jordan19.miz
    
    begin
    
    reserve n for
    Nat;
    
    definition
    
      let C be
    Simple_closed_curve;
    
      :: 
    
    JORDAN19:def1
    
      func
    
    Upper_Appr C -> 
    SetSequence of the 
    carrier of ( 
    TOP-REAL 2) means 
    
      :
    
    Def1: for i be 
    Nat holds (it 
    . i) 
    = ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,i)))); 
    
      existence
    
      proof
    
        deffunc
    
    O(
    Nat) = (
    Upper_Arc ( 
    L~ ( 
    Cage (C,$1)))); 
    
        consider S be
    SetSequence of the 
    carrier of ( 
    TOP-REAL 2) such that 
    
        
    
    A1: for i be 
    Element of 
    NAT holds (S 
    . i) 
    =  
    O(i) from
    FUNCT_2:sch 4;
    
        take S;
    
        let i be
    Nat;
    
        i
    in  
    NAT by 
    ORDINAL1:def 12;
    
        hence thesis by
    A1;
    
      end;
    
      uniqueness
    
      proof
    
        let s1,s2 be
    SetSequence of the 
    carrier of ( 
    TOP-REAL 2) such that 
    
        
    
    A2: for i be 
    Nat holds (s1 
    . i) 
    = ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,i)))) and 
    
        
    
    A3: for i be 
    Nat holds (s2 
    . i) 
    = ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,i)))); 
    
        let i be
    Element of 
    NAT ; 
    
        
    
        thus (s1
    . i) 
    = ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,i)))) by 
    A2
    
        .= (s2
    . i) by 
    A3;
    
      end;
    
      :: 
    
    JORDAN19:def2
    
      func
    
    Lower_Appr C -> 
    SetSequence of the 
    carrier of ( 
    TOP-REAL 2) means 
    
      :
    
    Def2: for i be 
    Nat holds (it 
    . i) 
    = ( 
    Lower_Arc ( 
    L~ ( 
    Cage (C,i)))); 
    
      existence
    
      proof
    
        deffunc
    
    O(
    Nat) = (
    Lower_Arc ( 
    L~ ( 
    Cage (C,$1)))); 
    
        consider S be
    SetSequence of the 
    carrier of ( 
    TOP-REAL 2) such that 
    
        
    
    A4: for i be 
    Element of 
    NAT holds (S 
    . i) 
    =  
    O(i) from
    FUNCT_2:sch 4;
    
        take S;
    
        let i be
    Nat;
    
        i
    in  
    NAT by 
    ORDINAL1:def 12;
    
        hence thesis by
    A4;
    
      end;
    
      uniqueness
    
      proof
    
        deffunc
    
    O(
    Nat) = (
    Lower_Arc ( 
    L~ ( 
    Cage (C,$1)))); 
    
        let s1,s2 be
    SetSequence of the 
    carrier of ( 
    TOP-REAL 2) such that 
    
        
    
    A5: for i be 
    Nat holds (s1 
    . i) 
    = ( 
    Lower_Arc ( 
    L~ ( 
    Cage (C,i)))) and 
    
        
    
    A6: for i be 
    Nat holds (s2 
    . i) 
    = ( 
    Lower_Arc ( 
    L~ ( 
    Cage (C,i)))); 
    
        let i be
    Element of 
    NAT ; 
    
        
    
        thus (s1
    . i) 
    = ( 
    Lower_Arc ( 
    L~ ( 
    Cage (C,i)))) by 
    A5
    
        .= (s2
    . i) by 
    A6;
    
      end;
    
    end
    
    definition
    
      let C be
    Simple_closed_curve;
    
      :: 
    
    JORDAN19:def3
    
      func
    
    North_Arc C -> 
    Subset of ( 
    TOP-REAL 2) equals ( 
    Lim_inf ( 
    Upper_Appr C)); 
    
      coherence ;
    
      :: 
    
    JORDAN19:def4
    
      func
    
    South_Arc C -> 
    Subset of ( 
    TOP-REAL 2) equals ( 
    Lim_inf ( 
    Lower_Appr C)); 
    
      coherence ;
    
    end
    
    
    
    Lm1: 
    
    now
    
      let G be
    Go-board;
    
      let j be
    Nat;
    
      assume that
    
      
    
    A1: 1 
    <= j and 
    
      
    
    A2: j 
    <= ( 
    width G); 
    
      (
    0  
    + 1) 
    <= ((( 
    len G) 
    div 2) 
    + 1) by 
    XREAL_1: 6;
    
      then
    
      
    
    A3: ( 
    0  
    + 1) 
    <= ( 
    Center G) by 
    JORDAN1A:def 1;
    
      (
    Center G) 
    <= ( 
    len G) by 
    JORDAN1B: 13;
    
      hence
    [(
    Center G), j] 
    in ( 
    Indices G) by 
    A1,
    A2,
    A3,
    MATRIX_0: 30;
    
    end;
    
    
    
    Lm2: 
    
    now
    
      let D be non
    empty  
    Subset of ( 
    TOP-REAL 2); 
    
      let n,i be
    Nat;
    
      set a = (
    N-bound D), s = ( 
    S-bound D), w = ( 
    W-bound D), e = ( 
    E-bound D); 
    
      set G = (
    Gauge (D,n)); 
    
      assume
    [i, (
    width G)] 
    in ( 
    Indices G); 
    
      
    
      hence ((G
    * (i,( 
    width G))) 
    `2 ) 
    = ( 
    |[(w
    + (((e 
    - w) 
    / (2 
    |^ n)) 
    * (i 
    - 2))), (s 
    + (((a 
    - s) 
    / (2 
    |^ n)) 
    * (( 
    width G) 
    - 2)))]| 
    `2 ) by 
    JORDAN8:def 1
    
      .= (s
    + (((a 
    - s) 
    / (2 
    |^ n)) 
    * (( 
    width G) 
    - 2))) by 
    EUCLID: 52;
    
    end;
    
    theorem :: 
    
    JORDAN19:1
    
    
    
    
    
    Th1: for n,m be 
    Nat holds n 
    <= m & n 
    <>  
    0 implies ((n 
    + 1) 
    / n) 
    >= ((m 
    + 1) 
    / m) 
    
    proof
    
      let n,m be
    Nat;
    
      assume that
    
      
    
    A1: n 
    <= m and 
    
      
    
    A2: n 
    <>  
    0 ; 
    
      
    
      
    
    A3: n 
    >  
    0 by 
    A2;
    
      
    
      
    
    A4: (1 
    / n) 
    >= (1 
    / m) by 
    A1,
    A2,
    XREAL_1: 85;
    
      
    
      
    
    A5: ((n 
    + 1) 
    / n) 
    = ((n 
    / n) 
    + (1 
    / n)) 
    
      .= (1
    + (1 
    / n)) by 
    A2,
    XCMPLX_1: 60;
    
      ((m
    + 1) 
    / m) 
    = ((m 
    / m) 
    + (1 
    / m)) 
    
      .= (1
    + (1 
    / m)) by 
    A1,
    A3,
    XCMPLX_1: 60;
    
      hence thesis by
    A4,
    A5,
    XREAL_1: 7;
    
    end;
    
    theorem :: 
    
    JORDAN19:2
    
    
    
    
    
    Th2: for E be 
    compact non 
    vertical non 
    horizontal  
    Subset of ( 
    TOP-REAL 2) holds for m,j be 
    Nat st 1 
    <= m & m 
    <= n & 1 
    <= j & j 
    <= ( 
    width ( 
    Gauge (E,n))) holds ( 
    LSeg ((( 
    Gauge (E,n)) 
    * (( 
    Center ( 
    Gauge (E,n))),( 
    width ( 
    Gauge (E,n))))),(( 
    Gauge (E,n)) 
    * (( 
    Center ( 
    Gauge (E,n))),j)))) 
    c= ( 
    LSeg ((( 
    Gauge (E,m)) 
    * (( 
    Center ( 
    Gauge (E,m))),( 
    width ( 
    Gauge (E,m))))),(( 
    Gauge (E,n)) 
    * (( 
    Center ( 
    Gauge (E,n))),j)))) 
    
    proof
    
      let E be
    compact non 
    vertical non 
    horizontal  
    Subset of ( 
    TOP-REAL 2); 
    
      let m,j be
    Nat;
    
      set a = (
    N-bound E), s = ( 
    S-bound E), w = ( 
    W-bound E), e = ( 
    E-bound E), G = ( 
    Gauge (E,n)), M = ( 
    Gauge (E,m)), sn = ( 
    Center G), sm = ( 
    Center M); 
    
      assume that
    
      
    
    A1: 1 
    <= m and 
    
      
    
    A2: m 
    <= n and 
    
      
    
    A3: 1 
    <= j and 
    
      
    
    A4: j 
    <= ( 
    width G); 
    
      
    
      
    
    A5: ( 
    width M) 
    = ( 
    len M) by 
    JORDAN8:def 1
    
      .= ((2
    |^ m) 
    + 3) by 
    JORDAN8:def 1;
    
      
    
      
    
    A6: ( 
    width G) 
    = ( 
    len G) by 
    JORDAN8:def 1
    
      .= ((2
    |^ n) 
    + 3) by 
    JORDAN8:def 1;
    
      
    
    A7: 
    
      now
    
        let t be
    Nat;
    
        assume that
    
        
    
    A8: ( 
    width G) 
    >= t and 
    
        
    
    A9: t 
    >= j; 
    
        
    
        
    
    A10: ( 
    len M) 
    = ( 
    width M) by 
    JORDAN8:def 1;
    
        
    
        
    
    A11: ( 
    len G) 
    = ( 
    width G) by 
    JORDAN8:def 1;
    
        
    
        
    
    A12: 
    0  
    < (a 
    - s) by 
    SPRECT_1: 32,
    XREAL_1: 50;
    
        
    
        
    
    A13: t 
    >= 1 by 
    A3,
    A9,
    XXREAL_0: 2;
    
        
    
        
    
    A14: 
    0  
    < (2 
    |^ m) by 
    NEWTON: 83;
    
        
    
        
    
    A15: 1 
    <= ( 
    len M) by 
    GOBRD11: 34;
    
        then
    
        
    
    A16: ((M 
    * (sm,( 
    width M))) 
    `1 ) 
    = ((G 
    * (sn,t)) 
    `1 ) by 
    A1,
    A2,
    A8,
    A10,
    A11,
    A13,
    JORDAN1A: 36;
    
        
    
        
    
    A17: ((G 
    * (sn,t)) 
    `1 ) 
    = ((G 
    * (sn,j)) 
    `1 ) by 
    A1,
    A2,
    A3,
    A4,
    A8,
    A11,
    A13,
    JORDAN1A: 36;
    
        
    [sn, t]
    in ( 
    Indices G) by 
    A8,
    A13,
    Lm1;
    
        
    
        then
    
        
    
    A18: ((G 
    * (sn,t)) 
    `2 ) 
    = ( 
    |[(w
    + (((e 
    - w) 
    / (2 
    |^ n)) 
    * (sn 
    - 2))), (s 
    + (((a 
    - s) 
    / (2 
    |^ n)) 
    * (t 
    - 2)))]| 
    `2 ) by 
    JORDAN8:def 1
    
        .= (s
    + (((a 
    - s) 
    / (2 
    |^ n)) 
    * (t 
    - 2))) by 
    EUCLID: 52;
    
        
    [sm, (
    width M)] 
    in ( 
    Indices M) by 
    A10,
    A15,
    Lm1;
    
        then
    
        
    
    A19: ((M 
    * (sm,( 
    width M))) 
    `2 ) 
    = (s 
    + (((a 
    - s) 
    / (2 
    |^ m)) 
    * (( 
    width M) 
    - 2))) by 
    Lm2;
    
        
    
        
    
    A20: (((2 
    |^ m) 
    + 1) 
    / (2 
    |^ m)) 
    >= (((2 
    |^ n) 
    + 1) 
    / (2 
    |^ n)) by 
    A2,
    A14,
    Th1,
    PREPOWER: 93;
    
        (t
    - 2) 
    <= (((2 
    |^ n) 
    + 3) 
    - 2) by 
    A6,
    A8,
    XREAL_1: 9;
    
        then ((t
    - 2) 
    / (2 
    |^ n)) 
    <= (((2 
    |^ n) 
    + 1) 
    / (2 
    |^ n)) by 
    XREAL_1: 72;
    
        then ((t
    - 2) 
    / (2 
    |^ n)) 
    <= ((( 
    width M) 
    - 2) 
    / (2 
    |^ m)) by 
    A5,
    A20,
    XXREAL_0: 2;
    
        then ((a
    - s) 
    * ((t 
    - 2) 
    / (2 
    |^ n))) 
    <= ((a 
    - s) 
    * ((( 
    width M) 
    - 2) 
    / (2 
    |^ m))) by 
    A12,
    XREAL_1: 64;
    
        then
    
        
    
    A21: (s 
    + (((a 
    - s) 
    / (2 
    |^ m)) 
    * (( 
    width M) 
    - 2))) 
    >= (s 
    + (((a 
    - s) 
    / (2 
    |^ n)) 
    * (t 
    - 2))) by 
    XREAL_1: 6;
    
        
    
        
    
    A22: 1 
    <= sn by 
    JORDAN1B: 11;
    
        sn
    <= ( 
    len G) by 
    JORDAN1B: 13;
    
        then ((G
    * (sn,t)) 
    `2 ) 
    >= ((G 
    * (sn,j)) 
    `2 ) by 
    A3,
    A8,
    A9,
    A22,
    SPRECT_3: 12;
    
        hence (G
    * (sn,t)) 
    in ( 
    LSeg ((M 
    * (sm,( 
    width M))),(G 
    * (sn,j)))) by 
    A16,
    A17,
    A18,
    A19,
    A21,
    GOBOARD7: 7;
    
      end;
    
      then
    
      
    
    A23: (G 
    * (sn,( 
    width G))) 
    in ( 
    LSeg ((M 
    * (sm,( 
    width M))),(G 
    * (sn,j)))) by 
    A4;
    
      (G
    * (sn,j)) 
    in ( 
    LSeg ((M 
    * (sm,( 
    width M))),(G 
    * (sn,j)))) by 
    A4,
    A7;
    
      hence thesis by
    A23,
    TOPREAL1: 6;
    
    end;
    
    theorem :: 
    
    JORDAN19:3
    
    
    
    
    
    Th3: for C be 
    compact
    connected non 
    vertical non 
    horizontal  
    Subset of ( 
    TOP-REAL 2) holds for i,j be 
    Nat st 1 
    <= i & i 
    <= ( 
    len ( 
    Gauge (C,n))) & 1 
    <= j & j 
    <= ( 
    width ( 
    Gauge (C,n))) & (( 
    Gauge (C,n)) 
    * (i,j)) 
    in ( 
    L~ ( 
    Cage (C,n))) holds ( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i,( 
    width ( 
    Gauge (C,n))))),(( 
    Gauge (C,n)) 
    * (i,j)))) 
    meets ( 
    L~ ( 
    Upper_Seq (C,n))) 
    
    proof
    
      let C be
    compact
    connected non 
    vertical non 
    horizontal  
    Subset of ( 
    TOP-REAL 2); 
    
      let i,j be
    Nat;
    
      set Gij = ((
    Gauge (C,n)) 
    * (i,j)); 
    
      assume that
    
      
    
    A1: 1 
    <= i and 
    
      
    
    A2: i 
    <= ( 
    len ( 
    Gauge (C,n))) and 
    
      
    
    A3: 1 
    <= j and 
    
      
    
    A4: j 
    <= ( 
    width ( 
    Gauge (C,n))) and 
    
      
    
    A5: Gij 
    in ( 
    L~ ( 
    Cage (C,n))); 
    
      set NE = (
    SW-corner ( 
    L~ ( 
    Cage (C,n)))); 
    
      set v1 = (
    L_Cut (( 
    Lower_Seq (C,n)),Gij)); 
    
      set wG = (
    width ( 
    Gauge (C,n))); 
    
      set lG = (
    len ( 
    Gauge (C,n))); 
    
      set Gv1 = (
    <*((
    Gauge (C,n)) 
    * (i,wG))*> 
    ^ v1); 
    
      set v = (Gv1
    ^  
    <*NE*>);
    
      set h = (
    mid (( 
    Upper_Seq (C,n)),2,( 
    len ( 
    Upper_Seq (C,n))))); 
    
      
    
      
    
    A6: ( 
    L~ ( 
    Cage (C,n))) 
    = (( 
    L~ ( 
    Lower_Seq (C,n))) 
    \/ ( 
    L~ ( 
    Upper_Seq (C,n)))) by 
    JORDAN1E: 13;
    
      
    
      
    
    A7: ( 
    len ( 
    Upper_Seq (C,n))) 
    >= 3 by 
    JORDAN1E: 15;
    
      
    
      
    
    A8: ( 
    len ( 
    Lower_Seq (C,n))) 
    >= 3 by 
    JORDAN1E: 15;
    
      
    
      
    
    A9: ( 
    len ( 
    Upper_Seq (C,n))) 
    >= 2 by 
    A7,
    XXREAL_0: 2;
    
      
    
      
    
    A10: ( 
    len ( 
    Upper_Seq (C,n))) 
    >= 1 by 
    A7,
    XXREAL_0: 2;
    
      
    
      
    
    A11: ( 
    len ( 
    Lower_Seq (C,n))) 
    >= 1 by 
    A8,
    XXREAL_0: 2;
    
      
    
      
    
    A12: ( 
    len ( 
    Gauge (C,n))) 
    = ( 
    width ( 
    Gauge (C,n))) by 
    JORDAN8:def 1;
    
      then (
    width ( 
    Gauge (C,n))) 
    >= 4 by 
    JORDAN8: 10;
    
      then
    
      
    
    A13: 1 
    <= ( 
    width ( 
    Gauge (C,n))) by 
    XXREAL_0: 2;
    
      
    
      
    
    A14: ((( 
    Gauge (C,n)) 
    * (i,wG)) 
    `2 ) 
    = ( 
    N-bound ( 
    L~ ( 
    Cage (C,n)))) by 
    A1,
    A2,
    A12,
    JORDAN1A: 70;
    
      set Ema = (
    E-max ( 
    L~ ( 
    Cage (C,n)))); 
    
      now
    
        per cases by
    A2,
    A5,
    A6,
    XBOOLE_0:def 3,
    XXREAL_0: 1;
    
          suppose
    
          
    
    A15: Gij 
    in ( 
    L~ ( 
    Lower_Seq (C,n))) & i 
    = lG; 
    
          set G11 = ((
    Gauge (C,n)) 
    * (lG,wG)); 
    
          
    
          
    
    A16: (G11 
    `1 ) 
    = ( 
    E-bound ( 
    L~ ( 
    Cage (C,n)))) by 
    A1,
    A12,
    A15,
    JORDAN1A: 71;
    
          
    
          
    
    A17: (Ema 
    `1 ) 
    = ( 
    E-bound ( 
    L~ ( 
    Cage (C,n)))) by 
    EUCLID: 52;
    
          
    
          
    
    A18: ( 
    N-bound ( 
    L~ ( 
    Cage (C,n)))) 
    = (G11 
    `2 ) by 
    A1,
    A12,
    A15,
    JORDAN1A: 70;
    
          Ema
    in ( 
    L~ ( 
    Cage (C,n))) by 
    SPRECT_1: 14;
    
          then
    
          
    
    A19: (G11 
    `2 ) 
    >= (Ema 
    `2 ) by 
    A18,
    PSCOMP_1: 24;
    
          
    
          
    
    A20: (Gij 
    `1 ) 
    = ( 
    E-bound ( 
    L~ ( 
    Cage (C,n)))) by 
    A3,
    A4,
    A12,
    A15,
    JORDAN1A: 71;
    
          then Gij
    in ( 
    E-most ( 
    L~ ( 
    Cage (C,n)))) by 
    A5,
    SPRECT_2: 13;
    
          then (Ema
    `2 ) 
    >= (Gij 
    `2 ) by 
    PSCOMP_1: 47;
    
          then
    
          
    
    A21: Ema 
    in ( 
    LSeg ((( 
    Gauge (C,n)) 
    * (lG,wG)),(( 
    Gauge (C,n)) 
    * (lG,j)))) by 
    A15,
    A16,
    A17,
    A19,
    A20,
    GOBOARD7: 7;
    
          
    
          
    
    A22: ( 
    rng ( 
    Upper_Seq (C,n))) 
    c= ( 
    L~ ( 
    Upper_Seq (C,n))) by 
    A7,
    SPPOL_2: 18,
    XXREAL_0: 2;
    
          ((
    Upper_Seq (C,n)) 
    /. ( 
    len ( 
    Upper_Seq (C,n)))) 
    = Ema by 
    JORDAN1F: 7;
    
          then Ema
    in ( 
    rng ( 
    Upper_Seq (C,n))) by 
    FINSEQ_6: 168;
    
          hence thesis by
    A15,
    A21,
    A22,
    XBOOLE_0: 3;
    
        end;
    
          suppose
    
          
    
    A23: Gij 
    in ( 
    L~ ( 
    Lower_Seq (C,n))) & Gij 
    <> (( 
    Lower_Seq (C,n)) 
    . ( 
    len ( 
    Lower_Seq (C,n)))) & ( 
    W-min ( 
    L~ ( 
    Cage (C,n)))) 
    <> NE & i 
    < lG; 
    
          then
    
          
    
    A24: v1 is non 
    empty by 
    JORDAN1E: 3;
    
          then
    
          
    
    A25: ( 
    0  
    + 1) 
    <= ( 
    len v1) by 
    NAT_1: 13;
    
          then
    
          
    
    A26: 1 
    in ( 
    dom v1) by 
    FINSEQ_3: 25;
    
          
    
          
    
    A27: ( 
    len v1) 
    in ( 
    dom v1) by 
    A25,
    FINSEQ_3: 25;
    
          
    
          
    
    A28: ( 
    len ( 
    Lower_Seq (C,n))) 
    in ( 
    dom ( 
    Lower_Seq (C,n))) by 
    A11,
    FINSEQ_3: 25;
    
          
    
          
    
    A29: (v1 
    /. ( 
    len v1)) 
    = (v1 
    . ( 
    len v1)) by 
    A27,
    PARTFUN1:def 6
    
          .= ((
    Lower_Seq (C,n)) 
    . ( 
    len ( 
    Lower_Seq (C,n)))) by 
    A23,
    JORDAN1B: 4
    
          .= ((
    Lower_Seq (C,n)) 
    /. ( 
    len ( 
    Lower_Seq (C,n)))) by 
    A28,
    PARTFUN1:def 6
    
          .= (
    W-min ( 
    L~ ( 
    Cage (C,n)))) by 
    JORDAN1F: 8;
    
          then
    
          
    
    A30: (Gv1 
    /. ( 
    len Gv1)) 
    = ( 
    W-min ( 
    L~ ( 
    Cage (C,n)))) by 
    A24,
    SPRECT_3: 1;
    
          
    
          
    
    A31: (v1 
    /. 1) 
    = (v1 
    . 1) by 
    A26,
    PARTFUN1:def 6
    
          .= Gij by
    A23,
    JORDAN3: 23;
    
          then
    
          
    
    A32: ((v1 
    ^  
    <*NE*>)
    /. 1) 
    = Gij by 
    A25,
    BOOLMARK: 7;
    
          
    
          
    
    A33: (1 
    + ( 
    len v1)) 
    >= (1 
    + 1) by 
    A25,
    XREAL_1: 7;
    
          (
    len v) 
    = (( 
    len Gv1) 
    + 1) by 
    FINSEQ_2: 16
    
          .= ((1
    + ( 
    len v1)) 
    + 1) by 
    FINSEQ_5: 8;
    
          then 2
    < ( 
    len v) by 
    A33,
    NAT_1: 13;
    
          then
    
          
    
    A34: 2 
    < ( 
    len ( 
    Rev v)) by 
    FINSEQ_5:def 3;
    
          (
    S-bound ( 
    L~ ( 
    Cage (C,n)))) 
    < ( 
    N-bound ( 
    L~ ( 
    Cage (C,n)))) by 
    SPRECT_1: 32;
    
          then NE
    <> (( 
    Gauge (C,n)) 
    * (i,wG)) by 
    A14,
    EUCLID: 52;
    
          then not NE
    in  
    {((
    Gauge (C,n)) 
    * (i,wG))} by 
    TARSKI:def 1;
    
          then
    
          
    
    A35: not NE 
    in ( 
    rng  
    <*((
    Gauge (C,n)) 
    * (i,wG))*>) by 
    FINSEQ_1: 39;
    
          (
    len ( 
    Cage (C,n))) 
    > 4 by 
    GOBOARD7: 34;
    
          then
    
          
    
    A36: ( 
    rng ( 
    Cage (C,n))) 
    c= ( 
    L~ ( 
    Cage (C,n))) by 
    SPPOL_2: 18,
    XXREAL_0: 2;
    
          
    
          
    
    A37: not NE 
    in ( 
    rng ( 
    Cage (C,n))) 
    
          proof
    
            assume
    
            
    
    A38: NE 
    in ( 
    rng ( 
    Cage (C,n))); 
    
            
    
            
    
    A39: (NE 
    `1 ) 
    = ( 
    W-bound ( 
    L~ ( 
    Cage (C,n)))) by 
    EUCLID: 52;
    
            
    
            
    
    A40: (NE 
    `2 ) 
    = ( 
    S-bound ( 
    L~ ( 
    Cage (C,n)))) by 
    EUCLID: 52;
    
            then (NE
    `2 ) 
    <= ( 
    N-bound ( 
    L~ ( 
    Cage (C,n)))) by 
    SPRECT_1: 22;
    
            then NE
    in { p where p be 
    Point of ( 
    TOP-REAL 2) : (p 
    `1 ) 
    = ( 
    W-bound ( 
    L~ ( 
    Cage (C,n)))) & (p 
    `2 ) 
    <= ( 
    N-bound ( 
    L~ ( 
    Cage (C,n)))) & (p 
    `2 ) 
    >= ( 
    S-bound ( 
    L~ ( 
    Cage (C,n)))) } by 
    A39,
    A40;
    
            then NE
    in ( 
    LSeg (( 
    SW-corner ( 
    L~ ( 
    Cage (C,n)))),( 
    NW-corner ( 
    L~ ( 
    Cage (C,n)))))) by 
    SPRECT_1: 26;
    
            then NE
    in (( 
    LSeg (( 
    SW-corner ( 
    L~ ( 
    Cage (C,n)))),( 
    NW-corner ( 
    L~ ( 
    Cage (C,n)))))) 
    /\ ( 
    L~ ( 
    Cage (C,n)))) by 
    A36,
    A38,
    XBOOLE_0:def 4;
    
            then
    
            
    
    A41: (NE 
    `2 ) 
    >= (( 
    W-min ( 
    L~ ( 
    Cage (C,n)))) 
    `2 ) by 
    PSCOMP_1: 31;
    
            ((
    W-min ( 
    L~ ( 
    Cage (C,n)))) 
    `2 ) 
    >= (NE 
    `2 ) by 
    PSCOMP_1: 30;
    
            then
    
            
    
    A42: (( 
    W-min ( 
    L~ ( 
    Cage (C,n)))) 
    `2 ) 
    = (NE 
    `2 ) by 
    A41,
    XXREAL_0: 1;
    
            ((
    W-min ( 
    L~ ( 
    Cage (C,n)))) 
    `1 ) 
    = (NE 
    `1 ) by 
    PSCOMP_1: 29;
    
            hence contradiction by
    A23,
    A42,
    TOPREAL3: 6;
    
          end;
    
          now
    
            per cases ;
    
              suppose Gij
    <> (( 
    Lower_Seq (C,n)) 
    . (( 
    Index (Gij,( 
    Lower_Seq (C,n)))) 
    + 1)); 
    
              then v1
    = ( 
    <*Gij*>
    ^ ( 
    mid (( 
    Lower_Seq (C,n)),(( 
    Index (Gij,( 
    Lower_Seq (C,n)))) 
    + 1),( 
    len ( 
    Lower_Seq (C,n)))))) by 
    JORDAN3:def 3;
    
              then (
    rng v1) 
    = (( 
    rng  
    <*Gij*>)
    \/ ( 
    rng ( 
    mid (( 
    Lower_Seq (C,n)),(( 
    Index (Gij,( 
    Lower_Seq (C,n)))) 
    + 1),( 
    len ( 
    Lower_Seq (C,n))))))) by 
    FINSEQ_1: 31;
    
              then
    
              
    
    A43: ( 
    rng v1) 
    = ( 
    {Gij}
    \/ ( 
    rng ( 
    mid (( 
    Lower_Seq (C,n)),(( 
    Index (Gij,( 
    Lower_Seq (C,n)))) 
    + 1),( 
    len ( 
    Lower_Seq (C,n))))))) by 
    FINSEQ_1: 38;
    
               not NE
    in ( 
    L~ ( 
    Cage (C,n))) 
    
              proof
    
                assume NE
    in ( 
    L~ ( 
    Cage (C,n))); 
    
                then
    
                consider i be
    Nat such that 
    
                
    
    A44: 1 
    <= i and 
    
                
    
    A45: (i 
    + 1) 
    <= ( 
    len ( 
    Cage (C,n))) and 
    
                
    
    A46: NE 
    in ( 
    LSeg ((( 
    Cage (C,n)) 
    /. i),(( 
    Cage (C,n)) 
    /. (i 
    + 1)))) by 
    SPPOL_2: 14;
    
                per cases by
    A44,
    A45,
    TOPREAL1:def 5;
    
                  suppose
    
                  
    
    A47: ((( 
    Cage (C,n)) 
    /. i) 
    `1 ) 
    = ((( 
    Cage (C,n)) 
    /. (i 
    + 1)) 
    `1 ); 
    
                  then
    
                  
    
    A48: (NE 
    `1 ) 
    = ((( 
    Cage (C,n)) 
    /. i) 
    `1 ) by 
    A46,
    GOBOARD7: 5;
    
                  
    
                  
    
    A49: (NE 
    `2 ) 
    = ( 
    S-bound ( 
    L~ ( 
    Cage (C,n)))) by 
    EUCLID: 52;
    
                  
    
                  
    
    A50: i 
    < ( 
    len ( 
    Cage (C,n))) by 
    A45,
    NAT_1: 13;
    
                  then
    
                  
    
    A51: ((( 
    Cage (C,n)) 
    /. i) 
    `2 ) 
    >= (NE 
    `2 ) by 
    A44,
    A49,
    JORDAN5D: 11;
    
                  
    
                  
    
    A52: 1 
    <= (i 
    + 1) by 
    NAT_1: 11;
    
                  then
    
                  
    
    A53: ((( 
    Cage (C,n)) 
    /. (i 
    + 1)) 
    `2 ) 
    >= (NE 
    `2 ) by 
    A45,
    A49,
    JORDAN5D: 11;
    
                  
    
                  
    
    A54: i 
    in ( 
    dom ( 
    Cage (C,n))) by 
    A44,
    A50,
    FINSEQ_3: 25;
    
                  
    
                  
    
    A55: (i 
    + 1) 
    in ( 
    dom ( 
    Cage (C,n))) by 
    A45,
    A52,
    FINSEQ_3: 25;
    
                  (((
    Cage (C,n)) 
    /. i) 
    `2 ) 
    <= ((( 
    Cage (C,n)) 
    /. (i 
    + 1)) 
    `2 ) or ((( 
    Cage (C,n)) 
    /. i) 
    `2 ) 
    >= ((( 
    Cage (C,n)) 
    /. (i 
    + 1)) 
    `2 ); 
    
                  then (NE
    `2 ) 
    >= ((( 
    Cage (C,n)) 
    /. (i 
    + 1)) 
    `2 ) or (NE 
    `2 ) 
    >= ((( 
    Cage (C,n)) 
    /. i) 
    `2 ) by 
    A46,
    TOPREAL1: 4;
    
                  then (NE
    `2 ) 
    = ((( 
    Cage (C,n)) 
    /. (i 
    + 1)) 
    `2 ) or (NE 
    `2 ) 
    = ((( 
    Cage (C,n)) 
    /. i) 
    `2 ) by 
    A51,
    A53,
    XXREAL_0: 1;
    
                  then NE
    = (( 
    Cage (C,n)) 
    /. (i 
    + 1)) or NE 
    = (( 
    Cage (C,n)) 
    /. i) by 
    A47,
    A48,
    TOPREAL3: 6;
    
                  hence contradiction by
    A37,
    A54,
    A55,
    PARTFUN2: 2;
    
                end;
    
                  suppose
    
                  
    
    A56: ((( 
    Cage (C,n)) 
    /. i) 
    `2 ) 
    = ((( 
    Cage (C,n)) 
    /. (i 
    + 1)) 
    `2 ); 
    
                  then
    
                  
    
    A57: (NE 
    `2 ) 
    = ((( 
    Cage (C,n)) 
    /. i) 
    `2 ) by 
    A46,
    GOBOARD7: 6;
    
                  
    
                  
    
    A58: (NE 
    `1 ) 
    = ( 
    W-bound ( 
    L~ ( 
    Cage (C,n)))) by 
    EUCLID: 52;
    
                  
    
                  
    
    A59: i 
    < ( 
    len ( 
    Cage (C,n))) by 
    A45,
    NAT_1: 13;
    
                  then
    
                  
    
    A60: ((( 
    Cage (C,n)) 
    /. i) 
    `1 ) 
    >= (NE 
    `1 ) by 
    A44,
    A58,
    JORDAN5D: 12;
    
                  
    
                  
    
    A61: 1 
    <= (i 
    + 1) by 
    NAT_1: 11;
    
                  then
    
                  
    
    A62: ((( 
    Cage (C,n)) 
    /. (i 
    + 1)) 
    `1 ) 
    >= (NE 
    `1 ) by 
    A45,
    A58,
    JORDAN5D: 12;
    
                  
    
                  
    
    A63: i 
    in ( 
    dom ( 
    Cage (C,n))) by 
    A44,
    A59,
    FINSEQ_3: 25;
    
                  
    
                  
    
    A64: (i 
    + 1) 
    in ( 
    dom ( 
    Cage (C,n))) by 
    A45,
    A61,
    FINSEQ_3: 25;
    
                  (((
    Cage (C,n)) 
    /. i) 
    `1 ) 
    <= ((( 
    Cage (C,n)) 
    /. (i 
    + 1)) 
    `1 ) or ((( 
    Cage (C,n)) 
    /. i) 
    `1 ) 
    >= ((( 
    Cage (C,n)) 
    /. (i 
    + 1)) 
    `1 ); 
    
                  then (NE
    `1 ) 
    >= ((( 
    Cage (C,n)) 
    /. (i 
    + 1)) 
    `1 ) or (NE 
    `1 ) 
    >= ((( 
    Cage (C,n)) 
    /. i) 
    `1 ) by 
    A46,
    TOPREAL1: 3;
    
                  then (NE
    `1 ) 
    = ((( 
    Cage (C,n)) 
    /. (i 
    + 1)) 
    `1 ) or (NE 
    `1 ) 
    = ((( 
    Cage (C,n)) 
    /. i) 
    `1 ) by 
    A60,
    A62,
    XXREAL_0: 1;
    
                  then NE
    = (( 
    Cage (C,n)) 
    /. (i 
    + 1)) or NE 
    = (( 
    Cage (C,n)) 
    /. i) by 
    A56,
    A57,
    TOPREAL3: 6;
    
                  hence contradiction by
    A37,
    A63,
    A64,
    PARTFUN2: 2;
    
                end;
    
              end;
    
              then
    
              
    
    A65: not NE 
    in  
    {Gij} by
    A5,
    TARSKI:def 1;
    
              
    
              
    
    A66: ( 
    rng ( 
    mid (( 
    Lower_Seq (C,n)),(( 
    Index (Gij,( 
    Lower_Seq (C,n)))) 
    + 1),( 
    len ( 
    Lower_Seq (C,n)))))) 
    c= ( 
    rng ( 
    Lower_Seq (C,n))) by 
    FINSEQ_6: 119;
    
              (
    rng ( 
    Lower_Seq (C,n))) 
    c= ( 
    rng ( 
    Cage (C,n))) by 
    JORDAN1G: 39;
    
              then (
    rng ( 
    mid (( 
    Lower_Seq (C,n)),(( 
    Index (Gij,( 
    Lower_Seq (C,n)))) 
    + 1),( 
    len ( 
    Lower_Seq (C,n)))))) 
    c= ( 
    rng ( 
    Cage (C,n))) by 
    A66;
    
              then not NE
    in ( 
    rng ( 
    mid (( 
    Lower_Seq (C,n)),(( 
    Index (Gij,( 
    Lower_Seq (C,n)))) 
    + 1),( 
    len ( 
    Lower_Seq (C,n)))))) by 
    A37;
    
              hence not NE
    in ( 
    rng v1) by 
    A43,
    A65,
    XBOOLE_0:def 3;
    
            end;
    
              suppose Gij
    = (( 
    Lower_Seq (C,n)) 
    . (( 
    Index (Gij,( 
    Lower_Seq (C,n)))) 
    + 1)); 
    
              then v1
    = ( 
    mid (( 
    Lower_Seq (C,n)),(( 
    Index (Gij,( 
    Lower_Seq (C,n)))) 
    + 1),( 
    len ( 
    Lower_Seq (C,n))))) by 
    JORDAN3:def 3;
    
              then
    
              
    
    A67: ( 
    rng v1) 
    c= ( 
    rng ( 
    Lower_Seq (C,n))) by 
    FINSEQ_6: 119;
    
              (
    rng ( 
    Lower_Seq (C,n))) 
    c= ( 
    rng ( 
    Cage (C,n))) by 
    JORDAN1G: 39;
    
              then (
    rng v1) 
    c= ( 
    rng ( 
    Cage (C,n))) by 
    A67;
    
              hence not NE
    in ( 
    rng v1) by 
    A37;
    
            end;
    
          end;
    
          then not NE
    in (( 
    rng  
    <*((
    Gauge (C,n)) 
    * (i,wG))*>) 
    \/ ( 
    rng v1)) by 
    A35,
    XBOOLE_0:def 3;
    
          then not NE
    in ( 
    rng Gv1) by 
    FINSEQ_1: 31;
    
          then (
    rng Gv1) 
    misses  
    {NE} by
    ZFMISC_1: 50;
    
          then
    
          
    
    A68: ( 
    rng Gv1) 
    misses ( 
    rng  
    <*NE*>) by
    FINSEQ_1: 38;
    
          
    
          
    
    A69: not (( 
    Gauge (C,n)) 
    * (i,wG)) 
    in ( 
    L~ ( 
    Lower_Seq (C,n))) by 
    A1,
    A23,
    JORDAN1G: 45;
    
          (
    rng ( 
    Lower_Seq (C,n))) 
    c= ( 
    L~ ( 
    Lower_Seq (C,n))) by 
    A8,
    SPPOL_2: 18,
    XXREAL_0: 2;
    
          then
    
          
    
    A70: not (( 
    Gauge (C,n)) 
    * (i,wG)) 
    in ( 
    rng ( 
    Lower_Seq (C,n))) by 
    A1,
    A23,
    JORDAN1G: 45;
    
           not ((
    Gauge (C,n)) 
    * (i,wG)) 
    in  
    {Gij} by
    A23,
    A69,
    TARSKI:def 1;
    
          then
    
          
    
    A71: not (( 
    Gauge (C,n)) 
    * (i,wG)) 
    in ( 
    rng  
    <*Gij*>) by
    FINSEQ_1: 38;
    
          set ci = (
    mid (( 
    Lower_Seq (C,n)),(( 
    Index (Gij,( 
    Lower_Seq (C,n)))) 
    + 1),( 
    len ( 
    Lower_Seq (C,n))))); 
    
          now
    
            per cases ;
    
              suppose
    
              
    
    A72: Gij 
    <> (( 
    Lower_Seq (C,n)) 
    . (( 
    Index (Gij,( 
    Lower_Seq (C,n)))) 
    + 1)); 
    
              (
    rng ci) 
    c= ( 
    rng ( 
    Lower_Seq (C,n))) by 
    FINSEQ_6: 119;
    
              then not ((
    Gauge (C,n)) 
    * (i,wG)) 
    in ( 
    rng ci) by 
    A70;
    
              then not ((
    Gauge (C,n)) 
    * (i,wG)) 
    in (( 
    rng  
    <*Gij*>)
    \/ ( 
    rng ci)) by 
    A71,
    XBOOLE_0:def 3;
    
              then not ((
    Gauge (C,n)) 
    * (i,wG)) 
    in ( 
    rng ( 
    <*Gij*>
    ^ ci)) by 
    FINSEQ_1: 31;
    
              hence not ((
    Gauge (C,n)) 
    * (i,wG)) 
    in ( 
    rng v1) by 
    A72,
    JORDAN3:def 3;
    
            end;
    
              suppose Gij
    = (( 
    Lower_Seq (C,n)) 
    . (( 
    Index (Gij,( 
    Lower_Seq (C,n)))) 
    + 1)); 
    
              then v1
    = ci by 
    JORDAN3:def 3;
    
              then (
    rng v1) 
    c= ( 
    rng ( 
    Lower_Seq (C,n))) by 
    FINSEQ_6: 119;
    
              hence not ((
    Gauge (C,n)) 
    * (i,wG)) 
    in ( 
    rng v1) by 
    A70;
    
            end;
    
          end;
    
          then
    {((
    Gauge (C,n)) 
    * (i,wG))} 
    misses ( 
    rng v1) by 
    ZFMISC_1: 50;
    
          then
    
          
    
    A73: ( 
    rng  
    <*((
    Gauge (C,n)) 
    * (i,wG))*>) 
    misses ( 
    rng v1) by 
    FINSEQ_1: 38;
    
          
    
          
    
    A74: 
    <*((
    Gauge (C,n)) 
    * (i,wG))*> is 
    one-to-one by 
    FINSEQ_3: 93;
    
          
    
          
    
    A75: v1 is 
    being_S-Seq by 
    A23,
    JORDAN3: 34;
    
          then
    
          
    
    A76: Gv1 is 
    one-to-one by 
    A73,
    A74,
    FINSEQ_3: 91;
    
          
    <*NE*> is
    one-to-one by 
    FINSEQ_3: 93;
    
          then
    
          
    
    A77: v is 
    one-to-one by 
    A68,
    A76,
    FINSEQ_3: 91;
    
          ((
    <*((
    Gauge (C,n)) 
    * (i,wG))*> 
    /. ( 
    len  
    <*((
    Gauge (C,n)) 
    * (i,wG))*>)) 
    `1 ) 
    = (( 
    <*((
    Gauge (C,n)) 
    * (i,wG))*> 
    /. 1) 
    `1 ) by 
    FINSEQ_1: 39
    
          .= (((
    Gauge (C,n)) 
    * (i,wG)) 
    `1 ) by 
    FINSEQ_4: 16
    
          .= (((
    Gauge (C,n)) 
    * (i,1)) 
    `1 ) by 
    A1,
    A2,
    A13,
    GOBOARD5: 2
    
          .= ((v1
    /. 1) 
    `1 ) by 
    A1,
    A2,
    A3,
    A4,
    A31,
    GOBOARD5: 2;
    
          then
    
          
    
    A78: Gv1 is 
    special by 
    A75,
    GOBOARD2: 8;
    
          ((Gv1
    /. ( 
    len Gv1)) 
    `1 ) 
    = (NE 
    `1 ) by 
    A30,
    PSCOMP_1: 29
    
          .= ((
    <*NE*>
    /. 1) 
    `1 ) by 
    FINSEQ_4: 16;
    
          then v is
    special by 
    A78,
    GOBOARD2: 8;
    
          then
    
          
    
    A79: ( 
    Rev v) is 
    special by 
    SPPOL_2: 40;
    
          
    
          
    
    A80: ( 
    len ( 
    Upper_Seq (C,n))) 
    >= (2 
    + 1) by 
    JORDAN1E: 15;
    
          then
    
          
    
    A81: ( 
    len ( 
    Upper_Seq (C,n))) 
    > 2 by 
    NAT_1: 13;
    
          (
    len ( 
    Upper_Seq (C,n))) 
    > 1 by 
    A80,
    XXREAL_0: 2;
    
          then
    
          
    
    A82: h is 
    S-Sequence_in_R2 by 
    A81,
    JORDAN3: 6;
    
          then
    
          
    
    A83: 2 
    <= ( 
    len h) by 
    TOPREAL1:def 8;
    
          3
    <= ( 
    len ( 
    Upper_Seq (C,n))) by 
    JORDAN1E: 15;
    
          then 2
    <= ( 
    len ( 
    Upper_Seq (C,n))) by 
    XXREAL_0: 2;
    
          then
    
          
    
    A84: 2 
    in ( 
    dom ( 
    Upper_Seq (C,n))) by 
    FINSEQ_3: 25;
    
          
    
          
    
    A85: ( 
    len ( 
    Upper_Seq (C,n))) 
    in ( 
    dom ( 
    Upper_Seq (C,n))) by 
    FINSEQ_5: 6;
    
          then
    
          
    
    A86: h 
    is_in_the_area_of ( 
    Cage (C,n)) by 
    A84,
    JORDAN1E: 17,
    SPRECT_2: 22;
    
          ((
    Upper_Seq (C,n)) 
    /. ( 
    len ( 
    Upper_Seq (C,n)))) 
    = ( 
    E-max ( 
    L~ ( 
    Cage (C,n)))) by 
    JORDAN1F: 7;
    
          then (((
    Upper_Seq (C,n)) 
    /. ( 
    len ( 
    Upper_Seq (C,n)))) 
    `1 ) 
    = ( 
    E-bound ( 
    L~ ( 
    Cage (C,n)))) by 
    EUCLID: 52;
    
          then
    
          
    
    A87: ((h 
    /. ( 
    len h)) 
    `1 ) 
    = ( 
    E-bound ( 
    L~ ( 
    Cage (C,n)))) by 
    A84,
    A85,
    SPRECT_2: 9;
    
          (((
    Upper_Seq (C,n)) 
    /. (1 
    + 1)) 
    `1 ) 
    = ( 
    W-bound ( 
    L~ ( 
    Cage (C,n)))) by 
    JORDAN1G: 31;
    
          then ((h
    /. 1) 
    `1 ) 
    = ( 
    W-bound ( 
    L~ ( 
    Cage (C,n)))) by 
    A84,
    A85,
    SPRECT_2: 8;
    
          then
    
          
    
    A88: h 
    is_a_h.c._for ( 
    Cage (C,n)) by 
    A86,
    A87,
    SPRECT_2:def 2;
    
          now
    
            let m be
    Nat;
    
            assume
    
            
    
    A89: m 
    in ( 
    dom  
    <*((
    Gauge (C,n)) 
    * (i,wG))*>); 
    
            then m
    in ( 
    Seg 1) by 
    FINSEQ_1: 38;
    
            then m
    = 1 by 
    FINSEQ_1: 2,
    TARSKI:def 1;
    
            then (
    <*((
    Gauge (C,n)) 
    * (i,wG))*> 
    . m) 
    = (( 
    Gauge (C,n)) 
    * (i,wG)) by 
    FINSEQ_1: 40;
    
            then
    
            
    
    A90: ( 
    <*((
    Gauge (C,n)) 
    * (i,wG))*> 
    /. m) 
    = (( 
    Gauge (C,n)) 
    * (i,wG)) by 
    A89,
    PARTFUN1:def 6;
    
            (((
    Gauge (C,n)) 
    * (1,wG)) 
    `1 ) 
    <= ((( 
    Gauge (C,n)) 
    * (i,wG)) 
    `1 ) by 
    A1,
    A2,
    A13,
    SPRECT_3: 13;
    
            hence (
    W-bound ( 
    L~ ( 
    Cage (C,n)))) 
    <= (( 
    <*((
    Gauge (C,n)) 
    * (i,wG))*> 
    /. m) 
    `1 ) by 
    A12,
    A13,
    A90,
    JORDAN1A: 73;
    
            (((
    Gauge (C,n)) 
    * (i,wG)) 
    `1 ) 
    <= ((( 
    Gauge (C,n)) 
    * (( 
    len ( 
    Gauge (C,n))),wG)) 
    `1 ) by 
    A1,
    A2,
    A13,
    SPRECT_3: 13;
    
            hence ((
    <*((
    Gauge (C,n)) 
    * (i,wG))*> 
    /. m) 
    `1 ) 
    <= ( 
    E-bound ( 
    L~ ( 
    Cage (C,n)))) by 
    A12,
    A13,
    A90,
    JORDAN1A: 71;
    
            ((
    <*((
    Gauge (C,n)) 
    * (i,wG))*> 
    /. m) 
    `2 ) 
    = ( 
    N-bound ( 
    L~ ( 
    Cage (C,n)))) by 
    A1,
    A2,
    A12,
    A90,
    JORDAN1A: 70;
    
            hence (
    S-bound ( 
    L~ ( 
    Cage (C,n)))) 
    <= (( 
    <*((
    Gauge (C,n)) 
    * (i,wG))*> 
    /. m) 
    `2 ) by 
    SPRECT_1: 22;
    
            thus ((
    <*((
    Gauge (C,n)) 
    * (i,wG))*> 
    /. m) 
    `2 ) 
    <= ( 
    N-bound ( 
    L~ ( 
    Cage (C,n)))) by 
    A1,
    A2,
    A12,
    A90,
    JORDAN1A: 70;
    
          end;
    
          then
    
          
    
    A91: 
    <*((
    Gauge (C,n)) 
    * (i,wG))*> 
    is_in_the_area_of ( 
    Cage (C,n)) by 
    SPRECT_2:def 1;
    
          
    <*Gij*>
    is_in_the_area_of ( 
    Cage (C,n)) by 
    A23,
    JORDAN1E: 18,
    SPRECT_3: 46;
    
          then v1
    is_in_the_area_of ( 
    Cage (C,n)) by 
    A23,
    JORDAN1E: 18,
    SPRECT_3: 56;
    
          then
    
          
    
    A92: Gv1 
    is_in_the_area_of ( 
    Cage (C,n)) by 
    A91,
    SPRECT_2: 24;
    
          
    <*NE*>
    is_in_the_area_of ( 
    Cage (C,n)) by 
    SPRECT_2: 28;
    
          then v
    is_in_the_area_of ( 
    Cage (C,n)) by 
    A92,
    SPRECT_2: 24;
    
          then
    
          
    
    A93: ( 
    Rev v) 
    is_in_the_area_of ( 
    Cage (C,n)) by 
    SPRECT_3: 51;
    
          v
    = ( 
    <*((
    Gauge (C,n)) 
    * (i,wG))*> 
    ^ (v1 
    ^  
    <*NE*>)) by
    FINSEQ_1: 32;
    
          then (v
    /. 1) 
    = (( 
    Gauge (C,n)) 
    * (i,wG)) by 
    FINSEQ_5: 15;
    
          then ((v
    /. 1) 
    `2 ) 
    = ( 
    N-bound ( 
    L~ ( 
    Cage (C,n)))) by 
    A1,
    A2,
    A12,
    JORDAN1A: 70;
    
          then (((
    Rev v) 
    /. ( 
    len v)) 
    `2 ) 
    = ( 
    N-bound ( 
    L~ ( 
    Cage (C,n)))) by 
    FINSEQ_5: 65;
    
          then
    
          
    
    A94: ((( 
    Rev v) 
    /. ( 
    len ( 
    Rev v))) 
    `2 ) 
    = ( 
    N-bound ( 
    L~ ( 
    Cage (C,n)))) by 
    FINSEQ_5:def 3;
    
          (
    len v) 
    = (( 
    len Gv1) 
    + 1) by 
    FINSEQ_2: 16;
    
          then (v
    /. ( 
    len v)) 
    = NE by 
    FINSEQ_4: 67;
    
          then ((v
    /. ( 
    len v)) 
    `2 ) 
    = ( 
    S-bound ( 
    L~ ( 
    Cage (C,n)))) by 
    EUCLID: 52;
    
          then (((
    Rev v) 
    /. 1) 
    `2 ) 
    = ( 
    S-bound ( 
    L~ ( 
    Cage (C,n)))) by 
    FINSEQ_5: 65;
    
          then (
    Rev v) 
    is_a_v.c._for ( 
    Cage (C,n)) by 
    A93,
    A94,
    SPRECT_2:def 3;
    
          then (
    L~ h) 
    meets ( 
    L~ ( 
    Rev v)) by 
    A34,
    A77,
    A79,
    A82,
    A83,
    A88,
    SPRECT_2: 29;
    
          then (
    L~ h) 
    meets ( 
    L~ v) by 
    SPPOL_2: 22;
    
          then
    
          consider x be
    object such that 
    
          
    
    A95: x 
    in ( 
    L~ h) and 
    
          
    
    A96: x 
    in ( 
    L~ v) by 
    XBOOLE_0: 3;
    
          
    
          
    
    A97: ( 
    L~ h) 
    c= ( 
    L~ ( 
    Upper_Seq (C,n))) by 
    A9,
    A10,
    JORDAN4: 35;
    
          
    
          
    
    A98: ( 
    L~ v1) 
    c= ( 
    L~ ( 
    Lower_Seq (C,n))) by 
    A23,
    JORDAN3: 42;
    
          (
    L~ v) 
    = ( 
    L~ ( 
    <*((
    Gauge (C,n)) 
    * (i,wG))*> 
    ^ (v1 
    ^  
    <*NE*>))) by
    FINSEQ_1: 32
    
          .= ((
    LSeg ((( 
    Gauge (C,n)) 
    * (i,wG)),((v1 
    ^  
    <*NE*>)
    /. 1))) 
    \/ ( 
    L~ (v1 
    ^  
    <*NE*>))) by
    SPPOL_2: 20
    
          .= ((
    LSeg ((( 
    Gauge (C,n)) 
    * (i,wG)),((v1 
    ^  
    <*NE*>)
    /. 1))) 
    \/ (( 
    L~ v1) 
    \/ ( 
    LSeg ((v1 
    /. ( 
    len v1)),NE)))) by 
    A24,
    SPPOL_2: 19;
    
          then
    
          
    
    A99: x 
    in ( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i,wG)),((v1 
    ^  
    <*NE*>)
    /. 1))) or x 
    in (( 
    L~ v1) 
    \/ ( 
    LSeg ((v1 
    /. ( 
    len v1)),NE))) by 
    A96,
    XBOOLE_0:def 3;
    
          ((
    Upper_Seq (C,n)) 
    /. 1) 
    = ( 
    W-min ( 
    L~ ( 
    Cage (C,n)))) by 
    JORDAN1F: 5;
    
          then
    
          
    
    A100: not ( 
    W-min ( 
    L~ ( 
    Cage (C,n)))) 
    in ( 
    L~ h) by 
    A81,
    JORDAN5B: 16;
    
          now
    
            per cases by
    A99,
    XBOOLE_0:def 3;
    
              suppose x
    in ( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i,wG)),((v1 
    ^  
    <*NE*>)
    /. 1))); 
    
              then x
    in ( 
    L~  
    <*((
    Gauge (C,n)) 
    * (i,wG)), Gij*>) by 
    A32,
    SPPOL_2: 21;
    
              hence (
    L~ ( 
    Upper_Seq (C,n))) 
    meets ( 
    L~  
    <*((
    Gauge (C,n)) 
    * (i,wG)), Gij*>) by 
    A95,
    A97,
    XBOOLE_0: 3;
    
            end;
    
              suppose
    
              
    
    A101: x 
    in ( 
    L~ v1); 
    
              then x
    in (( 
    L~ ( 
    Lower_Seq (C,n))) 
    /\ ( 
    L~ ( 
    Upper_Seq (C,n)))) by 
    A95,
    A97,
    A98,
    XBOOLE_0:def 4;
    
              then x
    in  
    {(
    W-min ( 
    L~ ( 
    Cage (C,n)))), ( 
    E-max ( 
    L~ ( 
    Cage (C,n))))} by 
    JORDAN1E: 16;
    
              then
    
              
    
    A102: x 
    = ( 
    E-max ( 
    L~ ( 
    Cage (C,n)))) by 
    A95,
    A100,
    TARSKI:def 2;
    
              1
    in ( 
    dom ( 
    Lower_Seq (C,n))) by 
    A11,
    FINSEQ_3: 25;
    
              
    
              then ((
    Lower_Seq (C,n)) 
    . 1) 
    = (( 
    Lower_Seq (C,n)) 
    /. 1) by 
    PARTFUN1:def 6
    
              .= (
    E-max ( 
    L~ ( 
    Cage (C,n)))) by 
    JORDAN1F: 6;
    
              then x
    = Gij by 
    A23,
    A101,
    A102,
    JORDAN1E: 7;
    
              then x
    in ( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i,wG)),Gij)) by 
    RLTOPSP1: 68;
    
              then x
    in ( 
    L~  
    <*((
    Gauge (C,n)) 
    * (i,wG)), Gij*>) by 
    SPPOL_2: 21;
    
              hence (
    L~ ( 
    Upper_Seq (C,n))) 
    meets ( 
    L~  
    <*((
    Gauge (C,n)) 
    * (i,wG)), Gij*>) by 
    A95,
    A97,
    XBOOLE_0: 3;
    
            end;
    
              suppose
    
              
    
    A103: x 
    in ( 
    LSeg ((v1 
    /. ( 
    len v1)),NE)); 
    
              x
    in ( 
    L~ ( 
    Cage (C,n))) by 
    A6,
    A95,
    A97,
    XBOOLE_0:def 3;
    
              then x
    in (( 
    LSeg (( 
    W-min ( 
    L~ ( 
    Cage (C,n)))),NE)) 
    /\ ( 
    L~ ( 
    Cage (C,n)))) by 
    A29,
    A103,
    XBOOLE_0:def 4;
    
              then x
    in  
    {(
    W-min ( 
    L~ ( 
    Cage (C,n))))} by 
    PSCOMP_1: 35;
    
              hence (
    L~ ( 
    Upper_Seq (C,n))) 
    meets ( 
    L~  
    <*((
    Gauge (C,n)) 
    * (i,wG)), Gij*>) by 
    A95,
    A100,
    TARSKI:def 1;
    
            end;
    
          end;
    
          then (
    L~  
    <*((
    Gauge (C,n)) 
    * (i,wG)), Gij*>) 
    meets ( 
    L~ ( 
    Upper_Seq (C,n))); 
    
          hence thesis by
    SPPOL_2: 21;
    
        end;
    
          suppose
    
          
    
    A104: Gij 
    in ( 
    L~ ( 
    Lower_Seq (C,n))) & Gij 
    <> (( 
    Lower_Seq (C,n)) 
    . ( 
    len ( 
    Lower_Seq (C,n)))) & ( 
    W-min ( 
    L~ ( 
    Cage (C,n)))) 
    = NE & i 
    < lG; 
    
          then
    
          
    
    A105: v1 is non 
    empty by 
    JORDAN1E: 3;
    
          then
    
          
    
    A106: ( 
    0  
    + 1) 
    <= ( 
    len v1) by 
    NAT_1: 13;
    
          then
    
          
    
    A107: 1 
    in ( 
    dom v1) by 
    FINSEQ_3: 25;
    
          set v = Gv1;
    
          
    
          
    
    A108: ( 
    len v1) 
    in ( 
    dom v1) by 
    A106,
    FINSEQ_3: 25;
    
          
    
          
    
    A109: ( 
    len ( 
    Lower_Seq (C,n))) 
    in ( 
    dom ( 
    Lower_Seq (C,n))) by 
    A11,
    FINSEQ_3: 25;
    
          (v1
    /. ( 
    len v1)) 
    = (v1 
    . ( 
    len v1)) by 
    A108,
    PARTFUN1:def 6
    
          .= ((
    Lower_Seq (C,n)) 
    . ( 
    len ( 
    Lower_Seq (C,n)))) by 
    A104,
    JORDAN1B: 4
    
          .= ((
    Lower_Seq (C,n)) 
    /. ( 
    len ( 
    Lower_Seq (C,n)))) by 
    A109,
    PARTFUN1:def 6
    
          .= (
    W-min ( 
    L~ ( 
    Cage (C,n)))) by 
    JORDAN1F: 8;
    
          then
    
          
    
    A110: (Gv1 
    /. ( 
    len Gv1)) 
    = ( 
    W-min ( 
    L~ ( 
    Cage (C,n)))) by 
    A105,
    SPRECT_3: 1;
    
          
    
          
    
    A111: (v1 
    /. 1) 
    = (v1 
    . 1) by 
    A107,
    PARTFUN1:def 6
    
          .= Gij by
    A104,
    JORDAN3: 23;
    
          (1
    + ( 
    len v1)) 
    >= (1 
    + 1) by 
    A106,
    XREAL_1: 7;
    
          then 2
    <= ( 
    len v) by 
    FINSEQ_5: 8;
    
          then
    
          
    
    A112: 2 
    <= ( 
    len ( 
    Rev v)) by 
    FINSEQ_5:def 3;
    
          
    
          
    
    A113: not (( 
    Gauge (C,n)) 
    * (i,wG)) 
    in ( 
    L~ ( 
    Lower_Seq (C,n))) by 
    A1,
    A104,
    JORDAN1G: 45;
    
          (
    rng ( 
    Lower_Seq (C,n))) 
    c= ( 
    L~ ( 
    Lower_Seq (C,n))) by 
    A8,
    SPPOL_2: 18,
    XXREAL_0: 2;
    
          then
    
          
    
    A114: not (( 
    Gauge (C,n)) 
    * (i,wG)) 
    in ( 
    rng ( 
    Lower_Seq (C,n))) by 
    A1,
    A104,
    JORDAN1G: 45;
    
           not ((
    Gauge (C,n)) 
    * (i,wG)) 
    in  
    {Gij} by
    A104,
    A113,
    TARSKI:def 1;
    
          then
    
          
    
    A115: not (( 
    Gauge (C,n)) 
    * (i,wG)) 
    in ( 
    rng  
    <*Gij*>) by
    FINSEQ_1: 38;
    
          set ci = (
    mid (( 
    Lower_Seq (C,n)),(( 
    Index (Gij,( 
    Lower_Seq (C,n)))) 
    + 1),( 
    len ( 
    Lower_Seq (C,n))))); 
    
          now
    
            per cases ;
    
              suppose
    
              
    
    A116: Gij 
    <> (( 
    Lower_Seq (C,n)) 
    . (( 
    Index (Gij,( 
    Lower_Seq (C,n)))) 
    + 1)); 
    
              (
    rng ci) 
    c= ( 
    rng ( 
    Lower_Seq (C,n))) by 
    FINSEQ_6: 119;
    
              then not ((
    Gauge (C,n)) 
    * (i,wG)) 
    in ( 
    rng ci) by 
    A114;
    
              then not ((
    Gauge (C,n)) 
    * (i,wG)) 
    in (( 
    rng  
    <*Gij*>)
    \/ ( 
    rng ci)) by 
    A115,
    XBOOLE_0:def 3;
    
              then not ((
    Gauge (C,n)) 
    * (i,wG)) 
    in ( 
    rng ( 
    <*Gij*>
    ^ ci)) by 
    FINSEQ_1: 31;
    
              hence not ((
    Gauge (C,n)) 
    * (i,wG)) 
    in ( 
    rng v1) by 
    A116,
    JORDAN3:def 3;
    
            end;
    
              suppose Gij
    = (( 
    Lower_Seq (C,n)) 
    . (( 
    Index (Gij,( 
    Lower_Seq (C,n)))) 
    + 1)); 
    
              then v1
    = ci by 
    JORDAN3:def 3;
    
              then (
    rng v1) 
    c= ( 
    rng ( 
    Lower_Seq (C,n))) by 
    FINSEQ_6: 119;
    
              hence not ((
    Gauge (C,n)) 
    * (i,wG)) 
    in ( 
    rng v1) by 
    A114;
    
            end;
    
          end;
    
          then
    {((
    Gauge (C,n)) 
    * (i,wG))} 
    misses ( 
    rng v1) by 
    ZFMISC_1: 50;
    
          then
    
          
    
    A117: ( 
    rng  
    <*((
    Gauge (C,n)) 
    * (i,wG))*>) 
    misses ( 
    rng v1) by 
    FINSEQ_1: 38;
    
          
    
          
    
    A118: 
    <*((
    Gauge (C,n)) 
    * (i,wG))*> is 
    one-to-one by 
    FINSEQ_3: 93;
    
          
    
          
    
    A119: v1 is 
    being_S-Seq by 
    A104,
    JORDAN3: 34;
    
          then
    
          
    
    A120: Gv1 is 
    one-to-one by 
    A117,
    A118,
    FINSEQ_3: 91;
    
          ((
    <*((
    Gauge (C,n)) 
    * (i,wG))*> 
    /. ( 
    len  
    <*((
    Gauge (C,n)) 
    * (i,wG))*>)) 
    `1 ) 
    = (( 
    <*((
    Gauge (C,n)) 
    * (i,wG))*> 
    /. 1) 
    `1 ) by 
    FINSEQ_1: 39
    
          .= (((
    Gauge (C,n)) 
    * (i,wG)) 
    `1 ) by 
    FINSEQ_4: 16
    
          .= (((
    Gauge (C,n)) 
    * (i,1)) 
    `1 ) by 
    A1,
    A2,
    A13,
    GOBOARD5: 2
    
          .= ((v1
    /. 1) 
    `1 ) by 
    A1,
    A2,
    A3,
    A4,
    A111,
    GOBOARD5: 2;
    
          then Gv1 is
    special by 
    A119,
    GOBOARD2: 8;
    
          then
    
          
    
    A121: ( 
    Rev v) is 
    special by 
    SPPOL_2: 40;
    
          
    
          
    
    A122: ( 
    len ( 
    Upper_Seq (C,n))) 
    >= (2 
    + 1) by 
    JORDAN1E: 15;
    
          then
    
          
    
    A123: ( 
    len ( 
    Upper_Seq (C,n))) 
    > 2 by 
    NAT_1: 13;
    
          (
    len ( 
    Upper_Seq (C,n))) 
    > 1 by 
    A122,
    XXREAL_0: 2;
    
          then
    
          
    
    A124: h is 
    S-Sequence_in_R2 by 
    A123,
    JORDAN3: 6;
    
          then
    
          
    
    A125: 2 
    <= ( 
    len h) by 
    TOPREAL1:def 8;
    
          3
    <= ( 
    len ( 
    Upper_Seq (C,n))) by 
    JORDAN1E: 15;
    
          then 2
    <= ( 
    len ( 
    Upper_Seq (C,n))) by 
    XXREAL_0: 2;
    
          then
    
          
    
    A126: 2 
    in ( 
    dom ( 
    Upper_Seq (C,n))) by 
    FINSEQ_3: 25;
    
          
    
          
    
    A127: ( 
    len ( 
    Upper_Seq (C,n))) 
    in ( 
    dom ( 
    Upper_Seq (C,n))) by 
    FINSEQ_5: 6;
    
          then
    
          
    
    A128: h 
    is_in_the_area_of ( 
    Cage (C,n)) by 
    A126,
    JORDAN1E: 17,
    SPRECT_2: 22;
    
          ((
    Upper_Seq (C,n)) 
    /. ( 
    len ( 
    Upper_Seq (C,n)))) 
    = ( 
    E-max ( 
    L~ ( 
    Cage (C,n)))) by 
    JORDAN1F: 7;
    
          then (((
    Upper_Seq (C,n)) 
    /. ( 
    len ( 
    Upper_Seq (C,n)))) 
    `1 ) 
    = ( 
    E-bound ( 
    L~ ( 
    Cage (C,n)))) by 
    EUCLID: 52;
    
          then
    
          
    
    A129: ((h 
    /. ( 
    len h)) 
    `1 ) 
    = ( 
    E-bound ( 
    L~ ( 
    Cage (C,n)))) by 
    A126,
    A127,
    SPRECT_2: 9;
    
          (((
    Upper_Seq (C,n)) 
    /. (1 
    + 1)) 
    `1 ) 
    = ( 
    W-bound ( 
    L~ ( 
    Cage (C,n)))) by 
    JORDAN1G: 31;
    
          then ((h
    /. 1) 
    `1 ) 
    = ( 
    W-bound ( 
    L~ ( 
    Cage (C,n)))) by 
    A126,
    A127,
    SPRECT_2: 8;
    
          then
    
          
    
    A130: h 
    is_a_h.c._for ( 
    Cage (C,n)) by 
    A128,
    A129,
    SPRECT_2:def 2;
    
          now
    
            let m be
    Nat;
    
            assume
    
            
    
    A131: m 
    in ( 
    dom  
    <*((
    Gauge (C,n)) 
    * (i,wG))*>); 
    
            then m
    in ( 
    Seg 1) by 
    FINSEQ_1: 38;
    
            then m
    = 1 by 
    FINSEQ_1: 2,
    TARSKI:def 1;
    
            then (
    <*((
    Gauge (C,n)) 
    * (i,wG))*> 
    . m) 
    = (( 
    Gauge (C,n)) 
    * (i,wG)) by 
    FINSEQ_1: 40;
    
            then
    
            
    
    A132: ( 
    <*((
    Gauge (C,n)) 
    * (i,wG))*> 
    /. m) 
    = (( 
    Gauge (C,n)) 
    * (i,wG)) by 
    A131,
    PARTFUN1:def 6;
    
            (((
    Gauge (C,n)) 
    * (1,wG)) 
    `1 ) 
    <= ((( 
    Gauge (C,n)) 
    * (i,wG)) 
    `1 ) by 
    A1,
    A2,
    A13,
    SPRECT_3: 13;
    
            hence (
    W-bound ( 
    L~ ( 
    Cage (C,n)))) 
    <= (( 
    <*((
    Gauge (C,n)) 
    * (i,wG))*> 
    /. m) 
    `1 ) by 
    A12,
    A13,
    A132,
    JORDAN1A: 73;
    
            (((
    Gauge (C,n)) 
    * (i,wG)) 
    `1 ) 
    <= ((( 
    Gauge (C,n)) 
    * (( 
    len ( 
    Gauge (C,n))),wG)) 
    `1 ) by 
    A1,
    A2,
    A13,
    SPRECT_3: 13;
    
            hence ((
    <*((
    Gauge (C,n)) 
    * (i,wG))*> 
    /. m) 
    `1 ) 
    <= ( 
    E-bound ( 
    L~ ( 
    Cage (C,n)))) by 
    A12,
    A13,
    A132,
    JORDAN1A: 71;
    
            ((
    <*((
    Gauge (C,n)) 
    * (i,wG))*> 
    /. m) 
    `2 ) 
    = ( 
    N-bound ( 
    L~ ( 
    Cage (C,n)))) by 
    A1,
    A2,
    A12,
    A132,
    JORDAN1A: 70;
    
            hence (
    S-bound ( 
    L~ ( 
    Cage (C,n)))) 
    <= (( 
    <*((
    Gauge (C,n)) 
    * (i,wG))*> 
    /. m) 
    `2 ) by 
    SPRECT_1: 22;
    
            thus ((
    <*((
    Gauge (C,n)) 
    * (i,wG))*> 
    /. m) 
    `2 ) 
    <= ( 
    N-bound ( 
    L~ ( 
    Cage (C,n)))) by 
    A1,
    A2,
    A12,
    A132,
    JORDAN1A: 70;
    
          end;
    
          then
    
          
    
    A133: 
    <*((
    Gauge (C,n)) 
    * (i,wG))*> 
    is_in_the_area_of ( 
    Cage (C,n)) by 
    SPRECT_2:def 1;
    
          
    <*Gij*>
    is_in_the_area_of ( 
    Cage (C,n)) by 
    A104,
    JORDAN1E: 18,
    SPRECT_3: 46;
    
          then v1
    is_in_the_area_of ( 
    Cage (C,n)) by 
    A104,
    JORDAN1E: 18,
    SPRECT_3: 56;
    
          then Gv1
    is_in_the_area_of ( 
    Cage (C,n)) by 
    A133,
    SPRECT_2: 24;
    
          then
    
          
    
    A134: ( 
    Rev v) 
    is_in_the_area_of ( 
    Cage (C,n)) by 
    SPRECT_3: 51;
    
          (v
    /. 1) 
    = (( 
    Gauge (C,n)) 
    * (i,wG)) by 
    FINSEQ_5: 15;
    
          then ((v
    /. 1) 
    `2 ) 
    = ( 
    N-bound ( 
    L~ ( 
    Cage (C,n)))) by 
    A1,
    A2,
    A12,
    JORDAN1A: 70;
    
          then (((
    Rev v) 
    /. ( 
    len v)) 
    `2 ) 
    = ( 
    N-bound ( 
    L~ ( 
    Cage (C,n)))) by 
    FINSEQ_5: 65;
    
          then
    
          
    
    A135: ((( 
    Rev v) 
    /. ( 
    len ( 
    Rev v))) 
    `2 ) 
    = ( 
    N-bound ( 
    L~ ( 
    Cage (C,n)))) by 
    FINSEQ_5:def 3;
    
          ((v
    /. ( 
    len v)) 
    `2 ) 
    = ( 
    S-bound ( 
    L~ ( 
    Cage (C,n)))) by 
    A104,
    A110,
    EUCLID: 52;
    
          then (((
    Rev v) 
    /. 1) 
    `2 ) 
    = ( 
    S-bound ( 
    L~ ( 
    Cage (C,n)))) by 
    FINSEQ_5: 65;
    
          then (
    Rev v) 
    is_a_v.c._for ( 
    Cage (C,n)) by 
    A134,
    A135,
    SPRECT_2:def 3;
    
          then (
    L~ h) 
    meets ( 
    L~ ( 
    Rev v)) by 
    A112,
    A120,
    A121,
    A124,
    A125,
    A130,
    SPRECT_2: 29;
    
          then (
    L~ h) 
    meets ( 
    L~ v) by 
    SPPOL_2: 22;
    
          then
    
          consider x be
    object such that 
    
          
    
    A136: x 
    in ( 
    L~ h) and 
    
          
    
    A137: x 
    in ( 
    L~ v) by 
    XBOOLE_0: 3;
    
          
    
          
    
    A138: ( 
    L~ h) 
    c= ( 
    L~ ( 
    Upper_Seq (C,n))) by 
    A9,
    A10,
    JORDAN4: 35;
    
          
    
          
    
    A139: ( 
    L~ v1) 
    c= ( 
    L~ ( 
    Lower_Seq (C,n))) by 
    A104,
    JORDAN3: 42;
    
          
    
          
    
    A140: ( 
    L~ v) 
    = (( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i,wG)),(v1 
    /. 1))) 
    \/ ( 
    L~ v1)) by 
    A105,
    SPPOL_2: 20;
    
          ((
    Upper_Seq (C,n)) 
    /. 1) 
    = ( 
    W-min ( 
    L~ ( 
    Cage (C,n)))) by 
    JORDAN1F: 5;
    
          then
    
          
    
    A141: not ( 
    W-min ( 
    L~ ( 
    Cage (C,n)))) 
    in ( 
    L~ h) by 
    A123,
    JORDAN5B: 16;
    
          now
    
            per cases by
    A137,
    A140,
    XBOOLE_0:def 3;
    
              suppose x
    in ( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i,wG)),(v1 
    /. 1))); 
    
              then x
    in ( 
    L~  
    <*((
    Gauge (C,n)) 
    * (i,wG)), Gij*>) by 
    A111,
    SPPOL_2: 21;
    
              hence (
    L~ ( 
    Upper_Seq (C,n))) 
    meets ( 
    L~  
    <*((
    Gauge (C,n)) 
    * (i,wG)), Gij*>) by 
    A136,
    A138,
    XBOOLE_0: 3;
    
            end;
    
              suppose
    
              
    
    A142: x 
    in ( 
    L~ v1); 
    
              then x
    in (( 
    L~ ( 
    Lower_Seq (C,n))) 
    /\ ( 
    L~ ( 
    Upper_Seq (C,n)))) by 
    A136,
    A138,
    A139,
    XBOOLE_0:def 4;
    
              then x
    in  
    {(
    W-min ( 
    L~ ( 
    Cage (C,n)))), ( 
    E-max ( 
    L~ ( 
    Cage (C,n))))} by 
    JORDAN1E: 16;
    
              then
    
              
    
    A143: x 
    = ( 
    E-max ( 
    L~ ( 
    Cage (C,n)))) by 
    A136,
    A141,
    TARSKI:def 2;
    
              1
    in ( 
    dom ( 
    Lower_Seq (C,n))) by 
    A11,
    FINSEQ_3: 25;
    
              
    
              then ((
    Lower_Seq (C,n)) 
    . 1) 
    = (( 
    Lower_Seq (C,n)) 
    /. 1) by 
    PARTFUN1:def 6
    
              .= (
    E-max ( 
    L~ ( 
    Cage (C,n)))) by 
    JORDAN1F: 6;
    
              then x
    = Gij by 
    A104,
    A142,
    A143,
    JORDAN1E: 7;
    
              then x
    in ( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i,wG)),Gij)) by 
    RLTOPSP1: 68;
    
              then x
    in ( 
    L~  
    <*((
    Gauge (C,n)) 
    * (i,wG)), Gij*>) by 
    SPPOL_2: 21;
    
              hence (
    L~ ( 
    Upper_Seq (C,n))) 
    meets ( 
    L~  
    <*((
    Gauge (C,n)) 
    * (i,wG)), Gij*>) by 
    A136,
    A138,
    XBOOLE_0: 3;
    
            end;
    
          end;
    
          then (
    L~  
    <*((
    Gauge (C,n)) 
    * (i,wG)), Gij*>) 
    meets ( 
    L~ ( 
    Upper_Seq (C,n))); 
    
          hence thesis by
    SPPOL_2: 21;
    
        end;
    
          suppose
    
          
    
    A144: Gij 
    in ( 
    L~ ( 
    Upper_Seq (C,n))); 
    
          Gij
    in ( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i,wG)),Gij)) by 
    RLTOPSP1: 68;
    
          hence thesis by
    A144,
    XBOOLE_0: 3;
    
        end;
    
          suppose
    
          
    
    A145: Gij 
    in ( 
    L~ ( 
    Lower_Seq (C,n))) & Gij 
    = (( 
    Lower_Seq (C,n)) 
    . ( 
    len ( 
    Lower_Seq (C,n)))); 
    
          (
    len ( 
    Lower_Seq (C,n))) 
    in ( 
    dom ( 
    Lower_Seq (C,n))) by 
    A11,
    FINSEQ_3: 25;
    
          
    
          then
    
          
    
    A146: (( 
    Lower_Seq (C,n)) 
    . ( 
    len ( 
    Lower_Seq (C,n)))) 
    = (( 
    Lower_Seq (C,n)) 
    /. ( 
    len ( 
    Lower_Seq (C,n)))) by 
    PARTFUN1:def 6
    
          .= (
    W-min ( 
    L~ ( 
    Cage (C,n)))) by 
    JORDAN1F: 8;
    
          
    
          
    
    A147: ( 
    rng ( 
    Upper_Seq (C,n))) 
    c= ( 
    L~ ( 
    Upper_Seq (C,n))) by 
    A7,
    SPPOL_2: 18,
    XXREAL_0: 2;
    
          
    
          
    
    A148: ( 
    W-min ( 
    L~ ( 
    Cage (C,n)))) 
    in ( 
    rng ( 
    Upper_Seq (C,n))) by 
    JORDAN1J: 5;
    
          Gij
    in ( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i,wG)),Gij)) by 
    RLTOPSP1: 68;
    
          hence thesis by
    A145,
    A146,
    A147,
    A148,
    XBOOLE_0: 3;
    
        end;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    JORDAN19:4
    
    
    
    
    
    Th4: for C be 
    compact
    connected non 
    vertical non 
    horizontal  
    Subset of ( 
    TOP-REAL 2) holds for n be 
    Nat st n 
    >  
    0 holds for i,j be 
    Nat st 1 
    <= i & i 
    <= ( 
    len ( 
    Gauge (C,n))) & 1 
    <= j & j 
    <= ( 
    width ( 
    Gauge (C,n))) & (( 
    Gauge (C,n)) 
    * (i,j)) 
    in ( 
    L~ ( 
    Cage (C,n))) holds ( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i,( 
    width ( 
    Gauge (C,n))))),(( 
    Gauge (C,n)) 
    * (i,j)))) 
    meets ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,n)))) 
    
    proof
    
      let C be
    compact
    connected non 
    vertical non 
    horizontal  
    Subset of ( 
    TOP-REAL 2); 
    
      let n be
    Nat;
    
      assume
    
      
    
    A1: n 
    >  
    0 ; 
    
      let i,j be
    Nat;
    
      assume that
    
      
    
    A2: 1 
    <= i and 
    
      
    
    A3: i 
    <= ( 
    len ( 
    Gauge (C,n))) and 
    
      
    
    A4: 1 
    <= j and 
    
      
    
    A5: j 
    <= ( 
    width ( 
    Gauge (C,n))) and 
    
      
    
    A6: (( 
    Gauge (C,n)) 
    * (i,j)) 
    in ( 
    L~ ( 
    Cage (C,n))); 
    
      (
    L~ ( 
    Upper_Seq (C,n))) 
    = ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,n)))) by 
    A1,
    JORDAN1G: 55;
    
      hence thesis by
    A2,
    A3,
    A4,
    A5,
    A6,
    Th3;
    
    end;
    
    theorem :: 
    
    JORDAN19:5
    
    for C be
    compact
    connected non 
    vertical non 
    horizontal  
    Subset of ( 
    TOP-REAL 2) holds for j be 
    Nat holds (( 
    Gauge (C,(n 
    + 1))) 
    * (( 
    Center ( 
    Gauge (C,(n 
    + 1)))),j)) 
    in ( 
    Lower_Arc ( 
    L~ ( 
    Cage (C,(n 
    + 1))))) & 1 
    <= j & j 
    <= ( 
    width ( 
    Gauge (C,(n 
    + 1)))) implies ( 
    LSeg ((( 
    Gauge (C,1)) 
    * (( 
    Center ( 
    Gauge (C,1))),( 
    width ( 
    Gauge (C,1))))),(( 
    Gauge (C,(n 
    + 1))) 
    * (( 
    Center ( 
    Gauge (C,(n 
    + 1)))),j)))) 
    meets ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,(n 
    + 1))))) 
    
    proof
    
      let C be
    compact
    connected non 
    vertical non 
    horizontal  
    Subset of ( 
    TOP-REAL 2); 
    
      let j be
    Nat;
    
      assume that
    
      
    
    A1: (( 
    Gauge (C,(n 
    + 1))) 
    * (( 
    Center ( 
    Gauge (C,(n 
    + 1)))),j)) 
    in ( 
    Lower_Arc ( 
    L~ ( 
    Cage (C,(n 
    + 1))))) and 
    
      
    
    A2: 1 
    <= j and 
    
      
    
    A3: j 
    <= ( 
    width ( 
    Gauge (C,(n 
    + 1)))); 
    
      set in1 = (
    Center ( 
    Gauge (C,(n 
    + 1)))); 
    
      
    
      
    
    A4: (n 
    + 1) 
    >= ( 
    0  
    + 1) by 
    NAT_1: 11;
    
      
    
      
    
    A5: 1 
    <= in1 by 
    JORDAN1B: 11;
    
      
    
      
    
    A6: in1 
    <= ( 
    len ( 
    Gauge (C,(n 
    + 1)))) by 
    JORDAN1B: 13;
    
      
    
      
    
    A7: ( 
    LSeg ((( 
    Gauge (C,(n 
    + 1))) 
    * (( 
    Center ( 
    Gauge (C,(n 
    + 1)))),( 
    width ( 
    Gauge (C,(n 
    + 1)))))),(( 
    Gauge (C,(n 
    + 1))) 
    * (( 
    Center ( 
    Gauge (C,(n 
    + 1)))),j)))) 
    c= ( 
    LSeg ((( 
    Gauge (C,1)) 
    * (( 
    Center ( 
    Gauge (C,1))),( 
    width ( 
    Gauge (C,1))))),(( 
    Gauge (C,(n 
    + 1))) 
    * (( 
    Center ( 
    Gauge (C,(n 
    + 1)))),j)))) by 
    A2,
    A3,
    A4,
    Th2;
    
      (
    Lower_Arc ( 
    L~ ( 
    Cage (C,(n 
    + 1))))) 
    c= ( 
    L~ ( 
    Cage (C,(n 
    + 1)))) by 
    JORDAN6: 61;
    
      hence thesis by
    A1,
    A2,
    A3,
    A5,
    A6,
    A7,
    Th4,
    XBOOLE_1: 63;
    
    end;
    
    theorem :: 
    
    JORDAN19:6
    
    
    
    
    
    Th6: for C be 
    compact
    connected non 
    vertical non 
    horizontal  
    Subset of ( 
    TOP-REAL 2) holds for f be 
    FinSequence of ( 
    TOP-REAL 2) holds for k be 
    Nat st 1 
    <= k & (k 
    + 1) 
    <= ( 
    len f) & f 
    is_sequence_on ( 
    Gauge (C,n)) holds ( 
    dist ((f 
    /. k),(f 
    /. (k 
    + 1)))) 
    = ((( 
    N-bound C) 
    - ( 
    S-bound C)) 
    / (2 
    |^ n)) or ( 
    dist ((f 
    /. k),(f 
    /. (k 
    + 1)))) 
    = ((( 
    E-bound C) 
    - ( 
    W-bound C)) 
    / (2 
    |^ n)) 
    
    proof
    
      let C be
    compact
    connected non 
    vertical non 
    horizontal  
    Subset of ( 
    TOP-REAL 2); 
    
      let f be
    FinSequence of ( 
    TOP-REAL 2); 
    
      let k be
    Nat;
    
      assume that
    
      
    
    A1: 1 
    <= k and 
    
      
    
    A2: (k 
    + 1) 
    <= ( 
    len f); 
    
      assume f
    is_sequence_on ( 
    Gauge (C,n)); 
    
      then
    
      consider i1,j1,i2,j2 be
    Nat such that 
    
      
    
    A3: 
    [i1, j1]
    in ( 
    Indices ( 
    Gauge (C,n))) and 
    
      
    
    A4: (f 
    /. k) 
    = (( 
    Gauge (C,n)) 
    * (i1,j1)) and 
    
      
    
    A5: 
    [i2, j2]
    in ( 
    Indices ( 
    Gauge (C,n))) and 
    
      
    
    A6: (f 
    /. (k 
    + 1)) 
    = (( 
    Gauge (C,n)) 
    * (i2,j2)) and 
    
      
    
    A7: i1 
    = i2 & (j1 
    + 1) 
    = j2 or (i1 
    + 1) 
    = i2 & j1 
    = j2 or i1 
    = (i2 
    + 1) & j1 
    = j2 or i1 
    = i2 & j1 
    = (j2 
    + 1) by 
    A1,
    A2,
    JORDAN8: 3;
    
      per cases by
    A7;
    
        suppose i1
    = i2 & (j1 
    + 1) 
    = j2; 
    
        hence thesis by
    A3,
    A4,
    A5,
    A6,
    GOBRD14: 9;
    
      end;
    
        suppose (i1
    + 1) 
    = i2 & j1 
    = j2; 
    
        hence thesis by
    A3,
    A4,
    A5,
    A6,
    GOBRD14: 10;
    
      end;
    
        suppose i1
    = (i2 
    + 1) & j1 
    = j2; 
    
        hence thesis by
    A3,
    A4,
    A5,
    A6,
    GOBRD14: 10;
    
      end;
    
        suppose i1
    = i2 & j1 
    = (j2 
    + 1); 
    
        hence thesis by
    A3,
    A4,
    A5,
    A6,
    GOBRD14: 9;
    
      end;
    
    end;
    
    theorem :: 
    
    JORDAN19:7
    
    for M be
    symmetric
    triangle  
    MetrStruct holds for r be 
    Real holds for p,q,x be 
    Element of M st p 
    in ( 
    Ball (x,r)) & q 
    in ( 
    Ball (x,r)) holds ( 
    dist (p,q)) 
    < (2 
    * r) 
    
    proof
    
      let M be
    symmetric
    triangle  
    MetrStruct;
    
      let r be
    Real;
    
      let p,q,x be
    Element of M; 
    
      assume that
    
      
    
    A1: p 
    in ( 
    Ball (x,r)) and 
    
      
    
    A2: q 
    in ( 
    Ball (x,r)); 
    
      
    
      
    
    A3: ( 
    dist (p,x)) 
    < r by 
    A1,
    METRIC_1: 11;
    
      
    
      
    
    A4: ( 
    dist (x,q)) 
    < r by 
    A2,
    METRIC_1: 11;
    
      
    
      
    
    A5: ( 
    dist (p,q)) 
    <= (( 
    dist (p,x)) 
    + ( 
    dist (x,q))) by 
    METRIC_1: 4;
    
      ((
    dist (p,x)) 
    + ( 
    dist (x,q))) 
    < (r 
    + r) by 
    A3,
    A4,
    XREAL_1: 8;
    
      hence thesis by
    A5,
    XXREAL_0: 2;
    
    end;
    
    theorem :: 
    
    JORDAN19:8
    
    for C be
    compact
    connected non 
    vertical non 
    horizontal  
    Subset of ( 
    TOP-REAL 2) holds ( 
    N-bound C) 
    < ( 
    N-bound ( 
    L~ ( 
    Cage (C,n)))) 
    
    proof
    
      let C be
    compact
    connected non 
    vertical non 
    horizontal  
    Subset of ( 
    TOP-REAL 2); 
    
      
    
      
    
    A1: (2 
    |^ n) 
    >  
    0 by 
    NEWTON: 83;
    
      (
    N-bound C) 
    > (( 
    S-bound C) 
    +  
    0 ) by 
    SPRECT_1: 32;
    
      then ((
    N-bound C) 
    - ( 
    S-bound C)) 
    >  
    0 by 
    XREAL_1: 20;
    
      then
    
      
    
    A2: ((( 
    N-bound C) 
    - ( 
    S-bound C)) 
    / (2 
    |^ n)) 
    > (( 
    N-bound C) 
    - ( 
    N-bound C)) by 
    A1,
    XREAL_1: 139;
    
      (
    N-bound ( 
    L~ ( 
    Cage (C,n)))) 
    = (( 
    N-bound C) 
    + ((( 
    N-bound C) 
    - ( 
    S-bound C)) 
    / (2 
    |^ n))) by 
    JORDAN10: 6;
    
      hence thesis by
    A2,
    XREAL_1: 19;
    
    end;
    
    theorem :: 
    
    JORDAN19:9
    
    
    
    
    
    Th9: for C be 
    compact
    connected non 
    vertical non 
    horizontal  
    Subset of ( 
    TOP-REAL 2) holds ( 
    E-bound C) 
    < ( 
    E-bound ( 
    L~ ( 
    Cage (C,n)))) 
    
    proof
    
      let C be
    compact
    connected non 
    vertical non 
    horizontal  
    Subset of ( 
    TOP-REAL 2); 
    
      
    
      
    
    A1: (2 
    |^ n) 
    >  
    0 by 
    NEWTON: 83;
    
      (
    E-bound C) 
    > (( 
    W-bound C) 
    +  
    0 ) by 
    SPRECT_1: 31;
    
      then ((
    E-bound C) 
    - ( 
    W-bound C)) 
    >  
    0 by 
    XREAL_1: 20;
    
      then
    
      
    
    A2: ((( 
    E-bound C) 
    - ( 
    W-bound C)) 
    / (2 
    |^ n)) 
    > (( 
    E-bound C) 
    - ( 
    E-bound C)) by 
    A1,
    XREAL_1: 139;
    
      (
    E-bound ( 
    L~ ( 
    Cage (C,n)))) 
    = (( 
    E-bound C) 
    + ((( 
    E-bound C) 
    - ( 
    W-bound C)) 
    / (2 
    |^ n))) by 
    JORDAN1A: 64;
    
      hence thesis by
    A2,
    XREAL_1: 19;
    
    end;
    
    theorem :: 
    
    JORDAN19:10
    
    for C be
    compact
    connected non 
    vertical non 
    horizontal  
    Subset of ( 
    TOP-REAL 2) holds ( 
    S-bound ( 
    L~ ( 
    Cage (C,n)))) 
    < ( 
    S-bound C) 
    
    proof
    
      let C be
    compact
    connected non 
    vertical non 
    horizontal  
    Subset of ( 
    TOP-REAL 2); 
    
      
    
      
    
    A1: (2 
    |^ n) 
    >  
    0 by 
    NEWTON: 83;
    
      (
    N-bound C) 
    > (( 
    S-bound C) 
    +  
    0 ) by 
    SPRECT_1: 32;
    
      then ((
    N-bound C) 
    - ( 
    S-bound C)) 
    >  
    0 by 
    XREAL_1: 20;
    
      then
    
      
    
    A2: ((( 
    N-bound C) 
    - ( 
    S-bound C)) 
    / (2 
    |^ n)) 
    > (( 
    S-bound C) 
    - ( 
    S-bound C)) by 
    A1,
    XREAL_1: 139;
    
      (
    S-bound ( 
    L~ ( 
    Cage (C,n)))) 
    = (( 
    S-bound C) 
    - ((( 
    N-bound C) 
    - ( 
    S-bound C)) 
    / (2 
    |^ n))) by 
    JORDAN1A: 63;
    
      hence thesis by
    A2,
    XREAL_1: 11;
    
    end;
    
    theorem :: 
    
    JORDAN19:11
    
    
    
    
    
    Th11: for C be 
    compact
    connected non 
    vertical non 
    horizontal  
    Subset of ( 
    TOP-REAL 2) holds ( 
    W-bound ( 
    L~ ( 
    Cage (C,n)))) 
    < ( 
    W-bound C) 
    
    proof
    
      let C be
    compact
    connected non 
    vertical non 
    horizontal  
    Subset of ( 
    TOP-REAL 2); 
    
      
    
      
    
    A1: (2 
    |^ n) 
    >  
    0 by 
    NEWTON: 83;
    
      (
    E-bound C) 
    > (( 
    W-bound C) 
    +  
    0 ) by 
    SPRECT_1: 31;
    
      then ((
    E-bound C) 
    - ( 
    W-bound C)) 
    >  
    0 by 
    XREAL_1: 20;
    
      then
    
      
    
    A2: ((( 
    E-bound C) 
    - ( 
    W-bound C)) 
    / (2 
    |^ n)) 
    > (( 
    W-bound C) 
    - ( 
    W-bound C)) by 
    A1,
    XREAL_1: 139;
    
      (
    W-bound ( 
    L~ ( 
    Cage (C,n)))) 
    = (( 
    W-bound C) 
    - ((( 
    E-bound C) 
    - ( 
    W-bound C)) 
    / (2 
    |^ n))) by 
    JORDAN1A: 62;
    
      hence thesis by
    A2,
    XREAL_1: 11;
    
    end;
    
    theorem :: 
    
    JORDAN19:12
    
    
    
    
    
    Th12: for C be 
    Simple_closed_curve holds for i,j,k be 
    Nat st 1 
    < i & i 
    < ( 
    len ( 
    Gauge (C,n))) & 1 
    <= k & k 
    <= j & j 
    <= ( 
    width ( 
    Gauge (C,n))) & (( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i,k)),(( 
    Gauge (C,n)) 
    * (i,j)))) 
    /\ ( 
    L~ ( 
    Upper_Seq (C,n)))) 
    =  
    {((
    Gauge (C,n)) 
    * (i,k))} & (( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i,k)),(( 
    Gauge (C,n)) 
    * (i,j)))) 
    /\ ( 
    L~ ( 
    Lower_Seq (C,n)))) 
    =  
    {((
    Gauge (C,n)) 
    * (i,j))} holds ( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i,k)),(( 
    Gauge (C,n)) 
    * (i,j)))) 
    meets ( 
    Upper_Arc C) 
    
    proof
    
      let C be
    Simple_closed_curve;
    
      let i,j,k be
    Nat;
    
      set Ga = (
    Gauge (C,n)); 
    
      set US = (
    Upper_Seq (C,n)); 
    
      set LS = (
    Lower_Seq (C,n)); 
    
      set UA = (
    Upper_Arc C); 
    
      set Wmin = (
    W-min ( 
    L~ ( 
    Cage (C,n)))); 
    
      set Emax = (
    E-max ( 
    L~ ( 
    Cage (C,n)))); 
    
      set Wbo = (
    W-bound ( 
    L~ ( 
    Cage (C,n)))); 
    
      set Ebo = (
    E-bound ( 
    L~ ( 
    Cage (C,n)))); 
    
      set Gik = (Ga
    * (i,k)); 
    
      set Gij = (Ga
    * (i,j)); 
    
      assume that
    
      
    
    A1: 1 
    < i and 
    
      
    
    A2: i 
    < ( 
    len Ga) and 
    
      
    
    A3: 1 
    <= k and 
    
      
    
    A4: k 
    <= j and 
    
      
    
    A5: j 
    <= ( 
    width Ga) and 
    
      
    
    A6: (( 
    LSeg (Gik,Gij)) 
    /\ ( 
    L~ US)) 
    =  
    {Gik} and
    
      
    
    A7: (( 
    LSeg (Gik,Gij)) 
    /\ ( 
    L~ LS)) 
    =  
    {Gij} and
    
      
    
    A8: ( 
    LSeg (Gik,Gij)) 
    misses UA; 
    
      Gij
    in  
    {Gij} by
    TARSKI:def 1;
    
      then
    
      
    
    A9: Gij 
    in ( 
    L~ LS) by 
    A7,
    XBOOLE_0:def 4;
    
      Gik
    in  
    {Gik} by
    TARSKI:def 1;
    
      then
    
      
    
    A10: Gik 
    in ( 
    L~ US) by 
    A6,
    XBOOLE_0:def 4;
    
      then
    
      
    
    A11: j 
    <> k by 
    A1,
    A2,
    A3,
    A5,
    A9,
    JORDAN1J: 57;
    
      
    
      
    
    A12: 1 
    <= j by 
    A3,
    A4,
    XXREAL_0: 2;
    
      
    
      
    
    A13: k 
    <= ( 
    width Ga) by 
    A4,
    A5,
    XXREAL_0: 2;
    
      
    
      
    
    A14: 
    [i, j]
    in ( 
    Indices Ga) by 
    A1,
    A2,
    A5,
    A12,
    MATRIX_0: 30;
    
      
    
      
    
    A15: 
    [i, k]
    in ( 
    Indices Ga) by 
    A1,
    A2,
    A3,
    A13,
    MATRIX_0: 30;
    
      set co = (
    L_Cut (LS,Gij)); 
    
      set go = (
    R_Cut (US,Gik)); 
    
      
    
      
    
    A16: ( 
    len Ga) 
    = ( 
    width Ga) by 
    JORDAN8:def 1;
    
      
    
      
    
    A17: ( 
    len US) 
    >= 3 by 
    JORDAN1E: 15;
    
      then (
    len US) 
    >= 1 by 
    XXREAL_0: 2;
    
      then 1
    in ( 
    dom US) by 
    FINSEQ_3: 25;
    
      
    
      then
    
      
    
    A18: (US 
    . 1) 
    = (US 
    /. 1) by 
    PARTFUN1:def 6
    
      .= Wmin by
    JORDAN1F: 5;
    
      
    
      
    
    A19: (Wmin 
    `1 ) 
    = Wbo by 
    EUCLID: 52
    
      .= ((Ga
    * (1,k)) 
    `1 ) by 
    A3,
    A13,
    A16,
    JORDAN1A: 73;
    
      (
    len Ga) 
    >= 4 by 
    JORDAN8: 10;
    
      then
    
      
    
    A20: ( 
    len Ga) 
    >= 1 by 
    XXREAL_0: 2;
    
      then
    
      
    
    A21: 
    [1, k]
    in ( 
    Indices Ga) by 
    A3,
    A13,
    MATRIX_0: 30;
    
      then
    
      
    
    A22: Gik 
    <> (US 
    . 1) by 
    A1,
    A15,
    A18,
    A19,
    JORDAN1G: 7;
    
      then
    
      reconsider go as
    being_S-Seq  
    FinSequence of ( 
    TOP-REAL 2) by 
    A10,
    JORDAN3: 35;
    
      
    
      
    
    A23: ( 
    len LS) 
    >= (1 
    + 2) by 
    JORDAN1E: 15;
    
      then
    
      
    
    A24: ( 
    len LS) 
    >= 1 by 
    XXREAL_0: 2;
    
      then
    
      
    
    A25: 1 
    in ( 
    dom LS) by 
    FINSEQ_3: 25;
    
      (
    len LS) 
    in ( 
    dom LS) by 
    A24,
    FINSEQ_3: 25;
    
      
    
      then
    
      
    
    A26: (LS 
    . ( 
    len LS)) 
    = (LS 
    /. ( 
    len LS)) by 
    PARTFUN1:def 6
    
      .= Wmin by
    JORDAN1F: 8;
    
      
    
      
    
    A27: (Wmin 
    `1 ) 
    = Wbo by 
    EUCLID: 52
    
      .= ((Ga
    * (1,k)) 
    `1 ) by 
    A3,
    A13,
    A16,
    JORDAN1A: 73;
    
      
    
      
    
    A28: 
    [i, j]
    in ( 
    Indices Ga) by 
    A1,
    A2,
    A5,
    A12,
    MATRIX_0: 30;
    
      then
    
      
    
    A29: Gij 
    <> (LS 
    . ( 
    len LS)) by 
    A1,
    A21,
    A26,
    A27,
    JORDAN1G: 7;
    
      then
    
      reconsider co as
    being_S-Seq  
    FinSequence of ( 
    TOP-REAL 2) by 
    A9,
    JORDAN3: 34;
    
      
    
      
    
    A30: 
    [(
    len Ga), k] 
    in ( 
    Indices Ga) by 
    A3,
    A13,
    A20,
    MATRIX_0: 30;
    
      
    
      
    
    A31: (LS 
    . 1) 
    = (LS 
    /. 1) by 
    A25,
    PARTFUN1:def 6
    
      .= Emax by
    JORDAN1F: 6;
    
      (Emax
    `1 ) 
    = Ebo by 
    EUCLID: 52
    
      .= ((Ga
    * (( 
    len Ga),k)) 
    `1 ) by 
    A3,
    A13,
    A16,
    JORDAN1A: 71;
    
      then
    
      
    
    A32: Gij 
    <> (LS 
    . 1) by 
    A2,
    A28,
    A30,
    A31,
    JORDAN1G: 7;
    
      
    
      
    
    A33: ( 
    len go) 
    >= (1 
    + 1) by 
    TOPREAL1:def 8;
    
      
    
      
    
    A34: Gik 
    in ( 
    rng US) by 
    A1,
    A2,
    A3,
    A10,
    A13,
    JORDAN1G: 4,
    JORDAN1J: 40;
    
      then
    
      
    
    A35: go 
    is_sequence_on Ga by 
    JORDAN1G: 4,
    JORDAN1J: 38;
    
      
    
      
    
    A36: ( 
    len co) 
    >= (1 
    + 1) by 
    TOPREAL1:def 8;
    
      
    
      
    
    A37: Gij 
    in ( 
    rng LS) by 
    A1,
    A2,
    A5,
    A9,
    A12,
    JORDAN1G: 5,
    JORDAN1J: 40;
    
      then
    
      
    
    A38: co 
    is_sequence_on Ga by 
    JORDAN1G: 5,
    JORDAN1J: 39;
    
      reconsider go as non
    constant
    s.c.c.
    being_S-Seq  
    FinSequence of ( 
    TOP-REAL 2) by 
    A33,
    A35,
    JGRAPH_1: 12,
    JORDAN8: 5;
    
      reconsider co as non
    constant
    s.c.c.
    being_S-Seq  
    FinSequence of ( 
    TOP-REAL 2) by 
    A36,
    A38,
    JGRAPH_1: 12,
    JORDAN8: 5;
    
      
    
      
    
    A39: ( 
    len go) 
    > 1 by 
    A33,
    NAT_1: 13;
    
      then
    
      
    
    A40: ( 
    len go) 
    in ( 
    dom go) by 
    FINSEQ_3: 25;
    
      
    
      then
    
      
    
    A41: (go 
    /. ( 
    len go)) 
    = (go 
    . ( 
    len go)) by 
    PARTFUN1:def 6
    
      .= Gik by
    A10,
    JORDAN3: 24;
    
      (
    len co) 
    >= 1 by 
    A36,
    XXREAL_0: 2;
    
      then 1
    in ( 
    dom co) by 
    FINSEQ_3: 25;
    
      
    
      then
    
      
    
    A42: (co 
    /. 1) 
    = (co 
    . 1) by 
    PARTFUN1:def 6
    
      .= Gij by
    A9,
    JORDAN3: 23;
    
      reconsider m = ((
    len go) 
    - 1) as 
    Nat by 
    A40,
    FINSEQ_3: 26;
    
      
    
      
    
    A43: (m 
    + 1) 
    = ( 
    len go); 
    
      then
    
      
    
    A44: (( 
    len go) 
    -' 1) 
    = m by 
    NAT_D: 34;
    
      
    
      
    
    A45: ( 
    LSeg (go,m)) 
    c= ( 
    L~ go) by 
    TOPREAL3: 19;
    
      
    
      
    
    A46: ( 
    L~ go) 
    c= ( 
    L~ US) by 
    A10,
    JORDAN3: 41;
    
      then (
    LSeg (go,m)) 
    c= ( 
    L~ US) by 
    A45;
    
      then
    
      
    
    A47: (( 
    LSeg (go,m)) 
    /\ ( 
    LSeg (Gik,Gij))) 
    c=  
    {Gik} by
    A6,
    XBOOLE_1: 26;
    
      m
    >= 1 by 
    A33,
    XREAL_1: 19;
    
      then
    
      
    
    A48: ( 
    LSeg (go,m)) 
    = ( 
    LSeg ((go 
    /. m),Gik)) by 
    A41,
    A43,
    TOPREAL1:def 3;
    
      
    {Gik}
    c= (( 
    LSeg (go,m)) 
    /\ ( 
    LSeg (Gik,Gij))) 
    
      proof
    
        let x be
    object;
    
        assume x
    in  
    {Gik};
    
        then
    
        
    
    A49: x 
    = Gik by 
    TARSKI:def 1;
    
        
    
        
    
    A50: Gik 
    in ( 
    LSeg (go,m)) by 
    A48,
    RLTOPSP1: 68;
    
        Gik
    in ( 
    LSeg (Gik,Gij)) by 
    RLTOPSP1: 68;
    
        hence thesis by
    A49,
    A50,
    XBOOLE_0:def 4;
    
      end;
    
      then
    
      
    
    A51: (( 
    LSeg (go,m)) 
    /\ ( 
    LSeg (Gik,Gij))) 
    =  
    {Gik} by
    A47;
    
      
    
      
    
    A52: ( 
    LSeg (co,1)) 
    c= ( 
    L~ co) by 
    TOPREAL3: 19;
    
      
    
      
    
    A53: ( 
    L~ co) 
    c= ( 
    L~ LS) by 
    A9,
    JORDAN3: 42;
    
      then (
    LSeg (co,1)) 
    c= ( 
    L~ LS) by 
    A52;
    
      then
    
      
    
    A54: (( 
    LSeg (co,1)) 
    /\ ( 
    LSeg (Gik,Gij))) 
    c=  
    {Gij} by
    A7,
    XBOOLE_1: 26;
    
      
    
      
    
    A55: ( 
    LSeg (co,1)) 
    = ( 
    LSeg (Gij,(co 
    /. (1 
    + 1)))) by 
    A36,
    A42,
    TOPREAL1:def 3;
    
      
    {Gij}
    c= (( 
    LSeg (co,1)) 
    /\ ( 
    LSeg (Gik,Gij))) 
    
      proof
    
        let x be
    object;
    
        assume x
    in  
    {Gij};
    
        then
    
        
    
    A56: x 
    = Gij by 
    TARSKI:def 1;
    
        
    
        
    
    A57: Gij 
    in ( 
    LSeg (co,1)) by 
    A55,
    RLTOPSP1: 68;
    
        Gij
    in ( 
    LSeg (Gik,Gij)) by 
    RLTOPSP1: 68;
    
        hence thesis by
    A56,
    A57,
    XBOOLE_0:def 4;
    
      end;
    
      then
    
      
    
    A58: (( 
    LSeg (Gik,Gij)) 
    /\ ( 
    LSeg (co,1))) 
    =  
    {Gij} by
    A54;
    
      
    
      
    
    A59: (go 
    /. 1) 
    = (US 
    /. 1) by 
    A10,
    SPRECT_3: 22
    
      .= Wmin by
    JORDAN1F: 5;
    
      
    
      then
    
      
    
    A60: (go 
    /. 1) 
    = (LS 
    /. ( 
    len LS)) by 
    JORDAN1F: 8
    
      .= (co
    /. ( 
    len co)) by 
    A9,
    JORDAN1J: 35;
    
      
    
      
    
    A61: ( 
    rng go) 
    c= ( 
    L~ go) by 
    A33,
    SPPOL_2: 18;
    
      
    
      
    
    A62: ( 
    rng co) 
    c= ( 
    L~ co) by 
    A36,
    SPPOL_2: 18;
    
      
    
      
    
    A63: 
    {(go
    /. 1)} 
    c= (( 
    L~ go) 
    /\ ( 
    L~ co)) 
    
      proof
    
        let x be
    object;
    
        assume x
    in  
    {(go
    /. 1)}; 
    
        then
    
        
    
    A64: x 
    = (go 
    /. 1) by 
    TARSKI:def 1;
    
        then
    
        
    
    A65: x 
    in ( 
    rng go) by 
    FINSEQ_6: 42;
    
        x
    in ( 
    rng co) by 
    A60,
    A64,
    FINSEQ_6: 168;
    
        hence thesis by
    A61,
    A62,
    A65,
    XBOOLE_0:def 4;
    
      end;
    
      
    
      
    
    A66: (LS 
    . 1) 
    = (LS 
    /. 1) by 
    A25,
    PARTFUN1:def 6
    
      .= Emax by
    JORDAN1F: 6;
    
      
    
      
    
    A67: 
    [(
    len Ga), j] 
    in ( 
    Indices Ga) by 
    A5,
    A12,
    A20,
    MATRIX_0: 30;
    
      ((
    L~ go) 
    /\ ( 
    L~ co)) 
    c=  
    {(go
    /. 1)} 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A68: x 
    in (( 
    L~ go) 
    /\ ( 
    L~ co)); 
    
        then
    
        
    
    A69: x 
    in ( 
    L~ go) by 
    XBOOLE_0:def 4;
    
        
    
        
    
    A70: x 
    in ( 
    L~ co) by 
    A68,
    XBOOLE_0:def 4;
    
        then x
    in (( 
    L~ US) 
    /\ ( 
    L~ LS)) by 
    A46,
    A53,
    A69,
    XBOOLE_0:def 4;
    
        then x
    in  
    {Wmin, Emax} by
    JORDAN1E: 16;
    
        then
    
        
    
    A71: x 
    = Wmin or x 
    = Emax by 
    TARSKI:def 2;
    
        now
    
          assume x
    = Emax; 
    
          then
    
          
    
    A72: Emax 
    = Gij by 
    A9,
    A66,
    A70,
    JORDAN1E: 7;
    
          ((Ga
    * (( 
    len Ga),j)) 
    `1 ) 
    = Ebo by 
    A5,
    A12,
    A16,
    JORDAN1A: 71;
    
          then (Emax
    `1 ) 
    <> Ebo by 
    A2,
    A14,
    A67,
    A72,
    JORDAN1G: 7;
    
          hence contradiction by
    EUCLID: 52;
    
        end;
    
        hence thesis by
    A59,
    A71,
    TARSKI:def 1;
    
      end;
    
      then
    
      
    
    A73: (( 
    L~ go) 
    /\ ( 
    L~ co)) 
    =  
    {(go
    /. 1)} by 
    A63;
    
      set W2 = (go
    /. 2); 
    
      
    
      
    
    A74: 2 
    in ( 
    dom go) by 
    A33,
    FINSEQ_3: 25;
    
      
    
    A75: 
    
      now
    
        assume (Gik
    `1 ) 
    = Wbo; 
    
        then ((Ga
    * (1,k)) 
    `1 ) 
    = ((Ga 
    * (i,k)) 
    `1 ) by 
    A3,
    A13,
    A16,
    JORDAN1A: 73;
    
        hence contradiction by
    A1,
    A15,
    A21,
    JORDAN1G: 7;
    
      end;
    
      go
    = ( 
    mid (US,1,(Gik 
    .. US))) by 
    A34,
    JORDAN1G: 49
    
      .= (US
    | (Gik 
    .. US)) by 
    A34,
    FINSEQ_4: 21,
    FINSEQ_6: 116;
    
      then
    
      
    
    A76: W2 
    = (US 
    /. 2) by 
    A74,
    FINSEQ_4: 70;
    
      
    
      
    
    A77: Wmin 
    in ( 
    rng go) by 
    A59,
    FINSEQ_6: 42;
    
      set pion =
    <*Gik, Gij*>;
    
      
    
    A78: 
    
      now
    
        let n be
    Nat;
    
        assume n
    in ( 
    dom pion); 
    
        then n
    in ( 
    Seg 2) by 
    FINSEQ_1: 89;
    
        then n
    = 1 or n 
    = 2 by 
    FINSEQ_1: 2,
    TARSKI:def 2;
    
        hence ex i,j be
    Nat st 
    [i, j]
    in ( 
    Indices Ga) & (pion 
    /. n) 
    = (Ga 
    * (i,j)) by 
    A14,
    A15,
    FINSEQ_4: 17;
    
      end;
    
      
    
      
    
    A79: Gik 
    <> Gij by 
    A11,
    A14,
    A15,
    GOBOARD1: 5;
    
      
    
      
    
    A80: (Gik 
    `1 ) 
    = ((Ga 
    * (i,1)) 
    `1 ) by 
    A1,
    A2,
    A3,
    A13,
    GOBOARD5: 2
    
      .= (Gij
    `1 ) by 
    A1,
    A2,
    A5,
    A12,
    GOBOARD5: 2;
    
      then (
    LSeg (Gik,Gij)) is 
    vertical by 
    SPPOL_1: 16;
    
      then pion is
    being_S-Seq by 
    A79,
    JORDAN1B: 7;
    
      then
    
      consider pion1 be
    FinSequence of ( 
    TOP-REAL 2) such that 
    
      
    
    A81: pion1 
    is_sequence_on Ga and 
    
      
    
    A82: pion1 is 
    being_S-Seq and 
    
      
    
    A83: ( 
    L~ pion) 
    = ( 
    L~ pion1) and 
    
      
    
    A84: (pion 
    /. 1) 
    = (pion1 
    /. 1) and 
    
      
    
    A85: (pion 
    /. ( 
    len pion)) 
    = (pion1 
    /. ( 
    len pion1)) and 
    
      
    
    A86: ( 
    len pion) 
    <= ( 
    len pion1) by 
    A78,
    GOBOARD3: 2;
    
      reconsider pion1 as
    being_S-Seq  
    FinSequence of ( 
    TOP-REAL 2) by 
    A82;
    
      set godo = ((go
    ^' pion1) 
    ^' co); 
    
      
    
      
    
    A87: (1 
    + 1) 
    <= ( 
    len ( 
    Cage (C,n))) by 
    GOBOARD7: 34,
    XXREAL_0: 2;
    
      
    
      
    
    A88: (1 
    + 1) 
    <= ( 
    len ( 
    Rotate (( 
    Cage (C,n)),Wmin))) by 
    GOBOARD7: 34,
    XXREAL_0: 2;
    
      (
    len (go 
    ^' pion1)) 
    >= ( 
    len go) by 
    TOPREAL8: 7;
    
      then
    
      
    
    A89: ( 
    len (go 
    ^' pion1)) 
    >= (1 
    + 1) by 
    A33,
    XXREAL_0: 2;
    
      then
    
      
    
    A90: ( 
    len (go 
    ^' pion1)) 
    > (1 
    +  
    0 ) by 
    NAT_1: 13;
    
      
    
      
    
    A91: ( 
    len godo) 
    >= ( 
    len (go 
    ^' pion1)) by 
    TOPREAL8: 7;
    
      then
    
      
    
    A92: (1 
    + 1) 
    <= ( 
    len godo) by 
    A89,
    XXREAL_0: 2;
    
      
    
      
    
    A93: US 
    is_sequence_on Ga by 
    JORDAN1G: 4;
    
      
    
      
    
    A94: (go 
    /. ( 
    len go)) 
    = (pion1 
    /. 1) by 
    A41,
    A84,
    FINSEQ_4: 17;
    
      then
    
      
    
    A95: (go 
    ^' pion1) 
    is_sequence_on Ga by 
    A35,
    A81,
    TOPREAL8: 12;
    
      
    
      
    
    A96: ((go 
    ^' pion1) 
    /. ( 
    len (go 
    ^' pion1))) 
    = (pion 
    /. ( 
    len pion)) by 
    A85,
    FINSEQ_6: 156
    
      .= (pion
    /. 2) by 
    FINSEQ_1: 44
    
      .= (co
    /. 1) by 
    A42,
    FINSEQ_4: 17;
    
      then
    
      
    
    A97: godo 
    is_sequence_on Ga by 
    A38,
    A95,
    TOPREAL8: 12;
    
      (
    LSeg (pion1,1)) 
    c= ( 
    L~  
    <*Gik, Gij*>) by
    A83,
    TOPREAL3: 19;
    
      then (
    LSeg (pion1,1)) 
    c= ( 
    LSeg (Gik,Gij)) by 
    SPPOL_2: 21;
    
      then
    
      
    
    A98: (( 
    LSeg (go,(( 
    len go) 
    -' 1))) 
    /\ ( 
    LSeg (pion1,1))) 
    c=  
    {Gik} by
    A44,
    A51,
    XBOOLE_1: 27;
    
      
    
      
    
    A99: ( 
    len pion1) 
    >= (1 
    + 1) by 
    A86,
    FINSEQ_1: 44;
    
      
    {Gik}
    c= (( 
    LSeg (go,m)) 
    /\ ( 
    LSeg (pion1,1))) 
    
      proof
    
        let x be
    object;
    
        assume x
    in  
    {Gik};
    
        then
    
        
    
    A100: x 
    = Gik by 
    TARSKI:def 1;
    
        
    
        
    
    A101: Gik 
    in ( 
    LSeg (go,m)) by 
    A48,
    RLTOPSP1: 68;
    
        Gik
    in ( 
    LSeg (pion1,1)) by 
    A41,
    A94,
    A99,
    TOPREAL1: 21;
    
        hence thesis by
    A100,
    A101,
    XBOOLE_0:def 4;
    
      end;
    
      then ((
    LSeg (go,(( 
    len go) 
    -' 1))) 
    /\ ( 
    LSeg (pion1,1))) 
    =  
    {(go
    /. ( 
    len go))} by 
    A41,
    A44,
    A98;
    
      then
    
      
    
    A102: (go 
    ^' pion1) is 
    unfolded by 
    A94,
    TOPREAL8: 34;
    
      (
    len pion1) 
    >= (2 
    +  
    0 ) by 
    A86,
    FINSEQ_1: 44;
    
      then
    
      
    
    A103: (( 
    len pion1) 
    - 2) 
    >=  
    0 by 
    XREAL_1: 19;
    
      (((
    len (go 
    ^' pion1)) 
    + 1) 
    - 1) 
    = ((( 
    len go) 
    + ( 
    len pion1)) 
    - 1) by 
    FINSEQ_6: 139;
    
      
    
      then ((
    len (go 
    ^' pion1)) 
    - 1) 
    = (( 
    len go) 
    + (( 
    len pion1) 
    - 2)) 
    
      .= ((
    len go) 
    + (( 
    len pion1) 
    -' 2)) by 
    A103,
    XREAL_0:def 2;
    
      then
    
      
    
    A104: (( 
    len (go 
    ^' pion1)) 
    -' 1) 
    = (( 
    len go) 
    + (( 
    len pion1) 
    -' 2)) by 
    XREAL_0:def 2;
    
      
    
      
    
    A105: (( 
    len pion1) 
    - 1) 
    >= 1 by 
    A99,
    XREAL_1: 19;
    
      then
    
      
    
    A106: (( 
    len pion1) 
    -' 1) 
    = (( 
    len pion1) 
    - 1) by 
    XREAL_0:def 2;
    
      
    
      
    
    A107: ((( 
    len pion1) 
    -' 2) 
    + 1) 
    = ((( 
    len pion1) 
    - 2) 
    + 1) by 
    A103,
    XREAL_0:def 2
    
      .= ((
    len pion1) 
    -' 1) by 
    A105,
    XREAL_0:def 2;
    
      (((
    len pion1) 
    - 1) 
    + 1) 
    <= ( 
    len pion1); 
    
      then
    
      
    
    A108: (( 
    len pion1) 
    -' 1) 
    < ( 
    len pion1) by 
    A106,
    NAT_1: 13;
    
      (
    LSeg (pion1,(( 
    len pion1) 
    -' 1))) 
    c= ( 
    L~  
    <*Gik, Gij*>) by
    A83,
    TOPREAL3: 19;
    
      then (
    LSeg (pion1,(( 
    len pion1) 
    -' 1))) 
    c= ( 
    LSeg (Gik,Gij)) by 
    SPPOL_2: 21;
    
      then
    
      
    
    A109: (( 
    LSeg (pion1,(( 
    len pion1) 
    -' 1))) 
    /\ ( 
    LSeg (co,1))) 
    c=  
    {Gij} by
    A58,
    XBOOLE_1: 27;
    
      
    {Gij}
    c= (( 
    LSeg (pion1,(( 
    len pion1) 
    -' 1))) 
    /\ ( 
    LSeg (co,1))) 
    
      proof
    
        let x be
    object;
    
        assume x
    in  
    {Gij};
    
        then
    
        
    
    A110: x 
    = Gij by 
    TARSKI:def 1;
    
        
    
        
    
    A111: Gij 
    in ( 
    LSeg (co,1)) by 
    A55,
    RLTOPSP1: 68;
    
        (pion1
    /. ((( 
    len pion1) 
    -' 1) 
    + 1)) 
    = (pion 
    /. 2) by 
    A85,
    A106,
    FINSEQ_1: 44
    
        .= Gij by
    FINSEQ_4: 17;
    
        then Gij
    in ( 
    LSeg (pion1,(( 
    len pion1) 
    -' 1))) by 
    A105,
    A106,
    TOPREAL1: 21;
    
        hence thesis by
    A110,
    A111,
    XBOOLE_0:def 4;
    
      end;
    
      then ((
    LSeg (pion1,(( 
    len pion1) 
    -' 1))) 
    /\ ( 
    LSeg (co,1))) 
    =  
    {Gij} by
    A109;
    
      then
    
      
    
    A112: (( 
    LSeg ((go 
    ^' pion1),(( 
    len go) 
    + (( 
    len pion1) 
    -' 2)))) 
    /\ ( 
    LSeg (co,1))) 
    =  
    {((go
    ^' pion1) 
    /. ( 
    len (go 
    ^' pion1)))} by 
    A42,
    A94,
    A96,
    A107,
    A108,
    TOPREAL8: 31;
    
      
    
      
    
    A113: (go 
    ^' pion1) is non 
    trivial by 
    A89,
    NAT_D: 60;
    
      
    
      
    
    A114: ( 
    rng pion1) 
    c= ( 
    L~ pion1) by 
    A99,
    SPPOL_2: 18;
    
      
    
      
    
    A115: 
    {(pion1
    /. 1)} 
    c= (( 
    L~ go) 
    /\ ( 
    L~ pion1)) 
    
      proof
    
        let x be
    object;
    
        assume x
    in  
    {(pion1
    /. 1)}; 
    
        then
    
        
    
    A116: x 
    = (pion1 
    /. 1) by 
    TARSKI:def 1;
    
        then
    
        
    
    A117: x 
    in ( 
    rng go) by 
    A94,
    FINSEQ_6: 168;
    
        x
    in ( 
    rng pion1) by 
    A116,
    FINSEQ_6: 42;
    
        hence thesis by
    A61,
    A114,
    A117,
    XBOOLE_0:def 4;
    
      end;
    
      ((
    L~ go) 
    /\ ( 
    L~ pion1)) 
    c=  
    {(pion1
    /. 1)} 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A118: x 
    in (( 
    L~ go) 
    /\ ( 
    L~ pion1)); 
    
        then
    
        
    
    A119: x 
    in ( 
    L~ go) by 
    XBOOLE_0:def 4;
    
        x
    in ( 
    L~ pion1) by 
    A118,
    XBOOLE_0:def 4;
    
        then x
    in (( 
    L~ pion1) 
    /\ ( 
    L~ US)) by 
    A46,
    A119,
    XBOOLE_0:def 4;
    
        hence thesis by
    A6,
    A41,
    A83,
    A94,
    SPPOL_2: 21;
    
      end;
    
      then
    
      
    
    A120: (( 
    L~ go) 
    /\ ( 
    L~ pion1)) 
    =  
    {(pion1
    /. 1)} by 
    A115;
    
      then
    
      
    
    A121: (go 
    ^' pion1) is 
    s.n.c. by 
    A94,
    JORDAN1J: 54;
    
      ((
    rng go) 
    /\ ( 
    rng pion1)) 
    c=  
    {(pion1
    /. 1)} by 
    A61,
    A114,
    A120,
    XBOOLE_1: 27;
    
      then
    
      
    
    A122: (go 
    ^' pion1) is 
    one-to-one by 
    JORDAN1J: 55;
    
      
    
      
    
    A123: (pion 
    /. ( 
    len pion)) 
    = (pion 
    /. 2) by 
    FINSEQ_1: 44
    
      .= (co
    /. 1) by 
    A42,
    FINSEQ_4: 17;
    
      
    
      
    
    A124: 
    {(pion1
    /. ( 
    len pion1))} 
    c= (( 
    L~ co) 
    /\ ( 
    L~ pion1)) 
    
      proof
    
        let x be
    object;
    
        assume x
    in  
    {(pion1
    /. ( 
    len pion1))}; 
    
        then
    
        
    
    A125: x 
    = (pion1 
    /. ( 
    len pion1)) by 
    TARSKI:def 1;
    
        then
    
        
    
    A126: x 
    in ( 
    rng co) by 
    A85,
    A123,
    FINSEQ_6: 42;
    
        x
    in ( 
    rng pion1) by 
    A125,
    FINSEQ_6: 168;
    
        hence thesis by
    A62,
    A114,
    A126,
    XBOOLE_0:def 4;
    
      end;
    
      ((
    L~ co) 
    /\ ( 
    L~ pion1)) 
    c=  
    {(pion1
    /. ( 
    len pion1))} 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A127: x 
    in (( 
    L~ co) 
    /\ ( 
    L~ pion1)); 
    
        then
    
        
    
    A128: x 
    in ( 
    L~ co) by 
    XBOOLE_0:def 4;
    
        x
    in ( 
    L~ pion1) by 
    A127,
    XBOOLE_0:def 4;
    
        then x
    in (( 
    L~ pion1) 
    /\ ( 
    L~ LS)) by 
    A53,
    A128,
    XBOOLE_0:def 4;
    
        hence thesis by
    A7,
    A42,
    A83,
    A85,
    A123,
    SPPOL_2: 21;
    
      end;
    
      then
    
      
    
    A129: (( 
    L~ co) 
    /\ ( 
    L~ pion1)) 
    =  
    {(pion1
    /. ( 
    len pion1))} by 
    A124;
    
      
    
      
    
    A130: (( 
    L~ (go 
    ^' pion1)) 
    /\ ( 
    L~ co)) 
    = ((( 
    L~ go) 
    \/ ( 
    L~ pion1)) 
    /\ ( 
    L~ co)) by 
    A94,
    TOPREAL8: 35
    
      .= (
    {(go
    /. 1)} 
    \/  
    {(co
    /. 1)}) by 
    A73,
    A85,
    A123,
    A129,
    XBOOLE_1: 23
    
      .= (
    {((go
    ^' pion1) 
    /. 1)} 
    \/  
    {(co
    /. 1)}) by 
    FINSEQ_6: 155
    
      .=
    {((go
    ^' pion1) 
    /. 1), (co 
    /. 1)} by 
    ENUMSET1: 1;
    
      (co
    /. ( 
    len co)) 
    = ((go 
    ^' pion1) 
    /. 1) by 
    A60,
    FINSEQ_6: 155;
    
      then
    
      reconsider godo as non
    constant
    standard  
    special_circular_sequence by 
    A92,
    A96,
    A97,
    A102,
    A104,
    A112,
    A113,
    A121,
    A122,
    A130,
    JORDAN8: 4,
    JORDAN8: 5,
    TOPREAL8: 11,
    TOPREAL8: 33,
    TOPREAL8: 34;
    
      
    
      
    
    A131: UA 
    is_an_arc_of (( 
    W-min C),( 
    E-max C)) by 
    JORDAN6:def 8;
    
      then
    
      
    
    A132: UA is 
    connected by 
    JORDAN6: 10;
    
      
    
      
    
    A133: ( 
    W-min C) 
    in UA by 
    A131,
    TOPREAL1: 1;
    
      
    
      
    
    A134: ( 
    E-max C) 
    in UA by 
    A131,
    TOPREAL1: 1;
    
      set ff = (
    Rotate (( 
    Cage (C,n)),Wmin)); 
    
      Wmin
    in ( 
    rng ( 
    Cage (C,n))) by 
    SPRECT_2: 43;
    
      then
    
      
    
    A135: (ff 
    /. 1) 
    = Wmin by 
    FINSEQ_6: 92;
    
      
    
      
    
    A136: ( 
    L~ ff) 
    = ( 
    L~ ( 
    Cage (C,n))) by 
    REVROT_1: 33;
    
      then ((
    W-max ( 
    L~ ff)) 
    .. ff) 
    > 1 by 
    A135,
    SPRECT_5: 22;
    
      then ((
    N-min ( 
    L~ ff)) 
    .. ff) 
    > 1 by 
    A135,
    A136,
    SPRECT_5: 23,
    XXREAL_0: 2;
    
      then ((
    N-max ( 
    L~ ff)) 
    .. ff) 
    > 1 by 
    A135,
    A136,
    SPRECT_5: 24,
    XXREAL_0: 2;
    
      then
    
      
    
    A137: (Emax 
    .. ff) 
    > 1 by 
    A135,
    A136,
    SPRECT_5: 25,
    XXREAL_0: 2;
    
      
    
    A138: 
    
      now
    
        assume
    
        
    
    A139: (Gik 
    .. US) 
    <= 1; 
    
        (Gik
    .. US) 
    >= 1 by 
    A34,
    FINSEQ_4: 21;
    
        then (Gik
    .. US) 
    = 1 by 
    A139,
    XXREAL_0: 1;
    
        then Gik
    = (US 
    /. 1) by 
    A34,
    FINSEQ_5: 38;
    
        hence contradiction by
    A18,
    A22,
    JORDAN1F: 5;
    
      end;
    
      
    
      
    
    A140: ( 
    Cage (C,n)) 
    is_sequence_on Ga by 
    JORDAN9:def 1;
    
      then
    
      
    
    A141: ff 
    is_sequence_on Ga by 
    REVROT_1: 34;
    
      
    
      
    
    A142: (( 
    right_cell (godo,1,Ga)) 
    \ ( 
    L~ godo)) 
    c= ( 
    RightComp godo) by 
    A92,
    A97,
    JORDAN9: 27;
    
      
    
      
    
    A143: ( 
    L~ godo) 
    = (( 
    L~ (go 
    ^' pion1)) 
    \/ ( 
    L~ co)) by 
    A96,
    TOPREAL8: 35
    
      .= (((
    L~ go) 
    \/ ( 
    L~ pion1)) 
    \/ ( 
    L~ co)) by 
    A94,
    TOPREAL8: 35;
    
      
    
      
    
    A144: ( 
    L~ ( 
    Cage (C,n))) 
    = (( 
    L~ US) 
    \/ ( 
    L~ LS)) by 
    JORDAN1E: 13;
    
      then
    
      
    
    A145: ( 
    L~ US) 
    c= ( 
    L~ ( 
    Cage (C,n))) by 
    XBOOLE_1: 7;
    
      
    
      
    
    A146: ( 
    L~ LS) 
    c= ( 
    L~ ( 
    Cage (C,n))) by 
    A144,
    XBOOLE_1: 7;
    
      
    
      
    
    A147: ( 
    L~ go) 
    c= ( 
    L~ ( 
    Cage (C,n))) by 
    A46,
    A145;
    
      
    
      
    
    A148: ( 
    L~ co) 
    c= ( 
    L~ ( 
    Cage (C,n))) by 
    A53,
    A146;
    
      
    
      
    
    A149: ( 
    W-min C) 
    in C by 
    SPRECT_1: 13;
    
      
    
      
    
    A150: ( 
    L~ pion) 
    = ( 
    LSeg (Gik,Gij)) by 
    SPPOL_2: 21;
    
      
    
    A151: 
    
      now
    
        assume (
    W-min C) 
    in ( 
    L~ godo); 
    
        then
    
        
    
    A152: ( 
    W-min C) 
    in (( 
    L~ go) 
    \/ ( 
    L~ pion1)) or ( 
    W-min C) 
    in ( 
    L~ co) by 
    A143,
    XBOOLE_0:def 3;
    
        per cases by
    A152,
    XBOOLE_0:def 3;
    
          suppose (
    W-min C) 
    in ( 
    L~ go); 
    
          then C
    meets ( 
    L~ ( 
    Cage (C,n))) by 
    A147,
    A149,
    XBOOLE_0: 3;
    
          hence contradiction by
    JORDAN10: 5;
    
        end;
    
          suppose (
    W-min C) 
    in ( 
    L~ pion1); 
    
          hence contradiction by
    A8,
    A83,
    A133,
    A150,
    XBOOLE_0: 3;
    
        end;
    
          suppose (
    W-min C) 
    in ( 
    L~ co); 
    
          then C
    meets ( 
    L~ ( 
    Cage (C,n))) by 
    A148,
    A149,
    XBOOLE_0: 3;
    
          hence contradiction by
    JORDAN10: 5;
    
        end;
    
      end;
    
      (
    right_cell (( 
    Rotate (( 
    Cage (C,n)),Wmin)),1)) 
    = ( 
    right_cell (ff,1,( 
    GoB ff))) by 
    A88,
    JORDAN1H: 23
    
      .= (
    right_cell (ff,1,( 
    GoB ( 
    Cage (C,n))))) by 
    REVROT_1: 28
    
      .= (
    right_cell (ff,1,Ga)) by 
    JORDAN1H: 44
    
      .= (
    right_cell ((ff 
    -: Emax),1,Ga)) by 
    A137,
    A141,
    JORDAN1J: 53
    
      .= (
    right_cell (US,1,Ga)) by 
    JORDAN1E:def 1
    
      .= (
    right_cell (( 
    R_Cut (US,Gik)),1,Ga)) by 
    A34,
    A93,
    A138,
    JORDAN1J: 52
    
      .= (
    right_cell ((go 
    ^' pion1),1,Ga)) by 
    A39,
    A95,
    JORDAN1J: 51
    
      .= (
    right_cell (godo,1,Ga)) by 
    A90,
    A97,
    JORDAN1J: 51;
    
      then (
    W-min C) 
    in ( 
    right_cell (godo,1,Ga)) by 
    JORDAN1I: 6;
    
      then
    
      
    
    A153: ( 
    W-min C) 
    in (( 
    right_cell (godo,1,Ga)) 
    \ ( 
    L~ godo)) by 
    A151,
    XBOOLE_0:def 5;
    
      
    
      
    
    A154: (godo 
    /. 1) 
    = ((go 
    ^' pion1) 
    /. 1) by 
    FINSEQ_6: 155
    
      .= Wmin by
    A59,
    FINSEQ_6: 155;
    
      
    
      
    
    A155: ( 
    len US) 
    >= 2 by 
    A17,
    XXREAL_0: 2;
    
      
    
      
    
    A156: (godo 
    /. 2) 
    = ((go 
    ^' pion1) 
    /. 2) by 
    A89,
    FINSEQ_6: 159
    
      .= (US
    /. 2) by 
    A33,
    A76,
    FINSEQ_6: 159
    
      .= ((US
    ^' LS) 
    /. 2) by 
    A155,
    FINSEQ_6: 159
    
      .= ((
    Rotate (( 
    Cage (C,n)),Wmin)) 
    /. 2) by 
    JORDAN1E: 11;
    
      
    
      
    
    A157: (( 
    L~ go) 
    \/ ( 
    L~ co)) is 
    compact by 
    COMPTS_1: 10;
    
      Wmin
    in (( 
    L~ go) 
    \/ ( 
    L~ co)) by 
    A61,
    A77,
    XBOOLE_0:def 3;
    
      then
    
      
    
    A158: ( 
    W-min (( 
    L~ go) 
    \/ ( 
    L~ co))) 
    = Wmin by 
    A147,
    A148,
    A157,
    JORDAN1J: 21,
    XBOOLE_1: 8;
    
      
    
      
    
    A159: (( 
    W-min (( 
    L~ go) 
    \/ ( 
    L~ co))) 
    `1 ) 
    = ( 
    W-bound (( 
    L~ go) 
    \/ ( 
    L~ co))) by 
    EUCLID: 52;
    
      
    
      
    
    A160: (Wmin 
    `1 ) 
    = Wbo by 
    EUCLID: 52;
    
      (
    W-bound ( 
    LSeg (Gik,Gij))) 
    = (Gik 
    `1 ) by 
    A80,
    SPRECT_1: 54;
    
      then
    
      
    
    A161: ( 
    W-bound ( 
    L~ pion1)) 
    = (Gik 
    `1 ) by 
    A83,
    SPPOL_2: 21;
    
      (Gik
    `1 ) 
    >= Wbo by 
    A10,
    A145,
    PSCOMP_1: 24;
    
      then (Gik
    `1 ) 
    > Wbo by 
    A75,
    XXREAL_0: 1;
    
      then (
    W-min ((( 
    L~ go) 
    \/ ( 
    L~ co)) 
    \/ ( 
    L~ pion1))) 
    = ( 
    W-min (( 
    L~ go) 
    \/ ( 
    L~ co))) by 
    A157,
    A158,
    A159,
    A160,
    A161,
    JORDAN1J: 33;
    
      then
    
      
    
    A162: ( 
    W-min ( 
    L~ godo)) 
    = Wmin by 
    A143,
    A158,
    XBOOLE_1: 4;
    
      
    
      
    
    A163: ( 
    rng godo) 
    c= ( 
    L~ godo) by 
    A89,
    A91,
    SPPOL_2: 18,
    XXREAL_0: 2;
    
      2
    in ( 
    dom godo) by 
    A92,
    FINSEQ_3: 25;
    
      then
    
      
    
    A164: (godo 
    /. 2) 
    in ( 
    rng godo) by 
    PARTFUN2: 2;
    
      (godo
    /. 2) 
    in ( 
    W-most ( 
    L~ ( 
    Cage (C,n)))) by 
    A156,
    JORDAN1I: 25;
    
      
    
      then ((godo
    /. 2) 
    `1 ) 
    = (( 
    W-min ( 
    L~ godo)) 
    `1 ) by 
    A162,
    PSCOMP_1: 31
    
      .= (
    W-bound ( 
    L~ godo)) by 
    EUCLID: 52;
    
      then (godo
    /. 2) 
    in ( 
    W-most ( 
    L~ godo)) by 
    A163,
    A164,
    SPRECT_2: 12;
    
      then ((
    Rotate (godo,( 
    W-min ( 
    L~ godo)))) 
    /. 2) 
    in ( 
    W-most ( 
    L~ godo)) by 
    A154,
    A162,
    FINSEQ_6: 89;
    
      then
    
      reconsider godo as
    clockwise_oriented non 
    constant
    standard  
    special_circular_sequence by 
    JORDAN1I: 25;
    
      (
    len US) 
    in ( 
    dom US) by 
    FINSEQ_5: 6;
    
      
    
      then
    
      
    
    A165: (US 
    . ( 
    len US)) 
    = (US 
    /. ( 
    len US)) by 
    PARTFUN1:def 6
    
      .= Emax by
    JORDAN1F: 7;
    
      
    
      
    
    A166: ( 
    east_halfline ( 
    E-max C)) 
    misses ( 
    L~ go) 
    
      proof
    
        assume (
    east_halfline ( 
    E-max C)) 
    meets ( 
    L~ go); 
    
        then
    
        consider p be
    object such that 
    
        
    
    A167: p 
    in ( 
    east_halfline ( 
    E-max C)) and 
    
        
    
    A168: p 
    in ( 
    L~ go) by 
    XBOOLE_0: 3;
    
        reconsider p as
    Point of ( 
    TOP-REAL 2) by 
    A167;
    
        p
    in ( 
    L~ US) by 
    A46,
    A168;
    
        then p
    in (( 
    east_halfline ( 
    E-max C)) 
    /\ ( 
    L~ ( 
    Cage (C,n)))) by 
    A145,
    A167,
    XBOOLE_0:def 4;
    
        then
    
        
    
    A169: (p 
    `1 ) 
    = Ebo by 
    JORDAN1A: 83,
    PSCOMP_1: 50;
    
        then
    
        
    
    A170: p 
    = Emax by 
    A46,
    A168,
    JORDAN1J: 46;
    
        then Emax
    = Gik by 
    A10,
    A165,
    A168,
    JORDAN1J: 43;
    
        then (Gik
    `1 ) 
    = ((Ga 
    * (( 
    len Ga),k)) 
    `1 ) by 
    A3,
    A13,
    A16,
    A169,
    A170,
    JORDAN1A: 71;
    
        hence contradiction by
    A2,
    A15,
    A30,
    JORDAN1G: 7;
    
      end;
    
      now
    
        assume (
    east_halfline ( 
    E-max C)) 
    meets ( 
    L~ godo); 
    
        then
    
        
    
    A171: ( 
    east_halfline ( 
    E-max C)) 
    meets (( 
    L~ go) 
    \/ ( 
    L~ pion1)) or ( 
    east_halfline ( 
    E-max C)) 
    meets ( 
    L~ co) by 
    A143,
    XBOOLE_1: 70;
    
        per cases by
    A171,
    XBOOLE_1: 70;
    
          suppose (
    east_halfline ( 
    E-max C)) 
    meets ( 
    L~ go); 
    
          hence contradiction by
    A166;
    
        end;
    
          suppose (
    east_halfline ( 
    E-max C)) 
    meets ( 
    L~ pion1); 
    
          then
    
          consider p be
    object such that 
    
          
    
    A172: p 
    in ( 
    east_halfline ( 
    E-max C)) and 
    
          
    
    A173: p 
    in ( 
    L~ pion1) by 
    XBOOLE_0: 3;
    
          reconsider p as
    Point of ( 
    TOP-REAL 2) by 
    A172;
    
          
    
          
    
    A174: (p 
    `1 ) 
    = (Gik 
    `1 ) by 
    A80,
    A83,
    A150,
    A173,
    GOBOARD7: 5;
    
          (i
    + 1) 
    <= ( 
    len Ga) by 
    A2,
    NAT_1: 13;
    
          then ((i
    + 1) 
    - 1) 
    <= (( 
    len Ga) 
    - 1) by 
    XREAL_1: 9;
    
          then
    
          
    
    A175: i 
    <= (( 
    len Ga) 
    -' 1) by 
    XREAL_0:def 2;
    
          ((
    len Ga) 
    -' 1) 
    <= ( 
    len Ga) by 
    NAT_D: 35;
    
          then (p
    `1 ) 
    <= ((Ga 
    * ((( 
    len Ga) 
    -' 1),1)) 
    `1 ) by 
    A1,
    A3,
    A13,
    A16,
    A20,
    A174,
    A175,
    JORDAN1A: 18;
    
          then (p
    `1 ) 
    <= ( 
    E-bound C) by 
    A20,
    JORDAN8: 12;
    
          then
    
          
    
    A176: (p 
    `1 ) 
    <= (( 
    E-max C) 
    `1 ) by 
    EUCLID: 52;
    
          (p
    `1 ) 
    >= (( 
    E-max C) 
    `1 ) by 
    A172,
    TOPREAL1:def 11;
    
          then
    
          
    
    A177: (p 
    `1 ) 
    = (( 
    E-max C) 
    `1 ) by 
    A176,
    XXREAL_0: 1;
    
          (p
    `2 ) 
    = (( 
    E-max C) 
    `2 ) by 
    A172,
    TOPREAL1:def 11;
    
          then p
    = ( 
    E-max C) by 
    A177,
    TOPREAL3: 6;
    
          hence contradiction by
    A8,
    A83,
    A134,
    A150,
    A173,
    XBOOLE_0: 3;
    
        end;
    
          suppose (
    east_halfline ( 
    E-max C)) 
    meets ( 
    L~ co); 
    
          then
    
          consider p be
    object such that 
    
          
    
    A178: p 
    in ( 
    east_halfline ( 
    E-max C)) and 
    
          
    
    A179: p 
    in ( 
    L~ co) by 
    XBOOLE_0: 3;
    
          reconsider p as
    Point of ( 
    TOP-REAL 2) by 
    A178;
    
          p
    in ( 
    L~ LS) by 
    A53,
    A179;
    
          then p
    in (( 
    east_halfline ( 
    E-max C)) 
    /\ ( 
    L~ ( 
    Cage (C,n)))) by 
    A146,
    A178,
    XBOOLE_0:def 4;
    
          then
    
          
    
    A180: (p 
    `1 ) 
    = Ebo by 
    JORDAN1A: 83,
    PSCOMP_1: 50;
    
          
    
          
    
    A181: (( 
    E-max C) 
    `2 ) 
    = (p 
    `2 ) by 
    A178,
    TOPREAL1:def 11;
    
          set RC = (
    Rotate (( 
    Cage (C,n)),Emax)); 
    
          
    
          
    
    A182: ( 
    E-max C) 
    in ( 
    right_cell (RC,1)) by 
    JORDAN1I: 7;
    
          
    
          
    
    A183: (1 
    + 1) 
    <= ( 
    len LS) by 
    A23,
    XXREAL_0: 2;
    
          LS
    = (RC 
    -: Wmin) by 
    JORDAN1G: 18;
    
          then
    
          
    
    A184: ( 
    LSeg (LS,1)) 
    = ( 
    LSeg (RC,1)) by 
    A183,
    SPPOL_2: 9;
    
          
    
          
    
    A185: ( 
    L~ RC) 
    = ( 
    L~ ( 
    Cage (C,n))) by 
    REVROT_1: 33;
    
          
    
          
    
    A186: ( 
    len RC) 
    = ( 
    len ( 
    Cage (C,n))) by 
    FINSEQ_6: 179;
    
          
    
          
    
    A187: ( 
    GoB RC) 
    = ( 
    GoB ( 
    Cage (C,n))) by 
    REVROT_1: 28
    
          .= Ga by
    JORDAN1H: 44;
    
          
    
          
    
    A188: Emax 
    in ( 
    rng ( 
    Cage (C,n))) by 
    SPRECT_2: 46;
    
          
    
          
    
    A189: RC 
    is_sequence_on Ga by 
    A140,
    REVROT_1: 34;
    
          
    
          
    
    A190: (RC 
    /. 1) 
    = ( 
    E-max ( 
    L~ RC)) by 
    A185,
    A188,
    FINSEQ_6: 92;
    
          consider ii,jj be
    Nat such that 
    
          
    
    A191: 
    [ii, (jj
    + 1)] 
    in ( 
    Indices Ga) and 
    
          
    
    A192: 
    [ii, jj]
    in ( 
    Indices Ga) and 
    
          
    
    A193: (RC 
    /. 1) 
    = (Ga 
    * (ii,(jj 
    + 1))) and 
    
          
    
    A194: (RC 
    /. (1 
    + 1)) 
    = (Ga 
    * (ii,jj)) by 
    A87,
    A185,
    A186,
    A188,
    A189,
    FINSEQ_6: 92,
    JORDAN1I: 23;
    
          consider jj2 be
    Nat such that 
    
          
    
    A195: 1 
    <= jj2 and 
    
          
    
    A196: jj2 
    <= ( 
    width Ga) and 
    
          
    
    A197: Emax 
    = (Ga 
    * (( 
    len Ga),jj2)) by 
    JORDAN1D: 25;
    
          
    
          
    
    A198: ( 
    len Ga) 
    >= 4 by 
    JORDAN8: 10;
    
          then (
    len Ga) 
    >= 1 by 
    XXREAL_0: 2;
    
          then
    [(
    len Ga), jj2] 
    in ( 
    Indices Ga) by 
    A195,
    A196,
    MATRIX_0: 30;
    
          then
    
          
    
    A199: ii 
    = ( 
    len Ga) by 
    A185,
    A190,
    A191,
    A193,
    A197,
    GOBOARD1: 5;
    
          
    
          
    
    A200: 1 
    <= ii by 
    A191,
    MATRIX_0: 32;
    
          
    
          
    
    A201: ii 
    <= ( 
    len Ga) by 
    A191,
    MATRIX_0: 32;
    
          
    
          
    
    A202: 1 
    <= (jj 
    + 1) by 
    A191,
    MATRIX_0: 32;
    
          
    
          
    
    A203: (jj 
    + 1) 
    <= ( 
    width Ga) by 
    A191,
    MATRIX_0: 32;
    
          
    
          
    
    A204: 1 
    <= ii by 
    A192,
    MATRIX_0: 32;
    
          
    
          
    
    A205: ii 
    <= ( 
    len Ga) by 
    A192,
    MATRIX_0: 32;
    
          
    
          
    
    A206: 1 
    <= jj by 
    A192,
    MATRIX_0: 32;
    
          
    
          
    
    A207: jj 
    <= ( 
    width Ga) by 
    A192,
    MATRIX_0: 32;
    
          
    
          
    
    A208: (ii 
    + 1) 
    <> ii; 
    
          ((jj
    + 1) 
    + 1) 
    <> jj; 
    
          then
    
          
    
    A209: ( 
    right_cell (RC,1)) 
    = ( 
    cell (Ga,(ii 
    -' 1),jj)) by 
    A87,
    A186,
    A187,
    A191,
    A192,
    A193,
    A194,
    A208,
    GOBOARD5:def 6;
    
          
    
          
    
    A210: ((ii 
    -' 1) 
    + 1) 
    = ii by 
    A200,
    XREAL_1: 235;
    
          (ii
    - 1) 
    >= (4 
    - 1) by 
    A198,
    A199,
    XREAL_1: 9;
    
          then
    
          
    
    A211: (ii 
    - 1) 
    >= 1 by 
    XXREAL_0: 2;
    
          then
    
          
    
    A212: 1 
    <= (ii 
    -' 1) by 
    XREAL_0:def 2;
    
          
    
          
    
    A213: ((Ga 
    * ((ii 
    -' 1),jj)) 
    `2 ) 
    <= (p 
    `2 ) by 
    A181,
    A182,
    A201,
    A203,
    A206,
    A209,
    A210,
    A211,
    JORDAN9: 17;
    
          
    
          
    
    A214: (p 
    `2 ) 
    <= ((Ga 
    * ((ii 
    -' 1),(jj 
    + 1))) 
    `2 ) by 
    A181,
    A182,
    A201,
    A203,
    A206,
    A209,
    A210,
    A211,
    JORDAN9: 17;
    
          
    
          
    
    A215: (ii 
    -' 1) 
    < ( 
    len Ga) by 
    A201,
    A210,
    NAT_1: 13;
    
          
    
          then
    
          
    
    A216: ((Ga 
    * ((ii 
    -' 1),jj)) 
    `2 ) 
    = ((Ga 
    * (1,jj)) 
    `2 ) by 
    A206,
    A207,
    A212,
    GOBOARD5: 1
    
          .= ((Ga
    * (ii,jj)) 
    `2 ) by 
    A204,
    A205,
    A206,
    A207,
    GOBOARD5: 1;
    
          
    
          
    
    A217: ((Ga 
    * ((ii 
    -' 1),(jj 
    + 1))) 
    `2 ) 
    = ((Ga 
    * (1,(jj 
    + 1))) 
    `2 ) by 
    A202,
    A203,
    A212,
    A215,
    GOBOARD5: 1
    
          .= ((Ga
    * (ii,(jj 
    + 1))) 
    `2 ) by 
    A200,
    A201,
    A202,
    A203,
    GOBOARD5: 1;
    
          
    
          
    
    A218: ((Ga 
    * (( 
    len Ga),jj)) 
    `1 ) 
    = Ebo by 
    A16,
    A206,
    A207,
    JORDAN1A: 71;
    
          Ebo
    = ((Ga 
    * (( 
    len Ga),(jj 
    + 1))) 
    `1 ) by 
    A16,
    A202,
    A203,
    JORDAN1A: 71;
    
          then p
    in ( 
    LSeg ((RC 
    /. 1),(RC 
    /. (1 
    + 1)))) by 
    A180,
    A193,
    A194,
    A199,
    A213,
    A214,
    A216,
    A217,
    A218,
    GOBOARD7: 7;
    
          then
    
          
    
    A219: p 
    in ( 
    LSeg (LS,1)) by 
    A87,
    A184,
    A186,
    TOPREAL1:def 3;
    
          
    
          
    
    A220: p 
    in ( 
    LSeg (co,( 
    Index (p,co)))) by 
    A179,
    JORDAN3: 9;
    
          
    
          
    
    A221: co 
    = ( 
    mid (LS,(Gij 
    .. LS),( 
    len LS))) by 
    A37,
    JORDAN1J: 37;
    
          
    
          
    
    A222: 1 
    <= (Gij 
    .. LS) by 
    A37,
    FINSEQ_4: 21;
    
          
    
          
    
    A223: (Gij 
    .. LS) 
    <= ( 
    len LS) by 
    A37,
    FINSEQ_4: 21;
    
          (Gij
    .. LS) 
    <> ( 
    len LS) by 
    A29,
    A37,
    FINSEQ_4: 19;
    
          then
    
          
    
    A224: (Gij 
    .. LS) 
    < ( 
    len LS) by 
    A223,
    XXREAL_0: 1;
    
          
    
          
    
    A225: 1 
    <= ( 
    Index (p,co)) by 
    A179,
    JORDAN3: 8;
    
          
    
          
    
    A226: ( 
    Index (p,co)) 
    < ( 
    len co) by 
    A179,
    JORDAN3: 8;
    
          
    
          
    
    A227: (( 
    Index (Gij,LS)) 
    + 1) 
    = (Gij 
    .. LS) by 
    A32,
    A37,
    JORDAN1J: 56;
    
          consider t be
    Nat such that 
    
          
    
    A228: t 
    in ( 
    dom LS) and 
    
          
    
    A229: (LS 
    . t) 
    = Gij by 
    A37,
    FINSEQ_2: 10;
    
          
    
          
    
    A230: 1 
    <= t by 
    A228,
    FINSEQ_3: 25;
    
          
    
          
    
    A231: t 
    <= ( 
    len LS) by 
    A228,
    FINSEQ_3: 25;
    
          1
    < t by 
    A32,
    A229,
    A230,
    XXREAL_0: 1;
    
          then ((
    Index (Gij,LS)) 
    + 1) 
    = t by 
    A229,
    A231,
    JORDAN3: 12;
    
          then
    
          
    
    A232: ( 
    len ( 
    L_Cut (LS,Gij))) 
    = (( 
    len LS) 
    - ( 
    Index (Gij,LS))) by 
    A9,
    A229,
    JORDAN3: 26;
    
          set tt = (((
    Index (p,co)) 
    + (Gij 
    .. LS)) 
    -' 1); 
    
          
    
          
    
    A233: 1 
    <= ( 
    Index (Gij,LS)) by 
    A9,
    JORDAN3: 8;
    
          (
    0  
    + ( 
    Index (Gij,LS))) 
    < ( 
    len LS) by 
    A9,
    JORDAN3: 8;
    
          then
    
          
    
    A234: (( 
    len LS) 
    - ( 
    Index (Gij,LS))) 
    >  
    0 by 
    XREAL_1: 20;
    
          (
    Index (p,co)) 
    < (( 
    len LS) 
    -' ( 
    Index (Gij,LS))) by 
    A226,
    A232,
    XREAL_0:def 2;
    
          then ((
    Index (p,co)) 
    + 1) 
    <= (( 
    len LS) 
    -' ( 
    Index (Gij,LS))) by 
    NAT_1: 13;
    
          then (
    Index (p,co)) 
    <= ((( 
    len LS) 
    -' ( 
    Index (Gij,LS))) 
    - 1) by 
    XREAL_1: 19;
    
          then (
    Index (p,co)) 
    <= ((( 
    len LS) 
    - ( 
    Index (Gij,LS))) 
    - 1) by 
    A234,
    XREAL_0:def 2;
    
          then (
    Index (p,co)) 
    <= (( 
    len LS) 
    - (Gij 
    .. LS)) by 
    A227;
    
          then (
    Index (p,co)) 
    <= (( 
    len LS) 
    -' (Gij 
    .. LS)) by 
    XREAL_0:def 2;
    
          then (
    Index (p,co)) 
    < ((( 
    len LS) 
    -' (Gij 
    .. LS)) 
    + 1) by 
    NAT_1: 13;
    
          then
    
          
    
    A235: ( 
    LSeg (( 
    mid (LS,(Gij 
    .. LS),( 
    len LS))),( 
    Index (p,co)))) 
    = ( 
    LSeg (LS,((( 
    Index (p,co)) 
    + (Gij 
    .. LS)) 
    -' 1))) by 
    A222,
    A224,
    A225,
    JORDAN4: 19;
    
          
    
          
    
    A236: (1 
    + 1) 
    <= (Gij 
    .. LS) by 
    A227,
    A233,
    XREAL_1: 7;
    
          then ((
    Index (p,co)) 
    + (Gij 
    .. LS)) 
    >= ((1 
    + 1) 
    + 1) by 
    A225,
    XREAL_1: 7;
    
          then (((
    Index (p,co)) 
    + (Gij 
    .. LS)) 
    - 1) 
    >= (((1 
    + 1) 
    + 1) 
    - 1) by 
    XREAL_1: 9;
    
          then
    
          
    
    A237: tt 
    >= (1 
    + 1) by 
    XREAL_0:def 2;
    
          
    
          
    
    A238: 2 
    in ( 
    dom LS) by 
    A183,
    FINSEQ_3: 25;
    
          now
    
            per cases by
    A237,
    XXREAL_0: 1;
    
              suppose tt
    > (1 
    + 1); 
    
              then (
    LSeg (LS,1)) 
    misses ( 
    LSeg (LS,tt)) by 
    TOPREAL1:def 7;
    
              hence contradiction by
    A219,
    A220,
    A221,
    A235,
    XBOOLE_0: 3;
    
            end;
    
              suppose
    
              
    
    A239: tt 
    = (1 
    + 1); 
    
              then ((
    LSeg (LS,1)) 
    /\ ( 
    LSeg (LS,tt))) 
    =  
    {(LS
    /. 2)} by 
    A23,
    TOPREAL1:def 6;
    
              then p
    in  
    {(LS
    /. 2)} by 
    A219,
    A220,
    A221,
    A235,
    XBOOLE_0:def 4;
    
              then
    
              
    
    A240: p 
    = (LS 
    /. 2) by 
    TARSKI:def 1;
    
              then
    
              
    
    A241: (p 
    .. LS) 
    = 2 by 
    A238,
    FINSEQ_5: 41;
    
              (1
    + 1) 
    = ((( 
    Index (p,co)) 
    + (Gij 
    .. LS)) 
    - 1) by 
    A239,
    XREAL_0:def 2;
    
              then ((1
    + 1) 
    + 1) 
    = (( 
    Index (p,co)) 
    + (Gij 
    .. LS)); 
    
              then
    
              
    
    A242: (Gij 
    .. LS) 
    = 2 by 
    A225,
    A236,
    JORDAN1E: 6;
    
              p
    in ( 
    rng LS) by 
    A238,
    A240,
    PARTFUN2: 2;
    
              then p
    = Gij by 
    A37,
    A241,
    A242,
    FINSEQ_5: 9;
    
              then (Gij
    `1 ) 
    = Ebo by 
    A240,
    JORDAN1G: 32;
    
              then (Gij
    `1 ) 
    = ((Ga 
    * (( 
    len Ga),j)) 
    `1 ) by 
    A5,
    A12,
    A16,
    JORDAN1A: 71;
    
              hence contradiction by
    A2,
    A14,
    A67,
    JORDAN1G: 7;
    
            end;
    
          end;
    
          hence contradiction;
    
        end;
    
      end;
    
      then (
    east_halfline ( 
    E-max C)) 
    c= (( 
    L~ godo) 
    ` ) by 
    SUBSET_1: 23;
    
      then
    
      consider W be
    Subset of ( 
    TOP-REAL 2) such that 
    
      
    
    A243: W 
    is_a_component_of (( 
    L~ godo) 
    ` ) and 
    
      
    
    A244: ( 
    east_halfline ( 
    E-max C)) 
    c= W by 
    GOBOARD9: 3;
    
       not W is
    bounded by 
    A244,
    JORDAN2C: 121,
    RLTOPSP1: 42;
    
      then W
    is_outside_component_of ( 
    L~ godo) by 
    A243,
    JORDAN2C:def 3;
    
      then W
    c= ( 
    UBD ( 
    L~ godo)) by 
    JORDAN2C: 23;
    
      then
    
      
    
    A245: ( 
    east_halfline ( 
    E-max C)) 
    c= ( 
    UBD ( 
    L~ godo)) by 
    A244;
    
      (
    E-max C) 
    in ( 
    east_halfline ( 
    E-max C)) by 
    TOPREAL1: 38;
    
      then (
    E-max C) 
    in ( 
    UBD ( 
    L~ godo)) by 
    A245;
    
      then (
    E-max C) 
    in ( 
    LeftComp godo) by 
    GOBRD14: 36;
    
      then UA
    meets ( 
    L~ godo) by 
    A132,
    A133,
    A134,
    A142,
    A153,
    JORDAN1J: 36;
    
      then
    
      
    
    A246: UA 
    meets (( 
    L~ go) 
    \/ ( 
    L~ pion1)) or UA 
    meets ( 
    L~ co) by 
    A143,
    XBOOLE_1: 70;
    
      
    
      
    
    A247: UA 
    c= C by 
    JORDAN6: 61;
    
      per cases by
    A246,
    XBOOLE_1: 70;
    
        suppose UA
    meets ( 
    L~ go); 
    
        then UA
    meets ( 
    L~ ( 
    Cage (C,n))) by 
    A46,
    A145,
    XBOOLE_1: 1,
    XBOOLE_1: 63;
    
        hence contradiction by
    A247,
    JORDAN10: 5,
    XBOOLE_1: 63;
    
      end;
    
        suppose UA
    meets ( 
    L~ pion1); 
    
        hence contradiction by
    A8,
    A83,
    A150;
    
      end;
    
        suppose UA
    meets ( 
    L~ co); 
    
        then UA
    meets ( 
    L~ ( 
    Cage (C,n))) by 
    A53,
    A146,
    XBOOLE_1: 1,
    XBOOLE_1: 63;
    
        hence contradiction by
    A247,
    JORDAN10: 5,
    XBOOLE_1: 63;
    
      end;
    
    end;
    
    theorem :: 
    
    JORDAN19:13
    
    
    
    
    
    Th13: for C be 
    Simple_closed_curve holds for i,j,k be 
    Nat st 1 
    < i & i 
    < ( 
    len ( 
    Gauge (C,n))) & 1 
    <= k & k 
    <= j & j 
    <= ( 
    width ( 
    Gauge (C,n))) & (( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i,k)),(( 
    Gauge (C,n)) 
    * (i,j)))) 
    /\ ( 
    L~ ( 
    Upper_Seq (C,n)))) 
    =  
    {((
    Gauge (C,n)) 
    * (i,k))} & (( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i,k)),(( 
    Gauge (C,n)) 
    * (i,j)))) 
    /\ ( 
    L~ ( 
    Lower_Seq (C,n)))) 
    =  
    {((
    Gauge (C,n)) 
    * (i,j))} holds ( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i,k)),(( 
    Gauge (C,n)) 
    * (i,j)))) 
    meets ( 
    Lower_Arc C) 
    
    proof
    
      let C be
    Simple_closed_curve;
    
      let i,j,k be
    Nat;
    
      set Ga = (
    Gauge (C,n)); 
    
      set US = (
    Upper_Seq (C,n)); 
    
      set LS = (
    Lower_Seq (C,n)); 
    
      set LA = (
    Lower_Arc C); 
    
      set Wmin = (
    W-min ( 
    L~ ( 
    Cage (C,n)))); 
    
      set Emax = (
    E-max ( 
    L~ ( 
    Cage (C,n)))); 
    
      set Wbo = (
    W-bound ( 
    L~ ( 
    Cage (C,n)))); 
    
      set Ebo = (
    E-bound ( 
    L~ ( 
    Cage (C,n)))); 
    
      set Gik = (Ga
    * (i,k)); 
    
      set Gij = (Ga
    * (i,j)); 
    
      assume that
    
      
    
    A1: 1 
    < i and 
    
      
    
    A2: i 
    < ( 
    len Ga) and 
    
      
    
    A3: 1 
    <= k and 
    
      
    
    A4: k 
    <= j and 
    
      
    
    A5: j 
    <= ( 
    width Ga) and 
    
      
    
    A6: (( 
    LSeg (Gik,Gij)) 
    /\ ( 
    L~ US)) 
    =  
    {Gik} and
    
      
    
    A7: (( 
    LSeg (Gik,Gij)) 
    /\ ( 
    L~ LS)) 
    =  
    {Gij} and
    
      
    
    A8: ( 
    LSeg (Gik,Gij)) 
    misses LA; 
    
      Gij
    in  
    {Gij} by
    TARSKI:def 1;
    
      then
    
      
    
    A9: Gij 
    in ( 
    L~ LS) by 
    A7,
    XBOOLE_0:def 4;
    
      Gik
    in  
    {Gik} by
    TARSKI:def 1;
    
      then
    
      
    
    A10: Gik 
    in ( 
    L~ US) by 
    A6,
    XBOOLE_0:def 4;
    
      then
    
      
    
    A11: j 
    <> k by 
    A1,
    A2,
    A3,
    A5,
    A9,
    JORDAN1J: 57;
    
      
    
      
    
    A12: 1 
    <= j by 
    A3,
    A4,
    XXREAL_0: 2;
    
      
    
      
    
    A13: k 
    <= ( 
    width Ga) by 
    A4,
    A5,
    XXREAL_0: 2;
    
      
    
      
    
    A14: 
    [i, j]
    in ( 
    Indices Ga) by 
    A1,
    A2,
    A5,
    A12,
    MATRIX_0: 30;
    
      
    
      
    
    A15: 
    [i, k]
    in ( 
    Indices Ga) by 
    A1,
    A2,
    A3,
    A13,
    MATRIX_0: 30;
    
      set co = (
    L_Cut (LS,Gij)); 
    
      set go = (
    R_Cut (US,Gik)); 
    
      
    
      
    
    A16: ( 
    len Ga) 
    = ( 
    width Ga) by 
    JORDAN8:def 1;
    
      
    
      
    
    A17: ( 
    len US) 
    >= 3 by 
    JORDAN1E: 15;
    
      then (
    len US) 
    >= 1 by 
    XXREAL_0: 2;
    
      then 1
    in ( 
    dom US) by 
    FINSEQ_3: 25;
    
      
    
      then
    
      
    
    A18: (US 
    . 1) 
    = (US 
    /. 1) by 
    PARTFUN1:def 6
    
      .= Wmin by
    JORDAN1F: 5;
    
      
    
      
    
    A19: (Wmin 
    `1 ) 
    = Wbo by 
    EUCLID: 52
    
      .= ((Ga
    * (1,k)) 
    `1 ) by 
    A3,
    A13,
    A16,
    JORDAN1A: 73;
    
      (
    len Ga) 
    >= 4 by 
    JORDAN8: 10;
    
      then
    
      
    
    A20: ( 
    len Ga) 
    >= 1 by 
    XXREAL_0: 2;
    
      then
    
      
    
    A21: 
    [1, k]
    in ( 
    Indices Ga) by 
    A3,
    A13,
    MATRIX_0: 30;
    
      then
    
      
    
    A22: Gik 
    <> (US 
    . 1) by 
    A1,
    A15,
    A18,
    A19,
    JORDAN1G: 7;
    
      then
    
      reconsider go as
    being_S-Seq  
    FinSequence of ( 
    TOP-REAL 2) by 
    A10,
    JORDAN3: 35;
    
      
    
      
    
    A23: ( 
    len LS) 
    >= (1 
    + 2) by 
    JORDAN1E: 15;
    
      then
    
      
    
    A24: ( 
    len LS) 
    >= 1 by 
    XXREAL_0: 2;
    
      then
    
      
    
    A25: 1 
    in ( 
    dom LS) by 
    FINSEQ_3: 25;
    
      (
    len LS) 
    in ( 
    dom LS) by 
    A24,
    FINSEQ_3: 25;
    
      
    
      then
    
      
    
    A26: (LS 
    . ( 
    len LS)) 
    = (LS 
    /. ( 
    len LS)) by 
    PARTFUN1:def 6
    
      .= Wmin by
    JORDAN1F: 8;
    
      
    
      
    
    A27: (Wmin 
    `1 ) 
    = Wbo by 
    EUCLID: 52
    
      .= ((Ga
    * (1,k)) 
    `1 ) by 
    A3,
    A13,
    A16,
    JORDAN1A: 73;
    
      
    
      
    
    A28: 
    [i, j]
    in ( 
    Indices Ga) by 
    A1,
    A2,
    A5,
    A12,
    MATRIX_0: 30;
    
      then
    
      
    
    A29: Gij 
    <> (LS 
    . ( 
    len LS)) by 
    A1,
    A21,
    A26,
    A27,
    JORDAN1G: 7;
    
      then
    
      reconsider co as
    being_S-Seq  
    FinSequence of ( 
    TOP-REAL 2) by 
    A9,
    JORDAN3: 34;
    
      
    
      
    
    A30: 
    [(
    len Ga), k] 
    in ( 
    Indices Ga) by 
    A3,
    A13,
    A20,
    MATRIX_0: 30;
    
      
    
      
    
    A31: (LS 
    . 1) 
    = (LS 
    /. 1) by 
    A25,
    PARTFUN1:def 6
    
      .= Emax by
    JORDAN1F: 6;
    
      (Emax
    `1 ) 
    = Ebo by 
    EUCLID: 52
    
      .= ((Ga
    * (( 
    len Ga),k)) 
    `1 ) by 
    A3,
    A13,
    A16,
    JORDAN1A: 71;
    
      then
    
      
    
    A32: Gij 
    <> (LS 
    . 1) by 
    A2,
    A28,
    A30,
    A31,
    JORDAN1G: 7;
    
      
    
      
    
    A33: ( 
    len go) 
    >= (1 
    + 1) by 
    TOPREAL1:def 8;
    
      
    
      
    
    A34: Gik 
    in ( 
    rng US) by 
    A1,
    A2,
    A3,
    A10,
    A13,
    JORDAN1G: 4,
    JORDAN1J: 40;
    
      then
    
      
    
    A35: go 
    is_sequence_on Ga by 
    JORDAN1G: 4,
    JORDAN1J: 38;
    
      
    
      
    
    A36: ( 
    len co) 
    >= (1 
    + 1) by 
    TOPREAL1:def 8;
    
      
    
      
    
    A37: Gij 
    in ( 
    rng LS) by 
    A1,
    A2,
    A5,
    A9,
    A12,
    JORDAN1G: 5,
    JORDAN1J: 40;
    
      then
    
      
    
    A38: co 
    is_sequence_on Ga by 
    JORDAN1G: 5,
    JORDAN1J: 39;
    
      reconsider go as non
    constant
    s.c.c.
    being_S-Seq  
    FinSequence of ( 
    TOP-REAL 2) by 
    A33,
    A35,
    JGRAPH_1: 12,
    JORDAN8: 5;
    
      reconsider co as non
    constant
    s.c.c.
    being_S-Seq  
    FinSequence of ( 
    TOP-REAL 2) by 
    A36,
    A38,
    JGRAPH_1: 12,
    JORDAN8: 5;
    
      
    
      
    
    A39: ( 
    len go) 
    > 1 by 
    A33,
    NAT_1: 13;
    
      then
    
      
    
    A40: ( 
    len go) 
    in ( 
    dom go) by 
    FINSEQ_3: 25;
    
      
    
      then
    
      
    
    A41: (go 
    /. ( 
    len go)) 
    = (go 
    . ( 
    len go)) by 
    PARTFUN1:def 6
    
      .= Gik by
    A10,
    JORDAN3: 24;
    
      (
    len co) 
    >= 1 by 
    A36,
    XXREAL_0: 2;
    
      then 1
    in ( 
    dom co) by 
    FINSEQ_3: 25;
    
      
    
      then
    
      
    
    A42: (co 
    /. 1) 
    = (co 
    . 1) by 
    PARTFUN1:def 6
    
      .= Gij by
    A9,
    JORDAN3: 23;
    
      reconsider m = ((
    len go) 
    - 1) as 
    Nat by 
    A40,
    FINSEQ_3: 26;
    
      
    
      
    
    A43: (m 
    + 1) 
    = ( 
    len go); 
    
      then
    
      
    
    A44: (( 
    len go) 
    -' 1) 
    = m by 
    NAT_D: 34;
    
      
    
      
    
    A45: ( 
    LSeg (go,m)) 
    c= ( 
    L~ go) by 
    TOPREAL3: 19;
    
      
    
      
    
    A46: ( 
    L~ go) 
    c= ( 
    L~ US) by 
    A10,
    JORDAN3: 41;
    
      then (
    LSeg (go,m)) 
    c= ( 
    L~ US) by 
    A45;
    
      then
    
      
    
    A47: (( 
    LSeg (go,m)) 
    /\ ( 
    LSeg (Gik,Gij))) 
    c=  
    {Gik} by
    A6,
    XBOOLE_1: 26;
    
      m
    >= 1 by 
    A33,
    XREAL_1: 19;
    
      then
    
      
    
    A48: ( 
    LSeg (go,m)) 
    = ( 
    LSeg ((go 
    /. m),Gik)) by 
    A41,
    A43,
    TOPREAL1:def 3;
    
      
    {Gik}
    c= (( 
    LSeg (go,m)) 
    /\ ( 
    LSeg (Gik,Gij))) 
    
      proof
    
        let x be
    object;
    
        assume x
    in  
    {Gik};
    
        then
    
        
    
    A49: x 
    = Gik by 
    TARSKI:def 1;
    
        
    
        
    
    A50: Gik 
    in ( 
    LSeg (go,m)) by 
    A48,
    RLTOPSP1: 68;
    
        Gik
    in ( 
    LSeg (Gik,Gij)) by 
    RLTOPSP1: 68;
    
        hence thesis by
    A49,
    A50,
    XBOOLE_0:def 4;
    
      end;
    
      then
    
      
    
    A51: (( 
    LSeg (go,m)) 
    /\ ( 
    LSeg (Gik,Gij))) 
    =  
    {Gik} by
    A47;
    
      
    
      
    
    A52: ( 
    LSeg (co,1)) 
    c= ( 
    L~ co) by 
    TOPREAL3: 19;
    
      
    
      
    
    A53: ( 
    L~ co) 
    c= ( 
    L~ LS) by 
    A9,
    JORDAN3: 42;
    
      then (
    LSeg (co,1)) 
    c= ( 
    L~ LS) by 
    A52;
    
      then
    
      
    
    A54: (( 
    LSeg (co,1)) 
    /\ ( 
    LSeg (Gik,Gij))) 
    c=  
    {Gij} by
    A7,
    XBOOLE_1: 26;
    
      
    
      
    
    A55: ( 
    LSeg (co,1)) 
    = ( 
    LSeg (Gij,(co 
    /. (1 
    + 1)))) by 
    A36,
    A42,
    TOPREAL1:def 3;
    
      
    {Gij}
    c= (( 
    LSeg (co,1)) 
    /\ ( 
    LSeg (Gik,Gij))) 
    
      proof
    
        let x be
    object;
    
        assume x
    in  
    {Gij};
    
        then
    
        
    
    A56: x 
    = Gij by 
    TARSKI:def 1;
    
        
    
        
    
    A57: Gij 
    in ( 
    LSeg (co,1)) by 
    A55,
    RLTOPSP1: 68;
    
        Gij
    in ( 
    LSeg (Gik,Gij)) by 
    RLTOPSP1: 68;
    
        hence thesis by
    A56,
    A57,
    XBOOLE_0:def 4;
    
      end;
    
      then
    
      
    
    A58: (( 
    LSeg (Gik,Gij)) 
    /\ ( 
    LSeg (co,1))) 
    =  
    {Gij} by
    A54;
    
      
    
      
    
    A59: (go 
    /. 1) 
    = (US 
    /. 1) by 
    A10,
    SPRECT_3: 22
    
      .= Wmin by
    JORDAN1F: 5;
    
      
    
      then
    
      
    
    A60: (go 
    /. 1) 
    = (LS 
    /. ( 
    len LS)) by 
    JORDAN1F: 8
    
      .= (co
    /. ( 
    len co)) by 
    A9,
    JORDAN1J: 35;
    
      
    
      
    
    A61: ( 
    rng go) 
    c= ( 
    L~ go) by 
    A33,
    SPPOL_2: 18;
    
      
    
      
    
    A62: ( 
    rng co) 
    c= ( 
    L~ co) by 
    A36,
    SPPOL_2: 18;
    
      
    
      
    
    A63: 
    {(go
    /. 1)} 
    c= (( 
    L~ go) 
    /\ ( 
    L~ co)) 
    
      proof
    
        let x be
    object;
    
        assume x
    in  
    {(go
    /. 1)}; 
    
        then
    
        
    
    A64: x 
    = (go 
    /. 1) by 
    TARSKI:def 1;
    
        then
    
        
    
    A65: x 
    in ( 
    rng go) by 
    FINSEQ_6: 42;
    
        x
    in ( 
    rng co) by 
    A60,
    A64,
    FINSEQ_6: 168;
    
        hence thesis by
    A61,
    A62,
    A65,
    XBOOLE_0:def 4;
    
      end;
    
      
    
      
    
    A66: (LS 
    . 1) 
    = (LS 
    /. 1) by 
    A25,
    PARTFUN1:def 6
    
      .= Emax by
    JORDAN1F: 6;
    
      
    
      
    
    A67: 
    [(
    len Ga), j] 
    in ( 
    Indices Ga) by 
    A5,
    A12,
    A20,
    MATRIX_0: 30;
    
      ((
    L~ go) 
    /\ ( 
    L~ co)) 
    c=  
    {(go
    /. 1)} 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A68: x 
    in (( 
    L~ go) 
    /\ ( 
    L~ co)); 
    
        then
    
        
    
    A69: x 
    in ( 
    L~ go) by 
    XBOOLE_0:def 4;
    
        
    
        
    
    A70: x 
    in ( 
    L~ co) by 
    A68,
    XBOOLE_0:def 4;
    
        then x
    in (( 
    L~ US) 
    /\ ( 
    L~ LS)) by 
    A46,
    A53,
    A69,
    XBOOLE_0:def 4;
    
        then x
    in  
    {Wmin, Emax} by
    JORDAN1E: 16;
    
        then
    
        
    
    A71: x 
    = Wmin or x 
    = Emax by 
    TARSKI:def 2;
    
        now
    
          assume x
    = Emax; 
    
          then
    
          
    
    A72: Emax 
    = Gij by 
    A9,
    A66,
    A70,
    JORDAN1E: 7;
    
          ((Ga
    * (( 
    len Ga),j)) 
    `1 ) 
    = Ebo by 
    A5,
    A12,
    A16,
    JORDAN1A: 71;
    
          then (Emax
    `1 ) 
    <> Ebo by 
    A2,
    A14,
    A67,
    A72,
    JORDAN1G: 7;
    
          hence contradiction by
    EUCLID: 52;
    
        end;
    
        hence thesis by
    A59,
    A71,
    TARSKI:def 1;
    
      end;
    
      then
    
      
    
    A73: (( 
    L~ go) 
    /\ ( 
    L~ co)) 
    =  
    {(go
    /. 1)} by 
    A63;
    
      set W2 = (go
    /. 2); 
    
      
    
      
    
    A74: 2 
    in ( 
    dom go) by 
    A33,
    FINSEQ_3: 25;
    
      
    
    A75: 
    
      now
    
        assume (Gik
    `1 ) 
    = Wbo; 
    
        then ((Ga
    * (1,k)) 
    `1 ) 
    = ((Ga 
    * (i,k)) 
    `1 ) by 
    A3,
    A13,
    A16,
    JORDAN1A: 73;
    
        hence contradiction by
    A1,
    A15,
    A21,
    JORDAN1G: 7;
    
      end;
    
      go
    = ( 
    mid (US,1,(Gik 
    .. US))) by 
    A34,
    JORDAN1G: 49
    
      .= (US
    | (Gik 
    .. US)) by 
    A34,
    FINSEQ_4: 21,
    FINSEQ_6: 116;
    
      then
    
      
    
    A76: W2 
    = (US 
    /. 2) by 
    A74,
    FINSEQ_4: 70;
    
      
    
      
    
    A77: Wmin 
    in ( 
    rng go) by 
    A59,
    FINSEQ_6: 42;
    
      set pion =
    <*Gik, Gij*>;
    
      
    
    A78: 
    
      now
    
        let n be
    Nat;
    
        assume n
    in ( 
    dom pion); 
    
        then n
    in ( 
    Seg 2) by 
    FINSEQ_1: 89;
    
        then n
    = 1 or n 
    = 2 by 
    FINSEQ_1: 2,
    TARSKI:def 2;
    
        hence ex i,j be
    Nat st 
    [i, j]
    in ( 
    Indices Ga) & (pion 
    /. n) 
    = (Ga 
    * (i,j)) by 
    A14,
    A15,
    FINSEQ_4: 17;
    
      end;
    
      
    
      
    
    A79: Gik 
    <> Gij by 
    A11,
    A14,
    A15,
    GOBOARD1: 5;
    
      
    
      
    
    A80: (Gik 
    `1 ) 
    = ((Ga 
    * (i,1)) 
    `1 ) by 
    A1,
    A2,
    A3,
    A13,
    GOBOARD5: 2
    
      .= (Gij
    `1 ) by 
    A1,
    A2,
    A5,
    A12,
    GOBOARD5: 2;
    
      then (
    LSeg (Gik,Gij)) is 
    vertical by 
    SPPOL_1: 16;
    
      then pion is
    being_S-Seq by 
    A79,
    JORDAN1B: 7;
    
      then
    
      consider pion1 be
    FinSequence of ( 
    TOP-REAL 2) such that 
    
      
    
    A81: pion1 
    is_sequence_on Ga and 
    
      
    
    A82: pion1 is 
    being_S-Seq and 
    
      
    
    A83: ( 
    L~ pion) 
    = ( 
    L~ pion1) and 
    
      
    
    A84: (pion 
    /. 1) 
    = (pion1 
    /. 1) and 
    
      
    
    A85: (pion 
    /. ( 
    len pion)) 
    = (pion1 
    /. ( 
    len pion1)) and 
    
      
    
    A86: ( 
    len pion) 
    <= ( 
    len pion1) by 
    A78,
    GOBOARD3: 2;
    
      reconsider pion1 as
    being_S-Seq  
    FinSequence of ( 
    TOP-REAL 2) by 
    A82;
    
      set godo = ((go
    ^' pion1) 
    ^' co); 
    
      
    
      
    
    A87: (1 
    + 1) 
    <= ( 
    len ( 
    Cage (C,n))) by 
    GOBOARD7: 34,
    XXREAL_0: 2;
    
      
    
      
    
    A88: (1 
    + 1) 
    <= ( 
    len ( 
    Rotate (( 
    Cage (C,n)),Wmin))) by 
    GOBOARD7: 34,
    XXREAL_0: 2;
    
      (
    len (go 
    ^' pion1)) 
    >= ( 
    len go) by 
    TOPREAL8: 7;
    
      then
    
      
    
    A89: ( 
    len (go 
    ^' pion1)) 
    >= (1 
    + 1) by 
    A33,
    XXREAL_0: 2;
    
      then
    
      
    
    A90: ( 
    len (go 
    ^' pion1)) 
    > (1 
    +  
    0 ) by 
    NAT_1: 13;
    
      
    
      
    
    A91: ( 
    len godo) 
    >= ( 
    len (go 
    ^' pion1)) by 
    TOPREAL8: 7;
    
      then
    
      
    
    A92: (1 
    + 1) 
    <= ( 
    len godo) by 
    A89,
    XXREAL_0: 2;
    
      
    
      
    
    A93: US 
    is_sequence_on Ga by 
    JORDAN1G: 4;
    
      
    
      
    
    A94: (go 
    /. ( 
    len go)) 
    = (pion1 
    /. 1) by 
    A41,
    A84,
    FINSEQ_4: 17;
    
      then
    
      
    
    A95: (go 
    ^' pion1) 
    is_sequence_on Ga by 
    A35,
    A81,
    TOPREAL8: 12;
    
      
    
      
    
    A96: ((go 
    ^' pion1) 
    /. ( 
    len (go 
    ^' pion1))) 
    = (pion 
    /. ( 
    len pion)) by 
    A85,
    FINSEQ_6: 156
    
      .= (pion
    /. 2) by 
    FINSEQ_1: 44
    
      .= (co
    /. 1) by 
    A42,
    FINSEQ_4: 17;
    
      then
    
      
    
    A97: godo 
    is_sequence_on Ga by 
    A38,
    A95,
    TOPREAL8: 12;
    
      (
    LSeg (pion1,1)) 
    c= ( 
    L~  
    <*Gik, Gij*>) by
    A83,
    TOPREAL3: 19;
    
      then (
    LSeg (pion1,1)) 
    c= ( 
    LSeg (Gik,Gij)) by 
    SPPOL_2: 21;
    
      then
    
      
    
    A98: (( 
    LSeg (go,(( 
    len go) 
    -' 1))) 
    /\ ( 
    LSeg (pion1,1))) 
    c=  
    {Gik} by
    A44,
    A51,
    XBOOLE_1: 27;
    
      
    
      
    
    A99: ( 
    len pion1) 
    >= (1 
    + 1) by 
    A86,
    FINSEQ_1: 44;
    
      
    {Gik}
    c= (( 
    LSeg (go,m)) 
    /\ ( 
    LSeg (pion1,1))) 
    
      proof
    
        let x be
    object;
    
        assume x
    in  
    {Gik};
    
        then
    
        
    
    A100: x 
    = Gik by 
    TARSKI:def 1;
    
        
    
        
    
    A101: Gik 
    in ( 
    LSeg (go,m)) by 
    A48,
    RLTOPSP1: 68;
    
        Gik
    in ( 
    LSeg (pion1,1)) by 
    A41,
    A94,
    A99,
    TOPREAL1: 21;
    
        hence thesis by
    A100,
    A101,
    XBOOLE_0:def 4;
    
      end;
    
      then ((
    LSeg (go,(( 
    len go) 
    -' 1))) 
    /\ ( 
    LSeg (pion1,1))) 
    =  
    {(go
    /. ( 
    len go))} by 
    A41,
    A44,
    A98;
    
      then
    
      
    
    A102: (go 
    ^' pion1) is 
    unfolded by 
    A94,
    TOPREAL8: 34;
    
      (
    len pion1) 
    >= (2 
    +  
    0 ) by 
    A86,
    FINSEQ_1: 44;
    
      then
    
      
    
    A103: (( 
    len pion1) 
    - 2) 
    >=  
    0 by 
    XREAL_1: 19;
    
      (((
    len (go 
    ^' pion1)) 
    + 1) 
    - 1) 
    = ((( 
    len go) 
    + ( 
    len pion1)) 
    - 1) by 
    FINSEQ_6: 139;
    
      
    
      then ((
    len (go 
    ^' pion1)) 
    - 1) 
    = (( 
    len go) 
    + (( 
    len pion1) 
    - 2)) 
    
      .= ((
    len go) 
    + (( 
    len pion1) 
    -' 2)) by 
    A103,
    XREAL_0:def 2;
    
      then
    
      
    
    A104: (( 
    len (go 
    ^' pion1)) 
    -' 1) 
    = (( 
    len go) 
    + (( 
    len pion1) 
    -' 2)) by 
    XREAL_0:def 2;
    
      
    
      
    
    A105: (( 
    len pion1) 
    - 1) 
    >= 1 by 
    A99,
    XREAL_1: 19;
    
      then
    
      
    
    A106: (( 
    len pion1) 
    -' 1) 
    = (( 
    len pion1) 
    - 1) by 
    XREAL_0:def 2;
    
      
    
      
    
    A107: ((( 
    len pion1) 
    -' 2) 
    + 1) 
    = ((( 
    len pion1) 
    - 2) 
    + 1) by 
    A103,
    XREAL_0:def 2
    
      .= ((
    len pion1) 
    -' 1) by 
    A105,
    XREAL_0:def 2;
    
      (((
    len pion1) 
    - 1) 
    + 1) 
    <= ( 
    len pion1); 
    
      then
    
      
    
    A108: (( 
    len pion1) 
    -' 1) 
    < ( 
    len pion1) by 
    A106,
    NAT_1: 13;
    
      (
    LSeg (pion1,(( 
    len pion1) 
    -' 1))) 
    c= ( 
    L~  
    <*Gik, Gij*>) by
    A83,
    TOPREAL3: 19;
    
      then (
    LSeg (pion1,(( 
    len pion1) 
    -' 1))) 
    c= ( 
    LSeg (Gik,Gij)) by 
    SPPOL_2: 21;
    
      then
    
      
    
    A109: (( 
    LSeg (pion1,(( 
    len pion1) 
    -' 1))) 
    /\ ( 
    LSeg (co,1))) 
    c=  
    {Gij} by
    A58,
    XBOOLE_1: 27;
    
      
    {Gij}
    c= (( 
    LSeg (pion1,(( 
    len pion1) 
    -' 1))) 
    /\ ( 
    LSeg (co,1))) 
    
      proof
    
        let x be
    object;
    
        assume x
    in  
    {Gij};
    
        then
    
        
    
    A110: x 
    = Gij by 
    TARSKI:def 1;
    
        
    
        
    
    A111: Gij 
    in ( 
    LSeg (co,1)) by 
    A55,
    RLTOPSP1: 68;
    
        (pion1
    /. ((( 
    len pion1) 
    -' 1) 
    + 1)) 
    = (pion 
    /. 2) by 
    A85,
    A106,
    FINSEQ_1: 44
    
        .= Gij by
    FINSEQ_4: 17;
    
        then Gij
    in ( 
    LSeg (pion1,(( 
    len pion1) 
    -' 1))) by 
    A105,
    A106,
    TOPREAL1: 21;
    
        hence thesis by
    A110,
    A111,
    XBOOLE_0:def 4;
    
      end;
    
      then ((
    LSeg (pion1,(( 
    len pion1) 
    -' 1))) 
    /\ ( 
    LSeg (co,1))) 
    =  
    {Gij} by
    A109;
    
      then
    
      
    
    A112: (( 
    LSeg ((go 
    ^' pion1),(( 
    len go) 
    + (( 
    len pion1) 
    -' 2)))) 
    /\ ( 
    LSeg (co,1))) 
    =  
    {((go
    ^' pion1) 
    /. ( 
    len (go 
    ^' pion1)))} by 
    A42,
    A94,
    A96,
    A107,
    A108,
    TOPREAL8: 31;
    
      
    
      
    
    A113: (go 
    ^' pion1) is non 
    trivial by 
    A89,
    NAT_D: 60;
    
      
    
      
    
    A114: ( 
    rng pion1) 
    c= ( 
    L~ pion1) by 
    A99,
    SPPOL_2: 18;
    
      
    
      
    
    A115: 
    {(pion1
    /. 1)} 
    c= (( 
    L~ go) 
    /\ ( 
    L~ pion1)) 
    
      proof
    
        let x be
    object;
    
        assume x
    in  
    {(pion1
    /. 1)}; 
    
        then
    
        
    
    A116: x 
    = (pion1 
    /. 1) by 
    TARSKI:def 1;
    
        then
    
        
    
    A117: x 
    in ( 
    rng go) by 
    A94,
    FINSEQ_6: 168;
    
        x
    in ( 
    rng pion1) by 
    A116,
    FINSEQ_6: 42;
    
        hence thesis by
    A61,
    A114,
    A117,
    XBOOLE_0:def 4;
    
      end;
    
      ((
    L~ go) 
    /\ ( 
    L~ pion1)) 
    c=  
    {(pion1
    /. 1)} 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A118: x 
    in (( 
    L~ go) 
    /\ ( 
    L~ pion1)); 
    
        then
    
        
    
    A119: x 
    in ( 
    L~ go) by 
    XBOOLE_0:def 4;
    
        x
    in ( 
    L~ pion1) by 
    A118,
    XBOOLE_0:def 4;
    
        then x
    in (( 
    L~ pion1) 
    /\ ( 
    L~ US)) by 
    A46,
    A119,
    XBOOLE_0:def 4;
    
        hence thesis by
    A6,
    A41,
    A83,
    A94,
    SPPOL_2: 21;
    
      end;
    
      then
    
      
    
    A120: (( 
    L~ go) 
    /\ ( 
    L~ pion1)) 
    =  
    {(pion1
    /. 1)} by 
    A115;
    
      then
    
      
    
    A121: (go 
    ^' pion1) is 
    s.n.c. by 
    A94,
    JORDAN1J: 54;
    
      ((
    rng go) 
    /\ ( 
    rng pion1)) 
    c=  
    {(pion1
    /. 1)} by 
    A61,
    A114,
    A120,
    XBOOLE_1: 27;
    
      then
    
      
    
    A122: (go 
    ^' pion1) is 
    one-to-one by 
    JORDAN1J: 55;
    
      
    
      
    
    A123: (pion 
    /. ( 
    len pion)) 
    = (pion 
    /. 2) by 
    FINSEQ_1: 44
    
      .= (co
    /. 1) by 
    A42,
    FINSEQ_4: 17;
    
      
    
      
    
    A124: 
    {(pion1
    /. ( 
    len pion1))} 
    c= (( 
    L~ co) 
    /\ ( 
    L~ pion1)) 
    
      proof
    
        let x be
    object;
    
        assume x
    in  
    {(pion1
    /. ( 
    len pion1))}; 
    
        then
    
        
    
    A125: x 
    = (pion1 
    /. ( 
    len pion1)) by 
    TARSKI:def 1;
    
        then
    
        
    
    A126: x 
    in ( 
    rng co) by 
    A85,
    A123,
    FINSEQ_6: 42;
    
        x
    in ( 
    rng pion1) by 
    A125,
    FINSEQ_6: 168;
    
        hence thesis by
    A62,
    A114,
    A126,
    XBOOLE_0:def 4;
    
      end;
    
      ((
    L~ co) 
    /\ ( 
    L~ pion1)) 
    c=  
    {(pion1
    /. ( 
    len pion1))} 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A127: x 
    in (( 
    L~ co) 
    /\ ( 
    L~ pion1)); 
    
        then
    
        
    
    A128: x 
    in ( 
    L~ co) by 
    XBOOLE_0:def 4;
    
        x
    in ( 
    L~ pion1) by 
    A127,
    XBOOLE_0:def 4;
    
        then x
    in (( 
    L~ pion1) 
    /\ ( 
    L~ LS)) by 
    A53,
    A128,
    XBOOLE_0:def 4;
    
        hence thesis by
    A7,
    A42,
    A83,
    A85,
    A123,
    SPPOL_2: 21;
    
      end;
    
      then
    
      
    
    A129: (( 
    L~ co) 
    /\ ( 
    L~ pion1)) 
    =  
    {(pion1
    /. ( 
    len pion1))} by 
    A124;
    
      
    
      
    
    A130: (( 
    L~ (go 
    ^' pion1)) 
    /\ ( 
    L~ co)) 
    = ((( 
    L~ go) 
    \/ ( 
    L~ pion1)) 
    /\ ( 
    L~ co)) by 
    A94,
    TOPREAL8: 35
    
      .= (
    {(go
    /. 1)} 
    \/  
    {(co
    /. 1)}) by 
    A73,
    A85,
    A123,
    A129,
    XBOOLE_1: 23
    
      .= (
    {((go
    ^' pion1) 
    /. 1)} 
    \/  
    {(co
    /. 1)}) by 
    FINSEQ_6: 155
    
      .=
    {((go
    ^' pion1) 
    /. 1), (co 
    /. 1)} by 
    ENUMSET1: 1;
    
      (co
    /. ( 
    len co)) 
    = ((go 
    ^' pion1) 
    /. 1) by 
    A60,
    FINSEQ_6: 155;
    
      then
    
      reconsider godo as non
    constant
    standard  
    special_circular_sequence by 
    A92,
    A96,
    A97,
    A102,
    A104,
    A112,
    A113,
    A121,
    A122,
    A130,
    JORDAN8: 4,
    JORDAN8: 5,
    TOPREAL8: 11,
    TOPREAL8: 33,
    TOPREAL8: 34;
    
      
    
      
    
    A131: LA 
    is_an_arc_of (( 
    E-max C),( 
    W-min C)) by 
    JORDAN6:def 9;
    
      then
    
      
    
    A132: LA is 
    connected by 
    JORDAN6: 10;
    
      
    
      
    
    A133: ( 
    W-min C) 
    in LA by 
    A131,
    TOPREAL1: 1;
    
      
    
      
    
    A134: ( 
    E-max C) 
    in LA by 
    A131,
    TOPREAL1: 1;
    
      set ff = (
    Rotate (( 
    Cage (C,n)),Wmin)); 
    
      Wmin
    in ( 
    rng ( 
    Cage (C,n))) by 
    SPRECT_2: 43;
    
      then
    
      
    
    A135: (ff 
    /. 1) 
    = Wmin by 
    FINSEQ_6: 92;
    
      
    
      
    
    A136: ( 
    L~ ff) 
    = ( 
    L~ ( 
    Cage (C,n))) by 
    REVROT_1: 33;
    
      then ((
    W-max ( 
    L~ ff)) 
    .. ff) 
    > 1 by 
    A135,
    SPRECT_5: 22;
    
      then ((
    N-min ( 
    L~ ff)) 
    .. ff) 
    > 1 by 
    A135,
    A136,
    SPRECT_5: 23,
    XXREAL_0: 2;
    
      then ((
    N-max ( 
    L~ ff)) 
    .. ff) 
    > 1 by 
    A135,
    A136,
    SPRECT_5: 24,
    XXREAL_0: 2;
    
      then
    
      
    
    A137: (Emax 
    .. ff) 
    > 1 by 
    A135,
    A136,
    SPRECT_5: 25,
    XXREAL_0: 2;
    
      
    
    A138: 
    
      now
    
        assume
    
        
    
    A139: (Gik 
    .. US) 
    <= 1; 
    
        (Gik
    .. US) 
    >= 1 by 
    A34,
    FINSEQ_4: 21;
    
        then (Gik
    .. US) 
    = 1 by 
    A139,
    XXREAL_0: 1;
    
        then Gik
    = (US 
    /. 1) by 
    A34,
    FINSEQ_5: 38;
    
        hence contradiction by
    A18,
    A22,
    JORDAN1F: 5;
    
      end;
    
      
    
      
    
    A140: ( 
    Cage (C,n)) 
    is_sequence_on Ga by 
    JORDAN9:def 1;
    
      then
    
      
    
    A141: ff 
    is_sequence_on Ga by 
    REVROT_1: 34;
    
      
    
      
    
    A142: (( 
    right_cell (godo,1,Ga)) 
    \ ( 
    L~ godo)) 
    c= ( 
    RightComp godo) by 
    A92,
    A97,
    JORDAN9: 27;
    
      
    
      
    
    A143: ( 
    L~ godo) 
    = (( 
    L~ (go 
    ^' pion1)) 
    \/ ( 
    L~ co)) by 
    A96,
    TOPREAL8: 35
    
      .= (((
    L~ go) 
    \/ ( 
    L~ pion1)) 
    \/ ( 
    L~ co)) by 
    A94,
    TOPREAL8: 35;
    
      
    
      
    
    A144: ( 
    L~ ( 
    Cage (C,n))) 
    = (( 
    L~ US) 
    \/ ( 
    L~ LS)) by 
    JORDAN1E: 13;
    
      then
    
      
    
    A145: ( 
    L~ US) 
    c= ( 
    L~ ( 
    Cage (C,n))) by 
    XBOOLE_1: 7;
    
      
    
      
    
    A146: ( 
    L~ LS) 
    c= ( 
    L~ ( 
    Cage (C,n))) by 
    A144,
    XBOOLE_1: 7;
    
      
    
      
    
    A147: ( 
    L~ go) 
    c= ( 
    L~ ( 
    Cage (C,n))) by 
    A46,
    A145;
    
      
    
      
    
    A148: ( 
    L~ co) 
    c= ( 
    L~ ( 
    Cage (C,n))) by 
    A53,
    A146;
    
      
    
      
    
    A149: ( 
    W-min C) 
    in C by 
    SPRECT_1: 13;
    
      
    
      
    
    A150: ( 
    L~ pion) 
    = ( 
    LSeg (Gik,Gij)) by 
    SPPOL_2: 21;
    
      
    
    A151: 
    
      now
    
        assume (
    W-min C) 
    in ( 
    L~ godo); 
    
        then
    
        
    
    A152: ( 
    W-min C) 
    in (( 
    L~ go) 
    \/ ( 
    L~ pion1)) or ( 
    W-min C) 
    in ( 
    L~ co) by 
    A143,
    XBOOLE_0:def 3;
    
        per cases by
    A152,
    XBOOLE_0:def 3;
    
          suppose (
    W-min C) 
    in ( 
    L~ go); 
    
          then C
    meets ( 
    L~ ( 
    Cage (C,n))) by 
    A147,
    A149,
    XBOOLE_0: 3;
    
          hence contradiction by
    JORDAN10: 5;
    
        end;
    
          suppose (
    W-min C) 
    in ( 
    L~ pion1); 
    
          hence contradiction by
    A8,
    A83,
    A133,
    A150,
    XBOOLE_0: 3;
    
        end;
    
          suppose (
    W-min C) 
    in ( 
    L~ co); 
    
          then C
    meets ( 
    L~ ( 
    Cage (C,n))) by 
    A148,
    A149,
    XBOOLE_0: 3;
    
          hence contradiction by
    JORDAN10: 5;
    
        end;
    
      end;
    
      (
    right_cell (( 
    Rotate (( 
    Cage (C,n)),Wmin)),1)) 
    = ( 
    right_cell (ff,1,( 
    GoB ff))) by 
    A88,
    JORDAN1H: 23
    
      .= (
    right_cell (ff,1,( 
    GoB ( 
    Cage (C,n))))) by 
    REVROT_1: 28
    
      .= (
    right_cell (ff,1,Ga)) by 
    JORDAN1H: 44
    
      .= (
    right_cell ((ff 
    -: Emax),1,Ga)) by 
    A137,
    A141,
    JORDAN1J: 53
    
      .= (
    right_cell (US,1,Ga)) by 
    JORDAN1E:def 1
    
      .= (
    right_cell (( 
    R_Cut (US,Gik)),1,Ga)) by 
    A34,
    A93,
    A138,
    JORDAN1J: 52
    
      .= (
    right_cell ((go 
    ^' pion1),1,Ga)) by 
    A39,
    A95,
    JORDAN1J: 51
    
      .= (
    right_cell (godo,1,Ga)) by 
    A90,
    A97,
    JORDAN1J: 51;
    
      then (
    W-min C) 
    in ( 
    right_cell (godo,1,Ga)) by 
    JORDAN1I: 6;
    
      then
    
      
    
    A153: ( 
    W-min C) 
    in (( 
    right_cell (godo,1,Ga)) 
    \ ( 
    L~ godo)) by 
    A151,
    XBOOLE_0:def 5;
    
      
    
      
    
    A154: (godo 
    /. 1) 
    = ((go 
    ^' pion1) 
    /. 1) by 
    FINSEQ_6: 155
    
      .= Wmin by
    A59,
    FINSEQ_6: 155;
    
      
    
      
    
    A155: ( 
    len US) 
    >= 2 by 
    A17,
    XXREAL_0: 2;
    
      
    
      
    
    A156: (godo 
    /. 2) 
    = ((go 
    ^' pion1) 
    /. 2) by 
    A89,
    FINSEQ_6: 159
    
      .= (US
    /. 2) by 
    A33,
    A76,
    FINSEQ_6: 159
    
      .= ((US
    ^' LS) 
    /. 2) by 
    A155,
    FINSEQ_6: 159
    
      .= ((
    Rotate (( 
    Cage (C,n)),Wmin)) 
    /. 2) by 
    JORDAN1E: 11;
    
      
    
      
    
    A157: (( 
    L~ go) 
    \/ ( 
    L~ co)) is 
    compact by 
    COMPTS_1: 10;
    
      Wmin
    in (( 
    L~ go) 
    \/ ( 
    L~ co)) by 
    A61,
    A77,
    XBOOLE_0:def 3;
    
      then
    
      
    
    A158: ( 
    W-min (( 
    L~ go) 
    \/ ( 
    L~ co))) 
    = Wmin by 
    A147,
    A148,
    A157,
    JORDAN1J: 21,
    XBOOLE_1: 8;
    
      
    
      
    
    A159: (( 
    W-min (( 
    L~ go) 
    \/ ( 
    L~ co))) 
    `1 ) 
    = ( 
    W-bound (( 
    L~ go) 
    \/ ( 
    L~ co))) by 
    EUCLID: 52;
    
      
    
      
    
    A160: (Wmin 
    `1 ) 
    = Wbo by 
    EUCLID: 52;
    
      (
    W-bound ( 
    LSeg (Gik,Gij))) 
    = (Gik 
    `1 ) by 
    A80,
    SPRECT_1: 54;
    
      then
    
      
    
    A161: ( 
    W-bound ( 
    L~ pion1)) 
    = (Gik 
    `1 ) by 
    A83,
    SPPOL_2: 21;
    
      (Gik
    `1 ) 
    >= Wbo by 
    A10,
    A145,
    PSCOMP_1: 24;
    
      then (Gik
    `1 ) 
    > Wbo by 
    A75,
    XXREAL_0: 1;
    
      then (
    W-min ((( 
    L~ go) 
    \/ ( 
    L~ co)) 
    \/ ( 
    L~ pion1))) 
    = ( 
    W-min (( 
    L~ go) 
    \/ ( 
    L~ co))) by 
    A157,
    A158,
    A159,
    A160,
    A161,
    JORDAN1J: 33;
    
      then
    
      
    
    A162: ( 
    W-min ( 
    L~ godo)) 
    = Wmin by 
    A143,
    A158,
    XBOOLE_1: 4;
    
      
    
      
    
    A163: ( 
    rng godo) 
    c= ( 
    L~ godo) by 
    A89,
    A91,
    SPPOL_2: 18,
    XXREAL_0: 2;
    
      2
    in ( 
    dom godo) by 
    A92,
    FINSEQ_3: 25;
    
      then
    
      
    
    A164: (godo 
    /. 2) 
    in ( 
    rng godo) by 
    PARTFUN2: 2;
    
      (godo
    /. 2) 
    in ( 
    W-most ( 
    L~ ( 
    Cage (C,n)))) by 
    A156,
    JORDAN1I: 25;
    
      
    
      then ((godo
    /. 2) 
    `1 ) 
    = (( 
    W-min ( 
    L~ godo)) 
    `1 ) by 
    A162,
    PSCOMP_1: 31
    
      .= (
    W-bound ( 
    L~ godo)) by 
    EUCLID: 52;
    
      then (godo
    /. 2) 
    in ( 
    W-most ( 
    L~ godo)) by 
    A163,
    A164,
    SPRECT_2: 12;
    
      then ((
    Rotate (godo,( 
    W-min ( 
    L~ godo)))) 
    /. 2) 
    in ( 
    W-most ( 
    L~ godo)) by 
    A154,
    A162,
    FINSEQ_6: 89;
    
      then
    
      reconsider godo as
    clockwise_oriented non 
    constant
    standard  
    special_circular_sequence by 
    JORDAN1I: 25;
    
      (
    len US) 
    in ( 
    dom US) by 
    FINSEQ_5: 6;
    
      
    
      then
    
      
    
    A165: (US 
    . ( 
    len US)) 
    = (US 
    /. ( 
    len US)) by 
    PARTFUN1:def 6
    
      .= Emax by
    JORDAN1F: 7;
    
      
    
      
    
    A166: ( 
    east_halfline ( 
    E-max C)) 
    misses ( 
    L~ go) 
    
      proof
    
        assume (
    east_halfline ( 
    E-max C)) 
    meets ( 
    L~ go); 
    
        then
    
        consider p be
    object such that 
    
        
    
    A167: p 
    in ( 
    east_halfline ( 
    E-max C)) and 
    
        
    
    A168: p 
    in ( 
    L~ go) by 
    XBOOLE_0: 3;
    
        reconsider p as
    Point of ( 
    TOP-REAL 2) by 
    A167;
    
        p
    in ( 
    L~ US) by 
    A46,
    A168;
    
        then p
    in (( 
    east_halfline ( 
    E-max C)) 
    /\ ( 
    L~ ( 
    Cage (C,n)))) by 
    A145,
    A167,
    XBOOLE_0:def 4;
    
        then
    
        
    
    A169: (p 
    `1 ) 
    = Ebo by 
    JORDAN1A: 83,
    PSCOMP_1: 50;
    
        then
    
        
    
    A170: p 
    = Emax by 
    A46,
    A168,
    JORDAN1J: 46;
    
        then Emax
    = Gik by 
    A10,
    A165,
    A168,
    JORDAN1J: 43;
    
        then (Gik
    `1 ) 
    = ((Ga 
    * (( 
    len Ga),k)) 
    `1 ) by 
    A3,
    A13,
    A16,
    A169,
    A170,
    JORDAN1A: 71;
    
        hence contradiction by
    A2,
    A15,
    A30,
    JORDAN1G: 7;
    
      end;
    
      now
    
        assume (
    east_halfline ( 
    E-max C)) 
    meets ( 
    L~ godo); 
    
        then
    
        
    
    A171: ( 
    east_halfline ( 
    E-max C)) 
    meets (( 
    L~ go) 
    \/ ( 
    L~ pion1)) or ( 
    east_halfline ( 
    E-max C)) 
    meets ( 
    L~ co) by 
    A143,
    XBOOLE_1: 70;
    
        per cases by
    A171,
    XBOOLE_1: 70;
    
          suppose (
    east_halfline ( 
    E-max C)) 
    meets ( 
    L~ go); 
    
          hence contradiction by
    A166;
    
        end;
    
          suppose (
    east_halfline ( 
    E-max C)) 
    meets ( 
    L~ pion1); 
    
          then
    
          consider p be
    object such that 
    
          
    
    A172: p 
    in ( 
    east_halfline ( 
    E-max C)) and 
    
          
    
    A173: p 
    in ( 
    L~ pion1) by 
    XBOOLE_0: 3;
    
          reconsider p as
    Point of ( 
    TOP-REAL 2) by 
    A172;
    
          
    
          
    
    A174: (p 
    `1 ) 
    = (Gik 
    `1 ) by 
    A80,
    A83,
    A150,
    A173,
    GOBOARD7: 5;
    
          (i
    + 1) 
    <= ( 
    len Ga) by 
    A2,
    NAT_1: 13;
    
          then ((i
    + 1) 
    - 1) 
    <= (( 
    len Ga) 
    - 1) by 
    XREAL_1: 9;
    
          then
    
          
    
    A175: i 
    <= (( 
    len Ga) 
    -' 1) by 
    XREAL_0:def 2;
    
          ((
    len Ga) 
    -' 1) 
    <= ( 
    len Ga) by 
    NAT_D: 35;
    
          then (p
    `1 ) 
    <= ((Ga 
    * ((( 
    len Ga) 
    -' 1),1)) 
    `1 ) by 
    A1,
    A3,
    A13,
    A16,
    A20,
    A174,
    A175,
    JORDAN1A: 18;
    
          then (p
    `1 ) 
    <= ( 
    E-bound C) by 
    A20,
    JORDAN8: 12;
    
          then
    
          
    
    A176: (p 
    `1 ) 
    <= (( 
    E-max C) 
    `1 ) by 
    EUCLID: 52;
    
          (p
    `1 ) 
    >= (( 
    E-max C) 
    `1 ) by 
    A172,
    TOPREAL1:def 11;
    
          then
    
          
    
    A177: (p 
    `1 ) 
    = (( 
    E-max C) 
    `1 ) by 
    A176,
    XXREAL_0: 1;
    
          (p
    `2 ) 
    = (( 
    E-max C) 
    `2 ) by 
    A172,
    TOPREAL1:def 11;
    
          then p
    = ( 
    E-max C) by 
    A177,
    TOPREAL3: 6;
    
          hence contradiction by
    A8,
    A83,
    A134,
    A150,
    A173,
    XBOOLE_0: 3;
    
        end;
    
          suppose (
    east_halfline ( 
    E-max C)) 
    meets ( 
    L~ co); 
    
          then
    
          consider p be
    object such that 
    
          
    
    A178: p 
    in ( 
    east_halfline ( 
    E-max C)) and 
    
          
    
    A179: p 
    in ( 
    L~ co) by 
    XBOOLE_0: 3;
    
          reconsider p as
    Point of ( 
    TOP-REAL 2) by 
    A178;
    
          p
    in ( 
    L~ LS) by 
    A53,
    A179;
    
          then p
    in (( 
    east_halfline ( 
    E-max C)) 
    /\ ( 
    L~ ( 
    Cage (C,n)))) by 
    A146,
    A178,
    XBOOLE_0:def 4;
    
          then
    
          
    
    A180: (p 
    `1 ) 
    = Ebo by 
    JORDAN1A: 83,
    PSCOMP_1: 50;
    
          
    
          
    
    A181: (( 
    E-max C) 
    `2 ) 
    = (p 
    `2 ) by 
    A178,
    TOPREAL1:def 11;
    
          set RC = (
    Rotate (( 
    Cage (C,n)),Emax)); 
    
          
    
          
    
    A182: ( 
    E-max C) 
    in ( 
    right_cell (RC,1)) by 
    JORDAN1I: 7;
    
          
    
          
    
    A183: (1 
    + 1) 
    <= ( 
    len LS) by 
    A23,
    XXREAL_0: 2;
    
          LS
    = (RC 
    -: Wmin) by 
    JORDAN1G: 18;
    
          then
    
          
    
    A184: ( 
    LSeg (LS,1)) 
    = ( 
    LSeg (RC,1)) by 
    A183,
    SPPOL_2: 9;
    
          
    
          
    
    A185: ( 
    L~ RC) 
    = ( 
    L~ ( 
    Cage (C,n))) by 
    REVROT_1: 33;
    
          
    
          
    
    A186: ( 
    len RC) 
    = ( 
    len ( 
    Cage (C,n))) by 
    FINSEQ_6: 179;
    
          
    
          
    
    A187: ( 
    GoB RC) 
    = ( 
    GoB ( 
    Cage (C,n))) by 
    REVROT_1: 28
    
          .= Ga by
    JORDAN1H: 44;
    
          
    
          
    
    A188: Emax 
    in ( 
    rng ( 
    Cage (C,n))) by 
    SPRECT_2: 46;
    
          
    
          
    
    A189: RC 
    is_sequence_on Ga by 
    A140,
    REVROT_1: 34;
    
          
    
          
    
    A190: (RC 
    /. 1) 
    = ( 
    E-max ( 
    L~ RC)) by 
    A185,
    A188,
    FINSEQ_6: 92;
    
          consider ii,jj be
    Nat such that 
    
          
    
    A191: 
    [ii, (jj
    + 1)] 
    in ( 
    Indices Ga) and 
    
          
    
    A192: 
    [ii, jj]
    in ( 
    Indices Ga) and 
    
          
    
    A193: (RC 
    /. 1) 
    = (Ga 
    * (ii,(jj 
    + 1))) and 
    
          
    
    A194: (RC 
    /. (1 
    + 1)) 
    = (Ga 
    * (ii,jj)) by 
    A87,
    A185,
    A186,
    A188,
    A189,
    FINSEQ_6: 92,
    JORDAN1I: 23;
    
          consider jj2 be
    Nat such that 
    
          
    
    A195: 1 
    <= jj2 and 
    
          
    
    A196: jj2 
    <= ( 
    width Ga) and 
    
          
    
    A197: Emax 
    = (Ga 
    * (( 
    len Ga),jj2)) by 
    JORDAN1D: 25;
    
          
    
          
    
    A198: ( 
    len Ga) 
    >= 4 by 
    JORDAN8: 10;
    
          then (
    len Ga) 
    >= 1 by 
    XXREAL_0: 2;
    
          then
    [(
    len Ga), jj2] 
    in ( 
    Indices Ga) by 
    A195,
    A196,
    MATRIX_0: 30;
    
          then
    
          
    
    A199: ii 
    = ( 
    len Ga) by 
    A185,
    A190,
    A191,
    A193,
    A197,
    GOBOARD1: 5;
    
          
    
          
    
    A200: 1 
    <= ii by 
    A191,
    MATRIX_0: 32;
    
          
    
          
    
    A201: ii 
    <= ( 
    len Ga) by 
    A191,
    MATRIX_0: 32;
    
          
    
          
    
    A202: 1 
    <= (jj 
    + 1) by 
    A191,
    MATRIX_0: 32;
    
          
    
          
    
    A203: (jj 
    + 1) 
    <= ( 
    width Ga) by 
    A191,
    MATRIX_0: 32;
    
          
    
          
    
    A204: 1 
    <= ii by 
    A192,
    MATRIX_0: 32;
    
          
    
          
    
    A205: ii 
    <= ( 
    len Ga) by 
    A192,
    MATRIX_0: 32;
    
          
    
          
    
    A206: 1 
    <= jj by 
    A192,
    MATRIX_0: 32;
    
          
    
          
    
    A207: jj 
    <= ( 
    width Ga) by 
    A192,
    MATRIX_0: 32;
    
          
    
          
    
    A208: (ii 
    + 1) 
    <> ii; 
    
          ((jj
    + 1) 
    + 1) 
    <> jj; 
    
          then
    
          
    
    A209: ( 
    right_cell (RC,1)) 
    = ( 
    cell (Ga,(ii 
    -' 1),jj)) by 
    A87,
    A186,
    A187,
    A191,
    A192,
    A193,
    A194,
    A208,
    GOBOARD5:def 6;
    
          
    
          
    
    A210: ((ii 
    -' 1) 
    + 1) 
    = ii by 
    A200,
    XREAL_1: 235;
    
          (ii
    - 1) 
    >= (4 
    - 1) by 
    A198,
    A199,
    XREAL_1: 9;
    
          then
    
          
    
    A211: (ii 
    - 1) 
    >= 1 by 
    XXREAL_0: 2;
    
          then
    
          
    
    A212: 1 
    <= (ii 
    -' 1) by 
    XREAL_0:def 2;
    
          
    
          
    
    A213: ((Ga 
    * ((ii 
    -' 1),jj)) 
    `2 ) 
    <= (p 
    `2 ) by 
    A181,
    A182,
    A201,
    A203,
    A206,
    A209,
    A210,
    A211,
    JORDAN9: 17;
    
          
    
          
    
    A214: (p 
    `2 ) 
    <= ((Ga 
    * ((ii 
    -' 1),(jj 
    + 1))) 
    `2 ) by 
    A181,
    A182,
    A201,
    A203,
    A206,
    A209,
    A210,
    A211,
    JORDAN9: 17;
    
          
    
          
    
    A215: (ii 
    -' 1) 
    < ( 
    len Ga) by 
    A201,
    A210,
    NAT_1: 13;
    
          
    
          then
    
          
    
    A216: ((Ga 
    * ((ii 
    -' 1),jj)) 
    `2 ) 
    = ((Ga 
    * (1,jj)) 
    `2 ) by 
    A206,
    A207,
    A212,
    GOBOARD5: 1
    
          .= ((Ga
    * (ii,jj)) 
    `2 ) by 
    A204,
    A205,
    A206,
    A207,
    GOBOARD5: 1;
    
          
    
          
    
    A217: ((Ga 
    * ((ii 
    -' 1),(jj 
    + 1))) 
    `2 ) 
    = ((Ga 
    * (1,(jj 
    + 1))) 
    `2 ) by 
    A202,
    A203,
    A212,
    A215,
    GOBOARD5: 1
    
          .= ((Ga
    * (ii,(jj 
    + 1))) 
    `2 ) by 
    A200,
    A201,
    A202,
    A203,
    GOBOARD5: 1;
    
          
    
          
    
    A218: ((Ga 
    * (( 
    len Ga),jj)) 
    `1 ) 
    = Ebo by 
    A16,
    A206,
    A207,
    JORDAN1A: 71;
    
          Ebo
    = ((Ga 
    * (( 
    len Ga),(jj 
    + 1))) 
    `1 ) by 
    A16,
    A202,
    A203,
    JORDAN1A: 71;
    
          then p
    in ( 
    LSeg ((RC 
    /. 1),(RC 
    /. (1 
    + 1)))) by 
    A180,
    A193,
    A194,
    A199,
    A213,
    A214,
    A216,
    A217,
    A218,
    GOBOARD7: 7;
    
          then
    
          
    
    A219: p 
    in ( 
    LSeg (LS,1)) by 
    A87,
    A184,
    A186,
    TOPREAL1:def 3;
    
          
    
          
    
    A220: p 
    in ( 
    LSeg (co,( 
    Index (p,co)))) by 
    A179,
    JORDAN3: 9;
    
          
    
          
    
    A221: co 
    = ( 
    mid (LS,(Gij 
    .. LS),( 
    len LS))) by 
    A37,
    JORDAN1J: 37;
    
          
    
          
    
    A222: 1 
    <= (Gij 
    .. LS) by 
    A37,
    FINSEQ_4: 21;
    
          
    
          
    
    A223: (Gij 
    .. LS) 
    <= ( 
    len LS) by 
    A37,
    FINSEQ_4: 21;
    
          (Gij
    .. LS) 
    <> ( 
    len LS) by 
    A29,
    A37,
    FINSEQ_4: 19;
    
          then
    
          
    
    A224: (Gij 
    .. LS) 
    < ( 
    len LS) by 
    A223,
    XXREAL_0: 1;
    
          
    
          
    
    A225: 1 
    <= ( 
    Index (p,co)) by 
    A179,
    JORDAN3: 8;
    
          
    
          
    
    A226: ( 
    Index (p,co)) 
    < ( 
    len co) by 
    A179,
    JORDAN3: 8;
    
          
    
          
    
    A227: (( 
    Index (Gij,LS)) 
    + 1) 
    = (Gij 
    .. LS) by 
    A32,
    A37,
    JORDAN1J: 56;
    
          consider t be
    Nat such that 
    
          
    
    A228: t 
    in ( 
    dom LS) and 
    
          
    
    A229: (LS 
    . t) 
    = Gij by 
    A37,
    FINSEQ_2: 10;
    
          
    
          
    
    A230: 1 
    <= t by 
    A228,
    FINSEQ_3: 25;
    
          
    
          
    
    A231: t 
    <= ( 
    len LS) by 
    A228,
    FINSEQ_3: 25;
    
          1
    < t by 
    A32,
    A229,
    A230,
    XXREAL_0: 1;
    
          then ((
    Index (Gij,LS)) 
    + 1) 
    = t by 
    A229,
    A231,
    JORDAN3: 12;
    
          then
    
          
    
    A232: ( 
    len ( 
    L_Cut (LS,Gij))) 
    = (( 
    len LS) 
    - ( 
    Index (Gij,LS))) by 
    A9,
    A229,
    JORDAN3: 26;
    
          set tt = (((
    Index (p,co)) 
    + (Gij 
    .. LS)) 
    -' 1); 
    
          
    
          
    
    A233: 1 
    <= ( 
    Index (Gij,LS)) by 
    A9,
    JORDAN3: 8;
    
          (
    0  
    + ( 
    Index (Gij,LS))) 
    < ( 
    len LS) by 
    A9,
    JORDAN3: 8;
    
          then
    
          
    
    A234: (( 
    len LS) 
    - ( 
    Index (Gij,LS))) 
    >  
    0 by 
    XREAL_1: 20;
    
          (
    Index (p,co)) 
    < (( 
    len LS) 
    -' ( 
    Index (Gij,LS))) by 
    A226,
    A232,
    XREAL_0:def 2;
    
          then ((
    Index (p,co)) 
    + 1) 
    <= (( 
    len LS) 
    -' ( 
    Index (Gij,LS))) by 
    NAT_1: 13;
    
          then (
    Index (p,co)) 
    <= ((( 
    len LS) 
    -' ( 
    Index (Gij,LS))) 
    - 1) by 
    XREAL_1: 19;
    
          then (
    Index (p,co)) 
    <= ((( 
    len LS) 
    - ( 
    Index (Gij,LS))) 
    - 1) by 
    A234,
    XREAL_0:def 2;
    
          then (
    Index (p,co)) 
    <= (( 
    len LS) 
    - (Gij 
    .. LS)) by 
    A227;
    
          then (
    Index (p,co)) 
    <= (( 
    len LS) 
    -' (Gij 
    .. LS)) by 
    XREAL_0:def 2;
    
          then (
    Index (p,co)) 
    < ((( 
    len LS) 
    -' (Gij 
    .. LS)) 
    + 1) by 
    NAT_1: 13;
    
          then
    
          
    
    A235: ( 
    LSeg (( 
    mid (LS,(Gij 
    .. LS),( 
    len LS))),( 
    Index (p,co)))) 
    = ( 
    LSeg (LS,((( 
    Index (p,co)) 
    + (Gij 
    .. LS)) 
    -' 1))) by 
    A222,
    A224,
    A225,
    JORDAN4: 19;
    
          
    
          
    
    A236: (1 
    + 1) 
    <= (Gij 
    .. LS) by 
    A227,
    A233,
    XREAL_1: 7;
    
          then ((
    Index (p,co)) 
    + (Gij 
    .. LS)) 
    >= ((1 
    + 1) 
    + 1) by 
    A225,
    XREAL_1: 7;
    
          then (((
    Index (p,co)) 
    + (Gij 
    .. LS)) 
    - 1) 
    >= (((1 
    + 1) 
    + 1) 
    - 1) by 
    XREAL_1: 9;
    
          then
    
          
    
    A237: tt 
    >= (1 
    + 1) by 
    XREAL_0:def 2;
    
          
    
          
    
    A238: 2 
    in ( 
    dom LS) by 
    A183,
    FINSEQ_3: 25;
    
          now
    
            per cases by
    A237,
    XXREAL_0: 1;
    
              suppose tt
    > (1 
    + 1); 
    
              then (
    LSeg (LS,1)) 
    misses ( 
    LSeg (LS,tt)) by 
    TOPREAL1:def 7;
    
              hence contradiction by
    A219,
    A220,
    A221,
    A235,
    XBOOLE_0: 3;
    
            end;
    
              suppose
    
              
    
    A239: tt 
    = (1 
    + 1); 
    
              then ((
    LSeg (LS,1)) 
    /\ ( 
    LSeg (LS,tt))) 
    =  
    {(LS
    /. 2)} by 
    A23,
    TOPREAL1:def 6;
    
              then p
    in  
    {(LS
    /. 2)} by 
    A219,
    A220,
    A221,
    A235,
    XBOOLE_0:def 4;
    
              then
    
              
    
    A240: p 
    = (LS 
    /. 2) by 
    TARSKI:def 1;
    
              then
    
              
    
    A241: (p 
    .. LS) 
    = 2 by 
    A238,
    FINSEQ_5: 41;
    
              (1
    + 1) 
    = ((( 
    Index (p,co)) 
    + (Gij 
    .. LS)) 
    - 1) by 
    A239,
    XREAL_0:def 2;
    
              then ((1
    + 1) 
    + 1) 
    = (( 
    Index (p,co)) 
    + (Gij 
    .. LS)); 
    
              then
    
              
    
    A242: (Gij 
    .. LS) 
    = 2 by 
    A225,
    A236,
    JORDAN1E: 6;
    
              p
    in ( 
    rng LS) by 
    A238,
    A240,
    PARTFUN2: 2;
    
              then p
    = Gij by 
    A37,
    A241,
    A242,
    FINSEQ_5: 9;
    
              then (Gij
    `1 ) 
    = Ebo by 
    A240,
    JORDAN1G: 32;
    
              then (Gij
    `1 ) 
    = ((Ga 
    * (( 
    len Ga),j)) 
    `1 ) by 
    A5,
    A12,
    A16,
    JORDAN1A: 71;
    
              hence contradiction by
    A2,
    A14,
    A67,
    JORDAN1G: 7;
    
            end;
    
          end;
    
          hence contradiction;
    
        end;
    
      end;
    
      then (
    east_halfline ( 
    E-max C)) 
    c= (( 
    L~ godo) 
    ` ) by 
    SUBSET_1: 23;
    
      then
    
      consider W be
    Subset of ( 
    TOP-REAL 2) such that 
    
      
    
    A243: W 
    is_a_component_of (( 
    L~ godo) 
    ` ) and 
    
      
    
    A244: ( 
    east_halfline ( 
    E-max C)) 
    c= W by 
    GOBOARD9: 3;
    
       not W is
    bounded by 
    A244,
    JORDAN2C: 121,
    RLTOPSP1: 42;
    
      then W
    is_outside_component_of ( 
    L~ godo) by 
    A243,
    JORDAN2C:def 3;
    
      then W
    c= ( 
    UBD ( 
    L~ godo)) by 
    JORDAN2C: 23;
    
      then
    
      
    
    A245: ( 
    east_halfline ( 
    E-max C)) 
    c= ( 
    UBD ( 
    L~ godo)) by 
    A244;
    
      (
    E-max C) 
    in ( 
    east_halfline ( 
    E-max C)) by 
    TOPREAL1: 38;
    
      then (
    E-max C) 
    in ( 
    UBD ( 
    L~ godo)) by 
    A245;
    
      then (
    E-max C) 
    in ( 
    LeftComp godo) by 
    GOBRD14: 36;
    
      then LA
    meets ( 
    L~ godo) by 
    A132,
    A133,
    A134,
    A142,
    A153,
    JORDAN1J: 36;
    
      then
    
      
    
    A246: LA 
    meets (( 
    L~ go) 
    \/ ( 
    L~ pion1)) or LA 
    meets ( 
    L~ co) by 
    A143,
    XBOOLE_1: 70;
    
      
    
      
    
    A247: LA 
    c= C by 
    JORDAN6: 61;
    
      per cases by
    A246,
    XBOOLE_1: 70;
    
        suppose LA
    meets ( 
    L~ go); 
    
        then LA
    meets ( 
    L~ ( 
    Cage (C,n))) by 
    A46,
    A145,
    XBOOLE_1: 1,
    XBOOLE_1: 63;
    
        hence contradiction by
    A247,
    JORDAN10: 5,
    XBOOLE_1: 63;
    
      end;
    
        suppose LA
    meets ( 
    L~ pion1); 
    
        hence contradiction by
    A8,
    A83,
    A150;
    
      end;
    
        suppose LA
    meets ( 
    L~ co); 
    
        then LA
    meets ( 
    L~ ( 
    Cage (C,n))) by 
    A53,
    A146,
    XBOOLE_1: 1,
    XBOOLE_1: 63;
    
        hence contradiction by
    A247,
    JORDAN10: 5,
    XBOOLE_1: 63;
    
      end;
    
    end;
    
    theorem :: 
    
    JORDAN19:14
    
    for C be
    Simple_closed_curve holds for i,j,k be 
    Nat st 1 
    < i & i 
    < ( 
    len ( 
    Gauge (C,n))) & 1 
    <= j & j 
    <= k & k 
    <= ( 
    width ( 
    Gauge (C,n))) & n 
    >  
    0 & (( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i,j)),(( 
    Gauge (C,n)) 
    * (i,k)))) 
    /\ ( 
    Lower_Arc ( 
    L~ ( 
    Cage (C,n))))) 
    =  
    {((
    Gauge (C,n)) 
    * (i,k))} & (( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i,j)),(( 
    Gauge (C,n)) 
    * (i,k)))) 
    /\ ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,n))))) 
    =  
    {((
    Gauge (C,n)) 
    * (i,j))} holds ( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i,j)),(( 
    Gauge (C,n)) 
    * (i,k)))) 
    meets ( 
    Upper_Arc C) 
    
    proof
    
      let C be
    Simple_closed_curve;
    
      let i,j,k be
    Nat;
    
      assume that
    
      
    
    A1: 1 
    < i and 
    
      
    
    A2: i 
    < ( 
    len ( 
    Gauge (C,n))) and 
    
      
    
    A3: 1 
    <= j and 
    
      
    
    A4: j 
    <= k and 
    
      
    
    A5: k 
    <= ( 
    width ( 
    Gauge (C,n))) and 
    
      
    
    A6: n 
    >  
    0 and 
    
      
    
    A7: (( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i,j)),(( 
    Gauge (C,n)) 
    * (i,k)))) 
    /\ ( 
    Lower_Arc ( 
    L~ ( 
    Cage (C,n))))) 
    =  
    {((
    Gauge (C,n)) 
    * (i,k))} and 
    
      
    
    A8: (( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i,j)),(( 
    Gauge (C,n)) 
    * (i,k)))) 
    /\ ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,n))))) 
    =  
    {((
    Gauge (C,n)) 
    * (i,j))}; 
    
      
    
      
    
    A9: ( 
    L~ ( 
    Lower_Seq (C,n))) 
    = ( 
    Lower_Arc ( 
    L~ ( 
    Cage (C,n)))) by 
    A6,
    JORDAN1G: 56;
    
      (
    L~ ( 
    Upper_Seq (C,n))) 
    = ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,n)))) by 
    A6,
    JORDAN1G: 55;
    
      hence thesis by
    A1,
    A2,
    A3,
    A4,
    A5,
    A7,
    A8,
    A9,
    Th12;
    
    end;
    
    theorem :: 
    
    JORDAN19:15
    
    for C be
    Simple_closed_curve holds for i,j,k be 
    Nat st 1 
    < i & i 
    < ( 
    len ( 
    Gauge (C,n))) & 1 
    <= j & j 
    <= k & k 
    <= ( 
    width ( 
    Gauge (C,n))) & n 
    >  
    0 & (( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i,j)),(( 
    Gauge (C,n)) 
    * (i,k)))) 
    /\ ( 
    Lower_Arc ( 
    L~ ( 
    Cage (C,n))))) 
    =  
    {((
    Gauge (C,n)) 
    * (i,k))} & (( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i,j)),(( 
    Gauge (C,n)) 
    * (i,k)))) 
    /\ ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,n))))) 
    =  
    {((
    Gauge (C,n)) 
    * (i,j))} holds ( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i,j)),(( 
    Gauge (C,n)) 
    * (i,k)))) 
    meets ( 
    Lower_Arc C) 
    
    proof
    
      let C be
    Simple_closed_curve;
    
      let i,j,k be
    Nat;
    
      assume that
    
      
    
    A1: 1 
    < i and 
    
      
    
    A2: i 
    < ( 
    len ( 
    Gauge (C,n))) and 
    
      
    
    A3: 1 
    <= j and 
    
      
    
    A4: j 
    <= k and 
    
      
    
    A5: k 
    <= ( 
    width ( 
    Gauge (C,n))) and 
    
      
    
    A6: n 
    >  
    0 and 
    
      
    
    A7: (( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i,j)),(( 
    Gauge (C,n)) 
    * (i,k)))) 
    /\ ( 
    Lower_Arc ( 
    L~ ( 
    Cage (C,n))))) 
    =  
    {((
    Gauge (C,n)) 
    * (i,k))} and 
    
      
    
    A8: (( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i,j)),(( 
    Gauge (C,n)) 
    * (i,k)))) 
    /\ ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,n))))) 
    =  
    {((
    Gauge (C,n)) 
    * (i,j))}; 
    
      
    
      
    
    A9: ( 
    L~ ( 
    Lower_Seq (C,n))) 
    = ( 
    Lower_Arc ( 
    L~ ( 
    Cage (C,n)))) by 
    A6,
    JORDAN1G: 56;
    
      (
    L~ ( 
    Upper_Seq (C,n))) 
    = ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,n)))) by 
    A6,
    JORDAN1G: 55;
    
      hence thesis by
    A1,
    A2,
    A3,
    A4,
    A5,
    A7,
    A8,
    A9,
    Th13;
    
    end;
    
    theorem :: 
    
    JORDAN19:16
    
    
    
    
    
    Th16: for C be 
    Simple_closed_curve holds for i,j,k be 
    Nat st 1 
    < i & i 
    < ( 
    len ( 
    Gauge (C,n))) & 1 
    <= j & j 
    <= k & k 
    <= ( 
    width ( 
    Gauge (C,n))) & (( 
    Gauge (C,n)) 
    * (i,k)) 
    in ( 
    L~ ( 
    Lower_Seq (C,n))) & (( 
    Gauge (C,n)) 
    * (i,j)) 
    in ( 
    L~ ( 
    Upper_Seq (C,n))) holds ( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i,j)),(( 
    Gauge (C,n)) 
    * (i,k)))) 
    meets ( 
    Upper_Arc C) 
    
    proof
    
      let C be
    Simple_closed_curve;
    
      let i,j,k be
    Nat;
    
      assume that
    
      
    
    A1: 1 
    < i and 
    
      
    
    A2: i 
    < ( 
    len ( 
    Gauge (C,n))) and 
    
      
    
    A3: 1 
    <= j and 
    
      
    
    A4: j 
    <= k and 
    
      
    
    A5: k 
    <= ( 
    width ( 
    Gauge (C,n))) and 
    
      
    
    A6: (( 
    Gauge (C,n)) 
    * (i,k)) 
    in ( 
    L~ ( 
    Lower_Seq (C,n))) and 
    
      
    
    A7: (( 
    Gauge (C,n)) 
    * (i,j)) 
    in ( 
    L~ ( 
    Upper_Seq (C,n))); 
    
      consider j1,k1 be
    Nat such that 
    
      
    
    A8: j 
    <= j1 and 
    
      
    
    A9: j1 
    <= k1 and 
    
      
    
    A10: k1 
    <= k and 
    
      
    
    A11: (( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i,j1)),(( 
    Gauge (C,n)) 
    * (i,k1)))) 
    /\ ( 
    L~ ( 
    Upper_Seq (C,n)))) 
    =  
    {((
    Gauge (C,n)) 
    * (i,j1))} and 
    
      
    
    A12: (( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i,j1)),(( 
    Gauge (C,n)) 
    * (i,k1)))) 
    /\ ( 
    L~ ( 
    Lower_Seq (C,n)))) 
    =  
    {((
    Gauge (C,n)) 
    * (i,k1))} by 
    A1,
    A2,
    A3,
    A4,
    A5,
    A6,
    A7,
    JORDAN15: 17;
    
      
    
      
    
    A13: 1 
    <= j1 by 
    A3,
    A8,
    XXREAL_0: 2;
    
      k1
    <= ( 
    width ( 
    Gauge (C,n))) by 
    A5,
    A10,
    XXREAL_0: 2;
    
      then (
    LSeg ((( 
    Gauge (C,n)) 
    * (i,j1)),(( 
    Gauge (C,n)) 
    * (i,k1)))) 
    meets ( 
    Upper_Arc C) by 
    A1,
    A2,
    A9,
    A11,
    A12,
    A13,
    Th12;
    
      hence thesis by
    A1,
    A2,
    A3,
    A5,
    A8,
    A9,
    A10,
    JORDAN15: 5,
    XBOOLE_1: 63;
    
    end;
    
    theorem :: 
    
    JORDAN19:17
    
    
    
    
    
    Th17: for C be 
    Simple_closed_curve holds for i,j,k be 
    Nat st 1 
    < i & i 
    < ( 
    len ( 
    Gauge (C,n))) & 1 
    <= j & j 
    <= k & k 
    <= ( 
    width ( 
    Gauge (C,n))) & (( 
    Gauge (C,n)) 
    * (i,k)) 
    in ( 
    L~ ( 
    Lower_Seq (C,n))) & (( 
    Gauge (C,n)) 
    * (i,j)) 
    in ( 
    L~ ( 
    Upper_Seq (C,n))) holds ( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i,j)),(( 
    Gauge (C,n)) 
    * (i,k)))) 
    meets ( 
    Lower_Arc C) 
    
    proof
    
      let C be
    Simple_closed_curve;
    
      let i,j,k be
    Nat;
    
      assume that
    
      
    
    A1: 1 
    < i and 
    
      
    
    A2: i 
    < ( 
    len ( 
    Gauge (C,n))) and 
    
      
    
    A3: 1 
    <= j and 
    
      
    
    A4: j 
    <= k and 
    
      
    
    A5: k 
    <= ( 
    width ( 
    Gauge (C,n))) and 
    
      
    
    A6: (( 
    Gauge (C,n)) 
    * (i,k)) 
    in ( 
    L~ ( 
    Lower_Seq (C,n))) and 
    
      
    
    A7: (( 
    Gauge (C,n)) 
    * (i,j)) 
    in ( 
    L~ ( 
    Upper_Seq (C,n))); 
    
      consider j1,k1 be
    Nat such that 
    
      
    
    A8: j 
    <= j1 and 
    
      
    
    A9: j1 
    <= k1 and 
    
      
    
    A10: k1 
    <= k and 
    
      
    
    A11: (( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i,j1)),(( 
    Gauge (C,n)) 
    * (i,k1)))) 
    /\ ( 
    L~ ( 
    Upper_Seq (C,n)))) 
    =  
    {((
    Gauge (C,n)) 
    * (i,j1))} and 
    
      
    
    A12: (( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i,j1)),(( 
    Gauge (C,n)) 
    * (i,k1)))) 
    /\ ( 
    L~ ( 
    Lower_Seq (C,n)))) 
    =  
    {((
    Gauge (C,n)) 
    * (i,k1))} by 
    A1,
    A2,
    A3,
    A4,
    A5,
    A6,
    A7,
    JORDAN15: 17;
    
      
    
      
    
    A13: 1 
    <= j1 by 
    A3,
    A8,
    XXREAL_0: 2;
    
      k1
    <= ( 
    width ( 
    Gauge (C,n))) by 
    A5,
    A10,
    XXREAL_0: 2;
    
      then (
    LSeg ((( 
    Gauge (C,n)) 
    * (i,j1)),(( 
    Gauge (C,n)) 
    * (i,k1)))) 
    meets ( 
    Lower_Arc C) by 
    A1,
    A2,
    A9,
    A11,
    A12,
    A13,
    Th13;
    
      hence thesis by
    A1,
    A2,
    A3,
    A5,
    A8,
    A9,
    A10,
    JORDAN15: 5,
    XBOOLE_1: 63;
    
    end;
    
    theorem :: 
    
    JORDAN19:18
    
    
    
    
    
    Th18: for C be 
    Simple_closed_curve holds for i,j,k be 
    Nat st 1 
    < i & i 
    < ( 
    len ( 
    Gauge (C,n))) & 1 
    <= j & j 
    <= k & k 
    <= ( 
    width ( 
    Gauge (C,n))) & n 
    >  
    0 & (( 
    Gauge (C,n)) 
    * (i,k)) 
    in ( 
    Lower_Arc ( 
    L~ ( 
    Cage (C,n)))) & (( 
    Gauge (C,n)) 
    * (i,j)) 
    in ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,n)))) holds ( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i,j)),(( 
    Gauge (C,n)) 
    * (i,k)))) 
    meets ( 
    Upper_Arc C) 
    
    proof
    
      let C be
    Simple_closed_curve;
    
      let i,j,k be
    Nat;
    
      assume that
    
      
    
    A1: 1 
    < i and 
    
      
    
    A2: i 
    < ( 
    len ( 
    Gauge (C,n))) and 
    
      
    
    A3: 1 
    <= j and 
    
      
    
    A4: j 
    <= k and 
    
      
    
    A5: k 
    <= ( 
    width ( 
    Gauge (C,n))) and 
    
      
    
    A6: n 
    >  
    0 and 
    
      
    
    A7: (( 
    Gauge (C,n)) 
    * (i,k)) 
    in ( 
    Lower_Arc ( 
    L~ ( 
    Cage (C,n)))) and 
    
      
    
    A8: (( 
    Gauge (C,n)) 
    * (i,j)) 
    in ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,n)))); 
    
      
    
      
    
    A9: ( 
    L~ ( 
    Lower_Seq (C,n))) 
    = ( 
    Lower_Arc ( 
    L~ ( 
    Cage (C,n)))) by 
    A6,
    JORDAN1G: 56;
    
      (
    L~ ( 
    Upper_Seq (C,n))) 
    = ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,n)))) by 
    A6,
    JORDAN1G: 55;
    
      hence thesis by
    A1,
    A2,
    A3,
    A4,
    A5,
    A7,
    A8,
    A9,
    Th16;
    
    end;
    
    theorem :: 
    
    JORDAN19:19
    
    
    
    
    
    Th19: for C be 
    Simple_closed_curve holds for i,j,k be 
    Nat st 1 
    < i & i 
    < ( 
    len ( 
    Gauge (C,n))) & 1 
    <= j & j 
    <= k & k 
    <= ( 
    width ( 
    Gauge (C,n))) & n 
    >  
    0 & (( 
    Gauge (C,n)) 
    * (i,k)) 
    in ( 
    Lower_Arc ( 
    L~ ( 
    Cage (C,n)))) & (( 
    Gauge (C,n)) 
    * (i,j)) 
    in ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,n)))) holds ( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i,j)),(( 
    Gauge (C,n)) 
    * (i,k)))) 
    meets ( 
    Lower_Arc C) 
    
    proof
    
      let C be
    Simple_closed_curve;
    
      let i,j,k be
    Nat;
    
      assume that
    
      
    
    A1: 1 
    < i and 
    
      
    
    A2: i 
    < ( 
    len ( 
    Gauge (C,n))) and 
    
      
    
    A3: 1 
    <= j and 
    
      
    
    A4: j 
    <= k and 
    
      
    
    A5: k 
    <= ( 
    width ( 
    Gauge (C,n))) and 
    
      
    
    A6: n 
    >  
    0 and 
    
      
    
    A7: (( 
    Gauge (C,n)) 
    * (i,k)) 
    in ( 
    Lower_Arc ( 
    L~ ( 
    Cage (C,n)))) and 
    
      
    
    A8: (( 
    Gauge (C,n)) 
    * (i,j)) 
    in ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,n)))); 
    
      
    
      
    
    A9: ( 
    L~ ( 
    Lower_Seq (C,n))) 
    = ( 
    Lower_Arc ( 
    L~ ( 
    Cage (C,n)))) by 
    A6,
    JORDAN1G: 56;
    
      (
    L~ ( 
    Upper_Seq (C,n))) 
    = ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,n)))) by 
    A6,
    JORDAN1G: 55;
    
      hence thesis by
    A1,
    A2,
    A3,
    A4,
    A5,
    A7,
    A8,
    A9,
    Th17;
    
    end;
    
    theorem :: 
    
    JORDAN19:20
    
    
    
    
    
    Th20: for C be 
    Simple_closed_curve holds for i1,i2,j,k be 
    Nat st 1 
    < i1 & i1 
    <= i2 & i2 
    < ( 
    len ( 
    Gauge (C,n))) & 1 
    <= j & j 
    <= k & k 
    <= ( 
    width ( 
    Gauge (C,n))) & ((( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i1,j)),(( 
    Gauge (C,n)) 
    * (i1,k)))) 
    \/ ( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i1,k)),(( 
    Gauge (C,n)) 
    * (i2,k))))) 
    /\ ( 
    L~ ( 
    Upper_Seq (C,n)))) 
    =  
    {((
    Gauge (C,n)) 
    * (i1,j))} & ((( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i1,j)),(( 
    Gauge (C,n)) 
    * (i1,k)))) 
    \/ ( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i1,k)),(( 
    Gauge (C,n)) 
    * (i2,k))))) 
    /\ ( 
    L~ ( 
    Lower_Seq (C,n)))) 
    =  
    {((
    Gauge (C,n)) 
    * (i2,k))} holds (( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i1,j)),(( 
    Gauge (C,n)) 
    * (i1,k)))) 
    \/ ( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i1,k)),(( 
    Gauge (C,n)) 
    * (i2,k))))) 
    meets ( 
    Upper_Arc C) 
    
    proof
    
      let C be
    Simple_closed_curve;
    
      let i1,i2,j,k be
    Nat;
    
      set G = (
    Gauge (C,n)); 
    
      set pio = (
    LSeg ((G 
    * (i1,j)),(G 
    * (i1,k)))); 
    
      set poz = (
    LSeg ((G 
    * (i1,k)),(G 
    * (i2,k)))); 
    
      set US = (
    Upper_Seq (C,n)); 
    
      set LS = (
    Lower_Seq (C,n)); 
    
      assume that
    
      
    
    A1: 1 
    < i1 and 
    
      
    
    A2: i1 
    <= i2 and 
    
      
    
    A3: i2 
    < ( 
    len G) and 
    
      
    
    A4: 1 
    <= j and 
    
      
    
    A5: j 
    <= k and 
    
      
    
    A6: k 
    <= ( 
    width G) and 
    
      
    
    A7: ((pio 
    \/ poz) 
    /\ ( 
    L~ US)) 
    =  
    {(G
    * (i1,j))} and 
    
      
    
    A8: ((pio 
    \/ poz) 
    /\ ( 
    L~ LS)) 
    =  
    {(G
    * (i2,k))} and 
    
      
    
    A9: (pio 
    \/ poz) 
    misses ( 
    Upper_Arc C); 
    
      set UA = (
    Upper_Arc C); 
    
      set Wmin = (
    W-min ( 
    L~ ( 
    Cage (C,n)))); 
    
      set Emax = (
    E-max ( 
    L~ ( 
    Cage (C,n)))); 
    
      set Wbo = (
    W-bound ( 
    L~ ( 
    Cage (C,n)))); 
    
      set Ebo = (
    E-bound ( 
    L~ ( 
    Cage (C,n)))); 
    
      set Gik = (G
    * (i2,k)); 
    
      set Gij = (G
    * (i1,j)); 
    
      set Gi1k = (G
    * (i1,k)); 
    
      
    
      
    
    A10: i1 
    < ( 
    len G) by 
    A2,
    A3,
    XXREAL_0: 2;
    
      
    
      
    
    A11: 1 
    < i2 by 
    A1,
    A2,
    XXREAL_0: 2;
    
      
    
      
    
    A12: ( 
    L~  
    <*Gij, Gi1k, Gik*>)
    = (poz 
    \/ pio) by 
    TOPREAL3: 16;
    
      Gik
    in  
    {Gik} by
    TARSKI:def 1;
    
      then
    
      
    
    A13: Gik 
    in ( 
    L~ LS) by 
    A8,
    XBOOLE_0:def 4;
    
      Gij
    in  
    {Gij} by
    TARSKI:def 1;
    
      then
    
      
    
    A14: Gij 
    in ( 
    L~ US) by 
    A7,
    XBOOLE_0:def 4;
    
      
    
      
    
    A15: j 
    <= ( 
    width G) by 
    A5,
    A6,
    XXREAL_0: 2;
    
      
    
      
    
    A16: 1 
    <= k by 
    A4,
    A5,
    XXREAL_0: 2;
    
      
    
      
    
    A17: 
    [i1, j]
    in ( 
    Indices G) by 
    A1,
    A4,
    A10,
    A15,
    MATRIX_0: 30;
    
      
    
      
    
    A18: 
    [i2, k]
    in ( 
    Indices G) by 
    A3,
    A6,
    A11,
    A16,
    MATRIX_0: 30;
    
      
    
      
    
    A19: 
    [i1, k]
    in ( 
    Indices G) by 
    A1,
    A6,
    A10,
    A16,
    MATRIX_0: 30;
    
      set go = (
    R_Cut (US,Gij)); 
    
      set co = (
    L_Cut (LS,Gik)); 
    
      
    
      
    
    A20: ( 
    len G) 
    = ( 
    width G) by 
    JORDAN8:def 1;
    
      
    
      
    
    A21: ( 
    len US) 
    >= 3 by 
    JORDAN1E: 15;
    
      then (
    len US) 
    >= 1 by 
    XXREAL_0: 2;
    
      then 1
    in ( 
    dom US) by 
    FINSEQ_3: 25;
    
      
    
      then
    
      
    
    A22: (US 
    . 1) 
    = (US 
    /. 1) by 
    PARTFUN1:def 6
    
      .= Wmin by
    JORDAN1F: 5;
    
      
    
      
    
    A23: (Wmin 
    `1 ) 
    = Wbo by 
    EUCLID: 52
    
      .= ((G
    * (1,k)) 
    `1 ) by 
    A6,
    A16,
    A20,
    JORDAN1A: 73;
    
      (
    len G) 
    >= 4 by 
    JORDAN8: 10;
    
      then
    
      
    
    A24: ( 
    len G) 
    >= 1 by 
    XXREAL_0: 2;
    
      then
    
      
    
    A25: 
    [1, k]
    in ( 
    Indices G) by 
    A6,
    A16,
    MATRIX_0: 30;
    
      then
    
      
    
    A26: Gij 
    <> (US 
    . 1) by 
    A1,
    A17,
    A22,
    A23,
    JORDAN1G: 7;
    
      then
    
      reconsider go as
    being_S-Seq  
    FinSequence of ( 
    TOP-REAL 2) by 
    A14,
    JORDAN3: 35;
    
      
    
      
    
    A27: 
    [1, j]
    in ( 
    Indices G) by 
    A4,
    A15,
    A24,
    MATRIX_0: 30;
    
      
    
      
    
    A28: ( 
    len LS) 
    >= (1 
    + 2) by 
    JORDAN1E: 15;
    
      then
    
      
    
    A29: ( 
    len LS) 
    >= 1 by 
    XXREAL_0: 2;
    
      then
    
      
    
    A30: 1 
    in ( 
    dom LS) by 
    FINSEQ_3: 25;
    
      (
    len LS) 
    in ( 
    dom LS) by 
    A29,
    FINSEQ_3: 25;
    
      
    
      then
    
      
    
    A31: (LS 
    . ( 
    len LS)) 
    = (LS 
    /. ( 
    len LS)) by 
    PARTFUN1:def 6
    
      .= Wmin by
    JORDAN1F: 8;
    
      (Wmin
    `1 ) 
    = Wbo by 
    EUCLID: 52
    
      .= ((G
    * (1,k)) 
    `1 ) by 
    A6,
    A16,
    A20,
    JORDAN1A: 73;
    
      then
    
      
    
    A32: Gik 
    <> (LS 
    . ( 
    len LS)) by 
    A1,
    A2,
    A18,
    A25,
    A31,
    JORDAN1G: 7;
    
      then
    
      reconsider co as
    being_S-Seq  
    FinSequence of ( 
    TOP-REAL 2) by 
    A13,
    JORDAN3: 34;
    
      
    
      
    
    A33: 
    [(
    len G), k] 
    in ( 
    Indices G) by 
    A6,
    A16,
    A24,
    MATRIX_0: 30;
    
      
    
      
    
    A34: (LS 
    . 1) 
    = (LS 
    /. 1) by 
    A30,
    PARTFUN1:def 6
    
      .= Emax by
    JORDAN1F: 6;
    
      (Emax
    `1 ) 
    = Ebo by 
    EUCLID: 52
    
      .= ((G
    * (( 
    len G),k)) 
    `1 ) by 
    A6,
    A16,
    A20,
    JORDAN1A: 71;
    
      then
    
      
    
    A35: Gik 
    <> (LS 
    . 1) by 
    A3,
    A18,
    A33,
    A34,
    JORDAN1G: 7;
    
      
    
      
    
    A36: ( 
    len go) 
    >= (1 
    + 1) by 
    TOPREAL1:def 8;
    
      
    
      
    
    A37: Gij 
    in ( 
    rng US) by 
    A1,
    A4,
    A10,
    A14,
    A15,
    JORDAN1G: 4,
    JORDAN1J: 40;
    
      then
    
      
    
    A38: go 
    is_sequence_on G by 
    JORDAN1G: 4,
    JORDAN1J: 38;
    
      
    
      
    
    A39: ( 
    len co) 
    >= (1 
    + 1) by 
    TOPREAL1:def 8;
    
      
    
      
    
    A40: Gik 
    in ( 
    rng LS) by 
    A3,
    A6,
    A11,
    A13,
    A16,
    JORDAN1G: 5,
    JORDAN1J: 40;
    
      then
    
      
    
    A41: co 
    is_sequence_on G by 
    JORDAN1G: 5,
    JORDAN1J: 39;
    
      reconsider go as non
    constant
    s.c.c.
    being_S-Seq  
    FinSequence of ( 
    TOP-REAL 2) by 
    A36,
    A38,
    JGRAPH_1: 12,
    JORDAN8: 5;
    
      reconsider co as non
    constant
    s.c.c.
    being_S-Seq  
    FinSequence of ( 
    TOP-REAL 2) by 
    A39,
    A41,
    JGRAPH_1: 12,
    JORDAN8: 5;
    
      
    
      
    
    A42: ( 
    len go) 
    > 1 by 
    A36,
    NAT_1: 13;
    
      then
    
      
    
    A43: ( 
    len go) 
    in ( 
    dom go) by 
    FINSEQ_3: 25;
    
      
    
      then
    
      
    
    A44: (go 
    /. ( 
    len go)) 
    = (go 
    . ( 
    len go)) by 
    PARTFUN1:def 6
    
      .= Gij by
    A14,
    JORDAN3: 24;
    
      (
    len co) 
    >= 1 by 
    A39,
    XXREAL_0: 2;
    
      then 1
    in ( 
    dom co) by 
    FINSEQ_3: 25;
    
      
    
      then
    
      
    
    A45: (co 
    /. 1) 
    = (co 
    . 1) by 
    PARTFUN1:def 6
    
      .= Gik by
    A13,
    JORDAN3: 23;
    
      reconsider m = ((
    len go) 
    - 1) as 
    Nat by 
    A43,
    FINSEQ_3: 26;
    
      
    
      
    
    A46: (m 
    + 1) 
    = ( 
    len go); 
    
      then
    
      
    
    A47: (( 
    len go) 
    -' 1) 
    = m by 
    NAT_D: 34;
    
      
    
      
    
    A48: ( 
    LSeg (go,m)) 
    c= ( 
    L~ go) by 
    TOPREAL3: 19;
    
      
    
      
    
    A49: ( 
    L~ go) 
    c= ( 
    L~ US) by 
    A14,
    JORDAN3: 41;
    
      then (
    LSeg (go,m)) 
    c= ( 
    L~ US) by 
    A48;
    
      then
    
      
    
    A50: (( 
    LSeg (go,m)) 
    /\ ( 
    L~  
    <*Gij, Gi1k, Gik*>))
    c=  
    {Gij} by
    A7,
    A12,
    XBOOLE_1: 26;
    
      m
    >= 1 by 
    A36,
    XREAL_1: 19;
    
      then
    
      
    
    A51: ( 
    LSeg (go,m)) 
    = ( 
    LSeg ((go 
    /. m),Gij)) by 
    A44,
    A46,
    TOPREAL1:def 3;
    
      
    {Gij}
    c= (( 
    LSeg (go,m)) 
    /\ ( 
    L~  
    <*Gij, Gi1k, Gik*>))
    
      proof
    
        let x be
    object;
    
        assume x
    in  
    {Gij};
    
        then
    
        
    
    A52: x 
    = Gij by 
    TARSKI:def 1;
    
        
    
        
    
    A53: Gij 
    in ( 
    LSeg (go,m)) by 
    A51,
    RLTOPSP1: 68;
    
        Gij
    in ( 
    LSeg (Gij,Gi1k)) by 
    RLTOPSP1: 68;
    
        then Gij
    in (( 
    LSeg (Gij,Gi1k)) 
    \/ ( 
    LSeg (Gi1k,Gik))) by 
    XBOOLE_0:def 3;
    
        then Gij
    in ( 
    L~  
    <*Gij, Gi1k, Gik*>) by
    SPRECT_1: 8;
    
        hence thesis by
    A52,
    A53,
    XBOOLE_0:def 4;
    
      end;
    
      then
    
      
    
    A54: (( 
    LSeg (go,m)) 
    /\ ( 
    L~  
    <*Gij, Gi1k, Gik*>))
    =  
    {Gij} by
    A50;
    
      
    
      
    
    A55: ( 
    LSeg (co,1)) 
    c= ( 
    L~ co) by 
    TOPREAL3: 19;
    
      
    
      
    
    A56: ( 
    L~ co) 
    c= ( 
    L~ LS) by 
    A13,
    JORDAN3: 42;
    
      then (
    LSeg (co,1)) 
    c= ( 
    L~ LS) by 
    A55;
    
      then
    
      
    
    A57: (( 
    LSeg (co,1)) 
    /\ ( 
    L~  
    <*Gij, Gi1k, Gik*>))
    c=  
    {Gik} by
    A8,
    A12,
    XBOOLE_1: 26;
    
      
    
      
    
    A58: ( 
    LSeg (co,1)) 
    = ( 
    LSeg (Gik,(co 
    /. (1 
    + 1)))) by 
    A39,
    A45,
    TOPREAL1:def 3;
    
      
    {Gik}
    c= (( 
    LSeg (co,1)) 
    /\ ( 
    L~  
    <*Gij, Gi1k, Gik*>))
    
      proof
    
        let x be
    object;
    
        assume x
    in  
    {Gik};
    
        then
    
        
    
    A59: x 
    = Gik by 
    TARSKI:def 1;
    
        
    
        
    
    A60: Gik 
    in ( 
    LSeg (co,1)) by 
    A58,
    RLTOPSP1: 68;
    
        Gik
    in ( 
    LSeg (Gi1k,Gik)) by 
    RLTOPSP1: 68;
    
        then Gik
    in (( 
    LSeg (Gij,Gi1k)) 
    \/ ( 
    LSeg (Gi1k,Gik))) by 
    XBOOLE_0:def 3;
    
        then Gik
    in ( 
    L~  
    <*Gij, Gi1k, Gik*>) by
    SPRECT_1: 8;
    
        hence thesis by
    A59,
    A60,
    XBOOLE_0:def 4;
    
      end;
    
      then
    
      
    
    A61: (( 
    L~  
    <*Gij, Gi1k, Gik*>)
    /\ ( 
    LSeg (co,1))) 
    =  
    {Gik} by
    A57;
    
      
    
      
    
    A62: (go 
    /. 1) 
    = (US 
    /. 1) by 
    A14,
    SPRECT_3: 22
    
      .= Wmin by
    JORDAN1F: 5;
    
      
    
      then
    
      
    
    A63: (go 
    /. 1) 
    = (LS 
    /. ( 
    len LS)) by 
    JORDAN1F: 8
    
      .= (co
    /. ( 
    len co)) by 
    A13,
    JORDAN1J: 35;
    
      
    
      
    
    A64: ( 
    rng go) 
    c= ( 
    L~ go) by 
    A36,
    SPPOL_2: 18;
    
      
    
      
    
    A65: ( 
    rng co) 
    c= ( 
    L~ co) by 
    A39,
    SPPOL_2: 18;
    
      
    
      
    
    A66: 
    {(go
    /. 1)} 
    c= (( 
    L~ go) 
    /\ ( 
    L~ co)) 
    
      proof
    
        let x be
    object;
    
        assume x
    in  
    {(go
    /. 1)}; 
    
        then
    
        
    
    A67: x 
    = (go 
    /. 1) by 
    TARSKI:def 1;
    
        then
    
        
    
    A68: x 
    in ( 
    rng go) by 
    FINSEQ_6: 42;
    
        x
    in ( 
    rng co) by 
    A63,
    A67,
    FINSEQ_6: 168;
    
        hence thesis by
    A64,
    A65,
    A68,
    XBOOLE_0:def 4;
    
      end;
    
      
    
      
    
    A69: (LS 
    . 1) 
    = (LS 
    /. 1) by 
    A30,
    PARTFUN1:def 6
    
      .= Emax by
    JORDAN1F: 6;
    
      
    
      
    
    A70: 
    [(
    len G), j] 
    in ( 
    Indices G) by 
    A4,
    A15,
    A24,
    MATRIX_0: 30;
    
      ((
    L~ go) 
    /\ ( 
    L~ co)) 
    c=  
    {(go
    /. 1)} 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A71: x 
    in (( 
    L~ go) 
    /\ ( 
    L~ co)); 
    
        then
    
        
    
    A72: x 
    in ( 
    L~ go) by 
    XBOOLE_0:def 4;
    
        
    
        
    
    A73: x 
    in ( 
    L~ co) by 
    A71,
    XBOOLE_0:def 4;
    
        then x
    in (( 
    L~ US) 
    /\ ( 
    L~ LS)) by 
    A49,
    A56,
    A72,
    XBOOLE_0:def 4;
    
        then x
    in  
    {Wmin, Emax} by
    JORDAN1E: 16;
    
        then
    
        
    
    A74: x 
    = Wmin or x 
    = Emax by 
    TARSKI:def 2;
    
        now
    
          assume x
    = Emax; 
    
          then
    
          
    
    A75: Emax 
    = Gik by 
    A13,
    A69,
    A73,
    JORDAN1E: 7;
    
          ((G
    * (( 
    len G),j)) 
    `1 ) 
    = Ebo by 
    A4,
    A15,
    A20,
    JORDAN1A: 71;
    
          then (Emax
    `1 ) 
    <> Ebo by 
    A3,
    A18,
    A70,
    A75,
    JORDAN1G: 7;
    
          hence contradiction by
    EUCLID: 52;
    
        end;
    
        hence thesis by
    A62,
    A74,
    TARSKI:def 1;
    
      end;
    
      then
    
      
    
    A76: (( 
    L~ go) 
    /\ ( 
    L~ co)) 
    =  
    {(go
    /. 1)} by 
    A66;
    
      set W2 = (go
    /. 2); 
    
      
    
      
    
    A77: 2 
    in ( 
    dom go) by 
    A36,
    FINSEQ_3: 25;
    
      
    
    A78: 
    
      now
    
        assume (Gij
    `1 ) 
    = Wbo; 
    
        then ((G
    * (1,j)) 
    `1 ) 
    = ((G 
    * (i1,j)) 
    `1 ) by 
    A4,
    A15,
    A20,
    JORDAN1A: 73;
    
        hence contradiction by
    A1,
    A17,
    A27,
    JORDAN1G: 7;
    
      end;
    
      go
    = ( 
    mid (US,1,(Gij 
    .. US))) by 
    A37,
    JORDAN1G: 49
    
      .= (US
    | (Gij 
    .. US)) by 
    A37,
    FINSEQ_4: 21,
    FINSEQ_6: 116;
    
      then
    
      
    
    A79: W2 
    = (US 
    /. 2) by 
    A77,
    FINSEQ_4: 70;
    
      
    
      
    
    A80: Wmin 
    in ( 
    rng go) by 
    A62,
    FINSEQ_6: 42;
    
      set pion =
    <*Gij, Gi1k, Gik*>;
    
      
    
    A81: 
    
      now
    
        let n be
    Nat;
    
        assume n
    in ( 
    dom pion); 
    
        then n
    in  
    {1, 2, 3} by
    FINSEQ_1: 89,
    FINSEQ_3: 1;
    
        then n
    = 1 or n 
    = 2 or n 
    = 3 by 
    ENUMSET1:def 1;
    
        hence ex i,j be
    Nat st 
    [i, j]
    in ( 
    Indices G) & (pion 
    /. n) 
    = (G 
    * (i,j)) by 
    A17,
    A18,
    A19,
    FINSEQ_4: 18;
    
      end;
    
      
    
      
    
    A82: (Gi1k 
    `1 ) 
    = ((G 
    * (i1,1)) 
    `1 ) by 
    A1,
    A6,
    A10,
    A16,
    GOBOARD5: 2
    
      .= (Gij
    `1 ) by 
    A1,
    A4,
    A10,
    A15,
    GOBOARD5: 2;
    
      (Gi1k
    `2 ) 
    = ((G 
    * (1,k)) 
    `2 ) by 
    A1,
    A6,
    A10,
    A16,
    GOBOARD5: 1
    
      .= (Gik
    `2 ) by 
    A3,
    A6,
    A11,
    A16,
    GOBOARD5: 1;
    
      then
    
      
    
    A83: Gi1k 
    =  
    |[(Gij
    `1 ), (Gik 
    `2 )]| by 
    A82,
    EUCLID: 53;
    
      
    
      
    
    A84: Gi1k 
    in pio by 
    RLTOPSP1: 68;
    
      
    
      
    
    A85: Gi1k 
    in poz by 
    RLTOPSP1: 68;
    
      now
    
        per cases ;
    
          suppose (Gik
    `1 ) 
    <> (Gij 
    `1 ) & (Gik 
    `2 ) 
    <> (Gij 
    `2 ); 
    
          then pion is
    being_S-Seq by 
    A83,
    TOPREAL3: 34;
    
          then
    
          consider pion1 be
    FinSequence of ( 
    TOP-REAL 2) such that 
    
          
    
    A86: pion1 
    is_sequence_on G and 
    
          
    
    A87: pion1 is 
    being_S-Seq and 
    
          
    
    A88: ( 
    L~ pion) 
    = ( 
    L~ pion1) and 
    
          
    
    A89: (pion 
    /. 1) 
    = (pion1 
    /. 1) and 
    
          
    
    A90: (pion 
    /. ( 
    len pion)) 
    = (pion1 
    /. ( 
    len pion1)) and 
    
          
    
    A91: ( 
    len pion) 
    <= ( 
    len pion1) by 
    A81,
    GOBOARD3: 2;
    
          reconsider pion1 as
    being_S-Seq  
    FinSequence of ( 
    TOP-REAL 2) by 
    A87;
    
          set godo = ((go
    ^' pion1) 
    ^' co); 
    
          
    
          
    
    A92: (Gi1k 
    `1 ) 
    = ((G 
    * (i1,1)) 
    `1 ) by 
    A1,
    A6,
    A10,
    A16,
    GOBOARD5: 2
    
          .= (Gij
    `1 ) by 
    A1,
    A4,
    A10,
    A15,
    GOBOARD5: 2;
    
          
    
          
    
    A93: (Gi1k 
    `1 ) 
    <= (Gik 
    `1 ) by 
    A1,
    A2,
    A3,
    A6,
    A16,
    JORDAN1A: 18;
    
          then
    
          
    
    A94: ( 
    W-bound poz) 
    = (Gi1k 
    `1 ) by 
    SPRECT_1: 54;
    
          
    
          
    
    A95: ( 
    W-bound pio) 
    = (Gij 
    `1 ) by 
    A92,
    SPRECT_1: 54;
    
          (
    W-bound (poz 
    \/ pio)) 
    = ( 
    min (( 
    W-bound poz),( 
    W-bound pio))) by 
    SPRECT_1: 47
    
          .= (Gij
    `1 ) by 
    A92,
    A94,
    A95;
    
          then
    
          
    
    A96: ( 
    W-bound ( 
    L~ pion1)) 
    = (Gij 
    `1 ) by 
    A88,
    TOPREAL3: 16;
    
          
    
          
    
    A97: (1 
    + 1) 
    <= ( 
    len ( 
    Cage (C,n))) by 
    GOBOARD7: 34,
    XXREAL_0: 2;
    
          
    
          
    
    A98: (1 
    + 1) 
    <= ( 
    len ( 
    Rotate (( 
    Cage (C,n)),Wmin))) by 
    GOBOARD7: 34,
    XXREAL_0: 2;
    
          (
    len (go 
    ^' pion1)) 
    >= ( 
    len go) by 
    TOPREAL8: 7;
    
          then
    
          
    
    A99: ( 
    len (go 
    ^' pion1)) 
    >= (1 
    + 1) by 
    A36,
    XXREAL_0: 2;
    
          then
    
          
    
    A100: ( 
    len (go 
    ^' pion1)) 
    > (1 
    +  
    0 ) by 
    NAT_1: 13;
    
          
    
          
    
    A101: ( 
    len godo) 
    >= ( 
    len (go 
    ^' pion1)) by 
    TOPREAL8: 7;
    
          then
    
          
    
    A102: (1 
    + 1) 
    <= ( 
    len godo) by 
    A99,
    XXREAL_0: 2;
    
          
    
          
    
    A103: US 
    is_sequence_on G by 
    JORDAN1G: 4;
    
          
    
          
    
    A104: (go 
    /. ( 
    len go)) 
    = (pion1 
    /. 1) by 
    A44,
    A89,
    FINSEQ_4: 18;
    
          then
    
          
    
    A105: (go 
    ^' pion1) 
    is_sequence_on G by 
    A38,
    A86,
    TOPREAL8: 12;
    
          
    
          
    
    A106: ((go 
    ^' pion1) 
    /. ( 
    len (go 
    ^' pion1))) 
    = (pion 
    /. ( 
    len pion)) by 
    A90,
    FINSEQ_6: 156
    
          .= (pion
    /. 3) by 
    FINSEQ_1: 45
    
          .= (co
    /. 1) by 
    A45,
    FINSEQ_4: 18;
    
          then
    
          
    
    A107: godo 
    is_sequence_on G by 
    A41,
    A105,
    TOPREAL8: 12;
    
          (
    LSeg (pion1,1)) 
    c= ( 
    L~ pion) by 
    A88,
    TOPREAL3: 19;
    
          then
    
          
    
    A108: (( 
    LSeg (go,(( 
    len go) 
    -' 1))) 
    /\ ( 
    LSeg (pion1,1))) 
    c=  
    {Gij} by
    A47,
    A54,
    XBOOLE_1: 27;
    
          (
    len pion1) 
    >= (2 
    + 1) by 
    A91,
    FINSEQ_1: 45;
    
          then
    
          
    
    A109: ( 
    len pion1) 
    > (1 
    + 1) by 
    NAT_1: 13;
    
          
    {Gij}
    c= (( 
    LSeg (go,m)) 
    /\ ( 
    LSeg (pion1,1))) 
    
          proof
    
            let x be
    object;
    
            assume x
    in  
    {Gij};
    
            then
    
            
    
    A110: x 
    = Gij by 
    TARSKI:def 1;
    
            
    
            
    
    A111: Gij 
    in ( 
    LSeg (go,m)) by 
    A51,
    RLTOPSP1: 68;
    
            Gij
    in ( 
    LSeg (pion1,1)) by 
    A44,
    A104,
    A109,
    TOPREAL1: 21;
    
            hence thesis by
    A110,
    A111,
    XBOOLE_0:def 4;
    
          end;
    
          then ((
    LSeg (go,(( 
    len go) 
    -' 1))) 
    /\ ( 
    LSeg (pion1,1))) 
    =  
    {(go
    /. ( 
    len go))} by 
    A44,
    A47,
    A108;
    
          then
    
          
    
    A112: (go 
    ^' pion1) is 
    unfolded by 
    A104,
    TOPREAL8: 34;
    
          (
    len pion1) 
    >= (2 
    + 1) by 
    A91,
    FINSEQ_1: 45;
    
          then
    
          
    
    A113: (( 
    len pion1) 
    - 2) 
    >=  
    0 by 
    XREAL_1: 19;
    
          (((
    len (go 
    ^' pion1)) 
    + 1) 
    - 1) 
    = ((( 
    len go) 
    + ( 
    len pion1)) 
    - 1) by 
    FINSEQ_6: 139;
    
          
    
          then ((
    len (go 
    ^' pion1)) 
    - 1) 
    = (( 
    len go) 
    + (( 
    len pion1) 
    - 2)) 
    
          .= ((
    len go) 
    + (( 
    len pion1) 
    -' 2)) by 
    A113,
    XREAL_0:def 2;
    
          then
    
          
    
    A114: (( 
    len (go 
    ^' pion1)) 
    -' 1) 
    = (( 
    len go) 
    + (( 
    len pion1) 
    -' 2)) by 
    XREAL_0:def 2;
    
          
    
          
    
    A115: (( 
    len pion1) 
    - 1) 
    >= 1 by 
    A109,
    XREAL_1: 19;
    
          then
    
          
    
    A116: (( 
    len pion1) 
    -' 1) 
    = (( 
    len pion1) 
    - 1) by 
    XREAL_0:def 2;
    
          
    
          
    
    A117: ((( 
    len pion1) 
    -' 2) 
    + 1) 
    = ((( 
    len pion1) 
    - 2) 
    + 1) by 
    A113,
    XREAL_0:def 2
    
          .= ((
    len pion1) 
    -' 1) by 
    A115,
    XREAL_0:def 2;
    
          (((
    len pion1) 
    - 1) 
    + 1) 
    <= ( 
    len pion1); 
    
          then
    
          
    
    A118: (( 
    len pion1) 
    -' 1) 
    < ( 
    len pion1) by 
    A116,
    NAT_1: 13;
    
          (
    LSeg (pion1,(( 
    len pion1) 
    -' 1))) 
    c= ( 
    L~ pion) by 
    A88,
    TOPREAL3: 19;
    
          then
    
          
    
    A119: (( 
    LSeg (pion1,(( 
    len pion1) 
    -' 1))) 
    /\ ( 
    LSeg (co,1))) 
    c=  
    {Gik} by
    A61,
    XBOOLE_1: 27;
    
          
    {Gik}
    c= (( 
    LSeg (pion1,(( 
    len pion1) 
    -' 1))) 
    /\ ( 
    LSeg (co,1))) 
    
          proof
    
            let x be
    object;
    
            assume x
    in  
    {Gik};
    
            then
    
            
    
    A120: x 
    = Gik by 
    TARSKI:def 1;
    
            
    
            
    
    A121: Gik 
    in ( 
    LSeg (co,1)) by 
    A58,
    RLTOPSP1: 68;
    
            (pion1
    /. ((( 
    len pion1) 
    -' 1) 
    + 1)) 
    = (pion 
    /. 3) by 
    A90,
    A116,
    FINSEQ_1: 45
    
            .= Gik by
    FINSEQ_4: 18;
    
            then Gik
    in ( 
    LSeg (pion1,(( 
    len pion1) 
    -' 1))) by 
    A115,
    A116,
    TOPREAL1: 21;
    
            hence thesis by
    A120,
    A121,
    XBOOLE_0:def 4;
    
          end;
    
          then ((
    LSeg (pion1,(( 
    len pion1) 
    -' 1))) 
    /\ ( 
    LSeg (co,1))) 
    =  
    {Gik} by
    A119;
    
          then
    
          
    
    A122: (( 
    LSeg ((go 
    ^' pion1),(( 
    len go) 
    + (( 
    len pion1) 
    -' 2)))) 
    /\ ( 
    LSeg (co,1))) 
    =  
    {((go
    ^' pion1) 
    /. ( 
    len (go 
    ^' pion1)))} by 
    A45,
    A104,
    A106,
    A117,
    A118,
    TOPREAL8: 31;
    
          
    
          
    
    A123: (go 
    ^' pion1) is non 
    trivial by 
    A99,
    NAT_D: 60;
    
          
    
          
    
    A124: ( 
    rng pion1) 
    c= ( 
    L~ pion1) by 
    A109,
    SPPOL_2: 18;
    
          
    
          
    
    A125: 
    {(pion1
    /. 1)} 
    c= (( 
    L~ go) 
    /\ ( 
    L~ pion1)) 
    
          proof
    
            let x be
    object;
    
            assume x
    in  
    {(pion1
    /. 1)}; 
    
            then
    
            
    
    A126: x 
    = (pion1 
    /. 1) by 
    TARSKI:def 1;
    
            then
    
            
    
    A127: x 
    in ( 
    rng go) by 
    A104,
    FINSEQ_6: 168;
    
            x
    in ( 
    rng pion1) by 
    A126,
    FINSEQ_6: 42;
    
            hence thesis by
    A64,
    A124,
    A127,
    XBOOLE_0:def 4;
    
          end;
    
          ((
    L~ go) 
    /\ ( 
    L~ pion1)) 
    c=  
    {(pion1
    /. 1)} 
    
          proof
    
            let x be
    object;
    
            assume
    
            
    
    A128: x 
    in (( 
    L~ go) 
    /\ ( 
    L~ pion1)); 
    
            then
    
            
    
    A129: x 
    in ( 
    L~ go) by 
    XBOOLE_0:def 4;
    
            x
    in ( 
    L~ pion1) by 
    A128,
    XBOOLE_0:def 4;
    
            hence thesis by
    A7,
    A12,
    A44,
    A49,
    A88,
    A104,
    A129,
    XBOOLE_0:def 4;
    
          end;
    
          then
    
          
    
    A130: (( 
    L~ go) 
    /\ ( 
    L~ pion1)) 
    =  
    {(pion1
    /. 1)} by 
    A125;
    
          then
    
          
    
    A131: (go 
    ^' pion1) is 
    s.n.c. by 
    A104,
    JORDAN1J: 54;
    
          ((
    rng go) 
    /\ ( 
    rng pion1)) 
    c=  
    {(pion1
    /. 1)} by 
    A64,
    A124,
    A130,
    XBOOLE_1: 27;
    
          then
    
          
    
    A132: (go 
    ^' pion1) is 
    one-to-one by 
    JORDAN1J: 55;
    
          
    
          
    
    A133: (pion 
    /. ( 
    len pion)) 
    = (pion 
    /. 3) by 
    FINSEQ_1: 45
    
          .= (co
    /. 1) by 
    A45,
    FINSEQ_4: 18;
    
          
    
          
    
    A134: 
    {(pion1
    /. ( 
    len pion1))} 
    c= (( 
    L~ co) 
    /\ ( 
    L~ pion1)) 
    
          proof
    
            let x be
    object;
    
            assume x
    in  
    {(pion1
    /. ( 
    len pion1))}; 
    
            then
    
            
    
    A135: x 
    = (pion1 
    /. ( 
    len pion1)) by 
    TARSKI:def 1;
    
            then
    
            
    
    A136: x 
    in ( 
    rng co) by 
    A90,
    A133,
    FINSEQ_6: 42;
    
            x
    in ( 
    rng pion1) by 
    A135,
    FINSEQ_6: 168;
    
            hence thesis by
    A65,
    A124,
    A136,
    XBOOLE_0:def 4;
    
          end;
    
          ((
    L~ co) 
    /\ ( 
    L~ pion1)) 
    c=  
    {(pion1
    /. ( 
    len pion1))} 
    
          proof
    
            let x be
    object;
    
            assume
    
            
    
    A137: x 
    in (( 
    L~ co) 
    /\ ( 
    L~ pion1)); 
    
            then
    
            
    
    A138: x 
    in ( 
    L~ co) by 
    XBOOLE_0:def 4;
    
            x
    in ( 
    L~ pion1) by 
    A137,
    XBOOLE_0:def 4;
    
            hence thesis by
    A8,
    A12,
    A45,
    A56,
    A88,
    A90,
    A133,
    A138,
    XBOOLE_0:def 4;
    
          end;
    
          then
    
          
    
    A139: (( 
    L~ co) 
    /\ ( 
    L~ pion1)) 
    =  
    {(pion1
    /. ( 
    len pion1))} by 
    A134;
    
          
    
          
    
    A140: (( 
    L~ (go 
    ^' pion1)) 
    /\ ( 
    L~ co)) 
    = ((( 
    L~ go) 
    \/ ( 
    L~ pion1)) 
    /\ ( 
    L~ co)) by 
    A104,
    TOPREAL8: 35
    
          .= (
    {(go
    /. 1)} 
    \/  
    {(co
    /. 1)}) by 
    A76,
    A90,
    A133,
    A139,
    XBOOLE_1: 23
    
          .= (
    {((go
    ^' pion1) 
    /. 1)} 
    \/  
    {(co
    /. 1)}) by 
    FINSEQ_6: 155
    
          .=
    {((go
    ^' pion1) 
    /. 1), (co 
    /. 1)} by 
    ENUMSET1: 1;
    
          (co
    /. ( 
    len co)) 
    = ((go 
    ^' pion1) 
    /. 1) by 
    A63,
    FINSEQ_6: 155;
    
          then
    
          reconsider godo as non
    constant
    standard  
    special_circular_sequence by 
    A102,
    A106,
    A107,
    A112,
    A114,
    A122,
    A123,
    A131,
    A132,
    A140,
    JORDAN8: 4,
    JORDAN8: 5,
    TOPREAL8: 11,
    TOPREAL8: 33,
    TOPREAL8: 34;
    
          
    
          
    
    A141: UA 
    is_an_arc_of (( 
    W-min C),( 
    E-max C)) by 
    JORDAN6:def 8;
    
          then
    
          
    
    A142: UA is 
    connected by 
    JORDAN6: 10;
    
          
    
          
    
    A143: ( 
    W-min C) 
    in UA by 
    A141,
    TOPREAL1: 1;
    
          
    
          
    
    A144: ( 
    E-max C) 
    in UA by 
    A141,
    TOPREAL1: 1;
    
          set ff = (
    Rotate (( 
    Cage (C,n)),Wmin)); 
    
          Wmin
    in ( 
    rng ( 
    Cage (C,n))) by 
    SPRECT_2: 43;
    
          then
    
          
    
    A145: (ff 
    /. 1) 
    = Wmin by 
    FINSEQ_6: 92;
    
          
    
          
    
    A146: ( 
    L~ ff) 
    = ( 
    L~ ( 
    Cage (C,n))) by 
    REVROT_1: 33;
    
          then ((
    W-max ( 
    L~ ff)) 
    .. ff) 
    > 1 by 
    A145,
    SPRECT_5: 22;
    
          then ((
    N-min ( 
    L~ ff)) 
    .. ff) 
    > 1 by 
    A145,
    A146,
    SPRECT_5: 23,
    XXREAL_0: 2;
    
          then ((
    N-max ( 
    L~ ff)) 
    .. ff) 
    > 1 by 
    A145,
    A146,
    SPRECT_5: 24,
    XXREAL_0: 2;
    
          then
    
          
    
    A147: (Emax 
    .. ff) 
    > 1 by 
    A145,
    A146,
    SPRECT_5: 25,
    XXREAL_0: 2;
    
          
    
    A148: 
    
          now
    
            assume
    
            
    
    A149: (Gij 
    .. US) 
    <= 1; 
    
            (Gij
    .. US) 
    >= 1 by 
    A37,
    FINSEQ_4: 21;
    
            then (Gij
    .. US) 
    = 1 by 
    A149,
    XXREAL_0: 1;
    
            then Gij
    = (US 
    /. 1) by 
    A37,
    FINSEQ_5: 38;
    
            hence contradiction by
    A22,
    A26,
    JORDAN1F: 5;
    
          end;
    
          
    
          
    
    A150: ( 
    Cage (C,n)) 
    is_sequence_on G by 
    JORDAN9:def 1;
    
          then
    
          
    
    A151: ff 
    is_sequence_on G by 
    REVROT_1: 34;
    
          
    
          
    
    A152: (( 
    right_cell (godo,1,G)) 
    \ ( 
    L~ godo)) 
    c= ( 
    RightComp godo) by 
    A102,
    A107,
    JORDAN9: 27;
    
          
    
          
    
    A153: ( 
    L~ godo) 
    = (( 
    L~ (go 
    ^' pion1)) 
    \/ ( 
    L~ co)) by 
    A106,
    TOPREAL8: 35
    
          .= (((
    L~ go) 
    \/ ( 
    L~ pion1)) 
    \/ ( 
    L~ co)) by 
    A104,
    TOPREAL8: 35;
    
          
    
          
    
    A154: ( 
    L~ ( 
    Cage (C,n))) 
    = (( 
    L~ US) 
    \/ ( 
    L~ LS)) by 
    JORDAN1E: 13;
    
          then
    
          
    
    A155: ( 
    L~ US) 
    c= ( 
    L~ ( 
    Cage (C,n))) by 
    XBOOLE_1: 7;
    
          
    
          
    
    A156: ( 
    L~ LS) 
    c= ( 
    L~ ( 
    Cage (C,n))) by 
    A154,
    XBOOLE_1: 7;
    
          
    
          
    
    A157: ( 
    L~ go) 
    c= ( 
    L~ ( 
    Cage (C,n))) by 
    A49,
    A155;
    
          
    
          
    
    A158: ( 
    L~ co) 
    c= ( 
    L~ ( 
    Cage (C,n))) by 
    A56,
    A156;
    
          
    
          
    
    A159: ( 
    W-min C) 
    in C by 
    SPRECT_1: 13;
    
          
    
    A160: 
    
          now
    
            assume (
    W-min C) 
    in ( 
    L~ godo); 
    
            then
    
            
    
    A161: ( 
    W-min C) 
    in (( 
    L~ go) 
    \/ ( 
    L~ pion1)) or ( 
    W-min C) 
    in ( 
    L~ co) by 
    A153,
    XBOOLE_0:def 3;
    
            per cases by
    A161,
    XBOOLE_0:def 3;
    
              suppose (
    W-min C) 
    in ( 
    L~ go); 
    
              then C
    meets ( 
    L~ ( 
    Cage (C,n))) by 
    A157,
    A159,
    XBOOLE_0: 3;
    
              hence contradiction by
    JORDAN10: 5;
    
            end;
    
              suppose (
    W-min C) 
    in ( 
    L~ pion1); 
    
              hence contradiction by
    A9,
    A12,
    A88,
    A143,
    XBOOLE_0: 3;
    
            end;
    
              suppose (
    W-min C) 
    in ( 
    L~ co); 
    
              then C
    meets ( 
    L~ ( 
    Cage (C,n))) by 
    A158,
    A159,
    XBOOLE_0: 3;
    
              hence contradiction by
    JORDAN10: 5;
    
            end;
    
          end;
    
          (
    right_cell (( 
    Rotate (( 
    Cage (C,n)),Wmin)),1)) 
    = ( 
    right_cell (ff,1,( 
    GoB ff))) by 
    A98,
    JORDAN1H: 23
    
          .= (
    right_cell (ff,1,( 
    GoB ( 
    Cage (C,n))))) by 
    REVROT_1: 28
    
          .= (
    right_cell (ff,1,G)) by 
    JORDAN1H: 44
    
          .= (
    right_cell ((ff 
    -: Emax),1,G)) by 
    A147,
    A151,
    JORDAN1J: 53
    
          .= (
    right_cell (US,1,G)) by 
    JORDAN1E:def 1
    
          .= (
    right_cell (( 
    R_Cut (US,Gij)),1,G)) by 
    A37,
    A103,
    A148,
    JORDAN1J: 52
    
          .= (
    right_cell ((go 
    ^' pion1),1,G)) by 
    A42,
    A105,
    JORDAN1J: 51
    
          .= (
    right_cell (godo,1,G)) by 
    A100,
    A107,
    JORDAN1J: 51;
    
          then (
    W-min C) 
    in ( 
    right_cell (godo,1,G)) by 
    JORDAN1I: 6;
    
          then
    
          
    
    A162: ( 
    W-min C) 
    in (( 
    right_cell (godo,1,G)) 
    \ ( 
    L~ godo)) by 
    A160,
    XBOOLE_0:def 5;
    
          
    
          
    
    A163: (godo 
    /. 1) 
    = ((go 
    ^' pion1) 
    /. 1) by 
    FINSEQ_6: 155
    
          .= Wmin by
    A62,
    FINSEQ_6: 155;
    
          
    
          
    
    A164: ( 
    len US) 
    >= 2 by 
    A21,
    XXREAL_0: 2;
    
          
    
          
    
    A165: (godo 
    /. 2) 
    = ((go 
    ^' pion1) 
    /. 2) by 
    A99,
    FINSEQ_6: 159
    
          .= (US
    /. 2) by 
    A36,
    A79,
    FINSEQ_6: 159
    
          .= ((US
    ^' LS) 
    /. 2) by 
    A164,
    FINSEQ_6: 159
    
          .= ((
    Rotate (( 
    Cage (C,n)),Wmin)) 
    /. 2) by 
    JORDAN1E: 11;
    
          
    
          
    
    A166: (( 
    L~ go) 
    \/ ( 
    L~ co)) is 
    compact by 
    COMPTS_1: 10;
    
          Wmin
    in (( 
    L~ go) 
    \/ ( 
    L~ co)) by 
    A64,
    A80,
    XBOOLE_0:def 3;
    
          then
    
          
    
    A167: ( 
    W-min (( 
    L~ go) 
    \/ ( 
    L~ co))) 
    = Wmin by 
    A157,
    A158,
    A166,
    JORDAN1J: 21,
    XBOOLE_1: 8;
    
          
    
          
    
    A168: (( 
    W-min (( 
    L~ go) 
    \/ ( 
    L~ co))) 
    `1 ) 
    = ( 
    W-bound (( 
    L~ go) 
    \/ ( 
    L~ co))) by 
    EUCLID: 52;
    
          
    
          
    
    A169: (Wmin 
    `1 ) 
    = Wbo by 
    EUCLID: 52;
    
          (Gij
    `1 ) 
    >= Wbo by 
    A14,
    A155,
    PSCOMP_1: 24;
    
          then (Gij
    `1 ) 
    > Wbo by 
    A78,
    XXREAL_0: 1;
    
          then (
    W-min ((( 
    L~ go) 
    \/ ( 
    L~ co)) 
    \/ ( 
    L~ pion1))) 
    = ( 
    W-min (( 
    L~ go) 
    \/ ( 
    L~ co))) by 
    A96,
    A166,
    A167,
    A168,
    A169,
    JORDAN1J: 33;
    
          then
    
          
    
    A170: ( 
    W-min ( 
    L~ godo)) 
    = Wmin by 
    A153,
    A167,
    XBOOLE_1: 4;
    
          
    
          
    
    A171: ( 
    rng godo) 
    c= ( 
    L~ godo) by 
    A99,
    A101,
    SPPOL_2: 18,
    XXREAL_0: 2;
    
          2
    in ( 
    dom godo) by 
    A102,
    FINSEQ_3: 25;
    
          then
    
          
    
    A172: (godo 
    /. 2) 
    in ( 
    rng godo) by 
    PARTFUN2: 2;
    
          (godo
    /. 2) 
    in ( 
    W-most ( 
    L~ ( 
    Cage (C,n)))) by 
    A165,
    JORDAN1I: 25;
    
          
    
          then ((godo
    /. 2) 
    `1 ) 
    = (( 
    W-min ( 
    L~ godo)) 
    `1 ) by 
    A170,
    PSCOMP_1: 31
    
          .= (
    W-bound ( 
    L~ godo)) by 
    EUCLID: 52;
    
          then (godo
    /. 2) 
    in ( 
    W-most ( 
    L~ godo)) by 
    A171,
    A172,
    SPRECT_2: 12;
    
          then ((
    Rotate (godo,( 
    W-min ( 
    L~ godo)))) 
    /. 2) 
    in ( 
    W-most ( 
    L~ godo)) by 
    A163,
    A170,
    FINSEQ_6: 89;
    
          then
    
          reconsider godo as
    clockwise_oriented non 
    constant
    standard  
    special_circular_sequence by 
    JORDAN1I: 25;
    
          (
    len US) 
    in ( 
    dom US) by 
    FINSEQ_5: 6;
    
          
    
          then
    
          
    
    A173: (US 
    . ( 
    len US)) 
    = (US 
    /. ( 
    len US)) by 
    PARTFUN1:def 6
    
          .= Emax by
    JORDAN1F: 7;
    
          
    
          
    
    A174: ( 
    east_halfline ( 
    E-max C)) 
    misses ( 
    L~ go) 
    
          proof
    
            assume (
    east_halfline ( 
    E-max C)) 
    meets ( 
    L~ go); 
    
            then
    
            consider p be
    object such that 
    
            
    
    A175: p 
    in ( 
    east_halfline ( 
    E-max C)) and 
    
            
    
    A176: p 
    in ( 
    L~ go) by 
    XBOOLE_0: 3;
    
            reconsider p as
    Point of ( 
    TOP-REAL 2) by 
    A175;
    
            p
    in ( 
    L~ US) by 
    A49,
    A176;
    
            then p
    in (( 
    east_halfline ( 
    E-max C)) 
    /\ ( 
    L~ ( 
    Cage (C,n)))) by 
    A155,
    A175,
    XBOOLE_0:def 4;
    
            then
    
            
    
    A177: (p 
    `1 ) 
    = Ebo by 
    JORDAN1A: 83,
    PSCOMP_1: 50;
    
            then
    
            
    
    A178: p 
    = Emax by 
    A49,
    A176,
    JORDAN1J: 46;
    
            then Emax
    = Gij by 
    A14,
    A173,
    A176,
    JORDAN1J: 43;
    
            then (Gij
    `1 ) 
    = ((G 
    * (( 
    len G),k)) 
    `1 ) by 
    A6,
    A16,
    A20,
    A177,
    A178,
    JORDAN1A: 71;
    
            hence contradiction by
    A2,
    A3,
    A17,
    A33,
    JORDAN1G: 7;
    
          end;
    
          now
    
            assume (
    east_halfline ( 
    E-max C)) 
    meets ( 
    L~ godo); 
    
            then
    
            
    
    A179: ( 
    east_halfline ( 
    E-max C)) 
    meets (( 
    L~ go) 
    \/ ( 
    L~ pion1)) or ( 
    east_halfline ( 
    E-max C)) 
    meets ( 
    L~ co) by 
    A153,
    XBOOLE_1: 70;
    
            per cases by
    A179,
    XBOOLE_1: 70;
    
              suppose (
    east_halfline ( 
    E-max C)) 
    meets ( 
    L~ go); 
    
              hence contradiction by
    A174;
    
            end;
    
              suppose (
    east_halfline ( 
    E-max C)) 
    meets ( 
    L~ pion1); 
    
              then
    
              consider p be
    object such that 
    
              
    
    A180: p 
    in ( 
    east_halfline ( 
    E-max C)) and 
    
              
    
    A181: p 
    in ( 
    L~ pion1) by 
    XBOOLE_0: 3;
    
              reconsider p as
    Point of ( 
    TOP-REAL 2) by 
    A180;
    
              
    
    A182: 
    
              now
    
                per cases by
    A12,
    A88,
    A181,
    XBOOLE_0:def 3;
    
                  suppose p
    in poz; 
    
                  hence (p
    `1 ) 
    <= (Gik 
    `1 ) by 
    A93,
    TOPREAL1: 3;
    
                end;
    
                  suppose p
    in pio; 
    
                  hence (p
    `1 ) 
    <= (Gik 
    `1 ) by 
    A92,
    A93,
    GOBOARD7: 5;
    
                end;
    
              end;
    
              (i2
    + 1) 
    <= ( 
    len G) by 
    A3,
    NAT_1: 13;
    
              then i2
    <= (( 
    len G) 
    - 1) by 
    XREAL_1: 19;
    
              then
    
              
    
    A183: i2 
    <= (( 
    len G) 
    -' 1) by 
    XREAL_0:def 2;
    
              ((
    len G) 
    -' 1) 
    <= ( 
    len G) by 
    NAT_D: 35;
    
              then (Gik
    `1 ) 
    <= ((G 
    * ((( 
    len G) 
    -' 1),1)) 
    `1 ) by 
    A6,
    A11,
    A16,
    A20,
    A24,
    A183,
    JORDAN1A: 18;
    
              then (p
    `1 ) 
    <= ((G 
    * ((( 
    len G) 
    -' 1),1)) 
    `1 ) by 
    A182,
    XXREAL_0: 2;
    
              then (p
    `1 ) 
    <= ( 
    E-bound C) by 
    A24,
    JORDAN8: 12;
    
              then
    
              
    
    A184: (p 
    `1 ) 
    <= (( 
    E-max C) 
    `1 ) by 
    EUCLID: 52;
    
              (p
    `1 ) 
    >= (( 
    E-max C) 
    `1 ) by 
    A180,
    TOPREAL1:def 11;
    
              then
    
              
    
    A185: (p 
    `1 ) 
    = (( 
    E-max C) 
    `1 ) by 
    A184,
    XXREAL_0: 1;
    
              (p
    `2 ) 
    = (( 
    E-max C) 
    `2 ) by 
    A180,
    TOPREAL1:def 11;
    
              then p
    = ( 
    E-max C) by 
    A185,
    TOPREAL3: 6;
    
              hence contradiction by
    A9,
    A12,
    A88,
    A144,
    A181,
    XBOOLE_0: 3;
    
            end;
    
              suppose (
    east_halfline ( 
    E-max C)) 
    meets ( 
    L~ co); 
    
              then
    
              consider p be
    object such that 
    
              
    
    A186: p 
    in ( 
    east_halfline ( 
    E-max C)) and 
    
              
    
    A187: p 
    in ( 
    L~ co) by 
    XBOOLE_0: 3;
    
              reconsider p as
    Point of ( 
    TOP-REAL 2) by 
    A186;
    
              p
    in ( 
    L~ LS) by 
    A56,
    A187;
    
              then p
    in (( 
    east_halfline ( 
    E-max C)) 
    /\ ( 
    L~ ( 
    Cage (C,n)))) by 
    A156,
    A186,
    XBOOLE_0:def 4;
    
              then
    
              
    
    A188: (p 
    `1 ) 
    = Ebo by 
    JORDAN1A: 83,
    PSCOMP_1: 50;
    
              
    
              
    
    A189: (( 
    E-max C) 
    `2 ) 
    = (p 
    `2 ) by 
    A186,
    TOPREAL1:def 11;
    
              set RC = (
    Rotate (( 
    Cage (C,n)),Emax)); 
    
              
    
              
    
    A190: ( 
    E-max C) 
    in ( 
    right_cell (RC,1)) by 
    JORDAN1I: 7;
    
              
    
              
    
    A191: (1 
    + 1) 
    <= ( 
    len LS) by 
    A28,
    XXREAL_0: 2;
    
              LS
    = (RC 
    -: Wmin) by 
    JORDAN1G: 18;
    
              then
    
              
    
    A192: ( 
    LSeg (LS,1)) 
    = ( 
    LSeg (RC,1)) by 
    A191,
    SPPOL_2: 9;
    
              
    
              
    
    A193: ( 
    L~ RC) 
    = ( 
    L~ ( 
    Cage (C,n))) by 
    REVROT_1: 33;
    
              
    
              
    
    A194: ( 
    len RC) 
    = ( 
    len ( 
    Cage (C,n))) by 
    FINSEQ_6: 179;
    
              
    
              
    
    A195: ( 
    GoB RC) 
    = ( 
    GoB ( 
    Cage (C,n))) by 
    REVROT_1: 28
    
              .= G by
    JORDAN1H: 44;
    
              
    
              
    
    A196: Emax 
    in ( 
    rng ( 
    Cage (C,n))) by 
    SPRECT_2: 46;
    
              
    
              
    
    A197: RC 
    is_sequence_on G by 
    A150,
    REVROT_1: 34;
    
              
    
              
    
    A198: (RC 
    /. 1) 
    = ( 
    E-max ( 
    L~ RC)) by 
    A193,
    A196,
    FINSEQ_6: 92;
    
              consider ii,jj be
    Nat such that 
    
              
    
    A199: 
    [ii, (jj
    + 1)] 
    in ( 
    Indices G) and 
    
              
    
    A200: 
    [ii, jj]
    in ( 
    Indices G) and 
    
              
    
    A201: (RC 
    /. 1) 
    = (G 
    * (ii,(jj 
    + 1))) and 
    
              
    
    A202: (RC 
    /. (1 
    + 1)) 
    = (G 
    * (ii,jj)) by 
    A97,
    A193,
    A194,
    A196,
    A197,
    FINSEQ_6: 92,
    JORDAN1I: 23;
    
              consider jj2 be
    Nat such that 
    
              
    
    A203: 1 
    <= jj2 and 
    
              
    
    A204: jj2 
    <= ( 
    width G) and 
    
              
    
    A205: Emax 
    = (G 
    * (( 
    len G),jj2)) by 
    JORDAN1D: 25;
    
              
    
              
    
    A206: ( 
    len G) 
    >= 4 by 
    JORDAN8: 10;
    
              then (
    len G) 
    >= 1 by 
    XXREAL_0: 2;
    
              then
    [(
    len G), jj2] 
    in ( 
    Indices G) by 
    A203,
    A204,
    MATRIX_0: 30;
    
              then
    
              
    
    A207: ii 
    = ( 
    len G) by 
    A193,
    A198,
    A199,
    A201,
    A205,
    GOBOARD1: 5;
    
              
    
              
    
    A208: 1 
    <= ii by 
    A199,
    MATRIX_0: 32;
    
              
    
              
    
    A209: ii 
    <= ( 
    len G) by 
    A199,
    MATRIX_0: 32;
    
              
    
              
    
    A210: 1 
    <= (jj 
    + 1) by 
    A199,
    MATRIX_0: 32;
    
              
    
              
    
    A211: (jj 
    + 1) 
    <= ( 
    width G) by 
    A199,
    MATRIX_0: 32;
    
              
    
              
    
    A212: 1 
    <= ii by 
    A200,
    MATRIX_0: 32;
    
              
    
              
    
    A213: ii 
    <= ( 
    len G) by 
    A200,
    MATRIX_0: 32;
    
              
    
              
    
    A214: 1 
    <= jj by 
    A200,
    MATRIX_0: 32;
    
              
    
              
    
    A215: jj 
    <= ( 
    width G) by 
    A200,
    MATRIX_0: 32;
    
              
    
              
    
    A216: (ii 
    + 1) 
    <> ii; 
    
              ((jj
    + 1) 
    + 1) 
    <> jj; 
    
              then
    
              
    
    A217: ( 
    right_cell (RC,1)) 
    = ( 
    cell (G,(ii 
    -' 1),jj)) by 
    A97,
    A194,
    A195,
    A199,
    A200,
    A201,
    A202,
    A216,
    GOBOARD5:def 6;
    
              
    
              
    
    A218: ((ii 
    -' 1) 
    + 1) 
    = ii by 
    A208,
    XREAL_1: 235;
    
              (ii
    - 1) 
    >= (4 
    - 1) by 
    A206,
    A207,
    XREAL_1: 9;
    
              then
    
              
    
    A219: (ii 
    - 1) 
    >= 1 by 
    XXREAL_0: 2;
    
              then
    
              
    
    A220: 1 
    <= (ii 
    -' 1) by 
    XREAL_0:def 2;
    
              
    
              
    
    A221: ((G 
    * ((ii 
    -' 1),jj)) 
    `2 ) 
    <= (p 
    `2 ) by 
    A189,
    A190,
    A209,
    A211,
    A214,
    A217,
    A218,
    A219,
    JORDAN9: 17;
    
              
    
              
    
    A222: (p 
    `2 ) 
    <= ((G 
    * ((ii 
    -' 1),(jj 
    + 1))) 
    `2 ) by 
    A189,
    A190,
    A209,
    A211,
    A214,
    A217,
    A218,
    A219,
    JORDAN9: 17;
    
              
    
              
    
    A223: (ii 
    -' 1) 
    < ( 
    len G) by 
    A209,
    A218,
    NAT_1: 13;
    
              
    
              then
    
              
    
    A224: ((G 
    * ((ii 
    -' 1),jj)) 
    `2 ) 
    = ((G 
    * (1,jj)) 
    `2 ) by 
    A214,
    A215,
    A220,
    GOBOARD5: 1
    
              .= ((G
    * (ii,jj)) 
    `2 ) by 
    A212,
    A213,
    A214,
    A215,
    GOBOARD5: 1;
    
              
    
              
    
    A225: ((G 
    * ((ii 
    -' 1),(jj 
    + 1))) 
    `2 ) 
    = ((G 
    * (1,(jj 
    + 1))) 
    `2 ) by 
    A210,
    A211,
    A220,
    A223,
    GOBOARD5: 1
    
              .= ((G
    * (ii,(jj 
    + 1))) 
    `2 ) by 
    A208,
    A209,
    A210,
    A211,
    GOBOARD5: 1;
    
              
    
              
    
    A226: ((G 
    * (( 
    len G),jj)) 
    `1 ) 
    = Ebo by 
    A20,
    A214,
    A215,
    JORDAN1A: 71;
    
              Ebo
    = ((G 
    * (( 
    len G),(jj 
    + 1))) 
    `1 ) by 
    A20,
    A210,
    A211,
    JORDAN1A: 71;
    
              then p
    in ( 
    LSeg ((RC 
    /. 1),(RC 
    /. (1 
    + 1)))) by 
    A188,
    A201,
    A202,
    A207,
    A221,
    A222,
    A224,
    A225,
    A226,
    GOBOARD7: 7;
    
              then
    
              
    
    A227: p 
    in ( 
    LSeg (LS,1)) by 
    A97,
    A192,
    A194,
    TOPREAL1:def 3;
    
              
    
              
    
    A228: p 
    in ( 
    LSeg (co,( 
    Index (p,co)))) by 
    A187,
    JORDAN3: 9;
    
              
    
              
    
    A229: co 
    = ( 
    mid (LS,(Gik 
    .. LS),( 
    len LS))) by 
    A40,
    JORDAN1J: 37;
    
              
    
              
    
    A230: 1 
    <= (Gik 
    .. LS) by 
    A40,
    FINSEQ_4: 21;
    
              
    
              
    
    A231: (Gik 
    .. LS) 
    <= ( 
    len LS) by 
    A40,
    FINSEQ_4: 21;
    
              (Gik
    .. LS) 
    <> ( 
    len LS) by 
    A32,
    A40,
    FINSEQ_4: 19;
    
              then
    
              
    
    A232: (Gik 
    .. LS) 
    < ( 
    len LS) by 
    A231,
    XXREAL_0: 1;
    
              
    
              
    
    A233: 1 
    <= ( 
    Index (p,co)) by 
    A187,
    JORDAN3: 8;
    
              
    
              
    
    A234: ( 
    Index (p,co)) 
    < ( 
    len co) by 
    A187,
    JORDAN3: 8;
    
              
    
              
    
    A235: (( 
    Index (Gik,LS)) 
    + 1) 
    = (Gik 
    .. LS) by 
    A35,
    A40,
    JORDAN1J: 56;
    
              consider t be
    Nat such that 
    
              
    
    A236: t 
    in ( 
    dom LS) and 
    
              
    
    A237: (LS 
    . t) 
    = Gik by 
    A40,
    FINSEQ_2: 10;
    
              
    
              
    
    A238: 1 
    <= t by 
    A236,
    FINSEQ_3: 25;
    
              
    
              
    
    A239: t 
    <= ( 
    len LS) by 
    A236,
    FINSEQ_3: 25;
    
              1
    < t by 
    A35,
    A237,
    A238,
    XXREAL_0: 1;
    
              then ((
    Index (Gik,LS)) 
    + 1) 
    = t by 
    A237,
    A239,
    JORDAN3: 12;
    
              then
    
              
    
    A240: ( 
    len ( 
    L_Cut (LS,Gik))) 
    = (( 
    len LS) 
    - ( 
    Index (Gik,LS))) by 
    A13,
    A237,
    JORDAN3: 26;
    
              set tt = (((
    Index (p,co)) 
    + (Gik 
    .. LS)) 
    -' 1); 
    
              
    
              
    
    A241: 1 
    <= ( 
    Index (Gik,LS)) by 
    A13,
    JORDAN3: 8;
    
              (
    0  
    + ( 
    Index (Gik,LS))) 
    < ( 
    len LS) by 
    A13,
    JORDAN3: 8;
    
              then
    
              
    
    A242: (( 
    len LS) 
    - ( 
    Index (Gik,LS))) 
    >  
    0 by 
    XREAL_1: 20;
    
              (
    Index (p,co)) 
    < (( 
    len LS) 
    -' ( 
    Index (Gik,LS))) by 
    A234,
    A240,
    XREAL_0:def 2;
    
              then ((
    Index (p,co)) 
    + 1) 
    <= (( 
    len LS) 
    -' ( 
    Index (Gik,LS))) by 
    NAT_1: 13;
    
              then (
    Index (p,co)) 
    <= ((( 
    len LS) 
    -' ( 
    Index (Gik,LS))) 
    - 1) by 
    XREAL_1: 19;
    
              then (
    Index (p,co)) 
    <= ((( 
    len LS) 
    - ( 
    Index (Gik,LS))) 
    - 1) by 
    A242,
    XREAL_0:def 2;
    
              then (
    Index (p,co)) 
    <= (( 
    len LS) 
    - (Gik 
    .. LS)) by 
    A235;
    
              then (
    Index (p,co)) 
    <= (( 
    len LS) 
    -' (Gik 
    .. LS)) by 
    XREAL_0:def 2;
    
              then (
    Index (p,co)) 
    < ((( 
    len LS) 
    -' (Gik 
    .. LS)) 
    + 1) by 
    NAT_1: 13;
    
              then
    
              
    
    A243: ( 
    LSeg (( 
    mid (LS,(Gik 
    .. LS),( 
    len LS))),( 
    Index (p,co)))) 
    = ( 
    LSeg (LS,((( 
    Index (p,co)) 
    + (Gik 
    .. LS)) 
    -' 1))) by 
    A230,
    A232,
    A233,
    JORDAN4: 19;
    
              
    
              
    
    A244: (1 
    + 1) 
    <= (Gik 
    .. LS) by 
    A235,
    A241,
    XREAL_1: 7;
    
              then ((
    Index (p,co)) 
    + (Gik 
    .. LS)) 
    >= ((1 
    + 1) 
    + 1) by 
    A233,
    XREAL_1: 7;
    
              then (((
    Index (p,co)) 
    + (Gik 
    .. LS)) 
    - 1) 
    >= (((1 
    + 1) 
    + 1) 
    - 1) by 
    XREAL_1: 9;
    
              then
    
              
    
    A245: tt 
    >= (1 
    + 1) by 
    XREAL_0:def 2;
    
              
    
              
    
    A246: 2 
    in ( 
    dom LS) by 
    A191,
    FINSEQ_3: 25;
    
              now
    
                per cases by
    A245,
    XXREAL_0: 1;
    
                  suppose tt
    > (1 
    + 1); 
    
                  then (
    LSeg (LS,1)) 
    misses ( 
    LSeg (LS,tt)) by 
    TOPREAL1:def 7;
    
                  hence contradiction by
    A227,
    A228,
    A229,
    A243,
    XBOOLE_0: 3;
    
                end;
    
                  suppose
    
                  
    
    A247: tt 
    = (1 
    + 1); 
    
                  then ((
    LSeg (LS,1)) 
    /\ ( 
    LSeg (LS,tt))) 
    =  
    {(LS
    /. 2)} by 
    A28,
    TOPREAL1:def 6;
    
                  then p
    in  
    {(LS
    /. 2)} by 
    A227,
    A228,
    A229,
    A243,
    XBOOLE_0:def 4;
    
                  then
    
                  
    
    A248: p 
    = (LS 
    /. 2) by 
    TARSKI:def 1;
    
                  then
    
                  
    
    A249: (p 
    .. LS) 
    = 2 by 
    A246,
    FINSEQ_5: 41;
    
                  (1
    + 1) 
    = ((( 
    Index (p,co)) 
    + (Gik 
    .. LS)) 
    - 1) by 
    A247,
    XREAL_0:def 2;
    
                  then ((1
    + 1) 
    + 1) 
    = (( 
    Index (p,co)) 
    + (Gik 
    .. LS)); 
    
                  then
    
                  
    
    A250: (Gik 
    .. LS) 
    = 2 by 
    A233,
    A244,
    JORDAN1E: 6;
    
                  p
    in ( 
    rng LS) by 
    A246,
    A248,
    PARTFUN2: 2;
    
                  then p
    = Gik by 
    A40,
    A249,
    A250,
    FINSEQ_5: 9;
    
                  then (Gik
    `1 ) 
    = Ebo by 
    A248,
    JORDAN1G: 32;
    
                  then (Gik
    `1 ) 
    = ((G 
    * (( 
    len G),j)) 
    `1 ) by 
    A4,
    A15,
    A20,
    JORDAN1A: 71;
    
                  hence contradiction by
    A3,
    A18,
    A70,
    JORDAN1G: 7;
    
                end;
    
              end;
    
              hence contradiction;
    
            end;
    
          end;
    
          then (
    east_halfline ( 
    E-max C)) 
    c= (( 
    L~ godo) 
    ` ) by 
    SUBSET_1: 23;
    
          then
    
          consider W be
    Subset of ( 
    TOP-REAL 2) such that 
    
          
    
    A251: W 
    is_a_component_of (( 
    L~ godo) 
    ` ) and 
    
          
    
    A252: ( 
    east_halfline ( 
    E-max C)) 
    c= W by 
    GOBOARD9: 3;
    
           not W is
    bounded by 
    A252,
    JORDAN2C: 121,
    RLTOPSP1: 42;
    
          then W
    is_outside_component_of ( 
    L~ godo) by 
    A251,
    JORDAN2C:def 3;
    
          then W
    c= ( 
    UBD ( 
    L~ godo)) by 
    JORDAN2C: 23;
    
          then
    
          
    
    A253: ( 
    east_halfline ( 
    E-max C)) 
    c= ( 
    UBD ( 
    L~ godo)) by 
    A252;
    
          (
    E-max C) 
    in ( 
    east_halfline ( 
    E-max C)) by 
    TOPREAL1: 38;
    
          then (
    E-max C) 
    in ( 
    UBD ( 
    L~ godo)) by 
    A253;
    
          then (
    E-max C) 
    in ( 
    LeftComp godo) by 
    GOBRD14: 36;
    
          then UA
    meets ( 
    L~ godo) by 
    A142,
    A143,
    A144,
    A152,
    A162,
    JORDAN1J: 36;
    
          then
    
          
    
    A254: UA 
    meets (( 
    L~ go) 
    \/ ( 
    L~ pion1)) or UA 
    meets ( 
    L~ co) by 
    A153,
    XBOOLE_1: 70;
    
          
    
          
    
    A255: UA 
    c= C by 
    JORDAN6: 61;
    
          now
    
            per cases by
    A254,
    XBOOLE_1: 70;
    
              suppose UA
    meets ( 
    L~ go); 
    
              then UA
    meets ( 
    L~ ( 
    Cage (C,n))) by 
    A49,
    A155,
    XBOOLE_1: 1,
    XBOOLE_1: 63;
    
              hence contradiction by
    A255,
    JORDAN10: 5,
    XBOOLE_1: 63;
    
            end;
    
              suppose UA
    meets ( 
    L~ pion1); 
    
              hence contradiction by
    A9,
    A12,
    A88;
    
            end;
    
              suppose UA
    meets ( 
    L~ co); 
    
              then UA
    meets ( 
    L~ ( 
    Cage (C,n))) by 
    A56,
    A156,
    XBOOLE_1: 1,
    XBOOLE_1: 63;
    
              hence contradiction by
    A255,
    JORDAN10: 5,
    XBOOLE_1: 63;
    
            end;
    
          end;
    
          hence contradiction;
    
        end;
    
          suppose (Gik
    `1 ) 
    = (Gij 
    `1 ); 
    
          then
    
          
    
    A256: i1 
    = i2 by 
    A17,
    A18,
    JORDAN1G: 7;
    
          then poz
    =  
    {Gi1k} by
    RLTOPSP1: 70;
    
          then poz
    c= pio by 
    A84,
    ZFMISC_1: 31;
    
          then (pio
    \/ poz) 
    = pio by 
    XBOOLE_1: 12;
    
          hence contradiction by
    A1,
    A3,
    A4,
    A5,
    A6,
    A7,
    A8,
    A9,
    A256,
    Th12;
    
        end;
    
          suppose (Gik
    `2 ) 
    = (Gij 
    `2 ); 
    
          then
    
          
    
    A257: j 
    = k by 
    A17,
    A18,
    JORDAN1G: 6;
    
          then pio
    =  
    {Gi1k} by
    RLTOPSP1: 70;
    
          then pio
    c= poz by 
    A85,
    ZFMISC_1: 31;
    
          then (pio
    \/ poz) 
    = poz by 
    XBOOLE_1: 12;
    
          hence contradiction by
    A1,
    A2,
    A3,
    A4,
    A6,
    A7,
    A8,
    A9,
    A257,
    JORDAN15: 37;
    
        end;
    
      end;
    
      hence contradiction;
    
    end;
    
    theorem :: 
    
    JORDAN19:21
    
    
    
    
    
    Th21: for C be 
    Simple_closed_curve holds for i1,i2,j,k be 
    Nat st 1 
    < i1 & i1 
    <= i2 & i2 
    < ( 
    len ( 
    Gauge (C,n))) & 1 
    <= j & j 
    <= k & k 
    <= ( 
    width ( 
    Gauge (C,n))) & ((( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i1,j)),(( 
    Gauge (C,n)) 
    * (i1,k)))) 
    \/ ( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i1,k)),(( 
    Gauge (C,n)) 
    * (i2,k))))) 
    /\ ( 
    L~ ( 
    Upper_Seq (C,n)))) 
    =  
    {((
    Gauge (C,n)) 
    * (i1,j))} & ((( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i1,j)),(( 
    Gauge (C,n)) 
    * (i1,k)))) 
    \/ ( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i1,k)),(( 
    Gauge (C,n)) 
    * (i2,k))))) 
    /\ ( 
    L~ ( 
    Lower_Seq (C,n)))) 
    =  
    {((
    Gauge (C,n)) 
    * (i2,k))} holds (( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i1,j)),(( 
    Gauge (C,n)) 
    * (i1,k)))) 
    \/ ( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i1,k)),(( 
    Gauge (C,n)) 
    * (i2,k))))) 
    meets ( 
    Lower_Arc C) 
    
    proof
    
      let C be
    Simple_closed_curve;
    
      let i1,i2,j,k be
    Nat;
    
      set G = (
    Gauge (C,n)); 
    
      set pio = (
    LSeg ((G 
    * (i1,j)),(G 
    * (i1,k)))); 
    
      set poz = (
    LSeg ((G 
    * (i1,k)),(G 
    * (i2,k)))); 
    
      set US = (
    Upper_Seq (C,n)); 
    
      set LS = (
    Lower_Seq (C,n)); 
    
      assume that
    
      
    
    A1: 1 
    < i1 and 
    
      
    
    A2: i1 
    <= i2 and 
    
      
    
    A3: i2 
    < ( 
    len G) and 
    
      
    
    A4: 1 
    <= j and 
    
      
    
    A5: j 
    <= k and 
    
      
    
    A6: k 
    <= ( 
    width G) and 
    
      
    
    A7: ((pio 
    \/ poz) 
    /\ ( 
    L~ US)) 
    =  
    {(G
    * (i1,j))} and 
    
      
    
    A8: ((pio 
    \/ poz) 
    /\ ( 
    L~ LS)) 
    =  
    {(G
    * (i2,k))} and 
    
      
    
    A9: (pio 
    \/ poz) 
    misses ( 
    Lower_Arc C); 
    
      set UA = (
    Lower_Arc C); 
    
      set Wmin = (
    W-min ( 
    L~ ( 
    Cage (C,n)))); 
    
      set Emax = (
    E-max ( 
    L~ ( 
    Cage (C,n)))); 
    
      set Wbo = (
    W-bound ( 
    L~ ( 
    Cage (C,n)))); 
    
      set Ebo = (
    E-bound ( 
    L~ ( 
    Cage (C,n)))); 
    
      set Gik = (G
    * (i2,k)); 
    
      set Gij = (G
    * (i1,j)); 
    
      set Gi1k = (G
    * (i1,k)); 
    
      
    
      
    
    A10: i1 
    < ( 
    len G) by 
    A2,
    A3,
    XXREAL_0: 2;
    
      
    
      
    
    A11: 1 
    < i2 by 
    A1,
    A2,
    XXREAL_0: 2;
    
      
    
      
    
    A12: ( 
    L~  
    <*Gij, Gi1k, Gik*>)
    = (poz 
    \/ pio) by 
    TOPREAL3: 16;
    
      Gik
    in  
    {Gik} by
    TARSKI:def 1;
    
      then
    
      
    
    A13: Gik 
    in ( 
    L~ LS) by 
    A8,
    XBOOLE_0:def 4;
    
      Gij
    in  
    {Gij} by
    TARSKI:def 1;
    
      then
    
      
    
    A14: Gij 
    in ( 
    L~ US) by 
    A7,
    XBOOLE_0:def 4;
    
      
    
      
    
    A15: j 
    <= ( 
    width G) by 
    A5,
    A6,
    XXREAL_0: 2;
    
      
    
      
    
    A16: 1 
    <= k by 
    A4,
    A5,
    XXREAL_0: 2;
    
      
    
      
    
    A17: 
    [i1, j]
    in ( 
    Indices G) by 
    A1,
    A4,
    A10,
    A15,
    MATRIX_0: 30;
    
      
    
      
    
    A18: 
    [i2, k]
    in ( 
    Indices G) by 
    A3,
    A6,
    A11,
    A16,
    MATRIX_0: 30;
    
      
    
      
    
    A19: 
    [i1, k]
    in ( 
    Indices G) by 
    A1,
    A6,
    A10,
    A16,
    MATRIX_0: 30;
    
      set go = (
    R_Cut (US,Gij)); 
    
      set co = (
    L_Cut (LS,Gik)); 
    
      
    
      
    
    A20: ( 
    len G) 
    = ( 
    width G) by 
    JORDAN8:def 1;
    
      
    
      
    
    A21: ( 
    len US) 
    >= 3 by 
    JORDAN1E: 15;
    
      then (
    len US) 
    >= 1 by 
    XXREAL_0: 2;
    
      then 1
    in ( 
    dom US) by 
    FINSEQ_3: 25;
    
      
    
      then
    
      
    
    A22: (US 
    . 1) 
    = (US 
    /. 1) by 
    PARTFUN1:def 6
    
      .= Wmin by
    JORDAN1F: 5;
    
      
    
      
    
    A23: (Wmin 
    `1 ) 
    = Wbo by 
    EUCLID: 52
    
      .= ((G
    * (1,k)) 
    `1 ) by 
    A6,
    A16,
    A20,
    JORDAN1A: 73;
    
      (
    len G) 
    >= 4 by 
    JORDAN8: 10;
    
      then
    
      
    
    A24: ( 
    len G) 
    >= 1 by 
    XXREAL_0: 2;
    
      then
    
      
    
    A25: 
    [1, k]
    in ( 
    Indices G) by 
    A6,
    A16,
    MATRIX_0: 30;
    
      then
    
      
    
    A26: Gij 
    <> (US 
    . 1) by 
    A1,
    A17,
    A22,
    A23,
    JORDAN1G: 7;
    
      then
    
      reconsider go as
    being_S-Seq  
    FinSequence of ( 
    TOP-REAL 2) by 
    A14,
    JORDAN3: 35;
    
      
    
      
    
    A27: 
    [1, j]
    in ( 
    Indices G) by 
    A4,
    A15,
    A24,
    MATRIX_0: 30;
    
      
    
      
    
    A28: ( 
    len LS) 
    >= (1 
    + 2) by 
    JORDAN1E: 15;
    
      then
    
      
    
    A29: ( 
    len LS) 
    >= 1 by 
    XXREAL_0: 2;
    
      then
    
      
    
    A30: 1 
    in ( 
    dom LS) by 
    FINSEQ_3: 25;
    
      (
    len LS) 
    in ( 
    dom LS) by 
    A29,
    FINSEQ_3: 25;
    
      
    
      then
    
      
    
    A31: (LS 
    . ( 
    len LS)) 
    = (LS 
    /. ( 
    len LS)) by 
    PARTFUN1:def 6
    
      .= Wmin by
    JORDAN1F: 8;
    
      (Wmin
    `1 ) 
    = Wbo by 
    EUCLID: 52
    
      .= ((G
    * (1,k)) 
    `1 ) by 
    A6,
    A16,
    A20,
    JORDAN1A: 73;
    
      then
    
      
    
    A32: Gik 
    <> (LS 
    . ( 
    len LS)) by 
    A1,
    A2,
    A18,
    A25,
    A31,
    JORDAN1G: 7;
    
      then
    
      reconsider co as
    being_S-Seq  
    FinSequence of ( 
    TOP-REAL 2) by 
    A13,
    JORDAN3: 34;
    
      
    
      
    
    A33: 
    [(
    len G), k] 
    in ( 
    Indices G) by 
    A6,
    A16,
    A24,
    MATRIX_0: 30;
    
      
    
      
    
    A34: (LS 
    . 1) 
    = (LS 
    /. 1) by 
    A30,
    PARTFUN1:def 6
    
      .= Emax by
    JORDAN1F: 6;
    
      (Emax
    `1 ) 
    = Ebo by 
    EUCLID: 52
    
      .= ((G
    * (( 
    len G),k)) 
    `1 ) by 
    A6,
    A16,
    A20,
    JORDAN1A: 71;
    
      then
    
      
    
    A35: Gik 
    <> (LS 
    . 1) by 
    A3,
    A18,
    A33,
    A34,
    JORDAN1G: 7;
    
      
    
      
    
    A36: ( 
    len go) 
    >= (1 
    + 1) by 
    TOPREAL1:def 8;
    
      
    
      
    
    A37: Gij 
    in ( 
    rng US) by 
    A1,
    A4,
    A10,
    A14,
    A15,
    JORDAN1G: 4,
    JORDAN1J: 40;
    
      then
    
      
    
    A38: go 
    is_sequence_on G by 
    JORDAN1G: 4,
    JORDAN1J: 38;
    
      
    
      
    
    A39: ( 
    len co) 
    >= (1 
    + 1) by 
    TOPREAL1:def 8;
    
      
    
      
    
    A40: Gik 
    in ( 
    rng LS) by 
    A3,
    A6,
    A11,
    A13,
    A16,
    JORDAN1G: 5,
    JORDAN1J: 40;
    
      then
    
      
    
    A41: co 
    is_sequence_on G by 
    JORDAN1G: 5,
    JORDAN1J: 39;
    
      reconsider go as non
    constant
    s.c.c.
    being_S-Seq  
    FinSequence of ( 
    TOP-REAL 2) by 
    A36,
    A38,
    JGRAPH_1: 12,
    JORDAN8: 5;
    
      reconsider co as non
    constant
    s.c.c.
    being_S-Seq  
    FinSequence of ( 
    TOP-REAL 2) by 
    A39,
    A41,
    JGRAPH_1: 12,
    JORDAN8: 5;
    
      
    
      
    
    A42: ( 
    len go) 
    > 1 by 
    A36,
    NAT_1: 13;
    
      then
    
      
    
    A43: ( 
    len go) 
    in ( 
    dom go) by 
    FINSEQ_3: 25;
    
      
    
      then
    
      
    
    A44: (go 
    /. ( 
    len go)) 
    = (go 
    . ( 
    len go)) by 
    PARTFUN1:def 6
    
      .= Gij by
    A14,
    JORDAN3: 24;
    
      (
    len co) 
    >= 1 by 
    A39,
    XXREAL_0: 2;
    
      then 1
    in ( 
    dom co) by 
    FINSEQ_3: 25;
    
      
    
      then
    
      
    
    A45: (co 
    /. 1) 
    = (co 
    . 1) by 
    PARTFUN1:def 6
    
      .= Gik by
    A13,
    JORDAN3: 23;
    
      reconsider m = ((
    len go) 
    - 1) as 
    Nat by 
    A43,
    FINSEQ_3: 26;
    
      
    
      
    
    A46: (m 
    + 1) 
    = ( 
    len go); 
    
      then
    
      
    
    A47: (( 
    len go) 
    -' 1) 
    = m by 
    NAT_D: 34;
    
      
    
      
    
    A48: ( 
    LSeg (go,m)) 
    c= ( 
    L~ go) by 
    TOPREAL3: 19;
    
      
    
      
    
    A49: ( 
    L~ go) 
    c= ( 
    L~ US) by 
    A14,
    JORDAN3: 41;
    
      then (
    LSeg (go,m)) 
    c= ( 
    L~ US) by 
    A48;
    
      then
    
      
    
    A50: (( 
    LSeg (go,m)) 
    /\ ( 
    L~  
    <*Gij, Gi1k, Gik*>))
    c=  
    {Gij} by
    A7,
    A12,
    XBOOLE_1: 26;
    
      m
    >= 1 by 
    A36,
    XREAL_1: 19;
    
      then
    
      
    
    A51: ( 
    LSeg (go,m)) 
    = ( 
    LSeg ((go 
    /. m),Gij)) by 
    A44,
    A46,
    TOPREAL1:def 3;
    
      
    {Gij}
    c= (( 
    LSeg (go,m)) 
    /\ ( 
    L~  
    <*Gij, Gi1k, Gik*>))
    
      proof
    
        let x be
    object;
    
        assume x
    in  
    {Gij};
    
        then
    
        
    
    A52: x 
    = Gij by 
    TARSKI:def 1;
    
        
    
        
    
    A53: Gij 
    in ( 
    LSeg (go,m)) by 
    A51,
    RLTOPSP1: 68;
    
        Gij
    in ( 
    LSeg (Gij,Gi1k)) by 
    RLTOPSP1: 68;
    
        then Gij
    in (( 
    LSeg (Gij,Gi1k)) 
    \/ ( 
    LSeg (Gi1k,Gik))) by 
    XBOOLE_0:def 3;
    
        then Gij
    in ( 
    L~  
    <*Gij, Gi1k, Gik*>) by
    SPRECT_1: 8;
    
        hence thesis by
    A52,
    A53,
    XBOOLE_0:def 4;
    
      end;
    
      then
    
      
    
    A54: (( 
    LSeg (go,m)) 
    /\ ( 
    L~  
    <*Gij, Gi1k, Gik*>))
    =  
    {Gij} by
    A50;
    
      
    
      
    
    A55: ( 
    LSeg (co,1)) 
    c= ( 
    L~ co) by 
    TOPREAL3: 19;
    
      
    
      
    
    A56: ( 
    L~ co) 
    c= ( 
    L~ LS) by 
    A13,
    JORDAN3: 42;
    
      then (
    LSeg (co,1)) 
    c= ( 
    L~ LS) by 
    A55;
    
      then
    
      
    
    A57: (( 
    LSeg (co,1)) 
    /\ ( 
    L~  
    <*Gij, Gi1k, Gik*>))
    c=  
    {Gik} by
    A8,
    A12,
    XBOOLE_1: 26;
    
      
    
      
    
    A58: ( 
    LSeg (co,1)) 
    = ( 
    LSeg (Gik,(co 
    /. (1 
    + 1)))) by 
    A39,
    A45,
    TOPREAL1:def 3;
    
      
    {Gik}
    c= (( 
    LSeg (co,1)) 
    /\ ( 
    L~  
    <*Gij, Gi1k, Gik*>))
    
      proof
    
        let x be
    object;
    
        assume x
    in  
    {Gik};
    
        then
    
        
    
    A59: x 
    = Gik by 
    TARSKI:def 1;
    
        
    
        
    
    A60: Gik 
    in ( 
    LSeg (co,1)) by 
    A58,
    RLTOPSP1: 68;
    
        Gik
    in ( 
    LSeg (Gi1k,Gik)) by 
    RLTOPSP1: 68;
    
        then Gik
    in (( 
    LSeg (Gij,Gi1k)) 
    \/ ( 
    LSeg (Gi1k,Gik))) by 
    XBOOLE_0:def 3;
    
        then Gik
    in ( 
    L~  
    <*Gij, Gi1k, Gik*>) by
    SPRECT_1: 8;
    
        hence thesis by
    A59,
    A60,
    XBOOLE_0:def 4;
    
      end;
    
      then
    
      
    
    A61: (( 
    L~  
    <*Gij, Gi1k, Gik*>)
    /\ ( 
    LSeg (co,1))) 
    =  
    {Gik} by
    A57;
    
      
    
      
    
    A62: (go 
    /. 1) 
    = (US 
    /. 1) by 
    A14,
    SPRECT_3: 22
    
      .= Wmin by
    JORDAN1F: 5;
    
      
    
      then
    
      
    
    A63: (go 
    /. 1) 
    = (LS 
    /. ( 
    len LS)) by 
    JORDAN1F: 8
    
      .= (co
    /. ( 
    len co)) by 
    A13,
    JORDAN1J: 35;
    
      
    
      
    
    A64: ( 
    rng go) 
    c= ( 
    L~ go) by 
    A36,
    SPPOL_2: 18;
    
      
    
      
    
    A65: ( 
    rng co) 
    c= ( 
    L~ co) by 
    A39,
    SPPOL_2: 18;
    
      
    
      
    
    A66: 
    {(go
    /. 1)} 
    c= (( 
    L~ go) 
    /\ ( 
    L~ co)) 
    
      proof
    
        let x be
    object;
    
        assume x
    in  
    {(go
    /. 1)}; 
    
        then
    
        
    
    A67: x 
    = (go 
    /. 1) by 
    TARSKI:def 1;
    
        then
    
        
    
    A68: x 
    in ( 
    rng go) by 
    FINSEQ_6: 42;
    
        x
    in ( 
    rng co) by 
    A63,
    A67,
    FINSEQ_6: 168;
    
        hence thesis by
    A64,
    A65,
    A68,
    XBOOLE_0:def 4;
    
      end;
    
      
    
      
    
    A69: (LS 
    . 1) 
    = (LS 
    /. 1) by 
    A30,
    PARTFUN1:def 6
    
      .= Emax by
    JORDAN1F: 6;
    
      
    
      
    
    A70: 
    [(
    len G), j] 
    in ( 
    Indices G) by 
    A4,
    A15,
    A24,
    MATRIX_0: 30;
    
      ((
    L~ go) 
    /\ ( 
    L~ co)) 
    c=  
    {(go
    /. 1)} 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A71: x 
    in (( 
    L~ go) 
    /\ ( 
    L~ co)); 
    
        then
    
        
    
    A72: x 
    in ( 
    L~ go) by 
    XBOOLE_0:def 4;
    
        
    
        
    
    A73: x 
    in ( 
    L~ co) by 
    A71,
    XBOOLE_0:def 4;
    
        then x
    in (( 
    L~ US) 
    /\ ( 
    L~ LS)) by 
    A49,
    A56,
    A72,
    XBOOLE_0:def 4;
    
        then x
    in  
    {Wmin, Emax} by
    JORDAN1E: 16;
    
        then
    
        
    
    A74: x 
    = Wmin or x 
    = Emax by 
    TARSKI:def 2;
    
        now
    
          assume x
    = Emax; 
    
          then
    
          
    
    A75: Emax 
    = Gik by 
    A13,
    A69,
    A73,
    JORDAN1E: 7;
    
          ((G
    * (( 
    len G),j)) 
    `1 ) 
    = Ebo by 
    A4,
    A15,
    A20,
    JORDAN1A: 71;
    
          then (Emax
    `1 ) 
    <> Ebo by 
    A3,
    A18,
    A70,
    A75,
    JORDAN1G: 7;
    
          hence contradiction by
    EUCLID: 52;
    
        end;
    
        hence thesis by
    A62,
    A74,
    TARSKI:def 1;
    
      end;
    
      then
    
      
    
    A76: (( 
    L~ go) 
    /\ ( 
    L~ co)) 
    =  
    {(go
    /. 1)} by 
    A66;
    
      set W2 = (go
    /. 2); 
    
      
    
      
    
    A77: 2 
    in ( 
    dom go) by 
    A36,
    FINSEQ_3: 25;
    
      
    
    A78: 
    
      now
    
        assume (Gij
    `1 ) 
    = Wbo; 
    
        then ((G
    * (1,j)) 
    `1 ) 
    = ((G 
    * (i1,j)) 
    `1 ) by 
    A4,
    A15,
    A20,
    JORDAN1A: 73;
    
        hence contradiction by
    A1,
    A17,
    A27,
    JORDAN1G: 7;
    
      end;
    
      go
    = ( 
    mid (US,1,(Gij 
    .. US))) by 
    A37,
    JORDAN1G: 49
    
      .= (US
    | (Gij 
    .. US)) by 
    A37,
    FINSEQ_4: 21,
    FINSEQ_6: 116;
    
      then
    
      
    
    A79: W2 
    = (US 
    /. 2) by 
    A77,
    FINSEQ_4: 70;
    
      
    
      
    
    A80: Wmin 
    in ( 
    rng go) by 
    A62,
    FINSEQ_6: 42;
    
      set pion =
    <*Gij, Gi1k, Gik*>;
    
      
    
    A81: 
    
      now
    
        let n be
    Nat;
    
        assume n
    in ( 
    dom pion); 
    
        then n
    in  
    {1, 2, 3} by
    FINSEQ_1: 89,
    FINSEQ_3: 1;
    
        then n
    = 1 or n 
    = 2 or n 
    = 3 by 
    ENUMSET1:def 1;
    
        hence ex i,j be
    Nat st 
    [i, j]
    in ( 
    Indices G) & (pion 
    /. n) 
    = (G 
    * (i,j)) by 
    A17,
    A18,
    A19,
    FINSEQ_4: 18;
    
      end;
    
      
    
      
    
    A82: (Gi1k 
    `1 ) 
    = ((G 
    * (i1,1)) 
    `1 ) by 
    A1,
    A6,
    A10,
    A16,
    GOBOARD5: 2
    
      .= (Gij
    `1 ) by 
    A1,
    A4,
    A10,
    A15,
    GOBOARD5: 2;
    
      (Gi1k
    `2 ) 
    = ((G 
    * (1,k)) 
    `2 ) by 
    A1,
    A6,
    A10,
    A16,
    GOBOARD5: 1
    
      .= (Gik
    `2 ) by 
    A3,
    A6,
    A11,
    A16,
    GOBOARD5: 1;
    
      then
    
      
    
    A83: Gi1k 
    =  
    |[(Gij
    `1 ), (Gik 
    `2 )]| by 
    A82,
    EUCLID: 53;
    
      
    
      
    
    A84: Gi1k 
    in pio by 
    RLTOPSP1: 68;
    
      
    
      
    
    A85: Gi1k 
    in poz by 
    RLTOPSP1: 68;
    
      now
    
        per cases ;
    
          suppose (Gik
    `1 ) 
    <> (Gij 
    `1 ) & (Gik 
    `2 ) 
    <> (Gij 
    `2 ); 
    
          then pion is
    being_S-Seq by 
    A83,
    TOPREAL3: 34;
    
          then
    
          consider pion1 be
    FinSequence of ( 
    TOP-REAL 2) such that 
    
          
    
    A86: pion1 
    is_sequence_on G and 
    
          
    
    A87: pion1 is 
    being_S-Seq and 
    
          
    
    A88: ( 
    L~ pion) 
    = ( 
    L~ pion1) and 
    
          
    
    A89: (pion 
    /. 1) 
    = (pion1 
    /. 1) and 
    
          
    
    A90: (pion 
    /. ( 
    len pion)) 
    = (pion1 
    /. ( 
    len pion1)) and 
    
          
    
    A91: ( 
    len pion) 
    <= ( 
    len pion1) by 
    A81,
    GOBOARD3: 2;
    
          reconsider pion1 as
    being_S-Seq  
    FinSequence of ( 
    TOP-REAL 2) by 
    A87;
    
          set godo = ((go
    ^' pion1) 
    ^' co); 
    
          
    
          
    
    A92: (Gi1k 
    `1 ) 
    = ((G 
    * (i1,1)) 
    `1 ) by 
    A1,
    A6,
    A10,
    A16,
    GOBOARD5: 2
    
          .= (Gij
    `1 ) by 
    A1,
    A4,
    A10,
    A15,
    GOBOARD5: 2;
    
          
    
          
    
    A93: (Gi1k 
    `1 ) 
    <= (Gik 
    `1 ) by 
    A1,
    A2,
    A3,
    A6,
    A16,
    JORDAN1A: 18;
    
          then
    
          
    
    A94: ( 
    W-bound poz) 
    = (Gi1k 
    `1 ) by 
    SPRECT_1: 54;
    
          
    
          
    
    A95: ( 
    W-bound pio) 
    = (Gij 
    `1 ) by 
    A92,
    SPRECT_1: 54;
    
          (
    W-bound (poz 
    \/ pio)) 
    = ( 
    min (( 
    W-bound poz),( 
    W-bound pio))) by 
    SPRECT_1: 47
    
          .= (Gij
    `1 ) by 
    A92,
    A94,
    A95;
    
          then
    
          
    
    A96: ( 
    W-bound ( 
    L~ pion1)) 
    = (Gij 
    `1 ) by 
    A88,
    TOPREAL3: 16;
    
          
    
          
    
    A97: (1 
    + 1) 
    <= ( 
    len ( 
    Cage (C,n))) by 
    GOBOARD7: 34,
    XXREAL_0: 2;
    
          
    
          
    
    A98: (1 
    + 1) 
    <= ( 
    len ( 
    Rotate (( 
    Cage (C,n)),Wmin))) by 
    GOBOARD7: 34,
    XXREAL_0: 2;
    
          (
    len (go 
    ^' pion1)) 
    >= ( 
    len go) by 
    TOPREAL8: 7;
    
          then
    
          
    
    A99: ( 
    len (go 
    ^' pion1)) 
    >= (1 
    + 1) by 
    A36,
    XXREAL_0: 2;
    
          then
    
          
    
    A100: ( 
    len (go 
    ^' pion1)) 
    > (1 
    +  
    0 ) by 
    NAT_1: 13;
    
          
    
          
    
    A101: ( 
    len godo) 
    >= ( 
    len (go 
    ^' pion1)) by 
    TOPREAL8: 7;
    
          then
    
          
    
    A102: (1 
    + 1) 
    <= ( 
    len godo) by 
    A99,
    XXREAL_0: 2;
    
          
    
          
    
    A103: US 
    is_sequence_on G by 
    JORDAN1G: 4;
    
          
    
          
    
    A104: (go 
    /. ( 
    len go)) 
    = (pion1 
    /. 1) by 
    A44,
    A89,
    FINSEQ_4: 18;
    
          then
    
          
    
    A105: (go 
    ^' pion1) 
    is_sequence_on G by 
    A38,
    A86,
    TOPREAL8: 12;
    
          
    
          
    
    A106: ((go 
    ^' pion1) 
    /. ( 
    len (go 
    ^' pion1))) 
    = (pion 
    /. ( 
    len pion)) by 
    A90,
    FINSEQ_6: 156
    
          .= (pion
    /. 3) by 
    FINSEQ_1: 45
    
          .= (co
    /. 1) by 
    A45,
    FINSEQ_4: 18;
    
          then
    
          
    
    A107: godo 
    is_sequence_on G by 
    A41,
    A105,
    TOPREAL8: 12;
    
          (
    LSeg (pion1,1)) 
    c= ( 
    L~ pion) by 
    A88,
    TOPREAL3: 19;
    
          then
    
          
    
    A108: (( 
    LSeg (go,(( 
    len go) 
    -' 1))) 
    /\ ( 
    LSeg (pion1,1))) 
    c=  
    {Gij} by
    A47,
    A54,
    XBOOLE_1: 27;
    
          (
    len pion1) 
    >= (2 
    + 1) by 
    A91,
    FINSEQ_1: 45;
    
          then
    
          
    
    A109: ( 
    len pion1) 
    > (1 
    + 1) by 
    NAT_1: 13;
    
          
    {Gij}
    c= (( 
    LSeg (go,m)) 
    /\ ( 
    LSeg (pion1,1))) 
    
          proof
    
            let x be
    object;
    
            assume x
    in  
    {Gij};
    
            then
    
            
    
    A110: x 
    = Gij by 
    TARSKI:def 1;
    
            
    
            
    
    A111: Gij 
    in ( 
    LSeg (go,m)) by 
    A51,
    RLTOPSP1: 68;
    
            Gij
    in ( 
    LSeg (pion1,1)) by 
    A44,
    A104,
    A109,
    TOPREAL1: 21;
    
            hence thesis by
    A110,
    A111,
    XBOOLE_0:def 4;
    
          end;
    
          then ((
    LSeg (go,(( 
    len go) 
    -' 1))) 
    /\ ( 
    LSeg (pion1,1))) 
    =  
    {(go
    /. ( 
    len go))} by 
    A44,
    A47,
    A108;
    
          then
    
          
    
    A112: (go 
    ^' pion1) is 
    unfolded by 
    A104,
    TOPREAL8: 34;
    
          (
    len pion1) 
    >= (2 
    + 1) by 
    A91,
    FINSEQ_1: 45;
    
          then
    
          
    
    A113: (( 
    len pion1) 
    - 2) 
    >=  
    0 by 
    XREAL_1: 19;
    
          (((
    len (go 
    ^' pion1)) 
    + 1) 
    - 1) 
    = ((( 
    len go) 
    + ( 
    len pion1)) 
    - 1) by 
    FINSEQ_6: 139;
    
          
    
          then ((
    len (go 
    ^' pion1)) 
    - 1) 
    = (( 
    len go) 
    + (( 
    len pion1) 
    - 2)) 
    
          .= ((
    len go) 
    + (( 
    len pion1) 
    -' 2)) by 
    A113,
    XREAL_0:def 2;
    
          then
    
          
    
    A114: (( 
    len (go 
    ^' pion1)) 
    -' 1) 
    = (( 
    len go) 
    + (( 
    len pion1) 
    -' 2)) by 
    XREAL_0:def 2;
    
          
    
          
    
    A115: (( 
    len pion1) 
    - 1) 
    >= 1 by 
    A109,
    XREAL_1: 19;
    
          then
    
          
    
    A116: (( 
    len pion1) 
    -' 1) 
    = (( 
    len pion1) 
    - 1) by 
    XREAL_0:def 2;
    
          
    
          
    
    A117: ((( 
    len pion1) 
    -' 2) 
    + 1) 
    = ((( 
    len pion1) 
    - 2) 
    + 1) by 
    A113,
    XREAL_0:def 2
    
          .= ((
    len pion1) 
    -' 1) by 
    A115,
    XREAL_0:def 2;
    
          (((
    len pion1) 
    - 1) 
    + 1) 
    <= ( 
    len pion1); 
    
          then
    
          
    
    A118: (( 
    len pion1) 
    -' 1) 
    < ( 
    len pion1) by 
    A116,
    NAT_1: 13;
    
          (
    LSeg (pion1,(( 
    len pion1) 
    -' 1))) 
    c= ( 
    L~ pion) by 
    A88,
    TOPREAL3: 19;
    
          then
    
          
    
    A119: (( 
    LSeg (pion1,(( 
    len pion1) 
    -' 1))) 
    /\ ( 
    LSeg (co,1))) 
    c=  
    {Gik} by
    A61,
    XBOOLE_1: 27;
    
          
    {Gik}
    c= (( 
    LSeg (pion1,(( 
    len pion1) 
    -' 1))) 
    /\ ( 
    LSeg (co,1))) 
    
          proof
    
            let x be
    object;
    
            assume x
    in  
    {Gik};
    
            then
    
            
    
    A120: x 
    = Gik by 
    TARSKI:def 1;
    
            
    
            
    
    A121: Gik 
    in ( 
    LSeg (co,1)) by 
    A58,
    RLTOPSP1: 68;
    
            (pion1
    /. ((( 
    len pion1) 
    -' 1) 
    + 1)) 
    = (pion 
    /. 3) by 
    A90,
    A116,
    FINSEQ_1: 45
    
            .= Gik by
    FINSEQ_4: 18;
    
            then Gik
    in ( 
    LSeg (pion1,(( 
    len pion1) 
    -' 1))) by 
    A115,
    A116,
    TOPREAL1: 21;
    
            hence thesis by
    A120,
    A121,
    XBOOLE_0:def 4;
    
          end;
    
          then ((
    LSeg (pion1,(( 
    len pion1) 
    -' 1))) 
    /\ ( 
    LSeg (co,1))) 
    =  
    {Gik} by
    A119;
    
          then
    
          
    
    A122: (( 
    LSeg ((go 
    ^' pion1),(( 
    len go) 
    + (( 
    len pion1) 
    -' 2)))) 
    /\ ( 
    LSeg (co,1))) 
    =  
    {((go
    ^' pion1) 
    /. ( 
    len (go 
    ^' pion1)))} by 
    A45,
    A104,
    A106,
    A117,
    A118,
    TOPREAL8: 31;
    
          
    
          
    
    A123: (go 
    ^' pion1) is non 
    trivial by 
    A99,
    NAT_D: 60;
    
          
    
          
    
    A124: ( 
    rng pion1) 
    c= ( 
    L~ pion1) by 
    A109,
    SPPOL_2: 18;
    
          
    
          
    
    A125: 
    {(pion1
    /. 1)} 
    c= (( 
    L~ go) 
    /\ ( 
    L~ pion1)) 
    
          proof
    
            let x be
    object;
    
            assume x
    in  
    {(pion1
    /. 1)}; 
    
            then
    
            
    
    A126: x 
    = (pion1 
    /. 1) by 
    TARSKI:def 1;
    
            then
    
            
    
    A127: x 
    in ( 
    rng go) by 
    A104,
    FINSEQ_6: 168;
    
            x
    in ( 
    rng pion1) by 
    A126,
    FINSEQ_6: 42;
    
            hence thesis by
    A64,
    A124,
    A127,
    XBOOLE_0:def 4;
    
          end;
    
          ((
    L~ go) 
    /\ ( 
    L~ pion1)) 
    c=  
    {(pion1
    /. 1)} 
    
          proof
    
            let x be
    object;
    
            assume
    
            
    
    A128: x 
    in (( 
    L~ go) 
    /\ ( 
    L~ pion1)); 
    
            then
    
            
    
    A129: x 
    in ( 
    L~ go) by 
    XBOOLE_0:def 4;
    
            x
    in ( 
    L~ pion1) by 
    A128,
    XBOOLE_0:def 4;
    
            hence thesis by
    A7,
    A12,
    A44,
    A49,
    A88,
    A104,
    A129,
    XBOOLE_0:def 4;
    
          end;
    
          then
    
          
    
    A130: (( 
    L~ go) 
    /\ ( 
    L~ pion1)) 
    =  
    {(pion1
    /. 1)} by 
    A125;
    
          then
    
          
    
    A131: (go 
    ^' pion1) is 
    s.n.c. by 
    A104,
    JORDAN1J: 54;
    
          ((
    rng go) 
    /\ ( 
    rng pion1)) 
    c=  
    {(pion1
    /. 1)} by 
    A64,
    A124,
    A130,
    XBOOLE_1: 27;
    
          then
    
          
    
    A132: (go 
    ^' pion1) is 
    one-to-one by 
    JORDAN1J: 55;
    
          
    
          
    
    A133: (pion 
    /. ( 
    len pion)) 
    = (pion 
    /. 3) by 
    FINSEQ_1: 45
    
          .= (co
    /. 1) by 
    A45,
    FINSEQ_4: 18;
    
          
    
          
    
    A134: 
    {(pion1
    /. ( 
    len pion1))} 
    c= (( 
    L~ co) 
    /\ ( 
    L~ pion1)) 
    
          proof
    
            let x be
    object;
    
            assume x
    in  
    {(pion1
    /. ( 
    len pion1))}; 
    
            then
    
            
    
    A135: x 
    = (pion1 
    /. ( 
    len pion1)) by 
    TARSKI:def 1;
    
            then
    
            
    
    A136: x 
    in ( 
    rng co) by 
    A90,
    A133,
    FINSEQ_6: 42;
    
            x
    in ( 
    rng pion1) by 
    A135,
    FINSEQ_6: 168;
    
            hence thesis by
    A65,
    A124,
    A136,
    XBOOLE_0:def 4;
    
          end;
    
          ((
    L~ co) 
    /\ ( 
    L~ pion1)) 
    c=  
    {(pion1
    /. ( 
    len pion1))} 
    
          proof
    
            let x be
    object;
    
            assume
    
            
    
    A137: x 
    in (( 
    L~ co) 
    /\ ( 
    L~ pion1)); 
    
            then
    
            
    
    A138: x 
    in ( 
    L~ co) by 
    XBOOLE_0:def 4;
    
            x
    in ( 
    L~ pion1) by 
    A137,
    XBOOLE_0:def 4;
    
            hence thesis by
    A8,
    A12,
    A45,
    A56,
    A88,
    A90,
    A133,
    A138,
    XBOOLE_0:def 4;
    
          end;
    
          then
    
          
    
    A139: (( 
    L~ co) 
    /\ ( 
    L~ pion1)) 
    =  
    {(pion1
    /. ( 
    len pion1))} by 
    A134;
    
          
    
          
    
    A140: (( 
    L~ (go 
    ^' pion1)) 
    /\ ( 
    L~ co)) 
    = ((( 
    L~ go) 
    \/ ( 
    L~ pion1)) 
    /\ ( 
    L~ co)) by 
    A104,
    TOPREAL8: 35
    
          .= (
    {(go
    /. 1)} 
    \/  
    {(co
    /. 1)}) by 
    A76,
    A90,
    A133,
    A139,
    XBOOLE_1: 23
    
          .= (
    {((go
    ^' pion1) 
    /. 1)} 
    \/  
    {(co
    /. 1)}) by 
    FINSEQ_6: 155
    
          .=
    {((go
    ^' pion1) 
    /. 1), (co 
    /. 1)} by 
    ENUMSET1: 1;
    
          (co
    /. ( 
    len co)) 
    = ((go 
    ^' pion1) 
    /. 1) by 
    A63,
    FINSEQ_6: 155;
    
          then
    
          reconsider godo as non
    constant
    standard  
    special_circular_sequence by 
    A102,
    A106,
    A107,
    A112,
    A114,
    A122,
    A123,
    A131,
    A132,
    A140,
    JORDAN8: 4,
    JORDAN8: 5,
    TOPREAL8: 11,
    TOPREAL8: 33,
    TOPREAL8: 34;
    
          
    
          
    
    A141: UA 
    is_an_arc_of (( 
    E-max C),( 
    W-min C)) by 
    JORDAN6:def 9;
    
          then
    
          
    
    A142: UA is 
    connected by 
    JORDAN6: 10;
    
          
    
          
    
    A143: ( 
    W-min C) 
    in UA by 
    A141,
    TOPREAL1: 1;
    
          
    
          
    
    A144: ( 
    E-max C) 
    in UA by 
    A141,
    TOPREAL1: 1;
    
          set ff = (
    Rotate (( 
    Cage (C,n)),Wmin)); 
    
          Wmin
    in ( 
    rng ( 
    Cage (C,n))) by 
    SPRECT_2: 43;
    
          then
    
          
    
    A145: (ff 
    /. 1) 
    = Wmin by 
    FINSEQ_6: 92;
    
          
    
          
    
    A146: ( 
    L~ ff) 
    = ( 
    L~ ( 
    Cage (C,n))) by 
    REVROT_1: 33;
    
          then ((
    W-max ( 
    L~ ff)) 
    .. ff) 
    > 1 by 
    A145,
    SPRECT_5: 22;
    
          then ((
    N-min ( 
    L~ ff)) 
    .. ff) 
    > 1 by 
    A145,
    A146,
    SPRECT_5: 23,
    XXREAL_0: 2;
    
          then ((
    N-max ( 
    L~ ff)) 
    .. ff) 
    > 1 by 
    A145,
    A146,
    SPRECT_5: 24,
    XXREAL_0: 2;
    
          then
    
          
    
    A147: (Emax 
    .. ff) 
    > 1 by 
    A145,
    A146,
    SPRECT_5: 25,
    XXREAL_0: 2;
    
          
    
    A148: 
    
          now
    
            assume
    
            
    
    A149: (Gij 
    .. US) 
    <= 1; 
    
            (Gij
    .. US) 
    >= 1 by 
    A37,
    FINSEQ_4: 21;
    
            then (Gij
    .. US) 
    = 1 by 
    A149,
    XXREAL_0: 1;
    
            then Gij
    = (US 
    /. 1) by 
    A37,
    FINSEQ_5: 38;
    
            hence contradiction by
    A22,
    A26,
    JORDAN1F: 5;
    
          end;
    
          
    
          
    
    A150: ( 
    Cage (C,n)) 
    is_sequence_on G by 
    JORDAN9:def 1;
    
          then
    
          
    
    A151: ff 
    is_sequence_on G by 
    REVROT_1: 34;
    
          
    
          
    
    A152: (( 
    right_cell (godo,1,G)) 
    \ ( 
    L~ godo)) 
    c= ( 
    RightComp godo) by 
    A102,
    A107,
    JORDAN9: 27;
    
          
    
          
    
    A153: ( 
    L~ godo) 
    = (( 
    L~ (go 
    ^' pion1)) 
    \/ ( 
    L~ co)) by 
    A106,
    TOPREAL8: 35
    
          .= (((
    L~ go) 
    \/ ( 
    L~ pion1)) 
    \/ ( 
    L~ co)) by 
    A104,
    TOPREAL8: 35;
    
          
    
          
    
    A154: ( 
    L~ ( 
    Cage (C,n))) 
    = (( 
    L~ US) 
    \/ ( 
    L~ LS)) by 
    JORDAN1E: 13;
    
          then
    
          
    
    A155: ( 
    L~ US) 
    c= ( 
    L~ ( 
    Cage (C,n))) by 
    XBOOLE_1: 7;
    
          
    
          
    
    A156: ( 
    L~ LS) 
    c= ( 
    L~ ( 
    Cage (C,n))) by 
    A154,
    XBOOLE_1: 7;
    
          
    
          
    
    A157: ( 
    L~ go) 
    c= ( 
    L~ ( 
    Cage (C,n))) by 
    A49,
    A155;
    
          
    
          
    
    A158: ( 
    L~ co) 
    c= ( 
    L~ ( 
    Cage (C,n))) by 
    A56,
    A156;
    
          
    
          
    
    A159: ( 
    W-min C) 
    in C by 
    SPRECT_1: 13;
    
          
    
    A160: 
    
          now
    
            assume (
    W-min C) 
    in ( 
    L~ godo); 
    
            then
    
            
    
    A161: ( 
    W-min C) 
    in (( 
    L~ go) 
    \/ ( 
    L~ pion1)) or ( 
    W-min C) 
    in ( 
    L~ co) by 
    A153,
    XBOOLE_0:def 3;
    
            per cases by
    A161,
    XBOOLE_0:def 3;
    
              suppose (
    W-min C) 
    in ( 
    L~ go); 
    
              then C
    meets ( 
    L~ ( 
    Cage (C,n))) by 
    A157,
    A159,
    XBOOLE_0: 3;
    
              hence contradiction by
    JORDAN10: 5;
    
            end;
    
              suppose (
    W-min C) 
    in ( 
    L~ pion1); 
    
              hence contradiction by
    A9,
    A12,
    A88,
    A143,
    XBOOLE_0: 3;
    
            end;
    
              suppose (
    W-min C) 
    in ( 
    L~ co); 
    
              then C
    meets ( 
    L~ ( 
    Cage (C,n))) by 
    A158,
    A159,
    XBOOLE_0: 3;
    
              hence contradiction by
    JORDAN10: 5;
    
            end;
    
          end;
    
          (
    right_cell (( 
    Rotate (( 
    Cage (C,n)),Wmin)),1)) 
    = ( 
    right_cell (ff,1,( 
    GoB ff))) by 
    A98,
    JORDAN1H: 23
    
          .= (
    right_cell (ff,1,( 
    GoB ( 
    Cage (C,n))))) by 
    REVROT_1: 28
    
          .= (
    right_cell (ff,1,G)) by 
    JORDAN1H: 44
    
          .= (
    right_cell ((ff 
    -: Emax),1,G)) by 
    A147,
    A151,
    JORDAN1J: 53
    
          .= (
    right_cell (US,1,G)) by 
    JORDAN1E:def 1
    
          .= (
    right_cell (( 
    R_Cut (US,Gij)),1,G)) by 
    A37,
    A103,
    A148,
    JORDAN1J: 52
    
          .= (
    right_cell ((go 
    ^' pion1),1,G)) by 
    A42,
    A105,
    JORDAN1J: 51
    
          .= (
    right_cell (godo,1,G)) by 
    A100,
    A107,
    JORDAN1J: 51;
    
          then (
    W-min C) 
    in ( 
    right_cell (godo,1,G)) by 
    JORDAN1I: 6;
    
          then
    
          
    
    A162: ( 
    W-min C) 
    in (( 
    right_cell (godo,1,G)) 
    \ ( 
    L~ godo)) by 
    A160,
    XBOOLE_0:def 5;
    
          
    
          
    
    A163: (godo 
    /. 1) 
    = ((go 
    ^' pion1) 
    /. 1) by 
    FINSEQ_6: 155
    
          .= Wmin by
    A62,
    FINSEQ_6: 155;
    
          
    
          
    
    A164: ( 
    len US) 
    >= 2 by 
    A21,
    XXREAL_0: 2;
    
          
    
          
    
    A165: (godo 
    /. 2) 
    = ((go 
    ^' pion1) 
    /. 2) by 
    A99,
    FINSEQ_6: 159
    
          .= (US
    /. 2) by 
    A36,
    A79,
    FINSEQ_6: 159
    
          .= ((US
    ^' LS) 
    /. 2) by 
    A164,
    FINSEQ_6: 159
    
          .= ((
    Rotate (( 
    Cage (C,n)),Wmin)) 
    /. 2) by 
    JORDAN1E: 11;
    
          
    
          
    
    A166: (( 
    L~ go) 
    \/ ( 
    L~ co)) is 
    compact by 
    COMPTS_1: 10;
    
          Wmin
    in (( 
    L~ go) 
    \/ ( 
    L~ co)) by 
    A64,
    A80,
    XBOOLE_0:def 3;
    
          then
    
          
    
    A167: ( 
    W-min (( 
    L~ go) 
    \/ ( 
    L~ co))) 
    = Wmin by 
    A157,
    A158,
    A166,
    JORDAN1J: 21,
    XBOOLE_1: 8;
    
          
    
          
    
    A168: (( 
    W-min (( 
    L~ go) 
    \/ ( 
    L~ co))) 
    `1 ) 
    = ( 
    W-bound (( 
    L~ go) 
    \/ ( 
    L~ co))) by 
    EUCLID: 52;
    
          
    
          
    
    A169: (Wmin 
    `1 ) 
    = Wbo by 
    EUCLID: 52;
    
          (Gij
    `1 ) 
    >= Wbo by 
    A14,
    A155,
    PSCOMP_1: 24;
    
          then (Gij
    `1 ) 
    > Wbo by 
    A78,
    XXREAL_0: 1;
    
          then (
    W-min ((( 
    L~ go) 
    \/ ( 
    L~ co)) 
    \/ ( 
    L~ pion1))) 
    = ( 
    W-min (( 
    L~ go) 
    \/ ( 
    L~ co))) by 
    A96,
    A166,
    A167,
    A168,
    A169,
    JORDAN1J: 33;
    
          then
    
          
    
    A170: ( 
    W-min ( 
    L~ godo)) 
    = Wmin by 
    A153,
    A167,
    XBOOLE_1: 4;
    
          
    
          
    
    A171: ( 
    rng godo) 
    c= ( 
    L~ godo) by 
    A99,
    A101,
    SPPOL_2: 18,
    XXREAL_0: 2;
    
          2
    in ( 
    dom godo) by 
    A102,
    FINSEQ_3: 25;
    
          then
    
          
    
    A172: (godo 
    /. 2) 
    in ( 
    rng godo) by 
    PARTFUN2: 2;
    
          (godo
    /. 2) 
    in ( 
    W-most ( 
    L~ ( 
    Cage (C,n)))) by 
    A165,
    JORDAN1I: 25;
    
          
    
          then ((godo
    /. 2) 
    `1 ) 
    = (( 
    W-min ( 
    L~ godo)) 
    `1 ) by 
    A170,
    PSCOMP_1: 31
    
          .= (
    W-bound ( 
    L~ godo)) by 
    EUCLID: 52;
    
          then (godo
    /. 2) 
    in ( 
    W-most ( 
    L~ godo)) by 
    A171,
    A172,
    SPRECT_2: 12;
    
          then ((
    Rotate (godo,( 
    W-min ( 
    L~ godo)))) 
    /. 2) 
    in ( 
    W-most ( 
    L~ godo)) by 
    A163,
    A170,
    FINSEQ_6: 89;
    
          then
    
          reconsider godo as
    clockwise_oriented non 
    constant
    standard  
    special_circular_sequence by 
    JORDAN1I: 25;
    
          (
    len US) 
    in ( 
    dom US) by 
    FINSEQ_5: 6;
    
          
    
          then
    
          
    
    A173: (US 
    . ( 
    len US)) 
    = (US 
    /. ( 
    len US)) by 
    PARTFUN1:def 6
    
          .= Emax by
    JORDAN1F: 7;
    
          
    
          
    
    A174: ( 
    east_halfline ( 
    E-max C)) 
    misses ( 
    L~ go) 
    
          proof
    
            assume (
    east_halfline ( 
    E-max C)) 
    meets ( 
    L~ go); 
    
            then
    
            consider p be
    object such that 
    
            
    
    A175: p 
    in ( 
    east_halfline ( 
    E-max C)) and 
    
            
    
    A176: p 
    in ( 
    L~ go) by 
    XBOOLE_0: 3;
    
            reconsider p as
    Point of ( 
    TOP-REAL 2) by 
    A175;
    
            p
    in ( 
    L~ US) by 
    A49,
    A176;
    
            then p
    in (( 
    east_halfline ( 
    E-max C)) 
    /\ ( 
    L~ ( 
    Cage (C,n)))) by 
    A155,
    A175,
    XBOOLE_0:def 4;
    
            then
    
            
    
    A177: (p 
    `1 ) 
    = Ebo by 
    JORDAN1A: 83,
    PSCOMP_1: 50;
    
            then
    
            
    
    A178: p 
    = Emax by 
    A49,
    A176,
    JORDAN1J: 46;
    
            then Emax
    = Gij by 
    A14,
    A173,
    A176,
    JORDAN1J: 43;
    
            then (Gij
    `1 ) 
    = ((G 
    * (( 
    len G),k)) 
    `1 ) by 
    A6,
    A16,
    A20,
    A177,
    A178,
    JORDAN1A: 71;
    
            hence contradiction by
    A2,
    A3,
    A17,
    A33,
    JORDAN1G: 7;
    
          end;
    
          now
    
            assume (
    east_halfline ( 
    E-max C)) 
    meets ( 
    L~ godo); 
    
            then
    
            
    
    A179: ( 
    east_halfline ( 
    E-max C)) 
    meets (( 
    L~ go) 
    \/ ( 
    L~ pion1)) or ( 
    east_halfline ( 
    E-max C)) 
    meets ( 
    L~ co) by 
    A153,
    XBOOLE_1: 70;
    
            per cases by
    A179,
    XBOOLE_1: 70;
    
              suppose (
    east_halfline ( 
    E-max C)) 
    meets ( 
    L~ go); 
    
              hence contradiction by
    A174;
    
            end;
    
              suppose (
    east_halfline ( 
    E-max C)) 
    meets ( 
    L~ pion1); 
    
              then
    
              consider p be
    object such that 
    
              
    
    A180: p 
    in ( 
    east_halfline ( 
    E-max C)) and 
    
              
    
    A181: p 
    in ( 
    L~ pion1) by 
    XBOOLE_0: 3;
    
              reconsider p as
    Point of ( 
    TOP-REAL 2) by 
    A180;
    
              
    
    A182: 
    
              now
    
                per cases by
    A12,
    A88,
    A181,
    XBOOLE_0:def 3;
    
                  suppose p
    in poz; 
    
                  hence (p
    `1 ) 
    <= (Gik 
    `1 ) by 
    A93,
    TOPREAL1: 3;
    
                end;
    
                  suppose p
    in pio; 
    
                  hence (p
    `1 ) 
    <= (Gik 
    `1 ) by 
    A92,
    A93,
    GOBOARD7: 5;
    
                end;
    
              end;
    
              (i2
    + 1) 
    <= ( 
    len G) by 
    A3,
    NAT_1: 13;
    
              then i2
    <= (( 
    len G) 
    - 1) by 
    XREAL_1: 19;
    
              then
    
              
    
    A183: i2 
    <= (( 
    len G) 
    -' 1) by 
    XREAL_0:def 2;
    
              ((
    len G) 
    -' 1) 
    <= ( 
    len G) by 
    NAT_D: 35;
    
              then (Gik
    `1 ) 
    <= ((G 
    * ((( 
    len G) 
    -' 1),1)) 
    `1 ) by 
    A6,
    A11,
    A16,
    A20,
    A24,
    A183,
    JORDAN1A: 18;
    
              then (p
    `1 ) 
    <= ((G 
    * ((( 
    len G) 
    -' 1),1)) 
    `1 ) by 
    A182,
    XXREAL_0: 2;
    
              then (p
    `1 ) 
    <= ( 
    E-bound C) by 
    A24,
    JORDAN8: 12;
    
              then
    
              
    
    A184: (p 
    `1 ) 
    <= (( 
    E-max C) 
    `1 ) by 
    EUCLID: 52;
    
              (p
    `1 ) 
    >= (( 
    E-max C) 
    `1 ) by 
    A180,
    TOPREAL1:def 11;
    
              then
    
              
    
    A185: (p 
    `1 ) 
    = (( 
    E-max C) 
    `1 ) by 
    A184,
    XXREAL_0: 1;
    
              (p
    `2 ) 
    = (( 
    E-max C) 
    `2 ) by 
    A180,
    TOPREAL1:def 11;
    
              then p
    = ( 
    E-max C) by 
    A185,
    TOPREAL3: 6;
    
              hence contradiction by
    A9,
    A12,
    A88,
    A144,
    A181,
    XBOOLE_0: 3;
    
            end;
    
              suppose (
    east_halfline ( 
    E-max C)) 
    meets ( 
    L~ co); 
    
              then
    
              consider p be
    object such that 
    
              
    
    A186: p 
    in ( 
    east_halfline ( 
    E-max C)) and 
    
              
    
    A187: p 
    in ( 
    L~ co) by 
    XBOOLE_0: 3;
    
              reconsider p as
    Point of ( 
    TOP-REAL 2) by 
    A186;
    
              p
    in ( 
    L~ LS) by 
    A56,
    A187;
    
              then p
    in (( 
    east_halfline ( 
    E-max C)) 
    /\ ( 
    L~ ( 
    Cage (C,n)))) by 
    A156,
    A186,
    XBOOLE_0:def 4;
    
              then
    
              
    
    A188: (p 
    `1 ) 
    = Ebo by 
    JORDAN1A: 83,
    PSCOMP_1: 50;
    
              
    
              
    
    A189: (( 
    E-max C) 
    `2 ) 
    = (p 
    `2 ) by 
    A186,
    TOPREAL1:def 11;
    
              set RC = (
    Rotate (( 
    Cage (C,n)),Emax)); 
    
              
    
              
    
    A190: ( 
    E-max C) 
    in ( 
    right_cell (RC,1)) by 
    JORDAN1I: 7;
    
              
    
              
    
    A191: (1 
    + 1) 
    <= ( 
    len LS) by 
    A28,
    XXREAL_0: 2;
    
              LS
    = (RC 
    -: Wmin) by 
    JORDAN1G: 18;
    
              then
    
              
    
    A192: ( 
    LSeg (LS,1)) 
    = ( 
    LSeg (RC,1)) by 
    A191,
    SPPOL_2: 9;
    
              
    
              
    
    A193: ( 
    L~ RC) 
    = ( 
    L~ ( 
    Cage (C,n))) by 
    REVROT_1: 33;
    
              
    
              
    
    A194: ( 
    len RC) 
    = ( 
    len ( 
    Cage (C,n))) by 
    FINSEQ_6: 179;
    
              
    
              
    
    A195: ( 
    GoB RC) 
    = ( 
    GoB ( 
    Cage (C,n))) by 
    REVROT_1: 28
    
              .= G by
    JORDAN1H: 44;
    
              
    
              
    
    A196: Emax 
    in ( 
    rng ( 
    Cage (C,n))) by 
    SPRECT_2: 46;
    
              
    
              
    
    A197: RC 
    is_sequence_on G by 
    A150,
    REVROT_1: 34;
    
              
    
              
    
    A198: (RC 
    /. 1) 
    = ( 
    E-max ( 
    L~ RC)) by 
    A193,
    A196,
    FINSEQ_6: 92;
    
              consider ii,jj be
    Nat such that 
    
              
    
    A199: 
    [ii, (jj
    + 1)] 
    in ( 
    Indices G) and 
    
              
    
    A200: 
    [ii, jj]
    in ( 
    Indices G) and 
    
              
    
    A201: (RC 
    /. 1) 
    = (G 
    * (ii,(jj 
    + 1))) and 
    
              
    
    A202: (RC 
    /. (1 
    + 1)) 
    = (G 
    * (ii,jj)) by 
    A97,
    A193,
    A194,
    A196,
    A197,
    FINSEQ_6: 92,
    JORDAN1I: 23;
    
              consider jj2 be
    Nat such that 
    
              
    
    A203: 1 
    <= jj2 and 
    
              
    
    A204: jj2 
    <= ( 
    width G) and 
    
              
    
    A205: Emax 
    = (G 
    * (( 
    len G),jj2)) by 
    JORDAN1D: 25;
    
              
    
              
    
    A206: ( 
    len G) 
    >= 4 by 
    JORDAN8: 10;
    
              then (
    len G) 
    >= 1 by 
    XXREAL_0: 2;
    
              then
    [(
    len G), jj2] 
    in ( 
    Indices G) by 
    A203,
    A204,
    MATRIX_0: 30;
    
              then
    
              
    
    A207: ii 
    = ( 
    len G) by 
    A193,
    A198,
    A199,
    A201,
    A205,
    GOBOARD1: 5;
    
              
    
              
    
    A208: 1 
    <= ii by 
    A199,
    MATRIX_0: 32;
    
              
    
              
    
    A209: ii 
    <= ( 
    len G) by 
    A199,
    MATRIX_0: 32;
    
              
    
              
    
    A210: 1 
    <= (jj 
    + 1) by 
    A199,
    MATRIX_0: 32;
    
              
    
              
    
    A211: (jj 
    + 1) 
    <= ( 
    width G) by 
    A199,
    MATRIX_0: 32;
    
              
    
              
    
    A212: 1 
    <= ii by 
    A200,
    MATRIX_0: 32;
    
              
    
              
    
    A213: ii 
    <= ( 
    len G) by 
    A200,
    MATRIX_0: 32;
    
              
    
              
    
    A214: 1 
    <= jj by 
    A200,
    MATRIX_0: 32;
    
              
    
              
    
    A215: jj 
    <= ( 
    width G) by 
    A200,
    MATRIX_0: 32;
    
              
    
              
    
    A216: (ii 
    + 1) 
    <> ii; 
    
              ((jj
    + 1) 
    + 1) 
    <> jj; 
    
              then
    
              
    
    A217: ( 
    right_cell (RC,1)) 
    = ( 
    cell (G,(ii 
    -' 1),jj)) by 
    A97,
    A194,
    A195,
    A199,
    A200,
    A201,
    A202,
    A216,
    GOBOARD5:def 6;
    
              
    
              
    
    A218: ((ii 
    -' 1) 
    + 1) 
    = ii by 
    A208,
    XREAL_1: 235;
    
              (ii
    - 1) 
    >= (4 
    - 1) by 
    A206,
    A207,
    XREAL_1: 9;
    
              then
    
              
    
    A219: (ii 
    - 1) 
    >= 1 by 
    XXREAL_0: 2;
    
              then
    
              
    
    A220: 1 
    <= (ii 
    -' 1) by 
    XREAL_0:def 2;
    
              
    
              
    
    A221: ((G 
    * ((ii 
    -' 1),jj)) 
    `2 ) 
    <= (p 
    `2 ) by 
    A189,
    A190,
    A209,
    A211,
    A214,
    A217,
    A218,
    A219,
    JORDAN9: 17;
    
              
    
              
    
    A222: (p 
    `2 ) 
    <= ((G 
    * ((ii 
    -' 1),(jj 
    + 1))) 
    `2 ) by 
    A189,
    A190,
    A209,
    A211,
    A214,
    A217,
    A218,
    A219,
    JORDAN9: 17;
    
              
    
              
    
    A223: (ii 
    -' 1) 
    < ( 
    len G) by 
    A209,
    A218,
    NAT_1: 13;
    
              
    
              then
    
              
    
    A224: ((G 
    * ((ii 
    -' 1),jj)) 
    `2 ) 
    = ((G 
    * (1,jj)) 
    `2 ) by 
    A214,
    A215,
    A220,
    GOBOARD5: 1
    
              .= ((G
    * (ii,jj)) 
    `2 ) by 
    A212,
    A213,
    A214,
    A215,
    GOBOARD5: 1;
    
              
    
              
    
    A225: ((G 
    * ((ii 
    -' 1),(jj 
    + 1))) 
    `2 ) 
    = ((G 
    * (1,(jj 
    + 1))) 
    `2 ) by 
    A210,
    A211,
    A220,
    A223,
    GOBOARD5: 1
    
              .= ((G
    * (ii,(jj 
    + 1))) 
    `2 ) by 
    A208,
    A209,
    A210,
    A211,
    GOBOARD5: 1;
    
              
    
              
    
    A226: ((G 
    * (( 
    len G),jj)) 
    `1 ) 
    = Ebo by 
    A20,
    A214,
    A215,
    JORDAN1A: 71;
    
              Ebo
    = ((G 
    * (( 
    len G),(jj 
    + 1))) 
    `1 ) by 
    A20,
    A210,
    A211,
    JORDAN1A: 71;
    
              then p
    in ( 
    LSeg ((RC 
    /. 1),(RC 
    /. (1 
    + 1)))) by 
    A188,
    A201,
    A202,
    A207,
    A221,
    A222,
    A224,
    A225,
    A226,
    GOBOARD7: 7;
    
              then
    
              
    
    A227: p 
    in ( 
    LSeg (LS,1)) by 
    A97,
    A192,
    A194,
    TOPREAL1:def 3;
    
              
    
              
    
    A228: p 
    in ( 
    LSeg (co,( 
    Index (p,co)))) by 
    A187,
    JORDAN3: 9;
    
              
    
              
    
    A229: co 
    = ( 
    mid (LS,(Gik 
    .. LS),( 
    len LS))) by 
    A40,
    JORDAN1J: 37;
    
              
    
              
    
    A230: 1 
    <= (Gik 
    .. LS) by 
    A40,
    FINSEQ_4: 21;
    
              
    
              
    
    A231: (Gik 
    .. LS) 
    <= ( 
    len LS) by 
    A40,
    FINSEQ_4: 21;
    
              (Gik
    .. LS) 
    <> ( 
    len LS) by 
    A32,
    A40,
    FINSEQ_4: 19;
    
              then
    
              
    
    A232: (Gik 
    .. LS) 
    < ( 
    len LS) by 
    A231,
    XXREAL_0: 1;
    
              
    
              
    
    A233: 1 
    <= ( 
    Index (p,co)) by 
    A187,
    JORDAN3: 8;
    
              
    
              
    
    A234: ( 
    Index (p,co)) 
    < ( 
    len co) by 
    A187,
    JORDAN3: 8;
    
              
    
              
    
    A235: (( 
    Index (Gik,LS)) 
    + 1) 
    = (Gik 
    .. LS) by 
    A35,
    A40,
    JORDAN1J: 56;
    
              consider t be
    Nat such that 
    
              
    
    A236: t 
    in ( 
    dom LS) and 
    
              
    
    A237: (LS 
    . t) 
    = Gik by 
    A40,
    FINSEQ_2: 10;
    
              
    
              
    
    A238: 1 
    <= t by 
    A236,
    FINSEQ_3: 25;
    
              
    
              
    
    A239: t 
    <= ( 
    len LS) by 
    A236,
    FINSEQ_3: 25;
    
              1
    < t by 
    A35,
    A237,
    A238,
    XXREAL_0: 1;
    
              then ((
    Index (Gik,LS)) 
    + 1) 
    = t by 
    A237,
    A239,
    JORDAN3: 12;
    
              then
    
              
    
    A240: ( 
    len ( 
    L_Cut (LS,Gik))) 
    = (( 
    len LS) 
    - ( 
    Index (Gik,LS))) by 
    A13,
    A237,
    JORDAN3: 26;
    
              set tt = (((
    Index (p,co)) 
    + (Gik 
    .. LS)) 
    -' 1); 
    
              
    
              
    
    A241: 1 
    <= ( 
    Index (Gik,LS)) by 
    A13,
    JORDAN3: 8;
    
              (
    0  
    + ( 
    Index (Gik,LS))) 
    < ( 
    len LS) by 
    A13,
    JORDAN3: 8;
    
              then
    
              
    
    A242: (( 
    len LS) 
    - ( 
    Index (Gik,LS))) 
    >  
    0 by 
    XREAL_1: 20;
    
              (
    Index (p,co)) 
    < (( 
    len LS) 
    -' ( 
    Index (Gik,LS))) by 
    A234,
    A240,
    XREAL_0:def 2;
    
              then ((
    Index (p,co)) 
    + 1) 
    <= (( 
    len LS) 
    -' ( 
    Index (Gik,LS))) by 
    NAT_1: 13;
    
              then (
    Index (p,co)) 
    <= ((( 
    len LS) 
    -' ( 
    Index (Gik,LS))) 
    - 1) by 
    XREAL_1: 19;
    
              then (
    Index (p,co)) 
    <= ((( 
    len LS) 
    - ( 
    Index (Gik,LS))) 
    - 1) by 
    A242,
    XREAL_0:def 2;
    
              then (
    Index (p,co)) 
    <= (( 
    len LS) 
    - (Gik 
    .. LS)) by 
    A235;
    
              then (
    Index (p,co)) 
    <= (( 
    len LS) 
    -' (Gik 
    .. LS)) by 
    XREAL_0:def 2;
    
              then (
    Index (p,co)) 
    < ((( 
    len LS) 
    -' (Gik 
    .. LS)) 
    + 1) by 
    NAT_1: 13;
    
              then
    
              
    
    A243: ( 
    LSeg (( 
    mid (LS,(Gik 
    .. LS),( 
    len LS))),( 
    Index (p,co)))) 
    = ( 
    LSeg (LS,((( 
    Index (p,co)) 
    + (Gik 
    .. LS)) 
    -' 1))) by 
    A230,
    A232,
    A233,
    JORDAN4: 19;
    
              
    
              
    
    A244: (1 
    + 1) 
    <= (Gik 
    .. LS) by 
    A235,
    A241,
    XREAL_1: 7;
    
              then ((
    Index (p,co)) 
    + (Gik 
    .. LS)) 
    >= ((1 
    + 1) 
    + 1) by 
    A233,
    XREAL_1: 7;
    
              then (((
    Index (p,co)) 
    + (Gik 
    .. LS)) 
    - 1) 
    >= (((1 
    + 1) 
    + 1) 
    - 1) by 
    XREAL_1: 9;
    
              then
    
              
    
    A245: tt 
    >= (1 
    + 1) by 
    XREAL_0:def 2;
    
              
    
              
    
    A246: 2 
    in ( 
    dom LS) by 
    A191,
    FINSEQ_3: 25;
    
              now
    
                per cases by
    A245,
    XXREAL_0: 1;
    
                  suppose tt
    > (1 
    + 1); 
    
                  then (
    LSeg (LS,1)) 
    misses ( 
    LSeg (LS,tt)) by 
    TOPREAL1:def 7;
    
                  hence contradiction by
    A227,
    A228,
    A229,
    A243,
    XBOOLE_0: 3;
    
                end;
    
                  suppose
    
                  
    
    A247: tt 
    = (1 
    + 1); 
    
                  then ((
    LSeg (LS,1)) 
    /\ ( 
    LSeg (LS,tt))) 
    =  
    {(LS
    /. 2)} by 
    A28,
    TOPREAL1:def 6;
    
                  then p
    in  
    {(LS
    /. 2)} by 
    A227,
    A228,
    A229,
    A243,
    XBOOLE_0:def 4;
    
                  then
    
                  
    
    A248: p 
    = (LS 
    /. 2) by 
    TARSKI:def 1;
    
                  then
    
                  
    
    A249: (p 
    .. LS) 
    = 2 by 
    A246,
    FINSEQ_5: 41;
    
                  (1
    + 1) 
    = ((( 
    Index (p,co)) 
    + (Gik 
    .. LS)) 
    - 1) by 
    A247,
    XREAL_0:def 2;
    
                  then ((1
    + 1) 
    + 1) 
    = (( 
    Index (p,co)) 
    + (Gik 
    .. LS)); 
    
                  then
    
                  
    
    A250: (Gik 
    .. LS) 
    = 2 by 
    A233,
    A244,
    JORDAN1E: 6;
    
                  p
    in ( 
    rng LS) by 
    A246,
    A248,
    PARTFUN2: 2;
    
                  then p
    = Gik by 
    A40,
    A249,
    A250,
    FINSEQ_5: 9;
    
                  then (Gik
    `1 ) 
    = Ebo by 
    A248,
    JORDAN1G: 32;
    
                  then (Gik
    `1 ) 
    = ((G 
    * (( 
    len G),j)) 
    `1 ) by 
    A4,
    A15,
    A20,
    JORDAN1A: 71;
    
                  hence contradiction by
    A3,
    A18,
    A70,
    JORDAN1G: 7;
    
                end;
    
              end;
    
              hence contradiction;
    
            end;
    
          end;
    
          then (
    east_halfline ( 
    E-max C)) 
    c= (( 
    L~ godo) 
    ` ) by 
    SUBSET_1: 23;
    
          then
    
          consider W be
    Subset of ( 
    TOP-REAL 2) such that 
    
          
    
    A251: W 
    is_a_component_of (( 
    L~ godo) 
    ` ) and 
    
          
    
    A252: ( 
    east_halfline ( 
    E-max C)) 
    c= W by 
    GOBOARD9: 3;
    
           not W is
    bounded by 
    A252,
    JORDAN2C: 121,
    RLTOPSP1: 42;
    
          then W
    is_outside_component_of ( 
    L~ godo) by 
    A251,
    JORDAN2C:def 3;
    
          then W
    c= ( 
    UBD ( 
    L~ godo)) by 
    JORDAN2C: 23;
    
          then
    
          
    
    A253: ( 
    east_halfline ( 
    E-max C)) 
    c= ( 
    UBD ( 
    L~ godo)) by 
    A252;
    
          (
    E-max C) 
    in ( 
    east_halfline ( 
    E-max C)) by 
    TOPREAL1: 38;
    
          then (
    E-max C) 
    in ( 
    UBD ( 
    L~ godo)) by 
    A253;
    
          then (
    E-max C) 
    in ( 
    LeftComp godo) by 
    GOBRD14: 36;
    
          then UA
    meets ( 
    L~ godo) by 
    A142,
    A143,
    A144,
    A152,
    A162,
    JORDAN1J: 36;
    
          then
    
          
    
    A254: UA 
    meets (( 
    L~ go) 
    \/ ( 
    L~ pion1)) or UA 
    meets ( 
    L~ co) by 
    A153,
    XBOOLE_1: 70;
    
          
    
          
    
    A255: UA 
    c= C by 
    JORDAN6: 61;
    
          now
    
            per cases by
    A254,
    XBOOLE_1: 70;
    
              suppose UA
    meets ( 
    L~ go); 
    
              then UA
    meets ( 
    L~ ( 
    Cage (C,n))) by 
    A49,
    A155,
    XBOOLE_1: 1,
    XBOOLE_1: 63;
    
              hence contradiction by
    A255,
    JORDAN10: 5,
    XBOOLE_1: 63;
    
            end;
    
              suppose UA
    meets ( 
    L~ pion1); 
    
              hence contradiction by
    A9,
    A12,
    A88;
    
            end;
    
              suppose UA
    meets ( 
    L~ co); 
    
              then UA
    meets ( 
    L~ ( 
    Cage (C,n))) by 
    A56,
    A156,
    XBOOLE_1: 1,
    XBOOLE_1: 63;
    
              hence contradiction by
    A255,
    JORDAN10: 5,
    XBOOLE_1: 63;
    
            end;
    
          end;
    
          hence contradiction;
    
        end;
    
          suppose (Gik
    `1 ) 
    = (Gij 
    `1 ); 
    
          then
    
          
    
    A256: i1 
    = i2 by 
    A17,
    A18,
    JORDAN1G: 7;
    
          then poz
    =  
    {Gi1k} by
    RLTOPSP1: 70;
    
          then poz
    c= pio by 
    A84,
    ZFMISC_1: 31;
    
          then (pio
    \/ poz) 
    = pio by 
    XBOOLE_1: 12;
    
          hence contradiction by
    A1,
    A3,
    A4,
    A5,
    A6,
    A7,
    A8,
    A9,
    A256,
    Th13;
    
        end;
    
          suppose (Gik
    `2 ) 
    = (Gij 
    `2 ); 
    
          then
    
          
    
    A257: j 
    = k by 
    A17,
    A18,
    JORDAN1G: 6;
    
          then pio
    =  
    {Gi1k} by
    RLTOPSP1: 70;
    
          then pio
    c= poz by 
    A85,
    ZFMISC_1: 31;
    
          then (pio
    \/ poz) 
    = poz by 
    XBOOLE_1: 12;
    
          hence contradiction by
    A1,
    A2,
    A3,
    A4,
    A6,
    A7,
    A8,
    A9,
    A257,
    JORDAN15: 36;
    
        end;
    
      end;
    
      hence contradiction;
    
    end;
    
    theorem :: 
    
    JORDAN19:22
    
    
    
    
    
    Th22: for C be 
    Simple_closed_curve holds for i1,i2,j,k be 
    Nat st 1 
    < i2 & i2 
    <= i1 & i1 
    < ( 
    len ( 
    Gauge (C,n))) & 1 
    <= j & j 
    <= k & k 
    <= ( 
    width ( 
    Gauge (C,n))) & ((( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i1,j)),(( 
    Gauge (C,n)) 
    * (i1,k)))) 
    \/ ( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i1,k)),(( 
    Gauge (C,n)) 
    * (i2,k))))) 
    /\ ( 
    L~ ( 
    Upper_Seq (C,n)))) 
    =  
    {((
    Gauge (C,n)) 
    * (i1,j))} & ((( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i1,j)),(( 
    Gauge (C,n)) 
    * (i1,k)))) 
    \/ ( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i1,k)),(( 
    Gauge (C,n)) 
    * (i2,k))))) 
    /\ ( 
    L~ ( 
    Lower_Seq (C,n)))) 
    =  
    {((
    Gauge (C,n)) 
    * (i2,k))} holds (( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i1,j)),(( 
    Gauge (C,n)) 
    * (i1,k)))) 
    \/ ( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i1,k)),(( 
    Gauge (C,n)) 
    * (i2,k))))) 
    meets ( 
    Upper_Arc C) 
    
    proof
    
      let C be
    Simple_closed_curve;
    
      let i1,i2,j,k be
    Nat;
    
      set G = (
    Gauge (C,n)); 
    
      set pio = (
    LSeg ((G 
    * (i1,j)),(G 
    * (i1,k)))); 
    
      set poz = (
    LSeg ((G 
    * (i1,k)),(G 
    * (i2,k)))); 
    
      set US = (
    Upper_Seq (C,n)); 
    
      set LS = (
    Lower_Seq (C,n)); 
    
      assume that
    
      
    
    A1: 1 
    < i2 and 
    
      
    
    A2: i2 
    <= i1 and 
    
      
    
    A3: i1 
    < ( 
    len G) and 
    
      
    
    A4: 1 
    <= j and 
    
      
    
    A5: j 
    <= k and 
    
      
    
    A6: k 
    <= ( 
    width G) and 
    
      
    
    A7: ((pio 
    \/ poz) 
    /\ ( 
    L~ US)) 
    =  
    {(G
    * (i1,j))} and 
    
      
    
    A8: ((pio 
    \/ poz) 
    /\ ( 
    L~ LS)) 
    =  
    {(G
    * (i2,k))} and 
    
      
    
    A9: (pio 
    \/ poz) 
    misses ( 
    Upper_Arc C); 
    
      set UA = (
    Upper_Arc C); 
    
      set Wmin = (
    W-min ( 
    L~ ( 
    Cage (C,n)))); 
    
      set Emax = (
    E-max ( 
    L~ ( 
    Cage (C,n)))); 
    
      set Wbo = (
    W-bound ( 
    L~ ( 
    Cage (C,n)))); 
    
      set Ebo = (
    E-bound ( 
    L~ ( 
    Cage (C,n)))); 
    
      set Gik = (G
    * (i2,k)); 
    
      set Gij = (G
    * (i1,j)); 
    
      set Gi1k = (G
    * (i1,k)); 
    
      
    
      
    
    A10: 1 
    < i1 by 
    A1,
    A2,
    XXREAL_0: 2;
    
      
    
      
    
    A11: i2 
    < ( 
    len G) by 
    A2,
    A3,
    XXREAL_0: 2;
    
      
    
      
    
    A12: ( 
    L~  
    <*Gij, Gi1k, Gik*>)
    = (poz 
    \/ pio) by 
    TOPREAL3: 16;
    
      Gik
    in  
    {Gik} by
    TARSKI:def 1;
    
      then
    
      
    
    A13: Gik 
    in ( 
    L~ LS) by 
    A8,
    XBOOLE_0:def 4;
    
      Gij
    in  
    {Gij} by
    TARSKI:def 1;
    
      then
    
      
    
    A14: Gij 
    in ( 
    L~ US) by 
    A7,
    XBOOLE_0:def 4;
    
      
    
      
    
    A15: j 
    <= ( 
    width G) by 
    A5,
    A6,
    XXREAL_0: 2;
    
      
    
      
    
    A16: 1 
    <= k by 
    A4,
    A5,
    XXREAL_0: 2;
    
      
    
      
    
    A17: 
    [i1, j]
    in ( 
    Indices G) by 
    A3,
    A4,
    A10,
    A15,
    MATRIX_0: 30;
    
      
    
      
    
    A18: 
    [i2, k]
    in ( 
    Indices G) by 
    A1,
    A6,
    A11,
    A16,
    MATRIX_0: 30;
    
      
    
      
    
    A19: 
    [i1, k]
    in ( 
    Indices G) by 
    A3,
    A6,
    A10,
    A16,
    MATRIX_0: 30;
    
      set go = (
    R_Cut (US,Gij)); 
    
      set co = (
    L_Cut (LS,Gik)); 
    
      
    
      
    
    A20: ( 
    len G) 
    = ( 
    width G) by 
    JORDAN8:def 1;
    
      
    
      
    
    A21: ( 
    len US) 
    >= 3 by 
    JORDAN1E: 15;
    
      then (
    len US) 
    >= 1 by 
    XXREAL_0: 2;
    
      then 1
    in ( 
    dom US) by 
    FINSEQ_3: 25;
    
      
    
      then
    
      
    
    A22: (US 
    . 1) 
    = (US 
    /. 1) by 
    PARTFUN1:def 6
    
      .= Wmin by
    JORDAN1F: 5;
    
      
    
      
    
    A23: (Wmin 
    `1 ) 
    = Wbo by 
    EUCLID: 52
    
      .= ((G
    * (1,k)) 
    `1 ) by 
    A6,
    A16,
    A20,
    JORDAN1A: 73;
    
      (
    len G) 
    >= 4 by 
    JORDAN8: 10;
    
      then
    
      
    
    A24: ( 
    len G) 
    >= 1 by 
    XXREAL_0: 2;
    
      then
    
      
    
    A25: 
    [1, k]
    in ( 
    Indices G) by 
    A6,
    A16,
    MATRIX_0: 30;
    
      then
    
      
    
    A26: Gij 
    <> (US 
    . 1) by 
    A1,
    A2,
    A17,
    A22,
    A23,
    JORDAN1G: 7;
    
      then
    
      reconsider go as
    being_S-Seq  
    FinSequence of ( 
    TOP-REAL 2) by 
    A14,
    JORDAN3: 35;
    
      
    
      
    
    A27: ( 
    len LS) 
    >= (1 
    + 2) by 
    JORDAN1E: 15;
    
      then
    
      
    
    A28: ( 
    len LS) 
    >= 1 by 
    XXREAL_0: 2;
    
      then
    
      
    
    A29: 1 
    in ( 
    dom LS) by 
    FINSEQ_3: 25;
    
      (
    len LS) 
    in ( 
    dom LS) by 
    A28,
    FINSEQ_3: 25;
    
      
    
      then
    
      
    
    A30: (LS 
    . ( 
    len LS)) 
    = (LS 
    /. ( 
    len LS)) by 
    PARTFUN1:def 6
    
      .= Wmin by
    JORDAN1F: 8;
    
      (Wmin
    `1 ) 
    = Wbo by 
    EUCLID: 52
    
      .= ((G
    * (1,k)) 
    `1 ) by 
    A6,
    A16,
    A20,
    JORDAN1A: 73;
    
      then
    
      
    
    A31: Gik 
    <> (LS 
    . ( 
    len LS)) by 
    A1,
    A18,
    A25,
    A30,
    JORDAN1G: 7;
    
      then
    
      reconsider co as
    being_S-Seq  
    FinSequence of ( 
    TOP-REAL 2) by 
    A13,
    JORDAN3: 34;
    
      
    
      
    
    A32: 
    [(
    len G), k] 
    in ( 
    Indices G) by 
    A6,
    A16,
    A24,
    MATRIX_0: 30;
    
      
    
      
    
    A33: (LS 
    . 1) 
    = (LS 
    /. 1) by 
    A29,
    PARTFUN1:def 6
    
      .= Emax by
    JORDAN1F: 6;
    
      (Emax
    `1 ) 
    = Ebo by 
    EUCLID: 52
    
      .= ((G
    * (( 
    len G),k)) 
    `1 ) by 
    A6,
    A16,
    A20,
    JORDAN1A: 71;
    
      then
    
      
    
    A34: Gik 
    <> (LS 
    . 1) by 
    A2,
    A3,
    A18,
    A32,
    A33,
    JORDAN1G: 7;
    
      
    
      
    
    A35: ( 
    len go) 
    >= (1 
    + 1) by 
    TOPREAL1:def 8;
    
      
    
      
    
    A36: Gij 
    in ( 
    rng US) by 
    A3,
    A4,
    A10,
    A14,
    A15,
    JORDAN1G: 4,
    JORDAN1J: 40;
    
      then
    
      
    
    A37: go 
    is_sequence_on G by 
    JORDAN1G: 4,
    JORDAN1J: 38;
    
      
    
      
    
    A38: ( 
    len co) 
    >= (1 
    + 1) by 
    TOPREAL1:def 8;
    
      
    
      
    
    A39: Gik 
    in ( 
    rng LS) by 
    A1,
    A6,
    A11,
    A13,
    A16,
    JORDAN1G: 5,
    JORDAN1J: 40;
    
      then
    
      
    
    A40: co 
    is_sequence_on G by 
    JORDAN1G: 5,
    JORDAN1J: 39;
    
      reconsider go as non
    constant
    s.c.c.
    being_S-Seq  
    FinSequence of ( 
    TOP-REAL 2) by 
    A35,
    A37,
    JGRAPH_1: 12,
    JORDAN8: 5;
    
      reconsider co as non
    constant
    s.c.c.
    being_S-Seq  
    FinSequence of ( 
    TOP-REAL 2) by 
    A38,
    A40,
    JGRAPH_1: 12,
    JORDAN8: 5;
    
      
    
      
    
    A41: ( 
    len go) 
    > 1 by 
    A35,
    NAT_1: 13;
    
      then
    
      
    
    A42: ( 
    len go) 
    in ( 
    dom go) by 
    FINSEQ_3: 25;
    
      
    
      then
    
      
    
    A43: (go 
    /. ( 
    len go)) 
    = (go 
    . ( 
    len go)) by 
    PARTFUN1:def 6
    
      .= Gij by
    A14,
    JORDAN3: 24;
    
      (
    len co) 
    >= 1 by 
    A38,
    XXREAL_0: 2;
    
      then 1
    in ( 
    dom co) by 
    FINSEQ_3: 25;
    
      
    
      then
    
      
    
    A44: (co 
    /. 1) 
    = (co 
    . 1) by 
    PARTFUN1:def 6
    
      .= Gik by
    A13,
    JORDAN3: 23;
    
      reconsider m = ((
    len go) 
    - 1) as 
    Nat by 
    A42,
    FINSEQ_3: 26;
    
      
    
      
    
    A45: (m 
    + 1) 
    = ( 
    len go); 
    
      then
    
      
    
    A46: (( 
    len go) 
    -' 1) 
    = m by 
    NAT_D: 34;
    
      
    
      
    
    A47: ( 
    LSeg (go,m)) 
    c= ( 
    L~ go) by 
    TOPREAL3: 19;
    
      
    
      
    
    A48: ( 
    L~ go) 
    c= ( 
    L~ US) by 
    A14,
    JORDAN3: 41;
    
      then (
    LSeg (go,m)) 
    c= ( 
    L~ US) by 
    A47;
    
      then
    
      
    
    A49: (( 
    LSeg (go,m)) 
    /\ ( 
    L~  
    <*Gij, Gi1k, Gik*>))
    c=  
    {Gij} by
    A7,
    A12,
    XBOOLE_1: 26;
    
      m
    >= 1 by 
    A35,
    XREAL_1: 19;
    
      then
    
      
    
    A50: ( 
    LSeg (go,m)) 
    = ( 
    LSeg ((go 
    /. m),Gij)) by 
    A43,
    A45,
    TOPREAL1:def 3;
    
      
    {Gij}
    c= (( 
    LSeg (go,m)) 
    /\ ( 
    L~  
    <*Gij, Gi1k, Gik*>))
    
      proof
    
        let x be
    object;
    
        assume x
    in  
    {Gij};
    
        then
    
        
    
    A51: x 
    = Gij by 
    TARSKI:def 1;
    
        
    
        
    
    A52: Gij 
    in ( 
    LSeg (go,m)) by 
    A50,
    RLTOPSP1: 68;
    
        Gij
    in ( 
    LSeg (Gij,Gi1k)) by 
    RLTOPSP1: 68;
    
        then Gij
    in (( 
    LSeg (Gij,Gi1k)) 
    \/ ( 
    LSeg (Gi1k,Gik))) by 
    XBOOLE_0:def 3;
    
        then Gij
    in ( 
    L~  
    <*Gij, Gi1k, Gik*>) by
    SPRECT_1: 8;
    
        hence thesis by
    A51,
    A52,
    XBOOLE_0:def 4;
    
      end;
    
      then
    
      
    
    A53: (( 
    LSeg (go,m)) 
    /\ ( 
    L~  
    <*Gij, Gi1k, Gik*>))
    =  
    {Gij} by
    A49;
    
      
    
      
    
    A54: ( 
    LSeg (co,1)) 
    c= ( 
    L~ co) by 
    TOPREAL3: 19;
    
      
    
      
    
    A55: ( 
    L~ co) 
    c= ( 
    L~ LS) by 
    A13,
    JORDAN3: 42;
    
      then (
    LSeg (co,1)) 
    c= ( 
    L~ LS) by 
    A54;
    
      then
    
      
    
    A56: (( 
    LSeg (co,1)) 
    /\ ( 
    L~  
    <*Gij, Gi1k, Gik*>))
    c=  
    {Gik} by
    A8,
    A12,
    XBOOLE_1: 26;
    
      
    
      
    
    A57: ( 
    LSeg (co,1)) 
    = ( 
    LSeg (Gik,(co 
    /. (1 
    + 1)))) by 
    A38,
    A44,
    TOPREAL1:def 3;
    
      
    {Gik}
    c= (( 
    LSeg (co,1)) 
    /\ ( 
    L~  
    <*Gij, Gi1k, Gik*>))
    
      proof
    
        let x be
    object;
    
        assume x
    in  
    {Gik};
    
        then
    
        
    
    A58: x 
    = Gik by 
    TARSKI:def 1;
    
        
    
        
    
    A59: Gik 
    in ( 
    LSeg (co,1)) by 
    A57,
    RLTOPSP1: 68;
    
        Gik
    in ( 
    LSeg (Gi1k,Gik)) by 
    RLTOPSP1: 68;
    
        then Gik
    in (( 
    LSeg (Gij,Gi1k)) 
    \/ ( 
    LSeg (Gi1k,Gik))) by 
    XBOOLE_0:def 3;
    
        then Gik
    in ( 
    L~  
    <*Gij, Gi1k, Gik*>) by
    SPRECT_1: 8;
    
        hence thesis by
    A58,
    A59,
    XBOOLE_0:def 4;
    
      end;
    
      then
    
      
    
    A60: (( 
    L~  
    <*Gij, Gi1k, Gik*>)
    /\ ( 
    LSeg (co,1))) 
    =  
    {Gik} by
    A56;
    
      
    
      
    
    A61: (go 
    /. 1) 
    = (US 
    /. 1) by 
    A14,
    SPRECT_3: 22
    
      .= Wmin by
    JORDAN1F: 5;
    
      
    
      then
    
      
    
    A62: (go 
    /. 1) 
    = (LS 
    /. ( 
    len LS)) by 
    JORDAN1F: 8
    
      .= (co
    /. ( 
    len co)) by 
    A13,
    JORDAN1J: 35;
    
      
    
      
    
    A63: ( 
    rng go) 
    c= ( 
    L~ go) by 
    A35,
    SPPOL_2: 18;
    
      
    
      
    
    A64: ( 
    rng co) 
    c= ( 
    L~ co) by 
    A38,
    SPPOL_2: 18;
    
      
    
      
    
    A65: 
    {(go
    /. 1)} 
    c= (( 
    L~ go) 
    /\ ( 
    L~ co)) 
    
      proof
    
        let x be
    object;
    
        assume x
    in  
    {(go
    /. 1)}; 
    
        then
    
        
    
    A66: x 
    = (go 
    /. 1) by 
    TARSKI:def 1;
    
        then
    
        
    
    A67: x 
    in ( 
    rng go) by 
    FINSEQ_6: 42;
    
        x
    in ( 
    rng co) by 
    A62,
    A66,
    FINSEQ_6: 168;
    
        hence thesis by
    A63,
    A64,
    A67,
    XBOOLE_0:def 4;
    
      end;
    
      
    
      
    
    A68: (LS 
    . 1) 
    = (LS 
    /. 1) by 
    A29,
    PARTFUN1:def 6
    
      .= Emax by
    JORDAN1F: 6;
    
      
    
      
    
    A69: 
    [(
    len G), j] 
    in ( 
    Indices G) by 
    A4,
    A15,
    A24,
    MATRIX_0: 30;
    
      ((
    L~ go) 
    /\ ( 
    L~ co)) 
    c=  
    {(go
    /. 1)} 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A70: x 
    in (( 
    L~ go) 
    /\ ( 
    L~ co)); 
    
        then
    
        
    
    A71: x 
    in ( 
    L~ go) by 
    XBOOLE_0:def 4;
    
        
    
        
    
    A72: x 
    in ( 
    L~ co) by 
    A70,
    XBOOLE_0:def 4;
    
        then x
    in (( 
    L~ US) 
    /\ ( 
    L~ LS)) by 
    A48,
    A55,
    A71,
    XBOOLE_0:def 4;
    
        then x
    in  
    {Wmin, Emax} by
    JORDAN1E: 16;
    
        then
    
        
    
    A73: x 
    = Wmin or x 
    = Emax by 
    TARSKI:def 2;
    
        now
    
          assume x
    = Emax; 
    
          then
    
          
    
    A74: Emax 
    = Gik by 
    A13,
    A68,
    A72,
    JORDAN1E: 7;
    
          ((G
    * (( 
    len G),j)) 
    `1 ) 
    = Ebo by 
    A4,
    A15,
    A20,
    JORDAN1A: 71;
    
          then (Emax
    `1 ) 
    <> Ebo by 
    A2,
    A3,
    A18,
    A69,
    A74,
    JORDAN1G: 7;
    
          hence contradiction by
    EUCLID: 52;
    
        end;
    
        hence thesis by
    A61,
    A73,
    TARSKI:def 1;
    
      end;
    
      then
    
      
    
    A75: (( 
    L~ go) 
    /\ ( 
    L~ co)) 
    =  
    {(go
    /. 1)} by 
    A65;
    
      set W2 = (go
    /. 2); 
    
      
    
      
    
    A76: 2 
    in ( 
    dom go) by 
    A35,
    FINSEQ_3: 25;
    
      
    
    A77: 
    
      now
    
        assume (Gik
    `1 ) 
    = Wbo; 
    
        then ((G
    * (1,k)) 
    `1 ) 
    = ((G 
    * (i2,k)) 
    `1 ) by 
    A6,
    A16,
    A20,
    JORDAN1A: 73;
    
        hence contradiction by
    A1,
    A18,
    A25,
    JORDAN1G: 7;
    
      end;
    
      go
    = ( 
    mid (US,1,(Gij 
    .. US))) by 
    A36,
    JORDAN1G: 49
    
      .= (US
    | (Gij 
    .. US)) by 
    A36,
    FINSEQ_4: 21,
    FINSEQ_6: 116;
    
      then
    
      
    
    A78: W2 
    = (US 
    /. 2) by 
    A76,
    FINSEQ_4: 70;
    
      
    
      
    
    A79: Wmin 
    in ( 
    rng go) by 
    A61,
    FINSEQ_6: 42;
    
      set pion =
    <*Gij, Gi1k, Gik*>;
    
      
    
    A80: 
    
      now
    
        let n be
    Nat;
    
        assume n
    in ( 
    dom pion); 
    
        then n
    in  
    {1, 2, 3} by
    FINSEQ_1: 89,
    FINSEQ_3: 1;
    
        then n
    = 1 or n 
    = 2 or n 
    = 3 by 
    ENUMSET1:def 1;
    
        hence ex i,j be
    Nat st 
    [i, j]
    in ( 
    Indices G) & (pion 
    /. n) 
    = (G 
    * (i,j)) by 
    A17,
    A18,
    A19,
    FINSEQ_4: 18;
    
      end;
    
      
    
      
    
    A81: (Gi1k 
    `1 ) 
    = ((G 
    * (i1,1)) 
    `1 ) by 
    A3,
    A6,
    A10,
    A16,
    GOBOARD5: 2
    
      .= (Gij
    `1 ) by 
    A3,
    A4,
    A10,
    A15,
    GOBOARD5: 2;
    
      (Gi1k
    `2 ) 
    = ((G 
    * (1,k)) 
    `2 ) by 
    A3,
    A6,
    A10,
    A16,
    GOBOARD5: 1
    
      .= (Gik
    `2 ) by 
    A1,
    A6,
    A11,
    A16,
    GOBOARD5: 1;
    
      then
    
      
    
    A82: Gi1k 
    =  
    |[(Gij
    `1 ), (Gik 
    `2 )]| by 
    A81,
    EUCLID: 53;
    
      
    
      
    
    A83: Gi1k 
    in pio by 
    RLTOPSP1: 68;
    
      
    
      
    
    A84: Gi1k 
    in poz by 
    RLTOPSP1: 68;
    
      now
    
        per cases ;
    
          suppose (Gik
    `1 ) 
    <> (Gij 
    `1 ) & (Gik 
    `2 ) 
    <> (Gij 
    `2 ); 
    
          then pion is
    being_S-Seq by 
    A82,
    TOPREAL3: 34;
    
          then
    
          consider pion1 be
    FinSequence of ( 
    TOP-REAL 2) such that 
    
          
    
    A85: pion1 
    is_sequence_on G and 
    
          
    
    A86: pion1 is 
    being_S-Seq and 
    
          
    
    A87: ( 
    L~ pion) 
    = ( 
    L~ pion1) and 
    
          
    
    A88: (pion 
    /. 1) 
    = (pion1 
    /. 1) and 
    
          
    
    A89: (pion 
    /. ( 
    len pion)) 
    = (pion1 
    /. ( 
    len pion1)) and 
    
          
    
    A90: ( 
    len pion) 
    <= ( 
    len pion1) by 
    A80,
    GOBOARD3: 2;
    
          reconsider pion1 as
    being_S-Seq  
    FinSequence of ( 
    TOP-REAL 2) by 
    A86;
    
          set godo = ((go
    ^' pion1) 
    ^' co); 
    
          
    
          
    
    A91: (Gi1k 
    `1 ) 
    = ((G 
    * (i1,1)) 
    `1 ) by 
    A3,
    A6,
    A10,
    A16,
    GOBOARD5: 2
    
          .= (Gij
    `1 ) by 
    A3,
    A4,
    A10,
    A15,
    GOBOARD5: 2;
    
          
    
          
    
    A92: (Gik 
    `1 ) 
    <= (Gi1k 
    `1 ) by 
    A1,
    A2,
    A3,
    A6,
    A16,
    JORDAN1A: 18;
    
          then
    
          
    
    A93: ( 
    W-bound poz) 
    = (Gik 
    `1 ) by 
    SPRECT_1: 54;
    
          
    
          
    
    A94: ( 
    W-bound pio) 
    = (Gij 
    `1 ) by 
    A91,
    SPRECT_1: 54;
    
          (
    W-bound (poz 
    \/ pio)) 
    = ( 
    min (( 
    W-bound poz),( 
    W-bound pio))) by 
    SPRECT_1: 47
    
          .= (Gik
    `1 ) by 
    A91,
    A92,
    A93,
    A94,
    XXREAL_0:def 9;
    
          then
    
          
    
    A95: ( 
    W-bound ( 
    L~ pion1)) 
    = (Gik 
    `1 ) by 
    A87,
    TOPREAL3: 16;
    
          
    
          
    
    A96: (1 
    + 1) 
    <= ( 
    len ( 
    Cage (C,n))) by 
    GOBOARD7: 34,
    XXREAL_0: 2;
    
          
    
          
    
    A97: (1 
    + 1) 
    <= ( 
    len ( 
    Rotate (( 
    Cage (C,n)),Wmin))) by 
    GOBOARD7: 34,
    XXREAL_0: 2;
    
          (
    len (go 
    ^' pion1)) 
    >= ( 
    len go) by 
    TOPREAL8: 7;
    
          then
    
          
    
    A98: ( 
    len (go 
    ^' pion1)) 
    >= (1 
    + 1) by 
    A35,
    XXREAL_0: 2;
    
          then
    
          
    
    A99: ( 
    len (go 
    ^' pion1)) 
    > (1 
    +  
    0 ) by 
    NAT_1: 13;
    
          
    
          
    
    A100: ( 
    len godo) 
    >= ( 
    len (go 
    ^' pion1)) by 
    TOPREAL8: 7;
    
          then
    
          
    
    A101: (1 
    + 1) 
    <= ( 
    len godo) by 
    A98,
    XXREAL_0: 2;
    
          
    
          
    
    A102: US 
    is_sequence_on G by 
    JORDAN1G: 4;
    
          
    
          
    
    A103: (go 
    /. ( 
    len go)) 
    = (pion1 
    /. 1) by 
    A43,
    A88,
    FINSEQ_4: 18;
    
          then
    
          
    
    A104: (go 
    ^' pion1) 
    is_sequence_on G by 
    A37,
    A85,
    TOPREAL8: 12;
    
          
    
          
    
    A105: ((go 
    ^' pion1) 
    /. ( 
    len (go 
    ^' pion1))) 
    = (pion 
    /. ( 
    len pion)) by 
    A89,
    FINSEQ_6: 156
    
          .= (pion
    /. 3) by 
    FINSEQ_1: 45
    
          .= (co
    /. 1) by 
    A44,
    FINSEQ_4: 18;
    
          then
    
          
    
    A106: godo 
    is_sequence_on G by 
    A40,
    A104,
    TOPREAL8: 12;
    
          (
    LSeg (pion1,1)) 
    c= ( 
    L~ pion) by 
    A87,
    TOPREAL3: 19;
    
          then
    
          
    
    A107: (( 
    LSeg (go,(( 
    len go) 
    -' 1))) 
    /\ ( 
    LSeg (pion1,1))) 
    c=  
    {Gij} by
    A46,
    A53,
    XBOOLE_1: 27;
    
          (
    len pion1) 
    >= (2 
    + 1) by 
    A90,
    FINSEQ_1: 45;
    
          then
    
          
    
    A108: ( 
    len pion1) 
    > (1 
    + 1) by 
    NAT_1: 13;
    
          
    {Gij}
    c= (( 
    LSeg (go,m)) 
    /\ ( 
    LSeg (pion1,1))) 
    
          proof
    
            let x be
    object;
    
            assume x
    in  
    {Gij};
    
            then
    
            
    
    A109: x 
    = Gij by 
    TARSKI:def 1;
    
            
    
            
    
    A110: Gij 
    in ( 
    LSeg (go,m)) by 
    A50,
    RLTOPSP1: 68;
    
            Gij
    in ( 
    LSeg (pion1,1)) by 
    A43,
    A103,
    A108,
    TOPREAL1: 21;
    
            hence thesis by
    A109,
    A110,
    XBOOLE_0:def 4;
    
          end;
    
          then ((
    LSeg (go,(( 
    len go) 
    -' 1))) 
    /\ ( 
    LSeg (pion1,1))) 
    =  
    {(go
    /. ( 
    len go))} by 
    A43,
    A46,
    A107;
    
          then
    
          
    
    A111: (go 
    ^' pion1) is 
    unfolded by 
    A103,
    TOPREAL8: 34;
    
          (
    len pion1) 
    >= (2 
    + 1) by 
    A90,
    FINSEQ_1: 45;
    
          then
    
          
    
    A112: (( 
    len pion1) 
    - 2) 
    >=  
    0 by 
    XREAL_1: 19;
    
          (((
    len (go 
    ^' pion1)) 
    + 1) 
    - 1) 
    = ((( 
    len go) 
    + ( 
    len pion1)) 
    - 1) by 
    FINSEQ_6: 139;
    
          
    
          then ((
    len (go 
    ^' pion1)) 
    - 1) 
    = (( 
    len go) 
    + (( 
    len pion1) 
    - 2)) 
    
          .= ((
    len go) 
    + (( 
    len pion1) 
    -' 2)) by 
    A112,
    XREAL_0:def 2;
    
          then
    
          
    
    A113: (( 
    len (go 
    ^' pion1)) 
    -' 1) 
    = (( 
    len go) 
    + (( 
    len pion1) 
    -' 2)) by 
    XREAL_0:def 2;
    
          
    
          
    
    A114: (( 
    len pion1) 
    - 1) 
    >= 1 by 
    A108,
    XREAL_1: 19;
    
          then
    
          
    
    A115: (( 
    len pion1) 
    -' 1) 
    = (( 
    len pion1) 
    - 1) by 
    XREAL_0:def 2;
    
          
    
          
    
    A116: ((( 
    len pion1) 
    -' 2) 
    + 1) 
    = ((( 
    len pion1) 
    - 2) 
    + 1) by 
    A112,
    XREAL_0:def 2
    
          .= ((
    len pion1) 
    -' 1) by 
    A114,
    XREAL_0:def 2;
    
          (((
    len pion1) 
    - 1) 
    + 1) 
    <= ( 
    len pion1); 
    
          then
    
          
    
    A117: (( 
    len pion1) 
    -' 1) 
    < ( 
    len pion1) by 
    A115,
    NAT_1: 13;
    
          (
    LSeg (pion1,(( 
    len pion1) 
    -' 1))) 
    c= ( 
    L~ pion) by 
    A87,
    TOPREAL3: 19;
    
          then
    
          
    
    A118: (( 
    LSeg (pion1,(( 
    len pion1) 
    -' 1))) 
    /\ ( 
    LSeg (co,1))) 
    c=  
    {Gik} by
    A60,
    XBOOLE_1: 27;
    
          
    {Gik}
    c= (( 
    LSeg (pion1,(( 
    len pion1) 
    -' 1))) 
    /\ ( 
    LSeg (co,1))) 
    
          proof
    
            let x be
    object;
    
            assume x
    in  
    {Gik};
    
            then
    
            
    
    A119: x 
    = Gik by 
    TARSKI:def 1;
    
            
    
            
    
    A120: Gik 
    in ( 
    LSeg (co,1)) by 
    A57,
    RLTOPSP1: 68;
    
            (pion1
    /. ((( 
    len pion1) 
    -' 1) 
    + 1)) 
    = (pion 
    /. 3) by 
    A89,
    A115,
    FINSEQ_1: 45
    
            .= Gik by
    FINSEQ_4: 18;
    
            then Gik
    in ( 
    LSeg (pion1,(( 
    len pion1) 
    -' 1))) by 
    A114,
    A115,
    TOPREAL1: 21;
    
            hence thesis by
    A119,
    A120,
    XBOOLE_0:def 4;
    
          end;
    
          then ((
    LSeg (pion1,(( 
    len pion1) 
    -' 1))) 
    /\ ( 
    LSeg (co,1))) 
    =  
    {Gik} by
    A118;
    
          then
    
          
    
    A121: (( 
    LSeg ((go 
    ^' pion1),(( 
    len go) 
    + (( 
    len pion1) 
    -' 2)))) 
    /\ ( 
    LSeg (co,1))) 
    =  
    {((go
    ^' pion1) 
    /. ( 
    len (go 
    ^' pion1)))} by 
    A44,
    A103,
    A105,
    A116,
    A117,
    TOPREAL8: 31;
    
          
    
          
    
    A122: (go 
    ^' pion1) is non 
    trivial by 
    A98,
    NAT_D: 60;
    
          
    
          
    
    A123: ( 
    rng pion1) 
    c= ( 
    L~ pion1) by 
    A108,
    SPPOL_2: 18;
    
          
    
          
    
    A124: 
    {(pion1
    /. 1)} 
    c= (( 
    L~ go) 
    /\ ( 
    L~ pion1)) 
    
          proof
    
            let x be
    object;
    
            assume x
    in  
    {(pion1
    /. 1)}; 
    
            then
    
            
    
    A125: x 
    = (pion1 
    /. 1) by 
    TARSKI:def 1;
    
            then
    
            
    
    A126: x 
    in ( 
    rng go) by 
    A103,
    FINSEQ_6: 168;
    
            x
    in ( 
    rng pion1) by 
    A125,
    FINSEQ_6: 42;
    
            hence thesis by
    A63,
    A123,
    A126,
    XBOOLE_0:def 4;
    
          end;
    
          ((
    L~ go) 
    /\ ( 
    L~ pion1)) 
    c=  
    {(pion1
    /. 1)} 
    
          proof
    
            let x be
    object;
    
            assume
    
            
    
    A127: x 
    in (( 
    L~ go) 
    /\ ( 
    L~ pion1)); 
    
            then
    
            
    
    A128: x 
    in ( 
    L~ go) by 
    XBOOLE_0:def 4;
    
            x
    in ( 
    L~ pion1) by 
    A127,
    XBOOLE_0:def 4;
    
            hence thesis by
    A7,
    A12,
    A43,
    A48,
    A87,
    A103,
    A128,
    XBOOLE_0:def 4;
    
          end;
    
          then
    
          
    
    A129: (( 
    L~ go) 
    /\ ( 
    L~ pion1)) 
    =  
    {(pion1
    /. 1)} by 
    A124;
    
          then
    
          
    
    A130: (go 
    ^' pion1) is 
    s.n.c. by 
    A103,
    JORDAN1J: 54;
    
          ((
    rng go) 
    /\ ( 
    rng pion1)) 
    c=  
    {(pion1
    /. 1)} by 
    A63,
    A123,
    A129,
    XBOOLE_1: 27;
    
          then
    
          
    
    A131: (go 
    ^' pion1) is 
    one-to-one by 
    JORDAN1J: 55;
    
          
    
          
    
    A132: (pion 
    /. ( 
    len pion)) 
    = (pion 
    /. 3) by 
    FINSEQ_1: 45
    
          .= (co
    /. 1) by 
    A44,
    FINSEQ_4: 18;
    
          
    
          
    
    A133: 
    {(pion1
    /. ( 
    len pion1))} 
    c= (( 
    L~ co) 
    /\ ( 
    L~ pion1)) 
    
          proof
    
            let x be
    object;
    
            assume x
    in  
    {(pion1
    /. ( 
    len pion1))}; 
    
            then
    
            
    
    A134: x 
    = (pion1 
    /. ( 
    len pion1)) by 
    TARSKI:def 1;
    
            then
    
            
    
    A135: x 
    in ( 
    rng co) by 
    A89,
    A132,
    FINSEQ_6: 42;
    
            x
    in ( 
    rng pion1) by 
    A134,
    FINSEQ_6: 168;
    
            hence thesis by
    A64,
    A123,
    A135,
    XBOOLE_0:def 4;
    
          end;
    
          ((
    L~ co) 
    /\ ( 
    L~ pion1)) 
    c=  
    {(pion1
    /. ( 
    len pion1))} 
    
          proof
    
            let x be
    object;
    
            assume
    
            
    
    A136: x 
    in (( 
    L~ co) 
    /\ ( 
    L~ pion1)); 
    
            then
    
            
    
    A137: x 
    in ( 
    L~ co) by 
    XBOOLE_0:def 4;
    
            x
    in ( 
    L~ pion1) by 
    A136,
    XBOOLE_0:def 4;
    
            hence thesis by
    A8,
    A12,
    A44,
    A55,
    A87,
    A89,
    A132,
    A137,
    XBOOLE_0:def 4;
    
          end;
    
          then
    
          
    
    A138: (( 
    L~ co) 
    /\ ( 
    L~ pion1)) 
    =  
    {(pion1
    /. ( 
    len pion1))} by 
    A133;
    
          
    
          
    
    A139: (( 
    L~ (go 
    ^' pion1)) 
    /\ ( 
    L~ co)) 
    = ((( 
    L~ go) 
    \/ ( 
    L~ pion1)) 
    /\ ( 
    L~ co)) by 
    A103,
    TOPREAL8: 35
    
          .= (
    {(go
    /. 1)} 
    \/  
    {(co
    /. 1)}) by 
    A75,
    A89,
    A132,
    A138,
    XBOOLE_1: 23
    
          .= (
    {((go
    ^' pion1) 
    /. 1)} 
    \/  
    {(co
    /. 1)}) by 
    FINSEQ_6: 155
    
          .=
    {((go
    ^' pion1) 
    /. 1), (co 
    /. 1)} by 
    ENUMSET1: 1;
    
          (co
    /. ( 
    len co)) 
    = ((go 
    ^' pion1) 
    /. 1) by 
    A62,
    FINSEQ_6: 155;
    
          then
    
          reconsider godo as non
    constant
    standard  
    special_circular_sequence by 
    A101,
    A105,
    A106,
    A111,
    A113,
    A121,
    A122,
    A130,
    A131,
    A139,
    JORDAN8: 4,
    JORDAN8: 5,
    TOPREAL8: 11,
    TOPREAL8: 33,
    TOPREAL8: 34;
    
          
    
          
    
    A140: UA 
    is_an_arc_of (( 
    W-min C),( 
    E-max C)) by 
    JORDAN6:def 8;
    
          then
    
          
    
    A141: UA is 
    connected by 
    JORDAN6: 10;
    
          
    
          
    
    A142: ( 
    W-min C) 
    in UA by 
    A140,
    TOPREAL1: 1;
    
          
    
          
    
    A143: ( 
    E-max C) 
    in UA by 
    A140,
    TOPREAL1: 1;
    
          set ff = (
    Rotate (( 
    Cage (C,n)),Wmin)); 
    
          Wmin
    in ( 
    rng ( 
    Cage (C,n))) by 
    SPRECT_2: 43;
    
          then
    
          
    
    A144: (ff 
    /. 1) 
    = Wmin by 
    FINSEQ_6: 92;
    
          
    
          
    
    A145: ( 
    L~ ff) 
    = ( 
    L~ ( 
    Cage (C,n))) by 
    REVROT_1: 33;
    
          then ((
    W-max ( 
    L~ ff)) 
    .. ff) 
    > 1 by 
    A144,
    SPRECT_5: 22;
    
          then ((
    N-min ( 
    L~ ff)) 
    .. ff) 
    > 1 by 
    A144,
    A145,
    SPRECT_5: 23,
    XXREAL_0: 2;
    
          then ((
    N-max ( 
    L~ ff)) 
    .. ff) 
    > 1 by 
    A144,
    A145,
    SPRECT_5: 24,
    XXREAL_0: 2;
    
          then
    
          
    
    A146: (Emax 
    .. ff) 
    > 1 by 
    A144,
    A145,
    SPRECT_5: 25,
    XXREAL_0: 2;
    
          
    
    A147: 
    
          now
    
            assume
    
            
    
    A148: (Gij 
    .. US) 
    <= 1; 
    
            (Gij
    .. US) 
    >= 1 by 
    A36,
    FINSEQ_4: 21;
    
            then (Gij
    .. US) 
    = 1 by 
    A148,
    XXREAL_0: 1;
    
            then Gij
    = (US 
    /. 1) by 
    A36,
    FINSEQ_5: 38;
    
            hence contradiction by
    A22,
    A26,
    JORDAN1F: 5;
    
          end;
    
          
    
          
    
    A149: ( 
    Cage (C,n)) 
    is_sequence_on G by 
    JORDAN9:def 1;
    
          then
    
          
    
    A150: ff 
    is_sequence_on G by 
    REVROT_1: 34;
    
          
    
          
    
    A151: (( 
    right_cell (godo,1,G)) 
    \ ( 
    L~ godo)) 
    c= ( 
    RightComp godo) by 
    A101,
    A106,
    JORDAN9: 27;
    
          
    
          
    
    A152: ( 
    L~ godo) 
    = (( 
    L~ (go 
    ^' pion1)) 
    \/ ( 
    L~ co)) by 
    A105,
    TOPREAL8: 35
    
          .= (((
    L~ go) 
    \/ ( 
    L~ pion1)) 
    \/ ( 
    L~ co)) by 
    A103,
    TOPREAL8: 35;
    
          
    
          
    
    A153: ( 
    L~ ( 
    Cage (C,n))) 
    = (( 
    L~ US) 
    \/ ( 
    L~ LS)) by 
    JORDAN1E: 13;
    
          then
    
          
    
    A154: ( 
    L~ US) 
    c= ( 
    L~ ( 
    Cage (C,n))) by 
    XBOOLE_1: 7;
    
          
    
          
    
    A155: ( 
    L~ LS) 
    c= ( 
    L~ ( 
    Cage (C,n))) by 
    A153,
    XBOOLE_1: 7;
    
          
    
          
    
    A156: ( 
    L~ go) 
    c= ( 
    L~ ( 
    Cage (C,n))) by 
    A48,
    A154;
    
          
    
          
    
    A157: ( 
    L~ co) 
    c= ( 
    L~ ( 
    Cage (C,n))) by 
    A55,
    A155;
    
          
    
          
    
    A158: ( 
    W-min C) 
    in C by 
    SPRECT_1: 13;
    
          
    
    A159: 
    
          now
    
            assume (
    W-min C) 
    in ( 
    L~ godo); 
    
            then
    
            
    
    A160: ( 
    W-min C) 
    in (( 
    L~ go) 
    \/ ( 
    L~ pion1)) or ( 
    W-min C) 
    in ( 
    L~ co) by 
    A152,
    XBOOLE_0:def 3;
    
            per cases by
    A160,
    XBOOLE_0:def 3;
    
              suppose (
    W-min C) 
    in ( 
    L~ go); 
    
              then C
    meets ( 
    L~ ( 
    Cage (C,n))) by 
    A156,
    A158,
    XBOOLE_0: 3;
    
              hence contradiction by
    JORDAN10: 5;
    
            end;
    
              suppose (
    W-min C) 
    in ( 
    L~ pion1); 
    
              hence contradiction by
    A9,
    A12,
    A87,
    A142,
    XBOOLE_0: 3;
    
            end;
    
              suppose (
    W-min C) 
    in ( 
    L~ co); 
    
              then C
    meets ( 
    L~ ( 
    Cage (C,n))) by 
    A157,
    A158,
    XBOOLE_0: 3;
    
              hence contradiction by
    JORDAN10: 5;
    
            end;
    
          end;
    
          (
    right_cell (( 
    Rotate (( 
    Cage (C,n)),Wmin)),1)) 
    = ( 
    right_cell (ff,1,( 
    GoB ff))) by 
    A97,
    JORDAN1H: 23
    
          .= (
    right_cell (ff,1,( 
    GoB ( 
    Cage (C,n))))) by 
    REVROT_1: 28
    
          .= (
    right_cell (ff,1,G)) by 
    JORDAN1H: 44
    
          .= (
    right_cell ((ff 
    -: Emax),1,G)) by 
    A146,
    A150,
    JORDAN1J: 53
    
          .= (
    right_cell (US,1,G)) by 
    JORDAN1E:def 1
    
          .= (
    right_cell (( 
    R_Cut (US,Gij)),1,G)) by 
    A36,
    A102,
    A147,
    JORDAN1J: 52
    
          .= (
    right_cell ((go 
    ^' pion1),1,G)) by 
    A41,
    A104,
    JORDAN1J: 51
    
          .= (
    right_cell (godo,1,G)) by 
    A99,
    A106,
    JORDAN1J: 51;
    
          then (
    W-min C) 
    in ( 
    right_cell (godo,1,G)) by 
    JORDAN1I: 6;
    
          then
    
          
    
    A161: ( 
    W-min C) 
    in (( 
    right_cell (godo,1,G)) 
    \ ( 
    L~ godo)) by 
    A159,
    XBOOLE_0:def 5;
    
          
    
          
    
    A162: (godo 
    /. 1) 
    = ((go 
    ^' pion1) 
    /. 1) by 
    FINSEQ_6: 155
    
          .= Wmin by
    A61,
    FINSEQ_6: 155;
    
          
    
          
    
    A163: ( 
    len US) 
    >= 2 by 
    A21,
    XXREAL_0: 2;
    
          
    
          
    
    A164: (godo 
    /. 2) 
    = ((go 
    ^' pion1) 
    /. 2) by 
    A98,
    FINSEQ_6: 159
    
          .= (US
    /. 2) by 
    A35,
    A78,
    FINSEQ_6: 159
    
          .= ((US
    ^' LS) 
    /. 2) by 
    A163,
    FINSEQ_6: 159
    
          .= ((
    Rotate (( 
    Cage (C,n)),Wmin)) 
    /. 2) by 
    JORDAN1E: 11;
    
          
    
          
    
    A165: (( 
    L~ go) 
    \/ ( 
    L~ co)) is 
    compact by 
    COMPTS_1: 10;
    
          Wmin
    in (( 
    L~ go) 
    \/ ( 
    L~ co)) by 
    A63,
    A79,
    XBOOLE_0:def 3;
    
          then
    
          
    
    A166: ( 
    W-min (( 
    L~ go) 
    \/ ( 
    L~ co))) 
    = Wmin by 
    A156,
    A157,
    A165,
    JORDAN1J: 21,
    XBOOLE_1: 8;
    
          
    
          
    
    A167: (( 
    W-min (( 
    L~ go) 
    \/ ( 
    L~ co))) 
    `1 ) 
    = ( 
    W-bound (( 
    L~ go) 
    \/ ( 
    L~ co))) by 
    EUCLID: 52;
    
          
    
          
    
    A168: (Wmin 
    `1 ) 
    = Wbo by 
    EUCLID: 52;
    
          (Gik
    `1 ) 
    >= Wbo by 
    A13,
    A155,
    PSCOMP_1: 24;
    
          then (Gik
    `1 ) 
    > Wbo by 
    A77,
    XXREAL_0: 1;
    
          then (
    W-min ((( 
    L~ go) 
    \/ ( 
    L~ co)) 
    \/ ( 
    L~ pion1))) 
    = ( 
    W-min (( 
    L~ go) 
    \/ ( 
    L~ co))) by 
    A95,
    A165,
    A166,
    A167,
    A168,
    JORDAN1J: 33;
    
          then
    
          
    
    A169: ( 
    W-min ( 
    L~ godo)) 
    = Wmin by 
    A152,
    A166,
    XBOOLE_1: 4;
    
          
    
          
    
    A170: ( 
    rng godo) 
    c= ( 
    L~ godo) by 
    A98,
    A100,
    SPPOL_2: 18,
    XXREAL_0: 2;
    
          2
    in ( 
    dom godo) by 
    A101,
    FINSEQ_3: 25;
    
          then
    
          
    
    A171: (godo 
    /. 2) 
    in ( 
    rng godo) by 
    PARTFUN2: 2;
    
          (godo
    /. 2) 
    in ( 
    W-most ( 
    L~ ( 
    Cage (C,n)))) by 
    A164,
    JORDAN1I: 25;
    
          
    
          then ((godo
    /. 2) 
    `1 ) 
    = (( 
    W-min ( 
    L~ godo)) 
    `1 ) by 
    A169,
    PSCOMP_1: 31
    
          .= (
    W-bound ( 
    L~ godo)) by 
    EUCLID: 52;
    
          then (godo
    /. 2) 
    in ( 
    W-most ( 
    L~ godo)) by 
    A170,
    A171,
    SPRECT_2: 12;
    
          then ((
    Rotate (godo,( 
    W-min ( 
    L~ godo)))) 
    /. 2) 
    in ( 
    W-most ( 
    L~ godo)) by 
    A162,
    A169,
    FINSEQ_6: 89;
    
          then
    
          reconsider godo as
    clockwise_oriented non 
    constant
    standard  
    special_circular_sequence by 
    JORDAN1I: 25;
    
          (
    len US) 
    in ( 
    dom US) by 
    FINSEQ_5: 6;
    
          
    
          then
    
          
    
    A172: (US 
    . ( 
    len US)) 
    = (US 
    /. ( 
    len US)) by 
    PARTFUN1:def 6
    
          .= Emax by
    JORDAN1F: 7;
    
          
    
          
    
    A173: ( 
    east_halfline ( 
    E-max C)) 
    misses ( 
    L~ go) 
    
          proof
    
            assume (
    east_halfline ( 
    E-max C)) 
    meets ( 
    L~ go); 
    
            then
    
            consider p be
    object such that 
    
            
    
    A174: p 
    in ( 
    east_halfline ( 
    E-max C)) and 
    
            
    
    A175: p 
    in ( 
    L~ go) by 
    XBOOLE_0: 3;
    
            reconsider p as
    Point of ( 
    TOP-REAL 2) by 
    A174;
    
            p
    in ( 
    L~ US) by 
    A48,
    A175;
    
            then p
    in (( 
    east_halfline ( 
    E-max C)) 
    /\ ( 
    L~ ( 
    Cage (C,n)))) by 
    A154,
    A174,
    XBOOLE_0:def 4;
    
            then
    
            
    
    A176: (p 
    `1 ) 
    = Ebo by 
    JORDAN1A: 83,
    PSCOMP_1: 50;
    
            then
    
            
    
    A177: p 
    = Emax by 
    A48,
    A175,
    JORDAN1J: 46;
    
            then Emax
    = Gij by 
    A14,
    A172,
    A175,
    JORDAN1J: 43;
    
            then (Gij
    `1 ) 
    = ((G 
    * (( 
    len G),k)) 
    `1 ) by 
    A6,
    A16,
    A20,
    A176,
    A177,
    JORDAN1A: 71;
    
            hence contradiction by
    A3,
    A17,
    A32,
    JORDAN1G: 7;
    
          end;
    
          now
    
            assume (
    east_halfline ( 
    E-max C)) 
    meets ( 
    L~ godo); 
    
            then
    
            
    
    A178: ( 
    east_halfline ( 
    E-max C)) 
    meets (( 
    L~ go) 
    \/ ( 
    L~ pion1)) or ( 
    east_halfline ( 
    E-max C)) 
    meets ( 
    L~ co) by 
    A152,
    XBOOLE_1: 70;
    
            per cases by
    A178,
    XBOOLE_1: 70;
    
              suppose (
    east_halfline ( 
    E-max C)) 
    meets ( 
    L~ go); 
    
              hence contradiction by
    A173;
    
            end;
    
              suppose (
    east_halfline ( 
    E-max C)) 
    meets ( 
    L~ pion1); 
    
              then
    
              consider p be
    object such that 
    
              
    
    A179: p 
    in ( 
    east_halfline ( 
    E-max C)) and 
    
              
    
    A180: p 
    in ( 
    L~ pion1) by 
    XBOOLE_0: 3;
    
              reconsider p as
    Point of ( 
    TOP-REAL 2) by 
    A179;
    
              
    
    A181: 
    
              now
    
                per cases by
    A12,
    A87,
    A180,
    XBOOLE_0:def 3;
    
                  suppose p
    in poz; 
    
                  hence (p
    `1 ) 
    <= (Gij 
    `1 ) by 
    A91,
    A92,
    TOPREAL1: 3;
    
                end;
    
                  suppose p
    in pio; 
    
                  hence (p
    `1 ) 
    <= (Gij 
    `1 ) by 
    A91,
    GOBOARD7: 5;
    
                end;
    
              end;
    
              (i1
    + 1) 
    <= ( 
    len G) by 
    A3,
    NAT_1: 13;
    
              then i1
    <= (( 
    len G) 
    - 1) by 
    XREAL_1: 19;
    
              then
    
              
    
    A182: i1 
    <= (( 
    len G) 
    -' 1) by 
    XREAL_0:def 2;
    
              ((
    len G) 
    -' 1) 
    <= ( 
    len G) by 
    NAT_D: 35;
    
              then (Gij
    `1 ) 
    <= ((G 
    * ((( 
    len G) 
    -' 1),1)) 
    `1 ) by 
    A4,
    A10,
    A15,
    A20,
    A24,
    A182,
    JORDAN1A: 18;
    
              then (p
    `1 ) 
    <= ((G 
    * ((( 
    len G) 
    -' 1),1)) 
    `1 ) by 
    A181,
    XXREAL_0: 2;
    
              then (p
    `1 ) 
    <= ( 
    E-bound C) by 
    A24,
    JORDAN8: 12;
    
              then
    
              
    
    A183: (p 
    `1 ) 
    <= (( 
    E-max C) 
    `1 ) by 
    EUCLID: 52;
    
              (p
    `1 ) 
    >= (( 
    E-max C) 
    `1 ) by 
    A179,
    TOPREAL1:def 11;
    
              then
    
              
    
    A184: (p 
    `1 ) 
    = (( 
    E-max C) 
    `1 ) by 
    A183,
    XXREAL_0: 1;
    
              (p
    `2 ) 
    = (( 
    E-max C) 
    `2 ) by 
    A179,
    TOPREAL1:def 11;
    
              then p
    = ( 
    E-max C) by 
    A184,
    TOPREAL3: 6;
    
              hence contradiction by
    A9,
    A12,
    A87,
    A143,
    A180,
    XBOOLE_0: 3;
    
            end;
    
              suppose (
    east_halfline ( 
    E-max C)) 
    meets ( 
    L~ co); 
    
              then
    
              consider p be
    object such that 
    
              
    
    A185: p 
    in ( 
    east_halfline ( 
    E-max C)) and 
    
              
    
    A186: p 
    in ( 
    L~ co) by 
    XBOOLE_0: 3;
    
              reconsider p as
    Point of ( 
    TOP-REAL 2) by 
    A185;
    
              p
    in ( 
    L~ LS) by 
    A55,
    A186;
    
              then p
    in (( 
    east_halfline ( 
    E-max C)) 
    /\ ( 
    L~ ( 
    Cage (C,n)))) by 
    A155,
    A185,
    XBOOLE_0:def 4;
    
              then
    
              
    
    A187: (p 
    `1 ) 
    = Ebo by 
    JORDAN1A: 83,
    PSCOMP_1: 50;
    
              
    
              
    
    A188: (( 
    E-max C) 
    `2 ) 
    = (p 
    `2 ) by 
    A185,
    TOPREAL1:def 11;
    
              set RC = (
    Rotate (( 
    Cage (C,n)),Emax)); 
    
              
    
              
    
    A189: ( 
    E-max C) 
    in ( 
    right_cell (RC,1)) by 
    JORDAN1I: 7;
    
              
    
              
    
    A190: (1 
    + 1) 
    <= ( 
    len LS) by 
    A27,
    XXREAL_0: 2;
    
              LS
    = (RC 
    -: Wmin) by 
    JORDAN1G: 18;
    
              then
    
              
    
    A191: ( 
    LSeg (LS,1)) 
    = ( 
    LSeg (RC,1)) by 
    A190,
    SPPOL_2: 9;
    
              
    
              
    
    A192: ( 
    L~ RC) 
    = ( 
    L~ ( 
    Cage (C,n))) by 
    REVROT_1: 33;
    
              
    
              
    
    A193: ( 
    len RC) 
    = ( 
    len ( 
    Cage (C,n))) by 
    FINSEQ_6: 179;
    
              
    
              
    
    A194: ( 
    GoB RC) 
    = ( 
    GoB ( 
    Cage (C,n))) by 
    REVROT_1: 28
    
              .= G by
    JORDAN1H: 44;
    
              
    
              
    
    A195: Emax 
    in ( 
    rng ( 
    Cage (C,n))) by 
    SPRECT_2: 46;
    
              
    
              
    
    A196: RC 
    is_sequence_on G by 
    A149,
    REVROT_1: 34;
    
              
    
              
    
    A197: (RC 
    /. 1) 
    = ( 
    E-max ( 
    L~ RC)) by 
    A192,
    A195,
    FINSEQ_6: 92;
    
              consider ii,jj be
    Nat such that 
    
              
    
    A198: 
    [ii, (jj
    + 1)] 
    in ( 
    Indices G) and 
    
              
    
    A199: 
    [ii, jj]
    in ( 
    Indices G) and 
    
              
    
    A200: (RC 
    /. 1) 
    = (G 
    * (ii,(jj 
    + 1))) and 
    
              
    
    A201: (RC 
    /. (1 
    + 1)) 
    = (G 
    * (ii,jj)) by 
    A96,
    A192,
    A193,
    A195,
    A196,
    FINSEQ_6: 92,
    JORDAN1I: 23;
    
              consider jj2 be
    Nat such that 
    
              
    
    A202: 1 
    <= jj2 and 
    
              
    
    A203: jj2 
    <= ( 
    width G) and 
    
              
    
    A204: Emax 
    = (G 
    * (( 
    len G),jj2)) by 
    JORDAN1D: 25;
    
              
    
              
    
    A205: ( 
    len G) 
    >= 4 by 
    JORDAN8: 10;
    
              then (
    len G) 
    >= 1 by 
    XXREAL_0: 2;
    
              then
    [(
    len G), jj2] 
    in ( 
    Indices G) by 
    A202,
    A203,
    MATRIX_0: 30;
    
              then
    
              
    
    A206: ii 
    = ( 
    len G) by 
    A192,
    A197,
    A198,
    A200,
    A204,
    GOBOARD1: 5;
    
              
    
              
    
    A207: 1 
    <= ii by 
    A198,
    MATRIX_0: 32;
    
              
    
              
    
    A208: ii 
    <= ( 
    len G) by 
    A198,
    MATRIX_0: 32;
    
              
    
              
    
    A209: 1 
    <= (jj 
    + 1) by 
    A198,
    MATRIX_0: 32;
    
              
    
              
    
    A210: (jj 
    + 1) 
    <= ( 
    width G) by 
    A198,
    MATRIX_0: 32;
    
              
    
              
    
    A211: 1 
    <= ii by 
    A199,
    MATRIX_0: 32;
    
              
    
              
    
    A212: ii 
    <= ( 
    len G) by 
    A199,
    MATRIX_0: 32;
    
              
    
              
    
    A213: 1 
    <= jj by 
    A199,
    MATRIX_0: 32;
    
              
    
              
    
    A214: jj 
    <= ( 
    width G) by 
    A199,
    MATRIX_0: 32;
    
              
    
              
    
    A215: (ii 
    + 1) 
    <> ii; 
    
              ((jj
    + 1) 
    + 1) 
    <> jj; 
    
              then
    
              
    
    A216: ( 
    right_cell (RC,1)) 
    = ( 
    cell (G,(ii 
    -' 1),jj)) by 
    A96,
    A193,
    A194,
    A198,
    A199,
    A200,
    A201,
    A215,
    GOBOARD5:def 6;
    
              
    
              
    
    A217: ((ii 
    -' 1) 
    + 1) 
    = ii by 
    A207,
    XREAL_1: 235;
    
              (ii
    - 1) 
    >= (4 
    - 1) by 
    A205,
    A206,
    XREAL_1: 9;
    
              then
    
              
    
    A218: (ii 
    - 1) 
    >= 1 by 
    XXREAL_0: 2;
    
              then
    
              
    
    A219: 1 
    <= (ii 
    -' 1) by 
    XREAL_0:def 2;
    
              
    
              
    
    A220: ((G 
    * ((ii 
    -' 1),jj)) 
    `2 ) 
    <= (p 
    `2 ) by 
    A188,
    A189,
    A208,
    A210,
    A213,
    A216,
    A217,
    A218,
    JORDAN9: 17;
    
              
    
              
    
    A221: (p 
    `2 ) 
    <= ((G 
    * ((ii 
    -' 1),(jj 
    + 1))) 
    `2 ) by 
    A188,
    A189,
    A208,
    A210,
    A213,
    A216,
    A217,
    A218,
    JORDAN9: 17;
    
              
    
              
    
    A222: (ii 
    -' 1) 
    < ( 
    len G) by 
    A208,
    A217,
    NAT_1: 13;
    
              
    
              then
    
              
    
    A223: ((G 
    * ((ii 
    -' 1),jj)) 
    `2 ) 
    = ((G 
    * (1,jj)) 
    `2 ) by 
    A213,
    A214,
    A219,
    GOBOARD5: 1
    
              .= ((G
    * (ii,jj)) 
    `2 ) by 
    A211,
    A212,
    A213,
    A214,
    GOBOARD5: 1;
    
              
    
              
    
    A224: ((G 
    * ((ii 
    -' 1),(jj 
    + 1))) 
    `2 ) 
    = ((G 
    * (1,(jj 
    + 1))) 
    `2 ) by 
    A209,
    A210,
    A219,
    A222,
    GOBOARD5: 1
    
              .= ((G
    * (ii,(jj 
    + 1))) 
    `2 ) by 
    A207,
    A208,
    A209,
    A210,
    GOBOARD5: 1;
    
              
    
              
    
    A225: ((G 
    * (( 
    len G),jj)) 
    `1 ) 
    = Ebo by 
    A20,
    A213,
    A214,
    JORDAN1A: 71;
    
              Ebo
    = ((G 
    * (( 
    len G),(jj 
    + 1))) 
    `1 ) by 
    A20,
    A209,
    A210,
    JORDAN1A: 71;
    
              then p
    in ( 
    LSeg ((RC 
    /. 1),(RC 
    /. (1 
    + 1)))) by 
    A187,
    A200,
    A201,
    A206,
    A220,
    A221,
    A223,
    A224,
    A225,
    GOBOARD7: 7;
    
              then
    
              
    
    A226: p 
    in ( 
    LSeg (LS,1)) by 
    A96,
    A191,
    A193,
    TOPREAL1:def 3;
    
              
    
              
    
    A227: p 
    in ( 
    LSeg (co,( 
    Index (p,co)))) by 
    A186,
    JORDAN3: 9;
    
              
    
              
    
    A228: co 
    = ( 
    mid (LS,(Gik 
    .. LS),( 
    len LS))) by 
    A39,
    JORDAN1J: 37;
    
              
    
              
    
    A229: 1 
    <= (Gik 
    .. LS) by 
    A39,
    FINSEQ_4: 21;
    
              
    
              
    
    A230: (Gik 
    .. LS) 
    <= ( 
    len LS) by 
    A39,
    FINSEQ_4: 21;
    
              (Gik
    .. LS) 
    <> ( 
    len LS) by 
    A31,
    A39,
    FINSEQ_4: 19;
    
              then
    
              
    
    A231: (Gik 
    .. LS) 
    < ( 
    len LS) by 
    A230,
    XXREAL_0: 1;
    
              
    
              
    
    A232: 1 
    <= ( 
    Index (p,co)) by 
    A186,
    JORDAN3: 8;
    
              
    
              
    
    A233: ( 
    Index (p,co)) 
    < ( 
    len co) by 
    A186,
    JORDAN3: 8;
    
              
    
              
    
    A234: (( 
    Index (Gik,LS)) 
    + 1) 
    = (Gik 
    .. LS) by 
    A34,
    A39,
    JORDAN1J: 56;
    
              consider t be
    Nat such that 
    
              
    
    A235: t 
    in ( 
    dom LS) and 
    
              
    
    A236: (LS 
    . t) 
    = Gik by 
    A39,
    FINSEQ_2: 10;
    
              
    
              
    
    A237: 1 
    <= t by 
    A235,
    FINSEQ_3: 25;
    
              
    
              
    
    A238: t 
    <= ( 
    len LS) by 
    A235,
    FINSEQ_3: 25;
    
              1
    < t by 
    A34,
    A236,
    A237,
    XXREAL_0: 1;
    
              then ((
    Index (Gik,LS)) 
    + 1) 
    = t by 
    A236,
    A238,
    JORDAN3: 12;
    
              then
    
              
    
    A239: ( 
    len ( 
    L_Cut (LS,Gik))) 
    = (( 
    len LS) 
    - ( 
    Index (Gik,LS))) by 
    A13,
    A236,
    JORDAN3: 26;
    
              set tt = (((
    Index (p,co)) 
    + (Gik 
    .. LS)) 
    -' 1); 
    
              
    
              
    
    A240: 1 
    <= ( 
    Index (Gik,LS)) by 
    A13,
    JORDAN3: 8;
    
              (
    0  
    + ( 
    Index (Gik,LS))) 
    < ( 
    len LS) by 
    A13,
    JORDAN3: 8;
    
              then
    
              
    
    A241: (( 
    len LS) 
    - ( 
    Index (Gik,LS))) 
    >  
    0 by 
    XREAL_1: 20;
    
              (
    Index (p,co)) 
    < (( 
    len LS) 
    -' ( 
    Index (Gik,LS))) by 
    A233,
    A239,
    XREAL_0:def 2;
    
              then ((
    Index (p,co)) 
    + 1) 
    <= (( 
    len LS) 
    -' ( 
    Index (Gik,LS))) by 
    NAT_1: 13;
    
              then (
    Index (p,co)) 
    <= ((( 
    len LS) 
    -' ( 
    Index (Gik,LS))) 
    - 1) by 
    XREAL_1: 19;
    
              then (
    Index (p,co)) 
    <= ((( 
    len LS) 
    - ( 
    Index (Gik,LS))) 
    - 1) by 
    A241,
    XREAL_0:def 2;
    
              then (
    Index (p,co)) 
    <= (( 
    len LS) 
    - (Gik 
    .. LS)) by 
    A234;
    
              then (
    Index (p,co)) 
    <= (( 
    len LS) 
    -' (Gik 
    .. LS)) by 
    XREAL_0:def 2;
    
              then (
    Index (p,co)) 
    < ((( 
    len LS) 
    -' (Gik 
    .. LS)) 
    + 1) by 
    NAT_1: 13;
    
              then
    
              
    
    A242: ( 
    LSeg (( 
    mid (LS,(Gik 
    .. LS),( 
    len LS))),( 
    Index (p,co)))) 
    = ( 
    LSeg (LS,((( 
    Index (p,co)) 
    + (Gik 
    .. LS)) 
    -' 1))) by 
    A229,
    A231,
    A232,
    JORDAN4: 19;
    
              
    
              
    
    A243: (1 
    + 1) 
    <= (Gik 
    .. LS) by 
    A234,
    A240,
    XREAL_1: 7;
    
              then ((
    Index (p,co)) 
    + (Gik 
    .. LS)) 
    >= ((1 
    + 1) 
    + 1) by 
    A232,
    XREAL_1: 7;
    
              then (((
    Index (p,co)) 
    + (Gik 
    .. LS)) 
    - 1) 
    >= (((1 
    + 1) 
    + 1) 
    - 1) by 
    XREAL_1: 9;
    
              then
    
              
    
    A244: tt 
    >= (1 
    + 1) by 
    XREAL_0:def 2;
    
              
    
              
    
    A245: 2 
    in ( 
    dom LS) by 
    A190,
    FINSEQ_3: 25;
    
              now
    
                per cases by
    A244,
    XXREAL_0: 1;
    
                  suppose tt
    > (1 
    + 1); 
    
                  then (
    LSeg (LS,1)) 
    misses ( 
    LSeg (LS,tt)) by 
    TOPREAL1:def 7;
    
                  hence contradiction by
    A226,
    A227,
    A228,
    A242,
    XBOOLE_0: 3;
    
                end;
    
                  suppose
    
                  
    
    A246: tt 
    = (1 
    + 1); 
    
                  then ((
    LSeg (LS,1)) 
    /\ ( 
    LSeg (LS,tt))) 
    =  
    {(LS
    /. 2)} by 
    A27,
    TOPREAL1:def 6;
    
                  then p
    in  
    {(LS
    /. 2)} by 
    A226,
    A227,
    A228,
    A242,
    XBOOLE_0:def 4;
    
                  then
    
                  
    
    A247: p 
    = (LS 
    /. 2) by 
    TARSKI:def 1;
    
                  then
    
                  
    
    A248: (p 
    .. LS) 
    = 2 by 
    A245,
    FINSEQ_5: 41;
    
                  (1
    + 1) 
    = ((( 
    Index (p,co)) 
    + (Gik 
    .. LS)) 
    - 1) by 
    A246,
    XREAL_0:def 2;
    
                  then ((1
    + 1) 
    + 1) 
    = (( 
    Index (p,co)) 
    + (Gik 
    .. LS)); 
    
                  then
    
                  
    
    A249: (Gik 
    .. LS) 
    = 2 by 
    A232,
    A243,
    JORDAN1E: 6;
    
                  p
    in ( 
    rng LS) by 
    A245,
    A247,
    PARTFUN2: 2;
    
                  then p
    = Gik by 
    A39,
    A248,
    A249,
    FINSEQ_5: 9;
    
                  then (Gik
    `1 ) 
    = Ebo by 
    A247,
    JORDAN1G: 32;
    
                  then (Gik
    `1 ) 
    = ((G 
    * (( 
    len G),j)) 
    `1 ) by 
    A4,
    A15,
    A20,
    JORDAN1A: 71;
    
                  hence contradiction by
    A2,
    A3,
    A18,
    A69,
    JORDAN1G: 7;
    
                end;
    
              end;
    
              hence contradiction;
    
            end;
    
          end;
    
          then (
    east_halfline ( 
    E-max C)) 
    c= (( 
    L~ godo) 
    ` ) by 
    SUBSET_1: 23;
    
          then
    
          consider W be
    Subset of ( 
    TOP-REAL 2) such that 
    
          
    
    A250: W 
    is_a_component_of (( 
    L~ godo) 
    ` ) and 
    
          
    
    A251: ( 
    east_halfline ( 
    E-max C)) 
    c= W by 
    GOBOARD9: 3;
    
           not W is
    bounded by 
    A251,
    JORDAN2C: 121,
    RLTOPSP1: 42;
    
          then W
    is_outside_component_of ( 
    L~ godo) by 
    A250,
    JORDAN2C:def 3;
    
          then W
    c= ( 
    UBD ( 
    L~ godo)) by 
    JORDAN2C: 23;
    
          then
    
          
    
    A252: ( 
    east_halfline ( 
    E-max C)) 
    c= ( 
    UBD ( 
    L~ godo)) by 
    A251;
    
          (
    E-max C) 
    in ( 
    east_halfline ( 
    E-max C)) by 
    TOPREAL1: 38;
    
          then (
    E-max C) 
    in ( 
    UBD ( 
    L~ godo)) by 
    A252;
    
          then (
    E-max C) 
    in ( 
    LeftComp godo) by 
    GOBRD14: 36;
    
          then UA
    meets ( 
    L~ godo) by 
    A141,
    A142,
    A143,
    A151,
    A161,
    JORDAN1J: 36;
    
          then
    
          
    
    A253: UA 
    meets (( 
    L~ go) 
    \/ ( 
    L~ pion1)) or UA 
    meets ( 
    L~ co) by 
    A152,
    XBOOLE_1: 70;
    
          
    
          
    
    A254: UA 
    c= C by 
    JORDAN6: 61;
    
          now
    
            per cases by
    A253,
    XBOOLE_1: 70;
    
              suppose UA
    meets ( 
    L~ go); 
    
              then UA
    meets ( 
    L~ ( 
    Cage (C,n))) by 
    A48,
    A154,
    XBOOLE_1: 1,
    XBOOLE_1: 63;
    
              hence contradiction by
    A254,
    JORDAN10: 5,
    XBOOLE_1: 63;
    
            end;
    
              suppose UA
    meets ( 
    L~ pion1); 
    
              hence contradiction by
    A9,
    A12,
    A87;
    
            end;
    
              suppose UA
    meets ( 
    L~ co); 
    
              then UA
    meets ( 
    L~ ( 
    Cage (C,n))) by 
    A55,
    A155,
    XBOOLE_1: 1,
    XBOOLE_1: 63;
    
              hence contradiction by
    A254,
    JORDAN10: 5,
    XBOOLE_1: 63;
    
            end;
    
          end;
    
          hence contradiction;
    
        end;
    
          suppose (Gik
    `1 ) 
    = (Gij 
    `1 ); 
    
          then
    
          
    
    A255: i1 
    = i2 by 
    A17,
    A18,
    JORDAN1G: 7;
    
          then poz
    =  
    {Gi1k} by
    RLTOPSP1: 70;
    
          then poz
    c= pio by 
    A83,
    ZFMISC_1: 31;
    
          then (pio
    \/ poz) 
    = pio by 
    XBOOLE_1: 12;
    
          hence contradiction by
    A1,
    A3,
    A4,
    A5,
    A6,
    A7,
    A8,
    A9,
    A255,
    Th12;
    
        end;
    
          suppose (Gik
    `2 ) 
    = (Gij 
    `2 ); 
    
          then
    
          
    
    A256: j 
    = k by 
    A17,
    A18,
    JORDAN1G: 6;
    
          then pio
    =  
    {Gi1k} by
    RLTOPSP1: 70;
    
          then pio
    c= poz by 
    A84,
    ZFMISC_1: 31;
    
          then (pio
    \/ poz) 
    = poz by 
    XBOOLE_1: 12;
    
          hence contradiction by
    A1,
    A2,
    A3,
    A4,
    A6,
    A7,
    A8,
    A9,
    A256,
    JORDAN15: 29;
    
        end;
    
      end;
    
      hence contradiction;
    
    end;
    
    theorem :: 
    
    JORDAN19:23
    
    
    
    
    
    Th23: for C be 
    Simple_closed_curve holds for i1,i2,j,k be 
    Nat st 1 
    < i2 & i2 
    <= i1 & i1 
    < ( 
    len ( 
    Gauge (C,n))) & 1 
    <= j & j 
    <= k & k 
    <= ( 
    width ( 
    Gauge (C,n))) & ((( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i1,j)),(( 
    Gauge (C,n)) 
    * (i1,k)))) 
    \/ ( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i1,k)),(( 
    Gauge (C,n)) 
    * (i2,k))))) 
    /\ ( 
    L~ ( 
    Upper_Seq (C,n)))) 
    =  
    {((
    Gauge (C,n)) 
    * (i1,j))} & ((( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i1,j)),(( 
    Gauge (C,n)) 
    * (i1,k)))) 
    \/ ( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i1,k)),(( 
    Gauge (C,n)) 
    * (i2,k))))) 
    /\ ( 
    L~ ( 
    Lower_Seq (C,n)))) 
    =  
    {((
    Gauge (C,n)) 
    * (i2,k))} holds (( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i1,j)),(( 
    Gauge (C,n)) 
    * (i1,k)))) 
    \/ ( 
    LSeg ((( 
    Gauge (C,n)) 
    * (i1,k)),(( 
    Gauge (C,n)) 
    * (i2,k))))) 
    meets ( 
    Lower_Arc C) 
    
    proof
    
      let C be
    Simple_closed_curve;
    
      let i1,i2,j,k be
    Nat;
    
      set G = (
    Gauge (C,n)); 
    
      set pio = (
    LSeg ((G 
    * (i1,j)),(G 
    * (i1,k)))); 
    
      set poz = (
    LSeg ((G 
    * (i1,k)),(G 
    * (i2,k)))); 
    
      set US = (
    Upper_Seq (C,n)); 
    
      set LS = (
    Lower_Seq (C,n)); 
    
      assume that
    
      
    
    A1: 1 
    < i2 and 
    
      
    
    A2: i2 
    <= i1 and 
    
      
    
    A3: i1 
    < ( 
    len G) and 
    
      
    
    A4: 1 
    <= j and 
    
      
    
    A5: j 
    <= k and 
    
      
    
    A6: k 
    <= ( 
    width G) and 
    
      
    
    A7: ((pio 
    \/ poz) 
    /\ ( 
    L~ US)) 
    =  
    {(G
    * (i1,j))} and 
    
      
    
    A8: ((pio 
    \/ poz) 
    /\ ( 
    L~ LS)) 
    =  
    {(G
    * (i2,k))} and 
    
      
    
    A9: (pio 
    \/ poz) 
    misses ( 
    Lower_Arc C); 
    
      set UA = (
    Lower_Arc C); 
    
      set Wmin = (
    W-min ( 
    L~ ( 
    Cage (C,n)))); 
    
      set Emax = (
    E-max ( 
    L~ ( 
    Cage (C,n)))); 
    
      set Wbo = (
    W-bound ( 
    L~ ( 
    Cage (C,n)))); 
    
      set Ebo = (
    E-bound ( 
    L~ ( 
    Cage (C,n)))); 
    
      set Gik = (G
    * (i2,k)); 
    
      set Gij = (G
    * (i1,j)); 
    
      set Gi1k = (G
    * (i1,k)); 
    
      
    
      
    
    A10: 1 
    < i1 by 
    A1,
    A2,
    XXREAL_0: 2;
    
      
    
      
    
    A11: i2 
    < ( 
    len G) by 
    A2,
    A3,
    XXREAL_0: 2;
    
      
    
      
    
    A12: ( 
    L~  
    <*Gij, Gi1k, Gik*>)
    = (poz 
    \/ pio) by 
    TOPREAL3: 16;
    
      Gik
    in  
    {Gik} by
    TARSKI:def 1;
    
      then
    
      
    
    A13: Gik 
    in ( 
    L~ LS) by 
    A8,
    XBOOLE_0:def 4;
    
      Gij
    in  
    {Gij} by
    TARSKI:def 1;
    
      then
    
      
    
    A14: Gij 
    in ( 
    L~ US) by 
    A7,
    XBOOLE_0:def 4;
    
      
    
      
    
    A15: j 
    <= ( 
    width G) by 
    A5,
    A6,
    XXREAL_0: 2;
    
      
    
      
    
    A16: 1 
    <= k by 
    A4,
    A5,
    XXREAL_0: 2;
    
      
    
      
    
    A17: 
    [i1, j]
    in ( 
    Indices G) by 
    A3,
    A4,
    A10,
    A15,
    MATRIX_0: 30;
    
      
    
      
    
    A18: 
    [i2, k]
    in ( 
    Indices G) by 
    A1,
    A6,
    A11,
    A16,
    MATRIX_0: 30;
    
      
    
      
    
    A19: 
    [i1, k]
    in ( 
    Indices G) by 
    A3,
    A6,
    A10,
    A16,
    MATRIX_0: 30;
    
      set go = (
    R_Cut (US,Gij)); 
    
      set co = (
    L_Cut (LS,Gik)); 
    
      
    
      
    
    A20: ( 
    len G) 
    = ( 
    width G) by 
    JORDAN8:def 1;
    
      
    
      
    
    A21: ( 
    len US) 
    >= 3 by 
    JORDAN1E: 15;
    
      then (
    len US) 
    >= 1 by 
    XXREAL_0: 2;
    
      then 1
    in ( 
    dom US) by 
    FINSEQ_3: 25;
    
      
    
      then
    
      
    
    A22: (US 
    . 1) 
    = (US 
    /. 1) by 
    PARTFUN1:def 6
    
      .= Wmin by
    JORDAN1F: 5;
    
      
    
      
    
    A23: (Wmin 
    `1 ) 
    = Wbo by 
    EUCLID: 52
    
      .= ((G
    * (1,k)) 
    `1 ) by 
    A6,
    A16,
    A20,
    JORDAN1A: 73;
    
      (
    len G) 
    >= 4 by 
    JORDAN8: 10;
    
      then
    
      
    
    A24: ( 
    len G) 
    >= 1 by 
    XXREAL_0: 2;
    
      then
    
      
    
    A25: 
    [1, k]
    in ( 
    Indices G) by 
    A6,
    A16,
    MATRIX_0: 30;
    
      then
    
      
    
    A26: Gij 
    <> (US 
    . 1) by 
    A1,
    A2,
    A17,
    A22,
    A23,
    JORDAN1G: 7;
    
      then
    
      reconsider go as
    being_S-Seq  
    FinSequence of ( 
    TOP-REAL 2) by 
    A14,
    JORDAN3: 35;
    
      
    
      
    
    A27: ( 
    len LS) 
    >= (1 
    + 2) by 
    JORDAN1E: 15;
    
      then
    
      
    
    A28: ( 
    len LS) 
    >= 1 by 
    XXREAL_0: 2;
    
      then
    
      
    
    A29: 1 
    in ( 
    dom LS) by 
    FINSEQ_3: 25;
    
      (
    len LS) 
    in ( 
    dom LS) by 
    A28,
    FINSEQ_3: 25;
    
      
    
      then
    
      
    
    A30: (LS 
    . ( 
    len LS)) 
    = (LS 
    /. ( 
    len LS)) by 
    PARTFUN1:def 6
    
      .= Wmin by
    JORDAN1F: 8;
    
      (Wmin
    `1 ) 
    = Wbo by 
    EUCLID: 52
    
      .= ((G
    * (1,k)) 
    `1 ) by 
    A6,
    A16,
    A20,
    JORDAN1A: 73;
    
      then
    
      
    
    A31: Gik 
    <> (LS 
    . ( 
    len LS)) by 
    A1,
    A18,
    A25,
    A30,
    JORDAN1G: 7;
    
      then
    
      reconsider co as
    being_S-Seq  
    FinSequence of ( 
    TOP-REAL 2) by 
    A13,
    JORDAN3: 34;
    
      
    
      
    
    A32: 
    [(
    len G), k] 
    in ( 
    Indices G) by 
    A6,
    A16,
    A24,
    MATRIX_0: 30;
    
      
    
      
    
    A33: (LS 
    . 1) 
    = (LS 
    /. 1) by 
    A29,
    PARTFUN1:def 6
    
      .= Emax by
    JORDAN1F: 6;
    
      (Emax
    `1 ) 
    = Ebo by 
    EUCLID: 52
    
      .= ((G
    * (( 
    len G),k)) 
    `1 ) by 
    A6,
    A16,
    A20,
    JORDAN1A: 71;
    
      then
    
      
    
    A34: Gik 
    <> (LS 
    . 1) by 
    A2,
    A3,
    A18,
    A32,
    A33,
    JORDAN1G: 7;
    
      
    
      
    
    A35: ( 
    len go) 
    >= (1 
    + 1) by 
    TOPREAL1:def 8;
    
      
    
      
    
    A36: Gij 
    in ( 
    rng US) by 
    A3,
    A4,
    A10,
    A14,
    A15,
    JORDAN1G: 4,
    JORDAN1J: 40;
    
      then
    
      
    
    A37: go 
    is_sequence_on G by 
    JORDAN1G: 4,
    JORDAN1J: 38;
    
      
    
      
    
    A38: ( 
    len co) 
    >= (1 
    + 1) by 
    TOPREAL1:def 8;
    
      
    
      
    
    A39: Gik 
    in ( 
    rng LS) by 
    A1,
    A6,
    A11,
    A13,
    A16,
    JORDAN1G: 5,
    JORDAN1J: 40;
    
      then
    
      
    
    A40: co 
    is_sequence_on G by 
    JORDAN1G: 5,
    JORDAN1J: 39;
    
      reconsider go as non
    constant
    s.c.c.
    being_S-Seq  
    FinSequence of ( 
    TOP-REAL 2) by 
    A35,
    A37,
    JGRAPH_1: 12,
    JORDAN8: 5;
    
      reconsider co as non
    constant
    s.c.c.
    being_S-Seq  
    FinSequence of ( 
    TOP-REAL 2) by 
    A38,
    A40,
    JGRAPH_1: 12,
    JORDAN8: 5;
    
      
    
      
    
    A41: ( 
    len go) 
    > 1 by 
    A35,
    NAT_1: 13;
    
      then
    
      
    
    A42: ( 
    len go) 
    in ( 
    dom go) by 
    FINSEQ_3: 25;
    
      
    
      then
    
      
    
    A43: (go 
    /. ( 
    len go)) 
    = (go 
    . ( 
    len go)) by 
    PARTFUN1:def 6
    
      .= Gij by
    A14,
    JORDAN3: 24;
    
      (
    len co) 
    >= 1 by 
    A38,
    XXREAL_0: 2;
    
      then 1
    in ( 
    dom co) by 
    FINSEQ_3: 25;
    
      
    
      then
    
      
    
    A44: (co 
    /. 1) 
    = (co 
    . 1) by 
    PARTFUN1:def 6
    
      .= Gik by
    A13,
    JORDAN3: 23;
    
      reconsider m = ((
    len go) 
    - 1) as 
    Nat by 
    A42,
    FINSEQ_3: 26;
    
      
    
      
    
    A45: (m 
    + 1) 
    = ( 
    len go); 
    
      then
    
      
    
    A46: (( 
    len go) 
    -' 1) 
    = m by 
    NAT_D: 34;
    
      
    
      
    
    A47: ( 
    LSeg (go,m)) 
    c= ( 
    L~ go) by 
    TOPREAL3: 19;
    
      
    
      
    
    A48: ( 
    L~ go) 
    c= ( 
    L~ US) by 
    A14,
    JORDAN3: 41;
    
      then (
    LSeg (go,m)) 
    c= ( 
    L~ US) by 
    A47;
    
      then
    
      
    
    A49: (( 
    LSeg (go,m)) 
    /\ ( 
    L~  
    <*Gij, Gi1k, Gik*>))
    c=  
    {Gij} by
    A7,
    A12,
    XBOOLE_1: 26;
    
      m
    >= 1 by 
    A35,
    XREAL_1: 19;
    
      then
    
      
    
    A50: ( 
    LSeg (go,m)) 
    = ( 
    LSeg ((go 
    /. m),Gij)) by 
    A43,
    A45,
    TOPREAL1:def 3;
    
      
    {Gij}
    c= (( 
    LSeg (go,m)) 
    /\ ( 
    L~  
    <*Gij, Gi1k, Gik*>))
    
      proof
    
        let x be
    object;
    
        assume x
    in  
    {Gij};
    
        then
    
        
    
    A51: x 
    = Gij by 
    TARSKI:def 1;
    
        
    
        
    
    A52: Gij 
    in ( 
    LSeg (go,m)) by 
    A50,
    RLTOPSP1: 68;
    
        Gij
    in ( 
    LSeg (Gij,Gi1k)) by 
    RLTOPSP1: 68;
    
        then Gij
    in (( 
    LSeg (Gij,Gi1k)) 
    \/ ( 
    LSeg (Gi1k,Gik))) by 
    XBOOLE_0:def 3;
    
        then Gij
    in ( 
    L~  
    <*Gij, Gi1k, Gik*>) by
    SPRECT_1: 8;
    
        hence thesis by
    A51,
    A52,
    XBOOLE_0:def 4;
    
      end;
    
      then
    
      
    
    A53: (( 
    LSeg (go,m)) 
    /\ ( 
    L~  
    <*Gij, Gi1k, Gik*>))
    =  
    {Gij} by
    A49;
    
      
    
      
    
    A54: ( 
    LSeg (co,1)) 
    c= ( 
    L~ co) by 
    TOPREAL3: 19;
    
      
    
      
    
    A55: ( 
    L~ co) 
    c= ( 
    L~ LS) by 
    A13,
    JORDAN3: 42;
    
      then (
    LSeg (co,1)) 
    c= ( 
    L~ LS) by 
    A54;
    
      then
    
      
    
    A56: (( 
    LSeg (co,1)) 
    /\ ( 
    L~  
    <*Gij, Gi1k, Gik*>))
    c=  
    {Gik} by
    A8,
    A12,
    XBOOLE_1: 26;
    
      
    
      
    
    A57: ( 
    LSeg (co,1)) 
    = ( 
    LSeg (Gik,(co 
    /. (1 
    + 1)))) by 
    A38,
    A44,
    TOPREAL1:def 3;
    
      
    {Gik}
    c= (( 
    LSeg (co,1)) 
    /\ ( 
    L~  
    <*Gij, Gi1k, Gik*>))
    
      proof
    
        let x be
    object;
    
        assume x
    in  
    {Gik};
    
        then
    
        
    
    A58: x 
    = Gik by 
    TARSKI:def 1;
    
        
    
        
    
    A59: Gik 
    in ( 
    LSeg (co,1)) by 
    A57,
    RLTOPSP1: 68;
    
        Gik
    in ( 
    LSeg (Gi1k,Gik)) by 
    RLTOPSP1: 68;
    
        then Gik
    in (( 
    LSeg (Gij,Gi1k)) 
    \/ ( 
    LSeg (Gi1k,Gik))) by 
    XBOOLE_0:def 3;
    
        then Gik
    in ( 
    L~  
    <*Gij, Gi1k, Gik*>) by
    SPRECT_1: 8;
    
        hence thesis by
    A58,
    A59,
    XBOOLE_0:def 4;
    
      end;
    
      then
    
      
    
    A60: (( 
    L~  
    <*Gij, Gi1k, Gik*>)
    /\ ( 
    LSeg (co,1))) 
    =  
    {Gik} by
    A56;
    
      
    
      
    
    A61: (go 
    /. 1) 
    = (US 
    /. 1) by 
    A14,
    SPRECT_3: 22
    
      .= Wmin by
    JORDAN1F: 5;
    
      
    
      then
    
      
    
    A62: (go 
    /. 1) 
    = (LS 
    /. ( 
    len LS)) by 
    JORDAN1F: 8
    
      .= (co
    /. ( 
    len co)) by 
    A13,
    JORDAN1J: 35;
    
      
    
      
    
    A63: ( 
    rng go) 
    c= ( 
    L~ go) by 
    A35,
    SPPOL_2: 18;
    
      
    
      
    
    A64: ( 
    rng co) 
    c= ( 
    L~ co) by 
    A38,
    SPPOL_2: 18;
    
      
    
      
    
    A65: 
    {(go
    /. 1)} 
    c= (( 
    L~ go) 
    /\ ( 
    L~ co)) 
    
      proof
    
        let x be
    object;
    
        assume x
    in  
    {(go
    /. 1)}; 
    
        then
    
        
    
    A66: x 
    = (go 
    /. 1) by 
    TARSKI:def 1;
    
        then
    
        
    
    A67: x 
    in ( 
    rng go) by 
    FINSEQ_6: 42;
    
        x
    in ( 
    rng co) by 
    A62,
    A66,
    FINSEQ_6: 168;
    
        hence thesis by
    A63,
    A64,
    A67,
    XBOOLE_0:def 4;
    
      end;
    
      
    
      
    
    A68: (LS 
    . 1) 
    = (LS 
    /. 1) by 
    A29,
    PARTFUN1:def 6
    
      .= Emax by
    JORDAN1F: 6;
    
      
    
      
    
    A69: 
    [(
    len G), j] 
    in ( 
    Indices G) by 
    A4,
    A15,
    A24,
    MATRIX_0: 30;
    
      ((
    L~ go) 
    /\ ( 
    L~ co)) 
    c=  
    {(go
    /. 1)} 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    A70: x 
    in (( 
    L~ go) 
    /\ ( 
    L~ co)); 
    
        then
    
        
    
    A71: x 
    in ( 
    L~ go) by 
    XBOOLE_0:def 4;
    
        
    
        
    
    A72: x 
    in ( 
    L~ co) by 
    A70,
    XBOOLE_0:def 4;
    
        then x
    in (( 
    L~ US) 
    /\ ( 
    L~ LS)) by 
    A48,
    A55,
    A71,
    XBOOLE_0:def 4;
    
        then x
    in  
    {Wmin, Emax} by
    JORDAN1E: 16;
    
        then
    
        
    
    A73: x 
    = Wmin or x 
    = Emax by 
    TARSKI:def 2;
    
        now
    
          assume x
    = Emax; 
    
          then
    
          
    
    A74: Emax 
    = Gik by 
    A13,
    A68,
    A72,
    JORDAN1E: 7;
    
          ((G
    * (( 
    len G),j)) 
    `1 ) 
    = Ebo by 
    A4,
    A15,
    A20,
    JORDAN1A: 71;
    
          then (Emax
    `1 ) 
    <> Ebo by 
    A2,
    A3,
    A18,
    A69,
    A74,
    JORDAN1G: 7;
    
          hence contradiction by
    EUCLID: 52;
    
        end;
    
        hence thesis by
    A61,
    A73,
    TARSKI:def 1;
    
      end;
    
      then
    
      
    
    A75: (( 
    L~ go) 
    /\ ( 
    L~ co)) 
    =  
    {(go
    /. 1)} by 
    A65;
    
      set W2 = (go
    /. 2); 
    
      
    
      
    
    A76: 2 
    in ( 
    dom go) by 
    A35,
    FINSEQ_3: 25;
    
      
    
    A77: 
    
      now
    
        assume (Gik
    `1 ) 
    = Wbo; 
    
        then ((G
    * (1,k)) 
    `1 ) 
    = ((G 
    * (i2,k)) 
    `1 ) by 
    A6,
    A16,
    A20,
    JORDAN1A: 73;
    
        hence contradiction by
    A1,
    A18,
    A25,
    JORDAN1G: 7;
    
      end;
    
      go
    = ( 
    mid (US,1,(Gij 
    .. US))) by 
    A36,
    JORDAN1G: 49
    
      .= (US
    | (Gij 
    .. US)) by 
    A36,
    FINSEQ_4: 21,
    FINSEQ_6: 116;
    
      then
    
      
    
    A78: W2 
    = (US 
    /. 2) by 
    A76,
    FINSEQ_4: 70;
    
      
    
      
    
    A79: Wmin 
    in ( 
    rng go) by 
    A61,
    FINSEQ_6: 42;
    
      set pion =
    <*Gij, Gi1k, Gik*>;
    
      
    
    A80: 
    
      now
    
        let n be
    Nat;
    
        assume n
    in ( 
    dom pion); 
    
        then n
    in  
    {1, 2, 3} by
    FINSEQ_1: 89,
    FINSEQ_3: 1;
    
        then n
    = 1 or n 
    = 2 or n 
    = 3 by 
    ENUMSET1:def 1;
    
        hence ex i,j be
    Nat st 
    [i, j]
    in ( 
    Indices G) & (pion 
    /. n) 
    = (G 
    * (i,j)) by 
    A17,
    A18,
    A19,
    FINSEQ_4: 18;
    
      end;
    
      
    
      
    
    A81: (Gi1k 
    `1 ) 
    = ((G 
    * (i1,1)) 
    `1 ) by 
    A3,
    A6,
    A10,
    A16,
    GOBOARD5: 2
    
      .= (Gij
    `1 ) by 
    A3,
    A4,
    A10,
    A15,
    GOBOARD5: 2;
    
      (Gi1k
    `2 ) 
    = ((G 
    * (1,k)) 
    `2 ) by 
    A3,
    A6,
    A10,
    A16,
    GOBOARD5: 1
    
      .= (Gik
    `2 ) by 
    A1,
    A6,
    A11,
    A16,
    GOBOARD5: 1;
    
      then
    
      
    
    A82: Gi1k 
    =  
    |[(Gij
    `1 ), (Gik 
    `2 )]| by 
    A81,
    EUCLID: 53;
    
      
    
      
    
    A83: Gi1k 
    in pio by 
    RLTOPSP1: 68;
    
      
    
      
    
    A84: Gi1k 
    in poz by 
    RLTOPSP1: 68;
    
      now
    
        per cases ;
    
          suppose (Gik
    `1 ) 
    <> (Gij 
    `1 ) & (Gik 
    `2 ) 
    <> (Gij 
    `2 ); 
    
          then pion is
    being_S-Seq by 
    A82,
    TOPREAL3: 34;
    
          then
    
          consider pion1 be
    FinSequence of ( 
    TOP-REAL 2) such that 
    
          
    
    A85: pion1 
    is_sequence_on G and 
    
          
    
    A86: pion1 is 
    being_S-Seq and 
    
          
    
    A87: ( 
    L~ pion) 
    = ( 
    L~ pion1) and 
    
          
    
    A88: (pion 
    /. 1) 
    = (pion1 
    /. 1) and 
    
          
    
    A89: (pion 
    /. ( 
    len pion)) 
    = (pion1 
    /. ( 
    len pion1)) and 
    
          
    
    A90: ( 
    len pion) 
    <= ( 
    len pion1) by 
    A80,
    GOBOARD3: 2;
    
          reconsider pion1 as
    being_S-Seq  
    FinSequence of ( 
    TOP-REAL 2) by 
    A86;
    
          set godo = ((go
    ^' pion1) 
    ^' co); 
    
          
    
          
    
    A91: (Gi1k 
    `1 ) 
    = ((G 
    * (i1,1)) 
    `1 ) by 
    A3,
    A6,
    A10,
    A16,
    GOBOARD5: 2
    
          .= (Gij
    `1 ) by 
    A3,
    A4,
    A10,
    A15,
    GOBOARD5: 2;
    
          
    
          
    
    A92: (Gik 
    `1 ) 
    <= (Gi1k 
    `1 ) by 
    A1,
    A2,
    A3,
    A6,
    A16,
    JORDAN1A: 18;
    
          then
    
          
    
    A93: ( 
    W-bound poz) 
    = (Gik 
    `1 ) by 
    SPRECT_1: 54;
    
          
    
          
    
    A94: ( 
    W-bound pio) 
    = (Gij 
    `1 ) by 
    A91,
    SPRECT_1: 54;
    
          (
    W-bound (poz 
    \/ pio)) 
    = ( 
    min (( 
    W-bound poz),( 
    W-bound pio))) by 
    SPRECT_1: 47
    
          .= (Gik
    `1 ) by 
    A91,
    A92,
    A93,
    A94,
    XXREAL_0:def 9;
    
          then
    
          
    
    A95: ( 
    W-bound ( 
    L~ pion1)) 
    = (Gik 
    `1 ) by 
    A87,
    TOPREAL3: 16;
    
          
    
          
    
    A96: (1 
    + 1) 
    <= ( 
    len ( 
    Cage (C,n))) by 
    GOBOARD7: 34,
    XXREAL_0: 2;
    
          
    
          
    
    A97: (1 
    + 1) 
    <= ( 
    len ( 
    Rotate (( 
    Cage (C,n)),Wmin))) by 
    GOBOARD7: 34,
    XXREAL_0: 2;
    
          (
    len (go 
    ^' pion1)) 
    >= ( 
    len go) by 
    TOPREAL8: 7;
    
          then
    
          
    
    A98: ( 
    len (go 
    ^' pion1)) 
    >= (1 
    + 1) by 
    A35,
    XXREAL_0: 2;
    
          then
    
          
    
    A99: ( 
    len (go 
    ^' pion1)) 
    > (1 
    +  
    0 ) by 
    NAT_1: 13;
    
          
    
          
    
    A100: ( 
    len godo) 
    >= ( 
    len (go 
    ^' pion1)) by 
    TOPREAL8: 7;
    
          then
    
          
    
    A101: (1 
    + 1) 
    <= ( 
    len godo) by 
    A98,
    XXREAL_0: 2;
    
          
    
          
    
    A102: US 
    is_sequence_on G by 
    JORDAN1G: 4;
    
          
    
          
    
    A103: (go 
    /. ( 
    len go)) 
    = (pion1 
    /. 1) by 
    A43,
    A88,
    FINSEQ_4: 18;
    
          then
    
          
    
    A104: (go 
    ^' pion1) 
    is_sequence_on G by 
    A37,
    A85,
    TOPREAL8: 12;
    
          
    
          
    
    A105: ((go 
    ^' pion1) 
    /. ( 
    len (go 
    ^' pion1))) 
    = (pion 
    /. ( 
    len pion)) by 
    A89,
    FINSEQ_6: 156
    
          .= (pion
    /. 3) by 
    FINSEQ_1: 45
    
          .= (co
    /. 1) by 
    A44,
    FINSEQ_4: 18;
    
          then
    
          
    
    A106: godo 
    is_sequence_on G by 
    A40,
    A104,
    TOPREAL8: 12;
    
          (
    LSeg (pion1,1)) 
    c= ( 
    L~ pion) by 
    A87,
    TOPREAL3: 19;
    
          then
    
          
    
    A107: (( 
    LSeg (go,(( 
    len go) 
    -' 1))) 
    /\ ( 
    LSeg (pion1,1))) 
    c=  
    {Gij} by
    A46,
    A53,
    XBOOLE_1: 27;
    
          (
    len pion1) 
    >= (2 
    + 1) by 
    A90,
    FINSEQ_1: 45;
    
          then
    
          
    
    A108: ( 
    len pion1) 
    > (1 
    + 1) by 
    NAT_1: 13;
    
          
    {Gij}
    c= (( 
    LSeg (go,m)) 
    /\ ( 
    LSeg (pion1,1))) 
    
          proof
    
            let x be
    object;
    
            assume x
    in  
    {Gij};
    
            then
    
            
    
    A109: x 
    = Gij by 
    TARSKI:def 1;
    
            
    
            
    
    A110: Gij 
    in ( 
    LSeg (go,m)) by 
    A50,
    RLTOPSP1: 68;
    
            Gij
    in ( 
    LSeg (pion1,1)) by 
    A43,
    A103,
    A108,
    TOPREAL1: 21;
    
            hence thesis by
    A109,
    A110,
    XBOOLE_0:def 4;
    
          end;
    
          then ((
    LSeg (go,(( 
    len go) 
    -' 1))) 
    /\ ( 
    LSeg (pion1,1))) 
    =  
    {(go
    /. ( 
    len go))} by 
    A43,
    A46,
    A107;
    
          then
    
          
    
    A111: (go 
    ^' pion1) is 
    unfolded by 
    A103,
    TOPREAL8: 34;
    
          (
    len pion1) 
    >= (2 
    + 1) by 
    A90,
    FINSEQ_1: 45;
    
          then
    
          
    
    A112: (( 
    len pion1) 
    - 2) 
    >=  
    0 by 
    XREAL_1: 19;
    
          (((
    len (go 
    ^' pion1)) 
    + 1) 
    - 1) 
    = ((( 
    len go) 
    + ( 
    len pion1)) 
    - 1) by 
    FINSEQ_6: 139;
    
          
    
          then ((
    len (go 
    ^' pion1)) 
    - 1) 
    = (( 
    len go) 
    + (( 
    len pion1) 
    - 2)) 
    
          .= ((
    len go) 
    + (( 
    len pion1) 
    -' 2)) by 
    A112,
    XREAL_0:def 2;
    
          then
    
          
    
    A113: (( 
    len (go 
    ^' pion1)) 
    -' 1) 
    = (( 
    len go) 
    + (( 
    len pion1) 
    -' 2)) by 
    XREAL_0:def 2;
    
          
    
          
    
    A114: (( 
    len pion1) 
    - 1) 
    >= 1 by 
    A108,
    XREAL_1: 19;
    
          then
    
          
    
    A115: (( 
    len pion1) 
    -' 1) 
    = (( 
    len pion1) 
    - 1) by 
    XREAL_0:def 2;
    
          
    
          
    
    A116: ((( 
    len pion1) 
    -' 2) 
    + 1) 
    = ((( 
    len pion1) 
    - 2) 
    + 1) by 
    A112,
    XREAL_0:def 2
    
          .= ((
    len pion1) 
    -' 1) by 
    A114,
    XREAL_0:def 2;
    
          (((
    len pion1) 
    - 1) 
    + 1) 
    <= ( 
    len pion1); 
    
          then
    
          
    
    A117: (( 
    len pion1) 
    -' 1) 
    < ( 
    len pion1) by 
    A115,
    NAT_1: 13;
    
          (
    LSeg (pion1,(( 
    len pion1) 
    -' 1))) 
    c= ( 
    L~ pion) by 
    A87,
    TOPREAL3: 19;
    
          then
    
          
    
    A118: (( 
    LSeg (pion1,(( 
    len pion1) 
    -' 1))) 
    /\ ( 
    LSeg (co,1))) 
    c=  
    {Gik} by
    A60,
    XBOOLE_1: 27;
    
          
    {Gik}
    c= (( 
    LSeg (pion1,(( 
    len pion1) 
    -' 1))) 
    /\ ( 
    LSeg (co,1))) 
    
          proof
    
            let x be
    object;
    
            assume x
    in  
    {Gik};
    
            then
    
            
    
    A119: x 
    = Gik by 
    TARSKI:def 1;
    
            
    
            
    
    A120: Gik 
    in ( 
    LSeg (co,1)) by 
    A57,
    RLTOPSP1: 68;
    
            (pion1
    /. ((( 
    len pion1) 
    -' 1) 
    + 1)) 
    = (pion 
    /. 3) by 
    A89,
    A115,
    FINSEQ_1: 45
    
            .= Gik by
    FINSEQ_4: 18;
    
            then Gik
    in ( 
    LSeg (pion1,(( 
    len pion1) 
    -' 1))) by 
    A114,
    A115,
    TOPREAL1: 21;
    
            hence thesis by
    A119,
    A120,
    XBOOLE_0:def 4;
    
          end;
    
          then ((
    LSeg (pion1,(( 
    len pion1) 
    -' 1))) 
    /\ ( 
    LSeg (co,1))) 
    =  
    {Gik} by
    A118;
    
          then
    
          
    
    A121: (( 
    LSeg ((go 
    ^' pion1),(( 
    len go) 
    + (( 
    len pion1) 
    -' 2)))) 
    /\ ( 
    LSeg (co,1))) 
    =  
    {((go
    ^' pion1) 
    /. ( 
    len (go 
    ^' pion1)))} by 
    A44,
    A103,
    A105,
    A116,
    A117,
    TOPREAL8: 31;
    
          
    
          
    
    A122: (go 
    ^' pion1) is non 
    trivial by 
    A98,
    NAT_D: 60;
    
          
    
          
    
    A123: ( 
    rng pion1) 
    c= ( 
    L~ pion1) by 
    A108,
    SPPOL_2: 18;
    
          
    
          
    
    A124: 
    {(pion1
    /. 1)} 
    c= (( 
    L~ go) 
    /\ ( 
    L~ pion1)) 
    
          proof
    
            let x be
    object;
    
            assume x
    in  
    {(pion1
    /. 1)}; 
    
            then
    
            
    
    A125: x 
    = (pion1 
    /. 1) by 
    TARSKI:def 1;
    
            then
    
            
    
    A126: x 
    in ( 
    rng go) by 
    A103,
    FINSEQ_6: 168;
    
            x
    in ( 
    rng pion1) by 
    A125,
    FINSEQ_6: 42;
    
            hence thesis by
    A63,
    A123,
    A126,
    XBOOLE_0:def 4;
    
          end;
    
          ((
    L~ go) 
    /\ ( 
    L~ pion1)) 
    c=  
    {(pion1
    /. 1)} 
    
          proof
    
            let x be
    object;
    
            assume
    
            
    
    A127: x 
    in (( 
    L~ go) 
    /\ ( 
    L~ pion1)); 
    
            then
    
            
    
    A128: x 
    in ( 
    L~ go) by 
    XBOOLE_0:def 4;
    
            x
    in ( 
    L~ pion1) by 
    A127,
    XBOOLE_0:def 4;
    
            hence thesis by
    A7,
    A12,
    A43,
    A48,
    A87,
    A103,
    A128,
    XBOOLE_0:def 4;
    
          end;
    
          then
    
          
    
    A129: (( 
    L~ go) 
    /\ ( 
    L~ pion1)) 
    =  
    {(pion1
    /. 1)} by 
    A124;
    
          then
    
          
    
    A130: (go 
    ^' pion1) is 
    s.n.c. by 
    A103,
    JORDAN1J: 54;
    
          ((
    rng go) 
    /\ ( 
    rng pion1)) 
    c=  
    {(pion1
    /. 1)} by 
    A63,
    A123,
    A129,
    XBOOLE_1: 27;
    
          then
    
          
    
    A131: (go 
    ^' pion1) is 
    one-to-one by 
    JORDAN1J: 55;
    
          
    
          
    
    A132: (pion 
    /. ( 
    len pion)) 
    = (pion 
    /. 3) by 
    FINSEQ_1: 45
    
          .= (co
    /. 1) by 
    A44,
    FINSEQ_4: 18;
    
          
    
          
    
    A133: 
    {(pion1
    /. ( 
    len pion1))} 
    c= (( 
    L~ co) 
    /\ ( 
    L~ pion1)) 
    
          proof
    
            let x be
    object;
    
            assume x
    in  
    {(pion1
    /. ( 
    len pion1))}; 
    
            then
    
            
    
    A134: x 
    = (pion1 
    /. ( 
    len pion1)) by 
    TARSKI:def 1;
    
            then
    
            
    
    A135: x 
    in ( 
    rng co) by 
    A89,
    A132,
    FINSEQ_6: 42;
    
            x
    in ( 
    rng pion1) by 
    A134,
    FINSEQ_6: 168;
    
            hence thesis by
    A64,
    A123,
    A135,
    XBOOLE_0:def 4;
    
          end;
    
          ((
    L~ co) 
    /\ ( 
    L~ pion1)) 
    c=  
    {(pion1
    /. ( 
    len pion1))} 
    
          proof
    
            let x be
    object;
    
            assume
    
            
    
    A136: x 
    in (( 
    L~ co) 
    /\ ( 
    L~ pion1)); 
    
            then
    
            
    
    A137: x 
    in ( 
    L~ co) by 
    XBOOLE_0:def 4;
    
            x
    in ( 
    L~ pion1) by 
    A136,
    XBOOLE_0:def 4;
    
            hence thesis by
    A8,
    A12,
    A44,
    A55,
    A87,
    A89,
    A132,
    A137,
    XBOOLE_0:def 4;
    
          end;
    
          then
    
          
    
    A138: (( 
    L~ co) 
    /\ ( 
    L~ pion1)) 
    =  
    {(pion1
    /. ( 
    len pion1))} by 
    A133;
    
          
    
          
    
    A139: (( 
    L~ (go 
    ^' pion1)) 
    /\ ( 
    L~ co)) 
    = ((( 
    L~ go) 
    \/ ( 
    L~ pion1)) 
    /\ ( 
    L~ co)) by 
    A103,
    TOPREAL8: 35
    
          .= (
    {(go
    /. 1)} 
    \/  
    {(co
    /. 1)}) by 
    A75,
    A89,
    A132,
    A138,
    XBOOLE_1: 23
    
          .= (
    {((go
    ^' pion1) 
    /. 1)} 
    \/  
    {(co
    /. 1)}) by 
    FINSEQ_6: 155
    
          .=
    {((go
    ^' pion1) 
    /. 1), (co 
    /. 1)} by 
    ENUMSET1: 1;
    
          (co
    /. ( 
    len co)) 
    = ((go 
    ^' pion1) 
    /. 1) by 
    A62,
    FINSEQ_6: 155;
    
          then
    
          reconsider godo as non
    constant
    standard  
    special_circular_sequence by 
    A101,
    A105,
    A106,
    A111,
    A113,
    A121,
    A122,
    A130,
    A131,
    A139,
    JORDAN8: 4,
    JORDAN8: 5,
    TOPREAL8: 11,
    TOPREAL8: 33,
    TOPREAL8: 34;
    
          
    
          
    
    A140: UA 
    is_an_arc_of (( 
    E-max C),( 
    W-min C)) by 
    JORDAN6:def 9;
    
          then
    
          
    
    A141: UA is 
    connected by 
    JORDAN6: 10;
    
          
    
          
    
    A142: ( 
    W-min C) 
    in UA by 
    A140,
    TOPREAL1: 1;
    
          
    
          
    
    A143: ( 
    E-max C) 
    in UA by 
    A140,
    TOPREAL1: 1;
    
          set ff = (
    Rotate (( 
    Cage (C,n)),Wmin)); 
    
          Wmin
    in ( 
    rng ( 
    Cage (C,n))) by 
    SPRECT_2: 43;
    
          then
    
          
    
    A144: (ff 
    /. 1) 
    = Wmin by 
    FINSEQ_6: 92;
    
          
    
          
    
    A145: ( 
    L~ ff) 
    = ( 
    L~ ( 
    Cage (C,n))) by 
    REVROT_1: 33;
    
          then ((
    W-max ( 
    L~ ff)) 
    .. ff) 
    > 1 by 
    A144,
    SPRECT_5: 22;
    
          then ((
    N-min ( 
    L~ ff)) 
    .. ff) 
    > 1 by 
    A144,
    A145,
    SPRECT_5: 23,
    XXREAL_0: 2;
    
          then ((
    N-max ( 
    L~ ff)) 
    .. ff) 
    > 1 by 
    A144,
    A145,
    SPRECT_5: 24,
    XXREAL_0: 2;
    
          then
    
          
    
    A146: (Emax 
    .. ff) 
    > 1 by 
    A144,
    A145,
    SPRECT_5: 25,
    XXREAL_0: 2;
    
          
    
    A147: 
    
          now
    
            assume
    
            
    
    A148: (Gij 
    .. US) 
    <= 1; 
    
            (Gij
    .. US) 
    >= 1 by 
    A36,
    FINSEQ_4: 21;
    
            then (Gij
    .. US) 
    = 1 by 
    A148,
    XXREAL_0: 1;
    
            then Gij
    = (US 
    /. 1) by 
    A36,
    FINSEQ_5: 38;
    
            hence contradiction by
    A22,
    A26,
    JORDAN1F: 5;
    
          end;
    
          
    
          
    
    A149: ( 
    Cage (C,n)) 
    is_sequence_on G by 
    JORDAN9:def 1;
    
          then
    
          
    
    A150: ff 
    is_sequence_on G by 
    REVROT_1: 34;
    
          
    
          
    
    A151: (( 
    right_cell (godo,1,G)) 
    \ ( 
    L~ godo)) 
    c= ( 
    RightComp godo) by 
    A101,
    A106,
    JORDAN9: 27;
    
          
    
          
    
    A152: ( 
    L~ godo) 
    = (( 
    L~ (go 
    ^' pion1)) 
    \/ ( 
    L~ co)) by 
    A105,
    TOPREAL8: 35
    
          .= (((
    L~ go) 
    \/ ( 
    L~ pion1)) 
    \/ ( 
    L~ co)) by 
    A103,
    TOPREAL8: 35;
    
          
    
          
    
    A153: ( 
    L~ ( 
    Cage (C,n))) 
    = (( 
    L~ US) 
    \/ ( 
    L~ LS)) by 
    JORDAN1E: 13;
    
          then
    
          
    
    A154: ( 
    L~ US) 
    c= ( 
    L~ ( 
    Cage (C,n))) by 
    XBOOLE_1: 7;
    
          
    
          
    
    A155: ( 
    L~ LS) 
    c= ( 
    L~ ( 
    Cage (C,n))) by 
    A153,
    XBOOLE_1: 7;
    
          
    
          
    
    A156: ( 
    L~ go) 
    c= ( 
    L~ ( 
    Cage (C,n))) by 
    A48,
    A154;
    
          
    
          
    
    A157: ( 
    L~ co) 
    c= ( 
    L~ ( 
    Cage (C,n))) by 
    A55,
    A155;
    
          
    
          
    
    A158: ( 
    W-min C) 
    in C by 
    SPRECT_1: 13;
    
          
    
    A159: 
    
          now
    
            assume (
    W-min C) 
    in ( 
    L~ godo); 
    
            then
    
            
    
    A160: ( 
    W-min C) 
    in (( 
    L~ go) 
    \/ ( 
    L~ pion1)) or ( 
    W-min C) 
    in ( 
    L~ co) by 
    A152,
    XBOOLE_0:def 3;
    
            per cases by
    A160,
    XBOOLE_0:def 3;
    
              suppose (
    W-min C) 
    in ( 
    L~ go); 
    
              then C
    meets ( 
    L~ ( 
    Cage (C,n))) by 
    A156,
    A158,
    XBOOLE_0: 3;
    
              hence contradiction by
    JORDAN10: 5;
    
            end;
    
              suppose (
    W-min C) 
    in ( 
    L~ pion1); 
    
              hence contradiction by
    A9,
    A12,
    A87,
    A142,
    XBOOLE_0: 3;
    
            end;
    
              suppose (
    W-min C) 
    in ( 
    L~ co); 
    
              then C
    meets ( 
    L~ ( 
    Cage (C,n))) by 
    A157,
    A158,
    XBOOLE_0: 3;
    
              hence contradiction by
    JORDAN10: 5;
    
            end;
    
          end;
    
          (
    right_cell (( 
    Rotate (( 
    Cage (C,n)),Wmin)),1)) 
    = ( 
    right_cell (ff,1,( 
    GoB ff))) by 
    A97,
    JORDAN1H: 23
    
          .= (
    right_cell (ff,1,( 
    GoB ( 
    Cage (C,n))))) by 
    REVROT_1: 28
    
          .= (
    right_cell (ff,1,G)) by 
    JORDAN1H: 44
    
          .= (
    right_cell ((ff 
    -: Emax),1,G)) by 
    A146,
    A150,
    JORDAN1J: 53
    
          .= (
    right_cell (US,1,G)) by 
    JORDAN1E:def 1
    
          .= (
    right_cell (( 
    R_Cut (US,Gij)),1,G)) by 
    A36,
    A102,
    A147,
    JORDAN1J: 52
    
          .= (
    right_cell ((go 
    ^' pion1),1,G)) by 
    A41,
    A104,
    JORDAN1J: 51
    
          .= (
    right_cell (godo,1,G)) by 
    A99,
    A106,
    JORDAN1J: 51;
    
          then (
    W-min C) 
    in ( 
    right_cell (godo,1,G)) by 
    JORDAN1I: 6;
    
          then
    
          
    
    A161: ( 
    W-min C) 
    in (( 
    right_cell (godo,1,G)) 
    \ ( 
    L~ godo)) by 
    A159,
    XBOOLE_0:def 5;
    
          
    
          
    
    A162: (godo 
    /. 1) 
    = ((go 
    ^' pion1) 
    /. 1) by 
    FINSEQ_6: 155
    
          .= Wmin by
    A61,
    FINSEQ_6: 155;
    
          
    
          
    
    A163: ( 
    len US) 
    >= 2 by 
    A21,
    XXREAL_0: 2;
    
          
    
          
    
    A164: (godo 
    /. 2) 
    = ((go 
    ^' pion1) 
    /. 2) by 
    A98,
    FINSEQ_6: 159
    
          .= (US
    /. 2) by 
    A35,
    A78,
    FINSEQ_6: 159
    
          .= ((US
    ^' LS) 
    /. 2) by 
    A163,
    FINSEQ_6: 159
    
          .= ((
    Rotate (( 
    Cage (C,n)),Wmin)) 
    /. 2) by 
    JORDAN1E: 11;
    
          
    
          
    
    A165: (( 
    L~ go) 
    \/ ( 
    L~ co)) is 
    compact by 
    COMPTS_1: 10;
    
          Wmin
    in (( 
    L~ go) 
    \/ ( 
    L~ co)) by 
    A63,
    A79,
    XBOOLE_0:def 3;
    
          then
    
          
    
    A166: ( 
    W-min (( 
    L~ go) 
    \/ ( 
    L~ co))) 
    = Wmin by 
    A156,
    A157,
    A165,
    JORDAN1J: 21,
    XBOOLE_1: 8;
    
          
    
          
    
    A167: (( 
    W-min (( 
    L~ go) 
    \/ ( 
    L~ co))) 
    `1 ) 
    = ( 
    W-bound (( 
    L~ go) 
    \/ ( 
    L~ co))) by 
    EUCLID: 52;
    
          
    
          
    
    A168: (Wmin 
    `1 ) 
    = Wbo by 
    EUCLID: 52;
    
          (Gik
    `1 ) 
    >= Wbo by 
    A13,
    A155,
    PSCOMP_1: 24;
    
          then (Gik
    `1 ) 
    > Wbo by 
    A77,
    XXREAL_0: 1;
    
          then (
    W-min ((( 
    L~ go) 
    \/ ( 
    L~ co)) 
    \/ ( 
    L~ pion1))) 
    = ( 
    W-min (( 
    L~ go) 
    \/ ( 
    L~ co))) by 
    A95,
    A165,
    A166,
    A167,
    A168,
    JORDAN1J: 33;
    
          then
    
          
    
    A169: ( 
    W-min ( 
    L~ godo)) 
    = Wmin by 
    A152,
    A166,
    XBOOLE_1: 4;
    
          
    
          
    
    A170: ( 
    rng godo) 
    c= ( 
    L~ godo) by 
    A98,
    A100,
    SPPOL_2: 18,
    XXREAL_0: 2;
    
          2
    in ( 
    dom godo) by 
    A101,
    FINSEQ_3: 25;
    
          then
    
          
    
    A171: (godo 
    /. 2) 
    in ( 
    rng godo) by 
    PARTFUN2: 2;
    
          (godo
    /. 2) 
    in ( 
    W-most ( 
    L~ ( 
    Cage (C,n)))) by 
    A164,
    JORDAN1I: 25;
    
          
    
          then ((godo
    /. 2) 
    `1 ) 
    = (( 
    W-min ( 
    L~ godo)) 
    `1 ) by 
    A169,
    PSCOMP_1: 31
    
          .= (
    W-bound ( 
    L~ godo)) by 
    EUCLID: 52;
    
          then (godo
    /. 2) 
    in ( 
    W-most ( 
    L~ godo)) by 
    A170,
    A171,
    SPRECT_2: 12;
    
          then ((
    Rotate (godo,( 
    W-min ( 
    L~ godo)))) 
    /. 2) 
    in ( 
    W-most ( 
    L~ godo)) by 
    A162,
    A169,
    FINSEQ_6: 89;
    
          then
    
          reconsider godo as
    clockwise_oriented non 
    constant
    standard  
    special_circular_sequence by 
    JORDAN1I: 25;
    
          (
    len US) 
    in ( 
    dom US) by 
    FINSEQ_5: 6;
    
          
    
          then
    
          
    
    A172: (US 
    . ( 
    len US)) 
    = (US 
    /. ( 
    len US)) by 
    PARTFUN1:def 6
    
          .= Emax by
    JORDAN1F: 7;
    
          
    
          
    
    A173: ( 
    east_halfline ( 
    E-max C)) 
    misses ( 
    L~ go) 
    
          proof
    
            assume (
    east_halfline ( 
    E-max C)) 
    meets ( 
    L~ go); 
    
            then
    
            consider p be
    object such that 
    
            
    
    A174: p 
    in ( 
    east_halfline ( 
    E-max C)) and 
    
            
    
    A175: p 
    in ( 
    L~ go) by 
    XBOOLE_0: 3;
    
            reconsider p as
    Point of ( 
    TOP-REAL 2) by 
    A174;
    
            p
    in ( 
    L~ US) by 
    A48,
    A175;
    
            then p
    in (( 
    east_halfline ( 
    E-max C)) 
    /\ ( 
    L~ ( 
    Cage (C,n)))) by 
    A154,
    A174,
    XBOOLE_0:def 4;
    
            then
    
            
    
    A176: (p 
    `1 ) 
    = Ebo by 
    JORDAN1A: 83,
    PSCOMP_1: 50;
    
            then
    
            
    
    A177: p 
    = Emax by 
    A48,
    A175,
    JORDAN1J: 46;
    
            then Emax
    = Gij by 
    A14,
    A172,
    A175,
    JORDAN1J: 43;
    
            then (Gij
    `1 ) 
    = ((G 
    * (( 
    len G),k)) 
    `1 ) by 
    A6,
    A16,
    A20,
    A176,
    A177,
    JORDAN1A: 71;
    
            hence contradiction by
    A3,
    A17,
    A32,
    JORDAN1G: 7;
    
          end;
    
          now
    
            assume (
    east_halfline ( 
    E-max C)) 
    meets ( 
    L~ godo); 
    
            then
    
            
    
    A178: ( 
    east_halfline ( 
    E-max C)) 
    meets (( 
    L~ go) 
    \/ ( 
    L~ pion1)) or ( 
    east_halfline ( 
    E-max C)) 
    meets ( 
    L~ co) by 
    A152,
    XBOOLE_1: 70;
    
            per cases by
    A178,
    XBOOLE_1: 70;
    
              suppose (
    east_halfline ( 
    E-max C)) 
    meets ( 
    L~ go); 
    
              hence contradiction by
    A173;
    
            end;
    
              suppose (
    east_halfline ( 
    E-max C)) 
    meets ( 
    L~ pion1); 
    
              then
    
              consider p be
    object such that 
    
              
    
    A179: p 
    in ( 
    east_halfline ( 
    E-max C)) and 
    
              
    
    A180: p 
    in ( 
    L~ pion1) by 
    XBOOLE_0: 3;
    
              reconsider p as
    Point of ( 
    TOP-REAL 2) by 
    A179;
    
              
    
    A181: 
    
              now
    
                per cases by
    A12,
    A87,
    A180,
    XBOOLE_0:def 3;
    
                  suppose p
    in poz; 
    
                  hence (p
    `1 ) 
    <= (Gij 
    `1 ) by 
    A91,
    A92,
    TOPREAL1: 3;
    
                end;
    
                  suppose p
    in pio; 
    
                  hence (p
    `1 ) 
    <= (Gij 
    `1 ) by 
    A91,
    GOBOARD7: 5;
    
                end;
    
              end;
    
              (i1
    + 1) 
    <= ( 
    len G) by 
    A3,
    NAT_1: 13;
    
              then i1
    <= (( 
    len G) 
    - 1) by 
    XREAL_1: 19;
    
              then
    
              
    
    A182: i1 
    <= (( 
    len G) 
    -' 1) by 
    XREAL_0:def 2;
    
              ((
    len G) 
    -' 1) 
    <= ( 
    len G) by 
    NAT_D: 35;
    
              then (Gij
    `1 ) 
    <= ((G 
    * ((( 
    len G) 
    -' 1),1)) 
    `1 ) by 
    A4,
    A10,
    A15,
    A20,
    A24,
    A182,
    JORDAN1A: 18;
    
              then (p
    `1 ) 
    <= ((G 
    * ((( 
    len G) 
    -' 1),1)) 
    `1 ) by 
    A181,
    XXREAL_0: 2;
    
              then (p
    `1 ) 
    <= ( 
    E-bound C) by 
    A24,
    JORDAN8: 12;
    
              then
    
              
    
    A183: (p 
    `1 ) 
    <= (( 
    E-max C) 
    `1 ) by 
    EUCLID: 52;
    
              (p
    `1 ) 
    >= (( 
    E-max C) 
    `1 ) by 
    A179,
    TOPREAL1:def 11;
    
              then
    
              
    
    A184: (p 
    `1 ) 
    = (( 
    E-max C) 
    `1 ) by 
    A183,
    XXREAL_0: 1;
    
              (p
    `2 ) 
    = (( 
    E-max C) 
    `2 ) by 
    A179,
    TOPREAL1:def 11;
    
              then p
    = ( 
    E-max C) by 
    A184,
    TOPREAL3: 6;
    
              hence contradiction by
    A9,
    A12,
    A87,
    A143,
    A180,
    XBOOLE_0: 3;
    
            end;
    
              suppose (
    east_halfline ( 
    E-max C)) 
    meets ( 
    L~ co); 
    
              then
    
              consider p be
    object such that 
    
              
    
    A185: p 
    in ( 
    east_halfline ( 
    E-max C)) and 
    
              
    
    A186: p 
    in ( 
    L~ co) by 
    XBOOLE_0: 3;
    
              reconsider p as
    Point of ( 
    TOP-REAL 2) by 
    A185;
    
              p
    in ( 
    L~ LS) by 
    A55,
    A186;
    
              then p
    in (( 
    east_halfline ( 
    E-max C)) 
    /\ ( 
    L~ ( 
    Cage (C,n)))) by 
    A155,
    A185,
    XBOOLE_0:def 4;
    
              then
    
              
    
    A187: (p 
    `1 ) 
    = Ebo by 
    JORDAN1A: 83,
    PSCOMP_1: 50;
    
              
    
              
    
    A188: (( 
    E-max C) 
    `2 ) 
    = (p 
    `2 ) by 
    A185,
    TOPREAL1:def 11;
    
              set RC = (
    Rotate (( 
    Cage (C,n)),Emax)); 
    
              
    
              
    
    A189: ( 
    E-max C) 
    in ( 
    right_cell (RC,1)) by 
    JORDAN1I: 7;
    
              
    
              
    
    A190: (1 
    + 1) 
    <= ( 
    len LS) by 
    A27,
    XXREAL_0: 2;
    
              LS
    = (RC 
    -: Wmin) by 
    JORDAN1G: 18;
    
              then
    
              
    
    A191: ( 
    LSeg (LS,1)) 
    = ( 
    LSeg (RC,1)) by 
    A190,
    SPPOL_2: 9;
    
              
    
              
    
    A192: ( 
    L~ RC) 
    = ( 
    L~ ( 
    Cage (C,n))) by 
    REVROT_1: 33;
    
              
    
              
    
    A193: ( 
    len RC) 
    = ( 
    len ( 
    Cage (C,n))) by 
    FINSEQ_6: 179;
    
              
    
              
    
    A194: ( 
    GoB RC) 
    = ( 
    GoB ( 
    Cage (C,n))) by 
    REVROT_1: 28
    
              .= G by
    JORDAN1H: 44;
    
              
    
              
    
    A195: Emax 
    in ( 
    rng ( 
    Cage (C,n))) by 
    SPRECT_2: 46;
    
              
    
              
    
    A196: RC 
    is_sequence_on G by 
    A149,
    REVROT_1: 34;
    
              
    
              
    
    A197: (RC 
    /. 1) 
    = ( 
    E-max ( 
    L~ RC)) by 
    A192,
    A195,
    FINSEQ_6: 92;
    
              consider ii,jj be
    Nat such that 
    
              
    
    A198: 
    [ii, (jj
    + 1)] 
    in ( 
    Indices G) and 
    
              
    
    A199: 
    [ii, jj]
    in ( 
    Indices G) and 
    
              
    
    A200: (RC 
    /. 1) 
    = (G 
    * (ii,(jj 
    + 1))) and 
    
              
    
    A201: (RC 
    /. (1 
    + 1)) 
    = (G 
    * (ii,jj)) by 
    A96,
    A192,
    A193,
    A195,
    A196,
    FINSEQ_6: 92,
    JORDAN1I: 23;
    
              consider jj2 be
    Nat such that 
    
              
    
    A202: 1 
    <= jj2 and 
    
              
    
    A203: jj2 
    <= ( 
    width G) and 
    
              
    
    A204: Emax 
    = (G 
    * (( 
    len G),jj2)) by 
    JORDAN1D: 25;
    
              
    
              
    
    A205: ( 
    len G) 
    >= 4 by 
    JORDAN8: 10;
    
              then (
    len G) 
    >= 1 by 
    XXREAL_0: 2;
    
              then
    [(
    len G), jj2] 
    in ( 
    Indices G) by 
    A202,
    A203,
    MATRIX_0: 30;
    
              then
    
              
    
    A206: ii 
    = ( 
    len G) by 
    A192,
    A197,
    A198,
    A200,
    A204,
    GOBOARD1: 5;
    
              
    
              
    
    A207: 1 
    <= ii by 
    A198,
    MATRIX_0: 32;
    
              
    
              
    
    A208: ii 
    <= ( 
    len G) by 
    A198,
    MATRIX_0: 32;
    
              
    
              
    
    A209: 1 
    <= (jj 
    + 1) by 
    A198,
    MATRIX_0: 32;
    
              
    
              
    
    A210: (jj 
    + 1) 
    <= ( 
    width G) by 
    A198,
    MATRIX_0: 32;
    
              
    
              
    
    A211: 1 
    <= ii by 
    A199,
    MATRIX_0: 32;
    
              
    
              
    
    A212: ii 
    <= ( 
    len G) by 
    A199,
    MATRIX_0: 32;
    
              
    
              
    
    A213: 1 
    <= jj by 
    A199,
    MATRIX_0: 32;
    
              
    
              
    
    A214: jj 
    <= ( 
    width G) by 
    A199,
    MATRIX_0: 32;
    
              
    
              
    
    A215: (ii 
    + 1) 
    <> ii; 
    
              ((jj
    + 1) 
    + 1) 
    <> jj; 
    
              then
    
              
    
    A216: ( 
    right_cell (RC,1)) 
    = ( 
    cell (G,(ii 
    -' 1),jj)) by 
    A96,
    A193,
    A194,
    A198,
    A199,
    A200,
    A201,
    A215,
    GOBOARD5:def 6;
    
              
    
              
    
    A217: ((ii 
    -' 1) 
    + 1) 
    = ii by 
    A207,
    XREAL_1: 235;
    
              (ii
    - 1) 
    >= (4 
    - 1) by 
    A205,
    A206,
    XREAL_1: 9;
    
              then
    
              
    
    A218: (ii 
    - 1) 
    >= 1 by 
    XXREAL_0: 2;
    
              then
    
              
    
    A219: 1 
    <= (ii 
    -' 1) by 
    XREAL_0:def 2;
    
              
    
              
    
    A220: ((G 
    * ((ii 
    -' 1),jj)) 
    `2 ) 
    <= (p 
    `2 ) by 
    A188,
    A189,
    A208,
    A210,
    A213,
    A216,
    A217,
    A218,
    JORDAN9: 17;
    
              
    
              
    
    A221: (p 
    `2 ) 
    <= ((G 
    * ((ii 
    -' 1),(jj 
    + 1))) 
    `2 ) by 
    A188,
    A189,
    A208,
    A210,
    A213,
    A216,
    A217,
    A218,
    JORDAN9: 17;
    
              
    
              
    
    A222: (ii 
    -' 1) 
    < ( 
    len G) by 
    A208,
    A217,
    NAT_1: 13;
    
              
    
              then
    
              
    
    A223: ((G 
    * ((ii 
    -' 1),jj)) 
    `2 ) 
    = ((G 
    * (1,jj)) 
    `2 ) by 
    A213,
    A214,
    A219,
    GOBOARD5: 1
    
              .= ((G
    * (ii,jj)) 
    `2 ) by 
    A211,
    A212,
    A213,
    A214,
    GOBOARD5: 1;
    
              
    
              
    
    A224: ((G 
    * ((ii 
    -' 1),(jj 
    + 1))) 
    `2 ) 
    = ((G 
    * (1,(jj 
    + 1))) 
    `2 ) by 
    A209,
    A210,
    A219,
    A222,
    GOBOARD5: 1
    
              .= ((G
    * (ii,(jj 
    + 1))) 
    `2 ) by 
    A207,
    A208,
    A209,
    A210,
    GOBOARD5: 1;
    
              
    
              
    
    A225: ((G 
    * (( 
    len G),jj)) 
    `1 ) 
    = Ebo by 
    A20,
    A213,
    A214,
    JORDAN1A: 71;
    
              Ebo
    = ((G 
    * (( 
    len G),(jj 
    + 1))) 
    `1 ) by 
    A20,
    A209,
    A210,
    JORDAN1A: 71;
    
              then p
    in ( 
    LSeg ((RC 
    /. 1),(RC 
    /. (1 
    + 1)))) by 
    A187,
    A200,
    A201,
    A206,
    A220,
    A221,
    A223,
    A224,
    A225,
    GOBOARD7: 7;
    
              then
    
              
    
    A226: p 
    in ( 
    LSeg (LS,1)) by 
    A96,
    A191,
    A193,
    TOPREAL1:def 3;
    
              
    
              
    
    A227: p 
    in ( 
    LSeg (co,( 
    Index (p,co)))) by 
    A186,
    JORDAN3: 9;
    
              
    
              
    
    A228: co 
    = ( 
    mid (LS,(Gik 
    .. LS),( 
    len LS))) by 
    A39,
    JORDAN1J: 37;
    
              
    
              
    
    A229: 1 
    <= (Gik 
    .. LS) by 
    A39,
    FINSEQ_4: 21;
    
              
    
              
    
    A230: (Gik 
    .. LS) 
    <= ( 
    len LS) by 
    A39,
    FINSEQ_4: 21;
    
              (Gik
    .. LS) 
    <> ( 
    len LS) by 
    A31,
    A39,
    FINSEQ_4: 19;
    
              then
    
              
    
    A231: (Gik 
    .. LS) 
    < ( 
    len LS) by 
    A230,
    XXREAL_0: 1;
    
              
    
              
    
    A232: 1 
    <= ( 
    Index (p,co)) by 
    A186,
    JORDAN3: 8;
    
              
    
              
    
    A233: ( 
    Index (p,co)) 
    < ( 
    len co) by 
    A186,
    JORDAN3: 8;
    
              
    
              
    
    A234: (( 
    Index (Gik,LS)) 
    + 1) 
    = (Gik 
    .. LS) by 
    A34,
    A39,
    JORDAN1J: 56;
    
              consider t be
    Nat such that 
    
              
    
    A235: t 
    in ( 
    dom LS) and 
    
              
    
    A236: (LS 
    . t) 
    = Gik by 
    A39,
    FINSEQ_2: 10;
    
              
    
              
    
    A237: 1 
    <= t by 
    A235,
    FINSEQ_3: 25;
    
              
    
              
    
    A238: t 
    <= ( 
    len LS) by 
    A235,
    FINSEQ_3: 25;
    
              1
    < t by 
    A34,
    A236,
    A237,
    XXREAL_0: 1;
    
              then ((
    Index (Gik,LS)) 
    + 1) 
    = t by 
    A236,
    A238,
    JORDAN3: 12;
    
              then
    
              
    
    A239: ( 
    len ( 
    L_Cut (LS,Gik))) 
    = (( 
    len LS) 
    - ( 
    Index (Gik,LS))) by 
    A13,
    A236,
    JORDAN3: 26;
    
              set tt = (((
    Index (p,co)) 
    + (Gik 
    .. LS)) 
    -' 1); 
    
              
    
              
    
    A240: 1 
    <= ( 
    Index (Gik,LS)) by 
    A13,
    JORDAN3: 8;
    
              (
    0  
    + ( 
    Index (Gik,LS))) 
    < ( 
    len LS) by 
    A13,
    JORDAN3: 8;
    
              then
    
              
    
    A241: (( 
    len LS) 
    - ( 
    Index (Gik,LS))) 
    >  
    0 by 
    XREAL_1: 20;
    
              (
    Index (p,co)) 
    < (( 
    len LS) 
    -' ( 
    Index (Gik,LS))) by 
    A233,
    A239,
    XREAL_0:def 2;
    
              then ((
    Index (p,co)) 
    + 1) 
    <= (( 
    len LS) 
    -' ( 
    Index (Gik,LS))) by 
    NAT_1: 13;
    
              then (
    Index (p,co)) 
    <= ((( 
    len LS) 
    -' ( 
    Index (Gik,LS))) 
    - 1) by 
    XREAL_1: 19;
    
              then (
    Index (p,co)) 
    <= ((( 
    len LS) 
    - ( 
    Index (Gik,LS))) 
    - 1) by 
    A241,
    XREAL_0:def 2;
    
              then (
    Index (p,co)) 
    <= (( 
    len LS) 
    - (Gik 
    .. LS)) by 
    A234;
    
              then (
    Index (p,co)) 
    <= (( 
    len LS) 
    -' (Gik 
    .. LS)) by 
    XREAL_0:def 2;
    
              then (
    Index (p,co)) 
    < ((( 
    len LS) 
    -' (Gik 
    .. LS)) 
    + 1) by 
    NAT_1: 13;
    
              then
    
              
    
    A242: ( 
    LSeg (( 
    mid (LS,(Gik 
    .. LS),( 
    len LS))),( 
    Index (p,co)))) 
    = ( 
    LSeg (LS,((( 
    Index (p,co)) 
    + (Gik 
    .. LS)) 
    -' 1))) by 
    A229,
    A231,
    A232,
    JORDAN4: 19;
    
              
    
              
    
    A243: (1 
    + 1) 
    <= (Gik 
    .. LS) by 
    A234,
    A240,
    XREAL_1: 7;
    
              then ((
    Index (p,co)) 
    + (Gik 
    .. LS)) 
    >= ((1 
    + 1) 
    + 1) by 
    A232,
    XREAL_1: 7;
    
              then (((
    Index (p,co)) 
    + (Gik 
    .. LS)) 
    - 1) 
    >= (((1 
    + 1) 
    + 1) 
    - 1) by 
    XREAL_1: 9;
    
              then
    
              
    
    A244: tt 
    >= (1 
    + 1) by 
    XREAL_0:def 2;
    
              
    
              
    
    A245: 2 
    in ( 
    dom LS) by 
    A190,
    FINSEQ_3: 25;
    
              now
    
                per cases by
    A244,
    XXREAL_0: 1;
    
                  suppose tt
    > (1 
    + 1); 
    
                  then (
    LSeg (LS,1)) 
    misses ( 
    LSeg (LS,tt)) by 
    TOPREAL1:def 7;
    
                  hence contradiction by
    A226,
    A227,
    A228,
    A242,
    XBOOLE_0: 3;
    
                end;
    
                  suppose
    
                  
    
    A246: tt 
    = (1 
    + 1); 
    
                  then ((
    LSeg (LS,1)) 
    /\ ( 
    LSeg (LS,tt))) 
    =  
    {(LS
    /. 2)} by 
    A27,
    TOPREAL1:def 6;
    
                  then p
    in  
    {(LS
    /. 2)} by 
    A226,
    A227,
    A228,
    A242,
    XBOOLE_0:def 4;
    
                  then
    
                  
    
    A247: p 
    = (LS 
    /. 2) by 
    TARSKI:def 1;
    
                  then
    
                  
    
    A248: (p 
    .. LS) 
    = 2 by 
    A245,
    FINSEQ_5: 41;
    
                  (1
    + 1) 
    = ((( 
    Index (p,co)) 
    + (Gik 
    .. LS)) 
    - 1) by 
    A246,
    XREAL_0:def 2;
    
                  then ((1
    + 1) 
    + 1) 
    = (( 
    Index (p,co)) 
    + (Gik 
    .. LS)); 
    
                  then
    
                  
    
    A249: (Gik 
    .. LS) 
    = 2 by 
    A232,
    A243,
    JORDAN1E: 6;
    
                  p
    in ( 
    rng LS) by 
    A245,
    A247,
    PARTFUN2: 2;
    
                  then p
    = Gik by 
    A39,
    A248,
    A249,
    FINSEQ_5: 9;
    
                  then (Gik
    `1 ) 
    = Ebo by 
    A247,
    JORDAN1G: 32;
    
                  then (Gik
    `1 ) 
    = ((G 
    * (( 
    len G),j)) 
    `1 ) by 
    A4,
    A15,
    A20,
    JORDAN1A: 71;
    
                  hence contradiction by
    A2,
    A3,
    A18,
    A69,
    JORDAN1G: 7;
    
                end;
    
              end;
    
              hence contradiction;
    
            end;
    
          end;
    
          then (
    east_halfline ( 
    E-max C)) 
    c= (( 
    L~ godo) 
    ` ) by 
    SUBSET_1: 23;
    
          then
    
          consider W be
    Subset of ( 
    TOP-REAL 2) such that 
    
          
    
    A250: W 
    is_a_component_of (( 
    L~ godo) 
    ` ) and 
    
          
    
    A251: ( 
    east_halfline ( 
    E-max C)) 
    c= W by 
    GOBOARD9: 3;
    
           not W is
    bounded by 
    A251,
    JORDAN2C: 121,
    RLTOPSP1: 42;
    
          then W
    is_outside_component_of ( 
    L~ godo) by 
    A250,
    JORDAN2C:def 3;
    
          then W
    c= ( 
    UBD ( 
    L~ godo)) by 
    JORDAN2C: 23;
    
          then
    
          
    
    A252: ( 
    east_halfline ( 
    E-max C)) 
    c= ( 
    UBD ( 
    L~ godo)) by 
    A251;
    
          (
    E-max C) 
    in ( 
    east_halfline ( 
    E-max C)) by 
    TOPREAL1: 38;
    
          then (
    E-max C) 
    in ( 
    UBD ( 
    L~ godo)) by 
    A252;
    
          then (
    E-max C) 
    in ( 
    LeftComp godo) by 
    GOBRD14: 36;
    
          then UA
    meets ( 
    L~ godo) by 
    A141,
    A142,
    A143,
    A151,
    A161,
    JORDAN1J: 36;
    
          then
    
          
    
    A253: UA 
    meets (( 
    L~ go) 
    \/ ( 
    L~ pion1)) or UA 
    meets ( 
    L~ co) by 
    A152,
    XBOOLE_1: 70;
    
          
    
          
    
    A254: UA 
    c= C by 
    JORDAN6: 61;
    
          now
    
            per cases by
    A253,
    XBOOLE_1: 70;
    
              suppose UA
    meets ( 
    L~ go); 
    
              then UA
    meets ( 
    L~ ( 
    Cage (C,n))) by 
    A48,
    A154,
    XBOOLE_1: 1,
    XBOOLE_1: 63;
    
              hence contradiction by
    A254,
    JORDAN10: 5,
    XBOOLE_1: 63;
    
            end;
    
              suppose UA
    meets ( 
    L~ pion1); 
    
              hence contradiction by
    A9,
    A12,
    A87;
    
            end;
    
              suppose UA
    meets ( 
    L~ co); 
    
              then UA
    meets ( 
    L~ ( 
    Cage (C,n))) by 
    A55,
    A155,
    XBOOLE_1: 1,
    XBOOLE_1: 63;
    
              hence contradiction by
    A254,
    JORDAN10: 5,
    XBOOLE_1: 63;
    
            end;
    
          end;
    
          hence contradiction;
    
        end;
    
          suppose (Gik
    `1 ) 
    = (Gij 
    `1 ); 
    
          then
    
          
    
    A255: i1 
    = i2 by 
    A17,
    A18,
    JORDAN1G: 7;
    
          then poz
    =  
    {Gi1k} by
    RLTOPSP1: 70;
    
          then poz
    c= pio by 
    A83,
    ZFMISC_1: 31;
    
          then (pio
    \/ poz) 
    = pio by 
    XBOOLE_1: 12;
    
          hence contradiction by
    A1,
    A3,
    A4,
    A5,
    A6,
    A7,
    A8,
    A9,
    A255,
    Th13;
    
        end;
    
          suppose (Gik
    `2 ) 
    = (Gij 
    `2 ); 
    
          then
    
          
    
    A256: j 
    = k by 
    A17,
    A18,
    JORDAN1G: 6;
    
          then pio
    =  
    {Gi1k} by
    RLTOPSP1: 70;
    
          then pio
    c= poz by 
    A84,
    ZFMISC_1: 31;
    
          then (pio
    \/ poz) 
    = poz by 
    XBOOLE_1: 12;
    
          hence contradiction by
    A1,
    A2,
    A3,
    A4,
    A6,
    A7,
    A8,
    A9,
    A256,
    JORDAN15: 28;
    
        end;
    
      end;
    
      hence contradiction;
    
    end;
    
    theorem :: 
    
    JORDAN19:24
    
    
    
    
    
    Th24: for C be 
    Simple_closed_curve holds for i1,i2,j,k be 
    Nat holds 1 
    < i1 & i1 
    < ( 
    len ( 
    Gauge (C,(n 
    + 1)))) & 1 
    < i2 & i2 
    < ( 
    len ( 
    Gauge (C,(n 
    + 1)))) & 1 
    <= j & j 
    <= k & k 
    <= ( 
    width ( 
    Gauge (C,(n 
    + 1)))) & (( 
    Gauge (C,(n 
    + 1))) 
    * (i1,k)) 
    in ( 
    Lower_Arc ( 
    L~ ( 
    Cage (C,(n 
    + 1))))) & (( 
    Gauge (C,(n 
    + 1))) 
    * (i2,j)) 
    in ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,(n 
    + 1))))) implies (( 
    LSeg ((( 
    Gauge (C,(n 
    + 1))) 
    * (i2,j)),(( 
    Gauge (C,(n 
    + 1))) 
    * (i2,k)))) 
    \/ ( 
    LSeg ((( 
    Gauge (C,(n 
    + 1))) 
    * (i2,k)),(( 
    Gauge (C,(n 
    + 1))) 
    * (i1,k))))) 
    meets ( 
    Lower_Arc C) 
    
    proof
    
      let C be
    Simple_closed_curve;
    
      let i1,i2,j,k be
    Nat;
    
      set G = (
    Gauge (C,(n 
    + 1))); 
    
      assume that
    
      
    
    A1: 1 
    < i1 and 
    
      
    
    A2: i1 
    < ( 
    len G) and 
    
      
    
    A3: 1 
    < i2 and 
    
      
    
    A4: i2 
    < ( 
    len G) and 
    
      
    
    A5: 1 
    <= j and 
    
      
    
    A6: j 
    <= k and 
    
      
    
    A7: k 
    <= ( 
    width G) and 
    
      
    
    A8: (G 
    * (i1,k)) 
    in ( 
    Lower_Arc ( 
    L~ ( 
    Cage (C,(n 
    + 1))))) and 
    
      
    
    A9: (G 
    * (i2,j)) 
    in ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,(n 
    + 1))))); 
    
      
    
      
    
    A10: ( 
    Lower_Arc ( 
    L~ ( 
    Cage (C,(n 
    + 1))))) 
    = ( 
    L~ ( 
    Lower_Seq (C,(n 
    + 1)))) by 
    JORDAN1G: 56;
    
      
    
      
    
    A11: ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,(n 
    + 1))))) 
    = ( 
    L~ ( 
    Upper_Seq (C,(n 
    + 1)))) by 
    JORDAN1G: 55;
    
      
    
      
    
    A12: j 
    <= ( 
    width G) by 
    A6,
    A7,
    XXREAL_0: 2;
    
      then
    
      
    
    A13: 
    [i2, j]
    in ( 
    Indices G) by 
    A3,
    A4,
    A5,
    MATRIX_0: 30;
    
      
    
      
    
    A14: 1 
    <= k by 
    A5,
    A6,
    XXREAL_0: 2;
    
      then
    
      
    
    A15: 
    [i2, k]
    in ( 
    Indices G) by 
    A3,
    A4,
    A7,
    MATRIX_0: 30;
    
      ((G
    * (i2,j)) 
    `1 ) 
    = ((G 
    * (i2,1)) 
    `1 ) by 
    A3,
    A4,
    A5,
    A12,
    GOBOARD5: 2
    
      .= ((G
    * (i2,k)) 
    `1 ) by 
    A3,
    A4,
    A7,
    A14,
    GOBOARD5: 2;
    
      then
    
      
    
    A16: ( 
    LSeg ((G 
    * (i2,j)),(G 
    * (i2,k)))) is 
    vertical by 
    SPPOL_1: 16;
    
      ((G
    * (i2,k)) 
    `2 ) 
    = ((G 
    * (1,k)) 
    `2 ) by 
    A3,
    A4,
    A7,
    A14,
    GOBOARD5: 1
    
      .= ((G
    * (i1,k)) 
    `2 ) by 
    A1,
    A2,
    A7,
    A14,
    GOBOARD5: 1;
    
      then
    
      
    
    A17: ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i1,k)))) is 
    horizontal by 
    SPPOL_1: 15;
    
      
    
      
    
    A18: 
    [i2, k]
    in ( 
    Indices G) by 
    A3,
    A4,
    A7,
    A14,
    MATRIX_0: 30;
    
      
    
      
    
    A19: 
    [i1, k]
    in ( 
    Indices G) by 
    A1,
    A2,
    A7,
    A14,
    MATRIX_0: 30;
    
      now
    
        per cases ;
    
          suppose
    
          
    
    A20: ( 
    LSeg ((G 
    * (i2,j)),(G 
    * (i2,k)))) 
    meets ( 
    Lower_Arc ( 
    L~ ( 
    Cage (C,(n 
    + 1))))); 
    
          then
    
          consider m be
    Nat such that 
    
          
    
    A21: j 
    <= m and 
    
          
    
    A22: m 
    <= k and 
    
          
    
    A23: ((G 
    * (i2,m)) 
    `2 ) 
    = ( 
    lower_bound ( 
    proj2  
    .: (( 
    LSeg ((G 
    * (i2,j)),(G 
    * (i2,k)))) 
    /\ ( 
    L~ ( 
    Lower_Seq (C,(n 
    + 1))))))) by 
    A6,
    A10,
    A13,
    A15,
    JORDAN1F: 1,
    JORDAN1G: 5;
    
          
    
          
    
    A24: 1 
    <= m by 
    A5,
    A21,
    XXREAL_0: 2;
    
          
    
          
    
    A25: m 
    <= ( 
    width G) by 
    A7,
    A22,
    XXREAL_0: 2;
    
          set X = ((
    LSeg ((G 
    * (i2,j)),(G 
    * (i2,k)))) 
    /\ ( 
    L~ ( 
    Lower_Seq (C,(n 
    + 1))))); 
    
          
    
          
    
    A26: ((G 
    * (i2,m)) 
    `1 ) 
    = ((G 
    * (i2,1)) 
    `1 ) by 
    A3,
    A4,
    A24,
    A25,
    GOBOARD5: 2;
    
          then
    
          
    
    A27: 
    |[((G
    * (i2,1)) 
    `1 ), ( 
    lower_bound ( 
    proj2  
    .: X))]| 
    = (G 
    * (i2,m)) by 
    A23,
    EUCLID: 53;
    
          then
    
          
    
    A28: ((G 
    * (i2,j)) 
    `1 ) 
    = ( 
    |[((G
    * (i2,1)) 
    `1 ), ( 
    lower_bound ( 
    proj2  
    .: X))]| 
    `1 ) by 
    A3,
    A4,
    A5,
    A12,
    A26,
    GOBOARD5: 2;
    
          ex x be
    object st x 
    in ( 
    LSeg ((G 
    * (i2,j)),(G 
    * (i2,k)))) & x 
    in ( 
    L~ ( 
    Lower_Seq (C,(n 
    + 1)))) by 
    A10,
    A20,
    XBOOLE_0: 3;
    
          then
    
          reconsider X1 = X as non
    empty
    compact  
    Subset of ( 
    TOP-REAL 2) by 
    XBOOLE_0:def 4;
    
          consider pp be
    object such that 
    
          
    
    A29: pp 
    in ( 
    S-most X1) by 
    XBOOLE_0:def 1;
    
          reconsider pp as
    Point of ( 
    TOP-REAL 2) by 
    A29;
    
          
    
          
    
    A30: pp 
    in X by 
    A29,
    XBOOLE_0:def 4;
    
          then
    
          
    
    A31: pp 
    in ( 
    L~ ( 
    Lower_Seq (C,(n 
    + 1)))) by 
    XBOOLE_0:def 4;
    
          pp
    in ( 
    LSeg ((G 
    * (i2,j)),(G 
    * (i2,k)))) by 
    A30,
    XBOOLE_0:def 4;
    
          then
    
          
    
    A32: (pp 
    `1 ) 
    = ( 
    |[((G
    * (i2,1)) 
    `1 ), ( 
    lower_bound ( 
    proj2  
    .: X))]| 
    `1 ) by 
    A16,
    A28,
    SPPOL_1: 41;
    
          (
    |[((G
    * (i2,1)) 
    `1 ), ( 
    lower_bound ( 
    proj2  
    .: X))]| 
    `2 ) 
    = ( 
    S-bound X) by 
    A23,
    A27,
    SPRECT_1: 44
    
          .= ((
    S-min X) 
    `2 ) by 
    EUCLID: 52
    
          .= (pp
    `2 ) by 
    A29,
    PSCOMP_1: 55;
    
          then (G
    * (i2,m)) 
    in ( 
    Lower_Arc ( 
    L~ ( 
    Cage (C,(n 
    + 1))))) by 
    A10,
    A27,
    A31,
    A32,
    TOPREAL3: 6;
    
          then (
    LSeg ((G 
    * (i2,j)),(G 
    * (i2,m)))) 
    meets ( 
    Lower_Arc C) by 
    A3,
    A4,
    A5,
    A9,
    A21,
    A25,
    Th19;
    
          then (
    LSeg ((G 
    * (i2,j)),(G 
    * (i2,k)))) 
    meets ( 
    Lower_Arc C) by 
    A3,
    A4,
    A5,
    A7,
    A21,
    A22,
    JORDAN15: 5,
    XBOOLE_1: 63;
    
          hence thesis by
    XBOOLE_1: 70;
    
        end;
    
          suppose
    
          
    
    A33: ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i1,k)))) 
    meets ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,(n 
    + 1))))) & i2 
    <= i1; 
    
          then
    
          consider m be
    Nat such that 
    
          
    
    A34: i2 
    <= m and 
    
          
    
    A35: m 
    <= i1 and 
    
          
    
    A36: ((G 
    * (m,k)) 
    `1 ) 
    = ( 
    upper_bound ( 
    proj1  
    .: (( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i1,k)))) 
    /\ ( 
    L~ ( 
    Upper_Seq (C,(n 
    + 1))))))) by 
    A11,
    A18,
    A19,
    JORDAN1F: 4,
    JORDAN1G: 4;
    
          
    
          
    
    A37: 1 
    < m by 
    A3,
    A34,
    XXREAL_0: 2;
    
          
    
          
    
    A38: m 
    < ( 
    len G) by 
    A2,
    A35,
    XXREAL_0: 2;
    
          set X = ((
    LSeg ((G 
    * (i2,k)),(G 
    * (i1,k)))) 
    /\ ( 
    L~ ( 
    Upper_Seq (C,(n 
    + 1))))); 
    
          
    
          
    
    A39: ((G 
    * (m,k)) 
    `2 ) 
    = ((G 
    * (1,k)) 
    `2 ) by 
    A7,
    A14,
    A37,
    A38,
    GOBOARD5: 1;
    
          then
    
          
    
    A40: 
    |[(
    upper_bound ( 
    proj1  
    .: X)), ((G 
    * (1,k)) 
    `2 )]| 
    = (G 
    * (m,k)) by 
    A36,
    EUCLID: 53;
    
          then
    
          
    
    A41: ((G 
    * (i2,k)) 
    `2 ) 
    = ( 
    |[(
    upper_bound ( 
    proj1  
    .: X)), ((G 
    * (1,k)) 
    `2 )]| 
    `2 ) by 
    A3,
    A4,
    A7,
    A14,
    A39,
    GOBOARD5: 1;
    
          ex x be
    object st x 
    in ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i1,k)))) & x 
    in ( 
    L~ ( 
    Upper_Seq (C,(n 
    + 1)))) by 
    A11,
    A33,
    XBOOLE_0: 3;
    
          then
    
          reconsider X1 = X as non
    empty
    compact  
    Subset of ( 
    TOP-REAL 2) by 
    XBOOLE_0:def 4;
    
          consider pp be
    object such that 
    
          
    
    A42: pp 
    in ( 
    E-most X1) by 
    XBOOLE_0:def 1;
    
          reconsider pp as
    Point of ( 
    TOP-REAL 2) by 
    A42;
    
          
    
          
    
    A43: pp 
    in X by 
    A42,
    XBOOLE_0:def 4;
    
          then
    
          
    
    A44: pp 
    in ( 
    L~ ( 
    Upper_Seq (C,(n 
    + 1)))) by 
    XBOOLE_0:def 4;
    
          pp
    in ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i1,k)))) by 
    A43,
    XBOOLE_0:def 4;
    
          then
    
          
    
    A45: (pp 
    `2 ) 
    = ( 
    |[(
    upper_bound ( 
    proj1  
    .: X)), ((G 
    * (1,k)) 
    `2 )]| 
    `2 ) by 
    A17,
    A41,
    SPPOL_1: 40;
    
          (
    |[(
    upper_bound ( 
    proj1  
    .: X)), ((G 
    * (1,k)) 
    `2 )]| 
    `1 ) 
    = ( 
    E-bound X) by 
    A36,
    A40,
    SPRECT_1: 46
    
          .= ((
    E-min X) 
    `1 ) by 
    EUCLID: 52
    
          .= (pp
    `1 ) by 
    A42,
    PSCOMP_1: 47;
    
          then (G
    * (m,k)) 
    in ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,(n 
    + 1))))) by 
    A11,
    A40,
    A44,
    A45,
    TOPREAL3: 6;
    
          then (
    LSeg ((G 
    * (m,k)),(G 
    * (i1,k)))) 
    meets ( 
    Lower_Arc C) by 
    A2,
    A7,
    A8,
    A14,
    A35,
    A37,
    JORDAN15: 40;
    
          then (
    LSeg ((G 
    * (i2,k)),(G 
    * (i1,k)))) 
    meets ( 
    Lower_Arc C) by 
    A2,
    A3,
    A7,
    A14,
    A34,
    A35,
    JORDAN15: 6,
    XBOOLE_1: 63;
    
          hence thesis by
    XBOOLE_1: 70;
    
        end;
    
          suppose
    
          
    
    A46: ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i1,k)))) 
    meets ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,(n 
    + 1))))) & i1 
    < i2; 
    
          then
    
          consider m be
    Nat such that 
    
          
    
    A47: i1 
    <= m and 
    
          
    
    A48: m 
    <= i2 and 
    
          
    
    A49: ((G 
    * (m,k)) 
    `1 ) 
    = ( 
    lower_bound ( 
    proj1  
    .: (( 
    LSeg ((G 
    * (i1,k)),(G 
    * (i2,k)))) 
    /\ ( 
    L~ ( 
    Upper_Seq (C,(n 
    + 1))))))) by 
    A11,
    A18,
    A19,
    JORDAN1F: 3,
    JORDAN1G: 4;
    
          
    
          
    
    A50: 1 
    < m by 
    A1,
    A47,
    XXREAL_0: 2;
    
          
    
          
    
    A51: m 
    < ( 
    len G) by 
    A4,
    A48,
    XXREAL_0: 2;
    
          set X = ((
    LSeg ((G 
    * (i1,k)),(G 
    * (i2,k)))) 
    /\ ( 
    L~ ( 
    Upper_Seq (C,(n 
    + 1))))); 
    
          
    
          
    
    A52: ((G 
    * (m,k)) 
    `2 ) 
    = ((G 
    * (1,k)) 
    `2 ) by 
    A7,
    A14,
    A50,
    A51,
    GOBOARD5: 1;
    
          then
    
          
    
    A53: 
    |[(
    lower_bound ( 
    proj1  
    .: X)), ((G 
    * (1,k)) 
    `2 )]| 
    = (G 
    * (m,k)) by 
    A49,
    EUCLID: 53;
    
          then
    
          
    
    A54: ((G 
    * (i1,k)) 
    `2 ) 
    = ( 
    |[(
    lower_bound ( 
    proj1  
    .: X)), ((G 
    * (1,k)) 
    `2 )]| 
    `2 ) by 
    A1,
    A2,
    A7,
    A14,
    A52,
    GOBOARD5: 1;
    
          ex x be
    object st x 
    in ( 
    LSeg ((G 
    * (i1,k)),(G 
    * (i2,k)))) & x 
    in ( 
    L~ ( 
    Upper_Seq (C,(n 
    + 1)))) by 
    A11,
    A46,
    XBOOLE_0: 3;
    
          then
    
          reconsider X1 = X as non
    empty
    compact  
    Subset of ( 
    TOP-REAL 2) by 
    XBOOLE_0:def 4;
    
          consider pp be
    object such that 
    
          
    
    A55: pp 
    in ( 
    W-most X1) by 
    XBOOLE_0:def 1;
    
          reconsider pp as
    Point of ( 
    TOP-REAL 2) by 
    A55;
    
          
    
          
    
    A56: pp 
    in X by 
    A55,
    XBOOLE_0:def 4;
    
          then
    
          
    
    A57: pp 
    in ( 
    L~ ( 
    Upper_Seq (C,(n 
    + 1)))) by 
    XBOOLE_0:def 4;
    
          pp
    in ( 
    LSeg ((G 
    * (i1,k)),(G 
    * (i2,k)))) by 
    A56,
    XBOOLE_0:def 4;
    
          then
    
          
    
    A58: (pp 
    `2 ) 
    = ( 
    |[(
    lower_bound ( 
    proj1  
    .: X)), ((G 
    * (1,k)) 
    `2 )]| 
    `2 ) by 
    A17,
    A54,
    SPPOL_1: 40;
    
          (
    |[(
    lower_bound ( 
    proj1  
    .: X)), ((G 
    * (1,k)) 
    `2 )]| 
    `1 ) 
    = ( 
    W-bound X) by 
    A49,
    A53,
    SPRECT_1: 43
    
          .= ((
    W-min X) 
    `1 ) by 
    EUCLID: 52
    
          .= (pp
    `1 ) by 
    A55,
    PSCOMP_1: 31;
    
          then (G
    * (m,k)) 
    in ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,(n 
    + 1))))) by 
    A11,
    A53,
    A57,
    A58,
    TOPREAL3: 6;
    
          then (
    LSeg ((G 
    * (i1,k)),(G 
    * (m,k)))) 
    meets ( 
    Lower_Arc C) by 
    A1,
    A7,
    A8,
    A14,
    A47,
    A51,
    JORDAN15: 32;
    
          then (
    LSeg ((G 
    * (i1,k)),(G 
    * (i2,k)))) 
    meets ( 
    Lower_Arc C) by 
    A1,
    A4,
    A7,
    A14,
    A47,
    A48,
    JORDAN15: 6,
    XBOOLE_1: 63;
    
          hence thesis by
    XBOOLE_1: 70;
    
        end;
    
          suppose
    
          
    
    A59: ( 
    LSeg ((G 
    * (i2,j)),(G 
    * (i2,k)))) 
    misses ( 
    Lower_Arc ( 
    L~ ( 
    Cage (C,(n 
    + 1))))) & ( 
    LSeg ((( 
    Gauge (C,(n 
    + 1))) 
    * (i2,k)),(( 
    Gauge (C,(n 
    + 1))) 
    * (i1,k)))) 
    misses ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,(n 
    + 1))))); 
    
          consider j1 be
    Nat such that 
    
          
    
    A60: j 
    <= j1 and 
    
          
    
    A61: j1 
    <= k and 
    
          
    
    A62: (( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    /\ ( 
    L~ ( 
    Upper_Seq (C,(n 
    + 1))))) 
    =  
    {(G
    * (i2,j1))} by 
    A3,
    A4,
    A5,
    A6,
    A7,
    A9,
    A11,
    JORDAN15: 15;
    
          (G
    * (i2,j1)) 
    in (( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    /\ ( 
    L~ ( 
    Upper_Seq (C,(n 
    + 1))))) by 
    A62,
    TARSKI:def 1;
    
          then
    
          
    
    A63: (G 
    * (i2,j1)) 
    in ( 
    L~ ( 
    Upper_Seq (C,(n 
    + 1)))) by 
    XBOOLE_0:def 4;
    
          
    
          
    
    A64: 1 
    <= j1 by 
    A5,
    A60,
    XXREAL_0: 2;
    
          now
    
            per cases ;
    
              suppose i2
    <= i1; 
    
              then
    
              consider i3 be
    Nat such that 
    
              
    
    A65: i2 
    <= i3 and 
    
              
    
    A66: i3 
    <= i1 and 
    
              
    
    A67: (( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k)))) 
    /\ ( 
    L~ ( 
    Lower_Seq (C,(n 
    + 1))))) 
    =  
    {(G
    * (i3,k))} by 
    A2,
    A3,
    A7,
    A8,
    A10,
    A14,
    JORDAN15: 19;
    
              
    
              
    
    A68: i3 
    < ( 
    len G) by 
    A2,
    A66,
    XXREAL_0: 2;
    
              (G
    * (i3,k)) 
    in (( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k)))) 
    /\ ( 
    L~ ( 
    Lower_Seq (C,(n 
    + 1))))) by 
    A67,
    TARSKI:def 1;
    
              then
    
              
    
    A69: (G 
    * (i3,k)) 
    in ( 
    L~ ( 
    Lower_Seq (C,(n 
    + 1)))) by 
    XBOOLE_0:def 4;
    
              
    
              
    
    A70: ( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    c= ( 
    LSeg ((G 
    * (i2,j)),(G 
    * (i2,k)))) by 
    A3,
    A4,
    A5,
    A7,
    A60,
    A61,
    JORDAN15: 5;
    
              
    
              
    
    A71: ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k)))) 
    c= ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i1,k)))) by 
    A2,
    A3,
    A7,
    A14,
    A65,
    A66,
    JORDAN15: 6;
    
              then
    
              
    
    A72: (( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) 
    c= (( 
    LSeg ((G 
    * (i2,j)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i1,k))))) by 
    A70,
    XBOOLE_1: 13;
    
              
    
              
    
    A73: ((( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) 
    /\ ( 
    L~ ( 
    Lower_Seq (C,(n 
    + 1))))) 
    =  
    {(G
    * (i3,k))} 
    
              proof
    
                thus (((
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) 
    /\ ( 
    L~ ( 
    Lower_Seq (C,(n 
    + 1))))) 
    c=  
    {(G
    * (i3,k))} 
    
                proof
    
                  let x be
    object;
    
                  assume
    
                  
    
    A74: x 
    in ((( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) 
    /\ ( 
    L~ ( 
    Lower_Seq (C,(n 
    + 1))))); 
    
                  then x
    in (( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) by 
    XBOOLE_0:def 4;
    
                  then
    
                  
    
    A75: x 
    in ( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) or x 
    in ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k)))) by 
    XBOOLE_0:def 3;
    
                  x
    in ( 
    L~ ( 
    Lower_Seq (C,(n 
    + 1)))) by 
    A74,
    XBOOLE_0:def 4;
    
                  hence thesis by
    A10,
    A59,
    A67,
    A70,
    A75,
    XBOOLE_0:def 4;
    
                end;
    
                let x be
    object;
    
                assume x
    in  
    {(G
    * (i3,k))}; 
    
                then
    
                
    
    A76: x 
    = (G 
    * (i3,k)) by 
    TARSKI:def 1;
    
                (G
    * (i3,k)) 
    in ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k)))) by 
    RLTOPSP1: 68;
    
                then (G
    * (i3,k)) 
    in (( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) by 
    XBOOLE_0:def 3;
    
                hence thesis by
    A69,
    A76,
    XBOOLE_0:def 4;
    
              end;
    
              (((
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) 
    /\ ( 
    L~ ( 
    Upper_Seq (C,(n 
    + 1))))) 
    =  
    {(G
    * (i2,j1))} 
    
              proof
    
                thus (((
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) 
    /\ ( 
    L~ ( 
    Upper_Seq (C,(n 
    + 1))))) 
    c=  
    {(G
    * (i2,j1))} 
    
                proof
    
                  let x be
    object;
    
                  assume
    
                  
    
    A77: x 
    in ((( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) 
    /\ ( 
    L~ ( 
    Upper_Seq (C,(n 
    + 1))))); 
    
                  then x
    in (( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) by 
    XBOOLE_0:def 4;
    
                  then
    
                  
    
    A78: x 
    in ( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) or x 
    in ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k)))) by 
    XBOOLE_0:def 3;
    
                  x
    in ( 
    L~ ( 
    Upper_Seq (C,(n 
    + 1)))) by 
    A77,
    XBOOLE_0:def 4;
    
                  hence thesis by
    A11,
    A59,
    A62,
    A71,
    A78,
    XBOOLE_0:def 4;
    
                end;
    
                let x be
    object;
    
                assume x
    in  
    {(G
    * (i2,j1))}; 
    
                then
    
                
    
    A79: x 
    = (G 
    * (i2,j1)) by 
    TARSKI:def 1;
    
                (G
    * (i2,j1)) 
    in ( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) by 
    RLTOPSP1: 68;
    
                then (G
    * (i2,j1)) 
    in (( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) by 
    XBOOLE_0:def 3;
    
                hence thesis by
    A63,
    A79,
    XBOOLE_0:def 4;
    
              end;
    
              hence thesis by
    A3,
    A7,
    A61,
    A64,
    A65,
    A68,
    A72,
    A73,
    Th21,
    XBOOLE_1: 63;
    
            end;
    
              suppose i1
    < i2; 
    
              then
    
              consider i3 be
    Nat such that 
    
              
    
    A80: i1 
    <= i3 and 
    
              
    
    A81: i3 
    <= i2 and 
    
              
    
    A82: (( 
    LSeg ((G 
    * (i3,k)),(G 
    * (i2,k)))) 
    /\ ( 
    L~ ( 
    Lower_Seq (C,(n 
    + 1))))) 
    =  
    {(G
    * (i3,k))} by 
    A1,
    A4,
    A7,
    A8,
    A10,
    A14,
    JORDAN15: 12;
    
              
    
              
    
    A83: 1 
    < i3 by 
    A1,
    A80,
    XXREAL_0: 2;
    
              (G
    * (i3,k)) 
    in (( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k)))) 
    /\ ( 
    L~ ( 
    Lower_Seq (C,(n 
    + 1))))) by 
    A82,
    TARSKI:def 1;
    
              then
    
              
    
    A84: (G 
    * (i3,k)) 
    in ( 
    L~ ( 
    Lower_Seq (C,(n 
    + 1)))) by 
    XBOOLE_0:def 4;
    
              
    
              
    
    A85: ( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    c= ( 
    LSeg ((G 
    * (i2,j)),(G 
    * (i2,k)))) by 
    A3,
    A4,
    A5,
    A7,
    A60,
    A61,
    JORDAN15: 5;
    
              
    
              
    
    A86: ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k)))) 
    c= ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i1,k)))) by 
    A1,
    A4,
    A7,
    A14,
    A80,
    A81,
    JORDAN15: 6;
    
              then
    
              
    
    A87: (( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) 
    c= (( 
    LSeg ((G 
    * (i2,j)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i1,k))))) by 
    A85,
    XBOOLE_1: 13;
    
              
    
              
    
    A88: ((( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) 
    /\ ( 
    L~ ( 
    Lower_Seq (C,(n 
    + 1))))) 
    =  
    {(G
    * (i3,k))} 
    
              proof
    
                thus (((
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) 
    /\ ( 
    L~ ( 
    Lower_Seq (C,(n 
    + 1))))) 
    c=  
    {(G
    * (i3,k))} 
    
                proof
    
                  let x be
    object;
    
                  assume
    
                  
    
    A89: x 
    in ((( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) 
    /\ ( 
    L~ ( 
    Lower_Seq (C,(n 
    + 1))))); 
    
                  then x
    in (( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) by 
    XBOOLE_0:def 4;
    
                  then
    
                  
    
    A90: x 
    in ( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) or x 
    in ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k)))) by 
    XBOOLE_0:def 3;
    
                  x
    in ( 
    L~ ( 
    Lower_Seq (C,(n 
    + 1)))) by 
    A89,
    XBOOLE_0:def 4;
    
                  hence thesis by
    A10,
    A59,
    A82,
    A85,
    A90,
    XBOOLE_0:def 4;
    
                end;
    
                let x be
    object;
    
                assume x
    in  
    {(G
    * (i3,k))}; 
    
                then
    
                
    
    A91: x 
    = (G 
    * (i3,k)) by 
    TARSKI:def 1;
    
                (G
    * (i3,k)) 
    in ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k)))) by 
    RLTOPSP1: 68;
    
                then (G
    * (i3,k)) 
    in (( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) by 
    XBOOLE_0:def 3;
    
                hence thesis by
    A84,
    A91,
    XBOOLE_0:def 4;
    
              end;
    
              (((
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) 
    /\ ( 
    L~ ( 
    Upper_Seq (C,(n 
    + 1))))) 
    =  
    {(G
    * (i2,j1))} 
    
              proof
    
                thus (((
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) 
    /\ ( 
    L~ ( 
    Upper_Seq (C,(n 
    + 1))))) 
    c=  
    {(G
    * (i2,j1))} 
    
                proof
    
                  let x be
    object;
    
                  assume
    
                  
    
    A92: x 
    in ((( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) 
    /\ ( 
    L~ ( 
    Upper_Seq (C,(n 
    + 1))))); 
    
                  then x
    in (( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) by 
    XBOOLE_0:def 4;
    
                  then
    
                  
    
    A93: x 
    in ( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) or x 
    in ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k)))) by 
    XBOOLE_0:def 3;
    
                  x
    in ( 
    L~ ( 
    Upper_Seq (C,(n 
    + 1)))) by 
    A92,
    XBOOLE_0:def 4;
    
                  hence thesis by
    A11,
    A59,
    A62,
    A86,
    A93,
    XBOOLE_0:def 4;
    
                end;
    
                let x be
    object;
    
                assume x
    in  
    {(G
    * (i2,j1))}; 
    
                then
    
                
    
    A94: x 
    = (G 
    * (i2,j1)) by 
    TARSKI:def 1;
    
                (G
    * (i2,j1)) 
    in ( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) by 
    RLTOPSP1: 68;
    
                then (G
    * (i2,j1)) 
    in (( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) by 
    XBOOLE_0:def 3;
    
                hence thesis by
    A63,
    A94,
    XBOOLE_0:def 4;
    
              end;
    
              hence thesis by
    A4,
    A7,
    A61,
    A64,
    A81,
    A83,
    A87,
    A88,
    Th23,
    XBOOLE_1: 63;
    
            end;
    
          end;
    
          hence thesis;
    
        end;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    JORDAN19:25
    
    
    
    
    
    Th25: for C be 
    Simple_closed_curve holds for i1,i2,j,k be 
    Nat holds 1 
    < i1 & i1 
    < ( 
    len ( 
    Gauge (C,(n 
    + 1)))) & 1 
    < i2 & i2 
    < ( 
    len ( 
    Gauge (C,(n 
    + 1)))) & 1 
    <= j & j 
    <= k & k 
    <= ( 
    width ( 
    Gauge (C,(n 
    + 1)))) & (( 
    Gauge (C,(n 
    + 1))) 
    * (i1,k)) 
    in ( 
    Lower_Arc ( 
    L~ ( 
    Cage (C,(n 
    + 1))))) & (( 
    Gauge (C,(n 
    + 1))) 
    * (i2,j)) 
    in ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,(n 
    + 1))))) implies (( 
    LSeg ((( 
    Gauge (C,(n 
    + 1))) 
    * (i2,j)),(( 
    Gauge (C,(n 
    + 1))) 
    * (i2,k)))) 
    \/ ( 
    LSeg ((( 
    Gauge (C,(n 
    + 1))) 
    * (i2,k)),(( 
    Gauge (C,(n 
    + 1))) 
    * (i1,k))))) 
    meets ( 
    Upper_Arc C) 
    
    proof
    
      let C be
    Simple_closed_curve;
    
      let i1,i2,j,k be
    Nat;
    
      set G = (
    Gauge (C,(n 
    + 1))); 
    
      assume that
    
      
    
    A1: 1 
    < i1 and 
    
      
    
    A2: i1 
    < ( 
    len G) and 
    
      
    
    A3: 1 
    < i2 and 
    
      
    
    A4: i2 
    < ( 
    len G) and 
    
      
    
    A5: 1 
    <= j and 
    
      
    
    A6: j 
    <= k and 
    
      
    
    A7: k 
    <= ( 
    width G) and 
    
      
    
    A8: (G 
    * (i1,k)) 
    in ( 
    Lower_Arc ( 
    L~ ( 
    Cage (C,(n 
    + 1))))) and 
    
      
    
    A9: (G 
    * (i2,j)) 
    in ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,(n 
    + 1))))); 
    
      
    
      
    
    A10: ( 
    Lower_Arc ( 
    L~ ( 
    Cage (C,(n 
    + 1))))) 
    = ( 
    L~ ( 
    Lower_Seq (C,(n 
    + 1)))) by 
    JORDAN1G: 56;
    
      
    
      
    
    A11: ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,(n 
    + 1))))) 
    = ( 
    L~ ( 
    Upper_Seq (C,(n 
    + 1)))) by 
    JORDAN1G: 55;
    
      
    
      
    
    A12: j 
    <= ( 
    width G) by 
    A6,
    A7,
    XXREAL_0: 2;
    
      then
    
      
    
    A13: 
    [i2, j]
    in ( 
    Indices G) by 
    A3,
    A4,
    A5,
    MATRIX_0: 30;
    
      
    
      
    
    A14: 1 
    <= k by 
    A5,
    A6,
    XXREAL_0: 2;
    
      then
    
      
    
    A15: 
    [i2, k]
    in ( 
    Indices G) by 
    A3,
    A4,
    A7,
    MATRIX_0: 30;
    
      ((G
    * (i2,j)) 
    `1 ) 
    = ((G 
    * (i2,1)) 
    `1 ) by 
    A3,
    A4,
    A5,
    A12,
    GOBOARD5: 2
    
      .= ((G
    * (i2,k)) 
    `1 ) by 
    A3,
    A4,
    A7,
    A14,
    GOBOARD5: 2;
    
      then
    
      
    
    A16: ( 
    LSeg ((G 
    * (i2,j)),(G 
    * (i2,k)))) is 
    vertical by 
    SPPOL_1: 16;
    
      ((G
    * (i2,k)) 
    `2 ) 
    = ((G 
    * (1,k)) 
    `2 ) by 
    A3,
    A4,
    A7,
    A14,
    GOBOARD5: 1
    
      .= ((G
    * (i1,k)) 
    `2 ) by 
    A1,
    A2,
    A7,
    A14,
    GOBOARD5: 1;
    
      then
    
      
    
    A17: ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i1,k)))) is 
    horizontal by 
    SPPOL_1: 15;
    
      
    
      
    
    A18: 
    [i2, k]
    in ( 
    Indices G) by 
    A3,
    A4,
    A7,
    A14,
    MATRIX_0: 30;
    
      
    
      
    
    A19: 
    [i1, k]
    in ( 
    Indices G) by 
    A1,
    A2,
    A7,
    A14,
    MATRIX_0: 30;
    
      now
    
        per cases ;
    
          suppose
    
          
    
    A20: ( 
    LSeg ((G 
    * (i2,j)),(G 
    * (i2,k)))) 
    meets ( 
    Lower_Arc ( 
    L~ ( 
    Cage (C,(n 
    + 1))))); 
    
          then
    
          consider m be
    Nat such that 
    
          
    
    A21: j 
    <= m and 
    
          
    
    A22: m 
    <= k and 
    
          
    
    A23: ((G 
    * (i2,m)) 
    `2 ) 
    = ( 
    lower_bound ( 
    proj2  
    .: (( 
    LSeg ((G 
    * (i2,j)),(G 
    * (i2,k)))) 
    /\ ( 
    L~ ( 
    Lower_Seq (C,(n 
    + 1))))))) by 
    A6,
    A10,
    A13,
    A15,
    JORDAN1F: 1,
    JORDAN1G: 5;
    
          
    
          
    
    A24: 1 
    <= m by 
    A5,
    A21,
    XXREAL_0: 2;
    
          
    
          
    
    A25: m 
    <= ( 
    width G) by 
    A7,
    A22,
    XXREAL_0: 2;
    
          set X = ((
    LSeg ((G 
    * (i2,j)),(G 
    * (i2,k)))) 
    /\ ( 
    L~ ( 
    Lower_Seq (C,(n 
    + 1))))); 
    
          
    
          
    
    A26: ((G 
    * (i2,m)) 
    `1 ) 
    = ((G 
    * (i2,1)) 
    `1 ) by 
    A3,
    A4,
    A24,
    A25,
    GOBOARD5: 2;
    
          then
    
          
    
    A27: 
    |[((G
    * (i2,1)) 
    `1 ), ( 
    lower_bound ( 
    proj2  
    .: X))]| 
    = (G 
    * (i2,m)) by 
    A23,
    EUCLID: 53;
    
          then
    
          
    
    A28: ((G 
    * (i2,j)) 
    `1 ) 
    = ( 
    |[((G
    * (i2,1)) 
    `1 ), ( 
    lower_bound ( 
    proj2  
    .: X))]| 
    `1 ) by 
    A3,
    A4,
    A5,
    A12,
    A26,
    GOBOARD5: 2;
    
          ex x be
    object st x 
    in ( 
    LSeg ((G 
    * (i2,j)),(G 
    * (i2,k)))) & x 
    in ( 
    L~ ( 
    Lower_Seq (C,(n 
    + 1)))) by 
    A10,
    A20,
    XBOOLE_0: 3;
    
          then
    
          reconsider X1 = X as non
    empty
    compact  
    Subset of ( 
    TOP-REAL 2) by 
    XBOOLE_0:def 4;
    
          consider pp be
    object such that 
    
          
    
    A29: pp 
    in ( 
    S-most X1) by 
    XBOOLE_0:def 1;
    
          reconsider pp as
    Point of ( 
    TOP-REAL 2) by 
    A29;
    
          
    
          
    
    A30: pp 
    in X by 
    A29,
    XBOOLE_0:def 4;
    
          then
    
          
    
    A31: pp 
    in ( 
    L~ ( 
    Lower_Seq (C,(n 
    + 1)))) by 
    XBOOLE_0:def 4;
    
          pp
    in ( 
    LSeg ((G 
    * (i2,j)),(G 
    * (i2,k)))) by 
    A30,
    XBOOLE_0:def 4;
    
          then
    
          
    
    A32: (pp 
    `1 ) 
    = ( 
    |[((G
    * (i2,1)) 
    `1 ), ( 
    lower_bound ( 
    proj2  
    .: X))]| 
    `1 ) by 
    A16,
    A28,
    SPPOL_1: 41;
    
          (
    |[((G
    * (i2,1)) 
    `1 ), ( 
    lower_bound ( 
    proj2  
    .: X))]| 
    `2 ) 
    = ( 
    S-bound X) by 
    A23,
    A27,
    SPRECT_1: 44
    
          .= ((
    S-min X) 
    `2 ) by 
    EUCLID: 52
    
          .= (pp
    `2 ) by 
    A29,
    PSCOMP_1: 55;
    
          then (G
    * (i2,m)) 
    in ( 
    Lower_Arc ( 
    L~ ( 
    Cage (C,(n 
    + 1))))) by 
    A10,
    A27,
    A31,
    A32,
    TOPREAL3: 6;
    
          then (
    LSeg ((G 
    * (i2,j)),(G 
    * (i2,m)))) 
    meets ( 
    Upper_Arc C) by 
    A3,
    A4,
    A5,
    A9,
    A21,
    A25,
    Th18;
    
          then (
    LSeg ((G 
    * (i2,j)),(G 
    * (i2,k)))) 
    meets ( 
    Upper_Arc C) by 
    A3,
    A4,
    A5,
    A7,
    A21,
    A22,
    JORDAN15: 5,
    XBOOLE_1: 63;
    
          hence thesis by
    XBOOLE_1: 70;
    
        end;
    
          suppose
    
          
    
    A33: ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i1,k)))) 
    meets ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,(n 
    + 1))))) & i2 
    <= i1; 
    
          then
    
          consider m be
    Nat such that 
    
          
    
    A34: i2 
    <= m and 
    
          
    
    A35: m 
    <= i1 and 
    
          
    
    A36: ((G 
    * (m,k)) 
    `1 ) 
    = ( 
    upper_bound ( 
    proj1  
    .: (( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i1,k)))) 
    /\ ( 
    L~ ( 
    Upper_Seq (C,(n 
    + 1))))))) by 
    A11,
    A18,
    A19,
    JORDAN1F: 4,
    JORDAN1G: 4;
    
          
    
          
    
    A37: 1 
    < m by 
    A3,
    A34,
    XXREAL_0: 2;
    
          
    
          
    
    A38: m 
    < ( 
    len G) by 
    A2,
    A35,
    XXREAL_0: 2;
    
          set X = ((
    LSeg ((G 
    * (i2,k)),(G 
    * (i1,k)))) 
    /\ ( 
    L~ ( 
    Upper_Seq (C,(n 
    + 1))))); 
    
          
    
          
    
    A39: ((G 
    * (m,k)) 
    `2 ) 
    = ((G 
    * (1,k)) 
    `2 ) by 
    A7,
    A14,
    A37,
    A38,
    GOBOARD5: 1;
    
          then
    
          
    
    A40: 
    |[(
    upper_bound ( 
    proj1  
    .: X)), ((G 
    * (1,k)) 
    `2 )]| 
    = (G 
    * (m,k)) by 
    A36,
    EUCLID: 53;
    
          then
    
          
    
    A41: ((G 
    * (i2,k)) 
    `2 ) 
    = ( 
    |[(
    upper_bound ( 
    proj1  
    .: X)), ((G 
    * (1,k)) 
    `2 )]| 
    `2 ) by 
    A3,
    A4,
    A7,
    A14,
    A39,
    GOBOARD5: 1;
    
          ex x be
    object st x 
    in ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i1,k)))) & x 
    in ( 
    L~ ( 
    Upper_Seq (C,(n 
    + 1)))) by 
    A11,
    A33,
    XBOOLE_0: 3;
    
          then
    
          reconsider X1 = X as non
    empty
    compact  
    Subset of ( 
    TOP-REAL 2) by 
    XBOOLE_0:def 4;
    
          consider pp be
    object such that 
    
          
    
    A42: pp 
    in ( 
    E-most X1) by 
    XBOOLE_0:def 1;
    
          reconsider pp as
    Point of ( 
    TOP-REAL 2) by 
    A42;
    
          
    
          
    
    A43: pp 
    in X by 
    A42,
    XBOOLE_0:def 4;
    
          then
    
          
    
    A44: pp 
    in ( 
    L~ ( 
    Upper_Seq (C,(n 
    + 1)))) by 
    XBOOLE_0:def 4;
    
          pp
    in ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i1,k)))) by 
    A43,
    XBOOLE_0:def 4;
    
          then
    
          
    
    A45: (pp 
    `2 ) 
    = ( 
    |[(
    upper_bound ( 
    proj1  
    .: X)), ((G 
    * (1,k)) 
    `2 )]| 
    `2 ) by 
    A17,
    A41,
    SPPOL_1: 40;
    
          (
    |[(
    upper_bound ( 
    proj1  
    .: X)), ((G 
    * (1,k)) 
    `2 )]| 
    `1 ) 
    = ( 
    E-bound X) by 
    A36,
    A40,
    SPRECT_1: 46
    
          .= ((
    E-min X) 
    `1 ) by 
    EUCLID: 52
    
          .= (pp
    `1 ) by 
    A42,
    PSCOMP_1: 47;
    
          then (G
    * (m,k)) 
    in ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,(n 
    + 1))))) by 
    A11,
    A40,
    A44,
    A45,
    TOPREAL3: 6;
    
          then (
    LSeg ((G 
    * (m,k)),(G 
    * (i1,k)))) 
    meets ( 
    Upper_Arc C) by 
    A2,
    A7,
    A8,
    A14,
    A35,
    A37,
    JORDAN15: 41;
    
          then (
    LSeg ((G 
    * (i2,k)),(G 
    * (i1,k)))) 
    meets ( 
    Upper_Arc C) by 
    A2,
    A3,
    A7,
    A14,
    A34,
    A35,
    JORDAN15: 6,
    XBOOLE_1: 63;
    
          hence thesis by
    XBOOLE_1: 70;
    
        end;
    
          suppose
    
          
    
    A46: ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i1,k)))) 
    meets ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,(n 
    + 1))))) & i1 
    < i2; 
    
          then
    
          consider m be
    Nat such that 
    
          
    
    A47: i1 
    <= m and 
    
          
    
    A48: m 
    <= i2 and 
    
          
    
    A49: ((G 
    * (m,k)) 
    `1 ) 
    = ( 
    lower_bound ( 
    proj1  
    .: (( 
    LSeg ((G 
    * (i1,k)),(G 
    * (i2,k)))) 
    /\ ( 
    L~ ( 
    Upper_Seq (C,(n 
    + 1))))))) by 
    A11,
    A18,
    A19,
    JORDAN1F: 3,
    JORDAN1G: 4;
    
          
    
          
    
    A50: 1 
    < m by 
    A1,
    A47,
    XXREAL_0: 2;
    
          
    
          
    
    A51: m 
    < ( 
    len G) by 
    A4,
    A48,
    XXREAL_0: 2;
    
          set X = ((
    LSeg ((G 
    * (i1,k)),(G 
    * (i2,k)))) 
    /\ ( 
    L~ ( 
    Upper_Seq (C,(n 
    + 1))))); 
    
          
    
          
    
    A52: ((G 
    * (m,k)) 
    `2 ) 
    = ((G 
    * (1,k)) 
    `2 ) by 
    A7,
    A14,
    A50,
    A51,
    GOBOARD5: 1;
    
          then
    
          
    
    A53: 
    |[(
    lower_bound ( 
    proj1  
    .: X)), ((G 
    * (1,k)) 
    `2 )]| 
    = (G 
    * (m,k)) by 
    A49,
    EUCLID: 53;
    
          then
    
          
    
    A54: ((G 
    * (i1,k)) 
    `2 ) 
    = ( 
    |[(
    lower_bound ( 
    proj1  
    .: X)), ((G 
    * (1,k)) 
    `2 )]| 
    `2 ) by 
    A1,
    A2,
    A7,
    A14,
    A52,
    GOBOARD5: 1;
    
          ex x be
    object st x 
    in ( 
    LSeg ((G 
    * (i1,k)),(G 
    * (i2,k)))) & x 
    in ( 
    L~ ( 
    Upper_Seq (C,(n 
    + 1)))) by 
    A11,
    A46,
    XBOOLE_0: 3;
    
          then
    
          reconsider X1 = X as non
    empty
    compact  
    Subset of ( 
    TOP-REAL 2) by 
    XBOOLE_0:def 4;
    
          consider pp be
    object such that 
    
          
    
    A55: pp 
    in ( 
    W-most X1) by 
    XBOOLE_0:def 1;
    
          reconsider pp as
    Point of ( 
    TOP-REAL 2) by 
    A55;
    
          
    
          
    
    A56: pp 
    in X by 
    A55,
    XBOOLE_0:def 4;
    
          then
    
          
    
    A57: pp 
    in ( 
    L~ ( 
    Upper_Seq (C,(n 
    + 1)))) by 
    XBOOLE_0:def 4;
    
          pp
    in ( 
    LSeg ((G 
    * (i1,k)),(G 
    * (i2,k)))) by 
    A56,
    XBOOLE_0:def 4;
    
          then
    
          
    
    A58: (pp 
    `2 ) 
    = ( 
    |[(
    lower_bound ( 
    proj1  
    .: X)), ((G 
    * (1,k)) 
    `2 )]| 
    `2 ) by 
    A17,
    A54,
    SPPOL_1: 40;
    
          (
    |[(
    lower_bound ( 
    proj1  
    .: X)), ((G 
    * (1,k)) 
    `2 )]| 
    `1 ) 
    = ( 
    W-bound X) by 
    A49,
    A53,
    SPRECT_1: 43
    
          .= ((
    W-min X) 
    `1 ) by 
    EUCLID: 52
    
          .= (pp
    `1 ) by 
    A55,
    PSCOMP_1: 31;
    
          then (G
    * (m,k)) 
    in ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,(n 
    + 1))))) by 
    A11,
    A53,
    A57,
    A58,
    TOPREAL3: 6;
    
          then (
    LSeg ((G 
    * (i1,k)),(G 
    * (m,k)))) 
    meets ( 
    Upper_Arc C) by 
    A1,
    A7,
    A8,
    A14,
    A47,
    A51,
    JORDAN15: 33;
    
          then (
    LSeg ((G 
    * (i1,k)),(G 
    * (i2,k)))) 
    meets ( 
    Upper_Arc C) by 
    A1,
    A4,
    A7,
    A14,
    A47,
    A48,
    JORDAN15: 6,
    XBOOLE_1: 63;
    
          hence thesis by
    XBOOLE_1: 70;
    
        end;
    
          suppose
    
          
    
    A59: ( 
    LSeg ((G 
    * (i2,j)),(G 
    * (i2,k)))) 
    misses ( 
    Lower_Arc ( 
    L~ ( 
    Cage (C,(n 
    + 1))))) & ( 
    LSeg ((( 
    Gauge (C,(n 
    + 1))) 
    * (i2,k)),(( 
    Gauge (C,(n 
    + 1))) 
    * (i1,k)))) 
    misses ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,(n 
    + 1))))); 
    
          consider j1 be
    Nat such that 
    
          
    
    A60: j 
    <= j1 and 
    
          
    
    A61: j1 
    <= k and 
    
          
    
    A62: (( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    /\ ( 
    L~ ( 
    Upper_Seq (C,(n 
    + 1))))) 
    =  
    {(G
    * (i2,j1))} by 
    A3,
    A4,
    A5,
    A6,
    A7,
    A9,
    A11,
    JORDAN15: 15;
    
          (G
    * (i2,j1)) 
    in (( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    /\ ( 
    L~ ( 
    Upper_Seq (C,(n 
    + 1))))) by 
    A62,
    TARSKI:def 1;
    
          then
    
          
    
    A63: (G 
    * (i2,j1)) 
    in ( 
    L~ ( 
    Upper_Seq (C,(n 
    + 1)))) by 
    XBOOLE_0:def 4;
    
          
    
          
    
    A64: 1 
    <= j1 by 
    A5,
    A60,
    XXREAL_0: 2;
    
          now
    
            per cases ;
    
              suppose i2
    <= i1; 
    
              then
    
              consider i3 be
    Nat such that 
    
              
    
    A65: i2 
    <= i3 and 
    
              
    
    A66: i3 
    <= i1 and 
    
              
    
    A67: (( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k)))) 
    /\ ( 
    L~ ( 
    Lower_Seq (C,(n 
    + 1))))) 
    =  
    {(G
    * (i3,k))} by 
    A2,
    A3,
    A7,
    A8,
    A10,
    A14,
    JORDAN15: 19;
    
              
    
              
    
    A68: i3 
    < ( 
    len G) by 
    A2,
    A66,
    XXREAL_0: 2;
    
              (G
    * (i3,k)) 
    in (( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k)))) 
    /\ ( 
    L~ ( 
    Lower_Seq (C,(n 
    + 1))))) by 
    A67,
    TARSKI:def 1;
    
              then
    
              
    
    A69: (G 
    * (i3,k)) 
    in ( 
    L~ ( 
    Lower_Seq (C,(n 
    + 1)))) by 
    XBOOLE_0:def 4;
    
              
    
              
    
    A70: ( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    c= ( 
    LSeg ((G 
    * (i2,j)),(G 
    * (i2,k)))) by 
    A3,
    A4,
    A5,
    A7,
    A60,
    A61,
    JORDAN15: 5;
    
              
    
              
    
    A71: ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k)))) 
    c= ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i1,k)))) by 
    A2,
    A3,
    A7,
    A14,
    A65,
    A66,
    JORDAN15: 6;
    
              then
    
              
    
    A72: (( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) 
    c= (( 
    LSeg ((G 
    * (i2,j)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i1,k))))) by 
    A70,
    XBOOLE_1: 13;
    
              
    
              
    
    A73: ((( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) 
    /\ ( 
    L~ ( 
    Lower_Seq (C,(n 
    + 1))))) 
    =  
    {(G
    * (i3,k))} 
    
              proof
    
                thus (((
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) 
    /\ ( 
    L~ ( 
    Lower_Seq (C,(n 
    + 1))))) 
    c=  
    {(G
    * (i3,k))} 
    
                proof
    
                  let x be
    object;
    
                  assume
    
                  
    
    A74: x 
    in ((( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) 
    /\ ( 
    L~ ( 
    Lower_Seq (C,(n 
    + 1))))); 
    
                  then x
    in (( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) by 
    XBOOLE_0:def 4;
    
                  then
    
                  
    
    A75: x 
    in ( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) or x 
    in ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k)))) by 
    XBOOLE_0:def 3;
    
                  x
    in ( 
    L~ ( 
    Lower_Seq (C,(n 
    + 1)))) by 
    A74,
    XBOOLE_0:def 4;
    
                  hence thesis by
    A10,
    A59,
    A67,
    A70,
    A75,
    XBOOLE_0:def 4;
    
                end;
    
                let x be
    object;
    
                assume x
    in  
    {(G
    * (i3,k))}; 
    
                then
    
                
    
    A76: x 
    = (G 
    * (i3,k)) by 
    TARSKI:def 1;
    
                (G
    * (i3,k)) 
    in ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k)))) by 
    RLTOPSP1: 68;
    
                then (G
    * (i3,k)) 
    in (( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) by 
    XBOOLE_0:def 3;
    
                hence thesis by
    A69,
    A76,
    XBOOLE_0:def 4;
    
              end;
    
              (((
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) 
    /\ ( 
    L~ ( 
    Upper_Seq (C,(n 
    + 1))))) 
    =  
    {(G
    * (i2,j1))} 
    
              proof
    
                thus (((
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) 
    /\ ( 
    L~ ( 
    Upper_Seq (C,(n 
    + 1))))) 
    c=  
    {(G
    * (i2,j1))} 
    
                proof
    
                  let x be
    object;
    
                  assume
    
                  
    
    A77: x 
    in ((( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) 
    /\ ( 
    L~ ( 
    Upper_Seq (C,(n 
    + 1))))); 
    
                  then x
    in (( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) by 
    XBOOLE_0:def 4;
    
                  then
    
                  
    
    A78: x 
    in ( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) or x 
    in ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k)))) by 
    XBOOLE_0:def 3;
    
                  x
    in ( 
    L~ ( 
    Upper_Seq (C,(n 
    + 1)))) by 
    A77,
    XBOOLE_0:def 4;
    
                  hence thesis by
    A11,
    A59,
    A62,
    A71,
    A78,
    XBOOLE_0:def 4;
    
                end;
    
                let x be
    object;
    
                assume x
    in  
    {(G
    * (i2,j1))}; 
    
                then
    
                
    
    A79: x 
    = (G 
    * (i2,j1)) by 
    TARSKI:def 1;
    
                (G
    * (i2,j1)) 
    in ( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) by 
    RLTOPSP1: 68;
    
                then (G
    * (i2,j1)) 
    in (( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) by 
    XBOOLE_0:def 3;
    
                hence thesis by
    A63,
    A79,
    XBOOLE_0:def 4;
    
              end;
    
              hence thesis by
    A3,
    A7,
    A61,
    A64,
    A65,
    A68,
    A72,
    A73,
    Th20,
    XBOOLE_1: 63;
    
            end;
    
              suppose i1
    < i2; 
    
              then
    
              consider i3 be
    Nat such that 
    
              
    
    A80: i1 
    <= i3 and 
    
              
    
    A81: i3 
    <= i2 and 
    
              
    
    A82: (( 
    LSeg ((G 
    * (i3,k)),(G 
    * (i2,k)))) 
    /\ ( 
    L~ ( 
    Lower_Seq (C,(n 
    + 1))))) 
    =  
    {(G
    * (i3,k))} by 
    A1,
    A4,
    A7,
    A8,
    A10,
    A14,
    JORDAN15: 12;
    
              
    
              
    
    A83: 1 
    < i3 by 
    A1,
    A80,
    XXREAL_0: 2;
    
              (G
    * (i3,k)) 
    in (( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k)))) 
    /\ ( 
    L~ ( 
    Lower_Seq (C,(n 
    + 1))))) by 
    A82,
    TARSKI:def 1;
    
              then
    
              
    
    A84: (G 
    * (i3,k)) 
    in ( 
    L~ ( 
    Lower_Seq (C,(n 
    + 1)))) by 
    XBOOLE_0:def 4;
    
              
    
              
    
    A85: ( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    c= ( 
    LSeg ((G 
    * (i2,j)),(G 
    * (i2,k)))) by 
    A3,
    A4,
    A5,
    A7,
    A60,
    A61,
    JORDAN15: 5;
    
              
    
              
    
    A86: ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k)))) 
    c= ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i1,k)))) by 
    A1,
    A4,
    A7,
    A14,
    A80,
    A81,
    JORDAN15: 6;
    
              then
    
              
    
    A87: (( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) 
    c= (( 
    LSeg ((G 
    * (i2,j)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i1,k))))) by 
    A85,
    XBOOLE_1: 13;
    
              
    
              
    
    A88: ((( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) 
    /\ ( 
    L~ ( 
    Lower_Seq (C,(n 
    + 1))))) 
    =  
    {(G
    * (i3,k))} 
    
              proof
    
                thus (((
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) 
    /\ ( 
    L~ ( 
    Lower_Seq (C,(n 
    + 1))))) 
    c=  
    {(G
    * (i3,k))} 
    
                proof
    
                  let x be
    object;
    
                  assume
    
                  
    
    A89: x 
    in ((( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) 
    /\ ( 
    L~ ( 
    Lower_Seq (C,(n 
    + 1))))); 
    
                  then x
    in (( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) by 
    XBOOLE_0:def 4;
    
                  then
    
                  
    
    A90: x 
    in ( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) or x 
    in ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k)))) by 
    XBOOLE_0:def 3;
    
                  x
    in ( 
    L~ ( 
    Lower_Seq (C,(n 
    + 1)))) by 
    A89,
    XBOOLE_0:def 4;
    
                  hence thesis by
    A10,
    A59,
    A82,
    A85,
    A90,
    XBOOLE_0:def 4;
    
                end;
    
                let x be
    object;
    
                assume x
    in  
    {(G
    * (i3,k))}; 
    
                then
    
                
    
    A91: x 
    = (G 
    * (i3,k)) by 
    TARSKI:def 1;
    
                (G
    * (i3,k)) 
    in ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k)))) by 
    RLTOPSP1: 68;
    
                then (G
    * (i3,k)) 
    in (( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) by 
    XBOOLE_0:def 3;
    
                hence thesis by
    A84,
    A91,
    XBOOLE_0:def 4;
    
              end;
    
              (((
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) 
    /\ ( 
    L~ ( 
    Upper_Seq (C,(n 
    + 1))))) 
    =  
    {(G
    * (i2,j1))} 
    
              proof
    
                thus (((
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) 
    /\ ( 
    L~ ( 
    Upper_Seq (C,(n 
    + 1))))) 
    c=  
    {(G
    * (i2,j1))} 
    
                proof
    
                  let x be
    object;
    
                  assume
    
                  
    
    A92: x 
    in ((( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) 
    /\ ( 
    L~ ( 
    Upper_Seq (C,(n 
    + 1))))); 
    
                  then x
    in (( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) by 
    XBOOLE_0:def 4;
    
                  then
    
                  
    
    A93: x 
    in ( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) or x 
    in ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k)))) by 
    XBOOLE_0:def 3;
    
                  x
    in ( 
    L~ ( 
    Upper_Seq (C,(n 
    + 1)))) by 
    A92,
    XBOOLE_0:def 4;
    
                  hence thesis by
    A11,
    A59,
    A62,
    A86,
    A93,
    XBOOLE_0:def 4;
    
                end;
    
                let x be
    object;
    
                assume x
    in  
    {(G
    * (i2,j1))}; 
    
                then
    
                
    
    A94: x 
    = (G 
    * (i2,j1)) by 
    TARSKI:def 1;
    
                (G
    * (i2,j1)) 
    in ( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) by 
    RLTOPSP1: 68;
    
                then (G
    * (i2,j1)) 
    in (( 
    LSeg ((G 
    * (i2,j1)),(G 
    * (i2,k)))) 
    \/ ( 
    LSeg ((G 
    * (i2,k)),(G 
    * (i3,k))))) by 
    XBOOLE_0:def 3;
    
                hence thesis by
    A63,
    A94,
    XBOOLE_0:def 4;
    
              end;
    
              hence thesis by
    A4,
    A7,
    A61,
    A64,
    A81,
    A83,
    A87,
    A88,
    Th22,
    XBOOLE_1: 63;
    
            end;
    
          end;
    
          hence thesis;
    
        end;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    JORDAN19:26
    
    
    
    
    
    Th26: for C be 
    Simple_closed_curve holds for p be 
    Point of ( 
    TOP-REAL 2) st ( 
    W-bound C) 
    < (p 
    `1 ) & (p 
    `1 ) 
    < ( 
    E-bound C) holds not (p 
    in ( 
    North_Arc C) & p 
    in ( 
    South_Arc C)) 
    
    proof
    
      let C be
    Simple_closed_curve;
    
      let p be
    Point of ( 
    TOP-REAL 2); 
    
      reconsider p9 = p as
    Point of ( 
    Euclid 2) by 
    EUCLID: 22;
    
      assume that
    
      
    
    A1: ( 
    W-bound C) 
    < (p 
    `1 ) and 
    
      
    
    A2: (p 
    `1 ) 
    < ( 
    E-bound C) and 
    
      
    
    A3: p 
    in ( 
    North_Arc C) and 
    
      
    
    A4: p 
    in ( 
    South_Arc C); 
    
      set s = (
    min (((p 
    `1 ) 
    - ( 
    W-bound C)),(( 
    E-bound C) 
    - (p 
    `1 )))); 
    
      
    
      
    
    A5: ( 
    W-bound C) 
    = (( 
    W-bound C) 
    +  
    0 ); 
    
      
    
      
    
    A6: (p 
    `1 ) 
    = ((p 
    `1 ) 
    +  
    0 ); 
    
      
    
      
    
    A7: ((p 
    `1 ) 
    - ( 
    W-bound C)) 
    >  
    0 by 
    A1,
    A5,
    XREAL_1: 20;
    
      ((
    E-bound C) 
    - (p 
    `1 )) 
    >  
    0 by 
    A2,
    A6,
    XREAL_1: 20;
    
      then
    
      
    
    A8: s 
    >  
    0 by 
    A7,
    XXREAL_0: 15;
    
      now
    
        let r be
    Real;
    
        reconsider rr = r as
    Real;
    
        assume that
    
        
    
    A9: 
    0  
    < r and 
    
        
    
    A10: r 
    < s; 
    
        
    
        
    
    A11: (r 
    / 8) 
    >  
    0 by 
    A9,
    XREAL_1: 139;
    
        reconsider G = (
    Ball (p9,(r 
    / 8))) as 
    a_neighborhood of p by 
    A9,
    GOBOARD6: 2,
    XREAL_1: 139;
    
        consider k1 be
    Nat such that 
    
        
    
    A12: for m be 
    Nat st m 
    > k1 holds (( 
    Upper_Appr C) 
    . m) 
    meets G by 
    A3,
    KURATO_2:def 1;
    
        consider k2 be
    Nat such that 
    
        
    
    A13: for m be 
    Nat st m 
    > k2 holds (( 
    Lower_Appr C) 
    . m) 
    meets G by 
    A4,
    KURATO_2:def 1;
    
        reconsider k = (
    max (k1,k2)) as 
    Nat by 
    TARSKI: 1;
    
        
    
        
    
    A14: k 
    >= k1 by 
    XXREAL_0: 25;
    
        set z9 = (
    max ((( 
    N-bound C) 
    - ( 
    S-bound C)),(( 
    E-bound C) 
    - ( 
    W-bound C)))); 
    
        set z = (
    max (z9,(r 
    / 8))); 
    
        (z
    / (r 
    / 8)) 
    >= 1 by 
    A11,
    XREAL_1: 181,
    XXREAL_0: 25;
    
        then (
    log (2,(z 
    / (r 
    / 8)))) 
    >= ( 
    log (2,1)) by 
    PRE_FF: 10;
    
        then (
    log (2,(z 
    / (r 
    / 8)))) 
    >=  
    0 by 
    POWER: 51;
    
        then
    
        reconsider m9 =
    [\(
    log (2,(z 
    / (r 
    / 8))))/] as 
    Nat by 
    INT_1: 53;
    
        
    
        
    
    A15: (2 
    to_power (m9 
    + 1)) 
    >  
    0 by 
    POWER: 34;
    
        set N = (2
    to_power (m9 
    + 1)); 
    
        (
    log (2,(z 
    / (r 
    / 8)))) 
    < ((m9 
    + 1) 
    * 1) by 
    INT_1: 29;
    
        then (
    log (2,(z 
    / (r 
    / 8)))) 
    < ((m9 
    + 1) 
    * ( 
    log (2,2))) by 
    POWER: 52;
    
        then (
    log (2,(z 
    / (r 
    / 8)))) 
    < ( 
    log (2,(2 
    to_power (m9 
    + 1)))) by 
    POWER: 55;
    
        then (z
    / (r 
    / 8)) 
    < N by 
    A15,
    PRE_FF: 10;
    
        then ((z
    / (r 
    / 8)) 
    * (r 
    / 8)) 
    < (N 
    * (r 
    / 8)) by 
    A11,
    XREAL_1: 68;
    
        then z
    < (N 
    * (r 
    / 8)) by 
    A11,
    XCMPLX_1: 87;
    
        then (z
    / N) 
    < ((N 
    * (r 
    / 8)) 
    / N) by 
    A15,
    XREAL_1: 74;
    
        then (z
    / N) 
    < (((r 
    / 8) 
    / N) 
    * N); 
    
        then
    
        
    
    A16: (z 
    / N) 
    < (r 
    / 8) by 
    A15,
    XCMPLX_1: 87;
    
        (z
    / N) 
    >= (z9 
    / N) by 
    A15,
    XREAL_1: 72,
    XXREAL_0: 25;
    
        then
    
        
    
    A17: (z9 
    / N) 
    < (r 
    / 8) by 
    A16,
    XXREAL_0: 2;
    
        reconsider W = (
    max (k,m9)) as 
    Nat by 
    TARSKI: 1;
    
        set m = (W
    + 1); 
    
        
    
        
    
    A18: ( 
    len ( 
    Gauge (C,m))) 
    = ( 
    width ( 
    Gauge (C,m))) by 
    JORDAN8:def 1;
    
        (
    max (k,m9)) 
    >= k by 
    XXREAL_0: 25;
    
        then (
    max (k,m9)) 
    >= k1 by 
    A14,
    XXREAL_0: 2;
    
        then m
    > k1 by 
    NAT_1: 13;
    
        then ((
    Upper_Appr C) 
    . m) 
    meets G by 
    A12;
    
        then (
    Upper_Arc ( 
    L~ ( 
    Cage (C,m)))) 
    meets G by 
    Def1;
    
        then
    
        consider p1 be
    object such that 
    
        
    
    A19: p1 
    in ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,m)))) and 
    
        
    
    A20: p1 
    in G by 
    XBOOLE_0: 3;
    
        reconsider p1 as
    Point of ( 
    TOP-REAL 2) by 
    A19;
    
        reconsider p19 = p1 as
    Point of ( 
    Euclid 2) by 
    EUCLID: 22;
    
        set f = (
    Upper_Seq (C,m)); 
    
        
    
        
    
    A21: ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,m)))) 
    = ( 
    L~ ( 
    Upper_Seq (C,m))) by 
    JORDAN1G: 55;
    
        then
    
        consider i1 be
    Nat such that 
    
        
    
    A22: 1 
    <= i1 and 
    
        
    
    A23: (i1 
    + 1) 
    <= ( 
    len f) and 
    
        
    
    A24: p1 
    in ( 
    LSeg ((f 
    /. i1),(f 
    /. (i1 
    + 1)))) by 
    A19,
    SPPOL_2: 14;
    
        reconsider c1 = (f
    /. i1) as 
    Point of ( 
    Euclid 2) by 
    EUCLID: 22;
    
        reconsider c2 = (f
    /. (i1 
    + 1)) as 
    Point of ( 
    Euclid 2) by 
    EUCLID: 22;
    
        
    
        
    
    A25: f 
    is_sequence_on ( 
    Gauge (C,m)) by 
    JORDAN1G: 4;
    
        i1
    < ( 
    len f) by 
    A23,
    NAT_1: 13;
    
        then i1
    in ( 
    Seg ( 
    len f)) by 
    A22,
    FINSEQ_1: 1;
    
        then
    
        
    
    A26: i1 
    in ( 
    dom f) by 
    FINSEQ_1:def 3;
    
        then
    
        consider ii1,jj1 be
    Nat such that 
    
        
    
    A27: 
    [ii1, jj1]
    in ( 
    Indices ( 
    Gauge (C,m))) and 
    
        
    
    A28: (f 
    /. i1) 
    = (( 
    Gauge (C,m)) 
    * (ii1,jj1)) by 
    A25,
    GOBOARD1:def 9;
    
        
    
        
    
    A29: ( 
    N-bound C) 
    > (( 
    S-bound C) 
    +  
    0 ) by 
    TOPREAL5: 16;
    
        
    
        
    
    A30: ( 
    E-bound C) 
    > (( 
    W-bound C) 
    +  
    0 ) by 
    TOPREAL5: 17;
    
        
    
        
    
    A31: (( 
    N-bound C) 
    - ( 
    S-bound C)) 
    >  
    0 by 
    A29,
    XREAL_1: 20;
    
        
    
        
    
    A32: (( 
    E-bound C) 
    - ( 
    W-bound C)) 
    >  
    0 by 
    A30,
    XREAL_1: 20;
    
        
    
        
    
    A33: (2 
    |^ (m9 
    + 1)) 
    >  
    0 by 
    A15,
    POWER: 41;
    
        (
    max (k,m9)) 
    >= m9 by 
    XXREAL_0: 25;
    
        then m
    > m9 by 
    NAT_1: 13;
    
        then m
    >= (m9 
    + 1) by 
    NAT_1: 13;
    
        then
    
        
    
    A34: (2 
    |^ m) 
    >= (2 
    |^ (m9 
    + 1)) by 
    PREPOWER: 93;
    
        then
    
        
    
    A35: ((( 
    N-bound C) 
    - ( 
    S-bound C)) 
    / (2 
    |^ m)) 
    <= ((( 
    N-bound C) 
    - ( 
    S-bound C)) 
    / (2 
    |^ (m9 
    + 1))) by 
    A31,
    A33,
    XREAL_1: 118;
    
        
    
        
    
    A36: ((( 
    E-bound C) 
    - ( 
    W-bound C)) 
    / (2 
    |^ m)) 
    <= ((( 
    E-bound C) 
    - ( 
    W-bound C)) 
    / (2 
    |^ (m9 
    + 1))) by 
    A32,
    A33,
    A34,
    XREAL_1: 118;
    
        
    
        
    
    A37: ((( 
    N-bound C) 
    - ( 
    S-bound C)) 
    / N) 
    <= (z9 
    / N) by 
    A15,
    XREAL_1: 72,
    XXREAL_0: 25;
    
        
    
        
    
    A38: ((( 
    E-bound C) 
    - ( 
    W-bound C)) 
    / N) 
    <= (z9 
    / N) by 
    A15,
    XREAL_1: 72,
    XXREAL_0: 25;
    
        
    
        
    
    A39: ((( 
    N-bound C) 
    - ( 
    S-bound C)) 
    / (2 
    |^ (m9 
    + 1))) 
    <= (z9 
    / N) by 
    A37,
    POWER: 41;
    
        
    
        
    
    A40: ((( 
    E-bound C) 
    - ( 
    W-bound C)) 
    / (2 
    |^ (m9 
    + 1))) 
    <= (z9 
    / N) by 
    A38,
    POWER: 41;
    
        
    
        
    
    A41: ((( 
    N-bound C) 
    - ( 
    S-bound C)) 
    / (2 
    |^ m)) 
    <= (z9 
    / N) by 
    A35,
    A39,
    XXREAL_0: 2;
    
        
    
        
    
    A42: ((( 
    E-bound C) 
    - ( 
    W-bound C)) 
    / (2 
    |^ m)) 
    <= (z9 
    / N) by 
    A36,
    A40,
    XXREAL_0: 2;
    
        then (
    dist ((f 
    /. i1),(f 
    /. (i1 
    + 1)))) 
    <= (z9 
    / N) by 
    A22,
    A23,
    A25,
    A41,
    Th6;
    
        then (
    dist ((f 
    /. i1),(f 
    /. (i1 
    + 1)))) 
    < (r 
    / 8) by 
    A17,
    XXREAL_0: 2;
    
        then (
    dist (c1,c2)) 
    < (r 
    / 8) by 
    TOPREAL6:def 1;
    
        then
    
        
    
    A43: 
    |.((f
    /. i1) 
    - (f 
    /. (i1 
    + 1))).| 
    < (r 
    / 8) by 
    SPPOL_1: 39;
    
        
    |.(p1
    - (f 
    /. i1)).| 
    <=  
    |.((f
    /. i1) 
    - (f 
    /. (i1 
    + 1))).| by 
    A24,
    JGRAPH_1: 36;
    
        then
    
        
    
    A44: 
    |.(p1
    - (f 
    /. i1)).| 
    < (r 
    / 8) by 
    A43,
    XXREAL_0: 2;
    
        (
    dist (p19,p9)) 
    < (r 
    / 8) by 
    A20,
    METRIC_1: 11;
    
        then
    |.(p
    - p1).| 
    < (r 
    / 8) by 
    SPPOL_1: 39;
    
        then
    
        
    
    A45: ( 
    |.(p
    - p1).| 
    +  
    |.(p1
    - (f 
    /. i1)).|) 
    < ((r 
    / (2 
    * 4)) 
    + (r 
    / (2 
    * 4))) by 
    A44,
    XREAL_1: 8;
    
        
    |.(p
    - (f 
    /. i1)).| 
    <= ( 
    |.(p
    - p1).| 
    +  
    |.(p1
    - (f 
    /. i1)).|) by 
    TOPRNS_1: 34;
    
        then
    
        
    
    A46: 
    |.(p
    - (f 
    /. i1)).| 
    < (r 
    / 4) by 
    A45,
    XXREAL_0: 2;
    
        then
    
        
    
    A47: ( 
    dist (p9,c1)) 
    < (r 
    / 4) by 
    SPPOL_1: 39;
    
        then
    
        
    
    A48: (f 
    /. i1) 
    in ( 
    Ball (p9,(r 
    / 4))) by 
    METRIC_1: 11;
    
        
    
        
    
    A49: (f 
    /. i1) 
    in ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,m)))) by 
    A21,
    A26,
    SPPOL_2: 44;
    
        
    
        
    
    A50: k 
    >= k2 by 
    XXREAL_0: 25;
    
        (
    max (k,m9)) 
    >= k by 
    XXREAL_0: 25;
    
        then (
    max (k,m9)) 
    >= k2 by 
    A50,
    XXREAL_0: 2;
    
        then m
    > k2 by 
    NAT_1: 13;
    
        then ((
    Lower_Appr C) 
    . m) 
    meets G by 
    A13;
    
        then (
    Lower_Arc ( 
    L~ ( 
    Cage (C,m)))) 
    meets G by 
    Def2;
    
        then
    
        consider p2 be
    object such that 
    
        
    
    A51: p2 
    in ( 
    Lower_Arc ( 
    L~ ( 
    Cage (C,m)))) and 
    
        
    
    A52: p2 
    in G by 
    XBOOLE_0: 3;
    
        reconsider p2 as
    Point of ( 
    TOP-REAL 2) by 
    A51;
    
        reconsider p29 = p2 as
    Point of ( 
    Euclid 2) by 
    EUCLID: 22;
    
        set g = (
    Lower_Seq (C,m)); 
    
        
    
        
    
    A53: ( 
    Lower_Arc ( 
    L~ ( 
    Cage (C,m)))) 
    = ( 
    L~ ( 
    Lower_Seq (C,m))) by 
    JORDAN1G: 56;
    
        then
    
        consider i2 be
    Nat such that 
    
        
    
    A54: 1 
    <= i2 and 
    
        
    
    A55: (i2 
    + 1) 
    <= ( 
    len g) and 
    
        
    
    A56: p2 
    in ( 
    LSeg ((g 
    /. i2),(g 
    /. (i2 
    + 1)))) by 
    A51,
    SPPOL_2: 14;
    
        reconsider d1 = (g
    /. i2) as 
    Point of ( 
    Euclid 2) by 
    EUCLID: 22;
    
        reconsider d2 = (g
    /. (i2 
    + 1)) as 
    Point of ( 
    Euclid 2) by 
    EUCLID: 22;
    
        
    
        
    
    A57: g 
    is_sequence_on ( 
    Gauge (C,m)) by 
    JORDAN1G: 5;
    
        i2
    < ( 
    len g) by 
    A55,
    NAT_1: 13;
    
        then i2
    in ( 
    Seg ( 
    len g)) by 
    A54,
    FINSEQ_1: 1;
    
        then
    
        
    
    A58: i2 
    in ( 
    dom g) by 
    FINSEQ_1:def 3;
    
        then
    
        consider ii2,jj2 be
    Nat such that 
    
        
    
    A59: 
    [ii2, jj2]
    in ( 
    Indices ( 
    Gauge (C,m))) and 
    
        
    
    A60: (g 
    /. i2) 
    = (( 
    Gauge (C,m)) 
    * (ii2,jj2)) by 
    A57,
    GOBOARD1:def 9;
    
        (
    dist ((g 
    /. i2),(g 
    /. (i2 
    + 1)))) 
    <= (z9 
    / N) by 
    A41,
    A42,
    A54,
    A55,
    A57,
    Th6;
    
        then (
    dist ((g 
    /. i2),(g 
    /. (i2 
    + 1)))) 
    < (r 
    / 8) by 
    A17,
    XXREAL_0: 2;
    
        then (
    dist (d1,d2)) 
    < (r 
    / 8) by 
    TOPREAL6:def 1;
    
        then
    
        
    
    A61: 
    |.((g
    /. i2) 
    - (g 
    /. (i2 
    + 1))).| 
    < (r 
    / 8) by 
    SPPOL_1: 39;
    
        
    |.(p2
    - (g 
    /. i2)).| 
    <=  
    |.((g
    /. i2) 
    - (g 
    /. (i2 
    + 1))).| by 
    A56,
    JGRAPH_1: 36;
    
        then
    
        
    
    A62: 
    |.(p2
    - (g 
    /. i2)).| 
    < (r 
    / 8) by 
    A61,
    XXREAL_0: 2;
    
        (
    dist (p29,p9)) 
    < (r 
    / 8) by 
    A52,
    METRIC_1: 11;
    
        then
    |.(p
    - p2).| 
    < (r 
    / 8) by 
    SPPOL_1: 39;
    
        then
    
        
    
    A63: ( 
    |.(p
    - p2).| 
    +  
    |.(p2
    - (g 
    /. i2)).|) 
    < ((r 
    / (2 
    * 4)) 
    + (r 
    / (2 
    * 4))) by 
    A62,
    XREAL_1: 8;
    
        
    |.(p
    - (g 
    /. i2)).| 
    <= ( 
    |.(p
    - p2).| 
    +  
    |.(p2
    - (g 
    /. i2)).|) by 
    TOPRNS_1: 34;
    
        then
    
        
    
    A64: 
    |.(p
    - (g 
    /. i2)).| 
    < (r 
    / 4) by 
    A63,
    XXREAL_0: 2;
    
        then
    
        
    
    A65: ( 
    dist (p9,d1)) 
    < (r 
    / 4) by 
    SPPOL_1: 39;
    
        then
    
        
    
    A66: (g 
    /. i2) 
    in ( 
    Ball (p9,(r 
    / 4))) by 
    METRIC_1: 11;
    
        
    
        
    
    A67: (g 
    /. i2) 
    in ( 
    Lower_Arc ( 
    L~ ( 
    Cage (C,m)))) by 
    A53,
    A58,
    SPPOL_2: 44;
    
        set Gij = ((
    Gauge (C,m)) 
    * (ii2,jj1)); 
    
        set Gji = ((
    Gauge (C,m)) 
    * (ii1,jj2)); 
    
        reconsider Gij9 = Gij, Gji9 = Gji as
    Point of ( 
    Euclid 2) by 
    EUCLID: 22;
    
        
    
        
    
    A68: 1 
    <= ii1 by 
    A27,
    MATRIX_0: 32;
    
        
    
        
    
    A69: ii1 
    <= ( 
    len ( 
    Gauge (C,m))) by 
    A27,
    MATRIX_0: 32;
    
        
    
        
    
    A70: 1 
    <= jj1 by 
    A27,
    MATRIX_0: 32;
    
        
    
        
    
    A71: jj1 
    <= ( 
    width ( 
    Gauge (C,m))) by 
    A27,
    MATRIX_0: 32;
    
        
    
        
    
    A72: 1 
    <= ii2 by 
    A59,
    MATRIX_0: 32;
    
        
    
        
    
    A73: ii2 
    <= ( 
    len ( 
    Gauge (C,m))) by 
    A59,
    MATRIX_0: 32;
    
        
    
        
    
    A74: 1 
    <= jj2 by 
    A59,
    MATRIX_0: 32;
    
        
    
        
    
    A75: jj2 
    <= ( 
    width ( 
    Gauge (C,m))) by 
    A59,
    MATRIX_0: 32;
    
        
    
        
    
    A76: ( 
    len f) 
    >= 3 by 
    JORDAN1E: 15;
    
        
    
        
    
    A77: ( 
    len g) 
    >= 3 by 
    JORDAN1E: 15;
    
        
    
        
    
    A78: ( 
    len f) 
    >= 1 by 
    A76,
    XXREAL_0: 2;
    
        
    
        
    
    A79: ( 
    len g) 
    >= 1 by 
    A77,
    XXREAL_0: 2;
    
        
    
        
    
    A80: ( 
    len f) 
    in ( 
    Seg ( 
    len f)) by 
    A78,
    FINSEQ_1: 1;
    
        
    
        
    
    A81: ( 
    len g) 
    in ( 
    Seg ( 
    len g)) by 
    A79,
    FINSEQ_1: 1;
    
        
    
        
    
    A82: ( 
    len f) 
    in ( 
    dom f) by 
    A80,
    FINSEQ_1:def 3;
    
        
    
        
    
    A83: ( 
    len g) 
    in ( 
    dom g) by 
    A81,
    FINSEQ_1:def 3;
    
        
    
        
    
    A84: (r 
    / 4) 
    < r by 
    A9,
    XREAL_1: 223;
    
        
    
        
    
    A85: (r 
    / 2) 
    < r by 
    A9,
    XREAL_1: 216;
    
        
    
        
    
    A86: s 
    <= ((p 
    `1 ) 
    - ( 
    W-bound C)) by 
    XXREAL_0: 17;
    
        
    
        
    
    A87: s 
    <= (( 
    E-bound C) 
    - (p 
    `1 )) by 
    XXREAL_0: 17;
    
        
    
    A88: 
    
        now
    
          assume 1
    >= ii1; 
    
          then
    
          
    
    A89: ii1 
    = 1 by 
    A68,
    XXREAL_0: 1;
    
          (
    dist (p9,c1)) 
    < r by 
    A47,
    A84,
    XXREAL_0: 2;
    
          then (
    dist (p9,c1)) 
    < s by 
    A10,
    XXREAL_0: 2;
    
          then
    
          
    
    A90: ( 
    dist (p9,c1)) 
    < ((p 
    `1 ) 
    - ( 
    W-bound C)) by 
    A86,
    XXREAL_0: 2;
    
          
    
          
    
    A91: ((p 
    `1 ) 
    - ((f 
    /. i1) 
    `1 )) 
    <=  
    |.((p
    `1 ) 
    - ((f 
    /. i1) 
    `1 )).| by 
    ABSVALUE: 4;
    
          
    |.((p
    `1 ) 
    - ((f 
    /. i1) 
    `1 )).| 
    <=  
    |.(p
    - (f 
    /. i1)).| by 
    JGRAPH_1: 34;
    
          then ((p
    `1 ) 
    - ((f 
    /. i1) 
    `1 )) 
    <=  
    |.(p
    - (f 
    /. i1)).| by 
    A91,
    XXREAL_0: 2;
    
          then ((p
    `1 ) 
    - ( 
    W-bound ( 
    L~ ( 
    Cage (C,m))))) 
    <=  
    |.(p
    - (f 
    /. i1)).| by 
    A18,
    A28,
    A70,
    A71,
    A89,
    JORDAN1A: 73;
    
          then ((p
    `1 ) 
    - ( 
    W-bound ( 
    L~ ( 
    Cage (C,m))))) 
    <= ( 
    dist (p9,c1)) by 
    SPPOL_1: 39;
    
          then ((p
    `1 ) 
    - ( 
    W-bound ( 
    L~ ( 
    Cage (C,m))))) 
    < ((p 
    `1 ) 
    - ( 
    W-bound C)) by 
    A90,
    XXREAL_0: 2;
    
          then (
    W-bound ( 
    L~ ( 
    Cage (C,m)))) 
    > ( 
    W-bound C) by 
    XREAL_1: 13;
    
          hence contradiction by
    Th11;
    
        end;
    
        
    
    A92: 
    
        now
    
          assume ii1
    >= ( 
    len ( 
    Gauge (C,m))); 
    
          then
    
          
    
    A93: ii1 
    = ( 
    len ( 
    Gauge (C,m))) by 
    A69,
    XXREAL_0: 1;
    
          (((
    Gauge (C,m)) 
    * (( 
    len ( 
    Gauge (C,m))),jj1)) 
    `1 ) 
    = ( 
    E-bound ( 
    L~ ( 
    Cage (C,m)))) by 
    A18,
    A70,
    A71,
    JORDAN1A: 71;
    
          
    
          then (f
    /. i1) 
    = ( 
    E-max ( 
    L~ ( 
    Cage (C,m)))) by 
    A21,
    A26,
    A28,
    A93,
    JORDAN1J: 46,
    SPPOL_2: 44
    
          .= (f
    /. ( 
    len f)) by 
    JORDAN1F: 7;
    
          then i1
    = ( 
    len f) by 
    A26,
    A82,
    PARTFUN2: 10;
    
          hence contradiction by
    A23,
    NAT_1: 13;
    
        end;
    
        
    
    A94: 
    
        now
    
          assume ii2
    <= 1; 
    
          then
    
          
    
    A95: ii2 
    = 1 by 
    A72,
    XXREAL_0: 1;
    
          (((
    Gauge (C,m)) 
    * (1,jj2)) 
    `1 ) 
    = ( 
    W-bound ( 
    L~ ( 
    Cage (C,m)))) by 
    A18,
    A74,
    A75,
    JORDAN1A: 73;
    
          
    
          then (g
    /. i2) 
    = ( 
    W-min ( 
    L~ ( 
    Cage (C,m)))) by 
    A53,
    A58,
    A60,
    A95,
    JORDAN1J: 47,
    SPPOL_2: 44
    
          .= (g
    /. ( 
    len g)) by 
    JORDAN1F: 8;
    
          then i2
    = ( 
    len g) by 
    A58,
    A83,
    PARTFUN2: 10;
    
          hence contradiction by
    A55,
    NAT_1: 13;
    
        end;
    
        
    
    A96: 
    
        now
    
          assume ii2
    >= ( 
    len ( 
    Gauge (C,m))); 
    
          then
    
          
    
    A97: ii2 
    = ( 
    len ( 
    Gauge (C,m))) by 
    A73,
    XXREAL_0: 1;
    
          (
    dist (p9,d1)) 
    < r by 
    A65,
    A84,
    XXREAL_0: 2;
    
          then (
    dist (p9,d1)) 
    < s by 
    A10,
    XXREAL_0: 2;
    
          then
    
          
    
    A98: ( 
    dist (p9,d1)) 
    < (( 
    E-bound C) 
    - (p 
    `1 )) by 
    A87,
    XXREAL_0: 2;
    
          
    
          
    
    A99: (((g 
    /. i2) 
    `1 ) 
    - (p 
    `1 )) 
    <=  
    |.(((g
    /. i2) 
    `1 ) 
    - (p 
    `1 )).| by 
    ABSVALUE: 4;
    
          
    |.(((g
    /. i2) 
    `1 ) 
    - (p 
    `1 )).| 
    <=  
    |.((g
    /. i2) 
    - p).| by 
    JGRAPH_1: 34;
    
          then
    |.(((g
    /. i2) 
    `1 ) 
    - (p 
    `1 )).| 
    <=  
    |.(p
    - (g 
    /. i2)).| by 
    TOPRNS_1: 27;
    
          then (((g
    /. i2) 
    `1 ) 
    - (p 
    `1 )) 
    <=  
    |.(p
    - (g 
    /. i2)).| by 
    A99,
    XXREAL_0: 2;
    
          then ((
    E-bound ( 
    L~ ( 
    Cage (C,m)))) 
    - (p 
    `1 )) 
    <=  
    |.(p
    - (g 
    /. i2)).| by 
    A18,
    A60,
    A74,
    A75,
    A97,
    JORDAN1A: 71;
    
          then ((
    E-bound ( 
    L~ ( 
    Cage (C,m)))) 
    - (p 
    `1 )) 
    <= ( 
    dist (p9,d1)) by 
    SPPOL_1: 39;
    
          then ((
    E-bound ( 
    L~ ( 
    Cage (C,m)))) 
    - (p 
    `1 )) 
    < (( 
    E-bound C) 
    - (p 
    `1 )) by 
    A98,
    XXREAL_0: 2;
    
          then (
    E-bound ( 
    L~ ( 
    Cage (C,m)))) 
    < ( 
    E-bound C) by 
    XREAL_1: 13;
    
          hence contradiction by
    Th9;
    
        end;
    
        
    
        
    
    A100: ( 
    Ball (p9,(rr 
    / 4))) 
    c= ( 
    Ball (p9,rr)) by 
    A84,
    PCOMPS_1: 1;
    
        
    
        
    
    A101: (Gij 
    `1 ) 
    = ((( 
    Gauge (C,m)) 
    * (ii2,1)) 
    `1 ) by 
    A70,
    A71,
    A72,
    A73,
    GOBOARD5: 2
    
        .= ((g
    /. i2) 
    `1 ) by 
    A60,
    A72,
    A73,
    A74,
    A75,
    GOBOARD5: 2;
    
        
    
        
    
    A102: (Gij 
    `2 ) 
    = ((( 
    Gauge (C,m)) 
    * (1,jj1)) 
    `2 ) by 
    A70,
    A71,
    A72,
    A73,
    GOBOARD5: 1
    
        .= ((f
    /. i1) 
    `2 ) by 
    A28,
    A68,
    A69,
    A70,
    A71,
    GOBOARD5: 1;
    
        
    
        
    
    A103: (Gji 
    `1 ) 
    = ((( 
    Gauge (C,m)) 
    * (ii1,1)) 
    `1 ) by 
    A68,
    A69,
    A74,
    A75,
    GOBOARD5: 2
    
        .= ((f
    /. i1) 
    `1 ) by 
    A28,
    A68,
    A69,
    A70,
    A71,
    GOBOARD5: 2;
    
        
    
        
    
    A104: (Gji 
    `2 ) 
    = ((( 
    Gauge (C,m)) 
    * (1,jj2)) 
    `2 ) by 
    A68,
    A69,
    A74,
    A75,
    GOBOARD5: 1
    
        .= ((g
    /. i2) 
    `2 ) by 
    A60,
    A72,
    A73,
    A74,
    A75,
    GOBOARD5: 1;
    
        
    
        
    
    A105: 
    |.(((g
    /. i2) 
    `1 ) 
    - (p 
    `1 )).| 
    <=  
    |.((g
    /. i2) 
    - p).| by 
    JGRAPH_1: 34;
    
        
    
        
    
    A106: 
    |.(((f
    /. i1) 
    `2 ) 
    - (p 
    `2 )).| 
    <=  
    |.((f
    /. i1) 
    - p).| by 
    JGRAPH_1: 34;
    
        
    
        
    
    A107: 
    |.(((g
    /. i2) 
    `1 ) 
    - (p 
    `1 )).| 
    <=  
    |.(p
    - (g 
    /. i2)).| by 
    A105,
    TOPRNS_1: 27;
    
        
    
        
    
    A108: 
    |.(((f
    /. i1) 
    `2 ) 
    - (p 
    `2 )).| 
    <=  
    |.(p
    - (f 
    /. i1)).| by 
    A106,
    TOPRNS_1: 27;
    
        
    
        
    
    A109: 
    |.(((g
    /. i2) 
    `1 ) 
    - (p 
    `1 )).| 
    <= (r 
    / 4) by 
    A64,
    A107,
    XXREAL_0: 2;
    
        
    |.(((f
    /. i1) 
    `2 ) 
    - (p 
    `2 )).| 
    <= (r 
    / 4) by 
    A46,
    A108,
    XXREAL_0: 2;
    
        then (
    |.(((g
    /. i2) 
    `1 ) 
    - (p 
    `1 )).| 
    +  
    |.(((f
    /. i1) 
    `2 ) 
    - (p 
    `2 )).|) 
    <= ((r 
    / (2 
    * 2)) 
    + (r 
    / (2 
    * 2))) by 
    A109,
    XREAL_1: 7;
    
        then
    
        
    
    A110: ( 
    |.(((g
    /. i2) 
    `1 ) 
    - (p 
    `1 )).| 
    +  
    |.(((f
    /. i1) 
    `2 ) 
    - (p 
    `2 )).|) 
    < r by 
    A85,
    XXREAL_0: 2;
    
        
    
        
    
    A111: 
    |.(((f
    /. i1) 
    `1 ) 
    - (p 
    `1 )).| 
    <=  
    |.((f
    /. i1) 
    - p).| by 
    JGRAPH_1: 34;
    
        
    
        
    
    A112: 
    |.(((g
    /. i2) 
    `2 ) 
    - (p 
    `2 )).| 
    <=  
    |.((g
    /. i2) 
    - p).| by 
    JGRAPH_1: 34;
    
        
    
        
    
    A113: 
    |.(((f
    /. i1) 
    `1 ) 
    - (p 
    `1 )).| 
    <=  
    |.(p
    - (f 
    /. i1)).| by 
    A111,
    TOPRNS_1: 27;
    
        
    
        
    
    A114: 
    |.(((g
    /. i2) 
    `2 ) 
    - (p 
    `2 )).| 
    <=  
    |.(p
    - (g 
    /. i2)).| by 
    A112,
    TOPRNS_1: 27;
    
        
    
        
    
    A115: 
    |.(((f
    /. i1) 
    `1 ) 
    - (p 
    `1 )).| 
    <= (r 
    / 4) by 
    A46,
    A113,
    XXREAL_0: 2;
    
        
    |.(((g
    /. i2) 
    `2 ) 
    - (p 
    `2 )).| 
    <= (r 
    / 4) by 
    A64,
    A114,
    XXREAL_0: 2;
    
        then (
    |.(((f
    /. i1) 
    `1 ) 
    - (p 
    `1 )).| 
    +  
    |.(((g
    /. i2) 
    `2 ) 
    - (p 
    `2 )).|) 
    <= ((r 
    / (2 
    * 2)) 
    + (r 
    / (2 
    * 2))) by 
    A115,
    XREAL_1: 7;
    
        then
    
        
    
    A116: ( 
    |.(((f
    /. i1) 
    `1 ) 
    - (p 
    `1 )).| 
    +  
    |.(((g
    /. i2) 
    `2 ) 
    - (p 
    `2 )).|) 
    < r by 
    A85,
    XXREAL_0: 2;
    
        
    |.(Gij
    - p).| 
    <= ( 
    |.(((g
    /. i2) 
    `1 ) 
    - (p 
    `1 )).| 
    +  
    |.(((f
    /. i1) 
    `2 ) 
    - (p 
    `2 )).|) by 
    A101,
    A102,
    JGRAPH_1: 32;
    
        then
    |.(Gij
    - p).| 
    < r by 
    A110,
    XXREAL_0: 2;
    
        then (
    dist (Gij9,p9)) 
    < r by 
    SPPOL_1: 39;
    
        then
    
        
    
    A117: Gij 
    in ( 
    Ball (p9,r)) by 
    METRIC_1: 11;
    
        
    |.(Gji
    - p).| 
    <= ( 
    |.(((f
    /. i1) 
    `1 ) 
    - (p 
    `1 )).| 
    +  
    |.(((g
    /. i2) 
    `2 ) 
    - (p 
    `2 )).|) by 
    A103,
    A104,
    JGRAPH_1: 32;
    
        then
    |.(Gji
    - p).| 
    < r by 
    A116,
    XXREAL_0: 2;
    
        then (
    dist (Gji9,p9)) 
    < r by 
    SPPOL_1: 39;
    
        then
    
        
    
    A118: Gji 
    in ( 
    Ball (p9,r)) by 
    METRIC_1: 11;
    
        
    
        
    
    A119: ( 
    LSeg ((g 
    /. i2),Gij)) 
    c= ( 
    Ball (p9,rr)) by 
    A66,
    A100,
    A117,
    TOPREAL3: 21;
    
        
    
        
    
    A120: ( 
    LSeg (Gij,(f 
    /. i1))) 
    c= ( 
    Ball (p9,rr)) by 
    A48,
    A100,
    A117,
    TOPREAL3: 21;
    
        
    
        
    
    A121: ( 
    LSeg ((g 
    /. i2),Gji)) 
    c= ( 
    Ball (p9,rr)) by 
    A66,
    A100,
    A118,
    TOPREAL3: 21;
    
        
    
        
    
    A122: ( 
    LSeg (Gji,(f 
    /. i1))) 
    c= ( 
    Ball (p9,rr)) by 
    A48,
    A100,
    A118,
    TOPREAL3: 21;
    
        now
    
          per cases ;
    
            suppose
    
            
    
    A123: jj2 
    <= jj1; 
    
            ((
    LSeg ((g 
    /. i2),Gij)) 
    \/ ( 
    LSeg (Gij,(f 
    /. i1)))) 
    c= ( 
    Ball (p9,r)) 
    
            proof
    
              let x be
    object;
    
              assume
    
              
    
    A124: x 
    in (( 
    LSeg ((g 
    /. i2),Gij)) 
    \/ ( 
    LSeg (Gij,(f 
    /. i1)))); 
    
              then
    
              reconsider x9 = x as
    Point of ( 
    TOP-REAL 2); 
    
              now
    
                per cases by
    A124,
    XBOOLE_0:def 3;
    
                  suppose x9
    in ( 
    LSeg ((g 
    /. i2),Gij)); 
    
                  hence x9
    in ( 
    Ball (p9,r)) by 
    A119;
    
                end;
    
                  suppose x9
    in ( 
    LSeg (Gij,(f 
    /. i1))); 
    
                  hence x9
    in ( 
    Ball (p9,r)) by 
    A120;
    
                end;
    
              end;
    
              hence thesis;
    
            end;
    
            hence (
    Ball (p9,r)) 
    meets ( 
    Upper_Arc C) by 
    A28,
    A49,
    A60,
    A67,
    A71,
    A74,
    A88,
    A92,
    A94,
    A96,
    A123,
    JORDAN15: 48,
    XBOOLE_1: 63;
    
          end;
    
            suppose
    
            
    
    A125: jj1 
    < jj2; 
    
            ((
    LSeg ((f 
    /. i1),Gji)) 
    \/ ( 
    LSeg (Gji,(g 
    /. i2)))) 
    c= ( 
    Ball (p9,r)) 
    
            proof
    
              let x be
    object;
    
              assume
    
              
    
    A126: x 
    in (( 
    LSeg ((f 
    /. i1),Gji)) 
    \/ ( 
    LSeg (Gji,(g 
    /. i2)))); 
    
              then
    
              reconsider x9 = x as
    Point of ( 
    TOP-REAL 2); 
    
              now
    
                per cases by
    A126,
    XBOOLE_0:def 3;
    
                  suppose x9
    in ( 
    LSeg ((f 
    /. i1),Gji)); 
    
                  hence x9
    in ( 
    Ball (p9,r)) by 
    A122;
    
                end;
    
                  suppose x9
    in ( 
    LSeg (Gji,(g 
    /. i2))); 
    
                  hence x9
    in ( 
    Ball (p9,r)) by 
    A121;
    
                end;
    
              end;
    
              hence thesis;
    
            end;
    
            hence (
    Ball (p9,r)) 
    meets ( 
    Upper_Arc C) by 
    A28,
    A49,
    A60,
    A67,
    A70,
    A75,
    A88,
    A92,
    A94,
    A96,
    A125,
    Th25,
    XBOOLE_1: 63;
    
          end;
    
        end;
    
        hence (
    Ball (p9,r)) 
    meets ( 
    Upper_Arc C); 
    
      end;
    
      then p
    in ( 
    Cl ( 
    Upper_Arc C)) by 
    A8,
    GOBOARD6: 93;
    
      then
    
      
    
    A127: p 
    in ( 
    Upper_Arc C) by 
    PRE_TOPC: 22;
    
      now
    
        let r be
    Real;
    
        reconsider rr = r as
    Real;
    
        assume that
    
        
    
    A128: 
    0  
    < r and 
    
        
    
    A129: r 
    < s; 
    
        
    
        
    
    A130: (r 
    / 8) 
    >  
    0 by 
    A128,
    XREAL_1: 139;
    
        reconsider G = (
    Ball (p9,(r 
    / 8))) as 
    a_neighborhood of p by 
    A128,
    GOBOARD6: 2,
    XREAL_1: 139;
    
        consider k1 be
    Nat such that 
    
        
    
    A131: for m be 
    Nat st m 
    > k1 holds (( 
    Upper_Appr C) 
    . m) 
    meets G by 
    A3,
    KURATO_2:def 1;
    
        consider k2 be
    Nat such that 
    
        
    
    A132: for m be 
    Nat st m 
    > k2 holds (( 
    Lower_Appr C) 
    . m) 
    meets G by 
    A4,
    KURATO_2:def 1;
    
        set k = (
    max (k1,k2)); 
    
        
    
        
    
    A133: k 
    >= k1 by 
    XXREAL_0: 25;
    
        set z9 = (
    max ((( 
    N-bound C) 
    - ( 
    S-bound C)),(( 
    E-bound C) 
    - ( 
    W-bound C)))); 
    
        set z = (
    max (z9,(r 
    / 8))); 
    
        (z
    / (r 
    / 8)) 
    >= 1 by 
    A130,
    XREAL_1: 181,
    XXREAL_0: 25;
    
        then (
    log (2,(z 
    / (r 
    / 8)))) 
    >= ( 
    log (2,1)) by 
    PRE_FF: 10;
    
        then (
    log (2,(z 
    / (r 
    / 8)))) 
    >=  
    0 by 
    POWER: 51;
    
        then
    
        reconsider m9 =
    [\(
    log (2,(z 
    / (r 
    / 8))))/] as 
    Nat by 
    INT_1: 53;
    
        
    
        
    
    A134: (2 
    to_power (m9 
    + 1)) 
    >  
    0 by 
    POWER: 34;
    
        set N = (2
    to_power (m9 
    + 1)); 
    
        (
    log (2,(z 
    / (r 
    / 8)))) 
    < ((m9 
    + 1) 
    * 1) by 
    INT_1: 29;
    
        then (
    log (2,(z 
    / (r 
    / 8)))) 
    < ((m9 
    + 1) 
    * ( 
    log (2,2))) by 
    POWER: 52;
    
        then (
    log (2,(z 
    / (r 
    / 8)))) 
    < ( 
    log (2,(2 
    to_power (m9 
    + 1)))) by 
    POWER: 55;
    
        then (z
    / (r 
    / 8)) 
    < N by 
    A134,
    PRE_FF: 10;
    
        then ((z
    / (r 
    / 8)) 
    * (r 
    / 8)) 
    < (N 
    * (r 
    / 8)) by 
    A130,
    XREAL_1: 68;
    
        then z
    < (N 
    * (r 
    / 8)) by 
    A130,
    XCMPLX_1: 87;
    
        then (z
    / N) 
    < ((N 
    * (r 
    / 8)) 
    / N) by 
    A134,
    XREAL_1: 74;
    
        then (z
    / N) 
    < (((r 
    / 8) 
    / N) 
    * N); 
    
        then
    
        
    
    A135: (z 
    / N) 
    < (r 
    / 8) by 
    A134,
    XCMPLX_1: 87;
    
        (z
    / N) 
    >= (z9 
    / N) by 
    A134,
    XREAL_1: 72,
    XXREAL_0: 25;
    
        then
    
        
    
    A136: (z9 
    / N) 
    < (r 
    / 8) by 
    A135,
    XXREAL_0: 2;
    
        reconsider W = (
    max (k,m9)) as 
    Nat by 
    TARSKI: 1;
    
        set m = (W
    + 1); 
    
        reconsider m as
    Nat;
    
        
    
        
    
    A137: ( 
    len ( 
    Gauge (C,m))) 
    = ( 
    width ( 
    Gauge (C,m))) by 
    JORDAN8:def 1;
    
        (
    max (k,m9)) 
    >= k by 
    XXREAL_0: 25;
    
        then (
    max (k,m9)) 
    >= k1 by 
    A133,
    XXREAL_0: 2;
    
        then m
    > k1 by 
    NAT_1: 13;
    
        then ((
    Upper_Appr C) 
    . m) 
    meets G by 
    A131;
    
        then (
    Upper_Arc ( 
    L~ ( 
    Cage (C,m)))) 
    meets G by 
    Def1;
    
        then
    
        consider p1 be
    object such that 
    
        
    
    A138: p1 
    in ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,m)))) and 
    
        
    
    A139: p1 
    in G by 
    XBOOLE_0: 3;
    
        reconsider p1 as
    Point of ( 
    TOP-REAL 2) by 
    A138;
    
        reconsider p19 = p1 as
    Point of ( 
    Euclid 2) by 
    EUCLID: 22;
    
        set f = (
    Upper_Seq (C,m)); 
    
        
    
        
    
    A140: ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,m)))) 
    = ( 
    L~ ( 
    Upper_Seq (C,m))) by 
    JORDAN1G: 55;
    
        then
    
        consider i1 be
    Nat such that 
    
        
    
    A141: 1 
    <= i1 and 
    
        
    
    A142: (i1 
    + 1) 
    <= ( 
    len f) and 
    
        
    
    A143: p1 
    in ( 
    LSeg ((f 
    /. i1),(f 
    /. (i1 
    + 1)))) by 
    A138,
    SPPOL_2: 14;
    
        reconsider c1 = (f
    /. i1) as 
    Point of ( 
    Euclid 2) by 
    EUCLID: 22;
    
        reconsider c2 = (f
    /. (i1 
    + 1)) as 
    Point of ( 
    Euclid 2) by 
    EUCLID: 22;
    
        
    
        
    
    A144: f 
    is_sequence_on ( 
    Gauge (C,m)) by 
    JORDAN1G: 4;
    
        i1
    < ( 
    len f) by 
    A142,
    NAT_1: 13;
    
        then i1
    in ( 
    Seg ( 
    len f)) by 
    A141,
    FINSEQ_1: 1;
    
        then
    
        
    
    A145: i1 
    in ( 
    dom f) by 
    FINSEQ_1:def 3;
    
        then
    
        consider ii1,jj1 be
    Nat such that 
    
        
    
    A146: 
    [ii1, jj1]
    in ( 
    Indices ( 
    Gauge (C,m))) and 
    
        
    
    A147: (f 
    /. i1) 
    = (( 
    Gauge (C,m)) 
    * (ii1,jj1)) by 
    A144,
    GOBOARD1:def 9;
    
        
    
        
    
    A148: ( 
    N-bound C) 
    > (( 
    S-bound C) 
    +  
    0 ) by 
    TOPREAL5: 16;
    
        
    
        
    
    A149: ( 
    E-bound C) 
    > (( 
    W-bound C) 
    +  
    0 ) by 
    TOPREAL5: 17;
    
        
    
        
    
    A150: (( 
    N-bound C) 
    - ( 
    S-bound C)) 
    >  
    0 by 
    A148,
    XREAL_1: 20;
    
        
    
        
    
    A151: (( 
    E-bound C) 
    - ( 
    W-bound C)) 
    >  
    0 by 
    A149,
    XREAL_1: 20;
    
        
    
        
    
    A152: (2 
    |^ (m9 
    + 1)) 
    >  
    0 by 
    A134,
    POWER: 41;
    
        (
    max (k,m9)) 
    >= m9 by 
    XXREAL_0: 25;
    
        then m
    > m9 by 
    NAT_1: 13;
    
        then m
    >= (m9 
    + 1) by 
    NAT_1: 13;
    
        then
    
        
    
    A153: (2 
    |^ m) 
    >= (2 
    |^ (m9 
    + 1)) by 
    PREPOWER: 93;
    
        then
    
        
    
    A154: ((( 
    N-bound C) 
    - ( 
    S-bound C)) 
    / (2 
    |^ m)) 
    <= ((( 
    N-bound C) 
    - ( 
    S-bound C)) 
    / (2 
    |^ (m9 
    + 1))) by 
    A150,
    A152,
    XREAL_1: 118;
    
        
    
        
    
    A155: ((( 
    E-bound C) 
    - ( 
    W-bound C)) 
    / (2 
    |^ m)) 
    <= ((( 
    E-bound C) 
    - ( 
    W-bound C)) 
    / (2 
    |^ (m9 
    + 1))) by 
    A151,
    A152,
    A153,
    XREAL_1: 118;
    
        
    
        
    
    A156: ((( 
    N-bound C) 
    - ( 
    S-bound C)) 
    / N) 
    <= (z9 
    / N) by 
    A134,
    XREAL_1: 72,
    XXREAL_0: 25;
    
        
    
        
    
    A157: ((( 
    E-bound C) 
    - ( 
    W-bound C)) 
    / N) 
    <= (z9 
    / N) by 
    A134,
    XREAL_1: 72,
    XXREAL_0: 25;
    
        
    
        
    
    A158: ((( 
    N-bound C) 
    - ( 
    S-bound C)) 
    / (2 
    |^ (m9 
    + 1))) 
    <= (z9 
    / N) by 
    A156,
    POWER: 41;
    
        
    
        
    
    A159: ((( 
    E-bound C) 
    - ( 
    W-bound C)) 
    / (2 
    |^ (m9 
    + 1))) 
    <= (z9 
    / N) by 
    A157,
    POWER: 41;
    
        
    
        
    
    A160: ((( 
    N-bound C) 
    - ( 
    S-bound C)) 
    / (2 
    |^ m)) 
    <= (z9 
    / N) by 
    A154,
    A158,
    XXREAL_0: 2;
    
        
    
        
    
    A161: ((( 
    E-bound C) 
    - ( 
    W-bound C)) 
    / (2 
    |^ m)) 
    <= (z9 
    / N) by 
    A155,
    A159,
    XXREAL_0: 2;
    
        then (
    dist ((f 
    /. i1),(f 
    /. (i1 
    + 1)))) 
    <= (z9 
    / N) by 
    A141,
    A142,
    A144,
    A160,
    Th6;
    
        then (
    dist ((f 
    /. i1),(f 
    /. (i1 
    + 1)))) 
    < (r 
    / 8) by 
    A136,
    XXREAL_0: 2;
    
        then (
    dist (c1,c2)) 
    < (r 
    / 8) by 
    TOPREAL6:def 1;
    
        then
    
        
    
    A162: 
    |.((f
    /. i1) 
    - (f 
    /. (i1 
    + 1))).| 
    < (r 
    / 8) by 
    SPPOL_1: 39;
    
        
    |.(p1
    - (f 
    /. i1)).| 
    <=  
    |.((f
    /. i1) 
    - (f 
    /. (i1 
    + 1))).| by 
    A143,
    JGRAPH_1: 36;
    
        then
    
        
    
    A163: 
    |.(p1
    - (f 
    /. i1)).| 
    < (r 
    / 8) by 
    A162,
    XXREAL_0: 2;
    
        (
    dist (p19,p9)) 
    < (r 
    / 8) by 
    A139,
    METRIC_1: 11;
    
        then
    |.(p
    - p1).| 
    < (r 
    / 8) by 
    SPPOL_1: 39;
    
        then
    
        
    
    A164: ( 
    |.(p
    - p1).| 
    +  
    |.(p1
    - (f 
    /. i1)).|) 
    < ((r 
    / (2 
    * 4)) 
    + (r 
    / (2 
    * 4))) by 
    A163,
    XREAL_1: 8;
    
        
    |.(p
    - (f 
    /. i1)).| 
    <= ( 
    |.(p
    - p1).| 
    +  
    |.(p1
    - (f 
    /. i1)).|) by 
    TOPRNS_1: 34;
    
        then
    
        
    
    A165: 
    |.(p
    - (f 
    /. i1)).| 
    < (r 
    / 4) by 
    A164,
    XXREAL_0: 2;
    
        then
    
        
    
    A166: ( 
    dist (p9,c1)) 
    < (r 
    / 4) by 
    SPPOL_1: 39;
    
        then
    
        
    
    A167: (f 
    /. i1) 
    in ( 
    Ball (p9,(r 
    / 4))) by 
    METRIC_1: 11;
    
        
    
        
    
    A168: (f 
    /. i1) 
    in ( 
    Upper_Arc ( 
    L~ ( 
    Cage (C,m)))) by 
    A140,
    A145,
    SPPOL_2: 44;
    
        
    
        
    
    A169: k 
    >= k2 by 
    XXREAL_0: 25;
    
        (
    max (k,m9)) 
    >= k by 
    XXREAL_0: 25;
    
        then (
    max (k,m9)) 
    >= k2 by 
    A169,
    XXREAL_0: 2;
    
        then m
    > k2 by 
    NAT_1: 13;
    
        then ((
    Lower_Appr C) 
    . m) 
    meets G by 
    A132;
    
        then (
    Lower_Arc ( 
    L~ ( 
    Cage (C,m)))) 
    meets G by 
    Def2;
    
        then
    
        consider p2 be
    object such that 
    
        
    
    A170: p2 
    in ( 
    Lower_Arc ( 
    L~ ( 
    Cage (C,m)))) and 
    
        
    
    A171: p2 
    in G by 
    XBOOLE_0: 3;
    
        reconsider p2 as
    Point of ( 
    TOP-REAL 2) by 
    A170;
    
        reconsider p29 = p2 as
    Point of ( 
    Euclid 2) by 
    EUCLID: 22;
    
        set g = (
    Lower_Seq (C,m)); 
    
        
    
        
    
    A172: ( 
    Lower_Arc ( 
    L~ ( 
    Cage (C,m)))) 
    = ( 
    L~ ( 
    Lower_Seq (C,m))) by 
    JORDAN1G: 56;
    
        then
    
        consider i2 be
    Nat such that 
    
        
    
    A173: 1 
    <= i2 and 
    
        
    
    A174: (i2 
    + 1) 
    <= ( 
    len g) and 
    
        
    
    A175: p2 
    in ( 
    LSeg ((g 
    /. i2),(g 
    /. (i2 
    + 1)))) by 
    A170,
    SPPOL_2: 14;
    
        reconsider d1 = (g
    /. i2) as 
    Point of ( 
    Euclid 2) by 
    EUCLID: 22;
    
        reconsider d2 = (g
    /. (i2 
    + 1)) as 
    Point of ( 
    Euclid 2) by 
    EUCLID: 22;
    
        
    
        
    
    A176: g 
    is_sequence_on ( 
    Gauge (C,m)) by 
    JORDAN1G: 5;
    
        i2
    < ( 
    len g) by 
    A174,
    NAT_1: 13;
    
        then i2
    in ( 
    Seg ( 
    len g)) by 
    A173,
    FINSEQ_1: 1;
    
        then
    
        
    
    A177: i2 
    in ( 
    dom g) by 
    FINSEQ_1:def 3;
    
        then
    
        consider ii2,jj2 be
    Nat such that 
    
        
    
    A178: 
    [ii2, jj2]
    in ( 
    Indices ( 
    Gauge (C,m))) and 
    
        
    
    A179: (g 
    /. i2) 
    = (( 
    Gauge (C,m)) 
    * (ii2,jj2)) by 
    A176,
    GOBOARD1:def 9;
    
        (
    dist ((g 
    /. i2),(g 
    /. (i2 
    + 1)))) 
    <= (z9 
    / N) by 
    A160,
    A161,
    A173,
    A174,
    A176,
    Th6;
    
        then (
    dist ((g 
    /. i2),(g 
    /. (i2 
    + 1)))) 
    < (r 
    / 8) by 
    A136,
    XXREAL_0: 2;
    
        then (
    dist (d1,d2)) 
    < (r 
    / 8) by 
    TOPREAL6:def 1;
    
        then
    
        
    
    A180: 
    |.((g
    /. i2) 
    - (g 
    /. (i2 
    + 1))).| 
    < (r 
    / 8) by 
    SPPOL_1: 39;
    
        
    |.(p2
    - (g 
    /. i2)).| 
    <=  
    |.((g
    /. i2) 
    - (g 
    /. (i2 
    + 1))).| by 
    A175,
    JGRAPH_1: 36;
    
        then
    
        
    
    A181: 
    |.(p2
    - (g 
    /. i2)).| 
    < (r 
    / 8) by 
    A180,
    XXREAL_0: 2;
    
        (
    dist (p29,p9)) 
    < (r 
    / 8) by 
    A171,
    METRIC_1: 11;
    
        then
    |.(p
    - p2).| 
    < (r 
    / 8) by 
    SPPOL_1: 39;
    
        then
    
        
    
    A182: ( 
    |.(p
    - p2).| 
    +  
    |.(p2
    - (g 
    /. i2)).|) 
    < ((r 
    / (2 
    * 4)) 
    + (r 
    / (2 
    * 4))) by 
    A181,
    XREAL_1: 8;
    
        
    |.(p
    - (g 
    /. i2)).| 
    <= ( 
    |.(p
    - p2).| 
    +  
    |.(p2
    - (g 
    /. i2)).|) by 
    TOPRNS_1: 34;
    
        then
    
        
    
    A183: 
    |.(p
    - (g 
    /. i2)).| 
    < (r 
    / 4) by 
    A182,
    XXREAL_0: 2;
    
        then
    
        
    
    A184: ( 
    dist (p9,d1)) 
    < (r 
    / 4) by 
    SPPOL_1: 39;
    
        then
    
        
    
    A185: (g 
    /. i2) 
    in ( 
    Ball (p9,(r 
    / 4))) by 
    METRIC_1: 11;
    
        
    
        
    
    A186: (g 
    /. i2) 
    in ( 
    Lower_Arc ( 
    L~ ( 
    Cage (C,m)))) by 
    A172,
    A177,
    SPPOL_2: 44;
    
        set Gij = ((
    Gauge (C,m)) 
    * (ii2,jj1)); 
    
        set Gji = ((
    Gauge (C,m)) 
    * (ii1,jj2)); 
    
        reconsider Gij9 = Gij, Gji9 = Gji as
    Point of ( 
    Euclid 2) by 
    EUCLID: 22;
    
        
    
        
    
    A187: 1 
    <= ii1 by 
    A146,
    MATRIX_0: 32;
    
        
    
        
    
    A188: ii1 
    <= ( 
    len ( 
    Gauge (C,m))) by 
    A146,
    MATRIX_0: 32;
    
        
    
        
    
    A189: 1 
    <= jj1 by 
    A146,
    MATRIX_0: 32;
    
        
    
        
    
    A190: jj1 
    <= ( 
    width ( 
    Gauge (C,m))) by 
    A146,
    MATRIX_0: 32;
    
        
    
        
    
    A191: 1 
    <= ii2 by 
    A178,
    MATRIX_0: 32;
    
        
    
        
    
    A192: ii2 
    <= ( 
    len ( 
    Gauge (C,m))) by 
    A178,
    MATRIX_0: 32;
    
        
    
        
    
    A193: 1 
    <= jj2 by 
    A178,
    MATRIX_0: 32;
    
        
    
        
    
    A194: jj2 
    <= ( 
    width ( 
    Gauge (C,m))) by 
    A178,
    MATRIX_0: 32;
    
        
    
        
    
    A195: ( 
    len f) 
    >= 3 by 
    JORDAN1E: 15;
    
        
    
        
    
    A196: ( 
    len g) 
    >= 3 by 
    JORDAN1E: 15;
    
        
    
        
    
    A197: ( 
    len f) 
    >= 1 by 
    A195,
    XXREAL_0: 2;
    
        
    
        
    
    A198: ( 
    len g) 
    >= 1 by 
    A196,
    XXREAL_0: 2;
    
        
    
        
    
    A199: ( 
    len f) 
    in ( 
    Seg ( 
    len f)) by 
    A197,
    FINSEQ_1: 1;
    
        
    
        
    
    A200: ( 
    len g) 
    in ( 
    Seg ( 
    len g)) by 
    A198,
    FINSEQ_1: 1;
    
        
    
        
    
    A201: ( 
    len f) 
    in ( 
    dom f) by 
    A199,
    FINSEQ_1:def 3;
    
        
    
        
    
    A202: ( 
    len g) 
    in ( 
    dom g) by 
    A200,
    FINSEQ_1:def 3;
    
        
    
        
    
    A203: (r 
    / 4) 
    < r by 
    A128,
    XREAL_1: 223;
    
        
    
        
    
    A204: (r 
    / 2) 
    < r by 
    A128,
    XREAL_1: 216;
    
        
    
        
    
    A205: s 
    <= ((p 
    `1 ) 
    - ( 
    W-bound C)) by 
    XXREAL_0: 17;
    
        
    
        
    
    A206: s 
    <= (( 
    E-bound C) 
    - (p 
    `1 )) by 
    XXREAL_0: 17;
    
        
    
    A207: 
    
        now
    
          assume 1
    >= ii1; 
    
          then
    
          
    
    A208: ii1 
    = 1 by 
    A187,
    XXREAL_0: 1;
    
          (
    dist (p9,c1)) 
    < r by 
    A166,
    A203,
    XXREAL_0: 2;
    
          then (
    dist (p9,c1)) 
    < s by 
    A129,
    XXREAL_0: 2;
    
          then
    
          
    
    A209: ( 
    dist (p9,c1)) 
    < ((p 
    `1 ) 
    - ( 
    W-bound C)) by 
    A205,
    XXREAL_0: 2;
    
          
    
          
    
    A210: ((p 
    `1 ) 
    - ((f 
    /. i1) 
    `1 )) 
    <=  
    |.((p
    `1 ) 
    - ((f 
    /. i1) 
    `1 )).| by 
    ABSVALUE: 4;
    
          
    |.((p
    `1 ) 
    - ((f 
    /. i1) 
    `1 )).| 
    <=  
    |.(p
    - (f 
    /. i1)).| by 
    JGRAPH_1: 34;
    
          then ((p
    `1 ) 
    - ((f 
    /. i1) 
    `1 )) 
    <=  
    |.(p
    - (f 
    /. i1)).| by 
    A210,
    XXREAL_0: 2;
    
          then ((p
    `1 ) 
    - ( 
    W-bound ( 
    L~ ( 
    Cage (C,m))))) 
    <=  
    |.(p
    - (f 
    /. i1)).| by 
    A137,
    A147,
    A189,
    A190,
    A208,
    JORDAN1A: 73;
    
          then ((p
    `1 ) 
    - ( 
    W-bound ( 
    L~ ( 
    Cage (C,m))))) 
    <= ( 
    dist (p9,c1)) by 
    SPPOL_1: 39;
    
          then ((p
    `1 ) 
    - ( 
    W-bound ( 
    L~ ( 
    Cage (C,m))))) 
    < ((p 
    `1 ) 
    - ( 
    W-bound C)) by 
    A209,
    XXREAL_0: 2;
    
          then (
    W-bound ( 
    L~ ( 
    Cage (C,m)))) 
    > ( 
    W-bound C) by 
    XREAL_1: 13;
    
          hence contradiction by
    Th11;
    
        end;
    
        
    
    A211: 
    
        now
    
          assume ii1
    >= ( 
    len ( 
    Gauge (C,m))); 
    
          then
    
          
    
    A212: ii1 
    = ( 
    len ( 
    Gauge (C,m))) by 
    A188,
    XXREAL_0: 1;
    
          (((
    Gauge (C,m)) 
    * (( 
    len ( 
    Gauge (C,m))),jj1)) 
    `1 ) 
    = ( 
    E-bound ( 
    L~ ( 
    Cage (C,m)))) by 
    A137,
    A189,
    A190,
    JORDAN1A: 71;
    
          
    
          then (f
    /. i1) 
    = ( 
    E-max ( 
    L~ ( 
    Cage (C,m)))) by 
    A140,
    A145,
    A147,
    A212,
    JORDAN1J: 46,
    SPPOL_2: 44
    
          .= (f
    /. ( 
    len f)) by 
    JORDAN1F: 7;
    
          then i1
    = ( 
    len f) by 
    A145,
    A201,
    PARTFUN2: 10;
    
          hence contradiction by
    A142,
    NAT_1: 13;
    
        end;
    
        
    
    A213: 
    
        now
    
          assume ii2
    <= 1; 
    
          then
    
          
    
    A214: ii2 
    = 1 by 
    A191,
    XXREAL_0: 1;
    
          (((
    Gauge (C,m)) 
    * (1,jj2)) 
    `1 ) 
    = ( 
    W-bound ( 
    L~ ( 
    Cage (C,m)))) by 
    A137,
    A193,
    A194,
    JORDAN1A: 73;
    
          
    
          then (g
    /. i2) 
    = ( 
    W-min ( 
    L~ ( 
    Cage (C,m)))) by 
    A172,
    A177,
    A179,
    A214,
    JORDAN1J: 47,
    SPPOL_2: 44
    
          .= (g
    /. ( 
    len g)) by 
    JORDAN1F: 8;
    
          then i2
    = ( 
    len g) by 
    A177,
    A202,
    PARTFUN2: 10;
    
          hence contradiction by
    A174,
    NAT_1: 13;
    
        end;
    
        
    
    A215: 
    
        now
    
          assume ii2
    >= ( 
    len ( 
    Gauge (C,m))); 
    
          then
    
          
    
    A216: ii2 
    = ( 
    len ( 
    Gauge (C,m))) by 
    A192,
    XXREAL_0: 1;
    
          (
    dist (p9,d1)) 
    < r by 
    A184,
    A203,
    XXREAL_0: 2;
    
          then (
    dist (p9,d1)) 
    < s by 
    A129,
    XXREAL_0: 2;
    
          then
    
          
    
    A217: ( 
    dist (p9,d1)) 
    < (( 
    E-bound C) 
    - (p 
    `1 )) by 
    A206,
    XXREAL_0: 2;
    
          
    
          
    
    A218: (((g 
    /. i2) 
    `1 ) 
    - (p 
    `1 )) 
    <=  
    |.(((g
    /. i2) 
    `1 ) 
    - (p 
    `1 )).| by 
    ABSVALUE: 4;
    
          
    |.(((g
    /. i2) 
    `1 ) 
    - (p 
    `1 )).| 
    <=  
    |.((g
    /. i2) 
    - p).| by 
    JGRAPH_1: 34;
    
          then
    |.(((g
    /. i2) 
    `1 ) 
    - (p 
    `1 )).| 
    <=  
    |.(p
    - (g 
    /. i2)).| by 
    TOPRNS_1: 27;
    
          then (((g
    /. i2) 
    `1 ) 
    - (p 
    `1 )) 
    <=  
    |.(p
    - (g 
    /. i2)).| by 
    A218,
    XXREAL_0: 2;
    
          then ((
    E-bound ( 
    L~ ( 
    Cage (C,m)))) 
    - (p 
    `1 )) 
    <=  
    |.(p
    - (g 
    /. i2)).| by 
    A137,
    A179,
    A193,
    A194,
    A216,
    JORDAN1A: 71;
    
          then ((
    E-bound ( 
    L~ ( 
    Cage (C,m)))) 
    - (p 
    `1 )) 
    <= ( 
    dist (p9,d1)) by 
    SPPOL_1: 39;
    
          then ((
    E-bound ( 
    L~ ( 
    Cage (C,m)))) 
    - (p 
    `1 )) 
    < (( 
    E-bound C) 
    - (p 
    `1 )) by 
    A217,
    XXREAL_0: 2;
    
          then (
    E-bound ( 
    L~ ( 
    Cage (C,m)))) 
    < ( 
    E-bound C) by 
    XREAL_1: 13;
    
          hence contradiction by
    Th9;
    
        end;
    
        
    
        
    
    A219: ( 
    Ball (p9,(rr 
    / 4))) 
    c= ( 
    Ball (p9,rr)) by 
    A203,
    PCOMPS_1: 1;
    
        
    
        
    
    A220: (Gij 
    `1 ) 
    = ((( 
    Gauge (C,m)) 
    * (ii2,1)) 
    `1 ) by 
    A189,
    A190,
    A191,
    A192,
    GOBOARD5: 2
    
        .= ((g
    /. i2) 
    `1 ) by 
    A179,
    A191,
    A192,
    A193,
    A194,
    GOBOARD5: 2;
    
        
    
        
    
    A221: (Gij 
    `2 ) 
    = ((( 
    Gauge (C,m)) 
    * (1,jj1)) 
    `2 ) by 
    A189,
    A190,
    A191,
    A192,
    GOBOARD5: 1
    
        .= ((f
    /. i1) 
    `2 ) by 
    A147,
    A187,
    A188,
    A189,
    A190,
    GOBOARD5: 1;
    
        
    
        
    
    A222: (Gji 
    `1 ) 
    = ((( 
    Gauge (C,m)) 
    * (ii1,1)) 
    `1 ) by 
    A187,
    A188,
    A193,
    A194,
    GOBOARD5: 2
    
        .= ((f
    /. i1) 
    `1 ) by 
    A147,
    A187,
    A188,
    A189,
    A190,
    GOBOARD5: 2;
    
        
    
        
    
    A223: (Gji 
    `2 ) 
    = ((( 
    Gauge (C,m)) 
    * (1,jj2)) 
    `2 ) by 
    A187,
    A188,
    A193,
    A194,
    GOBOARD5: 1
    
        .= ((g
    /. i2) 
    `2 ) by 
    A179,
    A191,
    A192,
    A193,
    A194,
    GOBOARD5: 1;
    
        
    
        
    
    A224: 
    |.(((g
    /. i2) 
    `1 ) 
    - (p 
    `1 )).| 
    <=  
    |.((g
    /. i2) 
    - p).| by 
    JGRAPH_1: 34;
    
        
    
        
    
    A225: 
    |.(((f
    /. i1) 
    `2 ) 
    - (p 
    `2 )).| 
    <=  
    |.((f
    /. i1) 
    - p).| by 
    JGRAPH_1: 34;
    
        
    
        
    
    A226: 
    |.(((g
    /. i2) 
    `1 ) 
    - (p 
    `1 )).| 
    <=  
    |.(p
    - (g 
    /. i2)).| by 
    A224,
    TOPRNS_1: 27;
    
        
    
        
    
    A227: 
    |.(((f
    /. i1) 
    `2 ) 
    - (p 
    `2 )).| 
    <=  
    |.(p
    - (f 
    /. i1)).| by 
    A225,
    TOPRNS_1: 27;
    
        
    
        
    
    A228: 
    |.(((g
    /. i2) 
    `1 ) 
    - (p 
    `1 )).| 
    <= (r 
    / 4) by 
    A183,
    A226,
    XXREAL_0: 2;
    
        
    |.(((f
    /. i1) 
    `2 ) 
    - (p 
    `2 )).| 
    <= (r 
    / 4) by 
    A165,
    A227,
    XXREAL_0: 2;
    
        then (
    |.(((g
    /. i2) 
    `1 ) 
    - (p 
    `1 )).| 
    +  
    |.(((f
    /. i1) 
    `2 ) 
    - (p 
    `2 )).|) 
    <= ((r 
    / (2 
    * 2)) 
    + (r 
    / (2 
    * 2))) by 
    A228,
    XREAL_1: 7;
    
        then
    
        
    
    A229: ( 
    |.(((g
    /. i2) 
    `1 ) 
    - (p 
    `1 )).| 
    +  
    |.(((f
    /. i1) 
    `2 ) 
    - (p 
    `2 )).|) 
    < r by 
    A204,
    XXREAL_0: 2;
    
        
    
        
    
    A230: 
    |.(((f
    /. i1) 
    `1 ) 
    - (p 
    `1 )).| 
    <=  
    |.((f
    /. i1) 
    - p).| by 
    JGRAPH_1: 34;
    
        
    
        
    
    A231: 
    |.(((g
    /. i2) 
    `2 ) 
    - (p 
    `2 )).| 
    <=  
    |.((g
    /. i2) 
    - p).| by 
    JGRAPH_1: 34;
    
        
    
        
    
    A232: 
    |.(((f
    /. i1) 
    `1 ) 
    - (p 
    `1 )).| 
    <=  
    |.(p
    - (f 
    /. i1)).| by 
    A230,
    TOPRNS_1: 27;
    
        
    
        
    
    A233: 
    |.(((g
    /. i2) 
    `2 ) 
    - (p 
    `2 )).| 
    <=  
    |.(p
    - (g 
    /. i2)).| by 
    A231,
    TOPRNS_1: 27;
    
        
    
        
    
    A234: 
    |.(((f
    /. i1) 
    `1 ) 
    - (p 
    `1 )).| 
    <= (r 
    / 4) by 
    A165,
    A232,
    XXREAL_0: 2;
    
        
    |.(((g
    /. i2) 
    `2 ) 
    - (p 
    `2 )).| 
    <= (r 
    / 4) by 
    A183,
    A233,
    XXREAL_0: 2;
    
        then (
    |.(((f
    /. i1) 
    `1 ) 
    - (p 
    `1 )).| 
    +  
    |.(((g
    /. i2) 
    `2 ) 
    - (p 
    `2 )).|) 
    <= ((r 
    / (2 
    * 2)) 
    + (r 
    / (2 
    * 2))) by 
    A234,
    XREAL_1: 7;
    
        then
    
        
    
    A235: ( 
    |.(((f
    /. i1) 
    `1 ) 
    - (p 
    `1 )).| 
    +  
    |.(((g
    /. i2) 
    `2 ) 
    - (p 
    `2 )).|) 
    < r by 
    A204,
    XXREAL_0: 2;
    
        
    |.(Gij
    - p).| 
    <= ( 
    |.(((g
    /. i2) 
    `1 ) 
    - (p 
    `1 )).| 
    +  
    |.(((f
    /. i1) 
    `2 ) 
    - (p 
    `2 )).|) by 
    A220,
    A221,
    JGRAPH_1: 32;
    
        then
    |.(Gij
    - p).| 
    < r by 
    A229,
    XXREAL_0: 2;
    
        then (
    dist (Gij9,p9)) 
    < r by 
    SPPOL_1: 39;
    
        then
    
        
    
    A236: Gij 
    in ( 
    Ball (p9,r)) by 
    METRIC_1: 11;
    
        
    |.(Gji
    - p).| 
    <= ( 
    |.(((f
    /. i1) 
    `1 ) 
    - (p 
    `1 )).| 
    +  
    |.(((g
    /. i2) 
    `2 ) 
    - (p 
    `2 )).|) by 
    A222,
    A223,
    JGRAPH_1: 32;
    
        then
    |.(Gji
    - p).| 
    < r by 
    A235,
    XXREAL_0: 2;
    
        then (
    dist (Gji9,p9)) 
    < r by 
    SPPOL_1: 39;
    
        then
    
        
    
    A237: Gji 
    in ( 
    Ball (p9,r)) by 
    METRIC_1: 11;
    
        
    
        
    
    A238: ( 
    LSeg ((g 
    /. i2),Gij)) 
    c= ( 
    Ball (p9,rr)) by 
    A185,
    A219,
    A236,
    TOPREAL3: 21;
    
        
    
        
    
    A239: ( 
    LSeg (Gij,(f 
    /. i1))) 
    c= ( 
    Ball (p9,rr)) by 
    A167,
    A219,
    A236,
    TOPREAL3: 21;
    
        
    
        
    
    A240: ( 
    LSeg ((g 
    /. i2),Gji)) 
    c= ( 
    Ball (p9,rr)) by 
    A185,
    A219,
    A237,
    TOPREAL3: 21;
    
        
    
        
    
    A241: ( 
    LSeg (Gji,(f 
    /. i1))) 
    c= ( 
    Ball (p9,rr)) by 
    A167,
    A219,
    A237,
    TOPREAL3: 21;
    
        now
    
          per cases ;
    
            suppose
    
            
    
    A242: jj2 
    <= jj1; 
    
            ((
    LSeg ((g 
    /. i2),Gij)) 
    \/ ( 
    LSeg (Gij,(f 
    /. i1)))) 
    c= ( 
    Ball (p9,r)) 
    
            proof
    
              let x be
    object;
    
              assume
    
              
    
    A243: x 
    in (( 
    LSeg ((g 
    /. i2),Gij)) 
    \/ ( 
    LSeg (Gij,(f 
    /. i1)))); 
    
              then
    
              reconsider x9 = x as
    Point of ( 
    TOP-REAL 2); 
    
              now
    
                per cases by
    A243,
    XBOOLE_0:def 3;
    
                  suppose x9
    in ( 
    LSeg ((g 
    /. i2),Gij)); 
    
                  hence x9
    in ( 
    Ball (p9,r)) by 
    A238;
    
                end;
    
                  suppose x9
    in ( 
    LSeg (Gij,(f 
    /. i1))); 
    
                  hence x9
    in ( 
    Ball (p9,r)) by 
    A239;
    
                end;
    
              end;
    
              hence thesis;
    
            end;
    
            hence (
    Ball (p9,r)) 
    meets ( 
    Lower_Arc C) by 
    A147,
    A168,
    A179,
    A186,
    A190,
    A193,
    A207,
    A211,
    A213,
    A215,
    A242,
    JORDAN15: 49,
    XBOOLE_1: 63;
    
          end;
    
            suppose
    
            
    
    A244: jj1 
    < jj2; 
    
            ((
    LSeg ((f 
    /. i1),Gji)) 
    \/ ( 
    LSeg (Gji,(g 
    /. i2)))) 
    c= ( 
    Ball (p9,r)) 
    
            proof
    
              let x be
    object;
    
              assume
    
              
    
    A245: x 
    in (( 
    LSeg ((f 
    /. i1),Gji)) 
    \/ ( 
    LSeg (Gji,(g 
    /. i2)))); 
    
              then
    
              reconsider x9 = x as
    Point of ( 
    TOP-REAL 2); 
    
              now
    
                per cases by
    A245,
    XBOOLE_0:def 3;
    
                  suppose x9
    in ( 
    LSeg ((f 
    /. i1),Gji)); 
    
                  hence x9
    in ( 
    Ball (p9,r)) by 
    A241;
    
                end;
    
                  suppose x9
    in ( 
    LSeg (Gji,(g 
    /. i2))); 
    
                  hence x9
    in ( 
    Ball (p9,r)) by 
    A240;
    
                end;
    
              end;
    
              hence thesis;
    
            end;
    
            hence (
    Ball (p9,r)) 
    meets ( 
    Lower_Arc C) by 
    A147,
    A168,
    A179,
    A186,
    A189,
    A194,
    A207,
    A211,
    A213,
    A215,
    A244,
    Th24,
    XBOOLE_1: 63;
    
          end;
    
        end;
    
        hence (
    Ball (p9,r)) 
    meets ( 
    Lower_Arc C); 
    
      end;
    
      then p
    in ( 
    Cl ( 
    Lower_Arc C)) by 
    A8,
    GOBOARD6: 93;
    
      then p
    in ( 
    Lower_Arc C) by 
    PRE_TOPC: 22;
    
      then p
    in (( 
    Upper_Arc C) 
    /\ ( 
    Lower_Arc C)) by 
    A127,
    XBOOLE_0:def 4;
    
      then p
    in  
    {(
    W-min C), ( 
    E-max C)} by 
    JORDAN6: 50;
    
      then p
    = ( 
    W-min C) or p 
    = ( 
    E-max C) by 
    TARSKI:def 2;
    
      hence contradiction by
    A1,
    A2,
    EUCLID: 52;
    
    end;
    
    theorem :: 
    
    JORDAN19:27
    
    for C be
    Simple_closed_curve holds for p be 
    Point of ( 
    TOP-REAL 2) st (p 
    `1 ) 
    = ((( 
    W-bound C) 
    + ( 
    E-bound C)) 
    / 2) holds not (p 
    in ( 
    North_Arc C) & p 
    in ( 
    South_Arc C)) 
    
    proof
    
      let C be
    Simple_closed_curve;
    
      let p be
    Point of ( 
    TOP-REAL 2); 
    
      
    
      
    
    A1: ( 
    W-bound C) 
    < ( 
    E-bound C) by 
    SPRECT_1: 31;
    
      assume
    
      
    
    A2: (p 
    `1 ) 
    = ((( 
    W-bound C) 
    + ( 
    E-bound C)) 
    / 2); 
    
      then
    
      
    
    A3: ( 
    W-bound C) 
    < (p 
    `1 ) by 
    A1,
    XREAL_1: 226;
    
      (p
    `1 ) 
    < ( 
    E-bound C) by 
    A1,
    A2,
    XREAL_1: 226;
    
      hence thesis by
    A3,
    Th26;
    
    end;