integra9.miz
begin
reserve r,p,x for
Real;
reserve n for
Element of
NAT ;
reserve A for non
empty
closed_interval
Subset of
REAL ;
reserve Z for
open
Subset of
REAL ;
Lm1: (
dom (
- (
exp_R
* (
AffineMap ((
- 1),
0 )))))
= (
[#]
REAL ) by
FUNCT_2:def 1;
reconsider jj = 1 as
Element of
REAL by
XREAL_0:def 1;
theorem ::
INTEGRA9:1
(
- (
exp_R
* (
AffineMap ((
- 1),
0 ))))
is_differentiable_on
REAL & for x holds (((
- (
exp_R
* (
AffineMap ((
- 1),
0 ))))
`|
REAL )
. x)
= (
exp_R (
- x))
proof
A1: (
[#]
REAL )
= (
dom (
exp_R
* (
AffineMap ((
- 1),
0 )))) by
FUNCT_2:def 1;
A2: (
[#]
REAL )
= (
dom (
AffineMap ((
- jj),
0 ))) by
FUNCT_2:def 1;
A3: for x st x
in
REAL holds ((
AffineMap ((
- 1),
0 ))
. x)
= (((
- 1)
* x)
+
0 ) by
FCONT_1:def 4;
then
A4: (
AffineMap ((
- jj),
0 ))
is_differentiable_on
REAL by
A2,
FDIFF_1: 23;
for x st x
in
REAL holds (
exp_R
* (
AffineMap ((
- 1),
0 ))) qua
PartFunc of
REAL ,
REAL
is_differentiable_in x
proof
let x;
assume x
in
REAL ;
then (
AffineMap ((
- jj),
0 ))
is_differentiable_in x by
A2,
A4,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 19;
end;
then
A5: (
exp_R
* (
AffineMap ((
- 1),
0 )))
is_differentiable_on
REAL by
A1,
FDIFF_1: 9;
hence (
- (
exp_R
* (
AffineMap ((
- 1),
0 ))))
is_differentiable_on
REAL by
Lm1,
FDIFF_1: 20;
A6: for x st x
in
REAL holds (((
- (
exp_R
* (
AffineMap ((
- 1),
0 ))))
`|
REAL )
. x)
= (
exp_R (
- x))
proof
let x;
assume
A7: x
in
REAL ;
then
A8: (
AffineMap ((
- 1),
0 ))
is_differentiable_in x by
A2,
A4,
FDIFF_1: 9;
(((
- (
exp_R
* (
AffineMap ((
- 1),
0 ))))
`|
REAL )
. x)
= ((
- 1)
* (
diff ((
exp_R
* (
AffineMap ((
- 1),
0 ))),x))) by
A5,
Lm1,
FDIFF_1: 20,
A7
.= ((
- 1)
* ((
exp_R
. ((
AffineMap ((
- 1),
0 ))
. x))
* (
diff ((
AffineMap ((
- 1),
0 )),x)))) by
A8,
TAYLOR_1: 19
.= ((
- 1)
* ((
exp_R
. ((
AffineMap ((
- 1),
0 ))
. x))
* (((
AffineMap ((
- 1),
0 ))
`|
REAL )
. x))) by
A4,
FDIFF_1:def 7,
A7
.= ((
- 1)
* ((
exp_R
. ((
AffineMap ((
- 1),
0 ))
. x))
* (
- 1))) by
A2,
A3,
FDIFF_1: 23,
A7
.= ((
- 1)
* ((
exp_R
. (((
- 1)
* x)
+
0 ))
* (
- 1))) by
FCONT_1:def 4
.= (
exp_R (
- x));
hence thesis;
end;
let x;
x
in
REAL by
XREAL_0:def 1;
hence (((
- (
exp_R
* (
AffineMap ((
- 1),
0 ))))
`|
REAL )
. x)
= (
exp_R (
- x)) by
A6;
end;
theorem ::
INTEGRA9:2
Th2: r
<>
0 implies ((1
/ r)
(#) (
exp_R
* (
AffineMap (r,
0 ))))
is_differentiable_on
REAL & for x holds ((((1
/ r)
(#) (
exp_R
* (
AffineMap (r,
0 ))))
`|
REAL )
. x)
= ((
exp_R
* (
AffineMap (r,
0 )))
. x)
proof
assume
A1: r
<>
0 ;
A2: (
[#]
REAL )
= (
dom (
exp_R
* (
AffineMap (r,
0 )))) by
FUNCT_2:def 1;
A3: (
[#]
REAL )
= (
dom (
AffineMap (r,
0 ))) by
FUNCT_2:def 1;
A4: for x st x
in
REAL holds ((
AffineMap (r,
0 ))
. x)
= ((r
* x)
+
0 ) by
FCONT_1:def 4;
then
A5: (
AffineMap (r,
0 ))
is_differentiable_on
REAL by
A3,
FDIFF_1: 23;
for x st x
in
REAL holds (
exp_R
* (
AffineMap (r,
0 )))
is_differentiable_in x
proof
let x;
assume x
in
REAL ;
then (
AffineMap (r,
0 ))
is_differentiable_in x by
A3,
A5,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 19;
end;
then
A6: (
[#]
REAL )
= (
dom ((1
/ r)
(#) (
exp_R
* (
AffineMap (r,
0 ))))) & (
exp_R
* (
AffineMap (r,
0 )))
is_differentiable_on
REAL by
A2,
FDIFF_1: 9,
FUNCT_2:def 1;
hence ((1
/ r)
(#) (
exp_R
* (
AffineMap (r,
0 ))))
is_differentiable_on
REAL by
FDIFF_1: 20;
A7: for x st x
in
REAL holds ((((1
/ r)
(#) (
exp_R
* (
AffineMap (r,
0 ))))
`|
REAL )
. x)
= ((
exp_R
* (
AffineMap (r,
0 )))
. x)
proof
let x;
assume
A8: x
in
REAL ;
then
A9: (
AffineMap (r,
0 ))
is_differentiable_in x by
A3,
A5,
FDIFF_1: 9;
((((1
/ r)
(#) (
exp_R
* (
AffineMap (r,
0 ))))
`|
REAL )
. x)
= ((1
/ r)
* (
diff ((
exp_R
* (
AffineMap (r,
0 ))),x))) by
A6,
FDIFF_1: 20,
A8
.= ((1
/ r)
* ((
exp_R
. ((
AffineMap (r,
0 ))
. x))
* (
diff ((
AffineMap (r,
0 )),x)))) by
A9,
TAYLOR_1: 19
.= ((1
/ r)
* ((
exp_R
. ((
AffineMap (r,
0 ))
. x))
* (((
AffineMap (r,
0 ))
`|
REAL )
. x))) by
A5,
FDIFF_1:def 7,
A8
.= ((1
/ r)
* ((
exp_R
. ((
AffineMap (r,
0 ))
. x))
* r)) by
A3,
A4,
FDIFF_1: 23,
A8
.= ((r
* (1
/ r))
* (
exp_R
. ((
AffineMap (r,
0 ))
. x)))
.= ((r
/ r)
* (
exp_R
. ((
AffineMap (r,
0 ))
. x))) by
XCMPLX_1: 99
.= (1
* (
exp_R
. ((
AffineMap (r,
0 ))
. x))) by
A1,
XCMPLX_1: 60
.= ((
exp_R
* (
AffineMap (r,
0 )))
. x) by
A2,
FUNCT_1: 12,
A8;
hence thesis;
end;
let x;
x
in
REAL by
XREAL_0:def 1;
hence thesis by
A7;
end;
theorem ::
INTEGRA9:3
r
<>
0 implies (
integral ((
exp_R
* (
AffineMap (r,
0 ))),A))
= ((((1
/ r)
(#) (
exp_R
* (
AffineMap (r,
0 ))))
. (
upper_bound A))
- (((1
/ r)
(#) (
exp_R
* (
AffineMap (r,
0 ))))
. (
lower_bound A)))
proof
A1: (
dom (
exp_R
* (
AffineMap (r,
0 ))))
=
REAL by
FUNCT_2:def 1;
assume
A2: r
<>
0 ;
then ((1
/ r)
(#) (
exp_R
* (
AffineMap (r,
0 ))))
is_differentiable_on
REAL by
Th2;
then
A3: (
dom (((1
/ r)
(#) (
exp_R
* (
AffineMap (r,
0 ))))
`|
REAL ))
= (
dom (
exp_R
* (
AffineMap (r,
0 )))) by
A1,
FDIFF_1:def 7;
((
exp_R
* (
AffineMap (r,
0 )))
| A) is
continuous;
then
A4: (
exp_R
* (
AffineMap (r,
0 )))
is_integrable_on A by
A1,
INTEGRA5: 11;
for x be
Element of
REAL st x
in (
dom (((1
/ r)
(#) (
exp_R
* (
AffineMap (r,
0 ))))
`|
REAL )) holds ((((1
/ r)
(#) (
exp_R
* (
AffineMap (r,
0 ))))
`|
REAL )
. x)
= ((
exp_R
* (
AffineMap (r,
0 )))
. x) by
A2,
Th2;
then
A5: (((1
/ r)
(#) (
exp_R
* (
AffineMap (r,
0 ))))
`|
REAL )
= (
exp_R
* (
AffineMap (r,
0 ))) by
A3,
PARTFUN1: 5;
((
exp_R
* (
AffineMap (r,
0 )))
| A) is
bounded by
A1,
INTEGRA5: 10;
hence thesis by
A2,
A4,
A5,
Th2,
INTEGRA5: 13;
end;
theorem ::
INTEGRA9:4
Th4: n
<>
0 implies ((
- (1
/ n))
(#) (
cos
* (
AffineMap (n,
0 ))))
is_differentiable_on
REAL & for x holds ((((
- (1
/ n))
(#) (
cos
* (
AffineMap (n,
0 ))))
`|
REAL )
. x)
= (
sin (n
* x))
proof
assume
A1: n
<>
0 ;
A2: (
[#]
REAL )
= (
dom ((
- (1
/ n))
(#) (
cos
* (
AffineMap (n,
0 ))))) by
FUNCT_2:def 1;
A3: (
[#]
REAL )
= (
dom (
cos
* (
AffineMap (n,
0 )))) & for x st x
in
REAL holds ((
AffineMap (n,
0 ))
. x)
= ((n
* x)
+
0 ) by
FCONT_1:def 4,
FUNCT_2:def 1;
then
A4: (
cos
* (
AffineMap (n,
0 )))
is_differentiable_on
REAL by
FDIFF_4: 38;
hence ((
- (1
/ n))
(#) (
cos
* (
AffineMap (n,
0 ))))
is_differentiable_on
REAL by
A2,
FDIFF_1: 20;
A5: for x st x
in
REAL holds ((((
- (1
/ n))
(#) (
cos
* (
AffineMap (n,
0 ))))
`|
REAL )
. x)
= (
sin (n
* x))
proof
let x;
assume
A6: x
in
REAL ;
then ((((
- (1
/ n))
(#) (
cos
* (
AffineMap (n,
0 ))))
`|
REAL )
. x)
= ((
- (1
/ n))
* (
diff ((
cos
* (
AffineMap (n,
0 ))),x))) by
A2,
A4,
FDIFF_1: 20
.= ((
- (1
/ n))
* (((
cos
* (
AffineMap (n,
0 )))
`|
REAL )
. x)) by
A4,
FDIFF_1:def 7,
A6
.= ((
- (1
/ n))
* (
- (n
* (
sin
. ((n
* x)
+
0 ))))) by
A3,
FDIFF_4: 38,
A6
.= (((1
/ n)
* n)
* (
sin
. ((n
* x)
+
0 )))
.= ((n
/ n)
* (
sin
. ((n
* x)
+
0 ))) by
XCMPLX_1: 99
.= (1
* (
sin
. ((n
* x)
+
0 ))) by
A1,
XCMPLX_1: 60
.= (
sin (n
* x));
hence thesis;
end;
let x;
x
in
REAL by
XREAL_0:def 1;
hence thesis by
A5;
end;
theorem ::
INTEGRA9:5
n
<>
0 implies (
integral ((
sin
* (
AffineMap (n,
0 ))),A))
= ((((
- (1
/ n))
(#) (
cos
* (
AffineMap (n,
0 ))))
. (
upper_bound A))
- (((
- (1
/ n))
(#) (
cos
* (
AffineMap (n,
0 ))))
. (
lower_bound A)))
proof
assume
A1: n
<>
0 ;
A2: (
[#]
REAL )
= (
dom (
sin
* (
AffineMap (n,
0 )))) by
FUNCT_2:def 1;
A3: for x st x
in
REAL holds ((
AffineMap (n,
0 ))
. x)
= (n
* x)
proof
let x;
assume x
in
REAL ;
((
AffineMap (n,
0 ))
. x)
= ((n
* x)
+
0 ) by
FCONT_1:def 4
.= (n
* x);
hence thesis;
end;
A4: for x be
Element of
REAL st x
in (
dom (((
- (1
/ n))
(#) (
cos
* (
AffineMap (n,
0 ))))
`|
REAL )) holds ((((
- (1
/ n))
(#) (
cos
* (
AffineMap (n,
0 ))))
`|
REAL )
. x)
= ((
sin
* (
AffineMap (n,
0 )))
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((
- (1
/ n))
(#) (
cos
* (
AffineMap (n,
0 ))))
`|
REAL ));
((((
- (1
/ n))
(#) (
cos
* (
AffineMap (n,
0 ))))
`|
REAL )
. x)
= (
sin (n
* x)) by
A1,
Th4
.= (
sin
. ((
AffineMap (n,
0 ))
. x)) by
A3
.= ((
sin
* (
AffineMap (n,
0 )))
. x) by
A2,
FUNCT_1: 12;
hence thesis;
end;
((
- (1
/ n))
(#) (
cos
* (
AffineMap (n,
0 ))))
is_differentiable_on
REAL by
A1,
Th4;
then (
dom (((
- (1
/ n))
(#) (
cos
* (
AffineMap (n,
0 ))))
`|
REAL ))
= (
dom (
sin
* (
AffineMap (n,
0 )))) by
A2,
FDIFF_1:def 7;
then
A5: (((
- (1
/ n))
(#) (
cos
* (
AffineMap (n,
0 ))))
`|
REAL )
= (
sin
* (
AffineMap (n,
0 ))) by
A4,
PARTFUN1: 5;
((
sin
* (
AffineMap (n,
0 )))
| A) is
continuous;
then
A6: (
sin
* (
AffineMap (n,
0 )))
is_integrable_on A by
A2,
INTEGRA5: 11;
((
sin
* (
AffineMap (n,
0 )))
| A) is
bounded by
A2,
INTEGRA5: 10;
hence thesis by
A1,
A6,
A5,
Th4,
INTEGRA5: 13;
end;
theorem ::
INTEGRA9:6
Th6: n
<>
0 implies ((1
/ n)
(#) (
sin
* (
AffineMap (n,
0 ))))
is_differentiable_on
REAL & for x holds ((((1
/ n)
(#) (
sin
* (
AffineMap (n,
0 ))))
`|
REAL )
. x)
= (
cos (n
* x))
proof
assume
A1: n
<>
0 ;
A2: (
[#]
REAL )
= (
dom ((1
/ n)
(#) (
sin
* (
AffineMap (n,
0 ))))) by
FUNCT_2:def 1;
A3: (
[#]
REAL )
= (
dom (
sin
* (
AffineMap (n,
0 )))) & for x st x
in
REAL holds ((
AffineMap (n,
0 ))
. x)
= ((n
* x)
+
0 ) by
FCONT_1:def 4,
FUNCT_2:def 1;
then
A4: (
sin
* (
AffineMap (n,
0 )))
is_differentiable_on
REAL by
FDIFF_4: 37;
hence ((1
/ n)
(#) (
sin
* (
AffineMap (n,
0 ))))
is_differentiable_on
REAL by
A2,
FDIFF_1: 20;
A5: for x st x
in
REAL holds ((((1
/ n)
(#) (
sin
* (
AffineMap (n,
0 ))))
`|
REAL )
. x)
= (
cos (n
* x))
proof
let x;
assume
A6: x
in
REAL ;
((((1
/ n)
(#) (
sin
* (
AffineMap (n,
0 ))))
`|
REAL )
. x)
= ((1
/ n)
* (
diff ((
sin
* (
AffineMap (n,
0 ))),x))) by
A2,
A4,
FDIFF_1: 20,
A6
.= ((1
/ n)
* (((
sin
* (
AffineMap (n,
0 )))
`|
REAL )
. x)) by
A4,
FDIFF_1:def 7,
A6
.= ((1
/ n)
* (n
* (
cos
. ((n
* x)
+
0 )))) by
A3,
FDIFF_4: 37,
A6
.= ((n
* (1
/ n))
* (
cos
. ((n
* x)
+
0 )))
.= ((n
/ n)
* (
cos
. ((n
* x)
+
0 ))) by
XCMPLX_1: 99
.= (1
* (
cos
. ((n
* x)
+
0 ))) by
A1,
XCMPLX_1: 60
.= (
cos (n
* x));
hence thesis;
end;
let x;
x
in
REAL by
XREAL_0:def 1;
hence thesis by
A5;
end;
theorem ::
INTEGRA9:7
n
<>
0 implies (
integral ((
cos
* (
AffineMap (n,
0 ))),A))
= ((((1
/ n)
(#) (
sin
* (
AffineMap (n,
0 ))))
. (
upper_bound A))
- (((1
/ n)
(#) (
sin
* (
AffineMap (n,
0 ))))
. (
lower_bound A)))
proof
assume
A1: n
<>
0 ;
A2: (
[#]
REAL )
= (
dom (
cos
* (
AffineMap (n,
0 )))) by
FUNCT_2:def 1;
A3: for x st x
in
REAL holds ((
AffineMap (n,
0 ))
. x)
= (n
* x)
proof
let x;
assume x
in
REAL ;
((
AffineMap (n,
0 ))
. x)
= ((n
* x)
+
0 ) by
FCONT_1:def 4
.= (n
* x);
hence thesis;
end;
A4: for x be
Element of
REAL st x
in (
dom (((1
/ n)
(#) (
sin
* (
AffineMap (n,
0 ))))
`|
REAL )) holds ((((1
/ n)
(#) (
sin
* (
AffineMap (n,
0 ))))
`|
REAL )
. x)
= ((
cos
* (
AffineMap (n,
0 )))
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((1
/ n)
(#) (
sin
* (
AffineMap (n,
0 ))))
`|
REAL ));
((((1
/ n)
(#) (
sin
* (
AffineMap (n,
0 ))))
`|
REAL )
. x)
= (
cos (n
* x)) by
A1,
Th6
.= (
cos
. ((
AffineMap (n,
0 ))
. x)) by
A3
.= ((
cos
* (
AffineMap (n,
0 )))
. x) by
A2,
FUNCT_1: 12;
hence thesis;
end;
((1
/ n)
(#) (
sin
* (
AffineMap (n,
0 ))))
is_differentiable_on
REAL by
A1,
Th6;
then (
dom (((1
/ n)
(#) (
sin
* (
AffineMap (n,
0 ))))
`|
REAL ))
= (
dom (
cos
* (
AffineMap (n,
0 )))) by
A2,
FDIFF_1:def 7;
then
A5: (((1
/ n)
(#) (
sin
* (
AffineMap (n,
0 ))))
`|
REAL )
= (
cos
* (
AffineMap (n,
0 ))) by
A4,
PARTFUN1: 5;
((
cos
* (
AffineMap (n,
0 )))
| A) is
continuous;
then
A6: (
cos
* (
AffineMap (n,
0 )))
is_integrable_on A by
A2,
INTEGRA5: 11;
((
cos
* (
AffineMap (n,
0 )))
| A) is
bounded by
A2,
INTEGRA5: 10;
hence thesis by
A1,
A6,
A5,
Th6,
INTEGRA5: 13;
end;
theorem ::
INTEGRA9:8
A
c= Z implies (
integral (((
id Z)
(#)
sin ),A))
= (((((
- (
id Z))
(#)
cos )
+
sin )
. (
upper_bound A))
- ((((
- (
id Z))
(#)
cos )
+
sin )
. (
lower_bound A)))
proof
assume
A1: A
c= Z;
A2: (
dom (
- (
id Z)))
= (
dom (
id Z)) by
VALUED_1: 8;
A3: (
dom (((
- (
id Z))
(#)
cos )
+
sin ))
= ((
dom ((
- (
id Z))
(#)
cos ))
/\
REAL ) by
SIN_COS: 24,
VALUED_1:def 1
.= (
dom ((
- (
id Z))
(#)
cos )) by
XBOOLE_1: 28
.= ((
dom (
- (
id Z)))
/\
REAL ) by
SIN_COS: 24,
VALUED_1:def 4
.= (
dom (
- (
id Z))) by
XBOOLE_1: 28
.= Z by
A2,
RELAT_1: 45;
then
A4: (((
- (
id Z))
(#)
cos )
+
sin )
is_differentiable_on Z by
FDIFF_4: 46;
A5: for x st x
in Z holds (((
id Z)
(#)
sin )
. x)
= (x
* (
sin
. x))
proof
let x;
assume
A6: x
in Z;
(((
id Z)
(#)
sin )
. x)
= (((
id Z)
. x)
* (
sin
. x)) by
VALUED_1: 5
.= (x
* (
sin
. x)) by
A6,
FUNCT_1: 18;
hence thesis;
end;
A7: for x be
Element of
REAL st x
in (
dom ((((
- (
id Z))
(#)
cos )
+
sin )
`| Z)) holds (((((
- (
id Z))
(#)
cos )
+
sin )
`| Z)
. x)
= (((
id Z)
(#)
sin )
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((((
- (
id Z))
(#)
cos )
+
sin )
`| Z));
then
A8: x
in Z by
A4,
FDIFF_1:def 7;
then (((((
- (
id Z))
(#)
cos )
+
sin )
`| Z)
. x)
= (x
* (
sin
. x)) by
A3,
FDIFF_4: 46
.= (((
id Z)
(#)
sin )
. x) by
A5,
A8;
hence thesis;
end;
A9: (
dom ((
id Z)
(#)
sin ))
= ((
dom (
id Z))
/\
REAL ) by
SIN_COS: 24,
VALUED_1:def 4
.= (
dom (
id Z)) by
XBOOLE_1: 28
.= Z by
RELAT_1: 45;
then (
dom ((((
- (
id Z))
(#)
cos )
+
sin )
`| Z))
= (
dom ((
id Z)
(#)
sin )) by
A4,
FDIFF_1:def 7;
then
A10: ((((
- (
id Z))
(#)
cos )
+
sin )
`| Z)
= ((
id Z)
(#)
sin ) by
A7,
PARTFUN1: 5;
(((
id Z)
(#)
sin )
| A) is
continuous;
then
A11: ((
id Z)
(#)
sin )
is_integrable_on A by
A1,
A9,
INTEGRA5: 11;
(((
id Z)
(#)
sin )
| A) is
bounded by
A1,
A9,
INTEGRA5: 10;
hence thesis by
A1,
A3,
A11,
A10,
FDIFF_4: 46,
INTEGRA5: 13;
end;
theorem ::
INTEGRA9:9
A
c= Z implies (
integral (((
id Z)
(#)
cos ),A))
= (((((
id Z)
(#)
sin )
+
cos )
. (
upper_bound A))
- ((((
id Z)
(#)
sin )
+
cos )
. (
lower_bound A)))
proof
assume
A1: A
c= Z;
(
dom (((
id Z)
(#)
sin )
+
cos ))
= ((
dom ((
id Z)
(#)
sin ))
/\
REAL ) by
SIN_COS: 24,
VALUED_1:def 1
.= (
dom ((
id Z)
(#)
sin )) by
XBOOLE_1: 28
.= ((
dom (
id Z))
/\
REAL ) by
SIN_COS: 24,
VALUED_1:def 4
.= (
dom (
id Z)) by
XBOOLE_1: 28;
then
A2: (
dom (((
id Z)
(#)
sin )
+
cos ))
= Z by
RELAT_1: 45;
then
A3: (((
id Z)
(#)
sin )
+
cos )
is_differentiable_on Z by
FDIFF_4: 47;
A4: for x st x
in Z holds (((
id Z)
(#)
cos )
. x)
= (x
* (
cos
. x))
proof
let x;
assume
A5: x
in Z;
(((
id Z)
(#)
cos )
. x)
= (((
id Z)
. x)
* (
cos
. x)) by
VALUED_1: 5
.= (x
* (
cos
. x)) by
A5,
FUNCT_1: 18;
hence thesis;
end;
A6: for x be
Element of
REAL st x
in (
dom ((((
id Z)
(#)
sin )
+
cos )
`| Z)) holds (((((
id Z)
(#)
sin )
+
cos )
`| Z)
. x)
= (((
id Z)
(#)
cos )
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((((
id Z)
(#)
sin )
+
cos )
`| Z));
then
A7: x
in Z by
A3,
FDIFF_1:def 7;
then (((((
id Z)
(#)
sin )
+
cos )
`| Z)
. x)
= (x
* (
cos
. x)) by
A2,
FDIFF_4: 47
.= (((
id Z)
(#)
cos )
. x) by
A4,
A7;
hence thesis;
end;
A8: (
dom ((
id Z)
(#)
cos ))
= ((
dom (
id Z))
/\
REAL ) by
SIN_COS: 24,
VALUED_1:def 4
.= (
dom (
id Z)) by
XBOOLE_1: 28
.= Z by
RELAT_1: 45;
then (
dom ((((
id Z)
(#)
sin )
+
cos )
`| Z))
= (
dom ((
id Z)
(#)
cos )) by
A3,
FDIFF_1:def 7;
then
A9: ((((
id Z)
(#)
sin )
+
cos )
`| Z)
= ((
id Z)
(#)
cos ) by
A6,
PARTFUN1: 5;
(((
id Z)
(#)
cos )
| A) is
continuous;
then
A10: ((
id Z)
(#)
cos )
is_integrable_on A by
A1,
A8,
INTEGRA5: 11;
(((
id Z)
(#)
cos )
| A) is
bounded by
A1,
A8,
INTEGRA5: 10;
hence thesis by
A1,
A2,
A10,
A9,
FDIFF_4: 47,
INTEGRA5: 13;
end;
theorem ::
INTEGRA9:10
Th10: ((
id Z)
(#)
cos )
is_differentiable_on Z & for x st x
in Z holds ((((
id Z)
(#)
cos )
`| Z)
. x)
= ((
cos
. x)
- (x
* (
sin
. x)))
proof
A1:
cos
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 67;
A2: (
dom ((
id Z)
(#)
cos ))
= ((
dom (
id Z))
/\
REAL ) by
SIN_COS: 24,
VALUED_1:def 4
.= (
dom (
id Z)) by
XBOOLE_1: 28
.= Z by
RELAT_1: 45;
then Z
c= ((
dom (
id Z))
/\ (
dom
cos )) by
VALUED_1:def 4;
then
A3: Z
c= (
dom (
id Z)) by
XBOOLE_1: 18;
for x st x
in Z holds ((
id Z)
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 18;
then
A4: (
id Z)
is_differentiable_on Z by
A3,
FDIFF_1: 23;
A5: for x st x
in Z holds ((
id Z)
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 18;
now
let x;
assume
A6: x
in Z;
hence ((((
id Z)
(#)
cos )
`| Z)
. x)
= (((
cos
. x)
* (
diff ((
id Z),x)))
+ (((
id Z)
. x)
* (
diff (
cos ,x)))) by
A2,
A4,
A1,
FDIFF_1: 21
.= (((
cos
. x)
* (((
id Z)
`| Z)
. x))
+ (((
id Z)
. x)
* (
diff (
cos ,x)))) by
A4,
A6,
FDIFF_1:def 7
.= (((
cos
. x)
* 1)
+ (((
id Z)
. x)
* (
diff (
cos ,x)))) by
A3,
A5,
A6,
FDIFF_1: 23
.= (((
cos
. x)
* 1)
+ (((
id Z)
. x)
* (
- (
sin
. x)))) by
SIN_COS: 63
.= ((
cos
. x)
+ (x
* (
- (
sin
. x)))) by
A6,
FUNCT_1: 18
.= ((
cos
. x)
- (x
* (
sin
. x)));
end;
hence thesis by
A2,
A4,
A1,
FDIFF_1: 21;
end;
Lm2: (
-
sin )
is_differentiable_in x & (
diff ((
-
sin ),x))
= (
- (
cos
. x))
proof
A1:
sin
is_differentiable_in x by
SIN_COS: 64;
then (
diff ((
-
sin ),x))
= (
- (
diff (
sin ,x))) by
INTEGRA8: 22
.= (
- (
cos
. x)) by
SIN_COS: 64;
hence thesis by
A1,
INTEGRA8: 22;
end;
theorem ::
INTEGRA9:11
Th11: ((
-
sin )
+ ((
id Z)
(#)
cos ))
is_differentiable_on Z & for x st x
in Z holds ((((
-
sin )
+ ((
id Z)
(#)
cos ))
`| Z)
. x)
= (
- (x
* (
sin
. x)))
proof
(
dom ((
-
sin )
+ ((
id Z)
(#)
cos )))
= ((
dom (
-
sin ))
/\ (
dom ((
id Z)
(#)
cos ))) by
VALUED_1:def 1
.= (
REAL
/\ (
dom ((
id Z)
(#)
cos ))) by
SIN_COS: 24,
VALUED_1: 8
.= (
dom ((
id Z)
(#)
cos )) by
XBOOLE_1: 28
.= ((
dom (
id Z))
/\
REAL ) by
SIN_COS: 24,
VALUED_1:def 4
.= (
dom (
id Z)) by
XBOOLE_1: 28;
then
A1: Z
= (
dom ((
-
sin )
+ ((
id Z)
(#)
cos ))) by
RELAT_1: 45;
A2: ((
id Z)
(#)
cos )
is_differentiable_on Z by
Th10;
A3: (
-
sin )
is_differentiable_on Z by
FDIFF_1: 26,
INTEGRA8: 24;
now
let x;
assume
A4: x
in Z;
hence ((((
-
sin )
+ ((
id Z)
(#)
cos ))
`| Z)
. x)
= ((
diff ((
-
sin ),x))
+ (
diff (((
id Z)
(#)
cos ),x))) by
A1,
A2,
A3,
FDIFF_1: 18
.= (((((
id Z)
(#)
cos )
`| Z)
. x)
+ (
diff ((
-
sin ),x))) by
A2,
A4,
FDIFF_1:def 7
.= (((
cos
. x)
- (x
* (
sin
. x)))
+ (
diff ((
-
sin ),x))) by
A4,
Th10
.= (((
cos
. x)
- (x
* (
sin
. x)))
+ (
- (
cos
. x))) by
Lm2
.= (
- (x
* (
sin
. x)));
end;
hence thesis by
A1,
A2,
A3,
FDIFF_1: 18;
end;
theorem ::
INTEGRA9:12
A
c= Z implies (
integral (((
- (
id Z))
(#)
sin ),A))
= ((((
-
sin )
+ ((
id Z)
(#)
cos ))
. (
upper_bound A))
- (((
-
sin )
+ ((
id Z)
(#)
cos ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z;
A2: ((
-
sin )
+ ((
id Z)
(#)
cos ))
is_differentiable_on Z by
Th11;
A3: for x st x
in Z holds ((
- (
id Z))
. x)
= (((
- 1)
* x)
+
0 )
proof
let x;
assume
A4: x
in Z;
((
- (
id Z))
. x)
= (
- ((
id Z)
. x)) by
VALUED_1: 8
.= (
- x) by
A4,
FUNCT_1: 18
.= (((
- 1)
* x)
+
0 );
hence thesis;
end;
A5: for x st x
in Z holds (((
- (
id Z))
(#)
sin )
. x)
= (
- (x
* (
sin
. x)))
proof
let x;
assume
A6: x
in Z;
(((
- (
id Z))
(#)
sin )
. x)
= (((
- (
id Z))
. x)
* (
sin
. x)) by
VALUED_1: 5
.= ((((
- 1)
* x)
+
0 )
* (
sin
. x)) by
A3,
A6
.= (
- (x
* (
sin
. x)));
hence thesis;
end;
A7: for x be
Element of
REAL st x
in (
dom (((
-
sin )
+ ((
id Z)
(#)
cos ))
`| Z)) holds ((((
-
sin )
+ ((
id Z)
(#)
cos ))
`| Z)
. x)
= (((
- (
id Z))
(#)
sin )
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((
-
sin )
+ ((
id Z)
(#)
cos ))
`| Z));
then
A8: x
in Z by
A2,
FDIFF_1:def 7;
then ((((
-
sin )
+ ((
id Z)
(#)
cos ))
`| Z)
. x)
= (
- (x
* (
sin
. x))) by
Th11
.= (((
- (
id Z))
(#)
sin )
. x) by
A5,
A8;
hence thesis;
end;
(
dom ((
- (
id Z))
(#)
sin ))
= ((
dom (
- (
id Z)))
/\
REAL ) by
SIN_COS: 24,
VALUED_1:def 4
.= (
dom (
- (
id Z))) by
XBOOLE_1: 28
.= (
dom (
id Z)) by
VALUED_1: 8;
then
A9: Z
= (
dom ((
- (
id Z))
(#)
sin )) by
RELAT_1: 45;
then (
dom (((
-
sin )
+ ((
id Z)
(#)
cos ))
`| Z))
= (
dom ((
- (
id Z))
(#)
sin )) by
A2,
FDIFF_1:def 7;
then
A10: (((
-
sin )
+ ((
id Z)
(#)
cos ))
`| Z)
= ((
- (
id Z))
(#)
sin ) by
A7,
PARTFUN1: 5;
(((
- (
id Z))
(#)
sin )
| A) is
continuous;
then
A11: ((
- (
id Z))
(#)
sin )
is_integrable_on A by
A1,
A9,
INTEGRA5: 11;
(((
- (
id Z))
(#)
sin )
| A) is
bounded by
A1,
A9,
INTEGRA5: 10;
hence thesis by
A1,
A11,
A10,
Th11,
INTEGRA5: 13;
end;
theorem ::
INTEGRA9:13
Th13: ((
-
cos )
- ((
id Z)
(#)
sin ))
is_differentiable_on Z & for x st x
in Z holds ((((
-
cos )
- ((
id Z)
(#)
sin ))
`| Z)
. x)
= (
- (x
* (
cos
. x)))
proof
(
dom ((
-
cos )
- ((
id Z)
(#)
sin )))
= ((
dom (
-
cos ))
/\ (
dom ((
id Z)
(#)
sin ))) by
VALUED_1: 12
.= (
REAL
/\ (
dom ((
id Z)
(#)
sin ))) by
SIN_COS: 24,
VALUED_1: 8
.= (
dom ((
id Z)
(#)
sin )) by
XBOOLE_1: 28
.= ((
dom (
id Z))
/\
REAL ) by
SIN_COS: 24,
VALUED_1:def 4
.= (
dom (
id Z)) by
XBOOLE_1: 28;
then
A1: Z
= (
dom ((
-
cos )
- ((
id Z)
(#)
sin ))) by
RELAT_1: 45;
then Z
c= ((
dom (
-
cos ))
/\ (
dom ((
id Z)
(#)
sin ))) by
VALUED_1: 12;
then
A2: Z
c= (
dom ((
id Z)
(#)
sin )) by
XBOOLE_1: 18;
then
A3: ((
id Z)
(#)
sin )
is_differentiable_on Z by
FDIFF_4: 45;
A4: (
-
cos )
is_differentiable_on Z by
FDIFF_1: 26,
INTEGRA8: 26;
now
let x;
assume
A5: x
in Z;
hence ((((
-
cos )
- ((
id Z)
(#)
sin ))
`| Z)
. x)
= ((
diff ((
-
cos ),x))
- (
diff (((
id Z)
(#)
sin ),x))) by
A1,
A3,
A4,
FDIFF_1: 19
.= ((
sin
. x)
- (
diff (((
id Z)
(#)
sin ),x))) by
INTEGRA8: 26,
A5
.= ((
sin
. x)
- ((((
id Z)
(#)
sin )
`| Z)
. x)) by
A3,
A5,
FDIFF_1:def 7
.= ((
sin
. x)
- ((
sin
. x)
+ (x
* (
cos
. x)))) by
A2,
A5,
FDIFF_4: 45
.= (
- (x
* (
cos
. x)));
end;
hence thesis by
A1,
A3,
A4,
FDIFF_1: 19;
end;
theorem ::
INTEGRA9:14
A
c= Z implies (
integral (((
- (
id Z))
(#)
cos ),A))
= ((((
-
cos )
- ((
id Z)
(#)
sin ))
. (
upper_bound A))
- (((
-
cos )
- ((
id Z)
(#)
sin ))
. (
lower_bound A)))
proof
assume
A1: A
c= Z;
A2: ((
-
cos )
- ((
id Z)
(#)
sin ))
is_differentiable_on Z by
Th13;
A3: for x st x
in Z holds ((
- (
id Z))
. x)
= (((
- 1)
* x)
+
0 )
proof
let x;
assume
A4: x
in Z;
((
- (
id Z))
. x)
= (
- ((
id Z)
. x)) by
VALUED_1: 8
.= (
- x) by
A4,
FUNCT_1: 18
.= (((
- 1)
* x)
+
0 );
hence thesis;
end;
A5: for x st x
in Z holds (((
- (
id Z))
(#)
cos )
. x)
= (
- (x
* (
cos
. x)))
proof
let x;
assume
A6: x
in Z;
(((
- (
id Z))
(#)
cos )
. x)
= (((
- (
id Z))
. x)
* (
cos
. x)) by
VALUED_1: 5
.= ((((
- 1)
* x)
+
0 )
* (
cos
. x)) by
A3,
A6
.= (
- (x
* (
cos
. x)));
hence thesis;
end;
A7: for x be
Element of
REAL st x
in (
dom (((
-
cos )
- ((
id Z)
(#)
sin ))
`| Z)) holds ((((
-
cos )
- ((
id Z)
(#)
sin ))
`| Z)
. x)
= (((
- (
id Z))
(#)
cos )
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((
-
cos )
- ((
id Z)
(#)
sin ))
`| Z));
then
A8: x
in Z by
A2,
FDIFF_1:def 7;
then ((((
-
cos )
- ((
id Z)
(#)
sin ))
`| Z)
. x)
= (
- (x
* (
cos
. x))) by
Th13
.= (((
- (
id Z))
(#)
cos )
. x) by
A5,
A8;
hence thesis;
end;
(
dom ((
- (
id Z))
(#)
cos ))
= ((
dom (
- (
id Z)))
/\
REAL ) by
SIN_COS: 24,
VALUED_1:def 4
.= (
dom (
- (
id Z))) by
XBOOLE_1: 28
.= (
dom (
id Z)) by
VALUED_1: 8;
then
A9: Z
= (
dom ((
- (
id Z))
(#)
cos )) by
RELAT_1: 45;
then (
dom (((
-
cos )
- ((
id Z)
(#)
sin ))
`| Z))
= (
dom ((
- (
id Z))
(#)
cos )) by
A2,
FDIFF_1:def 7;
then
A10: (((
-
cos )
- ((
id Z)
(#)
sin ))
`| Z)
= ((
- (
id Z))
(#)
cos ) by
A7,
PARTFUN1: 5;
(((
- (
id Z))
(#)
cos )
| A) is
continuous;
then
A11: ((
- (
id Z))
(#)
cos )
is_integrable_on A by
A1,
A9,
INTEGRA5: 11;
(((
- (
id Z))
(#)
cos )
| A) is
bounded by
A1,
A9,
INTEGRA5: 10;
hence thesis by
A1,
A11,
A10,
Th13,
INTEGRA5: 13;
end;
theorem ::
INTEGRA9:15
A
c= Z implies (
integral ((
sin
+ ((
id Z)
(#)
cos )),A))
= ((((
id Z)
(#)
sin )
. (
upper_bound A))
- (((
id Z)
(#)
sin )
. (
lower_bound A)))
proof
assume
A1: A
c= Z;
(
dom (
sin
+ ((
id Z)
(#)
cos )))
= (
REAL
/\ (
dom ((
id Z)
(#)
cos ))) by
SIN_COS: 24,
VALUED_1:def 1
.= (
dom ((
id Z)
(#)
cos )) by
XBOOLE_1: 28
.= ((
dom (
id Z))
/\
REAL ) by
SIN_COS: 24,
VALUED_1:def 4
.= (
dom (
id Z)) by
XBOOLE_1: 28;
then
A2: Z
= (
dom (
sin
+ ((
id Z)
(#)
cos ))) by
RELAT_1: 45;
((
sin
+ ((
id Z)
(#)
cos ))
| A) is
continuous;
then
A3: (
sin
+ ((
id Z)
(#)
cos ))
is_integrable_on A by
A1,
A2,
INTEGRA5: 11;
A4: (
dom ((
id Z)
(#)
sin ))
= ((
dom (
id Z))
/\
REAL ) by
SIN_COS: 24,
VALUED_1:def 4
.= (
dom (
id Z)) by
XBOOLE_1: 28
.= Z by
RELAT_1: 45;
then
A5: ((
id Z)
(#)
sin )
is_differentiable_on Z by
FDIFF_4: 45;
A6: for x st x
in Z holds ((
sin
+ ((
id Z)
(#)
cos ))
. x)
= ((
sin
. x)
+ (x
* (
cos
. x)))
proof
let x;
assume
A7: x
in Z;
then ((
sin
+ ((
id Z)
(#)
cos ))
. x)
= ((
sin
. x)
+ (((
id Z)
(#)
cos )
. x)) by
A2,
VALUED_1:def 1
.= ((
sin
. x)
+ (((
id Z)
. x)
* (
cos
. x))) by
VALUED_1: 5
.= ((
sin
. x)
+ (x
* (
cos
. x))) by
A7,
FUNCT_1: 18;
hence thesis;
end;
A8: for x be
Element of
REAL st x
in (
dom (((
id Z)
(#)
sin )
`| Z)) holds ((((
id Z)
(#)
sin )
`| Z)
. x)
= ((
sin
+ ((
id Z)
(#)
cos ))
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((
id Z)
(#)
sin )
`| Z));
then
A9: x
in Z by
A5,
FDIFF_1:def 7;
then ((((
id Z)
(#)
sin )
`| Z)
. x)
= ((
sin
. x)
+ (x
* (
cos
. x))) by
A4,
FDIFF_4: 45
.= ((
sin
+ ((
id Z)
(#)
cos ))
. x) by
A6,
A9;
hence thesis;
end;
(
dom (((
id Z)
(#)
sin )
`| Z))
= (
dom (
sin
+ ((
id Z)
(#)
cos ))) by
A2,
A5,
FDIFF_1:def 7;
then
A10: (((
id Z)
(#)
sin )
`| Z)
= (
sin
+ ((
id Z)
(#)
cos )) by
A8,
PARTFUN1: 5;
((
sin
+ ((
id Z)
(#)
cos ))
| A) is
bounded by
A1,
A2,
INTEGRA5: 10;
hence thesis by
A1,
A4,
A3,
A10,
FDIFF_4: 45,
INTEGRA5: 13;
end;
theorem ::
INTEGRA9:16
A
c= Z implies (
integral (((
-
cos )
+ ((
id Z)
(#)
sin )),A))
= ((((
- (
id Z))
(#)
cos )
. (
upper_bound A))
- (((
- (
id Z))
(#)
cos )
. (
lower_bound A)))
proof
assume
A1: A
c= Z;
(
dom ((
-
cos )
+ ((
id Z)
(#)
sin )))
= ((
dom (
-
cos ))
/\ (
dom ((
id Z)
(#)
sin ))) by
VALUED_1:def 1
.= (
REAL
/\ (
dom ((
id Z)
(#)
sin ))) by
SIN_COS: 24,
VALUED_1: 8
.= (
dom ((
id Z)
(#)
sin )) by
XBOOLE_1: 28
.= ((
dom (
id Z))
/\
REAL ) by
SIN_COS: 24,
VALUED_1:def 4
.= (
dom (
id Z)) by
XBOOLE_1: 28;
then
A2: Z
= (
dom ((
-
cos )
+ ((
id Z)
(#)
sin ))) by
RELAT_1: 45;
(((
-
cos )
+ ((
id Z)
(#)
sin ))
| A) is
continuous;
then
A3: ((
-
cos )
+ ((
id Z)
(#)
sin ))
is_integrable_on A by
A1,
A2,
INTEGRA5: 11;
(
dom ((
- (
id Z))
(#)
cos ))
= ((
dom (
- (
id Z)))
/\
REAL ) by
SIN_COS: 24,
VALUED_1:def 4
.= (
dom (
- (
id Z))) by
XBOOLE_1: 28
.= (
dom (
id Z)) by
VALUED_1: 8;
then
A4: (
dom ((
- (
id Z))
(#)
cos ))
= Z by
RELAT_1: 45;
then
A5: ((
- (
id Z))
(#)
cos )
is_differentiable_on Z by
FDIFF_4: 44;
A6: for x st x
in Z holds (((
-
cos )
+ ((
id Z)
(#)
sin ))
. x)
= ((
- (
cos
. x))
+ (x
* (
sin
. x)))
proof
let x;
assume
A7: x
in Z;
then (((
-
cos )
+ ((
id Z)
(#)
sin ))
. x)
= (((
-
cos )
. x)
+ (((
id Z)
(#)
sin )
. x)) by
A2,
VALUED_1:def 1
.= (((
-
cos )
. x)
+ (((
id Z)
. x)
* (
sin
. x))) by
VALUED_1: 5
.= (((
-
cos )
. x)
+ (x
* (
sin
. x))) by
A7,
FUNCT_1: 18
.= ((
- (
cos
. x))
+ (x
* (
sin
. x))) by
VALUED_1: 8;
hence thesis;
end;
A8: for x be
Element of
REAL st x
in (
dom (((
- (
id Z))
(#)
cos )
`| Z)) holds ((((
- (
id Z))
(#)
cos )
`| Z)
. x)
= (((
-
cos )
+ ((
id Z)
(#)
sin ))
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((
- (
id Z))
(#)
cos )
`| Z));
then
A9: x
in Z by
A5,
FDIFF_1:def 7;
then ((((
- (
id Z))
(#)
cos )
`| Z)
. x)
= ((
- (
cos
. x))
+ (x
* (
sin
. x))) by
A4,
FDIFF_4: 44
.= (((
-
cos )
+ ((
id Z)
(#)
sin ))
. x) by
A6,
A9;
hence thesis;
end;
(
dom (((
- (
id Z))
(#)
cos )
`| Z))
= (
dom ((
-
cos )
+ ((
id Z)
(#)
sin ))) by
A2,
A5,
FDIFF_1:def 7;
then
A10: (((
- (
id Z))
(#)
cos )
`| Z)
= ((
-
cos )
+ ((
id Z)
(#)
sin )) by
A8,
PARTFUN1: 5;
(((
-
cos )
+ ((
id Z)
(#)
sin ))
| A) is
bounded by
A1,
A2,
INTEGRA5: 10;
hence thesis by
A1,
A4,
A3,
A10,
FDIFF_4: 44,
INTEGRA5: 13;
end;
theorem ::
INTEGRA9:17
(
integral (((
AffineMap (1,
0 ))
(#)
exp_R ),A))
= (((
exp_R
(#) (
AffineMap (1,(
- 1))))
. (
upper_bound A))
- ((
exp_R
(#) (
AffineMap (1,(
- 1))))
. (
lower_bound A)))
proof
A1: for x st x
in
REAL holds ((
AffineMap (1,(
- 1)))
. x)
= (x
- 1)
proof
let x;
assume x
in
REAL ;
((
AffineMap (1,(
- 1)))
. x)
= ((1
* x)
+ (
- 1)) by
FCONT_1:def 4
.= (x
- 1);
hence thesis;
end;
A2: (
dom (
exp_R
(#) (
AffineMap (1,(
- 1)))))
= (
[#]
REAL ) by
FUNCT_2:def 1;
A3: for x st x
in
REAL holds (((
AffineMap (1,
0 ))
(#)
exp_R )
. x)
= (x
* (
exp_R
. x))
proof
let x;
assume x
in
REAL ;
(((
AffineMap (1,
0 ))
(#)
exp_R )
. x)
= (((
AffineMap (1,
0 ))
. x)
* (
exp_R
. x)) by
VALUED_1: 5
.= (((1
* x)
+
0 )
* (
exp_R
. x)) by
FCONT_1:def 4
.= (x
* (
exp_R
. x));
hence thesis;
end;
A4: for x be
Element of
REAL st x
in (
dom ((
exp_R
(#) (
AffineMap (1,(
- 1))))
`|
REAL )) holds (((
exp_R
(#) (
AffineMap (1,(
- 1))))
`|
REAL )
. x)
= (((
AffineMap (1,
0 ))
(#)
exp_R )
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
exp_R
(#) (
AffineMap (1,(
- 1))))
`|
REAL ));
(((
exp_R
(#) (
AffineMap (1,(
- 1))))
`|
REAL )
. x)
= (x
* (
exp_R
. x)) by
A2,
A1,
FDIFF_4: 55
.= (((
AffineMap (1,
0 ))
(#)
exp_R )
. x) by
A3;
hence thesis;
end;
A5: (
[#]
REAL )
= (
dom ((
AffineMap (1,
0 ))
(#)
exp_R )) by
FUNCT_2:def 1;
(((
AffineMap (1,
0 ))
(#)
exp_R )
| A) is
continuous;
then
A6: ((
AffineMap (1,
0 ))
(#)
exp_R )
is_integrable_on A by
A5,
INTEGRA5: 11;
(
exp_R
(#) (
AffineMap (1,(
- 1))))
is_differentiable_on
REAL by
A2,
A1,
FDIFF_4: 55;
then (
dom ((
exp_R
(#) (
AffineMap (1,(
- 1))))
`|
REAL ))
= (
dom ((
AffineMap (1,
0 ))
(#)
exp_R )) by
A5,
FDIFF_1:def 7;
then
A7: ((
exp_R
(#) (
AffineMap (1,(
- 1))))
`|
REAL )
= ((
AffineMap (1,
0 ))
(#)
exp_R ) by
A4,
PARTFUN1: 5;
(((
AffineMap (1,
0 ))
(#)
exp_R )
| A) is
bounded by
A5,
INTEGRA5: 10;
hence thesis by
A2,
A1,
A6,
A7,
FDIFF_4: 55,
INTEGRA5: 13;
end;
theorem ::
INTEGRA9:18
Th18: ((1
/ (n
+ 1))
(#) (
#Z (n
+ 1)))
is_differentiable_on
REAL & for x holds ((((1
/ (n
+ 1))
(#) (
#Z (n
+ 1)))
`|
REAL )
. x)
= (x
#Z n)
proof
A1: (
[#]
REAL )
= (
dom ((1
/ (n
+ 1))
(#) (
#Z (n
+ 1)))) by
FUNCT_2:def 1;
(
[#]
REAL )
= (
dom (
#Z (n
+ 1))) & for x st x
in
REAL holds (
#Z (n
+ 1))
is_differentiable_in x by
FUNCT_2:def 1,
TAYLOR_1: 2;
then
A2: (
#Z (n
+ 1))
is_differentiable_on
REAL by
FDIFF_1: 9;
hence ((1
/ (n
+ 1))
(#) (
#Z (n
+ 1)))
is_differentiable_on
REAL by
A1,
FDIFF_1: 20;
A3: for x st x
in
REAL holds (((
#Z (n
+ 1))
`|
REAL )
. x)
= ((n
+ 1)
* (x
#Z n))
proof
set m = (n
+ 1);
let x;
assume
A4: x
in
REAL ;
(
diff ((
#Z m),x))
= (m
* (x
#Z (m
- 1))) by
TAYLOR_1: 2;
hence thesis by
A2,
FDIFF_1:def 7,
A4;
end;
A5: for x st x
in
REAL holds ((((1
/ (n
+ 1))
(#) (
#Z (n
+ 1)))
`|
REAL )
. x)
= (x
#Z n)
proof
let x;
assume
A6: x
in
REAL ;
((((1
/ (n
+ 1))
(#) (
#Z (n
+ 1)))
`|
REAL )
. x)
= ((1
/ (n
+ 1))
* (
diff ((
#Z (n
+ 1)),x))) by
A1,
A2,
FDIFF_1: 20,
A6
.= ((1
/ (n
+ 1))
* (((
#Z (n
+ 1))
`|
REAL )
. x)) by
A2,
FDIFF_1:def 7,
A6
.= ((1
/ (n
+ 1))
* ((n
+ 1)
* (x
#Z n))) by
A3,
A6
.= (((1
/ (n
+ 1))
* (n
+ 1))
* (x
#Z n))
.= (((n
+ 1)
/ (n
+ 1))
* (x
#Z n)) by
XCMPLX_1: 99
.= (1
* (x
#Z n)) by
XCMPLX_1: 60;
hence thesis;
end;
let x;
x
in
REAL by
XREAL_0:def 1;
hence thesis by
A5;
end;
theorem ::
INTEGRA9:19
(
integral ((
#Z n),A))
= (((1
/ (n
+ 1))
* ((
upper_bound A)
|^ (n
+ 1)))
- ((1
/ (n
+ 1))
* ((
lower_bound A)
|^ (n
+ 1))))
proof
A1: (
dom (
#Z n))
= (
[#]
REAL ) by
FUNCT_2:def 1;
A2: for x be
Element of
REAL st x
in (
dom (((1
/ (n
+ 1))
(#) (
#Z (n
+ 1)))
`|
REAL )) holds ((((1
/ (n
+ 1))
(#) (
#Z (n
+ 1)))
`|
REAL )
. x)
= ((
#Z n)
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((1
/ (n
+ 1))
(#) (
#Z (n
+ 1)))
`|
REAL ));
((((1
/ (n
+ 1))
(#) (
#Z (n
+ 1)))
`|
REAL )
. x)
= (x
#Z n) by
Th18
.= ((
#Z n)
. x) by
TAYLOR_1:def 1;
hence thesis;
end;
(
dom (
#Z (n
+ 1)))
= (
[#]
REAL ) & for x st x
in
REAL holds (
#Z (n
+ 1))
is_differentiable_in x by
FUNCT_2:def 1,
TAYLOR_1: 2;
then (
[#]
REAL )
= (
dom ((1
/ (n
+ 1))
(#) (
#Z (n
+ 1)))) & (
#Z (n
+ 1))
is_differentiable_on
REAL by
FDIFF_1: 9,
FUNCT_2:def 1;
then ((1
/ (n
+ 1))
(#) (
#Z (n
+ 1)))
is_differentiable_on
REAL by
FDIFF_1: 20;
then (
dom (((1
/ (n
+ 1))
(#) (
#Z (n
+ 1)))
`|
REAL ))
= (
dom (
#Z n)) by
A1,
FDIFF_1:def 7;
then
A3: (((1
/ (n
+ 1))
(#) (
#Z (n
+ 1)))
`|
REAL )
= (
#Z n) by
A2,
PARTFUN1: 5;
A4: ((
#Z (n
+ 1))
. (
upper_bound A))
= ((
upper_bound A)
#Z (n
+ 1)) by
TAYLOR_1:def 1
.= ((
upper_bound A)
|^ (n
+ 1)) by
PREPOWER: 36;
for x st x
in
REAL holds (
#Z n)
is_differentiable_in x by
TAYLOR_1: 2;
then (
#Z n)
is_differentiable_on
REAL by
A1,
FDIFF_1: 9;
then
A5: ((
#Z n)
|
REAL ) is
continuous by
FDIFF_1: 25;
then ((
#Z n)
| A) is
continuous by
FCONT_1: 16;
then
A6: (
#Z n)
is_integrable_on A by
A1,
INTEGRA5: 11;
A7: ((
#Z (n
+ 1))
. (
lower_bound A))
= ((
lower_bound A)
#Z (n
+ 1)) by
TAYLOR_1:def 1
.= ((
lower_bound A)
|^ (n
+ 1)) by
PREPOWER: 36;
((
#Z n)
| A) is
bounded by
A1,
A5,
FCONT_1: 16,
INTEGRA5: 10;
then (
integral ((
#Z n),A))
= ((((1
/ (n
+ 1))
(#) (
#Z (n
+ 1)))
. (
upper_bound A))
- (((1
/ (n
+ 1))
(#) (
#Z (n
+ 1)))
. (
lower_bound A))) by
A6,
A3,
Th18,
INTEGRA5: 13
.= (((1
/ (n
+ 1))
* ((
#Z (n
+ 1))
. (
upper_bound A)))
- (((1
/ (n
+ 1))
(#) (
#Z (n
+ 1)))
. (
lower_bound A))) by
VALUED_1: 6
.= (((1
/ (n
+ 1))
* ((
#Z (n
+ 1))
. (
upper_bound A)))
- ((1
/ (n
+ 1))
* ((
#Z (n
+ 1))
. (
lower_bound A)))) by
VALUED_1: 6
.= (((1
/ (n
+ 1))
* ((
upper_bound A)
|^ (n
+ 1)))
- ((1
/ (n
+ 1))
* ((
lower_bound A)
|^ (n
+ 1)))) by
A4,
A7;
hence thesis;
end;
begin
theorem ::
INTEGRA9:20
Th20: for f,g be
PartFunc of
REAL ,
REAL , C be non
empty
Subset of
REAL holds ((f
- g)
|| C)
= ((f
|| C)
- (g
|| C))
proof
let f,g be
PartFunc of
REAL ,
REAL ;
let C be non
empty
Subset of
REAL ;
A1: (
dom ((f
|| C)
- (g
|| C)))
= ((
dom (f
| C))
/\ (
dom (g
| C))) by
VALUED_1: 12
.= (((
dom f)
/\ C)
/\ (
dom (g
| C))) by
RELAT_1: 61
.= (((
dom f)
/\ C)
/\ ((
dom g)
/\ C)) by
RELAT_1: 61
.= ((
dom f)
/\ (C
/\ ((
dom g)
/\ C))) by
XBOOLE_1: 16
.= ((
dom f)
/\ ((
dom g)
/\ (C
/\ C))) by
XBOOLE_1: 16
.= ((
dom f)
/\ ((
dom g)
/\ C));
A2: (
dom ((f
- g)
|| C))
= ((
dom (f
- g))
/\ C) by
RELAT_1: 61
.= (((
dom f)
/\ (
dom g))
/\ C) by
VALUED_1: 12;
then
A3: (
dom ((f
- g)
|| C))
= (
dom ((f
|| C)
- (g
|| C))) by
A1,
XBOOLE_1: 16;
for c be
Element of C st c
in (
dom ((f
- g)
|| C)) holds (((f
- g)
|| C)
. c)
= (((f
|| C)
- (g
|| C))
. c)
proof
let c be
Element of C;
assume
A4: c
in (
dom ((f
- g)
|| C));
then c
in ((
dom (f
- g))
/\ C) by
RELAT_1: 61;
then
A5: c
in (
dom (f
- g)) by
XBOOLE_0:def 4;
A6: c
in ((
dom (f
|| C))
/\ (
dom (g
|| C))) by
A3,
A4,
VALUED_1: 12;
then
A7: c
in (
dom (f
| C)) by
XBOOLE_0:def 4;
A8: (((f
- g)
|| C)
. c)
= ((f
- g)
. c) by
A4,
FUNCT_1: 47
.= ((f
. c)
- (g
. c)) by
A5,
VALUED_1: 13;
A9: c
in (
dom (g
| C)) by
A6,
XBOOLE_0:def 4;
(((f
|| C)
- (g
|| C))
. c)
= (((f
|| C)
. c)
- ((g
|| C)
. c)) by
A3,
A4,
VALUED_1: 13
.= ((f
. c)
- ((g
| C)
. c)) by
A7,
FUNCT_1: 47;
hence thesis by
A8,
A9,
FUNCT_1: 47;
end;
hence thesis by
A2,
A1,
PARTFUN1: 5,
XBOOLE_1: 16;
end;
theorem ::
INTEGRA9:21
Th21: for f1,f2,g be
PartFunc of
REAL ,
REAL , C be non
empty
Subset of
REAL holds (((f1
+ f2)
|| C)
(#) (g
|| C))
= (((f1
(#) g)
+ (f2
(#) g))
|| C)
proof
let f1,f2,g be
PartFunc of
REAL ,
REAL ;
let C be non
empty
Subset of
REAL ;
A1: (
dom (((f1
(#) g)
+ (f2
(#) g))
|| C))
= ((
dom ((f1
(#) g)
+ (f2
(#) g)))
/\ C) by
RELAT_1: 61
.= (((
dom (f1
(#) g))
/\ (
dom (f2
(#) g)))
/\ C) by
VALUED_1:def 1
.= ((((
dom f1)
/\ (
dom g))
/\ (
dom (f2
(#) g)))
/\ C) by
VALUED_1:def 4
.= ((((
dom f1)
/\ (
dom g))
/\ ((
dom f2)
/\ (
dom g)))
/\ C) by
VALUED_1:def 4
.= (((
dom f1)
/\ (((
dom g)
/\ (
dom f2))
/\ (
dom g)))
/\ C) by
XBOOLE_1: 16
.= (((
dom f1)
/\ ((
dom f2)
/\ ((
dom g)
/\ (
dom g))))
/\ C) by
XBOOLE_1: 16
.= ((((
dom f1)
/\ (
dom f2))
/\ (
dom g))
/\ C) by
XBOOLE_1: 16;
A2: (
dom (((f1
+ f2)
|| C)
(#) (g
|| C)))
= ((
dom ((f1
+ f2)
|| C))
/\ (
dom (g
|| C))) by
VALUED_1:def 4
.= (((
dom (f1
+ f2))
/\ C)
/\ (
dom (g
| C))) by
RELAT_1: 61
.= (((
dom (f1
+ f2))
/\ C)
/\ ((
dom g)
/\ C)) by
RELAT_1: 61
.= ((((
dom f1)
/\ (
dom f2))
/\ C)
/\ ((
dom g)
/\ C)) by
VALUED_1:def 1
.= (((
dom f1)
/\ (
dom f2))
/\ ((C
/\ (
dom g))
/\ C)) by
XBOOLE_1: 16
.= (((
dom f1)
/\ (
dom f2))
/\ ((
dom g)
/\ (C
/\ C))) by
XBOOLE_1: 16
.= ((((
dom f1)
/\ (
dom f2))
/\ (
dom g))
/\ C) by
XBOOLE_1: 16;
for c be
Element of C st c
in (
dom (((f1
+ f2)
|| C)
(#) (g
|| C))) holds ((((f1
+ f2)
|| C)
(#) (g
|| C))
. c)
= ((((f1
(#) g)
+ (f2
(#) g))
|| C)
. c)
proof
let c be
Element of C;
assume
A3: c
in (
dom (((f1
+ f2)
|| C)
(#) (g
|| C)));
then
A4: c
in ((
dom ((f1
+ f2)
|| C))
/\ (
dom (g
|| C))) by
VALUED_1:def 4;
then
A5: c
in (
dom (g
| C)) by
XBOOLE_0:def 4;
c
in ((
dom ((f1
(#) g)
+ (f2
(#) g)))
/\ C) by
A2,
A1,
A3,
RELAT_1: 61;
then
A6: c
in (
dom ((f1
(#) g)
+ (f2
(#) g))) by
XBOOLE_0:def 4;
then
A7: c
in ((
dom (f1
(#) g))
/\ (
dom (f2
(#) g))) by
VALUED_1:def 1;
then
A8: c
in (
dom (f1
(#) g)) by
XBOOLE_0:def 4;
A9: c
in (
dom ((f1
+ f2)
| C)) by
A4,
XBOOLE_0:def 4;
then c
in ((
dom (f1
+ f2))
/\ C) by
RELAT_1: 61;
then
A10: c
in (
dom (f1
+ f2)) by
XBOOLE_0:def 4;
A11: ((((f1
+ f2)
|| C)
(#) (g
|| C))
. c)
= ((((f1
+ f2)
|| C)
. c)
* ((g
|| C)
. c)) by
A3,
VALUED_1:def 4
.= (((f1
+ f2)
. c)
* ((g
| C)
. c)) by
A9,
FUNCT_1: 47
.= (((f1
. c)
+ (f2
. c))
* ((g
| C)
. c)) by
A10,
VALUED_1:def 1;
A12: c
in (
dom (f2
(#) g)) by
A7,
XBOOLE_0:def 4;
((((f1
(#) g)
+ (f2
(#) g))
|| C)
. c)
= (((f1
(#) g)
+ (f2
(#) g))
. c) by
A2,
A1,
A3,
FUNCT_1: 47
.= (((f1
(#) g)
. c)
+ ((f2
(#) g)
. c)) by
A6,
VALUED_1:def 1
.= (((f1
. c)
* (g
. c))
+ ((f2
(#) g)
. c)) by
A8,
VALUED_1:def 4
.= (((f1
. c)
* (g
. c))
+ ((f2
. c)
* (g
. c))) by
A12,
VALUED_1:def 4
.= (((f1
. c)
+ (f2
. c))
* (g
. c));
hence thesis by
A5,
A11,
FUNCT_1: 47;
end;
hence thesis by
A2,
A1,
PARTFUN1: 5;
end;
theorem ::
INTEGRA9:22
Th22: for f1,f2,g be
PartFunc of
REAL ,
REAL , C be non
empty
Subset of
REAL holds (((f1
- f2)
|| C)
(#) (g
|| C))
= (((f1
(#) g)
- (f2
(#) g))
|| C)
proof
let f1,f2,g be
PartFunc of
REAL ,
REAL ;
let C be non
empty
Subset of
REAL ;
A1: (
dom (((f1
(#) g)
- (f2
(#) g))
|| C))
= ((
dom ((f1
(#) g)
- (f2
(#) g)))
/\ C) by
RELAT_1: 61
.= (((
dom (f1
(#) g))
/\ (
dom (f2
(#) g)))
/\ C) by
VALUED_1: 12
.= ((((
dom f1)
/\ (
dom g))
/\ (
dom (f2
(#) g)))
/\ C) by
VALUED_1:def 4
.= ((((
dom f1)
/\ (
dom g))
/\ ((
dom f2)
/\ (
dom g)))
/\ C) by
VALUED_1:def 4
.= (((
dom f1)
/\ (((
dom g)
/\ (
dom f2))
/\ (
dom g)))
/\ C) by
XBOOLE_1: 16
.= (((
dom f1)
/\ ((
dom f2)
/\ ((
dom g)
/\ (
dom g))))
/\ C) by
XBOOLE_1: 16
.= ((((
dom f1)
/\ (
dom f2))
/\ (
dom g))
/\ C) by
XBOOLE_1: 16;
A2: (
dom (((f1
- f2)
|| C)
(#) (g
|| C)))
= ((
dom ((f1
- f2)
| C))
/\ (
dom (g
| C))) by
VALUED_1:def 4
.= (((
dom (f1
- f2))
/\ C)
/\ (
dom (g
| C))) by
RELAT_1: 61
.= (((
dom (f1
- f2))
/\ C)
/\ ((
dom g)
/\ C)) by
RELAT_1: 61
.= ((((
dom f1)
/\ (
dom f2))
/\ C)
/\ ((
dom g)
/\ C)) by
VALUED_1: 12
.= (((
dom f1)
/\ (
dom f2))
/\ ((C
/\ (
dom g))
/\ C)) by
XBOOLE_1: 16
.= (((
dom f1)
/\ (
dom f2))
/\ ((
dom g)
/\ (C
/\ C))) by
XBOOLE_1: 16
.= ((((
dom f1)
/\ (
dom f2))
/\ (
dom g))
/\ C) by
XBOOLE_1: 16;
for c be
Element of C st c
in (
dom (((f1
- f2)
|| C)
(#) (g
|| C))) holds ((((f1
- f2)
|| C)
(#) (g
|| C))
. c)
= ((((f1
(#) g)
- (f2
(#) g))
|| C)
. c)
proof
let c be
Element of C;
assume
A3: c
in (
dom (((f1
- f2)
|| C)
(#) (g
|| C)));
then
A4: c
in ((
dom ((f1
- f2)
|| C))
/\ (
dom (g
|| C))) by
VALUED_1:def 4;
then
A5: c
in (
dom (g
| C)) by
XBOOLE_0:def 4;
c
in ((
dom ((f1
(#) g)
- (f2
(#) g)))
/\ C) by
A2,
A1,
A3,
RELAT_1: 61;
then
A6: c
in (
dom ((f1
(#) g)
- (f2
(#) g))) by
XBOOLE_0:def 4;
then
A7: c
in ((
dom (f1
(#) g))
/\ (
dom (f2
(#) g))) by
VALUED_1: 12;
then
A8: c
in (
dom (f1
(#) g)) by
XBOOLE_0:def 4;
A9: c
in (
dom ((f1
- f2)
| C)) by
A4,
XBOOLE_0:def 4;
then c
in ((
dom (f1
- f2))
/\ C) by
RELAT_1: 61;
then
A10: c
in (
dom (f1
- f2)) by
XBOOLE_0:def 4;
A11: ((((f1
- f2)
|| C)
(#) (g
|| C))
. c)
= ((((f1
- f2)
| C)
. c)
* ((g
| C)
. c)) by
A3,
VALUED_1:def 4
.= (((f1
- f2)
. c)
* ((g
| C)
. c)) by
A9,
FUNCT_1: 47
.= (((f1
. c)
- (f2
. c))
* ((g
| C)
. c)) by
A10,
VALUED_1: 13;
A12: c
in (
dom (f2
(#) g)) by
A7,
XBOOLE_0:def 4;
((((f1
(#) g)
- (f2
(#) g))
|| C)
. c)
= (((f1
(#) g)
- (f2
(#) g))
. c) by
A2,
A1,
A3,
FUNCT_1: 47
.= (((f1
(#) g)
. c)
- ((f2
(#) g)
. c)) by
A6,
VALUED_1: 13
.= (((f1
. c)
* (g
. c))
- ((f2
(#) g)
. c)) by
A8,
VALUED_1:def 4
.= (((f1
. c)
* (g
. c))
- ((f2
. c)
* (g
. c))) by
A12,
VALUED_1:def 4
.= (((f1
. c)
- (f2
. c))
* (g
. c));
hence thesis by
A5,
A11,
FUNCT_1: 47;
end;
hence thesis by
A2,
A1,
PARTFUN1: 5;
end;
theorem ::
INTEGRA9:23
for f1,f2,g be
PartFunc of
REAL ,
REAL , C be non
empty
Subset of
REAL holds (((f1
(#) f2)
|| C)
(#) (g
|| C))
= ((f1
|| C)
(#) ((f2
(#) g)
|| C))
proof
let f1,f2,g be
PartFunc of
REAL ,
REAL ;
let C be non
empty
Subset of
REAL ;
(((f1
(#) f2)
|| C)
(#) (g
|| C))
= (((f1
|| C)
(#) (f2
|| C))
(#) (g
|| C)) & ((f1
|| C)
(#) ((f2
(#) g)
|| C))
= ((f1
|| C)
(#) ((f2
|| C)
(#) (g
|| C))) by
INTEGRA5: 4;
hence thesis by
RFUNCT_1: 9;
end;
definition
let A be non
empty
closed_interval
Subset of
REAL ;
let f,g be
PartFunc of
REAL ,
REAL ;
::
INTEGRA9:def1
func
|||(f,g,A)||| ->
Real equals (
integral ((f
(#) g),A));
correctness ;
end
theorem ::
INTEGRA9:24
for f,g be
PartFunc of
REAL ,
REAL , A be non
empty
closed_interval
Subset of
REAL holds
|||(f, g, A)|||
=
|||(g, f, A)|||;
theorem ::
INTEGRA9:25
for f1,f2,g be
PartFunc of
REAL ,
REAL , A be non
empty
closed_interval
Subset of
REAL st ((f1
(#) g)
|| A) is
total & ((f2
(#) g)
|| A) is
total & (((f1
(#) g)
|| A)
| A) is
bounded & ((f1
(#) g)
|| A) is
integrable & (((f2
(#) g)
|| A)
| A) is
bounded & ((f2
(#) g)
|| A) is
integrable holds
|||((f1
+ f2), g, A)|||
= (
|||(f1, g, A)|||
+
|||(f2, g, A)|||)
proof
let f1,f2,g be
PartFunc of
REAL ,
REAL ;
let A be non
empty
closed_interval
Subset of
REAL ;
assume
A1: ((f1
(#) g)
|| A) is
total & ((f2
(#) g)
|| A) is
total;
assume
A2: (((f1
(#) g)
|| A)
| A) is
bounded & ((f1
(#) g)
|| A) is
integrable & (((f2
(#) g)
|| A)
| A) is
bounded & ((f2
(#) g)
|| A) is
integrable;
|||((f1
+ f2), g, A)|||
= (
integral (((f1
+ f2)
|| A)
(#) (g
|| A))) by
INTEGRA5: 4
.= (
integral (((f1
(#) g)
+ (f2
(#) g))
|| A)) by
Th21
.= (
integral (((f1
(#) g)
|| A)
+ ((f2
(#) g)
|| A))) by
INTEGRA5: 5
.= ((
integral ((f1
(#) g)
|| A))
+ (
integral ((f2
(#) g)
|| A))) by
A1,
A2,
INTEGRA1: 57;
hence thesis;
end;
theorem ::
INTEGRA9:26
for f1,f2,g be
PartFunc of
REAL ,
REAL , A be non
empty
closed_interval
Subset of
REAL st ((f1
(#) g)
|| A) is
total & ((f2
(#) g)
|| A) is
total & (((f1
(#) g)
|| A)
| A) is
bounded & ((f1
(#) g)
|| A) is
integrable & (((f2
(#) g)
|| A)
| A) is
bounded & ((f2
(#) g)
|| A) is
integrable holds
|||((f1
- f2), g, A)|||
= (
|||(f1, g, A)|||
-
|||(f2, g, A)|||)
proof
let f1,f2,g be
PartFunc of
REAL ,
REAL ;
let A be non
empty
closed_interval
Subset of
REAL ;
assume
A1: ((f1
(#) g)
|| A) is
total & ((f2
(#) g)
|| A) is
total;
assume
A2: (((f1
(#) g)
|| A)
| A) is
bounded & ((f1
(#) g)
|| A) is
integrable & (((f2
(#) g)
|| A)
| A) is
bounded & ((f2
(#) g)
|| A) is
integrable;
|||((f1
- f2), g, A)|||
= (
integral (((f1
- f2)
|| A)
(#) (g
|| A))) by
INTEGRA5: 4
.= (
integral (((f1
(#) g)
- (f2
(#) g))
|| A)) by
Th22
.= (
integral (((f1
(#) g)
|| A)
- ((f2
(#) g)
|| A))) by
Th20
.= ((
integral ((f1
(#) g)
|| A))
- (
integral ((f2
(#) g)
|| A))) by
A1,
A2,
INTEGRA2: 33;
hence thesis;
end;
theorem ::
INTEGRA9:27
for f,g be
PartFunc of
REAL ,
REAL , A be non
empty
closed_interval
Subset of
REAL st ((f
(#) g)
| A) is
bounded & (f
(#) g)
is_integrable_on A & A
c= (
dom (f
(#) g)) holds
|||((
- f), g, A)|||
= (
-
|||(f, g, A)|||)
proof
let f,g be
PartFunc of
REAL ,
REAL ;
let A be non
empty
closed_interval
Subset of
REAL ;
assume
A1: ((f
(#) g)
| A) is
bounded & (f
(#) g)
is_integrable_on A & A
c= (
dom (f
(#) g));
|||((
- f), g, A)|||
= (
integral (((
- 1)
(#) (f
(#) g)),A)) by
RFUNCT_1: 12
.= ((
- 1)
* (
integral ((f
(#) g),A))) by
A1,
INTEGRA6: 9
.= (
-
|||(f, g, A)|||);
hence thesis;
end;
theorem ::
INTEGRA9:28
for f,g be
PartFunc of
REAL ,
REAL , A be non
empty
closed_interval
Subset of
REAL st ((f
(#) g)
| A) is
bounded & (f
(#) g)
is_integrable_on A & A
c= (
dom (f
(#) g)) holds
|||((r
(#) f), g, A)|||
= (r
*
|||(f, g, A)|||)
proof
let f,g be
PartFunc of
REAL ,
REAL ;
let A be non
empty
closed_interval
Subset of
REAL ;
assume
A1: ((f
(#) g)
| A) is
bounded & (f
(#) g)
is_integrable_on A & A
c= (
dom (f
(#) g));
|||((r
(#) f), g, A)|||
= (
integral ((r
(#) (f
(#) g)),A)) by
RFUNCT_1: 12
.= (r
* (
integral ((f
(#) g),A))) by
A1,
INTEGRA6: 9;
hence thesis;
end;
theorem ::
INTEGRA9:29
for f,g be
PartFunc of
REAL ,
REAL , A be non
empty
closed_interval
Subset of
REAL st ((f
(#) g)
| A) is
bounded & (f
(#) g)
is_integrable_on A & A
c= (
dom (f
(#) g)) holds
|||((r
(#) f), (p
(#) g), A)|||
= ((r
* p)
*
|||(f, g, A)|||)
proof
let f,g be
PartFunc of
REAL ,
REAL ;
let A be non
empty
closed_interval
Subset of
REAL ;
assume
A1: ((f
(#) g)
| A) is
bounded & (f
(#) g)
is_integrable_on A & A
c= (
dom (f
(#) g));
|||((r
(#) f), (p
(#) g), A)|||
= (
integral ((r
(#) (f
(#) (p
(#) g))),A)) by
RFUNCT_1: 12
.= (
integral ((r
(#) (p
(#) (f
(#) g))),A)) by
RFUNCT_1: 13
.= (
integral (((r
* p)
(#) (f
(#) g)),A)) by
RFUNCT_1: 17
.= ((r
* p)
* (
integral ((f
(#) g),A))) by
A1,
INTEGRA6: 9;
hence thesis;
end;
theorem ::
INTEGRA9:30
for f,g,h be
PartFunc of
REAL ,
REAL , A be non
empty
closed_interval
Subset of
REAL holds
|||((f
(#) g), h, A)|||
=
|||(f, (g
(#) h), A)||| by
RFUNCT_1: 9;
theorem ::
INTEGRA9:31
Th31: for f,g be
PartFunc of
REAL ,
REAL , A be non
empty
closed_interval
Subset of
REAL st ((f
(#) f)
|| A) is
total & ((f
(#) g)
|| A) is
total & ((g
(#) g)
|| A) is
total & (((f
(#) f)
|| A)
| A) is
bounded & (((f
(#) g)
|| A)
| A) is
bounded & (((g
(#) g)
|| A)
| A) is
bounded & (f
(#) f)
is_integrable_on A & (f
(#) g)
is_integrable_on A & (g
(#) g)
is_integrable_on A holds
|||((f
+ g), (f
+ g), A)|||
= ((
|||(f, f, A)|||
+ (2
*
|||(f, g, A)|||))
+
|||(g, g, A)|||)
proof
let f,g be
PartFunc of
REAL ,
REAL ;
let A be non
empty
closed_interval
Subset of
REAL ;
assume that
A1: ((f
(#) f)
|| A) is
total and
A2: ((f
(#) g)
|| A) is
total and
A3: ((g
(#) g)
|| A) is
total;
assume that
A4: (((f
(#) f)
|| A)
| A) is
bounded and
A5: (((f
(#) g)
|| A)
| A) is
bounded and
A6: (((g
(#) g)
|| A)
| A) is
bounded;
assume that
A7: (f
(#) f)
is_integrable_on A and
A8: (f
(#) g)
is_integrable_on A and
A9: (g
(#) g)
is_integrable_on A;
A10: ((f
(#) g)
|| A) is
integrable by
A8;
A11: ((g
(#) g)
|| A) is
integrable by
A9;
then
A12: (((f
(#) g)
|| A)
+ ((g
(#) g)
|| A)) is
integrable by
A2,
A3,
A5,
A6,
A10,
INTEGRA1: 57;
A13: ((f
(#) f)
|| A) is
integrable by
A7;
then
A14: (((f
(#) f)
|| A)
+ ((f
(#) g)
|| A)) is
integrable by
A1,
A2,
A4,
A5,
A10,
INTEGRA1: 57;
A15: ((((f
(#) f)
|| A)
+ ((f
(#) g)
|| A))
| (A
/\ A)) is
bounded & ((((f
(#) g)
|| A)
+ ((g
(#) g)
|| A))
| (A
/\ A)) is
bounded by
A4,
A5,
A6,
RFUNCT_1: 83;
|||((f
+ g), (f
+ g), A)|||
= (
integral (((f
(#) (f
+ g))
+ (g
(#) (f
+ g)))
|| A)) by
RFUNCT_1: 10
.= (
integral (((f
(#) (f
+ g))
|| A)
+ ((g
(#) (f
+ g))
|| A))) by
INTEGRA5: 5
.= (
integral ((((f
(#) f)
+ (f
(#) g))
|| A)
+ ((g
(#) (f
+ g))
|| A))) by
RFUNCT_1: 11
.= (
integral ((((f
(#) f)
+ (f
(#) g))
|| A)
+ (((g
(#) f)
+ (g
(#) g))
|| A))) by
RFUNCT_1: 11
.= (
integral ((((f
(#) f)
|| A)
+ ((f
(#) g)
|| A))
+ (((g
(#) f)
+ (g
(#) g))
|| A))) by
INTEGRA5: 5
.= (
integral ((((f
(#) f)
|| A)
+ ((f
(#) g)
|| A))
+ (((g
(#) f)
|| A)
+ ((g
(#) g)
|| A)))) by
INTEGRA5: 5
.= ((
integral (((f
(#) f)
|| A)
+ ((f
(#) g)
|| A)))
+ (
integral (((f
(#) g)
|| A)
+ ((g
(#) g)
|| A)))) by
A1,
A2,
A3,
A15,
A14,
A12,
INTEGRA1: 57
.= (((
integral ((f
(#) f)
|| A))
+ (
integral ((f
(#) g)
|| A)))
+ (
integral (((f
(#) g)
|| A)
+ ((g
(#) g)
|| A)))) by
A1,
A2,
A4,
A5,
A13,
A10,
INTEGRA1: 57
.= (((
integral ((f
(#) f)
|| A))
+ (
integral ((f
(#) g)
|| A)))
+ ((
integral ((f
(#) g)
|| A))
+ (
integral ((g
(#) g)
|| A)))) by
A2,
A3,
A5,
A6,
A10,
A11,
INTEGRA1: 57;
hence thesis;
end;
begin
definition
let A be non
empty
closed_interval
Subset of
REAL ;
let f,g be
PartFunc of
REAL ,
REAL ;
::
INTEGRA9:def2
pred f
is_orthogonal_with g,A means
|||(f, g, A)|||
=
0 ;
end
theorem ::
INTEGRA9:32
Th32: for f,g be
PartFunc of
REAL ,
REAL , A be non
empty
closed_interval
Subset of
REAL st ((f
(#) f)
|| A) is
total & ((f
(#) g)
|| A) is
total & ((g
(#) g)
|| A) is
total & (((f
(#) f)
|| A)
| A) is
bounded & (((f
(#) g)
|| A)
| A) is
bounded & (((g
(#) g)
|| A)
| A) is
bounded & (f
(#) f)
is_integrable_on A & (f
(#) g)
is_integrable_on A & (g
(#) g)
is_integrable_on A & f
is_orthogonal_with (g,A) holds
|||((f
+ g), (f
+ g), A)|||
= (
|||(f, f, A)|||
+
|||(g, g, A)|||)
proof
let f,g be
PartFunc of
REAL ,
REAL ;
let A be non
empty
closed_interval
Subset of
REAL ;
assume ((f
(#) f)
|| A) is
total & ((f
(#) g)
|| A) is
total & ((g
(#) g)
|| A) is
total & (((f
(#) f)
|| A)
| A) is
bounded & (((f
(#) g)
|| A)
| A) is
bounded & (((g
(#) g)
|| A)
| A) is
bounded & (f
(#) f)
is_integrable_on A & (f
(#) g)
is_integrable_on A & (g
(#) g)
is_integrable_on A;
then
A1:
|||((f
+ g), (f
+ g), A)|||
= ((
|||(f, f, A)|||
+ (2
*
|||(f, g, A)|||))
+
|||(g, g, A)|||) by
Th31;
assume f
is_orthogonal_with (g,A);
then
|||(f, g, A)|||
=
0 ;
hence thesis by
A1;
end;
theorem ::
INTEGRA9:33
for f be
PartFunc of
REAL ,
REAL , A be non
empty
closed_interval
Subset of
REAL st ((f
(#) f)
|| A) is
total & (((f
(#) f)
|| A)
| A) is
bounded & ((f
(#) f)
|| A) is
integrable & (for x st x
in A holds (((f
(#) f)
|| A)
. x)
>=
0 ) holds
|||(f, f, A)|||
>=
0 by
INTEGRA2: 32;
theorem ::
INTEGRA9:34
A
=
[.
0 ,
PI .] implies
sin
is_orthogonal_with (
cos ,A) by
INTEGRA8: 92;
theorem ::
INTEGRA9:35
A
=
[.
0 , (
PI
* 2).] implies
sin
is_orthogonal_with (
cos ,A) by
INTEGRA8: 94;
theorem ::
INTEGRA9:36
A
=
[.((2
* n)
*
PI ), (((2
* n)
+ 1)
*
PI ).] implies
sin
is_orthogonal_with (
cos ,A) by
INTEGRA8: 95;
theorem ::
INTEGRA9:37
A
=
[.(x
+ ((2
* n)
*
PI )), (x
+ (((2
* n)
+ 1)
*
PI )).] implies
sin
is_orthogonal_with (
cos ,A) by
INTEGRA8: 96;
theorem ::
INTEGRA9:38
A
=
[.(
-
PI ),
PI .] implies
sin
is_orthogonal_with (
cos ,A)
proof
assume A
=
[.(
-
PI ),
PI .];
then
A1: (
upper_bound A)
=
PI & (
lower_bound A)
= (
-
PI ) by
INTEGRA8: 37;
|||(
sin ,
cos , A)|||
= ((1
/ 2)
* (((
cos
. (
lower_bound A))
* (
cos
. (
lower_bound A)))
- ((
cos
. (
upper_bound A))
* (
cos
. (
upper_bound A))))) by
INTEGRA8: 90
.= ((1
/ 2)
* (((
cos
.
PI )
* (
cos
. (
-
PI )))
- ((
cos
.
PI )
* (
cos
.
PI )))) by
A1,
SIN_COS: 30
.= ((1
/ 2)
* (((
cos
.
PI )
* (
cos
.
PI ))
- ((
cos
.
PI )
* (
cos
.
PI )))) by
SIN_COS: 30;
hence thesis;
end;
theorem ::
INTEGRA9:39
A
=
[.(
- (
PI
/ 2)), (
PI
/ 2).] implies
sin
is_orthogonal_with (
cos ,A)
proof
assume A
=
[.(
- (
PI
/ 2)), (
PI
/ 2).];
then
A1: (
upper_bound A)
= (
PI
/ 2) & (
lower_bound A)
= (
- (
PI
/ 2)) by
INTEGRA8: 37;
|||(
sin ,
cos , A)|||
= ((1
/ 2)
* (((
cos
. (
lower_bound A))
* (
cos
. (
lower_bound A)))
- ((
cos
. (
upper_bound A))
* (
cos
. (
upper_bound A))))) by
INTEGRA8: 90
.= ((1
/ 2)
* (((
cos
. (
PI
/ 2))
* (
cos
. (
- (
PI
/ 2))))
- ((
cos
. (
PI
/ 2))
* (
cos
. (
PI
/ 2))))) by
A1,
SIN_COS: 30
.= ((1
/ 2)
* (((
cos
. (
PI
/ 2))
* (
cos
. (
PI
/ 2)))
- ((
cos
. (
PI
/ 2))
* (
cos
. (
PI
/ 2))))) by
SIN_COS: 30;
hence thesis;
end;
theorem ::
INTEGRA9:40
A
=
[.(
- (2
*
PI )), (2
*
PI ).] implies
sin
is_orthogonal_with (
cos ,A)
proof
assume A
=
[.(
- (2
*
PI )), (2
*
PI ).];
then
A1: (
upper_bound A)
= (2
*
PI ) & (
lower_bound A)
= (
- (2
*
PI )) by
INTEGRA8: 37;
|||(
sin ,
cos , A)|||
= ((1
/ 2)
* (((
cos
. (
lower_bound A))
* (
cos
. (
lower_bound A)))
- ((
cos
. (
upper_bound A))
* (
cos
. (
upper_bound A))))) by
INTEGRA8: 90
.= ((1
/ 2)
* (((
cos
. (2
*
PI ))
* (
cos
. (
- (2
*
PI ))))
- ((
cos
. (2
*
PI ))
* (
cos
. (2
*
PI ))))) by
A1,
SIN_COS: 30
.= ((1
/ 2)
* (((
cos
. (2
*
PI ))
* (
cos
. (2
*
PI )))
- ((
cos
. (2
*
PI ))
* (
cos
. (2
*
PI ))))) by
SIN_COS: 30;
hence thesis;
end;
theorem ::
INTEGRA9:41
A
=
[.(
- ((2
* n)
*
PI )), ((2
* n)
*
PI ).] implies
sin
is_orthogonal_with (
cos ,A)
proof
assume A
=
[.(
- ((2
* n)
*
PI )), ((2
* n)
*
PI ).];
then
A1: (
upper_bound A)
= ((2
* n)
*
PI ) & (
lower_bound A)
= (
- ((2
* n)
*
PI )) by
INTEGRA8: 37;
|||(
sin ,
cos , A)|||
= ((1
/ 2)
* (((
cos
. (
lower_bound A))
* (
cos
. (
lower_bound A)))
- ((
cos
. (
upper_bound A))
* (
cos
. (
upper_bound A))))) by
INTEGRA8: 90
.= ((1
/ 2)
* (((
cos
. ((2
* n)
*
PI ))
* (
cos
. (
- ((2
* n)
*
PI ))))
- ((
cos
. ((2
* n)
*
PI ))
* (
cos
. ((2
* n)
*
PI ))))) by
A1,
SIN_COS: 30
.= ((1
/ 2)
* (((
cos
. ((2
* n)
*
PI ))
* (
cos
. ((2
* n)
*
PI )))
- ((
cos
. ((2
* n)
*
PI ))
* (
cos
. ((2
* n)
*
PI ))))) by
SIN_COS: 30;
hence thesis;
end;
theorem ::
INTEGRA9:42
A
=
[.(x
- ((2
* n)
*
PI )), (x
+ ((2
* n)
*
PI )).] implies
sin
is_orthogonal_with (
cos ,A)
proof
assume A
=
[.(x
- ((2
* n)
*
PI )), (x
+ ((2
* n)
*
PI )).];
then
A1: (
upper_bound A)
= (x
+ ((2
* n)
*
PI )) & (
lower_bound A)
= (x
- ((2
* n)
*
PI )) by
INTEGRA8: 37;
|||(
sin ,
cos , A)|||
= ((1
/ 2)
* (((
cos
. (
lower_bound A))
* (
cos
. (
lower_bound A)))
- ((
cos
. (
upper_bound A))
* (
cos
. (
upper_bound A))))) by
INTEGRA8: 90
.= ((1
/ 2)
* (((
cos
. (((2
* n)
*
PI )
- x))
* (
cos
. (
- (((2
* n)
*
PI )
- x))))
- ((
cos
. (x
+ ((2
* n)
*
PI )))
* (
cos
. (x
+ ((2
* n)
*
PI )))))) by
A1,
SIN_COS: 30
.= ((1
/ 2)
* (((
cos
. ((
- x)
+ ((2
* n)
*
PI )))
* (
cos
. ((
- x)
+ ((2
* n)
*
PI ))))
- ((
cos
. (x
+ ((2
* n)
*
PI )))
* (
cos
. (x
+ ((2
* n)
*
PI )))))) by
SIN_COS: 30
.= ((1
/ 2)
* (((
cos (
- x))
* (
cos ((
- x)
+ ((2
* n)
*
PI ))))
- ((
cos
. (x
+ ((2
* n)
*
PI )))
* (
cos
. (x
+ ((2
* n)
*
PI )))))) by
INTEGRA8: 3
.= ((1
/ 2)
* (((
cos (
- x))
* (
cos (
- x)))
- ((
cos
. (x
+ ((2
* n)
*
PI )))
* (
cos
. (x
+ ((2
* n)
*
PI )))))) by
INTEGRA8: 3
.= ((1
/ 2)
* (((
cos x)
* (
cos (
- x)))
- ((
cos
. (x
+ ((2
* n)
*
PI )))
* (
cos
. (x
+ ((2
* n)
*
PI )))))) by
SIN_COS: 31
.= ((1
/ 2)
* (((
cos x)
* (
cos x))
- ((
cos (x
+ ((2
* n)
*
PI )))
* (
cos
. (x
+ ((2
* n)
*
PI )))))) by
SIN_COS: 31
.= ((1
/ 2)
* (((
cos x)
* (
cos x))
- ((
cos x)
* (
cos (x
+ ((2
* n)
*
PI )))))) by
INTEGRA8: 3
.= ((1
/ 2)
* (((
cos x)
* (
cos x))
- ((
cos x)
* (
cos x)))) by
INTEGRA8: 3;
hence thesis;
end;
begin
definition
let A be non
empty
closed_interval
Subset of
REAL ;
let f be
PartFunc of
REAL ,
REAL ;
::
INTEGRA9:def3
func
||..f,A..|| ->
Real equals (
sqrt
|||(f, f, A)|||);
correctness ;
end
theorem ::
INTEGRA9:43
for f be
PartFunc of
REAL ,
REAL , A be non
empty
closed_interval
Subset of
REAL st ((f
(#) f)
|| A) is
total & (((f
(#) f)
|| A)
| A) is
bounded & (for x st x
in A holds (((f
(#) f)
|| A)
. x)
>=
0 ) holds
0
<=
||..f, A..||
proof
let f be
PartFunc of
REAL ,
REAL ;
let A be non
empty
closed_interval
Subset of
REAL ;
assume
A1: ((f
(#) f)
|| A) is
total;
assume (((f
(#) f)
|| A)
| A) is
bounded & for x st x
in A holds (((f
(#) f)
|| A)
. x)
>=
0 ;
then
|||(f, f, A)|||
>=
0 by
A1,
INTEGRA2: 32;
hence thesis by
SQUARE_1:def 2;
end;
theorem ::
INTEGRA9:44
for f be
PartFunc of
REAL ,
REAL , A be non
empty
closed_interval
Subset of
REAL holds
||..(1
(#) f), A..||
=
||..f, A..|| by
RFUNCT_1: 21;
theorem ::
INTEGRA9:45
for f,g be
PartFunc of
REAL ,
REAL , A be non
empty
closed_interval
Subset of
REAL st ((f
(#) f)
|| A) is
total & ((f
(#) g)
|| A) is
total & ((g
(#) g)
|| A) is
total & (((f
(#) f)
|| A)
| A) is
bounded & (((f
(#) g)
|| A)
| A) is
bounded & (((g
(#) g)
|| A)
| A) is
bounded & (f
(#) f)
is_integrable_on A & (f
(#) g)
is_integrable_on A & (g
(#) g)
is_integrable_on A & f
is_orthogonal_with (g,A) & (for x st x
in A holds (((f
(#) f)
|| A)
. x)
>=
0 ) & (for x st x
in A holds (((g
(#) g)
|| A)
. x)
>=
0 ) holds (
||..(f
+ g), A..||
^2 )
= ((
||..f, A..||
^2 )
+ (
||..g, A..||
^2 ))
proof
let f,g be
PartFunc of
REAL ,
REAL ;
let A be non
empty
closed_interval
Subset of
REAL ;
assume that
A1: ((f
(#) f)
|| A) is
total and
A2: ((f
(#) g)
|| A) is
total and
A3: ((g
(#) g)
|| A) is
total and
A4: (((f
(#) f)
|| A)
| A) is
bounded and
A5: (((f
(#) g)
|| A)
| A) is
bounded and
A6: (((g
(#) g)
|| A)
| A) is
bounded and
A7: (f
(#) f)
is_integrable_on A & (f
(#) g)
is_integrable_on A & (g
(#) g)
is_integrable_on A;
assume
A8: f
is_orthogonal_with (g,A);
assume for x st x
in A holds (((f
(#) f)
|| A)
. x)
>=
0 ;
then
A9:
|||(f, f, A)|||
>=
0 by
A1,
A4,
INTEGRA2: 32;
assume for x st x
in A holds (((g
(#) g)
|| A)
. x)
>=
0 ;
then
A10:
|||(g, g, A)|||
>=
0 by
A3,
A6,
INTEGRA2: 32;
then
A11: (
||..g, A..||
^2 )
=
|||(g, g, A)||| by
SQUARE_1:def 2;
|||((f
+ g), (f
+ g), A)|||
= (
|||(f, f, A)|||
+
|||(g, g, A)|||) by
A1,
A2,
A3,
A4,
A5,
A6,
A7,
A8,
Th32;
then
|||((f
+ g), (f
+ g), A)|||
>=
0 by
A9,
A10,
XREAL_1: 33;
then
A12: (
||..(f
+ g), A..||
^2 )
=
|||((f
+ g), (f
+ g), A)||| by
SQUARE_1:def 2;
(
||..f, A..||
^2 )
=
|||(f, f, A)||| by
A9,
SQUARE_1:def 2;
hence thesis by
A1,
A2,
A3,
A4,
A5,
A6,
A7,
A8,
A12,
A11,
Th32;
end;
begin
reserve a,b,x for
Real;
reserve n for
Element of
NAT ;
reserve A for non
empty
closed_interval
Subset of
REAL ;
reserve f,f1,f2 for
PartFunc of
REAL ,
REAL ;
reserve Z for
open
Subset of
REAL ;
theorem ::
INTEGRA9:46
not (
- a)
in A implies (((
AffineMap (1,a))
^ )
| A) is
continuous
proof
set g2 = (
AffineMap (1,a));
assume
A1: not (
- a)
in A;
not
0
in (
rng (g2
| A))
proof
set h2 = (g2
| A);
assume
0
in (
rng (g2
| A));
then
consider x be
object such that
A2: x
in (
dom h2) and
A3: (h2
. x)
=
0 by
FUNCT_1:def 3;
reconsider d = x as
Element of
REAL by
A2;
A4: (g2
. d)
= (a
+ (1
* d)) by
FCONT_1:def 4;
d
in A by
A2,
RELAT_1: 57;
then (
dom h2)
c= A & (a
+ d)
=
0 by
A3,
A4,
FUNCT_1: 49,
RELAT_1: 58;
hence thesis by
A1,
A2;
end;
then
A5: ((g2
| A)
"
{
0 })
=
{} by
FUNCT_1: 72;
thus thesis by
A5,
FCONT_1: 23;
end;
theorem ::
INTEGRA9:47
A
c= Z & (for x st x
in Z holds (f
. x)
= (a
+ x) & (f
. x)
<>
0 ) & Z
= (
dom f) & (
dom f)
= (
dom f2) & (for x st x
in Z holds (f2
. x)
= (
- (1
/ ((a
+ x)
^2 )))) & (f2
| A) is
continuous implies (
integral (f2,A))
= (((f
^ )
. (
upper_bound A))
- ((f
^ )
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: for x st x
in Z holds (f
. x)
= (a
+ x) & (f
. x)
<>
0 and
A3: Z
= (
dom f) and
A4: (
dom f)
= (
dom f2) and
A5: for x st x
in Z holds (f2
. x)
= (
- (1
/ ((a
+ x)
^2 ))) and
A6: (f2
| A) is
continuous;
A7: f2
is_integrable_on A by
A1,
A3,
A4,
A6,
INTEGRA5: 11;
A8: (f
^ )
is_differentiable_on Z by
A2,
A3,
FDIFF_4: 14;
A9: for x be
Element of
REAL st x
in (
dom ((f
^ )
`| Z)) holds (((f
^ )
`| Z)
. x)
= (f2
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((f
^ )
`| Z));
then
A10: x
in Z by
A8,
FDIFF_1:def 7;
then (((f
^ )
`| Z)
. x)
= (
- (1
/ ((a
+ x)
^2 ))) by
A2,
A3,
FDIFF_4: 14
.= (f2
. x) by
A5,
A10;
hence thesis;
end;
(
dom ((f
^ )
`| Z))
= (
dom f2) by
A3,
A4,
A8,
FDIFF_1:def 7;
then ((f
^ )
`| Z)
= f2 by
A9,
PARTFUN1: 5;
hence thesis by
A1,
A3,
A4,
A6,
A7,
A8,
INTEGRA5: 10,
INTEGRA5: 13;
end;
theorem ::
INTEGRA9:48
A
c= Z & (for x st x
in Z holds (f
. x)
= (a
+ x) & (f
. x)
<>
0 ) & (
dom ((
- 1)
(#) (f
^ )))
= Z & (
dom ((
- 1)
(#) (f
^ )))
= (
dom f2) & (for x st x
in Z holds (f2
. x)
= (1
/ ((a
+ x)
^2 ))) & (f2
| A) is
continuous implies (
integral (f2,A))
= ((((
- 1)
(#) (f
^ ))
. (
upper_bound A))
- (((
- 1)
(#) (f
^ ))
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: for x st x
in Z holds (f
. x)
= (a
+ x) & (f
. x)
<>
0 and
A3: (
dom ((
- 1)
(#) (f
^ )))
= Z and
A4: (
dom ((
- 1)
(#) (f
^ )))
= (
dom f2) and
A5: for x st x
in Z holds (f2
. x)
= (1
/ ((a
+ x)
^2 )) and
A6: (f2
| A) is
continuous;
A7: f2
is_integrable_on A by
A1,
A3,
A4,
A6,
INTEGRA5: 11;
A8: ((
- 1)
(#) (f
^ ))
is_differentiable_on Z by
A2,
A3,
FDIFF_4: 15;
A9: for x be
Element of
REAL st x
in (
dom (((
- 1)
(#) (f
^ ))
`| Z)) holds ((((
- 1)
(#) (f
^ ))
`| Z)
. x)
= (f2
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((
- 1)
(#) (f
^ ))
`| Z));
then
A10: x
in Z by
A8,
FDIFF_1:def 7;
then ((((
- 1)
(#) (f
^ ))
`| Z)
. x)
= (1
/ ((a
+ x)
^2 )) by
A2,
A3,
FDIFF_4: 15
.= (f2
. x) by
A5,
A10;
hence thesis;
end;
(
dom (((
- 1)
(#) (f
^ ))
`| Z))
= (
dom f2) by
A3,
A4,
A8,
FDIFF_1:def 7;
then (((
- 1)
(#) (f
^ ))
`| Z)
= f2 by
A9,
PARTFUN1: 5;
hence thesis by
A1,
A3,
A4,
A6,
A7,
A8,
INTEGRA5: 10,
INTEGRA5: 13;
end;
theorem ::
INTEGRA9:49
A
c= Z & (for x st x
in Z holds (f
. x)
= (a
- x) & (f
. x)
<>
0 ) & (
dom f)
= Z & (
dom f)
= (
dom f2) & (for x st x
in Z holds (f2
. x)
= (1
/ ((a
- x)
^2 ))) & (f2
| A) is
continuous implies (
integral (f2,A))
= (((f
^ )
. (
upper_bound A))
- ((f
^ )
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: for x st x
in Z holds (f
. x)
= (a
- x) & (f
. x)
<>
0 and
A3: (
dom f)
= Z and
A4: (
dom f)
= (
dom f2) and
A5: for x st x
in Z holds (f2
. x)
= (1
/ ((a
- x)
^2 )) and
A6: (f2
| A) is
continuous;
A7: f2
is_integrable_on A by
A1,
A3,
A4,
A6,
INTEGRA5: 11;
A8: (f
^ )
is_differentiable_on Z by
A2,
A3,
FDIFF_4: 16;
A9: for x be
Element of
REAL st x
in (
dom ((f
^ )
`| Z)) holds (((f
^ )
`| Z)
. x)
= (f2
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((f
^ )
`| Z));
then
A10: x
in Z by
A8,
FDIFF_1:def 7;
then (((f
^ )
`| Z)
. x)
= (1
/ ((a
- x)
^2 )) by
A2,
A3,
FDIFF_4: 16
.= (f2
. x) by
A5,
A10;
hence thesis;
end;
(
dom ((f
^ )
`| Z))
= (
dom f2) by
A3,
A4,
A8,
FDIFF_1:def 7;
then ((f
^ )
`| Z)
= f2 by
A9,
PARTFUN1: 5;
hence thesis by
A1,
A3,
A4,
A6,
A7,
A8,
INTEGRA5: 10,
INTEGRA5: 13;
end;
theorem ::
INTEGRA9:50
A
c= Z & (for x st x
in Z holds (f
. x)
= (a
+ x) & (f
. x)
>
0 ) & (
dom (
ln
* f))
= Z & (
dom (
ln
* f))
= (
dom f2) & (for x st x
in Z holds (f2
. x)
= (1
/ (a
+ x))) & (f2
| A) is
continuous implies (
integral (f2,A))
= (((
ln
* f)
. (
upper_bound A))
- ((
ln
* f)
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: for x st x
in Z holds (f
. x)
= (a
+ x) & (f
. x)
>
0 and
A3: (
dom (
ln
* f))
= Z and
A4: (
dom (
ln
* f))
= (
dom f2) and
A5: for x st x
in Z holds (f2
. x)
= (1
/ (a
+ x)) and
A6: (f2
| A) is
continuous;
A7: f2
is_integrable_on A by
A1,
A3,
A4,
A6,
INTEGRA5: 11;
A8: (
ln
* f)
is_differentiable_on Z by
A2,
A3,
FDIFF_4: 1;
A9: for x be
Element of
REAL st x
in (
dom ((
ln
* f)
`| Z)) holds (((
ln
* f)
`| Z)
. x)
= (f2
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
ln
* f)
`| Z));
then
A10: x
in Z by
A8,
FDIFF_1:def 7;
then (((
ln
* f)
`| Z)
. x)
= (1
/ (a
+ x)) by
A2,
A3,
FDIFF_4: 1
.= (f2
. x) by
A5,
A10;
hence thesis;
end;
(
dom ((
ln
* f)
`| Z))
= (
dom f2) by
A3,
A4,
A8,
FDIFF_1:def 7;
then ((
ln
* f)
`| Z)
= f2 by
A9,
PARTFUN1: 5;
hence thesis by
A1,
A3,
A4,
A6,
A7,
A8,
INTEGRA5: 10,
INTEGRA5: 13;
end;
theorem ::
INTEGRA9:51
A
c= Z & (for x st x
in Z holds (f
. x)
= (x
- a) & (f
. x)
>
0 ) & (
dom (
ln
* f))
= Z & (
dom (
ln
* f))
= (
dom f2) & (for x st x
in Z holds (f2
. x)
= (1
/ (x
- a))) & (f2
| A) is
continuous implies (
integral (f2,A))
= (((
ln
* f)
. (
upper_bound A))
- ((
ln
* f)
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: for x st x
in Z holds (f
. x)
= (x
- a) & (f
. x)
>
0 and
A3: (
dom (
ln
* f))
= Z and
A4: (
dom (
ln
* f))
= (
dom f2) and
A5: for x st x
in Z holds (f2
. x)
= (1
/ (x
- a)) and
A6: (f2
| A) is
continuous;
A7: f2
is_integrable_on A by
A1,
A3,
A4,
A6,
INTEGRA5: 11;
A8: (
ln
* f)
is_differentiable_on Z by
A2,
A3,
FDIFF_4: 2;
A9: for x be
Element of
REAL st x
in (
dom ((
ln
* f)
`| Z)) holds (((
ln
* f)
`| Z)
. x)
= (f2
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
ln
* f)
`| Z));
then
A10: x
in Z by
A8,
FDIFF_1:def 7;
then (((
ln
* f)
`| Z)
. x)
= (1
/ (x
- a)) by
A2,
A3,
FDIFF_4: 2
.= (f2
. x) by
A5,
A10;
hence thesis;
end;
(
dom ((
ln
* f)
`| Z))
= (
dom f2) by
A3,
A4,
A8,
FDIFF_1:def 7;
then ((
ln
* f)
`| Z)
= f2 by
A9,
PARTFUN1: 5;
hence thesis by
A1,
A3,
A4,
A6,
A7,
A8,
INTEGRA5: 10,
INTEGRA5: 13;
end;
theorem ::
INTEGRA9:52
A
c= Z & (for x st x
in Z holds (f
. x)
= (a
- x) & (f
. x)
>
0 ) & (
dom (
- (
ln
* f)))
= Z & (
dom (
- (
ln
* f)))
= (
dom f2) & (for x st x
in Z holds (f2
. x)
= (1
/ (a
- x))) & (f2
| A) is
continuous implies (
integral (f2,A))
= (((
- (
ln
* f))
. (
upper_bound A))
- ((
- (
ln
* f))
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: for x st x
in Z holds (f
. x)
= (a
- x) & (f
. x)
>
0 and
A3: (
dom (
- (
ln
* f)))
= Z and
A4: (
dom (
- (
ln
* f)))
= (
dom f2) and
A5: for x st x
in Z holds (f2
. x)
= (1
/ (a
- x)) and
A6: (f2
| A) is
continuous;
A7: f2
is_integrable_on A by
A1,
A3,
A4,
A6,
INTEGRA5: 11;
A8: (
- (
ln
* f))
is_differentiable_on Z by
A2,
A3,
FDIFF_4: 3;
A9: for x be
Element of
REAL st x
in (
dom ((
- (
ln
* f))
`| Z)) holds (((
- (
ln
* f))
`| Z)
. x)
= (f2
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
- (
ln
* f))
`| Z));
then
A10: x
in Z by
A8,
FDIFF_1:def 7;
then (((
- (
ln
* f))
`| Z)
. x)
= (1
/ (a
- x)) by
A2,
A3,
FDIFF_4: 3
.= (f2
. x) by
A5,
A10;
hence thesis;
end;
(
dom ((
- (
ln
* f))
`| Z))
= (
dom f2) by
A3,
A4,
A8,
FDIFF_1:def 7;
then ((
- (
ln
* f))
`| Z)
= f2 by
A9,
PARTFUN1: 5;
hence thesis by
A1,
A3,
A4,
A6,
A7,
A8,
INTEGRA5: 10,
INTEGRA5: 13;
end;
theorem ::
INTEGRA9:53
A
c= Z & f
= (
ln
* f1) & (for x st x
in Z holds (f1
. x)
= (a
+ x) & (f1
. x)
>
0 ) & (
dom ((
id Z)
- (a
(#) f)))
= Z & Z
= (
dom f2) & (for x st x
in Z holds (f2
. x)
= (x
/ (a
+ x))) & (f2
| A) is
continuous implies (
integral (f2,A))
= ((((
id Z)
- (a
(#) f))
. (
upper_bound A))
- (((
id Z)
- (a
(#) f))
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: (f
= (
ln
* f1) & for x st x
in Z holds (f1
. x)
= (a
+ x) & (f1
. x)
>
0 ) & (
dom ((
id Z)
- (a
(#) f)))
= Z and
A3: Z
= (
dom f2) and
A4: for x st x
in Z holds (f2
. x)
= (x
/ (a
+ x)) and
A5: (f2
| A) is
continuous;
A6: f2
is_integrable_on A by
A1,
A3,
A5,
INTEGRA5: 11;
A7: ((
id Z)
- (a
(#) f))
is_differentiable_on Z by
A2,
FDIFF_4: 4;
A8: for x be
Element of
REAL st x
in (
dom (((
id Z)
- (a
(#) f))
`| Z)) holds ((((
id Z)
- (a
(#) f))
`| Z)
. x)
= (f2
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((
id Z)
- (a
(#) f))
`| Z));
then
A9: x
in Z by
A7,
FDIFF_1:def 7;
then ((((
id Z)
- (a
(#) f))
`| Z)
. x)
= (x
/ (a
+ x)) by
A2,
FDIFF_4: 4
.= (f2
. x) by
A4,
A9;
hence thesis;
end;
(
dom (((
id Z)
- (a
(#) f))
`| Z))
= (
dom f2) by
A3,
A7,
FDIFF_1:def 7;
then (((
id Z)
- (a
(#) f))
`| Z)
= f2 by
A8,
PARTFUN1: 5;
hence thesis by
A1,
A3,
A5,
A6,
A7,
INTEGRA5: 10,
INTEGRA5: 13;
end;
theorem ::
INTEGRA9:54
A
c= Z & f
= (
ln
* f1) & (for x st x
in Z holds (f1
. x)
= (a
+ x) & (f1
. x)
>
0 ) & (
dom (((2
* a)
(#) f)
- (
id Z)))
= Z & Z
= (
dom f2) & (for x st x
in Z holds (f2
. x)
= ((a
- x)
/ (a
+ x))) & (f2
| A) is
continuous implies (
integral (f2,A))
= (((((2
* a)
(#) f)
- (
id Z))
. (
upper_bound A))
- ((((2
* a)
(#) f)
- (
id Z))
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: (f
= (
ln
* f1) & for x st x
in Z holds (f1
. x)
= (a
+ x) & (f1
. x)
>
0 ) & (
dom (((2
* a)
(#) f)
- (
id Z)))
= Z and
A3: Z
= (
dom f2) and
A4: for x st x
in Z holds (f2
. x)
= ((a
- x)
/ (a
+ x)) and
A5: (f2
| A) is
continuous;
A6: f2
is_integrable_on A by
A1,
A3,
A5,
INTEGRA5: 11;
A7: (((2
* a)
(#) f)
- (
id Z))
is_differentiable_on Z by
A2,
FDIFF_4: 5;
A8: for x be
Element of
REAL st x
in (
dom ((((2
* a)
(#) f)
- (
id Z))
`| Z)) holds (((((2
* a)
(#) f)
- (
id Z))
`| Z)
. x)
= (f2
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((((2
* a)
(#) f)
- (
id Z))
`| Z));
then
A9: x
in Z by
A7,
FDIFF_1:def 7;
then (((((2
* a)
(#) f)
- (
id Z))
`| Z)
. x)
= ((a
- x)
/ (a
+ x)) by
A2,
FDIFF_4: 5
.= (f2
. x) by
A4,
A9;
hence thesis;
end;
(
dom ((((2
* a)
(#) f)
- (
id Z))
`| Z))
= (
dom f2) by
A3,
A7,
FDIFF_1:def 7;
then ((((2
* a)
(#) f)
- (
id Z))
`| Z)
= f2 by
A8,
PARTFUN1: 5;
hence thesis by
A1,
A3,
A5,
A6,
A7,
INTEGRA5: 10,
INTEGRA5: 13;
end;
theorem ::
INTEGRA9:55
A
c= Z & f
= (
ln
* f1) & (for x st x
in Z holds (f1
. x)
= (x
+ a) & (f1
. x)
>
0 ) & (
dom ((
id Z)
- ((2
* a)
(#) f)))
= Z & Z
= (
dom f2) & (for x st x
in Z holds (f2
. x)
= ((x
- a)
/ (x
+ a))) & (f2
| A) is
continuous implies (
integral (f2,A))
= ((((
id Z)
- ((2
* a)
(#) f))
. (
upper_bound A))
- (((
id Z)
- ((2
* a)
(#) f))
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: (f
= (
ln
* f1) & for x st x
in Z holds (f1
. x)
= (x
+ a) & (f1
. x)
>
0 ) & (
dom ((
id Z)
- ((2
* a)
(#) f)))
= Z and
A3: Z
= (
dom f2) and
A4: for x st x
in Z holds (f2
. x)
= ((x
- a)
/ (x
+ a)) and
A5: (f2
| A) is
continuous;
A6: f2
is_integrable_on A by
A1,
A3,
A5,
INTEGRA5: 11;
A7: ((
id Z)
- ((2
* a)
(#) f))
is_differentiable_on Z by
A2,
FDIFF_4: 6;
A8: for x be
Element of
REAL st x
in (
dom (((
id Z)
- ((2
* a)
(#) f))
`| Z)) holds ((((
id Z)
- ((2
* a)
(#) f))
`| Z)
. x)
= (f2
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((
id Z)
- ((2
* a)
(#) f))
`| Z));
then
A9: x
in Z by
A7,
FDIFF_1:def 7;
then ((((
id Z)
- ((2
* a)
(#) f))
`| Z)
. x)
= ((x
- a)
/ (x
+ a)) by
A2,
FDIFF_4: 6
.= (f2
. x) by
A4,
A9;
hence thesis;
end;
(
dom (((
id Z)
- ((2
* a)
(#) f))
`| Z))
= (
dom f2) by
A3,
A7,
FDIFF_1:def 7;
then (((
id Z)
- ((2
* a)
(#) f))
`| Z)
= f2 by
A8,
PARTFUN1: 5;
hence thesis by
A1,
A3,
A5,
A6,
A7,
INTEGRA5: 10,
INTEGRA5: 13;
end;
theorem ::
INTEGRA9:56
A
c= Z & f
= (
ln
* f1) & (for x st x
in Z holds (f1
. x)
= (x
- a) & (f1
. x)
>
0 ) & (
dom ((
id Z)
+ ((2
* a)
(#) f)))
= Z & Z
= (
dom f2) & (for x st x
in Z holds (f2
. x)
= ((x
+ a)
/ (x
- a))) & (f2
| A) is
continuous implies (
integral (f2,A))
= ((((
id Z)
+ ((2
* a)
(#) f))
. (
upper_bound A))
- (((
id Z)
+ ((2
* a)
(#) f))
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: (f
= (
ln
* f1) & for x st x
in Z holds (f1
. x)
= (x
- a) & (f1
. x)
>
0 ) & (
dom ((
id Z)
+ ((2
* a)
(#) f)))
= Z and
A3: Z
= (
dom f2) and
A4: for x st x
in Z holds (f2
. x)
= ((x
+ a)
/ (x
- a)) and
A5: (f2
| A) is
continuous;
A6: f2
is_integrable_on A by
A1,
A3,
A5,
INTEGRA5: 11;
A7: ((
id Z)
+ ((2
* a)
(#) f))
is_differentiable_on Z by
A2,
FDIFF_4: 7;
A8: for x be
Element of
REAL st x
in (
dom (((
id Z)
+ ((2
* a)
(#) f))
`| Z)) holds ((((
id Z)
+ ((2
* a)
(#) f))
`| Z)
. x)
= (f2
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((
id Z)
+ ((2
* a)
(#) f))
`| Z));
then
A9: x
in Z by
A7,
FDIFF_1:def 7;
then ((((
id Z)
+ ((2
* a)
(#) f))
`| Z)
. x)
= ((x
+ a)
/ (x
- a)) by
A2,
FDIFF_4: 7
.= (f2
. x) by
A4,
A9;
hence thesis;
end;
(
dom (((
id Z)
+ ((2
* a)
(#) f))
`| Z))
= (
dom f2) by
A3,
A7,
FDIFF_1:def 7;
then (((
id Z)
+ ((2
* a)
(#) f))
`| Z)
= f2 by
A8,
PARTFUN1: 5;
hence thesis by
A1,
A3,
A5,
A6,
A7,
INTEGRA5: 10,
INTEGRA5: 13;
end;
theorem ::
INTEGRA9:57
A
c= Z & f
= (
ln
* f1) & (for x st x
in Z holds (f1
. x)
= (x
+ b) & (f1
. x)
>
0 ) & (
dom ((
id Z)
+ ((a
- b)
(#) f)))
= Z & Z
= (
dom f2) & (for x st x
in Z holds (f2
. x)
= ((x
+ a)
/ (x
+ b))) & (f2
| A) is
continuous implies (
integral (f2,A))
= ((((
id Z)
+ ((a
- b)
(#) f))
. (
upper_bound A))
- (((
id Z)
+ ((a
- b)
(#) f))
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: (f
= (
ln
* f1) & for x st x
in Z holds (f1
. x)
= (x
+ b) & (f1
. x)
>
0 ) & (
dom ((
id Z)
+ ((a
- b)
(#) f)))
= Z and
A3: Z
= (
dom f2) and
A4: for x st x
in Z holds (f2
. x)
= ((x
+ a)
/ (x
+ b)) and
A5: (f2
| A) is
continuous;
A6: f2
is_integrable_on A by
A1,
A3,
A5,
INTEGRA5: 11;
A7: ((
id Z)
+ ((a
- b)
(#) f))
is_differentiable_on Z by
A2,
FDIFF_4: 8;
A8: for x be
Element of
REAL st x
in (
dom (((
id Z)
+ ((a
- b)
(#) f))
`| Z)) holds ((((
id Z)
+ ((a
- b)
(#) f))
`| Z)
. x)
= (f2
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((
id Z)
+ ((a
- b)
(#) f))
`| Z));
then
A9: x
in Z by
A7,
FDIFF_1:def 7;
then ((((
id Z)
+ ((a
- b)
(#) f))
`| Z)
. x)
= ((x
+ a)
/ (x
+ b)) by
A2,
FDIFF_4: 8
.= (f2
. x) by
A4,
A9;
hence thesis;
end;
(
dom (((
id Z)
+ ((a
- b)
(#) f))
`| Z))
= (
dom f2) by
A3,
A7,
FDIFF_1:def 7;
then (((
id Z)
+ ((a
- b)
(#) f))
`| Z)
= f2 by
A8,
PARTFUN1: 5;
hence thesis by
A1,
A3,
A5,
A6,
A7,
INTEGRA5: 10,
INTEGRA5: 13;
end;
theorem ::
INTEGRA9:58
A
c= Z & f
= (
ln
* f1) & (for x st x
in Z holds (f1
. x)
= (x
- b) & (f1
. x)
>
0 ) & (
dom ((
id Z)
+ ((a
+ b)
(#) f)))
= Z & Z
= (
dom f2) & (for x st x
in Z holds (f2
. x)
= ((x
+ a)
/ (x
- b))) & (f2
| A) is
continuous implies (
integral (f2,A))
= ((((
id Z)
+ ((a
+ b)
(#) f))
. (
upper_bound A))
- (((
id Z)
+ ((a
+ b)
(#) f))
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: (f
= (
ln
* f1) & for x st x
in Z holds (f1
. x)
= (x
- b) & (f1
. x)
>
0 ) & (
dom ((
id Z)
+ ((a
+ b)
(#) f)))
= Z and
A3: Z
= (
dom f2) and
A4: for x st x
in Z holds (f2
. x)
= ((x
+ a)
/ (x
- b)) and
A5: (f2
| A) is
continuous;
A6: f2
is_integrable_on A by
A1,
A3,
A5,
INTEGRA5: 11;
A7: ((
id Z)
+ ((a
+ b)
(#) f))
is_differentiable_on Z by
A2,
FDIFF_4: 9;
A8: for x be
Element of
REAL st x
in (
dom (((
id Z)
+ ((a
+ b)
(#) f))
`| Z)) holds ((((
id Z)
+ ((a
+ b)
(#) f))
`| Z)
. x)
= (f2
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((
id Z)
+ ((a
+ b)
(#) f))
`| Z));
then
A9: x
in Z by
A7,
FDIFF_1:def 7;
then ((((
id Z)
+ ((a
+ b)
(#) f))
`| Z)
. x)
= ((x
+ a)
/ (x
- b)) by
A2,
FDIFF_4: 9
.= (f2
. x) by
A4,
A9;
hence thesis;
end;
(
dom (((
id Z)
+ ((a
+ b)
(#) f))
`| Z))
= (
dom f2) by
A3,
A7,
FDIFF_1:def 7;
then (((
id Z)
+ ((a
+ b)
(#) f))
`| Z)
= f2 by
A8,
PARTFUN1: 5;
hence thesis by
A1,
A3,
A5,
A6,
A7,
INTEGRA5: 10,
INTEGRA5: 13;
end;
theorem ::
INTEGRA9:59
A
c= Z & f
= (
ln
* f1) & (for x st x
in Z holds (f1
. x)
= (x
+ b) & (f1
. x)
>
0 ) & (
dom ((
id Z)
- ((a
+ b)
(#) f)))
= Z & Z
= (
dom f2) & (for x st x
in Z holds (f2
. x)
= ((x
- a)
/ (x
+ b))) & (f2
| A) is
continuous implies (
integral (f2,A))
= ((((
id Z)
- ((a
+ b)
(#) f))
. (
upper_bound A))
- (((
id Z)
- ((a
+ b)
(#) f))
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: (f
= (
ln
* f1) & for x st x
in Z holds (f1
. x)
= (x
+ b) & (f1
. x)
>
0 ) & (
dom ((
id Z)
- ((a
+ b)
(#) f)))
= Z and
A3: Z
= (
dom f2) and
A4: for x st x
in Z holds (f2
. x)
= ((x
- a)
/ (x
+ b)) and
A5: (f2
| A) is
continuous;
A6: f2
is_integrable_on A by
A1,
A3,
A5,
INTEGRA5: 11;
A7: ((
id Z)
- ((a
+ b)
(#) f))
is_differentiable_on Z by
A2,
FDIFF_4: 10;
A8: for x be
Element of
REAL st x
in (
dom (((
id Z)
- ((a
+ b)
(#) f))
`| Z)) holds ((((
id Z)
- ((a
+ b)
(#) f))
`| Z)
. x)
= (f2
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((
id Z)
- ((a
+ b)
(#) f))
`| Z));
then
A9: x
in Z by
A7,
FDIFF_1:def 7;
then ((((
id Z)
- ((a
+ b)
(#) f))
`| Z)
. x)
= ((x
- a)
/ (x
+ b)) by
A2,
FDIFF_4: 10
.= (f2
. x) by
A4,
A9;
hence thesis;
end;
(
dom (((
id Z)
- ((a
+ b)
(#) f))
`| Z))
= (
dom f2) by
A3,
A7,
FDIFF_1:def 7;
then (((
id Z)
- ((a
+ b)
(#) f))
`| Z)
= f2 by
A8,
PARTFUN1: 5;
hence thesis by
A1,
A3,
A5,
A6,
A7,
INTEGRA5: 10,
INTEGRA5: 13;
end;
theorem ::
INTEGRA9:60
A
c= Z & f
= (
ln
* f1) & (for x st x
in Z holds (f1
. x)
= (x
- b) & (f1
. x)
>
0 ) & (
dom ((
id Z)
+ ((b
- a)
(#) f)))
= Z & Z
= (
dom f2) & (for x st x
in Z holds (f2
. x)
= ((x
- a)
/ (x
- b))) & (f2
| A) is
continuous implies (
integral (f2,A))
= ((((
id Z)
+ ((b
- a)
(#) f))
. (
upper_bound A))
- (((
id Z)
+ ((b
- a)
(#) f))
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: (f
= (
ln
* f1) & for x st x
in Z holds (f1
. x)
= (x
- b) & (f1
. x)
>
0 ) & (
dom ((
id Z)
+ ((b
- a)
(#) f)))
= Z and
A3: Z
= (
dom f2) and
A4: for x st x
in Z holds (f2
. x)
= ((x
- a)
/ (x
- b)) and
A5: (f2
| A) is
continuous;
A6: f2
is_integrable_on A by
A1,
A3,
A5,
INTEGRA5: 11;
A7: ((
id Z)
+ ((b
- a)
(#) f))
is_differentiable_on Z by
A2,
FDIFF_4: 11;
A8: for x be
Element of
REAL st x
in (
dom (((
id Z)
+ ((b
- a)
(#) f))
`| Z)) holds ((((
id Z)
+ ((b
- a)
(#) f))
`| Z)
. x)
= (f2
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((
id Z)
+ ((b
- a)
(#) f))
`| Z));
then
A9: x
in Z by
A7,
FDIFF_1:def 7;
then ((((
id Z)
+ ((b
- a)
(#) f))
`| Z)
. x)
= ((x
- a)
/ (x
- b)) by
A2,
FDIFF_4: 11
.= (f2
. x) by
A4,
A9;
hence thesis;
end;
(
dom (((
id Z)
+ ((b
- a)
(#) f))
`| Z))
= (
dom f2) by
A3,
A7,
FDIFF_1:def 7;
then (((
id Z)
+ ((b
- a)
(#) f))
`| Z)
= f2 by
A8,
PARTFUN1: 5;
hence thesis by
A1,
A3,
A5,
A6,
A7,
INTEGRA5: 10,
INTEGRA5: 13;
end;
theorem ::
INTEGRA9:61
A
c= Z & (
dom
ln )
= Z & Z
= (
dom ((
id Z)
^ )) & (((
id Z)
^ )
| A) is
continuous implies (
integral (((
id Z)
^ ),A))
= ((
ln
. (
upper_bound A))
- (
ln
. (
lower_bound A)))
proof
set f2 = ((
id Z)
^ );
assume that
A1: A
c= Z and
A2: (
dom
ln )
= Z and
A3: Z
= (
dom ((
id Z)
^ )) and
A4: (((
id Z)
^ )
| A) is
continuous;
A5: f2
is_integrable_on A by
A1,
A3,
A4,
INTEGRA5: 11;
A6:
ln
is_differentiable_on Z by
A2,
FDIFF_5: 19;
A7: for x be
Element of
REAL st x
in (
dom (
ln
`| Z)) holds ((
ln
`| Z)
. x)
= (f2
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (
ln
`| Z));
then
A8: x
in Z by
A6,
FDIFF_1:def 7;
then ((
ln
`| Z)
. x)
= (1
/ x) by
A2,
FDIFF_5: 19
.= (x
" ) by
XCMPLX_1: 215
.= (((
id Z)
. x)
" ) by
A8,
FUNCT_1: 18
.= (f2
. x) by
A3,
A8,
RFUNCT_1:def 2;
hence thesis;
end;
(
dom (
ln
`| Z))
= (
dom f2) by
A3,
A6,
FDIFF_1:def 7;
then (
ln
`| Z)
= f2 by
A7,
PARTFUN1: 5;
hence thesis by
A1,
A3,
A4,
A5,
A6,
INTEGRA5: 10,
INTEGRA5: 13;
end;
theorem ::
INTEGRA9:62
A
c= Z & (for x st x
in Z holds x
>
0 ) & (
dom (
ln
* (
#Z n)))
= Z & (
dom (
ln
* (
#Z n)))
= (
dom f2) & (for x st x
in Z holds (f2
. x)
= (n
/ x)) & (f2
| A) is
continuous implies (
integral (f2,A))
= (((
ln
* (
#Z n))
. (
upper_bound A))
- ((
ln
* (
#Z n))
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: for x st x
in Z holds x
>
0 and
A3: (
dom (
ln
* (
#Z n)))
= Z and
A4: (
dom (
ln
* (
#Z n)))
= (
dom f2) and
A5: for x st x
in Z holds (f2
. x)
= (n
/ x) and
A6: (f2
| A) is
continuous;
A7: f2
is_integrable_on A by
A1,
A3,
A4,
A6,
INTEGRA5: 11;
A8: (
ln
* (
#Z n))
is_differentiable_on Z by
A2,
A3,
FDIFF_6: 9;
A9: for x be
Element of
REAL st x
in (
dom ((
ln
* (
#Z n))
`| Z)) holds (((
ln
* (
#Z n))
`| Z)
. x)
= (f2
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
ln
* (
#Z n))
`| Z));
then
A10: x
in Z by
A8,
FDIFF_1:def 7;
then (((
ln
* (
#Z n))
`| Z)
. x)
= (n
/ x) by
A2,
A3,
FDIFF_6: 9
.= (f2
. x) by
A5,
A10;
hence thesis;
end;
(
dom ((
ln
* (
#Z n))
`| Z))
= (
dom f2) by
A3,
A4,
A8,
FDIFF_1:def 7;
then ((
ln
* (
#Z n))
`| Z)
= f2 by
A9,
PARTFUN1: 5;
hence thesis by
A1,
A3,
A4,
A6,
A7,
A8,
INTEGRA5: 10,
INTEGRA5: 13;
end;
theorem ::
INTEGRA9:63
not
0
in Z & A
c= Z & (
dom (
ln
* ((
id Z)
^ )))
= Z & (
dom (
ln
* ((
id Z)
^ )))
= (
dom f2) & (for x st x
in Z holds (f2
. x)
= (
- (1
/ x))) & (f2
| A) is
continuous implies (
integral (f2,A))
= (((
ln
* ((
id Z)
^ ))
. (
upper_bound A))
- ((
ln
* ((
id Z)
^ ))
. (
lower_bound A)))
proof
set f = (
id Z);
assume that
A1: not
0
in Z and
A2: A
c= Z and
A3: (
dom (
ln
* (f
^ )))
= Z and
A4: (
dom (
ln
* (f
^ )))
= (
dom f2) and
A5: for x st x
in Z holds (f2
. x)
= (
- (1
/ x)) and
A6: (f2
| A) is
continuous;
A7: f2
is_integrable_on A by
A2,
A3,
A4,
A6,
INTEGRA5: 11;
A8: (
ln
* (f
^ ))
is_differentiable_on Z by
A1,
A3,
FDIFF_8: 5;
A9: for x be
Element of
REAL st x
in (
dom ((
ln
* (f
^ ))
`| Z)) holds (((
ln
* (f
^ ))
`| Z)
. x)
= (f2
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
ln
* (f
^ ))
`| Z));
then
A10: x
in Z by
A8,
FDIFF_1:def 7;
then (((
ln
* (f
^ ))
`| Z)
. x)
= (
- (1
/ x)) by
A1,
A3,
FDIFF_8: 5
.= (f2
. x) by
A5,
A10;
hence thesis;
end;
(
dom ((
ln
* (f
^ ))
`| Z))
= (
dom f2) by
A3,
A4,
A8,
FDIFF_1:def 7;
then ((
ln
* (f
^ ))
`| Z)
= f2 by
A9,
PARTFUN1: 5;
hence thesis by
A2,
A3,
A4,
A6,
A7,
A8,
INTEGRA5: 10,
INTEGRA5: 13;
end;
theorem ::
INTEGRA9:64
A
c= Z & (for x st x
in Z holds (f
. x)
= (a
+ x) & (f
. x)
>
0 ) & (
dom ((2
/ 3)
(#) ((
#R (3
/ 2))
* f)))
= Z & (
dom ((2
/ 3)
(#) ((
#R (3
/ 2))
* f)))
= (
dom f2) & (for x st x
in Z holds (f2
. x)
= ((a
+ x)
#R (1
/ 2))) & (f2
| A) is
continuous implies (
integral (f2,A))
= ((((2
/ 3)
(#) ((
#R (3
/ 2))
* f))
. (
upper_bound A))
- (((2
/ 3)
(#) ((
#R (3
/ 2))
* f))
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: for x st x
in Z holds (f
. x)
= (a
+ x) & (f
. x)
>
0 and
A3: (
dom ((2
/ 3)
(#) ((
#R (3
/ 2))
* f)))
= Z and
A4: (
dom ((2
/ 3)
(#) ((
#R (3
/ 2))
* f)))
= (
dom f2) and
A5: for x st x
in Z holds (f2
. x)
= ((a
+ x)
#R (1
/ 2)) and
A6: (f2
| A) is
continuous;
A7: f2
is_integrable_on A by
A1,
A3,
A4,
A6,
INTEGRA5: 11;
A8: ((2
/ 3)
(#) ((
#R (3
/ 2))
* f))
is_differentiable_on Z by
A2,
A3,
FDIFF_4: 28;
A9: for x be
Element of
REAL st x
in (
dom (((2
/ 3)
(#) ((
#R (3
/ 2))
* f))
`| Z)) holds ((((2
/ 3)
(#) ((
#R (3
/ 2))
* f))
`| Z)
. x)
= (f2
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((2
/ 3)
(#) ((
#R (3
/ 2))
* f))
`| Z));
then
A10: x
in Z by
A8,
FDIFF_1:def 7;
then ((((2
/ 3)
(#) ((
#R (3
/ 2))
* f))
`| Z)
. x)
= ((a
+ x)
#R (1
/ 2)) by
A2,
A3,
FDIFF_4: 28
.= (f2
. x) by
A5,
A10;
hence thesis;
end;
(
dom (((2
/ 3)
(#) ((
#R (3
/ 2))
* f))
`| Z))
= (
dom f2) by
A3,
A4,
A8,
FDIFF_1:def 7;
then (((2
/ 3)
(#) ((
#R (3
/ 2))
* f))
`| Z)
= f2 by
A9,
PARTFUN1: 5;
hence thesis by
A1,
A3,
A4,
A6,
A7,
A8,
INTEGRA5: 10,
INTEGRA5: 13;
end;
theorem ::
INTEGRA9:65
A
c= Z & (for x st x
in Z holds (f
. x)
= (a
- x) & (f
. x)
>
0 ) & (
dom ((
- (2
/ 3))
(#) ((
#R (3
/ 2))
* f)))
= Z & (
dom ((
- (2
/ 3))
(#) ((
#R (3
/ 2))
* f)))
= (
dom f2) & (for x st x
in Z holds (f2
. x)
= ((a
- x)
#R (1
/ 2))) & (f2
| A) is
continuous implies (
integral (f2,A))
= ((((
- (2
/ 3))
(#) ((
#R (3
/ 2))
* f))
. (
upper_bound A))
- (((
- (2
/ 3))
(#) ((
#R (3
/ 2))
* f))
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: for x st x
in Z holds (f
. x)
= (a
- x) & (f
. x)
>
0 and
A3: (
dom ((
- (2
/ 3))
(#) ((
#R (3
/ 2))
* f)))
= Z and
A4: (
dom ((
- (2
/ 3))
(#) ((
#R (3
/ 2))
* f)))
= (
dom f2) and
A5: for x st x
in Z holds (f2
. x)
= ((a
- x)
#R (1
/ 2)) and
A6: (f2
| A) is
continuous;
A7: f2
is_integrable_on A by
A1,
A3,
A4,
A6,
INTEGRA5: 11;
A8: ((
- (2
/ 3))
(#) ((
#R (3
/ 2))
* f))
is_differentiable_on Z by
A2,
A3,
FDIFF_4: 29;
A9: for x be
Element of
REAL st x
in (
dom (((
- (2
/ 3))
(#) ((
#R (3
/ 2))
* f))
`| Z)) holds ((((
- (2
/ 3))
(#) ((
#R (3
/ 2))
* f))
`| Z)
. x)
= (f2
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((
- (2
/ 3))
(#) ((
#R (3
/ 2))
* f))
`| Z));
then
A10: x
in Z by
A8,
FDIFF_1:def 7;
then ((((
- (2
/ 3))
(#) ((
#R (3
/ 2))
* f))
`| Z)
. x)
= ((a
- x)
#R (1
/ 2)) by
A2,
A3,
FDIFF_4: 29
.= (f2
. x) by
A5,
A10;
hence thesis;
end;
(
dom (((
- (2
/ 3))
(#) ((
#R (3
/ 2))
* f))
`| Z))
= (
dom f2) by
A3,
A4,
A8,
FDIFF_1:def 7;
then (((
- (2
/ 3))
(#) ((
#R (3
/ 2))
* f))
`| Z)
= f2 by
A9,
PARTFUN1: 5;
hence thesis by
A1,
A3,
A4,
A6,
A7,
A8,
INTEGRA5: 10,
INTEGRA5: 13;
end;
theorem ::
INTEGRA9:66
A
c= Z & (for x st x
in Z holds (f
. x)
= (a
+ x) & (f
. x)
>
0 ) & (
dom (2
(#) ((
#R (1
/ 2))
* f)))
= Z & (
dom (2
(#) ((
#R (1
/ 2))
* f)))
= (
dom f2) & (for x st x
in Z holds (f2
. x)
= ((a
+ x)
#R (
- (1
/ 2)))) & (f2
| A) is
continuous implies (
integral (f2,A))
= (((2
(#) ((
#R (1
/ 2))
* f))
. (
upper_bound A))
- ((2
(#) ((
#R (1
/ 2))
* f))
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: for x st x
in Z holds (f
. x)
= (a
+ x) & (f
. x)
>
0 and
A3: (
dom (2
(#) ((
#R (1
/ 2))
* f)))
= Z and
A4: (
dom (2
(#) ((
#R (1
/ 2))
* f)))
= (
dom f2) and
A5: for x st x
in Z holds (f2
. x)
= ((a
+ x)
#R (
- (1
/ 2))) and
A6: (f2
| A) is
continuous;
A7: f2
is_integrable_on A by
A1,
A3,
A4,
A6,
INTEGRA5: 11;
A8: (2
(#) ((
#R (1
/ 2))
* f))
is_differentiable_on Z by
A2,
A3,
FDIFF_4: 30;
A9: for x be
Element of
REAL st x
in (
dom ((2
(#) ((
#R (1
/ 2))
* f))
`| Z)) holds (((2
(#) ((
#R (1
/ 2))
* f))
`| Z)
. x)
= (f2
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((2
(#) ((
#R (1
/ 2))
* f))
`| Z));
then
A10: x
in Z by
A8,
FDIFF_1:def 7;
then (((2
(#) ((
#R (1
/ 2))
* f))
`| Z)
. x)
= ((a
+ x)
#R (
- (1
/ 2))) by
A2,
A3,
FDIFF_4: 30
.= (f2
. x) by
A5,
A10;
hence thesis;
end;
(
dom ((2
(#) ((
#R (1
/ 2))
* f))
`| Z))
= (
dom f2) by
A3,
A4,
A8,
FDIFF_1:def 7;
then ((2
(#) ((
#R (1
/ 2))
* f))
`| Z)
= f2 by
A9,
PARTFUN1: 5;
hence thesis by
A1,
A3,
A4,
A6,
A7,
A8,
INTEGRA5: 10,
INTEGRA5: 13;
end;
theorem ::
INTEGRA9:67
A
c= Z & (for x st x
in Z holds (f
. x)
= (a
- x) & (f
. x)
>
0 ) & (
dom ((
- 2)
(#) ((
#R (1
/ 2))
* f)))
= Z & (
dom ((
- 2)
(#) ((
#R (1
/ 2))
* f)))
= (
dom f2) & (for x st x
in Z holds (f2
. x)
= ((a
- x)
#R (
- (1
/ 2)))) & (f2
| A) is
continuous implies (
integral (f2,A))
= ((((
- 2)
(#) ((
#R (1
/ 2))
* f))
. (
upper_bound A))
- (((
- 2)
(#) ((
#R (1
/ 2))
* f))
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: for x st x
in Z holds (f
. x)
= (a
- x) & (f
. x)
>
0 and
A3: (
dom ((
- 2)
(#) ((
#R (1
/ 2))
* f)))
= Z and
A4: (
dom ((
- 2)
(#) ((
#R (1
/ 2))
* f)))
= (
dom f2) and
A5: for x st x
in Z holds (f2
. x)
= ((a
- x)
#R (
- (1
/ 2))) and
A6: (f2
| A) is
continuous;
A7: f2
is_integrable_on A by
A1,
A3,
A4,
A6,
INTEGRA5: 11;
A8: ((
- 2)
(#) ((
#R (1
/ 2))
* f))
is_differentiable_on Z by
A2,
A3,
FDIFF_4: 31;
A9: for x be
Element of
REAL st x
in (
dom (((
- 2)
(#) ((
#R (1
/ 2))
* f))
`| Z)) holds ((((
- 2)
(#) ((
#R (1
/ 2))
* f))
`| Z)
. x)
= (f2
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((
- 2)
(#) ((
#R (1
/ 2))
* f))
`| Z));
then
A10: x
in Z by
A8,
FDIFF_1:def 7;
then ((((
- 2)
(#) ((
#R (1
/ 2))
* f))
`| Z)
. x)
= ((a
- x)
#R (
- (1
/ 2))) by
A2,
A3,
FDIFF_4: 31
.= (f2
. x) by
A5,
A10;
hence thesis;
end;
(
dom (((
- 2)
(#) ((
#R (1
/ 2))
* f))
`| Z))
= (
dom f2) by
A3,
A4,
A8,
FDIFF_1:def 7;
then (((
- 2)
(#) ((
#R (1
/ 2))
* f))
`| Z)
= f2 by
A9,
PARTFUN1: 5;
hence thesis by
A1,
A3,
A4,
A6,
A7,
A8,
INTEGRA5: 10,
INTEGRA5: 13;
end;
theorem ::
INTEGRA9:68
A
c= Z & (
dom (((
- (
id Z))
(#)
cos )
+
sin ))
= Z & (for x st x
in Z holds (f
. x)
= (x
* (
sin
. x))) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((((
- (
id Z))
(#)
cos )
+
sin )
. (
upper_bound A))
- ((((
- (
id Z))
(#)
cos )
+
sin )
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: (
dom (((
- (
id Z))
(#)
cos )
+
sin ))
= Z and
A3: for x st x
in Z holds (f
. x)
= (x
* (
sin
. x)) and
A4: Z
= (
dom f) and
A5: (f
| A) is
continuous;
A6: (((
- (
id Z))
(#)
cos )
+
sin )
is_differentiable_on Z by
A2,
FDIFF_4: 46;
A7: for x be
Element of
REAL st x
in (
dom ((((
- (
id Z))
(#)
cos )
+
sin )
`| Z)) holds (((((
- (
id Z))
(#)
cos )
+
sin )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((((
- (
id Z))
(#)
cos )
+
sin )
`| Z));
then
A8: x
in Z by
A6,
FDIFF_1:def 7;
then (((((
- (
id Z))
(#)
cos )
+
sin )
`| Z)
. x)
= (x
* (
sin
. x)) by
A2,
FDIFF_4: 46
.= (f
. x) by
A3,
A8;
hence thesis;
end;
(
dom ((((
- (
id Z))
(#)
cos )
+
sin )
`| Z))
= (
dom f) by
A4,
A6,
FDIFF_1:def 7;
then
A9: ((((
- (
id Z))
(#)
cos )
+
sin )
`| Z)
= f by
A7,
PARTFUN1: 5;
f
is_integrable_on A & (f
| A) is
bounded by
A1,
A4,
A5,
INTEGRA5: 10,
INTEGRA5: 11;
hence thesis by
A1,
A2,
A9,
FDIFF_4: 46,
INTEGRA5: 13;
end;
theorem ::
INTEGRA9:69
A
c= Z & (
dom
sec )
= Z & (for x st x
in Z holds (f
. x)
= ((
sin
. x)
/ ((
cos
. x)
^2 ))) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= ((
sec
. (
upper_bound A))
- (
sec
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: (
dom
sec )
= Z and
A3: for x st x
in Z holds (f
. x)
= ((
sin
. x)
/ ((
cos
. x)
^2 )) and
A4: Z
= (
dom f) and
A5: (f
| A) is
continuous;
A6:
sec
is_differentiable_on Z by
A2,
FDIFF_9: 4;
A7: for x be
Element of
REAL st x
in (
dom (
sec
`| Z)) holds ((
sec
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (
sec
`| Z));
then
A8: x
in Z by
A6,
FDIFF_1:def 7;
then ((
sec
`| Z)
. x)
= ((
sin
. x)
/ ((
cos
. x)
^2 )) by
A2,
FDIFF_9: 4
.= (f
. x) by
A3,
A8;
hence thesis;
end;
(
dom (
sec
`| Z))
= (
dom f) by
A4,
A6,
FDIFF_1:def 7;
then
A9: (
sec
`| Z)
= f by
A7,
PARTFUN1: 5;
f
is_integrable_on A & (f
| A) is
bounded by
A1,
A4,
A5,
INTEGRA5: 10,
INTEGRA5: 11;
hence thesis by
A1,
A2,
A9,
FDIFF_9: 4,
INTEGRA5: 13;
end;
theorem ::
INTEGRA9:70
Th70: Z
c= (
dom (
-
cosec )) implies (
-
cosec )
is_differentiable_on Z & for x st x
in Z holds (((
-
cosec )
`| Z)
. x)
= ((
cos
. x)
/ ((
sin
. x)
^2 ))
proof
A1:
sin
is_differentiable_on Z by
FDIFF_1: 26,
SIN_COS: 68;
assume
A2: Z
c= (
dom (
-
cosec ));
then
A3: Z
c= (
dom
cosec ) by
VALUED_1: 8;
then for x st x
in Z holds (
sin
. x)
<>
0 by
RFUNCT_1: 3;
then
A4:
cosec
is_differentiable_on Z by
A1,
FDIFF_2: 22;
A5: for x st x
in Z holds (((
-
cosec )
`| Z)
. x)
= ((
cos
. x)
/ ((
sin
. x)
^2 ))
proof
let x;
assume
A6: x
in Z;
then
A7: (
sin
. x)
<>
0 &
sin
is_differentiable_in x by
A3,
A1,
FDIFF_1: 9,
RFUNCT_1: 3;
(((
-
cosec )
`| Z)
. x)
= ((
- 1)
* (
diff ((
sin
^ ),x))) by
A2,
A4,
A6,
FDIFF_1: 20
.= ((
- 1)
* (
- ((
diff (
sin ,x))
/ ((
sin
. x)
^2 )))) by
A7,
FDIFF_2: 15
.= ((
cos
. x)
/ ((
sin
. x)
^2 )) by
SIN_COS: 64;
hence thesis;
end;
((
- 1)
(#)
cosec )
is_differentiable_on Z by
A2,
A4,
FDIFF_1: 20;
hence thesis by
A5;
end;
theorem ::
INTEGRA9:71
A
c= Z & (
dom (
-
cosec ))
= Z & (for x st x
in Z holds (f
. x)
= ((
cos
. x)
/ ((
sin
. x)
^2 ))) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
-
cosec )
. (
upper_bound A))
- ((
-
cosec )
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: (
dom (
-
cosec ))
= Z and
A3: for x st x
in Z holds (f
. x)
= ((
cos
. x)
/ ((
sin
. x)
^2 )) and
A4: Z
= (
dom f) and
A5: (f
| A) is
continuous;
A6: (
-
cosec )
is_differentiable_on Z by
A2,
Th70;
A7: for x be
Element of
REAL st x
in (
dom ((
-
cosec )
`| Z)) holds (((
-
cosec )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
-
cosec )
`| Z));
then
A8: x
in Z by
A6,
FDIFF_1:def 7;
then (((
-
cosec )
`| Z)
. x)
= ((
cos
. x)
/ ((
sin
. x)
^2 )) by
A2,
Th70
.= (f
. x) by
A3,
A8;
hence thesis;
end;
(
dom ((
-
cosec )
`| Z))
= (
dom f) by
A4,
A6,
FDIFF_1:def 7;
then
A9: ((
-
cosec )
`| Z)
= f by
A7,
PARTFUN1: 5;
f
is_integrable_on A & (f
| A) is
bounded by
A1,
A4,
A5,
INTEGRA5: 10,
INTEGRA5: 11;
hence thesis by
A1,
A2,
A9,
Th70,
INTEGRA5: 13;
end;