leibniz1.miz
begin
reserve i,n,m for
Nat,
r,s for
Real,
A for non
empty
closed_interval
Subset of
REAL ;
Lm1:
tan
is_differentiable_on
].(
- (
PI
/ 2)), (
PI
/ 2).[
proof
r
in
].(
- (
PI
/ 2)), (
PI
/ 2).[ implies
tan
is_differentiable_in r
proof
assume r
in
].(
- (
PI
/ 2)), (
PI
/ 2).[;
then (
cos
. r)
<>
0 by
COMPTRIG: 11;
hence thesis by
FDIFF_7: 46;
end;
hence thesis by
SIN_COS9: 1,
FDIFF_1: 9;
end;
Lm2: r
in
].(
- (
PI
/ 2)), (
PI
/ 2).[ implies (
diff (
tan ,r))
= (1
/ ((
cos
. r)
^2 ))
proof
assume r
in
].(
- (
PI
/ 2)), (
PI
/ 2).[;
then (
cos
. r)
<>
0 by
COMPTRIG: 11;
hence thesis by
FDIFF_7: 46;
end;
Lm3: r
>
0 implies ex s be
Real st
0
<= s
< (
PI
/ 2) & (
tan
. s)
= r
proof
assume
A1: r
>
0 ;
set e = (1
/ (2
* r));
set P = (
PI
/ 2);
A2: P
in
REAL by
XREAL_0:def 1;
(
dom
sin )
=
REAL by
FUNCT_2:def 1;
then
consider s1 be
Real such that
A3:
0
< s1 & for x1 be
Real st x1
in (
dom
sin ) &
|.(x1
- P).|
< s1 holds
|.((
sin
. x1)
- (
sin
. P)).|
< (1
/ 2) by
A2,
FCONT_1:def 2,
FCONT_1: 3;
A4: (
dom
cos )
=
REAL & (
dom
sin )
=
REAL by
FUNCT_2:def 1;
then
consider s2 be
Real such that
A5:
0
< s2 & for x1 be
Real st x1
in (
dom
cos ) &
|.(x1
- P).|
< s2 holds
|.((
cos
. x1)
- (
cos
. P)).|
< e by
A1,
FCONT_1: 3,
A2,
FCONT_1:def 2;
set m = (
min (s1,s2)), M = (
min (m,(
PI
/ 2))), m2 = (M
/ 2);
0
< m &
0
< (
PI
/ 2) by
A3,
A5,
XXREAL_0: 21;
then
A6: M
>
0 by
XXREAL_0: 21;
then
A7: m2
>
0 & m2
< M by
XREAL_1: 216;
set X = (P
- m2);
A8: X
in
REAL by
XREAL_0:def 1;
A9: X
< P by
A6,
XREAL_1: 37;
A10:
|.(X
- P).|
= (
- (X
- P)) by
A6,
ABSVALUE:def 1;
A11: M
<= m & M
<= (
PI
/ 2) & m
<= s1 & m
<= s2 by
XXREAL_0: 17;
then M
<= s1 & M
<= s2 by
XXREAL_0: 2;
then
A12: m2
< s1 & m2
< s2 & m2
< (
PI
/ 2) by
A11,
A7,
XXREAL_0: 2;
then
A13:
|.((
cos
. X)
- (
cos
. P)).|
< e by
A10,
A4,
A5,
XREAL_0:def 1;
A14: X
>
0 by
A12,
XREAL_1: 50;
then X
in
].
0 , P.[ by
A9,
XXREAL_1: 4;
then
A15: (
cos
. X)
>
0 & (
cos
. P)
=
0 by
SIN_COS: 80,
SIN_COS: 77;
(
cos
. X)
< e by
A15,
A13,
ABSVALUE:def 1;
then
A16: (1
/ (
cos
. X))
> (1
/ (1
/ (2
* r))) & (1
/ (1
/ (2
* r)))
= (2
* r) by
XREAL_1: 76,
A15;
(
sin X)
< 1 & (
sin
. P)
= 1 & (
sin X)
= (
sin
. X) by
SIN_COS6: 30,
A9,
A14,
SIN_COS: 77;
then
|.((
sin
. X)
- 1).|
= (
- ((
sin
. X)
- 1)) by
ABSVALUE:def 1,
XREAL_1: 49;
then (1
- (
sin
. X))
< (1
/ 2) by
SIN_COS: 77,
A10,
A3,
A4,
XREAL_0:def 1,
A12;
then (
sin
. X)
> (1
- (1
/ 2)) by
XREAL_1: 11;
then
A17: ((
sin
. X)
/ (
cos
. X))
> ((1
/ 2)
/ (
cos
. X)) by
A15,
XREAL_1: 74;
((1
/ 2)
/ (
cos
. X))
> ((1
/ 2)
* (2
* r)) by
A16,
XREAL_1: 68;
then
A18: ((
sin
. X)
/ (
cos
. X))
> r by
A17,
XXREAL_0: 2;
not (
cos
. X)
in
{
0 } by
A15,
TARSKI:def 1;
then not X
in (
cos
"
{
0 }) by
FUNCT_1:def 7;
then X
in ((
dom
cos )
\ (
cos
"
{
0 })) by
A8,
A4,
XBOOLE_0:def 5;
then X
in ((
dom
sin )
/\ ((
dom
cos )
\ (
cos
"
{
0 }))) by
A4,
XBOOLE_0:def 4;
then X
in (
dom
tan ) by
RFUNCT_1:def 1;
then
A19: (
tan
. X)
> r by
A18,
RFUNCT_1:def 1;
A20:
[.
0 , X.]
c=
].(
- P), P.[ by
A9,
XXREAL_1: 47;
A21: (
tan
|
[.
0 , X.]) is
continuous by
A9,
XXREAL_1: 47,
SIN_COS9: 5,
FCONT_1: 16;
A22:
[.
0 , X.]
c= (
dom
tan ) by
A20,
SIN_COS9: 1;
r
in
[.(
tan
.
0 ), (
tan
. X).] by
A1,
A19,
XXREAL_1: 1,
SIN_COS9: 41;
then r
in (
[.(
tan
.
0 ), (
tan
. X).]
\/
[.(
tan
. X), (
tan
.
0 ).]) by
XBOOLE_0:def 3;
then
consider s be
Real such that
A23: s
in
[.
0 , X.] & r
= (
tan
. s) by
A21,
A22,
A14,
FCONT_2: 15;
A24:
0
<= s & s
<= X by
A23,
XXREAL_1: 1;
then s
< P by
A6,
XREAL_1: 37;
hence thesis by
A23,
A24;
end;
theorem ::
LEIBNIZ1:1
Th1: (
rng (
tan
|
].(
- (
PI
/ 2)), (
PI
/ 2).[))
=
REAL
proof
set P = (
PI
/ 2), I =
].(
- P), P.[;
REAL
c= (
rng (
tan
| I))
proof
let r be
object;
assume r
in
REAL ;
then
reconsider r as
Real;
per cases ;
suppose
A1: r
>
0 ;
then
consider s be
Real such that
A2:
0
<= s
< P & (
tan
. s)
= r by
Lm3;
s
in (
dom
tan ) by
A1,
A2,
FUNCT_1:def 2;
hence thesis by
XXREAL_1: 4,
A2,
FUNCT_1: 50;
end;
suppose
A3: r
<
0 ;
then
consider s be
Real such that
A4:
0
<= s
< P & (
tan
. s)
= (
- r) by
Lm3;
A5: s
in (
dom
tan ) by
A3,
A4,
FUNCT_1:def 2;
A6: (
dom
sin )
=
REAL & (
dom
cos )
=
REAL by
FUNCT_2:def 1;
then (
dom
tan )
= (
REAL
/\ (
REAL
\ (
cos
"
{
0 }))) by
RFUNCT_1:def 1;
then s
in (
REAL
\ (
cos
"
{
0 })) by
A5,
XBOOLE_0:def 4;
then s
in
REAL & not s
in (
cos
"
{
0 }) by
XBOOLE_0:def 5;
then not (
cos
. s)
in
{
0 } by
A6,
FUNCT_1:def 7;
then (
cos
. s)
<>
0 & (
cos
. s)
= (
cos
. (
- s)) by
TARSKI:def 1,
SIN_COS: 30;
then (
tan
. s)
= (
tan s) & (
tan
. (
- s))
= (
tan (
- s)) & (
- (
tan s))
= (
tan (
- s)) by
SIN_COS9: 15,
SIN_COS4: 1;
then
A7: (
- s)
in (
dom
tan ) & (
tan
. (
- s))
= r by
A3,
A4,
FUNCT_1:def 2;
P
> (
- s)
> (
- P) by
A4,
XREAL_1: 24;
hence thesis by
A7,
FUNCT_1: 50,
XXREAL_1: 4;
end;
suppose r
=
0 ;
then
0
in (
dom
tan ) & (
tan
.
0 )
= r &
0
in I by
XXREAL_1: 1,
SIN_COS: 70,
SIN_COS9: 41,
XXREAL_1: 4;
hence thesis by
FUNCT_1: 50;
end;
end;
hence thesis by
XBOOLE_0:def 10;
end;
registration
cluster
arctan ->
total;
coherence
proof
(
dom
arctan )
=
REAL by
Th1,
FUNCT_1: 33;
hence thesis by
PARTFUN1:def 2;
end;
cluster
arctan ->
differentiable;
coherence
proof
(
tan
.:
].(
- (
PI
/ 2)), (
PI
/ 2).[)
= (
rng (
tan
|
].(
- (
PI
/ 2)), (
PI
/ 2).[)) by
RELAT_1: 115
.= (
dom
arctan ) by
Th1,
FUNCT_2:def 1;
hence thesis by
FDIFF_1:def 8,
SIN_COS9: 71;
end;
end
theorem ::
LEIBNIZ1:2
Th2: (
diff (
arctan ,r))
= (1
/ (1
+ (r
^2 )))
proof
set g =
arctan ;
set f = (
tan
|
].(
- (
PI
/ 2)), (
PI
/ 2).[);
set x = (
arctan
. r);
A1: (((
sin
. x)
^2 )
+ ((
cos
. x)
^2 ))
= 1 by
SIN_COS: 28;
A2: f
is_differentiable_on
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
Lm1,
FDIFF_2: 16;
A3:
now
A4: for x0 be
Real st x0
in
].(
- (
PI
/ 2)), (
PI
/ 2).[ holds (1
/ ((
cos
. x0)
^2 ))
>
0
proof
let x0 be
Real;
assume x0
in
].(
- (
PI
/ 2)), (
PI
/ 2).[;
then
0
< (
cos
. x0) by
COMPTRIG: 11;
hence thesis;
end;
let x0 be
Real such that
A5: x0
in
].(
- (
PI
/ 2)), (
PI
/ 2).[;
(
diff (f,x0))
= ((f
`|
].(
- (
PI
/ 2)), (
PI
/ 2).[)
. x0) by
A2,
A5,
FDIFF_1:def 7
.= ((
tan
`|
].(
- (
PI
/ 2)), (
PI
/ 2).[)
. x0) by
Lm1,
FDIFF_2: 16
.= (
diff (
tan ,x0)) by
A5,
Lm1,
FDIFF_1:def 7
.= (1
/ ((
cos
. x0)
^2 )) by
A5,
Lm2;
hence
0
< (
diff (f,x0)) by
A5,
A4;
end;
A6: (
rng g)
= (
dom f) & (
dom g)
= (
rng f) by
FUNCT_1: 33;
set x = (
arctan
. r);
A7: (
dom
arctan )
=
REAL & r
in
REAL by
FUNCT_2:def 1,
XREAL_0:def 1;
then
A8: x
in (
dom f) by
A6,
FUNCT_1:def 3;
then
A9: x
in
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
RELAT_1: 57;
A10: (
cos x)
<>
0 by
A8,
RELAT_1: 57,
COMPTRIG: 11;
A11: r
= (f
. x) by
A7,
A6,
FUNCT_1: 32
.= (
tan
. x) by
A8,
FUNCT_1: 47
.= (
tan x) by
A10,
SIN_COS9: 15
.= ((
sin x)
/ (
cos x)) by
SIN_COS4:def 1;
(
dom f)
= ((
dom
tan )
/\
].(
- (
PI
/ 2)), (
PI
/ 2).[) by
RELAT_1: 61;
then
A12:
].(
- (
PI
/ 2)), (
PI
/ 2).[
c= (
dom f) by
SIN_COS9: 1,
XBOOLE_1: 19;
A13: (f
|
].(
- (
PI
/ 2)), (
PI
/ 2).[)
= f;
(r
* (
cos x))
= (
sin x) by
A10,
A11,
XCMPLX_1: 87;
then
A14: 1
= (((
cos x)
^2 )
* ((r
^2 )
+ 1)) by
A1;
f
is_differentiable_on
].(
- (
PI
/ 2)), (
PI
/ 2).[ by
Lm1,
FDIFF_2: 16;
then (
diff (f,x))
= ((f
`|
].(
- (
PI
/ 2)), (
PI
/ 2).[)
. x) by
A9,
FDIFF_1:def 7
.= ((
tan
`|
].(
- (
PI
/ 2)), (
PI
/ 2).[)
. x) by
Lm1,
FDIFF_2: 16
.= (
diff (
tan ,x)) by
A9,
Lm1,
FDIFF_1:def 7
.= (1
/ ((
cos x)
^2 )) by
A8,
RELAT_1: 57,
Lm2;
then (
diff (g,r))
= (1
/ (1
/ ((
cos x)
^2 ))) by
A2,
A3,
A13,
A12,
A7,
FDIFF_2: 48
.= (1
/ ((r
^2 )
+ 1)) by
A14,
XCMPLX_1: 73;
hence thesis;
end;
theorem ::
LEIBNIZ1:3
Th3: for Z be
open
Subset of
REAL holds
arctan
is_differentiable_on Z & for r st r
in Z holds ((
arctan
`| Z)
. r)
= (1
/ (1
+ (r
^2 )))
proof
let Z be
open
Subset of
REAL ;
A1: (
dom
arctan )
=
REAL by
FUNCT_2:def 1;
A2:
arctan
is_differentiable_on Z by
A1,
FDIFF_1: 28;
r
in Z implies ((
arctan
`| Z)
. r)
= (1
/ (1
+ (r
^2 )))
proof
assume r
in Z;
hence ((
arctan
`| Z)
. r)
= (
diff (
arctan ,r)) by
A2,
FDIFF_1:def 7
.= (1
/ (1
+ (r
^2 ))) by
Th2;
end;
hence thesis by
A1,
FDIFF_1: 28;
end;
Lm4: (
#Z (n
+ m))
= ((
#Z n)
(#) (
#Z m))
proof
now
let r;
thus ((
#Z (n
+ m))
. r)
= (r
#Z (n
+ m)) by
TAYLOR_1:def 1
.= ((r
#Z n)
* (r
#Z m)) by
TAYLOR_1: 1
.= (((
#Z n)
. r)
* (r
#Z m)) by
TAYLOR_1:def 1
.= (((
#Z n)
. r)
* ((
#Z m)
. r)) by
TAYLOR_1:def 1
.= (((
#Z n)
(#) (
#Z m))
. r) by
VALUED_1: 5;
end;
hence thesis;
end;
registration
let n;
cluster (
#Z n) ->
continuous;
coherence
proof
defpred
P[
Nat] means (
#Z $1) is
continuous;
now
let r;
thus ((
#Z
0 )
. r)
= (r
#Z
0 ) by
TAYLOR_1:def 1
.= 1 by
PREPOWER: 34
.= ((
REAL
--> 1)
. r) by
XREAL_0:def 1,
FUNCOP_1: 7;
end;
then (
#Z
0 )
= (
REAL
--> 1);
then
A1:
P[
0 ];
A2: for n be
Nat st
P[n] holds
P[(n
+ 1)]
proof
let n be
Nat;
assume
A3:
P[n];
set Z1 = (
#Z 1);
r
in (
dom Z1) implies (Z1
. r)
= r
proof
(Z1
. r)
= (r
#Z 1) by
TAYLOR_1:def 1;
hence thesis by
PREPOWER: 35;
end;
then Z1 is
continuous by
FCONT_1: 40;
then (Z1
(#) (
#Z n)) is
continuous by
A3;
hence thesis by
Lm4;
end;
for n holds
P[n] from
NAT_1:sch 2(
A1,
A2);
hence thesis;
end;
end
Lm5: (((
#Z
0 )
+ (
#Z 2))
. r)
= (1
+ (r
* r))
proof
A1: (r
#Z 1)
= r by
PREPOWER: 35;
r
in
REAL by
XREAL_0:def 1;
hence (((
#Z
0 )
+ (
#Z 2))
. r)
= (((
#Z
0 )
. r)
+ ((
#Z 2)
. r)) by
VALUED_1: 1
.= ((r
#Z
0 )
+ ((
#Z 2)
. r)) by
TAYLOR_1:def 1
.= ((r
#Z
0 )
+ (r
#Z 2)) by
TAYLOR_1:def 1
.= (1
+ (r
#Z (1
+ 1))) by
PREPOWER: 34
.= (1
+ (r
* r)) by
A1,
TAYLOR_1: 1;
end;
Lm6: (((
#Z
0 )
+ (
#Z 2))
"
{
0 })
=
{}
proof
assume (((
#Z
0 )
+ (
#Z 2))
"
{
0 })
<>
{} ;
then
consider x be
object such that
A1: x
in (((
#Z
0 )
+ (
#Z 2))
"
{
0 }) by
XBOOLE_0:def 1;
reconsider x as
Element of
REAL by
A1;
(((
#Z
0 )
+ (
#Z 2))
. x)
in
{
0 } by
A1,
FUNCT_1:def 7;
then
0
= (((
#Z
0 )
+ (
#Z 2))
. x) by
TARSKI:def 1
.= (1
+ (x
* x)) by
Lm5;
hence thesis;
end;
theorem ::
LEIBNIZ1:4
Th4: (
dom ((
#Z n)
/ ((
#Z
0 )
+ (
#Z 2))))
=
REAL & ((
#Z n)
/ ((
#Z
0 )
+ (
#Z 2))) is
continuous & (((
#Z n)
/ ((
#Z
0 )
+ (
#Z 2)))
. r)
= ((r
|^ n)
/ (1
+ (r
^2 )))
proof
set Z0 = (
#Z
0 ), Z2 = (
#Z 2), Zn = (
#Z n), f = (Zn
/ (Z0
+ Z2));
A1: (
dom Zn)
=
REAL
= (
dom (Z0
+ Z2)) by
FUNCT_2:def 1;
hence
A2: (
dom f)
= (
REAL
/\ (
REAL
\
{} )) by
Lm6,
RFUNCT_1:def 1
.=
REAL ;
A3: (Zn
|
REAL ) is
continuous & ((Z0
+ Z2)
|
REAL ) is
continuous;
REAL
c= ((
dom Zn)
/\ (
dom (Z0
+ Z2))) by
A1;
then (f
|
REAL ) is
continuous by
Lm6,
A3,
FCONT_1: 24;
hence f is
continuous;
(Zn
. r)
= (r
#Z n) by
TAYLOR_1:def 1
.= (r
|^ n) by
PREPOWER: 36;
hence (f
. r)
= ((r
|^ n)
* (((Z0
+ Z2)
. r)
" )) by
XREAL_0:def 1,
A2,
RFUNCT_1:def 1
.= ((r
|^ n)
/ (1
+ (r
^2 ))) by
Lm5;
end;
theorem ::
LEIBNIZ1:5
Th5: (
integral (((
#Z
0 )
/ ((
#Z
0 )
+ (
#Z 2))),A))
= ((
arctan
. (
upper_bound A))
- (
arctan
. (
lower_bound A)))
proof
set Z0 = (
#Z
0 ), Z2 = (
#Z 2), f = (Z0
/ (Z0
+ Z2));
A1: (
dom f)
=
REAL by
Th4;
f is
continuous by
Th4;
then
A2: (f
| A) is
continuous;
A3: r
in
REAL implies (f
. r)
= (1
/ (1
+ (r
^2 )))
proof
(r
|^
0 )
= 1 by
NEWTON: 4;
hence thesis by
Th4;
end;
A4: (
[#]
REAL ) is
open;
A5: (
dom
arctan )
=
REAL by
FUNCT_2:def 1;
A6:
arctan
is_differentiable_on
REAL by
A5,
FDIFF_1:def 8;
A7: for x be
Element of
REAL st x
in (
dom (
arctan
`|
REAL )) holds ((
arctan
`|
REAL )
. x)
= (f
. x)
proof
let x be
Element of
REAL ;
assume x
in (
dom (
arctan
`|
REAL ));
((
arctan
`|
REAL )
. x)
= (1
/ (1
+ (x
^2 ))) by
Th3,
A4
.= (f
. x) by
A3;
hence thesis;
end;
A8: (
arctan
`|
REAL )
= f by
A6,
A1,
FDIFF_1:def 7,
A7;
f
is_integrable_on A & (f
| A) is
bounded by
A1,
A2,
INTEGRA5: 10,
INTEGRA5: 11;
hence thesis by
A4,
A8,
INTEGRA5: 13,
Th3;
end;
theorem ::
LEIBNIZ1:6
Th6: (
integral ((((
- 1)
|^ i)
(#) ((
#Z (2
* n))
/ ((
#Z
0 )
+ (
#Z 2)))),A))
= ((((
- 1)
|^ i)
* (((1
/ ((2
* n)
+ 1))
* ((
upper_bound A)
|^ ((2
* n)
+ 1)))
- ((1
/ ((2
* n)
+ 1))
* ((
lower_bound A)
|^ ((2
* n)
+ 1)))))
+ (
integral ((((
- 1)
|^ (i
+ 1))
(#) ((
#Z (2
* (n
+ 1)))
/ ((
#Z
0 )
+ (
#Z 2)))),A)))
proof
set II = ((
- 1)
|^ i), i1 = (i
+ 1), n1 = (n
+ 1), II1 = ((
- 1)
|^ i1);
set Z0 = (
#Z
0 ), Z2 = (
#Z 2), Z2n = (
#Z (2
* n));
set f = (II
(#) Z2n);
set g = (II1
(#) ((
#Z (2
* n1))
/ (Z0
+ Z2)));
A1: (
dom (Z2n
/ (Z0
+ Z2)))
= (
dom (II
(#) (Z2n
/ (Z0
+ Z2)))) by
VALUED_1:def 5;
(
dom ((
#Z (2
* n1))
/ (Z0
+ Z2)))
= (
dom (II1
(#) ((
#Z (2
* n1))
/ (Z0
+ Z2)))) by
VALUED_1:def 5;
then
A2: (
dom g)
=
REAL by
Th4;
A3: (
dom f)
=
REAL by
FUNCT_2:def 1;
then
A4: (
dom (f
+ g))
= (
REAL
/\
REAL ) by
A2,
VALUED_1:def 1;
for x be
Element of
REAL holds ((II
(#) (Z2n
/ (Z0
+ Z2)))
. x)
= ((f
+ g)
. x)
proof
let x be
Element of
REAL ;
(x
|^ (((2
* n)
+ 1)
+ 1))
= (x
* (x
|^ ((2
* n)
+ 1))) by
NEWTON: 6
.= (x
* (x
* (x
|^ (2
* n)))) by
NEWTON: 6;
then ((x
|^ (2
* n))
+ (x
|^ (2
* n1)))
= ((x
|^ (2
* n))
* (1
+ (x
^2 )));
then
A5: (((x
|^ (2
* n))
+ (x
|^ (2
* n1)))
/ (1
+ (x
^2 )))
= (x
|^ (2
* n)) by
XCMPLX_1: 89;
A6: (
- (II
* ((x
|^ (2
* n1))
/ (1
+ (x
^2 )))))
= (((
- 1)
* II)
* ((x
|^ (2
* n1))
/ (1
+ (x
^2 ))))
.= (II1
* ((x
|^ (2
* n1))
/ (1
+ (x
^2 )))) by
NEWTON: 6;
(x
|^ (2
* n))
= (x
#Z (2
* n)) by
PREPOWER: 36
.= (Z2n
. x) by
TAYLOR_1:def 1;
then
A7: (II
* (x
|^ (2
* n)))
= (f
. x) by
VALUED_1: 6;
A8: (II1
* ((x
|^ (2
* n1))
/ (1
+ (x
^2 ))))
= (II1
* (((
#Z (2
* n1))
/ (Z0
+ Z2))
. x)) by
Th4
.= (g
. x) by
VALUED_1: 6;
thus ((II
(#) (Z2n
/ (Z0
+ Z2)))
. x)
= (II
* ((Z2n
/ (Z0
+ Z2))
. x)) by
VALUED_1: 6
.= (II
* ((x
|^ (2
* n))
/ (1
+ (x
^2 )))) by
Th4
.= (II
* ((x
|^ (2
* n))
- ((x
|^ (2
* n1))
/ (1
+ (x
^2 ))))) by
A5
.= ((II
* (x
|^ (2
* n)))
+ (II1
* ((x
|^ (2
* n1))
/ (1
+ (x
^2 ))))) by
A6
.= ((f
+ g)
. x) by
A7,
A8,
A4,
VALUED_1:def 1;
end;
then
A9: (f
+ g)
= (II
(#) (Z2n
/ (Z0
+ Z2))) by
A1,
Th4,
A4;
A10: (
dom Z2n)
=
REAL by
FUNCT_2:def 1;
(f
| A) is
continuous & (Z2n
| A) is
continuous;
then
A11: f
is_integrable_on A & (f
| A) is
bounded & Z2n
is_integrable_on A & (Z2n
| A) is
bounded by
A10,
INTEGRA5: 10,
INTEGRA5: 11,
A3;
((
#Z (2
* n1))
/ (Z0
+ Z2)) is
continuous by
Th4;
then (g
| A) is
continuous;
then
A12: g
is_integrable_on A & (g
| A) is
bounded by
INTEGRA5: 10,
INTEGRA5: 11,
A2;
A13: (2
* n)
in
NAT by
ORDINAL1:def 12;
thus (
integral ((II
(#) (Z2n
/ (Z0
+ Z2))),A))
= ((
integral (f,A))
+ (
integral (g,A))) by
A3,
A2,
A11,
A12,
A9,
INTEGRA6: 11
.= ((II
* (
integral (Z2n,A)))
+ (
integral (g,A))) by
A10,
A11,
INTEGRA6: 9
.= ((II
* (((1
/ ((2
* n)
+ 1))
* ((
upper_bound A)
|^ ((2
* n)
+ 1)))
- ((1
/ ((2
* n)
+ 1))
* ((
lower_bound A)
|^ ((2
* n)
+ 1)))))
+ (
integral (g,A))) by
INTEGRA9: 19,
A13;
end;
theorem ::
LEIBNIZ1:7
Th7: A
=
[.
0 , r.] & r
>=
0 implies
|.(
integral (((
#Z (2
* n))
/ ((
#Z
0 )
+ (
#Z 2))),A)).|
<= ((1
/ ((2
* n)
+ 1))
* (r
|^ ((2
* n)
+ 1)))
proof
set Z0 = (
#Z
0 ), Z2 = (
#Z 2), N = (2
* n), Zn = (
#Z N), f = (Zn
/ (Z0
+ Z2));
assume
A1: A
=
[.
0 , r.] & r
>=
0 ;
A2: f is
continuous & (
dom f)
=
REAL by
Th4;
then (
dom (f
| A))
= A by
RELAT_1: 62;
then (f
| A) is
total by
PARTFUN1:def 2;
then
reconsider fA = (f
|| A) as
Function of A,
REAL ;
A3: (f
| A) is
continuous by
A2;
then
A4: (f
| A) is
bounded & f
is_integrable_on A & (fA
| A)
= (f
| A) by
INTEGRA5: 11,
INTEGRA5: 10,
A2;
A5: fA is
integrable by
A3,
INTEGRA5:def 1,
INTEGRA5: 11,
A2;
A6: Zn is
continuous & (
dom Zn)
=
REAL by
FUNCT_2:def 1;
then (
dom (Zn
| A))
= A by
RELAT_1: 62;
then (Zn
| A) is
total by
PARTFUN1:def 2;
then
reconsider ZnA = (Zn
|| A) as
Function of A,
REAL ;
A7: (Zn
| A) is
continuous;
then
A8: (Zn
| A) is
bounded & Zn
is_integrable_on A & (ZnA
| A)
= (Zn
| A) by
INTEGRA5: 11,
INTEGRA5: 10,
A6;
A9: ZnA is
integrable by
A7,
INTEGRA5:def 1,
INTEGRA5: 11,
A6;
for r st r
in A holds (fA
. r)
<= (ZnA
. r)
proof
let r;
assume r
in A;
then
A10: (fA
. r)
= (f
. r) & (ZnA
. r)
= (Zn
. r) by
FUNCT_1: 49;
A11: (Zn
. r)
= (r
#Z N) by
TAYLOR_1:def 1
.= (r
|^ N) by
PREPOWER: 36;
A12: (r
|^ N)
>=
0 by
POWER: 3;
((r
^2 )
+ 1)
>= (1
+
0 ) by
XREAL_1: 6;
then (1
/ (1
+ (r
^2 )))
<= 1 by
XREAL_1: 183;
then (((r
|^ N)
* 1)
/ (1
+ (r
^2 )))
<= ((r
|^ N)
* 1) by
A12,
XREAL_1: 64;
hence thesis by
A11,
Th4,
A10;
end;
then
A13: (
integral fA)
<= (
integral ZnA) by
A4,
A5,
A8,
A9,
INTEGRA2: 34;
A14: (
integral (f,A))
= (
integral fA) by
INTEGRA5:def 2;
A15: (
lower_bound A)
=
0 & (
upper_bound A)
= r by
A1,
JORDAN5A: 19;
A16: N
in
NAT by
ORDINAL1:def 12;
(
0
|^ (N
+ 1))
=
0 by
NEWTON: 84;
then
A17: ((1
/ (N
+ 1))
* (
0
|^ (N
+ 1)))
=
0 ;
A18: (
integral ZnA)
= (
integral (Zn,A)) by
INTEGRA5:def 2
.= (((1
/ (N
+ 1))
* (r
|^ (N
+ 1)))
-
0 ) by
A16,
A15,
A17,
INTEGRA9: 19;
A19: (
dom (
abs f))
= (
dom f) by
VALUED_1:def 11;
for x be
object st x
in
REAL holds (f
. x)
= ((
abs f)
. x)
proof
let x be
object;
assume x
in
REAL ;
then
reconsider r = x as
Element of
REAL ;
N
= (n
+ n);
then
A20: (r
|^ N)
= ((r
|^ n)
* (r
|^ n)) by
NEWTON: 8;
A21: (f
. r)
= ((r
|^ N)
/ (1
+ (r
^2 ))) by
Th4;
thus ((
abs f)
. x)
=
|.(f
. r).| by
A2,
A19,
VALUED_1:def 11
.= (f
. x) by
A20,
A21,
ABSVALUE:def 1;
end;
then
A22: (
abs f)
= f by
A19,
A2;
|.(
integral (f,A)).|
<= (
integral ((
abs f),A)) by
A2,
INTEGRA6: 7,
A4;
hence thesis by
A13,
A14,
A18,
XXREAL_0: 2,
A22;
end;
begin
definition
let a be
Real_Sequence;
::
LEIBNIZ1:def1
func
alternating_series a ->
Real_Sequence means
:
Def1: (it
. i)
= (((
- 1)
|^ i)
* (a
. i));
existence
proof
defpred
P[
Nat,
object] means $2
= (((
- 1)
|^ $1)
* (a
. $1));
A1: for x be
Element of
NAT holds ex y be
Element of
REAL st
P[x, y]
proof
let x be
Element of
NAT ;
(((
- 1)
|^ x)
* (a
. x))
in
REAL by
XREAL_0:def 1;
hence thesis;
end;
consider f be
Function of
NAT ,
REAL such that
A2: for x be
Element of
NAT holds
P[x, (f
. x)] from
FUNCT_2:sch 3(
A1);
take f;
let i be
Nat;
i
in
NAT by
ORDINAL1:def 12;
hence thesis by
A2;
end;
uniqueness
proof
let a1,a2 be
Real_Sequence such that
A3: for i be
Nat holds (a1
. i)
= (((
- 1)
|^ i)
* (a
. i)) and
A4: for i be
Nat holds (a2
. i)
= (((
- 1)
|^ i)
* (a
. i));
now
let x be
object;
assume x
in
NAT ;
then
reconsider i = x as
Nat;
thus (a1
. x)
= (((
- 1)
|^ i)
* (a
. i)) by
A3
.= (a2
. x) by
A4;
end;
hence thesis;
end;
end
theorem ::
LEIBNIZ1:8
Th8: for a be
Real_Sequence st a is
nonnegative-yielding
non-increasing
convergent & (
lim a)
=
0 holds (
alternating_series a) is
summable & for n holds ((
Partial_Sums (
alternating_series a))
. (2
* n))
>= (
Sum (
alternating_series a))
>= ((
Partial_Sums (
alternating_series a))
. ((2
* n)
+ 1))
proof
let a be
Real_Sequence such that
A1: a is
nonnegative-yielding
non-increasing
convergent & (
lim a)
=
0 ;
set A = (
alternating_series a), P = (
Partial_Sums A);
defpred
Sp[
Nat,
object] means $2
= (P
. (2
* $1));
defpred
Sn[
Nat,
object] means $2
= (P
. ((2
* $1)
+ 1));
A2: for x be
Element of
NAT holds ex y be
Element of
REAL st
Sp[x, y];
A3: for x be
Element of
NAT holds ex y be
Element of
REAL st
Sn[x, y];
consider Sp be
Function of
NAT ,
REAL such that
A4: for x be
Element of
NAT holds
Sp[x, (Sp
. x)] from
FUNCT_2:sch 3(
A2);
consider Sn be
Function of
NAT ,
REAL such that
A5: for x be
Element of
NAT holds
Sn[x, (Sn
. x)] from
FUNCT_2:sch 3(
A3);
A6: for n be
Nat holds (Sn
. n)
<= (Sn
. (n
+ 1))
proof
let n be
Nat;
set n1 = (n
+ 1);
A7: n1
in
NAT & n
in
NAT by
ORDINAL1:def 12;
A8: (Sn
. (n
+ 1))
= (P
. ((2
* n1)
+ 1)) by
A5
.= ((P
. (((2
* n)
+ 1)
+ 1))
+ (A
. ((2
* n1)
+ 1))) by
SERIES_1:def 1
.= (((P
. ((2
* n)
+ 1))
+ (A
. (2
* n1)))
+ (A
. ((2
* n1)
+ 1))) by
SERIES_1:def 1
.= ((P
. ((2
* n)
+ 1))
+ ((A
. (2
* n1))
+ (A
. ((2
* n1)
+ 1))));
A9: (Sn
. n)
= (P
. ((2
* n)
+ 1)) by
A7,
A5;
A10: ((a
. (2
* n1))
- (a
. ((2
* n1)
+ 1)))
>=
0 by
XREAL_1: 48,
A1,
VALUED_1:def 16;
((
- 1)
|^ (2
* n1))
= 1 & ((
- 1)
|^ ((2
* n1)
+ 1))
= (
- 1);
then (A
. (2
* n1))
= (1
* (a
. (2
* n1))) & (A
. ((2
* n1)
+ 1))
= ((
- 1)
* (a
. ((2
* n1)
+ 1))) by
Def1;
hence thesis by
A10,
A9,
A8,
XREAL_1: 31;
end;
then
A11: Sn is
non-decreasing by
VALUED_1:def 15;
A12: for n be
Nat holds (Sp
. n)
>= (Sp
. (n
+ 1))
proof
let n be
Nat;
set n1 = (n
+ 1);
A13: n1
in
NAT & n
in
NAT & (2
* n1)
= (((2
* n)
+ 1)
+ 1) by
ORDINAL1:def 12;
then
A14: (Sp
. (n
+ 1))
= (P
. (((2
* n)
+ 1)
+ 1)) by
A4
.= ((P
. ((2
* n)
+ 1))
+ (A
. (((2
* n)
+ 1)
+ 1))) by
SERIES_1:def 1
.= (((P
. (2
* n))
+ (A
. ((2
* n)
+ 1)))
+ (A
. (((2
* n)
+ 1)
+ 1))) by
SERIES_1:def 1
.= ((P
. (2
* n))
+ ((A
. ((2
* n)
+ 1))
+ (A
. (2
* n1))));
A15: (Sp
. n)
= (P
. (2
* n)) by
A13,
A4;
(a
. ((2
* n)
+ 1))
>= (a
. (((2
* n)
+ 1)
+ 1)) by
A1,
VALUED_1:def 16;
then
A16: ((a
. (2
* n1))
- (a
. ((2
* n)
+ 1)))
<=
0 by
XREAL_1: 47;
((
- 1)
|^ (2
* n1))
= 1 & ((
- 1)
|^ ((2
* n)
+ 1))
= (
- 1);
then (A
. (2
* n1))
= (1
* (a
. (2
* n1))) & (A
. ((2
* n)
+ 1))
= ((
- 1)
* (a
. ((2
* n)
+ 1))) by
Def1;
hence thesis by
A15,
A14,
XREAL_1: 32,
A16;
end;
then
A17: Sp is
non-increasing by
VALUED_1:def 16;
A18: for n be
Nat holds (Sp
. n)
>= (Sn
. n)
proof
let n be
Nat;
n
in
NAT by
ORDINAL1:def 12;
then (Sp
. n)
= (P
. (2
* n)) & (Sn
. n)
= (P
. ((2
* n)
+ 1)) by
A4,
A5;
then
A19: (Sn
. n)
= ((Sp
. n)
+ (A
. ((2
* n)
+ 1))) by
SERIES_1:def 1;
(
dom a)
=
NAT by
FUNCT_2:def 1;
then (a
. ((2
* n)
+ 1))
in (
rng a) by
FUNCT_1:def 3;
then
A20: (a
. ((2
* n)
+ 1))
>=
0 by
A1,
PARTFUN3:def 4;
((
- 1)
|^ ((2
* n)
+ 1))
= (
- 1);
then (A
. ((2
* n)
+ 1))
= ((
- 1)
* (a
. ((2
* n)
+ 1))) by
Def1;
hence thesis by
A19,
XREAL_1: 32,
A20;
end;
for n be
Nat holds (Sp
. n)
> ((Sn
.
0 )
- 1)
proof
let n be
Nat;
(Sp
. n)
>= (Sn
. n)
>= (Sn
.
0 ) by
A18,
A6,
VALUED_1:def 15,
SEQM_3: 6;
then (Sp
. n)
>= (Sn
.
0 ) & (Sn
.
0 )
> ((Sn
.
0 )
- 1) by
XXREAL_0: 2,
XREAL_1: 44;
hence thesis by
XXREAL_0: 2;
end;
then
A21: Sp is
bounded_below by
SEQ_2:def 4;
A22: for n be
Nat holds (Sn
. n)
< ((Sp
.
0 )
+ 1)
proof
let n be
Nat;
(Sn
. n)
<= (Sp
. n)
<= (Sp
.
0 ) by
A18,
A12,
VALUED_1:def 16,
SEQM_3: 8;
then (Sn
. n)
<= (Sp
.
0 ) & (Sp
.
0 )
< ((Sp
.
0 )
+ 1) by
XXREAL_0: 2,
XREAL_1: 29;
hence thesis by
XXREAL_0: 2;
end;
then
A23: Sn is
bounded_above by
SEQ_2:def 3;
deffunc
double(
Nat) = ((2
* $1)
+ 1);
A24: for x be
Element of
NAT holds
double(x)
in
NAT ;
consider Double be
Function of
NAT ,
NAT such that
A25: for x be
Element of
NAT holds (Double
. x)
=
double(x) from
FUNCT_2:sch 8(
A24);
reconsider Double1 = Double as
ManySortedSet of
NAT ;
for n be
Nat holds (Double
. n)
< (Double
. (n
+ 1))
proof
let n be
Nat;
set n1 = (n
+ 1);
n
in
NAT & n1
in
NAT by
ORDINAL1:def 12;
then
A26: (Double
. n)
=
double(n) & (Double
. n1)
=
double(n1) by
A25;
n
< n1 by
NAT_1: 13;
then (2
* n)
< (2
* n1) by
XREAL_1: 97;
hence thesis by
A26,
XREAL_1: 8;
end;
then
A27: Double1 is
increasing
sequence of
NAT by
VALUED_1:def 13;
A28: (
rng (a
* Double1))
c=
REAL ;
(
rng Double)
c=
NAT & (
dom a)
=
NAT & (
dom Double)
=
NAT by
FUNCT_2:def 1;
then
A29: (
dom (a
* Double1))
=
NAT by
RELAT_1: 27;
then
reconsider aD = (a
* Double1) as
Real_Sequence by
A28,
FUNCT_2: 2;
reconsider aD as
subsequence of a by
VALUED_0:def 17,
A27;
A30: aD is
convergent & (
lim aD)
=
0 by
SEQ_4: 16,
SEQ_4: 17,
A1;
A31: (Sp
- Sn) is
convergent & (
lim (Sp
- Sn))
= ((
lim Sp)
- (
lim Sn)) by
A21,
A17,
A23,
A11,
SEQ_2: 12;
for x be
object st x
in
NAT holds (aD
. x)
= ((Sp
- Sn)
. x)
proof
let x be
object such that
A32: x
in
NAT ;
reconsider n = x as
Element of
NAT by
A32;
A33: (Double
. n)
= ((2
* n)
+ 1) by
A25;
(
dom (Sp
- Sn))
=
NAT by
FUNCT_2:def 1;
then
A34: ((Sp
- Sn)
. n)
= ((Sp
. n)
- (Sn
. n)) by
VALUED_1: 13;
(Sp
. n)
= (P
. (2
* n)) & (Sn
. n)
= (P
. ((2
* n)
+ 1)) by
A4,
A5;
then
A35: (Sn
. n)
= ((Sp
. n)
+ (A
. ((2
* n)
+ 1))) by
SERIES_1:def 1;
((
- 1)
|^ ((2
* n)
+ 1))
= (
- 1);
then (A
. ((2
* n)
+ 1))
= ((
- 1)
* (a
. ((2
* n)
+ 1))) by
Def1;
hence thesis by
A29,
A34,
A35,
FUNCT_1: 12,
A33;
end;
then
A36: aD
= (Sp
- Sn);
A37: for p be
Real st
0
< p holds ex n be
Nat st for m be
Nat st n
<= m holds
|.((P
. m)
- (
lim Sp)).|
< p
proof
let p be
Real such that
A38:
0
< p;
consider n1 be
Nat such that
A39: for m be
Nat st n1
<= m holds
|.((Sp
. m)
- (
lim Sp)).|
< p by
A38,
A21,
A17,
SEQ_2:def 7;
consider n2 be
Nat such that
A40: for m be
Nat st n2
<= m holds
|.((Sn
. m)
- (
lim Sp)).|
< p by
A38,
A23,
A11,
SEQ_2:def 7,
A36,
A30,
A31;
set N = (
max ((2
* n1),((2
* n2)
+ 1)));
reconsider N as
Nat by
XXREAL_0:def 10;
take N;
let m be
Nat such that
A41: N
<= m;
per cases ;
suppose m is
even;
then
consider m2 be
Nat such that
A42: m
= (2
* m2) by
ABIAN:def 2;
(2
* n1)
<= N by
XXREAL_0: 25;
then (2
* n1)
<= (2
* m2) by
A41,
A42,
XXREAL_0: 2;
then n1
<= m2 by
XREAL_1: 68;
then
A43:
|.((Sp
. m2)
- (
lim Sp)).|
< p by
A39;
m2
in
NAT by
ORDINAL1:def 12;
hence thesis by
A4,
A43,
A42;
end;
suppose m is
odd;
then
consider m2 be
Nat such that
A44: m
= ((2
* m2)
+ 1) by
ABIAN: 9;
((2
* n2)
+ 1)
<= N by
XXREAL_0: 25;
then ((2
* n2)
+ 1)
<= ((2
* m2)
+ 1) by
A41,
A44,
XXREAL_0: 2;
then (2
* n2)
<= (2
* m2) by
XREAL_1: 6;
then n2
<= m2 by
XREAL_1: 68;
then
A45:
|.((Sn
. m2)
- (
lim Sp)).|
< p by
A40;
m2
in
NAT by
ORDINAL1:def 12;
hence thesis by
A45,
A44,
A5;
end;
end;
hence A is
summable by
SERIES_1:def 2,
SEQ_2:def 6;
let n;
n
in
NAT by
ORDINAL1:def 12;
then
A46: (Sp
. n)
= (P
. (2
* n)) & (Sn
. n)
= (P
. ((2
* n)
+ 1)) by
A4,
A5;
P is
convergent by
A37,
SEQ_2:def 6;
then (
lim P)
= (
lim Sp) & (
lim P)
= (
Sum A) by
A37,
SEQ_2:def 7,
SERIES_1:def 3;
hence thesis by
A46,
A11,
A12,
VALUED_1:def 16,
A36,
A30,
A31,
A22,
SEQ_2:def 3,
A21,
SEQ_4: 37,
SEQ_4: 38;
end;
begin
definition
let r;
::
LEIBNIZ1:def2
func
Leibniz_Series_of r ->
Real_Sequence means
:
Def2: (it
. n)
= ((((
- 1)
|^ n)
* (r
|^ ((2
* n)
+ 1)))
/ ((2
* n)
+ 1));
existence
proof
defpred
P[
Nat,
object] means $2
= ((((
- 1)
|^ $1)
* (r
|^ ((2
* $1)
+ 1)))
/ ((2
* $1)
+ 1));
A1: for n be
Element of
NAT holds ex y be
Element of
REAL st
P[n, y]
proof
let n be
Element of
NAT ;
((((
- 1)
|^ n)
* (r
|^ ((2
* n)
+ 1)))
/ ((2
* n)
+ 1))
in
REAL by
XREAL_0:def 1;
hence thesis;
end;
consider f be
Function of
NAT ,
REAL such that
A2: for x be
Element of
NAT holds
P[x, (f
. x)] from
FUNCT_2:sch 3(
A1);
take f;
let i be
Nat;
i
in
NAT by
ORDINAL1:def 12;
hence thesis by
A2;
end;
uniqueness
proof
let a1,a2 be
Real_Sequence such that
A3: for i be
Nat holds (a1
. i)
= ((((
- 1)
|^ i)
* (r
|^ ((2
* i)
+ 1)))
/ ((2
* i)
+ 1)) and
A4: for i be
Nat holds (a2
. i)
= ((((
- 1)
|^ i)
* (r
|^ ((2
* i)
+ 1)))
/ ((2
* i)
+ 1));
now
let y be
object;
assume y
in
NAT ;
then
reconsider i = y as
Nat;
thus (a1
. y)
= ((((
- 1)
|^ i)
* (r
|^ ((2
* i)
+ 1)))
/ ((2
* i)
+ 1)) by
A3
.= (a2
. y) by
A4;
end;
hence thesis;
end;
end
definition
::
LEIBNIZ1:def3
func
Leibniz_Series ->
Real_Sequence equals (
Leibniz_Series_of 1);
coherence ;
end
theorem ::
LEIBNIZ1:9
Th9: r
in
[.(
- 1), 1.] implies (
abs (
Leibniz_Series_of r)) is
nonnegative-yielding
non-increasing
convergent & (
lim (
abs (
Leibniz_Series_of r)))
=
0
proof
set rL = (
Leibniz_Series_of r), A = (
abs rL);
assume
A1: r
in
[.(
- 1), 1.];
A2: (
dom A)
= (
dom rL) & (
dom rL)
=
NAT by
VALUED_1:def 11,
FUNCT_2:def 1;
thus A is
nonnegative-yielding;
A3: (A
. n)
= ((
|.r.|
|^ ((2
* n)
+ 1))
/ ((2
* n)
+ 1))
proof
(
- (
- 1))
= 1;
then
|.(
- 1).|
= 1 by
ABSVALUE:def 1;
then
A4:
|.((
- 1)
|^ n).|
= (1
|^ n) by
TAYLOR_2: 1;
A5: (A
. n)
=
|.(rL
. n).| by
A2,
VALUED_1:def 11,
ORDINAL1:def 12;
(rL
. n)
= ((((
- 1)
|^ n)
* (r
|^ ((2
* n)
+ 1)))
/ ((2
* n)
+ 1)) by
Def2;
hence (A
. n)
= (
|.(((
- 1)
|^ n)
* (r
|^ ((2
* n)
+ 1))).|
/
|.((2
* n)
+ 1).|) by
COMPLEX1: 67,
A5
.= ((1
*
|.(r
|^ ((2
* n)
+ 1)).|)
/
|.((2
* n)
+ 1).|) by
A4,
COMPLEX1: 65
.= ((1
* (
|.r.|
|^ ((2
* n)
+ 1)))
/
|.((2
* n)
+ 1).|) by
TAYLOR_2: 1
.= ((
|.r.|
|^ ((2
* n)
+ 1))
/ ((2
* n)
+ 1)) by
ABSVALUE:def 1;
end;
(
- 1)
<= r
<= 1 by
A1,
XXREAL_1: 1;
then
A6:
|.r.|
<= 1 by
ABSVALUE: 5;
(A
. n)
>= (A
. (n
+ 1))
proof
set n1 = (n
+ 1);
A7: (A
. n1)
= (((
|.r.|
|^ ((2
* n1)
+ 1))
* 1)
/ ((2
* n1)
+ 1)) by
A3;
A8:
|.r.|
>=
0 by
COMPLEX1: 46;
|.(r
|^ ((2
* n)
+ 1)).|
= (
|.r.|
|^ ((2
* n)
+ 1)) by
TAYLOR_2: 1;
then
A9: (
|.r.|
|^ ((2
* n)
+ 1))
>=
0 by
COMPLEX1: 46;
A10: (
|.r.|
*
|.r.|)
<= (1
* 1) by
A8,
A6,
XREAL_1: 66;
(
|.r.|
|^ ((2
* n1)
+ 1))
= (
|.r.|
* (
|.r.|
|^ (((2
* n)
+ 1)
+ 1))) by
NEWTON: 6
.= (
|.r.|
* (
|.r.|
* (
|.r.|
|^ ((2
* n)
+ 1)))) by
NEWTON: 6
.= ((
|.r.|
*
|.r.|)
* (
|.r.|
|^ ((2
* n)
+ 1)));
then
A11: (
|.r.|
|^ ((2
* n1)
+ 1))
<= ((
|.r.|
|^ ((2
* n)
+ 1))
* 1) by
A9,
A10,
XREAL_1: 66;
|.(r
|^ ((2
* n1)
+ 1)).|
= (
|.r.|
|^ ((2
* n1)
+ 1)) by
TAYLOR_2: 1;
then
A12: (
|.r.|
|^ ((2
* n1)
+ 1))
>=
0 by
COMPLEX1: 46;
((2
* n)
+ 1)
<= (((2
* n)
+ 1)
+ 1) by
NAT_1: 13;
then ((2
* n)
+ 1)
< ((((2
* n)
+ 1)
+ 1)
+ 1) by
NAT_1: 13;
then (1
/ ((2
* n)
+ 1))
>= (1
/ ((2
* n1)
+ 1)) by
XREAL_1: 76;
then (((
|.r.|
|^ ((2
* n)
+ 1))
* 1)
/ ((2
* n)
+ 1))
>= (((
|.r.|
|^ ((2
* n1)
+ 1))
* 1)
/ ((2
* n1)
+ 1)) by
A12,
A11,
XREAL_1: 66;
hence thesis by
A3,
A7;
end;
hence A is
non-increasing by
VALUED_1:def 16;
set C = (
seq_const
0 );
A13: (
lim C)
=
0 ;
deffunc
F(
Nat) = ((1
/ 2)
/ ($1
+ (1
/ 2)));
consider f be
Real_Sequence such that
A14: (f
. n)
=
F(n) from
SEQ_1:sch 1;
A15: f is
convergent & (
lim f)
=
0 by
A14,
SEQ_4: 31;
(C
. n)
<= (A
. n)
<= (f
. n)
proof
A17:
|.r.|
>=
0 by
COMPLEX1: 46;
A18: (
0
|^ ((2
* n)
+ 1))
=
0 by
NEWTON: 11,
NAT_1: 11;
|.r.|
>
0 implies (
|.r.|
|^ ((2
* n)
+ 1))
<= (1
|^ ((2
* n)
+ 1)) by
A6,
PREPOWER: 9;
then
A19: (
|.r.|
|^ ((2
* n)
+ 1))
<= 1 by
A18,
A17;
|.(r
|^ ((2
* n)
+ 1)).|
= (
|.r.|
|^ ((2
* n)
+ 1)) by
TAYLOR_2: 1;
then
A20: (
|.r.|
|^ ((2
* n)
+ 1))
>=
0 by
COMPLEX1: 46;
(((2
* n)
+ 1)
/ 2)
= (n
+ (1
/ 2));
then
A21: (1
/ ((2
* n)
+ 1))
=
F(n) by
XCMPLX_1: 55
.= (f
. n) by
A14;
(A
. n)
= ((
|.r.|
|^ ((2
* n)
+ 1))
/ ((2
* n)
+ 1)) by
A3
.= ((
|.r.|
|^ ((2
* n)
+ 1))
* (((2
* n)
+ 1)
" ));
hence thesis by
A19,
XREAL_1: 64,
A20,
A21;
end;
hence thesis by
A13,
A15,
SEQ_2: 19,
SEQ_2: 20;
end;
theorem ::
LEIBNIZ1:10
Th10: (r
>=
0 implies (
alternating_series (
abs (
Leibniz_Series_of r)))
= (
Leibniz_Series_of r)) & (r
<
0 implies ((
- 1)
(#) (
alternating_series (
abs (
Leibniz_Series_of r))))
= (
Leibniz_Series_of r))
proof
set rL = (
Leibniz_Series_of r), A = (
abs rL), aA = (
alternating_series A);
A1: (
dom A)
= (
dom rL) & (
dom rL)
=
NAT by
VALUED_1:def 11,
FUNCT_2:def 1;
A2: (aA
. n)
= (((
- 1)
|^ n)
* ((
|.r.|
|^ ((2
* n)
+ 1))
/ ((2
* n)
+ 1)))
proof
(
- (
- 1))
= 1;
then
|.(
- 1).|
= 1 by
ABSVALUE:def 1;
then
A3:
|.((
- 1)
|^ n).|
= (1
|^ n) by
TAYLOR_2: 1;
A4: (A
. n)
=
|.(rL
. n).| by
A1,
VALUED_1:def 11,
ORDINAL1:def 12;
(rL
. n)
= ((((
- 1)
|^ n)
* (r
|^ ((2
* n)
+ 1)))
/ ((2
* n)
+ 1)) by
Def2;
then (A
. n)
= (
|.(((
- 1)
|^ n)
* (r
|^ ((2
* n)
+ 1))).|
/
|.((2
* n)
+ 1).|) by
COMPLEX1: 67,
A4
.= ((1
*
|.(r
|^ ((2
* n)
+ 1)).|)
/
|.((2
* n)
+ 1).|) by
A3,
COMPLEX1: 65
.= ((1
* (
|.r.|
|^ ((2
* n)
+ 1)))
/
|.((2
* n)
+ 1).|) by
TAYLOR_2: 1
.= ((
|.r.|
|^ ((2
* n)
+ 1))
/ ((2
* n)
+ 1)) by
ABSVALUE:def 1;
hence thesis by
Def1;
end;
thus r
>=
0 implies aA
= rL
proof
assume r
>=
0 ;
then
A5:
|.r.|
= r by
ABSVALUE:def 1;
now
let n;
thus (aA
. n)
= (((
- 1)
|^ n)
* ((r
|^ ((2
* n)
+ 1))
/ ((2
* n)
+ 1))) by
A2,
A5
.= ((((
- 1)
|^ n)
* (r
|^ ((2
* n)
+ 1)))
/ ((2
* n)
+ 1))
.= (rL
. n) by
Def2;
end;
hence thesis;
end;
assume r
<
0 ;
then
A6:
|.r.|
= (
- r) by
ABSVALUE:def 1;
now
let n;
(
|.r.|
|^ ((2
* n)
+ 1))
= (
- (r
|^ ((2
* n)
+ 1))) by
A6,
POWER: 2;
then (aA
. n)
= (((
- 1)
|^ n)
* ((
- (r
|^ ((2
* n)
+ 1)))
/ ((2
* n)
+ 1))) by
A2
.= (
- ((((
- 1)
|^ n)
* (r
|^ ((2
* n)
+ 1)))
/ ((2
* n)
+ 1)))
.= (
- (rL
. n)) by
Def2;
hence (rL
. n)
= ((
- 1)
* (aA
. n))
.= (((
- 1)
(#) aA)
. n) by
SEQ_1: 9;
end;
hence thesis;
end;
theorem ::
LEIBNIZ1:11
Th11: r
in
[.(
- 1), 1.] implies (
Leibniz_Series_of r) is
summable
proof
set rL = (
Leibniz_Series_of r), A = (
abs rL), aA = (
alternating_series A);
assume r
in
[.(
- 1), 1.];
then A is
nonnegative-yielding
non-increasing
convergent & (
lim A)
=
0 by
Th9;
then
A1: aA is
summable by
Th8;
per cases ;
suppose r
>=
0 ;
hence thesis by
Th10,
A1;
end;
suppose r
<
0 ;
then rL
= ((
- 1)
(#) aA) by
Th10;
hence thesis by
A1,
SERIES_1: 10;
end;
end;
theorem ::
LEIBNIZ1:12
Th12: A
=
[.
0 , r.] & r
>=
0 implies (
arctan
. r)
= (((
Partial_Sums (
Leibniz_Series_of r))
. n)
+ (
integral ((((
- 1)
|^ (n
+ 1))
(#) ((
#Z (2
* (n
+ 1)))
/ ((
#Z
0 )
+ (
#Z 2)))),A)))
proof
set Z0 = (
#Z
0 ), Z2 = (
#Z 2), rL = (
Leibniz_Series_of r);
assume A
=
[.
0 , r.] & r
>=
0 ;
then
A1: (
upper_bound A)
= r & (
lower_bound A)
=
0 by
JORDAN5A: 19;
defpred
P[
Nat] means (
arctan
. r)
= (((
Partial_Sums rL)
. $1)
+ (
integral ((((
- 1)
|^ ($1
+ 1))
(#) ((
#Z (2
* ($1
+ 1)))
/ (Z0
+ Z2))),A)));
A2:
P[
0 ]
proof
A3: (
integral ((Z0
/ (Z0
+ Z2)),A))
= ((
arctan
. r)
- (
arctan
.
0 )) by
Th5,
A1
.= (
arctan
. r) by
SIN_COS9: 43;
A4: ((2
*
0 )
+ 1)
= 1;
A5: (((
- 1)
|^
0 )
* ((1
* (r
|^ 1))
- ((1
/ 1)
* (
0
|^ 1))))
= (((
- 1)
|^
0 )
* ((r
|^ 1)
/ 1))
.= (rL
.
0 ) by
A4,
Def2;
((
- 1)
|^
0 )
= 1 by
NEWTON: 4;
then (((
- 1)
|^
0 )
(#) (Z0
/ (Z0
+ Z2)))
= (Z0
/ (Z0
+ Z2)) by
RFUNCT_1: 21;
then (
arctan
. r)
= ((rL
.
0 )
+ (
integral ((((
- 1)
|^ (
0
+ 1))
(#) ((
#Z (2
* (
0
+ 1)))
/ ((
#Z
0 )
+ (
#Z 2)))),A))) by
A3,
A1,
A4,
Th6,
A5;
hence thesis by
SERIES_1:def 1;
end;
A6:
P[i] implies
P[(i
+ 1)]
proof
set i1 = (i
+ 1), i11 = (i1
+ 1);
assume
A7:
P[i];
A8: (
0
|^ ((2
* i1)
+ 1))
=
0 by
NEWTON: 11,
NAT_1: 11;
(((
- 1)
|^ i1)
* (((1
/ ((2
* i1)
+ 1))
* (r
|^ ((2
* i1)
+ 1)))
- ((1
/ ((2
* i1)
+ 1))
*
0 )))
= ((((
- 1)
|^ i1)
* (r
|^ ((2
* i1)
+ 1)))
/ ((2
* i1)
+ 1))
.= (rL
. i1) by
Def2;
then (
integral ((((
- 1)
|^ i1)
(#) ((
#Z (2
* i1))
/ (Z0
+ Z2))),A))
= ((rL
. i1)
+ (
integral ((((
- 1)
|^ i11)
(#) ((
#Z (2
* i11))
/ (Z0
+ Z2))),A))) by
A8,
Th6,
A1;
then (
arctan
. r)
= ((((
Partial_Sums rL)
. i)
+ (rL
. i1))
+ (
integral ((((
- 1)
|^ i11)
(#) ((
#Z (2
* i11))
/ (Z0
+ Z2))),A))) by
A7;
hence thesis by
SERIES_1:def 1;
end;
P[i] from
NAT_1:sch 2(
A2,
A6);
hence thesis;
end;
theorem ::
LEIBNIZ1:13
Th13:
0
<= r
<= 1 implies (
arctan
. r)
= (
Sum (
Leibniz_Series_of r))
proof
set rL = (
Leibniz_Series_of r), P = (
Partial_Sums rL), A = (
arctan
. r);
deffunc
I(
Nat) = ((
#Z (2
* $1))
/ ((
#Z
0 )
+ (
#Z 2)));
assume
A1:
0
<= r
<= 1;
then r
in
[.(
- 1), 1.] by
XXREAL_1: 1;
then
A2: P is
convergent by
Th11,
SERIES_1:def 2;
for s st
0
< s holds ex n st for m st n
<= m holds
|.((P
. m)
- A).|
< s
proof
let s;
assume
A3:
0
< s;
consider n such that
A4: (1
/ s)
< n by
SEQ_4: 3;
take n;
let m such that
A5: n
<= m;
set m1 = (m
+ 1);
reconsider R =
[.
0 , r.] as non
empty
closed_interval
Subset of
REAL by
MEASURE5:def 3,
A1,
XXREAL_1: 1;
A6:
I(m1) is
continuous & (
dom
I(m1))
=
REAL by
Th4;
then (
I(m1)
| R) is
continuous;
then
A7:
I(m1)
is_integrable_on R & (
I(m1)
| R) is
bounded by
A6,
INTEGRA5: 11,
INTEGRA5: 10;
A8: A
= ((P
. m)
+ (
integral ((((
- 1)
|^ m1)
(#)
I(m1)),R))) by
A1,
Th12;
(
integral ((((
- 1)
|^ m1)
(#)
I(m1)),R))
= (((
- 1)
|^ m1)
* (
integral (
I(m1),R))) by
A7,
A6,
INTEGRA6: 9;
then
A9:
|.(
- (
integral ((((
- 1)
|^ (m
+ 1))
(#)
I(m1)),R))).|
=
|.(((
- 1)
|^ (m
+ 1))
* (
integral (
I(m1),R))).| by
COMPLEX1: 52
.= (
|.((
- 1)
|^ (m
+ 1)).|
*
|.(
integral (
I(m1),R)).|) by
COMPLEX1: 65
.= (1
*
|.(
integral (
I(m1),R)).|) by
SERIES_2: 1;
A10:
|.((P
. m)
- A).|
<= ((1
/ ((2
* m1)
+ 1))
* (r
|^ ((2
* m1)
+ 1))) by
A1,
Th7,
A8,
A9;
(
0
|^ ((2
* m1)
+ 1))
=
0 & (1
|^ ((2
* m1)
+ 1))
= 1 & (r
=
0 or r
>
0 ) by
NAT_1: 11,
A1,
NEWTON: 11;
then (r
|^ ((2
* m1)
+ 1))
<= 1 by
PREPOWER: 9,
A1;
then ((1
/ ((2
* m1)
+ 1))
* (r
|^ ((2
* m1)
+ 1)))
<= ((1
/ ((2
* m1)
+ 1))
* 1) by
XREAL_1: 64;
then
A11:
|.((P
. m)
- A).|
<= (1
/ ((2
* m1)
+ 1)) by
A10,
XXREAL_0: 2;
m1
<= ((1
+ m1)
+ m1) by
NAT_1: 11;
then m
< ((2
* m1)
+ 1) by
NAT_1: 13;
then n
< ((2
* m1)
+ 1) by
A5,
XXREAL_0: 2;
then (1
/ s)
< ((2
* m1)
+ 1) by
A4,
XXREAL_0: 2;
then ((1
/ s)
* s)
< (((2
* m1)
+ 1)
* s) & ((1
/ s)
* s)
= 1 by
XREAL_1: 68,
A3,
XCMPLX_1: 87;
then s
> (1
/ ((2
* m1)
+ 1)) by
XREAL_1: 83;
hence thesis by
A11,
XXREAL_0: 2;
end;
then A
= (
lim P) by
A2,
SEQ_2:def 7;
hence thesis by
SERIES_1:def 3;
end;
::$Notion-Name
theorem ::
LEIBNIZ1:14
Th14: (
PI
/ 4)
= (
Sum
Leibniz_Series ) by
Th13,
SIN_COS9: 39;
theorem ::
LEIBNIZ1:15
Th15: ((
Partial_Sums
Leibniz_Series )
. ((2
* n)
+ 1))
<= (
Sum
Leibniz_Series )
<= ((
Partial_Sums
Leibniz_Series )
. (2
* n))
proof
set L =
Leibniz_Series , A = (
abs L), aa = (
alternating_series A);
1
in
[.(
- 1), 1.] by
XXREAL_1: 1;
then
A1: A is
nonnegative-yielding
non-increasing
convergent & (
lim A)
=
0 by
Th9;
aa
= L by
Th10;
hence thesis by
A1,
Th8;
end;
theorem ::
LEIBNIZ1:16
Th16: ((
Partial_Sums
Leibniz_Series )
. 1)
= (2
/ 3) & (n is
odd implies ((
Partial_Sums
Leibniz_Series )
. (n
+ 2))
= (((
Partial_Sums
Leibniz_Series )
. n)
+ (2
/ (((4
* (n
^2 ))
+ (16
* n))
+ 15))))
proof
set L =
Leibniz_Series , P = (
Partial_Sums L);
set n1 = (n
+ 1), n2 = (n
+ 2);
A1: (P
.
0 )
= (L
.
0 ) by
SERIES_1:def 1
.= ((((
- 1)
|^
0 )
* (1
|^ ((2
*
0 )
+ 1)))
/ ((2
*
0 )
+ 1)) by
Def2
.= 1;
(L
. 1)
= ((((
- 1)
|^ 1)
* (1
|^ ((2
* 1)
+ 1)))
/ ((2
* 1)
+ 1)) by
Def2
.= (
- (1
/ 3));
then (P
. (
0
+ 1))
= ((
- (1
/ 3))
+ 1) by
A1,
SERIES_1:def 1;
hence (P
. 1)
= (2
/ 3);
assume
A2: n is
odd;
A3: (P
. (n1
+ 1))
= ((P
. n1)
+ (L
. n2)) by
SERIES_1:def 1
.= (((P
. n)
+ (L
. n1))
+ (L
. n2)) by
SERIES_1:def 1;
A4: (L
. n1)
= ((((
- 1)
|^ n1)
* (1
|^ ((2
* n1)
+ 1)))
/ ((2
* n1)
+ 1)) by
Def2
.= ((1
* (1
|^ ((2
* n1)
+ 1)))
/ ((2
* n1)
+ 1)) by
A2,
POLYFORM: 8
.= ((1
* ((2
* n2)
+ 1))
/ (((2
* n1)
+ 1)
* ((2
* n2)
+ 1))) by
XCMPLX_1: 91;
(L
. n2)
= ((((
- 1)
|^ n2)
* (1
|^ ((2
* n2)
+ 1)))
/ ((2
* n2)
+ 1)) by
Def2
.= (((
- 1)
* (1
|^ ((2
* n2)
+ 1)))
/ ((2
* n2)
+ 1)) by
A2,
POLYFORM: 9
.= (
- (1
/ ((2
* n2)
+ 1)))
.= (
- ((1
* ((2
* n1)
+ 1))
/ (((2
* n2)
+ 1)
* ((2
* n1)
+ 1)))) by
XCMPLX_1: 91;
hence thesis by
A3,
A4;
end;
::$Notion-Name
theorem ::
LEIBNIZ1:17
(313
/ 100)
<
PI
< (315
/ 100)
proof
set L =
Leibniz_Series , P = (
Partial_Sums L);
deffunc
P(
Nat) = (2
/ ((((4
* $1)
* $1)
+ (16
* $1))
+ 15));
deffunc
P10(
Nat) = ((((
P($1)
+
P(+))
+
P(+))
+
P(+))
+
P(+));
deffunc
P50(
Nat) = ((((
P10($1)
+
P10(+))
+
P10(+))
+
P10(+))
+
P10(+));
A1: n is
odd implies (P
. (n
+ 2))
= ((P
. n)
+
P(n))
proof
assume n is
odd;
then (P
. (n
+ 2))
= ((P
. n)
+ (2
/ (((4
* (n
^2 ))
+ (16
* n))
+ 15))) by
Th16;
hence thesis;
end;
A2: n is
odd implies (P
. (n
+ 10))
= ((P
. n)
+
P10(n))
proof
assume
A3: n is
odd;
8
= (4
* 2);
then
A4: (P
. ((n
+ 8)
+ 2))
= ((P
. (n
+ 8))
+
P(+)) by
A1,
A3;
6
= (3
* 2);
then
A5: (P
. ((n
+ 6)
+ 2))
= ((P
. (n
+ 6))
+
P(+)) by
A1,
A3;
4
= (2
* 2);
then
A6: (P
. ((n
+ 4)
+ 2))
= ((P
. (n
+ 4))
+
P(+)) by
A1,
A3;
A7: (P
. ((n
+ 2)
+ 2))
= ((P
. (n
+ 2))
+
P(+)) by
A3,
A1;
(P
. (n
+ 2))
= ((P
. n)
+
P(n)) by
A3,
A1;
hence thesis by
A4,
A5,
A6,
A7;
end;
A8: n is
odd implies (P
. (n
+ 50))
= ((P
. n)
+
P50(n))
proof
assume
A9: n is
odd;
40
= (20
* 2);
then
A10: (P
. ((n
+ 40)
+ 10))
= ((P
. (n
+ 40))
+
P10(+)) by
A2,
A9;
30
= (15
* 2);
then
A11: (P
. ((n
+ 30)
+ 10))
= ((P
. (n
+ 30))
+
P10(+)) by
A2,
A9;
20
= (10
* 2);
then
A12: (P
. ((n
+ 20)
+ 10))
= ((P
. (n
+ 20))
+
P10(+)) by
A2,
A9;
10
= (5
* 2);
then
A13: (P
. ((n
+ 10)
+ 10))
= ((P
. (n
+ 10))
+
P10(+)) by
A2,
A9;
(P
. (n
+ 10))
= ((P
. n)
+
P10(n)) by
A9,
A2;
hence thesis by
A10,
A11,
A12,
A13;
end;
A14: (2
* 25)
= 50;
A15: 1
= (1
+ (2
*
0 ));
reconsider I = 1 as
Nat;
A16: (50
+ 1) is
odd by
A14;
then
A17: (51
+ 50) is
odd by
A14;
A18: (P
. (1
+ 50))
= ((2
/ 3)
+
P50()) by
Th16,
A15,
A8;
A19: (P
. (51
+ 50))
= ((P
. 51)
+
P50()) by
A16,
A8;
A20: (P
. (101
+ 50))
= ((P
. 101)
+
P50()) by
A8,
A17;
(L
. 152)
= ((((
- 1)
|^ (76
* 2))
* (1
|^ ((2
* 152)
+ 1)))
/ ((2
* 152)
+ 1)) by
Def2
.= (1
/ 305);
then
A21: (P
. (151
+ 1))
= ((P
. 151)
+ (1
/ 305)) by
SERIES_1:def 1;
A22: (313
/ 400)
< (P
. 101) by
A18,
A19;
A23: (P
. 152)
< (315
/ 400) by
A18,
A19,
A21,
A20;
(P
. ((50
* 2)
+ 1))
<= (
PI
/ 4)
<= (P
. (76
* 2)) by
Th14,
Th15;
then (313
/ 400)
< (
PI
/ 4)
< (315
/ 400) by
A22,
A23,
XXREAL_0: 2;
then ((313
/ 400)
* 4)
< ((
PI
/ 4)
* 4)
< ((315
/ 400)
* 4) by
XREAL_1: 68;
hence thesis;
end;