integr19.miz
begin
reserve X for
set;
reserve n,i for
Element of
NAT ;
reserve a,b,c,d,e,r,x0 for
Real;
reserve A for non
empty
closed_interval
Subset of
REAL ;
reserve f,g,h for
PartFunc of
REAL , (
REAL n);
reserve E for
Element of (
REAL n);
Lm1: (f
- g)
= (f
+ (
- g)) by
NDIFF_4: 1;
theorem ::
INTEGR19:1
Th1: a
<= c & c
<= b implies c
in
['a, b'] &
['a, c']
c=
['a, b'] &
['c, b']
c=
['a, b']
proof
assume that
A1: a
<= c and
A2: c
<= b;
A3: c
in
[.a, b.] by
A1,
A2;
hence c
in
['a, b'] by
A1,
A2,
INTEGRA5:def 3,
XXREAL_0: 2;
A4:
['c, b']
=
[.c, b.] by
A2,
INTEGRA5:def 3;
a
<= b by
A1,
A2,
XXREAL_0: 2;
then
A5: a
in
[.a, b.] & b
in
[.a, b.];
['a, b']
=
[.a, b.] &
['a, c']
=
[.a, c.] by
A1,
A2,
INTEGRA5:def 3,
XXREAL_0: 2;
hence thesis by
A4,
A3,
A5,
XXREAL_2:def 12;
end;
theorem ::
INTEGR19:2
Th2: a
<= c & c
<= d & d
<= b &
['a, b']
c= X implies
['c, d']
c= X
proof
assume that
A1: a
<= c & c
<= d & d
<= b and
A2:
['a, b']
c= X;
A3:
['c, d']
c=
['c, b'] by
Th1,
A1;
c
<= b by
A1,
XXREAL_0: 2;
then
['c, b']
c=
['a, b'] by
Th1,
A1;
then
['c, d']
c=
['a, b'] by
A3;
hence thesis by
A2;
end;
Lm2: a
<= b & c
in
['a, b'] & d
in
['a, b'] implies
['(
min (c,d)), (
max (c,d))']
c=
['a, b']
proof
assume
A1: a
<= b & c
in
['a, b'] & d
in
['a, b'];
['a, b']
=
[.a, b.] by
A1,
INTEGRA5:def 3;
then
A2: a
<= c & d
<= b & a
<= d & c
<= b by
A1,
XXREAL_1: 1;
per cases ;
suppose
A3: c
<= d;
then
A4: c
= (
min (c,d)) & d
= (
max (c,d)) by
XXREAL_0:def 9,
XXREAL_0:def 10;
A5:
['c, b']
c=
['a, b'] by
A2,
Th1;
['c, d']
c=
['c, b'] by
A2,
A3,
Th1;
hence
['(
min (c,d)), (
max (c,d))']
c=
['a, b'] by
A4,
A5;
end;
suppose
A6: not c
<= d;
then
A7: d
= (
min (c,d)) & c
= (
max (c,d)) by
XXREAL_0:def 9,
XXREAL_0:def 10;
A8:
['d, b']
c=
['a, b'] by
A2,
Th1;
['d, c']
c=
['d, b'] by
A2,
A6,
Th1;
hence
['(
min (c,d)), (
max (c,d))']
c=
['a, b'] by
A7,
A8;
end;
end;
theorem ::
INTEGR19:3
Th3: a
<= b & c
in
['a, b'] & d
in
['a, b'] &
['a, b']
c= X implies
['(
min (c,d)), (
max (c,d))']
c= X
proof
assume a
<= b & c
in
['a, b'] & d
in
['a, b'];
then
['(
min (c,d)), (
max (c,d))']
c=
['a, b'] by
Lm2;
hence thesis;
end;
theorem ::
INTEGR19:4
Th4: a
<= c & c
<= d & d
<= b &
['a, b']
c= (
dom f) &
['a, b']
c= (
dom g) implies
['c, d']
c= (
dom (f
+ g))
proof
assume that
A1: a
<= c & c
<= d & d
<= b and
A2:
['a, b']
c= (
dom f) &
['a, b']
c= (
dom g);
(
dom (f
+ g))
= ((
dom f)
/\ (
dom g)) by
VALUED_2:def 45;
then (
['a, b']
/\
['a, b'])
c= (
dom (f
+ g)) by
A2,
XBOOLE_1: 27;
hence thesis by
A1,
Th2;
end;
theorem ::
INTEGR19:5
Th5: a
<= c & c
<= d & d
<= b &
['a, b']
c= (
dom f) &
['a, b']
c= (
dom g) implies
['c, d']
c= (
dom (f
- g))
proof
assume that
A1: a
<= c & c
<= d & d
<= b and
A2:
['a, b']
c= (
dom f) &
['a, b']
c= (
dom g);
(
dom (f
- g))
= ((
dom f)
/\ (
dom g)) by
VALUED_2:def 46;
then (
['a, b']
/\
['a, b'])
c= (
dom (f
- g)) by
A2,
XBOOLE_1: 27;
hence thesis by
A1,
Th2;
end;
Lm3: for X,Y,Z be non
empty
set, f be
PartFunc of X, Y st Z
c= (
dom f) holds (f
| Z) is
Function of Z, Y
proof
let X,Y,Z be non
empty
set, f be
PartFunc of X, Y;
(
rng f)
c= Y;
then f is
Function of (
dom f), Y by
FUNCT_2: 2;
hence thesis by
FUNCT_2: 32;
end;
theorem ::
INTEGR19:6
Th6: for f be
PartFunc of
REAL ,
REAL holds a
<= c & c
<= d & d
<= b & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) implies (r
(#) f)
is_integrable_on
['c, d'] & ((r
(#) f)
|
['c, d']) is
bounded
proof
let f be
PartFunc of
REAL ,
REAL ;
assume that
A1: a
<= c and
A2: c
<= d & d
<= b and
A3: f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded and
A4:
['a, b']
c= (
dom f);
A5: (f
|
['c, d']) is
bounded by
A1,
A2,
A3,
A4,
INTEGRA6: 18;
A6:
['c, d']
c= (
dom f) by
A2,
A1,
Th2,
A4;
f
is_integrable_on
['c, d'] by
A1,
A2,
A3,
A4,
INTEGRA6: 18;
hence (r
(#) f)
is_integrable_on
['c, d'] by
A5,
A6,
INTEGRA6: 9;
thus thesis by
A5,
RFUNCT_1: 80;
end;
theorem ::
INTEGR19:7
for f,g be
PartFunc of
REAL ,
REAL st a
<= c & c
<= d & d
<= b & f
is_integrable_on
['a, b'] & g
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded & (g
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) &
['a, b']
c= (
dom g) holds (f
- g)
is_integrable_on
['c, d'] & ((f
- g)
|
['c, d']) is
bounded
proof
let f,g be
PartFunc of
REAL ,
REAL ;
assume
A1: a
<= c & c
<= d & d
<= b & f
is_integrable_on
['a, b'] & g
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded & (g
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) &
['a, b']
c= (
dom g);
A2: (((
- 1)
(#) g)
|
['a, b']) is
bounded by
A1,
RFUNCT_1: 80;
A3:
['a, b']
c= (
dom ((
- 1)
(#) g)) by
A1,
VALUED_1:def 5;
((
- 1)
(#) g)
is_integrable_on
['a, b'] by
A1,
INTEGRA6: 9;
hence thesis by
A1,
A2,
A3,
INTEGRA6: 19;
end;
Lm4: for f be
PartFunc of
REAL ,
REAL st (a
<= b & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'] & for x be
Real st x
in
['(
min (c,d)), (
max (c,d))'] holds
|.(f
. x).|
<= e) holds
|.(
integral (f,c,d)).|
<= (e
*
|.(d
- c).|)
proof
let f be
PartFunc of
REAL ,
REAL ;
set A =
['(
min (c,d)), (
max (c,d))'];
assume that
A1: a
<= b & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'] and
A2: for x be
Real st x
in
['(
min (c,d)), (
max (c,d))'] holds
|.(f
. x).|
<= e;
(
rng (
abs f))
c=
REAL ;
then
A3: (
abs f) is
Function of (
dom (
abs f)),
REAL by
FUNCT_2: 2;
['(
min (c,d)), (
max (c,d))']
c= (
dom (
abs f)) by
A1,
INTEGRA6: 21;
then
reconsider g = ((
abs f)
| A) as
Function of A,
REAL by
A3,
FUNCT_2: 32;
A4: (
vol A)
=
|.(d
- c).| by
INTEGRA6: 6;
(
abs f)
is_integrable_on A by
A1,
INTEGRA6: 21;
then
A5: g is
integrable;
consider h be
Function of A,
REAL such that
A6: (
rng h)
=
{e} and
A7: (h
| A) is
bounded by
INTEGRA4: 5;
A8:
now
let x be
Real;
assume
A9: x
in A;
then (g
. x)
= ((
abs f)
. x) by
FUNCT_1: 49;
then
A10: (g
. x)
=
|.(f
. x).| by
VALUED_1: 18;
(h
. x)
in
{e} by
A6,
A9,
FUNCT_2: 4;
then (h
. x)
= e by
TARSKI:def 1;
hence (g
. x)
<= (h
. x) by
A2,
A9,
A10;
end;
A11:
|.(
integral (f,c,d)).|
<= (
integral ((
abs f),(
min (c,d)),(
max (c,d)))) by
A1,
INTEGRA6: 21;
(
min (c,d))
<= c & c
<= (
max (c,d)) by
XXREAL_0: 17,
XXREAL_0: 25;
then (
min (c,d))
<= (
max (c,d)) by
XXREAL_0: 2;
then
A12: (
integral ((
abs f),(
min (c,d)),(
max (c,d))))
= (
integral ((
abs f),A)) by
INTEGRA5:def 4;
((
abs f)
| A) is
bounded by
A1,
INTEGRA6: 21;
then
A13: (g
| A) is
bounded;
h is
integrable & (
integral h)
= (e
* (
vol A)) by
A6,
INTEGRA4: 4;
then (
integral ((
abs f),(
min (c,d)),(
max (c,d))))
<= (e
*
|.(d
- c).|) by
A12,
A7,
A8,
A5,
A13,
A4,
INTEGRA2: 34;
hence thesis by
A11,
XXREAL_0: 2;
end;
Lm5: for f be
PartFunc of
REAL ,
REAL st A
c= (
dom f) holds (f
| A) is
Function of A,
REAL by
Lm3;
theorem ::
INTEGR19:8
a
<= b & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] implies f
is_integrable_on
['a, c'] & f
is_integrable_on
['c, b'] & (
integral (f,a,b))
= ((
integral (f,a,c))
+ (
integral (f,c,b)))
proof
assume
A1: a
<= b & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'];
A2:
now
let i;
set P = (
proj (i,n));
assume
A3: i
in (
Seg n);
then
A4: (P
* f)
is_integrable_on
['a, b'] by
A1;
(P
* (f
|
['a, b'])) is
bounded by
A3,
A1;
then
A5: ((P
* f)
|
['a, b']) is
bounded by
RELAT_1: 83;
(
dom P)
= (
REAL n) by
FUNCT_2:def 1;
then (
rng f)
c= (
dom P);
then (
dom (P
* f))
= (
dom f) by
RELAT_1: 27;
hence (P
* f)
is_integrable_on
['a, c'] & (P
* f)
is_integrable_on
['c, b'] & (
integral ((P
* f),a,b))
= ((
integral ((P
* f),a,c))
+ (
integral ((P
* f),c,b))) by
A4,
A5,
A1,
INTEGRA6: 17;
end;
then for i be
Element of
NAT st i
in (
Seg n) holds ((
proj (i,n))
* f)
is_integrable_on
['a, c'];
hence f
is_integrable_on
['a, c'];
for i be
Element of
NAT st i
in (
Seg n) holds ((
proj (i,n))
* f)
is_integrable_on
['c, b'] by
A2;
hence f
is_integrable_on
['c, b'];
A6:
now
let i be
Nat;
assume i
in (
dom (
integral (f,a,b)));
then
A7: i
in (
Seg n) by
INTEGR15:def 18;
set P = (
proj (i,n));
thus ((
integral (f,a,b))
. i)
= (
integral ((P
* f),a,b)) by
A7,
INTEGR15:def 18
.= ((
integral ((P
* f),a,c))
+ (
integral ((P
* f),c,b))) by
A7,
A2
.= (((
integral (f,a,c))
. i)
+ (
integral ((P
* f),c,b))) by
A7,
INTEGR15:def 18
.= (((
integral (f,a,c))
. i)
+ ((
integral (f,c,b))
. i)) by
A7,
INTEGR15:def 18
.= (((
integral (f,a,c))
+ (
integral (f,c,b)))
. i) by
RVSUM_1: 11;
end;
A8: (
Seg n)
= (
dom (
integral (f,a,b))) by
INTEGR15:def 18;
(
len ((
integral (f,a,c))
+ (
integral (f,c,b))))
= n by
CARD_1:def 7;
then (
Seg n)
= (
dom ((
integral (f,a,c))
+ (
integral (f,c,b)))) by
FINSEQ_1:def 3;
hence thesis by
A8,
A6,
FINSEQ_1: 13;
end;
theorem ::
INTEGR19:9
Th9: a
<= c & c
<= d & d
<= b & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) implies f
is_integrable_on
['c, d'] & (f
|
['c, d']) is
bounded
proof
assume
A1: a
<= c & c
<= d & d
<= b & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f);
A2:
now
let i;
set P = (
proj (i,n));
assume
A3: i
in (
Seg n);
then
A4: (P
* f)
is_integrable_on
['a, b'] by
A1;
(P
* (f
|
['a, b'])) is
bounded by
A3,
A1;
then
A5: ((P
* f)
|
['a, b']) is
bounded by
RELAT_1: 83;
(
dom P)
= (
REAL n) by
FUNCT_2:def 1;
then (
rng f)
c= (
dom P);
then (
dom (P
* f))
= (
dom f) by
RELAT_1: 27;
then (P
* f)
is_integrable_on
['c, d'] & ((P
* f)
|
['c, d']) is
bounded &
['c, d']
c= (
dom (P
* f)) by
A4,
A5,
A1,
INTEGRA6: 18;
hence (P
* f)
is_integrable_on
['c, d'] & (P
* (f
|
['c, d'])) is
bounded by
RELAT_1: 83;
end;
then for i be
Element of
NAT st i
in (
Seg n) holds ((
proj (i,n))
* f)
is_integrable_on
['c, d'];
hence f
is_integrable_on
['c, d'];
for i be
Element of
NAT st i
in (
Seg n) holds ((
proj (i,n))
* (f
|
['c, d'])) is
bounded by
A2;
hence thesis;
end;
theorem ::
INTEGR19:10
Th10: a
<= c & c
<= d & d
<= b & f
is_integrable_on
['a, b'] & g
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded & (g
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) &
['a, b']
c= (
dom g) implies (f
+ g)
is_integrable_on
['c, d'] & ((f
+ g)
|
['c, d']) is
bounded
proof
assume that
A1: a
<= c & c
<= d & d
<= b and
A2: f
is_integrable_on
['a, b'] & g
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded & (g
|
['a, b']) is
bounded and
A3:
['a, b']
c= (
dom f) &
['a, b']
c= (
dom g);
A4:
now
let i;
set P = (
proj (i,n));
assume
A5: i
in (
Seg n);
then
A6: (P
* f)
is_integrable_on
['a, b'] by
A2;
(P
* (f
|
['a, b'])) is
bounded by
A5,
A2;
then
A7: ((P
* f)
|
['a, b']) is
bounded by
RELAT_1: 83;
A8: (
dom P)
= (
REAL n) by
FUNCT_2:def 1;
then (
rng f)
c= (
dom P);
then
A9: (
dom (P
* f))
= (
dom f) by
RELAT_1: 27;
A10: (P
* g)
is_integrable_on
['a, b'] by
A5,
A2;
(P
* (g
|
['a, b'])) is
bounded by
A5,
A2;
then
A11: ((P
* g)
|
['a, b']) is
bounded by
RELAT_1: 83;
(
rng g)
c= (
dom P) by
A8;
then (
dom (P
* g))
= (
dom g) by
RELAT_1: 27;
then
A12: ((P
* f)
+ (P
* g))
is_integrable_on
['c, d'] & (((P
* f)
+ (P
* g))
|
['c, d']) is
bounded by
A1,
A3,
A6,
A7,
A9,
A10,
A11,
INTEGRA6: 19;
(((P
* f)
+ (P
* g))
|
['c, d'])
= ((P
* (f
+ g))
|
['c, d']) by
INTEGR15: 15
.= (P
* ((f
+ g)
|
['c, d'])) by
RELAT_1: 83;
hence (P
* (f
+ g))
is_integrable_on
['c, d'] & (P
* ((f
+ g)
|
['c, d'])) is
bounded by
A12,
INTEGR15: 15;
end;
then for i be
Element of
NAT st i
in (
Seg n) holds ((
proj (i,n))
* (f
+ g))
is_integrable_on
['c, d'];
hence (f
+ g)
is_integrable_on
['c, d'];
for i be
Element of
NAT st i
in (
Seg n) holds ((
proj (i,n))
* ((f
+ g)
|
['c, d'])) is
bounded by
A4;
hence thesis;
end;
theorem ::
INTEGR19:11
Th11: a
<= c & c
<= d & d
<= b & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) implies (r
(#) f)
is_integrable_on
['c, d'] & ((r
(#) f)
|
['c, d']) is
bounded
proof
assume that
A1: a
<= c & c
<= d & d
<= b and
A2: f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded and
A3:
['a, b']
c= (
dom f);
A4:
now
let i;
set P = (
proj (i,n));
assume
A5: i
in (
Seg n);
then
A6: (P
* f)
is_integrable_on
['a, b'] by
A2;
(P
* (f
|
['a, b'])) is
bounded by
A5,
A2;
then
A7: ((P
* f)
|
['a, b']) is
bounded by
RELAT_1: 83;
(
dom P)
= (
REAL n) by
FUNCT_2:def 1;
then (
rng f)
c= (
dom P);
then
A8: (
dom (P
* f))
= (
dom f) by
RELAT_1: 27;
A9: (r
(#) (P
* f))
is_integrable_on
['c, d'] & ((r
(#) (P
* f))
|
['c, d']) is
bounded by
A1,
A3,
Th6,
A6,
A7,
A8;
((r
(#) (P
* f))
|
['c, d'])
= ((P
* (r
(#) f))
|
['c, d']) by
INTEGR15: 16
.= (P
* ((r
(#) f)
|
['c, d'])) by
RELAT_1: 83;
hence (P
* (r
(#) f))
is_integrable_on
['c, d'] & (P
* ((r
(#) f)
|
['c, d'])) is
bounded by
A9,
INTEGR15: 16;
end;
then for i be
Element of
NAT st i
in (
Seg n) holds ((
proj (i,n))
* (r
(#) f))
is_integrable_on
['c, d'];
hence (r
(#) f)
is_integrable_on
['c, d'];
for i be
Element of
NAT st i
in (
Seg n) holds ((
proj (i,n))
* ((r
(#) f)
|
['c, d'])) is
bounded by
A4;
hence thesis;
end;
theorem ::
INTEGR19:12
Th12: a
<= c & c
<= d & d
<= b & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) implies (
- f)
is_integrable_on
['c, d'] & ((
- f)
|
['c, d']) is
bounded
proof
(
- f)
= ((
- 1)
(#) f) by
NFCONT_4: 7;
hence thesis by
Th11;
end;
theorem ::
INTEGR19:13
Th13: a
<= c & c
<= d & d
<= b & f
is_integrable_on
['a, b'] & g
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded & (g
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) &
['a, b']
c= (
dom g) implies (f
- g)
is_integrable_on
['c, d'] & ((f
- g)
|
['c, d']) is
bounded
proof
assume that
A1: a
<= c & c
<= d & d
<= b and
A2: f
is_integrable_on
['a, b'] & g
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded & (g
|
['a, b']) is
bounded and
A3:
['a, b']
c= (
dom f) &
['a, b']
c= (
dom g);
A4: (
dom g)
= (
dom (
- g)) by
NFCONT_4:def 3;
A5: (f
- g)
= (f
+ (
- g)) by
Lm1;
a
<= d by
A1,
XXREAL_0: 2;
then a
<= b by
A1,
XXREAL_0: 2;
then (
- g)
is_integrable_on
['a, b'] & ((
- g)
|
['a, b']) is
bounded by
A2,
A3,
Th12;
hence thesis by
A5,
A1,
A2,
A3,
A4,
Th10;
end;
theorem ::
INTEGR19:14
Th14: for n be non
zero
Element of
NAT , f be
Function of A, (
REAL n) holds f is
bounded iff
|.f.| is
bounded
proof
let n be non
zero
Element of
NAT , f be
Function of A, (
REAL n);
hereby
assume
A1: f is
bounded;
defpred
YX[
Nat,
set] means ex K be
Element of
REAL st
0
<= K & K
= $2 & for y be
set st y
in (
dom ((
proj ($1,n))
* f)) holds
|.(((
proj ($1,n))
* f)
. y).|
< K;
A2: for i be
Nat st i
in (
Seg n) holds ex r be
Element of
REAL st
YX[i, r]
proof
let i be
Nat;
assume
A3: i
in (
Seg n);
set P = (
proj (i,n));
(P
* f) is
bounded by
A1,
A3;
then
consider L be
Real such that
A4: for y be
set st y
in (
dom (P
* f)) holds
|.((P
* f)
. y).|
< L by
COMSEQ_2:def 3;
reconsider r =
|.L.| as
Element of
REAL by
XREAL_0:def 1;
take r;
now
let y be
set;
assume
A5: y
in (
dom (P
* f));
L
<= r by
ABSVALUE: 4;
hence
|.(((
proj (i,n))
* f)
. y).|
< r by
A4,
A5,
XXREAL_0: 2;
end;
hence thesis by
COMPLEX1: 46;
end;
consider w be
FinSequence of
REAL such that
A6: (
dom w)
= (
Seg n) & for i be
Nat st i
in (
Seg n) holds
YX[i, (w
. i)] from
FINSEQ_1:sch 5(
A2);
A7:
now
let i;
set P = (
proj (i,n));
assume i
in (
Seg n);
then
YX[i, (w
. i)] by
A6;
hence
0
<= (w
. i) & for y be
set st y
in (
dom (P
* f)) holds
|.((P
* f)
. y).|
< (w
. i);
end;
(
len w)
= n by
A6,
FINSEQ_1:def 3;
then
reconsider w as
Element of (
REAL n) by
FINSEQ_2: 92;
A8: for i be
Nat st i
in (
Seg n) holds
0
<= (w
. i) by
A7;
set KK = (
Sum w);
for y be
set st y
in (
dom
|.f.|) holds
|.(
|.f.|
. y).|
< ((n
* KK)
+ 1)
proof
let y be
set;
assume
A9: y
in (
dom
|.f.|);
then
A10: (
|.f.|
. y)
= (
|.f.|
/. y) by
PARTFUN1:def 6
.=
|.(f
/. y).| by
A9,
NFCONT_4:def 2;
then
A11:
|.(
|.f.|
. y).|
= (
|.f.|
. y) by
ABSVALUE:def 1;
now
let i;
set P = (
proj (i,n));
assume
A12: 1
<= i & i
<= n;
A13: y
in (
dom f) by
A9,
NFCONT_4:def 2;
then (f
. y)
in (
rng f) by
FUNCT_1: 3;
then (f
. y)
in (
REAL n);
then (f
. y)
in (
dom P) by
FUNCT_2:def 1;
then
A14: y
in (
dom (P
* f)) by
A13,
FUNCT_1: 11;
A15: i
in (
Seg n) by
A12;
then
|.((P
* f)
. y).|
< (w
. i) by
A7,
A14;
then
|.(P
. (f
. y)).|
< (w
. i) by
A14,
FUNCT_1: 12;
then
A16:
|.(P
. (f
/. y)).|
< (w
. i) by
A13,
PARTFUN1:def 6;
(w
. i)
<= (
Sum w) by
A8,
A15,
REAL_NS1: 7;
hence
|.(P
. (f
/. y)).|
<= KK by
A16,
XXREAL_0: 2;
end;
then
|.(f
/. y).|
<= (n
* KK) by
PDIFF_8: 17;
then (
0 qua
Real
+
|.(
|.f.|
. y).|)
< ((n
* KK)
+ 1) by
A10,
A11,
XREAL_1: 8;
hence thesis;
end;
hence
|.f.| is
bounded by
COMSEQ_2:def 3;
end;
assume
|.f.| is
bounded;
then
consider K be
Real such that
A17: for y be
set st y
in (
dom
|.f.|) holds
|.(
|.f.|
. y).|
< K by
COMSEQ_2:def 3;
let i;
set P = (
proj (i,n));
assume
A18: i
in (
Seg n);
for y be
set st y
in (
dom (P
* f)) holds
|.((P
* f)
. y).|
< K
proof
let y be
set;
assume
A19: y
in (
dom (P
* f));
then
A20: y
in (
dom f) by
FUNCT_1: 11;
A21: ((P
* f)
. y)
= (P
. (f
. y)) by
A19,
FUNCT_1: 12
.= (P
. (f
/. y)) by
A20,
PARTFUN1:def 6;
1
<= i & i
<= n by
A18,
FINSEQ_1: 1;
then
A22:
|.(P
. (f
/. y)).|
<=
|.(f
/. y).| by
PDIFF_8: 5;
A23: y
in (
dom
|.f.|) by
A20,
NFCONT_4:def 2;
then
|.(
|.f.|
. y).|
< K by
A17;
then
|.(
|.f.|
/. y).|
< K by
A23,
PARTFUN1:def 6;
then
|.
|.(f
/. y).|.|
< K by
A23,
NFCONT_4:def 2;
then
|.(f
/. y).|
< K by
ABSVALUE:def 1;
hence
|.((P
* f)
. y).|
< K by
A21,
A22,
XXREAL_0: 2;
end;
hence (P
* f) is
bounded by
COMSEQ_2:def 3;
end;
Lm6: for p be
FinSequence of (
REAL n) st (for i be
Element of
NAT st i
in (
Seg n) holds ex Pi be
FinSequence of
REAL st Pi
= ((
proj (i,n))
* p) & (E
. i)
= (
Sum Pi)) holds E
= (
Sum p)
proof
defpred
P[
Nat] means for p be
FinSequence of (
REAL n), r be
Element of (
REAL n) st (
len p)
= $1 & (for i be
Element of
NAT st i
in (
Seg n) holds ex Pi be
FinSequence of
REAL st Pi
= ((
proj (i,n))
* p) & (r
. i)
= (
Sum Pi)) holds r
= (
Sum p);
A1:
P[
0 ]
proof
let p be
FinSequence of (
REAL n), r be
Element of (
REAL n);
assume
A2: (
len p)
=
0 & (for i be
Element of
NAT st i
in (
Seg n) holds ex Pi be
FinSequence of
REAL st Pi
= ((
proj (i,n))
* p) & (r
. i)
= (
Sum Pi));
A3: p
=
{} by
A2;
(
len r)
= n by
CARD_1:def 7;
then
A4: (
dom r)
= (
Seg n) by
FINSEQ_1:def 3;
A5: (
dom ((
Seg n)
-->
0 ))
= (
Seg n) by
FUNCOP_1: 13;
A6:
now
let x be
object;
assume
A7: x
in (
dom r);
then
reconsider i = x as
Element of
NAT ;
set P = (
proj (i,n));
consider Pi be
FinSequence of
REAL such that
A8: Pi
= (P
* p) & (r
. i)
= (
Sum Pi) by
A2,
A4,
A7;
(r
. x)
=
0 by
A3,
A8,
RVSUM_1: 72;
hence (r
. x)
= (((
Seg n)
-->
0 )
. x) by
A4,
A7,
FUNCOP_1: 7;
end;
(
Sum p)
= (
0* n) by
A2,
EUCLID_7:def 11;
hence r
= (
Sum p) by
A6,
A4,
A5,
FUNCT_1: 2;
end;
A9: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume
A10:
P[k];
now
let p be
FinSequence of (
REAL n), r be
Element of (
REAL n);
assume
A11: (
len p)
= (k
+ 1) & (for i be
Element of
NAT st i
in (
Seg n) holds ex Pi be
FinSequence of
REAL st Pi
= ((
proj (i,n))
* p) & (r
. i)
= (
Sum Pi));
set p1 = (p
| k);
(k
+ 1)
in (
Seg (k
+ 1)) by
FINSEQ_1: 4;
then (k
+ 1)
in (
dom p) by
A11,
FINSEQ_1:def 3;
then (p
. (k
+ 1))
in (
rng p) by
FUNCT_1: 3;
then
reconsider pk1 = (p
. (k
+ 1)) as
Element of (
REAL n);
defpred
YX[
Nat,
set] means ex P1i be
FinSequence of
REAL st P1i
= ((
proj ($1,n))
* p1) & $2
= (
Sum P1i);
A12: for i be
Nat st i
in (
Seg n) holds ex r be
Element of
REAL st
YX[i, r]
proof
let i be
Nat;
assume i
in (
Seg n);
reconsider S = (
Sum ((
proj (i,n))
* p1)) as
Element of
REAL by
XREAL_0:def 1;
take S;
thus thesis;
end;
consider r1 be
FinSequence of
REAL such that
A13: (
dom r1)
= (
Seg n) & for i be
Nat st i
in (
Seg n) holds
YX[i, (r1
. i)] from
FINSEQ_1:sch 5(
A12);
(
len r1)
= n by
A13,
FINSEQ_1:def 3;
then
reconsider r1 as
Element of (
REAL n) by
FINSEQ_2: 92;
A14: for i st i
in (
Seg n) holds ex P1i be
FinSequence of
REAL st P1i
= ((
proj (i,n))
* p1) & (r1
. i)
= (
Sum P1i) by
A13;
A15: k
<= (
len p) by
A11,
NAT_1: 16;
then
A16: (
len p1)
= k by
FINSEQ_1: 59;
A17: (
len r)
= n by
CARD_1:def 7;
A18: (
len (r1
+ pk1))
= n by
CARD_1:def 7;
now
let i be
Nat;
set P = (
proj (i,n));
assume 1
<= i & i
<= n;
then
A19: i
in (
Seg n);
consider Pi be
FinSequence of
REAL such that
A20: Pi
= (P
* p) & (r
. i)
= (
Sum Pi) by
A19,
A11;
consider P1i be
FinSequence of
REAL such that
A21: P1i
= (P
* p1) & (r1
. i)
= (
Sum P1i) by
A19,
A13;
A22: (
dom P)
= (
REAL n) by
FUNCT_2:def 1;
then
A23: (
rng p)
c= (
dom P);
A24: (
dom Pi)
= (
dom p) by
A23,
A20,
RELAT_1: 27
.= (
Seg (
len p)) by
FINSEQ_1:def 3;
A25: (
len p)
= ((
len p1)
+ (
len
<*(pk1
. i)*>)) by
A11,
A16,
FINSEQ_1: 40;
A26: (
rng p1)
c= (
dom P) by
A22;
A27: (
dom P1i)
= (
dom p1) by
A26,
A21,
RELAT_1: 27
.= (
Seg (
len p1)) by
FINSEQ_1:def 3;
then
A28: (
len P1i)
= (
len p1) by
FINSEQ_1:def 3;
A29: (
dom Pi)
= (
Seg ((
len P1i)
+ (
len
<*(pk1
. i)*>))) by
A24,
A25,
A27,
FINSEQ_1:def 3;
(
len p1)
<= (
len p) by
A15,
FINSEQ_1: 59;
then
A30: (
Seg (
len p1))
c= (
Seg (
len p)) by
FINSEQ_1: 5;
A31: for k be
Nat st k
in (
dom P1i) holds (Pi
. k)
= (P1i
. k)
proof
let k be
Nat;
assume
A32: k
in (
dom P1i);
then
A33: k
in (
dom p1) by
A27,
FINSEQ_1:def 3;
thus (P1i
. k)
= (P
. (p1
. k)) by
A21,
A32,
FUNCT_1: 12
.= (P
. (p
. k)) by
A33,
FUNCT_1: 47
.= (Pi
. k) by
A20,
A32,
A24,
A27,
A30,
FUNCT_1: 12;
end;
for k be
Nat st k
in (
dom
<*(pk1
. i)*>) holds (Pi
. ((
len P1i)
+ k))
= (
<*(pk1
. i)*>
. k)
proof
let j be
Nat;
assume j
in (
dom
<*(pk1
. i)*>);
then j
in (
Seg (
len
<*(pk1
. i)*>)) by
FINSEQ_1:def 3;
then j
in (
Seg 1) by
FINSEQ_1: 40;
then
A34: j
= 1 by
FINSEQ_1: 2,
TARSKI:def 1;
hence (Pi
. ((
len P1i)
+ j))
= (P
. (p
. (k
+ 1))) by
A20,
A24,
A11,
A28,
A16,
FINSEQ_1: 4,
FUNCT_1: 12
.= (pk1
. i) by
PDIFF_1:def 1
.= (
<*(pk1
. i)*>
. j) by
A34,
FINSEQ_1: 40;
end;
then Pi
= (P1i
^
<*(pk1
. i)*>) by
A31,
A29,
FINSEQ_1:def 7;
hence (r
. i)
= ((r1
. i)
+ (pk1
. i)) by
A20,
A21,
RVSUM_1: 74
.= ((r1
+ pk1)
. i) by
RVSUM_1: 11;
end;
then
A35: r
= (r1
+ pk1) by
A17,
A18;
ex v be
Element of (
REAL n) st v
= (p
. (
len p)) & (
Sum p)
= ((
Sum p1)
+ v) by
A16,
A11,
PDIFF_6: 15;
hence r
= (
Sum p) by
A11,
A35,
A10,
A14,
A16;
end;
hence
P[(k
+ 1)];
end;
A36: for k be
Nat holds
P[k] from
NAT_1:sch 2(
A1,
A9);
let p be
FinSequence of (
REAL n);
assume
A37: for i be
Element of
NAT st i
in (
Seg n) holds ex Pi be
FinSequence of
REAL st Pi
= ((
proj (i,n))
* p) & (E
. i)
= (
Sum Pi);
(
len p)
= (
len p);
hence thesis by
A37,
A36;
end;
Lm7: for p be
FinSequence of (
REAL n), q be
FinSequence of
REAL st (
len p)
= (
len q) & (for j be
Nat st j
in (
dom p) holds
|.(p
/. j).|
<= (q
/. j)) & (for i be
Element of
NAT st i
in (
Seg n) holds ex Pi be
FinSequence of
REAL st Pi
= ((
proj (i,n))
* p) & (E
. i)
= (
Sum Pi)) holds
|.E.|
<= (
Sum q)
proof
let p be
FinSequence of (
REAL n), q be
FinSequence of
REAL ;
assume
A1: (
len p)
= (
len q) & (for j be
Nat st j
in (
dom p) holds
|.(p
/. j).|
<= (q
/. j)) & (for i be
Element of
NAT st i
in (
Seg n) holds ex Pi be
FinSequence of
REAL st Pi
= ((
proj (i,n))
* p) & (E
. i)
= (
Sum Pi));
then
A2: E
= (
Sum p) by
Lm6;
defpred
P1[
Nat,
set] means ex v be
Element of (
REAL n) st v
= (p
. $1) & $2
=
|.v.|;
A3: for i be
Nat st i
in (
Seg (
len p)) holds ex x be
Element of
REAL st
P1[i, x]
proof
let i be
Nat;
assume i
in (
Seg (
len p));
then
A4: i
in (
dom p) by
FINSEQ_1:def 3;
reconsider w =
|.(p
/. i).| as
Element of
REAL by
XREAL_0:def 1;
take w;
thus thesis by
A4,
PARTFUN1:def 6;
end;
consider u be
FinSequence of
REAL such that
A5: (
dom u)
= (
Seg (
len p)) & for i be
Nat st i
in (
Seg (
len p)) holds
P1[i, (u
. i)] from
FINSEQ_1:sch 5(
A3);
A6: for i be
Nat st i
in (
dom p) holds ex v be
Element of (
REAL n) st v
= (p
. i) & (u
. i)
=
|.v.|
proof
let i be
Nat;
assume i
in (
dom p);
then i
in (
Seg (
len p)) by
FINSEQ_1:def 3;
hence ex v be
Element of (
REAL n) st v
= (p
. i) & (u
. i)
=
|.v.| by
A5;
end;
A7: (
len u)
= (
len p) by
A5,
FINSEQ_1:def 3;
then
A8:
|.(
Sum p).|
<= (
Sum u) by
A6,
PDIFF_6: 17;
set i = (
len p);
reconsider uu = u as
Element of (i
-tuples_on
REAL ) by
A7,
FINSEQ_2: 92;
reconsider qq = q as
Element of (i
-tuples_on
REAL ) by
A1,
FINSEQ_2: 92;
now
let j be
Nat;
assume
A9: j
in (
Seg i);
then
A10: j
in (
dom p) by
FINSEQ_1:def 3;
then
A11:
|.(p
/. j).|
<= (q
/. j) by
A1;
j
in (
dom q) by
A9,
A1,
FINSEQ_1:def 3;
then
A12: (q
/. j)
= (q
. j) by
PARTFUN1:def 6;
ex v be
Element of (
REAL n) st v
= (p
. j) & (u
. j)
=
|.v.| by
A6,
A10;
hence (uu
. j)
<= (qq
. j) by
A11,
A12,
A10,
PARTFUN1:def 6;
end;
then (
Sum uu)
<= (
Sum qq) by
RVSUM_1: 82;
hence thesis by
A2,
A8,
XXREAL_0: 2;
end;
Lm8: for n be non
zero
Element of
NAT , h be
Function of A, (
REAL n), f be
Function of A,
REAL st h is
bounded & h is
integrable & f
=
|.h.| & f is
integrable holds
|.(
integral h).|
<= (
integral f)
proof
let n be non
zero
Element of
NAT , h be
Function of A, (
REAL n), f be
Function of A,
REAL ;
assume
A1: h is
bounded & h is
integrable & f
=
|.h.| & f is
integrable;
then
A2: f is
bounded by
Th14;
consider T be
DivSequence of A such that
A3: (
delta T) is
convergent & (
lim (
delta T))
=
0 by
INTEGRA4: 11;
set S = the
middle_volume_Sequence of h, T;
A4: (
dom f)
= (
dom h) by
A1,
NFCONT_4:def 2;
defpred
P[
Element of
NAT ,
set] means ex p be
FinSequence of
REAL st p
= $2 & (
len p)
= (
len (T
. $1)) & for i be
Nat st i
in (
dom (T
. $1)) holds (p
. i)
in (
dom (h
| (
divset ((T
. $1),i)))) & ex z be
Element of (
REAL n) st z
= ((h
| (
divset ((T
. $1),i)))
. (p
. i)) & ((S
. $1)
. i)
= ((
vol (
divset ((T
. $1),i)))
* z);
A5: for k be
Element of
NAT holds ex p be
Element of (
REAL
* ) st
P[k, p]
proof
let k be
Element of
NAT ;
defpred
P1[
Nat,
set] means $2
in (
dom (h
| (
divset ((T
. k),$1)))) & ex c be
Element of (
REAL n) st c
= ((h
| (
divset ((T
. k),$1)))
. $2) & ((S
. k)
. $1)
= ((
vol (
divset ((T
. k),$1)))
* c);
A6: (
Seg (
len (T
. k)))
= (
dom (T
. k)) by
FINSEQ_1:def 3;
A7: for i be
Nat st i
in (
Seg (
len (T
. k))) holds ex x be
Element of
REAL st
P1[i, x]
proof
let i be
Nat;
assume i
in (
Seg (
len (T
. k)));
then i
in (
dom (T
. k)) by
FINSEQ_1:def 3;
then
consider c be
Element of (
REAL n) such that
A8: c
in (
rng (h
| (
divset ((T
. k),i)))) & ((S
. k)
. i)
= ((
vol (
divset ((T
. k),i)))
* c) by
INTEGR15:def 5;
consider x be
object such that
A9: x
in (
dom (h
| (
divset ((T
. k),i)))) & c
= ((h
| (
divset ((T
. k),i)))
. x) by
A8,
FUNCT_1:def 3;
x
in (
dom h) & x
in (
divset ((T
. k),i)) by
A9,
RELAT_1: 57;
then
reconsider x as
Element of
REAL ;
take x;
thus thesis by
A8,
A9;
end;
consider p be
FinSequence of
REAL such that
A10: (
dom p)
= (
Seg (
len (T
. k))) & for i be
Nat st i
in (
Seg (
len (T
. k))) holds
P1[i, (p
. i)] from
FINSEQ_1:sch 5(
A7);
take p;
(
len p)
= (
len (T
. k)) by
A10,
FINSEQ_1:def 3;
hence thesis by
A10,
A6,
FINSEQ_1:def 11;
end;
consider F be
sequence of (
REAL
* ) such that
A11: for x be
Element of
NAT holds
P[x, (F
. x)] from
FUNCT_2:sch 3(
A5);
defpred
P1[
Element of
NAT ,
set] means ex q be
middle_volume of f, (T
. $1) st q
= $2 & for i be
Nat st i
in (
dom (T
. $1)) holds ex z be
Element of
REAL st ((F
. $1)
. i)
in (
dom (f
| (
divset ((T
. $1),i)))) & z
= ((f
| (
divset ((T
. $1),i)))
. ((F
. $1)
. i)) & (q
. i)
= ((
vol (
divset ((T
. $1),i)))
* z);
A12: for k be
Element of
NAT holds ex y be
Element of (
REAL
* ) st
P1[k, y]
proof
let k be
Element of
NAT ;
defpred
P11[
Nat,
set] means ex c be
Element of
REAL st ((F
. k)
. $1)
in (
dom (f
| (
divset ((T
. k),$1)))) & c
= ((f
| (
divset ((T
. k),$1)))
. ((F
. k)
. $1)) & $2
= ((
vol (
divset ((T
. k),$1)))
* c);
A13: (
Seg (
len (T
. k)))
= (
dom (T
. k)) by
FINSEQ_1:def 3;
A14: for i be
Nat st i
in (
Seg (
len (T
. k))) holds ex x be
Element of
REAL st
P11[i, x]
proof
let i be
Nat;
assume i
in (
Seg (
len (T
. k)));
then
A15: i
in (
dom (T
. k)) by
FINSEQ_1:def 3;
consider p be
FinSequence of
REAL such that
A16: p
= (F
. k) & (
len p)
= (
len (T
. k)) & for i be
Nat st i
in (
dom (T
. k)) holds (p
. i)
in (
dom (h
| (
divset ((T
. k),i)))) & ex z be
Element of (
REAL n) st z
= ((h
| (
divset ((T
. k),i)))
. (p
. i)) & ((S
. k)
. i)
= ((
vol (
divset ((T
. k),i)))
* z) by
A11;
(p
. i)
in (
dom (h
| (
divset ((T
. k),i)))) by
A15,
A16;
then (p
. i)
in (
dom h) & (p
. i)
in (
divset ((T
. k),i)) by
RELAT_1: 57;
then
A17: ((F
. k)
. i)
in (
dom (f
| (
divset ((T
. k),i)))) by
A16,
A4,
RELAT_1: 57;
A18: ((
vol (
divset ((T
. k),i)))
* ((f
| (
divset ((T
. k),i)))
. (p
. i)))
in
REAL by
XREAL_0:def 1;
((f
| (
divset ((T
. k),i)))
. (p
. i))
in
REAL by
XREAL_0:def 1;
hence thesis by
A16,
A17,
A18;
end;
consider q be
FinSequence of
REAL such that
A19: (
dom q)
= (
Seg (
len (T
. k))) & for i be
Nat st i
in (
Seg (
len (T
. k))) holds
P11[i, (q
. i)] from
FINSEQ_1:sch 5(
A14);
A20: (
len q)
= (
len (T
. k)) by
A19,
FINSEQ_1:def 3;
now
let i be
Nat;
assume i
in (
dom (T
. k));
then i
in (
Seg (
len (T
. k))) by
FINSEQ_1:def 3;
then
consider c be
Element of
REAL such that
A21: ((F
. k)
. i)
in (
dom (f
| (
divset ((T
. k),i)))) & c
= ((f
| (
divset ((T
. k),i)))
. ((F
. k)
. i)) & (q
. i)
= ((
vol (
divset ((T
. k),i)))
* c) by
A19;
thus ex c be
Element of
REAL st c
in (
rng (f
| (
divset ((T
. k),i)))) & (q
. i)
= (c
* (
vol (
divset ((T
. k),i)))) by
A21,
FUNCT_1: 3;
end;
then
reconsider q as
middle_volume of f, (T
. k) by
A20,
INTEGR15:def 1;
q is
Element of (
REAL
* ) by
FINSEQ_1:def 11;
hence thesis by
A13,
A19;
end;
consider Sf be
sequence of (
REAL
* ) such that
A22: for x be
Element of
NAT holds
P1[x, (Sf
. x)] from
FUNCT_2:sch 3(
A12);
now
let k be
Element of
NAT ;
ex q be
middle_volume of f, (T
. k) st q
= (Sf
. k) & for i be
Nat st i
in (
dom (T
. k)) holds ex z be
Element of
REAL st ((F
. k)
. i)
in (
dom (f
| (
divset ((T
. k),i)))) & z
= ((f
| (
divset ((T
. k),i)))
. ((F
. k)
. i)) & (q
. i)
= ((
vol (
divset ((T
. k),i)))
* z) by
A22;
hence (Sf
. k) is
middle_volume of f, (T
. k);
end;
then
reconsider Sf as
middle_volume_Sequence of f, T by
INTEGR15:def 3;
A23: (
middle_sum (f,Sf)) is
convergent & (
lim (
middle_sum (f,Sf)))
= (
integral f) by
A1,
A2,
A3,
INTEGR15: 9;
A24: (
middle_sum (h,S)) is
convergent & (
lim (
middle_sum (h,S)))
= (
integral h) by
A1,
A3,
INTEGR15: 11;
A25: for k be
Element of
NAT holds
||.((
middle_sum (h,S))
. k).||
<= ((
middle_sum (f,Sf))
. k)
proof
let k be
Element of
NAT ;
A26: ((
middle_sum (f,Sf))
. k)
= (
middle_sum (f,(Sf
. k))) by
INTEGR15:def 4
.= (
Sum (Sf
. k));
A27: ((
middle_sum (h,S))
. k)
= (
middle_sum (h,(S
. k))) by
INTEGR15:def 8;
A28: for i be
Element of
NAT st i
in (
Seg n) holds ex Pi be
FinSequence of
REAL st Pi
= ((
proj (i,n))
* (S
. k)) & ((
middle_sum (h,(S
. k)))
. i)
= (
Sum Pi) by
INTEGR15:def 6;
A29: ex p be
FinSequence of
REAL st p
= (F
. k) & (
len p)
= (
len (T
. k)) & for i be
Nat st i
in (
dom (T
. k)) holds (p
. i)
in (
dom (h
| (
divset ((T
. k),i)))) & ex z be
Element of (
REAL n) st z
= ((h
| (
divset ((T
. k),i)))
. (p
. i)) & ((S
. k)
. i)
= ((
vol (
divset ((T
. k),i)))
* z) by
A11;
A30: ex q be
middle_volume of f, (T
. k) st q
= (Sf
. k) & for i be
Nat st i
in (
dom (T
. k)) holds ex z be
Element of
REAL st ((F
. k)
. i)
in (
dom (f
| (
divset ((T
. k),i)))) & z
= ((f
| (
divset ((T
. k),i)))
. ((F
. k)
. i)) & (q
. i)
= ((
vol (
divset ((T
. k),i)))
* z) by
A22;
A31: (
len (Sf
. k))
= (
len (T
. k)) by
INTEGR15:def 1;
A32: (
len (S
. k))
= (
len (T
. k)) by
INTEGR15:def 5;
now
let i be
Nat;
assume
A33: i
in (
dom (S
. k));
then
A34: i
in (
Seg (
len (T
. k))) by
A32,
FINSEQ_1:def 3;
then
A35: i
in (
dom (T
. k)) by
FINSEQ_1:def 3;
A36: i
in (
dom (Sf
. k)) by
A31,
A34,
FINSEQ_1:def 3;
A37: ((F
. k)
. i)
in (
dom (h
| (
divset ((T
. k),i)))) by
A35,
A29;
consider z be
Element of (
REAL n) such that
A38: z
= ((h
| (
divset ((T
. k),i)))
. ((F
. k)
. i)) & ((S
. k)
. i)
= ((
vol (
divset ((T
. k),i)))
* z) by
A29,
A35;
consider w be
Element of
REAL such that
A39: ((F
. k)
. i)
in (
dom (f
| (
divset ((T
. k),i)))) & w
= ((f
| (
divset ((T
. k),i)))
. ((F
. k)
. i)) & ((Sf
. k)
. i)
= ((
vol (
divset ((T
. k),i)))
* w) by
A30,
A35;
A40: ((S
. k)
/. i)
= ((S
. k)
. i) by
A33,
PARTFUN1:def 6;
A41:
0
<= (
vol (
divset ((T
. k),i))) by
INTEGRA1: 9;
A42:
|.((S
. k)
/. i).|
= (
|.(
vol (
divset ((T
. k),i))).|
*
|.z.|) by
A38,
A40,
EUCLID: 11
.= ((
vol (
divset ((T
. k),i)))
*
|.z.|) by
A41,
ABSVALUE:def 1;
A43: (
dom (h
| (
divset ((T
. k),i))))
c= (
dom h) by
RELAT_1: 60;
A44: ((h
| (
divset ((T
. k),i)))
. ((F
. k)
. i))
= (h
. ((F
. k)
. i)) by
A37,
FUNCT_1: 47
.= (h
/. ((F
. k)
. i)) by
A43,
A37,
PARTFUN1:def 6;
A45: (
dom (f
| (
divset ((T
. k),i))))
c= (
dom f) by
RELAT_1: 60;
((f
| (
divset ((T
. k),i)))
. ((F
. k)
. i))
= (f
. ((F
. k)
. i)) by
A39,
FUNCT_1: 47
.= (
|.h.|
/. ((F
. k)
. i)) by
A45,
A1,
A39,
PARTFUN1:def 6
.=
|.(h
/. ((F
. k)
. i)).| by
A45,
A1,
A39,
NFCONT_4:def 2;
hence
|.((S
. k)
/. i).|
<= ((Sf
. k)
/. i) by
A42,
A44,
A39,
A38,
A36,
PARTFUN1:def 6;
end;
then
|.(
middle_sum (h,(S
. k))).|
<= (
Sum (Sf
. k)) by
Lm7,
A28,
A31,
A32;
hence thesis by
A26,
A27,
REAL_NS1: 1;
end;
A46:
now
let i be
Nat;
A47: i
in
NAT by
ORDINAL1:def 12;
(
||.(
middle_sum (h,S)).||
. i)
=
||.((
middle_sum (h,S))
. i).|| by
NORMSP_0:def 4;
hence (
||.(
middle_sum (h,S)).||
. i)
<= ((
middle_sum (f,Sf))
. i) by
A25,
A47;
end;
||.(
middle_sum (h,S)).|| is
convergent by
A1,
A3,
INTEGR15: 11,
NORMSP_1: 23;
then (
lim
||.(
middle_sum (h,S)).||)
<= (
lim (
middle_sum (f,Sf))) by
A46,
A23,
SEQ_2: 18;
then
||.(
lim (
middle_sum (h,S))).||
<= (
lim (
middle_sum (f,Sf))) by
A24,
LOPBAN_1: 41;
hence thesis by
A23,
A1,
A3,
INTEGR15: 11,
REAL_NS1: 1;
end;
Lm9: A
c= (
dom h) implies (h
| A) is
Function of A, (
REAL n) by
Lm3;
theorem ::
INTEGR19:15
f is
bounded & A
c= (
dom f) implies (f
| A) is
bounded
proof
assume
A1: f is
bounded & A
c= (
dom f);
let i;
set P = (
proj (i,n));
assume i
in (
Seg n);
then (P
* f) is
bounded by
A1;
then
consider r be
Real such that
A2: for c be
object st c
in (
dom (P
* f)) holds
|.((P
* f)
. c).|
<= r by
RFUNCT_1: 72;
now
let c be
object;
assume c
in (A
/\ (
dom (P
* f)));
then c
in (
dom (P
* f)) by
XBOOLE_0:def 4;
hence
|.((P
* f)
. c).|
<= r by
A2;
end;
then ((P
* f)
| A) is
bounded by
RFUNCT_1: 73;
hence (P
* (f
| A)) is
bounded by
RELAT_1: 83;
end;
theorem ::
INTEGR19:16
Th16: for f be
PartFunc of
REAL , (
REAL n), g be
Function of A, (
REAL n) st f is
bounded & f
= g holds g is
bounded;
theorem ::
INTEGR19:17
Th17: for f be
PartFunc of
REAL , (
REAL n), g be
Function of A, (
REAL n) st f
= g holds
|.f.|
=
|.g.|
proof
let f be
PartFunc of
REAL , (
REAL n), g be
Function of A, (
REAL n);
assume
A1: f
= g;
A2: (
dom
|.f.|)
= (
dom f) by
NFCONT_4:def 2
.= (
dom
|.g.|) by
A1,
NFCONT_4:def 2;
now
let x be
object;
assume
A3: x
in (
dom
|.f.|);
thus (
|.f.|
. x)
= (
|.f.|
/. x) by
A3,
PARTFUN1:def 6
.=
|.(f
/. x).| by
A3,
NFCONT_4:def 2
.= (
|.g.|
/. x) by
A1,
A2,
A3,
NFCONT_4:def 2
.= (
|.g.|
. x) by
A2,
A3,
PARTFUN1:def 6;
end;
hence thesis by
A2,
FUNCT_1: 2;
end;
theorem ::
INTEGR19:18
Th18: A
c= (
dom h) implies
|.(h
| A).|
= (
|.h.|
| A)
proof
assume
A1: A
c= (
dom h);
A2: (
dom (h
| A))
= A by
A1,
RELAT_1: 62;
A3: (
dom (
|.h.|
| A))
= ((
dom
|.h.|)
/\ A) by
RELAT_1: 61
.= ((
dom h)
/\ A) by
NFCONT_4:def 2
.= A by
A1,
XBOOLE_1: 28;
A4: (
dom
|.(h
| A).|)
= (
dom (
|.h.|
| A)) by
A3,
A2,
NFCONT_4:def 2;
now
let x be
object;
assume
A5: x
in (
dom (
|.h.|
| A));
then
A6: x
in ((
dom
|.h.|)
/\ A) by
RELAT_1: 61;
then
A7: x
in ((
dom h)
/\ A) by
NFCONT_4:def 2;
then
A8: x
in (
dom (h
| A)) by
RELAT_1: 61;
A9: x
in (
dom
|.h.|) by
A6,
XBOOLE_0:def 4;
A10: x
in (
dom h) by
A7,
XBOOLE_0:def 4;
A11: (h
/. x)
= (h
. x) by
A10,
PARTFUN1:def 6
.= ((h
| A)
. x) by
A8,
FUNCT_1: 47
.= ((h
| A)
/. x) by
A8,
PARTFUN1:def 6;
thus ((
|.h.|
| A)
. x)
= (
|.h.|
. x) by
A6,
FUNCT_1: 48
.= (
|.h.|
/. x) by
A9,
PARTFUN1:def 6
.=
|.(h
/. x).| by
A9,
NFCONT_4:def 2
.= (
|.(h
| A).|
/. x) by
A11,
A4,
A5,
NFCONT_4:def 2
.= (
|.(h
| A).|
. x) by
A4,
A5,
PARTFUN1:def 6;
end;
hence thesis by
A4,
FUNCT_1: 2;
end;
theorem ::
INTEGR19:19
Th19: for n be non
zero
Element of
NAT , h be
PartFunc of
REAL , (
REAL n) st A
c= (
dom h) & (h
| A) is
bounded holds (
|.h.|
| A) is
bounded
proof
let n be non
zero
Element of
NAT , h be
PartFunc of
REAL , (
REAL n);
assume
A1: A
c= (
dom h) & (h
| A) is
bounded;
A2:
|.(h
| A).|
= (
|.h.|
| A) by
Th18,
A1;
reconsider g = (h
| A) as
Function of A, (
REAL n) by
A1,
Lm9;
g is
bounded by
A1;
then
|.g.| is
bounded by
Th14;
hence thesis by
A2,
Th17;
end;
theorem ::
INTEGR19:20
Th20: for n be non
zero
Element of
NAT , h be
PartFunc of
REAL , (
REAL n) st A
c= (
dom h) & (h
| A) is
bounded & h
is_integrable_on A &
|.h.|
is_integrable_on A holds
|.(
integral (h,A)).|
<= (
integral (
|.h.|,A))
proof
let n be non
zero
Element of
NAT , h be
PartFunc of
REAL , (
REAL n);
assume
A1: A
c= (
dom h) & (h
| A) is
bounded & h
is_integrable_on A &
|.h.|
is_integrable_on A;
set f =
|.h.|;
reconsider hA = (h
| A) as
Function of A, (
REAL n) by
A1,
Lm9;
A2: (
integral (h,A))
= (
integral hA) by
INTEGR15: 14;
A
c= (
dom f) by
A1,
NFCONT_4:def 2;
then
reconsider fA = (f
| A) as
Function of A,
REAL by
Lm5;
A3: fA is
integrable by
A1;
A4: hA is
integrable by
A1,
INTEGR15: 13;
|.hA.|
=
|.(h
| A).| by
Th17
.= (f
| A) by
Th18,
A1;
hence thesis by
A2,
A3,
A4,
A1,
Th16,
Lm8;
end;
theorem ::
INTEGR19:21
Th21: for n be non
zero
Element of
NAT , h be
PartFunc of
REAL , (
REAL n) st a
<= b &
['a, b']
c= (
dom h) & h
is_integrable_on
['a, b'] &
|.h.|
is_integrable_on
['a, b'] & (h
|
['a, b']) is
bounded holds
|.(
integral (h,a,b)).|
<= (
integral (
|.h.|,a,b))
proof
let n be non
zero
Element of
NAT , h be
PartFunc of
REAL , (
REAL n);
assume
A1: a
<= b &
['a, b']
c= (
dom h) & h
is_integrable_on
['a, b'] &
|.h.|
is_integrable_on
['a, b'] & (h
|
['a, b']) is
bounded;
['a, b']
=
[.a, b.] by
A1,
INTEGRA5:def 3;
then
A2: (
integral (h,a,b))
= (
integral (h,
['a, b'])) by
INTEGR15: 19;
(
integral (
|.h.|,a,b))
= (
integral (
|.h.|,
['a, b'])) by
A1,
INTEGRA5:def 4;
hence thesis by
Th20,
A1,
A2;
end;
Lm10: for n be non
zero
Element of
NAT holds for f be
PartFunc of
REAL , (
REAL n) st a
<= b & c
<= d & f
is_integrable_on
['a, b'] &
|.f.|
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'] holds f
is_integrable_on
['c, d'] &
|.f.|
is_integrable_on
['c, d'] & (
|.f.|
|
['c, d']) is
bounded &
|.(
integral (f,c,d)).|
<= (
integral (
|.f.|,c,d))
proof
let n be non
zero
Element of
NAT , f be
PartFunc of
REAL , (
REAL n) such that
A1: a
<= b and
A2: c
<= d and
A3: f
is_integrable_on
['a, b'] &
|.f.|
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) and
A4: c
in
['a, b'] & d
in
['a, b'];
['a, b']
=
[.a, b.] by
A1,
INTEGRA5:def 3;
then
A5: a
<= c & d
<= b by
A4,
XXREAL_1: 1;
then
A6: (f
|
['c, d']) is
bounded by
A2,
A3,
Th9;
A7:
['c, d']
c= (
dom f) & f
is_integrable_on
['c, d'] by
A2,
A3,
A5,
Th9,
Th2;
A8:
['a, b']
c= (
dom
|.f.|) by
A3,
NFCONT_4:def 2;
(
|.f.|
|
['a, b']) is
bounded by
A3,
Th19;
then
['c, d']
c= (
dom
|.f.|) &
|.f.|
is_integrable_on
['c, d'] by
A2,
A3,
A5,
A8,
INTEGRA6: 18;
hence thesis by
A2,
A6,
A7,
Th21,
Th19;
end;
theorem ::
INTEGR19:22
Th22: for n be non
zero
Element of
NAT , f be
PartFunc of
REAL , (
REAL n) st a
<= b & f
is_integrable_on
['a, b'] &
|.f.|
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'] holds
|.f.|
is_integrable_on
['(
min (c,d)), (
max (c,d))'] & (
|.f.|
|
['(
min (c,d)), (
max (c,d))']) is
bounded &
|.(
integral (f,c,d)).|
<= (
integral (
|.f.|,(
min (c,d)),(
max (c,d))))
proof
let n be non
zero
Element of
NAT , f be
PartFunc of
REAL , (
REAL n);
assume
A1: a
<= b & f
is_integrable_on
['a, b'] &
|.f.|
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'];
per cases ;
suppose
A2: not c
<= d;
then
A3:
['d, c']
=
[.d, c.] by
INTEGRA5:def 3;
then (
integral (f,c,d))
= (
- (
integral (f,
['d, c']))) by
INTEGR15: 20;
then (
integral (f,c,d))
= (
- (
integral (f,d,c))) by
A3,
INTEGR15: 19;
then
A4:
|.(
integral (f,c,d)).|
=
|.(
integral (f,d,c)).| by
EUCLID: 10;
d
= (
min (c,d)) & c
= (
max (c,d)) by
A2,
XXREAL_0:def 9,
XXREAL_0:def 10;
hence thesis by
A1,
A2,
A4,
Lm10;
end;
suppose
A5: c
<= d;
then c
= (
min (c,d)) & d
= (
max (c,d)) by
XXREAL_0:def 9,
XXREAL_0:def 10;
hence thesis by
A1,
A5,
Lm10;
end;
end;
Lm11: for n be non
zero
Element of
NAT holds for f be
PartFunc of
REAL , (
REAL n) st a
<= b & c
<= d & f
is_integrable_on
['a, b'] &
|.f.|
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'] holds
|.f.|
is_integrable_on
['c, d'] & (
|.f.|
|
['c, d']) is
bounded &
|.(
integral (f,c,d)).|
<= (
integral (
|.f.|,c,d))
proof
let n be non
zero
Element of
NAT ;
let f be
PartFunc of
REAL , (
REAL n);
assume that
A1: a
<= b and
A2: c
<= d and
A3: f
is_integrable_on
['a, b'] &
|.f.|
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'];
(
min (c,d))
= c & (
max (c,d))
= d by
A2,
XXREAL_0:def 9,
XXREAL_0:def 10;
hence thesis by
A1,
A3,
Th22;
end;
Lm12: for n be non
zero
Element of
NAT holds for f be
PartFunc of
REAL , (
REAL n) st a
<= b & c
<= d & f
is_integrable_on
['a, b'] &
|.f.|
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'] holds
|.(
integral (f,d,c)).|
<= (
integral (
|.f.|,c,d))
proof
let n be non
zero
Element of
NAT ;
let f be
PartFunc of
REAL , (
REAL n);
assume that
A1: a
<= b and
A2: c
<= d and
A3: f
is_integrable_on
['a, b'] &
|.f.|
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] and
A4: d
in
['a, b'];
['c, d']
=
[.c, d.] by
A2,
INTEGRA5:def 3;
then
A5:
|.(
integral (f,c,d)).|
<= (
integral (
|.f.|,c,d)) & (
integral (f,c,d))
= (
integral (f,
['c, d'])) by
A1,
A2,
A3,
A4,
Lm11,
INTEGR15: 19;
['c, d']
=
[.c, d.] by
A2,
INTEGRA5:def 3;
then (
integral (f,d,c))
= (
- (
integral (f,
['c, d']))) by
INTEGR15: 20;
hence thesis by
A5,
EUCLID: 10;
end;
theorem ::
INTEGR19:23
for n be non
zero
Element of
NAT holds for f be
PartFunc of
REAL , (
REAL n) st a
<= b & c
<= d & f
is_integrable_on
['a, b'] &
|.f.|
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'] holds
|.f.|
is_integrable_on
['c, d'] & (
|.f.|
|
['c, d']) is
bounded &
|.(
integral (f,c,d)).|
<= (
integral (
|.f.|,c,d)) &
|.(
integral (f,d,c)).|
<= (
integral (
|.f.|,c,d)) by
Lm11,
Lm12;
Lm13: for n be non
zero
Element of
NAT holds for f be
PartFunc of
REAL , (
REAL n) st (a
<= b & f
is_integrable_on
['a, b'] &
|.f.|
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'] & for x be
Real st x
in
['(
min (c,d)), (
max (c,d))'] holds
|.(f
/. x).|
<= e) holds
|.(
integral (f,c,d)).|
<= (e
*
|.(d
- c).|)
proof
let n be non
zero
Element of
NAT ;
let f be
PartFunc of
REAL , (
REAL n);
set A =
['(
min (c,d)), (
max (c,d))'];
assume that
A1: a
<= b & f
is_integrable_on
['a, b'] &
|.f.|
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'] and
A2: for x be
Real st x
in
['(
min (c,d)), (
max (c,d))'] holds
|.(f
/. x).|
<= e;
(
rng
|.f.|)
c=
REAL ;
then
A3:
|.f.| is
Function of (
dom
|.f.|),
REAL by
FUNCT_2: 2;
(
dom
|.f.|)
= (
dom f) by
NFCONT_4:def 2;
then
A4:
['(
min (c,d)), (
max (c,d))']
c= (
dom
|.f.|) by
A1,
Th3;
then
reconsider g = (
|.f.|
| A) as
Function of A,
REAL by
A3,
FUNCT_2: 32;
A5: (
vol A)
=
|.(d
- c).| by
INTEGRA6: 6;
|.f.|
is_integrable_on A by
A1,
Th22;
then
A6: g is
integrable;
consider h be
Function of A,
REAL such that
A7: (
rng h)
=
{e} and
A8: (h
| A) is
bounded by
INTEGRA4: 5;
A9:
now
let x be
Real;
assume
A10: x
in A;
then (g
. x)
= (
|.f.|
. x) by
FUNCT_1: 49;
then (g
. x)
= (
|.f.|
/. x) by
A10,
A4,
PARTFUN1:def 6;
then
A11: (g
. x)
=
|.(f
/. x).| by
A10,
A4,
NFCONT_4:def 2;
(h
. x)
in
{e} by
A7,
A10,
FUNCT_2: 4;
then (h
. x)
= e by
TARSKI:def 1;
hence (g
. x)
<= (h
. x) by
A11,
A2,
A10;
end;
A12:
|.(
integral (f,c,d)).|
<= (
integral (
|.f.|,(
min (c,d)),(
max (c,d)))) by
A1,
Th22;
(
min (c,d))
<= c & c
<= (
max (c,d)) by
XXREAL_0: 17,
XXREAL_0: 25;
then (
min (c,d))
<= (
max (c,d)) by
XXREAL_0: 2;
then
A13: (
integral (
|.f.|,(
min (c,d)),(
max (c,d))))
= (
integral (
|.f.|,A)) by
INTEGRA5:def 4;
(
|.f.|
| A) is
bounded by
A1,
Th22;
then
A14: (g
| A) is
bounded;
h is
integrable & (
integral h)
= (e
* (
vol A)) by
A7,
INTEGRA4: 4;
then (
integral (
|.f.|,(
min (c,d)),(
max (c,d))))
<= (e
*
|.(d
- c).|) by
A13,
A8,
A9,
A6,
A14,
A5,
INTEGRA2: 34;
hence thesis by
A12,
XXREAL_0: 2;
end;
Lm14: for n be non
zero
Element of
NAT holds for f be
PartFunc of
REAL , (
REAL n) st (a
<= b & c
<= d & f
is_integrable_on
['a, b'] &
|.f.|
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'] & for x be
Real st x
in
['c, d'] holds
|.(f
/. x).|
<= e) holds
|.(
integral (f,c,d)).|
<= (e
* (d
- c))
proof
let n be non
zero
Element of
NAT ;
let f be
PartFunc of
REAL , (
REAL n);
assume that
A1: a
<= b and
A2: c
<= d and
A3: f
is_integrable_on
['a, b'] &
|.f.|
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & (d
in
['a, b'] & for x be
Real st x
in
['c, d'] holds
|.(f
/. x).|
<= e);
0
<= (d
- c) by
A2,
XREAL_1: 48;
then
A4:
|.(d
- c).|
= (d
- c) by
ABSVALUE:def 1;
(
min (c,d))
= c & (
max (c,d))
= d by
A2,
XXREAL_0:def 9,
XXREAL_0:def 10;
hence thesis by
A1,
A3,
A4,
Lm13;
end;
Lm15: for n be non
zero
Element of
NAT holds for f be
PartFunc of
REAL , (
REAL n) st (a
<= b & c
<= d & f
is_integrable_on
['a, b'] &
|.f.|
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'] & for x be
Real st x
in
['c, d'] holds
|.(f
/. x).|
<= e) holds
|.(
integral (f,d,c)).|
<= (e
* (d
- c))
proof
let n be non
zero
Element of
NAT ;
let f be
PartFunc of
REAL , (
REAL n);
assume that
A1: a
<= b and
A2: c
<= d and
A3: f
is_integrable_on
['a, b'] &
|.f.|
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] and
A4: d
in
['a, b'] and
A5: for x be
Real st x
in
['c, d'] holds
|.(f
/. x).|
<= e;
['c, d']
=
[.c, d.] by
A2,
INTEGRA5:def 3;
then
A6:
|.(
integral (f,c,d)).|
<= (e
* (d
- c)) & (
integral (f,c,d))
= (
integral (f,
['c, d'])) by
A1,
A2,
A3,
A4,
A5,
Lm14,
INTEGR15: 19;
['c, d']
=
[.c, d.] by
A2,
INTEGRA5:def 3;
then (
integral (f,d,c))
= (
- (
integral (f,
['c, d']))) by
INTEGR15: 20;
hence thesis by
A6,
EUCLID: 10;
end;
theorem ::
INTEGR19:24
for n be non
zero
Element of
NAT holds for f be
PartFunc of
REAL , (
REAL n) st (a
<= b & c
<= d & f
is_integrable_on
['a, b'] &
|.f.|
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'] & for x be
Real st x
in
['c, d'] holds
|.(f
/. x).|
<= e) holds
|.(
integral (f,c,d)).|
<= (e
* (d
- c)) &
|.(
integral (f,d,c)).|
<= (e
* (d
- c)) by
Lm14,
Lm15;
theorem ::
INTEGR19:25
Th25: a
<= b & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'] implies (
integral ((r
(#) f),c,d))
= (r
* (
integral (f,c,d)))
proof
assume
A1: a
<= b & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'];
A2:
now
let i;
set P = (
proj (i,n));
assume
A3: i
in (
Seg n);
then
A4: (P
* f)
is_integrable_on
['a, b'] by
A1;
(P
* (f
|
['a, b'])) is
bounded by
A3,
A1;
then
A5: ((P
* f)
|
['a, b']) is
bounded by
RELAT_1: 83;
(
dom P)
= (
REAL n) by
FUNCT_2:def 1;
then (
rng f)
c= (
dom P);
then
A6:
['a, b']
c= (
dom (P
* f)) by
A1,
RELAT_1: 27;
(P
* (r
(#) f))
= (r
(#) (P
* f)) by
INTEGR15: 16;
hence (
integral ((P
* (r
(#) f)),c,d))
= (r
* (
integral ((P
* f),c,d))) by
A4,
A5,
A6,
A1,
INTEGRA6: 25;
end;
A7:
now
let i be
Nat;
assume i
in (
dom (
integral ((r
(#) f),c,d)));
then
A8: i
in (
Seg n) by
INTEGR15:def 18;
set P = (
proj (i,n));
thus ((
integral ((r
(#) f),c,d))
. i)
= (
integral ((P
* (r
(#) f)),c,d)) by
A8,
INTEGR15:def 18
.= (r
* (
integral ((P
* f),c,d))) by
A8,
A2
.= (r
* ((
integral (f,c,d))
. i)) by
A8,
INTEGR15:def 18
.= ((r
* (
integral (f,c,d)))
. i) by
RVSUM_1: 44;
end;
A9: (
Seg n)
= (
dom (
integral ((r
(#) f),c,d))) by
INTEGR15:def 18;
(
len (r
* (
integral (f,c,d))))
= n by
CARD_1:def 7;
then (
Seg n)
= (
dom (r
* (
integral (f,c,d)))) by
FINSEQ_1:def 3;
hence (
integral ((r
(#) f),c,d))
= (r
* (
integral (f,c,d))) by
A9,
A7,
FINSEQ_1: 13;
end;
theorem ::
INTEGR19:26
Th26: a
<= b & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'] implies (
integral ((
- f),c,d))
= (
- (
integral (f,c,d)))
proof
(
- f)
= ((
- 1)
(#) f) by
NFCONT_4: 7;
hence thesis by
Th25;
end;
theorem ::
INTEGR19:27
Th27: a
<= b & f
is_integrable_on
['a, b'] & g
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded & (g
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) &
['a, b']
c= (
dom g) & c
in
['a, b'] & d
in
['a, b'] implies (
integral ((f
+ g),c,d))
= ((
integral (f,c,d))
+ (
integral (g,c,d)))
proof
assume
A1: a
<= b & f
is_integrable_on
['a, b'] & g
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded & (g
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) &
['a, b']
c= (
dom g) & c
in
['a, b'] & d
in
['a, b'];
A2:
now
let i;
set P = (
proj (i,n));
assume
A3: i
in (
Seg n);
then
A4: (P
* f)
is_integrable_on
['a, b'] by
A1;
(P
* (f
|
['a, b'])) is
bounded by
A3,
A1;
then
A5: ((P
* f)
|
['a, b']) is
bounded by
RELAT_1: 83;
A6: (P
* g)
is_integrable_on
['a, b'] by
A3,
A1;
(P
* (g
|
['a, b'])) is
bounded by
A3,
A1;
then
A7: ((P
* g)
|
['a, b']) is
bounded by
RELAT_1: 83;
A8: (
dom P)
= (
REAL n) by
FUNCT_2:def 1;
then (
rng f)
c= (
dom P);
then
A9:
['a, b']
c= (
dom (P
* f)) by
A1,
RELAT_1: 27;
(
rng g)
c= (
dom P) by
A8;
then
A10:
['a, b']
c= (
dom (P
* g)) by
A1,
RELAT_1: 27;
A11: (P
* (f
+ g))
= ((P
* f)
+ (P
* g)) by
INTEGR15: 15;
thus (
integral ((P
* (f
+ g)),c,d))
= ((
integral ((P
* f),c,d))
+ (
integral ((P
* g),c,d))) by
A4,
A5,
A9,
A6,
A7,
A10,
A1,
A11,
INTEGRA6: 24;
end;
A12:
now
let i be
Nat;
assume i
in (
dom (
integral ((f
+ g),c,d)));
then
A13: i
in (
Seg n) by
INTEGR15:def 18;
set P = (
proj (i,n));
thus ((
integral ((f
+ g),c,d))
. i)
= (
integral ((P
* (f
+ g)),c,d)) by
A13,
INTEGR15:def 18
.= ((
integral ((P
* f),c,d))
+ (
integral ((P
* g),c,d))) by
A13,
A2
.= (((
integral (f,c,d))
. i)
+ (
integral ((P
* g),c,d))) by
A13,
INTEGR15:def 18
.= (((
integral (f,c,d))
. i)
+ ((
integral (g,c,d))
. i)) by
A13,
INTEGR15:def 18
.= (((
integral (f,c,d))
+ (
integral (g,c,d)))
. i) by
RVSUM_1: 11;
end;
A14: (
Seg n)
= (
dom (
integral ((f
+ g),c,d))) by
INTEGR15:def 18;
(
len ((
integral (f,c,d))
+ (
integral (g,c,d))))
= n by
CARD_1:def 7;
then (
Seg n)
= (
dom ((
integral (f,c,d))
+ (
integral (g,c,d)))) by
FINSEQ_1:def 3;
hence thesis by
A14,
A12,
FINSEQ_1: 13;
end;
theorem ::
INTEGR19:28
Th28: a
<= b & f
is_integrable_on
['a, b'] & g
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded & (g
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) &
['a, b']
c= (
dom g) & c
in
['a, b'] & d
in
['a, b'] implies (
integral ((f
- g),c,d))
= ((
integral (f,c,d))
- (
integral (g,c,d)))
proof
assume
A1: a
<= b & f
is_integrable_on
['a, b'] & g
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded & (g
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) &
['a, b']
c= (
dom g) & c
in
['a, b'] & d
in
['a, b'];
A2: (
- g)
is_integrable_on
['a, b'] & ((
- g)
|
['a, b']) is
bounded by
A1,
Th12;
A3: (
dom g)
= (
dom (
- g)) by
NFCONT_4:def 3;
(f
- g)
= (f
+ (
- g)) by
Lm1;
hence (
integral ((f
- g),c,d))
= ((
integral (f,c,d))
+ (
integral ((
- g),c,d))) by
A1,
A2,
A3,
Th27
.= ((
integral (f,c,d))
- (
integral (g,c,d))) by
A1,
Th26;
end;
theorem ::
INTEGR19:29
Th29: (a
<= b &
['a, b']
c= (
dom f) & for x be
Real st x
in
['a, b'] holds (f
. x)
= E) implies f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded & (
integral (f,a,b))
= ((b
- a)
* E)
proof
assume
A1: a
<= b &
['a, b']
c= (
dom f) & (for x be
Real st x
in
['a, b'] holds (f
. x)
= E);
A2:
now
let i be
Element of
NAT ;
set P = (
proj (i,n));
assume i
in (
Seg n);
(
dom P)
= (
REAL n) by
FUNCT_2:def 1;
then (
rng f)
c= (
dom P);
then
A3:
['a, b']
c= (
dom (P
* f)) by
A1,
RELAT_1: 27;
for x be
Real st x
in
['a, b'] holds ((P
* f)
. x)
= (P
. E)
proof
let x be
Real;
assume
A4: x
in
['a, b'];
A5: (f
. x)
= (f
/. x) by
A4,
A1,
PARTFUN1:def 6;
hence ((P
* f)
. x)
= (P
. (f
/. x)) by
A4,
A3,
FUNCT_1: 12
.= (P
. E) by
A4,
A1,
A5;
end;
hence (P
* f)
is_integrable_on
['a, b'] & ((P
* f)
|
['a, b']) is
bounded & (
integral ((P
* f),a,b))
= ((P
. E)
* (b
- a)) by
A3,
A1,
INTEGRA6: 26;
end;
then
A6: for i be
Element of
NAT st i
in (
Seg n) holds ((
proj (i,n))
* f)
is_integrable_on
['a, b'];
A7: (
Seg n)
= (
dom (
integral (f,a,b))) by
INTEGR15:def 18;
A8:
now
let i;
set P = (
proj (i,n));
assume i
in (
Seg n);
then ((P
* f)
|
['a, b']) is
bounded by
A2;
hence (P
* (f
|
['a, b'])) is
bounded by
RELAT_1: 83;
end;
A9:
now
let i be
Nat;
assume
A10: i
in (
dom (
integral (f,a,b)));
hence ((
integral (f,a,b))
. i)
= (
integral (((
proj (i,n))
* f),a,b)) by
A7,
INTEGR15:def 18
.= (((
proj (i,n))
. E)
* (b
- a)) by
A10,
A2,
A7
.= ((b
- a)
* (E
. i)) by
PDIFF_1:def 1
.= (((b
- a)
* E)
. i) by
RVSUM_1: 44;
end;
(
len ((b
- a)
* E))
= n by
CARD_1:def 7;
then (
Seg n)
= (
dom ((b
- a)
* E)) by
FINSEQ_1:def 3;
hence thesis by
A6,
A8,
A7,
A9,
FINSEQ_1: 13;
end;
theorem ::
INTEGR19:30
Th30: a
<= b & (for x be
Real st x
in
['a, b'] holds (f
. x)
= E) &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'] implies (
integral (f,c,d))
= ((d
- c)
* E)
proof
assume
A1: a
<= b & (for x be
Real st x
in
['a, b'] holds (f
. x)
= E) &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'];
A2: (
Seg n)
= (
dom (
integral (f,c,d))) by
INTEGR15:def 18;
A3:
now
let i;
set P = (
proj (i,n));
(
dom P)
= (
REAL n) by
FUNCT_2:def 1;
then (
rng f)
c= (
dom P);
then
A4:
['a, b']
c= (
dom (P
* f)) by
A1,
RELAT_1: 27;
for x be
Real st x
in
['a, b'] holds ((P
* f)
. x)
= (P
. E)
proof
let x be
Real;
assume
A5: x
in
['a, b'];
then
A6: (f
. x)
= (f
/. x) by
A1,
PARTFUN1:def 6;
((P
* f)
. x)
= (P
. (f
/. x)) by
A4,
A5,
A6,
FUNCT_1: 12
.= (P
. E) by
A6,
A5,
A1;
hence thesis;
end;
hence (
integral ((P
* f),c,d))
= ((P
. E)
* (d
- c)) by
A4,
A1,
INTEGRA6: 27;
end;
A7:
now
let i be
Nat;
set P = (
proj (i,n));
assume
A8: i
in (
dom (
integral (f,c,d)));
hence ((
integral (f,c,d))
. i)
= (
integral ((P
* f),c,d)) by
A2,
INTEGR15:def 18
.= ((P
. E)
* (d
- c)) by
A3,
A8
.= ((d
- c)
* (E
. i)) by
PDIFF_1:def 1
.= (((d
- c)
* E)
. i) by
RVSUM_1: 44;
end;
(
len ((d
- c)
* E))
= n by
CARD_1:def 7;
then (
Seg n)
= (
dom ((d
- c)
* E)) by
FINSEQ_1:def 3;
hence thesis by
A2,
A7,
FINSEQ_1: 13;
end;
theorem ::
INTEGR19:31
Th31: a
<= b & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'] implies (
integral (f,a,d))
= ((
integral (f,a,c))
+ (
integral (f,c,d)))
proof
assume
A1: a
<= b & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'];
A2:
now
let i;
set P = (
proj (i,n));
assume
A3: i
in (
Seg n);
then
A4: (P
* f)
is_integrable_on
['a, b'] by
A1;
(P
* (f
|
['a, b'])) is
bounded by
A3,
A1;
then
A5: ((P
* f)
|
['a, b']) is
bounded by
RELAT_1: 83;
(
dom P)
= (
REAL n) by
FUNCT_2:def 1;
then (
rng f)
c= (
dom P);
then (
dom (P
* f))
= (
dom f) by
RELAT_1: 27;
hence (
integral ((P
* f),a,d))
= ((
integral ((P
* f),a,c))
+ (
integral ((P
* f),c,d))) by
A4,
A5,
A1,
INTEGRA6: 20;
end;
A6: (
Seg n)
= (
dom (
integral (f,a,d))) by
INTEGR15:def 18;
A7:
now
let i0 be
Nat;
assume
A8: i0
in (
dom (
integral (f,a,d)));
set P = (
proj (i0,n));
thus ((
integral (f,a,d))
. i0)
= (
integral ((P
* f),a,d)) by
A8,
A6,
INTEGR15:def 18
.= ((
integral ((P
* f),a,c))
+ (
integral ((P
* f),c,d))) by
A8,
A2,
A6
.= (((
integral (f,a,c))
. i0)
+ (
integral ((P
* f),c,d))) by
A8,
A6,
INTEGR15:def 18
.= (((
integral (f,a,c))
. i0)
+ ((
integral (f,c,d))
. i0)) by
A8,
A6,
INTEGR15:def 18
.= (((
integral (f,a,c))
+ (
integral (f,c,d)))
. i0) by
RVSUM_1: 11;
end;
(
len ((
integral (f,a,c))
+ (
integral (f,c,d))))
= n by
CARD_1:def 7;
then (
Seg n)
= (
dom ((
integral (f,a,c))
+ (
integral (f,c,d)))) by
FINSEQ_1:def 3;
hence thesis by
A6,
A7,
FINSEQ_1: 13;
end;
theorem ::
INTEGR19:32
Th32: (a
<= b & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'] & for x be
Real st x
in
['(
min (c,d)), (
max (c,d))'] holds
|.(f
/. x).|
<= e) implies
|.(
integral (f,c,d)).|
<= ((n
* e)
*
|.(d
- c).|)
proof
assume
A1: a
<= b & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'] & for x be
Real st x
in
['(
min (c,d)), (
max (c,d))'] holds
|.(f
/. x).|
<= e;
A2:
now
let i;
set P = (
proj (i,n));
assume
A3: i
in (
Seg n);
(
dom P)
= (
REAL n) by
FUNCT_2:def 1;
then (
rng f)
c= (
dom P);
then
A4:
['a, b']
c= (
dom (P
* f)) by
A1,
RELAT_1: 27;
set f1 = (P
* f);
A5: for x be
Real st x
in
['(
min (c,d)), (
max (c,d))'] holds
|.((P
* f)
. x).|
<= e
proof
let x be
Real;
assume
A6: x
in
['(
min (c,d)), (
max (c,d))'];
['(
min (c,d)), (
max (c,d))']
c=
['a, b'] by
A1,
Lm2;
then
A7: x
in (
dom (P
* f)) by
A4,
A6;
then
A8: x
in (
dom f) by
FUNCT_1: 11;
A9:
|.(f
/. x).|
<= e by
A1,
A6;
A10: ((P
* f)
. x)
= (P
. (f
. x)) by
A7,
FUNCT_1: 12
.= (P
. (f
/. x)) by
A8,
PARTFUN1:def 6;
1
<= i & i
<= n by
A3,
FINSEQ_1: 1;
then
|.(P
. (f
/. x)).|
<=
|.(f
/. x).| by
PDIFF_8: 5;
hence
|.((P
* f)
. x).|
<= e by
A10,
A9,
XXREAL_0: 2;
end;
A11: f1
is_integrable_on
['a, b'] by
A1,
A3;
A12: (P
* (f
|
['a, b'])) is
bounded by
A1,
A3;
((P
* f)
|
['a, b'])
= (P
* (f
|
['a, b'])) by
RELAT_1: 83;
hence
|.(
integral (f1,c,d)).|
<= (e
*
|.(d
- c).|) by
A12,
A1,
A4,
A5,
A11,
Lm4;
end;
now
let i;
set P = (
proj (i,n));
assume 1
<= i & i
<= n;
then
A13: i
in (
Seg n);
then
|.(
integral ((P
* f),c,d)).|
<= (e
*
|.(d
- c).|) by
A2;
hence
|.((
integral (f,c,d))
. i).|
<= (e
*
|.(d
- c).|) by
A13,
INTEGR15:def 18;
end;
then
|.(
integral (f,c,d)).|
<= (n
* (e
*
|.(d
- c).|)) by
PDIFF_8: 15;
hence thesis;
end;
theorem ::
INTEGR19:33
Th33: (
integral (f,b,a))
= (
- (
integral (f,a,b)))
proof
per cases ;
suppose a
<= b;
then
A1:
['a, b']
=
[.a, b.] by
INTEGRA5:def 3;
(
integral (f,
['a, b']))
= (
integral (f,a,b)) by
A1,
INTEGR15: 19;
hence (
integral (f,b,a))
= (
- (
integral (f,a,b))) by
A1,
INTEGR15: 20;
end;
suppose not a
<= b;
then
A2:
['b, a']
=
[.b, a.] by
INTEGRA5:def 3;
then (
- (
integral (f,
['b, a'])))
= (
integral (f,a,b)) by
INTEGR15: 20;
hence thesis by
A2,
INTEGR15: 19;
end;
end;
begin
Lm16: for p be
FinSequence of (
REAL n), r be
Element of (
REAL n), q be
FinSequence of (
REAL-NS n) st p
= q & (for i be
Element of
NAT st i
in (
Seg n) holds ex Pi be
FinSequence of
REAL st Pi
= ((
proj (i,n))
* p) & (r
. i)
= (
Sum Pi)) holds r
= (
Sum q)
proof
defpred
P[
Nat] means for p be
FinSequence of (
REAL n), r be
Element of (
REAL n), q be
FinSequence of (
REAL-NS n) st (
len p)
= $1 & p
= q & (for i be
Element of
NAT st i
in (
Seg n) holds ex Pi be
FinSequence of
REAL st Pi
= ((
proj (i,n))
* p) & (r
. i)
= (
Sum Pi)) holds r
= (
Sum q);
A1:
P[
0 ]
proof
let p be
FinSequence of (
REAL n), r be
Element of (
REAL n), q be
FinSequence of (
REAL-NS n);
assume
A2: (
len p)
=
0 & p
= q & (for i be
Element of
NAT st i
in (
Seg n) holds ex Pi be
FinSequence of
REAL st Pi
= ((
proj (i,n))
* p) & (r
. i)
= (
Sum Pi));
then
A3: p
=
{} ;
A4: q
= (
<*> the
carrier of (
REAL-NS n)) by
A2;
(
len r)
= n by
CARD_1:def 7;
then
A5: (
dom r)
= (
Seg n) by
FINSEQ_1:def 3;
A6: (
dom ((
Seg n)
-->
0 ))
= (
Seg n) by
FUNCOP_1: 13;
now
let x be
object;
assume
A7: x
in (
dom r);
then
reconsider i = x as
Element of
NAT ;
set P = (
proj (i,n));
consider Pi be
FinSequence of
REAL such that
A8: Pi
= (P
* p) & (r
. i)
= (
Sum Pi) by
A2,
A5,
A7;
(r
. x)
=
0 by
A3,
A8,
RVSUM_1: 72;
hence (r
. x)
= (((
Seg n)
-->
0 )
. x) by
A5,
A7,
FUNCOP_1: 7;
end;
then r
= (
0* n) by
A5,
A6,
FUNCT_1: 2;
then r
= (
0. (
REAL-NS n)) by
REAL_NS1:def 4;
hence r
= (
Sum q) by
A4,
RLVECT_1: 43;
end;
A9: for k be
Nat st
P[k] holds
P[(k
+ 1)]
proof
let k be
Nat;
assume
A10:
P[k];
now
let p be
FinSequence of (
REAL n), r be
Element of (
REAL n), q be
FinSequence of (
REAL-NS n);
assume
A11: (
len p)
= (k
+ 1) & p
= q & (for i be
Element of
NAT st i
in (
Seg n) holds ex Pi be
FinSequence of
REAL st Pi
= ((
proj (i,n))
* p) & (r
. i)
= (
Sum Pi));
set p1 = (p
| k);
A12: (k
+ 1)
in (
Seg (k
+ 1)) by
FINSEQ_1: 4;
then (k
+ 1)
in (
dom p) by
A11,
FINSEQ_1:def 3;
then (p
. (k
+ 1))
in (
rng p) by
FUNCT_1: 3;
then
reconsider pk1 = (p
. (k
+ 1)) as
Element of (
REAL n);
set q1 = (q
| k);
(k
+ 1)
in (
dom q) by
A11,
A12,
FINSEQ_1:def 3;
then (q
. (k
+ 1))
in (
rng q) by
FUNCT_1: 3;
then
reconsider qk1 = (q
. (k
+ 1)) as
Point of (
REAL-NS n);
defpred
YX[
Nat,
set] means ex P1i be
FinSequence of
REAL st P1i
= ((
proj ($1,n))
* p1) & $2
= (
Sum P1i);
A13: for i be
Nat st i
in (
Seg n) holds ex r be
Element of
REAL st
YX[i, r]
proof
let i be
Nat;
assume i
in (
Seg n);
reconsider S = (
Sum ((
proj (i,n))
* p1)) as
Element of
REAL by
XREAL_0:def 1;
take S;
thus thesis;
end;
consider r1 be
FinSequence of
REAL such that
A14: (
dom r1)
= (
Seg n) & for i be
Nat st i
in (
Seg n) holds
YX[i, (r1
. i)] from
FINSEQ_1:sch 5(
A13);
(
len r1)
= n by
A14,
FINSEQ_1:def 3;
then
reconsider r1 as
Element of (
REAL n) by
FINSEQ_2: 92;
A15: for i st i
in (
Seg n) holds ex P1i be
FinSequence of
REAL st P1i
= ((
proj (i,n))
* p1) & (r1
. i)
= (
Sum P1i) by
A14;
A16: k
<= (
len p) by
A11,
NAT_1: 16;
then
A17: (
len p1)
= k by
FINSEQ_1: 59;
A18: r1
= (
Sum q1) by
A10,
A11,
A15,
A17;
A19: (
len r)
= n by
CARD_1:def 7;
A20: (
len (r1
+ pk1))
= n by
CARD_1:def 7;
now
let i be
Nat;
set P = (
proj (i,n));
assume 1
<= i & i
<= n;
then
A21: i
in (
Seg n);
consider Pi be
FinSequence of
REAL such that
A22: Pi
= (P
* p) & (r
. i)
= (
Sum Pi) by
A21,
A11;
consider P1i be
FinSequence of
REAL such that
A23: P1i
= (P
* p1) & (r1
. i)
= (
Sum P1i) by
A21,
A14;
A24: (
dom P)
= (
REAL n) by
FUNCT_2:def 1;
then
A25: (
rng p)
c= (
dom P);
A26: (
dom Pi)
= (
dom p) by
A25,
A22,
RELAT_1: 27
.= (
Seg (
len p)) by
FINSEQ_1:def 3;
A27: (
len p)
= ((
len p1)
+ 1) by
A11,
A16,
FINSEQ_1: 59
.= ((
len p1)
+ (
len
<*(pk1
. i)*>)) by
FINSEQ_1: 40;
A28: (
rng p1)
c= (
dom P) by
A24;
A29: (
dom P1i)
= (
dom p1) by
A28,
A23,
RELAT_1: 27
.= (
Seg (
len p1)) by
FINSEQ_1:def 3;
then
A30: (
dom Pi)
= (
Seg ((
len P1i)
+ (
len
<*(pk1
. i)*>))) by
A26,
A27,
FINSEQ_1:def 3;
(
len p1)
<= (
len p) by
A16,
FINSEQ_1: 59;
then
A31: (
Seg (
len p1))
c= (
Seg (
len p)) by
FINSEQ_1: 5;
A32: for k be
Nat st k
in (
dom P1i) holds (Pi
. k)
= (P1i
. k)
proof
let k be
Nat;
assume
A33: k
in (
dom P1i);
then
A34: k
in (
dom p1) by
A29,
FINSEQ_1:def 3;
thus (P1i
. k)
= (P
. (p1
. k)) by
A23,
A33,
FUNCT_1: 12
.= (P
. (p
. k)) by
A34,
FUNCT_1: 47
.= (Pi
. k) by
A22,
A33,
A29,
A26,
A31,
FUNCT_1: 12;
end;
for k be
Nat st k
in (
dom
<*(pk1
. i)*>) holds (Pi
. ((
len P1i)
+ k))
= (
<*(pk1
. i)*>
. k)
proof
let j be
Nat;
assume j
in (
dom
<*(pk1
. i)*>);
then j
in (
Seg (
len
<*(pk1
. i)*>)) by
FINSEQ_1:def 3;
then j
in
{1} by
FINSEQ_1: 2,
FINSEQ_1: 40;
then
A35: j
= 1 by
TARSKI:def 1;
thus (Pi
. ((
len P1i)
+ j))
= (Pi
. (k
+ 1)) by
A29,
A17,
A35,
FINSEQ_1:def 3
.= (P
. (p
. (k
+ 1))) by
A22,
A26,
A11,
FINSEQ_1: 4,
FUNCT_1: 12
.= (pk1
. i) by
PDIFF_1:def 1
.= (
<*(pk1
. i)*>
. j) by
A35,
FINSEQ_1: 40;
end;
then Pi
= (P1i
^
<*(pk1
. i)*>) by
A32,
A30,
FINSEQ_1:def 7;
hence (r
. i)
= ((r1
. i)
+ (pk1
. i)) by
A22,
A23,
RVSUM_1: 74
.= ((r1
+ pk1)
. i) by
RVSUM_1: 11;
end;
then
A36: r
= (r1
+ pk1) by
A19,
A20;
A37: (
len q)
= ((
len q1)
+ 1) by
A16,
A11,
FINSEQ_1: 59;
A38: q1
= (q
| (
dom q1)) by
A17,
A11,
FINSEQ_1:def 3;
thus r
= ((
Sum q1)
+ qk1) by
A36,
A18,
A11,
REAL_NS1: 2
.= (
Sum q) by
A11,
A37,
A38,
RLVECT_1: 38;
end;
hence
P[(k
+ 1)];
end;
A39: for k be
Nat holds
P[k] from
NAT_1:sch 2(
A1,
A9);
let p be
FinSequence of (
REAL n), r be
Element of (
REAL n), q be
FinSequence of (
REAL-NS n);
assume
A40: p
= q & (for i be
Element of
NAT st i
in (
Seg n) holds ex Pi be
FinSequence of
REAL st Pi
= ((
proj (i,n))
* p) & (r
. i)
= (
Sum Pi));
thus r
= (
Sum q) by
A40,
A39;
end;
definition
let R be
RealNormSpace, X be non
empty
set, g be
PartFunc of X, R;
::
INTEGR19:def1
attr g is
bounded means ex r be
Real st for y be
set st y
in (
dom g) holds
||.(g
/. y).||
< r;
end
theorem ::
INTEGR19:34
Th34: for f be
PartFunc of
REAL , (
REAL n), g be
PartFunc of
REAL , (
REAL-NS n) st f
= g holds f is
bounded iff g is
bounded
proof
let f be
PartFunc of
REAL , (
REAL n), g be
PartFunc of
REAL , (
REAL-NS n);
assume
A1: f
= g;
thus f is
bounded implies g is
bounded
proof
assume
A2: f is
bounded;
defpred
Pd[
Nat,
Element of
REAL ] means for y be
set st y
in (
dom ((
proj ($1,n))
* f)) holds
|.(((
proj ($1,n))
* f)
. y).|
< $2;
A3: for i be
Nat st i
in (
Seg n) holds ex di be
Element of
REAL st
Pd[i, di]
proof
let i be
Nat;
set P = (
proj (i,n));
assume i
in (
Seg n);
then (P
* f) is
bounded by
A2;
then
consider r be
Real such that
A4: for y be
set st y
in (
dom (P
* f)) holds
|.((P
* f)
. y).|
< r by
COMSEQ_2:def 3;
reconsider r as
Element of
REAL by
XREAL_0:def 1;
take r;
thus thesis by
A4;
end;
consider d be
FinSequence of
REAL such that
A5: (
dom d)
= (
Seg n) & for k be
Nat st k
in (
Seg n) holds
Pd[k, (d
/. k)] from
RECDEF_1:sch 17(
A3);
set K = (
max d);
for y be
set st y
in (
dom g) holds
||.(g
/. y).||
< ((n
* K)
+ 1)
proof
let y be
set;
assume
A6: y
in (
dom g);
set s = (f
/. y);
now
let i;
set P = (
proj (i,n));
assume
A7: 1
<= i & i
<= n;
then
A8: i
in (
Seg n);
(
dom P)
= (
REAL n) by
FUNCT_2:def 1;
then (
rng f)
c= (
dom P);
then
A9: y
in (
dom (P
* f)) by
A6,
A1,
RELAT_1: 27;
then
A10:
|.((P
* f)
. y).|
< (d
/. i) by
A8,
A5;
(f
. y)
= s by
A6,
A1,
PARTFUN1:def 6;
then ((P
* f)
. y)
= (P
. s) by
A9,
FUNCT_1: 12;
then
A11:
|.(s
. i).|
< (d
/. i) by
A10,
PDIFF_1:def 1;
(
len d)
= n by
A5,
FINSEQ_1:def 3;
then (d
. i)
<= K by
A7,
RFINSEQ2: 1;
then (d
/. i)
<= K by
A8,
A5,
PARTFUN1:def 6;
hence
|.(s
. i).|
<= K by
A11,
XXREAL_0: 2;
end;
then
A12:
|.s.|
< ((n
* K)
+ 1) by
PDIFF_8: 15,
XREAL_1: 145;
(g
/. y)
= (g
. y) by
A6,
PARTFUN1:def 6
.= (f
/. y) by
A1,
A6,
PARTFUN1:def 6;
hence
||.(g
/. y).||
< ((n
* K)
+ 1) by
A12,
REAL_NS1: 1;
end;
hence g is
bounded;
end;
assume
A13: g is
bounded;
consider r be
Real such that
A14: for y be
set st y
in (
dom g) holds
||.(g
/. y).||
< r by
A13;
let i;
set P = (
proj (i,n));
assume
A15: i
in (
Seg n);
for y be
set st y
in (
dom (P
* f)) holds
|.((P
* f)
. y).|
< r
proof
let y be
set;
assume
A16: y
in (
dom (P
* f));
(
dom P)
= (
REAL n) by
FUNCT_2:def 1;
then (
rng f)
c= (
dom P);
then
A17: y
in (
dom f) by
A16,
RELAT_1: 27;
then
A18:
||.(g
/. y).||
< r by
A14,
A1;
set s = (f
/. y);
(g
/. y)
= (g
. y) by
A17,
A1,
PARTFUN1:def 6
.= (f
/. y) by
A1,
A17,
PARTFUN1:def 6;
then
A19:
|.s.|
< r by
A18,
REAL_NS1: 1;
|.(s
. i).|
<=
|.s.| by
A15,
REAL_NS1: 8;
then
A20:
|.(s
. i).|
< r by
A19,
XXREAL_0: 2;
(f
. y)
= s by
A17,
PARTFUN1:def 6;
then ((P
* f)
. y)
= (P
. s) by
A16,
FUNCT_1: 12;
hence
|.((P
* f)
. y).|
< r by
A20,
PDIFF_1:def 1;
end;
hence (P
* f) is
bounded by
COMSEQ_2:def 3;
end;
theorem ::
INTEGR19:35
Th35: for X,Y be
set, f1,f2 be
PartFunc of
REAL , (
REAL-NS n) st (f1
| X) is
bounded & (f2
| Y) is
bounded holds ((f1
+ f2)
| (X
/\ Y)) is
bounded & ((f1
- f2)
| (X
/\ Y)) is
bounded
proof
let X,Y be
set, f1,f2 be
PartFunc of
REAL , (
REAL-NS n);
assume
A1: (f1
| X) is
bounded & (f2
| Y) is
bounded;
consider r1 be
Real such that
A2: for x be
set st x
in (
dom (f1
| X)) holds
||.((f1
| X)
/. x).||
< r1 by
A1;
consider r2 be
Real such that
A3: for x be
set st x
in (
dom (f2
| Y)) holds
||.((f2
| Y)
/. x).||
< r2 by
A1;
now
let x be
set;
assume x
in (
dom ((f1
+ f2)
| (X
/\ Y)));
then
A4: x
in (
dom (f1
+ f2)) & x
in (X
/\ Y) by
RELAT_1: 57;
then x
in ((
dom f1)
/\ (
dom f2)) by
VFUNCT_1:def 1;
then
A5: x
in (
dom f1) & x
in (
dom f2) by
XBOOLE_0:def 4;
A6: x
in X & x
in Y by
A4,
XBOOLE_0:def 4;
(((f1
+ f2)
| (X
/\ Y))
/. x)
= ((f1
+ f2)
/. x) by
A4,
PARTFUN2: 17
.= ((f1
/. x)
+ (f2
/. x)) by
A4,
VFUNCT_1:def 1
.= (((f1
| X)
/. x)
+ (f2
/. x)) by
A5,
A6,
PARTFUN2: 17
.= (((f1
| X)
/. x)
+ ((f2
| Y)
/. x)) by
A5,
A6,
PARTFUN2: 17;
then
A7:
||.(((f1
+ f2)
| (X
/\ Y))
/. x).||
<= (
||.((f1
| X)
/. x).||
+
||.((f2
| Y)
/. x).||) by
NORMSP_1:def 1;
x
in (
dom (f1
| X)) by
A5,
A6,
RELAT_1: 57;
then
A8:
||.((f1
| X)
/. x).||
< r1 by
A2;
x
in (
dom (f2
| Y)) by
A5,
A6,
RELAT_1: 57;
then (
||.((f1
| X)
/. x).||
+
||.((f2
| Y)
/. x).||)
< (r1
+ r2) by
A3,
A8,
XREAL_1: 8;
hence
||.(((f1
+ f2)
| (X
/\ Y))
/. x).||
< (r1
+ r2) by
A7,
XXREAL_0: 2;
end;
hence ((f1
+ f2)
| (X
/\ Y)) is
bounded;
take (r1
+ r2);
let x be
set;
assume x
in (
dom ((f1
- f2)
| (X
/\ Y)));
then
A9: x
in (
dom (f1
- f2)) & x
in (X
/\ Y) by
RELAT_1: 57;
then x
in ((
dom f1)
/\ (
dom f2)) by
VFUNCT_1:def 2;
then
A10: x
in (
dom f1) & x
in (
dom f2) by
XBOOLE_0:def 4;
A11: x
in X & x
in Y by
A9,
XBOOLE_0:def 4;
(((f1
- f2)
| (X
/\ Y))
/. x)
= ((f1
- f2)
/. x) by
A9,
PARTFUN2: 17
.= ((f1
/. x)
- (f2
/. x)) by
A9,
VFUNCT_1:def 2
.= (((f1
| X)
/. x)
- (f2
/. x)) by
A10,
A11,
PARTFUN2: 17
.= (((f1
| X)
/. x)
- ((f2
| Y)
/. x)) by
A10,
A11,
PARTFUN2: 17;
then
A12:
||.(((f1
- f2)
| (X
/\ Y))
/. x).||
<= (
||.((f1
| X)
/. x).||
+
||.((f2
| Y)
/. x).||) by
NORMSP_1: 3;
x
in (
dom (f1
| X)) by
A10,
A11,
RELAT_1: 57;
then
A13:
||.((f1
| X)
/. x).||
< r1 by
A2;
x
in (
dom (f2
| Y)) by
A10,
A11,
RELAT_1: 57;
then (
||.((f1
| X)
/. x).||
+
||.((f2
| Y)
/. x).||)
< (r1
+ r2) by
A13,
A3,
XREAL_1: 8;
hence
||.(((f1
- f2)
| (X
/\ Y))
/. x).||
< (r1
+ r2) by
A12,
XXREAL_0: 2;
end;
theorem ::
INTEGR19:36
Th36: for f be
Function of A, (
REAL n), g be
Function of A, (
REAL-NS n), D be
Division of A, p be
FinSequence of (
REAL n), q be
FinSequence of (
REAL-NS n) st f
= g & p
= q holds p is
middle_volume of f, D iff q is
middle_volume of g, D
proof
let f be
Function of A, (
REAL n), g be
Function of A, (
REAL-NS n), D be
Division of A, p be
FinSequence of (
REAL n), q be
FinSequence of (
REAL-NS n);
assume
A1: f
= g & p
= q;
thus p is
middle_volume of f, D implies q is
middle_volume of g, D
proof
assume
A2: p is
middle_volume of f, D;
then
A3: (
len q)
= (
len D) by
A1,
INTEGR15:def 5;
for i be
Nat st i
in (
dom D) holds ex c be
Point of (
REAL-NS n) st c
in (
rng (g
| (
divset (D,i)))) & (q
. i)
= ((
vol (
divset (D,i)))
* c)
proof
let i be
Nat;
assume i
in (
dom D);
then
consider r be
Element of (
REAL n) such that
A4: r
in (
rng (f
| (
divset (D,i)))) & (p
. i)
= ((
vol (
divset (D,i)))
* r) by
A2,
INTEGR15:def 5;
reconsider c = r as
Point of (
REAL-NS n) by
REAL_NS1:def 4;
take c;
thus thesis by
A4,
A1,
REAL_NS1: 3;
end;
hence q is
middle_volume of g, D by
A3,
INTEGR18:def 1;
end;
thus q is
middle_volume of g, D implies p is
middle_volume of f, D
proof
assume
A5: q is
middle_volume of g, D;
then
A6: (
len p)
= (
len D) by
A1,
INTEGR18:def 1;
for i be
Nat st i
in (
dom D) holds ex r be
Element of (
REAL n) st r
in (
rng (f
| (
divset (D,i)))) & (p
. i)
= ((
vol (
divset (D,i)))
* r)
proof
let i be
Nat;
assume
A7: i
in (
dom D);
consider c be
Point of (
REAL-NS n) such that
A8: c
in (
rng (g
| (
divset (D,i)))) & (q
. i)
= ((
vol (
divset (D,i)))
* c) by
A5,
A7,
INTEGR18:def 1;
reconsider r = c as
Element of (
REAL n) by
REAL_NS1:def 4;
take r;
thus thesis by
A8,
A1,
REAL_NS1: 3;
end;
hence p is
middle_volume of f, D by
A6,
INTEGR15:def 5;
end;
end;
theorem ::
INTEGR19:37
Th37: for f be
Function of A, (
REAL n), g be
Function of A, (
REAL-NS n), D be
Division of A, p be
middle_volume of f, D, q be
middle_volume of g, D st f
= g & p
= q holds (
middle_sum (f,p))
= (
middle_sum (g,q))
proof
let f be
Function of A, (
REAL n), g be
Function of A, (
REAL-NS n), D be
Division of A, p be
middle_volume of f, D, q be
middle_volume of g, D;
assume
A1: f
= g & p
= q;
for i be
Element of
NAT st i
in (
Seg n) holds ex Pi be
FinSequence of
REAL st Pi
= ((
proj (i,n))
* p) & ((
middle_sum (f,p))
. i)
= (
Sum Pi) by
INTEGR15:def 6;
hence (
middle_sum (f,p))
= (
middle_sum (g,q)) by
Lm16,
A1;
end;
theorem ::
INTEGR19:38
Th38: for f be
Function of A, (
REAL n), g be
Function of A, (
REAL-NS n), T be
DivSequence of A, p be
sequence of ((
REAL n)
* ), q be
sequence of (the
carrier of (
REAL-NS n)
* ) st f
= g & p
= q holds p is
middle_volume_Sequence of f, T iff q is
middle_volume_Sequence of g, T
proof
let f be
Function of A, (
REAL n), g be
Function of A, (
REAL-NS n), T be
DivSequence of A, p be
sequence of ((
REAL n)
* ), q be
sequence of (the
carrier of (
REAL-NS n)
* );
assume
A1: f
= g & p
= q;
hereby
assume
A2: p is
middle_volume_Sequence of f, T;
for k be
Element of
NAT holds (q
. k) is
middle_volume of g, (T
. k)
proof
let k be
Element of
NAT ;
A3: (p
. k) is
middle_volume of f, (T
. k) by
A2,
INTEGR15:def 7;
thus (q
. k) is
middle_volume of g, (T
. k) by
A1,
A3,
Th36;
end;
hence q is
middle_volume_Sequence of g, T by
INTEGR18:def 3;
end;
assume
A4: q is
middle_volume_Sequence of g, T;
for k be
Element of
NAT holds (p
. k) is
middle_volume of f, (T
. k)
proof
let k be
Element of
NAT ;
A5: (q
. k) is
middle_volume of g, (T
. k) by
A4,
INTEGR18:def 3;
thus (p
. k) is
middle_volume of f, (T
. k) by
A1,
A5,
Th36;
end;
hence p is
middle_volume_Sequence of f, T by
INTEGR15:def 7;
end;
theorem ::
INTEGR19:39
Th39: for f be
Function of A, (
REAL n), g be
Function of A, (
REAL-NS n), T be
DivSequence of A, S be
middle_volume_Sequence of f, T, U be
middle_volume_Sequence of g, T st f
= g & S
= U holds (
middle_sum (f,S))
= (
middle_sum (g,U))
proof
let f be
Function of A, (
REAL n), g be
Function of A, (
REAL-NS n), T be
DivSequence of A, S be
middle_volume_Sequence of f, T, U be
middle_volume_Sequence of g, T;
assume
A1: f
= g & S
= U;
A2: (
dom (
middle_sum (f,S)))
=
NAT by
FUNCT_2:def 1
.= (
dom (
middle_sum (g,U))) by
FUNCT_2:def 1;
now
let x be
object;
assume x
in (
dom (
middle_sum (f,S)));
then
reconsider n = x as
Element of
NAT ;
A3: (
middle_sum (f,(S
. n)))
= (
middle_sum (g,(U
. n))) by
A1,
Th37;
thus ((
middle_sum (f,S))
. x)
= (
middle_sum (f,(S
. n))) by
INTEGR15:def 8
.= ((
middle_sum (g,U))
. x) by
A3,
INTEGR18:def 4;
end;
hence thesis by
A2,
FUNCT_1: 2;
end;
theorem ::
INTEGR19:40
Th40: for f be
Function of A, (
REAL n), g be
Function of A, (
REAL-NS n), I be
Element of (
REAL n), J be
Point of (
REAL-NS n) st f
= g & I
= J holds (for T be
DivSequence of A, S be
middle_volume_Sequence of f, T st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum (f,S)) is
convergent & (
lim (
middle_sum (f,S)))
= I) iff (for T be
DivSequence of A, S be
middle_volume_Sequence of g, T st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum (g,S)) is
convergent & (
lim (
middle_sum (g,S)))
= J)
proof
let f be
Function of A, (
REAL n), g be
Function of A, (
REAL-NS n), I be
Element of (
REAL n), J be
Point of (
REAL-NS n);
assume
A1: f
= g & I
= J;
hereby
assume
A2: for T be
DivSequence of A, S be
middle_volume_Sequence of f, T st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum (f,S)) is
convergent & (
lim (
middle_sum (f,S)))
= I;
A3: the
carrier of (
REAL-NS n)
= (
REAL n) by
REAL_NS1:def 4;
thus for T be
DivSequence of A, S0 be
middle_volume_Sequence of g, T st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum (g,S0)) is
convergent & (
lim (
middle_sum (g,S0)))
= J
proof
let T be
DivSequence of A, S0 be
middle_volume_Sequence of g, T;
assume
A4: (
delta T) is
convergent & (
lim (
delta T))
=
0 ;
reconsider S = S0 as
middle_volume_Sequence of f, T by
A3,
A1,
Th38;
(
middle_sum (f,S)) is
convergent & (
lim (
middle_sum (f,S)))
= I by
A2,
A4;
hence thesis by
A1,
Th39;
end;
end;
assume
A5: for T be
DivSequence of A, S be
middle_volume_Sequence of g, T st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum (g,S)) is
convergent & (
lim (
middle_sum (g,S)))
= J;
A6: the
carrier of (
REAL-NS n)
= (
REAL n) by
REAL_NS1:def 4;
thus for T be
DivSequence of A, S0 be
middle_volume_Sequence of f, T st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum (f,S0)) is
convergent & (
lim (
middle_sum (f,S0)))
= I
proof
let T be
DivSequence of A, S0 be
middle_volume_Sequence of f, T;
assume
A7: (
delta T) is
convergent & (
lim (
delta T))
=
0 ;
reconsider S = S0 as
middle_volume_Sequence of g, T by
A6,
A1,
Th38;
(
middle_sum (g,S)) is
convergent & (
lim (
middle_sum (g,S)))
= I by
A1,
A5,
A7;
hence thesis by
A1,
Th39;
end;
end;
theorem ::
INTEGR19:41
Th41: for f be
Function of A, (
REAL n), g be
Function of A, (
REAL-NS n) st f
= g & f is
bounded holds f is
integrable iff g is
integrable
proof
let f be
Function of A, (
REAL n), g be
Function of A, (
REAL-NS n);
assume
A1: f
= g & f is
bounded;
hereby
assume f is
integrable;
then
consider I be
Element of (
REAL n) such that
A2: for T be
DivSequence of A, S be
middle_volume_Sequence of f, T st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum (f,S)) is
convergent & (
lim (
middle_sum (f,S)))
= I by
A1,
INTEGR15: 12;
reconsider I0 = I as
Point of (
REAL-NS n) by
REAL_NS1:def 4;
I
= I0;
then for T be
DivSequence of A, S0 be
middle_volume_Sequence of g, T st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum (g,S0)) is
convergent & (
lim (
middle_sum (g,S0)))
= I0 by
A2,
A1,
Th40;
hence g is
integrable;
end;
assume g is
integrable;
then
consider I be
Point of (
REAL-NS n) such that
A3: for T be
DivSequence of A, S be
middle_volume_Sequence of g, T st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum (g,S)) is
convergent & (
lim (
middle_sum (g,S)))
= I;
reconsider I0 = I as
Element of (
REAL n) by
REAL_NS1:def 4;
I0
= I;
then for T be
DivSequence of A, S0 be
middle_volume_Sequence of f, T st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum (f,S0)) is
convergent & (
lim (
middle_sum (f,S0)))
= I0 by
A3,
A1,
Th40;
hence f is
integrable by
A1,
INTEGR15: 12;
end;
theorem ::
INTEGR19:42
Th42: for f be
Function of A, (
REAL n), g be
Function of A, (
REAL-NS n) st f
= g & f is
bounded & f is
integrable holds g is
integrable & (
integral f)
= (
integral g)
proof
let f be
Function of A, (
REAL n), g be
Function of A, (
REAL-NS n);
assume
A1: f
= g & f is
bounded & f is
integrable;
then
A2: g is
integrable by
Th41;
A3: for T be
DivSequence of A, S be
middle_volume_Sequence of f, T st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum (f,S)) is
convergent & (
lim (
middle_sum (f,S)))
= (
integral f) by
A1,
INTEGR15: 11;
reconsider I0 = (
integral f) as
Point of (
REAL-NS n) by
REAL_NS1:def 4;
(
integral f)
= I0;
then for T be
DivSequence of A, S0 be
middle_volume_Sequence of g, T st (
delta T) is
convergent & (
lim (
delta T))
=
0 holds (
middle_sum (g,S0)) is
convergent & (
lim (
middle_sum (g,S0)))
= I0 by
A3,
A1,
Th40;
hence thesis by
A2,
INTEGR18:def 6;
end;
theorem ::
INTEGR19:43
Th43: for f be
PartFunc of
REAL , (
REAL n), g be
PartFunc of
REAL , (
REAL-NS n) st f
= g & (f
| A) is
bounded & A
c= (
dom f) holds f
is_integrable_on A iff g
is_integrable_on A
proof
let f be
PartFunc of
REAL , (
REAL n), g be
PartFunc of
REAL , (
REAL-NS n);
assume
A1: f
= g & (f
| A) is
bounded & A
c= (
dom f);
reconsider h = (f
| A) as
Function of A, (
REAL n) by
Lm3,
A1;
reconsider k = h as
Function of A, (
REAL-NS n) by
REAL_NS1:def 4;
A2: h is
bounded by
A1;
hereby
assume f
is_integrable_on A;
then h is
integrable by
INTEGR15: 13;
then k is
integrable by
A2,
Th41;
hence g
is_integrable_on A by
A1;
end;
assume g
is_integrable_on A;
then k is
integrable by
A1;
then h is
integrable by
A2,
Th41;
hence thesis by
INTEGR15: 13;
end;
theorem ::
INTEGR19:44
Th44: for f be
PartFunc of
REAL , (
REAL n), g be
PartFunc of
REAL , (
REAL-NS n) st f
= g & (f
| A) is
bounded & A
c= (
dom f) & f
is_integrable_on A holds g
is_integrable_on A & (
integral (f,A))
= (
integral (g,A))
proof
let f be
PartFunc of
REAL , (
REAL n), g be
PartFunc of
REAL , (
REAL-NS n);
assume
A1: f
= g & (f
| A) is
bounded & A
c= (
dom f) & f
is_integrable_on A;
hence g
is_integrable_on A by
Th43;
reconsider h = (f
| A) as
Function of A, (
REAL n) by
Lm3,
A1;
reconsider k = h as
Function of A, (
REAL-NS n) by
REAL_NS1:def 4;
A2: (
integral (f,A))
= (
integral h) by
INTEGR15: 14;
A3: h is
bounded by
A1;
h is
integrable by
A1,
INTEGR15: 13;
then (
integral h)
= (
integral k) by
A3,
Th42;
hence thesis by
A2,
A1,
INTEGR18: 9;
end;
theorem ::
INTEGR19:45
Th45: for f be
PartFunc of
REAL , (
REAL n), g be
PartFunc of
REAL , (
REAL-NS n) st f
= g & a
<= b & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & f
is_integrable_on
['a, b'] holds (
integral (f,a,b))
= (
integral (g,a,b))
proof
let f be
PartFunc of
REAL , (
REAL n), g be
PartFunc of
REAL , (
REAL-NS n);
assume
A1: f
= g & a
<= b & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & f
is_integrable_on
['a, b'];
A2:
['a, b']
=
[.a, b.] by
A1,
INTEGRA5:def 3;
A3: (
integral (g,
['a, b']))
= (
integral (f,
['a, b'])) by
A1,
Th44;
(
integral (g,
['a, b']))
= (
integral (g,a,b)) by
A2,
INTEGR18: 16;
hence thesis by
A3,
A2,
INTEGR15: 19;
end;
theorem ::
INTEGR19:46
for f,g be
PartFunc of
REAL , (
REAL-NS n) st a
<= b & f
is_integrable_on
['a, b'] & g
is_integrable_on
['a, b'] &
['a, b']
c= (
dom f) &
['a, b']
c= (
dom g) holds (
integral ((f
+ g),a,b))
= ((
integral (f,a,b))
+ (
integral (g,a,b))) & (
integral ((f
- g),a,b))
= ((
integral (f,a,b))
- (
integral (g,a,b)))
proof
let f,g be
PartFunc of
REAL , (
REAL-NS n);
assume
A1: a
<= b & f
is_integrable_on
['a, b'] & g
is_integrable_on
['a, b'] &
['a, b']
c= (
dom f) &
['a, b']
c= (
dom g);
A2: (f
+ g)
is_integrable_on
['a, b'] & (
integral ((f
+ g),
['a, b']))
= ((
integral (f,
['a, b']))
+ (
integral (g,
['a, b']))) by
A1,
INTEGR18: 14;
A3: (f
- g)
is_integrable_on
['a, b'] & (
integral ((f
- g),
['a, b']))
= ((
integral (f,
['a, b']))
- (
integral (g,
['a, b']))) by
A1,
INTEGR18: 15;
A4:
['a, b']
=
[.a, b.] by
A1,
INTEGRA5:def 3;
thus (
integral ((f
+ g),a,b))
= (
integral ((f
+ g),
['a, b'])) by
A4,
INTEGR18: 16
.= ((
integral (f,a,b))
+ (
integral (g,
['a, b']))) by
A4,
A2,
INTEGR18: 16
.= ((
integral (f,a,b))
+ (
integral (g,a,b))) by
A4,
INTEGR18: 16;
thus (
integral ((f
- g),a,b))
= (
integral ((f
- g),
['a, b'])) by
A4,
INTEGR18: 16
.= ((
integral (f,a,b))
- (
integral (g,
['a, b']))) by
A4,
A3,
INTEGR18: 16
.= ((
integral (f,a,b))
- (
integral (g,a,b))) by
A4,
INTEGR18: 16;
end;
theorem ::
INTEGR19:47
Th47: for f be
PartFunc of
REAL , (
REAL-NS n) st a
<= b &
['a, b']
c= (
dom f) holds (
integral (f,b,a))
= (
- (
integral (f,a,b)))
proof
let f be
PartFunc of
REAL , (
REAL-NS n);
assume
A1: a
<= b &
['a, b']
c= (
dom f);
then
A2:
['a, b']
=
[.a, b.] by
INTEGRA5:def 3;
(
integral (f,
['a, b']))
= (
integral (f,a,b)) by
A2,
INTEGR18: 16;
hence thesis by
A2,
A1,
INTEGR18: 18;
end;
theorem ::
INTEGR19:48
Th48: for f be
PartFunc of
REAL , (
REAL-NS n), g be
PartFunc of
REAL , (
REAL n) st f
= g & a
<= b &
['a, b']
c= (
dom f) & (f
|
['a, b']) is
bounded & f
is_integrable_on
['a, b'] & c
in
['a, b'] & d
in
['a, b'] holds (
integral (f,c,d))
= (
integral (g,c,d))
proof
let f be
PartFunc of
REAL , (
REAL-NS n), g be
PartFunc of
REAL , (
REAL n);
assume
A1: f
= g & a
<= b &
['a, b']
c= (
dom f) & (f
|
['a, b']) is
bounded & f
is_integrable_on
['a, b'] & c
in
['a, b'] & d
in
['a, b'];
['a, b']
=
[.a, b.] by
A1,
INTEGRA5:def 3;
then
A2: a
<= c & d
<= b & a
<= d & c
<= b by
A1,
XXREAL_1: 1;
A3: (g
|
['a, b']) is
bounded by
A1,
Th34;
A4: g
is_integrable_on
['a, b'] by
Th43,
A3,
A1;
per cases ;
suppose
A5: c
<= d;
['c, d']
c= (
dom g) & (g
|
['c, d']) is
bounded & g
is_integrable_on
['c, d'] by
A3,
A4,
A1,
Th9,
A2,
A5,
Th2;
hence (
integral (f,c,d))
= (
integral (g,c,d)) by
A1,
A5,
Th45;
end;
suppose
A6: not c
<= d;
A7:
['d, c']
c= (
dom g) & (g
|
['d, c']) is
bounded & g
is_integrable_on
['d, c'] by
A3,
A4,
A1,
Th9,
A2,
A6,
Th2;
then
A8: (
integral (f,d,c))
= (
integral (g,d,c)) by
A1,
A6,
Th45;
thus (
integral (g,c,d))
= (
- (
integral (g,d,c))) by
Th33
.= (
- (
integral (f,d,c))) by
A8,
REAL_NS1: 4
.= (
integral (f,c,d)) by
A6,
A7,
A1,
Th47;
end;
end;
theorem ::
INTEGR19:49
for f,g be
PartFunc of
REAL , (
REAL-NS n) st a
<= b & f
is_integrable_on
['a, b'] & g
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded & (g
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) &
['a, b']
c= (
dom g) & c
in
['a, b'] & d
in
['a, b'] holds (
integral ((f
+ g),c,d))
= ((
integral (f,c,d))
+ (
integral (g,c,d)))
proof
let f,g be
PartFunc of
REAL , (
REAL-NS n);
assume
A1: a
<= b & f
is_integrable_on
['a, b'] & g
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded & (g
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) &
['a, b']
c= (
dom g) & c
in
['a, b'] & d
in
['a, b'];
reconsider f1 = f, g1 = g as
PartFunc of
REAL , (
REAL n) by
REAL_NS1:def 4;
A2: (f1
|
['a, b']) is
bounded by
Th34,
A1;
A3: (g1
|
['a, b']) is
bounded by
Th34,
A1;
A4: f1
is_integrable_on
['a, b'] by
Th43,
A2,
A1;
A5: g1
is_integrable_on
['a, b'] by
Th43,
A3,
A1;
A6: (f1
+ g1)
= (f
+ g) by
NFCONT_4: 5;
A7: (
integral (f1,c,d))
= (
integral (f,c,d)) & (
integral (g1,c,d))
= (
integral (g,c,d)) by
A1,
Th48;
A8:
['a, b']
c= (
dom (f
+ g)) by
A1,
A6,
Th4;
(f1
+ g1)
is_integrable_on
['a, b'] & ((f1
+ g1)
|
['a, b']) is
bounded by
A1,
A2,
A3,
A4,
A5,
Th10;
then (f
+ g)
is_integrable_on
['a, b'] & ((f
+ g)
|
['a, b']) is
bounded by
Th43,
A6,
A8,
Th34;
hence (
integral ((f
+ g),c,d))
= (
integral ((f1
+ g1),c,d)) by
A1,
A8,
Th48,
NFCONT_4: 5
.= ((
integral (f1,c,d))
+ (
integral (g1,c,d))) by
A1,
A2,
A3,
A4,
A5,
Th27
.= ((
integral (f,c,d))
+ (
integral (g,c,d))) by
A7,
REAL_NS1: 2;
end;
theorem ::
INTEGR19:50
Th50: for f,g be
PartFunc of
REAL , (
REAL-NS n) st a
<= b & f
is_integrable_on
['a, b'] & g
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded & (g
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) &
['a, b']
c= (
dom g) & c
in
['a, b'] & d
in
['a, b'] holds (
integral ((f
- g),c,d))
= ((
integral (f,c,d))
- (
integral (g,c,d)))
proof
let f,g be
PartFunc of
REAL , (
REAL-NS n);
assume
A1: a
<= b & f
is_integrable_on
['a, b'] & g
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded & (g
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) &
['a, b']
c= (
dom g) & c
in
['a, b'] & d
in
['a, b'];
reconsider f1 = f, g1 = g as
PartFunc of
REAL , (
REAL n) by
REAL_NS1:def 4;
A2: (f1
|
['a, b']) is
bounded by
Th34,
A1;
A3: (g1
|
['a, b']) is
bounded by
Th34,
A1;
A4: f1
is_integrable_on
['a, b'] by
Th43,
A2,
A1;
A5: g1
is_integrable_on
['a, b'] by
Th43,
A3,
A1;
A6: (f1
- g1)
= (f
- g) by
NFCONT_4: 10;
A7: (
integral (f1,c,d))
= (
integral (f,c,d)) & (
integral (g1,c,d))
= (
integral (g,c,d)) by
A1,
Th48;
A8:
['a, b']
c= (
dom (f
- g)) by
A1,
A6,
Th5;
(f1
- g1)
is_integrable_on
['a, b'] & ((f1
- g1)
|
['a, b']) is
bounded by
A1,
A2,
A3,
A4,
A5,
Th13;
then (f
- g)
is_integrable_on
['a, b'] & ((f
- g)
|
['a, b']) is
bounded by
Th43,
A6,
A8,
Th34;
hence (
integral ((f
- g),c,d))
= (
integral ((f1
- g1),c,d)) by
A1,
A8,
Th48,
NFCONT_4: 10
.= ((
integral (f1,c,d))
- (
integral (g1,c,d))) by
A1,
A2,
A3,
A4,
A5,
Th28
.= ((
integral (f,c,d))
- (
integral (g,c,d))) by
A7,
REAL_NS1: 5;
end;
theorem ::
INTEGR19:51
Th51: for E be
Point of (
REAL-NS n), f be
PartFunc of
REAL , (
REAL-NS n) st (a
<= b &
['a, b']
c= (
dom f) & for x be
Real st x
in
['a, b'] holds (f
. x)
= E) holds f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded & (
integral (f,a,b))
= ((b
- a)
* E)
proof
let e be
Point of (
REAL-NS n), f be
PartFunc of
REAL , (
REAL-NS n);
assume
A1: a
<= b &
['a, b']
c= (
dom f) & for x be
Real st x
in
['a, b'] holds (f
. x)
= e;
reconsider f1 = f as
PartFunc of
REAL , (
REAL n) by
REAL_NS1:def 4;
reconsider e1 = e as
Element of (
REAL n) by
REAL_NS1:def 4;
A2: for x be
Real st x
in
['a, b'] holds (f1
. x)
= e1 by
A1;
A3: f1
is_integrable_on
['a, b'] & (f1
|
['a, b']) is
bounded & (
integral (f1,a,b))
= ((b
- a)
* e1) by
Th29,
A1,
A2;
(
integral (f1,a,b))
= (
integral (f,a,b)) by
A3,
A1,
Th45;
hence thesis by
A3,
Th43,
A1,
Th34,
REAL_NS1: 3;
end;
theorem ::
INTEGR19:52
Th52: for E be
Point of (
REAL-NS n), f be
PartFunc of
REAL , (
REAL-NS n) st a
<= b &
['a, b']
c= (
dom f) & (for x be
Real st x
in
['a, b'] holds (f
. x)
= E) & c
in
['a, b'] & d
in
['a, b'] holds (
integral (f,c,d))
= ((d
- c)
* E)
proof
let e be
Point of (
REAL-NS n), f be
PartFunc of
REAL , (
REAL-NS n);
assume
A1: a
<= b &
['a, b']
c= (
dom f) & (for x be
Real st x
in
['a, b'] holds (f
. x)
= e) & c
in
['a, b'] & d
in
['a, b'];
reconsider f1 = f as
PartFunc of
REAL , (
REAL n) by
REAL_NS1:def 4;
reconsider e1 = e as
Element of (
REAL n) by
REAL_NS1:def 4;
A2: for x be
Real st x
in
['a, b'] holds (f1
. x)
= e1 by
A1;
A3: f1
is_integrable_on
['a, b'] & (f1
|
['a, b']) is
bounded & (
integral (f1,a,b))
= ((b
- a)
* e1) by
Th29,
A1,
A2;
A4: (
integral (f1,c,d))
= ((d
- c)
* e1) by
Th30,
A1;
['a, b']
=
[.a, b.] by
A1,
INTEGRA5:def 3;
then
A5: a
<= c & d
<= b & a
<= d & c
<= b by
A1,
XXREAL_1: 1;
per cases ;
suppose
A6: c
<= d;
A7:
['c, d']
c= (
dom f1) & (f1
|
['c, d']) is
bounded & f1
is_integrable_on
['c, d'] by
A3,
A1,
Th9,
A5,
A6,
Th2;
(
integral (f1,c,d))
= (
integral (f,c,d)) by
A7,
A6,
Th45;
hence (
integral (f,c,d))
= ((d
- c)
* e) by
A4,
REAL_NS1: 3;
end;
suppose
A8: not c
<= d;
A9:
['d, c']
c= (
dom f1) & (f1
|
['d, c']) is
bounded & f1
is_integrable_on
['d, c'] by
A3,
A1,
Th9,
A5,
A8,
Th2;
A10: (
integral (f1,d,c))
= (
integral (f,d,c)) by
A9,
A8,
Th45;
(
integral (f1,c,d))
= (
- (
integral (f1,d,c))) by
Th33
.= (
- (
integral (f,d,c))) by
A10,
REAL_NS1: 4
.= (
integral (f,c,d)) by
A8,
A9,
Th47;
hence (
integral (f,c,d))
= ((d
- c)
* e) by
A4,
REAL_NS1: 3;
end;
end;
theorem ::
INTEGR19:53
Th53: for f be
PartFunc of
REAL , (
REAL-NS n) st a
<= b & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'] holds (
integral (f,a,d))
= ((
integral (f,a,c))
+ (
integral (f,c,d)))
proof
let f be
PartFunc of
REAL , (
REAL-NS n);
assume
A1: a
<= b & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'];
['a, b']
=
[.a, b.] by
A1,
INTEGRA5:def 3;
then
A2: a
in
['a, b'] & b
in
['a, b'] by
A1;
reconsider f1 = f as
PartFunc of
REAL , (
REAL n) by
REAL_NS1:def 4;
A3: (f1
|
['a, b']) is
bounded by
A1,
Th34;
A4: f1
is_integrable_on
['a, b'] by
Th43,
A3,
A1;
A5: (
integral (f1,a,d))
= ((
integral (f1,a,c))
+ (
integral (f1,c,d))) by
A3,
A4,
A1,
Th31;
A6: (
integral (f,a,d))
= (
integral (f1,a,d)) by
A2,
Th48,
A1;
A7: (
integral (f,a,c))
= (
integral (f1,a,c)) by
A2,
Th48,
A1;
(
integral (f,c,d))
= (
integral (f1,c,d)) by
Th48,
A1;
hence (
integral (f,a,d))
= ((
integral (f,a,c))
+ (
integral (f,c,d))) by
A7,
A5,
A6,
REAL_NS1: 2;
end;
theorem ::
INTEGR19:54
Th54: for f be
PartFunc of
REAL , (
REAL-NS n) st (a
<= b & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'] & for x be
Real st x
in
['(
min (c,d)), (
max (c,d))'] holds
||.(f
/. x).||
<= e) holds
||.(
integral (f,c,d)).||
<= ((n
* e)
*
|.(d
- c).|)
proof
let f be
PartFunc of
REAL , (
REAL-NS n);
assume
A1: (a
<= b & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & c
in
['a, b'] & d
in
['a, b'] & for x be
Real st x
in
['(
min (c,d)), (
max (c,d))'] holds
||.(f
/. x).||
<= e);
reconsider f1 = f as
PartFunc of
REAL , (
REAL n) by
REAL_NS1:def 4;
A2: (f1
|
['a, b']) is
bounded by
A1,
Th34;
A3: f1
is_integrable_on
['a, b'] by
Th43,
A2,
A1;
for x be
Real st x
in
['(
min (c,d)), (
max (c,d))'] holds
|.(f1
/. x).|
<= e
proof
let x be
Real;
assume
A4: x
in
['(
min (c,d)), (
max (c,d))'];
then
A5:
||.(f
/. x).||
<= e by
A1;
['(
min (c,d)), (
max (c,d))']
c=
['a, b'] by
A1,
Lm2;
then
A6: x
in
['a, b'] by
A4;
then (f
/. x)
= (f
. x) by
A1,
PARTFUN1:def 6
.= (f1
/. x) by
A6,
A1,
PARTFUN1:def 6;
hence
|.(f1
/. x).|
<= e by
A5,
REAL_NS1: 1;
end;
then
|.(
integral (f1,c,d)).|
<= ((n
* e)
*
|.(d
- c).|) by
A1,
A2,
A3,
Th32;
hence thesis by
Th48,
A1,
REAL_NS1: 1;
end;
begin
Lm17: for X be
RealNormSpace, x be
Point of X holds
||.((a
" )
* x).||
= (
||.x.||
/
|.a.|)
proof
let X be
RealNormSpace, x be
Point of X;
thus
||.((a
" )
* x).||
= (
|.(a
" ).|
*
||.x.||) by
NORMSP_1:def 1
.= ((
|.a.|
" )
*
||.x.||) by
COMPLEX1: 66
.= ((1
/
|.a.|)
*
||.x.||) by
XCMPLX_1: 215
.= (
||.x.||
/
|.a.|) by
XCMPLX_1: 99;
end;
theorem ::
INTEGR19:55
Th55: for n be non
zero
Element of
NAT , F,f be
PartFunc of
REAL , (
REAL-NS n) st a
<= b & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) &
].a, b.[
c= (
dom F) & (for x be
Real st x
in
].a, b.[ holds (F
. x)
= (
integral (f,a,x))) & x0
in
].a, b.[ & f
is_continuous_in x0 holds F
is_differentiable_in x0 & (
diff (F,x0))
= (f
/. x0)
proof
let n be non
zero
Element of
NAT , F,f be
PartFunc of
REAL , (
REAL-NS n);
deffunc
F2(
object) = (
0. (
REAL-NS n));
assume that
A1: a
<= b and
A2: f
is_integrable_on
['a, b'] and
A3: (f
|
['a, b']) is
bounded and
A4:
['a, b']
c= (
dom f) and
A5:
].a, b.[
c= (
dom F) and
A6: for x be
Real st x
in
].a, b.[ holds (F
. x)
= (
integral (f,a,x)) and
A7: x0
in
].a, b.[ and
A8: f
is_continuous_in x0;
defpred
C1[
object] means (x0
+ (
In ($1,
REAL )))
in
].a, b.[;
deffunc
F0(
Real) = ($1
* (f
/. x0));
consider L be
Function of
REAL , (
REAL-NS n) such that
A9: for h be
Element of
REAL holds (L
. h)
=
F0(h) from
FUNCT_2:sch 4;
A10: for h be
Real holds (L
. h)
=
F0(h)
proof
let h be
Real;
reconsider h as
Element of
REAL by
XREAL_0:def 1;
(L
. h)
=
F0(h) by
A9;
hence thesis;
end;
A11: for h be
Real holds (L
/. h)
=
F0(h)
proof
let h be
Real;
reconsider h as
Element of
REAL by
XREAL_0:def 1;
(L
/. h)
= (L
. h)
.=
F0(h) by
A9;
hence thesis;
end;
then
reconsider L as
LinearFunc of (
REAL-NS n) by
NDIFF_3:def 2;
deffunc
F1(
object) = (((F
/. (x0
+ (
In ($1,
REAL ))))
- (F
/. x0))
- (L
. (
In ($1,
REAL ))));
consider R be
Function such that
A12: (
dom R)
=
REAL & for x be
object st x
in
REAL holds (
C1[x] implies (R
. x)
=
F1(x)) & ( not
C1[x] implies (R
. x)
=
F2(x)) from
PARTFUN1:sch 1;
(
rng R)
c= the
carrier of (
REAL-NS n)
proof
let y be
object;
assume y
in (
rng R);
then
consider x be
object such that
A13: x
in (
dom R) and
A14: y
= (R
. x) by
FUNCT_1:def 3;
A15: not
C1[x] implies (R
. x)
=
F2(x) by
A12,
A13;
C1[x] implies (R
. x)
=
F1(x) by
A12,
A13;
hence thesis by
A14,
A15;
end;
then
reconsider R as
PartFunc of
REAL , (
REAL-NS n) by
A12,
RELSET_1: 4;
A16: R is
total by
A12,
PARTFUN1:def 2;
A17:
['a, b']
=
[.a, b.] by
A1,
INTEGRA5:def 3;
A18: for h be
0
-convergent
non-zero
Real_Sequence holds ((h
" )
(#) (R
/* h)) is
convergent & (
lim ((h
" )
(#) (R
/* h)))
= (
0. (
REAL-NS n))
proof
let h be
0
-convergent
non-zero
Real_Sequence;
set Z0 = (
0. (
REAL-NS n));
A19: for e be
Real st
0
< e holds ex n be
Nat st for m be
Nat st n
<= m holds
||.((((h
" )
(#) (R
/* h))
. m)
- Z0).||
< e
proof
set g = (
REAL
--> (f
/. x0));
let e0 be
Real;
set e = ((e0
/ 2)
/ n);
A20: h is
convergent & (
lim h)
=
0 ;
assume
A21:
0
< e0;
then
0
< (e0
/ 2) by
XREAL_1: 215;
then
0
< e by
XREAL_1: 139;
then
consider p be
Real such that
A22:
0
< p and
A23: for t be
Real st t
in (
dom f) &
|.(t
- x0).|
< p holds
||.((f
/. t)
- (f
/. x0)).||
< e by
A8,
NFCONT_3: 8;
A24:
0
< (p
/ 2) by
A22,
XREAL_1: 215;
A25: (p
/ 2)
< p by
A22,
XREAL_1: 216;
consider N be
Neighbourhood of x0 such that
A26: N
c=
].a, b.[ by
A7,
RCOMP_1: 18;
consider q be
Real such that
A27:
0
< q and
A28: N
=
].(x0
- q), (x0
+ q).[ by
RCOMP_1:def 6;
A29: (q
/ 2)
< q by
A27,
XREAL_1: 216;
set r = (
min ((p
/ 2),(q
/ 2)));
0
< (q
/ 2) by
A27,
XREAL_1: 215;
then
0
< r by
A24,
XXREAL_0: 15;
then
consider n0 be
Nat such that
A30: for m be
Nat st n0
<= m holds
|.((h
. m)
-
0 ).|
< r by
A20,
SEQ_2:def 7;
reconsider n0 as
Element of
NAT by
ORDINAL1:def 12;
take n0;
let m be
Nat;
r
<= (q
/ 2) by
XXREAL_0: 17;
then
A31:
].(x0
- r), (x0
+ r).[
c=
].(x0
- q), (x0
+ q).[ by
A29,
INTEGRA6: 2,
XXREAL_0: 2;
assume n0
<= m;
then
A32:
|.((h
. m)
-
0 ).|
< r by
A30;
then
|.((x0
+ (h
. m))
- x0).|
< r;
then (x0
+ (h
. m))
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1: 1;
then
A33: (x0
+ (h
. m))
in
].(x0
- q), (x0
+ q).[ by
A31;
then
A34: (x0
+ (h
. m))
in
].a, b.[ by
A26,
A28;
then (x0
+ (
In ((h
. m),
REAL )))
in
].a, b.[;
then (R
. (h
. m))
= (((F
/. (x0
+ (
In ((h
. m),
REAL ))))
- (F
/. x0))
- (L
. (
In ((h
. m),
REAL )))) by
A12;
then (R
. (h
. m))
= (((F
/. (x0
+ (h
. m)))
- (F
/. x0))
- (L
. (
In ((h
. m),
REAL ))));
then
A35: (R
. (h
. m))
= (((F
/. (x0
+ (h
. m)))
- (F
/. x0))
- (L
. (h
. m)));
A36: (F
/. x0)
= (F
. x0) by
A7,
A5,
PARTFUN1:def 6
.= (
integral (f,a,x0)) by
A6,
A7;
(F
/. (x0
+ (h
. m)))
= (F
. (x0
+ (h
. m))) by
A34,
A5,
PARTFUN1:def 6
.= (
integral (f,a,(x0
+ (h
. m)))) by
A6,
A26,
A28,
A33;
then
A37: (R
. (h
. m))
= (((
integral (f,a,(x0
+ (h
. m))))
- (
integral (f,a,x0)))
- ((h
. m)
* (f
/. x0))) by
A36,
A10,
A35;
A38: (
dom g)
=
REAL by
FUNCT_2:def 1;
then (
['a, b']
/\
['a, b'])
c= ((
dom f)
/\ (
dom g)) by
A4,
XBOOLE_1: 27;
then
A39:
['a, b']
c= (
dom (f
- g)) by
VFUNCT_1:def 2;
A40:
].a, b.[
c=
[.a, b.] by
XXREAL_1: 25;
then
A41: (
integral (f,a,(x0
+ (h
. m))))
= ((
integral (f,a,x0))
+ (
integral (f,x0,(x0
+ (h
. m))))) by
A1,
A2,
A3,
A4,
A7,
A17,
A34,
Th53;
A42: r
<= (p
/ 2) by
XXREAL_0: 17;
A43: for x be
Real st x
in
['(
min (x0,(x0
+ (h
. m)))), (
max (x0,(x0
+ (h
. m))))'] holds
||.((f
- g)
/. x).||
<= e
proof
let x be
Real;
A44: (
min (x0,(x0
+ (h
. m))))
<= x0 & x0
<= (
max (x0,(x0
+ (h
. m)))) by
XXREAL_0: 17,
XXREAL_0: 25;
assume x
in
['(
min (x0,(x0
+ (h
. m)))), (
max (x0,(x0
+ (h
. m))))'];
then
A45: x
in
[.(
min (x0,(x0
+ (h
. m)))), (
max (x0,(x0
+ (h
. m)))).] by
A44,
INTEGRA5:def 3,
XXREAL_0: 2;
|.(x
- x0).|
<=
|.(h
. m).|
proof
per cases ;
suppose x0
<= (x0
+ (h
. m));
then x0
= (
min (x0,(x0
+ (h
. m)))) & (x0
+ (h
. m))
= (
max (x0,(x0
+ (h
. m)))) by
XXREAL_0:def 9,
XXREAL_0:def 10;
then
A46: ex z be
Real st x
= z & x0
<= z & z
<= (x0
+ (h
. m)) by
A45;
then
0
<= (x
- x0) by
XREAL_1: 48;
then
A47:
|.(x
- x0).|
= (x
- x0) by
ABSVALUE:def 1;
A48: (x
- x0)
<= ((x0
+ (h
. m))
- x0) by
A46,
XREAL_1: 9;
then
0
<= (h
. m) by
A46,
XREAL_1: 48;
hence thesis by
A48,
A47,
ABSVALUE:def 1;
end;
suppose
A49: not x0
<= (x0
+ (h
. m));
then x0
= (
max (x0,(x0
+ (h
. m)))) & (x0
+ (h
. m))
= (
min (x0,(x0
+ (h
. m)))) by
XXREAL_0:def 9,
XXREAL_0:def 10;
then
A50: ex z be
Real st x
= z & (x0
+ (h
. m))
<= z & z
<= x0 by
A45;
then
A51: ((x0
+ (h
. m))
- x0)
<= (x
- x0) by
XREAL_1: 9;
per cases ;
suppose
A52: (x
- x0)
<>
0 ;
((x0
+ (h
. m))
- x0)
< (x0
- x0) by
A49,
XREAL_1: 14;
then
A53:
|.(h
. m).|
= (
- (h
. m)) by
ABSVALUE:def 1;
(x
- x0)
<
0 by
A50,
A52,
XREAL_1: 47;
then
|.(x
- x0).|
= (
- (x
- x0)) by
ABSVALUE:def 1;
hence thesis by
A51,
A53,
XREAL_1: 24;
end;
suppose (x
- x0)
=
0 ;
then
|.(x
- x0).|
=
0 by
ABSVALUE:def 1;
hence thesis by
COMPLEX1: 46;
end;
end;
end;
then
A54:
|.(x
- x0).|
< r by
A32,
XXREAL_0: 2;
then x
in
].(x0
- r), (x0
+ r).[ by
RCOMP_1: 1;
then x
in
].(x0
- q), (x0
+ q).[ by
A31;
then x
in
].a, b.[ by
A26,
A28;
then
A55: x
in
[.a, b.] by
A40;
reconsider xx = x as
Element of
REAL by
XREAL_0:def 1;
|.(x
- x0).|
< (p
/ 2) by
A42,
A54,
XXREAL_0: 2;
then
|.(x
- x0).|
< p by
A25,
XXREAL_0: 2;
then
||.((f
/. x)
- (f
/. x0)).||
<= e by
A4,
A17,
A23,
A55;
then
||.((f
/. x)
- (g
/. xx)).||
<= e by
FUNCOP_1: 7;
hence thesis by
A17,
A39,
A55,
VFUNCT_1:def 2;
end;
A56: for x be
Real st x
in
['a, b'] holds (g
. x)
= (f
/. x0) by
FUNCOP_1: 7;
then
A57: (g
|
['a, b']) is
bounded by
A1,
A38,
Th51;
then
A58: ((f
- g)
| (
['a, b']
/\
['a, b'])) is
bounded by
A3,
Th35;
A59: m
in
NAT by
ORDINAL1:def 12;
(
rng h)
c= (
dom R) by
A12;
then (((h
. m)
" )
* (R
/. (h
. m)))
= (((h
. m)
" )
* ((R
/* h)
. m)) by
FUNCT_2: 109,
A59;
then (((h
. m)
" )
* (R
/. (h
. m)))
= (((h
" )
. m)
* ((R
/* h)
. m)) by
VALUED_1: 10;
then
A60: (((h
. m)
" )
* (R
/. (h
. m)))
= (((h
" )
(#) (R
/* h))
. m) by
NDIFF_1:def 2;
(h
. m)
<>
0 by
SEQ_1: 5;
then
A61:
0
<
|.(h
. m).| by
COMPLEX1: 47;
A62: g
is_integrable_on
['a, b'] by
A1,
A38,
A56,
Th51;
then
A63:
||.(
integral ((f
- g),x0,(x0
+ (h
. m)))).||
<= ((n
* e)
*
|.((x0
+ (h
. m))
- x0).|) by
A1,
A7,
A17,
A40,
A34,
A58,
A39,
A43,
Th54,
A2,
A4,
A38,
INTEGR18: 15;
A64: (
integral (g,x0,(x0
+ (h
. m))))
= (((x0
+ (h
. m))
- x0)
* (f
/. x0)) by
A1,
A7,
A17,
A40,
A34,
A38,
A56,
Th52
.= ((h
. m)
* (f
/. x0));
A65: (
integral ((f
- g),x0,(x0
+ (h
. m))))
= ((
integral (f,x0,(x0
+ (h
. m))))
- (
integral (g,x0,(x0
+ (h
. m))))) by
A1,
A2,
A3,
A4,
A7,
A17,
A40,
A34,
A38,
A62,
A57,
Th50;
(R
. (h
. m))
= (((
integral (f,x0,(x0
+ (h
. m))))
+ ((
integral (f,a,x0))
- (
integral (f,a,x0))))
- ((h
. m)
* (f
/. x0))) by
A37,
A41,
RLVECT_1: 28
.= (((
integral (f,x0,(x0
+ (h
. m))))
+ Z0)
- ((h
. m)
* (f
/. x0))) by
RLVECT_1: 15
.= ((
integral (f,x0,(x0
+ (h
. m))))
- (
integral (g,x0,(x0
+ (h
. m))))) by
A64,
RLVECT_1:def 4;
then (R
/. (h
. m))
= (
integral ((f
- g),x0,(x0
+ (h
. m)))) by
A65,
A12,
PARTFUN1:def 6;
then
||.(((h
. m)
" )
* (R
/. (h
. m))).||
= (
||.(R
/. (h
. m)).||
/
|.(h
. m).|) & (
||.(R
/. (h
. m)).||
/
|.(h
. m).|)
<= (((n
* e)
*
|.(h
. m).|)
/
|.(h
. m).|) by
A63,
A61,
Lm17,
XREAL_1: 72;
then
||.(((h
. m)
" )
* (R
/. (h
. m))).||
<= (n
* e) by
A61,
XCMPLX_1: 89;
then
A66:
||.(((h
. m)
" )
* (R
/. (h
. m))).||
<= (e0
/ 2) by
XCMPLX_1: 87;
(e0
/ 2)
< e0 by
A21,
XREAL_1: 216;
then
||.(((h
" )
(#) (R
/* h))
. m).||
< e0 by
A66,
A60,
XXREAL_0: 2;
hence thesis by
RLVECT_1: 13;
end;
hence ((h
" )
(#) (R
/* h)) is
convergent by
NORMSP_1:def 6;
hence thesis by
A19,
NORMSP_1:def 7;
end;
consider N be
Neighbourhood of x0 such that
A67: N
c=
].a, b.[ by
A7,
RCOMP_1: 18;
reconsider R as
RestFunc of (
REAL-NS n) by
A16,
A18,
NDIFF_3:def 1;
A68: for x be
Real st x
in N holds ((F
/. x)
- (F
/. x0))
= ((L
/. (x
- x0))
+ (R
/. (x
- x0)))
proof
let x be
Real;
assume x
in N;
then (x0
+ (x
- x0))
in N;
then
A69: (x0
+ (
In ((x
- x0),
REAL )))
in N;
then
A70: (x0
+ (
In ((x
- x0),
REAL )))
= (x0
+ (x
- x0)) & (R
. (x
- x0))
=
F1(-) by
A12,
A67;
(x0
+ (
In ((x
- x0),
REAL )))
in
].a, b.[ by
A69,
A67;
then
A71:
C1[(x
- x0)];
(R
/. (x
- x0))
= (R
. (x
- x0)) by
A12,
PARTFUN1:def 6,
A70
.=
F1(-) by
A12,
A71
.= (((F
/. (x0
+ (
In ((x
- x0),
REAL ))))
- (F
/. x0))
- (L
. (
In ((x
- x0),
REAL ))))
.= (((F
/. (x0
+ (
In ((x
- x0),
REAL ))))
- (F
/. x0))
- (L
/. (
In ((x
- x0),
REAL ))))
.= (((F
/. x)
- (F
/. x0))
- (L
/. (x
- x0)));
then ((R
/. (x
- x0))
+ (L
/. (x
- x0)))
= (((F
/. x)
- (F
/. x0))
- ((L
/. (x
- x0))
- (L
/. (x
- x0)))) by
RLVECT_1: 29
.= (((F
/. x)
- (F
/. x0))
- (
0. (
REAL-NS n))) by
RLVECT_1: 15
.= ((F
/. x)
- (F
/. x0)) by
RLVECT_1: 13;
hence thesis;
end;
A72: N
c= (
dom F) by
A5,
A67;
hence
A73: F
is_differentiable_in x0 by
A68,
NDIFF_3:def 3;
reconsider N1 = 1 as
Real;
(L
/. 1)
= (N1
* (f
/. x0)) by
A11
.= (f
/. x0) by
RLVECT_1:def 8;
hence thesis by
A72,
A68,
A73,
NDIFF_3:def 4;
end;
Lm18: for f be
PartFunc of
REAL , (
REAL-NS n) holds ex F be
PartFunc of
REAL , (
REAL-NS n) st
].a, b.[
c= (
dom F) & for x be
Real st x
in
].a, b.[ holds (F
. x)
= (
integral (f,a,x))
proof
deffunc
G(
Real) = (
0. (
REAL-NS n));
let f be
PartFunc of
REAL , (
REAL-NS n);
defpred
C[
set] means $1
in
].a, b.[;
deffunc
F(
Real) = (
integral (f,a,$1));
consider F be
Function such that
A1: (
dom F)
=
REAL & for x be
Element of
REAL holds (
C[x] implies (F
. x)
=
F(x)) & ( not
C[x] implies (F
. x)
=
G(x)) from
PARTFUN1:sch 4;
now
let y be
object;
assume y
in (
rng F);
then
consider x be
object such that
A2: x
in (
dom F) and
A3: y
= (F
. x) by
FUNCT_1:def 3;
reconsider x as
Element of
REAL by
A1,
A2;
A4:
now
assume not x
in
].a, b.[;
then (F
. x)
= (
0. (
REAL-NS n)) by
A1;
hence y
in the
carrier of (
REAL-NS n) by
A3;
end;
now
assume x
in
].a, b.[;
then (F
. x)
= (
integral (f,a,x)) by
A1;
hence y
in the
carrier of (
REAL-NS n) by
A3;
end;
hence y
in the
carrier of (
REAL-NS n) by
A4;
end;
then (
rng F)
c= the
carrier of (
REAL-NS n);
then
reconsider F as
PartFunc of
REAL , (
REAL-NS n) by
A1,
RELSET_1: 4;
take F;
thus thesis by
A1;
end;
theorem ::
INTEGR19:56
for n be non
zero
Element of
NAT , f be
PartFunc of
REAL , (
REAL-NS n) st a
<= b & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & x0
in
].a, b.[ & f
is_continuous_in x0 holds ex F be
PartFunc of
REAL , (
REAL-NS n) st
].a, b.[
c= (
dom F) & (for x be
Real st x
in
].a, b.[ holds (F
. x)
= (
integral (f,a,x))) & F
is_differentiable_in x0 & (
diff (F,x0))
= (f
/. x0)
proof
let n be non
zero
Element of
NAT ;
let f be
PartFunc of
REAL , (
REAL-NS n);
consider F be
PartFunc of
REAL , (
REAL-NS n) such that
A1:
].a, b.[
c= (
dom F) & for x be
Real st x
in
].a, b.[ holds (F
. x)
= (
integral (f,a,x)) by
Lm18;
assume a
<= b & f
is_integrable_on
['a, b'] & (f
|
['a, b']) is
bounded &
['a, b']
c= (
dom f) & x0
in
].a, b.[ & f
is_continuous_in x0;
then F
is_differentiable_in x0 & (
diff (F,x0))
= (f
/. x0) by
A1,
Th55;
hence thesis by
A1;
end;