moebius3.miz
    
    begin
    
    reserve n,i,k,m for
    Nat;
    
    reserve p for
    Prime;
    
    registration
    
      cluster non 
    zero
    square non 
    trivial for 
    Nat;
    
      existence
    
      proof
    
        4
    = (2 
    ^2 ); 
    
        then 4 is non
    zero
    square;
    
        hence thesis by
    NAT_2: 28;
    
      end;
    
    end
    
    registration
    
      let Z be
    Subset of 
    REAL ; 
    
      let f be
    PartFunc of Z, 
    REAL ; 
    
      let A be
    Subset of 
    REAL ; 
    
      cluster (f 
    | A) -> A 
    -defined;
    
      coherence ;
    
    end
    
    theorem :: 
    
    MOEBIUS3:1
    
    for Z be
    Subset of 
    REAL st 
    0  
    in Z holds (( 
    id Z) 
    "  
    {
    0 }) 
    =  
    {
    0 } 
    
    proof
    
      let Z be
    Subset of 
    REAL ; 
    
      assume
    0  
    in Z; 
    
      then
    {
    0 } 
    c= Z by 
    ZFMISC_1: 31;
    
      hence thesis by
    FUNCT_2: 94;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:2
    
    
    
    
    
    Counter0: for Z be 
    Subset of 
    REAL st not 
    0  
    in Z holds (( 
    id Z) 
    "  
    {
    0 }) 
    =  
    {}  
    
    proof
    
      let Z be
    Subset of 
    REAL ; 
    
      assume
    
      
    
    AA: not 
    0  
    in Z; 
    
      ((
    id Z) 
    "  
    {
    0 }) 
    c=  
    {}  
    
      proof
    
        let x be
    object;
    
        assume x
    in (( 
    id Z) 
    "  
    {
    0 }); 
    
        then
    
        
    
    A2: x 
    in ( 
    dom ( 
    id Z)) & (( 
    id Z) 
    . x) 
    in  
    {
    0 } by 
    FUNCT_1:def 7;
    
        then ((
    id Z) 
    . x) 
    = x by 
    FUNCT_1: 17;
    
        hence thesis by
    A2,
    AA,
    TARSKI:def 1;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:3
    
    
    
    
    
    ContCut: for Z be 
    open  
    Subset of 
    REAL , A be non 
    empty
    closed_interval  
    Subset of 
    REAL st not 
    0  
    in Z & A 
    c= Z holds ((( 
    id Z) 
    ^ ) 
    | A) is 
    continuous
    
    proof
    
      let Z be
    open  
    Subset of 
    REAL , A be non 
    empty
    closed_interval  
    Subset of 
    REAL ; 
    
      assume
    
      
    
    A1: not 
    0  
    in Z & A 
    c= Z; 
    
      then ((
    id Z) 
    ^ ) 
    is_differentiable_on Z by 
    FDIFF_5: 4;
    
      then (((
    id Z) 
    ^ ) 
    | Z) is 
    continuous by 
    FDIFF_1: 25;
    
      hence thesis by
    A1,
    FCONT_1: 16;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:4
    
    for Z be
    open  
    Subset of 
    REAL , A be non 
    empty
    closed_interval  
    Subset of 
    REAL st Z 
    = ( 
    right_open_halfline  
    0 ) & A 
    =  
    [.1, (n
    + 1).] holds ( 
    integral ((( 
    id Z) 
    ^ ),A)) 
    = ( 
    ln  
    . (n 
    + 1)) 
    
    proof
    
      let Z be
    open  
    Subset of 
    REAL , A be non 
    empty
    closed_interval  
    Subset of 
    REAL ; 
    
      assume
    
      
    
    Z1: Z 
    = ( 
    right_open_halfline  
    0 ) & A 
    =  
    [.1, (n
    + 1).]; 
    
      then
    
      
    
    N1: not 
    0  
    in Z by 
    XXREAL_1: 4;
    
      
    
      
    
    A1: A 
    c= Z 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    aa: x 
    in A; 
    
        then
    
        reconsider xx = x as
    Real;
    
        1
    <= xx & xx 
    <= (n 
    + 1) by 
    aa,
    Z1,
    XXREAL_1: 1;
    
        hence thesis by
    Z1,
    XXREAL_1: 235;
    
      end;
    
      set f = (
    id Z); 
    
      
    
      
    
    a3: ( 
    dom (f 
    ^ )) 
    = (( 
    dom f) 
    \ (f 
    "  
    {
    0 })) by 
    RFUNCT_1:def 2
    
      .= (Z
    \  
    {} ) by 
    Counter0,
    N1
    
      .= Z;
    
      
    
      
    
    B1: ( 
    lower_bound A) 
    = 1 by 
    Z1,
    XREAL_1: 31,
    XXREAL_2: 25;
    
      
    
      
    
    B2: ( 
    upper_bound A) 
    = (n 
    + 1) by 
    Z1,
    XREAL_1: 31,
    XXREAL_2: 29;
    
      (((
    id Z) 
    ^ ) 
    | A) is 
    continuous by 
    ContCut,
    A1,
    N1;
    
      
    
      then (
    integral ((( 
    id Z) 
    ^ ),A)) 
    = (( 
    ln  
    . ( 
    upper_bound A)) 
    - ( 
    ln  
    . ( 
    lower_bound A))) by 
    A1,
    Z1,
    TAYLOR_1: 18,
    a3,
    INTEGRA9: 61
    
      .= ((
    ln  
    . (n 
    + 1)) 
    - (1 
    - 1)) by 
    ENTROPY1: 2,
    B1,
    B2
    
      .= (
    ln  
    . (n 
    + 1)); 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:5
    
    for Z be
    open  
    Subset of 
    REAL , A be non 
    empty
    closed_interval  
    Subset of 
    REAL st Z 
    = ( 
    right_open_halfline  
    0 ) & 
    0  
    < n & A 
    =  
    [.n, (n
    + 1).] holds ( 
    integral ((( 
    id Z) 
    ^ ),A)) 
    = ( 
    ln  
    . ((n 
    + 1) 
    / n)) 
    
    proof
    
      let Z be
    open  
    Subset of 
    REAL , A be non 
    empty
    closed_interval  
    Subset of 
    REAL ; 
    
      assume
    
      
    
    Z1: Z 
    = ( 
    right_open_halfline  
    0 ) & 
    0  
    < n & A 
    =  
    [.n, (n
    + 1).]; 
    
      
    
      
    
    N1: not 
    0  
    in Z by 
    XXREAL_1: 4,
    Z1;
    
      
    
      
    
    A1: A 
    c= Z 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    aa: x 
    in A; 
    
        then
    
        reconsider xx = x as
    Real;
    
        n
    <= xx & xx 
    <= (n 
    + 1) by 
    aa,
    Z1,
    XXREAL_1: 1;
    
        hence thesis by
    XXREAL_1: 235,
    Z1;
    
      end;
    
      set f = (
    id Z); 
    
      
    
      
    
    a3: ( 
    dom (f 
    ^ )) 
    = (( 
    dom f) 
    \ (f 
    "  
    {
    0 })) by 
    RFUNCT_1:def 2
    
      .= (Z
    \  
    {} ) by 
    Counter0,
    N1
    
      .= Z;
    
      
    
      
    
    B1: ( 
    lower_bound A) 
    = n by 
    Z1,
    XREAL_1: 31,
    XXREAL_2: 25;
    
      
    
      
    
    B2: ( 
    upper_bound A) 
    = (n 
    + 1) by 
    Z1,
    XREAL_1: 31,
    XXREAL_2: 29;
    
      (((
    id Z) 
    ^ ) 
    | A) is 
    continuous by 
    ContCut,
    A1,
    N1;
    
      
    
      then (
    integral ((( 
    id Z) 
    ^ ),A)) 
    = (( 
    ln  
    . ( 
    upper_bound A)) 
    - ( 
    ln  
    . ( 
    lower_bound A))) by 
    A1,
    Z1,
    TAYLOR_1: 18,
    a3,
    INTEGRA9: 61
    
      .= (
    ln  
    . ((n 
    + 1) 
    / n)) by 
    Z1,
    DIFF_4: 4,
    B1,
    B2;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:6
    
    
    
    
    
    MacPositive: for x,r be 
    Real st x 
    >  
    0 & r 
    >  
    0 holds ( 
    Maclaurin ( 
    exp_R , 
    ].(
    - r), r.[,x)) is 
    positive-yielding
    
    proof
    
      let x,r be
    Real;
    
      assume
    
      
    
    A0: x 
    >  
    0 & r 
    >  
    0 ; 
    
      set f = (
    Maclaurin ( 
    exp_R , 
    ].(
    - r), r.[,x)); 
    
      for r be
    Real st r 
    in ( 
    rng f) holds 
    0  
    < r 
    
      proof
    
        let r be
    Real;
    
        assume r
    in ( 
    rng f); 
    
        then
    
        consider xx be
    object such that 
    
        
    
    A1: xx 
    in ( 
    dom f) & r 
    = (f 
    . xx) by 
    FUNCT_1:def 3;
    
        reconsider nn = xx as
    Element of 
    NAT by 
    A1;
    
        r
    = ((x 
    |^ nn) 
    / (nn 
    ! )) by 
    A1,
    TAYLOR_2: 8,
    A0;
    
        hence thesis by
    A0;
    
      end;
    
      hence thesis by
    PARTFUN3:def 1;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:7
    
    
    
    
    
    Th36: for f be 
    summable  
    Real_Sequence, n be 
    Nat st f is 
    positive-yielding holds ( 
    Sum (f 
    ^\ (n 
    + 1))) 
    >  
    0  
    
    proof
    
      let f be
    summable  
    Real_Sequence, n be 
    Nat;
    
      assume
    
      
    
    A0: f is 
    positive-yielding;
    
      set LS = (f
    ^\ (n 
    + 1)); 
    
      
    
      
    
    A2: for i be 
    Nat holds 
    0  
    <= (LS 
    . i) 
    
      proof
    
        let i be
    Nat;
    
        
    
        
    
    a1: (LS 
    . i) 
    = (f 
    . ((n 
    + 1) 
    + i)) by 
    NAT_1:def 3;
    
        ((n
    + 1) 
    + i) 
    in  
    NAT by 
    ORDINAL1:def 12;
    
        then ((n
    + 1) 
    + i) 
    in ( 
    dom f) by 
    FUNCT_2:def 1;
    
        then (f
    . ((n 
    + 1) 
    + i)) 
    in ( 
    rng f) by 
    FUNCT_1: 3;
    
        hence thesis by
    PARTFUN3:def 1,
    A0,
    a1;
    
      end;
    
      ex i be
    Nat st i 
    in ( 
    dom LS) & 
    0  
    < (LS 
    . i) 
    
      proof
    
        consider j be
    Nat such that 
    
        
    
    A3: (n 
    + 1) 
    <= j; 
    
        (j
    - (n 
    + 1)) 
    in  
    NAT by 
    A3,
    INT_1: 5;
    
        then
    
        reconsider i = (j
    - (n 
    + 1)) as 
    Nat;
    
        take i;
    
        
    
        
    
    A4: ((n 
    + 1) 
    + i) 
    = j; 
    
        
    
        
    
    aa: ( 
    dom LS) 
    =  
    NAT by 
    FUNCT_2:def 1;
    
        
    
        
    
    A6: (LS 
    . i) 
    = (f 
    . j) by 
    NAT_1:def 3,
    A4;
    
        j
    in  
    NAT by 
    ORDINAL1:def 12;
    
        then j
    in ( 
    dom f) by 
    FUNCT_2:def 1;
    
        then (f
    . j) 
    in ( 
    rng f) by 
    FUNCT_1: 3;
    
        hence thesis by
    aa,
    A6,
    A0,
    PARTFUN3:def 1,
    ORDINAL1:def 12;
    
      end;
    
      then
    
      consider k be
    Nat such that 
    
      
    
    A6: k 
    in ( 
    dom LS) & (LS 
    . k) 
    >  
    0 ; 
    
      LS is
    summable by 
    SERIES_1: 12;
    
      hence thesis by
    A6,
    RSSPACE2: 3,
    A2;
    
    end;
    
    begin
    
    definition
    
      let n be
    Nat;
    
      :: 
    
    MOEBIUS3:def1
    
      func
    
    Harmonic n -> 
    Real equals (( 
    Partial_Sums  
    invNAT ) 
    . n); 
    
      coherence ;
    
    end
    
    theorem :: 
    
    MOEBIUS3:8
    
    
    
    
    
    Harm0: ( 
    Harmonic  
    0 ) 
    =  
    0  
    
    proof
    
      (
    Harmonic  
    0 ) 
    = ( 
    invNAT  
    .  
    0 ) by 
    SERIES_1:def 1
    
      .= (1
    /  
    0 ) by 
    MOEBIUS2:def 2
    
      .=
    0 ; 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:9
    
    
    
    
    
    Harmon1: ( 
    Harmonic (n 
    + 1)) 
    = (( 
    Harmonic n) 
    + (1 
    / (n 
    + 1))) 
    
    proof
    
      ((
    Partial_Sums  
    invNAT ) 
    . (n 
    + 1)) 
    = ((( 
    Partial_Sums  
    invNAT ) 
    . n) 
    + ( 
    invNAT  
    . (n 
    + 1))) by 
    SERIES_1:def 1
    
      .= ((
    Harmonic n) 
    + (1 
    / (n 
    + 1))) by 
    MOEBIUS2:def 2;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:10
    
    
    
    
    
    Harm1: ( 
    Harmonic 1) 
    = 1 
    
    proof
    
      (
    Harmonic ( 
    0  
    + 1)) 
    = (( 
    Harmonic  
    0 ) 
    + (1 
    / ( 
    0  
    + 1))) by 
    Harmon1
    
      .= 1 by
    Harm0;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:11
    
    (
    Harmonic 2) 
    = (3 
    / 2) 
    
    proof
    
      (
    Harmonic (1 
    + 1)) 
    = (( 
    Harmonic 1) 
    + (1 
    / (1 
    + 1))) by 
    Harmon1
    
      .= (3
    / 2) by 
    Harm1;
    
      hence thesis;
    
    end;
    
    begin
    
    theorem :: 
    
    MOEBIUS3:12
    
    
    
    
    
    LogZero: ( 
    ln  
    . 1) 
    =  
    0  
    
    proof
    
      
    
      
    
    A2: 
    number_e  
    <> 1 by 
    TAYLOR_1: 11;
    
      
    
      
    
    A1: 1 
    in ( 
    right_open_halfline  
    0 ) by 
    XXREAL_1: 235;
    
      (
    ln  
    . 1) 
    = ( 
    log ( 
    number_e ,1)) by 
    A1,
    TAYLOR_1:def 2,
    TAYLOR_1:def 3
    
      .=
    0 by 
    TAYLOR_1: 11,
    A2,
    POWER: 51;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:13
    
    for x be
    Real st x 
    >  
    0 holds ( 
    exp_R  
    . x) 
    > (x 
    + 1) 
    
    proof
    
      let x be
    Real;
    
      assume
    
      
    
    AA: x 
    >  
    0 ; 
    
      set r = 1;
    
      set f = (
    Maclaurin ( 
    exp_R , 
    ].(
    - r), r.[,x)); 
    
      
    
      
    
    A4: ( 
    exp_R  
    . x) 
    = ( 
    Sum f) by 
    TAYLOR_2: 16;
    
      
    
      
    
    A2: (f 
    .  
    0 ) 
    = ((x 
    |^  
    0 ) 
    / ( 
    0  
    ! )) by 
    TAYLOR_2: 8
    
      .= 1 by
    NEWTON: 4,
    NEWTON: 12;
    
      
    
      
    
    A3: (f 
    . 1) 
    = ((x 
    |^ 1) 
    / (1 
    ! )) by 
    TAYLOR_2: 8
    
      .= x by
    NEWTON: 13;
    
      
    
      
    
    SS: f is 
    absolutely_summable by 
    TAYLOR_2: 16;
    
      
    
      then
    
      
    
    A6: ( 
    Sum f) 
    = ((( 
    Partial_Sums f) 
    . 1) 
    + ( 
    Sum (f 
    ^\ (1 
    + 1)))) by 
    SERIES_1: 15
    
      .= ((((
    Partial_Sums f) 
    .  
    0 ) 
    + (f 
    . ( 
    0  
    + 1))) 
    + ( 
    Sum (f 
    ^\ (1 
    + 1)))) by 
    SERIES_1:def 1
    
      .= ((1
    + x) 
    + ( 
    Sum (f 
    ^\ (1 
    + 1)))) by 
    A2,
    A3,
    SERIES_1:def 1;
    
      f is
    positive-yielding & f is 
    summable by 
    MacPositive,
    AA,
    SS;
    
      hence thesis by
    A4,
    A6,
    XREAL_1: 29,
    Th36;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:14
    
    
    
    
    
    Diesel1: for x be 
    Real st x 
    >  
    0 holds ( 
    ln  
    . (x 
    + 1)) 
    < x 
    
    proof
    
      let x be
    Real;
    
      assume x
    >  
    0 ; 
    
      then (x
    + 1) 
    > 1 by 
    XREAL_1: 29;
    
      then (
    ln  
    . (x 
    + 1)) 
    < ((x 
    + 1) 
    - 1) by 
    ENTROPY1: 2;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:15
    
    
    
    
    
    Diesel2: for n be 
    Nat st n 
    >  
    0 holds ( 
    ln  
    . ((n 
    + 1) 
    / n)) 
    < (1 
    / n) 
    
    proof
    
      let n be
    Nat;
    
      assume
    
      
    
    A1: n 
    >  
    0 ; 
    
      ((n
    + 1) 
    / n) 
    = ((n 
    / n) 
    + (1 
    / n)) by 
    XCMPLX_1: 62
    
      .= (1
    + (1 
    / n)) by 
    A1,
    XCMPLX_1: 60;
    
      hence thesis by
    Diesel1,
    A1;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:16
    
    
    
    
    
    LogExp: for x be 
    Real holds ( 
    ln  
    . ( 
    exp_R  
    . x)) 
    = x 
    
    proof
    
      let x be
    Real;
    
      
    
      
    
    A1: ( 
    exp_R  
    . x) 
    in ( 
    right_open_halfline  
    0 ) by 
    XXREAL_1: 235,
    SIN_COS: 54;
    
      (
    log ( 
    number_e ,( 
    exp_R  
    . x))) 
    = x by 
    TAYLOR_1: 13;
    
      hence thesis by
    A1,
    TAYLOR_1:def 3,
    TAYLOR_1:def 2;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:17
    
    
    
    
    
    LogMono: for x,y be 
    Real st 
    0  
    < x 
    < y holds ( 
    ln  
    . x) 
    < ( 
    ln  
    . y) 
    
    proof
    
      let x,y be
    Real;
    
      assume
    
      
    
    A1: 
    0  
    < x 
    < y; 
    
      then
    
      
    
    A2: x 
    in ( 
    right_open_halfline  
    0 ) & y 
    in ( 
    right_open_halfline  
    0 ) by 
    XXREAL_1: 235;
    
      
    number_e  
    > 1 by 
    XXREAL_0: 2,
    TAYLOR_1: 11;
    
      then (
    log ( 
    number_e ,x)) 
    < ( 
    log ( 
    number_e ,y)) by 
    A1,
    POWER: 57;
    
      then ((
    log_  
    number_e ) 
    . x) 
    < ( 
    log ( 
    number_e ,y)) by 
    A2,
    TAYLOR_1:def 2;
    
      hence thesis by
    TAYLOR_1:def 3,
    TAYLOR_1:def 2,
    A2;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:18
    
    for n be non
    zero  
    Nat holds ( 
    ln  
    . (n 
    + 1)) 
    >  
    0  
    
    proof
    
      let n be non
    zero  
    Nat;
    
      (
    0  
    + 1) 
    < (n 
    + 1) by 
    XREAL_1: 8;
    
      hence thesis by
    LogZero,
    LogMono;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:19
    
    
    
    
    
    LogAdd: for x,y be 
    Real st 
    0  
    < x & 
    0  
    < y holds ( 
    ln  
    . (x 
    * y)) 
    = (( 
    ln  
    . x) 
    + ( 
    ln  
    . y)) 
    
    proof
    
      let x,y be
    Real;
    
      assume
    
      
    
    A1: 
    0  
    < x & 
    0  
    < y; 
    
      then
    
      
    
    A2: x 
    in ( 
    right_open_halfline  
    0 ) & y 
    in ( 
    right_open_halfline  
    0 ) by 
    XXREAL_1: 235;
    
      
    
      
    
    a2: (x 
    * y) 
    in ( 
    right_open_halfline  
    0 ) by 
    XXREAL_1: 235,
    A1;
    
      
    
      
    
    A3: 
    number_e  
    > 1 by 
    XXREAL_0: 2,
    TAYLOR_1: 11;
    
      (
    ln  
    . (x 
    * y)) 
    = ( 
    log ( 
    number_e ,(x 
    * y))) by 
    a2,
    TAYLOR_1:def 2,
    TAYLOR_1:def 3
    
      .= ((
    log ( 
    number_e ,x)) 
    + ( 
    log ( 
    number_e ,y))) by 
    POWER: 53,
    A1,
    A3
    
      .= ((
    log ( 
    number_e ,x)) 
    + (( 
    log_  
    number_e ) 
    . y)) by 
    TAYLOR_1:def 2,
    A2
    
      .= ((
    ln  
    . x) 
    + ( 
    ln  
    . y)) by 
    TAYLOR_1:def 3,
    TAYLOR_1:def 2,
    A2;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:20
    
    for x be
    Real holds ex y be non 
    zero  
    Nat st x 
    < ( 
    ln  
    . ( 
    ln  
    . (y 
    + 1))) 
    
    proof
    
      let x be
    Real;
    
      set N =
    [/(
    exp_R  
    . ( 
    exp_R  
    . x))\]; 
    
      
    
      
    
    A1: ( 
    exp_R  
    . ( 
    exp_R  
    . x)) 
    >  
    0 by 
    SIN_COS: 54;
    
      then N
    >  
    0 by 
    INT_1:def 7;
    
      then N
    in  
    NAT by 
    INT_1: 3;
    
      then
    
      reconsider N as non
    zero  
    Nat by 
    SIN_COS: 54,
    INT_1:def 7;
    
      take N;
    
      
    
      
    
    A3: ( 
    exp_R  
    . x) 
    >  
    0 by 
    SIN_COS: 54;
    
      (
    ln  
    . ( 
    exp_R  
    . ( 
    exp_R  
    . x))) 
    < ( 
    ln  
    . (N 
    + 1)) by 
    A1,
    LogMono,
    INT_1: 32;
    
      then (
    exp_R  
    . x) 
    < ( 
    ln  
    . (N 
    + 1)) by 
    LogExp;
    
      then (
    ln  
    . ( 
    exp_R  
    . x)) 
    < ( 
    ln  
    . ( 
    ln  
    . (N 
    + 1))) by 
    A3,
    LogMono;
    
      hence thesis by
    LogExp;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:21
    
    
    
    
    
    Diesel3: for A be non 
    empty
    closed_interval  
    Subset of 
    REAL , Z be 
    open  
    Subset of 
    REAL , n be non 
    zero  
    Nat st Z 
    = ( 
    right_open_halfline  
    0 ) & A 
    =  
    [.n, (n
    + 1).] holds ( 
    integral ((( 
    id Z) 
    ^ ),A)) 
    < (1 
    / n) 
    
    proof
    
      let A be non
    empty
    closed_interval  
    Subset of 
    REAL , Z be 
    open  
    Subset of 
    REAL , n be non 
    zero  
    Nat;
    
      assume
    
      
    
    aa: Z 
    = ( 
    right_open_halfline  
    0 ) & A 
    =  
    [.n, (n
    + 1).]; 
    
      
    
      
    
    N1: not 
    0  
    in Z by 
    aa,
    XXREAL_1: 4;
    
      
    
      
    
    A1: A 
    c= Z 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    BB: x 
    in A; 
    
        then
    
        reconsider xx = x as
    Real;
    
        n
    <= xx & xx 
    <= (n 
    + 1) by 
    BB,
    aa,
    XXREAL_1: 1;
    
        hence thesis by
    aa,
    XXREAL_1: 235;
    
      end;
    
      set f = (
    id Z); 
    
      
    
      
    
    a3: ( 
    dom (f 
    ^ )) 
    = (( 
    dom f) 
    \ (f 
    "  
    {
    0 })) by 
    RFUNCT_1:def 2
    
      .= (Z
    \  
    {} ) by 
    Counter0,
    N1
    
      .= Z;
    
      
    
      
    
    B1: ( 
    lower_bound A) 
    = n by 
    aa,
    XREAL_1: 31,
    XXREAL_2: 25;
    
      
    
      
    
    B2: ( 
    upper_bound A) 
    = (n 
    + 1) by 
    aa,
    XREAL_1: 31,
    XXREAL_2: 29;
    
      (((
    id Z) 
    ^ ) 
    | A) is 
    continuous by 
    ContCut,
    A1,
    N1;
    
      
    
      then (
    integral ((( 
    id Z) 
    ^ ),A)) 
    = (( 
    ln  
    . ( 
    upper_bound A)) 
    - ( 
    ln  
    . ( 
    lower_bound A))) by 
    A1,
    aa,
    TAYLOR_1: 18,
    a3,
    INTEGRA9: 61
    
      .= (
    ln  
    . ((n 
    + 1) 
    / n)) by 
    B1,
    B2,
    DIFF_4: 4;
    
      hence thesis by
    Diesel2;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:22
    
    for n be non
    zero  
    Nat holds ( 
    ln  
    . (n 
    + 1)) 
    < ( 
    Harmonic n) 
    
    proof
    
      let n be non
    zero  
    Nat;
    
      set A =
    [.1, (n
    + 1).]; 
    
      (
    0  
    + 1) 
    <= (n 
    + 1) by 
    XREAL_1: 31;
    
      then
    
      reconsider A as non
    empty
    closed_interval  
    Subset of 
    REAL by 
    MEASURE5:def 3,
    XXREAL_1: 1;
    
      
    
      
    
    WA: A 
    =  
    ['1, (n
    + 1)'] by 
    XREAL_1: 31,
    INTEGRA5:def 3;
    
      reconsider Z = (
    right_open_halfline  
    0 ) as 
    open  
    Subset of 
    REAL ; 
    
      
    
      
    
    N1: not 
    0  
    in Z by 
    XXREAL_1: 4;
    
      
    
      
    
    A1: A 
    c= Z 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    a1: x 
    in A; 
    
        then
    
        reconsider xx = x as
    Real;
    
        1
    <= xx & xx 
    <= (n 
    + 1) by 
    a1,
    XXREAL_1: 1;
    
        hence thesis by
    XXREAL_1: 235;
    
      end;
    
      set f = (
    id Z); 
    
      
    
      
    
    NN: ( 
    dom (f 
    ^ )) 
    = (( 
    dom f) 
    \ (f 
    "  
    {
    0 })) by 
    RFUNCT_1:def 2
    
      .= (Z
    \  
    {} ) by 
    Counter0,
    N1
    
      .= Z;
    
      
    
      
    
    B1: ( 
    lower_bound A) 
    = 1 by 
    XREAL_1: 31,
    XXREAL_2: 25;
    
      
    
      
    
    B2: ( 
    upper_bound A) 
    = (n 
    + 1) by 
    XREAL_1: 31,
    XXREAL_2: 29;
    
      (((
    id Z) 
    ^ ) 
    | A) is 
    continuous by 
    ContCut,
    A1,
    N1;
    
      
    
      then
    
      
    
    KL: ( 
    integral ((( 
    id Z) 
    ^ ),A)) 
    = (( 
    ln  
    . ( 
    upper_bound A)) 
    - ( 
    ln  
    . ( 
    lower_bound A))) by 
    A1,
    TAYLOR_1: 18,
    NN,
    INTEGRA9: 61
    
      .= ((
    ln  
    . (n 
    + 1)) 
    - (1 
    - 1)) by 
    ENTROPY1: 2,
    B1,
    B2
    
      .= (
    ln  
    . (n 
    + 1)); 
    
      set g = ((
    id Z) 
    ^ ); 
    
      defpred
    
    P[
    Nat] means (
    integral (g,1,($1 
    + 1))) 
    < ( 
    Harmonic $1); 
    
      reconsider AA =
    ['1, (1
    + 1)'] as non 
    empty
    closed_interval  
    Subset of 
    REAL ; 
    
      AA
    =  
    [.1, (1
    + 1).] by 
    INTEGRA5:def 3;
    
      then (
    integral (g,AA)) 
    < (1 
    / 1) by 
    Diesel3;
    
      then
    
      
    
    I1: 
    P[1] by
    Harm1,
    INTEGRA5:def 4;
    
      
    
      
    
    I2: for k be non 
    zero  
    Nat st 
    P[k] holds
    P[(k
    + 1)] 
    
      proof
    
        let k be non
    zero  
    Nat;
    
        assume
    
        
    
    s0: 
    P[k];
    
        set a = 1, b = ((k
    + 1) 
    + 1), c = (k 
    + 1); 
    
        
    
        
    
    W0: a 
    <= b by 
    XREAL_1: 31;
    
        
    
        
    
    Za: 
    [.a, b.]
    c=  
    ].
    0 , 
    +infty .[ by 
    XXREAL_1: 249;
    
        then
    
        
    
    W3: 
    ['a, b']
    c= ( 
    dom g) by 
    XREAL_1: 31,
    INTEGRA5:def 3,
    NN;
    
        set B =
    ['a, b'];
    
        B
    c= Z by 
    Za,
    INTEGRA5:def 3,
    XREAL_1: 31;
    
        then
    
        
    
    v1: ((( 
    id Z) 
    ^ ) 
    | B) is 
    continuous by 
    ContCut,
    N1;
    
        then
    
        
    
    W2: g 
    is_integrable_on  
    ['a, b'] by
    INTEGRA5: 11,
    W3;
    
        
    
        
    
    W4: (g 
    |  
    ['a, b']) is
    bounded by 
    INTEGRA5: 10,
    W3,
    v1;
    
        a
    <= c & c 
    <= b by 
    XREAL_1: 31;
    
        then c
    in  
    [.a, b.] by
    XXREAL_1: 1;
    
        then c
    in  
    ['a, b'] by
    XREAL_1: 31,
    INTEGRA5:def 3;
    
        then
    
        
    
    W1: ( 
    integral (g,a,b)) 
    = (( 
    integral (g,a,c)) 
    + ( 
    integral (g,c,b))) by 
    W0,
    W2,
    W3,
    W4,
    INTEGRA6: 17;
    
        set AB =
    ['(k
    + 1), ((k 
    + 1) 
    + 1)']; 
    
        AB
    =  
    [.(k
    + 1), ((k 
    + 1) 
    + 1).] by 
    INTEGRA5:def 3,
    NAT_1: 11;
    
        then (
    integral (g,AB)) 
    < (1 
    / (k 
    + 1)) by 
    Diesel3;
    
        then (
    integral (g,(k 
    + 1),((k 
    + 1) 
    + 1))) 
    < (1 
    / (k 
    + 1)) by 
    NAT_1: 11,
    INTEGRA5:def 4;
    
        then ((
    integral (g,1,(k 
    + 1))) 
    + ( 
    integral (g,(k 
    + 1),((k 
    + 1) 
    + 1)))) 
    < (( 
    Harmonic k) 
    + (1 
    / (k 
    + 1))) by 
    s0,
    XREAL_1: 8;
    
        hence thesis by
    Harmon1,
    W1;
    
      end;
    
      
    
      
    
    KK: for n be non 
    zero  
    Nat holds 
    P[n] from
    NAT_1:sch 10(
    I1,
    I2);
    
      (
    integral (g,1,(n 
    + 1))) 
    < ( 
    Harmonic n) by 
    KK;
    
      hence thesis by
    KL,
    INTEGRA5:def 4,
    WA,
    XREAL_1: 31;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:23
    
    for n1,n2 be
    Nat st (n1 
    ^2 ) 
    = (n2 
    ^2 ) holds n1 
    = n2 
    
    proof
    
      let n1,n2 be
    Nat;
    
      assume (n1
    ^2 ) 
    = (n2 
    ^2 ); 
    
      then n1
    = ( 
    sqrt (n2 
    ^2 )) by 
    SQUARE_1: 22;
    
      hence thesis by
    SQUARE_1: 22;
    
    end;
    
    registration
    
      let n be non
    trivial  
    Nat;
    
      cluster (n 
    ^2 ) -> non 
    trivial;
    
      coherence
    
      proof
    
        n
    >= (1 
    + 1) by 
    NAT_2: 29;
    
        then
    
        
    
    A1: n 
    > 1 by 
    NAT_1: 13;
    
        then (n
    ^2 ) 
    > n by 
    SQUARE_1: 14;
    
        hence thesis by
    NAT_2: 28,
    A1;
    
      end;
    
    end
    
    ::$Notion-Name
    
    theorem :: 
    
    MOEBIUS3:24
    
    
    
    
    
    Telescoping: for a,b,s be 
    Real_Sequence st (for n be 
    Nat holds (s 
    . n) 
    = ((a 
    . n) 
    + (b 
    . n))) & (for k be 
    Nat holds (b 
    . k) 
    = ( 
    - (a 
    . (k 
    + 1)))) holds for n be 
    Nat holds (( 
    Partial_Sums s) 
    . n) 
    = ((a 
    .  
    0 ) 
    + (b 
    . n)) 
    
    proof
    
      let a,b,s be
    Real_Sequence;
    
      assume that
    
      
    
    Z1: (for n be 
    Nat holds (s 
    . n) 
    = ((a 
    . n) 
    + (b 
    . n))) and 
    
      
    
    Z2: (for k be 
    Nat holds (b 
    . k) 
    = ( 
    - (a 
    . (k 
    + 1)))); 
    
      let n be
    Nat;
    
      defpred
    
    P[
    Nat] means ((
    Partial_Sums s) 
    . $1) 
    = ((a 
    .  
    0 ) 
    + (b 
    . $1)); 
    
      ((
    Partial_Sums s) 
    .  
    0 ) 
    = (s 
    .  
    0 ) by 
    SERIES_1:def 1
    
      .= ((a
    .  
    0 ) 
    + (b 
    .  
    0 )) by 
    Z1;
    
      then
    
      
    
    A1: 
    P[
    0 ]; 
    
      
    
      
    
    A2: for k be 
    Nat st 
    P[k] holds
    P[(k
    + 1)] 
    
      proof
    
        let k be
    Nat;
    
        assume
    P[k];
    
        
    
        then ((
    Partial_Sums s) 
    . (k 
    + 1)) 
    = (((a 
    .  
    0 ) 
    + (b 
    . k)) 
    + (s 
    . (k 
    + 1))) by 
    SERIES_1:def 1
    
        .= (((a
    .  
    0 ) 
    + (b 
    . k)) 
    + ((a 
    . (k 
    + 1)) 
    + (b 
    . (k 
    + 1)))) by 
    Z1
    
        .= (((a
    .  
    0 ) 
    + ( 
    - (a 
    . (k 
    + 1)))) 
    + ((a 
    . (k 
    + 1)) 
    + (b 
    . (k 
    + 1)))) by 
    Z2
    
        .= ((a
    .  
    0 ) 
    + (b 
    . (k 
    + 1))); 
    
        hence thesis;
    
      end;
    
      for n be
    Nat holds 
    P[n] from
    NAT_1:sch 2(
    A1,
    A2);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:25
    
    
    
    
    
    Impor3: for f1,f2 be 
    Real_Sequence, n be non 
    trivial  
    Nat st (for k be non 
    trivial  
    Nat st k 
    <= n holds (f1 
    . k) 
    < (f2 
    . k)) holds ( 
    Sum (f1,n,1)) 
    < ( 
    Sum (f2,n,1)) 
    
    proof
    
      let f1,f2 be
    Real_Sequence, n be non 
    trivial  
    Nat;
    
      assume
    
      
    
    A1: for k be non 
    trivial  
    Nat st k 
    <= n holds (f1 
    . k) 
    < (f2 
    . k); 
    
      defpred
    
    X[
    Nat] means (for k be non
    trivial  
    Nat st k 
    <= $1 holds (f1 
    . k) 
    < (f2 
    . k)) implies ((( 
    Partial_Sums f1) 
    . $1) 
    - (( 
    Partial_Sums f1) 
    . 1)) 
    < ((( 
    Partial_Sums f2) 
    . $1) 
    - (( 
    Partial_Sums f2) 
    . 1)); 
    
      ((
    Partial_Sums f1) 
    . 2) 
    = ((( 
    Partial_Sums f1) 
    . 1) 
    + (f1 
    . (1 
    + 1))) & (( 
    Partial_Sums f2) 
    . 2) 
    = ((( 
    Partial_Sums f2) 
    . 1) 
    + (f2 
    . (1 
    + 1))) by 
    SERIES_1:def 1;
    
      then
    
      
    
    a1: 
    X[2];
    
      
    
      
    
    A2: for n be non 
    trivial  
    Nat st 
    X[n] holds
    X[(n
    + 1)] 
    
      proof
    
        let n be non
    trivial  
    Nat such that 
    
        
    
    A3: 
    X[n];
    
        assume
    
        
    
    B1: for k be non 
    trivial  
    Nat st k 
    <= (n 
    + 1) holds (f1 
    . k) 
    < (f2 
    . k); 
    
        
    
        
    
    A4: (f1 
    . (n 
    + 1)) 
    < (f2 
    . (n 
    + 1)) by 
    B1;
    
        
    
        
    
    ZZ: (( 
    Partial_Sums f1) 
    . (n 
    + 1)) 
    = ((( 
    Partial_Sums f1) 
    . n) 
    + (f1 
    . (n 
    + 1))) & (( 
    Partial_Sums f2) 
    . (n 
    + 1)) 
    = ((( 
    Partial_Sums f2) 
    . n) 
    + (f2 
    . (n 
    + 1))) by 
    SERIES_1:def 1;
    
        
    
        
    
    G1: n 
    <= (n 
    + 1) by 
    NAT_1: 11;
    
        for k be non
    trivial  
    Nat st k 
    <= n holds (f1 
    . k) 
    < (f2 
    . k) 
    
        proof
    
          let k be non
    trivial  
    Nat;
    
          assume k
    <= n; 
    
          then k
    <= (n 
    + 1) by 
    G1,
    XXREAL_0: 2;
    
          hence thesis by
    B1;
    
        end;
    
        then ((f1
    . (n 
    + 1)) 
    + ((( 
    Partial_Sums f1) 
    . n) 
    - (( 
    Partial_Sums f1) 
    . 1))) 
    < ((f2 
    . (n 
    + 1)) 
    + ((( 
    Partial_Sums f2) 
    . n) 
    - (( 
    Partial_Sums f2) 
    . 1))) by 
    A3,
    A4,
    XREAL_1: 8;
    
        hence thesis by
    ZZ;
    
      end;
    
      for n be non
    trivial  
    Nat holds 
    X[n] from
    NAT_2:sch 2(
    a1,
    A2);
    
      hence thesis by
    A1;
    
    end;
    
    begin
    
    definition
    
      :: 
    
    MOEBIUS3:def2
    
      func
    
    Reci-seq1 -> 
    Real_Sequence means 
    
      :
    
    MyDef: for n be 
    Nat holds (it 
    . n) 
    = (1 
    / ((n 
    ^2 ) 
    - (1 
    / 4))); 
    
      existence
    
      proof
    
        deffunc
    
    F(
    Nat) = (1
    / (($1 
    ^2 ) 
    - (1 
    / 4))); 
    
        ex f be
    Real_Sequence st for n be 
    Nat holds (f 
    . n) 
    =  
    F(n) from
    SEQ_1:sch 1;
    
        hence thesis;
    
      end;
    
      uniqueness
    
      proof
    
        deffunc
    
    F(
    Nat) = (1
    / (($1 
    ^2 ) 
    - (1 
    / 4))); 
    
        let f1,f2 be
    Real_Sequence such that 
    
        
    
    A1: (f1 
    . n) 
    =  
    F(n) and
    
        
    
    A2: (f2 
    . n) 
    =  
    F(n);
    
        let n be
    Element of 
    NAT ; 
    
        
    
        thus (f1
    . n) 
    =  
    F(n) by
    A1
    
        .= (f2
    . n) by 
    A2;
    
      end;
    
    end
    
    theorem :: 
    
    MOEBIUS3:26
    
    
    
    
    
    Tele1: for n be 
    Nat holds ( 
    Reci-seq1  
    . n) 
    = ((1 
    / (n 
    - (1 
    / 2))) 
    - (1 
    / (n 
    + (1 
    / 2)))) 
    
    proof
    
      let n be
    Nat;
    
      set a = (1
    / 2); 
    
       not (1
    / 2) is 
    Nat
    
      proof
    
        assume
    
        
    
    A4: (1 
    / 2) is 
    Nat;
    
        
    0  
    <= (1 
    / 2) & (1 
    / 2) 
    <= ( 
    0  
    + 1); 
    
        hence thesis by
    A4,
    NAT_1: 9;
    
      end;
    
      then
    
      
    
    A2: (n 
    - a) 
    <>  
    0 ; 
    
      ((1
    / (n 
    - a)) 
    - (1 
    / (n 
    + a))) 
    = (((1 
    * (n 
    + a)) 
    / ((n 
    - a) 
    * (n 
    + a))) 
    - (1 
    / (n 
    + a))) by 
    XCMPLX_1: 91
    
      .= (((1
    * (n 
    + a)) 
    / ((n 
    - a) 
    * (n 
    + a))) 
    - ((1 
    * (n 
    - a)) 
    / ((n 
    + a) 
    * (n 
    - a)))) by 
    A2,
    XCMPLX_1: 91
    
      .= (((n
    + a) 
    - (n 
    - a)) 
    / ((n 
    + a) 
    * (n 
    - a))) by 
    XCMPLX_1: 120
    
      .= (1
    / ((n 
    ^2 ) 
    - (1 
    / 4))); 
    
      hence thesis by
    MyDef;
    
    end;
    
    
    
    
    
    AlgDef: for n be 
    Nat, a,b be 
    Real holds (( 
    rseq ( 
    0 ,1,a,b)) 
    . n) 
    = (1 
    / ((a 
    * n) 
    + b)) 
    
    proof
    
      let n be
    Nat, a,b be 
    Real;
    
      ((
    rseq ( 
    0 ,1,a,b)) 
    . n) 
    = ((( 
    0  
    * n) 
    + 1) 
    / ((a 
    * n) 
    + b)) by 
    BASEL_1: 5;
    
      hence thesis;
    
    end;
    
    
    
    
    
    Tele2: for n be 
    Nat holds ( 
    Reci-seq1  
    . n) 
    = ((( 
    rseq ( 
    0 ,1,1,( 
    - (1 
    / 2)))) 
    . n) 
    + (( 
    - ( 
    rseq ( 
    0 ,1,1,(1 
    / 2)))) 
    . n)) 
    
    proof
    
      let n be
    Nat;
    
      
    
      
    
    A3: ( 
    Reci-seq1  
    . n) 
    = ((1 
    / (n 
    - (1 
    / 2))) 
    - (1 
    / (n 
    + (1 
    / 2)))) by 
    Tele1
    
      .= ((1
    / (n 
    - (1 
    / 2))) 
    + ( 
    - (1 
    / (n 
    + (1 
    / 2))))); 
    
      
    
      
    
    A1: (( 
    rseq ( 
    0 ,1,1,( 
    - (1 
    / 2)))) 
    . n) 
    = (1 
    / ((1 
    * n) 
    + ( 
    - (1 
    / 2)))) by 
    AlgDef;
    
      ((
    - ( 
    rseq ( 
    0 ,1,1,(1 
    / 2)))) 
    . n) 
    = ( 
    - (( 
    rseq ( 
    0 ,1,1,(1 
    / 2))) 
    . n)) by 
    VALUED_1: 8
    
      .= (
    - (1 
    / ((1 
    * n) 
    + (1 
    / 2)))) by 
    AlgDef;
    
      hence thesis by
    A1,
    A3;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:27
    
    
    Reci-seq1  
    = (( 
    rseq ( 
    0 ,1,1,( 
    - (1 
    / 2)))) 
    + ( 
    - ( 
    rseq ( 
    0 ,1,1,(1 
    / 2))))) by 
    SEQ_1: 7,
    Tele2;
    
    theorem :: 
    
    MOEBIUS3:28
    
    for n be
    Nat holds (( 
    Partial_Sums  
    Reci-seq1 ) 
    . n) 
    < ( 
    - 2) 
    
    proof
    
      let n be
    Nat;
    
      set s =
    Reci-seq1 ; 
    
      set a = (
    rseq ( 
    0 ,1,1,( 
    - (1 
    / 2)))); 
    
      set b = (
    - ( 
    rseq ( 
    0 ,1,1,(1 
    / 2)))); 
    
      
    
      
    
    ff: for k be 
    Nat holds (b 
    . k) 
    = ( 
    - (a 
    . (k 
    + 1))) 
    
      proof
    
        let k be
    Nat;
    
        (b
    . k) 
    = ( 
    - (( 
    rseq ( 
    0 ,1,1,(1 
    / 2))) 
    . k)) by 
    VALUED_1: 8
    
        .= (
    - (1 
    / ((1 
    * k) 
    + (1 
    / 2)))) by 
    AlgDef
    
        .= (
    - (1 
    / ((1 
    * (k 
    + 1)) 
    + ( 
    - (1 
    / 2))))) 
    
        .= (
    - (a 
    . (k 
    + 1))) by 
    AlgDef;
    
        hence thesis;
    
      end;
    
      
    
      
    
    w3: (a 
    .  
    0 ) 
    = (1 
    / ((1 
    *  
    0 ) 
    + ( 
    - (1 
    / 2)))) by 
    AlgDef
    
      .= (
    - 2); 
    
      (b
    . n) 
    = ( 
    - (( 
    rseq ( 
    0 ,1,1,(1 
    / 2))) 
    . n)) by 
    VALUED_1: 8
    
      .= (
    - (1 
    / ((1 
    * n) 
    + (1 
    / 2)))) by 
    AlgDef
    
      .= (
    - (1 
    / (n 
    + (1 
    / 2)))); 
    
      then ((
    - 2) 
    + (b 
    . n)) 
    < (( 
    - 2) 
    +  
    0 ) by 
    XREAL_1: 8;
    
      hence thesis by
    w3,
    ff,
    Telescoping,
    Tele2;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:29
    
    
    
    
    
    Seq3: for n be 
    Nat holds ( 
    Sum ( 
    Reci-seq1 ,n,1)) 
    < (2 
    / 3) 
    
    proof
    
      let n be
    Nat;
    
      set s =
    Reci-seq1 ; 
    
      set a = (
    rseq ( 
    0 ,1,1,( 
    - (1 
    / 2)))); 
    
      set b = (
    - ( 
    rseq ( 
    0 ,1,1,(1 
    / 2)))); 
    
      
    
      
    
    ff: for k be 
    Nat holds (b 
    . k) 
    = ( 
    - (a 
    . (k 
    + 1))) 
    
      proof
    
        let k be
    Nat;
    
        (b
    . k) 
    = ( 
    - (( 
    rseq ( 
    0 ,1,1,(1 
    / 2))) 
    . k)) by 
    VALUED_1: 8
    
        .= (
    - (1 
    / ((1 
    * k) 
    + (1 
    / 2)))) by 
    AlgDef
    
        .= (
    - (1 
    / ((1 
    * (k 
    + 1)) 
    + ( 
    - (1 
    / 2))))) 
    
        .= (
    - (a 
    . (k 
    + 1))) by 
    AlgDef;
    
        hence thesis;
    
      end;
    
      
    
      
    
    W2: (a 
    .  
    0 ) 
    = (1 
    / ((1 
    *  
    0 ) 
    + ( 
    - (1 
    / 2)))) by 
    AlgDef
    
      .= (
    - 2); 
    
      
    
      
    
    V1: (a 
    . 1) 
    = (1 
    / ((1 
    * 1) 
    + ( 
    - (1 
    / 2)))) by 
    AlgDef
    
      .= 2;
    
      
    
      
    
    V2: (b 
    .  
    0 ) 
    = ( 
    - (( 
    rseq ( 
    0 ,1,1,(1 
    / 2))) 
    .  
    0 )) by 
    VALUED_1: 8
    
      .= (
    - (1 
    / ((1 
    *  
    0 ) 
    + (1 
    / 2)))) by 
    AlgDef
    
      .= (
    - 2); 
    
      
    
      
    
    V3: (b 
    . 1) 
    = ( 
    - (( 
    rseq ( 
    0 ,1,1,(1 
    / 2))) 
    . 1)) by 
    VALUED_1: 8
    
      .= (
    - (1 
    / ((1 
    * 1) 
    + (1 
    / 2)))) by 
    AlgDef
    
      .= (
    - (2 
    / 3)); 
    
      (s
    .  
    0 ) 
    = ((a 
    .  
    0 ) 
    + (b 
    .  
    0 )) by 
    Tele2;
    
      
    
      then
    
      
    
    V4: ((s 
    .  
    0 ) 
    + (s 
    . 1)) 
    = (((a 
    .  
    0 ) 
    + (b 
    .  
    0 )) 
    + ((a 
    . 1) 
    + (b 
    . 1))) by 
    Tele2
    
      .= ((
    - 2) 
    + ( 
    - (2 
    / 3))) by 
    V1,
    V3,
    W2,
    V2;
    
      
    
      
    
    V5: (( 
    Partial_Sums s) 
    . 1) 
    = ((( 
    Partial_Sums s) 
    .  
    0 ) 
    + (s 
    . ( 
    0  
    + 1))) by 
    SERIES_1:def 1
    
      .= ((
    - 2) 
    + ( 
    - (2 
    / 3))) by 
    V4,
    SERIES_1:def 1;
    
      
    
      
    
    W1: (b 
    . n) 
    = ( 
    - (( 
    rseq ( 
    0 ,1,1,(1 
    / 2))) 
    . n)) by 
    VALUED_1: 8
    
      .= (
    - (1 
    / ((1 
    * n) 
    + (1 
    / 2)))) by 
    AlgDef
    
      .= (
    - (1 
    / (n 
    + (1 
    / 2)))); 
    
      
    
      
    
    W3: (( 
    Partial_Sums s) 
    . n) 
    = (( 
    - 2) 
    + (b 
    . n)) by 
    W2,
    ff,
    Telescoping,
    Tele2;
    
      ((b
    . n) 
    + (2 
    / 3)) 
    < ( 
    0  
    + (2 
    / 3)) by 
    XREAL_1: 8,
    W1;
    
      hence thesis by
    W3,
    V5;
    
    end;
    
    registration
    
      cluster 
    Basel-seq -> 
    summable;
    
      coherence
    
      proof
    
        for n be
    Nat st n 
    >= 1 holds ( 
    Basel-seq  
    . n) 
    = (1 
    / (n 
    to_power 2)) 
    
        proof
    
          let n be
    Nat;
    
          assume n
    >= 1; 
    
          (
    Basel-seq  
    . n) 
    = (1 
    / (n 
    ^2 )) by 
    BASEL_1: 31
    
          .= (1
    / (n 
    to_power 2)) by 
    NEWTON: 81;
    
          hence thesis;
    
        end;
    
        hence thesis by
    SERIES_1: 32;
    
      end;
    
    end
    
    theorem :: 
    
    MOEBIUS3:30
    
    for n be
    Nat holds (( 
    Partial_Sums  
    Reci-seq1 ) 
    . n) 
    = (( 
    - 2) 
    + ( 
    - (1 
    / (n 
    + (1 
    / 2))))) 
    
    proof
    
      let n be
    Nat;
    
      set s =
    Reci-seq1 ; 
    
      set a = (
    rseq ( 
    0 ,1,1,( 
    - (1 
    / 2)))); 
    
      set b = (
    - ( 
    rseq ( 
    0 ,1,1,(1 
    / 2)))); 
    
      
    
      
    
    ff: for k be 
    Nat holds (b 
    . k) 
    = ( 
    - (a 
    . (k 
    + 1))) 
    
      proof
    
        let k be
    Nat;
    
        (b
    . k) 
    = ( 
    - (( 
    rseq ( 
    0 ,1,1,(1 
    / 2))) 
    . k)) by 
    VALUED_1: 8
    
        .= (
    - (1 
    / ((1 
    * k) 
    + (1 
    / 2)))) by 
    AlgDef
    
        .= (
    - (1 
    / ((1 
    * (k 
    + 1)) 
    + ( 
    - (1 
    / 2))))) 
    
        .= (
    - (a 
    . (k 
    + 1))) by 
    AlgDef;
    
        hence thesis;
    
      end;
    
      
    
      
    
    W2: (a 
    .  
    0 ) 
    = (1 
    / ((1 
    *  
    0 ) 
    + ( 
    - (1 
    / 2)))) by 
    AlgDef
    
      .= (
    - 2); 
    
      (b
    . n) 
    = ( 
    - (( 
    rseq ( 
    0 ,1,1,(1 
    / 2))) 
    . n)) by 
    VALUED_1: 8
    
      .= (
    - (1 
    / ((1 
    * n) 
    + (1 
    / 2)))) by 
    AlgDef
    
      .= (
    - (1 
    / (n 
    + (1 
    / 2)))); 
    
      hence thesis by
    W2,
    ff,
    Telescoping,
    Tele2;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:31
    
    
    
    
    
    Impor2: for n be non 
    trivial  
    Nat holds ( 
    Sum ( 
    Basel-seq ,n,1)) 
    < ( 
    Sum ( 
    Reci-seq1 ,n,1)) 
    
    proof
    
      let n be non
    trivial  
    Nat;
    
      for k be non
    trivial  
    Nat st k 
    <= n holds ( 
    Basel-seq  
    . k) 
    < ( 
    Reci-seq1  
    . k) 
    
      proof
    
        let k be non
    trivial  
    Nat;
    
        assume k
    <= n; 
    
        
    
        
    
    Z1: ( 
    Basel-seq  
    . k) 
    = (1 
    / (k 
    ^2 )) by 
    BASEL_1: 31;
    
        
    
        
    
    Z2: ( 
    Reci-seq1  
    . k) 
    = (1 
    / ((k 
    ^2 ) 
    - (1 
    / 4))) by 
    MyDef;
    
        k
    >= (1 
    + 1) by 
    NAT_2: 29;
    
        then k
    > 1 by 
    NAT_1: 13;
    
        then (k
    ^2 ) 
    > (1 
    ^2 ) by 
    SQUARE_1: 16;
    
        then ((k
    ^2 ) 
    - (1 
    / 4)) 
    > (1 
    - (1 
    / 4)) by 
    XREAL_1: 14;
    
        then ((k
    ^2 ) 
    - (1 
    / 4)) 
    > (3 
    / 4); 
    
        hence thesis by
    Z1,
    Z2,
    XREAL_1: 76,
    XREAL_1: 44;
    
      end;
    
      hence thesis by
    Impor3;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:32
    
    
    
    
    
    Important: for n be non 
    trivial  
    Nat holds ( 
    Sum ( 
    Basel-seq ,n)) 
    < (5 
    / 3) 
    
    proof
    
      let n be non
    trivial  
    Nat;
    
      
    
      
    
    Z2: ( 
    Sum ( 
    Basel-seq ,n)) 
    = ((( 
    Partial_Sums  
    Basel-seq ) 
    . ( 
    0  
    + 1)) 
    + ((( 
    Partial_Sums  
    Basel-seq ) 
    . n) 
    - (( 
    Partial_Sums  
    Basel-seq ) 
    . 1))) 
    
      .= ((((
    Partial_Sums  
    Basel-seq ) 
    .  
    0 ) 
    + ( 
    Basel-seq  
    . 1)) 
    + ((( 
    Partial_Sums  
    Basel-seq ) 
    . n) 
    - (( 
    Partial_Sums  
    Basel-seq ) 
    . 1))) by 
    SERIES_1:def 1
    
      .= (((
    Basel-seq  
    .  
    0 ) 
    + ( 
    Basel-seq  
    . 1)) 
    + ((( 
    Partial_Sums  
    Basel-seq ) 
    . n) 
    - (( 
    Partial_Sums  
    Basel-seq ) 
    . 1))) by 
    SERIES_1:def 1
    
      .= (((1
    / ( 
    0  
    ^2 )) 
    + ( 
    Basel-seq  
    . 1)) 
    + ( 
    Sum ( 
    Basel-seq ,n,1))) by 
    BASEL_1: 31
    
      .= (((1
    /  
    0 ) 
    + (1 
    / (1 
    ^2 ))) 
    + ( 
    Sum ( 
    Basel-seq ,n,1))) by 
    BASEL_1: 31
    
      .= (1
    + ( 
    Sum ( 
    Basel-seq ,n,1))); 
    
      
    
      
    
    Z5: ( 
    Sum ( 
    Basel-seq ,n)) 
    < (1 
    + ( 
    Sum ( 
    Reci-seq1 ,n,1))) by 
    Z2,
    XREAL_1: 8,
    Impor2;
    
      (1
    + ( 
    Sum ( 
    Reci-seq1 ,n,1))) 
    < (1 
    + (2 
    / 3)) by 
    XREAL_1: 8,
    Seq3;
    
      hence thesis by
    Z5,
    XXREAL_0: 2;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:33
    
    ((
    Partial_Sums  
    Basel-seq ) 
    . n) 
    < (5 
    / 3) 
    
    proof
    
      per cases by
    NAT_2: 28;
    
        suppose n is non
    trivial;
    
        then (
    Sum ( 
    Basel-seq ,n)) 
    < (5 
    / 3) by 
    Important;
    
        hence thesis;
    
      end;
    
        suppose n
    =  
    0 ; 
    
        
    
        then ((
    Partial_Sums  
    Basel-seq ) 
    . n) 
    = ( 
    Basel-seq  
    .  
    0 ) by 
    SERIES_1:def 1
    
        .= (1
    / ( 
    0  
    ^2 )) by 
    BASEL_1: 31
    
        .=
    0 ; 
    
        hence thesis;
    
      end;
    
        suppose
    
        
    
    F: n 
    = 1; 
    
        ((
    Partial_Sums  
    Basel-seq ) 
    . ( 
    0  
    + 1)) 
    = ((( 
    Partial_Sums  
    Basel-seq ) 
    .  
    0 ) 
    + ( 
    Basel-seq  
    . 1)) by 
    SERIES_1:def 1
    
        .= ((
    Basel-seq  
    .  
    0 ) 
    + ( 
    Basel-seq  
    . 1)) by 
    SERIES_1:def 1
    
        .= ((1
    / ( 
    0  
    ^2 )) 
    + ( 
    Basel-seq  
    . 1)) by 
    BASEL_1: 31
    
        .= (
    0  
    + ( 
    Basel-seq  
    . 1)) 
    
        .= (
    0  
    + (1 
    / (1 
    ^2 ))) by 
    BASEL_1: 31
    
        .= 1;
    
        hence thesis by
    F;
    
      end;
    
    end;
    
    definition
    
      :: 
    
    MOEBIUS3:def3
    
      func
    
    Reci-seq2 -> 
    Real_Sequence means 
    
      :
    
    My3Def: for n be 
    Nat holds (it 
    . n) 
    = (1 
    + (1 
    / ( 
    primenumber n))); 
    
      existence
    
      proof
    
        deffunc
    
    F(
    Nat) = (1
    + (1 
    / ( 
    primenumber $1))); 
    
        ex f be
    Real_Sequence st for n be 
    Nat holds (f 
    . n) 
    =  
    F(n) from
    SEQ_1:sch 1;
    
        hence thesis;
    
      end;
    
      uniqueness
    
      proof
    
        deffunc
    
    F(
    Nat) = (1
    + (1 
    / ( 
    primenumber $1))); 
    
        let f1,f2 be
    Real_Sequence such that 
    
        
    
    A1: (f1 
    . n) 
    =  
    F(n) and
    
        
    
    A2: (f2 
    . n) 
    =  
    F(n);
    
        let n be
    Element of 
    NAT ; 
    
        
    
        thus (f1
    . n) 
    =  
    F(n) by
    A1
    
        .= (f2
    . n) by 
    A2;
    
      end;
    
    end
    
    theorem :: 
    
    MOEBIUS3:34
    
    (
    Sum ( 
    Sgm  
    {1}))
    = 1 
    
    proof
    
      (
    Sum  
    <*1*>)
    = 1; 
    
      hence thesis by
    FINSEQ_3: 44;
    
    end;
    
    definition
    
      let n be
    Nat;
    
      :: 
    
    MOEBIUS3:def4
    
      func
    
    SetPrimes n -> 
    Subset of 
    NAT equals ( 
    SetPrimes  
    /\ ( 
    Seg n)); 
    
      coherence ;
    
    end
    
    registration
    
      let n be
    Nat;
    
      cluster ( 
    SetPrimes n) -> 
    finite;
    
      coherence ;
    
    end
    
    theorem :: 
    
    MOEBIUS3:35
    
    for m,n be
    Nat st m 
    <= n holds ( 
    SetPrimes m) 
    c= ( 
    SetPrimes n) by 
    XBOOLE_1: 26,
    FINSEQ_1: 5;
    
    theorem :: 
    
    MOEBIUS3:36
    
    
    
    
    
    PrimesSet: not (n 
    + 1) is 
    Prime implies ( 
    SetPrimes (n 
    + 1)) 
    = ( 
    SetPrimes n) 
    
    proof
    
      
    
      
    
    A1: ( 
    SetPrimes (n 
    + 1)) 
    = ( 
    SetPrimes  
    /\ (( 
    Seg n) 
    \/  
    {(n
    + 1)})) by 
    FINSEQ_1: 9
    
      .= ((
    SetPrimes n) 
    \/ ( 
    SetPrimes  
    /\  
    {(n
    + 1)})) by 
    XBOOLE_1: 23;
    
      assume not (n
    + 1) is 
    Prime;
    
      then not (n
    + 1) 
    in  
    SetPrimes by 
    NEWTON:def 6;
    
      then (
    SetPrimes  
    /\  
    {(n
    + 1)}) 
    =  
    {} by 
    XBOOLE_0:def 7,
    ZFMISC_1: 50;
    
      hence (
    SetPrimes (n 
    + 1)) 
    = ( 
    SetPrimes n) by 
    A1;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:37
    
    
    
    
    
    SetPrime1: ( 
    SetPrimes  
    0 ) 
    =  
    {} & ( 
    SetPrimes 1) 
    =  
    {}  
    
    proof
    
       not (
    0  
    + 1) is 
    Prime by 
    INT_2:def 4;
    
      then (
    SetPrimes ( 
    0  
    + 1)) 
    = ( 
    SetPrimes  
    0 ) by 
    PrimesSet;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:38
    
    
    
    
    
    PrimesSet2: (n 
    + 1) is 
    Prime implies ( 
    SetPrimes (n 
    + 1)) 
    = (( 
    SetPrimes n) 
    \/  
    {(n
    + 1)}) 
    
    proof
    
      
    
      
    
    A1: ( 
    SetPrimes (n 
    + 1)) 
    = ( 
    SetPrimes  
    /\ (( 
    Seg n) 
    \/  
    {(n
    + 1)})) by 
    FINSEQ_1: 9
    
      .= ((
    SetPrimes n) 
    \/ ( 
    SetPrimes  
    /\  
    {(n
    + 1)})) by 
    XBOOLE_1: 23;
    
      assume (n
    + 1) is 
    Prime;
    
      then (n
    + 1) 
    in  
    SetPrimes by 
    NEWTON:def 6;
    
      hence thesis by
    A1,
    ZFMISC_1: 46;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:39
    
    
    
    
    
    P1NotPrime: for p be 
    Prime st p 
    > 2 holds not (p 
    + 1) is 
    Prime
    
    proof
    
      let p be
    Prime;
    
      assume
    
      
    
    S1: p 
    > 2; 
    
      then (p
    + 1) 
    > (2 
    + 1) by 
    XREAL_1: 8;
    
      then
    
      
    
    S3: (p 
    + 1) 
    > 2 by 
    XXREAL_0: 2;
    
      p is
    odd by 
    S1,
    PEPIN: 17;
    
      hence thesis by
    S3,
    PEPIN: 17;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:40
    
    
    
    
    
    Set2: ( 
    SetPrimes 2) 
    =  
    {2}
    
    proof
    
       not 1 is
    Prime by 
    INT_2:def 4;
    
      then
    
      
    
    A1: not 1 
    in  
    SetPrimes by 
    NEWTON:def 6;
    
      2
    in  
    SetPrimes by 
    NEWTON:def 6,
    INT_2: 28;
    
      hence thesis by
    ZFMISC_1: 54,
    A1,
    FINSEQ_1: 2;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:41
    
     not (n
    + 1) 
    in ( 
    SetPrimes n) 
    
    proof
    
      assume (n
    + 1) 
    in ( 
    SetPrimes n); 
    
      then (n
    + 1) 
    in ( 
    Seg n) by 
    XBOOLE_0:def 4;
    
      then (n
    + 1) 
    <= n by 
    FINSEQ_1: 1;
    
      hence thesis by
    NAT_1: 13;
    
    end;
    
    definition
    
      let n be
    Nat;
    
      :: 
    
    MOEBIUS3:def5
    
      func
    
    indexp n -> 
    Nat equals ( 
    card ( 
    SetPrimes n)); 
    
      coherence ;
    
    end
    
    theorem :: 
    
    MOEBIUS3:42
    
    
    
    
    
    Krzys1: for n be 
    Nat holds ( 
    indexp n) 
    <= n 
    
    proof
    
      let n be
    Nat;
    
      (
    card ( 
    SetPrimes n)) 
    <= ( 
    card ( 
    Seg n)) by 
    NAT_1: 43,
    XBOOLE_1: 17;
    
      hence thesis;
    
    end;
    
    begin
    
    theorem :: 
    
    MOEBIUS3:43
    
    for n be non
    zero  
    Nat holds n 
    = (( 
    TSqF n) 
    * (n 
    div ( 
    TSqF n))) 
    
    proof
    
      let n be non
    zero  
    Nat;
    
      (
    TSqF n) 
    divides n by 
    MOEBIUS2: 53;
    
      then
    
      
    
    A2: (n 
    mod ( 
    TSqF n)) 
    =  
    0 by 
    INT_1: 62;
    
      set i2 = (
    TSqF n); 
    
      n
    = (((n 
    div i2) 
    * i2) 
    + (n 
    mod i2)) by 
    INT_1: 59
    
      .= ((n
    div i2) 
    * i2) by 
    A2;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:44
    
    
    
    
    
    Skup: for n be non 
    zero  
    Nat holds (( 
    SqF n) 
    |^ 2) 
    divides n 
    
    proof
    
      deffunc
    
    F( non
    zero  
    Nat) = ((
    Product ( 
    SqFactors $1)) 
    |^ 2); 
    
      deffunc
    
    F1( non
    zero  
    Nat) = (
    Product ( 
    SqFactors $1)); 
    
      deffunc
    
    G( non
    zero  
    Nat) = (
    SqFactors $1); 
    
      defpred
    
    P[
    Nat] means for n be non
    zero  
    Nat st ( 
    support  
    G(n))
    c= ( 
    Seg $1) holds 
    F(n)
    divides n; 
    
      let n be non
    zero  
    Nat;
    
      
    
      
    
    A1: ex mS be 
    Element of 
    NAT st ( 
    support ( 
    ppf n)) 
    c= ( 
    Seg mS) by 
    MOEBIUS1: 14;
    
      
    
      
    
    A2: ( 
    support ( 
    ppf n)) 
    = ( 
    support ( 
    pfexp n)) by 
    NAT_3:def 9
    
      .= (
    support  
    G(n)) by
    MOEBIUS2:def 3;
    
      
    
      
    
    A3: for k be 
    Nat st 
    P[k] holds
    P[(k
    + 1)] 
    
      proof
    
        let k be
    Nat;
    
        assume
    
        
    
    A4: 
    P[k];
    
        let n be non
    zero  
    Nat such that 
    
        
    
    A5: ( 
    support  
    G(n))
    c= ( 
    Seg (k 
    + 1)); 
    
        
    
        
    
    A6: ( 
    support ( 
    pfexp n)) 
    = ( 
    support  
    G(n)) by
    MOEBIUS2:def 3;
    
        per cases ;
    
          suppose
    
          
    
    A7: not ( 
    support  
    G(n))
    c= ( 
    Seg k); 
    
          set p = (k
    + 1); 
    
          set e = (p
    |-count n); 
    
          set s = (p
    |^ e); 
    
          
    
    A8: 
    
          now
    
            assume
    
            
    
    A9: not (k 
    + 1) 
    in ( 
    support  
    G(n));
    
            (
    support  
    G(n))
    c= ( 
    Seg k) 
    
            proof
    
              let x be
    object;
    
              assume
    
              
    
    A10: x 
    in ( 
    support  
    G(n));
    
              then
    
              reconsider m = x as
    Nat;
    
              m
    <= (k 
    + 1) by 
    A5,
    A10,
    FINSEQ_1: 1;
    
              then m
    < (k 
    + 1) by 
    A9,
    A10,
    XXREAL_0: 1;
    
              then
    
              
    
    A11: m 
    <= k by 
    NAT_1: 13;
    
              x is
    Prime by 
    A6,
    A10,
    NAT_3: 34;
    
              then 1
    <= m by 
    INT_2:def 4;
    
              hence thesis by
    A11,
    FINSEQ_1: 1;
    
            end;
    
            hence contradiction by
    A7;
    
          end;
    
          then
    
          
    
    A12: p is 
    Prime by 
    A6,
    NAT_3: 34;
    
          then
    
          
    
    A13: p 
    > 1 by 
    INT_2:def 4;
    
          then s
    divides n by 
    NAT_3:def 7;
    
          then
    
          consider t be
    Nat such that 
    
          
    
    A14: n 
    = (s 
    * t); 
    
          reconsider s, t as non
    zero  
    Nat by 
    A14;
    
          consider f be
    FinSequence of 
    COMPLEX such that 
    
          
    
    A15: ( 
    Product  
    G(s))
    = ( 
    Product f) and 
    
          
    
    A16: f 
    = ( 
    G(s)
    * ( 
    canFS ( 
    support  
    G(s)))) by
    NAT_3:def 5;
    
          
    
          
    
    A17: ( 
    dom  
    G(s))
    =  
    SetPrimes by 
    PARTFUN1:def 2;
    
          
    
          
    
    A18: ( 
    support ( 
    ppf s)) 
    = ( 
    support ( 
    pfexp s)) by 
    NAT_3:def 9;
    
          then
    
          
    
    A19: ( 
    support ( 
    ppf s)) 
    = ( 
    support  
    G(s)) by
    MOEBIUS2:def 3;
    
          ((
    pfexp n) 
    . p) 
    = e by 
    A12,
    NAT_3:def 8;
    
          then e
    <>  
    0 by 
    A6,
    A8,
    PRE_POLY:def 7;
    
          then
    
          
    
    A21: ( 
    support ( 
    ppf s)) 
    =  
    {p} by
    A12,
    A18,
    NAT_3: 42;
    
          then
    
          
    
    A22: p 
    in ( 
    support ( 
    pfexp s)) by 
    A18,
    TARSKI:def 1;
    
          
    
          
    
    A23: ( 
    support  
    G(t))
    c= ( 
    Seg k) 
    
          proof
    
            set f = (p
    |-count t); 
    
            let x be
    object;
    
            assume
    
            
    
    A24: x 
    in ( 
    support  
    G(t));
    
            then
    
            reconsider m = x as
    Nat;
    
            
    
            
    
    A25: x 
    in ( 
    support ( 
    pfexp t)) by 
    A24,
    MOEBIUS2:def 3;
    
            
    
    A26: 
    
            now
    
              assume
    
              
    
    A27: m 
    = p; 
    
              ((
    pfexp t) 
    . p) 
    = f by 
    A12,
    NAT_3:def 8;
    
              then f
    <>  
    0 by 
    A25,
    A27,
    PRE_POLY:def 7;
    
              then f
    >= ( 
    0  
    + 1) by 
    NAT_1: 13;
    
              then
    
              consider g be
    Nat such that 
    
              
    
    A28: f 
    = (1 
    + g) by 
    NAT_1: 10;
    
              (p
    |^ f) 
    divides t by 
    A13,
    NAT_3:def 7;
    
              then
    
              consider u be
    Nat such that 
    
              
    
    A29: t 
    = ((p 
    |^ f) 
    * u); 
    
              n
    = (s 
    * (((p 
    |^ g) 
    * p) 
    * u)) by 
    A14,
    A28,
    A29,
    NEWTON: 6
    
              .= ((s
    * p) 
    * ((p 
    |^ g) 
    * u)) 
    
              .= ((p
    |^ (e 
    + 1)) 
    * ((p 
    |^ g) 
    * u)) by 
    NEWTON: 6;
    
              then (p
    |^ (e 
    + 1)) 
    divides n; 
    
              hence contradiction by
    A13,
    NAT_3:def 7;
    
            end;
    
            (
    support ( 
    pfexp t)) 
    c= ( 
    support ( 
    pfexp n)) by 
    A14,
    NAT_3: 45;
    
            then (
    support  
    G(t))
    c= ( 
    support  
    G(n)) by
    A6,
    MOEBIUS2:def 3;
    
            then m
    in ( 
    support  
    G(n)) by
    A24;
    
            then m
    <= (k 
    + 1) by 
    A5,
    FINSEQ_1: 1;
    
            then m
    < p by 
    A26,
    XXREAL_0: 1;
    
            then
    
            
    
    A30: m 
    <= k by 
    NAT_1: 13;
    
            x is
    Prime by 
    A25,
    NAT_3: 34;
    
            then 1
    <= m by 
    INT_2:def 4;
    
            hence thesis by
    A30,
    FINSEQ_1: 1;
    
          end;
    
          then
    
          
    
    A31: 
    F(t)
    divides t by 
    A4;
    
          (
    support  
    G(s))
    =  
    {p} by
    A18,
    A21,
    MOEBIUS2:def 3;
    
          
    
          then f
    = ( 
    G(s)
    *  
    <*p*>) by
    A16,
    FINSEQ_1: 94
    
          .=
    <*(
    G(s)
    . p)*> by 
    FINSEQ_2: 34,
    A17,
    A8;
    
          
    
          then
    
          
    
    h1: ( 
    Product  
    G(s))
    = ( 
    G(s)
    . p) by 
    A15,
    RVSUM_1: 95
    
          .= (p
    |^ ((p 
    |-count s) 
    div 2)) by 
    A22,
    MOEBIUS2:def 3;
    
          
    
          
    
    H2: (p 
    |-count s) 
    <= (p 
    |-count n) by 
    A12,
    NAT_3: 25,
    INT_2:def 4;
    
          set j = (p
    |-count s); 
    
          j
    = ((2 
    * (j 
    div 2)) 
    + (j 
    mod 2)) by 
    NAT_D: 2;
    
          then
    
          
    
    Sb: (2 
    * (j 
    div 2)) 
    <= j by 
    NAT_1: 11;
    
          ((p
    |^ ((p 
    |-count s) 
    div 2)) 
    |^ 2) 
    = (p 
    |^ (((p 
    |-count s) 
    div 2) 
    * 2)) by 
    NEWTON: 9;
    
          then
    
          
    
    ZZ: ((p 
    |^ ((p 
    |-count s) 
    div 2)) 
    |^ 2) 
    divides (p 
    |^ e) by 
    Sb,
    NEWTON: 89,
    H2,
    XXREAL_0: 2;
    
          reconsider s1 = s, t1 = t as non
    zero  
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
          (
    support ( 
    ppf t)) 
    = ( 
    support ( 
    pfexp t)) by 
    NAT_3:def 9;
    
          then
    
          
    
    A33: ( 
    support ( 
    ppf t)) 
    = ( 
    support  
    G(t)) by
    MOEBIUS2:def 3;
    
          
    
    A34: 
    
          now
    
            assume (
    support ( 
    ppf s)) 
    meets ( 
    support ( 
    ppf t)); 
    
            then
    
            consider x be
    object such that 
    
            
    
    A35: x 
    in ( 
    support ( 
    ppf s)) and 
    
            
    
    A36: x 
    in ( 
    support ( 
    ppf t)) by 
    XBOOLE_0: 3;
    
            x
    in ( 
    support ( 
    pfexp t)) by 
    A36,
    NAT_3:def 9;
    
            then
    
            
    
    A37: x 
    in ( 
    support  
    G(t)) by
    MOEBIUS2:def 3;
    
            x
    = p by 
    A21,
    A35,
    TARSKI:def 1;
    
            then p
    <= k by 
    A23,
    A37,
    FINSEQ_1: 1;
    
            hence contradiction by
    NAT_1: 13;
    
          end;
    
          (s1,t1)
    are_coprime  
    
          proof
    
            set u = (s1
    gcd t1); 
    
            
    
            
    
    A38: u 
    divides t1 by 
    NAT_D:def 5;
    
            
    
            
    
    A39: ( 
    0  
    + 1) 
    <= u by 
    NAT_1: 13;
    
            assume not (s1,t1)
    are_coprime ; 
    
            then u
    > 1 by 
    A39,
    XXREAL_0: 1;
    
            then u
    >= (1 
    + 1) by 
    NAT_1: 13;
    
            then
    
            consider r be
    Element of 
    NAT such that 
    
            
    
    A40: r is 
    prime and 
    
            
    
    A41: r 
    divides u by 
    INT_2: 31;
    
            u
    divides s1 by 
    NAT_D:def 5;
    
            then r
    divides s1 by 
    A41,
    NAT_D: 4;
    
            then r
    = 1 or r 
    = p by 
    A12,
    INT_2:def 4,
    A40,
    NAT_3: 5;
    
            then p
    in ( 
    support ( 
    pfexp t)) by 
    NAT_3: 37,
    A40,
    A41,
    A38,
    NAT_D: 4;
    
            then p
    in ( 
    support  
    G(t)) by
    MOEBIUS2:def 3;
    
            then (k
    + 1) 
    <= k by 
    A23,
    FINSEQ_1: 1;
    
            hence contradiction by
    NAT_1: 13;
    
          end;
    
          
    
          then
    F(n)
    = (( 
    Product ( 
    G(s)
    +  
    G(t)))
    |^ 2) by 
    A14,
    MOEBIUS2: 44
    
          .= ((
    F1(s)
    *  
    F1(t))
    |^ 2) by 
    A34,
    A19,
    A33,
    NAT_3: 19
    
          .= (
    F(s)
    *  
    F(t)) by
    NEWTON: 7;
    
          hence thesis by
    A14,
    h1,
    ZZ,
    A31,
    NAT_3: 1;
    
        end;
    
          suppose (
    support  
    G(n))
    c= ( 
    Seg k); 
    
          hence thesis by
    A4;
    
        end;
    
      end;
    
      
    
      
    
    A42: 
    P[
    0 ] 
    
      proof
    
        let n be non
    zero  
    Nat;
    
        assume (
    support  
    G(n))
    c= ( 
    Seg  
    0 ); 
    
        then (
    support  
    G(n))
    =  
    {} ; 
    
        then
    G(n)
    = ( 
    EmptyBag  
    SetPrimes ) by 
    PRE_POLY: 81;
    
        
    
        then
    F(n)
    = (1 
    |^ 2) by 
    NAT_3: 20
    
        .= 1;
    
        hence thesis by
    NAT_D: 6;
    
      end;
    
      for k be
    Nat holds 
    P[k] from
    NAT_1:sch 2(
    A42,
    A3);
    
      hence thesis by
    A1,
    A2;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:45
    
    
    
    
    
    KeyValue: for m be 
    finite-support
    natural-valued  
    ManySortedSet of 
    SetPrimes , p be 
    Prime st ( 
    support m) 
    =  
    {p} holds (
    Product m) 
    = (m 
    . p) 
    
    proof
    
      let m be
    finite-support
    natural-valued  
    ManySortedSet of 
    SetPrimes , p be 
    Prime;
    
      assume
    
      
    
    A1: ( 
    support m) 
    =  
    {p};
    
      consider f be
    FinSequence of 
    COMPLEX such that 
    
      
    
    A15: ( 
    Product m) 
    = ( 
    Product f) and 
    
      
    
    A16: f 
    = (m 
    * ( 
    canFS ( 
    support m))) by 
    NAT_3:def 5;
    
      
    
      
    
    Z1: (m 
    *  
    <*p*>)
    =  
    <*(m
    . p)*> 
    
      proof
    
        
    
        
    
    D1: ( 
    rng  
    <*p*>)
    =  
    {p} by
    FINSEQ_1: 39;
    
        
    
        
    
    d2: p 
    in  
    SetPrimes by 
    NEWTON:def 6;
    
        (
    dom m) 
    =  
    SetPrimes by 
    PARTFUN1:def 2;
    
        
    
        then
    
        
    
    B1: ( 
    dom (m 
    *  
    <*p*>))
    = ( 
    dom  
    <*p*>) by
    D1,
    d2,
    RELAT_1: 27,
    ZFMISC_1: 31
    
        .= (
    Seg 1) by 
    FINSEQ_1: 38;
    
        
    
        
    
    B2: ( 
    dom (m 
    *  
    <*p*>))
    = ( 
    dom  
    <*(m
    . p)*>) by 
    B1,
    FINSEQ_1: 38;
    
        for x be
    object st x 
    in ( 
    dom (m 
    *  
    <*p*>)) holds ((m
    *  
    <*p*>)
    . x) 
    = ( 
    <*(m
    . p)*> 
    . x) 
    
        proof
    
          let x be
    object;
    
          assume
    
          
    
    C1: x 
    in ( 
    dom (m 
    *  
    <*p*>));
    
          then
    
          
    
    C2: x 
    = 1 by 
    B1,
    TARSKI:def 1,
    FINSEQ_1: 2;
    
          
    
          then ((m
    *  
    <*p*>)
    . x) 
    = (m 
    . ( 
    <*p*>
    . 1)) by 
    FUNCT_1: 12,
    C1
    
          .= (
    <*(m
    . p)*> 
    . x) by 
    C2;
    
          hence thesis;
    
        end;
    
        hence thesis by
    B2,
    FUNCT_1: 2;
    
      end;
    
      f
    =  
    <*(m
    . p)*> by 
    Z1,
    FINSEQ_1: 94,
    A16,
    A1;
    
      hence thesis by
    RVSUM_1: 95,
    A15;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:46
    
    
    
    
    
    Cosik: for n be non 
    zero  
    Nat holds (( 
    SqF n) 
    |^ 2) 
    = ( 
    TSqF n) 
    
    proof
    
      deffunc
    
    F( non
    zero  
    Nat) = ((
    Product ( 
    SqFactors $1)) 
    |^ 2); 
    
      deffunc
    
    F1( non
    zero  
    Nat) = (
    Product ( 
    SqFactors $1)); 
    
      deffunc
    
    G( non
    zero  
    Nat) = (
    SqFactors $1); 
    
      deffunc
    
    H( non
    zero  
    Nat) = (
    Product ( 
    TSqFactors $1)); 
    
      defpred
    
    P[
    Nat] means for n be non
    zero  
    Nat st ( 
    support  
    G(n))
    c= ( 
    Seg $1) holds 
    F(n)
    =  
    H(n);
    
      let n be non
    zero  
    Nat;
    
      
    
      
    
    A1: ex mS be 
    Element of 
    NAT st ( 
    support ( 
    ppf n)) 
    c= ( 
    Seg mS) by 
    MOEBIUS1: 14;
    
      
    
      
    
    A2: ( 
    support ( 
    ppf n)) 
    = ( 
    support ( 
    pfexp n)) by 
    NAT_3:def 9
    
      .= (
    support  
    G(n)) by
    MOEBIUS2:def 3;
    
      
    
      
    
    A3: for k be 
    Nat st 
    P[k] holds
    P[(k
    + 1)] 
    
      proof
    
        let k be
    Nat;
    
        assume
    
        
    
    A4: 
    P[k];
    
        let n be non
    zero  
    Nat such that 
    
        
    
    A5: ( 
    support  
    G(n))
    c= ( 
    Seg (k 
    + 1)); 
    
        
    
        
    
    A6: ( 
    support ( 
    pfexp n)) 
    = ( 
    support  
    G(n)) by
    MOEBIUS2:def 3;
    
        per cases ;
    
          suppose
    
          
    
    A7: not ( 
    support  
    G(n))
    c= ( 
    Seg k); 
    
          set p = (k
    + 1); 
    
          set e = (p
    |-count n); 
    
          set s = (p
    |^ e); 
    
          
    
    A8: 
    
          now
    
            assume
    
            
    
    A9: not (k 
    + 1) 
    in ( 
    support  
    G(n));
    
            (
    support  
    G(n))
    c= ( 
    Seg k) 
    
            proof
    
              let x be
    object;
    
              assume
    
              
    
    A10: x 
    in ( 
    support  
    G(n));
    
              then
    
              reconsider m = x as
    Nat;
    
              m
    <= (k 
    + 1) by 
    A5,
    A10,
    FINSEQ_1: 1;
    
              then m
    < (k 
    + 1) by 
    A9,
    A10,
    XXREAL_0: 1;
    
              then
    
              
    
    A11: m 
    <= k by 
    NAT_1: 13;
    
              x is
    Prime by 
    A6,
    A10,
    NAT_3: 34;
    
              then 1
    <= m by 
    INT_2:def 4;
    
              hence thesis by
    A11,
    FINSEQ_1: 1;
    
            end;
    
            hence contradiction by
    A7;
    
          end;
    
          then
    
          
    
    A12: p is 
    Prime by 
    A6,
    NAT_3: 34;
    
          then
    
          
    
    A13: p 
    > 1 by 
    INT_2:def 4;
    
          then s
    divides n by 
    NAT_3:def 7;
    
          then
    
          consider t be
    Nat such that 
    
          
    
    A14: n 
    = (s 
    * t); 
    
          reconsider s, t as non
    zero  
    Nat by 
    A14;
    
          consider f be
    FinSequence of 
    COMPLEX such that 
    
          
    
    A15: ( 
    Product  
    G(s))
    = ( 
    Product f) and 
    
          
    
    A16: f 
    = ( 
    G(s)
    * ( 
    canFS ( 
    support  
    G(s)))) by
    NAT_3:def 5;
    
          
    
          
    
    A17: ( 
    dom  
    G(s))
    =  
    SetPrimes by 
    PARTFUN1:def 2;
    
          
    
          
    
    A18: ( 
    support ( 
    ppf s)) 
    = ( 
    support ( 
    pfexp s)) by 
    NAT_3:def 9;
    
          then
    
          
    
    A19: ( 
    support ( 
    ppf s)) 
    = ( 
    support  
    G(s)) by
    MOEBIUS2:def 3;
    
          ((
    pfexp n) 
    . p) 
    = e by 
    A12,
    NAT_3:def 8;
    
          then e
    <>  
    0 by 
    A6,
    A8,
    PRE_POLY:def 7;
    
          then
    
          
    
    A21: ( 
    support ( 
    ppf s)) 
    =  
    {p} by
    A12,
    A18,
    NAT_3: 42;
    
          then
    
          
    
    A22: p 
    in ( 
    support ( 
    pfexp s)) by 
    A18,
    TARSKI:def 1;
    
          
    
          
    
    A23: ( 
    support  
    G(t))
    c= ( 
    Seg k) 
    
          proof
    
            set f = (p
    |-count t); 
    
            let x be
    object;
    
            assume
    
            
    
    A24: x 
    in ( 
    support  
    G(t));
    
            then
    
            reconsider m = x as
    Nat;
    
            
    
            
    
    A25: x 
    in ( 
    support ( 
    pfexp t)) by 
    A24,
    MOEBIUS2:def 3;
    
            
    
    A26: 
    
            now
    
              assume
    
              
    
    A27: m 
    = p; 
    
              ((
    pfexp t) 
    . p) 
    = f by 
    A12,
    NAT_3:def 8;
    
              then f
    <>  
    0 by 
    A25,
    A27,
    PRE_POLY:def 7;
    
              then f
    >= ( 
    0  
    + 1) by 
    NAT_1: 13;
    
              then
    
              consider g be
    Nat such that 
    
              
    
    A28: f 
    = (1 
    + g) by 
    NAT_1: 10;
    
              (p
    |^ f) 
    divides t by 
    A13,
    NAT_3:def 7;
    
              then
    
              consider u be
    Nat such that 
    
              
    
    A29: t 
    = ((p 
    |^ f) 
    * u); 
    
              n
    = (s 
    * (((p 
    |^ g) 
    * p) 
    * u)) by 
    A14,
    A28,
    A29,
    NEWTON: 6
    
              .= ((s
    * p) 
    * ((p 
    |^ g) 
    * u)) 
    
              .= ((p
    |^ (e 
    + 1)) 
    * ((p 
    |^ g) 
    * u)) by 
    NEWTON: 6;
    
              then (p
    |^ (e 
    + 1)) 
    divides n; 
    
              hence contradiction by
    A13,
    NAT_3:def 7;
    
            end;
    
            (
    support ( 
    pfexp t)) 
    c= ( 
    support ( 
    pfexp n)) by 
    A14,
    NAT_3: 45;
    
            then (
    support  
    G(t))
    c= ( 
    support  
    G(n)) by
    A6,
    MOEBIUS2:def 3;
    
            then m
    in ( 
    support  
    G(n)) by
    A24;
    
            then m
    <= (k 
    + 1) by 
    A5,
    FINSEQ_1: 1;
    
            then m
    < p by 
    A26,
    XXREAL_0: 1;
    
            then
    
            
    
    A30: m 
    <= k by 
    NAT_1: 13;
    
            x is
    Prime by 
    A25,
    NAT_3: 34;
    
            then 1
    <= m by 
    INT_2:def 4;
    
            hence thesis by
    A30,
    FINSEQ_1: 1;
    
          end;
    
          then
    
          
    
    A31: 
    F(t)
    =  
    H(t) by
    A4;
    
          
    
          
    
    a21: ( 
    support  
    G(s))
    =  
    {p} by
    A18,
    A21,
    MOEBIUS2:def 3;
    
          
    
          
    
    Aa1: ( 
    support ( 
    TSqFactors s)) 
    =  
    {p} by
    A18,
    A21,
    MOEBIUS2:def 8;
    
          f
    = ( 
    G(s)
    *  
    <*p*>) by
    A16,
    FINSEQ_1: 94,
    a21
    
          .=
    <*(
    G(s)
    . p)*> by 
    FINSEQ_2: 34,
    A17,
    A8;
    
          
    
          then (
    Product  
    G(s))
    = ( 
    G(s)
    . p) by 
    A15,
    RVSUM_1: 95
    
          .= (p
    |^ ((p 
    |-count s) 
    div 2)) by 
    A22,
    MOEBIUS2:def 3;
    
          
    
          then
    
          
    
    aa1: (( 
    Product  
    G(s))
    |^ 2) 
    = (p 
    |^ (2 
    * ((p 
    |-count s) 
    div 2))) by 
    NEWTON: 9
    
          .= ((
    TSqFactors s) 
    . p) by 
    A22,
    MOEBIUS2:def 8
    
          .= (
    Product ( 
    TSqFactors s)) by 
    A12,
    KeyValue,
    Aa1;
    
          set j = (p
    |-count s); 
    
          reconsider s1 = s, t1 = t as non
    zero  
    Element of 
    NAT by 
    ORDINAL1:def 12;
    
          (
    support ( 
    ppf t)) 
    = ( 
    support ( 
    pfexp t)) by 
    NAT_3:def 9;
    
          then
    
          
    
    A33: ( 
    support ( 
    ppf t)) 
    = ( 
    support  
    G(t)) by
    MOEBIUS2:def 3;
    
          
    
    A34: 
    
          now
    
            assume (
    support ( 
    ppf s)) 
    meets ( 
    support ( 
    ppf t)); 
    
            then
    
            consider x be
    object such that 
    
            
    
    A35: x 
    in ( 
    support ( 
    ppf s)) and 
    
            
    
    A36: x 
    in ( 
    support ( 
    ppf t)) by 
    XBOOLE_0: 3;
    
            x
    in ( 
    support ( 
    pfexp t)) by 
    A36,
    NAT_3:def 9;
    
            then
    
            
    
    A37: x 
    in ( 
    support  
    G(t)) by
    MOEBIUS2:def 3;
    
            x
    = p by 
    A21,
    A35,
    TARSKI:def 1;
    
            then p
    <= k by 
    A23,
    A37,
    FINSEQ_1: 1;
    
            hence contradiction by
    NAT_1: 13;
    
          end;
    
          
    
          
    
    ZZ: (s1,t1) 
    are_coprime  
    
          proof
    
            set u = (s1
    gcd t1); 
    
            
    
            
    
    A38: u 
    divides t1 by 
    NAT_D:def 5;
    
            
    
            
    
    A39: ( 
    0  
    + 1) 
    <= u by 
    NAT_1: 13;
    
            assume not (s1,t1)
    are_coprime ; 
    
            then u
    > 1 by 
    A39,
    XXREAL_0: 1;
    
            then u
    >= (1 
    + 1) by 
    NAT_1: 13;
    
            then
    
            consider r be
    Element of 
    NAT such that 
    
            
    
    A40: r is 
    prime and 
    
            
    
    A41: r 
    divides u by 
    INT_2: 31;
    
            u
    divides s1 by 
    NAT_D:def 5;
    
            then r
    divides s1 by 
    A41,
    NAT_D: 4;
    
            then r
    = 1 or r 
    = p by 
    A12,
    INT_2:def 4,
    A40,
    NAT_3: 5;
    
            then p
    in ( 
    support ( 
    pfexp t)) by 
    NAT_3: 37,
    A40,
    A41,
    A38,
    NAT_D: 4;
    
            then p
    in ( 
    support  
    G(t)) by
    MOEBIUS2:def 3;
    
            then (k
    + 1) 
    <= k by 
    A23,
    FINSEQ_1: 1;
    
            hence contradiction by
    NAT_1: 13;
    
          end;
    
          (
    support ( 
    TSqFactors s)) 
    = ( 
    support ( 
    pfexp s)) & ( 
    support ( 
    TSqFactors t)) 
    = ( 
    support ( 
    pfexp t)) by 
    MOEBIUS2:def 8;
    
          then
    
          
    
    za: ( 
    support ( 
    TSqFactors s)) 
    = ( 
    support ( 
    ppf s)) & ( 
    support ( 
    TSqFactors t)) 
    = ( 
    support ( 
    ppf t)) by 
    NAT_3:def 9;
    
          
    F(n)
    = (( 
    Product ( 
    G(s)
    +  
    G(t)))
    |^ 2) by 
    A14,
    MOEBIUS2: 44,
    ZZ
    
          .= ((
    F1(s)
    *  
    F1(t))
    |^ 2) by 
    A34,
    A19,
    A33,
    NAT_3: 19
    
          .= ((
    F1(s)
    |^ 2) 
    * ( 
    F1(t)
    |^ 2)) by 
    NEWTON: 7
    
          .= (
    Product (( 
    TSqFactors s) 
    + ( 
    TSqFactors t))) by 
    za,
    NAT_3: 19,
    aa1,
    A31,
    A34
    
          .=
    H(n) by
    A14,
    ZZ,
    MOEBIUS2: 52;
    
          hence thesis;
    
        end;
    
          suppose (
    support  
    G(n))
    c= ( 
    Seg k); 
    
          hence thesis by
    A4;
    
        end;
    
      end;
    
      
    
      
    
    A42: 
    P[
    0 ] 
    
      proof
    
        let n be non
    zero  
    Nat;
    
        assume (
    support  
    G(n))
    c= ( 
    Seg  
    0 ); 
    
        then
    
        
    
    J1: ( 
    support  
    G(n))
    =  
    {} ; 
    
        then
    G(n)
    = ( 
    EmptyBag  
    SetPrimes ) by 
    PRE_POLY: 81;
    
        
    
        then
    
        
    
    BB: 
    F(n)
    = (1 
    |^ 2) by 
    NAT_3: 20
    
        .= 1;
    
        (
    support ( 
    TSqFactors n)) 
    = ( 
    support ( 
    pfexp n)) by 
    MOEBIUS2:def 8
    
        .= (
    support  
    G(n)) by
    MOEBIUS2:def 3;
    
        then (
    TSqFactors n) 
    = ( 
    EmptyBag  
    SetPrimes ) by 
    PRE_POLY: 81,
    J1;
    
        hence thesis by
    BB,
    NAT_3: 20;
    
      end;
    
      for k be
    Nat holds 
    P[k] from
    NAT_1:sch 2(
    A42,
    A3);
    
      hence thesis by
    A1,
    A2;
    
    end;
    
    registration
    
      let n be non
    zero  
    Nat;
    
      cluster (n 
    div (( 
    SqF n) 
    |^ 2)) -> 
    square-free;
    
      coherence
    
      proof
    
        set TS = ((
    SqF n) 
    |^ 2); 
    
        TS
    = ( 
    TSqF n) by 
    Cosik;
    
        hence thesis;
    
      end;
    
    end
    
    definition
    
      let n be non
    zero  
    Nat;
    
      :: 
    
    MOEBIUS3:def6
    
      func
    
    SquarefreePart n -> non 
    zero  
    Nat equals (n 
    div ( 
    TSqF n)); 
    
      coherence
    
      proof
    
        ((
    SqF n) 
    |^ 2) 
    divides n by 
    Skup;
    
        then (
    TSqF n) 
    divides n by 
    Cosik;
    
        then n
    = (( 
    TSqF n) 
    * (n 
    div ( 
    TSqF n))) by 
    NAT_D: 3;
    
        hence thesis;
    
      end;
    
    end
    
    registration
    
      let n be non
    zero  
    Nat;
    
      cluster ( 
    SquarefreePart n) -> 
    square-free;
    
      coherence ;
    
    end
    
    theorem :: 
    
    MOEBIUS3:47
    
    
    
    
    
    Canonical: for n be non 
    zero  
    Nat holds n 
    = (( 
    SquarefreePart n) 
    * (( 
    SqF n) 
    ^2 )) 
    
    proof
    
      let n be non
    zero  
    Nat;
    
      ((
    SqF n) 
    |^ 2) 
    divides n by 
    Skup;
    
      then (
    TSqF n) 
    divides n by 
    Cosik;
    
      
    
      then n
    = (( 
    TSqF n) 
    * (n 
    div ( 
    TSqF n))) by 
    NAT_D: 3
    
      .= (((
    SqF n) 
    |^ 2) 
    * (n 
    div ( 
    TSqF n))) by 
    Cosik
    
      .= (((
    SqF n) 
    ^2 ) 
    * (n 
    div ( 
    TSqF n))) by 
    NEWTON: 81;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:48
    
    for n be non
    zero  
    Nat holds ( 
    support ( 
    pfexp n)) 
    c= ( 
    Seg n) 
    
    proof
    
      let n be non
    zero  
    Nat;
    
      let x be
    object;
    
      assume
    
      
    
    A1: x 
    in ( 
    support ( 
    pfexp n)); 
    
      then
    
      reconsider k = x as
    Prime by 
    NAT_3: 34;
    
      
    
      
    
    A3: 1 
    < k by 
    INT_2:def 4;
    
      k
    <= n by 
    NAT_D: 7,
    A1,
    NAT_3: 36;
    
      hence thesis by
    FINSEQ_1: 1,
    A3;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:49
    
    for n be non
    zero  
    Nat holds ( 
    support ( 
    ppf n)) 
    c= ( 
    Seg n) 
    
    proof
    
      let n be non
    zero  
    Nat;
    
      let x be
    object;
    
      assume x
    in ( 
    support ( 
    ppf n)); 
    
      then
    
      
    
    A1: x 
    in ( 
    support ( 
    pfexp n)) by 
    NAT_3:def 9;
    
      then
    
      reconsider k = x as
    Prime by 
    NAT_3: 34;
    
      
    
      
    
    A3: 1 
    < k by 
    INT_2:def 4;
    
      k
    <= n by 
    NAT_D: 7,
    A1,
    NAT_3: 36;
    
      hence thesis by
    FINSEQ_1: 1,
    A3;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:50
    
    for n be non
    zero  
    Nat holds ( 
    Seg ( 
    SquarefreePart n)) 
    c= ( 
    Seg n) 
    
    proof
    
      let n be non
    zero  
    Nat;
    
      n
    = (( 
    SquarefreePart n) 
    * (( 
    SqF n) 
    ^2 )) by 
    Canonical;
    
      then (
    SquarefreePart n) 
    divides n; 
    
      then (
    SquarefreePart n) 
    <= n by 
    NAT_D: 7;
    
      hence thesis by
    FINSEQ_1: 5;
    
    end;
    
    
    
    
    
    Surprise: for n,m be non 
    zero  
    Nat st (m 
    ^2 ) 
    divides ( 
    SquarefreePart n) holds m 
    = 1 
    
    proof
    
      let n,m be non
    zero  
    Nat;
    
      assume
    
      
    
    A0: (m 
    ^2 ) 
    divides ( 
    SquarefreePart n); 
    
      assume m
    <> 1; 
    
      then
    
      consider p be
    Prime such that 
    
      
    
    A1: p 
    divides m by 
    MOEBIUS1: 5;
    
      p
    in  
    NAT & m 
    in  
    NAT by 
    ORDINAL1:def 12;
    
      then (p
    ^2 ) 
    divides (m 
    ^2 ) by 
    A1,
    PYTHTRIP: 6;
    
      then (p
    ^2 ) 
    divides ( 
    SquarefreePart n) by 
    A0,
    NAT_D: 4;
    
      then (p
    |^ 2) 
    divides ( 
    SquarefreePart n) by 
    NEWTON: 81;
    
      then (1
    + 1) 
    <= (p 
    |-count ( 
    SquarefreePart n)) by 
    MOEBIUS2: 40;
    
      hence thesis by
    MOEBIUS1: 24,
    NAT_1: 13;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:51
    
    for k,n be non
    zero  
    Nat holds (k 
    ^2 ) 
    divides ( 
    SquarefreePart n) iff k 
    = 1 by 
    Surprise,
    NAT_D: 6;
    
    theorem :: 
    
    MOEBIUS3:52
    
    for m,n be non
    zero  
    Nat st ( 
    SquarefreePart n) 
    = ( 
    SquarefreePart m) & ( 
    TSqF m) 
    = ( 
    TSqF n) holds m 
    = n 
    
    proof
    
      let m,n be non
    zero  
    Nat;
    
      assume
    
      
    
    A1: ( 
    SquarefreePart n) 
    = ( 
    SquarefreePart m) & ( 
    TSqF m) 
    = ( 
    TSqF n); 
    
      m
    = (( 
    SquarefreePart m) 
    * (( 
    SqF m) 
    ^2 )) by 
    Canonical
    
      .= ((
    SquarefreePart m) 
    * (( 
    SqF m) 
    |^ 2)) by 
    NEWTON: 81
    
      .= ((
    SquarefreePart n) 
    * ( 
    TSqF n)) by 
    A1,
    Cosik
    
      .= ((
    SquarefreePart n) 
    * (( 
    SqF n) 
    |^ 2)) by 
    Cosik
    
      .= ((
    SquarefreePart n) 
    * (( 
    SqF n) 
    ^2 )) by 
    NEWTON: 81
    
      .= n by
    Canonical;
    
      hence thesis;
    
    end;
    
    begin
    
    definition
    
      let A be
    finite  
    Subset of 
    SetPrimes ; 
    
      :: 
    
    MOEBIUS3:def7
    
      func A
    
    -bag -> 
    bag of 
    SetPrimes equals (( 
    EmptyBag  
    SetPrimes ) 
    +* ( 
    id A)); 
    
      coherence
    
      proof
    
        set f = ((
    EmptyBag  
    SetPrimes ) 
    +* ( 
    id A)); 
    
        (
    dom f) 
    = (( 
    dom ( 
    EmptyBag  
    SetPrimes )) 
    \/ ( 
    dom ( 
    id A))) by 
    FUNCT_4:def 1
    
        .= (
    SetPrimes  
    \/ ( 
    dom ( 
    id A))) by 
    PARTFUN1:def 2
    
        .=
    SetPrimes by 
    XBOOLE_1: 12;
    
        then
    
        reconsider f as
    ManySortedSet of 
    SetPrimes by 
    PARTFUN1:def 2,
    RELAT_1:def 18;
    
        (
    support f) 
    c= A 
    
        proof
    
          let x be
    object;
    
          assume
    
          
    
    a10: x 
    in ( 
    support f); 
    
          x
    in A 
    
          proof
    
            assume not x
    in A; 
    
            then not x
    in ( 
    dom ( 
    id A)); 
    
            
    
            then (f
    . x) 
    = (( 
    EmptyBag  
    SetPrimes ) 
    . x) by 
    FUNCT_4: 11
    
            .=
    0 by 
    PBOOLE: 5;
    
            hence thesis by
    a10,
    PRE_POLY:def 7;
    
          end;
    
          hence thesis;
    
        end;
    
        hence thesis by
    PRE_POLY:def 8;
    
      end;
    
    end
    
    theorem :: 
    
    MOEBIUS3:53
    
    
    
    
    
    BagSupport: for A be 
    finite  
    Subset of 
    SetPrimes holds ( 
    support (A 
    -bag )) 
    = A 
    
    proof
    
      let A be
    finite  
    Subset of 
    SetPrimes ; 
    
      set f = (A
    -bag ); 
    
      
    
      
    
    B1: ( 
    support f) 
    c= A 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    a10: x 
    in ( 
    support f); 
    
        x
    in A 
    
        proof
    
          assume not x
    in A; 
    
          then not x
    in ( 
    dom ( 
    id A)); 
    
          
    
          then (f
    . x) 
    = (( 
    EmptyBag  
    SetPrimes ) 
    . x) by 
    FUNCT_4: 11
    
          .=
    0 by 
    PBOOLE: 5;
    
          hence thesis by
    a10,
    PRE_POLY:def 7;
    
        end;
    
        hence thesis;
    
      end;
    
      A
    c= ( 
    support f) 
    
      proof
    
        let x be
    object;
    
        assume
    
        
    
    E1: x 
    in A; 
    
        then x
    in ( 
    dom ( 
    id A)); 
    
        
    
        then (f
    . x) 
    = (( 
    id A) 
    . x) by 
    FUNCT_4: 13
    
        .= x by
    E1,
    FUNCT_1: 17;
    
        then (f
    . x) is 
    Prime by 
    NEWTON:def 6,
    E1;
    
        hence thesis by
    PRE_POLY:def 7;
    
      end;
    
      hence thesis by
    B1,
    XBOOLE_0:def 10;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:54
    
    for A be
    finite  
    Subset of 
    SetPrimes st A 
    =  
    {} holds (A 
    -bag ) 
    = ( 
    EmptyBag  
    SetPrimes ) 
    
    proof
    
      let A be
    finite  
    Subset of 
    SetPrimes ; 
    
      assume A
    =  
    {} ; 
    
      then (
    support (A 
    -bag )) 
    =  
    {} by 
    BagSupport;
    
      hence thesis by
    PRE_POLY: 81;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:55
    
    
    
    
    
    BagValue: for A be 
    finite  
    Subset of 
    SetPrimes holds for i be 
    object st i 
    in ( 
    support (A 
    -bag )) holds ((A 
    -bag ) 
    . i) 
    = i 
    
    proof
    
      let A be
    finite  
    Subset of 
    SetPrimes ; 
    
      let i be
    object;
    
      assume
    
      
    
    aa: i 
    in ( 
    support (A 
    -bag )); 
    
      then
    
      
    
    A2: i 
    in A by 
    BagSupport;
    
      
    
      
    
    A1: i 
    in ( 
    dom ( 
    id A)) by 
    aa,
    BagSupport;
    
      ((A
    -bag ) 
    . i) 
    = (( 
    id A) 
    . i) by 
    A1,
    FUNCT_4: 13
    
      .= i by
    A2,
    FUNCT_1: 17;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:56
    
    for A,B be
    finite  
    Subset of 
    SetPrimes st (A 
    -bag ) 
    = (B 
    -bag ) holds A 
    = B 
    
    proof
    
      let A,B be
    finite  
    Subset of 
    SetPrimes ; 
    
      assume (A
    -bag ) 
    = (B 
    -bag ); 
    
      then A
    = ( 
    support (B 
    -bag )) by 
    BagSupport;
    
      hence thesis by
    BagSupport;
    
    end;
    
    registration
    
      let A be
    finite  
    Subset of 
    SetPrimes ; 
    
      cluster (A 
    -bag ) -> 
    prime-factorization-like;
    
      coherence
    
      proof
    
        for x be
    Prime st x 
    in ( 
    support (A 
    -bag )) holds ex n be 
    Nat st 
    0  
    < n & ((A 
    -bag ) 
    . x) 
    = (x 
    |^ n) 
    
        proof
    
          let x be
    Prime;
    
          assume x
    in ( 
    support (A 
    -bag )); 
    
          then ((A
    -bag ) 
    . x) 
    = (x 
    |^ 1) by 
    BagValue;
    
          hence thesis;
    
        end;
    
        hence thesis by
    INT_7:def 1;
    
      end;
    
    end
    
    
    
    
    
    ProdSqF: for A be 
    finite  
    Subset of 
    SetPrimes holds ( 
    Product (A 
    -bag )) is 
    square-free
    
    proof
    
      let A be
    finite  
    Subset of 
    SetPrimes ; 
    
      set n = (
    Product (A 
    -bag )); 
    
      reconsider n as non
    zero  
    Nat by 
    MOEBIUS2: 26;
    
      
    
      
    
    C2: ( 
    Product (A 
    -bag )) 
    = ( 
    Product ( 
    ppf n)) by 
    NAT_3: 61;
    
      
    
      
    
    ZW: ( 
    ppf n) 
    = (A 
    -bag ) by 
    INT_7: 15,
    C2;
    
       not ex p be
    Prime st (p 
    |^ 2) 
    divides n 
    
      proof
    
        given p1 be
    Prime such that 
    
        
    
    K1: (p1 
    |^ 2) 
    divides n; 
    
        
    
        
    
    K2: (p1 
    |-count (p1 
    |^ 2)) 
    <= (p1 
    |-count n) by 
    NAT_3: 30,
    K1;
    
        set m = (p1
    |-count n); 
    
        
    
        
    
    W2: m 
    >= 2 by 
    K2,
    NAT_3: 25,
    INT_2:def 4;
    
        (p1
    |^ 1) 
    divides (p1 
    |^ 2) by 
    NEWTON: 89;
    
        then
    
        
    
    V1: p1 
    in ( 
    support ( 
    pfexp n)) by 
    NAT_3: 37,
    K1,
    NAT_D: 4;
    
        then
    
        
    
    W1: (( 
    ppf n) 
    . p1) 
    = (p1 
    |^ m) by 
    NAT_3:def 9;
    
        p1
    in ( 
    support ( 
    ppf n)) by 
    V1,
    NAT_3:def 9;
    
        then p1
    = (p1 
    |^ m) by 
    W1,
    BagValue,
    ZW;
    
        hence thesis by
    PREPOWER: 13,
    W2,
    INT_2:def 4;
    
      end;
    
      hence thesis by
    MOEBIUS1:def 1;
    
    end;
    
    registration
    
      let A be
    finite  
    Subset of 
    SetPrimes ; 
    
      cluster ( 
    Product (A 
    -bag )) -> 
    square-free;
    
      coherence by
    ProdSqF;
    
    end
    
    theorem :: 
    
    MOEBIUS3:57
    
    for n be non
    zero  
    Nat holds for x be 
    object st x 
    in ( 
    bool ( 
    SetPrimes n)) holds x is 
    finite  
    Subset of 
    SetPrimes  
    
    proof
    
      let n be non
    zero  
    Nat;
    
      let x be
    object;
    
      assume
    
      
    
    G1: x 
    in ( 
    bool ( 
    SetPrimes n)); 
    
      reconsider g1 = x as
    Subset of ( 
    SetPrimes n) by 
    G1;
    
      (
    SetPrimes n) 
    c=  
    SetPrimes by 
    XBOOLE_1: 17;
    
      then g1
    c=  
    SetPrimes ; 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:58
    
    for n be non
    zero  
    Nat holds for x be 
    object st x 
    in  
    [:(
    bool ( 
    SetPrimes n)), ( 
    Seg n):] holds (x 
    `1 ) is 
    finite  
    Subset of 
    SetPrimes  
    
    proof
    
      let n be non
    zero  
    Nat;
    
      let x be
    object;
    
      assume
    
      
    
    G1: x 
    in  
    [:(
    bool ( 
    SetPrimes n)), ( 
    Seg n):]; 
    
      x is
    pair by 
    CARDFIL4: 4,
    G1;
    
      then x
    =  
    [(x
    `1 ), (x 
    `2 )]; 
    
      then
    
      reconsider g1 = (x
    `1 ) as 
    Subset of ( 
    SetPrimes n) by 
    G1,
    ZFMISC_1: 87;
    
      (
    SetPrimes n) 
    c=  
    SetPrimes by 
    XBOOLE_1: 17;
    
      then g1
    c=  
    SetPrimes ; 
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:59
    
    (
    rseq ( 
    0 ,1,1, 
    0 )) 
    =  
    invNAT  
    
    proof
    
      for n be
    Element of 
    NAT holds (( 
    rseq ( 
    0 ,1,1, 
    0 )) 
    . n) 
    = ( 
    invNAT  
    . n) 
    
      proof
    
        let n be
    Element of 
    NAT ; 
    
        ((
    rseq ( 
    0 ,1,1, 
    0 )) 
    . n) 
    = (1 
    / ((1 
    * n) 
    +  
    0 )) by 
    AlgDef
    
        .= (
    invNAT  
    . n) by 
    MOEBIUS2:def 2;
    
        hence thesis;
    
      end;
    
      hence thesis by
    FUNCT_2: 63;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:60
    
    (
    indexp  
    0 ) 
    =  
    0 ; 
    
    theorem :: 
    
    MOEBIUS3:61
    
    
    
    
    
    GreaterProduct: for n be 
    Nat holds (( 
    Partial_Product  
    Reci-seq2 ) 
    . n) 
    >  
    0  
    
    proof
    
      let n be
    Nat;
    
      for k be
    Nat holds ( 
    Reci-seq2  
    . k) 
    >  
    0  
    
      proof
    
        let k be
    Nat;
    
        (
    Reci-seq2  
    . k) 
    = (1 
    + (1 
    / ( 
    primenumber k))) by 
    My3Def;
    
        hence thesis;
    
      end;
    
      hence thesis by
    SERIES_3: 43;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:62
    
    
    
    
    
    Crucial5X: for n be 
    Nat holds ( 
    ln  
    . (( 
    Partial_Product  
    Reci-seq2 ) 
    . n)) 
    <= (( 
    Partial_Sums  
    ReciPrime ) 
    . n) 
    
    proof
    
      let n be
    Nat;
    
      defpred
    
    P[
    Nat] means (
    ln  
    . (( 
    Partial_Product  
    Reci-seq2 ) 
    . $1)) 
    <= (( 
    Partial_Sums  
    ReciPrime ) 
    . $1); 
    
      
    
      
    
    B1: (( 
    Partial_Product  
    Reci-seq2 ) 
    .  
    0 ) 
    = ( 
    Reci-seq2  
    .  
    0 ) by 
    SERIES_3:def 1
    
      .= (1
    + (1 
    / 2)) by 
    MOEBIUS2: 8,
    My3Def;
    
      ((
    Partial_Sums  
    ReciPrime ) 
    .  
    0 ) 
    = ( 
    ReciPrime  
    .  
    0 ) by 
    SERIES_1:def 1
    
      .= (1
    / 2) by 
    MOEBIUS2: 8,
    MOEBIUS2:def 1;
    
      then
    
      
    
    A1: 
    P[
    0 ] by 
    B1,
    Diesel1;
    
      
    
      
    
    A2: for k be 
    Nat st 
    P[k] holds
    P[(k
    + 1)] 
    
      proof
    
        let k be
    Nat;
    
        assume
    
        
    
    B1: 
    P[k];
    
        
    
        
    
    C1: (( 
    Partial_Product  
    Reci-seq2 ) 
    . k) 
    >  
    0 by 
    GreaterProduct;
    
        
    
        
    
    C2: ( 
    Reci-seq2  
    . (k 
    + 1)) 
    >  
    0  
    
        proof
    
          (
    Reci-seq2  
    . (k 
    + 1)) 
    = (1 
    + (1 
    / ( 
    primenumber (k 
    + 1)))) by 
    My3Def;
    
          hence thesis;
    
        end;
    
        ((
    Partial_Product  
    Reci-seq2 ) 
    . (k 
    + 1)) 
    = ((( 
    Partial_Product  
    Reci-seq2 ) 
    . k) 
    * ( 
    Reci-seq2  
    . (k 
    + 1))) by 
    SERIES_3:def 1;
    
        then (
    ln  
    . (( 
    Partial_Product  
    Reci-seq2 ) 
    . (k 
    + 1))) 
    = (( 
    ln  
    . (( 
    Partial_Product  
    Reci-seq2 ) 
    . k)) 
    + ( 
    ln  
    . ( 
    Reci-seq2  
    . (k 
    + 1)))) by 
    LogAdd,
    C1,
    C2;
    
        then
    
        
    
    D5: ( 
    ln  
    . (( 
    Partial_Product  
    Reci-seq2 ) 
    . (k 
    + 1))) 
    <= ((( 
    Partial_Sums  
    ReciPrime ) 
    . k) 
    + ( 
    ln  
    . ( 
    Reci-seq2  
    . (k 
    + 1)))) by 
    XREAL_1: 7,
    B1;
    
        
    
        
    
    D3: (( 
    Partial_Sums  
    ReciPrime ) 
    . (k 
    + 1)) 
    = ((( 
    Partial_Sums  
    ReciPrime ) 
    . k) 
    + ( 
    ReciPrime  
    . (k 
    + 1))) by 
    SERIES_1:def 1;
    
        (
    ln  
    . ( 
    Reci-seq2  
    . (k 
    + 1))) 
    < ( 
    ReciPrime  
    . (k 
    + 1)) 
    
        proof
    
          
    
          
    
    D1: ( 
    Reci-seq2  
    . (k 
    + 1)) 
    = (1 
    + (1 
    / ( 
    primenumber (k 
    + 1)))) by 
    My3Def;
    
          (
    ReciPrime  
    . (k 
    + 1)) 
    = (1 
    / ( 
    primenumber (k 
    + 1))) by 
    MOEBIUS2:def 1;
    
          hence thesis by
    D1,
    Diesel1;
    
        end;
    
        then (((
    Partial_Sums  
    ReciPrime ) 
    . k) 
    + ( 
    ln  
    . ( 
    Reci-seq2  
    . (k 
    + 1)))) 
    < ((( 
    Partial_Sums  
    ReciPrime ) 
    . k) 
    + ( 
    ReciPrime  
    . (k 
    + 1))) by 
    XREAL_1: 8;
    
        hence thesis by
    D5,
    XXREAL_0: 2,
    D3;
    
      end;
    
      for n be
    Nat holds 
    P[n] from
    NAT_1:sch 2(
    A1,
    A2);
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:63
    
    for n be
    Nat holds ( 
    ln  
    . (( 
    Partial_Product  
    Reci-seq2 ) 
    . ( 
    indexp n))) 
    <= (( 
    Partial_Sums  
    ReciPrime ) 
    . n) 
    
    proof
    
      let n be
    Nat;
    
      
    
      
    
    A1: ( 
    ln  
    . (( 
    Partial_Product  
    Reci-seq2 ) 
    . ( 
    indexp n))) 
    <= (( 
    Partial_Sums  
    ReciPrime ) 
    . ( 
    indexp n)) by 
    Crucial5X;
    
      for i be
    Nat holds ( 
    ReciPrime  
    . i) 
    >=  
    0  
    
      proof
    
        let i be
    Nat;
    
        (
    ReciPrime  
    . i) 
    = (1 
    / ( 
    primenumber i)) by 
    MOEBIUS2:def 1;
    
        hence thesis;
    
      end;
    
      then ((
    Partial_Sums  
    ReciPrime ) 
    . ( 
    indexp n)) 
    <= (( 
    Partial_Sums  
    ReciPrime ) 
    . n) by 
    Krzys1,
    CATALAN2: 52;
    
      hence thesis by
    A1,
    XXREAL_0: 2;
    
    end;
    
    definition
    
      :: 
    
    MOEBIUS3:def8
    
      func
    
    Reci-Sqf -> 
    Real_Sequence means 
    
      :
    
    MySumDef: (it 
    .  
    0 ) 
    =  
    0 & for i be non 
    zero  
    Nat holds (it 
    . i) 
    = (1 
    / ( 
    SquarefreePart i)); 
    
      existence
    
      proof
    
        deffunc
    
    G(
    Nat, 
    object) = (
    In ((1 
    / ( 
    SquarefreePart ($1 
    + 1))), 
    REAL )); 
    
        deffunc
    
    A() = (
    In ( 
    0 , 
    REAL )); 
    
        consider f be
    sequence of 
    REAL such that 
    
        
    
    A1: (f 
    .  
    0 ) 
    =  
    A() & for n be
    Nat holds (f 
    . (n 
    + 1)) 
    =  
    G(n,.) from
    NAT_1:sch 12;
    
        reconsider f as
    Real_Sequence;
    
        take f;
    
        thus (f
    .  
    0 ) 
    =  
    0 by 
    A1;
    
        let n be non
    zero  
    Nat;
    
        consider k be
    Nat such that 
    
        
    
    A2: (k 
    + 1) 
    = n by 
    NAT_1: 6;
    
        (f
    . (k 
    + 1)) 
    =  
    G(k,.) by
    A1
    
        .= (1
    / ( 
    SquarefreePart (k 
    + 1))); 
    
        hence thesis by
    A2;
    
      end;
    
      uniqueness
    
      proof
    
        let f1,f2 be
    Real_Sequence such that 
    
        
    
    A1: (f1 
    .  
    0 ) 
    =  
    0 & for i be non 
    zero  
    Nat holds (f1 
    . i) 
    = (1 
    / ( 
    SquarefreePart i)) and 
    
        
    
    A2: (f2 
    .  
    0 ) 
    =  
    0 & for i be non 
    zero  
    Nat holds (f2 
    . i) 
    = (1 
    / ( 
    SquarefreePart i)); 
    
        for n be
    Element of 
    NAT holds (f1 
    . n) 
    = (f2 
    . n) 
    
        proof
    
          let n be
    Element of 
    NAT ; 
    
          per cases ;
    
            suppose n
    =  
    0 ; 
    
            hence thesis by
    A2,
    A1;
    
          end;
    
            suppose n
    <>  
    0 ; 
    
            then
    
            reconsider nn = n as non
    zero  
    Nat;
    
            (f1
    . nn) 
    = (1 
    / ( 
    SquarefreePart nn)) by 
    A1
    
            .= (f2
    . nn) by 
    A2;
    
            hence thesis;
    
          end;
    
        end;
    
        hence thesis by
    FUNCT_2: 63;
    
      end;
    
      :: 
    
    MOEBIUS3:def9
    
      func
    
    Reci-TSq -> 
    Real_Sequence means 
    
      :
    
    MySum2Def: (it 
    .  
    0 ) 
    =  
    0 & for i be non 
    zero  
    Nat holds (it 
    . i) 
    = (1 
    / ( 
    TSqF i)); 
    
      existence
    
      proof
    
        deffunc
    
    G(
    Nat, 
    object) = (
    In ((1 
    / ( 
    TSqF ($1 
    + 1))), 
    REAL )); 
    
        deffunc
    
    A() = (
    In ( 
    0 , 
    REAL )); 
    
        consider f be
    sequence of 
    REAL such that 
    
        
    
    A1: (f 
    .  
    0 ) 
    =  
    A() & for n be
    Nat holds (f 
    . (n 
    + 1)) 
    =  
    G(n,.) from
    NAT_1:sch 12;
    
        reconsider f as
    Real_Sequence;
    
        take f;
    
        thus (f
    .  
    0 ) 
    =  
    0 by 
    A1;
    
        let n be non
    zero  
    Nat;
    
        consider k be
    Nat such that 
    
        
    
    A2: (k 
    + 1) 
    = n by 
    NAT_1: 6;
    
        (f
    . (k 
    + 1)) 
    =  
    G(k,.) by
    A1
    
        .= (1
    / ( 
    TSqF (k 
    + 1))); 
    
        hence thesis by
    A2;
    
      end;
    
      uniqueness
    
      proof
    
        let f1,f2 be
    Real_Sequence such that 
    
        
    
    A1: (f1 
    .  
    0 ) 
    =  
    0 & for i be non 
    zero  
    Nat holds (f1 
    . i) 
    = (1 
    / ( 
    TSqF i)) and 
    
        
    
    A2: (f2 
    .  
    0 ) 
    =  
    0 & for i be non 
    zero  
    Nat holds (f2 
    . i) 
    = (1 
    / ( 
    TSqF i)); 
    
        for n be
    Element of 
    NAT holds (f1 
    . n) 
    = (f2 
    . n) 
    
        proof
    
          let n be
    Element of 
    NAT ; 
    
          per cases ;
    
            suppose n
    =  
    0 ; 
    
            hence thesis by
    A2,
    A1;
    
          end;
    
            suppose n
    <>  
    0 ; 
    
            then
    
            reconsider nn = n as non
    zero  
    Nat;
    
            (f1
    . nn) 
    = (1 
    / ( 
    TSqF nn)) by 
    A1
    
            .= (f2
    . nn) by 
    A2;
    
            hence thesis;
    
          end;
    
        end;
    
        hence thesis by
    FUNCT_2: 63;
    
      end;
    
    end
    
    theorem :: 
    
    MOEBIUS3:64
    
    
    
    
    
    Core1: ( 
    rseq ( 
    0 ,1,1, 
    0 )) 
    = ( 
    Reci-Sqf  
    (#)  
    Reci-TSq ) 
    
    proof
    
      for n be
    Nat holds (( 
    rseq ( 
    0 ,1,1, 
    0 )) 
    . n) 
    = (( 
    Reci-Sqf  
    . n) 
    * ( 
    Reci-TSq  
    . n)) 
    
      proof
    
        let n be
    Nat;
    
        
    
        
    
    A1: (( 
    rseq ( 
    0 ,1,1, 
    0 )) 
    . n) 
    = (1 
    / ((1 
    * n) 
    +  
    0 )) by 
    AlgDef;
    
        per cases ;
    
          suppose
    
          
    
    A2: n 
    =  
    0 ; 
    
          
    
          then ((
    rseq ( 
    0 ,1,1, 
    0 )) 
    . n) 
    = (1 
    / ((1 
    *  
    0 ) 
    +  
    0 )) by 
    AlgDef
    
          .= ((
    Reci-Sqf  
    . n) 
    *  
    0 ) 
    
          .= ((
    Reci-Sqf  
    . n) 
    * ( 
    Reci-TSq  
    . n)) by 
    MySum2Def,
    A2;
    
          hence thesis;
    
        end;
    
          suppose n
    <>  
    0 ; 
    
          then
    
          reconsider nn = n as non
    zero  
    Nat;
    
          
    
          
    
    A3: ( 
    TSqF nn) 
    = (( 
    SqF nn) 
    |^ 2) by 
    Cosik
    
          .= ((
    SqF nn) 
    ^2 ) by 
    NEWTON: 81;
    
          
    
          
    
    A4: ( 
    Reci-TSq  
    . nn) 
    = (1 
    / ( 
    TSqF nn)) by 
    MySum2Def;
    
          (1
    / nn) 
    = (1 
    / (( 
    SquarefreePart nn) 
    * ( 
    TSqF nn))) by 
    Canonical,
    A3
    
          .= ((1
    / ( 
    SquarefreePart nn)) 
    * (1 
    / ( 
    TSqF nn))) by 
    XCMPLX_1: 102;
    
          hence thesis by
    MySumDef,
    A1,
    A4;
    
        end;
    
      end;
    
      hence thesis by
    SEQ_1: 8;
    
    end;
    
    reserve s,s1,s2 for
    Real_Sequence;
    
    theorem :: 
    
    MOEBIUS3:65
    
    
    
    
    
    Seqs1: for n be 
    Nat holds ( 
    Reci-Sqf  
    . n) 
    >=  
    0  
    
    proof
    
      let n be
    Nat;
    
      per cases ;
    
        suppose n
    =  
    0 ; 
    
        hence thesis by
    MySumDef;
    
      end;
    
        suppose n
    <>  
    0 ; 
    
        then
    
        reconsider nn = n as non
    zero  
    Nat;
    
        (
    Reci-Sqf  
    . n) 
    = (1 
    / ( 
    SquarefreePart nn)) by 
    MySumDef;
    
        hence thesis;
    
      end;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:66
    
    
    
    
    
    Seqs4: for n be 
    Nat holds ( 
    Reci-TSq  
    . n) 
    >=  
    0  
    
    proof
    
      let n be
    Nat;
    
      per cases ;
    
        suppose n
    =  
    0 ; 
    
        hence thesis by
    MySum2Def;
    
      end;
    
        suppose n
    <>  
    0 ; 
    
        then
    
        reconsider nn = n as non
    zero  
    Nat;
    
        (
    Reci-TSq  
    . n) 
    = (1 
    / ( 
    TSqF nn)) by 
    MySum2Def;
    
        hence thesis;
    
      end;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:67
    
    for n be
    Nat holds ( 
    Basel-seq  
    . n) 
    >=  
    0  
    
    proof
    
      let n be
    Nat;
    
      (
    Basel-seq  
    . n) 
    = (1 
    / (n 
    ^2 )) by 
    BASEL_1: 31;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:68
    
    for n be
    Nat holds (( 
    Partial_Sums ( 
    rseq ( 
    0 ,1,1, 
    0 ))) 
    . n) 
    <= ((( 
    Partial_Sums  
    Reci-Sqf ) 
    . n) 
    * (( 
    Partial_Sums  
    Reci-TSq ) 
    . n)) by 
    SERIES_3: 39,
    Seqs1,
    Seqs4,
    Core1;
    
    definition
    
      let n be non
    zero  
    Nat;
    
      :: 
    
    MOEBIUS3:def10
    
      func
    
    Compose n -> 
    Function of 
    [:(
    bool ( 
    SetPrimes n)), ( 
    Seg n):], 
    NAT means for x be 
    Element of 
    [:(
    bool ( 
    SetPrimes n)), ( 
    Seg n):], A be 
    finite  
    Subset of 
    SetPrimes , k be 
    Nat st x 
    =  
    [A, k] holds (it
    . x) 
    = (( 
    Product ((A,1) 
    -bag )) 
    * (k 
    ^2 )); 
    
      existence
    
      proof
    
        defpred
    
    P[
    object, 
    object, 
    object] means for A be
    finite  
    Subset of 
    SetPrimes , k be 
    Nat st A 
    = $1 & k 
    = $2 holds $3 
    = (( 
    Product ((A,1) 
    -bag )) 
    * (k 
    ^2 )); 
    
        
    
        
    
    A1: for x,y,z1,z2 be 
    object st x 
    in ( 
    bool ( 
    SetPrimes n)) & y 
    in ( 
    Seg n) & 
    P[x, y, z1] &
    P[x, y, z2] holds z1
    = z2 
    
        proof
    
          let x,y,z1,z2 be
    object;
    
          assume
    
          
    
    a1: x 
    in ( 
    bool ( 
    SetPrimes n)) & y 
    in ( 
    Seg n) & 
    P[x, y, z1] &
    P[x, y, z2];
    
          then
    
          reconsider xa = x as
    Subset of ( 
    SetPrimes n); 
    
          
    
          
    
    a4: ( 
    SetPrimes n) 
    c=  
    SetPrimes by 
    XBOOLE_1: 17;
    
          xa
    c=  
    SetPrimes by 
    a4;
    
          then
    
          reconsider S = xa as
    finite  
    Subset of 
    SetPrimes ; 
    
          set xx = ((S,1)
    -bag ); 
    
          reconsider yy = y as
    Nat by 
    a1;
    
          z1
    = (( 
    Product xx) 
    * (yy 
    ^2 )) by 
    a1;
    
          hence thesis by
    a1;
    
        end;
    
        
    
        
    
    A2: for x,y be 
    object st x 
    in ( 
    bool ( 
    SetPrimes n)) & y 
    in ( 
    Seg n) holds ex z be 
    object st 
    P[x, y, z]
    
        proof
    
          let x,y be
    object;
    
          assume
    
          
    
    a1: x 
    in ( 
    bool ( 
    SetPrimes n)) & y 
    in ( 
    Seg n); 
    
          
    
          
    
    a4: ( 
    SetPrimes n) 
    c=  
    SetPrimes by 
    XBOOLE_1: 17;
    
          reconsider xx = x as
    Subset of ( 
    SetPrimes n) by 
    a1;
    
          xx
    c=  
    SetPrimes by 
    a4;
    
          then
    
          reconsider xx = x as
    finite  
    Subset of 
    SetPrimes ; 
    
          reconsider yy = y as
    Nat by 
    a1;
    
          ex z be
    object st 
    P[x, y, z]
    
          proof
    
            take ((
    Product ((xx,1) 
    -bag )) 
    * (yy 
    ^2 )); 
    
            thus thesis;
    
          end;
    
          hence thesis;
    
        end;
    
        ex f be
    Function st ( 
    dom f) 
    =  
    [:(
    bool ( 
    SetPrimes n)), ( 
    Seg n):] & for x,y be 
    object st x 
    in ( 
    bool ( 
    SetPrimes n)) & y 
    in ( 
    Seg n) holds 
    P[x, y, (f
    . (x,y))] from 
    FUNCT_3:sch 1(
    A1,
    A2);
    
        then
    
        consider f be
    Function such that 
    
        
    
    D1: ( 
    dom f) 
    =  
    [:(
    bool ( 
    SetPrimes n)), ( 
    Seg n):] & for x,y be 
    object st x 
    in ( 
    bool ( 
    SetPrimes n)) & y 
    in ( 
    Seg n) holds 
    P[x, y, (f
    . (x,y))]; 
    
        (
    rng f) 
    c=  
    NAT  
    
        proof
    
          let g be
    object;
    
          assume g
    in ( 
    rng f); 
    
          then
    
          consider gg be
    object such that 
    
          
    
    E1: gg 
    in ( 
    dom f) & g 
    = (f 
    . gg) by 
    FUNCT_1:def 3;
    
          
    
          
    
    G0: gg is 
    pair by 
    CARDFIL4: 4,
    E1,
    D1;
    
          then
    
          
    
    G3: gg 
    =  
    [(gg
    `1 ), (gg 
    `2 )]; 
    
          then
    
          
    
    Z1: (gg 
    `1 ) 
    in ( 
    bool ( 
    SetPrimes n)) by 
    E1,
    D1,
    ZFMISC_1: 87;
    
          reconsider g1 = (gg
    `1 ) as 
    Subset of ( 
    SetPrimes n) by 
    G3,
    E1,
    D1,
    ZFMISC_1: 87;
    
          
    
          
    
    a4: ( 
    SetPrimes n) 
    c=  
    SetPrimes by 
    XBOOLE_1: 17;
    
          g1
    c=  
    SetPrimes by 
    a4;
    
          then
    
          reconsider g1 = (gg
    `1 ) as 
    finite  
    Subset of 
    SetPrimes ; 
    
          
    
          
    
    Z2: (gg 
    `2 ) 
    in ( 
    Seg n) by 
    E1,
    D1,
    G3,
    ZFMISC_1: 87;
    
          then
    
          reconsider yy = (gg
    `2 ) as 
    Nat;
    
          (f
    . (g1,yy)) 
    = (( 
    Product ((g1,1) 
    -bag )) 
    * (yy 
    ^2 )) by 
    Z1,
    D1,
    Z2;
    
          hence thesis by
    E1,
    G0;
    
        end;
    
        then
    
        reconsider f as
    Function of 
    [:(
    bool ( 
    SetPrimes n)), ( 
    Seg n):], 
    NAT by 
    D1,
    FUNCT_2: 2;
    
        take f;
    
        let x be
    Element of 
    [:(
    bool ( 
    SetPrimes n)), ( 
    Seg n):], A be 
    finite  
    Subset of 
    SetPrimes , k be 
    Nat;
    
        assume
    
        
    
    D2: x 
    =  
    [A, k];
    
        then
    
        
    
    D3: A 
    in ( 
    bool ( 
    SetPrimes n)) by 
    ZFMISC_1: 87;
    
        k
    in ( 
    Seg n) by 
    D2,
    ZFMISC_1: 87;
    
        then
    P[A, k, (f
    . (A,k))] by 
    D3,
    D1;
    
        hence thesis by
    D2;
    
      end;
    
      uniqueness
    
      proof
    
        let f1,f2 be
    Function of 
    [:(
    bool ( 
    SetPrimes n)), ( 
    Seg n):], 
    NAT ; 
    
        assume that
    
        
    
    A1: for x be 
    Element of 
    [:(
    bool ( 
    SetPrimes n)), ( 
    Seg n):], A be 
    finite  
    Subset of 
    SetPrimes , k be 
    Nat st x 
    =  
    [A, k] holds (f1
    . x) 
    = (( 
    Product ((A,1) 
    -bag )) 
    * (k 
    ^2 )) and 
    
        
    
    A2: for x be 
    Element of 
    [:(
    bool ( 
    SetPrimes n)), ( 
    Seg n):], A be 
    finite  
    Subset of 
    SetPrimes , k be 
    Nat st x 
    =  
    [A, k] holds (f2
    . x) 
    = (( 
    Product ((A,1) 
    -bag )) 
    * (k 
    ^2 )); 
    
        for x be
    object st x 
    in  
    [:(
    bool ( 
    SetPrimes n)), ( 
    Seg n):] holds (f1 
    . x) 
    = (f2 
    . x) 
    
        proof
    
          let x be
    object;
    
          assume
    
          
    
    G1: x 
    in  
    [:(
    bool ( 
    SetPrimes n)), ( 
    Seg n):]; 
    
          then
    
          
    
    G0: x is 
    pair by 
    CARDFIL4: 4;
    
          then
    
          
    
    G3: x 
    =  
    [(x
    `1 ), (x 
    `2 )]; 
    
          then
    
          reconsider xx = (x
    `1 ) as 
    Subset of ( 
    SetPrimes n) by 
    G1,
    ZFMISC_1: 87;
    
          
    
          
    
    a4: ( 
    SetPrimes n) 
    c=  
    SetPrimes by 
    XBOOLE_1: 17;
    
          xx
    c=  
    SetPrimes by 
    a4;
    
          then
    
          reconsider xx = (x
    `1 ) as 
    finite  
    Subset of 
    SetPrimes ; 
    
          (x
    `2 ) 
    in ( 
    Seg n) by 
    G1,
    G3,
    ZFMISC_1: 87;
    
          then
    
          reconsider yy = (x
    `2 ) as 
    Nat;
    
          
    
          
    
    G2: x 
    =  
    [xx, yy] by
    G0;
    
          
    
          then (f1
    . x) 
    = (( 
    Product ((xx,1) 
    -bag )) 
    * (yy 
    ^2 )) by 
    G1,
    A1
    
          .= (f2
    . x) by 
    A2,
    G1,
    G2;
    
          hence thesis;
    
        end;
    
        hence thesis by
    FUNCT_2: 12;
    
      end;
    
    end
    
    theorem :: 
    
    MOEBIUS3:69
    
    ((
    Partial_Sums  
    Basel-seq ) 
    . n) 
    >=  
    0  
    
    proof
    
      for n be
    Nat holds ( 
    Basel-seq  
    . n) 
    >=  
    0  
    
      proof
    
        let n be
    Nat;
    
        (
    Basel-seq  
    . n) 
    = (1 
    / (n 
    ^2 )) by 
    BASEL_1: 31;
    
        hence thesis;
    
      end;
    
      hence thesis by
    SERIES_3: 34;
    
    end;
    
    begin
    
    definition
    
      let n be
    Nat;
    
      :: 
    
    MOEBIUS3:def11
    
      func
    
    ReciProducts n -> 
    Subset of 
    REAL equals the set of all (1 
    / ( 
    Product ( 
    Sgm X))) where X be 
    Subset of ( 
    SetPrimes n); 
    
      coherence
    
      proof
    
        set Y = the set of all (1
    / ( 
    Product ( 
    Sgm X))) where X be 
    Subset of ( 
    SetPrimes n); 
    
        Y
    c=  
    REAL  
    
        proof
    
          let x be
    object;
    
          assume x
    in Y; 
    
          then
    
          consider X be
    Subset of ( 
    SetPrimes n) such that 
    
          
    
    A1: x 
    = (1 
    / ( 
    Product ( 
    Sgm X))); 
    
          thus thesis by
    A1,
    XREAL_0:def 1;
    
        end;
    
        hence thesis;
    
      end;
    
    end
    
    registration
    
      let n be
    Nat;
    
      cluster ( 
    ReciProducts n) -> 
    finite;
    
      correctness
    
      proof
    
        set Y = (
    ReciProducts n); 
    
        deffunc
    
    F(
    Subset of ( 
    SetPrimes n)) = (1 
    / ( 
    Product ( 
    Sgm $1))); 
    
        
    
        
    
    A3: Y 
    c= { 
    F(X) where X be
    Element of ( 
    bool ( 
    SetPrimes n)) : X 
    in ( 
    bool ( 
    SetPrimes n)) } 
    
        proof
    
          let x be
    object;
    
          assume x
    in Y; 
    
          then
    
          consider X be
    Subset of ( 
    SetPrimes n) such that 
    
          
    
    B1: x 
    = (1 
    / ( 
    Product ( 
    Sgm X))); 
    
          thus thesis by
    B1;
    
        end;
    
        
    
        
    
    A1: ( 
    bool ( 
    SetPrimes n)) is 
    finite;
    
        {
    F(w) where w be
    Element of ( 
    bool ( 
    SetPrimes n)) : w 
    in ( 
    bool ( 
    SetPrimes n)) } is 
    finite from 
    FRAENKEL:sch 21(
    A1);
    
        hence thesis by
    A3;
    
      end;
    
    end
    
    theorem :: 
    
    MOEBIUS3:70
    
    (
    ReciProducts  
    0 ) 
    =  
    {1}
    
    proof
    
       the set of all (1
    / ( 
    Product ( 
    Sgm X))) where X be 
    Subset of ( 
    SetPrimes  
    0 ) 
    =  
    {1}
    
      proof
    
        
    
        
    
    T1: the set of all (1 
    / ( 
    Product ( 
    Sgm X))) where X be 
    Subset of ( 
    SetPrimes  
    0 ) 
    c=  
    {1}
    
        proof
    
          let x be
    object;
    
          assume x
    in the set of all (1 
    / ( 
    Product ( 
    Sgm X))) where X be 
    Subset of ( 
    SetPrimes  
    0 ); 
    
          then
    
          consider X be
    Subset of ( 
    SetPrimes  
    0 ) such that 
    
          
    
    C1: x 
    = (1 
    / ( 
    Product ( 
    Sgm X))); 
    
          (
    Sgm X) 
    =  
    {} by 
    FINSEQ_3: 43;
    
          hence thesis by
    TARSKI:def 1,
    C1,
    RVSUM_1: 94;
    
        end;
    
        
    {1}
    c= the set of all (1 
    / ( 
    Product ( 
    Sgm X))) where X be 
    Subset of ( 
    SetPrimes  
    0 ) 
    
        proof
    
          let x be
    object;
    
          assume x
    in  
    {1};
    
          then
    
          
    
    S1: x 
    = (1 
    / ( 
    Product ( 
    Sgm  
    {} ))) by 
    FINSEQ_3: 43,
    RVSUM_1: 94,
    TARSKI:def 1;
    
          
    {}  
    c= ( 
    SetPrimes  
    0 ); 
    
          hence thesis by
    S1;
    
        end;
    
        hence thesis by
    T1,
    TARSKI: 2;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:71
    
    for p be
    Prime st p 
    > 2 holds ( 
    ReciProducts (p 
    + 1)) 
    = ( 
    ReciProducts p) 
    
    proof
    
      let p be
    Prime;
    
      assume p
    > 2; 
    
      then not (p
    + 1) is 
    prime by 
    P1NotPrime;
    
      then (
    SetPrimes (p 
    + 1)) 
    = ( 
    SetPrimes p) by 
    PrimesSet;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:72
    
    for p be
    Nat st not (p 
    + 1) is 
    Prime holds ( 
    ReciProducts (p 
    + 1)) 
    = ( 
    ReciProducts p) 
    
    proof
    
      let p be
    Nat;
    
      assume not (p
    + 1) is 
    Prime;
    
      then (
    SetPrimes (p 
    + 1)) 
    = ( 
    SetPrimes p) by 
    PrimesSet;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:73
    
    (
    ReciProducts 1) 
    =  
    {1}
    
    proof
    
       the set of all (1
    / ( 
    Product ( 
    Sgm X))) where X be 
    Subset of ( 
    SetPrimes 1) 
    =  
    {1}
    
      proof
    
        
    
        
    
    T1: the set of all (1 
    / ( 
    Product ( 
    Sgm X))) where X be 
    Subset of ( 
    SetPrimes 1) 
    c=  
    {1}
    
        proof
    
          let x be
    object;
    
          assume x
    in the set of all (1 
    / ( 
    Product ( 
    Sgm X))) where X be 
    Subset of ( 
    SetPrimes 1); 
    
          then
    
          consider X be
    Subset of ( 
    SetPrimes 1) such that 
    
          
    
    C1: x 
    = (1 
    / ( 
    Product ( 
    Sgm X))); 
    
          (
    Sgm X) 
    =  
    {} by 
    FINSEQ_3: 43,
    SetPrime1;
    
          hence thesis by
    TARSKI:def 1,
    C1,
    RVSUM_1: 94;
    
        end;
    
        
    {1}
    c= the set of all (1 
    / ( 
    Product ( 
    Sgm X))) where X be 
    Subset of ( 
    SetPrimes 1) 
    
        proof
    
          let x be
    object;
    
          assume x
    in  
    {1};
    
          then
    
          
    
    S1: x 
    = (1 
    / ( 
    Product ( 
    Sgm  
    {} ))) by 
    FINSEQ_3: 43,
    RVSUM_1: 94,
    TARSKI:def 1;
    
          
    {}  
    c= ( 
    SetPrimes 1); 
    
          hence thesis by
    S1;
    
        end;
    
        hence thesis by
    T1,
    TARSKI: 2;
    
      end;
    
      hence thesis;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:74
    
    (
    ReciProducts 2) 
    =  
    {(1
    / 2), 1} 
    
    proof
    
      (
    Sgm  
    {2})
    =  
    <*2*> by
    FINSEQ_3: 44;
    
      then
    
      
    
    A2: (1 
    / ( 
    Product ( 
    Sgm  
    {2})))
    = (1 
    / 2) by 
    RVSUM_1: 95;
    
      
    {2}
    c= ( 
    SetPrimes 2) by 
    Set2;
    
      then
    
      
    
    S1: (1 
    / 2) 
    in ( 
    ReciProducts 2) by 
    A2;
    
      
    {}  
    c= ( 
    Seg 1); 
    
      then
    
      
    
    A4: ( 
    Product ( 
    Sgm  
    {} )) 
    = 1 by 
    RVSUM_1: 94,
    FINSEQ_1: 51;
    
      
    
      
    
    Z1: 
    {}  
    c= ( 
    SetPrimes 2); 
    
      (1
    / ( 
    Product ( 
    Sgm  
    {} ))) 
    = 1 by 
    A4;
    
      then 1
    in ( 
    ReciProducts 2) by 
    Z1;
    
      then
    
      
    
    ZZ: 
    {(1
    / 2), 1} 
    c= ( 
    ReciProducts 2) by 
    ZFMISC_1: 32,
    S1;
    
      (
    ReciProducts 2) 
    c=  
    {(1
    / 2), 1} 
    
      proof
    
        let x be
    object;
    
        assume x
    in ( 
    ReciProducts 2); 
    
        then
    
        consider X be
    Subset of ( 
    SetPrimes 2) such that 
    
        
    
    N1: x 
    = (1 
    / ( 
    Product ( 
    Sgm X))); 
    
        X
    =  
    {} or X 
    =  
    {2} by
    ZFMISC_1: 33,
    Set2;
    
        hence thesis by
    TARSKI:def 2,
    N1,
    A4,
    A2;
    
      end;
    
      hence thesis by
    TARSKI: 2,
    ZZ;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:75
    
    
    
    
    
    ReciSubset: for n be 
    Nat holds ( 
    ReciProducts n) 
    c= ( 
    ReciProducts (n 
    + 1)) 
    
    proof
    
      let n be
    Nat;
    
      let x be
    object;
    
      n
    <= (n 
    + 1) by 
    NAT_1: 13;
    
      then
    
      
    
    A0: ( 
    SetPrimes n) 
    c= ( 
    SetPrimes (n 
    + 1)) by 
    XBOOLE_1: 26,
    FINSEQ_1: 5;
    
      assume x
    in ( 
    ReciProducts n); 
    
      then
    
      consider X be
    Subset of ( 
    SetPrimes n) such that 
    
      
    
    A1: x 
    = (1 
    / ( 
    Product ( 
    Sgm X))); 
    
      X
    c= ( 
    SetPrimes (n 
    + 1)) by 
    A0;
    
      hence thesis by
    A1;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:76
    
    for n be
    Nat st (n 
    + 1) is 
    Prime holds ( 
    ReciProducts (n 
    + 1)) 
    = (( 
    ReciProducts n) 
    \/ { (1 
    / ( 
    Product ( 
    Sgm X))) where X be 
    Subset of ( 
    SetPrimes (n 
    + 1)) : (n 
    + 1) 
    in X }) 
    
    proof
    
      let n be
    Nat;
    
      assume
    
      
    
    A0: (n 
    + 1) is 
    Prime;
    
      
    
      
    
    T1: ( 
    ReciProducts (n 
    + 1)) 
    c= (( 
    ReciProducts n) 
    \/ { (1 
    / ( 
    Product ( 
    Sgm X))) where X be 
    Subset of ( 
    SetPrimes (n 
    + 1)) : (n 
    + 1) 
    in X }) 
    
      proof
    
        let x be
    object;
    
        assume x
    in ( 
    ReciProducts (n 
    + 1)); 
    
        then
    
        consider X be
    Subset of ( 
    SetPrimes (n 
    + 1)) such that 
    
        
    
    A1: x 
    = (1 
    / ( 
    Product ( 
    Sgm X))); 
    
        X
    c= ( 
    SetPrimes (n 
    + 1)); 
    
        then
    
        
    
    A2: X 
    c= (( 
    SetPrimes n) 
    \/  
    {(n
    + 1)}) by 
    A0,
    PrimesSet2;
    
        per cases ;
    
          suppose (n
    + 1) 
    in X; 
    
          then x
    in { (1 
    / ( 
    Product ( 
    Sgm X))) where X be 
    Subset of ( 
    SetPrimes (n 
    + 1)) : (n 
    + 1) 
    in X } by 
    A1;
    
          hence thesis by
    XBOOLE_0:def 3;
    
        end;
    
          suppose not (n
    + 1) 
    in X; 
    
          then X
    c= ( 
    SetPrimes n) by 
    A2,
    ZFMISC_1: 135;
    
          then x
    in ( 
    ReciProducts n) by 
    A1;
    
          hence thesis by
    XBOOLE_0:def 3;
    
        end;
    
      end;
    
      ((
    ReciProducts n) 
    \/ { (1 
    / ( 
    Product ( 
    Sgm X))) where X be 
    Subset of ( 
    SetPrimes (n 
    + 1)) : (n 
    + 1) 
    in X }) 
    c= ( 
    ReciProducts (n 
    + 1)) 
    
      proof
    
        let x be
    object;
    
        assume x
    in (( 
    ReciProducts n) 
    \/ { (1 
    / ( 
    Product ( 
    Sgm X))) where X be 
    Subset of ( 
    SetPrimes (n 
    + 1)) : (n 
    + 1) 
    in X }); 
    
        per cases by
    XBOOLE_0:def 3;
    
          suppose
    
          
    
    Z1: x 
    in ( 
    ReciProducts n); 
    
          (
    ReciProducts n) 
    c= ( 
    ReciProducts (n 
    + 1)) by 
    ReciSubset;
    
          hence thesis by
    Z1;
    
        end;
    
          suppose x
    in { (1 
    / ( 
    Product ( 
    Sgm X))) where X be 
    Subset of ( 
    SetPrimes (n 
    + 1)) : (n 
    + 1) 
    in X }; 
    
          then
    
          consider X be
    Subset of ( 
    SetPrimes (n 
    + 1)) such that 
    
          
    
    B1: x 
    = (1 
    / ( 
    Product ( 
    Sgm X))) & (n 
    + 1) 
    in X; 
    
          thus thesis by
    B1;
    
        end;
    
      end;
    
      hence thesis by
    T1,
    TARSKI: 2;
    
    end;
    
    theorem :: 
    
    MOEBIUS3:77
    
    for n be
    Nat st (n 
    + 1) is 
    Prime holds ( 
    ReciProducts (n 
    + 1)) 
    = ({ (1 
    / ( 
    Product ( 
    Sgm X))) where X be 
    Subset of ( 
    SetPrimes n) : not (n 
    + 1) 
    in X } 
    \/ { (1 
    / ( 
    Product ( 
    Sgm X))) where X be 
    Subset of ( 
    SetPrimes (n 
    + 1)) : (n 
    + 1) 
    in X }) 
    
    proof
    
      let n be
    Nat;
    
      assume
    
      
    
    A0: (n 
    + 1) is 
    Prime;
    
      
    
      
    
    T1: ( 
    ReciProducts (n 
    + 1)) 
    c= ({ (1 
    / ( 
    Product ( 
    Sgm X))) where X be 
    Subset of ( 
    SetPrimes n) : not (n 
    + 1) 
    in X } 
    \/ { (1 
    / ( 
    Product ( 
    Sgm X))) where X be 
    Subset of ( 
    SetPrimes (n 
    + 1)) : (n 
    + 1) 
    in X }) 
    
      proof
    
        let x be
    object;
    
        assume x
    in ( 
    ReciProducts (n 
    + 1)); 
    
        then
    
        consider X be
    Subset of ( 
    SetPrimes (n 
    + 1)) such that 
    
        
    
    A1: x 
    = (1 
    / ( 
    Product ( 
    Sgm X))); 
    
        X
    c= ( 
    SetPrimes (n 
    + 1)); 
    
        then
    
        
    
    A2: X 
    c= (( 
    SetPrimes n) 
    \/  
    {(n
    + 1)}) by 
    A0,
    PrimesSet2;
    
        per cases ;
    
          suppose (n
    + 1) 
    in X; 
    
          then x
    in { (1 
    / ( 
    Product ( 
    Sgm X))) where X be 
    Subset of ( 
    SetPrimes (n 
    + 1)) : (n 
    + 1) 
    in X } by 
    A1;
    
          hence thesis by
    XBOOLE_0:def 3;
    
        end;
    
          suppose
    
          
    
    SS: not (n 
    + 1) 
    in X; 
    
          then X
    c= ( 
    SetPrimes n) by 
    A2,
    ZFMISC_1: 135;
    
          then x
    in { (1 
    / ( 
    Product ( 
    Sgm X))) where X be 
    Subset of ( 
    SetPrimes n) : not (n 
    + 1) 
    in X } by 
    SS,
    A1;
    
          hence thesis by
    XBOOLE_0:def 3;
    
        end;
    
      end;
    
      ({ (1
    / ( 
    Product ( 
    Sgm X))) where X be 
    Subset of ( 
    SetPrimes n) : not (n 
    + 1) 
    in X } 
    \/ { (1 
    / ( 
    Product ( 
    Sgm X))) where X be 
    Subset of ( 
    SetPrimes (n 
    + 1)) : (n 
    + 1) 
    in X }) 
    c= ( 
    ReciProducts (n 
    + 1)) 
    
      proof
    
        let x be
    object;
    
        assume x
    in ({ (1 
    / ( 
    Product ( 
    Sgm X))) where X be 
    Subset of ( 
    SetPrimes n) : not (n 
    + 1) 
    in X } 
    \/ { (1 
    / ( 
    Product ( 
    Sgm X))) where X be 
    Subset of ( 
    SetPrimes (n 
    + 1)) : (n 
    + 1) 
    in X }); 
    
        per cases by
    XBOOLE_0:def 3;
    
          suppose x
    in { (1 
    / ( 
    Product ( 
    Sgm X))) where X be 
    Subset of ( 
    SetPrimes n) : not (n 
    + 1) 
    in X }; 
    
          then
    
          consider X be
    Subset of ( 
    SetPrimes n) such that 
    
          
    
    I1: x 
    = (1 
    / ( 
    Product ( 
    Sgm X))) & not (n 
    + 1) 
    in X; 
    
          n
    <= (n 
    + 1) by 
    NAT_1: 13;
    
          then (
    SetPrimes n) 
    c= ( 
    SetPrimes (n 
    + 1)) by 
    XBOOLE_1: 26,
    FINSEQ_1: 5;
    
          then X
    c= ( 
    SetPrimes (n 
    + 1)); 
    
          hence thesis by
    I1;
    
        end;
    
          suppose x
    in { (1 
    / ( 
    Product ( 
    Sgm X))) where X be 
    Subset of ( 
    SetPrimes (n 
    + 1)) : (n 
    + 1) 
    in X }; 
    
          then
    
          consider X be
    Subset of ( 
    SetPrimes (n 
    + 1)) such that 
    
          
    
    B1: x 
    = (1 
    / ( 
    Product ( 
    Sgm X))) & (n 
    + 1) 
    in X; 
    
          thus thesis by
    B1;
    
        end;
    
      end;
    
      hence thesis by
    T1,
    TARSKI: 2;
    
    end;