niven.miz
begin
reserve r,t for
Real;
reserve i for
Integer;
reserve k,n for
Nat;
reserve p for
Polynomial of
F_Real ;
reserve e for
Element of
F_Real ;
reserve L for non
empty
ZeroStr;
reserve z,z0,z1,z2 for
Element of L;
Lm1: (2
-' 1)
= (2
- 1) by
XREAL_0:def 2;
Lm2: (3
-' 1)
= (3
- 1) by
XREAL_0:def 2;
theorem ::
NIVEN:1
Th1: for a,b,c,d be
Complex st b
<>
0 & (a
/ b)
= (c
/ d) holds a
= ((b
* c)
/ d)
proof
let a,b,c,d be
Complex;
assume that
A1: b
<>
0 and
A2: (a
/ b)
= (c
/ d);
thus a
= (b
* (a
/ b)) by
A1,
XCMPLX_1: 87
.= ((b
* c)
/ d) by
A2,
XCMPLX_1: 74;
end;
theorem ::
NIVEN:2
Th2: for a,b be
Real st
|.a.|
= b holds a
= b or a
= (
- b)
proof
let a be
Real;
|.a.|
= a or
|.a.|
= (
- a) by
COMPLEX1: 71;
hence thesis;
end;
theorem ::
NIVEN:3
Th3:
|.i.|
<= 2 implies i
= (
- 2) or i
= (
- 1) or i
=
0 or i
= 1 or i
= 2
proof
assume
|.i.|
<= 2;
then
|.i.|
=
0 or ... or
|.i.|
= 2;
hence thesis by
ABSVALUE: 2,
Th2;
end;
theorem ::
NIVEN:4
Th4: n
<>
0 implies i
divides (i
|^ n)
proof
assume n
<>
0 ;
then
consider b be
Nat such that
A1: n
= (b
+ 1) by
NAT_1: 6;
reconsider b as
Element of
NAT by
ORDINAL1:def 12;
(i
|^ 1)
divides (i
|^ (b
+ 1)) by
NAT_1: 12,
NEWTON03: 16;
hence thesis by
A1;
end;
theorem ::
NIVEN:5
Th16: t
>
0 implies ex i st (t
* i)
<= r
<= (t
* (i
+ 1))
proof
assume
A0: t
>
0 ;
defpred
P[
Integer] means (t
* $1)
<= r;
g: ex i1 be
Integer st
P[i1]
proof
take i1 =
[\(r
/ t)/];
i1
<= (r
/ t) by
INT_1:def 6;
then (i1
* t)
<= ((r
/ t)
* t) by
A0,
XREAL_1: 64;
then (t
* i1)
<= (r
/ (t
/ t)) by
XCMPLX_1: 82;
hence (t
* i1)
<= r by
A0,
XCMPLX_1: 51;
end;
set F =
[/(r
/ t)\];
f: for i1 be
Integer st
P[i1] holds i1
<= F
proof
let i1 be
Integer;
assume
P[i1];
then ((i1
* t)
/ t)
<= (r
/ t) by
A0,
XREAL_1: 72;
then (i1
* (t
/ t))
<= (r
/ t);
then (i1
* 1)
<= (r
/ t) & (r
/ t)
<=
[/(r
/ t)\] by
A0,
XCMPLX_1: 60,
INT_1:def 7;
hence i1
<= F by
XXREAL_0: 2;
end;
consider i such that
i:
P[i] & for i1 be
Integer st
P[i1] holds i1
<= i from
INT_1:sch 6(
f,
g);
take i;
thus (t
* i)
<= r by
i;
(i
+ 1)
> (i
+
0 ) by
XREAL_1: 6;
hence r
<= (t
* (i
+ 1)) by
i;
end;
theorem ::
NIVEN:6
Th49: for p be
FinSequence of
F_Real holds for q be
real-valued
FinSequence st p
= q holds (
Sum p)
= (
Sum q)
proof
defpred
P[
FinSequence] means for p be
FinSequence of
F_Real holds for q be
real-valued
FinSequence st p
= q & p
= $1 holds (
Sum p)
= (
Sum q);
A1:
P[
{} ]
proof
let p be
FinSequence of
F_Real ;
let q be
real-valued
FinSequence;
assume
A2: p
= q & p
=
{} ;
then p
= (
<*> the
carrier of
F_Real ) & q
= (
<*>
REAL );
hence (
Sum p)
= (
0.
F_Real ) by
RLVECT_1: 43
.= (
Sum q) by
A2,
RVSUM_1: 72;
end;
A3: for f be
FinSequence, x be
object st
P[f] holds
P[(f
^
<*x*>)]
proof
let f be
FinSequence, x be
object;
assume
A4:
P[f];
thus
P[(f
^
<*x*>)]
proof
let p1 be
FinSequence of
F_Real ;
let q1 be
real-valued
FinSequence;
assume
A5: p1
= q1 & p1
= (f
^
<*x*>);
reconsider fp = f as
FinSequence of
F_Real by
A5,
FINSEQ_1: 36;
(
rng fp)
c=
REAL ;
then
reconsider fq = f as
real-valued
FinSequence;
<*x*> is
FinSequence of
F_Real by
A5,
FINSEQ_1: 36;
then (
rng
<*x*>)
c= the
carrier of
F_Real by
FINSEQ_1:def 4;
then
{x}
c= the
carrier of
F_Real by
FINSEQ_1: 38;
then
reconsider xp = x as
Element of
F_Real by
ZFMISC_1: 31;
reconsider xq = xp as
Real;
thus (
Sum p1)
= ((
Sum fp)
+ (
Sum
<*xp*>)) by
A5,
RLVECT_1: 41
.= ((
Sum fp)
+ xp) by
RLVECT_1: 44
.= ((
Sum fq)
+ xq) by
A4
.= (
Sum q1) by
A5,
RVSUM_1: 74;
end;
end;
let p be
FinSequence of
F_Real ;
let q be
real-valued
FinSequence;
for f be
FinSequence holds
P[f] from
FINSEQ_1:sch 3(
A1,
A3);
hence thesis;
end;
theorem ::
NIVEN:7
Th48: for i be
Nat, r be
Element of
F_Real holds ((
power
F_Real )
. (r,i))
= (r
|^ i)
proof
let i be
Nat;
let r be
Element of
F_Real ;
defpred
P[
Nat] means ((
power
F_Real )
. (r,$1))
= (r
|^ $1);
((
power
F_Real )
. (r,
0 ))
= (
1_
F_Real ) by
GROUP_1:def 7
.= (r
|^
0 ) by
NEWTON: 4;
then
A1:
P[
0 ];
A2:
now
let n be
Nat;
assume
A3:
P[n];
((
power
F_Real )
. (r,(n
+ 1)))
= (((
power
F_Real )
. (r,n))
* r) by
GROUP_1:def 7
.= (r
|^ (n
+ 1)) by
A3,
NEWTON: 6;
hence
P[(n
+ 1)];
end;
for n be
Nat holds
P[n] from
NAT_1:sch 2(
A1,
A2);
hence ((
power
F_Real )
. (r,i))
= (r
|^ i);
end;
theorem ::
NIVEN:8
Th5: (
sin ((5
*
PI )
/ 6))
= (1
/ 2)
proof
((5
*
PI )
/ 6)
= (
PI
- (
PI
/ 6));
hence thesis by
EUCLID10: 1,
EUCLID10: 17;
end;
theorem ::
NIVEN:9
(
sin (((5
*
PI )
/ 6)
+ ((2
*
PI )
* i)))
= (1
/ 2) by
COMPLEX2: 8,
Th5;
theorem ::
NIVEN:10
Th7: (
sin ((7
*
PI )
/ 6))
= (
- (1
/ 2))
proof
((7
*
PI )
/ 6)
= (
PI
+ (
PI
/ 6));
hence thesis by
EUCLID10: 17,
SIN_COS: 79;
end;
theorem ::
NIVEN:11
(
sin (((7
*
PI )
/ 6)
+ ((2
*
PI )
* i)))
= (
- (1
/ 2)) by
COMPLEX2: 8,
Th7;
theorem ::
NIVEN:12
Th9: (
sin ((11
*
PI )
/ 6))
= (
- (1
/ 2))
proof
((11
*
PI )
/ 6)
= ((2
*
PI )
- (
PI
/ 6));
hence thesis by
EUCLID10: 3,
EUCLID10: 17;
end;
theorem ::
NIVEN:13
(
sin (((11
*
PI )
/ 6)
+ ((2
*
PI )
* i)))
= (
- (1
/ 2)) by
COMPLEX2: 8,
Th9;
theorem ::
NIVEN:14
Th11: (
cos ((4
*
PI )
/ 3))
= (
- (1
/ 2))
proof
((4
*
PI )
/ 3)
= (
PI
+ (
PI
/ 3));
hence thesis by
EUCLID10: 14,
SIN_COS: 79;
end;
theorem ::
NIVEN:15
(
cos (((4
*
PI )
/ 3)
+ ((2
*
PI )
* i)))
= (
- (1
/ 2)) by
COMPLEX2: 9,
Th11;
theorem ::
NIVEN:16
Th13: (
cos ((5
*
PI )
/ 3))
= (1
/ 2)
proof
((5
*
PI )
/ 3)
= (
PI
+ ((2
*
PI )
/ 3));
hence (
cos ((5
*
PI )
/ 3))
= (
- (
cos ((2
*
PI )
/ 3))) by
SIN_COS: 79
.= (1
/ 2) by
EUCLID10: 23;
end;
theorem ::
NIVEN:17
(
cos (((5
*
PI )
/ 3)
+ ((2
*
PI )
* i)))
= (1
/ 2) by
COMPLEX2: 9,
Th13;
theorem ::
NIVEN:18
Th15:
0
<= r
<= (
PI
/ 2) & (
cos r)
= (1
/ 2) implies r
= (
PI
/ 3)
proof
set X =
[.
0 , (
PI
/ 2).];
set f = (
cos
| X);
assume that
A1:
0
<= r and
A2: r
<= (
PI
/ 2);
A3: r
in X by
A1,
A2,
XXREAL_1: 1;
assume
A4: (
cos r)
= (1
/ 2);
A5: (
dom
cos )
=
REAL by
FUNCT_2:def 1;
A6: (
PI
/ 3)
<= (
PI
/ 2) by
XREAL_1: 76;
then
A7: (
PI
/ 3)
in X by
XXREAL_1: 1;
A8: (
dom f)
= X by
A5,
RELAT_1: 62;
then (f
. r)
= (
cos (
PI
/ 3)) by
A1,
A2,
A4,
EUCLID10: 14,
XXREAL_1: 1,
FUNCT_1: 47
.= (f
. (
PI
/ 3)) by
A6,
A8,
XXREAL_1: 1,
FUNCT_1: 47;
hence thesis by
A3,
A7,
A8,
FUNCT_1:def 4;
end;
theorem ::
NIVEN:19
Th17: for L be
add-associative
right_zeroed
right_complementable
left-distributive non
empty
doubleLoopStr holds for p be
sequence of L holds ((
0_. L)
*' p)
= (
0_. L)
proof
let L be
add-associative
right_zeroed
right_complementable
left-distributive non
empty
doubleLoopStr;
let p be
sequence of L;
now
let i be
Element of
NAT ;
consider r be
FinSequence of L such that (
len r)
= (i
+ 1) and
A1: (((
0_. L)
*' p)
. i)
= (
Sum r) and
A2: for k be
Element of
NAT st k
in (
dom r) holds (r
. k)
= (((
0_. L)
. (k
-' 1))
* (p
. ((i
+ 1)
-' k))) by
POLYNOM3:def 9;
now
let k be
Element of
NAT ;
assume k
in (
dom r);
hence (r
. k)
= (((
0_. L)
. (k
-' 1))
* (p
. ((i
+ 1)
-' k))) by
A2
.= ((
0. L)
* (p
. ((i
+ 1)
-' k))) by
FUNCOP_1: 7
.= (
0. L);
end;
hence (((
0_. L)
*' p)
. i)
= (
0. L) by
A1,
POLYNOM3: 1
.= ((
0_. L)
. i) by
FUNCOP_1: 7;
end;
hence thesis by
FUNCT_2:def 8;
end;
registration
let L, z, n;
cluster ((
0_. L)
+* (n,z)) ->
finite-Support;
coherence
proof
let s be
sequence of L such that
A1: s
= ((
0_. L)
+* (n,z));
take (n
+ 1);
let i be
Nat;
assume (n
+ 1)
<= i;
then n
< i by
NAT_1: 13;
hence (s
. i)
= ((
0_. L)
. i) by
A1,
FUNCT_7: 32
.= (
0. L) by
ORDINAL1:def 12,
FUNCOP_1: 7;
end;
end
theorem ::
NIVEN:20
Th18: z
<> (
0. L) implies for p be
Polynomial of L st p
= ((
0_. L)
+* (n,z)) holds (
len p)
= (n
+ 1)
proof
assume
A1: z
<> (
0. L);
let p be
Polynomial of L;
assume
A2: p
= ((
0_. L)
+* (n,z));
A3: (n
+ 1)
is_at_least_length_of p
proof
let i be
Nat such that
A4: i
>= (n
+ 1);
i
> n by
A4,
NAT_1: 13;
hence (p
. i)
= ((
0_. L)
. i) by
A2,
FUNCT_7: 32
.= (
0. L) by
ORDINAL1:def 12,
FUNCOP_1: 7;
end;
for m be
Nat st m
is_at_least_length_of p holds (n
+ 1)
<= m
proof
let m be
Nat;
assume
A5: m
is_at_least_length_of p;
assume
A6: (n
+ 1)
> m;
(
dom (
0_. L))
=
NAT by
FUNCOP_1: 13;
then (p
. n)
= z by
A2,
ORDINAL1:def 12,
FUNCT_7: 31;
hence contradiction by
A1,
A5,
A6,
NAT_1: 13;
end;
hence thesis by
A3,
ALGSEQ_1:def 3;
end;
theorem ::
NIVEN:21
z
<> (
0. L) implies for p be
Polynomial of L st p
= ((
0_. L)
+* (n,z)) holds (
deg p)
= n
proof
assume
A1: z
<> (
0. L);
let p be
Polynomial of L;
assume p
= ((
0_. L)
+* (n,z));
hence (
deg p)
= ((n
+ 1)
- 1) by
A1,
Th18
.= n;
end;
registration
cluster (
0_.
F_Real ) ->
INT
-valued;
coherence ;
cluster (
1_.
F_Real ) ->
INT
-valued;
coherence ;
end
registration
cluster
integer for
Element of
F_Real ;
existence ;
end
theorem ::
NIVEN:22
Th20: (
rng
<%z%>)
=
{z, (
0. L)}
proof
set p =
<%z%>;
A1: (p
.
0 )
= z by
ALGSEQ_1:def 5;
A2: (
dom p)
=
NAT by
FUNCT_2:def 1;
thus (
rng p)
c=
{z, (
0. L)}
proof
let y be
object;
assume y
in (
rng p);
then
consider x be
object such that
A3: x
in (
dom p) and
A4: (p
. x)
= y by
FUNCT_1:def 3;
reconsider x as
Element of
NAT by
A3;
per cases ;
suppose x
=
0 ;
hence thesis by
A4,
A1,
TARSKI:def 2;
end;
suppose x
<>
0 ;
then (p
. x)
= (
0. L) by
POLYNOM5: 32,
NAT_1: 14;
hence thesis by
A4,
TARSKI:def 2;
end;
end;
let y be
object;
assume y
in
{z, (
0. L)};
per cases by
TARSKI:def 2;
suppose y
= z;
hence thesis by
A1,
A2,
FUNCT_1:def 3;
end;
suppose
A5: y
= (
0. L);
(p
. 1)
= (
0. L) by
POLYNOM5: 32;
hence thesis by
A2,
A5,
FUNCT_1:def 3;
end;
end;
definition
let L, z0, z1, z2;
::
NIVEN:def1
func
<%z0,z1,z2%> ->
sequence of L equals ((((
0_. L)
+* (
0 ,z0))
+* (1,z1))
+* (2,z2));
coherence ;
end
theorem ::
NIVEN:23
Th21: (
<%z0, z1, z2%>
.
0 )
= z0
proof
A1: (
dom (
0_. L))
=
NAT by
FUNCOP_1: 13;
thus (
<%z0, z1, z2%>
.
0 )
= ((((
0_. L)
+* (
0 ,z0))
+* (1,z1))
.
0 ) by
FUNCT_7: 32
.= (((
0_. L)
+* (
0 ,z0))
.
0 ) by
FUNCT_7: 32
.= z0 by
A1,
FUNCT_7: 31;
end;
theorem ::
NIVEN:24
Th22: (
<%z0, z1, z2%>
. 1)
= z1
proof
A1: (
dom ((
0_. L)
+* (
0 ,z0)))
= (
dom (
0_. L)) by
FUNCT_7: 30
.=
NAT by
FUNCOP_1: 13;
thus (
<%z0, z1, z2%>
. 1)
= ((((
0_. L)
+* (
0 ,z0))
+* (1,z1))
. 1) by
FUNCT_7: 32
.= z1 by
A1,
FUNCT_7: 31;
end;
theorem ::
NIVEN:25
Th23: (
<%z0, z1, z2%>
. 2)
= z2
proof
(
dom (((
0_. L)
+* (
0 ,z0))
+* (1,z1)))
= (
dom ((
0_. L)
+* (
0 ,z0))) by
FUNCT_7: 30
.= (
dom (
0_. L)) by
FUNCT_7: 30
.=
NAT by
FUNCOP_1: 13;
hence (
<%z0, z1, z2%>
. 2)
= z2 by
FUNCT_7: 31;
end;
theorem ::
NIVEN:26
Th24: 3
<= n implies (
<%z0, z1, z2%>
. n)
= (
0. L)
proof
assume
A1: 3
<= n;
then
A2: n
<>
0 & n
<> 1 & n
<> 2;
hence (
<%z0, z1, z2%>
. n)
= ((((
0_. L)
+* (
0 ,z0))
+* (1,z1))
. n) by
FUNCT_7: 32
.= (((
0_. L)
+* (
0 ,z0))
. n) by
A2,
FUNCT_7: 32
.= ((
0_. L)
. n) by
A1,
FUNCT_7: 32
.= (
0. L) by
ORDINAL1:def 12,
FUNCOP_1: 7;
end;
registration
let L, z0, z1, z2;
cluster
<%z0, z1, z2%> ->
finite-Support;
coherence
proof
take 3;
thus thesis by
Th24;
end;
end
theorem ::
NIVEN:27
Th25: (
len
<%z0, z1, z2%>)
<= 3
proof
3
is_at_least_length_of
<%z0, z1, z2%> by
Th24;
hence thesis by
ALGSEQ_1:def 3;
end;
theorem ::
NIVEN:28
Th26: z2
<> (
0. L) implies (
len
<%z0, z1, z2%>)
= 3
proof
assume z2
<> (
0. L);
then (
<%z0, z1, z2%>
. 2)
<> (
0. L) by
Th23;
then
A1: for n be
Nat st n
is_at_least_length_of
<%z0, z1, z2%> holds (2
+ 1)
<= n by
NAT_1: 13;
3
is_at_least_length_of
<%z0, z1, z2%> by
Th24;
hence thesis by
A1,
ALGSEQ_1:def 3;
end;
theorem ::
NIVEN:29
Th27: for L be
right_zeroed non
empty
addLoopStr holds for z0,z1 be
Element of L holds (
<%z0%>
+
<%z1%>)
=
<%(z0
+ z1)%>
proof
let L be
right_zeroed non
empty
addLoopStr;
let z0,z1 be
Element of L;
set p =
<%z0%>;
set q =
<%z1%>;
set r =
<%(z0
+ z1)%>;
let n be
Element of
NAT ;
per cases ;
suppose n
=
0 ;
then (p
. n)
= z0 & (q
. n)
= z1 & (r
. n)
= (z0
+ z1) by
POLYNOM5: 32;
hence thesis by
NORMSP_1:def 2;
end;
suppose n
>
0 ;
then n
>= (
0
+ 1) by
NAT_1: 13;
then
A1: (p
. n)
= (
0. L) & (q
. n)
= (
0. L) & (r
. n)
= (
0. L) by
POLYNOM5: 32;
((
0. L)
+ (
0. L))
= (
0. L) by
RLVECT_1:def 4;
hence thesis by
A1,
NORMSP_1:def 2;
end;
end;
theorem ::
NIVEN:30
Th28: for L be
right_zeroed non
empty
addLoopStr holds for z0,z1,z2,z3 be
Element of L holds (
<%z0, z1%>
+
<%z2, z3%>)
=
<%(z0
+ z2), (z1
+ z3)%>
proof
let L be
right_zeroed non
empty
addLoopStr;
let z0,z1,z2,z3 be
Element of L;
set p =
<%z0, z1%>;
set q =
<%z2, z3%>;
set r =
<%(z0
+ z2), (z1
+ z3)%>;
let n be
Element of
NAT ;
(n
=
0 or ... or n
= 1) or n
> 1;
per cases ;
suppose n
=
0 ;
then (p
. n)
= z0 & (q
. n)
= z2 & (r
. n)
= (z0
+ z2) by
POLYNOM5: 38;
hence thesis by
NORMSP_1:def 2;
end;
suppose n
= 1;
then (p
. n)
= z1 & (q
. n)
= z3 & (r
. n)
= (z1
+ z3) by
POLYNOM5: 38;
hence thesis by
NORMSP_1:def 2;
end;
suppose n
> 1;
then n
>= (1
+ 1) by
NAT_1: 13;
then
A1: (p
. n)
= (
0. L) & (q
. n)
= (
0. L) & (r
. n)
= (
0. L) by
POLYNOM5: 38;
((
0. L)
+ (
0. L))
= (
0. L) by
RLVECT_1:def 4;
hence thesis by
A1,
NORMSP_1:def 2;
end;
end;
theorem ::
NIVEN:31
Th29: for L be
right_zeroed non
empty
addLoopStr holds for z0,z1,z2,z3,z4,z5 be
Element of L holds (
<%z0, z1, z2%>
+
<%z3, z4, z5%>)
=
<%(z0
+ z3), (z1
+ z4), (z2
+ z5)%>
proof
let L be
right_zeroed non
empty
addLoopStr;
let z0,z1,z2,z3,z4,z5 be
Element of L;
set p =
<%z0, z1, z2%>;
set q =
<%z3, z4, z5%>;
set r =
<%(z0
+ z3), (z1
+ z4), (z2
+ z5)%>;
let n be
Element of
NAT ;
(n
=
0 or ... or n
= 2) or n
> 2;
per cases ;
suppose n
=
0 ;
then (p
. n)
= z0 & (q
. n)
= z3 & (r
. n)
= (z0
+ z3) by
Th21;
hence thesis by
NORMSP_1:def 2;
end;
suppose n
= 1;
then (p
. n)
= z1 & (q
. n)
= z4 & (r
. n)
= (z1
+ z4) by
Th22;
hence thesis by
NORMSP_1:def 2;
end;
suppose n
= 2;
then (p
. n)
= z2 & (q
. n)
= z5 & (r
. n)
= (z2
+ z5) by
Th23;
hence thesis by
NORMSP_1:def 2;
end;
suppose n
> 2;
then n
>= (2
+ 1) by
NAT_1: 13;
then
A1: (p
. n)
= (
0. L) & (q
. n)
= (
0. L) & (r
. n)
= (
0. L) by
Th24;
((
0. L)
+ (
0. L))
= (
0. L) by
RLVECT_1:def 4;
hence thesis by
A1,
NORMSP_1:def 2;
end;
end;
theorem ::
NIVEN:32
Th30: for L be
add-associative
right_zeroed
right_complementable non
empty
addLoopStr holds for z0 be
Element of L holds (
-
<%z0%>)
=
<%(
- z0)%>
proof
let L be
add-associative
right_zeroed
right_complementable non
empty
addLoopStr;
let z0 be
Element of L;
set p =
<%z0%>;
set r =
<%(
- z0)%>;
let n be
Element of
NAT ;
A1: (
dom (
- p))
=
NAT by
FUNCT_2:def 1;
A2: ((
- p)
. n)
= ((
- p)
/. n)
.= (
- (p
/. n)) by
A1,
VFUNCT_1:def 5
.= (
- (p
. n));
per cases ;
suppose n
=
0 ;
then (p
. n)
= z0 & (r
. n)
= (
- z0) by
POLYNOM5: 32;
hence thesis by
A2;
end;
suppose n
>
0 ;
then n
>= (
0
+ 1) by
NAT_1: 13;
then (p
. n)
= (
0. L) & (r
. n)
= (
0. L) by
POLYNOM5: 32;
hence thesis by
A2;
end;
end;
theorem ::
NIVEN:33
Th31: for L be
add-associative
right_zeroed
right_complementable non
empty
addLoopStr holds for z0,z1 be
Element of L holds (
-
<%z0, z1%>)
=
<%(
- z0), (
- z1)%>
proof
let L be
add-associative
right_zeroed
right_complementable non
empty
addLoopStr;
let z0,z1 be
Element of L;
set p =
<%z0, z1%>;
set r =
<%(
- z0), (
- z1)%>;
let n be
Element of
NAT ;
A1: (
dom (
- p))
=
NAT by
FUNCT_2:def 1;
A2: ((
- p)
. n)
= ((
- p)
/. n)
.= (
- (p
/. n)) by
A1,
VFUNCT_1:def 5
.= (
- (p
. n));
(n
=
0 or ... or n
= 1) or n
> 1;
per cases ;
suppose n
=
0 ;
then (p
. n)
= z0 & (r
. n)
= (
- z0) by
POLYNOM5: 38;
hence thesis by
A2;
end;
suppose n
= 1;
then (p
. n)
= z1 & (r
. n)
= (
- z1) by
POLYNOM5: 38;
hence thesis by
A2;
end;
suppose n
> 1;
then n
>= (1
+ 1) by
NAT_1: 13;
then (p
. n)
= (
0. L) & (r
. n)
= (
0. L) by
POLYNOM5: 38;
hence thesis by
A2;
end;
end;
theorem ::
NIVEN:34
Th32: for L be
add-associative
right_zeroed
right_complementable non
empty
addLoopStr holds for z0,z1,z2 be
Element of L holds (
-
<%z0, z1, z2%>)
=
<%(
- z0), (
- z1), (
- z2)%>
proof
let L be
add-associative
right_zeroed
right_complementable non
empty
addLoopStr;
let z0,z1,z2 be
Element of L;
set p =
<%z0, z1, z2%>;
set r =
<%(
- z0), (
- z1), (
- z2)%>;
let n be
Element of
NAT ;
A1: (
dom (
- p))
=
NAT by
FUNCT_2:def 1;
A2: ((
- p)
. n)
= ((
- p)
/. n)
.= (
- (p
/. n)) by
A1,
VFUNCT_1:def 5
.= (
- (p
. n));
(n
=
0 or ... or n
= 2) or n
> 2;
per cases ;
suppose n
=
0 ;
then (p
. n)
= z0 & (r
. n)
= (
- z0) by
Th21;
hence thesis by
A2;
end;
suppose n
= 1;
then (p
. n)
= z1 & (r
. n)
= (
- z1) by
Th22;
hence thesis by
A2;
end;
suppose n
= 2;
then (p
. n)
= z2 & (r
. n)
= (
- z2) by
Th23;
hence thesis by
A2;
end;
suppose n
> 2;
then n
>= (2
+ 1) by
NAT_1: 13;
then (p
. n)
= (
0. L) & (r
. n)
= (
0. L) by
Th24;
hence thesis by
A2;
end;
end;
theorem ::
NIVEN:35
for L be
add-associative
right_zeroed
right_complementable non
empty
addLoopStr holds for z0,z1 be
Element of L holds (
<%z0%>
-
<%z1%>)
=
<%(z0
- z1)%>
proof
let L be
add-associative
right_zeroed
right_complementable non
empty
addLoopStr;
let z0,z1 be
Element of L;
thus (
<%z0%>
-
<%z1%>)
= (
<%z0%>
+
<%(
- z1)%>) by
Th30
.=
<%(z0
- z1)%> by
Th27;
end;
theorem ::
NIVEN:36
for L be
add-associative
right_zeroed
right_complementable non
empty
addLoopStr holds for z0,z1,z2,z3 be
Element of L holds (
<%z0, z1%>
-
<%z2, z3%>)
=
<%(z0
- z2), (z1
- z3)%>
proof
let L be
add-associative
right_zeroed
right_complementable non
empty
addLoopStr;
let z0,z1,z2,z3 be
Element of L;
thus (
<%z0, z1%>
-
<%z2, z3%>)
= (
<%z0, z1%>
+
<%(
- z2), (
- z3)%>) by
Th31
.=
<%(z0
- z2), (z1
- z3)%> by
Th28;
end;
theorem ::
NIVEN:37
for L be
add-associative
right_zeroed
right_complementable non
empty
addLoopStr holds for z0,z1,z2,z3,z4,z5 be
Element of L holds (
<%z0, z1, z2%>
-
<%z3, z4, z5%>)
=
<%(z0
- z3), (z1
- z4), (z2
- z5)%>
proof
let L be
add-associative
right_zeroed
right_complementable non
empty
addLoopStr;
let z0,z1,z2,z3,z4,z5 be
Element of L;
thus (
<%z0, z1, z2%>
-
<%z3, z4, z5%>)
= (
<%z0, z1, z2%>
+
<%(
- z3), (
- z4), (
- z5)%>) by
Th32
.=
<%(z0
- z3), (z1
- z4), (z2
- z5)%> by
Th29;
end;
theorem ::
NIVEN:38
Th36: for L be
add-associative
right_zeroed
right_complementable
left-distributive
unital
associative non
empty
doubleLoopStr holds for z0,z1,z2,x be
Element of L holds (
eval (
<%z0, z1, z2%>,x))
= ((z0
+ (z1
* x))
+ ((z2
* x)
* x))
proof
let L be
add-associative
right_zeroed
right_complementable
left-distributive
unital
associative non
empty
doubleLoopStr;
let z0,z1,z2,x be
Element of L;
consider F be
FinSequence of L such that
A1: (
eval (
<%z0, z1, z2%>,x))
= (
Sum F) and
A2: (
len F)
= (
len
<%z0, z1, z2%>) and
A3: for n be
Element of
NAT st n
in (
dom F) holds (F
. n)
= ((
<%z0, z1, z2%>
. (n
-' 1))
* ((
power L)
. (x,(n
-' 1)))) by
POLYNOM4:def 2;
A4:
now
assume 1
in (
dom F);
hence (F
. 1)
= ((
<%z0, z1, z2%>
. (1
-' 1))
* ((
power L)
. (x,(1
-' 1)))) by
A3
.= ((
<%z0, z1, z2%>
.
0 )
* ((
power L)
. (x,(1
-' 1)))) by
XREAL_1: 232
.= ((
<%z0, z1, z2%>
.
0 )
* ((
power L)
. (x,
0 ))) by
XREAL_1: 232
.= (z0
* ((
power L)
. (x,
0 ))) by
Th21
.= (z0
* (
1_ L)) by
GROUP_1:def 7
.= z0 by
GROUP_1:def 4;
end;
A5:
now
assume 2
in (
dom F);
hence (F
. 2)
= ((
<%z0, z1, z2%>
. (2
-' 1))
* ((
power L)
. (x,(2
-' 1)))) by
A3
.= (z1
* ((
power L)
. (x,1))) by
Lm1,
Th22
.= (z1
* x) by
GROUP_1: 50;
end;
(
len F)
=
0 or ... or (
len F)
= 3 by
A2,
Th25;
per cases ;
suppose (
len F)
=
0 ;
then
A6:
<%z0, z1, z2%>
= (
0_. L) by
A2,
POLYNOM4: 5;
hence (
eval (
<%z0, z1, z2%>,x))
= (
0. L) by
POLYNOM4: 17
.= ((
0_. L)
.
0 ) by
FUNCOP_1: 7
.= ((z0
+ (
0. L))
+ (
0. L)) by
A6,
Th21
.= ((z0
+ (((
0_. L)
. 1)
* x))
+ (((
0. L)
* x)
* x)) by
FUNCOP_1: 7
.= ((z0
+ (((
0_. L)
. 1)
* x))
+ ((((
0_. L)
. 2)
* x)
* x)) by
FUNCOP_1: 7
.= ((z0
+ (z1
* x))
+ ((((
0_. L)
. 2)
* x)
* x)) by
A6,
Th22
.= ((z0
+ (z1
* x))
+ ((z2
* x)
* x)) by
A6,
Th23;
end;
suppose
A7: (
len F)
= 1;
then (
0
+ 1)
in (
Seg (
len F)) by
FINSEQ_1: 1;
then F
=
<*z0*> by
A4,
A7,
FINSEQ_1:def 3,
FINSEQ_1: 40;
hence (
eval (
<%z0, z1, z2%>,x))
= z0 by
A1,
RLVECT_1: 44
.= ((z0
+ ((
0. L)
* x))
+ (((
<%z0, z1, z2%>
. 2)
* x)
* x)) by
A2,
A7,
ALGSEQ_1: 8
.= ((z0
+ ((
<%z0, z1, z2%>
. 1)
* x))
+ (((
<%z0, z1, z2%>
. 2)
* x)
* x)) by
A2,
A7,
ALGSEQ_1: 8
.= ((z0
+ (z1
* x))
+ (((
<%z0, z1, z2%>
. 2)
* x)
* x)) by
Th22
.= ((z0
+ (z1
* x))
+ ((z2
* x)
* x)) by
Th23;
end;
suppose
A8: (
len F)
= 2;
F
=
<*z0, (z1
* x)*> by
A4,
A5,
A8,
FINSEQ_1: 44,
FINSEQ_3: 25;
hence (
eval (
<%z0, z1, z2%>,x))
= ((z0
+ (z1
* x))
+ (((
0. L)
* x)
* x)) by
A1,
RLVECT_1: 45
.= ((z0
+ (z1
* x))
+ (((
<%z0, z1, z2%>
. 2)
* x)
* x)) by
A2,
A8,
ALGSEQ_1: 8
.= ((z0
+ (z1
* x))
+ ((z2
* x)
* x)) by
Th23;
end;
suppose
A9: (
len F)
= 3;
(F
. 3)
= ((
<%z0, z1, z2%>
. (3
-' 1))
* ((
power L)
. (x,(3
-' 1)))) by
A3,
A9,
FINSEQ_3: 25
.= (z2
* ((
power L)
. (x,2))) by
Lm2,
Th23
.= (z2
* (x
* x)) by
GROUP_1: 51
.= ((z2
* x)
* x) by
GROUP_1:def 3;
then F
=
<*z0, (z1
* x), ((z2
* x)
* x)*> by
A4,
A5,
A9,
FINSEQ_1: 45,
FINSEQ_3: 25;
hence thesis by
A1,
RLVECT_1: 46;
end;
end;
registration
let a be
integer
Element of
F_Real ;
cluster
<%a%> ->
INT
-valued;
coherence
proof
(
rng
<%a%>)
c=
{a, (
0.
F_Real )} by
Th20;
hence (
rng
<%a%>)
c=
INT by
INT_1:def 2;
end;
end
registration
let a,b be
integer
Element of
F_Real ;
cluster
<%a, b%> ->
INT
-valued;
coherence
proof
reconsider a1 = a, b1 = b as
Element of
INT by
INT_1:def 2;
<%a, b%>
= (((
0_.
F_Real )
+* (
0 ,a1))
+* (1,b1));
hence thesis;
end;
end
registration
let a,b,c be
integer
Element of
F_Real ;
cluster
<%a, b, c%> ->
INT
-valued;
coherence
proof
reconsider a1 = a, b1 = b, c1 = c as
Element of
INT by
INT_1:def 2;
<%a, b, c%>
= ((((
0_.
F_Real )
+* (
0 ,a1))
+* (1,b1))
+* (2,c1));
hence thesis;
end;
end
registration
cluster
monic
INT
-valued for
Polynomial of
F_Real ;
existence
proof
take (
1_.
F_Real );
thus thesis;
end;
end
registration
cluster
INT
-valued for
FinSequence of
F_Real ;
existence
proof
take (
<*> the
carrier of
F_Real );
thus thesis;
end;
end
registration
let F be
INT
-valued
FinSequence of
F_Real ;
cluster (
Sum F) ->
integer;
coherence
proof
consider f be
sequence of
F_Real such that
A1: (
Sum F)
= (f
. (
len F)) and
A2: (f
.
0 )
= (
0.
F_Real ) and
A3: for j be
Nat, v be
Element of
F_Real st j
< (
len F) & v
= (F
. (j
+ 1)) holds (f
. (j
+ 1))
= ((f
. j)
+ v) by
RLVECT_1:def 12;
defpred
P[
Nat] means $1
<= (
len F) implies (f
. $1) is
integer;
A4:
P[
0 ] by
A2;
A5:
P[k] implies
P[(k
+ 1)]
proof
assume that
A6:
P[k] and
A7: (k
+ 1)
<= (
len F);
reconsider v = (F
. (k
+ 1)) as
Element of
F_Real by
XREAL_0:def 1;
A8: (k
+
0 )
< (k
+ 1) by
XREAL_1: 8;
then k
< (
len F) by
A7,
XXREAL_0: 2;
then (f
. (k
+ 1))
= ((f
. k)
+ v) by
A3;
hence thesis by
A6,
A8,
A7,
XXREAL_0: 2;
end;
P[k] from
NAT_1:sch 2(
A4,
A5);
hence thesis by
A1;
end;
end
registration
let f be
INT
-valued
sequence of
F_Real ;
cluster (
- f) ->
INT
-valued;
coherence
proof
let y be
object;
assume y
in (
rng (
- f));
then
consider x be
object such that
A1: x
in (
dom (
- f)) and
A2: ((
- f)
. x)
= y by
FUNCT_1:def 3;
reconsider x as
Element of
NAT by
A1;
((
- f)
. x)
= ((
- f)
/. x)
.= (
- (f
/. x)) by
A1,
VFUNCT_1:def 5
.= (
- (f
. x));
hence thesis by
A2,
INT_1:def 2;
end;
let g be
INT
-valued
sequence of
F_Real ;
cluster (f
+ g) ->
INT
-valued;
coherence
proof
let y be
object;
assume y
in (
rng (f
+ g));
then
consider x be
object such that
A3: x
in (
dom (f
+ g)) and
A4: ((f
+ g)
. x)
= y by
FUNCT_1:def 3;
reconsider x as
Element of
NAT by
A3;
((f
+ g)
. x)
= ((f
. x)
+ (g
. x)) by
NORMSP_1:def 2;
hence thesis by
A4,
INT_1:def 2;
end;
cluster (f
- g) ->
INT
-valued;
coherence ;
cluster (f
*' g) ->
INT
-valued;
coherence
proof
let y be
object;
assume y
in (
rng (f
*' g));
then
consider x be
object such that
A5: x
in (
dom (f
*' g)) and
A6: ((f
*' g)
. x)
= y by
FUNCT_1:def 3;
reconsider x as
Element of
NAT by
A5;
consider r be
FinSequence of
F_Real such that (
len r)
= (x
+ 1) and
A7: ((f
*' g)
. x)
= (
Sum r) and
A8: for k be
Element of
NAT st k
in (
dom r) holds (r
. k)
= ((f
. (k
-' 1))
* (g
. ((x
+ 1)
-' k))) by
POLYNOM3:def 9;
r is
INT
-valued
proof
let y be
object;
assume y
in (
rng r);
then
consider a be
object such that
A9: a
in (
dom r) and
A10: (r
. a)
= y by
FUNCT_1:def 3;
reconsider a as
Element of
NAT by
A9;
(r
. a)
= ((f
. (a
-' 1))
* (g
. ((x
+ 1)
-' a))) by
A8,
A9;
hence y
in
INT by
A10,
INT_1:def 2;
end;
hence thesis by
A6,
A7,
INT_1:def 2;
end;
end
theorem ::
NIVEN:39
Th37: for L be non
degenerated non
empty
doubleLoopStr, z be
Element of L holds (
LC
<%z, (
1. L)%>)
= (
1. L)
proof
let L be non
degenerated non
empty
doubleLoopStr;
let z be
Element of L;
(
len
<%z, (
1. L)%>)
= 2 by
POLYNOM5: 40;
hence thesis by
Lm1,
POLYNOM5: 38;
end;
registration
let L be non
degenerated non
empty
doubleLoopStr;
let z be
Element of L;
cluster
<%z, (
1. L)%> ->
monic;
coherence by
Th37;
end
theorem ::
NIVEN:40
Th38: for L be non
degenerated non
empty
doubleLoopStr, z1,z2 be
Element of L holds (
LC
<%z1, z2, (
1. L)%>)
= (
1. L)
proof
let L be non
degenerated non
empty
doubleLoopStr;
let z1,z2 be
Element of L;
(
len
<%z1, z2, (
1. L)%>)
= 3 by
Th26;
hence thesis by
Lm2,
Th23;
end;
registration
let L be non
degenerated non
empty
doubleLoopStr;
let z1,z2 be
Element of L;
cluster
<%z1, z2, (
1. L)%> ->
monic;
coherence by
Th38;
end
registration
let p be
INT
-valued
Polynomial of
F_Real ;
cluster (
LC p) ->
integer;
coherence ;
end
theorem ::
NIVEN:41
for L be
add-associative
right_zeroed
right_complementable non
empty
addLoopStr holds for p be
Polynomial of L holds (
deg (
- p))
= (
deg p) by
POLYNOM4: 8;
theorem ::
NIVEN:42
Th40: for L be
add-associative
right_zeroed
right_complementable non
empty
addLoopStr holds for p,q be
Polynomial of L st (
deg p)
> (
deg q) holds (
deg (p
+ q))
= (
deg p)
proof
let L be
add-associative
right_zeroed
right_complementable non
empty
addLoopStr;
let p,q be
Polynomial of L;
assume
A1: (
deg p)
> (
deg q);
then (
deg (p
+ q))
= (
max ((
deg p),(
deg q))) by
HURWITZ: 21;
hence thesis by
A1,
XXREAL_0:def 10;
end;
theorem ::
NIVEN:43
Th41: for L be
add-associative
right_zeroed
right_complementable non
empty
addLoopStr holds for p,q be
Polynomial of L st (
deg p)
> (
deg q) holds (
deg (p
- q))
= (
deg p)
proof
let L be
add-associative
right_zeroed
right_complementable non
empty
addLoopStr;
let p,q be
Polynomial of L;
assume
A1: (
deg p)
> (
deg q);
A2: (
deg q)
= (
deg (
- q)) by
POLYNOM4: 8;
then (
deg (p
+ (
- q)))
= (
max ((
deg p),(
deg (
- q)))) by
A1,
HURWITZ: 21;
hence thesis by
A1,
A2,
XXREAL_0:def 10;
end;
theorem ::
NIVEN:44
for L be
add-associative
right_zeroed
right_complementable non
empty
addLoopStr holds for p,q be
Polynomial of L st (
deg p)
< (
deg q) holds (
deg (p
- q))
= (
deg q)
proof
let L be
add-associative
right_zeroed
right_complementable non
empty
addLoopStr;
let p,q be
Polynomial of L;
assume
A1: (
deg p)
< (
deg q);
(
deg (
- q))
= (
deg q) by
POLYNOM4: 8;
then (
deg (p
+ (
- q)))
= (
max ((
deg p),(
deg q))) by
A1,
HURWITZ: 21;
hence thesis by
A1,
XXREAL_0:def 10;
end;
theorem ::
NIVEN:45
for L be
add-associative
right_zeroed
right_complementable
distributive non
degenerated
doubleLoopStr holds for p be
Polynomial of L holds (
LC p)
= (
- (
LC (
- p)))
proof
let L be
add-associative
right_zeroed
right_complementable
distributive non
degenerated
doubleLoopStr;
let p be
Polynomial of L;
A1: (
len p)
= (
len (
- p)) by
POLYNOM4: 8;
A2: (
dom (
- p))
=
NAT by
FUNCT_2:def 1;
thus (
LC p)
= (
- (
- (p
/. ((
len p)
-' 1))))
.= (
- ((
- p)
/. ((
len (
- p))
-' 1))) by
A1,
A2,
VFUNCT_1:def 5
.= (
- (
LC (
- p)));
end;
lemmul: for L be
add-associative
right_zeroed
right_complementable
distributive non
empty
doubleLoopStr holds for p,q be
Polynomial of L st p
<> (
0_. L) & q
<> (
0_. L) holds ((p
*' q)
. ((((
len p)
+ (
len q))
- 1)
-' 1))
= ((p
. ((
len p)
-' 1))
* (q
. ((
len q)
-' 1)))
proof
let L be
add-associative
right_zeroed
right_complementable
distributive non
empty
doubleLoopStr;
let p,q be
Polynomial of L;
assume p
<> (
0_. L) & q
<> (
0_. L);
then
B: (
len p)
>= 1 & (
len q)
>= 1 by
NAT_1: 14,
POLYNOM4: 5;
then ((
len p)
+ (
len q))
>= (1
+ 1) by
XREAL_1: 7;
then
A: (((
len p)
+ (
len q))
- 1)
>= ((1
+ 1)
- 1) by
XREAL_1: 9;
reconsider j = (((
len p)
+ (
len q))
- 1) as
Element of
NAT by
B,
INT_1: 3;
set i = (j
-' 1);
consider r be
FinSequence of the
carrier of L such that
M: (
len r)
= (i
+ 1) & ((p
*' q)
. i)
= (
Sum r) & for k be
Element of
NAT st k
in (
dom r) holds (r
. k)
= ((p
. (k
-' 1))
* (q
. ((i
+ 1)
-' k))) by
POLYNOM3:def 9;
A7: (j
- 1)
= i by
A,
XREAL_0:def 2;
reconsider x = ((
len q)
- 1) as
Element of
NAT by
B,
INT_1: 3;
A3: j
= ((
len p)
+ x);
then j
>= (
len p) by
NAT_1: 11;
then
A1: (
len p)
in (
dom r) by
A7,
M,
B,
FINSEQ_3: 25;
A2: ((i
+ 1)
-' (
len p))
= ((((((
len p)
+ (
len q))
- 1)
- 1)
+ 1)
- (
len p)) by
A3,
A7,
XREAL_0:def 2
.= ((((
len p)
- (
len p))
+ (
len q))
- 1)
.= ((
len q)
-' 1) by
B,
XREAL_0:def 2;
now
let k be
Element of
NAT ;
assume
E: k
in (
dom r) & k
<> (
len p);
per cases by
E,
XXREAL_0: 1;
suppose
E1: k
> (
len p);
then
reconsider k1 = (k
- 1) as
Element of
NAT by
INT_1: 3;
E2: (k1
+ 1)
> (
len p) by
E1;
(k
-' 1)
= (k
- 1) by
E1,
XREAL_0:def 2;
then (p
. (k
-' 1))
= (
0. L) by
E2,
ALGSEQ_1: 8,
NAT_1: 13;
then (r
. k)
= ((
0. L)
* (q
. ((i
+ 1)
-' k))) by
E,
M;
hence (r
/. k)
= (
0. L) by
E,
PARTFUN1:def 6;
end;
suppose k
< (
len p);
then (k
+ 1)
<= (
len p) by
INT_1: 7;
then ((k
+ 1)
- k)
<= ((
len p)
- k) by
XREAL_1: 9;
then (((
len p)
- k)
+ (
len q))
>= (1
+ (
len q)) by
XREAL_1: 6;
then
E2: ((((
len p)
- k)
+ (
len q))
- 1)
>= (((
len q)
+ 1)
- 1) by
XREAL_1: 9;
((i
+ 1)
- k)
= ((((((
len p)
+ (
len q))
- 1)
- 1)
+ 1)
- k) by
A,
XREAL_0:def 2;
then ((i
+ 1)
-' k)
= ((((
len p)
+ (
len q))
- 1)
- k) by
E2,
XREAL_0:def 2;
then (q
. ((i
+ 1)
-' k))
= (
0. L) by
E2,
ALGSEQ_1: 8;
then (r
. k)
= ((p
. (k
-' 1))
* (
0. L)) by
E,
M;
hence (r
/. k)
= (
0. L) by
E,
PARTFUN1:def 6;
end;
end;
then (
Sum r)
= (r
/. (
len p)) by
A1,
POLYNOM2: 3
.= (r
. (
len p)) by
A1,
PARTFUN1:def 6
.= ((p
. ((
len p)
-' 1))
* (q
. ((i
+ 1)
-' (
len p)))) by
A1,
M;
hence thesis by
M,
A2;
end;
theorem ::
NIVEN:46
Th44: for L be
add-associative
right_zeroed
right_complementable
distributive
associative
well-unital
domRing-like non
degenerated
doubleLoopStr holds for p,q be
Polynomial of L holds (
LC (p
*' q))
= ((
LC p)
* (
LC q))
proof
let L be
add-associative
right_zeroed
right_complementable
distributive
associative
well-unital
domRing-like non
degenerated
doubleLoopStr;
let p,q be
Polynomial of L;
per cases ;
suppose
AS: p
<> (
0_. L) & q
<> (
0_. L);
(
len (p
*' q))
= ((
deg (p
*' q))
+ 1)
.= (((
deg p)
+ (
deg q))
+ 1) by
AS,
HURWITZ: 23
.= ((((
len p)
- 1)
+ ((
len q)
- 1))
+ 1);
hence (
LC (p
*' q))
= ((p
*' q)
. ((((
len p)
+ (
len q))
- 1)
-' 1))
.= ((
LC p)
* (
LC q)) by
AS,
lemmul;
end;
suppose
A30: p is
zero;
then (p
*' q)
= (
0_. L) by
Th17;
hence (
LC (p
*' q))
= ((
0. L)
* (
LC q)) by
FUNCOP_1: 7
.= ((
LC p)
* (
LC q)) by
A30,
FUNCOP_1: 7;
end;
suppose
A31: q is
zero;
then (p
*' q)
= (
0_. L) by
POLYNOM3: 34;
hence (
LC (p
*' q))
= ((
LC p)
* (
0. L)) by
FUNCOP_1: 7
.= ((
LC p)
* (
LC q)) by
A31,
FUNCOP_1: 7;
end;
end;
Lm3:
now
let L be non
degenerated
doubleLoopStr;
let p be
monic
Polynomial of L;
let q be
Polynomial of L;
assume
A1: (
deg p)
> (
deg q);
p
<> (
0_. L);
then
0
<> (
len p) by
POLYNOM4: 5;
then
A2: ((
len p)
- 1)
= ((
len p)
-' 1) by
XREAL_0:def 2;
(
len q)
<= ((
len p)
- 1) by
A1,
INT_1: 52;
hence (q
. ((
len p)
-' 1))
= (
0. L) by
A2,
ALGSEQ_1: 8;
end;
theorem ::
NIVEN:47
for L be
add-associative
right_zeroed
right_complementable
distributive non
degenerated
doubleLoopStr holds for p be
monic
Polynomial of L holds for q be
Polynomial of L st (
deg p)
> (
deg q) holds (p
+ q) is
monic
proof
let L be
add-associative
right_zeroed
right_complementable
distributive non
degenerated
doubleLoopStr;
let p be
monic
Polynomial of L;
let q be
Polynomial of L;
assume
A1: (
deg p)
> (
deg q);
then
A2: (q
. ((
len p)
-' 1))
= (
0. L) by
Lm3;
(
deg (p
+ q))
= (
deg p) by
A1,
Th40;
hence (
LC (p
+ q))
= ((p
. ((
len p)
-' 1))
+ (q
. ((
len p)
-' 1))) by
NORMSP_1:def 2
.= (
LC p) by
A2
.= (
1. L) by
RATFUNC1:def 7;
end;
theorem ::
NIVEN:48
Th46: for L be
add-associative
right_zeroed
right_complementable
distributive non
degenerated
doubleLoopStr holds for p be
monic
Polynomial of L holds for q be
Polynomial of L st (
deg p)
> (
deg q) holds (p
- q) is
monic
proof
let L be
add-associative
right_zeroed
right_complementable
distributive non
degenerated
doubleLoopStr;
let p be
monic
Polynomial of L;
let q be
Polynomial of L;
assume
A1: (
deg p)
> (
deg q);
then
A2: (q
. ((
len p)
-' 1))
= (
0. L) by
Lm3;
(
deg (p
- q))
= (
deg p) by
A1,
Th41;
hence (
LC (p
- q))
= ((p
. ((
len p)
-' 1))
- (q
. ((
len p)
-' 1))) by
NORMSP_1:def 3
.= (
LC p) by
A2
.= (
1. L) by
RATFUNC1:def 7;
end;
registration
let L be
add-associative
right_zeroed
right_complementable
associative
well-unital
almost_left_invertible
distributive non
degenerated
doubleLoopStr;
let p,q be
monic
Polynomial of L;
cluster (p
*' q) ->
monic;
coherence
proof
(
LC p)
= (
1. L) & (
LC q)
= (
1. L) by
RATFUNC1:def 7;
hence (
1. L)
= ((
LC p)
* (
LC q))
.= (
LC (p
*' q)) by
Th44;
end;
end
theorem ::
NIVEN:49
Th47: for L be
Abelian
add-associative
right_zeroed
right_complementable
unital
distributive non
empty
doubleLoopStr holds for z1,z2 be
Element of L holds for p be
Polynomial of L st (
eval (p,z1))
= z2 holds (
eval ((p
-
<%z2%>),z1))
= (
0. L)
proof
let L be
Abelian
add-associative
right_zeroed
right_complementable
unital
distributive non
empty
doubleLoopStr;
let z1,z2 be
Element of L;
let p be
Polynomial of L such that
A1: (
eval (p,z1))
= z2;
thus (
eval ((p
-
<%z2%>),z1))
= ((
eval (p,z1))
- (
eval (
<%z2%>,z1))) by
POLYNOM4: 21
.= (z2
- z2) by
A1,
POLYNOM5: 37
.= (
0. L) by
RLVECT_1: 15;
end;
::$Notion-Name
theorem ::
NIVEN:50
Th50: for p be
INT
-valued
Polynomial of
F_Real holds for e be
Element of
F_Real st e
is_a_root_of p holds for k,l be
Integer st l
<>
0 & e
= (k
/ l) & (k,l)
are_coprime holds k
divides (p
.
0 ) & l
divides (
LC p)
proof
let p be
INT
-valued
Polynomial of
F_Real ;
let e be
Element of
F_Real such that
A1: e
is_a_root_of p;
let k,l be
Integer such that
A2: l
<>
0 & e
= (k
/ l) & (k,l)
are_coprime ;
consider F be
FinSequence of
F_Real such that
A3: (
0.
F_Real )
= (
Sum F) & (
len F)
= (
len p) & for n be
Element of
NAT st n
in (
dom F) holds (F
. n)
= ((p
. (n
-' 1))
* ((
power
F_Real )
. (e,(n
-' 1)))) by
A1,
POLYNOM4:def 2;
per cases ;
suppose (
len F)
=
0 ;
then
A4: p
=
<%(
0.
F_Real )%> by
A3,
ALGSEQ_1: 14;
then (p
.
0 )
= (
0.
F_Real ) by
ALGSEQ_1: 16;
hence k
divides (p
.
0 ) by
INT_2: 12;
p
= (
0_.
F_Real ) by
A4,
POLYNOM5: 34;
then (
LC p)
= (
0.
F_Real ) by
FUNCOP_1: 7;
hence l
divides (
LC p) by
INT_2: 12;
end;
suppose
A5: (
len F)
>
0 ;
set n = (
len p);
A6: n
>= 1 by
A5,
A3,
NAT_1: 14;
reconsider n1 = (n
- 1) as
Element of
NAT by
NAT_1: 20,
A5,
A3;
A7: (n
-' 1)
= n1 by
A5,
A3,
NAT_1: 14,
XREAL_1: 233;
A8: (l
|^ (n
-' 1))
<>
0 by
A2,
CARD_4: 3;
reconsider k1 = k, l1 = l as
Element of
F_Real by
XREAL_0:def 1;
set ln = ((
power
F_Real )
. (l1,n1));
set G = (ln
* F);
reconsider FF = F as
Element of ((
len F)
-tuples_on the
carrier of
F_Real ) by
FINSEQ_2: 92;
set GG = (ln
* FF);
A9: (
len GG)
= (
len F) by
FINSEQ_2: 132;
then
A10: (
dom G)
= (
dom F) by
FINSEQ_3: 29;
A11: (
Sum G)
= (ln
* (
Sum F)) by
FVSUM_1: 73;
(
rng G)
c=
INT
proof
let o be
object;
assume o
in (
rng G);
then
consider b be
object such that
A12: b
in (
dom G) & o
= (G
. b) by
FUNCT_1:def 3;
reconsider b as
Element of
NAT by
A12;
b
in (
Seg n) by
A12,
A9,
A3,
FINSEQ_1:def 3;
then 1
<= b
<= n & (b
-' 1)
<= b by
FINSEQ_1: 1,
NAT_D: 35;
then (b
-' 1)
= (b
- 1) & (b
- 1)
<= n1 by
XREAL_1: 233,
XREAL_1: 9;
then
consider c be
Nat such that
A13: n1
= ((b
-' 1)
+ c) by
NAT_1: 10;
(
rng F)
c= the
carrier of
F_Real ;
then
reconsider a9 = (F
. b) as
Element of
F_Real by
A12,
A10,
FUNCT_1: 3;
A14: (l
|^ (b
-' 1))
<>
0 by
A2,
CARD_4: 3;
b
in (
dom (ln
* F)) & a9
= (F
. b) implies ((ln
* F)
. b)
= (ln
* a9) by
FVSUM_1: 50;
then (G
. b)
= (ln
* ((p
. (b
-' 1))
* ((
power
F_Real )
. (e,(b
-' 1))))) by
A3,
A12,
A10
.= ((p
. (b
-' 1))
* (((
power
F_Real )
. (l1,n1))
* ((
power
F_Real )
. (e,(b
-' 1)))))
.= ((p
. (b
-' 1))
* ((l1
|^ n1)
* ((
power
F_Real )
. (e,(b
-' 1))))) by
Th48
.= ((p
. (b
-' 1))
* ((l1
|^ n1)
* ((k
/ l)
|^ (b
-' 1)))) by
A2,
Th48
.= ((p
. (b
-' 1))
* ((l
|^ n1)
* ((k
|^ (b
-' 1))
/ (l
|^ (b
-' 1))))) by
PREPOWER: 8
.= (((p
. (b
-' 1))
* (k
|^ (b
-' 1)))
* ((l
|^ n1)
/ (l
|^ (b
-' 1))))
.= (((p
. (b
-' 1))
* (k
|^ (b
-' 1)))
* (((l
|^ c)
* (l
|^ (b
-' 1)))
/ (l
|^ (b
-' 1)))) by
A13,
NEWTON: 8
.= (((p
. (b
-' 1))
* (k
|^ (b
-' 1)))
* ((l
|^ c)
* ((l
|^ (b
-' 1))
/ (l
|^ (b
-' 1)))))
.= (((p
. (b
-' 1))
* (k
|^ (b
-' 1)))
* ((l
|^ c)
* 1)) by
XCMPLX_1: 60,
A14
.= (((p
. (b
-' 1))
* (k
|^ (b
-' 1)))
* (l
|^ c));
hence o
in
INT by
INT_1:def 2,
A12;
end;
then
reconsider G1 = G as non
empty
INT
-valued
FinSequence by
A9,
A5,
RELAT_1:def 19;
A15: 1
in (
dom G) by
A9,
A6,
A3,
FINSEQ_3: 25;
A16: (
Sum G1)
= (
Sum G) by
Th49;
A17: (
Sum G1)
=
0 by
A3,
A11,
Th49;
reconsider Gn0 = (G1
/^ 1) as
INT
-valued
FinSequence;
G
= (
<*(G
/. 1)*>
^ Gn0) by
FINSEQ_5: 29;
then ((
Sum Gn0)
+ (G
/. 1))
=
0 by
RVSUM_1: 76,
A16,
A11,
A3;
then ((
Sum Gn0)
+ (G
. 1))
=
0 by
A15,
PARTFUN1:def 6;
then
A18: (
Sum Gn0)
= (
- (G1
. 1));
(
rng F)
c= the
carrier of
F_Real ;
then
reconsider a9 = (F
. 1) as
Element of
F_Real by
A15,
A10,
FUNCT_1: 3;
A19: (G1
. 1)
= (ln
* a9) by
FVSUM_1: 50,
A15
.= (ln
* ((p
. (1
-' 1))
* ((
power
F_Real )
. (e,(1
-' 1))))) by
A6,
A3,
FINSEQ_3: 25
.= (((p
. (1
-' 1))
* ln)
* ((
power
F_Real )
. (e,(1
-' 1))))
.= (((p
. (1
-' 1))
* ln)
* ((
power
F_Real )
. (e,
0 ))) by
XREAL_1: 232
.= (((p
.
0 )
* ln)
* ((
power
F_Real )
. (e,
0 ))) by
XREAL_1: 232
.= (((p
.
0 )
* ln)
* (
1_
F_Real )) by
GROUP_1:def 7
.= ((p
.
0 )
* (l
|^ n1)) by
Th48;
for i be
Nat st i
in (
dom Gn0) holds k
divides (Gn0
. i)
proof
let i be
Nat;
assume
A20: i
in (
dom Gn0);
then
A21: (1
+ i)
in (
dom G1) by
FINSEQ_5: 26;
(
rng F)
c= the
carrier of
F_Real ;
then
reconsider a9 = (F
. (1
+ i)) as
Element of
F_Real by
A21,
A10,
FUNCT_1: 3;
A22: (l
|^ i)
<>
0 by
A2,
CARD_4: 3;
A23: 1
<= i
<= (
len Gn0) by
A20,
FINSEQ_3: 25;
(i
+ 1)
in (
Seg n) by
A3,
A21,
A9,
FINSEQ_1:def 3;
then (i
+ 1)
<= n by
FINSEQ_1: 1;
then ((i
+ 1)
- 1)
<= (n
- 1) by
XREAL_1: 9;
then
consider d be
Nat such that
A24: n1
= (i
+ d) by
NAT_1: 10;
(Gn0
. i)
= ((G
/^ 1)
/. i) by
A20,
PARTFUN1:def 6
.= (G
/. (1
+ i)) by
FINSEQ_5: 27,
A20
.= (G
. (1
+ i)) by
A21,
PARTFUN1:def 6
.= (ln
* a9) by
FVSUM_1: 50,
A21
.= (ln
* ((p
. ((1
+ i)
-' 1))
* ((
power
F_Real )
. (e,((1
+ i)
-' 1))))) by
A3,
A21,
A10
.= (ln
* ((p
. i)
* ((
power
F_Real )
. (e,((1
+ i)
-' 1))))) by
NAT_D: 34
.= (ln
* ((p
. i)
* ((
power
F_Real )
. (e,i)))) by
NAT_D: 34
.= ((p
. i)
* (((
power
F_Real )
. (l1,n1))
* ((
power
F_Real )
. (e,i))))
.= ((p
. i)
* ((l1
|^ n1)
* ((
power
F_Real )
. (e,i)))) by
Th48
.= ((p
. i)
* ((l1
|^ n1)
* (e
|^ i))) by
Th48
.= ((p
. i)
* ((l
|^ n1)
* ((k
|^ i)
/ (l
|^ i)))) by
A2,
PREPOWER: 8
.= (((p
. i)
* (k
|^ i))
* ((l
|^ (d
+ i))
/ (l
|^ i))) by
A24
.= (((p
. i)
* (k
|^ i))
* (((l
|^ d)
* (l
|^ i))
/ (l
|^ i))) by
NEWTON: 8
.= (((p
. i)
* (k
|^ i))
* ((l
|^ d)
* ((l
|^ i)
/ (l
|^ i))))
.= (((p
. i)
* (k
|^ i))
* ((l
|^ d)
* 1)) by
XCMPLX_1: 60,
A22
.= (((p
. i)
* (l
|^ d))
* (k
|^ i));
hence k
divides (Gn0
. i) by
A23,
Th4,
INT_2: 2;
end;
then k
divides (G1
. 1) by
A18,
NEWTON04: 80,
INT_2: 10;
hence k
divides (p
.
0 ) by
A19,
A2,
WSIERP_1: 10,
INT_2: 25;
reconsider Gn1 = (G1
| (
Seg n1)) as
INT
-valued
FinSequence by
FINSEQ_1: 15;
A25: (
len GG)
= (
len F) by
FINSEQ_2: 132;
then
A26: (
len G1)
= (n1
+ 1) by
A3;
G1
= (Gn1
^
<*(G1
. (n1
+ 1))*>) by
A25,
A3,
FINSEQ_3: 55;
then ((
Sum Gn1)
+ (G1
. (n1
+ 1)))
=
0 by
RVSUM_1: 74,
A17;
then
A27: (
Sum Gn1)
= (
- (G1
. (n1
+ 1)))
.= (
- (G1
. n));
A28: n
in (
dom F) by
FINSEQ_3: 25,
A6,
A3;
(
rng F)
c= the
carrier of
F_Real ;
then
reconsider a9 = (F
. n) as
Element of
F_Real by
A28,
FUNCT_1: 3;
n
in (
dom G1) by
A25,
A3,
FINSEQ_3: 25,
A6;
then
A29: (G1
. n)
= (ln
* a9) by
FVSUM_1: 50
.= (ln
* ((p
. (n
-' 1))
* ((
power
F_Real )
. (e,(n
-' 1))))) by
A6,
A3,
FINSEQ_3: 25
.= ((p
. (n
-' 1))
* (((
power
F_Real )
. (l1,n1))
* ((
power
F_Real )
. (e,(n
-' 1)))))
.= ((p
. (n
-' 1))
* ((l1
|^ n1)
* ((
power
F_Real )
. (e,(n
-' 1))))) by
Th48
.= ((p
. (n
-' 1))
* ((l1
|^ n1)
* (e
|^ (n
-' 1)))) by
Th48
.= ((p
. (n
-' 1))
* ((l
|^ n1)
* ((k
|^ (n
-' 1))
/ (l
|^ (n
-' 1))))) by
A2,
PREPOWER: 8
.= (((p
. (n
-' 1))
* (k
|^ (n
-' 1)))
* ((l
|^ (n
-' 1))
/ (l
|^ (n
-' 1)))) by
A7
.= (((p
. (n
-' 1))
* (k
|^ (n
-' 1)))
* 1) by
A8,
XCMPLX_1: 60
.= ((
LC p)
* (k
|^ (n
-' 1)));
for i be
Nat st i
in (
dom Gn1) holds l
divides (Gn1
. i)
proof
let i be
Nat;
assume
A30: i
in (
dom Gn1);
then i
in (
Seg n1) by
A26,
FINSEQ_3: 54;
then
A31: 1
<= i
<= n1 & (i
-' 1)
<= i by
FINSEQ_1: 1,
NAT_D: 35;
then
consider d be
Nat such that
A32: n1
= ((i
-' 1)
+ d) by
XXREAL_0: 2,
NAT_1: 10;
(i
- i)
<= ((n
- 1)
- i) by
A31,
XREAL_1: 9;
then
A33: (
0
+ 1)
<= (((n
- i)
- 1)
+ 1) by
XREAL_1: 6;
A34: (n
- 1)
= ((i
- 1)
+ d) by
A32,
A31,
XREAL_1: 233;
A35: (Gn1
. i)
= (G1
. i) by
A30,
FUNCT_1: 47;
A36: (
dom Gn1)
c= (
dom G1) by
RELAT_1: 60;
(
rng F)
c= the
carrier of
F_Real ;
then
reconsider a9 = (F
. i) as
Element of
F_Real by
A36,
A10,
A30,
FUNCT_1: 3;
A37: (l
|^ (i
-' 1))
<>
0 by
A2,
CARD_4: 3;
(G1
. i)
= (ln
* a9) by
A36,
A30,
FVSUM_1: 50
.= (ln
* ((p
. (i
-' 1))
* ((
power
F_Real )
. (e,(i
-' 1))))) by
A3,
A36,
A30,
A10
.= ((p
. (i
-' 1))
* (((
power
F_Real )
. (l1,n1))
* ((
power
F_Real )
. (e,(i
-' 1)))))
.= ((p
. (i
-' 1))
* ((l1
|^ n1)
* ((
power
F_Real )
. (e,(i
-' 1))))) by
Th48
.= ((p
. (i
-' 1))
* ((l1
|^ n1)
* (e
|^ (i
-' 1)))) by
Th48
.= ((p
. (i
-' 1))
* ((l
|^ n1)
* ((k
|^ (i
-' 1))
/ (l
|^ (i
-' 1))))) by
A2,
PREPOWER: 8
.= (((p
. (i
-' 1))
* (k
|^ (i
-' 1)))
* ((l
|^ n1)
/ (l
|^ (i
-' 1))))
.= (((p
. (i
-' 1))
* (k
|^ (i
-' 1)))
* (((l
|^ d)
* (l
|^ (i
-' 1)))
/ (l
|^ (i
-' 1)))) by
A32,
NEWTON: 8
.= (((p
. (i
-' 1))
* (k
|^ (i
-' 1)))
* ((l
|^ d)
* ((l
|^ (i
-' 1))
/ (l
|^ (i
-' 1)))))
.= (((p
. (i
-' 1))
* (k
|^ (i
-' 1)))
* ((l
|^ d)
* 1)) by
XCMPLX_1: 60,
A37
.= (((p
. (i
-' 1))
* (k
|^ (i
-' 1)))
* (l
|^ d));
hence l
divides (Gn1
. i) by
A35,
A34,
A33,
Th4,
INT_2: 2;
end;
then l
divides (G1
. n) by
A27,
NEWTON04: 80,
INT_2: 10;
hence l
divides (
LC p) by
A29,
A2,
WSIERP_1: 10,
INT_2: 25;
end;
end;
::$Notion-Name
theorem ::
NIVEN:51
Th51: for p be
monic
INT
-valued
Polynomial of
F_Real holds for e be
rational
Element of
F_Real st e
is_a_root_of p holds e is
integer
proof
let p be
monic
INT
-valued
Polynomial of
F_Real ;
let e be
rational
Element of
F_Real ;
assume
A1: e
is_a_root_of p;
set k = (
numerator e);
set n = (
denominator e);
A2: e
= (k
/ n) by
RAT_1: 15;
A3: (k,n)
are_coprime by
WSIERP_1: 22;
p is
monic;
then n
= 1 or n
= (
- 1) by
A1,
A2,
A3,
Th50,
INT_2: 13;
hence thesis by
A2;
end;
theorem ::
NIVEN:52
Th52: 1
<= n & e
= (2
* (
cos t)) implies ex p be
monic
INT
-valued
Polynomial of
F_Real st (
eval (p,e))
= (2
* (
cos (n
* t))) & (
deg p)
= n & (n
= 1 implies p
=
<%(
0.
F_Real ), (
1.
F_Real )%>) & (n
= 2 implies ex r be
Element of
F_Real st r
= (
- 2) & p
=
<%r, (
0.
F_Real ), (
1.
F_Real )%>)
proof
assume that
A1: 1
<= n and
A2: e
= (2
* (
cos t));
defpred
P[
Nat] means 1
<= $1 implies ex p be
monic
INT
-valued
Polynomial of
F_Real st (
eval (p,e))
= (2
* (
cos ($1
* t))) & (
deg p)
= $1 & ($1
= 1 implies p
=
<%(
0.
F_Real ), (
1.
F_Real )%>) & ($1
= 2 implies ex r be
Element of
F_Real st r
= (
- 2) & p
=
<%r, (
0.
F_Real ), (
1.
F_Real )%>);
A3:
P[1]
proof
assume 1
<= 1;
reconsider p =
<%(
0.
F_Real ), (
1.
F_Real )%> as
monic
INT
-valued
Polynomial of
F_Real ;
take p;
thus (
eval (p,e))
= (2
* (
cos (1
* t))) by
A2,
POLYNOM5: 48;
(
len p)
= 2 by
POLYNOM5: 40;
hence (
deg p)
= 1;
thus thesis;
end;
A4:
P[2]
proof
assume 1
<= 2;
reconsider r = (
- 2) as
Element of
F_Real by
XREAL_0:def 1;
reconsider p =
<%r, (
0.
F_Real ), (
1.
F_Real )%> as
monic
INT
-valued
Polynomial of
F_Real ;
take p;
(
cos (2
* t))
= ((2
* ((
cos t)
^2 ))
- 1) by
SIN_COS5: 7;
hence (2
* (
cos (2
* t)))
= ((r
+ ((
0.
F_Real )
* e))
+ (((
1.
F_Real )
* e)
* e)) by
A2
.= (
eval (p,e)) by
Th36;
(
len p)
= 3 by
Th26;
hence (
deg p)
= 2;
thus thesis;
end;
A5: for k be non
zero
Nat st
P[k] &
P[(k
+ 1)] holds
P[(k
+ 2)]
proof
let k be non
zero
Nat such that
A6:
P[k] and
A7:
P[(k
+ 1)] and 1
<= (k
+ 2);
per cases ;
suppose (k
+ 2)
= 1;
then k
= (
- 1);
hence thesis;
end;
suppose (k
+ 2)
= 2;
hence thesis;
end;
suppose
A8: (k
+ 2)
<> 1 & (k
+ 2)
<> 2;
A9: (
0
+ 1)
<= k by
NAT_1: 13;
then
consider p2 be
monic
INT
-valued
Polynomial of
F_Real such that
A10: (
eval (p2,e))
= (2
* (
cos (k
* t))) and
A11: (
deg p2)
= k by
A6;
consider p1 be
monic
INT
-valued
Polynomial of
F_Real such that
A12: (
eval (p1,e))
= (2
* (
cos ((k
+ 1)
* t))) and
A13: (
deg p1)
= (k
+ 1) by
A7,
A9,
NAT_1: 13;
set f =
<%(
0.
F_Real ), (
1.
F_Real )%>;
set p = ((f
*' p1)
- p2);
p1 is
non-zero;
then
A14: (
len (f
*' p1))
= ((
len p1)
+ 1) by
UPROOTS: 38;
then
A15: (
deg (f
*' p1))
> (
deg p2) by
A11,
A13,
XREAL_1: 8;
then
reconsider p as
monic
INT
-valued
Polynomial of
F_Real by
Th46;
take p;
A16: (
eval ((f
*' p1),e))
= ((
eval (f,e))
* (
eval (p1,e))) by
POLYNOM4: 24;
((
cos ((k
+ 2)
* t))
+ (
cos (k
* t)))
= (2
* ((
cos ((((k
+ 2)
* t)
+ (k
* t))
/ 2))
* (
cos ((((k
+ 2)
* t)
- (k
* t))
/ 2)))) by
SIN_COS4: 17
.= ((
cos t)
* (2
* (
cos ((k
* t)
+ t))));
then (((2
* (
cos t))
* (2
* (
cos ((k
* t)
+ t))))
- (2
* (
cos (k
* t))))
= (2
* (
cos ((k
+ 2)
* t)));
hence (2
* (
cos ((k
+ 2)
* t)))
= ((
eval ((f
*' p1),e))
- (
eval (p2,e))) by
A2,
A10,
A12,
A16,
POLYNOM5: 48
.= (
eval (p,e)) by
POLYNOM4: 21;
thus (
deg p)
= (k
+ 2) by
A13,
A14,
A15,
Th41;
thus thesis by
A8;
end;
end;
for k be non
zero
Nat holds
P[k] from
FIB_NUM2:sch 1(
A3,
A4,
A5);
hence thesis by
A1;
end;
theorem ::
NIVEN:53
Th53:
0
<= r
<= (
PI
/ 2) & (r
/
PI ) is
rational & (
cos r) is
rational implies r
in
{
0 , (
PI
/ 3), (
PI
/ 2)}
proof
assume that
A1:
0
<= r and
A2: r
<= (
PI
/ 2) and
A3: (r
/
PI ) is
rational and
A4: (
cos r) is
rational;
consider k be
Integer, n be
Nat such that
A5: n
<>
0 and
A6: ((r
/
PI )
/ 2)
= (k
/ n) by
A3,
RAT_1: 8;
set e = (2
* (
cos r));
reconsider c = e as
Element of
F_Real by
XREAL_0:def 1;
consider p be
monic
INT
-valued
Polynomial of
F_Real such that
A7: (
eval (p,c))
= (2
* (
cos (n
* r))) and
A8: (
deg p)
= n and (n
= 1 implies p
=
<%(
0.
F_Real ), (
1.
F_Real )%>) & (n
= 2 implies ex a be
Element of
F_Real st a
= (
- 2) & p
=
<%a, (
0.
F_Real ), (
1.
F_Real )%>) by
A5,
NAT_1: 14,
Th52;
A9: (n
* (((2
*
PI )
* k)
/ n))
= ((2
*
PI )
* k) by
A5,
XCMPLX_1: 87;
A10: (
cos (((2
*
PI )
* k)
+
0 ))
= 1 by
SIN_COS: 31,
COMPLEX2: 9;
reconsider r2 = 2 as
Element of
F_Real by
XREAL_0:def 1;
((r
/
PI )
/ 2)
= (r
/ (2
*
PI )) by
XCMPLX_1: 78;
then r
= (((2
*
PI )
* k)
/ n) by
A6,
Th1;
then
A11: c
is_a_root_of (p
-
<%r2%>) by
A7,
A9,
A10,
Th47;
((
len
<%r2%>)
- 1)
<= (1
- 1) by
XREAL_1: 9,
ALGSEQ_1:def 5;
then (
deg p)
> (
deg
<%r2%>) by
A5,
A8;
then (p
-
<%r2%>) is
monic by
Th46;
then
A12: e is
integer by
A4,
A11,
Th51;
(
PI
/ 2)
< (2
*
PI ) by
XREAL_1: 68;
then
A13: r
< (2
*
PI ) by
A2,
XXREAL_0: 2;
A14: r
in
[.(
- (
PI
/ 2)), (
PI
/ 2).] by
A1,
A2,
XXREAL_1: 1;
(
cos
. r)
in
[.(
- 1), 1.] by
COMPTRIG: 27;
then (
- 1)
<= (
cos r)
<= 1 by
XXREAL_1: 1;
then (2
* (
- 1))
<= e
<= (2
* 1) by
XREAL_1: 64;
then (
- 2)
<= e
<= 2;
then
|.e.|
<= 2 by
ABSVALUE: 5;
then e
= (
- 2) or e
= (
- 1) or e
=
0 or e
= 1 or e
= 2 by
A12,
Th3;
then (
cos r)
= (
- 1) or (
cos r)
= (
- (1
/ 2)) or (
cos r)
=
0 or (
cos r)
= (1
/ 2) or (
cos r)
= 1;
then r
= (
PI
/ 2) or r
= ((3
/ 2)
*
PI ) or r
= (
PI
/ 3) or r
=
0 by
A1,
A2,
A13,
A14,
Th15,
COMPTRIG: 12,
COMPTRIG: 18,
COMPTRIG: 61;
hence thesis by
A2,
XREAL_1: 68,
ENUMSET1:def 1;
end;
theorem ::
NIVEN:54
((2
*
PI )
* i)
<= r
<= ((
PI
/ 2)
+ ((2
*
PI )
* i)) & (r
/
PI ) is
rational & (
cos r) is
rational implies r
in
{((2
*
PI )
* i), ((
PI
/ 3)
+ ((2
*
PI )
* i)), ((
PI
/ 2)
+ ((2
*
PI )
* i))}
proof
set a = ((2
*
PI )
* i);
set R = (r
- a);
assume a
<= r
<= ((
PI
/ 2)
+ a);
then
A1: (a
- a)
<= R
<= (((
PI
/ 2)
+ a)
- a) by
XREAL_1: 9;
assume
A2: (r
/
PI ) is
rational & (
cos r) is
rational;
(a
/
PI )
= (((2
* i)
*
PI )
/
PI )
.= (2
* i) by
XCMPLX_1: 89;
then
A3: (R
/
PI )
= ((r
/
PI )
- (2
* i));
R
= (((2
*
PI )
* (
- i))
+ r);
then (
cos r)
= (
cos R) by
COMPLEX2: 9;
then R
in
{
0 , (
PI
/ 3), (
PI
/ 2)} by
A1,
A2,
A3,
Th53;
then R
=
0 or R
= (
PI
/ 3) or R
= (
PI
/ 2) by
ENUMSET1:def 1;
hence thesis by
ENUMSET1:def 1;
end;
theorem ::
NIVEN:55
Th55: (
PI
/ 2)
<= r
<=
PI & (r
/
PI ) is
rational & (
cos r) is
rational implies r
in
{(
PI
/ 2), ((2
*
PI )
/ 3),
PI }
proof
set R = (
PI
- r);
assume (
PI
/ 2)
<= r
<=
PI ;
then
A1: (
PI
-
PI )
<= R
<= (
PI
- (
PI
/ 2)) by
XREAL_1: 13;
assume
A2: (r
/
PI ) is
rational & (
cos r) is
rational;
A3: (R
/
PI )
= ((
PI
/
PI )
- (r
/
PI ))
.= (1
- (r
/
PI )) by
XCMPLX_1: 60;
(
cos R)
= (
- (
cos r)) by
EUCLID10: 2;
then R
in
{
0 , (
PI
/ 3), (
PI
/ 2)} by
A1,
A2,
A3,
Th53;
then R
=
0 or R
= (
PI
/ 3) or R
= (
PI
/ 2) by
ENUMSET1:def 1;
hence thesis by
ENUMSET1:def 1;
end;
theorem ::
NIVEN:56
((
PI
/ 2)
+ ((2
*
PI )
* i))
<= r
<= (
PI
+ ((2
*
PI )
* i)) & (r
/
PI ) is
rational & (
cos r) is
rational implies r
in
{((
PI
/ 2)
+ ((2
*
PI )
* i)), (((2
*
PI )
/ 3)
+ ((2
*
PI )
* i)), (
PI
+ ((2
*
PI )
* i))}
proof
set a = ((2
*
PI )
* i);
set R = (r
- a);
assume ((
PI
/ 2)
+ a)
<= r
<= (
PI
+ a);
then
A1: (((
PI
/ 2)
+ a)
- a)
<= R
<= ((
PI
+ a)
- a) by
XREAL_1: 9;
assume
A2: (r
/
PI ) is
rational & (
cos r) is
rational;
(a
/
PI )
= (((2
* i)
*
PI )
/
PI )
.= (2
* i) by
XCMPLX_1: 89;
then
A3: (R
/
PI )
= ((r
/
PI )
- (2
* i));
R
= (((2
*
PI )
* (
- i))
+ r);
then (
cos r)
= (
cos R) by
COMPLEX2: 9;
then R
in
{(
PI
/ 2), ((2
*
PI )
/ 3),
PI } by
A1,
A2,
A3,
Th55;
then R
= (
PI
/ 2) or R
= ((2
*
PI )
/ 3) or R
=
PI by
ENUMSET1:def 1;
hence thesis by
ENUMSET1:def 1;
end;
theorem ::
NIVEN:57
Th57:
PI
<= r
<= ((3
*
PI )
/ 2) & (r
/
PI ) is
rational & (
cos r) is
rational implies r
in
{
PI , ((4
*
PI )
/ 3), ((3
*
PI )
/ 2)}
proof
set R = (r
-
PI );
assume
PI
<= r
<= ((3
*
PI )
/ 2);
then
A1: (
PI
-
PI )
<= R
<= (((3
*
PI )
/ 2)
-
PI ) by
XREAL_1: 13;
assume
A2: (r
/
PI ) is
rational & (
cos r) is
rational;
A3: (R
/
PI )
= ((r
/
PI )
- (
PI
/
PI ))
.= ((r
/
PI )
- 1) by
XCMPLX_1: 60;
(
cos R)
= (
cos (
- (
PI
- r)))
.= (
cos (
PI
- r)) by
SIN_COS: 31
.= (
- (
cos r)) by
EUCLID10: 2;
then R
in
{
0 , (
PI
/ 3), (
PI
/ 2)} by
A1,
A2,
A3,
Th53;
then R
=
0 or R
= (
PI
/ 3) or R
= (
PI
/ 2) by
ENUMSET1:def 1;
hence thesis by
ENUMSET1:def 1;
end;
theorem ::
NIVEN:58
(
PI
+ ((2
*
PI )
* i))
<= r
<= (((3
*
PI )
/ 2)
+ ((2
*
PI )
* i)) & (r
/
PI ) is
rational & (
cos r) is
rational implies r
in
{(
PI
+ ((2
*
PI )
* i)), (((4
*
PI )
/ 3)
+ ((2
*
PI )
* i)), (((3
*
PI )
/ 2)
+ ((2
*
PI )
* i))}
proof
set a = ((2
*
PI )
* i);
set R = (r
- a);
assume (
PI
+ a)
<= r
<= (((3
*
PI )
/ 2)
+ a);
then
A1: ((
PI
+ a)
- a)
<= R
<= ((((3
*
PI )
/ 2)
+ a)
- a) by
XREAL_1: 9;
assume
A2: (r
/
PI ) is
rational & (
cos r) is
rational;
(a
/
PI )
= (((2
* i)
*
PI )
/
PI )
.= (2
* i) by
XCMPLX_1: 89;
then
A3: (R
/
PI )
= ((r
/
PI )
- (2
* i));
R
= (((2
*
PI )
* (
- i))
+ r);
then (
cos r)
= (
cos R) by
COMPLEX2: 9;
then R
in
{
PI , ((4
*
PI )
/ 3), ((3
*
PI )
/ 2)} by
A1,
A2,
A3,
Th57;
then R
=
PI or R
= ((4
*
PI )
/ 3) or R
= ((3
*
PI )
/ 2) by
ENUMSET1:def 1;
hence thesis by
ENUMSET1:def 1;
end;
theorem ::
NIVEN:59
Th59: ((3
*
PI )
/ 2)
<= r
<= (2
*
PI ) & (r
/
PI ) is
rational & (
cos r) is
rational implies r
in
{((3
*
PI )
/ 2), ((5
*
PI )
/ 3), (2
*
PI )}
proof
set R = ((2
*
PI )
- r);
assume ((3
*
PI )
/ 2)
<= r
<= (2
*
PI );
then
A1: ((2
*
PI )
- (2
*
PI ))
<= R
<= ((2
*
PI )
- ((3
*
PI )
/ 2)) by
XREAL_1: 13;
assume
A2: (r
/
PI ) is
rational & (
cos r) is
rational;
A3: (R
/
PI )
= (((2
*
PI )
/
PI )
- (r
/
PI ))
.= (2
- (r
/
PI )) by
XCMPLX_1: 89;
(
cos R)
= (
cos r) by
EUCLID10: 4;
then R
in
{
0 , (
PI
/ 3), (
PI
/ 2)} by
A1,
A2,
A3,
Th53;
then R
=
0 or R
= (
PI
/ 3) or R
= (
PI
/ 2) by
ENUMSET1:def 1;
hence thesis by
ENUMSET1:def 1;
end;
theorem ::
NIVEN:60
(((3
*
PI )
/ 2)
+ ((2
*
PI )
* i))
<= r
<= ((2
*
PI )
+ ((2
*
PI )
* i)) & (r
/
PI ) is
rational & (
cos r) is
rational implies r
in
{(((3
*
PI )
/ 2)
+ ((2
*
PI )
* i)), (((5
*
PI )
/ 3)
+ ((2
*
PI )
* i)), ((2
*
PI )
+ ((2
*
PI )
* i))}
proof
set a = ((2
*
PI )
* i);
set R = (r
- a);
assume (((3
*
PI )
/ 2)
+ a)
<= r
<= ((2
*
PI )
+ a);
then
A1: ((((3
*
PI )
/ 2)
+ a)
- a)
<= R
<= (((2
*
PI )
+ a)
- a) by
XREAL_1: 9;
assume
A2: (r
/
PI ) is
rational & (
cos r) is
rational;
(a
/
PI )
= (((2
* i)
*
PI )
/
PI )
.= (2
* i) by
XCMPLX_1: 89;
then
A3: (R
/
PI )
= ((r
/
PI )
- (2
* i));
R
= (((2
*
PI )
* (
- i))
+ r);
then (
cos r)
= (
cos R) by
COMPLEX2: 9;
then R
in
{((3
*
PI )
/ 2), ((5
*
PI )
/ 3), (2
*
PI )} by
A1,
A2,
A3,
Th59;
then R
= ((3
*
PI )
/ 2) or R
= ((5
*
PI )
/ 3) or R
= (2
*
PI ) by
ENUMSET1:def 1;
hence thesis by
ENUMSET1:def 1;
end;
Lm4:
0
<= r
<= (2
*
PI ) & (r
/
PI ) is
rational & (
cos r) is
rational implies (
cos r)
in
{
0 , 1, (
- 1), (1
/ 2), (
- (1
/ 2))}
proof
assume
A1:
0
<= r
<= (2
*
PI );
assume
A2: (r
/
PI ) is
rational & (
cos r) is
rational;
per cases by
A1;
suppose
0
<= r
<= (
PI
/ 2);
then r
in
{
0 , (
PI
/ 3), (
PI
/ 2)} by
A2,
Th53;
then r
=
0 or r
= (
PI
/ 3) or r
= (
PI
/ 2) by
ENUMSET1:def 1;
hence thesis by
ENUMSET1:def 3,
SIN_COS: 31,
SIN_COS: 77,
EUCLID10: 14;
end;
suppose (
PI
/ 2)
<= r
<=
PI ;
then r
in
{(
PI
/ 2), ((2
*
PI )
/ 3),
PI } by
A2,
Th55;
then r
= (
PI
/ 2) or r
= ((2
*
PI )
/ 3) or r
=
PI by
ENUMSET1:def 1;
hence thesis by
ENUMSET1:def 3,
SIN_COS: 77,
EUCLID10: 23;
end;
suppose
PI
<= r
<= ((3
*
PI )
/ 2);
then r
in
{
PI , ((4
*
PI )
/ 3), ((3
*
PI )
/ 2)} by
A2,
Th57;
then r
=
PI or r
= ((4
*
PI )
/ 3) or r
= ((3
*
PI )
/ 2) by
ENUMSET1:def 1;
hence thesis by
Th11,
ENUMSET1:def 3,
SIN_COS: 77;
end;
suppose ((3
*
PI )
/ 2)
<= r
<= (2
*
PI );
then r
in
{((3
*
PI )
/ 2), ((5
*
PI )
/ 3), (2
*
PI )} by
A2,
Th59;
then r
= ((3
*
PI )
/ 2) or r
= ((5
*
PI )
/ 3) or r
= (2
*
PI ) by
ENUMSET1:def 1;
hence thesis by
Th13,
ENUMSET1:def 3,
SIN_COS: 77;
end;
end;
theorem ::
NIVEN:61
(r
/
PI ) is
rational & (
cos r) is
rational implies (
cos r)
in
{
0 , 1, (
- 1), (1
/ 2), (
- (1
/ 2))}
proof
consider i such that
A0: ((2
*
PI )
* i)
<= r
<= ((2
*
PI )
* (i
+ 1)) by
Th16;
set a = ((2
*
PI )
* i);
set R = (r
- a);
A2: (a
- a)
<= R
<= (((2
*
PI )
+ a)
- a) by
A0,
XREAL_1: 9;
assume
A3: (r
/
PI ) is
rational & (
cos r) is
rational;
(a
/
PI )
= (((2
* i)
*
PI )
/
PI )
.= (2
* i) by
XCMPLX_1: 89;
then
A4: (R
/
PI )
= ((r
/
PI )
- (2
* i));
R
= (((2
*
PI )
* (
- i))
+ r);
then (
cos r)
= (
cos R) by
COMPLEX2: 9;
hence thesis by
A2,
A3,
A4,
Lm4;
end;
theorem ::
NIVEN:62
Th62:
0
<= r
<= (
PI
/ 2) & (r
/
PI ) is
rational & (
sin r) is
rational implies r
in
{
0 , (
PI
/ 6), (
PI
/ 2)}
proof
set t = ((
PI
/ 2)
- r);
assume
0
<= r;
then
A1: t
<= ((
PI
/ 2)
-
0 ) by
XREAL_1: 10;
assume r
<= (
PI
/ 2);
then
A2: ((
PI
/ 2)
- (
PI
/ 2))
<= t by
XREAL_1: 10;
assume
A3: (r
/
PI ) is
rational & (
sin r) is
rational;
A4: (t
/
PI )
= (((
PI
/ 2)
/
PI )
- (r
/
PI ));
A5: ((
PI
/ 2)
/
PI )
= (1
/ 2) by
XCMPLX_1: 203;
(
cos t)
= (((
cos (
PI
/ 2))
* (
cos r))
+ ((
sin (
PI
/ 2))
* (
sin r))) by
SIN_COS: 83
.= (
sin r) by
SIN_COS: 77;
then t
in
{
0 , (
PI
/ 3), (
PI
/ 2)} by
A1,
A2,
A3,
A4,
A5,
Th53;
then t
=
0 or t
= (
PI
/ 3) or t
= (
PI
/ 2) by
ENUMSET1:def 1;
hence thesis by
ENUMSET1:def 1;
end;
theorem ::
NIVEN:63
((2
*
PI )
* i)
<= r
<= ((
PI
/ 2)
+ ((2
*
PI )
* i)) & (r
/
PI ) is
rational & (
sin r) is
rational implies r
in
{((2
*
PI )
* i), ((
PI
/ 6)
+ ((2
*
PI )
* i)), ((
PI
/ 2)
+ ((2
*
PI )
* i))}
proof
set a = ((2
*
PI )
* i);
set R = (r
- a);
assume a
<= r
<= ((
PI
/ 2)
+ a);
then
A1: (a
- a)
<= R
<= (((
PI
/ 2)
+ a)
- a) by
XREAL_1: 9;
assume
A2: (r
/
PI ) is
rational & (
sin r) is
rational;
(a
/
PI )
= (((2
* i)
*
PI )
/
PI )
.= (2
* i) by
XCMPLX_1: 89;
then
A3: (R
/
PI )
= ((r
/
PI )
- (2
* i));
R
= (((2
*
PI )
* (
- i))
+ r);
then (
sin r)
= (
sin R) by
COMPLEX2: 8;
then R
in
{
0 , (
PI
/ 6), (
PI
/ 2)} by
A1,
A2,
A3,
Th62;
then R
=
0 or R
= (
PI
/ 6) or R
= (
PI
/ 2) by
ENUMSET1:def 1;
hence thesis by
ENUMSET1:def 1;
end;
theorem ::
NIVEN:64
Th64: (
PI
/ 2)
<= r
<=
PI & (r
/
PI ) is
rational & (
sin r) is
rational implies r
in
{(
PI
/ 2), ((5
*
PI )
/ 6),
PI }
proof
set R = (
PI
- r);
assume (
PI
/ 2)
<= r
<=
PI ;
then
A1: (
PI
-
PI )
<= R
<= (
PI
- (
PI
/ 2)) by
XREAL_1: 13;
assume
A2: (r
/
PI ) is
rational & (
sin r) is
rational;
A3: (R
/
PI )
= ((
PI
/
PI )
- (r
/
PI ))
.= (1
- (r
/
PI )) by
XCMPLX_1: 60;
(
sin R)
= (
sin r) by
EUCLID10: 1;
then R
in
{
0 , (
PI
/ 6), (
PI
/ 2)} by
A1,
A2,
A3,
Th62;
then R
=
0 or R
= (
PI
/ 6) or R
= (
PI
/ 2) by
ENUMSET1:def 1;
hence thesis by
ENUMSET1:def 1;
end;
theorem ::
NIVEN:65
((
PI
/ 2)
+ ((2
*
PI )
* i))
<= r
<= (
PI
+ ((2
*
PI )
* i)) & (r
/
PI ) is
rational & (
sin r) is
rational implies r
in
{((
PI
/ 2)
+ ((2
*
PI )
* i)), (((5
*
PI )
/ 6)
+ ((2
*
PI )
* i)), (
PI
+ ((2
*
PI )
* i))}
proof
set a = ((2
*
PI )
* i);
set R = (r
- a);
assume ((
PI
/ 2)
+ a)
<= r
<= (
PI
+ a);
then
A1: (((
PI
/ 2)
+ a)
- a)
<= R
<= ((
PI
+ a)
- a) by
XREAL_1: 9;
assume
A2: (r
/
PI ) is
rational & (
sin r) is
rational;
(a
/
PI )
= (((2
* i)
*
PI )
/
PI )
.= (2
* i) by
XCMPLX_1: 89;
then
A3: (R
/
PI )
= ((r
/
PI )
- (2
* i));
R
= (((2
*
PI )
* (
- i))
+ r);
then (
sin r)
= (
sin R) by
COMPLEX2: 8;
then R
in
{(
PI
/ 2), ((5
*
PI )
/ 6),
PI } by
A1,
A2,
A3,
Th64;
then R
= (
PI
/ 2) or R
= ((5
*
PI )
/ 6) or R
=
PI by
ENUMSET1:def 1;
hence thesis by
ENUMSET1:def 1;
end;
theorem ::
NIVEN:66
Th66:
PI
<= r
<= ((3
*
PI )
/ 2) & (r
/
PI ) is
rational & (
sin r) is
rational implies r
in
{
PI , ((7
*
PI )
/ 6), ((3
*
PI )
/ 2)}
proof
set R = (r
-
PI );
assume
PI
<= r
<= ((3
*
PI )
/ 2);
then
A1: (
PI
-
PI )
<= R
<= (((3
*
PI )
/ 2)
-
PI ) by
XREAL_1: 13;
assume
A2: (r
/
PI ) is
rational & (
sin r) is
rational;
A3: (R
/
PI )
= ((r
/
PI )
- (
PI
/
PI ))
.= ((r
/
PI )
- 1) by
XCMPLX_1: 60;
(
sin R)
= (
sin (
- (
PI
- r)))
.= (
- (
sin (
PI
- r))) by
SIN_COS: 31
.= (
- (
sin r)) by
EUCLID10: 1;
then R
in
{
0 , (
PI
/ 6), (
PI
/ 2)} by
A1,
A2,
A3,
Th62;
then R
=
0 or R
= (
PI
/ 6) or R
= (
PI
/ 2) by
ENUMSET1:def 1;
hence thesis by
ENUMSET1:def 1;
end;
theorem ::
NIVEN:67
(
PI
+ ((2
*
PI )
* i))
<= r
<= (((3
*
PI )
/ 2)
+ ((2
*
PI )
* i)) & (r
/
PI ) is
rational & (
sin r) is
rational implies r
in
{(
PI
+ ((2
*
PI )
* i)), (((7
*
PI )
/ 6)
+ ((2
*
PI )
* i)), (((3
*
PI )
/ 2)
+ ((2
*
PI )
* i))}
proof
set a = ((2
*
PI )
* i);
set R = (r
- a);
assume (
PI
+ a)
<= r
<= (((3
*
PI )
/ 2)
+ a);
then
A1: ((
PI
+ a)
- a)
<= R
<= ((((3
*
PI )
/ 2)
+ a)
- a) by
XREAL_1: 9;
assume
A2: (r
/
PI ) is
rational & (
sin r) is
rational;
(a
/
PI )
= (((2
* i)
*
PI )
/
PI )
.= (2
* i) by
XCMPLX_1: 89;
then
A3: (R
/
PI )
= ((r
/
PI )
- (2
* i));
R
= (((2
*
PI )
* (
- i))
+ r);
then (
sin r)
= (
sin R) by
COMPLEX2: 8;
then R
in
{
PI , ((7
*
PI )
/ 6), ((3
*
PI )
/ 2)} by
A1,
A2,
A3,
Th66;
then R
=
PI or R
= ((7
*
PI )
/ 6) or R
= ((3
*
PI )
/ 2) by
ENUMSET1:def 1;
hence thesis by
ENUMSET1:def 1;
end;
theorem ::
NIVEN:68
Th68: ((3
*
PI )
/ 2)
<= r
<= (2
*
PI ) & (r
/
PI ) is
rational & (
sin r) is
rational implies r
in
{((3
*
PI )
/ 2), ((11
*
PI )
/ 6), (2
*
PI )}
proof
set R = ((2
*
PI )
- r);
assume ((3
*
PI )
/ 2)
<= r
<= (2
*
PI );
then
A1: ((2
*
PI )
- (2
*
PI ))
<= R
<= ((2
*
PI )
- ((3
*
PI )
/ 2)) by
XREAL_1: 13;
assume
A2: (r
/
PI ) is
rational & (
sin r) is
rational;
A3: (R
/
PI )
= (((2
*
PI )
/
PI )
- (r
/
PI ))
.= (2
- (r
/
PI )) by
XCMPLX_1: 89;
(
sin R)
= (
- (
sin r)) by
EUCLID10: 3;
then R
in
{
0 , (
PI
/ 6), (
PI
/ 2)} by
A1,
A2,
A3,
Th62;
then R
=
0 or R
= (
PI
/ 6) or R
= (
PI
/ 2) by
ENUMSET1:def 1;
hence thesis by
ENUMSET1:def 1;
end;
theorem ::
NIVEN:69
(((3
*
PI )
/ 2)
+ ((2
*
PI )
* i))
<= r
<= ((2
*
PI )
+ ((2
*
PI )
* i)) & (r
/
PI ) is
rational & (
sin r) is
rational implies r
in
{(((3
*
PI )
/ 2)
+ ((2
*
PI )
* i)), (((11
*
PI )
/ 6)
+ ((2
*
PI )
* i)), ((2
*
PI )
+ ((2
*
PI )
* i))}
proof
set a = ((2
*
PI )
* i);
set R = (r
- a);
assume (((3
*
PI )
/ 2)
+ a)
<= r
<= ((2
*
PI )
+ a);
then
A1: ((((3
*
PI )
/ 2)
+ a)
- a)
<= R
<= (((2
*
PI )
+ a)
- a) by
XREAL_1: 9;
assume
A2: (r
/
PI ) is
rational & (
sin r) is
rational;
(a
/
PI )
= (((2
* i)
*
PI )
/
PI )
.= (2
* i) by
XCMPLX_1: 89;
then
A3: (R
/
PI )
= ((r
/
PI )
- (2
* i));
R
= (((2
*
PI )
* (
- i))
+ r);
then (
sin r)
= (
sin R) by
COMPLEX2: 8;
then R
in
{((3
*
PI )
/ 2), ((11
*
PI )
/ 6), (2
*
PI )} by
A1,
A2,
A3,
Th68;
then R
= ((3
*
PI )
/ 2) or R
= ((11
*
PI )
/ 6) or R
= (2
*
PI ) by
ENUMSET1:def 1;
hence thesis by
ENUMSET1:def 1;
end;
Lm5:
0
<= r
<= (2
*
PI ) & (r
/
PI ) is
rational & (
sin r) is
rational implies (
sin r)
in
{
0 , 1, (
- 1), (1
/ 2), (
- (1
/ 2))}
proof
assume
A1:
0
<= r
<= (2
*
PI );
assume
A2: (r
/
PI ) is
rational & (
sin r) is
rational;
per cases by
A1;
suppose
0
<= r
<= (
PI
/ 2);
then r
in
{
0 , (
PI
/ 6), (
PI
/ 2)} by
A2,
Th62;
then r
=
0 or r
= (
PI
/ 6) or r
= (
PI
/ 2) by
ENUMSET1:def 1;
hence thesis by
ENUMSET1:def 3,
SIN_COS: 31,
SIN_COS: 77,
EUCLID10: 17;
end;
suppose (
PI
/ 2)
<= r
<=
PI ;
then r
in
{(
PI
/ 2), ((5
*
PI )
/ 6),
PI } by
A2,
Th64;
then r
= (
PI
/ 2) or r
= ((5
*
PI )
/ 6) or r
=
PI by
ENUMSET1:def 1;
hence thesis by
ENUMSET1:def 3,
Th5,
SIN_COS: 77;
end;
suppose
PI
<= r
<= ((3
*
PI )
/ 2);
then r
in
{
PI , ((7
*
PI )
/ 6), ((3
*
PI )
/ 2)} by
A2,
Th66;
then r
=
PI or r
= ((7
*
PI )
/ 6) or r
= ((3
*
PI )
/ 2) by
ENUMSET1:def 1;
hence thesis by
ENUMSET1:def 3,
Th7,
SIN_COS: 77;
end;
suppose ((3
*
PI )
/ 2)
<= r
<= (2
*
PI );
then r
in
{((3
*
PI )
/ 2), ((11
*
PI )
/ 6), (2
*
PI )} by
A2,
Th68;
then r
= ((3
*
PI )
/ 2) or r
= ((11
*
PI )
/ 6) or r
= (2
*
PI ) by
ENUMSET1:def 1;
hence thesis by
ENUMSET1:def 3,
Th9,
SIN_COS: 77;
end;
end;
::$Notion-Name
theorem ::
NIVEN:70
(r
/
PI ) is
rational & (
sin r) is
rational implies (
sin r)
in
{
0 , 1, (
- 1), (1
/ 2), (
- (1
/ 2))}
proof
consider i such that
A0: ((2
*
PI )
* i)
<= r
<= ((2
*
PI )
* (i
+ 1)) by
Th16;
set a = ((2
*
PI )
* i);
set R = (r
- a);
A2: (a
- a)
<= R
<= (((2
*
PI )
+ a)
- a) by
A0,
XREAL_1: 9;
assume
A3: (r
/
PI ) is
rational & (
sin r) is
rational;
(a
/
PI )
= (((2
* i)
*
PI )
/
PI )
.= (2
* i) by
XCMPLX_1: 89;
then
A4: (R
/
PI )
= ((r
/
PI )
- (2
* i));
R
= (((2
*
PI )
* (
- i))
+ r);
then (
sin r)
= (
sin R) by
COMPLEX2: 8;
hence thesis by
A2,
A3,
A4,
Lm5;
end;