PI
* (3
/ 2)).] implies (
integral ((
sin
(#)
cos ),A))
= (1
/ 2)
proof
assume A
=
[.
0 , (
PI
* (3
/ 2)).];
then (
upper_bound A)
= (
PI
* (3
/ 2)) & (
lower_bound A)
=
0 by
Th37;
then (
integral ((
sin
(#)
cos ),A))
= ((1
/ 2)
* (((
cos
.
0 )
* (
cos
.
0 ))
- ((
cos
. (
PI
* (3
/ 2)))
* (
cos
. (
PI
* (3
/ 2)))))) by
Th90
.= ((1
/ 2)
* (((
cos
. (
0
+ (2
*
PI )))
* (
cos
.
0 ))
- ((
cos
. (
PI
* (3
/ 2)))
* (
cos
. (
PI
* (3
/ 2)))))) by
SIN_COS: 78
.= ((1
/ 2)
* ((1
* 1)
- (
0
*
0 ))) by
SIN_COS: 76,
SIN_COS: 78;
hence thesis;
end;
theorem ::
INTEGRA8:94
A
=
[.
0 , (
PI
* 2).] implies (
integral ((
sin
(#)
cos ),A))
=
0
proof
assume A
=
[.
0 , (
PI
* 2).];
then (
upper_bound A)
= (
PI
* 2) & (
lower_bound A)
=
0 by
Th37;
then (
integral ((
sin
(#)
cos ),A))
= ((1
/ 2)
* (((
cos
.
0 )
* (
cos
.
0 ))
- ((
cos
. (
PI
* 2))
* (
cos
. (
PI
* 2))))) by
Th90
.= ((1
/ 2)
* (((
cos
. (
0
+ (2
*
PI )))
* (
cos
.
0 ))
- ((
cos
. (
PI
* 2))
* (
cos
. (
PI
* 2))))) by
SIN_COS: 78
.= ((1
/ 2)
* ((1
* 1)
- (1
* 1))) by
SIN_COS: 76,
SIN_COS: 78;
hence thesis;
end;
theorem ::
INTEGRA8:95
A
=
[.((2
* n)
*
PI ), (((2
* n)
+ 1)
*
PI ).] implies (
integral ((
sin
(#)
cos ),A))
=
0
proof
assume A
=
[.((2
* n)
*
PI ), (((2
* n)
+ 1)
*
PI ).];
then (
upper_bound A)
= (((2
* n)
+ 1)
*
PI ) & (
lower_bound A)
= ((2
* n)
*
PI ) by
Th37;
then (
integral ((
sin
(#)
cos ),A))
= ((1
/ 2)
* (((
cos
. ((2
* n)
*
PI ))
* (
cos
. ((2
* n)
*
PI )))
- ((
cos
. (((2
* n)
+ 1)
*
PI ))
* (
cos
. (((2
* n)
+ 1)
*
PI ))))) by
Th90
.= ((1
/ 2)
* (((
cos
0 )
* (
cos (
0
+ ((2
* n)
*
PI ))))
- ((
cos
. (((2
* n)
+ 1)
*
PI ))
* (
cos
. (((2
* n)
+ 1)
*
PI ))))) by
Th3
.= ((1
/ 2)
* (((
cos
0 )
* (
cos
0 ))
- ((
cos
. (((2
* n)
+ 1)
*
PI ))
* (
cos
. (((2
* n)
+ 1)
*
PI ))))) by
Th3
.= ((1
/ 2)
* (((
cos (
0
+ (2
*
PI )))
* (
cos
0 ))
- ((
cos
. (((2
* n)
+ 1)
*
PI ))
* (
cos
. (((2
* n)
+ 1)
*
PI ))))) by
SIN_COS: 79
.= ((1
/ 2)
* ((1
* 1)
- ((
cos
. (((2
* n)
+ 1)
*
PI ))
* (
cos
. (((2
* n)
+ 1)
*
PI ))))) by
SIN_COS: 77,
SIN_COS: 79
.= ((1
/ 2)
* ((1
* 1)
- ((
- (
cos
0 ))
* (
cos (
0
+ (((2
* n)
+ 1)
*
PI )))))) by
Th4
.= ((1
/ 2)
* ((1
* 1)
- ((
- (
cos
0 ))
* (
- (
cos
0 ))))) by
Th4
.= ((1
/ 2)
* ((1
* 1)
- ((
cos
0 )
* (
cos
0 ))))
.= ((1
/ 2)
* ((1
* 1)
- ((
cos (
0
+ (2
*
PI )))
* (
cos
0 )))) by
SIN_COS: 79
.= ((1
/ 2)
* ((1
* 1)
- ((
cos (
0
+ (2
*
PI )))
* (
cos (
0
+ (2
*
PI )))))) by
SIN_COS: 79;
hence thesis by
SIN_COS: 77;
end;
theorem ::
INTEGRA8:96
A
=
[.(x
+ ((2
* n)
*
PI )), (x
+ (((2
* n)
+ 1)
*
PI )).] implies (
integral ((
sin
(#)
cos ),A))
=
0
proof
assume A
=
[.(x
+ ((2
* n)
*
PI )), (x
+ (((2
* n)
+ 1)
*
PI )).];
then (
upper_bound A)
= (x
+ (((2
* n)
+ 1)
*
PI )) & (
lower_bound A)
= (x
+ ((2
* n)
*
PI )) by
Th37;
then (
integral ((
sin
(#)
cos ),A))
= ((1
/ 2)
* (((
cos
. (x
+ ((2
* n)
*
PI )))
* (
cos
. (x
+ ((2
* n)
*
PI ))))
- ((
cos
. (x
+ (((2
* n)
+ 1)
*
PI )))
* (
cos
. (x
+ (((2
* n)
+ 1)
*
PI )))))) by
Th90
.= ((1
/ 2)
* (((
cos x)
* (
cos (x
+ ((2
* n)
*
PI ))))
- ((
cos (x
+ (((2
* n)
+ 1)
*
PI )))
* (
cos (x
+ (((2
* n)
+ 1)
*
PI )))))) by
Th3
.= ((1
/ 2)
* (((
cos x)
* (
cos x))
- ((
cos (x
+ (((2
* n)
+ 1)
*
PI )))
* (
cos (x
+ (((2
* n)
+ 1)
*
PI )))))) by
Th3
.= ((1
/ 2)
* (((
cos x)
* (
cos x))
- ((
- (
cos x))
* (
cos (x
+ (((2
* n)
+ 1)
*
PI )))))) by
Th4
.= ((1
/ 2)
* (((
cos x)
* (
cos x))
- ((
- (
cos x))
* (
- (
cos x))))) by
Th4
.=
0 ;
hence thesis;
end;
Lm20: (
cos
(#)
cos )
is_integrable_on A & ((
cos
(#)
cos )
| A) is
bounded
proof
(
dom
cos )
=
REAL by
FUNCT_2:def 1;
then A
c= ((
dom
cos )
/\ (
dom
cos ));
then
A1: A
c= (
dom (
cos
(#)
cos )) by
VALUED_1:def 4;
((
cos
(#)
cos )
| A) is
continuous;
hence thesis by
A1,
INTEGRA5: 10,
INTEGRA5: 11;
end;
theorem ::
INTEGRA8:97
(
integral ((
sin
(#)
sin ),A))
= ((((
cos
. (
lower_bound A))
* (
sin
. (
lower_bound A)))
- ((
cos
. (
upper_bound A))
* (
sin
. (
upper_bound A))))
+ (
integral ((
cos
(#)
cos ),A)))
proof
A1: (
[#]
REAL ) is
open
Subset of
REAL ;
A2: (((
cos
(#)
cos )
|| A)
| A) is
bounded by
Lm20,
INTEGRA5: 9;
(
sin
| A) is
continuous;
then
A3: ((
-
cos )
`|
REAL )
is_integrable_on A by
Lm5,
Th29,
INTEGRA5: 11;
(
dom (
cos
(#)
cos ))
=
REAL by
FUNCT_2:def 1;
then
A4: ((
cos
(#)
cos )
|| A) is
Function of A,
REAL by
FUNCT_2: 68,
INTEGRA5: 6;
(
cos
| A) is
continuous;
then
A5: (
sin
`|
REAL )
is_integrable_on A by
Lm6,
Th27,
INTEGRA5: 11;
(
cos
(#)
cos )
is_integrable_on A by
Lm20;
then
A6: ((
cos
(#)
cos )
|| A) is
integrable;
(((
-
cos )
`|
REAL )
| A) is
bounded & ((
sin
`|
REAL )
| A) is
bounded by
Lm5,
Lm6,
Th27,
Th29,
INTEGRA5: 10;
then (
integral ((
sin
(#)
sin ),A))
= (((((
-
cos )
. (
upper_bound A))
* (
sin
. (
upper_bound A)))
- (((
-
cos )
. (
lower_bound A))
* (
sin
. (
lower_bound A))))
- (
integral (((
-
cos )
(#)
cos ),A))) by
A3,
A5,
A1,
Th26,
Th27,
Th29,
INTEGRA5: 21,
SIN_COS: 68
.= ((((
- (
cos
. (
upper_bound A)))
* (
sin
. (
upper_bound A)))
- (((
-
cos )
. (
lower_bound A))
* (
sin
. (
lower_bound A))))
- (
integral (((
-
cos )
(#)
cos ),A))) by
VALUED_1: 8
.= ((((
- (
cos
. (
upper_bound A)))
* (
sin
. (
upper_bound A)))
- ((
- (
cos
. (
lower_bound A)))
* (
sin
. (
lower_bound A))))
- (
integral (((
-
cos )
(#)
cos ),A))) by
VALUED_1: 8
.= ((((
cos
. (
lower_bound A))
* (
sin
. (
lower_bound A)))
- ((
cos
. (
upper_bound A))
* (
sin
. (
upper_bound A))))
- (
integral ((
- (
cos
(#)
cos )),A))) by
RFUNCT_1: 12
.= ((((
cos
. (
lower_bound A))
* (
sin
. (
lower_bound A)))
- ((
cos
. (
upper_bound A))
* (
sin
. (
upper_bound A))))
- (
integral ((
- 1)
(#) ((
cos
(#)
cos )
|| A)))) by
RFUNCT_1: 49
.= ((((
cos
. (
lower_bound A))
* (
sin
. (
lower_bound A)))
- ((
cos
. (
upper_bound A))
* (
sin
. (
upper_bound A))))
- ((
- 1)
* (
integral ((
cos
(#)
cos ),A)))) by
A6,
A2,
A4,
INTEGRA2: 31
.= ((((
cos
. (
lower_bound A))
* (
sin
. (
lower_bound A)))
- ((
cos
. (
upper_bound A))
* (
sin
. (
upper_bound A))))
+ (
integral ((
cos
(#)
cos ),A)));
hence thesis;
end;
theorem ::
INTEGRA8:98
(
integral ((
sinh
(#)
sinh ),A))
= ((((
cosh
. (
upper_bound A))
* (
sinh
. (
upper_bound A)))
- ((
cosh
. (
lower_bound A))
* (
sinh
. (
lower_bound A))))
- (
integral ((
cosh
(#)
cosh ),A)))
proof
A1: (
[#]
REAL ) is
open
Subset of
REAL ;
A2: (
sinh
`|
REAL )
is_integrable_on A & ((
sinh
`|
REAL )
| A) is
bounded by
Lm17,
Th30;
(
cosh
`|
REAL )
is_integrable_on A & ((
cosh
`|
REAL )
| A) is
bounded by
Lm15,
Th31;
hence thesis by
A2,
A1,
Th30,
Th31,
INTEGRA5: 21,
SIN_COS2: 34,
SIN_COS2: 35;
end;
theorem ::
INTEGRA8:99
(
integral ((
sinh
(#)
cosh ),A))
= ((1
/ 2)
* (((
cosh
. (
upper_bound A))
* (
cosh
. (
upper_bound A)))
- ((
cosh
. (
lower_bound A))
* (
cosh
. (
lower_bound A)))))
proof
(
sinh
| A) is
continuous by
Lm14;
then
A1: (
cosh
`|
REAL )
is_integrable_on A by
Lm9,
Th31,
INTEGRA5: 11;
((
cosh
`|
REAL )
| A) is
bounded & (
[#]
REAL ) is
open
Subset of
REAL by
Lm9,
Lm14,
Th31,
INTEGRA5: 10;
then (
integral ((
sinh
(#)
cosh ),A))
= ((((
cosh
. (
upper_bound A))
* (
cosh
. (
upper_bound A)))
- ((
cosh
. (
lower_bound A))
* (
cosh
. (
lower_bound A))))
- (
integral ((
sinh
(#)
cosh ),A))) by
A1,
Th31,
INTEGRA5: 21,
SIN_COS2: 35;
hence thesis;
end;
theorem ::
INTEGRA8:100
(
integral ((
exp_R
(#)
exp_R ),A))
= ((1
/ 2)
* (((
exp_R
. (
upper_bound A))
^2 )
- ((
exp_R
. (
lower_bound A))
^2 )))
proof
(
exp_R
| A) is
continuous;
then
A1: (
exp_R
`|
REAL )
is_integrable_on A by
Lm8,
Th32,
INTEGRA5: 11;
((
exp_R
`|
REAL )
| A) is
bounded & (
[#]
REAL ) is
open
Subset of
REAL by
Lm8,
Th32,
INTEGRA5: 10;
then (
integral ((
exp_R
(#)
exp_R ),A))
= ((((
exp_R
. (
upper_bound A))
* (
exp_R
. (
upper_bound A)))
- ((
exp_R
. (
lower_bound A))
* (
exp_R
. (
lower_bound A))))
- (
integral ((
exp_R
(#)
exp_R ),A))) by
A1,
Th32,
INTEGRA5: 21,
SIN_COS: 66
.= ((((
exp_R
. (
upper_bound A))
^2 )
- ((
exp_R
. (
lower_bound A))
* (
exp_R
. (
lower_bound A))))
- (
integral ((
exp_R
(#)
exp_R ),A)))
.= ((((
exp_R
. (
upper_bound A))
^2 )
- ((
exp_R
. (
lower_bound A))
^2 ))
- (
integral ((
exp_R
(#)
exp_R ),A)));
hence thesis;
end;
Lm21: (
exp_R
(#) (
sin
+
cos ))
is_integrable_on A & ((
exp_R
(#) (
sin
+
cos ))
| A) is
bounded
proof
A1: (
dom (
sin
+
cos ))
= ((
dom
sin )
/\ (
dom
cos )) by
VALUED_1:def 1;
(
dom
sin )
=
REAL & (
dom
cos )
=
REAL by
FUNCT_2:def 1;
then A
c= ((
dom
exp_R )
/\ (
dom (
sin
+
cos ))) by
A1,
SIN_COS: 47;
then
A2: A
c= (
dom (
exp_R
(#) (
sin
+
cos ))) by
VALUED_1:def 4;
((
exp_R
(#) (
sin
+
cos ))
| A) is
continuous;
hence thesis by
A2,
INTEGRA5: 10,
INTEGRA5: 11;
end;
Lm22: (
exp_R
(#) (
cos
-
sin ))
is_integrable_on A & ((
exp_R
(#) (
cos
-
sin ))
| A) is
bounded
proof
(
dom
exp_R )
=
REAL & (
dom (
cos
-
sin ))
=
REAL by
FUNCT_2:def 1;
then A
c= ((
dom
exp_R )
/\ (
dom (
cos
-
sin )));
then
A1: A
c= (
dom (
exp_R
(#) (
cos
-
sin ))) by
VALUED_1:def 4;
((
exp_R
(#) (
cos
-
sin ))
| A) is
continuous;
hence thesis by
A1,
INTEGRA5: 10,
INTEGRA5: 11;
end;
theorem ::
INTEGRA8:101
(
integral ((
exp_R
(#) (
sin
+
cos )),A))
= (((
exp_R
(#)
sin )
. (
upper_bound A))
- ((
exp_R
(#)
sin )
. (
lower_bound A)))
proof
A1: (
dom (
sin
+
cos ))
=
REAL by
FUNCT_2:def 1;
A2: (
dom (
exp_R
(#) (
sin
+
cos )))
= ((
dom
exp_R )
/\ (
dom (
sin
+
cos ))) by
VALUED_1:def 4
.= (
REAL
/\ (
dom (
sin
+
cos ))) by
SIN_COS: 47
.=
REAL by
A1;
A3: (
exp_R
(#) (
sin
+
cos ))
is_integrable_on A & ((
exp_R
(#) (
sin
+
cos ))
| A) is
bounded by
Lm21;
A4: (
dom (
exp_R
(#)
sin ))
=
REAL & (
[#]
REAL ) is
open
Subset of
REAL by
FUNCT_2:def 1;
A5: for x be
Element of
REAL st x
in (
dom ((
exp_R
(#)
sin )
`|
REAL )) holds (((
exp_R
(#)
sin )
`|
REAL )
. x)
= ((
exp_R
(#) (
sin
+
cos ))
. x)
proof
let x be
Element of
REAL ;
reconsider xx = x as
Real;
assume x
in (
dom ((
exp_R
(#)
sin )
`|
REAL ));
((
exp_R
(#) (
sin
+
cos ))
. x)
= ((
exp_R
. x)
* ((
sin
+
cos )
. x)) by
VALUED_1: 5
.= ((
exp_R
. x)
* ((
sin
. xx)
+ (
cos
. xx))) by
VALUED_1: 1;
hence thesis by
A4,
FDIFF_7: 44;
end;
(
exp_R
(#)
sin )
is_differentiable_on
REAL by
A4,
FDIFF_7: 44;
then (
dom ((
exp_R
(#)
sin )
`|
REAL ))
= (
dom (
exp_R
(#) (
sin
+
cos ))) by
A2,
FDIFF_1:def 7;
then ((
exp_R
(#)
sin )
`|
REAL )
= (
exp_R
(#) (
sin
+
cos )) by
A5,
PARTFUN1: 5;
hence thesis by
A3,
A4,
FDIFF_7: 44,
INTEGRA5: 13;
end;
theorem ::
INTEGRA8:102
(
integral ((
exp_R
(#) (
cos
-
sin )),A))
= (((
exp_R
(#)
cos )
. (
upper_bound A))
- ((
exp_R
(#)
cos )
. (
lower_bound A)))
proof
A1: (
dom (
exp_R
(#)
cos ))
=
REAL & (
[#]
REAL ) is
open
Subset of
REAL by
FUNCT_2:def 1;
A2: (
dom (
cos
-
sin ))
=
REAL by
FUNCT_2:def 1;
A3: for x be
Element of
REAL st x
in (
dom ((
exp_R
(#)
cos )
`|
REAL )) holds (((
exp_R
(#)
cos )
`|
REAL )
. x)
= ((
exp_R
(#) (
cos
-
sin ))
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
exp_R
(#)
cos )
`|
REAL ));
((
exp_R
(#) (
cos
-
sin ))
. x)
= ((
exp_R
. x)
* ((
cos
-
sin )
. x)) by
VALUED_1: 5
.= ((
exp_R
. x)
* ((
cos
. x)
- (
sin
. x))) by
A2,
VALUED_1: 13;
hence thesis by
A1,
FDIFF_7: 45;
end;
A4: (
exp_R
(#) (
cos
-
sin ))
is_integrable_on A & ((
exp_R
(#) (
cos
-
sin ))
| A) is
bounded by
Lm22;
A5: (
dom (
exp_R
(#) (
cos
-
sin )))
= ((
dom
exp_R )
/\ (
dom (
cos
-
sin ))) by
VALUED_1:def 4
.= (
REAL
/\ (
dom (
cos
-
sin ))) by
SIN_COS: 47
.=
REAL by
A2;
(
exp_R
(#)
cos )
is_differentiable_on
REAL by
A1,
FDIFF_7: 45;
then (
dom ((
exp_R
(#)
cos )
`|
REAL ))
= (
dom (
exp_R
(#) (
cos
-
sin ))) by
A5,
FDIFF_1:def 7;
then ((
exp_R
(#)
cos )
`|
REAL )
= (
exp_R
(#) (
cos
-
sin )) by
A3,
PARTFUN1: 5;
hence thesis by
A4,
A1,
FDIFF_7: 45,
INTEGRA5: 13;
end;