integr11.miz
begin
reserve r,x,x0,a,b for
Real;
reserve n,m for
Element of
NAT ;
reserve A for non
empty
closed_interval
Subset of
REAL ;
reserve Z for
open
Subset of
REAL ;
Lm1: (
[#]
REAL )
= (
dom (
AffineMap ((1
/ 2),
0 ))) by
FUNCT_2:def 1;
Lm2: (
[#]
REAL )
= (
dom (
sin
* (
AffineMap (2,
0 )))) by
FUNCT_2:def 1;
Lm3: (
dom ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))))
= (
[#]
REAL ) by
FUNCT_2:def 1;
theorem ::
INTEGR11:1
Th1: ((
AffineMap ((1
/ 2),
0 ))
- ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))))
is_differentiable_on
REAL & for x holds ((((
AffineMap ((1
/ 2),
0 ))
- ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))))
`|
REAL )
. x)
= ((
sin
. x)
^2 )
proof
A1: for x st x
in
REAL holds ((
AffineMap (2,
0 ))
. x)
= ((2
* x)
+
0 ) by
FCONT_1:def 4;
then
A2: (
sin
* (
AffineMap (2,
0 )))
is_differentiable_on
REAL by
Lm2,
FDIFF_4: 37;
then
A3: ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
is_differentiable_on
REAL by
Lm3,
FDIFF_1: 20;
A4: (
dom ((
AffineMap ((1
/ 2),
0 ))
- ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))))
= (
[#]
REAL ) by
FUNCT_2:def 1;
A5: for x st x
in
REAL holds ((
AffineMap ((1
/ 2),
0 ))
. x)
= (((1
/ 2)
* x)
+
0 ) by
FCONT_1:def 4;
then
A6: (
AffineMap ((1
/ 2),
0 ))
is_differentiable_on
REAL by
Lm1,
FDIFF_1: 23;
hence ((
AffineMap ((1
/ 2),
0 ))
- ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))))
is_differentiable_on
REAL by
A4,
A3,
FDIFF_1: 19;
A7: for x st x
in
REAL holds ((((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
`|
REAL )
. x)
= ((1
/ 2)
* (
cos (2
* x)))
proof
let x;
assume
A8: x
in
REAL ;
((((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
`|
REAL )
. x)
= ((1
/ 4)
* (
diff ((
sin
* (
AffineMap (2,
0 ))),x))) by
A2,
Lm3,
FDIFF_1: 20,
A8
.= ((1
/ 4)
* (((
sin
* (
AffineMap (2,
0 )))
`|
REAL )
. x)) by
A2,
FDIFF_1:def 7,
A8
.= ((1
/ 4)
* (2
* (
cos
. ((2
* x)
+
0 )))) by
A1,
Lm2,
FDIFF_4: 37,
A8
.= ((1
/ 2)
* (
cos (2
* x)));
hence thesis;
end;
A9: for x st x
in
REAL holds ((((
AffineMap ((1
/ 2),
0 ))
- ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))))
`|
REAL )
. x)
= ((
sin
. x)
^2 )
proof
let x;
assume
A10: x
in
REAL ;
((((
AffineMap ((1
/ 2),
0 ))
- ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))))
`|
REAL )
. x)
= ((
diff ((
AffineMap ((1
/ 2),
0 )),x))
- (
diff (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))),x))) by
A4,
A6,
A3,
FDIFF_1: 19,
A10
.= ((((
AffineMap ((1
/ 2),
0 ))
`|
REAL )
. x)
- (
diff (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))),x))) by
A6,
FDIFF_1:def 7,
A10
.= ((1
/ 2)
- (
diff (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))),x))) by
A5,
Lm1,
FDIFF_1: 23,
A10
.= ((1
/ 2)
- ((((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
`|
REAL )
. x)) by
A3,
FDIFF_1:def 7,
A10
.= ((1
/ 2)
- ((1
/ 2)
* (
cos (2
* x)))) by
A7,
A10
.= ((1
- (
cos (2
* x)))
/ 2)
.= ((
sin x)
^2 ) by
SIN_COS5: 20;
hence thesis;
end;
let x;
x
in
REAL by
XREAL_0:def 1;
hence thesis by
A9;
end;
theorem ::
INTEGR11:2
Th2: ((
AffineMap ((1
/ 2),
0 ))
+ ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))))
is_differentiable_on
REAL & for x holds ((((
AffineMap ((1
/ 2),
0 ))
+ ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))))
`|
REAL )
. x)
= ((
cos
. x)
^2 )
proof
A1: for x st x
in
REAL holds ((
AffineMap (2,
0 ))
. x)
= ((2
* x)
+
0 ) by
FCONT_1:def 4;
then
A2: (
sin
* (
AffineMap (2,
0 )))
is_differentiable_on
REAL by
Lm2,
FDIFF_4: 37;
then
A3: ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
is_differentiable_on
REAL by
Lm3,
FDIFF_1: 20;
A4: (
dom ((
AffineMap ((1
/ 2),
0 ))
+ ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))))
= (
[#]
REAL ) by
FUNCT_2:def 1;
A5: for x st x
in
REAL holds ((
AffineMap ((1
/ 2),
0 ))
. x)
= (((1
/ 2)
* x)
+
0 ) by
FCONT_1:def 4;
then
A6: (
AffineMap ((1
/ 2),
0 ))
is_differentiable_on
REAL by
Lm1,
FDIFF_1: 23;
hence ((
AffineMap ((1
/ 2),
0 ))
+ ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))))
is_differentiable_on
REAL by
A4,
A3,
FDIFF_1: 18;
A7: for x st x
in
REAL holds ((((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
`|
REAL )
. x)
= ((1
/ 2)
* (
cos (2
* x)))
proof
let x;
assume
A8: x
in
REAL ;
((((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
`|
REAL )
. x)
= ((1
/ 4)
* (
diff ((
sin
* (
AffineMap (2,
0 ))),x))) by
A2,
Lm3,
FDIFF_1: 20,
A8
.= ((1
/ 4)
* (((
sin
* (
AffineMap (2,
0 )))
`|
REAL )
. x)) by
A2,
FDIFF_1:def 7,
A8
.= ((1
/ 4)
* (2
* (
cos
. ((2
* x)
+
0 )))) by
A1,
Lm2,
FDIFF_4: 37,
A8
.= ((1
/ 2)
* (
cos (2
* x)));
hence thesis;
end;
A9: for x st x
in
REAL holds ((((
AffineMap ((1
/ 2),
0 ))
+ ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))))
`|
REAL )
. x)
= ((
cos
. x)
^2 )
proof
let x;
assume
A10: x
in
REAL ;
((((
AffineMap ((1
/ 2),
0 ))
+ ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))))
`|
REAL )
. x)
= ((
diff ((
AffineMap ((1
/ 2),
0 )),x))
+ (
diff (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))),x))) by
A4,
A6,
A3,
FDIFF_1: 18,
A10
.= ((((
AffineMap ((1
/ 2),
0 ))
`|
REAL )
. x)
+ (
diff (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))),x))) by
A6,
FDIFF_1:def 7,
A10
.= ((1
/ 2)
+ (
diff (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))),x))) by
A5,
Lm1,
FDIFF_1: 23,
A10
.= ((1
/ 2)
+ ((((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
`|
REAL )
. x)) by
A3,
FDIFF_1:def 7,
A10
.= ((1
/ 2)
+ ((1
/ 2)
* (
cos (2
* x)))) by
A7,
A10
.= ((1
+ (
cos (2
* x)))
/ 2)
.= ((
cos x)
^2 ) by
SIN_COS5: 21;
hence thesis;
end;
let x;
x
in
REAL by
XREAL_0:def 1;
hence thesis by
A9;
end;
theorem ::
INTEGR11:3
Th3: ((1
/ (n
+ 1))
(#) ((
#Z (n
+ 1))
*
sin ))
is_differentiable_on
REAL & for x holds ((((1
/ (n
+ 1))
(#) ((
#Z (n
+ 1))
*
sin ))
`|
REAL )
. x)
= (((
sin
. x)
#Z n)
* (
cos
. x))
proof
A1: (
[#]
REAL )
= (
dom ((1
/ (n
+ 1))
(#) ((
#Z (n
+ 1))
*
sin ))) by
FUNCT_2:def 1;
((
#Z (n
+ 1))
*
sin )
is_differentiable_in x0
proof
sin
is_differentiable_in x0 by
SIN_COS: 64;
hence thesis by
TAYLOR_1: 3;
end;
then (
[#]
REAL )
= (
dom ((
#Z (n
+ 1))
*
sin )) & for x0 st x0
in
REAL holds ((
#Z (n
+ 1))
*
sin )
is_differentiable_in x0 by
FUNCT_2:def 1;
then
A2: ((
#Z (n
+ 1))
*
sin )
is_differentiable_on
REAL by
FDIFF_1: 9;
hence ((1
/ (n
+ 1))
(#) ((
#Z (n
+ 1))
*
sin ))
is_differentiable_on
REAL by
A1,
FDIFF_1: 20;
A3: for x st x
in
REAL holds ((((
#Z (n
+ 1))
*
sin )
`|
REAL )
. x)
= (((n
+ 1)
* ((
sin
. x)
#Z n))
* (
cos
. x))
proof
set m = (n
+ 1);
let x;
assume
A4: x
in
REAL ;
sin
is_differentiable_in x by
SIN_COS: 64;
then (
diff (((
#Z m)
*
sin ),x))
= ((m
* ((
sin
. x)
#Z (m
- 1)))
* (
diff (
sin ,x))) by
TAYLOR_1: 3
.= ((m
* ((
sin
. x)
#Z (m
- 1)))
* (
cos
. x)) by
SIN_COS: 64;
hence thesis by
A2,
FDIFF_1:def 7,
A4;
end;
A5: for x st x
in
REAL holds ((((1
/ (n
+ 1))
(#) ((
#Z (n
+ 1))
*
sin ))
`|
REAL )
. x)
= (((
sin
. x)
#Z n)
* (
cos
. x))
proof
let x;
assume
A6: x
in
REAL ;
((((1
/ (n
+ 1))
(#) ((
#Z (n
+ 1))
*
sin ))
`|
REAL )
. x)
= ((1
/ (n
+ 1))
* (
diff (((
#Z (n
+ 1))
*
sin ),x))) by
A1,
A2,
FDIFF_1: 20,
A6
.= ((1
/ (n
+ 1))
* ((((
#Z (n
+ 1))
*
sin )
`|
REAL )
. x)) by
A2,
FDIFF_1:def 7,
A6
.= ((1
/ (n
+ 1))
* (((n
+ 1)
* ((
sin
. x)
#Z n))
* (
cos
. x))) by
A3,
A6
.= ((((1
/ (n
+ 1))
* (n
+ 1))
* ((
sin
. x)
#Z n))
* (
cos
. x))
.= ((((n
+ 1)
/ (n
+ 1))
* ((
sin
. x)
#Z n))
* (
cos
. x)) by
XCMPLX_1: 99
.= ((1
* ((
sin
. x)
#Z n))
* (
cos
. x)) by
XCMPLX_1: 60;
hence thesis;
end;
let x;
x
in
REAL by
XREAL_0:def 1;
hence thesis by
A5;
end;
theorem ::
INTEGR11:4
Th4: ((
- (1
/ (n
+ 1)))
(#) ((
#Z (n
+ 1))
*
cos ))
is_differentiable_on
REAL & for x holds ((((
- (1
/ (n
+ 1)))
(#) ((
#Z (n
+ 1))
*
cos ))
`|
REAL )
. x)
= (((
cos
. x)
#Z n)
* (
sin
. x))
proof
A1: (
[#]
REAL )
= (
dom ((
- (1
/ (n
+ 1)))
(#) ((
#Z (n
+ 1))
*
cos ))) by
FUNCT_2:def 1;
((
#Z (n
+ 1))
*
cos )
is_differentiable_in x0
proof
cos
is_differentiable_in x0 by
SIN_COS: 63;
hence thesis by
TAYLOR_1: 3;
end;
then
A2: for x0 st x0
in
REAL holds ((
#Z (n
+ 1))
*
cos )
is_differentiable_in x0;
(
[#]
REAL )
= (
dom (
#Z (n
+ 1))) &
REAL
= (
dom ((
#Z (n
+ 1))
*
cos )) by
FUNCT_2:def 1;
then
A3: ((
#Z (n
+ 1))
*
cos )
is_differentiable_on
REAL by
A2,
FDIFF_1: 9;
hence ((
- (1
/ (n
+ 1)))
(#) ((
#Z (n
+ 1))
*
cos ))
is_differentiable_on
REAL by
A1,
FDIFF_1: 20;
A4: for x st x
in
REAL holds ((((
#Z (n
+ 1))
*
cos )
`|
REAL )
. x)
= (((
- (n
+ 1))
* ((
cos
. x)
#Z n))
* (
sin
. x))
proof
set m = (n
+ 1);
let x;
assume
A5: x
in
REAL ;
cos
is_differentiable_in x by
SIN_COS: 63;
then (
diff (((
#Z m)
*
cos ),x))
= ((m
* ((
cos
. x)
#Z (m
- 1)))
* (
diff (
cos ,x))) by
TAYLOR_1: 3
.= ((m
* ((
cos
. x)
#Z (m
- 1)))
* (
- (
sin
. x))) by
SIN_COS: 63
.= (((
- m)
* ((
cos
. x)
#Z (m
- 1)))
* (
sin
. x));
hence thesis by
A3,
FDIFF_1:def 7,
A5;
end;
A6: for x st x
in
REAL holds ((((
- (1
/ (n
+ 1)))
(#) ((
#Z (n
+ 1))
*
cos ))
`|
REAL )
. x)
= (((
cos
. x)
#Z n)
* (
sin
. x))
proof
let x;
assume
A7: x
in
REAL ;
((((
- (1
/ (n
+ 1)))
(#) ((
#Z (n
+ 1))
*
cos ))
`|
REAL )
. x)
= ((
- (1
/ (n
+ 1)))
* (
diff (((
#Z (n
+ 1))
*
cos ),x))) by
A1,
A3,
FDIFF_1: 20,
A7
.= ((
- (1
/ (n
+ 1)))
* ((((
#Z (n
+ 1))
*
cos )
`|
REAL )
. x)) by
A3,
FDIFF_1:def 7,
A7
.= ((
- (1
/ (n
+ 1)))
* (((
- (n
+ 1))
* ((
cos
. x)
#Z n))
* (
sin
. x))) by
A4,
A7
.= ((((1
/ (n
+ 1))
* (n
+ 1))
* ((
cos
. x)
#Z n))
* (
sin
. x))
.= ((((n
+ 1)
/ (n
+ 1))
* ((
cos
. x)
#Z n))
* (
sin
. x)) by
XCMPLX_1: 99
.= ((1
* ((
cos
. x)
#Z n))
* (
sin
. x)) by
XCMPLX_1: 60;
hence thesis;
end;
let x;
x
in
REAL by
XREAL_0:def 1;
hence thesis by
A6;
end;
theorem ::
INTEGR11:5
Th5: (m
+ n)
<>
0 & (m
- n)
<>
0 implies (((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 ))))
+ ((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 )))))
is_differentiable_on
REAL & for x holds (((((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 ))))
+ ((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 )))))
`|
REAL )
. x)
= ((
cos
. (m
* x))
* (
cos
. (n
* x)))
proof
assume that
A1: (m
+ n)
<>
0 and
A2: (m
- n)
<>
0 ;
A3: (
dom (
sin
* (
AffineMap ((m
- n),
0 ))))
= (
[#]
REAL ) & for x st x
in
REAL holds ((
AffineMap ((m
- n),
0 ))
. x)
= (((m
- n)
* x)
+
0 ) by
FCONT_1:def 4,
FUNCT_2:def 1;
then
A4: (
sin
* (
AffineMap ((m
- n),
0 )))
is_differentiable_on
REAL by
FDIFF_4: 37;
A5: (
dom ((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 )))))
= (
[#]
REAL ) by
FUNCT_2:def 1;
then
A6: ((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 ))))
is_differentiable_on
REAL by
A4,
FDIFF_1: 20;
A7: for x st x
in
REAL holds ((((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 ))))
`|
REAL )
. x)
= ((1
/ 2)
* (
cos ((m
- n)
* x)))
proof
let x;
assume
A8: x
in
REAL ;
((((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 ))))
`|
REAL )
. x)
= ((1
/ (2
* (m
- n)))
* (
diff ((
sin
* (
AffineMap ((m
- n),
0 ))),x))) by
A5,
A4,
FDIFF_1: 20,
A8
.= ((1
/ (2
* (m
- n)))
* (((
sin
* (
AffineMap ((m
- n),
0 )))
`|
REAL )
. x)) by
A4,
FDIFF_1:def 7,
A8
.= ((1
/ (2
* (m
- n)))
* ((m
- n)
* (
cos
. (((m
- n)
* x)
+
0 )))) by
A3,
FDIFF_4: 37,
A8
.= (((m
- n)
* (1
/ (2
* (m
- n))))
* (
cos
. (((m
- n)
* x)
+
0 )))
.= (((1
* (m
- n))
/ (2
* (m
- n)))
* (
cos
. (((m
- n)
* x)
+
0 ))) by
XCMPLX_1: 74
.= ((1
/ 2)
* (
cos ((m
- n)
* x))) by
A2,
XCMPLX_1: 91;
hence thesis;
end;
A9: (
dom (((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 ))))
+ ((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 ))))))
= (
[#]
REAL ) by
FUNCT_2:def 1;
A10: (
dom (
sin
* (
AffineMap ((m
+ n),
0 ))))
= (
[#]
REAL ) & for x st x
in
REAL holds ((
AffineMap ((m
+ n),
0 ))
. x)
= (((m
+ n)
* x)
+
0 ) by
FCONT_1:def 4,
FUNCT_2:def 1;
then
A11: (
sin
* (
AffineMap ((m
+ n),
0 )))
is_differentiable_on
REAL by
FDIFF_4: 37;
A12: (
[#]
REAL )
= (
dom ((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 ))))) by
FUNCT_2:def 1;
then
A13: ((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 ))))
is_differentiable_on
REAL by
A11,
FDIFF_1: 20;
hence (((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 ))))
+ ((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 )))))
is_differentiable_on
REAL by
A9,
A6,
FDIFF_1: 18;
A14: for x st x
in
REAL holds ((((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 ))))
`|
REAL )
. x)
= ((1
/ 2)
* (
cos ((m
+ n)
* x)))
proof
let x;
assume
A15: x
in
REAL ;
((((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 ))))
`|
REAL )
. x)
= ((1
/ (2
* (m
+ n)))
* (
diff ((
sin
* (
AffineMap ((m
+ n),
0 ))),x))) by
A12,
A11,
FDIFF_1: 20,
A15
.= ((1
/ (2
* (m
+ n)))
* (((
sin
* (
AffineMap ((m
+ n),
0 )))
`|
REAL )
. x)) by
A11,
FDIFF_1:def 7,
A15
.= ((1
/ (2
* (m
+ n)))
* ((m
+ n)
* (
cos
. (((m
+ n)
* x)
+
0 )))) by
A10,
FDIFF_4: 37,
A15
.= (((m
+ n)
* (1
/ (2
* (m
+ n))))
* (
cos
. (((m
+ n)
* x)
+
0 )))
.= (((1
* (m
+ n))
/ (2
* (m
+ n)))
* (
cos
. (((m
+ n)
* x)
+
0 ))) by
XCMPLX_1: 74
.= ((1
/ 2)
* (
cos ((m
+ n)
* x))) by
A1,
XCMPLX_1: 91;
hence thesis;
end;
A16: for x st x
in
REAL holds (((((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 ))))
+ ((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 )))))
`|
REAL )
. x)
= ((
cos
. (m
* x))
* (
cos
. (n
* x)))
proof
let x;
assume
A17: x
in
REAL ;
(((((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 ))))
+ ((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 )))))
`|
REAL )
. x)
= ((
diff (((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 )))),x))
+ (
diff (((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 )))),x))) by
A9,
A13,
A6,
FDIFF_1: 18,
A17
.= (((((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 ))))
`|
REAL )
. x)
+ (
diff (((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 )))),x))) by
A13,
FDIFF_1:def 7,
A17
.= (((((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 ))))
`|
REAL )
. x)
+ ((((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 ))))
`|
REAL )
. x)) by
A6,
FDIFF_1:def 7,
A17
.= (((1
/ 2)
* (
cos ((m
+ n)
* x)))
+ ((((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 ))))
`|
REAL )
. x)) by
A14,
A17
.= (((1
/ 2)
* (
cos ((m
+ n)
* x)))
+ ((1
/ 2)
* (
cos ((m
- n)
* x)))) by
A7,
A17
.= ((1
/ 2)
* ((
cos ((m
+ n)
* x))
+ (
cos ((m
- n)
* x))))
.= ((1
/ 2)
* (2
* ((
cos ((((m
+ n)
* x)
+ ((m
- n)
* x))
/ 2))
* (
cos ((((m
+ n)
* x)
- ((m
- n)
* x))
/ 2))))) by
SIN_COS4: 17
.= ((
cos
. (m
* x))
* (
cos
. (n
* x)));
hence thesis;
end;
let x;
x
in
REAL by
XREAL_0:def 1;
hence thesis by
A16;
end;
theorem ::
INTEGR11:6
Th6: (m
+ n)
<>
0 & (m
- n)
<>
0 implies (((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 ))))
- ((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 )))))
is_differentiable_on
REAL & for x holds (((((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 ))))
- ((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 )))))
`|
REAL )
. x)
= ((
sin
. (m
* x))
* (
sin
. (n
* x)))
proof
assume that
A1: (m
+ n)
<>
0 and
A2: (m
- n)
<>
0 ;
A3: (
dom ((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 )))))
= (
[#]
REAL ) by
FUNCT_2:def 1;
A4: (
dom (
sin
* (
AffineMap ((m
- n),
0 ))))
= (
[#]
REAL ) & for x st x
in
REAL holds ((
AffineMap ((m
- n),
0 ))
. x)
= (((m
- n)
* x)
+
0 ) by
FCONT_1:def 4,
FUNCT_2:def 1;
then
A5: (
sin
* (
AffineMap ((m
- n),
0 )))
is_differentiable_on
REAL by
FDIFF_4: 37;
then
A6: ((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 ))))
is_differentiable_on
REAL by
A3,
FDIFF_1: 20;
A7: for x st x
in
REAL holds ((((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 ))))
`|
REAL )
. x)
= ((1
/ 2)
* (
cos ((m
- n)
* x)))
proof
let x;
assume
A8: x
in
REAL ;
((((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 ))))
`|
REAL )
. x)
= ((1
/ (2
* (m
- n)))
* (
diff ((
sin
* (
AffineMap ((m
- n),
0 ))),x))) by
A3,
A5,
FDIFF_1: 20,
A8
.= ((1
/ (2
* (m
- n)))
* (((
sin
* (
AffineMap ((m
- n),
0 )))
`|
REAL )
. x)) by
A5,
FDIFF_1:def 7,
A8
.= ((1
/ (2
* (m
- n)))
* ((m
- n)
* (
cos
. (((m
- n)
* x)
+
0 )))) by
A4,
FDIFF_4: 37,
A8
.= (((m
- n)
* (1
/ (2
* (m
- n))))
* (
cos
. (((m
- n)
* x)
+
0 )))
.= (((1
* (m
- n))
/ (2
* (m
- n)))
* (
cos
. (((m
- n)
* x)
+
0 ))) by
XCMPLX_1: 74
.= ((1
/ 2)
* (
cos ((m
- n)
* x))) by
A2,
XCMPLX_1: 91;
hence thesis;
end;
A9: (
dom (((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 ))))
- ((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 ))))))
= (
[#]
REAL ) by
FUNCT_2:def 1;
A10: (
dom (
sin
* (
AffineMap ((m
+ n),
0 ))))
= (
[#]
REAL ) & for x st x
in
REAL holds ((
AffineMap ((m
+ n),
0 ))
. x)
= (((m
+ n)
* x)
+
0 ) by
FCONT_1:def 4,
FUNCT_2:def 1;
then
A11: (
sin
* (
AffineMap ((m
+ n),
0 )))
is_differentiable_on
REAL by
FDIFF_4: 37;
A12:
REAL
= (
dom ((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 ))))) by
FUNCT_2:def 1;
then
A13: ((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 ))))
is_differentiable_on
REAL by
A3,
A11,
FDIFF_1: 20;
hence (((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 ))))
- ((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 )))))
is_differentiable_on
REAL by
A9,
A6,
FDIFF_1: 19;
A14: for x st x
in
REAL holds ((((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 ))))
`|
REAL )
. x)
= ((1
/ 2)
* (
cos ((m
+ n)
* x)))
proof
let x;
assume
A15: x
in
REAL ;
((((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 ))))
`|
REAL )
. x)
= ((1
/ (2
* (m
+ n)))
* (
diff ((
sin
* (
AffineMap ((m
+ n),
0 ))),x))) by
A12,
A3,
A11,
FDIFF_1: 20,
A15
.= ((1
/ (2
* (m
+ n)))
* (((
sin
* (
AffineMap ((m
+ n),
0 )))
`|
REAL )
. x)) by
A11,
FDIFF_1:def 7,
A15
.= ((1
/ (2
* (m
+ n)))
* ((m
+ n)
* (
cos
. (((m
+ n)
* x)
+
0 )))) by
A10,
FDIFF_4: 37,
A15
.= (((m
+ n)
* (1
/ (2
* (m
+ n))))
* (
cos
. (((m
+ n)
* x)
+
0 )))
.= (((1
* (m
+ n))
/ (2
* (m
+ n)))
* (
cos
. (((m
+ n)
* x)
+
0 ))) by
XCMPLX_1: 74
.= ((1
/ 2)
* (
cos ((m
+ n)
* x))) by
A1,
XCMPLX_1: 91;
hence thesis;
end;
A16: for x st x
in
REAL holds (((((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 ))))
- ((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 )))))
`|
REAL )
. x)
= ((
sin
. (m
* x))
* (
sin
. (n
* x)))
proof
let x;
assume
A17: x
in
REAL ;
(((((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 ))))
- ((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 )))))
`|
REAL )
. x)
= ((
diff (((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 )))),x))
- (
diff (((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 )))),x))) by
A9,
A13,
A6,
FDIFF_1: 19,
A17
.= (((((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 ))))
`|
REAL )
. x)
- (
diff (((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 )))),x))) by
A6,
FDIFF_1:def 7,
A17
.= (((((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 ))))
`|
REAL )
. x)
- ((((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 ))))
`|
REAL )
. x)) by
A13,
FDIFF_1:def 7,
A17
.= (((1
/ 2)
* (
cos ((m
- n)
* x)))
- ((((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 ))))
`|
REAL )
. x)) by
A7,
A17
.= (((1
/ 2)
* (
cos ((m
- n)
* x)))
- ((1
/ 2)
* (
cos ((m
+ n)
* x)))) by
A14,
A17
.= ((1
/ 2)
* ((
cos ((m
- n)
* x))
- (
cos ((m
+ n)
* x))))
.= ((1
/ 2)
* (
- (2
* ((
sin ((((m
- n)
* x)
+ ((m
+ n)
* x))
/ 2))
* (
sin ((((m
- n)
* x)
- ((m
+ n)
* x))
/ 2)))))) by
SIN_COS4: 18
.= ((1
/ 2)
* (
- (2
* ((
sin (m
* x))
* (
sin (
- (n
* x)))))))
.= ((1
/ 2)
* (
- (2
* ((
sin (m
* x))
* (
- (
sin (n
* x))))))) by
SIN_COS: 31
.= ((
sin
. (m
* x))
* (
sin
. (n
* x)));
hence thesis;
end;
let x;
x
in
REAL by
XREAL_0:def 1;
hence thesis by
A16;
end;
theorem ::
INTEGR11:7
Th7: (m
+ n)
<>
0 & (m
- n)
<>
0 implies ((
- ((1
/ (2
* (m
+ n)))
(#) (
cos
* (
AffineMap ((m
+ n),
0 )))))
- ((1
/ (2
* (m
- n)))
(#) (
cos
* (
AffineMap ((m
- n),
0 )))))
is_differentiable_on
REAL & for x holds ((((
- ((1
/ (2
* (m
+ n)))
(#) (
cos
* (
AffineMap ((m
+ n),
0 )))))
- ((1
/ (2
* (m
- n)))
(#) (
cos
* (
AffineMap ((m
- n),
0 )))))
`|
REAL )
. x)
= ((
sin
. (m
* x))
* (
cos
. (n
* x)))
proof
assume that
A1: (m
+ n)
<>
0 and
A2: (m
- n)
<>
0 ;
A3: (
dom (
cos
* (
AffineMap ((m
+ n),
0 ))))
= (
[#]
REAL ) & for x st x
in
REAL holds ((
AffineMap ((m
+ n),
0 ))
. x)
= (((m
+ n)
* x)
+
0 ) by
FCONT_1:def 4,
FUNCT_2:def 1;
then
A4: (
cos
* (
AffineMap ((m
+ n),
0 )))
is_differentiable_on
REAL by
FDIFF_4: 38;
A5: for x st x
in
REAL holds (((
- ((1
/ (2
* (m
+ n)))
(#) (
cos
* (
AffineMap ((m
+ n),
0 )))))
`|
REAL )
. x)
= ((1
/ 2)
* (
sin ((m
+ n)
* x)))
proof
let x;
assume
A6: x
in
REAL ;
A7: (
dom (((
- 1)
/ (2
* (m
+ n)))
(#) (
cos
* (
AffineMap ((m
+ n),
0 )))))
= (
[#]
REAL ) by
FUNCT_2:def 1;
(((
- ((1
/ (2
* (m
+ n)))
(#) (
cos
* (
AffineMap ((m
+ n),
0 )))))
`|
REAL )
. x)
= (((((
- 1)
* (1
/ (2
* (m
+ n))))
(#) (
cos
* (
AffineMap ((m
+ n),
0 ))))
`|
REAL )
. x) by
RFUNCT_1: 17
.= ((((
- (1
/ (2
* (m
+ n))))
(#) (
cos
* (
AffineMap ((m
+ n),
0 ))))
`|
REAL )
. x)
.= (((((
- 1)
/ (2
* (m
+ n)))
(#) (
cos
* (
AffineMap ((m
+ n),
0 ))))
`|
REAL )
. x) by
XCMPLX_1: 187
.= (((
- 1)
/ (2
* (m
+ n)))
* (
diff ((
cos
* (
AffineMap ((m
+ n),
0 ))),x))) by
A4,
A7,
FDIFF_1: 20,
A6
.= (((
- 1)
/ (2
* (m
+ n)))
* (((
cos
* (
AffineMap ((m
+ n),
0 )))
`|
REAL )
. x)) by
A4,
FDIFF_1:def 7,
A6
.= (((
- 1)
/ (2
* (m
+ n)))
* (
- ((m
+ n)
* (
sin
. (((m
+ n)
* x)
+
0 ))))) by
A3,
FDIFF_4: 38,
A6
.= (((
- ((
- 1)
/ (2
* (m
+ n))))
* (m
+ n))
* (
sin
. (((m
+ n)
* x)
+
0 )))
.= (((1
/ (2
* (m
+ n)))
* (m
+ n))
* (
sin
. (((m
+ n)
* x)
+
0 ))) by
XCMPLX_1: 190
.= (((1
* (m
+ n))
/ (2
* (m
+ n)))
* (
sin
. (((m
+ n)
* x)
+
0 ))) by
XCMPLX_1: 74
.= ((1
/ 2)
* (
sin ((m
+ n)
* x))) by
A1,
XCMPLX_1: 91;
hence thesis;
end;
A8: (
dom (
- ((1
/ (2
* (m
+ n)))
(#) (
cos
* (
AffineMap ((m
+ n),
0 ))))))
= (
[#]
REAL ) by
FUNCT_2:def 1;
(
dom ((1
/ (2
* (m
+ n)))
(#) (
cos
* (
AffineMap ((m
+ n),
0 )))))
= (
[#]
REAL ) by
FUNCT_2:def 1;
then (
- ((1
/ (2
* (m
+ n)))
(#) (
cos
* (
AffineMap ((m
+ n),
0 )))))
= ((
- 1)
(#) ((1
/ (2
* (m
+ n)))
(#) (
cos
* (
AffineMap ((m
+ n),
0 ))))) & ((1
/ (2
* (m
+ n)))
(#) (
cos
* (
AffineMap ((m
+ n),
0 ))))
is_differentiable_on
REAL by
A4,
FDIFF_1: 20;
then
A9: (
- ((1
/ (2
* (m
+ n)))
(#) (
cos
* (
AffineMap ((m
+ n),
0 )))))
is_differentiable_on
REAL by
A8,
FDIFF_1: 20;
A10:
REAL
= (
dom ((
- ((1
/ (2
* (m
+ n)))
(#) (
cos
* (
AffineMap ((m
+ n),
0 )))))
- ((1
/ (2
* (m
- n)))
(#) (
cos
* (
AffineMap ((m
- n),
0 )))))) by
FUNCT_2:def 1;
A11: (
dom (
cos
* (
AffineMap ((m
- n),
0 ))))
= (
[#]
REAL ) & for x st x
in
REAL holds ((
AffineMap ((m
- n),
0 ))
. x)
= (((m
- n)
* x)
+
0 ) by
FCONT_1:def 4,
FUNCT_2:def 1;
then
A12: (
cos
* (
AffineMap ((m
- n),
0 )))
is_differentiable_on
REAL by
FDIFF_4: 38;
A13: (
dom ((1
/ (2
* (m
- n)))
(#) (
cos
* (
AffineMap ((m
- n),
0 )))))
= (
[#]
REAL ) by
FUNCT_2:def 1;
then
A14: ((1
/ (2
* (m
- n)))
(#) (
cos
* (
AffineMap ((m
- n),
0 ))))
is_differentiable_on
REAL by
A12,
FDIFF_1: 20;
hence ((
- ((1
/ (2
* (m
+ n)))
(#) (
cos
* (
AffineMap ((m
+ n),
0 )))))
- ((1
/ (2
* (m
- n)))
(#) (
cos
* (
AffineMap ((m
- n),
0 )))))
is_differentiable_on
REAL by
A8,
A10,
A9,
FDIFF_1: 19;
A15: for x st x
in
REAL holds ((((1
/ (2
* (m
- n)))
(#) (
cos
* (
AffineMap ((m
- n),
0 ))))
`|
REAL )
. x)
= (
- ((1
/ 2)
* (
sin ((m
- n)
* x))))
proof
let x;
assume
A16: x
in
REAL ;
((((1
/ (2
* (m
- n)))
(#) (
cos
* (
AffineMap ((m
- n),
0 ))))
`|
REAL )
. x)
= ((1
/ (2
* (m
- n)))
* (
diff ((
cos
* (
AffineMap ((m
- n),
0 ))),x))) by
A13,
A12,
FDIFF_1: 20,
A16
.= ((1
/ (2
* (m
- n)))
* (((
cos
* (
AffineMap ((m
- n),
0 )))
`|
REAL )
. x)) by
A12,
FDIFF_1:def 7,
A16
.= ((1
/ (2
* (m
- n)))
* (
- ((m
- n)
* (
sin
. (((m
- n)
* x)
+
0 ))))) by
A11,
FDIFF_4: 38,
A16
.= (((
- (1
/ (2
* (m
- n))))
* (m
- n))
* (
sin
. (((m
- n)
* x)
+
0 )))
.= ((((
- 1)
/ (2
* (m
- n)))
* (m
- n))
* (
sin
. (((m
- n)
* x)
+
0 ))) by
XCMPLX_1: 187
.= ((((
- 1)
* (m
- n))
/ (2
* (m
- n)))
* (
sin
. (((m
- n)
* x)
+
0 ))) by
XCMPLX_1: 74
.= (((
- 1)
/ 2)
* (
sin ((m
- n)
* x))) by
A2,
XCMPLX_1: 91;
hence thesis;
end;
A17: for x st x
in
REAL holds ((((
- ((1
/ (2
* (m
+ n)))
(#) (
cos
* (
AffineMap ((m
+ n),
0 )))))
- ((1
/ (2
* (m
- n)))
(#) (
cos
* (
AffineMap ((m
- n),
0 )))))
`|
REAL )
. x)
= ((
sin
. (m
* x))
* (
cos
. (n
* x)))
proof
let x;
assume
A18: x
in
REAL ;
((((
- ((1
/ (2
* (m
+ n)))
(#) (
cos
* (
AffineMap ((m
+ n),
0 )))))
- ((1
/ (2
* (m
- n)))
(#) (
cos
* (
AffineMap ((m
- n),
0 )))))
`|
REAL )
. x)
= ((
diff ((
- ((1
/ (2
* (m
+ n)))
(#) (
cos
* (
AffineMap ((m
+ n),
0 ))))),x))
- (
diff (((1
/ (2
* (m
- n)))
(#) (
cos
* (
AffineMap ((m
- n),
0 )))),x))) by
A8,
A10,
A9,
A14,
FDIFF_1: 19,
A18
.= ((((
- ((1
/ (2
* (m
+ n)))
(#) (
cos
* (
AffineMap ((m
+ n),
0 )))))
`|
REAL )
. x)
- (
diff (((1
/ (2
* (m
- n)))
(#) (
cos
* (
AffineMap ((m
- n),
0 )))),x))) by
A9,
FDIFF_1:def 7,
A18
.= ((((
- ((1
/ (2
* (m
+ n)))
(#) (
cos
* (
AffineMap ((m
+ n),
0 )))))
`|
REAL )
. x)
- ((((1
/ (2
* (m
- n)))
(#) (
cos
* (
AffineMap ((m
- n),
0 ))))
`|
REAL )
. x)) by
A14,
FDIFF_1:def 7,
A18
.= (((1
/ 2)
* (
sin ((m
+ n)
* x)))
- ((((1
/ (2
* (m
- n)))
(#) (
cos
* (
AffineMap ((m
- n),
0 ))))
`|
REAL )
. x)) by
A5,
A18
.= (((1
/ 2)
* (
sin ((m
+ n)
* x)))
- (
- ((1
/ 2)
* (
sin ((m
- n)
* x))))) by
A15,
A18
.= ((1
/ 2)
* ((
sin ((m
+ n)
* x))
+ (
sin ((m
- n)
* x))))
.= ((1
/ 2)
* (2
* ((
cos ((((m
+ n)
* x)
- ((m
- n)
* x))
/ 2))
* (
sin ((((m
+ n)
* x)
+ ((m
- n)
* x))
/ 2))))) by
SIN_COS4: 15
.= ((
sin
. (m
* x))
* (
cos
. (n
* x)));
hence thesis;
end;
let x;
x
in
REAL by
XREAL_0:def 1;
hence thesis by
A17;
end;
theorem ::
INTEGR11:8
Th8: n
<>
0 implies (((1
/ (n
^2 ))
(#) (
sin
* (
AffineMap (n,
0 ))))
- ((
AffineMap ((1
/ n),
0 ))
(#) (
cos
* (
AffineMap (n,
0 )))))
is_differentiable_on
REAL & for x holds (((((1
/ (n
^2 ))
(#) (
sin
* (
AffineMap (n,
0 ))))
- ((
AffineMap ((1
/ n),
0 ))
(#) (
cos
* (
AffineMap (n,
0 )))))
`|
REAL )
. x)
= (x
* (
sin
. (n
* x)))
proof
A1: (
dom (((1
/ (n
^2 ))
(#) (
sin
* (
AffineMap (n,
0 ))))
- ((
AffineMap ((1
/ n),
0 ))
(#) (
cos
* (
AffineMap (n,
0 ))))))
= (
[#]
REAL ) by
FUNCT_2:def 1;
A2: (
dom (
AffineMap ((1
/ n),
0 )))
=
REAL & for x st x
in
REAL holds ((
AffineMap ((1
/ n),
0 ))
. x)
= (((1
/ n)
* x)
+
0 ) by
FCONT_1:def 4,
FUNCT_2:def 1;
then
A3: (
AffineMap ((1
/ n),
0 ))
is_differentiable_on
REAL by
A1,
FDIFF_1: 23;
A4: for x st x
in
REAL holds ((
AffineMap (n,
0 ))
. x)
= ((n
* x)
+
0 ) by
FCONT_1:def 4;
A5: (
dom (
sin
* (
AffineMap (n,
0 ))))
= (
[#]
REAL ) by
FUNCT_2:def 1;
then
A6: (
sin
* (
AffineMap (n,
0 )))
is_differentiable_on
REAL by
A4,
FDIFF_4: 37;
A7: (
dom ((1
/ (n
^2 ))
(#) (
sin
* (
AffineMap (n,
0 )))))
=
REAL by
FUNCT_2:def 1;
then
A8: ((1
/ (n
^2 ))
(#) (
sin
* (
AffineMap (n,
0 ))))
is_differentiable_on
REAL by
A1,
A6,
FDIFF_1: 20;
assume
A9: n
<>
0 ;
A10: for x st x
in
REAL holds ((((1
/ (n
^2 ))
(#) (
sin
* (
AffineMap (n,
0 ))))
`|
REAL )
. x)
= ((1
/ n)
* (
cos (n
* x)))
proof
let x;
assume
A11: x
in
REAL ;
((((1
/ (n
^2 ))
(#) (
sin
* (
AffineMap (n,
0 ))))
`|
REAL )
. x)
= ((1
/ (n
^2 ))
* (
diff ((
sin
* (
AffineMap (n,
0 ))),x))) by
A7,
A1,
A6,
FDIFF_1: 20,
A11
.= ((1
/ (n
^2 ))
* (((
sin
* (
AffineMap (n,
0 )))
`|
REAL )
. x)) by
A6,
FDIFF_1:def 7,
A11
.= ((1
/ (n
^2 ))
* (n
* (
cos
. ((n
* x)
+
0 )))) by
A5,
A4,
FDIFF_4: 37,
A11
.= ((n
* (1
/ (n
* n)))
* (
cos
. ((n
* x)
+
0 )))
.= (((n
* 1)
/ (n
* n))
* (
cos
. ((n
* x)
+
0 ))) by
XCMPLX_1: 74
.= ((1
/ n)
* (
cos
. ((n
* x)
+
0 ))) by
A9,
XCMPLX_1: 91;
hence thesis;
end;
A12: (
dom (
cos
* (
AffineMap (n,
0 ))))
= (
[#]
REAL ) by
FUNCT_2:def 1;
then
A13: (
cos
* (
AffineMap (n,
0 )))
is_differentiable_on
REAL by
A4,
FDIFF_4: 38;
A14: (
dom ((
AffineMap ((1
/ n),
0 ))
(#) (
cos
* (
AffineMap (n,
0 )))))
=
REAL by
FUNCT_2:def 1;
then
A15: ((
AffineMap ((1
/ n),
0 ))
(#) (
cos
* (
AffineMap (n,
0 ))))
is_differentiable_on
REAL by
A1,
A3,
A13,
FDIFF_1: 21;
hence (((1
/ (n
^2 ))
(#) (
sin
* (
AffineMap (n,
0 ))))
- ((
AffineMap ((1
/ n),
0 ))
(#) (
cos
* (
AffineMap (n,
0 )))))
is_differentiable_on
REAL by
A1,
A8,
FDIFF_1: 19;
A16: for x st x
in
REAL holds ((((
AffineMap ((1
/ n),
0 ))
(#) (
cos
* (
AffineMap (n,
0 ))))
`|
REAL )
. x)
= (((1
/ n)
* (
cos
. (n
* x)))
- (x
* (
sin
. (n
* x))))
proof
let x;
assume
A17: x
in
REAL ;
((((
AffineMap ((1
/ n),
0 ))
(#) (
cos
* (
AffineMap (n,
0 ))))
`|
REAL )
. x)
= ((((
cos
* (
AffineMap (n,
0 )))
. x)
* (
diff ((
AffineMap ((1
/ n),
0 )),x)))
+ (((
AffineMap ((1
/ n),
0 ))
. x)
* (
diff ((
cos
* (
AffineMap (n,
0 ))),x)))) by
A14,
A1,
A3,
A13,
FDIFF_1: 21,
A17
.= ((((
cos
* (
AffineMap (n,
0 )))
. x)
* (((
AffineMap ((1
/ n),
0 ))
`|
REAL )
. x))
+ (((
AffineMap ((1
/ n),
0 ))
. x)
* (
diff ((
cos
* (
AffineMap (n,
0 ))),x)))) by
A3,
FDIFF_1:def 7,
A17
.= ((((
cos
* (
AffineMap (n,
0 )))
. x)
* (1
/ n))
+ (((
AffineMap ((1
/ n),
0 ))
. x)
* (
diff ((
cos
* (
AffineMap (n,
0 ))),x)))) by
A1,
A2,
FDIFF_1: 23,
A17
.= ((((
cos
* (
AffineMap (n,
0 )))
. x)
* (1
/ n))
+ (((
AffineMap ((1
/ n),
0 ))
. x)
* (((
cos
* (
AffineMap (n,
0 )))
`|
REAL )
. x))) by
A13,
FDIFF_1:def 7,
A17
.= ((((
cos
* (
AffineMap (n,
0 )))
. x)
* (1
/ n))
+ (((
AffineMap ((1
/ n),
0 ))
. x)
* (
- (n
* (
sin
. ((n
* x)
+
0 )))))) by
A12,
A4,
FDIFF_4: 38,
A17
.= ((((
cos
* (
AffineMap (n,
0 )))
. x)
* (1
/ n))
+ ((((1
/ n)
* x)
+
0 )
* (
- (n
* (
sin
. ((n
* x)
+
0 )))))) by
FCONT_1:def 4
.= (((
cos
. ((
AffineMap (n,
0 ))
. x))
* (1
/ n))
+ (((1
/ n)
* x)
* (
- (n
* (
sin
. ((n
* x)
+
0 )))))) by
A12,
FUNCT_1: 12,
A17
.= (((1
/ n)
* (
cos
. (n
* x)))
+ (
- ((((1
/ n)
* n)
* x)
* (
sin
. (n
* x))))) by
FCONT_1:def 4
.= (((1
/ n)
* (
cos
. (n
* x)))
+ (
- ((1
* x)
* (
sin
. (n
* x))))) by
A9,
XCMPLX_1: 87
.= (((1
/ n)
* (
cos
. (n
* x)))
- (x
* (
sin
. (n
* x))));
hence thesis;
end;
A18: for x st x
in
REAL holds (((((1
/ (n
^2 ))
(#) (
sin
* (
AffineMap (n,
0 ))))
- ((
AffineMap ((1
/ n),
0 ))
(#) (
cos
* (
AffineMap (n,
0 )))))
`|
REAL )
. x)
= (x
* (
sin
. (n
* x)))
proof
let x;
assume
A19: x
in
REAL ;
(((((1
/ (n
^2 ))
(#) (
sin
* (
AffineMap (n,
0 ))))
- ((
AffineMap ((1
/ n),
0 ))
(#) (
cos
* (
AffineMap (n,
0 )))))
`|
REAL )
. x)
= ((
diff (((1
/ (n
^2 ))
(#) (
sin
* (
AffineMap (n,
0 )))),x))
- (
diff (((
AffineMap ((1
/ n),
0 ))
(#) (
cos
* (
AffineMap (n,
0 )))),x))) by
A1,
A8,
A15,
FDIFF_1: 19,
A19
.= (((((1
/ (n
^2 ))
(#) (
sin
* (
AffineMap (n,
0 ))))
`|
REAL )
. x)
- (
diff (((
AffineMap ((1
/ n),
0 ))
(#) (
cos
* (
AffineMap (n,
0 )))),x))) by
A8,
FDIFF_1:def 7,
A19
.= (((1
/ n)
* (
cos (n
* x)))
- (
diff (((
AffineMap ((1
/ n),
0 ))
(#) (
cos
* (
AffineMap (n,
0 )))),x))) by
A10,
A19
.= (((1
/ n)
* (
cos (n
* x)))
- ((((
AffineMap ((1
/ n),
0 ))
(#) (
cos
* (
AffineMap (n,
0 ))))
`|
REAL )
. x)) by
A15,
FDIFF_1:def 7,
A19
.= (((1
/ n)
* (
cos (n
* x)))
- (((1
/ n)
* (
cos
. (n
* x)))
- (x
* (
sin
. (n
* x))))) by
A16,
A19
.= (x
* (
sin
. (n
* x)));
hence thesis;
end;
let x;
x
in
REAL by
XREAL_0:def 1;
hence thesis by
A18;
end;
theorem ::
INTEGR11:9
Th9: n
<>
0 implies (((1
/ (n
^2 ))
(#) (
cos
* (
AffineMap (n,
0 ))))
+ ((
AffineMap ((1
/ n),
0 ))
(#) (
sin
* (
AffineMap (n,
0 )))))
is_differentiable_on
REAL & for x holds (((((1
/ (n
^2 ))
(#) (
cos
* (
AffineMap (n,
0 ))))
+ ((
AffineMap ((1
/ n),
0 ))
(#) (
sin
* (
AffineMap (n,
0 )))))
`|
REAL )
. x)
= (x
* (
cos
. (n
* x)))
proof
A1: (
dom (((1
/ (n
^2 ))
(#) (
cos
* (
AffineMap (n,
0 ))))
+ ((
AffineMap ((1
/ n),
0 ))
(#) (
sin
* (
AffineMap (n,
0 ))))))
= (
[#]
REAL ) by
FUNCT_2:def 1;
A2: (
dom (
AffineMap ((1
/ n),
0 )))
=
REAL & for x st x
in
REAL holds ((
AffineMap ((1
/ n),
0 ))
. x)
= (((1
/ n)
* x)
+
0 ) by
FCONT_1:def 4,
FUNCT_2:def 1;
then
A3: (
AffineMap ((1
/ n),
0 ))
is_differentiable_on
REAL by
A1,
FDIFF_1: 23;
A4: for x st x
in
REAL holds ((
AffineMap (n,
0 ))
. x)
= ((n
* x)
+
0 ) by
FCONT_1:def 4;
A5: (
dom (
cos
* (
AffineMap (n,
0 ))))
= (
[#]
REAL ) by
FUNCT_2:def 1;
then
A6: (
cos
* (
AffineMap (n,
0 )))
is_differentiable_on
REAL by
A4,
FDIFF_4: 38;
A7: (
dom ((1
/ (n
^2 ))
(#) (
cos
* (
AffineMap (n,
0 )))))
=
REAL by
FUNCT_2:def 1;
then
A8: ((1
/ (n
^2 ))
(#) (
cos
* (
AffineMap (n,
0 ))))
is_differentiable_on
REAL by
A1,
A6,
FDIFF_1: 20;
assume
A9: n
<>
0 ;
A10: for x st x
in
REAL holds ((((1
/ (n
^2 ))
(#) (
cos
* (
AffineMap (n,
0 ))))
`|
REAL )
. x)
= (
- ((1
/ n)
* (
sin (n
* x))))
proof
let x;
assume
A11: x
in
REAL ;
((((1
/ (n
^2 ))
(#) (
cos
* (
AffineMap (n,
0 ))))
`|
REAL )
. x)
= ((1
/ (n
^2 ))
* (
diff ((
cos
* (
AffineMap (n,
0 ))),x))) by
A7,
A1,
A6,
FDIFF_1: 20,
A11
.= ((1
/ (n
^2 ))
* (((
cos
* (
AffineMap (n,
0 )))
`|
REAL )
. x)) by
A6,
FDIFF_1:def 7,
A11
.= ((1
/ (n
^2 ))
* (
- (n
* (
sin
. ((n
* x)
+
0 ))))) by
A5,
A4,
FDIFF_4: 38,
A11
.= (((
- 1)
* (n
* (1
/ (n
* n))))
* (
sin
. ((n
* x)
+
0 )))
.= (((
- 1)
* (n
/ ((n
* n)
/ 1)))
* (
sin
. ((n
* x)
+
0 ))) by
XCMPLX_1: 79
.= (((
- 1)
* ((n
* 1)
/ (n
* n)))
* (
sin
. ((n
* x)
+
0 )))
.= (((
- 1)
* (1
/ n))
* (
sin
. ((n
* x)
+
0 ))) by
A9,
XCMPLX_1: 91;
hence thesis;
end;
A12: (
dom (
sin
* (
AffineMap (n,
0 ))))
= (
[#]
REAL ) by
FUNCT_2:def 1;
then
A13: (
sin
* (
AffineMap (n,
0 )))
is_differentiable_on
REAL by
A4,
FDIFF_4: 37;
A14: (
dom ((
AffineMap ((1
/ n),
0 ))
(#) (
sin
* (
AffineMap (n,
0 )))))
=
REAL by
FUNCT_2:def 1;
then
A15: ((
AffineMap ((1
/ n),
0 ))
(#) (
sin
* (
AffineMap (n,
0 ))))
is_differentiable_on
REAL by
A1,
A3,
A13,
FDIFF_1: 21;
hence (((1
/ (n
^2 ))
(#) (
cos
* (
AffineMap (n,
0 ))))
+ ((
AffineMap ((1
/ n),
0 ))
(#) (
sin
* (
AffineMap (n,
0 )))))
is_differentiable_on
REAL by
A1,
A8,
FDIFF_1: 18;
A16: for x st x
in
REAL holds ((((
AffineMap ((1
/ n),
0 ))
(#) (
sin
* (
AffineMap (n,
0 ))))
`|
REAL )
. x)
= (((1
/ n)
* (
sin
. (n
* x)))
+ (x
* (
cos
. (n
* x))))
proof
let x;
assume
A17: x
in
REAL ;
((((
AffineMap ((1
/ n),
0 ))
(#) (
sin
* (
AffineMap (n,
0 ))))
`|
REAL )
. x)
= ((((
sin
* (
AffineMap (n,
0 )))
. x)
* (
diff ((
AffineMap ((1
/ n),
0 )),x)))
+ (((
AffineMap ((1
/ n),
0 ))
. x)
* (
diff ((
sin
* (
AffineMap (n,
0 ))),x)))) by
A14,
A1,
A3,
A13,
FDIFF_1: 21,
A17
.= ((((
sin
* (
AffineMap (n,
0 )))
. x)
* (((
AffineMap ((1
/ n),
0 ))
`|
REAL )
. x))
+ (((
AffineMap ((1
/ n),
0 ))
. x)
* (
diff ((
sin
* (
AffineMap (n,
0 ))),x)))) by
A3,
FDIFF_1:def 7,
A17
.= ((((
sin
* (
AffineMap (n,
0 )))
. x)
* (1
/ n))
+ (((
AffineMap ((1
/ n),
0 ))
. x)
* (
diff ((
sin
* (
AffineMap (n,
0 ))),x)))) by
A1,
A2,
FDIFF_1: 23,
A17
.= ((((
sin
* (
AffineMap (n,
0 )))
. x)
* (1
/ n))
+ (((
AffineMap ((1
/ n),
0 ))
. x)
* (((
sin
* (
AffineMap (n,
0 )))
`|
REAL )
. x))) by
A13,
FDIFF_1:def 7,
A17
.= ((((
sin
* (
AffineMap (n,
0 )))
. x)
* (1
/ n))
+ (((
AffineMap ((1
/ n),
0 ))
. x)
* (n
* (
cos
. ((n
* x)
+
0 ))))) by
A12,
A4,
FDIFF_4: 37,
A17
.= ((((
sin
* (
AffineMap (n,
0 )))
. x)
* (1
/ n))
+ ((((1
/ n)
* x)
+
0 )
* (n
* (
cos
. ((n
* x)
+
0 ))))) by
FCONT_1:def 4
.= (((
sin
. ((
AffineMap (n,
0 ))
. x))
* (1
/ n))
+ (((1
/ n)
* x)
* (n
* (
cos
. ((n
* x)
+
0 ))))) by
A12,
FUNCT_1: 12,
A17
.= (((1
/ n)
* (
sin
. (n
* x)))
+ ((((1
/ n)
* n)
* x)
* (
cos
. (n
* x)))) by
FCONT_1:def 4
.= (((1
/ n)
* (
sin
. (n
* x)))
+ ((1
* x)
* (
cos
. (n
* x)))) by
A9,
XCMPLX_1: 87
.= (((1
/ n)
* (
sin
. (n
* x)))
+ (x
* (
cos
. (n
* x))));
hence thesis;
end;
A18: for x st x
in
REAL holds (((((1
/ (n
^2 ))
(#) (
cos
* (
AffineMap (n,
0 ))))
+ ((
AffineMap ((1
/ n),
0 ))
(#) (
sin
* (
AffineMap (n,
0 )))))
`|
REAL )
. x)
= (x
* (
cos
. (n
* x)))
proof
let x;
assume
A19: x
in
REAL ;
(((((1
/ (n
^2 ))
(#) (
cos
* (
AffineMap (n,
0 ))))
+ ((
AffineMap ((1
/ n),
0 ))
(#) (
sin
* (
AffineMap (n,
0 )))))
`|
REAL )
. x)
= ((
diff (((1
/ (n
^2 ))
(#) (
cos
* (
AffineMap (n,
0 )))),x))
+ (
diff (((
AffineMap ((1
/ n),
0 ))
(#) (
sin
* (
AffineMap (n,
0 )))),x))) by
A1,
A8,
A15,
FDIFF_1: 18,
A19
.= (((((1
/ (n
^2 ))
(#) (
cos
* (
AffineMap (n,
0 ))))
`|
REAL )
. x)
+ (
diff (((
AffineMap ((1
/ n),
0 ))
(#) (
sin
* (
AffineMap (n,
0 )))),x))) by
A8,
FDIFF_1:def 7,
A19
.= ((
- ((1
/ n)
* (
sin (n
* x))))
+ (
diff (((
AffineMap ((1
/ n),
0 ))
(#) (
sin
* (
AffineMap (n,
0 )))),x))) by
A10,
A19
.= ((
- ((1
/ n)
* (
sin (n
* x))))
+ ((((
AffineMap ((1
/ n),
0 ))
(#) (
sin
* (
AffineMap (n,
0 ))))
`|
REAL )
. x)) by
A15,
FDIFF_1:def 7,
A19
.= ((
- ((1
/ n)
* (
sin (n
* x))))
+ (((1
/ n)
* (
sin
. (n
* x)))
+ (x
* (
cos
. (n
* x))))) by
A16,
A19
.= (x
* (
cos
. (n
* x)));
hence thesis;
end;
let x;
x
in
REAL by
XREAL_0:def 1;
hence thesis by
A18;
end;
theorem ::
INTEGR11:10
Th10: (((
AffineMap (1,
0 ))
(#)
cosh )
-
sinh )
is_differentiable_on
REAL & for x holds (((((
AffineMap (1,
0 ))
(#)
cosh )
-
sinh )
`|
REAL )
. x)
= (x
* (
sinh
. x))
proof
A1: (
dom (((
AffineMap (1,
0 ))
(#)
cosh )
-
sinh ))
= (
[#]
REAL ) by
FUNCT_2:def 1;
A2: (
dom (
AffineMap (1,
0 )))
= (
[#]
REAL ) & for x st x
in
REAL holds ((
AffineMap (1,
0 ))
. x)
= ((1
* x)
+
0 ) by
FCONT_1:def 4,
FUNCT_2:def 1;
then
A3: (
AffineMap (1,
0 ))
is_differentiable_on
REAL by
FDIFF_1: 23;
A4: (
dom ((
AffineMap (1,
0 ))
(#)
cosh ))
= (
[#]
REAL ) by
FUNCT_2:def 1;
then
A5: ((
AffineMap (1,
0 ))
(#)
cosh )
is_differentiable_on
REAL by
A3,
FDIFF_1: 21,
SIN_COS2: 35;
hence (((
AffineMap (1,
0 ))
(#)
cosh )
-
sinh )
is_differentiable_on
REAL by
A1,
FDIFF_1: 19,
SIN_COS2: 34;
A6: for x st x
in
REAL holds ((((
AffineMap (1,
0 ))
(#)
cosh )
`|
REAL )
. x)
= ((
cosh
. x)
+ (x
* (
sinh
. x)))
proof
let x;
assume
A7: x
in
REAL ;
((((
AffineMap (1,
0 ))
(#)
cosh )
`|
REAL )
. x)
= (((
cosh
. x)
* (
diff ((
AffineMap (1,
0 )),x)))
+ (((
AffineMap (1,
0 ))
. x)
* (
diff (
cosh ,x)))) by
A4,
A3,
FDIFF_1: 21,
SIN_COS2: 35,
A7
.= (((
cosh
. x)
* (((
AffineMap (1,
0 ))
`|
REAL )
. x))
+ (((
AffineMap (1,
0 ))
. x)
* (
diff (
cosh ,x)))) by
A3,
FDIFF_1:def 7,
A7
.= (((
cosh
. x)
* 1)
+ (((
AffineMap (1,
0 ))
. x)
* (
diff (
cosh ,x)))) by
A2,
FDIFF_1: 23,
A7
.= ((
cosh
. x)
+ (((
AffineMap (1,
0 ))
. x)
* (
sinh
. x))) by
SIN_COS2: 35
.= ((
cosh
. x)
+ (((1
* x)
+
0 )
* (
sinh
. x))) by
FCONT_1:def 4
.= ((
cosh
. x)
+ (x
* (
sinh
. x)));
hence thesis;
end;
A8: for x st x
in
REAL holds (((((
AffineMap (1,
0 ))
(#)
cosh )
-
sinh )
`|
REAL )
. x)
= (x
* (
sinh
. x))
proof
let x;
assume
A9: x
in
REAL ;
(((((
AffineMap (1,
0 ))
(#)
cosh )
-
sinh )
`|
REAL )
. x)
= ((
diff (((
AffineMap (1,
0 ))
(#)
cosh ),x))
- (
diff (
sinh ,x))) by
A1,
A5,
FDIFF_1: 19,
SIN_COS2: 34,
A9
.= (((((
AffineMap (1,
0 ))
(#)
cosh )
`|
REAL )
. x)
- (
diff (
sinh ,x))) by
A5,
FDIFF_1:def 7,
A9
.= (((
cosh
. x)
+ (x
* (
sinh
. x)))
- (
diff (
sinh ,x))) by
A6,
A9
.= (((
cosh
. x)
+ (x
* (
sinh
. x)))
- (
cosh
. x)) by
SIN_COS2: 34
.= (x
* (
sinh
. x));
hence thesis;
end;
let x;
x
in
REAL by
XREAL_0:def 1;
hence thesis by
A8;
end;
theorem ::
INTEGR11:11
Th11: (((
AffineMap (1,
0 ))
(#)
sinh )
-
cosh )
is_differentiable_on
REAL & for x holds (((((
AffineMap (1,
0 ))
(#)
sinh )
-
cosh )
`|
REAL )
. x)
= (x
* (
cosh
. x))
proof
A1: (
dom (((
AffineMap (1,
0 ))
(#)
sinh )
-
cosh ))
= (
[#]
REAL ) by
FUNCT_2:def 1;
A2: (
dom (
AffineMap (1,
0 )))
= (
[#]
REAL ) & for x st x
in
REAL holds ((
AffineMap (1,
0 ))
. x)
= ((1
* x)
+
0 ) by
FCONT_1:def 4,
FUNCT_2:def 1;
then
A3: (
AffineMap (1,
0 ))
is_differentiable_on
REAL by
FDIFF_1: 23;
A4: (
dom ((
AffineMap (1,
0 ))
(#)
sinh ))
= (
[#]
REAL ) by
FUNCT_2:def 1;
then
A5: ((
AffineMap (1,
0 ))
(#)
sinh )
is_differentiable_on
REAL by
A3,
FDIFF_1: 21,
SIN_COS2: 34;
hence (((
AffineMap (1,
0 ))
(#)
sinh )
-
cosh )
is_differentiable_on
REAL by
A1,
FDIFF_1: 19,
SIN_COS2: 35;
A6: for x st x
in
REAL holds ((((
AffineMap (1,
0 ))
(#)
sinh )
`|
REAL )
. x)
= ((
sinh
. x)
+ (x
* (
cosh
. x)))
proof
let x;
assume
A7: x
in
REAL ;
((((
AffineMap (1,
0 ))
(#)
sinh )
`|
REAL )
. x)
= (((
sinh
. x)
* (
diff ((
AffineMap (1,
0 )),x)))
+ (((
AffineMap (1,
0 ))
. x)
* (
diff (
sinh ,x)))) by
A4,
A3,
FDIFF_1: 21,
SIN_COS2: 34,
A7
.= (((
sinh
. x)
* (((
AffineMap (1,
0 ))
`|
REAL )
. x))
+ (((
AffineMap (1,
0 ))
. x)
* (
diff (
sinh ,x)))) by
A3,
FDIFF_1:def 7,
A7
.= (((
sinh
. x)
* 1)
+ (((
AffineMap (1,
0 ))
. x)
* (
diff (
sinh ,x)))) by
A2,
FDIFF_1: 23,
A7
.= ((
sinh
. x)
+ (((
AffineMap (1,
0 ))
. x)
* (
cosh
. x))) by
SIN_COS2: 34
.= ((
sinh
. x)
+ (((1
* x)
+
0 )
* (
cosh
. x))) by
FCONT_1:def 4
.= ((
sinh
. x)
+ (x
* (
cosh
. x)));
hence thesis;
end;
A8: for x st x
in
REAL holds (((((
AffineMap (1,
0 ))
(#)
sinh )
-
cosh )
`|
REAL )
. x)
= (x
* (
cosh
. x))
proof
let x;
assume
A9: x
in
REAL ;
(((((
AffineMap (1,
0 ))
(#)
sinh )
-
cosh )
`|
REAL )
. x)
= ((
diff (((
AffineMap (1,
0 ))
(#)
sinh ),x))
- (
diff (
cosh ,x))) by
A1,
A5,
FDIFF_1: 19,
SIN_COS2: 35,
A9
.= (((((
AffineMap (1,
0 ))
(#)
sinh )
`|
REAL )
. x)
- (
diff (
cosh ,x))) by
A5,
FDIFF_1:def 7,
A9
.= (((
sinh
. x)
+ (x
* (
cosh
. x)))
- (
diff (
cosh ,x))) by
A6,
A9
.= (((
sinh
. x)
+ (x
* (
cosh
. x)))
- (
sinh
. x)) by
SIN_COS2: 35
.= (x
* (
cosh
. x));
hence thesis;
end;
let x;
x
in
REAL by
XREAL_0:def 1;
hence thesis by
A8;
end;
theorem ::
INTEGR11:12
Th12: (a
* (n
+ 1))
<>
0 implies ((1
/ (a
* (n
+ 1)))
(#) ((
#Z (n
+ 1))
* (
AffineMap (a,b))))
is_differentiable_on
REAL & for x holds ((((1
/ (a
* (n
+ 1)))
(#) ((
#Z (n
+ 1))
* (
AffineMap (a,b))))
`|
REAL )
. x)
= (((a
* x)
+ b)
#Z n)
proof
assume
A1: (a
* (n
+ 1))
<>
0 ;
A2: (
[#]
REAL )
= (
dom ((1
/ (a
* (n
+ 1)))
(#) ((
#Z (n
+ 1))
* (
AffineMap (a,b))))) by
FUNCT_2:def 1;
A3: (
[#]
REAL )
= (
dom (
AffineMap (a,b))) by
FUNCT_2:def 1;
A4: for x st x
in
REAL holds ((
AffineMap (a,b))
. x)
= ((a
* x)
+ b) by
FCONT_1:def 4;
then
A5: (
AffineMap (a,b))
is_differentiable_on
REAL by
A3,
FDIFF_1: 23;
((
#Z (n
+ 1))
* (
AffineMap (a,b)))
is_differentiable_in x
proof
x
in
REAL by
XREAL_0:def 1;
then (
AffineMap (a,b))
is_differentiable_in x by
A3,
A5,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 3;
end;
then (
[#]
REAL )
= (
dom ((
#Z (n
+ 1))
* (
AffineMap (a,b)))) & for x st x
in
REAL holds ((
#Z (n
+ 1))
* (
AffineMap (a,b)))
is_differentiable_in x by
FUNCT_2:def 1;
then
A6: ((
#Z (n
+ 1))
* (
AffineMap (a,b)))
is_differentiable_on
REAL by
FDIFF_1: 9;
hence ((1
/ (a
* (n
+ 1)))
(#) ((
#Z (n
+ 1))
* (
AffineMap (a,b))))
is_differentiable_on
REAL by
A2,
FDIFF_1: 20;
A7: for x st x
in
REAL holds ((((
#Z (n
+ 1))
* (
AffineMap (a,b)))
`|
REAL )
. x)
= ((a
* (n
+ 1))
* (((
AffineMap (a,b))
. x)
#Z n))
proof
set m = (n
+ 1);
let x;
assume
A8: x
in
REAL ;
(
AffineMap (a,b))
is_differentiable_in x by
A3,
A5,
FDIFF_1: 9,
A8;
then (
diff (((
#Z m)
* (
AffineMap (a,b))),x))
= ((m
* (((
AffineMap (a,b))
. x)
#Z (m
- 1)))
* (
diff ((
AffineMap (a,b)),x))) by
TAYLOR_1: 3
.= ((m
* (((
AffineMap (a,b))
. x)
#Z (m
- 1)))
* (((
AffineMap (a,b))
`|
REAL )
. x)) by
A5,
FDIFF_1:def 7,
A8
.= ((m
* (((
AffineMap (a,b))
. x)
#Z (m
- 1)))
* a) by
A3,
A4,
FDIFF_1: 23,
A8;
hence thesis by
A6,
FDIFF_1:def 7,
A8;
end;
A9: for x st x
in
REAL holds ((((1
/ (a
* (n
+ 1)))
(#) ((
#Z (n
+ 1))
* (
AffineMap (a,b))))
`|
REAL )
. x)
= (((a
* x)
+ b)
#Z n)
proof
let x;
assume
A10: x
in
REAL ;
((((1
/ (a
* (n
+ 1)))
(#) ((
#Z (n
+ 1))
* (
AffineMap (a,b))))
`|
REAL )
. x)
= ((1
/ (a
* (n
+ 1)))
* (
diff (((
#Z (n
+ 1))
* (
AffineMap (a,b))),x))) by
A2,
A6,
FDIFF_1: 20,
A10
.= ((1
/ (a
* (n
+ 1)))
* ((((
#Z (n
+ 1))
* (
AffineMap (a,b)))
`|
REAL )
. x)) by
A6,
FDIFF_1:def 7,
A10
.= ((1
/ (a
* (n
+ 1)))
* ((a
* (n
+ 1))
* (((
AffineMap (a,b))
. x)
#Z n))) by
A7,
A10
.= (((1
/ (a
* (n
+ 1)))
* (a
* (n
+ 1)))
* (((
AffineMap (a,b))
. x)
#Z n))
.= (((a
* (n
+ 1))
/ (a
* (n
+ 1)))
* (((
AffineMap (a,b))
. x)
#Z n)) by
XCMPLX_1: 99
.= (1
* (((
AffineMap (a,b))
. x)
#Z n)) by
A1,
XCMPLX_1: 60
.= (((a
* x)
+ b)
#Z n) by
FCONT_1:def 4;
hence thesis;
end;
let x;
x
in
REAL by
XREAL_0:def 1;
hence thesis by
A9;
end;
begin
theorem ::
INTEGR11:13
Th13: (
integral ((
sin
^2 ),A))
= ((((
AffineMap ((1
/ 2),
0 ))
- ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))))
. (
upper_bound A))
- (((
AffineMap ((1
/ 2),
0 ))
- ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))))
. (
lower_bound A)))
proof
A1: for x be
Element of
REAL st x
in (
dom (((
AffineMap ((1
/ 2),
0 ))
- ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))))
`|
REAL )) holds ((((
AffineMap ((1
/ 2),
0 ))
- ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))))
`|
REAL )
. x)
= ((
sin
^2 )
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((
AffineMap ((1
/ 2),
0 ))
- ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))))
`|
REAL ));
((((
AffineMap ((1
/ 2),
0 ))
- ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))))
`|
REAL )
. x)
= ((
sin
. x)
^2 ) by
Th1
.= ((
sin
^2 )
. x) by
VALUED_1: 11;
hence thesis;
end;
A2: (
dom (
sin
^2 ))
=
REAL by
SIN_COS: 24,
VALUED_1: 11;
then (
dom (((
AffineMap ((1
/ 2),
0 ))
- ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))))
`|
REAL ))
= (
dom (
sin
^2 )) by
Th1,
FDIFF_1:def 7;
then
A3: (((
AffineMap ((1
/ 2),
0 ))
- ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))))
`|
REAL )
= (
sin
^2 ) by
A1,
PARTFUN1: 5;
((
sin
^2 )
| A) is
bounded by
A2,
INTEGRA5: 10;
hence thesis by
A2,
A3,
Th1,
INTEGRA5: 11,
INTEGRA5: 13;
end;
Lm4: (
dom (
AffineMap (2,
0 )))
= (
[#]
REAL ) by
FUNCT_2:def 1;
Lm5: (
dom ((
AffineMap ((1
/ 2),
0 ))
- ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))))
=
REAL by
FUNCT_2:def 1;
reconsider pp =
PI as
Element of
REAL by
XREAL_0:def 1;
Lm6:
0
in
REAL by
XREAL_0:def 1;
theorem ::
INTEGR11:14
A
=
[.
0 ,
PI .] implies (
integral ((
sin
^2 ),A))
= (
PI
/ 2)
proof
assume A
=
[.
0 ,
PI .];
then (
upper_bound A)
=
PI & (
lower_bound A)
=
0 by
INTEGRA8: 37;
then (
integral ((
sin
^2 ),A))
= ((((
AffineMap ((1
/ 2),
0 ))
- ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))))
. pp)
- (((
AffineMap ((1
/ 2),
0 ))
- ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))))
.
0 )) by
Th13
.= ((((
AffineMap ((1
/ 2),
0 ))
.
PI )
- (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
.
PI ))
- (((
AffineMap ((1
/ 2),
0 ))
- ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))))
.
0 )) by
Lm5,
VALUED_1: 13
.= ((((
AffineMap ((1
/ 2),
0 ))
.
PI )
- (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
.
PI ))
- (((
AffineMap ((1
/ 2),
0 ))
.
0 )
- (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
.
0 ))) by
Lm5,
VALUED_1: 13,
Lm6
.= (((((1
/ 2)
*
PI )
+
0 )
- (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
.
PI ))
- (((
AffineMap ((1
/ 2),
0 ))
.
0 )
- (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
.
0 ))) by
FCONT_1:def 4
.= ((((1
/ 2)
*
PI )
- ((1
/ 4)
* ((
sin
* (
AffineMap (2,
0 )))
. pp)))
- (((
AffineMap ((1
/ 2),
0 ))
.
0 )
- (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
.
0 ))) by
VALUED_1: 6
.= ((((1
/ 2)
*
PI )
- ((1
/ 4)
* (
sin
. ((
AffineMap (2,
0 ))
.
PI ))))
- (((
AffineMap ((1
/ 2),
0 ))
.
0 )
- (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
.
0 ))) by
Lm4,
FUNCT_1: 13
.= ((((1
/ 2)
*
PI )
- ((1
/ 4)
* (
sin
. ((2
*
PI )
+
0 ))))
- (((
AffineMap ((1
/ 2),
0 ))
.
0 )
- (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
.
0 ))) by
FCONT_1:def 4
.= ((((1
/ 2)
*
PI )
- ((1
/ 4)
* (
sin
. ((2
*
PI )
+
0 ))))
- (
0
- (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
.
0 ))) by
FCONT_1: 48
.= (((((1
/ 2)
*
PI )
- ((1
/ 4)
* (
sin
. ((2
*
PI )
+
0 ))))
-
0 )
+ (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
.
0 ))
.= ((((1
/ 2)
*
PI )
- ((1
/ 4)
* (
sin
. ((2
*
PI )
+
0 ))))
+ ((1
/ 4)
* ((
sin
* (
AffineMap (2,
0 )))
.
0 ))) by
VALUED_1: 6
.= ((((1
/ 2)
*
PI )
- ((1
/ 4)
* (
sin
. ((2
*
PI )
+
0 ))))
+ ((1
/ 4)
* (
sin
. ((
AffineMap (2,
0 ))
.
0 )))) by
Lm4,
FUNCT_1: 13,
Lm6
.= ((((1
/ 2)
*
PI )
- ((1
/ 4)
* (
sin
. (
0
+ ((2
*
PI )
* 1)))))
+ ((1
/ 4)
* (
sin
.
0 ))) by
FCONT_1: 48
.= ((((1
/ 2)
*
PI )
- ((1
/ 4)
* (
sin
.
0 )))
+ ((1
/ 4)
* (
sin
.
0 ))) by
SIN_COS6: 8
.= (
PI
/ 2);
hence thesis;
end;
reconsider dp = (2
*
PI ), ddp = ((2
* (2
*
PI ))
+
0 ) as
Element of
REAL by
XREAL_0:def 1;
theorem ::
INTEGR11:15
A
=
[.
0 , (2
*
PI ).] implies (
integral ((
sin
^2 ),A))
=
PI
proof
assume A
=
[.
0 , (2
*
PI ).];
then (
upper_bound A)
= (2
*
PI ) & (
lower_bound A)
=
0 by
INTEGRA8: 37;
then (
integral ((
sin
^2 ),A))
= ((((
AffineMap ((1
/ 2),
0 ))
- ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))))
. dp)
- (((
AffineMap ((1
/ 2),
0 ))
- ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))))
.
0 )) by
Th13
.= ((((
AffineMap ((1
/ 2),
0 ))
. (2
*
PI ))
- (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
. (2
*
PI )))
- (((
AffineMap ((1
/ 2),
0 ))
- ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))))
.
0 )) by
Lm5,
VALUED_1: 13
.= ((((
AffineMap ((1
/ 2),
0 ))
. (2
*
PI ))
- (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
. (2
*
PI )))
- (((
AffineMap ((1
/ 2),
0 ))
.
0 )
- (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
.
0 ))) by
Lm5,
VALUED_1: 13,
Lm6
.= (((((1
/ 2)
* (2
*
PI ))
+
0 )
- (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
. (2
*
PI )))
- (((
AffineMap ((1
/ 2),
0 ))
.
0 )
- (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
.
0 ))) by
FCONT_1:def 4
.= ((((1
/ 2)
* (2
*
PI ))
- ((1
/ 4)
* ((
sin
* (
AffineMap (2,
0 )))
. (2
*
PI ))))
- (((
AffineMap ((1
/ 2),
0 ))
.
0 )
- (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
.
0 ))) by
VALUED_1: 6
.= ((((1
/ 2)
* (2
*
PI ))
- ((1
/ 4)
* (
sin
. ((
AffineMap (2,
0 ))
. dp))))
- (((
AffineMap ((1
/ 2),
0 ))
.
0 )
- (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
.
0 ))) by
Lm4,
FUNCT_1: 13
.= ((((1
/ 2)
* (2
*
PI ))
- ((1
/ 4)
* (
sin
. ddp)))
- (((
AffineMap ((1
/ 2),
0 ))
.
0 )
- (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
.
0 ))) by
FCONT_1:def 4
.= ((((1
/ 2)
* (2
*
PI ))
- ((1
/ 4)
* (
sin
. (((2
* 2)
*
PI )
+
0 ))))
- (
0
- (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
.
0 ))) by
FCONT_1: 48
.= (((((1
/ 2)
* (2
*
PI ))
- ((1
/ 4)
* (
sin
. (((2
* 2)
*
PI )
+
0 ))))
-
0 )
+ (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
.
0 ))
.= ((((1
/ 2)
* (2
*
PI ))
- ((1
/ 4)
* (
sin
. (((2
* 2)
*
PI )
+
0 ))))
+ ((1
/ 4)
* ((
sin
* (
AffineMap (2,
0 )))
.
0 ))) by
VALUED_1: 6
.= ((((1
/ 2)
* (2
*
PI ))
- ((1
/ 4)
* (
sin
. (((2
* 2)
*
PI )
+
0 ))))
+ ((1
/ 4)
* (
sin
. ((
AffineMap (2,
0 ))
.
0 )))) by
Lm4,
Lm6,
FUNCT_1: 13
.= ((((1
/ 2)
* (2
*
PI ))
- ((1
/ 4)
* (
sin
. (
0
+ ((2
*
PI )
* 2)))))
+ ((1
/ 4)
* (
sin
.
0 ))) by
FCONT_1: 48
.= ((((1
/ 2)
* (2
*
PI ))
- ((1
/ 4)
* (
sin
.
0 )))
+ ((1
/ 4)
* (
sin
.
0 ))) by
SIN_COS6: 8
.=
PI ;
hence thesis;
end;
theorem ::
INTEGR11:16
Th16: (
integral ((
cos
^2 ),A))
= ((((
AffineMap ((1
/ 2),
0 ))
+ ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))))
. (
upper_bound A))
- (((
AffineMap ((1
/ 2),
0 ))
+ ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))))
. (
lower_bound A)))
proof
A1: for x be
Element of
REAL st x
in (
dom (((
AffineMap ((1
/ 2),
0 ))
+ ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))))
`|
REAL )) holds ((((
AffineMap ((1
/ 2),
0 ))
+ ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))))
`|
REAL )
. x)
= ((
cos
^2 )
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((
AffineMap ((1
/ 2),
0 ))
+ ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))))
`|
REAL ));
((((
AffineMap ((1
/ 2),
0 ))
+ ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))))
`|
REAL )
. x)
= ((
cos
. x)
^2 ) by
Th2
.= ((
cos
^2 )
. x) by
VALUED_1: 11;
hence thesis;
end;
A2: (
dom (
cos
^2 ))
=
REAL by
SIN_COS: 24,
VALUED_1: 11;
then (
dom (((
AffineMap ((1
/ 2),
0 ))
+ ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))))
`|
REAL ))
= (
dom (
cos
^2 )) by
Th2,
FDIFF_1:def 7;
then
A3: (((
AffineMap ((1
/ 2),
0 ))
+ ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))))
`|
REAL )
= (
cos
^2 ) by
A1,
PARTFUN1: 5;
((
cos
^2 )
| A) is
bounded by
A2,
INTEGRA5: 10;
hence thesis by
A2,
A3,
Th2,
INTEGRA5: 11,
INTEGRA5: 13;
end;
theorem ::
INTEGR11:17
A
=
[.
0 ,
PI .] implies (
integral ((
cos
^2 ),A))
= (
PI
/ 2)
proof
assume A
=
[.
0 ,
PI .];
then (
upper_bound A)
=
PI & (
lower_bound A)
=
0 by
INTEGRA8: 37;
then (
integral ((
cos
^2 ),A))
= ((((
AffineMap ((1
/ 2),
0 ))
+ ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))))
.
PI )
- (((
AffineMap ((1
/ 2),
0 ))
+ ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))))
.
0 )) by
Th16
.= ((((
AffineMap ((1
/ 2),
0 ))
.
PI )
+ (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
. pp))
- (((
AffineMap ((1
/ 2),
0 ))
+ ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))))
.
0 )) by
VALUED_1: 1
.= ((((
AffineMap ((1
/ 2),
0 ))
.
PI )
+ (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
.
PI ))
- (((
AffineMap ((1
/ 2),
0 ))
.
0 )
+ (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
.
0 ))) by
VALUED_1: 1,
Lm6
.= (((((1
/ 2)
*
PI )
+
0 )
+ (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
.
PI ))
- (((
AffineMap ((1
/ 2),
0 ))
.
0 )
+ (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
.
0 ))) by
FCONT_1:def 4
.= ((((1
/ 2)
*
PI )
+ ((1
/ 4)
* ((
sin
* (
AffineMap (2,
0 )))
.
PI )))
- (((
AffineMap ((1
/ 2),
0 ))
.
0 )
+ (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
.
0 ))) by
VALUED_1: 6
.= ((((1
/ 2)
*
PI )
+ ((1
/ 4)
* (
sin
. ((
AffineMap (2,
0 ))
. pp))))
- (((
AffineMap ((1
/ 2),
0 ))
.
0 )
+ (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
.
0 ))) by
Lm4,
FUNCT_1: 13
.= ((((1
/ 2)
*
PI )
+ ((1
/ 4)
* (
sin
. ((2
*
PI )
+
0 ))))
- (((
AffineMap ((1
/ 2),
0 ))
.
0 )
+ (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
.
0 ))) by
FCONT_1:def 4
.= ((((1
/ 2)
*
PI )
+ ((1
/ 4)
* (
sin
. ((2
*
PI )
+
0 ))))
- (
0
+ (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
.
0 ))) by
FCONT_1: 48
.= ((((1
/ 2)
*
PI )
+ ((1
/ 4)
* (
sin
. ((2
*
PI )
+
0 ))))
- ((1
/ 4)
* ((
sin
* (
AffineMap (2,
0 )))
.
0 ))) by
VALUED_1: 6
.= ((((1
/ 2)
*
PI )
+ ((1
/ 4)
* (
sin
. ((2
*
PI )
+
0 ))))
- ((1
/ 4)
* (
sin
. ((
AffineMap (2,
0 ))
.
0 )))) by
Lm4,
FUNCT_1: 13,
Lm6
.= ((((1
/ 2)
*
PI )
+ ((1
/ 4)
* (
sin
. (
0
+ ((2
*
PI )
* 1)))))
- ((1
/ 4)
* (
sin
.
0 ))) by
FCONT_1: 48
.= ((((1
/ 2)
*
PI )
+ ((1
/ 4)
* (
sin
.
0 )))
- ((1
/ 4)
* (
sin
.
0 ))) by
SIN_COS6: 8
.= (
PI
/ 2);
hence thesis;
end;
theorem ::
INTEGR11:18
A
=
[.
0 , (2
*
PI ).] implies (
integral ((
cos
^2 ),A))
=
PI
proof
assume A
=
[.
0 , (2
*
PI ).];
then (
upper_bound A)
= (2
*
PI ) & (
lower_bound A)
=
0 by
INTEGRA8: 37;
then (
integral ((
cos
^2 ),A))
= ((((
AffineMap ((1
/ 2),
0 ))
+ ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))))
. (2
*
PI ))
- (((
AffineMap ((1
/ 2),
0 ))
+ ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))))
.
0 )) by
Th16
.= ((((
AffineMap ((1
/ 2),
0 ))
. (2
*
PI ))
+ (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
. dp))
- (((
AffineMap ((1
/ 2),
0 ))
+ ((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 )))))
.
0 )) by
VALUED_1: 1
.= ((((
AffineMap ((1
/ 2),
0 ))
. (2
*
PI ))
+ (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
. (2
*
PI )))
- (((
AffineMap ((1
/ 2),
0 ))
.
0 )
+ (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
.
0 ))) by
VALUED_1: 1,
Lm6
.= (((((1
/ 2)
* (2
*
PI ))
+
0 )
+ (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
. dp))
- (((
AffineMap ((1
/ 2),
0 ))
.
0 )
+ (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
.
0 ))) by
FCONT_1:def 4
.= ((((1
/ 2)
* (2
*
PI ))
+ ((1
/ 4)
* ((
sin
* (
AffineMap (2,
0 )))
. (2
*
PI ))))
- (((
AffineMap ((1
/ 2),
0 ))
.
0 )
+ (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
.
0 ))) by
VALUED_1: 6
.= ((((1
/ 2)
* (2
*
PI ))
+ ((1
/ 4)
* (
sin
. ((
AffineMap (2,
0 ))
. dp))))
- (((
AffineMap ((1
/ 2),
0 ))
.
0 )
+ (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
.
0 ))) by
Lm4,
FUNCT_1: 13
.= ((((1
/ 2)
* (2
*
PI ))
+ ((1
/ 4)
* (
sin
. ddp)))
- (((
AffineMap ((1
/ 2),
0 ))
.
0 )
+ (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
.
0 ))) by
FCONT_1:def 4
.= ((((1
/ 2)
* (2
*
PI ))
+ ((1
/ 4)
* (
sin
. (((2
* 2)
*
PI )
+
0 ))))
- (
0
+ (((1
/ 4)
(#) (
sin
* (
AffineMap (2,
0 ))))
.
0 ))) by
FCONT_1: 48
.= ((((1
/ 2)
* (2
*
PI ))
+ ((1
/ 4)
* (
sin
. (((2
* 2)
*
PI )
+
0 ))))
- ((1
/ 4)
* ((
sin
* (
AffineMap (2,
0 )))
.
0 ))) by
VALUED_1: 6
.= ((((1
/ 2)
* (2
*
PI ))
+ ((1
/ 4)
* (
sin
. (((2
* 2)
*
PI )
+
0 ))))
- ((1
/ 4)
* (
sin
. ((
AffineMap (2,
0 ))
.
0 )))) by
Lm4,
FUNCT_1: 13,
Lm6
.= ((((1
/ 2)
* (2
*
PI ))
+ ((1
/ 4)
* (
sin
. (
0
+ ((2
*
PI )
* 2)))))
- ((1
/ 4)
* (
sin
.
0 ))) by
FCONT_1: 48
.= ((((1
/ 2)
* (2
*
PI ))
+ ((1
/ 4)
* (
sin
.
0 )))
- ((1
/ 4)
* (
sin
.
0 ))) by
SIN_COS6: 8
.=
PI ;
hence thesis;
end;
theorem ::
INTEGR11:19
Th19: (
integral ((((
#Z n)
*
sin )
(#)
cos ),A))
= ((((1
/ (n
+ 1))
(#) ((
#Z (n
+ 1))
*
sin ))
. (
upper_bound A))
- (((1
/ (n
+ 1))
(#) ((
#Z (n
+ 1))
*
sin ))
. (
lower_bound A)))
proof
A1: (
[#]
REAL )
= (
dom (((
#Z n)
*
sin )
(#)
cos )) by
FUNCT_2:def 1;
A2: for x be
Element of
REAL st x
in (
dom (((1
/ (n
+ 1))
(#) ((
#Z (n
+ 1))
*
sin ))
`|
REAL )) holds ((((1
/ (n
+ 1))
(#) ((
#Z (n
+ 1))
*
sin ))
`|
REAL )
. x)
= ((((
#Z n)
*
sin )
(#)
cos )
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((1
/ (n
+ 1))
(#) ((
#Z (n
+ 1))
*
sin ))
`|
REAL ));
((((1
/ (n
+ 1))
(#) ((
#Z (n
+ 1))
*
sin ))
`|
REAL )
. x)
= (((
sin
. x)
#Z n)
* (
cos
. x)) by
Th3
.= (((
#Z n)
. (
sin
. x))
* (
cos
. x)) by
TAYLOR_1:def 1
.= ((((
#Z n)
*
sin )
. x)
* (
cos
. x)) by
FUNCT_1: 13,
SIN_COS: 24
.= ((((
#Z n)
*
sin )
(#)
cos )
. x) by
A1,
VALUED_1:def 4;
hence thesis;
end;
((
#Z n)
*
sin )
is_differentiable_in x0
proof
sin
is_differentiable_in x0 by
SIN_COS: 64;
hence thesis by
TAYLOR_1: 3;
end;
then (
dom ((
#Z n)
*
sin ))
=
REAL & for x0 st x0
in
REAL holds ((
#Z n)
*
sin )
is_differentiable_in x0 by
FUNCT_2:def 1;
then ((
#Z n)
*
sin )
is_differentiable_on
REAL by
A1,
FDIFF_1: 9;
then
A3: ((((
#Z n)
*
sin )
(#)
cos )
|
REAL ) is
continuous by
A1,
FDIFF_1: 21,
FDIFF_1: 25,
SIN_COS: 67;
then ((((
#Z n)
*
sin )
(#)
cos )
| A) is
continuous by
FCONT_1: 16;
then
A4: (((
#Z n)
*
sin )
(#)
cos )
is_integrable_on A by
A1,
INTEGRA5: 11;
((1
/ (n
+ 1))
(#) ((
#Z (n
+ 1))
*
sin ))
is_differentiable_on
REAL by
Th3;
then (
dom (((1
/ (n
+ 1))
(#) ((
#Z (n
+ 1))
*
sin ))
`|
REAL ))
= (
dom (((
#Z n)
*
sin )
(#)
cos )) by
A1,
FDIFF_1:def 7;
then
A5: (((1
/ (n
+ 1))
(#) ((
#Z (n
+ 1))
*
sin ))
`|
REAL )
= (((
#Z n)
*
sin )
(#)
cos ) by
A2,
PARTFUN1: 5;
((((
#Z n)
*
sin )
(#)
cos )
| A) is
bounded by
A1,
A3,
INTEGRA5: 10;
hence thesis by
A4,
A5,
Th3,
INTEGRA5: 13;
end;
theorem ::
INTEGR11:20
A
=
[.
0 ,
PI .] implies (
integral ((((
#Z n)
*
sin )
(#)
cos ),A))
=
0
proof
assume A
=
[.
0 ,
PI .];
then (
upper_bound A)
=
PI & (
lower_bound A)
=
0 by
INTEGRA8: 37;
then (
integral ((((
#Z n)
*
sin )
(#)
cos ),A))
= ((((1
/ (n
+ 1))
(#) ((
#Z (n
+ 1))
*
sin ))
.
PI )
- (((1
/ (n
+ 1))
(#) ((
#Z (n
+ 1))
*
sin ))
.
0 )) by
Th19
.= (((1
/ (n
+ 1))
* (((
#Z (n
+ 1))
*
sin )
.
PI ))
- (((1
/ (n
+ 1))
(#) ((
#Z (n
+ 1))
*
sin ))
.
0 )) by
VALUED_1: 6
.= (((1
/ (n
+ 1))
* (((
#Z (n
+ 1))
*
sin )
.
PI ))
- ((1
/ (n
+ 1))
* (((
#Z (n
+ 1))
*
sin )
.
0 ))) by
VALUED_1: 6
.= (((1
/ (n
+ 1))
* ((
#Z (n
+ 1))
. (
sin
. pp)))
- ((1
/ (n
+ 1))
* (((
#Z (n
+ 1))
*
sin )
.
0 ))) by
FUNCT_1: 13,
SIN_COS: 24
.= (((1
/ (n
+ 1))
* ((
#Z (n
+ 1))
. (
sin
.
PI )))
- ((1
/ (n
+ 1))
* ((
#Z (n
+ 1))
. (
sin
.
0 )))) by
FUNCT_1: 13,
SIN_COS: 24,
Lm6
.=
0 by
SIN_COS: 30,
SIN_COS: 76;
hence thesis;
end;
theorem ::
INTEGR11:21
A
=
[.
0 , (2
*
PI ).] implies (
integral ((((
#Z n)
*
sin )
(#)
cos ),A))
=
0
proof
assume A
=
[.
0 , (2
*
PI ).];
then (
upper_bound A)
= (2
*
PI ) & (
lower_bound A)
=
0 by
INTEGRA8: 37;
then (
integral ((((
#Z n)
*
sin )
(#)
cos ),A))
= ((((1
/ (n
+ 1))
(#) ((
#Z (n
+ 1))
*
sin ))
. (2
*
PI ))
- (((1
/ (n
+ 1))
(#) ((
#Z (n
+ 1))
*
sin ))
.
0 )) by
Th19
.= (((1
/ (n
+ 1))
* (((
#Z (n
+ 1))
*
sin )
. (2
*
PI )))
- (((1
/ (n
+ 1))
(#) ((
#Z (n
+ 1))
*
sin ))
.
0 )) by
VALUED_1: 6
.= (((1
/ (n
+ 1))
* (((
#Z (n
+ 1))
*
sin )
. dp))
- ((1
/ (n
+ 1))
* (((
#Z (n
+ 1))
*
sin )
.
0 ))) by
VALUED_1: 6
.= (((1
/ (n
+ 1))
* ((
#Z (n
+ 1))
. (
sin
. (2
*
PI ))))
- ((1
/ (n
+ 1))
* (((
#Z (n
+ 1))
*
sin )
.
0 ))) by
FUNCT_1: 13,
SIN_COS: 24
.= (((1
/ (n
+ 1))
* ((
#Z (n
+ 1))
. (
sin
. (2
*
PI ))))
- ((1
/ (n
+ 1))
* ((
#Z (n
+ 1))
. (
sin
.
0 )))) by
FUNCT_1: 13,
SIN_COS: 24,
Lm6
.=
0 by
SIN_COS: 30,
SIN_COS: 76;
hence thesis;
end;
theorem ::
INTEGR11:22
Th22: (
integral ((((
#Z n)
*
cos )
(#)
sin ),A))
= ((((
- (1
/ (n
+ 1)))
(#) ((
#Z (n
+ 1))
*
cos ))
. (
upper_bound A))
- (((
- (1
/ (n
+ 1)))
(#) ((
#Z (n
+ 1))
*
cos ))
. (
lower_bound A)))
proof
A1: (
[#]
REAL )
= (
dom (((
#Z n)
*
cos )
(#)
sin )) by
FUNCT_2:def 1;
A2: for x be
Element of
REAL st x
in (
dom (((
- (1
/ (n
+ 1)))
(#) ((
#Z (n
+ 1))
*
cos ))
`|
REAL )) holds ((((
- (1
/ (n
+ 1)))
(#) ((
#Z (n
+ 1))
*
cos ))
`|
REAL )
. x)
= ((((
#Z n)
*
cos )
(#)
sin )
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((
- (1
/ (n
+ 1)))
(#) ((
#Z (n
+ 1))
*
cos ))
`|
REAL ));
((((
- (1
/ (n
+ 1)))
(#) ((
#Z (n
+ 1))
*
cos ))
`|
REAL )
. x)
= (((
cos
. x)
#Z n)
* (
sin
. x)) by
Th4
.= (((
#Z n)
. (
cos
. x))
* (
sin
. x)) by
TAYLOR_1:def 1
.= ((((
#Z n)
*
cos )
. x)
* (
sin
. x)) by
FUNCT_1: 13,
SIN_COS: 24
.= ((((
#Z n)
*
cos )
(#)
sin )
. x) by
A1,
VALUED_1:def 4;
hence thesis;
end;
((
#Z n)
*
cos )
is_differentiable_in x0
proof
cos
is_differentiable_in x0 by
SIN_COS: 63;
hence thesis by
TAYLOR_1: 3;
end;
then (
dom ((
#Z n)
*
cos ))
=
REAL & for x0 st x0
in
REAL holds ((
#Z n)
*
cos )
is_differentiable_in x0 by
FUNCT_2:def 1;
then ((
#Z n)
*
cos )
is_differentiable_on
REAL by
A1,
FDIFF_1: 9;
then
A3: ((((
#Z n)
*
cos )
(#)
sin )
|
REAL ) is
continuous by
A1,
FDIFF_1: 21,
FDIFF_1: 25,
SIN_COS: 68;
then ((((
#Z n)
*
cos )
(#)
sin )
| A) is
continuous by
FCONT_1: 16;
then
A4: (((
#Z n)
*
cos )
(#)
sin )
is_integrable_on A by
A1,
INTEGRA5: 11;
((
- (1
/ (n
+ 1)))
(#) ((
#Z (n
+ 1))
*
cos ))
is_differentiable_on
REAL by
Th4;
then (
dom (((
- (1
/ (n
+ 1)))
(#) ((
#Z (n
+ 1))
*
cos ))
`|
REAL ))
= (
dom (((
#Z n)
*
cos )
(#)
sin )) by
A1,
FDIFF_1:def 7;
then
A5: (((
- (1
/ (n
+ 1)))
(#) ((
#Z (n
+ 1))
*
cos ))
`|
REAL )
= (((
#Z n)
*
cos )
(#)
sin ) by
A2,
PARTFUN1: 5;
((((
#Z n)
*
cos )
(#)
sin )
| A) is
bounded by
A1,
A3,
INTEGRA5: 10;
hence thesis by
A4,
A5,
Th4,
INTEGRA5: 13;
end;
theorem ::
INTEGR11:23
A
=
[.
0 , (2
*
PI ).] implies (
integral ((((
#Z n)
*
cos )
(#)
sin ),A))
=
0
proof
assume A
=
[.
0 , (2
*
PI ).];
then (
upper_bound A)
= (2
*
PI ) & (
lower_bound A)
=
0 by
INTEGRA8: 37;
then (
integral ((((
#Z n)
*
cos )
(#)
sin ),A))
= ((((
- (1
/ (n
+ 1)))
(#) ((
#Z (n
+ 1))
*
cos ))
. (2
*
PI ))
- (((
- (1
/ (n
+ 1)))
(#) ((
#Z (n
+ 1))
*
cos ))
.
0 )) by
Th22
.= (((
- (1
/ (n
+ 1)))
* (((
#Z (n
+ 1))
*
cos )
. (2
*
PI )))
- (((
- (1
/ (n
+ 1)))
(#) ((
#Z (n
+ 1))
*
cos ))
.
0 )) by
VALUED_1: 6
.= (((
- (1
/ (n
+ 1)))
* (((
#Z (n
+ 1))
*
cos )
. (2
*
PI )))
- ((
- (1
/ (n
+ 1)))
* (((
#Z (n
+ 1))
*
cos )
.
0 ))) by
VALUED_1: 6
.= (((
- (1
/ (n
+ 1)))
* ((
#Z (n
+ 1))
. (
cos
. dp)))
- ((
- (1
/ (n
+ 1)))
* (((
#Z (n
+ 1))
*
cos )
.
0 ))) by
FUNCT_1: 13,
SIN_COS: 24
.= (((
- (1
/ (n
+ 1)))
* ((
#Z (n
+ 1))
. (
cos
. (2
*
PI ))))
- ((
- (1
/ (n
+ 1)))
* ((
#Z (n
+ 1))
. (
cos
.
0 )))) by
FUNCT_1: 13,
SIN_COS: 24,
Lm6
.=
0 by
SIN_COS: 30,
SIN_COS: 76;
hence thesis;
end;
reconsider pd = (
PI
/ 2), mpd = (
- (
PI
/ 2)) as
Element of
REAL by
XREAL_0:def 1;
theorem ::
INTEGR11:24
A
=
[.(
- (
PI
/ 2)), (
PI
/ 2).] implies (
integral ((((
#Z n)
*
cos )
(#)
sin ),A))
=
0
proof
assume A
=
[.(
- (
PI
/ 2)), (
PI
/ 2).];
then (
upper_bound A)
= (
PI
/ 2) & (
lower_bound A)
= (
- (
PI
/ 2)) by
INTEGRA8: 37;
then (
integral ((((
#Z n)
*
cos )
(#)
sin ),A))
= ((((
- (1
/ (n
+ 1)))
(#) ((
#Z (n
+ 1))
*
cos ))
. (
PI
/ 2))
- (((
- (1
/ (n
+ 1)))
(#) ((
#Z (n
+ 1))
*
cos ))
. (
- (
PI
/ 2)))) by
Th22
.= (((
- (1
/ (n
+ 1)))
* (((
#Z (n
+ 1))
*
cos )
. (
PI
/ 2)))
- (((
- (1
/ (n
+ 1)))
(#) ((
#Z (n
+ 1))
*
cos ))
. (
- (
PI
/ 2)))) by
VALUED_1: 6
.= (((
- (1
/ (n
+ 1)))
* (((
#Z (n
+ 1))
*
cos )
. (
PI
/ 2)))
- ((
- (1
/ (n
+ 1)))
* (((
#Z (n
+ 1))
*
cos )
. (
- (
PI
/ 2))))) by
VALUED_1: 6
.= (((
- (1
/ (n
+ 1)))
* ((
#Z (n
+ 1))
. (
cos
. pd)))
- ((
- (1
/ (n
+ 1)))
* (((
#Z (n
+ 1))
*
cos )
. mpd))) by
FUNCT_1: 13,
SIN_COS: 24
.= (((
- (1
/ (n
+ 1)))
* ((
#Z (n
+ 1))
. (
cos
. pd)))
- ((
- (1
/ (n
+ 1)))
* ((
#Z (n
+ 1))
. (
cos
. (
- (
PI
/ 2)))))) by
FUNCT_1: 13,
SIN_COS: 24
.= (((
- (1
/ (n
+ 1)))
* ((
#Z (n
+ 1))
. (
cos
. (
PI
/ 2))))
- ((
- (1
/ (n
+ 1)))
* ((
#Z (n
+ 1))
. (
cos
. (
PI
/ 2))))) by
SIN_COS: 30
.=
0 ;
hence thesis;
end;
theorem ::
INTEGR11:25
(m
+ n)
<>
0 & (m
- n)
<>
0 implies (
integral (((
cos
* (
AffineMap (m,
0 )))
(#) (
cos
* (
AffineMap (n,
0 )))),A))
= (((((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 ))))
+ ((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 )))))
. (
upper_bound A))
- ((((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 ))))
+ ((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 )))))
. (
lower_bound A)))
proof
assume
A1: (m
+ n)
<>
0 & (m
- n)
<>
0 ;
A2: for x st x
in
REAL holds ((
AffineMap (n,
0 ))
. x)
= (n
* x)
proof
let x;
assume x
in
REAL ;
((
AffineMap (n,
0 ))
. x)
= ((n
* x)
+
0 ) by
FCONT_1:def 4
.= (n
* x);
hence thesis;
end;
A3: (
dom (
cos
* (
AffineMap (n,
0 ))))
= (
[#]
REAL ) by
FUNCT_2:def 1;
A4: (
dom (
cos
* (
AffineMap (m,
0 ))))
= (
[#]
REAL ) by
FUNCT_2:def 1;
A5: for x st x
in
REAL holds ((
AffineMap (m,
0 ))
. x)
= (m
* x)
proof
let x;
assume x
in
REAL ;
((
AffineMap (m,
0 ))
. x)
= ((m
* x)
+
0 ) by
FCONT_1:def 4
.= (m
* x);
hence thesis;
end;
A6: for x be
Element of
REAL st x
in (
dom ((((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 ))))
+ ((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 )))))
`|
REAL )) holds (((((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 ))))
+ ((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 )))))
`|
REAL )
. x)
= (((
cos
* (
AffineMap (m,
0 )))
(#) (
cos
* (
AffineMap (n,
0 ))))
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 ))))
+ ((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 )))))
`|
REAL ));
(((((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 ))))
+ ((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 )))))
`|
REAL )
. x)
= ((
cos
. (m
* x))
* (
cos
. (n
* x))) by
A1,
Th5
.= ((
cos
. ((
AffineMap (m,
0 ))
. x))
* (
cos
. (n
* x))) by
A5
.= ((
cos
. ((
AffineMap (m,
0 ))
. x))
* (
cos
. ((
AffineMap (n,
0 ))
. x))) by
A2
.= (((
cos
* (
AffineMap (m,
0 )))
. x)
* (
cos
. ((
AffineMap (n,
0 ))
. x))) by
A4,
FUNCT_1: 12
.= (((
cos
* (
AffineMap (m,
0 )))
. x)
* ((
cos
* (
AffineMap (n,
0 )))
. x)) by
A3,
FUNCT_1: 12
.= (((
cos
* (
AffineMap (m,
0 )))
(#) (
cos
* (
AffineMap (n,
0 ))))
. x) by
VALUED_1: 5;
hence thesis;
end;
A7: (
[#]
REAL )
= (
dom ((
cos
* (
AffineMap (m,
0 )))
(#) (
cos
* (
AffineMap (n,
0 ))))) by
FUNCT_2:def 1;
(((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 ))))
+ ((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 )))))
is_differentiable_on
REAL by
A1,
Th5;
then (
dom ((((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 ))))
+ ((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 )))))
`|
REAL ))
= (
dom ((
cos
* (
AffineMap (m,
0 )))
(#) (
cos
* (
AffineMap (n,
0 ))))) by
A7,
FDIFF_1:def 7;
then
A8: ((((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 ))))
+ ((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 )))))
`|
REAL )
= ((
cos
* (
AffineMap (m,
0 )))
(#) (
cos
* (
AffineMap (n,
0 )))) by
A6,
PARTFUN1: 5;
(((
cos
* (
AffineMap (m,
0 )))
(#) (
cos
* (
AffineMap (n,
0 ))))
| A) is
continuous;
then
A9: ((
cos
* (
AffineMap (m,
0 )))
(#) (
cos
* (
AffineMap (n,
0 ))))
is_integrable_on A by
A7,
INTEGRA5: 11;
(((
cos
* (
AffineMap (m,
0 )))
(#) (
cos
* (
AffineMap (n,
0 ))))
| A) is
bounded by
A7,
INTEGRA5: 10;
hence thesis by
A1,
A9,
A8,
Th5,
INTEGRA5: 13;
end;
theorem ::
INTEGR11:26
(m
+ n)
<>
0 & (m
- n)
<>
0 implies (
integral (((
sin
* (
AffineMap (m,
0 )))
(#) (
sin
* (
AffineMap (n,
0 )))),A))
= (((((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 ))))
- ((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 )))))
. (
upper_bound A))
- ((((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 ))))
- ((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 )))))
. (
lower_bound A)))
proof
assume
A1: (m
+ n)
<>
0 & (m
- n)
<>
0 ;
A2: for x st x
in
REAL holds ((
AffineMap (n,
0 ))
. x)
= (n
* x)
proof
let x;
assume x
in
REAL ;
((
AffineMap (n,
0 ))
. x)
= ((n
* x)
+
0 ) by
FCONT_1:def 4
.= (n
* x);
hence thesis;
end;
A3: (
dom (
sin
* (
AffineMap (n,
0 ))))
= (
[#]
REAL ) by
FUNCT_2:def 1;
A4: (
dom (
sin
* (
AffineMap (m,
0 ))))
= (
[#]
REAL ) by
FUNCT_2:def 1;
A5: for x st x
in
REAL holds ((
AffineMap (m,
0 ))
. x)
= (m
* x)
proof
let x;
assume x
in
REAL ;
((
AffineMap (m,
0 ))
. x)
= ((m
* x)
+
0 ) by
FCONT_1:def 4
.= (m
* x);
hence thesis;
end;
A6: for x be
Element of
REAL st x
in (
dom ((((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 ))))
- ((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 )))))
`|
REAL )) holds (((((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 ))))
- ((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 )))))
`|
REAL )
. x)
= (((
sin
* (
AffineMap (m,
0 )))
(#) (
sin
* (
AffineMap (n,
0 ))))
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 ))))
- ((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 )))))
`|
REAL ));
(((((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 ))))
- ((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 )))))
`|
REAL )
. x)
= ((
sin
. (m
* x))
* (
sin
. (n
* x))) by
A1,
Th6
.= ((
sin
. ((
AffineMap (m,
0 ))
. x))
* (
sin
. (n
* x))) by
A5
.= ((
sin
. ((
AffineMap (m,
0 ))
. x))
* (
sin
. ((
AffineMap (n,
0 ))
. x))) by
A2
.= (((
sin
* (
AffineMap (m,
0 )))
. x)
* (
sin
. ((
AffineMap (n,
0 ))
. x))) by
A4,
FUNCT_1: 12
.= (((
sin
* (
AffineMap (m,
0 )))
. x)
* ((
sin
* (
AffineMap (n,
0 )))
. x)) by
A3,
FUNCT_1: 12
.= (((
sin
* (
AffineMap (m,
0 )))
(#) (
sin
* (
AffineMap (n,
0 ))))
. x) by
VALUED_1: 5;
hence thesis;
end;
A7:
REAL
= (
dom ((
sin
* (
AffineMap (m,
0 )))
(#) (
sin
* (
AffineMap (n,
0 ))))) by
FUNCT_2:def 1;
(((
sin
* (
AffineMap (m,
0 )))
(#) (
sin
* (
AffineMap (n,
0 ))))
| A) is
continuous;
then
A8: ((
sin
* (
AffineMap (m,
0 )))
(#) (
sin
* (
AffineMap (n,
0 ))))
is_integrable_on A by
A7,
INTEGRA5: 11;
(((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 ))))
- ((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 )))))
is_differentiable_on
REAL by
A1,
Th6;
then (
dom ((((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 ))))
- ((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 )))))
`|
REAL ))
= (
dom ((
sin
* (
AffineMap (m,
0 )))
(#) (
sin
* (
AffineMap (n,
0 ))))) by
A7,
FDIFF_1:def 7;
then
A9: ((((1
/ (2
* (m
- n)))
(#) (
sin
* (
AffineMap ((m
- n),
0 ))))
- ((1
/ (2
* (m
+ n)))
(#) (
sin
* (
AffineMap ((m
+ n),
0 )))))
`|
REAL )
= ((
sin
* (
AffineMap (m,
0 )))
(#) (
sin
* (
AffineMap (n,
0 )))) by
A6,
PARTFUN1: 5;
(((
sin
* (
AffineMap (m,
0 )))
(#) (
sin
* (
AffineMap (n,
0 ))))
| A) is
bounded by
A7,
INTEGRA5: 10;
hence thesis by
A1,
A8,
A9,
Th6,
INTEGRA5: 13;
end;
theorem ::
INTEGR11:27
(m
+ n)
<>
0 & (m
- n)
<>
0 implies (
integral (((
sin
* (
AffineMap (m,
0 )))
(#) (
cos
* (
AffineMap (n,
0 )))),A))
= ((((
- ((1
/ (2
* (m
+ n)))
(#) (
cos
* (
AffineMap ((m
+ n),
0 )))))
- ((1
/ (2
* (m
- n)))
(#) (
cos
* (
AffineMap ((m
- n),
0 )))))
. (
upper_bound A))
- (((
- ((1
/ (2
* (m
+ n)))
(#) (
cos
* (
AffineMap ((m
+ n),
0 )))))
- ((1
/ (2
* (m
- n)))
(#) (
cos
* (
AffineMap ((m
- n),
0 )))))
. (
lower_bound A)))
proof
assume
A1: (m
+ n)
<>
0 & (m
- n)
<>
0 ;
A2: for x st x
in
REAL holds ((
AffineMap (n,
0 ))
. x)
= (n
* x)
proof
let x;
assume x
in
REAL ;
((
AffineMap (n,
0 ))
. x)
= ((n
* x)
+
0 ) by
FCONT_1:def 4
.= (n
* x);
hence thesis;
end;
A3: (
dom (
cos
* (
AffineMap (n,
0 ))))
= (
[#]
REAL ) by
FUNCT_2:def 1;
A4: (
dom (
sin
* (
AffineMap (m,
0 ))))
= (
[#]
REAL ) by
FUNCT_2:def 1;
A5: for x st x
in
REAL holds ((
AffineMap (m,
0 ))
. x)
= (m
* x)
proof
let x;
assume x
in
REAL ;
((
AffineMap (m,
0 ))
. x)
= ((m
* x)
+
0 ) by
FCONT_1:def 4
.= (m
* x);
hence thesis;
end;
A6: for x be
Element of
REAL st x
in (
dom (((
- ((1
/ (2
* (m
+ n)))
(#) (
cos
* (
AffineMap ((m
+ n),
0 )))))
- ((1
/ (2
* (m
- n)))
(#) (
cos
* (
AffineMap ((m
- n),
0 )))))
`|
REAL )) holds ((((
- ((1
/ (2
* (m
+ n)))
(#) (
cos
* (
AffineMap ((m
+ n),
0 )))))
- ((1
/ (2
* (m
- n)))
(#) (
cos
* (
AffineMap ((m
- n),
0 )))))
`|
REAL )
. x)
= (((
sin
* (
AffineMap (m,
0 )))
(#) (
cos
* (
AffineMap (n,
0 ))))
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((
- ((1
/ (2
* (m
+ n)))
(#) (
cos
* (
AffineMap ((m
+ n),
0 )))))
- ((1
/ (2
* (m
- n)))
(#) (
cos
* (
AffineMap ((m
- n),
0 )))))
`|
REAL ));
((((
- ((1
/ (2
* (m
+ n)))
(#) (
cos
* (
AffineMap ((m
+ n),
0 )))))
- ((1
/ (2
* (m
- n)))
(#) (
cos
* (
AffineMap ((m
- n),
0 )))))
`|
REAL )
. x)
= ((
sin
. (m
* x))
* (
cos
. (n
* x))) by
A1,
Th7
.= ((
sin
. ((
AffineMap (m,
0 ))
. x))
* (
cos
. (n
* x))) by
A5
.= ((
sin
. ((
AffineMap (m,
0 ))
. x))
* (
cos
. ((
AffineMap (n,
0 ))
. x))) by
A2
.= (((
sin
* (
AffineMap (m,
0 )))
. x)
* (
cos
. ((
AffineMap (n,
0 ))
. x))) by
A4,
FUNCT_1: 12
.= (((
sin
* (
AffineMap (m,
0 )))
. x)
* ((
cos
* (
AffineMap (n,
0 )))
. x)) by
A3,
FUNCT_1: 12
.= (((
sin
* (
AffineMap (m,
0 )))
(#) (
cos
* (
AffineMap (n,
0 ))))
. x) by
VALUED_1: 5;
hence thesis;
end;
A7: (
[#]
REAL )
= (
dom ((
sin
* (
AffineMap (m,
0 )))
(#) (
cos
* (
AffineMap (n,
0 ))))) by
FUNCT_2:def 1;
(((
sin
* (
AffineMap (m,
0 )))
(#) (
cos
* (
AffineMap (n,
0 ))))
| A) is
continuous;
then
A8: ((
sin
* (
AffineMap (m,
0 )))
(#) (
cos
* (
AffineMap (n,
0 ))))
is_integrable_on A by
A7,
INTEGRA5: 11;
((
- ((1
/ (2
* (m
+ n)))
(#) (
cos
* (
AffineMap ((m
+ n),
0 )))))
- ((1
/ (2
* (m
- n)))
(#) (
cos
* (
AffineMap ((m
- n),
0 )))))
is_differentiable_on
REAL by
A1,
Th7;
then (
dom (((
- ((1
/ (2
* (m
+ n)))
(#) (
cos
* (
AffineMap ((m
+ n),
0 )))))
- ((1
/ (2
* (m
- n)))
(#) (
cos
* (
AffineMap ((m
- n),
0 )))))
`|
REAL ))
= (
dom ((
sin
* (
AffineMap (m,
0 )))
(#) (
cos
* (
AffineMap (n,
0 ))))) by
A7,
FDIFF_1:def 7;
then
A9: (((
- ((1
/ (2
* (m
+ n)))
(#) (
cos
* (
AffineMap ((m
+ n),
0 )))))
- ((1
/ (2
* (m
- n)))
(#) (
cos
* (
AffineMap ((m
- n),
0 )))))
`|
REAL )
= ((
sin
* (
AffineMap (m,
0 )))
(#) (
cos
* (
AffineMap (n,
0 )))) by
A6,
PARTFUN1: 5;
(((
sin
* (
AffineMap (m,
0 )))
(#) (
cos
* (
AffineMap (n,
0 ))))
| A) is
bounded by
A7,
INTEGRA5: 10;
hence thesis by
A1,
A8,
A9,
Th7,
INTEGRA5: 13;
end;
theorem ::
INTEGR11:28
n
<>
0 implies (
integral (((
AffineMap (1,
0 ))
(#) (
sin
* (
AffineMap (n,
0 )))),A))
= (((((1
/ (n
^2 ))
(#) (
sin
* (
AffineMap (n,
0 ))))
- ((
AffineMap ((1
/ n),
0 ))
(#) (
cos
* (
AffineMap (n,
0 )))))
. (
upper_bound A))
- ((((1
/ (n
^2 ))
(#) (
sin
* (
AffineMap (n,
0 ))))
- ((
AffineMap ((1
/ n),
0 ))
(#) (
cos
* (
AffineMap (n,
0 )))))
. (
lower_bound A)))
proof
assume
A1: n
<>
0 ;
A2: for x st x
in
REAL holds ((
AffineMap (n,
0 ))
. x)
= (n
* x)
proof
let x;
assume x
in
REAL ;
((
AffineMap (n,
0 ))
. x)
= ((n
* x)
+
0 ) by
FCONT_1:def 4
.= (n
* x);
hence thesis;
end;
A3: (
dom (
sin
* (
AffineMap (n,
0 ))))
= (
[#]
REAL ) by
FUNCT_2:def 1;
A4: for x st x
in
REAL holds ((
AffineMap (1,
0 ))
. x)
= x
proof
let x;
assume x
in
REAL ;
((
AffineMap (1,
0 ))
. x)
= ((1
* x)
+
0 ) by
FCONT_1:def 4
.= x;
hence thesis;
end;
A5: for x be
Element of
REAL st x
in (
dom ((((1
/ (n
^2 ))
(#) (
sin
* (
AffineMap (n,
0 ))))
- ((
AffineMap ((1
/ n),
0 ))
(#) (
cos
* (
AffineMap (n,
0 )))))
`|
REAL )) holds (((((1
/ (n
^2 ))
(#) (
sin
* (
AffineMap (n,
0 ))))
- ((
AffineMap ((1
/ n),
0 ))
(#) (
cos
* (
AffineMap (n,
0 )))))
`|
REAL )
. x)
= (((
AffineMap (1,
0 ))
(#) (
sin
* (
AffineMap (n,
0 ))))
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((((1
/ (n
^2 ))
(#) (
sin
* (
AffineMap (n,
0 ))))
- ((
AffineMap ((1
/ n),
0 ))
(#) (
cos
* (
AffineMap (n,
0 )))))
`|
REAL ));
(((((1
/ (n
^2 ))
(#) (
sin
* (
AffineMap (n,
0 ))))
- ((
AffineMap ((1
/ n),
0 ))
(#) (
cos
* (
AffineMap (n,
0 )))))
`|
REAL )
. x)
= (x
* (
sin
. (n
* x))) by
A1,
Th8
.= (x
* (
sin
. ((
AffineMap (n,
0 ))
. x))) by
A2
.= (x
* ((
sin
* (
AffineMap (n,
0 )))
. x)) by
A3,
FUNCT_1: 12
.= (((
AffineMap (1,
0 ))
. x)
* ((
sin
* (
AffineMap (n,
0 )))
. x)) by
A4
.= (((
AffineMap (1,
0 ))
(#) (
sin
* (
AffineMap (n,
0 ))))
. x) by
VALUED_1: 5;
hence thesis;
end;
A6: (
dom ((
AffineMap (1,
0 ))
(#) (
sin
* (
AffineMap (n,
0 )))))
= (
[#]
REAL ) by
FUNCT_2:def 1;
(((1
/ (n
^2 ))
(#) (
sin
* (
AffineMap (n,
0 ))))
- ((
AffineMap ((1
/ n),
0 ))
(#) (
cos
* (
AffineMap (n,
0 )))))
is_differentiable_on
REAL by
A1,
Th8;
then (
dom ((((1
/ (n
^2 ))
(#) (
sin
* (
AffineMap (n,
0 ))))
- ((
AffineMap ((1
/ n),
0 ))
(#) (
cos
* (
AffineMap (n,
0 )))))
`|
REAL ))
= (
dom ((
AffineMap (1,
0 ))
(#) (
sin
* (
AffineMap (n,
0 ))))) by
A6,
FDIFF_1:def 7;
then
A7: ((((1
/ (n
^2 ))
(#) (
sin
* (
AffineMap (n,
0 ))))
- ((
AffineMap ((1
/ n),
0 ))
(#) (
cos
* (
AffineMap (n,
0 )))))
`|
REAL )
= ((
AffineMap (1,
0 ))
(#) (
sin
* (
AffineMap (n,
0 )))) by
A5,
PARTFUN1: 5;
(((
AffineMap (1,
0 ))
(#) (
sin
* (
AffineMap (n,
0 ))))
| A) is
continuous;
then
A8: ((
AffineMap (1,
0 ))
(#) (
sin
* (
AffineMap (n,
0 ))))
is_integrable_on A by
A6,
INTEGRA5: 11;
(((
AffineMap (1,
0 ))
(#) (
sin
* (
AffineMap (n,
0 ))))
| A) is
bounded by
A6,
INTEGRA5: 10;
hence thesis by
A1,
A8,
A7,
Th8,
INTEGRA5: 13;
end;
theorem ::
INTEGR11:29
n
<>
0 implies (
integral (((
AffineMap (1,
0 ))
(#) (
cos
* (
AffineMap (n,
0 )))),A))
= (((((1
/ (n
^2 ))
(#) (
cos
* (
AffineMap (n,
0 ))))
+ ((
AffineMap ((1
/ n),
0 ))
(#) (
sin
* (
AffineMap (n,
0 )))))
. (
upper_bound A))
- ((((1
/ (n
^2 ))
(#) (
cos
* (
AffineMap (n,
0 ))))
+ ((
AffineMap ((1
/ n),
0 ))
(#) (
sin
* (
AffineMap (n,
0 )))))
. (
lower_bound A)))
proof
assume
A1: n
<>
0 ;
A2: for x st x
in
REAL holds ((
AffineMap (n,
0 ))
. x)
= (n
* x)
proof
let x;
assume x
in
REAL ;
((
AffineMap (n,
0 ))
. x)
= ((n
* x)
+
0 ) by
FCONT_1:def 4
.= (n
* x);
hence thesis;
end;
A3: (
dom (
cos
* (
AffineMap (n,
0 ))))
= (
[#]
REAL ) by
FUNCT_2:def 1;
A4: for x st x
in
REAL holds ((
AffineMap (1,
0 ))
. x)
= x
proof
let x;
assume x
in
REAL ;
((
AffineMap (1,
0 ))
. x)
= ((1
* x)
+
0 ) by
FCONT_1:def 4
.= x;
hence thesis;
end;
A5: for x be
Element of
REAL st x
in (
dom ((((1
/ (n
^2 ))
(#) (
cos
* (
AffineMap (n,
0 ))))
+ ((
AffineMap ((1
/ n),
0 ))
(#) (
sin
* (
AffineMap (n,
0 )))))
`|
REAL )) holds (((((1
/ (n
^2 ))
(#) (
cos
* (
AffineMap (n,
0 ))))
+ ((
AffineMap ((1
/ n),
0 ))
(#) (
sin
* (
AffineMap (n,
0 )))))
`|
REAL )
. x)
= (((
AffineMap (1,
0 ))
(#) (
cos
* (
AffineMap (n,
0 ))))
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((((1
/ (n
^2 ))
(#) (
cos
* (
AffineMap (n,
0 ))))
+ ((
AffineMap ((1
/ n),
0 ))
(#) (
sin
* (
AffineMap (n,
0 )))))
`|
REAL ));
(((((1
/ (n
^2 ))
(#) (
cos
* (
AffineMap (n,
0 ))))
+ ((
AffineMap ((1
/ n),
0 ))
(#) (
sin
* (
AffineMap (n,
0 )))))
`|
REAL )
. x)
= (x
* (
cos
. (n
* x))) by
A1,
Th9
.= (x
* (
cos
. ((
AffineMap (n,
0 ))
. x))) by
A2
.= (x
* ((
cos
* (
AffineMap (n,
0 )))
. x)) by
A3,
FUNCT_1: 12
.= (((
AffineMap (1,
0 ))
. x)
* ((
cos
* (
AffineMap (n,
0 )))
. x)) by
A4
.= (((
AffineMap (1,
0 ))
(#) (
cos
* (
AffineMap (n,
0 ))))
. x) by
VALUED_1: 5;
hence thesis;
end;
A6: (
dom ((
AffineMap (1,
0 ))
(#) (
cos
* (
AffineMap (n,
0 )))))
= (
[#]
REAL ) by
FUNCT_2:def 1;
(((1
/ (n
^2 ))
(#) (
cos
* (
AffineMap (n,
0 ))))
+ ((
AffineMap ((1
/ n),
0 ))
(#) (
sin
* (
AffineMap (n,
0 )))))
is_differentiable_on
REAL by
A1,
Th9;
then (
dom ((((1
/ (n
^2 ))
(#) (
cos
* (
AffineMap (n,
0 ))))
+ ((
AffineMap ((1
/ n),
0 ))
(#) (
sin
* (
AffineMap (n,
0 )))))
`|
REAL ))
= (
dom ((
AffineMap (1,
0 ))
(#) (
cos
* (
AffineMap (n,
0 ))))) by
A6,
FDIFF_1:def 7;
then
A7: ((((1
/ (n
^2 ))
(#) (
cos
* (
AffineMap (n,
0 ))))
+ ((
AffineMap ((1
/ n),
0 ))
(#) (
sin
* (
AffineMap (n,
0 )))))
`|
REAL )
= ((
AffineMap (1,
0 ))
(#) (
cos
* (
AffineMap (n,
0 )))) by
A5,
PARTFUN1: 5;
(((
AffineMap (1,
0 ))
(#) (
cos
* (
AffineMap (n,
0 ))))
| A) is
continuous;
then
A8: ((
AffineMap (1,
0 ))
(#) (
cos
* (
AffineMap (n,
0 ))))
is_integrable_on A by
A6,
INTEGRA5: 11;
(((
AffineMap (1,
0 ))
(#) (
cos
* (
AffineMap (n,
0 ))))
| A) is
bounded by
A6,
INTEGRA5: 10;
hence thesis by
A1,
A8,
A7,
Th9,
INTEGRA5: 13;
end;
theorem ::
INTEGR11:30
(
integral (((
AffineMap (1,
0 ))
(#)
sinh ),A))
= (((((
AffineMap (1,
0 ))
(#)
cosh )
-
sinh )
. (
upper_bound A))
- ((((
AffineMap (1,
0 ))
(#)
cosh )
-
sinh )
. (
lower_bound A)))
proof
A1: for x be
Element of
REAL st x
in (
dom ((((
AffineMap (1,
0 ))
(#)
cosh )
-
sinh )
`|
REAL )) holds (((((
AffineMap (1,
0 ))
(#)
cosh )
-
sinh )
`|
REAL )
. x)
= (((
AffineMap (1,
0 ))
(#)
sinh )
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((((
AffineMap (1,
0 ))
(#)
cosh )
-
sinh )
`|
REAL ));
(((((
AffineMap (1,
0 ))
(#)
cosh )
-
sinh )
`|
REAL )
. x)
= (((1
* x)
+
0 )
* (
sinh
. x)) by
Th10
.= (((
AffineMap (1,
0 ))
. x)
* (
sinh
. x)) by
FCONT_1:def 4
.= (((
AffineMap (1,
0 ))
(#)
sinh )
. x) by
VALUED_1: 5;
hence thesis;
end;
A2: (
dom ((
AffineMap (1,
0 ))
(#)
sinh ))
= (
[#]
REAL ) by
FUNCT_2:def 1;
then (
dom ((((
AffineMap (1,
0 ))
(#)
cosh )
-
sinh )
`|
REAL ))
= (
dom ((
AffineMap (1,
0 ))
(#)
sinh )) by
Th10,
FDIFF_1:def 7;
then
A3: ((((
AffineMap (1,
0 ))
(#)
cosh )
-
sinh )
`|
REAL )
= ((
AffineMap (1,
0 ))
(#)
sinh ) by
A1,
PARTFUN1: 5;
(
dom (
AffineMap (1,
0 )))
= (
[#]
REAL ) & for x st x
in
REAL holds ((
AffineMap (1,
0 ))
. x)
= ((1
* x)
+
0 ) by
FCONT_1:def 4,
FUNCT_2:def 1;
then (
AffineMap (1,
0 ))
is_differentiable_on
REAL by
FDIFF_1: 23;
then
A4: (((
AffineMap (1,
0 ))
(#)
sinh )
|
REAL ) is
continuous by
A2,
FDIFF_1: 21,
FDIFF_1: 25,
SIN_COS2: 34;
then
A5: (((
AffineMap (1,
0 ))
(#)
sinh )
| A) is
continuous by
FCONT_1: 16;
(((
AffineMap (1,
0 ))
(#)
sinh )
| A) is
bounded by
A2,
A4,
INTEGRA5: 10;
hence thesis by
A2,
A5,
A3,
Th10,
INTEGRA5: 11,
INTEGRA5: 13;
end;
theorem ::
INTEGR11:31
(
integral (((
AffineMap (1,
0 ))
(#)
cosh ),A))
= (((((
AffineMap (1,
0 ))
(#)
sinh )
-
cosh )
. (
upper_bound A))
- ((((
AffineMap (1,
0 ))
(#)
sinh )
-
cosh )
. (
lower_bound A)))
proof
A1: for x be
Element of
REAL st x
in (
dom ((((
AffineMap (1,
0 ))
(#)
sinh )
-
cosh )
`|
REAL )) holds (((((
AffineMap (1,
0 ))
(#)
sinh )
-
cosh )
`|
REAL )
. x)
= (((
AffineMap (1,
0 ))
(#)
cosh )
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((((
AffineMap (1,
0 ))
(#)
sinh )
-
cosh )
`|
REAL ));
(((((
AffineMap (1,
0 ))
(#)
sinh )
-
cosh )
`|
REAL )
. x)
= (((1
* x)
+
0 )
* (
cosh
. x)) by
Th11
.= (((
AffineMap (1,
0 ))
. x)
* (
cosh
. x)) by
FCONT_1:def 4
.= (((
AffineMap (1,
0 ))
(#)
cosh )
. x) by
VALUED_1: 5;
hence thesis;
end;
A2: (
dom ((
AffineMap (1,
0 ))
(#)
cosh ))
= (
[#]
REAL ) by
FUNCT_2:def 1;
then (
dom ((((
AffineMap (1,
0 ))
(#)
sinh )
-
cosh )
`|
REAL ))
= (
dom ((
AffineMap (1,
0 ))
(#)
cosh )) by
Th11,
FDIFF_1:def 7;
then
A3: ((((
AffineMap (1,
0 ))
(#)
sinh )
-
cosh )
`|
REAL )
= ((
AffineMap (1,
0 ))
(#)
cosh ) by
A1,
PARTFUN1: 5;
(
dom (
AffineMap (1,
0 )))
= (
[#]
REAL ) & for x st x
in
REAL holds ((
AffineMap (1,
0 ))
. x)
= ((1
* x)
+
0 ) by
FCONT_1:def 4,
FUNCT_2:def 1;
then (
AffineMap (1,
0 ))
is_differentiable_on
REAL by
FDIFF_1: 23;
then
A4: (((
AffineMap (1,
0 ))
(#)
cosh )
|
REAL ) is
continuous by
A2,
FDIFF_1: 21,
FDIFF_1: 25,
SIN_COS2: 35;
then
A5: (((
AffineMap (1,
0 ))
(#)
cosh )
| A) is
continuous by
FCONT_1: 16;
(((
AffineMap (1,
0 ))
(#)
cosh )
| A) is
bounded by
A2,
A4,
INTEGRA5: 10;
hence thesis by
A2,
A5,
A3,
Th11,
INTEGRA5: 11,
INTEGRA5: 13;
end;
theorem ::
INTEGR11:32
(a
* (n
+ 1))
<>
0 implies (
integral (((
#Z n)
* (
AffineMap (a,b))),A))
= ((((1
/ (a
* (n
+ 1)))
(#) ((
#Z (n
+ 1))
* (
AffineMap (a,b))))
. (
upper_bound A))
- (((1
/ (a
* (n
+ 1)))
(#) ((
#Z (n
+ 1))
* (
AffineMap (a,b))))
. (
lower_bound A)))
proof
assume
A1: (a
* (n
+ 1))
<>
0 ;
A2: (
[#]
REAL )
= (
dom (
AffineMap (a,b))) by
FUNCT_2:def 1;
A3: for x be
Element of
REAL st x
in (
dom (((1
/ (a
* (n
+ 1)))
(#) ((
#Z (n
+ 1))
* (
AffineMap (a,b))))
`|
REAL )) holds ((((1
/ (a
* (n
+ 1)))
(#) ((
#Z (n
+ 1))
* (
AffineMap (a,b))))
`|
REAL )
. x)
= (((
#Z n)
* (
AffineMap (a,b)))
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((1
/ (a
* (n
+ 1)))
(#) ((
#Z (n
+ 1))
* (
AffineMap (a,b))))
`|
REAL ));
((((1
/ (a
* (n
+ 1)))
(#) ((
#Z (n
+ 1))
* (
AffineMap (a,b))))
`|
REAL )
. x)
= (((a
* x)
+ b)
#Z n) by
A1,
Th12
.= (((
AffineMap (a,b))
. x)
#Z n) by
FCONT_1:def 4
.= ((
#Z n)
. ((
AffineMap (a,b))
. x)) by
TAYLOR_1:def 1
.= (((
#Z n)
* (
AffineMap (a,b)))
. x) by
A2,
FUNCT_1: 13;
hence thesis;
end;
A4: (
[#]
REAL )
= (
dom ((
#Z n)
* (
AffineMap (a,b)))) by
FUNCT_2:def 1;
for x st x
in
REAL holds ((
AffineMap (a,b))
. x)
= ((a
* x)
+ b) by
FCONT_1:def 4;
then
A5: (
AffineMap (a,b))
is_differentiable_on
REAL by
A2,
FDIFF_1: 23;
((
#Z n)
* (
AffineMap (a,b)))
is_differentiable_in x
proof
x
in
REAL by
XREAL_0:def 1;
then (
AffineMap (a,b))
is_differentiable_in x by
A2,
A5,
FDIFF_1: 9;
hence thesis by
TAYLOR_1: 3;
end;
then for x st x
in
REAL holds ((
#Z n)
* (
AffineMap (a,b)))
is_differentiable_in x;
then ((
#Z n)
* (
AffineMap (a,b)))
is_differentiable_on
REAL by
A4,
FDIFF_1: 9;
then
A6: (((
#Z n)
* (
AffineMap (a,b)))
|
REAL ) is
continuous by
FDIFF_1: 25;
then (((
#Z n)
* (
AffineMap (a,b)))
| A) is
continuous by
FCONT_1: 16;
then
A7: ((
#Z n)
* (
AffineMap (a,b)))
is_integrable_on A by
A4,
INTEGRA5: 11;
((1
/ (a
* (n
+ 1)))
(#) ((
#Z (n
+ 1))
* (
AffineMap (a,b))))
is_differentiable_on
REAL by
A1,
Th12;
then (
dom (((1
/ (a
* (n
+ 1)))
(#) ((
#Z (n
+ 1))
* (
AffineMap (a,b))))
`|
REAL ))
= (
dom ((
#Z n)
* (
AffineMap (a,b)))) by
A4,
FDIFF_1:def 7;
then
A8: (((1
/ (a
* (n
+ 1)))
(#) ((
#Z (n
+ 1))
* (
AffineMap (a,b))))
`|
REAL )
= ((
#Z n)
* (
AffineMap (a,b))) by
A3,
PARTFUN1: 5;
(((
#Z n)
* (
AffineMap (a,b)))
| A) is
bounded by
A4,
A6,
INTEGRA5: 10;
hence thesis by
A1,
A7,
A8,
Th12,
INTEGRA5: 13;
end;
begin
reserve f,f1,f2,f3 for
PartFunc of
REAL ,
REAL ;
theorem ::
INTEGR11:33
Th33: Z
c= (
dom ((1
/ 2)
(#) f)) & f
= (
#Z 2) implies ((1
/ 2)
(#) f)
is_differentiable_on Z & for x st x
in Z holds ((((1
/ 2)
(#) f)
`| Z)
. x)
= x
proof
assume that
A1: Z
c= (
dom ((1
/ 2)
(#) f)) and
A2: f
= (
#Z 2);
Z
c= (
dom f) & for x st x
in Z holds f
is_differentiable_in x by
A1,
A2,
TAYLOR_1: 2,
VALUED_1:def 5;
then
A3: f
is_differentiable_on Z by
FDIFF_1: 9;
A4: for x st x
in Z holds ((f
`| Z)
. x)
= (2
* x)
proof
let x;
(2
* (x
#Z (2
- 1)))
= (2
* x) by
PREPOWER: 35;
then
A5: (
diff (f,x))
= (2
* x) by
A2,
TAYLOR_1: 2;
assume x
in Z;
hence thesis by
A3,
A5,
FDIFF_1:def 7;
end;
for x st x
in Z holds ((((1
/ 2)
(#) f)
`| Z)
. x)
= x
proof
let x;
assume
A6: x
in Z;
then ((((1
/ 2)
(#) f)
`| Z)
. x)
= ((1
/ 2)
* (
diff (f,x))) by
A1,
A3,
FDIFF_1: 20
.= ((1
/ 2)
* ((f
`| Z)
. x)) by
A3,
A6,
FDIFF_1:def 7
.= ((1
/ 2)
* (2
* x)) by
A4,
A6
.= x;
hence thesis;
end;
hence thesis by
A1,
A3,
FDIFF_1: 20;
end;
theorem ::
INTEGR11:34
A
c= Z & f
= (
#Z 2) & Z
= (
dom ((1
/ 2)
(#) f)) implies (
integral ((
id Z),A))
= ((((1
/ 2)
(#) f)
. (
upper_bound A))
- (((1
/ 2)
(#) f)
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: f
= (
#Z 2) & Z
= (
dom ((1
/ 2)
(#) f));
A3: A
c= (
dom (
id Z)) by
A1;
then
A4: ((
id Z)
| A) is
bounded by
INTEGRA5: 10;
A5: ((1
/ 2)
(#) f)
is_differentiable_on Z by
A2,
Th33;
A6: for x be
Element of
REAL st x
in (
dom (((1
/ 2)
(#) f)
`| Z)) holds ((((1
/ 2)
(#) f)
`| Z)
. x)
= ((
id Z)
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((1
/ 2)
(#) f)
`| Z));
then
A7: x
in Z by
A5,
FDIFF_1:def 7;
then ((((1
/ 2)
(#) f)
`| Z)
. x)
= x by
A2,
Th33
.= ((
id Z)
. x) by
A7,
FUNCT_1: 18;
hence thesis;
end;
(
dom (((1
/ 2)
(#) f)
`| Z))
= (
dom (
id Z)) by
A5,
FDIFF_1:def 7;
then
A8: (((1
/ 2)
(#) f)
`| Z)
= (
id Z) by
A6,
PARTFUN1: 5;
((
id Z)
| A) is
continuous;
then (
id Z)
is_integrable_on A by
A3,
INTEGRA5: 11;
hence thesis by
A1,
A2,
A4,
A8,
Th33,
INTEGRA5: 13;
end;
theorem ::
INTEGR11:35
not
0
in Z & A
c= Z & (for x st x
in Z holds x
<>
0 & (f
. x)
= (
- (1
/ (x
^2 )))) & (
dom f)
= Z & (f
| A) is
continuous implies (
integral (f,A))
= ((((
id Z)
^ )
. (
upper_bound A))
- (((
id Z)
^ )
. (
lower_bound A)))
proof
set g = (
id Z);
assume that
A1: not
0
in Z and
A2: A
c= Z and
A3: for x st x
in Z holds x
<>
0 & (f
. x)
= (
- (1
/ (x
^2 ))) and
A4: (
dom f)
= Z and
A5: (f
| A) is
continuous;
A6: f
is_integrable_on A by
A2,
A4,
A5,
INTEGRA5: 11;
A7: (g
^ )
is_differentiable_on Z by
A1,
FDIFF_5: 4;
A8: for x be
Element of
REAL st x
in (
dom ((g
^ )
`| Z)) holds (((g
^ )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((g
^ )
`| Z));
then
A9: x
in Z by
A7,
FDIFF_1:def 7;
then (((g
^ )
`| Z)
. x)
= (
- (1
/ (x
^2 ))) by
A1,
FDIFF_5: 4
.= (f
. x) by
A3,
A9;
hence thesis;
end;
(
dom ((g
^ )
`| Z))
= (
dom f) by
A4,
A7,
FDIFF_1:def 7;
then ((g
^ )
`| Z)
= f by
A8,
PARTFUN1: 5;
hence thesis by
A2,
A4,
A5,
A6,
A7,
INTEGRA5: 10,
INTEGRA5: 13;
end;
theorem ::
INTEGR11:36
A
c= Z & f1
= (
#Z 2) & (for x st x
in Z holds (f2
. x)
= 1 & x
<>
0 & (f
. x)
= ((2
* x)
/ ((1
+ (x
^2 ))
^2 ))) & (
dom (f1
/ (f2
+ f1)))
= Z & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((f1
/ (f2
+ f1))
. (
upper_bound A))
- ((f1
/ (f2
+ f1))
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: f1
= (
#Z 2) and
A3: for x st x
in Z holds (f2
. x)
= 1 & x
<>
0 & (f
. x)
= ((2
* x)
/ ((1
+ (x
^2 ))
^2 )) and
A4: (
dom (f1
/ (f2
+ f1)))
= Z and
A5: Z
= (
dom f) and
A6: (f
| A) is
continuous;
A7: f
is_integrable_on A by
A1,
A5,
A6,
INTEGRA5: 11;
A8: for x st x
in Z holds (f2
. x)
= 1 & x
<>
0 by
A3;
then
A9: (f1
/ (f2
+ f1))
is_differentiable_on Z by
A2,
A4,
FDIFF_6: 7;
A10: for x be
Element of
REAL st x
in (
dom ((f1
/ (f2
+ f1))
`| Z)) holds (((f1
/ (f2
+ f1))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((f1
/ (f2
+ f1))
`| Z));
then
A11: x
in Z by
A9,
FDIFF_1:def 7;
then (((f1
/ (f2
+ f1))
`| Z)
. x)
= ((2
* x)
/ ((1
+ (x
^2 ))
^2 )) by
A2,
A4,
A8,
FDIFF_6: 7
.= (f
. x) by
A3,
A11;
hence thesis;
end;
(
dom ((f1
/ (f2
+ f1))
`| Z))
= (
dom f) by
A5,
A9,
FDIFF_1:def 7;
then ((f1
/ (f2
+ f1))
`| Z)
= f by
A10,
PARTFUN1: 5;
hence thesis by
A1,
A5,
A6,
A7,
A9,
INTEGRA5: 10,
INTEGRA5: 13;
end;
theorem ::
INTEGR11:37
Th37: (Z
c= (
dom (
tan
+
sec )) & for x st x
in Z holds (1
+ (
sin
. x))
<>
0 & (1
- (
sin
. x))
<>
0 ) implies (
tan
+
sec )
is_differentiable_on Z & for x st x
in Z holds (((
tan
+
sec )
`| Z)
. x)
= (1
/ (1
- (
sin
. x)))
proof
assume that
A1: Z
c= (
dom (
tan
+
sec )) and
A2: for x st x
in Z holds (1
+ (
sin
. x))
<>
0 & (1
- (
sin
. x))
<>
0 ;
Z
c= ((
dom
tan )
/\ (
dom (
cos
^ ))) by
A1,
VALUED_1:def 1;
then
A3: Z
c= (
dom
tan ) by
XBOOLE_1: 18;
then
A4: for x st x
in Z holds (
cos
. x)
<>
0 by
FDIFF_8: 1;
then
A5: (
cos
^ )
is_differentiable_on Z by
FDIFF_4: 39;
for x st x
in Z holds
tan
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
cos
. x)
<>
0 by
A3,
FDIFF_8: 1;
hence thesis by
FDIFF_7: 46;
end;
then
A6:
tan
is_differentiable_on Z by
A3,
FDIFF_1: 9;
for x st x
in Z holds (((
tan
+
sec )
`| Z)
. x)
= (1
/ (1
- (
sin
. x)))
proof
let x;
assume
A7: x
in Z;
then
A8: (
cos
. x)
<>
0 by
A3,
FDIFF_8: 1;
A9: (1
+ (
sin
. x))
<>
0 by
A2,
A7;
(((
tan
+
sec )
`| Z)
. x)
= ((
diff (
tan ,x))
+ (
diff ((
cos
^ ),x))) by
A1,
A5,
A6,
A7,
FDIFF_1: 18
.= ((1
/ ((
cos
. x)
^2 ))
+ (
diff ((
cos
^ ),x))) by
A8,
FDIFF_7: 46
.= ((1
/ ((
cos
. x)
^2 ))
+ (((
cos
^ )
`| Z)
. x)) by
A5,
A7,
FDIFF_1:def 7
.= ((1
/ ((
cos
. x)
^2 ))
+ ((
sin
. x)
/ ((
cos
. x)
^2 ))) by
A4,
A7,
FDIFF_4: 39
.= ((1
+ (
sin
. x))
/ ((((
cos
. x)
^2 )
+ ((
sin
. x)
^2 ))
- ((
sin
. x)
^2 ))) by
XCMPLX_1: 62
.= ((1
+ (
sin
. x))
/ (1
- ((
sin
. x)
^2 ))) by
SIN_COS: 28
.= ((1
+ (
sin
. x))
/ ((1
+ (
sin
. x))
* (1
- (
sin
. x))))
.= (((1
+ (
sin
. x))
/ (1
+ (
sin
. x)))
/ (1
- (
sin
. x))) by
XCMPLX_1: 78
.= (1
/ (1
- (
sin
. x))) by
A9,
XCMPLX_1: 60;
hence thesis;
end;
hence thesis by
A1,
A5,
A6,
FDIFF_1: 18;
end;
theorem ::
INTEGR11:38
A
c= Z & (for x st x
in Z holds (1
+ (
sin
. x))
<>
0 & (1
- (
sin
. x))
<>
0 & (f
. x)
= (1
/ (1
- (
sin
. x)))) & (
dom (
tan
+
sec ))
= Z & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
tan
+
sec )
. (
upper_bound A))
- ((
tan
+
sec )
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: for x st x
in Z holds (1
+ (
sin
. x))
<>
0 & (1
- (
sin
. x))
<>
0 & (f
. x)
= (1
/ (1
- (
sin
. x))) and
A3: (
dom (
tan
+
sec ))
= Z and
A4: Z
= (
dom f) and
A5: (f
| A) is
continuous;
A6: f
is_integrable_on A by
A1,
A4,
A5,
INTEGRA5: 11;
A7: for x st x
in Z holds (1
+ (
sin
. x))
<>
0 & (1
- (
sin
. x))
<>
0 by
A2;
then
A8: (
tan
+
sec )
is_differentiable_on Z by
A3,
Th37;
A9: for x be
Element of
REAL st x
in (
dom ((
tan
+
sec )
`| Z)) holds (((
tan
+
sec )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
tan
+
sec )
`| Z));
then
A10: x
in Z by
A8,
FDIFF_1:def 7;
then (((
tan
+
sec )
`| Z)
. x)
= (1
/ (1
- (
sin
. x))) by
A3,
A7,
Th37
.= (f
. x) by
A2,
A10;
hence thesis;
end;
(
dom ((
tan
+
sec )
`| Z))
= (
dom f) by
A4,
A8,
FDIFF_1:def 7;
then ((
tan
+
sec )
`| Z)
= f by
A9,
PARTFUN1: 5;
hence thesis by
A1,
A4,
A5,
A6,
A8,
INTEGRA5: 10,
INTEGRA5: 13;
end;
theorem ::
INTEGR11:39
Th39: (Z
c= (
dom (
tan
-
sec )) & for x st x
in Z holds (1
+ (
sin
. x))
<>
0 & (1
- (
sin
. x))
<>
0 ) implies (
tan
-
sec )
is_differentiable_on Z & for x st x
in Z holds (((
tan
-
sec )
`| Z)
. x)
= (1
/ (1
+ (
sin
. x)))
proof
assume that
A1: Z
c= (
dom (
tan
-
sec )) and
A2: for x st x
in Z holds (1
+ (
sin
. x))
<>
0 & (1
- (
sin
. x))
<>
0 ;
Z
c= ((
dom
tan )
/\ (
dom (
cos
^ ))) by
A1,
VALUED_1: 12;
then
A3: Z
c= (
dom
tan ) by
XBOOLE_1: 18;
then
A4: for x st x
in Z holds (
cos
. x)
<>
0 by
FDIFF_8: 1;
then
A5: (
cos
^ )
is_differentiable_on Z by
FDIFF_4: 39;
for x st x
in Z holds
tan
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
cos
. x)
<>
0 by
A3,
FDIFF_8: 1;
hence thesis by
FDIFF_7: 46;
end;
then
A6:
tan
is_differentiable_on Z by
A3,
FDIFF_1: 9;
for x st x
in Z holds (((
tan
-
sec )
`| Z)
. x)
= (1
/ (1
+ (
sin
. x)))
proof
let x;
assume
A7: x
in Z;
then
A8: (
cos
. x)
<>
0 by
A3,
FDIFF_8: 1;
A9: (1
- (
sin
. x))
<>
0 by
A2,
A7;
(((
tan
-
sec )
`| Z)
. x)
= ((
diff (
tan ,x))
- (
diff ((
cos
^ ),x))) by
A1,
A5,
A6,
A7,
FDIFF_1: 19
.= ((1
/ ((
cos
. x)
^2 ))
- (
diff ((
cos
^ ),x))) by
A8,
FDIFF_7: 46
.= ((1
/ ((
cos
. x)
^2 ))
- (((
cos
^ )
`| Z)
. x)) by
A5,
A7,
FDIFF_1:def 7
.= ((1
/ ((
cos
. x)
^2 ))
- ((
sin
. x)
/ ((
cos
. x)
^2 ))) by
A4,
A7,
FDIFF_4: 39
.= ((1
- (
sin
. x))
/ ((((
cos
. x)
^2 )
+ ((
sin
. x)
^2 ))
- ((
sin
. x)
^2 ))) by
XCMPLX_1: 120
.= ((1
- (
sin
. x))
/ (1
- ((
sin
. x)
^2 ))) by
SIN_COS: 28
.= ((1
- (
sin
. x))
/ ((1
+ (
sin
. x))
* (1
- (
sin
. x))))
.= (((1
- (
sin
. x))
/ (1
- (
sin
. x)))
/ (1
+ (
sin
. x))) by
XCMPLX_1: 78
.= (1
/ (1
+ (
sin
. x))) by
A9,
XCMPLX_1: 60;
hence thesis;
end;
hence thesis by
A1,
A5,
A6,
FDIFF_1: 19;
end;
theorem ::
INTEGR11:40
A
c= Z & (for x st x
in Z holds (1
+ (
sin
. x))
<>
0 & (1
- (
sin
. x))
<>
0 & (f
. x)
= (1
/ (1
+ (
sin
. x)))) & (
dom (
tan
-
sec ))
= Z & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
tan
-
sec )
. (
upper_bound A))
- ((
tan
-
sec )
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: for x st x
in Z holds (1
+ (
sin
. x))
<>
0 & (1
- (
sin
. x))
<>
0 & (f
. x)
= (1
/ (1
+ (
sin
. x))) and
A3: (
dom (
tan
-
sec ))
= Z and
A4: Z
= (
dom f) and
A5: (f
| A) is
continuous;
A6: f
is_integrable_on A by
A1,
A4,
A5,
INTEGRA5: 11;
A7: for x st x
in Z holds (1
+ (
sin
. x))
<>
0 & (1
- (
sin
. x))
<>
0 by
A2;
then
A8: (
tan
-
sec )
is_differentiable_on Z by
A3,
Th39;
A9: for x be
Element of
REAL st x
in (
dom ((
tan
-
sec )
`| Z)) holds (((
tan
-
sec )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
tan
-
sec )
`| Z));
then
A10: x
in Z by
A8,
FDIFF_1:def 7;
then (((
tan
-
sec )
`| Z)
. x)
= (1
/ (1
+ (
sin
. x))) by
A3,
A7,
Th39
.= (f
. x) by
A2,
A10;
hence thesis;
end;
(
dom ((
tan
-
sec )
`| Z))
= (
dom f) by
A4,
A8,
FDIFF_1:def 7;
then ((
tan
-
sec )
`| Z)
= f by
A9,
PARTFUN1: 5;
hence thesis by
A1,
A4,
A5,
A6,
A8,
INTEGRA5: 10,
INTEGRA5: 13;
end;
theorem ::
INTEGR11:41
Th41: (Z
c= (
dom ((
-
cot )
+
cosec )) & for x st x
in Z holds (1
+ (
cos
. x))
<>
0 & (1
- (
cos
. x))
<>
0 ) implies ((
-
cot )
+
cosec )
is_differentiable_on Z & for x st x
in Z holds ((((
-
cot )
+
cosec )
`| Z)
. x)
= (1
/ (1
+ (
cos
. x)))
proof
assume that
A1: Z
c= (
dom ((
-
cot )
+
cosec )) and
A2: for x st x
in Z holds (1
+ (
cos
. x))
<>
0 & (1
- (
cos
. x))
<>
0 ;
Z
c= ((
dom (
-
cot ))
/\ (
dom (
sin
^ ))) by
A1,
VALUED_1:def 1;
then
A3: Z
c= (
dom (
-
cot )) by
XBOOLE_1: 18;
then
A4: Z
c= (
dom
cot ) by
VALUED_1: 8;
for x st x
in Z holds
cot
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
sin
. x)
<>
0 by
A4,
FDIFF_8: 2;
hence thesis by
FDIFF_7: 47;
end;
then
A5:
cot
is_differentiable_on Z by
A4,
FDIFF_1: 9;
then
A6: ((
- 1)
(#)
cot )
is_differentiable_on Z by
A3,
FDIFF_1: 20;
A7: for x st x
in Z holds (
sin
. x)
<>
0 by
A4,
FDIFF_8: 2;
then
A8: (
sin
^ )
is_differentiable_on Z by
FDIFF_4: 40;
for x st x
in Z holds ((((
-
cot )
+
cosec )
`| Z)
. x)
= (1
/ (1
+ (
cos
. x)))
proof
let x;
assume
A9: x
in Z;
then
A10: (
sin
. x)
<>
0 by
A4,
FDIFF_8: 2;
A11: (1
- (
cos
. x))
<>
0 by
A2,
A9;
((((
-
cot )
+
cosec )
`| Z)
. x)
= ((
diff ((
-
cot ),x))
+ (
diff ((
sin
^ ),x))) by
A1,
A8,
A6,
A9,
FDIFF_1: 18
.= (((((
- 1)
(#)
cot )
`| Z)
. x)
+ (
diff ((
sin
^ ),x))) by
A6,
A9,
FDIFF_1:def 7
.= (((
- 1)
* (
diff (
cot ,x)))
+ (
diff ((
sin
^ ),x))) by
A3,
A5,
A9,
FDIFF_1: 20
.= (((
- 1)
* (
- (1
/ ((
sin
. x)
^2 ))))
+ (
diff ((
sin
^ ),x))) by
A10,
FDIFF_7: 47
.= ((1
/ ((
sin
. x)
^2 ))
+ (((
sin
^ )
`| Z)
. x)) by
A8,
A9,
FDIFF_1:def 7
.= ((1
/ ((
sin
. x)
^2 ))
+ (
- ((
cos
. x)
/ ((
sin
. x)
^2 )))) by
A7,
A9,
FDIFF_4: 40
.= ((1
/ ((
sin
. x)
^2 ))
- ((
cos
. x)
/ ((
sin
. x)
^2 )))
.= ((1
- (
cos
. x))
/ ((((
sin
. x)
^2 )
+ ((
cos
. x)
^2 ))
- ((
cos
. x)
^2 ))) by
XCMPLX_1: 120
.= ((1
- (
cos
. x))
/ (1
- ((
cos
. x)
^2 ))) by
SIN_COS: 28
.= ((1
- (
cos
. x))
/ ((1
- (
cos
. x))
* (1
+ (
cos
. x))))
.= (((1
- (
cos
. x))
/ (1
- (
cos
. x)))
/ (1
+ (
cos
. x))) by
XCMPLX_1: 78
.= (1
/ (1
+ (
cos
. x))) by
A11,
XCMPLX_1: 60;
hence thesis;
end;
hence thesis by
A1,
A8,
A6,
FDIFF_1: 18;
end;
theorem ::
INTEGR11:42
A
c= Z & (for x st x
in Z holds (1
+ (
cos
. x))
<>
0 & (1
- (
cos
. x))
<>
0 & (f
. x)
= (1
/ (1
+ (
cos
. x)))) & (
dom ((
-
cot )
+
cosec ))
= Z & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= ((((
-
cot )
+
cosec )
. (
upper_bound A))
- (((
-
cot )
+
cosec )
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: for x st x
in Z holds (1
+ (
cos
. x))
<>
0 & (1
- (
cos
. x))
<>
0 & (f
. x)
= (1
/ (1
+ (
cos
. x))) and
A3: (
dom ((
-
cot )
+
cosec ))
= Z and
A4: Z
= (
dom f) and
A5: (f
| A) is
continuous;
A6: f
is_integrable_on A by
A1,
A4,
A5,
INTEGRA5: 11;
A7: for x st x
in Z holds (1
+ (
cos
. x))
<>
0 & (1
- (
cos
. x))
<>
0 by
A2;
then
A8: ((
-
cot )
+
cosec )
is_differentiable_on Z by
A3,
Th41;
A9: for x be
Element of
REAL st x
in (
dom (((
-
cot )
+
cosec )
`| Z)) holds ((((
-
cot )
+
cosec )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((
-
cot )
+
cosec )
`| Z));
then
A10: x
in Z by
A8,
FDIFF_1:def 7;
then ((((
-
cot )
+
cosec )
`| Z)
. x)
= (1
/ (1
+ (
cos
. x))) by
A3,
A7,
Th41
.= (f
. x) by
A2,
A10;
hence thesis;
end;
(
dom (((
-
cot )
+
cosec )
`| Z))
= (
dom f) by
A4,
A8,
FDIFF_1:def 7;
then (((
-
cot )
+
cosec )
`| Z)
= f by
A9,
PARTFUN1: 5;
hence thesis by
A1,
A4,
A5,
A6,
A8,
INTEGRA5: 10,
INTEGRA5: 13;
end;
theorem ::
INTEGR11:43
Th43: (Z
c= (
dom ((
-
cot )
-
cosec )) & for x st x
in Z holds (1
+ (
cos
. x))
<>
0 & (1
- (
cos
. x))
<>
0 ) implies ((
-
cot )
-
cosec )
is_differentiable_on Z & for x st x
in Z holds ((((
-
cot )
-
cosec )
`| Z)
. x)
= (1
/ (1
- (
cos
. x)))
proof
assume that
A1: Z
c= (
dom ((
-
cot )
-
cosec )) and
A2: for x st x
in Z holds (1
+ (
cos
. x))
<>
0 & (1
- (
cos
. x))
<>
0 ;
Z
c= ((
dom (
-
cot ))
/\ (
dom (
sin
^ ))) by
A1,
VALUED_1: 12;
then
A3: Z
c= (
dom (
-
cot )) by
XBOOLE_1: 18;
then
A4: Z
c= (
dom
cot ) by
VALUED_1: 8;
for x st x
in Z holds
cot
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
sin
. x)
<>
0 by
A4,
FDIFF_8: 2;
hence thesis by
FDIFF_7: 47;
end;
then
A5:
cot
is_differentiable_on Z by
A4,
FDIFF_1: 9;
then
A6: ((
- 1)
(#)
cot )
is_differentiable_on Z by
A3,
FDIFF_1: 20;
A7: for x st x
in Z holds (
sin
. x)
<>
0 by
A4,
FDIFF_8: 2;
then
A8: (
sin
^ )
is_differentiable_on Z by
FDIFF_4: 40;
for x st x
in Z holds ((((
-
cot )
-
cosec )
`| Z)
. x)
= (1
/ (1
- (
cos
. x)))
proof
let x;
assume
A9: x
in Z;
then
A10: (
sin
. x)
<>
0 by
A4,
FDIFF_8: 2;
A11: (1
+ (
cos
. x))
<>
0 by
A2,
A9;
((((
-
cot )
-
cosec )
`| Z)
. x)
= ((
diff ((
-
cot ),x))
- (
diff ((
sin
^ ),x))) by
A1,
A8,
A6,
A9,
FDIFF_1: 19
.= (((((
- 1)
(#)
cot )
`| Z)
. x)
- (
diff ((
sin
^ ),x))) by
A6,
A9,
FDIFF_1:def 7
.= (((
- 1)
* (
diff (
cot ,x)))
- (
diff ((
sin
^ ),x))) by
A3,
A5,
A9,
FDIFF_1: 20
.= (((
- 1)
* (
- (1
/ ((
sin
. x)
^2 ))))
- (
diff ((
sin
^ ),x))) by
A10,
FDIFF_7: 47
.= ((1
/ ((
sin
. x)
^2 ))
- (((
sin
^ )
`| Z)
. x)) by
A8,
A9,
FDIFF_1:def 7
.= ((1
/ ((
sin
. x)
^2 ))
- (
- ((
cos
. x)
/ ((
sin
. x)
^2 )))) by
A7,
A9,
FDIFF_4: 40
.= ((1
/ ((
sin
. x)
^2 ))
+ ((
cos
. x)
/ ((
sin
. x)
^2 )))
.= ((1
+ (
cos
. x))
/ ((((
sin
. x)
^2 )
+ ((
cos
. x)
^2 ))
- ((
cos
. x)
^2 ))) by
XCMPLX_1: 62
.= ((1
+ (
cos
. x))
/ (1
- ((
cos
. x)
^2 ))) by
SIN_COS: 28
.= ((1
+ (
cos
. x))
/ ((1
+ (
cos
. x))
* (1
- (
cos
. x))))
.= (((1
+ (
cos
. x))
/ (1
+ (
cos
. x)))
/ (1
- (
cos
. x))) by
XCMPLX_1: 78
.= (1
/ (1
- (
cos
. x))) by
A11,
XCMPLX_1: 60;
hence thesis;
end;
hence thesis by
A1,
A8,
A6,
FDIFF_1: 19;
end;
theorem ::
INTEGR11:44
A
c= Z & (for x st x
in Z holds (1
+ (
cos
. x))
<>
0 & (1
- (
cos
. x))
<>
0 & (f
. x)
= (1
/ (1
- (
cos
. x)))) & (
dom ((
-
cot )
-
cosec ))
= Z & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= ((((
-
cot )
-
cosec )
. (
upper_bound A))
- (((
-
cot )
-
cosec )
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: for x st x
in Z holds (1
+ (
cos
. x))
<>
0 & (1
- (
cos
. x))
<>
0 & (f
. x)
= (1
/ (1
- (
cos
. x))) and
A3: (
dom ((
-
cot )
-
cosec ))
= Z and
A4: Z
= (
dom f) and
A5: (f
| A) is
continuous;
A6: f
is_integrable_on A by
A1,
A4,
A5,
INTEGRA5: 11;
A7: for x st x
in Z holds (1
+ (
cos
. x))
<>
0 & (1
- (
cos
. x))
<>
0 by
A2;
then
A8: ((
-
cot )
-
cosec )
is_differentiable_on Z by
A3,
Th43;
A9: for x be
Element of
REAL st x
in (
dom (((
-
cot )
-
cosec )
`| Z)) holds ((((
-
cot )
-
cosec )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((
-
cot )
-
cosec )
`| Z));
then
A10: x
in Z by
A8,
FDIFF_1:def 7;
then ((((
-
cot )
-
cosec )
`| Z)
. x)
= (1
/ (1
- (
cos
. x))) by
A3,
A7,
Th43
.= (f
. x) by
A2,
A10;
hence thesis;
end;
(
dom (((
-
cot )
-
cosec )
`| Z))
= (
dom f) by
A4,
A8,
FDIFF_1:def 7;
then (((
-
cot )
-
cosec )
`| Z)
= f by
A9,
PARTFUN1: 5;
hence thesis by
A1,
A4,
A5,
A6,
A8,
INTEGRA5: 10,
INTEGRA5: 13;
end;
theorem ::
INTEGR11:45
A
c= Z & Z
c=
].(
- 1), 1.[ & (for x st x
in Z holds (f
. x)
= (1
/ (1
+ (x
^2 )))) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= ((
arctan
. (
upper_bound A))
- (
arctan
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: Z
c=
].(
- 1), 1.[ and
A3: for x st x
in Z holds (f
. x)
= (1
/ (1
+ (x
^2 ))) and
A4: Z
= (
dom f) and
A5: (f
| A) is
continuous;
A6:
arctan
is_differentiable_on Z by
A2,
SIN_COS9: 81;
A7: for x be
Element of
REAL st x
in (
dom (
arctan
`| Z)) holds ((
arctan
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (
arctan
`| Z));
then
A8: x
in Z by
A6,
FDIFF_1:def 7;
then ((
arctan
`| Z)
. x)
= (1
/ (1
+ (x
^2 ))) by
A2,
SIN_COS9: 81
.= (f
. x) by
A3,
A8;
hence thesis;
end;
(
dom (
arctan
`| Z))
= (
dom f) by
A4,
A6,
FDIFF_1:def 7;
then
A9: (
arctan
`| Z)
= f by
A7,
PARTFUN1: 5;
f
is_integrable_on A & (f
| A) is
bounded by
A1,
A4,
A5,
INTEGRA5: 10,
INTEGRA5: 11;
hence thesis by
A1,
A2,
A9,
INTEGRA5: 13,
SIN_COS9: 81;
end;
theorem ::
INTEGR11:46
A
c= Z & Z
c=
].(
- 1), 1.[ & (for x st x
in Z holds (f
. x)
= (r
/ (1
+ (x
^2 )))) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((r
(#)
arctan )
. (
upper_bound A))
- ((r
(#)
arctan )
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: Z
c=
].(
- 1), 1.[ and
A3: for x st x
in Z holds (f
. x)
= (r
/ (1
+ (x
^2 ))) and
A4: Z
= (
dom f) and
A5: (f
| A) is
continuous;
A6: (r
(#)
arctan )
is_differentiable_on Z by
A2,
SIN_COS9: 83;
A7: for x be
Element of
REAL st x
in (
dom ((r
(#)
arctan )
`| Z)) holds (((r
(#)
arctan )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((r
(#)
arctan )
`| Z));
then
A8: x
in Z by
A6,
FDIFF_1:def 7;
then (((r
(#)
arctan )
`| Z)
. x)
= (r
/ (1
+ (x
^2 ))) by
A2,
SIN_COS9: 83
.= (f
. x) by
A3,
A8;
hence thesis;
end;
(
dom ((r
(#)
arctan )
`| Z))
= (
dom f) by
A4,
A6,
FDIFF_1:def 7;
then
A9: ((r
(#)
arctan )
`| Z)
= f by
A7,
PARTFUN1: 5;
f
is_integrable_on A & (f
| A) is
bounded by
A1,
A4,
A5,
INTEGRA5: 10,
INTEGRA5: 11;
hence thesis by
A1,
A2,
A9,
INTEGRA5: 13,
SIN_COS9: 83;
end;
theorem ::
INTEGR11:47
A
c= Z & Z
c=
].(
- 1), 1.[ & (for x st x
in Z holds (f
. x)
= (
- (1
/ (1
+ (x
^2 ))))) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= ((
arccot
. (
upper_bound A))
- (
arccot
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: Z
c=
].(
- 1), 1.[ and
A3: for x st x
in Z holds (f
. x)
= (
- (1
/ (1
+ (x
^2 )))) and
A4: Z
= (
dom f) and
A5: (f
| A) is
continuous;
A6:
arccot
is_differentiable_on Z by
A2,
SIN_COS9: 82;
A7: for x be
Element of
REAL st x
in (
dom (
arccot
`| Z)) holds ((
arccot
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (
arccot
`| Z));
then
A8: x
in Z by
A6,
FDIFF_1:def 7;
then ((
arccot
`| Z)
. x)
= (
- (1
/ (1
+ (x
^2 )))) by
A2,
SIN_COS9: 82
.= (f
. x) by
A3,
A8;
hence thesis;
end;
(
dom (
arccot
`| Z))
= (
dom f) by
A4,
A6,
FDIFF_1:def 7;
then
A9: (
arccot
`| Z)
= f by
A7,
PARTFUN1: 5;
f
is_integrable_on A & (f
| A) is
bounded by
A1,
A4,
A5,
INTEGRA5: 10,
INTEGRA5: 11;
hence thesis by
A1,
A2,
A9,
INTEGRA5: 13,
SIN_COS9: 82;
end;
theorem ::
INTEGR11:48
A
c= Z & Z
c=
].(
- 1), 1.[ & (for x st x
in Z holds (f
. x)
= (
- (r
/ (1
+ (x
^2 ))))) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((r
(#)
arccot )
. (
upper_bound A))
- ((r
(#)
arccot )
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: Z
c=
].(
- 1), 1.[ and
A3: for x st x
in Z holds (f
. x)
= (
- (r
/ (1
+ (x
^2 )))) and
A4: Z
= (
dom f) and
A5: (f
| A) is
continuous;
A6: (r
(#)
arccot )
is_differentiable_on Z by
A2,
SIN_COS9: 84;
A7: for x be
Element of
REAL st x
in (
dom ((r
(#)
arccot )
`| Z)) holds (((r
(#)
arccot )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((r
(#)
arccot )
`| Z));
then
A8: x
in Z by
A6,
FDIFF_1:def 7;
then (((r
(#)
arccot )
`| Z)
. x)
= (
- (r
/ (1
+ (x
^2 )))) by
A2,
SIN_COS9: 84
.= (f
. x) by
A3,
A8;
hence thesis;
end;
(
dom ((r
(#)
arccot )
`| Z))
= (
dom f) by
A4,
A6,
FDIFF_1:def 7;
then
A9: ((r
(#)
arccot )
`| Z)
= f by
A7,
PARTFUN1: 5;
f
is_integrable_on A & (f
| A) is
bounded by
A1,
A4,
A5,
INTEGRA5: 10,
INTEGRA5: 11;
hence thesis by
A1,
A2,
A9,
INTEGRA5: 13,
SIN_COS9: 84;
end;
theorem ::
INTEGR11:49
Th49: (Z
c= (
dom (((
id Z)
+
cot )
-
cosec )) & for x st x
in Z holds (1
+ (
cos
. x))
<>
0 & (1
- (
cos
. x))
<>
0 ) implies (((
id Z)
+
cot )
-
cosec )
is_differentiable_on Z & for x st x
in Z holds (((((
id Z)
+
cot )
-
cosec )
`| Z)
. x)
= ((
cos
. x)
/ (1
+ (
cos
. x)))
proof
assume that
A1: Z
c= (
dom (((
id Z)
+
cot )
-
cosec )) and
A2: for x st x
in Z holds (1
+ (
cos
. x))
<>
0 & (1
- (
cos
. x))
<>
0 ;
A3: Z
c= ((
dom ((
id Z)
+
cot ))
/\ (
dom
cosec )) by
A1,
VALUED_1: 12;
then
A4: Z
c= (
dom ((
id Z)
+
cot )) by
XBOOLE_1: 18;
then Z
c= ((
dom (
id Z))
/\ (
dom
cot )) by
VALUED_1:def 1;
then
A5: Z
c= (
dom
cot ) by
XBOOLE_1: 18;
A6: for x st x
in Z holds ((
id Z)
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 18;
A7: Z
c= (
dom (
id Z));
then
A8: (
id Z)
is_differentiable_on Z by
A6,
FDIFF_1: 23;
for x st x
in Z holds
cot
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
sin
. x)
<>
0 by
A5,
FDIFF_8: 2;
hence thesis by
FDIFF_7: 47;
end;
then
A9:
cot
is_differentiable_on Z by
A5,
FDIFF_1: 9;
then
A10: ((
id Z)
+
cot )
is_differentiable_on Z by
A4,
A8,
FDIFF_1: 18;
A11: Z
c= (
dom
cosec ) by
A3,
XBOOLE_1: 18;
then
A12:
cosec
is_differentiable_on Z by
FDIFF_9: 5;
A13: for x st x
in Z holds ((((
id Z)
+
cot )
`| Z)
. x)
= (
- (((
cos
. x)
^2 )
/ ((
sin
. x)
^2 )))
proof
let x;
assume
A14: x
in Z;
then
A15: (
sin
. x)
<>
0 by
A5,
FDIFF_8: 2;
then
A16: ((
sin
. x)
^2 )
>
0 by
SQUARE_1: 12;
((((
id Z)
+
cot )
`| Z)
. x)
= ((
diff ((
id Z),x))
+ (
diff (
cot ,x))) by
A4,
A9,
A8,
A14,
FDIFF_1: 18
.= ((((
id Z)
`| Z)
. x)
+ (
diff (
cot ,x))) by
A8,
A14,
FDIFF_1:def 7
.= (1
+ (
diff (
cot ,x))) by
A7,
A6,
A14,
FDIFF_1: 23
.= (1
+ (
- (1
/ ((
sin
. x)
^2 )))) by
A15,
FDIFF_7: 47
.= (1
- (1
/ ((
sin
. x)
^2 )))
.= ((((
sin
. x)
^2 )
/ ((
sin
. x)
^2 ))
- (1
/ ((
sin
. x)
^2 ))) by
A16,
XCMPLX_1: 60
.= ((((
sin
. x)
^2 )
- 1)
/ ((
sin
. x)
^2 )) by
XCMPLX_1: 120
.= ((((
sin
. x)
^2 )
- (((
sin
. x)
^2 )
+ ((
cos
. x)
^2 )))
/ ((
sin
. x)
^2 )) by
SIN_COS: 28
.= ((
- ((
cos
. x)
^2 ))
/ ((
sin
. x)
^2 ))
.= (
- (((
cos
. x)
^2 )
/ ((
sin
. x)
^2 ))) by
XCMPLX_1: 187;
hence thesis;
end;
for x st x
in Z holds (((((
id Z)
+
cot )
-
cosec )
`| Z)
. x)
= ((
cos
. x)
/ (1
+ (
cos
. x)))
proof
let x;
assume
A17: x
in Z;
then
A18: (1
- (
cos
. x))
<>
0 by
A2;
(((((
id Z)
+
cot )
-
cosec )
`| Z)
. x)
= ((
diff (((
id Z)
+
cot ),x))
- (
diff (
cosec ,x))) by
A1,
A12,
A10,
A17,
FDIFF_1: 19
.= (((((
id Z)
+
cot )
`| Z)
. x)
- (
diff (
cosec ,x))) by
A10,
A17,
FDIFF_1:def 7
.= ((
- (((
cos
. x)
^2 )
/ ((
sin
. x)
^2 )))
- (
diff (
cosec ,x))) by
A13,
A17
.= ((
- (((
cos
. x)
^2 )
/ ((
sin
. x)
^2 )))
- ((
cosec
`| Z)
. x)) by
A12,
A17,
FDIFF_1:def 7
.= ((
- (((
cos
. x)
^2 )
/ ((
sin
. x)
^2 )))
- (
- ((
cos
. x)
/ ((
sin
. x)
^2 )))) by
A11,
A17,
FDIFF_9: 5
.= (((
cos
. x)
/ ((
sin
. x)
^2 ))
- (((
cos
. x)
^2 )
/ ((
sin
. x)
^2 )))
.= (((
cos
. x)
- ((
cos
. x)
* (
cos
. x)))
/ ((
sin
. x)
^2 )) by
XCMPLX_1: 120
.= (((
cos
. x)
* (1
- (
cos
. x)))
/ ((((
sin
. x)
^2 )
+ ((
cos
. x)
^2 ))
- ((
cos
. x)
^2 )))
.= (((
cos
. x)
* (1
- (
cos
. x)))
/ (1
- ((
cos
. x)
^2 ))) by
SIN_COS: 28
.= (((
cos
. x)
* (1
- (
cos
. x)))
/ ((1
- (
cos
. x))
* (1
+ (
cos
. x))))
.= ((((
cos
. x)
* (1
- (
cos
. x)))
/ (1
- (
cos
. x)))
/ (1
+ (
cos
. x))) by
XCMPLX_1: 78
.= (((
cos
. x)
* ((1
- (
cos
. x))
/ (1
- (
cos
. x))))
/ (1
+ (
cos
. x))) by
XCMPLX_1: 74
.= (((
cos
. x)
* 1)
/ (1
+ (
cos
. x))) by
A18,
XCMPLX_1: 60
.= ((
cos
. x)
/ (1
+ (
cos
. x)));
hence thesis;
end;
hence thesis by
A1,
A12,
A10,
FDIFF_1: 19;
end;
theorem ::
INTEGR11:50
A
c= Z & (for x st x
in Z holds (1
+ (
cos
. x))
<>
0 & (1
- (
cos
. x))
<>
0 & (f
. x)
= ((
cos
. x)
/ (1
+ (
cos
. x)))) & (
dom (((
id Z)
+
cot )
-
cosec ))
= Z & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((((
id Z)
+
cot )
-
cosec )
. (
upper_bound A))
- ((((
id Z)
+
cot )
-
cosec )
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: for x st x
in Z holds (1
+ (
cos
. x))
<>
0 & (1
- (
cos
. x))
<>
0 & (f
. x)
= ((
cos
. x)
/ (1
+ (
cos
. x))) and
A3: (
dom (((
id Z)
+
cot )
-
cosec ))
= Z and
A4: Z
= (
dom f) and
A5: (f
| A) is
continuous;
A6: f
is_integrable_on A by
A1,
A4,
A5,
INTEGRA5: 11;
A7: for x st x
in Z holds (1
+ (
cos
. x))
<>
0 & (1
- (
cos
. x))
<>
0 by
A2;
then
A8: (((
id Z)
+
cot )
-
cosec )
is_differentiable_on Z by
A3,
Th49;
A9: for x be
Element of
REAL st x
in (
dom ((((
id Z)
+
cot )
-
cosec )
`| Z)) holds (((((
id Z)
+
cot )
-
cosec )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((((
id Z)
+
cot )
-
cosec )
`| Z));
then
A10: x
in Z by
A8,
FDIFF_1:def 7;
then (((((
id Z)
+
cot )
-
cosec )
`| Z)
. x)
= ((
cos
. x)
/ (1
+ (
cos
. x))) by
A3,
A7,
Th49
.= (f
. x) by
A2,
A10;
hence thesis;
end;
(
dom ((((
id Z)
+
cot )
-
cosec )
`| Z))
= (
dom f) by
A4,
A8,
FDIFF_1:def 7;
then ((((
id Z)
+
cot )
-
cosec )
`| Z)
= f by
A9,
PARTFUN1: 5;
hence thesis by
A1,
A4,
A5,
A6,
A8,
INTEGRA5: 10,
INTEGRA5: 13;
end;
theorem ::
INTEGR11:51
Th51: (Z
c= (
dom (((
id Z)
+
cot )
+
cosec )) & for x st x
in Z holds (1
+ (
cos
. x))
<>
0 & (1
- (
cos
. x))
<>
0 ) implies (((
id Z)
+
cot )
+
cosec )
is_differentiable_on Z & for x st x
in Z holds (((((
id Z)
+
cot )
+
cosec )
`| Z)
. x)
= ((
cos
. x)
/ ((
cos
. x)
- 1))
proof
assume that
A1: Z
c= (
dom (((
id Z)
+
cot )
+
cosec )) and
A2: for x st x
in Z holds (1
+ (
cos
. x))
<>
0 & (1
- (
cos
. x))
<>
0 ;
A3: Z
c= ((
dom ((
id Z)
+
cot ))
/\ (
dom
cosec )) by
A1,
VALUED_1:def 1;
then
A4: Z
c= (
dom ((
id Z)
+
cot )) by
XBOOLE_1: 18;
then Z
c= ((
dom (
id Z))
/\ (
dom
cot )) by
VALUED_1:def 1;
then
A5: Z
c= (
dom
cot ) by
XBOOLE_1: 18;
A6: for x st x
in Z holds ((
id Z)
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 18;
A7: Z
c= (
dom (
id Z));
then
A8: (
id Z)
is_differentiable_on Z by
A6,
FDIFF_1: 23;
for x st x
in Z holds
cot
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
sin
. x)
<>
0 by
A5,
FDIFF_8: 2;
hence thesis by
FDIFF_7: 47;
end;
then
A9:
cot
is_differentiable_on Z by
A5,
FDIFF_1: 9;
then
A10: ((
id Z)
+
cot )
is_differentiable_on Z by
A4,
A8,
FDIFF_1: 18;
A11: Z
c= (
dom
cosec ) by
A3,
XBOOLE_1: 18;
then
A12:
cosec
is_differentiable_on Z by
FDIFF_9: 5;
A13: for x st x
in Z holds ((((
id Z)
+
cot )
`| Z)
. x)
= (
- (((
cos
. x)
^2 )
/ ((
sin
. x)
^2 )))
proof
let x;
assume
A14: x
in Z;
then
A15: (
sin
. x)
<>
0 by
A5,
FDIFF_8: 2;
then
A16: ((
sin
. x)
^2 )
>
0 by
SQUARE_1: 12;
((((
id Z)
+
cot )
`| Z)
. x)
= ((
diff ((
id Z),x))
+ (
diff (
cot ,x))) by
A4,
A9,
A8,
A14,
FDIFF_1: 18
.= ((((
id Z)
`| Z)
. x)
+ (
diff (
cot ,x))) by
A8,
A14,
FDIFF_1:def 7
.= (1
+ (
diff (
cot ,x))) by
A7,
A6,
A14,
FDIFF_1: 23
.= (1
+ (
- (1
/ ((
sin
. x)
^2 )))) by
A15,
FDIFF_7: 47
.= (1
- (1
/ ((
sin
. x)
^2 )))
.= ((((
sin
. x)
^2 )
/ ((
sin
. x)
^2 ))
- (1
/ ((
sin
. x)
^2 ))) by
A16,
XCMPLX_1: 60
.= ((((
sin
. x)
^2 )
- 1)
/ ((
sin
. x)
^2 )) by
XCMPLX_1: 120
.= ((((
sin
. x)
^2 )
- (((
sin
. x)
^2 )
+ ((
cos
. x)
^2 )))
/ ((
sin
. x)
^2 )) by
SIN_COS: 28
.= ((
- ((
cos
. x)
^2 ))
/ ((
sin
. x)
^2 ))
.= (
- (((
cos
. x)
^2 )
/ ((
sin
. x)
^2 ))) by
XCMPLX_1: 187;
hence thesis;
end;
for x st x
in Z holds (((((
id Z)
+
cot )
+
cosec )
`| Z)
. x)
= ((
cos
. x)
/ ((
cos
. x)
- 1))
proof
let x;
assume
A17: x
in Z;
then
A18: (1
+ (
cos
. x))
<>
0 by
A2;
(((((
id Z)
+
cot )
+
cosec )
`| Z)
. x)
= ((
diff (((
id Z)
+
cot ),x))
+ (
diff (
cosec ,x))) by
A1,
A12,
A10,
A17,
FDIFF_1: 18
.= (((((
id Z)
+
cot )
`| Z)
. x)
+ (
diff (
cosec ,x))) by
A10,
A17,
FDIFF_1:def 7
.= ((
- (((
cos
. x)
^2 )
/ ((
sin
. x)
^2 )))
+ (
diff (
cosec ,x))) by
A13,
A17
.= ((
- (((
cos
. x)
^2 )
/ ((
sin
. x)
^2 )))
+ ((
cosec
`| Z)
. x)) by
A12,
A17,
FDIFF_1:def 7
.= ((
- (((
cos
. x)
^2 )
/ ((
sin
. x)
^2 )))
+ (
- ((
cos
. x)
/ ((
sin
. x)
^2 )))) by
A11,
A17,
FDIFF_9: 5
.= (
- ((((
cos
. x)
^2 )
/ ((
sin
. x)
^2 ))
+ ((
cos
. x)
/ ((
sin
. x)
^2 ))))
.= (
- ((((
cos
. x)
* (
cos
. x))
+ (
cos
. x))
/ ((
sin
. x)
^2 ))) by
XCMPLX_1: 62
.= (
- (((
cos
. x)
* ((
cos
. x)
+ 1))
/ ((((
sin
. x)
^2 )
+ ((
cos
. x)
^2 ))
- ((
cos
. x)
^2 ))))
.= (
- (((
cos
. x)
* ((
cos
. x)
+ 1))
/ (1
- ((
cos
. x)
^2 )))) by
SIN_COS: 28
.= (
- (((
cos
. x)
* ((
cos
. x)
+ 1))
/ ((1
+ (
cos
. x))
* (1
- (
cos
. x)))))
.= (
- ((((
cos
. x)
* ((
cos
. x)
+ 1))
/ (1
+ (
cos
. x)))
/ (1
- (
cos
. x)))) by
XCMPLX_1: 78
.= (
- (((
cos
. x)
* ((1
+ (
cos
. x))
/ (1
+ (
cos
. x))))
/ (1
- (
cos
. x)))) by
XCMPLX_1: 74
.= (
- (((
cos
. x)
* 1)
/ (1
- (
cos
. x)))) by
A18,
XCMPLX_1: 60
.= ((
cos
. x)
/ (
- (1
- (
cos
. x)))) by
XCMPLX_1: 188
.= ((
cos
. x)
/ ((
cos
. x)
- 1));
hence thesis;
end;
hence thesis by
A1,
A12,
A10,
FDIFF_1: 18;
end;
theorem ::
INTEGR11:52
A
c= Z & (for x st x
in Z holds (1
+ (
cos
. x))
<>
0 & (1
- (
cos
. x))
<>
0 & (f
. x)
= ((
cos
. x)
/ ((
cos
. x)
- 1))) & (
dom (((
id Z)
+
cot )
+
cosec ))
= Z & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((((
id Z)
+
cot )
+
cosec )
. (
upper_bound A))
- ((((
id Z)
+
cot )
+
cosec )
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: for x st x
in Z holds (1
+ (
cos
. x))
<>
0 & (1
- (
cos
. x))
<>
0 & (f
. x)
= ((
cos
. x)
/ ((
cos
. x)
- 1)) and
A3: (
dom (((
id Z)
+
cot )
+
cosec ))
= Z and
A4: Z
= (
dom f) and
A5: (f
| A) is
continuous;
A6: f
is_integrable_on A by
A1,
A4,
A5,
INTEGRA5: 11;
A7: for x st x
in Z holds (1
+ (
cos
. x))
<>
0 & (1
- (
cos
. x))
<>
0 by
A2;
then
A8: (((
id Z)
+
cot )
+
cosec )
is_differentiable_on Z by
A3,
Th51;
A9: for x be
Element of
REAL st x
in (
dom ((((
id Z)
+
cot )
+
cosec )
`| Z)) holds (((((
id Z)
+
cot )
+
cosec )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((((
id Z)
+
cot )
+
cosec )
`| Z));
then
A10: x
in Z by
A8,
FDIFF_1:def 7;
then (((((
id Z)
+
cot )
+
cosec )
`| Z)
. x)
= ((
cos
. x)
/ ((
cos
. x)
- 1)) by
A3,
A7,
Th51
.= (f
. x) by
A2,
A10;
hence thesis;
end;
(
dom ((((
id Z)
+
cot )
+
cosec )
`| Z))
= (
dom f) by
A4,
A8,
FDIFF_1:def 7;
then ((((
id Z)
+
cot )
+
cosec )
`| Z)
= f by
A9,
PARTFUN1: 5;
hence thesis by
A1,
A4,
A5,
A6,
A8,
INTEGRA5: 10,
INTEGRA5: 13;
end;
theorem ::
INTEGR11:53
Th53: (Z
c= (
dom (((
id Z)
-
tan )
+
sec )) & for x st x
in Z holds (1
+ (
sin
. x))
<>
0 & (1
- (
sin
. x))
<>
0 ) implies (((
id Z)
-
tan )
+
sec )
is_differentiable_on Z & for x st x
in Z holds (((((
id Z)
-
tan )
+
sec )
`| Z)
. x)
= ((
sin
. x)
/ ((
sin
. x)
+ 1))
proof
assume that
A1: Z
c= (
dom (((
id Z)
-
tan )
+
sec )) and
A2: for x st x
in Z holds (1
+ (
sin
. x))
<>
0 & (1
- (
sin
. x))
<>
0 ;
A3: Z
c= ((
dom ((
id Z)
-
tan ))
/\ (
dom
sec )) by
A1,
VALUED_1:def 1;
then
A4: Z
c= (
dom ((
id Z)
-
tan )) by
XBOOLE_1: 18;
then
A5: Z
c= ((
dom (
id Z))
/\ (
dom
tan )) by
VALUED_1: 12;
A6: Z
c= (
dom (
id Z));
A7: for x st x
in Z holds ((
id Z)
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 18;
then
A8: (
id Z)
is_differentiable_on Z by
A6,
FDIFF_1: 23;
A9: Z
c= (
dom
tan ) by
A5,
XBOOLE_1: 18;
for x st x
in Z holds
tan
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
cos
. x)
<>
0 by
A9,
FDIFF_8: 1;
hence thesis by
FDIFF_7: 46;
end;
then
A10:
tan
is_differentiable_on Z by
A9,
FDIFF_1: 9;
then
A11: ((
id Z)
-
tan )
is_differentiable_on Z by
A4,
A8,
FDIFF_1: 19;
A12: Z
c= (
dom
sec ) by
A3,
XBOOLE_1: 18;
then
A13:
sec
is_differentiable_on Z by
FDIFF_9: 4;
A14: for x st x
in Z holds ((((
id Z)
-
tan )
`| Z)
. x)
= (
- (((
sin
. x)
^2 )
/ ((
cos
. x)
^2 )))
proof
let x;
assume
A15: x
in Z;
then
A16: (
cos
. x)
<>
0 by
A9,
FDIFF_8: 1;
then
A17: ((
cos
. x)
^2 )
>
0 by
SQUARE_1: 12;
((((
id Z)
-
tan )
`| Z)
. x)
= ((
diff ((
id Z),x))
- (
diff (
tan ,x))) by
A4,
A10,
A8,
A15,
FDIFF_1: 19
.= ((((
id Z)
`| Z)
. x)
- (
diff (
tan ,x))) by
A8,
A15,
FDIFF_1:def 7
.= (1
- (
diff (
tan ,x))) by
A6,
A7,
A15,
FDIFF_1: 23
.= (1
- (1
/ ((
cos
. x)
^2 ))) by
A16,
FDIFF_7: 46
.= (1
- ((((
cos
. x)
^2 )
+ ((
sin
. x)
^2 ))
/ ((
cos
. x)
^2 ))) by
SIN_COS: 28
.= (1
- ((((
cos
. x)
^2 )
/ ((
cos
. x)
^2 ))
+ (((
sin
. x)
^2 )
/ ((
cos
. x)
^2 )))) by
XCMPLX_1: 62
.= (1
- (1
+ (((
sin
. x)
^2 )
/ ((
cos
. x)
^2 )))) by
A17,
XCMPLX_1: 60
.= (
- (((
sin
. x)
^2 )
/ ((
cos
. x)
^2 )));
hence thesis;
end;
for x st x
in Z holds (((((
id Z)
-
tan )
+
sec )
`| Z)
. x)
= ((
sin
. x)
/ ((
sin
. x)
+ 1))
proof
let x;
assume
A18: x
in Z;
then
A19: (1
- (
sin
. x))
<>
0 by
A2;
(((((
id Z)
-
tan )
+
sec )
`| Z)
. x)
= ((
diff (((
id Z)
-
tan ),x))
+ (
diff (
sec ,x))) by
A1,
A13,
A11,
A18,
FDIFF_1: 18
.= (((((
id Z)
-
tan )
`| Z)
. x)
+ (
diff (
sec ,x))) by
A11,
A18,
FDIFF_1:def 7
.= ((
- (((
sin
. x)
^2 )
/ ((
cos
. x)
^2 )))
+ (
diff (
sec ,x))) by
A14,
A18
.= ((
- (((
sin
. x)
^2 )
/ ((
cos
. x)
^2 )))
+ ((
sec
`| Z)
. x)) by
A13,
A18,
FDIFF_1:def 7
.= ((
- (((
sin
. x)
^2 )
/ ((
cos
. x)
^2 )))
+ ((
sin
. x)
/ ((
cos
. x)
^2 ))) by
A12,
A18,
FDIFF_9: 4
.= (((
sin
. x)
/ ((
cos
. x)
^2 ))
- (((
sin
. x)
^2 )
/ ((
cos
. x)
^2 )))
.= (((
sin
. x)
- ((
sin
. x)
* (
sin
. x)))
/ ((
cos
. x)
^2 )) by
XCMPLX_1: 120
.= (((
sin
. x)
* (1
- (
sin
. x)))
/ ((((
cos
. x)
^2 )
+ ((
sin
. x)
^2 ))
- ((
sin
. x)
^2 )))
.= (((
sin
. x)
* (1
- (
sin
. x)))
/ (1
- ((
sin
. x)
^2 ))) by
SIN_COS: 28
.= (((
sin
. x)
* (1
- (
sin
. x)))
/ ((1
- (
sin
. x))
* (1
+ (
sin
. x))))
.= ((((
sin
. x)
* (1
- (
sin
. x)))
/ (1
- (
sin
. x)))
/ (1
+ (
sin
. x))) by
XCMPLX_1: 78
.= (((
sin
. x)
* ((1
- (
sin
. x))
/ (1
- (
sin
. x))))
/ (1
+ (
sin
. x))) by
XCMPLX_1: 74
.= (((
sin
. x)
* 1)
/ (1
+ (
sin
. x))) by
A19,
XCMPLX_1: 60
.= ((
sin
. x)
/ (1
+ (
sin
. x)));
hence thesis;
end;
hence thesis by
A1,
A13,
A11,
FDIFF_1: 18;
end;
theorem ::
INTEGR11:54
A
c= Z & (for x st x
in Z holds (1
+ (
sin
. x))
<>
0 & (1
- (
sin
. x))
<>
0 & (f
. x)
= ((
sin
. x)
/ (1
+ (
sin
. x)))) & Z
c= (
dom (((
id Z)
-
tan )
+
sec )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((((
id Z)
-
tan )
+
sec )
. (
upper_bound A))
- ((((
id Z)
-
tan )
+
sec )
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: for x st x
in Z holds (1
+ (
sin
. x))
<>
0 & (1
- (
sin
. x))
<>
0 & (f
. x)
= ((
sin
. x)
/ (1
+ (
sin
. x))) and
A3: Z
c= (
dom (((
id Z)
-
tan )
+
sec )) and
A4: Z
= (
dom f) and
A5: (f
| A) is
continuous;
A6: f
is_integrable_on A by
A1,
A4,
A5,
INTEGRA5: 11;
A7: for x st x
in Z holds (1
+ (
sin
. x))
<>
0 & (1
- (
sin
. x))
<>
0 by
A2;
then
A8: (((
id Z)
-
tan )
+
sec )
is_differentiable_on Z by
A3,
Th53;
A9: for x be
Element of
REAL st x
in (
dom ((((
id Z)
-
tan )
+
sec )
`| Z)) holds (((((
id Z)
-
tan )
+
sec )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((((
id Z)
-
tan )
+
sec )
`| Z));
then
A10: x
in Z by
A8,
FDIFF_1:def 7;
then (((((
id Z)
-
tan )
+
sec )
`| Z)
. x)
= ((
sin
. x)
/ (1
+ (
sin
. x))) by
A3,
A7,
Th53
.= (f
. x) by
A2,
A10;
hence thesis;
end;
(
dom ((((
id Z)
-
tan )
+
sec )
`| Z))
= (
dom f) by
A4,
A8,
FDIFF_1:def 7;
then ((((
id Z)
-
tan )
+
sec )
`| Z)
= f by
A9,
PARTFUN1: 5;
hence thesis by
A1,
A4,
A5,
A6,
A8,
INTEGRA5: 10,
INTEGRA5: 13;
end;
theorem ::
INTEGR11:55
Th55: (Z
c= (
dom (((
id Z)
-
tan )
-
sec )) & for x st x
in Z holds (1
+ (
sin
. x))
<>
0 & (1
- (
sin
. x))
<>
0 ) implies (((
id Z)
-
tan )
-
sec )
is_differentiable_on Z & for x st x
in Z holds (((((
id Z)
-
tan )
-
sec )
`| Z)
. x)
= ((
sin
. x)
/ ((
sin
. x)
- 1))
proof
assume that
A1: Z
c= (
dom (((
id Z)
-
tan )
-
sec )) and
A2: for x st x
in Z holds (1
+ (
sin
. x))
<>
0 & (1
- (
sin
. x))
<>
0 ;
A3: Z
c= ((
dom ((
id Z)
-
tan ))
/\ (
dom
sec )) by
A1,
VALUED_1: 12;
then
A4: Z
c= (
dom ((
id Z)
-
tan )) by
XBOOLE_1: 18;
then Z
c= ((
dom (
id Z))
/\ (
dom
tan )) by
VALUED_1: 12;
then
A5: Z
c= (
dom
tan ) by
XBOOLE_1: 18;
A6: for x st x
in Z holds ((
id Z)
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 18;
A7: Z
c= (
dom (
id Z));
then
A8: (
id Z)
is_differentiable_on Z by
A6,
FDIFF_1: 23;
for x st x
in Z holds
tan
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
cos
. x)
<>
0 by
A5,
FDIFF_8: 1;
hence thesis by
FDIFF_7: 46;
end;
then
A9:
tan
is_differentiable_on Z by
A5,
FDIFF_1: 9;
then
A10: ((
id Z)
-
tan )
is_differentiable_on Z by
A4,
A8,
FDIFF_1: 19;
A11: Z
c= (
dom
sec ) by
A3,
XBOOLE_1: 18;
then
A12:
sec
is_differentiable_on Z by
FDIFF_9: 4;
A13: for x st x
in Z holds ((((
id Z)
-
tan )
`| Z)
. x)
= (
- (((
sin
. x)
^2 )
/ ((
cos
. x)
^2 )))
proof
let x;
assume
A14: x
in Z;
then
A15: (
cos
. x)
<>
0 by
A5,
FDIFF_8: 1;
then
A16: ((
cos
. x)
^2 )
>
0 by
SQUARE_1: 12;
((((
id Z)
-
tan )
`| Z)
. x)
= ((
diff ((
id Z),x))
- (
diff (
tan ,x))) by
A4,
A9,
A8,
A14,
FDIFF_1: 19
.= ((((
id Z)
`| Z)
. x)
- (
diff (
tan ,x))) by
A8,
A14,
FDIFF_1:def 7
.= (1
- (
diff (
tan ,x))) by
A7,
A6,
A14,
FDIFF_1: 23
.= (1
- (1
/ ((
cos
. x)
^2 ))) by
A15,
FDIFF_7: 46
.= (1
- ((((
cos
. x)
^2 )
+ ((
sin
. x)
^2 ))
/ ((
cos
. x)
^2 ))) by
SIN_COS: 28
.= (1
- ((((
cos
. x)
^2 )
/ ((
cos
. x)
^2 ))
+ (((
sin
. x)
^2 )
/ ((
cos
. x)
^2 )))) by
XCMPLX_1: 62
.= (1
- (1
+ (((
sin
. x)
^2 )
/ ((
cos
. x)
^2 )))) by
A16,
XCMPLX_1: 60
.= (
- (((
sin
. x)
^2 )
/ ((
cos
. x)
^2 )));
hence thesis;
end;
for x st x
in Z holds (((((
id Z)
-
tan )
-
sec )
`| Z)
. x)
= ((
sin
. x)
/ ((
sin
. x)
- 1))
proof
let x;
assume
A17: x
in Z;
then
A18: (1
+ (
sin
. x))
<>
0 by
A2;
(((((
id Z)
-
tan )
-
sec )
`| Z)
. x)
= ((
diff (((
id Z)
-
tan ),x))
- (
diff (
sec ,x))) by
A1,
A12,
A10,
A17,
FDIFF_1: 19
.= (((((
id Z)
-
tan )
`| Z)
. x)
- (
diff (
sec ,x))) by
A10,
A17,
FDIFF_1:def 7
.= ((
- (((
sin
. x)
^2 )
/ ((
cos
. x)
^2 )))
- (
diff (
sec ,x))) by
A13,
A17
.= ((
- (((
sin
. x)
^2 )
/ ((
cos
. x)
^2 )))
- ((
sec
`| Z)
. x)) by
A12,
A17,
FDIFF_1:def 7
.= ((
- (((
sin
. x)
^2 )
/ ((
cos
. x)
^2 )))
- ((
sin
. x)
/ ((
cos
. x)
^2 ))) by
A11,
A17,
FDIFF_9: 4
.= (
- (((
sin
. x)
/ ((
cos
. x)
^2 ))
+ (((
sin
. x)
^2 )
/ ((
cos
. x)
^2 ))))
.= (
- (((
sin
. x)
+ ((
sin
. x)
^2 ))
/ ((
cos
. x)
^2 ))) by
XCMPLX_1: 62
.= (
- (((
sin
. x)
* (1
+ (
sin
. x)))
/ ((((
cos
. x)
^2 )
+ ((
sin
. x)
^2 ))
- ((
sin
. x)
^2 ))))
.= (
- (((
sin
. x)
* (1
+ (
sin
. x)))
/ (1
- ((
sin
. x)
^2 )))) by
SIN_COS: 28
.= (
- (((
sin
. x)
* (1
+ (
sin
. x)))
/ ((1
+ (
sin
. x))
* (1
- (
sin
. x)))))
.= (
- ((((
sin
. x)
* (1
+ (
sin
. x)))
/ (1
+ (
sin
. x)))
/ (1
- (
sin
. x)))) by
XCMPLX_1: 78
.= (
- (((
sin
. x)
* ((1
+ (
sin
. x))
/ (1
+ (
sin
. x))))
/ (1
- (
sin
. x)))) by
XCMPLX_1: 74
.= (
- (((
sin
. x)
* 1)
/ (1
- (
sin
. x)))) by
A18,
XCMPLX_1: 60
.= ((
sin
. x)
/ (
- (1
- (
sin
. x)))) by
XCMPLX_1: 188
.= ((
sin
. x)
/ ((
sin
. x)
- 1));
hence thesis;
end;
hence thesis by
A1,
A12,
A10,
FDIFF_1: 19;
end;
theorem ::
INTEGR11:56
A
c= Z & (for x st x
in Z holds (1
+ (
sin
. x))
<>
0 & (1
- (
sin
. x))
<>
0 & (f
. x)
= ((
sin
. x)
/ ((
sin
. x)
- 1))) & Z
c= (
dom (((
id Z)
-
tan )
-
sec )) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((((
id Z)
-
tan )
-
sec )
. (
upper_bound A))
- ((((
id Z)
-
tan )
-
sec )
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: for x st x
in Z holds (1
+ (
sin
. x))
<>
0 & (1
- (
sin
. x))
<>
0 & (f
. x)
= ((
sin
. x)
/ ((
sin
. x)
- 1)) and
A3: Z
c= (
dom (((
id Z)
-
tan )
-
sec )) and
A4: Z
= (
dom f) and
A5: (f
| A) is
continuous;
A6: f
is_integrable_on A by
A1,
A4,
A5,
INTEGRA5: 11;
A7: for x st x
in Z holds (1
+ (
sin
. x))
<>
0 & (1
- (
sin
. x))
<>
0 by
A2;
then
A8: (((
id Z)
-
tan )
-
sec )
is_differentiable_on Z by
A3,
Th55;
A9: for x be
Element of
REAL st x
in (
dom ((((
id Z)
-
tan )
-
sec )
`| Z)) holds (((((
id Z)
-
tan )
-
sec )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((((
id Z)
-
tan )
-
sec )
`| Z));
then
A10: x
in Z by
A8,
FDIFF_1:def 7;
then (((((
id Z)
-
tan )
-
sec )
`| Z)
. x)
= ((
sin
. x)
/ ((
sin
. x)
- 1)) by
A3,
A7,
Th55
.= (f
. x) by
A2,
A10;
hence thesis;
end;
(
dom ((((
id Z)
-
tan )
-
sec )
`| Z))
= (
dom f) by
A4,
A8,
FDIFF_1:def 7;
then ((((
id Z)
-
tan )
-
sec )
`| Z)
= f by
A9,
PARTFUN1: 5;
hence thesis by
A1,
A4,
A5,
A6,
A8,
INTEGRA5: 10,
INTEGRA5: 13;
end;
theorem ::
INTEGR11:57
Th57: Z
c= (
dom (
tan
- (
id Z))) implies (
tan
- (
id Z))
is_differentiable_on Z & for x st x
in Z holds (((
tan
- (
id Z))
`| Z)
. x)
= ((
tan
. x)
^2 )
proof
A1: for x st x
in Z holds ((
id Z)
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 18;
assume
A2: Z
c= (
dom (
tan
- (
id Z)));
then Z
c= ((
dom
tan )
/\ (
dom (
id Z))) by
VALUED_1: 12;
then
A3: Z
c= (
dom
tan ) by
XBOOLE_1: 18;
A4: Z
c= (
dom (
id Z));
then
A5: (
id Z)
is_differentiable_on Z by
A1,
FDIFF_1: 23;
for x st x
in Z holds
tan
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
cos
. x)
<>
0 by
A3,
FDIFF_8: 1;
hence thesis by
FDIFF_7: 46;
end;
then
A6:
tan
is_differentiable_on Z by
A3,
FDIFF_1: 9;
for x st x
in Z holds (((
tan
- (
id Z))
`| Z)
. x)
= ((
tan
. x)
^2 )
proof
let x;
assume
A7: x
in Z;
then
A8: (
cos
. x)
<>
0 by
A3,
FDIFF_8: 1;
then
A9: ((
cos
. x)
^2 )
>
0 by
SQUARE_1: 12;
(((
tan
- (
id Z))
`| Z)
. x)
= ((
diff (
tan ,x))
- (
diff ((
id Z),x))) by
A2,
A5,
A6,
A7,
FDIFF_1: 19
.= ((1
/ ((
cos
. x)
^2 ))
- (
diff ((
id Z),x))) by
A8,
FDIFF_7: 46
.= ((1
/ ((
cos
. x)
^2 ))
- (((
id Z)
`| Z)
. x)) by
A5,
A7,
FDIFF_1:def 7
.= ((1
/ ((
cos
. x)
^2 ))
- 1) by
A4,
A1,
A7,
FDIFF_1: 23
.= ((1
/ ((
cos
. x)
^2 ))
- (((
cos
. x)
^2 )
/ ((
cos
. x)
^2 ))) by
A9,
XCMPLX_1: 60
.= ((1
- ((
cos
. x)
^2 ))
/ ((
cos
. x)
^2 )) by
XCMPLX_1: 120
.= (((((
sin
. x)
^2 )
+ ((
cos
. x)
^2 ))
- ((
cos
. x)
^2 ))
/ ((
cos
. x)
^2 )) by
SIN_COS: 28
.= (((
sin x)
/ (
cos x))
* ((
sin
. x)
/ (
cos
. x))) by
XCMPLX_1: 76
.= ((
tan
. x)
* (
tan x)) by
A3,
A7,
FDIFF_8: 1,
SIN_COS9: 15
.= ((
tan
. x)
^2 ) by
A3,
A7,
FDIFF_8: 1,
SIN_COS9: 15;
hence thesis;
end;
hence thesis by
A2,
A5,
A6,
FDIFF_1: 19;
end;
theorem ::
INTEGR11:58
A
c= Z & (for x st x
in Z holds (
cos
. x)
>
0 & (f
. x)
= ((
tan
. x)
^2 )) & Z
c= (
dom (
tan
- (
id Z))) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
tan
- (
id Z))
. (
upper_bound A))
- ((
tan
- (
id Z))
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: for x st x
in Z holds (
cos
. x)
>
0 & (f
. x)
= ((
tan
. x)
^2 ) and
A3: Z
c= (
dom (
tan
- (
id Z))) and
A4: Z
= (
dom f) and
A5: (f
| A) is
continuous;
A6: f
is_integrable_on A by
A1,
A4,
A5,
INTEGRA5: 11;
A7: (
tan
- (
id Z))
is_differentiable_on Z by
A3,
Th57;
A8: for x be
Element of
REAL st x
in (
dom ((
tan
- (
id Z))
`| Z)) holds (((
tan
- (
id Z))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
tan
- (
id Z))
`| Z));
then
A9: x
in Z by
A7,
FDIFF_1:def 7;
then (((
tan
- (
id Z))
`| Z)
. x)
= ((
tan
. x)
^2 ) by
A3,
Th57
.= (f
. x) by
A2,
A9;
hence thesis;
end;
(
dom ((
tan
- (
id Z))
`| Z))
= (
dom f) by
A4,
A7,
FDIFF_1:def 7;
then ((
tan
- (
id Z))
`| Z)
= f by
A8,
PARTFUN1: 5;
hence thesis by
A1,
A4,
A5,
A6,
A7,
INTEGRA5: 10,
INTEGRA5: 13;
end;
theorem ::
INTEGR11:59
Th59: Z
c= (
dom ((
-
cot )
- (
id Z))) implies ((
-
cot )
- (
id Z))
is_differentiable_on Z & for x st x
in Z holds ((((
-
cot )
- (
id Z))
`| Z)
. x)
= ((
cot
. x)
^2 )
proof
set f = (
-
cot );
A1: for x st x
in Z holds ((
id Z)
. x)
= ((1
* x)
+
0 ) by
FUNCT_1: 18;
assume
A2: Z
c= (
dom ((
-
cot )
- (
id Z)));
then Z
c= ((
dom (
-
cot ))
/\ (
dom (
id Z))) by
VALUED_1: 12;
then
A3: Z
c= (
dom (
-
cot )) by
XBOOLE_1: 18;
then
A4: Z
c= (
dom
cot ) by
VALUED_1: 8;
for x st x
in Z holds
cot
is_differentiable_in x
proof
let x;
assume x
in Z;
then (
sin
. x)
<>
0 by
A4,
FDIFF_8: 2;
hence thesis by
FDIFF_7: 47;
end;
then
A5:
cot
is_differentiable_on Z by
A4,
FDIFF_1: 9;
then
A6: ((
- 1)
(#)
cot )
is_differentiable_on Z by
A3,
FDIFF_1: 20;
A7: Z
c= (
dom (
id Z));
then
A8: (
id Z)
is_differentiable_on Z by
A1,
FDIFF_1: 23;
for x st x
in Z holds ((((
-
cot )
- (
id Z))
`| Z)
. x)
= ((
cot
. x)
^2 )
proof
let x;
assume
A9: x
in Z;
then
A10: (
sin
. x)
<>
0 by
A4,
FDIFF_8: 2;
then
A11: ((
sin
. x)
^2 )
>
0 by
SQUARE_1: 12;
(((f
- (
id Z))
`| Z)
. x)
= ((
diff (f,x))
- (
diff ((
id Z),x))) by
A2,
A8,
A6,
A9,
FDIFF_1: 19
.= (((((
- 1)
(#)
cot )
`| Z)
. x)
- (
diff ((
id Z),x))) by
A6,
A9,
FDIFF_1:def 7
.= (((
- 1)
* (
diff (
cot ,x)))
- (
diff ((
id Z),x))) by
A3,
A5,
A9,
FDIFF_1: 20
.= (((
- 1)
* (
- (1
/ ((
sin
. x)
^2 ))))
- (
diff ((
id Z),x))) by
A10,
FDIFF_7: 47
.= ((1
/ ((
sin
. x)
^2 ))
- (((
id Z)
`| Z)
. x)) by
A8,
A9,
FDIFF_1:def 7
.= ((1
/ ((
sin
. x)
^2 ))
- 1) by
A7,
A1,
A9,
FDIFF_1: 23
.= ((1
/ ((
sin
. x)
^2 ))
- (((
sin
. x)
^2 )
/ ((
sin
. x)
^2 ))) by
A11,
XCMPLX_1: 60
.= ((1
- ((
sin
. x)
^2 ))
/ ((
sin
. x)
^2 )) by
XCMPLX_1: 120
.= (((((
cos
. x)
^2 )
+ ((
sin
. x)
^2 ))
- ((
sin
. x)
^2 ))
/ ((
sin
. x)
^2 )) by
SIN_COS: 28
.= (((
cos x)
/ (
sin x))
* ((
cos
. x)
/ (
sin
. x))) by
XCMPLX_1: 76
.= ((
cot
. x)
* (
cot x)) by
A4,
A9,
FDIFF_8: 2,
SIN_COS9: 16
.= ((
cot
. x)
^2 ) by
A4,
A9,
FDIFF_8: 2,
SIN_COS9: 16;
hence thesis;
end;
hence thesis by
A2,
A8,
A6,
FDIFF_1: 19;
end;
theorem ::
INTEGR11:60
A
c= Z & (for x st x
in Z holds (
sin
. x)
>
0 & (f
. x)
= ((
cot
. x)
^2 )) & Z
c= (
dom ((
-
cot )
- (
id Z))) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= ((((
-
cot )
- (
id Z))
. (
upper_bound A))
- (((
-
cot )
- (
id Z))
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: for x st x
in Z holds (
sin
. x)
>
0 & (f
. x)
= ((
cot
. x)
^2 ) and
A3: Z
c= (
dom ((
-
cot )
- (
id Z))) and
A4: Z
= (
dom f) and
A5: (f
| A) is
continuous;
A6: f
is_integrable_on A by
A1,
A4,
A5,
INTEGRA5: 11;
A7: ((
-
cot )
- (
id Z))
is_differentiable_on Z by
A3,
Th59;
A8: for x be
Element of
REAL st x
in (
dom (((
-
cot )
- (
id Z))
`| Z)) holds ((((
-
cot )
- (
id Z))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((
-
cot )
- (
id Z))
`| Z));
then
A9: x
in Z by
A7,
FDIFF_1:def 7;
then ((((
-
cot )
- (
id Z))
`| Z)
. x)
= ((
cot
. x)
^2 ) by
A3,
Th59
.= (f
. x) by
A2,
A9;
hence thesis;
end;
(
dom (((
-
cot )
- (
id Z))
`| Z))
= (
dom f) by
A4,
A7,
FDIFF_1:def 7;
then (((
-
cot )
- (
id Z))
`| Z)
= f by
A8,
PARTFUN1: 5;
hence thesis by
A1,
A4,
A5,
A6,
A7,
INTEGRA5: 10,
INTEGRA5: 13;
end;
theorem ::
INTEGR11:61
A
c= Z & (for x st x
in Z holds (f
. x)
= (1
/ ((
cos
. x)
^2 )) & (
cos
. x)
<>
0 ) & (
dom
tan )
= Z & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= ((
tan
. (
upper_bound A))
- (
tan
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: for x st x
in Z holds (f
. x)
= (1
/ ((
cos
. x)
^2 )) & (
cos
. x)
<>
0 and
A3: (
dom
tan )
= Z and
A4: Z
= (
dom f) and
A5: (f
| A) is
continuous;
A6: f
is_integrable_on A by
A1,
A4,
A5,
INTEGRA5: 11;
A7:
tan
is_differentiable_on Z by
A3,
INTEGRA8: 33;
A8: for x be
Element of
REAL st x
in (
dom (
tan
`| Z)) holds ((
tan
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (
tan
`| Z));
then
A9: x
in Z by
A7,
FDIFF_1:def 7;
then ((
tan
`| Z)
. x)
= (1
/ ((
cos
. x)
^2 )) by
A3,
INTEGRA8: 33
.= (f
. x) by
A2,
A9;
hence thesis;
end;
(
dom (
tan
`| Z))
= (
dom f) by
A4,
A7,
FDIFF_1:def 7;
then (
tan
`| Z)
= f by
A8,
PARTFUN1: 5;
hence thesis by
A1,
A4,
A5,
A6,
A7,
INTEGRA5: 10,
INTEGRA5: 13;
end;
theorem ::
INTEGR11:62
A
c= Z & (for x st x
in Z holds (f
. x)
= (
- (1
/ ((
sin
. x)
^2 ))) & (
sin
. x)
<>
0 ) & (
dom
cot )
= Z & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= ((
cot
. (
upper_bound A))
- (
cot
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: for x st x
in Z holds (f
. x)
= (
- (1
/ ((
sin
. x)
^2 ))) & (
sin
. x)
<>
0 and
A3: (
dom
cot )
= Z and
A4: Z
= (
dom f) and
A5: (f
| A) is
continuous;
A6: f
is_integrable_on A by
A1,
A4,
A5,
INTEGRA5: 11;
A7:
cot
is_differentiable_on Z by
A3,
INTEGRA8: 34;
A8: for x be
Element of
REAL st x
in (
dom (
cot
`| Z)) holds ((
cot
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (
cot
`| Z));
then
A9: x
in Z by
A7,
FDIFF_1:def 7;
then ((
cot
`| Z)
. x)
= (
- (1
/ ((
sin
. x)
^2 ))) by
A3,
INTEGRA8: 34
.= (f
. x) by
A2,
A9;
hence thesis;
end;
(
dom (
cot
`| Z))
= (
dom f) by
A4,
A7,
FDIFF_1:def 7;
then (
cot
`| Z)
= f by
A8,
PARTFUN1: 5;
hence thesis by
A1,
A4,
A5,
A6,
A7,
INTEGRA5: 10,
INTEGRA5: 13;
end;
theorem ::
INTEGR11:63
A
c= Z & (for x st x
in Z holds (f
. x)
= (((
sin
. x)
- ((
cos
. x)
^2 ))
/ ((
cos
. x)
^2 ))) & Z
c= (
dom (
sec
- (
id Z))) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= (((
sec
- (
id Z))
. (
upper_bound A))
- ((
sec
- (
id Z))
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: for x st x
in Z holds (f
. x)
= (((
sin
. x)
- ((
cos
. x)
^2 ))
/ ((
cos
. x)
^2 )) and
A3: Z
c= (
dom (
sec
- (
id Z))) and
A4: Z
= (
dom f) and
A5: (f
| A) is
continuous;
A6: (
sec
- (
id Z))
is_differentiable_on Z by
A3,
FDIFF_9: 22;
A7: for x be
Element of
REAL st x
in (
dom ((
sec
- (
id Z))
`| Z)) holds (((
sec
- (
id Z))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
sec
- (
id Z))
`| Z));
then
A8: x
in Z by
A6,
FDIFF_1:def 7;
then (((
sec
- (
id Z))
`| Z)
. x)
= (((
sin
. x)
- ((
cos
. x)
^2 ))
/ ((
cos
. x)
^2 )) by
A3,
FDIFF_9: 22
.= (f
. x) by
A2,
A8;
hence thesis;
end;
(
dom ((
sec
- (
id Z))
`| Z))
= (
dom f) by
A4,
A6,
FDIFF_1:def 7;
then
A9: ((
sec
- (
id Z))
`| Z)
= f by
A7,
PARTFUN1: 5;
f
is_integrable_on A & (f
| A) is
bounded by
A1,
A4,
A5,
INTEGRA5: 10,
INTEGRA5: 11;
hence thesis by
A1,
A3,
A9,
FDIFF_9: 22,
INTEGRA5: 13;
end;
theorem ::
INTEGR11:64
A
c= Z & (for x st x
in Z holds (f
. x)
= (((
cos
. x)
- ((
sin
. x)
^2 ))
/ ((
sin
. x)
^2 ))) & Z
c= (
dom ((
-
cosec )
- (
id Z))) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= ((((
-
cosec )
- (
id Z))
. (
upper_bound A))
- (((
-
cosec )
- (
id Z))
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: for x st x
in Z holds (f
. x)
= (((
cos
. x)
- ((
sin
. x)
^2 ))
/ ((
sin
. x)
^2 )) and
A3: Z
c= (
dom ((
-
cosec )
- (
id Z))) and
A4: Z
= (
dom f) and
A5: (f
| A) is
continuous;
A6: ((
-
cosec )
- (
id Z))
is_differentiable_on Z by
A3,
FDIFF_9: 23;
A7: for x be
Element of
REAL st x
in (
dom (((
-
cosec )
- (
id Z))
`| Z)) holds ((((
-
cosec )
- (
id Z))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((
-
cosec )
- (
id Z))
`| Z));
then
A8: x
in Z by
A6,
FDIFF_1:def 7;
then ((((
-
cosec )
- (
id Z))
`| Z)
. x)
= (((
cos
. x)
- ((
sin
. x)
^2 ))
/ ((
sin
. x)
^2 )) by
A3,
FDIFF_9: 23
.= (f
. x) by
A2,
A8;
hence thesis;
end;
(
dom (((
-
cosec )
- (
id Z))
`| Z))
= (
dom f) by
A4,
A6,
FDIFF_1:def 7;
then
A9: (((
-
cosec )
- (
id Z))
`| Z)
= f by
A7,
PARTFUN1: 5;
f
is_integrable_on A & (f
| A) is
bounded by
A1,
A4,
A5,
INTEGRA5: 10,
INTEGRA5: 11;
hence thesis by
A1,
A3,
A9,
FDIFF_9: 23,
INTEGRA5: 13;
end;
theorem ::
INTEGR11:65
A
c= Z & (for x st x
in Z holds (
sin
. x)
>
0 ) & Z
c= (
dom (
ln
*
sin )) & Z
= (
dom
cot ) & (
cot
| A) is
continuous implies (
integral (
cot ,A))
= (((
ln
*
sin )
. (
upper_bound A))
- ((
ln
*
sin )
. (
lower_bound A)))
proof
set f =
cot ;
assume that
A1: A
c= Z and
A2: for x st x
in Z holds (
sin
. x)
>
0 and
A3: Z
c= (
dom (
ln
*
sin )) and
A4: Z
= (
dom
cot ) and
A5: (f
| A) is
continuous;
A6: (
ln
*
sin )
is_differentiable_on Z by
A2,
A3,
FDIFF_4: 43;
A7: for x be
Element of
REAL st x
in (
dom ((
ln
*
sin )
`| Z)) holds (((
ln
*
sin )
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((
ln
*
sin )
`| Z));
then
A8: x
in Z by
A6,
FDIFF_1:def 7;
then
A9: (
sin
. x)
<>
0 by
A2;
(((
ln
*
sin )
`| Z)
. x)
= (
cot x) by
A2,
A3,
A8,
FDIFF_4: 43
.= (f
. x) by
A9,
SIN_COS9: 16;
hence thesis;
end;
(
dom ((
ln
*
sin )
`| Z))
= (
dom f) by
A4,
A6,
FDIFF_1:def 7;
then
A10: ((
ln
*
sin )
`| Z)
= f by
A7,
PARTFUN1: 5;
f
is_integrable_on A & (f
| A) is
bounded by
A1,
A4,
A5,
INTEGRA5: 10,
INTEGRA5: 11;
hence thesis by
A1,
A2,
A3,
A10,
FDIFF_4: 43,
INTEGRA5: 13;
end;
theorem ::
INTEGR11:66
A
c= Z & Z
c=
].(
- 1), 1.[ & (for x st x
in Z holds (f
. x)
= ((
arcsin
. x)
/ (
sqrt (1
- (x
^2 ))))) & Z
c= (
dom ((1
/ 2)
(#) ((
#Z 2)
*
arcsin ))) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= ((((1
/ 2)
(#) ((
#Z 2)
*
arcsin ))
. (
upper_bound A))
- (((1
/ 2)
(#) ((
#Z 2)
*
arcsin ))
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: Z
c=
].(
- 1), 1.[ and
A3: for x st x
in Z holds (f
. x)
= ((
arcsin
. x)
/ (
sqrt (1
- (x
^2 )))) and
A4: Z
c= (
dom ((1
/ 2)
(#) ((
#Z 2)
*
arcsin ))) and
A5: Z
= (
dom f) and
A6: (f
| A) is
continuous;
A7: ((1
/ 2)
(#) ((
#Z 2)
*
arcsin ))
is_differentiable_on Z by
A2,
A4,
FDIFF_7: 12;
A8: for x be
Element of
REAL st x
in (
dom (((1
/ 2)
(#) ((
#Z 2)
*
arcsin ))
`| Z)) holds ((((1
/ 2)
(#) ((
#Z 2)
*
arcsin ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((1
/ 2)
(#) ((
#Z 2)
*
arcsin ))
`| Z));
then
A9: x
in Z by
A7,
FDIFF_1:def 7;
then ((((1
/ 2)
(#) ((
#Z 2)
*
arcsin ))
`| Z)
. x)
= ((
arcsin
. x)
/ (
sqrt (1
- (x
^2 )))) by
A2,
A4,
FDIFF_7: 12
.= (f
. x) by
A3,
A9;
hence thesis;
end;
(
dom (((1
/ 2)
(#) ((
#Z 2)
*
arcsin ))
`| Z))
= (
dom f) by
A5,
A7,
FDIFF_1:def 7;
then
A10: (((1
/ 2)
(#) ((
#Z 2)
*
arcsin ))
`| Z)
= f by
A8,
PARTFUN1: 5;
f
is_integrable_on A & (f
| A) is
bounded by
A1,
A5,
A6,
INTEGRA5: 10,
INTEGRA5: 11;
hence thesis by
A1,
A2,
A4,
A10,
FDIFF_7: 12,
INTEGRA5: 13;
end;
theorem ::
INTEGR11:67
A
c= Z & Z
c=
].(
- 1), 1.[ & (for x st x
in Z holds (f
. x)
= (
- ((
arccos
. x)
/ (
sqrt (1
- (x
^2 )))))) & Z
c= (
dom ((1
/ 2)
(#) ((
#Z 2)
*
arccos ))) & Z
= (
dom f) & (f
| A) is
continuous implies (
integral (f,A))
= ((((1
/ 2)
(#) ((
#Z 2)
*
arccos ))
. (
upper_bound A))
- (((1
/ 2)
(#) ((
#Z 2)
*
arccos ))
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: Z
c=
].(
- 1), 1.[ and
A3: for x st x
in Z holds (f
. x)
= (
- ((
arccos
. x)
/ (
sqrt (1
- (x
^2 ))))) and
A4: Z
c= (
dom ((1
/ 2)
(#) ((
#Z 2)
*
arccos ))) and
A5: Z
= (
dom f) and
A6: (f
| A) is
continuous;
A7: ((1
/ 2)
(#) ((
#Z 2)
*
arccos ))
is_differentiable_on Z by
A2,
A4,
FDIFF_7: 13;
A8: for x be
Element of
REAL st x
in (
dom (((1
/ 2)
(#) ((
#Z 2)
*
arccos ))
`| Z)) holds ((((1
/ 2)
(#) ((
#Z 2)
*
arccos ))
`| Z)
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (((1
/ 2)
(#) ((
#Z 2)
*
arccos ))
`| Z));
then
A9: x
in Z by
A7,
FDIFF_1:def 7;
then ((((1
/ 2)
(#) ((
#Z 2)
*
arccos ))
`| Z)
. x)
= (
- ((
arccos
. x)
/ (
sqrt (1
- (x
^2 ))))) by
A2,
A4,
FDIFF_7: 13
.= (f
. x) by
A3,
A9;
hence thesis;
end;
(
dom (((1
/ 2)
(#) ((
#Z 2)
*
arccos ))
`| Z))
= (
dom f) by
A5,
A7,
FDIFF_1:def 7;
then
A10: (((1
/ 2)
(#) ((
#Z 2)
*
arccos ))
`| Z)
= f by
A8,
PARTFUN1: 5;
f
is_integrable_on A & (f
| A) is
bounded by
A1,
A5,
A6,
INTEGRA5: 10,
INTEGRA5: 11;
hence thesis by
A1,
A2,
A4,
A10,
FDIFF_7: 13,
INTEGRA5: 13;
end;
theorem ::
INTEGR11:68
A
c= Z & Z
c=
].(
- 1), 1.[ & f
= (f1
- f2) & f2
= (
#Z 2) & (for x st x
in Z holds (f1
. x)
= 1 & (f
. x)
>
0 & x
<>
0 ) & (
dom
arcsin )
= Z & Z
c= (
dom (((
id Z)
(#)
arcsin )
+ ((
#R (1
/ 2))
* f))) implies (
integral (
arcsin ,A))
= (((((
id Z)
(#)
arcsin )
+ ((
#R (1
/ 2))
* f))
. (
upper_bound A))
- ((((
id Z)
(#)
arcsin )
+ ((
#R (1
/ 2))
* f))
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: Z
c=
].(
- 1), 1.[ & f
= (f1
- f2) & (f2
= (
#Z 2) & for x st x
in Z holds (f1
. x)
= 1 & (f
. x)
>
0 & x
<>
0 ) and
A3: (
dom
arcsin )
= Z and
A4: Z
c= (
dom (((
id Z)
(#)
arcsin )
+ ((
#R (1
/ 2))
* f)));
A5: (
arcsin
| A) is
bounded by
A1,
A3,
INTEGRA5: 10;
A6: (((
id Z)
(#)
arcsin )
+ ((
#R (1
/ 2))
* f))
is_differentiable_on Z by
A2,
A4,
FDIFF_7: 23;
A7: for x be
Element of
REAL st x
in (
dom ((((
id Z)
(#)
arcsin )
+ ((
#R (1
/ 2))
* f))
`| Z)) holds (((((
id Z)
(#)
arcsin )
+ ((
#R (1
/ 2))
* f))
`| Z)
. x)
= (
arcsin
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((((
id Z)
(#)
arcsin )
+ ((
#R (1
/ 2))
* f))
`| Z));
then x
in Z by
A6,
FDIFF_1:def 7;
hence thesis by
A2,
A4,
FDIFF_7: 23;
end;
(
dom ((((
id Z)
(#)
arcsin )
+ ((
#R (1
/ 2))
* f))
`| Z))
= (
dom
arcsin ) by
A3,
A6,
FDIFF_1:def 7;
then ((((
id Z)
(#)
arcsin )
+ ((
#R (1
/ 2))
* f))
`| Z)
=
arcsin by
A7,
PARTFUN1: 5;
hence thesis by
A1,
A3,
A5,
A6,
INTEGRA5: 11,
INTEGRA5: 13;
end;
theorem ::
INTEGR11:69
A
c= Z & f
= (f1
- f2) & f2
= (
#Z 2) & (for x st x
in Z holds (f1
. x)
= (a
^2 ) & (f
. x)
>
0 & (f3
. x)
= (x
/ a) & (f3
. x)
> (
- 1) & (f3
. x)
< 1 & x
<>
0 & a
>
0 ) & (
dom (
arcsin
* f3))
= Z & Z
c= (
dom (((
id Z)
(#) (
arcsin
* f3))
+ ((
#R (1
/ 2))
* f))) & ((
arcsin
* f3)
| A) is
continuous implies (
integral ((
arcsin
* f3),A))
= (((((
id Z)
(#) (
arcsin
* f3))
+ ((
#R (1
/ 2))
* f))
. (
upper_bound A))
- ((((
id Z)
(#) (
arcsin
* f3))
+ ((
#R (1
/ 2))
* f))
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: f
= (f1
- f2) & f2
= (
#Z 2) and
A3: for x st x
in Z holds (f1
. x)
= (a
^2 ) & (f
. x)
>
0 & (f3
. x)
= (x
/ a) & (f3
. x)
> (
- 1) & (f3
. x)
< 1 & x
<>
0 & a
>
0 and
A4: (
dom (
arcsin
* f3))
= Z and
A5: Z
c= (
dom (((
id Z)
(#) (
arcsin
* f3))
+ ((
#R (1
/ 2))
* f))) and
A6: ((
arcsin
* f3)
| A) is
continuous;
A7: (
arcsin
* f3)
is_integrable_on A by
A1,
A4,
A6,
INTEGRA5: 11;
A8: (((
id Z)
(#) (
arcsin
* f3))
+ ((
#R (1
/ 2))
* f))
is_differentiable_on Z by
A2,
A3,
A5,
FDIFF_7: 28;
A9: for x be
Element of
REAL st x
in (
dom ((((
id Z)
(#) (
arcsin
* f3))
+ ((
#R (1
/ 2))
* f))
`| Z)) holds (((((
id Z)
(#) (
arcsin
* f3))
+ ((
#R (1
/ 2))
* f))
`| Z)
. x)
= ((
arcsin
* f3)
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((((
id Z)
(#) (
arcsin
* f3))
+ ((
#R (1
/ 2))
* f))
`| Z));
then
A10: x
in Z by
A8,
FDIFF_1:def 7;
then (((((
id Z)
(#) (
arcsin
* f3))
+ ((
#R (1
/ 2))
* f))
`| Z)
. x)
= (
arcsin
. (x
/ a)) by
A2,
A3,
A5,
FDIFF_7: 28
.= (
arcsin
. (f3
. x)) by
A3,
A10
.= ((
arcsin
* f3)
. x) by
A4,
A10,
FUNCT_1: 12;
hence thesis;
end;
(
dom ((((
id Z)
(#) (
arcsin
* f3))
+ ((
#R (1
/ 2))
* f))
`| Z))
= (
dom (
arcsin
* f3)) by
A4,
A8,
FDIFF_1:def 7;
then ((((
id Z)
(#) (
arcsin
* f3))
+ ((
#R (1
/ 2))
* f))
`| Z)
= (
arcsin
* f3) by
A9,
PARTFUN1: 5;
hence thesis by
A1,
A4,
A6,
A7,
A8,
INTEGRA5: 10,
INTEGRA5: 13;
end;
theorem ::
INTEGR11:70
A
c= Z & Z
c=
].(
- 1), 1.[ & f
= (f1
- f2) & f2
= (
#Z 2) & (for x st x
in Z holds (f1
. x)
= 1 & (f
. x)
>
0 & x
<>
0 ) & (
dom
arccos )
= Z & Z
c= (
dom (((
id Z)
(#)
arccos )
- ((
#R (1
/ 2))
* f))) implies (
integral (
arccos ,A))
= (((((
id Z)
(#)
arccos )
- ((
#R (1
/ 2))
* f))
. (
upper_bound A))
- ((((
id Z)
(#)
arccos )
- ((
#R (1
/ 2))
* f))
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: Z
c=
].(
- 1), 1.[ & f
= (f1
- f2) & (f2
= (
#Z 2) & for x st x
in Z holds (f1
. x)
= 1 & (f
. x)
>
0 & x
<>
0 ) and
A3: (
dom
arccos )
= Z and
A4: Z
c= (
dom (((
id Z)
(#)
arccos )
- ((
#R (1
/ 2))
* f)));
A5: (
arccos
| A) is
bounded by
A1,
A3,
INTEGRA5: 10;
A6: (((
id Z)
(#)
arccos )
- ((
#R (1
/ 2))
* f))
is_differentiable_on Z by
A2,
A4,
FDIFF_7: 24;
A7: for x be
Element of
REAL st x
in (
dom ((((
id Z)
(#)
arccos )
- ((
#R (1
/ 2))
* f))
`| Z)) holds (((((
id Z)
(#)
arccos )
- ((
#R (1
/ 2))
* f))
`| Z)
. x)
= (
arccos
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((((
id Z)
(#)
arccos )
- ((
#R (1
/ 2))
* f))
`| Z));
then x
in Z by
A6,
FDIFF_1:def 7;
hence thesis by
A2,
A4,
FDIFF_7: 24;
end;
(
dom ((((
id Z)
(#)
arccos )
- ((
#R (1
/ 2))
* f))
`| Z))
= (
dom
arccos ) by
A3,
A6,
FDIFF_1:def 7;
then ((((
id Z)
(#)
arccos )
- ((
#R (1
/ 2))
* f))
`| Z)
=
arccos by
A7,
PARTFUN1: 5;
hence thesis by
A1,
A3,
A5,
A6,
INTEGRA5: 11,
INTEGRA5: 13;
end;
theorem ::
INTEGR11:71
A
c= Z & f
= (f1
- f2) & f2
= (
#Z 2) & (for x st x
in Z holds (f1
. x)
= (a
^2 ) & (f
. x)
>
0 & (f3
. x)
= (x
/ a) & (f3
. x)
> (
- 1) & (f3
. x)
< 1 & x
<>
0 & a
>
0 ) & (
dom (
arccos
* f3))
= Z & Z
= (
dom (((
id Z)
(#) (
arccos
* f3))
- ((
#R (1
/ 2))
* f))) & ((
arccos
* f3)
| A) is
continuous implies (
integral ((
arccos
* f3),A))
= (((((
id Z)
(#) (
arccos
* f3))
- ((
#R (1
/ 2))
* f))
. (
upper_bound A))
- ((((
id Z)
(#) (
arccos
* f3))
- ((
#R (1
/ 2))
* f))
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: f
= (f1
- f2) & f2
= (
#Z 2) and
A3: for x st x
in Z holds (f1
. x)
= (a
^2 ) & (f
. x)
>
0 & (f3
. x)
= (x
/ a) & (f3
. x)
> (
- 1) & (f3
. x)
< 1 & x
<>
0 & a
>
0 and
A4: (
dom (
arccos
* f3))
= Z and
A5: Z
= (
dom (((
id Z)
(#) (
arccos
* f3))
- ((
#R (1
/ 2))
* f))) and
A6: ((
arccos
* f3)
| A) is
continuous;
A7: (
arccos
* f3)
is_integrable_on A by
A1,
A4,
A6,
INTEGRA5: 11;
A8: (((
id Z)
(#) (
arccos
* f3))
- ((
#R (1
/ 2))
* f))
is_differentiable_on Z by
A2,
A3,
A5,
FDIFF_7: 29;
A9: for x be
Element of
REAL st x
in (
dom ((((
id Z)
(#) (
arccos
* f3))
- ((
#R (1
/ 2))
* f))
`| Z)) holds (((((
id Z)
(#) (
arccos
* f3))
- ((
#R (1
/ 2))
* f))
`| Z)
. x)
= ((
arccos
* f3)
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((((
id Z)
(#) (
arccos
* f3))
- ((
#R (1
/ 2))
* f))
`| Z));
then
A10: x
in Z by
A8,
FDIFF_1:def 7;
then (((((
id Z)
(#) (
arccos
* f3))
- ((
#R (1
/ 2))
* f))
`| Z)
. x)
= (
arccos
. (x
/ a)) by
A2,
A3,
A5,
FDIFF_7: 29
.= (
arccos
. (f3
. x)) by
A3,
A10
.= ((
arccos
* f3)
. x) by
A4,
A10,
FUNCT_1: 12;
hence thesis;
end;
(
dom ((((
id Z)
(#) (
arccos
* f3))
- ((
#R (1
/ 2))
* f))
`| Z))
= (
dom (
arccos
* f3)) by
A4,
A8,
FDIFF_1:def 7;
then ((((
id Z)
(#) (
arccos
* f3))
- ((
#R (1
/ 2))
* f))
`| Z)
= (
arccos
* f3) by
A9,
PARTFUN1: 5;
hence thesis by
A1,
A4,
A6,
A7,
A8,
INTEGRA5: 10,
INTEGRA5: 13;
end;
theorem ::
INTEGR11:72
A
c= Z & Z
c=
].(
- 1), 1.[ & f2
= (
#Z 2) & (for x st x
in Z holds (f1
. x)
= 1) & Z
= (
dom
arctan ) & Z
= (
dom (((
id Z)
(#)
arctan )
- ((1
/ 2)
(#) (
ln
* (f1
+ f2))))) implies (
integral (
arctan ,A))
= (((((
id Z)
(#)
arctan )
- ((1
/ 2)
(#) (
ln
* (f1
+ f2))))
. (
upper_bound A))
- ((((
id Z)
(#)
arctan )
- ((1
/ 2)
(#) (
ln
* (f1
+ f2))))
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: Z
c=
].(
- 1), 1.[ and
A3: f2
= (
#Z 2) & for x st x
in Z holds (f1
. x)
= 1 and
A4: Z
= (
dom
arctan ) and
A5: Z
= (
dom (((
id Z)
(#)
arctan )
- ((1
/ 2)
(#) (
ln
* (f1
+ f2)))));
].(
- 1), 1.[
c=
[.(
- 1), 1.] & A
c=
].(
- 1), 1.[ by
A1,
A2,
XBOOLE_1: 1,
XXREAL_1: 25;
then (
arctan
| A) is
continuous by
FCONT_1: 16,
SIN_COS9: 53,
XBOOLE_1: 1;
then
A6:
arctan
is_integrable_on A & (
arctan
| A) is
bounded by
A1,
A4,
INTEGRA5: 10,
INTEGRA5: 11;
A7: (((
id Z)
(#)
arctan )
- ((1
/ 2)
(#) (
ln
* (f1
+ f2))))
is_differentiable_on Z by
A2,
A3,
A5,
SIN_COS9: 103;
A8: for x be
Element of
REAL st x
in (
dom ((((
id Z)
(#)
arctan )
- ((1
/ 2)
(#) (
ln
* (f1
+ f2))))
`| Z)) holds (((((
id Z)
(#)
arctan )
- ((1
/ 2)
(#) (
ln
* (f1
+ f2))))
`| Z)
. x)
= (
arctan
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((((
id Z)
(#)
arctan )
- ((1
/ 2)
(#) (
ln
* (f1
+ f2))))
`| Z));
then x
in Z by
A7,
FDIFF_1:def 7;
hence thesis by
A2,
A3,
A5,
SIN_COS9: 103;
end;
(
dom ((((
id Z)
(#)
arctan )
- ((1
/ 2)
(#) (
ln
* (f1
+ f2))))
`| Z))
= (
dom
arctan ) by
A4,
A7,
FDIFF_1:def 7;
then ((((
id Z)
(#)
arctan )
- ((1
/ 2)
(#) (
ln
* (f1
+ f2))))
`| Z)
=
arctan by
A8,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
A5,
A6,
INTEGRA5: 13,
SIN_COS9: 103;
end;
theorem ::
INTEGR11:73
A
c= Z & Z
c=
].(
- 1), 1.[ & f2
= (
#Z 2) & (for x st x
in Z holds (f1
. x)
= 1) & (
dom
arccot )
= Z & Z
= (
dom (((
id Z)
(#)
arccot )
+ ((1
/ 2)
(#) (
ln
* (f1
+ f2))))) implies (
integral (
arccot ,A))
= (((((
id Z)
(#)
arccot )
+ ((1
/ 2)
(#) (
ln
* (f1
+ f2))))
. (
upper_bound A))
- ((((
id Z)
(#)
arccot )
+ ((1
/ 2)
(#) (
ln
* (f1
+ f2))))
. (
lower_bound A)))
proof
assume that
A1: A
c= Z and
A2: Z
c=
].(
- 1), 1.[ and
A3: f2
= (
#Z 2) & for x st x
in Z holds (f1
. x)
= 1 and
A4: (
dom
arccot )
= Z and
A5: Z
= (
dom (((
id Z)
(#)
arccot )
+ ((1
/ 2)
(#) (
ln
* (f1
+ f2)))));
].(
- 1), 1.[
c=
[.(
- 1), 1.] & A
c=
].(
- 1), 1.[ by
A1,
A2,
XBOOLE_1: 1,
XXREAL_1: 25;
then (
arccot
| A) is
continuous by
FCONT_1: 16,
SIN_COS9: 54,
XBOOLE_1: 1;
then
A6:
arccot
is_integrable_on A & (
arccot
| A) is
bounded by
A1,
A4,
INTEGRA5: 10,
INTEGRA5: 11;
A7: (((
id Z)
(#)
arccot )
+ ((1
/ 2)
(#) (
ln
* (f1
+ f2))))
is_differentiable_on Z by
A2,
A3,
A5,
SIN_COS9: 104;
A8: for x be
Element of
REAL st x
in (
dom ((((
id Z)
(#)
arccot )
+ ((1
/ 2)
(#) (
ln
* (f1
+ f2))))
`| Z)) holds (((((
id Z)
(#)
arccot )
+ ((1
/ 2)
(#) (
ln
* (f1
+ f2))))
`| Z)
. x)
= (
arccot
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom ((((
id Z)
(#)
arccot )
+ ((1
/ 2)
(#) (
ln
* (f1
+ f2))))
`| Z));
then x
in Z by
A7,
FDIFF_1:def 7;
hence thesis by
A2,
A3,
A5,
SIN_COS9: 104;
end;
(
dom ((((
id Z)
(#)
arccot )
+ ((1
/ 2)
(#) (
ln
* (f1
+ f2))))
`| Z))
= (
dom
arccot ) by
A4,
A7,
FDIFF_1:def 7;
then ((((
id Z)
(#)
arccot )
+ ((1
/ 2)
(#) (
ln
* (f1
+ f2))))
`| Z)
=
arccot by
A8,
PARTFUN1: 5;
hence thesis by
A1,
A2,
A3,
A5,
A6,
INTEGRA5: 13,
SIN_COS9: 104;
end;